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Abstract
This paper focuses on the concept of partial permutations and their use in algorithmic tasks. A partial
permutation over Σ is a bijection πpar : Σ1 7→ Σ2 mapping a subset Σ1 ⊂ Σ to a subset Σ2 ⊂ Σ,
where |Σ1| = |Σ2| (|Σ| denotes the size of a set Σ). Intuitively, two partial permutations agree if their
mapping pairs do not form conflicts. This notion, which is formally defined in this paper, enables
a consistent as well as informatively rich comparison between partial permutations. We formalize
the Partial Permutations Agreement problem (PPA), as follows. Given two sets A1, A2 of partial
permutations over alphabet Σ, each of size n, output all pairs (πi, πj), where πi ∈ A1, πj ∈ A2 and
πi agrees with πj . The possibility of having a data structure for efficiently maintaining a dynamic set
of partial permutations enabling to retrieve agreement of partial permutations is then studied, giving
both negative and positive results. Applying our study enables to point out fruitful versus futile
methods for efficient genes sequences comparison in database or automatic color transformation
data augmentation technique for image processing through neural networks. It also shows that an
efficient solution of strict Parameterized Dictionary Matching with One Gap (PDMOG) over general
dictionary alphabets is not likely, unless the Strong Exponential Time Hypothesis (SETH) fails,
thus negatively answering an open question posed lately.
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1 Introduction

Permutations are a classical mathematical concept widely used in computer science: playing
a role in analyzing sorting algorithms [29], being a basic building block in randomization
[19], and appearing in various fields, such as Computational Biology (e.g. [8, 24]), Pattern
Matching (e.g. [4, 32]), Cryptography ( e.g. [21]), and more. A permutation over an alphabet
Σ = {σ1, . . . , σ|Σ|} is a bijection π : Σ 7→ Σ mapping every symbol σi ∈ Σ to a distinct
symbol σj ∈ Σ (where it may be that i = j). In this paper, we focus on the concept of partial
permutations and their use in algorithmic tasks.

A partial permutation over Σ is a bijection πpar : Σ1 7→ Σ2 mapping a subset Σ1 ⊂ Σ to
a subset Σ2 ⊂ Σ, where the sizes of the sets Σ1, Σ2 are equal, i.e., |Σ1| = |Σ2|.1 Partial
permutations are closely related to partial words, defined as follows. A partial word over Σ

1 The subscript par is only used in this paragraph to distinguish a partial permutation from a permutation,
however, throughout the paper we omit it for convenience and denote a partial permutation by π.

© Avivit Levy, Ely Porat, and B. Riva Shalom;
licensed under Creative Commons License CC-BY 4.0

33rd Annual Symposium on Combinatorial Pattern Matching (CPM 2022).
Editors: Hideo Bannai and Jan Holub; Article No. 10; pp. 10:1–10:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:avivitlevy@shenkar.ac.il
https://orcid.org/0000-0002-1686-0094
mailto:porately@cs.biu.ac.il
mailto:rivash@shenkar.ac.il
https://doi.org/10.4230/LIPIcs.CPM.2022.10
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


10:2 Partial Permutations Comparison, Maintenance and Applications

is a word (string) over the alphabet Σ ∪ {♢}, where the symbol ♢ is treated as a hole2. In
the study of partial words, the holes are usually treated as gaps that may be filled by an
arbitrary letter of Σ. Note that, a partial permutation is a partial word π such that each
symbol of Σ appears in π exactly once, and all the remaining symbols of π are holes [17].

The study of partial words was initiated by [11, 34] for comparing genes, where alignment
can be viewed as a construction of two partial words that are compatible in the sense defined
in [11]. However, for the task of comparing genes sequences, partial permutations were
suggested as an appropriate model due to diversity of genes and the incompleteness nature of
such sequences [45]. Partial permutations play a role also in computational tasks other than
computational biology. For example, it can be used for representing color transformations
as a data augmentation technique in image processing through neural networks [26, 37]. In
addition, in pattern matching algorithms strings may be mapped to other strings, as in the
well-known parameterized matching and related problems [9, 35, 40].

Combinatorial aspects of partial words that have been studied include periods in partial
words [11, 41], avoidability/unavoidability of sets of partial words [12, 13], squares in partial
words [22], and overlap-freeness [23]. Combinatorial questions regarding partial permutations
were also studied, e.g., pattern avoidance [17], enumeration [42, 31] or restricted forms [17, 14].

In this paper, we study algorithmic aspects of maintaining partial permutations. To
this end, we next discuss the basic operation of comparing partial permutations, formally
define the concept of their agreement and describe a condition on partial permutations
representations that naturally perceive the agreement between two partial permutations.

1.1 Partial Permutations Comparison
Let R be any representation of a permutation π over an alphabet Σ = {σ1, . . . , σ|Σ|}. Since
R represents the bijection where the domain and codomain of π are identical, it should only
specify the mapped pairs of symbols. Then, it holds that R(π1) = R(π2) if and only if the
permutations π1 and π2 are equal. We refer to this property as the comparison axiom.

Assume any representation R of a partial permutation. Since R represents a bijection
having non-obvious domain and codomain, it should specify the domain and codomain sets
of π (denoted by DR and CR, respectively) as well as the set of symbols pairs mapped
by the bijection (denoted by MR). A comparison of partial permutations based on such a
representation R is more complicated. We may wish to know if two partial permutations are
identical and enforce their representations to be equal, but then we put a rigid limitation on
our notion of comparison. Considering the nature of partial permutations, we may rather
prefer a way to compare the “agreement” between two given partial permutations. Formally,

▶ Definition 1 (Conflict and Agreement of Partial Permutations). Two partial permutations
π1, π2 are conflicting (alternatively, contain a conflict) if either:
1. There exist σi, σj ∈ Σ2, σi ̸= σj, such that there exists σk ∈ Σ1 where π1(σk) = σi and

π2(σk) = σj, or
2. There exist σi, σj ∈ Σ1, σi ̸= σj, such that there exists σk ∈ Σ2 where π1(σi) = π2(σj) =

σk.
We say that π1, π2 agree if they do not contain any conflict.

2 The hole symbol ♢ is not treated as a don’t care symbol as is common in pattern matching, but rather
as a don’t know symbol.
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Definition 1 enables to establish a comparison between two given partial permutations
aimed at revealing wether they agree or not. Since the representation is the key to the
comparison process, we have to take it into account. Note, however, that Definition 1 is inde-
pendent of the chosen representation. We may, therefore, derive from it a universal condition
on any representation enabling comparison of agreement between partial permutations.

▶ Lemma 2 (A Universal Condition of Partial Permutations Agreement). Let R be any
representation of partial permutation bijections, and let π1, π2 be two partial permuta-
tions. Then, π1, π2 agree if and only if the following conditions hold on R(π1) =
⟨DR(π1), CR(π1), MR(π1)⟩, R(π2) = ⟨DR(π2), CR(π2), MR(π2)⟩:
1. For every σk ∈ DR(π1)∩DR(π2) and σi ∈ CR(π1), if (σk, σi) ∈ MR(π1) then σi ∈ CR(π2)

and (σk, σi) ∈ MR(π2).
2. For every σk ∈ CR(π1)∩CR(π2) and σi ∈ DR(π1), if (σi, σk) ∈ MR(π1) then σi ∈ DR(π2)

and(σi, σk) ∈ MR(π2).

Proof. Obviously, the first condition of the lemma avoids a conflict of the first type of
Definition 1, and the second condition avoids a conflict of the second type in Definition 1. ◀

▶ Example. Let Σ = {0, 1, 2, 3}, DR(π1) = {1, 2}, CR(π1) = {0, 3}, MR(π1) = {(1, 3), (2, 0)},
DR(π2) = {0, 1}, CR(π2) = {1, 3}, MR(π2) = {(0, 1), (1, 3)}, then πi agrees with πj.

The following classification of partial permutations representations will be useful for the
discussion of algorithms complexity.

▶ Definition 3 (Good Representation). A representation R for partial permutations is called
a good representation if, assuming word-RAM model, for every πi,
1. the size of R(πi) is O(|Σ|), and
2. for every πj, determining whether the universal agreement condition between R(πi) and

R(πj) holds can be done in O(|Σ|) time.

In the paper, we discuss the existence of a data structure for maintaining a dynamic set
of partial permutations supporting the operations of insert, delete and search agreement with
the query over the set. A static partial permutations set situation is first investigated and
then supporting a dynamic set is referred to. We employ a fine-grained complexity analysis,
which have recently become an important tool (e.g., in [28, 20, 25]).

1.2 Fine-Grained Complexity Analysis
In traditional computer science theory, the typical problems considered “hard” are N P-
Hard and maybe even require exponential time to solve. Problems having polynomial time
algorithms are considered “easy”. The best known algorithms for many such “easy” problems
have high run-times, thus, are impractical, and their improvement has been a longstanding
open problem with little to no progress. It may be that these algorithms are optimal, however,
deriving unconditional lower bounds seems beyond current techniques.

A new, conditional theory of hardness has recently been developed, based around several
plausible conjectures. The theory develops reductions between seemingly very different
problems, showing that the reason why the known algorithms have been difficult to improve
is likely the same, even though the known run-times of the problems might be very different.
This direction of study has been termed “fine-grained complexity” theory (see e.g. [44]).

Much of fine-grained complexity is based on hypotheses of the time complexity of infamous
problems, e.g., CNF-SAT, All-Pairs Shortest Paths (APSP) and 3-SUM. The hypotheses are
about the word-RAM model with O(log n) bit words, where n is the input size. [27] introduced
the Strong Exponential Time Hypothesis (SETH) to address CNF-SAT complexity.

CPM 2022
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The Strong Exponential Time Hypothesis (SETH) [27]. For every ϵ > 0 there exists an
integer k ≥ 3 such that CNF-SAT on formulas with clause size at most k (called k-SAT) and
n variables cannot be solved in O(2(1−ϵ)n) time even by a randomized algorithm.

Orthogonal Vectors. The Orthogonal Vectors (OV) problem is a core problem in the basis
of many fine-grained hardness results for problems in P . The problem is formally defined as
follows.

▶ Definition 4 (The OV Problem). Let d = ω(log n); given two sets S1, S2 ∈ {0, 1}d with
|S1| = |S2| = n, determine whether there exist a ∈ S1, b ∈ S2 so that a · b = 0, where
a · b =

∑d
i=1 a[i] · b[i].

It is not hard to solve OV in O(n2d) time by exhaustive search. The fastest known algorithms
for the problem run in time n2−1/Θ(log(d/ log n)) [1, 15]. It seems that n2−o(1) is necessary.
This motivates the now widely used OV Hypothesis.

OV Hypothesis. No randomized algorithm can solve OV on instances of size n in n2−ϵpoly(d)
time for constant ϵ > 0.

We describe the connection between OV and Partial Permutation Agreement (PPA)
(formally defined in Definition 7, Section 3) problems. In fact, we show that they are
equivalent, leading to both negative and positive results for PPA, derived also for the
dynamic setting . Algorithmic applications to problems in computational biology, image
processing and pattern matching are further described in Section 4.

This Paper Contributions. The main contributions of this paper are:
Giving the first formal discussion from algorithmic point of view of efficient partial
permutations maintenance enabling consistent as well as informatively rich comparison.
Showing that a data structure for efficiently maintaining a dynamic set of partial per-
mutations is not likely to exist, unless the SETH hypothesis fails.
Describing positive results on maintaining a dynamic set of partial permutations: (1) an
improvement in the general case derived via online matrix-factor multiplication, and (2)
an efficient solution in a special case termed almost full partial permutations.
Applying the study to reason about fruitful versus futile methods for efficient gene
sequences comparison, enabling a formal understanding of this challenge, hinted in [45].
Applying the study to form an automatic process of redundant augmented-data removal
to avoid over-fitting of a neural network training set for image processing tasks and
increasing its capability to generalize to unseen invariant data [43].
Applying the study of partial permutation maintenance to answer negatively (unless
the SETH hypothesis is false) for an open question regarding a solution over a general
alphabet dictionary for the online strict PDMOG problem presented by [35] (see formal
definition in Sect. 4.2), while supplying new tools for efficient solution in a special case
termed a k-saturated dictionary (see formal definition in Sect. 4.2).

Paper Organization. The paper is organized as follows. Section 2 gives the needed pre-
liminary discussion on a good representation of partial permutations. Section 3 studies the
possibility of having a data structure for efficiently maintaining a dynamic set of partial
permutations as follows. Subsection 3.1 describes the reduction from the OV problem.
Subsection 3.2 shows the equivalence to the OV problem via a connection to the Partial
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Match problem (PM) (formally defined there), which also enables to exploit some positive
results for the PM problem to our purposes. Subsection 3.3 describes how to achieve an
efficient solution in the special case of almost full partial permutations. Section 4 describes
the applications to genes sequences comparison (Subsection 4.1), to color transformation data
augmentation and to online strict PDMOG problems (Subsection 4.2). Section 5 concludes
the paper with some open questions.

2 Preliminaries: A Good Representation of Partial Permutations

A permutation π over an alphabet Σ = {σ1, . . . , σ|Σ|} can be represented as the string
sπ = π(σ1)π(σ2) . . . π(σ|Σ|) of length |Σ|. For example, let Σ = {a, b, c} and π = {a 7→
b, b 7→ c, c 7→ a}, then sπ = bca. It trivially holds that sπ1 matches sπ2 if and only if
the permutations π1 and π2 are equal. A straightforward approach to achieve a good
representation for partial permutations is to adjust the above by enabling the use of a
don’t care symbol ⋆ whenever an alphabet symbol of Σ does not belong to the partial
permutation domain. For example, let Σ = {a, b, c, d, e, f} and MR(π) = {(a, e), (b, c), (c, d)},
where DR(π) = {a, b, c} and CR(π) = {c, d, e}, then this approach suggests using the string
sπ = ecd ⋆ ⋆⋆ as a representation for π. Note, that an exact string comparison of the strings
representing two given partial permutations according to this suggestion still allows two
partial permutations to be exactly the same. The use of a don’t care symbol in order to
broaden the equality scope to partial permutations that agree requires using approximate
string matching with don’t care, where this special symbol indeed matches any symbol.

Nonetheless, even when string matching with don’t care is applied, the comparison axiom
does not hold for this representation. To see this, consider the partial permutation π1 where,
MR(π1) = {(a, e), (b, c), (e, d)}, DR(π1) = {a, b, e} and CR(π1) = {c, d, e}. By the above
suggestion the representation of π1 would be sπ1 = ec⋆⋆d⋆. Let π2 be the partial permutation
from the above example, thus sπ2 = ecd ⋆ ⋆⋆. It holds that sπ2 matches sπ1 , because the
don’t care symbol ⋆ matches any symbol. However, the two partial permutations π1 and π2
contain a conflict. Note that, though the requirement of approximately matching the strings
sπ1 and sπ2 exclude the possibility of a conflict of the first type in Definition 1, it does not
exclude a conflict of the second type. Thus, it does not satisfy the universal condition for
partial permutations agreement.

Correcting this flaw involves the use of the inverse permutation, defined as follows.

▶ Definition 5 (Inverse of Partial Permutation). Given a partial permutation π over Σ,
mapping the subset Σ1 ⊂ Σ to the subset Σ2 ⊂ Σ, where |Σ1| = |Σ2|, the inverse partial
permutation π−1 of π is a bijection π−1 : Σ2 7→ Σ1 such that for every σi ∈ Σ2, π−1(σi) = σj

if and only if π(σj) = σi.

For example, let Σ = {a, b, c, d, e, f} and π = {a 7→ e, b 7→ c, c 7→ d} be a partial permutation,
where Σ1 = {a, b, c} and Σ2 = {c, d, e}, then the inverse partial permutation of π is π−1 =
{c 7→ b, d 7→ c, e 7→ a}.

Now, a partial permutations representation enabling a distinction between two different
partial permutations that agree and two partial permutation that disagree is simply the string
sπ · sπ−1 , where · denotes strings concatenation. Note that the size of this representation is
Θ(|Σ|). Lemma 6 below ensures that this representation satisfies the comparison axiom.

▶ Lemma 6. Given two partial permutations π1, π2, then sπ1 · sπ−1
1

matches sπ2 · sπ−1
2

if and
only if the partial permutations π1 and π2 do not contain any conflict.

CPM 2022
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The Don’t Care Representation of Partial Permutations. Based on Lemma 6, given a
partial permutation π we may call the string sπ · sπ−1 the don’t care representation of π.
We make the distinction between the don’t care representation of π, which is a specific
representation described in this section, and the universal condition on any representation
described in Subsection 1.1, in order to enable the discussion in the next section to be
independent of the representation, when necessary.

3 Maintaining a Dynamic Set of Partial Permutations

In this section we study the possibility of having a data structure for keeping a set of partial
permutations enabling the operations: search, insert and delete on the set.

Following the discussion on Subsection 1.1, though there is exactly one partial permutation
having the same representation as a given partial permutation π, there can be many partial
permutations with a representation that satisfy the universal condition for agreement with the
representation of π. All such partial permutations agree with the given partial permutation,
though they are not identical, and may not agree with each other.

Therefore, we make a distinction between these two kinds of search operations: searching
the same permutation or searching agreeing permutations. Specifically, given a partial
permutation representation, we would like to support a query that returns all the partial
permutations in the data structure that have a representation satisfying the universal
condition for agreement, i.e., permutations that agree with the query permutation.

We will also refer to an offline batch version of this problem, formally defined as follows.

▶ Definition 7 (The Partial Permutations Agreement Problem (PPA)).
Input: Sets A1, A2 of partial permutations over alphabet Σ, each of size n.
Output: All pairs (πi, πj), πi ∈ A1, πj ∈ A2 and πi agrees with πj.
In the non-batch version of the problem the size of the two sets is different: A1 has size n,
where A2, the query, has size 1. We call this problem the single query PPA problem, denoted
as SPPA. The following observation immediately follows.

▶ Observation 8. If SPPA can be solved in query time O(q) and O(S) space for a set of n

partial permutations, then PPA can be solved in O(nq) time and O(S) space.

Note, that by Definition 3, for any good representation R, SPPA can be naively solved
in q = O(n · |Σ|) time and S = O(n · |Σ|) space. Therefore, by Observation 8, PPA can
be naively solved in O(n2 · |Σ|) time and O(S) space for any good representation of partial
permutations.

3.1 Orthogonal Vectors and Partial Permutations Agreement
In this subsection, we show that PPA is not likely to be solved in O(n2−ϵ · |Σ|) time.
We describe a reduction from the orthogonal vectors problem (OV). Theorem 10 follows.
Corollary 12 then follows from Observation 8. The proofs are postponed to the full version.

The Reduction. Let S1, S2, n, d be an instance of the Orthogonal Vectors problem, we reduce
it to an instance A1, A2, Σ of the Partial Permutations Agreement problem, where there are
vi ∈ S1, vj ∈ S2 such that vi, vj are orthogonal if and only if there are πi ∈ A1, πj ∈ A2, such
that πi agrees with πj .

We construct a permutation gadget for every binary vector vi as follows. Let vi =
(bi

1, bi
2, . . . , bi

d). We define a partial permutation πi over alphabet Σ = {σ1, . . . , σd+1} (|Σ| =
d + 1), where πi includes the mapping of σℓ ∈ Σ to a symbol from Σ if and only if bi

ℓ = 1,



A. Levy, E. Porat, and B. R. Shalom 10:7

∀1 ≤ ℓ ≤ d. However, ∀1 ≤ ℓ ≤ d, where bi
ℓ = 0, σℓ does not participate in any pair defining

the permutation gadget. Hence, for any representation R of the partial permutation π, we
have that σℓ ∈ DR(π) if and only if bℓ = 1.

The specific transformation to permutations is asymmetric, i.e., the transformation of S1
vectors differs from that of S2 vectors, as follows.

For πi associated with vi ∈ S1, a symbol that participates in the mapping pairs is mapped
to itself. This means that for any representation R of the partial permutation πi, we
have that σℓ ∈ DR(πi), σℓ ∈ CR(πi) and (σℓ, σℓ) ∈ MR(πi) if and only if bℓ = 1. The
additional symbol σd+1 does not participate in any mapping pair. We regard it as if vi has
an additional bit bi

d+1 = 0. Therefore, for any representation R we get σd+1 /∈ DR(πi),
σd+1 /∈ CR(πi).
For πj associated with vj ∈ S2, a symbol that participates in the mapping pairs is mapped
to the symbol cyclicly to its right in the sorting of Σ1 – the symbols that participate in
the mapping pairs. This means that for any representation R of the partial permutation
πj , we have that σℓ ∈ DR(πj), σℓ′ ∈ CR(πj) and (σℓ, σℓ′) ∈ MR(πj), where σℓ′ is the
symbol that is cyclically to the right of σℓ in the sorting of Σ1, if and only if bℓ = 1.
The additional symbol σd+1 is included in the mapping pairs of πj . Thus, σd+1 ∈ Σ1
and assumed to be ordered last. We regard it as if vj has an additional bit bj

d+1 = 1.
Therefore, for any representation R we get σd+1 ∈ DR(πj), σd+1 ∈ CR(πj).

See Figure 1 for example.

▶ Lemma 9. OV is reducible to PPA in O(n · d) time and space.

v1 = (1, 0, 1, 1, 0, 0) ∈ S1   

πv1 =
a  b c  d  e f g
a  - c  d  - - -

v2 = (0, 1, 0, 0, 1, 0) ∈ S2   

πv2 =
a b c  d e f g
- e  - - g  - b

v2 = (0, 1, 0, 0, 1, 0) ∈ S2   

πv2 =
a b c  d e f g
- e  - - g  - b

v1 = (1, 1, 1, 1, 0, 0) ∈ S1   

πv1 =
a  b c  d  e f g
a  b c  d   - - -

(a)

(b)

Figure 1 An example of the asymmetric transformation of vectors from S1 and S2 into permuta-
tions in A1 and A2, respectively. (a) The transformation for a pair of orthogonal vectors gives a
pair of permutations that agree. (b) The transformation for a pair of non-orthogonal vectors gives a
pair of permutations that do not agree.

Theorem 10 follows.

▶ Theorem 10. Let R be any good representation of partial permutations. If there exists
ϵ > 0 such that for any c > 0, PPA is solvable in O(n2−ϵ) time and R is used to represent
the partial permutations in the sets A1, A2, then the Strong Exponential Time Hypothesis
(SETH) is false.

CPM 2022
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Observation 11 below states a weaker version of Theorem 10, which refers explicitly also
to the space complexity and includes the |Σ|-parameter of the PPA problem. This will be
useful for the applications, especially in Section 4.

▶ Observation 11. Let R be any good representation of partial permutations. If there exists
ϵ > 0 such that for any c > 0, PPA is solvable in O(n2−ϵ · |Σ|) time and O(n · |Σ|) space,
where |Σ| = c log n and R is used to represent the partial permutations in the sets A1, A2,
then the Strong Exponential Time Hypothesis (SETH) is false.

▶ Remark. We include the dependence on |Σ| in the time complexity in order to make explicit
the role of this parameter. In the low-dimensional setting, where |Σ| is slightly larger than
logarithmic, it could be dropped (since sub-polynomial), where for moderate dimension even
O(n2−ϵpoly(Σ)) algorithms can be ruled out under the OV Hypothesis.

Corollary 12 then follows from Theorem 10 and Observation 8.

▶ Corollary 12. Let R be any good representation of partial permutations. If there exists
ϵ > 0 such that for any c > 0, SPPA query q can be answered in O(n1−ϵ) time and R is
used to represent the partial permutations in the set A1 and the query q, then the Strong
Exponential Time Hypothesis (SETH) is false.

3.2 The Partial Match Problem and Partial Permutations Agreement
In this subsection we discuss the connection between the Partial Permutations Agreement
problem and another important problem – the Partial Match, formally defined as follows.

▶ Definition 13 (The Partial Match Problem (PM)).
Preprocess: A set D of n binary vectors of dimension d.
Query: A vector q of dimension d over the set {0, 1, ⋆}, where ⋆ is a “don’t care” symbol.
Output: All vectors v ∈ D, such that v matches the query vector q.

In the batch version of the Partial Match problem, denoted by BPM, we have instead of a
single query vector, a set Q of n vectors over the set {0, 1, ⋆}, and the requested output is all
pairs of vectors (v, q), where v ∈ D and q ∈ Q, such that v matches q.

The PM problem has been thoroughly studied for decades (e.g. Rivest’s PhD thesis [39]).
However, there has been only minor algorithmic progress beyond the two obvious solutions
of storing 2Ω(d) space for all possible queries, or taking Ω(n) time to try all points in the
database. It was generally believed that PM is intractable for sufficiently large dimension
d – this is one version of the “curse of dimensionality” hypothesis. The best known data
structures for answering partial match queries are due to [16] for the general case, and [18] for
queries with a bounded number of don’t care symbols. Finally, [1] point out some evidence
that batch partial match (BPM) is not solvable in sub-quadratic time due to its equivalence
to the OV problem. Consequently, it gives some evidence to the difficulty of the PM problem:
it is not likely to be solved in O(n1−ϵ · d) time and space due to an observation similar to
Observation 8.

The Two-Sided BPM and PPA Problems. Note that, in the definitions of the PM and BPM
problems don’t care symbols are only allowed in the query vectors, but the database vectors
are over {0, 1}. The good representation for partial permutations described in Section 2 gives
a version of the PPA problem for the don’t care representation which can be viewed as a
generalization of the BPM problem, where both database and query vectors are over the
set {0, 1, ⋆}. We call this problem the two-sided Batch Partial Match problem (two-sided
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BPM). The result presented in Theorem 10 is strong in the sense that it is independent
of the representation, and means that the difficulty of PPA is not due to a choice of a too
rich representation. Theorem 10, specifically, applies also for the don’t care representation
of partial permutations, for which the PPA problem becomes exactly the two-sided BPM
problem. We, thus, get from Theorem 10 the following corollary.

▶ Corollary 14. If there exists ϵ > 0 such that for any c > 0, two-sided BPM is solvable in
O(n2−ϵ) time, then the Strong Exponential Time Hypothesis (SETH) is false.

Equivalence of PM, Two-Sided PM and SPPA Problems. In fact, we now show that
these three problems: the partial match (PM), two-sided partial match (two-sided PM) and
single-query partial permutations agreement (SPPA), are actually equivalent. As mentioned
above, the good representation for partial permutations described in Section 2 gives a version
of the PPA problem for the don’t care representation which is exactly the two-sided BPM
problem, where both database and query vectors are over the set {0, 1, ⋆}. Moving to
the non-batch versions of these problems, we therefore get, that SPPA and two-sided PM
are equivalent. It is, thus, enough to show that the PM and two-sided PM problems are
equivalent. Since PM is a special case of two-sided PM, where no don’t care symbol appears
in the database vectors set D, and may appear only in the query vector q, we need only show
how to convert an input of the two-sided PM to an input of PM. Such a transformation can
be achieved by a special coding of the symbols of the two-sided PM problem input. Symbols
of the dictionary D vectors are coded in the following way:“0” is coded by “01”,“1” is coded
by “10” and “⋆ is coded by “00”. Symbols of the query vector are coded in the following way:
“0” is coded by “0 ⋆ ”, “1” is coded by “ ⋆ 0” and “ ⋆ ” is coded by “ ⋆ ⋆”. This is concluded in
Lemma 15.

▶ Lemma 15. There exists a linear time and space transformation from the two-sided PM
problem d-dimensional input vectors v ∈ D to PM problem 2d-dimensional input vectors
td(v) ∈ td(D), such that a d-dimensional input vector v ∈ D matches a given d-dimensional
query vector q of the two-sided PM problem if and only if the 2d-dimensional input vector
td(v) ∈ td(D) matches a given 2d-dimensional query vector tq(q) of the PM problem.

We have, therefore, proven Corollary 16.

▶ Corollary 16. Any algorithm Alg that solves PM in query time O(q) and O(S) space can
be used to solve the two-sided PM and SPPA problems in O(q) query time and O(S) space.

Remark on a Computational Difference of PM and Two-Sided PM. Note that the
transformation from two-sided PM to PM has a blow-up in the number of don’t care symbols,
which is linear in the size of the vectors. Thus, despite Corollary 16, algorithms solving
PM efficiently assuming a bounded number of don’t cares (such as [18]) cannot be used to
efficiently solve the two-sided PM or SPPA problems.

Corollary 16 enables to apply positive results on PM (e.g. [16], which is independent of
the number of don’t care symbols) on both the two-sided PM and SPPA problems. We are
specifically interested in the following result of [33]3.

3 [33] refer to their result as a solution to PM, however, they actually solve two-sided PM.
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▶ Theorem 17 (Theorem 1.2 of [33]). Let Σ = {σ1, . . . , σk} and let ⋆ be an element such
that ⋆ /∈ Σ. For any set of strings x1, . . . , xn ∈ (Σ ∪ ⋆)d with d ≤ n, after Õ(nd)-time
preprocessing, there is an O(nd) space data structure such that, for every query string
q ∈ (Σ ∪ ⋆)d, it is possible to answer online whether q matches xi, for every i = 1, . . . n, in
O(nd log k/2Ω(

√
log d)) amortized time over 2ω(log d) queries.

Moreover, we observe that the same bounds of Theorem 17 can be achieved for a dynamic
set of strings, supporting updates (insertion and deletions) in Õ(d) time. We give a brief
description of the [33] solution and explain our observation next.

A Dynamic Two-Sided PM Solution. First, for simplicity assume that n = d. The case
d ≤ n is handled using n/d-splitting technique. Build an n × n matrix A over (Σ ∪ {⋆})n×n

such that A[i, j] = xi[j]. The matrix A is then transformed to a boolean matrix, as follows.
Let S1, T1, . . . , Sk, Tk ∈ [2 log k] be a collection of subsets such that for all i, |Si ∩ Ti| = ϕ, yet
for all i ̸= j, |Si ∩ Tj | ̸= ϕ. Such a collection exists, by simply taking (for example) Si to be
the ith subset of [2 log k] having exactly log k elements (in some ordering on sets), and taking
Ti to be the complement of Si. Extend the matrix A to an n × (2n log k) boolean matrix B,
by replacing every occurrence of σi with the (2 log k)-dimensional row vector corresponding
to Si, and every occurrence of ⋆ with the (2 log k)-dimensional row vector which is all-zeroes.

When a query vector q ∈ (Σ ∪ {⋆})n is received, convert q into a boolean (column)
vector v by replacing each occurrence of σi with the (2 log k)-dimensional (column) vector
corresponding to Ti, and every occurrence of ⋆ by the (2 log k)-dimensional (column) vector
which is all-zeroes. Compute Av using the Online Matrix Vector multiplication algorithm
of [33]. For all i = 1, . . . , n, q matches xi if and only if the ith row of B is orthogonal to v.
The two vectors are orthogonal if and only if for all j = 1, . . . , n, either the ith row of B

contains the all-zero vector in entries (j − 1)(2 log k) + 1, . . . , j(2 log k), or in those entries B

contains the indicator vector for a set Sℓ and correspondingly v contains either ⋆ or a set Tℓ′

such that Sℓ ∩ Tℓ′ ̸= ϕ, i.e., xi and q match in the jth symbol. That is, the two vectors are
orthogonal if and only if q matches xi. Therefore, Av reports for all i = 1, . . . , n whether q

matches xi or not.
The important observation is that the transformation of each string to a matrix row

is independent. Therefore, strings/vectors can be added/deleted from the set in time
proportional to the transformation time, which is Õ(d). The above solution can be still used
for the dynamic set as long as we have enough (at least d) strings/vectors in the set. When
the set of strings is less than d, we may use a naive solution instead.

This leads to Corollary 18.

▶ Corollary 18 (Dynamic SPPA Online Computation). Let A be a set of n partial permutations.
After Õ(n|Σ|)-time preprocessing, there is an O(n|Σ|) space dynamic data structure supporting
update operation (insertion or deletion to A) in Õ(|Σ|) time, such that, for every query
partial permutation π, it possible to answer online whether π agrees with πi ∈ A, for every
i = 1, . . . n, in O(n|Σ| log |Σ|/2Ω(

√
log |Σ|)) amortized time over 2ω(log |Σ|) queries.

3.3 Almost Full Permutations
In this subsection we consider the PPA and SPPA problems in a special case, where there
are only a few symbols in Σ that don’t participate in the bijection pairs set. Formally,
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▶ Definition 19 (Almost Full Partial Permutation). Let π be a partial permutation over Σ,
i.e., a bijection mapping a subset Σ1 ⊂ Σ to a subset Σ2 ⊂ Σ, where |Σ1| = |Σ2|. We call π

an almost full partial permutation if |Σ| − |Σ1| = k, where k! = O(poly(|Σ|)) and poly(|Σ|)
is some polynomial in the size of Σ.

We first describe an efficient solution for the problems over permutations. Formally,

▶ Definition 20 (The Equal Permutations Problem (EP)).
Input: Sets B1, B2 of size n, of permutations over alphabet Σ.
Output: All pairs (πi, πj), where πi ∈ B1, πj ∈ B2 and πi = πj.

As above, in the non-batch version of the problem the size of the two sets is different: B1
has size n, where B2, the query, has size 1. We refer to it as the single query EP problem,
denoted as SEP.

Efficient Solution for the SEP and EP Problems. The SEP problem can be easily solved
by using a dimension reduction in the representation of the permutation from |Σ| dimensions
to a single dimension, assigning each permutation a unique number in O(|Σ|) time, assuming
RAM model with O(log |Σ|) word size (as done in [35]). The unique numbers representing
the permutations πi ∈ B1 are saved in a hash table, in which we look for the unique number
assigned to the query permutation. The assignment of a unique number to a permutation,
num(π), is forming a |Σ|-radix number representing π. It can be done in several ways, each
with complexity O(|Σ|), as follows.
1. Assuming, without loss of generality, that Σ = {σ0, σ1, . . . , σ|Σ|−1}, and define |σi| = i.

Let π = σi1σi2 . . . σi|Σ| then: num(π) = |σi1 | · |Σ||Σ|−1 + |σi2 | · |Σ||Σ|−2 + . . . + |σi|Σ| |.
2. By using the technique suggested by [38], where permutations are ranked according to

the indices that are swapped in the process of converting the current permutation to the
identity permutation.

Consequently, the EP problem can be solved in q = O(n · |Σ|) time, and S = O(n) space due
to an observation similar to Observation 8.

Now, an efficient solution for SPPA and PPA in the almost-full partial permutations
special case can be achieved via reduction of SPPA to the SEP problem. This is done by
creating for each almost full partial permutation π in A1, the k! possible permutations derived
from π by specifying all the choices to add the symbols that do not already appear in π.
This is also done for the single query almost full partial permutation.

For example, let Σ = {a, b, c, d}, k = 2, S1 = {π1 = (a 7→ b, b 7→ a), π2 = (a 7→ c, c 7→ a)}
and q = (a 7→ c, b 7→ b). Denote the set of full permutations derived from a partial
permutation π by full(π). Hence, full(π1) = {bacd, badc}, full(π2) = {cbad, cdab}. Thus,
full(S1) = {bacd, badc, cbad, cdab} and full(q) = {cbad, cbda}. Therefore, full(q) and full(S1)
have a matching pair due to cbad.

The SPPA is then solved using the above SEP solution with O(k! · |Σ| · n) preprocessing
time, q = O(k! · |Σ|) query time and S = O(k! · n) space, where a hash table is used for
the numbers of the O(k! · n) permutations derived from the n partial permutations of A1.
Consequently, PPA can be solved in preprocessing O(k! · |Σ| · n) time, q = O(k! · |Σ| · n) query
time and S = O(k! · n) space due to an observation similar to Observation 8. Moreover, the
solution described above supports maintenance of the database set A1 dynamically, as each
partial permutation can be deleted from or inserted to A1 in O(k! · |Σ|) time. This gives
Theorem 21.
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▶ Theorem 21. SPPA for almost full partial permutations can be solved in preprocessing
O(k! · |Σ| · n) = O(poly(|Σ|) · n) time, insertion and deletion in O(k! · |Σ|) = O(poly(|Σ|))
time, q = O(k! · |Σ|) = O(poly(|Σ|)) query time and S = O(k! · n) = O(poly(|Σ|) · n) space.

4 Algorithmic Applications of Partial Permutations

In this section we describe specific computational tasks stemming from computational biology,
image processing and pattern matching, for which our study of partial permutations applies.
Due to space limitations, we give here only the applications to genes sequences comparison
and solving string PDMOG. The description of the application to color transformation data
augmentation is postponed to the full version.

4.1 Application to Genes Sequences Comparison
In this subsection, we describe the application of the results in Section 3 to genes sequences
comparison.

Genes Sequences Comparison. A family of genomes is often modeled as a set of permuta-
tions on genes that are common to all organisms of the family, as in [10]. A limitation in
this type of models, comes from the difficulty to identify a large number of genes that are
common even to a relatively small set of organisms. This is due, in part, to incompleteness
in functional annotations of genes in public websites, and also to the difficulty of determining
orthology relationships among genes in different genomes, since this relationship is known to
be many-to-many. On the contrary, ubiquitous genes, such as ribosomal genes are often the
ones best preserved in different species both in sequence and order and thus provide little
valuable information in a gene-order based analysis [45].

Therefore, classifying species based on genes order in case of missing genes and, thus,
incomplete permutations, is suggested as a better approach [45]. Furthermore, [45] point
out that the occurrence of incomplete permutations with missing elements renders the
classification problem more computationally challenging and has received limited attention.
The study of partial permutations in this paper, enables to address this computational
problem formalization as well as better understand its algorithmic computational challenge.

Incompleteness is formalized as partial words and studied in comparing genes, where the
“alphabet” is small and, therefore, repetitiveness is expected. The domain D(w) of a partial
word w is the set of all positions i such that w[i] is defined, i.e., is not a hole. An alignment
of two sequences can be viewed as a construction of two partial words that are compatible in
the following sense [11]. Given two partial words x and y of the same length, we say that x

is contained in y or that y contains x, and we write x ⊂ y, if D(x) ⊂ D(y) and x[k] = y[k]
for all k ∈ D(x). Two words x and y are compatible if there exists a word z that contains
both x and y. In this case, the smallest word containing x and y is defined by D(x) ∪ D(y).

Note that, two equal length partial words x and y that are compatible must agree
on the positions in D(x) ∩ D(y), however, there is no requirement on the positions in
D(x)∪D(y)\(D(x)∩D(y)). In particular, it may have repeating symbols. Thus, applying the
notion of compatibility in order to compare words in the special case of partial permutations
suffers from the following inconsistency: given two partial permutations x and y, we have
that the smallest word that contains both x and y, D(x) ∪ D(y), is not necessarily also a
partial permutation. It also has the undesirable side-effect of generating artificial sequences.

The definition of agreement between partial permutations gives a consistent comparison
for genes sequences as well as preserves the original input sequences. Thus, our study enables
to point out possibly fruitful versus futile methods for efficient genes sequences comparison.



A. Levy, E. Porat, and B. R. Shalom 10:13

Our Results Applied to Genes Sequences Comparison. Note, that the basic building
block for classification tasks is the comparison operation between a pair of genes sequences.
Given a set of n gene sequences over a set of d identified family of genes. Considering
the formalization of gene sequences as partial permutations explained above, our definition
of agreement between partial permutations not only suggests such a building block, but
also enables to differentiate situations where the problem can be efficiently computed from
situations it probably cannot.

Specifically, the application of the results in Section 3 to genes sequences comparison
gives the following. For a family of d identified genes, and a set of n partial permutations
representing genes sequences over d, we have that:

For any ϵ > 0, there exists c > 0 such that, if d = c log n, then finding the genes sequences
that agree with a query genes sequence is not likely to be answered in O(n1−ϵ · d) time
using O(n · d) (linear) space (unless the Strong Exponential Time Hypothesis (SETH) is
false). This follows from Corollary 12 and Observation 11 in Subsection 3.1.
If d = Θ(log n), after Õ(n · d)-time preprocessing, there is an O(n · d) space dynamic data
structure supporting updates (insertion and deletion) in Õ(d) time, such that, finding genes
sequences that agree with a query gene sequence can be done in O(n · d log d/2Ω(

√
log d))

amortized time over 2ω(log d) queries. This follows from Corollary 18 in Subsection 3.2.
If the gene sequences of both the database and query are almost full, then there is an
O(k! · n) = O(poly(d) · n) space dynamic data structure supporting updates (insertion
and deletion) in O(k! · d) = O(poly(d)) time, such that finding genes sequences that agree
with a query genes sequence can be done in O(k! · d) = O(poly(d)) time. This follows
from Theorem 21 in Subsection 3.3.

4.2 Application to Solving Strict PDMOG

In this subsection, we describe the application of the results in Section 3 to solving the strict
PDMOG problem.

Strict PDMOG. Two equal-length strings are a parameterized match, denoted by p-match,
if there exists a bijection on their alphabet symbols under which one string matches the
other. The PDMOG problem is motivated by the critical modern concern of cyber security.
Network intrusion detection systems (NIDS) perform protocol analysis, content searching and
content matching, in order to detect harmful software that may appear on several packets
requiring gapped matching [30]. A gapped pattern P is one of the form lp {α, β} rp, where
each sub-pattern lp, rp is a string over alphabet Σ, and {α, β} matches any substring of
length at least α and at most β . Several versions of gapped dictionary matching problems
were studied recently (see [5, 6, 3, 2, 35, 7, 36]). The Parameterized Dictionary Matching
with One Gap problem (PDMOG) is defined as follows [40]. Preprocess a dictionary D of d

single-gap gapped patterns P1, . . . , Pd over alphabet Σ′ ∪ Σ, such that Σ′ ∩ Σ = ∅, so that
given a query text T of length n over alphabet Σ′ ∪ Σ, Σ′ ∩ Σ = ∅, output all locations ℓ in
T , where there exist bijections f1, f2 : Σ → Σ and the following hold for any Pi ∈ D, and a
gap length g ∈ [αi, βi], where αi, βi are the gap boundaries of Pi :
1. ∀lpi[j] ∈ Σ′, lpi[j] = T [ℓ − |lpi| − g − |rpi| + j].
2. ∀lpi[j] ∈ Σ, f1(lpi[j]) = T [ℓ − |lpi| − g − |rpi| + j].
3. ∀rpi[j] ∈ Σ′, rpi[j] = T [ℓ − |rpi| + j].
4. ∀rpi[j] ∈ Σ, f2(rpi[j]) = T [ℓ − |rpi| + j].
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The strict PDMOG problem enforces both left and right sub-patterns to have the same
parameterized matching (p-match) function, i.e., that f1 = f2, which is more reasonable if
the encodings of both sub-patterns of a dictionary pattern are done simultaneously [35].

Online strict PDMOG was studied by [35] obtaining algorithms that are fast for some
practical inputs called alphabet saturated dictionary, where dictionary sub-patterns contain
the same alphabet symbols enabling to represent mapping functions of dictionary sub-patterns
as permutations. While this assumption is reasonable if the alphabet size is relatively small
and the dictionary sub-patterns are not very short, it is still a rigid restriction. Dealing with
general alphabet dictionary requires a tool for efficient partial permutations representation
and manipulation, which its existence is excluded in this paper (unless the SETH hypothesis
is false), showing that an efficient solution for the strict PDMOG problem over a general
dictionary alphabet is not likely. Thus, we answer negatively to an open question posed
by [35].

Our Results Applied to strict PDMOG. The core issue of the strict PDMOG solution is
that while scanning the text, the algorithm locates p-matches of the left sub-patterns of the
dictionary D and maintains the partial permutations via which they were p-matched to the
text. The algorithm also locates a set of right sub-patterns of the dictionary patterns in D

which p-match the current text location. The algorithm needs to verify which of the right
sub-patterns are p-matched via a partial permutation that agrees with any of the (dynamically
changing) set of partial permutations that were used to p-match left sub-patterns that were
located within an active window of locations determined by the relevant gap bounds of the
dictionary D.

The online strict PDMOG was studied by [35] obtaining algorithms that are fast for some
practical inputs called alphabet saturated dictionary, where dictionary sub-patterns contain
the same alphabet symbols. Therefore, the algorithms of [35] represent mapping functions
of dictionary sub-patterns as permutations and can efficiently maintain the dynamically
changing set of permutations that were used in order to p-match the left sub-patterns of the
dictionary D basically using the dimension reduction idea described in Subsection 3.3 for the
representation of permutations4.

While this assumption is reasonable if the alphabet size is relatively small and the
dictionary sub-patterns are not very short, it is still a rigid restriction. Dealing with general
alphabet dictionary requires a tool for efficient maintenance of partial permutations. The
discussion and results of Subsections 3.1, 3.2, 3.3 can be, therefore, applied to conclude
regarding the possibility to efficiently solve the online strict PDMOG problem. In order to
simplify the discussion and avoid getting into unnecessary details ([35] use various techniques
and several parameters to specify complexity), we summarize the application of the discussion
above using the following parameters: sL - the size of the set SL of p-matched left sub-
patterns of dictionary gapped patterns within the current active window of the text, |Σ| -
the dictionary D and text T alphabet size. We also need the following definition.

▶ Definition 22 (A k-Saturated Dictionary). Let D be a gapped patterns dictionary over
alphabet Σ. We call D a k-saturated dictionary if every sub-pattern in D is over Σ1, such
that Σ1 ⊆ Σ and k = |Σ| − |Σ1|, where k! = O(poly(|Σ|)) and poly(|Σ|) is some polynomial
in the size of Σ.

4 The application of this idea in [35] is slightly more involved, since it is combined with the use of range
reporting data structures and other details of their algorithms.
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The applications to the solution of strict PDMOG that we have shown can, therefore, be
summarized as follows:

For any ϵ > 0, there exists c > 0 such that, for a general alphabet Σ with size |Σ| = c log sL,
finding partial permutations, via which the sub-patterns in SL were p-matched to the text,
that agree with a partial permutation p-matching of a currently located right sub-pattern
is not likely to be answered in O(s1−ϵ

L · |Σ|) time using O(sL · |Σ|) (linear) space (unless
the Strong Exponential Time Hypothesis (SETH) is false). This follows from Corollary 12
and Observation 11 in Subsection 3.1.
For a general alphabet Σ with size |Σ| = Θ(log sL), after Õ(sL · |Σ|)-time preprocessing,
there is an O(sL · |Σ|) space dynamic data structure supporting updates (insertion and de-
letion) in Õ(|Σ|) time, such that, finding partial permutations, via which the sub-patterns
in SL were p-matched to the text, that agree with a partial permutation p-matching of a
currently located right sub-pattern can be done in O(sL|Σ| log |Σ|/2Ω(

√
log |Σ|)) amortized

time over 2ω(log |Σ|) queries. This follows from Corollary 18 in Subsection 3.2.
For a k-saturated dictionary D, there is an O(k! · sL) = O(poly(|Σ|) · sL) space dynamic
data structure supporting updates (insertion and deletion) in O(k! · |Σ|) = O(poly(|Σ|))
time, such that finding partial permutations, via which the sub-patterns in SL were
p-matched to the text, that agree with a partial permutation p-matching of a currently
located right sub-pattern can be done in O(k! · |Σ|) = O(poly(|Σ|)) time. This follows
from Theorem 21 in Subsection 3.3.

Note that, that if |Σ| = Θ(log sL) and k! = O(|Σ|) (i.e., poly(|Σ|) is actually linear in |Σ|),
then the third result gives a linear (up to a logarithmic factor) space dynamic data structure
for maintaining partial permutations with update and query time logarithmic in sL.

5 Conclusion

This paper examined the use of partial permutations in algorithmic tasks. Some interesting
related open questions are:

Can an efficient solution for PPA/SPPA be achieved for other (practically interesting)
special cases?
What other applications require (possibly hidden) maintenance of partial permutations?

It is our belief that being a relatively basic mathematical concept, partial permutations
play a hidden role in more applications. We, therefore, expect more research on the topic in
order to explore their algorithmic use.
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