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Abstract
Given a set P of n points in the plane, we consider the problem of computing the number of points of
P in a query unit disk (i.e., all query disks have the same radius). We show that the main techniques
for simplex range searching can be adapted to this problem. For example, by adapting Matoušek’s
results, we can build a data structure of O(n) space so that each query can be answered in O(

√
n)

time; alternatively, we can build a data structure of O(n2/ log2 n) space with O(log n) query time.
Our techniques lead to improvements for several other classical problems in computational geometry.
1. Given a set of n unit disks and a set of n points in the plane, the batched unit-disk range counting

problem is to compute for each disk the number of points in it. Previous work [Katz and Sharir,
1997] solved the problem in O(n4/3 log n) time. We give a new algorithm of O(n4/3) time, which
is optimal as it matches an Ω(n4/3)-time lower bound. For small χ, where χ is the number of
pairs of unit disks that intersect, we further improve the algorithm to O(n2/3χ1/3 + n1+δ) time,
for any δ > 0.

2. The above result immediately leads to an O(n4/3) time optimal algorithm for counting the
intersecting pairs of circles for a set of n unit circles in the plane. The previous best algorithms
solve the problem in O(n4/3 log n) deterministic time [Katz and Sharir, 1997] or in O(n4/3 log2/3 n)
expected time by a randomized algorithm [Agarwal, Pellegrini, and Sharir, 1993].

3. Given a set P of n points in the plane and an integer k, the distance selection problem is to
find the k-th smallest distance among all pairwise distances of P . The problem can be solved
in O(n4/3 log2 n) deterministic time [Katz and Sharir, 1997] or in O(n log n + n2/3k1/3 log5/3 n)
expected time by a randomized algorithm [Chan, 2001]. Our new randomized algorithm runs in
O(n log n + n2/3k1/3 log n) expected time.

4. Given a set P of n points in the plane, the discrete 2-center problem is to compute two smallest
congruent disks whose centers are in P and whose union covers P . An O(n4/3 log5 n)-time
algorithm was known [Agarwal, Sharir, and Welzl, 1998]. Our techniques yield a deterministic
algorithm of O(n4/3 log10/3 n · (log log n)O(1)) time and a randomized algorithm of O(n4/3 log3 n ·
(log log n)1/3) expected time.
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1 Introduction

We consider unit-disk range counting queries. Given a set P of n points in the plane, the
problem is to build a data structure so that the number of points of P in D can be computed
efficiently for any query unit disk D (i.e., all query disks have the same known radius).

Our problem is a special case of the general disk range searching problem in which each
query disk may have an arbitrary radius. Although we are not aware of any previous work
particulary for our special case, the general problem has been studied before [4, 5, 19, 29,32].
First of all, it is well-known that the lifting method can reduce the disk range searching

© Haitao Wang;
licensed under Creative Commons License CC-BY 4.0

18th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2022).
Editors: Artur Czumaj and Qin Xin; Article No. 32; pp. 32:1–32:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:haitao.wang@usu.edu
https://orcid.org/0000-0001-8134-7409
https://doi.org/10.4230/LIPIcs.SWAT.2022.32
https://arxiv.org/abs/2204.08992
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


32:2 Unit-Disk Range Searching and Applications

in the d-dimensional space to half-space range searching in (d + 1)-dimensional space; see,
e.g., [20,32]. For example, using Matoušek’s results in 3D [27], with O(n) space, each disk
query in the plane can be answered in O(n2/3) time. Using the randomized results for
general semialgebraic range searching [5, 29], one can build a data structure of O(n) space
in O(n1+δ) expected time that can answer each disk query in O(

√
n logO(1) n) time, where

(and throughout the paper) δ denotes any small positive constant. For deterministic results,
Agarwal and Matoušek’s techniques [4] can build a data structure of O(n) space in O(n log n)
time, and each query can be answered in O(n1/2+δ) time.

A related problem is to report all points of P in a query disk. If all query disks are unit
disks, the problem is known as fixed-radius neighbor problem in the literature [9, 14,17,18].
Chazelle and Edelsbrunner [18] gave an optimal solution (in terms of space and query time):
they constructed a data structure of O(n) space that can answer each query in O(log n + k)
time, where k is the output size; their data structure can be constructed in O(n2) time. By
a standard lifting transformation that reduces the problem to the halfspace range reporting
queries in 3D, Chan and Tsakalidis [12] constructed a data structure of O(n) space in
O(n log n) time that can answer each query in O(log n + k) time; the result also applies
to the general case where the query disks may have arbitrary radii. Refer to [1, 2, 28] for
excellent surveys on range searching.

In this paper, we focus on unit-disk counting queries. By taking advantage of the property
that all query disks have the same known radius, we manage to adapt the techniques for
simplex range searching to our problem. We show that literally all main results for simplex
range searching can be adapted to our problem with asymptotically the same performance.
For example, by adapting Matoušek’s result in [26], we build a data structure of O(n) space
in O(n log n) time and each query can be answered in O(

√
n logO(1) n) time. By adapting

Matoušek’s result in [27], we build a data structure of O(n) space in O(n1+δ) time and each
query can be answered in O(

√
n) time. By adapting Chan’s randomized result in [11], we

build a data structure of O(n) space in O(n log n) expected time and each query can be
answered in O(

√
n) time with high probability.

In addition, we obtain the following trade-off: After O(nr) space and O(nr(n/r)δ) time
preprocessing, each query can be answered in O(

√
n/r) time, for any 1 ≤ r ≤ n/ log2 n. In

particularly, setting r = n/ log2 n, we can achieve O(log n) query time, using O(n2/ log2 n)
space and O(n2/ log2−δ n) preprocessing time. To the best of our knowledge, the only previous
work we are aware of with O(log n) time queries for the disk range searching problem is a
result in [24],1 which can answer each general disk query in O(log n) time with O(n2 log n)
space and preprocessing time.

Probably more interestingly to some extent, our techniques can be used to derive improved
algorithms for several classical problems, as follows. Our results are the first progress since
the previous best algorithms for these problems were proposed over two decades ago.

Batched unit-disk range counting. Let P be a set of n points and D be a set of m

(possibly overlapping) congruent disks in the plane. The problem is to compute for all disks
D ∈ D the number of points of P in D. The algorithm of Katz and Sharir [24] solves the
problem in O((m2/3n2/3 + m + n) log n) time. By using our techniques for unit-disk range
searching and adapting a recent result of Chan and Zheng [13], we obtain a new algorithm
of O(n2/3m2/3 + m log n + n log m) time. We further improve the algorithm so that the
complexities are sensitive to χ, the number of pairs of disks of D that intersect. The runtime
of the algorithm is O(n2/3χ1/3 + m1+δ + n log n).

1 See Theorem 3.1 [24]. The authors noted in their paper that the result was due to Pankaj K. Agarwal.
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On the negative side, Erickson [21] proved a lower bound of Ω(n2/3m2/3+m log n+n log m)
time for the problem in a so-called partition algorithm model, even if each disk is a half-plane
(note that a half-plane can be considered as a special unit disk of infinite radius). Therefore,
our algorithm is optimal under Erickson’s model.

Counting intersections of congruent circles. As discussed in [24], the following problem
can be immediately solved using batched unit-disk range counting: Given a set of n congruent
circles of radius r in the plane, compute the number of intersecting pairs. To do so, define
P as the set of the centers of circles and define D as the set of congruent disks centered at
points of P with radius 2r. Then apply the batched unit-disk range counting algorithm on
P and D. The algorithm runs in O(n4/3) time, matching an Ω(n4/3)-time lower bound [21].
To the best of our knowledge, the previous best results for this problem are a deterministic
algorithm of O(n4/3 log n) time [24] and a randomized algorithm of O(n4/3 log2/3 n) expected
time [3]. Agarwal, Pellegrini, and Sharir [6] also studied the problem for circles of different
radii and gave an O(n3/2+δ) time deterministic algorithm.

Distance selection. Let P be a set of n points in the plane. Given an integer k in the range
[1, n(n − 1)/2], the problem is to find the k-th smallest distance among all pairwise distances
of P ; let λ∗ denote the k-th smallest distance. Given a value λ, the decision problem is to
decide whether λ ≥ λ∗. We refer to the original problem as the optimization problem.

Chazelle [15] gave the first subquadratic algorithm of O(n9/5 log4/5 n) time. Agarwal,
Aronov, Sharir, and Suri [3] presented randomized algorithms that solve the decision and
optimization problems in O(n4/3 log2/3 n) and O(n4/3 log8/3 n) expected time, respectively.
Goodrich [22] later gave a deterministic algorithm of O(n4/3 log8/3 n) time for the optimization
problem. Katz and Sharir [24] proposed a deterministic algorithm of O(n4/3 log n) time
for the decision problem and used it to solve the optimization problem in O(n4/3 log2 n)
deterministic time. Using the decision algorithm of [3], Chan’s randomized technique [10]
solved the optimization problem in O(n log n + n2/3k1/3 log5/3 n) expected time.

Our algorithm for the batched unit-disk range counting problem can be used to solve the
decision problem in O(n4/3) time. Combining it with the randomized technique of Chan [10],
the optimization problem can now be solved in O(n log n + n2/3k1/3 log n) expected time.

Discrete 2-center. Let P be a set of n points in the plane. The discrete 2-center problem is to
find two smallest congruent disks whose centers are in P and whose union covers P . Agarwal,
Sharir, and Welzl [8] gave an O(n4/3 log5 n)-time algorithm. Using our techniques for unit-
disk range searching, we reduce the time of their algorithm to O(n4/3 log10/3 n(log log n)O(1))
deterministic time or to O(n4/3 log3 n(log log n)1/3) expected time by a randomized algorithm.

In the following, we present our algorithms for unit-disk range searching in Section 2.
The other problems are discussed in Section 3. Section 4 concludes the paper. Due to the
space limit, many proofs are omitted but can be found in the full paper.

2 Unit-disk range searching

In this section, we present our algorithms for the unit-disk range searching problem. Our
goal is to show that the main techniques for simplex range searching can be used to solve our
problem. In particular, we show that, after overcoming many difficulties, the techniques of
Matoušek in [26] and [27] as well as the results of Chan [11] can be adapted to our problem
with asymptotically the same performance.

SWAT 2022



32:4 Unit-Disk Range Searching and Applications

We assume that the radius of unit disks is 1. In the rest of this section, unless otherwise
stated, a disk refers to a unit disk. We begin with an overview of our approach.

An overview. We roughly (but not precisely) discuss the main idea. We first implicitly
build a grid G of side length 1/

√
2 such that any query disk D only intersects O(1) cells of G.

This means that it suffices to build a data structure for the subset P (C ′) of the points of P

in each individual cell C ′ of G with respect to query disks whose centers are in another cell
C that is close to C ′. A helpful property for processing P (C ′) with respect to C is that for
any two disks with centers in C, their boundary portions in C ′ cross each other at most once.
More importantly, we can define a duality relationship between points in C and disk arcs in
C ′ (and vice versa): a point p in C is dual to the arc of the boundary of Dp in C ′, where Dp

is the disk centered at p. This duality helps to obtain a Test Set Lemma that is crucial to
the algorithms in [11,26,27]. With these properties and some additional observations, we
show that the algorithm for computing cuttings for hyperplanes [16] can be adapted to the
disk arcs in C ′. With the cutting algorithms and the Test Set Lemma, we show that the
techniques in [11, 26,27] can be adapted to unit-disk range searching for the points of P (C ′)
with respect to the query disks centered in C.

The rest of this section is organized as follows. In Section 2.1, we reduce the problem to
problems with respect to pairs of cells (C, C ′). Section 2.2 introduces some basic concepts
and observations that are fundamental to our approach. We adapt the cutting algorithm of
Chazelle [16] to our problem in Section 2.3. Section 2.4 proves the Test Set Lemma. In the
subsequent subsections, we adapt the algorithms of [11, 26, 27], whose query times are all
Ω(

√
n) with O(n) space. Section 2.8 presents the trade-offs between the preprocessing and

the query time. Section 2.9 finally summarizes all results.

2.1 Reducing the problem to pairs of grid cells
For each point p in the plane, we use x(p) and y(p) to denote its x- and y-coordinates,
respectively, and we use Dp to denote the disk centered at p. For any region A in the plane,
we use P (A) to denote the subset of points of P in A, i.e., P (A) = P ∩ A.

We will compute a set C of O(n) pairwise-disjoint square cells in the plane with the
following properties. (1) Each cell has side length 1/

√
2. (2) Every two cells are separated

by an axis-parallel line. (3) For a disk Dp with center p, if p is not in any cell of C, then
Dp ∩ P = ∅. (4) Each cell C of C is associated with a subset N(C) of O(1) cells of C, such
that for any disk D with center in C, every point of P ∩ D is in one of the cells of N(C). (5)
Each cell C ′ of C is in N(C) for a constant number of cells C ∈ C. The following is a key
lemma for reducing the problem to pairs of square cells. The proof is in the full paper.

▶ Lemma 1.
1. The set C with the above properties, along with the subsets P (C) and N(C) for all cells

C ∈ C, can be computed in O(n log n) time and O(n) space.
2. With O(n log n) time and O(n) space preprocessing, given any disk with center p, we can

determine whether p is in a cell C of C, and if yes, return the set N(C) in O(log n) time.

With Lemma 1 in hand, to solve the unit disk range searching problem, for each cell
C ∈ C and each cell C ′ ∈ N(C), we will preprocess the points of P (C ′) with respect to the
query disks whose centers are in C. Suppose the preprocessing time (resp. space) for each
such pair (C, C ′) is f(m) = Ω(m), where m = |P (C ′)|. Then, by the property (5) of C, the
total preprocessing time (resp., space) for all such pairs (C, C ′) is f(n). In the following, we
will describe our preprocessing algorithm for (C, C ′). Since N(C) ⊂ C and the points of P

in each cell of C are already known by Lemma 1, P (C ′) is available to us. To simplify the
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C ′

a b

h(a, b)

Figure 1 Illustrating C′,
which is the grey region.

C ′

p1

p2

q1

q2

Figure 2 Illustrating an upper
arc pseudo-trapezoid in C′.

C

Figure 3 Illustrating C, which
is the grey region.

notation, we assume that all points of P are in C ′, i.e., P (C ′) = P . Note that if C = C ′,
then the problem is trivial because any disk centered in C ′ covers the entire cell. We thus
assume C ̸= C ′. Due to the property (2) of C, without loss of generality, in the following we
assume that C and C ′ are separated by a horizontal line such that C is below the line.

2.2 Basic concepts and observations
We use ab to denote the line segment connecting two points a and b,. For any compact region
A in the plane, let ∂A denote the boundary of A, e.g., if A is a disk, then ∂A is a circle.

Consider a disk D whose center is in C. As the side length of C ′ is 1/
√

2, ∂D ∩ C ′ may
contain up to two arcs of the circle ∂D. For this reason, we enlarge C ′ to a region C ′ so that
∂D ∩ C ′ contains at most one arc. The region C ′ is defined as follows (e.g., see Fig. 1).

Let a and b be the two vertices of C ′ on its top edge. Let Dab be the disk whose center is
below ab and whose boundary contains both a and b. Let h(a, b) be the arc of ∂Dab above
ab and connecting a and b. Define C ′ to be the region bounded by h(a, b), and the three
edges of C ′ other than ab. As the side length of C ′ is 1/

√
2, for any disk D whose center is

in C, ∂D ∩ C ′ is either ∅ or a single arc of ∂D (which is on the upper half-circle of ∂D). Let
eb denote the bottom edge of C ′.

Consider a disk D. An arc h on the upper half-circle of ∂D (i.e., the half-circle above the
horizontal line through its center) is called an upper disk arc (or upper arc for short); lower
arcs are defined symmetrically. Note that an upper arc is x-monotone, i.e., each vertical
line intersects it at a single point if not empty. If h is an arc of a disk D, then we say that
D is the underlying disk of h and the center of D is also called the center of h. An arc h

in C ′ is called a spanning arc if both endpoints of h are on ∂C ′. As we are mainly dealing
with upper arcs of C ′ whose centers are in C, in the following unless otherwise stated, an
upper arc always refers to one whose center is in C. The following is an easy but crucial
observation that makes it possible to adapt many techniques for dealing with lines in the
plane to spanning upper arcs of C ′.

▶ Observation 2. Suppose h is an upper arc in C ′, and e is a vertical line segment or an
upper arc in C ′. Then, h and e can intersect each other at most once.

Proof. If e is a vertical segment, since h is x-monotone, h and e can intersect each other at
most once. If e is an upper arc, since both e and h are upper arcs of disks whose centers are
in C and they are both in C ′, they can intersect each other at most once. ◀

Pseudo-trapezoids. Let h(p1, p2) be an upper arc with p1 and p2 as its left and right
endpoints, respectively. Define h(q1, q2) similarly, such that x(p1) = x(q1) and x(p2) = x(q2).
Assume that h(p1, p2) and h(q1, q2) do not cross each other and h(p1, p2) is above h(q1, q2).
The region σ bounded by the two arcs and the two vertical lines p1q1 and p2q2 is called an
upper-arc pseudo-trapezoid (e.g., see Fig. 2). We call p1q1 and p2q2 the two vertical sides of
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32:6 Unit-Disk Range Searching and Applications

σ, and call h(q1, q1) and h(p1, p2) the top arc and bottom arc of σ, respectively. The region σ

is also considered as an upper-arc pseudo-trapezoid if the bottom arc h(q1, q2) is replaced by
a line segment q1q2 on eb (for simplicity, we still refer to q1q2 as the bottom-arc of σ). In
this way, C ′ itself is an upper-arc pseudo-trapezoid. Note that for any pseudo-trapezoid σ in
C ′ and a disk D centered in C, ∂D ∩ σ is either empty or an upper arc.

The counterparts of C (with respect to C′). The above definitions in C ′ (with respect to
C) have counterparts in C (with respect to C ′) with similar properties. First, we define C in
a symmetric way as C ′, i.e., a lower arc connecting the two bottom vertices of C ′ is used to
bound ∂C; e.g., see Fig. 3. Also, we define lower-arc pseudo-trapezoids and spanning lower
arcs similarly, and unless otherwise stated, a lower arc in C refer to one whose center is in
C ′. In the following, unless otherwise stated, properties, algorithms, and observations for the
concepts of C ′ with respect to C also hold for their counterparts of C with respect to C ′.

Duality. We define a duality relationship between upper arcs in C ′ and points in C. For
an upper arc h in C ′, we consider its center as its dual point in C. For a point q ∈ C, we
consider the upper arc ∂Dq ∩ C ′ as its dual arc in C ′ if it is not empty. Similarly, we define
duality relationship between lower arcs in C and points in C ′. Note that if the boundary
of a disk centered at a point p ∈ P does not intersect C, then the point p can be ignored
from P in our preprocessing because among all disks centered in C one disk contains p if
and only if all other disks contain p. Henceforth, without loss of generality, we assume that
∂Dp intersects C for all points p ∈ P , implying that every point of P is dual to a lower arc
in C. Note that our duality is similar in spirit to the duality introduced by Agarwal and
Sharir [7] between points and pseudo-lines.

2.3 Computing hierarchical cuttings for disk arcs
Let H be a set of n spanning upper arcs in C ′. For a compact region A of C ′, we use HA to
denote the set of arcs of H that intersect the relative interior of A. By adapting its definition
for hyperplanes, e.g., [16,27], a cutting for H is a collection Ξ of closed cells (each of which is
an upper-arc pseudo-trapezoid) with disjoint interiors, which together cover the entire C ′.
The size of Ξ is the number of cells in Ξ. For a parameter 1 ≤ r ≤ n, a (1/r)-cutting for H

is a cutting Ξ satisfying |Hσ| ≤ n/r for every cell σ ∈ Ξ.
We will adapt the algorithm of Chazelle [16] to computing a (1/r)-cutting of size O(r2)

for H. It is actually a sequence of hierarchical cuttings. Specifically, we say that a cutting
Ξ′ c-refines a cutting Ξ if every cell of Ξ′ is contained in a single cell of Ξ and every cell
of Ξ contains at most c cells of Ξ′. Let Ξ0, Ξ1, . . . , Ξk be a sequence of cuttings such that
Ξ0 consists of the single cell C ′ (recall that C ′ itself is an upper arc pseudo-trapezoid), and
every Ξi is a (1/ρi)-cutting of size O(ρ2i) which c-refines Ξi−1, for two constants ρ and c.
In order to make Ξk a (1/r)-cutting, we set k = ⌈logρ r⌉. The above sequence of cuttings is
called a hierarchical (1/r)-cutting of H. If a cell σ ∈ Ξj−1 contains a cell σ′ ∈ Ξj , we say
that σ is the parent of σ′ and σ′ is a child of σ. Hence, one could view Ξ as a tree structure
with Ξ0 as the root.

We have the following theorem.

▶ Theorem 3 (The Cutting Theorem). Let χ denote the number of intersections of the arcs
of H. For any r ≤ n, a hierarchical (1/r)-cutting of size O(r2) for H (together with the sets
Hσ for every cell σ of Ξi for all 0 ≤ i ≤ k) can be computed in O(nr) time; more specifically,
the size of the cutting is bounded by O(r1+δ +χ ·r2/n2) and the running time of the algorithm
is bounded by O(nrδ + χ · r/n).
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▶ Remark. For a set of lower arcs in C, we can define cuttings similarly with lower-arc
pseudo-trapezoids as cells; the same result as Theorem 3 also holds for computing lower-arc
cuttings. Also note that the algorithm is optimal if the subsets Hσ’s need to be computed.

To prove Theorem 3, we adapt Chazelle’s algorithm for computing cuttings for hyper-
planes [16]. It was stated in [7] that Chazelle’s algorithm can be extended to compute such
a cutting of size O(r1+δ + χ · r2/n2) in O(n1+δ + χ · r/n) time. However, no details were
provided in [7]. For completeness and also for helping the reader to better understand our
cutting, we present the algorithm details in the full paper, where we actually give a more
general algorithm that also works for other curves in the plane (e.g., circles or circular arcs
of different radii, pseudo-lines, line segments, etc.). Note that our result reduces the factor
n1+δ in the above time complexity of [7] to nrδ.

The weighted case. To adapt the simplex range searching algorithms in [11, 26, 27], we
will need to compute cuttings for a weighted set H of spanning upper arcs in C ′, where each
arc h ∈ H has a nonnegative weight w(h). The hierarchical (1/r)-cutting can be naturally
generalized to the weighted case (i.e., the interior of each pseudo-trapezoid in a (1/r)-cutting
can be intersected by upper arcs of H of total weight at most w(H)/r, where w(H) is the
total weight of all arcs of H). By a method in [25], any algorithm computing a hierarchical
(1/r)-cutting for a set of hyperplanes can be converted to the weighted case with only a
constant factor overhead. We can use the same technique to extend any algorithm computing
a hierarchical (1/r)-cutting for a set of upper arcs to the weighted case.

2.4 Test Set Lemma
A critical component in all simplex range searching algorithms in [11, 26, 27] is a Test Set
Lemma. Using the duality, we obtain a similar result for our problem in the following lemma,
whose proof is in the full paper. For any pseudo-trapezoid σ in C ′, we say that an upper arc
h crosses σ if h intersects the interior of σ.

▶ Lemma 4 (Test Set Lemma). For any parameter r ≤ n, there exists a set Q of at most
r spanning upper arcs in C ′, such that for any collection Π of interior-disjoint upper-arc
pseudo-trapezoids in C ′ satisfying that each pseudo-trapezoid contains at least n/(c · r) points
of P for some constant c > 0, the following holds: if κ is the maximum number of pseudo-
trapezoids of Π crossed by any upper arc of Q, then the maximum number of pseudo-trapezoids
of Π crossed by any upper arc in C ′ is at most O(κ +

√
r).

With our Cutting Theorem and the Test Set Lemma, we proceed to adapt the simplex
range searching algorithms in [11,26,27] to our problem in the following subsections.

2.5 A data structure based on pseudo-trapezoidal partitions
We first extend the simplicial partition for hyperplanes in [26] to our problem, which we
rename pseudo-trapezoidal partition. A pseudo-trapezoidal partition for P is a collection
Π = {(P1, σ1), . . . , (Pm, σm)}, where the Pi’s are pairwise disjoint subsets forming a partition
of P , and each σi is a relatively open upper-arc pseudo-trapezoid in C ′ containing all points of
Pi. The pseudo-trapezoidal partition we will compute has the following additional property:
max1≤i≤m |Pi| < 2 · min1≤i≤m |Pi|, i.e., all subsets have roughly the same size. Note that the
trapezoids σi’s may overlap. The subsets Pi’s are called classes of Π.

For any upper arc h in C ′, we define its crossing number with respect to Π as the
number of pseudo-trapezoids of Π crossed by h. The crossing number of Π is defined as the
maximum crossing numbers of all upper arcs h in C ′. The following Theorem 5 corresponds
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to Theorem 3.1 [26]. Its proof, which is in the full paper, is similar to Theorem 3.1 in [26],
with our Test Set Lemma and our Cutting Theorem. Note that similar result as the theorem
is already known for pseudo-lines with respect to points [7].

▶ Theorem 5 (Partition Theorem). Let s be an integer 2 ≤ s < n and r = n/s. There exists
a pseudo-trapezoidal partition Π for P , whose classes Pi satisfy s ≤ |Pi| < 2s, and whose
crossing number is O(

√
r).

Lemma 6, which corresponds to Theorem 4.7(i) [26], computes a pseudo-trapezoidal
partition and will be used in the algorithm for Theorem 7. The proof is in the full paper.

▶ Lemma 6. For any fixed δ > 0, if s ≥ nδ, then a pseudo-trapezoidal partition as in the
Partition Theorem (whose classes |Pi| satisfy s ≤ |Pi| < 2s and whose crossing number is
O(

√
r)) can be constructed in O(n log r) time, where r = n/s.

Using Lemma 6, we can obtain the following theorem, whose proof is in the full paper.

▶ Theorem 7. A data structure of O(n) space can be built in O(n log n) time, so that given
a disk D centered in C, the number of points of P in D can be computed in O(

√
n(log n)O(1))

time.

▶ Remark. It is easy to modify the algorithm to answer the outside-disk queries: compute
the number of points of P outside any query disk, with asymptotically the same complexities.
This is also the case for other data structures given later, e.g., Theorems 8, 9, 10.

2.6 A data structure based on hierarchical cuttings
Using our Cutting Theorem and the Test Set Lemma, we can adapt the techniques of
Matoušek [27] to our problem. We have the following theorem, whose proof is in the full
paper.

▶ Theorem 8. We can build an O(n) space data structure for P in O(n1+δ) time for any
small constant δ > 0, such that given any disk D whose center is in C, the number of points
of P in D can be computed in O(

√
n) time.

2.7 A randomized result
We have the following theorem by adapting the randomized result of Chan [11].

▶ Theorem 9. We can build an O(n) space data structure for P in O(n log n) expected time
by a randomized algorithm, such that given any disk D whose center is in C, the number of
points of P in D can be computed in O(

√
n) time with high probability.

The data structure is a partition tree, denoted by T , obtained by recursively subdividing
C ′ into cells each of which is an upper-arc pseudo-trapezoid. Each node v of T corresponds
to a cell, denoted by σv. If v is the root, then σv is C ′. If v is not a leaf, then v has O(1)
children whose cells form a disjoint partition of σv. Define Pv = P ∩ σv. The set Pv is not
explicitly stored at v unless v is a leaf, in which case |Pv| = O(1). The cardinality |Pv| is
stored at v. The height of T is O(log n). If κ is the maximum number of pseudo-trapezoids
of T that are crossed by any upper arc in C ′, then κ = O(

√
n) holds with high probability.

The partition tree T can be built by a randomized algorithm of O(n log n) expected time.
The space of T is O(n). More details for Theorem 9 are in the full paper.
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2.8 Trade-offs
Using cuttings and the results of Theorems 8 and 9, we can obtain the following trade-offs
between preprocessing and query time by standard techniques [2,27]. The proof is in the full
paper.

▶ Theorem 10.
1. We can build an O(nr) space data structure for P in O(nr(n/r)δ) time, such that given

any query disk D whose center is in C, the number of points of P in D can be computed
in O(

√
n/r) time, for any 1 ≤ r ≤ n/ log2 n.

2. We can build an O(nr) space data structure for P in O(nr log(n/r)) expected time, such
that given any query disk D whose center is in C, the number of points of P in D can be
computed in O(

√
n/r) time with high probability, for any 1 ≤ r ≤ n/ log2 n.

In particular, for the large space case, i.e., r = n/ log2 n, we can obtain the following
corollary by Theorem 10(1) (a randomized result with slightly better preprocessing time can
also be obtained by Theorem 10(2)).

▶ Corollary 11. We can build an O(n2/ log2 n) space data structure for P in O(n2/ log2−δ n)
time, such that given any query disk D whose center is in C, the number of points of P in D

can be computed in O(log n) time.

2.9 Wrapping things up
All above results on P are for a pair of cells (C, C ′) such that all points of P are in C ′ and
centers of query disks are in C. Combining the above results with Lemma 1, we can obtain
our results for the general case where points of P and query disk centers can be anywhere in
the plane. The proof of Corollary 12 summarizes the overall algorithm.

▶ Corollary 12. We have the following results for the unit-disk range counting problem.
1. An O(n) space data structure can be built in O(n log n) time, with O(

√
n(log n)O(1)) query

time.
2. An O(n) space data structure can be built in O(n1+δ) time for any small constant δ > 0,

with O(
√

n) query time.
3. An O(n) space data structure can be built in O(n log n) expected time by a randomized

algorithm, with O(
√

n) query time with high probability.
4. An O(n2/ log2 n) space data structure can be built in O(n2/ log2−δ n) time, with O(log n)

query time.
5. An O(nr) space data structure can be built in O(nr(n/r)δ) time, with O(

√
n/r) query

time, for any 1 ≤ r ≤ n/ log2 n.
6. An O(nr) space data structure can be built in O(nr log(n/r)) expected time by a randomized

algorithm, with O(
√

n/r) query time with high probability, for any 1 ≤ r ≤ n/ log2 n.

Proof. In the preprocessing, we compute the information and data structure in Lemma 1,
which takes O(n log n) time and O(n) space. For each pair of cells (C, C ′) with C ∈ C and
C ′ ∈ N(C), we construct the data structure on P (C ′), i.e., P ∩ C ′, with respect to query
disks centered in C, e.g., those in Theorems 7, 8, 9, and 10. As discussed before, due to
property (5) of C, the total preprocessing time and space is the same as those in the above
theorems. Given a query disk D with center q, by Lemma 1(2), we determine whether q is in
a cell C of C in O(log n) time. If no, then D ∩ P = ∅ and thus we simply return 0. Otherwise,
the data structure returns N(C). Then, for each C ′ ∈ N(C), we use the data structure
constructed for (C, C ′) to compute |P (C ′) ∩ D|. We return |P ∩ D| =

∑
C′∈N(C) |P (C ′) ∩ D|.

As |N(C)| = O(1), the total query time is as stated in the above theorems. ◀
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▶ Remark. As in [11,26,27], all above results can be extended to the weighted case (or the
more general semigroup model) where each point of P has a weight.

3 Applications

In this section, we show that our techniques for the disk range searching problem can be used
to solve several other problems. More specifically, our techniques yield improved results for
three classical problems: batched range counting, distance selection, and discrete 2-center.

3.1 Batched unit-disk range counting
Let P be a set of n points and D be a set of m (possibly overlapping) unit disks in the plane.
The batched unit-disk range counting problem (also referred to as offline range searching in
the literature) is to compute for each disk D ∈ D the number of points of P in D.

Let Q denote the set of centers of the disks of D. For each point q ∈ Q, we use Dq to
denote the unit disk centered at q.

We first apply Lemma 1 on P . For each point q ∈ Q, by Lemma 1(2), we first determine
whether q is in a cell C of C. If no, then Dq does not contain any point of P and thus it can
be ignored for the problem; without loss of generality, we assume that this case does not
happen to any disk of D. Otherwise, let C be the cell of C that contains q. By Lemma 1(2),
we further find the set N(C) of C. In this way, in O((n + m) log n) time, we can compute
Q(C) for each cell C of C, where Q(C) is the subset of points of Q in C. Define D(C) as the
set of disks of D whose centers are in Q(C). Let P (C) = P ∩ C.

In what follows, we will consider the problem for P (C ′) and D(C) for each pair (C, C ′)
of cells with C ∈ C and C ′ ∈ N(C). Combining the results for all such pairs leads to the
result for P and D (the details on this will be discussed later). To simplify the notation, we
assume that P (C ′) = P and D(C) = D (thus Q(C) = Q). Hence, our goal is to compute
|P ∩ D| for all disks D ∈ D.

If C = C ′, then all points of P are in D for each disk D ∈ D and thus the problem is
trivial. Below we assume C ̸= C ′. Without loss of generality, we assume that C ′ and C are
separated by a horizontal line and C ′ is above the line. We assume that each point of P

defines a lower arc in C since otherwise the point can be ignored. We also assume that the
boundary of each disk of D intersects C

′, i.e., each point q of Q is dual to an upper arc hq in
C ′, since otherwise the disk can be ignored. Observe that a point p is in Dq if and only if p

is below the upper arc hq (we say that p is below hq if p is below the upper half boundary of
Dq), for any p ∈ P and q ∈ Q. Hence, the problem is equivalent to computing the number of
points of P below each upper arc of H, where H = {hq | q ∈ Q}.

Given a set of n points and a set of m lines in the plane, Chan and Zheng [13] recently
gave an O(m2/3n2/3 + n log m + m log n) time algorithm to compute the number of points
below each line (alternatively, compute the number of points inside the lower half-plane
bounded by each line). We can easily adapt their algorithm to solve our problem. Indeed,
the main techniques of Chan and Zheng’s algorithm we need to adapt to our problem are the
hierarchical cuttings and duality. Using our Cutting Theorem and our definition of duality,
we can apply the same technique and solve our problem in O(m2/3n2/3 + n log m + m log n)
time, with n = |P | and m = |H| = |D|. Thus we have the following theorem; the proof is in
the full paper.

▶ Theorem 13. We can compute, for all disks D ∈ D, the number of points of P in D in
O(m2/3n2/3 + n log m + m log n), with n = |P | and m = |D|.
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Let χ denote the number of intersections of the arcs of H, and thus χ = O(m2). Using
our Cutting Theorem and Theorem 13, we further improve the algorithm for small χ.

▶ Theorem 14. We can compute, for all disks D ∈ D, the number of points of P in D in
O(n2/3χ1/3 + m1+δ + n log n) time, with n = |P | and m = |D|.

Proof. We start with computing a hierarchical (1/r)-cutting Ξ0, . . . , Ξk for H, where r =
min{m/8, (m2/χ)1/(1−δ)} and δ refers to the parameter in the Cutting Theorem. By our
Cutting Theorem, the size of the cutting, denoted by K, is bounded by O(rδ + χ · r2/m2)
and the time for computing the cutting is O(mrδ + χ · r/m). Since the parameter r depends
on χ, which is not available to us, we can overcome the issue by using the standard trick
of doubling. More specifically, initially we set χ to a constant. Then we run the algorithm
until it exceeds the running time specified based on the guessed value of χ. Next, we double
the value χ and run the algorithm again. We repeat this process until when the algorithm
finishes before it reaches the specified running time for a certain value of χ. In this way, we
run the cutting construction algorithm at most O(log χ) time. Therefore, the total time for
constructing the desired cutting is O((mrδ + χ · r/m) log χ).

Next, we reduce the problem into O(K) subproblems and then solve each subproblem by
Theorem 13, which will lead to the theorem.

For each point p ∈ P , we find the cell σ of Ξi that contains p and we store p in a canonical
subset P (σ) of P (which is initially ∅), for all 0 ≤ i ≤ k, i.e., P (σ) = P ∩ σ; in fact, we only
need to store the cardinality of P (σ). For ease of exposition, we assume that no point of P

lies on the boundary of any cell of Ξi for any i.
For each disk D ∈ D, our goal is to compute the number of points of P in D, denoted by

nD. We process D as follows. We initialize nD = 0. Let h be the upper arc of H defined by
D, i.e., h = ∂D ∩ C ′. Starting from Ξ0 = C ′. Suppose σ is a cell of Ξi crossed by h (initially,
i = 0 and σ is C ′) and i < k. For each child cell σ′ of σ in Ξi+1, if σ′ is contained in D, then
we increase nD by |P (σ′)| because all points of P (σ′) are contained in D. Otherwise, if h

crosses σ′, then we proceed on σ′. In this way, the points of P ∩ D not counted in nD are
those contained in cells σ ∈ Ξk that are crossed by h. To count those points, we perform
further processing as follows.

For each cell σ in Ξk, if |Pσ| > n/K, then we arbitrarily partition P (σ) into subsets of
size between n/(2K) and n/K, called standard subsets of P (σ). As Ξk has O(K) cells and
|P | = n, the number of standard subsets of all cells of Ξk is O(K). Denote by Dσ the subset
of disks of D whose boundaries cross σ. Our problem is to compute for all disks D ∈ Dσ the
number of points of P (σ) contained in D, for all cells σ ∈ Ξk. To this end, for each cell σ of
Ξk, for each standard subset P ′(σ) of P (σ), we solve the batched unit-disk range counting
problem on the point set P ′(σ) and the disk set Dσ by Theorem 13. Note that |Dσ| ≤ m/r.
As Ξk has O(K) cells, we obtain O(K) subproblems of size (n/K, m/r) each. As discussed
above, solving these subproblems also solves our original problem. It remains to analyze the
time complexity of the algorithm, which can be found in the full paper. ◀

The general problem. The above results are for the case where points of P are in the square
cell C ′ while centers of D are all in C. For solving the general problem where both P and D
can be anywhere in the plane, as discussed before, we reduce the problem to the above case by
Lemma 1. The properties of the set C guarantee that the complexities for the general problem
are asymptotically the same as those in Theorem 13. To see this, we consider all pairs (C, C ′)
with C ∈ C and C ′ ∈ N(C). For the i-th pair (C, C ′), let ni = |P (C ′)| and mi = |D(C)|.
Then, solving the problem for the i-th pair (C, C ′) takes O(n2/3

i m
2/3
i + mi log ni + ni log mi)
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time by Theorem 13. Due to the properties (4) and (5) of C,
∑

i ni = O(n) and
∑

i mi = O(m).
Therefore, by Hölder’s Inequality,

∑
i n

2/3
i m

2/3
i ≤ n1/3 ·

∑
i n

1/3
i m

2/3
i ≤ n2/3m2/3, and thus

the total time for solving the problem for all pairs of cells is O(n2/3m2/3 + m log n + n log m).
Similarly, the complexity of Theorem 14 also holds for the general problem, with χ as the
number of pairs of disks of D that intersect.

Computing incidences between points and circles. It is easy to modify the algorithm
to solve the following problem: Given n points and m unit circles in the plane, computing
(either counting or reporting) the incidences between points and unit circles. The runtime
is O(n2/3m2/3 + m log n + n log m) or O(n2/3χ1/3 + m1+δ + n log n), where χ is the number
of intersecting pairs of the unit circles. Although the details were not given, Agarwal and
Sharir [7] already mentioned that an n2/3m2/32O(log∗(n+m)) + O((m + n) log(m + n)) time
algorithm can be obtained by adapting Matoušek’s technique [27]. (The same problem for
circles of arbitrary radii is considered in [7]. Refer to [30] for many other incidence problems.)
Our result further leads to an O(n4/3)-time algorithm for the unit-distance detection problem:
Given n points in the plane, is there a pair of points at unit distance? Erickson [21] gave a
lower bound of Ω(n4/3) time for the problem in his partition algorithm model.

3.2 The distance selection problem
Given a set P of n points in the plane and an integer k in the range [0, n(n − 1)/2], the
distance selection problem is to compute the k-th smallest distance among the distances of
all pairs of points of P . Let λ∗ denote the k-th smallest distance to be computed. Given a
value λ, the decision problem is to decide whether λ ≥ λ∗. Using our batched range counting
algorithm, we can easily obtain the following lemma.

▶ Lemma 15. Given a value λ, whether λ ≥ λ∗ can be decided in O(n4/3) time.

Proof. We can use our algorithm for the batched unit-disk range counting problem. Indeed,
let D be the set of congruent disks centered at the points of P with radius λ. By Theorem 13,
we can compute in O(n4/3) time the cardinality |Π|, where Π is the set of all disk-point
incidences (D, p), where D ∈ D, p ∈ P , and D contains p. Observe that for each pair of
points (pi, pj) of P whose distance is at most λ, it introduces two pairs in Π. Also, each point
pi introduces one pair in Π because pi is contained in the disk of D centered at pi. Hence,
the number of pairs of points of P whose distances are at most λ is equal to (|Π| − n)/2.
Clearly, λ ≥ λ∗ if and only if (|Π| − n)/2 ≥ k. ◀

Plugging Lemma 15 into a randomized algorithm of Chan [10] (i.e., Theorem 5 [10]), λ∗

can be computed in O(n log n + n2/3k1/3 log n) expected time.

3.3 The discrete 2-center problem
Let P be a set of n points in the plane. The discrete 2-center problem is to find two smallest
congruent disks whose centers are in P and whose union covers P . Let λ∗ be the radius of
the disks in an optimal solution. Given λ, the decision problem is to decide whether λ ≥ λ∗.

Agarwal, Sharir, and Welzl [8] gave an O(n4/3 log5 n) time algorithm by solving the
decision problem first. A key subproblem in their decision algorithm [8] is: Preprocess P to
compute a collection P of canonical subsets of P , {P1, P2, . . .}, so that given a query point p

in the plane, the set Pp of points of P outside the unit disk centered at p can be represented
as the union of a sub-collection Pp of canonical subsets and Pp can be found efficiently (it
suffices to give the “names” of the canonical subsets of Pp). Note that here the radius of
unit disks is λ.
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Roughly speaking, suppose we can solve the above key subproblem with preprocessing
time T such that

∑
Pi∈P |Pi| = M and |Pp| for any query point p is bounded by O(τ) (and

|Pp| can be found in O(τ) time); then the algorithm of [8] can solve the decision problem
in O(T + M log n + τ · n log3 n) time. The optimal radius λ∗ can thus be found by binary
search on all pairwise distances of P (in each iteration, find the k-th smallest distance using
a distance selection algorithm); the total time is O((T1 + T2) log n), where T1 is the time of
the distance selection algorithm and T2 is the time of the decision algorithm.

Note that the logarithmic factor of M log n in the above running time of the decision
algorithm of [8] is due to that for each canonical subset Pi ∈ P, we need to compute the
common intersection of all unit disks centered at the points of Pi, which takes O(|Pi| log n)
time [23]. However, if all points of Pi are sorted (e.g., by x-coordinate or y-coordinate),
then the common intersection can be computed in O(|Pi|) time [31]. Therefore, if we can
guarantee that all canonical subsets are sorted, then the runtime of the decision algorithm
of [8] can be bounded by O(T + M + τ · n log3 n).

Using our techniques for unit-disk range searching, we present new solutions to the
above key subproblem. We show that after T = O(n4/3 log2 n(log log n)1/3) expected time
preprocessing by a randomized algorithm, we can compute M = O(n4/3 log2 n/(log log n)2/3)
sorted canonical subsets of P so that τ = O(n1/3(log log n)1/3/ log n) holds with high prob-
ability. Consequently, the decision problem can be solved in O(n4/3 log2 n(log log n)1/3)
expected time, and thus λ∗ can be computed in O(n4/3 log3 n(log log n)1/3) expected time if
we use the O(n4/3 log2 n) time distance selection algorithm in [24]. We also have another
slightly slower deterministic result. After T = O(n4/3 log7/3 n(log log n)1/3) time prepro-
cessing algorithm, we can compute M = O(n4/3 log7/3 n/(log log n)2/3) sorted canonical
subsets of P so that τ = O(n1/3(log log n)O(1)/ log2/3 n). Consequently, the decision prob-
lem can be solved in O(n4/3 log7/3 n(log log n)O(1)) time, and thus λ∗ can be computed in
O(n4/3 log10/3 n(log log n)O(1)) time.
▶ Remark. It is straightforward to modify our algorithms to achieve the same results for the
following inside-disk problem: represent the subset of points of P inside D as a collection of
pairwise-disjoint canonical sets for any query disk D.

In what follows, we present our solutions to the above subproblem. We apply Lemma 1
on the set P to compute the set C of square cells. As before, we first reduce the problem
to the same problem with respect to pairs of cells (C, C ′) of C, by using Lemma 1 as well
as the following lemma (whose proof is in the full paper, by modifying of the algorithm for
Lemma 1); then we will solve the problem using our techniques for disk range searching.

▶ Lemma 16. We can compute in O(n log n) time a collection of O(n) sorted canonical
subsets of P whose total size is O(n log n), such that for any cell C of C, there are O(log n)
pairwise-disjoint canonical subsets whose union consists of the points of P that are not in
the cells of N(C), and we can find those canonical subsets in O(log n) time.

Let Dp be the unit disk centered at a point p in the plane. If p is not in any cell of C,
then Dp ∩ P = ∅ and thus we can return the entire set P as a canonical subset. Henceforth,
we only consider the case where p is in a cell C of C. According to Lemma 16, it suffices to
find canonical subsets to cover all points of P ∩ C ′ not in Dp for all cells C ′ ∈ N(C). As
|N(C)| = O(1), it suffices to consider one such cell C ′ ∈ N(C). Hence, as before, the problem
reduces to a pair of square cells (C, C ′) of C with C ′ ∈ N(C). If C ′ = C, then we know that
all points of P ∩ C ′ are in Dp. Hence, we assume that C ′ ≠ C. Without loss of generality,
we assume that C ′ and C are separated by a horizontal line and C is below the line. The
problem is to process all points of P ∩ C ′, such that given any query disk Dp whose center p

is in C, we can find a collection of disjoint canonical subsets whose union is the set of points
of P ∩ C ′ not in Dp. To simplify the notation, we assume that all n points of P are in C ′.
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Our data structure combines some techniques for the disk range searching problem. As
remarked before, all our results on disk range searching with respect to (C, C ′) can be applied
to find the number of points of P outside any query disk D whose center is in C (indeed,
the disk D defines a spanning upper arc h in C ′, and points in D lie on one side of h while
points outside D lie on the other side of h). Hence, our main idea is to examine our disk
range searching data structures and define canonical subsets of P in these data structures.
For each query disk D, we apply the query algorithm on D, which will produce a collection
of canonical subsects. The crux is to carefully design the disk range searching data structure
(e.g., by setting parameters to some appropriate values) so that the following are as small as
possible (tradeoffs are needed): the preprocessing time, the total size of all canonical subsets
of the data structure, which is M , and the total number of canonical subsets for each query
disk D, which is τ . In the following, whenever we say “apply our query algorithm on D”, we
mean “finding points outside D”. We will present two results, a randomized result based on
Chan’s partition trees [11] and a slightly slower deterministic result.

3.3.1 The randomized result
Our data structure has three levels. We will present them from the lowest level to the highest
one. We start with the lowest level in the following lemma, which relies on the partition tree
T built in Theorem 9. The proof is in the full paper. For any disk D, we use P \ D to refer
to the subset of the points of P not in D.

▶ Lemma 17. We can compute in O(n log n) expected time a data structure with O(n) sorted
canonical subsets of P whose total size is O(n log n), so that for any disk D whose center is
in C, we can find in O(κ) time O(κ) pairwise-disjoint canonical sets whose union is P \ D,
where κ = O(

√
n) holds with high probability.

In the next lemma we add the second level to the data structure of Lemma 17. The proof
is in the full paper.

▶ Lemma 18. We can compute in O(n2 log log n/ log2 n) expected time a data structure
with O(n2/ log2 n) sorted canonical subsets of P whose total size is O(n2 log log n/ log2 n),
so that for any disk D whose center is in C, we can find in O(κ) time O(κ) pairwise-disjoint
canonical sets whose union is P \ D, where κ = O(log n) holds with high probability.

We finally add the top-level data structure in Lemma 19, whose proof is in the full paper.

▶ Lemma 19. For any r < n/ logω(1) n, we can compute in O(n log n + nr log log r/ log2 r)
expected time a data structure with O(nr/ log2 r) sorted canonical subsets of P whose total
size is O(n log(n/r) + nr log log r/ log2 r), so that for any disk D whose center is in C, we
can find in O(κ) time O(κ) pairwise-disjoint canonical sets whose union is P \ D, where
κ = O(

√
n/r log r) holds with high probability.

By setting r = n1/3 log4 n/(log log n)2/3 in Lemma 19, we can obtain the following result.

▶ Corollary 20. We can compute in O(n4/3 log2 n(log log n)1/3) expected time by a randomized
algorithm a data structure with O(n4/3 log2 n/(log log n)2/3) sorted canonical subsets of P

whose total size is O(n4/3 log2 n(log log n)1/3), so that for any disk D whose center is in C,
we can find in O(κ) time O(κ) pairwise-disjoint canonical sets whose union is P \ D, where
κ = O(n1/3(log log n)1/3/ log n) holds with high probability.
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As discussed before, plugging our above result in the algorithm of [8], we can solve the
decision version of the discrete 2-center problem in O(n4/3 log2 n(log log n)1/3) expected time.
Using the decision algorithm and the O(n4/3 log2 n)-time distance selection algorithm in [24],
the discrete 2-center problem can be solved in O(n4/3 log3 n(log log n)1/3) expected time.

▶ Theorem 21. Given a set P of n points in the plane, the discrete 2-center problem can be
solved in O(n4/3 log3 n(log log n)1/3) expected time by a randomized algorithm.

3.3.2 The deterministic result

The deterministic result also has three levels, which correspond to Lemmas 17, 18, and 19,
respectively, but instead uses deterministic techniques. More specifically, we use the partition
tree of Theorem 7 to obtain the lowest level data structure; the second level follows the
same algorithm as Lemma 18 with the deterministic lowest level structure; the top level
structure makes use of a partial half-space decomposition scheme of [27]. The next three
lemmas present the three data structures, respectively, with their proofs in the full paper.

▶ Lemma 22. We can compute in O(n log n) time a data structure with O(n) sorted canonical
subsets of P whose total size is O(n log log n), so that for any disk D whose center is in
C, we can find in O(

√
n(log n)O(1)) time O(

√
n(log n)O(1)) pairwise-disjoint canonical sets

whose union is P \ D.

▶ Lemma 23. We can compute in O(n2 · log log n/ log2 n) time a data structure with
O(n2/ log2 n) sorted canonical subsets of P whose total size is O(n2 log log log n/ log2 n),
so that for any disk D whose center is in C, we can find in O(log n(log log n)O(1)) time
O(log n(log log n)O(1)) pairwise-disjoint canonical sets whose union is P \ D.

▶ Lemma 24. For any r ≤ n, we can compute in O(n
√

r + n log n + r2 + (n2/r) · log r ·
log log(n/r)/ log2(n/r)) time a data structure with O(r log r + (n2/r) log r/ log2(n/r)) sorted
canonical subsets of P whose total size is O(n log2 r +(n2/r) log r log log log(n/r)/ log2(n/r)),
so that for any disk D whose center is in C, we can find in O(

√
r log(n/r)(log log(n/r))O(1))

time O(
√

r log(n/r)(log log(n/r))O(1)) pairwise-disjoint canonical sets whose union is P \ D.

By setting r = n2/3(log log n)2/3/ log10/3 n in the preceding lemma, we obtain the following
result.

▶ Corollary 25. We can compute in O(n4/3 log7/3 n(log log n)1/3) time a data structure with a
total of O(n4/3 log7/3 n/(log log n)2/3) sorted canonical subsets of P whose total size is upper-
bounded by O(n4/3 log7/3 n log log log n/(log log n)2/3), so that for any disk D whose center
is in C, we can find in O(n1/3(log log n)O(1)/ log2/3 n) time O(n1/3(log log n)O(1)/ log2/3 n)
pairwise-disjoint canonical sets whose union is P \ D.

According to our discussion before, plugging our above result in the algorithm of [8], we can
solve the decision version of the discrete 2-center problem in O(n4/3 log7/3 n(log log n)O(1))
time. Using the decision algorithm and the O(n4/3 log2 n)-time distance selection algorithm
in [24], the discrete 2-center problem can be solved in O(n4/3 log10/3 n(log log n)O(1)) time.

▶ Theorem 26. Given a set P of n points in the plane, the discrete 2-center problem can be
solved in O(n4/3 log10/3 n(log log n)O(1)) time.
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4 Concluding remarks

Our techniques are likely to find other applications. Generally speaking, our techniques
may be useful for solving problems involving a set of congruent disks in the plane. Our
paper demonstrates that well-studied techniques for arrangements of lines may be adapted
to solving problems involving arrangements of congruent disks. The general idea is to first
reduce the problem to the same problem with respect to a pair of square cells using an
algorithm like Lemma 1. Then, to tackle the problem on a pair of square cells (C, C ′), we
need to deal with an arrangement of spanning upper arcs in C ′ such that the centers of
the underlying disks of these arcs are all in C. The properties of spanning upper arcs (e.g.,
Observation 2), along with the duality between the upper arcs in C ′ and the points in C,
make an upper-arc arrangement “resemble” a line arrangement so that many algorithms and
techniques on line arrangements may be easily adapted to the upper-arc arrangements.
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