
Connectivity Graphs Artifact

ANONYMOUS AUTHOR(S)

This archive contains the artifact for "Connectivity Graphs: AMethod for ProvingDeadlock Freedom
Based on Separation Logic". The contents of the archive are:

• The file "cgraphs_sources.zip" containing the source code.
• The file "cgraphs_vm.ova" containing the virtual machine.
• The file "readme.pdf", which is this document.

The source code is also available on GitHub at https://github.com/julesjacobs/cgraphs.

1 SETUP AND SANITY TESTING
This artifact contains our Coq development mechanizing the proofs in the paper. You can either
use the Coq source code or you can use the VM in which Coq and the dependencies have already
been installed.

1.1 Using the source code
The Coq development has been built and tested with the following dependencies

• A recent version of Coq (we tested with Coq 8.13.2)
• A development version of Iris (we tested with dev.2021-09-27.1.d2c226e7)
• A development version of std++ (we tested with dev.2021-09-27.0.7d5f3593)

You can compile the project as follows:
(1) Open a terminal in the cgraphs_sources folder
(2) Run the command make

You can also open the .v proof scripts in your Coq editor with support for stepping through the
proof scripts, such as CoqIDE, Emacs with Proof General, or Visual Studio code with VSCoq.

The file sessiontypes/safety.v contains the final theorem, as well as instructions for having
Coq check that the proof is complete using the Print Assumptions command.

1.2 Using the VM
To use our VM, please install VirtualBox. The VM has been tested with VirtualBox 6.1.26, which
is the most recent version as of the time of this writing. The VM contains Ubuntu, Coq, CoqIDE,
opam, Iris, std++, and the source code which has also been compiled.

The login information for the VM is as follows:
• Username: deadlocks
• Password: 123

On the desktop you will find a folder "cgraphs_sources". You can open the .v files in CoqIDE by
running coqide the_file.v from the terminal. CoqIDE will allow you to step through the proof
scripts.

The file sessiontypes/safety.v contains the final theorem, as well as instructions for having
Coq check that the proof is complete using the Print Assumptions command.

The project has already been compiled for you, but you can let Coq re-check the entire develop-
ment by performing the following steps:
(1) Open a terminal in the cgraphs_sources folder
(2) Run the command make clean
(3) Run the command make

https://github.com/julesjacobs/cgraphs

1:2 Anon.

2 EVALUATION INSTRUCTIONS
For evaluating the artifact, there are two main claims of the paper:
(1) The Coq development mechanizes the results in the paper. The final theorem is Theo-

rem 3.2 from the paper, which is proved in safety.v. This file contains instructions on how
to verify that the Coq proof is complete using the Print Assumptions command. In order
to convince yourself that the safety theorem matches Theorem 3.2, please check that the
language definition in Section 2 and the extensions in Section 5 match the definitions in Coq.
The definitions and lemmas from the other sections are implementation details, because they
only impact the proof of Theorem 3.2 (which Coq checks for you), and not the statement of
Theorem 3.2. You may nevertheless want to verify that they match the lemmas in the paper.
We have included a dictionary to translate between the paper and the Coq development in
Section 4.

(2) The proof has a layered structure: the definitions in the cgraph directory are generic over
the language definition. This is easy to verify, as none of the files in the cgraph directory
import any of the files in the sessiontypes directory.

3 DIRECTORY STRUCTURE
The project consists of two parts: the generic connectivity graph library in cgraphs/, and the
deadlock freedom proof for a session-typed functional language in sessiontypes/.

3.1 Connectivity graph library: cgraphs/
• Utilities and data structures:
– cgraphs/util.v: miscellaneous utility functions and lemmas
– cgraphs/multiset.v: multisets represented as lists up to permutations
– cgraphs/map_to_multiset.v: conversion from maps to multisets of key-value pairs
– cgraphs/mapexcl.v: utility function required for integration with Iris

• Separation logic:
– cgraphs/upred.v: a linear version of Iris’ uPred (Iris is affine)
– cgraphs/bi.v: the bi interface to enable use of the Iris proof mode
– cgraphs/seplogic.v: the instantiation of the separation logic and adequacy lemmas

• Undirected forests:
– cgraphs/uforests.v: undirected, unlabeled forest library

• Connectivity graphs:
– cgraphs/cgraph.v: the directed, labeled connectivity graph library and graph transfor-
mations

• Generic invariant and transformation lemmas:
– cgraphs/genericinv.v: the generic invariant definition and separation logic graph trans-
formations

3.2 Deadlock freedom proof: sessiontypes/
• Language definition:
– sessiontypes/langdef.v: the definition of the session typed language, and sanity lemmas
about the notions defined (e.g. the dual function and type equivalence)

• Run-time type system:
– sessiontypes/rtypesystem.v: definition of the run-time type system, and lemmas re-
lated to it, such as substitution and decomposition into expression & context

Connectivity Graphs Artifact 1:3

– sessiontypes/langlemmas.v: substitution in empty environment and type preservation
under pure steps

• Invariant and preservation proof:
– sessiontypes/invariant.v: definition and preservation of the invariant

• Global progress proof:
– sessiontypes/progress.v: proof that the invariant implies progress

• Final theorem:
– sessiontypes/safety.v: proof that preservation & progress together imply safety

• Y-combinator:
– sessiontypes/ycombinator.v: definition and lemmas about the y-combinator

4 CORRESPONDENCE BETWEEN THE COQ DEVELOPMENT AND THE PAPER
We provide a dictionary to translate between the paper and the Coq development.

4.1 Definitions

Paper notation Section Coq notation Coq location
Expr 2 expr sessiontypes/langdef.v
Val 2 val sessiontypes/langdef.v
Chan 2 endpoint sessiontypes/langdef.v
Heap 2 heap sessiontypes/langdef.v
Cfg 2 list expr * heap sessiontypes/langdef.v
{pure 2 pure_step sessiontypes/langdef.v
{head 2 head_step sessiontypes/langdef.v
{global 2 step sessiontypes/langdef.v
Ctx 2 ctx sessiontypes/langdef.v
Type 2 type sessiontypes/langdef.v
Session 2 chan_type sessiontypes/langdef.v
Γ ⊢ 𝑒 : 𝜏 (typing judgement) 2 typed Γ e t sessiontypes/langdef.v
Cgraph(V, L) 3 cgraph V L cgraphs/cgraph.v
V 3 object sessiontypes/rtypesystem.v
L 3 clabel sessiontypes/rtypesystem.v
Emp, ⌜𝜙⌝,� 𝑃, · · · 3&5 emp, ⌜⌜𝜙⌝⌝,� 𝑃, · · · cgraphs/upred|bi|seplogic.v
Γ ⊢ 𝑒 : 𝜏 (runtime judgement) 3 rtyped Γ e t sessiontypes/rtypesystem.v
wf (𝑃) 3 inv f cgraphs/genericinv.v

wflocal(®𝑒,ℎ) (a,Δ) 3 state_inv sessiontypes/invariant.v

⊢buf ®𝑣 : (𝑠1, 𝑠2) 3 buf_typed sessiontypes/invariant.v
active(®𝑒, ℎ) 3 active sessiontypes/progress.v
blocked(®𝑒,ℎ) (a1, a2) 3 waiting sessiontypes/progress.v
(®𝑒, ℎ) can step 3 reachable sessiontypes/progress.v
Undirected acyclicity 4 cgraph_wf cgraphs/cgraph.v
unrestricted 5 unrestricted sessiontypes/langdef.v
Γ1 ⊥ Γ2 5 disj Γ1 Γ2 sessiontypes/langdef.v
𝜏1 ≡ 𝜏2 5 type_equiv sessiontypes/langdef.v
𝑌 5 y sessiontypes/ycombinator.v

1:4 Anon.

4.2 Lemmas and theorems

Paper name Section Coq name Coq location
Theorem 3.1 3 not applicable∗ not applicable∗
Theorem 3.2 3 safety sessiontypes/safety.v
Lemma 4.1 4 insert_edge_wf cgraphs/cgraph.v
Lemma 4.2 4 delete_edge_wf cgraphs/cgraph.v
Lemma 4.3 4 exchange cgraphs/cgraph.v
Lemma 4.4 4 no_self_edge cgraphs/cgraph.v
Lemma 4.5 4 edge_out_disjoint cgraphs/cgraph.v
Lemma 4.6 4 cgraph_ind” cgraphs/cgraph.v
Lemma 5.1 5 inv_exchange cgraphs/genericinv.v
Lemma 5.2 5 inv_dealloc cgraphs/genericinv.v
Lemma 5.3 5 inv_alloc_l cgraphs/genericinv.v
Lemma 5.4 5 inv_alloc_r cgraphs/genericinv.v
Lemma 5.5 5 inv_alloc_lr cgraphs/genericinv.v

∗ Theorem 3.1 is the type safety theorem for pure languages, and is stated only for illustration.
Our language is not pure. The appropriate notion of type safety in our setting is Theorem 3.2.

4.3 Differences between the paper and the Coq development
There are only minor differences:

• The paper defines Cfg as a pair of a list of expressions and a heap. In Coq we do not use a
pair, but we use curried definitions that take two arguments.

• Some graph lemmas are stated slightly differently in the paper, e.g., the exchange lemma. In
the paper we say "let 𝐺,𝐻 ..." whereas in Coq the lemma provides 𝐻 (there called g’) via the
∃𝑔′. Since the conditions of the theorem uniquely determine 𝐻 from 𝐺 , they are equivalent.
The Coq version is more convenient to use, because the lemma constructs g’ for us, rather
than the user of the lemma having to do that themselves.

• Since Coq’s built-in equality does not work for coinductive types, we have to use setoids (the
Proper type classes), and we have to prove that everything respects (coinductive) equivalence.

• The reviewers have asked us to prove a stronger progress statement, which we have done
(strong_progress in Coq). Due to this, the line counts reported in Section 7 do not match
the Coq development exactly any more. We will of course update the line counts in the final
version of the paper, and we will also incorporate the stronger theorem statement in the
paper. The Coq development still proves the older, weaker statement (global_progress) in
terms of the stronger one.

	Abstract
	1 Setup and sanity testing
	1.1 Using the source code
	1.2 Using the VM

	2 Evaluation instructions
	3 Directory structure
	3.1 Connectivity graph library: cgraphs/
	3.2 Deadlock freedom proof: sessiontypes/

	4 Correspondence between the Coq development and the paper
	4.1 Definitions
	4.2 Lemmas and theorems
	4.3 Differences between the paper and the Coq development

