LIPIcs – Leibniz International Proceedings in Informatics

LIPIcs is a series of high-quality conference proceedings across all fields in informatics. LIPIcs volumes are published according to the principle of Open Access, i.e., they are available online and free of charge.

Editorial Board

- Luca Aceto (Chair, Reykjavik University, IS and Gran Sasso Science Institute, IT)
- Christel Baier (TU Dresden, DE)
- Mikolaj Bojanczyk (University of Warsaw, PL)
- Roberto Di Cosmo (Inria and Université de Paris, FR)
- Faith Ellen (University of Toronto, CA)
- Javier Esparza (TU München, DE)
- Daniel Král’ (Masaryk University - Brno, CZ)
- Meena Mahajan (Institute of Mathematical Sciences, Chennai, IN)
- Anca Muscholl (University of Bordeaux, FR)
- Chih-Hao Luke Ong (University of Oxford, GB)
- Phillip Rogaway (University of California, Davis, US)
- Eva Rotenberg (Technical University of Denmark, Lyngby, DK)
- Raimund Seidel (Universität des Saarlandes, Saarbrücken, DE and Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Wadern, DE)

ISSN 1868-8969

https://www.dagstuhl.de/lipics
This volume is dedicated to the memory of Camil Demetrescu and Eelco Visser.
Contents

Message from the Program Chairs
Karim Ali and Jan Vitek .. 0:xi

Message from the Artifact Evaluation Chairs
Alessandra Gorla and Stefan Winter ... 0:xiii

Foreword by the President of AITO
Eric Jul .. 0:xv

Authors .. 0:xvii–0:xx

Regular Papers

Verified Compilation and Optimization of Floating-Point Programs in CakeML
Heiko Becker, Robert Rabe, Eva Darulova, Magnus O. Myreen, Zachary Tatlock, Ramana Kumar, Yong Kiam Tan, and Anthony Fox 1:1–1:28

Elementary Type Inference
Jinxu Zhao and Bruno C. d. S. Oliveira ... 2:1–2:28

Automatic Root Cause Quantification for Missing Edges in JavaScript Call Graphs
Madhurima Chakraborty, Renzo Olivares, Manu Sridharan, and Behnaz Hassanshahi ... 3:1–3:28

Stay Safe Under Panic: Affine Rust Programming with Multiparty Session Types
Nicolas Lagaillardie, Rumyana Neykova, and Nobuko Yoshida 4:1–4:29

How to Take the Inverse of a Type
Daniel Marshall and Dominic Orchard ... 5:1–5:27

Compiling Volatile Correctly in Java
Shuyang Liu, John Bender, and Jens Palsberg 6:1–6:26

Functional Programming with Datalog
André Pacak and Sebastian Erdweg .. 7:1–7:28

Design-By-Contract for Flexible Multiparty Session Protocols
Lorenzo Gheri, Ivan Lanese, Neil Sayers, Emilio Tuosto, and Nobuko Yoshida ... 8:1–8:28

A Deterministic Memory Allocator for Dynamic Symbolic Execution
Daniel Schemmel, Julian Büning, Frank Busse, Martin Nowack, and Cristian Cadar ... 9:1–9:26

Accumulation Analysis
Martin Kellogg, Narges Shadab, Manu Sridharan, and Michael D. Ernst 10:1–10:30

Concolic Execution for WebAssembly
Filipe Marques, José Frasoso Santos, Nano Santos, and Pedro Adão 11:1–11:29

Defining Corecursive Functions in Coq Using Approximations
Vlad Rusu and David Nowak ... 12:1–12:24
REST: Integrating Term Rewriting with Program Verification

Static Analysis for AWS Best Practices in Python Code
 Rajdeep Mukherjee, Omer Tripp, Ben Liblit, and Michael Wilson 14:1–14:28

What If We Don’t Pop the Stack? The Return of 2nd-Class Values
 Anxhelo Xhebraj, Oliver Bračevac, Guannan Wei, and Tiark Rompf 15:1–15:29

Maniposynth: Bimodal Tangible Functional Programming
 Brian Hempel and Ravi Chugh ... 16:1–16:29

Synchron – An API and Runtime for Embedded Systems
 Abhiroop Sarkar, Bo Joel Svensson, and Mary Sheeran 17:1–17:29

Direct Foundations for Compositional Programming
 Andong Fan, Xuejing Huang, Han Xu, Yaozhu Sun, and
 Bruno C. d. S. Oliveira ... 18:1–18:28

Low-Level Bi-Abduction
 Lukáš Holík, Petr Peringer, Adam Rogalewicz, Veronika Šoková, Tomáš Vojnar,
 and Florian Zuleger ... 19:1–19:30

Functional Programming for Distributed Systems with XC
 Giorgio Audrito, Roberto Casadei, Ferruccio Damiani, Guido Salvaneschi, and
 Mirko Viroli ... 20:1–20:28

PEDROID: Automatically Extracting Patches from Android App Updates
 Hehao Li, Yizhuo Wang, Yiwei Zhang, Juanru Li, and Dawu Gu 21:1–21:31

Ferrite: A Judgmental Embedding of Session Types in Rust

A Self-Dual Distillation of Session Types (Pearl)
 Jules Jacobs .. 23:1–23:22

JavaScript Sealed Classes
 Manuel Serrano .. 24:1–24:27

Union Types with Disjoint Switches
 Baber Rehman, Xuejing Huang, Ningning Xie, and Bruno C. d. S. Oliveira 25:1–25:31

Fair Termination of Multiparty Sessions
 Luca Ciccone, Francesco Dagnino, and Luca Padovani 26:1–26:26

API Generation for Multiparty Session Types, Revisited and Revised Using Scala 3 (Pearl)
 Guillermina Cledou, Luc Edizhoven, Sung-Shik Jongmans, and José Proença 27:1–27:28

Global Type Inference for Featherweight Generic Java
 Andreas Stadelmeier, Martin Pläimicke, and Peter Thiemann 28:1–28:27

Experience: Model-Based, Feedback-Driven, Greybox Web Fuzzing with BackREST
 François Gauthier, Behnaz Hassanshahi, Benjamin Selwyn-Smith,
 Trong Nhan Mai, Max Schläuter, and Micah Williams 29:1–29:30
QILIN: A New Framework For Supporting Fine-Grained Context-Sensitivity in Java Pointer Analysis
 Dongjie He, Jingbo Lu, and Jingling Xue ... 30:1–30:29

NWGraph: A Library of Generic Graph Algorithms and Data Structures in C++20
 Andrew Lumsdaine, Luke D’Alessandro, Kevin Deweese, Jesun Firoz,
 Xu Tony Liu, Scott McMillan, John Phillip Ratzloff, and Marcin Zalewski 31:1–31:28

Extended Abstracts

Vincent: Green Hot Methods in the JVM
 Kenan Liu, Khaled Mahmoud, Joonhwan Yoo, and Yu David Liu 32:1–32:30

Hinted Dictionaries: Efficient Functional Ordered Sets and Maps
 Amir Shaikhha, Mahdi Ghorbani, and Hesam Shahrokhi 33:1–33:3

Slicing of Probabilistic Programs Based on Specifications
 Marcelo Navarro and Federico Olmedo ... 34:1–34:2

Prisma: A Tierless Language for Enforcing Contract-Client Protocols in Decentralized Applications
 David Richter, David Kretzler, Pascal Weisenburger, Guido Salvaneschi,
 Sebastian Faust, and Mira Mezini .. 35:1–35:4
Message from the Program Chairs

Started in 1987, ECOOP is Europe’s oldest programming conference, welcoming papers on all practical and theoretical investigations of programming languages, systems and environment providing innovative solutions to real problems as well as evaluations of existing solutions. Papers were submitted to one of four categories: Research for papers that advance the state of the art in programming; Reproduction for empirical evaluations that reconstructs a published experiment in a different context in order to validate the results of that earlier work; Experience for applications of known techniques in practice; and Pearl for papers that either explain a known idea in an elegant way or unconventional papers introducing ideas that may take some time to substantiate. ECOOP is a selective venue, with acceptance, by traditio, capped at 25% of all submissions and re-submissions. The chairs thank the Program Committee: A. Donaldson, B. Hermann, M. Sridharan, S. Alimadadi, A. Bieniusa, S. Blackburn, S. Blazy, E. Brady, Lr Bulej, S. Chiba, A. Cohen, E. Darulova, W. De Meuter, D. Dreyer, S. Drossopoulou, S. Ducasse, S. Erdweg, S. Fowler, J. Franco, D. Garg, S. Gay, J. Gibbons, E. Gonzalez Boix, P. Haller, R. Hirschfeld, T. Hosking, D. Lea, M. Luján, M. Madsen, A. Møller, J. Noble, M. Odersky, B. C.d.S. Oliveira, K. Ostermann, T. Petricek, A. Potanin, M. Rapoport, M. Rigger, G. Salvaneschi, T. Schrijvers, M. Serrano, A. Silva, E. Tosch, L. Tratt, V. Vasconcelos, E. Visser, T. Wrigstad, T. Xie, J. Xue, E. Zucca. We thank the Extended Review Committee: Q. Stiévenart, C. Koparkar, K. Narasimhan, S. Singh, J. Yang, L. De Simone, M. Jimenez, T. Nakamaru, J. Immanuel Brachthäuser, O. Bračevac, J. Norlinger, D. He, C. Zhang, M. Krušl, V. Dort, V. Horky, W. Ye, B. Rehman, K. Marussy, P. Koronkevich, H. Dang, A. Tondwalkar, I. Kabir, A. Renda, M. Chiari, O. Flickiger, P. Maj, C. Hsieh, M. Raab, M. Schröder, D. Justo, L. Schütze, P. Weisenburger, E. D’Osualdo, S. Keuchel, J. An, S. Keidel, P. Rein, T. Mattis, A. Gorla, S. Winter. This year saw a number of innovations:

- **Multiple rounds.** ECOOP has two main rounds of submissions per year. Each round supports both minor and major revisions. Major revisions are handled in the next round (either the same year or the next) by the same reviewers.

- **No format or length restrictions.** In order reduce friction for authors, papers can come in any format and at any length. This applies to submisisions, final versions must abide by the publisher’s requirements.

- **Arfitacts and Papers together.** Every submitted paper can be accompanied with an artifact, submitted 10 days after the paper. Both submission are evaluated in parallel by overlapping committees as members of the artifact evaluation committee were invited to served on the conference review committee.

- **Journal First/Last.** Papers can be submitted either one of three associated journals and be invited to present at the meeting. Furthermore, some accepted papers can be forward to journals.

Overall, we found these innovations to have worked well. Clearly more experience is needed to draw any broader conclusions. We do encourage future chair to keep experimenting.

Karim Ali Jan Vitek
ECOOP has a long-standing tradition of offering artifact evaluation dating back to 2013. For the first time this year, though, the artifact evaluation process involved every single paper submission to ECOOP 2022, rather than just accepted papers, and happened in parallel with the paper review process. Besides providing feedback on the artifacts irrespective of paper acceptance, evaluation results were made available to the technical PC. Artifact submissions could thus provide more insights on the technical contributions described in the papers, and help to improve the overall review process.

To handle the higher review load that such a process entails, we recruited an artifact evaluation committee that was almost twice as large as for last year’s ECOOP and included both experienced and novice artifact reviewers. The submission deadlines for artifacts were just 10 days after the paper deadlines for both submission rounds. We received a total of 57 submissions (39 for R1 and 18 for R2). After a kick-the tires review and author response phase, during which authors had the opportunity to clarify or address technical issues with their submissions, each submitted artifact was reviewed by at least three committee members, leading to an overall review load of 4–5 artifact reviews per committee member.

Following the positive experience with adopting ACM’s artifact badges for ECOOP 2021, we adopted the same badging policies for ECOOP 2022. The artifact evaluation committee positively evaluated 46 submissions (33/13 for R1/R2) as functional or reusable, out of which 25 belong to papers to appear in the technical program of ECOOP 2022. Seven submitted artifacts (4/3 in R1/R2) that did not pass the bar for the functional and reusable badges, were found eligible for the available badge, 2 of which are associated with papers accepted for presentation at ECOOP 2022 (both from R1).

To streamline the artifact review process and to decouple artifact from paper review aspects, we asked authors to submit documentation of explicit claims in a pre-specified format that the artifact evaluation committee checked the artifacts against. At the same time, the PC could assess the importance of these claims for the submitted papers as a frame of reference for the strength of support for the paper that an artifact can provide. This separation greatly facilitated the artifact evaluation committee’s discussions regarding which badges to award. The details of this process are documented in the call for artifacts (https://doi.org/10.5281/zenodo.6553744), the artifact submission template (https://doi.org/10.5281/zenodo.5720714), and an artifact review template (https://doi.org/10.5281/zenodo.5750738) that we provided as guidance for artifact reviewers in addition to prior community guidance linked from the call for artifacts.

The smooth and thorough artifact evaluation process would have not been possible without the 39 members of the committee, who handled the artifact review workload and contributed to the technical PC discussions with great dedication. For this reason, we would like to thank them for their valuable work and the inspiring discussions.

Alessandra Gorla
Artifact Evaluation Co-chair
IMDEA Software Institute

Stefan Winter
Artifact Evaluation Co-chair
Ludwig-Maximilians-Universität München
Welcome back to a physical conference – after two years of pandemic, we are again able to hold a non-virtual conference. Corona has changed the world – there certainly will be more virtual interaction than before – witness VCOOP. Will physical conferences survive this seismic shift in ways to interact? Well, perhaps if the traditional conference format is adjusted to the new times. The ECOOP 2022 team has done a tremendous job of reigniting ECOOP – a huge thanx to them and their efforts – which have appeared to pay off, as both paper submission, attendance, and the number of workshops has increased. AITO will continue to explore new ways of adapting to the changing realities that scientific conferences face today – as spearheaded by the ECOOP 2022 organizers – we look forward to a really good conference with lots of great paper, personal interaction, excellent keynotes – including a Dahl-Nygaard Senior winner, Dan Ingalls. Enjoy the conference – and modern-day Berlin.

Eric Jul
AITO President
List of Authors

<table>
<thead>
<tr>
<th>Author</th>
<th>Institution 1</th>
<th>Institution 2</th>
<th>Country 1</th>
<th>Country 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pedro Adão</td>
<td>Instituto Superior Técnico</td>
<td>University of Lisbon</td>
<td>Portugal</td>
<td>Portugal</td>
</tr>
<tr>
<td></td>
<td>Portugal; Instituto de</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Telecomunicações, Aveiro</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Giorgio Audrito</td>
<td>University of Turin</td>
<td>Italy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stephanie Balzer</td>
<td>Carnegie Mellon University</td>
<td>Pittsburgh, PA, USA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heiko Becker</td>
<td>MPI-SWS, Saarland Informatics</td>
<td>(SIC), Saarbrücken, Germany</td>
<td></td>
<td></td>
</tr>
<tr>
<td>John Bender</td>
<td>Sandia National Laboratories</td>
<td>Albuquerque, NM, USA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oliver Bračevac</td>
<td>Purdue University, West</td>
<td>Lafayette, IN, USA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frank Busse</td>
<td>Imperial College London, UK</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Julian Büning</td>
<td>RWTH Aachen University, Germany</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cristian Cadar</td>
<td>Imperial College London, UK</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Roberto Casadei</td>
<td>University of Bologna, Cesena</td>
<td>Italy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Madhurima Chakraborty</td>
<td>University of California</td>
<td>Riverside, CA, USA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ruo Fei Chen</td>
<td>Independent Researcher, Leipzig</td>
<td>Germany</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ravi Chugh</td>
<td>University of Chicago, IL, USA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Luca Ciccone</td>
<td>University of Torino</td>
<td>Italy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guillermina Cledou</td>
<td>HASLab, INESC TEC, Porto</td>
<td>Portugal; University of Minho,</td>
<td>Braga, Portugal</td>
<td></td>
</tr>
<tr>
<td>Luke D’Alessandro</td>
<td>Indiana University</td>
<td>Bloomington, IN, USA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Francesco Dagnino</td>
<td>University of Genova</td>
<td>Italy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ferruccio Damiani</td>
<td>University of Turin</td>
<td>Italy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eva Darulova</td>
<td>Uppsala University</td>
<td>Sweden</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kevin Deweese</td>
<td>Cadence Design Systems</td>
<td>San Jose, CA, USA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Luc Edixhoven</td>
<td>Open University of the</td>
<td>Netherlands; NWO-I, Centrum</td>
<td>Wiskunde & Informatica,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Netherlands, Heerlen, The</td>
<td>Amsterdam, The Netherlands</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sebastian Erdweg</td>
<td>JGU Mainz</td>
<td>Germany</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Michael D. Ernst</td>
<td>University of Washington</td>
<td>Seattle, WA, USA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Andong Fan</td>
<td>Zhejiang University</td>
<td>Hangzhou, China</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sebastian Faust</td>
<td>Technische Universität</td>
<td>Darmstadt, Germany</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jesun Firoz</td>
<td>Pacific Northwest National</td>
<td>Laboratory, Richland, WA, USA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anthony Fox</td>
<td>Arm Limited, Cambridge</td>
<td>UK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>José Fragoso Santos</td>
<td>Instituto Superior Técnico</td>
<td>University of Lisbon,</td>
<td>Portugal; INESC-ID Lisbon,</td>
<td>Portugal</td>
</tr>
<tr>
<td>François Gauthier</td>
<td>Oracle Labs, Brisbane</td>
<td>Australia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lorenzo Gheri</td>
<td>Imperial College London, UK</td>
<td>UK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mahdi Ghorbani</td>
<td>University of Edinburgh, UK</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zachary Grannan</td>
<td>University of British Columbia</td>
<td>Vancouver, Canada</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dawu Gu</td>
<td>Shanghai Jiao Tong University</td>
<td>China</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Behnaz Hassanzahlai</td>
<td>Oracle Labs, Brisbane</td>
<td>Australia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dongjie He</td>
<td>The University of New South</td>
<td>Sydney, Australia</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wales, Sydney</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

36th European Conference on Object-Oriented Programming (ECOOP 2022).
Editors: Karim Ali and Jan Vitek
Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany
Brian Hempel (16)
University of Chicago, IL, USA

Lukáš Holík (19)
FIT, Brno University of Technology,
Czech Republic

Xuejing Huang (18, 25)
The University of Hong Kong, China

Jules Jacobs (23)
Radboud University Nijmegen, The Netherlands

Sung-Shik Jongmans (27)
Open University of the Netherlands,
Heerlen, The Netherlands;
NWO-I, Centrum Wiskunde & Informatica,
Amsterdam, The Netherlands

Martin Kellogg (10)
University of Washington, Seattle, WA, USA

David Kretzler (35)
Technische Universität Darmstadt, Germany

Ramana Kumar (1)
DeepMind, London, UK

Nicolas Lagaillardie (4)
Department of Computing,
Imperial College London, UK

Ivan Lanese (8)
Focus Team, University of Bologna, Italy;
Focus Team, INRIA, Sophia Antipolis, France

Hehao Li (21)
Shanghai Jiao Tong University, China

Juanru Li (21)
Shanghai Jiao Tong University, China

Ben Liblit (14)
Amazon Web Services, Arlington, VA, USA

Kenan Liu (32)
SUNY Binghamton, NY, USA

Shuyang Liu (6)
University of California, Los Angeles, CA, USA

Xu Tony Liu (31)
University of Washington, Seattle, WA, USA

Yu David Liu (32)
SUNY Binghamton, NY, USA

Jingbo Lu (30)
The University of New South Wales,
Sydney, Australia

Andrew Lumsdaine (31)
University of Washington, Seattle, WA, USA;
Pacific Northwest National Laboratory,
Richland, WA, USA;
TileDB, Inc., Cambridge, MA, USA

Khaled Mahmoud (32)
SUNY Binghamton, NY, USA

Trong Nhan Mai (29)
Oracle Labs, Brisbane, Australia

Filipe Marques (11)
Instituto Superior Técnico,
University of Lisbon, Portugal;
INESC-ID Lisbon, Portugal

Daniel Marshall (5)
School of Computing, University of Kent,
Canterbury, UK

Scott McMillan (31)
Software Engineering Institute, Carnegie Mellon
University, Pittsburgh, PA, USA

Mira Mezini (35)
Technische Universität Darmstadt, Germany

Rajdeep Mukherjee (14)
Amazon Web Services, San Jose, CA, USA

Magnus O. Myreen (1)
Chalmers University of Technology,
Gothenburg, Sweden

Marcelo Navarro (34)
Computer Science Department (DCC),
University of Chile, Santiago, Chile

Rumyana Neykova (4)
Department of Computer Science,
Brunel University London, UK

Martin Nowack (9)
Imperial College London, UK

David Nowak (12)
Univ. Lille, CNRS, Centrale Lille, UMR 9189
CRIStAL, F-59000 Lille, France

Renzo Olivares (3)
University of California, Riverside, CA, USA

Bruno C. d. S. Oliveira (2, 18, 25)
The University of Hong Kong, China

Federico Olmedo (34)
Computer Science Department (DCC),
University of Chile, Santiago, Chile
Dominic Orchard (5)
School of Computing, University of Kent, Canterbury, UK;
Department of Computer Science and Technology, University of Cambridge, UK

André Pacak (7)
JGU Mainz, Germany

Luca Padovani (26)
University of Torino, Italy

Jens Palsberg (6)
University of California, Los Angeles, CA, USA

Petr Peringer (19)
FIT, Brno University of Technology, Czech Republic

Martin Plüümicke (28)
Duale Hochschule Baden-Württemberg Stuttgart, Campus Horb, Germany

José Proença (27)
CISTER, ISEP, Polytechnic Institute of Porto, Portugal

Robert Rabe (1)
TU München, Germany

John Phillip Ratzloff (31)
SAS Institute, Cary, NC, USA

Baber Rehman (25)
The University of Hong Kong, China

David Richter (35)
Technische Universität Darmstadt, Germany

Adam Rogalewicz (19)
FIT, Brno University of Technology, Czech Republic

Tiark Rompf (15)
Purdue University, West Lafayette, IN, USA

Vlad Rusu (12)
Inria, Lille, France

Guido Salvaneschi (20, 35)
Universität St. Gallen, Switzerland

Nuno Santos (11)
Instituto Superior Técnico, University of Lisbon, Portugal; INESC-ID Lisbon, Portugal

Abhiroop Sarkar (17)
Chalmers University of Technology, Gothenburg, Sweden

Neil Sayers (8)
Imperial College London, UK;
Coveo Solutions Inc., Canada

Daniel Schemmel (9)
Imperial College London, UK

Max Schlüter (29)
Oracle Labs, Brisbane, Australia

Benjamin Selwyn-Smith (29)
Oracle Labs, Brisbane, Australia

Manuel Serrano (24)
Inria/UCA, Inria Sophia Méditerranée, 2004 route des Lucioles, Sophia Antipolis, France

Narges Shadab (10)
University of California, Riverside, CA, USA

Hesam Shahrokhi (33)
University of Edinburgh, UK

Amir Shaikhha (33)
University of Edinburgh, UK

Mary Sheeran (17)
Chalmers University of Technology, Gothenburg, Sweden

Manu Sridharan (3, 10)
University of California, Riverside, CA, USA

Andreas Stadelmeier (28)
Duale Hochschule Baden-Württemberg Stuttgart, Campus Horb, Germany

Alexander J. Summers (13)
University of British Columbia, Vancouver, Canada

Yaozhu Sun (18)
The University of Hong Kong, China

Bo Joel Svensson (17)
Chalmers University of Technology, Gothenburg, Sweden

Yong Kiam Tan (1)
Carnegie Mellon University, Pittsburgh, PA, USA

Zachary Tatlock (1)
University of Washington, Seattle, WA, USA

Peter Thiemann (28)
Institut für Informatik, Universität Freiburg, Germany

Bernardo Toninho (22)
NOVA LINCS, Nova University Lisbon, Portugal

Omer Tripp (14)
Amazon Web Services, San Jose, CA, USA
Authors

Emilio Tuosto (8)
Gran Sasso Science Institute, L’Aquila, Italy

Niki Vazou (13)
IMDEA Software Institute, Madrid, Spain

Mirko Viroli (20)
University of Bologna, Cesena, Italy

Tomáš Vojnar (19)
FIT, Brno University of Technology, Czech Republic

Yizhuo Wang (21)
Shanghai Jiao Tong University, China

Guannan Wei (15)
Purdue University, West Lafayette, IN, USA

Pascal Weisenburger (35)
Universität St. Gallen, Switzerland

Micah Williams (29)
Oracle, Durham, NC, USA

Michael Wilson (14)
Amazon Web Services, Seattle, WA, USA

Anxhelo Xhebraj (15)
Purdue University, West Lafayette, IN, USA

Ningning Xie (25)
University of Cambridge, UK

Han Xu (18)
Peking University, Beijing, China

Jingling Xue (30)
The University of New South Wales, Sydney, Australia

Joonhwan Yoo (32)
SUNY Binghamton, NY, USA

Nobuko Yoshida (4, 8)
Imperial College London, UK

Marcin Zalewski (31)
NVIDIA, Seattle, WA, USA

Yiwei Zhang (21)
Shanghai Jiao Tong University, China

Jinxu Zhao (2)
Department of Computer Science, The University of Hong Kong, China

Florian Zuleger (19)
Faculty of Informatics, TU Wien, Austria

Veronika Šoková (19)
FIT, Brno University of Technology, Czech Republic