Schloss Dagstuhl - Leibniz-Zentrum für Informatik GmbH Schloss Dagstuhl - Leibniz-Zentrum für Informatik GmbH scholarly article en Kop, Cynthia https://www.dagstuhl.de/lipics License: Creative Commons Attribution 4.0 license (CC BY 4.0)
when quoting this document, please refer to the following
DOI:
URN: urn:nbn:de:0030-drops-162827
URL:

Cutting a Proof into Bite-Sized Chunks: Incrementally proving termination in higher-order term rewriting (Invited Talk)

pdf-format:


Abstract

This paper discusses a number of methods to prove termination of higher-order term rewriting systems, with a particular focus on large systems. In first-order term rewriting, the dependency pair framework can be used to split up a large termination problem into multiple (much) smaller components that can be solved individually. This is important because a large problem may take exponentially longer to solve in one go than solving each of its components.
Unfortunately, while there are higher-order versions of several of these methods, they often fail to simplify a problem enough. Here, we will explore some of these techniques and their limitations, and discuss what else can be done to incrementally build a termination proof for higher-order systems.

BibTeX - Entry

@InProceedings{kop:LIPIcs.FSCD.2022.1,
  author =	{Kop, Cynthia},
  title =	{{Cutting a Proof into Bite-Sized Chunks: Incrementally proving termination in higher-order term rewriting}},
  booktitle =	{7th International Conference on Formal Structures for Computation and Deduction (FSCD 2022)},
  pages =	{1:1--1:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-233-4},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{228},
  editor =	{Felty, Amy P.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/opus/volltexte/2022/16282},
  URN =		{urn:nbn:de:0030-drops-162827},
  doi =		{10.4230/LIPIcs.FSCD.2022.1},
  annote =	{Keywords: Termination, Modularity, Higher-order term rewriting, Dependency Pairs, Algebra Interpretations}
}

Keywords: Termination, Modularity, Higher-order term rewriting, Dependency Pairs, Algebra Interpretations
Seminar: 7th International Conference on Formal Structures for Computation and Deduction (FSCD 2022)
Issue date: 2022
Date of publication: 28.06.2022


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI