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Preface

The 17th Conference on the Theory of Quantum Computation, Communication and Crypto-
graphy was hosted by the University of Illinois at Urbana-Champaign, and held from July 11
to July 15, 2022.

Quantum computation, quantum communication, and quantum cryptography are subfields
of quantum information processing, an interdisciplinary field of information science and
quantum mechanics. The TQC conference series focuses on theoretical aspects of these
subfields. The objective of the conference is to bring together researchers so that they can
interact with each other and share problems and recent discoveries.

A list of the previous editions of TQC follows:
TQC 2021, University of Latvia, Latvia (virtual conference)
TQC 2020, University of Latvia, Latvia (virtual conference)
TQC 2019, University of Maryland, USA
TQC 2018, University of Technology Sydney, Australia
TQC 2017, Université Pierre et Marie Curie, France
TQC 2016, Freie Universität Berlin, Germany
TQC 2015, Université libre de Bruxelles, Brussels, Belgium
TQC 2014, National University of Singapore, Singapore
TQC 2013, University of Guelph, Canada
TQC 2012, University of Tokyo, Japan
TQC 2011, Universidad Complutense de Madrid, Spain
TQC 2010, University of Leeds, UK
TQC 2009, Institute for Quantum Computing, University of Waterloo, Canada
TQC 2008, University of Tokyo, Japan
TQC 2007, Nara Institute of Science and Technology, Nara, Japan
TQC 2006, NTT R&D Center, Atsugi, Kanagawa, Japan

We wish to thank the members of the Program Committee and all subreviewers for
their precious help. Our warm thanks also go to the members of the Local Organizing
Committee, for their considerable efforts in organizing the conference. We would like to
thank the members of the Steering Committee for giving us the opportunity to work for
TQC. And, of course, all contributors and participants!
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Jevgēnijs Vihrovs (11)
Centre for Quantum Computer Science, Faculty
of Computing, University of Latvia, Riga, Latvia

Benjamin Villalonga (7)
Google Quantum AI, Venice, CA

Renaud Vilmart (5)
Université Paris-Saclay, CNRS, ENS
Paris-Saclay, Inria, Laboratoire Méthodes
Formelles, 91190, Gif-sur-Yvette, France

Lia Yeh (12)
Department of Computer Science,
University of Oxford, UK

Leo Zhou (7)
Walter Burke Institute for Theoretical Physics,
California Institute of Technology, Pasadena,
CA, USA

https://doi.org/10.4230/LIPIcs.TQC.2022.2
https://doi.org/10.4230/LIPIcs.TQC.2022.1
https://doi.org/10.4230/LIPIcs.TQC.2022.8
https://doi.org/10.4230/LIPIcs.TQC.2022.9
https://doi.org/10.4230/LIPIcs.TQC.2022.10
https://doi.org/10.4230/LIPIcs.TQC.2022.9
https://orcid.org/0000-0002-5405-8959
https://doi.org/10.4230/LIPIcs.TQC.2022.5
https://doi.org/10.4230/LIPIcs.TQC.2022.12
https://orcid.org/0000-0002-3143-2610
https://doi.org/10.4230/LIPIcs.TQC.2022.11
https://orcid.org/0000-0002-3299-7226
https://doi.org/10.4230/LIPIcs.TQC.2022.7
https://orcid.org/0000-0002-8828-4671
https://doi.org/10.4230/LIPIcs.TQC.2022.5
https://orcid.org/0000-0003-2704-4057
https://doi.org/10.4230/LIPIcs.TQC.2022.12
https://orcid.org/0000-0001-7598-8621
https://doi.org/10.4230/LIPIcs.TQC.2022.7


Quantum Algorithms for Learning a Hidden Graph
Ashley Montanaro #

School of Mathematics, University of Bristol, UK
Phasecraft Ltd., Bristol, UK

Changpeng Shao #

School of Mathematics, University of Bristol, UK

Abstract
We study the problem of learning an unknown graph provided via an oracle using a quantum
algorithm. We consider three query models. In the first model (“OR queries”), the oracle returns
whether a given subset of the vertices contains any edges. In the second (“parity queries”), the
oracle returns the parity of the number of edges in a subset. In the third model, we are given copies
of the graph state corresponding to the graph.

We give quantum algorithms that achieve speedups over the best possible classical algorithms
in the OR and parity query models, for some families of graphs, and give quantum algorithms in
the graph state model whose complexity is similar to the parity query model. For some parameter
regimes, the speedups can be exponential in the parity query model. On the other hand, without
any promise on the graph, no speedup is possible in the OR query model.

A main technique we use is the quantum algorithm for solving the combinatorial group testing
problem, for which a query-efficient quantum algorithm was given by Belovs. Here we additionally
give a time-efficient quantum algorithm for this problem, based on the algorithm of Ambainis et al.
for a “gapped” version of the group testing problem.

2012 ACM Subject Classification Theory of computation → Quantum query complexity

Keywords and phrases Quantum algorithms, query complexity, graphs, combinatorial group testing
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1 Introduction

Quantum computers are known to be able to compute certain functions more quickly than
their classical counterparts, in terms of the number of queries to the input that are required.
In some cases, quantum algorithms can also learn unknown objects using fewer queries than
their classical counterparts. For example, if we are given query access to an unknown boolean
function on n-bits which is promised to be a dot product between x and a secret string s
modulo 2, then the Bernstein-Vazirani algorithm learns this function with 1 query [17], while
the best possible classical algorithm uses n queries. If the function is promised to be an OR
function of k unknown variables, then Belovs’ algorithm for combinatorial group testing [15]
learns this function with Θ(

√
k) queries, while the best possible classical algorithm needs

Θ(k log(n/k)) queries. These speedups are not far from the largest quantum speedups that
can be achieved. For any class C of Boolean functions over {0, 1}n, let D and Q be such that
an unknown function from C can be identified using D classical membership queries or from
Q quantum membership queries. Then D = O(nQ3) [41].
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1:2 Quantum Algorithms for Learning a Hidden Graph

Table 1 Query complexities for learning various classes of graphs: m is the number of edges, n is
the number of all vertices. The symbols ∨ (OR), ⊕ (parity), and |G⟩ (graph state) denote the type
of query considered. Q and C denote quantum and classical queries.

Q, ∨ Q, ⊕ C, ∨,⊕ Q, |G⟩
All graphs Θ(n2) Θ(n) Θ(n2) Θ(n)
m edges O(m log(

√
m log n) +

√
m log n) O(

√
m logm) Ω(m log n2

m ) O(m log n2

m )
Degree d O(d4m3/4√

log n(logm) +
√
m log n) O(d log m

d ) Ω(nd log n
d ) O(d log m

d )
Matching O(m3/4

√
(log n)(logm) +

√
m log n) O(logm) Ω(m log n

m ) O(logm)
Cycle O(m3/4

√
(log n)(logm) +

√
m log n) O(logm) Ω(m log n

m ) O(logm)
Star Θ(

√
m) O(1) Ω(m log n

m ) O(1)
k-vertex clique Θ(

√
k) O(1) Ω(k log n

k ) O(1)

Here we focus on the problem of learning an unknown graph using quantum queries, in a
variety of settings. Many quantum speedups (both polynomial, e.g. [27], and exponential,
e.g. [16]) are known for problems involving graphs. However, the only quantum speedup we
are aware of for learning graphs is recent work on learning graphs using cut queries [34].

We consider several different notions of queries to an unknown graph – OR queries,
parity queries, and graph states, all defined below – and aim to minimize the number of
queries required to identify the graph. The first two of these query models are closely related
to models that have been extensively studied in the classical literature on exact learning,
e.g. [9, 25, 31], in particular because of their applications to computational biology. In some
cases we find polynomial speedups over the best possible classical complexity, while in other
cases (such as learning bounded-degree graphs in the parity query model) the speedups can
even be exponential. A summary of our results is as follows; also see Table 1. Throughout,
we use n to denote the number of vertices and m to denote the number of edges of a graph.

1. (OR queries) First, we consider the problem of identifying an unknown graph, given
access to queries to subsets of the vertices, which return whether the corresponding
induced subgraph has any edges within that subset. That is, given a graph G = (V,E), a
query takes a subset S ⊆ V and returns whether E ∩ (S × S) is empty. This model has
been extensively studied classically and we will briefly survey these results below. Our
main results in this model are:

A quantum algorithm to learn an unknown graph with m edges using O(m log(
√
m log n)

+
√
m log n) OR queries, as compared with the classical lower bound of Ω(m log(n2/m)).

For some relationships between m and n (e.g. m = Θ(log n)) this gives a modest
quantum-classical separation.
The lower bound that any quantum algorithm that identifies an arbitrary unknown
graph in this model must make Ω(n2) OR queries, so the above algorithm’s complexity
cannot be improved by more than log factors.
Learning graphs with special structure, such as Hamiltonian cycles, matchings, stars
and cliques, has specific applications in molecular biology [5, 29, 30]. We give quantum
speedups for learning these graphs in this model. The graphs and quantum speedups
can be roughly summarized as follows. Hamiltonian cycles and matchings: k3/4 vs. k;
stars and cliques:

√
k vs. k. Here k is the number of non-isolated vertices.

2. (Parity queries) Next, we consider the same problem, but where the oracle returns
the parity of |E ∩ (S × S)|, for arbitrary subsets S. Although this may seem a more
unusual setting, this oracle can be obtained from the perhaps more natural oracle, known
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as additive oracle, that returns the size of E ∩ (S × S), which has also been studied
classically [18, 25,31, 40]. We will see that larger quantum speedups are available in this
model. Here, we show that:

There is a quantum algorithm which learns an unknown graph with degree d making
O(d logm) parity queries, as compared with the classical lower bound of Ω(nd log(n/d))
queries.
There is a quantum algorithm which learns an unknown graph with m edges mak-
ing O(

√
m logm) parity queries, as compared with the classical lower bound of

Ω(m log(n2/m)).
Stars and cliques can be learned with O(1) parity queries.

Our results show that, for some families of graphs, parity queries can be exponentially
more efficient than OR queries for quantum algorithms. The results we obtain are based
on very similar ideas to a recent work by Lee, Santha and Zhang [34], which considered a
related “cut query” model (see below).

3. (Graph states) We also study a quantum version of the problem of learning an unknown
graph: the problem of learning an unknown graph state [32]. Graph states are a family
of quantum states that have many important applications, in particular to measurement-
based quantum computing. Any graph G has a corresponding graph state |G⟩, and it
is a natural question to ask how many copies of |G⟩ are required to identify G. It was
already known that Θ(n) copies are necessary and sufficient if G is an arbitrary graph
with n vertices [1,36,42]. However, we show that one can do better given some additional
information about G:

If G has degree d, we can learn G using O(d logm) copies. If G is promised to be a
subgraph of a known graph G′ with bounded degree d, the quantum algorithm is also
time-efficient (has runtime Õ(d3n)). This second algorithm could be particularly useful
in the practically-relevant scenario where we aim to produce a desired graph state
G′, but some edges of G′ have failed to be generated, and we would like to determine
which edges have failed.
If G is known to be picked from a set of size L, we can learn G using O(logL) copies.
For example, if G is known to have at most m edges, we can learn G using O(m log n)
copies.

The results about learning graph states also underpin the results about learning graphs
from parity queries, because it turns out that using a procedure known as Bell sampling [36]
to learn a graph state is equivalent to learning a graph using parity queries – except with
the restriction that these queries are only to uniformly random subsets of the vertices.

An important technique we use to learn a graph using the OR query is the quantum
algorithm by Belovs [15] for combinatorial group testing (CGT, also known as “pooled
testing”) [26, 39]. Belovs’ algorithms are produced by directly solving the semidefinite
program for the general adversary bound, which is known to characterise quantum query
complexity. This approach is beautiful but rather complex, and leads to algorithms which are
not necessarily efficient in terms of time complexity. Here we give a quantum algorithm for
CGT that makes Õ(

√
k) queries and runs in time Õ(n

√
k), based on the use of an algorithm

of Ambainis et al. [6] for a “gapped” version of the group testing problem.
In Appendix B, we also give simple explicit quantum algorithms for learning an unknown

subset on which the exact-half function or majority function acts, which match the complexity
of previous algorithms by Belovs.
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1.1 Summary of the techniques

The OR query model. In this model, we use a similar strategy to the classical algorithm
given by Angluin and Chen [9]. The basic idea of [9] is binary search: We decompose the
set of vertices V into halves V1, V2, and suppose we already know the edges in V1, V2. We
then try to learn the edges between them. The edges in V1, V2 can be learned recursively,
and the complexity is dominated by the learning of the edges between V1, V2. This is an
adaptive algorithm. On a quantum computer, we can use the quantum algorithm for CGT
to accelerate the learning of the edges between V1, V2. However, the classical inductive idea
may not be applicable to the quantum case. A reason is that the underlying constant in
the complexity of quantum algorithm for CGT is unknown for us, so we cannot bound the
overall complexity easily. To overcome this problem, we first decompose V into a disjoint
union of some subsets such that each subset contains no edges, then learn the edges between
the subsets. This idea is inspired by the non-adaptive learning algorithm of [9].

The graph state model. We can apply Bell sampling to learn an unknown graph state [36].
Each Bell sample returns a uniformly random stabilizer of the graph state. Equivalently,
if A is the adjacency matrix of the graph, then each Bell sample returns As (mod 2) for a
random vector s ∈ {0, 1}n. If we take k samples, then we obtain an n× k matrix B and the
matrix AB. From B, AB we can determine A by choosing a suitable k.

The parity query model. Since the graph state can be generated by a parity query on a
uniform superposition, any results for the graph state model also hold for the parity query
model. Differently from the graph state model, with parity queries, we do have control of s.
More precisely, for any s ∈ {0, 1}n, there is a quantum algorithm that returns As (mod 2)
using two parity queries. With this result, we can learn graphs of m edges more efficiently
by considering the low and high-degree parts.

1.2 Prior work

Learning graphs with OR queries. Graph learning appears in many different contexts.
In different applications, we apply different queries, and the OR query is important for
problems in computational biology. This type of query is also known as independent set
query [13] and edge-detection query [9]. Many classical algorithms were discovered to learn
graphs using OR queries in the past decades. For special graphs, Beigel et al. [14] and
Alon et al. [5] have given algorithms for learning an unknown matching using O(n log n)
queries. Grebinski and Kucherov [29] gave an algorithm for learning a Hamiltonian cycle
using O(n log n) queries. Alon and Asodi [4] gave bounds on nonadaptive deterministic
algorithms for learning stars and cliques. Bouvel et al. [18] gave algorithms for learning
an unknown star or clique using O(n) queries. The constant factors in the algorithms for
learning Hamiltonian cycles, matchings, stars and cliques were improved by Chang et al. [22].

In the general case, Angluin and Chen [9] gave a deterministic adaptive algorithm with
complexity O(m log n) for learning a graph with m edges, encompassing all the above bounds
(however, note that other restrictions can be considered, such as nonadaptivity, or restricted
levels of adaptivity). The constant factor in this runtime was improved by Chang, Fu and
Shih [23]. The complexity O(m log n) obtained in [9] assumes m is known in advance. When
m is not known, the complexity of [9] is O(m log n+

√
m log2 n). This is recently improved

to O(m log n+
√
m(log n)(log k. . . log n)) in [2], where k can be any constant.
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Graph states. In [42], Zhao, Pérez-Delgado and Fitzsimons studied the problem of repres-
enting basic operations of graphs by graph states with high efficiency and showed that no
classical data structure can have similar performance. In this work, the authors gave an
algorithm for learning an arbitrary graph state of n qubits using O(n) copies. Graph states
are a subclass of stabilizer states. Alternative algorithms for learning an arbitrary stabilizer
state with O(n) copies have been given by Aaronson and Gottesman [1] and Montanaro [36].

Learning graphs with parity queries. The parity query model is a special case of a model for
graph queries which generalises the OR query model, and is known as additive queries [25,31]
(also known as quantitative queries [18] and edge counting queries [40]). The additive query
plays an important role for applications related to DNA sequencing. In this model, a query
to a subset S returns the number of edges of G in S; the parity query model is obtained if
this answer is taken mod 2.

The additive query is known to be somewhat more powerful than the OR query for
learning graphs. For instance, as shown in [18], a Hamiltonian cycle or a matching can
be identified with O(n) additive queries, while this requires at least Ω(n log n) OR queries.
Stars and cliques can be identified with O(n/ log n) additive queries or with at least Ω(n)
OR queries. Our results summarized in Table 1 also confirm that parity queries (and hence
additive queries) are more powerful than OR queries in the quantum case. Some other
results include the following. Graphs with maximum degree d can be learned with O(dn)
additive queries [31]. This is also true for learning bipartite graphs with maximum degree d
non-adaptively [18]. Graphs with m edges can be learned with O(m(log n)/(logm)) additive
queries [20,25].

Our results in the parity query model are closely related to a recent work by Lee, Santha
and Zhang [34]. These authors showed that weighted graphs with maximum degree d can be
learned using O(d log2 n) quantum “cut queries”, and graphs with m edges can be learned
using O(

√
m log3/2 n) quantum cut queries. A cut query takes as input a subset S of the

vertices, and returns the number of edges of G with exactly one endpoint in S. Lee, Santha
and Zhang also gave efficient quantum algorithms in this model for determining the number
of connected components of G, and for outputting a spanning forest of G. It was shown
in [34] that cut queries reduce to additive queries; however, there is no efficient reduction in
the other direction. In [34, Corollary 27] stronger results than the cut-query results are given
for additive queries: an O(d log(n/d)) query algorithm for learning graphs with maximum
degree d, and an O(

√
m log n + log n) query algorithm for learning graphs with m edges.

These algorithms are based on very similar ideas to the ones we state here (Theorems 14
and 17). Our algorithms as stated only require parity information (although the results
of [34] could easily be rephrased in this way too); more importantly, the complexity of our
results is somewhat better for graphs with very few edges, as a log n term is changed into a
logm term. On the other hand, the algorithms of [34] are stated for the more general class
of weighted graphs.

Combinatorial group testing (CGT). Classically, it is known that the number of queries
required to solve CGT is Θ(k log(n/k)) [26]. In the quantum case, Ambainis and Montanaro [7]
first studied this problem and proposed a quantum algorithm using O(k) queries. They also
showed a lower bound of Ω(

√
k). Later in [15], based on the adversary bound method, Belovs

proposed a quantum algorithm for CGT using Θ(
√
k) queries.
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1.3 Preliminaries
Let f : {0, 1}n → {0, 1} be a boolean function with a quantum oracle to access it. That is,
we are allowed to perform the map |x⟩|y⟩ → |x⟩|y ⊕ f(x)⟩ for any x ∈ {0, 1}n, y ∈ {0, 1}.
Together with a simple phase flip unitary gate, we can also perform |x⟩ → (−1)f(x)|x⟩. For any
x ∈ {0, 1}n, the Fourier coefficient of f at x is defined as f̂(x) = 1

2n

∑
s∈{0,1}n(−1)f(s)+s·x.

We can equivalently associate each bit-string x ∈ {0, 1}n with a subset S ⊆ [n]. The Fourier
sampling primitive is based on the following sequence of operations: First apply Hadamard
gates H⊗n to |0⟩⊗n; then apply the oracle |x⟩ → (−1)f(x)|x⟩.; finally apply H⊗n again. The
resulting state is

∑
x∈{0,1}n f̂(x)|x⟩. Measuring in the computational basis returns x with

probability f̂(x)2.
For an arbitrary graph G = (V,E) on n vertices, and an arbitrary subset S ⊆ V , define

the oracles fG,OR, fG,Par by
fG,OR(S) = 0 if |E ∩ (S × S)| = 0, and fG,OR(S) = 1 otherwise;
fG,Par(S) = |{E ∩ (S × S)}| mod 2.

We give quantum algorithms access to these oracles in the usual way described above.
A subroutine that will be used extensively throughout this paper is Belovs’ efficient

quantum algorithm for combinatorial group testing (CGT) [15]. In this problem, we are
given oracle access to an n-bit string A with Hamming weight at most k. Usually, we assume
that k ≪ n. In one query, we can get the OR of an arbitrary subset of the bits of A. The
goal is to determine A using the minimal number of queries. Belovs showed that this can be
achieved using O(

√
k) quantum queries. For more details, refer to Appendix A.

▶ Theorem 1 (Theorem 3.1 of [15]). The quantum query complexity of the combinatorial
group testing problem is Θ(

√
k). The quantum algorithm succeeds with certainty.

We sometimes use the notation [X] for an expression which evaluates to 1 if X is true,
and 0 if X is false.

2 Learning an unknown graph with OR queries

Let G be a graph with m edges and n vertices. Our goal is to identify all the edges in G

using OR queries. We follow the same general strategy as Angluin and Chen [9] to achieve
this by starting with special cases and progressively generalising. In particular, Lemmas 3
and 5 are direct quantum speedups of corresponding results (Lemmas 3.3 and 3.4) in [9].
The basic idea of the quantum learning algorithm is as follows: We first decompose the set
of vertices into a disjoint union of several subsets. Each subset contains no edges. Then
we learn the edges between these subsets. A sub-routine of this learning procedure is the
quantum algorithm for solving solving combinatorial group testing (CGT), i.e., Theorem 1.
It is the main ingredient to obtain quantum speedups.

Suppose A,B are two known, nonempty, independent (i.e., contain no edges) subsets of
the set of vertices. The following lemma helps us efficiently identify the non-isolated vertices
(those which have at least one edge incident to them).

▶ Lemma 2. Assume that A and B are two known, disjoint, non-empty independent sets of
vertices in G. Suppose there are nA, nB non-isolated vertices in A and B respectively. Then
there is a quantum algorithm that identifies these non-isolated vertices with O(√nA + √

nB)
OR queries. The algorithm succeeds with certainty.
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Proof. For each subset S ⊆ A, we consider queries of the form S ∪B. The result is 1 if and
only if there is a non-isolated vertex in S. We can view A as a bit string such that the i-th
element is 1 if the i-th vertex is non-isolated, and 0 otherwise. Using the quantum algorithm
for CGT (see Theorem 1), we can learn this bit-string with O(√nA) queries. Similarly, we
can learn the non-isolated vertices in B with O(√nB) queries. ◀

Note that if there are mAB edges between A,B, then nA, nB ≤ min(mAB , n) ≤ min(m,n).
Next, we show how to learn the edges between A and B. Lemma 3 below focuses on a general
case, and Lemma 4 considers the case of bounded-degree graphs.

▶ Lemma 3. Make the same assumptions as Lemma 2. Suppose there are mAB edges between
A and B. Then there is a quantum algorithm that identifies these edges with O(mAB) OR
queries. The algorithm succeeds with certainty.

Proof. By Lemma 2, we assume that there are no isolated vertices in A,B. It costs 1 query
to check if mAB = 0 or not. In the following, we shall assume that mAB > 0. We view each
vertex as a variable. Then the learning problem is equivalent to learn the Boolean function
f = x1f1 ∨ · · · ∨ xnA

fnA
, where f1, . . . , fnA

are OR functions of variables y1, . . . , ynB
∈ B,

and where x1, . . . , xnA
∈ A. To learn f , we first set all variables in B to 1, then f becomes

x1 ∨ · · · ∨ xnA
. By the CGT algorithm, we can learn x1, . . . , xnA

with O(√nA) queries.
Next, for each i ∈ {1, . . . , nA}, we set xi = 1, xj = 0 (j ̸= i), then we are left with fi.
Using the CGT algorithm again, we can learn fi with O(√ai) queries, where ai is the
size of fi, i.e., the number of relevant variables in fi. Thus the total number of queries is
O(√nA + √

a1 + · · · + √
anA

). Since a1 + · · · + anA
= mAB and nA ≤ mAB, the number of

queries is bounded by O(√mAB +mAB) = O(mAB), which is tight when a1 = · · · = anA
= 1

and nA = mAB . ◀

When the graph is bounded-degree, the above lemma can be improved.

▶ Lemma 4. Make the same assumptions as Lemma 3, and additionally suppose that G
has maximum degree d. Then there is a quantum algorithm that identifies the edges using
O(d2√

mAB logmAB) OR queries. The algorithm succeeds with certainty.

Proof. For simplicity, let each vertex in A and B have an index in the set {1, . . . , |A|},
{1, . . . , |B|} respectively. By Lemma 2, we can assume that |A| = nA, |B| = nB. That is,
there are no isolated vertices in A,B.

First, to gain intuition, we consider the special case of matchings (d = 1). In this case,
nA = nB = mAB ≤ n. For each a ∈ A, we use na to denote the index of the neighbour of a
in B, if such a neighbour exists, and otherwise set na = 0. For any T ⊆ B, let BT ∈ {0, 1}|A|

denote the bit-string whose i’th element equals 1 if ni ∈ T , and 0 otherwise. Fixing the
same T and varying over subsets S ⊆ A and queries of the form S ∪ T , we can think of this
oracle query as returning 1 if there exists i ∈ S such that ni ∈ T (equivalently, BT

i = 1), and
0 otherwise. This is the same oracle used in CGT, so this means that BT can be learned
completely using O(

√
|BT |) quantum queries for any fixed T . Here |BT | is the Hamming

weight of the bit-string BT .
We then repeat this algorithm for different choices of T . In particular, we can think

of each ni ∈ {1, . . . , |B|} as an element of {0, 1}⌈log(|B|+1)⌉, and consider the sequence
Tj = {i : ij = 1}, j = 1, . . . , ⌈log(|B| + 1)⌉. Then k := ⌈log(|B| + 1)⌉ = O(logmAB)
repetitions are enough to learn all the bits of ni for all i ∈ A, and hence to learn the graph
completely. The overall complexity is O(

√
|BT1 | + · · · +

√
|BTk |). As |BTi | ≤ mAB for all i,

the complexity is bounded by O(√mAB logmAB). Note that there is no need to repeat the
CGT algorithm to reduce its error probability, as it is already exact.
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Next, we consider bounded-degree graphs. We can generalise the above idea to learning
bipartite graphs where every vertex in A has degree at most d. For each a ∈ A, we now define
na as the set of the indices of the neighbours of a in B. For any T ⊆ B, define BT ∈ {0, 1}|A|

as the bit-string such that the i’th element equals 1 if ni ∩ T ̸= ∅, and 0 otherwise. Then, for
any choice of T , an oracle query of the form S ∪ T , S ⊆ A, returns whether any vertex in S

has any neighbours in T . This implies that BT can be learned with O(
√

|BT |) queries using
the quantum algorithm for CGT [15].

There are randomised constructions of families of subsets T of size k = O(d2(log nB)) that
allow the d nonzero entries to be determined deterministically, for any pattern of nonzero
entries (these are “nonadaptive” combinatorial group testing schemes [3, 10, 39]). Since
|BTi | ≤ mAB for all i, the overall complexity is O(d2√

mAB(log nB)). ◀

There are also nonadaptive combinatorial group testing strategies that are designed to
have a low worst-case probability of error [3, 21], and have only a linear dependence on
d. However, it is not clear that these schemes can be used in our setting, as the failure
probability would be of the form n−δ

B , for some δ > 0, and nB might be much less than n.
In the following, we consider a more general case when A,B are not independent.

▶ Lemma 5. Assume that A and B are two disjoint, non-empty sets of vertices in G with
mA,mB known edges respectively. Suppose there are mAB edges between A and B. Then there
is a quantum algorithm that identifies these edges using O(mAB +mA +mB) OR queries. In
particular, if G has maximal degree d, then the algorithm uses O(d4√

mAB logmAB) queries.

Proof. The idea behind the quantum algorithm is as follows: We first color the two graphs
induced by A,B such that each color class is an independent set in G. Then we use Lemmas 3
and 4 to identify the edges between color classes in A and color classes in B.

It is well-known that a graph with t edges can be ⌊
√

2t + 1⌋-colored. The coloring
can be constructed in polynomial time. Now let q1 = ⌊

√
2mA + 1⌋, q2 = ⌊

√
2mB + 1⌋

be the number of colors used for A and B, respectively. Assume that there are mij

edges between the i-th color class of A and the j-th color class of B. Then by Lemma
3, the number of queries used to identify the edges between A and B is bounded by∑q1

i=1
∑q2

j=1 O(mij + 1) = O(mAB + q1q2) = O(mAB +mA +mB).
If G has degree d, then it is d-colorable, namely q1, q2 = O(d). By Lemma 4 and the

same argument as above, all edges can be identified with O(d4√
mAB logmAB) queries. ◀

The next lemma generalizes the above lemma to learn the edges of multiple disjoint
subsets. Note that if there are k subsets, then there are O(k2) pairs. So naively we need to
make at least O(k2) queries. However, this can improved to be linear in k by using Lemma 5
in a binary decomposition approach.

▶ Lemma 6. Assume that S0, . . . , Sk−1 are disjoint non-empty sets of vertices in G, and
each has si known edges. Suppose there are si,j edges between Si and Sj, then there is
a quantum algorithm that identifies all the edges using O(k + T log k) OR queries, where
T =

∑
i si +

∑
i,j si,j . If G has maximal degree d, then the number of queries can be reduced

to O(k + d4
√
kT log T ).

Proof. For simplicity, we assume that k = 2l for integer l. Set K =
∑k−1

i=0 si. The idea
of the algorithm is to recursively use Lemma 5 in a binary form. In step 1, for each pair
(S2i, S2i+1), we use Lemma 5 to find the edges between them. There are 2l−1 pairs in total.
So this step uses
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O

( 2l−1−1∑
i=0

(s2i,2i+1 + s2i + s2i+1 + 1)
)

= O

(
2l−1 +K +

2l−1−1∑
i=0

s2i,2i+1

)
queries in total. After step 1, we know the edges of each adjacent pair (S2i, S2i+1). So we can
combine them and obtain a new set, denoted as S′

i := S2i ∪ S2i+1 for i = 0, 1, . . . , 2l−1 − 1.
It has s′

i := s2i,2i+1 + s2i + s2i+1 edges. The number of edges between S′
i and S′

j is
s′

i,j := s2i,2j + s2i,2j+1 + s2i+1,2j + s2i+1,2j+1. Now, similarly to step 1, we can learn the
edges between (S′

2i, S
′
2i+1). This step uses

O

(
2l−2 +K +

2l−1−1∑
i=0

s2i,2i+1 +
2l−2−1∑

i=0
s4i,4i+2 + s4i,4i+3 + s4i+1,4i+2 + s4i+1,4i+3

)
queries in total. Continuing the above procedure, we can learn all the edges. The above
procedure terminates after l = O(log k) steps. It is not hard to show that the total number
of queries is bounded by O(Kl + 2l + T1 + T2 + · · · + Tl−1), where Ti is the total number
of edges between two adjacent pairs in step i. Since Ti ≤ T −K, the number of queries is
bounded by O(T (log k) + k).

When G has maximal degree d, by Lemma 5, the number of queries used in step i is

O

(
2l−i + d4

2l−i−1∑
j=0

√
s

(i)
2j,2j+1 log s(i)

2j,2j+1

)
,

where s(i)
2j,2j+1 is the number of edges of the j-th adjacent pair in step i. It is easy to check

that
∑l−1

i=1
∑2l−i−1

j=0 s
(i)
2j,2j+1 = T −K, thus the total number of queries used in the algorithm

is bounded by O(k + d4
√
kT log T ), where we bound s

(i)
2j,2j+1 ≤ T and use Cauchy-Schwarz

inequality. ◀

We can now use these ingredients to obtain algorithms for learning general graphs using
OR queries. By the above lemma, what remains is to decompose the set of vertices into a
disjoint union of a small number of subsets. We shall use the following trick described in [8].

Given a probability p, a p-random set S is obtained by including each vertex independently
with probability p. Then the probability that a p-random set includes no edge of G is at
least q = 1 −mp2. Choosing p = 1/10

√
m, then the probability is at least q = 0.99. The size

of S is close to pn with high probability.
Let V denote the set of vertices. First we identify a random set S1 that includes no

edge of G by following the above procedure. After we have S1, then in V − S1, we can find
another random set S2 that includes no edge of G. We continue this process for k steps,
where k is determined later. Assume now that we have k random sets S1, . . . , Sk. Each
has no edge of G. This uses O(k) queries in total. After k steps, the number of remaining
vertices is about (1 − p)kn ≈ e−pkn. This means that the above procedure terminates after
k = O(p−1 log n) = O(

√
m log n) steps with high probability.

▶ Theorem 7. Let G be a graph with m edges and n vertices. Then there is a quantum
algorithm that learns the graph by making

O
(
m log(

√
m log n) +

√
m log n

)
(1)

OR queries with probability at least 0.99. If G has maximal degree d, the query complexity is

O
(
d4m3/4

√
log n(logm) +

√
m log n

)
(2)

with probability at least 0.99.
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Proof. The idea of our algorithm is as follows: we first decompose the vertices of the graph
into k = O(

√
m log n) independent subsets by the above arguments. Then we learn the edges

among all the pairs using Lemma 6.
The first step uses O(

√
m log n) OR queries. By Lemma 6, all the edges can be identified

with O(k +m log k) = O(
√
m(log n) +m log(

√
m log n)) queries. If the graph has maximal

degree d, then the number of queries is

O

(
d4
√
m3/2(log n)(logm) +

√
m log n

)
= O

(
d4m3/4

√
log n(logm) +

√
m log n

)
. ◀

The quantum query complexity achieved by the first part of Theorem 7 is an improvement
over the Ω(m log(n2/m)) classical lower bound if m is very small with respect to n; for
example, if m = Θ(log n), the complexity is O(log1.5 n), as compared with Ω(log2 n) classically.
However, if m = Ω(nϵ) for some fixed ϵ > 0, the complexity is worse than the classical lower
bound.

If G is promised to be a Hamiltonian cycle or a matching (for example), then d = O(1),
and by the second part of Theorem 7 the number of OR queries used to learn G is bounded
by O(m3/4√

log n(logm) +
√
m log n), which is an improvement over the Ω(m log(n/m))

classical complexity for large m.

2.1 Learning specific graphs using OR queries
Next we give quantum algorithms for learning some specific graph families using OR queries.

▶ Proposition 8. There is a quantum algorithm which makes O(
√
k) OR queries and identifies

an arbitrary clique on k vertices.

Proof. The idea is as follows: First, we find a vertex v in the clique, then use the quantum
algorithm for CGT [15] to learn all the other vertices using O(

√
k) queries, by querying

with subsets of the vertices that include v. Such a query returns 1 if and only if the subset
includes another vertex of the clique.

As for the first step, the vertex v can be found with high probability using O(1) queries,
using a similar idea to the quantum algorithm of [7] for CGT. We produce a subset S of vertices
by including each vertex with probability 1/k. Then with probability

(
k
2
)
k−2(1 − 1/k)k−2 ≈

1/2e, this leads to exactly 2 vertices i, j in the clique being included in the subset. This
subset corresponds to a boolean function f(x) = xixj for unknown i, j. To learn i, j, we use
the Fourier sampling method. Let bk be the bit-string of length n whose k-th bit equals 1,
and all other bits equal 0. It is easy to verify that the Fourier coefficients of f at bi, bj , bi + bj

are all equal to 1/2. Thus with probability at least 3/4, we can identify xi or xj . ◀

▶ Proposition 9. There is a quantum algorithm which makes O(
√
m) OR queries and

identifies an arbitrary star graph with m edges.

Proof. This is equivalent to learning the Boolean function f(x) = xi ∧ (∨j∈Axj), for some
unknown i, A, where A is a subset of [n] of size m and i /∈ A. To learn it, we use the Fourier
sampling to identify the center xi first, then use the CGT algorithm to learn the edges.

The Fourier sampling method returns a state of the form
∑

y∈{0,1}n f̂(y)|y⟩. Consider the
Fourier coefficient at yi = 1, yj = 0 (j ̸= i). It equals

1
2n

∑
x∈{0,1}n

(−1)xi∧(∨j∈Axj )+xi = 1
2n

 ∑
x∈{0,1}n:xi=0

1 −
∑

x∈{0,1}n:xi=1

(−1)∨j∈Axj

 = 1 − 1
2m−1 .
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This means that Fourier sampling can detect the center with O(1) queries with high probability.
After we obtain the center, it suffices to focus on the function obtained by setting xi = 1.
Using the quantum algorithm for CGT, we can learn this function with O(

√
m) queries. ◀

The above two results are tight because of the optimality of CGT. More precisely, CGT
corresponds to the special case of learning a clique when one vertex is given, or learning a
star when the center is given.

2.2 Lower bound
Finally, we show a quantum lower bound for learning graphs with OR queries, which shows
that the quantum algorithm given in Theorem 7 for learning graphs with m edges is optimal
up to a logarithmic factor.

▶ Theorem 10. Let G be an arbitrary graph of n vertices. Then any quantum algorithm
that learns G with success probability > 1/2 using OR queries must make Ω(n2) queries.

Proof. Consider the family of graphs on 2n vertices defined as follows. We first start with
two disjoint cliques A, B on n vertices. We then put edges between A and B in an arbitrary

pattern. This corresponds to an adjacency matrix of the form
(
J − I M

MT J − I

)
, where J is

the all-1’s matrix, and M is an arbitrary n× n matrix. Now observe that any query that
contains more than one vertex in A, or more than one vertex in B, will always return 1.
Any query that contains only one vertex in total will always return 0. So we can restrict to
considering queries that include exactly one vertex of A and exactly one vertex of B. Such a
query just returns one of the entries of M . Learning M with success probability > 1/2 using
this oracle requires Ω(n2) quantum queries [12]. ◀

As a corollary, we get the lower bound that any quantum algorithm that learns an
arbitrary graph with m edges must make Ω(m) quantum queries. Also, by the known lower
bound on the quantum query complexity of the parity function [12], if m is unknown, then any
quantum algorithm that determines m exactly must make Ω(m) queries when m = Ω(n2).

3 Learning an unknown graph state

The graph state |G⟩ on n qubits corresponding to a graph G = (V,E) with n vertices can be
defined explicitly as

|G⟩ = 1√
2n

∑
x∈{0,1}n

(−1)
∑

(i,j)∈E
xixj |x⟩, (3)

The state |G⟩ can also be defined as the state produced by acting on the uniform superposition
|+⟩⊗n with a controlled-Z gate across each pair of qubits corresponding to an edge in G, or
as the unique state stabilized by the set of Pauli operators {Xv

∏
w∈N(v) Zw : v ∈ V }, where

N(v) denotes the set of vertices neighbouring v [32].
The representation (3) makes it clear that graph states have a close connection to the

parity query model, as |G⟩ is the state produced by evaluating fG,Par(S) on all subsets S
in uniform superposition. Therefore, lower bounds on the complexity of identifying graphs
using parity queries imply lower bounds on the number of copies of |G⟩ required to identify
G, and upper bounds on the number of copies of |G⟩ required to identify G imply upper
bounds on the complexity of identifying G using parity queries.
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First we show how to partially go in the other direction, by making parity queries of a
certain form, given copies of |G⟩. We use a procedure called Bell sampling, which was used
for learning arbitrary stabilizer states in [36]. Given two copies of a state |ψ⟩ of n qubits,
Bell sampling corresponds to measuring each corresponding pair of qubits in the Bell basis.
Outcomes of Bell sampling can be identified with strings s ∈ {I,X, Y, Z}n of Pauli matrices,
and are observed with the following probabilities:

▶ Lemma 11 (Lemma 2 of [36]). Let |ψ⟩ be a state of n qubits. Bell sampling applied to |ψ⟩⊗2

returns outcome s with probability 2−n|⟨ψ|σs|ψ∗⟩|2, where |ψ∗⟩ is the complex conjugate of
|ψ⟩ with respect to the computational basis, and σs = s1 ⊗ s2 ⊗ · · · ⊗ sn.

If |G⟩ is a graph state, then |G⟩ = |G∗⟩, and |⟨G|σs|G⟩|2 = 1 if and only if σs is a stabilizer
of |G⟩; otherwise, |⟨G|σs|G⟩|2 = 0. Therefore, Bell sampling returns a uniformly random
stabilizer of |G⟩. Such a stabilizer can be produced by taking the product of a random subset
S of the rows of the stabilizer matrix for G (where each row is included with independent
probability 1/2). We obtain the following overall operator:∏

v∈S

Xv

∏
u∈N(v)

Zu = ±
∏

u∈[n]

X [u∈S]
u Z |N(u)∩S|

u

where we collect X and Z terms together for each vertex u ∈ [n]. Hence, when we receive a
sample of a uniformly random stabilizer of |G⟩, we obtain a random subset S ⊆ [n], and for
each u ∈ [n], we learn the number of edges between u and S, mod 2. We learn the identity
of S from which qubits have an X term associated with them.

This allows us to try to find efficient algorithms based only on this (now classical)
subroutine of learning subsets and parities. Indeed, learning a graph state using Bell
sampling is equivalent to learning a graph using parity queries, as studied in Section 4 below
– except with the restriction that these queries are only to uniformly random subsets of the
vertices. We first give a general algorithm for learning a graph known to be picked from any
finite set.

▶ Theorem 12. Let S be a family of graphs. Then, for any G ∈ S, G can be identified by
applying Bell sampling to O(log |S|) copies of |G⟩. The algorithm succeeds with probability at
least 0.99.

Proof. Let A be the adjacency matrix of G. Each Bell sample returns the inner product of
a random vector s ∈ Fn

2 with each column (or row) of A. If we take k samples, we can write
these k row vectors as an n× k matrix B. Then the result of the Bell sampling procedure is
the matrix AB.

To be able to uniquely identify G, we want AB ̸= A′B for all A, A′ corresponding to
graphs in S, or in other words (A+A′)B ̸= 0n×k. As each entry of B is uniformly random,
for any n× n matrix C with rank r, PrB [CB = 0n×k] = 2−kr. (This holds because for each
linearly independent row c of C, PrB [cB = 0k] = 2−k, and these events are independent.) In
particular, for any nonzero matrix C, PrB [CB = 0n×k] ≤ 2−k. The number of matrices C of
the form C = A+A′ is at most |S|2. Taking a union bound over all such matrices, we have

Pr
B

[∃C = A+A′, CB = 0n×k] ≤ |S|2

2k
.

So it is sufficient to take k = O(log |S|) to achieve failure probability 0.01, as claimed. ◀

As a corollary of Theorem 12, if G is a graph with at most m edges, it can be identified
with O(m log(n2/m)) copies of |G⟩.
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It is natural to wonder whether the dependence on |S| in Theorem 12 could be improved,
because if S is the set of all graphs, the complexity of Theorem 12 does not match that of the
best algorithms for learning an arbitrary graph state, which use O(n) copies of |G⟩ [1, 36,42].
An information-theoretic lower bound comes from the fact that |G⟩ is a state of n qubits,
so by Holevo’s theorem, Ω((log |S|)/n) copies are required to identify a state from S. In
addition, this bound cannot always be reached; if S is the set of all graphs on r vertices,
for some r < n, the number of copies required to identify a graph from this set is Θ(r)
by the same information-theoretic argument, which can be much larger than O(r2/n) for
some choices of r. This suggests that the best dependence on |S| that could be achieved is
O(
√

log |S|).
However, better complexities can be achieved for graphs with more structure. If the

graph is promised to be a star, then the Fourier sampling method can be applied to learn it
with O(1) copies of |G⟩. More precisely, suppose the edges of the star graph are (i, j), j ∈ A.
Here i is the center and we assume |A| ≥ 1. Then

|G⟩ = 1√
2n

∑
x∈{0,1}n

(−1)xi

∑
j∈A

xj |x⟩.

By Fourier sampling, if we apply Hadamard gates to |G⟩, we obtain the state

1√
2

|0, . . . , 0⟩|+⟩|0, . . . , 0⟩ + 1√
2

|[1 ∈ A], . . . , [i− 1 ∈ A]⟩|−⟩|[i+ 1 ∈ A], . . . , [n ∈ A]⟩. (4)

The |±⟩ is in the i-th qubit. Performing measurements in the computational basis, if we
obtain |0, . . . , 0⟩|1⟩|0, . . . , 0⟩, then we know the center; if we obtain a state with more than
two 1’s, then we know all vertices in A. The probability is 1/4 for each case, so we can learn
a unknown star using O(1) copies of |G⟩.

We can also apply Bell sampling to learn cliques with O(1) copies. Each Bell sample
gives us the inner product of each row of the adjacency matrix with a random vector, and
each nonzero row has probability 1/2 for this inner product to be nonzero. As G is a clique,
all its nonzero rows are the same. Thus, after O(1) samples, with high probability we learn
all the nonzero rows at once.

In summary, we have

▶ Theorem 13. There is a quantum algorithm that identifies G by using O(1) copies of |G⟩
if G is a star or a clique.

Next we consider the case of bounded-degree graphs.

▶ Theorem 14. For an arbitrary graph G, there is a quantum algorithm which uses
O(d log(m/d)) copies of |G⟩, and for each vertex v that has degree at most d, outputs
all the neighbours of v and that v has degree at most d. For each vertex w that has degree
larger than d, the algorithm outputs “degree larger than d”. The algorithm succeeds with
probability at least 0.99.

Proof. We assume that d ≤ n/4 throughout, as otherwise an algorithm for learning an
arbitrary graph using O(n) copies can be used [1, 36, 42]. We produce k Bell samples,
corresponding to vectors Aw1, . . . , Awk for uniformly random vectors w1, . . . ,wk ∈ {0, 1}n.
For any pair x ̸= y ∈ {0, 1}n, the probability that x · wi = y · wi for all i is equal to the
probability that (x + y) · wi = 0 for all i, which equals 2−k. By a union bound, for any
x ∈ {0, 1}n, the probability that there exists y ∈ {0, 1}n such that y ̸= x, |y| ≤ d and
x · wi = y · wi for all i is bounded by

∑d
l=0
(

n
l

)
2−k = O(2d log(n/d)−k).
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We then apply this bound to all n rows of A via a union bound, to obtain that the
probability that, for any row x of A, there exists y ∈ {0, 1}n with |y| ≤ d, x · wi = y · wi

for all i and y ̸= x is O(n2d log(n/d)−k). Taking k = O(d log(n/d)) is sufficient to bound this
probability by an arbitrarily small constant. Assuming that this failure event does not occur,
the algorithm determines all rows of A with Hamming weight bounded by d, and identifies
all rows that are inconsistent with having Hamming weight bounded by d.

We finally show how to replace n with m in the algorithm’s complexity. This is achieved
by first identifying the subset W of non-isolated vertices, and then running the algorithm
above on the vertices in this subset. We can restrict the graph to this subgraph H by
measuring the qubits corresponding to the other vertices in the computational basis. The
resulting state is of the form |H ′⟩ =

∏
i∈T Zi|H⟩, for some subset T ⊆ W . By Lemma 11, Bell

sampling behaves in the same way on |H ′⟩ as on |H⟩. To find the subset W , Bell sampling
is applied l times for some l, to produce an n× l matrix C = AB for a uniformly random
matrix B. The set of vertices corresponding to rows of C which have at least one nonzero
entry is kept, to produce a set W ′. Any zero row of A will always produce a corresponding
zero row of C, so will not be included in W ′. On the other hand, the probability that any
nonzero row of A produces the corresponding zero row of C is 2−l. As there are at most
2m nonzero rows, corresponding to vertices in W , the probability that any vertex in W is
not included in W ′ is O(m2−l) by a union bound. So it is sufficient to take l = O(logm) to
learn which rows are nonzero with probability 0.99. ◀

We can also learn the family of graphs that are subgraphs of a fixed graph G′ of bounded
degree d. This is relevant to the setting where we have attempted to produce |G′⟩ using
a quantum circuit which may have failed to produce certain edges, and we would like to
determine which graph we have actually produced. In this case, we can get an algorithm
that still uses O(d log n) copies like Theorem 14, but is also computationally efficient, in that
its runtime is O(d3n log3 n).

▶ Theorem 15. Let G′ be a graph of bounded degree d, G be a subgraph of G′. Given access
to copies of |G⟩, there is a quantum algorithm that identifies G using O(d log n) copies with
runtime O(d3n log3 n). The algorithm succeeds with probability at least 0.99.

Proof. We take k Bell samples, for some k to be determined. For each vertex v, the
corresponding row rv of A is a linear combination over F2 of at most d fixed vectors e1, . . . , ed

of Hamming weight 1, where each vector corresponds to a neighbour of v in G′. So we
can write rv =

∑d
i=1 xiei for some xi ∈ {0, 1}, and determining x ∈ {0, 1}d is sufficient to

determine rv. As the results of the Bell samples correspond to inner products between rv

and random vectors over Fn
2 , we obtain a system of k random linear equations in d unknowns.

These equations can be solved in time O(k3) to determine x if the corresponding random
matrix is full rank, and the probability that a random k× d matrix over F2, k ≥ d, is not full
rank is O(2−(k−d)) [28]. So, by a union bound, it is sufficient to take k = O(d log n) for all of
the rows of A to be determined by solving the corresponding systems of linear equations. ◀

Using a similar technique to the last part of Theorem 14, the linear dependence on n in
Theorem 15 can be replaced with a linear dependence on the number of non-isolated vertices,
and the polylog dependence on n can be replaced with an equivalent dependence on m.
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4 Learning an unknown graph with parity queries

In this section we investigate learning an unknown graph G using the parity oracle fG,Par(S).
Identifying S with a bit-string x ∈ {0, 1}n via xi = 1 if i ∈ S, and xi = 0 otherwise, we see
that fG,Par(x) =

∑
(i,j)∈E xixj , where the sum is taken mod 2. So, if G is arbitrary, fG,Par

is an arbitrary quadratic polynomial over F2 with no linear part. It was shown in [35] that
any polynomial of this form can be learned using O(n) quantum queries, and this is optimal.
This immediately gives a quantum algorithm for learning an arbitrary graph using O(n)
parity queries, which is quadratically better than the best possible classical algorithm. (By
an information-theoretic argument, classically Ω(n2) parity queries are required.)

Evaluating fG,Par(x) on a uniform superposition over computational basis states |x⟩ gives
precisely the graph state |G⟩, so the results of Section 3 can all immediately be applied to
learning graphs in the parity query model. However, the ability to evaluate fG,Par(x) on
other input states allows for more general algorithms to be developed. In particular, we can
obtain the following subroutine.

▶ Lemma 16. Let A be the adjacency matrix of G. For any v ∈ {0, 1}n, there is a quantum
algorithm which returns Av and makes two queries to fG,Par.

Proof. Consider the function gv(x) = f(x) + f(x+ v). It can be evaluated for any x using
two queries to f . Let B denote the adjacency matrix A, except that we set Bij = 0 for i > j.
Then f(x) = xTBx.

We evaluate gv in superposition to produce
1√
2n

∑
x∈{0,1}n

(−1)gv(x)|x⟩ = 1√
2n

∑
x∈{0,1}n

(−1)xT Bx+(x+v)T B(x+v)|x⟩

= 1√
2n

(−1)vT Bv
∑

x∈{0,1}n

(−1)x·(Av)|x⟩.

Then applying Hadamard gates to each qubit returns the vector Av. ◀

Note that no equivalent of Lemma 16 can hold in the graph state model of Section 3. If
we let v be a vector of Hamming weight 1, Lemma 16 returns an entire row of the adjacency
matrix of A using one query. But even to determine one entry of an arbitrary row of A
requires Ω(n) copies of |G⟩, because this is equivalent to a quantum random access code on(

n
2
)

bits1. Such codes are known to require quantum states of Ω(n2) qubits [37], and |G⟩ is a
state of n qubits.

We can use Lemma 16 as a subroutine to learn an arbitrary graph with a bounded
number of edges. Classically, by an information-theoretic argument, this requires at least
Ω(log

((n
2)
m

)
) = Ω(m log(n2/m)) queries.

▶ Theorem 17. There is a quantum algorithm which learns a graph with at most m edges
using O(

√
m logm) parity queries. The algorithm succeeds with probability at least 0.99.

Proof. The algorithm splits the graph into low and high-degree parts. First, Theorem 14
is used with d =

√
m/ logm. This learns all rows of A with at most

√
m/ logm nonzero

entries, and the identities of all “dense” rows of A with more than
√
m/ logm nonzero entries.

Then each of the dense rows is learned individually by applying Lemma 16 with v chosen to
be the corresponding standard basis vector. There can be at most O(

√
m logm) dense rows,

so the overall algorithm uses O(
√
m logm) queries. ◀

1 Joe Fitzsimons, personal communication.
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Theorem 17 is close to tight, because identifying an arbitrary graph on k vertices (and
hence with up to Θ(k2) edges) requires Ω(k) quantum queries [35]. Stars and cliques can be
learned with O(1) parity queries via the techniques of the previous section for graph states.
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A Combinatorial group testing

In this appendix, we move on from the problem of learning graphs to combinatorial group
testing (CGT). In the CGT problem, we are given oracle access to an n-bit string A with
Hamming weight at most k. Usually, we assume that k ≪ n. In one query, we can get the
OR of an arbitrary subset of the bits of A. The goal is to determine A using the minimal
number of queries. (To connect to the topic of the previous sections, we can see CGT as the
problem of learning a graph on n vertices with OR queries, in the very special case where the
graph is promised to have no edges between vertices, and may contain up to k self-loops.)

We can think of A as a subset of [n], and define the oracle as

fA(S) =
{

1, if A ∩ S ̸= ∅,
0, otherwise.

(5)

Classically, it is known that the number of queries required to solve CGT is Θ(k log(n/k)) [26].
In the quantum case, Ambainis and Montanaro [7] first studied this problem and proposed a
quantum algorithm using O(k) queries. They also showed a lower bound of Ω(

√
k). Later

in [15], based on the adversary bound method, Belovs proved that a quantum computer
can solve the CGT problem with Θ(

√
k) queries. In principle, Belovs’ approach can yield

a quantum algorithm with an explicit implementation, but this implementation might
not be time-efficient. In this section, we propose a quantum algorithm for CGT with
an efficient implementation. The complexity is a little worse than Θ(

√
k) by a factor of

O((log k)(log log k)).
The idea of our quantum algorithm is inspired by [6] and the Bernstein–Vazirani al-

gorithm [17]. The key idea is to observe that the Bernstein-Vazirani algorithm allows the
identity of a subset A ⊆ [n] to be determined with one query to an oracle that computes
|A ∩ T | for arbitrary T ⊆ [n]. And in [6], Ambainis et al solved a closely related problem to
evaluating this oracle, which they called gapped group testing (GGT): given the oracle fA,
decide if |A| ≤ k or |A| ≥ k+ d. They showed that Θ(

√
k/d) queries are enough to solve this

problem by the adversary bound method. The main idea of their quantum algorithm was
borrowed from [15], but unlike [15], they have an efficient implementation of their quantum
algorithm.

So it seems that, by taking d = 1 and using binary search, we can use the quantum
algorithm of [6] for the gapped group testing problem to determine |A| with O(log k)
repetitions of their algorithm, leading to a query complexity of O(

√
k log k). However,
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we should be careful at this point since the quantum algorithm of [6] only succeeds with
probability 2/3. So O(log k) repetitions will decrease the success probability to almost 0. A
simple method to increase the success probability to 1 −O((log k)−1) is using the Chernoff
bound. We can think of the intended output of the algorithm of [6] for GGT as 1 if |A| ≤ k

and 0 if |A| ≥ k+1. Denote this outcome O. As proved in [6], the probability that each run of
the algorithm returns the intended outcome is at least 2/3. We repeat the algorithm for GGT
t times and output the median of the results. Let X be the median. Then by the Chernoff
bound, we have Pr[X ≠ O] ≤ e−ct for some constant c. So by choosing t = O(log log k), the
success probability is increased to 1 − c′(log k)−1 for an arbitrarily small constant c′. Taking
a union bound over the ⌈log2 k⌉ uses of the algorithm, we can determine |A| with success
probability 9/10. By applying this algorithm to subsets S ⊆ [n], for varying subsets |S|, we
can determine |A ∩ S| with success probability 9/10.

Next we show that access to an oracle of this form is sufficient to determine A completely.
In fact, this claim holds for any monotone function, rather than just the OR function.

▶ Lemma 18. Consider a family of monotone boolean functions g : {0, 1}k → {0, 1}.
Assume there is a family of classical or quantum algorithms An which, when applied to
f : {0, 1}n → {0, 1} such that f(x) = g(xS) for some subset S such that |S| = k, outputs
k with success probability 9/10. Let T (n) denote the complexity of An, and assume that
T (n) is nondecreasing. Then there is a quantum algorithm which determines S with success
probability 1 − δ, for any δ > 0, and has complexity O(T (n) log 1/δ).

Proof. Identify n-bit strings with subsets of [n], and create the uniform superposition
1√
2n

∑
T ⊆[n] |T ⟩. For each T , run A|T | on the function fT : {0, 1}|T | → {0, 1} given by f

restricted to the variables in T . As f is monotone, a query to fT can be simulated by a
query to f by setting the variables outside of T to 0. The result is a state of the form

1√
2n

∑
T ⊆[n]

|T ⟩(
√

1 − δT ||S ∩ T |⟩ +
√
δT |ψT ⟩)

for some δT ∈ [0, 1] such that δT ≤ 1/3, and some states |ψT ⟩ such that ⟨|S ∩ T ||ψT ⟩ = 0.
Apply Z⊗|T | to the last register and uncompute A|T | to produce

1√
2n

∑
T ⊆[n]

(−1)|S∩T |(1 − δT )|T ⟩|0⟩ + |η⟩

for some unnormalised state |η⟩ orthogonal to |0⟩ on the second register. Measure the second
register and output “fail” if the result is not 0. Otherwise, apply Hadamard gates to every
qubit of the remaining register, and return the result.

The algorithm outputs failure with probability 1 − 1
2n

∑
T (1 − δT )2 ≤ 2δT − δ2

T ≤ 1/5.
If the algorithm does not output failure, the residual state has squared inner product
( 1

2n

∑
T (1 − δT ))2 ≥ (9/10)2 with the state 1√

2n

∑
T ⊆[n](−1)|S∩T ||T ⟩; if applied to this

state, it would output S with certainty, by the analysis of the Bernstein-Vazirani algorithm.
Therefore the algorithm fails with probability at most 1/5 + 19/100 < 1/2. Repetition and
taking the majority vote reduces the failure probability to δ, for arbitrary δ > 0, with an
additional multiplicative cost O(log 1/δ). ◀

By Lemma 18, we obtain the following theorem.

▶ Theorem 19. There is a quantum algorithm that solves the CGT problem with success
probability at least 2/3. The query complexity is O(

√
k(log k)(log log k)), and time complexity

is Õ(n
√
k).
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B Majority and exact-half functions

In this part, we consider the following general learning problem. We are given access to
a function f : {0, 1}n → {0, 1}, which is promised to be equal to some known function
g : {0, 1}k → {0, 1} acting on a subset S of the variables. Our goal is to learn which k

variables f depends on. We first note that, for any function g, any classical algorithm for
this problem must make Ω(log

(
n
k

)
) = Ω(k log(n/k)) queries, as each query returns 1 bit

of information. For some functions g, quantum algorithms can do better. In particular,
using the adversary bound method, Belovs [15] showed that for the exact-half function
(g(x) = 1 ⇔ |x| = k/2) and the majority function (g(x) = 1 ⇔ |x| ≥ k/2), the quantum
query complexity of identifying S is O(k1/4). Here we give simple explicit quantum algorithms
that match this complexity up to logarithmic factors. Then we observe that an even simpler
approach can be used to solve this learning problem for almost all functions g.

The approach used in this section is based on applying Fourier sampling to f (see Section
1.3), an approach explored by Atıcı and Servedio [11] in the context of quantum learning and
testing algorithms for functions with few relevant variables. Fourier sampling allows one to
produce the state |ψf ⟩ =

∑
T ⊆[n] f̂(T )|T ⟩ with one quantum query to f . Now observe that, if

f(x) does not depend on the i’th bit xi, f̂(T ) = 0 for all T such that i ∈ T . So, if f depends
only on a subset S of the variables, measuring |ψf ⟩ in the computational basis returns a
subset of S. By repeating this procedure we can hope to learn all of S, and we can sometimes
accelerate this process using amplitude amplification. Let Wl(g) be the Fourier weight of g
on the l’th level, Wl(g) =

∑
T,|T |=l ĝ(T )2. Similarly define W≥l(g) =

∑
T,|T |≥l ĝ(T )2.

▶ Lemma 20. Let g be a symmetric function, i.e. g(x) = h(|x|) for some h, where |x| is the
Hamming weight of x. Then, for any l such that W≥l(g) > 0, there is a quantum algorithm
which identifies S with probability at least 0.99 using O(k/(l

√
W≥l(g))) log k) queries to f .

If l = k, there is a quantum algorithm using O(1/
√
Wk(g)) queries.

Proof. We start by applying amplitude amplification [19] to the following procedure: use
Fourier sampling on f , and return “yes” if the size of the subset returned is at least l. This
returns a subset T of size l′ ≥ l using O(1/

√
W≥l(g)) evaluations of f and with success

probability max{1 −W≥l(g),W≥l(g)} ≥ 1/2 [19, Theorem 2]. Observe that, as |ψf ⟩ has no
support on subsets that are not contained within S, T ⊆ S with certainty.

As g is symmetric, f̂(T ) depends only on |T | for all T , so T is picked uniformly at random
from all l′-subsets of [k]. For any r, it is sufficient to perform this procedure O(r) times to
achieve r successes with high probability. The final step of the algorithm is to output the
union of the subsets returned in successful iterations. By a union bound, the probability that
there is a variable that is not included in any of the subsets is at most k(1− l/k)r ≤ ke−lr/k+r.
So it is sufficient to take r = O((k/l) log(k/δ)) to achieve success probability 1 − δ. For
the second claim in the lemma, if l = k, we learn all the relevant variables with one use of
amplitude amplification and with probability ≥ 1/2, which can be boosted to arbitrarily
close to 1 with a constant number of repetitions. ◀

Lemma 20 crucially relies on g being symmetric. Otherwise, certain variables could be
substantially harder to identify than others. To apply Lemma 20, it is sufficient to find
bounds on the Fourier spectrum of g, which we now obtain for certain functions. First, we
consider the majority function (MAJk(x) = 1 ⇔ |x| ≥ k/2), which is a special case of a
previously studied framework known as “threshold group testing” [24].
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▶ Fact 21 ([38], Theorem 3.5.3). Let MAJk be the majority function on k bits. If |S| is even,
then M̂AJk(S) = 0. Otherwise,

M̂AJk(S) = (−1)(k−1)/2

( (k−1)/2
(|S|−1)/2

)(
k−1

|S|−1
) 2

2k

(
k − 1

(k − 1)/2

)
.

Using Fact 21, we can obtain a bound on the tail of the Fourier spectrum of the majority
function.

▶ Lemma 22. W≥(k+1)/2(MAJk) = Ω(1/
√
k).

Proof. By Fact 21,

Wl(MAJk) =
(
k

l

)((k−1)/2
(l−1)/2

)2

(
k−1
l−1
)2

4
22k

(
k − 1

(k − 1)/2

)2
= k

l

((k−1)/2
(l−1)/2

)2(
k−1
l−1
) 4

22k

(
k − 1

(k − 1)/2

)2

and using 4
22k

(
k−1

(k−1)/2
)2 = Θ(1/k), we obtain

Wl(MAJk) = Θ

((k−1)/2
(l−1)/2

)2

k
(

k−1
l−1
)


for l ≥ (k + 1)/2. In the case l = (k + 1)/2, we have Wl(MAJk) = Θ(k−3/2) using(
a

a/2
)

= Θ(2a/
√
a) for any a. By Stirling’s formula, ((k−1)/2

(l−1)/2)2

(k−1
l−1) ≈

√
2(k−1)

π(l−1)(k−l) , which is

nondecreasing when l ≥ (k + 1)/2, so Wl(MAJk) = Ω(k−3/2) for l ≥ (k + 1)/2. ◀

Next, we consider the EXACT-HALF function, g(x) = 1 ⇔ |x| = k/2.

▶ Lemma 23. Let k be even. Then W≥k/2(EXACT- HALFk) = Θ(1/
√
k).

Proof. Let g : {0, 1}k → {0, 1} be the EXACT-HALF function. It will be convenient
for the proof to switch to the representation of the Fourier transform of g that ĝ(s) =
1

2k

∑
x∈{0,1}k (−1)s·xg(x), which is equivalent to the representation used in the rest of this

paper for all s such that s ̸= 0k, up to a constant factor. Then, for s ̸= 0k,

ĝ(s) =
∑

x,|x|=k/2

(−1)x·s = 1
2k

k/2∑
i=0

(−1)i

(
|s|
i

)(
k − |s|
i

)
,

where the last expression is a Krawtchouk polynomial [33]. This is symmetric about |s| = k/2,
so ∑

s,|s|≥k/2

ĝ(s)2 ≥ 1
2
∑

s

ĝ(s)2 = 1
2∥g∥2

2 = Θ(1/
√
k). ◀

So, by the above lemmas, we reproduce the Θ(k1/4) complexity of Belovs’ algorithms for
the majority and EXACT-HALF functions up to a logarithmic factor. The algorithms are
also time-efficient.

▶ Theorem 24. There exist quantum algorithms that learn the majority and exact-half
functions on k-bits using O(k1/4 log k) queries. The time complexity is O(nk1/4 log k).
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Finally, we observe a simple general approach which can be used to solve the learning
problem for almost all functions efficiently. Define the influence of the j’th variable as

Infj(g) =
∑
T ∋j

ĝ(T )2 = Pr
x∈{0,1}k

[g(x) ̸= g(xj)],

where xj is the bit-string equal to x with its j’th bit flipped.

▶ Proposition 25 (essentially Atıcı and Servedio [11]). Assume that, for all j ∈ S, Infj(g) ≥
ϵ. Then there is a quantum algorithm which identifies S with probability 1 − δ using
O(ϵ−1 log(k/δ)) queries to f .

Proof. We apply Fourier sampling to f , which returns a subset T ⊆ [k] with probability
ĝ(T )2. We use this subroutine q times and output the union of the subsets of variables
returned. The probability that the j’th variable is included in each sample is Infj(g) ≥ ϵ.
The probability that there exists a variable that is not returned after the q queries is at most
k(1 − ϵ)q ≤ ke−qϵ. So it is sufficient to take q = O(ϵ−1 log(k/δ)) to learn all the variables
except with probability δ. ◀

If g is picked at random, then for all j, Infj(g) is lower-bounded by a constant with high
probability. So, by Proposition 25, for almost all functions g, there is a quantum algorithm
that identifies S using O(log k) queries and succeeds with probability 0.99. This holds even
if g is unknown, and is an exponential improvement over the optimal classical complexity.
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example of an optimal stopping problem is the following: consider a game in which 100
numbers are written on 100 pieces of paper without restrictions on the numbers, except that
no number appears more than once. The pieces of paper are shuffled faced down and you
are asked to look at the numbers, without having seen them before and once at a time, and
to stop when you think that you have found the biggest number. It turns out that there is a
stopping rule that allows you to stop at the biggest number for 1/e fraction of the inputs.

Since its conception, optimal stopping theory collected problems from many disparate areas
under a unique umbrella [71], e.g. quickest detection [82], sequential parameter estimation [64]
and sequential hypothesis testing [26]. Probably the most famous optimal stopping problem
is the one of option pricing in finance, especially American options [57]. A central problem in
the world of finance is to assign a monetary value to a hitherto unvalued asset. In the capital
markets, there exists a large variety of financial assets which are derivative to underlying
assets such as stocks, bonds, or commodities. One of the most well-known examples is the
European call option which allows the buyer to “lock in” a price for buying a stock at some
future time (or “exercise” time). A fair valuation of such an option was first discussed in the
seminal works of Black and Scholes [11] and Merton [61]. In the times since, the methods
proposed in these works have become standard practice in the financial sector and have been
extended and generalized for many financial derivatives and market models.

American options allow the buyer to exercise the option at any point in time between
the time of purchase and a fixed final time. In contrast to an European option, there are no
known closed formulas for the price of an American option with finite maturity date even in
simple models like the Black-Scholes-Merton one. Theoretically, an American option can
be viewed as a stochastic optimal stopping problem for the buyer and a super-martingale
hedging problem for the seller [31]. Practical algorithms have been developed for the pricing
of American options [23, 77, 48, 46], an important class being least squares Monte Carlo
(LSM) algorithms originally proposed independently by Tsitsiklis and Van Roy [87] and by
Longstaff and Schwartz [57].

Among the aforementioned classical algorithms for option pricing – and other topics in
finance – is the sub-field of quantum computing of designing quantum algorithms in the
context of financial problems [67, 12, 29], e.g. risk management [92], financial greeks [84, 3],
portfolio optimization [6, 25, 45, 75, 42, 2] and option pricing [59, 89]. A common tool
in obtaining a quantum advantage is amplitude estimation [14] and its generalizations for
Monte Carlo sampling [63, 41, 22, 21]. A few different works devised quantum algorithms
for derivative pricing based on quantum subroutines for Monte Carlo [74, 83, 18], e.g.
European [73, 32, 72] and American/Bermudan [62] option pricing, and option pricing in
the local volatility model [49, 3] (of which the Black-Scholes model is a subcase). Given its
versatility and previous cases of success, it is only natural to explore the applicability of
quantum methods for Monte Carlo to problems in optimal stopping theory. In this work we
focus on tailoring these methods to LSM algorithms.

Applications of LSM algorithm

Among the whole domain of optimal stopping problems, there are many that can be ap-
proached directly with LSM, e.g. the secretary problem [24], modelling the optimal time to
call an election based on data [86], estimating the solvency of governments with respect to
their debt [79], and multi-armed bandit problems [40]. Another important application of LSM
is in the insurance sector. In fact, LSM can be used to estimate the VaR (Value at Risk) [53]
and life insurance contracts [5] (see also [69] for a comparison of LSM with other methods).
The computational challenges of this domain were further highlighted by recent European



J. F. Doriguello, A. Luongo, J. Bao, P. Rebentrost, and M. Santha 2:3

regulatory requirements [1, 27]. LSM is also often used for solving Backward Stochastic
Differential Equations (BSDE). Some numerical algorithms for BSDE are two-steps stochastic
procedures involving a discretisation step where the solutions obtained at time t of the BSDE
are projected onto a space obtained from the filtrations at time t− 1. This step involves a
conditional expectation that cannot be calculated analytically, but must be estimated using
some approximation procedure. The idea of applying LSM to BSDE was first introduced
in [35] and further developed in [36, 54]. Recently, this method has been generalized to solve
two-dimensional forward-backward stochastic differential equations [55, 8].

Other algorithms for option pricing

LSM is not the only type of algorithm that can be used to price American options [30].
Besides a few attempts to give an analytical formula under certain conditions [51], the vast
majority of them has been directed towards giving numerical results, which we briefly discuss
in this section. A simple and well-known way of pricing American options is through the
use of binomial trees. While the origins of this technique are somewhat unclear [19], the
first articles that proposed the idea of binomial trees for pricing options are considered to
be [23, 77], with the first seminal ideas proposed in the first edition of [80]. McKean [60]
realized that the price of an American option can be cast as a free boundary problem [70],
which is a particular partial differential equation that can be solved numerically. There is a
flurry of other methods to price American options based on partial differential equations.
We name a few approaches such as variational inequalities [48, 9], linear complementary [46],
and those related to free boundaries [88]. However, as noted in [30], these methods often
suffer from the curse of dimensionality, as they require the computing time and the storage
to grow exponentially with the dimension of the underlying state space. LSM is also not the
only Monte Carlo approach for pricing American options. One of the first works using Monte
Carlo for option pricing is [13]. Reviews of Monte Carlo and other methods for the problem
of American option pricing can be found in [33, 52, 17]. In contrast to giving lower bounds
for the true optimal stopping value – as the LSM algorithm – Rogers [78] proposed a method
which leverages a dual problem, resulting in an upper bound for the optimal stopping value.
Last but not least, semi-analytical approaches for American option pricing and optimal
stopping time are also used [7].

1.1 Problem statement
Optimal stopping theory is concerned with the problem of finding the best moment to stop a
process in order to maximize an expected reward. More generally, assume a discrete-time
stochastic process X = (Xt)T

t=0 (which corresponds to the market model in financial applica-
tions), assumed to be Markovian, defined on a filtered probability space (Ω,F , (Ft)T

t=0,P) and
with state space (E, E), where E ⊆ Rd. We shall assume that X is adapted with respect to
(Ft)T

t=0, meaning that each Xt is Ft-measurable, and that X0 = x0 is deterministic, therefore,
sometimes we write the Markov chain (Xt)T

t=1 as starting from t = 1. Each element Xt for
t ∈ {0, . . . , T}, called the underlying process at time t, gives rise to an image probability
measure (also called pushforward measure) ρt in E ⊆ Rd, i.e., ρt(Y ) = P[ω ∈ Ω : Xt(ω) ∈ Y ]
for any Y ∈ E (note that ρ0 is the probability measure that assigns measure 1 to the singleton
set containing x0). We denote by Xt = (Xj)T

j=t the last T − t+ 1 random variables in the
stochastic process. Let L2(E, ρt) = L2(ρt) be the set of squared integrable functions with
norm ∥f∥L2(ρt) :=

√
Eρt [|f(Xt)|2] and define the uniform norm ∥f∥u = sup{|f(s)| : s ∈ E}

for f : E → R. Consider further a payoff process: a non-negative adapted process (Zt)T
t=0
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on the filtered probability space (Ω,F , (Ft)T
t=0,P) obtained from (Xt)T

t=0 as Zt = zt(Xt) for
square-integrable real functions zt ∈ L2(E, ρt), for t ∈ {0, . . . , T}. Moreover, given an event
E, we denote by 1{E} the indicator function 1{E} = 1 if E is true and 0 if not. Finally, we
shall use P to denote the probability measure behind the stochastic process (Xt)T

t=0, and
the probability notation Pr for other processes, e.g. the outcome probability of a quantum
measurement.

Our main problem is when to stop the process and take the payoff so that the expected
payoff is maximized. This is formalized by the idea of stopping time, which is a random variable
that selects one of the possible times {0, 1, . . . , T} ∪ {+∞} and satisfies a measureability
condition.

▶ Definition 1 (Stopping time). A stopping time is a function τ : Ω → {0, 1, . . . , T} ∪ {+∞}
such that {ω ∈ Ω|τ(ω) = t} ∈ Ft for t ∈ {0, . . . , T}. The payoff obtained by using τ is
Zτ (ω) := Zτ(ω)(ω). Let Tt := {τ |τ is a stopping time with t ≤ τ ≤ T} be the set of all
stopping times taking values in [t, T ]. A stopping time τ∗ ∈ Tt is called optimal in the
interval [t, T ] if

E[Zτ∗ |Xt] = ess sup
τ∈Tt

E[Zτ |Xt].

The maximization is expressed via an essential supremum such that the null sets of the
probability measure do not affect the result. For more details on the essential supremum
see [31, Appendix A.5]. The optimal stopping problem then consists in finding a stopping
time τ that maximizes the expected value payoff.

▶ Problem 2 (Optimal stopping problem). Let (Zt)T
t=0 be a payoff process. For ϵfinal > 0,

approximate the exact value supτ∈T0 E[Zτ ] to additive accuracy ϵfinal with high probability.

A well-studied solution strategy for the above problem statement is based on dynamic
programming for a set of stopping times. A crucial concept is the Snell envelope [65, 31]
Ut : Ω → R of a payoff process Zt = zt(Xt) (for some zt ∈ L2(E, ρt), t ∈ {0, . . . , T}) defined
as {

UT = ZT ,

Ut = max {Zt,E[Ut+1|Xt]} , 0 ≤ t ≤ T − 1.
(1)

Define the stopping times τt := min{u ≥ t | Uu = Zu}. The Snell envelope is related to the
maximal expected payoff according to the next theorem: τt maximizes the expectation of Zτ

among all τ ∈ Tt, i.e., that τt are optimal stopping times (in their respective intervals).

▶ Theorem 3 ([31, Theorem 6.18]). The Snell envelope Ut of Zt satisfies

Ut = E[Zτt
|Xt] = ess sup

τ∈Tt

E[Zτ |Xt].

In particular, U0 = E[Zτ0 ] = supτ∈T0
E[Zτ ] = max{Z0,E[Zτ1 ]}.

Hence, finding an approximate U0 solves our Problem 2. In order to solve the dynamic
programming behind the Snell envelope, it is more convenient to recast the dynamic pro-
gramming in terms of the optimal stopping times τt (rather than in terms of value functions)
as follows.

▶ Theorem 4. The dynamic programming principle in Eq. (1) can be recast in terms of the
stopping times τt = min{u ≥ t | Uu = Zu} as{

τT = T,

τt = t1{Zt ≥ E[Zτt+1 |Xt]} + τt+11{Zt < E[Zτt+1 |Xt]}, 0 ≤ t ≤ T − 1.
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Proof. The case t = T is trivial. Assume t < T . Note that E[Zτt+1 |Xt] = E[E[Zτt+1 |Xt+1]|Xt]
because of the tower property of the expectation value with the filtration generated by Xt.
In addition, E[Zτt+1 |Xt+1] = Ut+1 from Theorem 3. Hence, if Zt ≥ E[Zτt+1 |Xt], then Zt ≥
E[Ut+1|Xt]. This latter statement, by the definition of the Snell envelope, implies Ut = Zt and
then τt = t. On the other hand, if Zt < E[Zτt+1 |Xt], then, Zt < E[Ut+1|Xt] =⇒ Zt ≠ Ut,
and so τt = min{u ≥ t | Zu = Uu} = min{u ≥ t+ 1 | Zu = Uu} = τt+1. ◀

The stopping time τ0 thus maximizes E[Zτ ] in Problem 2. The quantities E[Zτt+1 |Xt] are
called continuation values. In the past, many different approaches were developed to tackle
the dynamic programming above [51, 19, 23, 77, 80, 60, 70, 48, 9, 46, 88, 13, 33, 52, 17]. A
famous approach is the least squares Monte Carlo (LSM) by Longstaff and Schwartz [57].

2 The least squares Monte Carlo algorithm

The LSM algorithm consists in solving the dynamic programming in Theorem 4 by means
of two approximations. The first one is to approximate the continuation values E[Zτt+1 |Xt]
using a set of measurable real-valued functions in L2(E, ρt), e.g. by projection onto a finite-
dimensional set of linearly independent polynomials. Let H0 ⊆ R and let, for t ∈ [T − 1],
Ht ⊆ L2(E, ρt) be a subset of real-valued functions on E, called approximation architecture or
hypothesis class, that will be used to approximate the continuation values. By approximating
E[Zτt+1 |Xt] by ft ∈ Ht for each t ∈ {0, . . . , T − 1}, we can write the approximate dynamic
programming as{

τ̃T = T,

τ̃t = t1{Zt ≥ ft} + τ̃t+11{Zt < ft}, 0 ≤ t ≤ T − 1.
(2)

Note that τ̃t = τ̃t(ft, . . . , fT −1) depends on the approximation architecture.
The second approximation of the algorithm is to numerically evaluate the approx-

imations ft in L2(ρt) by a Monte Carlo procedure. We sample N independent paths
(X(1)

t )T
t=0, . . . , (X

(N)
t )T

t=0 of the Markov chain X = (Xt)T
t=0 and denote by Z(n)

t = zt(X(n)
t )

the associated payoffs conditioned on X
(n)
t , where zt ∈ L2(E, ρt), t ∈ {0, . . . , T}. Write

the random variables of the last T − t + 1 elements of all the sampled Markov chains by
X(N)

t = (X(1)
t , . . . , X

(N)
t , X

(1)
t+1, . . . , X

(N)
t+1 , . . . , X

(1)
T , . . . , X

(N)
T ). For each path, the dynamic

programming in Eq. (2) is solved recursively by approximating the continuation values in Ht

via a least square estimator. The result is sampled stopping times τ̃ (n)
t that τ̃t takes on each

random path. We stress that, due to the recursive nature of Eq. (2), the stopping times τ̃ (n)
t

will depend on X(N)
t , and consequently also the payoffs Z(n)

∼
τ

(n)
t

= z∼
τ

(n)
t (X(N)

t )

(
X

(n)
∼
τ

(n)
t (X(N)

t )

)
.

The dependence on X(N)
t should be clear from the context and therefore we shall simply

write Z(n)
∼
τ

(n)
t

. In summary, combining both the approximation architecture and the Monte

Carlo sampling, at each t ∈ [T − 1] we take ft ∈ Ht, depending on X(N)
t , satisfying

1
N

N∑
n=1

(
Z

(n)
∼
τ

(n)
t+1

− ft(X(n)
t )

)2
≤ ϵ+ inf

g∈Ht

1
N

N∑
n=1

(
Z

(n)
∼
τ

(n)
t+1

− g(X(n)
t )

)2
(3)

for some given ϵ ≥ 0. It might be the case that an exact minimizer of the above optimization
problem does not exist (the infimum does not belong to Ht) or is hard to compute, meaning
that an ϵ-approximation could be used. Given the choice of ft ∈ Ht, it is then used
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in Eq. (2) to obtain τ̃
(n)
t , and so on recursively. At the end of the recursion we can take

f0 = 1
N

∑N
n=1 Z

(n)
∼
τ

(n)
1

as an exact minimizer, since X0 is constant, and obtain the approximation

Ũ0 to U0 as

Ũ0 = max
{
Z0,

1
N

N∑
n=1

Z
(n)
∼
τ

(n)
1

}
. (4)

In this paper we shall be particularly interested in finite-dimensional linear approximation
architectures, for which an exact minimizer exists in Eq. (3). Consider then a set {et,k :
E → R}m

k=1 of m linearly independent measurable real functions and take the vector space
generated by them as our approximation architecture Ht, t ∈ [T − 1]. Therefore, the infimum
in Eq. (3) is attained by projecting the continuation values onto Ht as αt · e⃗t(Xt), where
e⃗t(·) := (et,1(·), . . . , et,m(·))⊤ and the m-dimensional vector αt, the projection coefficients, is
the least square estimator given by [20]

αt = arg min
a∈Rm

E
[
(Z∼

τ t+1
− a · e⃗t(Xt))2]

.

Given the assumption that {et,k}m
k=1 are linearly independent for each t ∈ [T − 1], the vector

αt ∈ Rm has the explicit expression

αt = A−1
t bt where bt = E[Z∼

τ t+1
e⃗t(Xt)] (5)

and the m×m matrix At has coefficients

(At)k,l = E[et,k(Xt)et,l(Xt)]. (6)

Often it is hard to compute αt and At exactly. As previously mentioned, the LSM algorithm
approximates these by Monte Carlo sampling,

α̃t = Ã−1
t

1
N

N∑
n=1

Z
(n)
∼
τ

(n)
t+1
e⃗t(X(n)

t ) (7)

and

(Ãt)k,l = 1
N

N∑
n=1

et,k(X(n)
t )et,l(X(n)

t ). (8)

More generally, though, any good approximation α̃t and Ãt to αt and At, respectively, is
valid, and we shall not restrict the notation α̃t and Ãt to only mean the above sampled
quantities.

We have introduced the quantities that are important for the LSM algorithm. To present
the algorithm, we first specify the input model.

▶ Definition 5 (Sampling access to Markov chain). Given a Markov chain (Xt)T
t=1 on a

probability space (Ω,P) and with state space E ⊆ Rd, we define sampling access as the ability
to draw a sample ω ∈ Ω according to P and observe the value Xt(ω) for some t ∈ [T ]. One
sample costs time Tsamp.

▶ Definition 6 (Query access to function). Let E ⊆ Rd and h : E → R be a function. We
define query access as the ability to observe the value h(x) for any given x ∈ E. One query
costs time Th.
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Algorithm 1 Classical LSM algorithm for optimal stopping problem.

Input: Integer N ∈ N. Sampling access to Markov chain (Xt)T
t=0 defined on a sample

space Ω and with state space E ⊆ Rd. Query access to functions {zt : E → R}T
t=0 and

{et,k : E → R}t∈[T −1],k∈[m], where {et,k}m
k=1 are linearly independent for each t ∈ [T − 1].

Let e⃗t(·) := (et,1(·), . . . , et,m(·))⊤.
1: Sample N independent paths (X(1)

t , . . . , X
(N)
t )T

t=0.
2: Query payoffs (Z(1)

t , . . . , Z
(N)
t )T

t=0 and values (et,k(X(1)
t ), . . . , et,k(X(N)

t ))t∈[T −1],k∈[m].
3: Compute the matrices {Ãt}T −1

t=1 with entries as in Eq. (8).
4: Compute the inverses {Ã−1

t }T −1
t=1 .

5: Set τ̃ (n)
T = T for n ∈ [N ].

6: for t = T − 1 to 1 do
7: Calculate the vector α̃t = Ã−1

t
1
N

∑N
n=1 Z

(n)
∼
τ

(n)
t+1
e⃗t(X(n)

t ).

8: Calculate τ̃ (n)
t = t1{Z(n)

t ≥ α̃t · e⃗t(X(n)
t )} + τ̃

(n)
t+11{Z(n)

t < α̃t · e⃗t(X(n)
t )}, n ∈ [N ].

9: end for
10: Output Ũ0 := max

{
Z0,

1
N

∑N
n=1 Z

(n)
∼
τ

(n)
1

}
.

Here, we assume that the functions of the approximation architecture and functions for the
payoff take time Te and Tz, respectively, to evaluate. Both sampling and function access
have natural quantum extensions, as will be defined in Section 3.

We are now in the position to present the classical LSM algorithm in Algorithm 1. Since
we focus on the case where the approximation architectures Ht are finite-dimensional and
linear, we write Algorithm 1 for this particular case.

3 Quantum least squares Monte Carlo algorithm

In this section we shall present our quantum algorithm, which is based on the classical LSM
algorithm (Algorithm 1). Before we discuss it, we review our computational model, input
assumptions, and the quantum algorithm for Monte Carlo used in this work. In what follows,
for simplicity, we suppose that |0⟩ describes a register with sufficiently many qubits initialized
in the all-0 state.

3.1 Computational model

In this subsection, we address our quantum computational model. We work in the standard
circuit model of quantum computation [66]. Aside from these standard assumptions, we take
the following additional assumptions on the computational model.

Arithmetic model

In our work, we perform the arithmetic computations on the quantum computer by using
a fixed point representation for real numbers. We assume that we can have enough qubits
for storing these numbers, represented as bit strings using the following definition. We
also assume to work with enough precision so that numerical errors in the computation are
negligible, and will not impact the final output of our algorithm.
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▶ Definition 7 (Fixed-point encoding of real numbers [76]). Let c1, c2 be positive integers, and
a ∈ {0, 1}c1 , b ∈ {0, 1}c2 , and s ∈ {0, 1} be bit strings. Define the rational number as:

Q(a, b, s) := (−1)s

(
2c1−1ac1 + · · · + 2a2 + a1 + 1

2b1 + · · · + 1
2c2

bc2

)
∈ [−R,R], (9)

where R := 2c1 − 2−c2 . If c1, c2 are clear from the context, we can use the shorthand notation
for a number z := (a, b, s) and write Q(z) instead of Q(a, b, s). Given an n-dimensional
vector v ∈ ({0, 1}c1 × {0, 1}c2 × {0, 1})n the notation Q(v) means an n-dimensional vector
whose j-th component is Q(vj), for j ∈ [n].

The choice of values for c1 and c2 depends on the choice of input functions used when
running the algorithm. For the purposes of optimizing the quantum circuit, these constants
can be changed dynamically in various steps of the computation. While analyzing how error
propagates and accumulates throughout the operations in the quantum circuit is essential to
ensure a correct estimation of the final result, this analysis can only be done for a given choice
of input functions. We avoid the analysis of such details by using the quantum arithmetic
model as in Definition 8. A standard result is that any Boolean function can be reversibly
computed. Any reversible computation can be realized with a circuit involving negation and
three-bit Toffoli gates. Such a circuit can be turned into a quantum circuit with single-qubit
NOT gates and three-qubit Toffoli gates. Since most circuits for arithmetic operations
operate with a number of gates of O(poly(c1, c2)) this implies a number of quantum gates of
O(poly(c1, c2)) for the corresponding quantum circuit.

▶ Definition 8 (Quantum arithmetic model). Given c1, c2 ∈ N specifying fixed-point precision
numbers as in Definition 7, we say we use a quantum arithmetic model of computation if the
four arithmetic operations can be performed in constant time in a quantum computer.

In our computational model we do not include the cost for performing operations described in
our arithmetic model. For instance, a central computational step of the quantum algorithm is
the circuit computing the stopping times τ̃t(x), but as the circuit depth depends polynomially
on c1 and c2, we do not take into account this cost when stating our runtime. For an example
of a resource estimation for a financial problem that takes into account the cost of arithmetic
operations in fixed-point precision, we refer to [18].

Quantum input access

We assume that we have quantum oracles for certain input functions. The classical algorithm
assumes access to two different kinds of oracles. The first is an oracle that allows us to
obtain samples from the Markov chain (Xt)T

t=0. The second kind of oracle is evaluating
the functions {zt}T

t=0 and {et,k}t∈[T −1],k∈[m]. We assume access to the quantum versions
of these oracles (formalized below). The first kind of quantum oracle prepares a quantum
state that is in a superposition over the different outcomes of the Markov chain, weighted
by amplitudes which are square roots of their classical probabilities. A measurement in
the computational basis of such a state obtains a single sample with the corresponding
probability and hence directly recovers a single use of the classical sampling access. The
second kind of quantum oracle evaluates a given function in superposition over its inputs.
While the functions {et,k}t∈[T −1],k∈[m] are usually chosen to be low-degree polynomials (and
thus admit efficient classical and quantum circuits with gate complexity proportional to the
degree of the polynomial), the functions {zt}T

t=0 might be arbitrarily complex. Usually the
complexity of these functions is not discussed in classical literature, and we use placeholders
for their evaluation cost.
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▶ Definition 9 (Quantum sampling access to a Markov chain). Let (Xt)T
t=1 be a Markov chain

defined on a filtered probability space (Ω,F , (Ft)T
t=1,P), for a finite Ω, assuming values in a

finite state space E ⊆ Rd. Given x ∈ ET , let p(x) := P[X1 = x1]
∏T −1

t=1 P[Xt+1 = xt+1|Xt =
xt] be the probability that X1 = x1, . . . , XT = xT . Let H be a finite-dimensional Hilbert
space with basis {|x⟩}x∈ET . We say that we have quantum sampling access to (Xt)T

t=1 if
we are given an oracle U on H such that U |0⟩ =

∑
x∈ET

√
p(x)|x⟩. One application of U

costs T · Tsamp time. If T = 1, we say that we have quantum sampling access to a random
variable X if we are given an oracle U on H such that U |0⟩ =

∑
x∈E

√
p(x)|x⟩, where

p(x) := P[X = x] is the probability that X = x.

We note the alternative definition of the unitary U such that U |0⟩ =
∑

x∈ET

√
p(x)|x⟩|ψx⟩

for unknown garbage unit states |ψx⟩. Such garbage states do not change our analysis, so we
shall ignore them and work with the unitary U from Definition 9.

Even though we assume the existence of the oracle U , constructing such unitary is an
important question on its own. A few methods have been proposed in order to tackle such
problem, one of the most famous is due to Grover and Rudolph [39] (see [58] for recent
improvements on the Grover-Rudolph method), which loads into a quantum computer a
discretization of a distribution with density function p(x). More specifically, it creates the

quantum state
∑2n−1

i=0

√
p

(n)
i |i⟩ with p

(n)
i =

∫ x
(n)
i+1

x
(n)
i

p(x)dx by recursively (on n) computing

quantities like fn(i) =
∫ (x

(n)
i

+x
(n)
i+1)/2

x
(n)
i

p(x)dx
/ ∫ x

(n)
i+1

x
(n)
i

p(x)dx for i = 0, . . . , 2n − 1. It is also
possible to perform simple Taylor approximations on fn(i) when n is sufficiently large (see [49,
Equation (35)]). We briefly note that the issues about the Grover-Rudolph method recently
pointed out by [44] only arise when one needs to sample from the distribution p(x) in order
to compute fn(i), which is not the case in many situations, e.g. in finance.

▶ Definition 10 (Quantum access to a function). Let E ⊆ Rd be a finite set and let H be
a Hilbert space with basis {|x⟩}x∈E. Given h : E → {0, 1}n, we say that we have (Vh, Th)-
quantum access to h if we have access to a quantum circuit Vh on H ⊗ C2n such that
Vh|x⟩|b⟩ = |x⟩|b⊕ h(x)⟩ for any bit string b ∈ {0, 1}n. One application of Vh costs time Th.

Access to quantum controlled rotations

Controlled rotations are a central step in the quantum algorithm for Monte Carlo (The-
orem 13). The cost of a controlled rotation depends directly on the number of bits used to
specify the angle of rotation [91]. In our computational model we assume that controlled
rotations come with a unit cost.

▶ Definition 11 (Access to quantum controlled rotations). We say that we have access to
quantum controlled rotations if we have a quantum circuit R whose application takes constant
time and, for all rational numbers x ∈ [0, 1] defined by a (1 + c2)-bit string in our fixed-point
arithmetic model 8, operates as:

R |x⟩ |0⟩ = |x⟩
(√

1 − x |0⟩ +
√
x |1⟩

)
. (10)

We note that again this definition allows us to neglect terms O(c1 + c2) in the runtime and
to neglect complications arising from the arithmetic computation of the arcsin. The access
to these rotation unitaries leads to the following fact.
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▶ Fact 12 (Controlled rotations of a function with an interval). Consider a rational number
representation from Definition 7 for some c1, c2 ∈ N. Assume access to controlled rotations
according to Definition 11. Assume (Vh, Th)-quantum access to a function h according to
Definition 10. For any two bit strings a, b ∈ {0, 1}n, with 0 ≤ Q(a) < Q(b), we can construct
a unitary operator Rh

a,b on H ⊗ C2, such that, for all x ∈ E,

Rh
a,b|x, 0⟩ =

|x⟩
(√

1 − Q(h(x))
Q(b) |0⟩ +

√
Q(h(x))

Q(b) |1⟩
)

if Q(a) ≤ Q(h(x)) ≤ Q(b),

|x, 0⟩ otherwise,

where an application of Rh
a,b costs O(Th) time.

Proof. The quantum circuits for the division and for checking the interval run in con-
stant time in the quantum arithmetic model. The quantum circuits allow us to prepare
|x⟩ |Q(h(x))/Q(b)⟩ on the interval using Vh two times, where the second register is of size
polynomial in c1 and c2. Performing a controlled rotation of an ancilla costs constant time
by Definition 11. ◀

Quantum algorithm for Monte Carlo

Our quantum algorithm requires the computation of several expectation values. In this work
we use the quantum algorithm for Monte Carlo from Montanaro [63], already adapted to our
computational model.

▶ Theorem 13 (Quantum algorithm for Monte Carlo QMonteCarlo, [63, Theorem 2.5]). Let
X be a random variable given via quantum sampling access as in Definition 9. Consider
a rational number representation from Definition 7 for some c1, c2 ∈ N. Let E ⊆ Rd

be a finite set and let H be a Hilbert space with basis {|x⟩}x∈E. Consider a function
h : E → {0, 1}n via quantum access to the controlled rotations as in Fact 12, where n ∈ N
such that c1 + c2 + 1 = n, and each access costs time Th. Assume that the random variable
Q(h(X)) has finite mean µ, and variance upper-bounded by σ2 for some known σ > 0. Given
δ, ϵ ∈ (0, 1), there is a quantum algorithm, called QMonteCarlo(h(X), ϵ, δ, σ), that runs in
O((σ/ϵ) log(1/δ) log3/2(σ/ϵ) log log(σ/ϵ)) × (TTsamp + Th) time and outputs an estimate µ̃
such that Pr [|µ̃− µ] ≥ ϵ] ≤ δ.

The above result will be used to approximate expected values, e.g. E[et,k(Xt)et,l(Xt)] and
E[Z∼

τ t+1
e⃗t(Xt)], and was chosen for its simplicity. It is possible, though, to use other, more

complicated quantum subroutines for Monte Carlo, e.g. [41, 22, 21]. Refs. [22, 21] propose
quantum algorithms for multivariate Monte Carlo estimation, which could be particularly
suitable in our case, since most of our quantities of interest are vectors and matrices. However,
since these more complex and alternative quantum subroutines for Monte Carlo lead to the
same time complexities up to polylogarithm factors as Theorem 13, we decided to use the
above result.

Quantum circuits for the stopping times

Recall that Theorem 4 allows us to formulate the stochastic optimal stopping problem with
dynamic programming for the optimal stopping times. Having introduced the quantum
computational model, we are now in the position to construct quantum circuits for various
computations related to the dynamic programming. In particular, we construct a unitary
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that propagates backwards the optimal stopping time by one time step according to Eq. (2).
In what follows, given a path x ∈ ET , by z∼

τ t(x) we mean z∼
τ t(x)(x∼

τ t(x)), i.e., the associated
payoff of the τ̃t(x)-th time step of x.

▶ Lemma 14 (Quantum circuits for computing the stopping times). Let τ̃t′ , t′ ∈ {0, . . . , T},
be stopping times defined in Eq. (2). For all t ∈ [T ], given quantum query access to functions
{zt′ : E → R}T

t′=1 and {et′,k : E → R}t′∈[T −1],k∈[m] in time Tz and Te, respectively, and to
the components of real vectors {α̃t′ ∈ Rm}T

t′=t in time O(1), the following statements are
true (let e0,k(x0) := 1):
1. There is a unitary Wt such that, in time O(Tz +mTe),{

Wt |x⟩ |τ̃t+1(x)⟩ |0⟩⊗3 = |x⟩ |τ̃t+1(x)⟩ |zt(xt)⟩ |α̃t · e⃗t(xt)⟩|τ̃t(x)⟩ if t ̸= T,

Wt |x⟩ |0⟩ = |x⟩|T ⟩ if t = T.

2. There is a unitary V
(k)

t such that V (k)
t |x⟩|τ̃t(x)⟩|0⟩ = |x⟩|τ̃t(x)⟩|z∼

τ t(x)et−1,k(xt−1)⟩, for
k ∈ [m], in time O(T log(T )Tz + Te).

3. The unitary C(k)
t := W †

T . . .W
†
t+1W

†
t V

(k)
t WtWt+1 . . .WT is such that

C
(k)
t |x⟩|0⟩⊗(3(T −t)+2) = |x⟩|z∼

τ t(x)et−1,k(xt−1)⟩|0⟩⊗(3(T −t)+1), for k ∈ [m], in time
O(T (log(T )Tz +mTe)).

Proof. We start with the first statement. The existence of WT is trivial. Assume t ∈ [T − 1],
then, with one query access to function oracle zt and m query accesses to function oracle
et,k for k ∈ [m], we can perform

|x⟩ |0⟩ |0⟩ 7→ |x⟩ |zt(xt)⟩ |0⟩ 7→ |x⟩ |zt(xt)⟩ |e⃗t(xt)⟩ .

By using access to the m elements of α̃t, and O(m) multiplications and additions, we can
compute the inner product of α̃t · e⃗t(xt) in superposition over xt, as

|x⟩ |e⃗t(xt)⟩ |0⟩ 7→ |x⟩ |e⃗t(xt)⟩ |α̃t · e⃗t(xt)⟩ .

Comparing between zt(xt) and α̃t · e⃗t(xt) in constant time, we can compute τ̃t(x) according
to Eq. (2), and hence obtain

|x⟩ |τ̃t+1(x)⟩ |zt(xt)⟩ |α̃t · e⃗t(xt)⟩ |0⟩ 7→ |x⟩ |τ̃t+1(x)⟩ |zt(xt)⟩ |α̃t · e⃗t(xt)⟩ |τ̃t(x)⟩ .

Uncomputing the intermediate steps leads to the desired operation. The total runtime is
O(Tz +mTe +m+m+ 1) = O(Tz +mTe).

Regarding the second statement, we require a few circuits which can be constructed
once as a pre-processing step. First, we prepare the input for the payoff functions in an
ancillary register, where the input depends on the content of the register |τ̃t(x)⟩. For this
step, we prepare a conditional copy quantum circuit Vcopy which operates as |x⟩ |τ̃t(x)⟩ |0⟩ →
|x⟩ |τ̃t(x)⟩ |x∼

τ t(x)⟩, where the register |x∼
τ t(x)⟩ stores the τ̃t(x)-th step of the path x. This

circuit operates in time given by the size of the registers of at most O(T log(T )). Second, from
the access to the different payoff functions we construct access to the functions in superposition
of the time parameter. By assumption, we are given quantum circuits Vzt′ for t′ ∈ [T ]. From
these quantum circuits we construct the controlled circuit Vselect :=

∑T
t′=1 |t′⟩ ⟨t′|⊗Vzt′ , which

consists of the controlled versions of the circuits Vzt′ and has a runtime of O(T log(T )Tz) [10].
Now, given |x⟩ |τ̃t(x)⟩, with one application of Vcopy and one application of Vselect, we obtain
z∼

τ t(x), i.e, the payoff evaluated at x∼
τ t(x), as

|x⟩ |τ̃t(x)⟩ |0⟩ |0⟩ 7→ |x⟩ |τ̃t(x)⟩ |x∼
τ t(x)⟩ |0⟩ 7→ |x⟩ |τ̃t(x)⟩ |x∼

τ t(x)⟩|z∼
τ t(x)⟩.
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Using Vcopy again we uncompute the third register. One query to the function oracle et−1,k

obtains et−1,k(xt−1) and by multiplication we obtain,

|x⟩ |τ̃t(x)⟩ |z∼
τ t(x)⟩ |et−1,k(xt−1)⟩ |0⟩ 7→ |x⟩ |τ̃t(x)⟩ |z∼

τ t(x)⟩ |et−1,k(xt−1)⟩ |z∼
τ t(x)et−1,k(xt−1)⟩.

We uncompute the third and fourth registers using the given circuits to obtain the desired
operation. The total runtime is O(T log(T )Tz + Te).

Finally, for the third statement, it is not hard to see that (let τ̃T := T )

C
(k)
t |x⟩|0⟩⊗(3(T −t)+2) = W †

T . . . W †
t V

(k)
t |x⟩|T ⟩|0⟩

T −1⊗
j=t

|zj(xj)⟩ |α̃j · e⃗j(xj)⟩ |τ̃j(x)⟩

= W †
T . . . W †

t |x⟩|T ⟩|z∼
τ t(x)et−1,k(xt−1)⟩

T −1⊗
j=t

|zj(xj)⟩ |α̃j · e⃗j(xj)⟩ |τ̃j(x)⟩

= |x⟩|z∼
τ t(x)et−1,k(xt−1)⟩|0⟩⊗(3(T −t)+1).

From the two previous statements, the runtime of C(k)
t is 2(T − t + 1)O(Tz + mTe) +

O(T log(T )Tz + Te) = O(T (log(T )Tz +mTe)). ◀

3.2 The algorithm

We present our quantum LSM algorithm in Algorithm 2. It computes the expecta-
tions E[et,k(Xt)et,l(Xt)] (for the matrices {At}T −1

t=1 ), E[Z∼
τ t+1

e⃗t(Xt)] and E[Z∼
τ 1

] using
Theorem 13 instead of drawing random samples. Recall that by definition Z∼

τ t+1
=

z∼
τ t+1(Xt+1)(X∼

τ t+1(Xt+1)), i.e., both the optimal stopping time and the payoff depend on
the path of the Markov chain.

As previously mentioned, it follows the classical version in Algorithm 1. However,
the dynamic programming is not solved separately along different sampled paths, but
in superposition along all possible stochastic processes. More specifically, at any given
time t, the dynamic programming is solved in a backward fashion from time T to t+ 1 by
constructing a unitary that prepares the approximate stopping times τ̃t+1 in superposition via
the mapping |x⟩ |0⟩ 7→ |x⟩|τ̃t+1(x)⟩ for all x ∈ ET . Such unitary is constructed (Lemma 14)
using the values of all stopping times τ̃t+1 calculated so far in the dynamic program and
allows access to the quantity Z∼

τ t+1
, which in turn is used in the quantum subroutines for

Monte Carlo to extract expectation values E[Zτt+1 |Xt] that make up the vector bt. The
matrices {At}T −1

t=1 , in turn, are computed in an entrywise fashion at the start of the algorithm
by using quantum access to the functions et,k(xt)et,l(xt). In hold of the approximations
Ãt and b̃t to At and bt, respectively, the vector α̃t = Ã−1

t b̃t is then computed classically
and used to continue the dynamic programming at the next time step t when solving
τ̃t(x) = t1{zt(xt) ≥ α̃t · e⃗t(xt)} + τ̃t+1(x)1{zt(xt) < α̃t · e⃗t(xt)} from time T to time t in
superposition. Such procedure is repeated until t = 1, when the optimal stopping time τ̃1 can
be computed in superposition and thus the quantity supτ E[Zτ ] can finally be approximated
by max{Z0, Z̃∼

τ 1
}. We note that the procedure of approximating a matrix At and a vector bt

entrywise via quantum algorithms for Monte Carlo followed by the classical computation
of α̃t = Ã−1

t b̃t was already used in [50]. We also note that, unlike the classical LSM, our
quantum algorithm requires redoing all previous dynamic programming steps before a given
time t in order to progress into the next time step t− 1. The final procedure involves O(T 2)
time steps instead of O(T ).
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Algorithm 2 Quantum LSM algorithm for optimal stopping problem.

Input: Parameters δ ∈ (0, 1), ϵ > 0. Quantum sampling access to Markov chain (Xt)T
t=1

defined on a finite sample space Ω and with finite state space E ⊆ Rd. Quantum query
access to {zt : E → R}T

t=1 and linearly independent functions {et,k : E → R}m
k=1 for

t ∈ [T − 1]. Let L := maxt∈[T −1],k∈[m] ∥et,k∥L2(ρt) and R := maxt∈[T ] ∥zt∥u.
1: δA := δ/(4Tm2), δb := δ/(4Tm), ϵA := ϵ/m and ϵb := ϵ/

√
m.

2: Construct quantum access and controlled rotation access to et,ket,l, ∀k, l ∈ [m], t ∈ [T−1],
with quantum query access to et,j , quantum circuits for multiplication and Fact 12.

3: Compute {Ãt}T −1
t=1 by calling QMonteCarlo(et,k(Xt)et,l(Xt), ϵA, δA, L2) for k, l ∈ [m].

4: Compute the inverses {Ã−1
t }T −1

t=1 .
5: Prepare unitary WT s.t. WT |x⟩|0⟩ = |x⟩|τ̃T (x)⟩, where τ̃T (x) = T for all x ∈ ET .
6: for t = T to 2 do
7: if t ̸= T then
8: Prepare unitary Wt s.t. Wt |x⟩ |τ̃t+1(x)⟩ |0⟩⊗3 = |x⟩ |τ̃t+1(x)⟩ |zt(xt)⟩ |α̃t ·

e⃗t(xt)⟩|τ̃t(x)⟩ for any τ̃t+1(x) ∈ [T ] (Lemma 14).
9: end if

10: Prepare unitaries {V (k)
t }m

k=1 s.t. V (k)
t |x⟩|τ̃t(x)⟩|0⟩ = |x⟩|τ̃t(x)⟩|z∼

τ t(x)et−1,k(xt−1)⟩
(Lemma 14).

11: Prepare unitary W †
T . . .W

†
t+1W

†
t V

(k)
t WtWt+1 . . .WT for k ∈ [m] (Lemma 14).

12: Construct quantum access to the controlled rotations of the functions
z∼

τ t(x)et−1,k(xt−1) (Fact 12).
13: Execute QMonteCarlo(Z∼

τ t
et−1,k(Xt−1), ϵb, δb, RL), for all k ∈ [m], to compute b̃t−1.

14: Compute the vector α̃t−1 = Ã−1
t−1b̃t−1 classically.

15: end for
16: Prepare unitary W1 s.t. W1 |x⟩ |τ̃2(x)⟩ |0⟩⊗3 = |x⟩ |τ̃2(x)⟩ |z1(x1)⟩ |α̃1 · e⃗1(x1)⟩|τ̃1(x)⟩ for

any τ̃2(x) ∈ [T ] (Lemma 14).
17: Prepare unitary V1 s.t. V1|x⟩|τ̃1(x)⟩|0⟩ = |x⟩|τ̃1(x)⟩|z∼

τ 1(x)⟩ (Lemma 14).
18: Prepare unitary W †

T . . .W
†
2W

†
1V1W1W2 . . .WT (Lemma 14).

19: Construct quantum access to the controlled rotations of the function z∼
τ 1

(Fact 12).
20: Execute QMonteCarlo(Z∼

τ 1
, ϵ, δ

2 , R) to compute Z̃∼
τ 1

.
21: Output Ũ0 := max

{
Z0, Z̃∼

τ 1

}
.

3.3 Error analysis and complexity

In Appendix A we prove that the classical LSM algorithm and our proposed quantum
LSM algorithm approximate the sought-after quantity U0 up to additive accuracy with high
probability. Among several results, the following encapsulates the overall complexity of the
classical and quantum LSM algorithms. For simplicity we assume that Tsamp, Tz, Te = O(1).

▶ Theorem 15 (Informal version of Corollary 22). Consider a set of linearly independent
functions {et,k : E → R}m

k=1 for each t ∈ [T − 1] and payoff functions {zt : E → R}T
t=0.

Then, for δ ∈ (0, 1) and ϵ > 0, the classical and quantum LSM algorithms output Ũ0 such that

Pr
[
|Ũ0 − U0| ≥ 5T

(
ϵ+ max

0<t<T
min

a∈Rm
∥a · e⃗t(Xt) − E[Zτt+1 |Xt]∥L2(ρt)

)]
≤ δ

using time, respectively, Õ
(

T m6

ϵ2

)
and Õ

(
T 2m4

ϵ

)
, up to polylog terms.
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The error ϵ arises from the Monte Carlo subroutines and can be made smaller by increasing the
calls to the quantum inputs (or to the number of sampled paths in the classical counterpart).
Compared to the classical algorithm, the number of oracle calls is quadratically less in the
quantum algorithm. The quantity mina∈Rm ∥a · e⃗t(Xt) − E[Zτt+1 |Xt]∥L2(ρt) appearing in the
theorem above is known as approximation error. This term arises from approximating the
continuation values by the m expansion functions and is a deterministic quantity implicitly
dependent on m and on smoothness properties of the continuation values.

In order to obtain a final additive accuracy ϵfinal for Ũ0, we must resolve the implicit
dependence of the approximation error on m. This is done by considering specific sets of
expansion functions and assuming sufficiently good smoothness properties for the continuation
values. More specifically, for each t ∈ [T − 1] we consider functions {et,k : E → R}m

k=1 that
generate the space Rq of all polynomials of degree at most q, so that m =

(
q+d

d

)
. We also

assume that E[Zτt+1 |Xt] ∈ Cn, i.e., the continuation values are n-differentiable functions.
Then it is possible to bound the approximation error mina∈Rm ∥a · e⃗t(Xt)−E[Zτt+1 |Xt]∥L2(ρt)
by using a Jackson-like inequality [47] and obtain the following result (see the arXiv version [28]
for the full statement and proof).

▶ Theorem 16. For each t ∈ [T − 1] consider a set of linearly independent functions
{et,k : E → R}m

k=1 that spans the space Rq with m =
(

q+d
d

)
and consider payoff functions

{zt : E → R}T
t=0. Assume that E[Zτt+1 |Xt] ∈ Cn for all t ∈ {0, . . . , T − 1}, where n ≤ q.

Then, for δ ∈ (0, 1) and ϵ > 0, if q = ⌈(5T /ϵ)1/n⌉, the classical and quantum LSM algorithms
output Ũ0 such that Pr

[
|Ũ0 − U0| ≥ ϵ

]
≤ δ using time, respectively, Õ

(
(5T /ϵ)2+6d/n

)
and

Õ
(
(5T /ϵ)1+4d/n

)
, up to polylog terms.

If the continuation values are n-times differentiable, for n = Θ(log
(
5T /ϵ

)
/ log log

(
5T /ϵ

)
),

then we get the sought-after quadratic improvement from Õ((5T /ϵ)2) classical runtime to
Õ(5T /ϵ) quantum runtime, up to polylog terms. We briefly note that such smoothness
conditions on the continuation values are not unusual in areas like finance. Indeed, the
continuation values can even be in C∞ in some models, e.g. Black-Scholes [34, 85].

Very recently, Miyamoto [62] proposed a quantum LSM algorithm based on Chebyshev
interpolation through Chebyshev nodes and obtained O(ϵ−1 logd(1/ϵ)poly log log(1/ϵ)) as a
final complexity. Our approach, in contrast, is to project E[Zτt+1 |Xt] onto a set of polynomials
and is, for this reason, much more general. Moreover, our final result is a time complexity,
while the result from [62] is a query complexity on the number of unitaries called by all
quantum routines for Monte Carlo. Finally, Miyamoto [62] assumes that the continuation
values are analytical functions, i.e., are in C∞, while we only need to assume E[Zτt+1 |Xt] ∈ Cn

for n = Θ(log
(
5T /ϵ

)
/ log log

(
5T /ϵ

)
) in order to recover Õ(ϵ−1) up to polylog factors. One

downside of our approach, though, is the presence of quantities that implicitly depend on
the underlying Markov chain.

As just mentioned, the full results behind the informal theorems above involve parameters
that depend on the underlying Markov chain such as the minimum singular value of the
matrices At. In order to explicitly work these parameters out, we also study the case
when the underlying Markov process follows Brownian motion or geometric Brownian
motion and obtain a simplified version of our algorithm (see arXiv version [28]). In the
case of Brownian motion, we choose Hermite polynomials as the functions {et,k : E →
R}m

k=1 for each t ∈ [T − 1], since they are orthogonal under the probability measure
underlying a Brownian motion. This means that the matrices At are just the identity.
The final result is a mild reduction on the classical and quantum time complexities to
Õ((5T /ϵ)2+4d/n) and Õ((5T /ϵ)1+7d/2n), respectively. For the geometric Brownian motion,
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we pick suitable monomials that reduce the matrices At to Vandermonde matrices, whose
minimum singular value can be bounded. We obtain the final classical and quantum
complexities eO((5T /ϵ)2/n)(5T /ϵ)2+12d/n and eO((5T /ϵ)2/n)(5T /ϵ)1+15d/2n, respectively. If the
continuation values are again n-times differentiable for n = Θ(log

(
5T /ϵ

)
/ log log

(
5T /ϵ

)
),

then the classical and quantum complexities for the Brownian motion setting reduce to
the usual Õ(ϵ−2) and Õ(ϵ−1), respectively, while, for the geometric Brownian motion, they
reduce to eO(logc(5T /ϵ))(5T /ϵ)2 and eO(logc(5T /ϵ))(5T /ϵ) for any constant 0 < c < 1. These
results for the geometric Brownian motion are slightly weaker than the usual Õ((5T /ϵ)2) and
Õ(5T /ϵ), since the bound on the minimum singular value of the matrix At is very sensitive
to the degree q of the chosen monomials.

4 Conclusions

In this work, we developed a new quantum algorithm for a stochastic optimal stopping
problem (as in Theorem 4) with a quantum advantage in the runtime. This problem
cannot be solved accurately by a single application of quantum algorithms for Monte
Carlo [63, 41, 22, 21, 3]. Instead one must compute in superposition (and recursively) the
stopping times as in Lemma 14, which is key to obtaining a quantum speedup. As the
classical LSM algorithm can be used to solve a large variety of problems, our quantum LSM
can also be used for problems in finance including insurance [53] and risk management [38],
and for many optimization problems outside finance, such as quickest detection [82] and
sequential Bayesian hypothesis testing [26]. Additionally, we believe that there are many
other problems in, for example, dynamic programming, stochastic optimal stopping and
optimal control where the interplay of function approximation and quantum subroutines for
Monte Carlo could be used to design new quantum algorithms.

A few design choices of the quantum algorithm were guided by real problems where the
classical algorithm is already used. Even though we took number of expansion functions
m = poly(5T /ϵ) in order to bound the approximation error, in practice one typically assumes
m to be constant [57]. For big values of m, our algorithm could be modified in order to use
quantum subroutines for inner product estimation, and reduce the complexity polynomially
in m, but introducing a further ϵ dependence. Thus, further analysis is needed to understand
the impact of the precision parameters on the runtime of these subroutines. Along these
lines, we have chosen to invert the linear systems for finding αt on a classical computer.
A possible modification of our algorithm could output quantum states |αt⟩ via HHL-like
algorithms [43]. We also discussed how, under the hypothesis that the Markov chain is a
Brownian motion or a Geometric Brownian motion, the matrices At can be expressed with
a closed formula and their minimum singular value be bounded. This idea exhibits some
similarity with the idea proposed in [56]. There, they leveraged quasi-regression algorithms
and a particular choice of expansion functions [68], so to pre-compute the matrices At, and
thus skip costly Monte Carlo estimators. Moreover, when considering a Brownian or a
Geometric Brownian motion, the chosen functions {et,k}m

k=1 had a explicit time dependence
on t, but it is possible to transform the optimal stopping time problem behind American
option pricing in a way that such dependence is suppressed and a single set of approximating
functions is employed [15, 16]. We believe that such approach could improve our complexities.
Finally, in our algorithm, we use quantum subroutines from [63], but could equivalently use
the subroutines from [41, 22, 21]. Our template could be extended to quantum algorithms
that are similar in spirit but are solving different problems [87].
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Our final complexities have an exponential dependence on T , the number of time steps.
We believe that such dependence, present in several past works [30, 93, 94, 95, 96, 62], is
only a consequence of a loose error bound and could possibly be improved. Such hope is
backed up by the ubiquitous employment of LSM algorithms for pricing American options in
every day financial markets. We also note that a more careful error analysis would improve
classical results as well, but, regardless, the quantum quadratic improvement would still be
present. Finally, notice that it always possible to compensate a reduction on the number of
time steps with more accurate approximations for continuation values and similar quantities.

We stress the importance of fast quantum algorithms for optimal stopping problems. For
American option pricing, the value of the payoff function could easily reach a few million
dollars, and the additive precision ϵ could be of the order of 10−11 [4]. Given the level of
specialization in classical algorithms and architectures for this specific problem, how and
when our algorithm can find application in practice is left for future work.

References
1 Directive 2009/138/EC of the European Parliament and of the Council of 25 November 2009

on the taking-up and pursuit of the business of Insurance and Reinsurance (Solvency II), 2009.
2 Javier Alcazar, Vicente Leyton-Ortega, and Alejandro Perdomo-Ortiz. Classical versus

quantum models in machine learning: insights from a finance application. Machine Learning:
Science and Technology, 1(3):035003, 2020.

3 Dong An, Noah Linden, Jin-Peng Liu, Ashley Montanaro, Changpeng Shao, and Jiasu Wang.
Quantum-accelerated multilevel Monte Carlo methods for stochastic differential equations in
mathematical finance. Quantum, 5:481, 2021.

4 Leif B. G. Andersen, Mark Lake, and Dimitri Offengenden. High-performance American option
pricing. Journal of Computational Finance, 20(1):39–87, 2016.

5 Anna Rita Bacinello, Enrico Biffis, and Pietro Millossovich. Pricing life insurance contracts
with early exercise features. Journal of computational and applied mathematics, 233(1):27–35,
2009.

6 Panagiotis Kl. Barkoutsos, Giacomo Nannicini, Anton Robert, Ivano Tavernelli, and Stefan
Woerner. Improving variational quantum optimization using CVaR. Quantum, 4:256, 2020.

7 Giovanni Barone-Adesi and Robert E. Whaley. Efficient analytic approximation of American
option values. the Journal of Finance, 42(2):301–320, 1987.

8 Christian Bender and Jessica Steiner. Least-squares Monte Carlo for backward SDEs. In
Numerical methods in finance, pages 257–289. Springer, 2012.

9 Alain Bensoussan and J.-L. Lions. Applications of variational inequalities in stochastic control.
Elsevier, 2011.

10 Dominic W. Berry, Andrew M. Childs, Richard Cleve, Robin Kothari, and Rolando D. Somma.
Simulating Hamiltonian dynamics with a truncated taylor series. Phys. Rev. Lett., 114:090502,
2015. doi:10.1103/PhysRevLett.114.090502.

11 Fischer Black and Myron Scholes. The pricing of options and corporate liabilities. Journal of
Political Economy, 81:637–654, 1973.

12 Adam Bouland, Wim van Dam, Hamed Joorati, Iordanis Kerenidis, and Anupam Prakash.
Prospects and challenges of quantum finance. arXiv preprint, 2020. arXiv:2011.06492.

13 Phelim P. Boyle. Options: a Monte Carlo approach. Journal of Financial Economics,
4(3):323–338, 1977.

14 Gilles Brassard, Peter Hoyer, Michele Mosca, and Alain Tapp. Quantum amplitude amplifica-
tion and estimation. Contemporary Mathematics, 305:53–74, 2002.

15 Mark Broadie, Jérôme Detemple, Eric Ghysels, and Olivier Torrès. American options with
stochastic dividends and volatility: A nonparametric investigation. Journal of Econometrics,
94(1-2):53–92, 2000.

https://doi.org/10.1103/PhysRevLett.114.090502
http://arxiv.org/abs/2011.06492


J. F. Doriguello, A. Luongo, J. Bao, P. Rebentrost, and M. Santha 2:17

16 Mark Broadie, Jérôme Detemple, Eric Ghysels, and Olivier Torrès. Nonparametric estimation
of American options’ exercise boundaries and call prices. Journal of Economic Dynamics and
Control, 24(11-12):1829–1857, 2000.

17 Mark Broadie and Paul Glasserman. Monte Carlo methods for pricing high-dimensional
American options: an overview. Net Exposure, 3:15–37, 1997.

18 Shouvanik Chakrabarti, Rajiv Krishnakumar, Guglielmo Mazzola, Nikitas Stamatopoulos,
Stefan Woerner, and William J. Zeng. A threshold for quantum advantage in derivative pricing.
Quantum, 5:463, 2021.

19 Don M. Chance. A synthesis of binomial option pricing models for lognormally distributed
assets. Journal of Applied Finance (Formerly Financial Practice and Education), 18(1), 2008.

20 Emmanuelle Clément, Damien Lamberton, and Philip Protter. An analysis of a least squares
regression method for American option pricing. Finance and Stochastics, 6(4):449–471, 2002.

21 Arjan Cornelissen, Yassine Hamoudi, and Sofiene Jerbi. Near-optimal quantum algorithms for
multivariate mean estimation. arXiv preprint, 2021. arXiv:2111.09787.

22 Arjan Cornelissen and Sofiene Jerbi. Quantum algorithms for multivariate Monte Carlo
estimation. arXiv preprint, 2021. arXiv:2107.03410.

23 John C. Cox, Stephen A. Ross, and Mark Rubinstein. Option pricing: a simplified approach.
Journal of Financial Economics, 7(3):229–263, 1979.

24 Gary Wayne Crosby. Optimal multiple stopping: theory and applications. PhD thesis, The
University of North Carolina at Charlotte, 2017.

25 Samudra Dasgupta and Arnab Banerjee. Quantum annealing algorithm for expected shortfall
based dynamic asset allocation. arXiv preprint, 2019. arXiv:1909.12904.

26 Constantinos Daskalakis and Yasushi Kawase. Optimal stopping rules for sequential hypothesis
testing. In 25th Annual European Symposium on Algorithms (ESA), 2017.

27 Georgios Dimitrakopoulos. Least-squares Monte Carlo simulation and high performance
computing for Solvency II regulatory capital estimation. Master’s thesis, The University of
Manchester (United Kingdom), 2013.

28 João F. Doriguello, Alessandro Luongo, Jinge Bao, Patrick Rebentrost, and Miklos Santha.
Quantum algorithm for stochastic optimal stopping problems with applications in finance.
arXiv preprint, 2021. arXiv:2111.15332.

29 Daniel J. Egger, Claudio Gambella, Jakub Marecek, Scott McFaddin, Martin Mevissen, Rudy
Raymond, Andrea Simonetto, Stefan Woerner, and Elena Yndurain. Quantum computing for
finance: state of the art and future prospects. IEEE Transactions on Quantum Engineering,
2020.

30 Daniel Egloff. Monte Carlo algorithms for optimal stopping and statistical learning. The
Annals of Applied Probability, 15(2):1396–1432, 2005.

31 Hans Föllmer and Alexander Schied. Stochastic finance. de Gruyter, 2016.
32 Filipe Fontanela, Antoine Jacquier, and Mugad Oumgari. A quantum algorithm for linear

PDEs arising in finance. SIAM Journal on Financial Mathematics, 12(4):SC98–SC114, 2021.
33 Michael C. Fu, Scott B. Laprise, Dilip B. Madan, Yi Su, and Rongwen Wu. Pricing American

options: a comparison of Monte Carlo simulation approaches. Journal of Computational
Finance, 4(3):39–88, 2001.

34 Stefan Gerhold. The Longstaff-Schwartz algorithm for Lévy models: results on fast and slow
convergence. The Annals of Applied Probability, 21(2):589–608, 2011.

35 Emmanuel Gobet, Jean-Philippe Lemor, and Xavier Warin. A regression-based Monte Carlo
method to solve backward stochastic differential equations. The Annals of Applied Probability,
15(3):2172–2202, 2005.

36 Emmanuel Gobet and Plamen Turkedjiev. Approximation of discrete BSDE using least-squares
regression, November 2011. Technical report. URL: https://hal.archives-ouvertes.fr/
hal-00642685.

37 Gene H. Golub and Charles F. Van Loan. Matrix computations, 2013.

TQC 2022

http://arxiv.org/abs/2111.09787
http://arxiv.org/abs/2107.03410
http://arxiv.org/abs/1909.12904
http://arxiv.org/abs/2111.15332
https://hal.archives-ouvertes.fr/hal-00642685
https://hal.archives-ouvertes.fr/hal-00642685


2:18 Quantum Algorithm for Stochastic Optimal Stopping Problems

38 Andrew Green. XVA: Credit, Funding and Capital Valuation Adjustments. John Wiley &
Sons, 2015.

39 Lov Grover and Terry Rudolph. Creating superpositions that correspond to efficiently integrable
probability distributions. arXiv preprint, 2002. arXiv:quant-ph/0208112.

40 Eli Gutin. Practical applications of large-scale stochastic control for learning and optimization.
PhD thesis, Massachusetts Institute of Technology, 2018.

41 Yassine Hamoudi. Quantum sub-Gaussian mean estimator. In 29th Annual European Sym-
posium on Algorithms (ESA 2021). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2021.

42 Jeong Yu Han and Patrick Rebentrost. Quantum advantage for multi-option portfolio pricing
and valuation adjustments. arXiv preprint, 2022. arXiv:2203.04924.

43 Aram W. Harrow, Avinatan Hassidim, and Seth Lloyd. Quantum algorithm for linear systems
of equations. Physical review letters, 103(15):150502, 2009.

44 Steven Herbert. No quantum speedup with Grover-Rudolph state preparation for quantum
Monte Carlo integration. Physical Review E, 103(6):063302, 2021.

45 Mark Hodson, Brendan Ruck, Hugh Ong, David Garvin, and Stefan Dulman. Portfolio
rebalancing experiments using the quantum alternating operator ansatz. arXiv preprint, 2019.
arXiv:1911.05296.

46 Jacqueline Huang and Jong-Shi Pang. Option pricing and linear complementarity. Technical
report, Cornell University, 2003.

47 Dunham Jackson. A general class of problems in approximation. American Journal of
Mathematics, 46(4):215–234, 1924.

48 Patrick Jaillet, Damien Lamberton, and Bernard Lapeyre. Variational inequalities and the
pricing of American options. Acta Applicandae Mathematica, 21(3):263–289, 1990.

49 Kazuya Kaneko, Koichi Miyamoto, Naoyuki Takeda, and Kazuyoshi Yoshino. Quantum pricing
with a smile: implementation of local volatility model on quantum computer. arXiv preprint,
2020. arXiv:2007.01467.

50 Kazuya Kaneko, Koichi Miyamoto, Naoyuki Takeda, and Kazuyoshi Yoshino. Linear regression
by quantum amplitude estimation and its extension to convex optimization. Phys. Rev. A,
104:022430, 2021. doi:10.1103/PhysRevA.104.022430.

51 In Joon Kim. The analytic valuation of American options. The Review of Financial Studies,
3(4):547–572, 1990.

52 Michael Kohler. A review on regression-based Monte Carlo methods for pricing American
options. In Recent developments in applied probability and statistics, pages 37–58. Springer,
2010.

53 Anne-Sophie Krah, Zoran Nikolić, and Ralf Korn. A least-squares Monte Carlo framework in
proxy modeling of life insurance companies. Risks, 6(2):62, 2018.

54 Jean-Philippe Lemor, Emmanuel Gobet, and Xavier Warin. Rate of convergence of an empirical
regression method for solving generalized backward stochastic differential equations. Bernoulli,
12(5):889–916, 2006.

55 Xiaofei Li, Yi Wu, Quanxin Zhu, Songbo Hu, and Chuan Qin. A regression-based Monte Carlo
method to solve two-dimensional forward backward stochastic differential equations. Advances
in Difference Equations, 2021(1):1–13, 2021.

56 Chen Liu, Henry Schellhorn, and Qidi Peng. American option pricing with regression:
convergence analysis. International Journal of Theoretical and Applied Finance, 22(08):1950044,
2019.

57 Francis A. Longstaff and Eduardo S. Schwartz. Valuing American options by simulation: a
simple least-squares approach. The review of financial studies, 14(1):113–147, 2001.

58 Gabriel Marin-Sancheza, Javier Gonzalez-Conde, and Mikel Sanz. Quantum algorithms for
approximate function loading. arXiv preprint, 2021. arXiv:2111.07933.

59 Ana Martin, Bruno Candelas, Ángel Rodríguez-Rozas, José D. Martín-Guerrero, Xi Chen,
Lucas Lamata, Román Orús, Enrique Solano, and Mikel Sanz. Toward pricing financial
derivatives with an IBM quantum computer. Physical Review Research, 3(1):013167, 2021.

http://arxiv.org/abs/quant-ph/0208112
http://arxiv.org/abs/2203.04924
http://arxiv.org/abs/1911.05296
http://arxiv.org/abs/2007.01467
https://doi.org/10.1103/PhysRevA.104.022430
http://arxiv.org/abs/2111.07933


J. F. Doriguello, A. Luongo, J. Bao, P. Rebentrost, and M. Santha 2:19

60 Henry P. McKean Jr. A free boundary problem for the heat equation arising from a problem
of mathermatical economics. Industrial Management Review, 6:32–39, 1965.

61 Robert C. Merton. Theory of rational option pricing. The Bell Journal of Economics and
Management Science, 4(1):141–183, 1973.

62 Koichi Miyamoto. Bermudan option pricing by quantum amplitude estimation and Chebyshev
interpolation. arXiv preprint, 2021. arXiv:2108.09014.

63 Ashley Montanaro. Quantum speedup of Monte Carlo methods. Proceedings of the Royal
Society A: Mathematical, Physical and Engineering Sciences, 471(2181):20150301, 2015.

64 Alexey Muravlev and Mikhail Zhitlukhin. A Bayesian sequential test for the drift of a fractional
Brownian motion. Advances in Applied Probability, 52(4):1308–1324, 2020.

65 Jacques Neveu. Discrete-parameter martingales. Elsevier, 1975.
66 Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum Information.

Cambridge University Press, 2010. doi:10.1017/CBO9780511976667.
67 Roman Orus, Samuel Mugel, and Enrique Lizaso. Quantum computing for finance: overview

and prospects. Reviews in Physics, 4:100028, 2019.
68 Art B. Owen. Assessing linearity in high dimensions. The Annals of Statistics, 28(1):1–19,

2000.
69 Antoon Pelsser and Janina Schweizer. The difference between lsmc and replicating portfolio

in insurance liability modeling. European actuarial journal, 6(2):441–494, 2016.
70 Goran Peskir and Albert Shiryaev. Optimal stopping and free-boundary problems. Springer,

2006.
71 Warren B. Powell. A unified framework for stochastic optimization. European Journal of

Operational Research, 275(3):795–821, 2019.
72 Santosh Kumar Radha. Quantum option pricing using wick rotated imaginary time evolution.

arXiv preprint, 2021. arXiv:2101.04280.
73 Sergi Ramos-Calderer, Adrián Pérez-Salinas, Diego García-Martín, Carlos Bravo-Prieto, Jorge

Cortada, Jordi Planaguma, and José I. Latorre. Quantum unary approach to option pricing.
Physical Review A, 103(3):032414, 2021.

74 Patrick Rebentrost, Brajesh Gupt, and Thomas R. Bromley. Quantum computational finance:
Monte Carlo pricing of financial derivatives. Phys. Rev. A, 98:022321, 2018.

75 Patrick Rebentrost and Seth Lloyd. Quantum computational finance: quantum algorithm for
portfolio optimization. arXiv preprint, 2018. arXiv:1811.03975.

76 Patrick Rebentrost, Miklos Santha, and Siyi Yang. Quantum alphatron. arXiv preprint, 2021.
arXiv:2108.11670.

77 Richard J. Rendleman. Two-state option pricing. The Journal of Finance, 34(5):1093–1110,
1979.

78 Leonard C. G. Rogers. Monte Carlo valuation of American options. Mathematical Finance,
12(3):271–286, 2002.

79 Joose Mikko Juhani Sauli. On the suitability of the Longstaff-Schwartz term structure model
for modelling the cost of government debt. Master’s thesis, Helsingfors Universitet, 2013.

80 William F. Sharpe, Gordon J. Alexander, and Jeffrey W. Bailey. Investments. Prentice-Hall,
1999.

81 Albert N. Shiryaev. Optimal stopping rules, volume 8. Springer Science & Business Media,
2007.

82 Albert N. Shiryaev. Quickest detection problems: fifty years later. Sequential Analysis,
29(4):345–385, 2010.

83 Nikitas Stamatopoulos, Daniel J. Egger, Yue Sun, Christa Zoufal, Raban Iten, Ning Shen,
and Stefan Woerner. Option pricing using quantum computers. arXiv preprint, 2019. arXiv:
1905.02666.

84 Nikitas Stamatopoulos, Guglielmo Mazzola, Stefan Woerner, and William J. Zeng. Towards
quantum advantage in financial market risk using quantum gradient algorithms. arXiv preprint,
2021. arXiv:2111.12509.

TQC 2022

http://arxiv.org/abs/2108.09014
https://doi.org/10.1017/CBO9780511976667
http://arxiv.org/abs/2101.04280
http://arxiv.org/abs/1811.03975
http://arxiv.org/abs/2108.11670
http://arxiv.org/abs/1905.02666
http://arxiv.org/abs/1905.02666
http://arxiv.org/abs/2111.12509


2:20 Quantum Algorithm for Stochastic Optimal Stopping Problems

85 Peter Tankov, Ekaterina Voltchkova, and Rama Cont. Option pricing models with jumps:
integro-differential equations and inverse problems. In European Congress on Computational
Methods in Applied Sciences and Engineering (ECCOMAS 2004), 2004.

86 Elliot Tonkes and Dharma Lesmono. A Longstaff and Schwartz approach to the early election
problem. Advances in Decision Sciences, 2012, 2012.

87 John N. Tsitsiklis and Benjamin Van Roy. Regression methods for pricing complex American-
style options. IEEE Transactions on Neural Networks, 12(4):694–703, 2001.

88 Pierre Van Moerbeke. On optimal stopping and free boundary problems. Archive for Rational
Mechanics and Analysis, 60(2):101–148, 1976.

89 Almudena Carrera Vazquez and Stefan Woerner. Efficient state preparation for quantum
amplitude estimation. Physical Review Applied, 15(3):034027, 2021.

90 Abraham Wald. Sequential Analysis. John Wiley and Sons, 1st edition edition, 1947.
91 Pawel Wocjan, Chen-Fu Chiang, Daniel Nagaj, and Anura Abeyesinghe. Quantum algorithm

for approximating partition functions. Phys. Rev. A, 80:022340, 2009.
92 Stefan Woerner and Daniel J. Egger. Quantum risk analysis. arXiv preprint, 2018. arXiv:

1806.06893.
93 Daniel Z. Zanger. Convergence of a least-squares Monte Carlo algorithm for bounded approx-

imating sets. Applied Mathematical Finance, 16(2):123–150, 2009.
94 Daniel Z. Zanger. Quantitative error estimates for a least-squares Monte Carlo algorithm for

American option pricing. Finance and Stochastics, 17(3):503–534, 2013.
95 Daniel Z. Zanger. Convergence of a least-squares Monte Carlo algorithm for American option

pricing with dependent sample data. Mathematical Finance, 28(1):447–479, 2018.
96 Daniel Z. Zanger. General error estimates for the Longstaff-Schwartz least-squares Monte

Carlo algorithm. Mathematics of Operations Research, 45(3):923–946, 2020.

A Error Analysis and Complexity

In what follows, given b ∈ Rm and A ∈ Rm×m for some m ∈ N, let ∥b∥2 :=
√∑m

i=1 b
2
i

and ∥A∥2 := σmax(A) be the vector and matrix norms, respectively, where σmax(A) is the
maximum singular value of A. We shall denote by σmin(A) the minimum singular value of
A. Let ω∗ denote the matrix multiplication exponent. Moreover, recall the uniform norm
∥f∥u = sup{|f(s)| : s ∈ E} for f : E → R.

We shall analyze the approximation error and complexity from Algorithm 2. In order to
do so, we will need the following result from [93, 96] (already modified to our notation) that
bounds the error between the exact continuation values E[Zτt+1 |Xt] and their approximation
α̃t · e⃗t(Xt) in terms of the error between the continuation values E[Z∼

τ k+1
|Xk] evaluated on

the approximated stopping times τ̃k+1 and α̃k · e⃗t(Xk) for k ∈ {t, . . . , T − 1}. Recall the
image probability measures ρt in E ⊆ Rd induced by each element Xt, t ∈ {0, . . . , T}.

▶ Lemma 17 ([93, Lemma 2.2]). For each t ∈ {0, . . . , T − 1}, we have

∥α̃t · e⃗t(Xt) − E[Zτt+1 |Xt]∥L2(ρt) ≤ 2
T −1∑
k=t

∥α̃k · e⃗k(Xk) − E[Z∼
τ k+1

|Xk]∥L2(ρk),

∥E[Z∼
τ t+1

|Xt] − E[Zτt+1 |Xt]∥L2(ρt) ≤ 2
T −1∑

k=t+1
∥α̃k · e⃗k(Xk) − E[Z∼

τ k+1
|Xk]∥L2(ρk),

where α̃0 · e⃗0(X0) := Z̃∼
τ 1

approximates E[Z∼
τ 1

].

We will also need the following technical result on the sensitivity of square systems.
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▶ Theorem 18 ([37, Theorem 2.6.2]). Let Ax = b and Ãx̃ = b̃, where A, Ã ∈ Rd×d and
b, b̃ ∈ Rd, with b ̸= 0. Suppose that ∥A − Ã∥2 ≤ ϵA and ∥b − b̃∥2 ≤ ϵb. If ϵA ≤ σmin(A)/2,
where σmin(A) is the minimum singular value of A, then

∥x− x̃∥2 ≤ 2
σmin(A)

(
ϵA∥b∥2

σmin(A) + ϵb

)
.

We are now able to state a central theorem for our quantum LSM algorithm.

▶ Theorem 19. Within the setting of Algorithm 2 with input parameters δ and ϵ, let TTsamp
be the sampling cost of the Markov chain and consider a set of linearly independent functions
{et,k : E → R}m

k=1 for each t ∈ [T − 1] with L := maxt∈[T −1],k∈[m] ∥et,k∥L2(ρt) and query
cost Te. Also consider {zt : E → R}T

t=0 with R := maxt∈[T ] ∥zt∥u < ∞ and query cost Tz.
Moreover, let σmin := mint∈[T −1] σmin(At) > 0. Assume that

√
mRL/σmin ≥ 1 and define

Ttotal := Tsamp + Tz + Te. Then, for any δ ∈ (0, 1) and ϵ ∈ (0, σmin/2], Algorithm 2 outputs
Ũ0 such that

Pr
[

|Ũ0 − E[Zτ0 ]| ≥ 8TϵmRL2

σ2
min

+ 2
T −1∑
t=1

min
a∈Rm

∥a · e⃗t(Xt) − E[Z∼
τ t+1

|Xt]∥L2(ρt)

]
≤ δ (11)

in time

O

(
T 2m3

ϵ
TtotalL(L + R) log(T ) log

(
T m2/δ

)
log3/2(mL(L + R)/ϵ) log log(mL(L + R)/ϵ)

)
.

Proof. Set bt := E[Z∼
τ t+1

e⃗t(Xt)]. Recall that ϵA := ϵ/m, ϵb := ϵ/
√
m, δA := δ/(4Tm2) and

δb := δ/(4Tm). We start by computing the complexity of the algorithm. We first note the
bounds ∥bt∥2 ≤ R∥E[e⃗t(Xt)]∥2 ≤

√
mRL and ∥At∥2 ≤ mmaxk,l |E[et,k(Xt)et,l(Xt)]| ≤ mL2

for all t ∈ [T − 1]. The computation of all the entries of the matrices {At}T −1
t=1 requires time

O

(
Tm2

ϵA
L2(TTsamp + Te) log(1/δA) log3/2

(
L2

ϵA

)
log log

(
L2

ϵA

))
,

by calling QMonteCarlo(et,k(Xt)et,l(Xt), ϵA, δA, L
2) from Theorem 13 for t ∈ [T − 1] and

k, l ∈ [m]. The computation of all bt uses time

O

(
Tm

ϵb
RL(TTsamp + T (log(T )Tz +mTe)) log(1/δb) log3/2

(
RL

ϵb

)
log log

(
RL

ϵb

))
,

by calling QMonteCarlo(Z∼
τ t
et−1,k(Xt−1), ϵb, δb, RL) from Theorem 13 for t ∈ {2, . . . , T} and

k ∈ [m]. Note that the term T (log(T )Tz + mTe) comes from using the unitaries C(k)
t in

QMonteCarlo, each with cost O(T (log(T )Tz + mTe)) according to Lemma 14. Computing
E[Z∼

τ 1
] requires time

O

(
R

ϵ
(TTsamp + T (log(T )Tz +mTe)) log(1/δ) log3/2

(
R

ϵ

)
log log

(
R

ϵ

))
,

by calling QMonteCarlo(Z∼
τ 1
, ϵ, δ

2 , R) from Theorem 13 and where the term T (log(T )Tz +mTe)
again comes from the unitaries C(k)

t in QMonteCarlo. The classical computation of {Ã−1
t }T −1

t=1
and {α̃t = Ã−1

t b̃t}T −1
t=1 requires time O(Tmω∗), where 2 ≤ ω∗ < 3. Hence, by keeping the

largest terms of each complexity, the final complexity is upper-bounded by

O

(
T 2m3

ϵ
TtotalL(L + R) log(T ) log

(
T m2/δ

)
log3/2(mL(L + R)/ϵ) log log(mL(L + R)/ϵ)

)
.
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We now move to the error analysis. Fix t ∈ [T − 1]. We start by bounding the error
∥α̃t − αt∥2 between αt = A−1

t bt and α̃t = Ã−1
t b̃t. By using QMonteCarlo from Theorem 13

we approximate each entry of At and bt as |(At)jl − (Ãt)jl| ≤ ϵ/m and |(bt)j − (̃bt)j | ≤ ϵ/
√
m

for all j, l ∈ [m]. All approximations hold with probability at least 1 − δ/2T by the union
bound. This means that, with probability at least 1 − δ/2T ,

∥At − Ãt∥2 ≤

√√√√ m∑
j,l=1

|(At)jl − (Ãt)jl|2 ≤ ϵ, ∥bt − b̃t∥2 =

√√√√ m∑
j=1

|(bt)j − (̃bt)j |2 ≤ ϵ.

According to Theorem 18, we obtain

∥α̃t − αt∥2 ≤ 2ϵ
σmin(At)

(
1 + ∥bt∥2

σmin(At)

)
≤ 4ϵ

√
mRL

σ2
min

with probability at least 1 − δ/2T , using that
√
mRL/σmin ≥ 1. This, in turn, implies that

∥α̃t · e⃗t(Xt) − αt · e⃗t(Xt)∥L2(ρt) ≤ ∥α̃t − αt∥2
∥∥√

e⃗t(Xt) · e⃗t(Xt)
∥∥

L2(ρt) ≤ 4ϵmRL2

σ2
min

,

using that
∥∥√

e⃗t(Xt) · e⃗t(Xt)
∥∥

L2(ρt) =
√∑

x∈E ρt(x)
∑m

k=1 e
2
t,k(x) ≤

√
mL. Next, we bound

∥α̃t · e⃗t(Xt) − E[Z∼
τ t+1

|Xt]∥L2(ρt)

≤ ∥α̃t · e⃗t(Xt) − αt · e⃗t(Xt)∥L2(ρt) + ∥αt · e⃗t(Xt) − E[Z∼
τ t+1

|Xt]∥L2(ρt)

≤ 4ϵmRL2

σ2
min

+ min
a∈Rm

∥a · e⃗t(Xt) − E[Z∼
τ t+1

|Xt]∥L2(ρt), (12)

using that αt = arg mina∈Rm E
[
(Z∼

τ t+1
− a · e⃗t(Xt))2]

minimizes the least square estimator.
Finally, by the union bound, with probability at least 1 − δ, Eq. (12) holds for all

t ∈ [T − 1], together with |Z̃∼
τ 1

− E[Z∼
τ 1

]| ≤ ϵ. Lemma 17 then leads to

|Z̃∼
τ 1

− E[Zτ1 ]| ≤ 8TϵmRL2

σ2
min

+ 2
T −1∑
t=1

min
a∈Rm

∥a · e⃗t(Xt) − E[Z∼
τ t+1

|Xt]∥L2(ρt),

which implies Eq. (11) by using |max{a0, a1} − max{a0, a2}| ≤ |a1 − a2| with a0, a1, a2 ∈ R
on the definition of Ũ0 in Eq. (4). ◀

Note that the approximation errors mina∈Rm ∥a · e⃗t(Xt)−E[Z∼
τ t+1

|Xt]∥L2(ρt) appearing in
Theorem 19 depend on the approximated stopping times τ̃t+1, which in turn depend on Ht′ for
t′ > t. It is possible to restate Theorem 19 in terms of mina∈Rm ∥a·e⃗t(Xt)−E[Zτt+1 |Xt]∥L2(ρt),
which we do in the next theorem by following a similar approach to [93, Theorem 6.1]. The
downside is that the time dependence now becomes exponential.

▶ Theorem 20. Within the setting of Algorithm 2 with input parameters δ and ϵ, let TTsamp
be the sampling cost of the Markov chain and consider a set of linearly independent functions
{et,k : E → R}m

k=1 for each t ∈ [T − 1] with L := maxt∈[T −1],k∈[m] ∥et,k∥L2(ρt) and query
cost Te. Also consider {zt : E → R}T

t=0 with R := maxt∈[T ] ∥zt∥u < ∞ and query cost Tz.
Moreover, let σmin := mint∈[T −1] σmin(At) > 0. Assume that

√
mRL/σmin ≥ 1 and define

Ttotal := Tsamp + Tz + Te. Then, for any δ ∈ (0, 1) and ϵ ∈ (0, σmin/2], Algorithm 2 outputs
Ũ0 such that

Pr
[∣∣Ũ0 − E[Zτ0 ]

∣∣ ≥ 5T

(
4ϵmRL2

σ2
min

+ max
0<t<T

min
a∈Rm

∥a · e⃗t(Xt) − E[Zτt+1 |Xt]∥L2(ρt)

)]
≤ δ

in time

O

(
T 2m3

ϵ
TtotalL(L + R) log(T ) log

(
T m2/δ

)
log3/2(mL(L + R)/ϵ) log log(mL(L + R)/ϵ)

)
.
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Proof. The proof follows the same steps of the proof of Theorem 19, with the further
observation in Eq. (12) that if

∥α̃ℓ · e⃗ℓ(Xℓ) − E[Z∼
τ ℓ+1

|Xℓ]∥L2(ρℓ) ≤ ϵ0 + min
a∈Rm

∥a · e⃗ℓ(Xℓ) − E[Z∼
τ ℓ+1

|Xℓ]∥L2(ρℓ), (13)

for all ℓ ∈ {t, . . . , T − 1}, where we defined ϵ0 := 4ϵmRL2

σ2
min

, then

2(T − ℓ)ϵ0 + 2
T −1∑
k=ℓ

min
a∈Rm

∥a · e⃗k(Xk) − E[Z∼
τ k+1

|Xk]∥L2(ρk) ≤ 5T −ℓ(ϵ0 +M∗
ℓ ), (14)

for all ℓ ∈ {t, . . . , T − 1}, where M∗
ℓ := maxk=ℓ,...,T −1

(
mina∈Rm∥a · e⃗k(Xk) −

E[Zτk+1 |Xk]∥L2(ρk)
)
. We prove this bound using backward induction as follows. Eq. (14)

clearly holds for ℓ = T − 1. Assume it holds for ℓ = t+ 1, we shall prove it is also true for
ℓ = t. First notice that, by the triangle inequality followed by Lemma 17 and then Eq. (13),

min
a∈Rm

∥a · e⃗t(Xt) − E[Z∼
τ t+1

|Xt]∥L2(ρt)

≤ min
a∈Rm

∥a · e⃗t(Xt) − E[Zτt+1 |Xt]∥L2(ρt) + ∥E[Zτt+1 |Xt] − E[Z∼
τ t+1

|Xt]∥L2(ρt)

≤ min
a∈Rm

∥a · e⃗t(Xt) − E[Zτt+1 |Xt]∥L2(ρt) + 2
T −1∑

k=t+1

∥α̃k · e⃗k(Xk) − E[Z∼
τ k+1

|Xk]∥L2(ρk)

≤ min
a∈Rm

∥a · e⃗t(Xt) − E[Zτt+1 |Xt]∥L2(ρt) + 2
T −1∑

k=t+1

(
ϵ0+ min

a∈Rm
∥a · e⃗k(Xk) − E[Z∼

τ k+1
|Xk]∥L2(ρk)

)
≤ M∗

t + 2(T − t − 1)ϵ0 + 2
T −1∑

k=t+1

min
a∈Rm

∥a · e⃗k(Xk) − E[Z∼
τ k+1

|Xk]∥L2(ρk).

Using the above inequality followed by the induction hypothesis,

2(T − t)ϵ0 + 2
T −1∑
k=t

min
a∈Rm

∥a · e⃗k(Xk) − E[Z∼
τ k+1

|Xk]∥L2(ρk)

≤ 2ϵ0 + 2M∗
t + 6(T − t− 1)ϵ0 + 6

T −1∑
k=t+1

min
a∈Rm

∥a · e⃗k(Xk) − E[Z∼
τ k+1

|Xk]∥L2(ρk)

≤ 2ϵ0 + 2M∗
t + 3 · 5T −t−1(ϵ0 +M∗

t+1)
≤ 5T −t(ϵ0 +M∗

t ),

proving the induction statement. The theorem follows by taking ℓ = 0 in Eq. (14) and using
|max{a0, a1}−max{a0, a2}| ≤ |a1 −a2|, a0, a1, a2 ∈ R, on the definition of Ũ0 in Eq. (4). ◀

Given the above theorems, we prove a classical analogue.

▶ Theorem 21. Within the setting of Algorithm 1, consider N independent sample paths
with sample cost Tsamp and let the linearly independent functions {et,k : E → R}m

k=1 for
each t ∈ [T − 1] be such that L := maxt∈[T −1],k∈[m] ∥et,k∥L2(ρt) and have query cost Te. Also
consider {zt : E → R}T

t=0 with R := maxt∈[T ] ∥zt∥u < ∞ and query cost Tz. Moreover,
let σmin := mint∈[T −1] σmin(At) > 0 and assume that

√
mRL/σmin ≥ 1. Then, for any

ϵ ∈ (0, σmin/2], Algorithm 1 runs for O(Tm2N + Tmω∗ + TN(Tsamp + Tz +mTe)) time and
returns an estimate Ũ0 such that

Pr
[∣∣Ũ0 − E[Zτ0 ]

∣∣ ≥ 5T

(
4ϵmRL2

σ2
min

+ max
0<t<T

min
a∈Rm

∥a · e⃗t(Xt) − E[Zτt+1 |Xk]∥L2(ρt)

)]
≤ 6m2e−2Nϵ2/m2

.
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Proof. The error analysis is very similar to that of Theorems 19 and 20, therefore we shall just
point out the required changes. Each entry of At and bt is approximated using a Chernoff
bound, i.e., Pr[|(At)jl − (Ãt)jl| ≥ ϵ/m] ≤ 2e−2Nϵ2/m2 and Pr[|(bt)j − (̃bt)j | ≥ ϵ/

√
m] ≤

2e−2Nϵ2/m for all j, l ∈ [m]. Moreover, Pr[|Z̃∼
τ 1

− E[Z∼
τ 1

]| ≥ ϵ] ≤ 2e−2Nϵ2 . Therefore, by
the union bound, all approximations hold with probability at least 1 − 2m2e−2Nϵ2/m2 −
2me−2Nϵ2/m − 2e−2Nϵ2 ≥ 1 − 6m2e−2Nϵ2/m2 .

Regarding the time complexity, the most expensive computational steps are calculating
the matrices Ãt, which requires O(Tm2N) time, and inverting them and computing the
vectors α̃t, which requires O(Tmω∗) time. Sampling (X(1)

t , . . . , X
(N)
t )T

t=0 and querying
(Z(1)

t , . . . , Z
(N)
t )T

t=0 and (et,k(X(1)
t ), . . . , et,k(X(N)

t ))t∈[T −1],k∈[m] require O(NT (Tsamp + Tz +
mTe)) time. All the other steps, computing 1

N

∑N
n=1 Z

(n)
∼
τ

(n)
t+1
e⃗(X(n)

t ), Ũ0 and α̃t · e⃗t(X(n)
t )

require O(TmN) or O(Tm) time. ◀

If Tsamp, Tz, Te = O(1), then the complexity is O(Tm2N + Tmω∗). The factor Tm2 comes
from computing {At}T −1

t=1 and accounts for runtime instead of only number of samples.
We summarize and compare the results from Theorems 21 and 20 into a single corollary.

▶ Corollary 22. Within the setting of Algorithm 1 with input parameters δ,N and Algorithm 2
with input parameters δ, ϵ0, let TTsamp be the sampling cost of the Markov chain and consider
a set of linearly independent functions {et,k : E → R}m

k=1 for t ∈ [T − 1] with query cost
Te and L := maxt∈[T −1],k∈[m] ∥et,k∥L2(ρt). Also consider {zt : E → R}T

t=0 with query cost
Tz and R := maxt∈[T ] ∥zt∥u < ∞. Let σmin ≤ mint∈[T −1] σmin(At) be known. Assume that
√
mRL/σmin ≥ 1 and define Ttotal := Tsamp + Tz + Te. For any δ ∈ (0, 1) and ϵ ∈

(
0, 2mRL2

σmin

]
,

if ϵ0 = ϵσ2
min

4mRL2 and N =
⌈

m2

2ϵ2
0

log
(
6m2/δ

)⌉
, then Algorithms 1 and 2 output Ũ0 such that

Pr
[
|Ũ0 − E[Zτ0 ]| ≥ 5T

(
ϵ+ max

0<t<T
min

a∈Rm
∥a · e⃗t(Xt) − E[Zτt+1 |Xt]∥L2(ρt)

)]
≤ δ

using time, respectively,

O

(
Tm6

ϵ2
R2L4

σ4
min

Ttotal log
(
m2/δ

))
and (up to log log factors)

O

(
T 2m4

ϵ

RL3(L+R)
σ2

min
Ttotal log(T ) log

(
Tm2

δ

)
log3/2

(
m2RL3(L+R)

ϵσ2
min

))
.

Proof. The results concerning the quantum Algorithm 2 were already proven in Theorem 20,
we just use that ϵ0 = ϵσ2

min
4mRL2 . It is left to prove the results about the classical Algorithm 1.

Indeed, by setting N =
⌈

m2

2ϵ2
0

log
(
6m2/δ

)⌉
into Theorem 21 with ϵ0 = ϵσ2

min
4mRL2 , we obtain

Pr
[
|Ũ0 − E[Zτ0 ]| ≥ 5T

(
ϵ+ max

0<t<T
min

a∈Rm
∥a · e⃗t(Xt) − E[Zτt+1 |Xt]∥L2(ρt)

)]
≤ δ.

The final time complexity becomes then O(Tm2N + Tmω∗ + TN(Tsamp + Tz + mTe)) =
O

(
T m4

ϵ2 (m2 + Tsamp + Tz +mTe) R2L4

σ4
min

log
(

m2

δ

))
= O

(
T m6

ϵ2
R2L4

σ4
min

Ttotal log
(

m2

δ

))
. ◀

▶ Remark 23. We note that in the previous theorem it is necessary to know a lower bound
on mint∈[T −1] σmin(At) since it must be inputted into quantum subroutines for Monte Carlo
to bound the variance. It is possible, though, to get around this detail by using the more
complicated algorithm from [41] which does not require a bound on the variance.
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been applied to the classical simulation of quantum systems [13, 9, 8, 22, 6, 23]. In particular,
parameterizing circuits by the number of non-Clifford gates has yielded many state-of-the-art
algorithms for classical simulation. Here, we initiate the study of the parameterized complexity
of non-deterministic computation, i.e., quantum verification. Specifically, we consider QMA
(Quantum Merlin-Arthur1) problems parameterized by the number of non-Clifford gates in
their verification circuits and obtain non-trivial upper bounds on the classical complexity of
finding an optimal witness and the number of qubits required for its representation.

1.1 The parameterized complexity of quantum circuit satisfiability
The first problem we consider is quantum circuit satisfiability (QCSAT), a canonical QMA-
complete problem. In a QCSAT instance, the input is an s-gate quantum circuit U acting on
n+m qubits followed by the measurement in the standard basis of any k > 0 output qubits.2
The goal in the QCSAT problem is to estimate the maximal probability that quantum circuit
measurement outputs 1k when run on input states (i.e., witnesses) of the form |ψ⟩ ⊗ |0m⟩
for |ψ⟩ ∈ (C2)⊗n:

Val def= max
|ψ⟩∈(C2)⊗n

⟨ψ, 0m|U† |1k⟩⟨1k|U |ψ, 0m⟩ . (1)

The problem can also be phrased as a promise decision problem in which the goal is to decide
if Val > a (yes instance) or Val < b (no instance) for a > b. The decision problem is known
to be QMA-complete when a = 2/3 and b = 1/3.

To the best of our knowledge, there are no previously known classical algorithms that
exploit the structure of the circuit to solve QCSAT in less than exp(n) time; a simple
exponential time algorithm for calculating Val can be achieved by searching over the entire
Hilbert space of the witness |ψ⟩. One of the main results of our work is that parameterized
QCSAT instances with t T -gates for t ≪ n can be solved significantly faster than this naive
algorithm. We show that there is a stabilizer subspace isomorphic to (C2)⊗t of the the input
Hilbert space which contains all optimal witnesses; here an optimal witness is any input state
ψ that maximizes the probability of observing the output 1k.

▶ Theorem 1. For every QCSAT instance U with t ≤ n T-gates, there is an n-qubit
Clifford unitary W and a t-qubit state |ϕ⟩ such that W (|ϕ⟩ ⊗ |0n−t⟩) is an optimal input
state. Furthermore, the Clifford unitary W only depends on the description of U and can be
computed in (classical, deterministic) time poly(n, s).

This insight can be used to construct a faster algorithm for parameterized QCSAT
instances.

▶ Theorem 2. There exists a classical randomized algorithm that takes as input a paramet-
erized instance of QCSAT problem, a precision parameter δ > 0, and outputs a real random
variable ξ such that

0 ≤ ξ ≤ Val and Pr[ξ ≥ (1 − δ)Val] ≥ 99
100 . (2)

The algorithm has runtime poly(n,m, s, t) +O(δ−1t2t).

1 The complexity class QMA is the quantum analog of the classical non-deterministic complexity classes,
MA and NP [18].

2 While one can map the k-qubit measurement to a single measurement, this requires the application of a
coherent AND logical gate. Implementing this AND gate requires Ω(k) non-Clifford gates; in the case
of parameterized complexity, this cost may be prohibitive. For this reason, we define the problem in
terms of the measurement of multiple qubits in the standard basis.
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Quantum circuit satisfiability (QCSAT) is the analog of quantum circuit simulation (QMA-
vs. BQP-completeness) in the same way that classical circuit satisfiability is the analog3

of circuit simulation (NP- vs. P-completeness). Recall that it is widely believed that any
classical algorithm for parameterized quantum circuit simulation should have a runtime
scaling exponentially in t; the current matching upper-bound scales as 2αt, where α < 0.3963
for exact simulators [23] and α < 0.23 for approximate simulators [8]. Our result shows that
the QCSAT verification problem is not much harder than its simulation counterpart; the
resulting exponential scaling is worse, but there is no exponential dependence on the instance
size or n, the size of the witness. This is surprising as classical circuit satisfiability is believed
to require a runtime scaling exponentially with n (the size of the witness) to solve, while
classical circuit simulation is trivially solvable in polynomial-time. Therefore, it would be
reasonable to expect that a parameterized QCSAT instance would incur a slowdown scaling
exponentially with the witness size n due to non-determinism of the problem and a slowdown
scaling exponentially with t due to its quantumness. We instead show that the exponential
time scaling can be brought to scale with only t when t ≪ n. This is the primary power of
Theorem 1: to efficiently reduce the search space of optimal inputs from n qubits to t qubits.

Our result may seem surprising in view of the earlier work by Morimae et al. [21] that
studied a restricted version of the class QMA where the verifier can only perform Clifford
gates. In [21], they found that QMA with a Clifford verifier coincides with the standard
QMA. However, the computational model of [21] is different from ours since it allows
adaptive Clifford gates that can be classically controlled by the outcomes of intermediate
measurements. In contrast, here we consider unitary (non-adaptive) verification circuits with
all measurements delayed until the end.

Let us briefly sketch the proof of Theorems 1 and 2; complete proofs are provided in
Section 2. By definition, solving QCSAT is equivalent to estimating the largest eigenvalue
of an operator ρ def= ⟨0m|U† |1k⟩⟨1k|U |0m⟩ acting on n qubits. Consider first a simple case
when there are no T gates, i.e., t = 0 and U is a Clifford circuit. At a high level, ρ describes
a state (unnormalized) generated by a sequence of Clifford operations: (1) initializing each
qubit in a basis state or a maximally mixed state, (2) applying a unitary Clifford gate, and
(3) post-selectively measuring a qubit in the standard basis. Such operations are known
to have very limited computational power – they always produce a (mixed) stabilizer-type
state [14]. Accordingly, the largest eigenvalue of ρ can be efficiently computed using the
standard stabilizer formalism [10]. Suppose now that U contains t T -gates. It is well-known
[5] that a T -gate can be implemented by a gadget that includes only Clifford operations and
consumes one copy of a magic state |A⟩ ∝ |0⟩ + eiπ/4|1⟩. Replacing each T -gate in U by this
gadget one gets ρ = Tr{[t]}(( |At⟩⟨At| ⊗ In)ρ′), where ρ′ is a bipartite stabilizer state of t+ n

qubits and we trace out the first t qubits. Our key technical tool is the characterization of
bipartite stabilizer states [7]. This result implies that ρ′ = (C†

1 ⊗ C†
2)ρ′′(C1 ⊗ C2), where

Ci are unitary Clifford operators and ρ′′ is a tensor product of local single-qubit stabilizer
states and at most t two-qubit stabilizer states shared between the two subsystems. Using
this decomposition we are able to show that ρ = C†

2(ρhard ⊗ ρeasy)C2, where ρhard is some
(non-stabilizer) state of t qubits and ρeasy is a stabilizer state of n− t qubits whose eigevalues
are easy to compute. Thus, QCSAT reduces to estimating the largest eigenvalue of the t-qubit
state ρhard. We remark that this theorem also holds if the T-gate is replaced by an arbitrary
angle Z-rotation (since we use a post-selective magic state injection gadget, in which case

3 Technically, they are the analogs of randomized circuit satisfiability and randomized circuit simulation
(MA- vs. BPP-completeness).
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it does not matter if the rotation angle is π/8 or not). To prove Theorem 2 we make use
of the special structure of the state ρhard and reduce the problem of computing its largest
eigenvalue to computing the largest Schmidt coefficient of a certain pure bipartite state of
at most t qubits. The latter is computed using the power method with a random starting
state [19].

Implications for QCMA vs. QMA

The description of a circuit generating a quantum state can constitute a classical witness for
that state. It is an open question (QCMA vs. QMA) in complexity theory if all quantum
witnesses have efficient classical descriptions [3, 2, 11]. Our work makes progress on the
parameterized version of the question by proving that the witness to any QCSAT instance
with t T -gates can be constructed with at most exp(t) T -gates as it only requires t qubits
to describe. An interesting open question is if our techniques lend themselves to any
sub-exponential in t upper-bound on the T -count of optimal witness states.

1.2 Implied lower bounds from the exponential time hypothesis
Theorem 2 provides an upper bound on the runtime of a classical algorithm for QCSAT
with respect to the number of T -gates in the verifier. In conjunction with other complexity-
theoretic assumptions, this also implies a lower bound on the T -count of the verification
circuit. One such assumption is the Exponential-Time Hypothesis (ETH), introduced by
Impagliazzo and Paturi [15]. Informally, ETH is the conjecture that classical k-SAT requires
exponential classical time. By Theorem 2, a verifier circuit for QMA with o(n) T -gates would
imply a 2o(n)-time algorithm for k-SAT, because NP ⊂ QMA. Thus we get the following
lower bound.

▶ Corollary 3. ETH implies that any QMA-complete family of Clifford+T verifier circuits
must include circuits with Ω(n) T -gates, where n is the size of the witness.

Interestingly, we can also use ETH and Theorem 2 to get a lower bound on the T -count
of a quantum circuit that prepares the m-qubit W -state

|Wm⟩ = 1√
m

(
|100 · · · 0⟩ + |010 · · · 0⟩ + · · · + |000 · · · 1⟩

)
. (3)

▶ Corollary 4. ETH implies that any Clifford+T circuit V that, when applied to the all-zero
state, outputs |Wm⟩ ⊗ |junk⟩ must include Ω(m) T gates.

Proofs of both corollaries are provided in Section 3. To our knowledge, this is the first lower
bound for the T -count of state preparation based on complexity-theoretic assumptions. The
proof uses the NP-hardness [4] of Hamiltonians of the form H =

∑
{i,j}∈E ZiZj +

∑
i∈V Zi.

We show that a verifier circuit can be built from only a W state and Clifford operations.

1.3 The complexity of the non-identity check problem
The second QMA-complete problem we consider in this work is the Non-Identity Check (NIC)
problem: given a classical description of an n-qubit quantum circuit U , decide if U is close to
the identity operation, i.e., is minϕ

∥∥U − eiϕ · I
∥∥ ≥ c or ≤ s for c− s ≥ 1/poly(n), promised
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one of them is the case.4 NIC was first considered by Janzing et al. [16] who showed that
this problem is QMA-complete, by reducing it to the QCSAT problem. Subsequently, Ji and
Wu [17] showed that the NIC problem remains QMA-complete for even depth-2 circuits with
arbitrary gates. This motivates a natural question: what is the parameterized complexity of
NIC? In particular, how does the complexity of NIC scale with the number of non-Clifford
gates? Below we show that NIC can be solved in polynomial-time for Clifford circuits.

▶ Theorem 5. NIC for Clifford circuits is contained in P.

We sketch the proof of this theorem here while a complete proof is provided in Section
4. By definition, solving NIC for a Clifford circuit U on n qubits is equivalent to estimating
the maximum eigenvalue of a Hamiltonian H = (I − U)†(I − U), that is, checking if
∥H∥ ≥ c2 or ≤ s2. In the former case, observe that Tr(Hp) ≥ c2p and in the latter case
Tr(Hp) ≤ 2n · s2p. Furthermore, since c− s ≥ 1/poly(n), we can pick p = poly(n) to make
c2p ≫ 2n · s2p. Thus it suffices to estimate Tr(Hp) with p = poly(n). To this end, observe
that Hp can be written as a weighted sum of Clifford powers U i with i ∈ {−p, . . . , p}. Thus
Tr(Hp) =

∑p
i=−p αi Tr

(
U i

)
and the coefficients αi can be efficiently computed using a simple

recursive formula. Furthermore, we can efficiently compute Tr
(
U i

)
for every i using the

identity Tr
(
U i

)
= 2n ⟨Φ⊗n|U i ⊗ I |Φ⊗n⟩, where |Φ⟩ is the EPR state. The right-hand side

is the inner product between two stabilizer states of 2n qubits. Such inner products can
be computed exactly in time O(n3), see [12, 8]. Putting all this together, we can compute
Tr(Hp) exactly in time poly(n), which determines if this is a “yes” or “no” instance of the
NIC problem.

In addition, we also prove that the NIC problem for constant-depth circuits using gates
from a constant-sized gate set is solvable for vanishing completeness parameters. This is in
contrast to [17] which shows constant-depth circuits using gates from a general gate set is
QMA-complete.

▶ Theorem 6. Let G be any constant-sized gate set of 1 and 2 qudit gates and U a quantum
circuit of depth at most t = O(1) acting on n qudits of fixed finite local dimension d. Let
a < b be any parameters such that a(n) = o(1). Then the NIC problem (a, b) for this restricted
class of circuits is in P.

Our success at understanding parameterized QCSAT came from our characterization
of optimal witness states of parameterized verifier circuits as small linear combinations of
stabilizers. However, the eigenvectors of parameterized NIC circuits U do not have such a
characterization. We need to develop new tools to classically describe the eigenvectors of U
in order to achieve an equivalent result for the parameterized NIC problem. Our inability to
do so might suggest that the parameterized problem is harder than we previously suspected.

We conclude with the following intriguing question regarding the parameterized complexity
of NIC problems. Since the algorithm for NIC for Clifford circuits breaks down in the presence
of a single non-Clifford gate, the question of parameterized complexity of NIC is left largely
open. It may happen that this problem becomes hard (e.g., NP-hard) in the presence of a
single non-Clifford gate.

4 We remark that the operator norm is important here; the problem is in BQP if the goal is to decide if
∥U − I∥2 is small or large, where ∥ · ∥2 is the normalized-2 norm [20].
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2 Proofs of Theorems 1 and 2

▶ Theorem 1. For every QCSAT instance U with t ≤ n T-gates, there is an n-qubit
Clifford unitary W and a t-qubit state |ϕ⟩ such that W (|ϕ⟩ ⊗ |0n−t⟩) is an optimal input
state. Furthermore, the Clifford unitary W only depends on the description of U and can be
computed in (classical, deterministic) time poly(n, s).

Proof. Suppose U is a Clifford+T circuit with c = s− t Clifford gates and t T -gates. We
assume that U acts on n+m qubits partitioned into a witness register of n qubits and an
ancilla register of m qubits. Let Πout be a projector onto the all-ones state |1⟩⟨1|⊗k applied
to some designated output register of k qubits. We assume that Πout acts trivially on the
remaining n+m− k qubits. Define the maximum acceptance probability of U as

π(U) = max
ψ

⟨ψ ⊗ 0m|U†ΠoutU |ψ ⊗ 0m⟩ = max
ψ

∥ΠoutU |ψ ⊗ 0m⟩∥2
, (4)

where the maximum is over all normalized n-qubit witness states |ψ⟩. Let

π(U,ψ) := ∥ΠoutU |ψ ⊗ 0m⟩∥2. (5)

We shall implement each T -gate in U by the following well-known post-selection gadget:

T = •

⟨A| |0⟩

Here, we measure the output qubit in the standard basis and post-select on a measurement
outcome of 0. The gadget consumes one copy of a single-qubit magic state

|A⟩ def= 1√
2

(|0⟩ + eiπ/4|1⟩) (6)

and, therefore, we can rewrite π(U,ψ) as

π(U,ψ) = 2t∥Π(1)
outC|ψ ⊗ 0m ⊗A⊗t⟩∥2. (7)

Here C is a Clifford circuit acting on n+m+ t qubits with c+ t gates (with c gates originating
from U and t CNOT gates originating from the gadgets) and Π(1)

out is a product of Πout and
single-qubit projectors |0⟩⟨0| applied to the second qubit of each T -gate gadget. The extra
factor 2t takes into account that each gadget succeeds with the probability 1/2. Define
Π(2)

out = C†ΠoutC. Then

π(U,ψ) = 2t∥Π(2)
out|ψ ⊗ 0m ⊗A⊗t⟩∥2. (8)

Let us say that a projector Π acting on n qubits is a stabilizer projector if it can be written as
Π = C†(|0n−k⟩⟨0n−k| ⊗ Ik)C for some integer k ∈ [0, n] and some unitary Clifford operator
C on n qubits. We shall use the following facts.

▶ Fact 7 ([14]). Suppose Π is a stabilizer projector on n qubits. Then Tr{t}((|0⟩⟨0|⊗In−1)Π) =
σΠ′ for some σ ∈ {0, 1, 1/2} and some stabilizer projector Π′ on n − 1 qubits. One can
compute σ and Π′ in time poly(n).

▶ Fact 8 (Bipartite Stabilizer Projectors [7]). Suppose Π is a stabilizer projector acting on a
bipartite system LR where L and R are arbitrary qubit registers. Then there exist unitary
Clifford operators CL and CR acting on L and R respectively such that

Π = (CL ⊗ CR)†Π′(CL ⊗ CR) (9)

where Π′ is a tensor product of the following one-qubit and two-qubit stabilizer projectors:
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Single-qubit projectors |0⟩⟨0| and I.
Two-qubit projectors |Φ+⟩⟨Φ+| where |Φ+⟩ = (|00⟩ + |11⟩)/

√
2.

Two-qubit projectors |00⟩⟨00| + |11⟩⟨11|.
Furthermore, each two-qubit projector acts on one qubit in L and one qubit in R. The above
decomposition can be computed in time poly(|L| + |R|).

By definition, Π(2)
out is a stabilizer projector on n+m+ t qubits. Fact 7 implies that

⟨0m|Π(2)
out|0m⟩ = γ2−rΠ(3)

out (10)

for some γ ∈ {0, 1}, integer r ∈ {0, . . . ,m}, and some stabilizer projector Π(3)
out on n+ t qubits.

From Eqs. (8,10) one gets

π(U,ψ) = γ2t−r∥Π(3)
out|ψ ⊗A⊗t⟩∥2. (11)

If γ = 0 then π(U,ψ) = 0 for any witness |ψ⟩. Accordingly, one can choose the Clifford
unitary W in the statement of the theorem arbitrarily. From now on we assume that γ = 1.
Apply Fact 8 to the stabilizer projector Π(3)

out and the partition [n+ t] = LR where L is the
n-qubit witness register and R is the t-qubit magic state register. We get

Π(3)
out = (CL ⊗ CR)†Π(4)

out(CL ⊗ CR) (12)

where Π(4)
out is a tensor product of one-qubit and two-qubit stabilizer projectors from Fact 8.

Substituting this into Eq. (11) with γ = 1 one gets

π(U,ψ) = 2t−r∥Π(4)
outCL|ψ⟩ ⊗ CR|A⊗t⟩∥2. (13)

Equivalently,

π(U,C†
Lψ) = 2t−r∥Π(4)

out|ψ⟩ ⊗ CR|A⊗t⟩∥2. (14)

By definition, the register R contains t qubits. Thus Π(4)
out may contain at most t two-qubit

projectors |Φ+⟩⟨Φ+| and |00⟩⟨00| + |11⟩⟨11|. Indeed, each two-qubit projector must have one
qubit in R, see Fact 8. Partition L = L′L′′ such that each two-qubit projector that appears
in Π(4)

out has one qubit in L′′ and the other qubit in R. Then

|L′′| ≤ t and Π(4)
out = ΓL′ ⊗ ΛL′′R (15)

for some stabilizer projectors Γ and Λ. Here the subscripts indicate the registers acted upon
by each projector. Furthermore, Γ is a tensor product of single-qubit projectors |0⟩⟨0| and I.
Define an operator

Π(5)
out

def= R⟨A⊗t|C†
RΛL′′RCR|A⊗t⟩R (16)

acting on the register L′′. Note that Π(5)
out is Hermitian and positive semi-definite (although

Π(5)
out might not be a projector). Then

π(U,C†
Lψ) = 2t−r⟨ψ|ΓL′ ⊗ Π(5)

out|ψ⟩. (17)

Here the tensor product separates L′ and L′′. It follows that |ψ⟩ is an optimal witness such
that π(U) = π(U,ψ) if

CL|ψ⟩ = |ϕL′⟩ ⊗ |ϕL′′⟩, (18)
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where |ϕL′⟩ is a (+1)-eigenvector of the projector ΓL′ and |ϕL′′⟩ is an eigenvector of Π(5)
out

with the maximum eigenvalue. From Equation (15) one infers that |ϕL′′⟩ is a state of at most
t qubits. Since ΓL′ is a product of |0⟩⟨0| and I terms, divide L′ into L′

1 and L′
2 such that

ΓL′ = |0|L′
1|⟩⟨0|L′

1||L′
1

⊗ IL′
2
. (19)

Then, the minimizing ϕL′ has the form ϕL′ =
∣∣∣0|L′

1|
〉
L′

1

⊗ |junk⟩L′
2

for any state |junk⟩. To

conclude, one can choose an optimal witness state |ψ⟩ such that

|ψ⟩ = C†
L

(
|0|L′

1|⟩ ⊗ |junk⟩ ⊗ |ϕL′′⟩
)

(20)

for some (≤ t)-qubit state |ϕL′′⟩ and some Clifford operators CL. This is equivalent to the
statement of the theorem. Additionally observe that all the above steps necessary to obtain
W can be implemented efficiently since they only involve manipulations with Clifford circuits
and stabilizer projectors. ◀

▶ Theorem 2. There exists a classical randomized algorithm that takes as input a paramet-
erized instance of QCSAT problem, a precision parameter δ > 0, and outputs a real random
variable ξ such that

0 ≤ ξ ≤ Val and Pr[ξ ≥ (1 − δ)Val] ≥ 99
100 . (2)

The algorithm has runtime poly(n,m, s, t) +O(δ−1t2t).

Proof. First let us introduce some notations. Let H(n) be the set of all normalized n-qubit
pure states. Given a hermitian n-qubit operator M , let λmax(M) = maxψ∈H(n)⟨ψ|M |ψ⟩ be
the maximum eigenvalue of M . Define two-qubit projectors

Γ(1) = |Φ+⟩⟨Φ+| and Γ(2) = |00⟩⟨00| + |11⟩⟨11|. (21)

Recall that |Φ+⟩ = (|00⟩ + |11⟩)/
√

2. Given a pair of disjoint k-qubit registers R and L, let
Γ(i)
RL be a (2k)-qubit projector that applies Γ(i) to the j-th qubit of R and the j-th qubit of
L for each j = 1, . . . , k. Below we follow notations introduced in the proof of Theorem 1.
Our starting point is the expression for the quantity Val derived in Eqs. (16,17,18) thereof,
namely

Val = 2t−rλmax(Π(5)
out), (22)

where Π(5)
out is a positive semi-definite operator defined in Eq. (16), namely

Π(5)
out = R⟨A⊗t|C†

RΛL′′RCR|A⊗t⟩R. (23)

Recall that R and L′′ are disjoint qubit registers such that |R| = t, |L′′| ≤ t, CR is some
Clifford operator acting on R, and ΛL′′R is a product of one- and two-qubit stabilizer
projectors from Fact 8 such that each one-qubit projector acts on R and each two-qubit
projector acts on both R and L′′. In other words, ΛL′′R can be written as

ΛL′′R = Γ(1)
L1R1

Γ(2)
L2R2

|0⟩⟨0|R3IR4 (24)

for some partitions L′′ = L1L2 and R = R1R2R3R4 with |R1| = |L1| and |R2| = |L2|. Below
we use notations ri = |Ri| and ℓi = |Li|.
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We claim that Π(5)
out commutes with any Pauli operator Zj , j ∈ L2. Indeed, it suffices

to check that Zj commutes with ΛL′′R. The latter acts on the register L2 by a diagonal
operator Γ(2)

L2R2
which commutes with Z-type Pauli operators confirming the claim. Thus one

can choose the maximum eigenvector ψ of Π(5)
out such that Zj |ψ⟩ = (−1)σj |ψ⟩ for all j ∈ L2

and some unknown σ ∈ {0, 1}ℓ2 . Equivalently, |ψ⟩ = |ψ′⟩L1 ⊗ |σ⟩L2 ≡ |ψ′
L1

⊗ σL2⟩ for some
ψ′ ∈ H(ℓ1). Using Eq. (22) one gets

Val = 2t−r max
ψ∈H(ℓ1)

max
σ∈{0,1}ℓ2

⟨ψL1 ⊗ σL2 |Π(5)
out|ψL1 ⊗ σL2⟩. (25)

We shall discard the register L2 using the identity

L2⟨σ|Γ(2)
L2R2

|σ⟩L2 = |σ⟩⟨σ|R2 . (26)

Substituting this identity into Eq. (25) gives

Val = 2t−r max
σ∈{0,1}ℓ2

λmax(Π(6)
out(σ)) (27)

where Π(6)
out(σ) is a positive semi-definite operator acting on the register L1 defined as

Π(6)
out(σ) = R⟨A⊗t|C†

RΓ(1)
L1R1

|σ⟩⟨σ|R2 |0⟩⟨0|R3IR4CR|A⊗t⟩R. (28)

We shall discard the register L1 using the quantum teleportation identity

L1⟨ψ|Γ(1)
L1R1

|ψ⟩L1 = 2−ℓ1 |ψ∗⟩⟨ψ∗|R1 (29)

which holds for any state ψ ∈ H(ℓ1). Here ψ∗ is the complex conjugate of ψ in the standard
basis of ℓ1 qubits. Using the teleportation identity and the definition of Π(6)

out(σ) one can
check that

⟨ψ|Π(6)
out(σ)|ψ⟩ = 2−ℓ1⟨A⊗t|C†

R|ψ∗⟩⟨ψ∗|R1 |σ⟩⟨σ|R2 |0⟩⟨0|R3IR4CR|A⊗t⟩R (30)

for any state ψ ∈ H(ℓ1). At this point both registers L1 and L2 have been discarded. After
some algebra one can rewrite Eq. (30) as

⟨ψ|Π(6)
out(σ)|ψ⟩ = 2−ℓ1∥R1⟨ψ∗|φ(σ)⟩R1R4∥2, (31)

where |φ(σ)⟩ is a state of R1R4 defined as

|φ(σ)⟩ = R2R3⟨σR2 , 0R3 |CR|A⊗t⟩R. (32)

Since the set H(ℓ1) is closed under the complex conjugation, Eqs. (27,31) give

Val = 2t−r−ℓ1 max
σ∈{0,1}ℓ2

max
ψ∈H(ℓ1)

∥R1⟨ψ|φ(σ)⟩R1R4∥2. (33)

At this point the only remaining registers are R1 and R4. Clearly, the optimal state ψ ∈ H(ℓ1)
that achieves the maximum in Eq. (33) coincides with the largest eigenvector of a reduced
density matrix

ρR1(σ) = TrR4 |φ(σ)⟩⟨φ(σ)|. (34)

Thus Eq. (33) is equivalent to

Val = 2t−r−ℓ1 max
σ∈{0,1}ℓ2

λmax(ρR1(σ)). (35)
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Recall that any t-qubit Clifford operator can be efficiently compiled to a Clifford circuit with
O(t2) one- and two-qubit gates [1]. Thus one can compute a t-qubit state |ϕ⟩ := CR|A⊗t⟩R
as a vector of complex amplitudes in time poly(t)2t using the standard state vector simulator
of quantum circuits. We assume that ϕ is stored in a classical RAM memory for the
rest of the algorithm such that any amplitude of ϕ can be accessed in time poly(t). By
definition, |φ(σ)⟩ is obtained from |ϕ⟩ by projecting the registers R2R3 onto the basis state
|σR2 , 0R3⟩, see Eq. (32). Equivalently, |φ(σ)⟩ is obtained from |ϕ⟩ by selecting a subset of
2t−r2−r3 amplitudes. Thus one can compute |φ(σ)⟩ as a vector of complex amplitudes in
time poly(t)2t−r2−r3 for any given σ. By definition, |φ(σ)⟩ is a state of t − r2 − r3 qubits.
We shall use the following fact.

▶ Lemma 9. Suppose |φ⟩ is a pure n-qubit state specified as a vector of complex amplitudes
and δ > 0 is a precision parameter. Consider a partition [n] = AB, where A and B are
disjoint qubit registers. Let ρA = TrB |φ⟩⟨φ| be the reduced density matrix of A. There exists
a classical randomized algorithm that runs in time O(δ−1n2n) and outputs a real random
variable ξ such that

0 ≤ ξ ≤ λmax(ρA) and Pr[ξ ≥ (1 − δ)λmax(ρA)] ≥ 99
100 . (36)

Proof. Assume wlog that |A| ≤ |B| (otherwise switch A and B). We have ρA = ηη†, where
η is a matrix of size 2|A| × 2|B| with matrix elements ⟨x|η|y⟩ = ⟨xAyB |φ⟩. Given a list of
amplitudes of |φ⟩, one can can compute the matrix of η in time O(2n) since |A| + |B| = n.
For any |A|-qubit state |v⟩ the matrix-vector product |v⟩ → η†|v⟩ can be computed in time
O(2n). Likewise, for any |B|-qubit state |w⟩ the matrix-vector product |w⟩ → η|w⟩ can be
computed in time O(2n). We conclude that the matrix-vector product |v⟩ → ρA|v⟩ can be
computed in time O(2n).

We shall compute an estimator ξ satisfying Eq. (36) using the power method with a
random starting state [19]. Namely, let |ϕ⟩ ∈ H(|A|) be a Haar-random state of A. Given a
number of iterations q ≥ 2, the power method outputs an estimator

ξq = ⟨ψq|ρA|ψq⟩
⟨ψq|ψq⟩

, |ψq⟩ := ρq−1
A |ϕ⟩. (37)

Clearly, computing ξq requries q matrix-vector multiplications for the matrix ρA. Thus the
runtime scales as O(q2n). Note that 0 ≤ ξq ≤ λmax(ρA) with certainty. Theorem 3.1 of [19]
guarantees that the relative error

ϵq := λmax(ρA) − ξq
λmax(ρA) (38)

obeys

E(ϵq) ≤ 0.871 log (2|A|)
q − 1 ≤ n

q
(39)

for all q ≥ 2. Here the expectation value is taken over the random starting state ϕ and we
use the natural logarithm. Since ϵq is a non-negative random variable, Markov inequality
implies that ϵq ≤ 100 ·E(ϵq) with the probability at least 99/100. Thus the desired estimator
ξ satisfying Eq. (36) can be chosen as ξ = ξq with q = ⌈100n/δ⌉. ◀

Applying Lemma 9 to the state |φ(σ)⟩ of n = t− r2 − r3 qubits with the registers A = R1
and B = R4 one obtains an estimator ξ(σ) satisfying

0 ≤ ξ(σ) ≤ λmax(ρR1(σ)) and Pr[ξ(σ) ≥ (1 − δ)λmax(ρR1(σ))] ≥ 99/100. (40)
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The runtime required to compute the estimator ξ(σ) for any fixed σ is O(δ−1t2t−r2−r3).
Thus computing the estimators ξ(σ) for all σ ∈ {0, 1}ℓ2 takes time O(δ−1t2t). Here we noted
that r2 = ℓ2. We choose the desired estimator ξ approximating the quantity Val as

ξ = 2t−r−ℓ1 max
σ∈{0,1}ℓ2

ξ(σ). (41)

Let σ∗ ∈ {0, 1}ℓ2 be the optimal bit string that achieves the maximum in Eq. (35) such that

Val = 2t−r−ℓ1λmax(ρR1(σ∗)). (42)

From Eq. (40) one infers that ξ ≤ Val with certainty and

Pr[ξ ≥ (1 − δ)Val] ≥ Pr[ξ(σ∗) ≥ (1 − δ)λmax(ρR1(σ∗)] ≥ 99/100. (43)

We conclude by noting that all manipulations performed in the proof of Theorem 1 to
compute the Clifford circuit CR and the stabilizer projector ΛL′′R can be implemented in
time poly(n,m, s, t) using the standard stabilizer formalism [14]. Thus the total runtime
required to compute the desired estimator ξ is

poly(n,m, s, t) +O(δ−1t2t). (44)

◀

In Appendix A (Theorem 16) we give an alternative algorithm for solving the same
problem as Theorem 2 but using slightly different techniques. It has some advantages over
Theorem 2 which we elaborate in Appendix A.

3 Implied lower bounds from the Exponential-Time Hypothesis

The Exponential-Time Hypothesis (ETH), introduced by Impagliazzo and Paturi [15], is the
conjecture that, informally, (classical) k-SAT requires exponential (classical) time.

▶ Definition 10 (Exponential-Time Hypothesis [15]). Let

sk
def= inf

{
δ : there exists 2δn-time algorithm for solving k-SAT

}
. (45)

Then sk > 0 is a constant for all k ≥ 3.

It is a stronger assumption than P ̸= NP, which implies just that k-SAT requires
superpolynomial-time. We show that ETH, together with Theorem 2, implies T -count
lower bounds, which is Corollary 3.

▶ Corollary 3. ETH implies that any QMA-complete family of Clifford+T verifier circuits
must include circuits with Ω(n) T -gates, where n is the size of the witness.

Proof. Consider a family of Clifford + T -gate QMA verifier circuits and let f(n) be the
number of T gates in the circuits for n-qubit witnesses. Suppose that f(n) = o(n). Then
by Theorem 2, each instance can be solved in O

(
poly(n)2o(n)) deterministic classical time,

which contradicts ETH. The theorem follows from the fact that NP ⊆ QMA. ◀

Second, we show that Theorem 2 along with ETH implies a linear lower-bound on the
T -count complexity of generating a W state. This is Corollary 4.
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▶ Corollary 4. ETH implies that any Clifford+T circuit V that, when applied to the all-zero
state, outputs |Wm⟩ ⊗ |junk⟩ must include Ω(m) T gates.

The proof will use the following fact, due to Barahona [4]:

▶ Theorem 11 ([4]). Estimating, to within inverse polynomial additive error, the ground
state energy of the following class of Hamiltonians is NP-hard:

H =
∑

{i,j}∈E

ZiZj +
∑
i∈V

Zi, (46)

where G = (V,E) is a planar graph with maximum degree 3.

Proof of Corollary 4. Consider a circuit V starting from all-zeroes that outputs |Wm⟩⊗|junk⟩
with t T gates. We will show that this implies a 2O(t)-time classical algorithm for k-SAT,
thus proving the Corollary by contradiction.

Let H ′ be a diagonal Hamiltonian of the form of Equation (46) with m′ = O(n) terms,
where n is the number of vertices in the graph. Let H = H ′ − m′ ≤ 0 be H ′ shifted by a
constant so that it’s negative semidefinite. It will be convenient to write H as a sum of
m = 2m′ terms:

H =
m∑
i=1

Hi =
m′∑
i=1

ZSi
−

2m′∑
i=m′

1 (47)

where Si is a set of one or two indices and ZS =
∏
i∈S Zi.

Let C be the circuit consisting of m gates constructed in the following way. It acts on an
m-qubit “control” register A and an n-qubit “computational” register B. For 1 ≤ i ≤ m′,
each gate Ci implements the i-th term of H (either Z or ZZ) on the corresponding qubits of
the computational register, controlled on the i-th qubit of the control register. Because each
term of the Hamiltonian is Pauli, the controlled version is Clifford, and so C is a Clifford
operator. For m′ < i ≤ 2m′, the corresponding gate is simply Zi (in the control register).

Let U def= (V † ⊗ I) · C · (V ⊗ I); U has 2t T gates. The probability of measuring all zeros
on the control register given the input state U |0m, ψ⟩A,B is

Tr
[
|0m⟩⟨0m|A ⊗ IBV

†CV |0m, ψ⟩⟨0m, ψ|A,B V
†C†V

]
(48)

= Tr
[
|Wm⟩⟨Wm|A ⊗ IBC |Wm, ψ⟩⟨Wm, ψ|A,B C

†
]

(49)

= 1
m2

∑
i,j,k,ℓ

Tr
[
|ek⟩ ⟨eℓ|A IBC |ei, ψ⟩ ⟨ej , ψ|A,B C

†
]

(50)

= 1
m2

∑
i,j,k,ℓ

Tr
[
|ek⟩ ⟨eℓ|A IBHi |ei, ψ⟩ ⟨ej , ψ|A,B Hj

]
(51)

= 1
m2

∑
i,j

Tr [Hi |ψ⟩⟨ψ|B Hj ] (52)

= 1
m2

∑
i,j

⟨ψ|HiHj |ψ|ψ|HiHj |ψ⟩ (53)

= 1
m2

〈
ψ|H2|ψ

∣∣ψ|H2|ψ
〉
. (54)

Because H is negative semidefinite, the state ψ that maximizes the probabality of measuring
all zeros as above also minimizes ⟨ψ|H|ψ|ψ|H|ψ⟩. By Theorem 2, such a W -state preparation
circuit V with t T -gates implies a 2O(t)-time classical algorithm for solving k-SAT. ◀
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4 The complexity of quantum non-identity check

▶ Definition 12 (Non-Identity Check [16]). An instance of the non-identity check (NIC)
problem is a classical description of a quantum circuit U and two real numbers a, b such that
b > a with the promise that

dI(U) def= min
ϕ

∥∥U − eiϕ · I
∥∥ (55)

is either at most a or at least b. The instance is called a yes instance if dI(U) ≥ b and a no
instance if dI(U) ≤ a.

In this section, we present two scenarios in which the non-identity check problem becomes
trivial to solve. It was proved by Ji and Wu [17], that the problem is in general QMA-hard
for depth 2 circuits over qudits when b− a = 1/poly(n) and the quantum gates are specified
to Ω(log n) bits of precision. We first show that NIC is solvable in P when the entire circuit
is Clifford regardless of the depth of the circuit. Second, we show that if a = o(1) is a
sub-constant function, then the problem is in P for constant-depth circuits built from a finite
gate set.

4.1 Clifford circuits

▶ Theorem 5. NIC for Clifford circuits is contained in P.

Proof. In order to see this, let C be the unknown Clifford circuit for which we need to
determine whether ∥C − I∥ ≥ α or ∥C − I∥ ≤ β for α− β ≥ 1/poly(n). To this end, consider
a Hamiltonian H = (I−C)†(I−C) = 2I−C−C†, whose norm satisfies ∥H∥ = ∥I−C∥2 ≤ 4.
In order to solve NIC(C), we need to decide if ∥H∥ ≥ α2 or ∥H∥ ≤ β2. In the former
case observe that Tr(Hp) ≥ α2p and in the latter case we have Tr(Hp) ≤ 2n · β2p. Since
α− β ≥ 1/poly(n), it suffices to pick p = poly(n), in order to satisfy α2p ≥ 2 · 2n · β2p. Hence
if an algorithm could estimate Tr(Hp) well enough, then it can distinguish if C satisfies the
Yes or No instance of NIC problem.

We now show how to compute Tr(Hp) for p = poly(n) exactly and efficiently. In this
direction, observe that we can express Hp in terms of sum of Clifford powers, i.e.,

Tr(Hp) = Tr
( p∑
i=−p

aiC
i
)

=
p∑

i=−p
ai Tr

(
Ci

)
(56)

for some coefficients ai ∈ R. Furthermore, since H assumes a simple form H = I − C,
the (2p+ 1) coefficients ai can be computed explicitly in poly(n) time. Now, it remains to
compute Tr

(
Ci

)
for each one of the 2p + 1 terms. The trace of a Clifford power can be

computed exactly by observing that Tr
(
Ci

)
= 2n⟨Φ|I ⊗ Ci|Φ⟩ where |Φ⟩ = 1√

2n

∑
i |i, i⟩ is

the maximally entangled state on (2n)-qubits. Observe that since |Φ⟩ is a stabilizer state,
we have that |ψ⟩ = I ⊗ Ci |Φ⟩ is also a (2n)-qubit stabilizer state. It remains to estimate
inner product between two stabilizer states |Φ⟩ and |ψ⟩. It is known that the inner product
between any n-qubit stabilizer states can be computed exactly (including the overall phase)
in time O(n3), see [12, 8]. Therefore, one can compute each one of the Tr

(
Ci

)
and ai

in Equation (56) in time poly(n) and overall since p = poly(n), we can exactly compute
Tr(Hp) in time poly(n). This suffices to decide if Tr(Hp) ≥ α2p (the YES instance of NIC)
or Tr(Hp) ≤ 2n · β2p (the NO instance of NIC) for α− β ≥ 1/poly(n). ◀
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4.2 Constant-sized gate sets
In this section, we are going to show that the NIC problem for a = o(1), is in P if we restrict
ourselves to circuits of constant depth and a constant-sized gate set. Curiously, the problem
was shown to be QMA-hard when either we use an arbitrary gate set or constant-sized gate
sets, but we allow circuits of Ω(log n)-depth [17].

▶ Theorem 6. Let G be any constant-sized gate set of 1 and 2 qudit gates and U a quantum
circuit of depth at most t = O(1) acting on n qudits of fixed finite local dimension d. Let
a < b be any parameters such that a(n) = o(1). Then the NIC problem (a, b) for this restricted
class of circuits is in P.

For this proof, we will need a few definitions and preliminary lemmas which we list here
first and prove after the proof of the theorem. First, we will need a wonderful fact about
low-depth circuits that the reduced density matrix tr−i UψU

† only depends on the lightcone
of the ith qudit.

▶ Fact 13. Consider a quantum state ψ on n qudits and U a quantum circuit. For any
subset A of the qudits, let LA be the support of the lightcone of A with respect to U . Then,

tr−A(UψU †) = tr−A

(
ULA

(ψLA
⊗ ν−LA

)U†
LA

)
(57)

where ν is the maximally mixed quantum state and ULA
the circuit restricted to gates contained

in LA.

Second, we notice that if a quantum circuit U is close to identity overall, then the reduced
action of the circuit on any region must also be close to identity. We will often use the
contrapositive of this statement: if the reduced action of a circuit on any small region is far
from identity, then the circuit overall is far from identity.

▶ Fact 14. Let U be a quantum circuit on n qudits and let a be a constant such that
dI(U) < a. Then for all states ψ and all regions A,∥∥tr−A(UψU †) − ψA

∥∥ ≤ a. (58)

Proof of Theorem 6. Let C(ℓ, h) be the collection of all quantum circuits acting on ℓ qudits
and of depth ≤ h consisting of gates only from G. Let us define the increment-distance ηℓ,h
as

ηℓ,h
def= min
V ∈C(ℓ,h)
V ̸=eiϕI

dI(V ). (59)

Since G is a finite gate set and C(ℓ, h) has a bounded cardinality, ηℓ,h > 0 is a well-defined
constant independent on n and represents the closest a circuit can be to being identity
without being identity itself. This is formalized in the following fact.

▶ Fact 15. Let V be a circuit ∈ C(ℓ, h) such that dI(V ) < ηℓ,h. There exists an angle ϕV
such that V = eiϕV I.

In order to construct a P algorithm for this problem, we notice that since a = o(1), for
some sufficiently large N0, if n > N0

a(n) < η2t+1,t. (60)
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Our algorithm will solve only instance of this size or larger. Assume that an instance U
of the problem is a False instance, so U is near-identity. Then for each qubit i and every
state ψ,∥∥∥tr−i

(
ULi (ψLi ⊗ ν−Li)U

†
Li

)
− ψi

∥∥∥ ≤ a (61)

as a consequence of the prior stated facts. Since, this holds for all states ψ, then dI(ULi) < a.
However, the circuit ULA

acts on at most 2t+1 qubits and has depth at most t. Since
a < η2t+1,t, then we can conclude that the action of ULi on the ith qubit must be I (up to
phase) in every False instance. Since this holds for every qubit i, in a False instance, the
circuit U must exactly be I (up to phase). Therefore, the P algorithm is simple: test if each
circuit ULi is exactly identity and if so report False or otherwise report True. ◀
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In Theorem 16, we give an alternative algorithm for solving the same problem as Theorem
2. While this algorithm will have a inferior worst-case runtime than Theorem 2, it may
run significantly faster depending on the structure of the problem instance. Furthermore,
it has the added advantage that its runtime can be efficiently calculated in time poly(n, s).
Therefore, one can quickly compute the runtime of Theorem 16 and compare it to that of
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gates but all single-qubit phase gates G = diag(1, eiθ) which may be an advantage for some
problems5. 6
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without running the algorithm itself.
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due to Equation (1). Since |1⟩⟨1| = I

2 − Z
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U†Z1U is a Pauli matrix Q(s) = αP1 ⊗P2 ⊗ . . . Pn+m for α ∈ {±1,±i} and Pi ∈ {I, X, Y, Z}.

5 It is also easy to extend this algorithm to all k-qubit non-Clifford gates. However, the runtime will now
scale as 4t+kt. This follows directly from the fact that any k-qubit non-Clifford gate can be expressed
as the linear combination of 4k Clifford gates.
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Therefore,

⟨0m|U†ZU |0m⟩ = P1 ⊗ . . .⊗ Pn ·
n+m∏
j=n+1

⟨0|Pj |0⟩ . (62)

Then, the smallest eigenvalue of this matrix is easy to calculate as it is in tensor product;
this is effectively the Gottesman-Knill theorem [14]. Furthermore, the Pauli P (s) can be
computed efficiently. More specifically, if U = g1 . . . gs with each gate gi a Clifford matrix,
we can define and compute the sequence of Paulis Q(k) def= gkQ

(k−1)g†
k for Q(0) = Z1 from

k = 1, . . . , s.
We now extend this algorithm to the case that U contains t non-Clifford gates. Consider

first the case that there is one non-Clifford qubit rotation gate gk, with gk

gk
def= R(θk) =

(
1 0
0 eiθk

)
(63)

and acts (without loss of generality) on the first qubit. Let Q(k−1) be the Pauli calculated up
to gate gk−1. Now notice that there are 2 cases to consider; namely if the action of Q(k−1)

on the first qubit is ∈ {I, Z} or is ∈ {X,Y }. Since R(θ) commutes with I and Z and the
following commutation relations hold:

R(θ)XR(θ)† = (cos θ)X + (sin θ)Y, R(θ)Y R(θ)† = (− sin θ)X + (cos θ)Y, (64)

we can express

Q(k) = gkQ
(k−1)g†

k = P (k,1) + P (k,2) (65)

where P (k,1) and P (k,2) are Pauli matrices scaled by a complex number. For every subsequent
Clifford gate gk′ we can then recursively define and compute

P (k′,ℓ) def= gk′P (k′−1,ℓ)g†
k′ (66)

which will remain a Pauli matrix. It is easy to note that this bifurcation from one Pauli
matrix to two Pauli matrices when commuting past a non-Clifford gate generalizes to multiple
non-Clifford gates with

UZ1U
† = Q(s) =

≤2t∑
ℓ=1

P (s,ℓ) (67)

being expressible as the linear combination of ≤ 2t Pauli matrices each acting on n + m

qubits. We next show that although there are ≤ 2t Pauli matric, there exists an efficiently
computable basis of size b ≤ t+ 1 such that each Pauli matrix can be expressed as a product
of the basis matrices.

▶ Lemma 17. Let U be a quantum circuit consisting of s gates of which at most t gates are
non-Clifford qubit rotation gates. Then Q(s) = UZ1U

† can be expressed as a sum of ≤ 2b
Pauli matrices which are each products of at most b ≤ t+1 basis Pauli matrices. Furthermore,
the basis can be computed in time O(poly(s)) and the collection of Pauli matrices can be
computed in time O(2b · poly(s)).
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This lemma is proved after the description of the rest of the algorithm. Given the basis
B = {B(1), . . . , B(b)} for b ≤ t + 1, define γ(k′, k) def= 1 if B(k′) and B(k) commute and def= 0
otherwise. Observe then the Pauli matrices

A(k) def=
∏
k′<k

X
γ(k′,k)
k′ · Zk (68)

observe the same commutation relations as B do. However, A = {A(1), . . . , A(b)} act on at
most b qubits. For each Pauli matrix P (ℓ) defined as a product of elements from B, let us
define O(ℓ) as the same product, except using the corresponding matrices from A. Then the
spectrum of

H ′ def=
≤2t∑
ℓ=1

O(ℓ) (69)

is the same as that of Q(s) from Equation (67). This is because there exists a unitary
mapping A to B which therefore maps O(ℓ) to P (ℓ) and likewise maps H to Q(s). Therefore,
it suffices to compute the minimum eigenvalue of H ′. Here H ′ is a square matrix of
dimension 2b × 2b with b ≤ t+ 1. Computing H ′ and its minimum eigenvalue to accuracy δ
can be done in time O(poly(s)23b log(t/δ)).

Lastly, notice that a convenient quality of this algorithm is that the basis B and its size
b can be computed in time O(poly(s)). Therefore, one can calculate b and calculate7 the
runtime of the algorithm without running the algorithm itself. ◀

Proof of Lemma 17. We proceed by induction on the gates g1, . . . , gs of U . Initially, the only
basis matrix is B(0,1) = Z1 and P (0,1) = B(0,1). Then in the inductive step, we assume a basis
of {B(k,λ)} and a collection of Pauli matrices P (k,ℓ) such that each Pauli is expressible as a
product of the basis matrices. When gate gk is a Clifford, we define B(k−1,λ) def= gkB

(k−1,λ)g†
k.

Conveniently, P (k,ℓ) = gkP
(k−1,ℓ)g†

k is the product of the corresponding set of new basis
matrices.

In the case that gk = R(θ) which (without loss of generality) acts on the first qubit,
we first transform the basis {B(k−1,λ)} by multiplying basis terms we ensure that at most
2 basis terms act non-trivially on the first qubit. The terms P (k−1,ℓ) can be adjusted in
polynomial-time to reflect the new basis. If there are no basis terms acting non-trivially
or one basis term acting as Z, then we set P (k,ℓ) equal to P (k−1,ℓ). In the case that the
one basis term (without loss of generality, B(k−1,1) acts as X, then we introduce a new
basis term defined as B(k,new) def= B(k,1) · XY . Any Pauli term P (k−1,ℓ) involving B(k−1,1)

after commuting by gk now a linear combination of said term and B(k,λnew) according to
Equation (64). A similar argument holds when the one basis B(k−1,1) term acts as Y . In the
case that two basis terms act non-trivially on the first qubit, we can also enforce that one of
the basis terms acts as Z and the other acts as either X or Y . Then, a similar argument
enforces that it suffices to introduce a single additional basis term.

Therefore, at the end of the induction, the total basis has size at most t+ 1 and UZ1U
†

can be expressed as a linear combination of ≤ 2t Pauli terms. ◀

7 Namely, this is to check in time O(poly(s)) if b ≪ t to see if this algorithm will be more efficient at
computing H ′ than the stabilizer-rank of magic states algorithm (Theorem 2) derived from [23].
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between these gates. ACES strictly generalizes randomized benchmarking (RB), interleaved RB,
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information and provably works under strictly weaker assumptions than these techniques. Finally,
ACES is extremely scalable: we demonstrate with numerical simulations that it simultaneously
and precisely estimates all the Pauli error rates on every gate and measurement in a 100 qubit
quantum device using fewer than 20 relatively shallow Clifford circuits and an experimentally feasible
number of samples. By learning the detailed gate errors for large quantum devices, ACES opens new
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1 Introduction

Estimating errors in quantum computers is essential for progress towards fault tolerant
quantum computation (FTQC) [36]. An error is any undesired quantum evolution, and so
errors can be as general as the set of allowed quantum dynamics, making them difficult to
estimate and characterize. The most relevant errors in the context of FTQC can be broadly
cast into the two archetypes of coherent and incoherent errors [31], though this is not an
exclusive dichotomy.

Coherent errors are roughly those that we wish to reduce through improved calibration or
eliminate via dynamical decoupling [42], though clever choices of quantum codes and circuits
can also be tailored to handle coherent noise [9, 22, 46]. These methods reach natural limits
when the coherent noise becomes too complex to efficiently describe. While in principle
coherent errors can accumulate badly during a computation [31], quantum error correction
itself seems to reduce the coherence of noise [23, 3, 26].

Incoherent noise, by contrast, can generally only be completely fixed by quantum error
correction and fault tolerance, though near-term strategies for error mitigation could also
help [38, 32, 11, 8, 34]. Optimizing the codes, decoders, and circuits for FTQC requires a
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comprehensive understanding of the incoherent noise in a quantum device. Many techniques
have been developed to estimate incoherent errors, including randomized benchmarking
(RB) [10], interleaved RB [35], simultaneous RB [17], character RB [21], and Pauli noise
estimation [14] among others. Each of these techniques has in common that a general quantum
noise source (which may include coherent errors) is actively averaged to obtain an incoherent
noise model with the same fidelity using randomized control techniques [41, 28, 29, 43, 44].
It is this averaged noise that RB-type methods seek to estimate.

In this paper, we show that incoherent noise, modeled as a Pauli channel, can be learned
extremely efficiently using averaged circuit eigenvalue sampling, or ACES. It is already
known that Pauli channels can be (individually) estimated efficiently and in a manner that
is robust to state preparation and measurement (SPAM) errors [19, 20, 14, 16], and they
are effective at modeling noise for FTQC [18, 27]. ACES goes beyond this prior work and
simultaneously estimates a large collection of Pauli noise channels associated to a quantum
device. Indeed, we give numerical simulations showing that ACES can characterize every
error rate associated to the Clifford gates in a 100 qubit quantum device using fewer than
20 circuits and a reasonable number of samples. Moreover, it requires only very simple
classical resources to process these data, unlike other characterization techniques based on
simulating or implementing general quantum circuits, or using challenging tensor network
simulations [4, 5, 37, 39, 33, 6].

2 The Pauli and Clifford groups

The n-qubit Pauli group Pn consists of n-fold tensor products of single-qubit Pauli op-
erators labeled as follows. Let a be a 2n-bit string a = a1a2 . . . a2n and write Pa =
ia

T Υa
∏n

j=1 X
a2j−1
j Z

a2j

j , where Xj and Zj are single-qubit Paulis acting on qubit j, and
Υ =

⊕n
k=1 ( 0 1

0 0 ) is such that Pa is always hermitian. The group Pn contains these Pa, to-
gether with the overall phases {±1,±i}, composed under matrix multiplication. All elements
of the Pauli group satisfy

PaPb = (−1)⟨a,b⟩PbPa , (1)

where the sign is determined by the binary symplectic form ⟨a, b⟩ = aT (Υ + ΥT )b mod 2.
The normalizer of the Pauli group inside the unitary group, modulo phases, is the Clifford

group Cn, and it is generated by the controlled-NOT gate CXi→j from control i to target j,
the Hadamard gate Hj , and the phase gate Sj

1.
Pauli channels are quantum channels of the form

ρ 7→
∑

a

paPaρP
†
a , (2)

where pa is a (possibly subnormalized) probability distribution called the Pauli error rates.
Leakage from the qubit space occurs when

∑
a pa < 1. When a general quantum channel

E =
∑

j Kj ·K†
j is twirled by the Pauli group, it becomes a Pauli channel denoted EP,

EP(ρ) = 1
4n

∑
a

P †
aE(PaρP

†
a)Pa . (3)

1 From this definition, elements of the Clifford group are actually equivalence classes up to an overall phase,
but by a slight abuse of language we can speak about a “Clifford unitary” to mean any representative
element up to a phase and refer to uniqueness of a Clifford unitary when we really mean uniqueness up
to an overall phase.
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If Kj =
∑

a νj,aPa, then the Pauli error rates of EP are pa =
∑

j |νj,a|2. Thus we can speak
of the Pauli error rates of a general channel by considering its Pauli twirl. Note that we can
interpret twirling as the mean of a random process where a Pauli is selected uniformly at
random and applied both before and after the channel.

The eigenvectors of a Pauli channel E are just the Pauli operators. Indeed, from Equa-
tion (1) we have E(Pb) = λbPb where the Pauli eigenvalues λb are,

λb =
∑

a

(−1)⟨a,b⟩pa . (4)

This equation can be inverted to express the error rates in terms of the eigenvalues 2,

pa = 1
2n

∑
b

(−1)⟨a,b⟩λb . (5)

We now introduce a “G-twisted” Pauli twirl. For a given Clifford G and Pauli Pa,
let Pa′ = G(Pa). Note that since G is unitary, the set of all a and a′ are in one-to-one
correspondence. We wish to expand a noisy gate as G̃ = GE for some general noise channel
E = G†G̃. Intuitively, E is close to the identity, though the definition doesn’t assume that.
Then the G-twisted twirl of G̃ is

G̃GP(ρ) = 1
4n

∑
a

P †
a′ G̃(PaρP

†
a)Pa′ = G

(
EP(ρ)

)
. (6)

From the last equality, we see that the G-twisted twirl isolates the Pauli noise around a given
noisy implementation G̃ of an ideal Clifford gate G.

G-twisted twirled channels have an analogous eigendecomposition to a Pauli twirled
channel, but with the notion of generalized eigenvector. Given such a channel G̃GP, the
generalized eigenvectors with respect to G0 are vectors such that G̃GP(v) = λG0(v). We
see from Equation (6) that choosing G0 = G gives exactly the Paulis as the generalized
eigenvectors with eigenvalues given by the Pauli eigenvalues of the noise map EP.

3 Averaged circuits

Let us consider a Clifford circuit (i.e., a circuit composed solely of CX, H, and S gates or
an equivalent generating set), denoted C. Any physical implementation of these circuits will
be noisy, and we seek to characterize the incoherent Pauli-averaged noise in these circuits,
specifically in the generators used to create the circuits. To that end, from the circuit C we
create a new ensemble of circuits CP by sampling a G-twisted Pauli twirl across each Clifford
circuit element and recompiling the Pauli gate. This approach to Pauli frame randomization
is known as randomized compiling [43]. Each circuit in the ensemble implements the same
unitary operation, but now the noise has been averaged over the Pauli group. In Ref. [43], it
was proven that circuits sampled in this way yield on average a circuit that interleaves Pauli-
averaged noise with ideal gates (except possibly in the final measurement step). This result
rigorously holds whenever the noise on each Pauli gate is the same, and furthermore Ref. [43]
provides some robustness guarantees in the event that this assumption is perturbatively
violated 3.

2 Note that λa and pa are essentially Fourier transform pairs since the transform relating them is the
Walsh-Hadamard transform (up to a permutation). A helpful intuition is that λ lives in the “time
domain” where we can efficiently sample, and p lives in the “frequency domain” where we wish to
reconstruct the signal.

3 While the gate-independent noise assumption may seem unrealistic, it should be noted that the successful
and widely used method of standard RB makes the much stronger assumption that the noise is gate-
independent across all n-qubit Clifford gates, whereas ACES weakens this substantially to just the Pauli
gates.
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These considerations motivate considering only averaged circuits, denoted CP, so that the
noisy physical implementations will have the form

C̃P = G̃T

GT P
. . . G̃1

G1P
= GT EGT

. . .G1EG1 . (7)

4 Eigenvalue sampling

Let us suppose for the moment that a given circuit C ideally implements the identity unitary.
Under the gate-independent noise assumption, it follows that the noisy implementation of
the averaged circuit, C̃P, will be a Pauli channel. It therefore has Pauli eigenvalues, namely
C̃P(Pa) = ΛC,aPa, where we use capital Λ to denote this circuit-level eigenvalue. Because of
the gate-independent noise assumption, this eigenvalue depends only on the eigenvector (Pa)
and on the circuit (C), so it is labeled accordingly as ΛC,a.

If the circuit C does not implement the identity unitary, but rather some net Clifford
operation, something similar still holds. If the ideal circuit maps an input Pauli Pa to an
output Pauli C(Pa) = ±Pa′ , then the overall ± sign and the value of a′ can be efficiently
computed [1]. The noisy version of the circuit will give an averaged operator that satisfies
the generalized eigenvalue equation

C̃P(Pa) = ΛC,aC(Pa) = ±ΛC,aPa′ . (8)

From the orthogonality of the Pauli basis, it follows that

ΛC,a = ± 1
2n

Tr
(
Pa′ C̃P(Pa)

)
, (9)

and this suggests a prescription for estimating the (generalized) eigenvalue ΛC,a that we call
eigenvalue sampling.

To estimate ΛC,a via eigenvalue sampling, let us focus on the case where Pa is a single-
qubit Pauli. We begin by selecting uniformly at random an eigenstate ψ± on the support of
Pa having eigenvalue ±1 (ignoring the other registers). Then we send ψ± into a randomly
chosen element in the circuit ensemble CP and measure the output in the basis defined by
Pa′ . Our overall estimate for ΛC,a consists of measuring N independent experiments and
taking the difference of the sample averages between the ψ+ and ψ− experiments. It is easy
to check that this differencing trick makes Equation (9) hold in expectation, so this is an
unbiased estimator of ΛC,a. This sampling strategy was first analyzed in Ref. [15], and it is
straightforward to generalize to the n-qubit case. Note that it will be most efficient if the
support of Pa and Pa′ are relatively small, and also that Paulis with disjoint support can
implement such measurements simultaneously.

5 Relating circuit and gate eigenvalues

We have seen how eigenvalue sampling on averaged circuits gives us access to the (generalized)
Pauli eigenvalues ΛC,a in the implemented circuit ensemble C̃P. This is already a useful
method for estimating the quality of the circuit implementation C̃, since it can be interpreted
as a fidelity-like measure for how faithfully the circuit executes given the input Pa. However,
we seek to characterize not just the global circuit noise, but the error rates associated to the
constituent gates as well. How do the (generalized) eigenvalues of the individual gates relate
to the eigenvalue of the total circuit C = GT . . .G1?
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Let us apply the generalized eigenvalue relation sequentially to the gates in a Clifford
circuit. For the first gate we obtain G̃P

1 (Pa1) = λ1,a1G1(Pa1) = (±)1λ1,a1Pa2 . Acting on this
with G̃P

2 , we obtain

G̃P
2 G̃P

1 (Pa1) = (±)1(±)2λ1,a1λ2,a2GP
2 (Pa2)

= (±)1(±)2λ1,a1λ2,a2Pa3 .

Continuing in this fashion, we find that

C̃P(Pa1) = (±)
T∏

k=1
λk,ak

C(Pa1) , (10)

where the overall sign and the individual ak can be computed efficiently [1]. Comparing
with Equation (8), we see that ΛC,a1 = (±)

∏
k λk,ak

. We will use the freedom to reinterpret
the sign of the input Pauli Pa1 to ensure that we always have a + sign in this equation, and
therefore we have the relation

ΛC,a1 =
T∏

k=1
λk,ak

. (11)

With this sign convention, in the regime of interest ΛC,a1 is positive and not too small. We
therefore focus on sets of circuits Ck and input labels aki such that ΛCk,aki

is always larger
than, say, 1/2, and gates where λk,ak

> 0.

6 Estimating gate errors via ACES

We now consider a circuit Ck and an input label aki
; we give this combination a composite

index µ = (Ck,aki
). From the above discussion, we can obtain an empirical estimate Λ̂µ

of Λµ by eigenvalue sampling on the averaged circuit ensemble for the circuit/input label
µ. Similarly, we assemble all gate-level eigenvalues under a single index to get λν , where ν
labels pairs of gates and Paulis whose noise we wish to model. Since all eigenvalue quantities
are positive in the regime of interest, we can introduce new variables,

Λµ = e−bµ , λν = e−xν . (12)

The new variables are related by the linear equations∑
ν

Aµνxν = bµ . (13)

We refer to the matrix A as the design matrix. Once enough independent equations (µ)
are obtained so that A is full rank, an estimate for x can be obtained in any number of
ways, most straightforwardly via least squares as x̂ = A+b̂, where b̂ denotes an empirical
estimate for b and A+ is the pseudoinverse of A. Inverting Equation (12) subsequently gives
us estimates for λν , and Pauli error rates can be obtained by using Equation (5).

The precision of our estimate depends in part on the choice of A, as well as the precision
of the initial estimates of the Λµ. The estimates for λν are always accurate in the sense that
these are consistent estimators, however they will in general have some bias. In the numerical
simulations below, no attempt was made to find optimal designs A, and only random choices
were used. We leave open the question of finding optimal design matrices that maximize the
precision and accuracy of these estimators.
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Figure 1 a) Sending X, Y , and Z Paulis (blue, yellow, and red, resp.) through a small “mirror
circuit” (i.e., one of the form UU†) with n = 21 qubits, depth d = 34, and nearest-neighbor gates in
1D. Normalized histograms of b) the absolute error for the µth estimated circuit eigenvalue Λ̂µ, and
c) the total variation distance (TVD) for the estimated Pauli error rates p̂j of the noisy gate G̃j in a
n = 100 qubit simulation. There are 898 gates (including measurements) in the model, and 10, 155
estimated circuit fidelities (which are estimated in large batches due to the n-bit measurements) to
estimate N = 5070 parameters. Plots are for a number of samples S per Λµ of 104, 105, and 106.

7 Correlations and SPAM

The ACES methodology is flexible enough to allow independent estimation of SPAM errors
as well as space- and/or certain time-correlated errors. To estimate measurement noise, we
simply add a list of variables xν associated to each Pauli measurement error that we wish to
model. We caution that separating preparation errors from measurement errors will not be
possible if they are introduced into the model in a symmetric way (because then A will not
be full rank); this problem is not unique to ACES however [4] and we do not attempt to
resolve it here.

To handle space-correlated errors, we reinterpret the gates that generate our circuits to
come in correlated groups. For example, if we want to model correlated noise between the
Hadamard gates H1 and H2, we could have separate variables for the gates H1, H2, and
H1 ⊗H2. This is analogous to interleaved [35] and simultaneous RB [17], except that all of
the data are used to fit all of the gates and correlations symmetrically and simultaneously.

Limited forms of time-correlated errors can be handled similarly by introducing variables
for pairs of gates in time. For example, if the noise on H1 depends on whether S1 was applied
or not right before, then we can introduce separate variables for these cases.

The only condition for a unique and consistent estimate in all of these scenarios is that
the design matrix A is full rank. If A were random, then we only need as many equations
as unknowns for this to hold with high probability. From this heuristic, we expect that the
number of experiments should be about as large as, or a little larger than, the number of
variables.

8 Numerical results

We now demonstrate the scalability of ACES via numerical simulations. Rigorous proofs of
the consistency of ACES and bounds on the sample complexity will be presented elsewhere.
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We consider the most general model of inhomogeneous but uncorrelated noise, plus
readout errors4. In this model on n qubits there are O(n) variables: CX gates acting
between neighbors, together with six single-qubit Clifford gates (modulo the Paulis), and
independent readout errors on each qubit in each Pauli basis.

We generated C = 19 random 1D Clifford circuits on n = 100 qubits of varying depths
from d = 2 up to d = 89. The sum of all the circuit depths, including the measurement
rounds, was 354. We then computed the circuit eigenvalues obtained from sending in all
single-qubit Paulis and, on some circuits, two-qubit Paulis on nearest neighbors as well.
We found it challenging to generate a full-rank design matrix A using the “mirror circuits”
shown in Figure 1a, so we padded each mirror circuit with a depth 5 random circuit layer
at the end. This means that the Paulis measured at the output had, in some cases, weight
as high as 6, though most still had weight 1 or 2. Constant-weight Pauli operators can
nonetheless be estimated efficiently from single-qubit Pauli measurements [12, 24, 25], and
this only increases the sample complexity by a constant factor. We then generated a “true”
noise model by assigning to each gate random Pauli error rates consistent with the estimates
reported in the Arute et al. experiment [2]. The entire implementation can be found in the
associated Mathematica notebook accompanying this manuscript [13].

Despite its seeming simplicity, this model still has N = 5070 parameters. Even under the
simplifying assumptions of RB with Clifford averaging where the noise is depolarizing on
each gate, there would still be 798 parameters (neglecting SPAM) to be estimated through
interleaved RB, and even then the required Clifford randomizations would be prohibitively
expensive.

ACES estimates all of these parameters with just these 19 random circuits (and their
Pauli randomizations). This is possible because each measurement is an n-bit measurement,
so many parameters are estimated in parallel.

In Figs. 1b and 1c we plot the convergence of the ACES estimate as a function of S, the
number of samples per circuit eigenvalue estimate. Estimates x̂ν of the model parameters xν

were obtained from the simulated data by solving Equation (13) with the simplest possible
estimator, a truncated least-squares estimate (i.e., finding the least squares solution and
truncating any negative values).

Counting an n-bit measurement as one sample, the total sample complexity is O(SC)
where C is the number of different averaged circuits used, in this case C = 19. Results
are shown for S = 104, 105, 106. Even for S = 104, nearly all circuit eigenvalue estimates
(1b) are within 1% of the true answer, and the total variation distance (TVD) between the
estimated and true Pauli error rates on each gate are within .64% with 95% confidence. This
latter figure improves to .1% with 95% confidence for S = 106, a remarkably precise estimate
given how many parameters there are and that no regularization was used to avoid potential
overfitting.

9 Discussion

There are many potential applications for ACES, and many avenues for improving and
extending it as well. For example, in addition to the tailored codes and decoders mentioned
above, error mitigation is one of the most natural applications of ACES [38, 32, 11, 8, 34],
and it can also be used to debias estimates of classical shadows following the ideas in

4 We do not model state preparation errors, only readout errors, for the reason discussed in the main text
that these are not separately identifiable.
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Refs. [7, 30, 40]. Regarding extensions, while we have focused entirely on Clifford gates, it
is easy to see that ACES can accommodate circuits with a constant number of T gates in
specific configurations. However, extending beyond this to universal gate sets in general is
an important question for future research. A differential analysis suggests that obtaining
circuit eigenvalue estimates such that Λ̂µ = Λµ ± ϵΛµ suffices to obtain gate-level eigenvalue
estimates of order λ̂ν = λν ±O

(
∥A+∥ϵ

)
λν . Thus, finding circuits, Pauli inputs, and noise

models whose associated design matrix minimizes ∥A+∥ could help optimize the sample
efficiency of ACES. There are additional desiderata for the design matrix, such as requiring
only few experiments and using circuits that map few-qubit Paulis to few-qubit Paulis.
Finding a general understanding of which circuits behave best is an open question. While
ACES can test for correlations in a given noise model, it would be more powerful to include a
large model and then search for dominant correlations by enforcing sparsity. One way forward
might be to test clusters of gates for inclusion using methods such as group LASSO [45].
Finally, the most obvious open problem is to implement ACES in a near-term experiment.
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Abstract
Recent developments in classical simulation of quantum circuits make use of clever decompositions
of chunks of magic states into sums of efficiently simulable stabiliser states. We show here how, by
considering certain non-stabiliser entangled states which have more favourable decompositions, we
can speed up these simulations. This is made possible by using the ZX-calculus, which allows us to
easily find instances of these entangled states in the simplified diagram representing the quantum
circuit to be simulated. We additionally find a new technique of partial stabiliser decompositions
that allow us to trade magic states for stabiliser terms. With this technique we require only 2αt

stabiliser terms, where α ≈ 0.396, to simulate a circuit with T-count t. This matches the α found by
Qassim et al. [16], but whereas they only get this scaling in the asymptotic limit, ours applies for a
circuit of any size. Our method builds upon a recently proposed scheme for simulation combining
stabiliser decompositions and optimisation strategies implemented in the software QuiZX [15]. With
our techniques we manage to reliably simulate 50-qubit 1400 T-count hidden shift circuits in a
couple of minutes on a consumer laptop.
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1 Introduction

A landmark result in the study of quantum circuit simulation is the Gottesman-Knill
theorem [1], which states that a quantum circuit consisting of Clifford gates and stabiliser
state inputs can be efficiently classically simulated. While Clifford gates are not universal for
quantum computation, the Clifford+T gate set, where we also allow the single qubit T gate,
can approximate any qubit unitary to arbitrary precision [2, 17]. It is widely believed that
the Clifford+T gate set requires exponentially large classical resources to simulate in general.
However, in practice certain methods exist for simulating Clifford+T circuits significantly
larger than one could ever hope to simulate directly, e.g. by state-vector calculation.
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A particularly effective technique for circuits with relatively low numbers of non-Clifford
gates is simulation by stabiliser decomposition. That is, general states (typically prepared
via a Clifford+T circuit) are first decomposed into weighted sums of stabiliser terms, each of
which can be simulated efficiently via Gottesman-Knill. The stabiliser rank of a state |ψ⟩
is the number of terms in the smallest possible decomposition of |ψ⟩ as a weighted sum of
stabiliser states. While computing the exact stabiliser rank of a given state is expected to
be a hard problem, various heuristics exist for obtaining stabiliser decompositions which
scale with the number of non-Clifford gates in a circuit. By using magic state injection, we
can write a state |ψ⟩ obtained from a Clifford+T circuit as a Clifford circuit that takes as
input a T magic state |T ⟩ := |0⟩+ei π

4 |1⟩√
2 for each T gate in the original circuit. One can then

decompose these T magic states, and hence |ψ⟩ into a sum of stabiliser states. Since each of
the individual terms can be simulated efficiently, the simulation cost of the state scales with
the number of terms in the decomposition.

Naïvely, one can decompose each of the T magic states individually as a linear combination
of the stabiliser states |0⟩ and |1⟩, obtaining 2t terms. However, by decomposing larger
non-stabiliser states at once, one can obtain lower simulation costs [7, 16]. Until now, such
techniques have focused on decomposing many identical copies of a fixed magic state. For
example, much work has gone into finding efficient decompositions of |T ⟩⊗t for different values
of t, with the best known decomposition scaling asymptoically as 2αt with α ≈ 0.396 [16].

In previous work by some of the current authors [15], a new method for simulation with
stabiliser decompositions was introduced, which works by representing the circuit to be
simulated as a ZX-diagram [8, 9], and then interleaving the decompositions of [7] with the
diagram simplification strategy of [14] to reduce the number of stabiliser terms required,
sometimes by many orders of magnitude. The scheme goes as follows:
1. Translate the circuit, together with the desired input state and measurement effect, to a

ZX-diagram.
2. Simplify the diagram as much as possible using the rules of the ZX-calculus.
3. Pick a set of non-Clifford generators and decompose them, obtaining a weighted sum of

diagrams with fewer non-Clifford generators.
4. Apply the previous two steps recursively to each of the diagrams until no non-Clifford

generators remain, in which case each diagram is simplified to a single complex number.
5. The sum of these numbers gives the overall amplitude.
This allowed for the simulation of significantly larger circuits than before. While the previous
best simulated a 50-qubit circuit with 64 T gates, in Ref. [15] they simulated 50-qubit circuits
with up to 1400 T gates.

In this article we build on the work of both [16] and [15], by significantly improving Step 3.
Our main contribution is to show that it is useful to consider different states than just |T ⟩⊗t

for decomposition. This leads to two improvements. The first is that if certain entangled
states are present in the ZX-diagram to be simulated, then we can use a decomposition that
asymptotically requires significantly fewer terms, having exponential parameter α ≈ 0.25
instead of α ≈ 0.396. While these special states need not appear in a generic ZX-diagram
obtained from a Clifford+T circuit, our empirical data suggests that they often will. It is
crucial here that we represent the intermediate stages of the simulation as a ZX-diagram, as
opposed to a circuit with magic states as input, as the graph structure makes it possible to
find the right entangled states to be decomposed.

Our second improvement is that one of these special decompositions can be adapted to
lead to a decomposition of |T ⟩⊗5 that uses only 3 terms but leaves one |T ⟩ in the resulting
reduced terms, which effectively gives us a “4-to-3” decomposition meaning we require 2αt
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terms with α ≈ 0.396 in the worst case. This matches the asymptotic upper bound reported
in Ref. [16], however unlike in their method, we obtain this bound at a fixed finite size rather
than in the limit.

We implemented our new decompositions in quiZX, the software used in Ref. [15], and
assessed the performance of our method by benchmarking the same type of quantum circuits.
We found that our new scheme always outperforms the previous one, often by several orders
of magnitude. For instance, we benchmarked 125 different 20-qubit hidden-shift circuits with
T-count 112. While our method used at most 1 second for each of these, the method of [15]
required more than 1000 seconds for some. We also found the distribution of the required
time to be a lot less erratic: while 17% of random hidden shift circuits on 50 qubits with
T-count 1400 could be sampled within 5 minutes in the previous proposal, 98% pass the
test with the new decompositions – and the remaining 2% only require 1 additional minute,
meaning we can reliably simulate 50-qubit hidden-shift circuits with over 1000 T gates on a
consumer laptop.

In Section 2 we present the ZX-calculus, the formalism used throughout the rest of
the paper, and in Section 3 we discuss the state-of-the-art in stabiliser rank and stabiliser
decompositions. In Section 4 we introduce the decompositions of the entangled states that
we will use, as well as a “partial” stabiliser decomposition of |T ⟩⊗5. Finally, in Section 5, we
conduct some benchmarks to assess the relevance of the new decompositions. We end with
some concluding remarks in Section 6.

2 ZX-calculus

The ZX-calculus is a graphical language for reasoning about quantum computation [8, 9]. It
represents quantum processes using ZX-diagrams which can then graphically be rewritten
and simplified using a collection of rewrite rules. For a review see [18]. Here we give a brief
overview of the notions we will need.

ZX-diagrams [8] are built from a set of generators: Z-spiders represented by green dots,
X-spiders represented by red dots, the Hadamard gate represented by a yellow box, and
generators capturing “half-turns” of a wire and wire crossings. These are defined as follows:

α... ... = |0...0⟩⟨0...0| + eiα|1...1⟩⟨1...1|

α... ... = | + ...+⟩⟨+...+ | + eiα| − ...−⟩⟨−...− |

= |+⟩⟨0| + |−⟩⟨1|

= |0⟩⟨0| + |1⟩⟨1|

=
∑

i,j∈{0,1}

|ij⟩⟨ji|

= |00⟩ + |11⟩

= ⟨00| + ⟨11|

Note that, much like in quantum circuit notation, we interpret composition as “plugging”
diagrams together and tensor product as putting diagrams side-by-side:

(

... ...D2

)
◦
(

... ...D1

)
= ... ...D1 ... ...D2

(

... ...D1

)
⊗

(

... ...D2

)
=

... ...D1

... ...D2
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We can hence build complicated diagrams by composition of these small bricks, and
interpret them as a (not necessarily unitary) linear map. For example, every quantum circuit
built from the traditional gate set ⟨CNOT, H, Zα⟩ can be directly mapped into a ZX-diagram
via the translation:

CNOT 7→
√

2 Zα 7→ α H 7→

Notice that we used here a complex number explicitly as a global multiplicative scalar to the
CNOT diagram. These scalars can be represented in ZX, but are a lot more convenient to
deal with explicitly when possible. Any diagram with 0 inputs and 0 outputs represents a
scalar, and when it can be efficiently computed, we will simply do this, instead of leaving it
as a diagram.

An important subclass of ZX-diagrams are the Clifford ZX-diagrams, i.e. those whose
spiders only have phases equal to integer multiples of π/2. A Clifford ZX-diagram with no
input wires always represents a stabiliser state, and conversely any stabiliser state can always
be written as a Clifford ZX-diagram [3].

A convenient feature of ZX-diagrams is that the linear map they represent only depends
on the connectivity of the diagram and not the actual positions of spiders or the direction of
wires between them. This means in particular that we can topologically deform a diagram
however we wish without changing its interpretation. This allows us to treat a ZX-diagram
as an undirected open (multi-)graph, whose vertices are Z-spiders, X-spiders and H-gates.
As H-gates are binary, it can be convenient to internalise them on their respective wires, and
consider a new wire type which we call an H-edge, represented by a dashed blue line:

:=

In addition to topological deformation, there are graphical rewrite rules that also preserve
the semantics of the diagram, and in fact, complete axiomatisations of the ZX-calculus exist
(e.g. [12, 13, 19]), which entirely capture the semantical equivalence of diagrams. We will not
give a full such axiomatisation here, but only those rules we will need in this paper:

β... ...

α ...... =... ... ...α+β ,
=

=
, ...= α...... α ...

Note that these rules remain true when Z- and X-spiders are interchanged (i.e. when the
colours are swapped).

Using these rules, it is possible to turn any diagram into a form where i) all spiders
are Z-spiders and ii) all edges are H-edges (but inputs and outputs remain plain wires). A
diagram in such a form is called graph-like [11]. These are the diagrams we will work with in
this paper.

While the rewrite rules are unidirectional, we can apply one-way rewrite strategies that
try to reduce some metric of the diagram, such as the number of spiders in a diagram. In
particular, in Ref. [11] a simplification strategy was introduced that can remove most Clifford
spiders, i.e. those spiders whose phase is an integer multiple of π/2, from a ZX-diagram.
It is this rewrite strategy (or more specifically, the improved version from Ref. [14]) that
was used in Ref. [15] to simplify the diagrams necessary for stabiliser decomposition-based
simulation. As the details are not relevant to us, we will only describe some of the properties
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that the resulting diagrams enjoy, as these will be important for our results. We will call
diagrams simplified by the rewrite strategy of Ref. [14] reduced. Note that a spider is called
internal if it is not directly connected to an input or an output of the diagram.

▶ Lemma 1. In reduced diagrams, no two Clifford spiders are neighbours.

In other words, patterns like k π
2 ℓ π

2 won’t appear in the diagram.

▶ Lemma 2. In reduced diagrams, no internal Clifford spider can have arity ≤ 2.

In other words, patterns like k π
2 and k π

2 won’t appear.

▶ Lemma 3. In reduced diagrams, no internal spider phases are odd multiples of π
2 .

In other words, patterns like (2k+1) π
2 ...... won’t appear.

3 Stabiliser Rank and stabiliser decompositions

Since stabiliser states/operators are efficiently classically simulable, it is worthwhile to try to
find decompositions of arbitrary quantum states as linear combination of stabiliser states
with a small number of terms.

More formally, let |ψ⟩ be an arbitrary state. Then a stabiliser decomposition of |ψ⟩ is a
decomposition |ψ⟩ =

∑n
k λk|ψk⟩ where the |ψk⟩ are all stabiliser states and the λk ∈ C are

some scalars. The smallest n for which such a decomposition exists is called the stabiliser
rank of |ψ⟩, and is denoted by χ(|ψ⟩). For simulation purposes, we are obviously not only
interested in χ(|ψ⟩) but also in an associated decomposition.

In the Clifford+T case, most of the results on stabiliser decompositions have focussed
on tensor products of the magic state |T ⟩ := 1√

2 (|0⟩ + ei π
4 |1⟩), which we can represent as a

ZX-diagram (up to normalisation) by π
4 . Whenever we have a spider with phase an odd

multiple of π/4 we can unfuse a magic state:

(2k+1) π
4 = k π

2

π
4

... ... ... ...

A single magic state can be decomposed as a sum of two stabiliser states:

π
4 = 1√

2
(

+ ei π
4 π

)
A naive decomposition of π

4
⊗t would then be to apply this decomposition for all magic

states, which would result in a decomposition with 2t terms. More sophisticated decomposi-
tions exist however, such as:

π
4

π
4

= π
2 + ei π

4 π

We can use this decomposition to reduce T magic states pairwise, bringing the total number
of terms down to 2 t

2 . There is also a |T ⟩⊗6 decomposition requiring 7 terms, described in [7]
and used in [15]. More recently, an improved decomposition of |T ⟩⊗6 was found that only
requires 6 terms [16]. To compare different decompositions it will be helpful to consider how
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5:6 Classical Simulation with Partial and Graphical Stabiliser Decompositions

many stabiliser terms would be needed if we were to decompose every non-Clifford phase in
the diagram using that decomposition. If a decomposition reduces the T-count by r using p
terms, we would need pt/r = 2αt stabiliser terms. This α = log2(p)/r will be the metric we
want to minimise. For instance, the decomposition of [7] gives α ≈ 0.468 (r = 6, p = 7).

In the following, we will consider some entangled non-stabiliser states of which we can
find a better decomposition than would be suggested by the number of magic states needed
to write down these states.

4 Results

We present two different improvements to the stabiliser decompositions used before: using
decompositions of certain entangled states instead of product states, and using “partial”
stabiliser decompositions where the terms are not Clifford, but merely contain a lower amount
of magic states.

4.1 Cat states in the ZX-calculus
The states we are interested in here were introduced in Ref. [16] as cat states:

| catn⟩ := 1√
2

(I⊗n + Z⊗n)|T ⟩⊗n = 1
√

2n+1

(
π
4

⊗n + 5π
4

⊗n
)

In Ref. [16] these states are used because i) they have a relatively small stabiliser rank and
ii) because if the stabiliser rank of | catn⟩ is bounded by c, then that of |T ⟩⊗n is bounded
by 2c. For instance, they find a decomposition of | cat6⟩ using 3 stabiliser states, which
hence gives a decomposition of |T ⟩⊗6 using 6 stabiliser states. This improves upon the 6-to-7
decomposition of Ref. [7], and improves α ≈ 0.468 to α ≈ 0.431.

In this paper we focus on the use of the cat-states directly for stabiliser decompositions,
rather than first transforming them into decompositions of sets of T states. First, notice
that they can be easily expressed as ZX-diagrams:

| catn⟩ = 1√
2

π
4

π
4

π
4

...

We can then translate to ZX the decomposition of | cat6⟩ found in Ref. [16]1:

π
4

π
4

π
4

π
4

π
4

π
4

= − π
2 + ieiπ/4

√
2 − eiπ/4

√
2

1
2

π
2

π
2

π
2

π
2

π
2

π
2

1 The description of the last diagram in the decomposition is not the one given in [16]. However, the two
can be shown to be equivalent using the ZX-calculus.
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Hence, if our diagram contained enough subdiagrams that look like | cat6⟩ to allow us to
decompose all non-Clifford spiders using this decomposition we would get 3 t

6 = 2αt terms,
where α ≈ 0.264. We can in fact do even better by considering the decomposition of | cat4⟩,
which has a stabiliser rank of only 2:

π
4

π
4

π
4

π
4

= − π
2 + ie−iπ/4

√
2

If we could use only this decomposition we would get 20.25t terms.
The existence of these beneficial decompositions suggests a new strategy: at every step of

the decomposition of the complete diagram, we look at every internal spider in the graph
and the shape of its neighbourhood and we pick a target for decomposition that requires the
fewest number of terms per magic state. After each decomposition, we use a ZX-diagram
simplification strategy (like the one in Ref. [15]) and then we repeat the procedure.

We cannot hope to always have an occurrence of | cat4⟩ or | cat6⟩ at hand. However,
notice that we can always infer a decomposition of | catn⟩ from one of | catn+k⟩ (k > 0), by
| catn⟩ = (⟨0|⊗k ⊗ I⊗n)| catn+k⟩. This observation gives us for instance a decomposition of
| cat3⟩ and | cat5⟩:

π
4

π
4

π
4

= − π
2 + ie−iπ/4

√
2

π
4

π
4

π
4

π
4

π
4

= − π
2 + ieiπ/4

√
2 − eiπ/4

√
2

1
2

π
2

π
2

π
2

π
2

π
2

These two decompositions give us respectively α = 1/3 ≈ 0.333 and α ≈ 0.317.
Note that by Lemma 2, there will never be any occurrence of | cat2⟩ or | cat1⟩ in our

simplified diagrams so that we now have a strategy for decomposing any | catn⟩ for n ≤ 6.
These decompositions apply when the “central” Clifford spider has phase 0. By Lemma 3

any internal Clifford spider will have phase 0 or π. The π case is easily taken care of by
pushing the phase through one of the neighbours as follows:

π
4

π
4

π
4

π

... =

π
4

π
4

π
4
...

π

ei π
4

− π
2

Note that in practice, in our reduced diagrams the only occurrences of cat-states will be
as phase gadgets [14, 10], which relate to cat states in the following way:

(2k+1) π
4

(2k1+1) π
4 (2kn+1) π

4
... =

k1
π
2 kn

π
2

...

π
4

π
4

π
4

k π
2

...

Hence, an n-legged phase gadget corresponds to a |catn+1⟩ state, so that it can be decomposed
more efficiently.
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5:8 Classical Simulation with Partial and Graphical Stabiliser Decompositions

In Ref. [16] they also describe ways to get efficient stabiliser decompositions of |catn⟩
for bigger n. For instance, they find a decomposition of |cat10⟩ which has 9 terms, which
gives α ≈ 0.317. For simplicity of implementation, we don’t consider these decompositions of
bigger states here.

4.2 Partial magic state decompositions
If we cannot find cat states in our diagram (which means that it only has non-Clifford spiders
or that every Clifford spider has arity larger than 6), then we could fall back to the magic
state decompositions described in Ref. [16]. Namely, as is observed in Ref. [16], we can
construct decompositions of bigger cat-states by the following identity:

cat4k+2

4k+2

=
cat6

5

cat6

4

cat6

5

...
cat2 cat2

Keep in mind that | catn⟩ = (⟨0|⊗k ⊗ I⊗n)| catn+k⟩ so that we also get decompositions for n
that are not equal to 4k + 2. Using this construction of | cat4k+2⟩ we get a decomposition
of |T ⟩⊗4k+2 that uses 2 · 3k terms. This decomposition requires 2α(4k+2) terms where

α = 1 + k log2(3)
4k + 2 −→

k→∞

log2(3)
4 ≈ 0.396.

But as we will see now, we can in fact reach this asymptotic α without needing to
decompose all magic states at once. The idea here is to use the decomposition of | cat6⟩ to
reduce the T-count of the diagram by 4, using only 3 terms. This can be done whenever we
have a T-count ≥ 5, in the following way:

π
4 − π

4

π
4

π
4

π
4

π
4

π
4

=

π
4

π
4

π
4

π
4

π
4

4 − π
2

− π
4

+ 2
√

2ieiπ/4

− π
4

− 2
√

2eiπ/42

π
2

π
2

π
2

π
2

π
2

π
4

=

This is a (non-stabiliser) decomposition of the 5-qubit magic state which leaves one T-spider
in each term. So each term effectively loses 4 magic states, so that we can view this as a
4-to-3 strategy. We get for this operation α = log2(3)

4 ≈ 0.396 so that we reach this number
concretely that in Ref. [16] was only reached asymptotically.

Additional advantages of this decomposition over the strategy using the | cat4k+2⟩ decom-
position, are that i) it is simpler to handle and implement (as a smaller part of the diagram
is involved) and ii) it more easily allows for the ZX-diagram reduction strategy of [15] to be
used in-between rounds of decompositions, so that there is more possibility for reduction of
the number of terms.

We remark that this type of “partial decomposition” can be used to decompose any
|T ⟩⊗4k+1 state using the | cat4k+2⟩ decomposition, but doing so always results in the same
α, whenever k ≥ 1, so that there is no benefit to doing so (at least from an asymptotic
perspective).
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4.3 The full decomposition strategy

The conclusion of the previous sections is that some subdiagrams are better to decompose
into stabilisers than others. In particular, in our diagrams we should look, in order of
importance, for:

1. a Clifford spider with 4 neighbours (α = 0.25),

2. a Clifford spider with 6 neighbours (α ≈ 0.264),

3. a Clifford spider with 5 neighbours (α ≈ 0.317),

4. a Clifford spider with 3 neighbours (α = 1/3 ≈ 0.333),

5. any 5 T-spiders (α ≈ 0.396).

Once the best subdiagram to decompose has been found, we apply the associated
decomposition, then simplify each resulting diagram using the optimisation strategy of [14]
as described in [15], and repeat the procedure for each term until we are left with diagrams
that have fewer than 5 T-spiders and no cat-states, in which case we simply fall back to the
usual magic-state decompositions.

5 Benchmarking

To assess the effectiveness of our approach, we performed simulations of the two families
of circuits that were benchmarked in Ref. [15], and compare the associated running times
with theirs. For a better comparison, we turned off parallelisation in most experiments.
All subsequent tests were performed on a consumer laptop, equipped with an 2.60GHz
Intel Core i5-10400H CPU. By using a depth-first decomposition approach the amount of
memory needed for these benchmarks was insignificant. In these benchmarks we refer to
to the approach of Ref. [15] as BSS, which stands for Bravyi, Smith, Smolin, as it uses the
decomposition introduced in Ref. [7].

5.1 Random Clifford+T circuits

The first family of circuits we consider are Clifford+T circuits. We construct these by
composing a given number (the T-count t) of exponentiated Pauli unitaries, which are of
the form exp(−i(2k + 1) π

4P ) for P some Pauli string, i.e. a tensor product of 1-qubit Pauli
operators. The weights of the Pauli strings (the number of non-identity operators) is chosen
randomly between 2 and 4, in order to mimic the structure common to quantum chemistry
circuits, where the Hamiltonian has terms of weight 2–4.

We considered random 20-qubit Clifford+T circuits with T-counts varying from 1 to 43
(increasing in steps of 3). We calculated the amplitude of these circuits for a fixed input
of |+⟩⊗20 and output of ⟨+|⊗20 (where |+⟩ := 1√

2 (|0⟩ + |1⟩)) using the two decomposition
strategies. The running times shown in Figure 1 are averages over 10 runs for each T-count.
We see already an order of magnitude improvement between the running time of the two
approaches for a T-count of 43.
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Figure 1 Runtime of random 20-qubit Clifford+T circuit simulations (avg of 10 runs per T-count).

5.2 Random hidden-shift circuits

The second family of circuits we consider are hidden-shift circuits, whose description can
be found in Refs. [4, 5]. These circuits are composed of H, Z, CZ and CCZ gates. The first
three are readily translatable to ZX-diagrams, while the CCZ gate requires a decomposition
that introduces T-spiders. The decomposition used here is one that uses 7 T-spiders for each
CCZ gate.2

We found the cat-state decompositions to be particularly efficient compared to the BSS
decomposition for this class of circuits. We empirically found the BSS-based approach
to be quite erratic, with running times varying between 0.005s and more than 1000s for
circuits with the same T-count. This aspect seems to be dampened when using cat-state
decompositions. To better gauge this phenomenon, we generated 125 20-qubit hidden-shift
circuits with T-count 112, and simulated all the circuits using both approaches. The results,
sorted by the simulation times for the cat-state method, can be seen in Figure 2. In the most
extreme case, for simulating the same circuit, the cat-state-based decomposition ran in less
than half a second, while the BSS-based one took more than 1 h 25 m.

The distribution of running times for both approaches can be found in Figure 3. As we
are dealing with an inherently exponential process, it makes sense that perturbations have
an exponential effect on the result. This is why we plotted the distributions on a logarithmic
scale. In this same scale, it is possible to compute the variance of both distributions. We get
a variance of σ2 ≃ 0.523 for the cat-state approach, and a variance of σ2 ≃ 3.02 for the BSS
approach. This is strong evidence that the erratic behaviour is indeed dampened with our
decomposition scheme, even when taking the exponential scaling into account.

This erratic behaviour being lifted with the cat-state strategy, we were able to run tests
without the need for a time limit, which Ref. [15] set at 5 minutes. We re-ran the experiment
that performed strong simulation of 100 random 50-qubit hidden-shift circuits with T-count

2 As discussed in Ref. [15], the 4 T-count decomposition of a CCZ gate that uses an ancilla turns out to
work less well in practice, as it allows the diagrammatic simplifier to find fewer optimisations.
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Figure 2 Logarithmic plot of the runtimes of simulating 125 different 20-qubit hidden-shift circuits
with T-count 112, using the BSS decomposition and our strategy. Each datapoint corresponds to a
circuit and they are sorted left-to-right according to simulation time using our approach.

Figure 3 Distributions of running times (in seconds) of simulating 125 different 20-qubit hidden-
shift circuits with T-count 112 using the BSS decomposition (left) and the cat-state decomposition
(right).

1400 using our new decompositions. We observed that 98% of the runs took less than 5
minutes, with the remaining circuits finishing within 6 minutes. This is to be compared
with the BSS decomposition approach which in [15] obtained a 17% success rate (with the 5
minutes limit) even though it ran on a dedicated server with better CPU and parallelisation.
The running time distribution is given in Figure 4.

6 Conclusion and Further Work

In this paper we built on the stabiliser rank quantum simulation method by combining it with
a ZX-calculus simplification strategy and novel decompositions of entangled non-stabiliser
states. We additionally introduced a new technique of partial magic state decompositions
that only reduce the T-count instead of eliminating all magic states at once, which achieves
the stabiliser rank upper bound of 20.396t found in Ref. [16] in a direct way instead of just
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Figure 4 The time distribution of simulating 100 random 50-qubit hidden-shift circuits with
T-count 1400 using our new decompositions.

asymptotically. Our benchmarks shows that our technique is in the best case several orders of
magnitude faster than the strategy of Ref. [15], which itself was already capable of simulating
much larger circuits than the previous best. Additionally, our techniques seem to “smooth
out” the erratic runtimes of Ref. [15] allowing for more consistent simulation times.

For future work it would be interesting to investigate whether other classes of entangled
states with an even smaller stabiliser rank could be found and used for this kind of exact
simulation. It is also worth investigating how decompositions of these states can be used
in methods for approximate simulations, like the stabiliser extent methods, or the norm
estimation technique used in Ref. [4].

To sample from the random Clifford+T circuits we used the same technique as Ref. [15],
which required a technique that doubles the T-count in the worst case. It would be interesting
to see if the recent technique of calculating marginals without doubling [6] would help improve
run times.
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Abstract
A surprising “converse to the polynomial method” of Aaronson et al. (CCC’16) shows that any
bounded quadratic polynomial can be computed exactly in expectation by a 1-query algorithm
up to a universal multiplicative factor related to the famous Grothendieck constant. A natural
question posed there asks if bounded quartic polynomials can be approximated by 2-query quantum
algorithms. Arunachalam, Palazuelos and the first author showed that there is no direct analogue
of the result of Aaronson et al. in this case. We improve on this result in the following ways:
First, we point out and fix a small error in the construction that has to do with a translation from
cubic to quartic polynomials. Second, we give a completely explicit example based on techniques
from additive combinatorics. Third, we show that the result still holds when we allow for a small
additive error. For this, we apply an SDP characterization of Gribling and Laurent (QIP’19) for the
completely-bounded approximate degree.
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1 Introduction

A celebrated result of Beals et al. [6], known as the polynomial method in quantum complexity
theory, leverages the problem of lower bounding the quantum query complexity of a Boolean
function to lower bounding the approximate degree. The method is based on the fact that
for every t-query quantum algorithm A that takes an n-bit input and returns a sign, there is
a real n-variable polynomial f of degree at most 2t such that f(x) = E[A(x)] for every x.
Here, the expectation is taken with respect to the randomness in the measurement done
by A.1 In addition to many new lower bounds, this result led to a line of research on possible

1 We identify a quantum query algorithm with the (random) function representing its output on a given
input string.
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converses, whereby a bounded polynomial f can be turned into a quantum query algorithm
that approximates f and whose query complexity depends in some reasonably way on the
degree of f . Here, f is bounded if it maps the Boolean hypercube to the interval [−1, 1]
and a quantum query algorithm A approximates f if for some constant error parameter
ε < 1, we have that |f(x) − E[A(x)]| ≤ ε for every x. For bounded polynomials of degree
at most 2, the following converse was proved in [2], using a surprising application of the
Grothendieck inequality from Banach space theory (we refer to [14] for an extensive survey
on Grothendieck-type inequalities).

▶ Theorem 1 (Aaronson et al.). There exists an absolute constant C > 0 such that the
following holds. For every bounded polynomial f of degree at most 2, there exists a one-query
quantum algorithm A such that E[A(x)] = Cf(x) holds for every x ∈ {−1, 1}n.

This “multiplicative converse” implies an approximation with additive error at most
1 − C. A natural question is if this result generalizes to quartic polynomials and two-query
quantum algorithms [2, Section 5, Question 1]. Based on the probabilistic method and a new
characterization of quantum query algorithms in terms of completely bounded polynomials,
a counterexample to a direct analog of Theorem 1 was given for quartic polynomials in [3].

▶ Theorem 2 (Arunachalam–Briët–Palazuelos). For any C > 0, there exist an n ∈ N and
a bounded quartic n-variable polynomial f such that no two-query quantum algorithm A
satisfies E[A(x)] = Cf(x) for every x ∈ {−1, 1}n.

However, this result does not exclude the possibility that all bounded quartic polynomials
can be (additively) approximated by two-query quantum algorithms. Moreover, the result
is not constructive, relying on results from random matrix theory to show the existence of
such polynomials. Finally, the result was obtained by transforming a certain random cubic
polynomial into a quartic polynomial with similar properties. As we will explain here, the
argument given in [3] to show that there is such a transformation contains an error. Here,
we address these issues as follows:

First, we correct the error in [3], showing that Theorem 2 holds as stated.
Second, we give a completely explicit example for Theorem 2 using ideas from the field of

additive combinatorics that were applied to construct counterexamples to certain far-reaching
generalizations of the Grothendieck inequality [8].

Third, we strengthen Theorem 2 by showing that it still holds with a small additive error:

▶ Theorem 3. For any C > 0, there exist an n ∈ N, an ε > 0 and a bounded quartic
n-variable polynomial f such that no two-query algorithm A satisfies |E[A(x)] − Cf(x)| < ε

for every x ∈ {−1, 1}n.

This result is an application of a semidefinite-program (SDP) of Gribling and Laurent [11]
for quantum query complexity. It can be interpreted as an analogue of results on approximate
degree based on its linear-programming-based characterization (see for instance [9]). To the
best of our knowledge, this is the first application of [11] to prove lower bounds on quantum
query complexity. As such, we believe it can serve as a first step towards using this SDP to
approach other problems such as proving large separations between approximate degree and
quantum query complexity, for example [1].

In similar vein, we use a basic lower bound on the (real) Grothendieck constant, de-
noted KG, based on the CHSH Bell inequality to give an impossibility result for one-query
quantum algorithms. That is, we show that there exists a bounded quadratic polynomial f

such that no one-query quantum algorithm approximates f with error less than 1 − 1/
√

2.
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Motivated by this, we pose as an open question whether this can be improved to 1 − 1/KG.
Since the result of [2] achieves this for bounded bilinear forms, this would give yet another
characterization of the Grothendieck constant. Tsirelson’s characterization in the context of
Bell inequalities [18] being a famous example in quantum information theory, for instance.

We would like to remark that the characterization of quantum query algorithms given in
[3], that we use here, was regarded as a nice, but unnatural result. However, it has gained
relevance in recent times, as it has been proved to be an appropriate tool to make progress
in a relevant question such as the Aaronson-Ambainis conjecture [5].

2 Preliminaries

Unless stated otherwise, below C will stand for an absolute positive constant whose value
may change from line to line. All polynomials are assumed to be real and multivariate. A
homogeneous polynomial is referred to as a form. A polynomial is multilinear if each variable
appears with degree at most 1. Given an n-variate polynomial f and p ∈ [1, ∞), define

∥f∥p =
(
Ex∈{−1,1}nf(x)p

) 1
p

∥f∥∞ = max
x∈{−1,1}n

|f(x)|.

We also define the following “commutative version” of a completely bounded norm:

∥f∥iccb = sup
d∈N

{∥∥f(A1, . . . , An)∥ : Ai ∈ Cd×d, ∥Ai∥ ≤ 1, [Ai, Aj ] = 0
}

,

where the norms on the right-hand side are the usual operator norms.2

The following lemma [3, Theorem 1.3, Proposition 4.4] relates quantum query algorithms
to completely bounded polynomials.

▶ Lemma 4. Let A be a t-query quantum algorithm. Then, there exists an (n + 1)-variate
form f of degree 2t such that ∥f∥iccb ≤ 1 and which satisfies f(x, 1) = E[A(x)] for every
x ∈ {−1, 1}n.

We will also use a quantity associated specifically with multilinear cubic forms, that is
polynomials of the form:

f(x) =
∑

S∈([n]
3 )

cS

∏
i∈S

xi, (1)

where the cS are some real coefficients. For i ∈ [n], define the ith slice of f to be the
symmetric matrix Mi ∈ Rn×n with (j, k)-coefficient equal to c{i,j,k} if i, j, k are pairwise
distinct and 0 otherwise. Then, define

∆(f) = max
i∈[n]

∥Mi∥.

The following is a slight variant of a decomposition due to Varopoulos [19].

2 The notation iccb stands for “identical commutative completely bounded”, where the word identical
distinguishes it from another natural variant of the completely bounded norm of a polynomial.
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▶ Lemma 5 (tri-linear Varopoulos decomposition). Let f be an n-variate multilinear cubic form
as in (1). Then, for some d ∈ N, there exist pairwise commuting matrices A1, . . . , An ∈ Rd×d

and orthogonal unit vectors u, v ∈ Rd such that ∥Ai∥ ≤ 1, [Ai, Aj ] = 0 and

A2
i = 0 (2)

⟨u, Aiv⟩ = 0 (3)
⟨u, AiAjv⟩ = 0 (4)

⟨u, AiAjAkv⟩ =
c{i,j,k}

∆(f) (5)

for all pairwise distinct i, j, k ∈ [n].

Proof. For each i ∈ [n], define Mi as above. Define Wi = ∆(f)−1Mi and note that this has
operator norm at most 1. For each i ∈ [n], define the (2n + 2) × (2n + 2) block matrix

Ai =

 ei

W T
i

eT
i

,

where the first and last rows and columns have size 1, the second and third have size n and
where the empty blocks are filled with zeros. Define u = e2n+1 and v = e1. The rest of the
proof is identical to the proof of [8, Lemma 2.11], except for the property that A2

i = 0. This
follows from the fact that

A2
i =

 W T
i ei

eT
i W T

i

.

and since the ith row and ith column of Mi are zero. ◀

▶ Corollary 6. Let f be an n-variate multilinear cubic form as in (1). Suppose that an
(n + 2)-variate quartic form h ∈ R[x0, x1, . . . , xn, z] satisfies h(x, 1) = x0f(x1, . . . , xn) for
every x ∈ {−1, 1}n+1. Then,

∥h∥iccb ≥ ∥f∥2
2

∆(f) .

Proof. The multilinear monomials χS(x) =
∏

i∈S xi with S ⊆ {0, . . . , n} satisfy the ortho-
gonality relations

Ex∈{−1,1}n+1χS(x)χT (x) = δS,T . (6)

It follows that h and x0f have equal coefficients for each quartic multilinear monomial in the
variables x0, . . . , xn, which are cS for x0χS with S ∈

([n]
3

)
and 0 otherwise. Let A1, . . . , An ∈

Rd×d and u, v ∈ Rd be as in Lemma 5 and let A0 = I, An+1 = 0. Commutativity and
properties (2)–(4) imply that if a quartic monomial expression AiAjAkAl with i, j, k, l ∈
{0, . . . , n + 1} has repeated indices or an index equal to n + 1, then ⟨u, AiAjAkAlv⟩ = 0.
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With this, it follows from property (5) that

⟨u, h(A0, . . . , An+1)v⟩ =
〈

u,
∑

S∈([n]
3 )

cS A0χS(A1, . . . , An)v
〉

(7)

=
∑

S∈([n]
3 )

cS⟨u, χS(A1, . . . , An)v⟩

= ∆(f)−1
∑

S∈([n]
3 )

c2
S

= ∆(f)−1∥f∥2
2,

where the last line is Parseval’s identity [13, Chapter 1]. ◀

3 Counterexamples

Here, we prove Theorems 2 and 3. But first we discuss the error in [3, pp. 920]. The proof
there uses the equation∑

α,β∈{0,1,2,3,4}n:|α|+|β|=4

d′
α,βxα = C

∑
α∈{0,1}n:|α|=4

dαxα ∀ x ∈ {−1, 1}n, (8)

where d′
α,β , dα and C are real numbers and |α| stands for

∑n
i=1 αi. It follows from (6) that

d′
α,0 = Cdα for all α ∈ {0, 1}n such that |α| = 4. What is used, however, is that d′

α,0 = Cdα

for all α ∈ {0, 1, 2, 3, 4}n such that |α| = 4, which is not true in general. For instance if
n = 2, C = 1 and d′

(2,2),(0,0) = d′
(0,0),(4,0) = −d′

(2,0),(2,0) = −d′
(0,2),(2,0) = 1 and the rest of the

coefficients set to 0, then (8) becomes x2
1x2

2 − x2
1 − x2

2 + 1 = 0.
Corollary 6 gets around this issue by using a multilinear cubic form instead of just a

cubic form. This results in matrices Ai in Lemma 5 that square to zero and has the effect
that terms other than quartic multilinear monomials vanish in the left-hand side of (7).

3.1 A random example
The probabilistic proof of Theorem 2 uses a random cubic form as in (1) where the coeffi-
cients cS are chosen to be independent uniformly distributed random signs. Parseval’s identity
then gives ∥f∥2

2 =
(

n
3
)
. Each of the slices Mi of f is a random symmetric matrix with inde-

pendent mean-zero entries of absolute value at most 1. A standard random-matrix inequality
and the union bound then imply that ∆(f) ≤ C

√
n with probability 1 − exp(−Cn) [15,

Corollary 2.3.6]. By Hoeffding’s inequality [7, Theorem 2.8] and the union bound, we have
that ∥f∥∞ ≤ Cn2 with probability 1 − exp(−Cn). Rescaling f then gives that there exists a
bounded multilinear cubic form such that ∥f∥2

2/∆(f) ≥ C
√

n. It now follows from Lemma 4
with Corollary 6 that the (n + 1)-variable quartic polynomial x0f(x1, . . . , xn) satisfies the
requirements of Theorem 2.

3.2 An explicit example
We also give a constructive proof of Theorem 2 using techniques from [8], which were
used there to disprove a conjecture of Pisier on certain far-reaching generalizations of the
Grothendieck inequality. We do not exactly use the construction from that paper because it
involves complex functions. Instead, we will the Möbius function (defined below), which is
real valued and has the desired properties.
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6:6 On Converses to the Polynomial Method

Let n be a positive integer to be set later and let f0 : Zn → [−1, 1] be a function to be
set later (where as usual Zn denotes the group of integers modulo n). Define f to be the
cubic multilinear form on 3n variables given by

f(x) =
∑

a,b∈Zn

x(1, a)x(2, a + b)x(3, a + 2b)f0(a + 3b), (9)

where we indexed the variables by [3] × Zn.
We claim that for some choice of f0, the quartic polynomial x0f , where x0 is an additional

variable, meets the requirements of Theorem 2. The generalized von Neumann inequality [17,
Lemma 11.4] allows us to bound the ∞-norm of f . For a function g : Zn → R and b ∈ Zn,
define its multiplicative derivative ∆bg : Zn → R to be the function ∆bg(a) = g(a + b)g(a).
The Gowers 3-uniformity norm of g is then defined as

∥g∥U3 =
(
Ea,b,c,d∈Zn∆b∆c∆dg(a)

) 1
8 .

▶ Lemma 7 (generalized von Neumann inequality). Suppose that n is coprime to 6. Then, for
any function of the form (9), we have that

∥f∥∞ ≤ n2∥f0∥U3 .

The polynomial f has 3n slices, Mi,a ∈ R[3]×Zn for each i ∈ [3] and a ∈ Zn, which we
view as 3 × 3 block-matrices with blocks indexed by Zn. The slice M1,a is supported only on
the (2, 3) and (3, 2) blocks, which are each others’ transposes. On its (2, 3) block it has value
f0(a + 3b) on coordinate (a + b, a + 2b) for each b. In particular, this matrix has at most one
nonzero entry in each row and column. It follows that a relabeling of the rows turns M1,a

into a diagonal matrix with diagonal entries in [−1, 1], and therefore ∥M1,a∥ ≤ 1. Similarly,
we get that ∥Mi,a∥ ≤ 1 for i = 2, 3. Hence, ∆(f) ≤ 1. Parseval’s identity implies that

∥f∥2
2 = n

∑
a∈Zn

f0(a)2.

Identify Zn with {0, 1 . . . , n − 1} in the standard way. We choose f0 to be the Möbius
function restricted to this interval. That is, set f0(0) = 0 and for a > 0, set

f0(a) =


1 if a is square-free with an even number of prime factors
−1 if a is square-free with an odd number of prime factors
0 otherwise.

Tao and Teräväinen [16] recently proved that

∥f0∥U3 ≤ 1
(log log n)C

for some absolute constant C > 0. It is also well-known that there are 6
π2 n − O(

√
n) integers

in [n] that are square-free [12, page 269]. Normalizing f by (log log n)C/n2 and taking n

coprime to 6 then gives a bounded multilinear cubic polynomial satisfying

∥f∥2
2

∆(f) ≥ 6
π2 (log log n)C − o(1).

This proves Theorem 2 as before.
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▶ Remark 8. The jointly completely bounded norm of f is given by

∥f∥jcb = sup
d∈N

∥f(A1, A2, A3)∥,

where the supremum is taken over maps A1, A2, A3 : Zn → Cd×d such that ∥Ai(a)∥ ≤ 1 and
[Ai(a), Aj(b)] = [Ai(a), Aj(b)∗] = 0 for all i ̸= j and a, b ∈ Zn. Note that the only difference
with the iccb norm defined in Section 2 is the second commutation relation involving the
complex conjugates. This norm can also be stated in terms of tensor products and the
supremum is attained by observable-valued maps. As such, this norm appears naturally in
the context of non-local games. It was shown in [4] that Proposition 7 also holds for the
jointly completely bounded norm, that is ∥f∥jcb ≤ n2∥f0∥U3 . The proof of Corollary 6 easily
implies that ∥f∥iccb ≥ ∥f∥2

2/∆(f). This was used in [8] to prove that the jcb and iccb norms
are inequivalent.

3.3 SDPs for quantum query complexity
Theorem 3 is based on an SDP for the completely bounded approximate degree of Gribling
and Laurent [11]. The following notation will be convenient to state the SDP. Let F(n, t) be
the set of functions f : [n]t → R of the form

f(i) = ⟨u, A1(i1) · · · At(it)v⟩,

where u, v ∈ Sd−1 and A1, . . . , At : [n] → {M ∈ Rd×d : ∥M∥ ≤ 1} for some d ∈ N. A basic
linear algebra argument shows that any such function can be obtained by setting d = nt.
Given a function ϕ : {−1, 1}n → R, a sequence i ∈ [n + 1]t and setting xn+1 = 1, define

ϕ̂(i) = Ex∈{−1,1}nϕ(x)
t∏

j=1
xij

.

Note that if

ϕ(x) =
∑

S∈([n]
t )

cSχS(x)

is a multilinear form of degree t, then

ϕ̂(i) =
{

cS if {i1, . . . , it} = S

0 otherwise.
(10)

Given f : {−1, 1}n → [−1, 1] and t ∈ N, define

SDP(f, t) = max Ex∈{−1,1}nϕ(x)f(x) − w (11)
s.t. ϕ : {−1, 1}n → R, w ∈ R

∥ϕ∥1 = 1

(1/w)ϕ̂ ∈ F(n + 1, t).

Program (11) corresponds to the optimization problem (24) of [11] for total functions and is
written in a more convenient way for our purposes. There, f is considered to take values in
{−1, 1}, but their results still hold if f is allowed to take values in R, as we do here. Also,
we must point out that the Ai(is) used in the program (24) of [11] are unitaries, but there is
no problem if we substitute them by contractions, thanks to the fact that every contraction
can be seen as the top left corner of an unitary matrix [2, Lemma 7].

▶ Theorem 9 (Gribling-Laurent). If the optimal value of program (11) is stricly larger than
ε, then there is no ⌊t/2⌋-query algorithm A such that |E(A(x)) − f(x)| ≤ ε.
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3.4 Approximation of quadratic forms
Theorem 1 implies that bounded quadratic polynomials can be approximated by one-query
quantum algorithms with error at most 1 − C. Moreover, for 2n-variate bounded bilinear
forms f(x, y) = xTAy for A ∈ Rn×n, we can C to be 1/KG(n), where KG(n) is the real
Grothendieck constant of dimension n (see [3] for a short proof). Then, bounded bilinear
forms can be approximated with an additive error of at most 1 − 1/KG(n). Using Theorem 9,
we show that this is optimal for n = 2, in which case KG(2) =

√
2 [10].

▶ Proposition 10. There exists a bilinear form f ∈ R[x1, x2, x3, x4] such that there is no
one-query quantum algorithm that approximates f on every x ∈ {−1, 1}4 with an additive
error smaller than 1 − 1/

√
2.

Proof. We use the bilinear form that attains the Grothendieck constant of dimension 2,
which is captured by the CHSH game. This form f ∈ R[x1, x2, x3, x4] is given by

f(x) = 1
2

(
x1(x3 + x4) + x2(x3 − x4)

)
.

Clearly f maps {−1, 1}4 to {−1, 1}, and so ∥f∥1 = ∥f∥2
2 = 1. We now emulate the

construction from Lemma 5. Writing the coefficients of f as cS for S ∈
([4]

2
)
, for each i ∈ [4]

define the unit vector wi ∈ R4 by

wi = 1√
2

∑
j∈[4]\{i}

c{i,j}ej .

Now define the matrices Ai ∈ R6×6 by

A(i) =

 0 0 0
wi 0 0
0 eT

i 0

 .

It is easily verified that A(i)2 = 0 and that the (6, 1)-coordinate of A(i)A(j) equals c{i,j}/
√

2
if i ̸= j, from which it also follows that these matrices commute. Setting A(5) = 0, we get
that

⟨e6, A(i)A(j)e1⟩ =
{

c{i,j}√
2 if {i, j} ∈

([4]
2

)
0 otherwise.

Setting ϕ = f then gives that
√

2ϕ ∈ F(5, 2) and ∥ϕ∥1 = 1. This shows that SDP(f, 2) ≥
1 − 1/

√
2. ◀

Proposition 10 leads to a following natural question:

▶ Question 1. Is it true that for any ε > 0 there are an integer n and a bounded bilinear
form f ∈ R[x1, . . . , x2n] such that there is no one-query quantum algorithm that approximates
f on every x ∈ {−1, 1}2n with an error smaller than 1 − 1

KG
− ϵ?

3.5 Approximation of cubic forms
Given that a generalization of Theorem 1 has been ruled out for quartic polynomials, one
may wonder if a weaker converse for the polynomial method is possible:
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▶ Question 2. Are there constants C > 0 and ε > 0 such that for every bounded polynomial
f of degree 4 there is a 2-query algorithm A such that |E(A(x)) − Cf(x)| < ε for every
x ∈ {−1, 1}n?

An affirmative answer to this question would imply that every polynomial of degree 4
could be approximated by a 2-query algorithm with additive error 1 − C + ε. This would be
the converse for the polynomial method that motivated Theorem 1 in [2]. Theorem 3 means
that the ε appearing in Question 2 cannot be arbitrarily small. In other words, Theorem 3
says that there is no multiplicative converse even if we allow an (arbitrarily) small additive
error.

Proof of Theorem 3. Let f ∈ R[x1, . . . , xn] be a bounded multilinear cubic form as in (1).
As shown in the proof of Corollary 6, there exist unit vectors u, v ∈ Rd and mappings
A : {0, 1, . . . , n + 1} → Rd×d such that ∥A(i)∥ ≤ 1 for each i and

〈
u, A(i)A(j)A(k)A(l)v

〉
=

{
cS

∆(f) if {i, j, k, l} = {0} ∪ S for S ∈
([n]

3
)

0 otherwise.

Let g = x0f/∥f∥∞. Then, the function ϕ = x0f/∥f∥1 meets the criteria of (11) with
w = ∆(f)/∥f∥1 and shows that

SDP(g, 4) ≥ ∥f∥2
2

∥f∥1∥f∥∞
− ∆(f)

∥f∥1

≥ ∥f∥2
2

∥f∥1∥f∥∞

(
1 − ∆(f)∥f∥∞

∥f∥2
2

)
.

If f is the random example from Section 3.1, then ∥f∥2
2 =

(
n
3
)

and ∆(f)∥f∥∞ ≤ Cn5/2 with
high probability. In particular, the above is positive for sufficiently large n. Similarly, for
any C ∈ (0, 1) we get that SDP(Cg, 4) > 0 for sufficiently large n. The result now follows
from Theorem 9. ◀
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1 Introduction

We are at the start of an era in which quantum devices are running algorithms. We need to
understand the power of quantum computers for solving or finding approximate solutions
to combinatorial optimization problems. One approach is to learn by experimenting on
hardware. Although useful for probing the hardware and testing algorithms at small sizes, it
does not give a convincing picture of asymptotic behavior. To this end we need mathematical
studies of the behavior of quantum algorithms, running on ideal circuits, at large sizes. In this
paper we take a step in that direction by analyzing the Quantum Approximate Optimization
Algorithm as applied to a certain combinatorial optimization problem. The instances are
large and the depth of the algorithm is high. For this task, we will see that the QAOA
outperforms the best assumption-free classical algorithm.

MaxCut is a combinatorial optimization problem on bit strings whose input is a graph.
Each bit is associated with a vertex, and the goal is to maximize the number of edges with
bit assignments that disagree on the two ends of the edge. It is NP-hard to solve this
problem exactly, and even approximating the optimal solution beyond a certain ratio is
NP-hard [30]. We focus on MaxCut for large-girth D-regular graphs. On these graphs, the
currently known best classical algorithms (including Goemans-Williamson and the Gaussian
wave process [23, 20, 3, 29]) achieve an average-case cut fraction (the number of cut edges
output by the algorithm divided by the number of edges) of 1/2 + (2/π)/

√
D as both the

girth and D go to ∞, where 2/π ≈ 0.6366.
We apply the Quantum Approximate Optimization Algorithm (QAOA) [15] to large-girth

D-regular graphs. The QAOA depends on a parameter p, the algorithm’s depth. At small
p, the QAOA has been realized in current quantum hardware [19]. Some analytic results
are also known. At p = 1, the QAOA has a guaranteed approximation ratio (the number of
cut edges output by the algorithm divided by the maximum number of edges that can be
cut) of at least 0.6924 on all 3-regular graphs [15] and an expected cut fraction of at least
1/2 + 0.3032/

√
D on triangle-free graphs [31]. For p = 2, the QAOA has an approximation

ratio of at least 0.7559 on 3-regular graphs with girth more than 5 and, for p = 3, that ratio
becomes 0.7924 when the girth is more than 7 [32]. So far, expressions for the QAOA’s
performance on any fixed-D regular, large-girth graph are known only for p = 1 [31] and
p = 2 [21].

In this work, we analyze the performance of the QAOA on any large-girth D-regular
graph for any choice of p by looking at a single tree subgraph. Using the regularity of
this tree subgraph, we derive an iteration that computes the performance of the QAOA.
After optimizing over the 2p input parameters, we find that the p = 11 QAOA improves
on 1/2 + (2/π)/

√
D, when D is large and the girth is more than 23. This is better than all

assumption-free classical algorithms known to the authors.1
We also show that this performance, obtained from one subgraph, is mathematically equal

to the ensemble-averaged performance of the QAOA applied to the Sherrington-Kirkpatrick

1 There is a recent classical message-passing algorithm [1] that also does better than 1/2 + (2/π)/
√

D for
MaxCut on large-girth D-regular graphs. It gets asymptotically close to the optimum assuming the
solution space has no “overlap gap property” (see [17] for a review).
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(SK) model [16]. This implies that the iteration in this paper can also be used to give the
QAOA’s performance on the SK model. A recent related work can be found in Ref. [8]. Our
iteration is more efficient than the one originally shown in Ref. [16], and we have been able
to go numerically to higher depth.

Encouraged by our findings, we conjecture that the large p performance of the QAOA
will achieve the optimal cut fraction on large random D-regular graphs, where a vanishing
fraction of neighborhoods are not locally tree-like. The optimal cut fraction on these graphs
is also related to the SK model. It is 1/2 + Π∗/

√
D + o(1/

√
D), where Π∗ = 0.763166 . . ., the

Parisi value, is the ground state energy density of the SK model [25, 12]. If our conjecture is
right we have a simple, though computationally intensive, new iteration for calculating Π∗.

Generalizing our formalism, we also analyze the performance of the QAOA for Max-q-
XORSAT (of which MaxCut is a special case at q = 2) on large-girth D-regular hypergraphs.
The p = 1 QAOA was recently found to do better than an analogous classical threshold
algorithm for q > 4 [22]. The iterative formula for general q is very similar to that for
MaxCut and has the same time and memory complexities in the D → ∞ limit. We run this
iteration to find optimal QAOA parameters and performance for 3 ≤ q ≤ 6 and 1 ≤ p ≤ 14.
Moreover, we discuss potential obstructions to the QAOA from not “seeing” the whole graph.

The paper is organized as follows. In Section 2, we introduce the necessary definitions to
describe the QAOA and the MaxCut problem. In Section 3, we describe two iterations that
compute the performance of the QAOA for MaxCut on large-girth D-regular graphs at fixed
depth: one for finite D and the other for D → ∞ (proof in Appendix A). We also present
our results from numerical evaluation and optimization of the QAOA objective function up
to p = 20. In Section 4, we argue that the performance of the QAOA on large-girth regular
graphs and on the SK model are equivalent. We conjecture in Section 5 that the iteration in
Section 3.2 for infinite D is an alternative procedure to compute the Parisi value. In Section 6,
we generalize our iterations to evaluate the QAOA’s performance for Max-q-XORSAT on
large-girth regular hypergraphs. Finally, in Section 7 we discuss our results and suggest some
future avenues of work.

2 Background on the QAOA and MaxCut

The QAOA [15] is a quantum algorithm for finding approximate solutions to combinatorial
optimization problems. The cost function counts the number of clauses satisfied by an input
string. Given a cost function C(z) on strings z ∈ {±1}n, we can define a corresponding
quantum operator, diagonal in the computational basis, as C|z⟩ = C(z)|z⟩. Moreover, let
B =

∑n
j=1 Xj , where Xj is the Pauli X operator acting on qubit j. Let γ = (γ1, γ2, . . . , γp)

and β = (β1, β2, . . . , βp). The QAOA initializes the system of qubits in the state |s⟩ = |+⟩⊗n

and applies p alternating layers of e−iγjC and e−iβjB to prepare the state

|γ, β⟩ = e−iβpBe−iγpC · · · e−iβ1Be−iγ1C |s⟩. (2.1)

For a given cost function C, the corresponding QAOA objective function is ⟨γ, β|C|γ, β⟩.
Preparing the quantum state |γ, β⟩ and then measuring in the computational basis enough
times, one will find a bit string z such that C(z) is near ⟨γ, β|C|γ, β⟩ or better.

We study the performance of the QAOA on MaxCut. Given a graph G = (V, E) with
vertices in V and edges in E, the MaxCut cost function is

CMC(z) =
∑

(u,v)∈E

1
2(1 − zuzv). (2.2)
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We restrict our attention to graphs that are regular and have girth greater than 2p + 1. We
work with these graphs because the subgraph that the QAOA at depth p sees on them are
regular trees and this enables our calculation. Here, by “seeing” we refer to the fact that the
output of the QAOA on a qubit depends only on a neighborhood of qubits that are within
distance p to the given qubit on the graph. In what follows, we focus on (D + 1)-regular
graphs, which implies the subgraph seen by the QAOA on each edge is a D-ary tree.

With D large, we will see that the optimal γ are of order 1/
√

D. So we find it convenient
to prepare the QAOA state |γ, β⟩ using the scaled cost function operator

C = − 1√
D

∑
(u,v)∈E

ZuZv, (2.3)

where we have subtracted a constant that only introduces an irrelevant phase. The factor
of 1/2 has been dropped so that this form of the cost function will match the cost function
used in the Sherrington-Kirkpatrick model. Note we are preparing the state |γ, β⟩ using C

as a driver instead of the CMC operator. With this scaling, the optimal γ will be of order
unity instead of 1/

√
D.

Given any edge in a (D + 1)-regular graph with girth greater than 2p + 1 the subgraph
with vertices at most p away from the edge is a D-ary tree regardless of which edge. Since
the QAOA at depth p only sees these trees, we have

⟨γ, β|CMC|γ, β⟩ = 1
2 |E|

(
1 − ⟨γ, β|ZuZv|γ, β⟩

)
(2.4)

where (u, v) ∈ E is any edge. The cut fraction output by the QAOA is then

⟨γ, β|CMC|γ, β⟩
|E|

= 1
2 − 1

2 ⟨γ, β|ZuZv|γ, β⟩ . (2.5)

Since the QAOA cannot beat the optimal cut fraction of 1/2 + order(1/
√

D) in a typical
random regular graph, we write

⟨γ, β|ZuZv|γ, β⟩
2 = −νp(D, γ, β)√

D
(2.6)

where νp(D, γ, β) for good parameters will be of order unity.

3 The QAOA on large-girth (D + 1)-regular graphs

We describe two iterations to evaluate the performance of the QAOA at high depth on
MaxCut on large-girth (D + 1)-regular graphs. The cut fraction output by the QAOA at
any parameters is

⟨γ, β|CMC|γ, β⟩
|E|

= 1
2 + νp(D, γ, β)√

D
. (3.1)

We give one iteration to evaluate νp(D, γ, β) at finite D, and one for the D → ∞ limit. We
have attempted to make this section self-contained for those readers only interested in the
form of the iterations, and deferred the detailed proofs of these iterations to Appendix A.

In what follows, we index vectors in the following order:

a = (a1, a2, · · ·, ap, a0, a−p, · · · , a−2, a−1) . (3.2)
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Define, for 1 ≤ r ≤ p,

Γr = γr, Γ0 = 0, Γ−r = −γr. (3.3)

That is, Γ is a (2p + 1)-component vector. Furthermore, let

f(a) = 1
2 ⟨a1|eiβ1X |a2⟩ · · · ⟨ap−1|eiβp−1X |ap⟩ ⟨ap|eiβpX |a0⟩

× ⟨a0|e−iβpX |a−p⟩ ⟨a−p|e−iβp−1X |a−(p−1)⟩ · · · ⟨a−2|e−iβ1X |a−1⟩ (3.4)

where ai ∈ {+1, −1} enumerates the two computational basis states, and

⟨a1|eiβX |a2⟩ =
{

cos(β) if a1 = a2

i sin(β) if a1 ̸= a2.
(3.5)

3.1 An iteration for any finite D

Here we give an iteration that allows us to evaluate νp(D, γ, β) for any input parameters
and D.

Let H
(m)
D : {−1, 1}2p+1 → C for 0 ≤ m ≤ p. We start with H

(0)
D (a) = 1 and let

H
(m)
D (a) =

( ∑
b

f(b)H(m−1)
D (b) cos

[
1√
D

Γ · (ab)
])D

for 1 ≤ m ≤ p (3.6)

where we denote ab as the entry-wise product, i.e. (ab)j = ajbj . By starting with H
(0)
D (a) = 1

and iteratively evaluating Eq. (3.6) for m = 1, 2, . . . , p, we arrive at H
(p)
D (a) that can be

used to compute

νp(D, γ, β) = i
√

D
2

∑
a,b

a0b0f(a)f(b)H(p)
D (a)H(p)

D (b) sin
[

1√
D

Γ · (ab)
]
. (3.7)

We prove this in Appendix A.1. The key idea is to use the fact that when girth > 2p + 1,
the subgraph seen by the QAOA is a pair of D-ary trees of p levels glued at their roots
(see Figure 1(a) for an example). Then νp is given as a sum over all O(Dp) nodes in this
subgraph. Since every node in the tree has exactly D children that couples to their parent in
exactly the same way, we can greatly simplify the process by summing from the leaves of the
tree, then their parents, and their parents’ parents, and so on. This yields a p-step iteration
where at each step m = 1, 2, . . . , p, we have a compact description of the contributions of the
nodes from the bottom m − 1 levels via H

(m−1)
D (see Figure 1(b)).

Note that each step of the above iteration involves a sum with 22p+1 terms for each of
the 22p+1 entries of H

(m)
D (a). The final step has a sum with O(16p) terms. Overall, this

iteration has a time complexity of O(p 16p) and a memory complexity of O(4p). This is
much faster than the original “light cone” approach that directly evaluates ⟨ZuZv⟩ on the
subgraph seen by the QAOA [15]. That procedure takes 2O(Dp) time without utilizing the
symmetric structure of the regular tree subgraph.

3.2 An iteration for D → ∞
We find that in the infinite D limit we get a more compact iteration which takes fewer steps
to evaluate. We state the result here and prove it in Appendix A.2.
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Define matrices G(m) ∈ C(2p+1)×(2p+1) for 0 ≤ m ≤ p as follows. For j, k ∈ {1, . . . , p, 0,
−p, . . . , −1}, let G

(0)
j,k =

∑
a f(a)ajak, and

G
(m)
j,k =

∑
a

f(a)ajak exp
(

−1
2

p∑
j′,k′=−p

G
(m−1)
j′,k′ Γj′Γk′aj′ak′

)
for 1 ≤ m ≤ p. (3.8)

Starting at m = 0 and going up by p steps, we arrive at G(p) which is used to compute

νp(γ, β) := lim
D→∞

νp(D, γ, β) = i

2

p∑
j=−p

Γj(G(p)
0,j )2. (3.9)

Since there are p + 1 matrices with O(p2) entries, and each involves a sum over O(4p) terms,
this iteration naïvely has a time complexity of O(p34p). This is quadratically better than the
time complexity of the finite-D formula. The memory complexity is only O(p2) for storing
the G(m) matrix, which is exponentially better than O(4p) memory needed to store the
entries of H

(m)
D in the finite-D iteration.

We note some properties about this iteration. Superficially Eq. (3.8) looks like a recursive
map on the matrices G(m) which one might think would only asymptotically converge in
the number of steps. However it converges to a fixed point G(p) after p steps in a highly
structured way. In particular, the iteration has the following three sets of properties, whose
proof can be found in Ref. [4, Appendix A]. We use the convention 1 ≤ r < s ≤ p and
j, k ∈ {1, . . . , p, 0, −p, . . . , −1}.

(a) Values of the diagonal and anti-diagonal of G(m) are all 1. G(m) is symmetric with respect
to the diagonal, reflection with respect to the anti-diagonal results in complex conjugation,
and the matrix consists of 8 triangular regions which are rotations, reflections, and/or
complex conjugations of each other. To be precise, G(m) satisfies the following properties:

(1) G
(m)
j,k = G

(m)
k,j

(2) G
(m)
j,j = G

(m)
j,−j = 1

(3) G
(m)
0,r = G

(m)∗
0,−r

(4) G
(m)
r,s = G

(m)
r,−s = G

(m)∗
−r,−s = G

(m)∗
−r,s

These are sketched in Figure 1(c).
(b) G

(m)
r,s only depends on G

(m−1)
r′,s′ where 1 ≤ r′ < s′ < s. Similarly, G

(m)
0,r only depends on

G
(m−1)
r′,s′ for 1 ≤ r′ < s′ ≤ p.

(c) As a consequence of (b), at each step m of the iteration the corner blocks of size
(m + 1) × (m + 1) of G(m) converge to their final value, i.e., they reach a fixed point and
do not change in later iteration steps. This implies that matrix G(p) is a fixed point.
This is sketched in Figure 1(c), where matrix entries of the same color reach their fixed
point at the same step of the iteration, starting from the corners and ending with the
central “cross” at step p.

Making use of (b) and some properties of f(a) allows us to lower the complexity of the
iterative procedure to O(p24p). For more details, see Ref. [4, Appendix A.4].

3.3 Numerical evaluation and optimization for the D → ∞ limit
Let

ν̄p = max
γ,β

νp(γ, β). (3.10)
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Figure 1 (a) Example tree subgraph seen by the QAOA at p = 2 on a large-girth regular graph.
For any node w on the tree, we denote p(w) as its parent. (b) A visualization of our iteration for
finite D. (c) Sketch of the properties of matrices G(m) in our iteration for D → ∞, at p = 4. Regions
of the same color converge in the same iteration step, starting from the corners and with the central
row and column converging after p steps.

Numerically implementing the iteration summarized in Section 3.2 and optimizing for γ, β

we find ν̄p up to p = 17. The values are given in Table 1 and plotted in Figure 2 as a function
of 1/p. The optimal γ and β can be found in Ref. [4, Table 4], and some examples are
plotted in Figure 3. Based on the smooth pattern of the optimal γ and β up to p of 17, we
guess these parameters at p = 18, 19, 20 using heuristics similar to that in Ref. [33]. Then
evaluation of νp(γ, β) gives lower bounds on ν̄p at higher p which are listed in Table 2, and
their corresponding γ and β are listed in Ref. [4, Table 5].

Note that, at p = 11 and beyond, the QAOA achieves a cut fraction better than 1
2 + 2/π√

D
in

the large D limit, making it the best currently known assumption-free algorithm for MaxCut
on large random regular graphs.

Table 1 Optimal values of ν̄p up to p = 17.

p 1 2 3 4 5 6 7 8 9
ν̄p 0.3033 0.4075 0.4726 0.5157 0.5476 0.5721 0.5915 0.6073 0.6203

p 10 11 12 13 14 15 16 17
ν̄p 0.6314 0.6408 0.6490 0.6561 0.6623 0.6679 0.6729 0.6773

Table 2 Lower bounds of ν̄p for p = 18, 19, 20.

p 18 19 20
ν̄p lower bound 0.6813 0.6848 0.6879
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Parisi value = 0.763166 . . .

2/π = 0.636619 . . .

Figure 2 Optimal values ν̄p as a function of 1/p. At p = 11, ν̄p exceeds 2/π, related to the
cut fraction of the best currently known assumption-free classical algorithms. Here we made the
somewhat arbitrary choice of plotting the data against 1/p to see the large p region in a compact
plot.

We implement the iterative procedure described in Section 3.2 in C++. Our code is
available at Ref. [5]. Bit strings are encoded as unsigned long int variables, which allow
for fast bit-wise manipulations. Matrices and vectors are implemented using the Eigen
library [18]. We parallelize the sum over a in Eq. (3.8) using OpenMP [11]. We optimize γ, β

for each value of p using the LBFGS++ library, which implements the Limited-memory BFGS
algorithm for unconstrained optimization problems [26]. Each evaluation of the gradient of
νp(γ, β) in Eq. (3.9) is a subroutine of the optimization which takes 2p + 1 function calls.
We run on a n2d-highcpu-224 machine in Google Cloud, which has 224 vCPUs, using one
thread per vCPU. A function call at p = 16 takes about 133 seconds, and a function call at
p = 17 takes about 595 seconds. The run time of each function call is roughly multiplied by
4 every time p is increased by 1. At p = 20, a single function call takes slightly under 14
hours to evaluate. Memory usage is dominated by the need to store matrix G(m), which is
negligible and quadratic in p. Further optimizations might be possible.

4 Agreement with the Sherrington-Kirkpatrick model

We note that Table 1 in this paper seems to be an extension of Table 1 in Ref. [16]. There, the
authors study the performance of the QAOA on the Sherrington-Kirkpatrick (SK) model [24],
which describes a spin-glass system with all-to-all random couplings. The cost function is

CSK
J (z) = 1√

n

∑
1≤i<j≤n

Jijzizj (4.1)

where the Jij are independently drawn from a distribution with mean 0 and variance 1. The
authors arrive at an iterative formula for the ensemble-averaged performance of the QAOA
on the SK model
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0.0 0.2 0.4 0.6 0.8 1.0

(r - 1) / (p - 1)

0.1
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γr

p = 5

p = 9

p = 13

p = 17
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βr

Figure 3 Optimal γr and βr as a function of (r − 1)/(p − 1) ∈ [0, 1] for p = 5, 9, 13, 17. For each
p, the index r = 1, 2, . . . , p enumerates the entries of γ and β. Dashed lines in between data points
are solely intended to guide the eye.

Vp(γ, β) := lim
n→∞

EJ

[
⟨γ, β|CSK

J /n|γ, β⟩J J

]
, (4.2)

where |γ, β⟩J is the QAOA state prepared with CSK
J . Since concentration is shown to hold,

we know that typical instances of the SK model all behave as the ensemble average.
Observe that ν̄p, the optimized values of νp(γ, β), listed in Table 1 of this paper agree

with the values of V̄p = maxγ,β Vp(γ, β) in Table 1 of Ref. [16]. It turns out that this is true
in a general sense:

▶ Theorem 1. For all p and all parameters (γ, β), we have

Vp(γ, β) = νp(γ, β). (4.3)

The proof of this theorem is provided in Ref. [4, Section 6], where the iteration for νp in this
paper is carefully mapped to the previously known formula for Vp. This theorem establishes
the fact that for each p and fixed parameters, the performance of the QAOA on large-girth
D-regular graphs in the D → ∞ limit is equal to its performance on the SK model in the
n → ∞ limit. We remark that in the iteration in this paper there is only one tree subgraph,
with of order Dp vertices, for every large-girth D-regular graph. On the other hand, in the
SK case, there is an ensemble of instances given by different weights on the complete graph.
It is interesting to us that the ensemble average in Eq. (4.2) can be replaced by a single
subgraph.

Theorem 1 also implies that the iteration in Section 3.2 works for evaluating the perform-
ance of the QAOA applied to both large-girth regular graphs and the SK model.

5 Conjecture that our iteration achieves the Parisi value

The cut fraction output by the QAOA on MaxCut for large-girth (D + 1)-regular graphs is

⟨γ, β|CMC|γ, β⟩
|E|

= 1
2 + νp(D, γ, β)√

D
. (5.1)
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We have given an iteration for evaluating νp(D, γ, β) for any depth p and parameters γ, β.
Furthermore, in Section 3.2 we give a compact iteration for νp(γ, β) = limD→∞ νp(D, γ, β).
Using this iteration we can optimize over parameters to get ν̄p = maxγ,β νp(γ, β). Note
ν̄p cannot be bigger than the Parisi value, Π∗ = limn→∞ EJ [maxz CSK

J (z)/n]. From our
numerics out to p = 17 we see that ν̄p is headed in that direction.

Now we make the bold conjecture:
▶ Conjecture. Let Π∗ = 0.763166... be the Parisi value [25, 27]. Then

lim
p→∞

ν̄p = Π∗. (5.2)

That is, the iteration in Section 3.2 is an alternative procedure to compute Π∗. To prove this
conjecture, perhaps one can show that the iteration in this paper is equivalent to one of the
known procedures for computing Π∗. (It may be interesting to note that Π∗ = limk→∞ Pk,
where Pk is the minimum of the Parisi variational principle over a k-step replica symmetry
breaking ansatz with 2k + 1 parameters [24, 2]. This is not unlike ν̄p.) Or one can find a
way to analytically evaluate the p → ∞ limit.

There is an order of limits issue we now address. For any combinatorial optimization
problem of fixed size, the QAOA can be shown to give the optimal solution in the p → ∞
limit [15]. This may require p to grow exponentially in the system size. But we calculate the
performance ν̄p of the QAOA at fixed p in the D → ∞ limit (which means infinite system
size). Then we take p → ∞. Our conjecture is about whether, under this new order of limits,
the QAOA achieves the optimum as p → ∞.

6 Generalized iterations for Max-q-XORSAT

It turns out we can easily generalize our iterations for the QAOA’s performance on MaxCut in
Section 3 to the Max-q-XORSAT problem. MaxCut is a special case of Max-2-XORSAT. Given
a q-uniform hypergraph G = (V, E) where E ⊆ V q, and given a signed weight Ji1i2...iq

∈ {±1}
for each edge (i1, i2, . . . , iq) ∈ E, Max-q-XORSAT is the problem of maximizing the following
cost function:

CXOR
J (z) =

∑
(i1,...,iq)∈E

1
2(1 + Ji1i2...iq

zi1zi2 · · · ziq
). (6.1)

This cost function can be understood as counting the number of satisfied clauses, where a
clause is satisfied if zi1zi2 · · · ziq

= Ji1i2...iq
on the associated edge. Note the MaxCut cost

function in Eq. (2.2) is a special case of this problem where q = 2 and all Ji1i2 = −1.
We consider this problem on (D + 1)-regular hypergraphs, where each vertex has degree

D + 1, i.e., it is part of exactly D + 1 hyperedges. (As in Section 2, working with (D + 1)-
regular hypergraphs means the subgraphs that the QAOA sees are D-ary hypertrees.) The
total number of hyperedges is |E| = n(D + 1)/q, where n = |V | is the number of vertices.
Due to a result by Sen [28], we know that with high probability as n → ∞, the maximum
fraction of satisfied clauses for a random (D +1)-regular hypergraph for sufficiently large D is

1
|E|

max
z

CXOR
J (z) = 1

2 + Πq

√
q

2D
+ o(1/

√
D) (6.2)

where Πq is the generalized Parisi value that can be determined explicitly.2 In particular,
Π2 = Π∗ = 0.763166 . . ..

2 See Ref. [28] for how this value can be calculated. Take care to note that the conventions slightly differ,
and our Πq = Pq/

√
2 where Pq is defined in Section 2.1 of Ref. [28].
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Figure 4 (a) The hypertree subgraph seen by the QAOA at p = 2 for the hyperedge (1, 2, . . . , q)
on a (D + 1)-regular q-uniform hypergraph with girth > 2p + 1, for q = 3 and D = 2. (b) A partial
view near the leaves of the hypertree subgraph for a general q and D. The starfish are hyperedges.
Here w1, w2, . . . , wq−1 are leaf nodes in the same hyperedge, and we denote their common parent as
v1 = p(w1) = · · · = p(wq−1).

We want to evaluate how the QAOA performs on the Max-q-XORSAT problem for
large-girth (D + 1)-regular hypergraphs. Here, girth is defined as the minimum length of
Berge cycles in the hypergraph [7]. Similar to the MaxCut problem discussed in Section 2, we
will see that the QAOA has optimal parameters γ that are of order 1/

√
D for these graphs.

For this reason, it will be convenient to prepare the QAOA state |γ, β⟩J with the following
shifted and scaled cost function operator

CJ = 1√
D

∑
(i1,...,iq)∈E

Ji1i2...iq Zi1Zi2 · · · Ziq . (6.3)

For any such hypergraph, we are interested in the fraction of satisfied clauses output by the
QAOA at any parameters, for any choices of Ji1i2...iq drawn from {+1, −1}. We show the
following:

▶ Theorem 2. Consider CXOR
J on any (D + 1)-regular q-uniform hypergraphs with girth

> 2p + 1. Let |γ, β⟩J be the QAOA state generated generated using CJ . Then for any choice
of J ,

1
|E|

⟨γ, β|CXOR
J |γ, β⟩J J = 1

2 + ν[q]
p (D, γ, β)

√
q

2D
(6.4)

where ν
[q]
p (D, γ, β) is independent of J and can be evaluated (classically) with an iteration

using O(p4pq) time and O(4p) memory. In the infinite D limit, limD→∞ ν
[q]
p (D, γ, β) can be

evaluated with an iteration using O(p24p) time and O(p2) memory.

The full proof can be found in Ref. [4, Section 8], where we also describe iterations for ν
[q]
p in

detail. It is based on the same idea as the iterations in Section 3, as we exploit the regularity
of the hypertree subgraph seen by the QAOA on these hypergraphs.

In the next section, we give a part the proof that shows the J-independence ν
[q]
p , and

discuss its implication of a worst-case limitation on the QAOA’s performance. In Section 6.2
that follows, we describe the infinite-D iteration and present results from its numerical
evaluation.
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6.1 J-independence of ν [q]
p and implied worst-case limitation

We argue that the left hand side of Eq. (6.4) is independent of the choice of J ’s, so there
is no J needed on the right hand side. When the girth of the hypergraph is larger than
2p + 1, the subgraph seen by the QAOA on any hyperedge is always a D-ary q-uniform
hypertree. See Figure 4(a) for an example. In this figure each triangle is associated with a
coupling J that can be either +1 or −1. Look at the triangle containing vertices 1, 2 and 3.
We can absorb the sign of J123 into the bit at vertex 1 as follows: if J123 = −1 do nothing,
whereas if J123 = +1 flip the sign of the bit at vertex 1 by redefining Z1 → −Z1. Then
J123Z1Z2Z3 → −Z1Z2Z3 under this transformation. Now look at the triangle containing
bits 1, v1 and v2. The sign of J1v1v2 may have been modified by the last step. But we can
now absorb the sign of J1v1v2 into the bit at v1 so that J1v1v2Z1Zv1Zv2 → −Z1Zv1Zv2 . This
might affect the sign of Jv1w1w2 in the triangle containing v1, w1 and w2. But we can redefine
the bit at w1 appropriately so that Jv1w1w2Zv1Zw1Zw2 → −Zv1Zw1Zw2 . Since there are no
cycles in the hypertree, we can move through the whole picture in this way resetting all the
couplings J to −1.

We have reset all the couplings J to −1 in the picture, and we now argue that this
makes the quantum expectation (6.4) independent of the J ’s. At the quantum level we flip
the sign of the operator Zu by conjugating with Xu, that is, XuZuXu = −Zu. Since the
driver B commutes with each Xu and the initial state is an eigenstate of each Xu, we can
sprinkle Xu’s into the left hand side of Eq. (6.4) and establish the J-independence of the
expression coming from any particular hyperedge. Now the cost function (6.1) is a sum over
the hyperedges of a given hypergraph, but the expected value of each term in the QAOA
state is independent of the J ’s. So for every (D + 1)-regular q-uniform hypergraph with girth
> 2p + 1 we can write

1
|E|

⟨γ, β|CXOR
J |γ, β⟩J J = 1

2 − 1
2 ⟨γ, β|Z1Z2 . . . Zq|γ, β⟩ (6.5)

where (1, 2, 3, . . . , q) is any hyperedge, and the state |γ, β⟩ without the J label has all the
couplings set to −1.

A corollary to this J-independence is that the QAOA at low depth fails to find the
optimal assignment in the worst case. To see this, let us go back to the q = 2 case where
we studied MaxCut on a large-girth regular graph which has all of the couplings J = −1.
At optimal parameters, the fraction of satisfied clauses is 1/2 + ν̄p/

√
D in the large D limit,

where ν̄p ≤ Π∗. Consider the corresponding instance where all the couplings on the same
graph are set to J = +1, which makes the instance fully satisfiable. In that case, the best
possible fraction of satisfied clauses is 1. However, the fraction output by the QAOA at
optimal parameters is the same as in the J = −1 case, that is, at most 1/2 + Π∗/

√
D, which

is only a bit more than 1/2 in the large D limit.
Here we have an example of the QAOA failing to reach the optimum in the worst case

because it does not “see” the whole graph. (Unlike previous results of the similar flavor in
Refs. [9, 14], we do not need the graph to be bipartite to bound the worst-case approximation
ratio.) Regardless of the signs of the couplings, the low-depth QAOA sees a tree subgraph
surrounding each edge. On the tree subgraph the signs of the couplings are irrelevant so the
QAOA does not distinguish between instances where the cost function favors disagreement
and instances where agreement is favored. Without seeing cycles the QAOA cannot do better
than what it can achieve in the most frustrated case, and this yields an upper bound on the
worst-case approximation ratio.
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6.2 The infinite-D iteration for ν [q]
p

We now describe the iteration mentioned in Theorem 2 for the D → ∞ limit. Similar
to Section 3.2, we define matrices G(m) ∈ C(2p+1)×(2p+1), for 0 ≤ m ≤ p as follows. For
j, k ∈ {1, . . . , p, 0, −p, . . . , −1}, let G

(0)
j,k =

∑
a f(a)ajak, and

G
(m)
j,k =

∑
a

f(a)ajak exp
[
−1

2

p∑
j′,k′=−p

(
G

(m−1)
j′,k′

)q−1Γj′Γk′aj′ak′

]
for 1 ≤ m ≤ p. (6.6)

Starting at m = 0 and going up by p steps we arrive at G(p) which is used to compute

ν[q]
p (γ, β) := lim

D→∞
ν[q]

p (D, γ, β) = i√
2q

p∑
j=−p

Γj(G(p)
0,j )q. (6.7)
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Figure 5 Optimal values ν̄
[q]
p normalized by their corresponding Parisi values Πq as a function of

1/p for q = 2, 3, 4, 5, 6. The Parisi values are taken from Ref. [22]. Similar to Fig. 2, we made the
somewhat arbitrary choice of plotting the data against 1/p to see the large p region in a compact
plot. Dashed lines in between data points are intended to guide the eye.

Note the only difference between Max-q-XORSAT and MaxCut, where q = 2, can be
seen by comparing Eqs. (3.8) and (3.9) in Section 3.2 to Eqs. (6.6) and (6.7) in the current
iteration, where we are raising the matrix elements of G to some q-dependent power. Hence,
this iteration also takes at most O(p24p) time and O(p2) memory to be evaluated, regardless
of q. This is polynomially faster than the finite D case with exponentially better memory
usage.

We take this iteration and numerically optimize over γ and β to find

ν̄[q]
p = max

γ,β
lim

D→∞
ν[q]

p (D, γ, β). (6.8)
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Figure 6 Optimal QAOA parameters (γ, β) at p = 14 for various Max-q-XORSAT on D-regular
hypergraphs in the D → ∞ limit. This data can be found in Ref. [5].

up to p = 14 for 3 ≤ q ≤ 6. Combining with the data we have for q = 2 in Table 1, we plot
the results in Figure 5. For ease of comparison across different values of q we have normalized
ν̄

[q]
p by its corresponding Parisi value Πq. See Figure 6 for a plot of the optimal γ and β we

found at p = 14. Numerical values for ν̄
[q]
p and optimal γ and β for all 1 ≤ p ≤ 14 can be

found in Ref. [5].
In some cases, there are thresholds on how well the QAOA at low depths can do. It is

known that for problems that exhibit the overlap gap property, the locality property of the
QAOA prevents it from getting close to the optimum at low depths where it does not see
the whole graph [13, 10]. Specifically, using an overlap gap property in the Max-q-XORSAT
problem on random Erdős-Rényi hypergraphs with constant average degree and even q ≥ 4,
Ref. [10] showed that the QAOA (or any local algorithm) has limited performance when the
depth p is less than ϵ log n, where n is the graph size and ϵ is a constant that depends on
the degree and q. Assuming the overlap gap property also holds when the hypergraphs are
regular, one can use similar arguments to show that the QAOA’s performance as measured
by ν̄

[q]
p /Πq does not converge to 1 as p → ∞ when q ≥ 4 and is even. This is because our

large-girth assumption implies the graph has at least Dp vertices, so p is always less than
ϵ log n in this limit.

7 Discussion

In this paper, we have introduced new techniques for evaluating the performance of a quantum
algorithm at high qubit number and at high depth. In particular we do this by finding
a compact iteration for the QAOA’s performance on MaxCut on instances with locally
tree-like neighborhoods. On random large-girth D-regular graphs, the QAOA at p = 11 and
higher has the highest approximation ratio of any assumption-free algorithm. We have given
performance guarantees for the QAOA, but it is necessary to run a quantum computer to
produce a string with the calculated performance.

We have also shown that for any depth p and for any parameters, γ and β, the performance
of the QAOA on large-girth D-regular graphs, as D → ∞, matches the typical performance
of the QAOA on the Sherrington-Kirkpatrick model at infinite size. We find it remarkable
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that the ensemble averaging done in the SK model can be replaced by analyzing a single tree
subgraph. For both of these models the best conceivable performance is upperbounded by
the Parisi constant, Π∗. There are optimal parameters at each p, and we speculate that as
p → ∞ these optimal parameters give QAOA performance that matches the Parisi constant
for both models.

Moreover, in Section 6, we have generalized our iteration for MaxCut on large-girth regular
graphs to evaluate the QAOA’s performance on Max-q-XORSAT problems for large-girth
regular hypergraphs. We have shown that, at fixed parameters, the QAOA gives the same
value of the objective function regardless of the signs of the couplings on these hypergraphs.
This implies a worst-case algorithmic threshold at low depth for fully satisfiable instances.
Building on our work, Ref. [6] recently generalized the equivalence between MaxCut and the
SK model to between Max-q-XORSAT and the fully connected q-spin model.

There are a number of ideas to explore coming out of this work. Can we find a more
efficient iterative formula for the QAOA’s performance than the one in Section 3.2? If so,
we can better probe the large-p behavior of the QAOA. Can the iteration in Section 3.2 be
recast in the p → ∞ limit in terms of continuous functions corresponding to γ, β? This
might be a way to verify, or falsify, the conjecture in Section 5.

Can one find other problems at high qubit number and high depth where the performance
of the QAOA can be established using techniques similar to the ones introduced in this
paper?
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A Proof of the iterations for MaxCut

In this appendix, we prove the correctness of the two iterations in Section 3.1 and Section 3.2.
We hope this proof illustrates two key technical ideas in this paper: namely, we can exploit
the regularity of the tree subgraph seen by the QAOA to yield a compact formula for its
performance, and we find an algebraic simplification in the D → ∞ limit. This appendix
also serves as the proof of a special case of Theorem 2 at q = 2. The remaining proofs of our
results can be found in the full version of this paper at Ref. [4].

A.1 Proof of the finite D iteration
We start by proving the finite D iteration that was stated in Section 3.1. We focus on the
iteration for p = 2 as an example, and its generalization to other p is immediate.

The goal is to evaluate the energy expectation for a single edge (L, R) on a (D +1)-regular
graph whose girth is larger than 2p + 1. For p = 2, this is

⟨γ, β|ZLZR|γ, β⟩ = ⟨s|eiγ1Ceiβ1Beiγ2Ceiβ2BZLZRe−iβ2Be−iγ2Ce−iβ1Be−iγ1C |s⟩ (A.1)

where C = −(1/
√

D)
∑

(u,v)∈E ZuZv, and E denotes the set of edges for the given graph. In
the Heisenberg picture, it can be seen that the operator eiγ1C · · · eiβpBZLZRe−iβpB · · · e−iγ1C

only acts nontrivially on the subgraph induced by including all vertices distance p or less
from either node L or R. For a (D + 1)-regular graph with girth greater than 2p + 1, this
subgraph looks like a pair of D-ary trees that are glued at their roots (see Figure 7), with a
total of n = 2(Dp + · · · + D + 1) nodes. In what follows, we compute Eq. (A.1) by restricting
our attention to only the qubits in this subgraph.

We start by inserting 5 complete sets in the computational Z-basis that we will label as
z[1], z[2], z[0], z[−2], and z[−1]. Each of these complete sets iterates over 2n basis states since
the number of qubits in the subgraph is n. Then

⟨γ, β|ZLZR|γ, β⟩ =
∑

{z[i]}

⟨s|z[1]⟩ eiγ1C(z[1]) ⟨z[1]|eiβ1B |z[2]⟩ eiγ2C(z[2]) ⟨z[2]|eiβ2B |z[0]⟩ z
[0]
L z

[0]
R

× ⟨z[0]|e−iβ2B |z[−2]⟩ e−iγ2C(z[−2]) ⟨z[−2]|e−iβ1B |z[−1]⟩ e−iγ1C(z[−1]) ⟨z[−1]|s⟩

= 1
2n

∑
{z[i]}

exp
[
iγ1C(z[1]) + iγ2C(z[2]) − iγ2C(z[−2]) − iγ1C(z[−1])

]
z

[0]
L z

[0]
R

×
n∏

v=1

⟨z[1]
v |eiβ1X |z[2]

v ⟩ ⟨z[2]
v |eiβ2X |z[0]

v ⟩ ⟨z[0]
v |e−iβ2X |z[−2]

v ⟩ ⟨z[−2]
v |e−iβ1X |z[−1]

v ⟩ . (A.2)
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Figure 7 The tree subgraph seen by the QAOA at p = 2 for the edge (L, R) on a (D + 1)-regular
graph with girth > 2p + 1. For any node v on either of the D-ary trees we denote p(v) as the parent
of that node. In the figure w is a leaf node, and we show its parent and its parent’s parent.

Let us define the following function which is the p = 2 version of Eq. (3.4):

f(a1, a2, a0, a−2, a−1) = 1
2 ⟨a1|eiβ1X |a2⟩ ⟨a2|eiβ2X |a0⟩ ⟨a0|e−iβ2X |a−2⟩ ⟨a−2|e−iβ1X |a−1⟩ .

(A.3)

Then, using Γ as defined in Eq. (3.3), we can rewrite Eq. (A.2) as

⟨γ, β|ZLZR|γ, β⟩ =
∑

{z[i]}

z
[0]
L z

[0]
R exp

[
i

2∑
j=−2

ΓjC(z[j])
] n∏

v=1
f(zv) (A.4)

where zv = (z[1]
v , z

[2]
v , z

[0]
v , z

[−2]
v , z

[−1]
v ) are the bits from the 5 complete sets associated with

node v. Using the fact that C(z) = −(1/
√

D)
∑

(u,v)∈E zuzv, we can rewrite ⟨γ, β|ZLZR|γ, β⟩
as

⟨γ, β|ZLZR|γ, β⟩ =
∑
{zu}

z
[0]
L z

[0]
R exp

[
− i√

D

∑
(u′,v′)∈E

Γ · (zu′zv′)
] n∏

v=1
f(zv) (A.5)

where we have replaced the sum over the 5 complete sets {z[i] : −2 ≤ i ≤ 2} with an
equivalent sum over the bit configurations of each node {zu : 1 ≤ u ≤ n}. Now to evaluate
⟨ZLZR⟩ we need to perform a sum over the bit configurations zv of every node v in the
tree subgraph, where each node is coupled to its neighbors on the graph via the term in the
exponential of Eq. (A.5).

We can start by considering a single leaf node w who is only connected to its parent
node p(w) on the tree, as shown in Figure 7. Then the sum over the 32 bit values of the
configuration zw = (z[1]

w , z
[2]
w , z

[0]
w , z

[−2]
w , z

[−1]
w ) yields∑

zw

f(zw) exp
[
− i√

D
Γ · (zwzp(w))

]
(A.6)

which is a function of the parent node’s configuration zp(w). Note that doing this on every
leaf node contributes the same function to its parent. Since there are exactly D leaf nodes
per parent, we get the following contribution
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H
(1)
D (zp(w)) :=

( ∑
zw

f(zw) exp
[
− i√

D
Γ · (zwzp(w))

])D

. (A.7)

This is true for every parent node of any of the leaves.
After performing the sums for all the leaf nodes, we can move to the sums for their

parents. Let us look at the sum on the node p(w) for example, which yields∑
zp(w)

f(zp(w))H
(1)
D (zp(w)) exp

[
− i√

D
Γ · (zp(w)zp(p(w)))

]
. (A.8)

Again, because its parent node p(p(w)) has D identical children like p(w), this yields

H
(2)
D (zp(p(w))) :=

( ∑
zp(w)

f(zp(w))H
(1)
D (zp(w)) exp

[
− i√

D
Γ · (zp(w)zp(p(w)))

])D

. (A.9)

Note at p = 2 we have reached the root of the tree L = p(p(w)) after these two iterations.
To evaluate ⟨γ, β|ZLZR|γ, β⟩, it only remains to sum over the 5 bits in zL and the 5 bits

in zR:

⟨γ, β|ZLZR|γ, β⟩ =
∑

zL,zR

z
[0]
L z

[0]
R f(zL)f(zR)H(2)

D (zL)H(2)
D (zR) exp

[
− i√

D
Γ · (zLzR)

]
.

(A.10)

For higher p, we can see that the evaluation of ⟨γ, β|ZLZR|γ, β⟩ simply involves more
iterations of Eq. (A.9) corresponding to more levels in the tree subgraph. In summary, the
iteration for general p can be written as starting with

H
(0)
D (a) = 1 (A.11)

and then evaluating for m = 1, 2, . . . , p,

H
(m)
D (a) =

( ∑
b

f(b)H(m−1)
D (b) exp

[
− i√

D
Γ · (ab)

])D

, (A.12)

since there are p levels in the tree subgraph seen by the QAOA with p layers. At the end we
get

⟨γ, β|ZLZR|γ, β⟩ =
∑
a,b

a0b0f(a)f(b)H(p)
D (a)H(p)

D (b) exp
[
− i√

D
Γ · (ab)

]
. (A.13)

This is almost what we have stated for the iteration in Section 3.1.
To finish the proof, we note from Eq. (A.3) as well as its general p version in Eq. (3.4)

that

f(−a) = f(a). (A.14)

We now claim that

H
(m)
D (−a) = H

(m)
D (a) for 0 ≤ m ≤ p (A.15)

TQC 2022



7:20 QAOA at High Depth for MaxCut on Large-Girth Regular Graphs & SK Model

which we will show by induction on m. Note this is trivially true for the base case m = 0 since
H

(0)
D (a) = 1 is constant. Assuming that H

(m−1)
D (−a) = H

(m−1)
D (a), we can take b → −b in

the summand of Eq. (A.12) and combine it with its original form to see that

H
(m)
D (a) =

( ∑
b

f(b)H(m−1)
D (b) cos

[
1√
D

Γ · (ab)
])D

. (A.16)

From this form it follows that H
(m)
D (−a) = H

(m)
D (a) since a only appears in the cosine which

is an even function, establishing Eq. (A.15).
Similarly, we can take b → −b in Eq. (A.13) and combine with its original form to get

⟨γ, β|ZLZR|γ, β⟩ = −i
∑
a,b

a0b0f(a)f(b)H(p)
D (a)H(p)

D (b) sin
[

1√
D

Γ · (ab)
]
. (A.17)

Thus to get the νp as defined in Eq. (2.6) that tells us the cut fraction, we have

νp(D, γ, β) = i
√

D

2
∑
a,b

a0b0f(a)f(b)H(p)
D (a)H(p)

D (b) sin
[

1√
D

Γ · (ab)
]
. (A.18)

This proves our iteration for any finite D in Section 3.1.

A.2 Proof of D → ∞ iteration
We wish to evaluate Eq. (3.7) in the D → ∞ limit:

lim
D→∞

νp(D, γ, β) = lim
D→∞

i
√

D

2
∑
a,b

a0b0f(a)f(b)H(p)
D (a)H(p)

D (b) sin
[

1√
D

Γ · (ab)
]
. (A.19)

We first prove by induction that for 0 ≤ m ≤ p,

H(m)(a) := lim
D→∞

H
(m)
D (a) (A.20)

exists and is finite. For m = 0, our claim holds because H
(0)
D (a) = 1. Assuming the claim is

true for m − 1, we examine H(m)(a) by taking the limit on Eq. (A.16)

H(m)(a) = lim
D→∞

[ ∑
b

f(b)H(m−1)
D (b) cos

(
1√
D

Γ · (ab)
)]D

. (A.21)

Then performing a Taylor expansion of cos(· · ·), we get

H(m)(a) = lim
D→∞

[ ∑
b

f(b)H(m−1)
D (b)

(
1 − 1

2D

(
Γ · (ab)

)2
+ O

(
1

D2

))]D

. (A.22)

Using the fact that for any m,∑
a

f(a)H(m)
D (a) = 1 (A.23)

which is proved in Ref. [4, Lemma 5], we get

H(m)(a) = lim
D→∞

[
1 − 1

2D

∑
b

f(b)H(m−1)
D (b)

(
Γ · (ab)

)2 + O
( 1

D2

)]D

. (A.24)
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Finally, taking the limit,

H(m)(a) = exp
[

− 1
2

∑
b

f(b)H(m−1)(b)
(
Γ · (ab)

)2
]

(A.25)

which yields an iteration on H(m).
Returning to Eq. (A.19), we apply the product rule of limits to H

(p)
D (a), H

(p)
D (b), and√

D sin[Γ · (ab)/
√

D] and get

lim
D→∞

νp(D, γ, β) = i

2
∑
a,b

a0b0f(a)f(b)H(p)(a)H(p)(b)Γ · (ab). (A.26)

This iteration can be simplified by expanding the dot products in Eqs. (A.25) and (A.26)
to get

H(m)(a) = exp
[
−1

2

p∑
j,k=−p

ΓjΓkajak

( ∑
b

f(b)H(m−1)(b)bjbk

)]
, (A.27)

lim
D→∞

νp(D, γ, β) = i

2

p∑
j=−p

Γj

( ∑
a

f(a)H(p)(a)a0aj

)( ∑
b

f(b)H(p)(b)b0bj

)
(A.28)

and noticing that the quantity
∑

a f(a)H(m)(a)ajak appears repeatedly. For 0 ≤ m ≤ p

and −p ≤ j, k ≤ p, define

G
(m)
j,k :=

∑
a

f(a)H(m)(a)ajak. (A.29)

For m = 0, this is

G
(0)
j,k =

∑
a

f(a)ajak. (A.30)

For 1 ≤ m ≤ p, we plug Eq. (A.27) into Eq. (A.29) to get

G
(m)
j,k =

∑
a

f(a)ajak exp
[
−1

2

p∑
j′,k′=−p

G
(m−1)
j′,k′ Γj′Γk′aj′ak′

]
. (A.31)

Finally, Eq. (A.28) can be written as

lim
D→∞

νp(D, γ, β) = i

2

p∑
j=−p

Γj(G(p)
0,j )2 (A.32)

which establishes the iteration stated in Section 3.2.
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Abstract
Secure function evaluation is a two-party cryptographic primitive where Bob computes a function of
Alice’s and his respective inputs, and both hope to keep their inputs private from the other party. It
has been proven that perfect (or near perfect) security is impossible, even for quantum protocols.
We generalize this no-go result by exhibiting a constant lower bound on the cheating probabilities for
any quantum protocol for secure function evaluation, and present many applications from oblivious
transfer to the millionaire’s problem. Constant lower bounds are of practical interest since they
imply the impossibility to arbitrarily amplify the security of quantum protocols by any means.
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1 Introduction

The first paper studying quantum cryptography was written by Stephen Wiesner in the 1970s
(published in 1983) [34]. In that paper, he presented a (knowingly insecure) protocol for
multiplexing where a receiver could choose to learn one of two bits of their choosing. Since
then, this task has been referred to as 1-out-of-2 oblivious transfer, and has been extensively
studied in the quantum community [16, 29, 33, 30, 21, 11, 15, 12, 18, 20]. Indeed, since the
development of quantum key distribution in 1984 [9], it has been of great interest to use
quantum mechanics to develop protocols for classical tasks and push the limits of quantum
theory to find optimal protocols (and their limitations).

On the other hand, it was shown in the late 1990s (and a few times since) that perfect
security for a number of cryptographic tasks, including secure function evaluation, could
not attain perfect, or even near perfect, security [24, 22, 23, 21, 11]. Indeed, some popular
two-party cryptographic protocols, including bit commitment [14], strong coin flipping [19],
oblivious transfer [15], strong die rolling [2], as well as many others, have all seen constant
lower bounds presented. Constant lower bounds are of great interest for several reasons, of
which we note a few. The first reason, a practical one, is that they imply that there is no
way to arbitrarily amplify the security by any means (such as repeating the protocol many
times and combining them in some way). The second reason, a theoretical one, now opens
the question as to what are the optimal security parameters. Assuming quantum mechanics
offers some advantage over their classical counterparts, the question now becomes to what
extent is this advantage.
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8:2 Lower Bounds on Quantum Secure Function Evaluation

Note that two-party cryptography has some strange behavior, making its study very
intriguing. For example, in the case of die rolling (where Alice and Bob wish to roll a die
over the (possibly quantum) telephone) there can sometimes be classical protocols that offer
decent security [31]. On the other hand, having classical protocols for something like coin
flipping, bit commitment, and oblivious transfer is impossible [19]. And while quantum
mechanics seems to deny us strong coin flipping (we have a constant lower bound [19]), it
does give us arbitrarily good security for weak coin flipping [25, 3, 7, 6]. Therefore, classifying
the behavior of two-party cryptographic primitives is a fruitful, and sometimes surprising,
endeavor. To this end, we study the broad class of two-party cryptography known as secure
function evaluation which we now discuss.

1.1 Secure function evaluation
Secure function evaluation (SFE) is a two-party cryptographic primitive in which Alice begins
with an input x ∈ X and Bob begins with an input y ∈ Y (each input is chosen uniformly at
random1) and Bob has a deterministic function f : X × Y → B. Here, we take X, Y , and B

to have finite cardinality. See Figure 1 below.

SFE

Alice Bob

x ∈ X y ∈ Y

f(x, y) ∈ B

Figure 1 A pictorial representation of SFE. Bob wants to compute his function f while he and
Alice keep their inputs private.

The goals when designing a (quantum) protocol for SFE are:
1. Completeness: If both parties are honest then Bob learns f , evaluated on their inputs x

and y.
2. Soundness against cheating Bob: Cheating Bob obtains no extra information about honest

Alice’s input x other than what is logically implied from knowing f(x, y).
3. Soundness against cheating Alice: Cheating Alice obtains no information about honest

Bob’s input y.

It is natural to assume perfect completeness of a protocol and then to quantify the extent
to which they can be made sound. In other words, we consider protocols for SFE that do
what they are meant to do when Alice and Bob follow them (that is, they compute f), and
then we try to find the ones which hide their respective inputs the best.

To quantify soundness against cheating Bob, for each such protocol we define the following
symbols.

1 We believe our analysis works for other probability distributions over the inputs as well, as long as
they are uncorrelated. The assumption of uniformity makes certain expressions cleaner, such as the
probability of Alice being able to blindly guess Bob’s input.
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BSFE: The maximum probability with which cheating Bob can guess honest Alice’s input x.
B′

SFE: The maximum probability with which cheating Bob can guess every f(x, y), for each
y ∈ Y .

Note that often these two cheating probabilities are the same. For instance, in 1-out-of-2
oblivious transfer we have x ∈ X = {0, 1}2 as a 2-bit string, y ∈ Y = {1, 2} as an index,
and f(x, y) = xy, i.e., the y-th bit of x. Then clearly BSFE = B′

SFE, since knowing each bit
is equivalent to knowing the full string. In general, BSFE ≤ B′

SFE, since if Bob is able to
correctly learn Alice’s input x, then he can compute any function of it he wants.

Similarly, to quantify soundness against cheating Alice, we define the following symbols.

ASFE: The maximum probability with which cheating Alice can guess honest Bob’s input y.

Note that there is only the one definition for a cheating probability for Alice since she
has no output.

1.2 Main result
We now present our main result, a trade-off curve relating Alice and Bob’s cheating probabil-
ities that must be satisfied for any quantum protocol for SFE.

▶ Theorem 1. In any quantum protocol for secure function evaluation, it holds that

B′
SFE ≥ 1

|Y | ASFE
− 2 (|Y | − 1)

√
1 − 1

|Y | ASFE
(1)

where Y is the set of choices for Bob’s input.

We now discuss this bound. Note that

ASFE ≥ 1
|Y |

, (2)

since she can always blindly, or randomly, guess the value of y ∈ Y . Since Alice has no
output function (like Bob does) she may not be able to infer anything about y from the
protocol if she is honest. Therefore, sometimes her best strategy is to randomly guess, and
in this case we would have

ASFE = 1
|Y |

, (3)

which translates to perfect security against a cheating Alice. However, in that case, our
bound implies that

B′
SFE = 1, (4)

meaning Bob can compute his function perfectly for every choice of input on his side, i.e.,
complete insecurity against a cheating Bob. This implication exactly recovers Lo’s conclusion
in his 1997 paper [21], and also the conclusion in a more recent paper by Buhrman, Christandl,
and Schaffner [11]. It should be mentioned that the above two papers also discuss the “Alice
can cheat with a small probability” case as well. A key component in their proofs is the
application of Uhlmann’s theorem on purifications of the protocol to find unitaries with which
Bob can use to cheat. As evidenced later on, this is very different from our proof. In fact, at
no point in our protocol do we assume anything is pure and we only deal with POVMs, not

TQC 2022



8:4 Lower Bounds on Quantum Secure Function Evaluation

unitaries. The “magic ingredient” in our proof is a generalization of Kitaev’s lower bound
for strong coin flipping [19]. Moreover, we chose to quantify the security solely in terms of
Alice and Bob’s cheating probabilities, which is complementary to the results in [11].

Before continuing, we now discuss what we mean by having a “constant lower bound.”
To this end, we define the following symbols.

Arand: The maximum probability with which cheating Alice can guess honest Bob’s input y

given only black-box access to the SFE task.
B′

rand: The maximum probability with which cheating Bob can learn every f(x, y), for each
y ∈ Y , given only black-box access to the SFE task.

In other words, the cheating definitions above correspond to the information Alice and
Bob can infer only from their outputs. Of course, Alice has no output, so clearly

Arand = 1
|Y |

. (5)

However, as is illustrated in our examples, it is less clear how to write B′
rand in terms of the

parameters of a general SFE protocol.
Equipped with these symbols, we are now ready to state our constant lower bound

on SFE.

▶ Theorem 2. In any quantum protocol for secure function evaluation, either B′
rand = 1 (in

which case the protocol is completely insecure), or there exists a constant c > 1 such that

ASFE ≥ c · Arand or B′
SFE ≥ c · B′

rand. (6)

Before discussing how to find this constant, a word on our lower bound is in order. We
chose to define what it means for a constant lower bound to be a multiplicative factor.
This is because Arand and B′

rand may be dramatically different (as we demonstrate shortly).
Therefore, having a constant additive factor could be unevenly weighted between cheating
Alice and Bob and, we feel, would be less insightful in those cases. However, using our bound
one can optimize and find an additive constant if one so desires.

To find this constant c > 1, note that our lower bound on B′
SFE (the right-hand side of

Inequality (1)) is a continuous, decreasing function with respect to ASFE. Therefore, if we
assume

ASFE ≤ cA

|Y |
, (7)

for some fixed constant cA ≥ 1, then we may conclude via our bound that

B′
SFE ≥ 1

cA
− 2 (|Y | − 1)

√
1 − 1

cA
. (8)

Now, assuming that

B′
SFE = cB · B′

rand (9)

for some cB ≥ 1, we now have the inequality

cB ≥ 1
B′

rand

(
1

cA
− 2 (|Y | − 1)

√
1 − 1

cA

)
. (10)
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We shall now assume that B′
rand < 1 so that 1

B′
rand

> 1. Note that when cA = 1, we have
the right-hand side of (10) equalling 1

B′
rand

> 1 and when cA = 1
B′

rand
we have the right-hand

side being strictly less than 1. Thus, by continuity of the right-hand side and the intermediate
value theorem, we know there exists a constant c > 1 satisfying the equation

c = 1
B′

rand

(
1
c

− 2 (|Y | − 1)
√

1 − 1
c

)
. (11)

Note that this constant c > 1 is exactly what we want, since if cA ≤ c then we have cB ≥ c.
Now, in theory one can solve for c above for a general SFE task, but it is complicated and

perhaps not very insightful. However, when it comes to particular instances or families of
SFE, then one can easily solve the above equation and get a constant (and possibly decent)
lower bound for any quantum protocol for that task. We demonstrate this several times
below.

1.3 Applications
Since our bound is general, we can apply it to many different scenarios. However, since each
scenario is quite different and requires discussion, we delegate these discussions to the full
version of the paper and simply summarize the cryptographic tasks below and a few of the
special cases in which we found some exact formulas for lower bounds. Note that all of the
special cases presented below are new lower bounds as far as we are aware.

1-out-of-n oblivious transfer. This is where Alice has a database and Bob wishes to
learn one item (his input is an index). We present lower bounds on either how much
Alice can learn Bob’s index or how much Bob can learn all of Alice’s database. A special
case is when Alice has 3 bits and Bob wants to learn 1 of them. We present a new lower
bound that either

BOT ⪆ 0.2581 > 0.2500 or AOT ⪆ 0.3442 > 0.3333. (12)

Note that we define the cheating probability symbols above in the full version, but they
should be clear from context for this abbreviated discussion. This is also the case for the
cheating probability symbols below.

k-out-of-n oblivious transfer. This is the same as 1-out-of-n oblivious transfer except
Bob’s input is now a proper subset instead of an index (so Bob learns k < n entries in
Alice’s database). We present lower bounds on either how much Alice can learn Bob’s
proper subset or how much Bob can learn all of Alice’s database. A special case is when
Alice has 4 bits and Bob wants to learn 2 of them. We present a new lower bound that
either

BknOT ⪆ 0.2514 > 0.2500 or AknOT ⪆ 0.1676 > 0.1667. (13)

XOR oblivious transfer. This is similar to 1-out-of-2 oblivious transfer (where Alice’s
database consists of 2 bit strings) but Bob now has a third option of learning the bit-wise
XOR of the two strings. We present lower bounds on either how much Alice can learn
Bob’s choice (first string, second string, or the XOR) or how much Bob can learn both
of Alice’s strings. A special case is when Alice’s strings have length 1 (so, they are just
bits). We present a new lower bound that either

BXOT ⪆ 0.5073 > 0.5000 or AXOT ⪆ 0.3382 > 0.3333. (14)
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8:6 Lower Bounds on Quantum Secure Function Evaluation

Equality/one-way oblivious identification. This is when Alice and Bob each have
the same set of inputs and Bob learns whether or not their inputs are equal. We present
lower bounds on either how much Alice or Bob can learn the other’s input. A special
case is when the input set has cardinality 3. We present a new lower bound that either

BEQ ⪆ 0.671 > 0.667 or AEQ ⪆ 0.3355 > 0.3333. (15)

Inner product. This is when Alice and Bob each input an n-bit string and Bob learns
their inner product. We present lower bounds on either how much Alice or Bob can learn
the other’s input. A special case is when n = 3. We present a new lower bound that
either

BIP ⪆ 0.251 > 0.250 or AIP ⪆ 0.1434 > 0.1429. (16)

Millionaire’s problem. This is when (rich) Alice and Bob have lots of money and Bob
wishes to learn who is richer without either revealing their wealth. A special case is when
n = 109 (bounding each of their bank accounts at a billion dollars). We present a new
lower bound that either

B $ ⪆ 2 × 10−9 + 5 × 10−28 > 2 × 10−9 or

A $ ⪆ 1 × 10−9 + 1 × 10−18 + 1.25 × 10−27 > 1 × 10−9 + 1 × 10−18 + 1 × 10−27. (17)

We can also study a more realistic version by setting n = 10. We present a new lower
bound that either

B $ ⪆ 0.2005 > 0.2000 or A $ ⪆ 0.1114 > 0.1111. (18)

Therefore, some information about either Alice or Bob’s wealth is necessarily leaked.

Each of these cryptographic tasks are described further and analyzed in the full version
of the paper.

1.4 Proof idea and key concepts

There are two main ingredients in proving our lower bound which we discuss at a high level
below, and continue in more detail in the following sections. The magic ingredient is Kitaev’s
constant lower bound for die rolling [19, 2]. Effectively what we do is use a generic SFE
protocol to create a die rolling protocol, then apply Kitaev’s lower bound. However, the glue
that makes SFE and die rolling play well together is a new technical result that we prove
which deals with sequential gentle measurements, which we discuss next.

1.4.1 Sequential gentle measurements

The idea behind much of quantum cryptography is the concept of measurement disturbance.
To put it simply, measuring to obtain certain information from a quantum state may cause it
to collapse, possibly rendering it unusable for future purposes, or to simply alert honest parties
that a cheating attempt was made. However, there is a concept of a gentle measurement,
which is described at a high level below.
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Gentle measurement lemma (ϵ-free version). If a measurement outcome has a large
probability of occurring, then the measured quantum state is not largely disturbed if that
measurement outcome does indeed happen. (See references [36, 37] or Section 2 to see formal
statements of gentle measurement lemmas.)

How does this help us? Well, suppose for a cheating Bob who wishes to learn every
f(x, y), for all y, he may wish to measure some quantum state several times. Suppose for
a fixed y1 ∈ Y that Bob can learn f(x, y1) with probability close to 1. Then, if he were to
measure it, and achieve the correct value, then the state is not greatly disturbed, and thus
more information can possibly be extracted. If a second measurement can extract the correct
value of f(x, y2) for some y2 ∈ Y \ {y1} with a high probability, we can repeat the process.

Now, we (intentionally) glossed over the concept of learning, that is, we did not precisely
define it means to learn the correct value, in our cryptographic context. We elaborate on
this in Section 2. However, it can be made precise and be put into a framework suitable for
the application of a modified gentle measurement lemma. For now, we just state the main
technical result of this paper below, and leave its proof for Subsection 2.2.

▶ Lemma 3 (Sequential measurement lemma). Let f1, . . . , fn : X → B be fixed functions
and suppose Bob has a quantum encoding of x ∈ X (where x is chosen from a probability
distribution known to Bob). Suppose Bob can learn fi(x) with probability pi for each i ∈
{1, . . . , n} and let p = 1

n

∑n
i=1 pi be his average success probability of learning the function

values. Then Bob can learn all values f1(x), . . . , fn(x) with probability at least

p − 2(n − 1)
√

1 − p. (19)

Notice that if p ≈ 1 (meaning that Bob has a high average success probability of learning
the function values) then he can learn all the values with probability still very close to 1.
Note that this aligns with the intuition one obtains from the gentle measurement lemma. The
measurement that achieves the success probability in Lemma 3 is given in Subsection 2.2.

1.4.2 Die rolling
Die rolling (DR) is a two-party cryptographic task akin to coin flipping, where Alice and
Bob try to agree on a value n ∈ {0, 1, . . . , N − 1}. The goals when designing a die rolling
protocol are outlined below.
1. Completeness: If both parties are honest then their outcomes are uniformly random and

identical.
2. Soundness against cheating Bob: Cheating Bob cannot influence honest Alice’s outcome

distribution away from uniform.
3. Soundness against cheating Alice: Cheating Alice cannot influence honest Bob’s outcome

distribution away from uniform.

For this work, we only consider perfectly complete die rolling protocols. To quantify the
soundness of a die rolling protocol, we define the following symbols.

BDR,n: The maximum probability with which cheating Bob can influence honest Alice to output
the number n without Alice aborting.

ADR,n: The maximum probability with which cheating Alice can force honest Bob to output
the number n without Bob aborting.

Kitaev proved in [19] that when N = 2, any quantum protocol for die rolling satisfies

ADR,0BDR,0 ≥ 1
2 and ADR,1BDR,1 ≥ 1

2 . (20)
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8:8 Lower Bounds on Quantum Secure Function Evaluation

Note that die rolling with N = 2 is simply referred to as (strong) coin flipping as Alice and
Bob decide on one of two outcomes. Note that coin flipping is a much more studied task than
die rolling, the latter being a generalization of the former. Kitaev’s proof of these inequalities
for coin flipping easily generalizes to similar inequalities for die rolling, namely that for any
quantum protocol for die rolling, we have

ADR,nBDR,n ≥ 1
N

, for all n ∈ {0, 1, . . . , N − 1}. (21)

This is indeed a constant lower bound, as we would strive to have ADR,n = BDR,n = 1
N for

all n. However, Inequality (21) implies that

max{ADR,n, BDR,n} ≥ 1√
N

, for all n ∈ {0, 1, . . . , N − 1} (22)

making it impossible to get anywhere near perfect security.

1.4.3 Die rolling via secure function evaluation - gluing the two
ingredients together

The first step is to create a DR protocol from a fixed SFE protocol, as shown below.

▶ Protocol 4 (DR from SFE).
Alice and Bob input uniformly random chosen inputs into a SFE protocol such that Bob
learns f(x, y).
Alice selects a uniformly chosen b ∈ Y , independent from the SFE protocol. She sends b

to Bob.
Bob reveals his SFE input y ∈ Y and also his SFE output f(x, y).
Alice computes f(x, y) using x and y. If Bob’s function value he sent to Alice does not
match Alice’s computation of the function, she aborts the protocol.
If Alice does not abort, they both output (b + y) mod |Y |. We assume an ordering of the
elements of Y is known to both Alice and Bob before the protocol, i.e., we may think of
them as elements of the set {1, . . . , |Y |}.

Protocol 4 is pictorially shown in Figure 2 below.
We now describe what Alice and Bob may do to cheat the die rolling protocol.

1.4.3.1 Cheating Alice

Suppose cheating Alice wants to force honest Bob to output the number 0. In this case,
Alice must send b in the second to last message such that b = y. Since she may not know y,
the probability she can successfully cheat is equal to the maximum probability with which
she can learn y from the SFE protocol. However, this is precisely the definition of ASFE.
Thus, the case of cheating Alice is simple, we have that ADR,0 = ASFE.

1.4.3.2 Cheating Bob

Similar to cheating Alice, we wish to relate how much Bob can cheat in the DR protocol, say
the quantity BDR,0, and how much he can cheat in the SFE protocol, namely B′

SFE. Suppose
cheating Bob wants to force an honest Alice to output the number 0. In this case, he needs
to send back y such that y = b in the last message. However, for Alice to accept this last
message, he must also correctly learn the value f(x, y) from his part of the state after the
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SFE

Alice Bob

x ∈ X y ∈ Y

f(x, y) ∈ B

b ∈ Y

y, f(x, y)

(b + y) mod |Y | (b + y) mod |Y |

Alice checks f(x, y)

Figure 2 Protocol 4: Die rolling via secure function evaluation.

SFE subroutine. In other words, before he sends his last message, he has an encoding of x

from which he may measure to learn something. Since Alice’s message b is randomly chosen,
independent of the SFE protocol, he is tasked with revealing a y with uniform probability.
To say it another way, BDR,0 is equal to the average probability that Bob is able to learn
f(x, y), for each y, after the SFE subroutine.

Now, to obtain a cheating strategy for Bob in SFE, consider the following. Imagine if
Bob uses his optimal die rolling strategy to communicate with Alice to create the encoding
of x as described above at the end of the SFE protocol. Well, we know the average success
probability of Bob learning each function value; it is equal to BDR,0, as explained above. If
we now apply the sequential gentle measurement lemma, Lemma 3, we see that Bob can
learn all the values of f(x, y) with probability at least

BDR,0 − 2(|Y | − 1)
√

1 − BDR,0. (23)

Since this is a valid strategy for Bob to learn all the values of f(x, y), it is a lower bound
on B′

SFE.
Collecting all the above pieces of information together, and adding Kitaev’s lower bound,

we have
ASFE = ADR,0;
B′

SFE ≥ BDR,0 − 2(|Y | − 1)
√

1 − BDR,0;
ADR,0 · BDR,0 ≥ 1

|Y | .
Combining these we get a proof of our main theorem, Theorem 1.

2 Learning and gentle measurements

In this section we first discuss the gentle measurement lemma and then generalize the concept
to fit our needs. Then, we discuss the context in which we consider learning and show how
to apply our generalized gentle measurement lemma.

TQC 2022



8:10 Lower Bounds on Quantum Secure Function Evaluation

2.1 Gentle measurements
Before we dive into gentle measurements, we must first define some essential matrix operations.
Consider two matrices A and B ∈ Cm×n. The trace inner product is defined as

⟨A, B⟩ = Tr (A∗B) (24)

where A∗ represents the complex conjugate transpose of A. The trace norm of a matrix A is
given by

∥A∥tr = Tr(
√

A∗A). (25)

The operator norm of a matrix A is given by

∥A∥op = sup {∥Av∥2 : ∥v∥2 = 1} (26)

where ∥v∥2 denotes the Euclidean norm
√

⟨v, v⟩.
The idea behind gentle measurements is that if a measurement operator, when applied to

a quantum state, produces a given result with high probability, then the post-measured state
will be relatively close to the original state. For our purposes, this allows for more information
to be gleaned from the state in a successive measurement. This process is formally scoped
below.

▶ Lemma 5 (Gentle measurement operator [36, 37]). Consider a density operator ρ and a
measurement operator Λ where 0 ≤ Λ ≤ I. Suppose that

⟨Λ, ρ⟩ ≥ 1 − ε, (27)

where ε ∈ [0, 1]. Then we have

∥ρ −
√

Λρ
√

Λ∥tr ≤ 2
√

ε. (28)

We now use this to prove the following.

▶ Lemma 6 (Sequential gentle measurement operators). Consider a density operator ρ and
measurement operators Λ1, . . . , Λn where 0 ≤ Λk ≤ I for each k ∈ {1, . . . , n}, where n ≥ 2.
Suppose that

⟨Λk, ρ⟩ ≥ 1 − εk, (29)

where εk ∈ [0, 1] for each k ∈ {1, . . . , n}. Then we have

⟨ρ,
√

Λn · · ·
√

Λ2Λ1
√

Λ2 · · ·
√

Λn⟩ ≥ 1 − ϵ1 − 2
n∑

i=2

√
εi. (30)

Proof. We prove this by induction.

Base case: n = 2. Consider the following quantity

|⟨ρ, Λ1⟩ − ⟨ρ,
√

Λ2Λ1
√

Λ2⟩| = |⟨ρ, Λ1⟩ − ⟨
√

Λ2ρ
√

Λ2, Λ1⟩| = |⟨ρ −
√

Λ2ρ
√

Λ2, Λ1⟩|. (31)

By applying Hölder’s inequality, we get

|⟨ρ −
√

Λ2ρ
√

Λ2, Λ1⟩| ≤ ∥ρ −
√

Λ2ρ
√

Λ2∥tr∥Λ1∥op ≤ 2
√

ε2, (32)

where the last inequality follows from the gentle measurement operator lemma (Lemma 5)
and the assumption that 0 ≤ Λ1 ≤ I. This implies that

⟨ρ,
√

Λ2Λ1
√

Λ2⟩ ≥ ⟨ρ, Λ1⟩ − 2
√

ε2 ≥ 1 − ε1 − 2
√

ε2. (33)
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Inductive step. Assume it is true up to some k ∈ {3, . . . , n − 1}. We have, again, that

|⟨ρ −
√

Λk+1ρ
√

Λk+1,
√

Λk · · ·
√

Λ2Λ1
√

Λ2 · · ·
√

Λk⟩| (34)

≤ ∥ρ −
√

Λk+1ρ
√

Λk+1∥tr∥
√

Λk · · ·
√

Λ2Λ1
√

Λ2 · · ·
√

Λk∥op (35)

≤ ∥ρ −
√

Λk+1ρ
√

Λk+1∥tr∥
√

Λk∥op · · · ∥
√

Λ2∥op∥Λ1∥op∥
√

Λ2∥op · · · ∥
√

Λk∥op (36)
≤ 2√

εk+1, (37)

noting that the operator norm is submultiplicative. Similar to the base case, this implies that

⟨ρ,
√

Λk+1 · · ·
√

Λ2Λ1
√

Λ2 · · ·
√

Λk+1⟩ (38)

≥ ⟨ρ,
√

Λk · · ·
√

Λ2Λ1
√

Λ2 · · ·
√

Λk⟩ − 2√
εk+1 (39)

≥

(
1 − ε1 − 2

k∑
i=2

√
εi

)
− 2√

εk+1 (40)

= 1 − ε1 − 2
k+1∑
i=2

√
εi (41)

as desired. ◀

This bound is related to the quantum union bound. See [27, 17] for good versions of this
bound, and also [26] for a simple proof of it. While our bound is not always stronger, it can
be viewed as complementary.

2.2 Quantum encodings, and proof of Lemma 3
In this section, we pin down what it means for Bob to learn something about Alice’s input.

We may assume that Alice creates the following state∑
x∈X

px|x⟩⟨x| (42)

where px is the probability of her choosing x, then control all of her actions on it. That is,
this is a classical register that Alice holds. After some communication, Alice and Bob will
share some joint state

ρ :=
∑
x∈X

px|x⟩⟨x| ⊗ ρx (43)

where ρx is a (quantum) encoding of Alice’s bit x.
Suppose Bob wants to learn some information about x. We may assume that Alice

measures her classical register in the computational basis {Nx : x ∈ X} to obtain the
outcome x and it is this value about which Bob wants to learn some information.

Let us assume that Bob uses the measurement {Mb : b ∈ B} if he wants to learn the value
of the function f : X → B. In the context of SFE, this function is of the same form once a
y ∈ Y has been fixed. Now, we can calculate the probability of Bob successfully learning the
function f as〈

ρ,
∑
x∈X

Nx ⊗ Mf(x)

〉
. (44)

Note that the structure of ρ is not really all that important, only so much as to imply that
we can assume Nx is a basis measurement.
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Now, suppose that for a function fi, for i ∈ {1, . . . , n}, Bob has a POVM {M i
b : b ∈ B}

such that he learns the correct value with probability at least 1 − εi. Then from the above
expression, we can write〈

ρ,
∑
x∈X

Nx ⊗ M i
fi(x)

〉
≥ 1 − εi. (45)

By defining

Λi =
∑
x∈X

Nx ⊗ M i
fi(x) (46)

we can apply Lemma 6 to get that

⟨ρ,
√

Λn · · ·
√

Λ2Λ1
√

Λ2 · · · Λn⟩ ≥ 1 − ε1 − 2
n∑

i=2

√
εi. (47)

Now, the neat thing is that since {Nx} is a basis measurement, we have that√
Λn · · ·

√
Λ2Λ1

√
Λ2 · · ·

√
Λn =

∑
x∈X

Nx⊗
√

Mn
fn(x) · · ·

√
M2

f2(x)M
1
f1(x)

√
M2

f2(x) · · ·
√

Mn
fn(x). (48)

This suggests we define the POVM

{M̃b1,...,bn
: b1, . . . , bn ∈ B} (49)

where

M̃b1,...,bn
:=
√

Mn
bn

· · ·
√

M2
b2

M1
b1

√
M2

b2
· · ·
√

Mn
bn

. (50)

One can check that this is a valid POVM and Inequality (47) and Equation (48) show that
this POVM learns fi(x) for every i ∈ {1, . . . , n}, with probability at least

1 − ε1 − 2
n∑

i=2

√
εi. (51)

Note that since the measurement operators have the POVM {M1
b : b ∈ B} “in the middle,”

and this choice was arbitrary, then we can see that Bob can create another measurement
with {M i

b : b ∈ B} “in the middle” for any choice of i he wants. Thus, if he randomly
chooses which measurement is “in the middle,” then we see that we can average the success
probability as

1
n

n∑
j=1

1 − εj − 2
n∑

i̸=j

√
εi

 = 1 −
∑n

i=1 εi

n
− 2(n − 1)

n

n∑
i=1

√
εi. (52)

Using Cauchy-Schwarz, one can prove that

n∑
i=1

√
εi ≤

√
n

√√√√ n∑
i=1

εi. (53)

Therefore, the average success probability is bounded below by

1 −
∑n

i=1 εi

n
− 2(n − 1)√

n

√√√√ n∑
i=1

εi. (54)

In the context of Lemma 3, we have that pi = 1 − εi is the probability of guessing fi(x).
Substituting this into (54), we finish our proof of Lemma 3.
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Abstract
We present a classical algorithm that, for any D-dimensional geometrically-local, quantum circuit C

of polylogarithmic-depth, and any bit string x ∈ {0, 1}n, can compute the quantity | ⟨x| C
∣∣0⊗n

〉
|2

to within any inverse-polynomial additive error in quasi-polynomial time, for any fixed dimension
D. This is an extension of the result [3], which originally proved this result for D = 3. To see why
this is interesting, note that, while the D = 1 case of this result follows from a standard use of
Matrix Product States, known for decades, the D = 2 case required novel and interesting techniques
introduced in [1]. Extending to the case D = 3 was even more laborious, and required further new
techniques introduced in [3]. Our work here shows that, while handling each new dimension has
historically required a new insight, and fixed algorithmic primitive, based on known techniques for
D ≤ 3, we can now handle any fixed dimension D > 3.

Our algorithm uses the Divide-and-Conquer framework of [3] to approximate the desired quantity
via several instantiations of the same problem type, each involving D-dimensional circuits on about
half the number of qubits as the original. This division step is then applied recursively, until the
width of the recursively decomposed circuits in the Dth dimension is so small that they can effectively
be regarded as (D − 1)-dimensional problems by absorbing the small width in the Dth dimension
into the qudit structure at the cost of a moderate increase in runtime. The main technical challenge
lies in ensuring that the more involved portions of the recursive circuit decomposition and error
analysis from [3] still hold in higher dimensions, which requires small modifications to the analysis
in some places. Our work also includes some simplifications, corrections and clarifications of the use
of block-encodings within the original classical algorithm in [3].
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1 Introduction

It is known that it is #P -hard to compute the quantity | ⟨x| C |0⊗n⟩ |2 to within 2−n additive
error for low-depth, geometrically-local quantum circuits C. This fact can be deduced from
early work on the hardness of simulating low-depth quantum circuits, and has a number of
variations, including average-case hardness results [7, 2, 6, 5] . These hardness results indicate
that computing output probabilities with such small additive error is almost certainly out
of reach for both classical and quantum computers. If we restrict our attention to additive
errors that are achievable with quantum computers, such as inverse polynomial additive
error achievable by taking polynomially many samples from the quantum circuit C, then
classical hardness for this estimation problem is much less clear. In fact, [1] introduced an
elegant classical polynomial time algorithm for this estimation task in the case of 2D circuits.
Their algorithm makes a novel use of 1D Matrix Product States carefully tailored to the 2D
geometry of the circuit in question. While it is not clear how to generalize the techniques
of [1] to higher dimensional circuits, [3] introduced a Divide-and-Conquer algorithm that
can compute the quantity | ⟨x| C |0⊗n⟩ |2 to within any inverse-polynomial additive error in
quasi-polynomial time for any 3D, constant-depth quantum circuit C. The algorithm in
[3] works by recursively subdividing the quantum circuit C into pieces, constructed using
block-encodings, and introduces new techniques for analyzing the extent to which quantum
entanglement between different qubits can impact the global quantity | ⟨x| C |0⊗n⟩ |2.

Given the progression of ideas required to classically approximate the output probabilities
of higher dimensional quantum circuits, it is natural to wonder what would be required to
go even further. In this work we will show that there exists a classical quasi-polynomial
time algorithm which can compute | ⟨x| C |0⊗n⟩ |2 to inverse polynomial additive error for
any constant-depth, geometrically-local quantum circuit of fixed dimension D.

▶ Theorem 1 (Main Result). For any D-dimensional geometrically-local, depth d quantum
circuit C acting on n qubits, the algorithm Afull(S = (C, L, M, N), B, δ, D) computes the
quantity | ⟨x| C |0⊗n⟩ |2 to within δ additive error in time δ−2 ·2O((dpolylog(n))D·3D

)(1/δ)1/ log2(n) .1

A key motivation for generalizing simulation results to higher dimensions exists at the
level of techniques. Historically, the simulation of low-depth and geometrically local quantum
circuits has required a new mathematical innovation every time the dimension, D, of the
geometric locality is increased. The D = 1 case is solved using the famous technique of Matrix
Product States (MPS), which is fundamental to the field and has been known for decades.
However, it was not until recently that an algorithm was discovered for estimating output
amplitudes in the case D = 2, and it requires a novel technique beyond standard MPS [1].
Finding an algorithm for the D = 3 case, [3], required a completely different approach, this
time departing from the paradigm of MPS, and requiring 50 pages of mathematics to formalize

1 For clarity we assume that the n qubits are arranged in a perfect D-dimensional cubic lattice. Here
S = (C, L, M, N) is the synthesis describing circuit C, as defined in this paper and in [3], and B is our
base-case algorithm which we specify to be the 2D algorithm of [1], and which our algorithm uses to
solve subproblems which have been recursively subdivided down to 2 dimensions.
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a divide-and-conquer algorithm. Our result shows that this trend of requiring completely
new techniques to extend from D to D + 1 need not continue. One fixed divide-and-conquer
algorithmic primitive, allows us to inductively establish an additive-error classical simulation
algorithm for any dimension D.

Note that, while our algorithm runs in quasi-polynomial time in n for any fixed D, the
runtime is triply exponential in the dimension D. If we set D = O(log(log(polylog(n)))) and
δ to be inverse quasi-polynomial, then the algorithm still runs in quasi-polynomial time on
a constant depth geometrically local circuit. In particular, this means that the algorithm
can approximate the output probabilities of any constant depth quantum circuit that is
geometrically local in O(log(log(polylog(n)))) dimensions. It is, therefore, interesting to
consider the computational complexity of this problem as a function of D, since this could
shed light on the extent to which arbitrary low-depth quantum circuits can be efficiently
simulated. As an extreme example, an algorithm which had runtime polynomial in D

could be used efficiently on constant depth quantum circuits which are not geometrically
local at all. This is because any constant depth quantum circuit on n-qubits can be
considered to be geometrically local in dimension D = n. We do not expect that our current
approach can achieve a runtime polynomial in D, but we believe that even a runtime that is
singly exponential in D, allowing the simulation of circuits which are geometrically local in
dimension D = log(n), could have practically relevant consequences. We leave, as an open
problem, the question of the optimal D-dependence for algorithms simulating constant-depth
geometrically-local quantum circuits.

Our paper is organized as follows: In section 2 we review block-encodings and syntheses,
both of which are used extensively throughout the algorithm. Note that section 2 primarily
consists of definitions and lemmas from [3] that are tweaked for clarity and correctness. In
section 3 we provide the pseudocode for our algorithm and prove our main result. The
runtime and error analysis for our algorithm are located in sections 3.1 and 3.2 respectively.

2 Block-encodings and Syntheses

In order to state the pseudocode for our algorithms in Section 3 below we first need to
establish a way to construct the “recursive subdivisions” of the quantum circuit C that
our divide-and-conquer algorithm iteratively creates. We will concretely describe these
subdivisions as “syntheses”, as defined in [3] and reviewed here for the convenience of the
reader. Syntheses themselves use the idea of a block-encoding which we paraphrase below
from [4].

In order to understand the following discussion, which is essential to the rest
of this paper, it is necessary to read Sections 2, 3, and 4 of [3]. The lemmas
repeated in this section are only included here in order to clarify or correct
certain definitions in Section 3 of [3]. Many other definitions and lemmas from
Sections 2, 3, and 4 of [3] are not repeated here and must be read from the original
document (see the arxiv verison at https://arxiv.org/pdf/2012.05460.pdf).
▶ Definition 2 (Block-encoding). Suppose that A is an s-qubit operator, α, ϵ ∈ R+ and a ∈ N.
Then we say that the (s + a)-qubit unitary U is an (α, a, ϵ)-block-encoding of A, if∥∥∥A − α(⟨0|⊗a ⊗ I)U(|0⟩⊗a ⊗ I)

∥∥∥ ≤ ϵ.

Consider a cut B ∪ M ∪ F made anywhere in the cube and let σM∪F =
trB

(
CB∪M∪F |0⟩⟨0|B∪M∪F C†

B∪M∪F

)
. The following result is obtained by applying Lemma 45

of [4]:
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▶ Lemma 3 (Block-encoding for σM∪F ). The following is a (1, |B ∪ M ∪ F |, 0)-block-encoding
of σM∪F :

Γ =
(

C†
B∪M ′∪F ′ ⊗ IM∪F

)
(IB ⊗ SWAPM∪F,M ′∪F ′) (CB∪M ′∪F ′ ⊗ IM∪F ) .

In the above, CB∪M ′∪F ′ is notation to indicate that we will be applying the circuit CB∪M∪F

on the registers B, M ′, and F ′. In other words,

σM∪F = (⟨0|B∪M ′∪F ′ ⊗ IM∪F ) Γ (|0⟩B∪M ′∪F ′ ⊗ IM∪F ) .

The registers M ′ and F ′ above are copies of the registers M and F , respectively, and are
introduced by Lemma 45 of [4]. By interleaving M ′ with M and B′ with B and adding swap
gates where appropriate, we can ensure that the resulting circuit, Γ, is still geometrically-local
and has depth at most 3 times the depth of CB∪M∪F . By simply moving the M register in
Lemma 3 to the set of registers which are post-selected, we see that Γ is also a block-encoding
of ρF := ⟨0|M σM∪F |0⟩M .

▶ Lemma 4 (Block-encoding for ρF ). The block-encoding introduced in Lemma 3, Γ, is a
(1, |B ∪ F | + 2|M |, 0)-block-encoding of ρF . Note that Lemma 4 is a correction of Lemma 7
of [3].

Proof.

( ⟨0|B∪M ′∪F ′∪M ⊗ IF )Γ(|0⟩B∪M ′∪F ′∪M ⊗ IF )
= ⟨0|M (⟨0|B∪M ′∪F ′ ⊗ IF )Γ(|0⟩B∪M ′∪F ′ ⊗ IF ) |0⟩M

= ⟨0|M σM∪F |0⟩M

= ρF ◀

Since ρF is the state that we are really interested in, we will henceforth refer to Γ as ΓρF
.

We can now iteratively apply Lemma 53 from [4] to obtain a block-encoding for ρk
F for any

integer k ≥ 1. To do this, we will need k − 1 copies of each of the registers B, M ′, F ′, and
M . Let B1 = B, M ′

1 = M ′, F ′
1 = F ′, and M1 = M . Furthermore, for each i, 1 < i ≤ k, let

Bi, M ′
i , F ′

i , Mi be copies of B, M ′, F ′, and M , respectively.

▶ Lemma 5 (Block-encoding for ρk
F ). The following is a (1, k|B ∪ M ′ ∪ F ′ ∪ M |, 0)-block-

encoding of ρk
F :

Γρk
F

=
k∏

i=1

(
C†

Bi∪M ′
i
∪F ′

i
⊗ IMi∪F

)(
IBi ⊗ SWAPMi∪F,M ′

i
∪F ′

i

)(
CBi∪M ′

i
∪F ′

i
⊗ IMi∪F

)
.

In other words,

ρk
F =

(
⟨0|Bk∪M′

k
∪F ′

k
∪Mk

⊗ IF

)
Γρk

F

(
|0⟩Bk∪M′

k
∪F ′

k
∪Mk

⊗ IF

)
where Bk = B1 ∪ B2 ∪ · · · ∪ Bk, M′

k = M ′
1 ∪ M ′

2 ∪ · · · ∪ M ′
k, etc. Note that this is a correction

of equation 7 of [3]

▶ Lemma 6 (Block-encoding for ρk
B). Analogously, the following is a (1, k|F ∪M ′ ∪B′ ∪M |, 0)-

block-encoding of ρk
B:

Γρk
B

=
k∏

i=1

(
C†

B′
i
∪M ′

i
∪Fi

⊗ IMi∪B

)(
IFi ⊗ SWAPMi∪B,M ′

i
∪B′

i

)(
CB′

i
∪M ′

i
∪Fi

⊗ IMi∪B

)
.
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In other words,

ρk
B =

(
⟨0|Fk∪M′

k
∪B′

k
∪Mk

⊗ IB

)
Γρk

B

(
|0⟩Fk∪M′

k
∪B′

k
∪Mk

⊗ IB

)
where Fk = F1 ∪ F2 ∪ · · · ∪ Fk, M′

k = M ′
1 ∪ M ′

2 ∪ · · · ∪ M ′
k, etc.

Note that this is a correction for equation 7 of [3].

Importantly, we are free to interleave all of the copies of the registers B, M and F with
their originals. We do this in such a way so that we can minimally pad each 2-qubit gate
from CB∪M∪F with swap gates so that this new ’padded’ circuit is still geometrically local.
Furthermore, the depth of this new padded circuit is at most (2k + 1) times the original
depth of C.

▶ Definition 7 (Synthesis). We say that an unnormalized quantum state ϕ is synthesized by
a quantum circuit Γ, if Γ has three registers of qubits L, M, N such that:

ϕ = ϕ(Γ,L,M,N) = trL∪M (⟨0M | Γ |0L∪M∪N ⟩ ⟨0L∪M∪N | Γ† |0M ⟩). (1)

In this case we say that the circuit Γ together with a specification of the registers L, M, N

constitutes a synthesis of ϕ. When ϕ is implicit we will call this collection (Γ, L, M, N) a
synthesis. This definition was taken directly from [3] and is only here for the convenience
of the reader. All syntheses explicitly used in the rest of this paper are defined in section 4
of [3].

3 Algorithms and Analysis

Having discussed the essential concepts of syntheses and block-encodings in Section 2 above,
we now give an explicit description of our classical simulation algorithm below. Our algorithm
is divided into two pieces, Algorithm 1 and Algorithm 2. Algorithm 1 simply handles some
technical edge cases for the error parameter δ, and sets the stage for making a call to
Algorithm 2. Algorithm 2 contains the actual divide-and-conquer structure, describing how
to perform recursive calls to itself and Algorithm 1 in one dimension lower.

The following theorem and lemmas state and prove our main result by giving runtime
bounds and error bounds for Algorithm 1. Algorithm 1 is defined in complete pseudo-code
below, for any dimension D, and our main result is proved by induction on dimension D.

▶ Theorem 8. For any D-dimensional geometrically-local, depth d quantum circuit C

acting on n qubits, the algorithm Afull(S = (C, L, M, N), B, δ, D) computes the quantity
| ⟨0⊗n| C |0⊗n⟩ |2 to within δ = 1/nlog(n) additive error in time 2O((dpolylog(n))D·3D

). Further-
more, let wD+1, wD+2, . . . be the widths of the qubit array in dimensions D + 1, D + 2, . . .

respectively. Then for any geometrically-local, depth d quantum circuit C acting on a lattice
of n qubits having side length at most wD+i in dimension D + i, the algorithm Afull(S =
(C, L, M, N), B, δ, D) computes the quantity | ⟨0⊗n| C |0⊗n⟩ |2 to within δ = 1/nlog(n) additive
error in time 2O((dpolylog(n))D3D

w1/3), where w ≡
∏∞

i=1 wD+i.2

2 We assume the n qubits are arranged in such a way that the length of each edge of the qubit lattice is
O(n1/D)

TQC 2022
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Proof. We will prove Theorem 8 by induction on the dimension D. For the base-case, D = 3,
this theorem is a direct consequence of the main result of [3]. For D > 3, assuming, by
induction, that we have already established Theorem 8 for dimension D − 1, the dimension
D version of the Theorem follows by Lemmas 9 and 10 respectively. The key inductive step
in those two analyses happens at the point in the analysis where Algorithm 2 makes calls,
such as Afull(Si,j , B, ϵ, D − 1), to a D − 1 dimensional version of Algorithm 1. At those
points the runtime and error guarantees for the D − 1 dimensional version of Afull that are
required by the analyses in Lemmas 9 and 10 are ensured by the inductive assumption that
Theorem 8 already holds for the D − 1 dimensional case. ◀

▶ Lemma 9. Let w be defined as in Theorem 8. Then Afull(S = (C, L, M, N), B, δ, D) runs
in time δ−2 · 2O((dpolylog(n))D·3D

w1/3)(1/δ)1/ log2(n) .

Proof. The runtime analysis of Afull begins the same as in [3]. Note that if the IF statement
on Line 1 is satisfied, then the specified additive error δ is so small that we can compute
the desired quantity, | ⟨0ALL| C |0ALL⟩ |2, exactly, by brute force, in 2O(n) time, and this will
still take less time than the guaranteed runtime:

T (n) = δ−2 · 2O((dpolylog(n))D·3D
w1/3)(1/δ)1/ log2(n)

.

Let T1(l, D, d, w, δ) represent the run-time of algorithm 1 for a problem with side length
l in dimension D with circuit depth d and thickness w in dimensions > D to error δ. Let
T2(l, D, d, w, ϵ) represent the same for algorithm 2. Then we may bound T1 as follows:

T1(l, D, d, w, δ) <
n1/D

10d
T1(l, D − 1, d, O(wd), E1(δ)) + T2(l, D, d, w, E2(δ)),

T1(l, 2, d, w, δ) < B(n, d, w, δ)

where E1(δ) = 2
log(δ)
2h(n) −1 − 2

log(δ)
h(n) −1 and E2(δ) = δ2−10 log(n) log(log(n)).

The term n1/D

10d T1(l, D−1, d, O(wd), E1(δ)) follows from lines 6-10 of algorithm 1. This entails
making n1/D

10d calls of algorithm 1 on a depth d synthesis in D − 1 dimensions to error E1(δ)
with thickness O(d) in dimension D. See the analysis of Theorem 28 of [3] for details on how
this sub-problem is constructed. The term T2(l, D, d, w, E2(δ)) refers to the call of algorithm
2 made in line 14 of algorithm 1. The base case follows directly from line 5 of algorithm 1.
By standard recursion analysis, we get that

T1(l, D, d, w, δ) < nDB(n, d, O(wdD), E
(D−2)
1 (δ))+

D−3∑
i=0

n
i

D−i+1 T2(l, D − i, d, O(wdi), E2(E(i)
1 (δ)))

where E
(i)
1 refers to the function E1 composed with itself i times.

Similarly, we can bound T2 as follows:

T2(l, D, d, w, ϵ) < 2∆T2(3
4 l, D, d, w, ϵ) + ∆2T1(l, D − 1, d3polylog(n), O(wd), ϵ)

+ ∆22∆T1(l, D − 1, d3polylog(n), O(wd), E3(ϵ))
+ 2∆T1(l, D − 1, d2polylog(n), O(wd), ϵ) + poly(n)

T2(O(1), D, d, w, ϵ) = T1(n1/D, D − 1, d, O(w), ϵ)

where E3(ϵ) = ϵ
2∆ .
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The term 2∆T2( 3
4 l, D, d, w, ϵ) follows from the calls to A(SL,i, η − 1) and A(Si,R, η −

1) for each i. The term ∆2T1(l, D − 1, d3polylog(n), O(wd), ϵ) refers to the calls
to Afull(Si,j , B, ϵ, D − 1) for each i and j > i. The term ∆22∆T1(l, D −
1, d3polylog(n), O(wd), E3(ϵ)) refers to the calls to
Afull

((
⊗k∈σΠK

Fk
⟨0Mk

|
)

ϕi,j

(
⊗k∈σ |0Mk

⟩ ΠK
Fk

)
, B, ϵ

2∆ , D − 1
)

for each i, j > i, and σ. The
term 2∆T1(l, D − 1, d2polylog(n), O(wd), ϵ) refers to the calculation of κT,ϵ for each i. For
details regarding the construction of the sub-problems for the last three terms, refer to the
run-time analysis of algorithm 2 of [3]. The final poly(n) term follows from the calculation of
the region Z detailed in line 8 of algorithm 2. The base case follows from the fact that if
we have a problem in D dimensions with an O(1) sized edge, we may apply an algorithm
in D − 1 dimensions to solve it at the cost of an extra O(1) sized thickness. By standard
recursion analysis, we get that

T2(l, D, d, w, ϵ) <(2∆)η · T2((3
4)ηl, D, d, w, ϵ)

+
η−1∑
i=0

(2∆)i(∆2T1((3
4)il, D − 1, d3polylog(n), O(wd), ϵ)

+ ∆22∆T1((3
4)il, D − 1, d3polylog(n), O(wd), E3(ϵ))

+ 2∆T1((3
4)il, D − 1, d2polylog(n), O(wd), ϵ) + poly(n)).

Now, as we begin to substitute the recurrence relation for T2 (in terms of T1) into the
recurrence relation for T1 (in terms of T2), we need to define ηi, the number of recursive calls
made by T2 to T1 in the i-th dimension. Let us define ηi as the following:

ηi = log3/4(n−1/i) = log(n)
i · log(4/3) . (2)

Now that we have defined ηi, let us substitute the T2 recurrence relation into T1:

T1(l, D, d, w, δ) < nDB(n, d, O(wdD), E
(D−2)
1 (δ))

+
D−3∑
i=0

n
i

D−i+1

[
(2∆)ηD−i T1

(
l, D − i − 1, d, O(wdi), E2(E(i)

1 (δ))

)

+
ηD−i−1∑

j=0

(2∆)j

(
∆2T1

((3
4

)j

l, D − i − 1, d3polylog(n), O(wdi+1), E2(E(i)
1 (δ))

)

+ ∆22∆T1

((3
4

)j

l, D − i − 1, d3polylog(n), O(wdi+1), E3(E2(E(i)
1 (δ)))

)

+ 2∆T1

((3
4

)j

l, D − i − 1, d2polylog(n), O(wdi+1), E2(E(i)
1 (δ)))

)
+ poly(n)

)]

where the first T1 term on the right-hand side comes from unrolling the T2 term in T2’s
recurrence relation down to its base-case.

We can then continue to simplify the upper bound by combining the three terms in the second
summation term into 3∆22∆T1

(( 3
4
)j

l, D − i − 1, d3polylog(n), O(wdi+1), E3(E2(E(i)
1 (δ)))

)
since 3∆22∆ ≥ (2∆ + ∆22∆ + ∆2) and E3(E2(E(i)

1 (δ))) ≤ E2(E(i)
1 (δ)).
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T1(l, D, d, w, δ) < nDB(n, d, O(wdD), E
(D−2)
1 (δ))

+
D−3∑
i=0

n
i

D−i+1

[
(2∆)ηD−i T1

(
l, D − i − 1, d, O(wdi), E2(E(i)

1 (δ))
)

+
ηD−i−1∑

j=0

(2∆)j

(
3∆22∆T1

((3
4

)j

l, D − i − 1, d3polylog(n), O(wdi+1), E3(E2(E(i)
1 (δ)))

))]

Next, we can unpack the bracket in the first summation term to get the following:

T1(l, D, d, w, δ) < nDB(n, d, O(wdD), E
(D−2)
1 (δ))

+
D−3∑
i=0

n
i

D−i+1 (2∆)ηD−iT1

(
l, D − i − 1, d, O(wdi), E2(E(i)

1 (δ))
)

+
D−3∑
i=0

ηD−i−1∑
j=0

(2∆)jn
i

D−i+1

(
3∆22∆T1

((
3
4

)j

l, D − i − 1, d3polylog(n),

O(wdi+1), E3(E2(E(i)
1 (δ)))

))

The following expression can be obtained by extracting the T1 terms from the summation
terms. We do that by bounding all the T1 terms in the first summation term by
T1

(
l, D − 1, d, O(wdD), E2(E(D)

1 (δ)
)

since the runtime will be longer when we start on higher
dimension D instead of dimension D − i − 1, larger thickness O(wdD) instead of thickness
O(wdi), and smaller error E2(E(D)

1 (δ)) instead of E2(E(i)
1 (δ)). A similar argument could be

made for the T1 terms in the second summation term.

T1(l, D, d, w, δ) < nDB(n, d, O(wdD), E
(D−2)
1 (δ))

+ T1

(
l, D − 1, d, O(wdD), E2(E(D)

1 (δ))
)D−3∑

i=0

n
i

D−i+1 (2∆)ηD−i

+ 3∆22∆T1

(
l, D − 1, d3polylog(n), O(wdD), E3(E2(E(D)

1 (δ)))
)D−3∑

i=0

ηD−i−1∑
j=0

(2∆)jn
i

D−i+1

In the following step, for the first summation term, we bound the n
i

D−i+1 term by poly(n)
and the (2∆)ηD−i term by 2polylog(n) since ∆, η = O(log(n)). Since we have O(D) terms in
the first summation term, we get O(Dpoly(n)2polylog(n)). Likewise, we can do the same thing
for the second summation term to get the same upper bound.

T1(l, D, d, w, δ) < nDB(n, d, O(wdD), E
(D−2)
1 (δ))

+ T1

(
l, D − 1, d, O(wdD), E2(E(D)

1 (δ))
)

O(Dpoly(n)2polylog(n))

+ 3∆22∆T1

(
l, D − 1, d3polylog(n), O(wdD), E3(E2(E(D)

1 (δ)))
)

O(Dpoly(n)2polylog(n)).

The following expression can be obtained by combining the second and third term in the
previous expression. We get T1

(
l, D − 1, d3polylog(n), O(wdD), E3(E2(E(D)

1 (δ)))
)

since

d3polylog(n) > d and E3(E2(E(i)
1 (δ))) ≤ E2(E(i)

1 (δ)) which would give us a larger runtime
bound. The 3∆22∆ can be absorbed into the O(Dpoly(n)2polylog(n)) term.
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T1(l, D, d, w, δ) < nDB(n, d, O(wdD), E
(D−2)
1 (δ))

+ T1

(
l, D − 1, d3polylog(n), O(wdD), E3(E2(E(D)

1 (δ)))
)

O(Dpoly(n)2polylog(n))

Now, we substitute the BGM algorithm’s runtime from Theorem 5 of [1] into the first
term to get the recurrence for T1 in dimension D in terms of T1 in one dimension lower.

T1(l, D, d, w, δ) < poly(nD)(E(D−2)
1 (δ))−22d3w1/D

+ T1

(
l, D − 1, d3polylog(n), O(wdD), E3(E2(E(D)

1 (δ)))
)

O(Dpoly(n)2polylog(n))

Before we begin to unroll the recurrence relation for T1 with respect to its dimension, let
us first define f(d), the depth of the block-encoding (at this point in the analysis), and f (k)(d),
the depth of the block-encoding after unrolling the recurrence relation for k dimensions

f(d) = d3polylog(n)

f (k)(d) < d3k

(polylog(n))3k

We can also define g(d, w), the thickness of the circuit (at this point in the analysis), and
g(k)(d), the thickness of the circuit after unrolling the recurrence relation for k dimensions
as follows:

g(d, w) = O(wdD)

g(k)(d, w) = g(k−1)(d, w)(f (k−1)(d))D

= g(k−2)(d, w)(f (k−2)(d))D(f (k−1)(d))D

= g(k−ℓ)(d, w)
ℓ∏

i=1
(f (k−i)(d))D

= g(d, w)
k−1∏
i=1

(f (k−i)(d))D

< O(wdD)(
k−1∏
i=1

(dpolylog(n))3i

)D

< O(wdD)(dpolylog(n))D3k

.

Now, we want to write the unrolling of the recurrence relation for T1 with respect
to dimensions in terms of f(d) and g(d, w). To simplify the writing, we define E5(δ) =
E3(E2(E(D)

1 (δ))). The following expression is obtained by unrolling T1’s recurrence relation
for an arbitrary dimension D to dimension 2 which is the base-case for T1.

T1(ℓ, D, d, w, δ) < O((Dpoly(nD)2polylog(n))D−2)T1(ℓ, 2, f (D−2)(d), g(D−2)(d, w), E
(D−2)
5 (δ))

+
D−3∑
i=0

O((Dpoly(nD)2polylog(n))i)poly(n)
(

E
(D−i−2)
1

(
E

(i)
5 (δ)

))−2
2(f(i)(d))3(g(i)(d,w))

1
D−i

.

To further simplify, we replace each occurrence of i in order to maximize each quantity,
then replace each occurrence of D − 2 with D. Note that the more we compose E1 and
E5, the smaller they get and hence their inverse-squared form will be larger. For f(d) and
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g(d, w), the more we composed them, the greater the depth and the thicker the thickness
of the block-encoding which gives us an upper bound for the runtime. Note how we chose
the upper bound for the exponent of the g(D)(d, w) to be 1

3 to get the smallest root form to
maximize the exponent of the 2 term.

T1(ℓ, D, d,w, δ) < O((Dpoly(n)2polylog(nD))D)T1(ℓ, 2, f (D)(d), g(D)(d, w), E
(D)
5 (δ))

+ D · O((Dpoly(nD)2polylog(n))D)poly(n)
(

E
(D)
1

(
E

(D)
5 (δ)

))−2
2(f(D)(d))3(g(D)(d,w))

1
3

Next, we write the first term of the right-hand side of the first inequality according to
BGM’s runtime as given in Theorem 5 of [1] and then brought the D · poly(n) coefficient
in the second term into the second term’s big-O. The second inequality comes from the
fact that the first term is smaller than the second term and hence can be absorbed into the
second term.

T1(ℓ, D, d, w, δ) < O((poly(nD))D+1(D2polylog(n))D)(E(D)
5 (δ))−22(f(D)(d))2(g(D)(d,w))1/D

+ O((Dpoly(nD))D+1(2polylog(n))D)
(

E
(D)
1

(
E

(D)
5 (δ)

))−2
2(f(D)(d))3(g(D)(d,w))

1
3

< O((Dpoly(nD))D+1(2polylog(n))D)
(

E
(D)
1

(
E

(D)
5 (δ)

))−2
2(f(D)(d))3(g(D)(d,w))

1
3

Now, we substitute the upper bounds for f (k)(d) and g(k)(d, w) as previously defined into
the above expression to get the following inequality:

T1(ℓ, D, d, w, δ) < O((Dpoly(nD))D+1(2polylog(n))D)
(

E
(D)
1

(
E

(D)
5 (δ)

))−2

· 2(dpolylog(n))3D+1
(O(wdD)

1
3 (dpolylog(n))D3D−1

)

= O((Dpoly(nD))D+1(2polylog(n))D)
(

E
(D)
1

(
E

(D)
5 (δ)

))−2

· 2O(wdD)
1
3 (dpolylog(n))(9+D)3D−1

< O((Dpoly(nD))D+1(2polylog(n))D)
(

E
(D)
1

(
E

(D)
5 (δ)

))−2

· 2O(d(3D+1+D/3+D3D−1)(polylog(n))(3D+1+D3D−1)w1/3)

<
(

E
(D)
1

(
E

(D)
5 (δ)

))−2
· 2O(d(3D+1+D/3+D3D−1)(polylog(n))(3D+1+D3D−1)w1/3)

<
(

E
(D)
1

(
E

(D)
5 (δ)

))−2
· 2O((dpolylog(n))D3D

w1/3)

Now note that
E1(δ) = 2

log(δ)
2h(n) −1 − 2

log(δ)
h(n) −1 = 1

2 (2
log(δ)
2h(n) − 2

log(δ)
h(n) ) ≥ ln 2

2 2
log(δ)
h(n) ( log(δ)

2h(n) − log(δ)
h(n) ) =

− log(δ)
4h(n) 2

log(δ)
h(n) · ln 2

Hence, by monotonicity,

E1(E1(δ)) = − log(E1(δ))
4h(n) 2

log(E1(δ))
h(n) · ln 2

≥ −
log
(

− log(δ)
4h(n) 2

log(δ)
h(n) · ln 2

)
4h(n) 2

log

(
− log(δ)

4h(n) 2
log(δ)
h(n) ·ln 2

)
h(n) · ln 2

= −
log
(

− log(δ)
4h(n)

)
+ log

(
2

log(δ)
h(n)

)
+ log(ln 2))

4h(n) 2

log

(
− log(δ)

4h(n) 2
log(δ)
h(n) ·ln 2

)
h(n) · ln 2
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≥ − log(ln 2)
4h(n) 2

log

(
− log(δ)

4h(n) 2
log(δ)
h(n) ·ln 2

)
h(n) · ln 2

= − log(ln 2)
4h(n) 2

log(E1(δ))
h(n) · ln 2

≥ − log(ln 2)
4h(n) (E1(δ))

1
h(n) · ln 2

≥ − log(ln 2)
4h(n) E1(δ) · ln 2

And so for some constant a we get,

E1(aδ) ≥ − log(ln 2)
4h(n) aδ · ln 2

Therefore

E
(D)
1 (δ) ≥ (− log(ln(2)) ln(2)

4h(n) )D−1E1(δ) ≥ (− log(ln(2)) ln(2)
4h(n) )Dδ

=⇒ E5(δ) = E3(E2(E(D)
1 (δ))) ≥ 2−10 log(n) log(log(n))−∆(− log(ln(2)) ln(2)

4h(n) )Dδ

=⇒ E
(D)
5 (δ) ≥ 2D(−10 log(n) log(log(n))−∆)

(
− log(ln(2)) ln(2)

4h(n)

)D2

δ

=⇒ (E(D)
1 ◦ E

(D)
5 )(δ) ≥ 2D(−10 log(n) log(log(n))−∆)

(
− log(ln(2)) ln(2)

4h(n)

)D2+D

δ

Thus with ∆ = log(n) we get that

(
(E(D)

1 ◦ E
(D)
5 )(δ)

)−2
≤ 2D(10 log(n) log(log(n))+∆)

(
− log(ln(2)) ln(2)

4h(n)

)−2D2−2D

δ−2

= 2Dpolylog(n)
(

− log(ln(2)) ln(2)
4h(n)

)−2D2−2D

δ−2

Plugging this into our run-time bound we get

T1(ℓ, D, d, w, δ) < 2Dpolylog(n)
(

− log(ln(2)) ln(2)
4h(n)

)−2D2−2D

δ−2 · 2O((dpolylog(n))D3D
w1/3)

= δ−2 · 2O((dpolylog(n))D3D
w1/3) ◀

▶ Lemma 10. Afull(S = (C, L, M, N), B, δ, D) returns an δ-additive error approximation of
| ⟨0ALL| C |0ALL⟩ |2

Proof. Refer to Appendix A for proof. ◀
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Algorithm 1 Afull(S = (C, L, M, N), B, δ, D): Quasi-Polynomial Time Additive Error
Approximation for | ⟨0ALL| C |0ALL⟩ |2.

Input : Synthesis S = (C, L, M, N) where C is a D-Dimensional
Geometrically-Local depth-d circuit, B a base case algorithm for 2D
circuits, approximation error δ, dimension D

Output : An approximation of | ⟨0ALL| C |0ALL⟩ |2 to within additive error δ.
/* We begin by handling the case in which δ is so small that it

trivializes our runtime, and the case in which δ is so large that
it causes meaningless errors: */

1 if δ ≤ 1/nlog2(n) then
2 return The value | ⟨0ALL| C |0ALL⟩ |2 computed with zero error by a “brute force”

2O(n)-time algorithm.
3 if δ ≥ 1/2 then return 1/2
4 if D = 2 then
5 return B(S, δ)

/* Here begins the non-trivial part of the algorithm: */
6 Let N be the register containing all of the qubits on which C acts. Since these qubits

are arranged in a hyper-cubic lattice, the sides of the hyper-cube N must have length
n

1
D . We will call the length of this side the “width” and will now describe how to

“cut” the hyper-cube N , and the circuit C, perpendicular to this particular side.
7 Select 1

10d n
1
D light-cone separated slices Ki of 10d width in N , with at most 10d

distance between adjacent slices. Let h(n) = log7(n). Run Algorithm
Afull(S, B, 2

log(δ)
2h(n) −1 − 2

log(δ)
h(n) −1, D − 1) to check if at least 1

10d n
1
D − h(n) of the slices

obey:
8

∣∣tr (⟨0Mi | C |0ALL⟩ ⟨0ALL| C† |0Mi⟩
)∣∣ ≥ 2

log(δ)
h(n) .

9 OR, there are fewer than 1
10d n

1
D − h(n) slices that obey:

10

∣∣tr (⟨0Mi
| C |0ALL⟩ ⟨0ALL| C† |0Mi

⟩
)∣∣ ≥ 2

log(δ)
h(n) .

/* See the runtime analysis in the proof of Theorem 28 of [3] for a
detailed explanation of how the aforementioned run of Afull can
efficiently distinguish between the above two cases (via Remark 6
in [3]). */

11 if Fewer than 1
10d n

1
D − h(n) of the slices obey Line 10 then return 0

12 if At least 1
10d n

1
D − h(n) of the slices obey Line 10 then

13 We will denote the set of these slices by Kheavy. Note that the maximum amount
of width between any two adjacent slices in Kheavy is 10d · h(n). Furthermore,
the maximum amount of width collectively between ∆ slices in Kheavy is
10d∆ + 10d · h(n). Now that the set Kheavy has been defined, we will use this
fixed set in the recursive algorithm, Algorithm 2.

14 return A(S, η = log(n)
D log(4/3) , ∆ = log(n), ϵ = δ2−10 log(n) log(log(n))), h(n) =

log7(n), Kheavy, D, B)
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Algorithm 2 A(S, η, ∆, ϵ, h(n), Kheavy, D, B): Recursive Divide-and-Conquer Subroutine
for Algorithm 1.

Input : D-dimensional Geometrically-Local, depth-d synthesis S, number of
iterations η, number of cuts ∆, positive base-case error bound ϵ > 0, a set
of heavy slices Kheavy, dimension D, B a base case algorithm for 2D circuits

Output : An approximation of the quantity ⟨0N | ϕS |0N ⟩ where ϕS is the
un-normalized mixed state specified by the D-dimensional
geometrically-local, depth-d synthesis S, and |0N ⟩ is the 0 state on the
entire N register of that synthesis.

1 Given the geometrically-local, depth-d synthesis S = (Γ, L, M, N), let us ignore the
registers L and M as they have already been measured or traced-out.

2 Let ℓ be the width of the N register of the synthesis S. Define the stopping width
w0 ≡ 20d(∆ + h(n) + 2).

3 if ℓ < w0 = 20d(∆ + h(n) + 2) OR η < 1 then
4 Compute the quantity ⟨0N | ϕS |0N ⟩ to within error ϵ.
5 return Afull(S, B, ϵ, D − 1)
6 else
7 We will “slice” the D-Dimensional geometrically-local, depth-d synthesis S in ∆

different locations, as follows:
8 Since N is D-Dimensional we define a region Z ⊂ N to be the sub-hyper-cube of

N which has width 10d(∆ + h(n) + 2), and is centered at the halfway point of N

width-wise (about the point ℓ/2 of the way across N). Since the maximum
amount of width collectively between ∆ slices in Kheavy is 10d∆ + 10d · h(n) (see
Algorithm 1), we are guaranteed that the region Z will contain at least ∆ slices,
K1, K2, . . . , K∆, from Kheavy. For any two slices Ki, Kj ∈ Kheavy, let the
un-normalized states |φL,i⟩ , |φi,j⟩ , |φj,R⟩, and corresponding sub-syntheses
SL,i, Si,j , Sj,R be as defined in Definition 23 from [3], with K = log3(n). We will
use these to describe the result of our division step below.

9 For each Ki ∈ Kheavy pre-compute the quantity κi
T,ϵ, with T = log3(n), and

ϵ = δ2−10 log(n) log(log(n))).
10 return

∆∑
i=1

1
(κi

T,ϵ
)4K+1 A(SL,i, η − 1) · A(Si,R, η − 1) (3)

−
∆∑

i=1

∆∑
j=i+1

1
(κi

T,ϵ
κj

T,ϵ
)4K+1

A(SL,i, η − 1) · Afull(Si,j , B, ϵ, D − 1) · A(Sj,R, η − 1) (4)

+
∆∑

i=1

∆∑
j=i+2

1
(κi

T,ϵ
κj

T,ϵ
)4K+1

A(SL,i, η − 1) · A(Sj,R, η − 1)

·

[ ∑
σ∈P({i+1,··· ,j−1})\∅

(−1)|σ|+1Afull

((
⊗k∈σΠK

Fk

〈
0Mk

∣∣)ϕi,j

(
⊗k∈σ

∣∣0Mk

〉
ΠK

Fk

)
, B,

ϵ

2∆ , D − 1
)]

(5)11

/* Note that for brevity it is implied that
A(S, η) = A(S, η, ∆, ϵ, h(n), Kheavy, D, B). */
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A Proof of Lemma Statement

▶ Lemma (Restatement of Lemma 10). Afull(S = (C, L, M, N), B, δ, D) returns an δ-additive
error approximation of | ⟨0ALL| C |0ALL⟩ |2

Proof. The error analysis of the error obtained by Afull(S, B, δ, D) can be broken into four
cases according to the IF statements on Lines 1, 3, 11, and 12 of Algorithm 1. The first
three cases can be easily shown to return the value in δ-additive error within the promised
runtime as shown in page 16 and 20 of [3].

In the event that Line 12 is satisfied, Algorithm 1 returns the following quantity:

A(S, η = log(n)
D log(4/3) , ∆ = log(n), ϵ = δ2−10 log(n) log(log(n))), h(n) = log7(n), Kheavy, D, B),

which we know is an f(S, ηD, ∆, ϵ, D)-additive error approximation of | ⟨0ALL| C |0ALL⟩ |2.
Recall the definition of ηD defined in Equation 2. Since ηD = log(n)

D log(4/3) , by Equation 8, we
know that:

f(S, η, ∆, ϵ) ≤ ηD(20∆2)ηD
(
(2e(n) + 2g(n))∆ + 3∆2E3(n, K, T, ϵ, ∆)

)
= ηD(20∆2)ηD 3∆2O (E3(n, K, T, ϵ, ∆))

= ηD(20∆2)ηD 3∆2O
(
2∆(2e(n))K + 2∆K

(
e(n)2T + ϵ

)
+ ϵ
)

= log(n)
D log(4/3)

(
20 log2(n)

) log(n)
D log(4/3) 3 log2(n)O

(
2log(n)(2(1 − 2

log(δ)
log7(n) ))log3(n)

+2log(n) log3(n)
(

(1 − 2
log(δ)

log7(n) )2 log3(n) + ϵ

)
+ δ2−10 log(n) log(log(n))

)
≤ (log(n))2 log(n) · poly(n) ·

(
(2(1 − 2

log(δ)
log7(n) ))log3(n) + ϵ + δ2−10 log(n) log(log(n))

)
≤ (log(n))2 log(n) · poly(n) ·

((
O

(
1

log4(n)

))log3(n)

+ 2 · δ2−10 log(n) log(log(n))

)

http://arxiv.org/abs/1909.11485
https://doi.org/10.1098/rspa.2010.0301
http://arxiv.org/abs/1806.01838.
http://arxiv.org/abs/2102.01960
http://arxiv.org/abs/1909.06210.
https://doi.org/10.26421/QIC4.2-5
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≤ 22 log(n) log(log(n)) · poly(n) ·
(

O

(
1

log4(n)

))log3(n)

+ δ2−8 log(n) log(log(n))

≤ o(1) · δ + o(1) · δ = o(1) · δ (6)

where the first inequality follows from our result from the next subsection and the rest follows
by calculation, noting that E3(n, K, T, ϵ, ∆) ≥ (2e(n) + 2g(n))∆ for our specific choice of
parameters (in particular ∆ = log(n)). Note from [3] that e(n) ≤ (1−2

log(δ)
log7(n) ) = O(1/ log4(n))

(since δ ≥ n− log2(n) = 2− log(n)3 as verified in Algorithm 1), K = log3(n), T = log3(n), and
ϵ = δ2−10 log(n) log(log(n)). The final inequality, which claims 22 log(n) log(log(n)) · poly(n) ·(

O
(

1
log4(n)

))log4(n)
= o(1) · δ, again follows because δ ≥ n− log2(n) as verified in the driver

algorithm, Algorithm 1.
As described on page 22 of [3], ⟨0ALL|Ψ∅⟩ ⟨Ψ∅|0ALL⟩ is the quantity that we wish for

Algorithm 2 to output. Refer to Definition 17 and Lemma 18 from [3] for the definition
of |Ψ∅⟩ and |Ψσ⟩ for the subsequent analysis. Since Algorithm 2 depends on recursively
calling itself, recall ηi from Equation 2 that defines the number of recursive calls for some
dimension i. The error between the returned output of Algorithm 2, (defined on Line 10 of
that algorithm) and the desired output quantity ⟨0ALL|Ψ∅⟩ ⟨Ψ∅|0ALL⟩ is written below:

f(S, ηD, ∆, ϵ, D) ≤
∥∥∥ ⟨0ALL|Ψ∅⟩ ⟨Ψ∅|0ALL⟩ − A(S, ηD, D, ϵ)

∥∥∥
≤
∥∥∥ ⟨0ALL|Ψ∅⟩ ⟨Ψ∅|0ALL⟩ −

∑
σ∈P([∆])\∅

(−1)|σ|+1 ⟨0ALL|Ψσ⟩ ⟨Ψσ|0ALL⟩
∥∥∥

+
∥∥∥ ∑

σ∈P([∆])\∅

(−1)|σ|+1 ⟨0ALL|Ψσ⟩ ⟨Ψσ|0ALL⟩ − A(S, ηD, D, ϵ)
∥∥∥

≤ (2e(n) + 2g(n))∆ +
∥∥∥ ∑

σ∈P([∆])\∅

(−1)|σ|+1 ⟨0ALL|Ψσ⟩ ⟨Ψσ|0ALL⟩ − A(S, ηD, D, ϵ)
∥∥∥

= (2e(n) + 2g(n))∆ +
∥∥∥∥ ∑

σ∈P([∆])\∅

(−1)|σ|+1 ⟨0ALL|Ψσ⟩ ⟨Ψσ|0ALL⟩

−
( ∆∑

i=1

1
(κi

T,ϵ)4K+1 A(SL,i, ηD − 1, D, ϵ) · A(Si,R, ηD − 1, D, ϵ)

−
∆∑

i=1

∆∑
j=i+1

1
(κi

T,ϵκj
T,ϵ)4K+1

A(SL,i, ηD − 1, D, ϵ) · Afull(Si,j , B, D − 1, ϵ) · A(Sj,R, ηD − 1, D, ϵ)

+
∆∑

i=1

∆∑
j=i+2

1
(κi

T,ϵκj
T,ϵ)4K+1

A(SL,i, ηD − 1, D, ϵ) · A(Sj,R, ηD − 1, D, ϵ)

·
[ ∑

σ∈P({i+1,...,j−1})\∅

(−1)|σ|+1Afull

((
⊗k∈σΠK

Fk
⟨0Mk

|
)

ϕi,j

(
⊗k∈σ |0Mk

⟩ ΠK
Fk

)
, B, D − 1, E3(ϵ)

)])∥∥∥∥
Grouping analogous terms and using triangle inequality gives:

f(S, ηD, ∆, ϵ, D) ≤ (2e(n) + 2g(n))∆

+

∥∥∥∥ ∆∑
i=1

(〈
0ALL

∣∣Ψ{i}

〉〈
Ψ{i}

∣∣0ALL

〉
−

1
(κi

T,ϵ
)4K+1 A(SL,i, ηD − 1, D, ϵ) · A(Si,R, ηD − 1, D, ϵ)

)

+
∆∑

i=1

∆∑
j=i+1

(
1

(κi
T,ϵ

κj
T,ϵ

)4K+1
A(SL,i, ηD − 1, D, ϵ) · Afull(Si,j , B, D − 1, ϵ) · A(Sj,R, ηD − 1, D, ϵ)

−
〈

0ALL

∣∣Ψ{i,j}

〉〈
Ψ{i,j}

∣∣0ALL

〉)
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−
∆∑

i=1

∆∑
j=i+2

∑
σ∈P({i+1,...,j−1})\∅

(
1

(κi
T,ϵ

κj
T,ϵ

)4K+1
A(SL,i, ηD − 1, D, ϵ)

· A(Sj,R, ηD − 1, D, ϵ) · (−1)|σ|+1Afull

((
⊗k∈σΠK

Fk

〈
0Mk

∣∣)ϕi,j

(
⊗k∈σ

∣∣0Mk

〉
ΠK

Fk

)
, B, D − 1, E3(ϵ)

)
− (−1)|σ|+1

〈
0ALL

∣∣Ψ{i,j}∪σ

〉〈
Ψ{i,j}∪σ

∣∣0ALL

〉)∥∥∥∥
≤ (2e(n) + 2g(n))∆

+
∆∑

i=1

∥∥∥∥(〈0ALL

∣∣Ψ{i}

〉〈
Ψ{i}

∣∣0ALL

〉
−

1
(κi

T,ϵ
)4K+1 A(SL,i, ηD − 1, D, ϵ) · A(Si,R, ηD − 1, D, ϵ)

)∥∥∥∥
+

∆∑
i=1

∆∑
j=i+1

∥∥∥∥( 1
(κi

T,ϵ
κj

T,ϵ
)4K+1

A(SL,i, ηD − 1, D, ϵ) · Afull(Si,j , B, D − 1, E3(ϵ)) · A(Sj,R, ηD − 1, D, ϵ)

−
〈

0ALL

∣∣Ψ{i,j}

〉〈
Ψ{i,j}

∣∣0ALL

〉)∥∥∥∥
−

∆∑
i=1

∆∑
j=i+2

∥∥∥∥ ∑
σ∈P({i+1,...,j−1})\∅

(−1)|σ|+1

(
1

(κi
T,ϵ

κj
T,ϵ

)4K+1
A(SL,i, ηD − 1, D, ϵ) · A(Sj,R, ηD − 1, D, ϵ)

· Afull

((
⊗k∈σΠK

Fk

〈
0Mk

∣∣)ϕi,j

(
⊗k∈σ

∣∣0Mk

〉
ΠK

Fk

)
, B, D − 1, E3(ϵ)

)
−
〈

0ALL

∣∣Ψ{i,j}∪σ

〉〈
Ψ{i,j}∪σ

∣∣0ALL

〉)∥∥∥∥ (7)

We will now use Lemma 11, 12, and 13 that are adapted versions of Lemma 29, 30, and
31 from [3] to bound the last three terms of the above inequality. Because their bounds are
independent of dimensions, the proofs for the three lemmas will be similar to the proofs
in [3].

f(S, ηD,∆, ϵ, D) ≤ (2e(n) + 2g(n))∆ + ∆ (E1(n, K, T, ϵ) + 2f(S, ηD − 1, ∆, ϵ, D))

+ ∆2 (E2(n, K, T, ϵ) + 2f(S, ηD − 1, ∆, ϵ, D))

+ ∆2 (E3(n, K, T, ϵ, ∆) + 16f(S, ηD − 1, ∆, ϵ, D))

≤ (2e(n) + 2g(n))∆ + 3∆2E3(n, K, T, ϵ, ∆) + 20∆2f(S, ηD − 1, ∆, ϵ, D)

= (2e(n) + 2g(n))∆ + 3∆2E3(n, K, T, ϵ, ∆)

+ 20∆2

[
(2e(n) + 2g(n))∆ + 3∆2E3(n, K, T, ϵ, ∆) + 20∆2f(S, ηD − 2, ∆, ϵ, D)

]

=
ηD−1∑

i=0

[
(20∆2)i

(
(2e(n) + 2g(n))∆ + 3∆2E3(n, K, T, ϵ, ∆)

)]
+ (20∆2)ηD f(S, 0, ∆, ϵ, D)

≤ ηD(20∆2)ηD

(
(2e(n) + 2g(n))∆ + 3∆2E3(n, K, T, ϵ, ∆)

)
+ (20∆2)ηD ϵ

≤ ηD(20∆2)ηD
(
ϵ + (2e(n) + 2g(n))∆ + 3∆2E3(n, K, T, ϵ, ∆)

)
≤ ηD(20∆2)ηD

(
(2e(n) + 2g(n))∆ + 3∆2E3(n, K, T, ϵ, ∆)

)
(8)

where the above inequalities follow because E3(n, K, T, ϵ, ∆) ≥ E2(n, K, T, ϵ) ≥ E1(n, K, T, ϵ)
and f(S, 0, ∆, ϵ, ·) ≤ ϵ ≤ E3(n, K, T, ϵ, ∆) ◀
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▶ Lemma 11.∥∥∥∥∥
(

1
(κi

T,ϵ)4K+1 A(SL,i, ηD − 1, D, ϵ) · A(Si,R, ηD − 1, D, ϵ) −
〈
0ALL

∣∣Ψ{i}
〉 〈

Ψ{i}
∣∣0ALL

〉)∥∥∥∥∥
≤ E1(n, K, T, ϵ) + 2f(S, ηD − 1, ∆, ϵ, D),

where E1(n, K, T, ϵ) ≡ 10K(e(n)2T + 6g(n) + ϵ).

▶ Lemma 12.∥∥∥∥∥
(

1
(κi

T,ϵκ
j
T,ϵ)4K+1

A(SL,i, ηD − 1, D, ϵ) · Afull(Si,j , B, D − 1, ϵ) · A(Sj,R, ηD − 1, D, ϵ)

−
〈
0ALL

∣∣Ψ{i,j}
〉 〈

Ψ{i,j}
∣∣0ALL

〉) ∥∥∥∥∥
≤ E2(n, K, T, ϵ) + 2f(S, ηD − 1, ∆, ϵ, D), (9)

where E2(n, K, T, ϵ) ≡ 10K(e(n)2T + 6g(n) + ϵ) + ϵ

▶ Lemma 13.∥∥∥∥∥ ∑
σ∈P({i+1,...,j−1})\∅

(−1)|σ|+1

(
1

(κi
T,ϵκj

T,ϵ)4K+1
A(SL,i, ηD − 1, D, ϵ) · A(Sj,R, ηD − 1, D, ϵ)

· Afull

((
⊗k∈σΠK

Fk
⟨0Mk |

)
ϕi,j

(
⊗k∈σ |0Mk ⟩ ΠK

Fk

)
, B, D − 1, E3(ϵ)

)
−
〈
0ALL

∣∣Ψ{i,j}∪σ

〉 〈
Ψ{i,j}∪σ

∣∣0ALL

〉) ∥∥∥∥∥ (10)

≤ E3(n, K, T, ϵ, ∆) + 16f(S, ηD − 1, ∆, ϵ, D),

where E3(n, K, T, ϵ, ∆) ≡ O
(
2∆(6g(n)) + 2∆K

(
e(n)2T + ϵ

)
+ ϵ
)
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Abstract
In the classical RAM, we have the following useful property. If we have an algorithm that uses M

memory cells throughout its execution, and in addition is sparse, in the sense that, at any point in
time, only m out of M cells will be non-zero, then we may “compress” it into another algorithm
which uses only m log M memory and runs in almost the same time. We may do so by simulating
the memory using either a hash table, or a self-balancing tree.

We show an analogous result for quantum algorithms equipped with quantum random-access
gates. If we have a quantum algorithm that runs in time T and uses M qubits, such that the state
of the memory, at any time step, is supported on computational-basis vectors of Hamming weight at
most m, then it can be simulated by another algorithm which uses only O(m log M) memory, and
runs in time Õ(T ).

We show how this theorem can be used, in a black-box way, to simplify the presentation in
several papers. Broadly speaking, when there exists a need for a space-efficient history-independent
quantum data-structure, it is often possible to construct a space-inefficient, yet sparse, quantum
data structure, and then appeal to our main theorem. This results in simpler and shorter arguments.
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10:2 Memory Compression with Quantum Random-Access Gates

1 Introduction

This paper arose out of the authors’ recent work on quantum fine-grained complexity [4],
where we had to make use of a quantum walk, similar to how Ambainis uses a quantum walk
in his algorithm for element distinctness [2]. An essential aspect of these algorithms is the
use of a history-independent data-structure. In the context of our paper, we needed three
slightly different data structures of this type, and on each of these occasions we saw a similar
scenario. If we were only concerned with the time complexity of our algorithm, and were
OK with a polynomial increase in the space complexity (the number of qubits used by the
algorithm), then there was a very simple data structure that would serve our purpose. If,
however, we wanted the algorithm to be space-efficient, as well, then we needed to resort to
more complicated data structures.

And we made the following further observation: the simple, yet space-inefficient, data
structures were actually sparse, in the sense that although M qubits were being used, all
the amplitude was always concentrated on computational-basis vectors of Hamming weight
≤ m ≪ M . The analogous classical scenario is an algorithm that uses M memory registers,
but at any time step all but m of these registers are set to 0. In the classical case, we know
how to convert any such an m-sparse algorithm into an algorithm that uses O(m logM)
memory, by using, e.g., a hash table. We wondered whether the same thing could be said of
quantum algorithms. This turned out to be possible, and the main purpose of this paper is
to explain how it can be done. We will take an arbitrary sparse quantum algorithm, and
compress it into a quantum algorithm that uses little space.

Our main theorem is as follows (informally stated):

▶ Theorem 1. Any m-sparse quantum algorithm using time T and M qubits can be simulated
with ε additional error by a quantum algorithm running in time O(T · log( T

ε ) · log(M)), using
O(m logM) qubits.

We will prove this result using quantum radix trees in Section 3. The result can also
be proven, with slightly worse parameters, using hash tables, but we will not do so here.
The sparse algorithm is allowed to use quantum random-access gates (described in the
preliminaries Section 2), and the compressed simulation requires such gates, even if the
original algorithm does not.

The logM factor in the time bound can be removed if we assume that certain operations
on O(logM) bits can be done at O(1) cost. This includes only simple operations such as
comparison, addition, bitwise XOR, or swapping of two blocks of O(logM) adjacent qubits.1
All these operations can be done at O(1) cost in the usual classical Random-Access Machines.

The techniques used to prove our main theorem are not new: quantum radix-trees first
appeared in a paper by Bernstein, Jeffery, Lange and Meurer [3] (see also Jeffery’s PhD
thesis [5]). One contribution of our paper is to present BJLM technique in full, as in currently
available presentations of the technique, several crucial aspects of the implementation are
missing or buggy2.

But our main contribution is to use these techniques at the right level of abstraction.
Theorem 1 is very general, and can effectively be used as a black box. One would think that
Theorem 1, being such a basic and fundamental statement about quantum computers, and
being provable essentially by known techniques, would already be widely known. But this

1 The qubits in each block are adjacent, but the two swapped blocks can be far apart from each other.
2 For example, some operations are defined which are not unitary. Or, there is no mention of error in the

algorithms, but they actually cannot be implemented in an error-free way using a reasonable number of
gates from any standard gate set.
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appears not to be the case, as papers written as recently as a year ago could be significantly
simplified by appealing to such a theorem. Indeed, we believe that the use of Theorem 1 will
save researchers a lot of work in the future, and this is our main motivation for writing this
paper.

To illustrate this point, in Section 4 we will overview three papers [2, 1, 4] that make
use of a quantum walk together with a history-independent data structure. These papers all
use complicated but space-efficient data structures. As it turns out, we can replace these
complicated data structures with very simple tree-like data structures. These new, simple
data structures are memory inefficient but sparse, so we may then appeal to Theorem 1 to
get similar upper bounds. The proofs become shorter: we estimate each of these papers
could be cut in size by 4 to 12 pages. And furthermore, using simpler (memory inefficient but
sparse) data-structures allows for a certain separation of concerns: when one tries to describe
a space-efficient algorithm, there are several bothersome details that one needs to keep track
of, and they obscure the presentation of the algorithm. By using simpler data structures,
these bothersome details are disappear from the proofs, and are entrusted to Theorem 1.

2 Definitions

We let [n] = {1, . . . , n}, and let
( [n]

≤m

)
be the set of subsets of [n] of size at most m.

We let H(N) denote the complex Hilbert space of dimension N , and we let U(N) denote
the space of unitary linear operators from H(N) to itself (i.e. the unitary group). We let B
denote a set of universal quantum gates, which we will fix to containing the CNOT ∈ U(4)
and all single-qubit gates, but which we could have been chosen from among any of the
standard possibilities.

Of particular importance to this paper will be the set Q = B ∪ {RAGn | n a power of 2}
which contains our universal set together with the random-access gates, so that RAGn ∈
U(n21+n) is defined on the computational basis by:

RAGn|i, b, x0, . . . , xn−1⟩ = |i, xi, x0, . . . , xi−1, b, xi+1, . . . , xn−1⟩
∀i ∈ [n], b, x0, . . . , xn−1 ∈ {0, 1}

We now give a formal definition of what it means to solve a Boolean relation F ⊆ {0, 1}n ×
{0, 1}m using a quantum circuit. This includes the special case when F is a function.

A quantum circuit over a gate set G (such as B or Q) is a tuple C = (n, T, S, C1, . . . , CT ),
where T ≥ 0, n, S ≥ 1 are natural numbers, and the Ct give us a sequence of instructions.
Each instruction Ct comes from a set IG(S) of possible instructions, defined below. The
number n is the input length, the number T is the time complexity, and S is the space
complexity, also called the number of wires or the number of ancillary qubits of the circuit.
Given an input x ∈ {0, 1}n, at each step t ∈ {0, . . . , T} of computation, the circuit produces
an S-qubit state |ψT (x)⟩ ∈ H(2S), starting with |ψ0(x)⟩ = |0⟩⊗s, and then applying each
instruction Ct, as we will now describe.

For each possible q-qubit gate G ∈ G ∩ U(2q), and each possible ordered choice I =
(i1, . . . , iq) ∈ [S]q of distinct q among S qubits, we have an instruction APPLYG,I ∈ IG(S)
which applies gate G to the qubits indexed by I, in the prescribed order. The effect of
executing the instruction APPLYG,I on |ψ⟩ ∈ H(2S) is to apply G on the qubits indexed by
I, tensored with identity on the remaining S − q qubits. I.e., APPLYG,I ∈ U(2S) corresponds
to the unitary transformation defined on each basis state by:

APPLYG,I · |yI⟩ ⊗ |yJ⟩ = (G|yI⟩) ⊗ |yJ⟩,

where J = [S] \ I.

TQC 2022
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Furthermore, for each possible ordered choice I = (i1, . . . , i⌈log n⌉) ∈ [S]⌈log n⌉ of distinct
⌈log n⌉ among S qubits, and each i ∈ [S] \ I, we have an instruction READI,i ∈ IG(S), which
applies the query oracle on the qubits indexed by I and i. I.e., given an input x ∈ {0, 1}n,
the instruction READI,i ∈ U(2S) applies the unitary transformation defined on each basis
state by:

READI,i · |yI⟩ ⊗ |yi⟩ ⊗ |yJ⟩ = |yI⟩ ⊗ |yi ⊕ xyI
⟩ ⊗ |yJ⟩,

where J = [S] \ (I ∪ {i}).
Hence if we have a sequence C1, . . . , CT of instructions and an input x, we may obtain

the state of the memory at time step t, on input x, by |ψ0(x)⟩ = |0⟩⊗S and |ψt+1(x)⟩ =
Ct+1|ψt(x)⟩.

We say that a quantum circuit C = (n, T, S, C1, . . . , CT ) computes or solves a relation
F ⊆ {0, 1}n ×{0, 1}m with error ε if C is such that, for every input x ∈ {0, 1}n, if we measure
the first m qubits of |ψT (x)⟩ in the computational basis, we obtain, with probability ≥ 1 − ε,
a string z ∈ {0, 1}m such that (x, z) ∈ F .

2.1 Quantum Random-Access Machine (QRAM)
Generally speaking, a quantum circuit is allowed to apply any of the basic operations to
any of its qubits. In the definition given above, a quantum random-access gate can specify
any permuted subset of the qubits to serve as its inputs. This allows for unusual circuit
architectures, which are undesirable.

One may then define a more restricted class of circuits, as follows. We think of the qubits
as divided into two parts: work qubits and memory qubits. We have M memory qubits
and W = O(logM) work qubits, for a total space complexity S = W + M . We restrict
the circuit so that any unitary gate G ∈ B, or read instruction, must be applied to work
qubits only. And, finally, any random-access gate must be applied in such a way that the
addressing qubits (i) and the swap qubit (b) are always the first logM + 1 work qubits,
and the addressed qubits (x0, . . . , xM−1) are exactly the memory qubits, and are always
addressed in the same, fixed order, so one can speak of the first memory qubit, the second
memory qubit, etc. We may then think of a computation as alternating between doing some
computation on the work registers, then swapping some qubits between work and memory
registers, then doing some more computation on the work registers, and so forth. The final
computational-basis measurement is also restricted to measuring a subset of the work qubits.

Under these restrictions, a circuit of time complexity T may be encoded using O(T logS)
bits, whereas in general one might need Ω(TS) qubits in order to specify how the wires of
the circuit connect to the random-access gates.

We will then use the term a quantum random-access machine algorithm, or QRAM
algorithm, for a family of circuits that operate under these restrictions.3

2.2 Sparse QRAM algorithms
In classical algorithms, we may have an algorithm which uses M memory registers, but such
that, at any given time, only m out of these M registers are non-zero. In this case we could
call such an algorithm m-sparse. The following definition is the quantum analogue of this.

3 Such a computational model has been referred to by several names in the past. For instance, the term
QRAQM appears in several publications, starting with [6], and QAQM has also been used [7].



H. Buhrman, B. Loff, S. Patro, and F. Speelman 10:5

▶ Definition 2. Let C = (n, T,W,M,C1, . . . , CT ) be a QRAM algorithm using time T , W
work qubits, and M memory qubits. Then, we say that C is m-sparse, for some m ≤ M , if at
every time-step t ∈ {0, . . . , T} of the algorithm, the state of the memory qubits is supported
on computational basis vectors of Hamming weight ≤ m. I.e., we always have

|ψt⟩ ∈ span
(

|u⟩|v⟩
∣∣∣∣ u ∈ {0, 1}W , v ∈

(
[M ]
≤ m

))
In other words, if |ψt⟩ is written in the computational basis:

|ψt⟩ =
∑

u∈{0,1}W

∑
v∈{0,1}M

α(t)
u,v · |u⟩︸︷︷︸

Work qubits

⊗ |v⟩︸︷︷︸
Memory qubits

,

then α
(t)
u,v = 0 whenever |v| > m.

2.3 Time complexity of simple operations (the constant γ)
Throughout the paper we will often describe algorithms that use certain simple operations
over a logarithmic number of bits. These may include comparison, addition, bitwise XOR,
swapping, and others. In a classical random-access machine, all of these operations can be
done in O(1) time, as in such machines it is usually considered that every memory position
is a register that can hold O(log n) bits, and such simple operations are taken to be machine
instructions.

We do not necessarily wish to make such an assumption for quantum algorithms, since
we do not really know what a quantum computer will look like, just yet. So we will broadly
postulate the existence of a quantity γ, which is an upper-bound on the time complexity of
doing such simple operations. We then express our time upper-bounds with γ as a parameter.
Depending on the precise architecture of the quantum computer, one may think of γ as being
O(1), or O(log n). In all our bounds, the simple operations that we will make use of can
always be implemented using O(logM) elementary gates.

2.4 Controlled unitaries
Sometimes we will explain how to implement a certain unitary, and we wish to have a version
of the same unitary which can be activated or deactivated depending on the state of an
additional control bit. We will make free use of the following lemma, which we state without
proof.

▶ Lemma 3. If a unitary U can be implemented using T gates from Q, then the unitary

|b⟩|x⟩ 7→

{
|b⟩(U |x⟩) if b = 1
|b⟩|x⟩ if b = 0

can be implemented (without error) using O(T ) gates from Q.

3 Compressing sparse algorithms using quantum radix trees

Let C = (n, T,W,M,C1, . . . , CT ) be the circuit of an m-sparse QRAM algorithm computing
a relation F with error ε and let the state of the algorithm at every time-step t, when written
in the computational basis, be

|ψt⟩ =
∑

u∈{0,1}W

∑
v∈([M]

≤m)
α(t)

u,v |u⟩︸︷︷︸
Work qubits

⊗ |v⟩︸︷︷︸
Memory qubits

. (1)
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Using the description of C and the assumption that this algorithm is m-sparse we will now
construct another QRAM algorithm C′ that uses much less space (O(m logM) qubits) and
computes F with almost same error probability with only O(logM log T ) factor worsening
in the run time.

Main observation

As the state of the memory qubits in |ψt⟩ for any t is only supported on computational basis
vectors of Hamming weight at most m, one immediate way to improve on the space complexity
is to succinctly represent the state of the sparsely used memory qubits. The challenge, however,
is that every instruction Ci in C might not have an easy analogous implementation in the
succinct representation. So we will first present a succinct representation and then show
that, for every instruction Ci in the original circuit C, there is an analogous instruction or a
series of instructions that evolve the state of the succinct representation in the same way as
the original state evolves due to the application of Ci.

A succinct representation

Let v ∈ {0, 1}M be a vector with |v| ≤ m (with |v⟩ being the corresponding quantum state
that uses M qubits). Whenever m is significantly smaller than M (i.e., m logM < M) we
can instead represent the vector v using the list of indices {i} such that v[i] = 1. Such a
representation will use much fewer (qu)bits. Let Sv denote the set of indices i such that
v[i] = 1. We will then devise a quantum state |Sv⟩, that represents the set Sv using a
quantum data structure. This representation will be unique, meaning that for every sparse
computational-basis state |v⟩ there will be a unique corresponding quantum state |Sv⟩, and
|Sv⟩ will use much fewer qubits. Then for every time-step t, the quantum state |ψt⟩ from
Equation (1) has a corresponding succinctly represented quantum state |ϕt⟩ such that

|ϕt⟩ =
∑

u∈{0,1}w

∑
v∈([M]

≤m)
α(t)

u,v|u⟩ ⊗ |Sv⟩. (2)

By using such a succinct representation, we will be able to simulate the algorithm C with
O(m logM) qubits, with an O(γ log T

δ ) additional factor overhead in time and an additional
δ probability of error.

To obtain the desired succinct representation |Sv⟩, we use the quantum radix trees
appearing in an algorithm for the subset-sum problem by Bernstein, Jeffery, Lange, and
Meurer [3] (see also [5]). Several crucial aspects of the implementation were missing or buggy,
and required some amount of work to complete and fix. The resulting effort revealed, in
particular, that the data-structure is unlikely to be implementable efficiently without error
(as it relies on a particular gate which cannot be implemented in an error-free way using the
usual basic gates). So we here include all the required details.

3.1 Radix Tree

A quantum radix tree is a quantum data structure inspired by the classical radix tree whose
definition is as follows.
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▶ Definition 4. A radix tree is a rooted binary tree, where the edges are labeled by non-empty
binary strings, and the concatenation of the labels of the edges along any root-to-leaf path
results in a string of the same length ℓ (independent of the chosen root-to-leaf path). The
value ℓ is called the word length of the tree.

There is a bijective correspondence between radix trees R of word length ℓ and subsets
S ⊆ {0, 1}ℓ. Given R, we may obtain S as follows. Each root-to-leaf path of R gives us an
element x ∈ S, so that x is the concatenation of all the edge labels along the path.

If R corresponds to S, we say that R stores, or represents S, and write R(S) for the
radix tree representing S, i.e., for the inverse map of what was just described (see below).

An example of a radix tree appears in Figure 1.

ε

0000 1001 1011 1111

0000

1
0

11101 11

Figure 1 A radix tree storing the set {0000, 1001, 1011, 1111}.

Given a set S ⊆ {0, 1}ℓ, we obtain R(S) recursively as follows: The empty set corresponds
to the tree having only the root and no other nodes. We first find the longest common prefix
p ∈ {0, 1}≤ℓ of S. If |p| > 0, then we have a single child under the root, with a p-labeled
edge going into it, which itself serves as the root to R(S′), where S′ is the set of suffixes
(after p) of S. If |p| = 0, then the root will have two children. Let S = S0 ∪ S1, where S0
and S1 are sets of strings starting with 0 and 1, respectively, in S. The edges to the left and
right children will be labeled by p0 and p1, respectively, where p0 ∈ {0, 1}≤ℓ is the longest
common prefix of S0 and p1 ∈ {0, 1}≤ℓ is the longest common prefix of S1. The left child
serves as a root to R(S′

0), where S′
0 is the set of suffixes (after p0) of S0. Analogously, the

right child serves as a root to R(S′
1), where S′

1 is the set of suffixes (after p1) of S1.

Basic operations on radix trees

The allowed basic operations on a radix tree are insertion and removal of an element.
Classically, an attempt at inserting an element already in S will result in the identity
operation. Quantumly, we will instead allow for toggling an element in/out of S.

Representing a radix tree in memory

We now consider how one might represent a radix tree in memory. For this purpose, suppose
we wish to represent a radix tree R(S) for some set S ⊆ {0, 1}ℓ of size |S| ≤ m. Let us
assume without loss of generality that m is a power of 2, and suppose we have at our disposal
an array of 2m memory blocks.

Each memory block may be used to store a node of the radix tree. If we have a node in
the tree, the contents of its corresponding memory block will represent a tuple (z, p1, p2, p3).
The value z ∈ {0, 1}≤ℓ stores the label in the edge from the node’s parent, the values
p1, p2, p3 ∈ {0, 1, . . . , 2m} are pointers to the (block storing the) parent, left child, and right
child, respectively, or 0 if such an edge is absent.
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It follows that each memory block is O(ℓ+ logm) bits long. In this way, we will represent
R(S) by a binary string of length O(m(ℓ + logm)). The root node is stored in the first
block, empty blocks will be set to 0, and the only thing that needs to be specified is the
memory layout, namely, in which block does each node get stored. For this purpose, let
τ : R(S) → [2m] be an injective function, mapping the nodes of R(S) to the [2m] memory
blocks, so that τ(root) = 1. For any S ⊆ {0, 1}ℓ of size |S| ≤ m, we then let

Rτ (S) ∈ {0, 1}O(m(ℓ+log m))

denote the binary string obtained by encoding R(S) as just described.

BJLM’s quantum radix tree

We see now that although there is a unique radix tree R(S) for each S, there is no obvious
way of making sure that the representation of R(S) in memory is also unique. However,
this bijective correspondence between S and its memory representation is a requirement for
quantum algorithms to use interference. The idea of Bernstein et al [3], then, is to represent
S using a superposition of all possible layouts. I.e., S is to be uniquely represented by the
(properly normalized) quantum state:∑

τ

|Rτ (S)⟩.

The trick, then, is to ensure that this representation can be efficiently queried and updated.
In their discussion of how this might be done, the BJLM paper [3] presents the broad idea
but does not work out the details, whereas Jeffery’s thesis [5] glosses over several details
and includes numerous bugs and omissions. To make their idea work, we make use of an
additional data structure.

3.2 Prefix-Sum Tree
In our implementation of the Quantum Prefix Tree, we will need to keep track of which blocks
are empty and which are being used by a node. For this purpose, we will use a data-structure
that is famously used to (near-optimally) solve the dynamic prefix-sum problem.

▶ Definition 5. A prefix-sum tree is a complete rooted binary tree. Each leaf node is labelled
by a value in {0, 1}, and each internal node is labelled by the number of 1-valued leaf nodes
descending from it.

Let F ⊆ [ℓ] for ℓ a power of 2. We use P (F ) to denote the prefix-sum tree where the ith

leaf node of the tree is labelled by 1 iff i ∈ F .

A prefix-sum tree P (F ) will be represented in memory by an array of ℓ − 1 blocks of
memory, holding the labels of the inner nodes of P (F ), followed by ℓ bits, holding the
labels of the leaf nodes. The blocks appear in the same order as a breadth-first traversal
of P (F ). Consequently, for every F ∈ {0, 1}ℓ there is corresponding binary string of length
(ℓ− 1) log ℓ+ ℓ that uniquely describes P (F ).

We will overload notation, and use P (F ) to denote this binary string of length (ℓ −
1) log ℓ+ ℓ.

Allocating and deallocating

The idea now is to use the prefix tree as an memory allocator. We have 2m blocks of memory,
and the set F will keep track of which blocks of memory are unused, or “free”.
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We would then like to have an operation that allocates one of the free blocks. To implement
Bernstein et al’s idea, the choice of which block to allocate is made in superposition over all
possible free blocks. I.e., we would like to implement the following map Ualloc and also its
inverse, Ufree.

Ualloc : |P (F )⟩|0⟩|0⟩ → 1√
|F |

∑
i∈F

|P (F \ {i})⟩|i⟩|0⟩, (3)

The second and third registers have O(logm) bits. We do not care for what the map does
when these registers are non-zero, or when F = ∅. We will guarantee that this is never the
case.

Note that each internal node of the prefix tree stores the number of elements of F that
are descendants to that node. In particular, the root stores |F |. In order to implement Ualloc,
we then start by constructing the state

1√
|F |

|F |∑
j=1

|j⟩. (4)

While this might appear to be simple, it actually requires us to use a gate

Usuperpose : |k⟩|0⟩ 7→ 1√
k

k∑
j=1

|k⟩|j⟩. (5)

This is much like choosing a random number between 1 and a given number k on a
classical computer. Classically, such an operation cannot be done exactly if all we have
at our disposition are bitwise operations (since all achievable probabilities are then dyadic
rationals). Quantumly, it is impossible to implement Usuperpose efficiently without error by
using only the usual set of basic gates.

So the reader should take note: it is precisely this gate which adds error to BJLM’s
procedure. This gate can be implemented up to distance ε using O(log m

ε ) basic gates, where
m is the maximum value that k can take. I.e., using so many gates we can implement a
unitary U such that the spectral norm ∥U − Usuperpose∥ ≤ ε.4 We will need to choose ε ≈ 1

T ,
which is the inverse of the number of times such a gate will be used throughout our algorithm.

Once we have prepared state (4), we may then use binary search, going down through the
prefix tree to find out which location i corresponds to the jth non-zero element of F . Using
i, as we go up we can remove the corresponding child from P (F ), in O(γ · logm) time, while
updating the various labels on the corresponding root-to-leaf path. This requires the use of
O(logm) work bits, which are |0⟩ at the start and end of the operation. During this process,
the register holding j is also reset to |0⟩, by subtracting the element counts we encounter
during the deletion process from this register. The inverse procedure Ufree is implemented in
a similar way.

3.3 Quantum Radix Tree
We may now define the quantum radix tree.

4 This is done by using Hadamard gates to get a superposition between 1 and the smallest power of 2
which is greater than m

ε , and then breaking this range into m equal intervals plus a remainder of size
< m. The remainder subspace will have squared amplitude ≤ ε.
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▶ Definition 6 (Quantum Radix Tree). Let ℓ and m be powers of 2, S ⊆ {0, 1}ℓ be a set of
size s = |S| ≤ m, and let R(S) be the classical radix tree storing S. Then, the quantum radix
tree corresponding to S, denoted |RQ(S)⟩ (or |Rℓ,m

Q (S)⟩ when ℓ and m are to be explicit), is
the state

|RQ(S)⟩ = 1√
NS

·
∑

τ

|Rτ (S)⟩|P (Fτ )⟩,

where τ ranges over all injective functions τ : R(S) → [2m] with τ(root) = 1, of which there
are NS = (2m−1)!

(2m−|R(S)|)! many, and Fτ = [2m] \ τ(R(S)) is the complement of the image of τ .

Basic operations on quantum radix trees

The basic allowed operations on a quantum radix trees are look-up and toggle, where the
toggle operation is analogous to insertion and deletion in classical radix tree. Additionally,
we also define a swap operation which will be used to simulate a RAG gate.

▶ Lemma 7. Let |RQ(S)⟩ = |Rℓ,m
Q (S)⟩ denote a quantum radix tree storing a set S ⊆ {0, 1}ℓ

of size at most m. We then define the following data structure operations.
1. Lookup. Given an element e ∈ {0, 1}ℓ, we may check if e ∈ S, so for each b ∈ {0, 1}, we

have the map

|e⟩|RQ(S)⟩|b⟩ 7→ |e⟩|RQ(S)⟩|b⊕ (e ∈ S)⟩.

2. Toggle. Given e ∈ {0, 1}ℓ, we may add e to S if S does not contain e, or otherwise
remove e from S. Formally,

|e⟩|RQ(S)⟩ 7→

{
|e⟩|RQ(S ∪ {e})⟩, if e /∈ S,

|e⟩|RQ(S \ {e})⟩, if e ∈ S.

3. Swap. Given an element e ∈ {0, 1}ℓ, b ∈ {0, 1} and a quantum radix tree storing a set S,
we would like swap to be the following map,

|e⟩|RQ(S)⟩|b⟩ 7→


|e⟩|RQ(S ∪ {e})⟩|0⟩, if e /∈ S and b = 1,
|e⟩|RQ(S \ {e})⟩|1⟩, if e ∈ S and b = 0,
|e⟩|RQ(S)⟩|b⟩, otherwise.

These operations can be implemented in worst case O(γ · logm) time and will be error-free if
we are allowed to use an error-free gate for Usuperpose (defined in Equation 5), along with
other gates from set Q.

Proof. Let |b⟩, |e⟩ denote the quantum states storing the elements b ∈ {0, 1} and e ∈ {0, 1}ℓ,
respectively. The data structure operations such as lookup, toggle and swap can be
implemented reversibly in O(γ · logm) time in the following way.

Lookup

We wish to implement the following reversible map Ulookup,

Ulookup : |e⟩|RQ(S)⟩|b⟩ 7→ |e⟩|RQ(S)⟩|b⊕ (e ∈ S)⟩. (6)

We do it as follows. First note that, by Definition 6,

|RQ(S)⟩ = 1√
NS

∑
τ

|Rτ (S)⟩|P (Fτ )⟩.
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We will traverse Rτ (S) with the help of some auxiliary variables. Starting at the root node,
we find the edge labeled with a prefix of e. If no such label is found then e is not present in
Rτ (S). Otherwise, we traverse to the child reached by following the edge labeled by a prefix
of e. Let us denote the label by L. If the child is a leaf node then terminate the process,
stating that e is present in Rτ (S), else, recurse the process on e′ and the tree rooted at
that child node. Here e′ is the binary string after removing L from e. When at some point
we have determined whether e ∈ S or not, we flip the bit b, or not. Eventually, we may
conclude that e ̸∈ S before traversing the entire tree, at which point we skip the remaining
logic for traversing Rτ (S) downwards (by using a control qubit). After we have traversed
Rτ (S) downwards and determined whether e ∈ S, we need to undo our traversal, which we
do by following the p1 pointers (to the parent nodes) until the root is again reached, and the
auxiliary variables are again set to 0.

Each comparison with the edge labels, at each traversed node, takes O(γ) time. Hence,
the entire procedure takes O(γ · logm) time.

Toggle

Let Utoggle denote the following map,

Utoggle : |e⟩|RQ(S)⟩ →

{
|e⟩|RQ(S \ {e})⟩, if e ∈ S,

|e⟩|RQ(S ∪ {e})⟩, if e /∈ S
(7)

The toggle operation primarily consists of two main parts: The memory allocation or
de-allocation, followed by insertion or deletion, respectively.

We again traverse Rτ (S) with the help of some auxiliary variables. We start with the root
node of Rτ (S), and traverse the tree downwards until we know, as above, whether e ∈ S or
not. If e /∈ S, we will know where we need to insert nodes into Rτ (S), in order to transform
it into Rτ (S ∪ {e}). Below, we will explain in detail how such an insertion must proceed. It
turns out that we may need to insert either one node, or two, but never more. We may use
the work qubits to compute the contents of the memory blocks that will hold this new node
(or new nodes). These contents are obtained by XORing the appropriate bits of e and the
appropriate parent/child pointers of the nodes we are currently traversing in the tree.

We may then use the Ualloc gate (once or twice) to obtain the indices of the blocks that
will hold the new node(s). We then use RAG gates to swap in the contents of these blocks
into memory. A fundamental and crucial detail must now be observed: the index of the
memory blocks into where we inserted the new nodes is now left as part of the work qubits.
This cannot be and must be dealt with, because every work bit must be again set to zero at
the end of the procedure. However, a copy of this index now appears as the child pointer
(p2 or p3) of the parents of the nodes we just created, and these pointers can thus be used
to zero out the index. It is then possible to traverse the tree upwards in order to undo the
various changes we did to the auxiliary variables.

If e ∈ S, on the other hand, we then do the inverse procedure. We will then know which
nodes need to be removed from Rτ (S) (it will be either one or two nodes). By construction,
these nodes will belong to blocks not in Fτ . We begin by setting these blocks to zero by
swapping the blocks into the workspace (using the RAG gate), XORing the appropriate bits
of e and the appropriate child/parent pointers so the blocks are now zero, and swapping
them back. These blocks will then be set to zero, and we are left with a state akin to the
right-hand side of (3). We then use the Ufree gate to free the blocks, i.e., add their indices to
Fτ once again. At this point we can traverse the tree upwards once more, in order to reset
the auxiliary variables to zero, as required.
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We now give further detail on how one must update Rτ (S) in order to insert a new
element e into S. We must create a node N := (z, p1, p2, p3) corresponding to the element e
stored at the memory location assigned by Ualloc procedure. Let us denote the address by
k. Start with the root node of Rτ (S). If e has no common prefix with any of the labels of
the root’s outgoing edges, which can only happen if the root has one child, then set z to e,
p1 pointing to the root node, and, p2 and p3 set to 0. Moreover, set the value of the root’s
p2 pointer to k if node N ends up as the left child to the root, else set root’s p3 pointer to
k. In the case when e has a common prefix with one of the labels of the root’s outgoing
edges, let us denote the label by L and the child node by C, then further two scenarios arise:
Either label L is completely contained in e, which if is the case then we traverse the tree
down and run the insertion procedure recursively on e′ (which is e after removing the prefix
L) with the new root set C. In the case where label L is not completely contained in e, we
create an internal node N ′ with its z variable set to the longest common prefix of e and L

(which we denote by L′), p1 pointing to root, p2 pointing to C and p3 pointing to N (or vice
versa depending on whether node N gets to be the right or the left child). We run the Ualloc
procedure again to get a memory location to store N ′. Having done that, we now change
the z value of node C to be the prefix of L after L′, and the p1 value of node C to be the
memory location of N ′. Additionally, we also set z of node N to be e′, the suffix of e after
L′, and we let p1, p2, p3 to be, respectively, a pointer to N ′, 0 and 0.

Each step in the traversal takes time O(γ), for a total time of O(γ · logm).
The procedure to update Rτ (S) in order to delete an element e from S is analogous to

the insertion procedure mentioned above, which also can be implemented in O(γ · logm)
time.

Swap

Let Uswap denote the following map,

Uswap : |e⟩|RQ(S)⟩|b⟩ 7→


|e⟩|RQ(S ∪ {e})⟩|0⟩, if e /∈ S and b = 1,
|e⟩|RQ(S \ {e})⟩|1⟩, if e ∈ S and b = 0,
|e⟩|RQ(S)⟩|b⟩, otherwise.

To implement Uswap, we first run the Ulookup on the registers |e⟩, |RQ(S)⟩ and |b⟩. Conditional
on the value of register |b⟩ (i.e., when b = 1), we run Utoggle on the rest of the registers.
We then run Ulookup again to attain the desired state. To summarize, the unitary Uswap =
Ulookup · Ctoggle · Ulookup, where Ctoggle is controlled version of Utoggle (as per Lemma 3).
Thus, the swap procedure takes a total time of O(γ · logm). ◀

An error-less, efficient implementation of the unitary Usuperpose is impossible by using
only the usual sets of basic gates. Furthermore, it is unreasonable to expect to have an
error-free Usuperpose at our disposal. However, as we explained in page 9, there is a procedure
to implement Usuperpose using gates from the gate set B = {CNOT, H, S, T} up to spectral
distance ε, using only O(log m

ϵ ) gates.

▶ Corollary 8. Let |RQ(S)⟩ = |Rℓ,m
Q (S)⟩ denote a quantum radix tree storing a set S ⊆ {0, 1}ℓ

of size at most m. The data structure operations look-up, toggle and swap, as defined in
the statement of Lemma 7 can be implemented in O(γ · log m

ϵ ) time and ϵ probability of error
using gates from the gate set Q. Here γ is the number of gates required from set Q to do
various basic operations on a logarithmic number of qubits.
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3.4 The simulation
Recall from Section 2.3 that we take γ to be the number of gates required to do various basic
operations on a logarithmic number of qubits. In our use below, it never exceeds O(logM).

▶ Theorem 9. Let T , W , m < M = 2ℓ be natural numbers, with M and m both powers of 2,
and let ε ∈ [0, 1/2). Suppose we are given an m-sparse QRAM algorithm using time T , W
work qubits and M memory qubits, that computes a Boolean relation F with error ε.

Then we can construct a QRAM algorithm which computes F with error ε′ > ε, and
runs in time O(T · log( T

ε′−ε ) · γ), using W +O(logM) work qubits and O(m logM) memory
qubits.

Proof. Let C = (n, T,W,M,C1, . . . , CT ) be the circuit of the given m-sparse QRAM algorithm
computing a relation F with error ε and, let the state of the algorithm at every time-step t,
when written in the computational basis be

|ψt⟩ =
∑

u∈{0,1}w

∑
v∈([M]

≤m)
α(t)

u,v · |u⟩︸︷︷︸
W qubits

⊗ |v⟩︸︷︷︸
M qubits

(8)

where the set
([M ]

≤m

)
denotes all vectors v ∈ {0, 1}M such that |v| ≤ m. Using the description

of C and the fact that this algorithm is m-sparse we will now construct another QRAM
algorithm C′ with the promised bounds. The algorithm C ′ will have w′ = W + O(logM)
work bits, and O(m logM) memory bits. The memory is to be interpreted as an instance
|RQ(S)⟩ of the quantum radix tree described above. Then |v⟩ will be represented by the
quantum radix tree |RQ(Sv)⟩, where Sv = {i ∈ [M ] | vi = 1} is the set of positions where
vi = 1, so that each position i ∈ [M ] is encoded using a binary string of length ℓ.

The simulation is now simple to describe. First, the quantum radix tree is initialized.
Then, each non-RAG instruction Ci ∈ C operating on the work qubits of C is applied in the
same way in C′ to same qubits among the first W qubits of C′. Each RAG instruction, on
the other hand, is replaced with the Uswap operation, applied to the the quantum radix tree.
The extra work qubits of C′ are used as anciliary for these operations, and we note that they
are always returned to zero.

If we assume that the Uswap operation can be implemented without error, we then have a
linear-space isomorphism between the two algorithms’ memory space, which maps the state
|ψt⟩ of C at each time step t to the state |ϕt⟩ of C′ after t simulated steps:

|ϕt⟩ =
∑
u,v

α(t)
u,v · |u⟩︸︷︷︸

W

⊗ |0⟩︸︷︷︸
O(log M)

⊗ |RQ(Sv)⟩︸ ︷︷ ︸
O(m log M)

.

Thus, if Uswap could be implemented without error, we could have simulated C without
additional error. Otherwise, as per Corollary 8, we may implement the Uswap unitary with
an error parameter Ω( ε′−ε

T ), resulting in a total increase in error of ε′ − ε, and an additional
time cost of O(T log T

ε′−ε ). ◀

4 Simplifications of previous work

It is possible to use our main theorem to simplify the presentation of the following three results:
Ambainis’ Quantum Walk algorithm for solving the k-Element Distinctness problem [2],
Aaronson et al’s Quantum algorithms for the Closest Pair problem (CP), and the authors’
previous paper on Fine-Grained Complexity via Quantum Walks [4].
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All these results use quantum walk together with complicated, space-efficient, history-
independent data structures. As we will see, it is possible to replace these complicated data
structures with simple variants of the prefix-sum tree (Section 3.2), where the memory use is
sparse, and then invoke the main theorem of our paper.

The proofs are omitted in the main body due to space constraints are instead included in
the appendix.
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A Simplifications of previous work (the proofs)

A.1 Ambainis’ Walk Algorithm for Element Distinctness
Ambainis’ description and analysis of his data structure is complicated, and roughly 6 pages
long, whereas a presentation of his results with a simple data structure and an appeal to
our theorem requires less than 2 pages, as we will now see. Also, the presentation of the
algorithm is considerably muddled by the various difficulties and requirements pertaining to
the more complicated data structure. In a presentation of his results that would then appeal
to Theorem 1, we have a very clear separation of concerns.

Ambainis’ algorithm is a Õ(n
k

k+1 )-time solution to the following problem:

▶ Definition 10 (k-Element Distinctness). Given a list L of n integers in Σ are there k

elements xi1 , . . . , xik
∈ L such that xi1 = · · · = xik

.

Ambainis’ algorithm for k-Element Distinctness [2] is quantum walk algorithm on a
Johnson graph J(n, r) with r = nk/k+1 and runs in Õ(nk/k+1) time. The crucial ingredient
in making the algorithm time efficient is the construction of data-structure which can store
a set S ⊆ [n] × Σ of elements of size r, under efficient insertions and removals, so that one
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may efficiently query at any given time whether there exist k elements (i1, x1), . . . , (ik, xk)
in S with distinct indices i1, . . . , ik but equal labels x1 = · · · = xk. Ambainis makes use of
skip-lists and hash tables, ensuring that all operations run in O(log4(n+ |Σ|)) time. However,
if one does not care about space-efficiency, there is a much simpler data structure that serves
the same purpose. The following definition is illustrated in Figure 2.

▶ Definition 11. Let S ⊆ [n] × Σ, with |S| = r and |Σ| = nO(1) a power of 2, and such
that every i ∈ [n] appears in at most one pair (i, x) ∈ S. The k-element-distinctness tree
that represents S, denoted Tk(S), is a complete rooted binary tree with |Σ| leaves. Each leaf
node x ∈ Σ is labeled by a bit vector Bx ∈ {0, 1}n and a number countx ∈ {0, . . . , n}, so that
Bx[i] = 1 iff (i, x) ∈ S, and the countx is the Hamming weight of Bx. Each internal node w
is labeled by a bit flagw ∈ {0, 1} which indicates whether there exists a leaf x, descendent of
w, with countx ≥ k.

Memory Representation

A k-element-distinctness tree is represented in the memory by an array of |Σ| − 1 bits of
memory holding the flags of the internal nodes, followed by |Σ| blocks of n+ ⌈log n⌉ bits of
memory each, holding the labels of the leaf nodes. The blocks appear in the same order as a
breadth-first traversal of Tk(S). Consequently, for every S ⊆ [n] × Σ there is a corresponding
binary string of length |Σ| − 1 + (n + ⌈log n⌉)|Σ| that uniquely encodes Tk(S). Crucially,
if |S| = r, then at most O(r(log Σ + log n)) of these bits are 1. So for |Σ| = poly(n), the
encoding is Õ(r)-sparse.

flag

flag flagflag

flagflag flagflag flagflag

0 1 ... n3−1...−n3

count0 ... 0/1

n

0/1

1

Figure 2 Data structure for the k-Element Distinctness problem.

Implemention of data structure operations

It is clear from the definition of k-element-distinctness tree and its memory representation
that a tree Tk(S) represents a set S ⊆ [n] × Σ in a history-independent way. We will now
argue that all the required data structure operations take O(log n) time in the worst case.
Let (i, x) denote an element in [n] × Σ.
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Insertion. To insert (i, x) in the tree, first increase the value of the count variable of
the leaf x, and set Bx[i] = 1. Then, if count ≥ k, set flagw = 1 for all w on the root-to-x
path. This update requires O(log n) time as |Σ| = poly(n).
Deletion. The procedure to delete is similar to the insertion procedure. To delete
(i, x) in the tree, first decrease the value of the countx and set B[i] = 0. If count < k,
then, for all w on the root-to-x path which do not have both children w0, w1 with
flagw0

= flagw1
= 1, set flagw = 0. This requires O(log n) time.

Query. To check if the tree has k distinct indices with the same x, we need only check if
flagroot = 1, which takes O(1) time.

Runtime, error and memory usage

Using the above data-structure, the runtime of Ambainis’ algorithm is now Õ(n
k

k+1 ) time.
The total memory used is O(n|Σ|) bits. However, note that at any point of time in any
branch of computation Ambainis’ walk algorithm stores sets of size r = O(n

k
k+1 ). Hence their

algorithm with this data structure is a Õ(n
k

k+1 )-sparse algorithm. Thus, invoking Theorem 1
we conclude the following.

▶ Corollary 12. There is a bounded-error QRAM algorithm that computes k-Element Dis-
tinctness in Õ(nk/k+1) time using Õ(nk/k+1) memory qubits.

A.2 Quantum Algorithms for Closest-Pair and related Problems
The paper of Aaronson et al [1] provides quantum algorithms and conditional lower-bounds
for several variants of the Closest Pair problem (CP).

Let ∆(a, b) = ∥a − b∥ denote the Euclidean distance. We then describe the Closest
Pair problem under Euclidean distance ∆, but we could have chosen any other metric ∆
in d-dimensional space which is strongly-equivalent to the Euclidean distance (such as ℓp

distance, Manhattan distance, ℓ∞, etc).

▶ Definition 13 (Closest Pair (CP(n, d)) problem). In the CP(n, d) problem, we are given a
list P of n distinct points in Rd, and wish to output a pair a, b ∈ P with the smallest ∆(a, b).

We may also define a threshold version of CP.

▶ Definition 14. In the TCP(n, d) problem, we are given a set P = {p1, . . . , pn} of n points
in Rd and a threshold ε ≥ 0, and we wish to find a pair of points a, b ∈ P such that ∆(a, b) ≤ ε,
if such a pair exists.

For simplicity, so we may disregard issues of representation of the points, we assume that
all points are specified using O(log n) bits of precision. By translation, we can assume that
all the points lie in in the integer hypercube [L]d for some L = poly(n), and that δ ∈ [L],
also.

It is then possible to solve CP by running a binary search over the (at most n2) different
values of δ ∈ {∆(pi, pj) | i, j ∈ [n]} and running the corresponding algorithm for TCP. This
will add an additional O(log n) factor to the running time.

The TCP(n, d) problem is a query problem with certificate complexity 2. If one is familiar
with quantum walks, it should be clear that we may do a quantum walk on the Johnson
graph over n vertices, to find a pair with the desired property, by doing O(n2/3) queries to
the input. Again, if one is familiar with quantum walks, one will realize that, in order to
implement this walk efficiently, we must dynamically maintain a set S ⊆ [n], and at each
step in the quantum walk, we must be able to add or remove an element i to S, and answer
a query of the form: does there exist a pair i, j ∈ S with ∆(pi, pj) ≤ ε?
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The only difficulty, now, is to implement an efficient data structure that can dynamically
maintain S in this way, and answer the desired queries, while being time and space efficient.
Aaronson et al construct a data-structure which can store a set S ⊆ [n] × [L]d of points
of size r, under efficient insertions and removals, so that one may query at any given time
whether there exist two points in S which are ε-close. They do so by first discretizing [L]d
into a hypergrid of width ε/

√
d, as explained below, and then use a hash table, skip list, and

a radix tree to maintain the locations of the points in the hypergrid.
The presentation of the data structure in the paper is roughly 6 pages long, and one must

refer to Ambainis’ paper for the error analysis, which is absent from the paper. As we will
see, a simple, sparse data structure for the same purpose can be described in less than 2
pages, and then an appeal to Theorem 1 gives us the same result up to log factors.

Discretization

We discretize the cube [L]d into a hypergrid of width w = ε√
d
, and let id(p) denote the box

containing p in this grid. I.e., we define a function id(p) : [L]d → {0, 1}⌈d log(L/ε)⌉ by

id(p) = (⌊p(1)/w⌋, . . . , ⌊p(d)/w⌋) (represented in binary).

Let Σ = {0, 1}⌈d log(L/ε)⌉ denote the set of all possible boxes. We say that two boxes
g, g′ ∈ Σ are neighbours if√√√√ d∑

i=1
∥g(i) − g′(i)∥2 ≤

√
d.

A loose estimate will show there can be at most (2
√
d+ 1)d neighbours for any box. This

method of discretization ensures the following crucial property:

▶ Observation 15 (Observation 45 [1]). Let p, q be any two distinct points in [0, L]d, then
1. if id(p) = id(q), then ∆(p, q) ≤ ε, and
2. if ∆(p, q) ≤ ε, then id(p) and id(q) are neighbours.

From Observation 15, it follows that i, j ∈ [n] exist with ∆(pi, pj) ≤ ε, if and only if we
have one of the following two cases:

Either there is such a pair i, j with id(pi) = id(pj).
Or there is no such pair, and then there must exist two neighbouring boxes id(i) and
id(j), each containing a single point, with ∆(pi, pj) ≤ ε.

We now describe the data structure itself. Let us assume without loss of generality that
n is a power of 2.

▶ Definition 16 (Data Structure for CP). Let S ⊆ [n] × Σ, with |S| = r, and such that
every i ∈ [n] appears in at most one pair (i, x) ∈ S. The closest-pair tree that represents S,
denoted by TCP (S), is a complete rooted binary tree with |Σ| leaves. Each leaf node x ∈ Σ
is labeled by a number externalx ∈ {0, . . . , n}, and a prefix-sum tree P (Sx) representing
the set Sx = {i ∈ [n] | (i, x) ∈ S}. Each internal node w is labeled by a bit flagw ∈ {0, 1}.
These labels obey the following rules:

If |Sx| = 1, then externalx is the number of boxes y ̸= x, which are neighbours of x, and
which have |Sy| = 1 and ∆(pi, pj) ≤ ε for the (unique) j ∈ Sy.
If |Sx| ≥ 2, then externalx = 0.
The flagw = 1 if any of the children x descendants to the internal node w have either
|Sx| ≥ 2 or |Sx| = 1 and externalx ≥ 1.
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It follows from the above discussion that there exist two elements (i, x), (j, y) ∈ S with
∆(pi, pj) ≤ ε if and only if flagroot = 1 in TCP (S). We now show how to efficiently maintain
TCP (S) under insertions and removals.

Memory Representation

A TCP tree is represented in the memory by an array of |Σ| − 1 bits of memory holding the
flags of the internal nodes, followed by |Σ| blocks of n log n+ n bits of memory each, holding
the labels of the leaf nodes. The blocks appear in the same order as a breadth-first traversal
of TCP (S). Consequently, for every S ⊆ [n] × Σ there is a corresponding binary string of
|Σ| − 1 + (n log n+ n)|Σ| that uniquely encodes TCP (S). Crucially, if |S| = r, then at most
O(r(log |Σ| + log n)) of these bits are 1. Since |Σ| = LO(d) = poly(n) (recall d = O(1)), the
encoding is Õ(r)-sparse.

flag

flag flagflag

flagflag flagflag flagflag

x ... ... ℓ|Σ|...ℓ2ℓ1

externalx P (Sx)

Figure 3 Data structure for the CP problem.

Implementation of data structure operations

It is clear from the definition of TCP tree and its memory representation that a tree TCP (S)
represents a set S ⊆ [n] × Σ in a history-independent way. We will now argue that all
the required data structure operations take O(log n) time in the worst case. For every
(i, x) ∈ [n] × [L]d there is a corresponding (i, z) ∈ [n] × Σ, with z = id(x), stored in the data
structure.

Insertion. To insert (i, x) in the tree, first go to the memory location corresponding to
leaf x. Begin by inserting i in the prefix-sum tree P (Sx). Then three cases arise

If |Sx| = 1 then for every neighbour y of x with |Sy| = 1 do the following: Using the
prefix-sum tree at leaf y obtain the only non-zero leaf index j of P (Sy). This operation
takes log n time. Then check if ∆(pi, pj) ≤ ε, if yes then increase the values of both
externalx and externaly by 1. If this caused externaly > 0 then set flagw = 1 for
all internal nodes w on the path from leaf y to the root of TCP (S).
After going over all neighbours, check if externalx ≥ 1, if it is then set flagw = 1 for
all internal nodes w on the path from leaf x to the root of TCP (S). This process takes
at most (2

√
d+ 1)d log n time as there will be at most (2

√
d+ 1)d neighbours, which is

O(log n) for d = O(1).
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If |Sx| = 2 using the prefix-sum tree P (Sx) obtain the only other non-zero leaf index
i′ ̸= i of P (Sx). Then for all neighbours y of x with |Sy| = 1 do the following:
Using the prefix-sum tree P (Sy) obtain the only non-zero index j of P (Sy). Check if
∆(pi′ , pj) ≤ ε, and if so decrease the value of externaly by 1. If that results in making
externaly = 0 then set flagw = 0 for the parent of y, unless the other child y′ of the
parent of y has |Sy′ | ≥ 2 or externaly′ ≥ 1. Likewise, among all the internal nodes w
that are on the path from the root to y’s parent, update the flagw accordingly, i.e.,
set flagw = 1 if any child u of w has flagu = 1, and otherwise set flagw = 0.
Having done that, set externalx = 0 and set flagw = 1 for all internal nodes w
from leaf x to the root TCP (S). This process also takes O(log n) time (when d is a
constant).
If |Sx| > 2 then do nothing.

Deletion. The procedure to delete is similar to the insertion procedure.
Query. To check if the tree has a pair (i, x), (j, y) ∈ S such that ∆(pi, pj) ≤ ε, we need
only check if flagroot = 1, which takes O(1) time.

Runtime, error and memory usage

Using the above data-structure, the runtime of this TCP algorithm is now Õ(n 2
3 ) time. The

total memory used is Õ(n|Σ|) bits. However, note that at any point of time in any branch
of computation this algorithm stores sets of size r = O(n 2

3 ). Hence their algorithm with
this data structure is a Õ(n 2

3 )-sparse algorithm. Thus, invoking Theorem 1 we conclude the
following.

▶ Corollary 17. There is a bounded-error QRAM algorithm that computes TCP in Õ(n2/3)
time using Õ(n2/3) memory qubits.

A.3 Fine-Grained Complexity via Quantum Walks
The authors’ own paper [4] shows that the quantum 3SUM conjecture, which states that
there exists no truly sublinear quantum algorithm for 3SUM, implies several other quantum
lower-bounds. The reductions use quantum walks together with complicated space-efficient
data structures. We had already realized, when writing the paper, that simple yet space-
inefficient data structures could be used instead, and included this observation in the paper,
so we will not repeat it here. Section 3.1, with the space inefficient sparse data structures, is
4 pages long, whereas section 3.2, with the complicated space efficient data structures, is 12
pages long.
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1 Introduction

For many NP-complete problems, the exact solution can be found much faster than a
brute-force search over the possible solutions; it is not so rare that the best currently known
algorithms are exponential [9]. Perhaps one of the most famous examples is the travelling
salesman problem, where a naive brute-force requires O∗(n!) computational time, but a
dynamic programming algorithm solves it exactly only in O∗(2n) time [4, 14]. Such algorithms
are studied also because they can reveal much about the mathematical structure of the
problem and because sometimes in practice they can be more efficient than subexponential
algorithms with a large constant factor in their complexity.

With the advent of quantum computing, it is curious how quantum procedures can
be used to speed up such algorithms. A clear example is illustrated by the SAT problem:
while iterating over all possible assignments to the Boolean formula on n variables gives
O∗(2n) time, Grover’s search [13] can speed this up quadratically, resulting in O∗(

√
2n) time.

Grover’s search can also speed up exponential dynamic programming: recently Ambainis
et al. [1] have shown how to apply Grover’s search recursively together with classical
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precalculation to speed up the O∗(2n) dynamic programming introduced by Bellman, Held
and Karp [4, 14] to a O(1.817n) quantum algorithm. For some problems like the travelling
salesman problem and minimum set cover, the authors also gave a more efficient O(1.728n)
time quantum algorithm by combining Grover’s search with both divide & conquer and
dynamic programming techniques. Their approach has been subsequently applied to find a
speedup for more NP-complete problems, including graph coloring [19], minimum Steiner
tree [18] and optimal OBDD ordering [20].

In this paper, we focus on the NP-complete problem of finding the treewidth of a graph.
Informally, the treewidth is a value that describes how close the graph is to a tree; for example,
the treewidth is 1 when the graph is a tree, while the treewidth of a complete graph on n

vertices is n − 1. This quantity is prominently used in parameterized algorithms, as many
problems are efficiently solvable when treewidth is small, such as vertex cover, independent
set, dominating set, Hamiltonian cycle, graph coloring, etc. [3]. The applications of treewidth,
both theoretical and practical, are numerous, see [5] for a survey. If the treewidth is at
most k, it can be computed exactly in O(nk+2) time [2]; 2-approximated in parameterized
linear time 2O(k)n [17]; O(

√
log k)-approximated in polynomial time [8]; k-approximated in

O(k7n log n) time [10].
As for exact exponential time treewidth algorithms, both currently most time and space

efficient algorithms were proposed by Fomin and Villanger in [11]: the first uses O(1.755n)
time and space and the second requires O(2.616n) time and polynomial space. The crucial
ingredient of these algorithms is a combinatorial lemma that upper bounds the number of
connected subsets with fixed neighborhood size (Lemma 7), as well as gives an algorithm
that lists such sets.

Our main motivation for tackling these algorithms is that although the O(1.817n) quantum
algorithm from [1] is applicable to treewidth, it is still less efficient than Fomin’s and
Villanger’s. In this paper we show that their techniques are also amenable to quantum search
procedures. In particular, we focus on their polynomial space algorithm. This algorithm has
two nested procedures: the first procedure uses Lemma 7 to search through specific subsets
of vertices S to fix as a bag of the tree decomposition; the second procedure finds the optimal
width of the tree decomposition with S as a bag.

We find that Grover’s search can be applied to the listing procedure of Lemma 7, thus
speeding up the first procedure quadratically. For the second procedure, classically one can
use either the O∗(2n) time and space dynamic programming algorithm or the O∗(4n) time
and polynomial space divide & conquer algorithm (Fomin and Villanger use the latter), which
both were introduced in [6]. The divide & conquer algorithm we can also speed up using
Grover’s search. Thus, we obtain a quadratic speedup for the polynomial space algorithm:

▶ Theorem 1. There is a bounded-error quantum algorithm that finds the exact treewidth of
a graph on n vertices in O(1.61713n) time and polynomial space.

Next, using the fact that the O∗(2n) dynamic programming algorithm can be sped up to an
O∗(1.817n) quantum algorithm together with the quadratic speedup of Lemma 7, we obtain
our second quantum algorithm:

▶ Theorem 2. Assuming the QRAM data structure, there is a bounded-error quantum
algorithm that finds the exact treewidth of a graph on n vertices in O(1.55374n) time and
O(1.45195n) space.

The last theorem suggests a possibility for an even more efficient algorithm by trading
some space for time. We achieve this by proving a treewidth property which essentially
states that we can precalculate some values of dynamic programming for the original graph,
and reuse these values in the dynamic programming for its subgraphs (Lemma 22). This
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allows us a global precalculation, which can be used in the second procedure of the treewidth
algorithm. To do that, we have to modify the O(1.817n) algorithm of [1]. We refer to it as
the asymmetric quantum exponential dynamic programming. This gives us the following
algorithm:

▶ Theorem 3. Assuming the QRAM data structure, there is a bounded-error quantum
algorithm that finds the exact treewidth of a graph on n vertices in O(1.53793n) time and
space.

Lastly, we observe that replacing the O∗(4n) divide & conquer algorithm in the classical
O(2.616n) polynomial space algorithm by the O∗(2n) dynamic programming only lowers
the time complexity to O∗(2n). However, the interesting consequence is that the space
requirement drops down to O∗(

√
2n). Hence, we obtain a classical time-space tradeoff:

▶ Theorem 4. The treewidth of a graph on n vertices can be computed in O∗(2n) time and
O∗(√2n

)
space.

Time-wise, this is more efficient than the O(2.616n) time polynomial space algorithm, and
space-wise, this is more efficient than the O(1.755n) time and space algorithm. It also fully
subsumes the time-space tradeoffs for permutation problems proposed in [16] applied to
treewidth.

2 Preliminaries

We denote the set of integers from 1 to n by [n]. For a set S, denote the set of all its subsets
by 2S . We call a permutation of a set of vertices S ⊆ V a bijection π : S → [|S|]. We denote
the set of permutations of S by Π(S). For a permutation π ∈ Π(S), let π<v = {w ∈ S |
π(w) < π(v)} and π>v = {w ∈ S | π(w) > π(v)}. We say that a subset T is a prefix of
π : S → [|S|] if {π(t) | t ∈ T} = {1, . . . , i} for some i ∈ {1, . . . , |S|} or T is an empty set.
Similarly, we say that T is a suffix of π : S → [|S|] if {π(t) | t ∈ T} = {i, . . . , |S|} for some
i ∈ {1, . . . , n} or T is an empty set.

We write O(f(n)) = poly(n) if f(n) = O(nc) for some constant c. Let O(poly(n)f(m)) =
O∗(f(m)). This is useful since our subprocedures will often have some running time f(m)
times some function that depends on the size of the input graph G on n vertices. In this
paper, we are primarily concerned with the exponential complexity of the algorithms, hence,
we are interested in the f(m) value of an O∗(f(m)) complexity.

Graph notation

For a graph G = (V, E) and a subset of vertices S ⊆ V , denote G[S] as the graph induced in
G on S. For a subset of vertices S ⊆ V , let N(S) = {v ∈ V − S | u ∈ S, {u, v} ∈ E} be its
neighborhood. We call a subset S ⊆ V connected if G[S] is connected, and C ⊆ V a clique if
G[C] is a complete graph.

For completeness, we also describe the notions of potential maximum cliques and minimal
separators, which are specific subsets of V . Our quantum algorithms don’t additionally rely
on them more than the algorithm of Fomin and Villanger; for their further properties, see
e.g. [11].

A graph is called chordal if every cycle of length at least 4 contains an edge that connects
non-consecutive vertices of the cycle. A triangulation of a graph G = (V, E) is a chordal
graph H = (V, E′) such that E ⊆ E′. A triangulation H is minimal if every graph obtained
from H by removing any edge is not a triangulation. A set of vertices Ω ⊆ V of a graph
G = (V, E) is a potential maximum clique if there is a minimal triangulation H of G such
that Ω is a maximal clique of H.
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For two non-adjacent vertices u and v in a graph G, a subset of vertices S ⊆ V is a
u, v-separator if u and v are in different connected components of G[V − S]. A u, v-separator
is minimal if none of its proper subsets is a u, v-separator. A set S is called a minimal
separator, if there exist two vertices u, v ∈ G such that S is a minimal u, v-separator.

Treewidth

A tree decomposition of a graph G = (V, E) is a pair (X, T ), where T = (VT , ET ) is a tree
and X = {χi | i ∈ VT } ⊆ 2V such that:⋃

χ∈X χ = V ;
for each edge {u, v} ∈ E, there exists χ ∈ X such that u, v ∈ χ;
for any vertex v ∈ V in G, the set of vertices {χ | v ∈ χ} forms a connected subtree of T .

We call the subsets χ ∈ X bags and the vertices of T nodes. The width of (X, T ) is defined
as the minimum size of χ ∈ X minus 1. The treewidth of G is defined as the minimum width
of a tree decomposition of G and we denote it by tw(G). We also consider optimal tree
decompositions given that some subset χ ∈ V is a bag of the tree. We denote the smallest
width of a tree decomposition of G among those that contain χ as a bag by tw(G, χ).

Approximations

For the binomial coefficients, we use the following well-known approximation:

▶ Theorem 5 (Entropy approximation). For any k ∈ [0, 1], we have
(

n
k

)
≤ 2H( k

n )·n, where
H(ϵ) = −(ϵ log2(ϵ) + (1 − ϵ) log2(1 − ϵ)) is the binary entropy function.

Quantum subroutines

Our algorithms use a well-known variation of Grover’s search, quantum minimum finding:

▶ Theorem 6 (Theorem 1 in [7]). Let A : N → [n] be an exact quantum algorithm with running
time T . Then there is a bounded-error quantum algorithm that computes mini∈[N ] A(i) in
O∗(T

√
N) time.

Two of our algorithms use the QRAM data structure [12]. This structure stores N

memory entries and, given a superposition of memory indices together with an empty data
register

∑
i∈[N ] α |i⟩ |0⟩, it produces the state

∑
i∈[N ] α |i⟩ |datai⟩ in O(log N) time. In our

algorithms, N will always be exponential in n, which means that a QRAM operation is going
to be polynomial in n. Thus, this factor will not affect the exponential complexity, which we
are interested in.

In our algorithms, we will often have a quantum algorithm that takes exact subprocedures
(like in Theorem 6), and give it bounded-error subprocedures. Since we always going to take
O(exp(n)) number of inputs, this issue can be easily solved by repeating the subprocedures
poly(n) times to boost the probability of correct answer to 1 − O(1/ exp(n)): it can be
then shown that the branch in which all the procedures have correct answers has constant
amplitude. The final bounded-error algorithm incurs only a polynomial factor, and does
not affect the exponential complexity. We also note that on a deeper perspective, all our
quantum subroutines are based on the primitive of Grover’s search [13]; an implementation
of Grover’s search with bounded-error inputs that does not incur additional factors in the
complexity has been shown in [15].

We also are going to encounter an issue that sometimes we have some real parameter
α ∈ [0, 1] and we are examining

(
n

αn

)
. Since αn is not integer, this value is not defined;

however, we can take this to be any value between
(

n
⌊αn⌋

)
or
(

n
⌈αn⌉

)
, as they differ only by a

factor of n. Thus, this does not produce an issue for the exponential complexity analysis.
Henceforward we abuse the notation and simply write

(
n

αn

)
.
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3 Combinatorial lemma

In this section we describe how the main combinatorial lemma of [11] can be sped up
quantumly qudratically using Grover’s search.

▶ Lemma 7 (Lemmas 3.1. and 3.2. in [11]). Let G = (V, E) be a graph. For every v ∈ V and
b, f ≥ 0, the number of connected subsets B ⊆ V such that (1) v ∈ B, (2) |B| = b + 1, and
(3) |N(B)| = f is at most

(
b+f

b

)
. There also exists an algorithm that lists all such sets in

O∗(
(

b+f
b

)
) time and polynomial space.

Informally, this lemma is used in the treewidth algorithm to search for a set, such that, if
fixed as a bag of the tree decomposition, the remaining graph breaks down into connected
components of bounded size; then, the optimal width of the tree decomposition with this bag
fixed can be solved using algorithms from Section 4. The lemma upper bounds the number
of sets to consider.

Their proof of this lemma (see Appendix A) essentially gives a branching algorithm that
splits the problem into several problems of the same type, and solves them recursively. The
idea for applying Grover’s search to such a branching algorithm is simple. The algorithm
that generates all sets can be turned into a procedure that, given a number i ∈ [

(
b+f

b

)
] of the

set we need to generate, generates this set in polynomial time. Then, we can run Grover’s
search over all integers in [

(
b+f

b

)
] on this procedure.

▶ Lemma 8. Let G = (V, E) be a graph on n vertices, and A : 2V → [n] be an exact quantum
algorithm with running time T . For every v ∈ V and b, f ≥ 0, let Bv,b,f be the set of
connected subsets B ⊆ V satisfying the conditions of Lemma 7. Then there is a bounded-error

quantum algorithm that computes minB∈Bv,b,f
A(B) in time O∗

(
T
√(

b+f
b

))
.

4 Fixed bag treewidth algorithms

In this section we describe algorithms that calculate the optimal treewidth of a graph with
the condition that a subset of its vertices is fixed as a bag of the tree decomposition. We
then show ways to speed them up quantumly. Both approaches were given by Bodlaender et
al. [6].

4.1 Treewidth as a linear ordering
Both of these algorithms use the fact that treewidth can be seen as a graph linear ordering
problem. For a detailed description, see Section 2.2 of [6], from where we also borrow a lot
of notation. We will also use the properties of this formulation in our improved quantum
algorithm.

A linear ordering of a graph G = (V, E) is a permutation π ∈ Π(V ). The task of a linear
ordering problem is finding minπ∈Π(V ) fG(π), for some known function fG.

For two vertices v, w ∈ V , define a predicate P G
π (v, w) to be true iff there is a path from

v to w in G such that all internal vertices in that path are before v and w in π. Then define
RG

π (v) to be the number of vertices w such that π(w) > π(v) and P G
π (v, w) holds. The

following proposition gives a description of treewidth as a linear ordering problem:

▶ Proposition 9 (Proposition 3 in [6]). Let G = (V, E) be a graph, and k a non-negative
integer. The treewidth of G is at most k iff there is a linear ordering π of G such that for
each v ∈ V , we have RG

π (v) ≤ k.
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For a set of vertices S ⊆ V and a vertex v /∈ S, define QG(S, v) = {w ∈ V − S − {v} |
v and w are connected by a path in G[S ∪ {v, w}]}. Note that RG

π (v) = |QG(π<v, v)|, and
|QG(S, v)| can be computed in poly(n) time using, for example, depth-first search.

Then define the quantities TWRG(L, S) = min π∈Π(V )
L is a prefix of π

maxv∈S |QG(L ∪ π<v, v)|

and TWG(S) = minπ∈Π(V ) maxv∈S |QG(π<v, v)|. These notations are connected by the
relation TWG(G) = TWRG(∅, S). Note that tw(G) is equal to minπ∈Π(V ) maxv∈V RG

π (v) =
TWG(V ).

The following lemma gives a way to find optimal fixed bag tree decompositions using the
algorithms for finding the optimal linear arrangements:

▶ Lemma 10. Let G = (V, E) be a graph, and χ ⊆ V a subset of its vertices. Then
tw(G, χ) = max(TWG(V − χ), |χ| − 1).

In the final treewidth algorithms, we will also use the following fact:

▶ Lemma 11. Let G = (V, E) be a graph and χ ⊆ V a subset of its vertices. Let C be the set
of connected components of G[V − χ]. Then tw(G, χ) = maxC∈C tw(G[C ∪ χ], χ).

Proofs of these lemmas are given in Appendix B.

4.2 Divide & Conquer
The first algorithm is based on the following property:

▶ Lemma 12 (Lemma 7 in [6]). Let G = (V, E) be a graph, S ⊆ V , |S| ≥ 2, L ⊆ V ,
L ∩ S = ∅, 1 ≤ k < |S|. Then

TWRG(L, S) = min
S′⊆S
|S′|=k

max(TWRG(L, S′), TWRG(L ∪ S′, S − S′)).

Note that TWRG(L, {v}) = |QG(L, v)| can be calculated in polynomial time. The value
we wish to calculate is TWRG(∅, V − χ). Picking k = |S|/2 in Lemma 12 and applying
Lemma 10, we obtain a poly(|V |)4|V |−|χ| deterministic algorithm with polynomial space:

▶ Theorem 13 (Theorem 8 in [6]). Let G = (V, E) be a graph on n vertices and χ ⊆ V a
subset of its vertices. There is an algorithm that calculates tw(G, χ) in O∗(4n−|χ|) time and
polynomial space.

Immediately we can prove a quadratic quantum speedup using Grover’s search:

▶ Theorem 14. Let G = (V, E) be a graph on n vertices and χ ⊆ V a subset of its vertices.
There is a bounded-error quantum algorithm that calculates tw(G, χ) in O∗(2n−|χ|) time and
polynomial space.

Proof. We can apply quantum minimum finding to check sets S′ in Lemma 12, in order to
obtain a quadratic speedup over Theorem 13. To avoid the accumulation of error in the
recursion, we can use the Grover’s search implementation with bounded-error inputs [15]. ◀

4.3 Dynamic programming
The second algorithm is based on the following recurrence:

▶ Lemma 15 (Lemma 5 in [6]). Let G = (V, E) be a graph and S ⊆ V , S ̸= ∅. Then

TWG(S) = min
v∈S

max(TWG(S − {v}), |QG(S − {v}, v)|).
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Note that in fact Lemma 15 is a special case of Lemma 12 with L = ∅ and k = |S| − 1. This
lemma together with Lemma 10 and a dynamic programming technique by Bellman, Held
and Karp [4, 14] gives the following algorithm:

▶ Theorem 16 (Theorem 6 in [6]). Let G = (V, E) be a graph on n vertices and χ ⊆ V a
subset of its vertices. There is an algorithm that calculates tw(G, χ) in O∗(2n−|χ|) time and
space.

This algorithm calculates the values of TWG(S) for all sets S in order of increasing size
of the sets, and also stores them all in memory. Such dynamic programming can be sped up
quantumly: Ambainis et al. [1] have shown a O(1.817n) time and space quantum algorithm
with QRAM for such problems. Therefore, this gives the following quantum algorithm:

▶ Theorem 17. Let G = (V, E) be a graph on n vertices and χ ⊆ V a subset of its
vertices. Assuming the QRAM data structure, there is a bounded-error quantum algorithm
that calculates tw(G, χ) in O∗(1.816905n−|χ|) time and space.

Note that this algorithm can be used to calculate TWRG(L, S). Firstly, TWRG(L,∅) = 0
and

TWRG(L, S) = min
v∈S

max(TWRG(L, S − {v}), |QG(L ∪ (S − {v}), v)|)

by Lemma 12. As already mentioned earlier, the value |QG(L∪(S−{v}), v)| can be calculated
in polynomial time. Hence this recurrence is of the same form as Lemma 15.

▶ Theorem 18. Let G = (V, E) be a graph on n vertices and L, S ⊆ V be disjoint subsets of
vertices. Assuming the QRAM data structure, there is a bounded-error quantum algorithm
that calculates TWRG(L, S) in O∗(1.81691|S|) time and space.

5 Fomin’s and Villanger’s algorithm

In this section, we first describe the polynomial space treewidth algorithm of [11]. Afterwards,
we summarize the time complexity for the classical algorithm and then for the same algorithm
sped up by the quantum tools presented above. The proofs for the theorem in this Section
are given in Appendix B.

The algorithm relies on the following, shown implicitly in the proof of Theorem 7.3.
of [11].

▶ Lemma 19. Let G = (V, E) be a graph, and β ∈ [0, 1]. There exists an optimal tree
decomposition (X, T ) of G so that at least one of the following holds:
(a) There exists a bag Ω ∈ X such that Ω is a potential maximum clique and there exists a

connected component C of G[V − Ω] such that |C| ≤ βn.
(b) There exists a bag S ∈ X such that S is a minimal separator and there exist two

disjoint connected components C1, C2 of G[V − S] such that N(C1) = N(C2) = S and
|C2| ≥ |C1| ≥ βn.

The idea of the algorithm then is to try out all possible potential maximum cliques and
minimal separators that conform to the conditions of this lemma, and for each of these
sets, to find an optimal tree decomposition of G given that the examined set is a bag of
the decomposition using the algorithm from Theorem 13. The treewidth of G then is the
minimum width of all examined decompositions.

The potential maximum clique generation is based on the following lemma.
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▶ Lemma 20 (Lemma 7.1. in [11]). Let G = (V, E) be a graph. The number of maximum
potential cliques Ω of size p such that there exists a connected component C of G[V − Ω] of
size c is at most n

(
n−c
p−1
)
.1 The set of all these cliques can also be generated in time O∗(

(
n−c
p−1
)
).

For the minimal separators, suppose that the size of S is fixed, denote it by s. Note
that since C1 in Lemma 19 is a connected component such that N(C1) = S, then instead of
generating minimal separators, we can generate the sets of vertices C with neighborhood
size equal to s. The set generated in this way contains in their neighbourhoods all of the
minimal separators of size s that we are interested in, and for those sets that do not contain
such a separator, the fixed-bag treewidth algorithm will still find some tree decomposition of
the graph, albeit not an optimal one. The generation is done using Lemma 7: for a fixed size
c of C, the number of such C with exactly s neighbors is at most n

(
c+s

c

)
(the factor of n

comes from trying each of n vertices as the fixed vertex v ∈ B). The algorithm generating
all such C requires time O∗((c+s

c

))
. For a set C, we then find an optimal tree decomposition

of G containing N(C) as a fixed bag using the algorithm from Theorem 13. In this way we
work through all c from βn to n − s − |C2| ≤ (1 − β)n − s.

Algorithm 1 The polynomial space algorithm for treewidth.

1. For c from 0 to βn and p from 1 to n − c generate the set of potential maximal cliques Ω
of size p with a connected component of G[V − Ω] of size c using Lemma 20. For each
Ω, find tw(G, Ω) using Theorem 13.

2. For s from 1 to (1 − 2β)n and for c from βn to (1 − β)n − s generate the set of subsets
C such that |C| = c and N(C) = s using Lemma 7. Let S = N(C); then tw(G, S) is
equal to the maximum of tw(G[S ∪ C], S) and tw(G[V − C], S) by Lemma 11. Use the
algorithm from Theorem 13 to compute these values.

3. Output the minimum width of all examined tree decompositions.

▶ Theorem 21 (Theorem 7.3. in [11]). Algorithm 1 computes the treewidth of a graph with n

vertices in O∗(2.61508n) time and polynomial space.

5.1 A time-space tradeoff
One might ask whether replacing the O∗(4n) divide & conquer algorithm from Theorem
13 with the O∗(2n) dynamic programming algorithm from Theorem 16 in Algorithm 1 can
give any interesting complexity. Indeed, we can show the following previously unexamined
classical time-space tradeoff.

▶ Theorem 4. The treewidth of a graph on n vertices can be computed in O∗(2n) time and
O∗(√2n

)
space.

We can compare this to the existing treewidth algorithms. The most time-efficient
treewidth algorithm runs in time and space O∗(1.7549n) [11], which is more than O∗(√2n

)
.

The polynomial space O∗(2.6151n) algorithm, of course, is slower than O∗(2n). The time-
space tradeoffs for permutation problems from [16] give TS ≳ 3.93, where T ≥ 2 and

1 The original lemma gives an upper bound if the size of Ω is not fixed, but our statement follows from
their proof. We need to fix |Ω| because in the quantum algorithms, Grover’s search will be called for
fixed |Ω| and |C|.
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√
2 ≤ S ≤ 2 are the time and space complexities (bases of the exponent to the power of n)

of the algorithm. Here, TS = 2 3
2 ≈ 2.83, T = 2 and S =

√
2. Therefore, Theorem 4 fully

subsumes their tradeoff for treewidth. We also note that this tradeoff cannot be “tuned”
directly for less time and more space, since the first stage requires Θ∗(2n) time for any β.

5.2 Quantum complexity
Now we are ready to examine the quantum versions of the algorithm. First, we consider the
analogue of Algorithm 1 sped up quadratically using Grover’s search using Lemma 8 and
Theorem 14.

▶ Theorem 1. There is a bounded-error quantum algorithm that finds the exact treewidth of
a graph on n vertices in O(1.61713n) time and polynomial space.

Similarly, we can replace the algorithm from Theorem 16 with the quantum dynamic
programming algorithm from Theorem 17:

▶ Theorem 2. Assuming the QRAM data structure, there is a bounded-error quantum
algorithm that finds the exact treewidth of a graph on n vertices in O(1.55374n) time and
O(1.45195n) space.

6 Improved quantum algorithm

We can see that in Theorem 2 we still have some room for improvement by trading space for
time. This can be done using an additional technique. The main idea is to make a global
precalculation for TWG(S) for all subsets S ⊆ V of size at most αn, for some constant
parameter α. Then, as we will see later, these values can be used in all calls of the quantum
dynamic programming because of the properties of treewidth. For many such calls, this
reduces the O∗(1.817d) running time to something smaller, which in turn reduces the overall
time complexity.

6.1 Asymmetric quantum dynamic programming on the hypercube
We describe our modification to the quantum dynamic programming algorithm by Ambainis
et al. [1]. First, we prove the following lemma that allows us to reutilize the precalculated
DP values on the original graph G in the DP calculation in the subgraphs examined by our
algorithms.

▶ Lemma 22. Let G = (V, E) be a graph, and χ ⊆ V a subset of its vertices. Suppose that
C is a union of some number of connected components of G[V − χ]. Then for any S ⊆ C,
we have TWG[C∪χ](S) = TWG(S).

Proof. Examine the permutations π achieving

TWG[C∪χ](S) = min
π∈Π(C∪χ)

max
v∈S

|QG(π<v, v)|.

As a direct consequence of Lemma 15, there exists such a permutation π with the property
that S is its prefix. Now let π′ ∈ Π(V ) be a permutation obtained by adding the vertices
of V − C − χ to π in any order. Examine any vertex u ∈ V − C − χ and any v ∈ S. Since
u and v are located in different connected components of G[C − χ], any path from u to
v in G passes through some vertex of χ. However, π<v ∩ χ = ∅, as π<v ⊂ S. Then we
can conclude that QG[C∪χ](π<v, v) = QG(π′

<v, v), as u cannot contribute to Q. Therefore,
TWG(S) ≤ TWG[C∪χ](S). On the other hand, TWG(S) ≥ TWG[C∪χ](S), as additional
vertices cannot decrease TW. ◀
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11:10 Quantum Speedups for Treewidth

Now we are ready to describe our quantum dynamic programming procedure. Suppose
that all values of TWG(S) for sets with |S| ≤ αn are known and stored in QRAM, where
α ∈

[
0, 1

2
]

is some fixed parameter. Suppose that we have fixed a subset χ ⊆ V , and our task
is to calculate tw(G[C ∪ χ], χ) for a union C of some connected components of G[V − χ].
By Lemma 10, it is equal to max(TWG[C∪χ](C), |χ| − 1). Since |χ| is known, our goal is to
compute TWG[C∪χ](C).

L1

L2

L3

M
R3

R2
R1

αn = λ1n
′

λ2n
′

λ3n
′

µn′

ρ3n
′

ρ2n
′
ρ1n

′

Figure 1 A schematic representation of layers in the Boolean hypercube with k = 3.

Let n = |V | and n′ = |C|. If n′ ≤ αn, then TWG[C∪χ](C) = TWG(C) by Lemma 22 and
is known from the precalculated values. Hence, assume that n′ > αn. Pick some natural k,
we will call this the number of layers. Let λ1 = αn

n′ , and pick constants λ2 < . . . < λk < µ <

ρk < . . . < ρ1 < 1, such that λ1 < λ2. Then define collections Li = {S ⊆ C | |S| = λin
′},

M = {S ⊆ C | |S| = µn′} and Ri = {S ⊆ C | |S| = ρin
′}. We call these collections layers:

we can represent subsets S ⊆ C as vertices on the hypercube of dimension n′; then these
layers are defined as the subsets of vertices with some fixed Hamming weight, see Figure 1.
For all sets S corresponding to the vertices in the crosshatched area (such that |S| ≤ αn),
the value of TWG[C∪χ](S) = TWG(S) is known from the assumed precalculation.

Now we will describe the quantum procedure. Denote G′ = G[C ∪ χ]. Also denote
TW′

G′(S) = TWRG′(S, C − S) and note that TWG′(S) = TWRG′(∅, S). Informally, cal-
culating TWG′(S) means finding the best ordering for the vertices S as a prefix of the
permutation, and TW′

G′(S) means finding the best ordering for the vertices C − S, where
C − S is in the middle of permutation, followed by some ordering of χ.

Algorithm 2 is exactly the algorithm of [1], with the exception that the precalculation is
performed only for suffixes (and the precalculation for prefixes comes “for free”). Informally,
the idea of the algorithm is to find the optimal path between the vertices s and t with the
smallest and highest Hamming weight in the hypercube. First, we use Grover’s search over
the vertex vk+1 in the middle layer M. Then we search independently for the best path
from s to vk+1 and from vk+1 to t; the optimal path from s to t is their concatenation. To
find the best path from s to vk+1, we use Grover’s search over the vertex vk on the layer Lk

such that there exists a path from vk to vk+1. Then we find the best path from vk to vk+1
by recursively using the O∗(1.817n′) algorithm (where n′ is the dimension of the hypercube
with vk and vk+1 being the smallest and largest weight vertices, respectively). We combine it
with the best path from s to vk, which we find in the similar way (fixing vk−1, . . ., v1). The
value of the optimal path from s to v1 is known from the global precalculation we assumed
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took place before the algorithm. The optimal path from vk+1 to t is found analogously; only
to know the value of the best path from vertices in R1 to t, we have to precalculate these
values “from the back” using DP in the beginning of the algorithm.

Algorithm 2 Asymmetric quantum dynamic programming algorithm.

1. For all S ∈ R1, calculate and store in QRAM the values TW′
G′(S) using the recurrence

TW′
G′(S) = min

v∈C−S
max

(
TW′

G′(S ∪ {v}), |QG′(S, v)|
)
.

This follows from Lemma 12 with k = 1.
2. Use quantum minimum finding over sets S ∈ M to find the answer,

TWG′(C) = min
S∈M

max
(
TWG′(S), TW′

G′(S)
)
.

This also follows from Lemma 12 with k = µn′.

To find TWG′(S), we use the recursive procedure BestPrefixi(G′, S). Its value is
equal to TWG′(S), and it requires S ∈ Li (if i = k+1, then S ∈ M). The needed value
is then given by BestPrefixk+1(G′, S). The description of BestPrefixi(G′, S):

If i = 1, return TWG′(S) = TWG(S) that is stored in QRAM.
If 1 < i ≤ k + 1, then use quantum minimum finding over the sets T ∈ Li−1 to find

TWG′(S) = min
T ∈Li−1

T ⊂S

max(BestPrefixi−1(G′, T ), TWRG′(T, S − T )).

Again, this recurrence follows from Lemma 12 with k = λi−1n′. The value of
TWRG′(T, S−T ) is calculated by the quantum dynamic programming from Theorem
18 and requires O∗(1.817|S|−|T |) time and QRAM space.

To find TW′
G′(S), we similarly use the recursive procedure BestSuffixi(G′, S). Its

value is equal to TW′
G′(S), and it requires S ∈ Ri (if i = k + 1, then S ∈ M).

The needed value is then given by BestSuffixk+1(G′, S). The description of
BestSuffixi(G′, S):

If i = 1, return TW′
G′(S) stored in QRAM from the precalculation in Step 1.

If 1 < i ≤ k + 1, then use quantum minimum finding over the sets T ∈ Ri−1 to find

TW′
G′(S) = min

T ∈Ri−1
S⊂T

max(TWRG′(S, T − S), BestSuffixi−1(G′, T )).

Again, this recurrence follows from Lemma 12 with k = ρi−1n′ − ρin
′. The value

of TWRG′(S, T − S) is calculated by the quantum dynamic programming from
Theorem 18 and requires O∗(1.817|T |−|S|) time and QRAM space.

We will estimate the time complexity of Algorithm 2. The space complexity will not
be necessary, because for the final treewidth algorithm it will be dominated by the global
precalculation, as we will see later.
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The time of the precalculation Step 1 is dominated by the size of the layer R1. It is equal
to O∗(|R1|) = O∗(

(
n′

ρ1n′

)
), which by Lemma 5 is

O∗
(

2H(ρ1)n′
)

.

Let the time of a call of BestPrefixi(G′, S) be Ti, it can be calculated as follows. If
i = 1,

T1 = O∗(1),

as all we need to do is to fetch the corresponding value TWG(S) from QRAM. If i > 1,
then quantum minimum finding examines all T ∈ Li−1 such that T ⊂ S. The number
of such T is

(|S|
|T |
)

=
(

λin′

λi−1n′

)
(for generality, denote λk+1 = µ). Again, by Lemma 5,

this is at most 2H(λi−1/λi)·λin′ . The call to BestPrefixi−1(G′, T ) requires time Ti−1
and calculating TWRG′(T, S − T ) with the algorithm from Theorem 18 requires time
O∗(1.817|S|−|T |) = O∗(1.817(λi−λi−1)n′). Putting these estimates together, we get that
for i > 1,

Ti = O∗

(√
2H
(

λi−1
λi

)
·λin′

· max
(

Ti−1, 1.817(λi−λi−1)n′
))

.

The time T ′
i for BestSuffixi(G′, S) is calculated analogously. We can check the precal-

culated values from Step 1 in

T ′
1 = O∗(1)

and (taking ρk+1 = µ) for i > 1,

T ′
i = O∗

(√
2H
( 1−ρi−1

1−ρi

)
·(1−ρi)n′

· max
(

T ′
i−1, 1.817(ρi−1−ρi)n′

))
.

Lastly, the number of sets examined in the first quantum minimum finding in Step 2 is
equal to the size of M, which is

(
n′

µn′

)
= 2H(µ)n′ by Lemma 5. Therefore, Step 2 requires

time

O∗
(√

2H(µ)n′ · max
(
Tk+1, T ′

k+1
))

.

For any of the complexities T examined here, let’s look at log2(T )/n′; since we are
interested in the exponential complexity, we need to investigate only the constant c in
O∗(2cn). Also note that log2(1.817) ≈ 0.862. This results in the following optimization
program

minimize T (λ1) = max
(

H(ρ1), H(µ)
2 + max

(
tk+1, t′

k+1
))

s.t. λ1 < . . . < λk < λk+1 = µ = ρk+1 < ρk < . . . < ρ1 < 1

ti = H
(

λi−1

λi

)
· λi + max(ti−1, 0.862(λi − λi−1)) ∀i ∈ [2, k + 1]

t1 = 0

t′
i = H

(
1 − ρi−1

1 − ρi

)
· (1 − ρi) + max

(
t′
i−1, 0.862(ρi−1 − ρi)

)
∀i ∈ [2, k + 1]

t′
1 = 0
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We can solve this program numerically and find the time complexity, depending on
the value of λ1. Note that for λ1 ≤ 0.28448 the O(1.817n′) symmetric quantum dynamic
programming is more efficient, so we don’t have to calculate the complexity in that case.
Figure 2 shows the time complexity T (λ1) for k = 0, 1, 2, 3. We can see that the advantage
of adding additional layers quickly becomes negligible.

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

1.2

1.4

1.6

1.8

2

λ1

T
(λ

1)

k = 0
k = 1
k = 2
k = 3

Figure 2 Running time of the asymmetric quantum dynamic programming algorithm.

Note that with λ1 ≈ 0.28448, T (λ1) becomes O∗(1.817n′), as this is the same parameter
for the precalculation layer as in [1]. Thus if it happens that αn < 0.28448n′, the asymmetric
version of the algorithm will have time complexity larger than O∗(1.817n′), so in that case it
is better to call the algorithm from Theorem 17. Our procedure for calculating TWG[C∪χ](C)
is given in Algorithm 3.

Algorithm 3 Quantum algorithm calculating tw(G[C ∪ χ], χ) assuming global precalculation.

Assume that TWG(S) are stored in QRAM for all |S| ≤ αn.
If n′ ≤ αn, fetch TWG[C∪χ](C) = TWG(C) from the global precalculation.
Else if αn ≤ 0.28448n′, find TWG[C∪χ](C) using the O(1.817n′) algorithm of Theorem
17.
Else calculate TWG[C∪χ](C) using Algorithm 2.

Return tw(G[C ∪ χ], χ) = max
(
TWG[C∪χ](C), |χ| − 1

)
.

6.2 Final quantum algorithm

Now we can give the improved quantum dynamic programming algorithm for treewidth, see
Algorithm 4. It requires two constant parameters: α, β ∈

[
0, 1

2
]
. The value αn gives the limit

for the global precalculation, and βn is the cutoff point for the two stages as in Algorithm 1.
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Algorithm 4 Improved quantum algorithm for treewidth.

1. Calculate TWG(S) for all subsets S such that |S| ≤ αn and store them in QRAM.
2. For c from 0 to βn and p from 1 to n − c examine the set of potential maximal cliques Ω

of size p with a connected component of size c. Apply Lemma 8 to Lemma 20 to find the
minimum of tw(G, Ω) in O∗

(√(
n−c
p−1
))

iterations. Calculate the value of tw(G, Ω) using
Algorithm 3.

3. For s from 1 to (1 − 2β)n and for c from βn to (1 − β)n − s examine the set of subsets C

such that |C| = c and |N(C)| = s. Let S = N(C); then tw(G, S) is equal to the maximum
of tw(G[S ∪ C], S) and tw(G[V − C], S) by Lemma 11. Find the minimum of tw(G, S)
using Lemma 8 in O∗

(√(
c+s

s

))
iterations. Calculate the values of tw(G[S ∪ C], S) and

tw(G[V − C], S) using Algorithm 3.
4. Return the minimum width of all examined tree decompositions.

▶ Theorem 3. Assuming the QRAM data structure, there is a bounded-error quantum
algorithm that finds the exact treewidth of a graph on n vertices in O(1.53793n) time and
space.

We can calculate the complexity similarly as in Theorem 2.

Proof. First, we choose α such that it balances the time complexity of the global precal-
culation (Step 1) and the rest of the algorithm (Steps 2–4). The space complexity of this
step asymptotically is equal to its time complexity. Therefore, the space complexity of this
algorithm is equal to

O∗
((

n

αn

))
.

Denote the time complexity of Algorithm 3 with |C| = n′ and some chosen λ1 by
O∗(T (λ1)n′). For fixed α and n′, λ1 is calculated as αn/n′. Then

T (λ1) =


1, if λ1 ≥ 1,
1.81691, if λ1 ≤ 0.28448,
T (λ1), otherwise.

Similarly as we have obtained Equations (1, 2) in the proof of Theorem 21, we can also
calculate the time complexity here. The time complexity of Step 2 now is equal to

O∗

(
βn∑
c=0

√
2n−c · T

(αn

c

)c
)

.

The running time of Step 3 is given by

O∗

(
(1−β)n
max
d=βn

√(
n − d

βn

)
· T
(αn

d

)d
)

.

We can numerically find that α ≈ 0.154468 and β ≈ 0.386401 balance these complexities,
which then are all O(1.53793n). In our numerical calculation, we have used k = 3 for
Algorithm 3. ◀
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A Quantum speedup of the combinatorial lemma

The approach described in Section 3 was formalized by Shimizu and Mori:

▶ Lemma 23 (Lemma 4 in [19]). Let P be a decision problem with parameters n1, . . . , nℓ.
Suppose that there is a branching rule b(P ) that reduces P to mb(P ) problems P1, . . . , Pmb(P )

of the same class. Here, Pi has parameters f
b(P ),i
j (nj) for j ∈ [ℓ], where f

b(P ),i
j ≤ nj. At

least one of the parameters of Pi must be strictly smaller than the corresponding parameter
of P . The solution for P is equal to the minimum of the solutions for P1, . . ., Pmb(P ).

Let U(n1, . . . , nℓ) be an upper bound on the number of leaves in the computational tree.
Assume that the running time of computing b(P ), Pi, f

b(P ),i
j and U(n1, . . . , nℓ) is polynomial

w.r.t. n1, . . ., nℓ. Suppose that U(n1, . . . , nℓ) ≥
∑mb(P )

i=1 U(f b(P ),i
1 (n1), . . . , f

b(P ),i
ℓ (nℓ)). Also

suppose that T is the running time for the computation at each of the leaves in the compu-
tational tree. Then there is a bounded-error quantum algorithm that computes P and has
running time poly(n1, . . . , nℓ)

√
U(n1, . . . , nℓ)T .

We apply this to the combinatorial lemma:

Proof of Lemma 7. According to the proof of Lemma 7 in [11], we have that
ℓ = 2, n1 = b, n2 = f .
b(P ) splits the problem into mb(P ) = f + b problems.
Pi has parameters f

b(P ),i
1 (b) = b − 1 and f

b(P ),i
2 (f) = f − i + 1.

U(b, f) =
(

b+f
f

)
.∑mb(P )

i=1 U(f b(P ),i
1 (b), f

b(P ),i
1 (f)) =

∑f+b
i=1

(
f+b−i

b−1
)

=
∑f+b−1

i=0
(

f+b−1−i
b−1

)
=
(

b+f
f

)
=

U(b, f).
Computing b(P ), f

b(P ),i
1 and U(b, f) takes time polynomial in b and f ; computing Pi

involves contracting two vertices in the graph and can be done in poly(n) time. ◀

B Proofs of the theorems

To prove Lemma 10, we use the following:

▶ Lemma 24 (Lemma 11 in [6]). Let C ⊆ V induce a clique in a graph G = (V, E). The
treewidth of G equals max(TWG(V − C), |C| − 1).

Proof of Lemma 10. Completing a bag of a tree decomposition into a clique does not change
the width of the tree decomposition. The claim then follows from Lemma 24. ◀

Proof of Lemma 11. Let (X, T ) be a tree decomposition with the smallest width w that
contains χ as a bag. For a connected component C ∈ C, examine the tree decomposition
(XC , TC) obtained from (X, T ) by removing all vertices not in χ or C from all bags. Clearly,

https://doi.org/10.1007/978-3-030-61792-9_31
https://doi.org/10.1007/978-3-030-61792-9_31
https://doi.org/10.4230/LIPIcs.SWAT.2020.36
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this is a tree decomposition of G[C ∪ χ] with χ as a bag; as we only have possibly removed
some vertices, its width is at most w. Now, examine the tree decomposition obtained by
taking all (XC , TC) and making χ its common bag. This is a valid tree decomposition, since
no two vertices in distinct connected components of C are connected by an edge. Its width is
the maximal width of (XC , TC), therefore at most w. ◀

Proof of Theorem 21. The algorithms from Lemma 7 and Theorem 13 both require poly-
nomial space, hence it holds also for Algorithm 1.

Now we analyze the time complexity; Stage 1 of the algorithm requires time

O∗

(
βn∑
c=0

n−c∑
p=1

(
n − c

p − 1

)
4n−p

)
= O∗

(
βn∑
c=0

2n−c4c

)
= O∗

(
βnmax
c=0

2n+c

)
= O∗

(
2(1+β)n

)
. (1)

Stage 2 of the algorithm requires time

O∗

(1−2β)n∑
s=1

(1−β)n−s∑
c=βn

(
c + s

c

)
max

(
4c, 4n−c−s

).

Note that we can assume that C = C1 and V − C − S contains C2 (we can check this in
polynomial time by finding the connected components of G[V − S]); since |C2| ≥ |C1|, we
can assume that n − c − s ≥ c. Hence the complexity becomes

O∗

(1−2β)n∑
s=1

(1−β)n−s∑
c=βn

(
c + s

c

)
4n−c−s

 = O∗
(

(1−2β)n
max
s=1

(1−β)n−s
max
c=βn

(
c + s

c

)
4n−c−s

)
.

Now denote d = n − c − s, then c + s = n − d and we can rewrite the complexity as

O∗
(

(1−β)n
max
d=βn

n−dmax
c=βn

(
n − d

c

)
4d

)
.

For any d, the maximum of
(

n−d
c

)
over c ≥ βn can be one of two cases: if βn ≤ n−d

2 ,
it is equal to Θ∗(2n−d); otherwise it is equal to

(
n−d
βn

)
. In the first case, for the interval

c ∈ [βn, n−d
2 ], the function being maximized becomes 2n−d4d = 2n+d. Since this function is

increasing in d, its maximum is covered by the second case with the smallest c such that
c = n−d

2 (in case βn ≤ n−d
2 ). Therefore, the complexity of Stage 2 of the algorithm becomes

O∗
(

(1−β)n
max
d=βn

(
n − d

βn

)
4d

)
. (2)

Now we are searching for the optimal β ∈
[
0, 1

2
]

that balances the complexities (1) and (2).
We solve it numerically and obtain β ≈ 0.38685, giving complexity O∗(2.61508n). ◀

Proof of Theorem 4. First, we look at the time complexity. The time complexity of Stage 1
now is equal to

O∗

(
βn∑
c=0

2n−c2c

)
= O∗(2n).

The time complexity of Stage 2 is equal to

O∗
(

(1−β)n
max
d=βn

(
n − d

βn

)
2d

)
= O∗(2n−d2d

)
= O∗(2n).
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The space complexity of Stage 1 is equal to

O∗
(

βnmax
c=0

2c

)
= O∗(2βn

)
.

The space complexity of Stage 2 is equal to

O∗
(

(1−β)n
max
d=βn

2d

)
= O∗

(
2(1−β)n

)
.

Therefore, the time complexity of this algorithm is O∗(2n) and, taking β = 1
2 , the space

complexity is equal to O∗(√2n
)
. ◀

Proof of Theorem 1. In Algorithm 1, we replace the algorithms from Lemmas 7 and 20
with the quantum algorithm from Lemma 8; the algorithm from Theorem 13 is replaced
with the algorithm from Theorem 14. Since all exponential subprocedures now are sped up
quadratically, the time complexity becomes

O
(√

2.61508n
)

= O(1.61713n).

The space complexity is still polynomial, as Grover’s search additionally uses only polynomial
space. ◀

Proof of Theorem 2. The time complexity of the first stage is now equal to

O∗

(
βn∑
c=0

√
2n−c · 1.816905c

)
= O∗

(√
2n · 1.28475βn

)
.

For the second stage, the time is given by

O∗

(
(1−β)n
max
d=βn

√(
n − d

βn

)
· 1.816905d

)
.

We can numerically find that β ≈ 0.3755 balances these complexities, which then are both
O(1.55374n). The space complexity is

O∗
(

1.816905max(βn,(1−β)n)
)

= O∗
(

1.816905(1−β)n
)

= O(1.45195n). ◀
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implemented on many fault-tolerant architectures. For qutrits, there is an equivalent T gate, that,
like its qubit analogue, makes Clifford+T approximately universal, is injectable by a magic state,
and supports magic state distillation. However, it was claimed that a better gate set for qutrits
might be Clifford+R, where R = diag(1, 1, −1) is the metaplectic gate, as certain protocols and
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and proving that the T gate cannot be exactly synthesized in Clifford+R. This shows that in fact
the T gate is more expressive than the R gate. Moreover, we additionally show that it is impossible
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For example, interest in qudit algorithms and physical implementations has risen recently,
due to the potential advantages in runtime efficiency, resource requirements, computational
space, and noise resilience in communication [23].

For qudits to make a good foundation for a quantum computer, we need methods to
achieve fault-tolerance. In qubit-based protocols, one popular paradigm is to rely on the
Clifford+T gate set. This gate set consists of the efficiently simulable Clifford gates that
can be implemented directly on many error correcting codes, and the T gate that can be
implemented by distilling and injecting magic states [8]. Analogous constructions have been
developed for qudits of all dimensions, each one relying on a specific generalization of the
Clifford+T gate set [9].

In this paper we focus on the case of qutrits, three-dimensional quantum systems. While
qutrits permit the qutrit Clifford+T gate set, which can be implemented fault-tolerantly
on qutrit error correcting codes, analogous to the qubit setting [12], the Clifford+T gate
set is not the only proposed universal fault-tolerant gate set for qutrits. In a series of
papers [1, 12, 11, 5, 4, 3, 6] and a patent [7], the non-Clifford qutrit gate of choice is
the R gate, also referred to as the FLIP gate, reflection gate, or metaplectic gate. It is
defined as R := diag(1, 1,−1). This gate was defined in Ref. [1], where it was shown to
admit a magic state distillation and injection protocol. As a non-Clifford gate it achieves
approximate universality when added to the Clifford gate set [16], as explicitly proved in
Ref. [12, Theorem 2]. It can be implemented in a framework of certain weakly-integral
non-abelian anyons via braiding and topological measurement [11, 12].

While the definition of the R gate looks very simple, containing only 1’s, 0’s and a −1, it
is in fact nowhere in the qutrit Clifford hierarchy [10]. This is because for qutrits, Clifford
gates are based on the third root of unity ω = ei2π/3. Despite this fact, the R gate can
still be injected into a qutrit circuit using a repeat-until-success procedure of an R magic
state which also allows a distillation protocol [1]. The R gate can hence also be realised
fault-tolerantly [1]. Another construction of R is by a measurement-assisted repeat-until-
success protocol requiring two ancillary qutrits to probabilistically realise it out of Clifford
gates [11]. The R gate has been suggested to be “more powerful in practice” than the
T gate [6]. In Ref. [6] they computed the cost of approximating the third level of the
Clifford hierarchy in the Clifford+R (which they refer to as the metaplectic) gate set, and
claimed that constructing the R gate in the Clifford+T gate set requires multiple ancillae
and repeat-until-success circuits.

In this paper we find evidence in contradiction to these previous assertions. We show
that while no single-qutrit Clifford+T circuit composes to an R gate unitarily2, rather
unexpectedly the R gate is exactly constructible through a unitary two-qutrit Clifford+T
circuit with T -count 39, which we construct in Section 3. This demonstrates that R ∈
Clifford+T . Additionally, we prove that the converse is not true, i.e. that T /∈ Clifford+R,
and hence Clifford+R ⊊ Clifford+T . This directly implies any Clifford+T computation can
be exactly implemented through Clifford+T gates with constant overhead, whereas there
exist Clifford+T circuits whose implementation via Clifford+R must strictly increase with
the desired precision.

This result might seem to contradict the fact that R does not belong anywhere in the
Clifford hierarchy, while every Clifford gate and the T gate belongs to the third level C3.
But recall that while C1 and C2 are closed under composition, this is no longer true for the
higher levels of the Clifford hierarchy. In particular, it is not true that any circuit built out
of Clifford+T gates is a unitary that belongs to C3.

2 Unless stated otherwise, we take “single-qutrit” to mean ancilla-free.
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The paper is structured as follows. We cover all the basics on qutrit quantum computation
and gate synthesis in Section 2. Then in Section 3 we show how to build the R gate as a
two-qutrit unitary using only Clifford+T gates and we prove that it is not possible to do
this using just single-qutrit Clifford+T gates. We finish by demonstrating that T is not an
element of Clifford+R so that Clifford+R is in fact a strict subset of Clifford+T . We end
with some concluding remarks in Section 4.

2 Qutrit Clifford+T

A qubit is a two-dimensional Hilbert space. Similarly, a qutrit is a three-dimensional Hilbert
space. We will write |0⟩, |1⟩, and |2⟩ for the standard computational basis states of a qutrit.
Any normalised qutrit state can then be written as

|ψ⟩ = α |0⟩ + β |1⟩ + γ |2⟩ (1)

where α, β, γ ∈ C and |α|2 + |β|2 + |γ|2 = 1.
For a comprehensive overview of quantum computing based on qudits, we refer to the

2020 review by Wang, Hu, Sanders, and Kais [23]. A qudit quantum processor has been
experimentally demonstrated on ion trap systems [20] and superconducting circuits [2, 24, 26].

2.1 Pauli gates and permutation gates
Several concepts for qubits extend to qutrits, or more generally to qudits, which are d-
dimensional quantum systems. We are concerned with the qudit generalizations of Paulis
and Cliffords.

▶ Definition 1. For a d-dimensional qudit, the Pauli X and Z gates are defined as

X |k⟩ = |k + 1⟩ Z |k⟩ = ωk |k⟩ (2)

where ω := e2πi/d such that ωd = 1, and the addition |k + 1⟩ is taken modulo d. We define
the Pauli group as the set of unitaries generated by compositions and tensor products of the
X and Z gates. We write Pd

n for the Pauli group on n qudits [16, 17].

For qubits this X gate is just the NOT gate while Z = diag(1,−1). For the duration of this
paper we will work solely with qutrits, so we take ω to always be equal to e2πi/3.

For a qubit there is only one non-trivial permutation of the standard basis states, which
is implemented by the X gate. For qutrits there are five non-trivial permutations of the
basis states. We call these τ gates and we specify them as τL where L is a permutation
of the elements {0, 1, 2} written in cycle notation. For example, τ(02) is the permutation
which maps |0⟩ 7→ |2⟩, |1⟩ 7→ |1⟩, and |2⟩ 7→ |0⟩. The five non-trivial permutations are then
τ(01), τ(12), τ(02), τ(012), and τ(021) along with the trivial identity permutation I = τ(0)(1)(2).
Compositions of these operators are given by τL · τM = τL·M with L ·M the composition of
permutations. Note that τ(012) = X and τ(021) = X†.

2.2 Exact synthesis and number rings
One natural question to ask when given a set of gates is to determine which operations can
be implemented as a circuit over those gates. This is called the exact synthesis problem. One
frequently useful notion in addressing exact synthesis is computing the matrix representations
of the set of gates in the computational basis and characterizing the number ring to which
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their entries belong. A number ring is a set of numbers which explicitly contains 0 and 1
and is closed under the operations of addition and multiplication. For example, the integers
Z form a number ring.

We can extend number rings by considering what happens when we introduce new numbers
to the number ring. When we extend the number ring R by α we write R[α] for the ring
of formal sums

∑
j rjα

j where rj ∈ R. Generally, we extend by an α which is the root of
some monic polynomial whose coefficients come from R. If that polynomial has degree p,
then all powers of α which are greater than p − 1 and appear in an element of R[α] can
be reduced via that polynomial. For example, the third root of unity ω solves the monic
polynomial 1 +ω+ω2 = 0 over the integers so that we define Z[ω] = {a+ bω | a, b ∈ Z}. Any
higher-order powers of ω which might appear in an element of Z[ω] can be reduced through
its polynomial as for example, ω2 = −1 − ω and ω3 = 1.

Another common way to modify number rings is to introduce new denominators by
localizing a ring. For a number ring R we can take any multiplicatively-closed subset µ of R
which contains 1 but not 0 and introduce that set of numbers as denominators:

µ−1R :=
{ r

m

∣∣∣ r ∈ R and m ∈ µ
}
.

▶ Definition 2. The ring of triadic fractions is the number ring defined by localizing Z at
the set µ = {3k | k ∈ N}, which we denote as T := µ−1Z = {a/3k | a ∈ Z, k ∈ N}.

The use of number rings to help solve the exact synthesis problem stems from the following
statement, attributable to many authors in the field but perhaps most notably to Kliuchnikov,
Maslov, and Mosca [18]:

▶ Lemma 3. Let G = {G1, · · · , Gk} be a quantum gate set. For all j ∈ {1, . . . , k}, let each
Gj have the computational basis matrix representation Mj up to a complex global phase such
that Mj is a matrix with entries in the number ring R. Then, up to a global phase, the matrix
representation of any circuit over G only has entries in the number ring R.

It is important to note that Lemma 3 only suffices to exclude operations from being
representable over a given gate set. To show that a circuit with entries in a particular number
ring implies expressibility over a certain gate set is generally equivalent to providing a full
solution to the exact synthesis problem.

▶ Example 4. Any qutrit Pauli operation in the computational basis has entries in the
number ring Z[ω]. This follows directly from Lemma 3 and the fact that P3

n is generated
by X and Z.

One interesting aspect of Z[ω] (and number rings which contain roots of unity in general)
is that it contains elements which square to non-square integers. In particular, (ω − ω2)2 =
(ω2 − ω)2 = −3. Note the minus sign here, which is important as ±

√
3 ̸∈ Z[ω]. Due to the

ubiquity of the Pauli group and the natural appearance of ω, when working with circuits
over qutrits it has become increasingly customary to use ±(ω − ω2) = ±i

√
3 in place of

√
3

when possible. We make use of this replacement frequently (see, e.g., the Hadamard gate
defined below).

2.3 Clifford gates
Another concept that translates to qutrits (or more general qudits) is that of Clifford unitaries.

▶ Definition 5. Let U be a unitary acting on n qudits. We say that U is Clifford when every
Pauli is mapped to another Pauli under conjugation by U . I.e., for any P ∈ Pd

n we have
UPU † ∈ Pd

n.
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Note that the set of n-qudit Cliffords forms a group under composition. For qubits, this
group is generated by the S, Hadamard, and CX gates. The same is true for qutrits, for the
right generalisation of these gates. To define these it will first be helpful to introduce the
notion of qutrit phase gates.

▶ Definition 6. We write Z(a, b) for the phase gate that acts as Z(a, b) |0⟩ = |0⟩, Z(a, b) |1⟩ =
ωa |1⟩ and Z(a, b) |2⟩ = ωb |2⟩ where we take a, b ∈ R.

We define Z(a, b) in this way, taking a and b to correspond to phases that are multiples of ω,
because Z(a, b) will turn out to be Clifford iff a and b are integers. Note that the collection of
all Z(a, b) operators constitutes the group of diagonal single-qutrit unitaries modded out by
a global phase. Composition of these operations is given by Z(a, b) ·Z(c, d) = Z(a+ c, b+ d).

We will now define the qutrit S gate. For our purposes it will be useful to define it in such
a way that it has determinant 1. To do this we will need the ninth-root of unity. Throughout
the remainder of the paper, we define ζ = e2πi/9.

▶ Definition 7. The qutrit S gate is S := Z(0, 1). I.e., it multiplies the |2⟩ state by ω.

For qubits, the Hadamard interchanges the Z eigenbasis {|0⟩ , |1⟩}, and the X basis
consisting of the states |±⟩ := 1√

2 (|0⟩ ± |1⟩). The same holds for the qutrit Hadamard.
In this case the X basis consists of the following states (where we recall from above that

1
ω2−ω = i/

√
3):

|+⟩ := 1
ω2 − ω

(|0⟩ + |1⟩ + |2⟩) (3)

|ω⟩ := 1
ω2 − ω

(|0⟩ + ω |1⟩ + ω2 |2⟩) (4)∣∣ω2〉
:= 1

ω2 − ω
(|0⟩ + ω2 |1⟩ + ω |2⟩) (5)

▶ Definition 8. The qutrit Hadamard gate H is the gate that maps |0⟩ 7→ |+⟩, |1⟩ 7→ |ω⟩
and |2⟩ 7→

∣∣ω2〉
. As a matrix:

H := 1
ω2 − ω

1 1 1
1 ω ω2

1 ω2 ω

 (6)

Note that, unlike the qubit Hadamard, the qutrit Hadamard is not self-inverse. In fact,
we have H2 = −τ(12), so that H4 = I. In particular, H† = H3. Furthermore, we note that
just as the Clifford group in qubits generates certain global phases, the relation (SH)3 = −ω
implies that global phases of ±1, ±ω, and ±ω2 naturally appear in the qutrit Clifford group.
The Pauli and S gates we defined all have matrix representations with entries over Z[ω]. We
see that H naturally introduces denominators into our matrices, and so we should localize
Z[ω] to ensure we can characterize circuits which contain H. Since

ωk

ω2 − ω
= ωk(ω − ω2)

3

we can introduce the appropriate denominators by localizing at µ = {3k | k ∈ N} to get the
number ring µ−1Z[ω]. Note that this is equivalent to the number ring T[ω] which consists of
elements a+ bω where a, b ∈ T are triadic fractions.

In Definition 6 we defined the Z phase gate. Similarly, we can define the X phase gates,
that give a phase to the X basis states.
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▶ Definition 9. We define the X phase gates to be X(a, b) := HZ(a, b)H† where a, b ∈ R.

We already saw examples of such X phase gates: X = X(2, 1) and X† = X(1, 2).
Any single-qutrit Clifford can be represented (up to global phase) as a composition of

Clifford Z and X phase gates. In particular, we can represent the qutrit Hadamard as
follows [15]:

H = −Z(2, 2)X(2, 2)Z(2, 2) = −X(2, 2)Z(2, 2)X(2, 2) (7)
H† = −Z(1, 1)X(1, 1)Z(1, 1) = −X(1, 1)Z(1, 1)X(1, 1) (8)

The final Clifford gate we need is the qutrit CX.

▶ Definition 10. The qutrit CX gate is the two-qutrit gate defined by CX |i, j⟩ = |i, i+ j⟩
where the addition is taken modulo 3.

▶ Proposition 11. Let U be a qutrit Clifford unitary. Then up to global phase U can be
written as a composition of the S, H and CX gates [16].

From this it easily follows that the Z(a, b) and X(a, b) gates are Clifford if and only if a
and b are integers.

▶ Corollary 12. Let U be a qutrit Clifford unitary. Then up to a global phase U has a matrix
representation in the computational basis with entries in the number ring T[ω].

Proof. This follows from Proposition 11, the definitions of S, H , and CX, and Lemma 3. ◀

2.4 T gates and qutrit controlled gates
Clifford unitaries don’t suffice for universal computation, so let’s introduce the T gate.

▶ Definition 13. The qutrit T gate is the Z phase gate defined as T := Z(1/3,−1/3) =
diag(1, ζ, ζ8) [19, 9, 17].

Like the qubit T gate, the qutrit T gate belongs to the third level of the Clifford hierarchy,
can be injected into a circuit using magic states, and its magic states can be distilled by
magic state distillation. This means that we can fault-tolerantly implement this qutrit T gate
on many types of quantum error correcting codes. Also as for qubits, the qutrit Clifford+T
gate set is approximately universal, meaning that we can approximate any qutrit unitary
using just Clifford gates and the T gate [12, Theorem 1].

The T gate introduces the phase ζ into matrix representations of circuits and thus we
should consider extending the previously-defined T[ω] by ζ. Note that ζ is a ninth root of
unity which solves the cubic polynomial

ζ3 − ω = 0 (9)

over T[ω]. In fact, this polynomial has no solutions over T[ω], implying that ζ ̸∈ T[ω] (see
Appendix A). We thus define the number ring T[ζ]:

▶ Definition 14. The extension of T[ω] by ζ is the number ring T[ω][ζ] ∼= T[ζ] defined by

T[ω][ζ] ∼= T[ζ] := {a+ bζ + cζ2 + dζ3 + eζ4 + fζ5 | a, b, c, d, e, f ∈ T}.

Any higher powers of ζ that might appear in an expression for an element of T[ζ] can be
reduced using for instance Eq. (9).
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▶ Lemma 15. Let U be a qutrit Clifford+T unitary. Then up to a global phase U has a
matrix representation in the computational basis with entries in the number ring T[ζ].

Proof. By the definitions of S, H, T , and CX and Lemma 3. ◀

Using T gates, we can construct certain controlled unitaries. When we have an n-qubit
unitary U , we can speak of the controlled gate that implements U . This is the (n+ 1)-qubit
gate that acts as the identity when the first qubit is in the |0⟩ state, and implements U on
the last n qubits if the first qubit is in the |1⟩ state.

For qutrits there are however multiple notions of control.

▶ Definition 16. Let U be a qutrit unitary. Then the |2⟩-controlled U is the unitary |2⟩-U
that acts as

|0⟩ ⊗ |ψ⟩ 7→ |0⟩ ⊗ |ψ⟩ |1⟩ ⊗ |ψ⟩ 7→ |1⟩ ⊗ |ψ⟩ |2⟩ ⊗ |ψ⟩ 7→ |2⟩ ⊗ U |ψ⟩

I.e., it implements U on the last qutrits if and only if the first qutrit is in the |2⟩ state.

Note that by conjugating the first qutrit with X or X† gates we can make the gate also be
controlled on the |1⟩ or |0⟩ state.

A different notion of qutrit control was introduced by Bocharov, Roetteler, and Svore [6]:
Given a qutrit unitary U they define Λ(U) |c⟩ |t⟩ = |c⟩ ⊗ (U c |t⟩). I.e., apply the unitary U a
number of times equal to to the value of the control qutrit, so that if the control qutrit is
|2⟩ we apply U2 to the target qutrits. Note that we can get this notion of control from the
former one: just apply a |1⟩-controlled U , followed by a |2⟩-controlled U2. The Clifford CX
gate defined earlier is in this notation equal to Λ(X).

Adding controls to a Clifford gate generally makes it non-Clifford. In the case of the CX
gate, which is Λ(X), it is still Clifford, but the |2⟩-controlled X is not.

As shown by Bocharov, Roetteler, and Svore, the |0⟩-controlled Z gate can be constructed
by the following 3 T gate circuit [6, Figure 6]:

0

Z

=
T X T X T X

ΛΛ Λ
(10)

By conjugating the control qutrit by either X† or X, the |1⟩- and |2⟩-controlled versions are
respectively obtained. Taking the adjoint of Eq. (10) has the effect of changing the target
operation from Z to Z†. Finally, note that we can also use this construction for controlled X

and X† gates by conjugating the target qutrit of Eq. (10) by an H or H† gate. By adapting
a different circuit from Ref. [6] we can also construct the other controlled X permutation
gates.

▶ Lemma 17. The |2⟩-controlled versions of the τ(01), τ(02), and τ(12) gates can be imple-
mented unitarily using Clifford+T gates without ancillae, with a T -count of 15.

Proof. The |2⟩-controlled τ(12) gate can be constructed as follows:

2

τ(12)

=
X† X 1 X 1 X

τ(01)1 1 1X XΛτ(01)

X

Λ

(11)

The dashed box shows the Clifford equivalent gate given by Bocharov, Roetteler, and
Svore [6, 4] upon which the construction is based. The |2⟩-controlled τ(01) and |2⟩-controlled
τ(02) gates follow from Clifford equivalence. ◀

Note that the blue and red color of the controls here is just to visually indicate more clearly
which type of control is meant. The colors have no further significance.
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3 Results

Previous implementations of the R gate require either distillation [1] or probabilistic creation
of the diag(1, 1,−1) state [11, 6]; both approaches then necessitate injection by a repeat-
until-success protocol. Here we present a new approach, which implements R unitarily over
the qutrit Clifford+T gate set. As we will discuss later, it is actually impossible to exactly
build the R gate from only single-qutrit Clifford+T gates. However, we can construct the
two-qutrit R ⊗ I unitarily using Clifford+T gates. We will do this3 by showing how to
construct certain |2⟩-controlled gates and then using the following observation:

2

−I
= =

R2

−H

2

−H2

2

−H
(12)

This works because H4 = I, and the fact that global phases become local phases when adding
control wires to them. Here we have a controlled global phase because the global phase of
−1 is applied to the target if and only if the control is in the |2⟩ state. Therefore, this is an
instance of phase kickback: The action of the |2⟩-controlled −I gate is identical to applying
R⊗ I, i.e. the R gate to the control qutrit and identity on the target.

The |2⟩-controlled −H2 = τ(12) was constructed as a Clifford+T circuit in Eq. (11). It
hence remains to show how we can construct the |2⟩-controlled −H gate in Clifford+T .
We can build this using the |2⟩-controlled S gate. Note that for our purposes here our
constructions are up to a controlled global phase, arising from our particular choice of global
phase convention to define the Clifford gates in relation to a number ring. In forthcoming
work [25], we chose a different convention enabling us do away with the controlled global
phases here and exactly construct all multiple-controlled Clifford+T gates in Clifford+T .

▶ Lemma 18. The |2⟩-controlled S gate can be constructed unitarily without ancillae, up to
a controlled global phase of ζ8, using only Clifford+T gates, with T -count 8.

Proof. The correctness can be verified by direct computation of the following circuit.
2

ζ8S
=

τ(01)

2

XT † τ(01) τ(01)

2

X†T τ(01)

(13)

Alternatively, it is easy to see that this circuit does nothing if the first qutrit is in the |0⟩ or
|1⟩ state, as the τ01 gates cancel, so that the T can cancel with the T †. Otherwise, if the first
qutrit is |2⟩, then the middle permutations combine to τ(01)Xτ(01) = τ(012) = X†. When the
T is pushed through this, the phases get permuted, and when combined with the T † gives
an S gate up to global phase. ◀

▶ Corollary 19. The |2⟩-controlled Z(2, 2) = diag(1, ω2, ω2) gate can be constructed unitarily
without ancillae, up to a controlled global phase of ζ2, using only Clifford+T gates, with
T -count 8.

Proof. Use the following circuit:
2

ζ2Z(2, 2)
=

τ(02)

2

ζ8Sτ(02)

(14)

Its correctness can be verified by direct computation, or by commuting S and τ(02). ◀

3 Implemented at https://github.com/lia-approves/qudit-circuits/tree/main/qutrit_R_from_T.

https://github.com/lia-approves/qudit-circuits/tree/main/qutrit_R_from_T
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▶ Lemma 20. The |2⟩-controlled H gate can be constructed unitarily without ancillae, up to
a controlled global phase of −1, using Clifford+T gates with T -count 24.

Proof. In the construction given below, we use the decomposition of H into alternating Z
and X Clifford rotations of Eq. (7).

2

−H

=
2

ζ2Z(2, 2)

2

ζ2X(2, 2)

2

ζ2Z(2, 2)

S

=
2

ζ2Z(2, 2)

2

ζ2X(2, 2)

2

ζ2Z(2, 2)

2

ζ3I

(15)

To construct the controlled H up to a controlled global phase, we apply Eq. (14), conjugating
the target by Hadamards for the X rotations per Definition 9. As we require three such
gates, their combined |2⟩-controlled global phase becomes ζ2·3 = ζ6. As ζ9 = 1, the necessary
correction is to apply the |2⟩-controlled global phase of ζ3 gate, i.e. the Z(0, 1) ⊗ I gate. ◀

We can now construct the R gate in Clifford+T . However, direct substitution of the 24
T -count |2⟩-controlled H gate of Lemma 20 into Eq. (12) yields a T -count 63 construction.
We can do better by combining the two iterations of the controlled H in a smarter way.

▶ Theorem 21. The qutrit R gate can be constructed unitarily in Clifford+T with T -count 39,
provided there is a borrowed (i.e. returned to its starting state) ancilla available.

Proof. The equality of the circuits below can be verified by direct computation or by noting
that it applies Z(3, 3) = I to the target when the control is |0⟩ or |1⟩, and H2 = −τ(12)
otherwise.

Z(2, 2)

2

ζ2X(2, 2)

2

ζ2Z(2, 2) Z(2, 2)

2

ζ2X(2, 2) Z(2, 2)
=

2

τ(12)

R Z(0, 1)
(16)

To get a circuit for the R gate we simply bring the |2⟩-controlled τ(12) to the other side (as it
is its own inverse). The total T -count of the resulting circuit is then 15 + 3 · 8 = 39. ◀

As we can construct the R gate as a Clifford+T circuit, any unitary that can be exactly
constructed in the Clifford+R gate set can then be exactly (as opposed to approximately)
constructed in the Clifford+T gate set. Although do note that our conversion presently
seems rather inefficient, as the circuit in Eq. (12) requires 39 T gates.

▶ Corollary 22. The Clifford+R gate set is a subset of the Clifford+T gate set.

A natural question to ask now is whether we can do better. Do we really need two qutrits
to write the R gate as a Clifford+T unitary? The answer is yes: it is not possible to construct
the R gate using just single-qutrit Clifford+T gates. This follows from the normal form that
was found for single-qutrit Clifford+T unitaries in Ref. [14]. Since the proof of this is rather
technical we present the details in Appendix B, and just give a sketch here.

The group of 3 × 3 unitary matrices acts on the 8-dimensional real vector space of
traceless Hermitian matrices. This action defines, for each 3 × 3 unitary matrix U , an 8 × 8
real matrix U known as the adjoint representation of U . One can then gather information
about U by studying its adjoint representation U . In particular, it is a consequence of the
normal forms for single-qutrit Clifford+T circuits introduced in Ref. [14] that the adjoint
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representation of a single-qutrit Clifford+T operator has a very specific block matrix form
(see Proposition 33 in Appendix B below). It can then be shown by computation that R is
not of the appropriate form and therefore not Clifford+T .

Another natural question is the converse to Corollary 22: is the T gate included in
Clifford+R? I.e., is the inclusion of Clifford+R within Clifford+T strict? We will show
that this is indeed the case. We begin by considering matrix representations of circuits over
Clifford+R.

▶ Lemma 23. Let U be a qutrit Clifford+R unitary. Then up to a global phase U has a
matrix representation in the computational basis with entries in the number ring T[ω].

Proof. By the definitions of S, H, R, and CX and Lemma 3. ◀

▶ Proposition 24. T ̸∈ Clifford+R

Proof. We have T ∈ Clifford+R if there exists a unitary circuit over Clifford+R which
performs the operation T ⊗ In up to a global phase for some n ∈ N where In is the n-qutrit
identity. In the computational basis, T ⊗ I has a matrix representation with entries from
the set {0, 1, ζ, ζ8}. By Lemma 23, we know that if T ⊗ I permits an exact circuit over
Clifford+R we must have {0, c, cζ, cζ8} ⊂ T[ω] for at least some global phase c ∈ C which
satisfies c∗c = 1. As T[ω] is closed under conjugation, we then also have c∗ ∈ T[ω], and as
it is closed under multiplication we then have c∗cζ = ζ ∈ T[ω]. However, it is well-known
that ζ ̸∈ T[ω], and so there exists no such global phase c (see Appendix A). Hence, no
such suitable c exists. As n was arbitrary, we conclude that no Clifford+R circuit exactly
implements T in the computational basis. ◀

▶ Corollary 25. Clifford+R ⊊ Clifford+T .

4 Conclusion

In summary, we showed that the universal fault-tolerant qutrit Clifford+R gate set is a
subset of Clifford+T , by providing a two-qutrit, T -count 39 unitary Clifford+T construction
of the R gate. We prove that our construction is optimal in the number of qutrits by
using the single-qutrit Clifford+T normal form of Glaudell, Ross, and Taylor [14] to show
there is no single-qutrit construction. Moreover, we prove that Clifford+R is a strict subset
of Clifford+T by showing that regardless of the number of ancillae qutrits, the T gate is
impossible to exactly synthesize unitarily in the Clifford+R gate set.

This result is surprising for several reasons. While a number of papers have studied
the Clifford+R gate set, it was not known that it is a subset of Clifford+T , much less a
strict subset. Therefore, in contrast to what was previously believed, it looks like the T
gate could be more powerful in practice than the R gate. In fact, we find that Clifford+T
is strictly more powerful (at least asymptotically and for exact synthesis) than Clifford+R
as Clifford+T can exactly synthesise every gate in Clifford+R up to a constant factor of
overhead, while the converse is not true. We have reason to believe that the additional gates
Clifford+T can exactly represent are important in practice. In Ref. [4] they conjectured that
not all ternary classical reversible gates can be exactly represented in Clifford+R, while we
have shown in follow-up work that they can all be efficiently constructed in Clifford+T [25].
Further analysis is required to better understand the implications of our results with regards
to qutrit algorithms in practice, building upon the comparison between these two gate sets
for Shor’s algorithm in Ref. [6]. Let us note that using our construction, much of the work
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done on Clifford+R can now be directly translated to the Clifford+T setting. For example,
the universal approximate synthesis algorithms of [5, 3] can now also be used to synthesise
Clifford+T circuits.

Our results demonstrate a way in which qutrit Clifford+T is different from that of qubit
Clifford+T . While all the one-qubit Clifford+T circuits that can be constructed with and
without ancillae coincide [18], our result shows that this is not true for qutrits, as the single-
qutrit R gate cannot be constructed in single-qutrit Clifford+T , but can be constructed
using one borrowed ancilla.

A natural starting point for future work is to find a lower T -count decomposition of
the R gate, as it seems unlikely that the best possible construction would require 39 T

gates. It might be possible to find a lower bound on the necessary T -count to prepare the
R state by using the resource theory of non-stabiliser states, for instance the mana [21]
and thauma [22] measures of magic. Alternatively, there might also be a normal form for
multi-qutrit Clifford+T unitaries which is T -optimal, which would then also give us an
optimal decomposition of the R gate.

Finally, our results pave the way to deriving a full characterisation of which qutrit unitaries
can be exactly implemented over the Clifford+T gate set. We conjecture that, as in the qubit
case [13], any qutrit unitary with entries in T[ζ] can be exactly synthesised over Clifford+T .
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Therefore, by equating coefficients of our basis elements on each side we conclude that we
need

a3 − 3ab2 + b3 = 0 (17)
3a2b− 3ab2 = 1. (18)

Note that clearly a, b ̸= 0 if Eq. 18 is to be satisfied. Letting r = a/b ∈ Q, we rearrange
Eq. 17 and find

r3 − 3r + 1 = 0. (19)

Since r ̸= 0, let r = s/t for s, t ∈ Z, s, t ̸= 0, and gcd(s, t) = 1 without loss of generality.
Necessarily, we would have

s3 − 3st2 + t3 = 0. (20)

For any prime p | s, we clearly have p | t3 implying p | t. Similarly, for any prime q | t, we
must have q | s3 and thus q | s. As we have assumed gcd(s, t) = 1, we conclude that no
prime can divide s nor t and so s, t must be units in Z as both are necessarily nonzero. No
combination of s, t = ±1 satisfies Eq. 20, and thus we conclude no r ∈ Q satisfies Eq. 19.
From this, we deduce there are no a, b ∈ Q such that

ζ = a+ bω

and thus ζ ̸∈ Q[ω] =⇒ ζ ̸∈ T[ω].

B The R gate is not a single-qutrit Clifford+T unitary

We start with a set of definitions. These are based on the work done in Ref. [14].

▶ Definition 26. Let K = {2k | k ∈ N}, α = sin(2π/9), and L = {αk | k ∈ N}. We define
the following number rings:

D := K−1Z =
{ a

2k

∣∣∣ a ∈ Z and k ∈ N
}

D[α] = {a+ bα+ cα2 + dα3 + eα4 + fα5 | a, b, c, d, e, f ∈ D}

A := L−1D[α] =
{ a

αk

∣∣∣ a ∈ D[α] and k ∈ N
}

Additionally, we will rely on the following quotient ring:

▶ Definition 27. Let Z3 := Z/(3) be the ring of integers modulo 3.

Using our definitions we can introduce the following ring homomorphism:

▶ Definition 28. Let ρ : D[α] → Z3 be the ring homomorphism defined by ρ(q) = q (mod α)
for q ∈ D[α]. In particular, ρ(1/2) = 2, ρ(3) = 0, and ρ(α) = 0.

To account for powers of α that appear in the denominator of elements of A, we also
introduce the following terminology:

▶ Definition 29. Let q ∈ A. There always exists some k ∈ N for which αkq ∈ D[α]. We
call k a denominator exponent of q, and the least such k is called the least denominator
exponent (LDE). The LDE of a vector or matrix over A is defined as the largest LDE of
their individual elements.
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▶ Definition 30. Let q ∈ A and let k be a denominator exponent of q. Then the k-residue of
q, ρk(q) is defined as

ρk(q) := ρ(αkq) ∈ Z3.

The k-residue of a vector or matrix is defined component-wise.

The rings we introduced will encompass the entries of Clifford+T matrices in a certain
representation called the adjoint representation, which we can describe as follows. Consider
the space H of traceless 3 × 3 Hermitian matrices. This space forms an 8-dimensional real
vector space and can be endowed with an inner product by defining ⟨M,M ′⟩ = Tr

(
M†M ′),

for any M,M ′ ∈ H. As the trace is both cyclic and fixed under transposition of arguments,
we have ⟨M,M ′⟩∗ = ⟨M,M ′⟩ so that inner product of two traceless Hermitian matrices is
necessarily real. It is straightforward to verify that if U is a 3 × 3 unitary matrix, then
conjugation by U defines a linear operator on H.

▶ Definition 31. Let U be a 3 × 3 unitary matrix. We define the linear operator U : H → H
by U(H) = UMU † for every M ∈ H. The operator U is the adjoint representation of U .

The adjoint representation U 7→ U defines a group homomorphism from U(3,C) to
SO(8,R)

For U a Clifford+T operator, we will be interested in the matrix representation of U in
some convenient basis. Following [14], for a single-qutrit Pauli P , we set

P± = P † ± P√
Tr[(P † ± P )2]

in order to define a basis B for H.

▶ Definition 32. Let X and Z be the single-qutrit Pauli operators and let H be the inner
product space of 3 × 3 traceless Hermitian matrices. We define the orthogonal basis B for H
as follows

B = {Z+, X+, (XZ)+, (XZ2)+, Z−, X−, (XZ)−, (XZ2)−}.

If U is a Clifford+T operator, then the matrix for U in the basis B (ordered as in
Definition 32) has several useful properties, as detailed in the following proposition, whose
proof can be found in [14, Remark 4.15, Remark 4.18, and Proposition 4.20].

▶ Proposition 33. Let U be a 3 × 3 unitary matrix and assume that U can be exactly
represented by an ancilla-free single-qutrit Clifford+T circuit. Then, in the basis B, the
operator U has entries in the number ring A. Write

U =
(
A B

C D

)
where A, B, C, and D are 4 × 4 matrices. If the minimal T -count of U restricted to
single-qutrit circuits is k, then the LDE of submatrix A is 2k and the following statements
hold:

If k = 0, then U is a Clifford operator.
If k > 0, then up to generalized row and column permutations over Z3,

ρ2k(A) ∼


0 0 0 0
0 2 2 2
0 2 2 2
0 2 2 2

 and ρ2k+1(C) ∼


0 0 0 0
0 1 1 1
0 1 1 1
0 1 1 1

 .
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We are now in a position to prove that R cannot be represented over the Clifford+T gate
set without using ancillas.

▶ Proposition 34. The R gate cannot be represented by a single-qutrit ancilla-free Clifford+T
circuit.

Proof. Direct computation yields

R =
(
A B

C D

)
where

A = D = 1
3


3 0 0 0
0 −1 2 2
0 2 −1 2
0 2 2 −1

 and B = C = 0

Thus R is a matrix over A. The LDE of A is 6, and thus we compute

ρ6(A) =


0 0 0 0
0 2 2 2
0 2 2 2
0 2 2 2

 and ρ7(C) =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 .
In particular, ρ7(C) is not equivalent up to generalized row/column permutations to the
matrix

0 0 0 0
0 1 1 1
0 1 1 1
0 1 1 1

 .
Thus, R cannot be represented by a single-qutrit ancilla-free Clifford+T circuit. ◀
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