Quantum Algorithm for Stochastic Optimal
Stopping Problems with Applications in Finance

Joao F. Doriguello &

Centre for Quantum Technologies, National University of Singapore, Singapore

Alessandro Luongo &
Centre for Quantum Technologies, National University of Singapore, Singapore

Jinge Bao &

Centre for Quantum Technologies, National University of Singapore, Singapore

Patrick Rebentrost &

Centre for Quantum Technologies, National University of Singapore, Singapore

Miklos Santha &

Centre for Quantum Technologies, National University of Singapore, Singapore

—— Abstract

The famous least squares Monte Carlo (LSM) algorithm combines linear least square regression with
Monte Carlo simulation to approximately solve problems in stochastic optimal stopping theory. In
this work, we propose a quantum LSM based on quantum access to a stochastic process, on quantum
circuits for computing the optimal stopping times, and on quantum techniques for Monte Carlo.
For this algorithm, we elucidate the intricate interplay of function approximation and quantum
algorithms for Monte Carlo. Our algorithm achieves a nearly quadratic speedup in the runtime
compared to the LSM algorithm under some mild assumptions. Specifically, our quantum algorithm
can be applied to American option pricing and we analyze a case study for the common situation of
Brownian motion and geometric Brownian motion processes.
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1 Introduction

Within stochastic optimization, optimal stopping theory is a broad area of applied mathem-
atics that started in the 1940s and 1950s mainly with A. Wald [90] and is concerned with
the problem of deciding the best time to “stop” or take an action in order to maximize an
expected reward [81]. The time at which the observations are terminated, called stopping
time, is a random variable depending on the data observed so far in the process. A simple
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example of an optimal stopping problem is the following: consider a game in which 100
numbers are written on 100 pieces of paper without restrictions on the numbers, except that
no number appears more than once. The pieces of paper are shuffled faced down and you
are asked to look at the numbers, without having seen them before and once at a time, and
to stop when you think that you have found the biggest number. It turns out that there is a
stopping rule that allows you to stop at the biggest number for 1/e fraction of the inputs.

Since its conception, optimal stopping theory collected problems from many disparate areas
under a unique umbrella [71], e.g. quickest detection [82], sequential parameter estimation [64]
and sequential hypothesis testing [26]. Probably the most famous optimal stopping problem
is the one of option pricing in finance, especially American options [57]. A central problem in
the world of finance is to assign a monetary value to a hitherto unvalued asset. In the capital
markets, there exists a large variety of financial assets which are derivative to underlying
assets such as stocks, bonds, or commodities. One of the most well-known examples is the
European call option which allows the buyer to “lock in” a price for buying a stock at some
future time (or “exercise” time). A fair valuation of such an option was first discussed in the
seminal works of Black and Scholes [11] and Merton [61]. In the times since, the methods
proposed in these works have become standard practice in the financial sector and have been
extended and generalized for many financial derivatives and market models.

American options allow the buyer to exercise the option at any point in time between
the time of purchase and a fixed final time. In contrast to an European option, there are no
known closed formulas for the price of an American option with finite maturity date even in
simple models like the Black-Scholes-Merton one. Theoretically, an American option can
be viewed as a stochastic optimal stopping problem for the buyer and a super-martingale
hedging problem for the seller [31]. Practical algorithms have been developed for the pricing
of American options [23, 77, 48, 46], an important class being least squares Monte Carlo
(LSM) algorithms originally proposed independently by Tsitsiklis and Van Roy [87] and by
Longstaff and Schwartz [57].

Among the aforementioned classical algorithms for option pricing — and other topics in
finance — is the sub-field of quantum computing of designing quantum algorithms in the
context of financial problems [67, 12, 29], e.g. risk management [92], financial greeks [84, 3],
portfolio optimization [6, 25, 45, 75, 42, 2] and option pricing [59, 89]. A common tool
in obtaining a quantum advantage is amplitude estimation [14] and its generalizations for
Monte Carlo sampling [63, 41, 22, 21]. A few different works devised quantum algorithms
for derivative pricing based on quantum subroutines for Monte Carlo [74, 83, 18], e.g.
European [73, 32, 72] and American/Bermudan [62] option pricing, and option pricing in
the local volatility model [49, 3] (of which the Black-Scholes model is a subcase). Given its
versatility and previous cases of success, it is only natural to explore the applicability of
quantum methods for Monte Carlo to problems in optimal stopping theory. In this work we
focus on tailoring these methods to LSM algorithms.

Applications of LSM algorithm

Among the whole domain of optimal stopping problems, there are many that can be ap-
proached directly with LSM, e.g. the secretary problem [24], modelling the optimal time to
call an election based on data [86], estimating the solvency of governments with respect to
their debt [79], and multi-armed bandit problems [40]. Another important application of LSM
is in the insurance sector. In fact, LSM can be used to estimate the VaR (Value at Risk) [53]
and life insurance contracts [5] (see also [69] for a comparison of LSM with other methods).
The computational challenges of this domain were further highlighted by recent European
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regulatory requirements [1, 27]. LSM is also often used for solving Backward Stochastic
Differential Equations (BSDE). Some numerical algorithms for BSDE are two-steps stochastic
procedures involving a discretisation step where the solutions obtained at time ¢ of the BSDE
are projected onto a space obtained from the filtrations at time ¢ — 1. This step involves a
conditional expectation that cannot be calculated analytically, but must be estimated using
some approximation procedure. The idea of applying LSM to BSDE was first introduced
in [35] and further developed in [36, 54]. Recently, this method has been generalized to solve
two-dimensional forward-backward stochastic differential equations [55, 8].

Other algorithms for option pricing

LSM is not the only type of algorithm that can be used to price American options [30].
Besides a few attempts to give an analytical formula under certain conditions [51], the vast
majority of them has been directed towards giving numerical results, which we briefly discuss
in this section. A simple and well-known way of pricing American options is through the
use of binomial trees. While the origins of this technique are somewhat unclear [19], the
first articles that proposed the idea of binomial trees for pricing options are considered to
be [23, 77], with the first seminal ideas proposed in the first edition of [80]. McKean [60]
realized that the price of an American option can be cast as a free boundary problem [70],
which is a particular partial differential equation that can be solved numerically. There is a
flurry of other methods to price American options based on partial differential equations.
We name a few approaches such as variational inequalities [48, 9], linear complementary [46],
and those related to free boundaries [88]. However, as noted in [30], these methods often
suffer from the curse of dimensionality, as they require the computing time and the storage
to grow exponentially with the dimension of the underlying state space. LSM is also not the
only Monte Carlo approach for pricing American options. One of the first works using Monte
Carlo for option pricing is [13]. Reviews of Monte Carlo and other methods for the problem
of American option pricing can be found in [33, 52, 17]. In contrast to giving lower bounds
for the true optimal stopping value — as the LSM algorithm — Rogers [78] proposed a method
which leverages a dual problem, resulting in an upper bound for the optimal stopping value.
Last but not least, semi-analytical approaches for American option pricing and optimal
stopping time are also used [7].

1.1 Problem statement

Optimal stopping theory is concerned with the problem of finding the best moment to stop a
process in order to maximize an expected reward. More generally, assume a discrete-time
stochastic process X = (X;)_, (which corresponds to the market model in financial applica-
tions), assumed to be Markovian, defined on a filtered probability space (2, F, (F;)L,,P) and
with state space (E, &), where E C RY. We shall assume that X is adapted with respect to
(]:t)tT:O, meaning that each X; is Fi-measurable, and that Xy = xg is deterministic, therefore,
sometimes we write the Markov chain (X;)Z_; as starting from ¢ = 1. Each element X; for
t € {0,...,T}, called the underlying process at time ¢, gives rise to an image probability
measure (also called pushforward measure) p; in E C R? ie., p;(Y) = Plw € Q: X;(w) € Y]
for any Y € £ (note that pg is the probability measure that assigns measure 1 to the singleton
set containing xg). We denote by X; = (Xj)?:t the last T — ¢t 4+ 1 random variables in the
stochastic process. Let L2(E, p;) = L?(p;) be the set of squared integrable functions with
norm || fl[z2¢p,) := /Ep, [|f(X¢)[?] and define the uniform norm || f||, = sup{|f(s)| : s € £}

for f: E — R. Consider further a payoff process: a non-negative adapted process (Z;)L_,
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on the filtered probability space (2, F, (F;)I_,P) obtained from (X;)_, as Z; = 2,(X) for
square-integrable real functions z; € L2(E, p;), for t € {0,...,T}. Moreover, given an event
&, we denote by 1{&} the indicator function 1{€} =1 if & is true and 0 if not. Finally, we
shall use P to denote the probability measure behind the stochastic process (X;)!_,, and
the probability notation Pr for other processes, e.g. the outcome probability of a quantum
measurement.

Our main problem is when to stop the process and take the payoff so that the expected
payoff is maximized. This is formalized by the idea of stopping time, which is a random variable
that selects one of the possible times {0,1,...,7} U {+oo} and satisfies a measureability
condition.

» Definition 1 (Stopping time). A stopping time is a function 7: Q — {0,1,..., T} U {+o0}
such that {w € Qr(w) =t} € F; fort € {0,...,T}. The payoff obtained by using T is
Zr(w) = Zrwy(w). Let Ty := {7|r is a stopping time with t < 7 < T} be the set of all
stopping times taking values in [t,T]. A stopping time 7 € Ty is called optimal in the
interval [t, T if
E[Z,«| Xt] = ess sup E[Z| X¢].
T€T

The maximization is expressed via an essential supremum such that the null sets of the
probability measure do not affect the result. For more details on the essential supremum
see [31, Appendix A.5]. The optimal stopping problem then consists in finding a stopping
time 7 that maximizes the expected value payoff.

» Problem 2 (Optimal stopping problem). Let (Z;)L_, be a payoff process. For egna > 0,
approrimate the exact value Sup, e, E[Z;] to additive accuracy €fna1 with high probability.

A well-studied solution strategy for the above problem statement is based on dynamic
programming for a set of stopping times. A crucial concept is the Snell envelope [65, 31]
Uy : Q — R of a payoff process Z; = z;(X;) (for some 2z, € L?(E, p;), t € {0,...,T}) defined

as
L{T = ZT7 (1)
Ut:maX{Zt,E[UHﬂXt]}, OStST—l

Define the stopping times 7; := min{u > ¢ | U, = Z,}. The Snell envelope is related to the
maximal expected payoff according to the next theorem: 7, maximizes the expectation of Z,
among all 7 € Ty, i.e., that 7, are optimal stopping times (in their respective intervals).

» Theorem 3 ([31, Theorem 6.18]). The Snell envelope Uy of Z; satisfies

Uy = E[Z,,|Xt] = ess sup E[Z,| X3].
T7€T,

In particular, Uy = E[Z;,] = sup, cr, E[Z;] = max{Zy, E[Z,,]}.

0
Hence, finding an approximate Uy solves our Problem 2. In order to solve the dynamic
programming behind the Snell envelope, it is more convenient to recast the dynamic pro-
gramming in terms of the optimal stopping times 7; (rather than in terms of value functions)
as follows.

» Theorem 4. The dynamic programming principle in Eq. (1) can be recast in terms of the
stopping times 7 = min{u >t | U, = Z,} as

T = T,
7 = t1{Z; > B[Zr, | Xi]} + en {Z < E[Zr, | X4]}, 0<t<T—1.
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Proof. The caset = T is trivial. Assume ¢t < T. Note that E[Z;,  |X,] = E[E[Z;,, | X/ 11]|X¢]
because of the tower property of the expectation value with the filtration generated by Xj;.
In addition, E[Z;,, | X;4+1] = U41 from Theorem 3. Hence, if Z, > E[Z;,, | X;], then Z; >
E[U;+1|X¢]. This latter statement, by the definition of the Snell envelope, implies U; = Z; and
then 7, = t. On the other hand, if Z, < E[Z,  |X;], then, Z;, < EUy1|X:] = Z; # U,,
and so v =min{u >t | Z, =U,} =minf{u >t + 1| Z, =Uy,} = Tt 41. <

The stopping time 7y thus maximizes E[Z;] in Problem 2. The quantities E[Z,,_, |X;] are
called continuation values. In the past, many different approaches were developed to tackle
the dynamic programming above [51, 19, 23, 77, 80, 60, 70, 48, 9, 46, 88, 13, 33, 52, 17]. A
famous approach is the least squares Monte Carlo (LSM) by Longstaff and Schwartz [57].

2  The least squares Monte Carlo algorithm

The LSM algorithm consists in solving the dynamic programming in Theorem 4 by means
of two approximations. The first one is to approximate the continuation values E[Z, ,  |X;]
using a set of measurable real-valued functions in L?(E, p;), e.g. by projection onto a finite-
dimensional set of linearly independent polynomials. Let Hy C R and let, for ¢t € [T — 1],
H; C L?(E, p;) be a subset of real-valued functions on E, called approzimation architecture or
hypothesis class, that will be used to approximate the continuation values. By approximating
E[Z:, .| X¢] by fi € 3 for each t € {0,...,T — 1}, we can write the approximate dynamic
programming as

=T, @)
T =tH{Z, > fit + T l{Zs < fi}, 0<t<T -1

Note that 7z = T¢(ft, ..., fr—1) depends on the approximation architecture.

The second approximation of the algorithm is to numerically evaluate the approx-
imations f; in L?(p;) by a Monte Carlo procedure. We sample N independent paths
(Xt(l))g;o, ce (Xt(N))tTZO of the Markov chain X = (X;)._, and denote by Zf”) = zt(Xt(n))
the associated payoffs conditioned on X™, where z, € L%(E,p,), t € {0,...,T}. Write
the random variables of the last T — ¢t + 1 elements of all the sampled Markov chains by
XM = (xM L x M X x ) x D XYY For each path, the dynamic
programming in Eq. (2) is solved recursively by approximating the continuation values in H;
via a least square estimator. The result is sampled stopping times ?t(n) that 7; takes on each
random path. We stress that, due to the recursive nature of Eq. (2), the stopping times ﬂ(n)
will depend on X](&N), and consequently also the payoffs Z(;i) = 2 (x () (X;(Ln)

t t t

The dependence on XEN) should be clear from the context and therefore we shall simply

write Z(J(LZ,). In summary, combining both the approximation architecture and the Monte
Tt

(wyy)-
X

Carlo sampling, at each ¢ € [T — 1] we take f; € H;, depending on XEN), satisfying

2 N 2
(n) o L ( (n) (m) >
— NP (X, <e+ inf — Z o —g(X 3
- g (24, — o) s v ng 32 (70, - o) ®)
for some given € > 0. It might be the case that an exact minimizer of the above optimization

problem does not exist (the infimum does not belong to H;) or is hard to compute, meaning
that an e-approximation could be used. Given the choice of f; € H;, it is then used
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~(n)

in Eq to obtaln 7., and so on recursively. At the end of the recursion we can take

= % Z ~(w> as an exact minimizer, since Xy is constant, and obtain the approximation

L{o to Uy as

N
~ 1
Uy :maX{ZO,NZ N(n)} (4)

In this paper we shall be particularly interested in finite-dimensional linear approximation
architectures, for which an exact minimizer exists in Eq. (3). Consider then a set {e; :
E — R}, of m linearly independent measurable real functions and take the vector space
generated by them as our approximation architecture 3;, ¢t € [T’ —1]. Therefore, the infimum
in Eq. (3) is attained by projecting the continuation values onto H; as oy - €(X;), where
€(-) == (et1(-),---,erm(-)) " and the m-dimensional vector v, the projection coefficients, is
the least square estimator given by [20]

> 2
ap = arg IIIHIQHL I['Z[(ZTHrl a-&(Xy))?].

Given the assumption that {e;}}" , are linearly independent for each ¢ € [T'— 1], the vector
a; € R™ has the explicit expression

a; = Ay by where by = E[Z; | &(Xy)] (5)
and the m x m matrix A; has coefficients

(At)k,r = Eler ke (Xe)er (X)) (6)

Often it is hard to compute oy and A; exactly. As previously mentioned, the LSM algorithm
approximates these by Monte Carlo sampling,

N
~ T 1 n — n
ao= A 5 >0 2l ax{™) (7)

n=1 Tit1

and
Vet = — Zetk etl(X(n))- (8)

More generally, though, any good approximation a; and /L to oy and Ay, respectively, is
valid, and we shall not restrict the notation a; and ﬁt to only mean the above sampled
quantities.

We have introduced the quantities that are important for the LSM algorithm. To present
the algorithm, we first specify the input model.

» Definition 5 (Sampling access to Markov chain). Given a Markov chain (X;)-, on a
probability space (Q,P) and with state space E C RY, we define sampling access as the ability
to draw a sample w € Q according to P and observe the value Xi(w) for some t € [T]. One
sample costs time Tsamp -

» Definition 6 (Query access to function). Let E C R and h: E > R be a function. We
define query access as the ability to observe the value h(x) for any given x € E. One query
costs time Ty,.
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Algorithm 1 Classical LSM algorithm for optimal stopping problem.

Input: Integer N € N. Sampling access to Markov chain (X;)~ , defined on a sample
space 2 and with state space £ C R?. Query access to functions {z; : E — R}L_; and
{etr : E — Rirer—1],ke[m]>, Where {e; r};L, are linearly independent for each ¢ € [T'—1].
Let &(-) :== (et1("), - eem() "

Sample N independent paths (Xt(l)7 .. ,Xt(N))f:O.

Query payoffs (Zt(l), R Zt(N))tT:O and values (et’k(Xt(l)), o, et’k(Xt(N)))te[T,”yke[m].
Compute the matrices {th};f:_ll with entries as in Eq. (8).

Compute the inverses {A; nr-t

Set F%n) =T for n € [N].

fort=T—-1to1do

Calculate the vector &, = A; '+ SN ZYZZ/) g (xi™).

+1
~(n)

Caleulate 7, = t1{Z{" > &, - &(X{™)} + 7 1{z{" < & - &(X™)}, n € [N].
9: end for~
10: Output Uy := max {Zo, = ij:l 7z }

7

®

Here, we assume that the functions of the approximation architecture and functions for the
payoff take time 7. and 7T, respectively, to evaluate. Both sampling and function access
have natural quantum extensions, as will be defined in Section 3.

We are now in the position to present the classical LSM algorithm in Algorithm 1. Since
we focus on the case where the approximation architectures H; are finite-dimensional and
linear, we write Algorithm 1 for this particular case.

3  Quantum least squares Monte Carlo algorithm

In this section we shall present our quantum algorithm, which is based on the classical LSM
algorithm (Algorithm 1). Before we discuss it, we review our computational model, input
assumptions, and the quantum algorithm for Monte Carlo used in this work. In what follows,
for simplicity, we suppose that |0) describes a register with sufficiently many qubits initialized
in the all-0 state.

3.1 Computational model

In this subsection, we address our quantum computational model. We work in the standard
circuit model of quantum computation [66]. Aside from these standard assumptions, we take
the following additional assumptions on the computational model.

Arithmetic model

In our work, we perform the arithmetic computations on the quantum computer by using
a fixed point representation for real numbers. We assume that we can have enough qubits
for storing these numbers, represented as bit strings using the following definition. We
also assume to work with enough precision so that numerical errors in the computation are
negligible, and will not impact the final output of our algorithm.

2:7
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» Definition 7 (Fixed-point encoding of real numbers [76]). Let c1,co be positive integers, and
a€{0,1}, b€ {0,1}°2, and s € {0,1} be bit strings. Define the rational number as:

1 1
Q(a,b,s) :==(—1)° (201_1%1 + 4+ 2a0+ a1 + 51)1 +F 2621)62) € [-R, R, (9)

where R := 2 — 27 [fcy, ¢y are clear from the context, we can use the shorthand notation
for a number z := (a,b,s) and write Q(z) instead of Q(a,b,s). Given an n-dimensional
vector v € ({0,1}° x {0,1}2 x {0,1})™ the notation Q(v) means an n-dimensional vector
whose j-th component is Q(v;), for j € [n].

The choice of values for ¢; and ¢y depends on the choice of input functions used when
running the algorithm. For the purposes of optimizing the quantum circuit, these constants
can be changed dynamically in various steps of the computation. While analyzing how error
propagates and accumulates throughout the operations in the quantum circuit is essential to
ensure a correct estimation of the final result, this analysis can only be done for a given choice
of input functions. We avoid the analysis of such details by using the quantum arithmetic
model as in Definition 8. A standard result is that any Boolean function can be reversibly
computed. Any reversible computation can be realized with a circuit involving negation and
three-bit Toffoli gates. Such a circuit can be turned into a quantum circuit with single-qubit
NOT gates and three-qubit Toffoli gates. Since most circuits for arithmetic operations
operate with a number of gates of O(poly(cy,cz)) this implies a number of quantum gates of
O(poly(cy, c2)) for the corresponding quantum circuit.

» Definition 8 (Quantum arithmetic model). Given ¢y, co € N specifying fized-point precision
numbers as in Definition 7, we say we use a quantum arithmetic model of computation if the
four arithmetic operations can be performed in constant time in a quantum computer.

In our computational model we do not include the cost for performing operations described in
our arithmetic model. For instance, a central computational step of the quantum algorithm is
the circuit computing the stopping times 7;(x), but as the circuit depth depends polynomially
on c¢; and co, we do not take into account this cost when stating our runtime. For an example
of a resource estimation for a financial problem that takes into account the cost of arithmetic
operations in fixed-point precision, we refer to [18].

Quantum input access

We assume that we have quantum oracles for certain input functions. The classical algorithm
assumes access to two different kinds of oracles. The first is an oracle that allows us to
obtain samples from the Markov chain (X;)Z_,. The second kind of oracle is evaluating
the functions {z}{_, and {esk}ter—1),kepm)- We assume access to the quantum versions
of these oracles (formalized below). The first kind of quantum oracle prepares a quantum
state that is in a superposition over the different outcomes of the Markov chain, weighted
by amplitudes which are square roots of their classical probabilities. A measurement in
the computational basis of such a state obtains a single sample with the corresponding
probability and hence directly recovers a single use of the classical sampling access. The
second kind of quantum oracle evaluates a given function in superposition over its inputs.
While the functions {e; x }+e[r—1],ke[m] are usually chosen to be low-degree polynomials (and
thus admit efficient classical and quantum circuits with gate complexity proportional to the
degree of the polynomial), the functions {z;}Z_, might be arbitrarily complex. Usually the
complexity of these functions is not discussed in classical literature, and we use placeholders
for their evaluation cost.
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» Definition 9 (Quantum sampling access to a Markov chain). Let (X;)]_, be a Markov chain
defined on a filtered probability space (0, F,(F;)I_,,P), for a finite Q, assuming values in a
finite state space E C RY. Given x € ET, let p(v) := P[X; = 1] Hz;l P[Xi11 = 41| Xy =
x¢] be the probability that X1 = x1,..., Xy = xy. Let H be a finite-dimensional Hilbert
space with basis {|z)},cpr. We say that we have qucmtum sampling access to (X)), if

we are given an oracle U on H such that U|0) = 3 _pr «/p(x)|x). One application of U
costs T - Tsamp time. If T =1, we say that we have quantum samplmg access to a random
variable X if we are given an oracle U on H such that U|0) = > _p+/p(z)|z), where

p(z) :=P[X = ] is the probability that X = x.

We note the alternative definition of the unitary U such that U[0) = > _pr /p(2)|2)[1)2)
for unknown garbage unit states |¢,). Such garbage states do not change our analySJS SO we
shall ignore them and work with the unitary U from Definition 9.

Even though we assume the existence of the oracle U, constructing such unitary is an
important question on its own. A few methods have been proposed in order to tackle such
problem, one of the most famous is due to Grover and Rudolph [39] (see [58] for recent
improvements on the Grover-Rudolph method), which loads into a quantum computer a

discretization of a distribution with density function p(z). More specifically, it creates the
n (77
quantum state Z?:gl p(n)| ) with pz") (1:)1 p(z)dz by recursively (on n) computing

: 2
quantities like f, (i) = ((Tw) e/ dw/f (ﬁf)lp Ydz for i = 0,...,2" — 1. It is also
possible to perform simple Taylor approxunatlons on f, (i) when n is sufficiently large (see [49,
Equation (35)]). We briefly note that the issues about the Grover-Rudolph method recently
pointed out by [44] only arise when one needs to sample from the distribution p(x) in order
to compute f, (i), which is not the case in many situations, e.g. in finance.

» Definition 10 (Quantum access to a function). Let E C R? be a finite set and let H be
a Hilbert space with basis {|x)}zer. Given h : E — {0,1}", we say that we have (Vi,, Th)-
quantum access to h if we have access to a quantum circuit Vi, on H ® C¥" such that
Vilx)|b) = |2)|b® h(z)) for any bit string b € {0,1}™. One application of V}, costs time Tp,.

Access to quantum controlled rotations

Controlled rotations are a central step in the quantum algorithm for Monte Carlo (The-
orem 13). The cost of a controlled rotation depends directly on the number of bits used to
specify the angle of rotation [91]. In our computational model we assume that controlled
rotations come with a unit cost.

» Definition 11 (Access to quantum controlled rotations). We say that we have access to
quantum controlled rotations if we have a quantum circuit R whose application takes constant
time and, for all rational numbers x € [0,1] defined by a (1 4 co)-bit string in our fized-point
arithmetic model 8, operates as:

R|z}|0) = |z) (V1= 2[0) + vz |1)). (10)

We note that again this definition allows us to neglect terms O(c¢; + ¢2) in the runtime and
to neglect complications arising from the arithmetic computation of the arcsin. The access
to these rotation unitaries leads to the following fact.

2:9
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» Fact 12 (Controlled rotations of a function with an interval). Consider a rational number
representation from Definition 7 for some c1,co € N. Assume access to controlled rotations
according to Definition 11. Assume (Vi, Tp)-quantum access to a function h according to
Definition 10. For any two bit strings a,b € {0,1}", with 0 < Q(a) < Q(b), we can construct
a unitary operator RZ’,, on H ® C2, such that, for all x € E,

| 0)

Ry = 4 (V1 D)) i Qfa) < Qh(a)) < Q).

|z, 0) otherwise,

where an application of RZ,b costs O(Ty,) time.

Proof. The quantum circuits for the division and for checking the interval run in con-
stant time in the quantum arithmetic model. The quantum circuits allow us to prepare
|z) |Q(h(x))/Q(b)) on the interval using Vj, two times, where the second register is of size
polynomial in ¢; and ce. Performing a controlled rotation of an ancilla costs constant time
by Definition 11. <

Quantum algorithm for Monte Carlo

Our quantum algorithm requires the computation of several expectation values. In this work
we use the quantum algorithm for Monte Carlo from Montanaro [63], already adapted to our
computational model.

» Theorem 13 (Quantum algorithm for Monte Carlo QMonteCarlo, [63, Theorem 2.5]). Let
X be a random variable given via quantum sampling access as in Definition 9. Consider
a rational number representation from Definition 7 for some c1,co € N. Let E C R¢
be a finite set and let H be a Hilbert space with basis {|z)}yep. Consider a function
h: E — {0,1}" via quantum access to the controlled rotations as in Fact 12, where n € N
such that ¢y + co + 1 = n, and each access costs time Ty. Assume that the random variable
Q(h(X)) has finite mean p, and variance upper-bounded by o® for some known o > 0. Given
d,e € (0,1), there is a quantum algorithm, called QMonteCarlo(h(X),¢€,d,0), that runs in
O((c/€)log(1/6)10g>/% (5 /€) loglog(c/€)) x (TTsamp + Tn) time and outputs an estimate [i
such that Pr(|p — p] > €] < 4.

The above result will be used to approximate expected values, e.g. Ele; 1 (X;)es,1(X:)] and
]E[Z;Hlét(Xt)], and was chosen for its simplicity. It is possible, though, to use other, more
complicated quantum subroutines for Monte Carlo, e.g. [41, 22, 21]. Refs. [22, 21] propose
quantum algorithms for multivariate Monte Carlo estimation, which could be particularly
suitable in our case, since most of our quantities of interest are vectors and matrices. However,
since these more complex and alternative quantum subroutines for Monte Carlo lead to the
same time complexities up to polylogarithm factors as Theorem 13, we decided to use the

above result.

Quantum circuits for the stopping times

Recall that Theorem 4 allows us to formulate the stochastic optimal stopping problem with
dynamic programming for the optimal stopping times. Having introduced the quantum
computational model, we are now in the position to construct quantum circuits for various
computations related to the dynamic programming. In particular, we construct a unitary
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that propagates backwards the optimal stopping time by one time step according to Eq. (2).
In what follows, given a path z € ET, by 2%, () WE Mean zz (x;t(x)), i.e., the associated
payoff of the 7¢(z)-th time step of z.

» Lemma 14 (Quantum circuits for computing the stopping times). Let 7, t' € {0,...,T},
be stopping times defined in Eq. (2). For allt € [T, given quantum query access to functions
{20 : E = R}Y,_, and {ey ), : E — R}yeir—1),keim) n time T, and T, respectively, and to
the components of real vectors {ay € R™}L_, in time O(1), the following statements are
true (let eg k(xo) :=1):

1. There is a unitary Wy such that, in time O(T, + mT.),

{Wt ) [Ter1(2)) [0)23 = |2) [Tepa (2)) [26(20)) @ - € (20)) T2 () ift #T,
Wi |z) |0) = |z)|T) ift="T.

2. There is a unitary Vt(k) such that Vt(k)|x>|7~'t(x)>|0> = [2)|7e(x)) |25, 1y et—1,6(Te-1)), for
k € [m], in time O(T log(T)T. + T.).

3. The unitary C’t(k) = W} e WtTHWtTVt(k)WtWtH ... Wr is such that
CM|0)EET02) = e e w(-))|O)FETOID for k€ [m], in time
O(T(log(T)T- + mTe)).

Proof. We start with the first statement. The existence of Wy is trivial. Assume ¢ € [T — 1],
then, with one query access to function oracle z; and m query accesses to function oracle
er . for k € [m], we can perform

|2)10)[0) = [} 24 (1)) [0) = |2) |24 (1)) |€ (1)) -

By using access to the m elements of &;, and O(m) multiplications and additions, we can
compute the inner product of a; - €:(x;) in superposition over z, as

) |6 (1)) [0) = [a) [€(21)) |as - € (1)) -

Comparing between z;(x;) and @ - €(x¢) in constant time, we can compute 7¢(x) according
to Eq. (2), and hence obtain

|2) |Te1(2)) [2e(20)) | - (1)) |0) = |2) [Tega (2)) [2(20)) | - € (2)) |Te(2)) -

Uncomputing the intermediate steps leads to the desired operation. The total runtime is
O(T. + mTc+m+m+1) =O0(T. + mT.).

Regarding the second statement, we require a few circuits which can be constructed
once as a pre-processing step. First, we prepare the input for the payoff functions in an
ancillary register, where the input depends on the content of the register |7;(z)). For this
step, we prepare a conditional copy quantum circuit Veopy which operates as |z) |7¢(z)) |0) —
) [7¢(x)) |75, (,)), Where the register |zx ) stores the 7¢(z)-th step of the path x. This
circuit operates in time given by the size of the registers of at most O(T log(T’)). Second, from
the access to the different payoff functions we construct access to the functions in superposition
of the time parameter. By assumption, we are given quantum circuits V;,, for ¢’ € [T]. From
these quantum circuits we construct the controlled circuit Vielect := ZtT,Zl [t') (t'|®V.,,, which
consists of the controlled versions of the circuits V,, and has a runtime of O(T log(T')7.) [10].
Now, given |z) |T;(z)), with one application of Vopy and one application of Viglect, we obtain

2%, (2) i.e, the payoff evaluated at T3, (z)r B8

z)’

) |7e(2)) [0} [0) = |2) |[Te(2)) |25, (1)) [0) = [2) [T2e(2)) 2%, (2)) |22, ()
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Using Veopy again we uncompute the third register. One query to the function oracle e;_1
obtains e;_1 ,(x:—1) and by multiplication we obtain,

|2) [76(2)) |25, () ler-1,k (2e-1)) [0) = [@) [72e(2)) 25, (o) lee—1,0(@e-1)) |23, (€218 (Te-1))-

T T

We uncompute the third and fourth registers using the given circuits to obtain the desired
operation. The total runtime is O(T log(T) T, + Tc)-
Finally, for the third statement, it is not hard to see that (let 77 :=T)

C12)|0) =TI — Wil WiV T)10) (R) 12 (25)) s - € () 75 (@)
= Wi W) T2y, er1n(@i-1)) (R) 125 (2)) 1@ - € () 7 (2))

= [@)|25, (o et— 1k (2:-1))[0) PETTOFL,

From the two previous statements, the runtime of Ct(k) is 2(T —t + 1)O(T, + mT.) +
O(T'og(T)T- + Te) = O(T (log(T) T + mTe)). <

3.2 The algorithm

We present our quantum LSM algorithm in Algorithm 2. It computes the expecta-
tions Eles x(Xt)er (Xy)] (for the matrices {A;}1 "), E[Z;,, €(X:)] and E[Z; ] using
Theorem 13 instead of drawing random samples. Recall that by definition Z;Hl =
Z?Hl(XtH)(X?t+1(xt+1))’ i.e., both the optimal stopping time and the payoff depend on
the path of the Markov chain.

As previously mentioned, it follows the classical version in Algorithm 1. However,
the dynamic programming is not solved separately along different sampled paths, but
in superposition along all possible stochastic processes. More specifically, at any given
time ¢, the dynamic programming is solved in a backward fashion from time 7" to ¢t + 1 by
constructing a unitary that prepares the approximate stopping times 7,41 in superposition via
the mapping |z) |0) + |x)|Ts41(z)) for all z € ET. Such unitary is constructed (Lemma 14)
using the values of all stopping times 7y, calculated so far in the dynamic program and
allows access to the quantity Z?t+1’ which in turn is used in the quantum subroutines for
Monte Carlo to extract expectation values E[Z,  |X;] that make up the vector b;. The
matrices {At}tT;ll, in turn, are computed in an entrywise fashion at the start of the algorithm
by using quantum access to the functions e; x(z:)es (x¢). In hold of the approximations
Zt and Et to A; and by, respectively, the vector a; = g; q)it is then computed classically
and used to continue the dynamic programming at the next time step ¢ when solving
Te(x) = t1{ze(xr) > Ay - €x(we)} + Teq1(2)1{ze(xs) < Ay - €t(x4)} from time T to time ¢ in
superposition. Such procedure is repeated until ¢ = 1, when the optimal stopping time 7; can
be computed in superposition and thus the quantity sup, E[Z;] can finally be approximated
by max{Zy, Z;l }. We note that the procedure of approximating a matrix A; and a vector by
entrywise via quantum algorithms for Monte Carlo followed by the classical computation
of oy = gt_ b, was already used in [50]. We also note that, unlike the classical LSM, our
quantum algorithm requires redoing all previous dynamic programming steps before a given
time ¢ in order to progress into the next time step ¢t — 1. The final procedure involves O(T?)
time steps instead of O(T).
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Algorithm 2 Quantum LSM algorithm for optimal stopping problem.

Input: Parameters § € (0,1), ¢ > 0. Quantum sampling access to Markov chain (X;)X ,
defined on a finite sample space © and with finite state space E C R?. Quantum query
access to {z : E — R}, and linearly independent functions {e; : E — R}, for
te [T — 1]. Let L := MaX¢e[T-1],ke[m] ”et,k”LQ(pt) and R := maxe[r) Hthu

1: 84 :=8/(4Tm?), 8, := 6/(4Tm), €a := ¢/m and €, := €¢//m.
Construct quantum access and controlled rotation access to e, e, Vk,l € [m],t € [T —1],
with quantum query access to e; j, quantum circuits for multiplication and Fact 12.

N

3: Compute {gt}tT:_ll by calling QMonteCarlo(es i (Xt)er (Xt), €a, da, L?) for k,1 € [m].

4: Compute the inverses {Et_l}z:ll.

5: Prepare unitary Wz s.t. Wy |z)|0) = |x)|77()), where Tr(x) = T for all x € ET.

6: for t =T to 2 do

7 if t # T then

8: Prepare unitary W; s.t. Wi|z) |Tir1(2)) [0)®3 = |2) [Fep1(2)) |2e(24)) | -

ér(x))|Te(x)) for any Tpyq(x) € [T] (Lemma 14).

9: end if

10:  Prepare unitaries {V;" 1, s.t. VP|2)[F(2))|0) = |2)[7(2))] 25, (o 1.4 (2e-1))
(Lemma 14).

11: Prepare unitary W, ... WtT+1WtT‘Q(k)WtWt+1 ... Wy for k € [m] (Lemma 14).

12: Construct quantum access to the controlled rotations of the functions

Z;t($)€t—1,k($t—1) (Fact 12).
13: Execute QMonteCarlo(Z;tet_Lk(Xt_l), €b, Op, RL), for all k € [m], to compute 5t_1.
14: Compute the vector a;_1 = Z;flgt,l classically.
15: end for
16: Prepare unitary Wi s.t. W1 |z) [T2(z)) |0)®3 = |2) [T2(2)) [21(21)) |@1 - €1(z1)) |71 (2)) for
any 72(z) € [T] (Lemma 14).
17: Prepare unitary Vi s.t. Vi[z)|71(2))|0) = |z)[71(2))]25, () (Lemma 14).
18: Prepare unitary W} . WngVlVVl Wy ... Wp (Lemma 14).
19: Construct quantum access to the controlled rotations of the function z (Fact 12).
20: Execute QMonteCarlo(Z?l, €, g,
21: Output Up = max {ZO, Z;l }

R) to compute 2;1.

3.3 Error analysis and complexity

In Appendix A we prove that the classical LSM algorithm and our proposed quantum
LSM algorithm approximate the sought-after quantity Uy up to additive accuracy with high
probability. Among several results, the following encapsulates the overall complexity of the
classical and quantum LSM algorithms. For simplicity we assume that Tsamp, 7z, Te = O(1).

» Theorem 15 (Informal version of Corollary 22). Consider a set of linearly independent
functions {e¢ : E — R}, for each t € [T — 1] and payoff functions {z : E — R} .
Then, for 6 € (0,1) and € > 0, the classical and quantum LSM algorithms output Uy such that

’ 7 T . —
P |1 ~ 2] = 57 (e . iy o 60X = BlZrs [Xillzzgy )| <0

using time, respectively, 9] (T:f) and O (@), up to polylog terms.
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The error € arises from the Monte Carlo subroutines and can be made smaller by increasing the
calls to the quantum inputs (or to the number of sampled paths in the classical counterpart).
Compared to the classical algorithm, the number of oracle calls is quadratically less in the
quantum algorithm. The quantity mingegrm ||a - €;(X;) — E[Z;,, | X¢]| 12(,,) appearing in the
theorem above is known as approzimation error. This term arises from approximating the
continuation values by the m expansion functions and is a deterministic quantity implicitly
dependent on m and on smoothness properties of the continuation values.

In order to obtain a final additive accuracy egpa) for 1/70, we must resolve the implicit
dependence of the approximation error on m. This is done by considering specific sets of
expansion functions and assuming sufficiently good smoothness properties for the continuation
values. More specifically, for each ¢t € [T — 1] we consider functions {e;  : E — R}}* ; that
generate the space R, of all polynomials of degree at most g, so that m = (qu). We also
assume that E[Z,,_ |X;] € C", i.e., the continuation values are n-differentiable functions.
Then it is possible to bound the approximation error mingegm ||a- € (X¢) — E[Zr, | Xt]||£2 ()
by using a Jackson-like inequality [47] and obtain the following result (see the arXiv version [28]
for the full statement and proof).

» Theorem 16. For each t € [T — 1] consider a set of linearly independent functions
{etr : E — R}, that spans the space Ry with m = (q‘gd) and consider payoff functions
{z. : E — R}L,. Assume that E[Z,,, |X;] € C™ for allt € {0,...,T — 1}, where n < q.
Then, for § € (0,1) and € > 0, if ¢ = [(57 /€)}/™], the classical and quantum LSM algorithms
output Uy such that Pr [|ZIO —Uy| > €] < & using time, respectively, 9] ((57 /€)2+64/m) and
9] ((57 /€)1 +44/™) up to polylog terms.

If the continuation values are n-times differentiable, for n = ©(log(57 /) /loglog (57 /¢)),
then we get the sought-after quadratic improvement from O((57/€)?) classical runtime to
5(5T /€) quantum runtime, up to polylog terms. We briefly note that such smoothness
conditions on the continuation values are not unusual in areas like finance. Indeed, the
continuation values can even be in C*° in some models, e.g. Black-Scholes [34, 85].

Very recently, Miyamoto [62] proposed a quantum LSM algorithm based on Chebyshev
interpolation through Chebyshev nodes and obtained O(e~!log?(1/€)poly loglog(1/€)) as a
final complexity. Our approach, in contrast, is to project E[Z,, | X;] onto a set of polynomials
and is, for this reason, much more general. Moreover, our final result is a time complexity,
while the result from [62] is a query complexity on the number of unitaries called by all
quantum routines for Monte Carlo. Finally, Miyamoto [62] assumes that the continuation
values are analytical functions, i.e., are in C*°, while we only need to assume E[Z,, | X;] € C"
for n = O(log(57 /€)/loglog (57 /€)) in order to recover O(e™1) up to polylog factors. One
downside of our approach, though, is the presence of quantities that implicitly depend on
the underlying Markov chain.

As just mentioned, the full results behind the informal theorems above involve parameters
that depend on the underlying Markov chain such as the minimum singular value of the
matrices A;. In order to explicitly work these parameters out, we also study the case
when the underlying Markov process follows Brownian motion or geometric Brownian
motion and obtain a simplified version of our algorithm (see arXiv version [28]). In the
case of Brownian motion, we choose Hermite polynomials as the functions {e;r : £ —
R}, for each t € [T — 1], since they are orthogonal under the probability measure
underlying a Brownian motion. This means that the matrices A; are just the identity.
The final result is a mild reduction on the classical and quantum time complexities to
O((57 /e)2+4d/m) and O((57 /€)1 +74/2n) | respectively. For the geometric Brownian motion,
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we pick suitable monomials that reduce the matrices A; to Vandermonde matrices, whose
minimum singular value can be bounded. We obtain the final classical and quantum
complexities eo((sT/e)z/n)(5T/6)2+12d/” and eo((5T/E)2/n)(5T/e)1+15d/2”, respectively. If the
continuation values are again n-times differentiable for n = @(log(5T /e)/ log log(5T /e)),
then the classical and quantum complexities for the Brownian motion setting reduce to
the usual 6(6_2) and 6(6_1), respectively, while, for the geometric Brownian motion, they
reduce to e©108°" /) (5T /)2 and eO0os"(5"/9) (57 /¢) for any constant 0 < ¢ < 1. These
results for the geometric Brownian motion are slightly weaker than the usual O((57 /¢)?) and
5(5T /€), since the bound on the minimum singular value of the matrix A; is very sensitive
to the degree ¢ of the chosen monomials.

4  Conclusions

In this work, we developed a new quantum algorithm for a stochastic optimal stopping
problem (as in Theorem 4) with a quantum advantage in the runtime. This problem
cannot be solved accurately by a single application of quantum algorithms for Monte
Carlo [63, 41, 22, 21, 3]. Instead one must compute in superposition (and recursively) the
stopping times as in Lemma 14, which is key to obtaining a quantum speedup. As the
classical LSM algorithm can be used to solve a large variety of problems, our quantum LSM
can also be used for problems in finance including insurance [53] and risk management [38],
and for many optimization problems outside finance, such as quickest detection [82] and
sequential Bayesian hypothesis testing [26]. Additionally, we believe that there are many
other problems in, for example, dynamic programming, stochastic optimal stopping and
optimal control where the interplay of function approximation and quantum subroutines for
Monte Carlo could be used to design new quantum algorithms.

A few design choices of the quantum algorithm were guided by real problems where the
classical algorithm is already used. Even though we took number of expansion functions
m = poly (57 /€) in order to bound the approximation error, in practice one typically assumes
m to be constant [57]. For big values of m, our algorithm could be modified in order to use
quantum subroutines for inner product estimation, and reduce the complexity polynomially
in m, but introducing a further ¢ dependence. Thus, further analysis is needed to understand
the impact of the precision parameters on the runtime of these subroutines. Along these

lines, we have chosen to invert the linear systems for finding a; on a classical computer.

A possible modification of our algorithm could output quantum states |ay) via HHL-like
algorithms [43]. We also discussed how, under the hypothesis that the Markov chain is a
Brownian motion or a Geometric Brownian motion, the matrices A; can be expressed with
a closed formula and their minimum singular value be bounded. This idea exhibits some
similarity with the idea proposed in [56]. There, they leveraged quasi-regression algorithms
and a particular choice of expansion functions [68], so to pre-compute the matrices A, and
thus skip costly Monte Carlo estimators. Moreover, when considering a Brownian or a
Geometric Brownian motion, the chosen functions {e; }7~; had a explicit time dependence
on t, but it is possible to transform the optimal stopping time problem behind American
option pricing in a way that such dependence is suppressed and a single set of approximating

functions is employed [15, 16]. We believe that such approach could improve our complexities.

Finally, in our algorithm, we use quantum subroutines from [63], but could equivalently use
the subroutines from [41, 22, 21]. Our template could be extended to quantum algorithms
that are similar in spirit but are solving different problems [87].
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Our final complexities have an exponential dependence on T', the number of time steps.
We believe that such dependence, present in several past works [30, 93, 94, 95, 96, 62], is
only a consequence of a loose error bound and could possibly be improved. Such hope is
backed up by the ubiquitous employment of LSM algorithms for pricing American options in
every day financial markets. We also note that a more careful error analysis would improve
classical results as well, but, regardless, the quantum quadratic improvement would still be
present. Finally, notice that it always possible to compensate a reduction on the number of
time steps with more accurate approximations for continuation values and similar quantities.

We stress the importance of fast quantum algorithms for optimal stopping problems. For
American option pricing, the value of the payoff function could easily reach a few million
dollars, and the additive precision e could be of the order of 107! [4]. Given the level of
specialization in classical algorithms and architectures for this specific problem, how and
when our algorithm can find application in practice is left for future work.
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A  Error Analysis and Complexity
In what follows, given b € R™ and A € R™ ™ for some m € N, let [|blls 1= /> ivy b?
and [|Al|2 := omax(A) be the vector and matrix norms, respectively, where oyax(A4) is the
maximum singular value of A. We shall denote by oin(A) the minimum singular value of
A. Let w, denote the matrix multiplication exponent. Moreover, recall the uniform norm
1l = sup{|£(s)] : s € E} for f: E — R,

We shall analyze the approximation error and complexity from Algorithm 2. In order to
do so, we will need the following result from [93, 96] (already modified to our notation) that
bounds the error between the exact continuation values E[Z;, |
@y - €(X;) in terms of the error between the continuation values ]E[Z?Hl | X%] evaluated on
the approximated stopping times 711 and g - €(Xy) for k € {¢,...,T — 1}. Recall the
image probability measures p; in E C R? induced by each element X;, t € {0,...,T}.

| X¢] and their approximation

» Lemma 17 ([93, Lemma 2.2]). For each t € {0,...,T — 1}, we have

T—1
& - @ (Xe) = B[ Zry | Xl L2 (o) <2 @k - €:(X8) — E[Z5,  1Xk]ll22(p0):
k=t
T—1
IB(Zs, ,|1Xd] = B[Zr | X220y <2 D, llak - @ (Xk) = E[Zz, 1 Xk]l|L2 (00
k=t+1

where ap - €(Xo) := Z  approzimates E[Z |.

T1

We will also need the following technical result on the sensitivity of square systems.
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> Theorem 18 ([37, Theorem 2.6.2]). Let Az = b and A% = b, where A, A € R4 and
b,b € RY, with b # 0. Suppose that ||[A — Alla < ea and ||b— bz < €. If ea < omin(4)/2,
where omin(A) is the minimum singular value of A, then

~ 2 eallbll2
— < .
Hx xHQ - Jmin(A) (Umin(A) +€b

We are now able to state a central theorem for our quantum LSM algorithm.

» Theorem 19. Within the setting of Algorithm 2 with input parameters 0 and €, let T Tsamp
be the sampling cost of the Markov chain and consider a set of linearly independent functions
{eer : E = R}, for each t € [T — 1] with L := maxcir_1) keim)] leerll12(0) and query
cost To. Also consider {z : E — R}y with R := max,c[r) ||z]|w < 0o and query cost T..
Moreover, let omin := MiNgeir_1) Omin(A¢) > 0. Assume that /mRL/omin > 1 and define
Tiotal := Tsamp + Tz + Te. Then, for any 6 € (0,1) and € € (0, omin/2], Algorithm 2 outputs

Uy such that

. 8TemRL? _~ .
Uo —E[Zy)| > ——5——+2) min [la-&(X;) —EZ;,,, [Xi]l2(py | <0 (11)
t=1

min

Pr

in time
2. .3
o) (TZ"TMIL(L + R) log(T) log (Tm?/8) log®*(mL(L + R)/e) log log(mL(L + R) /5)) ,
Proof. Set b; := IE[Z;Hlé}(Xt)}. Recall that €4 1= ¢/m, €, := €/\/m, §4 := §/(4Tm?) and
dp := 0/(4T'm). We start by computing the complexity of the algorithm. We first note the

bounds ||b:]|2 < R||E[e:(X})]|l2 < vmRL and || Asll2 < mmaxy; [Eleq 1 (Xt )er (Xe)]| < mL?
for all t € [T — 1]. The computation of all the entries of the matrices {A;}7._," requires time

2 2 2
X (Tm L(T Teamp + T2) log(1/6.4) log®/? (L) log log (L )> ’
A

€A €A

by calling QMonteCarlo(e; x(Xt)er (Xt),€a,04, L?) from Theorem 13 for ¢ € [T — 1] and
k,l € [m]. The computation of all b; uses time

O (imRL(T'Eamp + T(log(T) T, + mT.))log(1/6) log3/2 <JEL> log log (RL>> ,
b b

€b

by calling QMonteCarlo(Z;tet_17;€(Xt_1), €p, Op, RL) from Theorem 13 for ¢t € {2,...,T} and

k € [m]. Note that the term T(log(T)7, + mT7T.) comes from using the unitaries C’t(k) in
QMonteCarlo, each with cost O(T(log(T)T, + mT.)) according to Lemma 14. Computing
E[Z; ] requires time

R R R
(@) (E(T’];amp + T(log(T)T. +m7T.))log(1/6) log®/? (6> log log (6>) ,
by calling (I)MonteCarlo(Z;1 J€, g, R) from Theorem 13 and where the term T'(log(T") 7. +mT7T.)
again comes from the unitaries Ct(k) in QMonteCarlo. The classical computation of {A{ 1}3:11
and {a; = A; "0} requires time O(T'm®“*), where 2 < w, < 3. Hence, by keeping the
largest terms of each complexity, the final complexity is upper-bounded by

0 (Yimg)%otalL(L + R)log(T) log(Tm2/5) log®?(mL(L + R)/€)loglog(mL(L + R)/e)> .
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We now move to the error analysis. Fix t € [T — 1]. We start by bounding the error
oz — a2 between ap = A 'y, and oy = A bt By using QMonteCarlo from Theorem 13
we approximate each entry of A; and b; as |(At)jl (At)jl| <e/mand |(by); — (bt)j| <e/ym
for all 4,1 € [m]. All approximations hold with probability at least 1 — /2T by the union
bound. This means that, with probability at least 1 — §/2T,

m

1A = Al < | D0 (A = (Aal? < e llbe = billz = | > 1(Br) )il* < e

jl=1 j=1
According to Theorem 18, we obtain

2¢ <1+ 16¢]|2 >§ 4er/mRL

llar — aull2 <

B Umin(At> Umin(At) o-gnin
with probability at least 1 — §/27T, using that \/mRL /o, > 1. This, in turn, implies that
- . _ — 4emRL>
H@t : et(Xt) — Q- et(Xt)HLQ(pt) < ||Oét - OétHQH €t( - €} Xt HLz(pt =" 2

using that ||/&(X;) - gf(Xt)Hm(,m = \/ZIGE pe(x) 34ty ef o (x) < /mL. Next, we bound

@, - €(X0) — EZs,, 1Xil 22
< |l - € (Xy) — - et(Xt)||L2(m) + oy - € (Xy) — E[Zx Fir1 ‘Xt]||L2(Pt)
4emRL? . o
< — 5+ min [la-&(Xe) —E[Zz, [ Xelllz2(on, (12)

min
using that oy = arg mingegm E[(Z;Hl —a- é't(Xt))Q} minimizes the least square estimator.
Finally, by the union bound, with probability at least 1 — ¢, Eq. (12) holds for all

t € [T — 1], together with |Z;1 —E[Z; ]| < e. Lemma 17 then leads to

~ STemRL? 1 .
|Z?1 - E[ZHH < T +2 ; a%lﬂla% ”a ’ et(Xt) - E[ Tig1 |Xt]||L2(Pt

which implies Eq. (11) by using |max{ag, a1} — max{ag, as}| < |a; — as| with ag,a;,as € R
on the definition of Uy in Eq. (4). <

Note that the approximation errors mingegm ||a-€;(X;) — E[Z~ Fen | X¢]ll£2(p,) appearing in
Theorem 19 depend on the approximated stopping times 741, which in turn depend on Hy for
t' > t. It is possible to restate Theorem 19 in terms of mingerm [|a-€;(X¢) —E[Z-, 1 X¢][22(5,),
which we do in the next theorem by following a similar approach to [93, Theorem 6.1]. The

downside is that the time dependence now becomes exponential.

» Theorem 20. Within the setting of Algorithm 2 with input parameters 6 and €, let T Tgamp
be the sampling cost of the Markov chain and consider a set of linearly independent functions
{etr + E = R}, for each t € [T — 1] with L := maxcir_1) kejm) leekll12(p) and query
cost To. Also consider {z : E — R}_y with R := max,e[p) ||thu < oo and query cost T,.
Moreover, let 0wy = Minyeir_1] Omin(A:) > 0. Assume that /mRL/owmin > 1 and define
Tiotal := Tsamp + Tz + Te. Then, for any 6 € (0,1) and € € (0, omin/2], Algorithm 2 outputs
Z]O such that

~ 4emRL?
Pr DZ/IO — E[ZTOH > 57 <Ur2nm + OrgtzixT argﬂlg{% lla - & (X;) — ]E[ZTt+1|Xt]||L2(pt)>:| <4
n time

0 (Timgﬂotaw(L + R)log(T) log(Tm*/6) log**(mL(L + R)/e) log log(mL(L + RVG)) '
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Proof. The proof follows the same steps of the proof of Theorem 19, with the further
observation in Eq. (12) that if

lcve - €e(Xe) = E[Zz,, [ XelllL2(or) < €0 + min Jla-€(Xe) —E[Zz, | [Xe]llz2(p0), (13)
for all £ € {t,..., T — 1}, where we defined ¢ : 46mRL , then
T-1
2(T—€)€0+2Zafgﬂi§{g la- & (Xe) = ElZz, [ XelllL2(p) <57 (o + M), (14)
k=0
for all £ € {t,...,T — 1}, where M} := maxp—y  7-1 (mmaeRmHa c (X)) —

E[Zr .| Xkl 12(py))- We prove this bound using backward induction as follows. Eq. (14)
clearly holds for £ =T — 1. Assume it holds for / = ¢ 4+ 1, we shall prove it is also true for
¢ = t. First notice that, by the triangle inequality followed by Lemma 17 and then Eq. (13),

min [la-&(X:) —E[Zy,  [XdllL2g0)
< min [la- €(Xe) = E[Zr | Xe]ll 2o + IB[Zr 0 | Xe] = E[Z7, | 1Xe]ll22G00)
T—1
< min [la - &(Xe) = E[Zr ., | Xi]llr2(p,) +2 D llaw - e (Xx) —E[Zy, wd [ X2 o)
k=t+1
T—1
< min fla-&(X0) ~ E[Zr 1| Xdllza) +2 ) (eo min la- &(Xe) ~E[Zy,  |Xellz2())
k=t+1
T—1
SM{ 42T —t=1eo+2)  min fla-&(Xe) ~ElZ;, X200y
k=t+1
Using the above inequality followed by the induction hypothesis,
T—-1
2T —t)eg +2 ) min [la - & (Xx) —EZz, [ Xelz2(o)
k=t
T-—1
* . —
< 20+ 2M; +6(T —t — 1)eo + 612;1 min o & (Xe) —E[Zz,_ | Xk]2(o0)

< 2+ 2M; +3-57 7" (e + M)
<57 (eo + M),

proving the induction statement. The theorem follows by taking £ = 0 in Eq. (14) and using
|max{ag, a1 } —max{ag,as}| < a1 — az|, ap,a1,as € R, on the definition of Uy in Eq. (4). <«

Given the above theorems, we prove a classical analogue.

» Theorem 21. Within the setting of Algorithm 1, consider N independent sample paths
with sample cost Teamp and let the linearly independent functions {e; : E — R}, for
each t € [T — 1] be such that L := maxXycir—_1] keim] ekl L2(p,) and have query cost T.. Also
consider {z : E — R}/, with R := maxepr) ||2¢]la < 00 and query cost T.. Moreover,
let Omin = Mingeir_1] Omin(Ar) > 0 and assume that /mRL/omin > 1. Then, for any
€ € (0,0min/2], Algorithm 1 runs for O(Tm*N + Tm** + TN (Teamp + T» + m7Te)) time and
returns an estimate Zj{o such that

o 4emRL> . .
Pr ||ty — E[Z,]| > 57 (2 + max min |la-é&(X;) — IE[ZTM|X,€}|L2(M)>}

min 0<t<T acR™

2:23

TQC 2022



2:24

Quantum Algorithm for Stochastic Optimal Stopping Problems

Proof. The error analysis is very similar to that of Theorems 19 and 20, therefore we shall just
point out the required changes. Each entry of A; and b; is approximated using a Chernoff
bound, i.e., Pr[[(Ay); — (A)ju| > e/m] < 2e72N</m* and Pr[|(by); — (b);] > €/v/m) <
2¢2N¢/m for all j,1 € [m]. Moreover, Pr[|§;1 —E[Z: ]l > ¢ < 2¢~2N<* | Therefore, by
the union bound, all approximations hold with probability at least 1 — 2m2e=2N¢*/m* _
2me 2N /m _ 92N > | _ gp2em 2N /m?

Regarding the time complexity, the most expensive computational steps are calculating
the matrices /Nlt, which requires O(T'm?N) time, and inverting them and computing the
vectors @y, which requires O(T'm®~) time. Sampling (Xt(l),...,Xt(N))tT:0 and querying
(Zt(l), ce Zt(N)) _o and (e, k(X( )) .,etyk(Xt(N)))tE[T 1],ke[m] require O(NT(Tsamp + T- +
mT.)) time. All the other steps, computing % Z Zi?l) H(X(n)), Uy and & - €t(Xt(n))
require O(T'mN) or O(T'm) time. o <
If Tyamp, T2, Te = O(1), then the complexity is O(Tm?2N + Tm®*). The factor Tm? comes
from computing {At}tT:jl and accounts for runtime instead of only number of samples.

We summarize and compare the results from Theorems 21 and 20 into a single corollary.

» Corollary 22. Within the setting of Algorithm 1 with input parameters §, N and Algorithm 2
with input parameters 6, €g, let T Tsamp be the sampling cost of the Markov chain and consider
a set of linearly independent functions {e;r : E — R}, fort € [T — 1] with query cost
Te and L := maxyer_1]kefm) l|etkll2(p,)- Also consider {z : E — R} with query cost
T. and R := max,ciq || 2]l < 00. Let omin < mingepr_1) Omin(As) be known. Assume that

VMRL/0wmin > 1 and define Tiotal := Tsamp + 7= + Te. For any é € (0,1) and € € (O, Q?fifz],
if g = 4:;%‘52 and N = [% 1og(6m2/5ﬂ, then Algorithms 1 and 2 output Uy such that
0

” T
Pr {Wo -E[Z,]| =5 (6 + Juax alélﬂlgyln la- e (Xy) — E[ZTt+1|Xt]||L2(pt)):| <4

using time, respectively,
Tmb R?L4
0O (2 UTﬁOtal log(m2/5)>

€ min

and (up to loglog factors)

T2m* RI3(L + R Tm?2 ) 2RI3(L 4 R
0 ( - (2 )ﬁotal log(T) log <?> log®/? (m())) .

2
€ O hhin €0 min

Proof. The results concerning the quantum Algorithm 2 were already proven in Theorem 20,

we just use that ¢y = 4;%52 It is left to prove the results about the classical Algorithm 1.
Indeed, by setting N = {? log(6m2/5)] into Theorem 21 with ¢y = 4;’%’]327 we obtain
0
Pr [Wo - E[Z,]| > 5" (€+or£{a<XTargﬂler# la- e (X:) — E[ZTH1|X,5]||L2(M))] <.

The final time complexity becomes then O(Tm*N + Tm® + TN (Tamp + T + mT.)) =
O (L80n* + Teamp + T+ Te) S5 log (%) ) = O (28 2" Tooarlog (%)) «

mi

» Remark 23. We note that in the previous theorem it is necessary to know a lower bound
on minger—_1 Omin(A¢) since it must be inputted into quantum subroutines for Monte Carlo
to bound the variance. It is possible, though, to get around this detail by using the more
complicated algorithm from [41] which does not require a bound on the variance.
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