Schloss Dagstuhl - Leibniz-Zentrum für Informatik GmbH Schloss Dagstuhl - Leibniz-Zentrum für Informatik GmbH scholarly article en Gryaznov, Svyatoslav; Pudlák, Pavel; Talebanfard, Navid https://www.dagstuhl.de/lipics License: Creative Commons Attribution 4.0 license (CC BY 4.0)
when quoting this document, please refer to the following
DOI:
URN: urn:nbn:de:0030-drops-165664
URL:

; ;

Linear Branching Programs and Directional Affine Extractors

pdf-format:


Abstract

A natural model of read-once linear branching programs is a branching program where queries are 𝔽₂ linear forms, and along each path, the queries are linearly independent. We consider two restrictions of this model, which we call weakly and strongly read-once, both generalizing standard read-once branching programs and parity decision trees. Our main results are as follows.
- Average-case complexity. We define a pseudo-random class of functions which we call directional affine extractors, and show that these functions are hard on average for the strongly read-once model. We then present an explicit construction of such function with good parameters. This strengthens the result of Cohen and Shinkar (ITCS'16) who gave such average-case hardness for parity decision trees. Directional affine extractors are stronger than the more familiar class of affine extractors. Given the significance of these functions, we expect that our new class of functions might be of independent interest.
- Proof complexity. We also consider the proof system Res[⊕], which is an extension of resolution with linear queries, and define the regular variant of Res[⊕]. A refutation of a CNF in this proof system naturally defines a linear branching program solving the corresponding search problem. If a refutation is regular, we prove that the resulting program is read-once. Conversely, we show that a weakly read-once linear BP solving the search problem can be converted to a regular Res[⊕] refutation with constant blow up, where the regularity condition comes from the definition of weakly read-once BPs, thus obtaining the equivalence between these proof systems.

BibTeX - Entry

@InProceedings{gryaznov_et_al:LIPIcs.CCC.2022.4,
  author =	{Gryaznov, Svyatoslav and Pudl\'{a}k, Pavel and Talebanfard, Navid},
  title =	{{Linear Branching Programs and Directional Affine Extractors}},
  booktitle =	{37th Computational Complexity Conference (CCC 2022)},
  pages =	{4:1--4:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-241-9},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{234},
  editor =	{Lovett, Shachar},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/opus/volltexte/2022/16566},
  URN =		{urn:nbn:de:0030-drops-165664},
  doi =		{10.4230/LIPIcs.CCC.2022.4},
  annote =	{Keywords: Boolean Functions, Average-Case Lower Bounds, AC0\lbrack2\rbrack, Affine Dispersers, Affine Extractors}
}

Keywords: Boolean Functions, Average-Case Lower Bounds, AC0[2], Affine Dispersers, Affine Extractors
Seminar: 37th Computational Complexity Conference (CCC 2022)
Issue date: 2022
Date of publication: 11.07.2022


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI