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Abstract
Since the seminal works of Strassen and Valiant it has been a central theme in algebraic complexity
theory to understand the relative complexity of algebraic problems, that is, to understand which
algebraic problems (be it bilinear maps like matrix multiplication in Strassen’s work, or the determ-
inant and permanent polynomials in Valiant’s) can be reduced to each other (under the appropriate
notion of reduction).

In this paper we work in the setting of bilinear maps and with the usual notion of reduction
that allows applying linear maps to the inputs and output of a bilinear map in order to compute
another bilinear map. As our main result we determine precisely how many independent scalar
multiplications can be reduced to a given bilinear map (this number is called the subrank, and
extends the concept of matrix diagonalization to tensors), for essentially all (i.e. generic) bilinear
maps. Namely, we prove for a generic bilinear map T : V × V → V where dim(V ) = n that θ(

√
n)

independent scalar multiplications can be reduced to T . Our result significantly improves on the
previous upper bound from the work of Strassen (1991) and Bürgisser (1990) which was n2/3+o(1).
Our result is very precise and tight up to an additive constant. Our full result is much more general
and applies not only to bilinear maps and 3-tensors but also to k-tensors, for which we find that
the generic subrank is θ(n1/(k−1)). Moreover, as an application we prove that the subrank is not
additive under the direct sum.

The subrank plays a central role in several areas of complexity theory (matrix multiplication
algorithms, barrier results) and combinatorics (e.g., the cap set problem and sunflower problem).
As a consequence of our result we obtain several large separations between the subrank and tensor
methods that have received much interest recently, notably the slice rank (Tao, 2016), analytic rank
(Gowers–Wolf, 2011; Lovett, 2018; Bhrushundi–Harsha–Hatami–Kopparty–Kumar, 2020), geometric
rank (Kopparty–Moshkovitz–Zuiddam, 2020), and G-stable rank (Derksen, 2020).

Our proofs of the lower bounds rely on a new technical result about an optimal decomposition
of tensor space into structured subspaces, which we think may be of independent interest.
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1 Introduction

We solve a fundamental problem in algebraic complexity theory about a notion of complexity
on bilinear maps (tensors) called the subrank, which was introduced by Strassen in [39] in
the study of fast matrix multiplication algorithms, and which later found close connections
to several hypergraph independence and Ramsey-type problems in combinatorics and tensor
methods in these areas (e.g., analytic rank [28, 3] and related notions). Our results improve
significantly on previous bounds from the work of Bürgisser [9] and Strassen [41].

In high-level terms, the subrank of a bilinear map is the largest number of independent
scalar multiplications that can be reduced to (i.e. “embedded in”) the bilinear map, under
the natural algebraic complexity notion of reduction (which we elaborate on in a moment).
This definition extends the usual rank of matrices and moreover naturally extends further to
multilinear maps (k-tensors). In this paper, we:

determine the subrank for almost all bilinear maps (i.e. generic bilinear maps),
prove precise bounds that are accurate up to a small additive constant,
extend the above results from bilinear maps (3-tensors) also to multilinear maps
(k-tensors),
prove as a technical result (used in the proofs of the above) an optimal decomposition
theorem for tensor subspace, decomposing tensor space into very structured subspaces,
prove, as an application of our upper bound on generic subrank, that the subrank is not
additive under the direct sum.

Let us biefly state our asymptotic results here. (We will return to these in more detail in
Subsection 1.2.) We prove for any vector space1 V with dim(V ) = n that almost all bilinear
maps T : V × V → V have subrank equal to θ(

√
n). That is, θ(

√
n) independent scalar

multiplications can be reduced to T . For k-tensors we find the subrank to be θ(n1/(k−1)) on
almost all k-tensors.

To prove our results we use methods from algebraic geometry as well as linear algebraic
arguments. Our upper bound proof relies on an efficient parametrization of the set of tensors
with subrank larger than a given number (as a collection of orbits) and a good dimension
estimate of this set. Our lower bound proof relies on arguments involving differentials. At
the core we prove a technical result about a very structured decomposition of tensor space
which we think may be of independent interest. The main goal here (in the simplest case) is
to write tensor space as a sum of tensor subspaces as efficiently as possible (meaning with
smallest as possible sum of dimensions) such that each subspace has the special form of a
matrix subspace tensored with n-space. Our technical result is that we can do this optimally
for any order of tensor space. We discuss the proof methods further in Subsection 1.3.

To get some intuition for the subrank it is instructive to ask how the subrank relates to
the better known complexity notion tensor rank. Subrank and rank are indeed closely linked,
and in a sense they are dual to each other. Indeed, whereas the subrank of a bilinear map T
is the maximal number of independent scalar multiplications that can be reduced to T , the
rank of T is (among several equivalent definitions) the minimal number of independent scalar
multiplications that T reduces to. In this way, the rank measures the computational “cost”
of T in terms of scalar multiplications while the subrank measures the “value” of T in terms
of independent scalar multiplications.

1 We will require the base field of the vector space to have the mild property of being algebraically closed
(but it will be clear from our techniques that this assumption can be weakened considerably).
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1.1 Subrank and generic subrank

Let us now discuss more precisely several equivalent formulations and the meaning of the
definition of subrank, and the sense in which we determine the subrank for almost all tensors
(the generic subrank).

Subrank of bilinear and multilinear maps

We first stay in the realm of bilinear maps, and will define subrank via the notion of a
reduction between bilinear maps, which is really a reduction in the sense of computational
complexity. Given two bilinear maps S : V1 × V2 → V3 and T : W1 × W2 → W3 we say S

reduces to T and write S ≤ T if there are linear maps L1 : V1 → W1, L2 : V2 → W2 and
L3 : W3 → V3 such that S(v1, v2) = L3(T (L1(v1), L2(v2)) for all v1 ∈ V1, v2 ∈ V2. (In the
literature, this relation ≤ on tensors is often called the restriction preorder and when S ≤ T

one says that “S is a restriction of T ” [39, 8].) In other words, if S ≤ T , then any algorithm
for T also gives an algorithm for S (with only small computational overhead, namely applying
the linear maps Li to inputs and output). Next, an important basic bilinear map that we
use to define subrank is (for any positive integer r) the bilinear map Ir that computes r
independent scalar multiplications with scalars from some2 field K:

Ir : Kr ×Kr → Kr : (v1, v2) 7→ ((v1)1(v2)1, . . . , (v1)r(v2)r).

With these notions set up, the subrank Q(T ) of a bilinear map T : V1 × V2 → V3 is defined
as the largest number r such that Ir reduces to T , that is, Ir ≤ T . On the other hand, the
tensor rank of T is the smallest number r such that T ≤ Ir. Thus, the subrank Q(T ) is
indeed the largest number of independent scalar multiplications that can be reduced to T ,
while the rank is the smallest number of independent scalar multiplications that T reduces to.
The above definition of subrank extends directly to multilinear maps V1 × · · · × Vk−1 → Vk

by naturally extending the reduction and defining Ir as the multilinear map that computes r
independent (k − 1)-wise products.

Subrank of tensors.

Alternatively we may phrase the definition of the subrank in the language of tensors, as
bilinear maps (and multilinear maps) naturally correspond to these. Let Kn1,n2,n3 be the
space of 3-tensors (3-dimensional arrays) T = (Ti,j,k)i,j,k with i ∈ [n1], j ∈ [n2], k ∈ [n3]. For
tensors S ∈ Kn1,n2,n3 and T ∈ Km1,m2,m3 we write S ≤ T if there are matrices A ∈ Matn1,m1 ,
B ∈ Matn2,m2 , C ∈ Matn3,m3 such that S is obtained from T by applying A,B,C to the
slices of T , in the sense that

Si,j,k =
∑
a,b,c

Ai,aBj,bCk,cTa,b,c

for all i ∈ [n1], j ∈ [n2], k ∈ [n3]. Let Ir ∈ Kr,r,r be the tensor for which the diagonal entries
(Ir)i,i,i are 1 and the other entries are 0. In this language the subrank Q(T ) is again the
largest number r such that Ir ≤ T . This definition of subrank also naturally extends to
higher-order tensors Kn1,...,nk .

2 We will put some mild restrictions on the field in some parts of the paper.

CCC 2022
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Subrank on “almost all” tensors; generic subrank

It follows from a short argument (which we give later; Proposition 9) that for vector spaces
V1, V2, V3, there is a subset U of all bilinear maps V1 × V2 → V3 that is nonempty and
Zariski-open (the complement is the zero-set of a finite collection of polynomials) and with
constant subrank. This set U thus contains almost all bilinear maps V1 × V2 → V3. The
subrank on U is called the generic subrank. We denote the generic subrank of bilinear
maps Kn1 ×Kn2 → Kn3 (or equivalently of tensors in Kn1,n2,n3) by Q(n1, n2, n3) (and by
Q(n1, . . . , nk) generally for higher-order tensors).

1.2 Our Results

As our main results we determine (1) the subrank of generic tensors of order three, and,
more generally, (2) the subrank of generic tensors of any order k ≥ 3. Moreover, as a core
technical ingredient in our proof of (1) and (2), we prove (3) an optimal decomposition of
tensor space into highly structured subspaces, which we think is of independent interest and
which may have further applications in algebraic complexity theory. We will now describe
each of these results in detail.

(1) The generic subrank of tensors of order three.

We will begin by discussing our results for tensors of order three (or equivalently, for
trilinear maps or bilinear maps on vector spaces of appropriate dimensions). Recall that
Q(n) = Q(n, n, n) denotes the generic subrank of tensors in Kn,n,n. In other words, Q(n) is
the value that the subrank takes on “essentially all” tensors, or on “randomly chosen” tensors
with probability 1. We prove that Q(n) grows as

√
n.

▶ Theorem 1. We have Q(n) = θ(
√
n).

We thus solve the problem of determining the generic subrank of tensors of order three
(and also, with more work, of order k in general as we will discuss below). In computational
terms, Theorem 1 states that for “essentially all” bilinear maps T : Kn ×Kn → Kn we can
reduce the problem of multiplying

√
n independent pairs of numbers to T , and that this

is optimal (under the usual notion of reduction from algebraic complexity theory in which
linear maps are applied to the inputs and output of T ).

In particular, with Theorem 1 we significantly improve on the previous best upper bound
on Q(n) of Strassen and Bürgisser (obtained via the method of “lower support functionals”)
which was Q(n) ≤ n2/3+o(1).

As an application of Theorem 1 we prove that the subrank is not additive under the
direct sum. Namely, we prove that there are bilinear maps S, T : Kn ×Kn → Kn such that
Q(T ) + Q(S) = θ(

√
n) while Q(T ⊕ S) ≥ n. In other words, it is sometimes possible to

reduce many more independent scalar multiplications to a direct sum of bilinear maps than
to the bilinear maps separately.3

3 This result is the subrank analogue of the recent result of Shitov [36] that disproved Strassen’s additivity
conjecture for tensor rank [37]. For this he constructed a complicated example of 3-tensors S, T (over any
infinite field) such that R(S ⊕ T ) < R(S) + R(T ). We discuss additivity results further in Subsection 1.4.
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As a direct consequence of Theorem 1, we separate the generic subrank Q(n) from
the generic asymptotic subrank ˜Q(n)4, for which Strassen proved that the generic value
satisfies ˜Q(n) ≥ n2/3 [40, Prop. 3.6]. Moreover, our result gives a large separation between
the subrank on the one hand, and the slice rank (and partition rank, for higher order tensors),
geometric rank, and G-stable rank on the other hand (whose generic value is full).

Let us now discuss the bound of Theorem 1 in more detail, and in particular get the
precise constants right, after which we discuss the extension to higher-order tensors. We
(naturally) obtain Theorem 1 in two parts, namely by first proving the following upper
bound:

▶ Theorem 2. We have Q(n) ≤ ⌊
√

3n− 2⌋.

And then proving the following essentially matching lower bound:

▶ Theorem 3. We have Q(n) ≥ 3(⌊
√
n/3 + 1/4 − 1/2⌋).

It is not difficult to see that our upper and lower bounds on the generic subrank are
very precise. Namely, the difference between the upper bound ⌊

√
3n− 2⌋ and the lower

bound 3(⌊
√
n/3 + 1/4 − 1/2⌋) is at most a small additive constant.5

We conjecture that our upper bound in Theorem 2 is tight. Through a more sophisticated
analysis (which requires as a final component a computer verification that a determinant is
nonzero) we prove that for all 1 ≤ n ≤ 100 our upper bound is in fact tight, that is: for all
1 ≤ n ≤ 100 we have Q(n) = ⌊

√
3n− 2⌋.

(2) The generic subrank of k-tensors.

So far we have discussed only tensors of order three. With more elaborate methods we
are able to completely extend our above results from tensors of order three to tensors of
order k for every k ≥ 3. Denoting the subrank of a generic tensor in Kn,...,n of order k by
Q(n, . . . , n), we find that Q(n, . . . , n) grows as n1/(k−1).

▶ Theorem 4. We have Q(n, . . . , n) = θ(n1/(k−1)).

Again this result directly leads to a large separation between the subrank and the
asymptotic subrank (for which the generic value, extending a construction of Strassen,
satisfies ˜Q(n) ≥ n2/k), and a separation between the subrank and the slice rank, partition
rank, geometric rank and G-stable rank (all of whose generic value is n).

Regarding the precise bounds, we prove Theorem 4 in two parts again. In the first we
extend the upper bound of Theorem 2 to order k, in a fully general manner as an upper
bound on the generic subrank Q(n1, . . . , nk) where the ni need not be equal, as follows.

▶ Theorem 5. We have Q(n1, . . . , nk) ≤
(∑k

i=1 ni − (k − 1)
) 1

k−1 .

Then finally we extend Theorem 3 to order k tensors, which leads to the asymptotically
matching lower bound (which for conciseness we will not write down here more explicitly).

▶ Theorem 6. We have Q(n, . . . , n) ≥ Ω(n1/(k−1)).

Our proof of this last theorem (and also Theorem 3) makes crucial use of the technical
results on tensor space that we discuss in the next section.

4 The asymptotic subrank is defined as ˜Q(T ) = limn→∞ Q(T ⊗n)1/n and ˜Q(n) denotes the value of ˜Q(T )
for a generic tensor T ∈ Kn,n,n.

5 Indeed, a straightforward direct computation shows that ⌊
√

3n − 2⌋ − 3(⌊
√

n/3 + 1/4 − 1/2⌋) ≤ 5.

CCC 2022
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(3) Technical result: structured subspace decomposition of tensor space

The proofs of our lower bounds (Theorem 3 and Theorem 6) rely on a technical result about a
very structured decomposition of tensor space which we think may be of independent interest,
so we will describe it here. The main goal here (in the simplest case) is to write tensor
space Kn,n,n as a sum of tensor subspaces as efficiently as possible (meaning with smallest
as possible sum of dimensions) such that each subspace has the form of an n × n matrix
subspace tensored with Kn (so that it becomes a subspace of Kn,n,n) with the tensoring
being applied in any of the three possible directions. Our result is that we can do this
optimally for any order of tensor space.

We will begin our discussion with the simplest version, which is for the tensor space K3,3,3,
as it is the easiest to explain (and in fact also not hard to prove) and forms the basis for
the proof of the (harder to prove) general version for the tensor space Kn,...,n = (Kn)⊗n

of tensors of order n and dimension n in each direction (in our application to the generic
subrank we use a blow-up argument so that we can deal with tensors of order k and dimension
n in each direction).

Recall that Kn1,n2,n3 denotes the space of n1 × n2 × n3 tensors with coefficients in the
field K, which we require to be large enough in this part. Let Matn,m denote the space
of n × m matrices with coefficients in K. We use a special notation to denote a certain
construction of a tensor subspaces given a matrix subspace. Namely, for any given n1 × n2
matrix subspace W ⊆ Matn1,n2 we denote by W [3] the tensor subspace W ⊗Kn3 ⊆ Kn1,n2,n3 .
Analogously, for any matrix subspace W ⊆ Matn2,n3 we denote by W[1] ⊆ Kn1,n2,n3 the
tensor subspace obtained by appropriately tensoring W with Kn1 , and for any matrix
subspace W ⊆ Matn1,n3 we denote by W[2] ⊆ Kn1,n2,n3 the tensor subspace obtained by
appropriately tensoring W with Kn2 .

For the tensor space K3,3,3 we have the following optimal decomposition theorem.

▶ Theorem 7. There exist subspaces Xi ⊆ Mat3,3 = K3 ⊗K3, each of dimension 3, such
that

K3,3,3 = X1[1] + X2[2] + X3[3].6

Comparing dimensions, we have dimK3,3,3 = 3 · 3 · 3 = dim X1[1] + dim X2[2] + dim X3[3]
and so the decomposition in Theorem 7 is optimal. In other words, it is a direct sum
decomposition of K3,3,3.

The requirement in Theorem 7 that the Xi all have dimension 3 is crucial to make the
theorem interesting, as without this requirement we could “decompose” K3,3,3 simply as
K3,3,3 = X1[1] with X1 = Mat3,3. Interestingly, the analogous statement of Theorem 7 for
any matrix space Kn,n is false. That is, for every positive integer n there are no subspaces
Xi ⊆ Kn, each of dimension n/2, such that Kn,n = X1[1] + X2[2]. This is saying that if we
pick a row space R and a column space C of dimension n/2, then it is not possible to write
every n× n matrix A as A1 +A2 where the row space of A1 is in R and the column space of
A2 is in C. On the other hand, 3-tensors do not suffer from this malady: we can write any
tensor as a sum of thee tensors, whose “rowi”-space are asked to be in a generic space of the
right dimension. (Here we can think of W [i] as tensors whose “rowi”-space is W .) Therefore,
Theorem 7 is demonstrating an interesting phenomenon that occurs in tensor space but not
in matrix space.

6 We note that the existence of subspaces Xi with this property is equivalent to generic subspaces Xi

having this property (i.e. there being a non-empty Zariski-open set of triples Xi with this property).
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Theorem 7 (as opposed to the upcoming generalization to (Kn)⊗n) is not difficult to
prove. Indeed, one may choose the matrix subspaces Xi randomly and then for such an
explicit choice verify directly that they satisfy the claim (and this approach will work with
high probability). In fact, there are even valid choices of the Xi such that each Xi is spanned
by a matrix with coefficients in {0, 1}.

Next we discuss the higher-dimensional version of Theorem 7 in which K3,3,3 is generalized
to n-tensor space (Kn)⊗n. We naturally extend our previous notation so that for every
tensor subspace W ⊆ (Kn)⊗(n−1) we define, for any i ∈ {1, . . . , n}, the tensor subspace
W[i] ⊆ (Kn)⊗n by tensoring W with Kn in one of the n possible ways.

By a recursive construction with K3,3,3 as a base case, we find the following optimal
decomposition of n-tensor space (Kn)⊗n for all n ≥ 3.

▶ Theorem 8. For every integer n ≥ 3 there exist subspaces Xi ⊆ (Kn)⊗n−1 of dimen-
sion nn−2 such that

(Kn)⊗n = X1[1] + X2[2] + · · · + Xn[n].

Again, since dimKn,...,n = nn = n·n·nn−2 =
∑n

i=1 dim Xi[i], the decomposition in Theorem 8
is optimal in terms of dimension and hence a direct sum decomposition of (Kn)⊗n.

Theorem 8 is the theorem we use to prove the general generic subrank lower bound
Theorem 6. However, the methods we introduce in the process of proving Theorem 8 allow
us much more generally for other choices of positive integers n1, . . . , nk to construct optimal
decompositions Kn1,...,nk = X1[1] + X2[2] + · · · + Xk[k] from known decompositions. This
leads to a natural fundamental mathematical question (with potentially other applications)
of what choices of n1, . . . , nk and dim Xi allow such decompositions.

1.3 Technical Overview
We give a brief technical overview of the methods and ideas that we use in our proofs.

Upper bounds on generic subrank

The high-level approach in our proof of the upper bound on the generic subrank in Theorem 2
(and similarly for the general case of Theorem 5) is as follows. For any nonnegative
integer we consider the set Cr of tensors in Kn,n,n with subrank at least r. We argue
that the generic subrank is precisely the largest r such that the dimension of Cr equals
the dimension n3 of the full space Kn,n,n. We then prove the core ingredient, namely the
dimension upper bound dim(Cr) ≤ n3 − r(r2 − 3n + 2). This information leads to the
desired result, since if we let t be the generic subrank Q(n), then we must by the above have
n3 = dim(Ct) ≤ n3 − t(t2 − 3n+ 2), from which we directly deduce that t ≤

√
3n− 2, that

is, we obtain the bound Q(n) ≤
√

3n− 2 of Theorem 2.
To prove the aforementioned dimension upper bound on Cr that is the core ingredient

in the above argument we employ the idea of providing a (non-injective) parametrization
of Cr, compute the dimension of the parameter space, and then subtracting the dimension
“over-count” (the fiber dimension under the parametrization). For this we first define a set
Xr of tensors in Kn,n,n of a special form, namely whose [r] × [r] × [r] subtensor is zero
except for the diagonal which is nonzero. Then the elements of Xr clearly have subrank
at least r (and are thus in Cr). The important point is that, by applying all possible basis
transformations to the tensors in Xr we obtain all of Cr. Thus Xr together with the group
of all basis transformations provide the parametrization of Cr. Technically, we describe

CCC 2022
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this by saying that the map ψr : GLn × GLn × GLn ×Xr → Kn,n,n that maps (A,B,C, T )
to (A ⊗ B ⊗ C)T has image precisely Cr. Now the computation to upper bound dim(Cr)
consists of computing the dimension of the domain GLn × GLn × GLn ×Xr and subtracting
the dimension of a general fiber of ψr, which we carry out to arrive at the dimension upper
bound stated earlier.

Lower bounds on generic subrank

The high-level approach in our proof of the lower bound on the generic subrank in Theorem 3
(and the general Theorem 6) is as follows. We use notation defined in the upper bound
proof discussion and the results section (Subsection 1.2). Our proof reduces the problem of
lower bounding the generic subrank Q(n1, n2, n3) to a problem of constructing tensor space
decompositions of a specific form (which we discuss further in the next section). Namely we
prove that, for r ≤ n1, n2, n3 (with a technical condition), if Xi ⊆ Matr,r are subspaces of
dimension ni − r for i = 1, 2, 3 such that

X1[1] + X2[2] + X3[3] = Kr,r,r, 7

then Q(n1, n2, n3) ≥ r. (And we prove the analogous statement for higher-order tensors.)
Finding such Xi we discuss in the next section. The proof of the lower bound given the Xi

goes as follows.
Recall the map ψr : GLn × GLn × GLn ×Xr → Kn,n,n whose image we already claimed

is the set Cr of tensors of subrank at least r. To reach our goal we want to find conditions
that imply that the image of ψr has full dimension n3 and thus is Zariski-dense in Kn,n,n.
To do this we use the notion of the differential dψr of ψr and a general method that says that
the dimension of a map can be computed as the rank of the differential at a “generic point”.

The differential dψr at the point (g1, g2, g3, T ) is the map

(dψr)(g1,g2,g3,T ) : Matn,n × Matn,n × Matn,n ×Yr → Kn,n,n

where Yr is the tangent space of Xr, given by

(A,B,C, S) 7→ ((A⊗ g2 ⊗ g3) + (g1 ⊗B ⊗ g3) + (g1 ⊗ g2 ⊗ C))T + (g1 ⊗ g2 ⊗ g3)S.

Analyzing this map we compute its image which leads to the aforementioned lower bound
statement on the generic subrank. In fact we prove a stronger lower bound, which in
characteristic 0 characterizes the generic subrank precisely, but with a harder to analyze
condition, in Theorem 21. In particular, if the characteristic of K is 0, then Theorem 21 says
that Q(n1, n2, n3) is given by the smallest number r such that X1[1] + X2[2] + X3[3] +Wr =
Kr,r,r for generic subspaces Xi ⊆ Matr,r of dimension ni − r, where Wr ⊆ Kr,r,r is the
subspace of tensors such that Tijk = 0 if i, j, k are all different. (In other characteristics this
number r gives a lower bound.)

Constructions of tensor space decompositions

To prove Theorem 8 we introduce general methods to construct the optimal tensor space
decompositions as described in the theorem from existing ones. We then give some small
constructions and combine these in multiple recursions to achieve the required object.

7 where X1[1] ⊆ Kr,r,r denotes X1 tensored with Kr in the first tensor leg, X2[2] denotes X2 tensored
with Kr in the second tensor leg, and X3[3] denotes X3 tensored with Kr in the third tensor leg
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To set this up we take a very general approach in which we study direct sum decompositions

Kn1,n2,...,nk = X1[1] + · · · + Xk[k]

where Xi ⊆ Kn1 ⊗ · · · ⊗Kni−1 ⊗Kni+1 ⊗ · · · ⊗Knk is a tensor subspace and Xi[i] denotes
the subspace obtained by tensoring Xi with Kni as the ith tensor factor. Let ai be the
dimension of Xi. We are interested in which values of n1, . . . , nk and a1, . . . , ak allow for a
decomposition of the above form. Writing these numbers into a 2 × k matrix[

n1 n2 · · · nk

a1 a2 · · · ak

]
we let S be the set of all such matrices for which a decomposition exists satisfying the
parameters given in the matrix. Then Theorem 8 corresponds to proving that the 2 × n

matrix[
n n · · · n

nn−2 nn−2 · · · nn−2

]
(1)

is an element of S.
Next we observe that there are some simple constructions and properties of elements in S,

such as: if a matrix is in S then if we permute its columns it is still in S and the matrix [ n
1 ]

is in S. With slightly more work we can give direct constructions for[
2 2 2
0 3 1

]
(2)

being an element of S, for instance.
In order to construct more elements of S we prove a “direct sum construction” that given

two elements in S combines them to get a new one. Namely, this result gives that, if[
n1 n2 . . . nk−1 n′

k

a′
1 a′

2 · · · a′
k−1 ak

]
∈ S

and[
n1 n2 . . . nk−1 n′′

k

a′′
1 a′′

2 · · · a′′
k−1 ak

]
∈ S

then we have[
n1 n2 · · · nk

a1 a2 · · · ak

]
∈ S

where nk = n′
k + n′′

k , and ai = a′
i + a′′

i for i = 1, 2, . . . , k − 1.
Finally, from some simple base cases including (2) we give a construction for[
3 3 3
3 3 3

]
being an element of S and via an elaborate argument with multiple recursions arrive at
the matrix in (1) being an element of S, which is the ingredient required in our proof of
Theorem 6. It is natural to ask what precisely are all elements of S, which we leave as an
open problem.
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1.4 Related Work
The previous best bound on the generic subrank Q(n) was the upper bound n2/3+o(1) which
follows from the work of Bürgisser [9, Satz 2.8]8 as part of the broader research program on
the theory of asymptotic spectra of tensors (motivated by the study of matrix multiplication
algorithms). The proof of this bound relies on the method of “lower support functionals”
introduced by Strassen in [41] (see also the more recent surveys on this topic in [10, 44, 43])
and the properties of these that he proves there. This method recovers certain asymptotic
information about tensors, which importantly is monotone under the restriction preorder
and normalized on diagonal tensors so that it provides an upper bound on the subrank (in a
manner that is very different from the approach that we take to prove our optimal upper
bound). Bürgisser’s analysis of this method on generic tensors consists of proving that the
support of a generic tensor is large for any choice of basis and a combinatorial study of a
certain type of covering of these supports, which leads to the aforementioned n2/3+o(1) upper
bound.

Recent research has brought about a rich collection of tensor methods that are in a
similar “regime” as the subrank (for instance, they are all monotone under restriction),
each with their own properties and applications in complexity theory and combinatorics.
Notable are the slice rank [42] and closely related partition rank [30], the analytic rank
[20, 28, 3], the geometric rank [26, 18] and G-stable rank [14]. Some important applications
of these methods include new bounds on cap sets [42, 16], new bounds on the sunflower
problem [31], determining the border subrank of matrix multiplication [26], and proving
matrix multiplication barriers [6, 1, 11]. Many strong connections have been shown among
these parameters. In particular, Derksen [14] showed that the G-stable rank is equal to
the slice rank up to a constant factor, and Cohen–Moshkovitz [12, 13] showed (over large
fields) that the partition rank, analytic rank and geometric rank are equal up to a constant
factor, the culmination of a long line of work on this topic [21, 24, 2, 22, 23, 29]. All of the
aforementioned tensor parameters are lower bounded by the subrank.9 Our results provide
a large separation on almost all tensors between the subrank and all other aforementioned
parameters, as the generic subrank satisfies Q(n) = θ(

√
n) whereas the generic value of all

other parameters is the maximal value n.
The study of “generic” or “typical” complexity in algebraic complexity theory goes back

to at least Strassen’s paper “Rank and optimal computation of generic tensors” [38], in which
he determines the tensor rank of almost all tensors (i.e. generic tensors). His result is that the
rank R(n1, n2, n3) of almost all tensors in Kn1,n2,n3 grows as n1n2n3/(n1 +n2 +n3 −2) and a
description is given of “perfect shapes” (n1, n2, n3) for which precisely equality R(n1, n2, n3) =
n1n2n3/(n1+n2+n3−2) holds. (It is still a fundamental open problem to find explicit tensors
in Kn,n,n with rank close to n2 [5] with important implications to formula lower bounds [32].)
For the shape (n, n, 3) with n odd this work provides an equation that determines whether a
tensor has typical rank or not. These equations lead to several later generalizations [27, 25]
and subsequently precise barrier results for “rank methods” [15, 17]. Our result rather than
generic rank determines the generic subrank. The rank of a tensor being the smallest number
of scalar multiplications that the tensor reduces to, the subrank is a natural dual to the
tensor rank. We note that combining the results on generic subrank and generic rank, we

8 [9, Satz 2.8] determines the generic value of a tensor parameter called the “lower support functional”
(unteren Trägerfunktional) which upper bounds the subrank as proven in [41].

9 The analytic rank requires a natural normalization for this to be true, that is, one should normalize it
by the analytic rank of a full-dimensional diagonal tensor.
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see that reducing scalar multiplications to a generic tensor and reducing the generic tensor
back to scalar multiplications necessarily induces a great loss, as Q(n, n, n) = θ(

√
n) is much

smaller than R(n, n, n) = θ(n2).
The study of additivity results is a central theme in complexity theory and mathematics. In

algebraic complexity, it has been long known (and crucial in the design of matrix multiplication
algorithms) that the border rank of tensors (the approximative version of tensor rank) is
not additive under the direct sum [35] (see also [4, Lemma 7.1] and [8, (15.12)]). Strassen
conjectured the tensor rank to be additive under the direct sum, but this was disproved
recently by Shitov [36]. On the other hand, the analytic rank [28], geometric rank [26],
G-stable rank [14] and slice rank [19] were shown to be additive recently. The subrank, as we
show, is however not additive. Our proof of this relies on writing a tensor as a sum of two
generic tensors, which is reminiscent of methods that Razborov [33] uses to prove a linear
upper bound on submodular complexity measures of boolean functions (see also [34]).

1.5 Paper Organization
In Section 2 we prove the upper bound theorems Theorem 2 and Theorem 5. In Section 3
we prove the characterization of generic subrank that allows us to reduce the problem of
determining its value to the tensor subspace decomposition problem. In Section 4 we solve
the tensor subspace decomposition problem thus completing the lower bound proof. In
Section 5 we use our upper bounds to prove that the subrank is not additive under direct
sum. In Section 6 we discuss several natural related open problems.

2 Upper bounds on generic subrank

In this section, we prove our upper bounds on the generic subrank of tensors. We give a
detailed proof in the case of 3-tensors, and then generalize to tensors of all orders.

2.1 Tensors of order three
The techniques we use are familiar in invariant theory and representation theory. The
main idea is to take advantage of the fact that subrank is invariant under a large group of
symmetries, namely change of basis on each tensor leg. Further, this group of symmetries
has excellent algebraic properties which can often be leveraged to remarkable effect.

First and foremost, we have to argue that generic subrank is a valid notion, which we do
in the following proposition. The proof is a standard argument which we will discuss because
it naturally uses some ingredients that we will use later on.

▶ Proposition 9. For every n there is a non-empty Zariski-open subset U ⊆ Kn,n,n and
integer r such that for all T ∈ U we have Q(T ) = r.

For any n, the number r given by Proposition 9 is unique since any two non-empty
Zariski-open subsets U1, U2 ⊆ Kn,n,n must intersect (Kn,n,n is irreducible). This number r
we call the generic subrank Q(n). Similarly we define the generic subrank Q(n1, . . . , nk) of
Kn1,...,nk .

We discuss a couple of preparatory results before giving the proof of Proposition 9. We
define Xr to be the set of tensors in Kn,n,n whose [r] × [r] × [r] subtensor is zero except for
the diagonal entries in [r] × [r] × [r] which are all nonzero,

Xr =
{

T ∈ Kn,n,n | Tijk = 0 for (i, j, k) ∈ [r]3 \ {(i, i, i) | i ∈ [r]} and Ti,i,i ̸= 0 for i ∈ [r]
}

.
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We let ψr be the map that applies basis transformations to elements of Xr,

ψr : GLn × GLn × GLn ×Xr −→ Kn,n,n

(A,B,C, T ) 7−→ (A⊗B ⊗ C)T.

We define Cr to be the set of tensors in Kn,n,n whose subrank is at least r,

Cr = {T ∈ Kn,n,n | Q(T ) ≥ r}.

▶ Lemma 10. The image of ψr is precisely Cr.

Proof. To prove im(ψr) = Cr we show both inclusions.
First we will prove im(ψr) ⊆ Cr. As a first step we will prove that Xr ⊆ Cr. Let T ∈ Xr.

Let Ti,i,i = λi ̸= 0. Let

A =
(

Idr 0
0 0

)
where Idr denotes the identity matrix of size r × r and let

B =
(
D 0
0 0

)
where D is a diagonal matrix of size r× r whose diagonal entries are λ−1

1 , λ−1
2 , . . . , λ−1

r . It is
easy to check that (A⊗A⊗B) ·T = Ir. Thus Xr ⊆ Cr. Since subrank is invariant under the
action of GLn × GLn × GLn, we see that Cr is GLn × GLn × GLn invariant, so we deduce
that im(ψr) = (GLn × GLn × GLn) ·Xr ⊆ Cr.

Now we will prove Cr ⊆ im(ψr). Let T ∈ Cr. Then, there exist A,B,C ∈ Matr,n such
that (A⊗B ⊗ C) · T = Ir. Let

Ã =
(
A

∗

)
be a completion of A to a full rank n × n matrix, and similarly define B̃ and C̃. This is
possible because A,B,C must all have rank r. Then (Ã⊗ B̃ ⊗ C̃) · T ∈ Xr, which implies
that T ∈ im(ψr). Thus Cr ⊆ im(ψr) ◀

We now give the proof of the existence of the generic subrank (Proposition 9). The proof
is standard and may safely be skipped.

Proof of Proposition 9. The map Q attains only finitely many values on V = Kn,n,n, namely
{0, 1, . . . , n}. Thus it has finitely many fibers Pi = Q−1(i) ⊆ V . Each Pi is a constructible set,
since Pi = Ci \Ci+1 and Ci is constructible as a consequence of Lemma 10. Then

⋃n
i=0 Pi = V

and so
⋃n

i=0 Pi = V . However, V is irreducible so there must be an i such that Pi = V .
Since Pi is constructible it contains a subset U ⊆ Pi that is non-empty and Zariski-open in
Pi = V (this is a general fact, see e.g. [7]). This U and i satisfy the claim. ◀

Now that we have established that the generic subrank exists, we continue to prove our
upper bound on it. The following simple lemma is straightforward, but crucial:

▶ Lemma 11. The generic subrank Q(n) = max{r | dim(Cr) = n3}.

Proof. As above, let Pi denote the subset of tensors with subrank i. Then, by definition of
Q(n) and the fact that Cr =

⊔n
i=r Pi, we deduce that dim(Cr) = n3 if and only if Cr ⊇ PQ(n)

if and only if r ≤ Q(n). ◀
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▶ Proposition 12. The following is an upper bound for the dimension of Cr:

dim(Cr) ≤ 3n2 + (n3 − r3 + r) − 3(n(n− r) + r) = n3 − r(r2 − 3n+ 2).

Proof. Consider the map ψ above. The theorem on dimension of fibres says that

dim(Cr) = dim(GLn × GLn × GLn ×Xr) − dim(general fiber of ψr).

We see that dim(GLn × GLn × GLn ×Xr) = 3n2 + (n3 − r3 + r) because each GLn contrib-
utes n2 to the dimension and Xr is a Zariski-open subset of a linear subspace of Kn,n,n of
dimension (n3 − r3 + r). Thus, to compute dim(Cr), we only need to compute the dimension
of the general fiber of ψr. Note that the dimension of any fiber is at most the dimension of
the general fiber, so it suffices to find a lower bound on the dimension of all fibers.

Suppose T ∈ Cr, then T = (g1 ⊗ g2 ⊗ g3) · S for some S ∈ Xr by Lemma 10. It is
easy to see that dim(ψ−1(T )) = dim(ψ−1(S)) since ψ−1(T ) and ψ−1(S) are isomorphic
as varieties – indeed this follows from the observation that (A,B,C,U) ∈ ψ−1(T ) ⇐⇒
(g−1

1 A, g−1
2 B, g−1

3 C,U) ∈ ψ−1(S). Thus, it suffices to lower bound the dimension of ψ−1(S)
for S ∈ Xr.

Let S ∈ Xr. Let L ⊆ GLm be the subset of matrices of the form(
D 0
∗ ∗

)
where D is a diagonal matrix of size r × r. It is easy to see that dim(L) = n(n− r) + r. For
A,B,C ∈ L, it is easy to see that (A⊗B⊗C)·S ∈ Xr. Thus, (A−1, B−1, C−1, (A⊗B⊗C)·S) ∈
ψ−1(S). In particular, this means that dim(ψ−1(S)) ≥ 3 dim(L) = 3(n(n− r) + r). Thus,
we conclude that dim(generic fiber) ≥ 3(n(n− r) + r) and so

dim(Cr) ≤ 3n2 + (n3 − r3 + r) − 3(n(n− r) + r) = n3 − r(r2 − 3n+ 2). ◀

Now, we have everything necessary to prove the upper bound for the subrank of 3-tensors.

Proof of Theorem 2. Suppose the subrank of a generic tensor in Kn,n,n is t = Q(n). Then
we know that n3 = dim(Ct) by Lemma 11 and dim(Ct) ≤ n3 − t(t2 −3n+2) by Proposition 12.
Thus, we must have t2 − 3n+ 2 ≤ 0, so t ≤

√
3n− 2. Hence, we have Q(n) ≤

√
3n− 2 as

desired. ◀

2.2 Higher-order tensors
In the general case, where we look at tensors in Kn1,n2,...,nk , we define analogously the
objects Xr and Cr, the map ψ :

∏k
i=1 GLni

×Xr → Cr, etc.

Proof of Theorem 5. We obtain analogously that

dim(Cr) =
( k∑

i=1
n2

i

)
+
( k∏

i=1
ni−rk+r

)
−

k∑
i=1

(ni(ni−r)+r) =
k∏

i=1
ni−r

(
rk−1−

k∑
i=1

ni+(k−1)
)
.

Suppose the subrank of a generic tensor in Kn1,n2,...,nk is t = Q(n1, . . . , nk). Then, we have

k∏
i=1

ni = dim(Ct) ≤
k∏

i=1
ni − t

(
tk−1 −

k∑
i=1

ni + (k − 1)
)
,
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so we get that tk−1 −
∑k

i=1 ni + (k − 1) ≤ 0, so that

Q(n) = t ≤
( k∑

i=1
ni − (k − 1)

) 1
k−1

as desired. ◀

3 Lower bounds on generic subrank

In this section, we describe the technique we use to show lower bounds on generic subrank.
In order to make this technique effective, we will need some explicit constructions of linear
subspaces which we postpone to the next section.

First, we introduce some notation. We identify Matn2,n3 with Kn2 ⊗Kn3 in the standard
way. For a linear subspace X ⊆ Matn2,n3 , we define a linear subspace

X [1] = Kn1 ⊗ X ⊆ Kn1,n2,n3 .

The linear subspace X [1] consists precisely of the tensors whose slices in the first direction (i.e.,
matrices (T1jk)j,k, (T2jk)j,k, . . . , (Tnjk)j,k) are in X . Similarly, we define X [2] (resp. X [3]) as
the set of tensors whose slices in the second (resp. third) direction are in X .

The main idea behind proving our lower bounds is the following result:

▶ Theorem 13. Let r ≤ n1, n2, n3 such that ni − r ≤ r2.10 Let Xi ⊆ Matr,r be a generic
subspace of dimension ni − r for i = 1, 2, 3. Suppose X1[1] + X2[2] + X3[3] = Kr,r,r, then

Q(n1, n2, n3) ≥ r.

In fact, we can prove a stronger version of the above theorem, which we state as Theorem 21.
However, the downside of this stronger version is that it has a hypothesis that is more difficult
to work with.

To prove that r is a lower bound for the generic subrank, we need to show that the image
of ψr has dimension n3, that is, the image is Zariski-dense in Kn,n,n. The dimension of
the image of a map can be captured by the rank of the differential at a generic point – an
idea that is familiar to differential geometers and algebraic geometers alike. In arbitrary
characteristic, we know that the rank of the differential at a generic point is a lower bound
for the dimension of the image, which is sufficient for proving lower bounds. In characteristic
0, the image of the rank of the differential at a generic point is equal to the dimension of the
image. Consequently, we are able to obtain an exact linear algebraic characterization for
generic subrank in Theorem 21.

Recall that we defined the map

ψr : GLn1 × GLn2 × GLn3 ×Xr → Kn1,n2,n3 ,

where

Xr =
{

T ∈ Kn1,n2,n3 | Tijk = 0 for (i, j, k) ∈ [r]3 \ {(i, i, i) | i ∈ [r]} and Ti,i,i ̸= 0 for i ∈ [r]
}

.

Observe that

Yr =
{
T ∈ Kn1,n2,n3 | Tijk = 0 for (i, j, k) ∈ [r]3 \ {(i, i, i) | i ∈ [r]}

}
10Without this assumption it does not mean anything to have a generic subspace of dimension ni − r.

Moreover, if ni − r > r2, then it is easy to see that Q(n1, n2, n3) ≥ r.
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is the tangent space of Xr. The differential at a point (g1, g2, g3, T ) is

(dψr)(g1,g2,g3,T ) : Matn1,n1 × Matn2,n2 × Matn3,n3 ×Yr −→ Kn1,n2,n3

given by

(A,B,C, S) 7−→ ((A⊗ g2 ⊗ g3) + (g1 ⊗B ⊗ g3) + (g1 ⊗ g2 ⊗ C))T + (g1 ⊗ g2 ⊗ g3)S.

▶ Lemma 14. If for generic (g1, g2, g3, T ) ∈ GLn1 × GLn2 × GLn3 ×Xr we have

im((dψr)(g1,g2,g3,T )) = Kn1,n2,n3 ,

then Q(n1, n2, n3) ≥ r. The converse holds if the characteristic of K is 0.

Proof. If the rank of the differential dψr at a generic point is full, then the image of ψr must
be full dimensional, that is, Zariski-dense (and constructible). Every tensor in the image of
ψr has subrank ≥ r. Hence, the generic subrank must be at least r.

Assume now that characteristic of K is zero. If the rank of dψr at a generic point is not
full, then the image of ψr is not full dimensional, that is, the set of tensors having subrank
≥ r is not Zariski-dense, so we get Q(n1, n2, n3) < r, thereby proving the converse. ◀

We use the following equivariance property of the differential.

▶ Lemma 15. We have for all gi ∈ GLni
and T ∈ Xr that

im((dψr)(g1,g2,g3,T )) = (g1 ⊗ g2 ⊗ g3)(im((dψr)(I,I,I,T )).

Proof. We see directly that

(dψr)(g1,g2,g3,T )(A,B,C, S) = (g1 ⊗ g2 ⊗ g3)(dψr)(I,I,I,T )(g−1
1 A, g−1

2 B, g−1
3 C, S)

which implies the claim. ◀

▶ Corollary 16. If for generic T ∈ Xr we have that im((dψr)(I,I,I,T )) = Kn1,n2,n3 , then
Q(n1, n2, n3) ≥ r. The converse holds if the characteristic of K is 0.

So, let us now analyze more carefully the image of (dψr)(I,I,I,T ) for a generic tensor T .
Below, we write d for (dψr)(I,I,I,T ) for notational simplicity. Thus d is given by

d(A,B,C, S) = ((A⊗ I ⊗ I) + (I ⊗B ⊗ I) + (I ⊗ I ⊗ C)) · T + S.

The map d is a linear map, so we see that

im d =
3∑

i=1
d(Matni,ni) + d(Yr)

where we use the notation d(Yr) = d(0, 0, 0, Yr), d(Matn1,n1) = d(Matn1,n1 , 0, 0, 0), etc.

▶ Lemma 17. The image of Yr under the differential map d is

d(Yr) = Yr

Proof. Observe that for any S ∈ Yr, we have d(0, 0, 0, S) = S. ◀

Let Li = [Tijk]j,k for 1 ≤ i ≤ n1. These just split the tensor in the first direction as a
stack of n matrices. Let L denote the span of the Lis.

CCC 2022



9:16 Subrank and Optimal Reduction of Scalar Multiplications to Generic Tensors

▶ Lemma 18. The image of Matn1,n1 under the differential d is

d(Matn1,n1) = L[1]. (3)

Proof. For any A ∈ Matn1,n1 , let T ′ = d(A, 0, 0, 0) = (A ⊗ I ⊗ I) · T . Consider the slices
Li = [Tijk]j,k. Then, it is straighforward to compute that for 1 ≤ i ≤ n1, the slice

[T ′
ijk]j,k =

n1∑
t=1

aitLi. ◀

Similar to Li, define the slices in the other directions as Mj = [Tijk]i,k and Nk = [Tijk]i,j .
Let M and N denote the spans of the Mjs and Nks respectively.

▶ Corollary 19. The image of the differential d is

im d = L[1] + M[2] + N [3] + Yr.

Proof. This follows from Lemma 18 (and its counterparts in the other two directions) and
Lemma 17. ◀

Now, we refine the above corollary. Denote by L̂i the top-left r × r submatrix of Li.
Then, let L̂ = span(L̂1, L̂2, . . . , L̂n1). Similarly define M̂j , N̂k and M̂ and N̂ .

▶ Proposition 20. The image of the differential d is

im d = L̂[1] + M̂[2] + N̂ [3] + Yr.

Proof. This follows directly from Corollary 19 and the definition of the coordinate subspace Yr.
◀

Now, we can finally prove Theorem 13.

Proof of Theorem 13. Let T ∈ Xr be generic. Define Li,Mi, Ni as above. Let

X1 = span(L̂r+1, L̂r+2, . . . , L̂n1).

Then X1 is a generic subspace of Matr,r of dimension n1 − r. We similarly define

X2 = span(M̂r+1, M̂r+2, . . . , M̂n2)

X3 = span(N̂r+1, N̂r+2, . . . , N̂n3).

By hypothesis, X1[1] + X2[2] + X3[3] = Kr,r,r. Hence, by Proposition 20, we see that

im(d) = L̂[1] + M̂[2] + N̂ [3] + Yr ⊇ X1[1] + X2[2] + X3[3] + Yr = Kr,r,r + Yr = Kn1,n2,n3 .

Thus, we get that Q(n1, n2, n3) ≥ r by Corollary 16. ◀

We observe that the idea from the proof of Theorem 13 actually yields the stronger
version below. To state this we define the linear subspace

Wr = {T ∈ Kr,r,r | Tijk = 0 if i, j, k are all different} ⊆ Kr,r,r.

▶ Theorem 21. Let r ≤ n1, n2, n3 such that ni = r < r2 for i = 1, 2, 3. Let Xi ⊆ Matr,r be
a generic subspace of dimension ni − r for i = 1, 2, 3. Suppose

X1[1] + X2[2] + X3[3] +Wr = Kr,r,r,

then Q(n1, n2, n3) ≥ r. Further, if characteristic of K is 0, then we have the converse.
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In other words, if characteristic of K is 0, then Theorem 21 says that Q(n1, n2, n3) is given
by the smallest number r such that X1[1] + X2[2] + X3[3] +Wr = Kr,r,r for generic subspaces
Xi ⊆ Matr,r of dimension ni − r.

Proof. The proof is similar to that of Theorem 13. Take a generic T ∈ Xr. Define
Li,Mi, Ni as above. Set X1 = span(L̂r+1, L̂r+2, . . . , L̂n1). Then X1 is a generic sub-
space of Matr,r of dimension n1 − r. Let P1 = span(L̂1, L̂2, . . . , L̂r). Similarly define
X2 = span(M̂r+1, M̂r+2, . . . , M̂n2) and X3 = span(N̂r+1, N̂r+2, . . . , N̂n3) and also P2 =
span(M̂1, . . . , M̂r) and P3 = span(N̂1, . . . , N̂r).

It is a straightforward computation to see that since T is generic in Xr, we have P1[1] +
P2[2] + P3[3] = Wr. Hence, using Proposition 20, we see that

im(d) = L̂[1] + M̂[2] + N̂ [3] + Yr

= X1[1] + X2[2] + X3[3] + P1[1] + P2[2] + P3[3] + Yr

= X1[1] + X2[2] + X3[3] +Wr + Yr

Now, we claim that

X1[1] + X2[2] + X3[3] +Wr = Kr,r,r ⇔ X1[1] + X2[2] + X3[3] +Wr + Yr = Kn1,n2,n3 .

The proof of the claim is rather straightforward, the only subtle point being that Yr and
Kr,r,r have an intersection (i.e., the main diagonal of Kr,r,r), but this intersection is included
in Wr anyway, so the claim goes through.

Thus, we get that im(d) = Kn1,n2,n3 if and only if X1[1] + X2[2] + X3[3] +Wr = Kr,r,r.
Now, the theorem follows from applying Corollary 16. ◀

In the next section we will prove that the requirement of Theorem 13 is satisfied. This
goes as follows. We will show (Lemma 26) that:

▶ Lemma 22. Let Xi ⊆ Mat3,3 be a generic subspace of dimension 3 for i = 1, 2, 3. Then
X1[1] + X2[2] + X3[3] = K3,3,3.

Then from a blow-up argument we obtain:

▶ Lemma 23. Let Xi ⊆ Mat3d,3d be a generic subspace of dimension 3d2 for i = 1, 2, 3.
Then X1[1] + X2[2] + X3[3] = K3d,3d,3d.

Proof. It is enough to construct one such choice of Xi. By Lemma 22 there exist subspaces
Yi ⊆ Mat3,3 of dimension 3 such that Y1[1] + Y2[2] + Y3[3] = K3,3,3. Then Xi = Yi ⊗ Matd,d

satisfy the claim. ◀

▶ Theorem 24. Let d be a positive integer such that n− 3d ≥ 3d2. Then Q(n, n, n) ≥ 3d.

Proof. Taking r = 3d, this follows from Theorem 13 and Lemma 23. ◀

Proof of Theorem 3. If we take d = ⌊
√
n/3 + 1/4 − 1/2⌋, then we have d ≤

√
n/3 + 1/4 −

1/2, so (d+1/2)2 ≤ n/3+1/4. Thus, d2 +d+1/4 ≤ n/3+1/4, so d2 +d ≤ n/3 or equivalently
3d2 ≤ n− 3d. Thus, it follows from Theorem 24 that Q(n) ≥ 3d. ◀

For the higher-order lower bound Theorem 6 we prove (Lemma 27) the analogous higher-
order version of Lemma 22 which we can similarly blow up and apply Theorem 13 to.
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4 Constructions of tensor space decompositions

We assume that the base field K is infinite.
Let C be the set of all matrices [ n1 n2 ··· nd

a1 a2 ··· ad
] for which n1, n2, . . . , nd are positive integers,

and a1, a2, . . . , ad are nonnegative integers, and
∑d

i=1 aini =
∏d

i=1 ni. Let S be the subset of
all matrices [ n1 n2 ··· nd

a1 a2 ··· ad
] ∈ C with the following property: If V1, V2, . . . , Vd are vector spaces

of dimensions n1, n2, . . . , nd respectively, and Wi is a general subspace of V̂i := V1 ⊗ V2 ⊗
· · · ⊗ Vi−1 ⊗ Vi+1 ⊗ · · · ⊗ Vd of dimension ai for all i, then

∑d
i=1 Φi(Wi ⊗ Vi) = V1 ⊗ · · · ⊗ Vd,

where Φ : V̂i ⊗ Vi → V1 ⊗ V2 ⊗ · · · ⊗ Vd is the isomorphism given by permuting the factors.

4.1 General construction methods
We will use the following simple facts. It is obvious that if a matrix lies in S and we permute
its columns, then it will still lie in S. It is also clear that [ n1 n2 ··· nd

a1 a2 ··· ad
] lies in S if and only if[

n1 n2 ··· nd 1
a1 a2 ··· ad 0

]
lies in S. The vector [ n

1 ] lies in S for all positive integers n. Finally,[
n1 n2 ··· nd 1 1
a1 a2 ··· ad b1 b2

]
∈ S if and only if

[
n1 n2 ··· nd 1
a1 a2 ··· ad b1+b2

]
∈ S (4)

▶ Lemma 25 (Direct sum construction). Suppose that nd = n′
d + n′′

d , and ai = a′
i + a′′

i for
i = 1, 2, . . . , d− 1, and[

n1 n2 ... nd−1 n′
d

a′
1 a′

2 ··· a′
d−1 ad

]
,
[

n1 n2 ... nd−1 n′′
d

a′′
1 a′′

2 ··· a′′
d−1 ad

]
∈ S.

Then we have [ n1 n2 ··· nd
a1 a2 ··· ad

] ∈ S.

Proof. Suppose V1, V2, . . . , Vd are vector spaces of dimensions n1, n2, . . . , nd respectively
and choose a general subspace Wd of Vd of dimension ad. We can write Vd = V ′

d ⊕ V ′′
d

where V ′
d and V ′′

d have dimensions n′
d and n′′

d respectively. For i = 1, 2, . . . , d − 1 choose
a general subspace W ′

i ⊆ V1 ⊗ · · · ⊗ Vi−1 ⊗ Vi+1 ⊗ · · · ⊗ Vd−1 ⊗ V ′
d of dimension a′

i such
that V1 ⊗ V2 ⊗ · · · ⊗ Vd−1 ⊗ V ′

d is equal to
(∑d−1

i=1 Φi(W ′
i ⊗ Vi)

)
+ Wd ⊗ V ′

d . Similarly, for
i = 1, 2, . . . , d−1, choose a general subspace W ′′

i ⊆ V1 ⊗· · ·⊗Vi−1 ⊗Vi+1 ⊗· · ·⊗Vd−1 ⊗V ′′
d of

dimension a′′
i such that V1 ⊗V2 ⊗· · ·⊗Vd−1 ⊗V ′′

d is equal to
(∑d−1

i=1 Φi(W ′′
i ⊗Vi)

)
+Wd ⊗V ′′

d .
Set Wi = W ′

i ⊕W ′′
i ⊆ V1 ⊗ · · · ⊗ Vi−1 ⊗ Vi+1 ⊗ · · · ⊗ Vd for i = 1, 2, . . . , d− 1. Then we have

d∑
i=1

Φi(Wi ⊗ Vi) =
( d−1∑

i=1
Φi((W ′

i ⊕W ′′
i ) ⊗ Vi)

)
+Wd ⊗ (V ′

d ⊕ V ′′
d ) =(( d−1∑

i=1
Φi(W ′

i ⊗ Vi)
)

+Wd ⊗ V ′
d

)
⊕

(( d−1∑
i=1

Φi(W ′′
i ⊗ Vi)

)
+Wd ⊗ V ′′

d

)
=

(V1 ⊗ · · · ⊗ Vd−1 ⊗ V ′
d) ⊕ (V1 ⊗ · · · ⊗ Vd−1 ⊗ V ′′

d ) = V1 ⊗ V2 ⊗ · · · ⊗ Vd.

This finishes the proof. ◀

4.2 Recursive construction for every order
The following lemma gives Lemma 22 which we used in the proof of the generic subrank
lower bound for order three. After that we will recursively obtain what is needed for the
higher-order case generic subrank lower bound.

▶ Lemma 26 (Base case). We have [ 3 3 3
3 3 3 ] ∈ S.
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Proof. We can verify explicitly that [ 2 2 2
0 3 1 ] ∈ S, as follows. For a 3-dimensional subspace

W1 of V2 ⊗ V3 = K2×2, take the space of all matrices of the form(
a b

b c

)
and for the 1-dimensional subspace W3 of V1 ⊗ V2 = K2×2, take the span of the identity
matrix. A tensor in the intersection of W1 ⊗ V3 ∩ V1 ⊗W3 ⊆ V1 ⊗ V2 ⊗ V3 is of the form(

a1 b1 a2 b2
b1 c1 b2 c2

)
=
(
p1 0 0 p1
p2 0 0 p2

)
for some a1, a2, b1, b2, c1, c2, p1, p2. Clearly, b1 = c1 = a2 = b2 = 0. So we get p1 = b2 = 0 and
p2 = b1 = 0. So W1 ⊗V3 ∩V1 ⊗W3 = 0 and W1 ⊗V3 +V1 ⊗W3 has dimension 3 · 2 + 2 · 1 = 8
and therefore must be equal to V1 ⊗ V2 ⊗ V3 = K2×2×2. Using Lemma 25, we now deduce:

[ 2 2 2
0 3 1 ], [ 1 2 2

0 0 2 ] ∈ S, so [ 3 2 2
0 3 3 ] =

[ 2+1 2 2
0 3+0 1+2

]
∈ S

[ 3 1 1
1 0 0 ], [ 3 1 1

0 3 0 ] ∈ S, so [ 3 1 2
1 3 0 ] =

[ 3 1 1+1
1+0 0+3 0

]
∈ S

[ 3 2 2
0 3 3 ], [ 3 1 2

1 3 0 ] ∈ S, so [ 3 3 2
1 3 3 ] =

[ 3 2+1 2
0+1 3 3+0

]
∈ S

[ 3 1 1
1 0 0 ], [ 3 1 1

0 0 3 ] ∈ S, so [ 3 3 1
2 0 3 ] =

[ 3 1+1+1 1
1+1+0 0 0+0+3

]
∈ S

[ 3 3 1
2 0 3 ], [ 3 3 2

1 3 3 ] ∈ S, so [ 3 3 3
3 3 3 ] =

[ 3 3 1+2
2+1 0+3 3

]
∈ S

The final line finishes the proof. ◀

To continue, we define the “concatenation” notation:

[ n1 n2 ··· nd
a1 a2 ··· ad

] ⊙
[m1 m2 ··· me

b1 b2 ··· be

]
=
[ n1 n2 ··· nd m1 m2 ··· me

a1 a2 ··· ad b1 b2 ··· be

]
and the k-fold repeated version of this notation:

[ n1 n2 ··· nd
a1 a2 ··· ad

]⊙k = [ n1 n2 ··· nd
a1 a2 ··· ad

] ⊙ [ n1 n2 ··· nd
a1 a2 ··· ad

] ⊙ · · · ⊙ [ n1 n2 ··· nd
a1 a2 ··· ad

]︸ ︷︷ ︸
k

.

We will now use Lemma 25 and Lemma 26 to prove:

▶ Lemma 27. For all n ≥ 3, we have [ n
nn−2 ]⊙n ∈ S.

Proof. We already know the case n = 3 (Lemma 26), so assume that n ≥ 4.
We will first show that [ n

n ]⊙3 ⊙
[ 1

n2

]⊙(n−3) ∈ S. We note that a straightforward direct
construction gives[

n n 1
k 0 n2−kn

]
∈ S

for k = 1, 2, 3. To proceed, we choose nonnegative integers a1, a2, . . . , an, b1, b2, . . . , bn ∈
{0, 1, 2, 3} such that a1 +a2 + · · ·+an = n, b1 +b2 + · · ·+bn = n and aibi = 0 for all i. Indeed
this can be done as follows: If n = 2m is even, then we can take a1 = a2 = · · · = am = bm+1 =
bm+2 = · · · = bn = 2 and b1 = b2 = · · · = bm = am+1 = am+2 = · · · = an = 0. If n = 2m+ 1
is odd, then we take a1 = 3, bm+1 = 1, a2 = a3 = · · · = am = bm+2 = bm+3 = · · · = bn = 2
and b1 = b2 = · · · = bm = am+1 = am+2 = · · · = an = 0. Because aibi = 0 we get that[

n n 1
ai bi n2−(ai+bi)n

]
∈ S

CCC 2022



9:20 Subrank and Optimal Reduction of Scalar Multiplications to Generic Tensors

and then using (4) we get[
n n 1 1
ai bi n n2−(ai+bi+1)n

]
∈ S (5)

for i = 1, 2, . . . , n. Applying the direct sum construction Lemma 25 to the elements of (5)
we get[

n n n 1
n n n n3−3n2

]
=
[

n n 1+···+1 1∑
i

ai

∑
i

bi n
∑

i
n2−(ai+bi+1)n

]
∈ S.

Applying (4) repeatedly to this we obtain [ n
n ]⊙3 ⊙

[ 1
n2

]⊙(n−3) ∈ S.
We will now show by induction on d that

[ n
nd−2 ]⊙d ⊙

[ 1
nd−1

]⊙(n−d) ∈ S (6)

for d = 3, 4, . . . , n. We already know that the base case d = 3 is true. Suppose for the
induction step that [ n

nd−2 ]⊙d ⊙
[ 1

nd−1

]⊙(n−d) ∈ S. Then we have using (4) that

[ n
nd−1 ]⊙(d+1) ⊙

[ 1
nd

]⊙(n−d−1) =
[ n

nd−2+···+nd−2
]⊙d ⊙

[ 1+1+···+1
nd−1

]
⊙
[ 1

nd−1+···+nd−1
]⊙(n−d)−1 ∈ S.

This proves (6).
Finally, by setting d = n in (6) we obtain the claim [ n

nn−2 ]⊙n ∈ S. ◀

5 Application: Subrank is not additive

We discuss in this section an application of our upper bound Theorem 2 on the generic
subrank, namely that the subrank is not additive under the direct sum. That is, there are
tensors S, T such that Q(T ) + Q(S) < Q(T ⊕ S). In fact, we obtain a large gap between
Q(T ) + Q(S) and Q(T ⊕ S). The proof relies on the idea of writing the diagonal tensor In

as a sum of two generic tensors and on basic properties of the subrank.11

▶ Theorem 28. There are tensors S, T ∈ Kn,n,n such that we have Q(T ),Q(S) ≤
√

3n− 2
and Q(T ⊕ S) ≥ n.

Proof. By Theorem 2 there is a non-empty Zariski-open subset U ⊆ Kn,n,n such that for
all T ∈ U we have Q(T ) ≤

√
3n− 2. Recall that In ∈ Kn,n,n is the tensor with ones in the

diagonal entries and zeroes elsewhere. The subset In − U ⊆ Kn,n,n is also non-empty and
Zariski-open, and thus the intersection U ∩ (In −U) is non-empty. This means that there is a
T ∈ U such that In −T is in U . Fix this T and let S = In −T . Then Q(T ),Q(S) ≤

√
3n− 2.

For their direct sum, we observe the simple general fact that T ⊕ S ≥ T + S where the
left-hand side is the direct sum and the right-hand side is the coordinate-wise sum. Since
subrank is monotone under ≥ we find that Q(T ⊕ S) ≥ Q(T + S) = Q(In) = n. ◀

The proof of Theorem 28 extends directly so that similarly from Theorem 5 we get the
following higher-order non-additivity result.

▶ Theorem 29. There are k-tensors S, T ∈ Kn,...,n such that Q(T ),Q(S) ≤ (kn−(k−1))
1

k−1

while Q(T ⊕ S) ≥ n.

11 This idea was used earlier in [9] to show that the “lower support functionals” [41] are not additive.
Their results can be used to find a weaker non-additivity for subrank (with a smaller gap, and only for
tensors of order three), namely that there are tensors S, T ∈ Kn,n,n such that Q(T ), Q(S) ≤ n2/3+o(1)

and Q(T ⊕ S) ≥ n.
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6 Open problems

There are several natural open problems that arise from or are closely related to our study
and results on the generic subrank in this paper. We briefly list some of these problems here.

While we determine the generic subrank very precisely up to a small additive constant, it
is natural to ask whether our upper bound on the generic subrank Q(n) is exactly tight.
We know that this is the case for all small cases (n ≤ 100).
Closely related to the above, but for higher-order and unbalanced formats, what is the
exact value of the generic subrank Q(n1, . . . , nk) in Kn1,...,nk when the dimensions ni are
not all equal? In particular, is our upper bound tight?
To attack the previous two problems the natural approach would be to use the stronger
Theorem 21. Our current lower bound on the generic subrank uses Theorem 13 which
relies on our constructions of decompositions X1[1] + X2[2] + X3[3] = Kr,r,r. Theorem 21
suggests to instead construct decompositions X1[1] + X2[2] + X3[3] +Wr = Kr,r,r. What
are the “best” constructions that can be obtained of this form?
There is a natural approximative version of subrank called border subrank12 which plays a
central role in algebraic complexity theory (in particular the study of matrix multiplication
algorithms). The border subrank is at least the subrank. What value does the border
subrank take on generic tensors?
What is the value of the generic asymptotic subrank ˜Q(n)? The state of the art is that
n2/3 ≤ ˜Q(n) ≤ n, so in particular it remains open whether generic tensors have “full”
generic asymptotic subrank or not. We note that we do know of explicit tensors for
which the asymptotic subrank is not full (the so-called W-tensor, for example) and also
of explicit tensors for which the asymptotic subrank is full in a non-trivial way (matrix
multiplication tensors, for example). The aforementioned lower bound of n2/3 is by
Strassen’s elegant construction (which makes use of the matrix multiplication tensors).
Our results show that one cannot obtain better lower bound on ˜Q(n) by improving the
lower bound on the generic subrank Q(n) since Q(n) = θ(

√
n).

With the notation we introduced in Section 4 on constructions of tensor space decomposi-
tions, it is natural to ask what precisely are the elements of S. Many elements can be
constructed from simple base cases and the direct sum construction. However, we do not
know whether a finite number of generators in this sense suffices to generate all of S.
We found tensors S, T for which there is a large gap between Q(S ⊕ T ) and Q(S) + Q(T ).
Is this the largest possible gap? More speculatively, we may ask: is there a general
relation between direct sum problems (i.e. additivity under direct sum) and parameter
values at generic instances?
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