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—— Abstract
The purpose of this paper is to give a “textbook quality” proof of the optimal algorithm, called
RANKING, for the online bipartite matching problem (OBM) and to highlight its role in matching-
based market design. In particular, we discuss a generalization of OBM, called the adwords problem,
which has had a significant impact in the ad auctions marketplace.
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1 Introduction

The online bipartite matching problem® (OBM) occupies a central place not only in online
algorithms but also in matching-based market design, see details in Sections 1.1 and 1.2.
The purpose of this paper is to give a “textbook quality” proof? of the optimal algorithm,
called RANKING, for this problem and to highlight its role in matching-based market design.
In particular, we discuss a generalization of OBM, called the adwords problem, which has
had a significant impact in the ad auctions marketplace, see Section 1.2.

RANKING achieves a competitive ratio of (1 — 1) [17]. Its analysis, given in [17], was
considered “difficult” and it also had an error. Over the years, several researchers contributed
valuable ideas to simplifying its proof, see Section 1.1 for details. The proof given in this
paper is based on these ideas. Additionally, we highlight a key property used in the proof,
called the No-Surpassing Property and simplify further its proof. This property turns out to
be the bottleneck to a substantial generalization which was attempted in [21], as described
below.

The adwords problem, which is called GENERAL in this paper, is a generalization of
OBM. It involves matching keyword queries, as they arrive online, to advertisers; the latter
have daily budget limits and they make bids for the queries. The overall goal is to maximize
the total revenue. This problem is notoriously difficult and has remained largely unsolved;
see Section 1.1 for marginal progress made recently. Its special case, when bids are small
compared to budgets, called SMALL, captures a key computational issue that arises in the
context of ad auctions, for instance in Google’s AdWords marketplace. An optimal algorithm
for SMALL, achieving a competitive ratio of (1 — %), was first given in [19]; for the impact of
this result in the marketplace, see Section 1.2.

In Open Problem Number 20 in [18], Mehta asks for a budget-oblivious online algorithm
for SMALL. Such an algorithm does not know the daily budgets of advertisers; however, in a
run of the algorithm, it knows when the budget of an advertiser is exhausted. However, its
revenue is still compared to the optimal revenue generated by an offline algorithm with full

I For formal statements of problems discussed in this paper, see Section 2.
2 e.g., the proof given in the chapter [8] of the upcoming edited book on matching-based market design.
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knowledge of the budget. Its importance lies in its use in autobidding platforms [1, 6], which
manage the ad campaigns of large advertisers; they dynamically adjust bids and budgets
over multiple search engines to improve performance. The greedy algorithm, which matches
an arriving query to the advertiser making the highest bid, is clearly budget-oblivious; its
competitive ratio is 0.5. An improved algorithm, having a competitive ratio of 0.522, was
recently obtained by Udwani [20], using the idea of an LP-free analysis, which involves
writing appropriate linear inequalities to compare the online algorithm with the offline
optimal algorithm.

Motivated by the recent simplification of the proof of (OBM), [21] attempted to extend
RANKING all the way to SMALL. This attempt represents a more basic approach to SMALL
than the one used in [19] (see Section 1.1) and the hope was that it would yield an algorithm
with better properties, e.g., budget-obliviousness. [21] managed to extend RANKING to an
intermediate problem, called SINGLE-VALUED, thereby giving an optimal, budget-oblivious
algorithm; see Section 1.1 for competing results for this problem. Under SINGLE-VALUED,
each advertiser can make bids of one value only, although the value may be different for
different advertisers.

The analysis of SINGLE-VALUED given in [21] involved new ideas from two domains,
namely probability theory and combinatorics, with the former playing a dominant role and
the latter yielding a proof of the No-Surpassing Property for SINGLE-VALUED. Equipped
with these new ideas, [21] next attempted an extension from RANKING to SMALL. Although
the more difficult, probabilistic part, of the argument did extend, a counter-example was
found to the combinatorial part, showing that the No-Surpassing Property does not hold for
SMALL.

1.1 Related Works

We start by stating simplifications to the proof of OBM. At first, [11, 4], got the ball rolling,
setting the stage for the substantial simplification given in [7], using a randomized primal-dual
approach. [7] introduced the idea of splitting the contribution of each matched edge into
primal and dual contributions and lower-bounding each part separately. Their method for
defining prices p; of goods, using randomization, was used by subsequent papers, including
this one3.

Interestingly enough, the next simplification involved removing the scaffolding of LP-
duality and casting the proof in purely probabilistic terms?*, using notions from economics
to split the contribution of each matched edge into the contributions of the buyer and the
seller. This elegant analysis was given by [9]. A further simplification to the proof of the
No-Surpassing Property for OBM is given in the current paper.

An important generalization of OBM is online b-matching. This problem is a special
case of GENERAL in which the budget of each advertiser is $b and the bids are 0/1. [16] gave
a simple optimal online algorithm, called BALANCE;, for this problem. BALANCE awards
the next query to the interested bidder who has been matched least number of times so far.
[16] showed that as b tends to infinity, the competitive ratio of BALANCE tends to (1 —1).

Observe that b-matching is a special case of SMALL, if b is large. Indeed, the first online
algorithm [19] for SMALL was obtained by extending BALANCE as follows: [19] first gave a
simpler proof of the competitive ratio of BALANCE using the notion of a factor-revealing

3 For a succinct proof of optimality of the underlying function, e® !, see Section 2.1.1 in [12].
4 Even though there is no overt use of LP-duality in the proof of [9], it is unclear if this proof could have
been obtained directly, without going the LP-duality-route.
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LP [15]. Then they gave the notion of a tradeoff-revealing LP, which yielded an algorithm
achieving a competitive ratio of (1 — %) [19] also proved that this is optimal for b-matching,
and hence SMALL, by proving that no randomized algorithm can achieve a better ratio for
online b-matching; previously, [16] had shown a similar result for deterministic algorithms.

The algorithm of [19] is simple and operates as follows. The effective bid of each bidder
j for a query is its bid multiplied by (1 — e%3/5i), where Bj and L; are the total budget
and the leftover budget of bidder j, respectively; the query is matched to the bidder whose
effective bid is highest. As a result, the algorithm of [19] needs to know the total budget of
each bidder. Following [19], a second optimal online algorithm for SMALL was given in [5],
using a primal-dual approach.

Another relevant generalization of OBM is online vertex weighted matching, in which
the offline vertices have weights and the objective is to maximize the weight of the matched
vertices. [2] extended RANKING to obtain an optimal online algorithm for this problem.
Clearly, SINGLE-VALUED is intermediate between GENERAL and online vertex weighted
matching. [2] gave an optimal online algorithm for SINGLE-VALUED by reducing it to online
vertex weighted matching. This involved creating k; copies of each advertiser j. As a result,
their algorithm needs to use 3, 4 k; random numbers, where A is the set of advertisers.

We note that independent of [21], Albers and Schubert [3] had also obtained an optimal,
budget-oblivious algorithm for SINGLE-VALUED; however, their technique was different and
involved formulating a configuration LP and conducting a primal-dual analysis. Another
advantage of the algorithms of [3] and [21], in contrast to [2], was that they need to use only
|A| random numbers.

For GENERAL, the greedy algorithm, which matches each query to the highest bidder,
achieves a competitive ratio of 1/2. Until recently, that was the best possible. In [13] a
marginally improved algorithm, with a ratio of 0.5016, was given. It is important to point
out that this 60-page paper was a tour-de-force, drawing on a diverse collection of ideas — a
testament to the difficulty of this problem.

In the decade following the conference version (FOCS 2005) of [19], search engine
companies generously invested in research on models derived from OBM and adwords. Their
motivation was two-fold: the substantial impact of [19] and the emergence of a rich collection
of digital ad tools. It will be impossible to do justice to this substantial body of work,
involving both algorithmic and game-theoretic ideas; for a start, see the surveys [18, 12].

1.2 Significance and Practical Impact

Google’s AdWords marketplace generates multi-billion dollar revenues annually and the

current annual worldwide spending on digital advertising is almost half a trillion dollars.

These revenues of Google and other Internet services companies enable them to offer crucial
services, such as search, email, videos, news, apps, maps etc. for free — services that have
virtually transformed our lives.

We note that SMALL is the most relevant case of adwords for the search ads marketplace
e.g., see [6]. A remarkable feature of Google, and other search engines, is the speed with
which they are able to show search results, often in milliseconds. In order to show ads at the
same speed, together with search results, the solution for SMALL needed to be minimalistic
in its use of computing power, memory and communication.

The online algorithm of [19] satisfied these criteria and therefore had a substantial impact
in this marketplace. Furthermore, the idea underlying their algorithm was extracted into a
simple heuristic, called bid scaling, which uses even less computation and is widely used by
search engine companies today. As mentioned above, our Conditional Algorithm for SMALL
is even more elementary and is budget-oblivious.

5:3
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It will be useful to view the AdWords marketplace in the context of a bigger revolution,
namely the advent of the Internet and mobile computing, and the consequent resurgence of
the area of matching-based market design. The birth of this area goes back to the seminal
1962 paper of Gale and Shapley on stable matching [10]. Over the decades, this area became
known for its highly successful applications, having economic as well as sociological impact.
These included matching medical interns to hospitals, students to schools in large cities, and
kidney exchange.

The resurgence led to a host of highly innovative and impactful applications. Besides the
AdWords marketplace, which matches queries to advertisers, these include Uber, matching
drivers to riders; Upwork, matching employers to workers; and Tinder, matching people to
each other, see [14] for more details.

A successful launch of such markets calls for economic and game-theoretic insights,
together with algorithmic ideas. The Gale-Shapley deferred acceptance algorithm and its
follow-up works provided the algorithmic backbone for the “first life” of matching-based
market design. The algorithm RANKING has become the paradigm-setting algorithmic idea in
the “second life” of this area. Interestingly enough, this result was obtained in the pre-Internet
days, over thirty years ago.

2 Preliminaries

Online Bipartite Matching. (OBM): Let B be a set of n buyers and S a set of n goods. A
bipartite graph G = (B, S, F) is specified on vertex sets B and S, and edge set E, where for
1€ B, j€S, (i,j) € E if and only if buyer ¢ likes good j. G is assumed to have a perfect
matching and therefore each buyer can be given a unique good she likes. Graph G is revealed
in the following manner. The n goods are known up-front. On the other hand, the buyers
arrive one at a time, and when buyer ¢ arrives, the edges incident at i are revealed.

We are required to design an online algorithm A in the following sense. At the moment a
buyer ¢ arrives, the algorithm needs to match ¢ to one of its unmatched neighbors, if any; if
all of i’s neighbors are matched, ¢ remains unmatched. The difficulty is that the algorithm
does not “know” the edges incident at buyers which will arrive in the future and yet the size
of the matching produced by the algorithm will be compared to the best off-line matching;
the latter of course is a perfect matching. The formal measure for the algorithm is defined in
Section 2.1.

General Adwords Problem (GENERAL): Let A be a set of m advertisers, also called bidders,
and @ be a set of n queries. A bipartite graph G = (Q, A, E) is specified on vertex sets () and
A, and edge set E, where for i € Q and j € A, (i,j) € F if and only if bidder j is interested
in query i. Each query i needs to be matched® to at most one bidder who is interested in
it. For each edge (4, 7), bidder j knows his bid for i, denoted by bid(i,j) € Z;. Each bidder
also has a budget B; € Z which satisfies B; > bid(¢, j), for each edge (4, j) incident at j.

Graph G is revealed in the following manner. The m bidders are known up-front and
the queries arrive one at a time. When query ¢ arrives, the edges incident at ¢ are revealed,
together with the bids associated with these edges. If i gets matched to j, then the matched
edge (i,7) is assigned a weight of bid(¢, 7). The constraint on j is that the total weight of
matched edges incident at it be at most B;. The objective is to maximize the total weight of
all matched edges at all bidders.

5 Clearly, this is not a matching in the usual sense, since a bidder may be matched to several queries.
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Adwords under Single-Valued Bidders (SINGLE-VALUED): SINGLE-VALUED is a special
case of GENERAL in which each bidder j will make bids of a single value, b; € Z, for the
queries he is interested in. If ¢ accepts j’s bid, then i will be matched to j and the weight of
this matched edge will be b;. Corresponding to each bidder j, we are also given k; € Z_, the
maximum number of times j can be matched to queries. The objective is to maximize the
total weight of matched edges. Observe that the matching M found in G is a b-matching
with the b-value of each query ¢ being 1 and of advertiser j being ;.

Adwords under Small Bids (SMALL): SMALL is a special case of GENERAL in which for
each bidder j, each bid of j is small compared to its budget. Formally, we will capture this
condition by imposing the following constraint. For a valid instance I of SMALL, define

max(; jyep {bid(i,j) — 1}
B; '

u(I) = max {

jEA
Then we require that

lim w(l) =0,

n(l)—oo

where n(I) denotes the number of queries in instance I.

2.1 The competitive ratio of online algorithms

We will define the notion of competitive ratio of a randomized online algorithm in the context
of OBM.

» Definition 1. Let G = (B, S, E) be a bipartite graph as specified above. The competitive
ratio of a randomized algorithm A for OBM is defined to be:
E[A(G, p(B
¢(A)= min min E[A(G, p(B))] ))],
G=(B,S,E) p(B) n

where E[A(G, p(B))] is the expected size of matching produced by A; the expectation is over
the random bits used by A. We may assume that the worst case graph and the order of
arrival of buyers, given by p(B), are chosen by an adversary who knows the algorithm. It is
important to note that the algorithm is provided random bits after the adversary makes its
choices.

» Remark 2. For each problem studied in this paper, we will assume that the offline matching
is complete. It is easy to extend the arguments, without changing the competitive ratio, in
case the offline matching is not complete. As an example, this is done for OBM in Remark 14.

3 Ranking and its Analysis

Algorithm 1 presents an optimal algorithm for OBM. Note that this algorithm picks a random
permutation of goods only once. Its competitive ratio is (1 — %), as shown in Theorem 13.
Furthermore, as shown in [17], it is an optimal online bipartite matching algorithm: no
randomized algorithm can do better, up to an o(1) term.

We will analyze Algorithm 2 which is equivalent to Algorithm 1 and operates as follows.
Before the execution of Step (1), the adversary determines the order in which buyers will
arrive, say p(B). In Step (1), each good j is assigned a price p; = e*~!, where w;, called
the rank of j, is picked at random from [0, 1]; observe that p; € [%, 1]. In Step (2), buyers

5:5
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Algorithm 1 RANKING.

1. Initialization: Pick a random permutation, 7, of the goods in S.

2. Online buyer arrival: When a buyer, say 4, arrives, match her to the first
unmatched good she likes in the order 7; if none, leave ¢ unmatched.

Output the matching, M, found.

will arrive in the order p(B), picked by the adversary, and will be matched to the cheapest
available good. With probability 1 all n prices are distinct and sorting the goods by increasing
prices results in a random permutation. Furthermore, since Algorithm 2 uses this sorted
order only and is oblivious of the actual prices, it is equivalent to Algorithm 1. As we will
see, the random variables representing actual prices are crucially important as well — in the
analysis. We remark that for the generalizations of OBM studied in this paper, the prices
are used not only in the analysis, but also by the algorithms.

3.1 Analysis of Ranking

We will use an economic setting for analyzing Algorithm 2 as follows. Each buyer i has
unit-demand and 0/1 valuations over the goods she likes, i.e., she accrues unit utility from
each good she likes, and she wishes to get at most one of them. The latter set is precisely
the set of neighbors of ¢ in G. If on arrival of ¢ there are several of these which are still
unmatched, i will pick one having the smallest price ®. Therefore the buyers will maximize
their utility as defined below.

For analyzing this algorithm, we will define two sets of random variables, u; for i € B
and rj, for j € S. These will be called utility of buyer ¢ and revenue of good j, respectively.
Each run of RANKING defines these random variables as follows. If RANKING matches buyer
i to good j, then define u; = 1 — p; and r; = p;, where p; is the price of good j in this
run of RANKING. Clearly, p; is also a random variable, which is defined by Step (1) of the
algorithm. If 7 remains unmatched, define u; = 0, and if j remains unmatched, define r; = 0.
Observe that for each good j, p; € [2,1] and for each buyer i, u; € [0,1 — 1]. Let M be the
matching produced by RANKING and let random variable |M| denote its size.

Lemma 3 pulls apart the contribution of each matched edge (4, j) into u; and r;. Next, we
established in Lemma 11 that for each edge (7, j) in the graph, the total expected contribution
of u; and r; is at least 1 — % Then, linearity of expectation allows us to reassemble the 2n
terms in the right hand side of Lemma 3 so they are aligned with a perfect matching in G,
and this yields Theorem 13.

» Lemma 3.
E(M|) =Y Eful + > Elrl

6 As stated above, with probability 1 there are no ties.
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Algorithm 2 RANKING: Economic Viewpoint.

1. Initialization: Vj € S: Pick w; independently and uniformly from [0, 1].

Set price pj « e L

2. Online buyer arrival: When a buyer, say i, arrives, match her to the cheapest
unmatched good she likes; if none, leave i unmatched.

Output the matching, M, found.

Proof. By definition of the random variables,

E[M[] =E > uw + > rj| =Y E[w] + > E[r],
i=1 j=1 i J
where the first equality follows from the fact that if (¢, j) € M then u; +r; = 1 and the
second follows from linearity of expectation. <

While running Algorithm 2, assume that the adversary has picked the order of arrival of
buyers, say p(B), and Step (1) has been executed. We next define several ways of executing
Step (2). Let R denote the run of Step (2) on the entire graph G. Corresponding to each
good j, let G; denote graph G with vertex j removed. Define R, to be the run of Step (2)
on graph G;.

Lemma 4 and Corollary 5 establish a relationship between the sets of available goods for

a buyer 4 in the two runs R and R;; the latter is crucially used in the proof of Lemma 9.

For ease of notation in proving these two facts, let us renumber the buyers so their order
of arrival under p(B) is 1,2,...n. Let T(i) and T}(i) denote the sets of unmatched goods
at the time of arrival of buyer i (i.e., just before the buyer ¢ gets matched) in the graphs
G and Gj, in runs R and R, respectively. Similarly, let S(i) and S;(i) denote the set of
unmatched goods that buyer ¢ is incident to in G and Gj, in runs R and R, respectively.

We have assumed that Step (1) of Algorithm 2 has already been executed and a price pg
has been assigned to each good k. With probability 1, the prices are all distinct. Let F; and
F, be subsets of S containing goods k such that pi, < p; and px > p;, respectively.

» Lemma 4. For each i, 1 <i <n, the following hold:
1. (T;(5) N Fy) = (T(i) N FYy).
2. (T;(i) N Fy) C (T(i) N Fy).

Proof. Clearly, in both runs, R and R;, any buyer having an available good in F; will match
to the most profitable one of these, without even considering the rest of the goods. Since
j ¢ Fi, the two runs behave in an identical manner on the set Fy, thereby proving the first
statement.

The proof of the second statement is by induction on . The base case is trivially true

since j ¢ Fy. Assume that the statement is true for i = k and let us prove it for i = k + 1.

By the first statement, we need to consider only the case that there are no available goods for
the k" buyer in Fy in the runs R and R;. Assume that in run R;, this buyer gets matched
to good [; if she remains unmatched, we will take [ to be null. Clearly, [ is the most profitable
good she is incident to in T (k). Therefore, the most profitable good she is incident to in run
R is the best of I, the most profitable good in T'(k) — T} (k), and j, in case it is available. In
each of these cases, the induction step holds. <

5:7
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In the corollary below, the first two statements follow from Lemma 4 and the third
statement follows from the first two.

» Corollary 5. For each i, 1 < i < n, the following hold:
1. (S;(4) N Fy) = (S(E) N Fy).

2. (S;(3) N Fy) C(S3E) N Fy).

3. S;(@) C S(9).

Next we define a new random variable, u., for each edge e = (¢,5) € E. This is called the
threshold for edge e and is given in Definition 6. It is critically used in the proofs of Lemmas
9 and 11.

» Definition 6. Let e = (i,7) € E be an arbitrary edge in G. Define random variable, u.,
called the threshold for edge e, to be the utility of buyer i in run R;. Clearly, u. € [0,1 — %}

» Property 7 (No-Surpassing for OBM). Let p; be such that the bid of j, namely 1 — p;, is
better than the best bid that buyer i gets in run R;. Then, in run R, no bid to ¢ will surpass

1-— pj .
» Lemma 8. The No-Surpassing Property holds for OBM.

Proof. Suppose the bid of j, namely 1 — p;, is better than the best bid that buyer i gets
in run R;. If so, ¢ gets no bid from F; in R;; observe that they are all higher than 1 — p;.
Now, by the first part of Corollary 5, ¢ gets no bid from Fj in run R as well, i.e., in run R,
no bid to ¢ will surpass 1 — p;. |

» Lemma 9. Corresponding to each edge (i,j) € E, the following hold.

1. u; > ue, where u; and u. are the utilities of buyer i in runs R and R;, respectively.

2. Let z€[0,1— %} Conditioned on ue = z, if p; < 1—z, then j will definitely be matched
in run R.

Proof.

1). By the third statement of Corollary 5, i has more options in run R as compared to run
R;, and therefore u; > ..

2). In run R, if j is already matched when ¢ arrives, there is nothing to prove. Next assume
that j is not matched when 7 arrives. The crux of the matter is that by Lemma 8, the
No-Surpassing Property holds. Therefore, in run R, ¢ will not have any option that is
better than j and will therefore get matched to j. Since 1 —p; > z, S;(i) N Fy = 0.
Therefore by the first statement of Corollary 5, S(i) N Fy = 0. Since ¢ will get no bid
better than j in R, the no-surpassing property indeed holds and ¢ must get matched
to j. <

» Remark 10. The random variable u, is called threshold because of the second statement of
Lemma 9. It defines a value such that whenever p; is smaller than this value, j is definitely
matched in run R.

The intuitive reason for the next, and most crucial, lemma is the following. The smaller
U is, the larger is the range of values for p;, namely [0,1 — u.), over which (¢, j) will be
matched and j will accrue revenue of p;. Integrating p; over this range, and adding E[u;] to
it, gives the desired bound. Crucial to this argument is the fact that p; is independent of
Ue. This follows from the fact that u. is determined by run R; on graph G, which does not
contain vertex j.
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» Lemma 11. Corresponding to each edge (i,j) € E,
1
E[Uz +Tj] Z 1—-.
e

Proof. By the first part of Lemma 9, E[u;] > E[u,].

Next, we will lower bound E[r;]. Let z € [0,1 — 1] and let us condition on the event
ue = z. The critical observation is that u. is determined by the run R;. This is conducted
on graph G, which does not contain vertex j. Therefore u. is independent of p;.

By the second part of Lemma 9, r; = p; whenever p; < 1 — 2. We will ignore the
contribution to E[r;] when p; > 1 — z. Let w be s.t. e*~!1 =1 — 2.

Now p; is obtained by picking  uniformly at random from the interval [0, 1] and outputting
e~ 1. In particular, when x € [0, w), pj <1 —z. If so, by the second part of Lemma 9, j is
matched and revenue is accrued in r;, see Figure 2. Therefore,

1 =1- 1o z.
e

w
Elr; | ue = 2] 2/ e ldr = e -
0 €

Let f,, (2) be the probability density function of wu.; clearly, f,.(z) =0 for z ¢ [0,1 — 1].

Therefore,

“1/e
> /1 1 <1_(1i_z>'fuc(z)dz = 1_%_E[Ue]a

where the first equality follows from the law of total expectation and the inequality follows
from fact that we have ignored the contribution to E[r; | ue] when p; > 1 — z. Hence we get

1

» Remark 12. Observe that Lemma 11 is not a statement about i and j getting matched
to each other, but about the utility accrued by ¢ and the revenue accrued by j by being
matched to various goods and buyers, respectively, over the randomization executed in Step
(1) of Algorithm 2.

» Theorem 13. The competitive ratio of RANKING is at least 1 — é

Proof. Let P denote a perfect matching in G. The expected size of matching produced by
RANKING is

> Efui+r] > n(li)

(@.4)eP

EM] = Y Efwl + Y Elry] =

where the first equality uses Lemma 3, the second follows from linearity of expectation and
the inequality follows from Lemma 11 and the fact that |P| = n. The theorem follows. <

» Remark 14. In case G does not have a perfect matching, let P denote a maximum matching
in G, of size k, say. Then summing E [w;] and E[r;] over the the vertices ¢ and j matched by
P, we get that the expected size of matching produced by RANKING is at least k (1 — 1).
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