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Abstract
The computational complexity of pairwise energy minimisation of N points in real space is a long-
standing open problem. The idea of the potential intractability of the problem was supported by a
lack of progress in finding efficient algorithms, even when restricted the integer grid approximation.
In this paper we provide a firm answer to the problem on Zd by showing that for a large class of
pairwise energy functions the problem of periodic energy minimisation is NP-hard if the size of
the period (known as a unit cell) is fixed, and is undecidable otherwise. We do so by introducing
an abstraction of pairwise average energy minimisation as a mathematical problem, which covers
many existing models. The most influential aspects of this work are showing for the first time:
1) undecidability of average pairwise energy minimisation in general 2) computational hardness for
the most natural model with periodic boundary conditions, and 3) novel reductions for a large class
of generic pairwise energy functions covering many physical abstractions at once. In particular, we
develop a new tool of overlapping digital rhombuses to incorporate the properties of the physical
force fields, and we connect it with classical tiling problems. Moreover, we illustrate the power of
such reductions by incorporating more physical properties such as charge neutrality, and we show an
inapproximability result for the extreme case of the 1D average energy minimisation problem.
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1 Introduction

Periodic structures and models with periodic boundary conditions appear both in nature
and in mathematical interpretations of physical phenomena: spin systems in Ising models [8],
Buckingham–Coulomb inter-atomic potential modelling crystal structures [32], Lennard-Jones
potential in inter-molecular interaction [13]. Periodic boundary conditions are often used
either to define, or to approximate, a large or infinite system from a small partition, known
as a unit cell. The series of repeating unit cells in every dimension forms a periodic structure.
A unit cell can be defined as a mapping from the points within a contiguous subspace of a
lattice to a finite set of “colours”, an abstraction that may be used to represent anything
from ions to spin states. The main advantage of this model is that the periodic structure
allows the properties of the effectively infinite global structure to be determined from the
finite unit cell. This advantage has led to these structures attracting a great deal of attention
in mathematics, physics, biology, chemistry and computer science [1, 12, 17, 18, 19, 20].
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8:2 The Complexity of Periodic Energy Minimisation

From the perspective of the physical sciences, one of the most fundamental properties is
the potential energy of the structure, representing the sum of pairwise attractions between
ions (or spins) within the unit cell. Usually, the energy landscape is a highly non-convex
function with many local minima and saddle points. The fundamental optimisation problem,
associated with predicting various physical phenomena in both periodic structures and a
single unit cell, is known as the cluster problem [34]:

“In which way can N points be occupied (in real space) so as to minimise the sum of
their interactions?”

A lack of progress with the design of efficient algorithms for solving this fundamental
optimisation problem led to various hypotheses about its intractability, which has not been
formally addressed due to a large number of variants and complexity of practical details
regarding the problem. However, very recently the first NP-hard result was shown for closely
related removal problem: Given a cluster of N points, can a subset of them be removed to
minimise the total energy of pairwise Buckingham–Coulomb interaction [3].

This paper builds upon these previous results, showing that hardness results apply even
under the more realistic periodic boundary conditions. In the context of crystal structure
prediction, this refers to the periodic structure of the crystal, meaning that the global
structure of the crystal is represented by a repeating period. Previous work [3, 11] has
focused on the interaction within the unit cell, while ignoring this periodic conditions.

In this paper, we propose a more universal approach and analyse the computational
complexity of the original cluster problem for a large class of pairwise energy minimisation
functions under more realistic periodic boundary conditions. We introduce an abstract class
of r-distance Common Minimum Value functions (CMV(r)), which capture typical properties
of classical force-fields of pairwise interaction (attraction, repulsion) and incorporates the
variable depth r of such interaction. Then we show that the cluster problem is NP-hard
if the size of the unit cell is fixed and that it is undecidable otherwise for any function in
the class CMV(r) defined on two or three dimensional grids (Z2 or Z3). Moreover, we show
that particular known classical energy-interaction functions fit to this class and inherit the
results on the computational complexity. In the case of 1D grids, we design a parameterised
polynomial-time algorithm to solve the fixed period pairwise energy minimisation problem.
Finally, we show that under the extra physical constraint of charge-neutrality (the total sum
of charges/weights associated with points in the unit cell is zero) the problem still remains
undecidable for 2 and 3 dimensions, and in dimension one it cannot be approximated within
any constant factor unless P = NP .

Crystal Structure Prediction and Computational Complexity. Predicting crystal structures
by computational methods without experimental input is the Holy Grail of crystallography
and material science; it has remained a noted open problem for over 30 years [24]. In general,
Crystal Structure Prediction (csp) asks to identify the periodic crystal structure from a
given set of ions – electromagnetically charged atoms – that minimise its potential energy
based on some model of interaction.

A crystal is a structure defined by a repeating period called a unit cell. Informally, the
unit cell can be thought of as a three dimensional box containing ions, see Figure 1. Each ion
belongs to a class called a species, determining the properties of the ion. The unit cell acts
as a periodic mapping from some set of ion species to the space R3, or in the discrete setting
to a grid such as the integer grid Z3. In a discrete space, the unit cell can be represented
as a necklace or bracelet [4, 2]. In the most general formulations of csp the size and shape
of the unit cell are unconstrained, however bounding the size and the shape is a common
restriction for many cases of csp [12].
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Crystal structure prediction can be thought of as the problem of finding the “best”
configuration of ions within a three-dimensional box, but it is also important for dimension
one and two, see [12]. The quality of a configuration is determined by the average pairwise
interaction between each ion in the structure. The pairwise interaction in turn is determined
by an energy function, taking as input the distance between ions and a set of parameters
based on the ion species. A positive interaction between ions corresponds to a force pushing
the ions apart, while a negative interaction indicates a force of attraction. The goal of csp is
to find a stable structure, indicated by having the minimal average pairwise interaction [23].

Input

Specie 1

Specie 2

Specie 3

Crystal Unit Cell

Figure 1 Left: A high level example of csp. The input is a set of 3 species of ions (green, yellow,
and blue), where each pair has an interaction computed by a given function determined by the
distance and species. This set of species is transformed into a crystal structure (middle) defined
by a unit cell (right). Right: Example of a Sodium Chloride crystal with the ionic structure. The
middle and right pictures are shared under the creative commons licence.

Despite countless heuristics attempts such as quasi-random sampling [27, 29], basin hoping
[6, 15, 16], simulated annealing [26, 30], swarm optimisation [9, 33], and genetic algorithms
[14, 22, 25] the computational complexity of the csp problem has not been investigated [10].
The recent interdisciplinary initiative to combine chemical knowledge with state of the
art computer science techniques has lead to the first formalisation of csp as a theoretical
computer science problem [3, 6].

Our Contributions. This work introduces the average pairwise energy minimisation problem
on Zd as a generalisation of the physically motivated models and approximation of real space
using the integer grid Zd. This problem can be seen as a variant on the well studied class of
tiling problems [5, 7]. Rather than the “hard” constraints of a tiling problem, where tiles can
only be placed adjacent to each other if they fulfil a set of strict conditions, our model uses
“soft” constraints, giving an energy value to the interaction between each pair of vertices in
the grid based on distance and the colour of the vertices.

Our main result is showing the average pairwise energy minimisation problem on Zd to be
NP-hard when the size of the unit cell is fixed and is undecidable otherwise. This strengthens
the argument that csp is intractable for a fixed-size unit cell and undecidable in general.

Our proof of both intractability and undecidability come by way of a series of reductions
starting with the periodic tiling problem. This series of reductions is designed to enable us to
more easily encode the concept of orientation into the pairwise interaction constraints that
the average pairwise energy minimisation problem on Zd uses. In the periodic tiling problem
it is necessary for all tiles to have a shared orientation in order for the undecidability results
to hold, however our physically motivated models determine interaction only by the colour
of the vertices, and the distance between them. To encode this property we introduce two
problems: the k-unique radius tiling problem (defined in Section 3.1), and the r-discretised
rhombus all-distinct periodic complete assignment problem (defined in Section 3.2). Figure 2
provides a sketch of this process. We strengthen our results by showing that they hold under
the further constraint of charge neutrality, an abstraction of the physical constraint that the
periods of these structures must have an equal number of positive and negative charges.

MFCS 2022



8:4 The Complexity of Periodic Energy Minimisation

Tiling Problem
k-unique radius
tiling problem

r-discretised rhombus
assignment problem

The average pairwise energy

minimisation problem on Z2

Figure 2 High level overview our series of reductions starting with the tiling problem.

2 Preliminaries

Informally, the average pairwise energy minimisation problem on Zd can be thought of as
the problem of determining a way of colouring the infinite grid Zd with a finite period, while
minimising the average pairwise interaction energy. The pairwise interaction energy between
each pair of points on Zd is determined by the colours of the points, and the distance between
them. The period of a colouring is called the unit cell, which may equivalently be thought of
as a mapping from the set of colours to the grid.

▶ Definition 1 (Unit cell). A unit cell U of size n⃗ = (n1, n2, . . . , nd) ∈ Nd is a periodic
mapping from the integer grid Zd to some set of colours C, defined by a colouring on the
d dimensional grid n1 × n2 × . . . × nd. Given a vector y⃗ ∈ Zd, U(y⃗) returns the colour at
position (y1 mod n1, y2 mod n2, . . . , yd mod nd) on the grid defining U .

The number of vertices in a unit cell U of size n⃗ is denoted by |U |, i.e. |U | = n1 · n2 · . . . · nd.
Similarly x⃗ ∈ U is used to denote that x⃗ is a position in the finite grid defining U . Where it is
clear from context, given any vector x⃗ ∈ Zd the colour of the vertex at position x⃗ in the grid Zd

coloured by U is denoted U(x⃗), giving U(x⃗) = U((x1 mod n1, x2 mod n2, . . . , xd mod nd)).
The goal of these colourings is to minimise the average pairwise energy per vertex of the

coloured grid. The energy between two vertices represents the force between them, with a
negative energy indicating attraction and a positive energy indicating repulsion. The pairwise
energy between a pair of vertices in the grid is determined by a pairwise energy function.

This work considers parametric pairwise energy functions f of the form f(θ(ci,cj), r) where
ci, cj ∈ C are a pair of colours, r ∈ R is a euclidean distance and θ(ci,cj) ∈ Rp is a vector
of p parameters determined by the colours ci and cj . Further, this work assumes that the
vector of parameters θ(ci,cj) are predefined for every pair of colours ci, cj ∈ C. Each function
returns a scalar real value, i.e. f :

(
θ(ci,cj) ∈ Rp, r ∈ R

)
7→ R.

▶ Definition 2 (Average pairwise energy per vertex). Given a unit cell U of size n⃗ colouring
the grid Zd, the average pairwise energy per vertex is given by:

AE(U) = 1
|U |

∑
x⃗∈U

∑
y⃗∈Zd

f(θ(U(x⃗),U(y⃗)), D(x⃗, y⃗))

where f is the pairwise energy function, D(x⃗, y⃗) denotes the euclidean distance between x⃗

and y⃗, and θ(ci,cj) ∈ Rp is a vector of p parameters.

In this paper we assume that each energy function has a cut off distance, allowing the
average pairwise energy per vertex to be compute efficiently. One further constraint that
we introduce is that of charge neutrality. In this setting, every colour is associated with a
integer charge. Given a unit cell U , the charge of x⃗ ∈ U is denoted Q(U(x⃗)). Note that
the charge of any two points assigned the same colour are equal, i.e. if U(x⃗) = U(y⃗) then
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Figure 3 An overview of CMV(r). The energy and distance between each point is labelled as a
pair (a, b) where a represents the energy and b represents the distance.

Q(U(x⃗)) = Q(U(y⃗)) for any pair of vectors x⃗, y⃗ ∈ U . A unit cell U is charge neutral if and
only if

∑
x⃗∈U Q(U(x⃗)) = 0. In general we assume that the charge neutrality constraint can

be ignored, effectively assuming that the charge is 0 for every colour.

2.1 The r-Distance Common Minimal Value Class
In this paper we restrict our energy functions to the class of r-distance common minimal value
functions, denoted CMV(r), introduced in this section. This class of functions focuses on the
interactions between vertices within a distance of r of each other, for some distance r ∈ R.
In order to simplify reasoning on the set CMV(r), it is assumed that given any distance
d > r the value of f(θ(ci,cj), d) = 0 for every pair of colours ci, cj ∈ C. Let R(r) = {(i, j) ∈
Z2 |

√
i2 + j2 ≤ r, (i, j) ̸= (0, 0)} be the set of vertices on the integer grid Z2 within a

distance of at most r of the central point (0, 0). Further, let d(r) = {
√

i2 + j2 | (i, j) ∈ R(r)}
be the set of possible distances between the central vertex and any vertex in R(r). As
an example, R(2) = {(2, 0), (1, 1), (1, 0), (1, −1), (0, 2), (0, 1), (0, −1), (0, −2), (−1, 1), (−1, 0),
(−1, −1), (−2, 0)} and d(r) = {1,

√
2, 2}. The goal of this class is to be able to “fix” the

optimal distance between pair of colours as either being some distance in d(r), or as being
outside of R(r) – in effect penalising two colours at a distance of r or less. To this end this
work uses the idea of a common minimal value. Informally, the common minimal value can
be thought of as some negative value M such that the smallest possible interaction between
any pair of vertices is M . Further, the functions in this work restrict M to appear at most
once in the set of possible distance between each colour, meaning that given some pair of
colours ci and cj , there exists at most one distance d ∈ d(r) such that f(θ(ci,cj), d) = M .
The following definition formalises the r-distance common minimal value class.

▶ Definition 3 (Common Minimal Value Functions (CMV(r))). Let θ(ci,cj) ∈ Rp denote the
vector of parameters assigned to some pair of colours ci, cj ∈ C. The function f(θ(ci,cj), d):
Rp+1 → R belongs to the class of common minimal value functions CMV(r) for r ∈ R
if there exists a common minimum value M ∈ R for which the following hold:
1. For any two points at a distance d > r and any pair of colours ci,cj ∈ C the value of

f(θ(ci,cj), d) = 0; [Cut-off property].
2. For any two colours ci,cj ∈ C it is possible to determine a vector θ(ci,cj) such that

the energy between any pairs of points at any distance d ∈ d(r) is f(θ(ci,cj), d) > M ;
[Separation property].

3. For any two colours ci,cj ∈ C and any distance d ∈ d(r) it is possible to determine a vector
ϕ(ci,cj) such that the energy between any pair of points at distance d is f(ϕ(ci,cj), d) =
M and the energy between any pair of points at any distance d′ ∈ d(r), d′ ̸= d is
f(ϕ(ci,cj), d′) > M ; [Optimal pairwise distance property].

MFCS 2022



8:6 The Complexity of Periodic Energy Minimisation

An overview of these properties is given in Figure 3. These properties are used to encode the
tiling problem into the average pairwise energy minimisation problem on Zd. The cut-off
property (Property 1) ensures that there is no interaction between vertices over a certain
cut off distance, allowing these interactions to be safely ignored. The separation property
(Property 2) ensures that there exists a vector of parameters such that the corresponding
colours must be placed further than r apart, or suffer a small energy penalty by having an
interaction greater than M . Finally the optimal pairwise distance property (Property 3)
ensures that there exists a vector of parameters such that the interaction of the corresponding
colours is minimised at M at exactly one distance. The goal of these conditions is to be able
to force a structure on the colouring based on the relative distances between colours. This
allows the structure of the tiling problem to be utilised in the setting of the average pairwise
energy minimisation problem on Zd.

2.2 The Pairwise Energy Minimisation Problem
This section introduces our central problem, the average pairwise energy minimisation
problem on Zd. In this paper we consider two versions of this problem, depending on the
constraints placed on the unit cell. In the most general case, the only constraint is that the
average energy of the unit cell is below some bound g. In this paper, we limit the energy
functions to the class CMV(r). The unit cell may be constrained by having the size given as
part of the input. All values are given in binary as input to our problems.

▶ Problem 1. The average pairwise energy minimisation problem on Zd.

Input: A goal energy g ∈ Q, a set of colours C, a number of dimensions d ∈ Z an energy
function f ∈ CMV and a set of |C|2 parameters θ(ci,cj ) ∈ Rp.

Question: Does there exist a unit cell U of size n1 × n2 × . . . × nd for some ni ∈ N+ where
AE(U) ≤ g.

When the size of the unit cell is given as an input in the form of a vector of length d

of the form (n1, n2, . . . , nd), we refer to the problem as the average pairwise energy
minimisation problem on Zd with a fixed period. Here, fixed period refers to the size
of the period being fixed as part of the input, in this case restricting the period to be of size
n1 × n2 × . . . × nd for the given n1, n2, . . . , nd.

3 Undecidability for Unconstrained Period Size

We first look at the unbounded setting, where the size of the unit cell is not taken as part of
the input. The main claim in this section is that Problem 1 is undecidable for any function in
CMV(r) for r ≥ 2. This section is split into three parts. First, we provide some background
on the tiling problem that is used as the basis for this reduction. Second, we provide an
auxiliary problem derived from the tiling problem to act as an intermediary step in proving
the undecidablity of the average pairwise energy minimisation problem on Zd. Finally we
prove the undecidablity of the average pairwise energy minimisation problem on Zd.

3.1 The Tiling Problem
In the tiling problem, we are given a set of tiles, square plates with a fixed orientation where
each edge is coloured from some set of colours C. The goal of a tiling problem is to completely
cover the plane with tiles such that every pair of adjacent tiles is coloured the same along
the shared edge. In this section, we introduce the further constraint that no two copies of
the same tile may be within a distance of k or less of each other.
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Before discussing the new variations of the tiling problem, let us first present some
notation. The edges of the tiles are labelled East,West,North and South such that the
East edge is opposite the West edge, and the South edge is opposite the North edge. More
precisely, given two tiles, v at position (x1, y1) and u at position (x2, y2) respectively such
that |x1 − x2| ≤ 1 and |y1 − y2| ≤ 1, we say that:

x1 < x2 x1 = x2 x1 > x2

y1 < y2 v is North-West of u v is North of u v is North-East of u

y1 = y2 v is West of u v is u v is East of u

y1 > y2 v is South-West of u v is South of u v is South-East of u

A tile t is represented by the four edges composing it. For notation let te be the colour of the
tile t along edge e. A tile t can be represented as t = {tEast, tSouth, tW est, tNorth}. A Tile
Set is a set of tiles with the edges coloured from some set of colours C. It is assumed the the
tile set contains an infinite number of copies of each tile, allowing the complete plane to be
covered with these tiles. The goal of the Tiling problem is to assemble copies of the tiles
from a given tile set on an infinite plane ruled into squares of the size of one tile such that:
1. No tile is rotated or reflected.
2. A tile must be placed exactly over one square of the ruled integer plane.
3. The colour of adjacent edges must match.
4. Every square must be covered by one tile.
This problem is solvable for a given tile set if and only if such an assembly exists. An
assembly is periodic if there exists some finite region of the plane that may be repeated so
as to solve the tiling problem. The Periodic Tiling Problem asks if there is such a periodic
assembly. Both the tiling problem and the periodic tiling problem are classical undecidable
problems [5, 7]. Connections between this problem and chemistry are well established [28].

In this paper, we introduce the k-unique radius variant of the tiling problem to act as an
intermediate problem between the general tiling problem and the average pairwise energy
minimisation problem on Z2. The k-unique radius tiling problem is needed to help encode
the notion of orientation into the average pairwise energy minimisation problem on Z2. In
the tiling problem, it is integral that each tile is placed under the same orientation. This
means that given two adjacent tiles, they must either touch West edge to East edge, or North
edge to South edge. As our setting uses only the colours and distance between vertices to
determine the pairwise energy, the concept of orientation is difficult to encode. Informally a
tiling has a k-unique radius if and only if no two copies of a given tile are within a distance
of at most k of each other. Let T be a tiling of Z2 such that T (i, j) returns the tile at
position (i, j). The tiling T has a k-unique radius if and only if for every (i, j), (x, y) ∈ Z2,
where D((i, j), (x, y)) ≤ k the tile T (i, j) is distinct from T (x, y), i.e. T (i, j) ̸= T (x, y) where
D((i, j), (x, y)) returns the distance between (i, j) and (x, y).

▶ Problem 2. The periodic tiling problem with a k-unique radius.

Input: A set of tiles, T , and integer k

Question: Does there exist a periodic tiling of Z2 made from T such that given any tile t at
position (x, y) there exists no other copy of t within a distance of k from (x, y)?

▶ Proposition 4. The periodic k-unique radius tiling problem is undecidable for any k ∈ N.

Proof Sketch. The undecidability of the periodic k-unique radius tiling problem follows from
the undecidability of the periodic domino problem [7]. The high level idea is to create a set
of k2 copies of each tile, labelled with (x, y) ∈ [k]. A set of additional colours are constructed

MFCS 2022



8:8 The Complexity of Periodic Energy Minimisation

such that given two tiles t(x,y) and s(a,b), t(x,y) can be placed adjacent to s(a,b) if and only
if the original tiles t and s can be placed adjacently, and (a, b) is adjacent to (x, y) on the
k × k toroidal grid. In one direction, any valid tiling with the original set of tiles can be
transformed into a valid tiling for the new set by choosing an arbitrary origin point, and
replacing the tile t at position (x, y) with the tile t(x mod k,y mod k). In the other direction,
any tiling using the new tiles can be transformed into a tiling of the original tiles by simply
replacing each tile t(x,y) with the tile t from the original set. ◀

▶ Problem 3. The fixed period k-unique tiling problem.

Input: A set of tiles, T , integer k, and pair of lengths n1, n2.
Question: Does there exist a periodic tiling of the plane of size n1 × n2 over T where every

tile within a distance of k for every other tile is distinct.

▶ Proposition 5. The fixed period k-unique tiling problem is NP-hard.

Proof. Following the same arguments as in Proposition 4, the fixed period tiling problem can
be reduced to the fixed period k-unique tiling problem. As the fixed period tiling problem is
known to be NP-hard [5, 7, 21], the fixed period k-unique tiling problem is NP-hard. ◀

3.2 Tiling with Overlapping Digitised Rhombuses
This section covers the problem of completely covering the integer grid Z2 using overlapping
digitised rhombuses. Informally, a digitised rhombus with radius r can be thought of as a set
of mono-chromatically coloured tiles organised as a rhombus from some set of colours C.

▶ Definition 6 (Digitised rhombus). A digitised rhombus of radius r is the mapping from
the grid {(x, y) ∈ Z2 | |x| + |y| ≤ r} to a set of colours C.

Given a rhombus R and position (i, j) ∈ {(x, y) ∈ Z2 | |x| + |y| ≤ r}, Ri,j is used to denote
the colour mapped by R to position (i, j), i.e. the colour of the tile at position (i, j) in
the rhombus. A rhombus is distinctly coloured if Ri,j ̸= Rl,m for every pair of positions
(i, j), (l, m) ∈ {(x, y) ∈ Z2 | |x| + |y| ≤ r} where (i, j) ̸= (l, m).

We use a set of rhombuses R analogously to the set of tiles T used in tiling problems. Given
the integer grid Z2, the assignment of a rhombus R to the position (x, y) ∈ Z2 is equivalent to
colouring every vertex within a radius of r of (x, y) using R. For the remainder of this section,
we focus on the Manhattan distance, defined as D((x1, y1), (x2, y2)) = |x1 − x2| + |y1 − y2|.
Given a rhombus R assigned to position (x, y) ∈ Z2, the position (x′, y′) at a distance of no
more than r from (x, y) is coloured Rx′−x,y′−y.

The focus in this work is on overlapping rhombuses. Given a pair of digitised rhombuses
of radius r ∈ N, R and S at positions (x1, y1) and (x2, y2), R overlaps S if the Manhattan
distance between R and S is no more than 2r. The overlap between R and S are the set
of positions that are assigned colours by both R and S. This corresponds to the set of
positions {(a, b) ∈ Z2 | D((a, b), (x1, y1)) ≤ r and D((a, b), (x2, y2)) ≤ r}. Informally, R and
S properly overlap when centred at (x1, y1) and (x2, y2) if every position in the overlap is
assigned the same colour by both R and S. See Figure 4 for an example.

▶ Definition 7 (Overlapping rhombuses). Let R and S be a pair of r-radius digitised rhombuses
centred on positions (x1, y1) and (x2, y2) respectively. Rhombuses R and S properly
overlap if and only if for every position (i, j) ∈ {(a, b) ∈ Z2 | D((a, b), (x1, y1)) ≤ r

and D((a, b), (x2, y2)) ≤ r} it holds that Ri−x1,j−y1 = Si−x2,j−y2 .
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R S R S
R

S

X

X

X

X X

Figure 4 An example outlining how two rhombuses R and S may properly overlap (left) and
when not (right). Note that X is used to denote a conflict between the two overlapping rhombuses.

Note that any two rhombuses at a distance greater than 2 ·r from each other properly overlap
following Definition 7 as the set {(a, b) ∈ Z2 | D((a, b), (x1, y1)) ≤ r and D((a, b), (x2, y2)) ≤
r} is empty. An assignment of rhombuses R to the integer grid Z2 equates to a complete
colouring of Z2 using the rhombuses in R as the colours. An assignment is valid if and only
if a rhombus is centred on every vertex in Z2 and every pair of rhombuses properly overlap.

▶ Definition 8 (Rhombus assignment). An assignment A of rhombuses from the set R
to Z2 is a mapping from Z2 to R such that A : (x, y) ∈ Z2 7→ R for every x, y ∈ Z. Let
A(x, y) : Z2 7→ R return the rhombus assigned to position (x, y) ∈ Z2. An assignment A is
valid if and only if ∀(x1, y1), (x2, y2) ∈ Z2, the rhombus A(x1, y1) properly overlaps A(x2, y2).

▶ Definition 9 (Periodic assignment). An assignment A from Z2 to R is periodic if there
exists a tuple (a, b) ∈ Z2 such that A(x, y) = A(x mod a, y mod b) for every tuple (x, y) ∈ Z2.

▶ Problem 4. The r-discretised rhombus all-distinct periodic complete assignment problem.

Input: A set R of r-radius digitised rhombuses
Question: Does there exist a valid periodic assignment of R to Z2?

▶ Theorem 10. The r-discretised rhombus all-distinct periodic complete assignment problem
is undecidable for any r ≥ 1.

Proof Sketch. This theorem is proven by transforming a set of tiles into a set of rhombuses.
The set of rhombuses is constructed by taking the set of unique tilings on the grid {(x, y) ∈
Z2 | x2 + y2 ≤ 1}, and creating a rhombus corresponding to each tiling. Each tile is
represented in this model by a unique colour. ◀

The same construction as in Theorem 10 are used to derive an NP-completeness result for
the fixed period r-discretised rhombus all-distinct periodic complete assignment problem.
Observe that for a set of q rhombuses, and fixed period n1 × n2, there are qn1·n2 possible
coverings, therefore a brute force algorithm can solve this problem in O(qn1·n2)-time, and
therefore the problem belongs to NP. For hardness, Proposition 5 is used to establish the
hardness of the fixed-period k-unique radius tiling problem, and by extension the hardness
of the fixed period r-discretised rhombus all-distinct periodic complete assignment problem.

▶ Corollary 11. The fixed period r-discretised rhombus all-distinct periodic complete
assignment problem is NP-complete for any r ≥ 1.

3.3 Pairwise Energy Minimisation Problem on Z2 and Z3

With the undecidability of the r-discretised rhombus all-distinct periodic complete assignment
problem established, the next step is to show how to reduce the r-discretised rhombus all-
distinct periodic complete assignment problem to the average pairwise energy minimisation
problem on Zd. In this section, the pairwise energy function is assumed to be a member of
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the 2-distance common minimal value class, CMV(2). At a high level the reduction from the
r-discretised rhombus all-distinct periodic complete assignment problem is done by encoding
each rhombus as a colour, then tuning the parameters of the pairwise energy function so
that a valid colouring of the grid corresponds to a valid assignment of rhombuses.

The main challenge of this encoding is due to the definition of CMV(2). Namely, for any
energy function in CMV(2) the pairwise energy between vertices is determined solely by the
distance between vertices, colour of each vertex, and some given vector of parameters. This
means that given two adjacent vertices vi and vj , coloured ci and cj respectively, the energy
between vi and vj is the same irrespective of the relative direction of each tile.

To simplify our reduction, we introduce some additional notation. Given two vertices
vi at position (x1, y1) and vj at position (x2, y2), vi is said to be directly adjacent to vj

if |x1 − x2| + |y1 − y2| = 1. Similarly vi is diagonally adjacent to vj if |x1 − x2| = 1 and
|y1 − y2| = 1. Finally, vi is peripherally adjacent if either |x1 − x2| = 2 and y1 = y2, or
x1 = x2 and |y1 − y2| = 2. Further, in Proposition 12 we assume M to be the common
minimal value for all functions in CMV(r).

▶ Proposition 12. Let R be a set of distinctly coloured rhombuses and let C(R) be a set of
|R| colours such that for every rhombus r ∈ R, there exists some colour Cr ∈ C(R). For
any pairwise energy function f ∈ CMV(2), and pair of rhombuses i, j ∈ R there exists some
vector of parameters θ(ci,cj) such that f(θ(ci,cj), r) satisfies:
1. If i and j properly overlap when i is centred at some position directly adjacent to j then

f(θ(ci,cj), 1) = M , and f(θ(ci,cj), r) > M for any r > 1.
2. If i and j properly overlap when i is centred at some position diagonally adjacent to j

then f(θ(ci,cj),
√

2) = M , and f(θ(ci,cj), r) > M for either r = 1 or r = 2.
3. If i and j properly overlap when i is centred at some position peripherally adjacent to j

then f(θ(ci,cj), 2) = M , and f(θ(ci,cj), r) > M for r < 2.
4. Otherwise f(θ(ci,cj), r) > M for any distance r.

Proof. Recall that all functions in CMV(2) must have some vector of parameters θ(ci,cj ,d) ∈
Rp for every d ∈ {1,

√
2, 2} such that f(θ(ci,cj ,d), d) = M , and for every other distance

distance d′ ∈ d(r) where d′ ̸= d the value of the energy function f(θ(ci,cj ,d), d′) > M by the
optimal pairwise distance property (Property 3) of Definition 3. Therefore Conditions 1, 2,
and 3 in the statement can be satisfied by choosing the appropriate vector of parameters for
the distances of 1,

√
2 and 2 respectively. Further, by the separation property (Property 2)

there exists some vector of parameters θ(ci,cj) ∈ Rp such that for every distance d ∈ d(r) the
energy f(θ(ci,cj), d) > M , satisfying Condition 4 above. ◀

Setting the parameter vectors so as to satisfy the conditions given in Proposition 12, Lemma 13
shows that a valid assignment of R to Z2 can be used to construct a valid colouring of Z2

using C(R). Lemma 14 shows that given such a colouring of Z2 using C(R), there must exist
a valid assignment from Z2 to R.

▶ Lemma 13. Let A be a valid assignment of the set of distinctly coloured 2-radius rhombuses
R to Z2 with a period of n1 × n2. Given such an assignment there exists a periodic colouring
of Z2 using the set of colours C(R) with an average energy per vertex of 12 · M .

Proof Sketch. Observe that following Proposition 12 the interaction between any pair of
colours within a distance of 2 is M . As A is a valid assignment of Rhombuses, the interaction
between each point within a distance of at most 2 is M , giving an average energy of 12·M . ◀
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▶ Lemma 14. Let U be a unit cell of size n1 × n2 colouring Z2 with the colour set C(R)
such that the average energy per vertex is 12 · M . Given such a unit cell there exists a valid
assignment of the set of distinctly coloured 2-radius rhombuses R to Z2.

Proof Sketch. The key observation behind this lemma is that given some vertex v at position
(x, y) coloured with c ∈ C(R), there are exactly 4 colours c1, c2, c3, c4 ∈ C(R) that can be
used to colour the vertices directly adjacent to v. Further, for the colour c1 there exists
exactly 1 colour that can be at a distance of 2 from a vertex coloured c1 and a distance of 1
from a vertex coloured c. Therefore the local neighbourhood of each vertex must be coloured
in such a way that the corresponding rhombuses correspond to a correct assignment. By
extension, a valid colouring for the graph with an average energy per vertex of 12 · M must
correspond to a correct assignment of rhombuses to the plane Z2. ◀

▶ Theorem 15. The average pairwise energy minimisation problem on Zd is undecidable for
any function in the 2-distance common minimal value class, and d ∈ {2, 3}.

Proof. From Lemmas 13 and 14, there exists a valid colouring of Z2 with an average energy
per vertex of 12M of C(R) if and only if there exists a valid assignment of R to Z2. As the
r-discretised rhombus all-distinct periodic complete assignment problem is undecidable, the
average pairwise energy minimisation problem on Z2 is undecidable.

To show the undecidability in 3D, consider the 3D tiling problem, where each tile is a 3D
block with each face coloured. This problem is shown to be undecidable by reduction from the
tiling problem. Let each block have a top and bottom face, along with the North, West, South

and East faces. Given a set of tiles T a block b is constructed for each tile t ∈ T such that
the colour of North, West, South and East faces of b match the corresponding colours of t,
and the top and bottom faces of b are coloured with some universal colour c. See Figure 5
for an example. Observe that each plane of any valid tiling of these blocks on Z3 corresponds
to a valid tiling of T . As in the 2D setting, this problem can be restricted with the k-unique
radius property. Similarly, k-unique radius tilings with 3D blocks can be converted into an
all-distinct discretised rhombohedron in the same manner as the 2D case.

Figure 5 The transformation from a tile (left) to a 3 dimensional block (middle) and to an
unfolded representation (right). The top and bottom faces are coloured with the same new colour.

An average pairwise energy minimisation problem on Zd instance is constructed from
these rhombohedrons in the same manner as in the 2D case. Note that an all discretised
rhombohedron containing all points within a distance of 2 has 33 blocks. In this case, the
average energy per vertex is 32 ·M if and only if there exists a valid tiling of Z3 of the original
set of blocks. In one direction, if there exists such a tiling then the corresponding unit cell
has an average energy per vertex of 32 · M . In the other direction, the same arguments as in
the 2D case may be applied to show that any colouring with an average energy per vertex of
32 · M corresponds to a valid tiling. ◀

Observe that the number of possible solution to the average pairwise energy minimisation
problem on Z2 with a fixed period is at most qn1·n2 , where q is the number of tiles and
(n1, n2) the size of the unit cell. Therefore, this problem is in NP. In the other direction the
same arguments from Theorem 15 alongside Corollary 11 show the problem to be NP-hard.
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▶ Corollary 16. The fixed period average pairwise energy minimisation problem on Zd is
NP-complete for any function in the 2-distance common minimal value class, and d ∈ {2, 3}.

4 Physically motivated pairwise energy functions

In this section, we apply the results from our abstract model to the problem of crystal
structure prediction. In order to do so, we claim that the the Buckingham-Coulomb [32]
and Ising [8] energy functions belong to CMV(2). The main results in this section, focus
on charge neutrality in the context of the Buckingham-Coulomb potential, showing that
the average pairwise energy minimisation problem on Zd remains undecidable even with
this restriction, and that the average pairwise energy minimisation problem on Zd with a
fixed period becomes hard to approximate within any positive factor in the 1D case. These
results are strengthened in Section 4.2 by providing a parameterised algorithm for the average
pairwise energy minimisation problem on Z.

First, we outline the properties used by the Buckingham-Coulomb and 2-radius n-vector
Ising energy functions to show that they belong to the class CMV(2).

The Buckingham-Coulomb Potential. The Buckingham-Coulomb energy between a pair
of vertices coloured i and j at a distance of ri,j is given by the equation BC(i, j, ri,k) =

Ai,j

eBi,j ·ri,j
− Ci,j

r6
i,j

+ qi·qj

ri,j
where Ai,j , Bi,j and Ci,j are a set of force field parameters, determined

by the colours, qi is the charge of colour i, and qj is the charge of colour j. Here, we assume
that rather than the integer grid, the Buckingham-Coulomb potential is performed on the
set of points {(10 · x1, 10 · x2, . . . , 10 · xd) | (x1, x2, . . . , xd) ∈ Zd}. In order to show that
The Buckingham-Coulomb potential belongs to the class CMV(2), it is necessary to show
that there exists a vector of parameters for each distance d ∈ [10,

√
200, 20] such that (1)

BC(i, j, d) = M , (2) BC(i, j, d′) > M for every d′ ∈ [10,
√

200, 20] where d′ ̸= d and (3)
there exists a vector of parameters such that BC(i, j, d′) > M for every d′ ∈ [10,

√
200, 20].

Here M = −1 and the cutoff distance is set to 2. Conditions (1) and (2) are satisfied by
using the faster convergence of the term Ai,j

eBi,j ·ri,j
to 0 than the term Ci,j

r6
i,j

. Condition (3) can
be satisfied by setting Ai,j to a sufficiently large value, while setting Ci,j to 0.

The 2-Radius n-Vector Ising Model. The second energy function we look at is a
generalisation of the n-vector Ising model [31]. In the n-vector Ising model, each colour c ∈ C
corresponds to a unit vector c⃗. Given a pair of adjacent vertices v and u, coloured cv and cu

respectively, the energy between v and u is given by the dot product of the vectors, c⃗v · c⃗u.
In the 2-radius n-vector Ising model, each colour corresponds to a triple of n-length unit
vectors. For notation, let c[i] be the ith vector in the triple corresponding to colour c. Given
a pair of vertices v and u, coloured cv and cu respectively, the energy between v and u is
given by cv[i] · cu[i] where i is 1 if v and u are at a distance of 1, 2 if v and u are at a distance
of

√
2 or 3 if v and u are at a distance of 2. The value of each vector is chosen such that the

product of any pair of vertices at distance d is either M , where M is some minimum value,
or 0.

▷ Claim 17. The Buckingham-Coulomb potential and 2-radius n-vector Ising model
belong to CMV(2).

4.1 Charge Neutrality
In this section we focus on charge neutrality constraint. Recall that the charge of each colour,
denoted Q(c) is an integer value, and that a unit cell is charge neutral if

∑
x⃗∈U Q(U(x⃗)) = 0.
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▶ Corollary 18. The Charge-Neutral average pairwise energy minimisation problem on Zd

with non-zero charges is undecidable for the Buckingham-Coulomb Potential for d ∈ {2, 3}.

Theorem 19 compliments the proof of NP-hardness from Corollary 16 by showing that the
charge-neutral fixed period pairwise energy minimisation problem is NP hard both to solve
and to approximate within any constant factor for the Buckingham-Coulomb potential in 1D.

▶ Theorem 19. The charge-neutral fixed period pairwise energy minimisation problem in 1D
for the Buckingham-Coulomb potential can not be approximated within any constant factor
in polynomial time unless P = NP .

Proof Sketch. This theorem is proven via a reduction from the k-independent set problem.
The high level idea is to construct a colour for each vertex in the input graph with a positive
charge of +1, and a single negative ion of charge −k. The energy function is determined
such that the interaction between any two colours representing adjacent vertices in the input
graph is arbitrarily high, while the pairwise interaction between the positive and negative
ions set to −1. This ensures that a valid solution to the charge-neutral fixed period pairwise
energy minimisation problem can only be found if there exists an independent set. ◀

4.2 A Parameterised Algorithm for the 1D Setting
In this section we compliment the hardness results by providing a parameterised algorithm
for solving the average pairwise energy minimisation problem on Zd in 1D. Our algorithm
provides solution in O(n3 · q3·d) where n is the size of the unit cell, q is the number colours,
and d is the cut off distance.

Construction. Given an instance of the fixed period pairwise energy minimisation problem
for the 1D grid with length n, and set of colours C, a graph G is constructed. Let V(d, C) =
{(x1, x2, . . . , xd+1) | x1, x2, . . . , xd+1 ∈ C}. For notation given l ∈ V(d, C), li is used to
denote the colour of the ith position of l, i.e. given l = (1, 2, 1, 2), l2 = 2 while l3 = 1.
For every i ∈ [n] and l ∈ V(d, C) the vertex vi,l is constructed and added to the set V of
vertices. Given a pair vertices vi,l, vj,k ∈ V , the edge vi,l, vj,k is added to the set of edges E

if and only if i + 1 = j and l2, l3, . . . , ld+1 = k1, k2, . . . , kd. The weight of (vi,l, vj,k), denoted
w(vi,l, vj,k), equals to

∑d
i=1 f(i, θ(k1,ki+1)). This means that each edge (vi,l, vj,k) corresponds

to the pairwise interaction energy between k1 and each subsequent vertex in k. In order to
account for the energy from the first vector, an additional set of qd+1 vertices labelled vl

for every l ∈ V(d, C). The vertex vl has only a single edge connecting it to v1,l, weighted as
before. Hence by constructing a path of length n starting at some vertex vl and ending at
the vertex vn,l the weight of the path with correspond to the total pairwise energy of the
corresponding unit cell. Thus by finding such a path with minimum energy the solution
to the fixed period pairwise energy minimisation problem may be found. Using the above
construction, the solution to the fixed period pairwise energy minimisation problem instance
is found by determining the shortest path from each vertex of the form vl to the vertex vn,l

for every l ∈ V(d, C). Note that this graph can be constructed in O(((n + 1) · qd+1)2) time for
any energy function that can be computed in constant time, by simply constructing the full
set of (n + 1) · qd+1 vertices (corresponding to each position in the grid and list of d colours),
and computing the energy between them using the energy function.

▶ Theorem 20. There exists an algorithm to solve the fixed period pairwise energy
minimisation problem in O(n3 · q3·(d+1)) time for any function in CMV(d).
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Proof. Using the construction above, the solution to the corresponding fixed period pairwise
energy minimisation problem instance can be found by using an efficient algorithm for
solving the all pairs shortest path problem. Note the graph can be constructed in O(((n +
1) · qd+1)2) ≈ O(n2 · q2(d+1)) time, assuming that the energy function can be evaluated in
constant time. Using the Floyd–Warshall algorithm, the paths may be found in O(|V |3)
time. Note that the number of vertices equals (n + 1) · qd+1 giving a total complexity of
O

(
(n + 1)3 · q3·(d+1)) ≈ O

(
n3 · q3·(d+1)). ◀
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