
Towards a Model Theory of Ordered Logics:
Expressivity and Interpolation
Bartosz Bednarczyk #Ñ

Computational Logic Group, Technische Universität Dresden, Germany
Institute of Computer Science, University of Wrocław, Poland

Reijo Jaakkola #Ñ

Tampere University, Finland

Abstract
We consider the family of guarded and unguarded ordered logics, that constitute a recently redis-
covered family of decidable fragments of first-order logic (FO), in which the order of quantification
of variables coincides with the order in which those variables appear as arguments of predicates.
While the complexities of their satisfiability problems are now well-established, their model theory,
however, is poorly understood. Our paper aims to provide some insight into it.

We start by providing suitable notions of bisimulation for ordered logics. We next employ
bisimulations to compare the relative expressive power of ordered logics, and to characterise our
logics as bisimulation-invariant fragments of FO à la van Benthem.

Afterwards, we study the Craig Interpolation Property (CIP). We refute yet another claim from
the infamous work by Purdy, by showing that the fluted and forward fragments do not enjoy CIP.
We complement this result by showing that the ordered fragment and the guarded ordered logics
enjoy CIP. These positive results rely on novel and quite intricate model constructions, which take
full advantage of the “forwardness” of our logics.

2012 ACM Subject Classification Theory of computation → Finite Model Theory

Keywords and phrases ordered fragments, fluted fragment, guarded fragment, model theory, Craig
Interpolation Property, expressive power, model checking

Digital Object Identifier 10.4230/LIPIcs.MFCS.2022.15

Related Version Full Version: https://arxiv.org/abs/2206.11751

Funding Bartosz Bednarczyk: supported by the ERC Consolidator Grant No. 771779 (DeciGUT).

Acknowledgements We would like to thank Antti Kuusisto and Jean Christoph Jung for fruitful
discussions on related topics, as well as Tim Lyon and Emanuel Kieroński for language corrections.
We would also like to thank the anonymous reviewers for their very helpful comments.

1 Introduction

An ongoing research in computational logic has lead to discovery of new decidable fragments
of first-order logics (FO) that extend modal and description logics. The main ideas that were
proposed in the past involve: restricting the number of variables [8], relativised quantifica-
tion [1, 26], restricted use of negation [24], relativised negation [3], one-dimensionality and
uniformity [11], separateness [25] and ordered quantification [12, 22]. To compare aforemen-
tioned logics, the authors of [1, Section 4.7] proposed a list of desirable meta-properties of
logic, which can serve as a yardstick to measure how “nice” a given logic is. We expect a
logic L to
(A) be decidable and have the Finite Model Property (FMP),
(B) satisfy the Craig Interpolation Property (CIP), i.e. for any L-formulae φ,ψ such that

φ |= ψ there should be an L-formulae χ, called an interpolant, that uses only symbols
appearing in the common vocabulary of φ and ψ, so that φ |= χ |= ψ holds,

© Bartosz Bednarczyk and Reijo Jaakkola;
licensed under Creative Commons License CC-BY 4.0

47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022).
Editors: Stefan Szeider, Robert Ganian, and Alexandra Silva; Article No. 15; pp. 15:1–15:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:bartosz.bednarczyk@cs.uni.wroc.pl
https://bartoszjanbednarczyk.github.io/
https://orcid.org/0000-0002-8267-7554
mailto:reijo.jaakkola@tuni.fi
https://reijojaakkola.github.io/
https://orcid.org/0000-0003-4714-4637
https://doi.org/10.4230/LIPIcs.MFCS.2022.15
https://arxiv.org/abs/2206.11751
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

15:2 Towards a Model Theory of Ordered Logics: Expressivity and Interpolation

(C) and to satisfy the analog of Łoś-Tarski Preservation Theorem (ŁTPT), i.e. any L-formula
φ preserved under substructures should be equivalent to some universal L-formula.

It turned out that FO2 and GF, example logics based on restricted number of variables and
relativised quantification, are not “nice” as they do not enjoy CIP [17, Examples 1–2]. In
contrast, UNFO and GNFO, the logics based on relativised negation, fulfil the properties
(A)–(C), consult: [24, 2, 6]. For one-dimensionality, separateness and ordered quantification
we have partial results only.

In this paper we take a closer look at logics enjoying ordered quantification, which have
been receiving increasing attention recently [20, 4, 15]. Their syntax can be informally
explained as follows. We first require that all variables appearing in formulae are additionally
indexed by the quantifier depth and then impose a certain restriction on such numbers in
variable sequences in atoms. Assuming that α(x) is in the scope of the n-th quantifier (but
not the (n+1)-th), in the fluted fragment Lsuf of Quine [22] (resp. in the ordered fragment
Lpre by Herzig [12]1) the tuple x is required to be a suffix (resp. a prefix) of the sequence
x1, x2, . . . , xn. The forward fragment Linf [4] is more liberal and allows infixes in place of
suffixes or prefixes. An example formula φ ∈ (Lsuf ∩ Linf) \ Lpre is given below:
1. No student admires every professor.

∀x1 (student(x1) → ¬∀x2 (professor(x2) → admires(x1, x2)))

2. No lecturer introduces any professor to every student.

∀x1 lecturer(x1) → ¬∃x2 [professor(x2) ∧ ∀x3 (student(x3) → introduce(x1, x2, x3))]

Next, we provide a few coexamples, i.e. formulae that, as stated, do not belong to any of
Linf , Lpre, Lsuf . The blue colour indicates a mismatch in the variable ordering.
1. The relation isPartOf is transitive.

∀x1 ∀x2 ∀x3 isPartOf(x1, x2) ∧ isPartOf(x2, x3) → isPartOf(x1, x3)

2. A narcissist is a person who loves himself.

∀x1 narcissist(x1) → person(x1) ∧ loves(x1, x1)

3. The binary relation hasChild is the inverse of the hasParent relation.

∀x1 ∀x2 hasParent(x1, x2) ↔ hasParent(x2, x1)

All of Linf , Lsuf , Lpre are decidable and have the Finite Model Property. Their satisfiability
problem is, respectively, Tower-complete for Linf and Lsuf , and PSpace-complete for Lpre.
Somehow unexpectedly, the Tower-completeness of Lsuf was established only recently by
Pratt-Hartmann et al. [20], after pointing out a mistake in the proof of the exponential-size
model of Lsuf by Purdy [21] and disproving Purdy’s claim of NExpTime-completeness of Lsuf .
The model theory of Linf , Lsuf , and Lpre is, however, poorly understood. The only results that
we are aware of are Purdy’s claims that Lsuf has CIP [21, Thm. 14] and ŁTPT [21, Corr. 17].
But in the light of previously discovered errors, one should treat Purdy’s paper with caution.

1 Strictly speaking, the syntax of Lpre is slightly more liberal than the original syntax of the ordered
fragment as defined by Herzig, since the syntax of Lpre allows requantifying variables.

B. Bednarczyk and R. Jaakkola 15:3

1.1 Our results
This paper kick-starts a project of understanding the model theory of ordered logics, by
which we mean the logics Lpre, Lsuf , and Linf as well as their intersections with the guarded
fragment GF [1], focusing on the problems mentioned in the introduction.

In Section 3, we design a suitable notion of bisimulations and compare the relative
expressive power of ordered logics. Our proofs employ standard model-theoretic constructions
like the Compactness Theorem and ω-saturated structures. Next, we investigate CIP
in Section 4, which is the main technical contribution of the paper. First, we focus on
interpolation for the fluted and the forward fragments. We show that, surprisingly, Linf and
Lsuf do not enjoy CIP, refuting yet another claim from the infamous work of Purdy [21,
Thm. 14]. Fortunately, other members of the family of ordered logics enjoy CIP, as shown in
Sections 4.2–4.3. We stress here that standard techniques for proving CIP, e.g. those based
on zig-zag products [19, 14, 2, 16], do not seem to work in our case.2 This forces us to take
a different route: we construct models explicitly by specifying types of tuples.

We believe that our proof methods, which are based on novel and intricate model-theoretic
constructions, are very general. In particular, we believe that our CIP proof for guarded
ordered logics can serve as a useful meta-technique (or even a heuristic) for (dis)proving CIP
for fragments of GF. For instance, the proof can be adopted to fragments with CIP, deriving
existing results (e.g. for the 2-variable GF [14] or the uniform one-dimensional GF [16]) and
its failure gives hints why a certain fragment may not have CIP (e.g. in the case of full GF).

2 Preliminaries

Henceforth, we employ standard terminology from (finite and classical) model theory [18, 13].
All the logics considered here will be fragments of the first-order logic (FO) over purely-
relational equality-free vocabularies, under the usual syntax and semantics.

We fix a countably infinite set of variables {xi | i ∈ N} and throughout this paper all
the formulas use only variables from this set. With sig(φ) we denote the set of relational
symbols appearing in φ. We use ar(R) to denote the arity of R. For a logic L and a signature
σ we use L[σ] in place of {φ ∈ L | sig(φ) ⊆ σ}. The k-variable fragment of L (i.e. employing
only the variables x1, x2, . . . , xk) is denoted Lk. We write φ(x) to indicate that all free
variables from φ are members of x. If x contains precisely the free variables of φ, then we
will emphasise this separately. Given a structure A and B ⊆ A, we will use A ↾ B to denote
the substructure of A that B induces.

Tuples and subsequences. An n-tuple is a tuple with n elements. The 0-tuple is denoted
with ϵ. We use xi...j to denote the (j−i+1)-tuple xi, xi+1, . . . , xj . We say that xi...j is an
infix of a tuple xk...l if k ≤ i ≤ j ≤ l holds. If, in addition, k = i (resp. j = l) we say that
xi...j is a prefix (resp. suffix) of xk...l. We use the word affix as a place-holder for the words
prefix, suf fix or inf ix. For a set S, we write x ⊏− S iff xi ∈ S for all indices 1 ≤ i ≤ |x|, where
|x| denotes the length of x . A tuple a ⊏− A is σ-live in A if |a| ≤ 1 or a ∈ RA for some R ∈ σ.

Logics. We next introduce the logics Laffix ∈ {Lpre, Lsuf , Linf}. We start from Lsuf , which for
technical reasons we need to define separately from Lpre and Linf . For every n ∈ N, we define
the set Lsuf(n) as follows:

2 For logics that are closed under negation on the level of formulas, zig-zag constructions seem to work
only if the logics are one-dimensional and uniform, see [16] for more details. None of our logics are
one-dimensional nor uniform.

MFCS 2022

15:4 Towards a Model Theory of Ordered Logics: Expressivity and Interpolation

an atom α(x) is in Lsuf(n) if x is a suffix of x1...n,
Lsuf(n) is closed under Boolean connectives ∧,∨,¬,→,
if φ is in Lsuf(n+1) then ∃xn+1 φ and ∀xn+1 φ are in Lsuf(n).

We put Lsuf := Lsuf(0), which is exclusively composed of sentences.
To define the fragments L ∈ {Lpre, Linf}, for every n ∈ N we define the set of L(n) as follows:

an atom α(x) is in Lpre(n) if x is a prefix of x1...n and in Linf(n) if x is an infix of x1...n.
if φ ∈ L(n1) and ψ ∈ L(n2), then for all n ≥ max{n1, n2} we have that ¬φ, (φ ∨ ψ), (φ ∧
ψ), (φ → ψ) are in L(n).
if φ is in L(n+1) then ∃xn+1 φ and ∀xn+1 φ are in L(n).

We set L := L(0), which is exclusively composed of sentences. We stress that in contrast to Lsuf ,
the logics L ∈ {Lpre, Linf} allow us to requantify variables. We recommend the reader to employ
the above definition to show that ∀x1∀x2∀x3(R(x1x2x3) → (A(x1) ∧ ∃x2∃x3S(x1x2x3))) ∈ Linf .

Notice that if φ(x) ∈ Laffix(n), where x lists all the free variables of φ in order (with
respect to their indices), then x is an affix of the tuple x1...n. The logics Lpre, Lsuf , and Linf
were studied under the names of ordered [12], fluted [22], and forward [4] fragments. The
guarded counterparts Gaffix of Laffix, are defined as the intersection of Laffix and the guarded
fragment GF [1], i.e. by imposing that blocks of quantifiers are relativised by atoms (recalled
below). Abusing notation, we speak about all these logics collectively as ordered logics.
For reader’s convenience we recall that GF is the smallest fragment of FO such that:

Every atomic formula is in GF;
GF is closed under boolean connectives ∧,∨,¬,→;
If φ(x, y) is in GF and α(x, y) is an atom containing all free variables of φ then both
∀y (α(x, y) → φ(x, y)) and ∃y (α(x, y) ∧ φ(x, y)) are in GF;
If φ(x) has only a single free-variable x, then ∀x φ and ∃x φ are in GF.

The atoms α, appearing in the 3rd item of the above definition is called a guard.
For a finite signature σ and n ∈ N, a (σ, n)-affix-type is a conjunction of atoms with n

free variables x1...n, in which for every R ∈ σ and every affix x l...k of x1...n, of length ar(R),
exactly one of R(x l...k), ¬R(x l...k) appears as a conjunct. For a σ-structure A and a tuple
a ⊏− A with tpLaffix[σ]

A (a) we denote the unique (σ, |a|)-affix-type realised by a in A.

2.1 Model Checking
Before jumping into the main part of the paper, we would like to point out some results on
the combined complexity of model checking problems of ordered logics, since these seem to be
missing from the literature. In what follows we will employ the matrix encoding of structure,
that is a standard encoding in finite model theory [18, p. 88]. Given a {R1, . . . ,Rm}-
structure A with a linearly-ordered domain A, by its matrix encoding we mean a binary string
menc(A) := 0n1menc(R1) . . .menc(Rm), where menc(Ri) is a binary sequence of length
|A|ar(Ri), in which the j-th bit is 1 iff the j-th tuple in the lexicographic ordering of |A|ar(Ri)

belongs to RA
i .

The following theorem collects our complexity results. We have not tried to optimise the
upper bounds for Gpre and Lpre: it is quite possible that they can be improved further.

▶ Theorem 1. Under the matrix encoding of structures, the combined complexity of the
model-checking problem for a logic L is
1. decidable in PTime for Gpre and Lpre,
2. PTime-complete for L ∈ {Gsuf ,Ginf , Lsuf}, and
3. PSpace-complete for L = Linf .

B. Bednarczyk and R. Jaakkola 15:5

Proof. The upper bound for Gpre follows from the second item while the upper bound for Lpre
is proved in [5, App. A.1]. For the second item, the lower bound follows for all of the logics
from the fact that they embed standard modal logic, for which the combined complexity is
PTime-complete [10, Cor. 3.1.7]. For Gsuf and Ginf matching upper bounds follow from the
fact that the combined complexity of the guarded fragment is PTime-complete, while for Lsuf
the matching upper bound is proved in [5, App. A.1]. Finally, for the third item, the upper
bound follows from the fact that the combined complexity of FO is PSpace-complete [7],
while the matching lower bound follows from the fact that Linf contains monadic FO, for
which the combined complexity of model-checking is PSpace-complete [18, p. 99]. ◀

The matrix encoding is not the only natural way of encoding models. Another option
would be to use the list/database encoding of models, where one essentially encodes relations
by listing the tuples that they contain, as opposed to describing their adjacency matrices.
It is easy to see that, if there is no bound on the arities of the relation symbols, then the
list encoding of a model can be exponentially more succinct than its matrix encoding. Our
proofs for the upper bounds of Lpre and Lsuf are heavily dependent on the fact that we are
using the matrix encoding of models, and hence it is conceivable that the complexities are
higher if we are using list encoding.3 We leave the related investigations as a very interesting
future research direction.

3 Expressive power

We study the relative expressive power of ordered logics with a suitable notion of bisimulations.

▶ Definition 2. A non-empty set Z ⊆
⋃
n<ω(An × Bn) is a Laffix[σ]-bisimulation between

pointed structures A, a and B,b, where |a| = |b|, if and only if (a,b) ∈ Z and for all (c,d) ∈ Z
the following conditions hold:
(atomic harmony) tpLaffix[σ]

A (c) = tpLaffix[σ]
B (d).

(forth) For a (possibly empty) affix ci...j of c and e ∈ A there is f ∈ B s.t. (ci...je,di...j f) ∈ Z.
(back) For a (possibly empty) affix di...j of d and f ∈ B there is e ∈ A s.t. (ci...jd,di...j f) ∈ Z.

For Gaffix, we replace the conditions (forth), (back) by their guarded counterparts:
(gforth) For a (possibly empty) affix ci...j of c and a σ-live tuple e in A such that ci...j =

e1...j−i+1 there is a σ-live tuple f with di...j = f1...j−i+1 and (e, f) ∈ Z,
(gback) For a (possibly empty) affix di...j of d and a σ-live tuple f in B such that di...j =

f1...j−i+1 there is a σ-live tuple e with ci...j = e1...j−i+1 and (e, f) ∈ Z,

For a logic L and a finite signature σ, we write A ≡L[σ] B if A and B satisfy the same
L[σ]-sentences, and we write A ∼L[σ] B if there is an L[σ]-bisimulation between A and B. If
|a| = |b|, we use A, a ≡L[σ] B,b to denote that for every (possibly empty) affix ai...j of a and
φ(xi...j) ∈ L[σ], where xi...j is an affix of (x1, . . . , xn), we have that A |= φ(ai...j) if and only
if B |= φ(bi...j). For the next lemma consult [5, App. B.1]

▶ Lemma 3. Let L ∈ {Laffix,Gaffix}. Then A, a ∼L[σ] B,b implies A, a ≡L[σ] B,b. The
converse holds over ω-saturated A and B.

3 They can not decrease, because a list encoding of a model can always be constructed efficiently from its
matrix encoding.

MFCS 2022

15:6 Towards a Model Theory of Ordered Logics: Expressivity and Interpolation

A logic L2 is at least as expressive as a logic L1 (written L1 ⪯ L2) if for all φ ∈ L1 there is
a ψ ∈ L2 such that φ ≡ ψ. We write L1 ≈ L2 iff L1 ⪯ L2 and L2 ⪯ L1. In case L1 ̸⪯ L2 and
L2 ̸⪯ L1 we call L1 and L2 incomparable. Lastly, L1 ≺ L2 denotes that L2 is strictly more
expressive than L1, i.e. L1 ⪯ L2 and L1 ̸≈ L2. Note that, by definition, all the considered
fragments L satisfy L ⪯ Linf and L ≺ FO (every such L is decidable). Moreover, Gaffix ≺ Laffix
is a consequence of ∀x1∀x2R(x1, x2) not being GF[{R}]-definable (which is well-known and
follows from the fact that GF has the tree-model property). Our results are as follows:

▶ Theorem 4. (a) Lpre ≺ Lsuf≈Linf ≺ FO, (b) Gaffix ≺ Laffix for all affixes, (c) Gsuf ≺ Ginf , (d)
Gpre ≺ Ginf , and (e) otherwise the logics are incomparable.

Proof. Full proofs are in [5, App. B.2]. The relationships between different logics
with separating examples (omitting trivial examples due to guardedness) are depicted
below. With φpre we denote the formula ∀x1x2x3 R(x1x2x3) → S(x1x2), while φsuf denotes
∀x1x2x3 R(x1x2x3) → T(x2x3). Solid (resp. dashed) arrows from L1 to L2 denote that L1 ≺ L2
holds (resp. that the logics are incomparable).

Lsuf ≈ Linf

Lpre Gpre

Ginf Gsuf

φsuf

φpre φ
su

f
/
φ

pr
e

φpreφ
su

f φsuf

The equi-expressivity of Linf and Lsuf is an easy observation: we turn each maximally nested
subformulae into DNF and push the atoms violating the definition of Laffix outside. ◀

Knowing the relative expressive power of our logics, we would like to characterise them as
bisimulation-invariant fragments of FO, as was done with other decidable logics, see e.g. [9].
Given a formula φ(x) ∈ L, we say that it is ∼L-invariant iff for all A, a ∼sig(φ)

L B,b we have
A |= φ(a) ⇔ B |= φ(b). L is ∼L-invariant iff all its formulae are ∼L-invariant. We will next
show that Laffix (resp. Gaffix) are exactly the ∼Laffix - (resp. ∼Gaffix -) invariant fragments of FO.
This confirms that our notion of bisimulation is the right one.

▶ Theorem 5. Let L ∈ {Laffix,Gaffix} and let φ(x) be a ∼L-invariant FO formula. Then there
exists a formula ψ(x) in L which is equivalent with φ(x).

Proof. We follow standard proof methods, see e.g. [2, Thm. 3.2]. Suppose φ(x1, . . . , xn) ∈ FO
is ∼L-invariant, where x = (x1, . . . , xn) enumerates precisely the set of free variables of φ.
The case when φ is unsatisfiable φ is trivial, thus assume otherwise. Consider the set
Γ := {χ(xi...j) ∈ L | φ(x) |= χ(xi...j)}. Clearly φ(x) |= Γ. Since FO is compact, it suffices
to show that Γ |= φ(x). Let A be a structure and a ∈ An so that A |= χ(ai...j), for
every χ(xi...j) ∈ Γ. Next, consider the set Σ := {χ(xi...j) ∈ L | A |= χ(ai...j)}. Again, by
compactness of FO we can show that Σ ∪ {φ} is consistent. Take a structure B and b ∈ Bn

so that B |= φ(b) and B |= χ(bi...j), for every χ(xi...j) ∈ Σ. Observe that by construction
A, a ≡L B,b. Replacing A and B with their ω-saturated elementary extensions Â and B̂, we
know by Lemma 3 that Â, a ∼L B̂,b. Chasing the resulting diagram we get A |= φ(a). ◀

4 Craig Interpolation

Recall that the Craig Interpolation Property (CIP) for a logic L states that if φ(x) |= ψ(x)
holds (with φ and ψ having the same free variables), then there is a χ(x) ∈ L[sig(φ) ∩ sig(ψ)]
(an L-interpolant) such that φ(x) |= χ(x) and χ(x) |= ψ(x) hold. We always assume that
both φ and ψ are satisfiable, otherwise we can take ⊥ as a trivial interpolant.

B. Bednarczyk and R. Jaakkola 15:7

To reason about interpolants we employ the notion of joint consistency [23]. We say that
L-formulae φ(x1...n) and ψ(x1...n) (having exactly x1...n free) are jointly-L[τ]-consistent (or
just jointly consistent in case τ := sig(φ) ∩ sig(ψ) and L are known from the context), if there
are structures A |= φ(a) and B |= ψ(b) such that A, a ∼L[τ] B,b. The next lemma is classic
and links joint consistency and interpolation: see [5, App. C.1].

▶ Lemma 6. Let L ⊆ FO, and let φ(x), ψ(x) ∈ L with τ := sig(φ) ∩ sig(ψ). Then φ(x) and
¬ψ(x) are jointly consistent iff there is no L[τ]-interpolant for φ(x) |= ψ(x).

We simplify the reasoning about ordered logics by employing suitable normal forms. We
say that a formula φ(x) from4 Lpre (resp. from Gaffix) is in normal form if it has the shape:
(NForm-Lpre) H(x) ∧

∧s
i=1 ∀x1...ℓi

(αi → ∃xℓi+1βi) ∧
∧t
j=1 ∀x1...ℓj

(αj → ∀xℓj+1βj),
(NForm-Gaffix) H(x) ∧

∧s
i=1 ∀x1...ℓi(Ri(x1...ℓi) → ∃xℓi+1...ℓi+ki(Si(x1...ℓi+ki) ∧

ψi(x1...ℓi+ki
))) ∧

∧t
j=1 ∀x1...ℓj

(Rj(x1...ℓj
)→ψj(x1...ℓj

)→∀xℓj+1...ℓ′
j
(Tj(x1...ℓ′

j
) →

ψ′
j(x1...ℓ′

j
))),

where αi, αj , βi and βj are quantifier-free Lpre-formulae, Ri,Rj , Tj and H are relational
symbols, and ψi, ψj and ψ′

j are Gaffix-formulae. The symbol H is called the head of φ(x).
We will often speak about existential/universal requirements of a formula, meaning the
appropriate subformulae with the maximal quantifier prefix ∀∗∃∗ and ∀∗. In aforementioned
normal forms we implicitly allow various parameters to be zero, e.g. in subformulae of the
form ∀x1...ℓi

(αi → ∃xℓi+1βi) we allow ℓi = 0, and we agree that the result is ∃xℓi+1βi.
The following lemma can be shown using standard renaming techniques, in complete

analogy to [4, 15], with a minor (but technically tedious) modification in the case of Gsuf ,
see [5, App. C.2].

▶ Lemma 7. Let L ∈ {Lpre,Gaffix}, and take φ(x), ψ(x) ∈ L. Suppose that there are models A

and B such that A |= φ(a), B |= ψ(b) and A, a ∼L[τ] B,b, where τ = sig(φ) ∩ sig(ψ). Then
there exist formulae φ′(x), ψ′(x) ∈ L in normal form and extensions A′ and B′ of A and B

respectively, such that (i) φ′(x) and ψ′(x) have the same head H, (ii) sig(φ′)∩sig(ψ′) = τ∪{H},
(iii) φ′(x) |= φ(x) and ψ′(x) |= ψ(x), and (iii) (A′, a) ∼L[τ∪{H}] (B′,b) holds.

The following lemma is a useful tool when dealing with interpolation, allowing us to switch
our attention to a certain satisfiability problem. Its proof is routine, consult [5, App. C.3].

▶ Lemma 8. Let L ∈ {Lpre,Gaffix}. If for any jointly-consistent L-formulae φ(x), ψ(x) in
normal forms from Lemma 7 with the same head, there is U |= φ(x) ∧ ψ(x), then L has CIP.

4.1 Disproving CIP in Linf and Lsuf

We start our investigation of CIP for Laffix and Gaffix by further discrediting the infamous work
of Purdy [21]. We prove, in stark contrast to [21, Thm. 14], that Lsuf does not have CIP.

▶ Theorem 9. Linf and Lsuf do not have CIP. More specifically, there are L2
suf-sentences φ,ψ

with φ |= ψ but without any Linf [sig(φ) ∩ sig(ψ)]-interpolant.

Proof. Consider the following L3
inf-sentences φ and ψ, presented respectively below:

∀x1...3[(R(x1, x2) ∧ R(x2, x3)) → (P1(x1) ∧ P2(x3))] ∧ ∀x1∀x2[(P1(x1) ∧ P2(x2)) → R(x1, x2)]
∃x1...3[R(x1, x2) ∧ R(x2, x3) ∧ Q1(x1) ∧ Q2(x3)] ∧ ∀x1∀x2[(Q1(x1) ∧ Q2(x2)) → ¬R(x1, x2)],

4 To avoid notational glitter we will be a bit careless when dealing with formulae with free-variables.

MFCS 2022

15:8 Towards a Model Theory of Ordered Logics: Expressivity and Interpolation

with A |= φ iff (RA ◦RA) ⊆ PA
1 ×PA

2 and PA
1 ×PA

2 ⊆ RA, and B |= ψ iff QB
1 ×QB

2 ⊆ B2 \RB

and there are (a,b), (b, c) ∈ RB with a ∈ QB
1 and c ∈ QB

2 . Observe that φ |= ¬ψ, since
φ entails transitivity of R, while ψ entails that this is not the case. But φ and ψ are
jointly-Linf [{R}]-consistent (it suffices to take A and B depicted below, cf. [5, App. C.5].

A :=
a b c

R R

R R
B :=

1 2 3R R

R

P1 P1 P1, P2 Q1 Q2

Hence, by Lemma 6 there is no Linf [{R}]-interpolant for φ |= ¬ψ. By slightly obfuscating
φ and ψ (i.e. by shifting quantifiers and introducing a unary symbol to get rid of the third
variable) we can make our counterexample formulae to be in L2

suf ; consult [5, App. C.6]. ◀

We left open the question whether Lsuf and Linf have the Projective Beth Definability Property
(PBDP). We conjuncture that the answer is no, but we haven’t found a suitable example yet.

4.2 Restoring CIP in Lpre

Even though Lsuf and Linf fail to have CIP, it turns out that Lpre still has it. To prove
interpolation for Lpre, we are going to construct a model for two jointly consistent Lpre
formulae φ(x) and ψ(x). However, rather than modifying existing amalgamation-based
arguments used, for instance, in [19, 14, 2], we will construct our model explicitly by
specifying prefix-types for tuples. We feel that our approach, which is more direct in nature
than other arguments found in the literature, could potentially be useful also in other
contexts.

Take φ(x) and ψ(x) in normal form (NForm-Lpre) satisfying the premise of Lemma 8.
Hence, there are structures A and B and tuples a ∈ Ak and b ∈ Bk such that that A |=
φ(a),B |= ψ(b) and (A, a) ∼Lpre[σ] (B,b), where σ := sig(φ) ∩ sig(ψ). Let τ := sig(φ) ∪ sig(ψ).

We will define a sequence of τ -structures U1 ≤ . . . ≤ UM := U, where M = max{ar(R) |
R ∈ τ}, satisfying the following inductive assumptions: (i) Ui = N, (ii) the interpretation of
symbols from τ of arity > i is empty, and (iii) for any i-tuple c in Ui there are i-tuples d in A

and e in B so that (A,d) ∼Lpre[σ] (B, e) and tpLpre[τ]
Ui

(c) = tpLpre[sig(φ)]
A (d) ∪ tpLpre[sig(ψ)]

B (e) hold.
The last condition guarantees that no tuple c of Ui violates the universal requirements of φ
and ψ, since otherwise the corresponding tuple would violate them, contradicting modelhood
of A or B.5

For the inductive base, take U1 with domain N and empty interpretation of symbols
from τ . Our goal is to realise each (sig(φ), 1)-prefix-type, which is realised in A and B,
in U1 in a careful way, suggested by the inductive assumption. Let t be a (sig(φ), 1)-prefix
type realised in A and let c ∈ A be some element witnessing it. Since (A, a) ∼Lpre[σ] (B,b)
holds, there exists an element d of B so that tpLpre[σ]

A (c) = tpLpre[σ]
B (d). Now we will assign

the (τ, 1)-prefix-type tpLpre[sig(φ)]
A (c) ∪ tpLpre[sig(ψ)]

B (d) to some element e of U1, for which we
have not yet assigned a (τ, 1)-prefix-type. For the remaining elements of U1, having no
(τ, 1)-prefix-type assigned, we assign any of the previously realised types.

5 We note that this claim no longer holds if Lpre is replaced by either Lsuf or Laffix, which is why the
forthcoming construction does not work for these logics.

B. Bednarczyk and R. Jaakkola 15:9

Suppose then that Uk is defined. To define Uk+1, we will start by providing witnesses for
the existential requirements of φ and ψ; since the two cases are rather analogous, we will
restrict our attention to the former case. Consider an existential requirement φ∃

i of φ(x)
and let e ∈ Ukk be a k-tuple so that U |= αi(e). By construction, there exists a tuple a ∈ Ak

witnessing tpLpre[sig(φ)]
Uk

(e) = tpLpre[sig(φ)]
A (a). Since A |= φ∃

i , there exists an element c ∈ A so
that A |= βi(a, c). Due to (A, a) ∼Lpre[σ] (B,b), we know that there exists an element d ∈ B

satisfying tpLpre[σ]
A (a, c) = tpLpre[σ]

B (b, d). Now we pick an element f ∈ U for which we have not
yet assigned a (τ, k+1)-prefix-type for the tuple (e, f) (recall that the domain of our model is
N, so such an element always exists). We assign the following (τ, k+1)-prefix-type to the tuple
(e, f): tpLpre[sig(φ)]

A ((a, c)) ∪ tpLpre[sig(ψ)]
B ((b,d)). Note that the assigned (τ, k+1)-prefix-type is

consistent with the (τ, k)-prefix-type that we assigned to e. Having assigned witnesses to
relevant existential requirements of φ(x) and ψ(x), there are still (k+1)-tuples of elements
of U for which we have not yet assigned a (τ, k+1)-prefix-type. For those tuples we will
assign any (τ, k+1)-prefix-type that we have already assigned to some other (k+1)-tuple of
elements of Uk+1. This completes the construction of Uk+1.

By construction, it is clear that there exists a tuple e of elements of U so that e ∈ HU; in
particular, U |= φ(e) ∧ ψ(e) holds. Thus, by Lemma 8 we conclude:

▶ Theorem 10. Lpre enjoys the Craig Interpolation Property.

4.3 Restoring CIP in guarded logics
Finally we turn our attention to the logics Gaffix and present the main contribution of the
paper. It will be convenient to employ suitable tree-like models. Intuitively, HATs [4] are
just trees in which relations connect elements but only in a level-by-level ascending order;
see Figure 1. HAHs are collections of HATs.

▶ Definition 11. A structure T is a higher-arity tree (HAT) if its domain is a prefix-closed
subset of sequences from N∗ and for all relation symbols R we have that (d1, . . . , dk) = d ∈ RT

implies that for each index i < k there exists a number ni such that di+1 = di ·ni, where di ·ni
means that the element ni is appended to the sequence di. A structure H is a higher-arity
hedge (HAH) if H becomes a HAT if extended by a single element ε.

0 T

00 01

000 010

R R

S S

ε

S

1

10

100 101

R

S R

R

2

S

3

Figure 1 An example HAT T. All relations go down lvl-by-lvl. The red area means (ε, 0, 00) ∈ TT.

By a subtree of a HAT T rooted at an element d we mean a substructure of T with the
domain composed of all elements of the form dw for a possibly empty word w. Note that
such a subtree is also a HAT after an obvious renaming.
We are going to employ the following lemma, stating that for our purposes we can focus on
tree-like models only. Its proof relies on the suitable notion of unravelling, see [5, App. C.4].

MFCS 2022

15:10 Towards a Model Theory of Ordered Logics: Expressivity and Interpolation

▶ Lemma 12. Let a logic L be any of Gaffix, φ,ψ be L-formulae and σ := sig(φ) ∩ sig(ψ)
containing the predicate H. Assume that models A |= φ(a),B |= ψ(b) are given such
that a ∈ HA,b ∈ HB and (A, a) ∼Gaffix[σ] (B,b) hold. Then there are HAH models TA |=
φ(c),TB |= ψ(d) satisfying c ∈ HTA ,d ∈ HTB and (TA, c) ∼Gaffix[σ] (TB,d).

Take φ(x), ψ(x) in form (NForm-Gaffix) with the same head, satisfying the premise
of Lemma 8. We have structures A and B and tuples a ∈ Ak and b ∈ Bk so that A |=
φ(a),B |= ψ(b) and (A, a) ∼Gaffix[σ] (B,b), where σ := sig(φ)∩ sig(ψ) and τ := sig(φ)∪ sig(ψ).
Using Lemma 12 we can assume that A and B are τ -HAHs. As done before, we aim at
constructing a τ -structure being a model of both φ and ψ. To do this, we will construct a
growing sequence of τ -HAHs U0 := A ≤ U1 ≤ . . . ≤ Un ≤ . . ., whose limit U will be a model
of φ ∧ ψ. For simplicity, let us employ the following naming scheme. A tuple d from Un
(d ⊏− Un) is called (a) n-fresh if d ⊏− Un−1 and n-aged otherwise, (b) maximal if its not an
affix of any different σ-live tuple.

A high-level idea of the construction of the sequence Ui, obfuscated by many challenging
technical details, is as follows. Starting from A we inductively “complete” types of all σ-live
tuples to become proper τ -live tuples. This will help, if done carefully and in a bisimilarity-
preserving way, the structure Ui to fulfil the universal constraints of φ and ψ, but may
introduce tuples without witnesses for the existential constraints. Hence, after each “comple-
tion” phase, we will “repair” the obtained structure by “copying” some substructures of A and
B and “gluing” them on existing witness-lacking tuples (providing the required witnesses).

During the construction we will make sure that for every n-aged sig(φ)-live (resp. sig(ψ)-
live) k-tuple in U, there exists a k-tuple in A (resp. in B) having equal (sig(φ), k)-affix-type
(resp. (sig(ψ), k)-affix-type). This will be controlled by means of partial witness functions
witA : Un → A,witB : Un → B, intuitively pinpointing from where a tuple in U originated
from. To make the construction work, the witness function will fulfil several technical criteria,
that are listed below. Conditions (a) and (b) speak about the compatibility of types between
a tuple and its witness tuple; this guarantees that no tuple from Un violate the universal
requirements of φ and ψ. Conditions (c)–(d) guarantees the satisfaction of the existential
requirements of φ and ψ (condition (c) takes care of “local” requirements while (d) handles
the “global” ones). Formally, for every n-aged c from Un we have that:
(a) If c is σ-live then both d := witA(c) and e := witB(c) are defined, (A,d) ∼Gaffix[σ]

(B, e) holds and tpGaffix[τ]
Un

(c) is equal to tpGaffix[sig(φ)]
A (d) ∪ tpGaffix[sig(ψ)]

B (e).
(b) If c is not σ-live but is sig(φ)-live (resp. sig(ψ)-live), then d := witA(c) (resp. d := witB(c))

is defined, and tpGaffix[sig(φ)]
Un

(c) is equal to tpGaffix[sig(φ)]
A (d) (resp. tpGaffix[sig(ψ)]

B (d)).
(c) if c is sig(φ)-live (resp. sig(ψ)-live), then for every existential requirement λ :=

Ri(x1...ℓi) → ∃xℓi...ℓi+ki(Si(x1...ℓi+ki) ∧ θi(x1...ℓi+ki)) from φ (resp. from ψ) with c
satisfying the premise of λ, there is a tuple d in Un so that cd satisfies the conclusion of
λ.

(d) For every sig(φ)-live (resp. sig(ψ)-live) tuple d from A (resp. from B) there is a tuple e
in U1 such that tpGaffix[sig(φ)]

Un
(e) = tpGaffix[sig(φ)]

A (d) (resp. tpGaffix[sig(φ)]
Un

(e) = tpGaffix[sig(ψ)]
B (d)).

While the following property is not necessary to guarantee that the limit U is a model of
φ ∧ ψ, it plays an important technical role in the construction:
(e) If d is an n-fresh σ-live tuple such that either witA(d) or witB(d) is undefined, then for

every prefix d1...k of d that is contained in Un−1, meaning that d1...k ⊏− Un−1, there
exists an n-aged σ-live tuple c which contains d1...k as its affix.

Using conditions (a)–(d) it follows that U |= φ ∧ ψ, allowing us to conclude (by Lemma 8):

▶ Theorem 13. Ginf ,Gsuf and Gpre enjoy the Craig Interpolation Property.

B. Bednarczyk and R. Jaakkola 15:11

We will now move on to the construction of U, described below. We start from the crucial,
aforementioned notions of completions and repairs. Intuitively the completion just “completes
a type of a tuple” in a bisimulation-preserving way, taking all symbols of τ into account.
Repair simply “plugs in” certain subtrees from A or B into U, providing missing witnesses.

▶ Definition 14 (completion). Let (T,d) be a pointed τ -HAH, where d is σ-live with witA,witB
defined. The d-completion of T is obtained from T by redefining interpretation of symbols
from τ in a min. way so that tpGaffix[τ]

T (d) equals tpGaffix[sig(φ)]
A (witA(d)) ∪ tpGaffix[sig(ψ)]

B (witB(d)).

▶ Definition 15 (repair). Let (T, c) be a pointed τ -HAH with only d := witA(c) defined, where
c is σ-live in T. Suppose also that there is a tuple e in B such that (A,d) ∼Gaffix[σ] (B, e)
holds. The (B, e)-repair of c is a τ -HAH T′ obtained from T in the following five steps:
1. Let B0 be the subtree of B rooted at the first element of e.
2. Take T′ to be the union of T and B0 without e.
3. T′ will contain T as a substructure.
4. By identifying c with e, we interpret the relation symbols for tuples of elements of T′ ↾ B0

in such a way that the resulting substructure of T′ is isomorphic with B0.
5. We set witB on freshly added elements to be the identity on B0.

The substructure T′ ↾ (B0 ∪ c) is called a c-component of T′. T′ becomes a HAH after a
routine renaming. We define (A,d)-repair of c analogously.

Un BwitB

witB

id

Un B

Figure 2 An example structure Un before and after we performed a “B”-repair.

We proceed with the base of induction, setting first U0 to be A. It will be four-fold.

Base case: Step I. We set up witA and witB functions. For witA we will simply take the
identity function. To define witB, we intuitively proceed by traversing U0 from top to bottom.
More precisely, let LA

0 denote the set of all maximal σ-live tuples in U0. Letting <lex denote
the lexicographic ordering of N∗, we construct a well-founded linear ordering ≺· on LA

0 as
follows: c ≺· d iff there is an i ≤ min{|c|, |d|} such that ci <lex di and cj = dj for every
j <lex i (note that if there is no such i, then the tuples are equal due to maximality). One
can show that c ≺· d implies that (♡): if c and d share some elements, then there exists i, j
and k such that ci...j = d1...k and none of the elements dℓ, for ℓ > k, occur in c. To prove
this, one needs to simply show that if dk occurs in c, then (d1, . . . ,dk) is an affix of c (the
proof goes via careful inspection of the definition of HAHs, cf. [5, App. C.7]).

MFCS 2022

15:12 Towards a Model Theory of Ordered Logics: Expressivity and Interpolation

We define witB inductively w.r.t ≺·. Consider a maximal σ-live tuple d and suppose that
we have defined witB for all the σ-live tuples c ≺· d. There are two cases to consider.

There exists a tuple c ≺· d sharing at least one element with d. By (♡), for every such
tuple c there are i, j and k so that ci...j = d1...k and none of the elements dℓ, for ℓ > k,
occur in c. Let c be the tuple for which the corresponding value k is the largest. Since c
is σ-live, by induction hypothesis there exists some e ⊏− B such that (A, c) ∼Gaffix[σ] (B, e)
holds. Thus there exists some f ⊏− B such that fi...j = ei...j and (A,d) ∼Gaffix[σ] (B, f). We
now extend witB in such a way that witB(d) = f.
Otherwise c and d do not share any elements. Since d is σ-live and (A, a) ∼Gaffix[σ] (B,b),
there exists some e ⊏− B such that (A,d) ∼Gaffix[σ] (B, e). We then simply extend witB in
such a way that witB(d) = e.
The resulting mapping witB. This finishes Step I.

Base case: Step II. We next complete types of all fresh (= all in this case) σ-live tuples
of U0. Take any maximal σ-live tuple d from U0 and perform the d-completion of U0. It is
easy to see that this process is conflict-free in the following sense: there is no tuple c and
R ∈ sig(ψ) so that we end up specifying both c ∈ RU0 and c ̸∈ RU0 . First, if two maximal
σ-live tuples d and e have affixes di...j and ek...ℓ such that di...j = ek...ℓ, then we know that
witB(di...j) = witB(ek...ℓ), and thus there are no conflicts in the “intersections” of σ-live
tuples. Second, by construction tpGaffix[σ]

A (d) = tpGaffix[σ]
B (witB(d)) holds for all maximal σ-live

tuple d, and hence the σ-infix-types that we assigned to σ-live tuples are indeed types, i.e.
they are consistent. Thus our process is conflict-free.

Note that our structure satisfies now conditions (a) and (b).

Base case: Step III. We finish the base case by providing witnesses for fresh sig(ψ)-tuples
via repairs. Recall that LA

0 denotes the set of all maximal σ-live tuples in UA
0 . For each

d ∈ LA
0 we perform the (B,witB(d))-repair of d; the resulting structure will be taken to be U1.

Note that now every sig(ψ)-live tuple in U1 has its witnesses for the existential requirements,
but there may be new sig(φ)-live tuples without them. Moreover, witB is defined for all
freshly added elements, but witA is not. Furthermore, we note that U1 now satisfies condition
(e), since all the 1-fresh live tuples for which witA is not defined are present in the subtrees
that we attached to U0 during the repair, which is done only at (maximal) σ-live tuples.

Base case: Step IV. It could be the case that the structure U1 produced in the previous
step violates (d), due to the lack of realisation of a certain type from B. Thus, as an extra
precaution, unique to the base case, we add a disjoint copy of B to U1 and define witB for it
to be the identity. Note that now (d) will be satisfied in any extension of U1.

Inductive step. The inductive step is analogous to Steps I-III from the base case, hence we
keep its description short. Assume that Un is defined and that in the previous step of the
construction we employed B-repairs (the case of A-repairs is symmetric). Given a component
C that was created during such a repair, we let LC

n denote the set of all maximal n-fresh
σ-live tuples in C. Since C is essentially a HAT (up to renaming), we can again define a
well-founded linear order ≺· on LC

n in the same way as we did in the base case for LA
0 . As in

the base case, we then define missing values of witA for elements of C inductively w.r.t ≺·.
Observe that some of the tuples in LC

n might contain a proper prefix of elements of Un−1.
In the case of Gsuf these tuples do not cause any problems to us, because suffix-types do
not impose any constraints on proper prefixes. In the cases of Gpre and Ginf we handle these

B. Bednarczyk and R. Jaakkola 15:13

tuples by using the fact that Un satisfies condition (e) as follows. Let d ∈ LC
n be such a

tuple and let k be the largest index so that d1...k ⊏− Un−1. Using condition (e), we know
that there exists a σ-live n-aged tuple c so that ci...j = d1...k, for some i and j. Employing
condition (a), we know that e := witA(c), f := witB(c) and h := witB(d) are defined and
that (A, e) ∼Gaffix[σ] (B, f). Thus there exists a σ-live tuple g ⊏− A such that fi...j = gi...j and
(A, g) ∼Gaffix[σ] (B,h). We now extend witA in such a way that witA(d) = g.

The above procedure is repeated for all components C that were introduced during the
previous repair. Having defined witA for all the elements, we perform a completion that
works for exactly the same reasons as described before. Finally, letting Ln denote the set
of all maximal n-fresh σ-live tuples, we perform repair of every tuple in Ln, which results
in a model that we select as Un+1. We stress that every sig(φ)-live tuple in Un+1 has its
witnesses for the existential requirements, but there can now be new sig(ψ)-live tuples without
them. We also emphasise that witA is defined for all the new elements but witB might not
be. This concludes the inductive step and hence, also the construction of U and the proof
of Theorem 13.

▶ Remark 16. The presented model construction is quite generic. Indeed, the only part of
the construction which is really specific to Gaffix is the first step of the construction, namely
the part where we define inductively the values of witness functions. We expect that the
presented technique can be easily adapted to other logics, especially to other fragments of the
guarded fragments. For instance, we believe that our technique can be adjusted, e.g. to the
case of the two-variable GF from [14] as well as to the uniform one-dimensional GF from [16].

5 Conclusions

In this paper kick-started a project of understanding the model theory of the family of
guarded and unguarded ordered logics. We first investigated the relative expressive power of
ordered logics by means of suitable bisimulations. Afterwards, we proceed with the Craig
Interpolation Property (CIP) showing that (i) the fluted and the forward fragments do not
enjoy CIP, (ii) while the other logics that we consider enjoy it. The fact that the fluted
fragment does not posses CIP was quite unexpected in the light of already existing claims
for the contrary [21, Thm. 14]. For the other logics we proposed a novel model-theoretic
“complete-and-repair” method of creating a model out of two bisimilar forest-like structures.

There are several interesting future work directions.
1. One example is to investigate the Łoś-Tarski Preservation Theorem as well as other

preservation theorems. While we think that we already have a working construction for
guarded ordered logics, the status of ŁTPT holding for Lpre, Lsuf , and Linf is not clear.6

2. Another work direction is to take a look at on effective interpolation, similarly to what has
been proposed in [6] as well as on the interpolant existence problem for Linf and Lsuf , as
done in [17]. Preliminary results were obtained. It is also interesting whether the guarded
ordered logics enjoy stronger versions of interpolations, e.g. Lyndon’s interpolation or
Otto’s interpolation. We are quite optimistic about it.

3. What is the complexity of the model checking problem for ordered logics, if we use list
encoding to encode our structures?

6 Purdy provides a “proof” in [21] that Lsuf has ŁTPT. However, his “proof” is sketchy and lacks sufficient
mathematical arguments required to verify its correctness. In the light of our discovery of yet another
false claim from [21], we believe that it is safe to assume that ŁTPT for Lsuf is open.

MFCS 2022

15:14 Towards a Model Theory of Ordered Logics: Expressivity and Interpolation

We are also actively working on the finitary versions of van Benthem theorem for the
forward guarded fragment as well as the Lindström-style characterisation theorems. This is
an ongoing work of Benno Fünfstück, a master student at TU Dresden, under the supervision
of B. Bednarczyk.

References
1 Hajnal Andréka, István Németi, and Johan van Benthem. Modal Languages and Bounded

Fragments of Predicate Logic. J. Philos. Log., 1998.
2 Vince Bárány, Michael Benedikt, and Balder ten Cate. Some Model Theory of Guarded

Negation. J. Symb. Log., 2018.
3 Vince Bárány, Balder ten Cate, and Luc Segoufin. Guarded Negation. J. ACM, 2015.
4 Bartosz Bednarczyk. Exploiting Forwardness: Satisfiability and Query-Entailment in Forward

Guarded Fragment. In JELIA, 2021.
5 Bartosz Bednarczyk and Reijo Jaakkola. Towards a model theory of ordered logics: Expressivity

and interpolation (extended version), arXiV 2022. doi:10.48550/ARXIV.2206.11751.
6 Michael Benedikt, Balder ten Cate, and Michael Vanden Boom. Effective Interpolation and

Preservation in Guarded Logics. ACM Trans. Comput. Log., 2016.
7 Dietmar Berwanger and Erich Graedel. Games and Model Checking for Guarded Logics. In

LPAR 2001, 2001.
8 Erich Grädel, Phokion G. Kolaitis, and Moshe Y. Vardi. On the decision problem for two-

variable first-order logic. Bull. Symb. Log., 1997.
9 Erich Grädel and Martin Otto. The Freedoms of (Guarded) Bisimulation. In Alexandru Baltag

and Sonja Smets, editors, Johan van Benthem on Logic and Information Dynamics. Springer,
2014.

10 Erich Graedel, Phokion Kolaitis, Leonid Libkin, Maarten Marx, Joel Spencer, Moshe Y.
Vardi, Yde Venema, and Scott Weinstein. Finite Model Theory and Its Applications. Texts in
Theoretical Computer Science. An EATCS Series. Springer, 2007.

11 Lauri Hella and Antti Kuusisto. One-dimensional Fragment of First-order Logic. In AIML
2014, 2014.

12 Andreas Herzig. A New Decidable Fragment of First Order Logic. In Third Logical Biennial,
Summer School and Conference in Honour of S. C. Kleene, 1990.

13 Wilfrid Hodges. A Shorter Model Theory. Cambridge University Press, 1997.
14 Eva Hoogland, Maarten Marx, and Martin Otto. Beth Definability for the Guarded Fragment.

In LPAR, 1999.
15 Reijo Jaakkola. Ordered Fragments of First-Order Logic. In MFCS, 2021.
16 Reijo Jaakkola. Uniform Guarded Fragments. In FOSSACS, 2022.
17 Jean Christoph Jung and Frank Wolter. Living without Beth and Craig: Definitions and

Interpolants in the Guarded and Two-Variable Fragments. In LICS, 2021.
18 Leonid Libkin. Elements of Finite Model Theory. Texts in Theoretical Computer Science. An

EATCS Series. Springer, 2004. doi:10.1007/978-3-662-07003-1.
19 Maarten Marx. Algebraic relativization and arrow logic. University of Amsterdam, 1995.
20 Ian Pratt-Hartmann, Wieslaw Szwast, and Lidia Tendera. The Fluted Fragment Revisited. J.

Symb. Log., 2019.
21 William C. Purdy. Complexity and Nicety of Fluted Logic. Stud Logica, 2002.
22 Willard Quine. The Ways of Paradox and Other Essays, Revised Edition. Harvard University

Press, 1976.
23 Abraham Robinson. A Result on Consistency and Its Application to the Theory of Definition.

Journal of Symbolic Logic, 1960.
24 Luc Segoufin and Balder ten Cate. Unary negation. Log. Methods Comput. Sci., 9(3), 2013.
25 Thomas Sturm, Marco Voigt, and Christoph Weidenbach. Deciding First-Order Satisfiability

when Universal and Existential Variables are Separated. In LICS 2016, 2016.
26 Johan van Benthem. Modal Foundations for Predicate Logic. Log. J. IGPL, 1997.

https://doi.org/10.48550/ARXIV.2206.11751
https://doi.org/10.1007/978-3-662-07003-1

	1 Introduction
	1.1 Our results

	2 Preliminaries
	2.1 Model Checking

	3 Expressive power
	4 Craig Interpolation
	4.1 Disproving CIP in {L}_{inf} and {L}_{suf}
	4.2 Restoring CIP in {L}_{pre}
	4.3 Restoring CIP in guarded logics

	5 Conclusions

