Deciding Emptiness for Constraint Automata on Strings with the Prefix and Suffix Order

Dominik Peteler
Universität Leipzig, Germany

Karin Quaas
Universität Leipzig, Germany

Abstract
We study constraint automata that accept data languages on finite string values. Each transition of the automaton is labelled with a constraint restricting the string value at the current and the next position of the data word in terms of the prefix and the suffix order. We prove that the emptiness problem for such constraint automata with Büchi acceptance condition is NL-complete. We remark that since the constraints are formed by two partial orders, prefix and suffix, we cannot exploit existing techniques for similar formalisms. Our decision procedure relies on a decidable characterization for those infinite paths in the graph underlying the automaton that can be completed with string values to yield a Büchi-accepting run. Our result is - to the best of our knowledge - the first work in this context that considers both prefix and suffix, and it is a first step into answering an open question posed by Demri and Deters.

2012 ACM Subject Classification Theory of computation → Automata over infinite objects

Keywords and phrases Data Languages, Strings, Constraints, Prefix, Suffix, Automata, Linear Temporal Logic

Digital Object Identifier 10.4230/LIPIcs.MFCS.2022.76

Funding Karin Quaas: Funded by the Deutsche Forschungsgemeinschaft (DFG), project 406907430.

Acknowledgements We would like to thank the anonymous reviewers for their very careful reading and many insightful comments that led to the improvement of this article.

1 Introduction

Motivated by applications in formal verification, automated reasoning and databases, logics and automata over infinite alphabets are in the focus of active and broad research activities in theoretical computer science. A typical example for logics over infinite alphabets is constraint linear temporal logic, CLTL for short [2, 10, 11, 9, 6, 5, 14]. CLTL extends classical LTL with a finite set of variables ranging over the domain of some infinite relational structure like (\(\mathbb{N};=\)) or (\(\mathbb{Q};<\)). Atomic formulas in CLTL are constraints in terms of the variables and the relation symbols from the structure; atomic formulas can be combined with Boolean operations and the usual temporal modalities. Models of CLTL formulas are data words, that is, infinite sequences of data values coming from the domain of the relational structure. For instance, the CLTL formula \(G(x < x)\) over the relational structure (\(\mathbb{Z};<\)) states: “globally, the value of the variable \(x\) at the next position is smaller than the value of \(x\) at the current position”. The data word \(4, 3, 2, 1, 0, -1, -2, \ldots\) is a model of this formula. Note that the same formula has no model if instead of (\(\mathbb{Z};<\)) we evaluate the formula over the relational structure (\(\mathbb{N};<\)) – this to illustrate that deciding the satisfiability of a given formula in this logic heavily relies on the considered relational structure.

A natural counterpart to CLTL are constraint automata [7, 15, 28, 19]. Like CLTL, constraint automata are parameterized over a relational structure. Transitions are labelled with constraints in terms of the variables of the automaton and the relation symbols from the
structure; the satisfaction of the constraints along a transition determines the behaviour of the automaton. Constraint automata generalize Büchi automata and accept data languages, that is sets of data words. Following the classical automata-theoretic approach by Vardi and Wolper, one can reduce the satisfiability problem for CLTL to the non-emptiness problem for constraint automata (cf. [29, 14]). We remark that constraint automata are very much related to the well known class of register automata [17, 24, 13, 4, 8].

For CLTL, constraint automata, and other formalisms parameterized over relational structures, a lot of remarkable results concerning satisfiability, model-checking, and the emptiness problem have been achieved, see [14] for a recent survey. This includes results for specific relational structures – for instance, the satisfiability problem for CLTL over \((\mathbb{Z}; <)\) is PSPACE-complete [2, 10] – but there are also noteworthy unifying approaches that capture logics and automata over certain classes of, e.g., linear orders [28, 6, 5] or oligomorphic data domains [3].

In contrast to linear orders, relatively little is known about relational structures where the domain equals the set of strings \(A^*\) over some fixed (finite or countably infinite) alphabet \(A\), and relations defined over \(A^*\), like the prefix order or the subsequence order. While relational structures over linear orders are useful for analysing systems that manipulate counters or constrain real-timed variables, relational structures over strings are interesting for reasoning about systems that manipulate pushdown stacks, queues, or other data structures that involve strings. Reasoning on string variables has a long tradition in theoretical computer science, with roots in algebra and combinatorics on words, and recent developments in the area of string constraint solving (see [1] for a recent survey). Several works concern first-order (FO) logics over finite strings [20, 18, 16, 21]. Thereof, a recent undecidability result [16] for the \(\Sigma_1\)-fragment of FO logic over \((\Sigma^*; \leq_{\text{sub}}, (=w)_{w\in\Sigma^*})\), where \(\Sigma\) is a finite alphabet and \(\leq_{\text{sub}}\) denotes the subsequence order over \(\Sigma^*\), immediately implies the undecidability of the satisfiability problem for CLTL over that structure. Regarding the relational structure \((A^*; <, =, (=w)_{w\in A^*})\), where \(<\) is the prefix order over \(A^*\), we know: the satisfiability problem for constraint LTL is PSPACE-complete (by an interesting reduction to the same problem for \((\mathbb{N}; <, =, (=n)_{n\in\mathbb{N}})\)) [9]. The emptiness problem for constraint automata is PSPACE-complete [19]. On the other hand, a unifying, model-theoretic approach for a large family of temporal logics, including ECTL\(^*\), which is applicable to linear orders, fails for the prefix order over finite strings [5].

Demri and Deters proposed to study the satisfiability problem for CLTL when evaluated over the structure \((A^*; <_p, <_s, (=w)_{w\in A^*})\) with both the prefix and the suffix order [9]. This enables us to express properties like “the beginning of the content of a string is equal to the end of some other string”. Using the obvious symmetry between the prefix order and the suffix order, one can conclude that the above mentioned results for the prefix order hold for the relational structure where \(<_p\) is replaced by \(<_s\) [9]. However, the situation changes drastically when both \(<_p\) and \(<_s\) are in the relational structure. For instance, the FO theory on the prefix order alone is decidable [27], but becomes undecidable for the relational structure containing both prefix and suffix (this follows from the undecidability result for the FO theory for the substring (infix) order [20], and the fact that the substring order is FO-definable using prefix and suffix). For finite strings over a finite alphabet, it has been remarked in [9] that the \(\Sigma_1\)-fragment of FO logics is decidable, using an algorithm based on the word equation approach by Makanin [22, 26]. It is thus far from clear whether satisfiability for CLTL, or, equivalently, the emptiness problem for constraint automata, is decidable or not. The techniques used in other works for, e.g. the prefix order alone, or linear orders, turn out to be not applicable at all.
In this paper, we prove that the emptiness problem for constraint automata over prefix and suffix is decidable in NL if the automaton uses only a single variable. This is a standard restriction, comparable to one-counter automata [12] or single-clock timed automata [25]. Our decision procedure relies on a reduction to reachability queries on the finite graph underlying the automaton, and it applies to finite strings over both finite and countably infinite alphabets. We may also test whether the string equals the empty string (similar to a zero test in one-counter automata). We further obtain NL-completeness for the emptiness problem for single-register automata over this relational structure. Last but not least, our result implies PSPACE-completeness for the satisfiability of CLTL for the case that the formulas in CLTL only use a single variable.

We leave open the decidability status for the case where equality with arbitrary finite strings over A and/or constraints involving more than one variable are allowed, that is, by now we cannot fully answer the question raised by Demri and Deters. We remark that both extensions may be harmful: for instance, while emptiness is decidable for one-counter automata [12], it is undecidable for two-counter automata [23]; while the Σ₁-fragment of FO logic for finite strings over a finite alphabet with the subsequence order without constants is decidable [20], it is undecidable as soon as we allow constants in the relational structure [16].

2 Preliminaries

A relational signature σ = {R₁, R₂, . . .} is a countable set of relation symbols. Each symbol Rᵢ is associated with some non-negative arity kᵢ. A relational structure over σ, or σ-structure for short, is a tuple D = (D; R₁, D, R₂, D, . . .), where D is the domain of the structure, and Rᵢ ⊆ Dᵏᵢ is the interpretation of the symbol Rᵢ in D. We will often omit the symbol D in Rᵢ and simply write Rᵢ instead.

We use Σ to denote a finite alphabet, N as a countably infinite alphabet, and A as finite or countably infinite alphabet. We use A* to denote the set of finite strings over A. The symbol ε denotes the empty string, and we use A+ to denote the set A* \ {ε} of non-empty strings over A. Given u, v ∈ A*, we say that u is a strict prefix (strict suffix, respectively) of v, written u <p v (u <s v, respectively), if v = u · u′ (v = u′ · u, respectively) for some u′ ∈ A+. We say that u and v are incomparable with respect to the prefix order, written u ⊥pv, if u = w · a · u′ and v = w · b · v′ for some w ∈ A*, a, b ∈ A such that a ̸= b, and u′, v′ ∈ A*. Incomparability with respect to the suffix order, written u ⊥sv, is defined analogously.

Let σps be the signature consisting of the binary symbols <p, <s, and =. In this paper, we are interested in the σps-structures (Σ*: <p, <s, =) and (N*: <p, <s, =), where, in both structures, <p and <s are interpreted as the prefix and the suffix order over the set of strings over Σ and N, respectively, and = is interpreted as the identity. If the context is clear, we may write Σ* and N* to denote the respective structures, and A* to denote any of these structures.

Constraint automata are generalizations of Büchi automata that are parameterized by σ-structures, where σ is a relational signature. The transitions are labelled with Boolean combinations of atomic formulas, called constraints, in terms of the relations of the σ-structure. A constraint automaton processes data words. A data word is a finite or infinite sequence d₁, d₂, d₃, . . . , where dᵢ ∈ D is a data value from the domain of the σ-structure. A transition of a constraint automaton can be taken if the current and the next data value of the processed data word satisfy the constraint labelling the transition.

In the following, we assume that constraint automata are parameterized by the σps-structures Σ* or N*, and the transitions are labelled by Boolean combinations of atomic formulas of the form z z' z' , where z, z' ∈ {x, y} and z z' ∈ σps. Intuitively, x stands for
the string at the current position, and y stands for the string at the next position of the processed data word. For the sake of readability we will restrict the labels of the transitions to be maximally consistent. Formally, we define Ψ to be the set of formulas $\psi(x, y)$ of the following form:

$$x = y, \quad x <_p y \land x <_s y, \quad x <_p y \land x <_s y, \quad x <_p y \land x <_s y,$$

$$y <_p x \land y <_s x, \quad y <_p x \land y <_s x, \quad y <_p x \land y <_s x, \quad y <_p y \land y <_s y.$$

Each of these formulas is called a constraint. Constraints that contain the formula $y <_p x$ or $y <_s x$ are called reducing as they reduce the length of the string at the next position with regard to the string at the current position. All other constraints except for $x = y$ are called generous, because they allow for infinitely many choices of the string value at the next position. The satisfaction relation \models is defined in the obvious way. For instance, if ψ is of the form $x <_p y \land x <_s y$, then we have $\mathbb{N}^* \models \psi(0, 01210)$ and $\Sigma^* \not\models \psi(a, abab)$.

A constraint automaton over a σ^{*s}-structure A^* is a tuple $A = (L, \ell_{in}, L_{acc}, E)$, where

- L is a finite set of locations (control states);
- $\ell_{in} \in L$ is the initial location;
- $L_{acc} \subseteq L$ is the set of accepting locations; and
- $E \subseteq L \times \Psi \times L$ is the set of edges.

A path of A is a finite or infinite sequence $\ell_0, \ell_1, \ell_2, \ldots$ of locations satisfying, for all $i \geq 1$, $(\ell_{i-1}, \psi_i, \ell_i) \in E$ for some constraint $\psi_i \in \Psi$. We may sometimes also write $\ell_0 \xrightarrow{\psi_1} \ell_1 \xrightarrow{\psi_2} \ell_2, \ldots$ to indicate the precise edges that are used. A finite path $\ell_0 \xrightarrow{\psi_1} \ell_1 \xrightarrow{\psi_2} \ell_2 \ldots \xrightarrow{\psi_n} \ell_n$ is stable if ψ_i is of the form $x = y$ for all $1 \leq i \leq n$; it is generous if there exists some $1 \leq i \leq n$ such that ψ_i is generous. A path as above is a cycle starting in ℓ_0 if $\ell_0 = \ell_n$.

A state of A is a pair (ℓ, w), where $\ell \in L$ and $w \in A^*$ is the current value of the string variable. We postulate a labelled transition relation \rightarrow over the set $L \times A^*$ of states of A, as follows: $(\ell, w) \rightarrow (\ell, w')$ if there exists a transition $(\ell, \psi(x, y), \ell') \in E$ such that $A^* \models \psi(w, w')$. A run of A is a finite or infinite sequence of transitions of A. A run $(\ell_0, w_0) \rightarrow (\ell_1, w_1) \rightarrow (\ell_2, w_2) \ldots$ is initialized if $\ell_0 = \ell_{in}$. A run is Büchi-accepting if it is initialized and it contains infinitely many locations in L_{acc}. We define the language of A by $L(A) = \{ w_0 w_1 w_2 \cdots \mid (\ell_0, w_0) \rightarrow (\ell_1, w_1) \rightarrow (\ell_2, w_2) \ldots \}$ is a Büchi-accepting run of A.

For an example, consider the constraint automaton $A = \{(\ell_0, \ell_1, \ell_2, \ell_3), \ell_0, E, \{\ell_3\}\}$ over \mathbb{N}^*, where E is as depicted in Figure 1. A finite initialized run of this automaton is $(\ell_0, 20) \rightarrow (\ell_1, 346345346343) \rightarrow (\ell_2, 34634534634) \rightarrow (\ell_3, 34634) \rightarrow (\ell_2, 346)$ (cf. Example 6).

The emptiness problem for constraint automata is to decide, given a constraint automaton A, whether $L(A) = \emptyset$. In section 4, we prove that this problem is NL-complete.
3 Rewriting Operation

For deciding the emptiness problem, we will prove the existence of string values that satisfy
the constraints that occur in a given path. During the process of defining such string values,
we will need to change already defined string values using a rewriting operation. In this
section, we define this operation and prove some important properties.

Recall that \(A \) denotes a finite or countably infinite alphabet. Given \(w \in A^* \) and two
non-empty strings \(u, u' \in A^+ \), we define the left-to-right rewriting operation of \(u \) to \(u' \) in
\(w \), denoted by \(w[u \leftarrow u']_o \), to be the string that is obtained from \(w \) by replacing, from
left to right, every occurrence of \(u \) in \(w \) by \(u' \). Formally, assume \(w = a_1a_2 \ldots a_n \) and
define, recursively, \(w[u \leftarrow u']_o := w \) if \(a_i a_{i+1} \ldots a_{i+|u|-1} \neq u \) for all \(1 \leq i \leq n \) (that
is, \(u \) does not occur in \(w \)), \(w[u \leftarrow u']_o := a_1 \ldots a_{i-1} \cdot u' \cdot (a_{i+|u|} \ldots a_n)[u \leftarrow u']_o \) if
\(1 \leq i \leq n \) is the minimal index such that \(a_i a_{i+1} \ldots a_{i+|u|-1} = u \). Note that if \(u \) occurs
in \(a_1 \ldots a_{i-1} \cdot u' \), then \(u \) is not replaced in any further steps of the recursive definition.

For instance, \(1100210[10 \leftarrow 1]_o = 11021 \). We define completely analogously the right-to-
left version of this operation, that is, \(w[u \leftarrow v]_a := w \) if \(u \) does not occur in \(w \), and
\(w[u \leftarrow v]_a := ((a_1 \ldots a_{i-1})[u \leftarrow u']_o \cdot u' \cdot a_{i+|u|} \ldots a_n) \) if \(i \geq 1 \) is the maximal index
such that \(a_i a_{i+1} \ldots a_{i+|u|-1} = u \). Note that \(w[u \leftarrow v]_a \) may be different from \(w[u \leftarrow v]_o \); for
instance, \(w = 111, u = 11 \) and \(v = 0 \) yields \(w[u \leftarrow v]_o = 01 \) and \(w[u \leftarrow v]_a = 10 \). It is
easy to see that this is the case if there exist two overlapping occurrences of \(u \) in \(w \).

Formally, we say that \(u \) is overlapping in \(w \) if there exist \(1 \leq i < j < i + |u| \leq n \) such that
\(a_i a_{i+1} \ldots a_{i+|u|-1} = a_i a_{i+1} \ldots a_{j+|u|-1} = u \). The proof of the following lemma is simple.

> **Lemma 1.** For all \(w \in A^* \) and \(u, u' \in A^+ \), if \(u \) is not overlapping in \(w \), then we have
\(w[u \leftarrow u']_o = w[u \leftarrow u']_a \).

In Subsection 4.1 we will guarantee that the rewriting operation is only applied to strings
\(w \) and \(u \) such that \(u \) is not overlapping in \(w \), so that the left and right versions of rewriting
yield the same string. The reason why we still define both the left and right version of
rewriting is that certain properties of the prefix order – stated in the next lemma – can be
proved very conveniently using the left-to-right rewriting operation, and the same properties
can be proved symmetrically for the suffix order using the right-to-left rewriting operation
(Lemma 3).

> **Lemma 2.** For all \(u, u' \in A^+ \) with \(u <_p u' \), for all \(w, w' \in A^* \), and for all \(\bowtie \in \{=, <_p, \bot_p \} \)
we have
\(w \bowtie w' \iff w[u \leftarrow u']_o \bowtie w'[u \leftarrow u']_o \).

Proof. Let \(u, u' \in A^+ \) be such that \(u <_p u' \), that is, there exists some \(u'' \in A^+ \) such that
\(u' = u \cdot u'' \). Let \(w, w' \in A^* \) be of the form \(w = a_1 a_2 \ldots a_n \) and \(w' = a'_1 a'_2 \ldots a'_n \). Let \(N \)
and \(N' \), respectively, be the number of (non-overlapping, from left to right) occurrences of
\(u \) in \(w \) and \(w' \), respectively. The proof is by induction on the sum \(i := N + N' \). For
the induction base, assume \(i = 0 \). But then \(w[u \leftarrow u']_o = w = w'[u \leftarrow u']_o = w' \), so that the
claim clearly holds. For the induction step, suppose that the claim holds for all \(0 \leq j < i \).

We prove the claim for \(i \). We distinguish three cases:

1. \(N = i \) and \(N' = 0 \). By \(N = i > 0 \), \(w \) contains \(u \). Since \(u <_p u' \), also \(w[u \leftarrow u']_o \) contains
\(u \). By \(N' = 0 \), \(w' \) does not contain \(u \) and \(w'[u \leftarrow u']_o = w' \), so that \(w'[u \leftarrow u']_o \) does
not contain \(u \) either. Using this, it is easy to see that none of the following cases can
hold: \(w = w', w <_p w', w[u \leftarrow u']_o = w'[u \leftarrow u']_o \), and \(w[u \leftarrow u']_o <_p w'[u \leftarrow u']_o \). So
let us prove \(w \bowtie_p w' \iff w[u \leftarrow u']_o \bowtie_p w' \). For this suppose \(w[u \leftarrow u']_o \) is of the form
b_1 b_2 ... b_q. Let 1 \leq d \leq e \leq m be such that a_d ... a_e = u is the first occurrence of u in w. By u <_p u', b_d ... b_e = u is also the first occurrence of u in w[u ← u']_p, and hence a_1 ... a_e = b_1 ... b_e. We hence obtain
\[w \perp_p w' \iff \exists k \leq e \text{ such that } a_1 ... a_{k-1} = a'_1 ... a'_{k-1} \text{ and } a_k \neq a'_k \]
\[w \perp_p w' \iff \exists k \leq e \text{ such that } b_1 ... b_{k-1} = a'_1 ... a'_{k-1} \text{ and } b_k \neq a'_k \]
\[w[u ← u']_p \perp_p w' \]
where \(k \leq e \) holds by the fact that u is not contained in w'.

2. \(N = 0 \) and \(N' = i \). By \(N = 0 \), w does not contain u and hence neither does \(w[u ← u']_p \), as \(w[u ← u']_p = w \). By \(N' = i > 0 \), w' contains u. Using this, it is easy to see that the following two cases cannot hold: w = w' and \(w[u ← u']_p = w'[u ← u']_p \). The proof for \(w \perp_p w' \iff w \perp_p w'[u ← u']_p \) is symmetric to the proof in the previous case. So let us prove \(w <_p w' \iff w <_p w'[u ← u']_p \). For this let \(w'[u ← u']_p \) be of the form \(b'_1 ... b'_q \).

Let 1 \leq d \leq e \leq n be such that \(a'_d ... a'_e = u \) is the first occurrence of u in w'. By \(u <_p u' \), \(b'_d ... b'_e = u \) is also the first occurrence of u in \(w'[u ← u']_p \), and hence \(a'_1 ... a'_e = b'_1 ... b'_e \).

We hence obtain
\[w <_p w' \iff a_1 ... a_m = a'_1 ... a'_m \]
\[a_1 ... a_m = b'_1 ... b'_m \]
\[w <_p w'[u ← u']_p \]
where the second equivalence holds because \(m < e \) (as otherwise u would be contained in w).

3. \(N > 0 \) and \(N' > 0 \). Let 1 \leq d \leq e \leq m be such that \(a_d ... a_e = u \) is the first occurrence of u in w, and similarly, let 1 \leq d' \leq e' \leq n be such that \(a'_d ... a'_e = u \) is the first occurrence of u in w'. In other words, we can write
\[w = a_1 ... a_{d-1} \cdot u \cdot v \quad \text{and} \quad w' = a'_1 ... a'_{d'-1} \cdot u \cdot v' \]
where \(v = a_e ... a_m \) and \(v' = a'_e ... a'_n \). By definition and \(u' = u \cdot u'' \), we have
\[w[u ← u']_p = a_1 ... a_{d-1} \cdot u \cdot u'' \cdot (v[u ← u']_p) \]
and
\[w'[u ← u']_p = a'_1 ... a'_{d'-1} \cdot u \cdot u'' \cdot (v'[u ← u']_p) \]

We distinguish four cases:

a. \(a_1 ... a_{d-1} \cdot u = a'_1 ... a'_{d-1} \cdot u \). This implies
\[w \bowtie w' \iff v \bowtie v' \quad \text{and} \quad w[u ← u']_p \bowtie w'[u ← u']_p \iff v[u ← u']_p \bowtie v'[u ← u']_p \]
for \(\bowtie \in \{<_p, =, \perp_p\} \). The sum \(M + M' \) of the occurrences of u in v and v' must be strictly smaller than \(i \). By induction hypothesis,
\[v \bowtie v' \iff v[u ← u']_p \bowtie v'[u ← u']_p \]

Hence the result.

b. \(a_1 ... a_{d-1} \cdot u <_p a'_1 ... a'_{d'-1} \cdot u \). This contradicts the minimality of \(d' \), and hence this case cannot happen.
c. \(a'_1 \ldots a'_{d'-1} \cdot u <_p a_1 \ldots a_{d-1} \cdot u \). This contradicts the minimality of \(d \), and hence this case cannot happen.

d. \(a_1 \ldots a_{d-1} \cdot u \perp_p a'_1 \ldots a'_{d'-1} \cdot u \). Hence there exists some \(1 \leq j \leq \min(d-1, d'-1) \) such that \(a_1 \ldots a_{j-1} = a'_1 \ldots a'_{j-1} \) and \(a_j \neq a'_j \). This immediately implies \(w \perp_p w' \) and also \(w[u \leftarrow u']_\circ \perp_p w'[u \leftarrow u']_\circ \), hence the result. ▶

A proof for the following lemma can be done symmetrically to the proof of Lemma 2.

\[\text{Lemma 3. For all } u, u' \in A^+ \text{ and } w, w' \in A^*, \text{ if } u <_s u', \text{ then } w \triangleright w' \text{ if, and only if, } w[u \leftarrow u']_\circ \triangleright w'[u \leftarrow u']_\circ \text{ for all } \forall \in \{=,<_s, \perp_s\}. \]

The following lemma will be crucial in Subsection 4.1.

\[\text{Lemma 4. For all } v, w \in A^* \text{ and } u, u' \in A^+, \text{ if } u \text{ is not overlapping in } v, \text{ u is not overlapping in } w, \text{ u} <_p \text{ u'}, \text{ and } u <_s u', \text{ then } A^* \models \psi(v, w) \text{ if, and only if, } A^* \models \psi(v[u \leftarrow u']_\circ, w[u \leftarrow u']_\circ) \text{ for all } \psi \in \Psi. \]

Proof. The proof is an easy case distinction depending on the form of \(\psi \). We give the proof for \(\psi \) being of the form \(x <_p y \land x \perp_s y \).

\[
\begin{align*}
N^* & \models \psi(v, w) \\
\iff & \quad v <_p w \text{ and } v \perp_s w \quad \text{(by definition)} \\
\iff & \quad v[u \leftarrow u']_\circ <_p w[u \leftarrow u']_\circ \text{ and } v \perp_s w \quad \text{(by Lemma 2)} \\
\iff & \quad v[u \leftarrow u']_\circ <_p w[u \leftarrow u']_\circ \text{ and } v[u \leftarrow u']_\circ \perp_s w[u \leftarrow u']_\circ \quad \text{(by Lemma 3)} \\
\iff & \quad v[u \leftarrow u']_\circ <_p w[u \leftarrow u']_\circ \text{ and } v[u \leftarrow u']_\circ \perp_s w[u \leftarrow u']_\circ \quad \text{(by Lemma 1)} \\
\iff & \quad N^* \models \psi(v[u \leftarrow u']_\circ, w[u \leftarrow u']_\circ) \quad \text{(by definition)}
\end{align*}
\]

The proofs for the other cases are completely analogous. ▶

4 Deciding Emptiness for Constraint Automata over \(N^* \)

In this section, we solve the emptiness problem for constraint automata over \(N^* \). We start in the next subsection with presenting an algorithm that returns for every finite sequence of constraints \(\psi_1, \ldots, \psi_n \) a sequence of string values \(w_0, w_1, \ldots, w_n \) such that \(N^* \models \psi_1(w_{i-1}, w_i) \) for all \(1 \leq i \leq n \). The sequence \(\psi_1, \ldots, \psi_n \) may correspond to the sequence of constraints occurring in a finite path \(\pi = \ell_0 \overset{\psi_1}{\rightarrow} \ldots \overset{\psi_n}{\rightarrow} \ell_n \) of a constraint automaton \(\mathcal{A} \), and by constructing string values \(w_0, w_1, \ldots, w_n \) we actually prove that \(\pi \) can be completed to a finite run \((\ell_0, w_0) \overset{\psi_1}{\rightarrow} \ldots \overset{\psi_n}{\rightarrow} (\ell_n, w_n) \) of \(\mathcal{A} \). This already implies NL-membership of the reachability problem for constraint automata (Corollary 8).

We remark that for infinite sequences of constraints \(\psi_1, \psi_2, \ldots \) it is not the case that we can always find string values \(w_0, w_1, \ldots \) satisfying \(N^* \models \psi_1(w_{i-1}, w_i) \). Consider for instance the sequence \((x \perp_p y \land x \perp_s y)(y <_p x \land y \perp_s x)^\omega \) (cf. Figure 1). The constraint \(y <_p x \land y \perp_s x \) is reducing and requires the strings in the \(x \)-sequence to become shorter infinitely often, which is impossible. In Subsection 4.2 we give a characterization for when infinite paths can be extended to infinite runs, which, together with the results obtained before, yields a decision procedure for the emptiness problem.

For the rest of this section, let \(\mathcal{A} = (\mathcal{L}, \ell_\text{init}, \mathcal{L}_\text{acc}, E) \) be a constraint automaton over \(N^* \).
4.1 Extending Finite Paths to Finite Runs

The main part of this subsection is dedicated to prove the following result.

Proposition 5. For every sequence ψ_1, \ldots, ψ_n of constraints in Ψ and non-empty string $w_n \in \mathbb{N}^+$, we can define non-empty strings $w_0, w_1, \ldots, w_n \in \mathbb{N}^+$ such that $\mathbb{N}^* \models \psi_i(w_{i-1}, w_i)$ for all $1 \leq i \leq n$. Moreover, if ψ_1 is generous, then $w_0 = w_n$.

Let ψ_1, \ldots, ψ_n be a finite sequence of constraints in Ψ, and let w_n be an initial non-empty string value. The idea is to construct, one after the other, string values that satisfy the constraints. During the process, formerly defined string values may need to be rewritten using the left-to-right-rewriting operation defined in Section 3 (so that w_0 may not be equal to the input string w_n). We take advantage of the fact that we have an unbounded supply of “fresh” letters as we operate on the infinite alphabet \mathbb{N}: we can assign string values in such a way that constraints that are satisfied before a rewriting still hold true after a rewriting. Given a string $w \in \mathbb{N}^*$, we let $\max(w)$ be the maximal number occurring as a letter in w if $w \neq \varepsilon$ and $\max(w) = 0$ otherwise.

For $1 \leq i \leq n$, suppose we have already defined string values $w_{i-1}^0, w_{i-1}^1, \ldots, w_{i-1}^{\varepsilon-1}$ such that $\mathbb{N}^* \models \psi_j(w_{j-1}^0, w_{j-1}^1) \forall 1 \leq j < i$, where $w_i^0 = w_n$. Define $M_i = \max(w_i^0, \ldots, w_i^{\varepsilon-1}) + 1$, so that M_i is a “fresh” letter not occurring in any of the already defined string values. Depending on the form of ψ_i, we define $w_i^0, w_i^1, \ldots, w_i^{\varepsilon-1}$ such that $\mathbb{N}^* \models \psi_i(w_{i-1}^0, w_{i-1}^1) \forall 1 \leq j \leq i$. We consider the following cases:

1. ψ_i is of the form $x = y$. Define $w_i^0 = w_{i-1}^{\varepsilon-1}$, and $w_i^j = w_i^{\varepsilon-1}$ for all $0 \leq j < i$.
2. ψ_i is of the form $x \prec_p y \land x \prec_s y$. Define $w_i^0 = w_{i-1}^{\varepsilon-1} \cdot M_i \cdot w_{i-1}^{\varepsilon-1}$, and $w_i^j = w_i^{\varepsilon-1}$ for all $0 \leq j < i$.
3. ψ_i is of the form $x \prec_p y \land x \perp_s y$. Define $w_i^0 = w_{i-1}^{\varepsilon-1} \cdot M_i$, and $w_i^j = w_i^{\varepsilon-1}$ for all $0 \leq j < i$.
4. ψ_i is of the form $x \perp_p y \land x \prec_s y$. Define $w_i^0 = w_{i-1}^{\varepsilon-1} \cdot M_i$, and $w_i^j = w_i^{\varepsilon-1}$ for all $0 \leq j < i$.
5. ψ_i is of the form $y \prec_p x \land y \prec_s x$. Define $w_i^0 = w_{i-1}^{\varepsilon-1}$, and for all $0 \leq j < i$ define $w_i^j = w_{i-1}^{\varepsilon-1} \cdot M_i \cdot w_{i-1}^{\varepsilon-1}$.\[\]
6. ψ_i is of the form $y \prec_p x \land y \perp_s x$. Define $w_i^0 = w_{i-1}^{\varepsilon-1} \cdot M_i$, and for all $0 \leq j < i$ define $w_i^j = w_{i-1}^{\varepsilon-1} \cdot M_i \cdot w_{i-1}^{\varepsilon-1}$.\[\]
7. ψ_i is of the form $y \perp_p x \land y \prec_s x$. Define $w_i^0 = w_{i-1}^{\varepsilon-1} \cdot M_i$, and for all $0 \leq j < i$ define $w_i^j = w_{i-1}^{\varepsilon-1} \cdot M_i \cdot w_{i-1}^{\varepsilon-1}$.
8. ψ_i is of the form $x \perp_p y \land x \perp_s y$. Define $w_i^0 = M_i$ and $w_i^j = w_i^{\varepsilon-1}$ for all $0 \leq j < i$.

Example 6. Let us illustrate the construction with the sequence ψ_1, ψ_2, ψ_3, and $w_n = 3$, where $\psi_1 = \psi_3 = (y \prec_p x \land y \perp_s x)$, and $\psi_2 = (y \prec_p x \land y \prec_s x)$. For $i = 1$, we are in case 6. We have $M_1 = 4$ and obtain $w_1^0 = w_0^0 \cdot M_1 = 34$ and $w_1^0 = w_0^0[3 \leftarrow 343] = 343$. Clearly $\mathbb{N}^* \models \psi_1(w_0^0, w_1^0)$. For $i = 2$, we are in case 5 and define $w_2^0 = w_1^0 = 34$. We further rewrite $w_2^0 = w_1^0[34 \leftarrow 34534] = 34534$, and $w_2^0 = w_0^0[34 \leftarrow 34534] = 345343$. So even after rewriting, we have $\mathbb{N}^* \models \psi_i(w_{i-1}^0, w_i^0)$ for $i = 1, 2$. For $i = 3$, we are again in case 6. We obtain $w_3^0 = 346; w_2^0, w_3^0$, and w_3^0, respectively, are rewritten to 34634, 34634534634, and 346345346343, respectively. All constraints are indeed satisfied.

Let us state an important property of the construction, which will be key for the correctness of the construction.

Invariant 7. For every $0 \leq i \leq n$ and every $0 \leq j \leq i$, w_i^j is not overlapping in w_i^j.

Proof. The proof is by induction on i. The induction base, $i = 0$, is trivial. So assume that the claim holds for all $0 \leq k < i$. We prove it for i. We consider different cases, based on the form of ψ_i. Let $0 \leq j < i$ (the case $j = i$ is trivial).
1. Suppose we are in cases 1, 2, 3, 4, or 8, that is, $w_j^i = w_j^{i-1}$ (no rewriting happens). In case 1, $w_j^i = w_j^{i-1}_i$, we can apply the induction hypothesis to obtain the result. In the remaining four cases, the string w_j^i contains the letter M_i, which, by definition, does not occur in w_j^{i-1}. Hence w_j^i cannot occur at all in w_j^{i-1}.

2. Suppose we are in cases 5, 6, or 7, that is, $w_j^i = w_j^{i-1}_j[w_{i-1}^j \leftarrow w_{i-1}^i \cdot M_i \cdot w_{i-1}^{i-1}]$ (rewriting happens). By induction hypothesis, w_j^{i-1} is not overlapping in w_j^{i-1}. If N is the number of occurrences of w_j^{i-1} in w_j^{i-1}, we can hence write

$$w_j^{i-1} = u_0 \cdot w_j^{i-1}_1 \cdot u_1 \cdot w_j^{i-1}_2 \cdot u_2 \ldots u_{N-1} \cdot w_j^{i-1} \cdot u_N$$

for some $u_0, \ldots, u_N \in \mathbb{N}^*$. By definition,

$$w_j^i = u_0 \cdot w_j^{i-1}_1 \cdot M_i \cdot w_j^{i-1}_2 \cdot u_1 \cdot w_j^{i-1}_3 \cdot M_i \cdot w_j^{i-1}_4 \cdot u_2 \ldots u_{N-1} \cdot M_i \cdot w_j^{i-1} \cdot u_N.$$

In case 5, $w_j^i = w_j^{i-1}_1$, so that w_j^i does not contain M_i by definition. The only way for w_j^i to be overlapping in w_j^{i-1} is in $u_0 \cdot w_j^{i-1}_1$, in $w_j^{i-1}_2 \cdot u_k \cdot w_j^{i-1}_1$ for some $1 \leq k < N$, or in $w_j^{i-1}_i \cdot u_N$. But this would contradict that w_j^{i-1} is not overlapping in w_j^{i-1}. In case 6, $w_j^i = w_j^{i-1}_i \cdot M_i$. By definition, w_j^{i-1} does not contain M_i. Hence the only way for w_j^i to be contained at all in w_j^{i-1} is so that no overlap can occur. The reasoning for case 7, where $w_j^i = M_i \cdot w_j^{i-1}_i$, is analogous.

Let us finally prove the correctness of the construction, that is, for all $1 \leq i \leq n$, we have $\mathbb{N}^* \models \psi_j(w_j^{i-1}, w_j^i)$ for all $1 \leq j \leq i$. The proof is by induction on i. For the base case $i = 1$ observe that w_0^i and w_1^i are defined such that $\mathbb{N}^* \models \psi_1(w_0^i, w_1^i)$. So suppose that the claim holds for all $1 \leq k < i$. We prove it for i. For $j = i$, it is again easy to see that $\mathbb{N}^* \models \psi_i(w_j^{i-1}, w_j^i)$. So let $1 \leq j < i$. By induction hypothesis, we have $\mathbb{N}^* \models \psi_j(w_j^{i-1}, w_j^i)$.

Depending on the form of ψ_i, we either have

- $w_j^{i-1} = w_j^{i-1}_i$ and $w_j^i = w_j^{i-1}_i$, so that we have $\mathbb{N}^* \models \psi_j(w_j^{i-1}, w_j^i)$; or
- $w_j^{i-1} = w_j^{i-1}_1[w_j^{i-1}_1 \leftarrow w_j^{i-1}_2 \cdot M_j \cdot w_j^{i-1}_3]$, and $w_j^i = w_j^{i-1}_1[w_j^{i-1}_1 \leftarrow w_j^{i-1}_2 \cdot M_j \cdot w_j^{i-1}_3]$.

By Invariant 7, w_j^{i-1} is not overlapping in w_j^{i-1}, w_j^{i-1} is not overlapping in w_j^{i-1}, and $w_j^{i-1} \prec w_j^{i-1} \cdot M_j \cdot w_j^{i-1}$, and $w_j^{i-1} \prec w_j^{i-1} \cdot M_j \cdot w_j^{i-1}$. By Lemma 4 we obtain $\mathbb{N}^* \models \psi_j(w_j^{i-1}, w_j^i)$.

Setting $w_j^i = w_0^i$ for all $0 \leq i \leq n$, we are done with the proof of the first claim of Proposition 5.

Let us prove the second claim and suppose that ψ_1 is generous. We prove below that for all $1 \leq i \leq n$, w_j^i contains some letter not occurring in w_0^i. Note that this implies $w_0^0 = w_1^1 = \cdots = w_0^n$. The proof is by induction on i. For the induction base, set $i = 1$. Since ψ_1 is generous, we are in one of the cases 2, 3, 4, or 8. Here, w_1^1 contains M_i, which, by definition, is not occurring in w_0^1, and $w_1^0 = w_0^0$. Hence w_1^1 contains a letter not occurring in w_0^1. For the induction step, suppose the case holds for all $1 \leq j < i$.

We prove it for i. Note that depending on the form of ψ_i, w_i^i is defined as $w_i^{i-1}_i$, a fresh letter M_i, or a composition of these two. For w_0^0, we either have $w_0^0 = w_0^0$, in which case the induction hypothesis and/or freshness of M_i immediately establishes the claim, or we have $w_0^0 = w_0^0[w_0^{i-1} \leftarrow w^{i-1}_i \cdot M_i \cdot w_{i-1}^{i-1}]$. But by induction hypothesis, w_{i-1}^{i-1} contains some letter not occurring in w_{i-1}^{i-1}, so that w_{i-1}^{i-1} cannot occur in w_0^{i-1} and thus $w_0^{i-1}[w_{i-1}^{i-1} \leftarrow w_{i-1}^{i-1} \cdot M_i \cdot w_{i-1}^{i-1}] = w_0^{i-1}$. Hence w_i^i contains some letter not occurring in w_0^i.

This finishes the proof of Proposition 5.

The (control-state) reachability problem for constraint automata is the problem to decide, given a constraint automaton $\mathcal{A} = (\mathcal{L}, \ell_{\text{in}}, \mathcal{L}_{\text{acc}}, E)$ over \mathbb{N}^* and some target location $\ell \in \mathcal{L}$, whether there exists a run from (ℓ_{in}, w_0) to (ℓ, w), for some $w_0, w \in \mathbb{N}^*$.

MFCS 2022
Corollary 8. The reachability problem for constraint automata is NL-complete.

Proof. For the upper bound, it suffices to decide whether there exists a path from ℓ_n to ℓ, which can be done in NL. If no such path exists, then there exists no run from (ℓ_n, w_0) to (ℓ, w) for some $w_0, w \in N^*$. If such a path, say $\ell_0 \xrightarrow{\psi_1} \cdots \xrightarrow{\psi_n} \ell_n$, exists, we use Proposition 5 with ψ_1, \ldots, ψ_n and some $w_n \in N^+$ to obtain $w_0, w_1, \ldots, w_n \in N^+$ such that $N^* \models \psi_i(w_{i-1}, w_i)$ for all $1 \leq i \leq n$. Then $(\ell_0, w_0) \xrightarrow{\psi_1} \cdots \xrightarrow{\psi_n} (\ell_n, w_n)$ is a finite run of A. A reduction from the reachability problem for finite directed graphs yields the lower bound.

4.2 Characterization for Büchi-accepting Runs

As mentioned above, there are infinite sequences of constraints ψ_1, ψ_2, \ldots for which it may not be possible to find $w_0, w_1, w_2 \ldots$ such that $N^* \models \psi(w_{i-1}, w_i)$ for all $i \geq 1$. In the following proposition, we give a decidable characterization for when an infinite path of A can be completed with string values to obtain an infinite run of A.

Proposition 9. The following three statements are equivalent:

1. There exists a Büchi-accepting run of A.
2. There exists an infinite path π of A satisfying the following conditions:
 a. π starts in ℓ_n,
 b. π contains infinitely many occurrences of ℓ_{acc}, for some $\ell_{\text{acc}} \in L_{\text{acc}}$, and
 c. if π contains only finitely many generous constraints, then π contains only finitely many reducing constraints.
3. There exists a path from ℓ_n to ℓ_{acc}, for some $\ell_{\text{acc}} \in L_{\text{acc}}$, and one of the following holds:
 a. there exists some stable cycle starting in ℓ_{acc}, or
 b. there exists some generically reducing cycle starting in ℓ_{acc}.

Proof. For the proof from 1. to 2., let $(\ell_0, w_0) \xrightarrow{\psi_1} (\ell_1, w_1) \xrightarrow{\psi_2} \cdots$ be a Büchi-accepting run of A. Define π to be the infinite path $\ell_0 \xrightarrow{\psi_1} \ell_1 \xrightarrow{\psi_2} \cdots$. Clearly, π satisfies conditions 2.a and 2.b: we prove that condition 2.c also holds. Towards contradiction, suppose that π contains finitely many generous constraints but infinitely many reducing constraints. Then there exists some $i \geq 1$ such that ψ_j is reducing or of the form $x = y$, for all $j \geq i$. Note that this implies $|w_j| \geq |w_{j+1}|$ for all $j \geq i$. Moreover, since there are infinitely many reducing constraints, there exists an infinite sequence $i \leq i_1 < i_2 < i_3 \ldots$ of indices such that ψ_{i_j} is reducing and hence $|w_{i_j}| > |w_{i_j+1}|$. Since $|w_j|$ is finite, this leads to a contradiction.

For the proof from 2. to 1., let $\pi = \ell_0 \xrightarrow{\psi_1} \ell_1 \xrightarrow{\psi_2} \cdots$ be an infinite path of A satisfying the three conditions stated in 2. Using condition 2.c, we prove that we can complete π with string values to yield an infinite run of A; that this run is Büchi-accepting, follows by conditions 2.a and 2.b. We distinguish two cases.

Suppose π contains only finitely many generous constraints. By condition 2.c, π contains only finitely many reducing constraints. Then there exists some $i \geq 0$ such that ψ_j is of the form $x = y$ for all $j > i$. Use Proposition 5 with the sequence ψ_1, \ldots, ψ_i and $w_{n_0} = 0$ to obtain string values $w_0, w_1, \ldots, w_i \in N^+$ such that $N^* \models \psi_j(w_{j-1}, w_j)$ for all $1 \leq j < i$. Then $(\ell_0, w_0) \xrightarrow{\psi_1} (\ell_1, w_1) \xrightarrow{\psi_2} \cdots \xrightarrow{\psi_i} (\ell_i, w_i) \xrightarrow{\psi_{i+1}} (\ell_{i+1}, w_{i+1}) \xrightarrow{\psi_{i+2}} (\ell_{i+2}, w_{i+2}) \xrightarrow{\psi_{i+3}} \cdots$ is an infinite run of A.

Suppose that π contains infinitely many generous constraints. Let $i_1, i_2, i_3 \ldots$ be the sequence of all $j \geq 1$ such that ψ_j is generous. Use Proposition 5 with the sequence $\psi_1, \ldots, \psi_{i_k-1}$ and $w_{n_0} = 0$ to obtain string values $w_0, w_1, \ldots, w_{i_k-1} \in N^+$ such that $N^* \models \psi_k(w_{k-1}, w_k)$ for all $1 \leq k < w_{i_k-1}$. For every $j \geq 1$, use Proposition 5 with the
sequence \(\psi_{i_1}, \ldots, \psi_{i_{j+1}} \) and the initial string value \(w^j_{i_1} := w_{i_1} \) to obtain string values \(w_{i_{j-1}}, w_{i_j}, \ldots, w_{i_{j+1}} \in \mathbb{N}^* \) such that \(\mathbb{N}^* \models \psi_k(w_{i_{j-1}}, w_k) \) for all \(i_j \leq k < i_{j+1} - 1 \). By the second claim of Proposition 5, since \(\psi_{i_j} \) in \(\pi_j \) is generous, the initial string value \(w_{i_j} \) is never rewritten. Hence \(\Pi_{i \geq 0} \rho_i \) is an infinite run of \(A \), where \(\rho_0 := (\ell_0, w_0) \xrightarrow{\psi_1} (\ell_1, w_1) \xrightarrow{\psi_2} \ldots \xrightarrow{\psi_{i_j-1}} (\ell_{i_j-1}, w_{i_j-1}) \) and \(\rho_j := (\ell_{i_j-1}, w_{i_j-1}) \xrightarrow{\psi_{i_j}} (\ell_{i_j}, w_{i_j}) \xrightarrow{\psi_{i_j+1}} \ldots \xrightarrow{\psi_{i_{j+1} - 1}} (\ell_{i_{j+1}-1}, w_{i_{j+1}-1}) \) for all \(j \geq 1 \).

For the proof from 2. to 3., let \(\pi = \ell_0 \xrightarrow{\psi_1} \ell_1 \xrightarrow{\psi_2} \ldots \) be an infinite path of \(A \) satisfying the three conditions stated in 2. We distinguish two cases:

- Suppose \(\pi \) contains only finitely many generous constraints. By condition 2.c, \(\pi \) contains only finitely many reducing constraints. Then there exists some \(i \geq 0 \) such that \(\psi_i \) is of the form \(x = y \) for all \(j > i \). By condition 2.b, there are infinitely many indices \(j > i \) such that \(\ell_j = \ell \) is generous. Pick two such indices \(j < k \) such that \(\ell_j = \ell_k = \ell \). We have \(\ell_0 = \ell \) by condition 2.a, so that clearly, the path \(\ell_0 \xrightarrow{\psi_j} \ldots \xrightarrow{\psi_k} \ell \) is a path from \(\ell \) to \(\ell \) and the path \(\ell_j \xrightarrow{\psi_{j+1}} \ldots \xrightarrow{\psi_{k-1}} \ell_k \) is a cycle starting in \(\ell \).

- Suppose \(\pi \) contains infinitely many generous constraints. By condition 2.b, there are infinitely many indices \(i \geq 0 \) such that \(\ell_i = \ell \) is generous, so that we can clearly pick three indices \(i, j, k \) such that \(0 \leq j < k \leq n \), \(\ell_j = \ell_k = \ell \), and \(\psi' \) is generous. We have \(\ell_0 = \ell \) by condition 2.a, so that clearly, the path \(\ell_0 \xrightarrow{\psi_1} \ldots \xrightarrow{\psi_j} \ell_j \) is a path from \(\ell \) to \(\ell \) and the path \(\ell_j \xrightarrow{\psi_{j+1}} \ldots \xrightarrow{\psi_{k-1}} \ell_k \) is a cycle starting in \(\ell \).

For the proof from 3. to 2., suppose \(\tau_{\pi_{in}} \) is a path from \(\ell_{\pi_{in}} \) to \(\ell_{\pi_{acc}} \) for some accepting location \(\ell_{\pi_{acc}} \in \mathcal{L}_{\pi_{acc}} \), and \(\tau_{\pi_{cyc}} \) is a cycle starting in \(\ell_{\pi_{acc}} \). Clearly \(\tau_{\pi_{in}} \cdot (\tau_{\pi_{cyc}})^* \) is an infinite path of \(A \) satisfying conditions 2.a and 2.b. If \(\tau_{\pi_{cyc}} \) is stable, then this path contains only finitely many reducing constraints. If \(\tau_{\pi_{cyc}} \) is generous, then this path contains infinitely many generous constraints. Hence, condition 2.c holds, too.

Theorem 10. The emptiness problem for constraint automata over \(\mathbb{N}^* \) is NL-complete.

Proof. For the upper bound, by Proposition 9, it suffices to decide whether there exists some \(\ell_{\pi_{acc}} \in \mathcal{L}_{\pi_{acc}} \) such that there exists a path from \(\ell_{\pi_{in}} \) to \(\ell_{\pi_{acc}} \), and one of the following two conditions hold:

- there exists a stable cycle starting in \(\ell_{\pi_{acc}} \), or
- there exists some generous transition \((\ell, \psi(x, y), \ell') \in E\) such that there exists a path from \(\ell_{\pi_{acc}} \) to \(\ell \), and there exists a path from \(\ell' \) to \(\ell_{\pi_{acc}} \).

All conditions can be checked in NL. A reduction from the emptiness problem for Büchi automata yields the lower bound.

5 Further Results

5.1 Testing Equality with the Empty String

We extend the signature \(\sigma^{ps} \) by a new symbol \(= \), which is interpreted as equality with the empty string. This enables us to test whether the string value equals the empty string – very similar to testing whether the value of a counter in a counter automaton is equal to zero, or whether the stack of a pushdown automaton is empty. Let us use \(\sigma^{ps} \) to denote this signature. We can give a decidable characterization for Büchi-accepting runs of \(A \) and hence obtain:
Theorem 11. The emptiness problem for constraint automata over the extended signature $\sigma^{\text{ps}}\text{ with domain } \mathbb{N}^*$ is NL-complete.

5.2 Emptiness for Constraint Automata over Σ^*

The decision procedure for solving the emptiness problem for constraint automata over \mathbb{N}^* relies heavily on the existence of “fresh” letters, of which there are unboundedly many in \mathbb{N}. We can clearly not apply this algorithm if the constraint automaton is over the structure Σ^*, where Σ is a finite alphabet.

Let σ be a relational signature, and let \mathcal{D}_1 and \mathcal{D}_2 be two σ-structures. A mapping $h : \mathcal{D}_1 \rightarrow \mathcal{D}_2$ is a σ-embedding if h is injective, and for all symbols R of arity k, and all $a_1, \ldots, a_k \in \mathcal{D}_1$, $R^{\mathcal{D}_1}(a_1, \ldots, a_k)$ holds if, and only if, $R^{\mathcal{D}_2}(h(a_1), \ldots, h(a_k))$.

Let $\Sigma = \{a, b\}$. Define the mapping $g : \mathbb{N} \rightarrow \Sigma$ by $n \mapsto ab^n a$ for all $n \in \mathbb{N}$, and let $h : \mathbb{N}^* \rightarrow \Sigma^*$ be its homomorphic extension, that is, $h(n_1 \ldots n_k) = g(n_1) \ldots g(n_k)$ for all $n_1, \ldots, n_k \in \mathbb{N}$, and $h(\varepsilon) = \varepsilon$. One can easily see that h is a σ^{ps}-embedding. We can conclude that a constraint automaton over Σ^* is a positive instance of the emptiness problem iff the same constraint automaton over \mathbb{N}^* is a positive instance; thus:

Theorem 12. The emptiness problem for constraint automata over the extended signature $\sigma^{\text{ps}}\text{ with domain } \Sigma^*$ is NL-complete.

5.3 Emptiness for Single-Register Automata over A^*

Register automata (also known as finite-memory automata) [17, 13, 24] are a very popular computational model for the analysis of data languages. Like constraint automata, register automata are parameterized by a σ-structure; in contrast to constraint automata, register automata are “fed” with some input data word, that is a finite or infinite sequence of data values in the domain of the σ-structure. The data language accepted by such an automaton is the set of input data words for which there is an accepting run. Different to the transitions in constraint automata, the transitions of register automata are labelled with constraints of the form $r \models d$, where r corresponds to one of finitely many registers of the automaton, d corresponds to the current datum of the input data word, and \models is a binary relation in σ. Further, the current input data value can be stored into one of the registers of the automaton after a transition has been taken.

So far, register automata have mostly been studied for the structure $(\mathbb{N}; =)$ and linear dense orders like $(\mathbb{Q}; <, =)$ [17, 24, 13, 4, 8]. The emptiness problem for register automata is decidable and PSPACE-complete (NL-complete if only one register is used) [13]; the decision procedure relies on a finite abstraction of the infinite state space induced by the input register automaton. This abstraction cannot be applied to register automata over σ^{ps}-structures Σ^* and \mathbb{N}^*.

A register automaton with a single register that stores the current input datum in every transition into the register can actually be regarded as a constraint automaton as defined in Section 2: the current value of the register r corresponds to the value of the variable x, and the input datum d corresponds to the value of the variable y at the next position in a run. However, it might be the case that some of the transitions in the register automaton may compare the value of the register without storing the input datum into the register. There is no direct way to translate this into constraint automata as defined above. However, an easy extension of our model where we compare x with y, but then set the value of y to x, would make such a translation possible. It can be easily seen that this extension does not cause any problems when applying the developed decision procedure for solving the emptiness problem, so that we can conclude:
Theorem 13. The emptiness problem for single-register automata over the extended signature \(\sigma_{\text{ps} \varepsilon} \) (with domains \(\mathbb{N}^* \) or \(\Sigma^* \)) is NL-complete.

5.4 Constraint LTL with a Single Variable over \(A^* \)

Our result for constraint automata can be used to partially answer the question raised by Demri and Deters [9] concerning the decidability status for \(\sigma_{\text{ps} \varepsilon} \). More detailed, we can prove PSPACE-completeness for the fragment of CLTL that only uses a single variable.

Let \(\mathbb{P} \) be a countably infinite set of propositional variables. The set of formulas in \(\text{CLTL}_1 \) is defined by the following grammar

\[
\varphi ::= p \mid \psi \mid \neg \varphi \mid \varphi \lor \varphi \mid X \varphi \mid \varphi U \varphi,
\]

where \(p \in \mathbb{P} \) and \(\psi \in \Psi \). \(\text{CLTL}_1 \) formulas are evaluated over data words over \(2^\mathbb{P} \) and \(A^* \).

Formally, let \(u = (a_1, w_1)(a_2, w_2) \ldots \) and \(i \geq 1 \). The satisfaction relation \(\models \) is defined as follows:

\[
\begin{align*}
(u, i) \models p & \iff p \in a_i \\
(u, i) \models \psi & \iff A^* \models \psi(w_i, w_{i+1}) \\
(u, i) \models \neg \varphi & \iff \text{not}(u, i) \models \varphi \\
(u, i) \models \varphi_1 \lor \varphi_2 & \iff (u, i) \models \varphi_1 \text{ or } (u, i) \models \varphi_2 \\
(u, i) \models X \varphi & \iff (u, i + 1) \models \varphi \\
(u, i) \models \varphi_1 U \varphi_2 & \iff \exists j \geq i(u, j) \models \varphi_2, \forall i \leq k < j(u, k) \models \varphi_1
\end{align*}
\]

We define \(L(\varphi) = \{ u \in (2^\mathbb{P} \times A^*)^\omega \mid (u, 1) \models \varphi \} \). Following the standard translation from LTL to Büchi automata by Vardi and Wolper [29], one can construct from every formula \(\varphi \) a constraint automaton \(A_\varphi \) such that \(L(A_\varphi) \) corresponds to \(L(\varphi) \) (cf. [14]). In other words, deciding the satisfiability of \(\varphi \) can be reduced to deciding the non-emptiness of \(L(A_\varphi) \), so that we obtain the following result.

Theorem 14. The satisfiability problem for \(\text{CLTL}_1 \) over the extended signature \(\sigma_{\text{ps} \varepsilon} \) (with domains \(\mathbb{N}^* \) or \(\Sigma^* \)) is PSPACE-complete.

References

