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Abstract
Due to the increasing prevalence and relevance of geo-spatial data in the age of data science,
Geographic Information Systems are enjoying wider interdisciplinary adoption by communities
outside of GIScience. However, properly interpreting and analysing geo-spatial information is not
a trivial task due to knowledge barriers. There is a need for a trans-disciplinary framework for
sharing specialized geographical knowledge and expertise to overcome these barriers. The core
concepts of spatial information were proposed as such a conceptual framework. These concepts,
such as object and field, were proposed as cognitive lenses that can simplify understanding of and
guide the processing of spatial information. However, there is a distinct lack of empirical evidence
for the existence of such concepts in the human mind or whether such concepts can be indeed
useful. In this study, we have explored for such empirical evidence using behavioral experiments
with human participants. The experiment adopted a contrast model to investigate whether the
participants can semantically distinguish between the object and field core concepts visualized as
maps. The statistically significant positive results offer evidence supporting the existence of the two
concepts or cognitive concepts closely resembling them. This gives credibility to the core concepts of
spatial information as tools for sharing, teaching, or even automating the process of geographical
information processing.
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1 Introduction

Going beyond manipulating map layouts and data formats, concepts of spatial information
enable us to effectively handle maps by accounting for a map’s semantics. This, in turn,
allows us to decide on analytic methods, answer questions, and make decisions with maps.
For example, we can use a map of height contour lines to assess the slope and aspect of the
terrain in order to assess the potential for solar energy. Yet, the way that maps represent
these concepts is rather indirect. Despite what one might think, maps do not wear their
content on their sleeves. In the solar energy example, the contour map may be encoded as
vector polygons and might be visualized in terms of graded colors, just like a choropleth
map. Yet, in contrast to a choropleth map, human map interpreters need to conceive of the
contour lines not as boundaries of objects, but rather as boundaries of height intervals. Thus,
the polygon map really represents a spatial height field broken down into intervals, and not a
collection of objects. This conceptualization of the map’s information content does not follow
from the way it is encoded, and thus requires a skilled human interpreter.

Since the concepts represented by maps are usually not (fully) explicit in a map, empirical
investigation is needed to find out which conceptual distinctions are used and which role they
play in map interpretation and map usage. Spatial concepts have been found to play a role
early in the development of young children [5, 8, 9]. One example is the concept of (relative)
location, which is a primary concept in spatial cognition and orientation [22, 10] and is
also underlying spatial reference systems. Yet for interpreting maps, further concepts are
required. Research in human cognition found that space is only one out of four main systems
of core knowledge acquired early in life, including also objects, actions and numbers [27].
Naive Geography set out to study cognitive models of the common-sense geographic world,
including topology, metrics, as well as discrete and continuous spatial entities [6]. However,
potential concepts underlying Geography abound [10], and it remained unclear which ones
should be regarded as essential for geographic information. More recently, the core concepts
of spatial information were suggested as a concise model of different conceptualizations of
the environment in this context [20], forming a basis for trans-disciplinary spatial thinking2.
They include objects (e.g. buildings or administrative units), fields (e.g. temperature), events
(e.g. earthquakes), and networks (e.g. commuter flows). Related concepts of measurement
(such as extensive and intensive amounts and measurement levels) have been suggested
earlier in theories about Geographic Information Systems (GIS) [3], and were recently used
together with core concepts to describe spatial data models on a conceptual level (e.g. [25])
to automate the answering of geographic questions and the synthesis of workflows [19].

Although this provides a kind of indirect evidence for the importance of concepts in
handling spatial information, there is still a lack of primary empirical evidence for such
concepts as cognitive tools for interpreting and using maps3. Hence, it is still unclear which
concepts precisely should serve as a transdisciplinary framework [20] for sharing geographic

2 Concepts are regarded as trans-disciplinary because the underlying (GIS) methods are used across many
disciplines, just like in Statistics. For a justification of core concepts in this respect, cf. [20].

3 The fact that a concept is part of documented knowledge does not yet mean it is used effectively.
Cognitive research is required to determine this [27].
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knowledge. Furthermore, it is also unclear whether information systems that utilize such
concepts (e.g. [26, 21]) reflect distinctions that mirror human cognition. Therefore, the goal
of this study is to collect such evidence. Our main research question is:

Are there mental skills that allow users to distinguish maps on a conceptual level that, at
least partially, corresponds to the core concepts of spatial information?

Knowing the definition of concepts does not imply the ability to effectively use them for
spatial analysis. For example, human users may still have difficulty differentiating between the
field and object interpretations despite knowing the conceptual difference. This leads to the
sub-question R1 below. Next, the visual perception of maps can influence the interpretation
of spatial data. Spatial datasets representing the same phenomenon may still invoke different
interpretations due to differences in symbology or geometry (e.g. point vs lines). Sub-question
R2 should account for this possible visual interference in our study. Finally, the ability to
distinguish concepts and to effectively use them for interpreting maps may be an acquired
skill that develops with the level of experience. This concern leads to sub-question R3.

RQ1: To what extent can users effectively distinguish maps that are attributed to different
core concepts?
RQ2: To what extent is the ability to distinguish conceptually different maps dependent
on visual geometric properties?
RQ3: To what extent is the ability to distinguish conceptually different maps dependent
on a user’s level of expertise?

2 Related work

To better understand geographic information (GI) and its applications, authors have suggested
conceptual frameworks to categorize GI-tools and operations [11, 12, 1, 2], syntactic data
types [11, 12] and representation models [20, 21, 25, 13, 18]. Kuhn’s core concepts of spatial
information [20, 21] are an example of the last group and the focus of this study. The
core concepts were used in the development of web-based ontologies [25], for pedagogical
purposes [7, 17] and for automatic question-answering [30]. Multiple scholars, among
them Kuhn himself, argue for the usefulness of the core concepts for the transdisciplinary
communication and teaching of GI-knowledge. However, only Ishikawa [17] so far used the
core concepts for the evaluation of empirical data.

Table 1 Semantically distinct dataset types based on the core content concept object and field
and geometry combinations. The terms in brackets are abbreviations.

Point Line Non-tessellated
polygon

Tessellated polygon

Object Point object
(PO)

Line object
(LO)

Region object (RO) Lattice
(LA)

Lattice
(LA)

Square lat-
tice (SL)

Field Point meas-
ure (PM)

Line meas-
ure (LM)

Region patch (RP) Contour
(CO)

Coverage
(COV)

Raster
field (RF)

Group PO-PM LO-LM RO-RP LA-CO LA-COV SL-RF

In the latest iteration [21], the core concepts framework includes five content concepts
(location, field, object, network, and event) and two quality concepts (granularity and accuracy).
The quality concepts are of less relevance to this study and, therefore, ignored. Location
denotes the relation of some spatial phenomenon with its space or ’grounds’. A Field measures
time-varying spatial phenomena “...that have a scalar or vector attribute everywhere in a
space of interest, for example, air temperatures on the Earth’s surface” [20, p. 2272]. Objects

COSIT 2022
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describe spatially bounded individuals with identity and spatial and thematic properties that
vary in time. Events have temporal boundaries (e.g. an earthquake). Finally, a network is a
binary relation between objects, such as a road network or import/export trade flows.

The content concepts are generally not mutually exclusive because they are dependent
on each other and the interpretation of a map therefore can be ambiguous. For example,
location is an orthogonal concept used to represent the spatial aspect of every other core
concept. It is also a relational concept often defined relative to object. Network is a relation
between pairs of objects [24], while event is a temporal phenomenon in which objects or
fields can participate. This naturally leads to variations in the interpretation of a given
map. Furthermore, in which way the important concepts of amount and measurement relate
to core concepts is still an open question [28]. However, one and the same represented
phenomenon is usually not interpreted both as object and field at the same time. That is,
the interpretation of an entity as object usually excludes parallel interpretation of the same
as field. As mentioned later, this independence is important and makes object and field the
main focus of our study.

Figure 1 Examples for each dataset type listed in Table 1. The letters in the top-left corners are
the abbreviations for the dataset types.

In a map, a given concept can be represented by different types of geometries: points,
lines, and polygons (vector) or tessellated squares (raster). When polygon datasets are
tessellated, they are covering the entire extent of the dataset without any gaps. Furthermore,
different conceptualizations of the same geometry express different spatial semantics [25].
In Table 1, we suggested a way to capture the resulting diversity of dataset interpretations
based on the combinations of geometries and the object and field concepts. Different semantic
interpretations of the same geometry type are summarized into groups (see table columns).
Example maps for these dataset types are shown in Fig. 1. Points and lines can represent fields
(e.g. pointwise temperature measurements; contour lines) as well as objects (intersections;
roads). We furthermore distinguish tessellated datasets that represent objects, called lattices
(e.g. administrative units), from ones representing fields. An example of the latter is contour
polygon maps which depict a strictly ordered value gradient of a field [14]. Following [25], we
also gave coverages (e.g. landcover data) and patches (non-tessellated regions of homogeneous
landuse) a field interpretation. This allowed us to distinguish landcover maps that are
self-similar and thus can be dissected arbitrarily for spatial analysis from objects with spatial
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unity4. Raster datasets predominantly represent fields. However, we consider a square
lattice as a particular form of object tessellation where each polygon is squarely shaped and
measures some amount, e.g., of population.

3 Methodology

3.1 Theoretical framework
As discussed earlier, the core concepts can be used to interpret questions, datasets, and
analytical tools. This study focuses on dataset interpretation as the simplest form of the three.
Spatial datasets can be visualized as maps, which are easier to interpret even for participants
who do not have formal GIS training. This choice makes the experiment accessible to a
wide range of participants with varying GIS experiences. Furthermore, the scope of the
experiment is focused on object and field core concepts only. The two content concepts are
often mutually exclusive, limiting the possibility of concurrent interpretation of the same
map. They are also the most prevalent core concepts occurring in spatial datasets. Hence,
these two concepts are most likely to result in observable effects during the experiment.

Figure 2 An example triplet of maps (LA-CO). The left-most map is city districts as tessellated
objects. The other two maps visualize noise and wind-speed fields as contour maps.

As an experiment framework, we adopt a contrast model for exploring semantic simil-
arity [15]. The basic experiment setup is to display to a participant a set of three maps
(see Fig. 2). Two maps (the contrast maps) represent the same concept while the remaining
map (the odd map) represents a different concept in our interpretation. For example, three
maps can visualize two object datasets and one field dataset, or vice versa. Each map
is accompanied by a short description of the topic and the attribute of the dataset. The
participants are asked to compare the three maps and identify the one that is semantically
at odds with the two others. We hypothesize that (1) participants need to rely on some form
of spatial cognitive concepts to identify the odd dataset, and (2) these cognitive concepts
correspond, to some degree, to our distinction of field and object core concepts.

Since core concepts are, as explained above, largely agnostic to the geometry types,
participants should be able to differentiate between object and field equally well for all
geometry types. In our experiment, a triplet contrasts the types from the same column
of Table 1 but not the types across the columns. For example, a point object dataset is
contrasted against point measure datasets only and not against any other dataset types.
Similarly, a square lattice is contrasted against a raster field due to geometrical similarities
when visualized as maps. This restriction limits geometric differences that may interfere

4 A more nuanced alternative would be to interpret coverage regions and patches as particular amount
objects, and distinguish them from objects with unity. However, since the amount concept is still under
development, we remained with the simpler interpretation here. For the purpose of this paper, the
relevant conceptual distinctions can still be drawn.

COSIT 2022
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with the interpretation of semantic differences. Overall, Table 1 lists six possible contrasts
of field and object, further referred to as contrast groups. The last row lists the names of
the contrast groups. Each contrast group has two possible combinations for a triplet (two
objects and one field or vice versa) resulting in 12 possible triplets in total.

3.2 Dataset compilation and annotation
Three sources provided geo-spatial datasets. PDOK (https://www.pdok.nl/datasets) is
an open platform for accessing the geodata of the Dutch government. Nationaal Georegister
(https://nationaalgeoregister.nl) is the data portal of the Dutch National Geo-registry.
Maps Amsterdam (https://maps.amsterdam.nl/open_geodat) is the open geodata portal
of Amsterdam municipality. These sources follow the same regulations for sharing open data
thereby ensuring the comparable quality of datasets. All collected datasets were manually
annotated by the authors of this study. This preliminary annotation involved assigning to
each dataset one of the types from Table 1. The preliminary annotations were then finalized
by discussing and resolving any annotation disagreements between the annotators. The
main source of disagreement was the datasets with multiple attributes corresponding to
different core concepts. In such cases, only one attribute was picked as being representative
of the dataset. Subsequently, the selected attribute was included in the description of the
corresponding map (see Fig. 1 and Fig. 2 for example descriptions). From the collected
pool, we selected 36 datasets to be used in our experiment. Except for Lattice, three distinct
datasets were selected for each dataset type. Six distinct datasets were selected for Lattice
since it is contrasted against two other field types.

3.3 Survey design
We have used two online survey platforms to collect responses, Google Surveys (https:
//surveys.google.com) and Qualtrics (https://www.qualtrics.com). Google Surveys
was used to survey random participants from the general public, while Qualtrics was used to
survey a controlled selection of participants who work or study in Geography and GIScience
domains. Each survey mainly consisted of a set of questions. In each question, a participant
had to select an odd map when presented with a distinct triplet of maps.

Table 2 Combining Region Object (RO) and Region Patch (RP) datasets into distinct triplets.

Question Id Odd dataset Contrast dataset 1 Contrast dataset 2
Q13 RO1 RP1 RP2
Q14 RO2 RP2 RP3
Q15 RO3 RP3 RP1
Q16 RP1 RO2 RO1
Q17 RP2 RO3 RO2
Q18 RP3 RO1 RO3

The questions were generated with the 36 annotated datasets. Each contrast group has
six datasets (three for field and object each), which were used to generate six questions each
with a unique triplet combination. As an example, Table 2 demonstrates how the questions
were generated for the RO-RP group. Three rules were used to assign the datasets to the
triplets. First, each dataset was used as the odd one in one triplet only. Second, each dataset
was used as a contrasting dataset in exactly two triplets. Third, the same combination of
two contrasting datasets occurred in one triplet only. These three rules ensure that all six

https://www.pdok.nl/datasets
https://nationaalgeoregister.nl
https://maps.amsterdam.nl/open_geodat
https://surveys.google.com
https://surveys.google.com
https://www.qualtrics.com
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datasets occur equally often in different roles while preventing the repetition of the same
combination. This design ensures that no bias based on presentation frequency is introduced
to participants. This design is used to generated the questions for the other contrast groups.

As discussed earlier (Fig. 2), the datasets were visualized as maps in the questions. The
visual style was homogeneous across all maps except for Raster Field and Square Lattice.
The polygon datasets were visualized with the same green shading and black border. The
line datasets were visualized with lines of the same green color and width. Similarly, the
point datasets were depicted with circles of the same size, green shading color, and black
border color. Raster Field and Square Lattice datasets were visualized with color gradients
that did not repeat between the datasets.

3.3.1 Design for the survey on Google Surveys
The free version of Google Surveys allows 10 questions per survey. Hence, we used only one
contrast group in the survey. The survey started with a single-choice question: “Categorize
your expertise with Geographic Information Systems (GIS)”. The options were “Laymen:
never used GIS”, “Beginner: can use basic GIS functions”, “Trained: formally trained by
a GIS course”, and “Expert: used GIS for 5 years or more”. Except for Laymen, the three
expertise categories were reused from an existing validated questionnaire on GIS [31]. Next,
the survey presented the six questions from the RO-RP contrast group. The order of these
questions was randomized for the survey but not per participant (not supported by the
platform). Each of the six questions was accompanied with the instruction text: “Which one
of the three spatial datasets is more different from the two others in terms of spatial analyses
that can be done on it.” The final 8th question asked if participants were familiar with
the core concepts of spatial information. Google Surveys was arranged to collect responses
from 100 people. In total, 1205 random people from the United States were screened for
the survey. 1055 participants reported as being Laymen and were screened out. Of the
remaining 150 participants, 101 participants completed the survey. Another 12 participants
responded as being familiar with the core concepts and were also filtered out. The responses
from the remaining 89 participants (further referred to as the general cohort) were analyzed.
The focus on non-laymen participants increases the chances of finding a positive effect and
maximizes the information gain in this uncharted territory. In case of absence of a positive
effect, we can safely assume that a laymen group will also not perform well.

3.3.2 Design for the survey on Qualtrics
The survey on Qualtrics started with informed consent, an agreement to which was necessary
for further progression. The consent was followed by questions about the age, gender, and
GIS expertise level of the participants. The expertise question used the same four options as
in Google Surveys. Next, instruction on how to answer the contrast questions was shown
to the participants. Finally, the participants were shown 18 questions from three randomly
selected contrasts groups. The order of the 18 questions and the order of three maps within
each question were also randomized per participant. We targeted two cohorts of participants
differing in level of GIS expertise. The first cohort, the student cohort, included 61 students
who were either Bachelor students in a Geo-Information minor program or attending our
Applied Data Science MSc course focusing on spatial data analysis. As part of their study,
the students were taught the core concepts. We selected the students who were not yet
introduced to the core concepts. The second cohort, the skilled cohort, included participants
who were manually evaluated by the investigators to have sufficient skills in Geography

COSIT 2022
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and GIScience. These participants had to have a completed Master’s degree in a relevant
domain and actively practice in either academia or industry. Of the 40 invited participants,
18 participants completed the survey in the skilled cohort.

4 Results

4.1 Comparing responses in the RO-RP contrast group

Due to randomization, 29 and 9 participants from the student and skilled cohorts respectively
answered the six questions from the RO-RP contrast group. These responses were compared
with the responses from the general cohort with the 89 participants.
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Figure 3 The left-most graph depicts means with standard errors of correct questions answered
by the participants in each cohort. The remaining three graphs depict distributions of participants
in three cohort according to the number of correct responses.
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Figure 4 Accuracy for RO-RP individual questions and overall accuracy for the three cohorts.
The solid red line depict expected accuracy based on a random choice. The dashed red lines depict
5% thresholds around the random choice probability.

The mean accuracies and the three accuracy distributions in Fig. 3 suggest the general and
student cohorts have similar performances and the skilled cohort shows a better performance.
The three distributions were analyzed for identicality with a Kruskal Wallis Test. The test
is an alternative to one-way ANOVA for cases with non-normal distributions and uneven
sample sizes. The test indicates a significant difference between the three distributions:
H(2) = 8.25, p = .02. We did a follow-up pairwise comparison of the distributions with the
Dunn’s test with the Holm–Bonferroni correction for multiple testing. As suspected, the
general and student cohorts are not significantly different (p = 0.15, adjusted p = 0.46).
The skilled cohort is significantly more accurate than the student cohort (p < 0.01, adjusted

p = 0.01). The skilled cohort is not significantly different from the general cohort with the
Holm–Bonferroni correction (adjusted p = 0.07) but is significantly more accurate without
the adjustment (p = 0.02). Therefore, we suspect there may have been a significant difference
between the two cohorts if the sample size for the skilled cohort was bigger.
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Table 3 p-value from two-sided exact binomial tests of accuracies in Fig. 4 for significant
difference from the expected probability of 0.33 from random choice. The correct rows list the
numbers of correct responses. The colored cells indicate significant or near significant p-values.

Q13 Q14 Q15 Q16 Q17 Q18

general (N = 89) correct 18 18 24 23 17 52
p-value 0.01 0.01 0.26 0.18 0.01 < 0.01

student (N = 29) correct 7 6 3 6 5 17
p-value 0.43 0.17 0.01 0.17 0.08 0.01

skilled (N = 9) correct 5 2 2 3 6 7
p-value 0.17 0.73 0.73 1 0.07 0.01

We have calculated overall accuracies from the pooled responses of all participants for
all questions and applied exact binomial tests against the success rate of 33% from the
random choice strategy. The results are 28% (N = 534, p = 0.03), 25% (N = 174, p = 0.03),
and 46% (N = 54, p = 0.04) for the general, student, and skilled cohorts respectively. The
significant results indicate that the participants use specific strategies instead of random
guesses. However, both general and student cohorts use ineffective strategies with their
performance being below the chance threshold, and only the skilled cohort uses strategies
that are more effective than random guessing. Finally, Fig. 4 depicts accuracies for individual
questions and by cohorts. Table 3 lists the results of exact binomial tests of these accuracies
against the chance probabilities. For the general and student cohorts, the accuracies are either
below or at the chance level except for question Q18. The accuracies are exceptionally and
significantly high for Q18 (RO-RP) in all three cohorts. We explore potential explanations
for these results in the Discussion section.

4.2 Comparing performance across the six contrast groups
Out of 18 questions, on average, 8.9 (SD = 2.6) and 10.9 (SD = 2.7) questions are answered
correctly in the student and skilled cohorts respectively (Fig. 5). These constitute 49% and
61% success rates respectively, which are considerably higher than the 33% success rate
expected with the random choice strategy. The Kruskal Wallis test indicates that the skilled
cohort is significantly more accurate than the student cohort (H(1) = 8.79, p < .01). A
follow-up test is not necessary since there are only two cohorts.
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Figure 5 The left-most graph depicts means with standard errors of correct questions answered
by the participants in each cohort. The remaining two graphs depict distributions of participants in
the student and skilled cohorts according to the number of correct responses.

Next, we have calculated the averages of participants’ accuracies for each contrast group.
The results are shown in Fig. 6. Interestingly, compared to the RO-RP contrast group, the
participants performed considerably better in the five other contrast groups. According to the
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results of the two-sided exact binomial tests (Table 4) both cohorts demonstrate above chance
accuracies in these five contrast groups. The only exception is M=43% (SE = 10.4%) average
accuracy of the skilled cohort in the SL-RF group. However, considering the magnitude of
the standard error, we suspect the test would have been significant with a bigger sample size
for the skilled cohort.

The overall results suggest that participants can distinguish well between the maps
depicting object and field across most data representations. Tessellated polygon and line
representations achieve higher accuracies across both student and skilled cohorts, whereas
PM-PO and RO-RP were mastered significantly better by skilled users. However, it is
also interesting that overall, participants’ performance in the RO-RP contrast group is
significantly different than in the other contrast groups. A probable explanation for this
result is discussed in the next section.
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Figure 6 Mean accuracies for the six contrast groups calculated separately for the student and
skilled cohorts. The mean is calculated from the proportions of the correct answers per a participant.
The interval bars depict standard error intervals.

Table 4 p-value from two-sided exact binomial tests of accuracies in Fig. 6 for significant difference
from the expected probability of 0.33 from the random choice strategy. The rows correct/total list
correct and total responses respectively.

PO-PM LO-LM RO-RP LA-CO LA-COV SL-RF

student correct/total 84/180 96/186 44/174 104/168 120/204 95/186
p-value 0 0 0.03 0 0 0

skilled correct/total 52/66 22/42 25/54 34/54 46/66 18/42
p-value 0 0.01 0.04 0 0 0.19

5 Discussion

The responses in the RO-RP contrast group suggest two distinct dominant strategies used
by the participants. The basic strategy is to select the option that is the most visually
contrasting from the two other maps. For example, the correct option in Q18 (Fig. 7) is also
the most visually contrasting map, which results in the majority of correct responses in all
three cohorts (Fig. 4). The participants in the general and student cohorts seem to prefer
this strategy in most questions. However, this visual strategy fails to consider semantics
leading to mostly incorrect responses and low accuracy (Fig. 4) for these two cohorts. The
existence of this strategy also explains why the two cohorts perform worse than if they simply
would have guessed. For example, Fig. 7 depicts how this visual strategy leads the general
and student cohorts into incorrect responses in questions Q17 and Q15. For Q17, 54% and
69% of all responses selected the middle map in the general and student cohorts respectively.
Similarly, the visually distinct right map in Q14 is selected in 58% and 69% of all responses.
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The second more advanced strategy is to compare the maps based on the attribute
descriptions. More specifically, the participants try to distinguish between the maps with
categorical and non-categorical attributes. Only the skilled cohort seems to efficiently employ
this strategy, which explains why its response pattern diverges from the other two cohorts’
patterns. This strategy is also more likely to lead to correct responses, which explains the
higher accuracy of the skilled cohort (Fig. 4). For example, in question Q17 (Fig. 7),
only the correct option mentions categories in its attribute description, thus, resulting in a
correct response. In question Q14, however, the skilled participants fail to identify that the
right dataset is also categorical since the same place name can be associated with multiple
polygons and does not identify a distinct object on a map. Therefore, the strategy leads to
the incorrect map that explicitly mentions category, which accounts for 56% of all responses.

Figure 7 The questions Q18, Q17, and Q14 from the the RO-RP contrast group. In each question,
the left-most map is the odd one (the correct option). The blue rectangles and the red circles in the
top-right corners mark the most frequently selected options among the student/general and skilled
cohorts respectively.

The two strategies together explain the most frequent responses by cohorts in each
question of the RO-RP contrast group. Visual contrast-based strategy is commonly observed
in many decision-making and visual search tasks [23]. The strategy often relies on the
well-known bottom-up visual pop-out effect [29] where an object with an odd color (e.g.
a red dot among blue dots), shape, or orientation automatically stands out and attracts
priority attention. The low-effort bottom-up (automatic) nature of the pop-out effect makes
the visual strategy more preferred to the less trained participants in the general and student
cohorts. The second strategy of comparing attributes requires a more thoughtful approach
and, more importantly, recognition that attributes play an important role in the conceptual
interpretation of the datasets [27, 25]. Such a strategy requires an ability to distinguish
between categorized and named datasets, which is not easy but can be improved with
experience. The more experienced skilled cohort is more willing to apply the second strategy.
Such experience-based transition from a simple bottom-up visual strategy to a top-down
mental strategy is documented in other tasks [4, 16]. Hence, we can reasonably assume that
such a transition is also happening from the basic to the advanced strategies.
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Fig. 6 shows that the student cohort is more accurate in the five other contrast groups
than in the RO-RP contrast group. These five contrast groups are geometrically represented
by points, lines, and tessellations. Unlike the RO-RP maps, the maps within these group
are visually more homogeneous, giving less room to apply the basic visual strategy. Hence,
we assume that the student cohort is incentivised to use the advanced strategy that is more
likely to lead to the correct responses and overall higher accuracies than in the RO-RP group.
This implies that the participants in the student cohort know the advanced strategy but
prefer to use the basic strategy when possible. This preference likely stems from the fact
the advanced strategy requires more effort that can be minimized with training and more
experience. Nevertheless, there is also unexplained variance in performance between the
contrast groups suggesting other decision making factors that should be investigated further.

6 Conclusion

In most of the contrast groups, the student and skilled cohorts demonstrated significantly high
accuracies (Fig. 6) thereby supporting the thesis that people can effectively distinguish maps
with different concept-based interpretations (Research Question 1). An exception is the RO-
RP contrast group where the general and student cohorts showed lower accuracies than would
have been achieved with the naive guessing strategy. The pattern of responses suggests that
a visual presentation of geometric shapes significantly interferes with a participant’s ability
to conceptually interpret the maps (Research Question 2). However, it should be noted that
this interference can be an artifact of the experimental design based on the contrasting three
maps, and requires further investigation. Finally, the skilled cohort consistently demonstrated
better performance than the general and student cohorts suggesting that experience plays an
important role (Research Question 3). However, higher experience seem to result in better
utilization of the existing concepts necessary for interpretation of the maps rather than the
development of new concepts. This result suggests that even people untrained with spatial
data may have certain conceptual notions similar to the core concepts of spatial information.
Overall, the study provides evidence supporting the existence of mental analytical skills that
are of comparable use for distinguishing maps in terms of concepts of spatial information.
The future studies should focus on replicating the current findings and verifying whether
they can be generalized to laymen population. We should further explore if the core concept
distinction applies to other aspects of geo-analytics such as analytical tools and questions.
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