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Abstract
Cache-adaptive algorithms are a class of algorithms that achieve optimal utilization of dynamically
changing memory. These memory fluctuations are the norm in today’s multi-threaded shared-memory
machines and time-sharing caches.

Bender et al. [8] proved that many cache-oblivious algorithms are optimally cache-adaptive, but
that some cache-oblivious algorithms can be relatively far from optimally cache-adaptive on worst-
case memory fluctuations. This worst-case gap between cache obliviousness and cache adaptivity
depends on a highly-structured, adversarial memory profile. Existing cache-adaptive analysis does not
predict the relative performance of cache-oblivious and cache-adaptive algorithms on non-adversarial
profiles. Does the worst-case gap appear in practice, or is it an artifact of an unrealistically powerful
adversary?

This paper sheds light on the question of whether cache-oblivious algorithms can effectively adapt
to realistically fluctuating memory sizes; the paper focuses on matrix multiplication and sorting.
The two matrix-multiplication algorithms in this paper are canonical examples of “(a, b, c)-regular”
cache-oblivious algorithms, which underlie much of the existing theory on cache-adaptivity. Both
algorithms have the same asymptotic I/O performance when the memory size remains fixed, but one
is optimally cache-adaptive, and the other is not. In our experiments, we generate both adversarial
and non-adversarial memory workloads. The performance gap between the algorithms for matrix
multiplication grows with problem size (up to 3.8×) on the adversarial profiles, but the gap does not
grow with problem size (stays at 2×) on non-adversarial profiles. The sorting algorithms in this paper
are not “(a, b, c)-regular,” but they have been well-studied in the classical external-memory model
when the memory size does not fluctuate. The relative performance of a non-oblivious (cache-aware)
sorting algorithm degrades with the problem size: it incurs up to 6× the number of disk I/Os
compared to an oblivious adaptive algorithm on both adversarial and non-adversarial profiles.

To summarize, in all our experiments, the cache-oblivious matrix-multiplication and sorting
algorithms that we tested empirically adapt well to memory fluctuations. We conjecture that cache-
obliviousness will empirically help achieve adaptivity for other problems with similar structures.
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1 Introduction

Applications running on multi-threaded and multi-core systems often experience fluctuations
in the amount of physical memory available. For example, when concurrently running
programs share RAM, the amount of RAM allocated to any particular program can change as
other programs start or finish. Interestingly, even when identical copies of the same program
run concurrently, these copies may acquire an unequal fraction of the RAM [20], resulting in
further unpredictability.

These memory fluctuations can cause an application’s performance to suffer [24, 26].
If the available memory becomes scarce, an application may thrash, which means that
the application pages excessively, crippling performance [18, 19, 28]. If memory becomes
abundant, the program may not take advantage of the larger available RAM and thus perform
extraneous I/Os.

In this paper, we empirically show that some optimal cache-oblivious algorithms [21,22,31]
– specifically matrix multiplication and sorting – adapt gracefully to most memory fluctuations,
except for some adversarially constructed worst-case instances. Optimal cache-oblivious
algorithms are asymptotically optimal for all fixed memory sizes without the knowledge of
the memory size. Past theoretical work shows that optimal cache-oblivious algorithms can
perform poorly on adversarially constructed memory fluctuations [7, 8].

Experimental approaches to adaptivity. Past experimental work [29,30, 34, 35] focused on
developing improved algorithms that adapt to a variety of memory profiles, where a memory
profile is a curve representing the memory size as a function of time. For example, Pang
et al. [29] introduced a memory-adaptive merge sort that dynamically adjusts the size of
each subproblem at each level of the recursion as memory fluctuates. A similar technique is
used by Pang et al. [30] to modify the GRACE hash join algorithm [23] so that it can adapt
to changes in memory size. Zhang and Larson [34,35] introduced techniques that balance
the memory usage among many sorting programs running concurrently on a single machine
sharing its memory.

Researchers have also explored environment-level modifications to adapt to dynamic
memory profiles. For example, Brown et al. [12] introduced memory-management techniques
for a DBMS that accommodate multiple concurrently running database workloads, where each
workload may have its own individual memory requirements. Mills et al. [24–26] proposed a
user interface that enables a user to request sufficient memory for their application.

Theoretical approaches to adaptivity. Barve and Vitter [2, 3] designed algorithms that
have provable performance guarantees even when the memory size changes. They gave
memory-adaptive algorithms for sorting, matrix multiplication, FFT, LU decomposition,
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and permutation. To prove optimality, they extended the traditional external-memory
model [1] – also called the disk-access machine (DAM) – to allow for changes in the
memory size over time.

More recently, Bender et al. [8] showed that many cache-oblivious algorithms could adapt
well to memory fluctuations. A cache-oblivious algorithm is a platform-independent
algorithm that is not parameterized by properties of the memory hierarchy such as RAM
or cache-line size [21,22,31]. An optimal cache-oblivious algorithm is universal in the sense
that the algorithm is optimal for any value of the cache parameters, provided that these
values do not change over time. (Past theoretical work on cache-oblivious algorithms use the
terms memory, cache, and RAM interchangeably) [4,5]. On the other hand, a cache-adaptive
algorithm remains cache-optimal even when memory size changes over time. One possible
way to deal with memory fluctuations is to start with an algorithm already known to be
cache-oblivious and hope it also happens to be cache adaptive.

Cache-obliviousness and cache-adaptivity. Bender et al. [8] showed that cache-oblivious
algorithms are often (but not always) cache adaptive. For example, they showed that
Lazy Funnel Sort (LFS) [10, 21], a cache-oblivious sorting algorithm, is optimally cache-
adaptive. Follow-up work [7] provided an analytical framework for determining whether
cache-oblivious algorithms having a certain recursive form (“(a, b, c)-regular”) are also cache
adaptive. Algorithms with (a, b, c)-regular recursive structure have a common form of
divide-and-conquer cache-oblivious design [6,7]; see Section 2 for more details. Depending
on the settings of the parameters a, b, and c, these cache-oblivious algorithms are either
asymptotically optimal or a logarithmic factor away from optimal. For example, cache-
oblivious algorithms exist for matrix multiplication [21, 22], some of which are optimally
cache-adaptive (MM-INPLACE) and some are a log factor away from optimally cache-
adaptive (MM-SCAN) [7,8]. MM-SCAN (a = 8, b = 4, and c = 1) performs an out-of-place
matrix addition at the end of each recursive call and is suboptimal in the cache-adaptive
model, while MM-INPLACE (a = 8, b = 4, and c < 1) performs the additions in-place and is
optimally cache-adaptive; see Section 3.

Connections between experimental and theoretical approaches. Existing theoretical
approaches to cache adaptivity provide worst-case guarantees but leave open the question of
how algorithms perform under arbitrary memory workloads. Specifically, past work showed
that cache-oblivious (a, b, c)-regular algorithms are always at most a log factor away from
being optimally cache-adaptive. However, this log factor is based on a worst-case memory
workload that seems brittle and unlikely to appear in practice. Furthermore, this worst-case
analysis does not capture how cache-oblivious algorithms actually perform under practical
memory workloads.

In contrast, empirical solutions [12,23–26,29,30,34,35] are designed to improve performance
under practical memory workloads. However, they lack worst-case analysis and therefore do
not have worst-case performance guarantees.

Recent work [6] has gone beyond worst-case analysis. The authors apply smoothing
techniques [32] on memory profiles and explore how well cache-oblivious algorithms adapt
to smoothed memory profiles. They observe that the I/O-performance gap between cache-
obliviousness and cache-adaptivity disappears given sufficient smoothing. Their results
leave open the question of whether the performance gap between cache-oblivious and cache-
adaptive algorithms persists across a larger space of memory profiles. If the performance gap
turns out to be only a theoretical artifact rarely seen in practice, cache-oblivious algorithms
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could be an exciting way to solve a wide range of problems with no known cache-adaptive
solutions. Examples of such problems include Gaussian elimination [15], triangle counting [9],
min-weight cycle [33], negative triangle detection and counting [33], replacement paths
problem [33], etc.

Do these worst-case memory workloads arise naturally when no adversary controls the
available memory? How feasible is it to construct such worst-case memory profiles?
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Figure 1 Normalized disk I/O of the non-adaptive algorithm to the cache-adaptive algorithm as
a function of input size for matrix multiplication and sorting for four memory profiles: adversarial
(worst-case), benevolent, constant, and oblivious. An increase in the y-axis means that the non-
adaptive algorithm performs progressively worse relative to the adaptive algorithm.

Results
We empirically study how cubic-time matrix multiplication (MM) algorithms and external-
memory sorting algorithms adapt to a range of different memory profiles. MM is a particularly
interesting test case because not only is it the canonical example of an (a, b, c)-regular
algorithm but also we can find a pair of MM algorithms, both with the same I/O-complexity
in the cache-oblivious model, where one is optimally cache-adaptive and the other is a
logarithmic factor away from optimal. For the case of MM, we evaluate MM-INPLACE and
MM-SCAN and find that both can adapt to a wide range of memory profiles even though
MM-SCAN is not provably cache-adaptive. In contrast, for the case of sorting, we evaluate
LFS [10,21] and External-memory Merge Sort (EMS) [1], a non-oblivious and non-adaptive
algorithm, and find that EMS does not adapt well to a wide range of memory fluctuations.
Table 1 illustrates some of the key properties of the tested algorithms.

Since the worst-case profile is tightly coupled with an algorithm’s structure, we designed
a memory profile generator that can simulate an adversarial by looking into a program’s
execution. It can generate the worst-case adversarial memory profile by increasing the
available memory when the program cannot benefit from the extra memory and decreasing
the memory when the program would benefit. It can also generate non-adversarial profiles
that follow a program’s execution.

First, we empirically study the MM-SCAN and MM-INPLACE algorithms for matrix
multiplication, and we find that even though MM-SCAN is not optimally cache-adaptive, it
adapts well to a wide range of memory fluctuations except the most adversarially constructed
profiles. We measure how well an algorithm adapts to the memory fluctuations by measuring
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Table 1 Properties of the algorithms for cubic-time matrix multiplication and external-memory
sorting studied in this paper.

Algorithm Cache-oblivious Cache-adaptive

MM-SCAN [21,22] ✓ ✗

MM-INPLACE [21,22] ✓ ✓

EM Merge Sort [1] ✗ ✗

Lazy Funnel Sort [10] ✓ ✓

the disk I/Os it incurs during its execution. MM-SCAN and MM-INPLACE are both
theoretically optimal when the memory does not fluctuate; empirically, Figure 1a shows
that MM-INPLACE performs roughly 1.8× better than MM-SCAN across all problem sizes
under a constant memory profile (fixed memory size). We used the memory profile
generator to create profiles coupled with algorithm execution. Under the adversarial memory
workload, MM-SCAN performs 1.6 – 3.8× more disk I/Os than MM-INPLACE. Critically,
the performance gap grows with the input size. We also created a benevolent memory
profile that is tightly synchronized with the algorithm’s execution but non-adversarial in
nature. Under the benevolent memory profile, MM-SCAN and MM-INPLACE perform
roughly within 1.5× of each other for all problem sizes. Under oblivious memory profiles,
i.e., profiles that are not tightly coupled with the algorithms’ execution, we found that
MM-SCAN incurs about 1.8× more I/Os than MM-INPLACE for all problem sizes. These
results suggest that MM-SCAN possesses almost all the benefits of cache-adaptivity.

Next, we evaluate the cache-oblivious Lazy Funnel Sort (LFS) [10, 21] and the non-
oblivious External-memory Merge Sort (EMS) [1] (both are I/O-optimal when the memory is
fixed), and we find that even though LFS has a computational overhead over EMS stemming
from its cache-obliviousness; it outperforms EMS on a wide range of fluctuating memory
profiles. Figure 1b suggests that External-memory Merge Sort has better I/O-performance
than Lazy Funnel Sort for all problem sizes under the constant memory profile (roughly
incurring 0.9× disk I/Os on average). On the other hand, LFS adapts when the memory
fluctuates, whereas EMS fails to adapt. EMS performs progressively worse than LFS as the
input size increases under all types of fluctuating memory workloads (adversarial, benevolent,
and oblivious), incurring 1.3 – 7× more disk I/Os. Despite the computational overhead of
cache-obliviousness, LFS performs significantly better than EMS under a range of fluctuating
memory profiles.

These results suggest that for the problems of MM and sorting, cache-oblivious but
non-adaptive algorithms adapt well, while non-oblivious algorithms do not. The tested
cache-oblivious algorithms adapt well because they are agnostic to the cache size, while the
cache-aware algorithms are optimized for specific cache sizes. We conjecture that cache-
oblivious algorithms have most of the empirical benefits of cache adaptivity, and our results
are consistent with the conjecture.

Paper overview. The rest of this paper is organized as follows.Section 2 reviews preliminaries
about the cache-adaptive model and analysis necessary to understand the experimental design
in this paper. Section 3 explains the memory profiles that we tested on. Section 4 describes
the experimental setup and the algorithms’ performance with fixed memory. Section 5
describes the memory-profile generator and the algorithms’ performance under adaptively
constructed memory profiles. Section 6 explores the algorithms’ performance under obliviously
constructed memory profiles. Section 7 provides concluding remarks and future directions.
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2 Cache-adaptive analysis

This section reviews fundamentals of cache-adaptive and cache-oblivious analysis. It also
explains how (a, b, c)-regular algorithms play a key role in the analysis.

Cache-adaptive model. The cache-adaptive model is an extension of the disk-access machine
(DAM) model [1], where the size of memory available to an algorithm can change. In the
DAM model, the machine has a two-level memory hierarchy comprising a cache/memory
of size M and a disk of unbounded size. Data is transferred between disk and memory in
blocks of size B, called I/Os. The cache-adaptive model extends the traditional DAM model
by allowing the memory size to be a function of time. Each I/O takes one time step and
computation is modeled as free and instantaneous. At time t, the memory available to a
program is M(t), which can change after each time step.

Cache-oblivious algorithms and (a, b, c)-regularity. An algorithm is cache-oblivious [21,22,
31] if it is not parameterized by M and B. An optimal cache-oblivious algorithm is universal,
in the sense that it runs optimally in the DAM model for all possible (fixed) values of M

and B.
Cache-oblivious algorithms with a particular kind of divide-and-conquer structure, are

said to be (a, b, c)-regular. An algorithm is (a, b, c)-regular for constants a ≥ 1, b > 1,
and 0 ≤ c ≤ 1, if, for problem size N , its I/O complexity satisfies the following recurrence:
Q(N) = a · Q(N/b) + Θ(1 + N c/B).

Specifically, the algorithm has a recursive calls on sub-problems of size N/b and Θ(1)
linear/sequential scans before, between, or after the recursive calls, where the size of the
largest scan is Θ(N c).

The worst-case performance gap between obliviousness and adaptivity. DAM-optimal
(a, b, c)-regular algorithms can be up to an O(log N)-factor away from being optimally cache-
adaptive [7]. Specifically, they are suboptimal in the cache-adaptive model when a ≥ b and
c ≥ 1 [7]. Intuitively, (a, b, c)-regular algorithms are not optimal when they contain large
sequential reads through memory at each level of the recursion.

The worst-case memory profile. The logarithmic gap in I/O-performance of some (a, b, c)-
regular algorithms from being optimally cache-adaptive is based on a worst-case memory
workload that adaptively mimics the recursive structure of the algorithm and is tightly
synchronized with the execution of the algorithm. Specifically, the worst-case profile provides
extra memory to the non-adaptive algorithm during the linear scans (when it cannot benefit
from the extra memory) and takes away the extra memory at the end of the linear scans (when
it would be able to use the extra memory). The worst-case memory profile is constructed in
an adaptive manner by following the execution of the non-adaptive algorithm, MM-SCAN in
case of matrix multiplication and EMS in case of sorting.

Example: MM-SCAN and MM-INPLACE. To illustrate the parameter choices for (a, b, c)-
regular algorithms, Bender et al. [7] compare two cache-oblivious cubic matrix multiplication
algorithms: MM-SCAN and MM-INPLACE [16,21,22,31], and show that only MM-INPLACE
is optimally cache adaptive, whereas MM-SCAN is a logarithmic-factor away from being
optimally cache adaptive. MM-SCAN divides each input matrix into b = 4 blocks and
perform a = 8 recursive multiplications on the blocks. It uses extra space to store an
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intermediate matrix and performs all additions at once with a linear scan. The recurrence
relation of MM-SCAN for problem size N (to multiply two matrices of size

√
N ×

√
N) is

Q(N) = 8Q(N/4) + O(1 + N/B). Hence, MM-SCAN has c = 1. MM-INPLACE has the
same recursive structure, but it avoids the linear scan by performing the multiplications and
additions in-place. The recurrence for MM-INPLACE has the same a and b as MM-SCAN,
but has c = 0: Q(N) = 8Q(N/4) + O(1). Both MM-SCAN and MM-INPLACE are optimal
cache-oblivious algorithms, having an I/O cost of O(N3/2/(

√
MB)).

In contrast, MM-INPLACE (with c < 1) is optimally cache-adaptive while MM-SCAN
(with c = 1) is not. This example of MM-SCAN and MM-INPLACE exemplifies how changing
the values of a, b, and c can determine whether a cache-oblivious algorithm is optimally
cache adaptive or not. Here, the answer depends on whether c < 1 or c = 1.

From the above discussion, MM-SCAN may seem to be a strictly worse algorithm than
MM-INPLACE because MM-SCAN is provably not cache adaptive. However, MM-SCAN
is more parallelizable than MM-INPLACE [16] as it can achieve 8-way parallelism whereas
MM-INPLACE can only achieve 4-way parallelism.

Example: EMS and LFS. Finally, we will review the gap between cache-adaptive and
non-adaptive sorting algorithms to see an example of cache-adaptive analysis outside
of (a, b, c)-regular algorithms. Both EMS and LFS achieve the disk I/O complexity,
O((N/B) logM/B(N/B)) in the external-memory model [1], which is the lower bound for
sorting when the cache-parameters remain fixed. However, EMS is not cache-adaptive [7] as
it has large linear scans involved and any reduction of memory from the promised amount
M during these phases affects the performance of the algorithm heavily. On the other hand,
despite not having the same recursive structure as that of the (a, b, c)-regular algorithms,
LFS [10,21] is provably cache-adaptive [8]).

3 Memory profile design

This section presents the high-level design of our evaluation of cache-adaptive and non-
adaptive algorithms on a variety of memory profiles for matrix multiplication and external-
memory sorting. We test on adaptively constructed memory profiles (e.g. the worst-case
profile) as well as “oblivious” memory profiles that are erratic but not adaptively constructed.
To perform this evaluation, this study uses a memory profile that does not fluctuate with
respect to time. We refer to this as the constant memory profile and we use it as a
baseline in our experiments.

It is theoretically shown that under adaptively constructed worst-case memory work-
load the performance of two DAM-optimal algorithm diverges. Between two (a, b, c)-regular
algorithms, MM-INPLACE is cache adaptive and MM-SCAN is non-adaptive as it is log-
factor away from being optimally cache adaptive under this worst-case memory profile. We
construct this worst-case adversarial memory profile by adapting to the execution of the
non-adaptive algorithm and allowing it enough memory to store each recursive sub-problem
during its linear scan, and low memory when the algorithm is not performing a linear scan.
Since linear scans do not employ any locality of reference, the algorithm only requires O(1)
memory; any memory given more than that is not utilized during linear scan. For example,
MM-SCAN contains a linear scan at the end of each recursion; in each linear scan of size
N × N , memory is increased to 5N2 to hold the input and output matrices as well as the
intermediate results. However, the cache-adaptive algorithm opportunistically benefits from
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Figure 2 Sample adversarial memory profile generated from running MM-SCAN to multiply two
square matrices of width 8192. The structure of the memory profile mimics the recursive structure
of MM-SCAN.

these memory increases, causing its I/O-performance to improve considerably relative to
that of the non-adaptive algorithm. Figure 2 shows a sample adversarial memory profile for
matrix multiplication.

Similarly, we construct another category of adaptive memory profiles, i.e., the benevolent
memory profile, but these are designed to be benevolent to the non-adaptive algorithm.
The non-adaptive algorithms are unable to use any extra memory that adversarial memory
provides during the recursive sequential scans. In the case of the benevolent memory profile,
during the sequential scans, instead of increasing the memory we adaptively decrease memory.
When the linear scan ends, the memory is again increased to the initial value.

Both the adversarial and benevolent memory profiles are tightly synchronized with the
execution of the non-adaptive algorithm. In fact, the adversarial memory profile mimics the
recursive structure of the non-adaptive algorithm to bring out the worst performance relative
to the adaptive algorithm. In contrast, the benevolent profile aims to minimize the advantage
of the cache-adaptive algorithm over the non-adaptive algorithm. However, adversarial and
benevolent memory profiles might be too pessimistic or too optimistic in terms of the relative
performance of the non-adaptive algorithm and rarely found in the real-world applications.
The beyond-worst-case analysis [6] shows the performance gap between MM-SCAN and
MM-INPLACE disappears with sufficient smoothing on the worst-case profile, otherwise, the
performance gap remains even under smoothed memory profiles. Hence the question remains,
how do the non-adaptive algorithms perform under a range of memory profiles that are not
generated in an adaptive manner (i.e. the profiles which do not adapt to the execution of
the algorithm)?

To gain a more complete view of algorithm performance under memory fluctuations, we
run algorithms under oblivious memory profiles that are generated non-synthetically and
non-adaptively. These profiles are created independently of a given algorithm’s execution. A
sample oblivious profile can be obtained by running several programs concurrently in shared
memory without limiting any of their memory usages [13, 14]. An evaluation under such
oblivious workloads accounts for the fact that in practice, often a running process is forced
to share available RAM with other concurrent memory-intensive programs. Hence, these
oblivious profiles enable us to observe a more complete view of an algorithm’s performance
under memory fluctuations in a multi-program environment.
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4 Evaluation on constant profiles

This section presents details of the experimental setup and studies the performance of the
matrix multiplication and external-memory sorting algorithms described in Section 3 on
constant memory profiles. All of the tested algorithms are theoretically optimal when the
memory does not fluctuate. The empirical results confirm the theory: the performance gap
between the cache-adaptive and non-adaptive algorithms does not grow with the problem
size when the memory size is fixed.

Experimental setup. All experiments were conducted on a Dell Precision 5820 with an
Intel®Core™i9-9900X 3.50GHz processor, two Samsung 16GB M378A2K43DB1-CTD Dual
Rank Memory Modules, and Seagate Barracuda ST2000DM001 Desktop SATA Hard Drive.
The operating system used is Linux Mint 19.1, Tessa, with kernel version 4.15.0-88. We used
C++14 to implement the algorithms, g++ 9.3.0-17ubuntu1 20.04 as compiler, and bash
scripts to run the experiments. We measure performance in disk I/Os using /proc. At the
start of each experiment, we use the sync system call to free page-cache and slab objects.
We use Linux control groups (cgroups) to limit the memory available to a program. We run
all the experiments with 25 trials and average the measured I/Os.

Algorithm implementation descriptions. We implemented the two algorithms for MM-
SCAN and MM-INPLACE directly from their description in past work on cache-
adaptivity [7]. Section 2 provides a detailed description of the divide-and-conquer recursion
of these two algorithms.

We explored two algorithms for sorting: External-memory Merge Sort (EMS) and Lazy
Funnel Sort (LFS). We implemented an (M/B)-way external-memory merge sort that is
compatible with the memory profile generator and chose M = 256 MiB and B = 8 MiB.
Previous work [11] on engineering external sorting algorithms demonstrate that carefully
engineered cache-aware sorting algorithms can perform up to 2× better than cache-oblivious
ones when the memory does not fluctuate. We expect our results regarding relative algorithm
performance in the face of memory fluctuations to hold for other implementations of EMS
and LFS because of the difference in the algorithm structure between the two algorithms.
For LFS, we used an implementation from Olsen and Skov [27].

Problem sizes. We evaluate the relative performance of MM-SCAN to MM-INPLACE on
the constant memory workloads as a function of input size. For each matrix multiplication
experiment, we multiply two square matrices. We increase the input matrix width from 512
to 32768. For all the experiments, we provide a fixed memory of 10 MiB to the programs.

Similarly, we study the relative performance of EMS to LFS on the constant memory
workloads. For each sorting experiment, we sort an integer array. We increase the input
array length from 67 million to 1 billion. We provide a fixed memory of 256 MiB to the
programs.

Results. Figure 1a shows that when memory size is fixed, cache-adaptive MM-INPLACE
performs roughly 1.8× better than non-adaptive MM-SCAN for all input sizes, i.e., their
performance gap does not grow with problem size. On the other hand, Figure 1b shows
that cache-aware non-adaptive EMS incurs less disk I/Os (roughly 0.9× on average) than
cache-adaptive LFS. This result shows the cache-oblivious sorting algorithm does not bear a
major computational overhead when the memory does not fluctuate.
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5 Evaluation on adaptive profiles

This section presents details of how we generate the memory fluctuations and studies the
performance of the matrix multiplication and sorting algorithms described in Section 3 on
adaptively-generated memory workloads. Specifically, it first introduces the memory profile
generator used to construct the adaptive profiles. Using this profile generator, we explore
two types of adaptive memory profiles: the adversarial profile, and the benevolent profile.
Under adversarial workloads, the cache-adaptive algorithms perform up to 4.5× better than
the non-adaptive algorithms with increasing problem size. On the other hand, the benevolent
memory profile demonstrates that oblivious algorithms adapt well to non-adversarial memory
fluctuations while non-oblivious algorithms suffer. MM-INPLACE is up to 1.5× better than
MM-SCAN, but the gap does not grow with the problem size. In contrast, LFS performs
increasingly better (up to 3.2×) than EMS as the problem size grows.

Memory profile generator. We designed a memory profile generator that runs a program
under a particular memory workload. To fluctuate the memory available to a program,
we first used cgroups, however cgroups does not allow us to decrease the memory available
to a program (that the program already claimed) efficiently while the program is running.
To address this, the memory profile generator uses cgroups to set an initial memory limit
available to a program and runs a balloon program concurrently with the program within the
cgroups. The balloon program uses the memory complement to what we intend the program
to use. For example, if we want a program to use memory M until time t and thereafter
memory M + δ, and the cgroups has memory C, the balloon program uses memory C − M

until time t and thereafter it uses memory C −M −δ. The initial memory given to a program
remains the same as for the constant memory workload.

Using this memory profile generator, we generate two types of profiles, adversarial and
benevolent; see Section 3. We measure algorithm performance using the same problem sizes
as in Section 4.

Results for the adversarial memory profile

First, let us turn our attention to the adversarial memory workloads. Figure 1 illustrates that
under the adversarial memory workloads, the cache-adaptive algorithms perform better than
the non-adaptive algorithms, and the gap increases as the problem sizes grow. MM-INPLACE
performs roughly up to 4× better than MM-SCAN and LFS performs roughly up to 4.5×
better than EMS.

Time spent in linear scan. The performance gap between the cache-adaptive and non-
adaptive algorithms grows with the problem size because the relative time spent in scans
by the non-adaptive algorithms (MM-SCAN and EMS) grows with problem size. Table 2
shows that the relative time spent in scans grows with problem size for both MM-SCAN
(up to 13%) and EMS (up to 76%). Hence, the performance gap also increases between the
adaptive and non-adaptive algorithms with problem size. Cache-adaptive algorithms do not
perform any such linear scans and take advantage of the extra memory in the adversarial
profile. Cache-adaptive algorithms do not perform any such linear scans and take advantage
of the extra memory in the adversarial profile.
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Table 2 Percentage of running time that the non-adaptive algorithms spend on linear scans.

Algorithm Input size % of runtime

MM-SCAN 1024 × 1024 0.1

MM-SCAN 2048 × 2048 4.7

MM-SCAN 4096 × 4096 13.2

EM Merge Sort 512 MiB 43.6

EM Merge Sort 1 GiB 57.9

EM Merge Sort 2 GiB 76.8

Results for the benevolent memory profile

Next, let us turn our attention to the algorithms’ performance under the benevolent memory
workloads. Figure 1a shows that MM-SCAN performs very close to MM-INPLACE (between
1.3 × −1.6×) on the benevolent profiles since MM-SCAN is not affected by the memory
reductions that occurred during the linear scans whereas MM-INPLACE is affected. On the
other hand, Figure 1b shows that the gap between EMS and LFS grows with the problem
size – EMS incurs up to 3.2× more I/Os than LFS on the largest input. EMS is unable to
adapt to memory reductions during linear scans while LFS adapts to all changes in memory.

6 Evaluation on oblivious profiles

This section explains the setup for the oblivious memory workloads that are not synchronized
with the recursive execution of the algorithm and shows that the I/O-performance gap
between the two cache-oblivious MM algorithms disappears, but remains between the cache-
oblivious and non-oblivious algorithm for sorting. Figure 1a illustrates that MM-SCAN
incurs roughly 2× more disk I/Os on average than MM-INPLACE for oblivious memory
profiles as we increase the input size. Figure 1b, on the other hand, shows that EMS incurs
increasingly worse than LFS with problem size incurring up to 4.3× I/Os on average under
oblivious memory profiles. In fact, Figure 3b shows EMS may perform up to 7× more I/Os
under oblivious memory workloads.

Experimental setup. This study runs multiple memory-intensive programs concurrently, all
sharing the same RAM, to ensure that each program instance experiences memory fluctuations
that do not follow the recursive execution of the algorithm. We create these oblivious memory
fluctuations in two ways: by creating a uniform environment where multiple identically-sized
copies of the same program runs concurrently, and by creating a nonuniform environment
by creating nonuniformity in the concurrent programs. Such nonuniform concurrent programs
may include program instances of the same program of different problem sizes, or different
programs of same problem sizes. The concurrent programs share a fixed memory that is
given at the starting of the experiment. For all the MM experiments, it is 10 MiB, and for
all the sorting experiments, it is 256 MiB, if not stated otherwise. We keep the rest of the
experimental setup the same as in the case of constant memory profiles (see Section 4).
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Figure 3 Average disk I/O of a non-adaptive program to the cache-adaptive program as a function
of problem size when running up to 4 instances concurrently normalized to the same when a single
instance runs concurrently.

Running uniform instances concurrently
First, let us turn our attention to the oblivious memory workloads that are generated by
running multiple concurrent instances of the same program that share a memory [13, 14].
Figure 3a illustrates that cache-oblivious non-adaptive algorithm MM-SCAN performs close
to cache-adaptive MM-INPLACE and incurs roughly up to 2× disk I/Os across all problem
sizes. On the other hand, Figure 3b shows that the I/O-performance for the cache-aware
algorithm EMS rapidly declines relative to the cache-adaptive LFS with increasing problem
size (1.4 – 7.1×). Dice et al. [20] showed that multiple threads in shared memory may
exhibit a “winner-takes-all” phenomenon where a thread may take memory from the others.
However, Figure 3 shows that even if uniformly-sized program instances unevenly share the
cache, cache-oblivious algorithms adapt well to memory fluctuations.

Setup. We evaluate the average I/O-performance of the cache-adaptive and non-adaptive
algorithms by running concurrent uniform instances, i.e., multiple identically-sized copies
of the same program. This multi-program environment setup ensures that each program
instance runs under a memory profile that is erratic due to the uncertainty stemming from
the concurrent programs’ memory requirement but independent of the recursive structure of
the particular program under consideration. We perform the study on uniform instances
in two ways. First, we vary the input problem sizes given a number of concurrent program
instances. Next, we vary the number of concurrent instances in the range of 1 – 4 for a
given problem size and observe slowdown, the degradation of average I/O-performance of a
program instance.

Slowdown. Figure 4 illustrates that cache-oblivious algorithms incur relatively small slow-
downs even as the number of concurrent instances increases. When we run up to 4 MM-SCAN
instances concurrently, the average disk I/Os stays within 1.2× than the disk I/Os incurred
by MM-SCAN when a single concurrent instance runs. The MM-INPLACE instances also
face almost no slowdown in a similar environment. In contrast, concurrent EMS instances
face up to 6× more disk I/Os when compared to an EMS program that does not share
memory with other concurrent programs. However, LFS faces a negligible slowdown in the
same scenario.



A. Bhattacharya et al. 16:13

1 2 3 40

0.5

1

1.5

2

Number of concurrent programs

N
or

m
al

iz
ed

I/
O MM-INPLACE

MM-SCAN

1 2 3 40

2

4

6

8

Number of concurrent programs

N
or

m
al

iz
ed

I/
O LFS

EMS

Figure 4 Average normalized disk I/O of a program instance when up to four program instances
run concurrently normalized to the disk I/O when a single instance runs.
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Figure 5 Average normalized disk I/O of non-adaptive MM-SCAN to cache-adaptive MM-
INPLACE as a function of problem size with 30 MiB memory given. The y-axis indicates that
MM-SCAN performs within a constant factor of MM-INPLACE.

Running nonuniform instances concurrently

Next, let us turn our attention to how the algorithms perform when nonuniform program
instances run concurrently and share a fixed memory. The nonuniform programs have
different memory requirements at every time step, and therefore are more likely to cause more
dramatic memory fluctuations compared to the uniform case. We observe that along with the
cache-adaptive algorithms, cache-oblivious MM-SCAN also adapts to the fluctuations caused
by nonuniform instances. MM-SCAN incurs up to 2.5× more disk I/Os than MM-INPLACE
even when the memory fluctuations are more dramatic in the nonuniform case than in the
uniform case, as shown in Figure 5. On the other hand, EMS incurs up to 6× more disk
I/Os than LFS, which is more than the gap in the uniform case as demonstrated in Figure 6.
Since the memory fluctuations in the nonuniform environment are likely to be more dramatic
compared to the uniform environment, the performance gap between EMS and LFS is likely
to be more than in the uniform environment because EMS is non-oblivious. Indeed, EMS
performs increasingly worse than LFS under the oblivious memory workloads generated in
nonuniform environments.

Setup. We create nonuniformity among the program instances in two different manners. In
all experiments in Figures 5 and 6, we set the memory size to 30 MiB for MM and to 768
MiB for sorting and retain the problem sizes as mentioned in Section 4.

First, we concurrently run 3 instances of the same algorithm on different input sizes. For
each experiment, we select 3 input sizes from the available set of sizes uniformly at random.
The algorithm in each instance runs sequentially, but the instances run concurrently with
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Figure 6 Average normalized disk I/O of non-adaptive EMS to cache-adaptive LFS as a function
of problem size with 768 MiB memory given. An increase in the y-axis indicates that EMS performs
progressively worse than LFS.
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Figure 7 Normalized disk I/O of the non-adaptive to the cache-adaptive algorithm for variable
problem size for oblivious memory workloads that we generated by running TPC-C concurrently
with the programs. An increase in the y-axis means that the non-adaptive algorithm performs
progressively worse relative to the adaptive algorithm.

each other. For each experiment, since the smaller instances may complete earlier than the
larger ones, we repeat any instances that have finished until all instances have finished. To
measure I/O, we report only the first run of each instance per experiment. As a baseline, we
also run 3 uniform program instances to evaluate the effect of nonuniform input sizes.

Second, we concurrently run different algorithms for the same problem on the same input
size. Specifically, we run 3 instances of the cache-adaptive algorithm (MM-INPLACE or
LFS) and 3 instances of the non-adaptive algorithm (MM-SCAN or EMS) concurrently.

Running a database program concurrently

Finally, we turn our attention to how the MM and sorting algorithms perform when run under
oblivious memory workloads that we simulated by running a memory-intensive database
program concurrently. The database program is not adversarial and therefore not tied to
any particular algorithm structure, so we expect the cache-oblivious algorithms to adapt
better to the resulting memory fluctuations. Figure 7 confirms this hypothesis – MM-SCAN
performs very close to MM-INPLACE (roughly incurring 2.1× disk I/Os), while EMS
performs increasingly worse (up to 6×) than LFS as the problem size grows.
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Setup. As the oblivious memory profiles are generated in a non-synthetic manner (see
Section 3), and the memory fluctuations are oblivious to what the algorithm does, we choose
to run a concurrent memory-intensive database program with the desired algorithm to
evaluate the algorithm’s performance. We generated such an oblivious memory workload by
running the TPC-C [17] workload concurrently with either a cache-adaptive or a non-adaptive
program and present the normalized disk I/Os of the non-adaptive algorithms to the adaptive
algorithms. TPC-C is a popular online transaction processing (OLTP) benchmark used to
measure database management systems. Both the MM and sorting algorithms share the
memory with the memory-intensive TPC-C program.

7 Conclusion

We investigated how some cache-oblivious and cache-adaptive (and neither) algorithms per-
form under a wide range of memory profiles. Specifically, we focused on matrix-multiplication
algorithms as representatives of (a, b, c)-regular algorithms and sorting algorithms as repres-
entatives of cache-optimized but not (a, b, c)-regular algorithms. We experimentally exhibited
the gap in I/O-performance between the cache-adaptive and non-adaptive algorithms for MM
and sorting under adversarially-generated memory workloads. To do so, we needed to design
a profile generator that can dynamically change the amount of available memory depending
on a program’s execution. On the other hand, under our oblivious memory workloads,
cache-oblivious MM algorithms performed close to each other, whereas the non-oblivious
sorting algorithm still performed worse than the cache-oblivious (and adaptive) algorithm.
We conjecture that what we have seen in our experiments applies more generally. That is,
we conjecture that cache-oblivious programming is a powerful way of empirically achieving
cache-adaptivity. This could be important because as mentioned in Section 1, there are many
more known cache-oblivious algorithms than known cache-adaptive algorithms. Our results
provide hope for the large body of work on cache-oblivious algorithms to empirically perform
well even when the cache size fluctuates.
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