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—— Abstract

We optimally resolve the space complexity for the problem of finding an a-approximate minimum
vertex cover (aMVC) in dynamic graph streams. We give a randomised algorithm for «MVC which
uses O(n?/a?) bits of space matching Dark and Konrad’s lower bound [CCC 2020] up to constant
factors. By computing a random greedy matching, we identify “easy” instances of the problem which
can trivially be solved by returning the entire vertex set. The remaining “hard” instances, then have
sparse induced subgraphs which we exploit to get our space savings and solve aMVC.

Achieving this type of optimality result is crucial for providing a complete understanding of
a problem, and it has been gaining interest within the dynamic graph streaming community. For
connectivity, Nelson and Yu [SODA 2019] improved the lower bound showing that Q(nlog®n) bits
of space is necessary while Ahn, Guha, and McGregor [SODA 2012] have shown that O(nlog®n)
bits is sufficient. For finding an a-approximate maximum matching, the upper bound was improved
by Assadi and Shah [ITCS 2022] showing that O(n?/a?) bits is sufficient while Dark and Konrad
[CCC 2020] have shown that ©(n?/a?) bits is necessary. The space complexity, however, remains
unresolved for many other dynamic graph streaming problems where further improvements can still
be made.
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1 Introduction

Graph streaming is a setting in which a graph is specified by a sequence of edges, typically in
arbitrary order. It is particularly useful for processing massive graphs where having random
access to the edges of the graph is either impossible or computationally infeasible.
Research in this area began with insertion-only streams, where the stream is made up of
a sequence of edge insertions only. In their seminal work, Feigenbaum, Kannan, McGregor,
Suri, and Zhang [19] showed that for many problems including minimum spanning tree,
connectivity, and bipartiteness, €(n) bits of space is necessary and O(nlogn) bits is sufficient
for any n-vertex graph. This logarithmic gap was often overlooked and deemed not important
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when proving optimality for graph problems, but it left unresolved the question of whether the
logarithmic factor was required for simply storing edges or if other techniques could remove
it. About a decade later, Sun and Woodruff [39] showed that the logarithmic factor was
indeed necessary by improving the lower bounds to Q(nlogn) bits, asymptotically matching
the upper bounds up to constant factors.

Dynamic graph streams, which allow for sequences of both edge insertions and deletions,
prove to be more difficult. Edges that arrive in the stream are not necessarily in the final
graph as they may later be deleted. In fact, it is well-known in the community that it is
impossible to deterministically return a single edge of a dense graph without storing all of its
edges. As a result, almost all dynamic graph streaming algorithms rely on counters which
use O(logn) bits of space or they rely on Lo-sampling which optimally uses ©(log®n) bits of
space! [22, 25]. In essence, counters are used to solve the problem of determining whether
an edge is present in an edge induced subgraph [18] (see also [15]), whereas Ly-sampling also
returns the identity of a uniform random edge if one is present [1, 2, 27, 15, 9, 7, 30, 26, 11].
A notable exception includes spectral sparsification [23, 24] which relies on Lo-heavy-hitters
(non-uniform sampling).

Resolving the space complexity up to constant factors for dynamic graph streaming
problems has continued to be an elusive task. Ahn, Guha, and McGregor [1] gave an
algorithm for connectivity using O(n log3 n) bits of space, and for several years, the best
known lower bound was the insertion-only bound of Q(nlogn) bits [39]. However, in 2019,
Nelson and Yu [36] improved the lower bound to Q(nlog®n) bits in the dynamic graph
streaming setting. To the best of our knowledge, this is the only problem in this setting
which has space bounds that prove the necessity of the @(log3 n) overhead of randomly
sampling an edge (using Lo-sampling). The approximate minimum cut problem which has a
Q(nlog® n) bit lower bound [36] (and a O(nlog* n) bit upper bound [1]) similarly shows that
logarithmic factors are necessary. A perhaps more surprising result was the recent progress
on a-approximate maximum matching («¢MM). The lower bound of Q(7*/a®) bits [18] (see
also [9]) and the previous upper bound of O(7°/a® - log® n) bits [9, 15] seem to indicate that
the logarithmic overhead of sampling an edge is required. However, Assadi and Shah [11]
improved the upper bound to O(7*/a*) bits showing that this is not the case. On the other
hand, for problems such as vertex cover [18], dominating set [26], and spectral sparsification
[24], their space bounds have a gap of logarithmic factors, and therefore further improvements
can still be made.

Our Results. In this work, we optimally resolve the space complexity up to constant factors
for the problem of finding an «-approximate minimum vertex cover (¢MVC) in a dynamic
graph stream. In particular, we improve the upper bound to O(n”/a?) bits, matching the
Q(7*/a?) bits lower bound [18] and showing that the logarithmic overhead is not required.
Our main result is the following;:

» Theorem 1. There exists a randomised dynamic graph streaming algorithm for aMVC that
succeeds with high probability and uses O(n*/a?) bits of space for any o < n*~% where § > 0.

Previous Work. It has been shown by Dark and Konrad [18] that Q(n”/a?) bits is necessary
for aMVC. They also gave a simple deterministic algorithm which uses O(7*/a? - log ) bits
of space, matching the lower bound up to logarithmic factors. Their algorithm arbitrarily

! This optimal space bound applies when the probability of success is at least 1 — m.
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partitions the vertex set into 7/a groups of size o and uses counters, which introduce the
logarithmic overhead, to maintain the number of edges between each of the ©(°/a?) pairs of
vertex groups. The solution follows by computing a group-level minimum vertex cover, and
then returning the vertices of the covering groups.

Main Techniques. We improve the approach of Dark and Konrad [18] by additionally
computing a supporting random GREEDY matching and randomly partitioning the vertex set
into n/a groups, effectively using randomisation to reduce the space required. The random
GREEDY matching returned is either large enough to imply a trivial solution for aMVC (“easy”
case) or implies sparseness properties of the residual subgraph induced by the unmatched
vertices (“hard” case). To solve the “hard” cases, we use the sparseness properties and the
random partitioning to argue that there are only O(1) many edges between each pair of
vertex groups in the residual subgraph. Therefore, storing edge counters for each of the
O(n"/a?) many pairs, as done by Dark and Konrad [18], now requires only O(n"/a?) bits of
space in total.

Sampling Strategies. The sparseness properties (of the residual subgraph) implied are
reliant on the method of randomly sampling edges from the graph. Uniformly sampling
from the edge set only implies sparseness properties sufficient for a small range of « since
it is skewed to sampling high degree vertices. On the other hand, non-uniform sampling —
sampling from the neighbourhood of a random set of vertices, coined neighbourhood edge
sampling by Assadi and Shah [11] — is less biased towards high degree vertices and implies
the necessary sparseness properties for the full range of o. Indeed, Assadi and Shah [11]
also use the approach of computing a GREEDY matching on non-uniformly sampled edges
to identify the “easy” and “hard” instances of aMM. However, for aMVC, our “easy” and
“hard” instances differ from those of aMM, so we require different guarantees. Furthermore,
we use different techniques for solving the “hard” instances.

Further Related Work. Resolving the space complexity up to constant factors has also
been achieved for non-graph problems in the general data streaming setting. For instance,
Braverman, Katzman, Seidell, and Vorsanger [14] gave an upper bound for finding a constant
factor approximation to the k-th frequency moment in constantly many passes that matches
the lower bound of Woodruff and Zhang [40]. Price and Woodruff [37] showed a lower bound
for any adaptive sparse recovery scheme that matches the upper bound of Indyk, Price, and
Woodruff [21]. Graph problems in other streaming settings have also been studied. For
example, the settings which allow multiple passes over the stream [31, 28, 6, 10, 32, 4, 8],
have a random arrival order [31, 5, 12], or have highly structured deletions via a sliding
window [16, 17, 13] have been considered. See the work by McGregor [33] for an excellent
survey on graph streaming algorithms.

Outline. We begin in Section 2 with some important notation and tools which we will later
use. In Section 3, we discuss the guarantees required from a random GREEDY matching for
aMVC. In Section 4, we present and analyse our algorithm that proves Theorem 1. Then, we
conclude in Section 5.
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2 Preliminaries

For any n-vertex graph G = (V, E), let u(G) be the size of the maximum matching of the
graph, let V*(G) be a minimum vertex cover, and let opt(G) be its size. We will simply use
w, V* or opt if the graph is clear from context. For any subset of edges F' C E, we denote
the set of their endpoints by V(F'). For any subgraph H of G and vertex v € V, we use
Np(v) to denote the neighbourhood of v in H .

The graph G may be specified as a dynamic graph stream® o = (01, 09, ..., o) such that
oj = (i;,A;) where i; € [m] for m = (%) and A; € {1,—1} (insertions or deletions). Note
that edges may only be deleted if they have previously been inserted. Additionally, the
stream must produce a vector vec(E) € {0,1}™ that defines the edge set E, i.e., the it"

entry of the vector indicates the presence of the edge indexed by i € [m].

2

In our work, we will rely on limited independence hash functions to reduce the space
complexity of our algorithm. Roughly speaking, a hash function sampled from a family of
k-wise independent hash functions behaves like a totally random function when considering
at most k elements. For simplicity, when we mention a k-wise independent hash function, we
will mean a hash function sampled from a family of k-wise independent hash functions. We
use the following standard result for k-wise independent hash functions.

» Proposition 2 ([34]). For all integers n,m,k > 2, there is a family of k-wise independent
hash functions H = {h : [n] = [m]} such that sampling and storing a function h € H takes
O(k - (logn + logm)) bits of space.

We shall also use the following concentration result on an extension of Chernoff-Hoeffding
bounds for k-wise independent hash functions.

» Proposition 3 ([38]). Suppose h is a k-wise independent hash function and Xy, ..., X,
are m random variables in {0,1} where X; =1 iff h(i) = 1. Let X := " | X;. Then, for
any € > 0,

ko g2
Pr(| X —E|X]|>e-E[X]) < —ming -, ——— - E|X .
(X ~E[X]) 2 e ELX]) < e (—min { £, 5 B L]}
Finally, we will use the following sketching tool for dynamic graph streams to test the
size of the neighbourhood of a subset of vertices.

» Proposition 4 ([11]). Let a > b > 2 be known integers. Consider a n-vertex graph
G = (V, E) specified in a dynamic stream and let S CV be a known set. Then, given a
set T CV of size at most a at the end of the stream, there exists a randomised algorithm
that returns “Yes” if [INa(S)\T| > b or “No” if [Ng(S)\T| < & - b, uses O(% - log® n) bits

of space, and succeeds with probability at least 1 —n~3. We denote one such algorithm as

AEQNT(S; a, b)

3 Sampling Strategies for Random Greedy Matchings
In this section, we discuss and present the tool that we use to either find a large matching or

show that the residual subgraph induced by the unmatched vertices is sparse.

2 A dynamic graph stream is a special case of the strict turnstile data streaming model [35] where we
consider only bit-vectors which represent the edges of a graph.
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This approach was also used in Assadi and Shah’s recent work for aMM [11] to identify
“easy” and “hard” instances of the problem. For aMVC, the “easy” case is finding a large
enough matching to imply that we can trivially return the entire vertex set to solve the
problem. The “hard” case is when we get a sparse residual subgraph, which is where our
main savings in space come from. Identifying these cases can be accomplished by computing
a GREEDY matching on randomly sampled edges of the graph.

Uniformly sampling as many edges as possible from a n-vertex graph (using Lo-sampling)
without exceeding O(n"/a2) bits of space followed by computing a GREEDY matching implies
sparseness properties based on an already known maximum degree bound of the residual
subgraph induced by the unmatched vertices [3, 29, 20]. Intuitively, uniform sampling is
skewed towards sampling edges incident to high degree vertices. Hence, a GREEDY matching
either matches these high degree vertices or matches many of its neighbours (decreasing their
residual degree), and regardless of the size of the matching found, this gives a poly(«) max
degree bound in the residual graph. Furthermore, we can show that this also bounds the
average degree (even when a small matching is found) since a worst-case instance® practically
has all vertices in the residual subgraph with max degree. This degree bound, however, is
only sufficient for solving aMVC for any a < n@s.

Non-uniformly sampling the edges using neighbourhood edge sampling followed by
GREEDY, as done by Assadi and Shah [11], proves to give better sparseness properties,
and thus a better average degree bound?*. The benefit of neighbourhood edge sampling is
that it biases away from sampling high degree vertices. Furthermore, when a small GREEDY
matching is found, the implication is that the residual subgraph is sparse. Therefore, the

average degree bound is sufficient for solving the “hard” case of aMVC for the full range of a.

As previously mentioned, Assadi and Shah’s algorithm called Match-or-Sparsify [11], does
exactly this, although its guarantees are not sufficient for our purposes. Hence, we first
discuss their algorithm, and then explain the alterations we make.

Match-or-Sparsify. For some parameter 3 < n, Assadi and Shah’s Match-or-Sparsify;
algorithm non-uniformly samples edges using space O(5?/a®) bits, and then computes a
GREEDY matching from them. They give an intricate analysis to show that their algorithm
either finds a large matching of size at least /8« or implies that the residual subgraph has at
most 20 - 8 - log* n edges [11, Lemma 16]. Unlike uniform sampling, the residual properties

(sufficiently) only hold when the matching is small — a key property exploited in their analysis.
Additionally, in order for the guarantees to hold, they rely on the assumption that 8 > a?-n°.

Informally, when 3 is set as the size of the maximum matching p, Match-or-Sparsify,, finds a

large matching in “easy” graph cases and a sparse residual subgraph in the “hard” graph cases.

However, p is not known, so they find a setting of 3 close to u by running Match-or-Sparsify 5
in parallel with 8 as all powers of 2 between 1 and n.

Our Alterations. The first thing to note is that the “easy” and “hard” instances for cMM
and aMVC are not the same. Consider Match-or-Sparsify; when a large GREEDY matching
is found. Since at least one endpoint of each matching edge must be in a vertex cover, it
implies that opt > %. However, returning a solution to «MVC at this stage can only be

3 Consider a graph with a large clique on O(n/a) vertices where most the edges are sampled from, and
many smaller cliques which assert the guaranteed max degree bounds.

4 Having an average degree bound is more difficult to work with, but in this case, the bound on the
average degree is much smaller than the bound on the max degree in the uniform case.
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of size at most ©(), which would not be a trivial solution (the entire vertex set) with
B < n. Furthermore, we have no guaranteed sparseness properties since the matching
found is large. Hence, instead of needing § ~ u, which requires logn many runs to find, we
only need a single run of Match-or-Sparsify,, (with the parameter /3 fixed as n). Secondly,
their assumption that 5 > a? - nd implies that o < n%&, but we require it to hold for any

1=3 Since we have an additional a factor of space (see [18]), we can increase the

a<n
number of non-uniformly sampled edges to use O(n”/a2) bits instead, which allows us to
remove the assumption. Finally, the increase in the number of samples also allows us to
increase the sparseness guarantees of the residual subgraph by an « factor. Therefore, this
altered Match-or-Sparsify,, algorithm, denoted by ALG s, gives us the following lemma (the

full proof is given in the arXiv version for completeness).

» Lemma 5. There is a linear sketch for dynamic graph streams that, given any graph
G = (V, E) specified via vec(E), uses O(n*/a?) bits of space and with high probability outputs
a matching Measy that satisfies at least one of the following conditions for any a < n'=% and
0> 0:

Match-case: The matching Measy has at least g~ edges;

Sparsify-case: The induced subgraph of G on vertices not matched by Measy, denoted

by Gr, has at most 20 - = -log* n edges.

4 Main Result

In this section, we give a dynamic graph streaming algorithm for aMVC for any n-vertex
graph which implies our main result:

» Theorem 1. There exists a randomised dynamic graph streaming algorithm for aMVC that
succeeds with high probability and uses O(n*/a?) bits of space for any o < n*~% where § > 0.

Before proceeding, we give the following standard assumption (with reason) which
simplifies what we need to prove.

» Assumption 6. A randomised dynamic graph streaming ©(«a)-approximation algorithm
that uses O(n*/a?) bits of space and succeeds on graphs where opt > is sufficient to
prove Theorem 1.

_n_
a-log?n

Reason. Let A be an algorithm that returns a (c - o)-approximation using O("*/a?) bits of
space. Run A with parameter @/c to get an a-approximation which similarly uses O(n*/a?)
bits.

Then, since we can run ©(1) many algorithms which use O(n”/a?) bits of space in parallel
without asymptotically increasing the space, we run an additional algorithm which detects
and outputs a solution for graphs with small opt.

Algorithm for small opt. We use the well-known algorithm for finding an exact minimum
vertex cover in dynamic graph streams given the promise that opt < k with k& = #gzn [15].
If opt < k, then we get an optimal solution; otherwise, we get a set of vertices of size k which
are not necessarily a solution. Thus, we can detect this case by the size of the returned vertex
cover being smaller than k. The space taken by the algorithm is O(k? - log* n) = O(n*/a?)

bits and it works for all &« = w(1) (for & = ©(1) we can store the entire graph). <
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Algorithm 1 Optimal Dynamic Vertex Cover.

Input: A dynamic graph stream o for a n-vertex graph G = (V, E), a small constant § > 0,
and a positive integer a < n'~°

Output: A vertex cover Vg of G

Pre-processing:
1: Initialise M to be an instance of ALG s (Lemma 5)
2: Randomly partition V' into groups Vi, Va, ..., Va having size in [a/2, 2a]
3: For each group V;, initialise N; to be an instance of ALG y7(V;;a,b) (Proposition 4) with
a="/a and b = n’/>
4: Set ¢ = 15/s

Processing the stream:

5: Update M and each N; using o

6: For every pair of groups V; and V}, store a counter Cj ; for the number of edges between
them modulo ¢

7: For every group V;, store a counter C; for the number of internal edges

Post-processing:

8: Let Mcasy be the matching returned by M
9: if Measy has at least 8% edges then return V

10: Let V¢ be the union of all groups V; containing a vertex of Measy or with C; > 0

11: Add to V¢ all remaining vertex groups V; where N; returns “Yes” when 7' = V (Meagy)

12: Consider the multi-graph G’ obtained by contracting the vertices of each remaining
vertex group V; into a single vertex v; where C; ; represents the multiplicity modulo ¢ of
each edge (v;,v;) in G’

13: Greedily compute a vertex cover V{, of G’

14: For all v; € V{, add vertex group V; to Ve

15: return Vg

Algorithm Description. Let G = (V, E) be specified by a dynamic graph stream, § > 0,
and a < n'~% be the inputs to Algorithm 1. The algorithm, in its pre-processing step,
partitions V into 7/a groups using a (10 - log n)-wise independent hash function (when the
space allows, i.e., for small o, we do this using a uniform random permutation instead), and
we later show that all their sizes lie between /2 and 2« with high probability. During the
stream, it maintains counters modulo some constant for the number of edges between each
pair of groups and (standard) counters for the number of internal edges of each group. In
parallel, it computes a random matching Measy using an instance of ALG g (Lemma 5)
and maintains residual neighbourhood size testers for each vertex group using instances of
ALGnr (Proposition 4). In the post-processing step, if the matching is of size at least g,
then the entire vertex set is returned. Otherwise, the vertex groups containing any vertex
of the matching or any internal edges are entirely picked in the solution — we call these
simple verter groups. Next, the remaining vertex groups V; whose residual neighbourhood
is large, NG, (Vi)| = [Ng(Vi))\V (Measy)| > 7%/ where G = G[V\V (Measy)], are added to
the solution — we call these residual vertex groups. Finally, among the leftover clean vertex
groups, the algorithm uses the counters modulo some constant to perform a group-level vertex
cover, and then further adds the covering groups to the solution before returning it.

53:7
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» Definition 7 (Simple Vertex Groups). We say that a vertex group V; is simple if any of its
vertices are matched by Measy or it has at least one internal edge, i.e., Vi V(Measy)| >0
or C; > 0.

» Definition 8 (Residual Vertex Groups). We say that a vertex group V; is residual if it is
not simple and has a large residual neighbourhood, i.c., |Ng, (V)| > n®/2.

» Definition 9 (Clean Vertex Groups). We say that a vertex group V; is clean if it is not
simple or residual, i.e., |Vi NV (Measy)| = 0, Ci = 0 and |Ng, (Vi) < n®/2.

Note that throughout the subsequent analysis of Algorithm 1, all results succeed with
high probability. Hence, at any point, we can do a simple union bound to show that they all
hold with high probability. As such, we condition on this event here to avoid explicitly doing
so during the analysis.

Let G be the input graph of the algorithm. We begin the analysis with the following
observation: If G contains a matching of size at least g™, then V' is a valid (8-«)-approximation
of a minimum vertex cover V* since at least one endpoint of a matching edge must be in a valid
vertex cover. Therefore, if the condition of Algorithm 1 is satisfied, the algorithm terminates
and the solution is a valid ©(«)-approximation (“easy” graph instances). Otherwise, the
algorithm progresses with |Measy| < g%, i.e., the sparsify-case of Lemma 5 (“hard” graph
instances). This implies that the residual subgraph Gg is sparse with at most 20 - 2 - log? n
many edges. As such, we need to prove that we also get a ©(«a)-approximation in the
sparsify-case.

We highlight here that the algorithm adds vertex groups to the solution for various
reasons, which are determined by whether it is a simple, residual, or clean vertex group (see
Definitions 7-9). Hence, we proceed with the analysis of the sparsify-case by considering
these different types of vertex groups separately.

Simple Vertex Groups. Let Z; be the index set of the simple vertex groups. We argue that
there are not too many of these, so we can add all of them to the solution.

>> Claim 10. The number of simple vertex groups |Zs| is at most 2 - opt(G).

Proof. Each edge of the matching Mc,sy can cause up to two vertex groups to be classified
as simple; however, they must have at least one vertex of V* since at least one endpoint of
every matching edge must be in V*. Therefore, for every two groups classified as simple
in this way, there is at least one vertex of V* in their union. On the other hand, a group
could also be classified as simple if it contains an internal edge, where one of its endpoints
must be in V*. Hence, for each group classified as simple in this way, there is at least one
vertex of V* in it. Then, it follows that the number of simple vertex groups must be at most
2-|V*| =2-opt. <

Residual Vertex Groups. Let Z, be the index set of the residual vertex groups. Recall
that any residual vertex group must have at least n’/?> many residual neighbours. We note,
however, that due to the guarantees of the neighbourhood size tester algorithm ALG y7 (see
Proposition 4), there are some misclassifications, so some residual vertex groups are also
of size between % -n’/? and n’?. This will not be an issue, and moving forward, when we
mention residual vertex groups, we assume that this includes the misclassifications. Now,
we argue that there are not too many residual vertex groups, so we can add them all to the
solution.

> Claim 11. The number of residual vertex groups |Z,| is at most opt(G) with high
probability.
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Proof. We have that [V(Measy)| is at most ;- and G'r has at most 20- 2 -log* n many edges.

As such, G has n — [V(Measy)| > 5 vertices, and the average degree of a vertex in G is at
2 _ 40log*n
- a

most 20 - = - log*n - = . Since each non-simple vertex group V; is fully contained

in Gg and has at most 2« vertices, we have that E [|[Ng,(V;)|] < % -2a = 80log™ n.

Then, it follows by Markov’s inequality that

Pr (V; is residual | V; is non-simple) < Pr (|NGR(VZ-)| > ~n5/2>
2-80log*n _ log®n
= n’/? = n2 -

c N

(1)

Let X; be the indicator random variable that a non-simple vertex group V; is a residual
vertex group, then R = Zie[g]\zs X is the number of residual vertex groups. By Equation (1),
we have the following:

5 .5
ER]= Y Pr(X)< Y log'n _ n-log"n

5/ . 5/
ie[2\T. e v a-n’

_n__
a-log?n

Finally, since opt(G) >
implies the result:

(Assumption 6), a further application of Markov’s inequality

-log® log?
Pr(L|>opt)§Pr<R> r )<n 08 N Q08 M -

2 5 —
a-log”n a-n’? n

Note that we can easily increase the success probability by running the algorithm in
parallel 40/§ times and detecting failures when the number of residual groups is more than
n/a-log?n. Then, with probability at least 1 — n =10
increases the space of the algorithm by a constant factor since 40/§ = ©(1). <

, one of the runs will succeed. This only

Clean Vertex Groups. Let Z. be the index set of the clean vertex groups and let Z be
the ones added to the solution, which also corresponds to the group-level vertex cover V in
Algorithm 1.

Before analysing the group-level vertex cover, we note that the relevant counters are
stored modulo c¢. This means that if the number of edges between clean vertex groups is
some multiple of ¢, the corresponding counter would be 0 and the group-level vertex cover
would be incorrect. Hence, we want the number of edges between clean vertex groups to be
less than ¢ with high probability.

> Claim 12. For all pairs of clean vertex groups V; and Vj, with high probability,
Ne(V) NV <.

Proof. We prove a slightly generalised statement which implies what we need. We show that
there are less than ¢ edges of G between any clean vertex group V; and any other vertex
group Vj. This implies what we need since, by definition, all edges between clean vertex
groups are in Gp.

Consider the random partitioning of V' using an at least (3 - ¢)-wise independent hash
function (the algorithm uses (10 - logn)-wise independence). A residual neighbour of the
clean vertex group v € N¢g,, (V;) uniformly belongs to any of the other vertex groups. Since
there are 2 — 1 of these (including Vj, but not including V;), the probability that v € Vj is
at most 2.
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Now, since clean vertex groups are non-residual, | Ng, (Vi)| < n*/?, and for a fixed V; and
V;, we have that

n’/? 200\ ¢ 2« 1%/ _
Pr(NGRmm‘mzf:)é(c)(n) S(n/) <n”

where we have used o < n'~% and ¢ = 15/s in the final inequalities. Then, the result holds
with probability at least 1 —n~° by a union bound over all pairs of vertex groups.

Note that for small o we will partition V into groups of size exactly a with a uniform
random permutation due to concentration and space reasons (see Claim 15), but the above
arguments also hold in this case. <

With Claim 12, we can assume that all the counters between clean vertex groups count
exactly the number of edges with high probability, that is, the modulo has no effect on the
correctness of the algorithm. Thus, the setting is now identical to that of Dark and Konrad’s
algorithm [18], and we follow a similar argument as they did to analyse the group-level vertex
cover and the corresponding subset of clean vertex groups added.

> Claim 13. The number of clean vertex groups added |ZF| is at most 2 - opt(G).

Proof. Consider the subgraph H = G[U;ez, Vi) induced by the clean vertex groups. Observe
that since H is an induced subgraph of G, opt(H) < opt(G). Then, since the vertex
contractions to obtain the multi-graph G’ from H cannot increase the size of its minimum
vertex cover, we have that opt(G’) < opt(H). Finally, since we greedily compute the group-
level vertex cover V/,, it is a 2-approximation and we have that |Z}| = [V/| < 2-opt(G’) <
2 - opt(G). <

By combining the analysis of the simple, residual, and clean vertex groups, we prove the
approximation factor of the algorithm.

» Lemma 14. Algorithm 1 returns a valid ©(«)-approzimation of a minimum vertex cover
for any input graph G with opt >

n
a-log?n*

Proof. We first show that the solution Vi is indeed a valid vertex cover, then we prove that
it is a O(«a)-approximation.

Validity. For the sake of finding a contradiction, let e € F be an edge which is not covered
by V. Observe that any non-clean vertex group V; is added to V; thus, all edges with at
least one endpoint in any of these vertex groups are covered. So, we have that e must be in
G|U;ez.Vi], the subgraph induced by the clean vertex groups.

Let ¢,j € Z. be such that e has endpoints in the clean vertex groups V; and Vj, implying
that there is an edge between their corresponding contracted vertices v; and v; in the
multi-graph G’. It follows that one of v; or v; must be in the computed group-level vertex
cover V¢, so all vertices of either V; or V;, including at least one endpoint of e, are added to
V. However, this means that e is covered by V¢, a contradiction.

Approximation. Observe that the solution V¢ is comprised of a (disjoint) union of all simple
vertex groups, all residual vertex groups, and a subset of clean vertex groups. Recall that Z,
Z, and Z are the corresponding index sets of these groups.

By Claims 10, 11, and 13, we have that |Z;| + |Z.| + |Z;| < 5 - opt. Finally, since the size
of each vertex group is at most 2«, we can bound the size of the solution as follows:

Vel= Y Vil <20 (IZ| + T, + |ZF]) < 10a - opt. <
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It remains to show that the algorithm can be implemented using O(»*/a) bits of space.

Algorithm 1 randomly partitions V', maintains several instances of ALG s (Lemma 5)
and ALG yr (Proposition 4), and stores various counters. To show the space usage of the
algorithm, we first consider each of these components separately.

> Claim 15. The partitioning of V' into % vertex groups of size in the range [a/2, 2a] uses
O(7*/a?) bits of space and succeeds with high probability.

Proof. We show that for small o < log2 n, i.e, when we have sufficient space, we can achieve
this with a uniform random permutation, and for large a > log® n, we use a (10 - log n)-wise
independent hash function.

Small a. For any a < log?n, we can randomly permute the vertices using O(nlogn) =

O(n*/a?) random bits to create a uniform random partitioning of V into 2 groups of size a.

Large . For any a > log® n, we can partition V using a (10 - log n)-wise independent hash
function h : [n] — [2] which uses O(log®n) = O(» /a ) bits by Proposition 2. We bound
the size of the groups as follows: Consider any group V; (j € [ ]) and let X; be the random

variable that is 1 if vertex ¢ is hashed to Vj, i.e. h(z) j. Let X =", X, represent the
number of vertices in group V;. We have E [X] =n - (a/n) = a. Using Proposition 3 with
e=0.1,

Pr(|X —E[X]| > e -E[X]) <exp(-5logn) <n~°

A union bound over all groups implies that with probability at least 1 — n~%, all groups have
size between 0.9« and 1.1a. <

> Claim 16. The instances of ALG yrs and ALG yr, and the counters use O(7*/a?) bits of
space.

Proof. We use one instance of ALG s (Lemma 5) which takes space O(7°/a?) bits. We
use /o instances of ALG yr (Proposition 4) with parameters a = n/a and b = n”/* each of
which take space O(§ log®n) = O((n/a) - (log® n/n’/?)) = o(n/a) bits. This implies that the
total space used by 7/a instances is O(7?/a?) bits. We maintain counters modulo a constant
¢ = 15/5 for the number of edges between every pair of vertex groups. Each takes O(1) bits of

space, and since there are O(""/a2) many of these counters, this totals O(n"/a2) bits of space.

We also maintain counters for the number of internal edges for each group which requires
O(logn) = o("/a) bits of space each. Since there are 2 many groups, this totals O(""/a?)
bits of space. <

Hence, by Claims 15 and 16, we have shown that the components of Algorithm 1 use
O(7*/a?) bits in total. We still, however, need to consider the format of the output. When «a
gets large enough, the space is only o(n), whereas simply storing the output — the vertices of
a solution — could require ©(n) bits of space. We solve this by showing that we can implicitly
store the solution when there is limited space.

> Claim 17. The output of Algorithm 1 can be maintained using O(*/a?) bits of space.

Proof. For a < log? n, we can maintain the vertices of the solution explicitly. For o > log? n,
we rely on the hash function h used to partition V' (see Claim 15). Recall that vertices
are added to the solution at a group level, so we can simply maintain a bit vector of
length % representing the groups added to the solution. Then, the output consists of i and
the bit vector which is sufficient for checking if a vertex belongs to the solution and uses
O(log® n + 2) = O(n’/a?) bits of space. <

53:11

APPROX/RANDOM 2022



53:12

Space Optimal Vertex Cover in Dynamic Streams

We have now shown that Algorithm 1 can be implemented using O(»*/a?) bits of space.
Therefore, combined with Lemma 14 and Assumption 6, we have proven our main result,
Theorem 1.

5 Conclusion

In this paper, we have resolved the space complexity of aMVC for the full range of a. We
have provided a randomised algorithm which asymptotically matches the lower bound [18]
up to constant factors, showing that ©(7"/a?) is necessary and sufficient for this problem.

The previous best algorithm for aMVC was a deterministic one using O(»*/a? - log ) bits
of space [18]. We have shown that we can remove the logarithmic overhead using randomness.
Can we, however, remove this logarithmic factor using deterministic techniques or otherwise
prove a deterministic lower bound which shows that it is necessary?

Our work continues the direction set by the results on connectivity [1, 36] and matchings
[18, 11]; we resolve the space complexity (up to constant factors) of another problem in the
dynamic graph streaming setting. However, other problems still remain open. Hence, can we
achieve this for other dynamic graph streaming problems such as dominating set [26] and
spectral sparsification [24]?
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