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Abstract
Smart contracts on the Ethereum blockchain continue to suffer from well-published problems. A
particular example is the well-known smart contract reentrancy vulnerability, which continues to be
exploited. In this article, we present preliminary work on a method which, given a smart contract
that may be vulnerable to such a reentrancy attack, proceeds to attempt to automatically derive an
“attacker” contract which can be used to successfully attack the vulnerable contract. The method
uses property-based testing to generate, semi-randomly, large numbers of potential attacker contracts,
and then proceeds to check whether any of them is a successful attacker. The method is illustrated
using a case study where an attack is derived for a vulnerable contract.
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1 Introduction

The support of Smart Contracts introduced a key development in the Ethereum [3] blockchain
platform since the first blockchain, Bitcoin [10], was originally proposed for cryptocurrency
transfers. Smart contracts provided the opportunity to study the properties and security of
code executed in blockchain platforms.

In the last few years, a variety of tools and frameworks to analyze and find vulnerabilities
in blockchain smart contracts have been developed based on static and dynamic analysis.
These tools are based on popular program testing techniques such as fuzz testing [9, 15],
symbolic execution, taint tracking, and static analysis.
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A complementary testing technique is property-based testing (PBT) [4], a model-based
testing technique. In PBT, tests are automatically generated from a model to cover a
multitude of scenarios that a human tester may not have considered.

In [6], we presented Makina, a library and a domain specific language for writing PBT
models for stateful programs. Models written in the new domain specific language are, using
Elixir macros, rewritten into PBT state machines [1, 11]. Our main goal with Makina is to
ease the task of developing correct and maintainable models, and to encourage model reuse.
To meet these goals, Makina provides a declarative syntax for defining model states and
model commands. In particular, Makina encourages the typing of specifications, and ensures
through its rewrite rules that such type information can be used to effectively typecheck
models. Moreover, to promote model reuse, the domain specific language provides constructs
to permit models to be defined in terms of collections of previously defined models.

In (still unpublished) previous work, we have proposed a PBT model to test smart
contracts. Such a model consists of a generic part, i.e., modelling concerns common to all
smart contracts, and a specific part which is tailored to the specific behavior of each contract.
As a case study, in this paper we extend the proposed PBT model and introduce automatic
code generators to test a contract. The objective is obtaining a successful attacker contract
on a contract vulnerable to the reentrancy attack.

A reentrancy attack involves two smart contracts: a victim contract and an untrusted
attacker contract. A reentrancy attack occurs when a function from the victim contract
makes a call to the attacker. In the Ethereum Virtual Machine (EVM), a reentrancy attack
can happen also when a transfer to a contract is made. This transfer may end up in the
execution attacker’s code. The attacker takes advantage of this and tries to drain the victim’s
funds. One of the first (known) examples was the DAO attack which caused a loss of 60
million US dollars in June 2016.

The reentrancy attack is still an issue for Solidity smart contracts. Recent examples
of reentrancy attacks are the 7.2 million dollar BurgerSwap hack (May 2021) caused by a
fake token contract and a reentrancy exploit, and the 18.8 million dollar Cream Finance
hack (August 2021) where the reentrancy vulnerability allowed the exploiter for a second
borrow [12]. The reentrancy attack has been found in token standards as the ERC777 in the
exploit of Uniswap1. This attack has been widely studied [2], classified2 and is described in
the official documentation of Solidity3. Some design patterns have been proposed to prevent
this vulnerability, but the source of errors is tied to the language design.

To prevent a reentrancy attack in a Solidity smart contract one should (i) ensure all state
changes happen before calling external contracts, i.e., update balances or code internally
before calling external code, or (ii) use function modifiers that prevent reentrancy.

A way of testing that a contract is vulnerable to a reentrancy attack involves creating
one attacker contract that exposes the problem. In this work, we use PBT to automatically
generate such attacker contracts and test them against the given contract.

Additionally, many development and testing tools in the Ethereum platform offer ways of
detecting contracts vulnerable to the reentrancy attack [8, 14, 16]. These tools are effective
finding the vulnerability, but they are limited when providing an external test, for example
in the form of an attacker contract, to independently check the vulnerability.

1 https://blog.openzeppelin.com/exploiting-uniswap-from-reentrancy-to-actual-profit/
2 https://swcregistry.io/docs/SWC-107
3 https://docs.soliditylang.org/en/v0.8.11/security-considerations.html#re-entrancy

https://blog.openzeppelin.com/exploiting-uniswap-from-reentrancy-to-actual-profit/
https://swcregistry.io/docs/SWC-107
https://docs.soliditylang.org/en/v0.8.11/security-considerations.html#re-entrancy
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The rest of the paper is organized as follows. In Section 2 we present a smart contract
which is vulnerable to the reentrancy attack and that will be used as a case study. The
ideas behind the generation of attacker contracts are outlined in Section 3. In Section 4 we
explain in detail how property based testing works and how it is used to test stateful systems.
Experimental results are presented in Section 5. Some related work is discussed in Section 6.
Finally, conclusions, limitations and further work are discussed in Section 7.

2 Case study

In this section, we present a running example based on the well known reentrancy attack.
The goal is to test whether a contract is vulnerable to such an attack by creating an attacker
contract, that tries the attack on the given contract. As we shall see, the attacker contract
can be generalized and, thus, reused for testing other contracts against the reentrancy attack.

2.1 The victim contract
The following contract represents a wallet vulnerable to reentrancy attacks. In this wallet
multiple accounts can deposit and withdraw ether. The funds are private and one can only
operate on its own balance.

1 // SPDX -License - Identifier : MIT
2 pragma solidity ^0.8.15;
3
4 contract Wallet {
5 mapping ( address => uint) private credit ;
6
7 function donate () external payable {
8 require (msg.value > 0 wei );
9 credit [msg. sender ] += msg.value;

10 }
11
12 function withdraw () external {
13 uint bal = credit [msg. sender ];
14 require (bal > 0);
15
16 (bool sent , ) =
17 msg. sender .call{value: bal }("");
18 require (sent , " Failed to send Ether ");
19
20 credit [msg. sender ] = 0;
21 }
22 }

Listing 1 Wallet contract (victim)

The Wallet contract has a private attribute named credit, which is a table storing the
balance for each account. The contract exposes two public methods: donate and withdraw,
and they can be called by any account or any other contract.

The method donate is labeled as payable, indicating that when this method is called, it
can be done with some ether value attached. The ether value can be seen in the variable
msg.value. In this case, the Wallet contract requires it to be greater than 0. The variable
msg.sender has the address of who (account or contract) called to this method. The Wallet
contract proceeds to register and link the ether amount and the sender into the credit
variable.

FMBC 2022



3:4 Automatic Generation of Attacker Contracts in Solidity

When the withdraw method is called, the Wallet contract transfers back the registered
balance of the caller (msg.sender). The transfer is done using the call function with the
corresponding ether attached. Finally, it updates the msg.sender balance to 0.

The reentrancy attack is based on the exploit of a particular behavior of EVM smart
contracts, affecting to languages like Solidity. When a transfer is done to a contract, the
receiver can execute some code during the transaction. In the case of a transfer between two
contracts, this behavior is giving the control to the receiver during a function call.

Here, the goal of the reentrancy attack is to steal money from a victim contract by
draining its funds. In the Wallet contract the reentrancy attack can be exploited because in
the withdraw method, the sender balance is updated after the amount has been transferred
(lines 20 and 17, respectively). During this transfer, the attacker calls again to withdraw.
The balance has not been updated yet (line 20), so the conditions to make a new transfer are
still met (lines 13 and 14). This loop of re-entrant calls could be executed until the Wallet
transfers all of its funds.

In the following section, we explain the attacker contract and how it is able to exploit
the attack on this Wallet contract.

2.2 The attacker contract
Solidity smart contracts can define a function to be executed when they receive a transfer.
This function is named receive, and it is fundamental for the reentrancy attack. In this
section we explain a contract exploiting the reentrancy attack in the Wallet contract of the
previous section.

In the following Solidity code, a contract attacker is presented. The entry point is the
attack function. This function makes a first payment to the victim contract and then calls
the withdraw function which will transfer ether back to the attacker. This transfer will
trigger the receive function and before the receive terminates, the attacker calls again the
withdraw function. That is, the attacker contract consists of two phases interacting with the
victim contract, first the trigger phase, and second, the receive phase to continue draining
the victims funds.

1 // SPDX -License - Identifier : MIT
2 pragma solidity >=0.4.22 <0.9.0;
3
4 contract Attacker {
5 address private victim ;
6
7 constructor ( address victim_ ) {
8 victim = victim_ ;
9 }

10
11 receive () external payable {
12 uint victimBalance =
13 address ( victim ). balance ;
14 bool has_funds =
15 victimBalance >= msg.value;
16
17 if ( has_funds ) {
18 try victim . withdraw () {} catch {}
19 }
20 }
21
22 function attack () external payable {
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23 require (msg.value >= 1 wei );
24 uint init = address (this ). balance ;
25
26 victim . donate {value: msg.value }();
27 victim . withdraw ();
28
29 uint end = address (this ). balance ;
30 emit SuccessfullAttack (end > init );
31 }
32 }

Listing 2 Attacker contract

The attack function emits an event SuccessfulAttack(true) with the result of the attack.
We will use this event to test whether the attack was successful or not.

3 Automatic generation of attacker contracts

The goal is to automate the generation of a successful attacker contract. Our approach uses
Property-based testing (PBT) to automatically generate random calls to the public functions
obtained from the Application Binary Interface (ABI) of the victim contract with the goal
of detecting a reentrancy vulnerability. If a vulnerability is found, the result is an attacker
contract that can exploit the aforesaid vulnerability.

As we have seen in the previous section, in the case of the reentrancy attack, there are
two phases in the interactions between the attacker and the victim: (i) the trigger phase
that prepares the attack, and (ii) the receive phase where the attack takes place. These two
phases correspond to two functions in the generated attacker contract: the trigger function
and the receive function.

The trigger function contains a sequence of calls to the victim contract which ends with
a call that triggers a transfer from the victim to the attacker. Then, this transfer invokes the
receive function. In the receive function, there is a sequence of at least one call to reenter
into the victim contract. Our approach is to automatically find such sequences, if they exist
for the victim contract, using PBT.

The following code is the template of the attacker contract where the sequence of calls of
the trigger and receive functions are generated using PBT. In the next section, we explain
how they are automatically generated.
1 function trigger_sequence ()
2 { /* To be generated using PBT */ }
3 function receive_sequence ()
4 { /* To be generated using PBT */ }
5
6 function attack () external payable {
7 ...
8 trigger_sequence ();
9 ...

10 }
11
12 receive () {
13 ...
14 if ( has_funds ) {
15 try receive_sequence () {} catch {}
16 }
17 }

Listing 3 Attacker contract template

FMBC 2022
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For clarity, only the relevant code is displayed. In this code, line 8 corresponds to lines
26 and 27 of the attacker contract shown in Section 2.2. Note that this template contains
the code that is common to many attacker contracts for the reentrancy attack, while the
generated code is specific to each victim contract.

4 Property-based testing

Property-based testing (PBT) is a testing methodology which focuses on generating, auto-
matically, test cases from a formal description of the behavior of the system under test. That
is, PBT can be considered a form of model-based testing.

Formally, the model is an extended finite-state machine where one has to define the
state, commands, preconditions and postconditions. PBT tools, for example, [1], will generate
execution scenarios that will be run on the model and on the system under test to prove that
the actual system behaves like the model. To generate the execution scenarios, generators
are used.

4.1 Generators
A generator is capable of generating an infinite number of values of some data type, according
to a probability distribution. PBT tools come equipped with a library of standard generators,
for example, a generator for integer numbers.

In this work, we have defined a generator for non-negative integers to represent the ether
used in payments. This generator is used as an argument for all transactions, for example in
the calls to the payable functions or when deploying a contract.

A user of a PBT tool can also implement custom generators. In this work, we have
defined a generator for attacker contracts.

4.1.1 Attacker contract generator
The attacker contract generator uses the template described in Section 3 and the ABI of the
victim contract to generate a Solidity contract. The ABI is generated when a contract is
compiled and contains the specification of the contract’s functions. From the specification,
one can extract the name, arguments and modifiers.

The attacker contract generator uses generators of values and function calls. These
generators are fed with the information extracted from the ABI to obtain targeted function
calls with valid values.

To generate an attacker contract, two sequence of calls are generated and inserted in
the template: the trigger and the receive sequence. These sequences contain calls to the
victim contract. A call is generated from the ABI, based on its specification. When a call to
a contract needs to be generated, it chooses one of the defined function in the ABI. If the
function has any arguments or modifiers, for example: if it is payable, an ether amount is
generated for the call. Figure 1 is a diagram of this described process.

Figure 1 Attacker contract generator.
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The following represents an example of generated code in the Attacker for the trigger
and receive sequences in the Wallet example.

1 function trigger_sequence () payable {
2 victim . donate {value: 3}();
3 victim . withdraw ();
4 victim . donate {value: 1}();
5 }
6
7 function receive_sequence () payable {
8 victim . withdraw ();
9 victim . donate {value: 1}();

10 victim . withdraw ();
11 victim . donate {value: 2}();
12 victim . withdraw ();
13 victim . withdraw ();
14 }

Listing 4 Generated attacker contract sequences.

In this example, the generator has filled the two sequences: the trigger_sequence and
the receive_sequence. This code fragment belongs to a generated contract based on the
template in Listing 3. For example, the trigger_sequence includes 3 generated function
calls: 2 donate calls and 1 withdraw. The function donate is payable, which means that it
can receive ether attached, and the calls to this function include a generated ether value as
argument.

4.1.2 Function call generator

The generation of function calls is driven by the specification found in the ABI. In the ABI,
a function definition contains the name of the function, the number of arguments and their
types and any other modifier. In the example of the donate function, Listing 5 represents
the object definition extracted from the ABI.

1 {
2 function : " donate ",
3 method_id : " ed88c68e ",
4 input_names : [],
5 types: [],
6 returns : [],
7 type: :function ,
8 state_mutability : :payable ,
9 inputs_indexed : []

10 }

Listing 5 ABI definition of function donate.

Given the ABI definition of a function, the contract call generator outputs a new object
with generated values. As the donate call is payable, an ether value is generated. Listing 6
contains the generated object for a single function call. Then, this generated call is encoded
as Solidity code: donate{value: 3}();

FMBC 2022



3:8 Automatic Generation of Attacker Contracts in Solidity

1 {
2 name: " donate ",
3 args: [],
4 state_mutability : :payable ,
5 value: 3
6 }

Listing 6 ABI definition of function donate.

The contract call generator is able to generate values for each given argument of a function.
The donate function does not have any additional argument, but given list of types for each
argument, it generates a list of values for each corresponding argument. This generator is
explained in the next subsection.

4.1.3 Value generator with context awareness

A valid Solidity value can be generated given a type. Given an int, a number in the range of
the integers is generated. For uint, only non-negative integers are possible. This mapping
between types and possible values is done for each Solidity type except function, fixedNxM
and ufixedNxM.

There are limitations with random generated values. A relevant case is address values. A
generated reference for an address will be syntactically valid, but it is unlikely to represent a
populated address in the blockchain. This behavior is desired to test some cases, but the
generation will be biased towards testing non-existent addresses. To fix this limitation, one
could include in the address generator the possibility of generating addresses from a set of
already known values.

A context in the generation of values carries extra information about values to be
generated, for example: set of possible addresses, limits on the amount of ether.

4.2 Commands

In most cases, a test case is not a simple call to a function, but rather a sequence of calls
to operations or methods interacting with a system. In our case, the blockchain and the
smart contracts it contains. That is, a test case generator returns sequences of API calls,
and the test property checks whether the execution of such a sequence of API calls is correct.
To interact with the Ethereum blockchain we have defined commands that will be executed
during the tests, checking the expected result after each call. In the following subsections,
we describe the specific commands interacting with the blockchain that are relevant to
understand how the test for reentrancy attack is executed.

4.2.1 Register Attacker

The Register command is responsible for compiling the generated attacker. The input of
this command is the source code of an attacker contract, generated by the attacker contract
generator, described in Section 4.1.1 using the known victim’s ABI. The command compiles
the generated attacker source code and registers the contract. This registration is required
to later deploy instances of the attacker with the Deploy command. After the execution of
this command we will have a registered attacker.
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4.2.2 Deploy
This command will deploy a given contract with the arguments of the contract’s constructor.
We use this command with the victim contract and with the attacker. Once the contract is
registered with the contract manager library, the command deploy can be executed. The
result of this command is a transaction hash returned by the blockchain, ensuring that the
request was received but might not be processed yet. The address where the contract was
deployed is known once the transaction is completed.

The constructor of the attacker contract requires the address of the victim as an
argument (see line 7 of Listing 2). If the victim contract has already been deployed, the tool
is able to select the address as the argument for the constructor.

4.2.3 Attack
The Attack command triggers the execution of the attack. It calls to the method attack
in the attacker contract. The condition to be able to execute this command is having an
attacker deployed and its address known. We expect a transaction hash returned, to later
check the transaction completion status. As the attack function is payable, this command
has the possibility to call the method with an ether amount. The PBT tool generates this
value with an ether value generator. The attack function in the smart contract emits an
event with the result of the test. This Attack command also specifies that we expect that
event with a result of “not succeeding”. This event is checked later with the Get Events
commands.

4.2.4 Get Events
Given a transaction hash and if the transaction is complete, this command fetches and
decodes any known events emitted. We know what events we expect from the transaction
because any transaction command can add the expected result. For example, the Attack
command included the result event as the one expected. At this point, we can have all the
information to test the success of the attack

4.3 Shrinking
As a final ingredient in PBT implementations, there is an attempt to derive an easy-to-
understand counter example through a procedure called shrinking which systematically tries
to simplify counter examples, in order to ease the (manual) analysis required to discover the
cause of the detected error. Shrinking is linked to generators. For instance, shrinking uses 0
as a simpler value for the int generator.

In our approach, the attacker contract is automatically obtained from shrinking, as it is
explained in the following section.

5 Results

To test the Wallet contract presented in Section 2, we have used Makina [5], an Elixir
DSL for writing stateful PBT models compatible with Quviq’s Erlang QuickCheck [1] and
PropEr/PropCheck [11]. To replicate the blockchain ecosystem, we use Ganache4 as a local
development and testing environment.

4 https://trufflesuite.com/ganache/

FMBC 2022
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The objective of the test is finding a successful attacker contract. To do this, the test
deploys a private blockchain environment in which the commands are executed. The test fails
when the expected result after the execution of the command is different from the behavior
of the blockchain system. That is, we are comparing the results of executing commands in
the model of the blockchain with those in the real system. Concretely, if the attack function
successfully emits an event SuccessfulAttack(true), then the test has found an attacker
exploiting the reentrancy vulnerability in the victim contract.

In the case of the Wallet example, when the test is run, we obtain the following output.

Failed !

expected : SuccessfulAttack (false)
obtained : SuccessfulAttack (true)

That is, a test has found a successful attack event after the execution of an attack.
The result of the test includes a counterexample, which can be used to reproduce the test
case to manually check the error and study the source of the vulnerability. The provided
counterexample includes: (i) an attacker contract that is capable of exploiting the reentrancy
attack vulnerability, and (ii) a sequence of interactions with the blockchain to make the
attack possible.

PBT tools try to shrink the counterexample to produce a simpler and smaller attacker
contract, and to reduce the number of interactions with the blockchain to reproduce the attack.
Note that the shrinking process does not guarantee that the reduced counterexample is the
minimal case. Therefore, different runs of the test usually lead to different counterexamples.

In the following, we present a reduced counterexample of the generated attacker contract
sequences i.e., after shrinking. The original counterexample had 22 calls to the victim
contract in the trigger sequence, 10 to withdraw and 12 to donate, and 32 calls in the attack
sequence, 13 to withdraw and 19 to donate.

1 function trigger_seq () public payable {
2 target . donate {value: 1}();
3 target . withdraw ();
4 }
5
6 function receive_seq () public payable {
7 target . withdraw ();
8 }

Listing 7 Generated and reduced attacker contract sequences.

The reduced counterexample contains the same calls that were manually written in the
first Attacker contract shown as an attacker example (Listing 2).

The second part of the counterexample is the sequence of commands interacting with the
blockchain. Initially, the sequence of commands had 113 steps. This does not necessary mean
that all those commands are executed, on the contrary, it means that an error was found at
some point while executing those commands. The shrinking is applied here to find a smaller
counterexample. The PBT tool manages to shrink from 113 commands to a sequence of 15
commands. From this, the relevant commands that are required to prepare the blockchain
into a state where the attack can be made are the following:
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1 victim_address = deploy (Victim , value: 0)
2 register_attacker (Attacker , source_code )
3 deploy (Attacker , victim_address , value: 0)
4
5 call(victim , :donate , value: 1)
6 attack_hash = call(attacker , :attack , value: 2)
7 get_events ( attack_hash )

Listing 8 Generated and reduced commands sequences.

The first three commands deploy the contracts required for the test. The value attribute
represents the amount of initial ether that is transfer to the contract. The register command
compiles the source code generated with the attacker contract generator and registers into
the tool with the name Attacker. The deployment of the attacker command uses the address
of the victim (var_victim) as argument to the constructor of the Attacker.

The next three lines contain calls generated interacting with the contracts. Notice how
there is a command calling the method donate of the victim contract (var_victim) with
an amount of value of 1 ether. This donation is fundamental to perform the attack, as the
attacker contract tries to steal preexisting funds. These funds come from a known account
that we have omitted for simplicity.

The time spent to obtain this result was 2 minutes and 30 seconds until finding a successful
attacker contract. Then, it took 1 minute to shrink the counterexample. More than a hundred
tests where generated, each one of them with a fresh Ganache environment. The tests ran
on a laptop with an 11th Gen Intel(R) Core(TM) i7-11800H @ 2.30GHz and 16GB of RAM.

6 Related Work

There has been a great interest on detection and prevention of reentrancy attacks after
the DAO incident. The DAO attack itself and reentrancy vulnerabilities are documented
in [2], which presents a whole catalog of vulnerabilities for Ethereum contracts. A survey of
tools for analyzing Ethereum smart contracts is presented in [7]. Specifically for reentrancy
vulnerabilities, [13] proposes to take advantage of the similar code structures found in these
attacks. Structural analysis is performed in order to detect suspicious code patterns. After
that, a dynamic analysis is performed in order to rule out false positives.

Several testing tools and frameworks for smart contracts have also been proposed, some
of them combining techniques such as fuzzing or genetic algorithms. Dapp tools5 is a kit
including hevm6, a fuzzing tool which also uses symbolic execution to falsify assertions in
contracts. Foundry is an alternative collection of development tools, providing a testing
framework, forge7, with fuzzing capabilities. Some testing tools worth mentioning are
contractfuzzer [8] and echidna [14]. Each of these tools require different information
from the users – models, invariants, etc. – and also provide diverse outputs – some of them
produce complete test suites, other just diagnostics on existing suites, etc. Our approach is
original in the sense that is mostly automatic and provides a reusable, somehow minimal
attacker contract.

Our work shares with contractfuzzer [8] a similar approach reading the Application
Binary Inteface (ABI) to extract all the functions calls to a contract. This is a key component
for the automation of the tools. The contractfuzzer tool has an Agent contract, which

5 https://dapp.tools/
6 https://github.com/dapphub/dapptools/tree/master/src/hevm
7 https://github.com/foundry-rs/foundry/tree/master/forge
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plays a similar role as our template Attacker contract when checking for reentrancy attacks.
The existence of this contract is required by the nature of the attack, because it depends
on the interaction of two contracts. The Agent auxiliary contract is designed as a link to
execute calls to any contract. Our template is oriented to code generation, with the objective
of building a self-contained contract. While contractfuzzer is oriented to be an analysis
tool, we present a testing approach to be integrated with the development of smart contracts.
We aim to provide useful and reduced counterexamples to understand the origin of the error
and how to reproduce it, not only the diagnosis of the error.

We pursue similar objective as the echidna [14] tool. We both want to provide a tool
where a minimal interaction with the user is possible. This requires analysis of the ABI for
the automatic generation of calls. Echidna focuses on detecting assertion violations and
custom properties written in Solidity. To test them, echidna generates a sequence of calls
to a contract to reach those conditions, shrinking them when an error is found. The main
difference with our tool is that we can automatically test interactions between contracts.

Our proposal fits in the space between some functionalities of contractfuzzer and
echidna, where we are able to automatically generate calls to a given contract but also
provide meaningful counterexamples. Another advantage of our approach is that PBT is a
general testing technique, that is, PBT testers do not need to learn a specific tool for testing
smart contracts.

7 Conclusions and future work

In this paper, we present an approach to automatically detect vulnerabilities in Solidity smart
contracts. Given a potential victim, the result of our approach is an attacker contract that
exposes a vulnerability. We illustrate the approach in the case of the well known reentrancy
vulnerability but our method that can be applied to other vulnerabilities in smart contracts.

Our method consists of identifying the common structure of an attacker. This structure
is prepared as a template for automatically generating attackers given a victim contract.
This generation is made using PBT tools, in which we have defined a custom generator
for contracts of this type of attack. Using a model of a blockhain, we check the execution
correctness by comparing it with the behavior of a running blockchain system.

The method proposed is able to identify the vulnerability in a given vulnerable contract.
We provide as a result an instance of an attacker contract, along with all the steps required
to replicate the attack.

The scope of this paper is limited to the identification of the reentrancy vulnerability in
the Wallet example. The future work will include doing a study on the effectiveness of this
method with a set of real world contracts. With this study, we will be able to compare the
success of this method with similar tools detecting the reentrancy attack vulnerability.

The method explained it is not only aimed to identify the reentrancy attack vulnerability.
In future work, we plan to apply this method on a broader range of attacks and study the
effectiveness to detect other properties of smart contracts.

In this work, we have illustrated the approach with a simple example of a contract, the
Wallet example. The public interface of the Wallet contract is fairly simple, and we did not
have to elaborate complex interactions in the generated code. We plan to extend the context
aware generator to, for example, use the return value from generated calls as arguments in
the following calls. By doing that, we will be able to study the capability of our approach to
generate more complex contracts and attacks.
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The reentrancy attack is present in a wide variety of contracts. Token standards as the
ERC777, mentioned in Section 1, can be susceptible to reentrancy attacks. As future work,
the presented method could be studied to be adapted to this common interface contracts.
The definition of specific PBT commands following the properties of the standard could be
checked with generated contracts trying to break these conditions. The reentrancy condition
arises as another property to be checked for these contracts. The general effectiveness of the
vulnerability identification is future work with a corpus of contracts to test.

We have presented a testing approach that tests a pair of contracts: a victim and an
attacker. Some interesting behaviors and bugs in our victim contracts may arise when
multiple contracts operates and interact between them. In the future work, we plan to test
models of more than two contracts interacting.

An additional detail is the refinement of the success condition in a reentrancy attack.
Using the condition of a detected repeated call hook in the attacker contract along with
detecting profits in an exploit.
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