
Byzantine Connectivity Testing in the Congested
Clique
John Augustine #

Department of Computer Science and Engineering,
Indian Institute of Technology Madras, Chennai, India

Anisur Rahaman Molla #

Indian Statistical Institute, Kolkata, India

Gopal Pandurangan #

Department of Computer Science, University of Houston, TX, USA

Yadu Vasudev #

Department of Computer Science and Engineering,
Indian Institute of Technology Madras, Chennai, India

Abstract
We initiate the study of distributed graph algorithms under the presence of Byzantine nodes. We
consider the fundamental problem of testing the connectivity of a graph in the congested clique
model in a Byzantine setting. We are given a n-vertex (arbitrary) graph G embedded in a n-node
congested clique where an arbitrary subset of B nodes of the clique of size up to (1/3 − ε)n (for any
arbitrary small constant ε > 0) can be Byzantine. We consider the full information model where
Byzantine nodes can behave arbitrarily, collude with each other, and have unlimited computational
power and full knowledge of the states and actions of the honest nodes, including random choices
made up to the current round.

Our main result is an efficient randomized distributed algorithm that is able to correctly
distinguish between two contrasting cases: (1) the graph G \ B (i.e., the graph induced by the
removal of the vertices assigned to the Byzantine nodes in the clique) is connected or (2) the graph
G is far from connected, i.e., it has at least 2|B| + 1 connected components. Our algorithm runs in
O(polylog n) rounds in the congested clique model and guarantees that all honest nodes will decide
on the correct case with high probability. Since Byzantine nodes can lie about the vertices assigned
to them, we show that this is essentially the best possible that can be done by any algorithm. Our
result can be viewed also in the spirit of property testing, where our algorithm is able to distinguish
between two contrasting cases while giving no guarantees if the graph falls in the grey area (i.e.,
neither of the cases occur).

Our work is a step towards robust and secure distributed graph computation that can output
meaningful results even in the presence of a large number of faulty or malicious nodes.
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7:2 Byzantine Connectivity Testing in the Congested Clique

1 Introduction

Computation in the presence of faulty or malicious (also called Byzantine nodes) is a central
issue in distributed computing. Indeed, since the introduction of the Byzantine agreement and
broadcast problems in the early 1980s by Lamport, Pease, and Shostak [30, 24], Byzantine
protocols have been studied extensively for the last four decades (see e.g, [10, 4, 21, 20, 2]
and the references therein). These protocols have focused mainly on addressing fundamental,
but “primitive” computational tasks such as agreement, leader election, broadcast etc in
complete networks. Some of these protocols work in the CONGEST model as well (for e.g.,
the protocols of [21, 2]) where messages are of small size, i.e., polylog n size in networks of size
n and still guarantee fast algorithms, running in polylog n rounds. Hence these Byzantine
protocols solve these fundamental tasks of agreement and leader election in complete networks
in the CONGEST model (i.e., using only small-sized messages).

In this paper we take a step towards addressing more complex computational tasks under
presence of a large number of Byzantine nodes. In this direction, we initiate the study of
distributed graph algorithms under the presence of Byzantine nodes.

We focus on the fundamental problem of testing the connectivity of a graph in the
congested clique model in a full information Byzantine setting. Graph connectivity and
related problems such as minimum spanning tree (MST) have been studied extensively in
the congested clique model in the last decade or so (see e.g., [27, 17, 13, 18]). In this model,
we have a network that is a clique on n nodes and an (arbitrary) input graph G having n

vertices that is embedded in the clique (with each vertex of G mapped to a node of the
clique). Throughout we use “nodes” to denote the processors of the congested clique and
“vertices” to denote the vertices of the input graph G. Connectivity (as well as MST) of the
input graph G can be solved very efficiently in the congested clique, i.e., in O(log n) rounds
[31]. In fact, after a long line of research, it is now known that these problems can be solved
even faster, i.e., in O(1) rounds [18]. All known results in the congested clique (or in the
closely related k-machine model [22, 23, 14, 28, 29] or in the Massively Parallel Computing
(MPC) model [3, 25, 19, 1] used in distributed large-scale graph computations) assume that
all processors are honest and faithfully participate in the computation. However, in many
applications, e.g., in distributed big data computations by a large network of processors,
some of the processors can be faulty or even malicious.1 Motivated by such scenarios, we
assume that an arbitrary subset of B nodes of the clique of size up to ( 1

3 − ε)n (for any
arbitrary small constant ε > 0) can be Byzantine. We assume the full information model
where Byzantine nodes can behave arbitrarily, collude with each other, and have unlimited
computational power and full knowledge of the states and actions of the honest nodes,
including random choices made up to the current round. Our goal is to study how meaningful
graph computations can be accomplished efficiently (say, running in a small number of
rounds) even in the presence of a large number of Byzantine nodes.

It is not a priori clear how to do meaningful graph computation under a large number
of Byzantine nodes. We note that Byzantine nodes can arbitrarily deviate from the correct
protocol. In particular, they can lie about the edges of G incident on themselves. For
example, a Byzantine node can say that an edge incident on itself is not present to some
honest nodes, while saying the contrary to some other honest nodes. They can also create

1 The situation in the MPC or the k-machine model is harder compared to the congested clique model
since the number of processors (some of which can be faulty) is much smaller than the number of nodes
and thus each processor is responsible for many nodes in the input graph. This setting is left for future
work, while the congested clique setting addressed here is a first step in this direction.
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fake edges that are not originally present in G and selectively lie about them to honest nodes.
Despite such malicious behavior we show that one can design efficient protocols such that all
honest nodes end up computing non-trivial meaningful results.

Our main contribution is an efficient randomized Byzantine distributed protocol that is
able to correctly distinguish between two contrasting cases: (1) the graph G \B (i.e., the
input graph induced by the removal of the vertices assigned to the Byzantine nodes in the
clique) is connected or (2) the graph G is far from connected, i.e., it has at least 2|B|+ 1
connected components.2

Since Byzantine nodes can lie about the vertices assigned to them, we show that the
above gap between the two cases is essentially the best possible that can be done by any
algorithm. Our algorithm is efficient in the sense that it takes only O(polylog n) rounds
in the n-node congested clique and guarantees that all honest nodes will decide on the
correct case with high probability. (The exact power of the polylog n depends on Byzantine
agreement and committee election protocols used in prior works that also takes polylog n

rounds (cf. Section 2.2).) Our focus in this paper, as in prior works on agreement and
committee election [21, 8]), is to show that the more challenging problem of Byzantine
connectivity testing can also be accomplished efficiently, i.e., in polylog n rounds.

Our result can be viewed also in the spirit of property testing. In the property testing
model ([16, 32]) one has query access to an input, say a graph. The goal is to test whether the
input has a property, or is far (in an appropriately defined way) from the property by querying
a small part of the input. Property testing algorithms in this setting has been studied for a
variety of problems (see [15] for a detailed exposition). Property testing algorithms in the
CONGEST model was introduced by Censor-Hillel et al. ([6]), and algorithms for properties
like connectivity, cycle-freeness, bipartiteness, planarity have been studied ([9, 11, 26]). Our
current work extends this to testing connectivity in the presence of Byzantine nodes. Our
algorithm checks if the input graph G with B ⊆ V Byzantine nodes is far from connected or
whether G \B is connected; we will precisely define the notion of being far from connected
momentarily.

1.1 Model and Problem Statement
We assume the well-studied synchronous congested clique model consisting of n nodes
(representing processors or computing devices) with each node identified by a unique ID
from {1, 2, . . . , n} = [n]. (The choice of [n] as the space of IDs is without loss of generality
with respect to the usual assumption that IDs are from a poly(n) space because nodes know
each others’ IDs and can use their ordinal numbers in the sorted ordering of IDs instead of
actual IDs.) Communication happens over synchronized rounds, where in each round a node
can communicate with any of the other n− 1 nodes by sending a message of O(log n) bits
(i.e., the CONGEST model). We are given an arbitrary (input) graph G which is embedded
in the clique and is known only locally to the nodes in the network. Every vertex in G is
mapped to a node (processor) in the clique and each clique node has knowledge of the edges
incident to the vertex of G mapped to it. We assume that an arbitrary subset of B nodes of
the clique of size up to ( 1

3 − ε)n (for any arbitrary small constant ε > 0) can be Byzantine.
We assume that Byzantine nodes can behave arbitrarily, collude with each other, and have

2 It might seem a bit unnatural that in the problem definition the yes and no instances consider two
different graphs: G and G\B. However, we cannot say anything about G itself – whether it is connected
or not – (as is usually the case in a non-Byzantine setting), since even the presence of one Byzantine
node can lead to both possibilities.
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7:4 Byzantine Connectivity Testing in the Congested Clique

unlimited computational power and full knowledge of the states and actions of the honest
nodes, including random choices made up to the current round. This is the so-called full
information model. We note that the Byzantine nodes in the clique are chosen after the
assignment of the graph vertices to the clique.

Our goal is to test properties of the input graph G despite the presence of Byzantine nodes.
The complexity measure of interest is the number of rounds to decide if G has the property.
We would like to design efficient algorithms, i.e., running in a small number of rounds. In
this paper, we describe an algorithm to test connectivity of a graph G in the presence of
Byzantine nodes. We would like all honest nodes to output a common “meaningful” decision
which we define next.

Since Byzantine nodes can lie about the edges incident on them, it is not possible to
test connectivity in the usual sense. For example, assume that G has a cut edge and both
the endpoints are assigned to Byzantine nodes. Then the Byzantine node can lie about the
presence of this edge to other (honest) nodes. Hence honest nodes may conclude that the
graph is not connected.3 More generally, there is no way to verify whether the subgraph of G

induced on the set of Byzantine nodes is indeed connected or not. This example, motivates
that we have to relax the notion of testing connectivity as follows.

The notion of connectivity that we would like to solve is the following. Let b, be the
(upper bound) number of Byzantine nodes.4 Our goal is to test whether G \B is connected
or G is “far from connected.” We say that G is f -far from connected, if one must add at
least f edges to G in order to make it connected (in other words, there are at least f + 1
components in G). All honest (good) nodes must report correctly when G \B is connected
(output TRUE) or G is f -far from connected where f = 2b (output FALSE). If neither
of these hold, then in this case, all honest nodes can output either TRUE or FALSE, but
they should output a common decision value. We will show in Theorem 3 that this gap is
essentially the best possible for any algorithm to distinguish.

While the above gap is the best possible, it helps one to distinguish between two reasonably
contrasting cases. If the input graph G is well connected, say for example, it is b+1-connected,
then the algorithm will correctly output that G \ B is connected, since no matter which
vertices are assigned to Byzantine nodes, deletion of those vertices will still leave the graph
connected. On the other hand, if G far from connected, i.e., it has lot of connected components
(at least 2b + 1 of them), then again, no matter which vertices are assigned to the Byzantine
nodes, then the algorithm will correctly identify that G is far from connected. If neither
of these scenarios occur, then the algorithm will output an arbitrary value (but consistent
across all honest nodes).

1.2 Our Results
Our main result is the following theorem.

▶ Theorem 1. Given a graph G embedded in an n-node congested clique, out of which an
(arbitrary) subset of B nodes (|B| < (1/3− ϵ)n), for any arbitrary small constant ε > 0, are
Byzantine, we present a randomized Byzantine protocol, that with high probability5, runs in
O(polylog n) number of rounds and outputs:

3 Note that the two Byzantine nodes assigned to the endpoints of the cut edge may lie to some honest
nodes and not to others to prevent the honest nodes from reaching a common decision which is required;
this is also an issue that one has to contend with.

4 We assume that honest nodes have knowledge of this upper bound on the number of Byzantine nodes.
Note that, in general, this is the best possible, since some Byzantine nodes can act as good nodes
throughout the protocol.

5 Throughout, “with high probability” means “with probability at least 1 − 1/nc” for some constant c > 0.
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TRUE if G \B is connected;
FALSE if G is 2|B|-far from connected;
TRUE or FALSE if neither of the above hold.

All honest nodes output the same answer with high probability.

We also present a simple and deterministic solution. The result is stated in the following
theorem. We defer a proof of this theorem to an extended version of this paper.

▶ Theorem 2. Given a graph G embedded in an n-node congested clique, out of which an
(arbitrary) subset of B nodes are Byzantine, where |B| < n/3. There is a deterministic
algorithm that tests the connectivity of G in O(n) rounds and outputs:

TRUE if G \B is connected;
FALSE if G is 2|B|-far from connected;
TRUE or FALSE if neither of the above hold.

We note that the usual bound of |B| < n/3 Byzantine nodes in the full information
model [30] for agreement holds here as well.

The gap in between the two extreme cases, i.e., whether G \ B is connected or if it
is 2|B|-far from connected is the best possible that one can achieve in the presence of B

Byzantine nodes. We defer the proof to the appendix of this paper.

▶ Theorem 3. There is no algorithm that is guaranteed to distinguish whether a graph G

embedded in an n-node congested clique containing a set B of b Byzantine nodes is f-far
from being connected, or whether G \B is connected with probability at least 1/2 + ϵ (for any
fixed ϵ > 0), unless f ≥ 2b.

1.3 Technical Challenges and Overview
The main difficulty in designing a protocol as claimed in Theorem 1 is correctly distinguishing
the two cases or conclude it is in the gray area. If there are no Byzantine nodes, then one
can simply run a distributed connectivity algorithm, in particular, a distributed minimum
spanning tree (MST) algorithm (assuming all weights are 1) such as the Gallagher-Humblet-
Spira (GHS) algorithm [12] – which is essentially the distributed Boruvka algorithm – on the
congested clique (see e.g., [31]). This algorithm can be easily implemented to run in O(log n)
rounds (deterministically) in the congested clique. However, in the presence of Byzantine
nodes, this algorithm does not work.

There are two main challenges. First is to ensure that the MST algorithm correctly
operates in a consistent manner despite the Byzantine nodes lying (selectively as well) about
the presence or absence of edges incident to the vertices assigned to them. Second is to
ensure that the algorithm operates fast, i.e., in O(polylog n) rounds in the congested clique.

To illustrate the difficulties, as a warm up, we outline an algorithm (the detailed algorithm
and its proof appears in the full version of the paper) that correctly solves the problem (i.e.,
it outputs correctly TRUE or FALSE depending on the cases), but takes polynomial, i.e.,
O(n) rounds. The algorithm is deterministic. The high-level idea behind this algorithm is
as follows. Each node acts as a leader and verifies all the edges of the graph. Byzantine
nodes can try to foil the above algorithm by suggesting fake edges, i.e., edges that don’t
exist. This can be done selectively by sending different information to different honest nodes.
Byzantine nodes can also reject edges that are suggested by good nodes. To overcome this,
an honest node needs to verify if an edge is valid by querying both its endpoints; if both
endpoints validate the edge then it is accepted; otherwise it is rejected. We show that adding
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7:6 Byzantine Connectivity Testing in the Congested Clique

a validated or qualified edge is fine for the correctness of the algorithm; but this is not true
for non-validated edges and hence they should not be added. At the end of the computation,
an honest node will have all the validated edges. We show that an honest node can decide
correctly by checking whether the largest connected component has at least n− b nodes.

The above gives a fairly straightforward algorithm, though different honest nodes might
decide on different answers (because of selective lying by Byzantine nodes). However, we
show that if the input graph G falls in one of the cases, then all honest nodes will decide on
the same answer. However, if the input graph falls in the gray area, then different honest
nodes can end up with different answers. However, one can resolve this, by performing
an efficient Byzantine agreement protocol. To keep the solution deterministic, we use a
deterministic agreement protocol by Dolev et al. [8].

A main drawback of the above approach is that, validating all the edges can cause lot of
congestion. For example, it can happen that Θ(n) edges have a common endpoint and this
information has to be conveyed to every honest node which verifies it. This takes at least
Θ(n) rounds.

Our main contribution is a significantly faster algorithm that runs in O(polylog n) rounds
that is able to avoid congestion and still correctly output the desired answer. At the beginning
of the algorithm, we elect a leader committee of O(log n) leaders. The key technical part of
the algorithm is for each one of the leaders to decide YES/NO. Then the O(log n) leaders
will do Byzantine agreement among themselves to decide the final output (that all honest
nodes can sample). Each leader implements the distributed version of Boruvka’s algorithm
([12]) on the graph, but instead of each node running the algorithm, we create committees of
nodes6, and delegate the algorithm to these committees. The crucial technical ingredient is
a way to construct O(log n)-sized committees for each of the nodes such that the fraction of
committee members that are honest is proportional to the actual fraction of honest nodes in
the network. The leader samples O(log n) many hash functions which are broadcast to every
node in the network. The honest nodes can use these to compute the committee pertaining
to each node in the network. This makes the committees common knowledge among the
nodes in the network, and prevents any tampering by Byzantine nodes. Furthermore, our
construction ensures that each of the committees have a consistent view of the edges in the
graph. We will then run the algorithm constructing the spanning tree via these committees.

2 Preliminaries

2.1 Tail inequalities and hash functions with limited independence
We make use of hash functions with limited independence to save messages (and hence avoid
congestion). These hash functions use c-wise independence and hence we use the following
tail inequalities and properties of such hash functions.
The following tail inequalities are from [33].

▶ Lemma 4. Let c ≥ 4 be an even integer. Suppose Z1, Z2, . . . , Zt are c-wise independent
random variables taking values in [0, 1]. Let Z =

∑t
i=1 Zi and µ = E[Z], and let λ > 0.

Then,

Pr[|Z − µ| ≥ λ] ≤ 2
(

ct

λ2

)c/2
.

6 The idea of communicating using committees has been used before, see e.g., [5, 20]. Note that these
“node” committees are different from the leader committee, elected once at the beginning.
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▶ Lemma 5. Suppose that X is the summation of n 0-1 random variables X1, X2, . . . , Xn,
each with mean p. Let µ satisfy µ ≥ E[X] = np. If the Xis are µδ-wise independent, then
for every δ ≥ 1

P[X ≥ (1 + δ)µ] ≤ exp(−δµ/3}).

The following is Definition 7 in [7].

▶ Definition 6. For N , L, c ∈ N, such that c ≤ N , a family of functions H = {h :
[N ]→ [L]} is c-wise independent if for all distinct x1, x2, . . . , xc ∈ [N ], the random variables
h(x1), h(x2), . . . , h(xc) are independent and uniformly distributed in [L] when h is chosen
uniformly at random from H.

The following lemma appears as Corollary 3.34 in [34].

▶ Lemma 7. For every a, b, c, there is a family of c-wise independent hash functions
H = {h : {0, 1}a → {0, 1}b} such that choosing a random function from H takes c ·max{a, b}
random bits, and evaluating a function from H takes poly(a, b, c) computation.

2.2 Byzantine agreement and committee election
As a subroutine in our protocols, we utilize the following results from King et al. [21]
that gives efficient protocols (running in O(polylog n) rounds) for Byzantine agreement and
committee election in a n-node complete network (i.e., congested clique) that can tolerate up
to (1/3− ϵ)n Byzantine nodes in the full information model. We note that the protocol of
King et al. has the property that every honest node sends and processes only O(polylog n)
number of bits throughout the course of the algorithm. This constrains them to achieving
only almost-everywhere agreement where only 1− o(1) fraction of the honest nodes agree.
If we allow each node of the clique to send O(log n) bits per clique edge per round, then
one can achieve everywhere agreement (i.e., all honest nodes agree) in a straightforward
manner [21]. Similarly, in the committee election problem, all honest nodes can be informed
of the identities of the committee nodes.

For the sake of completeness, we first define Byzantine agreement and Byzantine committee
election.

In Byzantine (everywhere) agreement, starting with each node having an input value (0
or 1), the goal is for all honest nodes to agree on a common value, which should also be an
input value of some honest node.

In Byzantine committee election, the goal is to elect a committee of size Θ(log n) such
that with high probability, the committee consists of at least 2

3 fraction of honest processors.

▶ Theorem 8 (Byzantine committee election [21]). Consider a n-node congested clique model
where up to (1/3− ϵ)n (for any arbitrary small constant ε > 0) of the nodes can be Byzantine
in the full information model. Then there is a randomized protocol that elects a committee of
size Θ(log n) that, with high probability, contains at least 2/3-fraction of honest nodes in the
committee. The protocol runs in O(polylog n) rounds and all honest nodes in the network
know the identities of the committee members.

▶ Theorem 9 (Randomized Byzantine everywhere agreement [21]). Consider a n-node congested
clique model where up to (1/3− ϵ)n (for any arbitrary small constant ε > 0) of the nodes can
be Byzantine in the full information model. There is a randomized protocol that, with high
probability, solves Byzantine agreement such that all honest nodes in the network agree on
a common value (which will be the input value of a honest node) and runs in O(polylog n)
rounds.

DISC 2022



7:8 Byzantine Connectivity Testing in the Congested Clique

We also use a deterministic protocol that solves Byzantine everywhere agreement that
takes linear (in the size of the network) number of rounds. We use this protocol only on a
O(log n)-size network (i.e., a committee of size O(log n)) and hence the time taken is O(log n)
rounds.

▶ Theorem 10 (Deterministic Byzantine Everywhere Agreement [8]). Consider a k-node
congested clique model where fewer than k/3 of the nodes can be Byzantine in the full
information model. There is a protocol that deterministically solves Byzantine agreement
such that all honest nodes in the network agree on a common value (which will be the input
value of a honest node) and runs in O(k) number of rounds.

3 An O(polylog n)-round Algorithm

In this section we give a O(polylog n)-round algorithm for testing connectivity by building
committees for each vertex in the graph such that the communication between nodes is
delegated to their respective committees. We ensure that the committee members are chosen
randomly so that all committees, with high probability, comprise more than 2/3-fraction of
good nodes. Thus, even bad nodes are represented by good committees and this significantly
limits the power of the Byzantine nodes.

We first build a leader committee L of O(log n) size so that more than a 2/3-fraction of
the nodes in the committee are good; see Algorithm 1. This can be done in O(polylog n)
rounds using the protocol of [21] (cf. Theorem 8). This protocol also ensures that all
honest nodes know the identities of all the committee members. Now each ℓ ∈ L acts as
a leader and orchestrates the execution of distributed Boruvka algorithm and decides on
the output; thus, Boruvka’s algorithm is invoked independently by each ℓ ∈ L. This is the
key technical part of the algorithm that we explain next. Once all nodes ℓ ∈ L arrive at
their respective decisions, they can perform a deterministic Byzantine agreement protocol
among the committee members using the protocol of [8] (cf. Theorem 10). We will run
the protocol of [8] for each node in the leader committee acting as a transmitter.7 This
guarantees consistent agreement among the committee nodes of the value of this transmitter
node. (The running time will be O(log2 n) rounds since one run of the transmitter protocol
takes linear number of rounds in the size of the committee which is O(log n).) Since the
majority of the nodes in the leader committee are honest, this also ensures that the majority
answer is the correct answer agreed by all honest nodes in the committee. All other honest
nodes can then query all the committee nodes and then take their majority output as their
own output. The formal steps are outlined in Algorithm 1.

We now briefly comment on how each ℓ ∈ L orchestrates the execution of Boruvka’s
algorithm. We show that it is possible for each ℓ to construct committees of size O(log n) for
each vertex with the property that if at most a β fraction of the nodes in the network are
Byzantine for a fixed constant β < 1/3, then, with high probability, in every committee at
most β + ϵ < 1/3 fraction of nodes are Byzantine (for a small constant ϵ > 0). Moreover,
each committee Comm(v) learns the edges incident at the node v that it represents and can
interact with committees representing v’s neighbors. In other words, the committees (in a
collective sense) learn a consistent view of the graph. Finally, the nodes are balanced across
the committees in the sense that no node needs to be a member of more than O(log2 n)
committees. Theorem 15 proves all these properties formally. We then show how to construct
the spanning tree using these committees and thus test connectivity.

7 This is to ensure majority consensus, i.e., the agreed value is also the majority value among the inputs,
if such a majority exists.
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Algorithm 1 The main stem.

1: Use the protocol in [21] to elect a leader committee L of size Θ(log n). /* (cf.
Theorem 8 for relevant properties.) */

2: for each ℓ ∈ L in parallel do
3: Invoke Algorithm 8 with leader ℓ.
4: /* ℓ learns either accept or reject as its outcome */
5: The nodes in L perform Byzantine agreement on their outcomes using [8] (as outlined

above) to reach their final outcomes.
6: Each ℓ ∈ L sends their final outcome to all nodes in [n] \ L.
7: All nodes in [n] \ L set their final outcomes to the value sent by a majority in L.

3.1 Committees Takeover
We now consider the case where a single leader ℓ is able to produce a committee structure that
maps every node v in the network to its representative Θ(log n)-sized committee Comm(v)
comprising sufficiently many good nodes. Moreover, this committee structure must be
common knowledge in the sense that every node u should be able to compute Comm(v) for all
nodes v. Each Comm(v) can then perform computation and communication on behalf of the
node v that it represents. However, each Comm(v) must first learn the required information
(such as the neighborhood of v). If v is Byzantine, the information Comm(v) learns may be
incorrect and inconsistent, but the committees should ensure consistency and also ensure
correctness as far as possible.

We assume the following throughout this section. Let β < 1/3 and ε < 1/3− β be fixed
constants; thus, β + ε is fixed and strictly below 1/3. We assume that, out of a total of
|V | = n nodes, the number of Byzantine nodes is at most βn. Let η be a sufficiently large
constant that depends on β and ε, and let k = ⌈η log n⌉. Recall that the set of nodes in the
network are [n]. When we refer to vertex v ∈ [n], we are referring to the vertex in G that is
assigned to v. Similarly, for u ∈ [n] and v ∈ [n], we use (u, v) ∈ E(G) (resp., (u, v) /∈ E(G))
to denote that the vertices assigned to u and v form an edge (resp., do not form an edge) in
G. Finally, we use N(v) to denote the set {u ∈ [n] \ {v} | (v, u) ∈ E(G)}.

The leader ℓ uses k-wise independent hash functions (cf. Definition 6) in order to build
the committee structure. From Lemma 7, we know that there is a k-wise independent family
of hash functions H with each h ∈ H mapping [n]→ [n]. Moreover, picking a random h only
requires k + 2⌈log n⌉ ∈ O(log n) bits. Thus, ℓ generates the required Θ(log2 n) random bits
that can be used to pick k random hash functions h1, h2, . . . , hk. The leader then broadcasts
those O(log2 n) bits to all nodes in the network, thereby making the k hash functions common
knowledge amongst all the nodes. The committee for each node v ∈ [n] comprises nodes in
{hi(v)|1 ≤ i ≤ k}, thereby making the entire committee structure common knowledge. Thus,
we can summarize the properties of the committee structure as follows.

▶ Lemma 11. The committee structure created by a good leader node ℓ comprises commonly
known committees Comm(v) for all v ∈ V such that |Comm(v)| ≤ k ∈ O(log n). Moreover,
the randomness in the choice of committee members ensures WHP that:
1. the proportion of Byzantine nodes within each committee is at most β + ε + o(1) < 1/3,

and
2. for every c ∈ V , C(c) ≜ {v|c ∈ Comm(v)}, i.e., the set of nodes that c represents as a

committee member, has a cardinality of at most O(log2 n).
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Algorithm 2 Committees-Learn-Incident-Edges.

Require: Assume a good leader ℓ is elected and known to all nodes. Let k = ⌈η log n⌉ for a
sufficiently large but fixed η.

Ensure: For each v ∈ V , an associated committee Comm(v) is created. See Theorem 15 for
a detailed listing of all other guarantees.

1: The leader ℓ generates Θ(log n) bits drawn uniformly and independently at random and
broadcasts them to all other nodes.

2: All nodes v use those Θ(log n) bits to draw h1, h2, . . . , hk from the k-wise independent family
H of hash functions.
/* Thus, any node v can compute the committee Comm(u) = {hi(u)|1 ≤ i ≤ k} associated
with any node u. */

3: In parallel ∀v ∈ V do
4: Node v sends the cardinality of its neighborhood |N(v)|

to every c ∈ Comm(v).
5: In parallel ∀c ∈ Comm(v), and ∀i ∈ {1, 2, . . . , |N(v)|} do
6: c elects a routing committee RouteComm(c, v, i) of cardinality Θ(log n) WHP in the

following manner. For every u ∈ V \ {c, v}, P[u ∈ RouteComm(c, v, i)] = Θ( log n
n

),
independently over all u and all i.

7: c sends a request for ith neighbor of v to all members in RouteComm(c, v, i).
8: In parallel each r ∈ RouteComm(c, v, i) do
9: if c ∈ Comm(v) then

10: r conveys the message from c to v.
11: Let q be the number of request messages c conveyed to v through r.
12: if q ∈ O(log n) then
13: v responds to r’s request with the ID of its ith neighbor.

14: r relays the responses back to c.
15: End parallel
16: Let µ be the ID reported by most nodes in RouteComm(c, v, i).
17: if a majority in RouteComm(c, v, i) reported µ then
18: c records the ith neighbor as µ.
19: else
20: Reject the response.
21: /* c can conclude that v is Byzantine. */
22: End parallel
23: End parallel
24: In parallel ∀ pairs u ∈ V and v ∈ V do
25: Ensure all good nodes in Comm(u) and Comm(v) have a consistent record of whether

edge (u, v) ∈ E(G). Note that if both u and v are good, then their record, in addition to
being consistent, must be correct. This is achieved by calling Algorithm 6.

26: End parallel

In order to execute graph algorithms, we require one more crucial ingredient. For each
vertex v, the members of Comm(v) must learn the list of neighbors of v and that procedure
is specified in Algorithm 2. One may be tempted to think that this can be achieved simply
by v sending its adjacency list to each c ∈ Comm(v), but this will take time proportional to
v’s degree, which can be linear in n leading to an algorithm that is linear in n. To sidestep
this delay, we can try random routing to parallelize this process; node v communicates the



J. Augustine, A. R. Molla, G. Pandurangan, and Y. Vasudev 7:11

ID of each neighbor of v to each c ∈ Comm(v) through a randomly chosen intermediate
node. However if the random intermediate node is Byzantine, the information may be
misrepresented. To overcome this, we use randomly chosen routing committees as formally
described in Algorithm 2. Some care must be exercised because routing committees can
also contain Byzantine nodes and the information passing through them has to therefore be
vetted.

▶ Lemma 12. By the end of the first parallel loop in Algorithm 2 ending in line number 23,
every c ∈ Comm(v) for v ∈ [n] has learned a list of neighbors of v with the guarantee that
if both c and v are good, the list matches N(v) correctly. Moreover, the time taken for that
first parallel loop to complete is O(polylog(n)) WHP.

At the end of the first parallel loop (line number 23), the nodes in the committees
pertaining to two nodes u and v may not reach the same conclusion about whether (u, v) ∈
E(G) or not. To ensure consistency and correctness (to the extent possible), we perform some
agreement and consistency tie-breaks in the second parallel loop (post line number 23). To
implement this second loop, we need Algorithm 6, which in turn utilizes some key primitives.
The main idea is to first ensure that for each u, the committee Comm(u) first reaches an
agreement on whether there is an edge from u to each v. Each committee therefore has
to perform n − 1 agreements, thereby requiring a total of n(n − 1) agreements. These
large number of agreements are performed in parallel in O(polylog(n)) time (WHP) using
Algorithm 5.

We begin with some simpler primitives that will then be used by Algorithm 5 and
Algorithm 6. Our first primitive is Algorithm 3 where each the committee members of a
node u can communicate messages pertaining to all other nodes v in O(polylog(n)) rounds.

Algorithm 3 Communication between committee members across committees. This
algorithm is described from the perspective of a node c.

Require: For every u ∈ V , c ∈ Comm(u), and v ∈ V , the node c has a message m(c, u, v).
/* There are O(n2 log n) such messages WHP. */

Ensure: Every c′ ∈ Comm(v) must learn m(c, u, v) as long as c is good.
1: for each u ∈ C(c) and each c′ ∈ Comm(v) do /* Recall that for each c ∈ V ,
|C(c)| ∈ O(log2 n) WHP by Lemma 11. */

2: Node c sends m(c, u, v) to c′.
3: Node c receives m(c′, v, u) sent by c′.

▶ Lemma 13. Algorithm 3 terminates in Θ(log4 n) rounds WHP. Moreover, for every good c,
all its messages are correctly conveyed (i.e., all messages are passed to the intended recipient).

The second primitive is Algorithm 4 wherein for each u, the members of Comm(u)
broadcast messages to each other. Specifically, each c ∈ Comm(u) has a message pertaining
to the pair u and v. Thus, c is in possession of O(n) messages under the role of c ∈ Comm(v);
it may have other such messages as a member of other committees. All those O(n) messages
must reach all other c′′ ∈ Comm(u). Due to the number of messages, c cannot directly send
them to c′′. Instead, c sends each message pertaining to the pair u and v to the members
of Comm(v) using Algorithm 3 and then the members of Comm(v) echo them back to the
members in Comm(u). When c and c′′ are good, clearly, c′′ will hear a majority of consistent
messages correctly from c′′ because the committees that are used to echo the messages are
all dominated by good nodes. Furthermore, Algorithm 4 only requires O(log n) calls to
Algorithm 3, thereby allowing us to conclude the following.
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▶ Lemma 14. For every pair u and v, every good node c ∈ Comm(u) will be able to
broadcast its messages of the form m(c, u, v) (see Algorithm 4) to all nodes in Comm(u) using
Algorithm 4. Moreover, its complexity is O(log5 n) rounds WHP.

Algorithm 4 Broadcasting within each committee.

Require: For every u ∈ V , c ∈ Comm(u), and v ∈ V , the node c has a message m(c, u, v).
/* As before, there are O(n2 log n) such messages WHP. */

Ensure: For all u, every c′ ∈ Comm(u) must learn m(c, u, v) (∀c ∈ Comm(u)) correctly as
long as c is good. /* Note that each c will possess O(n log n) messages of the form
m(c, ·, ·) and it must learn O(n log n) messages. */

1: /* To describe this algorithm, we focus on a pair u and v and a c ∈ Comm(u)
and trace each copy of m(c, u, v) as it makes its way to all other c′′ ∈ Comm(u). This
process must be executed in parallel for every u and v and every c ∈ Comm(u). For this
reason, note that m(c, u, v) cannot be directly sent to all c′′ ∈ Comm(u) because there
are a linear in n number of messages of the form m(c, u, ·) that must reach c′′. */

2: The message m(c, u, v) reaches each c′ ∈ Comm(v). This requires one invocation of
Algorithm 3.

3: Each c′ ∈ Comm(v) now sends m(c, u, v) to each c′′ ∈ Comm(u). This requires O(log n)
invocations of Algorithm 3.

/* Each c′′ ∈ Comm(u) has at most k copies of m(c, u, v) sent by each
c′ ∈ Comm(v). */

4: for each c′′ ∈ Comm(u) do
5: if at least ⌈(k + 1)/2⌉ copies of m(c, u, v) are identical then
6: c′′ accepts the majority copy of m(c, u, v).
7: else
8: Reject the message m(c, u, v).

Having established the two primitives Algorithm 3 and Algorithm 4, we now present
Algorithm 5 and Algorithm 6.

Algorithm 5 Parallel Agreement.

Require: For every u ∈ V , c ∈ Comm(u), and v ∈ V , the node c has a bit b(c, u, v).
1: /* As before, there are O(n2 log n) such bits WHP. */

Ensure: For each u and each v, the members of Comm(u) must reach an agreement over
the bits b(c, u, v) over all c ∈ Comm(u).

2: In parallel each pair u and v do
3: The members of Comm(u) implement an O(polylog n) round Byzantine Agreement

algorithm [8] using Algorithm 4 to communicate with each other.
4: End parallel

▶ Theorem 15. Consider the protocol described in Algorithm 2. Consider any constant
β < 1/3 and a sufficiently small ϵ ∈ (0, 1/3− β) to be fixed constants. We assume that the
leader ℓ is good and the number of Byzantine nodes B < βn. The following hold with high
probability.
1. Algorithm 2 ensures that every node v ∈ V is represented by a committee Comm(v) ⊆ V

of cardinality Θ(log n). Each node participates in at most O(log2 n) committees.
2. This committee structure is common knowledge amongst all nodes.
3. Byzantine nodes amount to a fraction of at most β + ϵ+o(1) < 1/3 within each committee.
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Algorithm 6 Ensuring a consistent view of edges.

Require: For every u ∈ V , c ∈ Comm(u), and v ∈ V , the node c has a bit b(c, u, v). If u is
good then b(c, u, v) = 1 iff (u, v) ∈ E(G). /* Note that c can be Byzantine and
may misrepresent its bit values. */

Ensure: For every u ∈ V and v ∈ V , the members of Comm(u) must reach an agreement on
whether (u, v) exists. Moreover, it should be consistent with the agreement reached by
Comm(v) regarding edge (u, v), i.e., Comm(u) must agree that the edge (u, v) exists iff
Comm(v) agrees that (u, v) exists. Finally, if both u and v are good, then both Comm(u)
and Comm(v) must agree that edge (u, v) exists iff (u, v) ∈ E(G).

1: Use Algorithm 5 to ensure that for every u and every v, the members in Comm(u)
reach an agreement (using their b(c, u, v) bits). Denote the agreed bit as a(u, v). Each
c ∈ Comm(u) sets a(c, u, v)←− a(u, v).

2: Use Algorithm 3 to ensure that for every u and every v, the members of Comm(v)
learn a(c, u, v) for every c ∈ Comm(u). /* This also means that the members of
Comm(u) learn a(c′, v, u) for every c′ ∈ Comm(v). */

3: For every u and every v, the members of Comm(u) learn a(v, u) by taking majority over
all a(·, v, u) values received in the previous step.

4: For every u and every v, the members of Comm(u) set their final agreement bit f(u, v)
to 1 iff both a(u, v) = 1 and a(v, u) = 1.

4. For every pair of nodes u and v, Comm(u) has reached an agreement about whether
(u, v) ∈ E(G). Note that Comm(v) has also reached its own agreement. The agreements
satisfy the following two properties.

Consistency. Comm(u) reaches the agreement that (u, v) ∈ E(G) iff Comm(v) reaches
the agreement that (u, v) ∈ E(G).

Correctness. If u is good and (u, v) /∈ E(G), the committees reach the agreement that
(u, v) /∈ E(G). Furthermore, if both u and v are good nodes, then, their committees
reach the agreement that (u, v) ∈ E(G) iff (u, v) ∈ E(G).

5. Finally, the protocol terminates in O(polylog n) rounds.

Proof. Item (i) follows immediately from Lemma 11. Item (ii) follows from Algorithm 2
where the leader sends the O(log2 n) bits to all the nodes and the nodes can then compute
the committee structure locally at all nodes. Item (iii) is proved in item (i) of Lemma 11.
Item (v) follows from Lemma 12, Lemma 13, Lemma 14, and the fact that Algorithm 6 only
requires O(log n) invocations of Algorithm 3 and Algorithm 4.

For item (iv), let us focus our attention on Algorithm 6. Note that for each u the
associated Comm(u) internally reaches agreement in Line 1 about whether (u, v) ∈ E(G)
for every other v. Then, for each pair u and v, their respective committees learn about the
agreement reached by the other committee; see Line 3. In Line 4, both committees reach a
consistent agreement. Moreover, they reach a common agreement that the edge (u, v) ∈ E(G)
iff both Comm(u) and Comm(v) internally reached that agreement. Thus, as long as one of
them (i.e., either u or v) is good, Comm(u) and Comm(v) cannot reach a joint agreement
that (u, v) ∈ E(G) when (u, v) /∈ E(G). On the flip side, when both u and v are good, their
committees would have reached the correct internal agreement and therefore the common
agreement will also be correct. ◀
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3.2 Constructing a spanning tree using committees

As mentioned earlier, we will implement a distributed version of Boruvka’s algorithm by
delegating the work done by each of the vertices in the network to their corresponding
committees. We will start by describing an implementation of Boruvka’s algorithm in the
congested clique in the absence of Byzantine nodes.

The algorithm proceeds in phases, and in phase i, we have a collection of fragments
F1, F2, . . . , Fr that are disjoint connected components of the underlying graph. Each fragment
Fi has an associated fragment identifier, which is the name of one of the vertices in the
fragment. We will maintain the invariant that after each phase, every vertex in the graph
knows the fragment ids of every other vertex in the graph. Initially, the fragments are
individual vertices, and the fragment ids are their own ids. Every vertex transmits their id
to every other vertex in the clique.

Suppose that after the ith phase, the fragments are F1, F2, . . . , Fr and that the invariant
holds. Let fv denote the fragment id of the vertex v. We will assume that the algorithm
always chooses the lexicographically smallest outgoing edge from a fragment. Now, each
vertex chooses the lexicographically least u in the neighborhood of v such that fu ̸= fv

and broadcasts the id of u to every vertex in the clique. Now, each node can calculate
the lexicographically least outgoing edge from every fragment and hence compute the new
fragments and their ids. Since the number of fragments reduce by a factor of at least two
every step, the number of rounds is O(log n). Notice that this algorithm is deterministic,
and ends when the graph has been partitioned into connected components. Now we will see
how to implement this algorithm in the presence of Byzantine nodes using committees as
described in the previous subsection.

Algorithm 7 Single phase of Distributed Boruvka.
Require: Graph partitioned into fragments F1, F2, . . . , Fr, with a fragment id associated

with each fragment. Conditions of Theorem 15 hold. For each u, Comm(u) knows the
fragment id of u which we will denote by fu.

Ensure: Find one inter-fragment edge per fragment, and update fragment ids
1: In parallel ∀c ∈ V do
2: ∀u such that c ∈ Comm(u), send (id(u), fu) to every vertex in the clique
3: End parallel
4: In parallel ∀c ∈ V do
5: ∀u such that c ∈ Comm(u), find u with smallest id such that fu ̸= fv and send (id(u), id(v))

to every vertex in the clique.
6: End parallel

Correctness and Complexity. From Lemma 11, we know that, with high probability, at
least half of the nodes in a committee is good. Hence, for each u, every vertex v can compute
the committee of u, Comm(u) and use the majority value of its messages from Comm(u) to
compute fu. Similarly, for each u, majority of the vertices in Comm(u) will correctly calculate
its smallest outgoing edge. Thus each vertex v, can use the majority answer from Comm(u)
to find the outgoing edge from u. Thus, each vertex can compute the correct outgoing edge
from a fragment and update the fragment ids accordingly. By Lemma 11, we know that,
with high probability, each node c is present in the committee of O(log n) other vertices.
Hence the round complexity of Algorithm 7 is O(log2 n).

We now describe the final algorithm.
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Algorithm 8 Connectivity Testing.

Require: Graph G in the congested clique model, and a node ℓ designated as leader known
to every vertex in the graph

Ensure: Leader ℓ outputs accept (TRUE) if G\B is connected, and outputs reject (FALSE)
if G is 2|B|+ 1-far from being connected.

1: Use Algorithm 2 to obtain committees for each of the nodes in the graph that satisfies
the conditions of Theorem 15.

2: Set every vertex u as a singleton fragment with fragment id as the vertex id.
3: Each node executes Algorithm 7 until there are no inter-fragment edges.
4: Leader ℓ accepts if there is a component of size at least n− |B|. Else ℓ rejects.

The following two lemmas prove the correctness of the algorithm. Lemma 16 shows that
if indeed G \B is connected, then this will be observed by the leader with high probability,
and Lemma 17 shows that the leader will reject, with high probability, if G is 2|B|-far from
being connected. If neither of the two conditions hold, then all the honest nodes converges
on a consistent answer even though we can give no guarantee on what that answer will be.

▶ Lemma 16. If the graph G \ B is connected, then the leader returns accept with high
probability in Algorithm 8.

▶ Lemma 17. Let β < 1/3 be a constant such that |B| = βn. If the graph G is 2|B|-far
from being connected, then the leader returns reject with high probability in Algorithm 8.

We now show how to combine the results for the proof of Theorem 1.

Proof of Theorem 1. First, we will elect a leader committee of Θ(log n) nodes such that
at least 2/3-fraction of these nodes are honest. For this we use Theorem 8. Now, each
leader node in this committee runs Algorithm 8 to check the connectivity of the graph.
From Lemmas 17 and 16, we can conclude that if the leader node is honest, then it obtains
the correct answer with high probability. To obtain the final answer we use the consensus
algorithm of [8] (Theorem 10), which guarantees that the consensus obtained by the leader
committee is the value of the transmitter node. Since each honest node has the wrong answer
with probability at most 1/nc, for some constant c, by a union bound we can conclude that
with high probability all honest nodes have the correct answer. Thus, repeating the consensus
algorithm of [8] with each node acting as the transmitter ensures that for the majority of the
values are the correct answer with high probability. ◀

4 Conclusion and Future Work

In this paper, we take a step towards robust and secure distributed graph computation by a
network of nodes that can output meaningful results even in the presence of a large number
of faulty or malicious nodes. This can be relevant in distributed big data applications where
a large number of processors operate on a (large-scale) input and some of the processors
can be faulty or malicious. We address the fundamental problem of connectivity and show
that non-trivial meaningful computation can be performed in an efficient manner even in
the presence of a large number of Byzantine nodes. One of the key aspects of studying
graph problems in this Byzantine fault-tolerant setting is arriving at the correct problem
formulation. One must contend with the fact that Byzantine nodes will enforce a “gap”
between two solvable ends of a spectrum of input instances. Our work shows that we can
indeed formulate such gap problems in a meaningful way. The techniques used in this paper
may be useful in Byzantine distributed computation of other problems in the congested
clique.
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Our approach can serve as a starting point for a general technique for transforming
non-Byzantine congested-clique algorithms to Byzantine ones. This work which addresses the
basic connectivity problem is a step towards this larger goal which is harder. For example,
generalizing our approach to even the closely related MST problem (in a weighted graph) is
not immediate as it is not clear what a meaningful output for MST will be in a weighted
graph in a Byzantine setting. This is an important next step and is left for future work.

Several open questions arise from our work. While the focus of this work is fast algorithms
(running in polylog(n) rounds), it is also relevant to consider the message complexity of the
protocol. The proposed algorithm takes O(n2 polylog(n)) messages in the worst case. This
message complexity is essentially optimal (upto a polylog(n) factor) in the so-called KT0
model (where nodes don’t have apriori information about the identities of its neighbors) since
Ω(n2) is a lower bound for connectivity testing in the congested clique even when there are
no Byzantine nodes[17]. The situation is not clear if nodes have knowledge of the identities
of their neighbors initially (so-called KT1 model). In this case, the question of whether o(n2)
or even O(n polylog n) message algorithms are possible is open. Note that this is possible if
there are no Byzantine nodes [17].

An interesting way to characterize performance of Byzantine protocols for more compli-
cated problems such as connectivity is to parameterize the complexity of the performance
in terms of the number of calls to Byzantine agreement which is a basic primitive. In this
direction, the goal is to reduce the number of calls to agreement as much as possible.

A major next step is addressing even more challenging problems such as MST and other
graph problems.
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A Proof from Section 1

Proof of Theorem 3. Consider any 1 ≤ b ≤ n and f = 2b − 1. Suppose (for the sake of
contradiction) that there is an algorithm A that can distinguish the following two cases with
probability at least 1/2 + ϵ: (i) G is f -far from being connected, or (ii) G \B is connected.
For clarity, we will use the term global algorithm to refer to the collective execution of an
algorithm at all nodes and the term protocol to refer to the specific execution at an algorithm
at a particular node.

We prove this theorem by constructing two graphs: (i) Gf that is f -far from being
connected and (ii) Gc with a connected component of size n− b. We then show embeddings
of these graphs on n node congested cliques with b Byzantine nodes such that the Byzantine
nodes can render both embeddings indistinguishable to the global algorithm A.

Figure 1 Graphs used in the proof of Theorem 3.

To aid us in formally showing this indistinguishability, we first construct two graphs G0
and G1 (that only differ in one edge) and embed them in congested cliques. See Figure 1
for schematics. Executing A on G0 and G1 will provide us with specific protocols executed
by specific nodes in their respective congested cliques that can be used to precisely specify
the protocols executed by Byzantine nodes in the embeddings of Gc and Gf . Both G0 and
G1 comprise a clique of size n− f (numbered 1 through n− f). G0 (resp., G1) has a “tail”
comprising b− 1 nodes (resp., b nodes) numbered n− f + 1 to n− f + b− 1 (resp., n− f + b).



J. Augustine, A. R. Molla, G. Pandurangan, and Y. Vasudev 7:19

Specifically, the tail is a path comprising b− 1 nodes (resp., b nodes) with one of its ends
(node numbered n− f + 1) connected to the (n− f)th node in the clique. Additionally, G0
(resp., G1) comprises f − b+1 (resp., f − b) nodes numbered n−f + b to n (resp, n−f + b+1
to n) that are isolated. The embedding is straightforward. Vertex i is embedded into node i

for all 1 ≤ i ≤ n. Some arbitrary b nodes in this embedding are Byzantine. Let A0
i (resp.,

A1
i ) denote the protocol executed by node i in the embedding of G0 (resp., G1) given that i

is good. Note that A is not required to interpret Gj , 0 ≤ j ≤ 1, correctly because neither is
Gj \B connected nor is Gj f -far from connected.

Gf comprises one clique of n− f vertices (numbered 1 to n− f) and f isolated vertices
(numbered n − f + 1 to n); thus it is f -far from connected. See Figure 1 for a schematic
representation of Gf . The clique is embedded into the first n − f nodes of the congested
clique and the isolated vertices are embedded into the remaining f nodes. The b Byzantine
nodes are nodes n − f, n − f + 1, . . . , n − f + b − 1. The adversary specifies the protocol
executed by the Byzantine nodes i, n− f ≤ i ≤ n− f + b, to be A1

i . All other nodes i, by
the design of A and the vertex embedded into them (along with incident edges matching
Gg), execute their respective Ai. Intuitively, this again produces a view of the graph that
combines G0 and G1 with the one edge between vertices n− b and n− b + 1 under contention.
The protocol A1

n−b executed by n− b will essentially operate under the existence of the edge
while An−b+1 executed by node n− b + 1 will operate under its non-existence.

Similarly, Gc comprises one clique on n− f vertices (numbered 1 to n− f) and a path
on vertices numbered n− f to n. See Figure 1 for a schematic representation of Gc. The
embedding is natural, i.e., vertex i in Gc is embedded into node i in the congested clique.
The b Byzantine nodes are n− b + 1 to n and the adversary respectively executes protocol
A0

i , n− b + 1 ≤ i ≤ n, on those vertices. The rest of the vertices i, 1 ≤ i ≤ n− b, by their
design execute protocol Ai. Importantly, this embedding is such that Gc \B is connected.
Intuitively, this embedding again produces a view of the graph that combines G0 and G1
with the one edge between vertices n− b and n− b + 1 under contention. The protocol An−b

executed by n− b will essentially operate under the existence of the edge while A0
n−b+1 will

be executed by node n− b + 1 under its non-existence.
It is easy to verify that the protocols executed at corresponding nodes in both Gf and Gc

execute the same code under the same local input. Thus, the global algorithm executed by
the two embeddings of Gf and Gc are statistically identical. However, the global algorithm
executed by the two embeddings must be able to distinguish with probability 1/2 + ϵ whether
the underlying graph is Gc or Gf , thereby establishing the contradiction. ◀

B Proofs from Section 3

Proof of Lemma 11. Item (i) is easy to prove through a simple application of the Cher-
noff bound. Fix some node u. Recall that when h ∈ H is chosen uniformly at random,
P(h(u) = v) = 1/n. Thus, when the number of Byzantine nodes is at most βn, the
Pr(h(u) is Byzantine) ≤ β. Since the leader chooses hi, 1 ≤ i ≤ k = O(log n), independently
and uniformly at random from H, we can apply Chernoff bounds to bound the number of
Byzantine nodes in Comm(u). Let Xi = 1 if hi(u) is Byzantine, and 0 otherwise. Then,
X =

∑
i Xi will be the total number of Byzantine nodes in Comm(u). Clearly, µ = E[X] ≤ βk.

Then, by Chernoff bounds,

P(X ≥ (β + ε)k) = P(X ≥ (1 + ε/β)µ)
≤ exp (−µ(ε/β)2/3)
≤ 1/ poly(n).
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To complete the argument that the proportion of Byzantine nodes in Comm(u) is at most
β + ε, we also need to ensure that the committee is of cardinality at least k −O(1) WHP,
i.e., there aren’t too many duplicated hi(u) values. This is easy to argue because, for a fixed
i ∈ [k], the probability that hi(u) is a duplicated item is at most k/n = O( log n

n ). Moreover,
for 1 ≤ i ≤ k, the hi(u) values are k-wise independent. Clearly then, with high probability, no
more than O(1) items in the committee are duplicated. Thus, we can conclude that the fraction
of Byzantine nodes in the committee will be at most (β +ε)k/(k−O(1)) = β +ε+o(1) < 1/3
WHP when k is sufficiently large. To complete the argument, we can take the union bound
over all u ∈ [n].

To prove item (ii), we use the k-wise independence of H and apply Lemma 5. Let us
focus on the first hash function h1 and one node c; later we can apply the union bound over
all hi and all c. Let Yu be 1 if h1(u) = c and 0 otherwise. If we then set Y =

∑
u Yu, we get

the number of committees in which c participates as the first node. Since the Yu values are
k-wise independent, we can apply Lemma 5 and get (for suitable δ ∈ Θ(log n))

P(Y ≥ (1 + δ)E[Y ]) ≤ exp(−min(k, δ2t log n)) ≤ 1/ poly(n).

Item (ii) follows when we take the union bound over all hi and all c. ◀

Proof of Lemma 12. We first bound the time and then prove correctness.
First, we need to ensure that Line number 7 takes O(polylog(n)) rounds WHP and this

will be ensured as long as each c ∈ [n] sends at most O(polylog(n)) messages. To show this,
we need to bound the number of routing committees in which a node r will participate for a
particular v and c ∈ Comm(v). By a straightforward application of Chernoff bounds, we get
that required bound.

▶ Lemma 18. Fix any v, any c ∈ Comm(v), and an arbitrary r ∈ [n]. With high probability,

|{RouteComm(c, v, i) ∋ r | i ∈ [N(v)]}| ∈ O(log n).

The requests are relayed to v and back to c only if c ∈ Comm(v). So again, the congestion in
the links between c and r and between r and v will only be O(polylog(n)), implying that the
inner parallel loop (lines 8 to 15) completes in O(polylog(n)) rounds. Thus, by extension,
the running time for the first parallel loop is O(polylog(n)).

The correctness follows in a straightforward manner. If both c is good, then in expectation,
fewer than β proportion of nodes will be bad in the routing committee. Thus, by a standard
application of the Chernoff bound it follows that the the routing committees RouteComm(c, ·, ·)
are all good in the sense that fewer than 1/3 proportion of nodes will be bad. Of course,
bad nodes can claim to be in those routing committees. However, if v, c ∈ Comm(v), and
r ∈ RouteComm(c, v, i) (for some i) are all good, then they will all follow the protocol and
so each routing committee will provide a majority of correct responses. Thus, taking the
union bound over all i, the proof of Lemma 12 is complete. ◀

Proof of Lemma 13. Fix a pair of nodes c and c′ and consider their role as committee
members. Recall that |C(c)| and |C(c′)| are both O(log2 n) WHP. The number of messages c

sends to c′ is O(log4 n) because each u ∈ C(c) has an associated message m(c, u, v) for each
v ∈ C(c′) and all these messages must traverse the link between c and c′. Moreover, no other
message is passed.

The correctness follows because the messages are directly passed to all c′ ∈ Comm(v). ◀
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Proof of Lemma 16. If G\B is connected, then every non-Byzantine node is in a connected
component of size at least n− |B|. We know that after each step of Algorithm 7, with high
probability, every node knows the fragment ids of every non-Byzantine node. at the end of
Algorithm 8. Therefore, at the end of the algorithm, the leader ℓ has the fragment ids of
every non-Byzantine node. Since they all will lie in the same component, the leader will
accept. ◀

Proof of Lemma 17. If G is 2|B|-far from being connected, then then there are at least
2|B|+ 1 connected components in the graph. Since there are only |B| Byzantine nodes, there
are at most |B| components that contain them. Even if these Byzantine nodes claim to be
connected with each other, the size of the component is less than n−|B|. Otherwise, since we
have an additional |B|+1 components, the number of vertices would be ≥ n−|B|+|B|+1 > n.

We know that the fragment ids of each honest node is known to everyone else after each
run of Algorithm 7. At the end of the algorithm, the leader knows the fragment ids of
every non-Byzantine node in the network. From the previous analysis we know that no
component has size at least n− |B|, and hence, with high probability, the leader will reject
this graph. ◀
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