Abstract

In this brief paper, we survey existing correctness definitions for concurrent persistent programs.

1 Introduction

Non-Volatile Random Access Memory (NVRAM) is a new type of memory technology that has recently hit the market. Its key feature is that it is persistent, like SSDs, but is fast and byte-addressable, much like DRAM. This presents a huge paradigm shift from the way persistence could be achieved in the past; techniques that worked well for sequential block-granularity storage cannot be efficiently used with NVRAMs. Achieving persistence with NVRAM has the potential to speed up applications by orders of magnitude.

However, before designing persistent algorithms for NVRAM, we must first answer a more basic question: What does it mean for an algorithm to be persistent?

Despite algorithms relying on external storage for persistence for decades, the answer to the above question is not clear in the context of faster, byte addressible NVRAM. In particular, it is now realistic to require that virtually no progress be lost upon a crash, and that a program be able to continue where it left off upon recovery.

The above requirement, while appealing, is in fact not very precise. Due to registers and caches remaining volatile, individual instructions and memory accesses are applied to volatile memory first, and are then persisted separately. If a system crash occurs between when an instruction is executed and when its effect is applied to NVRAM, progress will inevitably be lost. However, it is possible to define how much progress it is okay to lose, and at what point in the execution we expect each instruction’s effect to be persisted. For example, we can ensure no completed operation will be lost upon a crash.

In this brief survey, we discuss definitions of persistence that exist in the literature. As this is an actively and quickly developing field of study, there are many different notations, terminologies, and definitions that often refer to similar notions. We put these definitions into the same terminology, and compare them to each other. Using this point of view, we arrange the definitions into a hierarchy, based on the set of execution histories that satisfies every definition. Interestingly, this hierarchy changes depending on specific model assumptions made. We outline common model assumptions and illustrate their effect on these definitions.
Survey of Persistent Memory Correctness Conditions

We note that this survey is meant to make sense of the various persistence definitions and to guide researchers and algorithm designers when choosing which model and definition to adopt. However, this survey does not cover the many different algorithms, techniques, and applications that have been developed for NVRAM programming in recent years.

2 Model Assumptions

We consider a system of \(n \) asynchronous processes \(p_1 \ldots p_n \). Processes may access shared base objects with atomic read, write, and read-modify-write primitives. Each process also has access to local variables that are not shared with any other process. Objects (both local and shared) may be volatile or non-volatile, which affects their behavior upon a crash.

A history is a sequence of events. There are three types of events: an invocation event \(\text{obj.inv}_i(op, v) \) which invokes operation \(op \) on object \(\text{obj} \) by process \(p_i \) with argument \(v \), a response event \(\text{obj.res}_i(op, v) \) in which \(\text{obj} \) responds to \(p_i \)’s invocation on \(op \) with return value \(v \), and crash events. A crash resets all the volatile local variables of the associated process, or all volatile objects if all processes crashed.

A response \(\text{res} \) is said to match an invocation \(\text{inv} \) in \(H \) if \(\text{obj}, \text{op}, \text{and } i \) are the same for both, and \(\text{res} \) is the next event in \(H[p] \) after \(\text{inv} \). An operation is said to be complete in \(H \) if both its invocation and a matching response appear in \(H \). Otherwise, if an operation was invoked but was not completed, the operation is said to be pending.

Given a property \(P \) and a history \(H \), \(P \) is said to be local if given a history \(H \) in which, for every object \(O \), \(H|O \) satisfies \(P \), \(H \) also satisfies \(P \).

In the full version of this paper [4], we discuss model variants that appear in the literature and their implications on correctness conditions and implementations.

3 Property Hierarchy

In this section, we present hierarchies relating the existing properties to each other under various model assumptions. A complete list of all formal definitions, including those omitted from this short paper [2,3,6,7,10], and a more profound comparison among them can be found in the full version [4].

3.1 Same Processes are Invoked

![Figure 1: Hierarchy of definitions when the same processes and new processes are allowed to be invoked after a crash.](image-url)
In this subsection, we assume that the model allows the same processes to be invoked after a crash. Under this model, the existing definitions can be arranged into the hierarchy that is presented in Figure 1(a). The hierarchy is based on the sets of execution histories that are allowed by each of the definitions; in Figure 1(a), each definition’s set of allowed histories is represented by its labelled region.

To understand this hierarchy, it is useful to consider how each correctness condition allows linearizing a given history. The correctness conditions differ by where they allow each pending operation’s completion to be placed. Berryhill et al. [5] presented recoverable, persistent, and strict linearizability in this light.

There are several points in a given history with respect to which it may make sense to complete such a pending operation. One point of reference is the crash event that immediately follows inv_{op} in $H|p$. Another is the next invocation by p in the history. Finally, we may also consider the next invocation in H that occurs in the same object as op.

Strict linearizability [1] is the strongest (or strictest) condition, in that it allows for the smallest set of histories. It requires every pending operation to be eliminated or completed before the crash. In addition, it is local, meaning that every object that is built from strictly linearizable objects is also strictly linearizable. To achieve this guarantee, one may think of running a recovery operation directly after the crash, and before executing the program. However, it might be too restrictive; in some scenarios, it makes sense to relax this requirement to allow recovery (alternatively; the completion of pending operations) to occur later in the execution.

While strict linearizability requires completions to be placed before the next crash event, persistent atomicity [8] instead completes operations before the next invocation by the same process. Note that, by the definition of legal histories, the next invocation by the same process can never be placed before the current crash, and therefore persistent atomicity is weaker than strict linearizability (i.e. the set of persistent histories contains the set of strict histories). Due to this relaxation, it is not local. On the positive side, persistent atomicity may be easier to implement than strict linearizability, since an operation only needs to be recovered (if ever) when the same process invokes another operation.

Berryhill et al. [5] presented the recoverable linearizability definition, which is the most relaxed one. It also requires pending operations to be completed (or removed) before the crash, but practically, to “take effect” before the next invocation of the same process on the same object. Therefore, it allows the most extensive set of histories.

3.2 New processes are invoked

In this subsection, we assume that the model does not allow the same processes to be invoked after a crash, and new processes are spawned instead. This model was first suggested by Izraelevitz et al. [9], as a simplification to previous models. Under this simplification, the definitions that deal with execution continuations do not make sense. The hierarchy in this model is presented in Figure 1(b).

When the same processes are never invoked after a crash, strict linearizability [1] still remains the strongest condition as it requires every pending operation to be eliminated or completed before the crash. Recall that the difference between persistent atomicity [8] and recoverable linearizability [5] is only in recoveries by the same process, and thus these two definitions have the same meaning as durable linearizability [9] which requires getting a linearizable history after removing all crash events from the original history.

By disallowing the executions of the same processes, durable linearizability, persistent atomicity and recoverable linearizability are local under this restriction. Buffered durable linearizability [9] is similar to the others, but additionally allows operations that were completed before the crash to be removed. It therefore is the weakest definition.
References

