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Abstract
Strategy Logic (SL for short) is one of the prominent languages for reasoning about the strategic
abilities of agents in a multi-agent setting. This logic extends LTL with first-order quantifiers over the
agent strategies and encompasses other formalisms, such as ATL* and CTL*. The model-checking
problem for SL and several of its fragments have been extensively studied. On the other hand,
the picture is much less clear on the satisfiability front, where the problem is undecidable for the
full logic. In this work, we study two fragments of One-Goal SL, where the nesting of sentences
within temporal operators is constrained. We show that the satisfiability problem for these logics,
and for the corresponding fragments of ATL* and CTL*, is ExpSpace and PSpace-complete,
respectively.
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1 Introduction

A number of extensions of temporal logics specifically tailored to open multi-agent systems
and incorporating, implicitly or explicitly, the notion of strategy as a central element, have
been proposed in the literature that can also express interesting game-theoretic notions, such
as various forms of equilibria in games [22, 5, 24, 25, 6, 26]. Alternating-Time Temporal
Logic (ATL*, for short) was originally introduced by Alur, Henzinger, and Kupferman [2]
and allows for reasoning about strategic behaviour of agents with temporal goals. This
logic generalises the branching-time temporal logic CTL* [17, 18] by replacing the path
quantifiers, there exists “E” and for all “A”, with strategic modalities of the form “⟨⟨A⟩⟩” and
“[[A]]”, for a set A of agents. These modalities can express cooperation and competition
among the agents involved towards achieving some required temporal goals. In particular,
they allow for selective quantifications over the paths resulting from an infinite game between
a coalition of agents and its adversary, the complement coalition. Strategy Logic (SL, for
short) [10, 34, 11, 32, 33], instead, extends LTL by means of two strategy quantifiers, the
existential ∃x and the universal ∀x, as well as agent bindings (a, x), where a is an agent and
x a strategy variable. Intuitively, these elements can be respectively read as “there exists a
strategy x”, “for all strategies x”, and “bind agent a to the strategy associated with x”. SL
considers strategies as first-class citizens and can express properties requiring an arbitrary
alternation of the strategic quantifiers, as opposed to, e.g., ATL*, which only allows for
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at most one such alternation. From a semantic viewpoint, this entails that SL can encode
arbitrary functional dependencies among strategies, which may be crucial to express relevant
multi-agent systems and non-trivial game-theoretic notions (see [32, 33]).

The model-checking problem for SL and for many of its fragments has been studied with
some depth and is relatively well-understood [32, 7, 8, 20, 21]. The picture is, however, much
less clear when satisfiability is considered. The full logic SL is known to be undecidable [34].
The one-goal fragment (SL[1g], for short), where only a single binding prefix is allowed
in any sentence, is decidable in 2ExpTime [31]. On the other hand, the Boolean-Goal
fragment, which allows for Boolean combinations of bindings within a sentence but no nesting
of bindings, is already undecidable [33]. Recently, the flat fragment of conjunctive-goal
SL has been studied in [1], which provides a PSpace-complete result for the problem,
witnessing the quite rare phenomenon of a language with a satisfiability problem easier than
the corresponding model-checking one, which remains 2ExpTime-complete. Such fragment
allows for conjunctions of bindings but no nesting of temporal operators within a sentence.

In this work, we widen the picture, by studying larger non-flat fragments of SL[1g].
Specifically, we allow some forms of nesting of temporal operators, but prevent sentences in
the first (resp., second) argument of an until (resp., release) operator. Essentially, temporal
operators cannot reiterate the request of satisfaction of a sentence arbitrarily many times.
The resulting fragment is, thus, called non-recurrent SL[1g] (SL ̸⟳ [1g], for short). We
show that the fragment where the first (resp., second) argument of an until (resp., release)
is restricted to a pure LTL formula can be decided in ExpSpace. If we further restrict
those arguments to Boolean formulae, instead, we obtain a weaker fragment (WSL̸⟳ [1g],
for short) with a PSpace-complete decision problem. To prove these results, we first
introduce a normal form for the models of satisfiable sentences of these fragments. The
distinctive property of such models is that, along any of their paths, the number of branching
points is linear in the length of the formula. To do that, a sentence is converted into a
“skeleton”, where it is split into layers at the beginning of each block of strategy quantifiers,
and then Skolemized to obtain a set of purely universally-quantified formulas in order to apply
techniques from first-order logic [35, 9]. Then, we introduce a novel class of tree automata,
called bounded-fork automata, accepting trees with bounded-branching. We show that the
emptiness problem for these automata, unlike for classic tree automata, can be decided
in LogSpace. These results are key to obtaining the complexity bounds. Indeed, we can
show that for any sentence φ of the two considered fragments, we can build a bounded-fork
automaton of size doubly-exponential (resp., singly-exponential) in the length of φ, accepting
all and only its normal models. The ExpSpace and PSpace upper bounds for satisfiability,
then, immediately follow from the complexity of the emptiness problem. The results also
trickle down to suitable fragments of sublogics of SL such as ATL, ATL*, CTL, and CTL*.

Restrictions similar in vein to the non-recurrent one we study here have been considered
in the past for LTL, CTL, and CTL*. In [13] the author introduces flatLTL, flatCTL,
and flatCTL*, as fragments of the corresponding temporal logics where the next operator
is not allowed and the first argument of both the until and the release operators can only
accommodate propositional formulae. In their LTL form, these restrictions have been applied
in several contexts, such as temporal logics enriched with constraints over data [12, 14],
analysis of discrete pushdown timed systems [28], and the synthesis of hybrid systems [19].
In particular, the LTL fragment considered in [12, 28] is a sublogic of the linear-time logic
underlying WSL̸⟳ [1g], while the one originally considered in [13] is not comparable to ours,
as it restricts the first and not the second argument of the release operator, therefore still
allowing for recurrent sentences. While both model-checking and satisfiability problems for
flatLTL have been shown to be PSpace-complete [15, 38], to the best of our knowledge,
only expressiveness properties have been studied for flatCTL and flatCTL*.
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2 Preliminaries

Games. A concurrent game structure (CGS, for short) w.r.t. finite non-empty sets of
atomic propositions AP and agents Ag is a tuple G≜ ⟨Ac,Ps, τ , vI , λ⟩, where Ac and Ps
are countable non-empty sets of actions and positions, vI ∈ Ps is an initial position, and
λ : Ps → 2AP is a labelling function mapping every position v ∈ Ps to the set of atomic
propositions λ(v) ⊆ AP true at that position. A decision d ∈ Dc≜AcAg is a function that
chooses an action for each agent. A move function τ : Ps × Dc → Ps maps every position
v ∈ Ps and decision d ∈ Dc to a position τ(v, d) ∈ Ps. By abuse of notation, τ ⊆ Ps × Ps
also denotes the transition relation between positions such that (v, w) ∈ τ iff τ(v, d) = w,
for some d ∈ Dc. As usual, τ+ (resp., τ∗) is the transitive (resp., reflexive and transitive)
closure of τ . A path π ∈ Pth ⊆ Ps∞≜Ps∗∪ Psω is a finite or infinite sequence of positions
compatible with the move function, i.e., ((π)i, (π)i+1) ∈ τ , for each i ∈ [0, |π| − 1). The set
Pth(v)≜ {π ∈ Pth | |π| > 0 ∧ fst(π) = v} denotes the set of paths starting at a position v. A
history at v is a finite non-empty path ρ ∈ Hst(v)≜Pth(v) ∩ Ps+ starting at that position.
Similarly, a play π ∈ Play(v)≜Pth(v) ∩ Psω at v is an infinite path starting at v. A strategy
rooted at v is a function σ ∈ Str(v)≜Hst(v) → Ac mapping histories to actions. A v-rooted
profile ξ ∈ Prf(v)≜Ag → Str(v) associates agents with strategies. A path π ∈ Pth(v)
is compatible with a v-rooted profile ξ ∈ Prf(v) if, for each i ∈ [0, |π| − 1), it holds that
(π)i+1 = τ((π)i, d), for the unique decision d ∈ Dc such that d(a) = ξ(a)((π)≤i), for all
agents a ∈ Ag. A CGS G is a tree if, for some set X, 1) Ps is a prefix-closed set of words in
X∗, 2) vI = ε is the empty word, and 3) (v, w) ∈ τ iff w = v · x, for all position v, w ∈ Ps,
for some x ∈ X. As usual, τ−1: Ps \ ε → Ps denotes the predecessor function τ−1(v · x)≜ v,
for all v · x ∈ Ps \ ε with x ∈ X. Finally, a tree CGS G is k-fork, for some k ∈ N, if along
every path π ∈ Pth(vI) there are at most k forks, namely, |{i ∈ N | |τ((π)i)| > 1}| ≤ k.

Functions. A function signature is a tuple F ≜ ⟨Fn, ar⟩, where Fn is a set of function symbols
and ar : Fn → N is an arity function mapping each symbol f ∈ Fn to its arity ar(f) ∈ N. An
F -structure F≜

〈
D, ·F

〉
is defined by a domain D together with an interpretation of Fn over

D, i.e., every function symbol f ∈ Fn is interpreted in a function fF : Dar(f) → D. The set of
terms built over the signature F and a set of variables Vr is denoted by Tr. A substitution is
a map µ : Vr → Tr assigning a term to each variable; a valuation w.r.t. F is a map ξ : Vr → D
assigning an element of the domain to each variable. Given a term t ∈ Tr, by tµ we denote
the replacement of all variables in t with the terms prescribed by the substitution µ; by tF,ξ
we denote the interpretation of t in F under the valuation ξ, i.e., the value assumed by t

when each variable x is replaced with the value ξ(x). A set of terms T ⊆ Tr unifies if there
is a substitution µ such that tµ1 = tµ2 , for all t1, t2 ∈ T. Similarly, T equalises over F if there
is a valuation ξ such that tF,ξ1 = tF,ξ2 , for all t1, t2 ∈ T. For more details, we refer to [4, 9].

Automata. A deterministic (resp., nondeterministic) word automaton (DWA (resp., NWA),
for short) is a tuple ⟨Σ,Q, δ, qI ,QF⟩, where Σ and Q are the finite non-empty sets of input
symbols and states, qI ∈ Q is the initial state, QF ⊆ Q is the subset of final states, and
δ : Q × Σ → Q ∪ {⊥,⊤} (resp., δ : Q × Σ → 2Q) is the deterministic (resp., nondeterministic)
transition function mapping each state q ∈ Q and input symbol σ ∈ Σ to the successor
state (resp., set of successor states) δ(q, σ). A deterministic (resp., nondeterministic) tree
automaton (DTA (resp., NTA), for short) is a tuple ⟨Σ,Λ,Q, δ, qI ,QF⟩, where all components
but Λ and δ are defined as for a word automaton, Λ ⊆ N+ is the non-empty set of node
degrees, and δ : Q × Σ × Λ → Q∗∪ {⊥,⊤} (resp., δ : Q × Σ × Λ → 2Q∗) is the deterministic
(resp., nondeterministic) transition function mapping each state q ∈ Q, input symbol σ ∈ Σ,
and node degree d ∈ Λ to the tuple of successor states δ(q, σ, d) ∈ Qd (resp., set of tuples of
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successor states δ(q, σ, d) ⊆ Qd), where ⊥ and ⊤ are two implicit distinguished rejecting and
accepting states used to simplify the constructions of this work (these implicit states are not
needed in the case of nondeterministic automata). We only consider the Büchi acceptance
condition, for both word and tree automata. The notions of (accepting) run and recognised
language are the standard ones. For more details, we refer to [29, 23].

3 Decidable Fragments of Strategy Logic

Strategy Logic [10, 34] extends LTL by allowing to quantify over strategies and to assign a
strategy to each agent, by binding the latter with some quantified variable. A quantifier prefix
is a finite sequence ℘ ∈ Qn ⊆ {∃x, ∀x |x ∈ Vr}∗ of existential and universal quantifiers Qnx,
in which variables x ∈ Vr occur at most once. Similarly, a binding prefix is a finite sequence
♭ ∈ Bn ⊆ (Ag × Vr)|Ag| of bindings (a, x), in which each agent a ∈ Ag occurs exactly once.
By vr(℘) , vr(♭) ⊆ Vr we denote the sets of variables occurring in ℘ and ♭.

One-Goal Strategy Logic. One-Goal Strategy Logic is one of the largest decidable fragments
of SL known to date and is complete for 2ExpTime. Its main constraint w.r.t. full SL is
that bindings are tightly connected to quantifiers and agents cannot change strategies within
the same sentence without quantifying on them again in a nested subsentence.

▶ Definition 1 (SL[1g] Syntax [31]). SL[1g] formulas are generated from the sets of atomic
propositions AP, quantifier prefixes Qn, and binding prefixes Bn via the following grammar,
where p ∈ AP, ℘ ∈ Qn, and ♭ ∈ Bn, with vr(℘) = vr(♭):

φ := p | ¬φ | φ ∧ φ | φ ∨ φ | ℘♭ψ; ψ :=φ | ¬ψ | ψ ∧ ψ | ψ ∨ ψ | Xψ | ψ Uψ | ψ Rψ.

SL[1g] denotes the set of sentences generated by Rule φ, while FSL[1g] ⊂ SL[1g] represents
the flat fragment, i.e., the subset generated by the variant of the grammar where p replaces
the call to Rule φ within Rule ψ, i.e., with ψ pure LTL.

With ap(φ) ⊆ AP, vr(φ) ⊆ Vr, and free(φ) ⊆ Vr ∪ Ag we denote, respectively, the sets
of atomic propositions, variables, and free variables and agents occurring φ. Being a first
order language, the semantics of SL formulae is defined w.r.t. an assignment, interpreting
variables as strategies. This interpretation is extended to agents as well, to take care of
bindings assigning strategies to agents. Let Asg(v)≜ (Vr∪Ag)⇀Str(v) denote the set of such
assignments. For a set V ⊆ (Vr∪Ag), we also provide, for convenience, the set of assignments
defined only over V, i.e., Asg(v,V)≜ {χ ∈ Asg(v) | dom(χ) = V}, and those defined at least
over V as Asg⊆(v,V)≜ {χ ∈ Asg(v) | V ⊆ dom(χ)}. As usual, given an assignment χ, a
variable or agent x ∈ (Vr ∪ Ag) and a strategy σ ∈ Str, we denote with χ[x 7→ σ], the
assignment χ′ resulting from assigning σ to x in χ. Since the semantics for the Boolean and
temporal operators is practically the classic one (see [32]), we only provide the interpretation
of quantifiers and bindings.

▶ Definition 2 (SL Semantics [32]). Given a CGS G, for all SL formulas φ, positions
v ∈ Ps, and v-rooted assignments χ ∈ Asg⊆(v, free(φ)), the modelling relation G, v, χ |= φ is
inductively defined as follows.
1. Atomic propositions, Boolean connectives and temporal operators are interpreted as usual.
2. For all x ∈ Vr:

a. G, v, χ |= ∃x. ϕ, if G, v, χ[x 7→ σ] |= ϕ, for some strategy σ ∈ Str(v);
b. G, v, χ |= ∀x. ϕ, if G, v, χ[x 7→ σ] |= ϕ, for all strategies σ ∈ Str(v).

3. For all a ∈ Ag and x ∈ Vr: G, v, χ |= (a, x)ϕ, if G, v, χ[a 7→ χ(x)] |= ϕ.
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For a sentence φ, we write G, v |= φ and G |= φ instead of G, v,∅ |= φ and G, vI ,∅ |= φ.
The existence of a normal model for sentences, as defined in the next section, relies on

the notion of skeleton that breaks down their nesting structure. The idea is that a skeleton
decomposes a sentence φ into a set Φ of simpler sentences of the flat fragment. Essentially,
φ is stratified into layers, whose sentences cannot occur within temporal operators. The
connection between the layers is achieved by means of auxiliary atomic propositions, used as
names of subsentences nested within temporal operators in the original formula. The skeleton
is a reminiscent of the technique used in the model-checking algorithms for CTL* [30, 3].

For example, the following sentence φ≜ p∧∀x∃y∀z(a, x)(b, y)(c, z)(X (q∧(X F q) U (ϕ1∧ϕ2)))
with ϕ1 ≜∃x∀y(a, x)(b, y)(c, y)(p U q) and ϕ2 ≜∀x∃y(a, y)(b, x)(c, y)(G ¬q) can be stratified
into 2 layers, using the fresh atomic propositions {s, s1, s2} as names for the subsentences of
φ: ϕ1 7→ s1, ϕ2 7→ s2 and ∀x∃y∀z(a, x)(b, y)(c, z)(X (q ∧ (X F q) U (s1 ∧ s2))) 7→ s. In the end,
the original formula φ is summarised by the positive Boolean formula ζ ≜ p ∧ s. This idea is
formalised by the following definition, where the relation ≺ encodes the ordering among the
layers and the function ℓ assigns atomic propositions as names of subsentences of φ. We shall
denote with BF (resp., BF+) the set of Boolean (resp., positive Boolean) formulae over AP.

▶ Definition 3 (SL[1g] Skeleton). An SL[1g] skeleton is a tuple ð≜ ⟨ζ,Φ, ℓ⟩, where ζ ∈ BF+

is a positive Boolean formula, Φ ⊆ FSL[1g] is a finite set of FSL[1g] sentences, and
ℓ : Φ → AP is an injective function mapping each sentence ϕ ∈ Φ to an atomic proposition
ℓ(ϕ) ∈ AP, for which there is a strict partial order ≺ ⊆ Φ × Φ such that if ℓ(ϕ) ∈ ap(ϕ′) then
ϕ ≺ ϕ′, for all ϕ′ ∈ Φ. In addition: ð is simple if every atomic proposition p ∈ img(ℓ) occurs
in exactly one sentence ϕ ∈ Φ ∪ {ζ} and at most once in it; ð is principal if it is simple and
all sentences ϕ in Φ have the form ℘♭ψ, for some ℘ ∈ Qn, ♭ ∈ Bn, and ψ ∈ LTL.

For instance, the skeleton of the example above is indeed a principal one. For a skeleton
ð, we denote with φð the sentence derived from ζ by iteratively replacing each atomic
proposition p ∈ img(ℓ) with the corresponding FSL[1g] sentence ℓ−1(p) until no atomic
proposition in img(ℓ) occurs in the sentence. This effectively reverts the stratification process
described above. Note that the strict partial order ≺ on Φ ensures termination of the rewriting
procedure. While, for convenience, we allow for more liberal forms of skeletons, principal
ones suffice, as one such skeleton exists for each sentence, where different occurrences of the
same subsentence are mapped to different names by ℓ.

▶ Proposition 4. Each SL[1g] sentence φ enjoys a principal SL[1g] skeleton ð with φ = φð.

Satisfaction of a skeleton ð by a CGS G over the atomic propositions of ð is defined quite
naturally. Specifically, the initial position of G must satisfy locally the Boolean formula ζ,
and any sentence in Φ, whose “name” labels a given position v of G, must be satisfied at v.

▶ Definition 5 (Skeleton Satisfaction). A CGS G satisfies an SL[1g] skeleton ð, in symbols
G |= ð, if 1) λ(vI) |= ζ and 2) G, v |= ϕ, for all ϕ ∈ Φ and v ∈ Ps with ℓ(ϕ) ∈ λ(v).

The following result establishes the equisatisfiability of SL[1g] skeletons and their corres-
ponding SL[1g] sentences.

▶ Theorem 6. φð is satisfiable iff ð is satisfied by a tree CGS, for every SL[1g] skeleton ð.

Non-Recurrent One-Goal Strategy Logics. The main source of complexity for SL[1g], or
CTL* and ATL* for that matter, resides in its ability to express properties that request
satisfaction of a given sentence an unbounded number of times along a computation, as,
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e.g., in the CTL formula EG (¬p ∧ EX p). Given the branching nature of quantifications in
SL, this may lead to models with an unbounded number of branching points. In general,
such models can be recognised by nondeterministic tree automata with a double exponential
number of states [37, 31]. Emptiness for such tree automata is known to be PTime [42],
which leads to a 2ExpTime procedure for deciding SL[1g]. Since CTL* is contained in
SL[1g], completeness for 2ExpTime follows [16]. To avoid this issue, we restrict the number
of times a given sentence can be requested, by preventing sentences in the left-hand (resp.,
right-hand) argument of the until (resp., release) operator. We call the resulting fragment
non-recurrent, in that it forbids an unbounded number of requests of the same sentence.

▶ Definition 7 (SL[1g] Fragments). Formulas of non-recurrent fragments of SL[1g] are
generated from the sets of atomic propositions AP, quantifier prefixes Qn, and binding prefixes
Bn via the following grammar, with p ∈ AP, ψ ∈ LTL(AP), β ∈ BF(AP), ℘ ∈ Qn, and
♭ ∈ Bn such that vr(℘) = vr(♭):

SL̸⟳ [1g]: φ := p | ¬p | φ ∧ φ | φ ∨ φ | ℘♭η | ℘♭ψ; η :=φ | η ∧ η | η ∨ η | ψ Uφ | φ Rψ | Xη | Xψ;
WSL ̸⟳ [1g]: φ := p | ¬p | φ ∧ φ | φ ∨ φ | ℘♭η; η :=φ | η ∧ η | η ∨ η | β Uφ | φ Rβ | Xη;

For each fragment, the rule φ takes care of the first-order (branching) structure of the
language, while the rule η handles the temporal portion. The non-recurrence constraint is
embedded in the cases for the until and release operators within the rule η, restricting the
left-hand (resp., right-hand) argument of the until (resp., release) operators to be a pure LTL
formula with no nesting of sentences. The weak fragment further restricts those arguments so
that no temporal operators can occur altogether, i.e., they can only accommodate Boolean
formulae. No restriction is imposed on the next operator, while negation can only be applied
to atomic propositions in AP. By replacing all the occurrences of φ in the two rules η with
a positive Boolean formula γ ∈ BF+(AP ∪ A), for a (possibly empty) distinguished set A
of atomic propositions, such that AP ∩ A = ∅, we obtain the corresponding flat fragments
FSL ̸⟳

A[1g] and FWSL̸⟳
A[1g]. The idea is that A contains names of sentences possibly used

by the skeletons for the two fragments. In addition, we call Weak LTL (WLTL for short),
the fragment of LTL that agrees with the rule η of FWSL ̸⟳ [1g].

We can obtain skeletons for the new fragments, by suitably restricting their components
to the corresponding flat fragments and requiring that only fresh atomic propositions in A
be used as names for sentences. An SL̸⟳ [1g] (resp., WSL̸⟳ [1g]) skeleton ð = ⟨ζ,Φ, ℓ⟩ is
a principal SL[1g] skeleton such that 1) Φ ⊆ FSL ̸⟳

A[1g] (resp., Φ ⊆ FWSL̸⟳
A[1g]), and 2)

img(ℓ) ∩ A = ∅, for some A ⊆ AP. The analogous of Proposition 4 holds for the two new
fragments SL ̸⟳ [1g] and WSL ̸⟳ [1g] as well.

▶ Proposition 8. Each SL ̸⟳ [1g] (resp., WSL ̸⟳ [1g]) sentence φ enjoys an SL ̸⟳ [1g] (resp.,
WSL̸⟳ [1g]) skeleton ð with φ = φð.

The constraint on the non-recurrence of sentences allows us to strengthen Theorem 6
and show that a sentence is satisfiable iff its skeleton can be satisfied by a model where
each subsentence is requested at most once. This property is formalised by the definition
of single-time satisfaction and the following theorem. The result is instrumental to the
definition of normal models (see next section) and, ultimately, to the main complexity results.

▶ Definition 9 (Single-Time Skeleton Satisfaction). A CGS G single-time satisfies a skeleton ð
if 1) G |= ð and 2) if ℓ(ϕ) ∈ λ(v) then ℓ(ϕ) ̸∈ λ(w), for all ϕ ∈ Φ, v ∈ Ps, and w ∈ τ+(v).

▶ Theorem 10. φð is satisfiable iff ð is single-time satisfied by a tree CGS, for every
SL̸⟳ [1g] skeleton ð.
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Assume φð is satisfiable. By Theorem 6, ð is satisfiable as well. Thus, let G be one of
the tree CGSs satisfying ð. The proof proceeds by induction on the depth k of the strict
partial order ≺ underlying the skeleton ð.

The idea is the following: starting from G, we perform a sequence Gk+1,Gk,Gk−1, . . . ,G0
of structure-preserving model transformations, where Gk+1 ≜G. The labelling of the models
is modified in such a way that all sentences in Φ at level i in the ordering ≺ are single-time
satisfied in Gj , for every j ≤ i. More specifically, sentences at level k only need to be verified
at the root, while those at i < k just need to be checked at the first occurrence of a witness
of the until/release operator containing it. Hence, the labelling of Gi is obtained from Gi+1,
by removing, along each path, every occurrence of the name of a sentence at level i except
the one that serves as witness of the corresponding until/release operator. By construction,
the name ℓ(ϕ) of every sentence ϕ in Φ occurs only once along any path of G0. Hence, G0
single-time satisfies ð.

4 Normal Models

The efficient satisfiability of the non-recurrent fragments relies on the fact that any of their
sentences is satisfiable by models of a specific structure, namely, by bounded-fork tree CGS.
This can be proven by first extending SL with function symbols, to allow for bindings
containing strategy terms, instead of simple variables, which enables us to state a Skolem
normal-form theorem for SL[1g]. This result can be used to show that any model for a
sentence φ of SL ̸⟳ [1g] in Skolem form can be transformed into a bounded-fork tree satisfying
φ, where forks only occur as a result of non-unifying strategy terms within the bindings of φ.

Functions in SL. Given a function signature F , by SL[1g,F ] we denote the extension
of SL[1g], where we allow agents to be bound with complex terms instead of simple
variables. This means that the set of bindings Bn in the syntax gets replaced by its extension
Bn(F ) ⊆ (Ag × Tr)|Ag|. A binding prefix is, thus, a finite sequence ♭ ∈ Bn(F ) of bindings
(a, t), with t ∈ Tr, in which each agent a ∈ Ag occurs exactly once. ∀SL[1g,F ] represents
the universal fragment of SL[1g,F ], where existential quantifiers are forbidden. In order to
define the semantics of an SL[1g,F ] sentence, we need to provide a strategy interpretation
for all function symbols in Fn. We do this, via the map ℑ : v∈Ps 7→ Fv assigning to each
position v an F -structure Fv =

〈
Str(v), ·Fv

〉
whose domain is the set of strategies rooted at

v. Given a pair (G,ℑ) of a CGS G and a strategy interpretation ℑ, called interpreted CGS,
we can define the modelling relation (G,ℑ), v, χ |= φ as in Definition 2, where Item 3 gets
replaced by the following one:

for all a ∈ Ag and t ∈ Tr: (G,ℑ), v, χ |= (a, t)ϕ, if (G,ℑ), v, χ[a 7→ tℑ(v),χ] |= ϕ,
where agent a ∈ Ag is bound to strategy tℑ(v),χ, i.e., the interpretation of term t under the
v-rooted assignment χ ∈ Asg(v) in the F -structure ℑ(v) =

〈
Str(v), ·ℑ(v)〉 associated with v.

Intuitively, we assign to agent a a strategy dependent on those associated with the variables
occurring in the term t.

An SL[1g,F ] sentence φ is satisfied by a CGS G, in symbols G |= φ, if there exists a
strategy interpretation ℑ such that (G,ℑ) |= φ, where the latter stands for (G,ℑ), vI ,∅ |= φ.
In the rest of the work, by skm : SL[1g] → ∀SL[1g,F ] we denote the function mapping each
SL[1g] sentence φ to the corresponding Skolem normal-form skm(φ), where each variable
x existentially quantified in a subsentence ϕ of φ is replaced by a fresh function symbol
applied to the variables universally quantified in ϕ before x. As an example, consider the
SL[1g] sentence φ used in the previous section to exemplify the notion of SL[1g] skeleton.
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Then, skm(φ) = p ∧ ∀x∀z(a, x)(b, f1(x))(c, z)(X (q ∧ (X F q) U (skm(ϕ1) ∧ skm(ϕ2)))), where
skm(ϕ1) = ∀y(a, f2)(b, y)(c, y)(p U q) and skm(ϕ2) = ∀x(a, f3(x))(b, x)(c, f3(x))(G ¬q). In φ,
the existential variable y of the outermost sentence is replaced by the term f1(x), since the
strategy chosen by agent b only depends on the strategy used by agent a. A similar reasoning
applies to the subsentence ϕ2. In ϕ1, instead, the existential variable x is replaced by the
constant f2, as the strategy for agent a does not depend on those of b and c.

In [32] (see Theorem 4.5 and Corollary 4.6), it has been proved that SL enjoys a semantic
version of Skolem normal-form theorem, where the interpretation of Skolem functions is given
at the meta-level. Thanks to the introduction of function symbols in the syntax of the logic,
this result can now be stated at the object-level in the classic way.

▶ Theorem 11. Let G be a CGS. An SL[1g] sentence φ is satisfied by G iff the ∀SL[1g,F ]
sentence skm(φ) is satisfied by G.

A fundamental property of SL[1g], which allows both its model-checking and satisfiability
problem to be elementary decidable [32, 31, 33], is that every satisfiable sentence of this logic
is behaviourally satisfiable [32] (see Theorem 4.20 and Corollary 4.21), with the intuitive
meaning that each action chosen by an agent, for some history of a play, only depends on
the actions chosen by the other agents along that history. In other words, an agent does not
need to forecast the future to play optimally. At this point, we can formalise this intuition
and restate the result proved in [32] as follows. We say that two strategies σ1, σ2 ∈ Str(v)
are equal along history ρ ∈ Hst(v) (ρ-equal, for short), if, for every history ρ′ ∈ Hst(v) with
ρ′ ≤ ρ, it holds that σ1(ρ′) = σ2(ρ′), where ≤ is the partial order induced by prefixes. This
notion immediately lifts to vectors of strategies σ⃗1, σ⃗2 ∈ Str(v)k, of some k ∈ N, as usual:
σ⃗1 and σ⃗2 are ρ-equal if all their k components (σ⃗1)i and (σ⃗2)i are ρ-equal, with i ∈ [k]. A
function between strategies f : Str(v)k → Str(v), for some dimension k ∈ N, is behavioural if,
for every history ρ ∈ Hst and pair of ρ-equal k-vectors of strategies σ⃗1, σ⃗2 ∈ Str(v)k, it holds
that f(σ⃗1)(ρ) = f(σ⃗2)(ρ). A strategy interpretation ℑ w.r.t. a given CGS G is behavioural
if the function fℑ(v) is behavioural, for every position v ∈ Ps and symbol f ∈ Fn. An
SL[1g,F ] sentence φ is behaviourally satisfied by a CGS G if there exists a behavioural
strategy interpretation ℑ such that (G,ℑ) |= φ.

▶ Theorem 12. For any CGS G and SL[1g] sentence φ, the sentence skm(φ) is satisfied
by G iff it is behaviourally satisfied by G.

Unifying Bindings & Paths. In [35] it has been observed that the decidability of the
satisfiability problem for SL[1g] can be attributed to the fact that variables are indivisibly
associated with agents by bindings. Here we further exploit that observation to define a normal
form for SL ̸⟳ [1g] models, applying the notions of Herbrand property and quasi-Herbrand
structures devised in [9], so that unifying bindings identify the same paths.

The notion of SL[1g] (resp., SL ̸⟳ [1g]) skeleton, as well as the corresponding concept of
(resp., single-time) skeleton satisfaction, immediately lifts to SL[1g,F ] (resp., SL̸⟳ [1g,F ]) in
the obvious way. A skeleton is universal if all formulas in Φ are universal, i.e., Φ ⊆ ∀SL[1g,F ].
Given an SL[1g] (resp., SL ̸⟳ [1g], WSL̸⟳ [1g]) skeleton ð, we denote by skm(ð) the (universal)
∀SL[1g,F ] (resp., ∀SL̸⟳ [1g,F ], ∀WSL̸⟳ [1g,F ]) skeleton obtained via Skolemisation of all
the sentences in Φ, where a different set of Skolem symbols is used for each sentence.

The following result is an easy corollary of what we have derived. Indeed, Theorem 10
ensures that, for every SL ̸⟳ [1g] skeleton ð, the sentence φð is satisfiable iff ð is single-time
satisfiable by some tree CGS G. Now, by Theorem 11, G, v |= ϕ iff G, v |= skm(ϕ), for all
ϕ ∈ Φ and v ∈ Ps with ℓ(ϕ) ∈ λ(v). Finally, Theorem 12 allows for a behavioural satisfaction.
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▶ Corollary 13. For every SL ̸⟳ [1g] skeleton ð, it holds that φð is satisfiable iff skm(ð) is
single-time behaviourally satisfiable by a tree CGS.

Bindings ♭ = (a1, t1) · · · (ak, tk) ∈ Bn(F ) are sequences of terms over F , one for each
agent. Hence, the standard notions of term replacement, interpretation, unification, and
equalisation can be lifted to them in the obvious way. Specifically, ♭µ≜(a1, t

µ
1 ) · · · (ak, tµk)

denotes the replacement of all the variables in every ti with the terms prescribed by the
substitution µ, while ♭F,χ denotes the interpretation of ♭ in F under the assignment χ, i.e.,
the profile ♭F,χ ∈ Prf(v) assigning to each agent ai the strategy tF,χi . A set of bindings
B ⊆ Bn(F ) unifies if there is a substitution µ such that ♭µ1 = ♭µ2 , for all ♭1, ♭2 ∈ B, while
B equalises over F if there is an assignment χ such that ♭F,χ1 = ♭F,χ2 , for all ♭1, ♭2 ∈ B.
As an example, consider the bindings ♭1 ≜(a, x)(b, f1(x))(c, z), ♭2 ≜(a, f2)(b, y)(c, y), and
♭3 ≜(a, f3(x))(b, x)(c, f3(x)), previously obtained by Skolemisation. One can see that ♭1 and
♭2 unify in (a, f2)(b, f1(f2))(c, f1(f2)), while neither ♭1 and ♭3 nor ♭2 and ♭3 unify. By a result
in [9] (see Theorem 1) ♭1 and ♭2 also equalise over every structure F, while there exists a
structure F⋆ (quasi-Herbrand w.r.t. {♭1, ♭2, ♭3}, see Theorem 2 of [9]) over which ♭3 does not
equalise with either ♭1 or ♭2.

Every finite set of bindings B ⊂ Bn(F ) is associated with its maximally unifiable coverage
muc(B) ⊆ 2B, i.e., the unique set of the subsets of B such that 1)

⋃
muc(B) = B and 2)

every C ∈ muc(B) is maximally unifiable, i.e., C is unifiable, but C ∪ {♭} is not unifiable,
for all ♭ ∈ B \ C. As an example, consider the set of three bindings B≜{♭4, ♭5, ♭6}, where
♭4 = (α, u)(β, v)(γ, u), ♭5 = (α,w)(β, f(w))(γ, x), and ♭6 = (α, y)(β, z)(γ, g(z)). Then,
muc(B) contains all the subsets of B of size 2. Indeed, the first two bindings unify in
♭45 ≜(α, u)(β, f(u))(γ, u), the first and the last unify in ♭46 ≜(α, g(v))(β, v)(γ, g(v)), and the
last two bindings unify in ♭56 ≜(α,w)(β, f(w))(γ, g(f(w))). In addition, the whole set B is
not unifiable, as w cannot unify with g(f(w)) and, therefore, ♭4 does not unify with ♭56
either. As another example, for the set of bindings {♭1, ♭2, ♭3} of the previous paragraph, we
have that muc({♭1, ♭2, ♭3}) = {{♭1, ♭2}, {♭3}}.

A normal model of a universal skeleton ð is an interpreted tree CGS (G,ℑ), where
the number |τ(v)| of successors of each position v ∈ Ps is dictated solely by the set of
bindings ♭ of some sentence ϕ∈Φ, whose induced play π=play(♭ℑ(w),χ, w), with χ ∈ Asg(w)
and w an ancestor of v satisfying ϕ, passes through v. In other words, each position in a
normal model has just enough successors to separate the sets of non-unifying bindings, which
may require different paths to satisfy the associated sentences. The underlying idea is the
following. Consider a model of a universal skeleton and a position v in the model labelled
with propositions s1 and s2, which name the subsentences ∀♭1ψ1 and ∀♭2ψ2. This witnesses
that both sentences must be satisfied at v. If bindings ♭1 and ♭2 unify, hence equalise, then
the corresponding LTL matrices ψ1 and ψ2 must necessarily be satisfied along the same
paths from v, as the two bindings induce the same paths. If, however, ♭1 and ♭2 do not unify,
then ψ1 and ψ2 can be satisfied independently along different paths, since the bindings can
have different interpretations. Normal models capture this intuition, by keeping track, at
each position, of which bindings are paired with which paths from that position. To this end,
such models are equipped with three functions: a global binding function g that associates
with each position v the set of bindings paired with all the paths through v; a local binding
function l, associating with each position v the set of bindings of the sentences that label v,
i.e. the sentences that must be satisfied starting from v; and a routing map r that, based on
(non)unification of the bindings at v, dispatches them along possibly different paths from v.
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▶ Definition 14 (Normal Model). An interpreted CGS (G,ℑ) satisfying a ∀SL̸⟳ [1g] skeleton
ð is normal if 1) G is a tree and 2) there exist three maps l, g : Ps → 2Bn and r : v ∈ Ps 7→
(τ(v) → muc(g(v))) enjoying the following properties, for all positions v ∈ Ps:
a) r(v) is a bijective map from τ(v) to muc(g(v));
b) l(v) =

{
♭ ∈ Bn

∣∣∣ ∃ϕ≜∀♭ψ ∈ Φ. ℓ(ϕ) ∈ λ(v)
}

;
c) if v = ε then g(v) = l(v) else g(v) = l(v) ∪ r(τ−1(v))(v);
d) ♭ ∈ r((π)i)((π)i+1), for all ♭ ∈ l(v), χ ∈ Asg(v, vr(♭)), and i ∈ N, where π≜ play(♭ℑ(v),χ, v).

For each position v, by Item b, the local binding function l identifies the set of bindings
of those universal sentences ϕ ∈ Φ whose atomic proposition ℓ(ϕ) labels v (note that ϕ holds
at v due to Item 2 of Definition 5); by Item c, the global binding function g extends l with
the bindings of the sentences satisfied at some ancestor of v; finally, by Item a, the routing
map r distributes the bindings collected by g across the successors of v, in such a way that
all bindings forming a maximally unifiable set are routed towards the same successor, while
different unifying sets are routed towards different successors. Observe that, due to Item d,
a path induced by a binding ♭ necessarily passes through one of the successors chosen by r
for ♭ and, vice versa, a successor chosen for ♭ is traversed by at least one path induced by ♭.
Hence, Item d captures the requirement that, at each position, normal models keep track of
which bindings are paired with which paths from that position.

Thanks to Corollary 13 and the notion of behavioural satisfaction, from the strategy
interpretation ℑ(v) =

〈
Str(v), ·ℑ(v)〉 at each position v ∈ Ps of a tree CGS G one can

extract infinitely-many action interpretations Fvρ=
〈

Ac, ·F
v
ρ

〉
, one for each history ρ ∈ Hst(v)

starting at v in G. Specifically, for each function symbol f ∈ Fn of arity k ∈ N, we can set
fF

v
ρ(c⃗)≜ fℑ(v)(σ⃗)(ρ), for all k-tuple of strategies σ⃗ ∈ Str(v)k, where the i-th element (c⃗)i of

c⃗ is equal to the action (σ⃗)i(ρ) chosen by the i-th strategy (σ⃗)i of σ⃗ at ρ. In a sense, the
strategy interpretation ℑ(v) can be viewed as a tree of action interpretations Fvρw, one for
each descendant w of v, where ρw is the history starting in v and leading to w. By exploiting
the connection between strategy and action interpretations and using the fact that, for each
set of bindings B ⊆ Bn(F ), there is always an F -structure F⋆vρ for which every X ⊆ B unifies
iff X equalises over F⋆vρ (see Theorem 2 of [9]), the following result can be obtained.

▶ Theorem 15. For every SL̸⟳ [1g] skeleton ð, it holds that φð is satisfiable iff skm(ð) is
single-time normally satisfiable.

The main result of this section states that every satisfiable SL̸⟳ [1g] sentence has a
bounded-fork model. This can be easily derived from the previous theorem by observing
the following: i) due to the single-time satisfaction property, along any path of the model,
there are at most |Φ| sentences of the form skm(℘♭ψ) that need to be satisfied, since every
atomic proposition ℓ(℘♭ψ) occurs at most once; ii) thanks to the normality property, a fork
at any given position v of a path is only caused by non-unifying bindings, which occur if new
sentences in Φ need to be satisfied at v, as the bindings routed toward v from the ancestors
necessarily unify.

▶ Corollary 16. For every SL ̸⟳ [1g] skeleton ð, it holds that φð is satisfiable iff skm(ð) is
single-time normally satisfied by a k-fork CGS, for k≜max{0, |Φ| − 1}.

5 New Classes of Automata

In this section, we introduce the novel class of bounded-fork tree automata that will be
exploited in Section 6 to devise an efficient satisfiability checking algorithm for the non-
recurrent fragments of SL[1g].
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Bounded-Fork Tree Automata. Bounded-fork automata are a restriction of the standard
tree automata tailored to accept only trees having a bounded number of fork nodes along
each path starting from the root (recall that bounded-fork trees are suitable models for
SL̸⟳ [1g]). If at most k forks in a path are allowed, the ability to count the number of
occurring forks is obtained by partitioning the set of states Q into k + 1 subsets Q0, . . . ,Qk.
Intuitively, a state q ∈ Qi can observe at most i additional forks along a path. Naturally, the
initial states belong to Qk and only states in Q0, from where no more forks are admitted,
can be involved in the Büchi acceptance condition.

▶ Definition 17 (Bounded-Fork Automaton). An NTA A≜ ⟨Σ,Λ,Q, δ, qI ,QF⟩ is k-forking
(k-NTA, for short), for some given k ∈ N, if (i) 1 ∈ Λ and (ii) there is a (k + 1)-partition
(Q0, . . . ,Qk) of Q satisfying the following constraints: (a) qI ∈ Qk; (b) QF ⊆ Q0; (c) for all
indexes i ∈ [0, k], states q ∈ Qi, input symbols σ ∈ Σ, and node degrees d ∈ Λ, if d = 1 then
δ(q, σ, d) ⊆

⋃i
j=0 Qj else δ(q, σ, d) ⊆ (

⋃i−1
j=0 Qj)d.

The motivation for using k-NTAs, instead of standard NTAs, is clearly expressed by
Theorem 18, which establishes a logarithmic space complexity of the emptiness problem w.r.t.
the size of the k-NTA. This contrasts with the PTime hardness bound on the same problem
for classic NTA [42]. To prove the result, we devise a recursive reachability algorithm that
looks for a reachable cycle that includes an accepting state and is completely contained
within the partition Q0 of the k-NTA. The gain in complexity is due to the fact that the
algorithm only needs the space required for backtrack along a path to previous fork states,
whose number is bounded by k. The emptiness problem can also be solved by reduction to
alternating Turing machines, as well as to Büchi games, where the number of turns assigned
to the universal player is limited by k [39].

▶ Theorem 18. The emptiness problem for a k-NTA with n states and transition function
of size m can be solved in Space(k · logn+ log2 n+ logm) and ATime[k-alt](logn+ logm).

Good for Game Automata. One way to solve the satisfiability problem for branching-time
logics is to embed a word automaton W, taking care of the linear constraints on the paths,
within a tree automaton that, at each step, dispatches copies of W, updated according to
the symbol read, along all the possible branching directions [36, 40]. This approach works
pretty nicely for deterministic word automata, but not for general nondeterministic ones, as
the nondeterministic choice at a given instant of time can be solved by exploiting knowledge
about future instants. However, the correctness of the approach can still be recovered
if the requirement on determinism is relaxed slightly, allowing for a “controlled” form of
non-determinism. This leads to the notion of nondeterministic good-for-game automata [27].

Fixed an a priori set of node degrees Λ ⊆ N+, the word-on-tree function wotΛ : NWA →
NTA maps an NWA W = ⟨Σ,Q, δ, qI ,QF⟩ to the NTA wotΛ(W)≜

〈
Σ,Λ,Q, δ̂, qI ,QF

〉
,

whose tree transition function δ̂ is derived from the word transition function δ as follows:
δ̂(q, σ, d)≜

∏d−1
i=0 δ(q, σ), for all states q ∈ Q, input symbols σ ∈ Σ, and node degree d ∈ Λ.

▶ Definition 19 (Good-for-Game Automaton). Let T be a class of Σ-labelled Λ-trees. An
NWA W = ⟨Σ,Q, δ, qI ,QF⟩ is a good-for-game automaton w.r.t. T (T-GFG, for short) if
Trc(T ) ⊆ L(W) implies T ∈ L(wotΛ(W)), where Trc(T ) is the set of Σ-traces of T , for all
trees T ∈ T.
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Intuitively, good-for-game automata only use knowledge of the (non-strict) past to de-
termine the next steps and no information on the future (via forks related to nondeterministic
guesses). This relates to the notion of strategy in the context of games, where strategies are
purely based on histories (i.e., finite traces). In particular, note that the converse direction,
T ∈ L(wotΛ(W)) implies Trc(T ) ⊆ L(W), always holds true.

The next paragraph introduces a class of word automata that are GFG for k-bounded
trees and will allow us to define a satisfiability algorithm for SL ̸⟳ [1g].

Prefix-Deterministic Word Automata. Prefix-deterministic word automata are NWAs
which behave deterministically on arbitrary prefixes of their runs and behave freely, i.e.,
nondeterministically, afterwards. The idea is that such automata can be used to encode
the checks for compliance of all the paths of a tree w.r.t. an LTL property. We shall take
advantage of the prefix-determinism to constrain the nondeterministic choices within the
automaton to occur only after an initial prefix where all the forks already occurred.

▶ Definition 20 (Prefix-Deterministic Automaton). An NWA W = ⟨Σ,Q, δ, qI ,QF⟩ is prefix-
deterministic (PD-NWA, for short) if there is a deterministic transition function δ̃ : Q×Σ →
Q∪{⊥,⊤} with δ̃(q, σ) ∈ δ(q, σ)∪{⊥,⊤}, for all states q ∈ Q and input symbols σ ∈ Σ, such
that, for all infinite words v ·w ∈ Σω, it holds that v ·w ∈ L(W) iff either one of the following
two conditions holds true, where qv ≜ δ̃∗(qI , v): 1) qv = ⊤; 2) qv ̸= ⊥ and w ∈ L(Wv) with
Wv ≜ ⟨Σ,Q, δ, qv,QF⟩.

For every NWA W, we can easily construct a language equivalent PD-NWA, by using
a standard subset construction for the determinisation of the initial behaviours of W and,
then, suitably concatenating it to W itself to complete the behaviours.

▶ Theorem 21. For every NWA W with n states, there exists a PD-NWA D with n+ 2n
states such that L(D) = L(W).

The standard automaton-theoretic construction for LTL [41] can be easily lifted to
PD-NWA as stated by Theorem 22. Notice that, when the WLTL fragment of LTL is
considered, the automaton construction has to deal with a number of formulas which is only
singly-exponential w.r.t. the size of the input formula.

▶ Theorem 22. For every LTL (resp. WLTL) formula ψ, there is a PD-NWA Dψ with
2O(2|ψ|) (resp., O

(
2|ψ|3

)
) states such that L(Dψ) = L(ψ).

The following result ensures that every PD-NWA can be embedded within a bounded-fork
tree automaton, a result that will be leveraged in the next section.

▶ Theorem 23. Every PD-NWA is GFG w.r.t. the class of bounded-fork trees.

6 The Satisfiability Problem

We solve satisfiability for SL ̸⟳ [1g] by reducing it to non-emptiness of a bounded-fork
automaton. Let φ be an arbitrary SL̸⟳ [1g] sentence and, thanks to Proposition 8, ð≜ ⟨ζ,Φ, ℓ⟩
be its a corresponding Skolem skeleton. Corollary 16 tells us that φ is satisfiable iff ð is
single-time normally satisfied by a k-fork CGS, with k≜max{0, |Φ| − 1}. We construct a
k-NTA Nφ recognising all normal models of ð (which are also models of φ). The automaton
is the product Nφ≜Dζ × Dð × NΦ of the following three components: (1) Dζ is a trivial
single-state safety automaton checking whether the labelling of the root satisfies the Boolean
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formula ζ; (2) Dð is a deterministic safety automaton checking that the structure of the input
tree complies with Definition 14; (2) the nondeterministic Büchi automaton NΦ ensures that
all paths identified by the binding ♭ of some sentence ∀♭ψ in Φ satisfy the LTL formula ψ.
We focus on the definitions of Dð and NΦ only, Dζ being obvious.

Before proceeding, we need to fix some notation. Let A ⊆ AP and B ⊆ Bn(F ) be the
sets of all the atomic propositions and bindings occurring in some sentence of the universal
skeleton ð, respectively. The automaton alphabet Σ ⊆ 2A∪B is then the set of all those
symbols σ ⊆ A ∪ B satisfying the following local coherence condition: if ℓ(ϕ) ∈ σ then ♭ ∈ σ,
for all universal sentences ϕ≜∀♭ψ ∈ Φ. The idea is to recognise all normal models whose
labelling is enriched with the bindings of the sentences that are satisfied along some path
through each node, as prescribed by Item b of Definition 14 on the global binding function g.
In particular, the local coherence condition precisely corresponds to the property required on
the local binding function l by Item b of the same definition. Obviously, the branching degree
of the tree is bounded by |muc(B)|, thus, the set of node degrees is Λ≜ [1, |muc(B)|]. Finally,
let us consider an arbitrary function r̂ : X ∈ 2B 7→ ([0, |muc(X)| − 1] → muc(X)) such that,
for each set of bindings X ⊆ B, the associated map f̂ ≜ r̂(X): [0, |muc(X)| − 1] → muc(X) is
bijective. This function is used in the following construction to ensure Item a of Definition 14.

▶ Construction 24 (Structure Automaton). The structure automaton Dð is the safety DTA〈
Σ,Λ, 2B, δ, ∅

〉
whose transition function δ is defined as follows: δ(X, σ, d)≜

∏d−1
i=0 f̂(i), where

f̂ ≜ r̂(σ∩B), if X ⊆ σ and d = |img
(̂

f
)

|, and δ(X, σ, d)≜⊥, otherwise, for any set of bindings
X ⊆ B, input symbol σ ∈ Σ, and node degree d ∈ Λ.

It can be shown that, if we extend any normal model of ð with the binding labelling
dictated by its global binding function, we obtain a tree structure that is accepted by Dð.
Vice versa, every tree accepted by Dð is the backbone of a tree CGS, whose functions l, g,
and r (see Definition 14) can be easily extracted from the labelling. To ensure that this
CGS is actually a normal model, we need to verify that the paths labelled by some binding
♭ satisfy the corresponding sentences in Φ. This is precisely the goal of NΦ.

By Theorem 22, for any SL ̸⟳ [1g] (resp., WSL̸⟳ [1g]) sentence ϕ≜℘♭ψ ∈ Φ, we can always
construct a PD-NWA Dψ with 2O(2|ψ|) (resp., O

(
2|ψ|3

)
) states such that L(Dψ) = L(ψ). By

using a constant number of additional states, we can turn Dψ into a PD-NWA D
ϕ̃

recognising
all models of the LTL (resp., WLTL) formula ϕ̃≜ G (ℓ(ϕ) → ((X G ¬ℓ(ϕ))∧(ψ∨F ¬♭))). This
formula ensures that ψ is verified starting from the unique point where the corresponding
atomic proposition ℓ(ϕ) occurs, provided that binding ♭ is still active. By turning each
PD-NWA D

ϕ̃
into a tree automaton, we obtain the last component of Nφ.

▶ Construction 25 (Sentence Automaton). The sentence automaton NΦ is obtained as the
product

∏
ϕ∈Φ Nϕ of the NTAs wotΛ(D

ϕ̃
) derived from the PD-NWA D

ϕ̃
, for each ϕ ∈ Φ.

While neither Dð nor NΦ taken in isolation is a bounded-fork automaton, their product
does satisfy the property. Indeed, NΦ ensures that, along a path, the labelling ℓ(ϕ) of a
sentence ϕ ∈ Φ occurs at most once and Dð has a transition with more than one successor
at a given node v only if the set of bindings in the labelling of v does not unify. In the
remaining part of this section, by SL̸⟳

k [1g] (resp., WSL̸⟳
k [1g]) we denote the set of those

SL̸⟳ [1g] (resp., WSL ̸⟳ [1g]) sentences containing at most k subsentences.

▶ Theorem 26. The NTA Nφ is k-forking, for every SL ̸⟳
k [1g] sentence φ.
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At this point, it is clear that every tree accepted by Nφ corresponds to a normal model
for the Skolem skeleton ð of φ. Vice versa, the underlying tree structure of a normal model
is accepted by Nφ thanks to the fact that every D

ϕ̃
is a GFG for the class of bounded-fork

tree, as shown in Theorem 23. This leads to the following result.

▶ Theorem 27. For every SL ̸⟳
k [1g] (resp., WSL̸⟳

k [1g]) sentence φ, there is a k-NTA Nφ

of size 2O(2|φ|) (resp., 2|φ|Θ(1)) recognising all and only the normal models of φ itself.

By Theorem 18, we obtain that deciding WSL̸⟳ [1g] is provably easier than deciding
full SL[1g], which is known to be 2ExpTime-complete, while the complexity for SL ̸⟳ [1g]
is lower only if we assume the widely-shared conjecture that ExpSpace ⊂ 2ExpTime.
While PSpace-hardness of WSL̸⟳ [1g] trivially follows from an obvious encoding of standard
modal-logic satisfiability, it is not even known whether SL̸⟳ [1g] is ExpTime-hard.

▶ Theorem 28. SL̸⟳
k [1g] (resp., WSL̸⟳ [1g]) satisfiability problem is AExpTime[k-alt]

(resp., PSpace-complete).

7 Discussion

We have considered efficiently decidable fragments of one-goal SL, called non-recurrent
fragments, where satisfaction requests for a sentence can only be iterated a bounded number
of times along a computation. This is achieved by restricting the first (resp., second) argument
of the until (resp., release) linear temporal operator. Specifically, when these arguments are
limited to pure LTL formulae, we obtain that satisfiability is decidable in AExpTime[k-alt]
(which is known to be included in ExpSpace), where k is the number of subsentences within
the formulae. If, however, those arguments are further restricted to Boolean formulae, a
PSpace-complete result is given. Both the non-recurrent fragments, which are strictly
included in SL[1g], are still able to express non-trivial game-theoretic problems, such as
the automatic synthesis of multi-agent systems, e.g., communication protocols where active
participants perform a bounded number of decisions during each session.

On the technical side, we obtain the complexity bounds by means of two main techniques.
First, by exploiting a quasi-Herbrand property of a first-order characterisation of the sentences
of those fragments, we identify a normal-form for the models of satisfiable sentences, which
only admit a bounded number of branching points along any computation. Second, we
leverage a novel class of automata, called bounded-fork tree automata, that can recognise
normal models and whose language emptiness problem can be checked in LogSpace.

Since SL[1g] strictly includes both ATL* and CTL*, the results immediately applies also
to the corresponding non-recurrent fragments of those logics, where only LTL (resp., Boolean)
formulae can occur in the first (resp., second) argument of an until (resp., release) operator.
In particular, this observation identifies novel fragments for both logics, namely the weak non-
recurrent ones, with a satisfiability problem whose complexity, which is PSpace-complete,
is strictly lower than the one for the full languages, known to be 2ExpTime-complete.
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