Package Delivery Using Drones with Restricted Movement Areas

Thomas Erlebach
Department of Computer Science, Durham University, UK

Kelin Luo
Institute of Computer Science, Universität Bonn, Germany

Frits C.R. Spieksma
Department of Mathematics and Computer Science, Eindhoven University of Technology, The Netherlands

Abstract

For the problem of delivering a package from a source node to a destination node in a graph using a set of drones, we study the setting where the movements of each drone are restricted to a certain subgraph of the given graph. We consider the objectives of minimizing the delivery time (problem DDT) and of minimizing the total energy consumption (problem DDC). For general graphs, we show a strong inapproximability result and a matching approximation algorithm for DDT as well as NP-hardness and a 2-approximation algorithm for DDC. For the special case of a path, we show that DDT is NP-hard if the drones have different speeds. For trees, we give optimal algorithms under the assumption that all drones have the same speed or the same energy consumption rate. The results for trees extend to arbitrary graphs if the subgraph of each drone is isometric.

1 Introduction

Problem settings where multiple drones collaborate to deliver a package from a source location to a target location have received significant attention recently. One motivation for the study of such problems comes from companies considering the possibility of delivering parcels to consumers via drones, e.g., Amazon Prime Air [1]. In previous work in this area [8, 9, 3, 4, 2, 6, 7], the drones are typically modeled as agents that move along the edges of a graph, and the package has to be transported from a source node to a target node in that graph. Optimization objectives that have been considered include minimizing the delivery time, minimizing the energy consumption by the agents, or a combination of the two. A common assumption has been that every agent can travel freely throughout the whole graph [3, 4, 6], possibly with a restriction of each agent’s travel distance due to energy constraints [8, 9, 2, 7]. In this paper, we study for the first time a variation of the problem in which each agent is only allowed to travel in a certain subgraph of the given graph.

We remark that the previously considered problem in which each agent has an energy budget that constrains its total distance traveled [8, 9, 2, 7] is fundamentally different from the problem considered here in which each agent can only travel in a certain subgraph: In
our problem, an agent can still travel an arbitrary distance by moving back and forth many times within its subgraph. Furthermore, the subgraph in which an agent can travel cannot necessarily be defined via a budget constraint. This means that neither hardness results nor algorithmic results translate directly between the two problems.

As motivation for considering agents with movement restrictions, we note that in a realistic setting, the usage of drones may be regulated by licenses that forbid some drones from flying in certain areas. The license of a drone operator may only allow that operator to cover a certain area. Furthermore, densely populated areas may have restrictions on which drones are allowed to operate there. Package delivery with multiple collaborating agents might also involve different types of agents (boats, cars, flying drones, etc.), where it is natural to consider the case that each agent can traverse only a certain part of the graph: For example, a boat can only traverse edges that represent waterways.

In our setting, we are given an undirected graph $G = (V,E)$ with a source node s and a target node y of the package as well as a set of k agents. The subgraph in which an agent a is allowed to operate is denoted by $G_a = (V_a,E_a)$. Each agent can pick up the package at its source location or from another drone, and it can deliver the package to the target location or hand it to another drone. We consider the objective of minimizing the delivery time, i.e., the time when the package reaches y, as well as the objective of minimizing the total energy consumption of the drones. We only consider the problem for a single package.

Related work. Collaborative delivery of a package from a source node s to a target node y with the goal of minimizing the delivery time was considered by Bärtschi et al. [4]. For k agents in a graph with n nodes and m edges, they showed that the problem can be solved in $O(k^2m + kn^2 + \text{APSP})$ time for a single package, where APSP is the time for computing all-pairs shortest paths in a graph with n nodes and m edges. Carvalho et al. [6] improved the time complexity for the problem to $O(kn \log n + km)$ and showed that the problem is NP-hard if two packages must be delivered.

For minimizing the energy consumption for the delivery of a package, Bärtschi et al. [3] gave a polynomial algorithm for one package and showed that the problem is NP-hard for several packages.

The combined optimization of delivery time T and energy consumption E for the collaborative delivery of a single package has also been considered. Lexicographically minimizing (E, T) can be done in polynomial time [5], but lexicographically minimizing (T, E) or minimizing any linear combination of T and E is NP-hard [4].

Delivering a package using k energy-constrained agents has been shown to be strongly NP-hard in general graphs [8] and weakly NP-hard on a path [9]. Bärtschi et al. [2] showed that the variant where each agent must return to its initial location can be solved in polynomial time for tree networks. The variant in which the package must travel via a fixed path in a general graph has been studied by Chalopin et al. [7].

Our results. In Section 2, we introduce definitions and give some auxiliary results. In Section 3, we show that movement restrictions make the drone delivery problem harder for both objectives: For minimizing the delivery time, we show that the problem is NP-hard to approximate within ratio $O(n^{1-\epsilon})$ or $O(k^{1-\epsilon})$. For minimizing the energy consumption, we show NP-hardness. These results hold even if all agents have the same speed and the same energy consumption rate.

In Section 4, we propose an $O(\min\{n,k\})$-approximation algorithm for the problem of minimizing the delivery time. The algorithm first computes a schedule with minimum delivery time for the problem variant where an arbitrary number of copies of each agent is available.
Then it transforms the schedule into one that is feasible for the problem with a single copy of each agent. The algorithm can also handle handovers on edges. In Section 5, we give a 2-approximation algorithm for the problem of minimizing the total energy consumption. We again first compute an optimal schedule that may use several copies of each agent and then transform the schedule into one with a single copy of each agent.

In Section 6, we first consider the special case where the graph is a path (line) and the subgraph of each agent is a subpath. For this case, we show that the problem of minimizing the delivery time is NP-hard if the agents have different speeds. If the agents have the same speed or the same energy consumption rate, we show that the problem of minimizing the delivery time and the problem of minimizing the total energy consumption are both polynomial-time solvable even for the more general case when the graph is a tree, or when the graph is arbitrary but the subgraph of every agent is isometric (defined in Section 6). Conclusions are presented in Section 7. Proofs omitted due to space restrictions can be found in the full version [11].

2 Preliminaries

We now define the drone delivery (DD) problem formally. We are given a connected graph $G = (V, E)$ with edge lengths $\ell : E \to \mathbb{R}_{\geq 0}$, where $\ell(u, v)$ represents the distance between u and v along edge $\{u, v\}$. (We sometimes write $G = (V, E, \ell)$ to include an explicit reference to ℓ.) Let $n = |V|$ and $m = |E|$. We are also given a set A containing $k \geq 1$ mobile agents (representing drones). Each agent $a \in A$ is specified by $a = (p_a, v_a, w_a, V_a, E_a)$, where $p_a \in V$ is the agent’s initial position, and $v_a > 0$ and $w_a \geq 0$ are the agent’s velocity (or speed) and energy consumption rate, respectively. To traverse a path of length x, agent a takes time x/v_a and consumes $x \cdot w_a$ units of energy. Furthermore, $V_a \subseteq V$ and $E_a \subseteq E$ are the node-range and edge-range of agent a, respectively. Agent a can only travel to/via nodes in V_a and edges in E_a. We require $p_a \in V_a$. To ensure meaningful solutions, we make the following two natural assumptions:

- For each agent a, the graph $G_a = (V_a, E_a)$ is a connected subgraph of G.
- The union of the subgraphs G_a over all agents is the graph G, i.e., $\bigcup_{a \in A} V_a = V$ and $\bigcup_{a \in A} E_a = E$. This implies that there is a feasible schedule for any package (s, y).

The package is specified by (s, y), where $s, y \in V$ are the start node (start location) and destination node (target location), respectively. The task is to find a schedule for delivering the package from the start node to the destination node while achieving a specific objective. The problem of minimizing the delivery time is denoted by DDT, and the problem of minimizing the consumption by DDC.

To describe solutions of the problems, we need to define how a schedule can be represented. A schedule is given as a list of trips $S = \{S_1, S_2, \ldots, S_h\}$:

$$\{(a_1, t_1, (\langle a_1, \ldots, u_0 \rangle, \langle u_0, \ldots, u_1 \rangle), \ldots, (a_h, t_h, (\langle a_h, \ldots, u_{h-1} \rangle, \langle u_{h-1}, \ldots, u_h \rangle))\}$$

The i-th trip $S_i = (a_i, t_i, (\langle a_i, \ldots, u_{i-1} \rangle, \langle u_{i-1}, \ldots, u_i \rangle)$ represents two consecutive trips taken by agent a_i starting at time $t_i \geq 0$: an empty movement trip traversing nodes $O_i = \langle a_i, \ldots, u_{i-1} \rangle$, and a delivery trip (during which a_i carries the package) of traversing nodes $U_i = \langle u_{i-1}, \ldots, u_i \rangle$. The agent a_i picks up the package at node u_{i-1} and drops it off at node u_i. With slight abuse of notation, we also use O_i and U_i to denote the set of edges in each of these two trips. If S_i is the first trip of agent a_i, then a_i is the agent’s initial location. Otherwise, a_i is the location where the agent dropped off the package at the end of its previous trip. Initially, each agent $a \in A$ is at node p_a at time 0. In the definition of
schedules, when we allow two agents to meet on an edge to hand over the package, we allow the nodes also to be points on edges: For example, a node u_i could be the point on an edge $\{u, v\}$ with length 5 that is at distance 2 from u (and hence at distance 3 from v).

Let $T(u_i)$ (resp. $C(u_i)$) denote the time passed (resp. the energy consumed) until the package is delivered to node u_i in schedule S, i.e.,

$$T(u_i) = \max \left\{ T(u_{i-1}), t_i + \sum_{e \in O_i} \frac{\ell(e)}{v_{a_i}} \right\} + \sum_{e \in U_i} \frac{\ell(e)}{v_{a_i}},$$

$$C(u_i) = C(u_{i-1}) + w_{a_i} \cdot \sum_{e \in O_i} \ell(e) + w_{a_i} \cdot \sum_{e \in U_i} \ell(e).$$

The pick-up location of the first agent must be the start node, i.e., $u_0 = s$, and the drop-off location of the last agent must be the destination node, $u_h = y$. We let $T(u_0) = 0$ and $C(u_0) = 0$. The goal of the DDT problem is to find a feasible schedule S that minimizes the delivery time $T(y)$, and the goal of the DDC problem is to find a feasible schedule S that minimizes the energy consumption $C(y)$.

So far, we have defined the DDT and DDC problem. As in previous studies [6], we further distinguish variants of these problems based on the handover manner.

Handover manner. The handover of the package between two agents may occur at a node or at some interior point of an edge. When the handovers are restricted to be on nodes, we say the drone delivery problem is handled with node handovers, and when the handover can be done on a node or at an interior point of an edge, we say that the drone delivery problem is handled with edge handovers. We use the subscripts N and E to represent node handovers and edge handovers, respectively. Thus, we get four variants of the drone delivery problem: DDT$_N$, DDT$_E$, DDC$_N$ and DDC$_E$.

With or without initial positions. We additionally consider problem variants in which the initial positions of the agents are not fixed (given), which means that the initial positions p_a for $a \in A$ can be chosen by the algorithm. When the initial positions are fixed, we say that the problem is with initial positions, and when the initial positions are not fixed, we say that the problem is without initial positions. When we do not specify that a problem is without initial positions, we always refer to the problem with initial positions by default.

In the rest of the paper, in order to simplify notation, the i-th trip in a schedule S is usually written in simplified form as (a_i, u_{i-1}, u_i), where a_i is the agent, u_{i-1} is the pick-up location of the package, and u_i is the drop-off location of the package. We can omit the agent’s empty movement trip (including its previous position) and its start time because the agent a_i always takes the path in $G_{a_i} = (V_{a_i}, E_{a_i})$ with minimum cost (travel time or energy consumption) from its previous position to the current pick-up location u_{i-1} and then from u_{i-1} to u_i.

For each node $v \in V$, we use $A(v)$ to denote the set of agents that can visit the node v; and for every edge $\{u, v\}$ in E, we use $A(u, v)$ to denote the set of agents that can traverse the edge $\{u, v\}$. For any pair of nodes $u, v \in V_a$ for some $a \in A$, we denote by $\text{dist}_{a}(u, v)$ the length of the shortest path between node u and v in the graph $G_a = (V_a, E_a)$.

Useful properties. We show some basic properties for the drone delivery problem. The following lemma can be shown by an exchange argument: If an agent was involved in the package delivery at least twice, letting that agent keep the package from its first involvement to its last involvement does not increase the delivery time nor the energy consumption.
Lemma 1. For every instance of DDT_N, DDT_E, DDC_N and DDC_E (with or without initial positions), there is an optimal solution in which each of the involved agents picks up and drops off the package exactly once.

For DDC, we can show that handovers at interior points of edges cannot reduce the energy consumption. If two agents carry the package consecutively over parts of the same edge, letting one of the two agents carry the package over those parts can be shown not to increase the energy consumption.

Lemma 2. For any instance of DDC_N and DDC_E (with or without initial positions), there is a solution that is simultaneously optimal for both problems. In other words, there is an optimal solution for DDC_E in which all handovers of the package take place at nodes of the graph.

For the case that $G_a = G$ for all $a \in A$, it has been observed in previous work \cite{4, 6} that there is an optimal schedule for DDT_N and DDT_E in which the velocities of the involved agents are strictly increasing, and an optimal schedule for DDC_N and DDC_E in which the consumption rates of the involved agents are strictly decreasing. We remark that this very useful property does not necessarily hold in our setting with agent movement restrictions. This is the main reason why the problem becomes harder, as shown by our hardness results in Section 3 and, even for path networks, in Section 6.

3 Hardness results

In this section, we prove several hardness results for DDT and DDC via reductions from the NP-complete 3-dimensional matching problem ($3DM$) \cite{12}. All of them apply to the case where all agents have the same speed and the same energy consumption rate. We first present the construction of a base instance of DDT, which we then adapt to obtain the hardness results for DDT and DDC. The instances that we create have the property that every edge e of the graph is only in the set E_a of a single agent a. Therefore, handovers on edges are not possible for these instances, and so the variants of the problems with node handovers and with edge handovers are equivalent for these instances. Hence, we only need to consider the problem variant with node handovers in the proofs.

The problem $3DM$ is defined as follows: Given are three sets X, Y, Z, each of size n, and a set $F \subseteq X \times Y \times Z$ consisting of m triples. Each triple in F is of the form (x, y, z) with $x \in X$, $y \in Y$, and $z \in Z$. The question is: Is there a set of n triples in F such that each element of $X \cup Y \cup Z$ is contained in exactly one of these n triples?

Let an instance of $3DM$ be given by X, Y, Z and F. Assume $X = \{x_1, x_2, \ldots, x_n\}$, $Y = \{y_1, y_2, \ldots, y_n\}$ and $Z = \{z_1, z_2, \ldots, z_n\}$. Number the triples in F from 1 to $m = |F|$ arbitrarily, and let the j-th triple be $t_j = (x_{f(j)}, y_{g(j)}, z_{h(j)})$ for suitable functions $f, g, h : [m] \to [n]$. We create from this a base instance I of DDT_N that consists of n selection gadgets and $3n$ agent gadgets. Carrying the package through a selection gadget corresponds to selecting one of the m triples of F. The n selection gadgets are placed consecutively, so that the package travels through all of them (unless it makes a detour that increases the delivery time). For each element q of $X \cup Y \cup Z$, there is an agent gadget containing the start position of a unique agent. The agent gadget for element q ensures that the agent can carry the package on the edge corresponding to element q on a path through a selection gadget if and only if that path corresponds to a triple that contains q. If the instance of $3DM$ is a yes instance, then each of the agents from the agent gadgets only needs to transport
We could set the lengths of these edges to a small ε > 0 if we wanted to avoid edges of length 0.
The agent located at x_i has node range \(\{x_i, v^i_{j,x}, v^i_{j,y} \mid i' \in [n], j \in [m], f(j) = i\} \) and edge range \(\{\{x_i, v^i_{j,x}\}, \{v^i_{j,x}, v^i_{j,y}\} \mid i' \in [n], j \in [m], f(j) = i\} \).

The agent located at y_i has node range \(\{y_i, v^{i,y}_{j}, v^{i,x}_{j} \mid i' \in [n], j \in [m], g(j) = i\} \) and edge range \(\{\{y_i, v^{i,y}_{j}\}, \{v^{i,y}_{j}, v^{i,x}_{j}\} \mid i' \in [n], j \in [m], g(j) = i\} \).

The agent located at z_i has node range \(\{z_i, v^{i,z}_{j}, s_{i+1} \mid i' \in [n], j \in [m], h(j) = i\} \) and edge range \(\{\{z_i, v^{i,z}_{j}\}, \{v^{i,z}_{j}, s_{i+1}\} \mid i' \in [n], j \in [m], h(j) = i\} \).

The agent located at s_i has node range \(\{s_i, v^{i,x}_{j} \mid j \in [m]\} \) and edge range \(\{\{s_i, v^{i,x}_{j}\} \mid j \in [m]\} \).

We now show that the given instance of 3DM is a yes-instance if and only if the constructed base instance of $\mathcal{D}T_N$ has an optimal schedule with delivery time M. First, assume that the given instance of 3DM is a yes-instance, and let \(\{t_{k_1}, t_{k_2}, \ldots, t_{k_n}\} \subseteq \mathcal{F} \) be a perfect matching. We let the package travel from s_1 to s_{n+1} via the n selection gadgets, using the path via nodes $v^{i_1,x}_{k_1}, v^{i_1,y}_{k_1}, v^{i_1,z}_{k_1}$ in selection gadget i, for $i \in [n]$. This path consists of $4n$ edges. Each of the $4n$ agents needs to carry the package on exactly one edge of this path. All the element agents reach the node where they pick up the package at time M. As all edges in the selection gadgets have length 0, this shows that the package reaches s_{n+1} at time M. It is clear that this solution is optimal because at least one element agent must take part in the delivery and cannot pick up the package before time M.

Now, assume that the base instance of $\mathcal{D}T_N$ admits a schedule with delivery time M. It is not hard to see that the schedule must be of the above format, using each agent on exactly one edge in one selection gadget. This is because it takes time $2M$ for an element agent to move from one selection gadget to another one via its initial location.

This shows that there is a schedule with delivery time M if and only if the given instance of 3DM is a yes-instance. Furthermore, as any element agent needs time M to reach a pick-up point in a selection gadget and time $2M$ to move to a different selection gadget (with or without the package), it is clear that the optimal schedule will have length at least $3M$ if the given instance of 3DM is a no-instance. This already shows that $\mathcal{D}T_N$ is NP-hard and does not admit a polynomial-time approximation algorithm with approximation ratio smaller than 3 unless $P = \mathcal{NP}$, but we can strengthen the inapproximability result by concatenating $q = (4n + 3mn)^c$ copies of the base instance (identifying node s_{n+1} of one copy with node s_1 of the next copy) for an arbitrarily large constant c and letting the package be transported from s_1 in the first copy to s_{n+1} in the last copy. If the given instance of 3DM is a yes-instance, the delivery time is still M, but if it is a no-instance, it is $M + 2Mq = M(2q + 1)$.

Theorem 3. For any constant $\epsilon > 0$, it is NP-hard to approximate $\mathcal{D}T_N$ (or $\mathcal{D}T_E$) within a factor of $O(\min\{n^{1-\epsilon}, k^{1-\epsilon}\})$ even if all agents have the same speed.

To show NP-hardness for DDC, we adapt the base instance by numbering the columns of the selection gadgets to which outer edges are attached from 1 to $3n$ (from left to right) and letting the outer edges attached to column i have length 2^{3n+1-i}. If the given instance of 3DM is a yes-instance, exactly one outer edge attached to each column will be used, for a total energy consumption of $2^{3n+1} - 2$. Otherwise, some column will be the first column in which an outer edge is used twice, and the total energy consumption will be at least 2^{3n+1}.

Theorem 4. The problems $\mathcal{D}DC_N$ (and $\mathcal{D}DC_E$) are NP-hard even if all agents have the same energy consumption.

Finally, for the problem variants without initial positions, we observe that the base instance admits a delivery schedule with delivery time 0 and energy consumption 0 if and only if the given instance of 3DM is a yes-instance. This shows that there cannot be any
polyomial-time approximation algorithm for any of the DDT and DDC problem variants without initial positions. This holds since we allow zero-length edges. If we were to require strictly positive edge lengths, it would be possible to obtain approximation algorithms with ratios that depend on the ratio of maximum to minimum edge length.

4 Approximation algorithm for the DDT problem

We first present an optimal algorithm for DDT_N under the assumption that there are as many copies of each agent as we need. We start by introducing some notation used in the algorithm. For any edge $\{u,v\} \in E_a$ for some $a \in A$, we denote by $eT_a(v,u \prec v)$ the earliest time for the package to arrive at v if the package is carried over the edge $\{u,v\}$ by a copy of agent a. In addition, we use $eT(v,u \prec v)$ to denote the earliest time for the package to arrive at node v if the package is carried over the edge $\{u,v\}$ by some agent, i.e., $eT(v,u \prec v) = \min \{eT_a(v,u \prec v) \mid \{u,v\} \in E_a, a \in A\}$. For every $v \in V$, we use $eT(v)$ to denote the earliest arrival time for the package at node v, i.e., $eT(v) = \min \{eT(v,u \prec v) \mid \{u,v\} \in E\}$. Note that the package is initially at location s at time 0, i.e., $eT(s) = 0$. Given a node v, we denote by $S(v)$ the schedule for carrying the package from s to v, i.e., $S(v) = \{(a_1,s,u_1),(a_2,u_1,u_2),\ldots,(a_h,u_{h-1},v)\}$.

Our algorithm adapts the approach of a time-dependent Dijkstra’s algorithm [4, 6]. Algorithm 1 shows the pseudo-code. For each node $v \in V$, we maintain a value $eT(v)$ that represents the current upper bound on the earliest time when the package can reach v (line 3–4). Initially, we set the earliest arrival time for s to 0 and for all other nodes to ∞. We maintain a priority queue Q of nodes v with finite $eT(v)$ value that have not been processed yet (line 8). In each iteration of the while-loop, we process a node u in Q having the earliest arrival time (line 10), where $u = s$ in the first iteration. For each unprocessed neighbor node v of u, we calculate the earliest arrival time $eT(v,u \prec v)$ at node v if the package is carried over the edge between u and v by some agent (and we store the identity of that agent in $L(v,u \prec v)$), by calling the subroutine $\text{NeiDelivery}(u,v,t)$ (Algorithm 2). If this earliest arrival time is smaller than $eT(v)$, then $eT(v)$ is updated and v is inserted into Q (if it is not yet in Q) or its priority reduced to the new value of $eT(v)$. The algorithm terminates and returns the value $eT(y)$ when the node being processed is y (line 12). The schedule $S = S(y)$ can be constructed in a backward manner because we store for each node v the involved agent $L(v)$ and its predecessor node $\text{prev}(v)$ (line 20 and 21).

To compute $eT(v,u \prec v)$ in line 17 of Algorithm 1, we call $\text{NeiDelivery}(u,v,t)$ (Algorithm 2): That subroutine calculates for each agent $a \in A$ with $\{u,v\} \in E_a$, i.e., for all $a \in A(u,v)$, the time when the package reaches v if that agent picks it up at u and carries it over $\{u,v\}$ to v. The earliest arrival time at v via the edge $\{u,v\}$ is returned as $eT(v,u \prec v)$, and the agent a^* achieving that arrival time is returned as $L(v,u \prec v)$.

Lemma 5. The following statements hold for the schedule found by Algorithm 1.

(i) It may happen that an agent picks up and drops off the package more than once. Each time an agent a carries the package over a path of consecutive edges, a copy of the agent starts at p_a, travels to the start node u of the path, picks up the package at time $\max\{eT(u), \frac{\text{dist}(p_a,u)}{v_a}\}$, and then carries the package over the edges of the path.

(ii) The package is carried to each node $v \in V$ at most once, and thus the schedule carries the package over at most $|V| - 1$ edges.

Lemma 6. There is an algorithm that computes an optimal schedule in time $O(k(m + n \log n))$ for DDT_N under the assumption that an arbitrary number of copies of each agent can be used. The package gets delivered from s to y along a simple path with at most $|V| - 1$ edges.
Algorithm 1 Algorithm for DDT.

Data: Graph $G = (V, E, t)$; package source node s and target node y; agent a with velocity v_a and initial location p_a for $a \in A$

Result: earliest arrival time for package at target location y, i.e., $eT(y)$

begin
 1. compute $\text{dist}_a(p_a, v)$ for $a \in A$ and $v \in V_a$
 2. $eT(s) \leftarrow 0$
 3. $eT(v) \leftarrow \infty$ for all $v \in V \setminus \{s\}$
 4. $L(v) \leftarrow \emptyset$ for all $v \in V$ // agent bringing the package to v
 5. $\text{proc}(v) \leftarrow 0$ for all $v \in V$ // all nodes v are unprocessed
 6. $\text{prev}(v) \leftarrow \emptyset$ for all $v \in V$ // previous node on optimal package path to v
 7. $Q \leftarrow \{s\}$ // priority queue of pending nodes
while $Q \neq \emptyset$ do
 8. $u \leftarrow \arg \min \{eT(v) \mid v \in Q\}$ // node with minimum arrival time in Q
 9. $Q \leftarrow Q \setminus \{u\}$ and $\text{proc}(u) \leftarrow 1$
 10. if $u = y$ then
 break
 11. $t \leftarrow eT(u)$ // arrival time when package reaches u
for neighbors v of u with $\text{proc}(v) = 0$ and $A(u, v) \neq 0$ do
 12. \{$eT(v, u \prec v), L(v, u \prec v)\} \leftarrow \text{NeiDelivery}(u, v, t)$
 13. if $eT(v, u \prec v) < eT(v)$ then
 $eT(v) \leftarrow eT(v, u \prec v)$
 $L(v) \leftarrow L(v, u \prec v)$
 $\text{prev}(v) \leftarrow \{u\}$
 if $v \notin Q$ then
 $Q \leftarrow Q \cup \{v\}$ with earliest arrival time $eT(v)$
 end
 14. end
end
 15. return $eT(y)$
end

Proof. We claim that the arrival time $eT(u)$ for each node u is minimum by the time u gets processed. Obviously, the first processed node s has arrival time $eT(s) = 0$. Whenever a node u is processed, the earliest arrival time for each unprocessed neighbor is updated (line 19 of Algorithm 1) if the package can reach that neighbor earlier via node u (line 4 in Algorithm 2 identifies the agent a^* that can bring the package from u to the neighbor the fastest). At the time when a node u is removed from the priority queue Q and starts to be processed, all nodes v with $eT(v) < eT(u)$ have already been processed, and so its value $eT(u)$ must be equal to the earliest time when the package can reach u. The algorithm terminates when y is removed from Q.

In lines 19–21 of Algorithm 1, we update the arrival time $eT(v)$ and the agent $L(v)$ as well as the predecessor node $\text{prev}(v)$ without explicitly maintaining the schedules $S(v)$. The schedule $S(v)$ can be retraced from $L(\cdot)$ and $\text{prev}(\cdot)$ since the schedule found for $eT(v)$ visits each node in V at most once, cf. Lemma 5. This also shows that the package gets delivered from s to y along a simple path (with at most $|V| - 1$ edges) in G.
Algorithm 2 Algorithm NeiDelivery(u, v, t) for DDT_N.

Data: Edge \{u, v\}, arrival time for node u eT(u) = t, agents A(u, v)

Result: eT(v, u ∼ v)

1 for a ∈ A(u, v) do
2 \(eT_a(v, u ∼ v) = \max\{t, \frac{dist_a(p_a, u)}{v_a}\} + \ell(u, v) \)
3 end
4 \(a^* = \arg\min\{eT_a(v, u ∼ v) \mid a \in A(u, v)\} \)
5 eT(v, u ∼ v) ← eT_a(v, u ∼ v)
6 L(v, u ∼ v) ← a^*
7 return eT(v, u ∼ v) and L(v, u ∼ v)

We can analyze the running-time of Algorithm 1 as follows. The distances dist_a(p_a, v) can be pre-computed by running Dijkstra’s algorithm with Fibonacci heaps in time \(O(m + n \log n) \) [10] for each agent a with source node p_a in the graph G_a, taking total time \(O(k(m + n \log n)) \) (line 2). Selecting and removing a minimum element from the priority queue Q in lines 10–11 takes time \(O(\log n) \). At most n nodes will be added into Q (and later removed from Q), so the running time for inserting and removing elements from Q is \(O(n \log n) \). For each processed node u, we compute the value eT(v, u ∼ v) for each unprocessed adjacent node v with A(u, v) ≠ ∅ in time \(O(|A(u, v)|) \). Overall we get a running time of \(O(k(m + n \log n) + n \log n + km) = O(k(m + n \log n)) \).

Next, we can show how to convert the delivery schedule \(S \) with delivery time \(T \) produced by the algorithm of Lemma 6 into a schedule that is feasible with a single copy per agent, and we bound the resulting increase in the delivery time \(T \) to obtain an approximation algorithm for DDT_N. The conversion consists of the repeated application of modification steps. Each step considers the first agent a that is used at least twice. Let a pick up the package at \(u_{i-1} \) in its first trip and carry it from \(u_{j-1} \) to \(u_j \) in its last trip. We then modify the schedule so that a picks up the package at \(u_{i-1} \) and carries it all the way to \(u_j \) along a shortest path in \(G_a \). We have \(\frac{\Delta}{v_a} \text{dist}_a(p_a, u_{i-1}) \leq T \) and \(\frac{\Delta}{v_a} (\text{dist}_a(p_a, u_{j-1}) + \text{dist}_a(u_{j-1}, u_j)) \leq T \). By the triangle inequality, \(\text{dist}_a(u_{i-1}, u_j) \leq \text{dist}_a(u_{i-1}, p_a) + \text{dist}_a(p_a, u_{j-1}) + \text{dist}_a(u_{j-1}, u_j) \). Hence, agent a needs time at most \(2T \) to carry the package from \(u_{i-1} \) to \(u_j \), and so the delivery time increases by at most \(2T \). Furthermore, we can bound the number of modification steps by \(\min\{\frac{n-1}{3}, k-1\} \).

Theorem 7. There is a \(\min\{2n/3 + 1/3, 2k - 1\} \)-approximation algorithm for DDT_N.

To adapt the approach from DDT_N to DDT_E, we can adapt the algorithm of Lemma 6 to edge handovers by using as a subroutine the FastLineDelivery(u, v, t) method from [6], which calculates in \(O(k \log k) \) time an optimal delivery schedule using the agents in A(u, v) to transport the package that arrives at u at time t from u to v over the edge \{u, v\}. When transforming the resulting package delivery schedule into one that uses each agent at most once, the number of modification steps can be bounded by \(\min\{n - 1, k - 1\} \).

Theorem 8. There is a \(\min\{2n - 1, 2k - 1\} \)-approximation algorithm for DDT_E.

5 Approximation algorithm for the DDC problem

By Lemma 2, handovers on interior points of edges are not needed for DDC, so the results for DDC_N that we present in this section automatically apply to DDC_E as well. Therefore, we only consider DDC_N in the proofs. We first give an algorithm that solves DDC_N optimally if there is a sufficient number of copies of every agent.
Let an instance of DDC\textsubscript{N} be given by a graph \(G = (V, E, \ell) \), package start node \(s \) and destination node \(y \), and a set \(A \) of \(k \) agents where \(a = (p_a, v_a, w_a, V_a, E_a) \) for \(a \in A \). We create a directed graph \(G' \) in which a shortest path from \(s' \) to \(y' \) corresponds to an optimal delivery schedule. This approach is motivated by a method used by Bärtchi et al. [3]. We construct the directed edge-weighted graph \(G' = (V', E', \ell') \) as follows:

- For each node \(u \in V \) and each agent \(a \in A \) with \(u \in V_a \), create a node \(u_a \) in \(V' \). In addition, add a node \(s' \) and a node \(y' \).
- For all \(a \in A \) with \(s \in V_a \), add an arc \((s', s_a)\) with \(\ell'(s', s_a) = w_a \cdot \text{dist}_a(p_a, s) \). For all \(a \in A \) with \(y \in V_a \), add an arc \((y_a, y')\) with \(\ell'(y_a, y') = 0 \).
- For \(\{u, x\} \in E \), for each \(a \) with \(\{u, x\} \in E_a \), create two arcs \((u_a, x_a)\) and \((x_a, u_a)\) with \(\ell'(x_a, u_a) = \ell'(u_a, x) = w_a \cdot \ell(u, x) \).
- For \(u \in V \) and agents \(a, \bar{a} \in A(u) \), create the following two arcs: \((u_a, u_{\bar{a}})\) with \(\ell'(u_a, u_{\bar{a}}) = w_{\bar{a}} \cdot \text{dist}_a(p_{\bar{a}}, u) \), and \((u_{\bar{a}}, u_a)\) with \(\ell'(u_{\bar{a}}, u_a) = w_a \cdot \text{dist}_a(p_a, u) \).

Intuitively, a node \(u_a \) in \(G' \) represents the agent \(a \) carrying the package at node \(u \) in \(G \). An arc \((u_a, x_a)\) represents the agent \(a \) carrying the package over edge \(\{u, x\} \) from \(u \) to \(x \). An arc \((u_{\bar{a}}, u_a)\) represents a copy of agent \(\bar{a} \) traveling from \(p_{\bar{a}} \) to \(u \) and taking over the package from agent \(a \) there. We can show that a shortest \(s' \)-\(y' \) path in \(G' \) corresponds to an optimal schedule with multiple copies per agent.

\textbf{Lemma 9.} An optimal schedule for DDC\textsubscript{N} (and DDC\textsubscript{E}) can be computed in time \(O(nk^2 + n^2k) \) under the assumption that an arbitrary number of copies of each agent can be used.

\textbf{Proof.} We claim that a shortest \(s' \)-\(y' \) path in \(G' \) corresponds to an optimal delivery schedule. First, assume that an optimal delivery schedule \(S \) is

\[\{(a_1, s, u_1), (a_2, u_1, u_2), \ldots, (a_h, u_{h-1}, y)\}, \]

where it is possible that \(a_i = a_j \) for \(j > i + 1 \) because we allow copies of agents to be used. Then we can construct an \(s' \)-\(y' \) path in \(G' \) whose length equals the total energy consumption of \(S \) as follows: Start with the arc \((s', s_{a_1})\). Then use the arcs \((s_{a_1}, z_{a_1}^{(1)}), \ldots, (z_{a_1}^{(g)}, u_1)\) (for some \(g \geq 0 \)) along which agent \(a_1 \) carries the package from \(s \) to \(u_1 \) in \(S \). Next, use the arc \((u_{a_1}, u_{1a_1})\) representing the handover from \(a_1 \) to \(a_2 \) at \(u_1 \). Continue in this way until node \(y_{a_1} \) is reached, and then follow the arc from there to \(y' \). Similarly, any \(s' \)-\(y' \) path \(P \) in \(G' \) can be translated into a delivery schedule in \(G \) whose total energy consumption is equal to the length of \(P \) in \(G' \).

Finally, let us consider the running-time of the algorithm. First, we compute \(\text{dist}_a(p_a, v) \) for each agent \(a \) and each node \(v \in V \) by running Dijkstra’s algorithm with Fibonacci heaps [10] once in \(G_a \) with source node \(p_a \) for each \(a \in A \), taking time \(O(k(n \log n + n)) = O(kn^2) \). The graph \(G' \) has at most \(n \cdot k + 2 \) vertices and at most \(2k + n^2 \cdot k + n \cdot k^2 \) in \(O(nk^2 + n^2k) \) arcs. It can be constructed in \(O(nk^2 + n^2k) \) time as we have pre-computed the values \(\text{dist}_a(p_a, v) \). We can compute the shortest \(s' \)-\(y' \) path in \(G' \) in time \(O(nk^2 + n^2k + nk \log(nk)) = O(nk^2 + n^2k) \) time using Dijkstra’s algorithm.

\textbf{Theorem 10.} There is a 2-approximation algorithm for DDC\textsubscript{N} (and DDC\textsubscript{E}).

\textbf{Proof.} Let an instance of DDC\textsubscript{N} be given by a graph \(G = (V, E, \ell) \), package start node \(s \) and destination node \(y \), and a set \(A \) of \(k \) agents where \(a = (p_a, v_a, w_a, V_a, E_a) \) for \(a \in A \). Compute an optimal delivery schedule that may use multiple copies of agents using the algorithm of Lemma 9. Then we transform the schedule into one that uses each agent at most once as follows: Let \(a \) be the first agent that is used more than once in the delivery schedule.
Assume that \(a \) carries the package from node \(u \) to node \(v \) during its first involvement in the delivery and from node \(u' \) to node \(v' \) during its last involvement in the delivery. The energy consumed by these two copies of agent \(a \) is:

\[
W_a = w_a(\text{dist}_a(p_a, u) + \text{dist}_a(u, v) + \text{dist}_a(p_a, u') + \text{dist}_a(u', v'))
\]

We modify the schedule and let agent \(a \) pick up the package at \(u \) and carry it along a shortest path in \(G_a \) from \(u \) to \(u' \). The trips in the original schedule that bring the package from \(v \) to \(v' \) are removed. The new energy consumption by agent \(a \) is \(w_a(\text{dist}_a(p_a, u) + \text{dist}_a(u, v')) \). By the triangle inequality, \(\text{dist}_a(u, v') \leq \text{dist}_a(u, p_a) + \text{dist}_a(p_a, u') + \text{dist}_a(u', v') \). Hence, the new energy consumption is bounded by \(2W_a \). As long as there is an agent that is used more than once, we apply the same modification step to the first such agent. The procedure terminates after at most \(k - 1 \) modification steps. During the execution of the procedure, the energy consumption of every agent at most doubles. Therefore, the total energy consumption of the resulting schedule for \(DDC_N \) with a single copy of each agent is at most twice the total energy consumption of \(S \), which is a lower bound on the optimal energy consumption.

The algorithm of Lemma 9 takes \(O(nk^2 + n^2k) \) time, which dominates the time needed to carry out the modification steps. Thus, the overall running time is \(O(nk^2 + n^2k) \). ▶

6 Drone delivery on path and tree networks

In Section 6.1, we present hardness results for the drone delivery problems if the graph is a path. In Section 6.2, we show that the problems can be solved optimally in polynomial time for trees (and even for arbitrary graphs if the subgraphs of the agents satisfy a certain condition) provided that all agents have the same speed or the same energy consumption rate.

6.1 Hardness of DDT on the path

Theorem 11. \(DDT_N \) and \(DDT_E \) with initial positions are NP-complete if the given graph is a path.

Proof. We give a reduction from the NP-complete Even-Odd Partition (EOP) problem [12] that is defined as follows: Given a set of \(2n \) positive integers \(X = \{x_1, x_2, \ldots, x_{2n}\} \), is there a partition of \(X \) into two subsets \(X_1 \) and \(X_2 \) such that \(\sum_{x_i \in X_1} x_i = \sum_{x_i \in X_2} x_i \) and such that, for each \(i \in 1, 2, \ldots, n \), \(X_1 \) (and also \(X_2 \)) contains exactly one element of \(\{x_{2i-1}, x_{2i}\} \)?

Let an instance of EOP be given by \(2n \) numbers \(\{x_1, x_2, \ldots, x_{2n-1}, x_{2n}\} \). Construct a path (see Figure 2) with set of nodes \(\{s, b_1, b_2, \ldots, b_{2n}, z, z', c_2n, c_{2n-1}, \ldots, c_1, y, u\} \) ordered from left to right. The length of each edge corresponds to the Euclidean distance between its endpoints. We let \(z' - z = b_{2i} - b_{2i-1} = 1, c_{2i-1} - c_{2i} = 1/2, z - b_{2n} = c_{2n} - z' = y - c_1 = L, \) and \(b_{2i+1} - b_{2i} = c_{2i} - c_{2i+1} = L \) for all \(i \in [n-1] \) where \(L = 3Cn/2 + 7/4 + 1 \). Furthermore, we let \(b_1 - s = S \), where \(S > 0 \) is specified later. The node \(u \) is placed so that \(u - z = b_1 - s + Cn + 0.5 \), where \(C \) is a constant that we can set to \(C = 3 \). There are \(4n + 3 \) agents:

- Two agents \(h_1, h_2 \): These agents have speed 1. Agent \(h_1 \) is initially at node \(s \) and can traverse the interval \([s, b_1]\). Agent \(h_2 \) is initially at node \(u \) and can traverse the interval \([z, u]\).
- \(2n \) agents \(p_1, p_2, \ldots, p_{2n} \): These agents are initially at node \(z \); each agent \(p_i \) has speed \(v_{p_i} = \frac{1}{\epsilon + x_i - M} \) where \(M = \sum_{i \in [2n]} x_i \). Agents \(p_{2i-1} \) and \(p_{2i} \) for \(i \in [n] \) can traverse the interval \([b_{2i-1}, c_{2i-1}]\).
2n + 1 agents $f_1, f_2, \ldots, f_{2n}, f_{2n+1}$: These agents have infinite speed. Each agent f_i for $i < n$ is initially at node b_{2i} and can traverse the interval $[b_{2i}, b_{2i+1}]$; agent f_n is initially at node b_{2n} and can traverse the interval $[b_{2n}, z]$; agent f_{n+1} is initially at node z' and can traverse the interval $[z', c_{2n}]$; each agent f_i for $n + 1 < i \leq 2n$ is initially at node c_{2i-1} and can traverse the interval $[c_{2i-1}, c_{2i}];$ agent f_{2n+1} is initially at node c_1 and can traverse the interval $[c_1, y]$.

The goal is to deliver a package from s to y as quickly as possible. We claim that there is a schedule with delivery time at most $T = S + 3Cn/2 + 7/4$ if and only if the original instance of EOP is a yes-instance.

First, assume that the instance of EOP is a yes-instance with partition (X_1, X_2). Let (P_1, P_2) be the corresponding partition of the set containing the 2n agents p_i. We construct a delivery schedule for the package as follows (the colors we mention refer to those shown in Figure 2). Until time $S = b_1 - s$, the agent b_1 carries the package to b_1, and all agents p_i pick a bold purple interval and arrive at its left endpoint. This is done in such a way that agent p_1 picks its left bold purple interval (the interval of length 1 at the left end of its range) if $p_i \in P_1$, and its right bold purple interval (the interval of length $\frac{1}{2}$ at the right end of its range) otherwise. To guarantee that any agent p_i arrives at the left endpoint of its interval by time S, we set $S = \max_{i \in [n]} \min_{j \in P_{i+1}} \{n+1-j\}$. Next, the package travels from b_1 to z by always being alternatingly carried by an agent p_i over a bold purple interval of length 1 and an infinite speed agent f over a blue interval of length L. The package thus reaches z at time $S + Cn + 1/2$ (because $\sum_{i \in X_1} x_i/M = 1/2$). As $u - z = S + Cn + 1/2$, the agent b_2 arrives at z at exactly the same time. Then, the agent b_2 carries the package from z to z' in time 1. After that, the package is alternatingly carried by an infinite speed agent and an agent p_i until it reaches y, taking time $Cn/2 + 1/4$. The total delivery time is $S + Cn + 1/2 + Cn/2 + 1/4 = S + 3Cn/2 + 7/4 = T$ as required.

Now consider the case that the original EOP instance is a no-instance. Assume that there exists a delivery schedule with delivery time $T = S + 3Cn/2 + 7/4$. First, we claim that neither an agent p_i nor the agent h_2 can carry the package over an interval of length L (these are the intervals $[b_{2i}, z], [z', c_{2n}], [c_1, y]$, and the intervals $[b_{2i}, b_{2i+1}], [c_{2i+1}, c_2]$ for any $i \in [n-1]$). Otherwise, the delivery time is larger than $S + L > S + 3Cn/2 + 7/4$ because these agents have speed at most 1 and these blue intervals have length $L = 3Cn/2 + 7/4 + 1$. Therefore, it is clear that each of the 2n agents p_i and the agent h_2 will carry the package over exactly one of the following 2n + 1 intervals: the interval $[b_1, b_2]$, and the 2n intervals that lie between two consecutive blue intervals. Next, we claim that h_2 must carry the package over the interval $[z, z']$ with length 1. Otherwise, h_2 would have to carry the package over an interval $[c_{2i}, c_{2i-1}]$ with length 1/2, and an agent p_i with speed less than $1/C$ would
have to carry the package through \([z, z']\) with length 1 instead. Even if we assume that all agents \(p_i\) have the faster speed \(1/C\), the resulting schedule would have delivery time at least \(S + nC + C + (n - 1)C/2 + 1/2 = S + 3Cn/2 + C/2 + 1/2\), which is larger than \(T = S + 3Cn/2 + 7/4\) as \(C = 3 > 5/2\).

This implies that agent \(h_2\) carries the package over \([z, z']\) and, for each \(i \in [n]\), one agent among \(\{p_{2i-1}, p_{2i}\}\) carries the package on a bold purple interval to the left of \(z\) and the other agent carries the package on a bold purple interval to the right of \(z'\). Let the resulting partition of the agents \(p_i\) be \((P_1, P_2)\), and let the corresponding partition of the original EOP instance be \((X_1, X_2)\). Suppose the package arrives at node \(z\) at time \(S + W\). Since the instance of EOP is a no-instance, either \(W > Cn + 1/2\) or \(W < Cn + 1/2\) holds. As the agents \(p_i\) that carry the package to the left of \(z\) take time \(W\) in total, the agents \(p_i\) that carry the package over intervals to the right of \(z'\) take time \(2Cn + 1 - W\) in total. Consider the two cases:

- \(W > Cn + 1/2\). As agent \(h_2\) carries the package from \(z\) to \(z'\), the delivery time is \(S + W + 1 + \frac{2Cn + 1 - W}{C} = S + Cn + W/2 + 3/2 > S + 3Cn/2 + 7/4 = T\), a contradiction.
- \(W < Cn + 1/2\). As agent \(h_2\) carries the package from \(z\) to \(z'\), the package must wait at \(z\) until time \(S + Cn + 1/2\) when \(h_2\) reaches \(z\). The delivery time is \(S + Cn + 1/2 + 1 + \frac{2Cn + 1 - W}{C} = S + 2Cn + 2 - W/2 > S + 2Cn + 2 - (Cn + 1/2)/2 = S + 3Cn/2 + 7/4 = T\), a contradiction.

Finally, we observe that in the constructed instance of DDT, the availability of edge handovers has no impact on the existence of a schedule with delivery time \(S + 3Cn/2 + 7/4\). Therefore, the reduction establishes \(NP\)-hardness of both \(DDT_N\) and \(DDT_E\).

6.2 Algorithms for drone delivery on a tree

Now, we show that all variants of the drone delivery problem can be solved optimally in polynomial time if the graph is a tree and all agents have the same speed (for minimizing the delivery time) or the same energy consumption rate (for minimizing the total energy consumption). In fact, the algorithms extend to the case of general graphs if the subgraph \(G_a = (V_a, E_a)\) of each agent is isometric, i.e., it satisfies the following condition: For any two nodes \(u, v \in V_a\), the length of the shortest \(u-v\) path in \(G_a\) is equal to the length of the shortest \(u-v\) path in \(G\). If the given graph is a tree, the subgraph \(G_a\) of every agent \(a\) is necessarily isometric because we assume that \(G_a\) is connected and there is a unique path between any two nodes in a tree.

If all agents have the same speed (for DDT) or the same consumption rate (for DDC), handovers at internal points of edges can never improve the objective value. Therefore, we only need to consider \(DDT_N\) and \(DDC_N\) in the following. The crucial ingredient of our algorithms for the case of isometric subgraphs \(G_a\) is:

> **Lemma 12.** Consider a delivery schedule \(S\) that may use an arbitrary number of copies of each agent. If the subgraph of each agent is isometric and all agents have the same speed (or the same energy consumption rate), then \(S\) can be transformed in time \(O(k(m + n \log n))\) into a schedule in which each agent is used at most once without increasing the delivery time (or the energy consumption).

Proof. Consider the first agent \(a\) that is used at least twice in \(S\). Assume that it carries the package from \(u_{i-1}\) to \(u_i\) in its first trip and from \(u_{j-1}\) to \(u_j\) in its last trip. Change the schedule so that \(a\) carries the package from \(u_{i-1}\) to \(u_j\), and discard the trips by agents \(i + 1, \ldots, j - 1\). As \(G_a\) is isometric, the agent \(a\) carries the package from \(u_{i-1}\) to \(u_j\) along
a shortest path in G, and hence neither the time (in case of equal speed) nor the energy consumption (in case of equal energy consumption rate) increase by this modification. Repeat the modification step until every agent is used at most once.

There are at most $k - 1$ modification steps, and each of them can be implemented in $O(m + n \log n)$ time using Dijkstra’s algorithm with Fibonacci heaps [10].

\begin{theorem}
DDT_N (and DDT_E) can be solved optimally in time $O(k(n \log n + m))$ if all agents have the same speed and the subgraph of every agent is isometric.
\end{theorem}

\begin{proof}
Compute an optimal delivery schedule that may use multiple copies of each agent using Lemma 6 and then apply Lemma 12.
\end{proof}

\begin{theorem}
DDC_N (and DDC_E) can be solved optimally in time $O(nk^2 + n^2k)$ if all agents have the same speed and the subgraph of every agent is isometric.
\end{theorem}

\begin{proof}
Compute an optimal delivery schedule that may use multiple copies of each agent using Lemma 9 and then apply Lemma 12.
\end{proof}

The problem variants without initial positions can also be solved optimally in polynomial time: We simply compute a shortest s-y-path P and place on each edge e of P a copy of an arbitrary agent in $A(e)$ and then apply Lemma 12.

For the special case where G is a tree, the running-time for DDT_N can be improved to $O(kn)$ by using a simple algorithm that can even be implemented in a distributed way: The package acts as a magnet, and each agent moves towards the package until it meets the package and then follows it (or carries it) towards y as long as its range allows. When several agents are at the same location as the package, the one whose range extends furthest towards y carries the package. We refer to the full version [11] for details.

\section{Conclusions}

In this paper we have studied drone delivery problems in a setting where the movement area of each drone is restricted to a subgraph of the whole graph. For DDT, we have presented a strong inapproximability result and given a matching approximation algorithm. For DDC, we have shown NP-hardness and presented a 2-approximation algorithm. For the interesting special case of a path, we have shown that DDT is NP-hard if the agents can have different speeds. For trees (or, more generally, the case where the subgraph of each agent is isometric), we have shown that all problem variants can be solved optimally in polynomial time if the agents have the same speed or the same energy consumption.

We leave open the complexity of DDC on a path. For the case without initial positions, the complexity of both DDC and DDT on a path remains open. For DDT with initial positions on a path, a very interesting question is how well the problem can be approximated.

\begin{thebibliography}{99}
\bibitem{1}

\bibitem{2}
\end{thebibliography}

