Range Updates and Range Sum Queries on Multidimensional Points with Monoid Weights

Shangqi Lu
Chinese University of Hong Kong, New Territories, Hong Kong
Yufei Tao
Chinese University of Hong Kong, New Territories, Hong Kong

Abstract

Let P be a set of n points in \mathbb{R}^d where each point $p \in P$ carries a weight drawn from a commutative monoid $(M, +, 0)$. Given a d-rectangle r_{upd} (i.e., an orthogonal rectangle in \mathbb{R}^d) and a value $\Delta \in M$, a range update adds Δ to the weight of every point $p \in P \cap r_{\text{upd}}$; given a d-rectangle r_{qry}, a range sum query returns the total weight of the points in $P \cap r_{\text{qry}}$. The goal is to store P in a structure to support updates and queries with attractive performance guarantees. We describe a structure of $\tilde{O}(n)$ space that handles an update in $\tilde{O}(T_{\text{upd}})$ time and a query in $\tilde{O}(T_{\text{qry}})$ time for arbitrary functions $T_{\text{upd}}(n)$ and $T_{\text{qry}}(n)$ satisfying $T_{\text{upd}} \cdot T_{\text{qry}} = n$. The result holds for any fixed dimensionality $d \geq 2$. Our query-update tradeoff is tight up to a polylog factor subject to the OMv-conjecture.

1 Introduction

This paper studies range sum queries on multidimensional points where the point weights are drawn from a commutative monoid and can be modified by range updates. Specifically, let P be a set of n points in \mathbb{R}^d for some constant $d \geq 1$. Denote by $(M, +, 0)$ an arbitrary commutative monoid where each element in M is called a weight. Each point $p \in P$ carries a weight $w(p) \in M$; initially, the weights are 0 for all the points. We want to store P in a data structure to support two operations with attractive performance guarantees:

- **Range (sum) query**: given a d-rectangle r_{qry}, the query returns the total weight of all the points $p \in P \cap r_{\text{qry}}$ (where sum is defined using the monoid’s operator $+$);
- **Range update**: given a d-rectangle r_{upd} and a weight $\Delta \in M$, the update adds Δ to the weight of every point $p \in P \cap r_{\text{upd}}$.

We will refer to the above as the “range sum with range updates” (RSRU) problem. Our complexity analysis assumes the standard unit-cost RAM model and holds on all commutative monoids $(M, +, 0)$ satisfying: (i) each weight $w \in M$ can be stored in one word, and (ii) $w_1 + w_2$ can be computed in constant time for any $w_1, w_2 \in M$.

1 A commutative monoid $(M, +, 0)$ is defined by a set M, an operator $+: M \times M \to M$ obeying associativity and commutativity, and an identity element $0 \in M$ satisfying $0 + w = w$ for every $w \in M$.

2 Defined as $[a_1, b_1] \times \ldots \times [a_d, b_d]$. © Shangqi Lu and Yufei Tao; licensed under Creative Commons License CC-BY 4.0

Editors: Sang Won Bae and Heejin Park; Article No. 57; pp. 57:1–57:16
Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany
1.1 Previous Results

Supporting range queries and range updates has important implications in geographical information systems (GIS), online analytical processing (OLAP), and database management systems (DBMS); the reader may refer to [16, 19, 22, 24] for the relevant applications.

For $d = 1$, the RSRU problem admits a folklore structure of $O(n)$ space that supports each query and update in $O(\log n)$ time. The problems become rather challenging as soon as d reaches 2. For any $d \geq 2$, the standard range tree [2, 10] uses $\tilde{O}(n)$ space and answers a query in $\tilde{O}(1)$ time (throughout the paper, the notation $\tilde{O}(\cdot)$ suppresses a polylog n factor). It also supports a “point update” – an update whose rectangle r_{upd} degenerates into a point – in $\tilde{O}(1)$ time. Given an update with an arbitrary r_{upd}, however, the range tree issues a point update for each $p \in P \cap r_{\text{upd}}$ and thus can incur a cost of $\tilde{O}(n)$.

For $d \geq 2$, Lau and Ritossa [19] developed an $O(n)$-space structure that supports each query and update in $\tilde{O}(n^{1-1/d})$ time. They also showed a connection to the OMv-conjecture [12], which has been widely utilized to characterize the hardness of problems involving dynamic data structures [1, 3–9, 11, 13–15, 17, 18, 20, 21, 23]:

In online matrix-vector multiplication (OMv), an algorithm A is allowed to preprocess an $n \times n$ boolean matrix M in $\text{poly}(n)$ time and then, in the online phase, needs to compute Mv_i for $n \times 1$ boolean vectors v_1, \ldots, v_n (additions and multiplications are as in the boolean semi-ring). The vectors are supplied in succession, i.e., v_{i+1} arrives only after A has output Mv_i. The cost of A is the total time it spends in the online phase. The OMv-conjecture states that no algorithm can guarantee a cost of $O(n^{3-\delta})$ no matter how small the constant $\delta > 0$ is.

For $d = 2$, Lau and Ritossa [19] proved that, subject to the OMv-conjecture, no structure with update time T_{upd} and query time T_{qry} can guarantee max$\{T_{\text{upd}}, T_{\text{qry}}\} = O(n^{1/2-\delta})$, regardless of the constant $\delta > 0$. Hence, their aforementioned structure can no longer be improved significantly in 2D space.

The results of [19] leave two intriguing questions. First, the hardness result does not shed much light on the tradeoff between T_{upd} and T_{qry}. For example, if we insist on $T_{\text{qry}} = \tilde{O}(1)$, is it possible to improve the update cost $O(n)$ of the range tree by a polynomial factor? Conversely, if T_{upd} must be $\tilde{O}(1)$, what is the best query time achievable? As yet another example, can we hope to obtain $T_{\text{upd}} = \tilde{O}(n^{0.5})$ and $T_{\text{qry}} = \tilde{O}(n^{0.49})$, thereby improving only the query time of [19] polynomially? The second question concerns the scenario of $d \geq 3$, where there remains a large gap between the upper and (conditional) lower bounds of [19]. We will answer all these questions in this paper.

The RSRU problem has a degenerated array version that has received special attention. In that version, $P := [m]^d$ where $m \geq 1$ is an integer (given an integer $x \geq 1$, $[x]$ represents the set $\{1, 2, \ldots, x\}$). In other words, P has exactly $n = m^d$ points, and each point’s coordinate is an integer in $[m]$ on every dimension; equivalently, P can be regarded as a d-dimensional array. This RSRU variant can be settled by a structure of $O(n)$ space that supports a query and an update both in $O(\log^{d+1} n)$ time [24]. Furthermore, if the monoid is multiplicative, the query and update time can be reduced to $O(\log^d n)$ [24]; see also [16, 22] for (array-RSRU) structures designed for the monoid $(\mathbb{R}, +, 0)$ (that is, each weight is a real value).

4 A monoid $(\mathcal{M}, +, 0)$ is multiplicative if, for any weight $w \in \mathcal{M}$ and any integer $c \geq 1$, $c \cdot w := w + w + \ldots + w$ can be calculated in constant time.
Table 1 A comparison of our and previous results on the RSRU problem.

<table>
<thead>
<tr>
<th>Space</th>
<th>Update, Query</th>
<th>Ref</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\tilde{O}(n))</td>
<td>(\tilde{O}(n), \tilde{O}(1))</td>
<td>[2]</td>
<td>(d \geq 2)</td>
</tr>
<tr>
<td>(O(n))</td>
<td>(\tilde{O}(\sqrt{n}), \tilde{O}(\sqrt{n}))</td>
<td>[19]</td>
<td>(d = 2)</td>
</tr>
<tr>
<td>(O(n))</td>
<td>(O(n^{1-\frac{1}{d}}), O(n^{1-\frac{1}{d}}))</td>
<td>[19]</td>
<td>(d \geq 3)</td>
</tr>
<tr>
<td>(\tilde{O}(n))</td>
<td>any (O(T_{\text{upd}}), \tilde{O}(T_{\text{qry}})) satisfying (T_{\text{upd}} \cdot T_{\text{qry}} = n)</td>
<td>this paper</td>
<td>(d \geq 2)</td>
</tr>
</tbody>
</table>

1.2 New Results

For the RSRU problem, we establish a smooth trade-off between the update and query time under fixed dimensions \(d \geq 2\):

- **Theorem 1.** For the RSRU problem, there is a structure of \(\tilde{O}(n)\) space that supports an update in \(\tilde{O}(T_{\text{upd}})\) time and a query in \(\tilde{O}(T_{\text{qry}})\) time for arbitrary functions \(T_{\text{upd}}(n) \geq 1\) and \(T_{\text{qry}}(n) \geq 1\) satisfying \(T_{\text{upd}} \cdot T_{\text{qry}} = n\). The result holds for any constant dimension \(d \geq 2\).

By setting \(T_{\text{upd}} = T_{\text{qry}} = \sqrt{n}\), we obtain a structure of \(\tilde{O}(n)\) space that handles an update/query in \(\tilde{O}(\sqrt{n})\) time for any \(d\). Compared to [19], for \(d = 2\) we obtain the same update and query time (up to a polylog factor), whereas for \(d \geq 3\) our update and query time is better by a polynomial factor. The theorem, interestingly, also captures the range tree as a special case with \(T_{\text{upd}} = n\) and \(T_{\text{qry}} = 1\). By adjusting \(T_{\text{upd}}\) and \(T_{\text{qry}}\), one can obtain a series of structures with different update-query tradeoffs that were not known previously. Our structures are drastically different from the ones in [19] and do not deteriorate with \(d\) (ignoring polylog factors).

We further prove that Theorem 1 is nearly tight subject to the OMv-conjecture.

- **Theorem 2.** Consider the RSRU problem defined on \(d = 2\) and the monoid \((\mathbb{R}, +, 0)\). Fix any constant \(c\) satisfying \(0 \leq c < 1\) and an arbitrarily small constant \(\delta > 0\). Subject to the OMv-conjecture, the following holds for any structure constructible in \(\text{poly}(n)\) time:
 - if the update time \(T_{\text{upd}} = O(n^c)\), then the query time \(T_{\text{qry}}\) cannot be \(O(n^{1-c-\delta})\);
 - if \(T_{\text{qry}} = O(n^c)\), then \(T_{\text{upd}}\) cannot be \(O(n^{1-c-\delta})\).

The above clearly implies the impossibility of \(\max\{T_{\text{upd}}, T_{\text{qry}}\} = O(n^{1/2-\delta})\), as was already proved in [19]. On the other hand, our conditional lower bounds are much more informative; for example, they reveal, somewhat unexpectedly, the range tree – with \(T_{\text{qry}} = \tilde{O}(1)\) and \(T_{\text{upd}} = \tilde{O}(n)\) – can no longer be improved significantly without breaking the OMv-conjecture. Putting together Theorems 1 and 2, we now have a complete picture on the query-update tradeoff achievable for the RSRU problem under any fixed dimension up to a sub-polynomial factor. Table 1 summarizes the comparison of our and previous results.

1.3 New Techniques

Our structures stem from a new observation on the inherent characteristics of the RSRU problem. The observation, described below, is interesting in its own right and illustrates what separates the RSRU problem from its array variant (defined in Section 1.1).
For any point \(p \in \mathbb{R}^d \), we use \(p[i] \) (\(i \in [d] \)) to represent its coordinate on dimension \(i \). Similarly, given a \(d \)-rectangle \(r := [a_1, b_1] \times ... \times [a_d, b_d] \), we use \(r[i] \) to represent its \(i \)-th projection \([a_i, b_i]\). Given a subset \(S \subseteq [d] \), we define an \(S \)-rectangle \(r \) as a \(d \)-rectangle where \(r[i] := (-\infty, \infty) \) for every \(i \in [d] \setminus S \), namely, \(r \) can have a bounded range \(r[i] \) only on the dimensions \(i \in S \).

Given an update with rectangle \(r_{\text{upd}} \) and some weight, we call it a \(U \)-update for some \(U \subseteq [d] \) if \(r_{\text{upd}} \) is a \(U \)-rectangle. Likewise, given a query with rectangle \(r_{\text{qry}} \), we call it a \(Q \)-query for some \(Q \subseteq [d] \) if \(r_{\text{qry}} \) is a \(Q \)-rectangle.

Definition 3. Fix two (possibly overlapping) subsets \(U \) and \(Q \) of \([d]\). A \((U,Q)\)-structure is a structure that supports only \(U \)-updates and \(Q \)-queries.

Our objective in the RSRU problem is to design a \([d],[d]\) -structure. We are now ready to state our characteristic observation:

Theorem 4. For the RSRU problem, suppose that, given any disjoint \(U \subseteq [d] \) and \(Q \subseteq [d] \), there is a \((U,Q)\)-structure of \(O(n) \) space that guarantees update \(T_{\text{upd}} \) and query time \(T_{\text{qry}} \). Then, there is a \([d],[d]\)-structure of \(O(n) \) space that handles an update in \(O(T_{\text{upd}} \cdot \log^c n) \) time and a query in \(O(T_{\text{qry}} \cdot \log^d n) \) time.

The theorem indicates that the core of RSRU lies in dealing with updates and queries that concern disjoint sets of dimensions. For example, in 2D space, the core boils down to supporting \(U = \{1\} \) and \(Q = \{2\} \), namely, every update rectangle \(r_{\text{upd}} \) is a vertical slab while every query rectangle \(r_{\text{qry}} \) is a horizontal slab. Interestingly, this is precisely what separates general RSRU from its array variant. As we will see, when \(P \) is a 2D array, there is a trivial \((U,Q)\)-structure of \(O(1) \) space ensuring \(O(\log n) \) update and query time (the time can even be reduced to \(O(1) \) if the monoid is multiplicative); in contrast, when \(P \) is a generic set of Euclidean points, the hardness in Theorem 2 applies!

Theorem 4 has yet another notable implication: it “trivializes” the array version of RSRU and allows us to recover all the existing results from [16, 22, 24] (reviewed in Section 1.1) with a simple structure. The details can be found in Appendix A.

2 A Dimension Elimination Technique

This section is devoted to proving Theorem 4. Our strategy is to incrementally remove a common dimension of \(U \) and \(Q \) until the two dimension sets become disjoint, at which point we can apply the \(U-Q \) disjoint structure stated in the theorem’s assumption statement. The core is to establish the following lemma.

Lemma 5. Consider any overlapping subsets \(U \) and \(Q \) of \([d]\). Let \(i \in [d] \) be an arbitrary dimension in \(U \cap Q \). Suppose that we have a \((U \setminus \{i\},Q)\)-structure and a \((U \setminus \{i\},Q \setminus \{i\})\)-structure both of which use \(O(n \log^c n) \) space (where \(c \geq 0 \) is a constant) and support an update in \(O(T_{\text{upd}}) \) time and a query in \(O(T_{\text{qry}}) \) time. Then, there is a \((U,Q)\)-structure of \(O(n \log^{c+1} n) \) space that handles an update in \(O(T_{\text{upd}} \log n) \) time and a query in \(O(T_{\text{qry}} \log n) \) time.

Before proving the lemma, let us first see how it leads to Theorem 4.

Proof of Theorem 4. We will establish a more general claim: fix any integer \(k \in [0, d] \); for any subsets \(U \) and \(Q \) of \([d]\) such that \(|U \cap Q| = k\), there is a \((U,Q)\)-structure of \(O(n) \) space that guarantees update and query time \(O(T_{\text{upd}} \log^k n) \) and \(O(T_{\text{qry}} \log^k n) \), respectively. When \(k = 0 \), \(U \) and \(Q \) are disjoint and the claim directly follows from the theorem’s assumption. Next, we will prove the claim for \(k = k_0 + 1 \), assuming the claim’s correctness on \(k = k_0 \geq 0 \).
Identify an arbitrary $i \in U \cap Q$; i must exist because $|U \cap Q| = k_0 + 1 \geq 1$. By the inductive assumption, there exist a $(U \setminus \{i\}, Q)$-structure and a $(U, Q \setminus \{i\})$-structure, both of which use $O(n)$ space and ensure update time $O(T_{\text{upd}} \log^{k_0} n)$ and query time $O(T_{\text{qry}} \log^{k_0} n)$. We now apply Lemma 5 to obtain a (U, Q)-structure of $O(n)$ space with update and query time $O(T_{\text{upd}} \log^{k_0+1} n)$ and $O(T_{\text{qry}} \log^{k_0+1} n)$ time, respectively. This completes the proof. ▶

The rest of the section serves as a proof of Lemma 5. Section 2.1 will describe our structure as well as the update and query algorithms. Section 2.2 will present our analysis.

Basic Notations and Concepts. Let U and Q be the dimension sets in Lemma 5. Assume, w.l.o.g., that the value i in the lemma is 1, i.e., $1 \in U \cap Q$. For convenience, we will refer to dimension 1 as the “x-dimension”. Accordingly, given a point $p \in \mathbb{R}^d$, its “x-coordinate” is $p[1]$. We will represent an update as (r_{upd}, Δ), where r_{upd} is a d-rectangle and Δ is a weight in \mathcal{M}; recall that the update adds Δ to the weight of every point $p \in P \cap r_{\text{upd}}$. We will use $r_{\text{upd}}[2:d]$ to denote the projection of r_{upd} onto dimensions $2, 3, ..., d$, namely, $r_{\text{upd}}[2:d]$ is a $(d-1)$-dimensional rectangle.

Given a set S of n real values, a binary search tree (BST) on S is a binary tree \mathcal{T} such that (i) \mathcal{T} has height $O(\log n)$, (ii) \mathcal{T} has n leaves each storing a different value in S as its key, (iii) every internal node has two children, (iv) for each internal node, the elements of S in its left subtree are strictly less than those in its right subtree, and (v) each internal node stores a key, which is the smallest element of S in its right subtree. For each leaf/internal node u, denote its key as $\text{key}(u)$. The parent of a non-root node u is represented as $\text{parent}(u)$ and the root of \mathcal{T} as $\text{root}(\mathcal{T})$.

We associate each node u of \mathcal{T} with a slab $\sigma(u)$ defined recursively as follows. If $u = \text{root}(\mathcal{T})$, then $\sigma(u) := (-\infty, \infty)$. Otherwise, let $v := \text{parent}(u)$. If u is the left child of v, $\sigma(u) := \sigma(v) \cap (-\infty, \text{key}(v))$; otherwise, $\sigma(u) := \sigma(v) \cap [\text{key}(v), \infty)$. Slabs have several easy-to-verify properties:

- If node v is an ancestor of node u, then $\sigma(u) \subseteq \sigma(v)$.
- If u and v have no ancestor-descendant relationships, then $\sigma(u)$ and $\sigma(v)$ are disjoint.
- For each node u, $\sigma(u) \cap S$ is the set of elements stored in the subtree of u.

2.1 Structure and Algorithms

Denote by S the set of distinct x-coordinates of the points in P. Build a BST \mathcal{T} on S. For each node u of \mathcal{T}, define

$$P_u := \{ p \in P | p[1] \in \sigma(u) \}$$

namely, the set of points $p \in P$ whose x-coordinates are in the slab $\sigma(u)$ of u. We associate each u with a $(U \setminus \{1\}, Q)$-structure and a $(U, Q \setminus \{1\})$-structure both constructed on P_u. Recall that the two structures are already available by the assumption of Lemma 5. We will call each of them a secondary structure on P_u. This completes the description of our (U, Q)-structure.

Each $p \in P$ is in $O(\log n)$ secondary structures. For each secondary structure Υ, define

$$\text{weight of } p \text{ in } \Upsilon := \sum_{(r_{\text{upd}}, \Delta) \in \Upsilon_{r_{\text{upd}}} : p \in r_{\text{upd}}} \Delta$$

where $\Upsilon_{r_{\text{upd}}}$ is the set of updates\(^5\) ever performed on Υ.

5 More specifically, each update $(r_{\text{upd}}, \Delta) \in \Upsilon$ should be treated as a pair with an id because two updates can have the same (r_{upd}, Δ).

ISAAC 2022
Canonical and Internal Path Nodes of an Interval. To pave the way for our discussion, next we define what are the canonical and internal path nodes of an interval $I := [x_1, x_2]$, where both x_1 and x_2 belong to S. Let z_1 and z_2 be the leaves whose keys equal x_1 and x_2, respectively. Denote by π_1 (resp., π_2) the path from root(T) to z_1 (resp., z_2).

We call u an internal path node of I if u is an internal node on π_1 or π_2.

We call u a canonical node of I if $u = z_1$ or z_2, or $parent(u)$ is in $\pi_1 \cup \pi_2$, u itself is not in $\pi_1 \cup \pi_2$, and $\sigma(u)$ is covered by I.

Let C_I be the set of canonical nodes of I. We must have $|C_I| = O(\log n)$.

As another way to understand C_I, one can first identify the lowest node $u^* \in \pi_1 \cap \pi_2$ (this is the node where π_1 and π_2 diverge). If u^* is a leaf, it means $\pi_1 = \pi_2$ and u^* is the only node in C_I. Now consider the case where u^* is an internal node. Let us descend the path π'_1 from u^* to z_1. Every time we descend into the left child of a node $v \neq u^*$ on π'_1, we add to C_I the right child of v (nothing is added if we descend into the right child of v). Perform also a symmetric process for the path from u^* to z_2. The C_I at this moment contains all the canonical nodes. See Figure 1 for an illustration.

Update Algorithm. Consider a U-update (r_{upd}, Δ) on our (U,Q)-structure (remember the structure only needs to support U-updates). W.o.l.g., assume that the x-range of r_{upd} has the form $[x_1, x_2]$ where both x_1 and x_2 belong to S. We carry out the update using the following algorithm.

\[
\text{update}(r_{upd}, \Delta) \\
1. \hspace{1em} I_{\text{upd}} \leftarrow r_{upd}[1] \quad \text{/* the x-range of } r_{upd} */ \\
2. \hspace{1em} r'_{\text{upd}} \leftarrow (-\infty, \infty) \times r_{upd}[2 : d] \quad \text{/* } r'_{\text{upd}} \text{ replaces the x-range with } (-\infty, \infty) */ \\
3. \hspace{1em} \text{for each internal path node } u \text{ of } I_{\text{upd}} \text{ do} \\
4. \hspace{2em} \text{perform an update } (r_{upd}, \Delta) \text{ on the } (U, Q \setminus \{1\})-\text{structure of } P_u \\
5. \hspace{1em} \text{for each canonical node } u \text{ of } I_{\text{upd}} \text{ do} \\
6. \hspace{2em} \text{perform an update } (r'_{\text{upd}}, \Delta) \text{ on the } (U \setminus \{1\}, Q)-\text{structure of } P_u
\]

It is worth pointing out that r'_{upd} is a $U \setminus \{1\}$-rectangle. Hence, the update $(r'_{\text{upd}}, \Delta)$ at Line 6 is permitted on the $(U \setminus \{1\}, Q)$-structure of P_u. See Figure 2(a) for an illustration.

\[6\] This assumption can be easily fulfilled by performing predecessor/successor search in $O(\log n)$ time.
Proposition 6. Let Υ be a structure updated at Line 4 or 6 of update. Suppose that it is a secondary structure of P_u. For each $p \in P_u$, its weight in Υ increases by Δ if and only if $p \in r_{upd}$.

Proof. This is obvious if Υ is a $(U, Q \setminus \{1\})$-structure of P_u (Line 4). Consider, instead, Υ as a $(U \setminus \{1\}, Q)$-structure of P_u (Line 6). It follows that u is a canonical node of I_{upd} and hence $p[1] \in I_{upd}$. By the assumption of Lemma 5, Υ increases the weight of p if and only if $p \in r_{upd}'$. Our claim holds because $p \in r_{upd}'$ if and only if $p \in r_{upd}$. ▶

Query Algorithm. Consider a Q-query with search rectangle r_{qry} on our (U, Q)-structure. W.o.l.g., we assume that the x-range of r_{qry} has the form $[x_1, x_2]$ where both x_1 and x_2 belong to S. Our query algorithm is shown below.

\begin{algorithmic}
 \STATE query (r_{qry})
 \STATE 1. $I_{qry} \leftarrow r_{qry}[1]; \quad r_{qry}' \leftarrow (-\infty, \infty) \times r_{qry}[2 : d]$
 \STATE 2. OUT $\leftarrow 0$
 \STATE 3. \FOR each internal path node u of I_{qry} \DO
 \STATE 4. \quad OUT \leftarrow OUT + output of the query r_{qry} on the $(U \setminus \{1\}, Q)$-structure of P_u
 \STATE 5. \ENDIF
 \STATE 6. \FOR each canonical node u of I_{qry} \DO
 \STATE 7. \quad OUT \leftarrow OUT + output of the query r_{qry}' on the $(U \setminus \{1\}, Q)$-structure of P_u
 \STATE 8. \ENDIF
 \STATE \RETURN OUT
\end{algorithmic}

The reader should note that r_{qry}' is a $Q \setminus \{1\}$-rectangle and hence also a Q-rectangle. Therefore, the queries at Lines 6 and 7 are permitted. See Figure 2(b) for an illustration.

Proposition 7. Let Υ be a structure searched at Line 4, 6, or 7 of query. Suppose that it is a secondary structure of P_u. For each $p \in P_u$, its weight in Υ is added into OUT if and only if $p \in r_{qry}$.

Proof. This is obvious if Υ is a $(U \setminus \{1\}, Q)$-structure at Line 4. If Υ is a $(U \setminus \{1\}, Q)$-structure at Line 6 or a $(U, Q \setminus \{1\})$-structure at Line 7, u must be a canonical node of I_{qry} and hence $p[1] \in I_{qry}$. By the assumption of Lemma 5, when Υ is searched with r_{qry}', its output incorporates the weight of p if and only if $p \in r_{qry}'$. Our claim holds because $p \in r_{qry}'$ if and only if $p \in r_{qry}$.

2.2 Analysis

Space and Time Complexities. The update time and query time are clearly $O(T_{upd} \log n)$ and $O(T_{qry} \log n)$, respectively. The secondary structures of a node u in T occupy space $O(|P_u| \log^2 n)$. As each point $p \in P$ appears in the P_u of $O(\log n)$ nodes u, the total space of our (U, Q)-structure is $O(n \log^{c+1} n)$.

Correctness. It remains to prove that all queries are answered correctly. Let us start with a concept crucial for our argument: update atom. Formally, each update (r_{upd}, Δ) generates an atom (r_{upd}, Δ, p) for every $p \in P \cap r_{upd}$. The atom describes the fact that the update should increase $w(p)$ by Δ. Conceptually, the effect of (r_{upd}, Δ) is achieved by “executing” all of its atoms.

Given a query with search rectangle r_{qry}, we will show that the output OUT of algorithm query is exactly $\sum_{p \in \mathcal{P} \cap r_{qry}} w(p)$. Define

}\text{ ISAAC 2022}
at \(\mathbf{o} \) update \((U \setminus \{1\})\)-str
at \(\mathbf{\bullet} \) update \((U \setminus \{1\})\)-str
\[\begin{array}{c}
\text{at } \mathbf{o} \\
\text{update } (U \setminus \{1\})\text{-str}
\end{array} \]
\[\begin{array}{c}
\text{at } \mathbf{\bullet} \\
\text{update } (U \setminus \{1\})\text{-str}
\end{array} \]
\[\begin{array}{c}
\text{at } \mathbf{o} \\
\text{query } (U \setminus \{1\})\text{-str}
\end{array} \]
\[\begin{array}{c}
\text{at } \mathbf{\bullet} \\
\text{query } (U \setminus \{1\})\text{-str}
\end{array} \]
\[\begin{array}{c}
\text{query } (U \setminus \{1\})\text{-str}
\end{array} \]
\[\begin{array}{c}
\text{query } (U \setminus \{1\})\text{-str}
\end{array} \]
\[\begin{array}{c}
\text{query } (U \setminus \{1\})\text{-str}
\end{array} \]

Figure 2 Illustration of the update and query algorithms.

\(U \) as the set of updates that have ever been performed on our \((U, Q)\)-structure;
\(A \) as the collection of atoms generated by the updates in \(U \).
Each atom \((r_{\text{upd}}, \Delta, p) \in A\) is said to be relevant if \(p \in r_{\text{qry}} \). For each \(p \in P \), it holds that
\[
 w(p) = \sum_{(r_{\text{upd}}, \Delta, p) \in A} \Delta
\]
which yields
\[
 \sum_{p \in P \cap r_{\text{qry}}} w(p) = \sum_{p \in P \cap r_{\text{qry}}} \left(\sum_{(r_{\text{upd}}, \Delta, p) \in A} \Delta \right) = \sum_{\text{relevant } (r_{\text{upd}}, \Delta, p) \in A} \Delta. \tag{1}
\]

Let \(\Upsilon \) be a secondary structure searched at Line 4, 6, or 7 of \(\text{query}(r_{\text{qry}}) \). Denote by \(u \) the node that \(\Upsilon \) is associated with. Define:
\(U_{\Upsilon} \) as the set of updates \((r_{\text{upd}}, \Delta) \in U\) such that algorithm \(\text{update}(r_{\text{upd}}, \Delta) \) modifies \(\Upsilon \) at either Line 4 or 6;
\(A_{\Upsilon} \) as the collection of atoms \((r_{\text{upd}}, \Delta, p) \in A\) generated by the updates in \(U_{\Upsilon} \) satisfying \(p \in P_u \).
We will refer to \(A_{\Upsilon} \) as the atom set of \(\Upsilon \). By Proposition 6, it holds for each point \(p \in P_u \):
\[
 \text{weight of } p \text{ in } \Upsilon := \sum_{(r_{\text{upd}}, \Delta, p) \in A_{\Upsilon}} \Delta.
\]
By Proposition 7, when searched in algorithm \(\text{query}(r_{\text{qry}}) \), \(\Upsilon \) returns:
\[
 \sum_{p \in P_u \cap r_{\text{qry}}} \text{weight of } p \text{ in } \Upsilon = \sum_{p \in P \cap r_{\text{qry}}} \left(\sum_{(r_{\text{upd}}, \Delta, p) \in A_{\Upsilon}} \Delta \right) = \sum_{\text{relevant } (r_{\text{upd}}, \Delta, p) \in A_{\Upsilon}} \Delta.
\]
It follows from the above discussion that
\[
 \text{OUT} = \sum_{\text{searched } \Upsilon} \left(\sum_{\text{relevant } (r_{\text{upd}}, \Delta, p) \in A_{\Upsilon}} \Delta \right). \tag{2}
\]
Our mission is to draw equivalence between (1) and (2). We achieve the purpose with the following lemma.

Lemma 8. Every relevant atom \((r_{\text{upd}}, \Delta, p) \in A\) appears in the atom set \(A_{\Upsilon} \) of exactly one secondary structure \(\Upsilon \) searched by \(\text{query}(r_{\text{qry}}) \).
Proof. Consider any relevant atom \((r_{\text{upd}}, \Delta, p) \in \mathcal{A}\). Let \(I_{\text{qry}} := r_{\text{qry}}[1]\). By definition of relevance, \(p \in r_{\text{qry}}\). Among the canonical nodes of \(I_{\text{qry}}\), there is exactly one node – denoted as \(u_{\text{qry}}\) – satisfying the condition that \(p[1]\) falls in the slab \(\sigma(u_{\text{qry}})\) of \(u_{\text{qry}}\). Similarly, let \(I_{\text{upd}} := r_{\text{upd}}[1]\). By definition of atom, \(p \in r_{\text{upd}}\). Among the canonical nodes of \(I_{\text{ upd}}\), there is exactly one node – denoted as \(u_{\text{upd}}\) – satisfying \(p[1] \in \sigma(u_{\text{upd}})\). Nodes \(u_{\text{qry}}\) and \(u_{\text{upd}}\) must have an ancestor-descendant relationship.

Fix a secondary structure \(\Upsilon\) searched by \(\text{query}(r_{\text{qry}})\) (at Line 4, 6, or 7). The next two facts follow from how \(\text{update}(r_{\text{upd}}, \Delta)\) and \(\text{query}(r_{\text{qry}})\) execute (as illustrated in Figure 2).

Fact 1. Suppose that \(\Upsilon\) is the \((U \setminus \{1\}, Q)\)-structure of node \(v\). Then, \((r_{\text{upd}}, \Delta, p)\) appears in \(\mathcal{A}_\Upsilon\) if and only if

- \(v = u_{\text{upd}},\) and
- \(v\) is an ancestor of \(u_{\text{qry}}\) (this includes the case \(v = u_{\text{qry}}\)).

Fact 2. Suppose that \(\Upsilon\) is the \((U, Q \setminus \{1\})\)-structure of \(v\). Then, \((r_{\text{upd}}, \Delta, p)\) appears in \(\mathcal{A}_\Upsilon\) if and only if

- \(v = u_{\text{qry}},\) and
- \(v\) is an internal path node of \(I_{\text{upd}}\).

We proceed by discussing two cases separately:

Case 1: \(u_{\text{upd}}\) is a proper descendant of \(u_{\text{qry}}\). Atom \((r_{\text{upd}}, \Delta, p)\) cannot belong to the atom set of any \((U \setminus \{1\}, Q)\)-structure \(\Upsilon\) searched by \(\text{query}(r_{\text{qry}})\). Otherwise, \(\Upsilon\) must be associated with \(u_{\text{upd}}\) (first bullet of Fact 1), but then the second bullet of Fact 1 contradicts \(u_{\text{upd}}\) being a proper descendant of \(u_{\text{qry}}\). On the other hand, as a proper ancestor of \(u_{\text{upd}}, u_{\text{qry}}\) must be an internal path node of \(I_{\text{upd}}\). Fact 2 thus shows that \((r_{\text{upd}}, \Delta, p)\) exists in the atom set of only one \((U, Q \setminus \{1\})\)-structure searched by \(\text{query}(r_{\text{qry}}):\) the one at node \(u_{\text{qry}}\).

Case 2: \(u_{\text{upd}}\) is an ancestor of \(u_{\text{qry}}\). Atom \((r_{\text{upd}}, \Delta, p)\) cannot belong to the atom set of any \((U, Q \setminus \{1\})\)-structure \(\Upsilon\) searched by \(\text{query}(r_{\text{qry}})\). To see why, suppose that such a \(\Upsilon\) exists. By Fact 2, \(\Upsilon\) must be associated with node \(u_{\text{qry}},\) and \(u_{\text{qry}}\) must be an internal path node of \(I_{\text{upd}}\). This is impossible because \(u_{\text{upd}}\) (being a canonical node of \(I_{\text{upd}}\)) cannot have any descendant that is an internal path node of \(I_{\text{upd}}\). Finally, Fact 1 shows that \((r_{\text{upd}}, \Delta, p)\) appears in the atom set of only one \((U \setminus \{1\}, Q)\)-structure searched by \(\text{query}(r_{\text{qry}}):\) the one at node \(u_{\text{upd}}\).

This completes the proof of Lemma 5.

3 U-Q Disjoint Structures

Equipped with Theorem 4, we can now concentrate on designing \((U, Q)\)-structures with disjoint \(U\) and \(Q\). We will prove:

\begin{lemma}
Fix an integer \(k \geq 1\) and consider the RSRU problem under dimensionality \(d = k\). Suppose that, for any disjoint \(U, Q \subseteq [d]\), there is a \((U, Q)\)-structure of \(O(n)\) space supporting an update in \(O(T_{\text{upd}})\) time and a query in \(O(T_{\text{qry}})\) time for any functions \(T_{\text{upd}}(n) \geq 1\) and \(T_{\text{qry}}(n) \geq 1\) satisfying \(T_{\text{upd}} \cdot T_{\text{qry}} = n\). Then, the following holds for dimensionality \(d = k + 1:\) for any disjoint \(U, Q \subseteq [d]\), we can build a \((U, Q)\)-structure of \(O(n)\) space supporting an update in \(O(T_{\text{upd}})\) and a query in \(O(T_{\text{qry}})\) time for any functions \(T_{\text{upd}}(n) \geq 1\) and \(T_{\text{qry}}(n) \geq 1\) satisfying \(T_{\text{upd}} \cdot T_{\text{qry}} = n\).
\end{lemma}
Before delving into the proof, let us see how the lemma leads to Theorem 1.

Proof of Theorem 1. At \(d = 1 \), it is easy to obtain a \([1], [1]\)\)-structure of \(O(n) \) space and \(O(\log n) = \tilde{O}(1) \) update and query time (see Section 1.1). The structure can serve as the basis solution for \(k = 1 \) and any \(T_{\text{upd}}(n) \geq 1, T_{\text{qry}}(n) \geq 1 \) with \(T_{\text{upd}} \cdot T_{\text{qry}} = n \). Lemma 9 then asserts that, for any constant \(d \) and any disjoint \(U, Q \subseteq [d] \), we can build a \((U, Q)\)-structure that uses \(\tilde{O}(n) \) space and handles an update in \(\tilde{O}(T_{\text{upd}}) \) and a query in \(\tilde{O}(T_{\text{qry}}) \) time for any \(T_{\text{upd}}(n) \geq 1, T_{\text{qry}}(n) \geq 1 \) satisfying \(T_{\text{upd}} \cdot T_{\text{qry}} = n \). Combining this with Theorem 4 establishes Theorem 1.

The rest of the subsection serves as a proof of Lemma 9. Let us first eliminate the case of \(U = \emptyset \). In this scenario, the rectangle \(r_{\text{upd}} \) of an update is fixed to \(\mathbb{R}^d \) and hence all points in \(P \) have the same weight. It suffices to maintain the \(w(p^*) \) of an arbitrary \(p^* \in P \). In addition, build a standard *range count* structure on \(P \) such that uses \(\tilde{O}(n) \) space and, given a rectangle \(r_{\text{qry}} \), outputs \(|P \cap r_{\text{qry}}| \) in \(\tilde{O}(1) \) time; the range tree \([10]\) fulfills our purpose here. To answer a query with rectangle \(r_{\text{qry}} \), we first obtain \(c := |P \cap r_{\text{qry}}| \) and then return \(c \cdot w(p^*) \). The query time is \(\tilde{O}(1) \), noticing that \(c \cdot w(p^*) \) can be calculated in \(O(\log c) \) time\(^7\).

Next, we assume \(U \neq \emptyset \) and, w.l.o.g., consider that (i) \(U \) contains the \(x \)-dimension (i.e., dimension 1), (ii) \(n := |P| \) is a power of two, and (iii) the points in \(P \) have distinct coordinates on each dimension. Fix any \(T_{\text{upd}}(n) \geq 1 \) and \(T_{\text{qry}}(n) \geq 1 \) satisfying \(T_{\text{upd}} \cdot T_{\text{qry}} = n \).

Structure. We will describe a binary tree \(T \) of \(O(\log T_{\text{qry}}) \) levels and \(O(T_{\text{qry}}) \) nodes. Each node \(u \) in \(T \) is associated with a subset \(P_u \subseteq P \) and an interval \(\sigma(u) \) as its slab. If \(u = \text{root}(T) \), \(P_u := P \) and \(\sigma(u) := (-\infty, \infty) \). In general, if \(|P_u| \leq T_{\text{upd}} \), \(u \) is a leaf of \(T \). Otherwise, we split \(P_u \) evenly into \(P_1 \) and \(P_2 \) at some value \(x \) such that \(P_1 \) (resp., \(P_2 \)) includes all the points of \(P_u \) whose \(x \)-coordinates are less (resp., greater) than \(x \). The left and right children of \(u \) are associated with \(P_1 \) and \(P_2 \), respectively, and have slab \(\sigma(u) \cap (-\infty, x) \) and \(\sigma(u) \cap [x, \infty) \), respectively. The total number of nodes in \(T \) is \(O(n/T_{\text{upd}}) = O(T_{\text{qry}}) \).

Each internal node \(u \) in \(T \) is associated with a \((U \setminus \{1\}, Q)\)-structure \(T_u \) on \(P_u \). Since \((U \setminus \{1\}) \cap Q = \emptyset \) and \(|(U \setminus \{1\}) \cup Q| \leq k \), we already know how to construct such a structure (see the assumption of Lemma 9). We parameterize \(T_u \) such that it supports an update on \(P_u \) in \(\tilde{O}(T_{\text{upd}}) \) time and answers a query on \(P_u \) in \(\tilde{O}(|P_u|/T_{\text{upd}}) \) time; its space is \(\tilde{O}(|P_u|) \).

For each leaf \(z \) in \(T \), create a range tree \(T_z \) on \(P_z \). As discussed in Section 1.1, \(T_z \) uses \(\tilde{O}(|P_z|) \) space, answers a query on \(P_z \) in \(\tilde{O}(1) \) time, and supports an update on \(P_z \) in \(\tilde{O}(|P_z|) = \tilde{O}(T_{\text{upd}}) \) time.

Each \(p \in P \) appears in \(O(\log T_{\text{qry}}) \) secondary structures \(T \). For every such \(T \), define

\[
\text{weight of } p \text{ in } T \ := \sum_{(r_{\text{upd}}, \Delta) \in \mathcal{U}_T, p \in r_{\text{upd}}} \Delta
\]

where \(\mathcal{U}_T \) is the set of updates ever performed on \(T \).

Non-path Canonical Nodes and Path Leaves of an Interval. We now adapt the concepts “canonical” and “path nodes” from Section 2.1 to our context here. Consider an interval \(I := [x_1, x_2] \). Let \(z_1 \) and \(z_2 \) be the leaves of \(T \) such that \(x_1 \in \sigma(z_1) \) and \(x_2 \in \sigma(z_2) \). Denote by \(\pi_1 \) (resp., \(\pi_2 \)) the path from root(\(T \)) to \(z_1 \) (resp., \(z_2 \)).

\(^7\) E.g., \(15w = w + 2w + 4w + 8w \), where \(4w \) (resp., \(8w \)) can be derived from \(2w \) (resp., \(4w \)) in constant time.
At each path leaf, see Figure 3 for an illustration. The root is at level 0 and the level number increases by 1 each time we descend into a child.

We call each of \(z_1 \) and \(z_2 \) a path leaf of \(I \).

We call \(u \) a non-path canonical node of \(I \) if parent(\(u \)) is in \(\pi_1 \cup \pi_2 \), \(u \) itself is not in \(\pi_1 \cup \pi_2 \), and \(\pi(u) \) is covered by \(I \).

See Figure 3 for an illustration.

Update. Consider an update \((r_{\text{upd}}, \Delta) \). Define \(I_{\text{upd}} := r_{\text{upd}}[1] \) and \(r'_{\text{upd}} := (-\infty, \infty) \times r_{\text{upd}}[2 : d] \). At each non-path canonical node \(u \) of \(I_{\text{upd}} \), perform an update \((r'_{\text{upd}}, \Delta) \) on \(T_u \). At each path leaf \(z \) of \(I_{\text{upd}} \), perform an update \((r_{\text{upd}}, \Delta) \) on \(T_z \).

Query. Given a query with rectangle \(r_{\text{qry}} \), we simply access every node \(u \) in \(T \) and issue a query with the same rectangle \(r_{\text{qry}} \) on the secondary structure \(T_u \). Then, we return the sum of the weights returned by those structures.

Analysis. It should have become straightforward that our structure uses \(\tilde{O}(n) \) space overall and supports an update in \(\tilde{O}(T_{\text{upd}}) \) time. Next, we analyze the query time. As \(T \) has \(O(T_{\text{qry}}) \) leaves and a query spends \(O(1) \) time on each leaf, the time spent on all the leaves is \(O(T_{\text{qry}}) \).

Let us now attend to the internal nodes. Consider the \(i \)-th level of \(T \).

There are \(O(2^i) \) internal nodes and \(|P_u| = O(n/2^i) \) for every such node \(u \). The time spent on all the level-\(i \) nodes is \(\tilde{O}(2^i \cdot (n/2^i)/T_{\text{upd}}) = \tilde{O}(n/T_{\text{upd}}) = \tilde{O}(T_{\text{qry}}) \). As \(T \) has \(O(1) \) levels, the overall query cost is \(\tilde{O}(T_{\text{qry}}) \).

It remains to show the correctness of our \((k + 1)\)-dimensional structure. For this purpose, let us first observe:

Proposition 10. For any \(p \in P \), \(w(p) = \sum_{\text{node } u \text{ in } T : p \in P_u} \) (weight of \(p \) in \(T_u \)).

Proof. The proposition obviously holds after the structure has just been constructed. Consider an update \((r_{\text{upd}}, \Delta) \). Define \(I_{\text{upd}} := r_{\text{upd}}[1] \). Denote by \(z_1, z_2 \) the two path leaves of \(I_{\text{upd}} \) and by \(C \) the set of non-path canonical nodes of \(I_{\text{upd}} \). It is easy to verify:

- for any distinct nodes \(u, v \), in \(\{z_1, z_2\} \cup C \), \(P_u \) and \(P_v \) are disjoint;
- \(\bigcup_{u \in \{z_1, z_2\} \cup C} (P_u \cap r_{\text{upd}}) = P \cap r_{\text{upd}} \).

For each point \(p \in P \cap r_{\text{upd}} \), there is a unique node \(u \in \{z_1, z_2\} \cup C \) satisfying \(p \in P_u \). Our update procedure increases the weight of \(p \) in \(T_u \) by \(\Delta \) and does not change its weight in any other secondary structure. On the other hand, if \(p \notin r_{\text{upd}} \), the procedure will not change its weight in any secondary structure. Therefore, if the proposition holds before the update, it still does afterwards.

\(^8 \) The root is at level 0 and the level number increases by 1 each time we descend into a child.
Fix any query with rectangle \(r_{\text{qry}} \). For each node \(u \) in \(\mathcal{T} \), denote by \(\text{OUT}_u \) the answer returned by the structure \(\mathcal{T}_u \). The value \(\text{OUT}_u \) equals \(\sum_{p \in P_u \cap r_{\text{qry}}} \) (weight of \(p \) in \(\mathcal{T}_u \)). The final answer returned is

\[
\sum_{\text{node } u \text{ in } \mathcal{T}} \sum_{p \in P_u \cap r_{\text{qry}}} \text{weight of } p \text{ in } \mathcal{T}_u = \sum_{p \in P \cap r_{\text{qry}}} \left(\sum_{\text{node } u \text{ in } \mathcal{T} : p \in P_u} \text{weight of } p \text{ in } \mathcal{T}_u \right) = \sum_{p \in P \cap r_{\text{qry}}} w(p)
\]

where the last equality used Proposition 10. With this, we have established the correctness of our structure and thus conclude the proof of Lemma 9.

4 Hardness of RSRU

This section will establish Theorem 2. Let us first review the

\[\text{Lemma 11} \]

Fix an arbitrary constant \(\gamma > 0 \). Subject to the OMv-Conjecture, no algorithm can solve the \(\gamma \)-uMv problem with cost \(O(n_1^{1-\delta} \cdot n_2 + n_1 \cdot n_2^{1-\delta}) \), no matter how small the constant \(\delta > 0 \) is.

Given an RSRU structure defying Theorem 2, we will show how to utilize it to develop an algorithm to beat Lemma 11. We use \(M[i,j] \) to denote the entry of \(M \) at the \(i \)-th row and \(j \)-th column, \(u[i] \) to denote the \(i \)-th component of \(u \), and \(v[j] \) to denote the \(j \)-th component of \(v \), where \(i \in [n_1] \) and \(j \in [n_2] \).

\[\text{Proof of the First Bullet of Theorem 2.} \] Consider the RSRU problem under \(d = 2 \) and monoid \((\mathbb{R}, +, 0) \) and let constants \(c \in [0,1] \) and \(\delta > 0 \) be chosen as in Theorem 2. Define \(U := \{1\} \) and \(Q := \{2\} \). We will prove that, subject to the OMv-conjecture, no \((U,Q) \)-structure constructible in \(\text{poly}(n) \) time can guarantee update time \(O(n^c) \) and query time \(O(n^{1-c-\delta}) \). This will imply the first bullet of the theorem.

Assume that such a structure \(\mathcal{T} \) exists. Set \(\gamma := \frac{1-c-\delta/2}{1+c/2} \). Next, we will describe an algorithm for the \(\gamma \)-uMv problem. In preprocessing, we create a set \(P \) of 2D points as follows: \(P \) has a point \((i,j) \) if and only if \(M[i,j] = 1 \) for each \(i \in [n_1] \) and \(j \in [n_2] \). Initialize \(w(p) := 0 \) for all \(p \in P \) and then create a \((U,Q) \)-structure \(\mathcal{T} \) on \(P \). The preprocessing time is \(\text{poly}(n_1,n_2) \) because \(|P| \leq n_1 \cdot n_2 \). Given vectors \(u \) and \(v \), we compute \(uMv \) by issuing at most \(n_1 \) \(U \)-updates and at most \(n_2 \) \(Q \)-queries. For each \(i \in [n_1] \), if \(u[i] = 1 \), we perform an update with rectangle \((r_{\text{upd}},1) \) with \(r_{\text{upd}} := [i,i] \times (-\infty,\infty) \) on \(P \), which effectively adds \(1 \) to the weight of every point \(p \in P \) satisfying \(p[1] = i \). Then, for each \(j \in [n_2] \), if \(v[j] = 1 \), we perform a query with \(r_{\text{qry}} := (-\infty,\infty) \times [j,j] \) on \(P \), which effectively checks whether any point \(p \in P \) with \(p[2] = j \) has a positive \(w(p) \). The reader can verify that \(uMv = 1 \) if and only if at least one of the queries returns a non-zero value.
To analyze the cost, set \(\lambda := n_2^{1/(e+\delta/2)} \). As \(n_1 = \lceil n_2^{c}\rceil \), we have \(n_1 = \Theta(\lambda^{1-c-\delta/2}) \) and \(n_2 = \Theta(\lambda^{c+\delta/2}) \). The number of points in \(P \) is \(O(n_1 \cdot n_2) = O(\lambda) \); hence, \(\Upsilon \) ensures update time \(O(\lambda^c) \) and query time \(O(\lambda^{1-c-\delta}) \). As the algorithm performs at most \(n_1 \) updates and at most \(n_2 \) queries, the total cost is

\[
O(n_1 \cdot \lambda^c + n_2 \cdot \lambda^{1-c-\delta}) = O(\lambda^{1-\delta/2}) = O((n_1 \cdot n_2)^{1-\delta/2})
\]

where the last step used \(\lambda = \Theta(n_1 \cdot n_2) \). This contradicts Lemma 11.

Proof of the Second Bullet of Theorem 2. As before, define \(U := \{1\} \) and \(Q := \{2\} \). We will prove that, subject to the OMv-conjecture, no \((U, Q)\)-structure constructible in \(\text{poly}(n) \) time can guarantee update time \(O(n^{1-c-\delta}) \) and query time \(O(n^c) \). This will imply the second bullet of the theorem.

Assume that such a structure exists. We deploy it to tackle \(\gamma \)-nMv in the same way as before where \(\gamma := \frac{e+\delta/2}{1-c-\delta/2} \). To analyze the cost, set \(\lambda := n_2^{1/(1-c-\delta/2)} \). As \(n_1 = \lceil n_2^{c}\rceil \), we have \(n_1 = \Theta(\lambda^{c+\delta/2}) \), \(n_2 = \Theta(\lambda^{1-c-\delta/2}) \), and \(|P| = O(n_1 \cdot n_2) = O(\lambda) \). The structure handles an update and query in \(O(\lambda^{c-\delta}) \) and \(O(\lambda^c) \) time, respectively. Because at most \(n_1 \) updates and at most \(n_2 \) queries are performed, our algorithm’s cost is \(O(n_1 \cdot \lambda^{1-c-\delta} + n_2 \cdot \lambda^c) = O(\lambda^{1-\delta/2}) = O((n_1 \cdot n_2)^{1-\delta/2}) \), contradicting Lemma 11.

> Remark. We can extend the above lower bound to any monoid \((\mathcal{M}, +, 0)\) as long as there is a value \(e^* \in \mathcal{M} \) satisfying \(\sum_{i=1}^n e^*_i \neq 0 \) for any \(e \in \{1, n\} \). The only modification is in the online phase: for each \(i \in [n_1] \) with \(u[i] = 1 \), add \(e^* \) (rather than \(1 \)) to \(w(p) \) for all the points \(p \in P \) satisfying \(p[1] = i \). Then, we have \(u \cdot M \cdot v = 1 \) if and only if at least one of the at most \(n_2 \) queries defined as before returns a non-zero value.

References

A Simpler Structure for the Array Variant of RSRU

Henceforth, we will focus on the array version of RSRU, defined in Section 1.1, where P is a d-dimensional array $[m]^d$ for some integer $m \geq 1$ (as a result, $n = m^d$). Our goal is to show:

Theorem 12. For the array variant of RSRU, there is a structure of $O(n)$ space that supports each query and update in $O(\log^{d+1} n)$ time. The query and update complexities can be improved to $O(\log^d n)$ if the underlying monoid is multiplicative.
Recall that a monoid \((\mathcal{M}, +, 0)\) is multiplicative if \(c \cdot w := \underbrace{w + w + \ldots + w}_c\) can be calculated in constant time for any weight \(w \in \mathcal{M}\) and any integer \(c \geq 1\). The monoid \((\mathbb{R}, +, 0)\) studied in [16, 22] is multiplicative; hence, the theorem subsumes the results in [16, 22] (reviewed in Section 1.1). For arbitrary commutative monoids, the extra \(O(\log n)\) factor arises from the need to compute a multiplication \(c \cdot w\) in \(O(\log c)\) time; the integer \(c\) never exceeds \(n\) in our algorithms. In [24], Yang and Wan claimed a structure with query and update time \(O(\log^d n)\), but a careful look at their definition reveals that their monoid is multiplicative; for non-multiplicative monoids, their query and update time both slow down by an \(O(\log n)\) factor. Hence, Theorem 12 recovers the result of [24] as well. Our structures are drastically different from those in [16, 22, 24].

A.1 The Counterpart of Theorem 4

The characteristics of RSRU revealed by Theorem 4 extend to the array version as well:

Theorem 13. For the array variant of RSRU, suppose that, given any disjoint \(U \subseteq [d]\) and \(Q \subseteq [d]\), there is a \((U, Q)\)-structure of \(O(1)\) space that guarantees update time \(T_{\text{upd}}\) and query time \(T_{\text{qry}}\). Then, there is a \([d],[d]\)-structure of \(O(n)\) space that handles an update in \(O(T_{\text{upd}} \cdot \log^d n)\) time and a query in \(O(T_{\text{qry}} \cdot \log^d n)\) time.

To prove the theorem, we need the lemma below that echoes Lemma 5.

Lemma 14. Consider any two overlapping subsets \(U\) and \(Q\) of \([d]\). Let \(i \in [d]\) be an arbitrary dimension in \(U \cap Q\). Suppose that we have a \((U \setminus \{i\}, Q)\)-structure and a \((U, Q \setminus \{i\})\)-structure both of which use \(O(m^{|U \cap Q| - 1})\) space and support an update in \(O(T_{\text{upd}})\) and a query in \(O(T_{\text{qry}})\) time. Then, there is a \((U, Q)\)-structure of \(O(m^{|U \cap Q|})\) space that handles an update in \(O(T_{\text{upd}} \cdot \log^d n)\) time and a query in \(O(T_{\text{qry}} \log^d n)\) time.

Proof. Due to symmetry, we assume \(i = 1\). Let \(S\) be the set of distinct x-coordinates of the points in \(P\). \(|S| = m\) because \(P\) is an array. We use the same reduction in the proof Lemma 5 to obtain a \((U, Q)\)-structure. Recall that \(T\) is a BST on \(S\) and \(P_u := \{p \in P \mid p[1] \in \sigma(u)\}\) for every node \(u\) in \(T\). Associate each \(u\) with a \((U \setminus \{1\}, Q)\)-structure and a \((U, Q \setminus \{1\})\)-structure both constructed on \(P_u\). The update and query algorithms require no changes and finish in \(O(T_{\text{upd}} \log n)\) and \(O(T_{\text{qry}} \log n)\) time, respectively. Since \(T\) has \(O(m)\) nodes and the space at each node is \(O(m^{|U \cap Q| - 1})\), the total space is \(O(m^{|U \cap Q|})\).

Equipped with the above lemma, we will now prove a general claim: fix any integer \(k \in [0, d]\); for any subsets \(U\) and \(Q\) of \([d]\) such that \(|U \cap Q| = k\), there is a \((U, Q)\)-structure of \(O(m^k)\) space that guarantees update and query time \(O(T_{\text{upd}} \log^k n)\) and \(O(T_{\text{qry}} \log^k n)\), respectively. Theorem 13 then follows because \(m^d = n\).

When \(k = 0\), \(U\) and \(Q\) are disjoint and the claim holds from the theorem’s assumption. Next, we will prove the claim for \(k = k_0 + 1\), assuming the claim’s correctness on \(k = k_0 \geq 0\). Fix an arbitrary \(i \in U \cap Q\). By the inductive assumption, there exist a \((U \setminus \{i\}, Q)\)-structure and a \((U, Q \setminus \{i\})\)-structure, both of which use \(O(m^{k_0})\) space and ensure update and query time \(O(T_{\text{upd}} \log^{k_0} n)\) and \(O(T_{\text{qry}} \log^{k_0} n)\) time, respectively. We now apply Lemma 14 to obtain a \((U, Q)\)-structure of \(O(m^{k_0+1})\) space with update and query time \(O(T_{\text{upd}} \log^{k_0+1} n)\) and \(O(T_{\text{qry}} \log^{k_0+1} n)\) time, respectively. This completes the proof.
A.2 U-Q Disjoint Structures

Since P is a d-dimensional array $[m]^d$, henceforth, we consider only d-rectangles of the form $[a_1, b_1] \times \ldots \times [a_d, b_d]$, where $a_i \in [m]$ and $b_i \in [m]$ for all $i \in [d]$. Accordingly, a U-rectangle is redefined as a d-rectangle r satisfying $r[i] = [1, m]$ for every $i \in [d] \setminus U$, and similarly, a Q-rectangle r is a d-rectangle satisfying $r[i] = [1, m]$ for every $i \in [d] \setminus Q$.

We will show:

Lemma 15. Consider the array version of RSRU. For any disjoint $U \subseteq [d]$ and $Q \subseteq [d]$, there is a (U, Q)-structure of $O(1)$ space that supports an update and a query in $O(\log n)$ time. The update and query time can be improved to $O(1)$ if the underlying monoid $(\mathcal{M}, +, 0)$ is multiplicative.

Combining Theorem 13 with the above lemma establishes Theorem 12. The rest of the subsection serves as a proof of Lemma 15.

Case 1: $Q = \emptyset$. In other words, the query rectangle r_{qry} always covers the whole $[m]^d$. It suffices to maintain the total weight of all the points: $s := \sum_{p \in P} w(p)$. A query obviously can be settled in $O(1)$ time. Given an update (r_{upd}, Δ), we first calculate the number c of points in P covered by r_{upd}. As P is a multidimensional array, this can be done in $O(1)$ time because $c = \prod_{i \in [d]} |r_{upd}[i] \cap [m]|$.

Then, we increase s by $c \cdot \Delta$, which takes $O(\log n)$ time, or $O(1)$ time if the monoid is multiplicative.

Case 2: $Q \neq \emptyset$. W.o.l.g., we will assume $Q = [\ell]$ for some integer $\ell \in [1, d]$; hence, $U \subseteq [\ell + 1, d]$. Given an ℓ-tuple $t := (x_1, x_2, \ldots, x_\ell) \in [m]^{\ell}$, let $P(t) := \{t\} \times [m]^{d-\ell}$, i.e., the set of points $p \in P$ satisfying $p[i] = x_i$ for all $i \in [\ell]$. Define $w(t) := \sum_{p \in P(t)} w(p)$.

Proposition 16. For any ℓ-tuples t and t', it always holds that $w(t) = w(t')$.

Proof. Consider any update (r_{upd}, Δ). As r_{upd} is a U-rectangle, $r_{upd}[i] = [1, m]$ for each $i \in [\ell]$. The number c of points in $P(t) \cap r_{upd}$ is $\prod_{i \in [\ell + 1, d]} |r_{upd}[i] \cap [m]|$. Likewise, $|P(t') \cap r_{upd}| = \prod_{i \in [\ell + 1, d]} |r_{upd}[i] \cap [m]|$. Hence, both $w(t)$ and $w(t')$ will increase by $c \cdot \Delta$ after the update. The claim follows because $w(t) = w(t') = 0$ in the beginning (i.e., before the first update).

Our structure simply maintains the $w(t^*)$ for an arbitrary ℓ-tuple t^*. Given a Q-query with rectangle r_{qry}, we first obtain in constant time the number c_1 of ℓ-tuples $t := (x_1, \ldots, x_\ell)$ satisfying $x_i \in r_{qry}[i]$ for every $i \in [\ell]$.

By Proposition 16 and the fact $r_{qry}[i] = [1, m]$ for every $i \in [\ell + 1, d]$ (r_{qry} is a Q-rectangle), the query answer is exactly $c_1 \cdot w(t^*)$, which can be computed in $O(\log n)$ time. Given an update (r_{upd}, Δ), we obtain in constant time the number c_2 of points in $P(t^*)$ covered by the U-rectangle r_{upd} and then increase $w(t^*)$ by $c_2 \cdot \Delta$ in $O(\log n)$ time. Both the update and query time can be reduced to $O(1)$ if the monoid is multiplicative.

This completes the proof of Lemma 15.

9 If $r_{upd}[i] = [a_i, b_i]$, then $|r_{upd}[i] \cap [m]| = b_i - a_i + 1$.
10 $c_1 = \prod_{i \in [\ell]} |r_{qry}[i] \cap [m]|$.
11 $c_2 = \prod_{i \in [\ell + 1, d]} |r_{ upd}[i] \cap [m]|$.