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Abstract
For an unknown n × n matrix A having non-negative entries, the inner product (IP) oracle takes
as inputs a specified row (or a column) of A and a vector v ∈ Rn with non-negative entries, and
returns their inner product. Given two input vectors x and y in Rn with non-negative entries, and
an unknown matrix A with non-negative entries with IP oracle access, we design almost optimal
sublinear time algorithms for the following two fundamental matrix problems:

Find an estimate X for the bilinear form xT Ay such that X ≈ xT Ay.

Designing a sampler Z for the entries of the matrix A such that P(Z = (i, j)) ≈ xiAijyj/
(
xT Ay

)
,

where xi and yj are i-th and j-th coordinate of x and y respectively.
As special cases of the above results, for any submatrix of an unknown matrix with non-negative
entries and IP oracle access, we can efficiently estimate the sum of the entries of any submatrix, and
also sample a random entry from the submatrix with probability proportional to its weight. We will
show that the above results imply that if we are given IP oracle access to the adjacency matrix of a
graph, with non-negative weights on the edges, then we can design sublinear time algorithms for the
following two fundamental graph problems:

Estimating the sum of the weights of the edges of an induced subgraph, and

Sampling edges proportional to their weights from an induced subgraph.
We show that compared to the classical local queries (degree, adjacency, and neighbor queries) on
graphs, we can get a quadratic speedup if we use IP oracle access for the above two problems.

Apart from the above, we study several matrix problems through the lens of IP oracle, like testing
if the matrix is diagonal, symmetric, doubly stochastic, etc. Note that IP oracle is in the class of linear
algebraic queries used lately in a series of works by Ben-Eliezer et al. [SODA’08], Nisan [SODA’21],
Rashtchian et al. [RANDOM’20], Sun et al. [ICALP’19], and Shi and Woodruff [AAAI’19]. Recently,
IP oracle was used by Bishnu et al. [RANDOM’21] to estimate dissimilarities between two matrices.
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8:2 Counting and Sampling from Substructures Using Linear Algebraic Queries

1 Introduction

Let A be an unknown n×n matrix with oracle access and with non-negative entries. Consider
a submatrix B of A given by two subsets S1 and S2 of indices of the rows and columns A,
that is, B := (Aij)(i,j)∈S1×S2

. Note that submatrix B is unknown as the matrix A itself is
unknown. We are only given as inputs the sets S1 and S2, and oracle access to the unknown
matrix A, and we have to efficiently solve the following two problems:

Estimate the sum of the entries in the submatrix B, and
sample a random entry (i, j) from B proportional to its weight Aij , that is, we output
(i, j) ∈ S1 × S2 with probability

Aij∑
(i,j)∈S1×S2

Aij
.

We will show that using IP oracle access to A, which takes as inputs a specified row (or a
column) of A and a vector v ∈ Rn with non-negative entries and returns their inner product
(see Section 1.1 for a formal definition), we can design efficient algorithms for the above
defined fundamental problems. In fact, we will be giving efficient algorithms for even more
general problems, see Section 1.2. Now, we discuss two consequences of our result on the
above-mentioned matrix problem.

Counting and sampling edges from induced subgraphs

Let G = (V (G), E(G)) be an unknown graph1 on n vertices, and S be any subset of vertices
of G. Assume that the query access to graph G is induced degree query oracle which
takes a vertex u ∈ V (G) and a subset X ⊆ V as input and reports the number of neighbors
of u that are present in X. Given induced degree query access to G, two natural questions
to consider on the subgraph GS of G induced by the subset S are the following

estimate the number of edges in GS , and
uniformly sample a random edge from GS .

Observe that both of these graph problems with induced degree query access can be
reduced to the matrix problems with IP oracle access to the adjacency matrix of the graph,
where we only ask for inner product with the vectors in {0, 1}n.

Weighted edge counting and sampling from graphs

For a graph with non-negative weights on its edges, we can similarly consider the problems
of estimating the sum of the weights of the edges in the graph, and sampling edges of the
graph proportional to its weight. Again, observe that these two fundamental problems on
weighted graphs can also be reduced to the matrix problem defined at the beginning of this
section by considering their adjacency matrix.

Notation

In this paper, we denote the set {1, . . . , t} by [t] and {0, . . . , t} by [[t]]. For a (directed) graph
G, V (G) and E(G) denote the vertex set and edge sets of G, we will use V and E when the
graph is clear from the context. For a vertex u, let dG(u) denote the degree of u in G and NG(u)
denote the set of neighbors of u in G. For a subset S of V (G), the subgraph of G induced
by S is denoted by GS = (S, ES) such that ES := {{u, v} ∈ E(G) | u ∈ S and v ∈ S}. The
local queries for a graph G = (V (G), E(G)) are:

1 By unknown we mean that the vertex set V (G) of G is known but the edge set E(G) is not known.
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Degree query: given u ∈ V (G), the oracle reports the degree of u in V (G)
Neighbor query: given u ∈ V (G) and an integer i, the oracle reports the i-th neighbor of

u, if it exists; otherwise, the oracle reports ⊥ 2.
Adjacency query: given u, v ∈ V (G), the oracle reports whether {u, v} ∈ E(G).

For a non-empty set X and a given parameter ε ∈ (0, 1), an almost uniform sample
of X means each element of X is sampled with probability values that lie in the interval
[(1 − ε)/|X|, (1 + ε)/|X|]. For a matrix A, Aij denotes the element in the i-th row and j-th
column of A. Ai∗ and A∗j denote the i-th row vector and j-th column vector of the matrix
A, respectively. A ∈ [[ρ]]n×n means Aij ∈ [[ρ]] for each i, j ∈ [n], ρ ∈ N. Throughout this
paper, the number of rows or columns of a square matrix A is n, which will be clear from
the context. Vectors are matrices of order n × 1 and will be represented using boldface
letters. Without loss of generality, we consider n to be a power of 2. The i-th coordinate of
a vector x is denoted by xi. We denote by 1 the vector with all coordinates 1. Let {0, 1}n

be the set of n-dimensional vectors with entries either 0 or 1. For x ∈ Rn, 1x is a vector
in {0, 1}n whose i-th coordinate is 1 if xi ̸= 0 and 0 otherwise; nnz(x) = |i ∈ [n] : xi ̸= 0|
denotes the number of non-zero components of the vector. By ⟨x, y⟩, we denote the standard
inner product of x and y, that is, ⟨x, y⟩ =

∑n
i=1 xiyi. For a, b ∈ R, we say a = (1 ± ε)b if

a ∈ [(1 − ε)b, (1 + ε)b]. Similarly, P is a (1 ± ε)-approximation to Q means |P − Q| ≤ ε · Q.
With high probability means that the probability of success is at least 1 − 1

nc , where c is a
positive constant. Θ̃(·) and Õ(·) hides a poly (log n, 1/ε) term in the upper bound.

1.1 Definition and motivation of INNER PRODUCT oracle

Let A ∈ [[ρ]]n×n, ρ ∈ N, be a matrix whose size is known but the entries are unknown. Now
given a row index i ∈ [n] (or, a column index j ∈ [n]) and a vector v ∈ Rn, with non-negative
entries as input, the inner product query to A reports the value of ⟨Ai∗, v⟩ (⟨A∗j , v⟩). If
the input index is for row (column), we refer to the corresponding query as row (column)
IP query. Observe that induced degree query can be implemented for a graph G by IP
oracle as a dot product with 1S (indicator vector for the set S) and the corresponding row
of the matrix A that is the 0/1 adjacency matrix of G.

The IP query has both graph theoretic and linear algebraic flavors to it and we will
highlight them shortly. It may be mentioned here that IP has been already used to estimate
the Hamming distance between two matrices [12].

From a practical point of view, Rashtchian et al. [32] mention that vector-matrix-vector
queries would most likely be useful in the context of specialized hardware or distributed
environments. Needless to say, the same carries over to IP query. There are many computer
architectures that allow us to compute inner products in one cycle of computation with more
parallel processors. Inner product computation can be parallelized using single instruction
multiple data (SIMD) architecture [26]. Modern day GPU processors use instruction-level
parallelism. Nvidia GPUs precisely do that by providing a single API call to compute inner
products [35, 2]. There are many such architectures where IP query has been given to users
directly. Similarly, there are programming language constructs built on SIMD framework
that can compute inner products [1].

2 The ordering of neighbors of the vertices are unknown to the algorithm.

FSTTCS 2022



8:4 Counting and Sampling from Substructures Using Linear Algebraic Queries

1.2 The problems, results and paper organization
The main matrix-related problems considered in this work involve estimating the bilinear
form xT Ay and sampling an element of a matrix almost uniformly using IP queries. Bilinear
form estimation is inherently interesting as it is a generalization of the problem defined at the
beginning of Section 1. Also, bilinear form estimation has huge importance in numerical linear
algebra because of its use in calculating node centrality measures like resolvent subgraph
centrality and resolvent subgraph communicability [10, 22], Katz score for adapting it to
PageRank computing [14], etc.

Bilinear Form EstimationA(x, y), in short BfeA(x, y)
Input: Vectors x ∈ [[γ1]]n, y ∈ [[γ2]]n, IP access to matrix A ∈ [[ρ]]n×n, and ε ∈ (0, 1).
Output: An (1 ± ε)-approximation to xT Ay.

Sample Almost UniformlyA(x, y), in short SauA(x, y)
Input: Vectors x ∈ [[γ1]]n, y ∈ [[γ2]]n, IP access to matrix A ∈ [[ρ]]n×n, and ε ∈ (0, 1).
Output: Report Z satisfying (1 − ε) xiAijyj

xT Ay ≤ P(Z = (i, j)) ≤ (1 + ε) xiAijyj

xT Ay .

For the above problems, our results are stated in Theorem 1.1. We give the sketches of
the proofs of the upper bound for a special case in Section 4. The general upper bounds can
be derived from the special case and their proof is in the full version [13] of the paper. The
lower bound parts of Theorem 1.1 are also proved in the full version [13].

▶ Theorem 1.1. BfeA(x, y) and SauA(x, y) can be solved by using

Θ̃
(√

ργ1γ2 (nnz(x) + nnz(y))√
xT Ay

)

IP queries, where nnz(x) and nnz(y) denotes the number of non-zero entries in x and y,
respectively.

The above theorem has several important consequences. An immediate consequence of
Theorem 1.1 is the following.

▶ Corollary 1.2 (Estimating and sampling from submatrices of 0/1 matrix). 3 Let A with n×n

unknown 0/1 matrix with IP oracle access. Let ε ∈ (0, 1), and S1 and S2 be subsets of indices
of the rows and columns of the matrix A, respectively. For the matrix B = (Aij)i∈S1,j∈S2

using Θ̃
(

|S1|+|S2|√
nnz(B)

)
IP queries, we can find an estimate X of the number of ones in B such

that X = (1 ± ε)
∑

(i,j)∈S1×S2

Aij, and also design a sampler Z of S1 × S2 satisfying, for all

(i, j) ∈ S1 × S2,

P (Z = (i, j)) = (1 ± ε) Aij

nnz (B) .

Furthermore, the IP queries used by both algorithms only ask for inner products with vectors
in {0, 1}n.

3 Even though Corollary 1.3 is more general than Corollary 1.2, we state Corollary 1.2 to show its
application in Remark 1.4 (i).
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We now define a more general class of matrices. Let F (n, ρ) be a family of n × n matrices
with non-negative entries such that for all A ∈ F (n, ρ) we have

min
(i,j):Aij>0

Aij ≥ 1 and max
(i,j):Aij>0

Aij ≤ ρ.

The following result, which is a direct corollary from Theorem 1.1, shows that we can
efficiently estimate and sample even from this family.

▶ Corollary 1.3 (Estimating and sampling from a arbitrary matrix). Let A with unknown matrix
in F (n, ρ) with IP oracle access. Let ε ∈ (0, 1), and S1 and S2 be subsets of indices of the
rows and columns of the matrix A, respectively. For the matrix B = (Aij)i∈S1,j∈S2 using

Õ

√
ρ(|S1|+|S2|)√∑

i,j
Aij

 IP queries, we can find an estimate X of the number of ones in B, that

is, X = (1 ± ε)
∑

i,j Bij, and we can also design a sampler Z of [n] × [n] satisfying, for all
(i, j) ∈ S1 × S2,

P (Z = (i, j)) = (1 ± ε) Aij∑
(i,j)∈S1×S2

Aij
.

We would like to point out that the above corollaries are also tight because the lower
bound part of the proof of Theorem 1.1 holds even for their special cases.

▶ Remark 1.4 (Consequences of Theorem 1.1).
(i) Induced subgraphs: Given Induced Degree query access to a unknown graph G =

(V (G), E(G)) and a subset S ⊂ V (G) and an ε ∈ (0, 1) as input, one can estimate the
number edges in GS up to (1 ± ε) factor by using Õ

(
|S|√
mS

)
queries and sample a random

edge almost uniformly from GS , where GS denotes the subgraph of G induced by S. We
can also design a sampler for the edges in GS where each edge e ∈ E(GS) gets sampled
with probability (1 ± ε) 1

|E(GS)| using the same number of queries. Note that this result
follows from Corollary 1.2 as each induced degree query to graph G is analogous to an
IP query to the adjacency matrix of G. It is because the algorithms corresponding to
Corollary 1.2 only ask for inner product with vectors in {0, 1}n.

(ii) Weighted graphs: Given IP oracle access to the adjacency matrix A ∈ [[ρ]]n×n 4 of
weighted graph G = (V (G), E(G)), then we can estimate ω(G) :=

∑
(i,j)∈ Aij up to

(1 ± ε)-approximation using at most Õ

( √
ρn√

ω(G)

)
IP queries. We can also design a

sampler for the edges of the graph G where each edge (i, j) ∈ E(G) gets sampled with
probability (1 ± ε) Aij

ω(G) using the same number of queries. Note that this result follows
from Corollary 1.3, and is a generalization of the edge estimation results using local
queries by Feige [23], and Goldreich and Ron [25].

(iii) Stochastic matrices: Let A be an unknown doubly stochastic5 n × n matrix with IP
oracle access, and each non-zero entry of A is at least λ > 0. We can design a sampler Z
of [n] × [n] such that, for all (i, j) ∈ [n] × [n], we have P(Z = (i, j)) = (1 ± ε)Aij . Our
sampler will use at most Õ

(
n/

√
λ
)

queries.

4 Assume that G is a complete graph such that the weights on {i, j} /∈ E(G) is 0.
5 A matrix A with non-negative entries is doubly stochastic if the sum of the entries of any row or column

is one.

FSTTCS 2022



8:6 Counting and Sampling from Substructures Using Linear Algebraic Queries

In Section 5, we discuss several other matrix problems using IP oracle query which were
studied using stronger queries like matrix vector and vector matrix vector queries [39, 32].

In Section 3 we establish that local query access (to the entire unknown graph) cannot
solve problems in induced subgraphs efficiently. Two crucial takeaways are that IP oracle and
its derivative, the induced degree oracle act like a local query on any induced subgraphs,
and there is a quadratic separation between the powers of local query and induced
degree queries to solve Edge Estimation and Edge Sampling in induced subgraphs.

2 Inner product oracle vis-a-vis other query oracles

Graph parameter estimation, where the graph can be accessed through query oracles only,
has been an active area of research in sub-linear algorithms for a while [25, 19, 20, 34]. There
are different granularities at which the graph can be accessed – the query oracle can answer
properties about graphs that are local or global in nature. By now, the local queries have
been used for edge [25], triangle [19], clique estimation [20] and has got a wide acceptance
among researchers. Apart from the local queries, in the last few years, researchers have
also used the random edge query [4, 6], where the oracle returns an edge in the graph G

uniformly at random. Notice that the randomness will be over the probability space of all
edges, and hence, it is difficult to classify a random edge query as a local query. On the other
hand, global queries come in different forms. Starting with the subset queries [37, 38, 33],
there have been other queries like bipartite independent set query, independent set
query [8], gpis query [11, 17], cut query [34], etc. Linear measurements or queries [5, 3],
based on dot product, have been used for different graph problems.

To this collection of query oracles, we introduce a new oracle called inner product (IP)
oracle which is a natural oracle to consider for linear algebraic and graph problems. Using
this oracle, we solve hitherto unsolved problems (by an unsolved problem, we mean that no
non-trivial algorithm was known before) with graph theoretic and linear algebraic flavor, like
(a) edge estimation in induced sub-graph; (b) bilinear form estimation; (c) sampling entries
of matrices with non-negative entries. We also show weighted edge estimation and edge
estimation in induced subgraph as applications of bilinear form estimation. Our lower bound
result, for Edge Estimation in induced subgraph with only local query access, implies
that there is a separation between the powers of local query and induced degree query.
We will show that our newly introduced inner product query oracle can solve problems
that can not be solved by the three local queries mentioned even coupled with the random
edge query.

Our current survey of the literature (here we do not claim exhaustivity!) shows that a
query related to a subgraph was first used in Ben-Eliezer et al. [9], and named as group query,
where one asks if there is at least one edge between a vertex and a set of vertices. We found
the latest query in this league to be the demand query (in bipartite graphs where the vertex
set are partitioned into two parts left vertices and right vertices) introduced by Nissan [29] –
a demand query accepts a left vertex and an order on the right vertices and returns the first
vertex in that order that is a neighbor of the left vertex. One can observe that the group
and demand queries are polylogarithmically equivalent. Staying on this line of study related
to the relation of a vertex with a subset of vertices, we focus on the induced degree query
which we feel handles many natural questions.

Query oracle based graph algorithms access the graph at different granularities – this
gives rise to a whole gamut of queries with different capacities, ranging from local queries
like degree, neighbor, adjacency queries [23, 25] to global queries like independent set based
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queries [8, 17], random edge queries [4], and others like group [9] and demand queries [29].
This rich landscape of queries has unravelled many interesting algorithmic and complexity
theoretic results [23, 25, 4, 9, 29, 8, 17, 33]. With this in mind, if we turn our focus to
the landscape of linear algebraic queries, the most natural query is the matrix entry query
where one gives an index of the matrix and asks for the value there. Lately, a series of
works [32, 39, 36, 7] have used linear algebraic queries like vector-matrix-vector query and
matrix-vector queries. The IP oracle is also motivated by these new query oracles. Notice
the huge difference in power between matrix entry query and vector-matrix-vector query
and matrix-vector queries. Note that IP query is strictly weaker than these matrix queries
but stronger than the matrix entry query. We feel there is a need to study linear algebraic
queries with intermediate power – the IP query fits in that slot.

3 A query model for induced subgraph problems

To the best of our knowledge, our work is a first attempt towards solving estimation problems
in induced subgraphs. We start by showing a separation between local query and induced
degree query using the problems of Edge Estimation and Edge Sampling in induced
subgraph. We now define Induced Edge Estimation and Induced Edge Sampling.

Induced Edge Estimation
Input: A parameter ε ∈ (0, 1) and a subset S of the vertex set V of a graph G.
Output: A (1 ± ε)-approximation to the number of edges ES in the induced subgraph.

Induced Edge Sampling
Input: A parameter ε ∈ (0, 1) and a subset S of the vertex set V of a graph G.
Output: Sample each edge e ∈ ES with probability between 1−ε

|ES | and 1+ε
|ES | .

One of the main contributions of this paper is to show that local queries together with
random edge query are inefficient for both Induced Edge Estimation and Induced
Edge Sampling. The lower bound results follow.

▶ Theorem 3.1 (Lower bound for Induced Edge Estimation using local queries). Let
us assume that s, ms ∈ N be such that 1 ≤ ms ≤

(
s
2
)

and the query algorithms have access
to degree, neighbor, adjacency and random edge queries to an unknown graph
G = (V (G), E(G)). Any query algorithm that can decide for all S ⊆ V (G), with |S| = Θ(s),
whether |ES | = ms or |ES | = 2ms, with probability at least 2/3, requires Ω

(
s2

ms

)
queries.

▶ Theorem 3.2 (Lower bound for Induced Edge Sampling using local queries). Let
us assume that s, ms ∈ N be such that 1 ≤ ms ≤

(
s
2
)

and the query algorithms have access
to degree, neighbor, adjacency and random edge queries to an unknown graph
G = (V (G), E(G)). Any query algorithm that for any S ⊆ V (G), with |S| = Θ(s), samples
the edges in ES ε-almost uniformly 6, with probability at least 99/100, will require Ω

(
s2

ms

)
queries 7. Note that ε ∈ (0, 1) is given as an input to the algorithm.

6 Each edge in ES is sampled with probability between (1 − ε) 1
|ES | and (1 + ε) 1

|ES | .
7 Let U denote the uniform distribution on ES . The lower bound even holds even if the goal is to get a

distribution that is ε close to U with respect to ℓ1 distance.

FSTTCS 2022



8:8 Counting and Sampling from Substructures Using Linear Algebraic Queries

▶ Remark 3.3. When S = V , Induced Edge Estimation and Induced Edge Sampling
are Edge Estimation and Edge Sampling problems, respectively. Both Edge Estimation
and Edge Sampling can be solved with high probability by using Θ̃

(
|V |2/|E|

)
adjacency

queries [24]. Notice that these bounds match the lower bounds. Contrast this with the
fact that Edge Estimation and Edge Sampling can be solved with high probability by
using Θ̃

(
|V |/

√
|E|
)

local queries, where each local query is either a degree or a neighbor
or an adjacency query [25, 21]. Thus, we observe that for Induced Edge Estimation
and Induced Edge Sampling, the adjacency query is as good as the entire gamut of
local queries and random edge query. On a different note, our results on Bilinear
Form Estimation and Almost uniformly Sampling using IP query generalize the
above mentioned results on Edge Estimation and Edge Sampling using local queries.
Note that IP oracle is a natural query oracle for graphs where the unknown matrix is the
adjacency matrix of a graph, and we will discuss that in Remark 3.8 that IP query on the
adjacency matrix graphs is stronger than the local queries.

In Section 3.1, we prove Theorems 3.1 and 3.2 by reduction from a problem in commu-
nication complexity. In Section 3.2, we discuss the way in which induced degree query
simulates local queries in any induced subgraph (see Remark 3.8). This will imply that
the lower bound results in Theorems 3.1 and 3.2 can be overcome if we have an access to
induced degree query to the whole graph (see Corollary 3.9). However, the implication is
more general and will be discussed in Section 3.2.

3.1 Limitations of local and random edge queries
The proofs of the lower bounds use communication complexity. We will first provide a
rudimentary introduction to communication complexity. For a detailed introduction to
communication complexity refer to the following books [27, 31].

Brief introduction to communication complexity

In two-party communication complexity there are two parties, Alice and Bob, that wish to
compute a function Π : {0, 1}N ×{0, 1}N → {0, 1}. Alice is given x ∈ {0, 1}N and Bob is given
y ∈ {0, 1}N . Let xi (yi) denotes the i-th bit of x (y). While the parties know the function
Π, Alice does not know y, and similarly Bob does not know x. Thus they communicate bits
following a pre-decided protocol P in order to compute Π(x, y). We say a randomized protocol
P computes Π if for all (x, y) ∈ {0, 1}N × {0, 1}N we have P[P(x, y) = Π(x, y)] ≥ 2/3. The
model provides the parties access to a common random string of arbitrary length. The cost
of the protocol P is the maximum number of bits communicated, where maximum is over all
inputs (x, y) ∈ {0, 1}N × {0, 1}N . The communication complexity of the function is the cost
of the most efficient protocol computing Π.

Proofs of Theorems 3.1 and 3.2

We will use the following problem in our lower bound proofs.

▶ Definition 3.4 (k-Intersection). Let k, N ∈ N such that k ≤ N . Let S = {(x, y) : x, y ∈
{0, 1}N ,

∑N
i=1 xiyi = k or 0}. The k-Intersection function over N bits is a partial function

denoted by k-Intersection : S → {0, 1}, and is defined as follows: k-Intersection(x, y) =
1 if

∑N
i=1 xiyi = k and 0, otherwise.
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▶ Lemma 3.5 ([27]). Let k, N ∈ N such that k ≤ N . The randomized communication
complexity of k-Intersection function on N bits is Ω (N/k).

Proof of Theorem 3.1. We give a reduction from ms-Intersection problem over N = s2

bits. Let x = (xij) ∈ {0, 1}N be such that i, j ∈ [s]. Similarly, let y ∈ {0, 1}N . It is promised
that Alice and Bob will be given x and y such that there are either 0 intersections or exactly
ms intersections, i.e., either ⟨x, y⟩ = 0 or ms. Now we define a graph G(x,y)(V (G), E(G)) as
follows where ⊔ denotes disjoint union.

|V (G)| = Θ(s). V (G) = SA ⊔SB ⊔TA ⊔TB ⊔C such that SA, SB , TA, TB are independent
sets and |SA| = |SB | = |TA| = |TB | = s and |C| = Θ(s). Note that V (G) is independent
of x and y;
The subgraph (of G(x,y)) induced by C is a fixed graph, independent of x and y, having
exactly ms edges. Also there are no edges in G(x,y) between the vertices of C and
V (G) \ C.
The edges in the subgraph (of G(x,y)) induced by V (G) \ C = SA ⊔ TA ⊔ SB ⊔ TB depend
on x and y as follows. Let SA = {sA

i : i ∈ [s]}, TA = {tA
i : i ∈ [s]}, SB = {sB

i : i ∈ [s]}
and TB = {tB

i : i ∈ [s]}. For i, j ∈ [s], if xij = yij = 1, then (sA
i , tB

j ) ∈ E(G) and
(sB

i , tA
j ) ∈ E(G). For i, j ∈ [s] if either xij = 0 or yij = 0, then (sA

i , tA
j ) ∈ E(G) and

(sB
i , tB

j ) ∈ E(G);
The graph G(x,y) can be uniquely generated from x and y. Moreover, Alice and Bob need
to communicate to learn useful information about G(x,y). Observation 3.6 follows from the
construction that shows the relation between the number of edges in the subgraph induced by
SA ⊔ TB ⊔ C with ⟨x, y⟩, where x, y ∈ {0, 1}N are such that either ⟨x, y⟩ = 0 or ⟨x, y⟩ = ms.

▶ Observation 3.6. (i) |SA ⊔ TB ⊔ C| = Θ(s), (ii) irrespective of x and y: |ESA
| = |ESB

| =
|ETA

| = |ETB
| = 0, also the degree of each vertex in SA ⊔ TA ⊔ SB ⊔ TB is same (i.e., s), and

(iii) if ⟨x, y⟩ = 0, then |ESA⊔TB⊔C | = ms, (iv) if ⟨x, y⟩ = ms, then |ESA⊔TB⊔C | = 2ms.

The following observation completes the proof of the theorem.

▶ Observation 3.7. Alice and Bob can deterministically determine answer for each local
query to graph G(x,y) by communicating O(1) bits.

We will give the proof of the above observation at the end of this subsection. ◀

Proof of Theorem 3.2. For clarity, we prove the theorem for ε = 1/4. However, the proof
can be extended for any ε ∈ (0, 1/2). We use the same set up and construction as in
Theorem 3.1 with S = SA ⊔ SB ⊔ C. Let A be an algorithm that almost uniformly samples
edges from the induced graph GS = (S, ES) making T queries, with probability 99/100.
Using A we give another algorithm A′ that decides whether |ES | = ms or |ES | = 2ms

by using O(T ) queries, with probability at least 2/3. From the reduction presented in
Theorem 3.1, Alice and Bob can use A′ to solve ms-Intersection over N = s2 bits, and
hence T = Ω( s2

ms
).

A′ runs A 10 times independently to obtain edges e1, . . . , e10. Note that each edge ei

is sampled almost uniformly. If at least one ei satisfies ei ∈ ESA⊔TB
, then A′ reports that

|ES | = 2ms. Otherwise, A′ reports that |ES | = ms. The query cost of A′ is Θ(T ).
If |ES | = ms, then there is no edge in the subgraph induced by SA ⊔ TB. So, in this

case, all the edges reported by A′ are from the subgraph induced by C. Now consider
when |ES | = 2ms. In this case, the subgraph induced by SA ⊔ TB and C have exactly ms

edges each. So, by the assumption of the algorithm A, the probability that any particular
ei is present in the subgraph induced by SA ⊔ TB is at least 1/2 − ε = 1/4 (since we are
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analyzing for ε = 1/4). So, under the conditional space that all the ten runs of A succeed,
the probability that none of the ten edges sampled by A is from the subgraph induced by
SA ⊔ TB is at most (1 − 1/4)10

< 1/10. As each run of algorithm A succeeds with probability
at least 99/100, all the ten runs of the algorithm A succeeds with probability at least 9/10.
So, the probability that algorithm A′ succeeds is at least 9/10 · (1 − 1/10) > 2/3. ◀

We will finish this subsection with the proof of Observation 3.7 used in the proof of
Theorem 3.1.

Proof of Observation 3.7.
degree query: By Observation 3.6 (ii), the degree of every vertex in V (G) \ C is s. Also,

the subgraph induced by C is a fixed graph disconnected from the rest. That is Alice
and Bob know the degree of every vertex in C. Therefore, any degree query can be
simulated without any communication.

neighbor query: Observe that Alice and Bob can get the answer to any neighbor query
involving a vertex in C without any communication. Now, consider the set SA. The labels
of the j neighbors of any vertex in sA

i ∈ SA are as follows: for j ∈ [s], the j-th neighbor
of sA

i is either tB
j or sA

j depending on whether xij = yij = 1 or not, respectively. So, any
neighbor query involving vertex in SA can be answered by 2 bits of communication.
Similar arguments also hold for the vertices in SB ⊔ TA ⊔ TB .

adjacency query: Observe that each adjacency query can be answered by at most 2 bits
of communication, and it can be argued like the neighbor query.

random edge query: By Observation 3.6 (ii), the degree of every vertex in V (G) \ C is
s irrespective of the inputs of Alice and Bob. Also, they know the entire subgraph
induced by the vertex set C. Also, C is disconnected from the rest. Alice and Bob use
shared randomness to sample a vertex in V proportional to its degree. Let r ∈ V be
the sampled vertex. They again use shared randomness to sample an integer j in [d(v)]
uniformly at random. Then they determine the j-th neighbor of r using neighbor query.
Observe that this procedure simulates a random edge query by using at most 2 bits of
communication. ◀

3.2 A query model for induced subgraphs
Observe that induced degree query can simulate any local queries on subgraphs.

▶ Remark 3.8. Let us have an induced degree query oracle access to an unknown graph
G(V, E). Consider any X ⊆ V (G) and GX , the subgraph of G induced by X. Then
(i) Any query to GX , which is either a degree or adjacency, can be answered by one

induced degree query to G.
(ii) Moreover, any neighbor query to GX can be answered by O(log |X|) induced degree

query to G by binary search.

The above remark together with the edge estimation result of Goldreich and Ron [25],
and edge sampling result of Eden and Rosenbaum [21], will give us the following result.

▶ Corollary 3.9 (Estimating and sampling edges in induced subgraphs). Let us assume that
the query algorithms have access to induced degree query to an unknown graph G =
(V (G), E(G)). There exists an algorithm that takes a subset S ⊆ V (G) and ε ∈ (0, 1) as
inputs, and outputs a (1±ε)-approximation to |ES |, with high probability, using Õ

(
|S|/

√
ES

)
induced degree queries to G. Also, there exists an algorithm that ε-almost uniformly
samples edges in ES, with high probability, using Õ

(
|S|/

√
ES

)
induced degree queries.
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▶ Remark 3.10. More generally, Remark 3.8 implies that any problem P on a graph G that
can be solved by using f (|V (G)|, |E(G)|) local queries, can also be solved on any induced
subgraph GS , where S ⊆ V (G), of G by using f (|V (GS)|, |E(GS)|) ·O(log |V (GS)|) induced
degree queries.

4 Bilinear form estimating and sampling entries of a matrix

4.1 Algorithm for Bilinear Form Estimation
To give the main ideas behind the algorithm for Bilinear Form Estimation, we will
discuss, in this section, the algorithm for estimating 1T A1 using IP access to A, with A

being symmetric. The algorithm for the special case is inspired by [25]. In the full version
of the paper ([13]) we show how the algorithm for this special case can be extended for the
general problem of estimating xT Ay, where A ∈ [[ρ]]n×n, x ∈ [[γ1]]n and y ∈ [[γ2]]n. We will
now give an outline of the proof of the following theorem.

▶ Theorem 4.1. There exists a query algorithm for Bfe that takes ε ∈ (0, 1/2) as input and
determines a (1 ± ε)-approximation to 1T A1 with high probability by using Õ

( √
ρn√

1T A1

)
IP

queries to a symmetric matrix A ∈ [[ρ]]n×n. Moreover, the algorithm only uses IP query of
the form ⟨Ak∗, u⟩ for some k ∈ [n] and u ∈ {0, 1}n.

The algorithms for Bilinear Form Estimation and Sample Almost Uniformly (Sec-
tion 4.2) will use a subroutine, which takes as input a given row i ∈ [n] of A and a non-empty
set S ⊆ [n], and outputs Aij , where j ∈ S, with probability Aij/

(∑
j∈S Aij

)
.

Algorithm 1 Regr(x, i).

Input: A vector x ∈ {0, 1}n such that the 1’s in x are consecutive and the number
of 1’s is a power of 2, an integer i ∈ [n] and IP access to a matrix A.

Output: Ordered pair (i, j) with probability Aij ·xj

⟨Ai∗,x⟩ .
begin

if (the number of 1’s in x is 1) then
Report the ordered pair (ij∗) where xj∗ = 1.

end
else

Form a vector y (z) in {0, 1}n by setting second (first) half of the nonzero
elements in x to 0 and keeping the remaining elements unchanged.

Determine ⟨Ai∗, y⟩ and ⟨Ai∗, z⟩.
With probability ⟨Ai∗,y⟩

⟨Ai∗,x⟩ report Regr(y, i) and with probability ⟨Ai∗,z⟩
⟨Ai∗,x⟩ report

Regr(z, i).
end

end

▶ Observation 4.2. There exists an algorithm Regr (See Algorithm 1) that takes i ∈ [n] and
x ∈ {0, 1}n as inputs, outputs Aij with probability Aijxj/

(∑
j∈[n] Aijxj

)
by using O(log n)

IP queries to matrix A.

We will now discuss in the following paragraphs the details of the algorithm (Algorithm 2)
for estimating 1T A1. The ingredients, to prove the correctness of Algorithm 2, are formally
stated in Lemma 4.6. The approximation guarantee of Algorithm 2, which matches the
guarantee mentioned in Theorem 4.1, is given in Claim 4.7.
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Partition of rows of A induced by ε

Given ε as input, we argue that the rows of the symmetric matrix A can be partitioned
into “buckets” such that the total number of buckets is small and every row in a particular
bucket has approximately the same total weight. Consider a partition of [n], that corresponds
to the set of the indices of the rows of the symmetric matrix A, into buckets with the
property that all js present in a particular bucket Bi have approximately the same value
of ⟨Aj∗, 1⟩. Let t = ⌈log1+β(ρn)⌉ + 1, where β ≤ ε/8. For i ∈ [t], we define the set
Bi :=

{
j ∈ [n] : (1 + β)i−1 ≤ ⟨Aj∗, 1⟩ < (1 + β)i

}
. Since Aij ≤ ρ, the maximum number

of such buckets Bi required are at most t = ⌈log1+β(ρn)⌉ + 1. Now consider the following
fact that will be used in our analysis.

▶ Fact 4.3. For every i ∈ [t], (1 + β)i−1 |Bi| ≤
∑

j∈Bi
⟨Aj∗, 1⟩ < (1 + β)i |Bi|.

Based on the number of rows in a bucket, we classify the buckets to be either large or
small. To define the large and small buckets, we require a lower bound ℓ on the value of
m = 1T A1. Moreover, let us assume that, m/6 ≤ ℓ ≤ m. However, this restriction can be
removed by using standard techniques from property testing. For details, see [13, Section 4].

▶ Definition 4.4. We fix a threshold θ = 1
t · 1

n

√
ε
8 · ℓ

ρ . For i ∈ [t], we define the set Bi to be
a large bucket if |Bi| ≥ θn, otherwise Bi is defined to be a small bucket. Thus, the set of
large buckets L is defined as L = {i ∈ [t] : |Bi| ≥ θn}, and [t] \ L is the set of small buckets.

Let V, U ⊆ [n] be the sets of indices of rows that lie in large and small buckets, respectively.
For I ⊆ [n], let xI denote the sub-vector of x induced by the indices present in I. Similarly,
for I, J ⊆ [n], let AIJ denote the sub-matrix of A where the rows and columns are induced
by the indices present in I and J , respectively. Observe that,

1T A1 = 1V
T AV V 1V + 1V

T AV U 1U + 1U
T AUV 1V + 1U

T AUU 1U .

2-Approximation of 1TA1

Note that at this point we know β and, upon querying ⟨Aj∗, 1⟩, we can determine the bucket
to which j belongs, for j ∈ [n]. The algorithm begins by sampling a subset S of rows of
A, such that |S| = K, independently and uniformly at random with replacement, and for
each sampled row j, the algorithm determines ⟨Aj∗, 1⟩ by using IP oracle. This determines
the bucket in which each sampled row belongs. Depending on the number of sampled rows
present in different buckets, our algorithm classifies each bucket as either large or small. Let
Ṽ and Ũ be the indices of the rows present in large and small buckets, respectively. Note that
the algorithm does not find Ṽ and Ũ explicitly – these are used only for analysis purposes.

Observe that,

1T A1 = 1
Ṽ

T A
Ṽ Ṽ

1
Ṽ

+ 1
Ṽ

T A
Ṽ Ũ

1
Ũ

+ 1
Ũ

T A
ŨṼ

1
Ṽ

+ 1
Ũ

T A
ŨŨ

1
Ũ

.

We can show that 1
Ũ

T A
ŨŨ

1
Ũ

is at most ε
4 ℓ, where ℓ is a lower bound on 1T A1. Thus,

1T A1 ≈ 1
Ṽ

T A
Ṽ Ṽ

1
Ṽ

+ 1
Ṽ

T A
Ṽ Ũ

1
Ũ

+ 1
Ũ

T A
ŨṼ

1
Ṽ

.

Lemma 4.6 shows that for a sufficiently large K, with high probability, the fraction
of rows in any large bucket is approximately preserved in the sampled set of rows. Also
observe that we know tight (upper and lower) bounds on ⟨Aj∗, 1⟩ for every row j, where
j ∈ Ṽ . Thus, the random sample of S rows, such that |S| = K, approximately preserves
1

Ṽ
T A

Ṽ Ṽ
1

Ṽ
+ 1

Ṽ
T A

Ṽ Ũ
1

Ũ
. Observe that this is already 2-approximation of 1TA1.
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Using Regr for tight approximation

In order to get a (1 ± ε)-approximation to 1T A1, we need to estimate 1
Ũ

T A
ŨṼ

1
Ṽ

, which is
same as estimating 1

Ṽ
T A

Ṽ Ũ
1

Ũ
since A is a symmetric matrix. We estimate 1

Ṽ
T A

Ṽ Ũ
1

Ũ
,

that is, the sum of Aijs such that i ∈ Ṽ and j ∈ Ũ , as follows. For each bucket Bi that
is declared as large by the algorithm, we select enough number of rows randomly with
replacement from Si = S ∩ Bi, invoke Regr for each selected row in Si and increase the
count by 1 if the element Aij reported by Regr be such that j ∈ Ũ . A formal description
of our algorithm is given in Algorithm 2. Now, we focus on the correctness proof of our
algorithm for Bfe.

Algorithm 2 Bfe (ℓ, ε).

Input: An estimate ℓ for 1TA1 and ε ∈ (0, 1/2).
Output: m̂, which is a (1 ± ε)-approximation of 1T A1.
begin

Independently select K = Θ
(√

ρn√
ℓ

· ε−4.5 · log2(ρn) · log(1/ε)
)

rows of A

uniformly at random and let S denote the multiset of the selected indices (of
rows) sampled. For i ∈ [t], let Si = Bi ∩ S.

Let L̃ =
{

i : |Si|
|S| ≥ 1

t · 1
n

√
ε
6 · ℓ

ρ

}
. Note that L̃ is the set of buckets that the

algorithm declares to be large. Similarly, [t] \ L̃ is the set of buckets declared to
be small by the algorithm.

For every i ∈ L̃, select |Si| samples uniformly at random from Si, with
replacement, and let Zi be the set of samples obtained. For each z ∈ Zi, make a
Regr(1, z) query and let Azkz

= Regr(1, z). Let Yz be a random variable that
takes value 1 if kz ∈ Ũ and 0, otherwise.

Determine α̃i =
∑

z∈Zi
Yz

|Si| .
Output m̂ = n

K

∑
i∈L̃

(1 + α̃i) · |Si| · (1 + β)i.

end

To prove that m̂ is a (1±ε)-approximation of m = 1T A1, we need the following definition
and the technical Lemma 4.6.

▶ Definition 4.5. For i ∈ L, αi is defined as
∑

u∈Bi
⟨Au∗,1

Ũ
⟩∑

u∈Bi
⟨Au∗,1⟩

.

▶ Lemma 4.6. For a suitable choice of constant in Θ(·) for selecting K samples in Algorithm 2,
the followings hold with high probability:

(i) For each i ∈ L, we have |Si|
K =

(
1 ± ε

4
) |Bi|

n .

(ii) For each i ∈ [t] \ L, |Si|
K < 1

t · 1
n

√
ε
6 · ℓ

ρ .

(iii) We have |Ũ | <
√

ε
4 · ℓ

ρ , where Ũ = {j ∈ Bi : i ∈ [t] \ L̃}.

(iv) For every i ∈ L̃, (a) if αi ≥ ε
8 , then α̃i =

(
1 ± ε

4
)

αi, and (b) if αi < ε/8, then
α̃i < ε/4.

The above Lemma can be proved by using Chernoff bound (see Appendix A). Now, we have
all the ingredients to show the following claim, which shows that m̂ is a (1±ε)-approximation
of m = 1T A1. The following claim is proved in the full version of the paper [13].
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▷ Claim 4.7. With high probability, we have,
(i) m̂ ≥

(
1 − ε

2
) (

m − ε
4 ℓ
)
, and

(ii) m̂ ≤
(
1 + 3ε

4
)

m, where m = 1T A1.

Recall that we have assumed m/6 ≤ ℓ ≤ m. Under this assumption, the above claim says
that m̂ is in fact a (1 ± ε)-approximation to m. From the description of Algorithm 2, the
number of IP queries made by the algorithm is Õ

(√
ρn√
ℓ

)
= Õ

( √
ρn√

1T A1

)
as m/10 ≤ ℓ ≤ m.

We will discuss how to remove the assumption, that m/6 ≤ ℓ ≤ m, by using a standard
technique in property testing (see the full version of the paper [13]). So, we are done with
the proof of Theorem 4.1.

4.2 Algorithm for Sampling Almost Uniformly
In this section, we will be proving the following theorem on almost uniformly sampling the
entries of a symmetric matrix A ∈ [[ρ]]n×n. The algorithm for the special case is inspired
by [21]. In the full version of the paper ([13]), we show how this algorithm can be extended
to solve the more general SauA(x, y) problem.

▶ Theorem 4.8. Let A ∈ [[ρ]]n×n be an unknown symmetric matrix with IP query access.
There exists an algorithm that takes ε ∈ (0, 1) as input and with high probability outputs
a sample from a distribution on [n] × [n], such that each (i, j) ∈ [n] × [n] is sampled with
probability pij satisfying:

pij = (1 ± ε) Aij(∑
1≤i,j≤n Aij

) .

Moreover, the algorithm makes Õ
( √

ρn√
1T A1

)
IP queries to the matrix A of the form

⟨Ak∗, u⟩ for some k ∈ [n] and u ∈ {0, 1}n.

Our algorithm for Sample Almost Uniformly is a generalization of Eden and Rosen-
baum’s algorithm for sampling edges of an unweighted graph [21]. First, consider the following
strategy by which we sample each ordered pair (i, j) ∈ [n] × [n] proportional to Aij when the
matrix A is such that ⟨Ai,∗, 1⟩ is the same for each i ∈ [n].
Strategy-1: Sample r ∈ [n] uniformly at random and then sample an ordered pair of the form
(r, j) from the r-th row using Regr query. Observe that this strategy fails when ⟨Ai∗, 1⟩’s
are not the same for every i ∈ [n]. So, the modified strategy is as follows.
Strategy-2: Sample r ∈ [n] with probability ⟨Ar∗,1⟩

1T A1 and then sample an ordered pair of the
form (r, j) from the r-th row by using Regr query.

Note that Strategy-2 samples each ordered pair (i, j) proportional to Aij . However, there
are two challenges in executing Strategy-2:

(i) We do not know the value of 1T A1.
(ii) We need Ω(n) queries to determine ⟨Ar∗, 1⟩ for each r ∈ [n].

The first challenge can be taken care of by finding an estimate m̂ for 1T A1, with high
probability, by using Theorem 4.1 such that m̂ = Θ(1T A1). To cope up with the second
challenge, we partition the elements as well as rows into two classes as defined in Definition 4.9.
In what follows, we consider a parameter τ in terms of which we base our discussion as well
as algorithm. τ is a function of m̂ that will evolve over the calculation and will be τ =

√
ρm̂
ε .
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▶ Definition 4.9. The i-th row of the matrix is light if ⟨Ai,∗, 1⟩ ≤ τ , otherwise i-th row is
heavy. Any order pair (i, j), for a fixed i, is light (heavy) if the i-th row is light (heavy).

We denote the set of all light (heavy) ordered pairs by L (H). Also, let I(L) (I(H)) denote the
set of light (heavy) rows of the matrix A. Let w(L) =

∑
Aij∈L Aij and w(H) =

∑
Aij∈H Aij .

Our algorithm consists of repeated invocation of two subroutines, that is, Sample-
Light and Sample-Heavy. Both Sample-Light and Sample-Heavy succeed with good
probability and sample elements from L and H almost uniformly, respectively. The threshold
τ is set in such a way that there are large 8 number of light rows and small number of
heavy rows. In Sample-Light, we select a row uniformly at random, and if the selected
row is light, then we sample an ordered pair from the selected row randomly using Regr.
This gives us an element from L uniformly. However, the same technique will not work for
Sample-Heavy as we have few heavy rows. To cope up with this problem, we take a row
uniformly at random and if the selected row is light, we sample an ordered pair from the
selected row randomly using Regr. Let (i, j) be the output of the Regr query. Then we go
to the j-th row, if it is heavy, and then select an ordered pair from the j-th row randomly
using Regr query.

The formal algorithms for Sample-Light and Sample-Heavy are given in Algorithm 3
and Algorithm 4, respectively. The formal correctness of Sample-Light and Sample-Heavy
are given in Lemmas 4.10 and 4.11, respectively. We give the final algorithm along with its
proof of correctness in Theorem 4.8.

Algorithm 3 Sample-Light.

Input: An estimate m̂ for 1T A1 and a threshold τ .
Output: (i, j) ∈ L with probability Aij

nτ .
begin

Select a row r ∈ [n] uniformly at random.
if (r ∈ I(L), that is, ⟨Ar∗, 1⟩ is at most τ) then

Return Fail with probability p = τ−⟨Ar∗,1⟩
τ , and Return Regr(r, 1) with

probability 1 − p as the output.
end
Return Fail

end

▶ Lemma 4.10. Sample-Light succeeds with probability w(L)
nτ . Let Zℓ be the output in

case it succeeds. Then P(Zℓ = (i, j)) = Aij

nτ if (i, j) ∈ L, and P(Zℓ = (i, j)) = 0, otherwise.
Moreover, Sample-Light makes O(log n) queries.

▶ Lemma 4.11. Sample-Heavy succeeds with probability at most w(H)
nτ and at least(

1 − ρm̂
τ2

)
w(H)

nτ . Let Zh be the output in case it succeeds. Then,
(

1 − ρm̂
τ2

)
Aij

nτ ≤ P(Zh =

(i, j)) ≤ Aij

nτ for each (i, j) ∈ H, and P(Zh = (i, j)) = 0, otherwise. Moreover, Sample-
Heavy makes O(log n) queries.

Now we will us the above lemmas to prove Theorem 4.8.

8 Large is parameterized by τ .
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Algorithm 4 Sample-Heavy (m̂).

Input: An estimate m̂ for 1T A1 and a threshold τ .
Output: Aij ∈ H with probability at most Aij

nτ and at least
(

1 − ρm̂
τ2

)
Aij

nτ .
begin

Select a row r ∈ [n] uniformly at random;
if (r ∈ I(L), that is, ⟨Ar∗, 1⟩ is at most τ) then

Return Fail with probability p = τ−⟨Ar∗,1⟩
τ , and with probability 1 − p do the

following;
Ars =Regr(r, 1)
If s ∈ I(H), that is, ⟨As∗, 1⟩ > τ , then Return Regr(s, 1) as the output.
Otherwise, Return Fail;

end
Return Fail;

end

Proof of Theorem 4.8. Our algorithm first finds a rough estimate m̂ for 1T A1, with high
probability, by using Theorem 4.1 such that m̂ = Θ(1T A1). For the rest of the proof, we

work on the conditional probability space that m̂ = Θ(1T A1). We set τ =
√

ρm̂
ε and do

the following for Γ times, where Γ is a parameter to be set later. With probability 1/2, we
invoke Sample-Light and with probability 1/2, we invoke Sample-Heavy. If the ordered
pair (i, j) is reported as the output by either Sample-Light or Sample-Heavy, we report
that. If we get Fail in all the trials, we report Fail.

Now, let us consider a particular trial and compute the probability of success P(S),
which is P(S) = 1

2 (P(Sample-Light succeeds) + P(Sample-Heavy succeeds)). Observe
that from Lemmas 4.10 and 4.11, we have,

1
2

(
w(L)
nτ

+
(

1 − ρm̂

τ2

)
w(H)

nτ

)
≤ P(S) ≤ 1

2

(
w(L)
nτ

+ w(H)
nτ

)
.

This implies (1 − ε) 1T A1
2nτ ≤ P(S) ≤ 1T A1

2nτ as τ =
√

ρm̂
ε and using w(L) + w(H) = 1T A1.

Now, let us compute the probability of the event Eij , that is, the algorithm succeeds
and it returns Aij . If Aij ∈ L, by Lemma 4.10, we have P(Z = (i, j)) = 1

2 · Aij

nτ . Also, if
Aij ∈ H, by Lemma 4.11, we have,

(
1 − ρm̂

τ2

)
Aij

2nτ ≤ P(Z = (i, j)) ≤ Aij

2nτ . So, for any (i, j),

we get (1 − ε) Aij

2nτ ≤ P(Eij) ≤ Aij

2nτ . Let us compute the probability of Eij on the conditional
probability space that the algorithm succeeds, that is, P(Z = (i, j) | S) = P(Eij)

P(S) , which lies

in the interval
[
(1 − ε) Aij

1T A1 , (1 + ε) Aij

1T A1

]
as ε ∈

(
0, 1

2
)
.

To boost the probability of success, we set Γ = O
(

n
√

ρ

(1−ε)
√

εm̂
log n

)
for a suitable large

constant in O(·) notation. The query complexity of each call to Sample-Light and Sample-
Heavy is O(log n). Also note that our algorithm for Sample Almost Uniformly makes

at most O
(

n
√

ρ

(1−ε)
√

εm̂
log n

)
invocations to Sample-Light and Sample-Heavy. Hence,

the total query complexity of our algorithm is Õ
( √

ρn√
1T A1

)
. ◀
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Table 1 Comparing IP with matrix-vector and vector-matrix-vector queries. Recall that MV anf
VMV stand for matrix-vector and vector-matrix-vector queries.

Problem IP Query VMV Query [32] MV Query [40]

Symmetric Matrix Θ̃ (n) O (1) O (1)
Diagonal Matrix Θ (n) O (1) O (1)

Trace Θ (n) O (n) O (n)
Ω
(

n
log n

)
Ω
(

n
log n

)
Permutation Matrix Θ (n) O (1) O (1)

Doubly Stochastic matrix Θ (n) O (1) O (1)
Identical columns9 Θ̃ (n) Θ̃ (n) Θ̃ (n)
All Ones Columns Θ (n) O (n) O (n)

Ω
(

n
log n

)
Ω
(

n
log n

)
5 Conclusion and discussions

Other matrix problems

Recently, vector-matrix query [40] and vector-matrix-vector query [32] were introduced to
study a bunch of matrix, graph and statistics problems. As noted earlier, IP query oracle is
in the same linear algebraic framework of vector-matrix (VM) query and vector-matrix-vector
(VMV) query, but these queries are stronger than IP query. Study of the various matrix,
graph and statistics problems, introduced in [40, 32], using IP query will be of independent
interest. As a first step in that direction, in the full version of this paper [13], we study the
query complexity of the following problems using IP queries.

Symmetric Matrix: Is A ∈ {0, 1}n×n a symmetric matrix?
Diagonal Matrix: Is A a diagonal matrix?
Trace: Compute the trace of the matrix A.
Permutation Matrix: Is A ∈ {0, 1}n×n a permutation matrix?
Doubly stochastic matrix: Is A ∈ {0, 1}n×n a doubly stochastic matrix?
Identical columns: Does there exist two columns in A ∈ {0, 1}n×n that are identical?
All ones column: Does there exist a column in A all of whose entries are 1?

Table 1 compares the query complexities of IP oracle with matrix-vector (MV) and vector-
matrix-vector (VMV) queries.

Data structure complexity and open problems

Besides property testing, there have been extensive work concerning vector-matrix-vector
product in data structure complexity and other models of computation like the cell probe
model [15, 16, 17, 28, 30]. For the purposes of this paper, it is an interesting question to find
a pre-processing scheme for the matrix such the IP queries on the matrix can be answered
efficiently.

9 Upper and lower bounds results for Identical columns problem in [32, 40] uses vectors from {0, 1}n

in their respective queries.
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One of the open problems that is left from our work is to design algorithm and/or
prove lower bound for Bilinear Form Estimation and Sampling when the entries of the
matrices are not necessarily positive. Here we would like to state that our technique does
not work for a matrix with both positive and negative entries. Some other natural open
questions are:

Are there some special kind of matrices where we can solve Bilinear Form Estimation
and Sampling using fewer queries?
Can we solve some other linear algebraic problems using IP queries?
Are there other graph problems, where induced degree outperforms local queries?
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A Useful probability bounds

▶ Lemma A.1 (See [18]). Let X =
n∑

i=1
Xi where Xi, i ∈ [n], are independent random

variables, Xi ∈ [0, 1] and E[X] is the expected value of X.
(i) For ε > 0, we have Pr [|X − E[X]| > εE [X]] ≤ exp

(
−ε2E[X]/3

)
.

(ii) Suppose µL ≤ E[X] ≤ µH . Then, for all 0 < ε < 1, we have
(a) Pr[X > (1 + ε)µH ] ≤ exp

(
−ε2µH/3

)
.

(b) Pr[X < (1 − ε)µL] ≤ exp
(
−ε2µL/2

)
.
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