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Abstract
In a geometric intersection graph, given a collection of n geometric objects as input, each object
corresponds to a vertex and there is an edge between two vertices if and only if the corresponding
objects intersect. In this work, we present a somewhat surprising result: a polynomial time algorithm
for max cut on laminar geometric intersection graphs. In a laminar geometric intersection graph,
if two objects intersect, then one of them will completely lie inside the other. To the best of our
knowledge, for max cut this is the first class of (non-trivial) geometric intersection graphs with an
exact solution in polynomial time. Our algorithm uses a simple greedy strategy. However, proving
its correctness requires non-trivial ideas.

Next, we design almost-linear time algorithms (in terms of n) for laminar axis-aligned boxes by
combining the properties of laminar objects with vertical ray shooting data structures. Note that
the edge-set of the graph is not explicitly given as input; only the n geometric objects are given as
input.
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1 Introduction

In the maximum cut (a.k.a., max cut) problem, the input is an undirected graph, and the
goal is to partition the vertex set into two disjoint sets such that the number of edges having
their endpoints in different sets is maximized. Max cut is a classical optimization problem.
Weighted version of it is in fact one of Karp’s original 21 NP-hard problems [24]. Max cut
has been studied extensively on several classes of the graphs. It remains NP-hard even
for the special classes of the graphs like cubic graphs [5], total graphs [18], chordal graphs,
split graphs, co-bipartite graphs, tripartite graphs [7], and permutation graphs (recently
shown [14]). As a result, designing approximation algorithms for max cut has naturally
received a lot of attention [13, 17, 26, 23]. On the other hand, the classes of graphs which
are of relevance in the context of our work are those for which max cut has been shown
to be polynomial time solvable such as planar graphs [19], line graphs [18], graphs with
bounded treewidth [7], co-bipartite chain graphs [10], graphs not contractible to K5 [3] and
split-indifference graphs [6]. In this work we add another class of graphs to this list.

Geometric intersection graphs

Consider a set O = {O1, . . . , On} which is a collection of n geometric objects (such as intervals
and rectangles). In a geometric intersection graph, each object corresponds to a vertex and
there is an edge between two vertices if and only if the corresponding objects intersect. We
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21:2 Max Cut on Laminar Geometric Intersection Graphs

restate the max cut problem in the context of geometric intersection graphs: Color each
object in O either red or green so that the maximum number of pairs in O contribute to the
cut. A pair (Oi, Oj) contributes to the cut iff (a) Oi and Oj intersect, and (b) Oi and Oj

have different colors.

Max cut on geometric intersection graphs

The complexity of the max cut on interval graphs was unknown for a long time and was
mentioned as an open problem way back in 1985 in celebrated paper of Johnson [22]. At
SoCG’21, Adhikary et al. [1] showed that max cut is NP-complete even for interval graphs.
Unit interval graphs are a special case of interval graphs where each interval has unit length.
Surprisingly, the complexity status of the max cut on the class of unit interval graphs is
still unknown. Two previous results [8, 9] claimed a polynomial time algorithm for unit
interval graphs, but they were reported as incorrect later [6, 25]. Recently, in a series of
improvements, it was first shown that max cut is NP-complete on interval graphs of interval
count four [15] and then for interval count two [4], which is a special case of interval graphs
but more general than unit-interval graphs. On the approximation side, a PTAS can be
obtained for max cut on unit-interval graphs ([21] shows a PTAS for the max bisection
problem, but their technique can be adapted for the max cut problem as well). In 2D, max
cut on unit-disk graphs [16] has been shown to be NP-hard.

Exact max cut on laminar geometric intersection graphs

The starting point of our work is the following set of observations. Any two general intervals
can have two types of intersections: either (a) partially overlap, or (b) one interval lies inside
the other. Unit-interval graphs capture the first type of intersection. From the discussion
above, it is clear that max cut on unit-interval graphs has received a lot of interest in terms
of designing an exact algorithm, or proving its hardness, or the PTAS result. On the other
hand, laminar interval graphs can capture the second type of intersection, i.e., if two intervals
intersect then one of them lies completely inside the other. However, to the best of our
knowledge, there has not been any prior work on max cut for laminar interval graphs.

Motivated by this, we study max cut on laminar geometric intersection graphs. In a
laminar geometric intersection graph, if two objects intersect, then one of the object will lie
completely inside the other object (see Figure 1(a) for an example). Somewhat surprisingly,
we prove that a polynomial time exact algorithm exists for laminar geometric intersection
graphs. To the best of our knowledge, for max cut this is the first class of (non-trivial)
geometric intersection graphs with an exact polynomial time solution. We propose a simple
greedy algorithm to compute the max cut on laminar geometric intersection graphs. However,
as is the case with many greedy algorithms, our proof of optimality involves several non-trivial
arguments.

Designing a fast algorithm

The following discussion assumes a basic familiarity with computational geometry. Note that
the edge-set of the graph is not explicitly given as input; only the n geometric objects are
given as input. As a result, a fruitful line of research is to exploit the small input size and the
geometry of the intersection graph to design almost-linear time (in terms of n) algorithms to
compute max cut. As concrete applications, in this work we consider laminar axis-aligned
boxes intersection graphs in 3D and 2D. The first step of our algorithm is to compute a tree
representation of the laminar objects (see Figure 1 for an example). Using range searching
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data structures [2] in a standard manner one can construct such a tree representation in
O(n logc n) time for axis-aligned boxes in 3D for a sufficiently large constant c. Instead,
we perform a sweep-plane and use the properties of laminar objects to reduce the original
problem to dynamic 2D vertical ray shooting problem. As a result, we are able to compute the
tree representation in O

(
n log n

log log n

)
expected time for axis-aligned boxes in 3D. Adapting

our algorithm for axis-aligned rectangles in 2D leads to an O(n log log U) expected time
algorithm, where the endpoints of the boxes lie on the integer grid [U ]2. The model of
computation is the word-RAM model.

2 Laminar geometric intersection graphs

In this section, we will present an exact solution for max cut on laminar geometric intersection
graphs. In a laminar geometric intersection graph, if two objects intersect, then one of the
objects will lie completely inside the other object (see Figure 1(a) for an example).

2.1 Tree representation and our algorithm
A laminar geometric intersection graph can naturally be represented as a tree. Let O =
{O1, . . . , On} be a collection of n laminar geometric objects. An object Oi is said to dominate
object Oj if and only if Oj lies completely inside Oi. Define level-1 objects of O to be those
objects which are not dominated by anyone in O. Call them O1. In Figure 1, O1 = {O1, O2}.
For an integer i ≥ 2, level-i objects are obtained by computing the set of objects in O\

⋃i−1
j=1Oj

which are not dominated by any other object in O \
⋃i−1

j=1Oj . Call them Oi. In Figure 1,
O2 = {O3, O4, O5, O6, O7}. We stop the recursion when O \

⋃ℓ−1
j=1Oj becomes empty, for

some integer ℓ.
Now we are ready to describe the tree representation. We will initialise |O1| trees, and

each object in O1 will be made the root of one of the tree (see Figure 1(b)). For i ∈ [2, ℓ−1],
each object O ∈ Oi will be made the child of that node in level-(i−1) whose corresponding
object contains O. See Figure 1. Note that max cut can be computed independently for
each tree and then trivially combined to obtain the final solution. As such, without loss of
generality we can compute the max cut for a single tree. The following property is easy to
observe.

▶ Lemma 1. Denote the tree representation of O by T . Two objects O and O′ intersect if
and only if O is an ancestor of O′ or O′ is an ancestor of O in T .

Figure 1 (a) An input instance of nine laminar intervals on the real-line. For the sake of clarity,
the intervals have been drawn vertically apart, (b) The corresponding tree representation.
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21:4 Max Cut on Laminar Geometric Intersection Graphs

From now on we will work with the tree representation T of O. Each node in T will be
colored either red or green. In this new terminology, given two nodes vi ∈ T and vj ∈ T ,
the pair (vi, vj) contributes to the cut iff (a) vi is an ancestor of vj , and (b) vi and vj have
different colors. The goal is to maximize the number of pairs in T which contribute to
the cut.

For any node u ∈ T , let A(u) be the ancestors of u (excluding u) in T and let D(u) be
the nodes in the subtree of u (excluding u).

The algorithm can now be described in a single line:

Algorithm 1 Laminar geometric intersection graphs.
– For each node u ∈ T , if |D(u)| ≥ |A(u)|, then color u green; otherwise, color u red.

See Figure 2 for an example. Proving that Algorithm 1 actually reports the maximum
cut turns out to be a non-trivial exercise. Our proof will have two steps. First, in Lemma 2
we prove that among all colorings which do not create inversions in T , none of them lead
to a larger cut value than the cut value returned by Algorithm 1. A coloring of the nodes
in T is said to create an inversion if there is at least one node which is colored green and
its parent node is colored red. Next, in Lemma 3 we prove that among all possible ways of
coloring T , it suffices to consider colorings which do not create inversions in T . This proves
that Algorithm 1 indeed computes the max cut.

g

rg
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g

g

r

r

r r r

Figure 2 Coloring produced by Algorithm 1 on a tree with eleven nodes. Green colored nodes
are labelled g and the red colored nodes are labelled r.

2.2 Optimality of our algorithm
▶ Lemma 2. For any coloring C, let Cut(C) be the number of pairs in T contributing to the
cut. Let Cni be any coloring of T which creates no inversions, and let Calg be the coloring of
T by our algorithm. Then Cut(Cni) ≤ Cut(Calg).

Proof. We will start with coloring Cni of the tree and perform n iterations. For 1 ≤ i ≤ n, in
the i-th iteration, we might potentially flip the color of one of the nodes in the tree. Let Ci

be the coloring of the tree at the end of the i-th iteration, for all 1 ≤ i ≤ n, and let C0 = Cni.
We will maintain the following three invariants:
1. Cut(Ci−1) ≤ Cut(Ci), for all 1 ≤ i ≤ n, i.e., the cut value does not decrease after each

iteration.
2. Cn = Calg, i.e., at the end of the n iterations, the (potentially) new coloring in the tree

will correspond to Calg.
3. Ci induces no inversion in T , for all 1 ≤ i ≤ n.
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From the first two invariants, it follows that Cut(Cni) = Cut(C0) ≤ Cut(C1) ≤ Cut(C2) ≤
. . . ≤ Cut(Cn) = Cut(Calg). Now we present the details of the reduction from coloring Cni to
Calg.

With respect to the coloring Calg of the tree T , let G be the set of nodes in T colored
green. Since Calg induces no inversion in T , nodes in G form a tree (and not a forest). Lets
call this tree TG . The remaining portion of T , i.e., T \ TG will be a collection of trees (a.k.a.
a forest) whose nodes are colored red. Unlike the traditional way of either a top-down or a
bottom-up traversal of a tree, we will perform a more careful traversal of T : First, traverse
the nodes in TG in a top-down manner. Next, traverse the trees in T \ TG in a bottom-up
manner. See Figure 3. Each iteration corresponds to visiting one of the n nodes in T .

Top-down traversal of TG. We will start from the coloring induced by Cni on tree TG . We
will perform a top-down traversal of TG and at the end of the |G| iterations (i.e., visiting |G|
nodes), all the nodes in TG will be colored green.

Let u ∈ TG be the node visited in the i-th iteration. If u is colored green, then no flip
operation will be performed, and we will set Ci = Ci−1. The interesting case is when u is
colored red, where we will flip the color of u to green. Since Ci−1 is a non inversion coloring,
all the |D(u)| nodes of T in the subtree of u will be colored red. Also, due to the top-down
traversal of TG , all the |A(u)| ancestors of u will be colored green. Since Algorithm 1 colored
u green, it must be the case that |D(u)| ≥ |A(u)|. Therefore, flipping the color of u from
red to green will ensure that Cut(Ci) = Cut(Ci−1)− |A(u)|+ |D(u)| ≥ Cut(Ci−1) (satisfying
Invariant 1). Also, after the flip operation, the coloring induced by Ci will have no inversion
(satisfying Invariant 3).
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5 6 7 8

Figure 3 Arbitrary Cni for a tree with eleven nodes. Green colored nodes are labelled g and the
red colored nodes are labelled r. The nodes indexed 1 to 4 belong to TG and the nodes indexed 5 to
11 belong to T \ TG . Indexing denotes the order in which the nodes will be traversed.

Bottom-up traversal of T \ TG. At the end of performing |G| iterations on TG , we will have
the coloring induced by C|G|. Now consider any tree in T \ TG . We will perform a bottom-up
traversal of that tree. Let u be a node visited in the i-th iteration. If u is colored red, then
no flip operation will be performed and we will set Ci = Ci−1. The interesting case is when u

is colored green, where we will flip the color of u to red. Since Ci−1 is a no inversion coloring,
all the |A(u)| ancestors of u in T will be colored green. Also, due to bottom-up traversal of
the tree, all the |D(u)| nodes in the subtree of u in T will be colored red. Since Algorithm 1
colored u red, it must be the case that |D(u)| < |A(u)|. Therefore, flipping the color of
u from green to red will ensure that Cut(Ci) = Cut(Ci−1) − |D(u)| + |A(u)| ≥ Cut(Ci−1)
(satisfying Invariant 1). Also, after the flip operation, the coloring induced by Ci will create
no inversions (satisfying Invariant 3). Perform the above operations for all the trees in T \TG .

FSTTCS 2022



21:6 Max Cut on Laminar Geometric Intersection Graphs

At the end of the n iterations, it is easy to see that the coloring in T corresponds to Calg:
the top-down traversal ensures that all the nodes in G are colored green and all the nodes in
T \ TG are colored red, and hence, satisfying Invariant 2. ◀

2.3 A non-inversion coloring of the tree
In this subsection, we will prove the following result.

▶ Lemma 3. Let C be an arbitrary coloring of the tree T and let Cut(C) be the number
of pairs in T contributing to the cut. Then there exists a coloring Cni which creates no
inversions in T and Cut(Cni) ≥ Cut(C).

Fix an ordering from left-to-right of the m leaves in T . The ordering of the leaves
naturally fixes an order of all the nodes at each level of T . For all 1 ≤ i ≤ m, let πi be
the root-to-leaf path for the i-th leaf of T . We start with coloring C of the tree T , and let
C0 = C. We will perform m iterations and in each iteration potentially flip the color of some
of the nodes in T . For all 1 ≤ i ≤ m, let Ci be the coloring of the tree at the end of the i-th
iteration. At the end of the i-th iteration, for all 1 ≤ i ≤ m, we will ensure that the following
invariants are maintained:
1. For all 1 ≤ j ≤ i, there are no inversions among nodes on path πj .
2. Cut(Ci) ≥ Cut(Ci−1).
By the first invariant it is guaranteed that the coloring induced by Cm creates no inversions in
T . Therefore, we set Cni = Cm. Via the second invariant, it follows that Cut(Cni) ≥ Cut(C).
This will prove Lemma 3. For any 1 ≤ i ≤ m, we now present the details of the transformation
from Ci−1 to Ci. First, we will perform a modification step.

Modification steps. At the beginning of the i-th iteration, let g(πi) and r(πi) be the number
of green and red colored nodes on path πi, respectively. We will modify the color of the nodes
in πi as follows:

If g(πi) ≥ r(πi), then the first g(πi) nodes on path πi are colored green, and the remaining
r(πi) nodes are colored red.
Otherwise, the first r(πi) nodes on path πi are colored green, and the remaining g(πi)
nodes are colored red.

Let E = {(u, v)|u, v ∈ T and u is an ancestor of v}. For any node u ∈ T , let
u1, u2, . . . , ut be its children in the left-to-right ordering. Then we define left(u, uj) =
{u1, u2, . . . , uj−1} and right(u, uj) = {uj+1, . . . , ut}. Also, let πi(1), πi(2), . . . be the se-
quence of nodes on πi from root-to-leaf. Now we define two sets Ri and Li as follows:

Ri = {v|v ∈ right(πi(j), πi(j + 1)) and πi(j) ∈ πi} and
Li = {v|v ∈ left(πi(j), πi(j + 1)) and πi(j) ∈ πi}

See Figure 4 for an example. Now we will partition E into four subsets E1, E2, E3, and E4.
We will argue that the contribution of E1, E2, E3, and E4 to the cut after the modifications
performed above will not decrease (E3 will potentially require “flip” operations to ensure its
contribution does not go down). This will ensure that Cut(Ci) ≥ Cut(Ci−1) (Invariant 2).
The four disjoint subsets are defined as follows:

E1 = {(u, v)|u, v ∈ πi}

E2 = {(u, v)|w ∈ Li and u ∈ A(w) and v ∈ (D(w) ∪ {w})}
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LEFT(u,v) RIGHT(u,v)
πi

v1

v2

v3 v4

v5

(a) (b)

Figure 4 (a) illustrates left(u, v) and right(u, v), and (b) illustrates Li and Ri. In this example,
Li = {v1, v2} and Ri = {v3, v4, v5}.

E3 = {(u, v)|w ∈ Ri and u ∈ A(w) and v ∈ (D(w) ∪ {w})}

E4 = E \ E1 \ E2 \ E3 = {(u, v)|w ∈ Li ∪Ri and u, v ∈ (D(w) ∪ {w}) and v ∈ A(u)}

See Figure 5 for an example. Now we will argue about each subset one after the other.

πi

v1

v2

v3

v4

v5

v6

Figure 5 We illustrate via an example some of the pairs in E1, E2, E3, and E4. For example,
(v1, v2) ∈ E1, (v1, v3) ∈ E2, (v1, v4) ∈ E2, (v1, v5) ∈ E3, (v1, v6) ∈ E3, (v4, v3) ∈ E4, (v6, v5) ∈ E4.

▶ Lemma 4. The number of pairs in E1 which contribute to the cut does not change after
the modification.

Proof. Before and after the modification, the number of pairs of E1 which contribute to the
cut will be equal to g(πi) · r(πi). ◀

▶ Lemma 5. For any v ∈ Ri ∪ Li, after performing the modification described above, the
number of green ancestors will not decrease.

FSTTCS 2022
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Proof. For any v ∈ Ri ∪ Li, it is obvious from the above definition that all its ancestors lie
on πi. Let g(v) and r(v) be the number of green and red ancestors of v, respectively, before
performing the modification. Let g′(v) be the number of green ancestors (excluding v) of v

after performing the modification.
First, consider the case when g(πi) ≥ r(πi). If r(v) + g(v) ≤ g(πi), then all the ancestors

of v after modification will be colored green and hence, g′(v) = r(v) + g(v) ≥ g(v); otherwise,
the number of ancestors of v after modification colored green will be equal to g(πi) and
hence, g′(v) = g(πi) ≥ g(v). Therefore, g′(v) ≥ g(v).

Next, consider the case when r(πi) > g(πi). If r(v) + g(v) ≤ r(πi), then all the ancestors
of v after modification will be colored green and hence, g′(v) = r(v) + g(v) ≥ g(v); otherwise,
the number of ancestors of v after modification colored green will be equal to r(πi) and
hence, g′(v) = r(πi) > g(πi) ≥ g(v). Therefore, g′(v) ≥ g(v). ◀

▶ Lemma 6. Recall that E2 = {(u, v)|w ∈ Li and u ∈ A(w) and v ∈ (D(w) ∪ {w})}. The
contribution of E2 to the cut does not decrease after the modification.

Proof. Consider any w ∈ Li and let E2(w) = {(u, v)|u ∈ A(w) and v ∈ (D(w)∪{w})}. First,
consider the case where w is colored green before the modification. Then, by invariant 1,
since there are no inversions on the path from root to w, all the ancestors of w will be colored
green. After the modification, by Lemma 5, it follows that all the ancestors of w will continue
to be colored green and hence, the contribution of E2(w) to the cut does not change.

Next, consider the case where w is colored red before the modification. Then, by
invariant 1, all the nodes in D(w) will be colored red. After the modification, by Lemma 5,
the number of green ancestors of w will not decrease. Therefore, for any w ∈ Li, the
contribution of E2(w) to the cut will not decrease after the modification. ◀

After the modification steps, now we will potentially perform some flip operations. The
flip operations are needed to handle E3.

Flip Operations. For any w ∈ Ri: if D(w) ∪ {w} has more green colored nodes than red
colored nodes, then flip all the colors in D(w)∪{w}. Formally, each red (resp., green) colored
node is now colored green (resp., red).

▶ Lemma 7. Recall that E3 = {(u, v)|w ∈ Ri and u ∈ A(w) and v ∈ (D(w) ∪ {w})}. The
contribution of E3 to the cut does not decrease after the modification steps and flip operations.

Proof. Consider any w ∈ Ri and let E3(w) = {(u, v)|u ∈ A(w) and v ∈ (D(w) ∪ {w})}.
Because of flip operations, D(w)∪{w} has either equal or more red colored nodes than green
colored nodes. Combining this with Lemma 5 (the number of green ancestors will not come
down after modification), we conclude that the contribution of E3(w) to the cut does not go
down after modification and flip operations. ◀

▶ Lemma 8. Recall that E4 = E \ E1 \ E2 \ E3 = {(u, v)|w ∈ Li ∪ Ri and u, v ∈ (D(w) ∪
{w}) and v ∈ A(u)}. The contribution of E4 to the cut does not change after the modification
steps and the flip operations.

Proof. Consider any edge (u, v) ∈ E4. We claim that (u, v) will contribute to the cut after
the modification if and only if (u, v) contributed to the cut before the modification: if w ∈ Ri

and nodes in D(w) ∪ {w} flipped their colors, then the colors of both u and v will change.
Otherwise, if w ∈ Ri and nodes in D(w) ∪ {w} did not flip their colors, or if w ∈ Li, then
the colors of u and v do not change. ◀
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▶ Lemma 9 (Invariant 1). For all 1 ≤ j ≤ i, there are no inversions among nodes on path πj .

Proof. It is easy to see that there are no inversions among nodes on path πi. For any j < i,
consider the nodes in πi ∩ πj . Before the modification, there were no inversions on πj . This
implies that either πi ∩ πj (a) had all nodes colored green, or (b) had a sequence of green
followed by red colored nodes. In case (a), after the modification, all the nodes in πi ∩πj will
continue to be colored green. In case (b), after the modification, either all nodes in πi ∩ πj

will become green, or it will continue to be a sequence of green followed by red colored nodes.
In all these cases, there will be no inversions created among nodes on path πj . ◀

3 A fast implementation

Naively, one can construct the tree representation in O(n2) time by comparing every pair of
objects. In this section, we will construct the tree representation in almost-linear time (in
terms of n) for axis-aligned boxes in 3D and 2D. Note that given the tree representation,
Algorithm 1 takes only O(n) time: Computing |D(u)|, for all u ∈ T , can be done in O(n)
time via bottom-up traversal of T . Analogously, computing |A(u)|, for all u ∈ T , can be
done in O(n) time via a top-down traversal of T .

Let B be a collection of n laminar axis-aligned boxes in 3D. Now we describe our
algorithm to compute the tree representation T for B. To make the presentation simple,
consider a dummy box B0 which contains all the boxes in B. Add B0 to B (this ensures that
B0 is the root of T ). Any axis-aligned box in 3D has six faces on its boundary. Define the
left face and the right face to be the boundaries parallel to the yz-plane.

We will perform a sweep-plane. Consider a plane ℓ parallel to the yz-plane. Starting
from x = −∞ we will move the plane ℓ towards x = +∞. The event points will be the left
and the right faces on the boundary of each box in B. Assume that the sweep-plane has
reached the x-coordinate xt, and let ℓt be the plane ℓ at xt. Let Bt ⊆ B be the set of boxes
intersecting the plane ℓt. For every B ∈ Bt, let R← B ∩ ℓt, i.e., the projection of B onto the
plane ℓt which is an axis-aligned rectangle in 2D.

Along with the sweep-plane, we will maintain a dynamic vertical ray shooting data
structure. In the orthogonal version of dynamic vertical ray shooting problem, the input is
a collection of horizontal segments in 2D, and given a query point q′ in 2D, the goal is to
report the first segment which is hit by the upward ray starting from q′. Updates include
insertion and deletion of segments. Let Dt be the instance of the vertical ray shooting data
structure when the sweep-plane is at xt. For each B ∈ Bt, the top and the bottom segment
of R are maintained in Dt. With the top and the bottom segments of R we will maintain a
label B and Bpar, respectively, where Bpar is the parent of B in T .

▶ Lemma 10. Suppose that the next event point in the sweep-plane is the left face of B ∈ B.
Consider any point q(qx, qy, qz) on the left face of B. Let xt be the x-coordinate of the
sweep-plane just before it reaches the left face of B. If Bq is the label associated with the
segment reported by the vertical ray shooting query on Dt with query point q′(qy, qz), then Bq

is the parent of B in T .

Proof. We will consider the following three cases.
Since Bpar contains B, it implies that the rectangle Rpar ← Bpar ∩ ℓt will contain q′.
Also, all the ancestors of Bpar in the tree representation will contain q′. However, by the
laminar property, notice that a vertical upward ray from q′ will hit the top segment of
Rpar before hitting the top segments of its ancestors. See Figure 6(a).

FSTTCS 2022
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Consider any box B′ which is a child of Bpar in the tree representation. Since R′ does
not contain q′, then a vertical upward ray from q′ will either miss the top and the bottom
segments of R′, or it will hit the bottom segment of R′ before the top segment of R′. See
Figure 6(b).
Consider any box B′ which is a descendent of Bpar, but not a child of Bpar. Then a
vertical upward ray from q′ will never hit the bottom or the top segment of B′ first. See
Figure 6(c).

Based on the above three observations, we conclude that the vertical ray shooting query
on Dt with q′ will either report the top segment of Rpar or a bottom segment corresponding
to Bpar’s children. Note that Bpar is the label associated with all these segments, and hence,
Bq ← Bpar. ◀

q′

Rpar

R′

Rpar

R′

q′1
q′2

Rpar

R′

q′1 q′2

(a) (b) (c)

R′′

Figure 6 (a) R′ is an ancestor of Rpar, (b) q′
1 hits the bottom segment of R′ first and q′

2 hits the
top segment of Rpar first, and (c) Both q′

1 and q′
2 will not hit the bottom segment of R′ first. B′′ is

the ancestor of B′ in the tree representation.

Algorithm. Now we are ready to describe the overall algorithm. When the sweep-plane
is at x-coordinate x = xt, then the ray shooting data structure Dt is maintained based on
the boxes in Bt. When the sweep-plane’s next event point is the left face of a box B ∈ Bt,
then perform the following steps: Using Lemma 10, query Dt with q′ to find the parent Bpar

of B in the tree representation. Update Dt by inserting the top and the bottom segments
of R← B ∩ ℓt. When the sweep-plane’s next event point is the right face of a box B ∈ Bt,
then delete the top and the bottom segments of R← B ∩ ℓt from Dt.

Analysis. Sorting the left and the right faces of the boxes in B can be done in O(n log log n)
time [20]. At each event point, we will perform at most one vertical ray shooting query.
Chan and Tsakalidis [12] present a dynamic data structure for vertical ray shooting with an
expected query time of O(log n/ log log n) and an amortized update time of O(log1/2+ε n).
Our algorithm performs Θ(n) queries and Θ(n) updates to the ray shooting structure.
Therefore, the overall expected time taken is O(n log n/ log log n).

▶ Theorem 11. The tree representation for n laminar axis-aligned boxes in 3D can be
computed in O(n log n/ log log n) expected time.

▶ Theorem 12. The tree representation for n laminar axis-aligned boxes in 2D can be
computed in O(n log log U) expected time, where the endpoints of the boxes lie on the integer
grid [U ]2.
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Proof. We will adapt the algorithm for 3D to the 2D case. In that case, we will need a
dynamic 1D point location data structure. By using the data structure of Chan [11], our
algorithm can be implemented in O(n log log U) expected time. ◀

4 Future work

As discussed in the Introduction, recently max cut on interval graphs has been shown to
be NP-hard [1]. For the special case of laminar interval graphs, our works shows that max
cut can be computed exactly in almost-linear time (in terms of n). However, for the other
special case of max cut on unit interval graphs, the complexity status is still an open problem.
Another interesting line of work is to design a polynomial time algorithm for max cut on
interval graphs (and other geometric intersection graphs) with an approximation factor better
than 0.878.
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