
Clustering Permutations: New Techniques with
Streaming Applications
Diptarka Chakraborty #

National University of Singapore, Singapore

Debarati Das #

Pennsylvania State University, University Park, PA, USA

Robert Krauthgamer #

Weizmann Institute of Science, Rehovot, Israel

Abstract
We study the classical metric k-median clustering problem over a set of input rankings (i.e.,
permutations), which has myriad applications, from social-choice theory to web search and databases.
A folklore algorithm provides a 2-approximate solution in polynomial time for all k = O(1), and
works irrespective of the underlying distance measure, so long it is a metric; however, going below
the 2-factor is a notorious challenge. We consider the Ulam distance, a variant of the well-known
edit-distance metric, where strings are restricted to be permutations. For this metric, Chakraborty,
Das, and Krauthgamer [SODA, 2021] provided a (2 − δ)-approximation algorithm for k = 1, where
δ ≈ 2−40.

Our primary contribution is a new algorithmic framework for clustering a set of permutations.
Our first result is a 1.999-approximation algorithm for the metric k-median problem under the Ulam
metric, that runs in time (k log(nd))O(k)nd3 for an input consisting of n permutations over [d]. In
fact, our framework is powerful enough to extend this result to the streaming model (where the n

input permutations arrive one by one) using only polylogarithmic (in n) space. Additionally, we
show that similar results can be obtained even in the presence of outliers, which is presumably a
more difficult problem.

2012 ACM Subject Classification Theory of computation → Facility location and clustering; Theory
of computation → Streaming, sublinear and near linear time algorithms

Keywords and phrases Clustering, Approximation Algorithms, Ulam Distance, Rank Aggregation,
Streaming

Digital Object Identifier 10.4230/LIPIcs.ITCS.2023.31

Related Version Full Version: https://arxiv.org/pdf/2212.01821.pdf

Funding Diptarka Chakraborty: Work partially supported by an MoE AcRF Tier 2 grant (WBS No.
A-8000416-00-00) and an NUS ODPRT grant (WBS No. A-0008078-00-00).
Robert Krauthgamer : Work partially supported by ONR Award N00014-18-1-2364, the Israel Science
Foundation grant #1086/18, and a Minerva Foundation grant, and by the Israeli Council for Higher
Education (CHE) via the Weizmann Data Science Research Center.

1 Introduction

Clustering is one of the ubiquitous tasks used in data analysis, which partitions a set of
objects into several groups so that similar items lie in the same group. One of the most
widely studied variants is the metric k-median clustering. In this problem, given an input
set S of n data points, the goal is to find a set of k median points from the underlying space
(not necessarily from S) such that the sum of distances of all the data points in S to its
nearest median point is minimized. (See Section 2 for a formal definition.) Throughout
this paper, we consider the above variant and refer to it simply by the k-median problem.

© Diptarka Chakraborty, Debarati Das, and Robert Krauthgamer;
licensed under Creative Commons License CC-BY 4.0

14th Innovations in Theoretical Computer Science Conference (ITCS 2023).
Editor: Yael Tauman Kalai; Article No. 31; pp. 31:1–31:24

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:diptarka@comp.nus.edu.sg
mailto:debaratix710@gmail.com
mailto:robert.krauthgamer@weizmann.ac.il
https://doi.org/10.4230/LIPIcs.ITCS.2023.31
https://arxiv.org/pdf/2212.01821.pdf
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

31:2 Clustering Permutations: New Techniques with Streaming Applications

For k = 1, the problem is also referred to as the geometric median (or simply median)
problem. For many applications, it suffices to find an approximate solution to the problem,
i.e., find a set of points from the metric space whose objective value approximates the
minimum multiplicatively (for a formal definition, see Section 2). This problem has been
studied extensively in theory as well as in applied domains, both for k = 1 and arbitrary
k. The complexity of the problem varies with the underlying metric space. For k = 1,
perhaps the most well-studied version is over a Euclidean space (aka the Fermat-Weber
problem), for which a near-linear time (1 + ϵ)-approximation algorithm (for any ϵ > 0) is
known [20]. Other spaces that have been considered for the median problem include Hamming
(folklore), the edit metric [48, 36, 43, 15], rankings/permutations [24, 2, 15], Jaccard distance
between sets [19], and many more [26, 40, 13]. The problem is clearly more challenging for
general k. For points in Rd, Chen [18] gave (1 + ϵ)-approximation algorithm with running
time O(ndk + 2(k/ϵ)O(1)

d2 logk+2 n) (see references therein for an overview) using coresets.
For arbitrary metric spaces, O(1)-approximation algorithms (with a trade-off between the
approximation factor and the running time) are known, e.g. [16, 32, 6, 28, 39, 18]. Better
approximation results are known for specific metric spaces, like Hamming [44], shortest-path
metric in a graph [50], etc.

One of the fundamental metrics (other than Euclidean and Hamming) that finds numerous
applications is the edit metric. The edit distance is a well-known dissimilarity measure between
strings, which counts the minimum number of basic edit operations, like character insertion,
deleting, and substitution, required to transform one string into the other. The k-median
clustering problem over the edit metric is of utter importance in various domains, including
computational biology [29, 46], DNA storage system [27, 47], speech recognition [35], and
classification [38]. For k = 1, it is also referred to as the median string problem [35] (an
equivalent formulation is known as multiple sequence alignment [29]). Despite being an
important problem, we only know that it is NP-hard, even for k = 1 [23, 43]. Although
several heuristics exist [14, 37, 45, 1, 31, 41], we do not know any approximation result better
than what holds for arbitrary metrics.

We study the k-median problem over the Ulam metric, which is a variant of the edit
metric, by restricting strings to be permutations. The Ulam metric of dimension d is (Sd, ∆),
where Sd is the set of all the permutations over [d] and ∆(x, y) is the minimum number of
character-move operations needed to transform x into y [3].1 Studying the Ulam metric
is beneficial from two facets. First, it is a close variant of the edit metric defined over
permutations and thus captures many inherent difficulties of the edit metric. Thus, progress
in the Ulam metric may provide insights to the same problem under a more general edit
metric. Second, it is a natural dissimilarity measure between rankings that arise in diverse
areas ranging from social-choice theory [9] to information retrieval [30], and indeed has been
studied from different algorithmic perspectives [21, 17, 4, 5, 42, 8].

There is a folklore O(nk+1 ·f(d))-time algorithm (where f(d) denotes the time to compute
the distance between two points) that provides a 2-approximate solution to the k-median
problem for an arbitrary metric space, by simply reporting the best k-tuple from the input
set as the median points (see Procedure 1). Breaking below the 2-factor even in nO(k) time
is one of the most notorious challenges, even for some specific metrics. So far, we do not
know any affirmative result for the Ulam metric. Very recently, Chakraborty, Das, and

1 In a permutation, a character move can be thought of as “picking up” a character and “placing” it in
another position. Since it is equivalent to one deletion and one insertion, one can define the distance
alternatively using character insertions and deletions [21].

D. Chakraborty, D. Das, and R. Krauthgamer 31:3

Krauthgamer [15] provided a (2− δ)-approximation algorithm only for the special case of
k = 1 (aka rank aggregation under the Ulam), where δ ≈ 2−40 is a tiny constant. On
the contrary, the median problem concerning Kendall’s tau distance, yet another popular
dissimilarity measure over permutations (e.g., [33, 51, 52, 24, 2]), possesses a PTAS [34, 49],
which can be extended to k-median using coresets [22].

We fruther study this problem (k-median under the Ulam metric) in the streaming
model, i.e., when the input arrives sequentially; more specifically, the n input permutations
x1, x2, . . . , xn ∈ Sd arrive one by one. This is sometimes called an insertion-only stream,
because an input permutation cannot be deleted after its arrival. One of the challenges in
this model is that the algorithm cannot freely access the input, and the main goal is to devise
an algorithm with an amount of space that is sublinear (ideally, logarithmic) in n. The
k-median problem in the insertion-only streaming model has also been studied extensively,
e.g., [28, 18, 10, 12]. However, no non-trivial result (other than what holds for an arbitrary
metric) is known for the Ulam metric.

1.1 Our Contribution
Our main result is a streaming algorithm for the k-median problem under the Ulam metric
that achieves better than the 2-approximation factor.

▶ Theorem 1.1. There is a (randomized) streaming algorithm that, given a set of permutations
x1, x2, . . . , xn ∈ Sd (arriving in streaming fashion), provides a 1.9999995-approximate solu-
tion to the (metric) k-median problem under the Ulam metric, using only k2d polylog(nd) bits
of space, with high probability. Moreover, the algorithm has update time (k log n)O(1)d log2 d

and query time (k log(nd))O(k)d3.

It is worth mentioning that here the input size is O(nd log d) bits (since each permuta-
tion of Sd requires O(d log d) bits). In our algorithm, we only need to maintain a subset
of k2 polylog(nd) permutations. For k = 1, we can improve the space-bound to only
O(d log d log2 n) (Theorem 5.1). Also, all our algorithms require only a single pass.

To achieve our result, we first develop a new algorithm framework that provides a 1.999-
approximate solution to the median problem (i.e., for k = 1) deterministically (Theorem 3.1).
Compared to the previous approximation result of [15], our algorithm is superior in various
aspects. First, the approximation factor is 1.999, an improvement over the 2 − δ, where
δ ≈ 2−40 in [15]. Second, our analysis is much simpler than that in [15], which was roughly
divided into the following two cases: In the first case, a large fraction of the optimum
objective value is “concentrated on a small fraction of symbols of [d]”, and in the second is
the optimum objective value is “spread out throughout all the symbols of [d]” (see also the
Technical Overview below). Analyzing these two cases separately and then combining them
makes the entire analysis quite complicated and also affects the approximation guarantee. In
contrast, our analysis is pretty simple and argues that for k = 1,

either there exists five input permutations from which we can reconstruct an approximate
median (by essentially solving the feedback vertex set problem over a special type of
tournament graph);
or, there is an input permutation around which there is a large cluster (and thus would
also provide a good approximate solution to the entire input);
or, there is an input permutation that is close to an (unknown) optimal median (and
thus, again, would be a good approximate median).

Third, and perhaps most importantly, because the final output is either an input permu-
tation or derived from only five input permutations, we essentially show that there are at
most n5 candidate points, one of which provides a 1.999-approximate solution. For general

ITCS 2023

31:4 Clustering Permutations: New Techniques with Streaming Applications

k, the same argument is clearly true also for each of the clusters induced by an optimal
k-median solution, and thus we can easily extend our framework to the k-median problem,
for arbitrary k, with running time nO(k)d3 (Theorem 3.4). This running time can further be
improved to (k log(nd))O(k)nd3 using the sampling technique described in Section 4. Further,
we can extend it to the k-median problem with outliers (see Section 3.2 for the definition
and the details), presumably a more challenging problem. Such extensions were not possible
to the algorithm of [15]. Lastly, our algorithm can be implemented in a streaming fashion by
storing (with the help of a “clever” sampling) only k2 poly log(nd) input permutations and
then running our offline algorithm (with a slight modification) on them. We emphasize that
randomization is used only while implementing it in the streaming model.

1.2 Technical Overview

The algorithm of Chakraborty, Das and Krauthgamer [15] computes, given a set S of n

permutations over [d], a (2 − δ)-approximate 1-median under the Ulam metric for δ ≈
2−40. Their algorithm starts with the following simple observation: Fix an optimal median
permutation y∗, and let ℓ be the average distance between y∗ and the input permutations.
Now if S contains a permutation x such that the distance between y and x is ≤ (1− δ)ℓ, for
some constant δ > 0, then x provides a (2− δ)-approximation to the optimal objective value.
Otherwise, they first considered the case where the average distance is large, i.e., ℓ = Ω(d).
In this case, using a counting argument, they show that there exists x ∈ S such that at least
Ω(n) other input permutations are at a distance at most (2 − δ′)ℓ. Thus taking x as an
approximate median provides better-than-2 approximation to the optimal objective value.
Of course, this x ∈ S is not known, but outputting the input permutation that minimizes the
objective serves the purpose. In the other case, where the average distance ℓ is small, if the
cost is distributed only over a few symbols of [d], then restricting the input permutations only
to these symbols gives rise to an instance with a large average objective, and thus one can
reuse the large-distance algorithm mentioned above. If, however, the total cost is distributed
over many symbols, then for almost all the symbols in [d], the cost is small. Now consider
two such small-cost symbols; as both are aligned together in most of the input permutations,
their relative order in all these permutations is the same as that in y∗, and thus can be
computed by examining all the input permutations and taking the majority. Moreover, using
random sampling, this majority can be decided by looking at only O(log n) permutations.
However, this dependency on log n input permutations becomes ineffective when we try to
lift these ideas to k-median for k > 1, and this is where our new framework plays a crucial
role.

We start by providing an algorithm that shows that either an input permutation breaks
the 2-factor or the input set S contains 5 permutations from which we can derive a permu-
tation whose distance is small from an optimal median y∗, and it thus gives better-than-2
approximation to the optimal objective value. This dependency on the number inputs is
significantly better than in [15], and it is specifically important for the k-median problem
(general k > 1), where the grouping of the input permutations into k clusters is not known.
However, using our framework, one can try all

(
n
5
)

different ways of picking 5 input per-
mutations and use them to derive candidates for approximate median. These can serve as
candidates for all the k clusters (simultaneously) without knowing the optimal partitioning
of S. This approach breaks down for the algorithm of [15], where the candidates are derived
from Ω(log n) inputs, thus giving

(
n

log n

)
candidates overall. We proceed to present next our

new framework for computing 1-median.

D. Chakraborty, D. Das, and R. Krauthgamer 31:5

New algorithm for 1-median. Our algorithm (in Section 3) is based on a three-step
framework. First, similar to [15], we use the fact that if the input set S contains a permutation
x such that the distance between x, y∗ is at most (1−δ)ℓ then x serves as a (2−δ)-approximate
median.

Next, for the sake of analysis, we fix an optimal alignment between each input x and y∗.
Let Ix denote the symbols that are not aligned in this optimal alignment. In step two, we
consider the scenario where all the permutations are at a distance at least (1− δ)ℓ from y∗

and moreover, there is a subset T ⊆ S containing five permutations x1, . . . , x5 such that for
any pair xi, xj their corresponding sets of unaligned characters have a very small overlap,
i.e., |Ixi ∩ Ixj | ≤ ϵℓ. In this case, we design an algorithm MedianReconstruct that just
by using x1, . . . , x5 constructs a permutation x̃ such that the distance between x̃ and y∗

is at most (1 − δ)ℓ. Let B = ∪i,j∈[5](Ixi
∩ Ixj

). Then |B| ≤ 10ϵℓ. Now for any pair of
symbols a, b ∈ [d] \B, as each of a, b can be unaligned in at most one xi, together they are
aligned in at least three out of five permutations x1, . . . , x5. Thus by looking at the relative
order of a and b in these five permutations and taking the majority, we correctly deduce
their order in y∗. This observation makes our algorithm framework significantly stronger
than [15] by reducing the dependency on the number of input permutations that are actually
required to construct a good approximate median. However, we might not get the correct
relative order for the pair of symbols that come from the set B. Instead, they may create
conflict with other useful orders. To solve this, following a similar idea as in [15], we create a
relative order graph H that contains d vertices corresponding to the d symbols in the input
permutations. For every pair of symbols a, b, we add an edge from a to b if at least in three
of the five permutations from T , a appears before b; otherwise, add an edge from b to a.
Next, we generate from H an acyclic graph H ′ by removing cycles iteratively while deleting
the smallest one first. Here, since H is a tournament, the shortest cycle length is always
three. Along with this, each cycle should contain at least one vertex from B. As |B| ≤ 10ϵℓ,
this process removes very few vertices, and thus most of the symbols survive in H ′. Next, we
create a permutation x̃ by taking a topological ordering on H ′ and appending the missing
symbols at the end. Our analysis vastly differs from the one given in [15], where the relative
order graph is not a tournament. This simplifies our cycle removal process and provides a
better approximation guarantee.

Lastly, we consider the case where there are at most four input permutations whose
corresponding sets of unaligned symbols in the optimal alignment with y have a small overlap.
Again here, for at least one of them (call it x), there are Ω(n) other inputs x′ such that the
sets of unaligned symbols for x and x′ have a large overlap, and thus the distance between x

and x′ is strictly smaller than 2ℓ. Thus considering x as an approximate median provides
a better-than-2 approximation of the optimal objective value. Our algorithm also finds an
input permutation that minimizes the total objective and finally outputs the best among
those generated by MedianReconstruct and the best input permutation.

Approximating k-median. Next, we show how our 1-median algorithm can be extended to
k-median for general k. For analysis purpose, fix k optimal medians y∗

1 , . . . , y∗
k, and let Ci

be the set of input permutations served by y∗
i . Following the 1-median algorithm, either Ci

contains a permutation that provides < 2 approximation, or it includes 5 permutations using
which we can construct the approximate median for Ci. However, to start with, we do not
know the optimal k-partition of the input set. Nevertheless, we can construct a set M of
potential approximate k medians as follows: For each of the

(
n
5
)

different choices of 5 input
permutations, create a permutation using the MedianReconstruct algorithm and add it

ITCS 2023

31:6 Clustering Permutations: New Techniques with Streaming Applications

to the set M . Next, add all input permutations to M . It is straightforward to see that the
set M contains k permutations ỹ1, . . . , ỹk such that each ỹi is a better-than-2 approximate
median for Ci. To identify these k permutations, we try all possible size-k subsets of M and
output the one that minimizes the total objective. We can bound the overall running time of
the algorithm by nO(k)d3. The details of this algorithm can be found in Section 3.1. This
running time can further be improved to (k log(nd))O(k)n2d3 using the sampling technique
used in the streaming algorithm described next.

Streaming Algorithm for Approximating k-Median. For the k-median problem, we have
shown that for each cluster Ci, at most 5 permutations are enough to construct an approximate
median. However, without knowing the optimal k-partitioning of the input S, we need to
try all possible

(
n
5
)

choices. Unfortunately, this step becomes infeasible when the n input
permutations arrive in a stream, and we can afford to store only a few (preferably polylog)
of them. Towards this, we design a streaming algorithm that requires several techniques,
including an efficient sampling of the input permutations, coreset construction, etc. This
algorithm provides a (2 − δ)-approximation of k-median while storing O(k2 log4 n log d)
permutations. Next, we provide a brief overview of this algorithm. The details can be found
in Section 4.

Sampling procedure. Let OPT be the total optimal objective for all k clusters. The
key component of our streaming algorithm is a “clever” sampling technique that selects
a set R1 of O(k log4 n log d) permutations from the input stream and ensures that for any
cluster Ci if its optimal objective Oi is at least a constant fraction of the average objective,
i.e., Oi = Ω(OPT

k), then either R1 contains a permutation that serves as a better-than-2
approximate median for Ci, or there are 5 permutations in R1 such that applying the
MedianReconstruct algorithm on them we can generate an approximate median. To
explain this, we fix a cluster Ci and let ni = |Ci|, y∗

i be an optimal median of Ci, and
ℓi = Oi/ni be the average objective. Next, we argue that if we sample each permutation in
the input stream independently, uniformly at random with probability log2 n/ni, then the
sample set satisfies the above-mentioned properties.

For this, we first consider the case when at least 1/ log n fraction of the permutations in
Ci are close, i.e., at a distance < (1− δ)ℓi from the optimal median y∗

i . Note that all such
permutations are good candidates for an approximate median. Also, following our sampling
rate, we will sample at least one of them with a high probability.

Thus from now on, we assume even fewer permutations are close to y∗
i . Note, there

can be at most ni

1+δ permutations in Ci that are at distance > (1 + δ)ℓi from y∗
i . Hence a

constant fraction of permutations is at a distance between (1− δ)ℓi and (1+ δ)ℓi from y∗
i . Let

Cavg
i be the set of all these permutations. Now for every permutation x ∈ Cavg

i , we define a
neighboring set C(x) containing all other permutations z ∈ Cavg

i such that the intersection
between the set of unaligned characters in optimal alignments between x, y∗

i and z, y∗
i is

large and thus they are close. Note here x serves as a better-than-2 approximate median for
C(x). Now we call x to be in Cavg,dense

i if |C(x)| is large i.e., |C(x)| = Ω(|Cavg
i |) = Ω(ni).

This means for each permutation x in Cavg,dense
i there is a large cluster of size Ω(ni) around

x and as x serves as a better-than-2 approximate median for C(x), overall by considering x

to be the approximate median for Ci we get < 2 approximation of the optimal objective Oi.
Now, if Cavg,dense

i is large, then again, by our sampling strategy with high probability, we
will sample a permutation x from it.

Lastly, we consider the case where Cavg,dense
i is small. Here using an iterative argument,

we show that our sampling algorithm will sample at least 5 permutations such that their
corresponding set of unaligned symbols has a small overlap. Thus, using algorithm Median-

D. Chakraborty, D. Das, and R. Krauthgamer 31:7

Reconstruct, we can construct an approximate median. To see this notice as Cavg,dense
i

is small with high probability, we will sample a permutation x1 ∈ Cavg
i \ Cavg,dense

i and
thus C(x1) is small. Moreover, as C(x1) is small, we will sample another permutation x2
such that C(x2) is small and x2 /∈ C(x1) and thus x1 and x2 have small overlap between
their unaligned character set. We can continue this process and show overall, with a high
probability, 5 permutations can be sampled with the small overlap property. Thus we can
apply algorithm MedianReconstruct on these 5 strings and compute an approximate
median with objective < 2Oi.

Here for the sampling to work for cluster Ci, we use a sampling rate log2 n/ni. However,
as we do not know ni in advance, we try all sampling rates in {1/(1 + ϵ), 1/(1 + ϵ)2, . . . , 1/n}
and we can ensure that one of them is arbitrarily close to log2 n/ni. The challenge here
is that for a sampling rate much larger than log2 n/ni, the sample size can grow beyond
our space limit. For this, whenever a sample set grows beyond k log3 n, we discard that set.
Though this limits the space complexity, it can destroy a good sample set that is necessary
to keep from computing an approximate median for Ci. Next, we need to show for the right
sampling rate, the sample set size always stays within the limit, and thus we do not miss the
useful permutations. To ensure this in the uniform sampling process, we also incorporate
a pruning strategy. Note with a sampling rate log2 n/ni (or (1 + ϵ) log2 n/ni), with high
probability, we sample at most 10 log2 n permutations from Ci. However, if there is a cluster
Cj such that |Cj | >> |Ci|, then we end up sampling much more permutations from Cj and
the sampling set size goes beyond k log3 n, and we discard it. To upper bound this while
adding a new permutation to our sample set, we ensure all previously added permutations
are at a distance at least βℓi (for a small constant β) from it. Now to start with, as we
assumed Oi = Ω(OPT

k), we can show that the total number of sampled permutations from all
clusters Cj ̸= Ci is bounded by k log3 n with high probability. Also, because of the pruning,
we get an extra additive error βℓi. This can be bounded by setting β appropriately.

Approximating small objective clusters. Now we focus on the clusters whose objective is
much smaller than the average objective OPT/k. Notice that the total objective contributed by
the small objective clusters is very small. For these clusters, it suffices just to give a constant
approximation of their optimal cost. For this we use the monotone faraway sampling (MFS)
from [12] to sample a set R2 ⊆ S of size O(k2 log k log(kn)) such that for each cluster Ci, R2
contains a permutation ỹi such that the objective of Ci w.r.t. ỹi is at most 5Oi + ρOPT/k.
Thus by keeping ρ small, we achieve the required approximation.

Computing approximate k-median using coreset. After sampling set R1 and R2,
following the offline k-median algorithm, we design a potential k-median set M̃ by adding
all permutations of R1, R2 to M̃ . Together with this for each subset T of R1 of size 5, run
algorithm MedianReconstruct(T) and add the output x̃T to M̃ . However, to decide
which k permutations from M̃ minimize the total objective, we need access to the actual
input set S (which we cannot store using a small space). Now again, to upper bound the
space complexity, instead of storing S explicitly, we construct a (k, λ)-coreset (see Section 4
for the definition) for S with respect to the implicit potential median set M . Here M is a set
containing all permutations from S. Moreover, for each subset T ⊆ S of size 5, the output
of MedianReconstruct(T) is also present in M . This coreset ensures that considering
any k-size subset of M̃ as a potential k-median if we compute the corresponding objectives
for set S and the coreset then these two objectives are close when λ is small. Thus we can
use the coreset to decide the best candidate k-median from M̃ . Moreover, as |M | ≤ O(n5),
following Theorem 4.3, we can show that the coreset size is also bounded by O(k2 log2 n).
We remark that to make our algorithm space efficient, instead of explicitly storing each x̃T

to M̃ , we recompute it whenever x̃T is a part of a candidate k-median.

ITCS 2023

31:8 Clustering Permutations: New Techniques with Streaming Applications

Approximating k-median with outliers. We further extend our k-median algorithm in the
presence of outliers. In the k-median with outliers problem, given a parameter p ∈ [0, 1) and
input set S, the goal is to find a set of at most k permutations that minimizes the k-median
objective value of a subset of S of size at least (1 − p)|S|. (See Section 3.2 for a formal
definition.) Using the argument the same as that for the k-median problem (without outlier),
we claim that a subset of at most k permutations from a candidate set M (of potential
medians) of size at most O(n5) achieves a 1.999-factor approximation for the outlier variant
as well (Theorem 3.5).

1.3 Conclusion
In this paper, we study the (metric) k-median problem under the Ulam metric, which is
known to be NP-hard even for k = 2. The Ulam metric is of utter importance because it
is a variant of the more general edit metric and an interesting dissimilarity measure over
rankings (or permutations). There is a folklore 2-approximation algorithm that works for any
metric space, and breaking this factor-2 barrier is one of the interesting challenges. Despite
being an important metric, the problem under the Ulam metric does not possess any better
approximation algorithm. For the special case of k = 1, there is a (2 − δ)-approximation
(where δ ≈ 2−40) algorithm known [15]. However, that algorithm does not provide any
non-trivial result for arbitrary values of k.

We provide a 1.9999995-approximation algorithm for the k-median problem, with running
time (k log(nd))O(k)nd3. Moreover, our algorithm works in the insertion-only streaming
model, using only polylogarithmic (in the number of input permutations) space. Further, we
can extend our framework to get a similar result even in the presence of outliers, which is
presumably a more complex problem. We also would like to highlight that our framework is
not very specific to the Ulam metric; in fact, it (with slight modification) also provides a
similar result for other metrics like Kendall’s tau defined over rankings/permutations. One
exciting direction is to see whether our new framework can give similar results to the other
known distance measures involving rankings, such as Spearman’s footrule, Minkowski, Cayley,
swap-and-mismatch, etc. Another stimulating future direction is to use this new framework
to get a similar result for another essential variant of the clustering problem, namely the
k-center clustering problem (under the Ulam metric). Finally, extending our result to the
more general edit metric (even with certain restrictions on the input) would, of course, be
super intriguing.

2 Preliminaries

Notations. We use [d] to denote the set {1, 2, · · · , d}. Let Sd denote the set of all permuta-
tions over [d]. Throughout the paper, we consider a permutation x (over [d]) as a sequence
a1, a2, · · · , ad such that x(i) = ai.

Ulam metric and the k-median problem. For any two permutations x, y ∈ Sd, the
Ulam distance between them, denoted by ∆(x, y), is the minimum number of character
move operations2 that is needed to transform x into y. Equivalently, it can be defined as
d− |LCS(x, y)|, where LCS(x, y) denotes a longest common subsequence between x and y.

2 A single move operation in a permutation can be thought of as “picking up” a character from its position
and then “inserting” that character in a different position.

D. Chakraborty, D. Das, and R. Krauthgamer 31:9

For any two permutations (permutations) x and y of lengths dx and dy respectively, an
alignment g is a function that maps [dx] to [dy] ∪ {⊥} such that:
∀i ∈ [dx], if g(i) ̸= ⊥, then x(i) = y(g(i));
For any two distinct i, j ∈ [dx] where g(i), g(j) ̸= ⊥, i < j ⇔ g(i) < g(j).

For an alignment g between two permutations (permutations) x and y, we say g aligns
a character x(i) with some character y(j) if and only if j = g(i). Thus the alignment g is
essentially a common subsequence between x and y.

For any permutation x ∈ Sd and a set Y ⊆ Sd, let us define the distance between x and
Y as ∆(x, Y) := miny∈Y ∆(x, y) (i.e., the minimum distance between x and a permutation
from Y). Given a set S ⊆ Sd and a subset Y ⊆ Sd, we define the median objective value of S

with respect to Y as Obj(S, Y) :=
∑

x∈S ∆(x, Y).
Given a set S ⊆ Sd, the k-median problem asks to find a subset Y ⊆ Sd of size at most3 k

such that Obj(S, Y) is minimized, i.e., Y ∗ = arg minY ⊆Sd:|Y |≤k Obj(S, Y). We refer to the set
Y ∗ as k-median of S. We refer Obj(S, Y ∗) as OPT(S), or simply OPT when S is clear from the
context. Note, for k = 1, y∗ = arg miny∈Sd

Obj(S, y) is referred to as a median (or geometric
median or 1-median). We call a set Ỹ a c-approximate k-median of S, for some c > 0, if
Obj(S, Ỹ) ≤ c ·OPT(S). Further, note, each set {y1, · · · , yk} induces a partitioning (clustering)
of S into k-clusters C1, · · · , Ck, where Ci := {x ∈ S | ∆(x, yi) ≤ ∆(x, yj) for all j ̸= i} (if for
some x ∈ S, ∆(x, yi) = ∆(x, yj) for some i ̸= j, then break the ties arbitrarily to form Ci’s).

It is worth emphasizing that in the above definition of the k-median problem, the k-median
set Y ∗ need not be a subset of the input S. In the literature, this variant is sometimes
referred to as the continuous k-median problem. On the other hand, the discrete variant asks
to find a set Y ∗ of size at most k, strictly from S that minimizes the median objective value
(over all the subset of S of size at most k). It follows directly from the triangle inequality
that any optimum discrete k-median set is a 2-approximate solution to the (continuous)
k-median problem.

Since in the discrete version, the median points are necessarily from S, by brute force
over all the O(nk) (where |S| = n) possibilities, we can compute an optimum solution. We
refer to this algorithm as Procedure BestFromInput (Procedure 1). So, the Procedure
BestFromInput provides a 2-approximate solution to the (continuous) k-median problem.
The running time is O(nk + n2d log d), since for any x, y ∈ Sd, we can compute ∆(x, y) in
O(d log d) time.

Algorithm 1 BestFromInput(S, k).
Require: S ⊆ Sd.
Ensure: A subset Y ⊆ S of size at most k.

1: For all pairs of permutations xi, xj ∈ S, compute ∆(xi, xj)
2: return arg minY ⊆S:|Y |≤k Obj(S, Y).

3 Approximation Algorithm for 1-Median

▶ Theorem 3.1. There is a deterministic polynomial-time algorithm that, given a set S of n

permutations over [d], finds a 1.999-approximate median.

3 Here Y is not a multi-set. If we allow Y to be a multi-set, then we can ask Y to be of size exactly k.
Note, both formulations are equivalent.

ITCS 2023

31:10 Clustering Permutations: New Techniques with Streaming Applications

Description of the algorithm. Let us start with the description of our algorithm. Our
algorithm consists of two procedures. The first procedure is BestFromInput (by setting
k = 1), which simply outputs a permutation ỹ ∈ S with the minimum median objective value
among all the inputs, i.e., ỹ = arg miny∈S

∑
x∈S ∆(x, y). The second procedure enumerates

all subsets of S of size five (i.e., 5-tuples of input permutations) and runs the procedure
MedianReconstruct. For a subset T ⊆ S, MedianReconstruct works as follows: It
constructs a directed graph H with vertex set [d] and edge set

E(H) := {(a, b) | a appears before b in at least three permutations of T}.

Observe, the graph H is a tournament4, but may not be acyclic. Next, the procedure iterates
over all the vertices and while iterating over a vertex v, it finds a shortest cycle containing v

and deletes all its vertices (along with all the incident edges). Let H ′ be the final resulting
acyclic graph. Then the procedure performs a topological sorting on the vertices of H ′ and
let x̃′ denote the sorted ordering. Finally, it appends the remaining symbols ([d] \ V (H ′)) at
the end of x̃′ in an arbitrary order and outputs the resulting permutation x̃.

Algorithm 2 MedianReconstruct(T).
Require: T ⊆ S.
Ensure: A permutation x̃ over [d].

1: H ← ([d], E) where
E = {(a, b) | a appears before b in at least three permutations of T}

2: for all v ∈ [d] do
3: Cmin ← cycle of minimum length containing v in H

4: H = H − V (Cmin)
5: end for
6: H ′ ← H

7: x̃′ ← permutation formed by topological ordering of V (H ′)
8: x̃ ← permutation formed by appending to x̃′ the symbols [d] \ V (H ′) in an arbitrary

order
9: return x̃.

For a subset T ⊆ S, let us denote the output of MedianReconstruct by x̃T . Consider
the set

M = {ỹ} ∪ {x̃T | for all T ⊆ S such that |T | = 5}.

The final algorithm ApproxMedian(S) (Algorithm 3) outputs the best permutation z among
the set M that minimizes the median objective value, i.e., z = arg miny∈M

∑
x∈S ∆(x, y).

Running time analysis. Note, each ∆(x, y) computation takes O(d log d) time. Then the
first procedure BestFromInput takes only O(n2d log d) time. There are at most O(n5)
subsets of S of size exactly five. For each such subset, the MedianReconstruct procedure
takes O(d2) time to construct the graph H. Then, computing a minimum length cycle
passing through a vertex v at each iteration takes O(d2) time. Since it iterates over all the
vertices v ∈ [d], the running time for the whole cycle removal step is O(d3). The topological
ordering can be performed in O(d2) time. So the running time of MedianReconstruct is
O(d3). Hence, the overall running time of the final algorithm ApproxMedian is O(n5d3).
Later in Section 4, we will comment on how to reduce the running time to Õ(d3).

4 A directed graph is called a tournament if between every pair of vertices there is a directed edge.

D. Chakraborty, D. Das, and R. Krauthgamer 31:11

Algorithm 3 ApproxMedian(S).
Require: S ⊆ Sd.
Ensure: A subset Y ⊆ S of size at most k.

1: Initialize an empty set M

2: ỹ ← BestFromInput(S, 1)
3: Add ỹ to M

4: For all the subsets T ⊆ S of size 5, run MedianReconstruct(T) and add the output
to M

5: return arg miny∈M Obj(S, y).

Analyzing the approximation factor. Suppose S = {x1, x2, · · · , xn}. Let x∗ be an arbitrary
optimal median of S. So, OPT(S) =

∑
xi∈S ∆(xi, x∗). For each xi ∈ S, consider an arbitrary

optimal alignment between xi and x∗, and let Ixi
(or for brevity, Ii) denote the set of unaligned

symbols (⊆ [d]) with respect to this alignment. Recall, by the definition, ∆(xi, x∗) = |Ii| for
each xi ∈ S. WLOG assume, |I1| ≤ |I2| ≤ · · · ≤ |In|.

Consider ϵ = 0.03319 and α = ϵ/11. WLOG assume,

|I1| ≥ (1− α)OPT/n. (1)

Otherwise,

Obj(S, x1) ≤
∑

xi∈S

∆(xi, x1)

≤
∑

xi∈S

(∆(xi, x∗) + ∆(x∗, x1)) (by triangle inequality)

≤ (2− α)OPT. (2)

It is straightforward to see that Obj(S, ỹ) ≤ Obj(S, x1), and thus the final output z satisfies
Obj(S, z) ≤ (2− α)OPT. So from now, we assume Equation 1.

▶ Lemma 3.2. Consider ϵ = 0.03319 and α = ϵ/11. Then one of the following holds:
1. Either there are five inputs xi1 , xi2 , xi3 , xi4 , xi5 (with i1 < · · · < i5) such that for any two

r, ℓ ∈ {i1, i2, i3, i4, i5} with ℓ > r, |Ir ∩ Iℓ| ≤ ϵ|Ir| and |Ii4 | ≤ (1 + α)OPT/n;
2. Or there exists xj ∈ S such that Obj(S, xj) ≤ 1.999 · OPT.

Proof. Let us consider the set of far points, defined as

F := {xi ∈ S | |Ii| ≥ (1 + α)OPT/n}.

Let F̄ := S \ F . For any subset R ⊆ S, let us define OPTR :=
∑

xi∈R ∆(xi, x∗).
Recall, we assume that |I1| ≤ · · · ≤ |In|. Then it is straightforward to see that for all

xi ∈ S, ∆(xi, x1) ≤ ∆(xi, x∗) + ∆(x∗, x1) = |Ii|+ |I1| ≤ 2|Ii| = 2∆(xi, x∗). Further, observe,
by an averaging argument, |I1| ≤ OPT/n. Then for all xi ∈ F ,

∆(xi, x1) ≤ |Ii|+ |I1| (by the triangle inequality)
≤ |Ii|+ OPT/n

≤ |Ii|+ |Ii|/(1 + α) ≤ (2− α/2)|Ii|.

As a consequence, we get that

Obj(S, x1) ≤ 2OPTF̄ + (2− α/2)OPTF = 2OPT− α

2 OPTF . (3)

ITCS 2023

31:12 Clustering Permutations: New Techniques with Streaming Applications

So if OPTF ≥ 2
3 OPT, we get that Obj(S, x1) ≤ 1.999 · OPT. So from now, assume

OPTF <
2
3OPT. (4)

Next, consider the following procedure A that processes x1, · · · , xn ∈ S one by one.
Initialize a set T ← x1. For each xi ∈ S, if for all xj ∈ T , |Ij ∩ Ii| ≤ ϵ|Ij |, add xi in T . Break
when |T | ≥ 5.

It is worth noting that the above procedure is considered only for the sake of analysis.
Now when the above procedure terminates, suppose T = {xi1 , xi2 , · · · , xi5}, where 1 = i1 <

i2 < · · · < i5, and xi4 ∈ F̄ . Then clearly it satisfies Item 1 of the statement of the lemma.
If not, then either xi4 ∈ F or |T | ≤ 4. By the procedure A, xi4 ∈ F implies that for

all xi ∈ F̄ , there exists xj ∈ T ∩ F̄ such that |Ij ∩ Ii| > ϵ|Ij |. Then by a simple averaging
argument, there exists j ∈ T ∩ F̄ and R ⊆ F̄ such that

OPTR ≥ OPTF̄

|T ∩F̄ | ≥
OPTF̄

3 ; and
For all xi ∈ R, |Ij ∩ Ii| > ϵ|Ij |.

Consider this j ∈ T ∩ F̄ and R ⊆ F̄ . It follows from the triangle inequality that
(i) For all xi ∈ F , ∆(xi, xj) ≤ 2∆(xi, x∗);
(ii) For all xi ∈ F̄ , ∆(xi, xj) ≤ (2 + 3α)∆(xi, x∗);
(iii) For all xi ∈ R, ∆(xi, xj) ≤ (2− ϵ)∆(xi, x∗).
To see this, observe, for any two xi, xr ∈ S, ∆(xi, xr) ≤ |Ii|+ |Ir| − |Ii ∩ Ir|. Now, since for
all xi ∈ F , |Ij | ≤ |Ii|, the first item follows. For the second item, observe, for all xi ∈ F̄ ,
|Ij | ≤ (1 + α)OPT/n ≤ (1 + 3α)|Ii| (since |Ii| ≥ (1−α)OPT/n by assumption Equation 1). For
the third item, note, for all xi ∈ R, |Ii ∩ Ij | > ϵ|Ij |, and further |Ij | ≤ |Ii| (by the description
of procedure A).

Thus

Obj(S, xj) = (2− ϵ)OPTR + 2OPTF + (2 + 3α)OPTF̄ \R

≤ 2OPT− (ϵ + 3α

3 − 3α)OPTF̄ (since OPTR ≥
OPTF̄

3)

≤ (2− 5α/9)OPT (by Equation 4 and ϵ = 11α)
≤ 1.999 · OPT (for α = ϵ/11 = 0.03319/11).

When xi4 ∈ F̄ , but |T | ≤ 4, in a similar way we can argue that there exists xj ∈ T and
R ⊆ S such that

OPTR ≥ OPT
4 ; and

For all xi ∈ R, |Ij ∩ Ii| > ϵ|Ij |.
Hence, again, we can argue as before that

(i) For all xi ∈ F , ∆(xi, xj) ≤ 2∆(xi, x∗);
(ii) For all xi ∈ F̄ , ∆(xi, xj) ≤ (2 + 3α)∆(xi, x∗);
(iii) For all xi ∈ R, ∆(xi, xj) ≤ (2− ϵ)∆(xi, x∗).
Thus

Obj(S, xj) = (2− ϵ)OPTR + 2OPTF \R + (2 + 3α)OPTF̄ \R

= 2OPT− ϵOPTR + 3αOPTF̄ \R

≤ 2OPT− ϵOPTR + 3α(OPT− OPTR)

= 2OPT− (ϵ + 3α

4 − 3α)OPT (since OPTR ≥
OPT
4)

≤ (2− α/2)OPT (by setting ϵ = 11α)
≤ 1.999 · OPT (for α = ϵ/11 = 0.03319/11).

This concludes the proof. ◀

D. Chakraborty, D. Das, and R. Krauthgamer 31:13

Clearly, if there exists xj ∈ S such that Obj(S, xj) ≤ 1.999 · OPT, then

Obj(S, z) ≤ Obj(S, ỹ) ≤ Obj(S, xj) ≤ 1.999 · OPT.

So it only remains to show that if there are five inputs xi1 , xi2 , xi3 , xi4 , xi5 (with i1 < · · · < i5)
such that
1. For any two r, ℓ ∈ {i1, i2, i3, i4, i5} with ℓ > r, |Ir ∩ Iℓ| ≤ ϵ|Ir|, and
2. |Ii4 | ≤ (1 + α)OPT/n,
then Obj(S, z) ≤ 1.999 · OPT. For that purpose, consider T = {xi1 , xi2 , xi3 , xi4 , xi5}, and
the output x̃T of MedianReconstruct on input T . We want to claim that Obj(S, x̃T) ≤
1.999 · OPT, and hence Obj(S, z) ≤ Obj(S, x̃T) ≤ 1.999 · OPT, which will complete the analysis.

▷ Claim 3.3. For T = {xi1 , xi2 , xi3 , xi4 , xi5}, Obj(S, x̃T) ≤ 1.999 · OPT.

Proof. Let us define the set of bad symbols as

B := ∪r ̸=ℓ∈{i1,··· ,i5}(Ir ∩ Iℓ).

Note,

|B| ≤ 4ϵ|Ii1 |+ 3ϵ|Ii2 |+ 2ϵ|Ii3 |+ ϵ|Ii4 | ≤ 10ϵ|Ii4 | (5)

(recall, by our assumption |Ii1 | ≤ · · · ≤ |Ii4 |). Let us define the set of good symbols as
G := [d] \B. Observe, a symbol a ∈ G if and only if a ∈ Ir for at most one r ∈ {i1, · · · , i5}.
Hence, for any two distinct a, b ∈ G, for at least three x ∈ T , a, b ̸∈ Ix, in other words, both
a, b are aligned between x and x∗. Thus, by the construction of H, (a, b) ∈ E(H) if a appears
before b in x∗, for every distinct a, b ∈ G.

Next, observe that for any subset V ⊆ [d], for any vertex v ∈ [d] and a shortest cycle C
containing v in the subgraph H − V ,
1. C must contain at least one bad symbol (i.e., from B);
2. C must be of length 3.
The first condition is straightforward since a set of good symbols cannot form a cycle (because
they form a directed path according to their ordering in x∗). For the second condition,
suppose C is of length strictly greater than 3 and v, a, b are three consecutive vertices in C.
Observe, between any two vertices in the subgraph H − V , there is a directed edge (because
for any two symbols a1, a2, either a1 appears before a2 or a2 appears before a1 in at least
three permutations out of five). So either the edge (b, v) or (v, b) must be in the subgraph
H − V . In the first case, we get a length 3 cycle consisting of v, a, b, and in the second
case, we get a shorter cycle (by taking the edge (v, b) while bypassing the vertex a of C)
contradicting the fact that C is a shortest cycle containing v.

Due to the above observation, after iterative cycle removal in MedianReconstruct,
we get a subgraph H ′ with |V (H ′) ∩G| ≥ |G| − 2|B| = d− 3|B|. Since x̃′ is a topological
ordering of the vertices in V (H ′), the length of a longest common subsequence between x∗

and x̃′ must be

|LCS(x̃′, x∗)| ≥ |V (H ′) ∩G| ≥ d− 3|B|.

Hence,

∆(x̃T , x∗) = d− LCS(x̃T , x∗)
≤ d− LCS(x̃′, x∗)
≤ 3|B| ≤ 30ϵ|Ii4 | (by Equation 5). (6)

ITCS 2023

31:14 Clustering Permutations: New Techniques with Streaming Applications

Recall, |Ii4 | ≤ (1 + α)OPT/n. So, we get that

Obj(S, x̃T) =
∑

xi∈S

∆(xi, x̃T) ≤
∑

xi∈S

(∆(xi, x∗) + ∆(x∗, x̃T)) (by triangle inequality)

≤ (1 + 30ϵ(1 + α))OPT

≤ 1.999 · OPT

for the choice of α = ϵ/11 = 0.03319/11. ◁

3.1 Extension to the k-Median
Now we argue that our algorithm framework described so far can be extended to the k-median
problem. More specifically, we show the following result.

▶ Theorem 3.4. There is a deterministic algorithm, that given a set S of n permutations
over [d], finds a 1.999-approximate k-median in time nO(k)d log d + O(n5d3).

We would like to highlight that the above running time can further be improved to
(k log(nd))O(k)nd3 by running the algorithm described in this section on a sample set.
However, such a modification slightly worsens the approximation factor. We describe the
sampling procedure in detail in Section 4.

Proof. Here we briefly describe how to extend our median algorithm to the k-median problem.
We build a set M by adding the output permutations of the procedure MedianRecon-
struct(T) for all the subsets T ⊆ S such that |T | = 5. Then, we also add the permutations
in the input set S to M . Finally, we output a subset Ỹ of M , of size at most k that
minimizes the k-median objective value, i.e., Ỹ = arg minY ⊆M :|Y |≤k Obj(S, Y). We refer to
this algorithm as Approx k-Median.

By the construction, |M | = O(n5), and by the running time analysis of the procedure
MedianReconstruct, constructing the set M takes time O(n5d3). The final step that
outputs a subset of M which minimizes the objective function, takes n5k+1d log d time. So
the overall running time is nO(k)d log d + n5d3.

To argue about the approximation guarantee of the above algorithm, let us first consider
an arbitrary optimal k-median Y ∗ (which is of size at most k). This set Y ∗ implicitly induces
a partitioning of S into at most k clusters C1, C2, · · · , Ck (where some of the Ci’s could be
empty depending on the size of Y ∗). WLOG assume, |Y ∗| = k and Y ∗ = {y∗

1 , · · · , y∗
k}. Then

Ci := {x ∈ S | ∆(x, y∗
i) ≤ ∆(x, y∗

j) for all j ̸= i} (if for some x ∈ S, ∆(x, y∗
i) = ∆(x, y∗

j) for
two y∗

i ̸= y∗
j , then break the ties arbitrarily to form Ci’s). It is straightforward to see that y∗

i

is an optimal median of the set/cluster Ci. Then, by the analysis of ApproxMedian (in the
previous section), a permutation ỹi will be added in M that is a 1.999-approximate median
of the cluster Ci, for all i ∈ [k]. Since in the final step we output a subset Ỹ of M , of size at
most k that minimizes the k-median objective value, clearly it would be a 1.999-approximate
k-median of the input set S. ◀

3.2 Extension to the k-median with outliers
The algorithm described in the previous section can produce a 1.999-approximate median
even in the presence of outliers. In the k-median with outliers problem, we are given a
parameter p ∈ [0, 1). Given an input set S, the problem then asks to find a set of size at
most k (which is not necessarily a subset of S) that minimizes the k-median objective value
of a subset of S of size at least (1− p)|S|. Formally, we define the objective value of S with

D. Chakraborty, D. Das, and R. Krauthgamer 31:15

respect to a set Y ⊆ Sd as Objp(S, Y) := minS′⊆S:|S′|≥(1−p)|S| Obj(S′, Y). The problem asks
to output a set Y ∗ ⊆ Sd that minimizes Objp(S, Y). Note, Obj0 is the same as the standard
k-median objective function Obj (as defined in Section 2).

▶ Theorem 3.5. There is a deterministic algorithm, that given a set S of n permutations
over [d] and p ∈ [0, 1), finds a 1.999-approximate solution to the k-median with outliers
problem with parameter p, in time nO(k)d log d + n5d3.

Proof. The algorithm is the same as that without outliers, i.e., that described in Theorem 3.4,
with the only exception that now we consider Objp as the objective function. So the running
time also remains the same. To argue about the approximation guarantee, let us first
consider an arbitrary optimal k-median Y ∗. Let the corresponding subset of S be S∗ (i.e.,
S∗ = arg minS′⊆S:|S′|≥(1−p)|S| Obj(S′, Y ∗)). Then the argument would be exactly the same
as that in Theorem 3.4 on the set S∗. ◀

4 Streaming Algorithm for Approximating k-Median

In the streaming model, we are given a set S of n permutations x1, x2, . . . , xn over [d] that ar-
rive in a stream. Our objective is to design an algorithm that uses space O(d log20 n log6 d) and
computes k permutations ỹ1, . . . , ỹk over [d] such that

∑
x∈S min(∆(ỹ1, x), . . . , ∆(ỹk, x)) ≤

(2 − δ)OPT for some constant δ > 0 in polynomial time. Here OPT denotes the optimal
objective.

▶ Theorem 1.1. There is a (randomized) streaming algorithm that, given a set of permutations
x1, x2, . . . , xn ∈ Sd (arriving in streaming fashion), provides a 1.9999995-approximate solu-
tion to the (metric) k-median problem under the Ulam metric, using only k2d polylog(nd) bits
of space, with high probability. Moreover, the algorithm has update time (k log n)O(1)d log2 d

and query time (k log(nd))O(k)d3.

Before proving the above theorem, let us first introduce a few tools which will be critical
for our algorithm.

Coreset and streaming. One of the important tools to solve the clustering problem is
coresets.

▶ Definition 4.1 ((k, ϵ)-coreset). For a set S of points in an arbitrary metric space X and an
implicit set X ⊆ X (of potential centers/medians), a weighted subset P ⊆ S (with a weight
function w : P → R) is a (k, ϵ)-coreset of S with respect to X for the k-median problem if

(1− ϵ)Obj(S, Y) ≤
∑
x∈P

w(x) ·∆(x, Y) ≤ (1 + ϵ)Obj(S, Y)

for all subsets Y ⊆ X of size at most k.

There are several coreset constructions known in the literature. In this paper, we consider
the following coreset construction, which is implied from [25] (and further explained in [7, 11]).

▶ Theorem 4.2 ([25, 7, 11]). There is an algorithm that, given a set S of points of an
arbitrary metric space X and an implicit set X ⊆ X (WLOG assume S ⊆ X), outputs a
(k, ϵ)-coreset of S with respect to X for the k-median problem, of size O(ϵ−2k2 log |X|).

ITCS 2023

31:16 Clustering Permutations: New Techniques with Streaming Applications

In this paper, we are interested in solving the k-median problem over the Ulam metric in
the streaming model. We consider the insertion-only streaming model, where a set of points
(in our case, permutations) x1, x2, · · · , xn arrive one after another in a streaming fashion. By
combining Theorem 4.2 and the framework provided by [10], it is possible to build a coreset
for the k-median problem over an arbitrary metric space using polylogarithmic space. More
specifically, we use the following result.

▶ Theorem 4.3. There is a streaming algorithm that, given a set S of points of an arbitrary
metric space X , arriving in an insertion-only stream and an implicit set X ⊆ X (WLOG
assume S ⊆ X), maintains a (k, ϵ)-coreset of the input with respect to X for the k-median
problem, by storing at most O(ϵ−2k2 log |X| log n) points of S. Furthermore, the algorithm
has worst-case update time of (ϵ−1k log n)O(1).

Monotone Faraway Sampling (MFS). Another important tool that we will use to design a
streaming algorithm for the k-median problem is the monotone faraway sampling (MFS),
introduced in [12]. This sampling method allows us to sample “a few” points from an
(insertion-only) stream such that the sample set includes a set of candidate medians that
achieves O(1)-approximation. Although the approximation factor involved is much larger
than 2, roughly speaking, it is sufficient for the clusters that contribute a small amount to
the overall objective. We use the following result implied from [12].

▶ Theorem 4.4 ([12]). There is a streaming algorithm that, given a set S of points of an
arbitrary metric space X , arriving in an insertion-only stream and parameters κ, ρ ∈ (0, 1),
samples a subset F ⊆ S of size O(k2(ρκ)−1 log k log(1 + kκn)) such that the following holds:
Suppose Y ∗ = {y∗

1 , · · · , y∗
k} be an arbitrary optimum k-median of S (where OPT = Obj(S, Y ∗))

and let C1, · · · , Ck denote the induced clustering of S. Then for each i ∈ [k], there exists a
y′

i ∈ F such that∑
x∈Ci

∆(x, y′
i) ≤ 2

(
1 + 1

1− κ

) ∑
x∈Ci

∆(x, y∗
i) + ρ

OPT
k

.

Moreover, the algorithm requires both space and update time of O(k2(ρκ)−1 log k log(1+kκn)).

All the above algorithms are randomized and err with probability at most 1/10. Now we
are ready to describe our streaming algorithm for the k-median problem.

Algorithm Description. The algorithm is similar to the k-median algorithm described in
Section 3.1, and we refer to it as Approx k-MedianStreaming. However, because of
the space limitation, instead of storing all the permutations, we run the algorithm on a
sample set instead of the whole input. Let us consider the following set M of (implicit)
potential k-medians: M contains all the input permutations. Further, it also contains all
the output of MedianReconstruct(T) for all T ⊆ S such that |T | = 5. Our algorithm
works in two phases. In the first step, it samples a set R of O(log4 n log d) permutations
from the stream x1, . . . , xn. Additionally, it also constructs a coreset (P, w) for the set
M of (implicit) k-medians on input S in a streaming fashion. Then we show using these
sampled permutations and the coreset we can compute k permutations ỹ1, . . . , ỹk such that∑

x∈S min(∆(ỹ1, x), . . . , ∆(ỹk, x)) ≤ (2− δ)OPT for some constant δ > 0.

Step 1 (Sampling Algorithm): Given set S and parameters β, γ > 0 (the values of which
are to be fixed later), we sample a set of permutations R from S as follows.
For each ℓ ∈ {1, (1 + γ), (1 + γ)2, . . . , d} and p ∈ {1, 1

(1+γ) , 1
(1+γ)2 , . . . , 1

n}, we create a set
Sℓ,p ⊆ S as follows:

D. Chakraborty, D. Das, and R. Krauthgamer 31:17

Step i) For each xi, discard xi with probability 1− p.
Step ii) If ∀xj ∈ Sℓ,p, ∆(xi, xj) ≥ βℓ, add xi to Sℓ,p.
Step iii) If |Sℓ,p| ≥ k log3 n, set Sℓ,p = ∅.

Then set R =
⋃

ℓ,p Sℓ,p.

Step 2 (Monotone Faraway Sampling): Consider parameters κ = 1/3, ρ > 0. Given the
input set S, we use the monotone faraway sampling (MFS) from Theorem 4.4 due to [12]
to get a subset F ⊆ S of size O(k2 log k log(kn)) such that the following holds: Suppose
Y ∗ = {y∗

1 , · · · , y∗
k} be an arbitrary optimum k-median of S (where OPT = Obj(S, Y ∗)) and

let C1, · · · , Ck denote the induced clustering (to be defined formally later) of S. Then
for each i ∈ [k], there exists a y′

i ∈ F such that∑
x∈Ci

∆(x, y′
i) ≤ 2

(
1 + 1

1− κ

) ∑
x∈Ci

∆(x, y∗
i) + ρOPT/k = 5

∑
x∈Ci

∆(x, y∗
i) + ρOPT/k. (7)

Step 3 (CoreSet Construction): Given a set of input permutations S and a parameter
λ > 0, define a set M containing all input permutations from S. Further, it also
contains the output of MedianReconstruct (T) for all T ⊆ S such that |T | = 5.
Following Theorem 4.3, construct a (k, λ)-coreset (P, w) for S with respect to the implicit
set M of potential medians.

Step 4 (Computing Approximate k-median): At the end of the stream, we use R, F and
(P, w) to simulate Approx k-Median. More specifically, we run algorithm MedianRe-
construct () on every subset T ⊆ R of size five, and then add those outputs x̃T to a set
M̃ . Next, add all the elements of R, F to M̃ . Finally, for each k-tuple (y1, . . . , yk) ∈ M̃k,
compute

∑
x∈P w(x) min(∆(x, y1), . . . , ∆(x, yk)) and output the k-tuple that attains the

minimum value.

Analyzing the algorithm. For analysis purpose we fix k optimal medians y∗
1 , y∗

2 , . . . , y∗
k. For

i ∈ [k], define Ci = {x ∈ S | ∀j ∈ [k], ∆(x, y∗
i) ≤ ∆(x, y∗

j)}. Let Oi = Obj(Ci, y∗
i). Thus

OPT = O1 + O2 + . . . , Ok. We show our sampling algorithm satisfies the following.

▶ Lemma 4.5. Consider γ = 0.1. For any constant ζ > 0 and every i ∈ [k], if Oi ≥ ζOPT
k ,

then ∃ℓ ∈ {1, (1 + γ), (1 + γ)2, . . . , d} and p ∈ {1, 1
(1+γ) , 1

(1+γ)2 , . . . , 1
n} such that Sℓ,p satisfies

at least one of the following with high probability.
1. Sℓ,p contains a permutation y where Obj(Ci, y) ≤ (1.999999 + β)Oi.
2. Sℓ,p contains a subset T = {x1, x2, x3, x4, x5} such that Obj(Ci, x̃T) ≤ (1.995 + 61β)Oi

Proof. We start with a few definitions. Let di = Oi

|Ci| . For some constant α > 0, let Cfar
i be

the set of permutations in Ci whose distance from y∗
i is α fraction more than the average

distance di. Formally we define,

Cfar
i = {x | x ∈ Ci; ∆(y∗

i , x) > di + αdi}.

Let Cclose
i be the set of permutations in Ci whose distance from y∗

i is α fraction less than
the average distance di. Formally we define,

Cclose
i = {x | x ∈ Ci; ∆(y∗

i , x) < di − αdi}.

Lastly, let Cavg
i be the set of permutations in Ci whose distance from y∗

i is roughly the
average distance di. Formally we define,

Cavg
i = {x | x ∈ Ci; di − αdi ≤ ∆(y∗

i , x) ≤ di + αdi}.

ITCS 2023

31:18 Clustering Permutations: New Techniques with Streaming Applications

Case 1: First we consider the case where |Cclose
i | ≥ |Ci\Cfar

i
|

log n . Note by definition |Cfar
i | <

|Oi|
(1+α)di

= |Ci|
(1+α) . Thus |Ci \ Cfar

i | ≥ α|Ci|
(1+α) and |Cclose

i | ≥ α|Ci|
(1+α) log n . We consider the

set Sℓ,p where ℓ ≤ di < (1 + γ)ℓ and p
(1+γ) < 2log2n

|Ci| ≤ p. As |Cclose
i | ≥ α|Ci|

(1+α) log n , and
p ≥ 2 log2 n

|Ci| , using Chernoff bound, with high probability the sampling algorithm samples
at least α log n

10(1+α) permutations from Cclose
i in Step (i). Let y be such a permutation. If

y survives in Step (ii) then it satisfies Obj(y, Ci) ≤ (2 − α)Oi by triangle inequality.
Otherwise Sℓ,p contains a permutation z such that ∆(z, y) ≤ βℓ ≤ βdi (as ℓ ≤ di). Thus
Obj(y, Ci) ≤ (2 − α + β)Oi. By setting α = .0005, we get Obj(y, Ci) ≤ (1.995 + β)Oi.
Next, we show Sℓ,p is never modified in Step (iii) and thus z ∈ Sℓ,p.
Again with high probability in Step (i) we sample at most 10 log2 n permutations from
Ci. Lastly, we argue that for each other cluster Cj ̸= Ci the following holds. Among the
permutation sampled from Cj , at most one permutation which is at distance < βℓ

2 from
y∗

j survives at Step (ii). Otherwise let there be two permutations p1, p2 ∈ Cj such that
both p1, p2 are at distance < βℓ

2 from y∗
j and both of them survive in Step (ii). However,

by triangle inequality, their distance is < βℓ and we get a contradiction. Thus all but at
most one permutation from Cj that survives in Step (ii) will be at a distance of at least
βℓ/2 from y∗

j . Let Tj ⊆ Cj be the set of permutations that are at distance ≥ βℓ/2 from
y∗

j . Thus

∑
j∈[k]
j ̸=i

|Tj | ≤
2
βℓ

∑
j∈[k]
j ̸=i

Oj

≤ 2OPT
βℓ

≤ 2kOi

ζβℓ
(since Oi ≥

ζOPT
k

)

<
2k(1 + γ)Oi

ζβdi
(since di < (1 + γ)ℓ)

≤ 4k|Ci|
ζβ

(since di = Oi

|Ci|
)

As p < 4 log2 n
|Ci| with high probability we sample at most 100k log2 n

ζβ permutations from
S \Ci. Thus with high probability |Sℓ,p| ≤ k log3 n and it is never modified in Step (iii).

Case 2: Now on, we assume |Cclose
i | <

|Ci\Cfar
i

|
log n . Again as |Ci \ Cfar

i | ≥ α|Ci|
(1+α) we have

|Cavg
i | ≥ (log n−1)|Ci\Cfar

i
|

log n ≥ α(log n−1)|Ci|
(1+α) log n . For the analysis purpose, we fix an optimal

alignment between each x ∈ Ci and y∗
i and let Ix be the set of symbols from [d] that

are unaligned in this optimal alignment. For a permutation x ∈ Cavg
i we define set

C(x) = {z|z ∈ Cavg
i ; |Ix ∩ Iz| ≥ ϵdi}, where ϵ > 0 is a constant. Let Cavg,dense

i =
{x|x ∈ Cavg

i ; |C(x)| ≥ |Cavg
i

|
6 }. Here we consider the case where |Cavg,dense

i | ≥ |Cavg
i

|
10 ≥

α(log n−1)|Ci|
10(1+α) log n .

Again we consider the set Sℓ,p where ℓ ≤ di < (1 + γ)ℓ and p
(1+γ) < 2log2n

|Ci| ≤ p. As
|Cavg,dense

i | ≥ α(log n−1)|Ci|
10(1+α) log n , and p ≥ 2 log2 n

|Ci| , with high probability the sampling algorithm
samples at least log n/10 permutations from Cavg,dense

i in Step (i). Let y be such a
permutation. If y survives in Step (ii) then it satisfies Obj(y, Ci) ≤ 2Oi+(2α+ 2

log n−
ϵ
6)|Ci\

Cfar
i |di by triangle inequality (as in Section 3). Otherwise Sℓ,p contains a permutation z

D. Chakraborty, D. Das, and R. Krauthgamer 31:19

such that ∆(z, y) ≤ βℓ ≤ βdi. Thus Obj(y, Ci) ≤ (2+β)Oi+(2α+ 2
log n−

ϵ
6)|Ci\Cfar

i |di ≤
(2 + β + 2α2

(1+α) + 2α
(1+α) log n −

ϵα
6(1+α))Oi. By setting ϵ = .0333 and α = .0005 we get

Obj(y, Ci) ≤ (1.999999 + β)Oi.
Following a similar argument as Case 1, we show Sℓ,p is never modified in Step (iii).

Case 3: We define set Cavg,sparse
i = Cavg

i \ Cavg,dense
i . Now we consider the case where

|Cavg,dense
i | < |Cavg

i
|

10 . Thus |Cavg,sparse
i | ≥ 9|Cavg

i
|

10 ≥ 9α(log n−1)|Ci|
10(1+α) log n .

Again we consider the set Sℓ,p where ℓ ≤ di < (1 + γ)ℓ and p
(1+γ) < 2log2n

|Ci| ≤ p. We argue
Sℓ,p contains a set of five permutations T = {x1, . . . , x5} such that ∀i, j ∈ [5], |Ixi

∩ Ixj
| ≤

(ϵ + 2β)di. For this, we define five events e1, e2, . . . , e5. Here e1 is the event that at
least one permutation is sampled from Cavg,sparse

i . Note as |Cavg,sparse
i | ≥ 9α(log n−1)|Ci|

10(1+α) log n

and p ≥ 2log2n
|Ci| with high probability we sample at least 10 log n permutations from

Cavg,sparse
i . Let x1 be such a permutation. Next given e1, let e2 be the event that

at least one permutation is sampled from Cavg,sparse
i \ C(x1). As |C(x1)| <

|Cavg
i

|
6 ,

|Cavg,sparse
i \ C(x1)| ≥ 9|Cavg

i
|

10 − |Cavg
i

|
6 ≥ 11α(log n−1)|Ci|

15(1+α) log n . Thus with high probability, we
sample at least 10 log n permutations from Cavg,sparse

i \ C(x1). Let x2 be such a sting.
In a similar way given e1, e2, . . . ej−1 (where j ≤ 5) let ej be the event that at least one
permutation is sampled from Cavg,sparse

i \ (C(x1)∪ · · · ∪C(xj−1)). Again using a similar
argument as before we can show ej is satisfied with high probability and let xj be a
permutation sampled from Cavg,sparse

i \ (C(x1)∪· · ·∪C(xj−1)). Thus all these five events
are satisfied together with high probability.
Given T = {x1, . . . , x5}, we can construct a permutation x̃T using the MedianRecon-
struct () algorithm (Algorithm 2), such that Obj(Ci, x̃T) ≤ (1 + 30(ϵ + 2β)(1 + α))Oi.
By setting ϵ = .0333 and α = .0005 we get Obj(Ci, x̃T) ≤ (1.9995 + 61β)Oi.
Again, following a similar argument as Case 1, we show Sℓ,p is never modified in Step (iii).

◀

Proof of Theorem 1.1. Given the input set of permutations S arriving in a stream, we
run Algorithm Approx k-MedianStreaming with the following parameter setting: β =
0.0000001, λ = 0.0000001 and ρ = 0.00000001. Let the algorithm outputs k permutations
ỹ1, . . . , ỹk. We show with high probability

∑
x∈S min(∆(ỹ1, x), . . . , ∆(ỹk, x)) ≤ 1.9999995OPT,

the algorithm uses k2d polylog(nd)) bits space and has update time (k log n)O(1)d log2 d and
query time (k log(nd))O(k)d3.

First, we argue the space complexity. In the sampling step (Step 1), there are O(log d)
different choices for ℓ and O(log n) different choices for p. Moreover |Sℓ,p| < k log3 n. Thus the
sampled set R contains O(k log4 n log d) permutations. Moreover as we consider all subsets
T ⊆ R of size 5, there are at most |R|5 = O(k5 log20 n log5 d) different choices for x̃T . However,
instead of storing x̃T explicitly, we compute it whenever we use x̃T as a candidate k-median.
Thus storing only set R is enough. Next, by the MFS algorithm of Theorem 4.4, the sample
set F contains at most O(k2 log k log(kn)) input permutations with high probability.Also, as
the size of the implicit set M can be bounded by O(n5), using Theorem 4.3, we can claim
that the size of the coreset (P, w) is O(k2 log2 n). Each permutation can be stored using
d log d bits. Thus the total space is bounded by k2d polylog(nd)).

Next, we show the algorithm has update time O(k2d log2(kn) log2 d) and query time
(k log(nd))O(k)d3. For a given pair of permutations of length d, their distance can be
computed in time O(d log d). As |R| = O(k log4 n log d), the update time of the first sampling
step is O(kd log4 n log2 d). Next, by the MFS algorithm of Theorem 4.4, the update time
to construct set F and following Theorem 4.3 the update time to construct the coreset

ITCS 2023

31:20 Clustering Permutations: New Techniques with Streaming Applications

(P, w) is (k log n)O(1). Thus the total update time is (k log n)O(1)d log2 d. Next, we argue
the query time. As |R| = O(k log4 n log d), there are at most |R|5 = O(k5 log20 n log5 d)
different choices for x̃T . Thus |M̃ | = kO(1) polylog(nd). Now to bound the space complexity
instead of storing x̃T explicitly, we compute it whenever it is used as a candidate k-median.
Using Algorithm MedianReconstruct () it can be constructed in time Õ(d3). Moreover
|M̃ | = kO(1) polylog(nd), total number of different candidate k-median is (k log(nd))O(k).
Also evaluating the total objective of a candidate k-median using the coreset takes time
O(k3d log(kn) log d). Thus the total query time can be bounded by (k log(nd))O(k)d3.

Lastly, we argue the approximation guarantee. Let S1 := {i ∈ [k] | Oi < OPT
40000000k}. Thus∑

i∈S1
Oi ≤ OPT

40000000 . By Equation 7, for each i ∈ [k], there exists y′
i ∈ F such that

Obj(Ci, y′
i) ≤ 5Oi + ρ

k
OPT.

Thus∑
i∈S1

Obj(Ci, y′
i) ≤ 5

∑
i∈S1

Oi + ρOPT (since |S1| ≤ k)

≤ OPT
10000000 (for ρ = 0.00000001).

Next following Lemma 4.5 for each i ∈ [k] \ S1, with high probability, either the sample
set R and thus M̃ contains a permutation y such that Obj(Ci, y) ≤ 1.9999991Oi (as β =
0.0000001) or R contains a tuple T = (x1, . . . , x5) such that Obj(Ci, x̃T) ≤ 1.9950061Oi. In
this case in Step (iii) we compute x̃T and add this to M̃ . Thus M̃ contains k permutations
with total objective ≤ 1.999999OPT + OPT

10000000 = 1.9999992OPT. As we evaluate this using
the (k, λ) coreset (P, w), the total objective is 1.9999992(1 + λ)OPT ≤ 1.9999995OPT as
λ = 0.0000001. ◀

5 Improved Space Bound for (1-)Median

In this section, we extend the result of Section 3 in the streaming model. More specifically,
suppose a set of input permutations x1, · · · , xn ∈ Sd arrive one after another as an insertion-
only stream (a permutation, once arrived, cannot be deleted). Here we show a result similar
to Theorem 3.1 in the streaming model using o(nd) bits (note, the input size is O(nd log d)
bits) of space.

▶ Theorem 5.1. There is a randomized streaming algorithm that, given a set S of n permuta-
tions over [d] arriving on a stream, finds a 1.9999-approximate median using O(d log d log2 n)
bits of space.

It is worth emphasizing that the space is only needed to maintain at most O(log n) permuta-
tions at any point of time of the stream.

Description of the algorithm. The algorithm is essentially the same as that described in
Section 3, except now we will run the algorithm on a sample set instead of the whole input.
Let us consider the following (implicit) set M (of potential medians): M contains all the
input permutations. Further, it also contains the output of MedianReconstruct(T) for
all T ⊆ S such that |T | = 5. Our algorithm consists of two components. First, it picks
each input permutation independently with probability log n/n. (Alternatively, we can use
standard reservoir sampling to sample O(log n) permutations uniformly at random.) Let
R denote the sampled set. Second, consider an ϵ ∈ (0, 1) (the value of which is to be fixed

D. Chakraborty, D. Das, and R. Krauthgamer 31:21

later). Then it constructs a (1, ϵ)-coreset (P, w) (where P ⊆ S and w : P → R) for S with
respect to the (implicit) set M , in streaming fashion. At the end of the stream, we use R

and (P, w) to simulate ApproxMedian. More specifically, we run MedianReconstruct
on every subset T ⊆ R of size five and then add those outputs to a set M ′. Next, add all the
elements of R to M ′. So,

M ′ = R ∪ {x̃T | for all T ⊆ R such that |T | = 5}

where x̃T denotes the output of MedianReconstruct(T). Finally, for each y ∈ M ′,
compute

∑
x∈P w(x)∆(x, y), and output one that attains the minimum value.

Since the analysis of the approximation factor is similar to that for the k-median problem
(as in Section 4), we omit the details. The only difference is that since now we have only one
cluster, we can entirely avoid the “clever” sampling used in Step 1 and the MFS sampling
(Step 2) of the algorithm described in Section 4. Instead, we can just use the uniform
sampling from the input and then follow a similar argument as used in Lemma 4.5. We focus
on analyzing the space usage of our algorithm.

Space usage. Clearly, the first sampling step requires O(log n) input permutations to store
(with high probability). By Theorem 4.3, the coreset construction needs to maintain at most
O(ϵ−2 log |M | log n) = O(ϵ−2 log2 n) (since |M | = O(n5)) permutations. So the overall space
usage is O(ϵ−2d log d log2 n) bits of space (since to store each permutation over [d], we need
O(d log d) bits of space).

References
1 J Abreu and Juan Ramón Rico-Juan. A new iterative algorithm for computing a quality

approximate median of strings based on edit operations. Pattern Recognition Letters, 36:74–80,
2014.

2 Nir Ailon, Moses Charikar, and Alantha Newman. Aggregating inconsistent information:
Ranking and clustering. J. ACM, 55(5):23:1–23:27, 2008. doi:10.1145/1411509.1411513.

3 David Aldous and Persi Diaconis. Longest increasing subsequences: from patience sorting to the
Baik-Deift-Johansson theorem. Bulletin of the American Mathematical Society, 36(4):413–432,
1999. doi:10.1090/S0273-0979-99-00796-X.

4 Alexandr Andoni and Robert Krauthgamer. The computational hardness of estimating edit
distance. SIAM J. Comput., 39(6):2398–2429, 2010. doi:10.1137/080716530.

5 Alexandr Andoni and Huy L. Nguyen. Near-optimal sublinear time algorithms for Ulam
distance. In Proceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2010, pages 76–86, 2010. doi:10.1137/1.9781611973075.8.

6 Vijay Arya, Naveen Garg, Rohit Khandekar, Adam Meyerson, Kamesh Munagala, and
Vinayaka Pandit. Local search heuristic for k-median and facility location problems. In
Proceedings of the thirty-third annual ACM symposium on Theory of computing, pages 21–29,
2001.

7 Olivier Bachem, Mario Lucic, and Silvio Lattanzi. One-shot coresets: The case of k-clustering.
In AISTATS, volume 84 of Proceedings of Machine Learning Research, pages 784–792. PMLR,
2018.

8 Mahdi Boroujeni and Saeed Seddighin. Improved MPC algorithms for edit distance and Ulam
distance. In The 31st ACM on Symposium on Parallelism in Algorithms and Architectures,
SPAA 2019, pages 31–40, 2019.

9 Felix Brandt, Vincent Conitzer, Ulle Endriss, Jérôme Lang, and Ariel D Procaccia. Handbook
of computational social choice. Cambridge University Press, 2016.

ITCS 2023

https://doi.org/10.1145/1411509.1411513
https://doi.org/10.1090/S0273-0979-99-00796-X
https://doi.org/10.1137/080716530
https://doi.org/10.1137/1.9781611973075.8

31:22 Clustering Permutations: New Techniques with Streaming Applications

10 Vladimir Braverman, Dan Feldman, Harry Lang, and Daniela Rus. Streaming coreset construc-
tions for m-estimators. In Approximation, Randomization, and Combinatorial Optimization.
Algorithms and Techniques (APPROX/RANDOM 2019). Schloss Dagstuhl-Leibniz-Zentrum
fuer Informatik, 2019.

11 Vladimir Braverman, Shaofeng H.-C. Jiang, Robert Krauthgamer, and Xuan Wu. Coresets
for clustering in excluded-minor graphs and beyond. In ACM-SIAM Symposium on Discrete
Algorithms (SODA 2021), pages 2679–2696. SIAM, 2021. doi:10.1137/1.9781611976465.159.

12 Vladimir Braverman, Harry Lang, Keith Levin, and Yevgeniy Rudoy. Metric k-median
clustering in insertion-only streams. Discrete Applied Mathematics, 304:164–180, 2021.

13 Hervé Cardot, Peggy Cénac, Antoine Godichon-Baggioni, et al. Online estimation of the
geometric median in Hilbert spaces: Nonasymptotic confidence balls. Annals of Statistics,
45(2):591–614, 2017. doi:10.1214/16-AOS1460.

14 Francisco Casacuberta and M.D. Antonio. A greedy algorithm for computing approximate
median strings. In Proc. of National Symposium on Pattern Recognition and Image Analysis,
pages 193–198, 1997.

15 Diptarka Chakraborty, Debarati Das, and Robert Krauthgamer. Approximating the median
under the Ulam metric. In Proceedings of the 2021 ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 761–775. SIAM, 2021. doi:10.1137/1.9781611976465.48.

16 Moses Charikar, Sudipto Guha, Éva Tardos, and David B Shmoys. A constant-factor approxi-
mation algorithm for the k-median problem. In Proceedings of the thirty-first annual ACM
symposium on Theory of computing, pages 1–10, 1999.

17 Moses Charikar and Robert Krauthgamer. Embedding the Ulam metric into l1. Theory of
Computing, 2(11):207–224, 2006. doi:10.4086/toc.2006.v002a011.

18 Ke Chen. On coresets for k-Median and k-Means clustering in metric and Euclidean spaces
and their applications. SIAM Journal on Computing, 39(3):923–947, 2009. doi:10.1137/
070699007.

19 Flavio Chierichetti, Ravi Kumar, Sandeep Pandey, and Sergei Vassilvitskii. Finding the
Jaccard median. In Proceedings of the twenty-first annual ACM-SIAM symposium on Discrete
Algorithms, pages 293–311. SIAM, 2010. doi:10.1137/1.9781611973075.25.

20 Michael B. Cohen, Yin Tat Lee, Gary Miller, Jakub Pachocki, and Aaron Sidford. Geometric
median in nearly linear time. In Proceedings of the forty-eighth annual ACM Symposium on
Theory of Computing, pages 9–21, 2016.

21 Graham Cormode, Shan Muthukrishnan, and Süleyman Cenk Sahinalp. Permutation editing
and matching via embeddings. In International Colloquium on Automata, Languages, and
Programming, pages 481–492. Springer, 2001. doi:10.1007/3-540-48224-5_40.

22 Matan Danos. Coresets for clustering by uniform sampling and generalized rank aggregation.
Master’s thesis, Weizmann Institute of Science, 2021. URL: https://www.wisdom.weizmann.
ac.il/~robi/files/MatanDanos-MScThesis-2021_11.pdf.

23 Colin de la Higuera and Francisco Casacuberta. Topology of strings: Median string is NP-
complete. Theor. Comput. Sci., 230(1-2):39–48, 2000. doi:10.1016/S0304-3975(97)00240-5.

24 Cynthia Dwork, Ravi Kumar, Moni Naor, and D. Sivakumar. Rank aggregation methods for
the web. In Proceedings of the Tenth International World Wide Web Conference, WWW 10,
pages 613–622, 2001. doi:10.1145/371920.372165.

25 Dan Feldman and Michael Langberg. A unified framework for approximating and clustering
data. In Proceedings of the forty-third annual ACM symposium on Theory of computing, pages
569–578, 2011.

26 P. Thomas Fletcher, Suresh Venkatasubramanian, and Sarang Joshi. Robust statistics on
riemannian manifolds via the geometric median. In 2008 IEEE Conference on Computer
Vision and Pattern Recognition, pages 1–8. IEEE, 2008.

27 Nick Goldman, Paul Bertone, Siyuan Chen, Christophe Dessimoz, Emily M. LeProust, Botond
Sipos, and Ewan Birney. Towards practical, high-capacity, low-maintenance information
storage in synthesized DNA. Nature, 494(7435):77–80, 2013.

https://doi.org/10.1137/1.9781611976465.159
https://doi.org/10.1214/16-AOS1460
https://doi.org/10.1137/1.9781611976465.48
https://doi.org/10.4086/toc.2006.v002a011
https://doi.org/10.1137/070699007
https://doi.org/10.1137/070699007
https://doi.org/10.1137/1.9781611973075.25
https://doi.org/10.1007/3-540-48224-5_40
https://www.wisdom.weizmann.ac.il/~robi/files/MatanDanos-MScThesis-2021_11.pdf
https://www.wisdom.weizmann.ac.il/~robi/files/MatanDanos-MScThesis-2021_11.pdf
https://doi.org/10.1016/S0304-3975(97)00240-5
https://doi.org/10.1145/371920.372165

D. Chakraborty, D. Das, and R. Krauthgamer 31:23

28 Sudipto Guha, Adam Meyerson, Nina Mishra, Rajeev Motwani, and Liadan O’Callaghan.
Clustering data streams: Theory and practice. IEEE transactions on knowledge and data
engineering, 15(3):515–528, 2003.

29 Dan Gusfield. Algorithms on Strings, Trees, and Sequences - Computer Science and Computa-
tional Biology. Cambridge University Press, 1997.

30 Donna Harman. Ranking algorithms. In William B. Frakes and Ricardo A. Baeza-Yates,
editors, Information Retrieval: Data Structures & Algorithms, pages 363–392. Prentice-Hall,
1992.

31 Morihiro Hayashida and Hitoshi Koyano. Integer linear programming approach to median
and center strings for a probability distribution on a set of strings. In 9th International Joint
Conference on Biomedical Engineering Systems and Technologies (BIOSTEC 2016), pages
35–41. SciTePress, 2016. doi:10.5220/0005666400350041.

32 Piotr Indyk. Sublinear time algorithms for metric space problems. In Proceedings of the
thirty-first annual ACM symposium on Theory of computing, pages 428–434, 1999.

33 John G. Kemeny. Mathematics without numbers. Daedalus, 88(4):577–591, 1959.
34 Claire Kenyon-Mathieu and Warren Schudy. How to rank with few errors. In Proceedings of

the thirty-ninth annual ACM symposium on Theory of computing, pages 95–103, 2007.
35 Teuvo Kohonen. Median strings. Pattern Recognition Letters, 3(5):309–313, 1985. doi:

10.1016/0167-8655(85)90061-3.
36 Joseph B Kruskal. An overview of sequence comparison: Time warps, string edits, and

macromolecules. SIAM review, 25(2):201–237, 1983. doi:10.1137/1025045.
37 Ferenc Kruzslicz. Improved greedy algorithm for computing approximate median strings. Acta

Cybernetica, 14(2):331–339, 1999.
38 Carlos D. Martínez-Hinarejos, Alfons Juan, and Francisco Casacuberta. Use of median string

for classification. In Proceedings 15th International Conference on Pattern Recognition, ICPR
2000, volume 2, pages 903–906. IEEE, 2000. doi:10.1109/ICPR.2000.906220.

39 Ramgopal R. Mettu and C. Greg Plaxton. Optimal time bounds for approximate clustering.
Machine Learning, 56(1):35–60, 2004.

40 Stanislav Minsker. Geometric median and robust estimation in Banach spaces. Bernoulli,
21(4):2308–2335, 2015.

41 P. Mirabal, J. Abreu, and D. Seco. Assessing the best edit in perturbation-based iterative
refinement algorithms to compute the median string. Pattern Recognition Letters, 120:104–111,
April 2019.

42 Timothy Naumovitz, Michael E. Saks, and C. Seshadhri. Accurate and nearly optimal sublinear
approximations to Ulam distance. In Proceedings of the Twenty-Eighth Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 2012–2031, 2017. doi:10.1137/1.9781611974782.
131.

43 François Nicolas and Eric Rivals. Complexities of the centre and median string problems. In
14th Annual Symposium on Combinatorial Pattern Matching, CPM 2003, pages 315–327, 2003.

44 Rafail Ostrovsky and Yuval Rabani. Polynomial time approximation schemes for geometric
k-clustering. In 41st Annual Symposium on Foundations of Computer Science, FOCS 2000,
pages 349–358, 2000.

45 Oscar Pedreira and Nieves R. Brisaboa. Spatial selection of sparse pivots for similarity search
in metric spaces. In International Conference on Current Trends in Theory and Practice of
Computer Science, pages 434–445. Springer, 2007.

46 Pavel Pevzner. Computational molecular biology: an algorithmic approach. MIT press, 2000.
47 Cyrus Rashtchian, Konstantin Makarychev, Miklós Z. Rácz, Siena Ang, Djordje Jevdjic, Sergey

Yekhanin, Luis Ceze, and Karin Strauss. Clustering billions of reads for DNA data storage. In
Advances in Neural Information Processing Systems 30, pages 3360–3371. Curran Associates,
Inc., 2017.

48 David Sankoff. Minimal mutation trees of sequences. SIAM Journal on Applied Mathematics,
28(1):35–42, 1975. doi:10.1137/0128004.

ITCS 2023

https://doi.org/10.5220/0005666400350041
https://doi.org/10.1016/0167-8655(85)90061-3
https://doi.org/10.1016/0167-8655(85)90061-3
https://doi.org/10.1137/1025045
https://doi.org/10.1109/ICPR.2000.906220
https://doi.org/10.1137/1.9781611974782.131
https://doi.org/10.1137/1.9781611974782.131
https://doi.org/10.1137/0128004

31:24 Clustering Permutations: New Techniques with Streaming Applications

49 Warren Schudy. Approximation Schemes for Inferring Rankings and Clusterings from Pairwise
Data. PhD thesis, Brown University, 2012. URL: https://cs.brown.edu/research/pubs/
theses/phd/2012/schudy.pdf.

50 Mikkel Thorup. Quick k-median, k-center, and facility location for sparse graphs. SIAM
Journal on Computing, 34(2):405–432, 2005.

51 H. Peyton Young. Condorcet’s theory of voting. American Political science review, 82(4):1231–
1244, 1988.

52 H. Peyton Young and Arthur Levenglick. A consistent extension of Condorcet’s election
principle. SIAM Journal on applied Mathematics, 35(2):285–300, 1978.

https://cs.brown.edu/research/pubs/theses/phd/2012/schudy.pdf
https://cs.brown.edu/research/pubs/theses/phd/2012/schudy.pdf

	1 Introduction
	1.1 Our Contribution
	1.2 Technical Overview
	1.3 Conclusion

	2 Preliminaries
	3 Approximation Algorithm for 1-Median
	3.1 Extension to the k-Median
	3.2 Extension to the k-median with outliers

	4 Streaming Algorithm for Approximating k-Median
	5 Improved Space Bound for (1-)Median

