On Oracles and Algorithmic Methods for Proving Lower Bounds

Nikhil Vyas
Harvard University, Cambridge, MA, USA

Ryan Williams
MIT CSAIL and EECS, Cambridge, MA, USA

Abstract
This paper studies the interaction of oracles with algorithmic approaches to proving circuit complexity lower bounds, establishing new results on two different kinds of questions.

1. We revisit some prominent open questions in circuit lower bounds, and provide a clean way of viewing them as circuit upper bound questions. Let Missing-String be the (total) search problem of producing a string that does not appear in a given list L containing M bit-strings of length N, where $M < 2^n$. We show in a generic way how algorithms and uniform circuits (from restricted classes) for Missing-String imply complexity lower bounds (and in some cases, the converse holds as well).

 - We give a local algorithm for Missing-String, which can compute any desired output bit making very few probes into the input, when the number of strings M is small enough. We apply this to prove a new nearly-optimal (up to oracles) time hierarchy theorem with advice.

 - We show that the problem of constructing restricted uniform circuits for Missing-String is essentially equivalent to constructing functions without small non-uniform circuits, in a relativizing way. For example, we prove that small uniform depth-3 circuits for Missing-String would imply exponential circuit lower bounds for Σ_2^pP, and depth-3 lower bounds for Missing-String would imply non-trivial circuits (relative to an oracle) for Σ_2^pP problems. Both conclusions are longstanding open problems in circuit complexity.

2. It has been known since Impagliazzo, Kabanets, and Wigderson [JCSS 2002] that generic derandomizations improving subexponentially over exhaustive search would imply lower bounds such as $\text{NEXP} \not\subseteq \text{P/poly}$. Williams [SICOMP 2013] showed that Circuit-SAT algorithms running barely faster than exhaustive search would imply similar lower bounds. The known proofs of such results do not relativize (they use techniques from interactive proofs/PCPs). However, it has remained open whether there is an oracle under which the generic implications from circuit-analysis algorithms to circuit lower bounds fail.

 - Building on an oracle of Fortnow, we construct an oracle relative to which the circuit approximation probability problem (CAPP) is in P, yet EXP^{NP} has polynomial-size circuits.

 - We construct an oracle relative to which SAT can be solved in “half-exponential” time, yet exponential time (EXP) has polynomial-size circuits. Improving EXP to NEXP would give an oracle relative to which Σ_2^pE has “half-exponential” size circuits, which is open. (Recall it is known that Σ_2^pE is not in “sub-half-exponential” size, and the proof relativizes.) Moreover, the running time of the SAT algorithm cannot be improved: relative to all oracles, if SAT is in “sub-half-exponential” time then EXP does not have polynomial-size circuits.

2012 ACM Subject Classification
Theory of computation → Circuit complexity; Theory of computation → Complexity classes

Keywords and phrases oracles, relativization, circuit complexity, missing string, exponential hierarchy

Digital Object Identifier 10.4230/LIPIcs.ITCS.2023.99

Funding Nikhil Vyas: This work was done while the author was a PhD student at MIT, supported by NSF CCF-1909429 and CCF-2127597.
Ryan Williams: Supported by NSF CCF-1909429 and NSF CCF-2127597.

© Nikhil Vyas and Ryan Williams; licensed under Creative Commons License CC-BY 4.0
14th Innovations in Theoretical Computer Science Conference (ITCS 2023).
Editor: Yael Tauman Kalai; Article No. 99; pp. 99:1–99:26
Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany
Acknowledgements We thank Dylan McKay and Brynmor Chapman for helpful discussions on the missing string problem.

1 Introduction

Which complexity classes have small-size non-uniform circuit families, and which do not? While this question dates back to the 1970s [37, 24, 36], our known answers are astonishingly incomplete. We believe that NP does not have polynomial-size circuit families, but our best-known results have to replace the class NP with considerably larger complexity classes. Kannan [24] proved that \(\Sigma_2 \text{EXP} \) (the exponential-time version of \(\Sigma_2 \text{P} \)) does not have polynomial-size circuits, and his proof extends to “sub-half-exponential” size circuits, i.e., for size functions \(H(n) \) where \(H(H(n)^c) < o(2^n/n) \) for a fixed constant \(c \geq 1 \) [31]. Buhrman, Fortnow, and Theirauf [15] proved that the exponential-time version of Merlin-Arthur (MAEXP) does not have polynomial-size circuits. However, it remains open whether NEXP (nondeterministic exponential time) has polynomial-size circuits, in spite of research attempting to attack the problem via faster circuit-analysis algorithms [21, 23, 41]. Perhaps even more embarrassingly, there could be infinitely many input lengths for which even \(\Sigma_2 \text{EXP} \) and MAEXP problems have polynomial-size circuits on just those input lengths. Furthermore, there is no known barrier to establishing stronger lower bounds for \(\Sigma_2 \text{EXP} \) — not even a relativization barrier. For example, according to current knowledge, there could be a relativizing proof (one that holds with respect to all oracles) that \(\Sigma_2 \text{EXP} \) requires maximum (\(\Theta(2^n/n) \)) circuit complexity, or there could be an oracle under which \(\Sigma_2 \text{EXP} \) has at most 2\(^{c^n}\) circuit complexity, for all \(\epsilon > 0 \). (Note that we could not have both.)

We propose a clean way of studying such lower bound questions, as circuit upper bound questions. We begin by defining a simple search problem over binary strings.

Missing-String: Let \(N, M \) be such that \(M < 2^N \). Given a list \(L \) of \(M \) strings which are \(N \)-bits long, output an \(N \)-bit string \(y \) that is not in \(L \).

We call such a string \(y \) a missing string for \(L \). **Missing-String** is a natural and classic problem arising (for example) whenever one wishes to assign a “name” to a new resource in a network.\(^2\) Note that **Missing-String** is a total search problem; since \(M < 2^N \), every instance has a solution.\(^3\) Building on long-known connections showing how circuit lower bounds lead to oracles separating complexity classes [18], we show that the above circuit lower bound questions (and more) can be viewed as questions about how efficiently **Missing-String** can be solved, giving equivalences between algorithms for **Missing-String** and circuit lower bounds. In particular, the depth-3 circuit complexity of **Missing-String** is innately tied to the question of whether \(\Sigma_2 \text{EXP} \) has functions with exponential circuit complexity.

1 Using the oracle that makes \(P = \text{NP} \), there is an oracle relative to which \(\Sigma_2 \text{EXP} \) requires maximum circuit complexity. However, we don’t know any oracles relative to which \(\Sigma_2 \text{EXP} \) has smaller circuit complexity.

2 In the literature, the representation is often a list of integers, and the problem is called the “missing integer” problem. There is a well-known linear time algorithm (see for example Chapter 1 of [13]) which is apparently a common tech interview problem.

3 One may view **Missing-String** as an “exponential-sized” version of the **Empty** problem, studied in [27, 29, 34]: given a circuit \(C : \{0,1\}^m \rightarrow \{0,1\}^N \) where \(N > m \), find an \(N \)-bit string \(y \) such that no \(x \) has \(C(x) = y \). In **Empty**, one is given a (small) circuit with \(m \) inputs whose truth table is the list of strings, and the task is to find a missing string in the list.
1.1 Local Algorithms for Missing-String and New Time Hierarchies

First, we study how well Missing-String can be solved by algorithms which only probe a few bits of the list in order to determine an output bit, and use our results to derive new time hierarchy theorems with advice that are very close to tight (relative to oracles).

As a starting point, observe that when $M \leq N$ (the number of strings is at most the length of the strings) Cantor’s diagonal argument shows that one can make only 1 probe to determine each output bit of a missing string. We consider natural generalizations of this fundamental algorithm. Let $K \geq 1$ be a small parameter. How many probes are needed to compute a missing string, when $M \leq KN$? In Section 3, we give an algorithm for Missing-String that is local in that each output bit of the missing string can be computed separately in about $O(K \log^2 K)$ time, making only $O(K \log K)$ probes into the list L, provided that $M \leq KN$. (It is easy to show that $\Omega(K)$ probes are required; see Appendix A.) It is an interesting open problem to close the gap between our $O(K \log K)$ upper bound and the $\Omega(K)$ lower bound.

Applying our Missing-String algorithm directly, we prove a new relativizing time hierarchy theorem against super-linear advice. The most generic form of our hierarchy is the following.

★ Theorem 1. For all (time-constructible) $\alpha(n) \geq 0$, $t(n) \geq n^2$, unbounded $\beta(n)$, and every oracle A,

$$\text{TIME}^A[t(n) \log t(n) \cdot (\alpha(n) + \beta(n)) \cdot 2^{\alpha(n) + \beta(n)}] \not\subseteq \text{i.o.-TIME}^A[t(n)/(n + \alpha(n))]$$

That is, there are functions in time $O(t(n) \log t(n) \cdot (\alpha(n) + \beta(n)) \cdot 2^{\alpha(n) + \beta(n)})$ that cannot be simulated in time $t(n)$ even with $n + \alpha(n)$ non-uniform advice, for all but finitely many input lengths n.

The above theorem holds for “reasonable” models of computation such as multitape Turing machines, random access Turing machines, random access machines, and so on. Previously, it was known that $\text{TIME}(t(n) \log^2 t(n)) \not\subseteq \text{i.o.-TIME}(t(n)/(n - \omega(1)))$ for appropriate time bounds $t(n)$ [38, 17]. The basic idea in such proofs is to use the input itself as potential advice in the hard function; however, this strategy can only possibly diagonalize against advice of length less than n, whereas the lower bound in Theorem 1 holds for machines with advice longer than n. It was also well-known that by running for at least $\Omega(2^{\alpha(n)})$ time, one could enumerate all $\alpha(n)$-bit advice strings, and diagonalize against $\alpha(n)$-bit advice machines (see e.g.,Theorem 3 of [21]). Our Theorem 1 adds a factor of n to the advice length of such time hierarchies. In contrast, Theorem 1 is interesting in that it is not proved by directly diagonalizing over algorithms with $n + \alpha(n)$ advice: on any given input, the hard function in Theorem 1 has to simulate multiple algorithms on multiple advice strings and inputs, in order to determine its output.

Theorem 1 has several interesting corollaries, illustrating tradeoffs between running time and advice. As time hierarchies are so fundamental to complexity lower bounds, we believe these new hierarchies may be useful in future separations.

★ Corollary 2. For all $c \geq 1$, $\text{TIME}[2^n \cdot n^{c+3}] \not\subseteq \text{i.o.-TIME}[2^n]/(n + c \log n)$.

★ Corollary 3. For all $\epsilon > 0$, $\text{TIME}[n^3 \cdot 2^{2\epsilon n}] \not\subseteq \text{i.o.-TIME}[2^{\epsilon n}]/((1 + \epsilon)n)$.

★ Corollary 4. For every c, $\text{TIME}[n^{2c} \log^3 n] \not\subseteq \text{i.o.-TIME}[n^c]/(n + c \log n)$.
For example, Corollary 3 says there are problems solvable in about 2^{2^n} time which cannot be solved in 2^n time with $(1 + \varepsilon)n$ advice: we can compute a hard function in significantly less time than the number of possible advice strings ($2^{n+\varepsilon n}$) that we must diagonalize against.

The lower bound of Theorem 1 is essentially tight, in that there are oracles relative to which the containment actually holds if the running time of the hard function is slightly decreased [43] (see also Appendix A).

Good Circuits for Missing-String Are Equivalent to Circuit Lower Bounds

Next, we show that the problem of constructing good uniform circuits for MISS STRING is equivalent to constructing relativizing circuit lower bounds for uniform complexity classes. First, we give an equivalence between almost-everywhere circuit lower bounds and circuits for MISS STRING. To keep the presentation clean, we start with stating our results for $\Sigma_k E = \Sigma_k \text{TIME}[2^{O(n)}]$, but our connection holds for any exponential-time complexity class, with appropriate modifications for MISS STRING circuits (See Theorem 7). Recall that $\text{SIZE}^A(s(n))$ is the class of functions with an A-oracle circuit family of size $O(s(n))$, and $\text{i.o.}-\text{SIZE}^A(s(n))$ is the class of functions having A-oracle circuits of size $O(s(n))$ on infinitely many input lengths n.

> **Theorem 5 (Equivalence of Missing-String Lower Bounds and Circuit Upper Bounds).** For all k, the following are equivalent:

- For every oracle A, $\Sigma_k E^A \not\subseteq \text{i.o.}-\text{SIZE}^A(\tilde{O}(s(O(n))))$.
- For all n, MISS STRING has a poly(N)-time uniform depth-$(k + 1)$ circuit family of $2^{\text{poly}(N)}$ size and poly(N) bottom fan-in, on all lists of length $M := 2^{\tilde{O}(s(O(\log N)))}$ with $N = 2^n$.

According to current knowledge, Theorem 5 only refers to an open problem in the case of $k = 2$. The other values of k are already settled, and Theorem 5 implies interesting results about the MISS STRING problem in those cases:

- For $k = 1$, it is known ([43]) that there is an oracle A such that $\text{NE}^A = \text{NTIME}^A[2^{O(n)}] \subset \text{SIZE}^A(O(n))$. Theorem 6 implies that MISS STRING cannot be solved by depth-2 circuits of quasi-polynomial size, even for $M \leq 2^{\log^3(N)}$.
- For $k \geq 3$, recall it is known ([24, 31]) that for all oracles A, $\Sigma_k E^A$ has maximum A-oracle circuit complexity almost everywhere (that is, $\Sigma_k E^A \not\subseteq \text{i.o.}-\text{SIZE}(H(n) - 1)$, where $H(n) = (1 + o(1))2^n/n$ denotes the maximum circuit complexity of n-bit Boolean functions). This directly corresponds to the existence of uniform depth-4 circuits solving MISS STRING for all $M < 2^N$.

Recall it is open whether $\Sigma_2 E \subset \text{i.o.-SIZE}(\tilde{O}(n))$ (even relative to some oracle). Theorem 5 shows that the problem of proving “almost-everywhere” (relativizing) lower bounds for $\Sigma_2 E$ is equivalent to constructing uniform depth-3 circuits for MISS STRING over lists of length $M = 2^{\tilde{O}(\log N)}$.

Similarly to Theorem 5, we can show that constructing uniform circuits for MISS STRING that succeed on only infinitely many bit-string lengths $N = 2^n$ would still imply circuit lower bounds.

4 Our notion of uniformity is the typical “direct connect” uniformity; see the Preliminaries (Section 2) for more details.
Theorem 6 (Circuits for Missing-String Imply Circuit Lower Bounds). Let \(k \geq 1 \). If for infinitely many \(n \), Missing-String has a \(\text{poly}(\log N) \)-time uniform depth-\((k + 1)\) circuit family of \(2^{\text{poly}(N)} \) size and \(\text{poly}(N) \) bottom fan-in, on all lists of length \(M := 2^{O(s(\log N))} \) with strings of length \(N = 2^n \), then \(\Sigma_4 \mathbb{E}^A \not\subseteq \text{SIZE}^A (s(n)) \) for all oracles \(A \).

As mentioned above, the proofs of Theorems 5 and 6 easily generalize to other exponential-time complexity classes (and correspondingly, other circuit types for Missing-String). Let us briefly describe what the generalization looks like. For \(t \geq 0 \), let \(Y_1, \ldots, Y_{2^t} \) be the list of all \(t \)-bit strings in lexicographical order. For an arbitrary \(G : \{0,1\}^* \rightarrow \{0,1\} \), we define the complexity class \(G \)-\(\mathbb{E} \), where a decision problem \(f \) is in \(G \) if and only if there is a constant \(c > 0 \) and Turing machine \(M(x,y) \) running in \(2^{cn} \) time when \(|x| = n \) and \(|y| = 2^n \), such that for all \(x \),

\[
f(x) = 1 \iff G(M(x, Y_1), \ldots, M(x, Y_{2^t})) = 1.
\]

That is, the value of \(f(x) \) is determined by computing \(G \) on a doubly-exponential length input, and this input is computed by evaluating \(M(x, \cdot) \) on all possible strings of length \(2^n \).

It is easy to see that \(OR \cdot \mathbb{E} = \mathbb{N}E \), \(AND \cdot \mathbb{E} = \text{co-NE} \), \(\Sigma_2 \mathbb{E} \) is equivalent to a case where \(G \) is an OR of AND, and so on.

Theorem 7 (Generic Equivalence). The following are equivalent:

- For every oracle \(A \), \(G \cdot \mathbb{E}^A \not\subset \text{i.o.-SIZE}^A (\tilde{O}(s(O(n)))) \).
- For all \(n \), Missing-String has a \(\text{poly}(N) \)-time uniform circuit family of \(2^{\text{poly}(N)} \) size on all lists of length \(M := 2^{O(s(\log N))} \) with \(N = 2^n \), where the output gate of each circuit is a copy of \(G \), and the inputs to \(G \) are decision trees of depth \(\text{poly}(N) \).

Non-Relativizing Circuit Lower Bounds as Circuits for Missing-String on “Easy” Inputs

Although no relativization barriers are known against circuit lower bounds for \(\Sigma_2 \text{EXP} \), it would be natural for a complexity theorist to be unsettled by the relativizing nature of the previous theorems. Our perspective also yields insight into the precise difference between non-relativizing circuit lower bounds (e.g. \(\text{NEXP} \not\subset \text{SIZE}(n^{O(1)}) \), \(\text{MAEXP} \not\subset \text{SIZE}(n^{O(1)}) \) [15]) and relativizing ones, by viewing these questions in terms of low-depth circuits for Missing-String.

Let \(L \) be an ordered list of \(M = 2^t \) bit strings, each of length \(N = 2^n \). We say that \(L \) is \(S(n) \)-compressible if there is a circuit \(C \) of at most \(S(n) \) size, with \(t + n \) inputs, such that the \(2^{t+n} \)-bit truth table of \(C \) corresponds exactly to \(L \). In other words, \(L \) is \(S(n) \)-compressible if there is an \(S(n) \)-size circuit encoding it. We observe that constructing low-depth circuits for Missing-String on \(S(n) \)-compressible inputs corresponds directly to (non-relativizing) circuit lower bounds. We illustrate the idea with the case of \(\text{NE} \not\subset \text{NTIME}(2^{O(n)}) \).

Theorem 8. Let \(S(n) \geq n \). \(\text{NE} \not\subset \text{SIZE}(S(n)) \) if and only if there is a \(\text{poly}(N) \)-time uniform depth-two circuit family of size \(2^{\text{poly}(N)} \) for Missing-String that succeeds for infinitely many \(N = 2^n \), when \(M = 2^{O(S(n) \log S(n))} \) and the list \(L \) is \(S(n) \)-compressible.

As noted above, since there is an oracle relative to which \(\text{NE} \subset \text{SIZE}(O(n)) \), Theorem 6 shows that Missing-String on \(M = 2^{\text{poly}(\log N)} \) strings cannot be solved on general inputs with depth-two circuits of \(2^{\text{poly}(N)} \) size. Theorem 8 says that, if we believe \(\text{NE} \not\subset \text{SIZE}(n^{O(1)}) \) is true (and we do!), then we should believe that Missing-String can be solved with small \(\text{uniform} \) depth-two circuits on \(n^{O(1)} \)-compressible inputs. The fact that compressible
inputs make the problem easier is counterintuitive; many complexity theorists believe that separations like $\text{EXP} \neq \text{NEXP}$ are just as likely as separations like $\text{P} \neq \text{NP}$, but the EXP vs NEXP problem is exactly the P versus NP problem restricted to highly compressible inputs. In our setting, the difference between non-relativizing circuit lower bounds versus relativizing ones is precisely the difference between solving MISSING-STRING on highly-compressible inputs versus general, arbitrary inputs (oracles).

1.2 Non-Relativizing Aspects of the Algorithmic Method

A secondary set of results in this paper concern the so-called “algorithmic method” for proving circuit complexity lower bounds via the design of circuit-analysis algorithms that beat exhaustive search. Impagliazzo-Kabanets-Wigderson [21] showed that faster algorithms for approximating circuit acceptance probability implies circuit lower bounds. Let CAPP be the task: given a Boolean circuit C, output a value v such that $|v - \Pr_x[C(x) = 1]| < 1/10$.

▶ **Theorem 9** ([21]). If CAPP is solvable on n-size circuits in 2^{n^ε} time for every $\varepsilon > 0$, then NEXP does not have polynomial-size circuits.

This algorithms-to-lower-bounds connection was sharpened in subsequent work, and extended to SAT algorithms. An example result is:

▶ **Theorem 10** ([41]). Suppose for all k, Circuit-SAT on n^k-size circuits can be solved in $O(2^{n/n^k})$ time. Then NEXP does not have polynomial-size circuits.

It has been generally believed that this “algorithmic method” is not subject to the typical complexity barriers [11, 33, 4, 20, 8]. Indeed, Williams [41] states of the algorithmic method:

“we believe the relativization and algebrization barriers would be avoided, because all nontrivial SAT algorithms that we know do not relativize or algebraize.”

However, until now, no specific oracles have been provided relative to which the connection from circuit-analysis algorithms to circuit lower bounds fails.5 Relativized versions of these algorithms-to-lower-bounds connections would be very useful for applying this methodology more broadly in complexity theory, for at least two reasons.

1. For one, a line of work [3, 9, 10] has shown how weak nondeterministic simulations of Arthur-Merlin games would imply certain lower bounds against nondeterministic circuits, suggesting that the algorithmic method might relativize in some sense. More recently, it has been shown how more efficient quantum algorithms can imply quantum circuit lower bounds [7]. A generic relativizing algorithms-to-lower-bounds theorem could potentially yield theorems like these “for free”.

2. For another, it has been known for many years that lower-bounds-to-algorithms connections showing how circuit complexity lower bounds imply pseudorandom generators [32, 22] do relativize [28]. This relativizing property has been incredibly useful in the development of pseudorandom generators based on hardness assumptions. In other words, we have known for many years that there are relativizing connections in the “reverse” direction, from lower bounds to algorithms.

5 Since there are oracles (and algebraic extensions thereof) relative to which $\text{NEXP} \subset \text{ACC}^0$ [43, 4], it follows that the overall combination of a circuit-analysis algorithm plus the connection between circuit-analysis algorithms and circuit lower bounds avoids barriers. Here, we are interested in the question of whether the connections themselves avoid barriers.
We show that, unfortunately, relativizing connections between circuit-analysis algorithms and circuit lower bounds do not exist in general. On the one hand, this is bad news for those who would like to have a single generic theorem connecting algorithms to lower bounds for different “modes” of computation (such as nondeterministic, quantum, etc). On the other hand, perhaps it is simply inherent in any powerful-enough connection that its methods must not relativize.

A World Where CAPP is Easy, But There Are No Circuit Lower Bounds

First, improving an oracle of Fortnow [16], we show that the connection of [21] does not relativize, in a very strong sense:

▶ **Theorem 11.** There is an oracle A such that CAPP (for A-oracle circuits) is in P^A but EXP^{NP^A} has polynomial-size A-oracle circuits.

(Fortnow [16] gave an A relative to which the theorem holds with EXP, instead of EXP^{NP}.) In this relativized world, circuit acceptance probabilities can be approximated in P, yet no meaningful new circuit lower bounds follow. This oracle exists in spite of the fact that equivalences between circuit complexity and pseudorandom generators do relativize [28]. So under the same oracle A, no meaningful pseudorandom generators exist either (even ones equipped an NP oracle), but white-box derandomization (CAPP) is in P.

A World Where SAT is Easy, But There Are No Circuit Lower Bounds for EXP

What about the case of faster SAT algorithms? Are there oracles relative to which SAT can be solved more efficiently, yet no circuit lower bounds follow? It is known (e.g., [41], Proposition 2) that if SAT is in $O(H(n))$ time then $\text{EXP} \not\subseteq \text{P/poly}$, for any “sub-half-exponential” $H(n)$ satisfying $H(H(n^k)) \leq 2^n$ for all k, and that proof relativizes. Could one conclude EXP lower bounds from a SAT algorithm that runs just slightly slower? We give an oracle relative to which this is not true:

▶ **Theorem 12.** There is an oracle A and a function H such that $\text{TIME}^A[2^n] \subseteq \text{SIZE}^A[O(n)]$, SAT^A can be solved in $\text{poly}(H(\text{poly}(n)))$ time with an A-oracle, $H(H(n)) \leq 2^n$ and H is monotone increasing.

Could a slower SAT algorithm imply NEXP circuit lower bounds instead? If we could replace EXP with NEXP in Theorem 12, that would yield an oracle relative to which Σ_2^E has “half-exponential” size circuits, which is open. (Recall it is known that Σ_2^E is not in “sub-half-exponential” size, and the proof relativizes.) That is, our oracle stops just short of showing that non-relativizing methods are necessary for proving stronger Σ_2^E circuit lower bounds. While half-exponential functions have been known to pop up naturally in circuit complexity for over 20 years [31], Theorem 12 is the first oracle result (to our knowledge) that “explains” the half-exponential barrier. We leave it as interesting open problems to show an algebrization barrier for similar settings.

2 Preliminaries

We assume familiarity with complexity theory, especially notions such as the polynomial hierarchy and non-uniform circuit families [6]. Here, we recall some particularly important notions for this work.

6 See Appendix B for a proof outline.
We use $h : \mathbb{N} \rightarrow \mathbb{N}$ to denote a “half-exponential” function, i.e., for all n, $h(n)$ is a strictly monotone increasing function satisfying $h(h(n)) = 2^n$. It is widely believed (and sometimes claimed) that there exist $h(n)$ which are is time constructible [31, 2, 1]. For a function $f : \{0, 1\}^* \rightarrow \{0, 1\}$, we let $f_n : \{0, 1\}^n \rightarrow \{0, 1\}$ denote the n-th slice of f, i.e., the function f restricted to n-bit inputs.

We say that a function $s : \mathbb{N} \rightarrow \mathbb{N}$ is nice if it satisfies $s(n + \log(n)) \leq \tilde{O}(s(n)) = s(n) \cdot \text{poly}(\log s(n))$. We note that most commonly studied functions such as cn, n^k, $n^{\log^k(n)}$, 2^{n^c}, 2^{cn} are all nice. Unless otherwise specified, we will assume all functions s are nice.

Uniform Circuits

In Theorems 6 and 5, we consider $\text{poly}(N)$-time constant-depth uniform circuits of $2^{\text{poly}(N)}$ size for the **MISSING-STRING** problem, and relate their existence directly to functions in $\Sigma_k \mathbb{E}$ that have high circuit complexity. Here we give a few more details about the kind of uniformity we require. These circuit families are “direct connect” uniform (in the sense of Ruzzo [35, 25]), in that local gate information about the n-th circuit C_n of size $2^{\text{poly}(N)}$ can be computed in $\text{poly}(N)$ time. In particular, there is a language in \mathbb{P} of strings of the form $\langle N, g, y \rangle$ where g and y are bit strings labelling gates in C_n (taking $\text{poly}(N)$ bits to describe) and the output of y is an input to g in C_n, along with strings of the form $\langle N, g, t \rangle$ where t is the type of gate g (taking $\text{poly}(N)$ bits to describe). This set of triples is often called the connection language of the underlying circuit. We stipulate that for circuits with 2^n outputs, each output gate has a label of the form $x01^t$ where $x \in \{0, 1\}^n$ is the label of the x-th output. This makes it convenient to construct the label of any particular output gate.

Characterizations of NP and $\Sigma_k \mathbb{P}$ in general in terms of exponential-size “direct-connect” uniform circuits of constant depth are well-known [39, 40]. We will use relativized versions of these results. In our results regarding $\Sigma_k \mathbb{E}$ and circuit lower bounds, the inputs to our uniform circuits for **MISSING-STRING** will already be of length $N = 2^n$ (where n is the input length to the $\Sigma_k \mathbb{E}$ machine). In particular, we only need the following relativized equivalence between uniform circuits and the exponential hierarchy, which follows readily from the literature on circuits representing PH [18, 5].

Theorem 13. For all oracles A, the following classes are equivalent:

- $\Sigma_k \mathbb{E}^A = \Sigma_k \mathbb{TIME}^A[2^{O(n)}]$.
- The class of decision problems computed by $\text{poly}(2^n)$-time uniform depth-$(k + 1)$ circuits with output gate OR, size $2^{\text{poly}(2^n)}$, and bottom fan-in $\text{poly}(2^n)$. The n-th circuit takes as input an n-bit string x as well as all values of the oracle A up to length $\text{poly}(2^n)$.
- The class of decision problems computed by $\text{poly}(2^n)$-time uniform depth-$(k + 1)$ circuits with output gate OR, size $2^{\text{poly}(2^n)}$, bottom fan-in $\text{poly}(2^n)$, and 2^n output gates. The n-th circuit takes as input all values of the oracle A up to length $\text{poly}(2^n)$, and outputs the truth table of the function on all n-bit inputs.

Relativized Circuit Complexity

We recall notions of relativized circuit complexity, as originally defined by Wilson [43]. In a nutshell, relativized circuit complexity studies Boolean logic circuits with the usual AND, OR, NOT gates, along with extra oracle gates. In particular, for $A : \{0, 1\}^* \rightarrow \{0, 1\}$, an

7 Note that such a function must be one-to-one, and therefore strictly increasing: if $h(n) = h(m) = z$ for some $n \neq m$, then $h(z) = h(h(n)) = 2^n$ and $h(z) = h(h(m)) = 2^m$, a contradiction.

8 We have not yet found a rigorous proof in the literature, but we have no reason to doubt its existence, given the vast literature on computing half-exponential functions.
A-oracle circuit C is a Boolean circuit over the basis of ORs and ANDs of fan-in two, NOTs, and gates computing $A_k : \{0,1\}^k \to \{0,1\}$ where A_k is the k-th slice of A. The size of such a circuit C is defined to be the sum of all fan-ins over all gates (in other words, we are counting the number of wires). Note that each copy of A_k contributes k to the circuit size. We define $\text{SIZE}^A_n[(s(n))]$ to be the class of decision problems $f : \{0,1\}^* \to \{0,1\}$ such that for every n, there is an A-oracle circuit C_n of $O(s(n))$ size that computes the n-th slice of f.

In the following, we consider a binary encoding of A-oracle circuits which is paddable: if a circuit C has an encoding of length ℓ, then for all $\ell' > \ell$, C has an encoding of length ℓ'. In our encoding of an A-oracle circuit, we do not give a full description of A_k if it appears in the circuit; rather, we assume that the oracle A is known implicitly to the encoder/decoder. We can define a relativized version of the P-complete Circuit Evaluation problem:

Definition 14. Let $A : \{0,1\}^* \to \{0,1\}$ be an oracle. In the CIRC-EVAL^A problem, we are given an input 1^n0zx, and the task is to return the evaluation of $x \in \{0,1\}^n$ on the A-oracle circuit encoded by z.

Observe that by standard arguments, $\text{CIRC-EVAL}^A \in \text{TIME}^A[\tilde{O}(n)]$, i.e., A-oracle circuits can be evaluated in quasi-linear time with an A-oracle.

2.1 A Normal Form for Relativized Circuits

The results of this subsection may be known, but we have not found a reference. We show that relativized circuit complexity can be radically simplified for the problems we wish to study. For the oracles A in the literature placing a complexity class C^A in $\text{SIZE}^A[s(n)]$ for small $s(n)$ (e.g., $[43, 16]$), the actual circuits used in such simulations is always extremely simple: they consist of one A-oracle gate with some of its $O(s(n))$ inputs hard-coded with zeroes and ones.

It turns out that considering such simple circuits is without loss of generality. We will show that for the purposes of simulating complexity classes with relativized circuits, we may freely assume that the A-oracle circuits we consider consist of one A-oracle gate. In the following, let $A : \{0,1\}^* \to \{0,1\}$ be an oracle.

Definition 15. For nice $s(n) > n$, $A[s(n)]$ is the class of decision problems $f : \{0,1\}^* \to \{0,1\}$ such that there is an infinite sequence of strings $\{z_n\}$ such that for all n, $|z_n| \leq s(n)$, and for all $x \in \{0,1\}^n$, $f(x) = 1 \iff A(z_n x) = 1$.

In other words, $A[s(n)]$ is the class of problems solvable by circuits consisting of exactly one gate, an A-oracle gate, along with an “advice” string z_n plugged into that oracle gate. Observe that from our definitions we have $A[s(n)] \subseteq \text{SIZE}^A[O(s(n))]$, as the “fan-in” of the single A gate is $n + s(n)$.

The following basic lemma shows that for most interesting complexity classes C, if there is an oracle A relative to which C has $O(s(n))$-size A-oracle circuits, then there is another oracle B relative to which C has circuits comprised of exactly one B-oracle gate of $O(s(n) \log s(n))$ fan-in. This “normal form” greatly simplifies the problem of finding an oracle relative to which a complexity class C has small circuits, and will be very useful in our results relating circuits for Missing-String to circuit complexity lower bounds (Theorems 6 and 5).

Lemma 16. Let C be a complexity class (defined by machines) such that for all A, $C^{\text{TIME}^A[\tilde{O}(n)]} \subset C^A$.

There is an oracle A such that $C^A \subset \text{SIZE}^A[s(n) \cdot \text{poly} \log s(n)]$ if and only if there is an oracle B such that $C^B \subset B[s(n) \cdot \text{poly} \log s(n)]$.
Similarly, there is an oracle \(A \) such that \(C^A \subseteq \text{i.o.-} \text{SIZE}^A[\text{size}(s) \cdot \text{poly}(\log \text{size}(s))] \) if and only if there is an oracle \(B \) such that \(C^B \subseteq \text{i.o.-} \text{B}[\text{size}(s) \cdot \text{poly}(\log \text{size}(s))] \).

Proof. For both statements, one direction of the equivalence is trivial. In the following, we prove that an oracle \(A \) satisfying \(C^A \subseteq \text{SIZE}^A[O(\text{size}(s))] \) implies an oracle \(B \) satisfying \(C^B \subseteq B[O(\text{size}(s) \log \text{size}(s))] \).

The idea is to simply define \(B \) to be \(\text{CIRC-EVAL}^A \). Let \(M \) be an arbitrary machine computing a function in \(C \). Since \(\text{CIRC-EVAL}^A \in \text{TIME}^A[O(\text{size}(s))] \), using the assumption that \(\text{C^{TIME}}^A[O(\text{size}(s))] \subseteq C^A \) we may infer that \(M^B = M^{\text{CIRC-EVAL}} \) computes some function \(f' \in C^A \). Let \(N^A \) be a \(C^A \)-machine computing \(f' \), so \(N^A \) is equivalent to \(M^B \). Applying the assumption \(C^A \subseteq \text{SIZE}^A[\text{size}(s)] \), there is an \(A \)-oracle circuit family \(\{D^n_A\} \) of size \(O(\text{size}(s)) \) simulating \(N^A \). Let \(z_n \) be a description of \(D^n_A \), such that \(|z_n| \leq O(\text{size}(s) \log \text{size}(s)) \). We have \(D^n_A(x) = M^B(x) \) on all \(n \)-bit inputs \(x \), and \(D^n_A(x) = B(1^n 0 z_n x) \), since \(B = \text{CIRC-EVAL}^A \). Therefore the function computed by \(M^B \) is in \(B[O(\text{size}(s) \log \text{size}(s))] \). As this containment holds for every \(M \), we conclude that \(C^B \subseteq B[O(\text{size}(s))] \). An analogous argument proves the same result for infinitely-often inclusions. ▶

2.2 Efficient Methods for Finding a Missing String

Multiple linear-time algorithms are known for \textsc{Missing-String}; see Chapter 1 of [13] for one of them. In fact, \textsc{Missing-String} can be solved very efficiently using a “voting” strategy. The strategy is well-known in computational learning theory; the first reference we are aware of that uses the strategy to find a missing string is Lemma 3 of [24] (a paper on circuit lower bounds), although as a method for mistake-bounded learning (a.k.a. the “Halving Algorithm”) it was apparently first observed by Barzdins and Freivalds [12].

Theorem 17. The Missing String problem on \(M \) strings (each of length \(N \)) can be solved by an algorithm using \(O(M + N) \) time, or an algorithm using simultaneously \(O(M \log M + N) \) time and \(O(\log(M) + \log(N)) \) space, assuming constant-time random access to the input. In particular, to compute any bit of the missing string, both algorithms only have to probe at most \(2M \) distinct bits of the input.

Proof. We generalize the proof of Lemma 3 in [24]. Compute the bit \(b_1 \) that occurs least among the first bits of all strings, taking \(b_1 = 0 \) if both bits occur equally often. Thus the number of strings with first bit equal to \(b_1 \) is at most \(M/2 \). Among those strings with their first bit equal to \(b_1 \), compute the bit \(b_2 \) that occurs least in the second bit of those strings.

Repeating this process for at most \(t \leq \lceil \log_2(M) \rceil \) times on the \(i \)-th bit, for \(i = 1, \ldots, t \), we obtain a prefix \(b_1 \cdots b_t \) that is not a prefix of any string in the list. Filling the rest of the string with zeroes (which takes at most \(O(N) \) time), we obtain a missing string.

Let us first analyze the number of probes needed. To compute \(b_1 \), we have to make \(M \) probes. For \(i > 1 \), to compute \(b_i \) given the bits \(b_1, \ldots, b_{i-1} \), the aforementioned procedure only has to make at most \(M/2^{i-1} \) probes into the list. This is because in the previous iteration, we probed \((i-1)\)th bit of \(t_{i-1} \leq M/2^{i-2} \) strings, and to compute \(b_i \) we only have to probe those \(i \)-th bits for which the \((i-1)\)th bit of those \(t_{i-1} \) strings equals the least occurring bit \(b_{i-1} \). Hence the total number of probes to compute \(b_1 \) (and any other bits) is at most

\[
\sum_{i=0}^{t-1} M/2^i \leq 2M.
\]

We can use an \(O(\log M) \)-bit counter to determine each bit \(b_i \). Recalling that incrementing a counter takes only constant amortized time, the above procedure can be implemented in \(O(M) \) time by maintaining a data structure that is initially filled with all \(M \) strings, such
that after the \(i\)-th iteration we can remove the strings whose \(i\)-bit prefix disagrees with \(b_1 \cdots b_i\) in \(O(|S_i|)\) time, where \(|S_i|\) is the cardinality of the list in the \(i\)-th iteration. (A modified linked list suffices.)

To get a space-efficient algorithm, observe that we only need \(O(\log M)\) extra space to store a counter and to store the bits \(b_1, \ldots, b_i\). However, in the \(i\)-th iteration, to compute \(b_i\) given \(b_1, \ldots, b_{i-1}\), we will apparently need to re-compute all \(\sum_{j=0}^{i-1} M/2^j = 2M(1 - 1/2^i)\) bits probed so far, in order to count the “minority bit” over those strings which have not yet been eliminated; this makes the running time \(O(M \log M)\). Note that any extra zeroes printed at the end of the missing string (to make it have length \(N\)) do not count as part of the space usage; they are part of the output, and they can be handled with an \(O(\log N)\)-bit counter that counts up to \(N - t\).

Theorem 17 will be useful in our Missing-String algorithms which use a smaller number of probes.

3 Local Algorithms for Missing-String and New Non-Uniform Hierarchies

In this section, we consider algorithms computing Missing-String in a local fashion, probing very few bits to determine any particular output bit of the missing string. As a consequence, we will conclude a new non-uniform time hierarchy theorem.

Recall that in Missing-String, we are given a list \(L\) of \(M < 2^n\) strings each of \(N\) bits, and wish to output an \(N\)-bit string (a missing string) that is not in \(L\). We say an algorithm \(A\) for Missing-String is \(b\)-probe if for all \(i = 1, \ldots, N\), \(A\) can determine the \(i\)-th bit of its missing string by only probing \(b\) bits in the input list \(L\).

In order to have a small value for \(b\), it is required that the list length \(M\) is fairly small. As an example, consider the special case where \(M \leq N\): the number of strings in \(L\) is at most the string length. The classical diagonal argument immediately gives a 1-probe algorithm for Missing-String: the \(i\)-th bit of our missing string will flip the \(i\)-th bit of the \(i\)-th string in \(L\). For integer \(k \geq 1\), when \(M \geq k \cdot N\), it is easy to prove that there is no \(k\)-probe Missing-String algorithm at all (we give a proof in Appendix A for completeness). We provide an algorithm that nearly matches this simple lower bound:

\[\textbf{Theorem 18 (Local Algorithm for Missing-String).} \text{ For all positive } t, \text{ set } k := \left\lceil \frac{(2^t - 1)}{(2t)} \right\rceil. \text{ For all positive integers } N \text{ and } M \geq 2^t \text{ such that } M \leq kN, \text{ there is an algorithm for Missing-String on all } M\text{-size lists of } N\text{-bit strings which uses only } O((\log N)^2 + k \log^2 k) \text{ time and } 2(2^t - 1) \leq O(k \log k) \text{ probes to compute any desired output bit.} \]

\textbf{Proof.} The idea is to reduce the case of \(M \leq kN\) to the case where we have \(2^t - 1\) strings of length \(t\) for small \(t\), by breaking the \(N\)-bit strings into substrings.

Let \(L\) be a list of \(M \leq kN\) strings of length \(N\), and let \(i \in \{1, \ldots, n\}\) be the index of the desired output bit. For simplicity let us assume \(M\) is a multiple of \(2^t - 1\) (but the result does not require it). Our algorithm \(A\) conceptually partitions the list of \(M\) strings into \(L := \frac{M}{2^t - 1}\) sublists \(L_1, \ldots, L_t\) of at most \(2^t - 1\) strings each.\(^9\) (We say “conceptually”, because the algorithm does not actually have to partition the list in order to determine the \(i\)-th output bit.) We say that the sublist \(L_j\) is responsible for the \(i\)-th output bit if and only if

\[1 + t \cdot (j - 1) \leq i < t \cdot j. \]

\(^9\) If \(M\) is not a multiple of \(2^t - 1\), then we need to set \(L := \lfloor M/(2^t - 1) \rfloor\). To accommodate that increase in the calculations, we may set \(k := \left\lceil \frac{(2^t - 1)}{(2t)} \right\rceil\).
For example, the sublist L_1 is responsible for output bits $1, \ldots, t$, sublist L_2 is responsible for output bits $t+1, \ldots, 2t$, and so on. From our assumption that $M \leq kN$, it follows that $t \cdot M / (2^t - 1) = t \cdot \ell \leq N$, so it may be that not all output bits are “covered” by some sublist.

Given i, our Missing-String algorithm A first determines the $j \in \{1, \ldots, \ell\}$ such that L_j is responsible for the i-th output bit, by simply dividing i by t, taking at most $O((\log N)^2)$ time. (If there is no such sublist, then A outputs 0 for the i-th output bit.) Next, the algorithm A considers an instance of Missing String on a set of substrings, defined as follows: over all $q \leq 2^t - 1$ strings in L_j, strings $y_1, \ldots, y_q \in \{0, 1\}^t$ are defined by taking each string $x \in L_j$ and truncating x to the t-bit substring $x[1 + t \cdot (j - 1)] \cdots x[t \cdot j]$. Then, A uses the algorithm of Theorem 17 to determine a missing string $z \in \{0, 1\}^t$ that is not among $y_1, \ldots, y_q \in \{0, 1\}^t$, by probing at most $2q \leq 2(2^t - 1) \leq O(k \log k)$ bits and (conservatively) using $O(t2^t) \leq O(k \log^2 k)$ time. Finally, A outputs the bit z_{i^*}, where $i^* = i - t(j - 1)$.

We claim that the string output by A (over all $i = 1, \ldots, N$) avoids every string in L. For each $j = 1, \ldots, \ell$, over those t bit positions i that L_j is responsible for, we are constructing a substring z of length t which avoids all strings in L_j, in the corresponding t bit positions of the strings in L_j. Since $N \geq t \cdot \ell$, there are enough bit positions so that for all ℓ sublists L_j, we can construct a substring z of length t avoiding the strings in L_j, each time using a disjoint set of t bit positions from all other sublists. The string output by A is a concatenation of all such z, avoiding all sublists L_j and thus avoiding the entire list L. ◀

What is the minimum number of probes needed to compute bits of a Missing-String, when $M \leq kN$? We leave it as an interesting open problem to close the gap between the simple lower bound of k probes (Theorem 34) and our upper bound of $O(k \log k)$ probes (Theorem 18).

▶ Remark 19. Instead of measuring the worst-case number of probes needed to compute one bit of the missing string, suppose we consider the problem of simply constructing a missing string with the minimum number of total bit probes. In this case, the algorithm of Theorem 17 is essentially optimal: it constructs a missing string over $M \leq 2^N - 1$ strings of length N with at most $2M$ total probes into the input, and it is easy to see that at least M total probes are required (each string must be probed in at least one bit position). Therefore, with respect to this measure of probe complexity, we know the optimal number of probes within a factor of 2.

▶ Remark 20. For at least one interesting case, we can determine the exact number of probes required. Suppose we are given exactly $2^t - 1$ strings of length t, so that the missing string is unique. In this case, the i-th bit of the missing string can be determined by taking the XOR of the i-th bits of all strings in the list. (The missing string equals the bit-wise XOR of all $2^t - 1$ other strings.) Thus we can use only $2^t - 1$ probes for each output bit. In this scenario, there is an algorithm making $M = 2^t - 1$ probes per output bit, and the number of probes cannot be made smaller than M.

3.1 Non-Uniform Time Hierarchies

While Theorem 18 is interesting in its own right, we are interested in complexity-theoretic applications. Let us first prove Theorem 1, which is the most general form we will consider.

10 We add a log-factor to the running time here, just to ensure that the time bound of Theorem 17 also holds for models such as multitape Turing machines.
That is, there are functions in time $O(t(n) \log t(n) \cdot (\alpha(n) + \beta(n)) \cdot 2^{\alpha(n)+\beta(n)})$ that cannot be simulated in time $t(n)$ even with $n + \alpha(n)$ non-uniform advice, for all but finitely many input lengths n.

Proof. Let A be an arbitrary oracle. We will construct a function f that is computable in time $O(t(n) \log t(n) \cdot (\alpha(n) + \beta(n)) \cdot 2^{\alpha(n)+\beta(n)})$ with an A-oracle, which cannot be computed in $O(t(n))$ time with an A-oracle, even with $n + \alpha(n)$ bits of non-uniform advice, on all but finitely many input lengths n.

To compute f, we will (implicitly) define a very large instance of Missing-String, such that the list L contains the 2^n-bit strings of all machines we would like to diagonalize against, and we will define the function f_n (for n restricted to n-bit inputs) to have our missing string as its truth table. Each bit of the truth table of f_n will be computable in the desired running time, by applying Theorem 18 appropriately.

Set $n := n + \alpha(n) + \beta(n)$. Associate all m-bit strings with pairs of the form (y, i), where y is a possible advice string of length $n + \alpha(n)$, and i is a beta(n)-bit string encoding a possible Turing machine/algorithm M_i running in $t(n)$ time with an A-oracle. (Since $\beta(n)$ is unbounded, eventually every machine is encoded.) Make a list L of 2^m strings of length $N = 2^n$, where each string encodes the truth table obtained by running some M_i with some advice y on all n-bit inputs. Provided we can solve Missing-String for the list L, on every possible n, this will produce the truth table of a function that cannot be computed on all but finitely many input lengths n by all such algorithms with $n + \alpha(n)$ advice.

We can use our algorithm from Theorem 18 provided that $2^m \leq k2^n$, i.e., $k \geq 2^{\alpha(n)+\beta(n)}$. Setting k to be $2^{n\alpha(n)+\beta(n)}$, we can make a number of probes which is at most

$$O(k \log k) \leq O((\alpha(n) + \beta(n)) \cdot 2^{\alpha(n)+\beta(n)}).$$

For our particular list L, every probe into L corresponds to simulating some algorithm M_i on some advice y of length $n + \alpha(n)$ and some input x' of length n, for $O(t(n) \log t(n))$ time. (We allow an extra $\log t(n)$ factor for a universal simulator.) Thus the running time required to compute all probes is

$$O(t(n) \log t(n) \cdot (\alpha(n) + \beta(n)) \cdot 2^{\alpha(n)+\beta(n)}).$$

Besides computing all the probes, the additional runtime cost of the local algorithm for Missing-String is negligible:

$$O((\log N)^2 + k \log^2 k) \leq O(n^2 + t(n) \log t(n) \cdot (\alpha(n) + \beta(n)) \cdot 2^{\alpha(n)+\beta(n)}).$$

This completes the proof.

Corollary 21.
1. For all $c \geq 1$, $\text{TIME}[2^n \cdot n^{c+3}] \not\subseteq \text{TIME}[2^n]/(n + c \log n)$.
2. For all $\varepsilon > 0$, $\text{TIME}[n^{3} \cdot 2^{2cn}] \not\subseteq \text{TIME}[2^{2n}]/((1 + \varepsilon)n)$.
3. For every c, $\text{TIME}[n^{2c} \log^3 n] \not\subseteq \text{TIME}[n^{c}]/(n + c \log n)$.
Proof.
1. Set \(t(n) = 2^n \), \(\beta(n) = \log n \), and \(\alpha(n) = c \log n \) in Theorem 1.
2. Set \(\alpha(n) = \varepsilon n \), \(\beta(n) = \log t(n) = 2^n \).
3. Set \(\alpha = c \log n \), \(\beta(n) = \log \log n \), \(t(n) = n^c \).

In the above corollaries, note that in all cases the hard function actually does not have enough time to directly “try all possible advice strings” and run the algorithms it must diagonalize against. Furthermore, as mentioned earlier, the theorem is essentially tight for relativizing lower bounds, because there is an oracle \(B \) such that \(\text{TIME}^B(o(2^n)) \subset \text{TIME}^B(O(n))/(c+1)n \). (See Appendix A for a sketch of this result, in terms of Missing-String.)

4 Circuits for Missing-String And Circuit Lower Bounds

In this section, we prove relations and equivalences between the existence of uniform circuits for Missing-String and relativizing circuit lower bounds for functions in the exponential hierarchy. We will focus on the case of \(\Sigma_2 \text{E} \) as it is the most relevant “frontier” class for exponential-size circuit lower bounds.

\[\text{Definition 22.} \text{ We say that an oracle } A : \{0,1\}^* \rightarrow \{0,1\} \text{ is supported on } m \text{-bit strings if } A(x) = 0 \text{ for all } x \text{ satisfying } |x| \neq m. \text{ We will view an } A \text{ supported on } m \text{-bit strings as a string of length } 2^m. \]

In the following, think of \(f(n) \) as a very slow-growing function (e.g., \(f(n) = \log(n) \)).

\[\text{Definition 23.} \text{ Fix an } n \in \mathbb{N}. \text{ Let } U \text{ be a } \Sigma_3 \text{E Turing machine such that } |U| \leq f(n). \text{ Define the function } D_{U,n} : \{0,1\}^{2^{\alpha(n)+n}} \rightarrow \{0,1\}^n \text{ such that for every oracle } A \text{ supported on } (s(n) + n) \text{-bit strings, } D_{U,n}(A) = \{U^A(x)\}_{x \in \{0,1\}^n}. \]

We define \(\{D_{U,n}\} \) to be the corresponding family of functions.

\[\text{Definition 24.} \text{ Let } \{G_n\} \text{ be a multi-output circuit family with } 2^{\alpha(n)+n} \text{ inputs and } 2^n \text{ outputs. We say that } \{G_n\} \text{ is a good circuit family if it is a } \text{poly}(2^n)\text{-time uniform depth-3 family of the form } OR_{2^{\alpha(n)} \circ AND_{2^{\alpha(n)}}} \circ OR_{\text{poly}(2^n)}, \]

as defined in Section 2.

\[\text{Lemma 25.} \text{ Let } \{G_n\} \text{ be a good circuit family. Then there exists a } \Sigma_3 \text{E Turing machine } U \text{ such that for all } n \text{ and all inputs } A \in \{0,1\}^{2^{\alpha(n)+n}}, G_n(A) = D_{U,n}(A). \text{ That is, } G_n(A) \text{ outputs the values of } U^A(x) \text{ over all } x \text{ of length } n. \]

\[\text{Proof.} \text{ Follows from Theorem 13.} \]

Here we will prove Theorem 6 for the case of \(k = 2 \); the case of arbitrary \(k \) is straightforward.

\[\text{Theorem 26 (Circuits for Missing-String Imply Circuit Lower Bounds, Theorem 6 for } \Sigma_2 \text{E).} \text{ If for infinitely many } n, \text{ Missing-String can be solved by a good circuit family, on all lists of length } M := 2^{O(s(log N))} \text{ with strings of length } N = 2^n, \text{ then } \Sigma_2 \text{E}^A \not\subset \text{SIZE}^A (\tilde{O}(s(n))) \text{ for all oracles } A. \]
Similarly, if for all \(n \), \textsc{Missing-String} can be solved by a good circuit family, on all lists of length \(M := 2^{O(s(\log N))} \) with strings of length \(N = 2^n \), then \(\Sigma_2^P \not\subset \text{i.o.-SIZE}^A[\tilde{O}(s(n))] \) for all oracles \(A \).

\textbf{Proof.} We will prove the first implication; the modification to the second implication is straightforward. By Lemma 25, the hypothesis implies that there exists a \(\Sigma_2^P \) Turing machine \(U \) such that the good circuit family solving \textsc{Missing-String} computes the same function as \(\{D_{U,n}\} \). Let \(V \) be a \(\Sigma_2^P \)-machine simulating \(U \), so that whenever \(U \) asks a query to the oracle of length \(\log(M) + n \), \(V \) uses the actual oracle result, and for all queries of other lengths \(V \) pretends the query answer is 0. Let \(A \) be any oracle and let \(A_n \) be its restriction to \((\log(M) + n) \)-bit strings; that is, \(A_n(z) = A(z) \) if \(|z| = (\log(M) + n) \), and \(A_n(z) = 0 \) otherwise. Observe that \(A_n \) restricted to strings of length \((\log(M) + n) \) can be viewed as an instance of the \textsc{Missing-String} problem with a list of length \(M \) and each string of length \(N = 2^n \). From these definitions, we infer that for all \(x \in \{0, 1\}^n \), \(V^A(x) = U^{A_n}(x) \) and hence

\[
\{V^A(x)\}_{x \in \{0, 1\}^n} = \{U^{A_n}(x)\}_{x \in \{0, 1\}^n} = D_{U,n}(A_n).
\]

As \(D_{U,n} \) can solve the \textsc{Missing-String} problem with a list of length \(M \) and each string of length \(N = 2^n \) for infinitely many \(n \), we have that for infinitely many \(n \), for all \(A \), and for all \(z \in \{0, 1\}^{\log(M)} \),

\[
\{V^A(x)\}_{x \in \{0, 1\}^n} = D_{U,n}(A_n) \neq \{A_n(z, x)\}_{x \in \{0, 1\}^n} = \{A(z, x)\}_{x \in \{0, 1\}^n}.
\]

In turn, this implies that for infinitely many \(n \), for all \(A \), and for \(z \in \{0, 1\}^{\log(M)} \),

\[
\{V^A(x)\}_{x \in \{0, 1\}^n} \neq \{A(z, x)\}_{x \in \{0, 1\}^n}.
\]

As this condition holds for infinitely many \(n \), we conclude that for all \(A \), \(V^A \) does not have \(A \)-oracle circuits consisting of one query of length \(\log(M) \) to \(A \), i.e., \(V^A \not\subset A[\log(M)] \).\footnote{See Section 2 for a definition of the \(A[s(n)] \) notation.}

For every constant \(d \), assigning \(M := 2^{s(n) \log N} \) implies that for all \(A \), \(V^A \not\subset A[s(n) \log N] \). Hence, \(V^A \not\subset A[\tilde{O}(s(n))] \). Since \(V^A \) is a \(\Sigma_2^P \) machine, this implies that for all \(A \), \(\Sigma_2^P \not\subset A[\tilde{O}(s(n))] \). Finally, by Lemma 16, this implies that for all \(B \), \(\Sigma_2^B \not\subset \text{SIZE}[\tilde{O}(s(n))]^B \). \hfill ▷

Now, we want to go in the opposite direction: we want to show that if \textsc{Missing-String} \textit{does not} have good uniform circuits, then \(\Sigma_2^P \subset \text{i.o.-SIZE}^A[\tilde{O}(s(n))] \) for some oracle \(A \). (Contrapositively, we will show that relativizing circuit lower bounds for \(\Sigma_2^P \) imply good uniform circuits for \textsc{Missing-String}.) This direction will take more work. To this end, we define a property \(P \) which will be sufficient to imply \(\Sigma_2^P \subset \text{i.o.-SIZE}^A[\tilde{O}(s(n))] \). Property \(P \) asks for something stronger than a typical lower bound: a single input to the \textsc{Missing-String} problem on which all uniform circuits (algorithms) fail. We will later see (Lemma 30) how \textsc{Missing-String} lower bounds can be used to derive property \(P \), by allowing a little loss in the parameters.

\begin{definition}
Let \(P(s, f, n) \) be the following property:

There is an oracle \(Q \) supported on \((s + n)\)-bit strings such that, for every \(\Sigma_2 \text{TIME}[2^n] \) Turing machine of description length \(|U| \leq f \), the function \(D_{U,n} \) cannot solve the \textsc{Missing-String} problem on the input \(Q \), with list of length \(M = 2^s \) and strings of length \(N = 2^n \).
\end{definition}
Roughly speaking, property P says “there is a bad input Q that breaks every machine U (of length at most f) trying to solve MISSING-STRING.”

Lemma 28. Let $f(n)$ be unbounded. If there are infinitely many n such that $P(s(n), f(n), n)$ holds, then there exists a constant μ and an oracle A such that $\Sigma_2\text{TIME}[2^n]^A \subset i.o.-\text{SIZE}^A[\mu s(n)]$.

Proof. The oracle will be constructed in stages.

Stage 1. Start with the first n for which $P(s(n), f(n), n)$ holds. Then there exists an oracle B supported on $(s(n) + n)$ bit strings, so that for all $\Sigma_2\text{TIME}[2^n]$ Turing machines U where $|U| \leq f(n)/2$, there exists a $z \in \{0, 1\}^{s(n)}$ such that $U^B(x) = B(z, x)$ for all x of length n. That is, U^B has a “trivial” B-oracle circuit of size $s(n) + n$ on inputs of length n. Set $A := B$. We will view A as a set defined by the inputs on which the oracle A is 1.

Stage i for $i > 1$. Let us now extend the previous statement for infinitely many n. Let m be the upper bound of the length of the binary encoding of the set A. Let n_j refer to the integer n chosen in stage j, where $1 \leq j < i$.

In stage i, we choose n such that three properties hold.

1. $f(n) > 2 \cdot m$
2. $P(s(n), f(n), n)$ holds.
3. n is large enough to satisfy $2^{n-1} \cdot f(n-1) < s(n) + n$.

We want to add a set B_n of strings of length $s(n) + n$ to our existing oracle A, yielding a new oracle $A := A \cup B_n$. We can argue by induction that all existing entries in the set A have length at most $2^{n-1} \cdot f(n-1)$, hence by Property 3, $A \cap B_n = \emptyset$. Note that any machine of the form $U^{A \cup B_n}$ can be thought of as another machine U^B_{2n} where in U_2 we hard-code A, where $|U_2| \leq |U| + m$. By Property 1, if $|U| \leq f(n)/2$, then $|U_2| \leq f(n)$. As in stage 1, property $P(s(n), f(n), n)$ implies there exists an oracle B_n supported on $(s(n) + n)$ bit strings such that for all $\Sigma_2\text{TIME}[2^n]$ machines U_2 satisfying $|U_2| \leq f(n)$, there is a string z of length $s(n)$ such that $U_2^{B_n}(x) = B_n(z, x)$ for all $x \in \{0, 1\}^n$. That is, $U_2^{B_n}$ has a “trivial” B_n-oracle circuit on inputs of length n.

Therefore, for all $\Sigma_2\text{TIME}[2^n]$ machines U satisfying $|U| \leq f(n)/2$, there is a string z' of length $s(n)$ such that for all n-bit x, $U^{A \cup B_n}(x) = U_2^{B_n}(x) = B_n(z', x)$. Note that since z' is of length $s(n)$, and A only contains strings of length less than $s(n) + n$, we have $B_n(z', x) = (A \cup B_n)(z', x)$. Therefore $U^{A \cup B_n}(x) = (A \cup B_n)(z', x)$ for all x. That is, $U^{A \cup B_n}$ also has a “trivial” $(A \cup B_n)$-oracle circuit.

Now, we set A to be $A \cup B_n$. By Property 3, we chose n to be large enough to allow all previous machines considered do not query strings of length $s(n) + n$. Hence for this new setting of A, we still have that for all $\Sigma_2\text{TIME}[2^n]$ Turing machines U with $|U| \leq f(n)/2$, and for all $j < i$, there is an z_j of length $s(n_j)$ such that for all x of length n_j, $A(x) = A(z_j, x)$.

Let A denote the final oracle after all stages. For infinitely many n, for all $\Sigma_2\text{TIME}[2^n]$ machines U with $|U| \leq f(n)/2$, we have a string z_n of length $s(n)$ such that for all x, $U^A(x) = A(z_n, x)$. As $f(n)$ is unbounded, this is sufficient to imply that $\Sigma_2\text{TIME}[2^n]^A \subseteq i.o.-\text{SIZE}^A[\mu s(n)]$. Taking μ to be a constant satisfying $A[s(n)] \subseteq \text{SIZE}^A[\mu s(n)]$, we conclude that $\Sigma_2\text{TIME}[2^n]^A \subseteq i.o.-\text{SIZE}^A[\mu s(n)]$.

We next define a property R, which intuitively corresponds to the existence of lower bounds for the MISSING-STRING problem.

12 See Section 2 for a definition of the $A[s(n)]$ notation.
Definition 29. Let $R(s, f, n)$ denote the following property:

For all functions $D_{U,n}$ (where U is a $\Sigma_2^{\text{TIME}}[2^n]$ Turing machine, and the description length $|U| \leq f$), there exists an oracle Q supported on $(s + n)$ bit strings such that $D_{U,n}$ cannot solve the Missing-String problem on lists of length $M = 2^n$ and strings of length $N = 2^n$ on input Q.

Roughly speaking, property R says “for all machines U, there is a bad input Q on which U does not solve Missing-String”, while property P said “there is a single bad input Q such that no machine U solves Missing-String on Q.” In Lemma 30 we will show how property R actually implies the stronger property P, with a little loss in the parameters.

Let $f(n) < s(n), n < s(n)$ and let $f(n)$ be poly(n)-time constructible (eventually we will choose $f(n) = \log n$). Define $n' := n + f(n)$ and define s' such that $s'(n') := s(n) - f(n)$. Note that $s(n) + n = s'(n') + n'$. We now show that property R implies property P, with a mild loss in the parameters.

Lemma 30. There exists a constant c such that $R(s'(n), c, n') \implies P(s(n), f(n), n)$. Therefore, if there are infinitely many m such that $R(s'(m), c, m)$ holds, then there are infinitely many m such that $P(s(m), f(m), m)$ holds.

Proof. We will prove the contrapositive. If $P(s(n), f(n), n)$ is false, then for every possible input Q of length $2^n + f(n)$ to the Missing-String problem with $M = 2^{s(n)}$ and $N = 2^n$, at least one function of the form $D_{U,n}$ (where U is a $\Sigma_2^{\text{TIME}}[2^n]$ machine, $|U| \leq f$) correctly solves Missing-String on Q.

We will now show that there is a single function which solves the Missing-String problem over all lists of length $M = 2^{s(n) - f(n)}$ and strings of length $N = 2^{n+f(n)}$. Later we will argue that this function can be computed in $\Sigma_2^{\text{TIME}}[2^n]$.

Note that $M \cdot N = 2^{s(n) + f(n)}$. We may think of each string T of length $2^{n+f(n)}$ in the list as being divided into $2^{f(n)}$ sub-strings, each of length 2^n. Creating a list of all these sub-strings gives us an instance I of the Missing-String problem with list of length $2^{s(n) - f(n)} \cdot 2^{f(n)} = 2^{s(n)}$ and strings of length 2^n. Similarly we will think of the output of length $2^{n+f(n)}$ as being divided into $2^{f(n)}$ sub-outputs, each of length 2^n. Let U_z be the $\Sigma_2^{\text{TIME}}[2^n]$ machine with description z, where $|z| \leq f(n)$. To obtain the zth sub-output, we evaluate the function $D_{U_z,n}$ on I, obtaining a string of length 2^n. Note that all the sub-functions are being run on the same instance of Missing-String with list of length $M = 2^{s(n)}$ and strings of length $N = 2^n$, generated by treating the sub-strings as strings. Since $P(s(n), f(n), n)$ is false, some machine U_w solves Missing-String correctly: there exists a string w of length at most $f(n)$ such that $D_{U_w,n}$ is correct on the instance I. This means that the wth sub-output is distinct from all the sub-strings in the input. Hence the entire output string of length $2^{n+f(n)}$ must be distinct from all strings in the input. Therefore this function correctly solves Missing-String on lists of length $M = 2^{s(n) - f(n)}$ and strings of length $N = 2^{n+f(n)}$.

We observe that this function is of the form $D_{U',n'}$ where U' is a $\Sigma_2^{\text{TIME}}[2^n]$ machine and $|U'| = O(1)$. In fact, U' is the machine which on input zx (where $|z| = f(n)$, $|x| = n$, $|zx| = n + f(n) = n'$) simply returns the output of the $\Sigma_2^{\text{TIME}}[2^n]$ machine with description z on input x. It is now easy to verify that the constructed function is equivalent to $D_{U',n'}$. Note that U' runs in time $O(2^n) \leq O(2^{n'}$). As $f(n)$ is polynomial-time constructible, we get that $|U'| \leq O(1)$. Taking $c = |U'|$, we see that $R(s'(n), c, n')$ is false.

Corollary 31. Let $f(n) = \log(n)$ and let s' be a nice function. There exists constants c,d such that if there are infinitely many n' such that $R(s'(n), c, n')$ holds, then there are infinitely many n such that $P(s'(n)\log^d(s'(n)), f(n), n)$ holds.
Proof. Choose \(c \) to be the constant from Lemma 30. Choose \(d \) to be a constant such that \(s'(n + \log(n)) + \log(2n) \leq s'(n) \log^d(s'(n)) \), existence of \(d \) is guaranteed because \(s' \) is a nice function (see Section 2 for a definition). Let \(R(s'(n), c, n') \) be true. Define \(n, s(n) \) to be the solutions of \(n + f(n) = n' \) and \(s(n) = f(n) + s'(n') \). By Lemma 30 we have that \(P(s(n), f(n), n) \) is true. Note that \(s(n) = f(n) + s'(n') \leq f(n') + s'(n') = \log(n + \log(n)) + s'(n + \log(n)) \leq \log(2n) + s'(n + \log(n)) \leq s'(n) \log^d(s'(n)) \). Hence \(P(s'(n) \log^d(s'(n)), f(n), n) \) holds.

▶ Theorem 32 (Equivalence of Missing-String Lower Bounds and Circuit Upper Bounds, Theorem 5 for \(\Sigma_2 E \)). For all nice functions \(s(n) \), the following are equivalent:

1. For every oracle \(A \), \(\Sigma_2 A \not\subseteq i.o.-\text{SIZE}^A(\tilde{O}(s(O(n)))) \).
2. Missing-String can be solved by a good circuit family on all lists of length \(M \) and strings of length \(N = 2^n \) where \(M \) satisfies \(M = 2^\tilde{O}(s(O(\log N))) \).

Proof. By Theorem 26 we have that \(2 \implies 1 \).

Let us now prove \(2 \implies 1 \). By Lemma 25, for a good circuit family \(\{G_n\} \) there exists a \(\Sigma_2 E \) Turing machine \(U \) such that the output of \(G_n \) is the same as that of \(\{D_{U,n}\} \). Hence by \(2 \implies 1 \) we have that for all circuit families \(\{D_{U,n}\} \) such that \(U \) is a \(\Sigma_2 E \) machine, there are infinitely

\[\exists \text{many } n \text{ such that } D_{U,n} \text{ cannot solve the Missing-String problem for some } M = 2^\tilde{O}(s(O(n))) \text{ and } N = 2^n. \]

This implies that for all constants \(c \), there are infinitely many \(n \) such that property \(R(\tilde{O}(s(O(n))), c, n) \) holds. Taking \(f(n) = \log(n) \) and applying Corollary 31, it follows that there are infinitely many \(n \) such that \(P(\tilde{O}(s(O(n))), f(n), n) \) holds. Applying Lemma 28, there exists an oracle \(B \) such that \(\Sigma_2 \text{TIME}[2^n]^B \not\subseteq i.o.-\text{SIZE}^B[\tilde{O}(s(O(n)))]^B \). Finally, by padding we conclude that \(\Sigma_2 E^B \not\subseteq i.o.-\text{SIZE}^B[\tilde{O}(s(O(n)))]^B \), which is equivalent to \(1 \).

4.1 A Perspective on Non-Relativizing Lower Bounds

In this section, we observe that non-relativizing lower bounds are equivalent to uniform circuits for Missing-String on low-complexity inputs.

▶ Reminder of Theorem 8. Let \(S(n) \geq n \). NE \(\not\subseteq \text{SIZE}(S(n)) \) if and only if there is a poly(N)-time uniform depth-two circuit family of size \(2^{\text{poly}(N)} \) and \(\text{poly}(N) \) bottom fan-in for Missing-String that succeeds for infinitely many \(N = 2^n \), when the list \(L \) is \(S(n) \)-compressible.

The proof follows easily from the framework given earlier in this section.

Proof. (Sketch) First, assume \(\text{NE} \not\subseteq \text{SIZE}(S(n)) \), and let \(M \) be an NE machine without \(S(n) \)-size circuits for infinitely many \(n \). Applying the standard translation between \(\text{NP} \) and DC-uniform circuits (see 2) we can define a poly(2^n)-uniform depth-two circuit family \(\{C_n\} \) which takes no inputs, and whose \(2^n \) output gates print the truth table of \(M \) on \(n \)-bit inputs. For infinitely many \(n \), this family \(\{C_n\} \) is printing a string which is not \(S(n) \)-compressible; therefore it cannot be on any \(S(n) \)-compressible list.

For the other direction, suppose there is a poly(N)-time uniform depth-two circuit family \(\{C_n\} \) of size \(2^{\text{poly}(N)} \) for Missing-String that succeeds for infinitely many \(N = 2^n \), when the list \(L \) is \(S(n) \)-compressible. So there is an infinite set \(\{n_i\} \) where for all \(i \), the circuit \(C_{n_i} \), given the list \(L_{n_i} \) of all possible \(2^{n_i} \)-bit truth tables of circuit complexity at most \(S(n_i) \), outputs an \(2^{n_i} \)-bit truth table \(T \) which does not appear in \(L_{n_i} \). This \(T \) therefore has circuit complexity greater than \(S(n) \). Note that either there are infinitely many \(i \) such that the depth-two circuit \(C_{n_i} \) is an OR of AND (poly(N) fan-in), or there are infinitely many \(i \) such that it is an AND of OR (poly(N) fan-in). In the first case, we have an
NE machine computing a function not in $\text{SIZE}(S(n))$; in the second case, we have a coNE machine computing a function not in $\text{SIZE}(S(n))$ (which implies an NE machine as well; the class $\text{SIZE}(S(n))$ is closed under complement). In more detail, in the first case, our NE machine on an input x (of length n) will first check the gate type of the output gate of C_n. If the type is OR, then the NE machine evaluates C_n on the list L_n, obtaining a truth table T, and the machine outputs the appropriate bit of T, corresponding to x. (If the type is AND, the NE machine just reports 0.)

5 Oracles Breaking The Algorithmic Method for Circuit Lower Bounds

Notation

We will use $[s_1, s_2, \ldots, s_k]$ to denote an encoding of a k-tuple of strings s_1, s_2, \ldots, s_k from which s_1, s_2, \ldots, s_k can be efficiently recovered. We define the key of the string $[s_1, s_2, \ldots, s_k]$ to be the string s_2.

Recall the Circuit Approximation Probability Problem (CAPP): given a circuit C, output a value $v \in (0, 1)$ such that $|v - \Pr_x[C(x) = 1]| < 1/10$. (Here, the choice of 1/10 is arbitrary; it just needs to be a small-enough constant greater than 0.) CAPP is a canonical PromiseBPP-complete problem [19]. Building on oracle constructions of Fortnow [16] and Wilson [43], we show there is a relativized world in which exponential-time with an NP oracle has linear-size circuits yet CAPP is in P. (Recall it is known that subexponential-time algorithms for CAPP imply $\text{NEXP} \not\subseteq \text{P/poly}$ [21].)

Reminder of Theorem 11. There is an oracle A such that CAPP (for A-oracle circuits) is in P^A but EXP^{NP^A} has polynomial-size A-oracle circuits.

In particular, our proof will show that $E^{\text{NP}} = \text{TIME}^{\text{NP}}[2^{O(n)}]$ has $O(n)$-size circuits relative to A; the consequence for EXP^{NP} follows from standard (relativizing) padding arguments. The idea is to carefully construct an oracle with “keyed” strings that allow us to determine E^{NP} computations fast, while including enough structure in other parts of the oracle to make CAPP easy to solve. The first part builds on Wilson’s oracle that places E^{NP} in linear size [43], while the second part builds on Fortnow’s oracle that puts CAPP in P [16].

Proof. Since $E^{\text{NP}} = E^{\text{SAT}}$, it suffices to consider E^{SAT}. Let M^A be a E^{SAT^A} machine deciding a linear-time complete set for E^{SAT^A}. It suffices to provide a linear-size circuit family for M^A. Let M^A run in $\text{TIME}^{\text{NP}}[2^{cn}]$ for a sufficiently large constant $c \geq 1$.

The construction of A will proceed in stages. All possible queries to A will be partitioned into fixed queries and unfixed queries. As the construction progresses, we will convert unfixed queries to fixed queries, and the oracle values of fixed queries will not be changed. In stage 0 we begin with $A(x) = 0$ for all x, and all queries to A are unfixed. We will inductively prove that:

1. After stage n, at most $2^{2^{(c+1)n}}$ queries to A of the form $[i, \ldots]$ where $i > n$ have been fixed.
2. After stage n, all queries of length at most n are fixed.

This is clearly true after stage 0.

Stage n. We start by handling all n-bit inputs $x \in \{0, 1\}^n$ to M^A, one by one. For each x, the output of $M^A(x)$ can be viewed as a decision tree of depth at most 2^n (capturing the deterministic decisions made by $M^A(x)$ between queries to A), where each node of the decision tree is a DNF (capturing the SATA queries) of at most 2^{2^n} terms, where each term has width at most 2^n, and the DNF variables correspond to queries of A. We will always simplify DNFs by substituting the values of oracle A on fixed queries.
First, we show that we can fix a “small” number of queries to A that will determine the value of $M^A(x)$. Starting from the DNF D at the top node of the decision tree, if D evaluates to a fixed constant, then we follow the relevant child node and repeat the following on its DNF. Otherwise, if D is non-constant, we set D to be true by taking one term of unfixed queries, setting the values on those queries appropriately, and fixing those queries. As each term of D has width at most 2^n, this changes and fixes at most 2^n values of A. From now on, as long as we restrict ourselves to only changing unfixed queries to A, D will not change its output. After setting D to be true, we move to the relevant child in the decision tree, and repeat the procedure, continuing until we reach a leaf of the tree.

As the depth of the decision tree is at most 2^n, the above procedure fixes at most $2^n \cdot 2^n = 2^{2n}$ queries of A. From now on, as long as we only change unfixed queries of A, the output of $M^A(x)$ will not change. Repeating the procedure over all x, we add at most $2^n \cdot 2^{2n} = 2^{2n+1}n$ queries to the set of fixed queries. Combining this with the induction hypothesis from stage $n-1$, the total number of fixed inputs (of the form $[i,\ldots]$ where $i > n-1$) is at most $2^{(2c+1)n} + 2^{(c+1)(n-1)} = 2^{2c+1}n - 2c$. Thus there is some string z_n of length $2(c+1)n$ such that no string of the form $[n, z_n, \ldots]$ is fixed. We use z_n to “encode” the behavior of M^A; we set $A[n, z_n] = 1$ and fix $[n, z_n]$, and for all $x \in \{0, 1\}^n$, we set $A[n, z_n, x] = M^A(x)$ and fix $[n, z_n, x]$. Observe that the outputs of $M^A(x)$ remain unchanged, as we have only modified A on unfixed inputs. Finally, we set all other strings of length n as fixed, proving the second inductive hypothesis for stage n. The total number of fixed strings of the form $[i,\ldots]$ (where $i > n$) is $1 + 2^n + 2^n + 2^{2(c+1)n-2c} < 2^{2c+1}n$, proving the first inductive hypothesis for stage n. In stage n, we will not fix any more inputs of the form $[i,\ldots]$ where $i > n$.

Now we modify A in other places, to accommodate a CAPP algorithm. Letting C be an oracle circuit and letting B be an oracle. Let C^B denote the circuit obtained by replacing all oracle gates of fan-in f in C with the f-th slice of B.

We go through every oracle circuit C in turn. If C^A is satisfiable, then we encode an input x such that $C^A(x) = 1$, by setting and fixing $A([n, z_n, C]) = 1$ and $A([n, z_n, C, i]) = x_i$ for $i = 1,\ldots, |x|$. If C^A is unsatisfiable, then let S be the set of keys such that C^A queries some string with that key on at least a $\frac{1}{2|C|}$ fraction of its possible inputs. We can encode S by setting and also fixing $A([n, z_n, C]) = 0$ and $A([n, z_n, C, i]) = \text{binary}(S)_i$ where binary(S) denotes a binary encoding of S. Note that $|S| \leq 2|C|^2$, so the binary encoding has poly$(|C|)$ size. This completes stage n. Note that, as we perform the above modifications for every circuit C, we are in fact fixing an infinite number of queries in stage n. However, none of the queries we fix here have the form $[i,\ldots]$ where $i > n$, so it does not affect our first inductive hypothesis.

We will now argue correctness. To compute M^A on an n-bit x, we can simply return $A[n, z_n, x]$. As $|z_n| = 2(c+1)n$, we obtain an $O(n)$-size A-oracle circuit that computes $M^A(x)$ on all n-bit inputs. Therefore $\text{ENP}^A \subseteq \text{SIZE}^A[O(n)]$.

Now we show that the oracle A lets us solve CAPP in polynomial time. We begin with a weaker problem. In GAP-SAT, we are given a circuit C and are promised that either C is unsatisfiable, or at least half of its possible assignments are satisfying; the task is to distinguish between these two promise conditions. GAP-SAT is a canonical PromiseRP-complete problem.

We will show that our oracle A lets us solve GAP-SAT in polynomial time. Let A_k be the oracle after stage k, and let A be the final oracle constructed after all stages. Suppose we are given a GAP-SAT instance C. We start by observing that for all x and for every $k > |C|$, $C^A(x) = C^{A_k}(x)$. This follows because (1) C cannot query strings longer than $|C|$, and (2) the inductive hypothesis implies that at the end of stage k, all unfixed inputs have length greater than k, so we only modify inputs of length greater than k after that.
Our GAP-SAT algorithm works as follows (following Fortnow [16]). Begin with $k := 1$, and z_1 hard-coded in the algorithm. First we check if $A([k, z_k, C, \ldots])$ encodes a string x. If so, then if $C^A(x) = 1$ we are done. If $C^A(x) = 0$ instead, we know that $C^A(x) = 0$ while $C^{A_k}(x) = 1$. (That is, when we were encoding A in stage k, x was a satisfying assignment to C, but later x became an unsatisfying assignment.) This means that $C^{A_k}(x)$ must query some string of the form $[j, z_j, \ldots]$ for $j > k$. Let $\{z_j\}$ be the set of all keys of such queries in $C^{A_k}(x)$. As we can check if a given string z is equal to z_j by checking if $A[j, z] = 1$, we can determine z_j for some $j > k$, and restart the entire procedure with $k = j$. Note that if k is ever larger than $|C|$, and a satisfying input x is not encoded by A, then we should reject, as $C^A(x) = C^{A_k}(x)$ for all x and C^{A_k} is unsatisfiable.

Now suppose $A([k, z_k, C, \ldots])$ does not encode a string x. In that case, C^{A_k} must have been unsatisfiable, and $A([n, z_k, C, \ldots])$ encodes a set S. We construct the set S with $O(|C|^2)$ queries to A, and check if there is a $z \in S$ and $j \in [k+1, |C|]$ such that $A[j, z] = 1$. If such a z is found, we now have z_j for some $j > k$, and we can again restart the procedure with $k = j$.

If no $z \in S$ has this property, then we claim that C^{A_k} and C^A differ on less than a $\frac{1}{2}$ fraction of all inputs. To see why this claim is true, first note that $C^{A_k}(x)$ and $C^A(x)$ can only differ if $C^{A_k}(x)$ makes a query with key z_j, where $j \in [k+1, |C|]$. If $z_j \not\in S$, then on less than a $\frac{1}{2|C|}$ fraction of inputs, $C^{A_k}(x)$ makes a query with key z_j. If for every $j \in [k+1, |C|]$ we have $z_j \not\in S$, then $C^{A_k}(x) \neq C^A(x)$ on at most a $\frac{1}{2}$ fraction of the inputs. Recalling that C^{A_k} is unsatisfiable, it follows that C^A accepts less than a $\frac{1}{2}$ of the inputs and so does not satisfy the promise condition. (We can output any answer at this point.) This concludes the description of the GAP-SAT algorithm.

Finally, we observe that a polynomial-time GAP-SAT algorithm is sufficient for a CAPP algorithm. In particular, Lautemann’s proof that $\mathsf{BPP} \subseteq \Sigma_2 \mathsf{P}$ [30] implies $\mathsf{PromiseBPP} \subseteq \mathsf{PromiseRP}^{\mathsf{PromiseBP}}$ (as observed by [14]), and the proof relativizes. Since CAPP on A-oracle circuits is solvable in polynomial time with our oracle A, and CAPP is $\mathsf{PromiseRP}$-complete, the above containment implies that $\mathsf{PromiseBPP}$ problems are solvable in polynomial time relative to our oracle. Fortnow [16] shows this condition is sufficient for solving CAPP in polynomial time (and his proof relativizes).

\begin{itemize}
\item \textbf{Reminder of Theorem 12.} There is an oracle A and a function H such that $\text{TIME}^{1^{O(n)}}[2^n] \subset \text{SIZE}^{A}[O(n)]$, SATA can be solved in poly(H($\text{poly}(n)$)) time with an A-oracle, $H(H(n)) \leq 2^n$ and H is monotone increasing.
\end{itemize}

In the following, we let h denote a half-exponential function, i.e., a strictly monotone increasing $h : \mathbb{N} \to \mathbb{N}$ where $h(h(n)) = 2^n$.

\begin{itemize}
\item \textbf{Proof.} Let $N^A(x)$ be a nondeterministic machine accepting a linear-time complete language for the class $\text{NTIME}^{1^{O(n)}}$. In particular, let N^A run in time $\leq \mu n$. For a sufficiently large constant $c \geq 1$, setting $s(n) := h(n)^c$, we will construct an oracle A such that for all n and for all $x \in \{0, 1\}^n$, $N^A(x) = A(1^{s(n)}0x)$. Then the language $L(N^A)$ can be decided in time poly($h(n)$) with the oracle A, by simply constructing $s(n)$ ones, and querying A on $1^{s(n)}0x$. By padding, it follows that SAT will be computable in poly($h(\text{poly}(n))$) relative to the oracle A.

All queries to A will have one of three types: fixed, unfixed, and derived. Initially all queries of the form $1^{s(n)}0x$ where $x \in \{0, 1\}^n$ are derived. Throughout the construction of the oracle, we will never set the value of A on derived queries; rather, we will assume that on derived queries the oracle satisfies $A(1^{s(n)}0x) := N^A(x)$ for all $x \in \{0, 1\}^n$. This means that whenever the oracle A is changed, we assume that the value of A on derived queries is also changed to satisfy $A(1^{s(n)}0x) := N^A(x)$. This can always be done, since $1^{s(n)}0x$ is
too long to be queried directly by $N^A(x)$. Over the course of the oracle construction, some unfixed and derived queries will become fixed queries. Whenever a derived query of the form $1^{|y|}0x$ with $|x| = n$ into a fixed query, we will ensure that the output of $N^A(x)$ does not change after that. This will ensure that the condition $N^A(x) = A(1^{|y|}0x)$ is maintained.

Let M^A be a E^A machine which accepts a linear-time complete set for E^A. We wish to construct A so that M^A has small A-oracle circuits. Let M^A run in time at most 2^{2n} for a large enough constant c. (Note that this fixes $s(n) = \#n(n)^c$).

We will proceed in stages. In stage 0, we begin with $A(y) = 0$ for all y, and all queries other than derived queries to A are unfixed. We will inductively prove that after stage n:
1. At most $2^{2^{(n+1)}}$ queries of A have been fixed.
2. All derived queries have length at least $s(n + 1)$.
These properties are clearly true after stage 0.

Stage n. Our aim is to modify A such that there is a string z_n of length $O(n)$ such that $M^A(x) = A(z_n x)$ for all $x \in \{0, 1\}^n$. As M^A is a E^A machine, we may view its computation on n-bit input as a decision tree of depth at most 2^{2n} where each node of the tree queries A on some input. We can simplify the tree by substituting the values of all fixed queries to A.

We are left with two kinds of queries: derived and unfixed. Note that the oracle value of each derived query $A(1^{|y|}0y)$ is the same as $N^A(y)$. Because N^A runs in nondeterministic μn time, each query $A(1^{|y|}0y)$ can in turn be replaced with a DNF D_y of at most $2^{|y|}$ terms, of width at most $\mu y |y|$ (each term has at most $\mu y |y|$ literals). By substituting the values for the fixed queries, D_y can be simplified so that each literal of D_y corresponds to the value of A on an unfixed or derived query. We next prove that, because we took $s(|y|)$ to be sufficiently large, the following stronger condition holds: every literal in every DNF D_y must correspond to an unfixed query, i.e., not a derived query.

\begin{itemize}
 \item [\triangleright Claim 33.] For every derived query $A(1^{|y|}0y)$ by M^A on any input x of length n,
 \begin{itemize}
 \item $|y| < h(n)$,
 \item Each literal of the DNF D_y corresponds to an unfixed (not derived) query to the oracle A.
 \end{itemize}
\end{itemize}

\begin{proof}
Let $1^{|y|}0y$ be a derived query of $M^A(x)$. As $M^A(x)$ runs in at most 2^{2n} time, we have that $s(|y|) < 2^n$. Since $s(|y|) = h(|y|)^c$, this implies that $h(|y|) < 2^n$. Since $h(h(n)) = 2^n$ and h is monotone increasing, we must have $|y| < h(n)$. Furthermore,

$$|y| < h(n) = s(n)^{1/c} < s(n)/\mu,$$

where the last inequality holds for all large enough n. As $N^A(y)$ runs in time at most $\mu |y|$, it follows that all queries by $N^A(y)$ are of length at most $\mu |y| < s(n)$. The literals of the DNF D_y correspond to the oracle queries of $N^A(y)$, therefore all literals in D_y correspond to queries to A of length less than $s(n)$. As our induction hypothesis says that derived queries are of length greater than $s(n)$, each literal of D_y corresponds to an unfixed query.
\end{proof}

Given the claim, our E^A machine M^A can be viewed as a decision tree where each node of the tree is labelled by a DNF over the unfixed queries to A. We have now reached the same situation that arose in Theorem 11, which also arises in Wilson’s [43] construction of an oracle B such that $E^{NP^B} \subset SIZE[O(n)]^B$. We will use the same proof technique to embed M^A in $SIZE[A]^{O(n)}$.

We will handle each $x \in \{0, 1\}^n$ one by one. For each x, the output of $M^A(x)$ can be viewed as a decision tree of depth 2^n where each node of the decision tree is a DNF with at most $2^{\mu h(n)} < 2^{2n}$ terms and each term has width at most $\mu h(n) < 2^n$. Each literal in
We set \(A \), and declare \(z_n \) to be fixed. This is a valid assignment, as doing so does not change the values of \(M^A(x) \) (we have only changed the value of \(A \) on unfixed inputs). This completes stage \(n \).

Note that the total number of queries that are fixed is at most \(2^{(c+4)n} + 2^n \leq 2^{(n+1)} \) for a large enough constant \(c \). This proves the first inductive hypothesis for stage \(n \).

Finally, we note that \(M^A \) has low circuit complexity. For all \(x \) of length \(n \), we have \(M^A(x) = A(z_n x) \). Since \(|z_n| \leq O(n) \), the query to \(A \) can be implemented as a linear sized circuit on \(n \)-bit inputs. Since \(M^A \) recognizes a linear time complete set for \(\text{E} \), we also have \(\text{E}^{\text{NP}^A} \subseteq \text{SIZE}^A(O(n)) \). We also showed that for all \(x \in \{0,1\}^n \), \(N^A(x) = A(1^n 0 x) \), hence the language \(L(N^A) \) is in \(\text{TIME}[O(s(n))] \). It follows that \(\text{SAT} \) is computable in time \(s(n^c) \leq \#(n^c)^c \) for a constant \(c \geq 1 \). (Indeed, all of \(\text{NP} \) is in \(\text{TIME}[\#(n^{O(1)})^{O(1)}] \).)

References

Recall M is the number of bit strings in our input list to \textsc{Missing-String}, and N is the length of the bit strings. Recall that an algorithm is k-probe if for all $i = 1, \ldots, N$, the i-th output bit of the missing string can be determined by only probing k bits of the input list.

\textbf{Theorem 34.} Every k-probe algorithm for \textsc{Missing-String} can only be correct when $M \leq kN$.

\textbf{Proof.} First, we prove that any procedure for \textsc{Missing-String} must make at least M probes overall into the list. In particular, the procedure must probe each of the M strings in at least one bit. Otherwise, the procedure did not probe some string x at all; then, given whatever string y the procedure produces, the string x could be set equal to y, contradicting the assumption that the procedure computes \textsc{Missing-String}.
Therefore, since any \(k \)-probe Missing-String algorithm makes \(kN \) overall probes into the list, we must have \(M \leq kN \), i.e. \(k \geq M/N \).

The above simple theorem can be applied to show that our (relativizing) time hierarchy with advice (Theorem 1) is extremely close to optimal for some parameters. For example, by setting \(\alpha(n) = cn \), \(\beta(n) = \log n \), \(l(n) = 10n \) in Theorem 1, we have for all \(c > 0 \):

\[
\text{TIME}[(n^3 \log n) \cdot 2^n] \not\subset \text{i.o.-TIME}[O(n)/(cn + n)].
\]

Using the simple lower bound of Theorem 34, one can argue that there is an oracle \(A \) such that for all \(c > 0 \), and all unbounded functions \(\alpha(n) \),

\[
\text{TIME}^A[2^{cn/\alpha(n)}] \subset \text{TIME}^A[O(n)/(cn + n)],
\]

showing that the generic argument of Theorem 1 cannot be improved significantly.

Let us sketch the idea of how this works, from the perspective of the Missing-String problem. We build up the oracle \(A \) in stages, starting from \(n = 1 \) and increasing \(n \) after each stage. On a given input length \(n \), consider a list \(L \) of all \(M = O(2^{c+1}n) \) truth tables of length \(N = O(2^n) \), one truth table for every possible query to the \(A \) oracle of type \((i, x, y)\), where \(i \) is the index of a machine \(M_i^A \) (a string of length at most \(\log(\alpha(n))/2 \)), \(x \) is an input string of length at most \(\alpha(n) \), and \(y \) is of length at most \((c+1)n - \log(\alpha(n))/2 \). (Some of the values of the bits in \(L \) have been determined in previous stages, but some have not.) Consider an algorithm \(B \) that on input \((i, x')\) attempts to simulate an algorithm \(M_i^A \) on \(x' \) of length \(n \), making \(k \leq 2^{cn}/\alpha(n) \) queries to the list \(L \) to determine its output. If a probe into \(L \) is a value of the oracle \(A \) that was already determined in previous stages, we answer consistently; otherwise, we output that the value of \(A \) on the new query is 0.

Following the proof of Theorem 34, for every fixed choice of \(i \), the total number of queries into the list \(L \) (across all inputs of length up to \(n \)) is at most \(\Theta(2^n \cdot 2^{cn}/\alpha(n)) < 2^{(c+1)n - \log(\alpha(n))/2} = M/\sqrt{\alpha(n)} \). Therefore there is always at least one truth table corresponding to strings of the form \((i, \cdot, y)\) in \(L \) that was not queried by \(M_i \) over the \(n \)-bit strings, even in previous stages. The oracle \(A \) can therefore be assigned such that this completely-unqueried truth table equals the truth table of \(M_i \) on \(n \)-bit inputs. Thus the algorithm \(B \) (and \(M_i \) for all \(i \)) on \(n \)-bit inputs can always be simulated by an \(A \)-oracle circuit of one gate of the form \(A(i, x, y) \), where \(y \) has length \((c+1)n - \log(\alpha(n))/2 \), and \(x \) is an input of length \(n \). Thus \(B \) can be simulated in \(O(n) \) time with oracle \(A \) and \((c+1)n \) advice.

B Fast-enough SAT Implies EXP Lower Bounds

Here we recall a proposition showing that if SAT is solvable in “sub-half-exponential” time, then circuit lower bounds for EXP follow. The proof relativizes.

▸ Proposition 35 ([41]). If SAT is in \(O(H(n)) \) time then \(\text{EXP} \not\subset \text{P/poly} \), for any function \(H(n) \) satisfying \(H(H(n^k))^2 \leq 2^n \) for all \(k \).

Proof. Recall \(\text{EXP} \subset \text{P/poly} \) implies \(\text{EXP} = \Sigma_2 \text{P} \) [26], and recall that \(\Sigma_2 \text{P} = \exists \cdot \forall \cdot \text{P} \), where the \(\exists \) and \(\forall \) denote existential and universal alternations over \(n^{O(1)} \) bits. Assuming SAT is in \(O(H(n)) \) time, we have \(\Sigma_2 \text{P} \subseteq \exists \cdot \text{TIME}[H(n^{O(1)})] \). Then, an \(\exists \cdot \text{TIME}[H(n^{O(1)})] \) computation can be expressed as a SAT instance of length at most \(H(n^{O(1)})^2 \). Applying the SAT algorithm once again implies

\[
\text{EXP} = \Sigma_2 \text{P} \subseteq \text{TIME}[H(H(n^{O(1)})^2)] \subseteq \text{TIME}[2^n \cdot n^{O(1)}],
\]

contradicting the time hierarchy theorem.