Amortised Analysis of Dynamic Data Structures

Eva Rotenberg
Technical University of Denmark, Lyngby, Denmark

Abstract
In dynamic data structures, one is interested in efficiently facilitating queries to a data set, while being able to efficiently perform updates as the data set undergoes changes. Often, relaxing the efficiency measure to the amortised setting allows for simpler algorithms. A well-known example of a data structure with amortised guarantees is the splay tree by Sleator and Tarjan [14].

Similarly, in data structures for dynamic graphs, one is interested in efficiently maintaining some information about the graph, or facilitating queries, as the graph undergoes changes in the form of insertion and deletion of edges. Examples of such information include connectivity, planarity, and approximate sparsity of the graph: is the graph presently connected? Is it planar? Has its arboricity grossly exceeded some specified number $\tilde{\alpha}$? The related queries could be: is a connected to b? Are the edges uv and uw consecutive in the ordering around u in its current planar embedding? Or, report the $O(\alpha)$ out-edges of vertex x.

In this talk, we will see Brodal and Fagerberg’s amortised algorithm for orienting sparse graphs (i.e. of arboricity $\leq \alpha$), so that each vertex has $O(\alpha)$ out-edges [2]. The algorithm itself is extremely simple, and uses an elegant amortised argument in its analysis. Then, we will visit the problem of dynamic planarity testing: is the graph presently planar? Here, we will see an elegant amortised reduction to the seemingly easier problem, where planarity-violating edges may be detected and rejected [5]. We will see a sketch of how the current state-of-the-art algorithm for efficient planarity testing [8] uses ideas similar to those in [2] to analyse the behaviour of a greedy algorithm via a possibly inefficient algorithm with provably low recourse [9]. If time permits, we will touch upon a recent simple amortised data structure for maintaining information in dynamic forests [10], which builds on ideas from splay trees.

The talk concludes with some open questions in the area.

2012 ACM Subject Classification Theory of computation → Data structures design and analysis

Keywords and phrases Amortised analysis, splaying, dynamic graphs, planarity testing

Digital Object Identifier 10.4230/LIPIcs.STACS.2023.2

Category Invited Talk

Funding Eva Rotenberg: Partially supported by the Independent Research Fund Denmark grant 2020-2023 (9131-00044B) “Dynamic Network Analysis”, the VILLUM Foundation grant 37507 “Efficient Recomputations for Changeful Problems”, and the Carlsberg Young Researcher Award CF21-0302 “Graph Algorithms with Geometric Applications”.

References

Amortised Analysis of Dynamic Data Structures

