
Generalizing Greenwald-Khanna Streaming
Quantile Summaries for Weighted Inputs∗

Sepehr Assadi #Ñ

Department of Computer Science, Rutgers University, Piscataway, NJ, USA

Nirmit Joshi # Ñ

Department of Computer Science, Northwestern University, Evanston, IL, USA

Milind Prabhu # Ñ

Department of Computer Science and Engineering, University of Michigan, Ann Arbor, MI, USA

Vihan Shah #Ñ

Department of Computer Science, Rutgers University, Piscataway, NJ, USA

Abstract
Estimating quantiles, like the median or percentiles, is a fundamental task in data mining and
data science. A (streaming) quantile summary is a data structure that can process a set S of n

elements in a streaming fashion and at the end, for any ϕ ∈ (0, 1], return a ϕ-quantile of S up to an
ε error, i.e., return a ϕ′-quantile with ϕ′ = ϕ ± ε. We are particularly interested in comparison-based
summaries that only compare elements of the universe under a total ordering and are otherwise
completely oblivious of the universe. The best known deterministic quantile summary is the 20-year
old Greenwald-Khanna (GK) summary that uses O((1/ε) log (εn)) space [SIGMOD’01]. This bound
was recently proved to be optimal for all deterministic comparison-based summaries by Cormode
and Vesleý [PODS’20].

In this paper, we study weighted quantiles, a generalization of the quantiles problem, where each
element arrives with a positive integer weight which denotes the number of copies of that element
being inserted. The only known method of handling weighted inputs via GK summaries is the naive
approach of breaking each weighted element into multiple unweighted items, and feeding them one
by one to the summary, which results in a prohibitively large update time (proportional to the
maximum weight of input elements).

We give the first non-trivial extension of GK summaries for weighted inputs and show that it
takes O((1/ε) log (εn)) space and O(log(1/ε) + log log(εn)) update time per element to process a
stream of length n (under some quite mild assumptions on the range of weights and ε). En route to
this, we also simplify the original GK summaries for unweighted quantiles.

2012 ACM Subject Classification Theory of computation → Streaming, sublinear and near lin-
ear time algorithms; Theory of computation → Approximation algorithms analysis; Theory of
computation → Data structures design and analysis

Keywords and phrases Streaming algorithms, Quantile summaries, Rank estimation

Digital Object Identifier 10.4230/LIPIcs.ICDT.2023.19

Funding Sepehr Assadi: Research supported in part by the NSF CAREER Grant CCF-2047061,
and gift from Google Research.
Vihan Shah: Research supported in part by the NSF CAREER Grant CCF-2047061. Part of this
work was done when the author was an undergraduate student at Rutgers University-Camden and
was supported in part by the NSF grant CCF-1910565.

Acknowledgements We would like to thank Rajiv Gandhi for making the collaboration between the
authors possible and for his support throughout this project.

∗ A full version of the paper with the same title appears on arXiv.

© Sepehr Assadi, Nirmit Joshi, Milind Prabhu, and Vihan Shah;
licensed under Creative Commons License CC-BY 4.0

26th International Conference on Database Theory (ICDT 2023).
Editors: Floris Geerts and Brecht Vandevoort; Article No. 19; pp. 19:1–19:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:sepehr.assadi@rutgers.edu
https://sepehr.assadi.info/
mailto:nirmit@u.northwestern.edu
https://nirmitj6.github.io/static-webpage/
mailto:milindpr@umich.edu
https://milind-prabhu.github.io/
mailto:vihan.shah98@rutgers.edu
https://people.cs.rutgers.edu/~vjs69/
https://doi.org/10.4230/LIPIcs.ICDT.2023.19
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

19:2 Generalizing GK Summaries for Weighted Inputs

1 Introduction

Given a set S of elements x1, . . . , xn from a totally ordered universe, the rank of an element
x in this universe, denoted by rank(x), is the number of elements xj in S with xj ≤ x.
Similarly, the ϕ-quantile of S, for any ϕ ∈ (0, 1], is the element xi ∈ S with rank(xi) = ⌈ϕ · n⌉.
Computing quantiles is a fundamental problem with a wide range of applications considering
they provide a concise representation of the distribution of the input elements. Throughout
this paper, we solely focus on comparison-based algorithms for this problem that can only
compare two elements of the universe according to their ordering and are otherwise completely
oblivious of the universe.

We are interested in the quantile estimation problem in the streaming model, introduced
in the seminal work of Alon, Matias, and Szegedy [3]. In this model, the elements of S are
arriving one by one in an arbitrary order and the streaming algorithm can make just one pass
over this data and use a limited memory and thus cannot simply store S entirely. Already
more than four decades ago, Munro and Paterson proved that one cannot solve this problem
exactly in the streaming model [17] and thus the focus has been on finding approximation
algorithms: Given ε > 0, the algorithm is allowed to return an ε-approximate ϕ-quantile, i.e.,
a (ϕ± ε)-quantile. More formally, we are interested in the following data structure:

▶ Definition 1 (Quantile Summary). An ε-approximate quantile summary processes any set
of elements in a streaming fashion and at the end finds an ε-approximate ϕ-quantile for any
given quantile ϕ ∈ (0, 1], defined as any ϕ′-quantile for ϕ′ ∈ [ϕ− ε, ϕ + ε].

In the absence of the streaming aspect of the problem, one can always compute an
ε-approximate quantile summary in O(1/ε) space; simply store the ε-quantile, 3ε-quantile,
5ε-quantile and so on from S. It is easy to see that given any ϕ, returning the closest stored
quantile results in an ε-approximate ϕ-quantile. It is also easy to see that this space is
information-theoretically optimal for the problem. However, this approach cannot be directly
implemented in the streaming model as a-priori it is not clear how to compute the needed
quantiles of S in the first place.

The first (streaming) ε-approximate quantile summary was proposed by Manku, Rajagopa-
lan, and Lindsay [14]. The MRL summary uses O((1/ε) log2(εn)) space and requires the prior
knowledge of the length of the stream. This summary was soon after improved by Greenwald
and Khanna [9] who proposed the GK summary that uses O((1/ε) log(εn)) space and no
longer requires knowing the length of the stream. This is the state-of-the-art for deterministic
comparison-based summaries. By allowing for randomization one can further improve upon
the space requirement of these algorithms and achieve bounds with no dependence on the
length of the stream. The state-of-the-art result for randomized summaries is an algorithm
due to Karnin, Lang and Liberty [12] which uses O((1/ε) log log (1/εδ)) space to construct an
ε-approximate quantile summary with probability at least (1−δ). We provide a more detailed
discussion of the literature on randomized summaries and non-comparison based summaries
in the full version of the paper. While using randomization gives streaming algorithms which
are more space-efficient, a major drawback of most of these algorithms is that their analysis
crucially depends on the assumption that the input stream is independent of the randomness
used by the algorithm. This assumption is unrealistic in several settings; for instance, when
the future input to the algorithm depends on its previous outputs. Recently, this has invoked
an interest in adverserially robust algorithms that work even when an adversary is allowed
to choose the stream adaptively [16, 7, 10, 2, 8, 18]. Deterministic algorithms are inherently
adverserially robust and therefore understanding them is an interesting goal in itself.

S. Assadi, N. Joshi, M. Prabhu, and V. Shah 19:3

In this paper, we focus on deterministic summaries; specifically on furthering our un-
derstanding of GK summaries. Over the years, two important questions have been raised
about them: Is it possible to improve the space of GK summaries, perhaps even all the
way down to the information-theoretic optimal bound of O(1/ε)? And, is it possible to
simplify GK summaries and their intricate analysis in a way that allow for generalizations
of these summaries to be more easily proposed and studied? (see Problem 2 of “List of
Open Problems in Sublinear Algorithms” [19] posed by Cormode or [12, 6, 13, 1] for similar
variations of this question, for example, when the input items are weighted).

The first question was addressed initially by Hung and Ting [11] who proved an
Ω((1/ε) log(1/ε)) space lower bound for ε-approximate quantile summaries, improving over
the information-theoretic bound. Very recently, this question was fully settled by Cor-
mode and Vesleý [6] who proved that in fact GK summaries are asymptotically optimal:
Ω((1/ε) log(εn)) space is needed for any deterministic (comparison-based) summary. The
second question above however is still left without a satisfying resolution. In this paper, we
make progress towards answering this question by showing that the GK summary can be
generalized to handle weighted inputs. Formally, we present algorithms to construct the
following data-structure.

▶ Definition 2 (Weighted Quantile Summary). Consider a weighted stream Sw of n updates
(xi, w(xi)) for 1 ≤ i ≤ n. The i-th update denotes the insertion of w(xi) copies of the element
xi (the weight w(xi) is guaranteed to be a positive integer). We define Wk =

∑k
i=1 w(xi)

to be the sum of the weights of the first k elements of Sw. An ε-approximate weighted
quantile summary is a data-structure that makes a single pass over Sw and at the end, for
any ϕ ∈ [0, 1), finds an xj such that, ∑

xi<xj

w(xi), w(xj) +
∑

xi<xj

w(xi)

 ∩ [
(ϕ− ε)Wn, (ϕ + ε)Wn

]
̸= ∅. (1)

A notable application of the weighted quantiles problem is in the very popular XGBoost
library [5] which contains an efficient implementation of the gradient-boosted trees algorithm.
To solve the weighted quantiles problem, XGBoost uses a merge and prune summary [4] via
an extension of the ideas in [15]. However, they do not give an upper bound on the space
achieved by this summary. Our result addresses this issue by proposing a new and efficient
weighted quantile summary with formal space guarantees.

Our Contributions

One approach to construct a weighted quantile summary is to break each weighted item
into multiple unweighted items and feed them to an unweighted summary such as the GK
summary. However, such algorithms are slow since the time required to process an element
is proportional to its weight. As such, it has been asked if faster algorithms exist. We
answer this in the affirmative by proposing a fast algorithm for this problem in Section 3. In
particular, this algorithm uses O((1/ε) log (εn)) space and O(log(1/ε) + log log(εn)) update
time per element to process a stream of length n, when the weights are poly(n) and ε ≥ 1

n1−δ

for any δ ∈ (0, 1) (Theorem 11). This matches the space and time complexity of the GK
summary when it is used to summarize a stream of n unweighted items [9, 13]. To our
knowledge, this constitutes the first (non-trivial) extension of the GK algorithm for weighted
streams.

ICDT 2023

19:4 Generalizing GK Summaries for Weighted Inputs

En route to this, we also present a new description of the GK summaries by simplifying
or entirely bypassing several of their more intricate components in [9] such as their so-called
“tree representation” and their complex “compress” operations in Section 4.2. As a warm-up
to this, we also present a simple and greedy algorithm for unweighted quantiles which uses
O((1/ε) log2(εn)) space in Section 4.1. This algorithm, although has a suboptimal space
bound, will be useful in motivating and providing intuition for GK summaries. Interestingly,
this summary is quite similar (albeit not identical) to the so-called GKAdaptive summary [13]
that was already proposed by [9] as a more practical variant of their GK summaries (Luo et
al. [13] further confirmed this by showing that GKAdaptive outperforms GK summaries
experimentally). While no theoretical guarantees are known for GKAdaptive, we prove that
this slight modification of this algorithm submits to a simple analysis of an O((1/ε) log2(εn))
space upper bound (Theorem 25).

We also emphasize that, similar to the original GK summaries, our weighted extension
does not need foreknowledge of the stream length. This guarantee implies that we can track
the quantiles throughout the stream, with error proportional to the current weight of the
stream, and not only at the end.

2 Preliminaries

We now present the basic setup of our quantile summary and preliminary definitions. We
start with an alternate equivalent formulation of the problem defined in Definition 2 in terms
of the unweighted quantiles problem for which we first define the notion of unfolding streams.

Unfolding Streams

For the weighted stream Sw, we define its corresponding unfolded stream Unfold(Sw) to be
the stream which contains w(xi) copies of xi for 1 ≤ i ≤ n. More explicitly,

Unfold(Sw) := ⟨x(1)
1 , x

(2)
1 , . . . , x

(w(x1))
1 , . . . x(1)

n , x(2)
n , . . . , x(w(xn))

n ⟩

where x
(j)
i is the j-th copy of element xi.

It is easy to verify that the goal of the problem, as stated in Definition 2, is equivalent to
creating an ε-approximate quantile summary of Unfold(Sw). Note that to break ties while
assigning ranks to equal elements, we will assume that elements that appeared earlier in
Unfold(Sw) have lower ranks. As a side note we would like to point out here that although the
algorithm we present does not “unfold” the stream, we will continue working with Unfold(Sw)
to present the analysis of the algorithm.

We use WQS to denote the summary of Sw that our algorithm creates. WQS will consist of
a subset of the elements of the stream along with some auxiliary metadata about the stored
elements. We use ei to denote the i-th largest element of the stream stored in WQS. We use
e

(j)
i to refer to the the j-th copy of ei in Unfold(Sw), for 1 ≤ j ≤ w(ei). We also use e to

refer to an arbitrary element of the summary (when the rank is not relevant). The number
of elements of the stream stored in WQS shall be denoted by s. For each element e, WQS stores
w(e). The other main information we store for each element e are its r-min and r-max values,
which we now define:

r-min(e) and r-max(e): are lower and upper bounds maintained by WQS on the rank of
e(1) (the first copy of e to appear in Unfold(Sw)). Since we are not storing all elements,
we cannot determine the exact rank of a stored element, and thus focus on maintaining
proper lower and upper bounds.

S. Assadi, N. Joshi, M. Prabhu, and V. Shah 19:5

10 21 30WQS:

(3, 5, 4) (9, 12, 2) (17, 17, 3)(r-min, r-max, w):

(2, 2, 6) (3, 3, 4) (7, 0, 9)(g, ∆, G):

Insert(25, 2)

=⇒

10 21 25 30

(3, 5, 4) (9, 12, 2) (11, 17, 2) (19, 19, 3)

(2, 2, 6) (3, 3, 4) (1, 6, 2) (7, 0, 3)

Delete(10)

=⇒

21 25 30

(9, 12, 2) (11, 17, 2) (19, 19, 3)

(9, 3, 10) (1, 6, 2) (7, 0, 3)

Figure 1 An illustration of the update operations in the summary starting from some arbitrary
state (the parameters (g, ∆, G) in this figure are defined in Section 2.2).

To handle corner cases that arise later, we assume that WQS contains a sentinel element e0
and define r-min(e0) = r-max(e0) = 0 and w(e0) = 1. Also, we insert a +∞ element at the
start of the stream which is considered larger than any other element and store it in WQS
as es. The r-min and r-max of this element is also always equal to the weight of inserted
elements (including itself). Since +∞ is the largest element, inserting it in Sw does not affect
the rank of any other element.

▶ Observation 3. (r-min(e) + j − 1) and (r-max(e) + j − 1) are lower and upper bounds on
the rank of e(j).

During the stream, we insert and delete elements from the summary. This changes the rank
of the elements so we have to update WQS to reflect the changes. The procedure used to
update the r-min and r-max values of elements is describe below:

Insert(x, w(x)). Inserts a given element x with weight w(x) into WQS.

(i) Store the element x along with its weight w(x) in WQS.
(ii) Find the smallest element ei in WQS such that ei > x;
(iii) Set r-min(x) = r-min(ei−1)+w(ei−1) and r-max(x) = r-max(ei); moreover, increase

r-min(ej) and r-max(ej) by w(x) for all j ≥ i.

Delete(ei). Deletes the element ei from WQS.
(i) Remove element ei from WQS; keep all remaining r-min, r-max values unchanged.

We now justify that after the above operations are performed, for each element e in the
summary, its r-min and r-max values are valid lower and upper bounds on the rank of e(1).
Suppose that a new element x satisfying ei−1 < x < ei is inserted into WQS. The rank of x is
at least one more than the rank of the last copy of ei−1. Therefore, r-min(x), which is set
to (r-min(ei−1) + w(ei−1)− 1) + 1 = r-min(ei−1) + w(ei−1), is a valid lower bound on the
rank of e(1). The rank of x is at most equal to the rank of the first copy of ei. Therefore,
setting r-max(x) equal to r-max(ei) makes it a valid upper bound. After the insertion of x,
the ranks of all elements in the summary larger than x increase by w(x) and hence their
r-min and r-max values need to be updated. The ranks of elements smaller than x do not
change. Also, deleting an element from the summary does not change the bounds on the
ranks of other elements in the summary.

The following claim shows that if a certain condition on r-min and r-max values of the
elements in WQS is maintained, we can guarantee that WQS will be an ε-approximate summary
of Unfold(Sw).

▷ Claim 4. Suppose in WQS over a length n stream, r-max(ei)−(r-min(ei−1)+w(ei−1)−1) ≤
⌊εWn⌋; then WQS is an ε-approximate quantile summary of Unfold(Sw).

The proof of this claim is presented in the full version.

ICDT 2023

19:6 Generalizing GK Summaries for Weighted Inputs

2.1 Time Steps and Bands
Another important notion is that of time steps and bands. For simplicity, we define this for
the unweighted setting, and then we build upon that for to define them for the weighted
setting.

Unweighted Setting. We measure the time as the number of elements appeared in the
stream so far in multiples of Θ(1/ε). Formally,

▶ Definition 5 (Time Steps). Let ℓ := 1
ε which we assume is an integer. We partition the

stream into consecutive chunks of size ℓ; the time step t then refers to the t-th chunk of
elements denoted by (x(t)

1 , . . . , x
(t)
ℓ) (we assume that the length of the stream is a multiple

of ℓ)1. We define t0(x) as the time step in which x appears in the stream.

The next important definitions are band-values and bands borrowed from [9]. Roughly
speaking, we would like to be able to partition elements of the stream into a “small” number
of groups (bands) so that elements within a group have “almost the same” time of insertion
(as a proxy on how accurate our estimate of their r-min, r-max is). Formally,

▶ Definition 6 (Band Values and Bands). For any element x of the unweighted stream S, we
assign an integer called a band-value, denoted by b-value(x), as follows:

(i) At the time step t = t0(x), we set b-value(x) = 0;
(ii) At any time step t > t0(x), if t is a multiple of 2b-value(x), then we increase b-value(x)

by one.

Weighted Setting. We define an equivalent notion of time steps for weighted streams. We
say that tk = ⌊εWk⌋ time steps have elapsed after the arrival of k elements in Sw. Intuitively,
a chunk of total weight ℓ := 1

ε arrives in the stream in a single time step. For each element
xk in Sw, we define its insertion time step t0(xk) = ⌊ε(Wk−1 + 1)⌋. The band value of an
element x of Sw is the band value assigned to the first copy of x in Unfold(Sw) by Definition 6.

We would formally also have an equivalent definition of bands for the weighted setting
that will allow us to compute them in O(1) time. Their equivalence is proved in the full
version of the paper.

▶ Definition 7 (Band-Values and Bands). When k elements of Sw have been inserted, for any
element x of the stream, b-value(x) is α if and only if the following inequality is satisfied,

2α−1 + (tk mod 2α−1) ≤ tk − t0(x) < 2α + (tk mod 2α).

For any integer α ≥ 0, we refer to the set of all elements x with b-value(x) = α as the
band α, denoted by Bandα; we also use Band≤α to denote the union of bands 0 to α.

A corollary of Definition 7 is that number of band-values after seeing k elements is
B(k) = O(log tk) = O(log(εWk)). We also note that at any point, the sum of weights of all
the elements belonging to bands 0 to α is at most O(ℓ · 2α+1) because all the copies of all
these elements belong to Band≤ α for Unfold(Sw). We note these facts below:

of b-values B(k) = O(log εWk) and
∑

x∈Band≤α

w(x) ≤ O(ℓ · 2α+1) for all α ≥ 0. (2)

1 Both assumptions in this definition are without loss of generality: we can change the value of ε by an
O(1) factor to guarantee the first one and add O(1/ε) dummy elements at the end to guarantee the
second one.

S. Assadi, N. Joshi, M. Prabhu, and V. Shah 19:7

We now make the following observation:

▶ Observation 8. At any point in time, if b-value(x) ≤ b-value(y) for elements x and y,
then at any point after this, b-value(x) ≤ b-value(y).

This is simply because, in the unweighted setting, band-values of elements are updated
simultaneously based on the value of the current time step (Definition 6). Thus, the b-value
of the first copies of each element in a band is also updated simultaneously in Unfold(Sw).
Thus, Observation 8 is true.

2.2 Indirect handling of r-min and r-max values

To describe our algorithm, it is better to store the r-min and r-max values indirectly as g and
∆ values which we define for the weighted algorithm as follows. For any element ei in WQS,

gi = r-min(ei)− (r-min(ei−1) + w(ei−1)− 1), ∆i = r-max(ei)− r-min(ei); (3)

The g value can be interpreted to be the difference between the minimum possible rank
of ei and the minimum possible rank of the last copy of ei−1. The ∆ value is the difference
between the r-max and r-min values of the first copy of ei. The r-min and r-max values can
be recovered given the g-values, ∆-values and the weights of all elements in WQS as follows:

r-min(ei) = gi +
i−1∑
j=1

(gj + w(ej)− 1), r-max(ei) = ∆i + gi +
i−1∑
j=1

(gj + w(ej)− 1).

This motivates the definition of the quantity Gi, for each element ei in WQS:

Gi = gi + w(ei)− 1. (4)

We will soon see that the G-value has a nice property that will prove useful in the analysis
of the algorithms that we propose. We now use the g and ∆ values defined to state the
invariant that we maintain to ensure that WQS is an ε-approximate quantile summary.

▶ Invariant 1. After seeing k elements of Sw, each element ei ∈ WQS satisfies gi + ∆i ≤ tk.

From Equation (3) we note that gi + ∆i = r-max(ei)− (r-min(ei−1) + w(ei−1)− 1). Also,
tk = ⌊εWk⌋ by definition. Therefore, if WQS maintains Invariant 1, Claim 4 implies that it is
an ε-approximate quantile summary of Sw.

The following observation now describes how g and ∆ values of elements are updated
during Insert and Delete operations (see Section 2).

▶ Observation 9. In the summary WQS:
Insert(x, w(x)): Sets g(x) = 1 and ∆(x) = gi + ∆i − 1 and keeps the remaining (g, ∆)
values unchanged.
Delete(ei): Sets gi+1 to equal gi+1 +Gi = gi+1 +(gi +w(ei)−1), and keeps the remaining
(g, ∆) values unchanged.

The correctness of Observation 9 follows from Equation (3) and the way in which r-min and
r-max values change when these operations are performed. As promised, we present useful
properties of G and ∆ values.

ICDT 2023

19:8 Generalizing GK Summaries for Weighted Inputs

G-value. To understand this, we define the notion of coverage of any element in WQS. We
say that ei covers ei−1 whenever ei−1 is deleted from the summary, in which case, ei also
covers all elements that ei−1 was covering so far (every element only covers itself upon
insertion). We define:

C(ei): the set of elements covered by ei. By definition, at any point of time,

Gi =
∑

x∈C(ei)

w(x) and C(ei) ∩ C(ej) = ∅ (5)

for any ei, ej currently stored in WQS.

We claim that Gi equals the sum of weights of the elements in the coverage of ei. This is
easy to verify by induction. When we insert an element, we set its g value to be 1 and the
element only covers itself, thus its G value is equal to its weight by Equation (4). In the way
G-value is updated upon deletions, according to Observation 9, this continues to be the case
throughout the algorithm.

∆-value. The ∆-value of an element is a measure of the error with which we know its rank.
We can use Invariant 1 to deduce the following upper bound on the ∆ value of an element x

in terms of its insertion time t0(x).

∆(x) ≤ t0(x). (6)

The intuition here is that after seeing k elements of the stream, the maximum possible
difference in possible ranks is bounded by tk if Invariant 1 is maintained. Hence, the error
in the rank of a newly inserted element is also upper bounded by tk. Formally, suppose
that x is the j-th element of the stream and satisfies ei−1 < x < ei at the time of insertion
into WQS. When x is inserted into WQS, we set ∆(x) = gi + ∆i − 1. Invariant 1 implies that
∆(x) ≤ ⌊εWj−1⌋ − 1 ≤ ⌊ε(Wj−1 + 1)⌋ = t0(x).

3 A non-trivial extension of GK algorithm for weighted streams

In this section, we present our extension of the GK algorithm for weighted streams. As a
warm-up to our main algorithm, we explicitly analyze the special case of the algorithm when
all weights are 1 (the unweighted setting) in Section 4.2. Along the way, we also present a
very simple and greedy way of maintaining unweighted quantile summaries in O(1

ε · log2(εn))
space in Section 4.1. There, we shed further light on some counter-intuitive choices in GK
summaries which turn out to be a basis for their tighter O(1

ε log(εn)) space. In particular,
we motivate the following definition:

▶ Definition 10 (Segment). The segment of an element ei in WQS, denoted by seg(ei), is
defined as the maximal set of consecutive elements ej , ej+1, · · · , ei−1 in WQS with b-value
strictly less than b-value(ei). We let G∗

i be the sum of the G-values of ei and its segment,
i.e., G∗

i = Gi +
∑

ek∈seg(ei)
Gk.

See Figure 2 below for an illustration.
At any step, the algorithm first inserts the arriving element into WQS; we call this the

insertion step. It then only deletes an element from WQS if it can be deleted together with its
entire segment without violating Invariant 1. While there is any such element whose deletion

S. Assadi, N. Joshi, M. Prabhu, and V. Shah 19:9

B
an

d-
va

lu
e

Position

seg(e6)

1

2

3

4

5

1 2 3 4 5 6 7 8

seg(e5)

e6

e5

e4

e3

e2

e1

e7

e8

Figure 2 An illustration of Definition 10. The ranks of elements increase along the horizontal
axis. The segment of the element e5 contains e3 and e4. The segment of e6 contains e2, e3, e4 and e5.

(along with its segment) does not violate Invariant 1 (and another simple but important
condition on b-value), the algorithm deletes it from WQS; we call this the deletion step. We
now give a formal description of the algorithm.

▶ Algorithm 1. A generalization of the GK algorithm for weighted streams:

For each arriving item (xj , w(xj)):
(i) Run Insert(xj , w(xj)):
(ii) While there exists an element ei in WQS satisfying:

(1) b-value(ei) ≤ b-value(ei+1) and (2) G∗
i + gi+1 + ∆i+1 ≤ tj

Run Delete(ek) for ek in {ei} ∪ seg(ei).

▶ Theorem 11. For any ε > 0 and a weighted stream of length n with total weight Wn, Al-
gorithm 1 maintains an ε-approximate quantile summary in O(1

ε · log(εWn)) space. Also,
there is an implementation of Algorithm 1 that takes O

(
log(1/ε) + log log(εWn) + log2(εWn)

εn

)
worst-case update time per element.

We remark here that as long as the weights are poly(n) bounded and ε ≥ 1/n1−δ for
any fixed δ ∈ (0, 1), the space used by the algorithm will be O((1/ε) log(εn)) and its update
time will be O(log(1/ε) + log log(εn)). This matches the space and time complexities of the
implementation of the GK summary described in [13]. Note that the interesting regime for ε

is at least a small constant, because when ε < 1/n1−δ, the information-theoretic lower bound
of (1/2ε) on the summary size already implies that we need to store Ω(n1−δ) elements even
for original GK summaries on unweighted inputs, which is prohibitive for most applications.

Algorithm 1 maintains a valid ε-approximate summary since it may only delete an element
ei along with its segment if the condition (ii): G∗

i + gi+1 + ∆i+1 ≤ tk is satisfied. Thus,
Invariant 1 is satisfied for the element ei+1 after the deletion of ei (other g and ∆ values
are unaffected by this). We now focus on bounding the space used by the algorithm in the
following. Then, in Section 3.2, we give an efficient implementation to finalize the proof of
Theorem 11.

3.1 Space Analysis
In this subsection, we prove a bound on the space used by Algorithm 1. Formally, we have
the following:

ICDT 2023

19:10 Generalizing GK Summaries for Weighted Inputs

▶ Lemma 12. For any ε > 0 and a stream of length n with the total weight Wn, Algorithm 1
maintains an ε-approximate quantile summary in O(1

ε · log(εWn)) space.

We first make a critical observation.

▶ Observation 13. Elements from Band≤α in WQS only cover elements of Band≤α at any
time.

This is because when ei and seg(ei) get covered by ei+1, Algorithm 1 ensures that
b-value(ei) ≤ b-value(ei+1). From Definition 10, seg(ei) contains elements with b-value
less than b-value(ei). Thus, C(ei+1) contains elements with b-value at most b-value(ei+1)
and this continues to be the case at a later time by Observation 8.

Another important observation is that, after executing a deletion step after k insertions, an
element ei present in WQS either satisfies b-value(ei) > b-value(ei+1) or G∗

i +gi+1 +∆i+1 > tk;
otherwise Algorithm 1 would have deleted this element. We refer to the elements in WQS
satisfying the former condition as type-1 elements and the ones satisfying only the latter
condition as type-2 elements. Thus, each element is exactly one of the two types (except only
es = +∞ which we can ignore). It will therefore suffice to obtain a bound on the number of
type-1 and type-2 elements to bound the space complexity of WQS. Let us first bound the
number of type-1 elements in the following lemma.

▶ Lemma 14. After the deletion step when k elements have been seen, the number of type-1
elements stored in WQS is O

(
ℓ · log tk

)
.

Proof. We first partition the type-1 elements into B(k) sets Y0, . . . , YB(k) where for any
band-value α:

Yα := {ei ∈ WQS | ei is type-1 and b-value(ei+1) = α} ;

(notice that elements in Yα are such that the band-value of their next element is α, not
themselves2) We will show that the size of any set Yα is at most O(ℓ). We map each element
of ei to the smallest element ej with b-value greater than α; see Figure 3a for an illustration.
Let Tα be the set of all such elements ej . Also, it is easy to see that the mapping from Yα to
Tα is one to one; giving us |Yα| = |Tα|. Note that ej−1 must be a type-2 element. Hence,

G∗
j−1 + gj + ∆j > tk. (7)

Since b-value(ej) is greater than b-value(ei+1) = α, by Observation 8, one can argue that
ej is inserted in WQS before ei+1. Let g′

j be the g-value of ej when ei+1 got inserted. By
Invariant 1,

g′
j + ∆j ≤ t0(ei+1) (∆ value does not change over time). (8)

Subtracting Equation (8) from Equation (7) and using the bounds from Definition 7 we
conclude that,

G∗
j−1 + (gj − g′

j) > tk − t0(ei+1) ≥ 2α−1 − 2. (9)

In the above equation:

2 While this may sound counter-intuitive at first glance, recall that the criterion for defining the type of
an element is a function of both this element and the next one; this definition allows us to take this into
account.

S. Assadi, N. Joshi, M. Prabhu, and V. Shah 19:11

6 4 5 24 2 73
ei ei+1 ejej−1

(a) The shaded blocks are elements of Y4. The arrows indicate the mapping from elements in Y4 to
elements in T4. Each element ei in Y4 is mapped to the first larger element ej with a band-value higher
than 4.

6 4 5 24 2 73

ej−1 and its segment

(b) Each dark gray block represents an element ej in T4. All elements which are either ej−1 or are in the
seg(ej−1) are shaded light gray.

Figure 3 The two figures represent a section of the summary with each block representing an
element. The number inside the block is the element’s band-value.

(i) The term (gj − g′
j) counts the sum of weights of the elements covered by ej after ei+1

is inserted. Claim 15 will show that these elements are in Band≤α.
(ii) The term G∗

j−1 counts the sum of the weights of the elements covered by ej−1 and
seg(ej−1). By Definition 10, ej−1 and all elements in seg(ej−1) have b-value ≤ α.
Observation 13 allows us to conclude that the sum of weights of elements counted by
G∗

j−1 are in Band≤α as well.
(iii) Additionally, it is easy to see that for distinct ej1 and ej2 in Tα, the segments of ej1−1

and ej2−1 do not overlap (as can be observed in Figure 3). Thus, by Equation (5), the
elements covered by ej1 and its segment are distinct from the elements covered by and
ej2 and its segment.

Finally, from the above discussion, we conclude that the LHS of Equation (9), summed over
all Tα, is proportional to the total weight of all the elements in Band≤α. Formally,

|Tα| · (2α−1 − 2) ≤
∑

ej ∈Tα

G∗
j−1 +

∑
ej ∈Tα

(gj − g′
j) ≤

∑
xk∈Band≤α

w(xk) +
∑

xk∈Band≤α

w(xk) ≤ O(ℓ · 2α+2),

where the last inequality follows from Equation (2). Hence, |Tα| = |Yα| = O(ℓ) for α ≥ 3.
We have O(ℓ) elements for α = 0, 1, 2 anyway. Since there are B(k) = log tk possible values
of α, the number of type-1 elements is O(ℓ log tk).

▷ Claim 15. All the elements covered by ej after ei+1 was inserted have b-value at most α

currently.

Proof. Let us assume that there exists an element which currently has b-value > α but gets
covered by ej after ei+1 was inserted. All such elements are less than ej and greater than ei+1
since they get covered by ej . Now consider the smallest such element e. Clearly, ei+1 belongs
to the segment of e just after the insertion of ei+1. Since e does not belong to the summary
right now, it must have been deleted. This implies that its segment, which contained ei+1,
got deleted. This means ei+1 is also deleted, which is a contradiction. ◁

This finalizes the proof of Lemma 14. ◀

It now remains to bound the number of type-2 elements in WQS which we do in the following
lemma.

ICDT 2023

19:12 Generalizing GK Summaries for Weighted Inputs

▶ Lemma 16. After the deletion step when k elements of the stream have been seen, the
number of type-2 elements is O(ℓ · log tk).

Proof. Any type-2 element ei in WQS, has the property that G∗
i + gi+1 + ∆i > tk. This will

give a lower bound on G∗
i + gi+1 in terms of the b-value(ei+1).

▷ Claim 17. After seeing k elements, for any type-2 element ei, G∗
i +gi+1 ≥ 2b-value(ei+1)−1−2.

Proof. As ei is a type-2 element, G∗
i + gi+1 + ∆i+1 > tk. By Equation (6), ∆i+1 ≤ t0(ei+1)

and therefore,

G∗
i + gi+1 > tk − t0(ei+1) ≥ 2b-value(ei+1)−1 − 2,

where the second inequality is by Definition 7. ◁

Claim 17 gives us a lower bound on the G∗-value of each type-2 element ei as a function
of the g-value and band-value of the next element ei+1. Therefore, we partition the type-2
elements into sets X0, . . . , XB(k) such that for any band-value α,

Xα := {ei ∈ WQS | ei is type-2 and b-value(ei+1) = α} .

Moreover, for any ei ∈ Xα, since ei is a type-2 element, b-value(ei) ≤ b-value(ei+1) = α.
Summing over the inequality of Claim 17 for each element in Xα, we obtain:

|Xα| · (2α−1 − 2) ≤
∑

ei∈Xα

G∗
i + gi+1. (10)

We next show an upper bound on the right-hand side of Equation (10) which will imply the
necessary bound on |Xα|.

▷ Claim 18. After seeing k elements, for any α ≥ 0,
∑

ei∈Xα

G∗
i ≤ 2

∑
ej∈WQS∩Band≤α

Gj .

Proof. We partition Xα into two disjoint sets Xα ∩Bandα and Xα ∩Band≤α−1 and observe
that two elements from one of these two sets must have disjoint segments. Also, the elements
in their segments must all be in Band≤α. Therefore,∑

ei∈Xα

G∗
i =

∑
ei∈Xα∩Bandα

G∗
i +

∑
ei∈Xα∩Band≤α−1

G∗
i ≤

∑
ej∈WQS∩Band≤α

Gj +
∑

ej∈WQS∩Band≤α

Gj .

= 2
∑

ej∈WQS∩Band≤α

Gj . ◁

The next claim bounds the sum of G-values of the elements in WQS from Band≤α.

▷ Claim 19. After seeing k elements, for any α ≥ 0,
∑

ei∈WQS∩Band≤α
Gi ≤ O(ℓ · 2α+1).

Proof. An element is only deleted by Algorithm 1 if condition (1) is satisfied. By Observation 8,
this continues to be the case at any later point in the algorithm. Therefore, C(ei) only
contains elements whose b-value is at most b-value(ei). Therefore,∑

ei∈WQS∩Band≤α

Gi =
∑

ei∈WQS∩Band≤α

∑
xj∈C(ei)

w(xj)

(as Gi =
∑

xj∈C(ei) w(xj) by Equation (5))

≤
∑

xj∈Band≤α

w(xj)

(as C(ei)’s are disjoint and their elements belong to Band≤ α)
= O(ℓ · 2α+1), (by the bound in Equation (2))

completing the argument. ◁

S. Assadi, N. Joshi, M. Prabhu, and V. Shah 19:13

By plugging the bounds of Claim 18 and Claim 19 in Equation (10) and using the fact that
a G value of an element is at least its g value, we have that,

|Xα| · (2α−1−2) ≤
∑

ei∈Xα

G∗
i +

∑
ej∈WQS∩Band≤α

gj ≤ 2
∑

ej∈WQS∩Band≤α

Gj +
∑

ej∈WQS∩Band≤α

Gj ≤ 3 ·O(ℓ ·2α+1),

which implies |Xα| = O(ℓ) for 3 ≤ α ≤ B(k). There can be O(ℓ) elements each in X0,
X1 and X2 since there are at most O(ℓ) elements in Band≤2. By Equation (2) we have
B(k) = O(log tk) and therefore that the number of type-2 elements is O(ℓ · log tk). ◀

We have now shown that, after performing the deletion step after k elements have been seen,
the number of type-1 elements in WQS is O(ℓ · log tk) by Lemma 14 and the number of type-2
elements in WQS is O(ℓ · log tk) by Lemma 16. Since each element in WQS (other than +∞) is
either type-1 or type-2, the total number of elements in WQS is O(ℓ · log tk).

This finalizes the proof of Lemma 12 since tn = O(εWn) and ℓ = O(1
ε). We conclude the

discussion of the space complexity with the following remark;
▶ Remark 20 (Delaying Deletions). Suppose in Algorithm 1, instead of running the deletion
step in Line (ii) after each element, we run it only after inserting c elements c > 1; then, the
space complexity of the algorithm only increases by an additive term O(c).

Performing the deletion step after k elements, the number of elements reduces to O(ℓ·log tk)
as proved earlier as long as we have been satisfying both the conditions of the deletions of
Algorithm 1 while performing every deletion. Thus, the extra space is only due to storing
the additional O(c) elements that are inserted in WQS.

The above remark will be useful in proposing an implementation of Algorithm 1 which
has an asymptotically faster update time per element, which we do in the following.

3.2 An Efficient Implementation of Algorithm 1
In this section, we present an efficient implementation of Algorithm 1. This is similar to the
implementation of the GK summary proposed in [13]. The key idea is that the deletion step
is slow and therefore performing it after every time step is rather time inefficient. However,
not performing the deletion step for too long blows up the space. The fast implementation
we present deals with this trade-off and chooses the delay between consecutive deletion steps
so that both the time and space complexity of the algorithm are optimized. Formally, we
show the following:

▶ Lemma 21. There is an implementation of Algorithm 1 that takes O
(

log(1/ε) +
log log(εWn) + log2(εWn)

εn

)
worst case processing time per element.

Part I: Storing WQS

We store our summary WQS as a balanced binary search tree (BST), where each node contains
an element of WQS along with its metadata. For each element e we store w(e), g(e), ∆(e)
and t0(e). The sorting key of the BST is the value of elements. The Insert and Delete
operations insert elements into and delete elements from the BST respectively.

Part II: Performing a Deletion Step

The deletion step involves the deletion of elements in the summary that satisfy the two
conditions of Algorithm 1. Checking condition (ii) requires that we know the G∗ values
corresponding to each element of the summary, which we show how to do efficiently in the
following.

ICDT 2023

19:14 Generalizing GK Summaries for Weighted Inputs

Computing G∗ values. First, we perform an inorder traversal of WQS and store the elements
ei in sorted order as a temporary linked list. The G∗ value computation will use a stack and
will make one pass over the list from the smallest to the largest element. We describe the
computation when the traversal reaches the element ei in the list. To obtain G∗

i , we sum up
the G∗ values of all elements on the top of the stack with b-value less than b-value(ei) and
add the sum to Gi. All these elements are popped from the stack and then ei along with
its computed G∗ value is pushed onto the stack. We claim that at this point G∗

i has been
correctly computed. Since each element is pushed and popped from the stack at most once,
the G∗ values of all elements can be computed in time linear in the size of WQS.

We now describe how each deletion step is performed.

▶ Algorithm. Performing a deletion step efficiently:

1. Perform an inorder traversal of WQS (which is a BST) to obtain a temporary (doubly-
linked) list of elements sorted by value.

2. Compute b-values of all elements of WQS using Definition 7.
3. Compute the G∗ value of all elements using the algorithm described above.
4. Traverse the list from larger elements to smaller ones. For each element ei, delete it

from BST (as well as the list), if it satisfies both the deletion conditions mentioned in
Algorithm 1.

Having described an insertion step and a deletion step, below is an implementation
of Algorithm 1 with fast amortized update time. We also describe how to modify this
implementation to also get the same bound on the worst-case update time.

▶ Implementation 1. Efficient Implementation of Algorithm 1.

Initialize WQS to be an empty balanced binary search tree.
DeleteTime← 2.
For each arriving item (xk, w(xk)):

(i) Run Insert(xk, w(xk)).
(ii) If (k = DeleteTime):

Execute the deletion step and update DeleteTime← DeleteTime + ⌈ℓ log tk⌉.

Space Analysis

The space complexity of the above implementation is still O(1
ε log(εWn)). This follows

from the fact that, after performing a deletion when k elements have been seen, we wait
for another O(ℓ · log tk) elements only, which increases the space complexity by only a
constant factor due to Remark 20. Thus, the space complexity , after n insertions, remains
O(ℓ · log tn) = O(1

ε log(εWn)), as ℓ = 1/ε and tn = O(εWn).

Time Analysis

The main purpose behind storing WQS as a BST was to decrease the time required to perform
an Insert and Delete operation on WQS. This takes only O(log s), where s is the summary
size which is at most O(1

ε log εWn). Thus, we now have the following observation, which is
directly implied by the fact that we perform Insert and Delete at most once per element.

S. Assadi, N. Joshi, M. Prabhu, and V. Shah 19:15

▶ Observation 22. Over a stream of length n, the total time taken by the fast implementation
of Implementation 1 to perform all Insert and Delete operations is O(n · (log(1/ε) +
log log(εWn))).

Note that the only time taken by Implementation 1 not taken into account in Obser-
vation 22 is the part that determines which elements to delete, which we bound in the
following.

▶ Lemma 23. Over a stream of length n, the total time taken by Implementation 1 to decide
which elements need to be deleted over all the executed deletion steps is O(n + 1

ε log2(εWn)).

Proof. The time taken to decide which elements need to be deleted inside one deletion step
(when k elements have been seen) step is O(s) = O(ℓ · log tk). This is because creating a
linked list, followed by computation of b-value and G∗-value of all elements can be performed
in O(s) time, as discussed before. Finally, making a linear pass over the list from the largest
to the smallest element (to check if the deletion conditions hold) requires O(s) time.

Next, we obtain a bound on the number of deletion steps performed by the algorithm.
Consider the deletion steps performed when tk is the intervals [2i, 2i+1), for 1 ≤ i ≤
⌈log(εWn)⌉. Let d(i) be the number of such deletion steps and n(i) denote the number of
elements xk of the stream for which tk is in the range [2i, 2i+1). After the deletion step when
k elements have been seen, we wait for ⌈ℓ log tk⌉ insertions. Therefore, there are at least
ℓ · i elements inserted between two consecutive deletion steps that happen in the considered
interval. Therefore, we get the following bound on the number of deletion steps that are
performed during the interval.

d(i) ≤ n(i)
ℓ · i

+ 1. (11)

The time spent deciding which element to delete in a deletion step (after seeing k elements)
is at most O(ℓ log tk) = O(ℓ · i), when tk is in the interval [2i, 2i+1). This and Equation (11),
give the following bound on the total time spent to decide which elements to delete over all
deletions steps.

O

⌈log(εWn)⌉∑
i=1

d(i) · ℓi

 = O

⌈log(εWn)⌉∑
i=1

(n(i) + ℓi)


= O

(
n + 1

ε
log2(εWn)

)
This finalizes the proof of the lemma. ◀

Observation 22 and Lemma 23 together clearly imply that the total time taken by
Implementation 1 over a stream of length n is O

(
n ·(log(1/ε)+log log(εWn))+ 1

ε log2(εWn)
)
.

Thus, the amortized update time per element is O
(

log(1/ε) + log log(εWn) + log2(εWn)
εn

)
.

We can obtain the same bound on the worst-case update time per element using standard
ideas of distributing time of inefficient operations over multiple time steps. The idea is to
process the deletion step over all the following time steps before executing the next deletion
step. Formally, we have the following:

▷ Claim 24. There is an implementation of Algorithm 1 with worst-case update time
O

(
log(1/ε) + log log(εWn) + log2(εWn)

εn

)
.

ICDT 2023

19:16 Generalizing GK Summaries for Weighted Inputs

4 Unweighted Quantiles

For a definition of an unweighted quantile summary, see Definition 1. This is a special case
of the weighted quantiles problem where each element of the stream arrives with a weight of
1. The GK-algorithm [9] solves this problem optimally [6] by proposing a summary of size
O

(1
ε log(εn)

)
. In the following sections, we attempt to simplify the GK algorithm while still

being able to prove similar space guarantees.
Towards this end, we describe two algorithms. These algorithms also use the notion

of time steps and bands which are formally defined in Section 2.1 (see Definition 5 and
Definition 6). The n elements of the stream S are processed in O(εn) chunks each of size
ℓ = O(1/ε). We refer to each such chunk of ℓ elements as a time step. (Contrast this with
Algorithm 1 in the context of which a time step was defined to be a chunk of O(1/ε) weight).
When an element x of the stream arrives in the i-th time step, we set t0(x) = i. Elements are
further grouped geometrically based on what time step they appear in into O(log t) bands,
where t is the current time-step (see Figure 4).

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 Time

1

2
3
4

Band-value

(a) Progression of the band-values of elements inserted at time step 2.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1Chunk number:

Band number: 1 2 3 4

(b) Distribution of band values at t = 15.

Figure 4 An illustration of band-values and bands.

We use QS to represent the unweighted summary and ei to be the i-th largest element
stored in QS. For each element ei, we wish to maintain lower and upper bounds on rank(ei)
denoted by r-min(ei) and r-max(ei) respectively. This is done implicitly by storing gi and
∆i values as described in Equation (3) in Section 2.2. Unlike the weighted setting, we do not
need Gi values. (To see why, note that in Equation (4) when the weight of each element is
1, Gi = gi.) Any summary which maintains the following invariant is guaranteed to be an
ε-approximate quantile summary.

▶ Invariant 2. After t times steps of the stream S, each element ei ∈ QS satisfies gi + ∆i ≤ t.

Note that this is just a special case of Invariant 1 when all weights are one i.e. Wn = n. The
goal of our algorithms is to maintain this invariant using limited space.

4.1 A Greedy O
(

1
ε

log2(εn)
)

Size Summary

As a warm-up to our main algorithm, we first present a very simple and greedy way of
updating the quantile summary QS to maintain Invariant 2 in O(1

ε · log2(εn)) space.

S. Assadi, N. Joshi, M. Prabhu, and V. Shah 19:17

▶ Algorithm 2. A greedy algorithm for updating the quantile summary.

For each time step t with arriving items (x(t)
1 , . . . , x

(t)
ℓ):

(i) Run Insert(x(t)
j) for each element of the chunk.

(ii) Repeatedly run Delete(ei) for any (arbitrarily chosen) element ei in QS satisfying:

(1) b-value(ei) ≤ b-value(ei+1) and (2) gi + gi+1 + ∆i+1 ≤ t

▶ Theorem 25. For any ε > 0 and a stream of length n, Algorithm 2 maintains an ε-
approximate quantile summary in O(1

ε · log2(εn)) space. Also, there is an implementation
of Algorithm 2 that takes O

(
log(1/ε) + log log(εn)

)
worst-case processing time per element.

Finally, quantile queries can be answered in O
(

log(1/ε) + log log(εn)
)

worst-case time per
query.

Algorithm 2 maintains Invariant 2 since it may only delete an element ei if gi + gi+1 +
∆i+1 ≤ t, which then implies that gi+1 + ∆i+1 ≤ t after the deletion. The other (g, ∆)-
values remain unchanged. As argued, maintaining Invariant 2 directly implies that QS is an
ε-approximate quantile summary throughout the stream. Below we discuss some important
insights on showing the space complexity of the algorithm. For formal proofs and its efficient
implementation, we refer the reader to the full version of the paper.

After performing the deletion step at time t, we classify the elements into either type-1
or type-2, and bound each one of them separately as we did previously. An element ei

present in QS satisfies b-value(ei) > b-value(ei+1) then it is of type-1, or it must satisfy
gi + gi+1 + ∆i+1 > t and it is of type-2. We first bound the number of type-2 elements using
a similar counting argument as in Section 3.1.

▶ Lemma 26. After the deletion step at time step t, the number of type-2 elements stored in
QS is O(ℓ log t).

A more interesting is the bound on the number of type-2 elements. Observe that we do not
delete an element with its segment (unlike Algorithm 1), which was crucial in proving a
bound on type-1 element. However, as we show, the number of type-1 elements cannot be
much larger than the type-2 ones even for this deletion strategy. This is simply because the
band-values of consecutive type-1 elements strictly decrease from one element to the next
and thus we cannot have many type-1 elements next to each other.

▶ Lemma 27. After the deletion step at time step t, the number of type-1 elements stored in
QS is O(log t) times larger than the type-2 elements.

▶ Remark 28. In the space analysis, we bounded the number of type-2 elements in the
summary after the deletion step by O(ℓ · log t) = O((1/ε) · log(εn)), which is quite efficient
on is own. However, in the worst case, there can be O(log t) type-1 elements for every
type-2 element as shown in Figure 5. Thus, Algorithm 2 may end up storing as many as
O(ℓ · log2 t) = O((1/ε) · log2(εn)) type-1 elements in the summary, leading to its sub-optimal
space requirement.

4.2 The Simplified GK O(1
ε

· log (εn)) Size Summary
We give our description of GK summaries. As we say in Remark 28, one source of sub-
optimality of Algorithm 2 was a large number of type-1 elements stored in the summary
compared to the type-2 ones. A way to improve this is to actively try to decrease the number

ICDT 2023

19:18 Generalizing GK Summaries for Weighted Inputs

.
. . .

. . .

Position

O(log t)
bands

O(log t) type-2
elements

type-1 type-2

Band-values

Figure 5 Each block in the figure represents an element stored in QS. The ranks of elements
increase along the horizontal axis. The figure illustrates why Algorithm 2 might end up storing
O(ℓ log2 t) elements in QS. By Lemma 26, there could be as many as O(ℓ · log t) type-2 elements
in QS. Each of these type-2 elements could be preceded by a sequence of O(log t) type-1 elements
(since there are O(log t) bands).

of stored type-1 elements. Roughly speaking, this is done by deleting type-2 elements from
the summary only if it does not contribute to creating a long sequence of type-1 elements
(e.g., as in Figure 5). Roughly speaking, while there is an element whose deletion together
with its entire segment (Definition 10) doesn’t violate Invariant 2 (and the same condition on
b-values), we delete the element and its entire segment. Let g∗

i denote the sum of g-values
of the elements in seg(ei). Below is a formal description of the algorithm and the theorem,
whose proof we include in the full version.

▶ Algorithm 3. An improved algorithm for updating the quantile summary.

For each time step t with arriving items (x(t)
1 , . . . , x

(t)
ℓ):

(i) Run Insert(x(t)
j) for each element of the chunk.

(ii) While there exists an element ei in QS satisfying:

(1) b-value(ei) ≤ b-value(ei+1) and (2) g∗
i + gi+1 + ∆i+1 ≤ t

Run Delete(ek) for ek in {ei} ∪ seg(ei).

▶ Theorem 29. For any ε > 0 and a stream of length n, Algorithm 3 maintains an ε-
approximate quantile summary in O(1

ε · log(εn)) space. Also, there is an implementation
of Algorithm 3 that takes O(log(1

ε) + log log(εn)) worst case update time per element.

We shall note that even though our description of Algorithm 3 varies from the presentation
of GK summaries in [9], the two algorithms behave in an almost identical way.

References
1 Pankaj K. Agarwal, Graham Cormode, Zengfeng Huang, Jeff M. Phillips, Zhewei Wei, and

Ke Yi. Mergeable summaries. In Proceedings of the 31st ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems, PODS 2012, Scottsdale, AZ, USA, May 20-24,
2012, 2012.

S. Assadi, N. Joshi, M. Prabhu, and V. Shah 19:19

2 Noga Alon, Omri Ben-Eliezer, Yuval Dagan, Shay Moran, Moni Naor, and Eylon Yogev.
Adversarial laws of large numbers and optimal regret in online classification. In Proceedings of
the 53rd Annual ACM SIGACT Symposium on Theory of Computing, pages 447–455, 2021.

3 Noga Alon, Yossi Matias, and Mario Szegedy. The space complexity of approximating the
frequency moments. In Proceedings of the Twenty-Eighth Annual ACM Symposium on the
Theory of Computing, Philadelphia, Pennsylvania, USA, May 22-24, 1996, pages 20–29, 1996.

4 Tianqi Chen and Carlos Guestrin. XGBoost. In Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining. ACM, August 2016.
doi:10.1145/2939672.2939785.

5 Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In Proceedings of
the 22nd acm sigkdd international conference on knowledge discovery and data mining, pages
785–794, 2016.

6 Graham Cormode and Pavel Veselý. A tight lower bound for comparison-based quantile sum-
maries. In Proceedings of the 39th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles
of Database Systems, PODS 2020, Portland, OR, USA, June 14-19, 2020, pages 81–93, 2020.

7 Anna C Gilbert, Brett Hemenway, Atri Rudra, Martin J Strauss, and Mary Wootters. Recov-
ering simple signals. In 2012 Information Theory and Applications Workshop, pages 382–391.
IEEE, 2012.

8 Anna C Gilbert, Brett Hemenway, Martin J Strauss, David P Woodruff, and Mary Wootters.
Reusable low-error compressive sampling schemes through privacy. In 2012 IEEE Statistical
Signal Processing Workshop (SSP), pages 536–539. IEEE, 2012.

9 Michael Greenwald and Sanjeev Khanna. Space-efficient online computation of quantile
summaries. In Proceedings of the 2001 ACM SIGMOD international conference on Management
of data, Santa Barbara, CA, USA, May 21-24, 2001, pages 58–66, 2001.

10 Moritz Hardt and David P Woodruff. How robust are linear sketches to adaptive inputs? In
Proceedings of the forty-fifth annual ACM symposium on Theory of computing, pages 121–130,
2013.

11 Regant Y. S. Hung and Hing-Fung Ting. An Ω (1
ε

log 1
ε
) space lower bound for finding

ε-approximate quantiles in a data stream. In Frontiers in Algorithmics, 4th International
Workshop, FAW 2010, Wuhan, China, August 11-13, 2010. Proceedings, pages 89–100, 2010.

12 Zohar S. Karnin, Kevin J. Lang, and Edo Liberty. Optimal quantile approximation in streams.
In IEEE 57th Annual Symposium on Foundations of Computer Science, FOCS 2016, 9-11
October 2016, Hyatt Regency, New Brunswick, New Jersey, USA, pages 71–78, 2016.

13 Ge Luo, Lu Wang, Ke Yi, and Graham Cormode. Quantiles over data streams: experimental
comparisons, new analyses, and further improvements. VLDB J., 25(4):449–472, 2016.

14 Gurmeet Singh Manku, Sridhar Rajagopalan, and Bruce G. Lindsay. Approximate medians
and other quantiles in one pass and with limited memory. In SIGMOD 1998, Proceedings
ACM SIGMOD International Conference on Management of Data, June 2-4, 1998, Seattle,
Washington, USA, pages 426–435, 1998.

15 Gurmeet Singh Manku, Sridhar Rajagopalan, and Bruce G. Lindsay. Random sampling
techniques for space efficient online computation of order statistics of large datasets. In
SIGMOD 1999, Proceedings ACM SIGMOD International Conference on Management of
Data, June 1-3, 1999, Philadelphia, Pennsylvania, USA, pages 251–262, 1999.

16 Ilya Mironov, Moni Naor, and Gil Segev. Sketching in adversarial environments. SIAM Journal
on Computing, 40(6):1845–1870, 2011.

17 J. Ian Munro and Mike Paterson. Selection and sorting with limited storage. In 19th Annual
Symposium on Foundations of Computer Science, Ann Arbor, Michigan, USA, 16-18 October
1978, pages 253–258, 1978.

18 Moni Naor and Eylon Yogev. Bloom filters in adversarial environments. In Annual Cryptology
Conference, pages 565–584. Springer, 2015.

19 List of open problems in sublinear algorithms – problem 2: Quantiles. https://sublinear.
info/2.

ICDT 2023

https://doi.org/10.1145/2939672.2939785
https://sublinear.info/2
https://sublinear.info/2

	1 Introduction
	2 Preliminaries
	2.1 Time Steps and Bands
	2.2 Indirect handling of r-min and r-max values

	3 A non-trivial extension of GK algorithm for weighted streams
	3.1 Space Analysis
	3.2 An Efficient Implementation of Algorithm

	4 Unweighted Quantiles
	4.1 A Greedy 1/eps log2(eps n) Size Summary
	4.2 The Simplified GK Summary

