Spoofax at Oracle: Domain-Specific Language
Engineering for Large-Scale Graph Analytics

Houda Boukham = Guido Wachsmuth &
Mohammed V University in Rabat, Oracle Labs, Ziirich, Switzerland
Ecole Mohammadia d’Ingénieurs, Morocco

Oracle Labs, Casablanca, Morocco

Toine Hartman & Hamza Boucherit &
Oracle Labs, Utrecht, The Netherlands Oracle Labs, Casablanca, Morocco
Oskar van Rest = Hassan Chafi &

Oracle, Redwood Shores, CA, USA Oracle Labs, Ziirich, Switzerland
Sungpack Hong & Martijn Dwars &

Oracle Labs, Redwood Shores, CA, USA Oracle Labs, Ziirich, Switzerland
Arnaud Delamare & Dalila Chiadmi &

Oracle Labs, Ziirich, Switzerland Mohammed V University in Rabat,

Ecole Mohammadia d’Ingénieurs, Morocco

—— Abstract

For the last decade, teams at Oracle relied on the Spoofaxr language workbench to develop a family

of domain-specific languages for graph analytics in research projects and in product development.
In this paper, we analyze the requirements for integrating language processors into large-scale graph
analytics toolkits and for the development of these language processors as part of a larger product
development process. We discuss how Spoofaz helps to meet these requirements and point out the
need for future improvements.

2012 ACM Subject Classification Software and its engineering — Domain specific languages;
Software and its engineering — Translator writing systems and compiler generators

Keywords and phrases language workbench, domain-specific language

Digital Object Identifier 10.4230/0ASIcs.EVCS.2023.5

Acknowledgements The following people contributed to Spoofax implementations of domain-specific
languages for graph analytics as presented in this paper (in alphabetical order): Alexander Weld,
Amin Ait Lamqgadem, Arnaud Delamare, Calin Iorgulescu, Daco Harkes, Daniel Lehmann, Daniel
Pelsmaeker, Danny Groenewegen, Davide Basilio Bartolini, Eelco Visser, Felix Kaser, Gabriel Konat,
Guido Wachsmuth, Hamid El Maazouz, Hamza Boucher, Houda Boukham, Hugo Kapp, Ivo Wilms,
Jan van der Lugt, Jeff Smits, Jinha Kim, Jinsoo Lee, Korbinian Schmid, Luis Eduardo de Souza
Amorim, Manuel Then, Martijn Dwars, Martin Sevenich, Matthijs Bijman, Mohammed Bacha,
Moritz Baumann, Mourad Abbay, Omar Heddi, Oskar van Rest, Ossama Elbourakkadi, Patrick
Gruntz, Ragahavan Raman, Rob Vermaas, Siegfried Depner, Stefan Kaestle, Sungpack Hong, Toine
Hartman, Vlad Vergu.

1 Introduction

In 2011, the Parallel Graph AnalytiX (PGX) team at Oracle Labs faced a challenge in its
Green-Marl [1] compiler. The C++ implementation became increasingly difficult to maintain
and slowed down the exploration of powerful optimization techniques. The PGX team was
looking for alternatives, and identified declarative language specifications as advocated by
the Spoofaz project [2] as a promising approach to reduced maintenance efforts and to faster
exploration of potential optimizations. In 2012, Oracle started a collaboration with Eelco
%}flouda Boukham, Guido V\./?Lchsmuth, Toine Hartman, Hamza Bo.ucheri.t, Os.1.<ar van Rest, Hassan
5v afi, Sungpack Hong, Martijn Dwars, Arnaud Delamare, and Dalila Chiadmi;
licensed under Creative Commons License CC-BY 4.0

Eelco Visser Commemorative Symposium (EVCS 2023).
Editors: Ralf Lammel, Peter D. Mosses, and Friedrich Steimann; Article No. 5; pp. 5:1-5:8

\\v OpenAccess Series in Informatics
OASICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:houda.boukham@oracle.com
https://orcid.org/0000-0001-9690-700X
mailto:guido.wachsmuth@oracle.com
https://orcid.org/0000-0001-6775-4593
mailto:toine.hartman@oracle.com
https://orcid.org/0000-0001-7929-095X
mailto:hamza.boucherit@oracle.com
mailto:oskar.van.rest@oracle.com
mailto:hassan.chafi@oracle.com
mailto:sungpack.hong@oracle.com
mailto:martijn.dwars@oracle.com
https://orcid.org/0000-0002-9300-091X
mailto:arnaud.d.delamare@oracle.com
mailto:chiadmi@emi.ac.ma
https://doi.org/10.4230/OASIcs.EVCS.2023.5
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

5:2

Domain-Specific Language Engineering for Large-Scale Graph Analytics

Visser’s research group at Delft University of Technology. Eelco’s group started to develop a
first language definition of Green-Marl in Spoofaz, consisting of an SDF2 [11, 12] grammar,
name binding rules in the new name binding language NaBL [4], and type specifications in
TS [13], an emerging meta-language for type specifications. Green-Marl provided a valuable
industrial case study for the work on NaBL and TS, and appeared in several publications on
Spoofax and its metalanguages. In 2013, the PGX team took over the work on the frontend
and started to develop Stratego transformation rules for a compiler backend in Spoofax,
targeting a Java-based runtime for large scale parallel graph analytics [8].

A decade of collaboration later, teams at Oracle rely on Spoofaz to develop a family of
domain-specific languages for graph analytics in research projects and in product development:
Green-Marl is a DSL for algorithmic graph processing [1]. We use it internally to implement

over 60 graph algorithms which are available in Oracle products for graph analytics.
PGX Algorithm is another DSL for algorithmic graph processing [7]. It provides the same

domain-specific constructs as Green-Marl, but captures them in a Java-API. PGX

Algorithm is part of several Oracle products for graph analytics, allowing customers to

implement their own graph algorithms.

PGQL is an SQL-like graph query language [6, 10] and is integrated into several Oracle
products.

These languages and their language processors are building blocks of larger toolkits
and Oracle products for graph analytics. In this paper, we analyze the requirements for
integrating language processors into large scale graph analytics toolkits (Section 2) and
for the development of these language processors as part of a larger product development
process (Section 3). We discuss how Spoofaz helps to meet these requirements and point out
the need for future improvements.

2 Domain-Specific Language Processors for Graph Analytics

Large-scale graph analytics solutions typically adopt a client-server architecture. Users
interact with a client such as a console or a notebook, while the actual graph data is
processed on a server. Domain-specific languages such as Neo4dj’s Cypher query language [5],
Apache TinkerPop’s Gremlin graph traversal language [9], or Oracle’s PGX Algorithm
and PGQL need to be integrated into the client-server architecture. Typically, users send
domain-specific code from the client to the server, where it is processed.

» Example 1 (Graph analytics with PGX). Figure 1 provides a simple interaction, in which a
user compiles and runs a custom graph algorithm written in PGX Algorithm, before querying
the result with a PGQL query. Figure 2 reproduces a similar interaction on a notebook.
There, the query run by the user matches triangle patterns against graph data, and visualizes
the result. Graph algorithm and query are processed on the server. Figure 3 illustrates the
components of the PGX server which are involved in this process. Spoofaz-implemented
components are highlighted in gray.

The PGX server passes the algorithm code to the PGX Algorithm compiler for parsing,
static analysis, optimization, and target code generation. The generated code is then compiled
and loaded into the server. Finally, the server returns a symbolic handle of the compiled
algorithm to the client. The user can then run the compiled algorithm. The server executes
the algorithm and returns a summary of the execution to the client.

Similarly, the client sends PGQL queries to the server, where they are processed and
executed. The PGQL compiler first parses the query, extracts the name of the queried
graph, and looks up its metadata. Query and metadata are then statically analyzed for

H. Boukham et al.

Figure 1 Running a custom graph algorithm and a PGQL query in the PGX Java shell.
PgxGraph G = session.readGraphWithProperties ("twitter.edge. json");
==> PgxGraph [name=Twitter,N=41652230,E=1468365182]

pgx> var compiled = session.compileProgram("DegreeCentrality.java");
> CompiledProgram[name=degreeCentrality]

pgx> compiled.run (G, degree);
==> {"success" : true, "exception" : null, "returnValue" : null}

pgx> G.queryPgql ("SELECT id(v), v.degree FROM MATCH (v) ORDER BY v.degree DESC LIMIT 3") .
print ()

| id(v) | v.degree |

| 10009 | 22889 I
| 37356 | 15554 |
| 87 | 15218 I

name and type errors. Next, the compiler performs static optimizations on the query, before
passing the query to the query optimizer. The query optimizer determines the most efficient
execution plan of a query as a sequence of operators that can perform the necessary scanning,
computation, and manipulation of graph data on the server. Finally, the result of the query
is returned to the client.

Throughout the remainder of this section, we collect requirements for the integration of
language processors into client-server architectures and report on our specific experiences
with language processors derived from language definitions in Spoofaz.

» Requirement 1 (Programmatic Integration). Language processors cannot be stand-alone
tools but need to be programmatically integrated with the server.

In its early stages, the main focus of the Spoofax project was to provide language processors
for modern IDEs. Later, Spoofax also supported the generation of stand-alone language
processors which could be invoked from command-line. Only Spoofaz 2 [3] introduced Java
APIs to invoke language processors programmatically. We currently rely on this API to
integrate the PGX Algorithm and PGQL compilers into the PGX server runtime.

» Requirement 2 (Compliant Dependencies). Language processors might depend on external
software libraries. These dependencies need to comply with corporate policies for dependencies.
Such policies might forbid particular versions of software libraries due to known vulnerabilities
or entirely forbid the use of an external library in favor of internal solutions.

PGX Algorithm and PGQL compilers depend on the Spoofazr runtime, which itself has
many dependencies on external software. Many of these dependencies are introduced to
support IDE use cases, for example to load and reload language processors dynamically at
runtime. This is problematic, since these dependencies are not required by our compilers,
but still need to be regularly checked for compliance. The current work on Spoofax 3 results
in a notable decrease in dependencies.

» Requirement 3 (Secure Language Processors). Language processors run on the server and
constitute potential targets for attacks. These can be Denial-of-Service attacks with extremely
large or frequent requests to language processors. Language processors need to be embedded
in a protective structure, which allows them to be interrupted when they hit a mazimum
processing time and to be shut down and restarted when they are in an exceptional state, for

5:3

EVCS 2023

5:4 Domain-Specific Language Engineering for Large-Scale Graph Analytics

%pgx—algorithm

import oracle.pgx.algorithm.PgxGraph;

import oracle.pgx.algorithm.annotations.GraphAlgorithm;
import oracle.pgx.algorithm.VertexProperty;

import oracle.pgx.algorithm.annotations.Out;

@GraphAlgorithm
public class DegreeCentrality {
public void degreeCentrality(
PgxGraph g, @Out VertexProperty<Integer> degreeCentrality
) |
g.getVertices().forEach(v —>
degreeCentrality.set(v, v.getOutNeighbors().sum(j —> 1))
);
}
}

Created program: 'degreeCentrality'

%pgx—java

PgxGraph G = session.readGraphWithProperties(connections, '"connections");
var degreeCentrality = G.createVertexProperty(PropertyType.INTEGER, "degreeCentrality

var compiled = session.getCompiledProgram("degreeCentrality")

var result = compiled.run(G, degreeCentrality)

{
"success" : true,
"canceled" : false,
"exception" : null,
"returnValue" : null,
"executionTimeMs" : 1

}

%pgql

SELECT v1, v2, v3, el, e2, e3 FROM connections MATCH (v1) - [el] -> (v2) - [e2] —-> (v1)
WHERE v1.degreeCentrality >= 2 AND v2.degreeCentrality>= 2 AND v3.degreeCentrality>= 2

Figure 2 Example of algorithm and query run on a notebook.

H. Boukham et al.

client server

javac Green-Marl runtime
frontend
. Bl PGX Algorithm Green-Marl P ;
algorithm avac binary
g _) _) frontend _) static 9 backend - J _> Y
type analyzer
checker

PGQL frontend

query uery plan
query -> parser static analyzer || static optimizer - optimizer >| e

Figure 3 Language processing in the PGX server architecture.

example when running out of memory while processing a large input. The risk of attacks
extends beyond language processors to the dependencies they rely on, such as dependencies
for reading configurations or for logging®.

Spoofar’ many dependencies increase the risk for vulnerabilities. The Spoofax team tracks
known vulnerabilities, updates dependencies with fixed versions, and releases new versions of
Spoofaxr on a regular basis, as well as on request from its industrial partners. A reduction
in third-party dependencies is needed to reduce the risk of vulnerabilities in the Spoofaz
runtime.

» Requirement 4 (Economic Memory Usage). Language processors typically run continuously
to stay available for future requests throughout a server session. Thus, the memory footprint
of idle language processors contribute to the overall memory footprint on the server.

In our experience, Spoofax language processors tend to have larger memory footprints than
needed, especially when language processors are generated from multiple dependent Spoofax
projects. These dependencies tend to duplicate the code of the dependee into the dependent
project, thus wasting memory. This causes language processors, specifically backends, to be
unnecessarily big, as they include all the language definitions of the frontends they depend
on, even if the latter are not needed by the backends at runtime. This will be solved in
future releases of Spoofax, which rely on flexible, composable compiler pipelines.

3 Software (Language) Engineering for Graph Analytics

Domain-specific languages for graph analytics need to be designed, developed, maintained,
tested, and released together with the larger graph analytics solution they belong to. Through-
out this section, we collect requirements for the engineering of language processors as part of
a larger software engineering project and report on our specific experiences with Spoofazx.

» Requirement 5 (Reusable Language Processors). Language processors need to be reusable
in different settings. For example, a frontend might be combined with different backends
for different products. Separated language processor projects allow for a combination of
open-source and proprietary projects.

Spoofax supports multi-project language definitions. We rely on this to split our language
definitions into frontend and backend aspects. This allows us to compose language processors
into different products. For example, we have separate projects for the Green-Marl frontend

! https://nvd.nist.gov/vuln/detail/CVE-2021-44228

5:5

EVCS 2023

https://nvd.nist.gov/vuln/detail/CVE-2021-44228

5:6

Domain-Specific Language Engineering for Large-Scale Graph Analytics

and for each of its backends. We compose the frontend with one of the backends into a
compiler we use internally. We recompose the frontend with another backend into another
compiler for internal use. We compose the PGX Algorithm frontend, the Green-Marl frontend,
and one of the Green-Marl backends into the PGX Compiler we include in Oracle products.
Separate language projects also allow us to share some projects with our partners, while
protecting proprietary solutions in internal projects. For example, the PGQL frontend is an
open-source project, while the query optimizer is kept in an internal project. Similarly, we
share the Green-Marl frontend project with academic collaboration partners. We also rely on
existing open-source Spoofar projects. For example, the PGX Algorithm compiler integrates
an open-source Java syntax definition in Spoofax. As discussed earlier, the memory footprint
of composed language processors can be improved in future versions of Spoofaz.

» Requirement 6 (Accessible Language Implementations.). Language implementations are
often maintained by small teams. Team members might only contribute part-time or irregularly
to the language development. New team members might join while others leave. This requires
language implementations to be as accessible as possible. The source of a bug needs to be
quickly found. An additional language construct needs to be easily added.

Oracle adopted Spoofax for its promise of high-level, declarative, multi-purpose language
definitions. After a decade of use, we find Spoofazx delivering on this promise. The size of
our language engineering teams fluctuates between a single part-time contributor and up
to five full-time contributors. New team members get to know the code base quickly and
can typically contribute small fixes after a couple of days and more complex features after
a couple of weeks. To train new team members in the use of Spoofax, we rely on online
material and technical support provided by the Spoofaz team. Beside the declarative nature
of language definitions in Spoofaz, we find the possibility to modularize language definitions
extremely useful to keep our codebase organized and thus easily accessible. We organize
the code in hierarchical modules. This helps with maintenance, as the different language
constructs are easily located in the project. It also enables the extension of the DSL and
its compiler, since we can simply add modules for new language constructs, and have them
import existing modules, without affecting the existing language implementation. This has
allowed us to efficiently support new backends.

» Requirement 7 (Early Development Feedback). It is important to get early and quick
feedback when implementing a new language feature or improving an existing implementation.

Spoofax integrates into the Eclipse IDE and provides editors for its meta-languages with
syntax highlighting, syntax checking, error marking, syntax completion, code formatting,
type checking, reference resolving, and hover help. This helps to spot errors early, before
building the language projects. Furthermore, the same services are available for the developed
languages, allowing us to quickly test our languages in an IDE editor. Spoofax also provides
menu actions for parsing and applying arbitrary transformations such as formatting, analyzing,
and (partial) compilation. In our language projects, we configure several menu actions that
perform (partial) compilations, which we trigger manually to quickly test the processing of
small examples.

» Requirement 8 (Language Processor Testing). Adhoc tests can build some initial confidence
in the implementation of a language processor, but systematic testing is needed to increase
this confidence.

H. Boukham et al.

Spoofazx provides the SPT (SPoofax Testing) meta-language to specify tests for language
definitions. We rely on SPT to write unit tests for parsing, static analysis, and compilation.
These unit tests typically cover each language construct in separate tests. We organize tests
in separate projects, following the project structure and the hierarchical module structure of
our compilers. We also use SPT to write integration tests in order to ensure complex queries
and algorithms are correctly processed. However, these tests only address the language
processors as stand-alone tools, and do not consider their integration with larger graph
analytics solutions.

To test this integration, we have several tests which compile and run queries and algorithms
as part of a toolkit or product. Product integration tests call the compiler for a given runtime
and execute a number of algorithms in that runtime, checking for unexpected behavior in the
compiler, errors while compiling the generated code into binaries, errors while executing the
binary in the runtime, and unexpected results of the executed algorithm. These tests check
behavior of built-in algorithms, compilation of custom algorithms, and (in)compatibility of
certain language features with specific runtimes.

Customers rely on the performance of built-in and custom algorithms. As such, every
change to language implementations or runtimes must be tested for degrading performance.
Integration and performance tests are generally hardware-intensive to run, and may require
a certain client-server architecture. We run them in a cluster, as part of a regression build
triggered when a change is submitted to one of our code repositories. Only when this build
succeeds can the change be committed.

» Requirement 9 (Automated Builds). Continuous development and integration of language
processors require automated builds of language processors. These builds need to take de-
pendencies between language projects into account. Tests need to be run as part of regression
builds. All automatic builds need to work for stand-alone language processors, but also need
to be integrated into overarching builds of toolkits and products.

Early versions of Spoofaz mainly focused on the interactive language development experi-
ence in IDEs. The building steps for Spoofax languages were soon encapsulated in Maven
builds, which then also could be used to build language projects from command-line tools
and to automate builds. However, automated Spoofaz language builds often felt fragile, and
hard to get right for new project setups, particularly for multi-project setups. We currently
rely on an intermediate solution to integrate Spoofazr language builds into our Gradle builds.
The current work on flexible, incremental compilation pipelines is an important milestone
towards improving the automated build situation.

» Requirement 10 (Product Releases). Language implementations need to be maintained as
part of long-term support releases of a product. This includes bug fizes, feature backports,
and dependency updates.

The Spoofar team provides multiple stable releases of Spoofaz per year, but none of these
releases provide long-term support. This impacts the long-term support of Oracle products.
If language processors in a product are affected by bugs or vulnerabilities introduced by
Spoofaz or its dependencies, we need to update these language processors to work with the
latest stable Spoofax release. Such an update can be problematic if the Spoofaz release
introduces breaking changes.

5:7

EVCS 2023

5:8

Domain-Specific Language Engineering for Large-Scale Graph Analytics

4

Conclusion

In this paper, we looked back on how teams at Oracle used Spoofaz to develop domain-specific
languages for large-scale graph analytics for over a decade. We discussed the requirements
for language processors in the domain of graph analytics and for their development processes.
Our experience and the resulting requirements have motivated some of the development

directions of Spoofax. Spoofaxr continues to help us to explore language designs, optimization

techniques, and compilation patterns in various research projects at Oracle Labs, but also

supports us in evolving early research prototypes into solid language processors which become
part of Oracle products.

—— References

1

(=)}

10

11

12

13

Sungpack Hong, Hassan Chafi, Edic Sedlar, and Kunle Olukotun. Green-marl: A dsl for easy
and efficient graph analysis. In Proceedings of the Seventeenth International Conference on
Architectural Support for Programming Languages and Operating Systems, ASPLOS XVII,
pages 349-362, New York, NY, USA, 2012. Association for Computing Machinery. doi:
10.1145/2150976.2151013.

Lennart C.L. Kats and Eelco Visser. The spoofax language workbench. In Proceedings of
the ACM International Conference Companion on Object Oriented Programming Systems
Languages and Applications Companion, OOPSLA ’10, pages 237-238, New York, NY, USA,
2010. Association for Computing Machinery. doi:10.1145/1869542.1869592.

Gabriél Konat. Language-Parametric Methods for Developing Interactive Programming Systems.
PhD thesis, Delft University of Technology, Delft, Netherlands, November 2019.

Gabriél Konat, Lennart Kats, Guido Wachsmuth, and Eelco Visser. Declarative name binding
and scope rules. In Software Language Engineering, 5th International Conference, SLE 2012,
Dresden, Germany, September 26-28, 2012, Revised Selected Papers, volume 7745, pages
311-331, January 2013. doi:10.1007/978-3-642-36089-3_18.

Neo4j. Cypher query language, 2022. URL: https://neo4j.com/developer/cypher/.
Oracle. Pgql property graph query language, 2022. URL: https://pgql-lang.org.

Oracle. Pgx documentation, 2022. URL: https://docs.oracle.com/cd/E56133_01/latest/
reference/analytics/pgx-algorithm.html.

Martin Sevenich, Sungpack Hong, Oskar van Rest, Zhe Wu, Jayanta Banerjee, and Hassan
Chafi. Using domain-specific languages for analytic graph databases. Proc. VLDB Endow.,
9(13):1257-1268, September 2016. doi:10.14778/3007263.3007265.

Tinkerpop. Tinkerpop, gremlin, 2022. URL: https://github.com/tinkerpop/gremlin/wiki.
Oskar van Rest, Sungpack Hong, Jinha Kim, Xuming Meng, and Hassan Chafi. Pgql: A
property graph query language. In Proceedings of the Fourth International Workshop on
Graph Data Management Experiences and Systems, GRADES ’16, New York, NY, USA, 2016.
Association for Computing Machinery. doi:10.1145/2960414.2960421.

Eelco Visser. A family of syntax definition formalisms. Technical Report P9706, Programming
Research Group, University of Amsterdam, August 1997.

Eelco Visser. Syntazx Definition for Language Prototyping. PhD thesis, University of Amsterdam,
September 1997.

Guido H. Wachsmuth, Gabriél D. P. Konat, Vlad A. Vergu, Danny M. Groenewegen, and
Eelco Visser. A language independent task engine for incremental name and type analysis. In
Martin Erwig, Richard F. Paige, and Eric Van Wyk, editors, Software Language Engineering,
pages 260280, Cham, 2013. Springer International Publishing.

https://doi.org/10.1145/2150976.2151013
https://doi.org/10.1145/2150976.2151013
https://doi.org/10.1145/1869542.1869592
https://doi.org/10.1007/978-3-642-36089-3_18
https://neo4j.com/developer/cypher/
https://pgql-lang.org
https://docs.oracle.com/cd/E56133_01/latest/reference/analytics/pgx-algorithm.html
https://docs.oracle.com/cd/E56133_01/latest/reference/analytics/pgx-algorithm.html
https://doi.org/10.14778/3007263.3007265
https://github.com/tinkerpop/gremlin/wiki
https://doi.org/10.1145/2960414.2960421

	1 Introduction
	2 Domain-Specific Language Processors for Graph Analytics
	3 Software (Language) Engineering for Graph Analytics
	4 Conclusion

