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Abstract
Some problems are considered solved by the research community. But are they really and does that
mean we should stop investigating them? In this essay, I argue that “solved” problems often only
appear solved on the surface, while fundamental open research problems lurk below the surface. It
requires dedicated researchers to discover those open problems by applying the existing solutions
and putting them to the test.
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1 Introduction

A considerable part of programming-language research is about solving problems. Usually,
these problems are motivated through an actual or hypothetical application scenario, where
the application of a certain programming methodology or technology is inhibited. Scientific
progress then results from removing this inhibitor and solving the corresponding problem,
which was unsolved until then. This approach of solving unsolved problems is ubiquitous in
programming-language research, meaning it is reputable and highly regarded by the scientific
community.

This essay does not aim to challenge the value of solving unsolved problems. If anything,
the author of this essay is a proponent of this approach to research. However, an excessive
focus on unsolved problems can be a disservice to our field, because many “solved” problems
are in need of further research.

So what is a solved problem? Or better, when does the programming-languages community
usually consider a problem to be solved? As I am not aware of any existing definition or
systematic investigation of this question, I try to provide a useful definition based on my
personal perspective.

Solved Problem: A problem is solved if industry-strength implementations of the solution
exist, the solutions have been applied in practice many times, and there are no obvious
theoretical challenges remaining.

At first glance, it may seem like solved problems are exactly that: solved. Indeed, solved
problems can often be recognized by the lack of interest within the research community.
And while a focus on unsolved problems may promise faster scientific progress, all scientific
progress is good and there is progress to made on many solved problems.
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Many solved problems have imperfect solutions. And these imperfections may not be
easy to spot. Rather, it sometimes requires years of experience with a problem and heavy
experimentation with the status-quo solution to recognize its shortcomings. And it can be
difficult to convince the scientific community that new research results are needed. Not
many people carry the necessary drive for perfection and the required perseverance to find a
solution as elegant as possible. I was fortunate enough to observe and work with one who
inhabited these treats like no other: Eelco Visser.

This essay is going to analyze what made Eelco Visser’s research on solved problems so
successful. Specifically, we will look at two problems that are solved according to the above
definition: parsing and type checking. I will discuss why the community considers these
problems to be solved, and why we have seen significant scientific progress in recent years
nonetheless. That is, how can a problem be solved and unsolved at the same time? Finally,
I will reflect on the research strategy that led to the discovery of imperfections in existing
solutions and to the pursuit of elegance in new solutions. What can we learn from this to
better embrace research on “solved” problems in our research community?

2 The Case of Parsing

Parsing is a solved problem according to the above definition: There are various industry-
strength parsing algorithms and parser generators such as Bison or ANTLR . These and
other implementations have been applied in practice many times. And there are no obvious
theoretical challenges that remain. Thus, by all means, parsing is a solved problem. Or is it?

While parsing may seem a solved problem on the surface, experts in the field regularly
discover and resolve fundamental limitations. For example, consider ambiguous context-free
grammars. A context-free grammar is ambiguous if it permits multiple derivations for a single
word. Ambiguous grammars occur naturally when declaring the syntax of programming
languages, for example, due to operator precedence. The traditional (i.e., old-school) way
of resolving such ambiguities is by disambiguation of the grammar. That is, the developer
rewrites the grammar and introduces auxiliary non-terminals to ensure only the desired tree
can be built. The necessary transformation has been taught to compiler students for decades,
and it is an obvious nuisance.

Workarounds like the manual grammar rewriting are symptomatic for “solved” problems,
because they highlight the shortcomings of existing solutions. It seems that shortcomings like
this are often regarded as engineering issues rather than research problems by the scientific
community. And it takes researchers with a strive for perfection to dedicate themselves to
finding elegant solutions to these shortcomings nonetheless. Only in retrospect, it becomes
clear that there were research problems to be solved all along.

The problem of ambiguities in context-free grammars was an evident shortcoming of parser
generators. In the 1970s, researchers proposed a solution based on disambiguation annotations
such as left for left-associativity and right for right-associativity, and operator priorities to
resolve operator precedence [9, 2]. Developers can add disambiguation annotations to their
grammar to disambiguate the grammar declaratively. Klint and Visser [14, 21] provided
a generalized semantics to such annotations based on parse-tree filtering. Disambiguation
annotations were supported in the original SDF framework [12], adopted by Visser in his
parsing framework SDF2 [22], and later adopted by other approaches such as ANTLR. And
with that, the problem of parsing was considered solved again.

Only much later did parsing researchers discover that the problem of ambiguous grammars
was, in fact, not actually solved. Afroozeh et al. found that it was not possible to specify a
grammar for OCaml with the available parsing technology [1]. While the previously supported
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disambiguation only supports shallow priority conflicts, the new research suggested that
real-world languages involve deep priority conflicts to be solved by disambiguation [1, 7]. The
new research also showed that these deep priority conflicts occur often enough in practice to
require a general and elegant solution [6]. So yet again, dedicated research teams set out to
solve a “solved” problem.

This section so far has mostly retraced the development of declarative disambiguation in
context-free parsing. But actually, despite parsing being a solved problem, issues with parsing
have been discovered time and again. To name a few, layout-sensitive languages could not be
parsed [11, 5], syntactic errors routinely were considered fatal errors that aborted parsing [3],
performance of generated parsers often are an order of magnitude slower than hand-written
parsers, and incremental parsing remains unattainable for many parser generators.

From this brief discussion, we can conclude that parsing is a “solved” problem that is not
actually solved. Before discussing why this discrepancy exists and what we can do about it,
let us look at another “solved” problem.

3 The Case of Type Checking

In contrast to type theory and type system design, type checking is a solved problem according
to the above definition: There are various industry-strength type checker implementations in
compilers and IDEs. These implementations have been applied in practice many times. And
there are no obvious theoretical challenges that remain. Thus, by all means, type checking is
a solved problem. Or is it?

While type checking may seem a solved problem on the surface, experts in the field
regularly discover and resolve fundamental limitations. For example, consider how to
implement an incremental type checker. A type checker is incremental if it reacts to changes
of the checked source code rather than reanalyzing the entire program. Incremental type
checkers are crucial in production IDEs and routinely used by compilers that support separate
compilation. Nonetheless, a language engineer who wants to implement an incremental type
checker from scratch will find little guidance in the literature.

For example, when the Rust compiler and its type checker were incrementalized, the
language developers decided to transition the entire compiler from a pass-based to a demand-
driven compiler architecture.1 The demand-driven compiler architecture is based on queries
that can depend on each other to form a dependency graph. This compiler and its type
checker can now react to source-code changes. For example, when the return type of a function
changes, this invalidates queries that depended on the old return type. The invalidated
queries are then rerun to produce new type-checking results consistent with the up-to-date
source code.

To the Rust developers the lack of incremental type checking support was an evident
shortcoming in the field. But the question is this: Are we witnessing engineering issues
or are there fundamental research problems to be addressed by the scientific community?
For incremental type checking, a few researchers have been able to repeatedly convince the
programming-language community of the need for a systematic approach to incremental
type checking. Led by Eelco Visser, Wachsmuth et al. [23] presented an incremental task
engine for name and type resolution that was integrated into Spoofax. This approach tracks
dependencies between tasks, invalidates task results when an input changes, and reruns
tasks much like Rust does nowadays. And almost ten years later, Spoofax features a new

1 https://rustc-dev-guide.rust-lang.org/queries/incremental-compilation-in-detail.html
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incremental type checking approach based on scope graphs [24], which the team of Eelco
Visser developed in the meantime. This goes to show what kind of continuity and perseverance
is necessary to develop new solutions for “solved” problems. Other proposed solutions to
incremental type checking include co-contextual typing [10, 15], which rewrites type rules into
a form that entails fewer dependencies between type-checking queries, and the compilation of
type rules to an incremental Datalog [18], which offloads the incrementalization challenges to
incremental Datalog solvers. Only in retrospect, it has become clear that incremental type
checking imposes fundamental research problems to be solved.

Beside type checker performance, there are other issues in type checking whose funda-
mental challenges are gradually becoming more apparent. One of the issues is type-aware
editor services, such as code completion. In the state of the art, editor services are developed
independent of the language semantics, leading to ad-hoc implementations, development
overhead, and potential inconsistencies. Recently, researchers are investigating how to sys-
tematically generate type-aware editor services based on the language’s syntax and static
semantics [4, 17, 19]. And some of the above-mentioned research has led to novel foundations
for type checking, such as scope graphs [16] and scope states [20].

In summary, we must acknowledge that type checking is a “solved” problem that is not
actually solved. The subsequent section concludes this essay and proposes a way to embrace
research on “solved” problems.

4 Why and How to Work on Solved Problems

As the cases of parsing and type checking show, problems regularly appear to be solved
when, really, there is plenty of research work to be done. And I think there is a good reason,
why researchers tend to mark problems as solved all too early: We can only discover the
non-obvious imperfections of existing solutions when applying them to realistic workloads,
in realistic contexts, with realistic customers. Of course, this kind of application is hard
work; it is not enough to reach for the low-hanging fruits. When exercising research results
in realistic applications, we must harvest all the fruits, no matter if they are low-hanging or
high up in the tree. Realistic applications help us reveal the high-up research problems that
many people do not even notice.

For example, consider Eelco Visser’s continuous work on and application of the parsing
framework SDF2, which was originally described in his dissertation in 1997 [22]. SDF2 has
been applied over and over again to real-world use cases, tested with actual customers, and
integrated into the language workbench Spoofax [13] in 2010. And only then did the work on
SDF3 start, with the most recent publication stemming from 2020 [8]. Note how the same
research team has worked and published on SDF for more than 20 years. In my experience,
this is extremely rare: Very few research projects in the programming-language community
follow such a long-term trajectory and most research projects are terminated after a few
years only.

So it is no surprise that Eelco Visser ended up working on many solved problems. He had
to solve solved problems because he put the existing solutions to the test. This way, he was
able to observe the shortcomings of those solutions first-hand. And he had that inspiring
drive for elegance and discontent for workarounds that made him strive for finding new and
better ways. His simultaneous success in academia and his strong industrial collaborations
are more than impressive.

So, why and how to work on solved problems? The answer to both questions is the
same: Work on realistic applications. We should work on realistic applications to deliver
research results that are application-ready, in particular for customers without large R&D
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departments of their own. If instead we leave the application to customers, they are driven
away from cutting-edge research results when research problems emerge, defaulting to more
conservative solutions. Finding and resolving such research problems is our job, we should
embrace it.
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