Using Spoofax to Support Online Code Navigation

Peter D. Mosses B &

Delft University of Technology, The Netherlands
Swansea University, UK

—— Abstract

Spoofax is a language workbench. A Spoofax language specification generally includes name

resolution: the analysis of bindings between definitions and references. When browsing code in the
specified language using Spoofax, the bindings appear as hyperlinks, supporting precise name-based
code navigation. However, Spoofax cannot be used for browsing code in online repositories.

This paper is about a toolchain that uses Spoofax to generate hyperlinked twins of code
repositories. These generated artefacts support the same precise code navigation as Spoofax, and can
be browsed online. The technique has been prototyped on the CBS (Component-Based Semantics)
specification language developed by the PLanCompS project, but could be used on any language
after specifying its name resolution in Spoofax.

2012 ACM Subject Classification Information systems — Web interfaces; Software and its engineer-
ing — Integrated and visual development environments; Software and its engineering — Development
frameworks and environments

Keywords and phrases Spoofax language workbench, name resolution, precise code navigation
Digital Object Identifier 10.4230/0ASIcs.EVCS.2023.21

Funding The work reported here is part of the PLanCompS project, which was funded by an EPSRC
grant to Swansea University from 2011 to 2015 (EP/1032495/1) in collaboration with colleagues at
Royal Holloway University of London and City University in London.

Acknowledgements Eelco Visser (1966-2022) was a visionary leader. For more than two decades,
I have benefited greatly from reading his persuasive publications, listening to his animated presenta-
tions, and discussing topics of common interest with him — especially modular language specification.
Since 2012, I have also been an enthusiastic user of the Spoofax language workbench, developed by
Eelco and his Programming Languages group at TU Delft. This paper reports on some work that
I carried out as a visitor at TU Delft since 2016. I am grateful to the reviewers of a previous version

for helpful comments and suggestions.

1 Introduction

Programming languages (including domain-specific languages (DSLs)) usually allow defini-
tions of named entities, and references to entities via their names.

1.1 Code Navigation

In a GitHub Blog post [4], Douglas Creager explains the concept of code navigation based on
names:

Code navigation is a family of features that let you explore the relationships in your
code and its dependencies at a deep level. The most basic code navigation features
are “jump to definition” and “find all references.” Both build on the fact that names
are pervasive in the code that we write.

Although “jump to definition” sounds simple enough, the difficulty of its specification and
implementation depends highly on the code language. The determination of the bindings
between definitions and references is called name resolution; different languages often have
quite different rules for it.
?Peter D. Mosses;) .

37 icensed under Creative Commons License CC-BY 4.0

Eelco Visser Commemorative Symposium (EVCS 2023).
Editors: Ralf Lammel, Peter D. Mosses, and Friedrich Steimann; Article No. 21; pp. 21:1-21:12

\\v OpenAccess Series in Informatics
OASICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:p.d.mosses@tudelft.nl
https://pdmosses.github.io/
https://orcid.org/0000-0002-5826-7520
https://doi.org/10.4230/OASIcs.EVCS.2023.21
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

21:2

Using Spoofax to Support Online Code Navigation

Name resolution can significantly complicate searching for the definition of a particular
name when using an ordinary browser or editor. For example, a language may allow references
to a name from other files than the file containing the definition; it may also allow the same
name to be defined more than once, possibly with shadowing. For such languages, simple
project-wide searches for the definition of a specific name, or for all references to that name,
may be imprecise, and return unhelpful false positives.

Eelco Visser led the development of three declarative meta-languages for specifying name
resolution: NaBL [11], NaBL2 [19, 25], and Statix [20, 22, 26, 27]. The Spoofax language
workbench [8, 10, 31] implements name resolution for any language whose rules are specified
in one of these meta-languages. When browsing a file in the specified language, Spoofax
equips each reference to a defined name with a hyperlink; clicking on the hyperlink moves
the cursor directly to the referenced definition. If the definition is in a different file from the
reference, Spoofax automatically opens an editing window on that file. Similarly, Spoofax
equips each definition with the list of hyperlinks to all the current references to it. These
hyperlinks are precise, and provide reliable support for code navigation.

The languages whose name resolution rules have been specified and implemented in
Spoofax include:

the main Spoofax meta-languages: SDF2, SDF3, Stratego, NaBL, NabL2, Statix, DynSem,

Dynamix;

DSLs used in the production of various software systems: currently WebDSL, IceDust,

Green-Marl, PGQL, and LeQuest;

languages used in Computer Science courses: MiniJava, Jasmin, Tiger, PAPL;

demonstration languages provided in MetaBorg [14]: SIMPL, QL/QLS, Grace, a subset

of Go, MetaC, and Pascal; and

specification languages developed for other purposes, such as CBS [17] (a meta-language

for component-based semantics).

Spoofax users can exploit the hyperlinks between definitions and references to navigate local
clones of code repositories in the above languages; but when accessing the same repositories
online, those hyperlinks are not available.

1.2 Browsing online code repositories

Suppose that we find a code repository online, and we would like to browse it with precise
name-based code navigation using the Spoofax language workbench. Spoofax can only be
used to browse local files, so we need to download or clone the repository. We also need to
find and download a Spoofax language project for each language used in the code repository
(except for the main Spoofax meta-languages). After building those language projects in
Spoofax, we can finally browse the cloned repository with precise code navigation.

The necessity of downloading the code repository and the required language projects
surely discourages browsing. Moreover, the Spoofax language workbench is currently available
only for use in Eclipse and IntelliJ IDEA; users not familiar with either of those IDEs may be
reluctant to install them just for browsing some code repository. And users behind company
firewalls might not even be allowed to install such 3rd-party software as Spoofax.

Ideally, an online code repository would support precise name-based navigation in standard
web browsers, without the need to download any files or install new software. The rest of
this paper explains how to do that, using Spoofax itself:

Section 2 gives an overview of a repository that supports precise name-based navigation

from references to definitions in web browsers.

P. D. Mosses

Section 3 presents the Spoofax language project that created the same name-based
navigation for local use.

Section 4 explains how that navigation is made available in web browsers, using a toolchain
that combines Spoofax with some standard applications to create “hyperlinked twins” of
unlinked code repositories.

Section 5 relates the Spoofax-based approach to some other approaches that provide
name-based code navigation in web browsers.

Section 6 concludes with suggestions for further development of the presented approach.

2 The CBS-beta Repository

CBS [1] is a meta-language for component-based semantics, developed in the PLanCompS
project [21]. See previous publications [3, 17, 28, 29] for motivation, foundations, and explan-
ations of CBS. The CBS-beta repository provides a beta-release of language specifications
using CBS. It has two main parts

Funcons-beta: A proposal for an initial library of so-called fundamental programming

constructs (funcons).

Languages-beta: Examples of language specifications based on the funcons in Funcons-beta.
(Two further parts are marked as “unstable”, and still being developed.)

2.1 CBS specifications

Funcons [18] are reusable components: the same funcon can be used, unchanged, in the
specifications of many different languages. Funcons correspond closely to concepts of high-
level programming languages such as data and control flow, scopes of bindings, mutable
variables, streams, abrupt termination, procedural abstraction, etc.

A funcon definition declares the name of the funcon, and specifies its signature: the types
of its arguments (if any), and of the value(s) that it returns. The definition also specifies
small-step operational semantics rules for evaluating the funcon.

Funcon names are strongly suggestive of the corresponding concepts. The Funcons-beta
library defines about 400 funcons. Many of the funcon names are quite long, but have short
aliases (e.g., “allocate-initialised-variable” has the alias “alloc-init”).

Funcons are to have fized definitions, so no version control will be needed for their safe
reuse in CBS language specifications. Crucially, adding new funcons does not require any
changes to the definitions of existing funcons, thanks to the use of a modular variant of
structural operational semantics (MSOS) [15] in CBS.

Apart from illustrating the use of CBS, the aim of the beta-release of CBS and its initial
library of funcons was to allow a public review of the definitions, and subsequent adoption of
suggestions for improvement, before their finalisation in a full release. The funcon definitions
in Funcons-beta have all been validated by empirical testing. The Funcons-beta library has
also been found useful in the iCoLa meta-language for incremental (meta-)programming [5].

A language specification in CBS resembles a conventional denotational semantics: it
defines the language syntax by a context-free grammar, and it defines semantic functions —
mapping phrases in the language to their denotations — by equations. In CBS, the denotations
are simply compositions of funcons, instead of higher-order functions.

Languages-beta provides the beta-release of five examples of language specifications in
CBS, based on the funcon definitions in Funcons-beta. The examples range from a small
introductory example to a substantial sub-language of OCaml.

21:3

EVCS 2023

21:4 Using Spoofax to Support Online Code Navigation

Table 1 Browsing a local clone of the CBS-beta repository in Spoofax.

Funcon
scope(_:environments, _:=>T) : =>T
/%

‘scope(D,X)" executes 'D° with the current bindings, to compute an environment
‘Rho’ representing local bindings. It then executes “X° to compute the result,
with the current bindings extended by ‘Rho*, which may shadow or hide previous
bindings.

‘closed(scope(Rho, X)) ensures that "X can reference only the bindings
provided by "Rho’.

*/
Rule

environment(mgp—gverride(Rhol, Rho0)) |- X ——> X'

environment(Rho®) |- scope(Rhol:environments, X) —-—> scope(Rhol, X')
Rule

scope(_:environments, V:T) ~> V

Each language specification is independent, and (implicitly) imports all the funcons that
it references. Regarding name resolution, the Funcons-beta library corresponds to a single
module or package, and users do not need to be aware of the internal file structure of the
library.

When browsing funcon definitions and language specifications, precise name-based nav-
igation from references to definitions is essential. Section 3 presents a Spoofax language
project for CBS that supports such navigation when using Spoofax to browse a local clone of
CBS-beta. Table 1 shows how the definition of the funcon “scope” looks in Spoofax. Apart
from the first (defining) occurrence of “scope”, all the names in it are references, equipped
with hyperlinks to the respective definitions.

2.2 Browsing CBS-beta online

The CBS sources of the specifications in CBS-beta are available in a repository on GitHub.

Table 2 shows how the same definition as in Table 1 looks when browsing the CBS sources

on GitHub. The text has no hyperlinks, with no support at all for name-based navigation.
However, the CBS-beta repository also contains the sources of an associated website,

which includes hyperlinked twins of each CBS source file. This website is served by GitHub

Pages at https://plancomps.github.io/CBS-beta/.

The hyperlinked twins of a CBS source file are in the following formats.

PLAIN: In this format, the web page displays a verbatim copy' of the source file. Table 3
shows how the same definition as before looks in the PLAIN format. Names are highlighted:
different colours distinguish between names of funcons, syntax sorts, semantic functions,
and meta-variables. References are hyperlinked to declarations.

PRETTY: In this format, the web page displays CBS with mathematical typography (as in
published articles about CBS). Table 4 shows how the same definition as before looks in
the PRETTY format. As in the PLAIN format, names are highlighted, and references
are hyperlinked to declarations.

PDF: This format is simply a PDF rendering of the PRETTY web page. Table 5 shows how
the same definition as before looks in the PDF format.

! The PLAIN format deviates from a verbatim copy by using different font styles.

https://plancomps.github.io/CBS-beta/

P. D. Mosses

Table 2 Browsing the CBS-beta repository on GitHub.

157

158 Funcon

159 scope(_:environments, _:=>T) : =>T

160 /x

161 ‘scope(D,X)" executes ‘D' with the current bindings, to compute an environment
162 ‘Rho" representing local bindings. It then executes ‘X' to compute the result,
163 with the current bindings extended by ‘Rho‘, which may shadow or hide previous
164 bindings.

165

166 ‘closed(scope(Rho, X)) ensures that “X' can reference only the bindings

167 provided by “Rho".

168 x/

169 Rule

170 environment(map-override(Rhol, Rho@)) |- X ———> X'

171

172 environment(Rho®) |- scope(Rhol:environments, X) ---> scope(Rhol, X')

173 Rule

174 scope(_:environments, V:T) ~> V

175

The PLAIN and PRETTY hyperlinked twins of a CBS source file include links to each other,
to the PDF twin, and to the source file on GitHub.

CBS specifications may include informal text as comments, with embedded references to
names. In the source files, comments are enclosed in /*...*/, and embedded references in
back-ticks; in the hyperlinked twins, the comments are displayed as running text, and the
formal CBS specifications are displayed as code blocks.

Section 4 explains how Spoofax is used to generate the hyperlinked twins from the CBS
source files.

3 A Spoofax Language Project for CBS

The author has developed a Spoofax language project for CBS. It specifies the syntax of CBS

using the meta-language SDF3. Spoofax generates a parser from the SDF3 specification.

When a CBS source file is opened, Spoofax creates an editor window for the text, and
automatically re-parses the text each time it is edited.

Spoofax uses syntax highlighting to display well-formed phrases; when an edit introduces
an error, Spoofax moves the cursor to the source of the error. Spoofax also warns about any
phrases that have ambiguous parses.

The syntax of CBS is simpler than that of typical high-level programming languages, and
its specification in SDF3 was reasonably straightforward. Unusually, comments are included
in ASTs, and formal terms can be embedded in comments (enclosed in back-ticks, as in
Markdown).

The CBS language project specifies name resolution using the meta-language NaBL2
[19, 25]. Name resolution in CBS involves checking that all referenced names of each sort
(syntax, semantics, funcons) are declared uniquely. Type analysis checks that semantic
functions are applied only to the sort of syntax argument specified in their signatures, and
that funcons are applied only to the expected number of arguments. However, the analysis of
a CBS specification involves the analysis of the entire funcons library, and the implementation
of NaBL2 is non-incremental, so re-analysis needs to be suspended while editing even a small
CBS source file. (See Section 6 for how to address this drawback.)

21:5

EVCS 2023

21:6 Using Spoofax to Support Online Code Navigation

Table 3 Browsing a PLAIN hyperlinked twin.

CBS-beta

scope(_:environments, _:=>T) : =>T
PLAIN ~ scope(D,X) executes p with the current bindings, to compute an environment Rho
Funcons-beta ~ representing local bindings. It then executes x to compute the result, with the current
bindings extended by rho, which may shadow or hide previous bindings.

Computations ~
Normal N closed(scope(Rho, X)) ensures that x can reference only the bindings provided by Rrho.
Flowing
Giving
i environment(map-override(Rho;, Rhog)) |- X ——> X~
Binding
Generating environment(Rhoy) |- scope(Rho;:environments, X) -——> scope(Rho;, X')
Storing
Linking scope(_:environments, V:T) ~> V

Table 4 Browsing a PRETTY hyperlinked twin.

0

Py ———

CBS-beta scope(_ : environments, _: = T):=T
J . - h
PRETTY a3 scope(D, X) executes D with the current bindings, to compute an environment p
Funcons-beta ~ representing local bindings. It then executes X to compute the result, with the
) current bindings extended by p, which may shadow or hide previous bindings.
Computations A~
Normal ~ closed(scope(p, X)) ensures that X can reference only the bindings provided by p .
Flowing ,
environment(map-override(p;, py)) - X — X
Givi
i environment(p,) - scope(p; : environments, X) — scope(p;, X')
AREITE scope(_ : environments, V : T) ~» V
Generating

Table 5 Browsing a PDF hyperlinked twin.

scope(-: environments,_: = T) : =T

scope(D, X) executes D with the current bindings, to compute an environment p representing local
bindings. It then executes X to compute the result, with the current bindings extended by p, which
may shadow or hide previous bindings.

closed(scope(p, X)) ensures that X can reference only the bindings provided by p.

environment(map-override(p1, po)) F X — X’

environment(pg) F scope(p; : environments, X) —» scope(p1, X')

scope(_ : environments, V' : T) ~» V

P. D. Mosses

Figure 1 Generation and use of a CBS-IDE based on Spoofax and external tools [16].

The CBS language project also supports generation of parsers and translators from
language specifications. It transforms the context-free grammar of a language specification in
CBS to the corresponding SDF3 grammar; it transforms the equations defining the semantic
functions to corresponding rewrite rules in Stratego. The resulting language project can
parse programs in the specified language, then translate the programs to funcon terms.

External tools (implemented originally in Prolog, and subsequently in Haskell [28]) support
evaluation of funcon terms according to the rules that define the funcons, thereby testing
whether the rules specify the expected results. Moreover, the combination of these external
tools with the Spoofax language project generated from a language specification allows
programs in the specified language to be run according to their translation to funcons; this
tests the translation rules as well as the rules from the funcon definitions. Figure 1 gives
an overview of the tool chain; see reference [16] for further details. Running the semantics
on suites of test programs, using artefacts generated automatically from the semantics, can
reveal subtle errors, as well as eliminating trivial mistakes [9].

4 Generation of Hyperlinked Twins

This section explains how to provide the same name-based code navigation in web browsers
as in Spoofax. It uses a toolchain that combines Spoofax with some standard applications
to produce hyperlinked twins of CBS source files: web pages displaying the same content as
the source files, but with the addition of hyperlinks from references to declarations. The
web pages also add syntax highlighting, corresponding to that provided by Spoofax when
browsing CBS source files locally.

The CBS language project generates hyperlinked twins of CBS source files in three
formats: PLAIN, PRETTY, and PDF. For each format, Stratego rules specify a recursive
traversal of the analysed AST of the source file, generating strings in the kramdown markup
language (a variant of Markdown) [12]. The NaBL2 API for Stratego provides strategies to
test whether a node of the AST is a declaration or a reference; and when name resolution
has determined the declaration to which a reference refers, the API also provides the path of
the file that contains the declaration.

21:7

EVCS 2023

21:8

Using Spoofax to Support Online Code Navigation

Recall that CBS specifications may include informal text as comments. In the source
files, comments are enclosed in /*. . .*/; the hyperlinked twins display comments as running
text, and kramdown determines the layout. Embedded references to names in comments
become (highlighted) hyperlinks to declarations. The formal parts of the CBS specifications
are displayed as code blocks.

4.1 PLAIN format

The PLAIN format preserves the layout (indentation, line breaks) of the CBS specification
by enclosing it in a pre-formatted HTML element (<pre>), which is rendered by browsers
with a fixed-width font. References and declarations in CBS generate anchor elements
(<a>) in HTML. Syntax highlighting is produced by HTML span elements. The static site
generator Jekyll [6] renders the generated kramdown file (prefixed with some meta-data) on
the CBS-beta website.

The PLAIN format shows how to write CBS in source files, and the correspondence
between a source file and the hyperlinked web page is direct. However, CBS is based on
mathematical notation from denotational and operational semantics, and publications about
CBS generally display specifications with mathematical typography. The PLAIN format
represents an inference rule by a sequence of dashes between the the premises and the
conclusion; and it represents a labelled transition by enclosing the label in -- and ->. Some
of the other approximations of mathematical symbols by ASCII characters are similarly
indirect, as well as inelegant. The PRETTY and PDF formats address those issues.

4.2 PRETTY format

For the PRETTY format, the Spoofax language project for CBS generates X TEX math-mode
markup from the analysed ASTs of CBS source files. The kramdown variant of Markdown
allows such blocks, but leaves their rendering to math typesetting libraries such as KaTeX [7]
and MathJax [13].

To avoid dependence on low-level details of the I TEX commands supported by KaTeX
and MathJax, the author has developed CBS-LaTeX [2], a small XTEX package for CBS
specifications. When CBS is marked up using the commands defined by the package, WTEX
formatting produces mathematical typography, suitable for inclusion in published articles.
CBS-LaTeX also includes KaTeX and MathJax configurations that produce similar-looking
results from the same TEX mark-up when embedded in web pages.

Markup using CBS-LaTeX is quite low-level; this makes it easy to adjust the layout to fit
the intended page width, but tedious to write. The markup generated by the CBS language
project includes line breaks in places where they should enhance readability; it also respects
the line breaks in formulae in the source files.

4.3 PDF format

For the PDF format, kramdown takes the Markdown with I#TEX math blocks used for the
PRETTY format, and converts the Markdown to text-mode KXTEX. Using the CBS-LaTeX
package, pdflatex then produces a PDF document where the layout and formatting match
the rendering of the PRETTY web page in the browser.

P. D. Mosses
*.html\ Jekyll
Spoofax.
gen-html
*.cbs < h
wontml | — JeRYIL L oppnny
Spoofax. | ttex +KaTeX
gen-math Jekyll+
~ kramdown

—

Figure 2 Generation of hyperlinked twins using Spoofax and external tools.

4.4 Offline generation

Although the definitions of funcons are to be fixed (after the finalisation of Funcons-beta)
their grouping in files may change. Moreover, the informal comments that motivate and
explain the funcons are not definitive, and can change. The Spoofax language project for
CBS provides buttons to update the generated Markdown files when needed, and GitHub
Pages automatically rebuilds the CBS-beta website when changes are pushed to the CBS-beta
repository. However, Spoofax can be used offline: the application Sunshine2 [24] can open
Spoofax in Eclipse, build a specific project, and execute the actions attached to buttons.
Offline regeneration of all outdated files has been automated using a Makefile.

Figure 2 summarises the toolchains used to generate the PLAIN, PRETTY, and PDF
hyperlinked twins of CBS source files.

5 Related Approaches

The generation of websites from Literate Agda specifications provided the initial inspiration
for a hyperlinked twin of the CBS source files. In particular, the online book Programming
Language Foundations in Agda [32] was generated from Literate Agda sources, with name
references hyperlinked to definitions. Agda is an indentation-sensitive language, so the
generated HTML respects layout in the same way as the PLAIN format on the CBS-beta
website. Literate Agda allows informal text to be marked up in Markdown. One difference is
that Agda source files make extensive use of Unicode characters, in contrast to the ASCII
approximation to mathematical notation used in CBS source files. The implementation of
Literate Agda uses pandoc to convert Markdown to HTML, analogously to how the CBS-beta
website uses kramdown.

GitHub currently supports search-based code navigation for files in 10 languages: C#,
CodeQL, Elixir, Go, Java, JavaScript, PHP, Python, Ruby, and TypeScript. Searching for
the definition of a referenced name may return irrelevant results; similarly when searching
for all references to a particular definition of a name.

GitHub also supports precise code navigation for Python. The name resolution is

based on stack-graphs [4], which are closely related to the scope graphs used in Spoofax.

Understandably, GitHub is focusing its support for precise code navigation on languages that
are widely used in its repositories. The cited reference states:

21:9

EVCS 2023

https://agda.readthedocs.io/en/latest/tools/literate-programming.html

21:10 Using Spoofax to Support Online Code Navigation

Over the coming months, we will add stack graph support for additional languages,
allowing us to show precise code navigation results for them as well. Our stack-graphs
library is open source and builds on the Tree-sitter ecosystem of parsers. We will also
be publishing information on how language communities can self-serve stack graph
support for their languages, should they wish to.

In principle, it should be possible to migrate the grammar for CBS from SDF3 to Tree-sitter,
and the name resolution rules for CBS from NaBL2 to stack-graphs. But it appears that
doing that would not provide code navigation in CBS repositories on GitHub.

An alternative approach would be to implement CBS support for the Language Server
Protocol (which is not currently incorporated in Spoofax). Then web-enabled IDEs (e.g.,
Visual Studio Code [30]) would be able browse CBS repositories both locally and online.
Name resolution for CBS would need to be implemented in a code indexing format such
as LSIF or SCIP [23]. That might be straightforward for CBS (due to the uniqueness and
global visibility of funcons in Funcons-beta) but perhaps not for the Spoofax meta-languages
and the other languages that have already been specified in Spoofax.

6 Conclusion and Future Work

Spoofax has been used in toolchains to generate the PLAIN, PRETTY, and PDF hyperlinked
twins of the specifications in the CBS-beta repository. It could be used in the same way for
any other repository of specifications in the CBS-beta language, after setting up a Jekyll
website in it.

In the CBS-beta repository, each language in Languages-beta is a separate Spoofax
language project, with a symbolic link to the Funcons-beta project. On GitHub, other
repositories could include Funcons-beta as a submodule, to make the funcon definitions
locally available and avoid the need for inter-repository name resolution.

It should be straightforward to generate PLAIN hyperlinked twins of specifications
written in the Spoofax meta-languages (SDF3, Statix, etc.), since name resolution for those
languages has already been specified in Spoofax. The tree-to-string traversal is specified
generically in Stratego for nodes that define or reference names; adding syntax highlighting
involves inserting further HTML markup for the relevant nodes, but other nodes generate
strings uniformly. To generate PRETTY and PDF twins would require transformation to
combinations of Markdown and ETEX math blocks.

The techniques presented here might be useful for online code navigation also in small
programming languages (including DSLs) and specification languages when their syntax and
name resolution can be easily specified in Spoofax. For other languages, the alternative
techniques to support code navigation discussed in Section 5 may be preferred.

To be able to jump straight to the definition of a funcon from all references to its name is
the most important feature of name-based navigation in CBS-beta specifications. Currently,
the generated hyperlinked twins do not support finding all references to definitions. The list
of all references to a definition is available in the analysed AST, and displayed by Spoofax
when browsing the definition; it could be displayed in the same way in the PLAIN and
PRETTY twins, but it is unclear how to display it in the PDF twin.

The author is planning to re-specify name resolution for CBS-beta in the Statix meta-
language. Statix has an incremental implementation, which will avoid repeatedly re-analysing
the Funcons-beta project while editing a language specification. This should remove the
main source of inefficiency with interactive use of the current Spoofax language project for
CBS-beta, in preparation for a release of the CBS-beta language project as an Eclipse plugin.

https://tree-sitter.github.io/

P. D. Mosses

—— References

1

10

11

12

13

14
15

16

17

CBS-beta. A framework and meta-language for component-based specification of programming
languages, accessed 2023-01-30. URL: https://plancomps.github.io/CBS-beta/.
CBS-LaTeX. A LaTeX package for CBS specifications, accessed 2023-01-30. URL: https:
//plancomps.github.io/cbs-latex/.

Martin Churchill, Peter D. Mosses, Neil Sculthorpe, and Paolo Torrini. Reusable components
of semantic specifications. LNCS Trans. Aspect Oriented Softw. Dev., 12:132-179, 2015.
doi:10.1007/978-3-662-46734-3_4.

Douglas Creager. Introducing stack graphs. GitHub Blog, 2021. URL: https://github.blog/
2021-12-09-introducing-stack-graphs/.

Damian Frolich and L. Thomas van Binsbergen. iCoLa: A compositional meta-language
with support for incremental language development. In Bernd Fischer, Lola Burgueiio, and
Walter Cazzola, editors, Proceedings of the 15th ACM SIGPLAN International Conference
on Software Language Engineering, SLE 2022, Auckland, New Zealand, December 6-7, 2022,
pages 202-215. ACM, 2022. doi:10.1145/3567512.3567529.

Jekyll. A static site generator, accessed 2023-01-30. URL: https://jekyllrb.com.

KaTeX. A math typesetting library for the web, accessed 2023-01-30. URL: https://katex.

org/.

Lennart C. L. Kats and Eelco Visser. The Spoofax language workbench. In William R.
Cook, Siobhan Clarke, and Martin C. Rinard, editors, Companion to the 25th Annual ACM
SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and Applications,
OOPSLA 2010, October 17-21, 2010, Reno/Tahoe, Nevada, USA, pages 237-238. ACM, 2010.
doi:10.1145/1869542.1869592.

Casey Klein, John Clements, Christos Dimoulas, Carl Eastlund, Matthias Felleisen, Matthew
Flatt, Jay A. McCarthy, Jon Rafkind, Sam Tobin-Hochstadt, and Robert Bruce Findler. Run
your research: on the effectiveness of lightweight mechanization. In John Field and Michael
Hicks, editors, Proceedings of the 89th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL 2012, Philadelphia, Pennsylvania, USA, January 22-28, 2012,
pages 285-296. ACM, 2012. doi:10.1145/2103656.2103691.

Gabriél Konat, Sebastian Erdweg, and Eelco Visser. Bootstrapping domain-specific meta-
languages in language workbenches. In Bernd Fischer and Ina Schaefer, editors, Proceedings
of the 2016 ACM SIGPLAN International Conference on Generative Programming: Concepts
and Ezxperiences, GPCE 2016, Amsterdam, The Netherlands, October 31 - November 1, 2016,
pages 47-58. ACM, 2016. doi:10.1145/2993236.2993242.

Gabriél D. P. Konat, Lennart C. L. Kats, Guido Wachsmuth, and Eelco Visser. Declarative
name binding and scope rules. In Krzysztof Czarnecki and Gérel Hedin, editors, Software
Language Engineering, 5th International Conference, SLE 2012, Dresden, Germany, September
26-28, 2012, Revised Selected Papers, volume 7745 of Lecture Notes in Computer Science,
pages 311-331. Springer, 2012. doi:10.1007/978-3-642-36089-3_18.

kramdown. A library for parsing and converting a superset of Markdown, accessed 2023-01-30.
URL: https://kramdown.gettalong.org.

MathJax. A JavaScript display engine for mathematics, accessed 2023-01-30. URL: https:
//mathjax.org/.

MetaBorg. GitHub organisation, accessed 2023-01-30. URL: https://github.com/metaborg.
Peter D. Mosses. Modular structural operational semantics. J. Log. Algebraic Methods
Program., 60-61:195-228, 2004. doi:10.1016/j.jlap.2004.03.008.

Peter D. Mosses. A component-based formal language workbench. In Rosemary Monahan,
Virgile Prevosto, and José Proenga, editors, Proceedings Fifth Workshop on Formal Integrated
Development Environment, F-IDEQFM 2019, Porto, Portugal, 7th October 2019, volume 310
of EPTCS, pages 29-34, 2019. doi:10.4204/EPTCS.310.4.

Peter D. Mosses. Software meta-language engineering and CBS. J. Comput. Lang., 50:39-48,
2019. doi:10.1016/j.jv1c.2018.11.003.

21:11

EVCS 2023

https://plancomps.github.io/CBS-beta/
https://plancomps.github.io/cbs-latex/
https://plancomps.github.io/cbs-latex/
https://doi.org/10.1007/978-3-662-46734-3_4
https://github.blog/2021-12-09-introducing-stack-graphs/
https://github.blog/2021-12-09-introducing-stack-graphs/
https://doi.org/10.1145/3567512.3567529
https://jekyllrb.com
https://katex.org/
https://katex.org/
https://doi.org/10.1145/1869542.1869592
https://doi.org/10.1145/2103656.2103691
https://doi.org/10.1145/2993236.2993242
https://doi.org/10.1007/978-3-642-36089-3_18
https://kramdown.gettalong.org
https://mathjax.org/
https://mathjax.org/
https://github.com/metaborg
https://doi.org/10.1016/j.jlap.2004.03.008
https://doi.org/10.4204/EPTCS.310.4
https://doi.org/10.1016/j.jvlc.2018.11.003

21:12

Using Spoofax to Support Online Code Navigation

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

Peter D. Mosses. Fundamental constructs in programming languages. In Tiziana Margaria
and Bernhard Steffen, editors, Leveraging Applications of Formal Methods, Verification and
Validation - 10th International Symposium on Leveraging Applications of Formal Methods,
ISoLA 2021, Rhodes, Greece, October 17-29, 2021, Proceedings, volume 13036 of Lecture Notes
in Computer Science, pages 296-321. Springer, 2021. doi:10.1007/978-3-030-89159-6_19.
Pierre Neron, Andrew P. Tolmach, Eelco Visser, and Guido Wachsmuth. A theory of name
resolution. In Jan Vitek, editor, Programming Languages and Systems - 24th FEuropean
Symposium on Programming, ESOP 2015, London, UK, April 11-18, 2015. Proceedings,
volume 9032 of Lecture Notes in Computer Science, pages 205-231. Springer, 2015. doi:
10.1007/978-3-662-46669-8_9.

Daniél A. A. Pelsmaeker, Hendrik van Antwerpen, and Eelco Visser. Towards language-
parametric semantic editor services based on declarative type system specifications. In
Alastair F. Donaldson, editor, 33rd Furopean Conference on Object-Oriented Programming,
ECOOP 2019, July 15-19, 2019, London, United Kingdom, volume 134 of LIPIcs, pages
26:1-26:18. Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, 2019. doi:10.4230/LIPIcs.
ECO0P.2019.26.

PLanCompS: Programming language components and specifications. Home page, accessed
2023-01-30. URL: https://plancomps.github.io.

Arjen Rouvoet, Hendrik van Antwerpen, Casper Bach Poulsen, Robbert Krebbers, and Eelco
Visser. Knowing when to ask: sound scheduling of name resolution in type checkers derived
from declarative specifications. Proc. ACM Program. Lang., 4(OOPSLA):180:1-180:28, 2020.
doi:10.1145/3428248.

SCIP Code Intelligence Protocol. Sourcegraph Blog post, accessed 2023-01-30. URL: https:
//about.sourcegraph.com/blog/announcing-scip.

spoofax-sunshine. An application for running Spoofax, accessed 2023-01-30. URL: https:
//github.com/metaborg/spoofax-sunshine.

Hendrik van Antwerpen, Pierre Neron, Andrew P. Tolmach, Eelco Visser, and Guido Wachs-
muth. A constraint language for static semantic analysis based on scope graphs. In Martin
Erwig and Tiark Rompf, editors, Proceedings of the 2016 ACM SIGPLAN Workshop on Partial
Evaluation and Program Manipulation, PEPM 2016, St. Petersburg, FL, USA, January 20 -
22, 2016, pages 49-60. ACM, 2016. doi:10.1145/2847538.2847543.

Hendrik van Antwerpen, Casper Bach Poulsen, Arjen Rouvoet, and Eelco Visser. Scopes as
types. Proc. ACM Program. Lang., 2(OOPSLA):114:1-114:30, 2018. doi:10.1145/3276484.
Hendrik van Antwerpen and Eelco Visser. Scope states: Guarding safety of name resolution
in parallel type checkers. In Anders Mgller and Manu Sridharan, editors, 35th European Con-
ference on Object-Oriented Programming, ECOOP 2021, July 11-17, 2021, Aarhus, Denmark,
volume 194 of LIPIcs, pages 1:1-1:29. Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik,
2021. doi:10.4230/LIPIcs.EC0O0P.2021.1.

L. Thomas van Binsbergen, Peter D. Mosses, and Neil Sculthorpe. Executable component-
based semantics. J. Log. Algebraic Methods Program., 103:184-212, 2019. doi:10.1016/j.
jlamp.2018.12.004.

L. Thomas van Binsbergen, Neil Sculthorpe, and Peter D. Mosses. Tool support for component-
based semantics. In Lidia Fuentes, Don S. Batory, and Krzysztof Czarnecki, editors, Companion
Proceedings of the 15th International Conference on Modularity, Malaga, Spain, March 1/ -
18, 2016, pages 8-11. ACM, 2016. doi:10.1145/2892664.2893464.

Visual Studio Code: Language server extension guide. Visual Studio Code API, ac-
cessed 2023-01-30. URL: https://code.visualstudio.com/api/language-extensions/
language-server—extension-guide.

Guido Wachsmuth, Gabriél D. P. Konat, and Eelco Visser. Language design with the Spoofax
language workbench. IEEE Softw., 31(5):35-43, 2014. doi:10.1109/MS.2014.100.

Philip Wadler, Wen Kokke, and Jeremy G. Siek. Programming Language Foundations in Agda.
Online book, August 2022. URL: https://plfa.inf.ed.ac.uk/22.08/.

https://doi.org/10.1007/978-3-030-89159-6_19
https://doi.org/10.1007/978-3-662-46669-8_9
https://doi.org/10.1007/978-3-662-46669-8_9
https://doi.org/10.4230/LIPIcs.ECOOP.2019.26
https://doi.org/10.4230/LIPIcs.ECOOP.2019.26
https://plancomps.github.io
https://doi.org/10.1145/3428248
https://about.sourcegraph.com/blog/announcing-scip
https://about.sourcegraph.com/blog/announcing-scip
https://github.com/metaborg/spoofax-sunshine
https://github.com/metaborg/spoofax-sunshine
https://doi.org/10.1145/2847538.2847543
https://doi.org/10.1145/3276484
https://doi.org/10.4230/LIPIcs.ECOOP.2021.1
https://doi.org/10.1016/j.jlamp.2018.12.004
https://doi.org/10.1016/j.jlamp.2018.12.004
https://doi.org/10.1145/2892664.2893464
https://code.visualstudio.com/api/language-extensions/language-server-extension-guide
https://code.visualstudio.com/api/language-extensions/language-server-extension-guide
https://doi.org/10.1109/MS.2014.100
https://plfa.inf.ed.ac.uk/22.08/

	1 Introduction
	1.1 Code Navigation
	1.2 Browsing online code repositories

	2 The CBS-beta Repository
	2.1 CBS specifications
	2.2 Browsing CBS-beta online

	3 A Spoofax Language Project for CBS
	4 Generation of Hyperlinked Twins
	4.1 PLAIN format
	4.2 PRETTY format
	4.3 PDF format
	4.4 Offline generation

	5 Related Approaches
	6 Conclusion and Future Work

