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—— Abstract

Semantics engineering tools like Redex can be used to define, explore, and debug formal definitions
of programming language semantics. However, such tools are often based on abstract syntax, which
makes the definition of rules and the exploration of execution traces rather unfriendly. In this paper
we introduce CREDEX, a library in the Rascal meta-programming language for defining small-step
evaluation-context semantics, where terms and matching patterns are what-you-see-is-what-you-get.
CREDEX employs parsing for decomposing terms into context and redex. Since Rascal’s grammar
formalism is based on general parsing, a non-unique decomposition of a term literally corresponds to
an ambiguous parse. We demonstrate the use of CREDEX, detail some aspects of its implementation,
and discuss three case-studies.
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1 Introduction

Operational semantics with evaluation contexts [10] is a popular framework to define the
semantics of programming languages using rewriting rules. The use of contexts to separate
traversal from the actual reduction rules leads to concise and modular definitions.

Specifications of formal semantics come to life by making them executable. It has been
observed that semantic specifications could form central artifacts in language engineering [11].
Tools such as as Redex [9,18] and K [23] allow language designers to explore, inspect, test,
and debug their language designs. Redex, for instance, has been instrumental to uncover
numerous bugs in published formal definitions [13]. Both K and Redex have been used to
formalize realistic (subsets of) programming languages (e.g., [5,17]).

Language workbenches [7, 8] such as Rascal [16] and Spoofax [12] offer integrated meta-
formalisms and IDE services dedicated to the principled design and implementation of
software languages. Nevertheless, most of the existing language workbenches lack support for
semantics engineering. Although the ASF+SDF Meta-Environment was based on algebraic
specification and term rewriting, and both Spoofax and Rascal inherited those features,
this means that the default style of defining a semantics is through definitional interpreters,
which are limited to big-step evaluation, and do not facilitate the exploration and debugging
offered by, e.g., Redex. The recent work on DYNSEM [26] aims to bridge the gap between
interpreters and formal semantics, but still stays close to natural, big-step semantics.

In this paper we present CREDEX, a framework for defining executable semantics, in the
small-step style of Redex. CREDEX’s main selling points are: it is based on concrete syntax,
rather than abstract syntax (e.g., prefix notation, or s-expressions), and, because CREDEX
is a library in Rascal, it integrates very well with the other language workbench features
of Rascal. CREDEX is novel in its (rather unconventional) use of parsing and (ambiguous)
parse forests to drive the reduction process.
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FEelco Visser has always been a syntax person. His PhD thesis centered around syntax
definition using SDF. He published many papers about concrete syntaxr embedding, parsing,
and syntax definition after that. Recently, he had ventured into dynamic semantics as well.
CREDEX combines all of these strands of research.

2 Overview

Structural operational semantics in the style of Plotkin [21,22] is based on rewriting (or
reduction) of syntactic terms, where each rewrite step corresponds to a small-step execution
step. The execution of a term is finished when it reduces to a value or no further rules apply
(the term is “stuck”). A common slogan heard in this context is “everything is syntax”,
because both results (values) and auxiliar entities (stores, environments) are represented
syntactically.

Ordinary operational semantics involves defining reduction rules that merely traverse the
term until a redex is found “where something happens”. Operational semantics with evaluation
contexts (also known as context-sensitive reduction semantics) avoids this boilerplate by
defining a context grammar, which captures the traversal through a term separately. For a
syntactic sort e, a context grammar could look like this:

e == exe|le—el|n

E == O|E[dxe]|Elex0] | E[0—¢]| E[n—0]

The nonterminal E defines patterns of terms where the box [ represents a placeholder
for a term to be plugged in. In this case the contexts define out-of-order evaluation for
multiplication, and left-to-right evaluation for subtraction. Operational semantics with
evaluation contexts works by first splitting a term into a context E[ | and a redex (ocurring
at the placeholder position). When a redex has been reduced, it is plugged back into the
context and execution continues. The reduction rules only need to be defined for the redexes,
thus avoiding a lot of boilerplate.

Tools like Redex implement this process of splitting/plugging on top of abstract syntax
definitions. As a result, both the specifications and visualization tools employ s-expression
notation to write and display terms. Systems like Rascal and Spoofax support meta-
programming with concrete syntax (as pioneered by ASF4SDF [15]), which has some distinct
benefits:

Pattern matching with concrete syntax is WYSIWYG: object-level terms in the meta-

program read like literal object language expressions.

If terms are internally represented as concrete syntax trees, then rendering a term to

object-language syntax is literally for free; no need for pretty printers.

Concrete syntax trees can be transformed while maintaining layout information, thus

making the display of intermediate and final results more human-friendly.

If a concrete syntax grammar is already available to obtain a parser for a language, why

not reuse it for the definition of a semantics?

CREDEX takes these considerations to heart: it starts with the actual concrete syntax
grammar (as defined in Rascal), and then allows it to be modularly extended with a concrete
context grammar. This second grammar drives the splitting process through the derived
parser. Although the link between context-redex decomposition and context-free grammars
has been made before [27], as far as the author is aware, CREDEX is the first tool to actually
perform decomposition through parsing, and to leverage the potentially ambiguous parse
forest for representing non-unique decompositions. Below we introduce CREDEX using an
example.
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syntax Expr syntax E
= Num ="("E")"
| bracket " (" Expr ")" E "*" Expr
| assoc Expr "*" Expr Expr "*" E
> left Expr "-" Expr E "-" Expr

@redex " (" Num ")"
@redex Num "*" Num
@redex Num "-" Num;

lexical Num

|
|
|
H | Num "-"
|
|
= [\-1?[1-9][0-9]* | [0] ; |

Figure 1 Specifying concrete syntax (left) and concrete evaluation contexts (right).

3 Credex by example

3.1 Defining contexts

The left-hand side of Figure 1 shows a simple expression grammar in Rascal’s built-in
grammar formalism. The definition of whitespace is omitted, but it is implicitly included
inbetween the symbols of a syntax declaration. An Expr is defined as a literal number, a
bracketed expression, multiplication (which is associative), and subtraction (which has lower
precedence than multiplication due to the use of > instead of |). The last line of the grammar
defines the lexical syntax of numbers using character classes and regular expressions.

The right-hand side of the figure shows a context grammar for expression contexts, which
are conventionally named e. The way to read such a grammar is by viewing the occurrences
of E as directions for tree traversal. So, in the first alternative, the only way to go, is inside
the parentheses. For multiplication, the traversal can proceed either down the left-hand
side or down the right-hand side, as indicated by two productions having  at the left-hand
side, or at the right-hand side, respectively. Note that this is a language design decision: we
are defining here that the evaluation order of multiplication is arbitrary. For subtraction,
however, the two productions are asymmetric: only after having evaluated the left-hand
side to a number (Num) can evaluation continue in the right-hand side. This enforces strict
left-to-right evaluation for subtraction.

Finally, the grammar includes three productions annotated with eredex, to indicate sub-
terms that are “interesting”, and can be reduced are part of a step. In other words, these
productions describe the sub-trees where the traversal via the E nonterminal should stop.
Note that the context grammar (trivially) does not generate the original language, because
there is no e-production to generate a single Num, which is a valid expression. This makes
intuitive sense, however, since numbers are irreduceable.

3.2 Splitting Through Parsing

Splitting in CREDEX works as follows: the process starts with a (parsed, non-ambiguous)
term over the object language (e.g., of type Expr). The term is then unparsed to text, and
parsed again, but this time over the context grammar (e.g., £). This returns a (possibly
ambiguous) parse forest, where certain sub-nodes are annotated with @redex. Split analyzes
the parse forest, and produces a list of pairs corresponding to the contexts and redexes. The
context is a parse-tree where the redex sub-node has been replaced with a designated place
holder “[J”. Every ambiguity in the forest adds another context-redex pair.

Let’s say we have the term (1 - 2) * (2 - 3). Calling split on this term gives us a non-
unique decomposition: 1) (O) * (2 - 3), with redex 1 - 2, or 2) (1 - 2) * (O), with redex
2 - 3. This corresponds to the definition of the contexts for multiplication: it’s allowed to
first evaluate the left-hand side, or the right-hand side.

29:3
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CR red("par", E e, (E)‘(<Num n>)‘) = {<e, (Expr)‘<Num n>‘>};

CR red("mul", E e, (E)‘<Num nl> * <Num n2>‘) = {<e, [Expr]"<toInt(nl) * toInt(n2)>">};
CR red("sub", E e, (E)‘<Num nl> - <Num n2>‘) = {<e, [Expr]"<toInt(nl) - toInt(n2)>">};
default CR red(str , E , Tree ) = {}; // we’re stuck or done.

RR applyExpr(Expr e) = apply(#E, #Expr, red, e, {"mul", "sub", "par"});

Figure 2 Reduction rules for the expression language.

Changing the example term to (1 - 2) - (2 - 3), however, produces just a single decompo-
sition: (O) - (2 - 3), with redex 1 - 2, because, according to the context grammar, evaluating
subtraction needs to start at the left-hand side. Things are not that simple, however, because
of accidental ambiguities in the context grammar that we are unaware of, but we will address
this problem in Section 3.4. Let’s first look at how to specify reduction rules.

3.3 Specifying Reduction Rules

Reduction rules are specified as a case-based Rascal function, conventionally named red
(short for “reduce”). The rules for the expression language are shown in Figure 2. Note that
Rascal functions dispatch based on the patterns of their arguments, with the benefit that
CREDEX specifications are modularly extensible by simpling adding additional cases for new
combinations of syntax.

The first argument of red matches on is a literal string constant, acting as a rule label.
The second argument is the context (in this case of type E). The third argument employs
concrete syntax matching on E-contexts, where the part between backticks captures the redex.
Note that this pattern is not a string, but tree pattern expressed in the concrete grammar of
the object language, where fish-angle brackets are used to introduce (typed) pattern variables,
such as <Num n>.

The result type of red, is (R a binary relation type associating a (possibly) modified
context to a reduct!. Each case of red matches on a rule label (e.g., mul), the input context,
and the redex. Observe that the rules employ concrete syntax matching (the parts between
backticks) as defined by the context grammar, and note that the rules only match on syntax
annotated with eredex. The mul and sub rules both use the [Expr] parsing-operator to create
new expressions from the result of multiplication and subtraction, respectively.

The helper function applyexpr is used to have a term perform a single step, according to
the set of rules identified by the set of labels provided to the generic function apply. The
apply (Figure 3) function uses the reified types (#€ and #Expr) to perform splitting?. It then
iterates over the set of rule labels, tries invoking the red function, and unions the result(s).
The result type, RR, is a relation from rule-label to terms, capturing which steps the input
term e could have performed and with what result.

3.4 Eliminating Spurious Ambiguities

Let’s return to splitting a term by parsing using the context grammars. In the above examples
we got precisely the decompositions that we had wantend: two for the multiplication, and
one for subtraction. If we consider the term 1 - 2 - 3, however, a naive splitting according
to the grammar of Figure 1, will result in two decompositions: O - 3 with redex 1 - 2, and
1 - O, with redex 2 - 3, which is incorrect.

1 In a sense we use the relation type as an option type. We could have used Rascal’s Maybe type, but the
curly braces incur less syntactic noise than just-constructors.
2 Reified types are Rascal’s reflection system; think of #E as similar to E.class in Java.
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rel[str,Tree] apply(type[Tree] C, type[Treel T, CR(str,Tree,Tree) red, Tree t, set[str] rules) {
result = {};
for (<ctx, rx> < split(C, T, t)) {
for(l < rules) {
for (<ctx2, rt> < red(l, ctx, rx)) {
result += {<l, plug(ctx2, rt)>};
b
}
}

return result;

}
Figure 3 Pseudocode for apply.

syntax E
= "(" E "*" Expr ")"
G G-I R
| (" Bxpr = E )"
| “(* Num "-" E ")"
| “(" E "-" Expr ")"
| @redex "(" Num “-" Num ")"
| @redex "(" Num "*" Num ")"
| @redex "(" "(" Num ")" ")";

Figure 4 Parenthesization.

The reason is that the associativity (e.g., left) and priority annotations used to disam-
biguate the base grammar, do not transfer to the context grammars. The term 1 - 2 - 3 has
two derivations, one through E "-" Expr, where E derives Num "-" Num, and one through Num "-*
E, where E again derives Num "-" Num. Although the original term had not been ambiguous, it
became ambiguous when it was unparsed to text, and reparsed over the context-grammar.

A solution lies in how humans disambiguate expressions: by adding parentheses. This
time, however, the parentheses are needed everywhere, since we do not know about the
meaning of the terms. The process is illustrated in Figure 5. The starting point is a
base grammar L.g, which is used to parse an L-program Foo.L, resulting in a parse tree
(indicated by triangles). The context grammar, L+Ctx.g extends the base grammar, and is
automatically® transformed into a parenthesized grammar [19], (L+Ctx).g. The parse tree for
Foo.L is unparsed with parentheses, then reparsed with (L+Ctx).g, leading to a parse forest
Foo.(L+Ctx); after removal of the parentheses we obtain a parse forest Foo.L+Ctx, as if it
had been parsed over L+Ctx.g, but without the spurious ambiguities. The parenthesizing of
the example expression context-grammar is shown in Figure 4, using the special parentheses
(and ).

When split decomposes such a parenthesized term using the parenthesized context
grammar as the recipe, spurious ambiguities resulting from missing associativity and priority
annotations (so-called horizontal ambiguities [4]) are avoided. This is illustrated in Table 1,
where the result of splitting before and after parenthesization is shown. Splitting the first
term, (1 - 2) * (2 - 3), still produces the (desired) two decompositions. But the second term,
1 - 2 - 3, now produces the one and only correct decomposition after parenthesizing. The
specifications are not polluted by parenthesization, however, as the example specifications
below will demonstrate.

3 This is again an application of Rascal’s type reflection capabilities.
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Table 1 Difference between splitting before and after parenthesizing.

Input Before Parenthesized

0)) * (2 -3)) [1 - 2]

(1-2)*2-3) (1-2)*@][2-3
(

@+ @-3 -2 (-2 (@) -3
1-2-3 O-3[1-2] {0y - 3)[1- 2]
1-071[ - 3
I_g 4__€X_tf’_“{___ L+Ctxg parenthesize <L+Ctx>g
parse (unparse) parse unparenthesize
Fool | ——— E— Foo(L) | —— -

Figure 5 Avoiding spurious ambiguities by parenthesizing context grammars.

4 Example Credex Definitions

4.1 Lambda Calculus

Figure 6 shows the syntax (left) and semantics (right) of the call-by-value lambda calculus.
The syntax makes a distinction between expressions (variables, values, and applications), and
values (functions, numbers, and the built-in function +). The context grammar g declares a
single context, indicating left-to-right evaluation of a sequence of expressions. Note how E
“moves” through the sequence by having a prefix of value* and a suffix of Expr*. There is only
a single redex production: an application of a value to zero or more argument values.

The semantics of lambda calculus is defined using two reduction rules, one for addition, and
one for function application. The first rule (+) simply performs the addition of two numbers
and produces an equivalent expression as a result. The rule for S-reduction substitutes the
argument for the parameter of the lambda abstraction using the subst function. In turn,
this subst function (not shown) reuses the generic capture-avoiding substitution facilities of
CREDEX (inspired by [6]).

Consider the term ((A (x) (+ x 2)) ((A (x) (+ x 2)) 1)). CREDEX comes with a helper
function to display the execution trace. The result of the example term is as follows:

((h (x) (+ x2)) ((A(x) (+ x2)) 1))
(O (%) (+ x2)) (A (x) (+x2)) 1)) =B= ((A (x) (+x2)) (+12))
L (A (x) (+x2)) (+12)) = ((A(x) (+x2)) 3)
(A (x) (+x2)) 3) =B~ (+32)
L(+32) -5

Note that the rendered terms are rendered in the object syntax of the lambda calculus itself*.

Here’s term to illustrate capture-avoiding substitution: ((A (x) (A (y) x)) (A (2) y)).
The variable y is free in the top-level argument, so a naive syntactic substitution would cause
capturing. But the result is as follows:

4 The sequential trace is rendered in an indented fashion to allow for branching in the trace; see Section 4.2.
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syntax Expr syntax E
= var: Id = "(" Value* E Expr* ")"
| val: Value | @redex "(" Value Value* ")";

| app: "(" Expr+ ")";
CR red("+", E e, (E)‘(+ <Num nl> <Num n2>)‘)

syntax Value = {<e, [Exprl"<toInt(nl) + toInt(n2)>">};
= 'Lam: ||(|| ||>\|| u(u Id ||)|| EXpl‘ ||)||
| \num: Num CR red("B", E e, (E)‘((A (<Id x>) <Expr b>) <Value v>)‘)
| add: "+"; = {<e, subst((Expr)‘<Id x>‘, (Expr)‘<Value v>‘, b)>};

Figure 6 Syntax (left) and semantics (right) of the call-by-value lambda calculus.

(A (x) (A (y) (+y x))) (A (2) y))
L (x) (A (y) (+y x))) (A (2) y)) =B~ (A (y_) (+y_ (A (2) y)))
Note how both occurrences of y are renamed to avoid capture.

The substitution facility offered by CREDEX is parameterized by name analysis of the
object language using an embedded Rascal DSL to modularly and concisely express binding
relations between declarations and variables. The resulting reference graph is used to detect
capturing and rename variables accordingly, similar to the technique of Erdweg et al. [6].

Since Rascal’s module system allows extension of both context-free grammars and func-
tions specified in the pattern-based dispatch style (like the function red), semantic speci-
fications using CREDEX can be modularly extended as well. As an example, consider the
extension of the lambda calculus with calt/cc . This would consist of a module extending
the base-level semantics containing the following code:

syntax Value = "call/cc";

CR red("callcc", E e, (E)‘(call/cc <Value v>)‘)
= {<e, (Expr)‘(<Value v> (A (<Id x>) <Expr cc>))‘>}
when
Id x := fresh((Id)‘x‘, e),
Expr cc := plug(#Expr, e, (Expr)‘<Id x>‘);

The first line extends the syntax of values with the primitive calt/cc (it is not a redefinition
of value). The reduction rule labeled catllcc extends the red function with the semantics of
call-with-current-continuation. Additionally, this shows how contexts can be embedded into
terms to model continuations. The result of calling call/cc with a function as argument is to
call that function with a lambda modeling the current continuation, cc, which is constructed
by plugging a fresh variable x into the E context e. The helper function fresh creates an
unique new variable x relative to the context itself. Here’s a trace showing call/cc in action:

(+ 1 (call/ec (A (k) (k 2))))
L (+ 1 (call/cc (A (K) (k 2)))) —callce~ (+ 1 ((A (K) (k 2)) (A (x) (+ 1 x))))
Lo+ 1 ((A (k) (k2)) (A (x) (+1x)))) B> (+1 ((A(x) (+1x)) 2))
L(+1(A(x (+1x)2) B> (+1(+12))
L(+1(+12) = (+13)
L (+13) = 4

4.2 Imp: a Simple Imperative Language

ImP is a simple imperative language consisting of arithmetic expressions, boolean expressions,
and statements (if-then-else, while, assignment, skip). Its semantics requires a mutable store,
which is modeled syntactically as shown in Figure 7. state defines the store as a sequence
of zero or more varInt pairs (mapping identifiers to integers), separated by commas. A
configuration conf is defined as statement stmt under a certain state. Configurations are the
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syntax State = "[" {VarInt ","}* "1"; syntax S
syntax VarInt = Id "—" Int; =Id ":=" A
syntax Conf = State "F" Stmt; | seq: S ";" Stmt
| "if" B "then" Stmt "else" Stmt "fi"
syntax C = State "F" S; | @hole "skip" ";" Stmt
| @hole "if" Bool "then" Stmt "else" Stmt "fi"
| @hole "while" BExp "do" Stmt "od"
| @hole Id ":=" Int;

Figure 7 Stores and configurations (left) and statement contexts (right).

CR red("seq", C c, (S)‘skip; <Stmt s2>‘) = {<c, s2>};
CR red("if-true", C c, (S)‘if true then <Stmt s1> else <Stmt s2> fi‘) =
CR red("if-false", C c, (S)‘if false then <Stmt s1> else <Stmt s2> fi‘)
CR red("while", C c, (S)‘while <BExp b> do <Stmt s> od‘)

= {<c, (Stmt)‘if <BExp b> then <Stmt s>; while <BExp b> do <Stmt s> od else skip fi‘>};
CR red("assign", C c, (S)‘<Id x> := <Int i>‘) = {<c[state=s2], (Stmt)‘skip‘>}

when isDefined(x, c.state), State s2 := update(x, i, c.state);

{<c, s1>};
= {<c, s2>};

Figure 8 Statement reduction rules for the simple, imperative IMP language.

top-level terms that will be rewritten. The rule for context ¢ simply declares that traversal
should always go into the statement part, modeled by context s, which further defines the
evaluation order of statements, where A and B represent contexts for arithmetic expressions
and boolean expressions respectively.

The reduction rules for the imperative fragment of IMP are shown in Figure 8. The rule
for sequencing states that the skip statement can be skipped, and execution proceeds with
the right-hand side s2. The rules for if-then-else reduce to their respective branches based on
value of their conditions. The semantics of while-loops is expressed in terms of if-then-else
and another while-loop. Finally, assignment to a variable x updates the context itself, to
record the updated value of x in the current state, and then reduces to skip. Here’s the
reduction trace of x := 1; y := x + 2; if x <= y then x := x + y else y := 0 fi:

[x-0,y »0] + x:=1; y:=x+2; if x<=y then x:=x+y else y:=0 fi
L [x-0,y »0] + x:=1; y:=x+2; if x<=y then x:=x+y else y:=0 fi —assign- [x » 1, y »@0] + skip; y:=x+2; if x<=y then x:=x+y else y:=0 fi
L [xw» 1, y »0] + skip; y:=x+2; if x<=y then x:=x+y else y:=0 fi —seq» [x » 1, y »0]  y:=x+2; if x<=y then x:=x+y else y:=0 fi
L [x » 1, y »0] + y:=x+2; if x<=y then x:=x+y else y:=0 fi —lookup» [x » 1, y »@] + y:=1+2; if x<=y then x:=x+y else y:=0 fi
L [x » 1, y »0] - y:=1+2; if x<=y then x:=x+y else y:=0 fi —add-» [x » 1, y »@] + y:=3; if x<=y then x:=x+y else y:=0 fi
[x » 1, y »@] + y:=3; if x<=y then x:=x+y else y:=0 fi —assign- [x » 1, y » 3] + skip; if x<=y then x:=x+y else y:=0 fi
L [xw» 1, y » 3] + skip; if x<=y then x:=x+y else y:=0 fi —seq~» [x » 1, y » 3] + if x<=y then x:=x+y else y:=0 fi
L [x» 1, y» 3] - if x<=y then x:=x+y else y:=0 fi —lookup~» [x » 1, y » 3] + if 1<=y then x:=x+y else y:=0 fi
L 1, y » 3] + if 1<=y then x:=x+y else y:=0 fi —lookup-» [x » 1, y » 3] + if 1<=3 then x:=x+y else y:=0 fi
1, y » 3] + if 1<=3 then x:=x+y else y:=0 fi —legq~» [x » 1, y » 3] + if true then x:=x+y else y:=0 fi
1, y » 3] + if true then x:=x+y else y:=0 fi —if-true- [x » 1, y » 3] F Xxi=x+y
1, y » 3] + xi=x+y —lookup» [x » 1, y » 3] F x:i=l+y
1, y » 3] + xi=1+y —lookup» [x » 1, y » 3] + x:=143
1, y » 3] - x:=1+3 —add- [x » 1, y » 3] + x:=4
1, y » 3] + x:=4 —assign- [x » 4, y » 3] + skip
 x:=x+y —lookup-» [x » 1, y » 3] + x:=x+3
3] + x:=x+3 —lookup~ [x » 1, y » 3] + x:=143
y » 3] + x:=1+3 —add-» [x » 1, y » 3] + x:=4
1, y » 3] + x:=4 —assign- [x » 4, y » 3] + skip

,
x w1,
Lox»
L oIx

Note how the concrete syntax for the store naturally transfers to rendering of terms.
Note also the split in the execution trace, since IMP does not enforce an evaluation order for
addition. Both branches evaluate to the same configuration, as expected.

4.3 QL: a Language for Questionnaires

The Questionnaire Language (QL) [7,8] is a DSL with a non-standard execution model.
It interesting for three reasons: first, it models an event-based system, a questionnaire form
where users interactively change inputs of values. Second, QL allows declare-after-use of
questions: a computed question may refer to the value of another question occurring later
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// expressions are immediately evaluated to values
CR red("eval", C c, (E)‘<Expr e>‘) = {<c, (Expr)‘<Value val>‘>}
when

value v := eval(e, c.ui), Value val := [Value]"<v>";

// a user action updates the ui state and then expands to a block of statements
// to reconcile the UI with the consequences of the update
CR red("update", C c, (S)‘update(<Id x>, <Value v>)‘)

= {<c[ui=updateVal(c.ui, x, v)], makeBlock(c.gs, c.ui, x)>};

// dealing with unit of statement sequencing
CR red("done", C c, (S){ { } <Stmt* s2>}‘) = {<c, (Stmt)‘{ <Stmt* s2>}‘>};

// updating a question to a value that is the same as the old value is a no-op
CR red("val-same", C c, (S)‘val(<Id x>, <Value v>, <Value old>)‘) = {<c, (Stmt)‘{}‘>}
when old == v;

// otherwise, updating is equivalent to a user action
CR red("val-diff", C c, (S)‘val(<Id x>, <Value v>, <Value old>)‘)
= {<c, (Stmt)‘update(<Id x>, <Value v>)‘>} when old != v;

// updating visibility modifies the UI
CR red("vis", C c, (S)‘vis(<Id x>, <Bool b>)‘) = {<c[ui=updateVis(c.ui, x, b)], (Stmt)‘{}>};

Figure 9 Reduction rules for QL.

in the form. This requires a fixpoint computation in the style of spreadsheets. Finally, the
consequences of user actions are not limited to the state, but also affect the UI; in other
words, the semantic domain is complex.

The core reduction rules for QL are shown in Figure 9. First, QL features expressions for
definining computed questions and conditional visibility of questions. Since such expressions
are semantically rather uninteresting, they are evaluated in one step, using an existing inter-
preter (rule eval). This shows how CREDEX integrates well with other language engineering
components within Rascal.

The semantics starts off with a user action update(x, v) modifying the value of a (non-
computed) question. The reduction rule (update) for this redex expands to a sequence of
derived statements (using makeBlock; not shown), representing the “update plan” according
to the questionaire. Modifications to the state check whether a value did change, and if
so, trigger new update-statements (rules lstlineval-same and val-diff). As result, execution
continues till the state reaches a fixed point.

5 Instead of conclusion

In this short paper we have presented CREDEX, a library in Rascal for defining small-
step semantics. Next to the basics detailed above, CREDEX comes with browser-based
tools for visualizing execution graphs, interactive step-wise debugging, and functionality for
randomized sentence generation. Further research directions include: a precise comparison
to the matching algorithm of Redex [14], and investigating how CREDEX can be combined
with Rascal’s typechecking library, TYPEPAL.

There are many tools out there to define and execute formal semantics (e.g., [1-3,9,20,23-
26], and others). CREDEX is unique in that it takes the basic execution model of Redex (but
using concrete syntax), it is modular from the start, it employs parsing for context-redex
decomposition, and it integrates well with the Rascal language workbench. As such, it brings
semantics engineering a small step closer to language engineering.
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