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Abstract
This report documents the programme and outcomes of Dagstuhl Seminar 22372 “Knowledge
Graphs and their Role in the Knowledge Engineering of the 21st Century” held in September
2022.

The seminar aimed to gain a better understanding of the way knowledge graphs are created,
maintained, and used today, and identify research challenges throughout the knowledge engineering
life cycle, including tasks such as modelling, representation, reasoning, and evolution. The
participants identified directions of research to answer these challenges, which will form the basis
for new methodologies, methods, and tools, applicable to varied AI systems in which knowledge
graphs are used, for instance, in natural language processing, or in information retrieval.

The seminar brought together a snapshot of the knowledge engineering and adjacent com-
munities, including leading experts, academics, practitioners, and rising stars in those fields. It
fulfilled its aims – the participants took inventory of existing and emerging solutions, discussed
open problems and practical challenges, and identified ample opportunities for novel research,
technology transfer, and inter-disciplinary collaborations. Among the topics of discussion were:
designing engineering methodologies for knowledge graphs, integrating large language models and
structured data into knowledge engineering pipelines, neural methods for knowledge engineering,
responsible use of AI in knowledge graph construction, other forms of knowledge representations,
and generating user and developer buy-in. Besides a range of joint publications, hackathons, and
project proposals, the participants suggested joint activities with other scientific communities, in
particular those working on large language models, generative AI, FAccT (fairness, accountability,
transparency), and human-AI interaction.

The discussions were captured in visual summaries thanks to Catherine Allan – you can find
more about her work at https://www.catherineallan.co.uk/. The summaries are arrayed
throughout this report. Lastly, knowledge about the seminar is captured in Wikidata at https:
//www.wikidata.org/wiki/Q113961931
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1 Executive Summary

Marieke van Erp (KNAW Humanities Cluster – Amsterdam, NL)
Elena Simperl (King’s College London – London, GB)
Denny Vrandečić (Wikimedia Foundation – San Francisco, US)
Paul Groth (University of Amsterdam, NL)

License Creative Commons BY 4.0 International license
© Marieke van Erp, Elena Simperl, Denny Vrandečić, and Paul Groth

Knowledge engineering has changed dramatically in the last twenty years. When the organisers
of this seminar were starting out, it used to be about gathering highly curated knowledge
from experts and encoding it into computational representations in knowledge bases. It was
primarily a manual process, focusing more on how knowledge was structured and organised,
for instance, as schemas or ontologies, and less on tying in existing data into that process. The
results were used in expert systems and required considerable up-front investment. Today,
knowledge base construction is a largely automatic process with human-in-the-loop. Owing
to greater availability of data in different modalities and to advances in data management,
machine learning, and crowdsourcing, knowledge bases today incorporate large amounts of
knowledge. Provided access to data and (off-the-shelf) AI capabilities, an organisation can
create a large knowledge base at a fraction of the costs from decades ago. It’s for these reasons
that we see knowledge bases, in particular in the form of knowledge graphs, routinely applied
in anything from search and intelligent assistants to digital twins, supply chain management,
and legal compliance. Many socio-technical challenges remain, which the seminar aimed to
address with a mix of invited talks, deep-dives, and small-group workshops as following:
Landscape review: as the field has changed so much, both in research and practices, it was

important to take inventory of approaches, methods, techniques, and tools by analysing
real-world case studies where knowledge bases and knowledge graphs are created and
used. Participants reflected on core lessons learned, knowledge gaps, and opportunities
to create and maintain knowledge graphs at scale in various domains.

The knowledge graph life cycle: participants discussed extant knowledge engineering
pipelines and identified gaps and connections between knowledge sources and meth-
ods and tools used in the construction and maintenance of knowledge graphs, including
large language models and generative AI systems. There was consensus that we need
a sustained effort to update and upgrade classical ontology engineering methodologies
and develop a prototype infrastructure to make the most of the latest neurosymbolic
technologies and tools. One specific challenge identified during the seminar was around
taking knowledge engineering and knowledge graphs beyond structured data e.g., tables
and information extraction from text to other modalities.

Using AI responsibly: as knowledge graph construction is slowly but surely embracing more
and more sophisticated AI capabilities to scale, it is critical that processes and outcomes
are aligned with fairness, accountability, and transparency guidance and standards.
Solutions need to consider a range of end-users and stakeholders, including those that are
unique to knowledge engineering settings such as domain experts, information scientists
and librarians, and knowledge graph developers. Participants discussed the need for
setting up task-based studies and in-depth analyses of human-centric challenges, and for
developing bespoke explainability solutions and bias and fairness assessments.

Knowledge and technology transfer: knowledge graphs and knowledge engineering do not
exist in isolation. From a research point of view, participants suggested activities to build
capabilities to use the latest neurosymbolic technologies and tools in knowledge graph
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construction, including tutorials, workshops, and hackathons, and to jointly develop
frameworks and methodologies. From an application point of view, it was recognised
that there is a need to promote knowledge graphs to the wider developer community and
communicate their benefits, for instance, alongside neural methods.
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3 Overview of Talks

3.1 Day 1: History, Practices, Lessons Learned

Figure 1 A History of Knowledge Engineering.

3.2 A Brief History of Knowledge Engineering: A Practitioner’s
Perspective

Bradley P. Allen (Merit International, Inc. – Millbrae, US, bradley.p.allen@gmail.com)

License Creative Commons BY 4.0 International license
© Bradley Allen

3.2.1 An Approach to the History of Knowledge Engineering

This talk is an attempt to outline the evolution of the discipline of knowledge engineering
practice over time, draw some lessons from that evolution, and then raise a number of
questions that this seminar is in a position to address, towards the end of defining paths
forward for knowledge engineering with knowledge graphs in the 21st century.

Knowledge engineering as a discipline has changed considerably since its initial flowering
during the period associated with expert systems development during the nineteen-eighties.
If we define knowledge as a set of beliefs that are “(i) true, (ii) certain, [and] (iii) obtained
by a reliable process” [2], we can further define knowledge engineering as the discipline of
building and maintaining processes that produce knowledge. We argue that this gives us a
framework to understand the history of knowledge engineering to date through the evolution
of stated requirements for such knowledge production processes.
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3.2.2 Seventy Years of Evolving Requirements

During the period from 1955 to today, we can identify four distinct periods, each of which
began with the addition of a new set of requirements for knowledge production processes
intended to address perceived shortcomings of systems developed during the preceding period
(see fig. 2).

Figure 2 Seventy years of evolving requirements for knowledge production processes [1, 2, 3, 4, 5,
6, 7, 9, 10, 11, 12, 13].

3.2.2.1 The Dawn of AI

Starting from Ramsey’s simple requirement that such processes be reliable, some of the
earliest work in AI identified the additional requirement that such processes also be effective,
in the sense that they complete in a reasonable amount of time [3]. Newell and Simon
were optimistic about the potential of goal-directed search using heuristics as a general
approach to problem solving to be useful for practical applications, but by the beginning
of the nineteen-seventies, it was clear that such systems were difficult to use in developing
applications that were recognizably more than just toy tasks.

3.2.2.2 The Expert Systems Era

By the mid-seventies, having been deeply involved in attempting to apply Newell and Simon’s
model, Feigenbaum became convinced that automating knowledge production required a
domain-specific focus to succeed [4]. His evangelism of knowledge engineering (a term he
was instrumental in propagating the use of) engendered a period of intense activity in the
construction of expert systems for the purposes of decision support in business enterprise
settings. By the early nineteen-nineties, however, Feigenbaum and others acknowledged that
the expert systems approach resulted in systems that were brittle and hard to maintain.
Without abandoning his requirement that knowledge production be domain-specific in
application focus and thus heavily dependent on subject matter expertise, he argued that
future knowledge-based systems also be scalable, globally distributed, and interoperable to
address these shortcomings [5]. At that point in time, however, there was no consensus
about how such requirements could be addressed, but in retrospect, one can argue that in [5]
Feigenbaum anticipated several aspects of what several years later would come to be known
as the World Wide Web.
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3.2.2.3 The Semantic Web Era

With the establishment of the Web and the emergence of Web architectural principles,
Berners-Lee argued for a “Web of Data” based on linked data principles, standard ontologies,
and data sharing protocols that not only provided an implementation of Feigenbaum’s
requirements, but with a single stroke established Web-centric open standards that anyone
could adopt [6]. The subsequent twenty years witnessed the development of a globally
federated open linked data “cloud”, as well as the refinement of techniques for ontology
engineering (i.e., the development and publishing of shared data schemas with semantics
using linked data principles). Enterprises in particular found better value propositions
for the use of such techniques toward the improvement of access and discovery of Web
content and data, in contrast to the automation of decision making that was the primary
value proposition for knowledge-based systems during the expert systems era [8]. However,
while progress was made in building systems based on such principles, general adoption of
specific principles advocated for by the semantic web community by the broader community
of software developers and web application designers was slow, leading to semantic web
researchers to identify additional requirements for broader adoption, for example that the
core tools and standards used in semantic web application be more developer-friendly and
more directly aligned with software industry norms, and that measures be taken to make
federated open data more robust to noise [9]. Addition focus on improving the effectiveness
of federated query, which proved hard to scale, and on handling the problem of data catalog
incompleteness, all the while maintaining the practical benefits of open source and open
standards led to new requirements towards those ends [11, 12].

3.2.2.4 The Language Model Era

The success of connectionist methods arising from the proliferation of graphical processing
hardware for matrix arithmetic and concurrent innovations in neural network architectures
[14] has led to a new set of possibilities for the production of knowledge graphs. This is an
area that at the time of this writing is difficult to summarize due to the rapid rate of research
publication, but two perspectives on the relation between language models and knowledge
bases have emerged over the last several years. First, that the language model can serve
directly as a knowledge base that is queryable using natural language prompts; secondly,
that a language model can be a useful component in a knowledge production workflow that
combines techniques based on the use of language models together with more traditional
symbolic approaches [13]. Regardless of which of these perspectives is most valid, both are
sure to result in work that will have an impact on the ability to produce and use knowledge
graphs in knowledge engineering work moving forward.

3.2.3 Seventy Years of Lessons Learned

This decades-long evolution of knowledge engineering, bringing us to the current situation
where the production of knowledge as knowledge graphs is gaining industrial acceptance at
the same time as an entirely new paradigm of knowledge production through the use of large
language models may be beginning to emerge, provides us with lessons learned along the
way. In addition to these lessons from the history of knowledge engineering, it is also worth
noting as well that this period also saw the evolution of software engineering best practices
and patterns, as well as the emergence of both the software products and Internet services
industries, and that many of the lessons learned in those contexts can be applied to improve
the practice of knowledge engineering, particularly from a methodological perspective. Below
we call out seven such lessons.
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3.2.3.1 Manually Authored Knowledge from Subject Matter Experts is Precious

The digital library community has long argued that manually-created metadata is of vital
importance in the creation of robust search resources, and much of the development of
the World Wide Web (and continuing on to the Open Linked Data cloud) was informed
by that assumption [15]. The effort of designing ontologies, taxonomies, and entity and
relationship data has historically depended on expensive, labor-intensive manual effort. In
many respects, the work generated by this labor is irreplaceable, and must be treated with
respect. Acknowledging the essential nature of these foundational knowledge resources is not
only important for an understanding of how knowledge is produced, but also to gain a clear
understanding of the labor economics involved in these processes, from both a cost and an
ethical perspective [16].

3.2.3.2 Automatic Generation of Knowledge is Needed for Scale

Automatic generation of knowledge graphs are needed to scale the extraction and production
of knowledge. With the emergence of statistical natural language processing capable of dealing
with training corpora on the order of half a trillion tokens, text available in massive curated
corpora or the Web at large are now a effective source of manually authored knowledge. The
sheer amount of human-authored content across the Web and in hand-crafted ontologies for
linked open data require the automation of the knowledge graph creation process. Automation
can also reduce time-to-market and enable larger and more up-to-date knowledge graphs to
be generated, making knowledge graphs more accessible and useful.

3.2.3.3 Human Curation of Automatically Generated Knowledge is Needed for Trust

While automated systems can produce large knowledge graphs, they are limited in their
ability to interpret and contextualize this output (though with the advent of language models
this may be changing). Human curation is needed to verify that the knowledge graph
production process is accurate. This process of verification is a necessary condition in many
applications for users to be able to trust the knowledge and use it effectively. Additionally,
human curation can provide insights into the data that automated systems may miss, such
as potential ethical implications, biases, and areas for improvement.

3.2.3.4 User Buy-in to the Value Proposition is Essential

The failure of expert systems in delivering value to commercial enterprises can be viewed as
an example of the failure of software product developers to understand users’ needs and to
effectively communicate value propositions to their users [17]. In striving to replace human
decision makers, knowledge engineering in the expert systems era was attempting to solve a
problem that ultimately turned out to be not of great importance to many enterprises. The
Semantic Web era saw a realignment of knowledge engineering with user values by developing
knowledge graphs that supported the needs of organizations to develop ways of guiding their
users to the right sources of knowledge and information.

3.2.3.5 Developer Buy-in is Critical for Adoption of Standards and Tools

Software developer buy-in is critical for the successful adoption of standards and tools in any
given field. Without their buy-in, the standards and tools will not be leveraged correctly
by developers, or at all. We see this in the controversies around the adoption of Semantic
Web standards and tools. In part, some developers are hesitant to use these standards



Paul Groth, Elena Simperl, Marieke van Erp, Denny Vrandečić 69

and tools due to limited support by commercial vendors, and the lack of resources to help
them understand the technology and how to incorporate it into their projects. Without the
buy-in of software developers, knowledge graph standards and tools will continue to lack
widespread adoption. In instances where commercially-useful enterprise knowledge graphs
have been produced, such as Google Knowledge Graph [18], Amazon’s Product Graph [19],
and Wikidata [20], this has led to a reliance on custom architectures and approaches, which
does not address the requirements of interoperability and federation of knowledge resources
identified by Feigenbaum and Berners-Lee [5, 6].

3.2.3.6 Open Source/Access/Standards are a Huge Accelerant for Adoption

Open source/access/standards promote adoption because they make it easier to share,
collaborate, and replicate research. For example, the pace of research and development in the
area of large language models has been greatly accelerated by open source initiatives such
as GPT-3 [21], TensorFlow [22], and PyTorch [23]. Initiatives such as these have provided
researches in both academic and industrial contexts quick and easy access to cutting-edge
tools and datasets, which in turn allows researchers to share, replicate, and collaborate on
research quickly and easily through open access publication platforms such as Arxiv [24]. As
a result, researchers are able to develop more sophisticated models and applications faster
than ever before; this is in contrast with the experience of knowledge engineering in the
expert systems era, which was heavily dependent on proprietary, closed source tools and
technologies, and hence compromised with respect to the speed of innovation and technology
transfer.

3.2.3.7 Failure in the Short Term is Often Followed by Success in the Long Term

It is easy to be disillusioned by the inability to deliver clear benefits out of the early adoption
of technologies that initially seemed to carry significant promise. But often that perception of
failure is due to insufficient time yet invested in working through the challenges of deployment
and adoption. The history of speech recognition is a wonderful example of this. The initial
approaches taken by participants in the ARPA Speech Understanding Research Project of the
mid-nineteen-seventies laid the groundwork for much of what has come to be the statistical
and neural language processing technologies approaching universal adoption today, at levels
of accuracy barely dreamed of by the researchers of the time. At the conclusion of that
effort, however, the evaluation of the project’s result was decidedly mixed, with some expert
evaluators arguing that the effort had in fact been a step backwards for the research area
[25]. This example argues for patience in the effort to demonstrate the benefits of the use
and application of knowledge graphs in knowledge engineering.

3.2.4 The Road Ahead: Questions for the Seminar

This seminar provides us with an opportunity to reflect on the past and come up with a set
of goals for future progress towards the continuing evolution of knowledge engineering. Below
are five questions that we believe need to be addressed to arrive at a robust set of goals.

In what ways does knowledge engineering deliver value today?
Knowledge graphs have demonstrated their ability to improve knowledge access, knowledge
discovery, and heterogeneous data integration. But in many respects these are incremental
improvements over what has been accomplished with software engineering in general.
Can we identify economically and societally important problems either cannot be solved
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without knowledge engineering, or are best solved with it? These problems will give us
the basis for reinforcing the case for the benefits of knowledge engineering, that can be
used to drive further adoption.

What should be the requirements for knowledge production processes?
Best practice in software product development requires us to clearly establish that our
technology choices are properly motivated by our users’ needs. What are we to carry
forward from the cumulative sum of requirements articulated in the body of worked
referenced in fig. 2 above? The requirements for knowledge graph production processes
should include capabilities for data integration from multiple structured sources, data
quality checks, entity resolution, merges and links, query optimization, and natural
language processing. Moreover, the production processes should be automated to enable
efficient updates and maintenance of the knowledge graph. Finally, the production
process should incorporate mechanisms for security and privacy, as well as access control
mechanisms to ensure that the data stays secure and only authorized users have access.
It is worth observing that many of these issues have been explored to date in the more
generic context of data engineering and data science architectures and platforms. To
what extent does knowledge engineering add value to those architectures and platforms,
and how current knowledge engineering and knowledge graphs tools and standards can
be best integrated with them?

Why do we believe that knowledge graphs are a key enabling technology?
A fundamental premise of this seminar is there is a consensus that knowledge graphs are
the preferred representation for knowledge for knowledge engineering. What evidence do
we have for this assertion? Anecdotally, there is a better developer experience associated
with the use of graphs as opposed to, e.g., rules, but what evidence has been gathered to
support this view?

What other enabling technologies are there, and how do they interact with knowledge
graphs?

Large language models show early promise as a enabling technology that can significant
improve and complement knowledge graphs. Can they be harnessed to this end, or
do they instead they present an alternative approach to knowledge engineering? In
addition, graph databases are necessary for the storage and querying of knowledge
graphs, but there is a bifurcation within the community between the use of RDF graphs
and labeled property graphs to represent knowledge graphs. How can we reconcile these
two approaches (for example, as described in [26])?

How can we convince people that knowledge graph engineering is mainstream software
engineering?

Finally, and perhaps most importantly, the majority of software engineering efforts
today do not involve the use of knowledge engineering techniques, even in use cases
where knowledge engineers can see clear benefits to be gained in their use. Knowledge
engineering is still a niche skill set that is unfamiliar to most practicing software engineers.
However, the architectures and methodologies emerging from the commercial applications
of machine learning, data science, and data engineering [27] in many ways borrow heavily
from those developed to support knowledge engineering. How can we better relate
knowledge engineering concepts, tools and methodologies to the industry consensus and
ecosystem that has been established for data engineering and data science platforms, and
drive mainstream adoption in the future?
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I provide a brief historical perspective on significant research contributions and highlight some
key lessons, some of which may be particularly worthy for reflection as we move forward. I
begin with expert systems as a foundational motivating area but I also highlight the evolution
and contributions from the structured object and ontology communities. I also reflect on
the early notion of knowledge engineering as the applied side of artificial intelligence (from
Feigenbaum) and present that notion in the grounding of the 21st century environment. I also
present a range of characteristics as considerations for evaluating if a knowledge engineered
system is “good”.

I then present some perspectives on the our current landscape that may be significantly
different from the past. These include: much greater need for knowledge graph interoperability
(as well, of course, as the needs for compatibility and interoperability with a wide range
of ontologies); The very large linked open data world ; the significantly more diverse
architectures for hybrid AI systems, with large language models as an increasing component;
the increasingly diverse community of co-designers and co-authors of large “smart” data
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portals. I conclude with a set of driving research questions along with a take home message
that process and methodology is becoming even more critical for our field to increase impact
and buy-in.

3.4 Automated Knowledge Graph Construction
Lise Stork (Vrije Universiteit of Amsterda, NL, l.stork@vu.nl)
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Figure 3 Automated Knowledge Graph Construction.

The talk gave an overview of Knowledge Graph Construction (KGC) methods, four big
focus shifts in the development of these methods [1], and sketched some open challenges and
future directions for KGC.

Over the past decade, many methods have been proposed for KGC: human-based collab-
orative or curated approaches in which experts work together to create and curate knowledge
graphs, but also automated approaches, classified broadly into approaches that use a pre-
defined schema for extraction, versus open information extraction (IE) [2, 3]. Tasks become
increasingly harder (i) with less data available for training, (ii) when relationships are in-
creasingly complicated to extract (binary vs n-ary relations) and (iii) the openness of the
task: schema-driven vs open IE.

Methods proposed for KGC have shifted focus from the engineering of features, to the
engineering of model architectures, the engineering of tasks or objectives, to the engineering
of prompts [1]. Before 2013, domain experts used their expertise about a domain to define
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salient textual features to be used in an NLP task. After the rise of Neural Nets, the focus
shifted towards Architecture Engineering: convolutional neural networks as well as recurrent
neural networks such as LSTMs and BiLSTMs were applied in a fully supervised manner,
where features were learned jointly with the supervised classification task.

Around 2017, the power of language models increased, mostly due to the discovery that
proximity in the input is less important than expected, and context is much better represented
when sentences are processed fully, using attention mechanisms [4], instead of sequentially.
Such a method at the same time proved easier to train. Since these models, when trained
on large corpora, appeared powerful enough to be used in a variety of down-stream tasks,
the focus then began to shift towards the fine-tuning of pre-trained LLMs specific tasks
[5, 6, 7, 8, 9].

Lastly, since 2019, it was found that these LLMs are interesting to probe, given that
they have learned a lot of interesting facts. It was hypothesized that LLMs could serve as
knowledge graphs themselves; new ways had to be discovered to query them. Therefore, the
focus shifted towards creating, either manually or algorithmically, prompts in order to get
out the interesting facts these LLMs models had learned, and ‘prompt engineering’ became
an active field of research [1, 10, 11].

Open challenges that were proposed:
1. how to automatically construct “higher-order or higher-ary knowledge”, such as scopes,

context, degrees of belief, confidence, and how to evaluate these;
2. how to deal with n to M relations;
3. how do we integrate LMs in the knowledge engineering pipeline;
4. how to deal with bias, trust and control in LMs as KGs; how to add provenance to

statements in LMs;
5. how to deal with explainability of answers from prompts;
6. how to update facts in LLMs as KGs;
7. what types of knowledge representations do we extract.
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3.5 Day 2 Challenges and Future Directions

Figure 4 Future Directions: Human-Centric Knowledge Graph Construction.
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3.6 Human-Centric Knowledge Engineering: Making Knowledge
Engineering Trustworthy
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Knowledge engineering has changed dramatically since I was doing my PhD. It was always
meant to be and has remained a challenging, inter-disciplinary subject – the question of how
to encode a domain in a computational representation will always be non-trivial and will
require some form of human-in-the-loop. The field has advanced considerably: the knowledge
bases we build today are much larger and more complex than twenty years ago, there are a
range of technologies and end-user tools to support standard tasks, as well as several notable
open-source projects delivering large knowledge graphs that can bootstrap applications
without massive up-front investment. And yet, our understanding of user-centric aspects of
knowledge engineering remains limited. The reasons for this are as often sociotechnical, but
the result is clear: we are not (yet) in a position to fully answer questions like these:

Who are the users?
What are the users’ tasks and goals?
How does a user interact with the knowledge graph?
What are the users’ experience levels with it, or with similar environments?
What functionalities does the user need?
What additional information might the users need, and in what form do they need it?
How does the user think knowledge engineering tools should work?
Is the user multitasking? Are they working on a mobile phone, desktop computer etc?
Does the interface utilise different input modes, such as touch, speech, gestures or
orientation?
How can we support multi-disciplinary teams?
How can we support remote work, decision making, conflict resolution?

Answering such questions will require studies of specific knowledge engineering projects
or tool environments, but would deliver invaluable insights to improve both user experience
and knowledge graph outcomes. In time, it would lead to a culture of user-centric design
and to research advances that are applicable beyond knowledge engineering contexts. with
the recent changes, it is also worth revisiting the surveys and handbooks written a decade
or so ago to deliver up-to-date comparative surveys and tool evaluations, relevant to how
knowledge graphs are built today in terms of scale, complexity, and degree of automation.

Using automation, particularly the latest AI capabilities, raises interesting human-centric
challenges, which other communities such as natural language processing and computer
vision are starting to explore. These are grouped under the banner of trustworthy AI, which
is concerned with questions of transparency, accountability, fairness, human agency and
oversight, and sustainability when AI is used by (or impacts) different groups of people. There
is a large body of work happening right now to define frameworks, guidance, regulation, and
standards for trustworthy AI1 – for instance, the European Commission has proposed seven
dimensions for designing AI systems, shown in Figure 5 and there are many standardisation
activities at national and international levels (e.g. ISO).2

1 For an overview, see e.g., OECD AI Policy Observatory, https://oecd.ai/, visited in September 2022
2 See a list of AI-related ISO standards at https://www.iso.org/committee/6794475/x/catalogue/,

visited in December 2022
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Figure 5 Dimensions of Trustworthy AI according to the European Commission.

Ongoing research in trustworthy AI proposed a core set of methods and best practices to
meet the regulatory requirements of trustworthy AI systems [1]. These include factsheets [2],
model cards [3], canvases,3 explainability methods [4] and fairness and debiasing methods
[5]. Knowledge graphs and knowledge graph construction systems need to build on these
works to ensure the processes we follow and their outcomes can be trusted by end-users and
stakeholders. This includes: the domain expert or business analyst involved in knowledge
acquisition, the knowledge engineer building the knowledge graph construction pipeline,
the crowd worker labelling training data, the developer of downstream applications using
the knowledge graph, for instance in the form of embeddings [6] and the users of those
applications.

In my team we undertook research into knowledge communities such as DBpedia and
Wikidata to understand how different components of trust emerge and propose socio-technical
methods to improve the quality of the knowledge graph and make it more complete, up-to-date
and less biased. The research pursued questions such as:
Do we know how good the data in the knowledge graph is? In [7] we surveyed 28 quality

approaches and methods for Wikidata and proposed a joint framework.
Do we know where the data comes from In [8] and [9] we proposed an AI architecture

with human-in-the-loop to assess quality of triple provenance across five languages.
Do we know how to audit our data to make it less biased? In [10] we proposed a method

to detect content gaps in open knowledge graphs and applied it to three main types of
biases: gender, recency, and socioeconomic biases.

3 For example, the data ethics canvas of the Open Data Institute in the UK, https://theodi.github.
io/interactive-data-ethics-canvas/, visited December 2022
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Do we know how the data came about? Even when automation is at play, knowledge con-
struction is a social process. For this reason, we analysed the link between quality of
knowledge graph entities and the make-up of the editor teams that worked on those
entities [11, 12]

Do we know how the data is used? One application of knowledge graphs is natural lan-
guage processing. In [13] we evaluated a natural language generation system that takes
Wikidata triples and creates Wikipedia articles in different languages. We ran user studies
to understand if and when the presence of automation changes editor perceptions and
practices.

Knowledge engineering remains as exciting of a field as ever, with a range of human-
centric challenges that cannot and should not be overlooked given the advanced in the field
and in related fields such as machine learning, natural language processing, and computer
vision. Looking ahead, I would like to see more work into establishing user-centric design
and empirical methods more firmly into the ways we build our tools and applications. In
particular, we need to ensure the way we make knowledge graphs today is interpretable
and trustworthy, and ongoing research in the area of responsible AI, including transparency,
accountability, and fairness can deliver new impulses for interdisciplinary research.
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3.7 Everything is Expensive
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The creation of ontologies is expensive. It is hard to achieve the initial buy-in from developers,
and often developers are mandated into the use of a specific ontology. This often leads to less
than enthusiastic support. The ontologist often has to ”cat-herd” technical leads and product
managers across several departmenets and organizations. Generating agreements often takes
a long time and many meetings with discussions and not directly tangible outcomes. And
meetings are expensive. Even in Wikidata, property creation is one of the major bottlenecks.

The trouble with triples. Single triples cannot express complex statements (known as
n-ary statement, but also not frames or events). So patterns of triples are required to represent
such complex statements. But for users of a triple store, these are atomic statements. Tools,
user experience, metrics, processes all become much more complex and expensive due to this
mismatch.

Will large language models lead to cheap ontologies? It is expected that a technology-
driven companies there will be an initial surplus of trust in large language models, which may
backfire when these models lead to expensive errors. On the other side, technology-skeptical
organizations such as in journalism or in Wikidata, may start with a deficit of trust, which
may hamper the usage of these technologies. The biggest problem is actually the same as
with handmade ontologies: how to make people understand, commit to, and trust the created
ontologies? The cost is not in creating the ontologies, but the agreement.

Knowledge acquisition is expensive. Once we have the ontology, how do we efficiently
populate it? How do we let humans efficiently check a large amount of data before product
launch? Important are the possibility to sample parts of the knowledge graph, which are
either particularly impactful or particularly interesting. Rules have been very good at
discovering inconsistencies and incompleteness. Machine learning has also been well used to
suggest anomalies.

Knowledge maintenance is expensive. Now that we have large lists of inconsistencies and
incomplete data, what do we do with that? We also need to keep and maintain metadata
about exceptions (because the world is always more complex than your rules). If we allow for
feedback from end users, how do we capture and classify that feedback? If we don’t allow for
feedback, what is the point of the knowledge graph? How do we channel feedback in order
to maintain the knowledge?
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3.8 Tools and User Experience for KG Engineering
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Figure 6 Tools and User Experience.

Today’s knowledge graphs contain a wealth of information. For instance, Wikidata has
billions of statements for millions of notable entities, with recorded provenance and semantic
constraints. In this talk, I ask the question: What are KGs used for and how successfully? I
consider three user profiles: an end user, an AI/DS engineer, and a knowledge engineer.
1) An end user might use knowledge graphs to explore knowledge, browse answers to their
questions, or develop new ideas. These tasks can be supported by browsers, visualization
tools, or tools for textual and faceted search. Key pain pointers from an end-user perspective
are the lack of streamed workflow from high- to micro-level, the lack of user studies, the
ambiguity of interface semantics, and issues with compositionality and data quality.
2) An AI/DS engineer might use knowledge technologies to perform automatic question
answering, recommendation, search, or content enrichment. These tasks can be pursued with
a pipeline of existing tools that perform operations like entity linking, semantic similarity,
lexicalization, and embedding learning. Integrated tools, databases, or libraries allow
developers to perform a set of these operations in the same framework, avoiding the need to
compose different toolkits, formats, and standards themselves. Evaluation dashboards for
tasks like knowledge graph completion and question answering enable fine-grained auditing
of system performance. Pain points for AI engineers include: sparsity of factual and
commonsense knowledge, consistency of ontological knowledge, the lack of decision support
tooling, and potentially outdated knowledge.
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3) A knowledge engineer might contribute or edit new knowledge or provenance, perform
semantic modeling and validation, infer new knowledge, or engineer a new knowledge graph.
Key tools for knowledge engineers include ontology editors, tooling for Wikidata contributors,
and knowledge construction and validation tools. The key pain points for knowledge engineers
are that inference at scale is challenging, identity is hard to establish, different is-a flavors are
difficult to distinguish, the lack of tool integration, and the lack of user studies and logging
practices.

3.9 Social and Technical Biases in Knowledge Graphs
Harald Sack (FIZ Karlsruhe – Leibniz Institute for Information Infrastructure, DE & Karls-
ruhe Institute of Technology (KIT), DE, harald.sack@fiz-karlsruhe.de)
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Figure 7 Biases in Knowledge Graphs.

Knowledge graphs as a key tool for organizing and presenting information in the modern
world constitute networks of interlinked data that help us to make sense of the vast amounts
of information available to us. Once constructed, knowledge graphs are often considered
as “gold standard” data sources that safeguard the correctness of other systems. Thereby,
objectivity and neutrality of the represented information have become an important issue.
Biases inherent to knowledge graphs may become magnified and spread through knowledge
graph based systems. Traditionally, bias can be defined as “a disproportionate weight in favor
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of or against an idea or thing, usually in a way that is closed-minded, prejudicial, or unfair”4.
Taking into account the bias networking effect for knowledge graphs, it is crucial that we
acknowledge and address various types of bias already in knowledge graph construction [1].

Biases in knowledge graphs as well as potential means to address them, are different from
those in linguistic models or image classification. Knowledge graphs are sparse by nature,
i.e. only a small number of triples are available per entity. In difference, linguistic models
learn the meaning of a term from its context within large corpora and image classification
learns classes from millions of labeled images. Biases in knowledge graphs may originate
in the very design of the knowledge graph, in the source data from which it is created
(semi-)automatically, and in the algorithms used to sample, aggregate, and process that data.
These source biases typically appear in expressions, utterances, and text sources, and can
carry over into downstream representations such as knowledge graphs and knowledge graph
embeddings. Furthermore, we also have to consider a large variety of human biases, as e.g.
reporting bias, selection bias, confirmation bias, overgeneralization, etc.

Biases in knowledge graphs can arise from multiple sources. Data bias occurs already in
the data collection process for the knowledge graph or simply from the available source data.
Schema bias depends on the chosen ontology for the knowledge graph or simply is already
embedded within the used ontologies [1]. Inferential bias might result from drawing inferences
on the represented knowledge. Ontologies are typically defined by a group of knowledge
engineers in collaboration with domain experts and consequently (implicitly) reflect the
worldviews and biases of the development team. Ontologies are also prone to encoding bias
depending on the chosen representation language (fragment of description logics). Moreover,
biases in knowledge graph embeddings may also arise from the embedding method. Inferential
biases in knowledge graphs arise at inferencing level, such as reasoning, querying, or rule
learning. A simple example might be the different SPARQL entailment regimes, which in
consequence, might be responsible for different results that different SPARQL endpoints
deliver despite containing the same knowledge graph.

Collaboratively built knowledge graphs, as e.g. DBpedia or GeoNames also exhibit
social bias, often arising from the western centered world view of their main contributors [2].
In addition, some “truths” represented in those knowledge graphs might be considered as
controversial or opinionated, which underlines the importance of provenance information.

For knowledge graph embeddings that represent a vector space based approximation of
the structural and semantic information contained in a knowledge graph, one of the main
sources of bias lies in the sparseness and incompleteness of most knowledge graphs. Thereby,
knowledge graph embeddings trained on incomplete knowledge graphs might favour entities
for which more information is available [3]. However, if the underlying knowledge graph
is biased, then also knowledge graph embeddings trained on this base data. De-biasing of
knowledge graph embeddings requires methods for detecting as well as removing bias in
knowledge graph embeddings. Depending on the underlying embedding model, this task
might become complex and requires finetuning of embeddings with respect to certain sensitive
relations [4, 5, 6].
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4.1 Organizing Scientific Contributions in the Open Research
Knowledge Graph

Sören Auer (TIB - Hannover, DE)
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The transfer of scholarly knowledge has not changed fundamentally for many hundreds of
years: It is usually document-based-formerly printed on paper as a classic essay and nowadays
as PDF. With around 2.5 million new research contributions every year, researchers drown
in a flood of pseudo-digitized PDF publications. As a result, research is seriously weakened.
We argue for representing scholarly contributions in a structured and semantic way as a
knowledge graph. The advantage is that information represented in a knowledge graph
is readable by machines and humans. As an example, we give an overview of the Open
Research Knowledge Graph (ORKG5), a service implementing this approach. For creating
the knowledge graph representation, we rely on a mixture of manual (crowd/expert sourcing)
and (semi-)automated techniques. Only with such a combination of human and machine
intelligence, we can achieve the required quality of the representation to allow for novel
exploration and assistance services for researchers. As a result, a scholarly knowledge graph
such as the ORKG can be used to give a condensed overview of the state-of-the-art addressing
a particular research quest, for example as a tabular comparison of contributions according
to various characteristics of the approaches. Further possible intuitive access interfaces to
such scholarly knowledge graphs include domain-specific (chart) visualizations or answering
natural language questions.

A detailed presentation including screenshots of the demo can be found here.

4.2 dblp as a Knowledge Graph
Marcel R. Ackermann (Schloss Dagstuhl LZI – Trier, DE)
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For more than 20 years, a full XML dump of the dblp computer science bibliography6 has
been available as open data for download and reuse. Snapshots of the dblp XML dump have
been converted to RDF before by members of the community. However, these snapshots are
usually severely out of sync with the continuously curated dblp data, in some cases up to
several years. To remedy this problem, the dblp team has now started to release its data
also in RDF via APIs and as a full dump download. The goal is to provide a semantically
rich knowledge graph of bibliographic information that is up to date and in sync with the
curated and disambiguated dblp data. Just as with any other data provided by dblp, the
RDF data is made available under CC0 1.0 Public Domain Dedication license.

In its initial release, the dblp knowledge graph7 forms a simple person-publication graph,
consisting (as of October 2022) of more than 3 million person entities, 6.3 million publication
entities, and 340 million RDF triples in total. More than 15 million external resource URIs

5 https://orkg.org
6 https://dblp.org
7 https://dblp.org/rdf/
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are linked in the data set. Numerous metadata aspects, like journals/conference series or
the affiliation of an author, are currently provided only as string literals. Future iterations
of the schema will see these and further aspects being added as true entities, together with
their own metadata, persistent IDs, and links to external resources. Hence, we don’t see the
current dblp knowledge graph as final, but rather as a first step in providing the semantics
of the dblp dataset in a more structured way. We also aim to provide a proper SPARQL
endpoint in the near future.

4.3 Triples are not Enough
Denny Vrandečić (Wikimedia Foundation – San Francisco, US)
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Abstract Wikipedia aims to cover the whole breadth of knowledge that is in a usual Wikipedia
article. Wikidata cannot comfortably represent the kind of knowledge necessary for the
natural language text of such a Wikipedia article. We decided to work with two knowledge
representations beyond triples: functions, in order to generate natural language text, and
frames, in order to capture n-aries and other complex statements [1].

See [1] for more details.

4.4 Making Knowledge Graph Embeddings a First Class Citizen
Heiko Paulheim (Universität Mannheim, DE)
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Knowledge graph embeddings have become a major area in the knowledge graph research
landscape. There are quite a few downstream applications which do not consume the
knowledge graph per se, but only the embeddings.

At the same time, embeddings are not very well integrated in current tool stacks. In
many cases, developers download a dump of a knowledge graph, compute embeddings, and
then feed them into the application at hand. Such a model can neither incorporate any
knowledge graph dynamics, nor is it suitable if only a small excerpt of a large knowledge
graph is of interest for an application at hand. [2].

Services which serve knowledge graph embeddings like KGvec2go [3] are still rare.
Moreover, embeddings are rarely integrated with other KG toolstack services, such as
query interfaces. For those reasons, if we want to unleash the full potential of knowledge
graph embeddings, we have to integrate them more tightly into our current knowledge graph
tool stacks.
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4.5 Knowledge Graph Completion using Embeddings
Mehwish Alam (FIZ-Karlsruhe, Leibniz Institute for Information Infrastructure, DE &
Karlsruhe Institute of Technology, DE)
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Knowledge Graphs (KGs) constitute a large network of real-world entities and relationships
between these entities. KGs have recently gained attention in many tasks such as recommender
systems, question answering, etc. Due to automated generation and open-world assumption,
these KGs are never complete. Recent years have witnessed many studies on link prediction
using KG embeddings which is one of the mainstream tasks in KG completion. These
KG completion methods also include methods for entity type prediction [4], i.e., given the
structural, textual, or another kind of information about an entity the task is to predict the
type of an entity. Over the past few years, many methods have been proposed that also
utilize language models, as well as a few benchmark datasets, have also been proposed [5]. A
challenge remains as to how these methods can further be applied to real-world problems
such as the biomedical domain, materials sciences, cultural heritage, scholarly data [6], etc.
How do these existing methods scale to a particular domain? Moreover, multilingualism is
also an important aspect that is under explored, i.e., how different language chapters of a
KG such as Wikidata or DBpedia can help complete a KG in one language?

4.6 Knowledge Engineering for Semantic Web Machine Learning
Systems

Marta Sabou (Vienna University of Economics and Business, AT)
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In line with the general trend in artificial intelligence research to create intelligent systems
that combine learning and symbolic components, a new sub-area has emerged that focuses on
combining machine learning (ML) components with techniques developed by the Semantic
Web (SW) community – Semantic Web Machine Learning (SWeML for short). Of particular
interest are the emerging variations of processing patterns used in these SWeML systems in
terms of their inputs/outputs and the order of the processing units. While several such neuro-
symbolic system patterns were identified previously, we performed a systematic study and
analyzed nearly 500 papers published in the last decade in this area. Overall we discovered
41 different system patterns, which we categorized into six pattern types. We observed that
simple patterns that only incorporate one ML module are the most frequent, however the
number of modules used in SWeML Systems is growing over time leading to increasingly
complex and sophisticated system architectures for these novel systems. This development
raises interesting questions for our community: What does the emergence of these complex
systems mean for knowledge engineering? Do we need to rethink how we create, evaluate
and evolve knowledge resources to better fit the requirements of such systems? What are
typical SWeML systems patterns that can be used for various knowledge engineering tasks?
Can we make use of these system patterns to guide the development of knowledge-based
intelligent systems?
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4.7 Shifting from a Triple-centric View to a Knowledge Components
View in KGs

Eva Blomqvist (Linköping University, SE)
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Tool support and partial automation is essential in today’s Knowledge Engineering (KE)
practices. This is true both for creating schemas, e.g. ontologies, and corresponding knowledge
graphs. It is rarely the case that a single triple in a KG answers a user’s query, rather, users
of knowledge intensive systems most often need much more complex knowledge structures.
An example from our previous experience is the notion of a crime, in the policing domain. A
naive look at the concept of may lead to modelling a direct relation between a crime concept
and a person that committed that crime. While this may be to some extent valid in a historic
record, for an ongoing police investigation however, there are only suspects that to a certain
degree can be connected to the crime, based on specific evidence. Even the crime in itself
may need to be represented not as a single event, but as a series of actions, that could lead to
certain charges being applicable in court. On the other hand, end users, in this case the police
investigator also need ways to abstract from highly complex relations, to get an overview
of the main connections between events and people involved in the investigation. Hence, it
becomes essential that the knowledge engineering process captures all these end-user relevant
levels of granularity, i.e. not only the triple-level but as more complex knowledge components.
Some previous work on ontology design patterns, and recently conceptual components, point
in this direction. However, this has not yet been fully brought into KE methodologies, tools,
visualisations, and reasoning methods. Even further, when automating parts of the KE
methodologies, such as the population of KGs, there is a need for knowledge extraction not
only at the triple level, but at the level of detecting and extracting such complex components,
e.g. from natural language text, where many open challenges exist.

4.8 A Normative Knowledge Graph for Verified Identity Applications
Bradley Allen (Merit International, Inc. – Millbrae, US)
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The Merit Graph is a commercial example of a knowledge graph. However, in contrast to
other commercial knowledge graphs, and because of the sensitivity of its areas of application
in licensing, certification, and emergency services, the Merit Graph takes special care to
address the problem of ensuring that the data it contains is managed to the highest standards
of truth and trust. The Merit Graph maintains metadata about the provenance of statements
about relations and entities, and uses that information to establish access control over data
in the graph. This metadata supports verifiable and fine-grained policies that are meant to
ensure the trustworthiness of the data, as well as to prevent improper sharing of personal data
with third parties. The normative specification of these policies uses principles derived from
action and deontic modal logic, allowing the control of not only who can access certain data,
but also who is permitted to share data they have access to with whom, a capability necessary
to provide organizations the tools needed to ensure that data that they are responsible for is
not compromised or abused by others with whom they share that data. The Merit Graph
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is formally defined in a way that it can be transformed into a set of logical statements
which, combined at processing time with rules, can be used to perform automated reasoning
about the data in the graph. Rules are managed as part of the schema associated with
the graph, through user interfaces used by system administrators to establish policies and
provide domain expertise for specific use cases. This capability is used to automatically
perform syntactic and semantic validation, transformation, and enhancement of data during
the ingestion and issuance of merits, personas, and folios. It can also be used to perform
advanced analytics, for example, link prediction in support of the recommendation of career
or educational opportunities for licensed individuals, or normative reasoning to establish
additional permissions and obligations of entities represented in the graph.

4.9 Semantic Interoperability at Conceptual Level: Not Easy but
Necessary

Valentina Presutti (University of Bologna, IT)
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Knowledge graphs (KG) have the potential of enabling meaning-aware artificial intelligence
(AI) as opposed to statistically-aware AI. Let us consider recommending systems as an
example. Most of them rely on features such as popularity: if I like a song, I will be suggested
to listen to other music that is very “popular” among consumers who listened to the same
song before me. To act differently and being able to personalise recommendations and
motivate them, AI systems need to be aware of the meaning associated with the music
(or any other item) they recommend and of the preference that emerge from a consumer’s
previous behaviour. Encoding the meaning of music or of other subjects is a hard problem
but knowledge graphs and their ability to capture and formalise domain knowledge can push
AI systems toward this achievement. One main issue is that specialised, domain knowledge
is often overlooked. We are literally sitting on an unprecedented global, distributed source of
knowledge addressing all sorts of specialised domains (Linked Open Data – LOD) but most
KG-related research is limited to analyse and reuse encyclopedic knowledge. From a study
that analyses the alignment between LOD ontologies [7] it emerges that LOD is poorly linked
at the conceptual level (and I speculate that these alignments are mostly based on labels and
common sense). There is an opportunity and a challenge to analyse LOD’s knowledge from
specialised domains, to enrich it and properly link it at the conceptual level. We shall resume
the Semantic Web agenda about alignment and reuse of distributed ontologies, which opens
to numerous research paths: to define more expressive and flexible knowledge representation
languages, informed by empirical semantics; to standardise ontology design patterns (ODP);
to provide tool support that makes it easy to reuse ODP, to perform ODP-based ontology
alignment, to document (automatically) ontologies and KGs, to perform ontology testing, to
lexicalise ontologies, etc. Only with semantic interopertability at the conceptual level and by
properly addressing specialised domains shall we make a step towards meaning-aware AI
systems.
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4.10 Modelling Complex Concepts
Marieke van Erp (KNAW Humanities Cluster - Amsterdam, NL)
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The success of AI technologies on standardised benchmark datasets, invites us to move
towards more difficult and more complex concepts and tasks. The digital humanities domain
presents many opportunities for investigating the recognition and modelling of complex
concepts thanks to massive digitisation efforts that have made available large and varied
datasets, in multiple modalities. My work now specifically highlights the complexities in
modelling a concept such as smell, dealing with its representations in various media, and
how the temporal dimension of historical and linguistic research forces us to deal with issues
such as changing social norms and our colonial history.

4.11 KG Magic Requires KE Magic
Stefan Schlobach (VU University Amsterdam, NL)
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Expert Systems have been among the initial success stories of Knowledge Representation,
showing the potential of (mostly rule-based) formalised knowledge in a variety of tasks in
various domains. The enormous costs of producing such high-quality knowledge led to the
development of a variety of Knowledge Engineering (KE) methodologies in the Nineties
and the decades after, which focused on the challenge of creating systematic processes to
formalise tacit and tribal knowledge that, while being essential for the success of a system, is
very often neither explicit, nor formalised. Nowadays, Knowledge Graphs (KG) are often
considered to be some kind of magic wands of modern AI with the promise to extend purely
statistical, learning-based, approaches by more generalisability and explainability. This has
lead to increased interest in the development of Knowledge Graphs by commercial partners.
The engineering challenges for constructing such high-quality knowledge remain the same as
10, 20 or 30 years ago; tribal and tacit knowledge is still as non-explicit and non-formalised
as it used to be then. My research ambition is to extend the proven socio-technical KE
methodologies with recent technological advances, e.g. based on Language Models or other
statistical learning-based methods, to scale-up to the required complexity of modern AI-based
systems.
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5 Breakout Groups

5.1 Integration of Language Models and Structured Data
Juan Sequeda (data.world – Austin, US)
Mehwish Alam (FIZ-Karlsruhe, Leibniz Institute for Information Infrastructure, DE &
Karlsruhe Institute of Technology, DE)
Soren Auer (TIB - Hannover, DE)
George Fletcher(Eindhoven University of Technology, NL)
Harald Sack (FIZ-Karlsruhe, Leibniz Institute for Information Infrastructure, DE & Karlsruhe
Institute of Technology, DE)
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This group focused on how Large Language Models (LLMs) can be integrated or used for
structure data.

5.1.1 Discussed Problems

Large-scale Language Models (LLMs) have shown impressive results in terms of language
generation, question answering, but also software source code generation or translation.
Following the presentation of the overview of the state of the art in Automated Knowledge
Graph Construction, it was observed that the surveyed methods focused on automated
approaches to construct knowledge graphs from unstructured sources. The question is
whether these results can be applied for automatically constructing knowledge graphs from
structured data (e.g. tabular, relational), and mapping structured data to ontologies and
knowledge graphs.

The following initial observations were made:
There are two streams to consider: 1) Automatic Knowledge Graph Construction from
structured data, namely given structured data as input, the output is a knowledge graph,
and 2) Automatically Mapping structured data to Knowledge Graph, namely, given
structured data and an existing knowledge graph as input, the output is an augmented
knowledge graph.
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The second stream considers the traditional data integration challenges of schema matching
and entity linking.
Language models have common sense knowledge. However, to do the mapping, it would
also need to have specific business/domain knowledge, which may not exist in language
models today.

5.1.2 Possible Approaches

There have been few recent studies focusing on tabular data to KG matching [1] along
with many recent efforts by the semantic web community which designs a group benchmark
dataset for this problem, i.e., the SemTab [2, 3, 4] challenge where the community joins
forces and presents their systems targeting the problem of tabular data to KG. None of the
existing studies so far utilize LLMs for performing this matching.

On the other hand, there have been several efforts where the latent representations are
learned directly from the tabular data such as Tab2Vec [5], TaBert [6], etc. Tab2Vec is
then evaluated on row completion, table completion, and table retrieval tasks. TaBERT is
a pre-trained model that learns representations for natural language sentences and tabular
data. These efforts should further be explored and exploited for mapping structured data to
ontologies and KGs. A brief collection of methods following this line of research has been
discussed in [7]. A deep dive into Machine or Deep Learning methods for tabular data is
required.

5.1.3 Open Research Questions

The high-level questions to consider are:
How do we automatically construct a knowledge graph from structured data?
How do we automatically construct mappings from structured data to a knowledge graph?

Diving deeper into these questions, we discussed the following questions:
Do we even need LLMs for this problem? It seems that we are turning this problem
into a nail for the Language Model hammer, thus we should try to use this tool. As
observed, language models consist of common-sense/domain-agnostic knowledge and may
lack specific domain/business knowledge, thus the limits of existing language models need
to be investigated. On the other hand, if we look at schema.org, we have evidence of
a manual, low-effort, distributed, community-driven, and scalable approach to adding
semantics to web pages.
What is the cost/benefit tradeoff to using LLMs? What do we do with the results of a
language model? A user will most likely need to review the result. For this approach
to be cost beneficial, it would need to be drastically reduced to the cost of creating the
knowledge graph manually/non-language model approaches.
How can mappings be learned with additional context provided as input, for example,
mapping patterns?
What happens when the input is just tabular data vs relational data (SQL DDL, con-
straints)?
Would there be a need to denormalize the data into a single flat table?
What are the frameworks for evaluation?
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5.1.4 Next Steps

Some anecdotal evidence arising from some experiments done during the breakout session8

showed that while LLMs are able to perform some form of data mapping on typical textbook
examples, they quickly fail when data structures are more original (and thus less likely to
be included in the LLM training data). Also, due to the lacking explainability of LLM
results, it is extremely cumbersome and thus not feasible to manually verify the results, since
the required effort for this task might easily exceed a manual mapping. However, LLMs
could possibly be used for generating smaller (e.g. property) mapping or documentation
suggestions.

An interesting question is whether the experience of LLMs can be applied to generate
novel large-scale structured data models, which are trained with millions of data schemata,
ontologies, and mappings and will thus be better suited for mapping generation tasks.
However, this might not be practically feasible since many of the required artifacts are
private. Possibly some federated learning of such large-scale structured data models could
alleviate this problem.

When considering applying Language Models for the problems of schema mapping, it’s
key to understand the state of the art in order to create bridges. For example, there is formal
work on learning schema mappings [8] and queries from examples of structured data.

One of the possible solutions could be to align two embeddings generated from different
structures such as tabular data and the knowledge graphs and perform alignments or make
use of both kinds of embeddings and use it in the downstream task of matching.

What would prompt engineering for data integration look like? This may be an extension
of the existing SemTab challenge.

Finally, we should be careful and not just jump on using the Language Model hammer
and start pounding on that hammer to see what works. It is paramount to have a systematic
approach to understanding and evaluating how language models and structured data can be
combined to automatically construct knowledge graphs.
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5.2.1 Discussed Problems

Knowledge engineering remains expensive. The emergence of new powerful automation tools
(e.g. large language models) opens new avenues for exploration to bring down the cost of
knowledge engineering. While there is much work using machine learning for knowledge
engineering (e.g. ontology learning, curation), we know much less about the overall picture
of the incorporation of these new machine learning (ML) techniques.

5.2.2 Open Research Questions

How does state of the art machine learning, including large language models augment
knowledge engineering processes and projects?
What is the existing user / developer experience of machine learning tools?
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What are the roles of people and machines in current knowledge engineering process?
How do you evaluate the added value of automation to knowledge engineering processes?
How do you control the outputs of ML-based systems are what you need for knowledge
engineering?
What is the interplay knowledge graph engineering (with or without AI) and system
engineering?

5.2.3 Possible Approaches

Classic knowledge engineering approaches (e.g. NEON [1]) tend to distinguish between
management, support, development activities while knowledge graph engineering approaches
are still in their infancy and tend to focus largely on development activities (e.g. relation
extraction, learning class representations, refinement). Therefore, the potential for automation
is much bigger when considering the management and support activities, for instance, re-
purposing existing knowledge graphs in new contexts, search, automatic generation of
documentation (e.g. labels in multiple languages, entity and relation descriptions), or process
optimization. These are just some examples, hence, what is needed is a systematic study of
current practices, roles, and tools that support them. This can be achieved in several points:

analyze emerging knowledge engineering processes to assess their automation potential
building on [2, 3, 4] (e.g. through literature reviews or empirical analysis of existing
code);
run task-based studies in which the tasks would be to build knowledge graphs following
established knowledge engineering methodologies using existing out-of-the-box automation
tools (e.g. HuggingFace);
case study analysis of existing knowledge engineering projects that include an AI element.

Within this analysis, a key emerging technology, is prompt engineering [5], whose outputs,
based on large language models, could inform knowledge engineering activities in several
ways. Here, a mapping to between the state-of-the-art in prompt engineering and knowledge
engineering would be beneficial. In particular, there is a question as to how these technologies
can be suitably controlled for knowledge engineering processes.

Evaluating and understanding the impact of technology is an established field with its
own methodologies and approaches. In particular, there has been considerable work by
researchers, practitioners and regulators around the use of machine learning in a range of
applications, which resulted in frameworks for responsible/trustworthy AI [6, 7]. Studies
with technical users of AI seem to suggest data scientists and other technical roles tend to
over-trust the outcomes of machine learning systems and do not always fully grasp how they
work, or, where applicable, their explanations [8]. End-users of downstream applications need
means to provide feedback and adjust the outputs of the application, which often involves
improving the underlying data – often, knowledge graph embeddings are a source of such
data, hence it is important when evaluating the added value of automation in building a
graph to consider questions of end-user agency and control from the start. Here, extending
approaches [9] that look at machine teaching9 to examples from knowledge graphs appears
promising.

Any way to understand to knowledge engineering with AI systems should be based on
the existing extensive work with designing and planning for AI systems. This includes a
series of practices including, following human-centered design, identifying multiply evaluation

9 https://github.com/cleanlab/cleanlab
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metrics, extensive testing and continued monitoring while in deployment.10 This also includes
reflecting on fairness and interpretability, which come with their own set of best practices
and techniques.

Furthermore, often knowledge graph engineering is described as one-off activity, where
the project is finished when a knowledge graph is complete. In practice, this is not the case
as seen by the examples discussed at the seminar. Therefore, there is to study the ongoing
maintenance of knowledge graphs the roles and automation involved. This should be done
with a grounding in the current thinking around data-centric AI and MLOps[10].

5.2.4 Next Steps

Perform the user studies, case studies and reviews mentioned above;
Organizie a workshop bringing together prompt engineering and knowledge engineering
experts.
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3 Gytė Tamašauskaitė and Paul Groth. Defining a knowledge graph development process
through a systematic review. ACM Transactions on Software Engineering and Methodology,
2022.

4 Lucie-Aimée Kaffee, Kemele M. Endris, and Elena Simperl. When humans and machines
collaborate: Cross-lingual label editing in wikidata. In Proceedings of the 15th International
Symposium on Open Collaboration, OpenSym ’19, New York, NY, USA, 2019. Association
for Computing Machinery.

5 Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and Graham Neubig.
Pre-train, prompt, and predict: A systematic survey of prompting methods in natural
language processing. CoRR, abs/2107.13586, 2021.

6 Lu Cheng, Kush R Varshney, and Huan Liu. Socially responsible ai algorithms: Issues,
purposes, and challenges. Journal of Artificial Intelligence Research, 71:1137–1181, 2021.

7 Alejandro Barredo Arrieta, Natalia Díaz-Rodríguez, Javier Del Ser, Adrien Bennetot, Siham
Tabik, Alberto Barbado, Salvador García, Sergio Gil-López, Daniel Molina, Richard Ben-
jamins, et al. Explainable artificial intelligence (xai): Concepts, taxonomies, opportunities
and challenges toward responsible ai. Information fusion, 58:82–115, 2020.

8 Harmanpreet Kaur, Harsha Nori, Samuel Jenkins, Rich Caruana, Hanna Wallach, and
Jennifer Wortman Vaughan. Interpreting interpretability: Understanding data scientists’
use of interpretability tools for machine learning. In Proceedings of the 2020 CHI Conference
on Human Factors in Computing Systems, CHI ’20, page 1–14, New York, NY, USA, 2020.
Association for Computing Machinery.

9 Curtis G Northcutt, Anish Athalye, and Jonas Mueller. Pervasive label errors in test sets
destabilize machine learning benchmarks. arXiv preprint arXiv:2103.14749, 2021.

10 https://ai.google/responsibilities/responsible-ai-practices/, https://www.microsoft.com/
en-us/ai/responsible-ai-resources

22372

https://ai.google/responsibilities/responsible-ai-practices/
https://www.microsoft.com/en-us/ai/responsible-ai-resources
https://www.microsoft.com/en-us/ai/responsible-ai-resources


96 22732 – Knowledge Graphs and Knowledge Engineering

10 Hima Patel, Shanmukha Guttula, Ruhi Sharma Mittal, Naresh Manwani, Laure Berti-
Equille, and Abhijit Manatkar. Advances in exploratory data analysis, visualisation and
quality for data centric ai systems. In Proceedings of the 28th ACM SIGKDD Conference
on Knowledge Discovery and Data Mining, KDD ’22, page 4814–4815, New York, NY, USA,
2022. Association for Computing Machinery.

5.3 Explainability of Knowledge Graph Engineering Pipelines
Axel-Cyrille Ngonga Ngonga (Universität Paderborn, DE, axel.ngonga@upb.de)
Diana Maynard (University of Sheffield, GB, d.maynard@sheffield.ac.uk)
Marcel R. Ackermann (Schloss Dagstuhl LZI – Trier, DE, marcel.r.ackermann@dagstuhl.de)

License Creative Commons BY 4.0 International license
© Axel Ngonga, Diana Maynard, Marcel R. Ackermann

5.3.1 Discussed Problems

There is currently no standard definition for explanation and explainability. We consider
the following explanation scenario [1]: An explainer is to provide an explanation for an
explanandum to an explainee via explanans. In knowledge engineering for knowledge graphs,
the explainer is commonly a system driven by some background knowledge. The explanandum
could consist of the graph as a whole or a single statement, but also the process. The explainee
can be a human or another system. Finally, the explanans can range from natural language
to a set of assertions in a formal language. In this setting, explanation is clearly an iterative
process within which the explainee can request supplementary information (e.g., pertaining
to previous explanans) to reach the explanation goal. When modelled as such, the function
of an explanation is to empower the explainee to understand enough about the explanandum
to take action. It is rather unclear how explanations and the accompanying processes are to
be tailored and evaluated.

Explainability is central for several aspects of the knowledge engineering process includ-
ing building trust, quantifying uncertainty, hypothesis exploration, due diligence support,
compliance and liability, data and process audits, and data usage agreements. Trust is a
key element of explainability, enabling the explainee to evaluate the correctness / usefulness
and/or actionability of the output. Quantifying uncertainty ensures that the explainee has a
measurement for the reliability of the explanation process and hence of the explanandum.
Devising pareto-optimal explanation processes that can cater for several of these aspects is a
challenge which is currently not widely addressed.

5.3.2 Possible Approaches

The body of works on interpretability and explainability covers various disciplines ranging
from psychology [1] to machine learning theory [2]. The ML community has developed
post-hoc methods for explainability, including approaches such as LIME [3], SHAP [4], and
MVU [5]. Ante-hoc solutions such as verbalization techniques for class expressions [6, 7] serve
a similar purpose in inductive logic programming based on description logics. Still, these
are one-shot explanations, which do not fully implement the iterative explanation process
described in Section 5.3.1. Currently, there seems to be no detailed study encompassing the
state of the art in theory and practice, but rather a number of piecemeal attempts to solve
various issues in tackling explainability.
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5.3.3 Open Research Questions

Explaining is an intrinsically challenging task, as a good explanation for a given explanandum
must fit potentially very different user and application requirements. The computation
of explanations must hence be carried out in collaboration with the explainee – a process
which is widely unexplored in knowledge engineering. Still, it seems obvious that one-shot
explanations will rarely be enough to satisfy user needs. A clear specification of the relation
between explanations and interpretations (e.g., as described in [2]) must be at the core of
future research as the distinction between them is unclear and often misrepresented. Further
key challenges include the need to provide measures for explanation, methods to evaluate
them and to quantify their trustworthiness (both intrinsically and extrinsically) and to allow
for measures of uncertainty. On the other hand, since the field of explainability in this
context is both fast-evolving and application-dependent, it is therefore difficult and perhaps
undesirable – especially in the near future – to develop rigid standards.

5.3.4 Next Steps

We plan to write a survey of the state of the art in explainability, with the aim of understanding
better the current limitations and future directions. Several workshops on explainability are
currently organized at major AI conferences including XAI4CV at CVPR, and SemEx at
ISWC. We plan to support these efforts and contribute requirements and solutions from
knowledge engineering. Our ultimate goal is to write a reference book on methods and
applications of explainable AI for knowledge engineering.
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This working group focused on investigating the gap between what is currently captured in
Knowledge Graphs and what information is contained in other sources and modalities. The
impetus for this break-out group came from the observation that most current KGs focus on
factoid-information that is easily captured in triples such as information about entities and
properties.

More freely structured data such as text and images contain information that may be
difficult to capture in triple format. Procedural knowledge or other knowledge that has a
clear sequence (e.g. word order in text) does not naturally fit into KGs. Solutions such as
the NLP Interchange Format (NIF) have been proposed but lead to bulky modelling.

Information concerning more abstract concepts such as opinions or perspectives are often
implicit and have a social and contextual dimension – what is acceptable in one context
may not be acceptable in another. This type of information intersects with commonsense
knowledge as well as social norms. Something that, to the best of our knowledge, is currently
not captured in KGs.

This break-out group therefore poses the following questions:
What can (or should be) be included knowledge graph?
Which source can it come from?
What is the purpose of (elements of) the knowledge graph?
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5.4.1 Discussed Problems – Towards a Typology of Knowledge for KGs

The main problems that we discussed are the identification and characterization of the types
above, as well as the representation techniques that can be used to handle them.

Table 1 Types of knowledge typically found in knowledge graphs.

Type of know-
ledge

Examples (Typical) representation level

Conceptual know-
ledge

Entities: classes, properties. Typic-
ally the knowledge written in OWL

T-Box, R-Box

Factual knowledge Entities and statements: objects,
relationships

A-Box

Procedural know-
ledge
Rules

Commonsense and
encyclopedic

Naive physics, “knives are used for
cutting”, “dinner is at 6pm”

Causality
Sentiment
Arguments, claims Political, scientific arguments Qualifiers, named graphs, nanopub-

lications
Beliefs “No man landed on moon”
Provenance, refer-
ences

Qualifiers, named graphs

Perspectives, narrat-
ives, frames, inter-
pretations

Colonial perspectives on objects be-
ing “given”, Tonality of a music
piece (which changes as the applied
theory changes), Wikidata has dif-
ferent entries for Jesus (in which he
may be the last or second-to-last
prophet)

Representations of situations,
(trans-)actions and (sociological)
roles

Moral and ethical
judgements

“Abortion is a crime” according to
certain groups of people in the US

Definitions (and to some extent, terminology) need to be confirmed and refined for these
types. For example our group discussed commonsense knowledge, only to conclude that
while we have a general idea of the notion – e.g., it includes what is needed to understand
the newspapers – it remains extremely vague and the term is quite overloaded.

5.4.2 Possible Approaches

A first way to refine and better structure the notions (roughly) laid down above would
be to identify suitable dimensions of analysis and position the various types of knowledge
along these dimensions. This idea follows upon the example of the “expressiveness spectrum”
produced at AAAI99, which was presented by McGuinness at the Seminar (see fig. 9).

A complementary, more bottom-up approach, would be to inventorise the elements of
knowledge used in actual KGs. As a first attempt, and recognizing that the types of knowledge
present in KGs heavily depends on the domain or the application considered, the group
embarked on identifying knowledge elements that are typically (or less typically) found in a
few selected domains.
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Figure 9 Expressiveness spectrum as presented by McGuinness during the seminar (see Section 3.3
for an overview of the talk).

Table 2 Matrix in which the break-out group brainstormed types of knowledge that may be
included in a knowledge graph for a particular use case.
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5.4.3 Next Steps

The discussion in our group was only a first attempt at charting the landscape of the various
types of knowledge that can appear in KGs. This effort needs to be continued, especially on:

Surveying of cases and the types of knowledge that can or should be relevant for them.
Working on one or several “spectra” of expressiveness and other dimensions, for the
knowledge that can be represented in KGs.

This work, which could be progressed in a workshop-like setting (especially in order to
agree on types and dimensions) and long-term community outreach effort (especially for the
surveying), should be eventually presented in a written form that can benefit researchers
and practitioners on the longer term – either as a separate paper or part of a wider book on
knowledge engineering methodology.
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This working group focused on how knowledge graphs relate to, complement, and could
be combined with, or even replaced by, other forms of knowledge representation, including
traditional forms of knowledge representation like text and tables, as well as novel forms of
knowledge representation such as (large) language models.

5.5.1 Discussed Problems

How do knowledge graphs relate to other types of knowledge representation?
What kinds of knowledge are knowledge graphs good at representing?
Will knowledge graphs still be needed given the advancements in large language models?
Are knowledge graphs the best target for knowledge extraction from large language
models?

5.5.2 Discussion

Despite the growing popularity of knowledge graphs, it is not always clear for what sorts of
knowledge (or knowledge-centric applications) such graphs are appropriate representations.
Our discussion thus covered different forms of knowledge representation and knowledge, how
knowledge graphs relate to modern forms of knowledge graphs like large language models,
and what forms of representation are useful in what settings.

5.5.2.1 Different Representations

Knowledge graphs are a particular class of knowledge representation; some members of
this class include RDF, RDF*, property graphs, Wikidata, etc. Knowledge graphs have
garnered a lot of attention for their ability to integrate knowledge from diverse sources at
large scale. However, they are only one instance of a particular “modality” of knowledge
representation used by humans. One may thus ask: How do knowledge graphs relate to other
modalities of knowledge representation? When are they more or less useful than the other
alternatives? Can we model all knowledge within a knowledge graph, or do we need different
representations for different types of knowledge? How could knowledge graphs be combined
with, or interact with, these other representations?

With respect to modalities of knowledge representation, we can identify, for example, the
following:

Textual: books, literature, rich text, emails
Lexicographical: thesauri, lexemes, vocabulary, dictionaries
Tabular : CSV, spreadsheets, relational tables
Temporal: edit histories, chronologies, stock tickers, temporal databases
Graph: (social/transport/biological) networks, knowledge graphs
Hierarchical: taxonomies, classifications, XML, JSON
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Logical: rules, ontologies, first-order logic, frames, scripts, schemas
Procedural: code, instructions, workflows, tutorials
Multimedia: video, audio, images
Diagrammatic: UML, ER, pie charts, Sankey diagrams
Numeric: embeddings, language models, matrices
Mental: human memory, epigenetic memory
Social: word of mouth, gossip, stories, songs, institutional memory

It is clear that knowledge graphs are not intended to replace all of these modalities, nor
is it clear that they even can. To understand this in more detail, we identify some different
types of knowledge:

Factual: expressing declarative statements representing claims of truth (e.g., the capital
of Nigeria is Abuja).
Quantified: expressing statements for existential or universally quantified elements (e.g.,
all countries have a capital).
Contextual: expressing statements that are claimed to be true within a certain context,
such as a probability or fuzzy quantification of truth (e.g., a country probably only has
one capital); a temporal context (the capital of Nigeria has been Abuja since 1991 ), etc.
Procedural: expressing ways of doing things, often involving a sequence of actions and
their effects (e.g., how to prepare the Nigerian dish Tuwo shinkafa).
Narrative: expressing a series of statements building a model and working within that
model to communicate knowledge
Tacit: implicit knowledge often gained through lived experience; may involve qualia,
such as taste, smell, touch, sight (e.g., what Tuwo shinkafa tastes like); socially-acquired
knowledge relating to customs, values, etc. (e.g., that it would be strange to eat Tuwo
shinkafa with marmalade), and so forth.
Counterfactual: expressing statements of possible world states, representing what would
be true under varying circumstances and often including modal terms such as “possibly”
(if I would take the bike, I would possibly not be on time).

Knowledge graphs are perhaps strongest when representing factual knowledge, particularly
when such knowledge is expressed as binary relations. When combined with rules or ontologies,
they can further represent quantified knowledge. When combined with techniques such as
annotated logic, reification, named graphs, RDF* or property graphs, etc., they can also be
used to capture contextual knowledge. For reasoning over such complex objects, however,
new formalisms would be required [1]. Though knowledge graphs are only one possible
representation, they have shown certain advantages and disadvantages when compared with
tables (SQL, CSV, etc.), trees (JSON, XML, etc.), images, and so forth.

How knowledge graphs can be used to capture procedural knowledge is less clear. If, for
example, we wanted to represent the sequence of steps in a recipe, while we could potentially
structure the recipe as a graph of dependent steps or causal relations, the steps themselves
will likely be described in natural language, such as “mash the rice with a wooden spoon”.
While such unstructured steps could potentially be decomposed (potentially recursively) into
a structured sequence of sub-steps, and the instruments they involve, etc., and while a more
fine-grained structure might help to later find recipes satisfying certain criteria, the resulting
representation will not convey very well how to actually make the recipe (a video would be
better).

Moreover, it is nontrivial how to represent hypothetical knowledge – such as counterfactual
knowledge – for which statements can be equally likely depending on different world states.
RDF* does allow for contextualised statements without any truth value assigned to them.
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These are quoted triples,11 which are statements not asserted and thus not evaluated in
the knowledge graph. However, keeping track of the epistemic status of a contextualised
statement, given situational facts, is not yet supported.

Likewise tacit knowledge is often inherently difficult to express, particularly as structured
knowledge (including knowledge graphs).

5.5.2.2 Use for Knowledge Graphs in the Age of Large Language Models

Knowledge graphs will inevitably begin to compete with – and potentially complement –
language models [2, 3], which have recently captured not only interest within academia, but
also the more general public, in terms of their ability to seemingly understand and commu-
nicate knowledge through natural language. Such language models thus increase machine
interpretability of human language. However, many of the modalities of knowledge represent-
ation introduced previously – including knowledge graphs – were primarily introduced as
a way to make knowledge available in “machine-readable” structured formats. If language
models are paving the way for human natural language to become “machine-readable”, and
if natural language is a more intuitive way for humans to capture, express, communicate and
conceptualise knowledge (including procedural and tacit knowledge), then a key question
arises: assuming that language models continue to improve over time, will we even need
structured representations like knowledge graphs in the future?

Knowledge graphs require knowledge to be structured, while language models are designed
to capture unstructured knowledge. Thus the question of how knowledge graphs relate to
language models is contained within the broader scope of how structured knowledge relates
to unstructured knowledge. Viewed in this light, knowledge graphs are more efficient for
query answering, are more reliably modifiable, are more transparent, cover the long tail
better, and lend themselves better to explainability than large language models (which we
expect to hold, also, for the medium-term future). In more detail:

For query answering, looking up a triple in a triple store is more efficient than retrieving
text from a large generative model with billions of parameters; e.g. it is less expensive to
look up the capital of France in Wikidata than to generate that answer from GPT-3.
If the world changes, or if an error in the knowledge is discovered, we can easily fix, edit
and update the knowledge graph, but it is currently an open research question how a
language model would need to update its weights to reflect such a change in the world
or correct an existing error; e.g. if the capital of Kazakhstan gets a new name, or if the
British monarch dies, how do we update a language model to incorporate that change?
Knowledge graphs can be more transparent and can have clearer provenance as they
can contain references, sources, or other ways to establish trust in the knowledge in the
graph. Conversely, language models do not currently capture the connection between the
weights and the textual sources used to learn these weights in a fine-grained way.
Relatedly, knowledge graphs allow for more explainability than large language models.
With a symbolic system we can display the involved ground statements, and the inferences
that took place, whereas with language models, generating explanations is a very popular
and challenging topic of active research [4].
Knowledge graphs also cover the long tail better, and can be more easily extended
to cover the long tail. A naive approach to increasing coverage for a language model

11 https://w3c.github.io/rdf-star/cg-spec/editors_draft.html#dfn-quoted

22372

https://w3c.github.io/rdf-star/cg-spec/editors_draft.html#dfn-quoted


104 22732 – Knowledge Graphs and Knowledge Engineering

is to retrain or refine it with more text about the topics to be covered; in a structured
knowledge base you can just explicitly add the required structure. Anecdotal experience
indicates that if we want to increase coverage of, e.g. different file types, we can either
write or search for documents about these file types – and writing a new document may
take dozens of minutes if not hours – or we can create a new item in a knowledge base,
which may take half a minute.

The aforementioned advantages of knowledge graphs versus language models have clear
parallels elsewhere in terms of the advantages and disadvantages of structured/deduct-
ive/symbolic methods vs. unstructured/inductive/numeric methods. In the context of
Natural Language Processing and Information Extraction, for example, while machine learn-
ing methods have led to major advances in the state-of-the-art, more traditional rule- or
pattern-based approaches are still often preferred for certain applications (particularly in
domain-specific scenarios) as they provide more control over the process, provide more
transparent and explainable results, and can work better for the long tail or for emerging
knowledge (where training data is sparse).

In conclusion, we think that knowledge graphs will not become redundant due to language
models, but rather both can clearly complement each other.

5.5.2.3 Representations in Practice

Large language models are good at understanding (the distribution of) language and can
therefore be used in a variety of downstream tasks such as named entity recognition. However,
they also come with some important draw-backs and challenges, such as the lack of provenance
and explainability (as discussed in the previous section). Humans express and record a
lot of knowledge in unstructured form, but even before the advent of digital computers,
humans were applying structure to knowledge for the purpose of understanding as well as
communication (e.g., the Periodic Table).

Existing diverse representational structures (as enumerated in Subsection 5.5.2.1) each
have their specific merits. In some cases, working with just a bunch of screenshots decreases
cognitive load over working with free text. In others, we need formal rules or ontologies
where transparency and clarity are key, whereas in other cases a table will suffice.

The downside of using a variety of data structures alongside one another is the lack of
integration and harmonisation. The question then arises, how do we enable data federation
in the case of heterogeneous data structures?

One solution would be a single data structure for heterogeneous data, such as the multi-
modal knowledge graph described in [5], as the go-to data structure. Such a data structure
integrates multi-modal data such as lists, images, etc., queryable through a single query
language. Potential pitfalls of such a heterogeneous data structure could be the added
modeling complexity, resulting in data silos that would be hard to query/use, or structures
that are difficult to query or understand by users. Another way to go forward would be a
single knowledge based system integrating multiple types of knowledge, with a single unified
query interface.

5.5.3 Open Research Questions

How to allow for a knowledge based system that integrates different kinds of knowledge
representation, but yet allow for a unified query interface?
What types of tasks require which kind of knowledge representations?
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Language models are good in smoothly dealing with the brittleness problem of symbolic
knowledge representations. How can we combine language models with knowledge graphs
to gain the advantage of language models?
Would increased use of datatypes be advantageous for knowledge graph engineering?
Is that a potential approach for combining knowledge graphs with more knowledge
representations?
Can we separate individual facts or knowledge out of a language model, and store it
in a more efficient representation, and thus save on parameters that would encode that
knowledge, making them smaller and more efficient, while allowing them to access a
knowledge graph?
How could we track provenance for language models? How could we represent and explain
where this response came from? How would we trace the lineage of statements in large
language models?
How can language models be updated?
How can language models be adapted to better cover the long tail, emerging knowledge,
etc.?

5.5.4 Next Steps

Invite collaboration on a prototypical infrastructure that demonstrates the usefulness of
combining a knowledge graph with other modalities, e.g., images and a language model.
Setting up tasks or challenges that are expected to be very difficult for certain types of
knowledge representations, and easy for others. Often benchmarks are biased towards
tasks that are solvable with a given approach; for example, benchmarks for question
answering over knowledge graphs will include questions that are answerable over the
target knowledge graph, and might tend to exclude questions like how can I mash rice?
or what is EUR12.53 in USD? that knowledge graphs are not well-suited for, even if
users may often like to answer such questions. These challenges should include tasks that
are easy for, say, knowledge graphs, but very challenging for language models; and vice
versa. The challenges should also consider “meta-tasks”, like updating the knowledge,
curating answers, explaining them, etc. The challenges should be promoted within the
wider machine learning communities. The best-performing approaches will likely require
combining different forms of representation; thus the challenges might stimulate research
on hybrid approaches.
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The starting point of this discussion was the overview lecture on social and technical bias in
knowledge graphs presented by Harald Sack. Bias often is characterised as a disproportionate
weight in favour of or against a person, group, an idea or thing, usually in a way that
is considered closed-minded, prejudicial, or unfair, especially one that is preconceived or
unreasoned. Biases in Knowledge Graphs (KGs) as well as potential means to address them
are different from those in other AI systems, as e.g. in large language models or in image
classification. KGs store human knowledge about the world in structured format, e.g., triples
of facts or graphs of entities and relations, to be processed by AI systems. In the past
decade, extensive research efforts have gone into constructing and utilising KGs for tasks in
natural language processing, information retrieval, recommender systems, and many more. In
difference to language models and image classification systems, KGs are sparse, i.e. typically
only a small number of triples exist per entity. Once constructed, KGs are often considered as
objective and neutral reference data sources that safeguard the correctness of other systems.
In reality this is often not the case, since KGs are created with specific application context
in mind. This has the undesirable effect that biases inherent to KGs may become magnified
and spread through KG based systems (Bias Network Effect).

Basically, biases in KGs may arise from the following sources [1]:
Data Bias: Bias may be already inherent in the source data from which the KG is created

in an automated or semi-automated way. For KGS that are collaboratively created or
based on collaboratively collected information, all forms of human biases might be already
incorporated. Furthermore, bias can also be introduced by the algorithms used to sample,
aggregate, and process that data.

Schema Bias: Bias may be introduced via the chosen ontology as the basis for a KG,
or simply be embedded within ontologies. Most times, ontologies are developed in a
top-down manner with application needs or certain philosophical paradigms in mind
Typically defined by a group of knowledge engineers in collaboration with domain experts,
ontologies consequently (though often implicitly) reflect the worldviews and biases of the
development team (human bias and anthropocentric thinking). In addition, the ontology
and its modelling often depends on the chosen representation language, i.e. typically a
fragment of DL, and not the other way around.

Inferential Bias: Inferential biases in KGs arise at inferencing level, such as reasoning,
querying, or rule learning.

https://creativecommons.org/licenses/by/4.0/
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Bias inherent in KGs will directly carry over into downstream representations such as
KG embeddings (KGE). Also errors and incompleteness in KGs might cause bias in KGEs
due to an unbalanced distribution of facts or attributes that does not reflect an objective
worldview. Furthermore the chosen KGE model might be the source of additional bias
induced by application-specific loss functions.

5.6.1 Discussed Problems

Bias as a signal problem

One way in which representation bias might surface in knowledge graphs is that information
which can be inferred is not explicitly represented in a knowledge graph. For example, the
relation is married to is symmetric, and from A is married to B, one can infer that B is
married to A also holds. From a logical standpoint, it is therefore sufficient to encode one of
the two statements in the knowledge graph.

In [2], it was reported that a vast majority of is married to relations in DBpedia are only
present in one direction, and there are far more statements where the subject is female and
the object is male than vice versa [3]. This can be considered a gender-related representation
bias in the knowledge graph, since the editors (of Wikipedia infoboxes, which DBpedia is
created from) find this information more noteworthy for females than for males.

The same paper [2] also discussed logical inference as a means to cancel the representation
bias. In this example, it would mean filling the slots for the symmetric relation in both
directions, i.e., adding B is married to A for every occurrence of A is married to B. However,
in an experimental setup, they showed that the performance of using the debiased knowledge
graphs in a few downstream tasks actually leads to worse performance.

One interpretation of this outcome is that bias can actually be a signal, which can help
downstream applications. The fact that a human editor considered the fact A is married to
B noteworthy, but not B is married to A, actually conveys some information about A and
B – mainly that B is better known for other things. Removing the bias here also implies
removing the corresponding signal.

Bias as a legal and professional problem

The EU commission distinguishes between fair and unfair bias.12 In general, national and
international law, as well as the standards of professional bodies [4], provide norms regarding
the development and use of knowledge and data-based systems and applications. What are
the relationships between legal and professional norms such as (un)fairness, responsibility,
accountability and bias in knowledge graph construction, maintenance, and use? How can we
build and use knowledge graphs which reflect legal or professional guidelines regarding bias?
To what extent can auditing and compliance checking of knowledge graphs be automated?

Bias as a context problem

Bias as an ethical and societal problem is another important aspect, rooted in the context of
the knowledge graph, since the knowledge graph cannot be generated without context, which
is usually implicit. Typical examples include political and cultural statements. The serious
issue of such ethical/societal bias can be exacerbated by the naive use of a knowledge graph,

12 https://digital-strategy.ec.europa.eu/en/library/assessment-list-trustworthy-
artificial-intelligence-altai-self-assessment
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and may even cause the denial of a whole knowledge graph (for example, some nations forbid
the use of Wikipedia). Data and knowledge graph quality methodologies and methods are
also typically context-driven. Questions to explored include understanding the relationships
between bias and quality of knowledge graphs.

5.6.2 Possible Approaches

Bias detection

Detecting biases is not a straightforward task, requiring knowledge of the world. For example,
observing in the data that there are more females married to males than vice versa is an
observed representation bias. On the other hand, observing in the data that there are far
more male than female Nobel prize winners is not a representation bias in the data, but an
accurate rendition of the state of the world.

Moreover, identifying bias requires some intuition of what to look for. While some
sensitive attributes (e.g., gender or nationality) are quite straightforward, others are not,
and may require several iterations of observing downstream behaviour in a system using
a knowledge graph. For example, in [5], it was found that different language editions of
DBpedia have a different information density of movies with respect to their genre – a
representation bias that would be hard to anticipate without observing it in a downstream
task.

Methods for detecting bias suggested in the literature so far often anticipate that the user
knows which bias to look for, and then query the knowledge graph to get some statistics out
(e.g., the proportion of male and female subjects in statements with a given property). A
more open approach to this would be to learn patterns from the graphs, and then let a user
decide whether those patterns represent biases in the data or distributions in the real world.

Representing and documenting bias

In contrast to language models or image classification systems, where bias can only be
detected implicitly, and explicit bias descriptions have to be added separately, KGs offer the
means for an explicit internal representation of bias, legal norms, and further guidelines by
definition. Once bias is detected, it would be helpful to document it. If the bias occurs in
the form of some pattern, this could be done using a pattern description language, such as
SHACL.13 Moreover, some statistical information would be required, as, e.g., defined by the
VoiD vocabulary.14

Handling bias

Documenting bias is a first step to handling bias, but it is not the end of the line. Depending
on the requirements and task at hand, different ways of further handling bias are possible.
Applying negotiation protocols is an option for dealing with conflicting information, but may
not be possible for truly controversial information. In such cases, the authors of [6] suggest
allowing controversial information with additional metadata. Depending on the task at hand,
bias may also be removed or handled by means of resampling methods. However, as the
experiment reported above shows, this might not always be an efficient method.

13 https://www.w3.org/TR/shacl/
14 https://www.w3.org/TR/void/#statistics
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5.6.3 Open Research Questions

Handling Bias

The bias as a signal observation gives rise to the conclusion that bias – although a mostly
negatively connoted term – can also be helpful, and that blindly removing bias is therefore
not the only or necessarily best option. Instead, more sophisticated ways of dealing with
bias are required.

Detecting bias

As discussed above, bias detection requires world knowledge. For a fully automated detection
of bias, one would therefore need a fully objective and bias-free knowledge base of world
knowledge. This presumption – which, at least today, is impossible to meet – shows that
fully automatic bias detection is currently impossible. Therefore, manual intervention will
be required to detect bias in knowledge graphs, and the processes and models to do so in
the best and most efficient way are still to be explored. This is not a solely computational
issue. Rather, people with various disciplines should commit to the whole life cycle form
generation to use of knowledge graph (diversity and inclusion issue).

Representing bias

As discussed above, a bias that is detected in a knowledge graph should at least be documented.
However, to the best of our knowledge, no standards for documenting biases exist so far.
Therefore, the representation of bias is still an open research issue.

Bias needs not only to be documented for humans, but also machines. Once a standard
for bias representation has been defined, it would be another open question of how subsequent
steps, e.g., machine learning operations, may be informed about that bias, and then how to
carry out appropriate remedies (e.g., by internally re-sampling the data).

Compliance and auditing

How could we support KG engineers in building legally compliant KGs, and how could
we support government bodies in (semi-)automated auditing of KGs for legal compliance
(e.g., EU regulations on responsible data and AI)? How would these goals be balanced with
methods and tools for bias negotiation (e.g., legal compliance vs. protecting personal safety)?
More generally, further work at the intersection KG engineering and Computational Law is
called for.

5.6.4 Next Steps

Targeted directions for continuing this discussion include:
A vision paper, fleshing out the roadmap sketched above.
Activities to bridge the knowledge graph engineering community and scholars working
in the legal, professional, and cultural, societal aspects of data and knowledge. Avenues
here include multidisciplinary workshops, panel discussions, Dagstuhl Seminars, research
consortia (e.g., EU COST action), and working groups.
Standardization of vocabularies and standards for bias representation.
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This working group focused on how knowledge graphs can be made more attractive for
regular developers of applications and services. We wanted to figure out how to make the vast
amount of value created in resources like Wikidata accessible to a broad developer audience.

5.7.1 Discussed Problems

We discussed how to make accessing the data available in knowledge graphs quicker, cheaper
and more efficient for developers of applications and services, especially those who have
not been in contact with knowledge graphs before. This is becoming especially relevant
as artificial intelligence and machine learning systems are becoming more prevalent and
knowledge graphs can be a powerful tool to improve them.

Developers trying to work with knowledge graphs are facing a number of pain points. We
discussed the various pain points we encountered in our own work with developers building
applications and services on top of different knowledge graphs. Some of these pain points
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relate to the data in the knowledge graph and some to the tooling around that data. The
following pain points were identified:

Getting incorrect answers to queries: Developers are getting incorrect answers to their
queries, which directly harms adoption and trust. This may be caused by issues in the
data, the modeling of the data or the query itself.
Dislike of identifiers, especially opaque identifiers: Many developers seem to dislike the
prevalent use of identifiers in knowledge graphs, especially opaque ones like they are used
for example in Wikidata. Developers want to use human-readable labels in their code
instead.
Schema discovery: The same data can often be modeled in different ways in a knowledge
graph. To write queries that give them the answers they need, developers need to first
get an understanding of how the data they are interested in is modeled. This can be
challenging, especially if exploratory tools are not at hand.
Adapting to new interfaces: There are various user interfaces developers are expected to
work with when developing with data from a knowledge graph such as a query UI. These
have a learning curve.
Unclear and unhelpful error messages: When writing queries developers make mistakes
and sometimes produce syntactically invalid queries. The errors they get back from the
query systems are often not helpful for them to identify the problem and improve their
query.

During the discussion, it became clear that more work is needed to define the exact target
group of this developer outreach to make it successful. We need to better understand their
needs, motivations, additional pain points and the environment they are working in. We
also need to articulate more clearly what problem areas knowledge graphs are particularly
well equipped to solve. A list of prototypical example use cases was considered particularly
helpful in addition.

It might help to analyze positive existing use cases for KGs in a commercial setting,
including data unit testing, content enrichment, geographical visualization, easy access to
multilingual labels, and infobox extraction with a single query. It also seems helpful to
understand the experience and the motivation of the library community, which has bought
into knowledge graphs, perhaps after being shown how Wikidata can answer questions that
could not be answered before. However, applying the same approach to other communities
and use cases might bring novel challenges.

5.7.2 Possible Approaches

To facilitate value creation for software developers brought by knowledge technologies, we
propose a combination of the following eight approaches:
1. Conduct user studies to better understand the target group. Software developers should

be asked to perform representative tasks, and monitoring tools should be included to
understand their mental model. Users should be asked to provide feedback on what was
easy, what was difficult, what went wrong, and what could be improved.

2. Log user actions to help us understand typical user needs that are expressed through
their queries.

3. Provide useful knowledge subsets from Wikidata that users can easily download and
plug in their tools. These subsets should be provided in a developer-friendly format, like
TSV or JSON.

4. Provide users with atomic functions for common operations, based on the persona
needs derived from user studies and logging (points 1 and 2). Some operations would
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include getting labels and aliases for an item, describing an item, query for similar items,
text search for entities or events, fact extraction, and extracting a subset for reuse.

5. Provide example use cases as Jupyter and Colab notebooks, to illustrate the simplicity,
effectiveness, and efficiency of including knowledge technologies in developer tasks. This
should include a discussion on why this technology is the one to use.

6. Enable users to develop a proof of concept (POC) quickly, based on the atomic func-
tions and the example use cases. This POC is primarily meant to convince developers,
but it is also essential to secure management buy-in, as people are best convinced by
showing, not telling.

7. Make knowledge technologies relevant to the developer world, by designing them to
follow developer best practices as closely as possible, including graphical interfaces, APIs,
data unit testing, and GitHub actions and releases. We should not expect developers to
change their habits and make sacrifices to adopt knowledge technologies.

8. Solicit developer feedback to understand remaining pain points and listen to their sug-
gestions for further improvement.

5.7.3 Open Research Questions

There seems to be a limited understanding of knowledge graph adaptations by developers. As
a first step, we need a better understanding of why developers are adopting knowledge graphs
and – most importantly – why not. For this research, we first need a clear understanding of
the developer role and the different applications for which knowledge graphs can be adopted.
The developer role needs to be clearly distinguished from other roles, such as data engineer
and end user. In a second step, we need to determine what categories of information are
needed and how the pain points outlined above hinder the adoption of knowledge graphs.
Amongst others, we have to look into aspects such as:
Data access and presentation: What types of interfaces do developers require and how are

their requirements fulfilled by current tools? E.g., how are SPARQL endpoints perceived
as points of access? What are advantages and what are problems that developers face
when using them? In what ways should the data be represented, i.e., triple-based formats
vs. other data formats?. A possible result would be a list of atomic interaction patterns
(such as API calls) that are considered to be beneficial or to be avoided when providing a
knowledge graph data interface.

Tool requirements: What tools are needed to access a knowledge graph – again, specifically
from the perspective of a developer? E.g., what data inspection/visualization tools are
needed and how do requirements for these tools differ from requirements of other roles?

Data ownership: What role does data ownership play in knowledge graph adoption? What
are the hurdles/concerns in using a shared knowledge graph such as Wikidata, particularly
in a commercial setting? What roles do data quality and trust issues play in adopting
shared knowledge graphs?

In a second step we need to develop new or improve existing tools to better align with
the needs of developers and to provide an overall better experience. These tools need to be
evaluated based on the understanding of user requirements we developed. We also need to
evaluate the usefulness of the possible approaches mentioned above to increase the buy-in of
developers.
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5.7.4 Next Steps

1. Research on persona descriptions and needs – The most urgent challenge with de-
veloper buy-in is social rather than technical. We need to understand what we mean
exactly by developers, what are their knowledge needs, and what is their current workflow.
A possible entry point is an existing user group in the library community, which has
seen the value of knowledge and has gradually embraced knowledge technologies in its
practices.

2. Map of different knowledge types in relation to representation formats – Knowledge
graphs are likely not the optimal format to store every kind of data. Geo-coordinates, for
instance, might be stored more efficiently in a database that supports numeric querying
with high precision, and text-heavy knowledge might be better captured by language
models or ElasticSearch indices. It is essential to provide a rule of thumb for which kind
of representation and resource should be the primary source for which kind of knowledge.
A comprehensive figure or webpage would be a great initial format for such a map.

3. Cookbook style documentation for developers – Performing a knowledge technology
task is overwhelming without understanding the landscape of available knowledge graphs
and tooling. This could be a challenge at the beginning of using this technology, but also
later in the process. To improve the developer experience, we aim to develop cookbook-
style documentation that will enable developers to find relevant knowledge sources and
tools as efficient as possible. The cookbook should ideally also include example use cases
with code as supplementary material.

4. Release data subsets with high reuse potential – Well-understood datasets like MNIST
have been key drivers of user-friendly tools in data science, like scikit-learn. Similarly,
developing high-quality Wikidata subsets with high reuse potential, like a list of all
countries or English labels, will provide an attractive playground for developers and
inspire them to include ready knowledge in their frameworks. The downloads of the
published subsets should be tracked to understand which, if any, are adopted by developers.
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This working group focused on the state of Knowledge Engineering (K) methodologies today,
their relation to ontology engineering methodologies and other types of methodologies, as
well as identifying open issues and needs in this domain.
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5.8.1 Discussed Problems

The discussion started with an inventory of methodologies used by the participants and
experiences of using such methodologies for knowledge engineering in the past. The inventory
of methodologies included mainly ontology engineering methodologies [1], [2], [3], [4], [5] and
others. Some of the issues discussed were:

Lack of transparency, e.g. provenance data, in many projects. Auditing the project can
be an important tool to understand what went well and what did not.
Methodologies need to be agile, to some extent. Waterfall-style processes do not work.
Also the setup of the projects are different, i.e. centralized of decentralized.
Methodologies need to start from use cases, and most of them do, but they differ in how
much guidelines are given on how to actually capture and describe use cases, and to elicit
requirements from them. A good template is essential, and it should include Competency
Questions. It is also important to be able to pick or tailor the methodology base on
the type of use case. An enterprise data integration project has different needs than a
collaborative open data project. In addition, most projects also need to cater for the
unknown use cases of tomorrow – how can a methodology incorporate that?
Costs of the methodology should be considered – KE is expensive. There needs to be
guidelines on how to reduce the costs, and adapt methodology to the available resources.
Human-machine collaboration, and crowdsourcing can be such means to reduce costs.
Types of stakeholders and users, and different roles of users, is another important aspect
that a methodology should cover.
Reuse, e.g. both of existing data artefacts, code lists, and existing ontologies, are not in
focus of most methodologies, but often an ad-hoc add-on activity. Also design patterns is
an important kind of reuse of best practices and proven solutions.
Evaluation and testing is often overlooked, or restricted only to assessing basic sanity
criteria. Very few test-driven methodologies, and to some extent activities such as
ontology testing are still under explored, compared to in for instance software engineering.
Evaluation needs to be more structured and with better tool support. However, human-
centric evaluation methodologies are also crucial.
Focusing only on ontology engineering is too restrictive. A KE methodology needs
to include also data curation, data integration/mapping, population of the knowledge
(graph), and should put the project into its context, e.g. software engineering.
Current tool support is far from perfect, and new tools are emerging to automate additional
steps in KE methodologies, e.g. through ML approaches and language models. Most
tools operate on the triple level, but Knowledge Engineers, and in particular domain
experts, think in terms of other conceptual units, i.e. more complex structures.
Although methodologies should not be too prescriptive, knowledge engineers that are not
experts need a good cookbook, with rules of thumb etc.

An observation of the group was that at a high level existing methodologies are quite
similar, and can be updated and consolidated to give a more coherent view of the KE
processes. However, they are also to some extent lacking in that they do not cover the whole
process, and do not take into account the relation to, for instance, whether the project takes
place in a software engineering context, is conducted more independently, or in an open
collaborative setting, such as crowd-sourcing.
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Figure 10 A blueprint knowledge engineering process that connects multiple methodologies for
developing knowledge graphs.

5.8.2 Possible Approaches

There are many existing methodologies, both earlier KE methodologies and current ontology
engineering methodologies. At an abstract level these are often quite similar, e.g. iterative
processes to incrementally build up the knowledge model, but they are also often too narrow
in scope, since they do not take into account the interaction with the context in which the
KE process happens. Such context can for instance be a software project, intended to provide
some business value to a company. In addition, many such methodologies also do not take
into account the population of the knowledge model being built, i.e. the data integration
and curation efforts needed to put the knowledge into use. Therefore some work is needed
that considers the overall picture of KE in context, as illustrated in Figure 10.

Each step in such a process, i.e. the boxes in the figure, can then be more or less
automated, and supported by various tools and detailed methodologies. However, the overall
core KE methodology will still remain largely the same. A similar effort was also presented
in [6].

5.8.3 Open Research Questions

How does the sync between the methodologies in Figure 10 actually happen?
What kind of evaluations are to be performed in each step, and overall?
How can certain steps be automated or crowdsourced, and to what extent? What are the
quality implications?
How do current Knowledge Engineers actually perform these steps in practice? What are
the bottlenecks and challenges?
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5.8.4 Next Steps

Several possibilities for follow-up publications are discussed and will be pursued by the
working group.
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6 Conclusions and Open Questions

Advances in neural and symbolic AI approaches [1], including knowledge graphs, prompted
us to organise a Dagstuhl Seminar to chart the next frontiers of knowledge engineering
in this brave new world. Participants reviewed the past, current, and emerging landscape
of approaches, practices, and tools in knowledge base and knowledge graph construction,
identified open research questions, and proposed next steps to address them.

The knowledge graph life cycle was a focal point of discussion. There was consensus that
we need a sustained effort to update and upgrade classical ontology engineering methodolo-
gies [2] and develop end-to-end open-source infrastructure to make the most of the latest
neurosymbolic technologies and tools, hence taking knowledge engineering and knowledge
graphs beyond structured and semi-structured data to other modalities.

There are several canonical examples of knowledge graph architectures in use today.
Within organisations, knowledge graphs are instrumental to data, content, and knowledge
management [3]. KG projects essentially follow variants of classical ontology engineering
methodologies, supported by a range of platforms and specialist tools e.g., taxonomy/ontology
editors, graph databases, semantic mappers etc. In conjunction with machine learning,
knowledge graphs are also used in semantic search, zero-shot learning, dialogue systems and
recommender systems as a source of knowledge and explanations. Some of the best known
knowledge graphs today, for instance in web search (Google, Microsoft), social networks
(LinkedIn), and intelligent assistants (Siri, Alexa) achieve scales that were inconceivable
decades ago – this is possible only with the help of automation, in particular using the
latest developments in machine learning including generative models pre-trained on huge
amounts of online data. It was recognised at the seminar that this AI-centric architecture
with human-in-the-loop is not well supported in terms of methodologies and end-to-end tools.
Finally, a third category of knowledge graphs are open-source and built by lively online



Paul Groth, Elena Simperl, Marieke van Erp, Denny Vrandečić 117

communities [4]. While they have found considerable adoption in research and practice,
their success is difficult to replicate in closed, proprietary settings, though they do provide
invaluable insight into the sociotechnical ecosystem in which knowledge is created and shared.

As knowledge graph construction is making use of increasingly sophisticated, yet opaque
AI capabilities, knowledge engineering must, like any other community using AI face its
fairness, accountability, and transparency challenges. Several break-out workshops during
the seminar considered common trustworthy AI concerns such as interpretability, biases, as
well as human-AI interaction more generally, arguing for the need for bespoke solutions that
target a range of end-users and stakeholders unique to knowledge engineering settings.

Finally, participants shared best practices and ideas to continue the knowledge and
technology transfer efforts of the last two decades that have made knowledge graphs the
backbone of systems as diverse as search engines, recommenders, chatbots, and enterprise
data management platforms. They suggested activities to build capabilities and skillsets
to use the latest neurosymbolic technologies and tools in knowledge graph construction,
including tutorials, workshops, and hackathons, and agreed to work on joint frameworks and
knowledge engineering methodologies. They also recognised the sustained need to promote
knowledge graphs to the wider developer community and communicate their benefits, for
instance, alongside neural methods.

As a community invested in knowledge representation and engineering, the participants
embrace neural solutions such as language models for the step change they brought about in
automating knowledge graph construction. At the same time, and looking back at decades of
projects and experience with capturing knowledge in computational representations within
organisations and on the open web, they are convinced that the use of such solutions will
require human-in-the-loop approaches that are trusted and trustworthy. One of the reasons
why enterprise knowledge graphs have become so successful is their ability to combine
efficient, flexible storage of data with tractable representations of domain knowledge, while
guaranteeing data integrity. If enterprise knowledge graph platforms are to adopt the latest
advances in machine learning these guarantees will be as critical as ever. 15

6.1 Continuing the Conversation
To continue the conversation, we provided organizers of EKAW 2022 the 23rd International
Conference on Knowledge Engineering and Knowledge Management input for a walkshop.
We prompted them with the following questions coming from the seminar:

What ways does knowledge engineering deliver value today? What should be the require-
ments for knowledge production processes?
What does user centric knowledge engineering look like including does it integrate into
standard software engineering processes?
How can new technologies help automate manual tasks such as knowledge elicitation,
documentation, etc?
How and to what extent do we integrate language models and knowledge engineering

15 For an individual perspective of the seminar, we refer the reader to the trip report by Juan Sequeda:
http://www.juansequeda.com/blog/2022/09/20/knowledge-graphs-and-their-role-in-the-
knowledge-engineering-of-the-21st-century-dagstuhl-trip-report/
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6.2 Open Questions
Finally, throughout this report we have identified many open questions for futher study. We
itemize them here:
Knowledge Engineering Practice

How does state of the art machine learning, including large language models augment
knowledge engineering processes and projects?
What is the existing user / developer experience of machine learning tools?
What are the roles of people and machines in current knowledge engineering process?
How do you evaluate the added value of automation to knowledge engineering processes?
How do you control the outputs of ML-based systems are what you need for knowledge
engineering?
What is the interplay knowledge graph engineering (with or without AI) and system
engineering?
How doe we synchronize knowledge engineering methodologies?
What kind of evaluations are needed to be performed in each step, and overall for
knowledge engineering methodologies?
How can certain steps in knowledge engineering be automated or crowdsourced, and
to what extent? What are the quality implications?
How do current Knowledge Engineers actually perform methodological steps in practice?
What are the bottlenecks and challenges?

Types of Knowledge
What are cases and the types of knowledge that can or should be relevant for people.
Provide one or several “spectra” of expressiveness and other dimensions, for the
knowledge that can be represented in KGs.
How to allow for a knowledge based system that integrates different kinds of knowledge
representation, but yet allow for a unified query interface?
What types of tasks require which kind of knowledge representations?
Language models are good in smoothly dealing with the brittleness problem of symbolic
knowledge representations. How can we combine language models with knowledge
graphs to gain the advantage of language models?
Would increased use of data types be advantageous for knowledge graph engineering?
Is that a potential approach for combining knowledge graphs with more knowledge
representations?
Can we separate individual facts or knowledge out of a language model, and store it in
a more efficient representation, and thus save on parameters that would encode that
knowledge, making them smaller and more efficient, while allowing them to access a
knowledge graph?
How could we track provenance for language models? How could we represent and
explain where this response came from? How would we trace the lineage of statements
in large language models?
How can language models be updated?
How can language models be adapted to better cover the long tail, emerging knowledge,
etc.?

Explanations and Bias
What is a clear specification of the relation between explanations and interpretations?
What are measures for explanation and methods to evaluate them and to quantify
their trustworthiness (both intrinsically and extrinsically) and to allow for measures of
uncertainty?



Paul Groth, Elena Simperl, Marieke van Erp, Denny Vrandečić 119

How doe we detecting bias using knowledge?
How to representing bias?
How can steps, e.g., machine learning operations, be informed about bias, and then
how to carry out appropriate remedies?
How could we support KG engineers in building legally compliant KGs, and how
could we support government bodies in (semi-)automated auditing of KGs for legal
compliance (e.g., EU regulations on responsible data and AI)?
How would these goals be balanced with methods and tools for bias negotiation (e.g.,
legal compliance vs. protecting personal safety)?

Developer Experience
What types of interfaces do developers require and how are their requirements fulfilled
by current tools?
What are advantages and what are problems that developers face when using tools?
In what ways should the data be represented, i.e., triple-based formats vs. other data
formats?
What tools are needed to access a knowledge graph – again, specifically from the
perspective of a developer? E.g., what data inspection/visualization tools are needed
and how do requirements for these tools differ from requirements of other roles?
What role does data ownership play in knowledge graph adoption? What are the
hurdles/concerns in using a shared knowledge graph such as Wikidata, particularly in
a commercial setting?
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