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Preface

The 39th International Symposium on Computational Geometry (SoCG 2023) was held at
the University of Texas at Dallas, June 12–15, 2023, as part of the Computational Geometry
Week (CG Week 2023). The conference received 175 submissions, and after a thorough
review process, in which each paper was evaluated by three or more independent reviewers,
the program committee accepted 61 papers for presentation. These proceedings contain
extended abstracts of the accepted papers, limited to 500 lines (excluding references). If
any supporting material does not fit in the line limit, the full paper is available at a public
repository and referenced in the corresponding extended abstract.

The Best Paper Award of SoCG 2023 went to the paper “Sparse higher order Čech
filtrations” by Bianca Boeira Dornelas, Michael Kerber and Mickaël Buchet; this paper has
been invited to submit an extended version to the Journal of the ACM. The Best Student
Presentation Award was determined and announced at the symposium, based on ballots
cast by the attendees. A selection of papers was invited to submit an extended version
to forthcoming special issues of Discrete & Computational Geometry and the Journal of
Computational Geometry dedicated to the symposium.

The SoCG Test of Time Awards of this year go to “The complexity of many faces in
arrangements of lines and of segments” by Herbert Edelsbrunner, Leonidas J. Guibas, and
Micha Sharir which was published in SoCG 1988, and to the Computational Geometry
Algorithms Library (CGAL) project.

The scientific program of CG Week 2023 was enriched by two distinguished invited
speakers. An invited talk, entitled “Redistricting as a computational geometry problem”,
given by Moon Duchin from Tufts University. A second invited talk, entitled “Multi-Agent
Path Finding and Its Applications”, was delivered by Sven Koenig from the University of
Southern California. We thank the plenary speakers for kindly accepting our invitation.

In addition to the technical papers, there were five submissions to the multimedia
exposition. Submissions were reviewed and four of them were accepted for presentation. The
extended abstracts that describe these submissions are included in this proceedings volume.
The multimedia content can be found at https://www.computational-geometry.org.

The 5th Computational Geometry Challenge was part of CG Week 2023. The challenge
problem was to cover a polygon with a small number of convex polygons. This year there
were 22 teams participating in the challenge, and these proceedings contain contributions by
the two top-placed teams describing their winning approaches.

We thank the authors of all submitted works. We are most grateful to the members of
the SoCG Program Committee, the Media Exposition Committee, and the CG Challenge
Committee for their dedication, expertise, and hard work that ensured the high quality of
the works in these proceedings. We are grateful for the assistance provided by the hundreds
of reviewers; without their help, it would have been nearly impossible to run the selection
process. Finally, we thank Irina Kostitsyna, who kindly accepted to be the Proceedings
Chair and did meticulous work.

Many other people contributed to the success of SoCG 2023 and the entire CG Week.
We are very grateful to the local organization committee for their work in organizing the
event, and to facilitate remote participation. Finally, we thank all the members of the Test
of Time Award, Workshop, and Young Researchers Forum Committees, the CG Challenge
Advisory Board, and the Computational Geometry Steering Committee.
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1:2 Geometric Embeddability of Complexes Is ∃R-Complete

1 Introduction

For now almost 100 years, much attention has been devoted to studying embeddings of
complexes [8, 21, 30, 31, 42, 54, 66, 67]. Typical types of embeddings include geometric
(also referred to as linear), piecewise linear (PL), and topological embeddings, see also
Figure 1. For formal definitions, we refer to Section 1.2; here we give an illustrative example.
Embeddings of a 1-complex in the plane correspond to crossing-free drawings of a graph in
the plane. In a topological embedding, each edge is represented by a Jordan arc, in a PL
embedding it is a concatenation of a finite number of segments, and in a geometric embedding
each edge is represented by a segment.

We are interested in the problem of deciding whether a given k-complex has a linear/-
piecewise linear/topological embedding in Rd. Several necessary and sufficient conditions are
easy to identify and have been known for many decades. For instance, a k-simplex requires
k + 1 points in general position in Rd and, thus, k ≤ d is an obvious necessary condition.
Moreover, it is straight-forward to verify that every set of n points in R3 in general position
allows for a geometric embedding of any 1-complex on n vertices, i.e., the points are the
vertices of a straight-line drawing of a (complete) graph. Indeed, this fact generalizes to
higher dimensions: every k-complex embeds (even linearly) in R2k+1 [42]. Van Kampen
and Flores [25, 57, 66] showed that this bound is tight by providing k-complexes that do
not topologically embed into R2k. For some time, it was believed that the existence of a
topological embedding also implies the existence of a geometric embedding, e.g., Grünbaum
conjectured that if a k-complex topologically embeds in R2k, then it also geometrically embeds
in R2k [30]. In R2, this is in fact true: For 1-complexes this is commonly known as Fáry’s
theorem [35] but it also follows from Steinitz’ earlier theorem [62]; for 2-complexes one needs
a few additional arguments [32]. In higher dimensions, however, the conjecture was disproven.
In particular, for every k, d ≥ 2 with k + 1 ≤ d ≤ 2k, there exist k-complexes that have a
PL embedding in Rd, but no geometric embedding in Rd [9, 10, 11]. In contrast, PL and
topological embeddability coincides in many cases, e.g., if d ≤ 3 [8, 48] or d−k ≥ 3 [12]. Very
recently, Frick, Hu, Scheel, and Simon [27] characterized when a complex on d + 3 vertices
embeds into the d-sphere, namely, if and only if its non-faces do not form an intersecting
family. Additionally, they showed that if a complex on d + 3 vertices embeds topologically
into Rd then it also embeds linearly into Rd. There are many further necessary and sufficient
conditions known for geometric embeddings [6, 46, 47, 57, 63, 64] and PL or/and topological
embeddings [20, 26, 49, 54, 65, 61].

In recent years, the algorithmic complexity of deciding whether or not a given
complex is embeddable gained attention. In the absence of a complete characterization,
an efficient algorithm is the best tool to decide embeddability. For instance, deciding
whether a 1-complex embeds in the plane corresponds to testing graph planarity and is thus
polynomial time decidable [33]. Similarly, Gross and Rosen [29] present a linear time planarity
algorithm for 2-complexes in the plane. On the other hand, PL embeddability is sometimes
even algorithmically undecidable. To give a concrete example, let Embedk→d denote the
algorithmic problem of determining whether a given k-complex has a PL embedding in Rd.
Because Embed4→5 has been shown to be algorithmically undecidable [40], there is no
algorithm to decide the problem (never mind an efficient one). This provides strong evidence
that PL embeddability for these parameters does not allow a reasonable characterization.

More recently, there have been several breakthroughs concerning the PL embeddability.
For an overview of the state of the art, consider Table 1. In dimensions d ≥ 4, the decision
problem Embedk→d is polynomial-time decidable for k < 2/3 · (d − 1) [16, 13, 15, 36] and
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Table 1 Overview of the complexity of Embedk→d.
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NP-hard for all remaining non-trivial cases [40], i.e., for all k with 2/3 · (d − 1) ≤ k ≤ 2d.
For d ≥ 5 and k ∈ {d − 1, d}, Embedk→d is even known to be undecidable [40]. For all other
NP-hard cases and d ≥ 4 decidability is unknown; we note that the proof for undecidability
in the case of codimension > 1 in [24] has an error [58]. For the case d = 3, Matoušek,
Sedgwick, Tancer, and Wagner proved decidability of Embed2→3 and Embed3→3 [39] and
de Mesmay, Rieck, Sedgwick, and Tancer proved NP-hardness [43].

Building upon [40], Skopenkov and Tancer [60] proved NP-hardness for a relaxed notion
called almost (PL/topological) embeddability where it is only required that disjoint sets
are mapped to disjoint objects, i.e., two edges incident to a common vertex may cross in
an interior point. More precisely, they showed that recognizing almost embeddability of
k-complexes in Rd is NP-hard for all d, k ≥ 2 with d (mod 3) = 1 and 2/3 · (d − 1) ≤ k ≤ d.

The analogous questions for geometric embeddings are wide open. Let GEMk→d

denote the algorithmic problem of determining whether a given k-complex has a geometric
embedding in Rd. In contrast to PL embeddability, however, it is easy to see that GEMk→d

is decidable for all k, d, since every instance can be expressed as a sentence in the first order
theory of the reals, which is decidable; for more details see Section 1.1.

The question of whether GEMk→d is complete for ∃R is a well-known open problem,
mentioned for example by Cardinal [18, Section 4].

Our Results. In this work, we present the first results concerning open problem for any
non-trivial entry with d ≥ 3. More precisely, we establish the exact computational complexity
of GEMk→d for all values d ≥ 3 and k ∈ {d − 1, d}. This includes a complete understanding
of the most intriguing entries with d = 3.

▶ Theorem 1. For every d ≥ 3 and each k ∈ {d − 1, d}, the decision problem GEMk→d is
∃R-complete. Moreover, the statement remains true even if a PL embedding is given.

Table 2 summarizes the current knowledge on the computational complexity of GEMk→d.
Our proof implies that distinguishing between k-complexes with PL and geometric embeddings
in Rd is complete for ∃R. Because NP ⊆ ∃R, our result yields NP-hardness for d ≥ 3 and
each k ∈ {d − 1, d}. This confirms the conjecture by Skopenkov that GEMk→d is NP-hard
for all k, d with max{3, k} ≤ d ≤ 3/2 · k + 1 for the corresponding values of k and d [59,
Conjecture 3.2.2]. Moreover, if NP ̸= ∃R, the problem GEMk→d cannot be tackled with well
developed tools for NP-complete problems such as SAT and ILP solvers. For more details,
we refer to Section 1.1.
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Table 2 Overview of the computational complexity of GEMk→d.
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The closely related question of polyhedral complexes (generalizing simplicial complexes
because each simplex is a basic polyhedron), posed in the Handbook of Discrete and
Computational Geometry, reads as follows: When is a given finite poset isomorphic to the
face poset of some polyhedral complex in a given space Rd? [53, Problem 20.1.1]. The
recognition of polyhedral complexes (with triangles and quadrangles) in R3 has been claimed
to be ∃R-complete [18, Theorem 5]. Focussing on convex polytopes, Richter-Gebert proved
that recognizing convex polytopes in R4 is ∃R-complete [50, 51]. Our result settles the
computational aspects of the question, even for the special case of simplicial complexes.

A geometric embedding of a complex can also be viewed as a simplicial representation of
a hypergraph, i.e., a representation in which every hyperedge is represented by a simplex. Of
particular interest is the case of uniform hypergraphs where all hyperedges have the same
number of elements. Thus, in the language of hypergraphs, our result reads as follows.

▶ Corollary 2. For all d ≥ 3 and every k ∈ {d − 1, d}, deciding whether a (k + 1)-uniform
hypergraph has a simplicial representation in Rd is ∃R-complete.

Outline and techniques. Our proof of Theorem 1 consists of three steps: Establishing
∃R-membership, showing ∃R-hardness in R3, i.e., of GEM2→3 and GEM3→3, and reducing
GEMk→d to GEMk+1→d+1. The core of the proof lies in establishing hardness of GEM2→3.

The main idea to prove hardness of GEM2→3 is to reduce from the problem Stretch-
ability. In Stretchability, we are given an arrangement of pseudolines (curves) in the
plane and we are asked to decide whether there exists a set of straight lines that has the
same combinatorial pattern as the pseudoline arrangement, see Figure 2(a) for an illustration
and Section 1.2 for a formal definition. Given a pseudoline arrangement L, we construct a
2-complex C which has a geometric embedding in R3 if and only if L is stretchable. On a
high level, our construction of C goes along the following lines: We add a helper triangle that
contains all intersections of the pseudolines, see Figure 2(b). We place each pseudoline in R3

and replace it by a special edge of the complex C; these will not be part of any triangle of C.
We surround the special edges by so called tunnels, which are tubes formed by triangular
sections, see Figure 2(c) and (d). One side of the tunnel defines its bottom, while the other
two span its roof. For each crossing in L, we glue the corresponding tunnel sections together,
see Figure 2(e). At last, we insert an apex u high above that is connected to all visible
tunnel parts, see Figure 2(f) and we insert additional objects in order to ensure that the
neighborhood of u is an essentially 3-connected graph, Figure 2(i). The objects incident to
the apex will also ensure that the special edges actually lie inside the tunnel.
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(a)

(i)

si ti`i

(b)

(c)
(d) (e)

(f) (g) (h)

Figure 2 (a) We start with a pseudoline arrangement L. (b) We add three segments forming a
triangle that contains all intersections of L. (c) Each pseudoline is represented by a special edge
that is surrounded by a tunnel. (d) Each tunnel consists of tunnel sections. (e) For the crossings of
the special edges, we identify parts of the tunnels. (f) We add an apex u and insert triangles to
the visible parts of the construction; we enhance the neighborhood of the apex to an essentially
3-connected graph depicted in (i). (g) In the correctness proof, we use a small sphere around the
apex and the projection of each special edge onto the sphere. (h) We argue that the combinatorics
of the projected special edges on the sphere are equivalent to L and then project the special edges
onto a plane. This will yield a stretched arrangement. (i) The neighborhood graph of the apex u.
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1:6 Geometric Embeddability of Complexes Is ∃R-Complete

It is relatively straightforward to verify that if L is stretchable, then the complex C

embeds geometrically into R3. The other direction requires more care and work: We show
that a geometric embedding of C induces a line arrangement with the same combinatorics
as L. The idea of the proof is to consider a small sphere around the apex u and to project
its neighborhood and the special edges onto the sphere, see Figure 2(g). Because the
neighborhood graph of u is essentially 3-connected by construction, all its crossing-free
drawings on the sphere are equivalent. This is a crucial property to show that each special
edge lies in the projection of its tunnel roof (when restricting the attention to an interesting
part within the helper triangle). We remark that our proof does not show this explicitly.
Instead, we establish some even stronger properties. As a consequence, the projection of the
tunnels have the intended combinatorics and thus also the special edges which represent the
pseudolines. At last, we project the arcs from the sphere onto a plane, see Figure 2(h). In
this way, we obtain a line arrangement with the same combinatorics as L.

In order to show hardness of GEM3→3, we use a similar construction, in which we “fatten”
each triangle to a tetrahedron, by adding extra vertices.

We finally present a dimension reduction, i.e., we reduce GEMk→d to GEMk+1→d+1.
Given a k-complex C, we create a (k +1)-complex C+ that contains C and has two additional
vertices a and b. Moreover, for each subset e of C, C+ has the additional subsets e ∪ {a}
and e ∪ {b}. We prove that C geometrically embeds in Rd if and only if C+ geometrically
embeds in Rd+1. In this way, we show that distinguishing PL embeddable and geometrically
embeddable complexes is ∃R-complete.

1.1 Existential Theory of the Reals
The class of the existential theory of the reals ∃R (pronounced as is a complexity class
which has gained a lot of interest in recent years, specifically in the computational geometry
community. To define this class, we first consider the algorithmic problem Existential Theory
of the Reals (ETR). An instance of this problem consists of a sentence of the form

∃x1, . . . , xn ∈ R : Φ(x1, . . . , xn),

where Φ is a well-formed quantifier-free formula in the variables and the alphabet {0, 1, +, ·, ≥
, >, ∧, ∨, ¬}, and the goal is to check whether this sentence is true. As an example of an
ETR-instance, consider ∃x, y ∈ R : Φ(x, y) = (x · y2 + x ≥ 0) ∧ ¬(y < x), for which the goal
is to determine whether there exist real numbers x and y satisfying the formula Φ(x, y).

The complexity class ∃R is the family of all problems that admit a polynomial-time
many-one reduction to ETR. It is known that NP ⊆ ∃R ⊆ PSPACE. The first inclusion
follows from the definition of ∃R. Showing the second inclusion was first established by
Canny in his seminal paper [17]. The complexity class ∃R gains its significance because a
number of well-studied problems from different areas of theoretical computer science have
been shown to be complete for this class.

Famous examples from discrete geometry are the recognition of geometric structures, such
as unit disk graphs [41], segment intersection graphs [38], Stretchability [45, 56], and
order type realizability [38]. Other ∃R-complete problems are related to graph drawing [37],
Nash-Equilibria [7, 28], geometric packing [5], the art gallery problem [3], non-negative
matrix factorization [55], polytopes [22, 51], geometric linkage constructions [1], training
neural networks [4], visibility graphs [19], continuous constraint satisfaction problems [44],
and convex covers [2]. The fascination for the complexity class stems not merely from
the number of ∃R-complete problems but from the large scope of seemingly unrelated ∃R-
complete problems. We refer the reader to the lecture notes by Matoušek [38] and surveys
by Schaefer [52] and Cardinal [18] for more information on the complexity class ∃R.
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1.2 Definitions

Simplex. A k-simplex σ is a k-dimensional polytope which is the convex hull of its k + 1
vertices V , which are not contained in the same (k − 1)-dimensional hyperplane. Hence, a
0-simplex corresponds to a point, a 1-simplex to a segment, and a 2-simplex to a triangle
etc. The convex hull of any nonempty proper subset of V is called a face of σ. A simplicial
complex K is a set of simplices satifying the following two conditions: (i) Every face of
a simplex from K is also in K. (ii) For any two simplices σ1, σ2 ∈ K with a non-empty
intersection, the intersection σ1 ∩ σ2 is a face of both simplices σ1 and σ2. The purely
combinatorial counterpart to a simplicial complex is an abstract simplicial complex, which
we refer to simply as a complex.

Complex. A complex C = (V, E) is a finite set V together with a collection of subsets
E ⊆ 2V which is closed under taking subsets, i.e., e ∈ E and e′ ⊆ e imply that e′ ∈ E. A
k-complex is a complex where the largest subset contains exactly k + 1 elements. We call a
complex pure if all (inclusion-wise) maximal elements in E have the same cardinality.

For any vertex v ∈ V in a k-complex C = (V, E), the neighbourhood of v gives rise
to a lower dimensional complex Cv := (V ′, E′), where E′ := {e \ {v} | v ∈ e ∈ E} and
V ′ := N(v) =

⋃
e∈E′ e are the neighbors of v. Complexes are in close relation to Hypergraphs.

Hypergraphs. Hypergraphs generalize graphs by allowing edges to contain any number of
vertices. Formally, a hypergraph H is a pair H = (V, E) where V is a set of vertices, and E

is a set of non-empty subsets of V called hyperedges (or edges). A k-uniform hypergraph
is a hypergraph such that all its hyperedges contain exactly k elements. Note that the
maximal sets of a pure k-complex yield a (k + 1)-uniform hypergraph and vice versa. Hence,
(k + 1)-uniform hypergraphs and pure k-complexes are in a straightforward one-to-one
correspondence. A simplicial representation of a (k + 1)-uniform hypergraph is a geometric
embedding of the corresponding complex.

Geometric embeddings. A geometric embedding of a complex C = (V, E) in Rd is a
function φ : V → Rd fulfilling the following two properties: (i) for every e ∈ E, φ(e) :=
conv({φ(v) : v ∈ e}) is a simplex of dimension |e| − 1 and (ii) for every pair e, e′ ∈ E, it holds
that

φ(e) ∩ φ(e′) = φ(e ∩ e′).

Note that if φ is a geometric embedding, then {φ(e) : e ∈ E} is a simplicial complex. The
problem GEMk→d asks whether a given k-complex has a geometric embedding in Rd.

Topological and PL embeddings. Consider a complex C = (V, E). In contrast to geometric
embeddings, for PL or topological embeddings it is not sufficient to describe the mapping of
the vertices V . Choose d′ so large that C admits a geometric embedding φ′ : V → Rd′ , and
define S =

⋃
e∈E φ′(e). We then say that an injective and continuous function φ : S → Rd is

a topological embedding of C in Rd. If furthermore for each e ∈ E, the image φ(φ′(e)) is a
finite union of connected subsets of (|e| − 1)-dimensional hyperplanes, then φ is a piecewise
linear (PL) embedding. The problem Embedk→d asks whether a given k-complex has a PL
embedding in Rd.

SoCG 2023
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Graph Drawings. A graph is a 1-complex. A graph is planar if there exists a crossing-free
drawing in the plane, i.e., a (topological) embedding in R2. As mentioned above, a graph
has a topological embedding in R2 if and only if it has a geometric embedding in R2. A
plane graph is a planar graph together with a rotation system, i.e., a cyclic ordering of the
incident edges around each vertex that comes from a crossing-free drawing. By means of
stereographic projection, any graph that has a crossing-free drawing in the plane also has a
crossing-free drawing on the sphere and vice versa. Two crossing-free drawings of a graph
(in the plane or on the sphere) are equivalent if they can be transformed into one another
by a homeomorphism (of the plane or the sphere); note that the homeomorphism could be
orientation reversing. In particular, two equivalent drawings have the same rotation system;
two equivalent drawings in the plane additionally have the same outer face. When talking
about an arbitrary drawing D of a plane graph G, we mean a crossing-free drawing with the
same rotation system.

Stretchability. A pseudoline arrangement is a family of curves that apart from “straightness”
share similar properties with a line arrangement. More formally, a (Euclidean) pseudoline
arrangement is a set of labeled x-monotone curves in the Euclidean plane such that any two
meet in exactly one point. A curve in R2 is x-monotone if it is the image of a continuous
function f : R → R. In fact, each pseudoline arrangement can be encoded by a wiring
diagram; see also Figure 4. A pseudoline arrangement is stretchable if it is combinatorially
equivalent to an arrangement of straight-lines, i.e., if the arrangements can be transformed
into one another by a homeomorphism of the plane. Stretchability denotes the algorithmic
problem of deciding whether a given pseudoline arrangement is stretchable. In a seminal
paper, Shor [56] proved that Stretchability is NP-hard. Shor points out that Mnëv’s
proof implies that stretchability is complete for the existential theory of the reals. For a
stream-line exposition of this result see the expository paper by Matoušek [38].

1.3 Pitfalls
While the general proof ideas are fairly straightforward, our arguments in Section 2 may
at first glance appear a bit tedious. In the following, we highlight one of the appearing
challenges. It is easy to see that each special edge lies inside its tunnel in any geometric
embedding. It follows that the projection of the special edge lies also inside the projection of
the tunnel on the sphere centered at the apex. Furthermore, we know that the roofs of the
tunnels are seen by the apex. One may be tempted to (directly) conclude that the projection
of the special edge is thus also contained in the projection of the roof; the underlying thought
being that the projection of the tunnel bottom lies below the tunnel roof in the geometric
representation and thus the projection of the tunnel bottom is contained in the projection
of the tunnel roof. Yet, the latter is not true in general, as can be seen in Figure 3. In the

Figure 3 From the perspective of u, the tunnel bottom is not always hidden below the tunnel
roof: From the three sections displayed, the bottom (yellow) of the middle one is partially visible.
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figure, the tunnel bottom is not covered by the roof. We (implicitly) show that the projection
of the special edge lies inside the projection of the roof by establishing some even stronger
topological and geometric properties.

2 The Proof

In this section, we prove Theorem 1. Our proof consists of the following three parts.

a) Establishing ∃R-membership (Section 2.1: Lemma 3).
b) Showing ∃R-hardness in R3, i.e., of GEM2→3 and GEM3→3 (Section 2.2: Theorem 4

and Corollary 9).
c) Reducing GEMk→d to GEMk+1→d+1 (Section 2.3: Lemma 10).
Together Lemmas 3 and 10, Theorem 4 and Corollary 9 prove Theorem 1.

2.1 Membership
In this subsection, we show ∃R-membership of GEMk→d. Note that this is essentially
folklore [14]. We present a proof for the sake of completeness.

▶ Lemma 3. For all k, d ∈ N, the decision problem GEMk→d is contained in ∃R.

Proof. In order to show membership in ∃R, we use the following characterization by Erickson,
Hoog and Miltzow [23]: A problem P lies in ∃R if and only if there exists a verification
algorithm A for P that runs in polynomial time on the real RAM, which we refer to as a real
verification algorithm. In particular, for every yes-instance I of P there exists a polynomial
sized witness w such that A(I, w) returns yes, and for every no-instance I of P and any
witness w, A(I, w) returns no. In contrast to the definition of the complexity class NP, we
also allow witnesses that consist of real numbers. Consequently, we execute A on the real
RAM as well.

It remains to present a real verification algorithm for GEMk→d. While the witness
describes the coordinates of the vertices, the algorithm checks for intersections between any
two simplices. Note that each simplex is a convex set and the intersection of convex sets is a
convex set as well. For any simplex S with n vertices, we can efficiently determine n linear
inequalities and at most one linear equality that together describe S: the inequalities may
describe the n facets and the equality describes the subspace in case S is not d-dimensional.
Then checking for intersections can be reduced to a linear program, which is polynomial
time solvable in any fixed dimension. This finishes the description of the real verification
algorithm. ◀

We note that one does not need to resort to the characterization of ∃R with verifiers as
in [23]. It is possible to directly construct a polynomial system of polynomial size (in fixed
dimension) in the coordinates of the vertices of the given complex in order to encode its
geometric realizability. It may appear to be overly complicated to use the tools from [23], if
you do not know this tool. However, if you know this tool it appears strange not to use it.

SoCG 2023
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2.2 Hardness in three dimensions
This section is dedicated to proving Theorem 1 for d = 3 and k ∈ {2, 3}. The crucial part
lies in the case k = 2.

▶ Theorem 4. The decision problem GEM2→3 is ∃R-hard.

Proof. We reduce from the ∃R-hard problem Stretchability, as described in Section 1.2.
In particular, for each pseudoline arrangement L, we construct a 2-dimensional complex C in
time polynomial in L such that C geometrically embeds in R3 if and only if L is stretchable.

Let L be an arrangement of n pseudolines in the plane. Every pseudoline arrangement
has a representation as a wiring diagram in which each pseudoline is given by a monotone
curve consisting of 2n − 1 sections. For an illustration consider Figure 4; each section could
be represented by a segment, however for a visual appealing display, the bend points are
rounded. We add a pseudoline ℓ0 that intersects all pseudolines in the beginning, see Figure 4,
and call the resulting pseudoline arrangement L∗. Note that L∗ is stretchable if and only if
L is stretchable. For later reference, we endow a natural orientation upon each pseudoline
from left to right. In the following, we construct a 2-complex C = (V, E) that allows for a
geometric realization if and only if L∗ (and thus L) is stretchable. In order to define C, we
add a helper triangle △ (consisting of three segments!) to our arrangement that intersects
the pseudolines of L∗ as illustrated in Figure 4. In particular, the helper triangle contains all
intersection points of L∗.

ℓ1

ℓn

ℓ2

ℓ0

...

ℓ1

ℓn

ℓ2

ℓ0

...

Figure 4 Adding an extra pseudoline ℓ0 and the helper triangle △ to the construction. (left) A
pseudoline arrangement L∗. (right) The crossing diagram contains an additional helper triangle.

Construction of the 2-complex. In order to define C, we associate an almost geometric
embedding of already defined parts along the way; where only a set of special edges is
represented in a PL fashion, all other elements are already geometrically embedded. We will
refer to the subsets in C as vertices, edges, and triangles depending on whether they contain
one, two or three elements. The construction has five steps.

In the first step, we place the pseudolines and the helper triangle △ in 3-space. Each
pseudoline ℓi lies in the plane z = i such that an observer high above (at infinity) sees the
wiring diagram. Similarly, we place the segments of the helper triangle △ in 3-space such
that it lies in the plane z = n + 1. Note that no two pseudolines intersect. Therefore, we
can surround each lifted pseudoline by a triangulated sphere which we call a tunnel; see also
Figure 5. The tunnel T +

i of ℓi is formed by 2n + 3 + i sections; later, we will be particularly
interested in a part of a tunnel, denoted by Ti, in which the first two and last two sections
are removed. Each section consists of six triangles forming a triangulated triangular prism
as illustrated in Figure 5. We close the tunnel with triangles at the ends and think of the
bottom side of the prism to lie in the plane z = i − 1/2 (for now). The remaining part of
the tunnel, i.e., the tunnel without its bottom, constitutes the roof, see Figure 5. The roof
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contains three disjoint paths on 2n + 4 + i vertices. The edges and vertices on the boundary
of both the bottom and the roof form the left and right roof path; the edges of the closing
triangles on either end do not belong to either path. The remaining vertices induce the
central roof path. The three roof paths are thickened in Figure 5.

si
tiℓi

Figure 5 First step in the construction of the complex C – tunnel construction. (left) A tunnel
viewed from side. (middle) A section of a tunnel. (right) A tunnel viewed from above.

Note that we do not add a tunnel for the helper triangle. We distribute the sections along
T +

i to edges and crossings of the crossing diagram as follows: Generally, we associate one
section per edge and one section per crossing of two pseudolines. Moreover, we associate
one extra section of T +

j to a crossing of ℓi and ℓj whenever i < j. In order to represent the
pseudoline ℓi, we insert a special edge ei between the two top vertices on either end of the
tunnel; for later reference, we denote the start vertex by si and the end vertex by ti. In the
associated almost geometric embedding, ei is represented inside the tunnel by a concatenation
of segments, one for each tunnel section. We aim for the fact that the special edge ei lies
inside the tunnel in every geometric embedding (if one exists).

In the second step, we identify parts of the tunnels. To this end, consider the tunnel
sections assigned to a crossing of a pseudoline ℓi with ℓj , i < j. Recall that we assigned one
section of T +

i and two sections of T +
j to the crossing. We identify the four triangles in the

bottom of the two sections of T +
j with the four triangles in the roof of one section of T +

i

as indicated in Figure 6. Note that we hereby identify six times two vertices, four of which
belong to a left or right roof path of both tunnels, T +

i and T +
j .

Ti

Tj

Figure 6 Second step in the construction of the complex C: (left) Gluing of tunnel parts viewed
from above. (right) During the identification process, the vertices of the top tunnel are moved to
the vertices of the bottom tunnel.

For the associated almost geometric embedding, we shortly explain here how to geometri-
cally embed the tunnels. To this end, we may easily distribute the sections of the tunnels
such that the six vertices of both tunnels (which will be pairwise identified) have the same
x, y-coordinates. Then, during the identification process, we move the vertices of the top
tunnel to the vertices of the lower tunnel.

In the third step, we add a new vertex to the construction that we call the apex and
which we denote by u. We think of u as the observer high above (at infinity) and insert a
triangle defined by u and the vertices of every edge that is visible from u. Clearly, every edge
of the helper triangle △ is visible. Moreover, note that every roof section that is neither
glued in a crossing nor hidden by the helper triangle is visible. In contrast, no bottom of any
tunnel is visible in the almost geometric embedding.

SoCG 2023
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In the fourth step, we enhance the 1-complex induced by the neighborhood N(u) of
the apex u such that it corresponds to an essentially 3-connected planar graph G+. We
call a graph essentially 3-connected if it is a subdivision of a 3-connected graph. With the
description so far, the 1-complex corresponds to the graph H depicted in black in Figure 7.

f0

Figure 7 Third and fourth step in the construction of the complex C: neighborhood of the
apex u. The graph Hafter the third step is depicted in black. Together with the gray edges, the
graph is a candidate for the essentially 3-connected plane graph G+ and its subgraph G inside △.
Each red vertex outside of △ is a start vertex si or an end vertex ti of some special edge ei; its black
component represents the first or last section of tunnel T +

i , respectively.

To construct G+, we make use of the following fact. We define the degree of a face in a
potentially disconnected plane graph as the number of edges in the face boundary (counted
with multiplicity), plus 1 for each but one component incident to the face. Note that the
degree of a face is thus lower bounded by the number of incident vertices and upper bounded
by twice the number of incident vertices.

▷ Claim 5. For every plane graph G1 = (V1, E1), there exists an essentially 3-connected plane
graph G2 = (V2, E2) such that G1 is a subgraph of G2 and any straight-line drawing D1 of
G1 in the plane can be extended to a straight-line drawing of G2. Moreover, if the maximum
face degree of G1 is k, then the size of G2 can be bounded by |V2| + |E2| ≤ O(k|V1|).

Let G+ := G2 be an essentially 3-connected plane graph guaranteed by Claim 5 for the
case that G1 = H. Note that G1 has O(n2) vertices and edges, and every face has degree
O(n). Hence, the size of G2 is in O(n3). We denote the outer face of G2 by f0. The reader
is invited to think about the far more sparse graph depicted in Figure 7, which also serves
as a candidate for G+. Indeed, the depicted graph also fulfills all properties necessary for
our construction; however, not all properties of Claim 5. For example, the depicted graph is
even 3-connected. The proof of this is straightforward, but a bit tedious. Thus, we leave it
as an exercise to the interested reader to check that the graph remains connected even after
the deletion of any two vertices or alternatively, that any pair of vertices is connected by
three disjoint paths.
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Later, the subgraph G of G+ that is induced by all vertices of
⋃

i Ti will be of particular
interest; in Figure 7, these vertices (and their convex hull) lie inside the helper triangle △.
Recall that Ti denotes the part of the tunnel T +

i obtained by deleting the first two and last
two sections.

It is a well-known fact that all (straight-line or topological) planar drawings of a 3-
connected planar graph on the sphere are equivalent [34]; for a definition of equivalent
drawings consult Section 1.2. Consequently, the result extends to essentially 3-connected
graphs as it also holds for topological drawings. For later reference, we note the following.

▷ Claim 6. The planar graph G+ is essentially 3-connected. Therefore, all crossing-free
drawings of G+ on a sphere are equivalent. Furthermore, any straight-line drawing of H in
the plane can be extended to a straight-line drawing of G+.

We ensure that the neighborhood complex of u is the underlying planar graph of G+, i.e.,
for each edge of G+ not present in H , we insert a triangle formed by the vertices of this edge
together with u and call the resulting complex C.

In the fifth and last step, our final complex C consist of two copies of C in which
the apex vertices are identified. We use these two copies in order to guarantee that in any
geometric embedding the apex lies outside of all tunnels for one copy of C. This finishes the
construction of the abstract complex C.

It remains to show that our construction runs in polynomial time and fulfills the claimed
properties.

Time Complexity. In order to verify that the construction shows ∃R-hardness, we argue
that it has a running time that is polynomial in the size of the input. To this end, note that
a pseudoline arrangement with n pseudolines can be described by the sequence of crossings
along each pseudoline, i.e., by the O(n2) crossings. Thus, the input size is N = O(n2). After
adding the helper triangle and ℓ0, the crossing diagram still has a size in O(n2). It is easy to
see that our construction has a size proportional to N3/2: For each segment and crossing of
the diagram, we insert a constant number of objects. Moreover, we add a triangle for every
(additional) edge in G+; recall that G+ has size O(n3). Consequently, the total construction
has size O(n3) = O(N3/2). We remark, that a more careful choice of G+, as in Figure 7,
yields a construction that is linear in N .

It remains to show that the pseudoline arrangement L is stretchable if and only if C has
a geometric embedding in R3.

Correctness. If L is stretchable, it is relatively straight-foward to construct a geometric
embedding of C.

▷ Claim 7. If L is stretchable, then C has a geometric embedding.

The reverse direction is more involved and the interesting challenge.

▷ Claim 8. If C has a geometric embedding, then L is stretchable.

This finishes the proof of Theorem 4. ◀
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Fattening the Complex. In the following, we present a simple modification for the proof of
Theorem 4 to obtain hardness for pure 2- and 3-complexes.

▶ Corollary 9. The decision problems GEM2→3 and GEM3→3 are ∃R-hard, even when
restricting to pure complexes.

Proof. The constructed 2-complex C in the proof of Theorem 4 was not pure because the
special edges are not contained in any triangle. We obtain a pure 2-complex Ĉ by adding
one new vertex to each special edge such that it forms a special triangle. On the one hand,
given a geometric embedding of C in R3, the new vertices can easily be added close enough
to their defining set in C. On the other hand, any geometric embedding of Ĉ induces an
embedding of C. Hence, C has a geometric embedding if and only if Ĉ has a geometric
embedding in R3.

Analogously, we can add a private vertex to each triangle of Ĉ to form a pure 3-complex
which has a geometric embedding if and only if C has a geometric embedding in R3. ◀

Alternatively for showing hardness of GEM3→3, we remark that hardness of GEMk→d

for k < d easily implies hardness of GEMℓ→d for all k ≤ ℓ ≤ d by adding a disjoint ℓ-simplex
to the construction which always has a geometric embedding in Rd.

2.3 Dimension Reduction
In order to show hardness for all remaining cases of Theorem 1, we establish the following
dimension reduction.

▶ Lemma 10. The decision problem GEMk→d reduces to GEMk+1→d+1.

The idea is to add two apices to a k-complex C in order to obtain a (k + 1)-complex C+.
We then argue that C has a geometric embedding in Rd if and only if C+ has a geometric
embedding in Rd+1. More formally, for a complex C = (V, E) and a disjoint vertex set U ,
C ∗U denotes the join complex (V ∪U, E′) where E′ := {e∪u | e ∈ E, u ∈ U}. The following
claim immediately implies Lemma 10.

▷ Claim 11. Let C = (V, E) be a complex, a, b /∈ V two new vertices, and C+ := C ∗ {a, b}
their join complex. Then C has a geometric embedding in Rd if and only if C+ has a
geometric embedding in Rd+1.

Proof. Let φ be a geometric embedding of C in Rd. Then, we define for v ∈ V ∪ {a, b},

φ′(v) =


( φ(v) , 0 ) if v ∈ V,

(0, . . . , 0, +1) if v = a,

(0, . . . , 0, −1) if v = b.

It is easy to check that φ′ is a geometric embedding of C+ in Rd+1: By definition of the last
coordinate, any two simplices where one possibly contains a and the other possibly contains b

can only intersect in the subspace induced by the first d coordinates. Consequently, all
(interesting) potential intersections happen in the d-dimensional subspace induced by the
first d coordinates. Hence φ implies the correctness of the geometric embedding.

For the reverse direction, consider a geometric embedding φ of C+ in Rd+1. Let φa := φ(a)
and φb := φ(b). Without loss of generality, we assume that φa − φb is orthogonal to the first
d coordinates, i.e., φa −φb is parallel to the (d+1)-st coordinate axis. Let φ(C) :=

⋃
e∈E φ(e)
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denote the induced geometric subrepresentation of C. We claim that the orthogonal projection
f : φ(C) → Rd to the first d coordinates (i.e.,the effect of the function is the one of restricting
to the first d coordinates, .) is injective. Thus φ′ := f ◦ φ yields a representation of C in Rd.

For the purpose of a contradiction, suppose that f is not injective. Then there exist
two distinct points p = (p1, . . . , pd+1) and q = (q1, . . . , qd+1) with p, q ∈ φ(C) such that
(p1, . . . , pd) = (q1, . . . , qd) and pd+1 ̸= qd+1. Without loss of generality, we may assume that
pd+1 > qd+1. Consider the plane P spanned by φa, φb, p. Note that q ∈ P because φa − φb

and p − q are parallel (to the (d + 1)st coordinate axis). For an illustration, see Figure 8.

ϕa

p

q

ϕb

ϕa

ϕb

Figure 8 Illustration for the proof of Claim 11. The geometric embedding φ of C+ gives a
monotone embedding of C, otherwise we can find an intersection in C+.

Let us denote with ep ∈ E and eq ∈ E any choice of hyperedges such that p ∈ φ(ep) and
q ∈ φ(eq). Consider the two open segments seg◦(φa, q) ∈ φ(eq ∪a) and seg◦(φb, p) ∈ φ(ep ∪b).
Clearly, these open segments intersect in a point x, as illustrated in Figure 8. Because φ is a
geometric embedding, it holds that

x ∈ φ(eq ∪ a) ∩ φ(ep ∪ b) = φ(eq ∩ ep) = φ(eq) ∩ φ(ep).

In particular, this implies that x ∈ φ(eq) and thus that x ∈ seg◦(φa, q) ∩ φ(eq). However,
because φ(eq ∪a) is a simplex, φa does not lie in span(φ(eq)) and thus seg◦(φa, q)∩φ(eq) = ∅.
A contradiction. ◁

3 Conclusion

We established the computational complexity of GEMk→d for all d ≥ 3 and k ∈ {d−1, d}. In
particular, we showed that for these values it is complete for ∃R to distinguish PL embeddable
k-complexes in Rd from geometrically embeddable ones. Arguably, GEM2→3 is the most
interesting case.

Investigating the computational complexity for the remaining open entries in Table 2
remains for future work. We strengthen the conjecture of Skopenkov [59] as follows.

▶ Conjecture. The problem GEMk→d is ∃R-complete for all k, d such that max{3, k} ≤
d ≤ 2k.
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1 Introduction

Disk graphs have received much attention due to their ability to model graphs appearing in
practice and their interesting structural properties. In a disk graph, each vertex corresponds
to a (circular) disk, and there is an edge between two vertices if and only if the two
corresponding disks intersect. Disk graphs appear naturally in problems related to radio and
sensor networks. For instance, the region reached by the signal from each transmitter in
a radio network can be modeled as a disk, and when two disks intersect, the interference
of the signals may be an issue if the transmitters use the same frequency. The problem
of avoiding interference while minimizing the number of used frequencies thus corresponds
to finding the chromatic number of the disk graph. Applications like these are part of the
motivation for various papers on algorithms or computational hardness for problems taking
disk graphs in the input [2, 3, 7, 10, 13, 14, 16, 25] as well as papers studying disk graphs
from a mathematical angle [21, 22].

Combinatorial analysis of problems such as chromatic number and minimum hitting set
size has often been performed in greater generality, for intersection graphs of translated copies
or homothetic (i.e., translated and scaled) copies of a fixed convex shape [11, 17, 18, 23],
and recently also for translated, scaled, and rotated squares [6]. Algorithmic considerations
have also been generalized in a similar way – Bonnet, Grelier, and Miltzow [4] studied the
maximum clique problem and extended classic algorithms for disk graphs and unit disk
graphs to intersection graphs of homothetic or translated copies of a fixed convex set.
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A A1 A2 A3

Figure 1 Here, A1 is a homothet of A, A2 is a similarity but not a homothet of A, and A3 is
affine equivalent to A, but not similar to A. By Theorem 1, A and A3 induce the same intersection
graphs of homothets, but Theorem 2 implies that the intersection graphs of similarities are different.

A well-established line of research in discrete and computational geometry has been aiming
at understanding the relationships between classes of geometric intersection graphs such as
whether two classes are equal or whether one class is a subclass of another [5, 8, 9, 15, 20]. In
view of the above-mentioned research, it is natural to investigate the relationships between
the classes of intersection graphs of translated copies, homothetic copies, and copies by
similarity (translation, scaling, and rotation) of a fixed convex shape.

To be precise, consider an arbitrary convex disk A, that is, a convex and compact set
in the plane with non-empty interior. A translate of A is a translated copy of A (with no
scaling or rotation allowed). A homothet of A is a positively scaled and translated copy
of A (with no rotation allowed). A similarity is a homothet rotated by an arbitrary angle.
An affine equivalent of A is the image of A under an invertible affine transformation. See
Figure 1. The intersection graph of a family F of sets in the plane is the graph with vertex
set F and edge set {uv : u, v ∈ F , u ∩ v ̸= ∅}.

In a recent paper, Aamand, Abrahamsen, Knudsen, and Rasmussen [1] studied the
question of when the translates of two convex disks induce the same intersection or contact
graphs, where a contact graph is an intersection graph that can be realized by pairwise
interior-disjoint disks. They proved for a large class of convex disks, including all strictly
convex ones, that two disks A and B yield the same classes of contact and intersection graphs
if and only if the central symmetrals of A and B are affine equivalent, where the central
symmetral of a disk A is the centrally symmetric disk 1

2 (A − A).
In this paper, we study the question of when the homothets or the similarities of two

convex disks induce the same intersection graphs. We make the additional assumption that
the convex disk A be smooth, that is, there is a unique tangent containing any point on the
boundary of A. We let hom A and sim A denote the sets of homothets and similarities of A,
respectively. We let Ghom(A) and Gsim(A) denote the classes of (finite) intersection graphs
of homothets and similarities of A, respectively. For two smooth convex disks A and B, we
are able to say exactly when Ghom(A) = Ghom(B) and Gsim(A) = Gsim(B), as follows.

▶ Theorem 1. Let A and B be smooth convex disks. Then Ghom(A) = Ghom(B) if and
only if A and B are affine equivalent. Moreover, if A and B are not affine equivalent, then
neither Ghom(A) ⊆ Ghom(B) nor Ghom(B) ⊆ Ghom(A).

▶ Theorem 2. Let A and B be smooth convex disks. Then Gsim(A) = Gsim(B) if and only
if B is similar to A or to the reflection Ar = {(−x, y) : (x, y) ∈ A}.

If A and B are affine equivalent, then Ghom(A) = Ghom(B), because the affine transforma-
tion that maps A to B transforms every realization in hom A to a realization of the same graph
in hom B, and vice versa. Likewise, if B is similar to A or to Ar, then Gsim(A) = Gsim(B),
because the similarity transformation (possibly with reflection) that maps A to B transforms
every realization in sim A to a realization of the same graph in sim B, and vice versa. The
difficult part is the necessity of these conditions.
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Figure 2 To the left is shown the grid of small copies of A and one large copy of A on top.
The disks in the grid that are intersected (dark gray) define the shape of A to an arbitrarily high
precision, if we make the grid sufficiently fine. To the right is shown the same graph realized by
another disk B. As we will show, the arrangement must again form a grid of small disks with one
large copy of B on top. An affine map that makes the two grids coincide then also maps B to A to
within a small error, since the two disks intersect the same “pixels” in the grids.

When A and B are not affine equivalent, we point out graphs GA ∈ Ghom(A) and
GB ∈ Ghom(B) such that GA /∈ Ghom(B) and GB /∈ Ghom(A), which yields the second part
of Theorem 1. By contrast, when B is dissimilar to both A and Ar, then Gsim(A) and
Gsim(B) may be properly nested. Indeed, if A is a circular disk and B is a non-circular filled
ellipse, then Gsim(A) ⊂ Gsim(B), because the affine stretch that maps A to B transforms
every realization in hom A = sim A to a realization of the same graph in hom B ⊆ sim B,
while in the proof of Theorem 2, we construct a graph in Gsim(B) that is not in Gsim(A).

One may or may not allow scaling by negative numbers when defining the homothets of
A, which corresponds to rotating A by 180◦. We remark that Theorem 1 holds in either case
(with the same proof). Likewise, one may or may not allow reflection along the y-axis when
defining the similarities of A, and Theorem 2 holds in either case (with the same proof).

We note that although we establish results for more general families of graphs, our
results are not generalizations of the ones in [1]. We also remark that the contact graphs
of homothets or similarities of a smooth convex disk have already been characterized. The
Koebe-Andreev-Thurston Circle Packing Theorem, first proved by Koebe in 1936 [19], asserts
that every planar graph is the contact graph of some set of pairwise interior-disjoint circular
disks. Since every contact graph is planar, the contact graphs are exactly the planar graphs.
The Monster Packing Theorem by Schramm [24] generalizes the result in the following way.
Suppose that a planar graph is given, together with a correspondence which assigns to each
vertex of the graph a smooth convex disk. Then there exists a contact representation of the
graph where each vertex is represented by a homothet of the associated disk. Hence the
contact graphs of homothets or similarities of any smooth convex disk are the planar graphs.

Outline of the paper
In Section 2, we set our notation and define the central concepts. In Section 3, we introduce
a notion of convergence of sequences of compact subsets of R2. The usual definition of
convergence based on the Hausdorff distance between sets only allows us to talk about
convergence towards a compact set, but in our case, we also need to be able to express, for
instance, that a sequence of (growing) convex disks converges to a half-plane.
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2:4 Distinguishing Intersection Graphs of Homothets or Similarities of Two Convex Disks

In Sections 4 and 5, we introduce the constructions that enable us to distinguish the graph
classes. At an overall level, the idea behind our constructions is to define a graph G such
that however G is realized as an intersection graph of homothets or similarities of a smooth
convex disk A, then a subset of the disks in the realization will form a large and almost
regular grid of small copies of A; see Figure 2. We use this grid in a somewhat similar manner
as the grid of pixels in television: We put one large disk A on top of the grid. The disks in
the grid that intersect A will then with high precision define the shape of A. If now another
disk B is able to realize the same graph, then we can consider an affine transformation that
makes the two grids “match”, and it follows that A and B must be nearly identical under
this transformation, since the same “pixels” in the two grids are intersected by the large
disks on top. If B can realize the graph for an arbitrarily fine resolution of the grid, then we
get in the limit a transformation f⋆ that maps A to B.

In the case of homothets (Section 6), the transformation f⋆ is an arbitrary affine trans-
formation, which leads to Theorem 1. In the case of similarities (Section 7), we can further
prove that the grid must be square-shaped. It then follows that the limit transformation f⋆

is angle preserving, so B must be similar to A or Ar.
The construction of this grid is rather delicate and relies on a careful analysis of various

building blocks described in Section 4. Our first basic tool (Lemma 9) is that if the complete
bipartite graph K2,n is realized as an intersection graph of similarities of a convex disk A,
then the distance between the two disks U1 and U2 in the first vertex class can be made
arbitrarily much smaller than the size of U1 and U2 by choosing n large enough. In other
words, in the limit where n → ∞, the two disks U1 and U2 behave as if they were in contact.

We are then able to define a larger graph Ln where a realization has two disks U1, U2
and n disks V1, . . . , Vn, such that by choosing n large enough, we know that all of the latter
disks are arbitrarily small compared to both of U1 and U2 (Lemma 11), and they must
furthermore be “squeezed in” between these disks. The disks in each row and each column of
the aforementioned grid in the final construction will be a subset of the disks V1, . . . , Vn in a
realization of this graph Ln. Here, it is necessary to place chains of overlapping disks on top
of each row and each column of the grid to ensure that when the grid becomes arbitrarily
fine, it does not degenerate into a segment.

In the case of similarities, we introduce the concept of the stretch of a convex disk A,
denoted ρA. We consider two parallel lines of distance 1 and a chain of n consecutively
overlapping similarities of A, contained in the strip bounded by these lines. The stretch is
the ratio between the (geometric) length of a longest such chain and n, as n → ∞. Now if
ρB < ρA, then it will be impossible for similarities of B to realize the graph that we construct
for A, as there is no chain of similarities of B that can “reach far enough”. If ρB = ρA, then
for both A and B the graph can be realized only so that the grid is square-shaped, since
otherwise some chains in the realizations will not be able to reach far enough.

We conclude the paper in Section 8 by mentioning some open questions.

2 Preliminaries

Let int X and ∂X denote the interior and the boundary of a set X ⊆ R2, respectively. A
convex disk is a convex compact subset of R2 with non-empty interior. Every convex disk
is the closure of its interior. Two non-empty subsets of R2 touch if they intersect but the
interior of either one is disjoint from the other. A tangent to a convex disk A is a line that
touches A (whence it follows that A lies in one of the two half-planes bounded by the line).
For every convex disk A and every point p ∈ ∂A, there is at least one tangent to A containing
p. A convex disk A is smooth if for every point p ∈ ∂A, there is exactly one tangent to A

containing p. All convex disks that we consider are implicitly assumed to be smooth.
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A similarity of a convex disk A is a rotated, scaled, and translated copy of A, that is, a
set of the form

A′ =
{

r ·
[
cos θ − sin θ

sin θ cos θ

]
a + z : a ∈ A

}
,

where r > 0, z ∈ R2, and θ ∈ [0, 2π). We call r the radius of A′ and denote it by rA(A′). When
A is clear from the context, we simplify the notation to r(A′). A similarity A′ is a homothet
of A if θ = 0, that is, A′ is a scaled and translated copy of A. We let sim A and hom A denote
the set of similarities and the set of homothets of A, and we let simr A = sim A ∪ sim Ar,
where Ar is the reflection of A about the y axis: Ar = {(−x, y) : (x, y) ∈ A}.

A realization of a graph G = (V, E) in a family F of subsets of R2 is a mapping R : V → F
such that R(u) ∩ R(v) ̸= ∅ if and only if uv ∈ E. We consider only finite graphs and their
realizations with F = sim A or F = hom A for some convex disk A.

The Euclidean norm of a vector a ∈ R2 is denoted by ∥a∥. The Euclidean distance
between points p, q ∈ R2 is denoted by dist(p, q). This notation extends to the distance
between a point p ∈ R2 and a set X ⊆ R2 or between two sets X, Y ⊆ R2:

dist(p, X) = inf
x∈X

dist(p, x), dist(X, Y ) = inf
x∈X

inf
y∈Y

dist(x, y).

For a point q ∈ R2 and δ > 0, let ball(q, δ) = {p ∈ R2 : dist(p, q) ⩽ δ}. For a compact
set X ⊆ R2 and δ > 0, let ball(X, δ) = {p ∈ R2 : dist(p, X) ⩽ δ}. The diameter of a set
X ⊆ R2, which is supx,y∈X dist(x, y), is denoted by diam X. The bounding box of a compact
set X ⊂ R2 is the unique minimal box of the form [x1, x2] × [y1, y2] containing X. Let
N = {1, 2, . . .} and [n] = {1, . . . , n} for n ∈ N.

3 Convergence and limits

Recall the notion of Hausdorff distance between non-empty subsets X and Y of a metric space:

dH(X, Y ) = max
{

sup
x∈X

dist(x, Y ), sup
y∈Y

dist(y, X)
}

.

It is well known that the family of non-empty compact subsets of a (compact) metric space
equipped with this notion of distance forms a (compact) metric space. This leads to a notion
of convergence of a sequence of non-empty compact subsets of R2 to a non-empty compact
subset of R2 in Hausdorff distance. If a sequence of non-empty compact convex subsets of
R2 converges in Hausdorff distance, then its limit is also convex. We need to extend the
notion of convergence in Hausdorff distance by allowing the limit object to be an unbounded
closed subset of R2 while assuming convexity of the members of the sequence.

A pair (p, r) ∈ R2 × R+ is an anchor for a sequence (Xn)∞
n=1 of non-empty compact

convex subsets of R2 if dist(p, Xn) ⩽ r for every n ∈ N. A sequence of non-empty compact
convex subsets of R2 is anchored if it has an anchor. We say that an anchored sequence
(Xn)∞

n=1 of non-empty compact convex subsets of R2 converges to a set X⋆ ⊆ R2 (and write
Xn → X⋆), and we call X⋆ the limit of (Xn)∞

n=1, if for every anchor (p, r) for it, the sequence
(Xn ∩ ball(p, r))∞

n=1 converges to X⋆ ∩ ball(p, r) in Hausdorff distance. Since the latter limit
is unique, so is the limit X⋆ =

⋃
(p,r)(X⋆ ∩ ball(p, r)), where the union is taken over all

anchors (p, r) for (Xn)∞
n=1. It is easy to see that the limit X⋆ is a closed convex set.

The following lemmas assert basic properties of this extended notion of convergence. See
the full version of the paper for the proofs that are missing from the current version.
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▶ Lemma 3. If (Xn)∞
n=1 is a sequence of non-empty compact convex subsets of R2 with

anchor (p, r) that converges to a set X⋆ ⊆ R2 in Hausdorff distance, then the sequence
(Xn ∩ ball(p, r))∞

n=1 converges to X⋆ ∩ ball(p, r) in Hausdorff distance.

▶ Lemma 4. Every anchored sequence of non-empty compact convex subsets of R2 has a
convergent subsequence.

▶ Lemma 5. Let A be a convex disk and F = hom A or F = sim A. Let (Xn)∞
n=1 be a

sequence of members of F that converges to a set X⋆ ⊆ R2. Then the sequence (r(Xn))∞
n=1

converges or diverges to ∞. Furthermore,
if r(Xn) → r⋆ ∈ R, where r⋆ > 0, then X⋆ ∈ F ,
if r(Xn) → 0, then X⋆ = {z⋆} for some point z⋆ ∈ R2,
if r(Xn) → ∞, then X⋆ is a half-plane or X⋆ = R2.

▶ Lemma 6. Let A be a convex disk and F = hom A or F = sim A. For every set X⋆

that is a member of F or a half-plane, there is a sequence (Xn)∞
n=1 of members of F that

converges to X⋆ and satisfies Xn ⊂ int X⋆ for every n ∈ N.

An interior-realization of a graph G = (V, E) in a family F̄ of subsets of R2 is a mapping
R̄ : V → F̄ such that int R̄(u) ∩ int R̄(v) ̸= ∅ if and only if uv ∈ E. Our main construction in
Section 5 is easier to present in terms of interior-realizations rather than realizations, and
the following lemma turns an interior-realization into a realization.

▶ Lemma 7. Let A be a convex disk, F = hom A or F = sim A, and H be the family of all
half-planes. If a graph G has an interior-realization in F ∪ H, then G has a realization in F .

Proof. Let G = (V, E), and let R̄ be an interior-realization of G in F ∪ H. Let puv ∈
int R̄(u) ∩ int R̄(v) for every edge uv ∈ E. Let mappings Rn : V → F for n ∈ N be such
that the sequence (Rn(v))∞

n=1 converges to R̄(v) for every v ∈ V and Rn(v) ⊂ int R̄(v) for
all v ∈ V and n ∈ N; they exist by Lemma 6. It follows that Rn(u) ∩ Rn(v) ̸= ∅ implies
int R̄(u) ∩ int R̄(v) ̸= ∅ and thus uv ∈ E, for all n ∈ N. If n ∈ N is sufficiently large that
puv ∈ Rn(u) ∩ Rn(v) for every edge uv ∈ E, then Rn is a realization of G in F . ◀

4 Basic configurations

Let Km,n denote the complete bipartite graph with vertices u1, . . . , um on one side and
v1, . . . , vn on the other side, so that uivj is an edge of Km,n for all i ∈ [m] and j ∈ [n]. The
following lemma is proved by a simple area argument.

▶ Lemma 8. For every convex disk A and every ε > 0, if n is sufficiently large, then every
realization R of K1,n in sim A satisfies mini∈[n] r(R(vi)) < εr(R(u1)).

▶ Lemma 9. Let A be a convex disk and N be an infinite subset of N. For every sequence
(Rn)n∈N such that Rn is a realization of K2,n in sim A and Rn(u1) converges to a convex
disk or singleton set U⋆

1 , the sequence (Rn(u2))n∈N is anchored and for all of its convergent
subsequences, the limit touches U⋆

1 .

Proof. When n → ∞, since r(Rn(u1)) → r(U⋆
1 ), Lemma 8 yields dist(Rn(u1), Rn(u2)) ⩽

mini∈[n] diam Rn(vi) = mini∈[n] r(Rn(vi)) · diam A → 0, which implies dist(U⋆
1 , Rn(u2)) ⩽

dist(Rn(u1), Rn(u2)) + dH(Rn(u1), U⋆
1 ) → 0, and the lemma follows. ◀
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ℓ1

ℓ2

û1

û2

u1

u2

v1 v5

Figure 3 The graph L5. Here, û1 has an edge to all vertices above the line ℓ2, and û2 has an
edge to all vertices below ℓ1.

▶ Construction 10 (the graph Ln). The graph Ln has vertices u1, u2, v1, . . . , vn, vertices
wijk and edges uiwijk, wijkvj for all i ∈ [2] and j, k ∈ [n] (so that ui, vj , wij1, . . . , wijn form
a copy of K2,n), and two additional vertices û1, û2 such that û1 has an edge to every vertex
except u2 and û2 has an edge to every vertex except u1. See Figure 3.

When considering a specific realization R of Ln (possibly with a superscript), we write Vi,
Ui, and Ûi (with the same superscript) as shorthand for R(vi), R(ui), and R(ûi), respectively.
The following lemma makes essential use of the assumption that A is smooth.

▶ Lemma 11. For every convex disk A and every ε > 0, if n is sufficiently large, then every
realization of Ln in sim A satisfies maxj∈[n] r(Vj) ⩽ ε min{r(U1), r(U2)}.

Proof. Suppose for the sake of contradiction that there is ε > 0 such that for every n, there
is a realization Rn of Ln in sim A such that maxj∈[n] r(V n

j ) > ε min{r(Un
1 ), r(Un

2 )}. Assume
without loss of generality that r(Un

1 ) ⩽ r(Un
2 ) for all n. Furthermore, assume that Un

1 is
constant (equal to U1) while the other disks may change size and placement as a function of n.

Suppose there is ρ > 0 such that mini∈[n] r(V n
i ) ⩾ ρ for every n. Let k ∈ N. By Lemma 9,

we can pass to a subsequence of (Rn)∞
n=k in which V n

i → V ⋆
i and V ⋆

i touches U1 for every
i ∈ [k]. At least k − 2 of these limits, say V ⋆

1 , . . . , V ⋆
k−2, are not half-planes. Along with U1,

they form a realization of K1,k−2 in sim A. When k is sufficiently large, Lemma 8 yields
mini∈[k−2] r(V ⋆

i ) < ρ. This contradiction shows that mini∈[n] r(V n
i ) → 0 as n → ∞.

For each n, let V n
min and V n

max be disks among V n
1 , . . . , V n

n with minimum and maximum
radii, respectively, so that r(V n

max) > εr(U1) and r(V n
min) → 0 as n → ∞. See Figure 4.

Considering n → ∞ and passing to a subsequence, by Lemmas 5 and 9, we can assume that
V n

min converges to a singleton set {p}, where p ∈ ∂U1,
Un

2 converges to a member of sim A or half-plane U⋆
2 that touches U1 at p,

Ûn
1 converges to a limit Û⋆

1 that touches U⋆
2 at p, as p ∈ Û⋆

1 and int(Û⋆
1 ∩ U⋆

2 ) = ∅,
Ûn

2 converges to a limit Û⋆
2 that touches U1 at p, as p ∈ Û⋆

2 and int(U1 ∩ Û⋆
2 ) = ∅,

V n
max converges to a member of sim A or half-plane V ⋆

max that touches both U1 and U⋆
2 .

It follows that the unique line tangent to both U1 and U⋆
2 at p splits the plane into two

half-planes H1 and H2 such that U1, Û⋆
1 ⊆ H1 and U⋆

2 , Û⋆
2 ⊆ H2.

Suppose that at least one of U⋆
2 , V ⋆

max is a member of sim A. By Lemma 8, there are
disks W n

1 and W n
2 (members of sim A) such that

W n
1 intersects V n

max, U1, and Ûn
2 ,

W n
2 intersects V n

max, Un
2 , and Ûn

1 ,
r(W n

1 ) → 0 and r(W n
2 ) → 0 as n → ∞.

SoCG 2023



2:8 Distinguishing Intersection Graphs of Homothets or Similarities of Two Convex Disks

pU1

Û⋆
1

U⋆
2

Û⋆
2V ⋆

max

H1 H2

Figure 4 Situation from the proof of Lemma 11.

Considering n → ∞ and passing to a subsequence, we can assume that W n
1 → {q1} and

W n
2 → {q2}, where q1 ∈ V ⋆

max ∩ U1 ∩ Û⋆
2 and q2 ∈ V ⋆

max ∩ Û⋆
1 ∩ U⋆

2 . It follows that V ⋆
max

touches U1 at q1 and U⋆
2 at q2, whereas both q1 and q2 lie on the boundary line between H1

and H2. This is possible only when V ⋆
max = {q1} = {q2}, which is a contradiction.

Now, suppose that both U⋆
2 and V ⋆

max are half-planes (in particular U⋆
2 = H2). It follows

that they are disjoint half-planes (as they must have disjoint interiors), while Û⋆
2 ⊆ H2 = U⋆

2 ,
so V ⋆

max and Û⋆
2 are disjoint, which is again a contradiction. ◀

▶ Lemma 12. Let A be a convex disk and N be an infinite subset of N. For each n ∈ N ,
let L′

n be a graph which contains, as induced subgraphs, Ln and a fixed connected graph H

containing v1 such that u1 and u2 have no edges to any vertex of H. Let (Rn)n∈N be a
sequence such that Rn is a realization of L′

n in sim A for n ∈ N and V n
1 converges to a

convex disk V ⋆
1 . Then (Rn)n∈N has a subsequence in which

Un
1 and Un

2 converge to disjoint half-planes U⋆
1 and U⋆

2 ,
Ûn

1 and Ûn
2 converge to limits that touch U⋆

2 and U⋆
1 , respectively,

for every vertex w of H, Rn(w) converges to a convex disk or singleton set.

Proof sketch. By Lemma 9, the sequences (Un
1 )n∈N and (Un

2 )n∈N are anchored, and so
are the sequences (Ûn

1 )n∈N and (Ûn
2 )n∈N , so we can pass to a subsequence in which they

converge to limits U⋆
1 , U⋆

2 , Û⋆
1 , and Û⋆

2 , respectively. Moreover, by Lemma 9, U⋆
1 touches V ⋆

1
and Û⋆

2 at a common point, and U⋆
2 touches V ⋆

1 and Û⋆
1 at a common point. By Lemma 11,

r(Un
1 ) → ∞ and r(Un

2 ) → ∞, so U⋆
1 and U⋆

2 are disjoint half-planes. Simple induction shows
that we can further pass to a subsequence in which Rn(w) converges to a convex disk or
singleton set for every vertex w of H. ◀

5 Main construction

An n-chain aligned to parallel lines ℓ1, ℓ2 is an n-tuple A1, . . . , An of convex disks all touching
ℓ1 and ℓ2 and such that Ai ∩ Ai+1 ̸= ∅ for all i ∈ [n − 1]. The length of such an n-chain is
the length of the orthogonal projection of A1 ∪ · · · ∪ An on ℓ1 (or ℓ2) divided by dist(ℓ1, ℓ2).
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A

ε
2

ε
2

⩾ (n + 1)ε

ε
2

ε
2

Figure 5 Lemma 13 asserts that for every n ∈ N, if ε > 0 is sufficiently small, then the lengths of
the four green segments are at least (n + 1)ε.

Such an n-chain is strict if int(Ai ∩ Ai+1) ̸= ∅ for all i ∈ [n − 1]. A horizontal or vertical
n-chain is an n-chain aligned to horizontal or vertical lines, respectively. Before using the
n-chains to construct the key graph of our proof, we need the following lemma, which relies
on the assumption that A is smooth; see Figure 5 for an illustration.

▶ Lemma 13. For every convex disk A with bounding box [0, 1]2 and every n ∈ N, there
is ε0 > 0 such that for every ε ∈ (0, ε0), the lengths of the four segments A ∩ (R × { ε

2 }),
A ∩ (R × {1 − ε

2 }), A ∩ ({ ε
2 } × R), and A ∩ ({1 − ε

2 } × R) are at least (n + 1)ε.

For an illustration of the following construction, see Figure 6.

▶ Construction 14 (the graph GA,F
mn ). Let A be a convex disk with bounding box [0, 1]2. Let

F = hom A or F = sim A. Let m, n ∈ N with m ⩽ n. Let k ∈ N be minimal such that there
exist a strict horizontal k-chain and a strict vertical k-chain in F of length greater than m.
Let ε > 0 be as in Lemma 13 for A and n. The graph GA,F

mn has the following vertices and
the following interior-realization R̄ by members of F and half-planes:

R̄(vij) = 1
m A + ( i−1

m , j−1
m ) for (i, j) ∈ ([n] × [m]) ∪ ([m] × [n]),

R̄(u1j) = R× (−∞, j−1
m ] for j = 1, . . . , m+1 and R̄(u2j) = R× [ j

m , +∞) for j = 0, . . . , m,
R̄(ūi1) = (−∞, i−1

m ] ×R for i = 1, . . . , m + 1 and R̄(ūi2) = [ i
m , +∞) ×R for i = 0, . . . , m,

R̄(z1j), . . . , R̄(zkj) that form a strict horizontal k-chain in F with bounding box [−δ, 1 +
δ] × [ j−1

m , j
m ] for j = 1, . . . , m and some sufficiently small δ > 0,

R̄(z̄i1), . . . , R̄(z̄ik) that form a strict vertical k-chain in F with bounding box [ i−1
m , i

m ] ×
[−δ, 1 + δ] for i = 1, . . . , m and some sufficiently small δ > 0,
R̄(w) = A,
R̄(xij) = ε

m A + ( εi
m , j

m − ε
2m ) for i = 0, . . . , ⌈ n

ε ⌉ − 1 and j = 0, . . . , m,
R̄(x̄ij) = ε

m A + ( i
m − ε

2m , εj
m ) for i = 0, . . . , m and j = 0, . . . , ⌈ n

ε ⌉ − 1.

By Lemma 7, GA,F
mn has a realization in F . When considering a specific realization R of

GA,F
mn (possibly with a superscript), we write Vij , Uij , Ūij , Zij , Z̄ij , and W (with the same

superscript) as shorthand for R(vij), R(uij), R(ūij), R(zij), R(z̄ij), and R(w), respectively.
For m ∈ N and i, j ∈ [m], let Sm

ij = [ i−1
m , i

m ] × [ j−1
m , j

m ]. The following lemma asserts
basic properties of Construction 14.
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R̄(v64)

R̄(u14)

R̄(u24)

R̄(ū31) R̄(ū32)

R̄(z13), . . . , R̄(zk3)

R̄(z̄21), . . . , R̄(z̄2k)

R̄(xi0)

R̄(x̄4j)

R̄(w)

Figure 6 The interior-realization of the graph GA,sim
48 . The figure is not to scale; in reality, the

pink disks R̄(xij) and R̄(x̄ij) would be much smaller (and thus more numerous).

▶ Lemma 15. Let A, F , m, n, k be as in Construction 14. The following hold for GA,F
mn :

1. For every j ∈ [m], there is an induced subgraph isomorphic to Ln in which the vertices
u1j , u2j , u1(j+1), u2(j−1), and v1j , . . . , vnj play the roles of u1, u2, û1, û2, and v1, . . . , vn,
respectively; for every i ∈ [m], there is an induced subgraph isomorphic to Ln in which
the vertices ūi1, ūi2, ū(i+1)1, ū(i−1)2, and vi1, . . . , vin play the roles of u1, u2, û1, û2, and
v1, . . . , vn, respectively.

2. For every j ∈ [m], the subgraph induced on v1j , . . . , vmj , z1j , . . . , zkj is connected and con-
tains a path z1j · · · zkj ; for every i ∈ [m], the subgraph induced on vi1, . . . , vim, z̄i1, . . . , z̄ik

is connected and contains a path z̄i1 · · · z̄ik.
3. The vertices z11, . . . , z1m are adjacent to ū11, the vertices zk1, . . . , zkm are adjacent to

ūm2, the vertices z̄11, . . . , z̄m1 are adjacent to u11, and the vertices z̄1k, . . . , z̄mk are
adjacent to u2m.

4. The vertex w is adjacent to at least one of z1j , . . . , zkj for every j ∈ [m] and at least one
of z̄i1, . . . , z̄ik for every i ∈ [m]; for every u ∈ {u11, u2j , ū11, ūi2}, there is an induced
subgraph isomorphic to K2,n in which the vertices u and w form one of the parts of the
bipartition.

5. For all i, j ∈ [m], if Sm
ij ⊆ A, then vijw is an edge, and if vijw is an edge, then

Sm
ij ∩ A ̸= ∅.

An m-grid is a collection of two (m + 1)-tuples of parallel lines ℓ0, ℓ1, . . . , ℓm and
ℓ̄0, ℓ̄1, . . . , ℓ̄m that are images of horizontal lines at coordinates 0 = y0 < y1 < · · · < ym = 1
and m + 1 vertical lines at coordinates 0 = x0 < x1 < · · · < xm = 1, respectively, under an
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zℓ0

ℓ4

ℓ̄0

ℓ̄4

b

a

V32

Ū31
Ū32

U12

U22

Figure 7 An example of a 4-grid with aligned disks and half-planes.

affine transformation f : R2 ∋ (x, y) 7→ z + xa + yb ∈ R2 for some point z ∈ R2 called the
origin of the m-grid and some linearly independent vectors a, b ∈ R2 that form the basis of the
m-grid; see Figure 7. The differences x1 − x0, . . . , xm − xm−1 and y1 − y0, . . . , ym − ym−1 are
the horizontal and vertical distances of the m-grid, respectively. A configuration of convex
disks Vij with i, j ∈ [m] and half-planes U11, U21 . . . , U1m, U2m, Ū11, Ū12, . . . , Ūm1, Ūm2 is
aligned to such an m-grid if the following holds:

U1j = f(R × (−∞, yj−1]) and U2j = f(R × [yj , +∞)) for j ∈ [m],
Ūi1 = f((−∞, xi−1] × R) and Ūi2 = f([xi, +∞) × R) for i ∈ [m],
Vij touches the four half-planes U1j , U2j , Ūi1, Ūi2 for i, j ∈ [m].

The following lemma is at the heart of our argument. Among other things, it asserts that
in realizations of the graph GA,F

mn , the disks V n
ij , for i, j ∈ [m], are indeed forced to form an

aligned m-grid as n → ∞. This will be the foundation for the proofs of Theorems 1 and 2.

▶ Lemma 16. Let A and B be convex disks such that A has bounding box [0, 1]2. Let
F = hom A or F = sim A. Let m ∈ N. Let k ∈ N be minimal such that there exist a
strict horizontal k-chain and a strict vertical k-chain in F of length greater than m. Every
sequence (Rn)∞

n=m such that Rn is a realization of GA,F
mn in sim B and V n

11 is constant has a
subsequence in which the disks V n

ij with i, j ∈ [m], Un
1j , Un

2j with j ∈ [m], and Ūn
i1, Ūn

i2 with
i ∈ [m] converge to convex disks V ⋆

ij and half-planes U⋆
1j , U⋆

2j and Ū⋆
i1, Ū⋆

i2, respectively, that
are aligned to an m-grid, and the disks Zn

1j , . . . , Zn
kj with j ∈ [m], Z̄n

i1, . . . , Z̄n
ik with i ∈ [m],

and W n converge to convex disks Z⋆
1j , . . . , Z⋆

kj, Z̄⋆
i1, . . . , Z̄⋆

ik, and W ⋆, respectively, where
W ⋆ touches U⋆

11, U⋆
2m, Ū⋆

11, Ū⋆
m2.

Proof. Let (Rn)∞
n=m be a sequence of realizations Rn of GA,F

mn in sim B such that V n
11 is

constant. By Lemma 15 (1 and 2), we can apply Lemma 12 repeatedly as follows, in order:
with vertices u11, u21, u12, u20, and v11, . . . , vn1 playing the roles of u1, u2, û1, û2, and
v1, . . . , vn (respectively) in Ln, and with the graph H formed by v11, . . . , vm1, z11, . . . , zk1,
for each i ∈ [m], with vertices ūi1, ūi2, ū(i+1)1, ū(i−1)2, and vi1, . . . , vin playing the roles
of u1, u2, û1, û2, and v1, . . . , vn (respectively) in Ln, and with the graph H formed by
vi1, . . . , vim, z̄i1, . . . , z̄ik,
for each j ∈ [m]∖ {1}, with vertices u1j , u2j , u1(j+1), u2(j−1), and v1j , . . . , vnj playing the
roles of u1, u2, û1, û2, and v1, . . . , vn (respectively) in Ln, and with the graph H formed
by v1j , . . . , vmj , z1j , . . . , zkj .
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This yields a subsequence in which the disks V n
ij with i, j ∈ [m], Un

1j , Un
2j , Zn

1j , . . . , Zn
kj with

j ∈ [m], and Ūn
i1, Ūn

i2, Z̄n
i1, . . . , Z̄n

ik with i ∈ [m] converge to limits V ⋆
ij , U⋆

1j , U⋆
2j , Z⋆

1j , . . . , Z⋆
kj ,

and Ū⋆
i1, Ū⋆

i2, Z̄⋆
i1, . . . , Z̄⋆

ik, respectively, where
V ⋆

ij is a convex disk for i, j ∈ [m],
U⋆

1j and U⋆
2j are disjoint half-planes for j ∈ [m],

U⋆
1(j+1) and U⋆

2j touch and therefore share the boundary line, for j ∈ [m − 1],
Ū⋆

i1 and Ū⋆
i2 are disjoint half-planes for i ∈ [m],

Ū⋆
(i+1)1 and Ū⋆

i2 touch and therefore share the boundary line, for i ∈ [m − 1].
Let

ℓ0 = ∂U⋆
11, ℓj = ∂U⋆

1(j+1) = ∂U⋆
2j for j ∈ [m − 1], and ℓm = ∂U⋆

2m,
ℓ̄0 = ∂Ū⋆

11, ℓ̄i = ∂Ū⋆
(i+1)1 = ∂Ū⋆

i2 for i ∈ [m − 1], and ℓ̄m = ∂Ū⋆
m2.

It follows that the lines ℓ0, . . . , ℓm are parallel and occur in this order, and so do the lines
ℓ̄0, . . . , ℓ̄m. Consequently, they form an m-grid, the origin of which is the intersection point
of ℓ0 and ℓ̄0, and the basis vectors of which are the vectors from the origin to the intersection
point of ℓ0 and ℓ̄m and from the origin to the intersection point of ℓm and ℓ̄0. Furthermore,
Lemma 9 implies that V ⋆

ij touches U⋆
1j , U⋆

2j , Ū⋆
i1, Ū⋆

i2 for i, j ∈ [m]. This shows that the disks
V ⋆

ij with i, j ∈ [m], U⋆
1j , U⋆

2j with j ∈ [m], and Ū⋆
i1, Ū⋆

i2 with i ∈ [m] are aligned to the m-grid.
By Lemma 15 (4), for every n, the vertex w has an edge to at least one of the vertices

zij in GA,F
mn and therefore W n ∩ Zn

ij ̸= ∅. It follows that the sequence (W n)n∈N (where N

comprises the indices of the considered subsequence) is anchored and therefore, passing yet
to a subsequence, W n converges to a limit W ⋆. Moreover, by Lemma 15 (4) and Lemma 9,
W ⋆ touches U⋆

11, U⋆
2m, Ū⋆

11, Ū⋆
m2; in particular, it is a convex disk. ◀

6 Classifying intersection graphs of homothets

The proof of Theorem 1 is based on the following lemma.

▶ Lemma 17. Let A and B be convex disks such that A has bounding box [0, 1]2. If for all
m, n ∈ N with m ⩽ n, there is a realization of GA,hom A

mn in hom B, then there is an affine
transformation that maps A to B.

Before proving Lemma 17, let us see how Theorem 1 follows.

Proof of Theorem 1. Let A and B be convex disks. As we already observed, if A and B are
affine equivalent, then Ghom(A) = Ghom(B), because the affine transformation that maps A

to B transforms every realization in hom A to a realization of the same graph in hom B, and
vice versa. Now, suppose Ghom(A) = Ghom(B). We can assume without loss of generality
that the bounding box of A is [0, 1]2, otherwise we can apply an affine transformation to A

to obtain a convex disk with that bounding box; as observed before, such a transformation
does not change the intersection graphs realized in hom A. Now, since GA,hom A

mn ∈ Ghom(B)
for all m, n ∈ N with m ⩽ n, the lemma asserts that A and B are affine equivalent.

The last statement of the theorem asserts that when A and B are not affine equivalent,
then the classes of intersection graphs are not nested. Under this assumption, the lemma yields
GA,hom A

mn /∈ Ghom(B) for some m and n. Using the lemma with A and B interchanged, we
also have GB,hom B

mn /∈ Ghom(A) for m and n. Therefore, the graph classes are not nested. ◀

Proof of Lemma 17. For all m, n ∈ N with m ⩽ n, let Rmn be a realization of GA,hom A
mn in

hom B. We first fix m and consider the sequence of realizations (Rmn)∞
n=m. Without loss of

generality, V mn
11 is constant in this sequence. By Lemma 16, we can pass to a subsequence

such that the disks V mn
ij with i, j ∈ [m], Umn

1j , Umn
2j with j ∈ [m], and Ūmn

i1 , Ūmn
i2 with i ∈ [m]
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converge to disks V m⋆
ij ∈ hom B and half-planes Um⋆

1j , Um⋆
21 and Ūm⋆

i1 , Ūm⋆
i2 , respectively,

that are aligned to an m-grid, and the disks W mn converge to a disk W m⋆ ∈ hom B. It
follows that all V m⋆

ij with i, j ∈ [m] have the same radius, so the horizontal and vertical
distances of the m-grid are all equal to 1

m . Without loss of generality, the origin of the
m-grid is (0, 0) and r(W m⋆) = 1. Let am, bm ∈ R2 be the basis vectors of the m-grid, and
let fm : R2 ∋ (x, y) 7→ xam + ybm ∈ R2. It follows that V m⋆

ij ⊆ fm(Sm
ij ) for i, j ∈ [m] and

W m⋆ ⊆ fm([0, 1]2).
Recall that in Construction 14, the edges between w and the vertices vij with i, j ∈ [m]

are meant to “encode” the shape of A. The following two claims are implied by the existence
and non-existence of these edges in the realizations Rmn.

▷ Claim 17.1. There is a constant η > 0 such that ∥am∥ + ∥bm∥ ⩽ η for all m.

▷ Claim 17.2. For every ε > 0, if m is sufficiently large, then dH(W m⋆, fm(A)) ⩽ ε, where
dH denotes the Hausdorff distance.

Since ∥am∥ + ∥bm∥ ⩽ η (by Claim 17.1), we can find an infinite set of indices m such that
am and bm converge to vectors a⋆, b⋆ ∈ R2, respectively, as m → ∞ over that set of indices.
Let f⋆ : R2 ∋ (x, y) 7→ xa⋆+yb⋆ ∈ R2. We show that W m⋆ → f⋆(A) in Hausdorff distance. To
this end, let ε > 0, and let m be sufficiently large that dH(W m⋆, fm(A)) ⩽ ε

2 (by Claim 17.2)
and ∥am − a⋆∥ + ∥bm − b⋆∥ ⩽ ε

2 . Since A ⊆ [0, 1]2, we have dist(fm((x, y)), f⋆((x, y))) =
∥(am − a⋆)x + (bm − b⋆)y∥ ⩽ ∥am − a⋆∥ + ∥bm − b⋆∥ ⩽ ε

2 for every point (x, y) ∈ A, whence
it follows that dH(fm(A), f⋆(A)) ⩽ ε

2 . This yields dH(W m⋆, f⋆(A)) ⩽ dH(W m⋆, fm(A)) +
dH(fm(A), f⋆(A)) ⩽ ε. Since W m⋆ → f⋆(A), Lemma 5 yields f⋆(A) ∈ hom B, that is,
there is a homothetic transformation h : R2 → R2 that maps B to f⋆(A). We conclude that
h−1 ◦ f⋆ is an affine transformation that maps A to B. ◀

7 Classifying intersection graphs of similarities

For a convex disk A and n ∈ N, we define σA(n) as the maximum length of an n-chain in
sim A. The sequence (σA(n))∞

n=1 is subadditive, that is, σA(n1 + n2) ⩽ σA(n1) + σA(n2) for
all n1, n2 ∈ N. Indeed, in an (n1 +n2)-chain realizing the value σA(n1 +n2), the first n1 disks
form an n1-chain of length x1 ⩽ σA(n1), and the last n2 disks form an n2-chain of length
x2 ⩽ σA(n2), whence it follows that σA(n1 + n2) ⩽ x1 + x2 ⩽ σA(n1) + σA(n2). By Fekete’s
Subadditive Lemma [12], the limit limn→∞ σA(n)/n exists and is equal to infn∈N σA(n)/n.
We call this limit the stretch of A and denote it by ρA.

▶ Lemma 18. For every k ∈ N, ρAk ⩽ σA(k) ⩽ ρAk + σA(1).

The proof of Theorem 2 is based on the following lemma.

▶ Lemma 19. Let A and B be convex disks such that A has bounding box [0, 1]2 and ρA ⩾ ρB.
If for all m, n ∈ N with m ⩽ n, there is a realization of GA,sim A

mn in sim B, then B ∈ simr A.

Before proving the lemma, let us see how Theorem 2 follows.

Proof of Theorem 2. Let A and B be convex disks. As we have already observed, if B

is similar to A or to Ar, then Gsim(A) = Gsim(B), because the similarity transformation
(possibly with reflection) that maps A to B transforms every realization in sim A to a
realization of the same graph in sim B, and vice versa. Now, suppose Gsim(A) = Gsim(B).
We can assume without loss of generality that ρA ⩾ ρB. We can further assume that the
bounding box of A is [0, 1]2, otherwise we can rotate, scale, and translate A to obtain a disk
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βjy sin ϕ

L

ϕ

am

bm

Zm⋆
1j Zm⋆

kj

βjyσB(k) sin ϕ

βjy(σB(k) sin ϕ + |cos ϕ|)

Figure 8 To the left is shown the definition of the length L. To the right is shown a maximum k-
chain between two lines of distance βjy sin ϕ. It holds that x = ∥am∥ ⩽ L ⩽ βjy(σB(k) sin ϕ+|cos ϕ|).

with this bounding box, and that transformation does not change the intersection graphs
realized in sim A. Since GA,sim A

mn ∈ Gsim(B) for all m, n ∈ N with m ⩽ n, we get from the
lemma that B ∈ simr A, as claimed. ◀

Proof of Lemma 19. For all m, n ∈ N with m ⩽ n, let Rmn be a realization of GA,sim A
mn in

sim B. We first fix m and consider the sequence of realizations (Rmn)∞
n=m. Without loss of

generality, V mn
11 is constant in this sequence. By Lemma 16, we can pass to a subsequence

such that the disks V mn
ij with i, j ∈ [m], Umn

1j , Umn
2j with j ∈ [m], and Ūmn

i1 , Ūmn
i2 with i ∈ [m]

converge to disks V m⋆
ij ∈ hom B and half-planes Um⋆

1j , Um⋆
21 and Ūm⋆

i1 , Ūm⋆
i2 , respectively,

that are aligned to an m-grid, the disks Zmn
ij and Z̄mn

ij converge to disks Zm⋆
ij ∈ sim B

and Z̄m⋆
ij ∈ sim B, respectively, and the disks W mn converge to a disk W m⋆ ∈ sim B

that touches U⋆
11, U⋆

2m, Ū⋆
11, Ū⋆

m2. Without loss of generality, the origin of the m-grid is
(0, 0) and r(W m⋆) = 1. Let am, bm ∈ R2 be the basis vectors of the m-grid, and let
fm : R2 ∋ (x, y) 7→ xam + ybm ∈ R2. Let αm

1 , . . . , αm
m and βm

1 , . . . , βm
m be the horizontal and

vertical distances of the m-grid, respectively, where
∑m

i=1 αi =
∑m

j=1 βj = 1.

▷ Claim 19.1. There is a constant c > 0 (which depends only on B) such that for every m,
if x = ∥am∥, y = ∥bm∥, and ϕ ∈ (0, π) is the angle between am and bm, then

x
y ⩽ 1 + c

m , y
x ⩽ 1 + c

m , sin ϕ ⩽ 1 − c
m ,

i
m − 2c

m < α1 + · · · + αi < i
m + 2c

m for every i ∈ [m − 1],
j
m − 2c

m < β1 + · · · + βj < j
m + 2c

m for every j ∈ [m − 1].

The following claims are analogous to Claims 17.1 and 17.2.

▷ Claim 19.2. There is a constant η > 0 such that ∥am∥ + ∥bm∥ ⩽ η for all m.

▷ Claim 19.3. For every ε > 0, if m is sufficiently large, then dH(W m⋆, fm(A)) ⩽ ε.

Since ∥am∥ + ∥bm∥ ⩽ η (by Claim 19.2), we can find an infinite set of indices m such
that am and bm converge to vectors a⋆, b⋆ ∈ R2, respectively, as m → ∞ over that set of
indices. Let f⋆ : R2 ∋ (x, y) 7→ xa⋆ + yb⋆ ∈ R2. It follows from Claim 19.1 that ∥a⋆∥ = ∥b⋆∥
and the vectors a⋆ and b⋆ are orthogonal, so f⋆ is a similarity transformation or similarity
transformation with reflection. The same argument as in the proof of Lemma 17, using
Claim 19.3, shows that W m⋆ → f⋆(A) in Hausdorff distance. Since W m⋆ → f⋆(A), Lemma 5
yields f⋆(A) ∈ sim B, and we have f⋆(A) ∈ simr A, so B ∈ simr A. ◀
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8 Open problems

For our row construction to work, we need the disks to be smooth. In particular, Lemmas 5,
11, and 13 do not hold if A is not smooth. Distinguishing the classes of intersection graphs
for non-smooth convex disks remains an interesting question.

One may also consider the even larger class Gaff(A) of intersection graphs of disks that
are affine equivalent to a convex disk A and ask when Gaff(A) = Gaff(B) for two convex
disks A and B. Other classes that have so far not been investigated are the contact and
intersection graphs that can be obtained from rotated translations of a disk A, i.e., with no
scaling allowed.
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Abstract

Recently, Ezra and Sharir [20] showed an O(n3/2+σ) space and O(n1/2+σ) query time data structure
for ray shooting among triangles in R3. This improves the upper bound given by the classical
S(n)Q(n)4 = O(n4+σ) space-time tradeoff for the first time in almost 25 years and in fact lies on
the tradeoff curve of S(n)Q(n)3 = O(n3+σ). However, it seems difficult to apply their techniques
beyond this specific space and time combination. This pheonomenon appears persistently in almost
all recent advances of flat object intersection searching, e.g., line-tetrahedron intersection in R4 [19],
triangle-triangle intersection in R4 [19], or even among flat semialgebraic objects [5].

We give a timely explanation to this phenomenon from a lower bound perspective. We prove
that given a set S of (d − 1)-dimensional simplicies in Rd, any data structure that can report all
intersections with a query line in small (no(1)) query time must use Ω(n2(d−1)−o(1)) space. This
dashes the hope of any significant improvement to the tradeoff curves for small query time and
almost matches the classical upper bound. We also obtain an almost matching space lower bound of
Ω(n6−o(1)) for triangle-triangle intersection reporting in R4 when the query time is small. Along the
way, we further develop the previous lower bound techniques by Afshani and Cheng [2, 3].
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3:2 Lower Bounds for Intersection Reporting Among Flat Objects

1.1 Background and Previous Results

In geometric intersection searching, the input is a set S of geometric objects and the goal is
to preprocess S into a data structure such that given a geometric object γ at the query time,
one can find all the objects in S that intersect γ. In the reporting variant of such a query,
the output should be the list of all the intersecting objects in S. Intersection searching is a
generalization of range searching, a fundamental and core area of computational geometry [4].
This captures many natural classic problems e.g., simplex range reporting where the inputs
are points (0-flats) and the queries are simplices (subsets of d-flats), ray shooting reporting
among triangles in R3 where the inputs are triangles (subsets of 2-flats) and the queries are
rays (subsets of 1-flats) and so on. See [4, 28] for more information.

Without going too much in-depth, it suffices to say that by now, the simplex range
searching problem is more or less well-understood. There are classical solutions that offer the
space and query time trade-off of S(n)Qd(n) = Õ(nd) where S(n) and Q(n) are the space
and query time of the data structure [15, 23, 12] and there are a number of almost matching
lower bounds that show these are essentially tight [1, 13, 16].

However, intersection searching in higher dimensions is less well-understood. The classical
technique is to lift the problem to the parametric space of the input or the query, reducing the
problem to semialgebraic range searching, a generalized version of simplex range searching,
where queries are semialgebraic sets of constant description complexity. In mid-1990s,
semialgebraic range searching could only be solved efficiently in four and lower dimensions by
classical tools developed for simplex range searching [7], resulting in a space-time trade-off
bound of S(n)Q(n)4 = O(n4+σ) for line-triangle intersection searching in R3, where σ > 0
can be any small constant.

Recently, using polynomial techniques [22, 21], several major advances have been made
on semialgebraic range searching. For example, near optimal small linear space and fast
query data structure were developed [9, 24, 6]. These almost match the newly discovered
lower bound bounds [2, 3]. However, these polynomial techniques also have led to significant
advances in intersection searching. For ray-triangle intersection reporting in R3, Ezra and
Sharir [20] showed that using algebraic techniques, it is possible to build a data structure of
space S(n) = O(n3/2+σ) and query time Q(n) = O(n1/2+σ) for ray shooting among triangles.
The significance of this result is that it improves the upper bound given by the trade-off
curve of S(n)Q(n)4 = O(n4+σ) for the first time in almost 25 years and in fact it lies on the
trade-off curve of S(n)Q(n)3 = O(n3+σ). This leads to the following very interesting question
asked by Ezra and Sharir. To quote them directly: “There are several open questions that our
work raises. First, can we improve our trade-off for all values of storage, beyond the special
values of O(n3/2+ε) storage and O(n1/2+ε) query time? Ideally, can we obtain query time of
O(n1+ε/s1/3), with s storage, as in the case of ray shooting amid planes? Alternatively, can
one establish a lower-bound argument that shows the limitations of our technique?”

Inspired by [20], additional results for flat intersection searching were discovered during
the last two years, e.g., triangle-triangle intersection searching in R4 [19], line-tetrahedron
intersection searching in R4 [19], curve-disk intersection searching in R3 [5], and even more
general semialgebraic flat intersection searching [5]. Similar to the result in [20], the improved
results are only observed for a special space-time combination and the improvement to the
entire trade-off curve is limited. This once again raises the question of whether it is possible
to obtain the trade-off curve of S(n)Q(n)d = O(nd+σ) for intersection searching in Rd.
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1.2 Our Results
We give a negative answer to this question. We show that answering intersection searching
queries in polylogarithmic time when the queries are lines in Rd and input objects are subsets
of (d− 1)-flats (that we call hyperslabs) requires

o

Ω(n2(d−1)) space1. Our lower bound in fact
applies to “thin” (d − 1)-dimensional slabs (e.g., in 3D, that would be the intersection of
the region between two parallel hyperplanes with another hyperplane). This almost matches
the current upper bound for the problem and shows that the improvement in [20] cannot
significantly improve the trade-off curve when the query time is small. To be specific, we
obtain a lower bound of

S(n) =
o

Ω
(

n2(d−1)

Q(n)4(3d−1)(d−1)−1

)
for line-hyperslab intersection reporting in Rd and a lower bound of

S(n) =
o

Ω
(

n6

Q(n)125

)
for triangle-triangle intersection reporting in R4. Here, S(n) and Q(n) are the space and
query time of the data structure. Similar to the other semialgebraic range reporting lower
bounds [2, 3], these lower bounds have a much larger exponent on Q(n) than on n which does
allow for substantial improvements when Q(n) is no longer too small; we have not opted for
optimizing the exponent of Q(n) in our bounds and using tighter arguments, these exponents
can be improved but they cannot match the exponent of n.

We believe our results are timely as flat intersection searching is a hotly investigated field
recently, and as mentioned, with many open questions that need to be answered from a lower
bound point of view.

1.3 Technical Contributions
From a technical point of view, our results require going beyond the previous attempts [2, 3].
To elaborate, the previous general technique assumed a particular form for the polynomials
involved in defining the query semialgebraic ranges, namely, of the form X1 = X∆

2 +
P (X1, · · · , Xd) where the coefficients of P had to be independent and thus could be set
arbitrarily small. Unfortunately, the problems in intersection searching cannot fit this
framework and there seems to be no easy fix for the following reason. The previous technique
relies heavily on the fact that if the coefficients of P is small enough, then one can approximate
X1 with X∆

2 and for the technique to work both conditions must hold (i.e., small coefficients
for P and having degree ∆ on X2).

Generally speaking, the previous techniques do not say anything about problems in which
the polynomials involved have a specific form; the only exception is the lower bound for
annuli [2] where specific approaches had to be created that could only be applied to the
specific algebraic form of circles.

The issue is very prominent in intersection searching where we are dealing with polynomials
where the coefficients of the monomials are no longer independent and the polynomials
involved have specific forms; for instance, the coefficient of X∆

2 is zero. We introduce
techniques that allows us circumvent these limitations and obtain lower bounds for some
broader class of problems that involve polynomials with some specific forms.

1 In this paper,
o

Ω(·),
o

Θ(·),
o

O(·) hides no(1) factors; Ω̃(·), Θ̃(·), Õ(·) hides logO(1) n factors.

SoCG 2023



3:4 Lower Bounds for Intersection Reporting Among Flat Objects

2 Preliminaries

2.1 The Geometric Range Reporting Lower Bound Framework in the
Pointer Machine

We use the pointer machine lower bound framework that was also used in the latest proofs [3].
This is a streamlined version of the one originally proposed by Chazelle [14] and Chazelle
and Rosenberg [16]. In the pointer machine model, the memory is represented as a directed
graph where each node stores one point as well as two pointers pointing to two other nodes
in the graph. Given a query, the algorithms starts from a special “root” node, and then
explores a subgraph which contains all the input points to report. The size of the directed
graph is then a lower bound for the space usage and then minimum subgraph needed to
explore to answer any query is a lower bound for the query time.

Intuitively, to answer a range reporting query efficiently, we need to store the output
points to the query close to each other. If the answer to any query contains many points and
two queries share very few points in common, many points must be stored multiple times,
leading to a big space usage.

The streamlined version of the framework is the following [3].

▶ Theorem 1. Suppose a d-dimensional geometric range reporting problem admits an S(n)
space and Q(n) + O(k) query time data structure, where n is the input size and k is the
output size. Let Vol(·) denote the d-dimensional Lebesgue measure. Assume we can find
m = nc, for a positive constant c, ranges R1,R2, · · · ,Rm in a d-dimensional hyperrectangle
R such that
1. ∀i = 1, 2, · · · ,m,Vol(Ri ∩ R) ≥ 4cVol(R)Q(n)/n;
2. Vol(Ri ∩ Rj) = O(Vol(R)/(n2

√
logn)) for all i ̸= j .

Then, we have S(n) =
o

Ω(mQ(n)).

2.2 Notations and Definitions for Polynomials
In this paper, we only consider polynomials on the reals. Let P (X1, · · · , Xd) be a polynomial
on d indeterminates of degree ∆. Sometimes we will use the notation X to denote the set
of d interminates X1, · · · , Xd and so we can write P as P (X). We denote by Id,∆ a set of
d-tuples of non-negative integers (i1, · · · , id) whose sum is at most ∆. We might omit the
subscripts d and ∆ if they are clear from the context. For an i ∈ I, we use the notation X i

to represent the monomial Πd
j=1X

ij
j where i = (i1, · · · , id). Thus, given real coefficients Ai,

for i ∈ I, we can write P as
∑

i∈I AiX
i.

2.3 Geometric Lemmas
We introduce and generalize some geometric lemmas about the intersection of polynomials
used in [2]. We first generalize the core Lemma in [2] for univariate polynomials, using a
proof similar to [3]. We refer the readers to the full version of the paper for the proof.

▶ Lemma 2. Let P (x) =
∑∆
i=0 aix

i and Q(x) =
∑∆
i=0 bix

i be two univariate (constant)
degree-∆ polynomials in R[x] and |ai − bi| ≥ η for some 0 ≤ i ≤ ∆.

Suppose there is an interval I of x such that for every x0 ∈ I we have |P (x0)−Q(x0)| ≤
w, then the length of I is upper bounded by O((w/η)1/U ), where U =

(∆+1
2
)

and the O(·)
notation hides constant factors that depend on ∆.

Using Lemma 2, we can show the following. The proof is given in the full version.
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▶ Lemma 3. Let P1(X) =
∑

i∈Id,∆
AiX

i and P2(X) =
∑

i∈Id,∆
BiX

i be two d-variate
degree-∆ polynomials in R[X] and |Ai −Bi| ≥ ηd for some i ∈ Id,∆.

Suppose for each assignment Xd ∈ Id to P1, P2, where Id is an interval for Xd, all the
coefficients of the resulting (d− 1)-variate polynomial Q1(X1, · · ·Xd−1) and Q2(X1, · · ·Xd−1)
differ by at most ηd−1, then |Id| = O((ηd−1/ηd)1/U ).

We can use Lemma 3 d− 2 times, and obtain the following corollary.

▶ Corollary 4. Let P1(X) =
∑

i∈Id,∆
AiX

i and P2(X) =
∑

i∈Id,∆
BiX

i be two d-variate
degree-∆ polynomials in R[X] and |Ai −Bi| ≥ ηd for some i ∈ Id,∆ for d ≥ 3.

Suppose for each assignment Xi ∈ Ii to P1, P2, where Ii is an interval for Xi, for
i = 3, 4, · · · , d, all the coefficients of the resulting bivariate polynomial Q1(X1, X2) and
Q2(X1, X2) differ by at most η2, then |Ii| = O((ηi−1/ηi)1/U ) for all i = 3, 4, · · · , d.

To get the final corollary, we would like the set each ηi such that the length of all each
interval Ii is bounded by some parameter ϑ for i = 3, · · · , d. We thus set ηd−i = ηd−i+1ϑ

U .

▶ Corollary 5. Let P1(X) =
∑

i∈Id,∆
AiX

i and P2(X) =
∑

i∈Id,∆
BiX

i be two d-variate
degree-∆ polynomials in R[X] and |Ai −Bi| ≥ ηd for some i ∈ Id,∆ for d ≥ 3.

Suppose for each assignment Xi ∈ Ii to P1, P2, where Ii is an interval for Xi, for
i = 3, 4, · · · , d, all the coefficients of the resulting bivariate polynomial Q1(X1, X2) and
Q2(X1, X2) differ by at most ηdϑU(d−2), then |Ii| = O(ϑ) for all i = 3, 4, · · · , d.

2.4 Algebra Preliminaries

In this section, we review some tools from algebra. The first tool we will use is the linearity
of determinants from linear algebra.

▶ Theorem 6 (Linearity of Determinants). Let A =
[
a1 · · · an

]
be an n× n matrix where

each ai ∈ Rn is a vector. Suppose aj = r · w + v for some r ∈ R and w,v ∈ Rn, then the
determinant of A, denoted by det(A), is

det(A)

= det(
[
a1 · · · aj−1 aj aj+1 · · · an

]
)

= r · det(
[
a1 · · · aj−1 w aj+1 · · · an

]
) + det(

[
a1 · · · aj−1 v aj+1 · · · an

]
).

We will use two types of special matrices in the paper. The first is Vandermonde matrices.

▶ Definition 7 (Vandermonde Matrices). An n × n Vandermonde matrix is defined by n

values x1, · · · , xn such that each entry eij = xj−1
i for 1 ≤ i, j ≤ n.

We can compute the determinant of Vandermonde matrices easily.

▶ Theorem 8 (Determinant of Vandermonde Matrices). Let V be a Vandermonde matrix
defined by parameters x1, · · · , xn. Then det(V ) =

∏
1≤i<j≤n(xj − xi).

We also need Sylvester matrices.

▶ Definition 9 (Sylvester Matrices). Let P =
∑∆1
i=0 aix

i and Q =
∑∆2
i=0 bix

i be two univariate
polynomials over R[x] of degrees ∆1,∆2 respectively . Then the Sylvester matrix of P and Q,
denoted by Syl(P,Q), is a (∆1 + ∆2) × (∆1 + ∆2) matrix of the following form

SoCG 2023



3:6 Lower Bounds for Intersection Reporting Among Flat Objects



a∆1 a∆1−1 · · · a0 0 · · · 0 0
0 a∆1 a∆1−1 · · · a0 · · · 0 0
...

...
...

. . .
...

. . .
...

...
0 0 · · · a∆1 a∆1−1 · · · a1 a0
b∆2 b∆2−1 · · · b0 0 · · · 0 0
0 b∆2 b∆2−1 · · · b0 · · · 0 0
...

...
...

. . .
...

. . .
...

...
0 0 · · · b∆2 b∆2−1 · · · b1 b0


.

The Sylvester matrix has ∆2 rows with entries from P and ∆1 rows with entries from Q.
For example, the Sylvester matrx of two polynomials P = p1x+ p2 and Q = q1x+ q2 is

Syl(P,Q) =
[
p1 p2
q1 q2.

]
One application of Sylvester matrices is to compute the resultant, which is one of the

important tools in algebraic geometry. One significance of the resultant is that it equals zero
if and only if P and Q have a common factor.

▶ Definition 10. Let P,Q be two univariate polynomials over R. The resultant of P and Q,
denoted by Res(P,Q), is defined to be the determinant of the Sylvester matrix of P and Q,
i.e., Res(P,Q) = det(Syl(P,Q)).

3 An Algebraic Geometry Lemma

In this section, we prove an important algebraic geometry lemma that will later be used in
our lower bound proof.

▶ Lemma 11. Let F and G be two univariate polynomials on x of degree ∆F and ∆G

respectively and the leading coefficient of G is 1. Let P (x, y) ≡ yG(x) − F (x).
Let L be a set of ℓ = ∆1 + ∆G + 1 points (xk, yk) where ∆1 ≥ ∆F − 1 and each xk = Θ(1)

such that |P (xk, yk)| ≤ ε < 1 for a parameter ε, and G(xk) = Θ(1).
Let V be a vector of ℓ monomials consisting of monomials xi for 0 ≤ i ≤ ∆1 and

monomials yxi for 0 ≤ i ≤ ∆G − 1.
If A is an ℓ× ℓ matrix where the k-th row of A is the evaluation of the vector V on point

(xk, yk), then | det(A)| ≥ Ω(Res(G,F )λℓ2) −O(ε) where λ = min1≤k1<k2≤ℓ |xk1 − xk2 |.

Proof. Note that if Res(G,F ) = 0, then there is nothing to prove and thus we can assume
this is not the case. Now observe that since G(xk) = Θ(1), we can write yk = F (xk)

G(xk) + γk
where |γk| = O(ε).

Now consider the matrix A and plug in this value of yk. An entry of A is in the form of a
monomial yxi being evaluated on a point (xk, yk) and thus we have:

ykx
i
k =

(
F (xk)
G(xk) + γk

)
xik = F (xk)

G(xk)x
i
k + γi,k (1)

where |γi,k| = O(ε). We use the linearity of determinants (see Theorem 6) in a similar fashion
that was also used in [3]. In particular, consider a column of the matrix A; it consists of
the evaluations of a monomial yxi on all the points (x1, y1), · · · , (xℓ, yℓ). Using Eq. (1), we
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can write this column as the addition of a column Ci that consists of the evaluation of the
rational function F (x)

G(x)x
i on the points x1, · · · , xℓ and a column Γi that consists of all the

values γi,k for 1 ≤ k ≤ ℓ. By the linearity of determinants, we can write the determinant
of A as the sum of determinants of two matrices where one matrix includes the column Ci
and the other has Γi; observe that the magnitude of the determinant of the latter matrix
can be upper bounded by O(ε), with hidden constants that depend on ∆. By performing
this operation on all the columns, we can separate all the entries involving γi,k into separate
matrices and the magnitude of sum of the determinants can be bounded by O(ε).

Let B be the matrix that remains after removing all the γi,k terms. We bound | det(B)|.
Note that B consists of row vectors

U = (1 x · · · x∆1 y yx · · · yx∆G−1).

evaluated at some value x = xk and y = F (xk)
G(xk) at its k-th row. This is equivalent to the

evaluation of the following vector:

(1 x · · · x∆1 F
G

F
Gx · · · F

Gx
∆G−1).

Observe that row k of matrix B will be evaluating U on the point xk. Since G(xk) = Θ(1) ̸= 0,
we can multiply row k by G(xk) and this will only change the determinant by a constant
factor. With a slight abuse of the notation, let B denote the matrix after this multiplication
step. Thus, the columns of B now correspond to the evaluation of the following vector.

(G Gx · · · Gx∆1 F Fx · · · Fx∆G−1).

Note that we can exchange columns and it will only flip the signs of the determinant of a
matrix. We will focus on bounding the determinant of

(Gx∆1 Gx∆1−2 · · · G Fx∆G−1 Fx∆G−2 · · · F ).

The key observation is that there is a strong connection between the Sylvester matrix of
G,F and matrix B. Recall that the Sylvester matrix of G and F is of the form

Syl(G,F ) =



G∆G
G∆G−1 · · · G0 0 · · · 0 0

0 G∆G
G∆G−1 · · · G0 · · · 0 0

...
...

...
. . .

...
. . .

...
...

0 0 · · · G∆G
G∆G−1 · · · G1 G0

F∆F
F∆F −1 · · · F0 0 · · · 0 0

0 F∆F
F∆F −1 · · · F0 · · · 0 0

...
...

...
. . .

...
. . .

...
...

0 0 · · · F∆F
F∆F −1 · · · F1 F0


,

where Gi (resp. Fi) is the coefficient of xi in G (resp. F ). Observe that

(Gx∆F −1 Gx∆F −2 · · · G Fx∆G−1 Fx∆G−2 · · · F ) =
Syl(G,F ) · (x∆F +∆G−1 x∆F +∆G−2 · · · x 1)T ,

which means that by the linear transformation described by Syl(G,F )−1, which exists as
Res(G,F ) = det(Syl(G,F )) ̸= 0, we can turn the last ∆F + ∆G columns in B to

(x∆F +∆G−1 x∆F +∆G−2 · · · x 1).

SoCG 2023



3:8 Lower Bounds for Intersection Reporting Among Flat Objects

Since the remaining columns are all polynomials in x and the highest degree in column i is
∆G + ∆1 − i for i = 0, 1, · · · ,∆F , by using column operations, we can eliminate all lower
degree terms for each column and the only term left for column i is G∆G

x∆G+∆1−i. Note
that column operations do not change the determinant.

By assumption, the leading coefficients of G is 1, i.e., G∆G
= 1. Thus, this transforms

B into a Vandermonde matrix VB of size ℓ× ℓ. By Theorem 8, | det(VB)| = Ω(λℓ2). Since
multiplying the inverse of Syl(G,F ) scales det(B) by a factor of Θ(| det(Syl(G,F )−1)|) =
Θ(|Res(G,F )−1|), we bound | det(B)| = | det(VB)|/(1/|Res(G,F )|) = Ω(|Res(G,F )|λℓ2).
The claim then follows from this. ◀

4 Lower Bounds for Flat Intersection Reporting

We are now ready to show lower bounds for flat intersection reporting. We first establish a
reduction from special polynomial slab reporting problems to flat intersection reporting.

4.1 A Reduction from Polynomial Slab Range Reporting to
Flat-hyperslab Intersection Reporting

We study the following flat intersection reporting problem.

▶ Definition 12 (Flat-hyperslab Intersection Reporting). In the t-flat-hyperslab intersection
reporting problem, we are given a set S of n (d− t)-dimensional hyperslabs in Rd, i.e., regions
created by a linear translation of (d− t− 1)-flats, where 0 ≤ t < d, as the input, and the goal
is to preprocess S into a data structure such that given any query t-flat γ, we can output
S ∩ γ, i.e., the set of (d− t)-hyperslabs intersecting the query t-flat, efficiently.

First, observe that any t-flat that is not parallel to any of the axes can be formulated as

a0,1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0
a1,1 a1,2 · · · a1,t a1,t+1

...
...

. . .
...

...
ad−t,1 ad−t,2 · · · ad−1,t ad−t,t+1


·


τ1
...
τt
1

 =

x1
...
xd

 ,

where ai,j ’s are the parameters defining the t-flat, and τ1, · · · , τt are the free variables that
generate points in the t-flat. Note that we only need (d − t)(t + 1) independent ai,j ’s to
define a t-flat.

On the other hand, we consider (d− t)-hyperslabs of form
1 0 · · · 0 b1,1 b1,2 · · · b1,d−t
0 1 · · · 0 b2,1 b2,2 · · · b2,d−t
...

...
. . .

...
...

...
. . .

...
0 0 · · · 1 bt,1 bt,2 · · · bt,d−t
0 0 · · · 0 bt+1,1 bt+1,2 · · · bt+1,d−t

 ·


x1
x2
...

xd−1
xd

 =


0
0
...
0

−1 + w

 ,

where bi,j ’s are the parameters defining a (d− t− 1)-flat, and parameter w ∈ [0, w0] adds one
extra dimension to the flat to make it (d− t)-dimensional; in essence, we will be considering
all the (d− t− 1)-flats for all w ∈ [0, w0] which will turn it into a (d− t)-hyperslab.
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Therefore, the intersection of a t-flat and a (d − t)-hyperslab must be a solution to


1 0 · · · 0 b1,1 b1,2 · · · b1,d−t
0 1 · · · 0 b2,1 b2,2 · · · b2,d−t
...

...
. . .

...
...

...
. . .

...
0 0 · · · 1 bt,1 bt,2 · · · bt,d−t
0 0 · · · 0 bt+1,1 bt+1,2 · · · bt+1,d−t

·



a0,1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0
a1,1 a1,2 · · · a1,t a1,t+1

...
...

. . .
...

...
ad−t,1 ad−t,2 · · · ad−1,t ad−t,t+1


·



τ1
τ2
τ3
...
τt
1


=


0
0
...
0

−1 + w

 .

Multiplying the two matrices, we obtain the following system
a0,1 +

∑d−t
i=1 ai,1b1,i

∑d−t
i=1 ai,2b1,i · · ·

∑d−t
i=1 ai,t+1b1,i∑d−t

i=1 ai,1b2,i 1 +
∑d−t
i=1 ai,2b2,i · · ·

∑d−t
i=1 ai,t+1b2,i

...
...

. . .
...∑d−t

i=1 ai,1bt+1,i
∑d−t
i=1 ai,2bt+1,i · · ·

∑d−t
i=1 ai,t+1bt+1,i

 ·


τ1
...
τt
1

 =


0
...
0

−1 + w

 .
We denote this linear system by Aτ = s and assume

det(A) ̸= 0 (2)

which is the case when the t-flat and the (d− t)-hyperslab properly intersect, and this system
has a solution iff the last entry of the solution vector is 1. So by Cramer’s rule, we have

1 =

∣∣∣∣∣∣∣∣∣∣
a0,1 +

∑d−t
i=1 ai,1b1,i

∑d−t
i=1 ai,2b1,i · · · 0∑d−t

i=1 ai,1b2,i 1 +
∑d−t
i=1 ai,2b2,i · · · 0

...
...

. . .
...∑d−t

i=1 ai,1bt+1,i
∑d−t
i=1 ai,2bt+1,i · · · −1 + w

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
a0,1 +

∑d−t
i=1 ai,1b1,i

∑d−t
i=1 ai,2b1,i · · ·

∑d−t
i=1 ai,t+1b1,i∑d−t

i=1 ai,1b2,i 1 +
∑d−t
i=1 ai,2b2,i · · ·

∑d−t
i=1 ai,t+1b2,i

...
...

. . .
...∑d−t

i=1 ai,1bt+1,i
∑d−t
i=1 ai,2bt+1,i · · ·

∑d−t
i=1 ai,t+1bt+1,i

∣∣∣∣∣∣∣∣∣∣

.

By the linearity of determinants, we have

0 =

∣∣∣∣∣∣∣∣∣∣
a0,1 +

∑d−t
i=1 ai,1b1,i

∑d−t
i=1 ai,2b1,i · · ·

∑d−t
i=1 ai,t+1b1,i∑d−t

i=1 ai,1b2,i 1 +
∑d−t
i=1 ai,2b2,i · · ·

∑d−t
i=1 ai,t+1b2,i

...
...

. . .
...∑d−t

i=1 ai,1bt+1,i
∑d−t
i=1 ai,2bt+1,i · · · 1 +

∑d−t
i=1 ai,t+1bt+1,i − w

∣∣∣∣∣∣∣∣∣∣
. (3)

Consider the value of the above determinant using Leibniz formula for determinants,
which is the sum of (t+ 1)! terms. Consider the terms that have at most 1 factor of bi,j ; these
can only come from the diagonals. Thus, any t-flat parameterized by a = (ai,j) intersects a
query (d− t)-hyperslab parameterized by b = (bi,j) if and only if

0 = a0,1 + a0,1

t+1∑
j=2

d−1∑
i=1

ai,jbj,i +
d−1∑
i=1

ai,1b1,i + E(a, b) + f(a, b, w) = P (a, b) + f(a, b, w),

where E(a,b) contains the sum of products of at least two distinct ai1,i2bi3,i1 and f(a,b, w)
is a polynomial with factor w.
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Note that after fixing a,b, f(a,b, w) is a polynomial in w and we assume that

∂f(a,b, w)
∂w

= −

∣∣∣∣∣∣∣∣∣∣
a0,1 +

∑d−t
i=1 ai,1b1,i

∑d−t
i=1 ai,2b1,i · · ·

∑d−t
i=1 ai,tb1,i∑d−t

i=1 ai,1b2,i 1 +
∑d−t
i=1 ai,2b2,i · · ·

∑d−t
i=1 ai,tb2,i

...
...

. . .
...∑d−t

i=1 ai,1bt,i
∑d−t
i=1 ai,2bt,i · · · 1 +

∑d−t
i=1 ai,tbt,i

∣∣∣∣∣∣∣∣∣∣
< 0.

(4)

This implies the following lemma.

▶ Lemma 13. Assuming a,b satisfying Assumptions (2) and (4), for any fixed a, there is
a b such that 0 ≤ P (a,b) ≤ −f(a,b, w0) if and only if there is some w ∈ [0, w0] such that
P (a,b) + f(a,b, w) = 0.

Proof. Since f(a,b, w) is a polynomial in w and ∂f
∂w < 0, f(a,b, w) is continuous and

decreasing in [0, w0]. Furthermore f(a,b, 0) = 0 as w is a factor of f . The lemma follows. ◀

Fixing a in P (a,b), we obtain a polynomial in b. Let (P (a,b), f(a,b, w0)) = {b :
0 ≤ P (a,b) ≤ −f(a,b, w0)} be a polynomial slab. This essentially establishes a reduction
between polynomial slab reporting and flat intersection reporting.

▶ Corollary 14. Assuming a,b satisfying Assumptions (2) and (4), for any fixed a, there is
a b such that b ∈ (P (a,b), f(a,b, w0)) if and only if a t-flat parameterized by a intersects a
(d− t)-hyperslab of width w0 parameterized by b.

4.2 Lower Bounds for Flat-hyperslab Intersection Reporting
We are now ready to prove the lower bounds. We show lower bounds for 1-flat-hyperslab
intersection reporting in Rd and 2-flat-hyperslab intersection reporting in R4.

First observe that by setting t = 1 in Eq. (3) and using Corollary 14 a polynomial slab
reporting problem with polynomial

P1(a,b) = a0,1 + a0,1

d−1∑
i=1

ai,2b2,i +
d−1∑
i=1

ai,1b1,i +
d−1∑

i,j=1∧i̸=j
(ai,1aj,2 − aj,1ai,2)b1,ib2,j

= b1,1G1(b2,2) + F1(b2,2), (5)

reduces to a line-hyperslab intersection reporting problem, where to get G1, we have collected
all the monomials that have b1,1 in them and then we have factored b1,1 out and we are
considering it as a polynomial of b2,2 (all the other variables are considered “constant”).
F1 is defined similarly by considering the remaining terms as a function of b2,2. Observe
that the polynomial does not have any term with degree 3. Let G1 = g1,1b2,2 + g1,0 and
F1 = f1,1b2,2 + f1,0.

Similarly, polynomial slab reporting with

P2(a, b) = a0,1 + a0,1

2∑
j=1

3∑
i=2

aj,ibi,j +
2∑

j=1

aj,1b1,j

+ a0,1

2∑
j,l=1∧j ̸=l

(aj,2al,3 − aj,3al,2)b2,jb3,l +
2∑

j,l=1∧j ̸=l

3∑
k=2

(aj,1al,k − aj,kal,1)b1,jbk,l

= b1,1G2(b2,2) + F2(b2,2) (6)

reduces to 2-flat-hyperslab intersection reporting in R4 where G2, F2 are defined similarly as
G1, F1.
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For the moment, we focus on the case of line-hyperslab intersection reporting but the
same applies also to 2-flat-hyperslab intersection reporting in R4 since the polynomials F2
and G2 involved in the definition of Eq. (6) are quite similar to Eq. (5).

Here, we will use our techniques from Section 3. The general idea is that we will use
Corollary 5, to reduce the 2(d− 1)-variate polynomials P1 and P2 into bivariate polynomials
on b1,1 and b2,2. Then, the variable b1,1 will be our y variable and b2,2 will be the x variable
in Section 3, and G1 and F1 here will play the same role as in that section. We will set

a1,1 = 1 + a1,2a2,1

a2,2
(7)

which will ensure that the leading coefficient of G1 is 1. This is our normalization step, since
we can divide the equations defining the intersection (and thus polynomials P1 and P2) by
any constant. Eventually, the resultant of the polynomials F1 and G1 will play an important
role. Observe that the resultant is

Res(G1, F1) =
∣∣∣∣ 1 g0
f1 f0

∣∣∣∣ = f0 − g0f1. (8)

4.3 Construction of Input Points and Queries
Now we are ready to describe our input and query construction. Assume we have a data
structure that uses S(n) space and has the query time Q(n) +O(k) where k is the output
size; for brevity we use Q = Q(n).

We will start with a fixed line and a fixed hyperslab and then build the queries and
inputs very close to these two fixed objects. However, we require a certain “general position”
property with respect to these two fixed objects.

Recall that Eq. (5) refers to the condition of whether a (query) line described by a
variables intersects a (d− 2)-dimensional flat described by the b variables (which corresponds
to setting the variable w to zero). Consider a fixed flat and a fixed line. To avoid future
confusion, let A and B refer to this fixed line and flat. We require the following.

A and B must intersect properly (i.e., the line is not contained in the flat). Observe that
it implies that when we consider P1(A,b) as a polynomial in b variables, B does not
belong to the zero set of P1(A,b). Note that this satisfies Assumption (2).
The polynomial P1(A,b) (as a polynomial in b) is irreducible. This is true as long as A
is chosen so that no coefficient in P1 is zero. To see this, note that P1 is a polynomial
in b and any variable bi,j has degree 1. Suppose for the sake of contradiction that P1 is
reducible, then the factorization must be of the form

P1(A,b) =
(
c10 +

d−1∑
i=1

c1ib1i

)
·

(
c20 +

d−1∑
i=1

c2ib2i

)
,

for nonzero coefficients c10, c20, c1i, c2i. Then by Eq. (5),
1. a0,1 = c10c20,
2. ∀i = 1, · · · , d− 1 : a0,1ai,2 = c10c2i,
3. ∀i = 1, · · · , d− 1 : ai,1 = c1ic20,
4. ∀i, j = 1, 2, · · · , d− 1 : ai,1aj,2 − aj,1ai,2 = c1ic2i.
However, for these conditions to hold, all coefficients of P1 must be zero, a contradiction.
Observe that the irreducibility of P1(A,b) as a polynomial in b implies that it has only
finitely many points where the tangent hyperplane at those points is parallel to some axis.
We assume B is not one of those points.
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The irreducibility of P1(A,b) as a polynomial in b can be used to satisfy Assumption (4)
since the corresponding polynomial of the determinant involved in Assumption (4) can
only have Θ(1) many common roots with P1(A,b).
Finally, since the polynomial P1(A,b) is irreducible and since Res(G1, F1) is also of degree
2 in b variables, it follows that Res(G1, F1) is algebraically independent of P1(A,b). This
means that there are only finitely many places where both polynomials are zero, meaning,
we can additionally assume that Eq. (8) is non-zero (when evaluated at B).

Consider two parameters εp and εq = εp/C where C is a large enough constant and εp
is a parameter to be set later. Consider the parametric space of the input objects, where
the variable b defines a single point. In such a space, B defines a single point. Place an
axis-aligned cube R of side-length εp centered around B. The input slabs are defined by
placing a set of n random points inside R. Each point in R defines a (d− 2)-dimensional
flat. We set w = Θ(Qn ) which in turn defines a “narrow (d− 1)-hyperslab”.

We now define the set of queries. Notice that P1 has exactly 2(d − 1) algebraically
independent coefficients; these are the coefficients of linear terms involved plus a0,1; recall
that by Eq. (7), a1,1 was fixed as a function of a1,2a2,1 and a2,2 but we still have a0,1 as a
free parameter. These 2(d− 1) coefficients define another parametric space, where A denotes
a single point. Place a 2(d− 1)-dimensional hypercube of side length εq and then subdivide
it into a grid where the side-length of every cell is τ . Every grid point now defines a different
query. Let Q be the set of all the queries we have constructed.

Notice that a query defined by a point a ∈ Q defines a line in the primal space, but when
considered in the parametric space R, it corresponds to a manifold (zeroes of a degree two
multilinear polynomial) that includes the set of points that correspond to (d− 2)-dimensional
flats that pass through the line in the primal space. The variable w allows us to turn it to a
range reporting problem where we need to output any (d− 2)-dimensional flat that passes
within w vertical distance of the query line. The following observations and lemmas are the
important geometric properties that we require out of our construction.

▶ Observation 15. For two different queries a1 and a2, the polynomials P1(a1,b) and
P1(a2,b) differ by at least τ in at least one of their coefficients.

▶ Observation 16. Consider a line f parallel to an axis. For small enough εp, and any
a ∈ Q, the function P1(a,b) evaluated on the line f is such that the magnitude of its
derivative is bounded by Ω(1).

Proof. Recall that B was chosen such that the manifold corresponding to A does not have a
tangent parallel to any of the axes at point B and thus the derivate of the function P1(A,B)
is non-zero at B. The lemma then follows since εp and εq are small enough and P1(A,B) is
a continuous function w.r.t any of its variables. ◀

Let Vol′(R) be the (d− 1)-dimensional volume of R, i.e., the volume of the projection of
R to any of its (d− 1)-dimensional subspace.

▶ Observation 17. The intersection volume of the range defined by a query a and R is
Θ(wVol′(R)) if C in the definition of εq is large enough, for w ≤ εp.

Proof. Observe that the query manifold defined by A passes through the center, B, of R by
construction. Since each coordinate of a differs from A by at most εq, it thus follows that by
setting C large enough, we can ensure that the distance between B and a is less than εp/2.
Also observe that the width of the range along any axis will be Θ(w). The claim now follows
by integrating the volume over vertical lines using Observation 16. ◀
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▶ Lemma 18. Consider a query a ∈ Q and let r be the range that represents a in the
parametric space defined by R. Consider an interval I on the i-th side of R, for some i.
Let rI be the subset of r whose projection on the i-th side of R falls inside I . Then, the
volume of rI is O(Vol′(R)w|I |/εp).

Proof. Both claims follow through Observation 16 by integrating the corresponding volumes
over lines parallel to axes. ◀

4.4 Using the Framework
Observe that by the above Observation 17, setting w = Θ(Qn εp) satisfies Condition 1 of the
lower bound framework in Theorem 1.

Satisfying Condition 2 requires a bit more work however. To do that, consider two queries
defined by points a1 and a2. Let r1 and r2 be the two corresponding ranges in the parametric
space of R.

To satisfy Condition 2, assume for contradiction that the volume of r1 ∩ r2 is large, i.e.,
ω(Vol(R)/(nψ)) where ψ = 2

√
logn. We now combine Observation 15, and Corollary 5 with

parameter ϑ set to ε0
εp

Qψ where ε0 is a small enough constant and where X1 represents b1,1,
X2 represents b2,2 and the remaining indeterminates represent the rest of variables in b; note
that the value of d in Corollary 5 is β = 2(d − 1) and U =

(2+1
2
)

= 3. Observe that each
interval Ii determined by Corollary 5 defines a slab parallel to the i-th axis in R; let Rbad
be the union of these slabs. By Lemma 18, and choice of small enough ε0, a positive fraction
of the intersection volume of r1 and r2 must lie outside Rbad. In addition, Corollary 5 allows
us to pick some fixed values for all variables in b, except for b1,1 and b2,2 with the property
the final polynomials H1 and H2 (on indeterminates b1,1 and b2,2) that we obtain have the
property that they have at least one coefficient which differs by

Ω
(
τ

(
ε0

εp
Qψ

)3(β−2)
)

(9)

between them; we call this operation of plugging values for all b except for b1,1 and b2,2
slicing. After slicing, we are reduced to the bivariate case; consider the set of points on which
both H1 and H2 have value O(w). If the 1D interval length of such points is O(εp/(Qψ), we
call this a good slice, otherwise a bad slice. By Lemma 18, there must be bad slices since if all
the slices are good, by integration of the intersection area of r1 and r2 over all the remaining
variables in b, r1 and r2 intersect with volume O(Vol(R)/(nψ)), a contradiction.

We now show that we can arrive at a contradiction, assuming the existence of a bad slice.
Given a bad slice, and any constant ℓ, we can find ℓ points (x1, y1), . . . , (xℓ, yℓ) such that
|xk1 − xk2 | = ω(εp/(Qψ)) for all 1 ≤ k1 < k2 ≤ ℓ and that H1(xk, yk), H2(xk, yk) = O(w)
for all k ∈ {1, 2 · · · , ℓ}. Observe that Hi(x, y) has only monomials y, x, xy and a constant
term. The critical observation here is that the coefficient of the monomial xy is always 1
since the coefficient of the monomial b1,1b2,2 was 1 and there was no monomial of degree
three in P1, meaning, after slicing this coefficient will not change. We pick ℓ = 3 and thus we
tweak all the three other coefficients of H1. Tweaking H1 such that H̃1(xk, yk) = H2(xk, yk)
corresponds to solving a linear system of equations that come from evalutions of monomials
X, Y , and a constant term at points (xk, yk). We can thus use Lemma 11 with ∆1 = ∆F = 1,
λ = ω(εp/(Qψ)). Observe that Res(G,F ) here is a constant by the properties of our
construction. Also observe that by Lemma 11, the magnitude of the determinant of matrix
A defined in Lemma 11 is

ω
(

(εp/(Qψ)))9
)
.
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By the same argument in [3], this means that the tweaking operation can be done such that
each coefficient of H1 is changed by

o
(

(εp/(Qψ)))−9
w
)
. (10)

We observe that after tweaking, H̃1 and H2 must coincide since by Lemma 11, the determinant
of the relevant monomials is non-zero and thus there’s a unique polynomial that passes
through points (x1, y1), · · · , (xℓ, yℓ). Finally, to get a contradiction, we simply need to ensure
that Eq. (10) is asymptotically smaller than Eq. (9). This yields a bound for the value of τ ,

τ = Θ
(
w(Qψ)3(β−2)+9

)
= Θ

(
w(Qψ)3β+3) (11)

where we have assumed that εp, and ε0 are small enough constants that have been absorbed in
the Θ(·) notation. Thus, this choice of τ will make sure that Condition 2 of the framework is
also satisfied. It remains to calculate the number of queries that have been generated. Observe
that τ was the side-length of a small enough grid around the point A in a β-dimensional
space. Thus, the number of queries we generated is

m =
o

Ω
((

1
τ

)β)
=

o

Ω
(

nβ

Qβ(3β+4)

)
. (12)

Applying Theorem 1 yields a space lower bound of

S(n) =
o

Ω(mQ) =
o

Ω
(

n2(d−1)

Q4(3d−1)(d−1)−1

)
(13)

for line-hyperslab intersection reporting since β = 2(d− 1). One can verify that the same
argument works for triangle-triangle intersection reporting in R4, since P2 is also a multilinear
polynomial of degree two. In this case, β = 6 which yields a space lower bound of

S(n) =
o

Ω
(

n6

Q125

)
. (14)

To sum up, we obtain the following results:

▶ Theorem 19. Any data structure that solves line-hyperslab intersection reporting in Rd

must satisfy a space-time tradeoff of S(n) =
o

Ω
(

n2(d−1)

Q(n)(4(3d−1)(d−1)−1

)
.

▶ Theorem 20. Any data structure that solves triangle-triangle intersection reporting in R4

must satisfy a space-time tradeoff of S(n) =
o

Ω
(

n6

Q(n)125

)
.

5 Conclusion and Open Problems

We study line-hyperslab intersecting reporting in Rd and triangle-triangle intersecting report-
ing in R4. We show that any data structure with no(1) +O(k) query time must use space
o

Ω(n2(d−1)) and
o

Ω(n6) for the two problems respectively. This matches the classical upper
bounds for the small no(1) query time case for the two problems and answer an open problem
for lower bounds asked by Ezra and Sharir [20]. Along the way, we generalize and develop
the lower bound technique used in [2, 3].

The major open problem is how to show a lower bound for general intersection reporting
between objects of t and (d − t) dimensions or for flat semialgebraic objects as studied
recently in [5]. Many of our techniques work, however, one big challenge is that after applying
Corollary 5, the leading coefficient changes and thus we can no longer guarantee big gaps
between coefficients.
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Abstract
Let P be a set of n points in R2. For a parameter ε P p0, 1q, a subset C Ď P is an ε-kernel of P if
the projection of the convex hull of C approximates that of P within p1´ εq-factor in every direction.
The set C is a weak ε-kernel of P if its directional width approximates that of P in every direction.
Let kεpP q (resp. kw

ε pP q) denote the minimum-size of an ε-kernel (resp. weak ε-kernel) of P . We
present an OpnkεpP q log nq-time algorithm for computing an ε-kernel of P of size kεpP q, and an
Opn2 log nq-time algorithm for computing a weak ε-kernel of P of size kw

ε pP q. We also present a fast
algorithm for the Hausdorff variant of this problem.
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use it to compute an ε-kernel of small size.
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1 Introduction

Coresets have been successfully used as geometric summaries to develop fast approximation
algorithms for a wide range of geometric optimization problems. Agarwal et al. [2] introduced
the notions of ε-kernels/coresets for approximating the convex hull of a point set P in Rd: For
an interval J “ ra, bs, let p1´εqJ “ ra`pε{2q |J | , b´pε{2q |J |s be its scaling down by a factor
of 1 ´ ε around its center. For a direction v P S, let IvpP q denote the projection of chpP q in
direction v, which is an interval. A subset C Ď P is an ε-kernel if IvpCq Ě p1 ´ εqIvpP q for
all directions v P S, see Definition 4. The weak ε-kernels impose a weaker requirement that
|IvpCq| ě p1 ´ εq |IvpP q| for all v P S, see Definition 6. See Figure 1.

It is known that there exists an ε-kernel (as well as a weak ε-kernel) of P of size
Opε´pd´1q{2q and that it can be computed efficiently [2]. However there may exist an ε-kernel
of P of much smaller size, as is often the case in practice, see, e.g. [23]. Let kεpP q be the
minimum size of an ε-kernel of P . An interesting question is whether an ε-kernel of P of
size kε can be computed efficiently, i.e., computing an instance-optimal ε-kernel. A similar
question can be asked for weak ε-kernels. These problems are known to be NP-Hard for
d ě 3. Although it is generally believed that an instance-optimal ε-kernel or weak ε-kernel
in the plane can be computed in polynomial time using dynamic programming, we are
unaware of any paper that presents such an algorithm. See below for related work on this
problem. In this paper, we settle this question by presenting fast algorithms for computing
instance-optimal ε-kernels and weak ε-kernels for d “ 2.
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4:2 Computing Instance-Optimal Kernels in Two Dimensions

Figure 1 Somewhat oversimplifying the difference, a regular kernel has to conceptually include
a “shrunken” middle portion (left), while the weak kernel (right) only has to approximate the
projections. Specifically, on the left, the projection interval of the approximation has to include the
projection interval of the green region. On the right, the approximation projection interval needs to
be sufficiently long but it does not have the inclusion constraint.

Related work. As mentioned above, Agarwal et al. [2] proved the existence of an ε-kernel
of size Opε´pd´1q{2q for any set of points in Rd and presented fast algorithms for computing
such an ε-kernel. These algorithms were subsequently improved and generalized, see [9, 5, 3].
Yu et al. [23] studied practical algorithms for computing coresets/kernels, and suggested an
incremental algorithm that seems to provide a good approximation to the optimal kernel.

The NP-Hardness of computing an instance-optimal kernel in R3 follows from that of
polytope approximation [12], see also [4, 8]. Clarkson [11] studied the problem of polytope
approximation as a hitting-set problem, providing a logarithmic approximation in the optimal
size, that can be used for approximating the optimal kernel. For d “ 3, the approximation
factor can be improved to Op1q [7]. Using a greedy approach, Blum et al. [6] studied the
problem of approximating optimal kernels in high dimensions, and presented polynomial-time
algorithms for computing an ε-kernel of size Opdkε log kεq or an pε ` 8ε1{3q-kernel of size
Opkεε

´2{3q.
More recently, there has been some work on computing variants of ε-kernels of minimum

size, though none of them compute an instance-optimal ε-kernel. Wang et al. [22] use a
different definition of kernel, so comparing the results of this paper to their work is somewhat
confusing. Specifically, Wang et al. [22] presented a cubic-time algorithm that computes a
minimum-size subset Q of P with the property that maxpPP p1 ´ εq xv, py ď maxqPQ xv, qy ,

assuming that P is α-fat for some constant α; they refer to such a subset as a ε-core-set of
P . A shortcoming of this definition is that it is neither translation nor non-uniform-scaling
invariant. However, it can be shown that their algorithm computes an ε-kernel of size
at most kε{3 (observe that kε{3 can be much larger than kε). Klimenko and Raichel [16]
provided an Opn2.53q time algorithm for computing a minimum-size subset Q such that
HpchpP q, chpQqq, the Hausdorff distance between chpP q and chpQq, is at most ε.1 They
also tackle the case when P is convex, which they solve in Opn log2 nq time. The standard
approach for computing small kernels, is to apply an affine transformation to the point set
to make it “fat”, then apply an algorithm for Hausdorff approximation, with parameter ε{c
where c depends on the fatness of the mapped point set and its diameter. Using the algorithm

1 Recall that for two sets A, B P R2, HpA, Bq “ maxthpA, Bq, hpB, Aqu, where hpX, Y q “

maxxPX minyPY }x ´ y}.
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in [16], an ε-kernel of size at most kε{2 can be computed in Opn2.53q time. We note that since
ε is an absolute error, the size of Hausdorff-approximation can be Ωpnq in the worst case. If
we set the error parameter to be ε ¨ diampP q, then there exists an ε-Hausdorff approximation
Q of size Opε´pd´1q{2q but Q may not be an ε-kernel since for a direction v P S, |IvpQq|

maybe as small as |IvpP q| ´ εdiampP q, while ε-kernel requires IvpQq Ě p1 ´ εqIvpP q. As
such while the width or minimum-enclosing-box of an ε-kernel approximates that of P , a
Hausdorff approximation does not offer such a guarantee and thus not always suitable for
approximating extent measures of P .

There is also some connection between our problem and minimum-link distance and
polygon approximation, see [13, 14, 18, 19, 21, 20] for some relevant results.

Our results. Let P be a set of n points in R2, and let ε ą 0 be a parameter. There are
three main results in this paper:

Optimal kernel. We present (in Section 4) an Opkεn log nq-time algorithm for comput-
ing an ε-kernel of P of size kε :“ kεpP q; recall that kε “ Opε´1{2q.
Optimal weak kernel. We present (in Section 5) an Opn2 log nq-time algorithm for
computing a weak ε-kernel of P of size kw

ε pP q, the minimum size of a weak ε-kernel of P .

Our algorithm for computing the optimal kernel can be adapted to computing an optimal
Hausdorff approximation of chpP q:

Optimal Hausdorff approximation. We present (in [1]) an Opkh
εn log nq-time algo-

rithm for computing a set Q Ď P of size kh
ε such that HpchpP q, chpQqq ď ε, where kh

ε is
the size of the minimum such subset.

We obtain these results by reducing the computation of (weak) optimal kernel to the following
two covering problems, which are of independent interest:

Optimal arc cover. Given a set Ξ of n arcs of the unit circle S, compute its smallest
subset that covers S. Lee and Lee [17] had presented an Opn log nq-time algorithm for
this problem, which is optimal in the worst case. Here we present a somewhat simpler
algorithm with the same running time (see [1]), which is more intuitive and which we
adapt to the computation of weak kernels.
Optimal star cover. Given a polygon P that is star shaped with respect to the origin
o and a set of lines L, compute a smallest subset of lines (i.e., cuts) in L that separate o
from BP . Alternatively, this can be interpreted as covering BP by the (outer) halfplanes
defined by the lines of L. We reduce this problem to the above arc-cover problem, but
the number of candidate arcs can be quadratic. We use a greedy algorithm to prune the
number of candidate arcs to Opknq, in Opkn log nq time, where k is the size of the optimal
solution, and then compute an arc cover in Opkn log nq time using the above algorithm.
We reduce the computation of ε-kernel to this covering problem by using the polarity
transform (see Section 4)

Finally, we introduce (in [1]) the concept of core of a point set, prove its properties, and
describe an algorithm for computing it. A convex body C can be represented as the
intersection of all the minimal slabs that contains it. The ε-core is the result of intersecting
all these slabs after shrinking them by a factor of 1 ´ ε. It induces an affine-invariant inner
approximation of C. For a point set P , its ε-core is a convex polygon lying inside chpP q. We
describe an Opn log nq-time algorithm for computing the ε-core of P .

We show that the convex hull of any ε-kernel of P contains the ε-core of P , and that
any subset C Ď P whose convex hull contains the ε-core is a 4ε-kernel of P , see [1]. Thus
the ε-core is an approximation to the optimal ε-kernel, which has the benefit of being well
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4:4 Computing Instance-Optimal Kernels in Two Dimensions

defined for any bounded convex shape. We believe this notion of ε-core is new, and is of
independent interest. We present an Opn log nq-time algorithm for computing the smallest
subset of P such that its convex-hull contains the ε{4-core of P , which yields an ε-kernel of
P of size at most kε{4.

2 Preliminaries

Let P be a set of n points in R2, and let ε P p0, 1q be a parameter. Without loss of generality
assume that the origin o lies in the interior of chpP q, where chpP q denotes the convex-hull
of P (if o R chpP q, one can choose three arbitrary points of P and translate P so that their
centroid becomes o).

Normal diagram. A direction in R2 can be represented as a unit vector in R2. The set of
unit vectors (directions) in R2 is denoted by S “

␣

p P R2
ˇ

ˇ}p} “ 1
(

.

▶ Definition 1. For a line l not passing through the origin, let h“ hplq (resp. h“ hplq)
be the (closed) halfplane bounded by l and containing (resp. not containing) the origin.

For a direction v P S and a point q P R2, let hvpqq be the halfplane that is bounded by the
line normal to direction v and passing through q, and that contains o.

▶ Definition 2 (Extremal point, supporting line). For a direction v P S, let pv be the extremal
point of P in the direction v. That is pv “ arg maxpPP xv, py . The point pv is unique if
v is not the outer normal of an edge of chpP q. Similarly, let lv be the supporting line of
chpP q normal to v and passing through pv. Let hv “ hplvq and hv “ hplvq. Observe that
chpP q Ă hv.

For a real number ψ, let hv a ψ and hv a ψ be the halfplanes formed by translating hv

and hv, respectively, towards the origin by distance ψ.

▶ Definition 3. The normal diagram of P is the partition of S into maximal intervals
so that the extremal point pv remains the same for all directions within an interval. The
endpoints of these intervals correspond to the outer normals of the edges of chpP q. The
normal diagram can be further refined so that for all directions v within each interval, both
pv and p´v remain the same. Such a pair of points are antipodal pairs. Let N “ N pP q

denote this refinement of the normal diagram, and observe that |N | ď 2n. See Figure 2.

(A) (B) (C)

Figure 2 (A) Point set P , chpP q, and ε-kernel of P (say, for ε “ 0.2). (B) Directions in which a
point is extremal. (C) Normal diagram of P and its refinement N pP q, Iv.
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Directional width and ε-kernel. For a direction v P S, let

IvpP q “
”

min
pPP

xv, py , max
pPP

xv, py
ı

denote the projection interval of P in direction v. Its length ωpv, P q “ }Iv} is the
directional width of P in the direction of v. Note that Iv “ ´I´v and ωpv, P q “ ωp´v, P q.
For an ε P p0, 1q and an interval J “ rx, ys, let p1 ´ εqJ be the shrinking of J by a factor of
p1 ´ εq, i.e., p1 ´ εqJ “ rx` pε{2q |J | , y ´ pε{2q |J |s.

▶ Definition 4. A set X Ď chpP q is an ε-approximation of P if IupXq Ě p1 ´ εqIupP q for
all directions u P S. A subset C Ď P is a “strong” ε-kernel of P if it is an ε-approximation
of P . Let kεpP q denote the minimum size of an ε-kernel of P . See Figure 3 for an example.

(A) (B) (C)

Figure 3 (A) A point set and its convex hull. (B) Its 0.2-core. (C) Its optimal 0.2-kernel –
observe that it contains points that are not on the convex-hull.

We emphasize that the shrinking here is done for every direction individually around
the center of the projection interval – in particular, there is no center point of the chpP q
around which we do the scaling – to some extent this gives rise to most of the technical
difficulties in constructing and approximating an optimal kernel. The following property of
ε-approximation will be useful later on.

▶ Lemma 5 ([2]). Let P be a point set in Rd, X Ď chpP q, and T an affine map in Rd. X is
an ε-approximation for P ðñ T pXq is an ε-approximation of T pP q.

A slightly weaker notion of ε-kernel was used by Agarwal et al. [2], that is potentially
(significantly) smaller than their “strong” counterparts but somewhat harder to compute.

▶ Definition 6. A subset C Ď P is a weak ε-kernel of P if ωpu,Cq ě p1 ´ εqωpu, P q for
all u P S.

This weaker definition was sufficient for the purposes of Agarwal et al.. However, it is less
intuitive than the stronger variant, and it is harder to compute the optimal weak kernel.

Computing optimal circular arc cover. Let Ξ denote a set of n circular arcs on S, each
of length less than π, that cover S.2 As mentioned in the introduction, an Opn log nq-time
algorithm for computing the smallest subset of Ξ that cover S was proposed in [17]. In
the full version [1] we present an alternative Opn log nq time algorithm for computing the
smallest-size arc cover from Ξ, which we believe is simpler and more intuitive. The basic
idea is to use the greedy algorithm. Picking a start arc, and then going counterclockwise
as far one can adding arcs in a greedy fashion results in a cover of size k ` 1, where k is
the optimal size. After an Opn log nq preprocessing, the greedy algorithm can be executed
in Opkq time. To reduce the size of the solution to k, one has to guess a starting arc that
belongs to the optimal solution. We show that the least covered point on the circle is covered

2 By computing the union of arcs in Ξ, we can decide, in Opn log nq time, whether Ξ covers S.
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4:6 Computing Instance-Optimal Kernels in Two Dimensions

by Opn{kq intervals. This implies that one has to try only Opn{kq starting arcs and thus run
the greedy algorithm Opn{kq times. The overall running time is thus Opn log nq. See [1] for
full details. We will use this algorithm as a subroutine in Section 4 and [1] and a variant of
it in Section 5. In particular, we get the following result:

▶ Theorem 7. Let Ξ be a set of n circular arcs on S. The optimal cover of S by the arcs of
Ξ, if there exists one, can be computed in Opn log nq time.

3 Covering a Star Polygon by Halfplanes

The input is a set of L of n lines and a polygon Z with Opnq vertices that is star-shaped
with respect to the origin o (i.e., for every point p P Z, op Ď Z). Formally, the task at
hand is to compute a minimum set of lines C Ď L, such that for any point p P BZ, intpopq
intersects a line of C. Geometrically, FopCq :“

Ş

lPC hplq, the intersection of inner halfplanes
bounded by lines in C, is contained in Z. An alternative interpretation of this problem is
that BZ Ă

Ť

lPC hplq.

3.1 Reduction to arc cover
BZ can be viewed as the image of a function Z : S Ñ R2. Specifically, for a direction u P S,
Zpuq is the intersection point of BZ with the ray from the origin in direction u. A line l

blocks the direction u if l intersects the segment oZpuq. A subset G Ď L is a blocking set
of Z if each direction in S is blocked by at least one line of G (i.e., FopGq Ă Z).

Fix a line l P L. Let l[ Z denote the set of connected components (i.e., segments) of
lXZ. For a segment s P l[Z, let ?s “ top{}op} P S | p P su be the circular arc induced by
s. All directions in ?s are blocked by l. Let ?l“ t?s | s P l[ Zu be the set of all circular
arcs that are induced by blocking segments of l. Let Ξ “

Ť

lPL ?l be the set of all circular
arcs defined by the lines of L. For a subset Γ Ď Ξ, let LpΓq “ tl P L | γ P ?l, γ P Γu be the
original subset of lines of L supporting the arcs of Γ.

▶ Lemma 8. (i) If Γ Ď Ξ is an arc cover, i.e.,
Ť

Γ “ S, then LpΓq is a blocking set.
(ii) There is an arc cover Γ Ď Ξ of size k if and only if there is a blocking set G Ď L of

size k.

Proof. (i) If Γ is an arc cover, then for every direction u P S, there is an arc ?s P Γ that
blocks the direction u. If ?s P ?l, for a line l P LpΓq, then the segment oZpuq intersects l.
Since this condition holds for all directions in S, it follows LpΓq Ď L is a blocking set.

(ii) If there is an arc cover Γ Ď Ξ of size k, then by part (i), LpΓq is a blocking set of
size at most k. Conversely, let G be a blocking set for Z. Without loss of generality, we
can assume that each line of G appears as an edge on the boundary of the face F of ApGq

that contains the origin, because otherwise we can remove the line from G. For each line
l P G, let sl P l[ Z be the segment that contains the edge of F lying on l. Since F Ď Z,
the segment oZpuq intersects an edge of F for every u P S. Hence, t?sl | l P Gu is an arc
cover of size at most |G|. ◀

By Lemma 8, it suffices to compute smallest-size arc cover from Ξ. But |Ξ| “ Θpn2q in
the worst case. Therefore computing Ξ explicitly and then using Theorem 7 to compute an
arc cover take Opn2 log nq time. In the following, we show how to improve the running time
to Opnk log nq, where k is the optimal solution size.
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3.2 Computing an almost-optimal blocking set
We extend the greedy algorithm used in the circular arc cover (see Section 2 and [1]) to
compute an arc cover in Ξ without computing Ξ explicitly. For clarity, we describe the greedy
algorithm in terms of computing a blocking set.

For a pair of directions u, v P S, let Zpu, vs Ď Z be the semiopen subchain of Z from
Zpuq to Zpvq in the counterclockwise direction, which contains the endpoint Zpvq but not
Zpuq. As such, we have Zpu, us “ Z.

We define a (partial) function s : S ˆ L Ñ R4, as follows. For a pair u P S and a line
l P L, if l does not intersect the segment oZpuq, then spu, lq is not defined. Otherwise,
it is the segment of l[ Z that intersects oZpuq. Similarly, we define a (partial) function
f : Sˆ LÑ S, that is the first point of spu, lq in the counter-clockwise direction after Zpuq

(note, that l might intersect the boundary Z many times). Set λpuq “ arg maxlPLfpu, lq,
i.e., among the feasible segments that intersect oZpuq, λpuq is the last one to exit Z in the
counterclockwise direction.

The algorithm consists of the following steps: Set v0 :“ p1, 0q, l0 :“ λpv0q, G :“ tl0u,
and i :“ 1. In the ith iteration, the algorithm does the following: it sets vi “ fpvi´1, li´1q,
li “ λpviq, and G “ G Y tliu. The algorithm then continues to the next iteration till
FopGq Ď intpZq. Let v11 be the first intersection point of l0 with Z in the clockwise direction
from v0, i.e., the segment Zpv1qZpv11q lies inside Z. Then the terminating condition is the
same as fpvi, liq lying after v11 (from vi) in the counterclockwise direction. By construction,
FopGq Ă Z. Since this is a greedy algorithm for computing an arc cover, |G| ď k ` 1. The
polygon Z can be preprocessed, in Opn log nq time, into a data structure of linear size so
that for a pair u P S and a line l P L, fpu, lq can be computed in Oplog nq time [10, 15]. The
algorithm performs Opnkq such queries, so the total running time is Opnk log nq.

▶ Lemma 9. Let L be a set of n lines, Z be a polygon with Opnq vertices that is star shaped
with respect to o and that contains FopLq, and let k be the size of the smallest blocking set in
L for Z. A blocking set G Ď L of size at most k ` 1 can be computed in Opkn log nq time.

3.3 Computing an optimal solution
Let G be the blocking set computed by the above greedy algorithm. For each line l P L we
compute its intersection points with the lines of G. For each such intersection point ξ, if ξ
lies inside Z, let sξ P P [ l be the segment that contains ξ. Let S1 be the set of resulting
Opnkq segments. Let

S2 “
ď

lPG

l[ P

be the set of all segments induced by the lines of G. Set S “ S1 Y S2. The computes the
set Γ “ t?s | s P Su, and then computes the minimal size arc cover C of S by the arcs of Γ.
The returned set is K “ tl P l | ?s P C, s Ă lu.

▶ Lemma 10. The set Γ contains an arc cover of size k.

Proof. Suppose for the sake of contradiction that Γ does not contain an arc cover of size k.
Let C Ă Ξ be an arc cover of size k. Then C contains an arc ?s such that s lies on a line of
LzG and s does not intersect any line of G, i.e., it lies in the interior of a face of ApGq, the
arrangement of G.

If s lies in the face corresponding to FopGq, then s must intersect BFopGq, as the endpoints
of s lies on BZ and IpGq Ď Z, contradicting the assumption that s does not intersect any
line of G.

SoCG 2023
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P

I I

I(G)

o

I
s

s′

p

o

l′

I(G)

q

(A) (B)

Figure 4 (A) A hitting set G of size at most k ` 1. (B) Illustration of the proof of Lemma 10.

Next, suppose s lies in some other face of ApGq. Let p be an endpoint of s. The segment
po must intersect a line l1 P G at a point q. In particular, let s1 P l1 X Z be the segment
of l containing q. Clearly, s1 is a blocker for all the points on s, so we can obtain another
optimal solution by replacing ?s with ?s1 (see Figure 4), and this solution has one more arc
of Γ, a contradiction.

Hence, we can conclude that Γ contains an optimal arc cover. ◀

Computing the set G takes Opnk log nq time. Observe that |S1| “ Opnkq, as each line
of L induces at most k ` 1 segments in this set. Similarly, as |G| “ k ` 1, we have that
|S2| “ Opnkq. It follows that computing S1 and S2 requires Opnkq ray-shooting queries in Z,
and these queries overall take Opnk log nq time. Hence, we obtain the following:

▶ Lemma 11. Let L be a set of n lines in the plane, and let Z be a polygon with Opnq

vertices that is star shaped with respect to o and that contains FopLq. Then a blocking set
from L of Z of size k can be computed, in Opkn log nq time, where k is the size of the optimal
solution.

4 Computing Optimal ε-Kernel

Let P be a set of n points in R2 and ε P p0, 1q a parameter. We describe an Opnkε log nq-time
algorithm for computing an ε-kernel of size kε. We use polarity to construct a set L of n
lines and a star polygon Z that contains FopLq “

Ş

lPC hplq. An ε-kernel of P corresponds
to a blocking set in L for Z.

▶ Definition 12 (ε-shifted supporting line). For a direction u P S and a parameter ε ą 0,
let lu,ε be the boundary line of hu,ε “ hu a pε{2qωpu, P q, see Definition 2. Let hu,ε be the
(closed) complement halfplane to hu,ε.

Set Hε “ thu,ε | u P Su. The following lemma is immediate from the definition of ε-kernel.

▶ Lemma 13. Given a point set P in R2 and a parameter ε P p0, 1q, a subset C Ď P is an
ε-kernel of P if and only if hv,ε X C ‰ H for all u P S, i.e., C is a hitting set of Hε.

The problem of computing an ε-kernel thus reduces to computing a minimum-size hitting
set of the infinite set Hε. It will be convenient to use the polarity transform and work in the
mapped plane, so we first describe the polar of ε-kernel and then describe the algorithm.
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Polarity. For a point p ‰ o, its inversion, through the unit circle, is the point p´1 “ p{ }p}
2.

Observe that p, p´1, o are collinear, }p}
›

›p´1
›

› “ 1, and p and p´1 are on the same side of the
origin on this line. We use the polarity transform, which maps a point p “ pa, bq ‰ o to the
line

pd ” ax` by ´ 1 “ 0 ” xp, px, yqy ´ 1 “ 0 ”

C

p, px, yq ´
p

}p}
2

G

“ 0.

Namely, the line pd is orthogonal to the vector op, and the closest point on pd to the origin
is p´1. Geometrically, a point p is being mapped to the line passing through the inverted
point p´1 and orthogonal to the vector op´1. Similarly, for a line l, its polar point ld is
q´1, where q is the closest point to the origin on l. Observe that pldq

d
“ l and ppdq

d
“ p

for any line l and any point p.

o

l

l+

h
l⊙

h⊙

p

p⊙

p

p⊙

I

Figure 5 Left: A point p lies in the halfplane hplq ðñ pd intersects the segment old.
Right: A convex hull of a point set, and the corresponding “polar” polygon formed by the intersection
of halfplanes.

If a point p lies on a line l then ld P pd. If p lies in the halfplane hplq (by Definition 1,
we have o R hplq) if and only if pd intersects the segment old, see Figure 5 (left). Set
Pd “ tpd | p P P u and Fo :“ FopPdq “

Ş

pPP hppdq. Then the polygon Fo is the polar of
chpP q, namely:

I. If p P P is a vertex of chpP q then pd contains an edge of Fo, see Figure 5 (right).
II. The polar of line l missing (resp. intersecting) chpP q is a point lying in (resp. out) Fo.

III. For a point p P chpP q, Fo Ă hppdq.

Consider any direction u P S. Let pu be the extremal point of P in direction u, and let
lu be the corresponding supporting line, see Definition 2. The point ldu lies on the edge of Fo
supported by pdu , and ldu { }ldu } “ u. Similarly, the polar of the shifted supporting line lu,ε

(see Definition 12), is the point ldu,ε which lies outside Fo on the ray induced by u (starting at
the origin).

Kernel and polarity. Returning to ε-kernels, let N be the refinement of the normal diagram
of chpP q, see Definition 3. Recall that N is centrally symmetric. The supporting lines lu
and ĺ u support the same pair of vertices of chpP q for all directions u lying inside an interval
of N . For each interval γ P N , let ´γ denote its antipodal interval. For each interval γ P N ,
let pγ be the supporting vertex of chpP q for all directions in γ.

SoCG 2023
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(A)

Iε(P ⋆)

I

(B)

Iε(P ⋆)

J

Figure 6 (A) chpP q, IpP d
q, IεpP

d
q. (B) ε-kernel C and its polar Cd; chpP q Ď IP d

Ď IεpC
d
q.

Let pγ,ε “ p1 ´ ε{2qpγ ` pε{2qp´γ . It can be verified that the line lv,ε for v P γ passes
through pγ,ε. Therefore the polar of the set of lines tlv,ε | v P γu is a segment eγ that lies on
the line ppγ,εq

d and outside Fo. The sequence xeγ | γ P Γy forms the boundary of a polygon
IεpP

dq that is star shaped with respect to o and that contains Fo in its interior. See Figure 6.
Putting everything together, we obtain the following lemma, which characterizes the ε-kernel
after polarity.

▶ Lemma 14. Let P be a set of n points in R2 and ε P p0, 1q a parameter. The star-shaped
polygon IεpP

dq can be computed in Opn log nq time. Furthermore, a subset C Ď P is an
ε-kernel of P if and only if Cd is a blocking set for IεpP

dq (see Figure 6).

Computing the smallest set C Ď P thus reduces to the star-polygon-cover problem. Using
Lemma 11 and that there is an ε-kernel of size Opε´1{2q [2], we obtain the following:

▶ Theorem 15. Let P be a set of n points in R2, and let ε P p0, 1q a parameter. An optimal
ε-kernel of P of size k can be computed in Opkn log nq time. In the worst case, k “ Opε´1{2q,
and the running time is Opε´1{2n log nq.

Below we show that there exists a set P of points such that there are quadratic number
of intersections between Pd and IεpP

dq. This suggest that our somewhat more involved
algorithm using greedy algorithm to prune the set of arcs used is necessary even in this case.
It will be more convenient to use the duality transform instead of polarity for describing the
lower-bound construction.

Duality and ε-kernel. The duality transform provides a similar mapping to polarity. The
dual point to the line l ” y “ ax ` b is the point l‹ “ pa,´bq. Similarly, for a point
p “ pc, dq its dual line is p‹ ” y “ cx ´ d. Namely, for p “ pa, bq, the dual line is
p‹ ” y “ ax ´ b, and for a line l ” y “ c1x ` d1 the dual point is l‹ “ pc1,´d1q. The
following interpretation of kernels in the dual is standard, and goes back to the original work
of Agarwal et al. [2]. As such, we state the problem in these settings without proving the
equivalence.

For a set of lines L “ P ‹ “ tp‹ | p P P u in the plane (i.e., L is a set of affine functions
from R to R), let

òL pxq “ max
fPL

fpxq and óL pxq “ min
fPL

fpxq,
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⇑(x)
↑(x)

⇓(x)↓(x)

C(x) =
(
⇑(x)+ ⇓(x)

)
/2

Figure 7 Lower and upper envelopes, and their ε-approximations.

be the upper and lower envelopes of L, respectively. The function ò pxq is convex, while
ó pxq is concave. The extent of L is

õL pxq “òL pxq´ óL pxq.

For a fixed ε P p0, 1q, the ε-upper envelope and ε-lower envelope are

ÒL pxq “òL pxq ´
ε

2 õL pxq “
´

1 ´
ε

2

¯

òL pxq `
ε

2 óL pxq

ÓL pxq “óL pxq `
ε

2 õL pxq “
ε

2 òL pxq `
´

1 ´
ε

2

¯

óL pxq,

respectively. Unfortunately, these functions are not necessarily convex, as demonstrated in
Figure 7.

Computing an optimal ε-kernel for P is equivalent to computing a set of lines M Ď L,
such that òM pxq lies above ÒL pxq (and of course below òL pxq), for all x. And similarly,
óM pxq lies below ÓL pxq, for all x.

Lower-bound construction. Here we show that in the worst case the set
Ť

lPLpl[ Pq can
have quadratic size. In particular, we construct a set of lines L, where the lines of L have
quadratic number of intersections with Ò p¨q and Ó p¨q.

Consider the parabolas fpxq “ 2
ε px

2 ` 1q and gpxq “ ´ 1
1´ε{2 px

2 ` 1q. Fix parameters
n and ε. Let pi “

`

i{2n, fpi{2nq
˘

and qi “
`

i{2n, gpi{2nq
˘

, for i “ 0, . . . , 2n. For a pair of
distinct points p, q P R2, let lpp, qq denote the line passing through p and q. Let

Lf “ tlppi, pi`2q | i “ 0, 2, 2n´ 2u and Lg “ tlpqi, qi`2q | i “ 1, 3, 2n´ 3u .

The upper envelope of Lf in the range r0, 1s is above fpxq, except for touching it at the
points p0, p2, . . . , p2n. Similarly, the lower envelope of Lg, in the range I “ r1{2n, 1 ´ 1{2ns
lies below g, except for touching it at the points q1, q3, . . . , q2n´1.

It is easy to verify that the lines of Lf and Lg do not intersect each other in the range
x P r0, 1s. As such, the upper envelope (resp. lower envelope) of L “ Lf YLg in this range is
realized by the upper envelope (resp. lower envelope) of Lf (resp. Lg).

Consider a value x P t1{2n, 3{2n, . . . , p2n ´ 1q{2nu. We have that òL pxq ą fpxq and
óL pxq “ gpxq. As such, we have

ÒL pxq “
ε

2 òL pxq `
´

1 ´
ε

2

¯

óL pxq ąąą
ε

2fpxq `
´

1 ´
ε

2

¯

gpxq “ x2 ` 1 ´ px2 ` 1q “ 0.
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Similarly, for x P t2{2n, 4{2n, . . . , p2n´ 2q{2nu, we have òL pxq “ fpxq and óL pxq ă gpxq.
As such, we have

ÒL pxq “
ε

2 òL pxq `
´

1 ´
ε

2

¯

óL pxq ăăă
ε

2fpxq `
´

1 ´
ε

2

¯

gpxq “ 0.

We thus obtain the following.

▶ Lemma 16. For any ε ą 0 and for any n ě 1, there exists a set of 2n lines in R2 whose
ε-upper envelope crosses the x-axis at least 2n´ 2 times.

Next, we replicate the x-axis by sufficiently close (almost parallel) n lines that lie between
the lower and upper envelopes of L, and we add them to L. Then there are Ωpn2q intersection
points between ÒL and the lines of L. We thus get the following result.

▶ Lemma 17. There exists a set L of n lines in R2 such that the number of intersection
points between IεpLq and L is Ωpn2q.

5 Optimal Weak Kernel

The above results dealt with the stronger notion of a kernel, but the original work of
Agarwal et al. [2] defined a weaker notion of a kernel, see Definition 6. In this section, we
present an Opn2 log nq-time algorithm for computing an optimal weak ε-kernel, by reducing
it to computing a smallest arc cover, with some additional properties, in a set of Opn2q unit
arcs (i.e., arcs on the unit circle).

Let P be a set of n points in R2 and ε P p0, 1q a parameter. We parametrize S with the
orientation in the range r´π, πs (with the two endpoints of this interval being glued together),
and let upθq “ pcos θ, sin θq. Recall that a subset C Ď P is an weak ε-kernel of P if

ωpupθq, Cq ě p1 ´ εqωpupθq, P q (1)

for all θ P r´π, πs. Since ωpupθq, P q “ ωpup´θq, P q, it suffices to satisfy Eq. (1) for the
angular interval r´π{2, π{2s. However, it will be convenient to work with the entire S, so let

õP pθq “ ωpupθ{2q, P q for θ P r´π, πs.

A subset C Ď P is a weak ε-kernel if and only if

õC pθq ě p1 ´ εq õP pθq @θ P r´π, πs.

For a pair 1 ď i ă j ď n and θ P r´π, πs, we define γij P r´π, πs Ñ Rě0 as

γijpθq :“ | xupθ{2q, pi ´ pjy | “ |pai ´ ajq cospθ{2q ` pbi ´ bjq sinpθ{2q|,

where pi “ pai, biq. Set Γ “ tγij | 1 ď i ă j ď nu. It is easily seen that òΓ pθq “õP pθq. For
a pair 1 ď i ă j ď n, we define Iij “ tθ P r´π, πs | γijpθq ě p1 ´ εq òΓ pθqu.

▶ Lemma 18. The set Iij is a single connected circular arc.

Proof. It is convenient to reparameterize γij . More precisely, we define the function ξij :
R Ñ Rě0 as

ξijpxq “ |pai ´ ajq ` pbi ´ bjqx| for x P R. (2)
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Set

Ξ “ tξij | 1 ď i ă j ď nu and Jij “ tx P R | ξijpxq ě p1 ´ εq òΞ pxqu .

Note that

γijpθq “
1

a

1 ` tan2pθ{2q
ξij

`

tanpθ{2q
˘

,

therefore tanpθ{2q P Jij if and only if θ P Iij .
The graph of ξij is a cone with axis of symmetry around the y-axis and apex on the x-axis

– specifically, there are two numbers αij , βij such that ξijpxq “ αij |x´ βij |. The number αij

is the slope of ξij . The function p1 ´ εq òΞ is a convex chain, which is the upper envelope of
the functions p1 ´ εqξij , see Figure 8 (A).

⇑Ξ

(1− ε) ⇑
Ξ

(1− ε)ξuvξij

ξuv

(A) (B)

Figure 8 Illustration of the proof of Lemma 18. (A) Upper envelope òΞ, and lower-bound curve
p1 ´ εq òΞ. (B) A cone with higher slope “buries” at least one leg of the other cone.

Since the graph of ξij is composed of two rays, Jij is potentially the union of two intervals
(potentially infinite rays). If Jij does not contain any finite interval, i.e., consists of two rays,
then Iij is a single arc containing the orientation π. So assume that Jij contains a finite
interval, see Figure 8 (B). This implies that there are indices u, v, such that p1 ´ εqξuv has
higher slope than ξij . But then p1 ´ εqξuv is completely above one of the two rays forming
the image of ξij , implying that Jij can only be a single interval in this case. This in turn
implies that Iij consists of a single arc. This completes the proof of the lemma. ◀

A 2-approximation algorithm. Let I “ tIij | 1 ď i ă j ď nu. Using the algorithm of
Theorem 7, we compute, in Opn2 log nq time, a minimum arc cover J Ď I. Each interval
Iij P J corresponds to two points pi, pj of P . Set C :“ tpi, pj | Iij P J u.

▶ Lemma 19. C is an weak ε-kernel of size at most twice the optimal size.

Proof. Since J is an arc cover, for any θ P r´π, πs, there is pair pi, pj P C such that
γijpθq ě p1 ´ εq òΓ pθq. Therefore õC pθq ě p1 ´ εq òΓ pθq “ p1 ´ εq õP pθq, implying that C
is a weak ε-kernel.

Conversely, let C˚ be an optimal weak ε-kernel. We construct an arc cover J ˚ as follows.
The points in C˚ are in convex position. Consider N “ N pC˚q the refined normal diagram
of C, which is a centrally symmetric partition of S into 2|C˚| intervals such that each pair of
antipodal intervals of is associated with an antipodal pair of points pi, pj P C˚. For each
such pair pi, pj , we add the interval Iij to J ˚; |J ˚| “ |C˚|. For θ P r´π, πs, suppose pi, pj

is the supporting pair in directions upθ{2q and ´upθ{2q, respectively. Then γijpθq “õC˚ pθq.
Since õC˚ pθq ě p1 ´ εq òΓ pθq, θ P Iij P J ˚. Hence, J ˚ is an arc cover.

We can thus conclude that |C| ď 2|C˚|. ◀
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An exact algorithm. The above algorithm is a 2-approximation because it uses two po-
tentially new points for each interval. We can change the arc-cover problem to account for
this. We label every arc in I by two indices i, j P JnK – indices of the pair of points in P

that define it. An arc cover J Ă I of S is admissible if every pair of intersecting arcs in J
share exactly one label. For any admissible arc cover J , the size of the set tpi, pj | Iij P J u

is at most |J |. Furthermore, the arc cover constructed from a weak kernel in the proof of
Lemma 19 is admissible. Therefore it suffices to compute a minimum-size admissible arc
cover in I.

To compute the smallest admissible arc cover, we follow the ideas in the algorithm of
for the arc-cover [1]. While |I| “ Opn2q, there must be a direction u P S that is covered
by at most Opn2{kq intervals of I, where k is the size of the optimal weak ε-kernel. Let
J Ď I be the set of intervals covering u (u and J can be computed in Opn2 log nq time).
For each one of these intervals, we now perform the greedy algorithm, as in [1] . The only
difference is that instead of having a global data structure for all intervals, we break them
into n groups. Specifically, for i “ 1, . . . , n, let Ii Ă I be the set of all arcs I with i being
one of the two indices in its label. Now, we build the necessary data-structure used in [1] for
each such group. Now, if the current interval is Iij , the algorithm uses the data-structures
for Ii and Ij to generate two candidate intervals to be used by the greedy algorithm. The
algorithm uses the one that extends further clockwise. The rest of the algorithm is the same
as in [1]. This algorithm computes the smallest admissible circular arc cover J ˚. We return
the set tpi, pj | Iij P J ˚u, which in view of the above discussion is an optimal weak ε-kernel.
Putting everything together we obtain the following:

▶ Theorem 20. Given a set P of n points in the plane and a parameter ε P p0, 1q, an optimal
weak ε-kernel of P can be computed in Opn2 log nq time.

6 Conclusions

In this paper, we studied the problem of computing optimal kernels in the plane, both in
the strong and weak sense. Surprisingly, this very natural problem had not received much
attention when kernels were developed around twenty years ago. The problem has surprisingly
non-trivial structure, and getting near linear running time to compute them exactly required
non-trivial ideas and care. A natural open question is whether an instance-optimal ε-kernel
of n points in R2 can be computed in Opn log nq time.
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Abstract
Let B be a set of n unit balls in R3. We present a linear-size data structure for storing B that
can determine in O∗(n1/2) time whether a query line intersects any ball of B and report all k such
balls in additional O(k) time. The data structure can be constructed in O(n log n) time. (The O∗(·)
notation hides subpolynomial factors, e.g., of the form O(nε), for arbitrarily small ε > 0, and their
coefficients which depend on ε.)

We also consider the dual problem: Let L be a set of n lines in R3. We preprocess L , in O∗(n2)
time, into a data structure of size O∗(n2) that can determine in O∗(1) time whether a query unit
ball intersects any line of L , or report all k such lines in additional O(k) time.
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1 Introduction

Let B := {B1, . . . , Bn} be a set of n unit-radius balls in R3. We wish to preprocess B into
a data structure that supports various line-intersection queries. That is, given a query line
ℓ in R3, determine whether ℓ intersects a ball in B, report all balls of B that ℓ intersects,
count the number of such balls, or compute some aggregate function on the balls intersected
by ℓ. Since all balls in B have the same radius, this problem can be reformulated as the
unit-cylinder range-searching problem: Consider the set P of the centers of balls in B.
Preprocess P into a data structure so that we can quickly answer range queries for a query
unit-radius cylinder C, such as determine whether C ∩ P = ∅ (referred to as emptiness
query), report C ∩ P (reporting query), or compute |C ∩ P | (counting query). We also
consider the dual problem where the input is a set L of n lines in R3, and we wish to answer
unit-ball-intersection queries, i.e., does a query unit ball intersect any line of L .

Related work The intersection-searching problem asks to preprocess a set O of geometric
objects in Rd into a data structure, so that one can quickly report or count all objects of
O intersected by a query object γ, or just test whether γ intersects any object of O at all.
Intersection queries are generalization of range queries (in which the input objects are points)
and point-enclosure queries (in which the query objects are points).
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5:2 Line Intersection Searching Amid Unit Balls in 3-Space

Intersection-searching problems in 2D have been studied since the early 1990s, see, e.g., [7]
and surveys [1, 3], but these problems mostly reduce to 2D or 3D range searching. In general,
intersection-searching queries can be formulated as semi-algebraic range queries or point-
enclosure queries in an appropriate parametric space, but the storage and query time are
large because the parametric space tends to be much higher dimensional than the ambient
space [2]. For example, using semi-algebraic range searching data structures and multi-level
partition trees based on geometric cuttings (see e.g. [13]), a line-intersection query, and its
generalizations such as segment-intersection and ray-shooting queries, amid n triangles or
balls in R3 can be answered in O∗(n3/4) time using O∗(n) storage, in O(log n) time using
O∗(n4) storage, or in O∗(n/s1/4) time using O∗(s) storage, for any n ≤ s ≤ n4, by combining
the first two solutions [13, 14].1 Recently, Ezra and Sharir [8] proposed a new approach
for answering ray-shooting queries amid triangles in R3, using the polynomial-partitioning
scheme by Guth [9]. This approach was extended to 3D intersection-searching in a fairly
general setting by Agarwal et al. [2].

Analogous to halfspace-emptiness and halfspace-reporting queries, intersection-detection
and intersection-reporting queries in some cases can be answered more quickly than intersection-
counting queries using the concept of shallow cutting [11]. For example, a line/segment
intersection-detection query amid n balls in R3 can be answered in O∗(n/s1/3) time using
O∗(s) storage, for n ≤ s ≤ n3 [12, 13, 14, 16], while the best known data structure for
answering intersection-counting queries takes O∗(n/s1/4) time, as mentioned above.

Our results. In this paper we make progress toward intersection queries between lines
and unit balls in R3. Our first main result (Sections 2–4) is a linear-size data structure for
answering line-intersection queries amid unit balls in R3:

▶ Theorem 1. Let B be a set of n unit balls in R3. B can be preprocessed, in O(n log n)
time, into a linear-size data structure so that for a query line ℓ in R3, a line-intersection-
detection query can be answered in O∗(n1/2) time, and a line-intersection-reporting query
can be answered in additional O(k) time, where k is the output size.

We preprocess the centers of B into a data structure for answering unit-cylinder range
emptiness/reporting queries (Section 2). Our main observation is that if the centers lie in a
narrow slab, the region bounded by two parallel planes within distance 2 from each other,
then a query unit cylinder C can be replaced by O(1) cylindrical prisms, each of which is of
the form τ⊕ru, where τ is a carefully chosen portion of ∂C, u is one of O(1) canonically chosen
directions in R3, and ru is the ray emanating from the origin in the direction u (Section 3).
An advantage of working with such cylindrical prisms is that we can combine the theory of
lower envelopes of bivariate functions [15] with Matoušek’s [11] shallow-cutting technique
to construct a linear-size data structure with O∗(

√
n) query time. One stumbling block in

applying his technique to our setting is the construction of the so-called test set. Roughly
speaking, a test set is a small representative set of all query cylindrical prisms, in the sense
that if the data structure has small query time for the test set, it also has a similar query
time for any cylindrical prism. The construction of a test set Q in [11] for half-space range
searching heavily relies on the linearity of hyperplanes. Agarwal and Matoušek had proposed
an approach for constructing a test set for semi-algebraic ranges [4], but unfortunately it
gives a weaker bound on the query time. Sharir and Shaul [16] were able to overcome this
challenge by proposing a different approach for constructing a test set, which is fairly general.
We adapt their approach to our setting for constructing a desired test set (Section 4).

1 As in the abstract, the O∗(·) notation hides subpolynomial factors, e.g., of the form O(nε), for arbitrarily
small ε > 0, and their coefficients which depend on ε.
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Our second main result (Section 5) is an O∗(n2)-size data structure for answering fixed-
radius neighbor queries amid a set of lines in R3:

▶ Theorem 2. Let L be a set of n lines in R3. L can be preprocessed, in time O∗(n2), into
a data structure of size O∗(n2) that can answer in O(log n) time whether a query point in
R3 lies within unit distance from any of the lines of L . Reporting the subset of these lines
costs additional O(k) time, where k is the output size.

This problem is equivalent to answering point-enclosure queries amid a set of unit cylinders
in R3. Using a two-dimensional geometric cutting, we reduce the problem to the case when
the query point lies inside a narrow slab. We then replace each input cylinder with O(1)
cylindrical prisms and check whether the query point lies in any of the cylindrical prisms.

2 Unit-Cylinder Range Searching

Let P ⊂ R3 be a set of n points in R3. We wish to preprocess P into a linear-size data
structure so that a range-emptiness or a range-reporting query for a unit cylinder C can be
answered quickly. For simplicity, we assume that the axis of C is not parallel to the yz-plane.
A similar but simpler data structure can answer queries for unit cylinders whose axes are
parallel to the yz-plane; we omit the details from this version. Let C be the family of unit
cylinders whose axes are not parallel to the yz-plane. A cylinder Cp ∈ C can be represented
by a point p = (p1, p2, p3, p4) ∈ R4 where (p1, p2) and (p3, p4) are intersection points of the
axis of Cp with the planes x = 0 and x = 1, respectively. We thus identify C with R4.

We construct a two-level partition tree Ψ on P , as follows. For a point p ∈ P , let p∗ be
its xy-projection, and let P ∗ = {p∗ | p ∈ P}. Without loss of generality, we assume that no
two points in P project to the same point. Our top-level tree is a two-dimensional partition
tree, based on simplicial partition, and some of its nodes store a second-level partition tree.

Let S be a set of n points in R2, and let r > 0 be a parameter. A simplicial (1/r)-partition
for P with respect to the parameter r is a collection Π = {(S1,∆1), ..., (Sm,∆m)}, where
m ≤ r is an integer, such that (i) {S1, ..., Sm} is a partition of S (into pairwise-disjoint
subsets) satisfying n/r ≤ |Si| ≤ 2n/r, for each i, and (ii) each ∆i is a (possibly degenerate)
triangle, referred to as a cell, that contains Si. In general, the cells ∆i need not be disjoint.
The crossing number of Π for a line ℓ in R2 is the number of its cells that are crossed by
ℓ. The crossing number of Π is defined as the maximum crossing numbers over all lines ℓ.
Matoušek [11] described an algorithm for constructing a simplicial partition whose crossing
number is O(

√
r). If r = O(1), the running time of his algorithm is O(n); see also [5].

We choose r to be a sufficiently large constant. By constructing simplicial partitions
recursively and stopping the recursion as soon as the number of points becomes smaller than
some sufficiently large constant n0, we construct a two-dimensional partition tree on P ∗,
which is the primary tree of Ψ. See [1, 5, 11] for details. Each node v ∈ Ψ is associated
with a cell ∆v and a subset P ∗

v ⊆ P ∗ ∩ ∆v. If v is the root then ∆v = R2 and P ∗
v = P ∗.

Let Pv = {p ∈ P | p∗ ∈ P ∗
v } be the subset of P corresponding to P ∗

v . Set nv = |Pv|. Let
∆↑

v = ∆v × R be the vertical prism erected over the cell ∆v. Then Pv ⊂ ∆↑
v.

The width of a planar point set X is the minimum distance between two parallel supporting
lines of X. We call a cell of Ψ narrow if its width is at most 2 and wide otherwise. For a node
v ∈ Ψ, if ∆v is narrow, we build a second-level partition tree Σv on Pv for answering range
queries with a unit cylinder, using the algorithm described in Section 3. By Theorem 12, Pv

can be preprocessed, in O(n log n) time, into a linear-size data structure so that an emptiness
query for a unit cylinder can be answered in O∗(n1/2) time. This data structure can also
report all k points of Pv lying in a query cylinder in an additional O(k) time. This completes
the description of the data structure.

SoCG 2023
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Query procedure. Let C be a query unit cylinder whose axis is not parallel to the z-axis,
and let C∗ be its xy-projection, which is a strip of width 2 bounded by two parallel lines.
For simplicity, we describe the procedure answering the emptiness query with C. We visit Ψ
recursively in a top-down manner, starting from its root. Suppose we are at a node v ∈ Ψ.
If C∗ ∩ ∆v = ∅, then we simply return. If v is a leaf, then we check all points of Pv and
return yes if any of them lies in C and no otherwise. So assume that v is an internal node
and ∆v ∩ C∗ ≠ ∅. If ∆v is narrow then we use the secondary data structure Σv stored at v
to test whether Pv ∩ C ≠ ∅; see Section 3. On the other hand, if ∆v is wide (i.e., its width
is more than 2), then we recursively visit the children of v. Note that if ∆v is wide then it
intersects at least one of the two boundary lines of C∗. For the emptiness query, the query
procedure can terminate as soon as a point of P inside C is found. But for the reporting
query, we continue with recursive calls until we have reported all the points.

Analysis. The height of Ψ is O(log n), and some of its nodes store a linear-size secondary
structure and others use O(1) space, so the overall size of Ψ is O(n log n). A similar argument
shows that the preprocessing time is O(n log2 n).

Concerning the query time, we present the analysis for emptiness queries. Reporting
queries can be analyzed in a similar manner, where we gain an additional factor of O(k) in
the query time. Denote by Q(n) the maximum emptiness query time for the two-level data
structure on a set of n points. For n ≤ n0, Q(n) = O(n). If ∆v is a narrow cell then we use
the secondary data structure stored at v and answer an emptiness query in O∗(

√
nv) time.

On the other hand, if ∆v is wide then as mentioned above, one of the boundary lines of C∗

intersects ∆v. Since the crossing number of a simplicial partition is O(
√
r), the query is

answered recursively at O(
√
r) children. The query procedure spends O∗(

√
nv) time for each

of the remaining children of v. We therefore, obtain the following recurrence for n > n0.

Q(n) = O(
√
r)Q(2n/r) +O∗(rn1/2),

Since r is a sufficiently large constant, the solution is Q(n) = O∗(n1/2).
The log n factor can be removed from the space and preprocessing time using a standard

technique of storing the second-level structure at every ε · log n level of the primary structure,
for a sufficiently small constant ε > 0. This adds a factor of O(nε) to the query time, which
is subsumed by our O∗(·) notation. This completes the proof of Theorem 1.

3 Range Queries for Narrow Cells

Let P ⊂ R3 be a set of n points lying in a vertical slab σ of width at most 2, and let C
be the set of all unit cylinders whose axes are not parallel to the yz-plane. In this section,
we describe a data structure for answering range emptiness and reporting queries on P

with a unit cylinder in C. Let H−, H+ be the two parallel boundary planes of σ with
x(H−) < x(H+). Without loss of generality, we assume that H−, H+ are normal to the
x-axis. We also assume that the width of σ is at most w0 = sin2(1/16) because otherwise we
partition σ into O(1) slabs, each of width at most w0, and build a separate data structure
for each of them.

We first show that a range query on such a set P with a unit cylinder in C can be
reduced to answering range queries with O(1) “cylindrical prisms,” each of which is erected
in one of the O(1) carefully chosen canonical directions; see Section 3.1 for a precise problem
formulation and the reduction. We then apply the machinery developed in [11, 16] to build
the desired data structure. As mentioned in Section 1, a critical ingredient of this machinery
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is the construction of a test set, which, roughly speaking, is a small-size representative set of
query cylindrical prisms. As in [4, 16], each range in the test set is not a cylindrical prism
but a generalized cylindrical prism, the union of an infinite family of cylindrical prisms. We
describe the notion of test set in Section 3.2 but postpone its construction to Section 4. We
finally adapt the machinery of [11] for answering range queries with cylindrical prisms.

3.1 Reduction to cylindrical-prism queries
Let S2 be the unit sphere of directions in R3. For a direction u ∈ S2, let ru be the ray
emanating from the origin in direction u. Set ū = −u. For a point p ∈ R3, p+ ru is the ray
in direction u emanating from p, and p− ru = p+ rū is the ray emanating from p in direction
ū. Let κ > 16π be a sufficiently large constant. By choosing two orthogonal families of
O(κ) great circles, we partition S2 into “spherical grid” cells so that the (spherical) distance
between any two points within a grid cell is at most π

κ . Let G be the set of these O(κ) great
circles, and let A (G ) be the grid formed by the arrangement of G .

Cylindrical patches and prisms. Let C ∈ C be a unit cylinder with axis ℓ. Let the unit
circle C∗ be the orthogonal projection ∂C on a two-dimensional plane orthogonal to ℓ, i.e.,
C = C∗ × ℓ. For a point p∗ ∈ C∗, the line {p} × ℓ ⊂ ∂C is called a generator line of C.
A cylindrical patch τ ⊂ ∂C is a portion of ∂C bounded by two of its generator lines, i.e.,
τ = δ × ℓ, where δ ⊂ C∗ is a unit arc spanning less than a semi-circle. We partition ∂C into
a family P(C) of O(1) canonical patches using the grid A (G ), as follows. Each patch in
P(C) is the maximal portion of ∂C whose (inner) normals lie within the same grid cell of
A (G ). The normals of C form a great circle C⊥ orthogonal to ℓ. The generator lines on
∂C at which normals of C are the intersection points of C⊥ with the great circles of G form
the boundary lines of the canonical patches. The portion of ∂C between two consecutive
boundary lines forms a canonical patch. By construction, the normals within a canonical
patch vary by at most π/κ. Although A (G ) has O(κ2) cells, a cylinder in C has only O(κ)
canonical patches.

Good directions. A direction u ∈ S2 is called good for a canonical patch τ ∈ P(C) if the
following two conditions hold:
(G1) The angle between u and the (inner) normal of either of the planes H−, H+ does not

lie in the range [ π
2 − π

κ ,
π
2 + π

κ ], i.e., if u = (ux, uy, uz) then |ux| ≥ sin π
κ . Recall that the

inner normals of H−, H+ are (±1, 0, 0). This condition says that u is not “nearly parallel”
to the plane H− (or H+).

(G2) The angle between u and the inner normal np for any p ∈ τ is at most π
2 − π

κ , i.e.,
⟨np, u⟩ ≥ sin π

κ . This condition says that for any point p ∈ τ , the ray p+ ru enters C and
it is not “nearly parallel” to the tangent plane of C at p.

(G1)–(G2) imply that for a point p on a canonical patch τ , p+ ru enters C and exits slab
σ before it exits C. We make this notion more precise in Lemma 5 below.

▶ Lemma 3. There exists a constant δ := δ(κ) ≥ π
κ such that the set of good directions for

any canonical patch τ(C) of a cylinder C ∈ C contains a spherical cap of radius δ.

Proof. We show that there is a direction u that is at least δ far away from all bad directions
for τ , which would imply the lemma.

Let B⊕ ⊂ S2 be the set of all directions that are within (spherical) distance δ from a bad
direction for τ . B⊕ is the union of two sets B⊕

0 , B
⊕
1 , formed by the complement of the two

aforementioned conditions (G1) and (G2) of good directions. More precisely,

SoCG 2023



5:6 Line Intersection Searching Amid Unit Balls in 3-Space

(I) Let B0 be the set of all points on S2 that lie within (spherical) distance π
κ from the

great circle normal to the vector (1, 0, 0), i.e., parallel to the planes H−, H+. B⊕
0

is the set of points that lie within distance δ from B0. The area of B⊕
0 is at most

4π sin( π
κ + δ).

(II) Let B1 be the set of directions that make an angle of more then π
2 − π

κ from some
point of τ . Since the normals within τ vary by at most π/κ, B1 is a spherical cap of
angular opening at most π

2 + 2π
κ . B⊕

1 is the set of points on S2 within distance δ from
B1 and thus spherical cap of radius π

2 + 2π
κ + δ. Hence, the area of B⊕

1 is at most
2π + 2π sin( 2π

κ + δ).
Summing these areas, we obtain

Area(B⊕) ≤ 2π
(

1 + 2 sin
(π
κ

+ δ
)

+ sin
(

2π
κ

+ δ

))
< 4π,

provided we choose δ = π
κ and κ ≥ 16π. As such S2 \B⊕ ≠ ∅, and there exists a direction u

such that all directions in the spherical cap of radius δ centered at u are good for τ . ◀

In the following, we set δ = π
κ . Let B0 ⊂ S2 be, as above, the set of directions that violate

the condition (G1). We choose Z ⊂ S2 \B0 to be a set of O(1/δ2) points that is a δ-net for
S2 \B0, i.e., for any point on S2 \B0, there is a point in Z within distance δ. For simplicity,
we assume that Z is centrally symmetric. Lemma 3, the definition of B0 and the choice of δ
immediately imply the following:

▶ Corollary 4. For any point v ∈ S2, there is a point u ∈ Z within distance 2π
κ from v.

Reduction to cylindrical prisms. We first prove a key property of good directions:

▶ Lemma 5. Let C ∈ C be a unit cylinder, let τ ∈ P(C) be a canonical patch, and let u be a
good direction for τ . Then any line parallel to u intersects τ in at most one point. Moreover,
for any point p ∈ τ ∩ σ, the ray p+ ru exits σ before exiting C.

Proof. If a line ℓ parallel to u intersects τ twice, then by the Intermediate Value Theorem, τ
must have a tangent in the u-direction, which contradicts property (G2) of u being a good
direction. Hence, ℓ intersects τ at most once.

We next prove the second assertion of the lemma. Let p′ be the other intersection point
of ∂C and the ray p+ ru. We observe that |pp′| is minimized when pp′ is orthogonal to the
axis of C and forms an angle of π

κ with the tangent plane to C at p. It thus follows that
|pp′| ≥ 2 sin ( π

κ ). On the other hand, by property (G1) of good direction, ru forms an angle of
at most π

2 − π
κ with the outer normal n to the plane H− (or H+). Consequently, the length

of the projection of pp′ on n is at least

|pp′| cos
(π

2 − π

κ

)
= |pp′| sin

(π
κ

)
≥ 2 sin2

(π
κ

)
≥ 2 sin2

(
1
16

)
> w0.

Thus p′ lies outside σ, which completes the proof of the lemma. ◀

For a direction u ∈ Z , let Pu(C) ⊂ P(C) denote the subset of canonical patches of C for
which u is a good direction. We construct a canonical prism τ↑

u on every patch τ ∈ Pu(C).
We construct O(1) canonical prisms for every patch τ ∈ P(C), one for every direction z that
is good for τ . The construction of the prism is somewhat delicate because we wish to meet
two conflicting constraints: (i) we want to ensure that τ↑

u ∩ σ lies inside C ∩ σ, and (ii) the
union of the canonical prisms over all canonical patches and over all their good directions in
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Z covers C ∩ σ. At a high level, we carefully clip τ by a constant-complexity semi-algebraic
curve lying on τ so that any generator line of τ intersects the curve exactly once. Let τ̂u ⊂ τ

be the clipped patch of τ with respect to direction u. We set τ↑
u := τ̂ ⊕ ru. We now describe

the construction of τ̂ .
We fix a direction u ∈ Z . For a point p ∈ τ , let eu(p) = (p+ ru) ∩ σ be the segment of

the ray p + ru that lies inside σ; eu(p) may be empty. Let ϕu(p) be the other endpoint of
eu(p) if eu(p) ̸= ∅. We set

τ̂u := {p ∈ τ | eu(p) ⊂ C}, τ↑
u = τ̂u ⊕ ru, and ∂τ̂u = {p ∈ τ | ϕ(p) ∈ ∂C}. (1)

(Here we use the convention that if eu(p) = ∅ then it lies inside C.) The patch τ is clipped
along the arc ∂τu. We note that the points ϕu(p) for p ∈ ∂τu lie on ∂C ∩H− (resp. ∂C ∩H+)
if the x-component of u is positive (resp. negative); see Figure 1.

H−

H+

eu(p)

∂τ̂u

ℓ′

τ̂u

ϕu(p)

τ

C

p

Figure 1 A clipped canonical patch τ̂u and its boundary arc ∂τu; segment eu(p) and its endpoint
ϕu(p) for a point p ∈ τ .

Fix one of the generator lines ℓ′ of τ . For any point p ∈ ℓ′, the intersection point p̄ = p+ ru
with ∂C lies on another generator line of C, say, ℓ′′. As we translate p along ℓ′, p̄ also
translates along ℓ′′ (with the segment pp̄ being in direction u), and thus there is a unique
point pℓ′ ∈ ℓ′ for which p̄ℓ′ = ϕu(pℓ′), i.e., pℓ′ ∈ ∂τ̂u. The following lemma easily follows from
the convexity of C:

▶ Lemma 6.
(i) Each generator line ℓ′ of τ contains exactly one point pℓ′ of ∂τ̂u. If the x-component of

u is positive (resp. negative), then {p ∈ ℓ | x(p) ≥ x(pℓ′)} (resp. {p ∈ ℓ | x(p) ≤ x(pℓ′)}
is the portion of ℓ′ that lies in τ̂u.

(ii) τ↑
u ∩ σ ⊂ C ∩ σ.

We construct the canonical prisms for every patch in Pu(C), and we repeat this step for all
directions in Z . Finally, we set

Λ(C) :=
⋃

u∈Z

{τ↑
u | τ ∈ Pu(C)}
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to be the set of all canonical prisms erected over the patches of Pu(C), and set

U (C) :=
⋃

τ↑∈Λ(C)

τ↑, (2)

to be the union of these canonical prisms.

▶ Lemma 7. For any cylinder C ∈ C, U (C) ∩ σ = C ∩ σ.

Proof. It follows immediately from Lemma 6 that U (C) ∩ σ ⊆ C ∩ σ. Therefore it remains
to prove that U (C) ∩ σ ⊇ C ∩ σ. Let q be a point in C ∩ σ. We show that there exists a
direction u ∈ Z and a patch τ ∈ Pu(C) such that q ∈ τ↑

u .
Let q∗ be the projection of q on the axis of C. Let u ∈ Z be the direction closest to q∗q,

and let ū = −u which is also in Z . By the construction of Z , u, ū satisfy (G1). Let q′ (resp.
q′′) be the intersection point of the ray q + ru (resp. q + rū = q − ru) with ∂C, and let τ ′

(resp. τ ′′) be the canonical (unclipped) patch of C containing q′ (resp. q′′). Let ℓ′ ⊂ τ ′ (resp.
ℓ′′ ⊂ τ ′′) be the generator line of C containing q′ (resp. q′′). See Figure 2.

τ ′

ℓ

ℓ′′

ℓ′

τq′

u
q∗

ūu
ū

C

q′′

q

Figure 2 Points q, q∗, q′, and q′′; generator lines and patches containing q′ and q′′.

We first claim that ū is a good direction for τ ′. By Corollary 4, ∠(qq∗, ū) ≤ 2π
κ . Further-

more, ∠(qq∗,nq′) ≤ ∠(qq∗, ū) ≤ 2π
κ . Therefore

∠(nq′ , ū) ≤ ∠(qq∗, ū) + ∠(qq∗,nq′) ≤ 4π
κ .

However, a direction that violates (G2) for patch τ (i.e., it is in B1) makes an angle of at
least π

2 − 2π
κ with nq′ , which is more than 4π

κ by our choice of κ. Hence, ū is a good direction
for τ ′. A similar argument shows that u is a good direction for τ ′′. If q′ ∈ τ̂ ′ then q lies in
the canonical prism τ ′↑

ū, and similarly if q′′ ∈ τ̂ ′′ then q lies in the prism τ ′′↑
u. We therefore

argue that at least one of these conditions holds.
We claim that if q′ does not lie in the clipped patch τ̂ ′, then q′′ lies in the clipped patch

τ̂ ′′. Without loss of generality, assume that the x-component of u is positive. Let G be the
plane spanned by ℓ′ and ℓ′′; the segment q′q′′ lies in G. Let g− = G ∩H− and g+ = G ∩H+

be the intersection lines of G with the boundary planes of σ; x(g+) > x(g−). Then G ∩ σ is
the strip lying between the parallel lines g−, g+. By definition, q ∈ G ∩ σ. Let w′ = ℓ′ ∩ ∂τ̂ ′

ū
(resp. w′′ = ℓ′′ ∩ ∂τ̂ ′′

u ) be the point on ℓ′ (resp. ℓ′) that lies on the boundary arc ∂τ̂ ′
ū (resp.

∂τ̂ ′′
u ). See Figure 3.
Since the x-component of u is assumed to be positive (and thus the x-component of ū is

negative), by Lemma 6,

τ̂ ′
ū ∩ ℓ′ = {p ∈ ℓ′ | x(p) ≤ x(w′)} and τ̂ ′′

u ∩ ℓ′′ = {p ∈ ℓ′′ | x(p) ≥ x(w′′)}. (3)

Let w̄′ = ϕū(w′) and w̄′′ = ϕu(w′′) be the other endpoints of the segments eū(w′) and eu(w′′),
respectively. By definition, w̄′ = ℓ′′ ∩ g− and w̄′′ = ℓ′ ∩ g+. Furthermore, the segments
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u

ℓ′′

ū

τ̂ ′
ū ∩ ℓ′

w̄′′
G ∩ σ

g−

ℓ′

w′
q′

q′′
w̄′

w′′

x

g+

q
τ̂ ′′

u ∩ ℓ′′

Figure 3 Illustration of at least one of q′ and q′′ lying on the clipped patch.

q′q′′, w′w̄′, and w′′w̄′′ are parallel to each other, with their endpoints lying on ℓ′ and ℓ′′. By
Lemma 5, x(w′) > x(g+) = x(w̄′′) because the ray w̄′ + ru ⊂ G exits σ before exiting C, and
similarly x(w′′) < x(g−) = x(w̄′). See Figure 3. If q′ ̸∈ τ̂ ′

u then by (3), x(q′) > x(w′) and thus
x(q′) > x(w̄′′). Since q′q′′ and w′′w̄′′ are parallel segments, we conclude that x(q′′) > x(w′′)
and therefore by (3), q′′ ∈ ℓ′′ ∩ τ̂ ′′

u . Hence, if q′ ̸∈ τ̂ ′
ū then q′′ ∈ τ̂ ′′

u . This completes the proof
of the lemma. ◀

Recall that P ⊂ σ, therefore by Lemma 7, we can answer an emptiness (or reporting)
query with a unit cylinder C ∈ C by answering emptiness (or reporting) queries with all
cylindrical prisms in Λ(C) (see (2)). Fix a grid cell φ ∈ A (G ) and a direction u ∈ Z that is
good for patches corresponding to φ. Let Cu,φ be the set of all cylindrical prisms τ↑

u erected
in direction u over the canonical patches τ corresponding to the grid cell ϕ of unit cylinders
in C. We build a separate partition tree Tu,φ for answering range queries with prisms in Cu,φ.
In the rest of the section, we describe how we build Tu,φ by adapting the approach in [16].

3.2 Test set for cylindrical prisms
Throughout this section, let r > 1 be a fixed parameter, which we will choose to be a
sufficiently large constant. We call a semi-algebraic set △ (1/r)-shallow (or simply shallow if
the value of r is clear from the context) with respect to P if |P ∩ △| ≤ n/r.

Following the terminology in [16], we call a family Q of constant-complexity semi-algebraic
sets, which we will refer to as generalized prisms, a test set for Cu,ϕ with respect to P and r
if the following properties hold:
(C1) Compactness: |Q| = rO(1).
(C2) Shallowness: Each generalized prism π↑ ∈ Q is (1/r)-shallow with respect to P .
(C3) Containment: Each (1/r)-shallow cylindrical prism τ↑

u ∈ Cu,ϕ is contained in a single
generalized cylindrical prism π↑ of Q, i.e., τ↑

u ⊆ π↑.
(C4) Efficiency: There exists a small bound on the associated function ζ(m), bounding the

size of a partition of the free space, the complement of the union, of any subset of m
generalized cylindrical prisms of Q into elementary cells.
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Each set in Q will be the union of cylindrical prisms erected in direction u over an infinite
family of clipped canonical patches – see Section 4 for details. Informally, properties (C1)-(C3)
imply that instead of considering the whole family of cylindrical prisms in Cu,ϕ, we can
consider a small finite set Q of “representative queries” from a more general set, each of
which is shallow with respect to P , such that if the partition tree we build has a small query
time for a range in Q then it also has roughly the same query time for any cylindrical prism.
Property (C4) bounds the query time for a range in the test set. We describe, in Section 4,
the construction of a test set Q of size O(r4) with ζ(m) = O∗(m2) (cf. Lemma 13), and Q

can be constructed in O(n) time if r is a constant.

3.3 Data structure
With a small-size test set at hand, we are now ready to describe the algorithm for constructing
an elementary-cell partition of P and the partition tree by closely following the mechanism
in [11, 16]. Let P and r be the same as above.

Geometric cuttings. Given a family Γ of n constant-complexity semi-algebraic sets in Rd,
a weight function ω : Γ → R+, and a parameter r > 1, a (1/r)-cutting for Γ is a partition of
space (or a portion thereof) into elementary cells, such that total weight of sets crossed by
each cell is at most ω(Γ)/r. The following lemma is taken from [16].

▶ Lemma 8. Let Γ be a collection of n semi-algebraic sets of constant complexity in Rd, let
ω : Γ → R+ a weight function, and r > 1 a parameter. Assume that the free space of any
subset of m sets in Γ can be partitioned into at most ζ(m) elementary cells, where ζ(·) is a
super-linear function. Then there exists a (1/r)-cutting Ξ of Γ of size O(ζ(r)) that covers
the free space of Γ. Furthermore, the free space of Ξ is covered by the union of O(r) sets of
Γ. Ξ can be constructed in O(n) time if r is a constant.

By combining Lemmas 8 and 13, we obtain the following:

▶ Corollary 9. Let Q be a collection of n generalized prisms in R3 satisfying (C1)–(C4).
Let ω : Q → R+ be a weight function, and let r ∈ [1, n] be a parameter. There exists a
(1/r)-cutting Ξ of Q of size O∗(r2) that covers the free space of Q. Furthermore, the free
space of Ξ can be covered by O(r) generalized prisms in Q. Ξ can be constructed in O(n)
time if r is a constant.

Elementary-cell partition and partition tree. Let P be a set of n points in R3, and let
r > 1 be a parameter. We extend the notion of simplicial partition reviewed in Section 2 to
answering queries with cylindrical prisms in Cu,ϕ, as follows.

An elementary-cell (1/r)-partition of P is a collection Φ = {(P1,△1), ..., (Pm,△m)}, for
some integer m = O(r), such that (i) each △i is an elementary cell, (ii) {P1, ..., Pm} is a
partition of P , s.t. Pi ⊂ △i, and n/r ≤ |Pi| ≤ 2n/r. The cells △i may overlap. The crossing
number of Φ for a range R is the number of elementary cells of Φ crossed by R, i.e., the
number of elementary cells that intersect ∂R. The following lemma is a slight adaptation of
the argument in [16] and its proof exploits Corollary 9:

▶ Lemma 10. Let P be a set of n points in R3 lying in the slab σ of width at most sin2(1/16),
let r > 1 be a fixed parameter, and let Q be a family of generalized prisms satisfying (C1)–
(C4). Then there exists an elementary-cell (1/r)-partition Φ of P such that the crossing
number of Φ for any range in Q is O(r/ζ−1(r) + log r log |Q|). Φ can be computed in O(n)
time if r is a constant.
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Plugging Lemma 13 and Corollary 9 in Lemma 10, we obtain the following corollary:

▶ Corollary 11. let P be a set of n points lying in the slab σ of width at most sin2(1/16),
and let r ≥ 1 be a fixed parameter. Then there exists an elementary cell (1/r)-partition Φ
of P such that the crossing number of Φ for any (1/r)-shallow cylindrical prism in Cu,ϕ is
O∗(r1/2). Φ can be constructed in O(n) time if r is a constant.

By applying Corollary 11 recursively in a standard manner–see [11, 16]– we can build
the partition tree Tu,φ of size O(n) in O(n log n) time for answering emptiness or reporting
queries with the cylindrical prisms in Cu,φ. Since the crossing number of the elementary-cell
partition is O∗(r1/2), the query time for an emptiness query is O∗(n1/2), and all k points
lying in a query range can be reported in an additional O(k) time. Omitting all the details,
which can be found in [11, 16], we obtain the following result:

▶ Theorem 12. Let P be a set of n points in R3 lying inside a vertical slab of width at most
2. P can be preprocessed, in O(n log n) time, into a data structure of size O(n), so that for
a (unit) cylinder C ∈ C, an emptiness query can be answered in O∗(n1/2) time, and all k
points of C ∩ P can be reported in additional O(k) time.

4 Test-Set Construction

We now describe the construction of a test set for cylindrical prisms in Cu,φ, for a fixed grid
cell φ ∈ A (G ) and u ∈ Z , that satisfies (C1)–(C4). Recall that the space of cylinders in C
is identified with R4. For a fixed φ and u, a cylindrical prism π↑ is uniquely defined by the
cylinder C ∈ C whose boundary contains π↑, so the space of cylindrical prisms in Cu,φ can
also be identified with R4. For a prism p ∈ R4, let π↑

p be the cylindrical prism defined by p,
i.e., the prism erected in direction u over the canonical patch of the unit cylinder Cp ∈ C
corresponding to the grid cell φ. If Cp does not contain any canonical patch corresponding
to φ, then we regard π↑

p as an empty set.
For a point a ∈ R3, we define the region Ra := {p ∈ R4 | a ∈ π↑

p} to be the locus of
all points in R4 representing cylindrical prisms that contain a. Ra is a semi-algebraic set
of constant complexity. We choose a random subset N ⊆ P of O(r log r) points, with an
appropriate constant of proportionality. We then form the set of regions R := {Rp | p ∈ N}
and construct their arrangement A (R). Set k = c ln r, where c > 0 is an appropriate
constant of proportionality. Let A≤k(R) be the set of all points of A (R) at level at most k,
that is, these points represent all cylindrical prisms of Cu,φ that contain at most k points of
P . We compute the vertical decomposition of the cells of A≤k(R) [15], which decomposes
each cell of A≤k(R) into elementary cells (each of which, in fact, is a pseudo-prism). Let
A ∇

≤k(R) be set of resulting elementary cells; |A ∇
≤k(R)| = O∗(r4) [10].

For an elementary cell △ ∈ A ∇
≤k(R), let π↑

△ =
⋃

p∈△ π↑
p be the generalized (cylindrical)

prism, which is the union of an infinite family of cylindrical prisms defined by the points in
△. The generalized prism π↑ is a constant-complexity semi-algebraic set that is unbounded
in direction u and has the property that for any q ∈ π↑, q + ru ⊆ π↑. We set Π↑ := Π↑(R) =
{π↑

△ | △ ∈ A ∇
≤k(R)} to be the family of O∗(r4) generalized prisms corresponding to the

cells in A ∇
≤k(R). Following a straightforward argument, as in [16], it can be shown that Π↑

satisfies (C1)–(C3). It thus suffices to prove (C4), namely, that the free space K (P↑) of any
subset P↑ ⊆ Π↑ of m generalized prisms can be partitioned into O∗(m2) elementary cells.

In the following, without loss of generality, we assume that u = (0, 0, 1). Let P↑ ⊆ Π be
a subset of m generalized prisms. Let π denote the lower boundary of a π↑ ∈ P↑, i.e., the
set of points p ∈ π↑ for which the open ray p− ru emanating from p in the (−u)-direction is
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disjoint from π↑; π↑ = π ⊕ ru. We refer to π as a generalized (cylindrical) patch, which is
a constant-complexity two-dimensional xy-monotone semi-algebraic set. The patch π can
be viewed as the graph of a partially defined bivariate function, also denote by π. (The
value of the function is set to +∞ for every point (x, y) ∈ R2 at which π is not defined.) Set
P = {π | π↑ ∈ P↑}. The lower envelope of P is defined as the graph of the function

E (x, y) = min
π∈P

π(x, y),

which, with a slight abuse of notation, is also denoted by E . It induces a partition of R2 into
maximal connected regions such that E is attained by a single generalized patch of P (or by
none of them) over the interior of each such region. The boundary of such a region consists
of points at which E is attained by at least two of the generalized patches in P, or by the
boundary of one of them. Let M denote this planar subdivision, called the minimization
diagram of P. The combinatorial complexity of E and M is the number of faces of all
dimensions in M , and it is bounded by O∗(m2) [15]. The free space K (P↑) is the set of
points in R3 lying below the lower envelope E .

We partition K (P↑) into elementary cells, as follows. We first compute the two-
dimensional vertical decomposition of every face f of M , which partitions f into pseudo-
trapezoids. Let M ∇ denote the resulting refinement of M . By construction, the same
function of P appears on E for all points in a trapezoid of M ∇. For each trapezoid ψ ∈ M ∇,
we construct the prism ψ↓ := {(x, y, z) ∈ R3 | (x, y) ∈ ψ and z ∈ (−∞,E (x, y)}; ψ↓ is
unbounded in the (−z)-direction and bounded by the graph of E from above. It is easily
seen that {ψ↓ | ψ ∈ M } is a partition of K (P↑) into elementary cells. Furthermore, since
|M ∇| = O∗(m2), the number of elementary cells in the partition is O∗(m2). Hence, we
obtain the following:

▶ Lemma 13. Let P ⊂ R3 be a set of n points in R3, and let r ≥ 1 be a parameter. A test set
of size O∗(r4) for Cu,φ with respect to P and r that satisfies (C1)–(C4) with ζ(m) = O∗(m2)
can be computed in O∗(r4) time.

5 The Dual Problem

In this section, we consider the dual problem mentioned in Section 1: Given a set L of n
lines in R3, preprocess L into a data structure that supports efficient unit-ball intersection
detection (as well as reporting) queries. This problem can be formulated as a point-enclosure
problem among a set of unit cylinders: Let C be the set of unit cylinders whose axes are the
lines of L . Preprocess C into a data structure that can quickly determine whether a query
point q ∈ R3 lies in the union of the cylinders in C , or report all such cylinders.

Data structure. We project the cylinders in C onto the xy-plane. (As in Section 2, we
assume that none of the axes of the cylinders in C are parallel to the yz-plane.) Let B denote
the set of boundary (silhouette) lines in R2 of the strips corresponding to the xy-projections
of the cylinders in C . Let r > 1 be a sufficiently large constant. We construct in O(n2)
time a hierarchical (1/r)-cutting of B using the algorithm by Chazelle [6]. That is, we
construct s = O(log n) cuttings Ξ1, . . . ,Ξs so that Ξi is a (1/ri)-cutting of B of size O(r2i),
each triangle of Ξi is contained in a triangle of Ξi−1, and each triangle △ ∈ Ξi−1 contains a
constant number of triangles of Ξi, which we refer to as children cells of △. Each cell of Ξs is
crossed by O(1) lines of B. The algorithm also constructs the subset of lines of B crossing
every cell of Ξi for all i ≤ s.
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Fix a cell △ of Ξi for some i ≤ s. Let △↑ := △ × R be the vertical slab erected over △.
Let C△ ⊆ C be the set of cylinders that intersect the slab △↑. Following our definitions
in Section 2, we call △ (and △↑) narrow if its width is at most 2 and wide otherwise. If a
unit cylinder intersects a wide slab △↑, then at least one of its two silhouette lines crosses
△. Hence, by the cutting property, for a wide cell △ of Ξi, |C△| ≤ n/ri. If a cell △ ∈ Ξi

is narrow, then we construct a secondary data structure Ψ△ for answering point-enclosure
queries on C△, as described below. Furthermore, we remove all cells of Ξj , for j > i, that
are contained in △, for they will never be visited by the query procedure.

We now describe the secondary data structure constructed on a narrow cell △. We
assume that the width of △ is at most sin2(1/16), otherwise we split △ into O(1) subcells,
each of width at most sin2(1/16) and construct a separate secondary data structure for each
of them. Let Z and Λ(C), for a unit cylinder C, be the same as defined in Section 3. For
each cylinder C ∈ C△, we construct the collection Λ(C) of canonical cylindrical prisms, as
described in Section 3.1. Recall that each prism in Λ(C) is erected in one of directions in
Z , i.e., it has the following form τ↑

u = τ̂ × ru where τ̂ is a clipped canonical patch of C. By
Lemma 7, for a point q ∈ △↑, q ∈ C if and only if q ∈ U (Λ(C)). We thus a build a data
structure for answering point-enclosure queries in the set

⋃
C∈C△

Λ(C).
We fix a direction u ∈ Z and let P↑

u ⊆
⋃

C∈C△
Λ(C) be the subset of canonical prisms

of cylinders in C△ erected in direction u. We build a separate data structure Ψ△,u for
answering point-enclosure queries in P↑

△,u, for every u ∈ Z , as follows. Without loss of
generality, assume that u is the (+z)-direction. Let P△,u = {τ̂u | τ↑

u ∈ P↑
△,u} be the set

of clipped canonical patches corresponding to the prisms in P↑
△,u, which, as in Section 4,

we regard as a set of partially-defined bivariate functions. Let E△,u be the lower envelope
of P△,u, and M△,u its minimization diagram. Their complexity is O∗(|P△,u|2). A point
q = (qx, qy, qz) ∈ U (P↑

△,u) if and only if qz ≥ E△,u(qx, qy). We construct M△,u and
preprocess it for answering planar point-location queries. Summing over all directions in
Z , the total size of the data structure Ψ△ is O∗(|C△|2) and it can be constructed in time
O∗(|C△|2). Summing these bounds over all narrow cells of the hierarchical cuttings, the total
size and the preprocessing time of the overall data structure are O∗(n2).

Query procedure. Let q = (qx, qy, zz) be a query point. We visit the cuttings Ξ1,Ξ2, . . .

in order. Suppose we are visiting Ξi, and let △ ∈ Ξi be the cell containing q∗ = (qx, qy).
If i = s, we answer the query in O(1) time by testing q with all cylinders of C△. If △ is
narrow, we query the secondary data structure Ψ△, as follows. For each direction u ∈ Z , we
check whether q ∈ U (P↑

u ) by locating (qx, xy) in Mu and testing whether qz ≥ Eu(qx, qy).
If the answer is yes for one such u, we conclude that q ∈ U (C△) and return yes. Otherwise,
we return no. Finally, if △ is wide, we recursively visit the child cell of Ξi+1 that contains q.
The overall query time is O(log n). This completes the proof of Theorem 2.
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Abstract
For a drawing of a labeled graph, the rotation of a vertex or crossing is the cyclic order of its
incident edges, represented by the labels of their other endpoints. The extended rotation system
(ERS) of the drawing is the collection of the rotations of all vertices and crossings. A drawing is
simple if each pair of edges has at most one common point. Gioan’s Theorem states that for any
two simple drawings of the complete graph Kn with the same crossing edge pairs, one drawing can
be transformed into the other by a sequence of triangle flips (a.k.a. Reidemeister moves of Type 3).
This operation refers to the act of moving one edge of a triangular cell formed by three pairwise
crossing edges over the opposite crossing of the cell, via a local transformation.

We investigate to what extent Gioan-type theorems can be obtained for wider classes of graphs.
A necessary (but in general not sufficient) condition for two drawings of a graph to be transformable
into each other by a sequence of triangle flips is that they have the same ERS. As our main result,
we show that for the large class of complete multipartite graphs, this necessary condition is in fact
also sufficient. We present two different proofs of this result, one of which is shorter, while the other
one yields a polynomial time algorithm for which the number of needed triangle flips for graphs
on n vertices is bounded by O(n16). The latter proof uses a Carathéodory-type theorem for simple
drawings of complete multipartite graphs, which we believe to be of independent interest.

Moreover, we show that our Gioan-type theorem for complete multipartite graphs is essentially
tight in the following sense: For the complete bipartite graph Km,n minus two edges and Km,n

plus one edge for any m, n ≥ 4, as well as Kn minus a 4-cycle for any n ≥ 5, there exist two simple
drawings with the same ERS that cannot be transformed into each other using triangle flips. So
having the same ERS does not remain sufficient when removing or adding very few edges.
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1 Introduction

Gioan’s Theorem states that any two simple drawings of the complete graph Kn in which
the same pairs of edges cross can be transformed into each other (up to strong isomorphism)
via a sequence of triangle flips. Informally, a triangle flip is the act of moving one edge of a
triangular cell formed by three pairwise crossing edges over the opposite crossing of the cell;
see Figure 1 for an illustration of this operation and Section 2 for the formal definition.

Figure 1 A sketch of a triangle flip.

Gioan’s Theorem can be seen as a generalization of results on pseudolines by Ringel [29]
from 1955 and Roudneff [30] from 1988 to simple drawings of Kn. Gioan’s conference
paper [15] from 2005 contained a proof sketch only. A full proof was first published in 2017
by Arroyo, McQuillan, Richter, and Salazar [4], who also coined the name “Gioan’s Theorem”.
In 2021, Schaefer [31] generalized Gioan’s Theorem to slightly sparser graphs, namely, simple
drawings of Kn minus any non-perfect matching. A full version of Gioan’s proof [16] finally
appeared in 2022.

A priori it is not clear how to generalize Gioan’s Theorem beyond Schaefer’s result. For
transforming drawings of general graphs via triangle flips, it is not sufficient to only have the
same crossing edge pairs. We should also consider the rotation of a vertex or edge crossing,
which is defined as the cyclic order of emanating edges. For example, Figure 2 shows two
simple drawings of the complete bipartite graph K3,3 with the same crossing edge pairs and
the same rotations of vertices, but different rotations of the crossings involving b1r3. Observe
that triangle flips do not change the rotations of crossings or vertices. A take-away from
this observation is that for a Gioan-type theorem to hold, the rotations of all crossings and
vertices must be the same in both drawings. A concept capturing exactly this necessity is the
extended rotation system. The extended rotation system (ERS) of a drawing of a graph is the
collection of the rotations of all vertices and crossings. In this light, one of the contributions
of Gioan’s Theorem is that for drawings of the complete graph, having the same crossing
edge pairs is equivalent to having the same ERS (up to global inversion) [15, 16]. This fact
has been first stated by Gioan [15]; the first published proofs are by Kynčl [22, 23]. An
analogous statement for Kn minus any non-perfect matching has been shown by Schaefer [31].
For complete multipartite graphs, this equivalence does not hold; see again Figure 2.

As our main result, we show that having the same ERS is sufficient to transform simple
drawings of complete multipartite graphs into each other via triangle flips. We thus obtain a
Gioan-type theorem for a large class of graphs that includes the before studied graphs, namely
complete graphs [4, 15, 16, 31] and complete graphs minus a non-perfect matching [31].

▶ Theorem 1. Let D1 and D2 be two simple drawings of a complete multipartite graph on
the sphere S2 with the same ERS. Then there is a sequence of triangle flips that transforms
D1 into D2.
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b1 b2

r1 r2 r3

b3 b1 b2

r1 r2 r3

b3

Figure 2 Two simple drawings of K3,3 with the same crossing edge pairs and same rotations at
all vertices but different rotations at all crossings involving the edge b1r3 and hence different ERSs.

We also show that Theorem 1 is essentially tight in the sense that having the same ERS
does not remain sufficient when removing or adding very few edges.

▶ Theorem 2. For any m, n ≥ 3 and Km,n minus any two edges, there exist two simple
drawings with the same ERS that cannot be transformed into each other using triangle
flips. The same holds for any n ≥ 5 and Kn minus any four-cycle C4, as well as for
any m ≥ 4, n ≥ 1 and Km,n plus one edge between vertices in the bipartition class of size m.

The first part of Theorem 2 implies that an analogue to Schaefer’s generalization of
Gioan’s Theorem for Kn minus a non-perfect matching cannot be achieved for complete
bipartite graphs, not even for Km,n minus a matching of size two. Note that Km,n with m ≥ 4
and n ≥ 1 is a subgraph of Kn+m minus a 4-cycle. Hence, the second part of Theorem 2
implies that – perhaps counterintuitively – the set of graphs for which a Gioan-type theorem
holds is not closed under adding edges. From the proof of Theorem 2 it follows that Theorem 1
cannot be extended to any graph that contains a K5 minus a four-cycle C4 or a K3,2 minus
two edges incident to the same vertex of the smaller partition class, as an induced subgraph.

We present two different proofs of Theorem 1. Our first proof uses a similar approach as
the proof of Gioan’s Theorem by Schaefer [31]. His proof heavily relies on a (plane) spanning
star as a basis for transforming one drawing into the other. While plane spanning stars
exist in any simple drawing of Kn, also minus a non-perfect matching, this is in general
not the case for complete multipartite graphs. However, any simple drawing of a complete
multipartite graph G contains a plane spanning tree [2]. We show that for drawings of G

with the same ERS, such a plane spanning tree can be used for transforming one drawing
into the other. The resulting proof is shorter and probably more elegant than the second
proof. But it does not directly yield a polynomial time transformation algorithm, as it is
still an open question [2] whether a plane spanning tree can be found in polynomial time.

Our second proof yields a polynomial time algorithm for the transformation. It uses
a similar approach as the proof of Gioan’s Theorem by Arroyo, McQuillan, Richter, and
Salazar [4]. Several ingredients of their proof are known properties of drawings of complete
graphs or follow directly from such properties, while it was unknown whether analogous
statements hold for drawings of other graphs. Hence, for our proof we discover a number
of useful, fundamental properties of simple drawings of complete multipartite graphs. For
example, we establish a Carathéodory-type theorem for them.

The classic Carathéodory Theorem states that if a point p ∈ R2 lies in the convex hull
of a set A ⊂ R2 of n ≥ 3 points, then there exists a triangle spanned by points of A that
contains p. In the terminology of drawings, if a point p lies in a bounded cell of a straight-line
drawing D of Kn in R2, then there exists a 3-cycle C in D so that p lies in the bounded cell
of C. This statement has been generalized to simple (not necessarily straight-line) drawings
of Kn [6, 7]. However, it clearly does not generalize to arbitrary (non-complete) graphs;
consider for example a simple drawing of a path with self-intersections that forms a bounded
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cell. A natural question is, for which classes of graphs this statement, or a variation of it,
holds. We show that it holds for complete multipartite graphs if in addition to 3-cycles –
which might not exist in those graphs – we also allow 4-cycles to contain p.

▶ Theorem 3 (Carathéodory-type theorem for simple drawings of complete multipartite graphs).
Let D be a simple drawing of a complete multipartite graph G in the plane. For every point p

in a bounded cell of D, there exists a cycle C of length three or four in D such that p is
contained in a bounded cell of C. This statement is tight in the sense that it may not hold
for G minus one edge.

Number of triangle flips. Schaefer [31, Remark 3.3] showed that for Kn, polynomially many
triangle flips are sufficient and gave an upper bound of O(n20) for the number of required
flips. Using a different approach in our second proof of Theorem 1, we show an upper bound
of O(n16) triangle flips for complete multipartite graphs on n vertices. We further present
drawings which, regardless of the approach, require at least Ω(n6) triangle flips.

Motivation and related work. Originally, rotation systems were invented to investigate
embeddings of graphs on higher-genus surfaces [17]. Nowadays they are widely used to
represent drawings of graphs in the plane and to derive their structural properties. Gioan’s
Theorem implies that for simple drawings of complete graphs, the set of crossing pairs of edges
determines the drawing’s ERS. Conversely, for drawings of complete graphs, the rotation
system determines which pairs of edges cross [22, 27]. These relations are crucial in the study
of simple drawings of complete graphs, their generation and enumeration [1, 22, 24].

For non-complete graphs, the literature on rotation systems for simple drawings is rather
sparse. Besides the recent work of Schaefer [31], we are only aware of work by Cardinal and
Felsner [8], who investigate the realization of complete bipartite graphs as outer drawings.
The main reason why there are no further results on rotation systems beyond drawings of
complete graphs is the lack of known properties in these cases. Our work contributes towards
the generalization of rotation systems to drawings of wider graph classes, not only by the
main statement but also due to the structural results obtained along the way.

We note that rotation systems of drawings also play a role in a wider context. For example,
they are crucial in a recent breakthrough result devising an algorithm for the subpolynomial
approximation of the crossing number for non-simple drawings of general graphs [10].

The study of triangle flips has a long history in several different contexts. In addition to
the mentioned work on Gioan’s Theorem [4, 15, 16, 31], this in particular includes work on
arrangements of pseudolines [14, 29, 30, 32], knot theory [3, 20, 21, 25, 28, 35, 36], as well as
on transforming curves on compact oriented surfaces [9].

Outline. In Section 2, we mainly state definitions, introduce notation, and give a charac-
terization of complete multipartite graphs. In Sections 3 and 4 we sketch the proofs of the
Carathéodory-type Theorem 3 and Theorem 2, respectively. Section 5 is devoted to proving
Theorem 1, where the first proof is given nearly fully, and the second one is shortly sketched
to explain the algorithm. In Section 6 we present bounds on the required number of triangle
flips derived from the second proof. We conclude the paper with open questions in Section 7.

2 Definitions and preliminaries

A graph G = (V, E) is multipartite if its vertex set V can be partitioned into k nonempty
subsets V1, . . . , Vk, for some k ∈ N, such that each Vi, for i ∈ {1, . . . , k}, induces an
independent set in G, that is, no two vertices in Vi are adjacent. A complete multipartite
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graph G = (V, E) contains all edges outside of the independent sets, that is, we have
E = {vivj : vi ∈ Vi ∧ vj ∈ Vj ∧ 1 ≤ i < j ≤ k}. For a multiset {n1, . . . , nk} of natural
numbers, there is a unique (up to isomorphism) complete multipartite graph Kn1,...,nk

with |Vj | = nj , for all j ∈ {1, . . . , k}. Note that both the empty graph on n vertices
(with k = 1 and n1 = n) and the complete graph Kn (with k = n and n1 = · · · = nk = 1)
are complete multipartite graphs. We also have the following useful characterization, whose
proof is an easy graph-theoretic exercise.

▶ Lemma 4. A graph G = (V, E) is complete multipartite if and only if for every edge uv ∈ E

and every vertex w ∈ V \ {u, v} we have uw ∈ E or vw ∈ E (or both).

Drawings. A drawing γ of a graph G = (V, E) is a geometric representation of G by points
and curves on an oriented surface S. More precisely, every vertex v of G is mapped to a
point γv on S and every edge uv of G is mapped to a simple (that is, continuous and not
self-intersecting) curve γuv on S with endpoints γu and γv, such that: (1) any two vertices
are mapped to distinct points (γu = γv =⇒ u = v, for all u, v ∈ V ), (2) no vertex is mapped
to the relative interior of an edge (γuv ∩ γw = ∅, for all uv ∈ E and w ∈ V \ {u, v}), and
(3) every pair of curves γe, γf , for e ≠ f , intersects in at most finitely many points, each of
which is either a common endpoint or a proper, transversal crossing.

In this paper, we consider drawings on the sphere S2, except for a few places – specified
explicitly – where we consider drawings in the plane R2. All our graphs and drawings are
labeled. Hence, we often identify vertices and edges with their geometric representation in a
drawing. Any subgraph H of G induces a subdrawing γ[H] that is obtained by restricting γ

to the vertices and edges of H. For a graph F , an F -subdrawing of γ is a subdrawing γ[H]
that is induced by some subgraph H of G that is isomorphic to F . A drawing partitions
S into vertices (endpoints) and crossings of the curves {γe : e ∈ E}, edge fragments (the
connected components of the curves {γe : e ∈ E} after removing all vertices and crossings),
and cells (the connected components of S after removing all vertices, crossings, and edge
fragments). For a cell C we denote by ∂C the boundary of C. A cell that is bounded by
exactly three edge fragments is called a tricell.

The class of drawings of a graph is vast and for many purposes too rich to be directly
useful. To begin with, it is not clear in general how to represent a drawing using a finite
amount of space. Two natural approaches to address this concern are to (1) further restrict
the class of drawings or (2) study drawings on a much coarser level, up to some notion of
isomorphism. In this work, we use a combination of both of these approaches.

Simple drawings. An example for the first approach are straight-line drawings in the
Euclidean plane (also known as geometric graphs), where the geometry of an edge is uniquely
determined by the location of its endpoints; see the Handbook of Discrete and Computational
Geometry [34, Chapter 10] and references therein. In this work, we consider a more general
class of drawings, which appear in the literature as simple drawings [11], good drawings [5, 12],
topological graphs [26], simple topological graphs [22], and even just as drawings [18]. In a
simple drawing, every pair of edges has at most one point in common, either a common
endpoint or a proper crossing. Additionally, we may assume that no three edges meet
at a common point. Simple drawings are a combinatorial/topological generalization of
straight-line drawings. If the graph G has n vertices, then every simple drawing of G has
O(n4) crossings, edge fragments, and cells. Simple drawings are also important for crossing
minimization because all crossing-minimal drawings are simple [33].
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Figure 3 Two drawings of K3,3 that have same ERS but are not strongly isomorphic (because
ux crosses vy and wz in different order). The shaded tricell is an invertible triangle.

Strong isomorphism. An example for the second approach is the notion of strong isomor-
phism for drawings, defined as follows. Two drawings γ and η of a graph G = (V, E) are
strongly isomorphic, denoted by γ ∼= η, if there exists an orientation-preserving homeomor-
phism1 of S that maps γ to η, that is, γv 7→ ηv, for all v ∈ V , and γe 7→ ηe, for all e ∈ E. A
combinatorial formulation, which is equivalent for connected drawings, can be obtained as
follows [22]: (1) the same pairs of edges cross (this is called weak isomorphism); (2) the order
of crossings along each edge is the same; and (3) at each vertex and crossing the rotation,
that is, the clockwise circular order of incident edges, is the same (see next paragraph for
more details). The notion of strong isomorphism encapsulates basically everything that can
be said about a drawing from a topological or combinatorial point of view: the order of edges
around vertices and cells, which pairs of edges cross, and in which order the crossings appear
along an edge. For our purposes, we consider strongly isomorphic drawings to be equivalent.

Extended rotation systems. A coarser notion of equivalence can be obtained by requiring
two drawings to have the same rotation system, which is the collection of the rotations of
all vertices. Property (3) in the above-mentioned combinatorial description uses a slightly
stronger notion of equivalence, where also the rotations at crossings are the same in both
drawings. More formally, the rotation of a crossing χ is the clockwise cyclic order of the
four vertices of the crossing edge pair which is induced by the cyclic order of edge fragments
around χ. (In other words, the rotation of a crossing χ is the rotation of an additional
degree-4 vertex vχ obtained by splitting the crossing edge pair at χ and replacing χ by vχ.)
The extended rotation system (ERS) of a drawing is the collection of rotations of all vertices
and crossings. Any two strongly isomorphic drawings have the same ERS [22]. But the
converse is not true in general, as the example in Figure 3 demonstrates.

Crossing triangles. In fact, the only difference between the two drawings in Figure 3 with
respect to strong isomorphism stems from the tricell formed by the triple ux, vy, wz of
pairwise crossing edges, which is shaded gray in the figure: In the left drawing, this cell lies to
the right of the oriented edge ux, whereas in the right drawing, it lies to the left of ux. Given
a simple drawing, a tricell ∆ in the subdrawing of three pairwise crossing edges e1, e2, e3 is
called a crossing triangle; the three edges e1, e2, e3 are said to span ∆. Note that every edge
triple in a simple drawing spans at most one crossing triangle. The following lemma shows
that the crossing triangles are well-defined for complete multipartite graphs. It follows from
the proof of Theorem 1, but can also be shown directly (and with a much shorter proof).

1 Strong isomorphism can also be defined for unlabeled drawings; then a mapping for the vertex sets
is needed. The homeomorphism is sometimes not required to be orientation-preserving; then, e.g.,
mirror-images of drawings are also considered to be strongly isomorphic.



Aichholzer, Chiu, Hoang, Hoffmann, Kynčl, Maus, Vogtenhuber, and Weinberger 6:7

▶ Lemma 5. In every simple drawing of a complete multipartite graph, the set of edge triples
that span crossing triangles is uniquely determined by the ERS.

Invertible triangles and triangle flips. To formally define the triangle flip operation, globally
fix an orientation π of the edges of the abstract graph G. This orientation can be arbitrary,
but once we fix the graph, we also fix its orientation. With this orientation π, we can assign
every crossing triangle a parity as follows. The parity of a crossing triangle ∆ in a drawing
is the parity (odd or even) of the number of bounding edges of ∆ such that ∆ lies to the
left of the edge (when going along the edge according to its orientation). See Figure 3 for
two drawings with even (left) and odd (right) parity of the crossing triangle. A crossing
triangle ∆ in a drawing γ is invertible if there exists another simple drawing γ′ ≠ γ of the
same graph G with the same edge orientation π and with the same ERS in which ∆ appears
with the opposite parity. We will show that any invertible triangle in a drawing of a complete
multipartite graph is empty of vertices.

Locally redrawing the edges of an empty crossing triangle and thereby changing its parity
is an elementary operation to transform a given drawing, say, the one in Figure 3 (left),
into a new drawing, such as the one in Figure 3 (right). Up to strong isomorphism, there is
a unique way for the redrawing. This operation is referred to as triangle flip [4], triangle
mutation [15], slide move [31], homotopy move [9, 20], or Reidemeister move of Type 3, where
the latter name has been extensively used2 in knot theory [3, 21, 25, 28, 35, 36].

Triangle flip graphs. Based on the triangle flip as an elementary operation, we can define a
meta graph whose vertices are drawings and whose edges correspond to triangle flips. We fix
a graph G and consider all simple drawings of G on S up to strong isomorphism; these are
the vertices of the triangle flip graph T (G). Any two such drawings γ, η are connected by
an edge in T (G) if η can be obtained from γ by a single triangle flip. As triangle flips are
reversible, edges are symmetric. So we consider T (G) as an undirected graph.

Observe that a triangle flip does not change the rotation of any vertex or crossing, only
the order of crossings along the edges changes. Therefore only drawings that have the same
ERS can be in the same component of T (G). In general, the flip graph T (G) may be
disconnected. Consider, for instance, the two drawings of a path depicted in in Figure 4. As
neither drawing contains any crossing triangle, both are isolated vertices in T (G).

a

c

e

b

d

f

a

c

e

b

d

f

Figure 4 Two drawings of a path with the same ERS, but the order of crossings along the edge cd

differs, thus, the drawings are not strongly isomorphic. Neither drawing contains any tricell to flip.

3 A Carathéodory-type theorem for complete multipartite graphs

This section is devoted to a proof outline of the Carathéodory-type Theorem 3. The
corresponding statement for simple drawings of Kn, which is a direct generalization of the

2 albeit in the context of knots also an above/below relationship among the curves is relevant
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classic theorem for convex sets in R2, was shown by Balko, Fulek, and Kynčl [6]. A simpler
proof was given later by Bergold, Felsner, Scheucher, Schröder, and Steiner [7], whose proof
idea we follow.

Sketch of Proof. If G is empty or a star K1,n, then the statement is vacuously true. So
we assume that G is neither, and thus every pair of distinct vertices u, v ∈ V with uv /∈ E

has at least two distinct common neighbors. By studying a minimal counter-example we
prove Theorem 3 by contradiction. To that aim, we consider a simple drawing D of G and a
point p, such that the following holds: (1) p is in a bounded cell of D, (2) p is not contained
in a bounded cell of any induced Ci-subdrawing of D, for i ∈ {3, 4}, and (3) when removing
any vertex from D, the point p lies in the unbounded cell.

Let a be a vertex of G, and let O be the smallest set of edges incident to a such that
removal of all edges of O from D puts p into the unbounded cell of the resulting drawing D−.
Then in D− one can draw a simple curve P from p to the interior of the unbounded cell
of D so that P does not intersect any vertex or edge of D−. Subject to this constraint, we
select P to minimize the number of crossings with edges of D. We show that we can assume
every edge in O crosses P exactly once. Finally we consider an edge ab ∈ O, which crosses P

in a point pab, and analyze two cases depending on whether ab crosses another edge between
a and pab or not. We show that in both cases, p is contained in a bounded cell of an induced
Ci-subdrawing of D, for i ∈ {3, 4}.

r1

r2

b3 bmb...b2b1

rnr...r3

p

Figure 5 Drawing of Km,n minus one edge (r2b1, drawn dashed), based on Figure 6. The point p

lies in a bounded cell, but in no Ci, for i ∈ {3, 4, 5}.

To see that the theorem may not hold if we remove one edge from G, consider the simple
drawing of Km,n, m, n ≥ 2, depicted in Figure 5. When removing the edge b1r2, the point p

still lies in a bounded cell, but any cycle that encloses p has at least six vertices. ◀

4 Theorem 1 is essentially tight

Theorem 2 implies that Theorem 1 is essentially tight: The removal or addition of very few
edges may yield a graph for which the theorem does not hold. This implies that the class of
graphs for which this Gioan-type theorem holds is not closed under the operation of taking
(non-induced) subgraphs or supergraphs. We sketch the proof of Theorem 2 by depicting the
drawings we use to show tightness.

Each of Figures 6–9 contains two simple drawings of a graph with the same ERS. In all
of them, the crossing order along b1r1 differs between the two drawings. This order cannot
be changed via triangle flips because the edges crossing b1r1 in different orders are pairwise
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non-crossing. Figures 6 and 7 cover the case of Km,n minus two adjacent or disjoint edges,
Figure 8 is an extension of Figure 6 to Km minus a 4-cycle, and Figure 9 shows subdrawings
of Figure 8 that form a Km−1,n+1 plus one edge.

r1

r2

r3
b3 bm. . .b2b1

rn. . .r4

r2

r3

b3 bm. . .b2b1

rn. . .r4

r1

Figure 6 Two drawings of Km,n minus two adjacent edges b1r2 and b1r3 (drawn as dashed lines)
that have the same ERS but cannot be transformed into each other via triangle flips.

r1

r2

b1

b2

b3
b4, . . .r3, . . .

r1

r2

b1

b2

b3

b4, . . .r3, . . .

Figure 7 Two drawings of Km,n minus two independent edges b2r1 and b1r2 (drawn dashed) that
have the same ERS but cannot be transformed into each other via triangle flips.

r1

r2

r3
b3 bmb...b2b1

rnr...r4

r2

r3

b3 bmb...b2b1

rnr...r4

r1

Figure 8 Two drawings of Km minus a 4-cycle (drawn dashed) that have the same ERS, but
cannot be transformed into each other via triangle flips.

We remark that also two simple drawings with the same ERS that cannot be transformed
into each other via triangle flips exist for any graph that contains (1) a K5 minus a 4-cycle,
or (2) a K2,3 minus two edges sharing a vertex in the bipartition class of cardinality two
(where the list of induced subgraphs is not exhaustive). This can be shown by choosing
appropriate subdrawings in the construction from Figure 8.
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r1

r2

r3
b3 bmb...b2b1

rnr...r4

r2

r3

b3 bmb...b2b1

rnr...

r1

Figure 9 Two drawings of Km−1,n+1 plus one edge (b1r1) that cannot be transformed into each
other via triangle flips.

5 A Gioan-type theorem for complete multipartite graphs

In this section, we present our two proofs of Theorem 1 and include a short algorithmic
discussion of the second one.

5.1 First proof of Theorem 1
For our first proof of Theorem 1, we use the same general approach as Schaefer [31]. To
closely follow the lines of Schaefer, we also use homeomorphisms in this proof.

Proof. Let G be a complete multipartite graph, and let D1 and D2 be two simple drawings
of G on S2 with the same ERS. Let R = {r1, r2, . . . , rn} be a maximal independent set in G

and let B = {b1, b2, . . . , bm} denote the set of the remaining vertices. Note that the graph
on the vertex set R ∪ B together with all edges with an endpoint in R and one in B forms a
complete bipartite graph Kn,m, and the set R is an independent set in G while B might not
necessarily be an independent set.

By [2], the subdrawing of D1 spanned by this Kn,m contains a spanning tree T which is
drawn crossing-free in this subdrawing and hence also in D1. As D1 and D2 have the same
crossing edge pairs, T is drawn crossing-free in D2 as well. Since the rotation systems of D1
and D2 are the same by assumption, the drawings of T in D1 and D2 are homeomorphic.
Thus there exists a drawing D :∼= D1 with the following properties.
1. The drawing of T is the same for both drawings D and D2, implying that also the vertex

locations are the same in both drawings.
2. Considering the set of the vertices and edges of D and D2 together as the combined

drawing of D and D2, we denote the cyclical order of edges in D and D2 emanating from
a vertex as combined rotation at that vertex. For each edge e of G (not in T ) and each
vertex v of e, the two drawings of e are consecutive in the combined rotation at v.

3. For each edge e of G, the two drawings of e are either identical or have only finitely many
points in common (two are its endpoints and the others are proper crossings).

Our goal is to change D via triangle flips (and orientation-preserving homeomorphisms)
until we obtain D = D2. Since the vertex locations in both drawings are the same, we can
speak about two drawings of an edge, one in D, and one in D2, being the same or not. As in
Schaefer’s proof, we iteratively reduce the number of edges that are drawn differently in D

and D2. Let E= be the set of edges whose drawings in D and D2 are the same. Initially, E=
contains at least all edges of T . If E= contains all edges of G then we are done.



Aichholzer, Chiu, Hoang, Hoffmann, Kynčl, Maus, Vogtenhuber, and Weinberger 6:11

So suppose that this is not the case and consider an edge e that is drawn differently in D

and D2. Let e1 and e2 denote the curves representing e in D and D2, respectively. Since D

and D2 have the same ERS, e1 and e2 cross the same edges of T and they do so with the
same crossing rotations. Moreover, the following lemma implies that they also cross those
edges in the same order. The lemma can be proven relying on Lemma 4 and using a case
distinction for drawings with six vertices.

▶ Lemma 6. Let D be a simple drawing of a complete multipartite graph G on S2 and let
vw be an edge of G. Then for any pair of adjacent or disjoint edges crossed by vw, the ERS
of D determines the order in which vw crosses them.

Hence e1 and e2 are equivalent with respect to the drawing of T (which is the same in D

and D2), that is, e1 has the same sequence of directed crossings with T as e2. Let Γ = e1 ∪ e2
be the (not necessarily simple) closed curve formed by e1 and e2. A lens in Γ is a cell of Γ
whose boundary is formed by exactly two edge fragments of Γ, where one is from e1 and one
is from e2. Next, consider the drawing DT of T plus the drawings e1 and e2 of e. A lens
of Γ is called empty if it contains no vertices of T (and hence also no vertices of G) in its
interior. With the next lemma, we show that Γ forms an empty lens. This lemma is a special
case of a result of Hass and Scott on intersecting curves on surfaces [19, Lemma 3.1], which
is also known as the bigon criterion [13, Section 1.2.4]. Schaefer [31, Lemma 3.2] gives an
elementary proof in the planar (or spherical) case when the plane spanning tree T is a star.
However, he only uses that the star is a spanning subdrawing that is crossing-free and that
e1 and e2 are equivalent with respect to the star. Thus, we can follow the proof line by line
to obtain the result for any plane spanning tree T .

▶ Lemma 7 ([13, 19, 31]). Let D1 and D2 be two simple drawings of a graph on S2 that
contain the same crossing-free drawing DT of a spanning tree T as a subdrawing. Let e be an
edge for which the drawings e1 and e2 differ, but are equivalent with respect to DT . Then
Γ = e1 ∪ e2 forms an empty lens.

Let L be an empty lens of Γ, which is formed by the edge fragments γ1 of e1 and γ2 of e2,
respectively. Each of the two points of γ1 ∩ γ2 is either an endpoint or a crossing between e1
and e2. Recall that, in the combined drawing of D and D2, e1 and e2 are consecutive in the
combined rotation at each of their endpoints. Hence, independent of whether the points of
γ1 ∩ γ2 are crossings or endpoints, γ2 is what Schaefer calls a “homotopic detour of γ1 on e1”.
We next need his detour lemma, which we restate here using slightly different terminology
(and for drawings on the sphere instead of in the plane).

▶ Lemma 8 (detour lemma [31, Lemma 2.1]). Let γ2 be a homotopic detour of the arc γ1 on
the edge e1 in a simple drawing of a graph. Let F be the set of edges which cross γ2 at least
twice. Then we can apply a sequence of triangle flips and homeomorphisms of the sphere S2

so that in the resulting drawing, γ1 is routed arbitrarily close to γ2, without intersecting it.
The triangle flips and homeomorphisms only affect a small open neighborhood of the region
bounded by γ1 ∪ γ2, and only edges in F and the γ1 part of e1 are redrawn.

Note that the set F of edges that are affected by the transformation is disjoint from E=,
because any edge of E= is identical in D and D2 and hence intersects γ2 at most once.

If at least one of the points of γ1 ∩ γ2 is a crossing, then after applying the detour lemma,
we can redraw e1 (via a homeomorphism) to have at least one fewer crossing with e2 and
repeat the process of applying Lemmas 7 and 8 with the redrawn edge.
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If none of the points of γ1 ∩ γ2 is a crossing, then e1 ∪ e2 is a simple closed curve and
γ1 = e2 is a homotopic detour of γ2 = e1. Hence, after one final application of Lemma 8, we
can redraw e1 to be identical to e2. With this step, e2 is added to E= and we have reduced
the number of edges differing between D and D2 by one.

Repeating this process for the remaining differing edges we obtain two identical drawings.
Omitting the homeomorphisms, the process yields a sequence of triangle flips for transforming
D1 into D2 (up to strong isomorphism), which completes the proof of the theorem. ◀

5.2 Second Proof of Theorem 1
Our second proof of Theorem 1, which we briefly outline here, uses the same general framework
as the proof of Gioan’s Theorem by Arroyo, McQuillan, Richter, and Salazar [4].

Sketch of Proof. We consider two simple drawings D1 and D2 of a complete (multipartite)
graph G = (V, E) with the same ERS, and one of them, say D := D1, is iteratively transformed
to become “more similar” to the other. Similarity is measured using a subgraph X of G for
which we demand as an invariant that the induced subdrawings D[X] and D2[X] are strongly
isomorphic. In each iteration, we will add one edge to X and then perform a sequence of
triangle flips in D so as to reestablish the invariant.

Initially, we establish the invariant in the following way. As in the first proof, we consider
an independent set R ⊆ V of vertices such that G contains a complete bipartite subgraph
between R and B := V \ R. If G is complete, then R contains a single vertex only; in general,
it may contain several vertices. We then pick one vertex r0 ∈ R and start by taking X to be
the maximal induced substar of G centered at r0 (which includes all vertices of B). Then
the invariant holds because both drawings have the same rotation system by assumption.

We then consider the (possibly) remaining vertices of R in an arbitrary order. Let r ∈ R

be the next vertex to be considered. First, we show that the position of r in the induced –
strongly isomorphic, by the invariant – subdrawings D[X] and D2[X] is consistent, that is,
the vertex r lies in the same (according to isomorphism) face of these drawings. (The proof
of this statement uses the Carathéodory-type Theorem 3.)

We add the edges incident to r one by one to X. When adding an edge rb to X to
obtain X ′ = X ∪ {rb}, the drawings D[X ′] and D2[X ′] may not be strongly isomorphic
because the edge rb may cross other edges in a different order in both drawings. We consider
a sort of overlay O of both drawings D[X ′] and D2[X ′], in which the two versions of rb

together form a closed curve Γ with O(|V (X ′)|4) self-crossings, where |V (X ′)| is the number
of vertices of X ′. In Γ, we can identify a nice substructure, which we refer to as a free lens,
and show that it always exists. A lens in Γ is free if it does not contain any vertex of O; it
may contain edge crossings, though. Each such edge crossing corresponds to an invertible
triangle in D. Invertible triangles are empty of vertices not only of the vertices in X but
also of the (possibly) not yet considered vertices of R. Hence, the edges of D that cross an
invertible triangle ∆ behave similarly to a collection of pseudolines inside ∆, except that not
all pairs need to cross. Let m be the number of edges that cross ∆. Using a classic sweeping
algorithm by Hershberger and Snoeyink [32, Lemma 3.1], all m edges can be “swept” out of ∆
via triangle flips in D, where the total number of flips is bounded by O(m3). After these flips,
∆ has become a crossing triangle and can be flipped in D. Processing all invertible triangles
inside a selected free lens in this fashion effectively destroys this lens. And after iteratively
destroying all free lenses, the resulting drawing D[X ′] is strongly isomorphic to D2[X ′].

After all vertices in R and the complete bipartite subgraph of G between R and B have
been added to X, we add the remaining edges (the ones with both endpoints in B) in exactly
the same fashion as described above. ◀
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While the outline of the above proof mostly follows the one for Kn [4], its core challenges
lie in the proofs of several statements, whose analogues are known for Kn but not for complete
multipartite graphs. Among others, these include the arguments about the existence of a
free lens and that invertible triangles are empty.

Algorithmic complexity. The above proof yields an algorithm that can be implemented
using standard computational geometry data structures. Its runtime is polynomial in the
size of the input and the number of performed triangle flips.

6 On the number of triangle flips

The flip distance between two different drawings of a complete multipartite graph with
the same ERS is the minimum number of triangle flips that are required to transform one
drawing into the other. This section is devoted to obtain bounds on the flip distance.

For an upper bound, Schaefer [31, Remark 3.3] showed that any two simple drawings
of Kn with the same rotation system can be transformed into each other with at most O(n20)
triangle flips. Using our second proof of Theorem 1, we can obtain an upper bound of O(n16)
on the flip distance between two simple drawings of any complete multipartite graph with n

vertices and the same ERS (and thus also for such drawings of Kn).

▶ Theorem 9. Let D1 and D2 be two simple drawings of a complete multipartite graph G

on S2 with n vertices and with the same ERS. Then D1 can be transformed into D2 via a
sequence of O(n16) triangle flips, obtained via the algorithm in the second proof of Theorem 1.

Proof. We analyze the number of flips performed through the second proof of Theorem 1.
Recall that in this proof, we iteratively consider the edges of G. We perform flips in a
drawing D (initially set to D1) so that the subdrawings of D and D2 induced by the already
considered edges become (strongly) isomorphic.

When considering a new edge e, we imagine to add both versions of it (the one from D

and the one from D2) to the already isomorphic subdrawing X of D and D2. In the full
version, we show that this can be done such that in the combined drawing, the two copies
of e have O(|V (X)|4) = O(n4) crossings, where |V (X)| is the number of vertices of X.

Let C be the closed curve formed by the two copies of e. In order to transform D to
make the drawing of e in D isomorphic to the one in D2, we iteratively resolve a free lens
of C. At every iteration, we reduce the number of crossings of C, except for the very last
iteration (i.e, for the very last lens). Hence, the number of lenses we need to resolve when
processing e is bounded by O(n4) as well. To resolve a free lens, we need to flip all inverted
triangles in this lens that have e as an edge, of which there are at most O(n4) many. For one
inverted triangle ∆ intersected by m = O(n2) edges, this can be done with O(m3) = O(n6)
flips. Hence resolving one free lens can be achieved with O(n4) · O(n6) = O(n10) flips.

Repeating this for all lenses of C and for each of the O(n2) edges of G, we obtain an
upper bound of O(n2) · O(n4) · O(n10) = O(n16) for the total number of triangle flips. ◀

▶ Theorem 10. Let G be a multipartite graph G with n vertices that contains two vertex-
disjoint subgraphs each forming a Km,m for some m = Θ(n). Then G admits two drawings
D1 and D2 with the same ERS that have flip distance Ω(n6).

Proof idea. To transform the two drawings of Kn in Figure 10 into each other, each of the
Θ(n2) edges bidj needs to be moved over the Θ(n4) crossings formed by edges akcℓ, yielding
the Ω(n6) lower bound. An according example of two drawings of a Km,m can be obtained
by disregarding all edges aibj and cidj . ◀
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A A

B B

C C

D D
d1
d2

dn/4

...

c1 c2 cn/4. . .

b1
b2

bn/4

...

a1 an/4. . .a1 a2 an/4

b1
b2

bn/4

...

c1 c2 cn/4. . .

d1
d2

dn/4

...

. . .

D1 D2

a2

Figure 10 Two simple drawings of Kn with the same ERS whose flip distance is Ω(n6).

7 Conclusion & open questions

We have shown that Gioan’s Theorem holds for complete multipartite graphs (Theorem 1),
extending previous results [4, 15, 16, 31]. Further, we have shown that the class of graphs
for which an analogue statement holds is not closed under addition or removal of edges
(Theorem 2). We also provide several obstructions such that Gioan’s Theorem does not hold
for any graph that contains any of these obstructions as a substructure. However, the list of
obstructions is probably incomplete. A full characterization of graphs for which a Gioan-type
statement for drawings with the same ERS holds remains open.

▶ Question 1. Can we completely characterize all graphs for which a Gioan-type theorem
holds for drawings with the same ERS?

Further, having the same ERS is not the only necessary condition for a Gioan-type
statement to hold. Another example of such a condition is that incident or disjoint edges
must have the same crossing orders over all drawings. The constructions in the proof of
Theorem 2 rely on violating this condition.

▶ Question 2. Can we characterize all graphs for which a Gioan-type theorem holds for
classes of drawings which fulfill (subsets of) obviously necessary conditions?

In Section 3, we have proven a Carathéodory-type theorem for simple drawings of complete
multipartite graphs with the same ERS (Theorem 3). It would be interesting to know for
which further classes of graphs a similar statement is true.

Naturally, we would also like to narrow or even close the gap between the lower bound
of Ω(n6) and the upper bound of O(n16) for the flip distance, obtained in Section 6.

▶ Question 3. What is the worst case flip distance between two simple drawings of a complete
multipartite graph on n vertices with a given ERS?
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Abstract
We study the decomposition of zero-dimensional persistence modules, viewed as functors valued in
the category of vector spaces factorizing through sets. Instead of working directly at the level of
vector spaces, we take a step back and first study the decomposition problem at the level of sets.

This approach allows us to define the combinatorial notion of rooted subsets. In the case of
a filtered metric space M , rooted subsets relate the clustering behavior of the points of M with
the decomposition of the associated persistence module. In particular, we can identify intervals in
such a decomposition quickly. In addition, rooted subsets can be understood as a generalization of
the elder rule, and are also related to the notion of constant conqueror of Cai, Kim, Mémoli and
Wang. As an application, we give a lower bound on the number of intervals that we can expect in
the decomposition of zero-dimensional persistence modules of a density-Rips filtration in Euclidean
space: in the limit, and under very general circumstances, we can expect that at least 25% of the
indecomposable summands are interval modules.
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1 Introduction

Multiparameter persistent homology is an active research area in topological data analysis.
The motivation is that in many datasets there are multiple parameters that deserve attention
in a multiscale analysis [11, 18, 31]. Concretely, when analyzing point clouds, we want to
consider the distances between points, but also potentially remove points of low density.

A central object of persistent homology is the persistence module, which tracks algebraically
how the topological features of the data change as we move through the parameter space.
In the single-parameter case, every persistence module decomposes into a collection of
intervals, called the persistence barcode [20], where each interval represents the lifetime of a
topological feature in the data. In the multiparameter setting, there is a generalized notion
of interval, which again represents the lifetime of a topological feature, but decomposing a
multiparameter persistence module into intervals is not always possible, and one might be
left with non-interval indecomposable persistence modules that lead to complications, both
theoretically [12,13,18,32] and computationally [1, 4, 23].
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7:2 Decomposition of Zero-Dimensional Persistence Modules via Rooted Subsets

Table 1 Number of intervals in the decomposition of zero-dimensional persistence modules for
density-Rips filtrations. We tried both clustered samples where the points were sampled by a
multivariate Gaussian distribution around 5 peaks, and uniform samples in the unit square. The
density parameter was computed via a Gaussian kernel density estimate (kde) or a random density
was assigned. The table shows the number of intervals for 5 independent test runs; for n points, the
module is interval-decomposable if the number of intervals is n. This only happens for one run.

100 points 500 points

Sample Densities Run 1 2 3 4 5 Run 1 2 3 4 5

clustered kde 100 98 95 98 98 474 487 478 479 479
uniform kde 88 88 86 88 86 444 447 433 453 457
clustered random 77 86 87 88 76 397 381 390 380 386
uniform random 76 79 75 75 70 376 361 366 355 377

In fact, the classification of such indecomposable persistence modules is thought to be
out of reach: certain involved posets are of wild representation type, even when accounting
for certain simplifications [2]. Moreover, infinite families of complicated indecomposable
persistence modules can be realized by simple geometric constructions [13], and, most recently,
it has been shown in [3] that multiparameter persistence modules are, generically, close to
being indecomposable, under the interleaving metric (we refer to [3] for a precise statement).

Still, the mentioned complications do not imply that the persistence modules that come
up in practice are close to indecomposable, or that they are not decomposable into intervals.
Indeed, is the decomposition of multiparameter persistence modules as badly behaved in
practice as we can expect in theory? The authors of [2] and those of [3] state similar questions.

As an initial test, we computed the decomposition of persistence modules for a standard
zero-dimensional construction, using a prototypical implementation of the algorithm by Dey
and Xin [23] (this implementation will be discussed in another paper). As we see in Table 1,
the assumption that persistence modules can be decomposed completely into intervals seems
to be false most of the time, at least in this setting. However, Table 1 also shows that in all
tested instances, most indecomposable summands are indeed intervals.

This begs the question whether we can provably expect many intervals in general. In
addition, knowledge of the intervals can greatly simplify and speed up computational tasks for
persistence modules: for instance, a popular way to analyze 2-parameter persistence modules
is by considering 1-dimensional restrictions, so-called slices, resulting in a parameterized
family of persistent barcodes [29,31, 33,34]. Every interval of the 2-dimensional persistence
module gives one bar in the barcode of the slice, by intersecting the slice with the interval.
Thus, by knowing the intervals, existing algorithms can focus on the non-interval “core” of
the problem, which is typically of much smaller size.

The practical problem of the described approach is that decomposing a multiparameter
persistence module is costly, despite ongoing efforts [23]. However, to leverage the knowledge
of intervals there is no need to compute a total decomposition, or to even identify all intervals.
It suffices to have a method to “peel off” intervals from a persistence module quickly. Thus,
we pose the question whether there exist methods that work very fast in practice and still
are capable of detecting many intervals.

Contributions. We focus on the case of zero-dimensional persistence modules. Already this
case is of practical interest because of its connection to hierarchical clustering methods (see
the Related work section below), and has received attention recently [2,10,14,34]. In this
context, we give some answers to the questions stated above:
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For a point cloud M , a nearest neighbor pair is a pair (x, y) ∈ M ×M such that y is the
nearest neighbor of x and x is the nearest neighbor of y (breaking ties with a fixed total
order). The theory we develop says that for a zero-dimensional persistence module of the
density-Rips bifiltration (for any density estimation function), there are at least as many
intervals as there are nearest neighbor pairs in M . These intervals are easily determined by
the nearest neighbor pairs, and we refer to them as NN-intervals. Since all nearest neighbor
pairs can be computed in O(n log n) time [19, 37], this yields a fast method to compute
all NN-intervals of the decomposition. Moreover, we can expect many NN-intervals: using
previous results on nearest neighbor graphs, we show that if M is sampled independently
from an arbitrary, almost continuous density function, at least a quarter of the summands in
the decomposition are intervals as n → ∞. To our knowledge, this is the first result proving
a non-constant lower bound on the number of intervals in a decomposition.

To arrive at this result, we use the following main idea: Instead of studying the decompo-
sition of the persistence module directly in the category of (graded) vector spaces, we work
in the category of persistent sets, whose objects can be interpreted as a two-parameter hierar-
chical clustering. The decomposition of a persistence module is governed by its idempotent
endomorphisms, so we look for idempotent endomorphisms not of persistence modules, but
of persistent sets, which are simpler. We show that such idempotent endomorphisms can be
translated into rooted subsets, which are subsets of points that get consistently merged with
a fixed point in the hierarchical clustering. Moreover, rooted subsets with a single element
correspond to intervals in the associated persistence module.

Instead of peeling off intervals from the persistence module, we peel off rooted subsets
from the persistent set. The advantage is that the remaining structure is still a hierarchical
clustering, and the process can be iterated.

Related work. Multiparameter persistent sets and zero-dimensional persistence modules,
as we will study them here, are related to a multiparametric approach to the clustering
problem first considered by Carlsson and Mémoli [16]. The need for multiple parameters,
density and scale, is justified by an axiomatic approach to clustering [15, 17, 28]. The
application of techniques from multiparameter persistence homology, like persistence modules
and interleavings, to this setting has attracted attention recently [2, 14,31,33,34].

Cai, Kim, Mémoli, and Wang [14] define a useful summary for zero-dimensional persistence
modules coming from density-Rips, called the elder-rule-staircode, inspired by the elder
rule [24]. They also introduce the related concept of constant conqueror, and they ask
whether a constant conqueror induces an interval in the decomposition of the associated
persistence module. We answer this question in the negative with Example 22, and, in
contrast, we show that a rooted generator, as introduced here, does induce an interval in the
decomposition (Corollary 13).

Brodzki, Burfitt, and Pirashvili [10] also study the decomposition of zero-dimensional
persistence modules. They identify a class of persistence modules, called semi-component
modules, that may appear as summands in the decomposition of zero-dimensional modules,
but that are still hard to classify. Their methods have been of great inspiration, and
in Theorem 24 we give another proof, within the theory we develop, of a theorem of theirs.

2 Preliminaries

Persistent sets and persistence modules. In what follows, we let P be a finite poset,
which we will view as a category. A persistence module (over P ) is a functor from P to
the category Vec of finite dimensional vector spaces, over a fixed field K. Such a functor

SoCG 2023



7:4 Decomposition of Zero-Dimensional Persistence Modules via Rooted Subsets

F : P → Vec associates to each grade p ∈ P a finite dimensional vector space Fp and to
each morphism p ≤ q in P a linear map Fp→q : Fp → Fq, in such a way that Fp→p = id
and composition is preserved. We see persistence modules as the objects of the functor
category VecP , where natural transformations are the morphisms. In this sense, a morphism
f : F → G of persistence modules is a family of maps {fp : Fp → Gp}p∈P such that for every
two p ≤ q the following diagram commutes

Fp Fq

Gp Gq.

Fp→q

fp fq

Gp→q

Similarly, a persistent set (over P ) is a functor from P to Set, the category Set of finite
sets, and morphisms of persistent sets are natural transformations as above.

We can obtain a persistence module from a persistent set by the application of the
linearization functor Set → Vec that takes each set to the free vector space generated by
it. This linearization functor induces a functor L : SetP → VecP by postcomposition.

From geometry to persistent sets. Let (M,d) be a finite metric space, and consider a
function f : M → R. We can understand f as an assignment of a density to each of the
points of M ; that is, a density estimation function [36]. We assume that f assigns lower
values to points of higher density. Following [14], we call the triple (M,d, f) an augmented
metric space. We construct a persistent set, the density-Rips persistent set of (M,d, f),
that tracks how the clustering of points of M changes as we change the density and scale
parameters, in a sense that we make precise shortly.

First, for a fixed scale parameter ε ≥ 0, we define the geometric graph of M at ε,
denoted by Gε(M), as the undirected graph on the vertex set M and edges (x, y) where
d(x, y) ≤ ε. The connected components of Gε(M), as ε goes from 0 to ∞, form the clusters
of the dendrogram obtained via the single-linkage clustering method.

To introduce the density, for each σ ∈ R we let Mσ := {x ∈ M | f(x) ≤ σ} ⊆ M be the
metric subspace of points with (co)density below σ. For any two σ ≤ σ′, Mσ ⊆ Mσ′ and by
taking each (ε, σ) to the graph Gε(Mσ), we obtain a functor G(M,f) : R≥0×R → Graph, where
the order in R≥0 × R is given by (ε, σ) ≤ (ε′, σ′) if and only if ε ≤ ε′ and σ ≤ σ′. We then
consider the connected components functor π0 : Graph → Set, that takes each graph to its
set of connected components. In this way, we obtain a functor π0 ◦ G(M, f) : R≥0 × R → Set.

▶ Remark 1. The linearized persistence module L(π0◦G(M, f)) : R≥0×R → Vec is isomorphic
to the persistence module obtained by applying zero-dimensional homology at graph level,
H0 ◦ G(M, f) : R≥0 × R → Vec. In this sense, the construction we have described is the
zero-dimensional level of the density-Rips filtration, which is standard in multiparameter
persistent homology (see [5, 18] and also [14]).

We can understand the functor π0◦G(M,f) : R≥0×R → Set as a persistent set S : P → Set
indexed by a finite grid P ⊆ R≥0 × R in the following way. We consider the set of distances
D := {d(x, y) | x, y ∈ M} and densities T := {f(x) | x ∈ M}, and define a finite grid
P := D × T ⊂ R≥0 × R. Finally, we define the persistent set S : P → Set by taking each
(ε, σ) ∈ P to (π0 ◦ G(M,f))(ε,σ), and similarly for the morphisms.

▶ Definition 2. Let (M,d, f) be an augmented metric space. We define its density-Rips
persistent set as the functor S : P → Set, constructed as above.
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Decomposition of persistence modules. We can study persistence modules via their
decomposition. For two persistence modules F and G their direct sum F⊕G is the persistence
module given by taking direct sums pointwise, (F ⊕G)p = Fp ⊕Gp. A persistence module is
indecomposable if F ∼= F1 ⊕ F2 implies that either F1 = 0 or F2 = 0. Since persistence
modules are actual modules (see, for instance, [8, Lemma 2.1]), by the Krull-Schmidt theorem,
a decomposition of a persistence module F = F1 ⊕F2 ⊕ . . . Fn into indecomposable summands
is unique up to permutation and isomorphism of the summands.

Let I be a non-empty connected subposet of a poset P such that for any two i, j ∈ I and
any l ∈ P , if i ≤ l ≤ j then l ∈ I. The interval module supported on I, I(I) : P → Vec,
is the indecomposable (by, e.g. [7, Proposition 2.2]) persistence module given by

I(I)p =
{
K, if p ∈ I,
0, otherwise,

with internal maps I(I)p→q =
{

id, if p, q ∈ I,
0, otherwise.

If P is a totally ordered set, every persistence module over P decomposes as a direct sum of
interval modules [6], but such a nice decomposition does not exist in general for other posets.

Decomposition and endomorphisms. A direct sum X = X1 ⊕X2 of persistence modules
is characterized up to isomorphism by morphisms ιi : Xi → X and πi : X → Xi for i = 1, 2
such that πi ◦ ιi = idXi

and ι1 ◦ π1 + ι2 ◦ π2 = idX (see, for instance, [30]). In this case,
for each i = 1, 2, the maps ιi and πi induce an endomorphism φi := ιi ◦ πi of X. Such an
endomorphism φi : X πi−→ Xi

ιi−→ X is also split:

▶ Definition 3. In any category, we say that an endomorphism φ : X → X is split if there
exists an object Y and a factorization φ : X π−→ Y

ι−→ X such that π ◦ ι = idY .

We will use the following standard fact about split endomorphisms (proof in the full version):

▶ Lemma 4. Let φ : X → X be a split endomorphism that has two factorizations X π−→ Y
ι−→

X and X π′

−→ Y ′ ι′

−→ X with π ◦ ι = idY and π′ ◦ ι′ = idY ′ . Then Y and Y ′ are isomorphic.

Every split endomorphism φ : X π−→ Y
ι−→ X is also idempotent, meaning that φ ◦φ = φ.

Moreover, in our categories of interest, namely persistent sets SetP and persistence modules
VecP , every idempotent endomorphism splits through its image, see below. In these two
categories, we define the image of a morphism f , img f , by taking the image pointwise, that
is, (img f)p = fp(Sp). The following two lemmas are standard (proof in the full version).

▶ Lemma 5. Let φ : X → X be an idempotent endomorphism in VecP or SetP . Then f

splits through its image: there exists a factorization f : X π−→ imgφ ι−→ X with π ◦ ι = idimg φ.

▶ Lemma 6. Let F : P → Vec be a persistence module, and let φ : F → F be an idempotent
endomorphism. Then F decomposes as img(idF − φ) ⊕ imgφ.

3 Endomorphisms of persistent sets and rooted subsets

As seen above, the decomposition of a persistence module is intimately related to its
idempotent endomorphisms. Our main idea is that, when studying the decomposition of
persistence modules of the form LS, for a persistent set S : P → Set, we look for idempotent
endomorphisms of S and study their image under the linearization functor L.

SoCG 2023



7:6 Decomposition of Zero-Dimensional Persistence Modules via Rooted Subsets

▶ Definition 7. Given a persistent set S, a generator is a pair (px, x) with x ∈ Spx such
that x is not in the image of any morphism Sq→px

for any q < px. When it is clear, we will
often suppress the grade px from the notation, and directly write that x ∈ Spx

is a generator.
There is an induced preorder on the generators of S: for two generators x ∈ Spx and

y ∈ Spy
we say that (px, x) ≤ (py, y) if and only if px ≤ py. This relation might not be

antisymmetric, and so in general the preordered set of generators is not a poset.

Generators are useful because an endomorphism φ of a persistent set S : P → Set is
uniquely determined by the image of its generators: for each z ∈ Sq we have φq(z) =
Spx→q ◦ φpx

(x) for some generator x ∈ Spx
, by the commutativity property.

In linear algebra, an idempotent endomorphism can be thought as a projection onto its
image, that is, onto its fixed points. This point of view and the concept of generators above
motivates the following definition, which plays a fundamental role in our work.

▶ Definition 8. A rooted subset A is a non-empty subset of the generators of S such that
there exists an idempotent endomorphism φ of S whose set of generators that are not fixed is
precisely A. If a rooted subset is a singleton, A = {x}, we say that x is a rooted generator.

▶ Remark 9. In the case of an augmented metric space (M,d, f) and its density-Rips persistent
set S of Definition 2 there exists a bijection between the points of M and the generators of
S. A point x ∈ M first appears in the graph G0(Mf(x)), where x is always its own connected
component. In what follows, we will often identify a point x ∈ M with its generator x ∈ Spx

.
In this sense, we can understand an endomorphism of S as an endomorphism of the set of
points that is compatible with the connected components of all graphs Gε(Mσ).

We are especially interested in persistent sets obtained from (augmented) metric spaces,
and our objective is to relate rooted generators to the geometry of these objects. Considering
an augmented metric space (M,d, f) and its density-Rips persistent set, Proposition 10 below
characterizes rooted generators by the clustering behavior of the points of M .

▶ Proposition 10. Let (M,d, f) be an augmented metric space and consider a point x ∈ M .
If there exist some other point y ∈ M such that
1. f(y) ≤ f(x) (i.e. y is “denser” than x), and
2. whenever x is in a cluster of more than one point, y ∈ M is in the same cluster: for

every Gε(Mσ), if x is path-connected to some other point then x is path-connected to y,
then the generator (px, x) of the density-Rips persistent set S of M is a rooted generator.

Conversely, if x is a rooted generator of S, then there exists a point y ∈ M that satisfies
conditions 1 and 2 above.

Proof. Before going into the proof, recall that, by the way we construct S and the inclusion
P ↪→ R≥0 ×R, for each q ∈ P there is an associated graph Gε(Mσ), for some (ε, σ) ∈ R≥0 ×R.
Each element z ∈ Sq is a connected component of this graph Gε(Mσ), and the generators
x ∈ Spx

such that Spx→q(x) = z are precisely the points in that connected component.
The first part follows from Proposition 11 below, which proves it in more generality.
For the converse, let φ be an idempotent of S whose only generator that is not fixed

is x ∈ Spx . This means that there exists a generator y ∈ Spy , different from x, such that
φpx

(x) = Spy→px
(y). And clearly φpz

(z) = z for any other generator z ∈ Spz
. From the fact

that φpx
(x) = Spy→px

(y) we deduce that f(y) ≤ f(x), since py ≤ px in P . To see that the
second condition holds, pick a q ≥ px and suppose that there exists a generator w ∈ Spw

such
that Spx→q(x) = Spw→q(w). This means that in the graph Gε(Mσ) associated to q both x

and w are in the same connected component, and we claim that y is also in this component.
Indeed, by the definition of φ we have Spx→q ◦ φpx

(x) = Spy→q(y) = Spw→q(w). ◀
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▶ Proposition 11. Let (M,d, f) be an augmented metric space. If for a set of points A ⊂ M

there exists a point y ̸∈ A such that for every x ∈ A, f(y) ≤ f(x) and for each Gε(Mσ) either:
x is path-connected to y, or
the set of points that are path-connected to x is contained in A,

then the set of generators {(px, x) | x ∈ A} is a rooted subset in the density-Rips persistent
set S of M .

Proof. To show that A is a rooted subset, we need to define an appropriate idempotent φ of
S. Recalling that an endomorphism is uniquely determined by the image of its generators,
we define φ by setting

φpx
(x) =

{
Spy→px

(y), if x ∈ A,

x, otherwise,
(1)

for every generator x ∈ Spx . We need to show that φ is indeed well-defined, which means
that the image of z ∈ Sq, φq(z) = Spx→q ◦ φpx

(x), is the same no matter the generator
x ∈ Spx we choose. Fix a q ∈ P and a z ∈ Sq, and consider the set G of generators whose
image in Sq is z, G := {(px, x) | px ≤ q, Spx→q(x) = z}.

Then, to check that φ is well-defined, for every two (px, x), (pw, w) ∈ G it must hold that

Spx→q ◦ φpx
(x) = Spw→q ◦ φpw

(w). (2)

If both (px, x) and (pw, w) are not in A, or if both (px, x) and (pw, w) are in A, then Equa-
tion (2) above trivially holds, by the way we have defined φ in Equation (1).

Thus, the only interesting case is that only one of (px, x) or (pw, w) is in A. Say that
(px, x) ∈ A and (pw, w) ̸∈ A. Then, by assumption both x and w need to be path-connected
to y at the graph Gε(Mσ) associated to q, which means that, as desired,

Spx→q ◦ φpx(x) = Spy→q(y) = Spw→q(w) = Spw→q ◦ φpw (w).

Now, φ is idempotent, because for every x ∈ A we have φ2
px

(x) = φpx
(Spy→px

(y)) =
Spy→px(φpy (y)) = Spy→px(y). And it is clear that the only generators that are not fixed by
φ are those in A. We conclude that, effectively, A is a rooted subset. ◀

Decomposition induced by rooted subsets. As we have seen, rooted subsets are related
to the clustering behavior of the points. They are also related to the decomposition of the
linearized persistence module: they induce summands.

▶ Theorem 12. Let φ be an idempotent endomorphism of a persistent set S. Then the
persistence module LS decomposes into

img(idLS − Lφ) ⊕ L(imgφ).

Proof. Since φ is idempotent, Lφ is idempotent. By Lemma 6, this induces a decomposition

LS ∼= img(id − Lφ) ⊕ img Lφ.

It is left to show that img Lφ ∼= L(imgφ). Applying Lemma 5 to Lφ, we have a factorization
Lφ : LS π−→ img Lφ ι−→ LS with π ◦ ι = id. Applying Lemma 5 again, this time to φ, we
have a factorization φ : S π′

−→ imgφ ι′

−→ S with π′ ◦ ι′ = id. Now, split endomorphisms are
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7:8 Decomposition of Zero-Dimensional Persistence Modules via Rooted Subsets

preserved by every functor: in the diagram LS Lπ′

−−→ L(imgφ) Lι′

−−→ LS it holds Lι′ ◦Lπ′ = Lφ
and Lπ′ ◦ Lι′ = id. Thus, the endomorphism Lφ splits in two ways:

img Lφ

LS LS

L(imgφ),

∼=

ιπ

Lπ′ Lι′

where the middle arrow exists and is an isomorphism by Lemma 4, finishing the proof. ◀

Combining the above theorem with the Krull-Schmidt theorem, we obtain the following:

▶ Corollary 13. A rooted subset of a persistent set S induces a summand in the decomposition
of LS. A rooted generator x ∈ Spx

induces an interval summand, and all other summands
can be obtained by decomposing L(imgφ), where φ is the endomorphism associated to x.

This allows to iteratively peel off intervals of a persistence module of the form LS: find a
rooted generator of S, with associated idempotent φ, and continue considering imgφ instead
of S. In the setting of an augmented metric space (M,d, f) and its density-Rips persistent
set, the intervals that are peeled off are easily interpretable through the clustering behavior
of the points M , by Proposition 10. Moreover, the conditions we describe actually happen in
practice, as we see in Section 5.

Neighborly rooted points. In fact, certain points of an augmented metric space (M,d, f)
can be seen to be rooted by looking at the nearest neighbors, which will be useful in Section 5.
In what follows we fix a total order on M compatible with the order induced by f . Recall
that the nearest neighbor of x is the element x′ ̸= x of minimum distance to x, where ties
have been broken by the fixed total order on M .

▶ Definition 14. Let (M,d, f) be an augmented metric space. An element x is neighborly
rooted if its nearest neighbor y ∈ M satisfies f(y) ≤ f(x).

▶ Lemma 15. With the notation as above, if a point x ∈ M is neighborly rooted then x is a
rooted generator in the density-Rips persistent set of (M,d, f).

Proof. It is clear that the nearest neighbor of x satisfies the conditions of Proposition 10. ◀

▶ Remark 16. We can identify all neighborly rooted points in the time it takes to solve the
all-nearest-neighbor problem. Naturally, the all-nearest-neighbor problem can be solved in
O(n2), where n is the number of points, by checking all possible pairs. When the points are
in Euclidean space, the running time can be improved to O(n log n) time [19,37].

Two notable intervals in the decomposition. The concept of rooted generators allows us
to prove that, in certain cases, we can find at least two intervals in the decomposition of
LS, as in Theorem 18 below. We first prove Theorem 17, which has already appeared in
[10, Theorem 5.3], where the proof method is to directly construct an endomorphism of the
persistence module, as we also do after composing with the linearization functor.

▶ Theorem 17. Let S be a persistent set. Suppose that the preordered set of generators of S
has a bottom ⊥ (that is, one has ⊥ ≤ x for any other generator x). Then the decomposition
of LS consists of at least one interval, induced by ⊥.
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Proof. Let ⊥ ∈ Sp⊥ be a bottom and let x ∈ Spx be a generator of S. Since ⊥ ∈ Sp⊥ is a
bottom, we have p⊥ ≤ px. We can define an idempotent φ : S → S by φpx

(x) = Sp⊥→px
(⊥)

for every generator x ∈ Spx
of S. This endomorphism is well-defined and its image has only

one generator, namely ⊥, and thus L(imgφ) is isomorphic to an interval module. ◀

▶ Theorem 18. Let (M,d, f) be an augmented metric space, and let S : P → Set be its
density-Rips persistent set, as in Definition 2. If |M | ≥ 2 then the decomposition of LS into
indecomposable summands consists of at least two intervals.

Proof. Consider a point ⊤ ∈ M of maximal function value, that is, f(⊤) ≥ f(x) for any
other x ∈ M . Let y be the nearest neighbor of ⊤. Since Mf(⊤) = Mσ for any σ ≥ f(⊤), it is
clear that ⊤ and its nearest neighbor y satisfy the conditions of Proposition 10, and thus ⊤
is a rooted generator, yielding the first interval. For the second interval, we note that there
is at least one point ⊥ ∈ M of minimal density value and apply Theorem 17. ◀

▶ Example 19. Not every summand of an indecomposable decomposition can be obtained
by taking rooted subsets and applying Corollary 13. As an example, consider the augmented
metric space given by six points {x0, . . . , x5} in the plane as in Figure 1. Note that x4 and x5
are rooted in the associated density-Rips persistent set, and that they can be peeled off. After
peeling, we obtain a persistent set S : P → Set with P := {0, 2, 3, 4} × {0, 1, 2, 3, 4, 5} ⊂ R2,
which we describe in Figure 2. This example is an adaptation of [14, Example 4.12], which is
introduced in the context of conquerors that we discuss in Section 4.

x0 x4 x1

x2x5x3

33

2 2

2 2

Figure 1 The augmented metric space (M, d, f) of Example 19, with f(xi) = i. These are six
points {x0, . . . , x5} in the plane, where the distances are given by the numbers next to each line.

We claim that the persistence module LS : P → Vec decomposes into four summands, all
of them interval modules. We denote these summands by I0, I1, I2 and I3, where each Ii is
associated to the generator (pi, xi) of S, where pi = (0, i) ∈ P . For each i = 0, . . . , 3, we set
(Ii)p = 0 for any p < pi and (Ii)pi

= K, and we define ιi : Ii → LS by

(ι0)p0(1) = [x0], (ι1)p1(1) = [x1] − [x0],
(ι2)p2(1) = [x2] − [x1], (ι3)p3(1) = [x3] − [x0] + [x1] − [x2].

The support of each Ii are the grades p ≥ pi such that ((LS)pi→p ◦ (ιi)pi
)(1) is not zero. It

can be seen that these maps induce a decomposition LS ∼= I0 ⊕ I1 ⊕ I2 ⊕ I3.
However, no subset of the generators other than {x1, x2, x3} is rooted because each of

the connected components given by {x1, x0}, {x1, x2}, {x2, x3}, and {x0, x3} appear in S.

4 Rooted generators as a generalization of the elder rule

Single-parameter case. We now suppose that the poset P is a finite totally ordered poset.
In this setting, the theory of rooted generators allows us to recover the elder rule [24] (see
also [22] and [14]).

SoCG 2023



7:10 Decomposition of Zero-Dimensional Persistence Modules via Rooted Subsets

ε = 4 x0 x0 x1 x0 x1
x2

x0 x1
x3 x2

x0 x1
x3 x2

x0 x1
x3 x2

ε = 3 x0 x0 x1 x0 x1
x2

x0 x1
x3 x2

x0 x1
x3 x2

x0 x1
x3 x2

ε = 2 x0 x0 x1 x0 x1
x2

x0 x1
x3 x2

x0 x1
x3 x2

x0 x1
x3 x2

ε = 0 x0 x0 x1 x0 x1
x2

x0 x1
x3 x2

x0 x1
x3 x2

x0 x1
x3 x2

σ
=

0
σ

=
1

σ
=

2
σ

=
3

σ
=

4
σ

=
5

Figure 2 The persistent set S : P → Set of Example 19 obtained by taking the density-Rips
persistence set of Figure 1 and removing x4 and x5. Each node in the grid represents a partition of
the xi, where xi and xj are in the same partition if they are not separated by a line. The arrows are
the functions that send the partition of xi in one node to the partition of xi in the other.

▶ Proposition 20. Let P be a finite totally ordered poset and let S : P → Set be a persistent
set. Suppose that S has at least two generators and that S⊤ is a singleton, where ⊤ is the
maximum element of P . Then every maximal generator (in the preorder of Definition 7) is
rooted.

Proof. Let x ∈ Spx
be a maximal generator, and define

Ix := {q ∈ P | q ≥ px and, for any other generator w ∈ Spw
, Spw→q(w) ̸= Spx→q(x)}.

Since px ∈ Ix, Ix is not empty, and we can consider the set U ⊂ P of upper bounds of Ix.
Moreover, since S⊤ = {∗} and there are at least two generators by assumption, the set U \ Ix

is not empty. Let α be the least element in U \ Ix. By construction of Ix and U \ Ix, there is
a generator y ∈ Spy

such that Spy→α(y) = Spx→α(x). Now, since x is maximal, it holds that
py ≤ px, and we can define an idempotent φ : S → S by φpx(x) = Spy→px(y), and φpz (z) = z

for any other generator z ∈ Spz
. Such an idempotent is well-defined by the way we have

defined α: if there is any other generator w ∈ Spw
such that Spw→q(w) = Spx→q(x) then

α ≤ q and also Spy→q(y) = Spx→q(x). We conclude that x is rooted, as desired. ◀

Thus, when P is a total order, we can decompose any persistence module LS by peeling off
rooted generators, following Theorem 12 and by iteratively considering maximal generators.

Relation to constant conquerors. Let (M,d, f) be an augmented metric space. Cai, Kim,
Mémoli and Wang [14] define the concept of a constant conqueror as follows. First, define an
ultrametric on M : u(x, x′) := min{ε ∈ [0,∞) | x and x′ are path-connected in Gε(M)}.

Now fix a total order ≺ on M and let x ∈ M be a non-minimal element with respect to
this order. A conqueror of x in M is another point x′ ∈ M such that (1) x′ ≺ x, and (2) for
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any x′′ with x′′ ≺ x one has u(x, x′) ≤ u(x, x′′). Given a function f : M → R, a conqueror
function of a non-minimal x ∈ M , with respect to ≺, is a function cx : [f(x),∞) → M

that sends each σ to a conqueror of x in Mσ. For the minimal element ⊥ of M we define
c⊥ : [f(⊥),∞) → M to be the constant function at ⊥.

Also, in the same paper [14], given a point x ∈ M , and assuming that f : M → R is
injective, the authors define the staircode of x as the set given by

Ix := {(ε, σ) ∈ R≥0 × R | x ∈ Mσ and x is the oldest in [x](ε,σ)},

where [x](ε,σ) is the set of points that are path-connected to x in Gε(Mσ) and being the
“oldest” means f(x) < f(x′) for any other x′ ∈ [x](ε,σ). The authors also define an analogous
notion when f is not injective, which we do not reproduce here.

Finally, the authors ask the following question:

▶ Question 21. Let (M,d, f) be an augmented metric space. If x ∈ M has a constant
conqueror function, is the interval module supported by Ix a summand of its density-Rips
persistence module?

If we replace constant conqueror by rooted generator then the answer is yes, by Corollary 13.
The next example shows that the same cannot hold as originally stated in the question above.

▶ Example 22. Consider the subset M of R given by the points x0 = 0, x1 = 7.5, x2 = 3
and x3 = 5. Under the metric induced by the Euclidean distance on R, M is a metric space,
and can be made into an augmented metric space by defining f(xi) = i, see Figure 3.

x0 x2 x3 x1

3 2 2.5
M

Figure 3 The augmented metric space (M, d, f) of Example 22, with M ⊂ R and f(xi) = i.

σ = 3 x0 x1
x3 x2

x0 x1
x3 x2

x0 x1
x3 x2

x0 x1
x3 x2

x0 x1
x3 x2

x0 x1
x3 x2

σ = 2 x0 x1
x2

x0 x1
x2

x0 x1
x2

x0 x1
x2

x0 x1
x2

x0 x1
x2

σ = 1 x0 x1 x0 x1 x0 x1 x0 x1 x0 x1 x0 x1

σ = 0 x0 x0 x0 x0 x0 x0

ε
=

0
ε
=

2
ε
=

2.5

ε
=

3
ε
=

4.5

ε
=

7.5

Figure 4 We picture the density-Rips persistent set of Figure 3.
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σ = 3 K2 K2 K 0 0 0

σ = 2 K2 K2 K2 K 0 0

σ = 1 K K K K K 0

σ = 0 0 0 0 0 0 0

ε
=

0
ε
=

2
ε
=

2.5

ε
=

3
ε
=

4.5

ε
=

7.5

(1 1)

(1 0)
(1 1)

(
1
0

) (
1
0

) (
1
0

)

Figure 5 An indecomposable persistence module F : P → Vec, as referenced in Example 22.

Consider the only total order ≺ on M compatible with f , x0 ≺ x1 ≺ x2 ≺ x3. The
point x1 has a constant conqueror: x0 is the only candidate, and it is clear that, for every
i = 1, . . . , 3 and x′ ≺ x1, ui(x1, x0) ≤ ui(x1, x

′), where ui is the ultrametric of Mi, precisely
because x0 is the only point that satisfies x′ ≺ x1.

Let S : P → Set be the density-Rips persistent set constructed from the augmented metric
space (M,d, f). Here, P is the subposet of R2 given by {0, 2, 2.5, 3, 4.5, 7.5} × {0, 1, 2, 3},
where the first coordinate represents the distances and the second coordinate the densities.
We picture S in Figure 4. Now we proceed to decompose LS. First, note that x3 is a
rooted generator, and consider an associated idempotent φ : S → S. By Theorem 12, there
is an interval I := img(idLS − Lφ) in the decomposition, and we can continue considering
the persistent set imgφ. In imgφ, x0 is a minimal generator. By Theorem 17 (and its
proof) there is an idempotent ψ : imgφ → imgφ such that I ′ := img Lψ is an interval.
Applying Theorem 12 again, we obtain a decomposition of LS of the form

I ⊕ I ′ ⊕ img(idL img φ − Lψ).

By direct computation, it can be seen that img(idL img φ −Lψ) is isomorphic to the persistence
module described in Figure 5. Moreover, this persistence module is indecomposable, which
can be checked by looking at its endomorphisms: a persistence module F is indecomposable if
and only if every endomorphism of F is either nilpotent or an isomorphism (see [9], and [10]).

Note that x1 is not a rooted generator in LS. In M1, x1 is its own connected component
during ε ∈ [0, 7.5), until x0 joins the connected component. And in M3 it is by itself during
ε ∈ [0, 2.5) and then joins the connected component of x3, which is not connected to x0 at
that point. Similarly, x2 is not rooted.

▶ Remark 23. Note that in Condition (2) of the definition of conqueror, we require that x′′ ≺ x.
This requirement measures part of the difference between constant conqueror function and
rooted generator for augmented metric spaces. If we drop this requirement, denoting the
resulting concept by conqueror∗, we suppose that f is injective, and that ≺ is compatible
with the order induced by f , then a non-minimal, with respect to ≺, point x ∈ M has a
constant conqueror∗ function if and only if x is a rooted generator, as in Proposition 10.
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5 A lower bound on the number of expected intervals

We apply the theory we have developed to the study of how a typical decomposition of a
persistence module coming from density-Rips might look like. In particular, suppose we
sample independently n points from a common density function f(x) in Rd, obtaining a
finite metric space M ⊂ Rd. We can then consider the augmented metric space (M,dM , f),
where f , rather than being an estimated density, is the true underlying density function.
This setting resembles actual practice, but is more suitable to theoretical study. Let S
be the density-Rips persistent set of M . Then, how many intervals can we expect in the
decomposition of LS? The following theorem says that, under very general conditions on f ,
regardless of d, and as n goes to infinity, we can at least expect 25% of the summands to be
intervals.

▶ Theorem 24. Let X1, . . . , Xn be i.i.d. points taking values in Rd, sampled from a common
density function f(x) that is continuous almost everywhere with respect to the Lebesgue
measure.

Consider the finite augmented metric space (M = {X1, . . . , Xn}, dM , f), where dM is
induced by the Euclidean metric in Rd, and let S be its density-Rips persistent set.

Let In be the random variable that counts the number of intervals in the indecomposable
decomposition of LS, and let Sn be the random variable that counts the total number of
summands in the same decomposition. We have

lim inf
n→∞

E
[
In

Sn

]
≥ c(d), (3)

where c(d) is a constant that depends on d, and c(1) = 1
3 , c(2) ≈ 0.31 and c(d) ↓ 1

4 as d → ∞.

The rest of the section is dedicated to proving this theorem. The nearest neighbor graph of
a metric space plays a fundamental role.

▶ Definition 25. The nearest neighbor graph of M is the directed graph on M given by
the directed edges of the form (x, x′), where x′ is the nearest neighbor of x.

Now, we are interested in estimating the number of neighborly rooted elements, as
in Definition 14, as they induce an interval in the decomposition of LS. However, in general
being neighborly rooted depends on f . To do without the condition on f we have:

▶ Lemma 26. Let (M,dM , f) be an augmented metric space and let S be its density-Rips
persistent set. There are at least as many intervals in the indecomposable decomposition of
LS as 2-cycles in the nearest neighbor graph of M .

Proof. We can assume without loss of generality that |M | ≥ 2. Let G be the nearest
neighbor graph of M . The only cycles in this graph are precisely the 2-cycles, and each
weakly connected component of G contains exactly one 2-cycle (see [25]).

Let C1, . . . , Ck be the weakly connected components of G. Fix i ∈ {1, . . . , k}, and let
x, y ∈ M be such that (x, y) and (y, x) is the 2-cycle in Ci. Either f(y) ≤ f(x) or f(x) ≤ f(y),
and either x is neighborly rooted, y is neighborly rooted, or both are neighborly rooted. Say
x is neighborly rooted, and define an endomorphism φi : S → S by setting

(φi)pz
(z) =

{
Spy→px

(y), if x = z,
z, otherwise,

for every generator z ∈ Spz . Such an endomorphism is well-defined as shown in Proposition 10.
Constructing, for each i, an idempotent φi as above, it is clear that we can iteratively

peel off the associated intervals, yielding the desired conclusion. ◀
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Naturally, the number of 2-cycles is half the number of points that are the nearest neighbor
of its nearest neighbor. The problem of estimating the probability for a point to be the
nearest neighbor of its nearest neighbor, assuming a random point process, has been studied
by multiple authors (see [21,25,26,27,35]).

In our case, when we have X1, . . . , Xn i.i.d. points in Rd sampled from a common density
function f under the conditions of Theorem 24, by [27, Theorem 1.1], and letting Ni,n denote
the probability event that Xi is the nearest neighbor of its nearest neighbor, we have

lim
n→∞

P(Ni,n) = b(d), (4)

where b(d) is the volume of a unit d-sphere divided by the volume of the union of two unit
spheres with centers at distance 1. In fact, b(1) = 2

3 , b(2) ≈ 0.621, and b(d) ↓ 1
2 as d → ∞

(see [35, Table 2]), and we define c(d) := b(d)
2 .

We are now ready to finish the proof of Theorem 24 at the start of the section. Apply-
ing Lemma 26 and the linearity of expectation, it holds

E[In] ≥ E
[

n∑
i=1

I(Ni,n)
2

]
=

n∑
i=1

E[I(Ni,n)]
2 =

n∑
i=1

P(Ni,n)
2 ,

where I(Ni) is the indicator random variable of Ni,n. By Equation (4) we have

lim inf
n→∞

E
[
In

n

]
≥ b(d)

2 = c(d).

Finally, noting that the number of summands in the decomposition is bounded by the number
of points, Sn ≤ n (see full version), Equation (3) of Theorem 24 follows, finishing the proof.

6 Discussion

Although we have focused our attention to augmented metric spaces and density-Rips,
rooted subsets can be applied to other persistent sets. Of special interest for us is the
degree-Rips filtration [5] of a metric space, where we filter by the degree of the vertices in the
underlying geometric graphs. To accommodate this situation, one could modify condition 1
of Proposition 10 to take into account the evolution of the degrees, rather than the density.
We leave an in-depth treatment of this case for future work.

We have seen, both in our lower bound of Section 5 and in preliminary experimental
evaluation, that we can expect to find many intervals in the decomposition of those persistence
modules coming from geometry, at least in the cases considered here. This is in contrast
to the purely algebraic setting, where, in light of recent developments [2, 3], looking for a
decomposition might fall short.
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8:2 On Helly Numbers of Exponential Lattices

1 Introduction

Helly’s theorem [11] is one of the most classical results in combinatorial geometry. It states
that, for each d ∈ N, if the intersection of any d+ 1 or fewer members of a finite family F of
convex sets in Rd is nonempty, then the entire family F has nonempty intersection. There
have been numerous variants and generalizations of this famous result; see [1, 13] for example.
One active direction of this research with rich connections to the theory of optimization, in
particular to integer programming and LP-type problems [1, 4], is the study of variants of
Helly’s theorem with coordinate restrictions, which is captured by the following definition.

Let d be a positive integer. The Helly number of a set S ⊆ Rd, denoted by H(S), is
the smallest positive integer N , if it exists, such that the following statement is true for
every finite family F of convex sets in Rd: if the intersection of any N or fewer members
of F contains at least one point of S, then

⋂
F contains at least one point of S. If no such

number N exists, then we write H(S) = ∞. Helly’s theorem in this language can be restated
as H(Rd) = d+ 1.

A classical result of this sort is Doignon’s theorem [8] where the set S is the integer
lattice Zd. This result, which was also independently discovered by Bell [3] and by Scarf [15],
states that H(Zd) ≤ 2d. This is tight as for Q = {0, 1}d the intersection of any 2d − 1 sets in
the family {conv(Q \ {x}) : x ∈ Q} contains a lattice point, but the intersection of all 2d sets
does not.

The theory of Helly numbers of general sets is developing quickly and there are many
results of this kind [1, 13]. For example, De Loera, La Haye, Oliveros, and Roldán-Pensado [5]
and De Loera, La Haye, Rolnick, and Soberón [6] studied the Helly numbers of differences of
lattices and Garber [9] considered Hely numbers of crystals or cut-and-project sets.

The Helly number of a set S is closely related to the maximum size of a set that is
empty in S. A subset X ⊆ S is intersect-empty if

(⋂
x∈X conv(X \ {x})

)
∩ S = ∅. A convex

polytope P with vertices in S is empty in S if P does not contain any points of S other than
its vertices. In particular, an empty polytope does not contain points of S in the interior of
its edges. For a discrete set S, we use h(S) to denote the maximum number of vertices of an
empty polytope in S. If there are empty polytopes in S with arbitrarily large number of
vertices, then we write h(S) = ∞.

The following result by Hoffman [12] (which was essentially already proved by Doignon [8])
shows the close connection between intersect-empty sets and empty polygons in S and the
S-Helly numbers; see also [2].

▶ Proposition 1 ([12]). If S ⊆ Rd, then H(S) is equal to the maximum cardinality of an
intersect-empty set in S. If S is discrete, then H(S) = h(S).

Since all the sets S studied in this paper are discrete, we state all of our results using
h(α) but, due to Proposition 1, our results apply to H(α) as well.

Very recently, Dillon [7] proved that the Helly number of a set S is infinite if S belongs
to a certain collection of product sets, which are sets of the form S = Ad with a certain kind
of discrete set A ⊆ R. His result shows, for example, that whenever p is a polynomial of
degree at least 2 and d ≥ 2, then h({p(n) : n ∈ N0}d) = ∞. However, there are sets for which
Dillon’s method gives no information, for example {2n : n ∈ N0}2. Thus, Dillon [7] posed the
following question, which motivated our research.

▶ Problem 1 (Dillon, [7]). What is h({2n : n ∈ N0}2)?

In this paper, we study the Helly numbers of exponential lattices L(α) and L(α, β) in the
plane where L(α) = {αn : n ∈ N0}2 and L(α, β) = {αn : n ∈ N0} × {βn : n ∈ N0} for real
numbers α, β > 1. In particular, we prove that Helly numbers of exponential lattices L(α)
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are finite and we provide several estimates that give exact values for α sufficiently large,
solving Problem 1. We also show that Helly numbers of exponential lattices L(α, β) are finite
if and only if logα(β) is rational.

2 Our results

For a real number α > 1 and the exponential lattice L(α) = {αn : n ∈ N0}2, we abbreviate
h(L(α)) by h(α).

As our first result, we provide finite bounds on the numbers h(α) for any α > 1. The
upper bounds are getting smaller as α increases and reach their minimum at α = 2.

▶ Theorem 2. For every real α > 1, the maximum number of vertices of an empty polygon
in L(α) is finite. More precisely, we have h(α) ≤ 5 for every α ≥ 2, h(α) ≤ 7 for every
α ∈ [ 1+

√
5

2 , 2), and

h(α) ≤ 3
⌈

logα
(

α

α− 1

)⌉
+ 3

for every α ∈ (1, 1+
√

5
2 ).

We note that if α = 1 + 1
x for x ∈ (0,∞), then the bound from Theorem 2 becomes

h(1 + 1
x ) ≤ O(x log2(x)). Moreover, we show that the breaking points of α for our upper

bounds are determined by certain polynomial equations; see Section 3.
We also consider the lower bounds on h(α) and provide the following estimate.

▶ Theorem 3. We have h(α) ≥ 5 for every α ≥ 2 and h(α) ≥ 7 for every α ∈
[

1+
√

5
2 , 2

)
.

For every α ∈
(

1, 1+
√

5
2

)
, we have

h(α) ≥

⌊√
1

α− 1

⌋
.

If α = 1 + 1
x where x ∈ (0,∞), then the lower bound from Theorem 3 becomes h(1 + 1

x ) ≥
⌊
√
x⌋. So with decreasing α, the parameter h(α) indeed grows to infinity.
By combining Theorems 2 and 3, we get the precise value of the Helly numbers of L(α)

with α ≥ (1 +
√

5)/2. In particular, for α = 2, we obtain a solution to Problem 1.

▶ Corollary 4. We have h(α) = 5 for every α ≥ 2 and h(α) = 7 for every α ∈ [ 1+
√

5
2 , 2).

We prove the following result which shows that even a slight perturbation of S can affect
the value h(S) drastically (note that this also follows by adding large empty polygons to S
without changing its asymptotic density). The proof is omitted here. We use the Fibonacci
numbers (Fn)n∈N0 , which are defined as F0 = 1, F1 = 1 and Fn = Fn−1 + Fn−2 for every
integer n ≥ 2.

▶ Proposition 5. We have h({Fn : n ∈ N0}2) = ∞.

We recall that Fn = φn+1−ψn+1
√

5 for every n ∈ N0, where φ = 1+
√

5
2 is the golden

ratio and ψ = 1−
√

5
2 = 1 − φ is its conjugate. Since ψ < 1, this formula shows that

the points of {Fn : n ∈ N0}2 are approaching the points of the scaled exponential lattice
φ√

5 · L(φ) = { φ√
5 · φn : n ∈ N0}2. Thus, Proposition 5 is in sharp contrast with the fact

SoCG 2023
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that h( φ√
5 · L(φ)) = h(φ) ≤ 7, which follows from Theorem 2 and from the fact that affine

transformations of any set S ⊆ Rd do not change h(S). We also note Dillon’s method [7]
does not imply h({Fn : n ∈ N0}2) = ∞.

We also consider the more general case of exponential lattices where the rows and the
columns might use different bases. For real numbers α > 1 and β > 1, let L(α, β) be the set
{αn : n ∈ N0} × {βn : n ∈ N0}. Note that L(α) = L(α, α) for every α > 1.

As our last main result, we fully characterize exponential lattices L(α, β) with finite Helly
numbers h(L(α, β)), settling the question of finiteness of Helly numbers of planar exponential
lattices completely.

▶ Theorem 6. Let α > 1 and β > 1 be real numbers. Then h(L(α, β)) is finite if and only if
logα(β) is a rational number.

Moreover, if logα(β) ∈ Q, that is, β = αp/q for some p, q ∈ N, then⌊
1
pq

⌊√
1

α1/q − 1

⌋⌋
≤ h(L(α, β)) ≤ pq · h(αp).

The proof of the ’only if’ part of Theorem 6 is based on the theory of continued fractions
and Diophantine approximation. The details are discussed in Section 5. The proof of the ’if’
part of Theorem 6 is based on Theorem 2 and is omitted here.

Open problems
First, it is natural to try to close the gap between the upper bound from Theorem 2 and the
lower bound from Theorem 3 and potentially obtain new precise values of h(α).

Second, we considered only the exponential lattice in the plane, but it would be interesting
to obtain some estimates on the Helly numbers of exponential lattices {αn : n ∈ N0}d in
dimension d > 2.

We also mention the following conjecture of De Loera, La Haye, Oliveros, and Roldán-
Pensado [5], which inspired the research of Dillon [7].

▶ Conjecture 7 ([5]). If P is the set of prime numbers, then h(P2) = ∞.

Using computer search, Summers [16] showed that h(P2) ≥ 14.

3 Proof of Theorem 2

Here, we prove Theorem 2 by showing that the number h(α) is finite for every α > 1. This
follows from the upper bounds h(α) ≤ 5 for α ≥ 2, h(α) ≤ 7 for every α ≥ [ 1+

√
5

2 , 2), and

h(α) ≤ 3
⌈

logα
(

α

α− 1

)⌉
+ 3

for any α ∈ (1, 1+
√

5
2 ).

We start by introducing some auxiliary definitions and notation. Let α > 1 be a real
number and consider the exponential lattice L(α). For i ∈ N0, the ith column of L(α) is the
set {(αi, αn) : n ∈ N0}. Analogously, the ith row of L(α) is the set {(αn, αi) : n ∈ N0}.

For a point p in the plane, we write x(p) and y(p) for the x- and y-coordinates of p,
respectively. Let P be an empty convex polygon in L(α). Let e be an edge of P connecting
vertices u and v where x(u) < x(v) or y(u) < y(v) if x(u) = x(v). We use e to denote the line
determined by e and oriented from u to v. The slope of e is the slope of e, that is, y(v)−y(u)

x(v)−x(u) .
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We distinguish four types of edges of P ; see part (a) of Figure 1. First, assume x(u) ̸= x(v)
and y(u) ̸= y(v). We say that e is of type I if the slope of e is negative and P lies to the
right of e. Similarly, e is of type II if the slope of e is positive and P lies to the right of e.
An edge e has type III if the slope of e is negative and P lies to the left of e. Finally, type
IV is for e with positive slope and with P lying to the left of e. It remains to deal with
horizontal and vertical edges of P . A horizontal edge e is of type II if P lies below e and is
of type III otherwise. Similarly, a vertical edge e is of type IV if P lies to the left of e and is
of type III otherwise.

(a) (b)

I
II

III IV

0

u = (αk, α`)

v = (αk+m, α`−n)

(αk+m+r, 0)︸ ︷︷ ︸
≤ r − 1

Figure 1 (a) The four types of edges of a convex polygon. (b) An illustration of the proof of
Lemma 8.

Note that each edge of P has exactly one type and that the types partition the edges
of P into four convex chains. We first provide an upper bound on the number of edges of
those chains of P and then derive the bound on the total number of edges of P by summing
the four bounds. We start by estimating the number of edges of P of type I.

▶ Lemma 8. The polygon P has at most
⌈
logα

(
α
α−1

)⌉
edges of type I.

Proof. First, let r =
⌈
logα

(
α
α−1

)⌉
and note that r ≥ 1 as α > 1. Let e be the left-most

edge of P of type I and let u and v be vertices of e. Since e is of type I, we have u = (αk, αℓ)
and v = (αk+m, αℓ−n) for some positive integers k, ℓ, m, and n.

We will show that the point (αk+m+r, 0) lies above the line e. Since there are at most
r − 1 columns of L(α) between the vertical line containing v and the vertical line containing
(αk+m+r, 0) and the point (αk+m+r, 0) is below the lowest row of L(α), it then follows that
there are at most r edges of P of type I; see part (b) of Figure 1.

Since the line e contains u and v, we see that

e = {(x, y) ∈ R2 : (αℓ − αℓ−n)x+ (αk+m − αk)y = αk+ℓ+m − αk+ℓ−n}.

It suffices to check that by substituting the coordinates of the point (αk+m+r, 0) into the
equation of the line e results in a left side that is at least αk+ℓ+m − αk+ℓ−n. The left side
equals αk+ℓ+m+r − αk+ℓ+m−n+r and thus we want

αk+ℓ+m+r − αk+ℓ+m−n+r ≥ αk+ℓ+m − αk+ℓ−n.

By dividing both sides by αk+ℓ and by rearranging the terms, we can rewrite this expression
as

α−n(1 − αm+r) ≥ αm − αm+r.

Since m, r > 0 and α > 1, we get (1 − αm+r) < 0 and thus the left side is increasing as n
increases, so we can assume n = 1, leading to

α−1 − αm+r−1 ≥ αm − αm+r.

SoCG 2023



8:6 On Helly Numbers of Exponential Lattices

We can again rearrange the inequality as

αr − αr−1 − 1 ≥ −α−1−m,

where the right side is negative and approaches 0 as m tends to infinity, so we can replace it
by 0, obtaining

αr − αr−1 ≥ 1.

This inequality is satisfied by our choice of r. ◀

We now estimate the number of edges of P that are of type III.

▶ Lemma 9. The polygon P has at most 2⌈logα
(
α+1
α

)
⌉ + 1 edges of type III for 1 < α < 2

and at most 2 such edges for α ≥ 2.

(b)

0

u
v v′

W

(a)

0 x(vs+t+2)
αt

v′ vs+t+2

v1

v2

v3

y(v1)
αs

Q

v′′

Figure 2 (a) An illustration of the proof of Lemma 9 for s = 1 = t. (b) An illustration of
Lemma 10.

Proof. Let t = ⌈logα
(
α+1
α

)
⌉ and s = t+ 1 for α ∈ (1, 2) and t = 1 = s for α ≥ 2. Suppose

for contradiction that there are s+ t+ 1 edges of P of type III. Let v1, . . . , vs+t+2 be the
vertices of the convex chain that is formed by edges of P of type III. We use Q to denote the
convex polygon with vertices v1, . . . , vs+t+2. Note that Q is empty in L(α) as P is empty
and Q ⊆ P .

Let v′ be the point (x(vs+2), α · y(vs+2)), that is, v′ is the point of L(α) that lies just
above vs+2; see part (a) of Figure 2. We will show that the point v′ lies below the line
v1vs+t+2. Since v′ lies in the same column of L(α) as vs+2, this then implies that v′ lies in
the interior of Q, contradicting the fact that Q is empty in L(α).

Note that x(v′) ≤ x(vs+t+2)
αt and y(v′) ≤ y(v1)

αs as all edges vivi+1 are of type III and
thus the x- and y-coordinates decrease by a multiplicative factor at least α for each such
edge. Since the only vertical edge might be v1v2 and the only horizontal edge might be
vs+t+1vs+t+2, the x- or y-coordinates indeed decrease by the factor α at each step.

Let v1 = (αk, αℓ) and vs+t+2 = (αk+m, αℓ−n) for some positive integers k, ℓ,m, n. Note
that m,n ≥ s+ t. The line determined by v1 and vs+t+2 is then

{(x, y) ∈ R2 : (αℓ − αℓ−n)x+ (αk+m − αk)y = αk+ℓ+m − αk+ℓ−n}.

Since x(v′) ≤ x(vs+t+2)
αt and y(v′) ≤ y(v1)

αs , it suffices to check

(αℓ − αℓ−n)α
k+m

αt
+ (αk+m − αk)α

ℓ

αs
< αk+ℓ+m − αk+ℓ−n.
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After dividing by αk+ℓ+m, this can be rewritten as

α−t + α−s < 1 − α−m−n + α−t−n + α−s−m.

Since m,n ≥ s+ t, the right hand side is decreasing with increasing m and n and thus we
only need to prove

α−s + α−t ≤ 1.

If α ≥ 2, then s = 1 = t and this inequality becomes 2/α ≤ 1, which is true. If α ∈ (1, 2),
then s = t+ 1 and the inequality becomes 1 + 1/α ≤ αt which holds by our choice of t. ◀

It remains to bound the number of edges of P that are of types II and IV. Observe that if
we switch the x- and y- coordinates of P , then edges of type II become edges of type IV and
vice versa. Since the exponential lattice L(α) is symmetric with respect to the line x = y, we
see that it suffices to estimate the number of edges of type II. To do so, we use the following
auxiliary result, the proof of which is omitted here.

▶ Lemma 10. Let u be a point of L(α) and let v and v′ be two points of L(α) that are
consecutive in a row R of L(α) that lies above the row containing u; see part (b) of Figure 2.

Then, all points of L(α) that lie above R in the interior of the wedge W spanned by the
lines uv and uv′ lie on at most

⌈
logα( α

α−1 )
⌉

lines containing the origin.

Now, we can apply Lemma 10 to obtain an upper bound on the number of edges of P of
type II.

▶ Lemma 11. The polygon P has at most
⌈
logα

(
α
α−1

)⌉
+ 1 edges of type II.

Proof. Again, let r =
⌈
logα

(
α
α−1

)⌉
. Let u be the leftmost vertex of the convex chain C

determined by the edges of P of type II. Similarly, let v be the second leftmost vertex of C.
Note that since the edge uv is of type II, the vertex v lies in a row R of L(α) above the row
containing u. Let v′ be the point (α · x(v), y(v)), that is, point of L(α) that is to the right
of v on R.

Then, by Lemma 10, all points of L(α) that lie above R and in the interior of the wedge
W spanned by the lines uv and uv′ lie on at most r lines containing the origin.

Since P is empty in L(α), all vertices of C besides u and v and possibly v′ lie in W

above R. Since all edges of C are of type II, every line determined by the origin and by a
point of L(α) from the interior of W contains at most one vertex of C.

Note that if v′ is a vertex of C, then the only vertices of C are u, v, v′. Thus, in total C
has at most r + 2 vertices and therefore at most r + 1 edges. ◀

We recall that, by symmetry, the same bound applies for edges of type IV and thus we
get the following result.

▶ Corollary 12. The polygon P has at most
⌈
logα

(
α
α−1

)⌉
+ 1 edges of type IV. ◀

Since each edge of P is of one of the types I–IV, it immediately follows from Lemmas 8, 9, 11,
and from Corollary 12 that the number of edges of P is at most

3
⌈

logα
(

α

α− 1

)⌉
+ 2 + 2

⌈
logα

(
α+ 1
α

)⌉
+ 1 ≤ 5

⌈
logα

(
α

α− 1

)⌉
+ 3,

SoCG 2023



8:8 On Helly Numbers of Exponential Lattices

as logx
(

x
x−1

)
≥ logx

(
x+1
x

)
for every x > 1. In particular, this gives h(2) ≤ 8 and

h
(

1+
√

5
2

)
≤ 13. To obtain better bounds that are tight for α ≥ 1+

√
5

2 , we observe that not
all types can appear simultaneously. To show this, we will use one last auxiliary result.

Let p and q be (not necessarily different) points lying on the same row R of R(α), each
contained in an edge of P . Let L and L′ be two lines containing p and q, respectively. If the
slopes of L and L′ are negative, then we call the part of the plane between L and L′ below
R a slice of negative slope; see part (a) of Figure 3 Analogously, a slice of positive slope is
the part of the plane between L and L′ above R if L and L′ have positive slope.

(a) (b)

0

P

q
p

L′

L

R

0

P

q
p

L′

L

R

vw

u

Figure 3 (a) An example of a slice of negative slope. The slice is denoted by dark gray stripes.
(b) An illustration of the proof of Lemma 13 for negative slopes.

▶ Lemma 13. If the empty polygon P is contained in a slice of negative slope, then there is
no non-vertical edge of P of type IV. Similarly, if P is contained in a slice of positive slope,
then there is no edge of type I.

Proof. By symmetry, it suffices to prove the statement for slices of negative slope. Suppose
for contradiction that there is a non-vertical edge uv of type IV in a slice of negative slope
determined by lines L and L′ and points p and q as in the definition of a slice. Without loss
of generality, we assume x(u) < x(v).

Consider the point w = (x(u), y(v)) of L(α). Since uv is non-vertical, we have w /∈ {u, v}.
We claim that w is in the interior of P , contradicting the assumption that P is empty in L(α).
Since uv is of type IV, the point u lies below the row containing w. However, since p is
contained in an edge of P and P is in the slice, the boundary of P intersects this row to the
left of w. Analogously, v is to the right of the column containing w and thus the boundary
of P intersects this column above w. Then, however, w lies in the interior of P . ◀

Finally, we can now finish the proof of Theorem 2.

Proof of Theorem 2. First, we observe that if all vertices of P lie on two columns of L(α),
then P can have at most four vertices. So we assume that this is not the case. Let u be the
leftmost vertex of P with the highest y-coordinate among all leftmost vertices of P . Let e1
and e2 be the edges of P incident to u. We denote the other edge of P incident to e1 as e.
We also use tI , tII , tIII , and tIV to denote the number of edges of P of type I, II, III, and
IV, respectively.

First, assume that e1 is vertical. If e2 is horizontal, then, since u is the top vertex of e1
and P is not contained in two columns of L(α), the point (α · x(u), y(u)/α) of L(α) lies in
the interior of P , which is impossible as P is empty in L(α).

If e1 is vertical and the slope of e2 is negative, then there is no edge of type II. Thus,
the edge e intersects the row R of L(α) containing the other vertex of e1 and e has negative



G. Ambrus, M. Balko, N. Frankl, A. Jung, and M. Naszódi 8:9

(a) (b) (c) (d)

e1

u

R

e2

e

e1

u R
e2

e

e1

u R

e2

e2

u

e1

u R
e

Figure 4 An illustration of the proof of Theorem 2.

slope. Then, the part of P below R is contained in the slice of negative slope determined by
e2 and e; see part (a) of Figure 4. By Lemma 13, there is no non-vertical edge of type IV
in P . By Lemmas 8 and 9, the total number of edges of P is thus at most

tI + tIII + 1 ≤
⌈

logα
(

α

α− 1

)⌉
+ 2

⌈
logα

(
α+ 1
α

)⌉
+ 2

for α ∈ (1, 2) and is by one smaller for α ≥ 2.
If e1 is vertical and the slope of e2 is positive, then, since P is empty, there is no edge of

type III besides e1 as otherwise the point (α · x(u), y(u)) of L(α) is in the interior of P . The
edge e intersects the row R of L(α) containing u and e has positive slope. Thus, the part
of P above R is contained in the slice of positive slope determined by e2 and e; see part (b)
of Figure 4. By Lemma 13, there is no edge of type I in P . By Lemma 11 and Corollary 12,
the total number of edges of P is then at most

tII + 1 + tIV ≤ 2
⌈

logα
(

α

α− 1

)⌉
+ 3.

In the rest of the proof, we can now assume that none of the edges e1 and e2 is vertical.
We can label them so that the slope of e1 is larger than the slope of e2.

First, assume that the slope of e1 is positive and the slope of e2 is negative. Then, since
the vertices of P do not lie on two columns of L(α), the point (α · x(u), y(u)) is contained in
the interior of P , which is impossible as P is empty in L(α).

If the slopes of e1 and e2 are both non-positive, then there is no edge of type II besides
the possibly horizontal edge e1 as u is the leftmost vertex of P . By Lemma 13, there is also
no non-vertical edge of type IV as P is contained in the slice of negative slopes determined
by e1 and e2 or by e and e2 if e1 is horizontal; see part (c) of Figure 4. Thus, by Lemmas 8
and 9, the number of edges of P is at most

tI + 1 + tIII + 1 ≤
⌈

logα
(

α

α− 1

)⌉
+ 2

⌈
logα

(
α+ 1
α

)⌉
+ 3

for α ∈ (1, 2) and is by one smaller for α ≥ 2.
If the slopes of e1 and e2 are both non-negative, then there is no edge of type III besides

the possibly horizontal edge e2 (note that a vertical edge of type III would have u as its
bottom vertex, which is impossible by the choice of u). Then, P is contained in the slice of
positive slope determined by e1 and e2 or, if e2 is horizontal, by e1 and e; see part (d) of
Figure 4. Lemma 13 then implies that there is also no edge of type I. We thus have at most

tII + 1 + tIV ≤ 2
⌈

logα
(

α

α− 1

)⌉
+ 3
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edges of P by Lemma 11 and Corollary 12.
Altogether, the upper bound on the number of edges of P is

max
{⌈

logα
(

α

α− 1

)⌉
+ 2

⌈
logα

(
α+ 1
α

)⌉
+ 3, 2

⌈
logα

(
α

α− 1

)⌉
+ 3

}
for α ∈ (1, 2) and the first term is smaller by 1 for α ≥ 2. This becomes 5 for α ≥ 2,
h(α) ≤ 7 for α ≥ [ 1+

√
5

2 , 2), and at most 3
⌈
logα

(
α
α−1

)⌉
+ 3 otherwise, since

⌈
logα

(
α+1
α

)⌉
≤⌈

logα
(

α
α−1

)⌉
for every α ∈ (1, 1+

√
5

2 ). ◀

4 Proof of Theorem 3

We prove the lower bounds on h(α) through the following three propositions.

▶ Proposition 14. For every α ≥ 2, we have h(α) ≥ 5.

Proof. It is easy to check that conv{(1, α2), (α, α), (α2, 1), (α2, α), (α, α2)} is an empty poly-
gon in L(α) with 5 vertices for any α. ◀

▶ Proposition 15. For every α ∈ [ 1+
√

5
2 , 2), we have h(α) ≥ 7.

Q(α)

Figure 5 An illustration of the proof of Proposition 15.

Proof. Let k = k(α) be a sufficiently large integer, and let

Q(α) = {(1, αk), (αk−2, αk−1), (αk−1, αk−2), (αk, 1), (αk, α), (αk−1, αk−1), (α, αk)};

see Figure 5. We will show that conv(Q(α)) is an empty polygon in L(α) with 7 vertices.
First, we show that Q(α) \ {(αk−1, αk−1)} is in convex position. For this, by symmetry, it

is enough to check that the vector (αk−1, αk−2)−(αk, 1) is to the left of (1, αk)−(αk, 1). This
is the case exactly if αk−1 −αk +αk−2 − 1 < 0. By rearranging we get αk−2(α+ 1 −α2) < 1,
which holds for any k, since α+ 1 − α2 ≤ 0 as α ≥ (1 +

√
5)/2.

Now, to show that the set Q(α) is in convex position, it is sufficient to check that
(αk−1, αk−1) − (αk, α) is to the left of (1, αk) − (αk, α). This holds exactly if αk−1 − αk +
αk−1 − α ≥ 0. By rearranging we get 2αk−2(2 − α) ≥ 1. Since 1 < α < 2, this holds if k is
sufficiently large.

Thus, conv(Q(α)) has 7 vertices. To show that conv(Q(α)) is empty in L(α), we remark
that points of the exponential lattice L(α) with at least one coordinate smaller than αk−1

are below the line through (αk−1, αk−2) and (αk−2, αk−1). Further, points with at least one
coordinate larger than αk−1 are either above the line through (1, αk) and (α, αk) or to the
right of the line through (αk, 1) and (αk, α). ◀
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▶ Proposition 16. For every α > 1, we have h(α) ≥
⌊√

1
α−1

⌋
.

Proof. For a positive integer k, let P (k) = {(αi, αk−i) : 1 ≤ i ≤ k}. Since P (k) is contained
in the hyperbola h = {(x, y) ∈ R2 : x, y > 0, xy = αk}, the points of P (k) are in convex
position, and conv(P (k)) has k vertices. We will show that if k ≤

√
1

α−1 , then conv(P (k)) is
empty.

For points (x, y) of L(α) above h, we have xy ≥ αk+1. Further, points (x, y) of L(α) with
xy ≥ αk+2 are separated from h by the hyperbola h′ = {(x, y) ∈ R2 : x, y > 0, xy = αk+1}.
Thus, it is sufficient to check that h′ is above the line ℓ connecting (1, αk) with (αk, 1). The
closest point of h′ to ℓ is (α(k+1)/2, α(k+1)/2), thus it is sufficient to check that this point is
above ℓ. This holds if 2α(k+1)/2 − αk − 1 ≥ 0 and we show that this inequality is satisfied
for k ≤

√
1

α−1 .
Let α = 1 + s2 with some s ∈ (0, 1). In this notation, k ≤ 1/s and we need to prove that

2(1 + s2)(k+1)/2 ≥ (1 + s2)k + 1. Since (1 + s2)(k+1)/2 ≥ 1 + s2 k+1
2 by the Bernoulli inequality,

and (1 + s2)k ≤ es
2k, it is sufficient to prove the stronger inequality 2(1 + s2 k+1

2 ) ≥ es
2k + 1.

The worst case, when k = 1/s, is equivalent to 1 + s+ s2 ≥ es, which holds for s ∈ (0, 1) as
can be seen by the Taylor expansion of es. ◀

5 Proof of ’only if part’ of Theorem 6

Let α, β > 1 be two real numbers. We prove that if logα(β) is irrational, then h(L(α, β)) is
not finite.

To do so, we will find a subset of L(α, β) forming empty convex polygon in L(α, β) with
arbitrarily many vertices. To do so, we use a theory of continued fractions, so we first
introduce some definitions and notation.

5.1 Continued fractions
Here, we recall mostly basic facts about so-called continued fractions, which we use in
the proof. Most of the results that we state can be found, for example, in the book by
Khinchin [14].

For a positive real number r, the (simple) continued fraction of r is an expression of the
form

r = a0 + 1
a1 + 1

a2+ 1
a3+···

,

where a0 ∈ N0 and a1, a2, . . . are positive integers. The simple continued fraction of r can
be written in a compact notation as

[a0; a1, a2, a3, . . . ].

For every n ∈ N0, if we denote pn

qn
= [a0; a1, a2, . . . , an] and set p−1 = 1, p0 = a0, q−1 = 0,

q0 = 1, then the numbers pn and qn satisfy the recurrence

pn = anpn−1 + pn−2 and qn = anqn−1 + qn−2 (1)

for each n ∈ N. Observe that if r is irrational, then its continued fraction has infinitely many
coefficients. Also, it follows from (1) that pn

qn
< r for n even and pn

qn
> r for n odd.

SoCG 2023



8:12 On Helly Numbers of Exponential Lattices

For example, if r = log2(3), we get the continued fraction [1; 1, 1, 2, 2, 3, 1, 5, 2, 23, . . . ]
and the sequence

(
pn

qn

)
n∈N0

=
( 1

1 ,
2
1 ,

3
2 ,

8
5 ,

19
12 ,

65
41 ,

84
53 ,

485
306 , . . .

)
. For r = 1+

√
5

2 , we have

[1; 1, 1, 1, . . . ] and
(
pn

qn

)
n∈N0

=
( 1

1 ,
2
1 ,

3
2 ,

5
3 ,

8
5 ,

13
8 ,

21
13 ,

34
21 , . . .

)
.

We will call the fractions pn

qn
the convergents of r. A semi-convergent of r is a number

pn−1+ipn

qn−1+iqn
where i ∈ {0, 1, . . . , an+1}. Note that each convergent of r is also a semi-convergent

of r. The names are motivated by the use of convergents and semi-convergents as rational
approximations of an irrational number r.

A rational number p
q is a best approximation of an irrational number r, if any fraction

p′

q′ ̸= p
q with q′ < q satisfies∣∣∣∣q′
(
r − p′

q′

)∣∣∣∣ > ∣∣∣∣q(
r − p

q

)∣∣∣∣ .
A rational number p

q is a best lower approximation of r if

q′
(
r − p′

q′

)
> q

(
r − p

q

)
≥ 0

for all rational numbers p′

q′ with p′

q′ ≤ r, p
q ̸= p′

q′ , and 0 < q′ ≤ q. Similarly, p
q is a best upper

approximation of r if

q′
(
r − p′

q′

)
< q

(
r − p

q

)
≤ 0

for all rational numbers p′

q′ with p′

q′ ≥ r, p
q ̸= p′

q′ , and 0 < q′ ≤ q.
It is a well known fact that convergents are best approximations of r [14]. The following

lemma about best lower and upper best approximations is a recent result of Hančl and
Turek [10].

▶ Lemma 17 ([10]). Let r be a real number with r = [a0; a1, a2, . . . ] and let pn

qn
be the nth

convergent of r for each n ∈ N0. Then, the following three statements hold.
1. The set of best lower approximations of r consists of semi-convergents pn−1+ipn

qn−1+iqn
of r with

n odd and 0 ≤ i < an+1.
2. The set of best upper approximations of r consists of semi-convergents pn−1+ipn

qn−1+iqn
of r with

n even and 0 ≤ i < an+1, except for the pair (n, i) = (0, 0).

Finally, a real number r is restricted if there is a positive integer M such that all the
partial denominators ai from the continued fraction of r are at most M . The restricted
numbers are exactly those numbers r that are badly approximable by rationals [14], that is,
there is a constant c > 0 such that for every p

q ∈ Q we have
∣∣∣r − p

q

∣∣∣ > c
q2 .

We divide the rest of the proof of Theorem 6 into two cases, depending on whether
logα(β) is restricted or not.

5.2 Unrestricted case
First, we assume that logα(β) is not restricted. Let [a0; a1, a2, a3, . . . ] be the continued
fraction of logα(β) with pn

qn
= [a0; a1, . . . , an] for every n ∈ N0. Then, for every positive

integer m, there is a positive integer n(m) such that an(m)+1 ≥ m. We use this assumption
to construct, for every positive integer m, a convex polygon with at least m vertices from
L(α, β) that is empty in L(α, β).
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For a given m, consider the integer n(m) and let W be the set of points

wi = (αpn(m)−1+ipn(m) , βqn(m)−1+iqn(m))

where i ∈ {0, 1, . . . , an(m)+1}. That is, we consider points where the exponents form semi-
convergents pn(m)−1+ipn(m)

qn(m)−1+iqn(m)
to logα(β). We abbreviate pn,i = pn(m)−1 + ipn(m) and qn,i =

qn(m)−1 + iqn(m). Observe that |W | ≥ m. We will show that W is the vertex set of an empty
convex polygon in L(α, β). To do so, we assume without loss of generality that n(m) is even
so that β

qn(m)

α
pn(m) > 1. The other case when n(m) is odd is analogous.

First, we show that W is in convex position. In fact, we prove that all triples (wi1 , wi2 , wi3)
with i1 < i2 < i3 are oriented counterclockwise. It suffices to show this for every triple
(wi, wi+1, wi+2). To do so, we need to prove the inequality

y(wi+2) − y(wi+1)
x(wi+2) − x(wi+1) = βqn,i+2 − βqn,i+1

αpn,i+2 − αpn,i+1
>
βqn,i+1 − βqn,i

αpn,i+1 − αpn,i
= y(wi+1) − y(wi)
x(wi+1) − x(wi)

.

After dividing by β
qn(m)−1

α
pn(m)−1 , this can be written as

β(i+2)qn(m) − β(i+1)qn(m)

α(i+2)pn(m) − α(i+1)pn(m)
>
β(i+1)qn(m) − βiq

n(m)

α(i+1)pn(m) − αipn(m)
.

If divide both sides by β
(i+1)qn(m) −βiqn(m)

α
(i+1)pn(m) −αipn(m)

, then the above inequality becomes

βqn(m)

αpn(m)
> 1.

This is true as n(m) is even.
It remains to prove that the polygon Q with the vertex set W is empty in L(α, β).

Suppose for contradiction that there is a point (αp, βq) of L(α, β) lying in the interior of Q.
Let i be the minimum positive integer from {1, . . . , an(m)+1} such that q < qn,i. Such an i

exists as (αp, βq) is in the interior of Q. We then have qn,i−1 < q < qn,i. Since (αp, βq) is in
the interior of Q and W lies below the line x = y, we have p

q > logα(β). So it is enough to
prove that (αp, βq) does not lie above the line wi−1wi.

We have pn,i − logα(β)qn,i < pn,i−1 − logα(β)qn,i−1 as pn,i

qn,i
is a best upper approximation

of logα(β) and qn,i−1 < qn,i. This implies βqn,i−1

αpn,i−1 <
βqn,i

αpn,i , or equivalently that wi lies above
the line determined by wi−1 and the origin.

Now if (αp, βq) lies above the line wi−1wi, then it also lies above the line determined by
wi−1 and the origin. Thus, βqn,i−1

αpn,i−1 <
βq

αp , implying

p− logα(β)q < pn,i−1 − logα(β)qn,i−1,

which means that p
q is a better upper approximation of logα(β) than pn,i−1

qn,i−1
. Thus, there

exists a best upper approximation p∗

q∗ of logα(β) with qn,i−1 < q∗ < qn,i. This contradicts
part (c) of Lemma 17 as p∗

q∗ is not a semi-convergent of logα(β).

5.3 Restricted case
Now, assume that the number logα(β) is restricted. Let [a0; a1, a2, a3, . . . ] be the continued
fraction of logα(β) with pn

qn
= [a0; a1, . . . , an] for every n ∈ N0. Let M = M(α, β) be a

number satisfying

an ≤ M (2)
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for every n ∈ N0 and let c = c(α, β) > 0 be a constant such that∣∣∣∣logα(β) − p

q

∣∣∣∣ > c

q2 (3)

holds for every p
q ∈ Q. Recall that αpn

βqn < 1 for even n and αpn

βqn > 1 for odd n. Note also

that the sequence
(
αpn

βqn

)
n∈N0

converges to 1 as
(
pn

qn

)
n∈N0

converges to logα(β). Moreover,

the terms of
(
pn

qn

)
n∈N0

with odd indices form a decreasing subsequence and the terms with
even indices determine an increasing subsequence.

Let n0 = n0(α, β) be a sufficiently large positive integer and let V be the set of points
vn = (αpn , βqn) for every odd n ≥ n0. Note that V is a subset of L(α, β).

We first show that V is in convex position. In fact, we prove a stronger claim by showing
that the orientation of every triple (vn1 , vn2 , vn3) with n1 < n2 < n3 is counterclockwise. It
suffices to show this for every triple (vn−4, vn−2, vn). To do so, we prove that the slopes of
the lines determined by consecutive points of V are increasing, that is,

y(vn) − y(vn−2)
x(vn) − x(vn−2) = βqn − βqn−2

αpn − αpn−2
>
βqn−2 − βqn−4

αpn−2 − αpn−4
= y(vn−2) − y(vn−4)
x(vn−2) − x(vn−4)

for every even n ≥ n0. By dividing both sides of the inequality with βqn−2

αpn−2 , we rewrite this
expression as

βqn−qn−2 − 1
αpn−pn−2 − 1 >

1 − βqn−4−qn−2

1 − αpn−4−pn−2
.

Using (1), this is the same as

βanqn−1 − 1
αanpn−1 − 1 >

1 − β−an−2qn−3

1 − α−an−2pn−3
.

The above inequality can be rewritten as

(βanqn−1 − 1)(1 − α−an−2pn−3) > (αanpn−1 − 1)(1 − β−an−2qn−3),

where βqn−1 > αpn−1 > 1 and 1 > α−pn−3 > β−qn−3 > 0 as n − 1 and n − 3 are even.
Therefore, if the above inequality holds for an = 1 = an−2, then it holds for any an and an−1
as both numbers are always at least 1. Thus, it suffices to show

(βqn−1 − 1)(1 − α−pn−3) > (αpn−1 − 1)(1 − β−qn−3). (4)

We prove this using the following simple auxiliary lemma.

▶ Lemma 18. Consider the function f : R+ × R+ → R given by f(x, y) = (x− 1)(1 − 1/y).
Let x, y, x′, y′ > 1 be real numbers such that 1 − 1

y − x
x′ > 0. Then, f(x′, y) > f(x, y′).

Proof. We have

f(x′, y) − f(x, y′) = (x′ − 1)
(

1 − 1
y

)
− (x− 1)

(
1 − 1

y′

)
= x′ − x′ − 1

y
− x+ x− 1

y′ > x′ − x′

y
− x = x′

(
1 − 1

y
− x

x′

)
> 0,

where the last inequality follows from 1 − 1
y − x

x′ > 0. ◀
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Now, by choosing x = αpn−1 , x′ = βqn−1 , y = αpn−3 , and y′ = βqn−3 , the inequality (4)
becomes f(x′, y) > f(x, y′). In order to prove it, we just need to verify the assumptions of
Lemma 18. We clearly have x, x′, y, y′ > 1. It now suffices to show 1 − 1

y − x
x′ > 0. By (3),

we obtain that qn−1 logα(β) − pn−1 ≥ c/qn−1, thus

x

x′ = αpn−1

βqn−1
≤ α−c/qn−1 .

Now, to bound qn−1 in terms of pn−3, equation (1) gives

qn−1 = an−1qn−2 + qn−3 ≤ (M + 1)qn−2 = (M + 1)(an−2qn−3 + qn−4)
≤ (M + 1)2qn−3 ≤ 2 logβ(α)(M + 1)2pn−3,

where we used (2) and qn−4 ≤ qn−3 ≤ qn−2, qn−3 ≤ 2 logβ(α)pn−3 for n large enough. It
follows that qn−1 ≤ M ′pn−3 for a suitable constant M ′ = M ′(α, β) > 0. Thus,

1 − 1
y

− x

x′ ≥ 1 − α−pn−3 − α−c/qn−1 ≥ 1 − α−pn−3 − α−c/(M ′pn−3),

which is at least

c lnα
2M ′pn−3

− 1
αpn−3

as 1 − c lnα/(2M ′pn−3) ≥ e−2c lnα/(2M ′pn−3) = α−c/(M ′pn−3) if 0 < c lnα/(2M ′pn−3) < 1/2.
The last expression is positive if n ≥ n0 and n0 is sufficiently so that pn−3 is large enough.

It remains to show that the convex polygon P with the vertex set V is empty in L(α, β).
We proceed analogously as in the unrestricted case. Suppose for contradiction that there
is a point (αp, βq) of L(α, β) lying in the interior of P . Then, let vn = (αpn , βqn) be the
lowest vertex of P that has (αp, βq) below. Such a vertex vn exists, as V contains points
with arbitrarily large y-coordinate. By the choice of vn, we obtain qn−2 < q < qn. Since
(αp, βq) is in the interior of P and V lies below the line x = y, we have p

q > logα(β) > pn−1
qn−1

.
Moreover, since all triples from V are oriented counterclockwise, the point (αp, βq) lies above
the line vn−2vn.

Let

wi = (αpn−2+ipn−1 , βqn−2+iqn−1)

where i ∈ {0, 1, . . . , an} similarly as in the proof of the unrestricted case. There, it was
shown that all the triples wi−1, wi, wi+1 are oriented counterclockwise, thus all the points
wi with i ∈ {1, . . . , an − 1} lie below the line vn−2vn. Thus, if (αp, βq) lies above the
segment connecting vn−2 and vn, then there is an i such that (αp, βq) lies above the segment
connecting wi−1 and wi. As in the last two paragraphs of the proof of the unrestricted
case, the position of (αp, βq) implies the inequality p − logα(β)q < pn,i−1 − logα(β)qn,i−1,
and the contradiction follows from part (c) of Lemma 17, as there can be no best upper
approximation of logα(β) which is not a semi-convergent of logα(β).
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Abstract
Approximating convex bodies is a fundamental question in geometry and has a wide variety of
applications. Consider a convex body K of diameter ∆ in Rd for fixed d. The objective is to
minimize the number of vertices (alternatively, the number of facets) of an approximating polytope
for a given Hausdorff error ε. It is known from classical results of Dudley (1974) and Bronshteyn and
Ivanov (1976) that Θ((∆/ε)(d−1)/2) vertices (alternatively, facets) are both necessary and sufficient.
While this bound is tight in the worst case, that of Euclidean balls, it is far from optimal for skinny
convex bodies.

A natural way to characterize a convex object’s skinniness is in terms of its relationship to
the Euclidean ball. Given a convex body K, define its volume diameter ∆d to be the diameter of
a Euclidean ball of the same volume as K, and define its surface diameter ∆d−1 analogously for
surface area. It follows from generalizations of the isoperimetric inequality that ∆ ≥ ∆d−1 ≥ ∆d.

Arya, da Fonseca, and Mount (SoCG 2012) demonstrated that the diameter-based bound could
be made surface-area sensitive, improving the above bound to O((∆d−1/ε)(d−1)/2). In this paper,
we strengthen this by proving the existence of an approximation with O((∆d/ε)(d−1)/2) facets.

This improvement is a result of the combination of a number of new ideas. As in prior work,
we exploit properties of the original body and its polar dual. In order to obtain a volume-sensitive
bound, we explore the following more general problem. Given two convex bodies, one nested within
the other, find a low-complexity convex polytope that is sandwiched between them. We show that
this problem can be reduced to a covering problem involving a natural intermediate body based on
the harmonic mean. Our proof relies on a geometric analysis of a relative notion of fatness involving
these bodies.
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1 Introduction

Approximating convex bodies by polytopes is a fundamental problem, which has been
extensively studied in the literature (see, e.g., Bronstein [11]). We are given a convex body K

in Euclidean d-dimensional space and an error parameter ε > 0. The problem is to determine
the minimum combinatorial complexity of a polytope that is ε-close to K according to
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some measure of similarity. In this paper, we define similarity in terms of the Hausdorff
distance [11], and we define combinatorial complexity in terms of the number of facets.
Throughout, we assume that the dimension d is a constant.

Approximation bounds presented in the literature are of two common types. In both
cases, it is shown that there exists ε0 > 0 such that the bounds hold for all ε ≤ ε0. The first
of these are nonuniform bounds, where the value of ε0 may depend on properties of K, for
example, bounds on its maximum curvature [8, 12, 16, 19, 29, 32]. This is in contrast to
uniform bounds, where the value of ε0 is independent of K (but may depend on d).

Examples of uniform bounds include the classical work of Dudley [13] and Bronshteyn
and Ivanov [10]. Dudley showed that, for ε ≤ 1, any convex body K can be ε-approximated
by a polytope P with O((∆/ε)(d−1)/2) facets, where ∆ is K’s diameter. Bronshteyn and
Ivanov showed the same bound holds for the number of vertices. Constants hidden in the
O-notation depend only on d. These results have numerous applications in computational
geometry, for example the construction of coresets [1, 3, 5].

The approximation bounds of both Dudley and Bronshteyn-Ivanov are tight in the worst
case up to constant factors (specifically when K is a Euclidean ball) [11]. However, these
bounds may be significantly suboptimal if K is “skinny”. A natural way to characterize
a convex object’s skinniness is in terms of its relationship to the Euclidean ball. Given
a convex body K, define its volume diameter ∆d to be the diameter of a Euclidean ball
of the same volume as K, and define its surface diameter ∆d−1 analogously for surface
area. These quantities are closely related (up to constant factors) to the classical concepts
of quermassintegrals and of intrinsic volumes of the convex body [20, 21]. It follows from
generalizations of the isoperimetric inequality that ∆ ≥ ∆d−1 ≥ ∆d [21].

Arya, da Fonseca, and Mount [4] proved that the diameter-based bound could be made
surface-area sensitive, improving the above bound to O((∆d−1/ε)(d−1)/2). In this paper, we
strengthen this to the following volume-sensitive bound.

▶ Theorem 1.1. Consider real d-space, Rd. There exists a constant cd (depending on d)
such that for any convex body K ⊆ Rd and any ε > 0, if the width of K in any direction is
at least ε, then there exists an ε-approximating polytope P whose number of facets is at most(

cd∆d

ε

)d−1
2

.

This bound is the strongest to date. For example, in R3, the area-sensitive bound yields
better bounds for pencil-like objects that are thin along two dimensions, while the volume-
sensitive bound yields better bounds for pancake-like objects as well, which are thin in just
one dimension.

The minimum-width assumption seems to be a technical necessity, since it is not difficult to
construct counterexamples where this condition does not hold. But this is not a fundamental
impediment. If the body’s width is less than ε in some direction, then by projecting the
body onto a hyperplane orthogonal to this direction, it is possible to reduce the problem
to a convex approximation problem in one lower dimension. This can be repeated until the
body’s width is sufficiently large in all remaining dimensions, and the stated bound can be
applied in this lower dimensional subspace, albeit with volume measured appropriate to this
dimension.

While our uniform bound trivially holds in the nonuniform setting, we present a separate
(and much shorter) proof that the same bounds hold in the nonuniform setting, assuming
that K’s boundary is C2 continuous. This is presented in the full version.
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▶ Theorem 1.2. Consider real d-space, Rd. There exists a constant cd (depending on d)
such that for any convex body K ⊆ Rd of C2 boundary, as ε approaches zero, there exists an
ε-approximating polytope P whose number of facets is at most(

cd∆d

ε

)d−1
2

.

2 Overview of Techniques

Broadly speaking, the problem of approximating a convex body by a polytope involves
“sandwiching” a polytope between two nested convex bodies, call them K0 and K1. For
example, K0 may be the original body to be approximated and K1 is an expansion based
on the allowed error bound. Most of the prior work in this area has focused on the specific
manner in which K1 is defined relative to K0, which is typically confined to Euclidean space
(for Hausdorff distance) or affine space (for the Banach-Mazur distance).

Recent approaches to convex approximation have been based on covering the body
to be approximated with convex objects that respect the local shape of the body being
approximated [2, 6]. Macbeath regions have been a key tool in this regard. Given a convex
body K and a point x in K’s interior, the Macbeath region at x, MK(x), is the largest
centrally symmetric body nested within K and centered at x (see Figure 1(a)). A Macbeath
region that has been shrunken by some constant factor λ is denoted by Mλ

K(x). Shrunken
Macbeath regions have nice packing and covering properties, and they behave much like
metric balls.

K

(a) (b)

K1

K0

x

MK(x)

M
1/2
K (x)

Figure 1 (a) Macbeath regions and (b) covering K0 by Macbeath regions.

A natural way to construct a sandwiching polytope between two nested bodies K0 and
K1 is to construct a collection of shrunken Macbeath regions that cover K0 but lie entirely
within K1 (see Figure 1(b)). If done properly, a sandwiching polytope can be constructed by
sampling a constant number of points from each of these Macbeath regions, and taking the
convex hull of their union. Thus, the number of Macbeath regions provides an upper bound
on the number of vertices in the sandwiched polytope.

The “sandwiching” perspective described above yields additional new challenges. Consider
the two bodies K0 and K1 shown in Figure 2, where K0 is a diamond shape nested within
the square K1. Consider 1/2-scaled Macbeath region centered at a point x that lies at
the top vertex of K0. Observe that almost all of its volume lies outside of K0. This is
problematic because our analysis is based on the number of Macbeath regions needed to
cover the boundary of a body, in this case ∂K0. We want a significant amount of the volume
of each Macbeath region to lie within K0. In cases like that shown in Figure 2, only a tiny
fraction of the volume can be charged in this manner against K0.

SoCG 2023
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K0

K1

x

O

Figure 2 Relative fatness.

Intuitively, while the body K0 is “fat” in a standard sense1, it is not fat “relative” to the
enclosing body K1. To deal with this inconvenience, we will replace K1 with an intermediate
body between K0 and K1 that satisfies this property. In Section 3.5 we formally define this
notion of relative fatness, and we present an intermediate body, called the harmonic-mean
body, that satisfies this notion of fatness. We will see that this body can be used as a proxy
for the sake of approximation.

3 Preliminaries

In this section, we introduce terminology and notation, which will be used throughout the
paper. This section can be skipped on first reading (moving directly to Section 4).

Let us first recall some standard notation. Given vectors u, v ∈ Rd, let ⟨u, v⟩ denote their
dot product, and let ∥v∥ =

√
⟨v, v⟩ denote v’s Euclidean length. Throughout, we will use the

terms point and vector interchangeably. Given points p, q ∈ Rd, let ∥pq∥ = ∥p − q∥ denote
the Euclidean distance between them. Let vol(·) and area(·) denote the d-dimensional and
(d − 1)-dimensional Lebesgue measures, respectively.

3.1 Polarity and Centrality Properties
Given a bounded convex body K ⊆ Rd that contains the origin O in its interior, define its
polar, denoted K∗, to be the convex set

K∗ = {u : ⟨u, v⟩ ≤ 1, for all v ∈ K}.

The polar enjoys many useful properties (see, e.g., Eggleston [14]). For example, it is well
known that K∗ is bounded and (K∗)∗ = K. Further, if K1 and K2 are two convex bodies
both containing the origin such that K1 ⊆ K2, then K∗

2 ⊆ K∗
1 .

Given a nonzero vector v ∈ Rd, we define its “polar” v∗ to be the hyperplane that is
orthogonal to v and at distance 1/∥v∥ from the origin, on the same side of the origin as v.
The polar of a hyperplane is defined as the inverse of this mapping. We may equivalently
define K∗ as the intersection of the closed halfspaces that contain the origin, bounded by
the hyperplanes v∗, for all v ∈ K.

Given a convex body K ⊆ Rd and x ∈ int(K), there are many ways to characterize the
property that x is “central” within K [17, 31]. For our purposes, we will make it precise
using the concept of Mahler volume. Define K’s Mahler volume, denoted µ(K), to be the

1 That is, the largest ball enclosed in K0 and the smallest ball containing K0 differ in size by a constant.
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product vol(K) · vol(K∗). The Mahler volume is well studied (see, e.g. [28, 22, 30]). It is
invariant under linear transformations, and it depends on the location of the origin within
K. We say that K is well-centered with respect to a point x ∈ int(K) if the Mahler volume
µ(K − x) is at most O(1). When x is not specified, it is understood to be the origin. We
have the following lemma [6, 23].
▶ Lemma 3.1. Any convex body K is well-centered with respect to its centroid.

Lower bounds on the Mahler volume have also been extensively studied and it is known
that the following bound holds irrespective of the location of the origin [9, 18, 25].
▶ Lemma 3.2. Given a convex body K ⊆ Rd whose interior contains the origin, µ(K) = Ω(1).

3.2 Caps, Rays, and Relative Measures
Consider a compact convex body K in d-dimensional space Rd with the origin O in its
interior. A cap C of K is defined to be the nonempty intersection of K with a halfspace.
Letting h1 denote a hyperplane that does not pass through the origin, let capK(h1) denote
the cap resulting by intersecting K with the halfspace bounded by h1 that does not contain
the origin (see Figure 3(a)). Define the base of C, denoted base(C), to be h1 ∩ K. Letting
h0 denote a supporting hyperplane for K and C parallel to h1, define an apex of C to be
any point of h0 ∩ K.

K K∗

O O

h1h0

p1 p0

h∗
1

p∗0

p∗1p2

p∗2h∗
2

h2

C base(C)

(a) (b)

h∗
0

Figure 3 Convex body K and polar K∗ with definitions used for width and ray.

We define the absolute width of cap C to be dist(h1, h0). When a cap does not contain
the origin, it will be convenient to define distances in relative terms. Define the relative width
of such a cap C, denoted widK(C), to be the ratio dist(h1, h0)/ dist(O, h0) and, to simplify
notation, define widK(h1) = widK(capK(h1)). Observe that as a hyperplane is translated
from a supporting hyperplane to the origin, the relative width of its cap ranges from 0 to a
limiting value of 1.

We also characterize the closeness of a point to the boundary in both absolute and relative
terms. Given a point p1 ∈ K, let p0 denote the point of intersection of the ray Op1 with the
boundary of K. Define the absolute ray distance of p1 to be ∥p1p0∥, and define the relative
ray distance of p1, denoted rayK(p1), to be the ratio ∥p1p0∥/∥Op0∥. Relative widths and
relative ray distances are both affine invariants, and unless otherwise specified, references to
widths and ray distances will be understood to be in the relative sense.

We can also define volumes in a manner that is affine invariant. Recall that vol(·) denotes
the standard Lebesgue volume measure. For any region Λ ⊆ K, define the relative volume of
Λ with respect to K, denoted volK(Λ), to be vol(Λ)/ vol(K).

SoCG 2023
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With the aid of the polar transformation we can extend the concepts of width and
ray distance to objects lying outside of K. Consider a hyperplane h2 parallel to h1 that
lies beyond the supporting hyperplane h0 (see Figure 3(a)). It follows that h∗

2 ∈ K∗, and
we define widK(h2) = rayK∗(h∗

2) (see Figure 3(b)). Similarly, for a point p2 /∈ K that
lies along the ray Op1, it follows that the hyperplane p∗

2 intersects K∗, and we define
rayK(p2) = widK∗(p∗

2). By properties of the polar transformation, it is easy to see that
widK(h2) = dist(h0, h2)/ dist(O, h2). Similarly, rayK(p2) = ∥p0p2∥/∥Op2∥. Henceforth, we
will omit references to K when it is clear from context.

Some of our results apply only when we are sufficiently close to the boundary of K.
Given α ≤ 1

2 , we say that a cap C is α-shallow if wid(C) ≤ α, and we say that a point p is
α-shallow if ray(p) ≤ α. We will simply say shallow to mean α-shallow, where α ≤ 1

2 is a
sufficiently small constant.

3.3 Macbeath Regions and MNets
Given a convex body K and a point x ∈ K, and a scaling factor λ > 0, the Macbeath region
Mλ

K(x) is defined as

Mλ
K(x) = x + λ((K − x) ∩ (x − K)).

It is easy to see that M1
K(x) is the intersection of K with the reflection of K around x, and

so M1
K(x) is centrally symmetric about x. Indeed, it is the largest centrally symmetric body

centered at x and contained in K. Furthermore, Mλ
K(x) is a copy of M1

K(x) scaled by the
factor λ about the center x (see Figure 1(a)). We will omit the subscript K when the convex
body is clear from the context. As a convenience, we define M(x) = M1(x).

The following lemma states that points in a shrunken Macbeath region all have similar
ray distances. The proof appears in [7, Section 2.5].

▶ Lemma 3.3. Let K be a convex body. If x is a 1
2 -shallow point in K and y ∈ M1/5(x),

then ray(x)/2 ≤ ray(y) ≤ 2 ray(x).

The next lemma shows that translated copies of a Macbeath region act as proxies for
Macbeath regions in the vicinity. The proof appears in Section 3.3 of the full version.

▶ Lemma 3.4. Let λ ≤ 1/2 and γ ≤ 1/10. Let x be a point in a convex body K. Let
R = M(x) − x. Let y be a point in x + λR. Then y + γR ⊆ M2γ(y).

We employ Macbeath region-based coverings in our polytope approximation scheme. In
particular, we employ the concept of MNets, as defined in [6]. Let K ⊆ Rd be a convex
body, let Λ be an arbitrary subset of int(K), and let c ≥ 5 be any constant. Given X ⊆ K,
define Mλ

K(X) = {Mλ
K(x) : x ∈ X}. Define a (K, Λ, c)-MNet to be any maximal set of points

X ⊆ Λ such that the shrunken Macbeath regions M
1/4c
K (X) are pairwise disjoint. We refer

to c as the expansion factor of the MNet. The following lemma, proved in [6], summarizes
the key properties of MNets.

▶ Lemma 3.5 ([6]). Given a convex body K ⊆ Rd, Λ ⊂ int(K), and c ≥ 5, a (K, Λ, c)-MNet
X satisfies the following properties:

(Packing) The elements of M1/4c
K (X) are pairwise disjoint.

(Covering) The union of M1/c
K (X) covers Λ.

(Buffering) The union of MK(X) is contained within K.
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For the purposes of this paper, c will be any sufficiently large constant, specifically c ≥ 5.
To simplify notation, we use (K, Λ)-MNet to refer to such an MNet.

As mentioned before, we reduce our polytope approximation problem to that of finding a
polytope which is sandwiched between two convex bodies. In turn we tackle this problem
using MNets as indicated in the next lemma. The proof appears in Section 3.3 of the full
version.

▶ Lemma 3.6. Let K0 ⊂ K1 be two convex bodies. Let X be a (K1, ∂K0)-MNet. Then there
exists a polytope P with O(|X|) vertices such that K0 ⊆ P ⊆ K1.

The following lemma bounds the sizes of MNets in important special cases involving
points at roughly the same ray distance. These bounds will be useful in obtaining our
volume-sensitive bounds. The proof appears in Section 4 of the full version.

▶ Lemma 3.7. Let 0 < ε ≤ 1/2 be sufficiently small and let K ⊆ Rd be a well-centered
convex body. Let Λ be the points of K at ray distances between ε and 2ε, and let X be a
(K, Λ)-MNet. Then:

(i) |X| = O(1/ε(d−1)/2).
(ii) For any positive real f ≤ 1, let Xf ⊆ K be such that the total relative volume of the

Macbeath regions of M1/4c(Xf ) is O(fε). Then |Xf | = O(
√

f/ε(d−1)/2).

3.4 Concepts from Projective Geometry

In this section we present some relevant standard concepts from projective geometry. For
further details see any standard reference (e.g., [27]). Given four collinear points, a, b, c, d (not
necessarily in this order), the cross ratio (a, b; c, d) is defined to be (∥ac∥/∥ad∥)/(∥bc∥/∥bd∥),
where these are understood to be signed distances determined by the orientations of the
segments along the line. We follow the convention of using symbols a, b, c, d, . . . for points,
and the distinction from other uses (such as d for the dimension) should be clear from the
context.

It is well known that cross ratios are preserved under projective transformations. If the
cross ratio (a, b; c, d) is −1, we say that this quadruple of points forms a harmonic bundle (see
Figure 4). This is an important special case which occurs frequently in constructions. In this
case, the points lie on the line in the order of a, d, b, c and the ratio in which a divides c and
d externally (i.e., ∥ac∥/∥ad∥) is the same as the ratio in which b divides c and d internally
(i.e., ∥bc∥/∥bd∥). The sign is negative since bc and bd have opposite directions. If the point a

is at infinity, the cross ratio degenerates to ∥bd∥/∥bc∥, implying that b is midway between c

and d.

a d b c

Figure 4 Harmonic bundle (from the quadrilateral construction [27]).

SoCG 2023
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3.5 Intermediate Bodies

In this section we explore the concept of relative fatness, which was introduced in Section 2.
Given two convex bodies K0 and K1 such that K0 ⊂ K1 and 0 < γ < 1, we say that K0 is
relatively γ-fat with respect to K1 if, for any point p ∈ ∂K0, and any scaling factor 0 < λ ≤ 1,
at least a constant fraction γ of the volume of the Macbeath region M = Mλ

K1
(p) lies within

K0, that is, vol(M ∩ K0)/ vol(M) ≥ γ. We say that K0 is relatively fat with respect to K1 if
it is relatively γ-fat for some constant γ. Relative fatness will play an important role in our
analyses. Since an arbitrary nested pair K0 ⊂ K1 may not necessarily satisfy this property,
it will be useful to define an intermediate body sandwiched between K0 and K1 that does.

There are a few natural ways to define such an intermediate body. Given two convex
bodies K0 and K1, where K0 ⊆ K1, the arithmetic-mean body, KA(K0, K1), is defined to be
the convex body 1

2 (K0 ⊕ K1), where “⊕” denotes Minkowski sum. Equivalently, for any unit
vector u consider the two supporting halfspaces of K0 and K1 orthogonal to u, and take
the halfspace that is midway between the two. The arithmetic-mean body is obtained by
intersecting such halfspaces for all unit vectors u.

O

K1

KA

K1

KH

O
br

cr

δ
δ

K0

(a) (b)

r

K0

dr

Figure 5 (a) Arithmetic and (b) harmonic-mean bodies.

Another natural choice arises from a polar viewpoint. Assume that K0 ⊂ K1 and the
origin O ∈ int(K0). The harmonic-mean body, KH(K0, K1), was introduced by Firey [15]
and is defined as follows. For any ray r from the origin O, let br and dr denote the points of
intersection of r with ∂K0 and ∂K1, respectively (see Figure 5(b)). Let cr be the point on the
ray such that 1/∥Ocr∥ = (1/∥Obr∥ + 1/∥Odr∥)/2. Equivalently, the cross ratio (O, cr; dr, br)
equals −1, that is, this quadruple forms a harmonic bundle. Clearly, cr lies between br and
dr, and hence the union of these points over all rays r defines the boundary of a body that is
sandwiched between K0 and K1. This body is the harmonic-mean body. By considering the
supporting hyperplanes orthogonal to the ray r, it is easy to see that the arithmetic-mean
body of K0 and K1 is mapped to the harmonic-mean body of K∗

0 and K∗
1 under polarity, that

is, (KA(K0, K1))∗ = KH(K∗
0 , K∗

1 ). Therefore, KH(K0, K1) is convex. When K0 and K1 are
clear from context, we will just write KA and KH , omitting references to their arguments.

In order to understand why these intermediate bodies are useful to us, recall the diamond
and square bodies K0 and K1 from Figure 2 (see Figure 6(a)). Recall the issue that a large
fraction of the volume of the Macbeath region M

1/2
K1

(x) lies outside of K0. If we replace K1
with KH = KH(K0, K1) and compute the Macbeath region with respect to KH instead (see
Figure 6(b) and (c)), we see that a constant fraction of the volume of the Macbeath region
lies within K0 and so relative fatness is satisfied.
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(a) (b)

K0

K1

K0

K1 M
1/2
KH

(x)
x

M
1/2
K1

(x)

O OO

(c)

x
KH

K0

K1KH

Figure 6 Relative fatness of KH .

In Section 4, we will present an important result by showing that the inner body K0 is
relatively fat with respect to the harmonic-mean body KH(K0, K1). The proof makes heavy
use of concepts from projective geometry, such as the harmonic bundle. This fact will be
critical to establishing the volume-sensitive bounds given in this paper.

4 Relative Fatness and the Harmonic-Mean Body

In this section, we establish properties of the harmonic-mean body that are critical to the
main results of this paper. In particular, given two bodies K0 ⊂ K1, we show that K0 is
relatively fat with respect to KH . In fact, we present a stronger result in Lemma 4.4, which
implies relative fatness as an immediate consequence. We will employ this stronger result in
Section 5 to obtain our volume-sensitive bounds for polytope approximation.

The proof of Lemma 4.4 is based on the following technical lemma. For constant λ, it
implies that for any point b ∈ K0 that is not too close to the boundary of K0, the Macbeath
regions centered at b with respect to K0 and KH , respectively, are roughly similar up to a
constant scaling factor. This is formally stated in the corollary following the lemma.

▶ Lemma 4.1. Let 0 < λ < 1 be a parameter. Let K0 ⊂ K1 be two convex bodies, where the
origin O lies in the interior of K0. Let KH denote the harmonic-mean body of K0 and K1.
Consider any ray emanating from the origin O. Let c and d denote the points of intersection
of this ray with ∂K0 and ∂K1, respectively (see figure). Let b ∈ K0 be a point on this ray
such that the cross ratio (O, c; d, b) ≤ −λ. Consider any line passing through b. Let c′ and
c′′ denote the points of intersection of this line with ∂KH . Then

min(∥bc′ ∩ K0∥, ∥bc′′ ∩ K0∥) ≥ s(λ) · min(∥bc′∥, ∥bc′′∥), where s(λ) = λ/6.

Proof. We sketch the key ideas and present a complete proof in the full version. Consider the
two dimensional flat that contains the origin and the line ℓ that passes through the points c′,
b, and c′′. Henceforth, let K0, K1, KH refer to the two dimensional convex bodies obtained by
intersecting the respective bodies with this flat. Let b′ and d′ denote the points of intersection
of the ray Oc′ with ∂K0 and ∂K1, respectively, and define b′′ and d′′ analogously for Oc′′.
All these points lie on the flat, and it follows from the definition of the harmonic-mean body
that (O, c′; d′, b′) = (O, c′′; d′′, b′′) = −1 (see Figure 7(a)).

By rotating space, we may assume that ℓ is horizontal and above the origin. Through an
infinitesimal perturbation, we may assume that there is a supporting line for K1 at d that is
not parallel to ℓ. Without loss of generality, we may assume that it intersects ℓ to the left of

SoCG 2023



9:10 Optimal Volume-Sensitive Bounds for Polytope Approximation

O

(a) (b)

b′

c′

d′

e′

c

b

d

b′′

c′′

d′′

e′′

y

x

d

d′
c′

b′

c

b′′

c′′
d′′

K0
KH

K1

ℓ
f e′ b e′′

Figure 7 Lemma 4.1 and its proof.

b. Since c′ and c′′ are symmetrical in the statement of the lemma, we may assume that c′ lies
to left of b and c′′ lies to its right. Let f denote the intersection point of the line dd′ with ℓ

(see Figure 7(a)). Clearly, the left-to-right order of points along ℓ is ⟨f, c′, b, c′′⟩. Observe
that the points c, d, d′, and d′′ all lie strictly above ℓ, and the points b′ and b′′ lie strictly
below.

Let e′ denote the point of intersection of the segment cb′ with segment bc′, and define e′′

analogously for segment cb′′. Since c, b′ and b′′ all lie on ∂K0, by convexity, e′ and e′′ are
contained in K0. Thus, to prove the lemma, it suffices to show that

min(∥be′∥, ∥be′′∥) ≥ s(λ) · min(∥bc′∥, ∥bc′′∥). (1)

We begin by proving bounds on two cross ratios:
(i) −(f, e′; c′, b) ≥ λ/2, and
(ii) −(f, e′′; c′′, b) ≥ λ/2.

Because projective transformations preserve cross ratios, it will be convenient to prove these
bounds after first applying a projective transformation. In particular, this transformation
maps O and f to infinity so that lines through O map to vertical lines and lines through
f map to horizontal lines (see Figure 7(b)). After this transformation, Oc′, Oc, and Oc′′

are vertical and directed upwards and d′d and c′b are horizontal and directed to the right.
Clearly, ∥c′d′∥ = ∥bd∥. Since d′′ lies above ℓ and below the line d′d we have ∥c′′d′′∥ ≤ ∥bd∥.
By definition of b, we have (O, c; d, b) = −1/(∥cd∥/∥cb∥) ≤ −λ. Since ∥cb∥ + ∥cd∥ = ∥bd∥,
we have ∥cb∥ ≥ ∥bd∥λ/(1 + λ).

Given that f is at infinity, the above cross ratios reduce to simple ratios. Thus, it suffices
to show:

(i) ∥e′b∥/∥e′c′∥ ≥ λ/2, and
(ii) ∥e′′b∥/∥e′′c′′∥ ≥ λ/2.

To show (i), observe that since (O, c′; d′, b′) = −1 and since O is at infinity and c′ lies
between b′ and d′, this is equivalent to 1/(∥c′d′∥/∥c′b′∥) = 1, that is, ∥c′b′∥ = ∥c′d′∥. By
similar triangles △e′bc and △e′c′b′, the fact that ∥c′b′∥ = ∥c′d′∥ = ∥bd∥, and our bounds on
λ, we have

∥e′c′∥
∥e′b∥

= ∥c′b′∥
∥cb∥

≤ ∥bd∥
∥bd∥λ/(1 + λ) = 1 + λ

λ
≤ 2

λ
, (2)

which implies (i).
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The analysis for (ii) is essentially the same as above. Since (O, c′′; d′′, b′′) = −1 we have
∥c′′b′′∥ = ∥c′′d′′∥. By similar triangles △e′′bc and △e′′c′′b′′ and the fact that ∥c′′b′′∥ =
∥c′′d′′∥ ≤ ∥bd∥, the inequalities of Eq. (2) (with double primes for single primes) show that

∥e′′c′′∥
∥e′′b∥

≤ 2
λ

,

which implies (ii).
These inequalities hold only in transformed configuration, but the cross ratios of (i)

and (ii) hold unconditionally. Returning to the original configuration and using (i), we can
show that ∥be′∥/∥bc′∥ ≥ λ/3 and from (ii), we can show that either ∥be′′∥/∥bf∥ ≥ λ/6 or
∥be′′∥/∥e′′c′′∥ ≥ λ/5. We omit the details of this calculation, which can be found in the full
version. In both cases, we are able to establish Eq. (1), as desired. ◀

The following corollary is immediate from the definition of Macbeath regions.

▶ Corollary 4.2. Assume all entities to be as defined in the statement of Lemma 4.1. Then
M

s(λ)
KH

(b) ⊆ MK0(b), where s(λ) = λ/6.

We have the following lemma which in conjunction with Corollary 4.2 will be useful in
proving Lemma 4.4. The proof is presented in the full version.

▶ Lemma 4.3. Let λ, K0, K1, KH , the origin O, and points c and d be as in Lemma 4.1.
Let h denote the point of intersection of the ray Oc with the boundary of KH . Then:

(i) ∥Oc∥ ≥ ∥hc∥.
(ii) Let b be a point on segment Oc, which is not contained in the interior of Mλ

KH
(c). Then

(O, c; d, b) ≤ −λ/2.

We now have all the key ingredients to present the main result of this section. The
relative fatness of K0 with respect to KH is an immediate consequence of parts (i) and (ii) of
this lemma. In order to state part (iii), we need a definition. Given a convex body K with
the origin O in its interior and a region R ⊆ K, define the shadow of R with respect to K,
denoted shadowK(R), to be the set of points x ∈ K such that the segment Ox intersects R.

▶ Lemma 4.4. Let 0 < β ≤ 1 be a real parameter. Let K0 ⊂ K1 be two convex bodies, let
the origin O lie in the interior of K0, and let KH denote the harmonic-mean body of K0 and
K1. Let c be any point on the boundary of K0 and let M = Mβ

KH
(c). Then there exists a

convex body M ′ such that
(i) vol(M ′) = Ω(vol(M)),
(ii) M ′ ⊆ M ∩ K0, and
(iii) shadowK0(M ′) ⊆ M .

Proof. We sketch the proof of (i) and (ii) here. A complete proof appears in the full version.
For the sake of convenience, assume that the ray Oc is directed vertically upwards. Let h be
the point of intersection of the ray Oc with ∂KH . Let R = MKH

(c) − c be the recentering
of MKH

(c) about the origin. By definition, M = Mβ
KH

(c) = c + βR. Let b be the point of
intersection of the segment Oc with the boundary of Mλ

KH
(c) = c + λR, where λ = β/κ for a

suitable large constant κ ≥ 2 (independent of dimension). Recalling from Lemma 4.3(a) that
∥ch∥ ≤ ∥Oc∥, it follows that b is vertically below c at a distance of λ∥ch∥. Recalling s(λ)
from Corollary 4.2, let M ′ = b + γR for

γ = s(λ/2)
10 = s(β/2κ)

10 = β

120κ

SoCG 2023
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KH
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cb Mβ
KH
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Mλ
KH

(c)

M ′

O

KH

K1

K0

d

h

b
S
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(a) (b)

b′′

c

M ′

M ′′
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Figure 8 Proof of Lemma 4.4. (Objects are not drawn to scale.)

(see Figure 8(a)). Since M ′ and M are translated copies of R scaled by a factor of γ and β,
respectively, we have vol(M ′) = (γ/β)d vol(M) = (1/120κ)d vol(M). This proves (i).

To prove (ii), we will show that M ′ ⊆ M and M ′ ⊆ K0. Since b ∈ c+λR and M ′ = b+γR,
it follows that M ′ ⊆ c+(λ+γ)R. For large κ, we have λ+γ ≤ β, and thus M ′ ⊆ c+βR = M .

Next we show that M ′ ⊆ K0. Let d denote the point of intersection of the ray Oc

with ∂K1. Applying Lemma 4.3(b), it follows that the cross ratio (O, c; d, b) ≤ −λ/2.
Applying Corollary 4.2 with λ/2 in place of λ and recalling that s(λ/2) = 10γ, we have
M10γ

KH
(b) ⊆ MK0(b). Also, by Lemma 3.4, we have M ′ = b + γR ⊆ M2γ

KH
(b). Thus

M ′ ⊆ M
1/5
K0

(b). By definition of Macbeath regions, MK0(b) ⊆ K0, and so M ′ ⊆ K0, as
desired. ◀

The following corollary is immediate from parts (i) and (ii) of the above lemma.

▶ Corollary 4.5. Let K0 ⊂ K1 be two convex bodies, let the origin O lie in the interior of
K0, and let KH denote the harmonic-mean body of K0 and K1. Then K0 is relatively fat
with respect to KH .

5 Uniform Volume-Sensitive Bounds

In this section, we present the proof of Theorem 1.1. Let ε > 0 and let K0 denote the convex
body K described in this theorem. Let K1 = K0 ⊕ ε denote the Minkowski sum of K0 with
a ball of radius ε. Also recall that ∆d(K0) denotes the volume diameter of K0. Let C(K0, ε)
be a shorthand for (∆d(K0)/ε)(d−1)/2, the desired number of facets.

We will show that there exists a polytope with O(C(K0, ε)) facets sandwiched between
K0 and K1. As mentioned above, we will transform the problem by mapping to the polar.
Through an appropriate translation, we may assume that the origin O coincides with the
centroid of K0. Note that the arithmetic-mean body KA of K0 and K1 is given by K0 ⊕ ε

2 ,
and recall from Section 3.5 that KH = K∗

A is the harmonic-mean body of K∗
1 and K∗

0 .
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Our construction is based on Lemma 5.1, which shows that there is a (KH , ∂K∗
1 )-MNet

X of size O(C(K0, ε)). Applying Lemma 3.6, it follows that there exists a polytope P

sandwiched between K∗
1 and KH with O(|X|) vertices. By polarity, this implies that P ∗

is a polytope sandwiched between KA and K1 having O(|X|) facets. Since K0 ⊆ KA, this
polytope is also sandwiched between K0 and K1, which proves Theorem 1.1.

All that remains is showing that |X| = O(C(K0, ε)). For this purpose, we will utilize
the tools for bounding the sizes of MNets in conjunction with the relative fatness of the
harmonic-mean body (established in Section 4).

▶ Lemma 5.1. Let ε > 0 and let K0, K1, KA, KH be convex bodies as defined above. Let X

be a (KH , ∂K∗
1 )-MNet. Then |X| = O(C(K0, ε)).

Proof. We begin by showing that vol(KH) = Ω(1/ vol(K0)), and its Mahler volume µ(KH)
is at most O(1) (implying that KH is well-centered). To see this, recall that the width of
K0 in any direction is at least ε and KA = K0 ⊕ ε

2 . It is well-known that the ratio of the
distances of the centroid from any pair of supporting hyperplanes is at most d [17, 24, 26]. It
follows that a ball of radius ε/(d + 1) centered at the origin lies within K0. Thus, a constant-
factor expansion of K0 contains KA, implying that vol(KA) = O(vol(K0)). Also, because
KH = K∗

A, by Lemma 3.2, vol(KA) · vol(KH) = Ω(1). Thus, vol(KH) = Ω(1/ vol(K0)). To
upper bound µ(KH), note that by polarity, KH ⊆ K∗

0 , and thus

µ(KH) = vol(KA) · vol(KH) = O(vol(K0) · vol(K∗
0 )) = O(µ(K0)) = O(1),

where in the last step, we have used Lemma 3.1 and our assumption that the origin coincides
with the centroid of K0.

To simplify notation, for the remainder of the proof we assume that ray distances,
Macbeath regions, and volumes are defined relative to KH , that is, ray ≡ rayKH

, M ≡ MKH
,

and vol ≡ volKH
.

For any point p ∈ ∂K∗
1 , let p′ denote the point of intersection of the ray Op with ∂KH .

We first establish a bound on the relative ray distance ray(p). Observe that since p and
p′ lie on ∂K∗

1 and ∂KH , respectively, their polar hyperplanes, p∗ and p′∗, are supporting
hyperplanes for K1 and K∗

H = KA, respectively. Letting r denote the distance between
p′∗ and the origin, it follows from the definition of KA that the distance between p∗ and
the origin is r + ε

2 . The distance of p′ and p from the origin are the reciprocals of these.
Therefore, we have

ray(p) = ∥pp′∥
∥Op′∥

= ∥Op′∥ − ∥Op∥
∥Op′∥

=
1
r − 1

r+(ε/2)
1
r

= 1 − r

r + (ε/2) = ε/2
r + (ε/2) .

Since 1
∥Op′∥ = r = Ω(ε), we have ray(p) = Θ(ε/r) = Θ(ε∥Op′∥). (It is noteworthy and

somewhat surprising that this relative ray distance is not a dimensionless quantity, since it
depends linearly on ∥Op′∥.)

To analyze |X|, we partition it into groups based on ∥Ox′∥ for each x ∈ X. Define R0 =
(vol(KH))1/d. By our earlier remarks, vol(KH) = Ω(1/ vol(K0)), and so R0 = Ω(1/∆d(K0)).
For any integer i (possibly negative), define Ri = 2iR0 and εi = εRi. We can express X as
the disjoint union of sets Xi, where Xi consists of points x such that Ri ≤ ∥Ox′∥ < 2Ri.
Recall that for any x ∈ Xi, we have ray(x) = Θ(ε∥Ox′∥) = Θ(εRi) = Θ(εi).

We will bound the contributions of the |Xi| to |X| based on the sign of i. Let us first
consider the nonnegative values of i. We remark that |Xi| = 0 for large i (specifically, for
i = ω(log(1/εR0))) because a ball of radius Ω(ε) centered at the origin is contained within K0,
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and so by polarity K∗
0 , and hence K∗

1 , is contained within a ball of radius O(1/ε). Recalling
that KH is well-centered and applying Lemma 3.7(i), we have (up to constant factors)

∑
i≥0

|Xi| ≤
∑
i≥0

(
1
εi

)d−1
2

=
∑
i≥0

(
1

ε2iR0

)d−1
2

≤
∑
i≥0

(
∆d(K0)

ε2i

)d−1
2

=
(

∆d(K0)
ε

)d−1
2 ∑

i≥0

(
1
2

)i(d−1)
2

≤
(

∆d(K0)
ε

)d−1
2

= O(C(K0, ε)).

In order to bound the contributions to |X| for negative values of i, we need a more
sophisticated strategy. Our approach is to first bound the total relative volume of the
Macbeath regions of M1/4c(Xi), which we assert to be O(εi2id). Assuming this assertion
for now, we complete the proof as follows. By applying Lemma 3.7(ii) with f = O(2id) and
recalling that εi = εRi = 2iεR0, we have (up to constant factors)

∑
i<0

|Xi| ≤
∑
i<0

√
f

ε
(d−1)/2
i

=
∑
i<0

2id/2

(2iεR0)(d−1)/2 =
∑
i<0

2i(d−(d−1))/2

(εR0)(d−1)/2

=
∑
i<0

2i/2

(εR0)(d−1)/2 =
∑
i<0

2i/2C(K0, ε) = C(K0, ε)
∑
i>0

(
1
2

)i
2

= O(C(K0, ε)).

It remains only to prove the assertion on the total relative volume of M1/4c(Xi). Let
x ∈ Xi and let Mx = M1/4c(x). By Lemma 4.4 (with x, K∗

1 , and KH playing the roles of c,
K0, and KH , respectively), there is an associated convex body M ′

x such that

(i) vol(M ′
x) = Ω(vol(Mx)), (ii) M ′

x ⊆ Mx ∩ K∗
1 , and (iii) shadowK∗

1
(M ′

x) ⊆ Mx.

We will use Sx as a shorthand for shadowK∗
1
(M ′

x). Since vol(Mx) = O(vol(M ′
x)) = O(vol(Sx)),

it suffices to show that the total relative volume of the shadows {Sx : x ∈ Xi} is O(εi2id).
For x ∈ Xi, we define cone Ψx to be the intersection of KH with the infinite cone consisting

of rays emanating from the origin that contain a point of Sx (see Figure 9). Since the Macbeath
regions of M1/4c(Xi) are disjoint, it follows from (iii) that the associated shadows intersect
∂K∗

1 in patches that are also disjoint. Thus the set of cones Ψ = {Ψx : x ∈ Xi} are disjoint.

KH

K∗
1

q′′

q

q′x′

x
Θ(Ri)

O

Ψx

Figure 9 Proof of Lemma 5.1.

Consider a ray emanating from the origin that is contained in any cone Ψx. Let q

and q′ be the points of intersection of this ray with ∂K∗
1 and ∂KH , respectively. Let q′′

be any point on this ray that lies inside shadow Sx. Since q′′ ∈ Mx, by Lemma 3.3, we
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have ray(q′′) = Θ(ray(x)) = Θ(εi). By the same reasoning, ray(q) = Θ(εi) = Θ(εRi).
Also, recalling our earlier bounds on the relative ray distance of points on ∂K∗

1 , we have
ray(q) = Θ(ε∥Oq′∥). Equating the two expressions for ray(q), we obtain ∥Oq′∥ = Θ(Ri).

Since the cones of Ψ are disjoint and any ray emanating from the origin and contained
in a cone of Ψ has length Θ(Ri), it follows that the total volume of these cones is O(Rd

i ).
Further, since only a fraction εi of any such ray is contained in the associated shadow, it
follows that the total volume of all the shadows {Sx : x ∈ Xi} is O(εiR

d
i ). Recalling that

vol(KH) = Rd
0 and Ri = 2iR0, it follows that the total relative volume of these shadows

is O(εiR
d
i /Rd

0) = O(εi2id). This establishes the assertion on the total relative volume of
M1/4c(Xi) and completes the proof. ◀
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Abstract

Designing coresets – small-space sketches of the data preserving cost of the solutions within (1 ± ϵ)-
approximate factor – is an important research direction in the study of center-based k-clustering
problems, such as k-means or k-median. Feldman and Langberg [STOC’11] have shown that for
k-clustering of n points in general metrics, it is possible to obtain coresets whose size depends
logarithmically in n. Moreover, such a dependency in n is inevitable in general metrics. A significant
amount of recent work in the area is devoted to obtaining coresests whose sizes are independent of n

for special metrics, like d-dimensional Euclidean space [Huang, Vishnoi, STOC’20], doubling metrics
[Huang, Jiang, Li, Wu, FOCS’18], metrics of graphs of bounded treewidth [Baker, Braverman,
Huang, Jiang, Krauthgamer, Wu, ICML’20], or graphs excluding a fixed minor [Braverman, Jiang,
Krauthgamer, Wu, SODA’21].

In this paper, we provide the first constructions of coresets whose size does not depend on n for
k-clustering in the metrics induced by geometric intersection graphs. For example, we obtain k log2 k

ϵO(1)

size coresets for k-clustering in Euclidean-weighted unit-disk graphs (UDGs) and unit-square graphs
(USGs). These constructions follow from a general theorem that identifies two canonical properties
of a graph metric sufficient for obtaining coresets whose size is independent of n. The proof of
our theorem builds on the recent work of Cohen-Addad, Saulpic, and Schwiegelshohn [STOC ’21],
which ensures small-sized coresets conditioned on the existence of an interesting set of centers, called
centroid set. The main technical contribution of our work is the proof of the existence of such a
small-sized centroid set for graphs that satisfy the two canonical properties. Loosely speaking, the
metrics of geometric intersection graphs are “similar” to the Euclidean metrics for points that are
close, and to the shortest path metrics of planar graphs for points that are far apart. The main
technical challenge in constructing centroid sets of small sizes is in combining these two very different
metrics.

The new coreset construction helps to design the first (1 + ϵ)-approximation for center-based
clustering problems in UDGs and USGs, that is fixed-parameter tractable in k and ϵ (FPT-AS).
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1 Introduction

Clustering is one of the most important data analysis techniques where the goal is to partition
a dataset into a number of groups such that each group contains similar set of data points.
The notion of similarity is captured by a distance function between the data points, and the
goal of retrieving the best natural clustering of the data points is achieved by minimizing a
proxy cost function. In this work, we study the popular (k, z)-clustering problem.

(k, z)-clustering. Given a set of points P in a metric space (Ω, d) and two positive integers
k and z, find a set C of k points (or centers) in Ω that minimizes the following cost function:

cost(C) =
∑
p∈P

cost(p, C)

where cost(p, C) = (d(p, C))z and d(p, C) = minc∈C d(p, c).
Two widely studied clustering problems, k-means, and k-median clustering, are special

versions of (k, z)-clustering with z = 2 and z = 1, respectively. A popular way of dealing
with large data for the purpose of the analysis is to apply a data reduction scheme as a
preprocessing step. In the context of clustering, one such way of preprocessing the data is to
construct an object known as coresets.

Coresets. Informally, an ϵ-coreset for (k, z)-clustering is a small-sized summary of the data
that approximately (within (1 ± ϵ) factor) preserves the cost of clustering with respect to any
set of k centers (we will often shorten “ϵ-coreset” to simply “coreset”). Thus, any solution set
of centers computed for the coreset points can be readily used as a solution for the original
dataset. A formal definition follows.

▶ Definition 1 (ϵ-Coreset). A coreset for (k, z)-clustering problem on a set P of points in a
metric space (Ω, d) is a weighted subset Y of Ω with weights ω : Y → R+ such that for any
set S ⊆ Ω with |S| = k,∣∣∣∣∣∣

∑
p∈P

cost(p, S) −
∑
p∈Y

ω(p)cost(p, S)

∣∣∣∣∣∣ ≤ ϵ ·
∑
p∈P

cost(p, S).

Feldman and Langberg [19] showed that for n points in any general metric, a coreset
of size O(ϵ−2zk log k log n) can be constructed in time Õ(nk), where Õ() notation hides a
poly-logarithmic factor. Also, it is known that the dependency on log n in the above bound
cannot be avoided [3, 17]. However, for several special metrics, it is possible to construct
coresets whose size does not depend on the data size. There has been a large pool of work
for Euclidean spaces, culminating in a bound of O(k · (log k)O(1) · 2O(z log z)ϵ−2 · min{ϵ−z, k})
[17], which is independent of the data size and dimension of the space. Similarly, coresets of
size independent of n are also obtained in other specialized settings such as doubling metrics
[27], shortest-path metrics in the graphs of bounded-treewidth [3], and graphs excluding a
fixed minor [8]. A recent result by Cohen-Addad et al. [17] gives a unified framework that
encompasses all these results. We note that, since the number of distinct (weighted) points
in coresets is usually much smaller (and sometimes independent of) n, they naturally find
applications in non-sequential settings such as streaming [26, 13].

Let us remark that all known results about small coresets in graph metrics strongly exploit
the sparse nature of graphs such as bounded treewidth [3] or excluding a fixed minor [8].
There is a very good reason for that. In a complete graph, by setting suitable weights on the
edges one can represent any general metric. Thus if a graph family contains large cliques,
clustering in such graphs is as difficult as in general metrics.
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In this work, we are interested in coreset construction for edge-weighted geometric
intersection graphs with shortest-path metric. A geometric intersection graph of a set of
geometric objects contains a vertex for each object and an edge corresponding to each pair
of objects that have non-empty intersection. (We note that for our purpose of designing
algorithms, we do not explicitly need the objects or their geometric representation. It is
sufficient to work with the graph representation as long as the edge-weights are given.) In
particular, geometric intersection graphs are a widely studied model for ad-hoc communication
and wireless sensor networks [38, 4, 34, 37, 31]. Notably, clustering is a common topology
management method in such networks. Grouping nodes are used as subroutines for executing
various tasks in a distributed manner and for resource management, see the survey [39] for
an overview of different clustering methods for wireless sensor networks.

Our work is motivated by the following question: “Is it possible to exploit the properties
of geometric intersection graphs for obtaining coresets whose size does not depend on the data
size?” In general, the answer to this question is no. This is because geometric intersection
graphs can contain large cliques. Even for objects as simple as unit squares, the corresponding
intersection graph could be a clique, and, as we already noted, by setting suitable weights
on the edges of the clique, one can represent any metric. Hence constructing coresets
in geometric intersection graphs with arbitrary edge weights is as difficult as in general
metrics. Thus, we need to restrict edge weights in some manner in order to obtain non-trivial
coresets for geometric intersection graphs. As an illustrative example, let us take a look at
Euclidean-weighted UDGs, a well-studied class of geometric intersection graphs.

Euclidean-weighted unit-disk graph metric. A unit-disk graph (UDG) is defined in the
following way – there is a configuration of closed disks of radii 1 in the plane and a one-to-one
correspondence between the vertices and the centers of the disks such that there is an edge
between two vertices if and only if the disks having the two corresponding centers intersect.
The weight of an edge is equal to the Euclidean distance between the two corresponding
centers. Euclidean-weighted UDGs have been well-studied in computational geometry [10, 24].
Apart from practical motivation, UDGs are interesting from theoretical perspectives as well.
On the one hand, being embedded on the plane they resemble planar graphs when “zoomed
out”, but could contain large cliques locally. On the other hand, the metric induced by them
is an amalgamation of geometric and graphic settings, as it is locally Euclidean but globally
a graph metric. Due to the latter property, UDG metric can be used for fine-tuned clustering,
as with pure Euclidean distances one can only retrieve clusters induced by convex partitions
of the space (see Figure 1).

1.1 Our Results
We now formalize our intuition about the “hybrid” nature about the Euclidean weighted
UDGs, by identifying two canonical geometric properties of a graph G that are sufficient
for constructing small-sized coresets. For better exposition, we fix a few notations. For
any subgraph H of G, we denote its set of vertices and set of edges by V (H) and E(H),
respectively. For vertex set V ′ ⊆ V , we denote by G[V ′] the subgraph of G induced by V ′.
For a subgraph H of G, and u, v ∈ V (H), let πH(u, v) denote a shortest path between u

and v (according to the edge-weights in G restricted to H) that uses the edges of H, and
let dH(u, v) denote the weight of πH(u, v), i.e., the sum of the weights of the edges along
πH(u, v). For any path π in a graph, let |π| denote the number of edges on π. Note that dH

is the so-called shortest path metric on H. Finally, for any pair of points p, q ∈ R2, let |pq|
denote the euclidean (i.e., ℓ2-norm) distance between p and q.

SoCG 2023
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3
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√
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1

Figure 1 (Left.) A point set in 2D. (Middle.) 2-means clustering with Euclidean distances.
Centers are shown by crosses. Points of two clusters are shown by disks (red) and squares (blue).
(Right.) 2-means clustering on UDG – due to the 3

√
2 diagonal path distance, all the blue points

(squares) are closer to the upper center.

Canonical geometric properties.
(1) Locally Euclidean: There exist (not necessarily distinct) constants c1, c2, c3, c4 ≥ 0, such

that the following holds. G has an embedding λ : V (G) → R2 in the plane such that the
vertices of G are mapped to points in the plane, with the following two properties.
1. For any two u, v ∈ V (G), if |λ(u)λ(v)| ≤ c1 then uv ∈ E(G), and for any u′, v′ ∈ V (G),

if |λ(u′)λ(v′)| > c2, then u′v′ ̸∈ E(G).
2. For any u, v ∈ V (G) such that uv ∈ E(G), let w(uv) denote the weight of the edge

uv. Then, the edge uv is a shortest path between u and v in G.
Furthermore, c3 · |λ(u)λ(v)| ≤ w(uv) ≤ c4 · |λ(u)λ(v)|.

(2) Planar Spanner: For any induced subgraph G′ = G[V ′] with V ′ ⊆ V (G), there exists a
planar α-spanner H ′ = (V ′, E(H ′)) for some fixed α ≥ 1, i.e., (i) H ′ is a subgraph of G′

(and hence of G) – E(H ′) ⊆ E(G′), and (ii) for any u, v ∈ V ′, dG′(u, v) ≤ dH′(u, v) ≤
α · dG′(u, v).

Our main result is the following theorem.

▶ Theorem 2 (Informal). Consider the metric space (V, dG) induced by any graph G satisfying
the two canonical geometric properties (1) and (2), and a set P ⊆ V (G). Then there exists
a polynomial time algorithm that constructs a coreset for (k, z)-clustering on P of size
O(ϵ−βk log2 k), where β = O(z log z).

Theorem 2 is a handy tool to construct coresets for several interesting geometric intersection
graphs coupled with suitable metrics. First, let us observe that our initial example, namely,
a metric induced by a Euclidean-weighted UDG G satisfies the two canonical properties.
Consider an embedding of G in R2. Note that there is an edge between any two points
iff the Euclidean distance between the two points is at most 2, and the weight of such an
edge is exactly the euclidean distance. Thus, G is Locally Euclidean with c1 = c2 = 2, and
c3 = c4 = 1. Furthermore, due to a result of Li, Calinescu, and Wan [36], any Euclidean-
weighted UDG admits a constant-stretch planar spanner. Thus, G also satisfies the Planar
Spanner property. Therefore, due to Theorem 2, we can obtain O(ϵ−βk log2 k)-size coresets
for (k, z)-clustering on Euclidean-weighted UDGs. In the following, we discuss further
applications of our framework.
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ℓ∞-weighted unit-square graph metric. Unit-square graphs (USGs) are similar to UDGs
except they are defined as intersection graphs of (axis-parallel) unit squares instead of unit
disks 1. Indeed, these two graph classes are distinct. For example, the K1,5 claw can be
realized by a UDG, but not by any USG. (See Figure 2.) Since a unit square is a “unit ball”
in ℓ∞-norm, it is more natural to consider ℓ∞ weights on the edges. It is not too difficult to
see that the Locally Euclidean property holds for ℓ∞-weighted USGs – we give a formal proof
in the full version given in the appendix. On the other hand, in order to establish the second
property, we have to prove the existence of a constant-stretch planar spanner for USGs. To
the best of our knowledge this result was previously not known and is of independent interest.
We give a proof of this result in the full version. Thus, ℓ∞ weighted USGs also satisfy the
two properties required to apply Theorem 2 in order to obtain a small-sized coreset.

Figure 2 A set of disks realizing K1,5 (left) and a set of squares realizing K1,4 (right). A pair of
intersecting unit squares must contain a corner of each other, and so the central square can intersect
with at most four other unit squares that are pairwise disjoint.

Other extensions. In R2, all ℓp distances (1 ≤ p ≤ ∞) are within a
√

2 factor from each
other. Thus, our arguments can be easily extended to any ℓp weights on UDGs/USGs for any
1 ≤ p ≤ ∞ without any changes on the bounds (a formal argument can be found in the full
version). Lastly, we consider shortest-path metrics in unweighted (i.e., hop-distance) unit-disk
graphs of bounded degree. Notably, these graphs satisfy the Planar Spanner property due
to a result by [7], but not the Locally Euclidean property. Nevertheless, we can modify
our approach to construct a small-sized coreset for such metrics. To summarize, we obtain
coresets for (k, z)-clustering with size independent of n for the following graph metrics.

ℓp-distance weighted UDGs for any 1 ≤ p ≤ ∞,
ℓp-distance weighted USGs for any 1 ≤ p ≤ ∞,
Bounded-degree unweighted UDGs.

FPT Approximation Schemes. As a corollary to Theorem 2, we obtain (1 + ϵ)-
approximations for (k, z)-clustering in geometric intersection graphs that are fixed-parameter
tractable (FPT) in k and ϵ. Note that such a (1 + ϵ)-approximation was not known before
even for UDGs, as it does not follow from previously known bound on coreset sizes. Prior
to our work, the best known bound for coresets on UDGs – as in general metrics – was
O(k log n · ϵ− max(2,z)) [18]. Even though a coreset reduces the number of distinct points

1 Although it might seem unnatural at first, it is convenient to define a unit square as a square of sidelength
2. This is analogous to a unit disk being a disk of diameter 2. In either case, the class of USGs remains
unaffected by scaling.

SoCG 2023
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(or clients) to be clustered, the number of potential centers (or facilities) still remains the
same, i.e., n. Hence, a coreset does not directly help us enumerate all possible sets of k

centers from which we could pick the best set. An alternative way to enumerate these
sets of centers is to enumerate all possible partitions (or clusterings) of the coreset points.
Note that each clustering of coreset points corresponds to a clustering of the original points,
and the cost of clustering is preserved to within a (1 ± ϵ) factor. With our coreset bound
of O(ϵ−βk log2 k), the number of distinct clusterings is only kO(ϵ−βk log2 k). Overall the
algorithm takes kO(ϵ−βk log2 k)nO(1) time.

▶ Corollary 3. For each of the metrics listed in the above, there exists a (1+ϵ)-approximation
for (k, z)-clustering with z ≥ 1 that runs in time 2O(ϵ−βk log3 k)nO(1), where β = O(z log z).

1.2 General overview of the methods
Our coreset construction is based on a recent work due to Cohen-Addad, Saulpic, and
Schwiegelshohn [18], which gives a framework for constructing coresets in various settings.The
essence of the framework is that it translates the problem of coreset construction to showing
the existence of an interesting set of centers or centroid set. In particular, consider any set S
of k centers and any subset X ⊆ P of points that are sufficiently close to S compared to
an existing solution A. Then a subset C ⊆ Ω is a centroid set for P if it contains centers
that well-approximates S, i.e., there exists S̃ ⊆ C, such that for every p ∈ X, it holds that
|cost(p, S) − cost(p, S̃)| ≤ ϵ(cost(p, S) + cost(p, A)). The framework informally states that if
there is a centroid set C, then a coreset can be constructed whose size depends logarithmically
on |C|. Such a dependency arises in their randomized construction in order to prove a union
bound over all possible interesting solutions, which can be at most |C|k. By showing the
existence of small-sized centroid sets, they obtain improved coreset size bounds for a wide
range of spaces.

We use the framework of Cohen-Addad et al. for our coreset construction. Our main
technical result shows if for a graph G with metric dG, the two canonical geometric properties
are satisfied, then there exists a small-sized centroid set for G. This is the most challenging part
of the proof and it requires a novel combination of tools and techniques from computational
geometry. As soon as we establish the existence of the centroid set, the construction of
coresets follows the steps of [18]. For the sake of exposition, let us consider a concrete
example of Euclidean-weighted UDGs.

Consider any cluster of points with cluster center s. The points that are nearby (i.e.,
within distance 2) s behave simply as points in the Euclidean case. But, a point p that
is far away from s can have a shortest path distance which may be much larger than the
actual Euclidean distance between p and s, see Figure 1. We first show that it is possible
to conceptually separate out these two cases – but one has to be careful, as a cluster can
potentially contain both types of points. Notably, none of the previous works had to deal with
such a hybrid metric. To handle the set of nearby points, we exploit the Locally Euclidean
property. In particular, by overlaying a grid of appropriately small sidelength, and selecting
one representative point from each cell of the grid, we can compute a centroid set that
preserves the distances from the nearby points.

In the other case, a shortest path between a point p and a center s consists of more than
one edge, and we need to deal with a graphical metric. This case is much more interesting.
All other works establishing small-sized centroid sets in certain graph metrics exploit the fact
that certain graph classes admit small or well-behaved separators. For example, bounded
treewidth graph admit separators bounded by treewidth; whereas graphs excluding a fixed
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minor admit shortest path separators. However, UDGs may contain arbitrarily large cliques,
and therefore do not admit such separators in general. Thus, we reach a technical bottleneck.
Note that this is the first work of its kind that handles such a dense graph. To overcome this
challenge, we use the other canonical property. Instead of directly working with the UDG,
we consider its planar spanner, where distances are preserved up to a constant factor. The
existence of such a spanner is guaranteed by the second canonical property, Planar Spanner.
As planar graphs have shortest path separators, now we can apply the existing techniques.
However, if we were to entirely rely on the spanner, some of the distances may be scaled up
by a constant (> 2) factor in the spanner, and thus it would not be possible to ensure the
(1 ± ϵ)-factor bound required to construct a coreset.

Thus, we use the spanner as a supporting graph in the following way. First, we recursively
decompose the original UDG by making use of the shortest path separators admitted by
the planar spanner. We note that although planar graph decomposition has been used in
coreset literature, using such a guided scheme to obtain a decomposition of a much more
general graph is novel. Then, we use this recursive decomposition of the UDG, along with the
shortest path separators used to find this decomposition, in order to construct the centroid
set. In this construction, we use the spanner in a restricted manner, and use it such that
error incurred by the use of the spanner is upper bounded by α times the weight of at most
one edge along a shortest path from a point p to its corresponding (approximate) center.
However, observe that if such a shortest path consists of a single edge, then even this error is
too large. To resolve this issue, we rely on the planar spanner, only if the shortest path is
“long enough”, i.e., contains Ω(z/ϵ) edges. In this case, Locally Euclidean property implies
that for such a “long path”, the length of the path and the number of edges on the path are
within a constant factor from each other. This implies that the error introduced by rerouting
a single edge using the spanner is at most ϵ times the length of the path, i.e., negligible.

Finally, if a shortest path between a point and a center consists of O(z/ϵ) edges, then we
can use a modified version of the grid-cell argument to obtain a small-sized centroid set.

We note that this is simply an intuitive overview of the challenges faced in each of the
three cases. The actual construction of the centroid set, and the analysis of the error incurred
in each of the cases is fairly convoluted. While replacing a center s ∈ S by another one s̃ ∈ C,
we need to ensure that for a point p having s as its closest center, dG(p, s̃) is neither too
large nor too small compared to dG(p, s), since we want to bound the error in the absolute
difference. In addition, we have to be extremely careful while combining the three centroid
(sub)sets constructed for each of the cases, and ensure that a good replacement s̃ found for
a center s in one of the cases does not adversely distort the error for a point that is being
handled in another case.

Related work. Here we give an overview of the literature on coresets. For a more exhaustive
list, we refer to [18, 28]. Coreset construction was popularized by an initial set of works that
obtained small-sized coresets in low-dimensional Euclidean spaces [26, 25, 22]. Chen [13]
obtained the first coreset for Euclidean spaces with polynomial dependence on the dimension
and the first coreset in general metrics, where the size is O(k2ϵ−2 log2 n) for k-median.
Subsequently, the dependence on the dimension has been further improved [33, 20]. Finally,
such dependence was removed in [21, 40]. See also [5, 18, 28, 8, 17] for recent improvements.

Both k-median and k-means admit polynomial-time O(1)-approximations in general
metrics [11, 12, 29, 35, 9, 1]. Moreover, algorithms with improved approximation guarantees
can be obtained that is FPT in k and ϵ [15]. Naturally, the problems have also been studied
in specialized metrics. Polynomial-time approximation schemes (PTASes) are known for

SoCG 2023



10:8 Coresets for Clustering in Geometric Intersection Graphs

Euclidean k-median [2] and k-means [16, 23]. See [14, 32] for other improvements. Similar to
geometric clustering, clustering in graphic setting is also widely studied. PTASes are known
for excluded-minor graphs [16, 8].

Also, FPT approximation schemes are known for graphs of bounded-treewidth [3] and
graphs of bounded highway dimension [6, 8].

2 Coresets for Geometric Graphs

To set up the stage, we need the following definition of centroid set from [18].

▶ Definition (Centroid Set). Consider any metric space (Ω, d), a set of clients P ⊆ Ω, and
two positive integers k and z. Let ϵ > 0 be a precision parameter. Given a set of centers A, a
set C is an A-approximate centroid set for (k, z)-clustering on P that satisfies the following
property.

For every set of k centers S ⊆ Ω, there exists S̃ ⊆ C, such that for every p ∈ P that
satisfies cost(p, S) ≤

( 10z
ϵ

)z · cost(p, A) or cost(p, S̃) ≤
( 10z

ϵ

)z · cost(p, A), it holds that

|cost(p, S) − cost(p, S̃)| ≤ ϵ

z log(z/ϵ) (cost(p, S) + cost(p, A)).

Informally, a centroid set C is a collection of candidate centers, potentially much smaller
than Ω, such that the k centers in S can be replaced by k centers in S̃ ⊆ C without changing
the cost of points by a large amount, that are much closer to S or S̃ compared to A w.r.t.
d. Cohen-Addad et al. [17] proved that one can obtain coresets whose size depends only
logarithmically on the size of any such centroid set. More formally, they prove the following.

▶ Proposition 4 ([18]). Consider any metric space (Ω, d), a set of points P ⊆ Ω with n

distinct points, and two positive integers k and z. Let ϵ > 0 be a precision parameter. Suppose
A be a given constant-factor approximation for (k, z)-clustering on P .

Suppose there exists an A-approximate centroid set for (k, z)-clustering on P . Then there
exists a polynomial time algorithm that constructs with probability at least 1 − δ a coreset of
size

O
(

2O(z log z) · log4(1/ϵ)
min{ϵ2, ϵz}

(k log |C| + log log(1/ϵ) + log(1/δ))
)

with positive weights for (k, z)-clustering on P .

First, note that the above coreset framework requires only existence of such a centroid
set. It is not necessary to explicitly compute it. Indeed, such a centroid set is only used to
bound the size of computed coresets in their analysis. The main contribution of our work is
to obtain small-sized centroid sets for geometric graph metrics that satisfy the two canonical
geometric properties. In particular, we prove the following theorem.

▶ Theorem 5 (Centroid Set Theorem). Consider the metric space (V, dG) induced by any
graph G = (V, E) satisfying the Locally Euclidean and Planar Spanner properties defined
before. Also consider a set of points X ⊆ V and two positive integers k and z ≥ 1. Let ϵ > 0
be the precision parameter. Additionally, suppose A be a solution for (k, z)-clustering on
X. Then there exists an A-approximate centroid set C for (k, z)-clustering on X of size
exp(O(log2 |X| + z16ϵ−8(log(z/ϵ))8 log |X|)).

We give an overview of the proof of Theorem 5 in the following section, and defer a formal
proof to the Section 3 of the full version. Then, by combining Proposition 4 and arguments
from [8], with some minor changes due to our different bound on coreset-size, we obtain the
following theorem. A formal proof can be found in Section 2 of the full version.
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▶ Theorem 6. Consider the metric space (V, dG) induced by any graph G = (V, E) satisfying
Locally Euclidean and Planar Spanner properties, a set P ⊆ V with n distinct points,
and two positive integers k and z ≥ 1. Then there exists a polynomial time algorithm
that constructs with probability at least 1 − δ a coreset for (k, z)-clustering on P of size
O(ϵ−O(z log z)k log2 k log3(1/δ)), where z is a constant, and δ < 1/4.

3 Overview of the Proof of Centroid Set Theorem

In this section, we give an overview of our main result, namely, the existence of a small-sized
centroid set. A formal proof can be found in the full version.

Recall that we are given G = (V, E), a connected, undirected, and edge-weighted graph
on n vertices. Moreover, G satisfies the two canonical geometric properties, namely Locally
Euclidean, and Planar Spanner.

As (V, dG) is our metric space, we use the terms points and vertices interchangeably.
X ⊆ V is the given set of points. We are also given A, a solution for (k, z)-clustering
on X. We prove that there exists an A-approximate centroid set of size exp(O(log2 |X| +
z16ϵ−8(log(z/ϵ))8 log |X|)) for (k, z)-clustering on X, which satisfies the following property.

For every set of k centers S ⊆ V , there exists S̃ ⊆ C, such that for every p ∈ X that
satisfies cost(p, S) ≤

( 10z
ϵ

)z · cost(p, A) or cost(p, S̃) ≤
( 10z

ϵ

)z · cost(p, A), it holds
that

|cost(p, S) − cost(p, S̃)| ≤ ϵ

z log(z/ϵ) (cost(p, S) + cost(p, A)).

Now we proceed to an overview of the proof of the theorem. This proof can be divided
into three steps.
1. Construction of a centroid set C of a small size.
2. Given a solution S ∈ V k, finding for each center s ∈ S, a replacement center ρ(s) ∈ C, to

construct S̃ ∈ Ck.
3. Showing that S̃ approximates S, i.e., it satisfies the property specified above.
Given the hybrid nature of the metric, each of these three steps is subdivided into multiple
cases. Recall that, due to the first canonical property, points in V that are close to each
other behave as in the Euclidean case. To take care of the case of points nearby to their
closest centers, we add a set of points Cnet to our centroid set. The case of far away points is
further divided into two subcases. In the first subcase, we deal with the points whose shortest
paths to closest centers are short or O(z/ϵ) hops away. To take care of this subcase, we add
a set of points Csupport to our centroid set. The last subcase concerns long paths, and here
we make use of the planar spanner property. In particular, we construct the centroid points
in this case based on a recursive decomposition of the graph guided by underlying planar
spanners of the decomposed subgraphs. This subcase resembles the centroid set construction
in excluded-minor graph metrics from [17, 8]. In this informal overview, it will be convenient
to consider each of these three cases separately, and discuss steps 1-3 in each case (overview
of step 1 in each case hints at why the size of centroid set is bounded, but a formal proof is
given in the full version).

Nearby points case.
Construction of Cnet. Let p1, p2, . . . , pn′ be the points of X such that dG(p, A) < 1 for all

p = pi, where 1 ≤ i ≤ n′. Let Bi = B(pi, (10z/ϵ) · dG(pi, A)) be the Euclidean ball
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centered at pi having radius (10z/ϵ) · dG(pi, A). For each 1 ≤ i ≤ n′, compute an
(ϵ3/z3) · dG(pi, A)-net of the disk Bi that is a subset of V and add that to Cnet. That is,
this net picks at most one point of V from each gridcell of length β = (ϵ3/z3) · dG(pi, A)
that intersects with the disk Bi. Note that the distance between any two points that
belong to the same cell is O(β). In particular, the Locally Euclidean nature of G helps
us define this net.

Finding a replacement center. For a center s ∈ S, let Xs ⊆ X denote the set of points that
have s as their closest center in S. If there exists a pi ∈ Xs with dG(p, A) < 1, then we
argue that s belongs to the ball Bi as defined above. It follows that we added a point s̃

to Cnet, such that dG(s, s̃) = O( ϵ3

z3 dG(pi, A)). We pick s̃ as the replacement for s, i.e.,
ρ(s) = s̃, and add it to S̃.

Error analysis. Using triangle inequality, it follows that for any p ∈ Xs, |dG(p, s)−dG(p, s̃)| =
O( ϵ3

z3 dG(pi, A)). If there are multiple choices for pi, a careful choice ensures that this
error is upper bounded by ϵ/z · (dG(p, s) + dG(p, A)).

Short-path case.
Construction of Csupport. For each point p ∈ X, we consider a disk D(p, r) of radius r =

Θ(z/ϵ) around p. Finally, we consider the union of the area covered by all such disks. We
subdivide this area into small gridcells of sidelength O(ϵ2/z2), and select one representative
point from each grid cell, and add it to the set Csupport. 2

Finding a replacement center. For a center s ∈ S, suppose we were not able to find a
replacement using the previous case. Then, if s̃ from the same cell as s of sidelength
O(ϵ2/z2) was added to Csupport, then we set ρ(s) = s̃, and add it to S̃.

Error analysis. If a shortest path πG(p, s) is short, i.e., contains at most ℓ edges, where
ℓ = Θ(z/ϵ), then due to the Locally Euclidean property, s belongs to the disk D(p, r).
It follows that we select some s̃ in Csupport such that dG(s, s̃) = O(ϵ2/z2). Again, using
triangle inequality, it follows that for any p ∈ Xs, it holds that |dG(p, s) − dG(p, s̃)| =
O(ϵ2/z2) ≤ O(ϵ2/z2) · dG(p, A). Here, the second inequality follows since for any point
p ∈ Xs, dG(p, A) > 1; otherwise the previous case would apply. Note that in this
simplified argument, precision value of ϵ/z would also suffice; however, in the actual
analysis we need the more granular value of ϵ2/z2 to ensure that the choices made in
nearby points and short path cases do not affect each other.

Long-path case. This is the most involved case out of the three, and it is here that we rely
on the planar spanner property. Before going into the details, let us first note the following
property. For any s ∈ S whose replacement has not been found in the previous two cases, it
holds that for every p ∈ X, |π(p, s)| > ℓ. That is, the hop-distance of s from every point in
X is strictly larger than ℓ. This observation will be crucial in the subsequent error analysis.
Construction of Clandmark. Here, we first use the Planar Spanner property to obtain a

recursive decomposition of the graph represented by a tree T (see Figure 3 for an
illustration). Each node of T corresponds to a subset of vertices of G (called region). By
slightly abusing the notation, we equate a node i with its corresponding region Ri ⊆ V (G).
The decomposition ensures that the union of all children regions of Ri is equal to Ri.
This decomposition is obtained as follows. The root region R1 is equal to V (G). Now,
consider a region Ri, and the corresponding induced subgraph Gi = G[Ri]. Due to Planar

2 In the actual construction, we define a support graph to define the set Csupport. But, at a high level, the
construction follows the overview given here.
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Ri

Figure 3 Decomposition of a region Ri into multiple children. Inside Ri, we show the induced
subgraph Gi = G[Ri] (which is not planar) and the corresponding planar spanner Hi. The edges of
Hi are shown in red, and the edges in E(Gi) \ E(Hi) are in black. The two shortest-path separators
of Hi are shown in blue, which form a balanced separator Pi for the vertices of X (shown as light
blue squares). Then, we add a child for every connected component of H \ V (Pi) (children regions
inside solid ellipses). We also have children corresponding to paths in Pi (dashed ellipses). One of
the paths is broken into two pieces due to a vertex in X.

Spanner property, Gi admits a constant stretch planar spanner Hi. We then use the
following well-known result.
▶ Proposition 7 ([10, 30]). Given an edge-weighted planar graph H ′, with non-negative
weights on vertices, there exists a collection of shortest paths P = {P1, P2, . . . , , Pb} with
b = O(1), such that the set of vertices of every connected component in H \

⋃
P i∈P V (Pi)

has weight at most half of that of V (H ′).
We define the weight of a vertex in Hi as 1 if it belongs to X, and 0 otherwise. Then,
by applying Proposition 7, we obtain a collection of shortest paths Pi in Hi such that
each connected component of Hi \ V (Pi) contains at most a constant fraction of vertices
of X. Now we add children to Ri in the tree T , as follows: there is one child of Ri for
a subset of Ri corresponding to (1) each connected component in Hi \ V (Pi), and (2)
each shortest path P i,j ∈ Pi (if a path P i,j contains vertices of X, then we break it at
each such vertex and add the pieces as multiple children). We recursively subdivide the
current Ri into multiple children in this manner as long as |Ri ∩ X| ≥ 2. Thus the height
of the tree is O(log |X|).
Now, consider a leaf node corresponding to a region Rt, and the corresponding root-leaf
path Π = (R1, R2, . . . , Rt), where R1 is the root region. For each region Ri along the path,
we have a set of O(1) shortest paths that are separators for the corresponding spanner Hi

of Gi = G[Ri]. Thus, in total we have a collection of O(log |X|) paths corresponding to a
region Rt. Now, we select a set of vertices on each of these paths that are at evenly spaced
distances, and add these vertices to a set L of landmarks. We also add the vertices in
Rt ∩ X to the landmark set L. It can be shown that the overall size of L is Oϵ,z(log |X|).
Now, for every vertex s ∈ Rt, we look at the distance vector obtained by looking at
distances of s from each landmark in L, and discretize each distance entry by rounding it.
Thus, we can partition Rt into a bounded number of equivalence classes based on the
discretized distance vectors to L. For each leaf Rt, and each equivalence class of Rt, we
add one representative point in Clandmark. 3

3 In the actual construction, we consider different spacings along each path P i,j , which results in multiple
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π(p, s)s

s̃ pxRi

Figure 4 Using landmarks to reroute paths. Here, we show a root-leaf path in T , such that
each region along the path contains s and its replacement s̃. This s̃ is chosen such that distances
of s and s̃ has same discretized distances w.r.t. all landmarks in L (shown as red squares), which
are spaced evenly along the shortest path separators (shown in blue). Suppose Ri is the lowest
region containing s and a point p, which means that a separator path in Pi separates them. We
reroute a single edge (shown in orange) on the shortest path π(p, s) via a landmark x (rerouted path
shown in red) using the edges of Hi, to obtain an approximate shortest path π̃(p, s). Since s and
s̃ have approximately the same distance to x (dashed black paths), we can use this to show that
dG(p, s) ≈ dG(p, s̃).

Finding a replacement center. Consider a center s ∈ S, and suppose it belongs to a leaf
region Rt. By construction, we added a point s̃ ∈ Rt to Clandmark, such that s̃ and s have
same discretized distance vector w.r.t. all landmarks in L. We set ρ(s) = s̃, and add it to
S̃.

Error analysis. Now consider a point p ∈ Xs. If p ∈ Rt, then p ∈ L. Therefore, s and s̃ have
same discretized distances w.r.t. p. This ensures that dG(p, s) and dG(p, s̃) are within the
required error bound.

Otherwise, p ̸∈ Rt. This means that during the decomposition process, s and p must
have been separated when we split a region Ri ∈ Π into its multiple children. If Gi = G[Ri]
were planar, then we could conclude that the shortest path π(p, s) must intersect some

collections of landmarks for each path. We then consider all possible choices of spacings for each of the
O(log |X|) paths P i,j , which results in multiple landmark sets corresponding to each set of choices. For
each landmark set thus obtained, we then define the equivalence classes of Rt in the manner described
above, and add one representative of each class to the set Clandmark. However, for the current overview,
let us continue with this simplified (although inaccurate) construction.
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shortest-path separator P i,j ∈ Pi. Unfortunately, in our case, Gi is not planar, and P i,j

is not a separator for Gi, but for its planar spanner Hi. Here we recall the property that
the hop-length of the shortest path |π(p, s)| is strictly larger than ℓ, i.e., is Ω(z/ϵ), which
implies that the weight of a single edge is negligible as compared to the total length of the
path. Then, we show that it is possible to reroute a single edge of the path π(p, s) using
the spanner Hi (which results in a constant factor increase in the distance, but only for a
single edge) to obtain an approximately shortest path π̃(p, s). Furthermore, π̃(p, s) intersects
a separator path P i,j , and the intersecting vertex x is a landmark. This is the most intricate
part of the argument, since we have to argue about shortest paths in G, Gi and Hi. Once
we construct π̃(p, s), we can use a subpath of π̃(p, s) to go from p to x, and then use the fact
that dG(s, x) ≈ dG(s̃, x), since x is a landmark, and s and s̃ have same discretized distances
w.r.t. x. Thus, we can show that dG(p, s) and dG(p, s̃) are within the required bound. See
Figure 4 for an illustration.

Note that the novelty of our work compared to previous works (Braverman et al. [8] and
Cohen-Addad et al. [17]) lies in the ability of utilizing an underlying planar spanner instead
of the original graph and still achieve a similar error bound sufficient for the analysis.

4 Conclusion

We obtain the first coresets for k-clustering problems whose size is independent of n, on a
variety of geometric graph metrics, such as weighted intersection graphs of unit disks and
squares. A UDG (or a USG) can contain arbitrarily large cliques, i.e., they can be (locally)
dense. Therefore, to the best of our knowledge, ours is the first small-sized (i.e., independent
of n) coreset construction for a shortest-path metric on a dense family of graphs. Due to the
inherently “hybrid” nature of such metrics, our coreset construction has to carefully navigate
the locally-Euclidean and globally-sparse nature of the metric.

We believe the contribution of our work is also conceptual, in that we “abstract out” the
geometric properties of such metrics that are sufficient to obtain small-sized coresets via the
versatile framework of Cohen-Addad et al. [18]. These structural properties are also satisfied
by ℓp-norm weighted UDGs and USGs. Furthermore, by suitably modifying the construction,
we can also handle hop metrics (i.e., unweighted edges) induced by UDGs of bounded degree.
Thus, we obtain small-sized coresets, and thus FPT-approximation schemes, for k-clustering
problems for all of these graph families. In order to obtain the result on USGs, we prove that
these graphs admit a 3-stretch planar spanner, a result that may be of independent interest.

The most natural question is to find more graph families that satisfy the geometric
properties (or some suitable modifications thereof) identified in this work. Disk graphs in
R2 and Unit Ball Graphs in Rd (for constant d ≥ 3) are two orthogonal generalizations of
UDGs, and thus may be the most obvious candidates. However, these graphs are not known
to admit a constant stretch planar spanner. As an intermediate step, it might be interesting
to consider “unit disk graphs” that are embeddded on a surface Σ of bounded genus. Here,
it might be more natural to require that such a graph admit constant stretch spanner that is
also embeddable on Σ (which is a relaxation of planarity). It might be possible to extend
our framework with this relaxed setting, also yielding smaller coresets for such geometric
intersection graph families, which we leave as an interesting open question.
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11:2 Minimum-Membership Geometric Set Cover

1 Introduction

Geometric set cover is one of the most fundamental problems in computational geometry. In
the problem, we are given a set S of points and a set R of geometric objects, and our goal is
to cover all the points in S using fewest objects in R. Motivated by applications, several
variants of the geometric set cover problem have been studied in literature. In this paper,
we study a natural variant of the geometric set cover problem, called minimum-membership
geometric set cover (MMGSC).

In the MMGSC problem, the input also consists of a set S of points and a set R of
geometric objects. Similar to the geometric set cover problem our goal is still to cover all
the points in S using the objects in R. However, we do not care about how many geometric
objects we use. Instead, we want to guarantee that any point in S is not “over covered”.
More precisely, the goal is to find a subset R∗ ⊆ R to cover all points in S such that
the membership of S with respect to R∗, denoted by memb(S, R∗), is minimized, where
memb(S, R∗) = maxp∈S |{R ∈ R∗ : p ∈ R}|.

Kuhn et al. [7], motivated by applications in cellular networks, had introduced the non-
geometric version of the MMGSC problem, say minimum-membership set cover (MMSC).
That is, S is an arbitrary universe with n elements and R is a collection of subsets of S. They
showed that the MMSC problem admits an O(log n)-approximation algorithm, where n = |S|.
Furthermore, they complimented the upper bound result by showing, that unless P=NP, the
problem cannot be approximated, in polynomial time, by a ratio less than ln n. Erlebach
and van Leeuwen [6], in their seminal work on geometric coverage problem, considered the
geometric version of MMSC, namely MMGSC, from the view of approximation algorithms.
They showed NP-hardness for approximating the problem with ratio less than 2 on unit
disks and unit squares, and gave a 5-approximation algorithm for unit squares provided that
the optimal objective value is bounded by a constant. More precisely, their algorithm runs
in time nO(opt) where opt is the optimum of the problem (i.e., the minimum membership). It
has remained open that whether MMGSC with unit squares admits a (truly) polynomial-time
constant-approximation algorithm.

As our first result, we settle this open question by giving a polynomial-time algorithm
for MMGSC with unit squares which achieves a constant approximation ratio. In fact, our
algorithm works for a generalized version of the problem, in which the point set to be covered
can be different from the point set whose membership is considered.

▶ Definition 1 (generalized MMGSC). In the generalized minimum-membership geometric set
cover (MMGSC) problem, the input consists of two sets S, S′ of points in Rd and a set R of
geometric objects in Rd, and the goal is to find a subset R∗ ⊆ R to cover all points in S such
that memb(S′, R∗) is minimized. We denote by opt(S, S′, R) the optimum of the problem
instance (S, S′, R), i.e., opt(S, S′, R) = memb(S′, R∗) where R∗ ⊆ R is an optimal solution.

▶ Theorem 2. The generalized MMGSC problem with unit squares admits a polynomial-time
constant-approximation algorithm.

As our second result, we gave the first polynomial-time approximation scheme (PTAS)
for MMGSC with halfplanes. Prior to this work, it was even unknown whether the problem
can be approximated in polynomial time with a factor of o(log n), while the minimum-size
set cover problem with halfplanes can be solved in polynomial time. Again, our PTAS works
for the generalized version.

▶ Theorem 3. The generalized MMGSC problem with halfplanes admits a PTAS.
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The generalized version of MMGSC is interesting because it also generalizes another
closely related problem studied in the literature, called minimum-ply geometric set cover
(MPGSC). The MPGSC problems was introduced by Biedl, Biniaz and Lubiw [3] as a variant
of MMGSC. They observed that in some applications, e.g. interference reduction in cellular
networks, it is desirable to minimize the membership of every point in the plane, not only
points of S. Therefore, in MPGSC, the goal is to find R∗ ⊆ R to covers S such that the
ply of R∗ is minimized, where the ply is defined as the maximum number of objects in R∗

which have a nonempty common intersection. Observe that MPGSC is a special case of the
generalized MMGSC (by letting S′ include a point in every face of the arrangement induced
by R). As such, Theorems 2 and 3 both apply to MPGSC.

Prior to our work, Biedl, Biniaz and Lubiw [3] showed that solving the MPGSC with a
set of axis-parallel unit squares is NP-hard, and gave a polynomial-time 2-approximation
algorithm for instances in which the optimum (i.e., the minimum ply) is a constant. Very
recently, Durocher, Keil and Mondal [5] gave the first constant-approximation algorithm for
MPGSC with unit squares, which runs in O(n12) time. This algorithm does not extend to
other related settings, such as similarly sized squares or unit disks. Our algorithm derived
from Theorem 2 is already much more efficient than the one of [5] (while also not extend
to similarly sized squares or unit disks). However, we observe that for (only) MPGSC with
unit squares, there exists a very simple constant-approximation algorithm which runs in
Õ(n) time; here Õ hides logarithmic factors. This simple algorithm directly extends to any
similarly sized fat objects for which a constant-approximation solution for minimum-size set
cover can be computed in polynomial time. Therefore, we obtain the following result.

▶ Theorem 4. The MPGSC problem with unit (or similarly sized) squares/disks admits
constant-approximation algorithms with running time Õ(n).

A common ingredient appearing in all of our results is to establish connections between
MMGSC (or MPGSC) and the standard minimum-size geometric set cover. We show that in
certain situations, a minimum-size set cover (satisfying certain conditions) can be a good
approximation in terms of MMGSC. This reveals the underlying relations between different
variants of geometric set cover problems, and might be of independent interest.

Other related work

Very recently, Mitchell and Pandit [8] proved that MMGSC with rectangles intersecting a
horizontal line or anchored on two horizontal lines is NP-hard (among other algorithmic and
hardness results).

Organization

The rest of the paper is organized as follows. In Section 2, we present our result for MMGSC
with unit squares. In Section 3, we present our result for MMGSC with halfplanes. The
result for MPGSC is given in Section 4. Due to the limited space, some (less important)
proofs are omitted and can be found in the full version of the paper.

2 Constant approximation for unit squares

Let S, S′ be two sets of points in R2 and Q be a set of (axis-parallel) unit squares. We want
to solve the generalized MMGSC instance (S, S′, Q).

SoCG 2023
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2.1 Restricting S to a grid cell
First of all, we construct a grid Γ consisting of square cells of side-length 1. For each grid
cell □, we write S□ = S ∩ □ and Q□ = {Q ∈ Q : Q ∩ □ ̸= ∅}.

▶ Lemma 5. Suppose that, for every □ ∈ Γ , Q∗
□ ⊆ Q□ is a c-approximation solution of

the generalized MMGSC instance (S□, S′, Q□). Then
⋃

□∈Γ Q∗
□ is an O(c)-approximation

solution of the instance (S, S′, Q).

Proof. First notice that
⋃

□∈Γ Q∗
□ is a set cover of S, because any point p ∈ S is contained

in a grid cell □ and thus Q∗
□ covers p. Then we show that for any point p′ ∈ S′, the number

of unit squares in
⋃

□∈Γ Q∗
□ containing p′ is at most 9c · opt(S, S′, Q). Suppose the grid cell

containing p′ is □′. Note that a unit square Q ∈
⋃

□∈Γ Q∗
□ contains p′ only if Q ∈ Q∗

□ for a
grid cell □ that is either □′ or one of the eight grid cells around □′. For each such cell □,
the number of unit squares in Q∗

□ containing p′ is at most c · opt(S□, S′, Q□), since Q∗
□ is

a c-approximation solution of (S□, S′, Q□). It is clear that opt(S□, S′, Q□) ≤ opt(S, S′, Q).
Therefore, there can be at most 9c · opt(S, S′, Q) unit squares in

⋃
□∈Γ Q∗

□ containing p′,
which implies that

⋃
□∈Γ Q∗

□ is a 9c-approximation solution of (S, S′, Q). ◀

2.2 Partition the instance using LP
Based on the previous discussion, we will now assume that S is contained in a grid cell
□ and all unit squares in Q intersect □. Note that the points in S′ can be everywhere
in the plane. We shall formulate an LP relaxation of the generalized MMGSC instance
(S, S′, Q). To this end, we first introduce the notion of fractional set cover. A fractional set
cover of a set A of points is a set {xB}B∈B of numbers in [0, 1] indexed by a collection B of
geometric ranges such that

∑
B∈B,a∈B xB ≥ 1 for all a ∈ A. For another set A′ of points,

we can define the membership of A′ with respect to this fractional set cover {xB}B∈B as
memb(A′, {xB}B∈B) = maxa′∈A′

∑
B∈B,a′∈B xB . The LP relaxation of the instance (S, S′, Q)

simply asks for a fractional set cover of S using the unit squares in Q that minimizes the
membership of S′ with respect to it. Specifically, for each unit square Q ∈ Q, we create a
variable xQ. In addition, we create another variable y, which indicates the upper bound for
the membership of S with respect to {xQ}Q∈Q. We consider the following linear program.

min y

s.t. 0 ≤ xQ ≤ 1 for all Q ∈ Q,∑
Q∈Q,p∈Q xQ ≥ 1 for all p ∈ S,∑
Q∈Q,p′∈Q xQ ≤ y for all p′ ∈ S′.

We compute an optimal solution ({x∗
Q}Q∈Q, y∗) of the above linear program using a

polynomial-time LP solver. We have the following observation about the solution.

▶ Fact 6. y∗ ≤ opt(S, S′, Q).

Proof. Let Q∗ ⊆ Q be an optimal solution. We have S ⊆
⋃

Q∈Q∗ and memb(S′, Q∗) =
opt(S, S′, Q). Set xQ = 1 for Q ∈ Q∗, XQ = 0 for Q /∈ Q∗, and y = memb(S′, Q∗). These
values satisfy the LP constraints. Therefore, y∗ ≤ y = opt(S, S′, R). ◀

Next, we shall partition the instance (S, S′, Q) into four sub-instances according to the
LP solution ({x∗

Q}Q∈Q, y∗). Recall that all points in S are inside the grid cell □ and all unit
squares in Q intersect □. Let c1, c2, c3, c4 be the four corners of □. We can partition Q into
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Q1, Q2, Q3, Q4, where Qi consists of the unit squares containing ci for i ∈ {1, 2, 3, 4}. Also,
we partition S into S1, S2, S3, S4 in the following way. For a point p ∈ R2 and i ∈ {1, 2, 3, 4},
define δp,i as the sum of x∗

Q for all Q ∈ Qi satisfying p ∈ Q. Then we assign each point p ∈ S

to Si, where i ∈ {1, 2, 3, 4} is the index that maximizes δp,i. Observe the following fact.

▶ Fact 7. For each i ∈ {1, 2, 3, 4}, we have
∑

Q∈Qi,p∈Q x∗
Q ≥ 1

4 for all p ∈ Si.

Proof. We have
∑

Q∈Qi,p∈Q x∗
Q = δp,i and

∑4
i=1 δp,i =

∑
Q∈Q,p∈Q x∗

Q ≥ 1, because of the
LP constraints. Furthermore, δp,i ≥ δp,j for all j ∈ {1, 2, 3, 4}, as p ∈ Si. Thus, δp,i ≥ 1

4 . ◀

We now partition the original instance into (S1, S′, Q1), . . . , (S4, S′, Q4). Consider an
index i ∈ {1, 2, 3, 4}. If we define x̃∗

Q = 4x∗
Q for all Q ∈ Qi, then the above fact implies∑

Q∈Qi,p∈Q x̃∗
Q ≥ 1 for all p ∈ Si. In other words, {x̃∗

Q}Q∈Qi
is a fractional set cover of Si.

Note that memb(S′, {x̃∗
Q}Q∈Qi) ≤ 4y∗, because

4y∗ ≥
∑

Q∈Q,p′∈Q

4x∗
Q ≥

∑
Q∈Qi,p′∈Q

x̃∗
Q

for all p′ ∈ S, due to the constraints of the LP. With this observation, it now suffices to
compute a solution for each instance (Si, S′, Qi) that is a constant-factor approximation
even with respect to the fractional solutions. The union of these solutions is a set cover
of S =

⋃4
i=1 Si, the membership of S′ with respect to it is O(y∗). A nice property of the

instances (Si, S′, Qi) is that all unit squares in Qi contain the same corner ci of □. In the
next section, we show how to compute the desired approximation solution for such instances.

2.3 The one-corner case
Now consider an instance (S, S′, Q), where all points in S lie in a grid cell □ and all unit
squares contain the same corner (say the bottom-left corner) of □. For a point p ∈ R2, denote
by x(p) and y(p) the x-coordinate and y-coordinate of p, respectively. Also, for a unit square
Q ∈ Q, denote by x(Q) and y(Q) the x-coordinate and y-coordinate of the top-right corner
of Q, respectively. We make two simple observations. The first one shows that the integral
gap of the minimum-size set cover problem in this setting is equal to 1 (the proof is omitted
and can be found in the full paper). The second one gives a useful geometric property for
unit squares containing the same corner of □.

▶ Fact 8. Let S0 ⊆ S be a subset and Q0 ⊆ Q be a minimum-size set cover of S0. For any
fractional set cover {x̂Q}Q∈Q of S0, we have

∑
Q∈Q x̂Q ≥ |Q0|.

▶ Fact 9. Let Q−, Q, Q+ be three unit squares all containing the bottom-left corner of □
which satisfy x(Q−) ≤ x(Q) ≤ x(Q+) and y(Q−) ≥ y(Q) ≥ y(Q+). Then Q− ∩ Q+ ⊆ Q.

Proof. Let p ∈ Q− ∩ Q+. The fact p ∈ Q− implies x(p) ≤ x(Q−) and y(Q−) − 1 ≤ y(p).
So we have x(p) ≤ x(Q) and y(Q) − 1 ≤ y(p). On the other hand, the fact p ∈ Q+ implies
x(Q+)−1 ≤ x(p) and y(p) ≤ y(Q+). So we have x(Q)−1 ≤ x(p) and y(p) ≤ y(Q). Therefore,
x(Q) − 1 ≤ x(p) ≤ x(Q) and y(Q) − 1 ≤ y(p) ≤ y(Q), which implies that p ∈ Q. ◀

We say a unit square Q ∈ Q is dominated by another unit square Q′ ∈ Q if Q∩□ ⊆ Q′ ∩□.
A unit square in Q is maximal if it is not dominated by any other unit squares in Q. We
denote by Qmax ⊆ Q the set of maximal unit squares in Q. The following lemma shows
that any minimum-size set cover of S that only uses the unit squares in Qmax is also a good
approximation for the minimum-membership set cover.

SoCG 2023
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Qi+

Qi−

p′

R

Grid Cell

Figure 1 Illustrating the rectangle R.

▶ Lemma 10. Let Q∗ ⊆ Q be a minimum-size set cover of S such that Q∗ ⊆ Qmax, and
{xQ}Q∈Q be a fractional set cover of S. Then memb(S′, Q∗) ≤ memb(S′, {xQ}Q∈Q) + 2.

Proof. Suppose Q∗ = {Q1, . . . , Qr} where x(Q1) ≤ · · · ≤ x(Qr). As Q∗ ⊆ Qmax, we must
have x(Q1) < · · · < x(Qr) and y(Q1) > · · · > y(Qr). Consider a point p′ ∈ S′. Let
i− ∈ [r] (resp., i+ ∈ [r]) be the smallest (resp., largest) index such that p′ ∈ Qi− (resp.,
p′ ∈ Qi+). By Fact 9, we have p′ ∈ Qi− ∩ Qi+ ⊆ Qi for all i ∈ {i−, . . . , i+} and thus
|{Q ∈ Q∗ : p′ ∈ Q}| = i+ − i− + 1. It suffices to show that

∑
Q∈Q,p′∈Q xQ ≥ i+ − i− − 1.

Consider the rectangle R = (x(Qi−), x(Qi+)] × (y(Qi+), y(Qi−)]; see Figure 1. Set
S0 = S ∩ R and Q0 = {Qi−+1, . . . , Qi+−1}. Observe that Q0 covers S0, since no unit square
in Q∗\Q0 contains any point in S0. We claim that Q0 ⊆ Q is a minimum-size set cover of S0.
Indeed, since x(Qi−) < · · · < x(Qi+) and y(Qi−) > · · · > y(Qi+), the points in S\S0 are all
covered by the unit squares Q1, . . . , Qi− and Qi+ , . . . , Qr. If there exists a set cover Q′

0 ⊆ Q
of S0 such that |Q′

0| < |Q0|, then Q′
0 together with Q1, . . . , Qi− , Qi+ , . . . , Qr form a set cover

of S whose size is smaller than Q∗, contradicting with the fact that Q∗ is a minimum-size
set cover of S. Therefore, Q0 ⊆ Q is a minimum-size set cover of S0. Now for each Q ∈ Q,
define x̂Q = xQ if Q ∩ R ̸= ∅ and x̂Q = 0 if Q ∩ R = ∅. As {xQ}Q∈Q is a fractional set cover
of S, for each p ∈ S0, we have

∑
Q∈Q,p∈Q xQ ≥ 1, which implies

∑
Q∈Q,p∈Q x̂Q ≥ 1 because

p ∈ R and thus x̂Q = xQ for all Q ∈ Q such that p ∈ Q. So {x̂Q}Q∈Q is a fractional set
cover of S0. By Fact 8, we then have∑

Q∈Q
x̂Q ≥ |Q0| = i+ − i− − 1. (1)

Next, we observe that x(Qi−) ≤ x(Q) ≤ x(Qi+) and y(Qi−) ≥ y(Q) ≥ y(Qi+) for any
unit square Q ∈ Q such that Q ∩ R ̸= ∅. Let Q ∈ Q and assume Q ∩ R ̸= ∅. The inequalities
x(Qi−) ≤ x(Q) and y(Q) ≥ y(Qi+) follow directly from the fact Q∩R ̸= ∅. If x(Q) > x(Qi+),
then Q dominates Qi+ , contradicting the fact Qi+ ∈ Qmax. Similarly, if y(Qi−) < y(Q),
then Q dominates Qi− , contradicting the fact Qi− ∈ Qmax. Thus, x(Qi−) ≤ x(Q) and
y(Qi−) ≥ y(Q). By Fact 9, we have p′ ∈ Qi− ∩ Qi+ ⊆ Q for all Q ∈ Q such that Q ∩ R ̸= ∅.
Thus, x̂Q = 0 for all Q ∈ Q such that p′ /∈ Q, which implies∑

Q∈Q,p′∈Q

xQ ≥
∑

Q∈Q,p′∈Q

x̂Q =
∑
Q∈Q

x̂Q. (2)

Combining Equations 1 and 2, we have
∑

Q∈Q,p′∈Q xQ ≥ i+ − i− − 1. ◀

Using the above lemma, now it suffices to compute a minimum-size set cover of S

using the unit squares in Qmax. It is well-known that in this setting, the minimum-size set
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cover problem can be solved in polynomial time (or even near-linear time) using a greedy
algorithm, because the unit squares in Q are in fact equivalent to southwest quadrants; see
for example [1]. Thus, we can compute in polynomial time a set cover Q∗ ⊆ Q of S such
that memb(S′, Q∗) ≤ memb(S′, {xQ}Q∈Q) + 2 for any fractional set cover {xQ}Q∈Q of S.

2.4 Putting everything together
Recall that at the end of Section 2.2, we have four generalized MMGSC instances (S1, S′, Q1),
. . . , (S4, S′, Q4). Also, for each i ∈ {1, . . . , 4}, we have a fractional set cover {x̃∗

Q}Q∈Qi
of Si

such that memb(S′, {x̃∗
Q}Q∈Qi

) ≤ 4y∗ ≤ 4 ·opt(S, S′, Q). By the discussion in Section 2.3, for
each i ∈ {1, . . . , 4}, we can compute in polynomial time a set cover Q∗

i ⊆ Qi of Si satisfying
that memb(S′, Q∗

i ) ≤ memb(S′, {x̃∗
Q}Q∈Qi

) + 2. Set Q∗ =
⋃4

i=1 Q∗
i . As S =

⋃4
i=1 Si, Q∗ is

a set cover of S. Furthermore, we have

memb(S′, Q∗) ≤
∑4

i=1 memb(S′, Q∗
i )

≤
∑4

i=1 memb(S′, {x̃∗
Q}Q∈Qi

) + 8

≤ 16y∗ + 8

≤ 16 · opt(S, S′, Q) + 8.

If opt(S, S′, Q) > 0, then Q∗ is a constant-approximation solution. The case opt(S, S′, Q) = 0
can be easily solved by picking all unit squares in Q that do not contain any points in S′.
Therefore, we obtain a constant-approximation algorithm for the case where S is contained
in a grid cell. Further combining this with Lemma 5, we conclude the following.

▶ Theorem 2. The generalized MMGSC problem with unit squares admits a polynomial-time
constant-approximation algorithm.

3 Polynomial-time approximation scheme for halfplanes

Let S, S′ be two sets of points in R2 and H be a set of halfplanes. We want to solve the
generalized MMGSC instance (S, S′, H). Set n = |S| + |S′| + |H|.

In order to describe our algorithm, we first need to introduce some basic notions about
halfplanes. The normal vector (or normal for short) of a halfplane H is the unit vector
perpendicular to the bounding line of H whose direction is to the interior of H, that is,
if the equation of H is ax + by + c ≥ 0 where a2 + b2 = 1, then its normal is v⃗ = (a, b).
For two nonzero vectors u⃗ and v⃗ in the plane, we denote by ang(u⃗, v⃗) the clockwise ordered
angle from u⃗ to v⃗, i.e., the angle between u⃗ and v⃗ that is to the clockwise of u⃗ and to the
counter-clockwise of v⃗. For two halfplanes H and J , we write ang(H, J) = ang(u⃗, v⃗) where u⃗

(resp., v⃗) is the normal of H (resp., J). For a set R of halfplanes, we use
⋂

R and
⋃

R to
denote the intersection and the union of all halfplanes in R, respectively. We say a halfplane
H ∈ R is redundant in R if

⋂
R =

⋂
(R\{H}). We say R is irreducible if every halfplane in

R is not redundant. The complement region of R refers to the closure of R2\
⋃

R, which is
always a convex polygon (possibly unbounded). The following simple facts about halfplanes
will be used throughout the section, and their proofs can be found in the full paper.

▶ Fact 11. Let R be an irreducible set of halfplanes such that
⋃

R ̸= R2. Then the following
two properties hold.

(i) For any halfplane H ∈ R and another halfplane H ′ different from H, we have that⋃
R ̸=

⋃
R′, where R′ = (R\{H}) ∪ {H ′}.
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(ii) If the halfplanes in R has a nonempty intersection, i.e.,
⋂

R ̸= ∅, then we can write
R = {H1, . . . , Ht} such that 0 < ang(H1, H2) < ang(H1, H3) < · · · < ang(H1, Ht) < π.

▶ Fact 12. Let H1, . . . , Ht be halfplanes such that 0 < ang(H1, H2) < ang(H1, H3) < · · · <

ang(H1, Ht) ≤ π. Then the following two properties hold.
(i) If H1 ∪ Ht ̸= R2, then neither H1 nor Ht is redundant in {H1, . . . , Ht}.
(ii) If {H1, . . . , Ht} is irreducible, then

⋂t
i=1 Hi = H1 ∩ Ht.

3.1 An nO(opt)-time exact algorithm
In this section, we show how to compute an (exact) optimal solution of the instance (S, S′, H)
in nO(opt) time. It suffices to solve a decision problem: given an integer k ≥ 0, find a subset
Z ⊆ H which covers S and satisfies memb(S′, Z) ≤ k or decide that such a subset does not
exist. As long as this problem can be solved in nO(k) time, by trying k = 1, . . . , |H|, we can
finally compute an optimal solution of (S, S′, H) in nO(opt) time. In what follows, a valid
solution of (S, S′, H) refers to a subset Z ⊆ H which covers S and satisfies memb(S′, Z) ≤ k.

Let ∆ be a sufficiently large number such that S ∪ S′ ⊆ [−∆, ∆]2. For convenience, we
add to H four dummy halfplanes with equations y ≤ −∆, y ≥ ∆, x ≤ −∆, and x ≥ ∆. As
these dummy halfplanes does not contain any points in S ∪ S′, including them in H does
not change the problem. We say a set of halfplanes is regular if it is irreducible and its
complement region is nonempty and bounded. We have the following simple observation,
whose proof can be found in the full paper.

▶ Fact 13. If (S, S′, H) has a valid solution, then either it has a regular valid solution or it
has a valid solution that covers the entire plane R2.

If (S, S′, H) has a valid solution that covers R2, then it also has an irreducible valid
solution that covers R2, which is of size at most 3 by Helly’s theorem. Therefore, in this
case, we can solve the problem in nO(1) time by simply enumerating all subsets of H of size
at most 3. Otherwise, by the above fact, it suffices to check whether there exists a regular
valid solution of (S, S′, H). In what follows, we assume (S, S′, H) has a regular valid solution
and show how to find such a solution in nO(k) time. If our algorithm does not find a regular
valid solution at the end, we can conclude its non-existence. Let Z ⊆ H be a (unknown)
regular valid solution of (S, S′, H). By definition, the complement region of Z is nonempty,
and is a (bounded) convex polygon. Consider the arrangement A of the boundary lines of
the halfplanes in H. This arrangement has O(n2) faces, among which at least one face is
contained in the complement region of Z. We simply guess such a face. By making O(n2)
guesses, we can assume that we know a face F in the complement region of Z. Then we take
a point p in the interior of F , which is also in the interior of the complement region of Z.

Now the problem becomes finding a regular valid solution of (S, S′, H) whose complement
region contains p. Therefore, we can remove from H all halfplanes that contain p. Now the
complement region of any subset of H contains p. We say a convex polygon Γ is H-compatible
if each edge e of Γ is a portion of the boundary line of some halfplane H ∈ H such that
Γ ∩ H = e (or equivalently H does not contain Γ ). Note that the complement region of a
regular valid solution is an H-compatible convex polygon Γ which satisfies (i) no point in
S lies in the interior of Γ and (ii) for any k + 1 edges e1, . . . , ek+1 of Γ , the intersection⋂k+1

i=1 H(ei) does not contain any point in S′; here H(e) ∈ H denotes the halfplane whose
boundary line containing e and Γ ∩ H = e. On the other hand, every H-compatible convex
polygon satisfying conditions (i) and (ii) is the complement region of a regular valid solution
of (S, S′, H), which is just the set of halfplanes corresponding to the edges of Γ . With
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this observation, it suffices to find an H-compatible convex polygon Γ satisfying the two
conditions. We notice the follow fact which can be used to simplify condition (ii).

▶ Fact 14. If there exist t edges e1, . . . , et of an H-compatible convex polygon Γ such
that (

⋂t
i=1 H(ei)) ∩ S′ ̸= ∅, then there exist t consecutive edges f1, . . . , ft of Γ such that

(
⋂t

i=1 H(fi)) ∩ S′ ̸= ∅.

Proof. Set R = {H(e1), . . . , H(et)} and assume (
⋂

R) ∩ S′ ̸= ∅, which implies
⋂

R ̸= ∅.
Note that the set of halfplanes corresponding to the edges of Γ are irreducible, because
Γ is H-compatible and thus the interior of each edge e of Γ can only be covered by the
halfplane H(e). In particular, R is irreducible. Also,

⋃
R ̸= R2 by our assumption

⋃
H ̸= R2.

Therefore, by (ii) of Fact 11, there exist e−, e+ ∈ {e1, . . . , et} such that ang(H(e−), H(ei)) ≤
ang(H(e−), H(e+)) < π for all i ∈ [t]. Now we go clockwise along the boundary of Γ from e−

to e+, and let E be the set of edges of Γ we visit (including e− and e+). Clearly, ei ∈ E for
all i ∈ [t] and thus |E| ≥ t. Furthermore, 0 < ang(H(e−), H(e)) < ang(H(e−), H(e+)) < π

for all e ∈ E\{e−, e+}. Define R′ = {H(e) : e ∈ E}. Since R and R′ are both irreducible,
we can apply (ii) of Fact 12 to deduce

⋂
R = H(e−) ∩ H(e+) =

⋂
R′, which implies

(
⋂

R′) ∩ S′ ̸= ∅. Finally, because E consists of consecutive edges of Γ and |E| ≥ t, there
exist f1, . . . , ft ∈ E which are t consecutive edges of Γ . We have

⋂
R′ ⊆

⋂t
i=1 H(fi) and

thus (
⋂t

i=1 H(fi)) ∩ S′ ̸= ∅. ◀

By the above fact, we only need to find an H-compatible convex polygon Γ which satisfies
(i) no point in S lies in the interior of Γ and (ii) (

⋂k+1
i=1 H(ei)) ∩ S′ ̸= ∅ for any k + 1

consecutive edges e1, . . . , ek+1 of Γ . For convenience, we say Γ is well-behaved if it satisfies
conditions (i) and (ii). Next, we reduce this problem to a shortest-cycle problem in a
(weighted) directed graph G as follows. Let L denote the set of boundary lines of halfplanes
in H. We consider every segment s in the plane which is on some line ℓ ∈ L and satisfies
that each endpoint of s is the intersection point of ℓ and another line in L. We use Φ to
denote the set of these segments. Note that |Φ| = O(n3), as Φ contains O(n2) segments on
each line ℓ ∈ L. Clearly, the edges of an H-compatible convex polygon are all segments in Φ.
Consider a segment ϕ ∈ Φ. Recall that the point p is the interior of F , which is a face of the
arrangement A. Thus, no line in L goes through p. It follows that for every segment ϕ ∈ Φ,
the two endpoints of ϕ and p form a triangle ∆ϕ. If p → a → b is the clockwise ordering of
the three vertices of ∆ϕ from p, then we call a the left endpoint of ϕ and call b the right
endpoint of ϕ. Clearly, ang(−→pa,

−→
pb) < π. The vertices of the graph G to be constructed

are one-to-one corresponding to the (k + 1)-tuples (ϕ0, ϕ1, . . . , ϕk) ∈ Φk+1 which satisfy the
following three conditions.

1. The left endpoint of ϕi is the right endpoint of ϕi−1 for all i ∈ [k]. Below we use ai to
denote the left endpoint of ϕi (i.e., the right endpoint of ϕi−1). This condition guarantees
that the segments ϕ0, ϕ1, . . . , ϕk form a polygonal chain of k + 1 pieces.

2. ang(−−−−→ai−1ai,
−−−−→aiai+1) ≤ π for all i ∈ [k]. This condition guarantees that the chain formed

by ϕ0, ϕ1, . . . , ϕk is clockwise convex, in the sense that when we go along the chain from
a0 to ak+1, we always turn right at the vertices of the chain. Figure 2 shows a chain
satisfying this condition (and also condition 1).

3. S ∩ (
⋃k

i=0 ∆ϕi
) ⊆

⋃k
i=0 ϕi and (

⋂k
i=0 H(ϕi)) ∩ S′ = ∅.

Intuitively, the (k + 1)-tuple corresponding to each vertex of G represents a possible
choice of k + 1 consecutive edges of the H-compatible convex polygon we are looking for.
For two vertices v = (ϕ0, ϕ1, . . . , ϕk) and v′ = (ϕ′

0, ϕ′
1, . . . , ϕ′

k) such that (ϕ1, . . . , ϕk) =
(ϕ′

0, ϕ′
1, . . . , ϕ′

k−1), we add a directed edge from v to v′ with weight ang(−→pa,
−→
pb), where a is

SoCG 2023
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p
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a2

a3
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∆φ1∆φ2

∆φ3

∆φ4

Figure 2 Illustrating the conditions for a vertex of G.

the left endpoint of ϕ0 and b is the left endpoint of ϕ′
0 = ϕ1 (which is also the right endpoint

of ϕ0 by condition 1 above). Note that the weight of every edge of G is positive, since the
two endpoints of every ϕ ∈ Φ and p form a triangle ∆ϕ. The key observation is the following
lemma, whose proof (which is simple but tedious) can be found in the full paper.

▶ Lemma 15. There exists a well-behaved H-compatible convex polygon containing p iff the
(weighted) length of a shortest cycle in G is exactly 2π.

Based on the above lemma, it suffices to compute a shortest cycle in G, which can be
done by standard algorithms (e.g., Dijkstra) in polynomial time in the size of G. Note that G

has nO(k) vertices. Therefore, we obtain an nO(k)-time algorithm for computing a set cover
Z ⊆ H of S satisfying memb(S′, Z) ≤ k, if such a set cover exists. By iteratively trying
k = 1, . . . , |H|, we can solve the MMGSC problem with halfplanes in nO(opt) time.

3.2 An algorithm with constant additive error
In this section, we show how to compute in polynomial time an approximation solution
Z ⊆ H of the instance (S, S′, H) with constant additive error, that is, memb(S′, Z) =
opt(S, S′, H) + O(1). If

⋃
H = R2, then by Helly’s theorem, there exist H1, H2, H3 ∈ H such

that H1 ∪H2 ∪H3 = R2. In this case, we can take {H1, H2, H3} as our solution, which clearly
has constant additive error. So assume

⋃
H ̸= R2. Our algorithm is in the spirit of local

search. However, different from most local-search algorithms which improve the “quality” of
the solution in each step (via local modifications), our algorithm does not care about the
quality (i.e., membership), and instead focuses on shrinking the complement region of the
solution. Formally, for two sets Z and Z ′, we write Z ≺ Z ′ if

⋃
Z ⊊

⋃
Z ′, and Z ⪯ Z ′ if⋃

Z ⊆
⋃

Z ′. We define the following notion of “locally (non-)improvable” solutions.

▶ Definition 16. A subset Z ⊆ H is k-expandable if there exists Z ′ ⊆ H such that
|Z\Z ′| = |Z ′\Z| ≤ k and Z ≺ Z ′. A subset of H is k-stable if it is not k-expandable.

In other words, Z ⊆ H is k-expandable (resp., k-stable) if we can (resp., cannot) replace
k halfplanes in Z with other k halfplanes in H to shrink the complement region of Z. We are
interested in subsets Z ⊆ H that are minimum-size set covers of S and are k-stable. Such a
set can be constructed via the standard local-search procedure.

▶ Lemma 17. A minimum-size set cover Z ⊆ H of S that is k-stable can be computed in
nO(k) time.
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Proof. The standard set cover problem for halfplanes is polynomial-time solvable. So we
can compute a minimum-size set cover Z ⊆ H of S in nO(1) time. To further obtain a
k-stable one, we keep doing the following procedure. Whenever there exists Z ′ ⊆ H such that
|Z\Z ′| = |Z ′\Z| ≤ k and Z ≺ Z ′, we update Z to Z ′. During this procedure, the size of Z
does not change and the complement region of Z shrinks. So Z is always a minimum-size set
cover of S. Furthermore, as the complement region of Z shrinks in every step, the procedure
will finally terminate. At the end, Z is not k-expandable and is thus k-stable. This proves
the correctness of our algorithm. To see it takes nO(k) time, we show that (i) we terminate
in O(n) steps and (ii) each step can be implemented in nO(k) time.

For (i), the key observation is that every halfplane H ∈ H can be removed from Z at
most once. Formally, we denote by Zi the set Z after the i-th step of the procedure, and
thus the original Z is Z0. Let Pi be the complement region of Zi. Suppose H ∈ Zi−1 and
H /∈ Zi. We claim that H /∈ Zj for all j > i. Assume H ∈ Zj for some j > i. Since Zj

is a minimum-size set cover of S, H is not redundant in Zj and thus one edge e of Pj is
defined by H , i.e., e is a segment on the boundary line of H . Note that e is also a portion of
the boundary of Pi−1, because H ∈ Zi−1 and Pj ⊆ Pi−1. It follows that e is a portion of
the boundary of Pi, since Pj ⊆ Pi ⊆ Pi−1. But this cannot be the case, as H /∈ Zi. Thus,
H /∈ Zj for all j > i. Now for every index i ≥ 1, there exists at least one halfplane H ∈ H
such that H ∈ Zi−1 and H /∈ Zi, simply because |Zi−1| = |Zi| and Zi−1 ≠ Zi. We then
charge the i-th step to this halfplane H . By the above observation, each halfplane is charged
at most once. Therefore, the procedure terminates in at most n steps. To see (ii), observe
that in each step, the number of Z ′ ⊆ H satisfying |Z\Z ′| = |Z ′\Z| ≤ k is bounded by
nO(k), and these sets can be enumerated in nO(k) time. So each step can be implemented in
nO(k) time. As a result, the entire algorithm terminates in nO(k) time. ◀

Our key observation is that any minimum-size set cover of S that is k-stable has additive
error at most 2 in terms of MMGSC, even for k = 1.

▶ Lemma 18. If Z ⊆ H is a minimum-size set cover of S that is 1-stable, then we have
|Z| ≤ opt(S, S′, H) + 2.

Proof. Consider a point p ∈ S′. We show that memb(p, Z ′) ≥ memb(p, Z) − 2 for any set
cover Z ′ ⊆ H of S. Let Z(p) ⊆ Z consist of all halfplanes in Z that contain p. As

⋂
Z(p) ̸= ∅,

by (ii) of Fact 11 and the assumption
⋃

H ̸= R2, we have Z(p) = {H1, . . . , Hr} such that
0 < ang(H1, H2) < ang(H1, H3) < · · · < ang(H1, Hr) < π. Let S0 ⊆ S consist of points
contained in

⋃r−1
i=2 Hi but not contained in any other halfplanes in Z, and Z ′

0 ⊆ Z ′ consist
of halfplanes that contain at least one point in S0. Note that |Z ′

0| ≥ r − 2, for otherwise
(Z\{H2, . . . , Hr−1}) ∪ Z ′

0 is a set cover of S of size strictly smaller than Z, which contradicts
the fact that Z is a minimum-size set cover of S. We shall show that every halfplane in Z ′

0
contains p and thus

memb(p, Z ′) ≥ memb(p, Z ′
0) = |Z ′

0| ≥ r − 2 = memb(p, Z) − 2.

Consider a halfplane H ′ ∈ Z ′
0. We want to show p ∈ H ′. By the construction of Z ′

0, H ′

contains a point q ∈ S0. Furthermore, by the construction of S0, q is contained in
⋃r−1

i=2 Hi

but not contained in any halfplane in Z\{H2, . . . , Hr−1}. In particular, q /∈ H1 and q /∈ Hr,
which implies H ′ ≠ H1 and H ′ ̸= Hr. We observe that {H1, Hr, H ′} is irreducible. Clearly,
H ′ is not redundant in {H1, Hr, H ′}, as it contains q while H1 and Hr do not contain q. If
H1 is redundant in {H1, Hr, H ′}, then Z ⪯ (Z\{H1}) ∪ {H ′}. Since Z is irreducible and
H ′ ̸= H1, by (i) of Fact 11, this implies Z ≺ (Z\{H1}) ∪ {H ′}, which contradicts the fact
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that Z is 1-stable. So H1 is not redundant in {H1, Hr, H ′}. For the same reason, Hr is also
not redundant in {H1, Hr, H ′}. Thus, {H1, Hr, H ′} is irreducible.

In what follows, we complete the proof by showing that either p ∈ H ′ or Z is 1-expandable.
As the latter is false (for Z is 1-stable), this implies p ∈ H ′. If ang(H1, H ′) < ang(H1, Hr), by
the irreducibility of {H1, Hr, H ′} and (ii) of Fact 12, we have H1 ∩H ′ ∩Hr = H1 ∩Hr, which
implies H1 ∩Hr ⊆ H ′ and thus p ∈ H1 ∩Hr ⊆ H ′. If ang(H1, H ′) = ang(H1, Hr), then either
H ′ ⊆ Hr or Hr ⊆ H ′. Note that the former is not true as q ∈ H ′ but q /∈ Hr. Thus, we have
p ∈ Hr ⊆ H ′. It suffices to consider the case ang(H1, H ′) > ang(H1, Hr). In this case, we show
that Z is 1-expandable. Since q ∈

⋃r−1
i=2 Hi, there exists H ∈ {H2, . . . , Hr−1} which contains

q. Now ang(H1, H) < ang(H1, Hr) < ang(H1, H ′), which implies ang(H, Hr) < ang(H, H ′)
and ang(H ′, H1) < ang(H ′, H). We further distinguish two cases, ang(H, H ′) ≤ π and
ang(H, H ′) ≥ π (which are in fact symmetric). Assume ang(H, H ′) ≤ π. Figure 3 shows
the situation of the points p, q and the halfplanes H, H ′, H1, Hr this case. As ang(H, Hr) <

ang(H, H ′), by (ii) of Fact 12, if {H, Hr, H ′} is irreducible, then H ∩ Hr ∩ H ′ = H ∩ H ′.
But H ∩ Hr ∩ H ′ ̸= H ∩ H ′, because q ∈ H ∩ H ′ and q /∈ Hr. Thus, {H, Hr, H ′} is
reducible. Note that H ∪ H ′ ̸= R2, since

⋃
H ̸= R2 by our assumption. So by (i) of

Fact 12, neither H nor H ′ is redundant in {H, Hr, H ′}. It follows that Hr is redundant
in {H, Hr, H ′}, because {H, Hr, H ′} is reducible. Therefore, Z ⪯ (Z\{Hr}) ∪ {H ′}. Since
Z is irreducible and H ′ ̸= Hr, by (i) of Fact 11, we have Z ≺ (Z\{Hr}) ∪ {H ′}, i.e., Z
is 1-expandable. The other case ang(H, H ′) ≥ π is similar. In this case, ang(H ′, H) ≤ π.
Using the fact ang(H ′, H1) < ang(H ′, H) and the same argument as above, we can show
that Z ≺ (Z\{H1}) ∪ {H ′}, i.e., Z is 1-expandable. ◀

H1Hr

H

p

q

H ′

Figure 3 Illustration of the proof of Lemma 18.

Using Lemma 17, we can compute a 1-stable minimum-size set cover Z ⊆ H of S in
nO(1) time. Then by Lemma 18, Z is an approximation solution for the MMGSC instance
(S, S′, H) with additive error 2. This gives us a polynomial-time approximation algorithm
for MMGSC with halfplanes with O(1) additive error.

3.3 Putting everything together
Our PTAS can be obtained by directly combining the algorithms in Sections 3.1 and 3.2. Let
c = O(1) be the additive error of the algorithm in Section 3.2. We first run the algorithm in
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Section 3.2 to obtain a solution Z ⊆ H. If |Z| ≥ 1+ε
ε · c, then

|Z|
opt(S, S′, H) ≤ |Z|

|Z| − c
≤ 1 + ε.

In this case, Z is already a (1 + ε)-approximation solution. Otherwise, |Z| < 1+ε
ε · c and thus

opt(S, S′, H) < 1+ε
ε · c. We can then run the algorithm in Section 3.1 to compute an optimal

solution in nO(1/ε) time. So we conclude the following.

▶ Theorem 3. The generalized MMGSC problem with halfplanes admits a PTAS.

4 Minimum-ply geometric set cover

In this section, we give a very simple constant-approximation algorithm for minimum-ply
geometric set cover with unit squares. The technique can be applied to the problem with
any similarly-sized geometric objects in R2.

Let (S, Q) be an MPGSC instance. As in Section 2, we first apply the grid techinique.
We construct a grid Γ consisting of square cells of side-length 1. For each grid cell □, write
S□ = S ∩ □ and Q□ = {Q ∈ Q : Q ∩ □ ̸= ∅}. The key observation is the following.

▶ Lemma 19. Suppose that, for every □ ∈ Γ , Q∗
□ ⊆ Q□ is a c-approximation solution

of the minimum-size geometric set cover instance (S□, Q□). Then
⋃

□∈Γ Q∗
□ is an O(c)-

approximation solution of the MPGSC instance (S, Q).

Proof. Let γ = ply(
⋃

□∈Γ Q∗
□) and p ∈ R2 be a point contained in γ unit squares in

⋃
□∈Γ Q∗

□.
Consider the grid cell □p containing p and define C as the set of 3 × 3 grid cells centered at
□p. Note that all unit squares containing p belong to

⋃
□∈C Q∗

□. So we have |
⋃

□∈C Q∗
□| ≥ γ

and | max□∈C Q∗
□| ≥ γ/9. Therefore, there exists □ ∈ Γ such that |Q∗

□| ≥ γ/9. As Q∗
□ is a

c-approximation solution of the minimum-size set cover instance (S□, Q□), we know that
any subset of Q□ that covers S□ has size at least γ/(9c). It follows that any subset of Q
that covers S must include at least γ/(9c) unit squares in Q□. Note that each of these unit
squares contains a corner of □. Thus, at least one corner of □ is contained in γ/(36c) such
unit squares, which implies that the ply of any solution is at least γ/(36c). As a result,⋃

□∈Γ Q∗
□ is an O(c)-approximation solution of the MPGSC instance (S, Q). ◀

Note that the argument in the above proof can be extended to any similarly-size fat
objects in any fixed dimension. Here a set of geometric objects are similarly-size fat objects
if there exist constants α, β > 0 such that every object in the set contains a ball of radius α

and is contained in a ball of radius β.

▶ Theorem 20. For any class C of similarly sized fat objects in Rd, if the minimum-size
geometric set cover problem with C admits a constant-approximation algorithm with running
time T (n) for a function T satisfying T (a + b) ≥ T (a) + T (b), then the MPGSC problem with
C also admits a constant-approximation algorithm with running time T (n).

Proof. Let (S, R) be an MPGSC instance where R ⊆ C. We use the above grid technique
to decompose the input instance (S, R) into a set {(S□, R□)} of instances. Then apply
the algorithm for minimum-size geometric set cover problem with C to compute constant-
approximation (with respect to size) solutions R∗

□ ⊆ R□. By Lemma 19,
⋃

□∈Γ R∗
□ is

a constant-approximation solution of the MPGSC instance (S, R). If the algorithm for
minimum-size set cover runs in T (n) time, then our algorithm also takes T (n) time, as long
as the function T satisfies T (a + b) ≥ T (a) + T (b). ◀

SoCG 2023
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▶ Theorem 4. The MPGSC problem with unit (or similarly sized) squares/disks admits
constant-approximation algorithms with running time Õ(n).

Proof. The Õ(n)-time constant-approximation algorithms for minimum-size set cover with
similarly sized squares/disks are well-known. For similarly sized squares, see for example [1].
For similarly sized disks, see for example [2, 4]. Applying Theorem 20 directly yields Õ(n)-time
constant-approximation algorithms for MPGSC with unit squares and unit disks. ◀
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Abstract
Clustering with capacity constraints is a fundamental problem that attracted significant attention
throughout the years. In this paper, we give the first FPT constant-factor approximation algorithm
for the problem of clustering points in a general metric into k clusters to minimize the sum of
cluster radii, subject to non-uniform hard capacity constraints (Capacitated Sum of Radii ). In
particular, we give a (15 + ϵ)-approximation algorithm that runs in 2O(k2 log k) · n3 time.

When capacities are uniform, we obtain the following improved approximation bounds.

A (4 + ϵ)-approximation with running time 2O(k log(k/ϵ))n3, which significantly improves over
the FPT 28-approximation of Inamdar and Varadarajan [ESA 2020].
A (2 + ϵ)-approximation with running time 2O(k/ϵ2·log(k/ϵ))dn3 and a (1 + ϵ)-approxim- ation
with running time 2O(kd log((k/ϵ)))n3 in the Euclidean space. Here d is the dimension.
A (1 + ϵ)-approximation in the Euclidean space with running time 2O(k/ϵ2·log(k/ϵ))dn3 if we
are allowed to violate the capacities by (1 + ϵ)-factor. We complement this result by showing
that there is no (1 + ϵ)-approximation algorithm running in time f(k) · nO(1), if any capacity
violation is not allowed.
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1 Introduction

The Sum of Radii (clustering) problem is among the most popular and well-studied clustering
models in the literature, together with k-center, k-means, and k-median [12, 25, 4, 30]. In
Sum of Radii , we are given a set P of n points in a metric space with distance dist, and a
non-negative integer k specifying the number of clusters sought. We would like to find: (i)
a subset C of P containing k points (called centers) and a non-negative integer rq (called
radius) for each q ∈ C, and (ii) a function assigning each point p ∈ P to a center q ∈ C such
that dist(p, q) ≤ rq. The goal is to minimize the sum of the radii

∑
q∈C rq. Alternatively,

the objective is to select k balls in the metric space centered at k distinct points of P , such
that each point p ∈ P is contained in at least one of those k balls and the sum of the radii of
the balls is minimized.
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In a seminal work, Charikar and Panigrahy [12] studied the Sum of Radii problem.
As mentioned in their paper, sum of radii objective can be used as an alternative to the
k-center objective to reduce the so called dissection effect. The k-center objective is similar
to sum of radii, except here one would want to minimize the maximum radius. As in k-center
all balls are assumed to have the same maximum radius, the balls can have huge overlap.
Consequently, points that should have been assigned to the same cluster might end up in
different clusters. This phenomenon is called the dissection effect which can be reduced by
using the sum of radii objective instead.

Considering the sum of radii objective, Charikar and Panigrahy [12] obtained a 3.504-
approximation running in polynomial time, which is the best known approximation factor for
this problem in polynomial time to date. Their algorithm is based on a primal-dual scheme
coupled with an application of Lagrangean relaxation. Subsequently, Gibson et al. [23]
obtained a (1 + ϵ)-approximation in quasi-polynomial time. It follows from the standard
complexity theoretic assumptions that the problem cannot be APX-hard. We note that the
problem is known to be NP-hard even in weighted planar metrics and metrics of constant
doubling dimension [23]. Surprisingly, the problem can be solved in polynomial time in
Euclidean spaces when the dimension is fixed [24]. When the dimension is arbitrary, one
can obtain a (1 + ϵ)-approximation in 2O((k log k)/ϵ2) · nO(1) time, extending the coreset based
algorithm for k-center [5].

1.1 Our Problem and Results
In this work, we are interested in the capacitated version of Sum of Radii . Clustering
with capacity constraints is a fundamental problem and has attracted significant attention
recently [10, 8, 11, 13, 21, 33, 34, 7, 22, 1, 37, 19]. Indeed, capacitated clustering is relevant
in many real-life applications, such as load balancing where the representative of each cluster
can handle the load of only a bounded number of objects. It is widely known that clustering
problems become much harder in the presence of capacity constraints.

Formally, in the Capacitated Sum of Radii problem, along with the points of P in a
metric space, we are also given a non-negative integer ηq for each q ∈ P , which denotes the
capacity of q. The goal is similar to the goal of Sum of Radii except here each chosen center
q ∈ C can be assigned at most ηq points of P . Alternatively, each cluster contains a bounded
number of points specified with respect to the center of the cluster. In the uniform-capacitated
version of the problem, ηp = ηq for all p, q ∈ P , and we denote the capacity by U . We note
that in this work, we only consider hard capacities, i.e., each point can be chosen at most
once to be a cluster center. In this setting, a major open question is to determine whether
there is a polynomial time O(1)-approximation algorithm for Capacitated Sum of Radii ,
even in the uniform-capacitated case.

Question 1: Does Capacitated Sum of Radii admit a polynomial time constant-
approximation algorithm, even with uniform capacities?

Designing polynomial time constant-approximations for capacitated clustering problems
are notoriously hard. In fact such algorithms exist only for the k-center objective out
of the four objectives mentioned before. For uniform capacitated k-center, Khuller and
Sussmann [31] designed a 6-approximation improving a 10-approximation of Bar-Ilan et
al. [6] who introduced the problem. The first constant-approximation in the non-uniform
case [20] was designed after 12 years, which was subsequently improved to a 9-approximation
by An et al. [3]. The capacitated problems with k-means and k-median objectives have
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attracted a lot of attention over the years. But, despite a recent progress for the uniform
version in R2 [14], where a PTAS is achieved, even in R3, the problem of finding a polynomial
time constant-approximation remains open. The best-known polynomial time approximation
factor in general metrics is O(log k) [19], which is based on a folklore tree embedding scheme.

Technical Barriers for Sum of Radii. The problem with sum of radii objective also appears to
be fairly challenging. The main difficulty in achieving a polynomial time O(1)-approximation
for Capacitated Sum of Radii is obviously the presence of the capacity bounds even if
they are uniform, which makes the problem resilient to the techniques used for solving Sum
of Radii . The only polynomial time O(1)-approximation known for Sum of Radii is via a
primal-dual scheme. However, it is not clear how to interpret the capacity constraints in
the primal, in the realm of dual. Also, while the algorithms for capacitated k-center use
LP-relaxation of the natural LP, the standard LP relaxation for Capacitated Sum of
Radii has a large integrality gap [29]. Needless to say, the situation becomes much more
intractable in the non-uniform capacitated case.

Hardness of Approximation. The lower bounds known for capacitated clustering are equally
frustrating as their upper bounds. Surprisingly, the only known lower bounds are the ones for
the uncapacitated versions, and hence trivially translated to the capacitated case. Due to the
20-year old work of Guha and Khuller [26], k-median and k-means are known to be NP-hard
to approximate within factors of 1.735 and 3.943, respectively. In a recent series of papers,
Cohen-Addad, Karthik and Lee [16, 17, 18] have obtained improved constant lower bounds
for various clustering problems in different metrics and settings. In particular, in the last
work, they introduced an interesting Johnson Coverage Hypothesis [18] which helped them
obtain improved bounds in various metrics. As mentioned before, Sum of Radii cannot be
APX-hard, and hence there is no known inapproximability results that can be translated to
the capacitated version.

In the light of the above discussions, one may conclude that the rather benign capacity
constraints have played a bigger role compared to the choice of objective function, in our
current lack of understanding of practical clustering models. Therefore, it seems that making
any intermediate progress towards understanding capacitated clustering, irrespective of the
objective function, is significant and timely.

Coping with Capacitated Clustering. In order to improve the understanding of these
challenging open questions, researchers have mainly studied two types of relaxations to obtain
constant-approximation algorithms. The more traditional approach taken for k-means and
k-median is to design bi-criteria approximation where we are allowed to violate either capacity
or the bound on the number of clusters by a small amount [10, 8, 11, 13, 21, 33, 34]. The
other (relatively newer) approach is to design fixed-parameter tractable (FPT ) approximation,
thus allowing an extra factor f(k) in the running time. We note that, in recent years, FPT
approximations are designed for classic problems improving the best known approximation
factors in polynomial time, e.g., k-vertex separator [32], k-cut [27] and k-treewidth deletion
[28].

FPT Approximation for Clustering. In the context of clustering problems, the number of
clusters k is a natural choice for the parameter, as the value of k is typically small in practice,
e.g., k ≤ 10 in [35, 36]. Consequently, the approach of designing FPT approximation have
become fairly successful for clustering problems and have led to interesting results which
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are not known or impossible in polynomial time. For example, constant-approximations
are obtained for the capacitated version of k-median and k-means [1, 37, 19], which almost
match the polynomial time constant approximation factors in the uncapacitated case. In
the uncapacitated case of k-median and k-means, tight (1.735 + ϵ) and (3.943 + ϵ)-factor
FPT approximations are recently obtained [15, 1, 37], whereas the best known factors in
polynomial time are only 2.611 [9] and 6.357 [2]. These results are interesting in particular,
as a popular belief in the clustering community is that there is no algorithmic separation
between FPT and polynomial time in general metrics (for example, see the comment in
[17] after Theorem 1.3). We note that it is possible to obtain (1 + ϵ)-approximations in
high-dimensional Euclidean spaces [7, 22], which is impossible in polynomial time, assuming
standard complexity theoretic conjectures.

Inamdar and Varadarajan [29] adapted the approach of designing FPT approximation to
study the Capacitated Sum of Radii problem with uniform capacities. They make the
first substantial progress in understanding this problem through the lens of fixed-parameter
tractability. In particular, they obtained a 28-approximation algorithm for this problem that
runs in time 2O(k2)nO(1). Unfortunately, their algorithm does not work in the presence of
non-uniform capacities. Based on their result, the following natural questions arise.

Question 2: Does Capacitated Sum of Radii admit a constant-approximation
algorithm, in FPT time, even when capacity constraints are non-uniform?

Question 3: Does Capacitated Sum of Radii admit a (1 + ϵ)-approximation
algorithm, in FPT time, when the points are in Rd (Euclidean Metric)?

We make significant advances towards answering Questions 2 and 3. Our first result
completely answers Question 2.

▶ Theorem 1. For any constant ϵ > 0, the Capacitated Sum of Radii problem admits a
(15 + ϵ)-approximation algorithm with running time 2O(k2 log k) · n3.

Next, we consider the uniform-capacitated version and prove the following theorem
significantly improving over the approximation factor of 28 in [29].

▶ Theorem 2. For any constant ϵ > 0, there exists a randomized algorithm for the Capacit-
ated Sum of Radii problem with uniform capacities that outputs with constant probability
a (4 + ϵ)-approximate solution in time 2O(k log(k/ϵ)) · n3.

The approximation factor in the above result is interesting in particular, as it almost
matches the approximation factor of 3.504 in the uncapacitated case and keeps the avenue of
obtaining a matching approximation in polynomial time open.

Finally, we mention the Euclidean version of the problem where we show that adapting
the standard coreset argument for regular k-clustering allows us to obtain the following two
results.

▶ Theorem 3. For any constant ϵ > 0, there exists a randomized algorithm for the Euclidean
version of Capacitated Sum of Radii with uniform capacities that outputs with constant
probability a (2 + ϵ)-approximate solution in time 2O((k/ϵ2) log(k/ϵ)) · dn3, where d is the
dimension.

▶ Theorem 4. For any constant ϵ > 0, the Euclidean version of Capacitated Sum of
Radii admits an (1 + ϵ)-approximation algorithm with running time 2O(kd log((k/ϵ)))n3.



S. Bandyapadhyay, W. Lochet, and S. Saurabh 12:5

We also complement our approximability results by hardness bounds. The NP-hardness
of Capacitated Sum of Radii trivially follows from the NP-hardness of Sum of Radii .
We strengthen this bound by showing the following result.

▶ Theorem 5. Capacitated Sum of Radii with uniform capacities cannot be solved in
f(k)no(k) time for any computable function f , unless ETH is false. Moreover, it does not
admit any FPTAS, unless P=NP.

We also show an inapproximability bound in the Euclidean case even with uniform
capacities.

▶ Theorem 6. The Euclidean version of Capacitated Sum of Radii with uniform capacities
does not admit any FPTAS even if k = 2, unless P=NP.

Although the above bound does not eradicate the possibility of obtaining a (1 + ϵ)-
approximation in the Euclidean case, it shows that to obtain such an approximation, even
when k = 2, one needs nf(ϵ) time for some non-constant function f that depends on ϵ.
This is in contrast to the uncapacitated version of the problem, where one can get (1 + ϵ)-
approximation in 2O((k log k)/ϵ2) · nO(1) time as mentioned before.

As by products of our techniques we have also obtained improved bi-criteria approxima-
tions for the uniform-capacitated version of the problem where we are allowed to use (1 + ϵ)U
capacity.

▶ Theorem 7. There is a randomized algorithm for Capacitated Sum of Radii with
uniform capacities that runs in time 2O(k log(k/ϵ)) · nO(1) and returns a solution with constant
probability, such that each ball in the solution uses at most (1 + ϵ)U capacity and the cost of
the solution is at most (2 + ϵ) · OPT, where OPT is the cost of any optimal solution in which
the balls use at most U capacity.

The above theorem improves the approximation factor in Theorem 2. In the Euclidean
case, we obtain a similar algorithm.

▶ Theorem 8. There is a randomized algorithm for the Euclidean version of Capacitated
Sum of Radii with uniform capacities that runs in time 2O((k/ϵ2) log k) · dn3 and returns a
solution with constant probability, such that each ball in the solution uses at most (1 + ϵ)U
capacity and the cost of the solution is at most (1 + ϵ) · OPT, where OPT is the cost of any
optimal solution in which the balls use at most U capacity.

Note that, by Theorem 6, a result as in the above theorem is not possible if we are not
allowed to violate the capacity.

1.2 Preliminaries
Capacitated Sum of Radii . We are given a set P of n points in a metric space with
distance dist, a non-negative integer ηq for each q ∈ P , and a non-negative integer k. The
goal is to find: (i) a subset C of P containing k points and a non-negative integer rq for each
q ∈ C, and (ii) a function µ : P → C, such that for each p ∈ P , dist(p, µ(p)) ≤ rµ(p), for each
q ∈ C, |µ−1(q)| ≤ ηq, and

∑
q∈C rq is minimized. We will sometimes use OPT to denote the

value of an optimal solution.
In the uniform-capacitated case, we denote the common capacity of all centers by U .

In the general metric version of our problem, we assume that we are given the pairwise
distances dist between the points in P . In the Euclidean version, P is a set of points in Rd

for some d ≥ 1, dist is the Euclidean distance and any point in Rd can be selected as a center.
Moreover, the capacities of all these centers are uniform.
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12:6 FPT Approx. for Capacitated Sum of Radii

We denote the ball with center c and radius r by B(c, r). For any ball B = B(c, r), we
will use ext(B, r′) to denote the ball B(c, r +r′). Sometimes we will also use rad(B) to denote
the radius of B. Let S be a set of points in Rd. The minimum enclosing ball of S, noted
MEB(S) is the smallest ball in Rd containing all points of S. We say a ball B covers a point
p if p is in B.

One important remark regarding solving our capacitated clustering problem on P is
that, given a set of k balls B, the problem of deciding whether there is a valid assignment
µ : P → B satisfying the capacities can easily be modeled as a bipartite matching problem.
This implies in particular that if such an assignment exists, it can also be found in O(

√
kn3/2)

time. Therefore, in all our descriptions of the algorithms, we will focus on finding the solution
balls while ensuring that a valid assignment exists.

Another remark is that, in the case where every ball has capacity U , we can assume that
|P | ≤ k · U , or the instance is a trivial NO instance.

Organization. Due to limited place, we chose to only present the proof of Theorem 1. The
rest of the proofs can be found in the extended version.

2 Capacitated Sum of Radii : General Metric

In this section, we study the case of non uniform capacities. In this setting, for every point x

of P , there is an associated integer ηx and any ball centered at x can be assigned at most ηx

points. The uniform case correspond to the case where ηx = U for all x ∈ P . For convenience,
we restate the theorem statement.

▶ Theorem 1. For any constant ϵ > 0, the Capacitated Sum of Radii problem admits a
(15 + ϵ)-approximation algorithm with running time 2O(k2 log k) · n3.

From now on, let B⋆ := {B⋆
1 , · · · , B⋆

k} denote the set of balls of a hypothetical optimal
solution, µ⋆ : P → B⋆ be the associated assignment and for all i ∈ [k], let r⋆

i and
c⋆

i denote the radius and the center of the ball B⋆
i , respectively. By Lemma 9, just

below, we can assume that the algorithm knows an approximate radius ri for each r⋆
i .

For a ball B⋆
i ∈ B⋆, we say that a ball Bi is an approximate ball of B⋆

i if B⋆
i ⊆ Bi,

and if xi denotes the center of Bi, then ηxi
≥ ηc⋆

i
. Note that because of the capacity

constraints, we can associate (µ⋆)−1(B⋆
i ) to Bi.

Let us first mention that it is possible to guess an approximation to each of the radii, ri,
in polynomial time. The proof can be found in the extended version.

▶ Lemma 9. For every 0 < ϵ < 1, there exists a randomized algorithm, running in linear
time that finds with probability at least ϵk

kk·n2 a set of reals {r1, . . . , rk} such that for every
i ∈ [k], r⋆

i ≤ riand
∑

i∈[k] ri ≤ (1 + ϵ)
∑

i∈[k] r⋆
i .

From now on we assume for simplicity that the algorithm knows an approximate value ri

of r⋆
i for all i ∈ [k]. Let us give some informal ideas about how the algorithm of Theorem

1 works. Some technicalities, especially about making sure we don’t pick the same center
twice, will be left out to the more formal description of the algorithm.
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Informal sketch

Ideally we would like to find for each optimal ball B⋆
i an approximate ball Bi having the

same center as B⋆
i and a radius ri ≤ C · r⋆

i , for some constant C. Indeed, if we have such a
set of balls, then the obvious assignment µ defined as µ(x) = Bi whenever µ⋆(x) = B⋆

i would
give a solution. While this is not possible in general, the algorithm will start with a greedy
procedure to get a set of approximate balls B1 for some indices I1. The procedure is quite
simple: start with B1 := ∅, I1 = ∅ and as long as the union of balls in B1 does not cover P ,
pick a point x of P not in the union, guess the index i such that µ⋆(x) = B⋆

i and pick c the
point at distance at most ri of x which maximises the value of ηc. Since c⋆

i is at distance at
most ri of x, we have that ηc⋆

i
≤ ηc and that dist(c, c⋆

i ) ≤ 2ri, which means that the ball Bi

of radius 5ri centered around c is an approximate ball of B⋆
i . Therefore, the algorithm will

add Bi to B1 and the index i to I1. This procedure stops when the union of B1 covers P . At
the end of that first step, we have that B1 contains an approximate ball for each ball B⋆

i of
radius 5ri with i ∈ I1. And while the union of B1 covers all P , we are far from being done as
the capacity constraints have not been taken into account.

Consider now a ball B⋆
j such that j ̸∈ I1, which means that no approximate ball of B⋆

j is
in B1. In the best case (Lemma 13 below), there is a ball Bi ∈ B1 of center xi approximating
B⋆

i such that 5ri ≤ rj and Bi ∩ B⋆
j is non empty. Indeed, in that case the ball of radius

5ri + rj around xi contains c⋆
j , the center of B⋆

j . This means that if x is the point in that
ball maximizing ηx, then the ball of center x and radius 2 · (5ri + 2rj) ≤ 4rj contains x⋆

j

and thus the ball Bj of center x and radius 2 · (5ri + 2rj) + rj ≤ 5rj contains B⋆
j and is an

approximate ball of B⋆
j . Therefore, if such indices j and i exist, the algorithm can guess

them and add a new approximate ball to B1.
After this second step, we reach a point where, if j ̸∈ I1 and i ∈ I1 are such that

B⋆
j ∩ Bi ̸= ∅, then rj ≤ 5ri. In particular, incurring an extra 5ri as we just did to get a

replacement for xc⋆
j is too costly. For this reason, at this step of the algorithm we stop trying

to find approximate balls and instead focus on finding balls to “fix” the assignment. Since
the balls in B1 are approximate balls, it means that we can replace B⋆

i with Bi ∈ B1 for any
i ∈ I1 (and take the other B⋆

j ), and still have a solution to our problem with slightly bigger
balls. Abusing notation we can still use µ⋆ for the valid assignment. Now for an index j ̸∈ I1,
the ball B⋆

j intersects a subset, say Tj , of balls in B1. Ideally we would like to find a ball Bj

of center x and radius rj such that ηx ≥ ηxj
and |Bj ∩ (µ⋆)−1(Bi)| ≥ |(µ⋆)−1(B⋆

j )∩Bi| for all
i ∈ Tj . Indeed, in that case we could replace B⋆

j by Bj and the condition on Bj ∩ B⋆
i ensures

that we could adapt the assignment µ⋆ to be a valid assignment by assigning (µ⋆)−1(B⋆
j )∩Bi

to Bi and a set of the same size in Bj ∩ (µ⋆)−1(Bi) to Bj .
The main difficulty here is that even if we guess the set Tj , picking Bj greedily is not

possible as there might be some competitions between the sizes of the intersection with the
different balls in Bi for i ∈ Tj (we cannot afford to guess the |(µ⋆)−1(B⋆

j ) ∩ Bi|). The way
to avoid this problem is to expand all the balls Bi of B1 by 10ri. Indeed, since we have
assumed that rj ≤ 5ri for every i ∈ Tj , it means now that B⋆

j is entirely contained in
the ext(Bi, 10ri) (expanded ball) for i ∈ Tj . So now, denoting Pj to be the intersection of
all the ext(Bi, 10ri) for i ∈ Tj where we removed all the other Bi′ for i′ ∈ I1 \ Tj , we have
that (µ⋆)−1(B⋆

j ) is a subset of Pj , and we can take Bj as the ball of center x and radius
rj which maximizes sx = min{ηx, |B(x, rj) ∩ Pj |}. Here there are some technicalities if Bj

intersects some ball B⋆
j′ for j′ ̸∈ I1 (that includes j = j′), but assume for the moment that it

is not the case and let us hint why we can actually replace B⋆
j by Bj in our solution if all

the balls Bi ∈ B1 are replaced by ext(Bi, 10ri). Indeed, by choice of Bj , we can assign sx

points of Pj to Bj . By our assumptions, all these points were assigned to Bi for i ∈ Tj in µ⋆,
which means that by assigning these points to Bj , there is now a new budget sx of available
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points in the union of ext(Bi, 10ri) for i ∈ Tj . However, since B⋆
j is entirely contained in the

ext(Bi, 10ri) for i ∈ Tj , and by choice of sx, we can assign all the elements of (µ⋆)−1(B⋆
j ) to

the balls ext(Bi, 10ri) for i ∈ Tj using this new budget.
Therefore, the last phase of the algorithm consists in building a set of “replacement”

balls B2 for the balls B⋆
j with j ̸∈ I1 by guessing Tj and building the intersection Pj to take

greedily a ball of radius rj inside that set (see Lemma 14). This is done sequentially, and
the set I2 will contain all indices j for which B2 contains a replacement ball Bj for B⋆

j . An
important remark here is that the properties required for balls in B2 are dependent on the
balls in B1 and not just the optimal balls. For technical reasons, we might have to add a
new ball in B1 during the process of building B2, in which case we cannot guarentee that
the properties of balls in B2 hold anymore. If this happens, the algorithm will then erase all
the choices of B2 and I2 and start the second phase again. However, since we only do this
when I1 gets bigger, this is done at most k times before I1 = [k]. The algorithm stops when
the sets I1 and I2 contains all indices of [k] which means that each ball B⋆

j either has an
approximate ball in B1 or a replacement ball in B2.

The algorithm
As explained previously, the algorithm maintains two disjoint sets of indices I1 and I2,
initially set to ∅, as well as two sets of balls B1 and B2, also initially set to ∅. B1 and B2
will eventually contain a representative ball Bi for every ball B⋆

i in the optimal solution.
Moreover, we will argue that there exists a valid assignment of the points to the balls (with
an expansion) in the union of these two sets.

For every i ∈ I2, let Ti denote the set of indices j of I1, such that B⋆
i ∩ Bj is not empty,

and Pi denote the intersection of the extensions ext(Bj , 10rj) over all j ∈ Ti after removing
the points of Bs for s ∈ I1 \ Ti.

We say that the sets (I1, I2, B1, B2) form a valid configuration if the following properties
are satisfied.

For every i ∈ I1, there is an approximate ball Bi ∈ B1 of B⋆
i of radius at most 5ri.

For every i ∈ I2, Ti is non-empty, B⋆
i ⊆ Pi and there exists a ball Bi ∈ B2 of center xi

and radius ri, such that both ηxi and Bi ∩ Pi have size at least |(µ⋆)−1(B⋆
i )|.

For i, j ∈ I2, Bi and Bj do not intersect.
For every i ∈ I2 and s ̸∈ I1, B⋆

s and Bi do not intersect.
For every j ∈ [k], if c⋆

j is a center of a ball in B1 (respectively, B2), then j ∈ I1 (respectively,
I2) and c⋆

j is the center of Bj .

Before describing the algorithm to construct a valid configuration (I1, I2, B1, B2) such
that I1 ∪ I2 = [k], let us show that such a configuration would indeed yield an approximate
solution.

▶ Lemma 10. Let (I1, I2, B1, B2) be a valid configuration such that I1 ∪ I2 = [k], then the
set of balls B containing the balls in B2, as well as for every i ∈ I1 the ball ext(Bi, 10ri) is a
15-approximate solution.

Proof. The fact that the sum of radii of the balls in B is at most 15 times the optimal
solution follows from the definition. To prove the lemma, we have to show that this is a valid
solution by giving a valid assignment. Recall that µ⋆ is the assignment for B⋆.

For every i ∈ I2, recall that Ti denotes the set of indices j of I1 such that B⋆
i intersects

Bj and Pi denotes the intersection of all the ext(Bj , 10rj) for j ∈ Ti where we removed the
points in Bs for s ∈ I1 \ Ti for j ∈ I1. By definition of a valid configuration, if we use Yi to
denote the set (µ⋆)−1(B⋆

i ), then there exists a set Xi of size |Yi| in Bi ∩ Pi. The following
claim is a crucial part of the proof.
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▷ Claim 11. Any point x ∈ Xi is such that µ⋆(x) = B⋆
j for some j ∈ Ti

Proof. Indeed, by definition, the only balls Bj ∈ B1 containing an element x of Pi are such
that j ∈ Ti, so in particular if j ∈ I1 \ Ti, B⋆

j ⊆ Bj doesn’t contain x. Moreover, if j ∈ I2,
then we know by definition that B⋆

j ∩ Bi is empty (that includes B⋆
i ). Since x ∈ Bi, this

concludes the proof of our claim. ◁

The previous claim implies that, if we define for every j ∈ Ti the set Xi,j := Xi ∩
(µ⋆)−1(B⋆

j ), then the Xi,j for j ∈ Ti actually defines a partition of Xi. As |Xi| = |Yi|, we can
partition the set Yi into sets Yi,j for j ∈ Ti such that |Xi,j | = |Yi,j | for all j ∈ Ti. Remember
that, for j ∈ Ti, Yi ⊆ ext(Bj , 10rj). By convention, if j ∈ T1 \ Ti, then Xi,j and Yi,j are
defined as the empty set.

For every j ∈ I1, we can now define Lj =
(
(µ⋆)−1(B⋆

j ) \ (∪i∈I2Xi,j)
)

∪i∈I2 Yi,j . Since
the sets Bi, for i ∈ I2, are pair-wise disjoint and |Xi,j | = |Yi,j | for all elements j ∈ I1
and i ∈ I2, we have that |Lj | = |(µ⋆)−1(B⋆

j )|. Moreover, since Yi,j is non empty only if
Yi ⊆ ext(Bj , 10rj), it means that Lj ⊆ ext(Bj , 10rj) and because Bj is an approximate ball
of B⋆

j , it means that the center xj of Bj is such that ηxj
≥ |(µ⋆)−1(B⋆

j )| = |Lj |.
Finally this means that the function µ such that µ−1(ext(Bj , 10rj)) = Lj for all j ∈ I1

and µ−1(Bi) = Xi for all i ∈ I2 is a valid assignment from P to B, which ends the proof. ◀

Now, we describe the algorithm that constructs the desired configuration. The first phase
of the algorithm will consist of a greedy selection of elements in I1, such that the union of B1
covers P (Lemma 12). As said previously, this will not imply that we can assign points to
these balls, without violating capacity constraints. The following two other lemmas (Lemma
13 and 14) will be used to achieve that.

As we deal with hard capacities, we cannot reuse any center. We need the following
definition to enforce that. We call a point p ∈ P an available center, if p has not already
been selected as a center of a ball in B1 or B2.

▶ Lemma 12. If (I1, I2 = ∅, B1, B2 = ∅) is a valid configuration such that the union of the
balls in B1 do not cover P , then there exists a randomized algorithm, running in linear time
and with probability at least 1/2k2, that finds an index s and a ball Bs such that adding s to
I1 and Bs to B still yields a valid configuration.

Proof. Let x be any point in P not covered by the union of the balls in B1 and i be the index
such that µ⋆(x) = B⋆

i . Let c be the available potential center in P at distance at most ri

from x which maximises the value of ηc. If c is not a center of some B⋆
j for j ̸∈ (I1 ∪ I2), then

the ball Bi of center c and radius 3ri is an approximate ball of B⋆
i and thus adding Bi to B1

and i to I1 yields a valid configuration. If c is a center of some B⋆
j for j ̸∈ (I1 ∪ I2), then

adding the ball Bj of center c and radius rj to B1 and j to I1 also yields a valid configuration.
The algorithm will then pick uniformly at random an index i′ ∈ [k], then decide uniformly

at random wether the available center c′ at distance at most ri′ is a center of some B⋆
j for

some j ̸∈ (I1 ∪ I2). If it decides negatively, then the algorithm will output s := i′ and Bs the
ball of center c′ and radius 3ri′ . If it decides positively, then the algorithm will then also
pick uniformly at random and index j′ ∈ [k] and output s := j′ as well as Bs the ball of
center c′ and radius rj′ .

The algorithm then suceeds if i′ = i, if it decides correctly if c′ is a center of some B⋆
j

and if j′ = j in the case where it is. Overall this is true with probability at least 1
k·2·k , which

ends the proof. ◀
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The first phase of the algorithm consists of applying the algorithm from Lemma 12 until
the union of the balls in B1 covers all the points in P . The next two lemmas are used in the
next phase of the algorithm.

▶ Lemma 13. If (I1, I2 = ∅, B1, B2 = ∅) is a valid configuration such that the balls in B1
cover the points of P and there exist two indices i ∈ I1 and j ∈ [k] \ (I1 ∪ I2) such that Bi

and B⋆
j intersect and rj ≥ 5ri, then there exists a randomized algorithm that in linear time

and with probability at least 1/2k, finds an index t ∈ [k] \ (I1 ∪ I2) and a ball Bt such that
(I1 ∪ {t}, I2, B1 ∪ {Bt}, B2) is a valid configuration.

Proof. Let xi denote the center of Bi, and B′ be the ball of center xi and radius 5ri + rj .
Because Bi is an approximate ball of B⋆

i , and B⋆
j and Bi intersect, we have that B′ contains

c⋆
j . Let x be the potential center of B′ which maximises ηx. If there exists an index

j′ ∈ [k] \ (I1 ∪ I2), such that the ball B⋆
j′ is centered at x, then t := j′ and the ball Bt of

center x and radius rj′ satisfy the property of the lemma (remember that B2 = ∅). If not,
then the ball Bj at center x and of radius 2 · (5ri + rj) + rj is an approximate ball of B⋆

j of
radius at most 5rj . Indeed, because the ball at center xi and of radius (5ri + rj) contains
both x and c⋆

j , it means that the ball at center x and of radius 2(5ri + rj) contains c⋆
j and

thus B⋆
j ⊆ Bj . Again, as B2 = ∅, then t := j and Bt := Bj satisfy the properties of the

lemma.
The algorithm therefore consists of choosing uniformly at random which of the two cases

is true. In the first case it also chooses uniformly at random an index j1 ∈ [k] and outputs
t := j1 as well as the ball Bt of center x and radius rj1 . In the second case it outputs t := j

as well as the ball Bt of center x and radius 2 · (5ri + rj) + rj . The previous discussion
implies that the algorithm succeeds if it chooses correctly between the two cases, and in the
first case if j1 = j′. Overall, the probability of success is at least 1/2k. ◀

▶ Lemma 14. Suppose (I1, I2, B1, B2) is a valid configuration with the property that the balls
in B1 cover the points of P and for every i ∈ [k] \ (I1 ∪ I2) and j ∈ I1, such that Bj and B⋆

i

intersect, ri ≤ 5rj. Then there exists a randomized algorithm that in linear time and with
probability at least 1/4k2, either finds an index t ∈ [k] \ (I1 ∪ I2) and a ball Bt such that
(I1 ∪{t}, I2 = ∅, B1 ∪{Bt}, B2 = ∅) is a valid configuration, or finds an index s ∈ [k]\ (I1 ∪I2)
and a ball Bs such that (I1, I2 ∪ {s}, B1, B2 ∪ {Bs}) is a valid configuration.

Proof. Let i be the element of [k] \ (I1 ∪ I2) minimizing ri, and let Ti denote the set of
indices j ∈ I1 such that Bj ∩ B⋆

i is non-empty. By the hypothesis of the lemma, we have that
ri ≤ 5rj for each element j ∈ Ti. In particular, it means that B⋆

i ⊆ ext(Bj , 10rj) for every
j ∈ Ti. Let Pi denotes the intersection of all those sets ext(Bj , 10rj) where we removed Bs

for all s ∈ I1 \Ti. Let x be the available center in Pi such that, denoting Bx the ball at center
x and of radius ri, Bx is disjoint from all the elements in B2 and sx = min{ηx, |Bx ∩ Pi|} is
maximized. Note that because (I1, I2, B1, B2) is a valid configuration, x⋆

i is an available center
in Pi and B⋆

i does not intersect any of the balls in B2. This implies that sx ≥ |(µ⋆)−1(B⋆
i )|.

If Bx does not intersect any ball B⋆
i′ with i′ ∈ [k] \ (I1 ∪ I2), then by the above discussion we

have that setting Bi = Bx, (I1, I2 ∪ {i}, B1, B2 ∪ {Bi}) is a valid configuration.
Suppose now that Bx intersects some B⋆

i′ with i′ ∈ [k] \ (I1 ∪ I2). (i′ can also be i.) In
that case, the ball at center x and of radius ri + ri′ contains c⋆

i′ . Since ri ≤ ri′ by the choice
of i, this means that the ball Bi′ of center x and radius ri + 2ri′ ≤ 3ri′ is an approximate ball
of B⋆

i′ . There might be several options for i′, but we can just make an arbitrary choice. The
only thing to be careful about is if x = c⋆

i′′ for some i′′ ∈ [k] \ (I1 ∪ I2), then the algorithm
will pick that index and add the ball Bi′′ of center x and radius ri′′ to B1. In any case,
(I1 ∪ {i′}, I2 = ∅, B1 ∪ {Bi′}, B2 = ∅) or (I1 ∪ {i′′}, I2 = ∅, B1 ∪ {Bi′′}, B2 = ∅), depending on
that last condition, is a valid configuration, in particular as B2 = ∅.
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Finally, the algorithm just decides between these two cases randomly, and in the second
case picks uniformly the index i′ and then outputs the described ball and index. In the
second case, it also needs to decide if there exists i′′ such that x = c⋆

i′′ and in which case pick
that index uniformly at random as well. Overall, the probability of success of this algorithm
is at least 1/4k2. ◀

We are now ready to prove our main theorem.

Proof of Theorem 1. Let us describe the algorithm. First, it applies Lemma 9 to obtain an
approximation ri of each r⋆

i with probability at least ϵk

kk·n2 . Then the algorithm initialize a
valid configuration (I1 = ∅, I2 = ∅, B1 = ∅, B2 = ∅) and run the algorithm of Lemma 12 at
most k times, until B1 covers all the points of P . At each step, the probability of success is
at least 1/k2, so in total at least 1/k2k. Then the algorithm enters into the second phase.
This phase is divided into multiple steps.

In the beginning of each step, we maintain the invariant that the current configuration is
valid with I2 = ∅ and B2 = ∅. Each step then consists of a series of applications of Lemma
13 followed by a series of applications of Lemma 14. The current step ends when an index is
added to I1 by the application of Lemma 14, and hence at that point I2 = ∅ and B2 = ∅,
or I1 ∪ I2 = [k]. We go to the next step (maintaining the invariant), unless I1 ∪ I2 = [k] in
which case the algorithm terminates.

In a step, the algorithm decides which lemma to apply as long as I2 = ∅. Otherwise,
it applies only Lemma 14. If I2 = ∅, it randomly decides if there exists indices i ∈ I1 and
j ∈ [k] \ (I1 ∪ I2) such that B⋆

i and B⋆
j intersect and rj ≥ 5ri. In which case, the algorithm

applies Lemma 13 to increase the size of |I1| in linear time and with probability at least
1/22k. If no such pair of indices exists, then the algorithm applies Lemma 14 to increase
|I1 ∪ I2| or |I1| in linear time and with probability at least 1/2k2.

▷ Claim 15. Assuming the algorithm made all the correct random choices, it terminates
with a valid configuration (I1, I2, B1, B2) such that I1 ∪ I2 = [k] after O(k2) applications of
Lemma 13 and 14.

Proof. First, we argue about the maximum number of applications of the two lemmas. Note
that in each step, we add at least one index to I1 and then only go to the next step. Also,
once an index is added to I1 it is never removed. Thus, the total number of steps is at most
k. Also, in each step, everytime we apply a lemma, the size of I1 ∪ I2 gets increased, which
can be at most k. Thus, in each step we will apply the lemmas at most k times in total.
Hence, the total number of applications of both lemmas is O(k2).

Next, we prove that the algorithm terminates with the desired configuration. Fix a step.
Note that if I2 = ∅ and we make correct choices, we can correctly apply a lemma and make
progress. This is true, as the conditions in the two lemmas are complementary. Now, if
I2 ̸= ∅, then we have applied Lemma 14 at least once. This implies for every i ∈ [k] \ (I1 ∪ I2)
and j ∈ I1, such that Bj and B⋆

i intersect, ri ≤ 5rj . Hence, the condition of Lemma 13
is false for the current set I1. Now, we do not change I1 throughout a step once we apply
Lemma 14, except at the last time, in which case we go to the next step emptying I2. Thus,
once I2 ̸= ∅, throughout the step, it holds that for every i ∈ [k] \ (I1 ∪ I2) and j ∈ I1,
such that Bj and B⋆

i intersect, ri ≤ 5rj . Hence, we can always apply Lemma 14 and make
progress.

Now, consider the last step, we prove that at the end of this step I1 ∪ I2 = [k]. By the
above discussion, this step ends either if I1 ∪ I2 becomes [k] or an index is added to I1. In
the latter case, we go to the next step. However, as the current step is the last one, it must
be the case that I1 ∪ I2 = [k]. This completes the proof of the claim, as we always maintain
a valid configuration. ◁
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If the algorithm made all the correct random choices, by the above claim together with
Lemma 10, we can get a 15-approximate solution from B1 and B2. The algorithm runs
in linear time and succeeds with probability at least ϵk

kk·n2 · 1
k2k · 1

(2k3)k2 . This means that

running the previous algorithm 2O(k2 log k) · n2 times, we obtain a (15 + ϵ)-approximation
algorithm with constant probability. Lastly, it is not hard to derandomize this algorithm by
performing exhaustive searches in each step instead of making decisions randomly. The time
bound still remains the same. ◀

3 Conclusions

In this paper, considering the Capacitated Sum of Radii problem, we obtained the first
constant-factor (15 + ϵ) approximation algorithm that runs in FPT time, making significant
progress towards understanding the barriers of capacitated clustering. While our techniques
are tailor-made for FPT type results, we hope some of the ideas will also be useful in obtaining
a similar approximation in polynomial time. We leave this as an open question.

Question 1: Does Capacitated Sum of Radii admit a polynomial time constant-
approximation algorithm, even with uniform capacities?

For the problem with uniform capacities, we obtained improved approximation bounds of
4 + ϵ and 2 + ϵ in general and Euclidean metric spaces, respectively. We also showed hardness
bounds in both general and Euclidean metric spaces complementing our approximation
results. The following two natural open questions are left by our work.

Question 2: What is the best constant-factor approximation possible for Capacit-
ated Sum of Radii or uniform Capacitated Sum of Radii in FPT time?

Question 3: Does Euclidean Capacitated Sum of Radii admit an (1 + ϵ)-
approximation algorithm, in f(k, ϵ) · ng(ϵ) time for some functions f and g?
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Abstract
In this paper we give a new, efficient algorithm for computing curve skeletons, based on local
separators. Our efficiency stems from a multilevel approach, where we solve small problems across
levels of detail and combine these in order to quickly obtain a skeleton. We do this in a highly
modular fashion, ensuring complete flexibility in adapting the algorithm for specific types of input
or for otherwise targeting specific applications.

Separator based skeletonization was first proposed by Bærentzen and Rotenberg in [ACM Tran.
Graphics’21], showing high quality output at the cost of running times which become prohibitive for
large inputs. Our new approach retains the high quality output, and applicability to any spatially
embedded graph, while being orders of magnitude faster for all practical purposes.

We test our skeletonization algorithm for efficiency and quality in practice, comparing it to local
separator skeletonization on the University of Groningen Skeletonization Benchmark [Telea’16].
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1 Introduction

A curve skeleton is a compact simplified representation of a shape, consisting only of curves.
The act of skeletonization, in this context, is the computation of such a curve skeleton for a
given input. For the remainder of this paper skeleton refers exclusively to curve skeletons.
Various fields, including feature extraction, visualisation and medical imaging, care not only

© J. Andreas Bærentzen, Rasmus Emil Christensen, Emil Toftegaard Gæde,
and Eva Rotenberg;
licensed under Creative Commons License CC-BY 4.0

39th International Symposium on Computational Geometry (SoCG 2023).
Editors: Erin W. Chambers and Joachim Gudmundsson; Article No. 13; pp. 13:1–13:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:janba@dtu.dk
https://orcid.org/0000-0003-2583-0660
mailto:etoga@dtu.dk
https://orcid.org/0009-0001-9462-6359
mailto:erot@dtu.dk
https://orcid.org/0000-0001-5853-7909
https://doi.org/10.4230/LIPIcs.SoCG.2023.13
https://arxiv.org/abs/2303.07210
https://github.com/janba/GEL
https://archive.softwareheritage.org/swh:1:dir:91f125aa9a06d7adf992cdb11ca2108d86acdefe;origin=https://github.com/janba/GEL;visit=swh:1:snp:cdc61da5da61908a9968b02875e132058ae8288e;anchor=swh:1:rev:d4c98b30620cb01021ece84c68e96c10ebc2d480
https://github.com/Sgelet/GEL
https://github.com/Sgelet/GEL
https://archive.softwareheritage.org/swh:1:dir:09aadd7e8f82cc8dfdbbc72ea71e56e65a6e0cfc;origin=https://github.com/Sgelet/GEL;visit=swh:1:snp:0bfb48df5949c951bbd65734e9abe75be19595d2;anchor=swh:1:rev:76eb1be20acce8281f4207201d54a697bd4d5d2c
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


13:2 Multilevel Skeletonization Using Local Separators

about shapes and objects, but also about their structures and features. In applications such
as shape matching, the skeleton acts as a simplified representation of an object, allowing for
reduced computation cost [8], whereas in virtual navigation the curve skeleton can act as a
collision free navigational structure [24, 30].

The broad areas of application, and the different roles that skeletons play, lead to differing
interpretations of exactly what the skeleton is. Although no widely agreed upon definition of
skeletons exist, work has been done on narrowing down desirable properties of skeletons in
the general case [12].

Figure 1 Shaded renders of triangle meshes and skeletons obtained by our algorithm.

Instead of giving a formal definition, we will base our work on the evocative if imprecise
definition of skeletons as simplified curve representations of the underlying structure and
topology. In Figure 1 we show skeletons of various input, to exemplify our definition.

Many different approaches to skeletonization exist [27], such as computing and pruning
the medial surface [13], computing mean curvature flow [26] or contracting meshes [20].
In a recent paper A. Bærentzen and E. Rotenberg present a new algorithm that bases
itself on computing local separators [5]. We refer to this algorithm as the local separator
skeletonization algorithm, LSS. This approach has the benefit that it requires only that the
input be given as a spatially embedded graph, rather than a specific shape representation.
This makes the method applicable to a wide variety of inputs, such as meshes, voxel grids
or even input that does not necessarily represent a shape. In addition, the skeletons that
it generates are of high quality, capturing features that contractive methods tend to miss.
However, the algorithm is also computationally expensive.

In this paper we present a multilevel algorithm for computing curve skeletons that we
obtain by adapting LSS to a multilevel framework. Below, we start with some preliminaries
and then present an overview of our contributions. Next, after a discussion of related work,
we describe our approach to graph coarsening, projecting separators onto finer level graphs,
and, finally, the multilevel skeletonization algorithm that builds on these components. We
provide analyses of the algorithms in the paper and we test our work on a skeletonization
benchmark. Our results show that our algorithm is orders of magnitude faster than that
proposed by Bærentzen and Rotenberg while producing skeletons of comparable quality.

1.1 Preliminaries
We consider the discrete skeletonization problem, where both the input and output is
represented by spatially embedded undirected graphs. Formally, we consider skeletonization
of a graph G = (V, E) where each vertex is associated with a geometric position pv∈V ∈ R3.
Note that we make no other assumptions about the graph, such as whether it is sampled
from the surface of a manifold, created from a point cloud, or otherwise.
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In graph theory a vertex separator is a set of vertices whose removal disconnects the
graph. In [5], this notion is extended to local separators, defined as a subset of vertices,
S ⊂ V , that is a vertex separator of the subgraph induced by the closed neighbourhood of
S. Likewise, the notion of a minimal local separator is defined as a local separator that is a
minimal vertex separator of the subgraph induced by the closed neighbourhood. Intuitively,
we cannot remove a vertex from a minimal local separator without the remaining set ceasing
to be a local separator. For the rest of this paper, the term separator means local separator.

1.2 Contributions
The LSS algorithm computes skeletons through a three-phased approach. A large number of
minimal local separators is computed, the minimal separators are selected using a greedy
packing method, and, lastly, the skeleton is extracted from the packed set of minimal
separators. A visualisation of these phases can be seen in Figure 2.

Figure 2 Visualisation of the three phases of the LSS algorithm. From left to right: A shaded
render of the input, a number of computed minimal separators, a non-overlapping subset of the
separators, and the resulting skeleton after extraction.

As the algorithms for the first two phases play an intrinsic role in our algorithm, we give
a brief description of these.

Computing local separators is done through a two-step process. First a region growing
approach is used to find a local separator. A vertex is picked, and we iteratively add to
the separator an adjacent vertex and check if the neighbourhood is disconnected. We refer
to this as growing a separator. Once a local separator has been found, it is heuristically
minimised by removing vertices that would not destroy the separator. We refer to this as
shrinking a separator.

Because the running time of LSS is often dominated by the search for local separators,
a sampling scheme is used to reduce computation. According to the scheme, vertices are
selected for separator computation with probability 2−x, where x is the number of previously
computed separators that contain that vertex.

Unfortunately, sampling only addresses the number of separators that need to be computed
and not the time it takes to compute each separator. In this paper we address the latter
issue using a multilevel approach. Specifically, we find separators on coarser versions of
the graph and project them back up onto the original graph. Importantly, this allows us
to set a patience threshold for the amount of computation that should be used to find a
separator from a given vertex. When the threshold is exceeded we stop the search relying on
a separator containing the given vertex to be found on a coarser level.

1.3 Related Work
Skeletonization, in terms of computing curve skeletons, is a diverse field not only in terms of
interpretations of skeletons, but also in the algorithmic approaches. Several classifications of
algorithms exist [12, 27], based on underlying traits of the algorithms.

SoCG 2023
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The interpretation that the curve skeleton should lie on the medial surface, gives rise to
methods that, in a sense, extract a curve skeleton from the medial surface of the input [13,
29, 19, 25, 32]. Since the medial surface is highly sensitive to noise, so are the skeletons
generated by these methods.

A class of algorithms that are resilient to noise are the contractive methods, based
on the concept of reducing the volume and surface area of the input until a skeleton is
found [31, 4, 26]. In their simplest forms these algorithms require that the input be manifold,
however it is possible to extend to other types of input [11, 18].

A related notion for shape analysis is that of Reeb graphs [7, 6]. These can be used for
skeletonization, lending themselves to a topologically driven class of algorithms [22, 23, 14].
The resulting skeletons depend on a parameter, giving some flexibility in targeting specific
properties of the output, but also requiring great care in the choice of the parameter.

In addition there are algorithms that fit into classifications not presented here [20, 15, 2].
A very successful heuristic approach to the NP-complete problem of graph partitioning is

that of multilevel algorithms [9]. Although the problem considered is different, we employ
a similar multilevel scheme for vastly improving practical performance. Such multilevel
schemes have been extensively studied [16, 21, 1].

2 The Multilevel Framework

In its most general sense, the multilevel framework is a heuristic approach that aims to solve
a problem by obtaining a solution to a smaller problem.

Initially, a series of increasingly simplified approximations of the input is generated. We
call this the coarsening phase, and the series of simplifications we call levels. Since the last
level is small, computing a solution is much faster. In graph partitioning literature, this is
called the partitioning phase; however, we will consider it in terms of solving a restricted
problem. Then, the solution found on the last level is transformed into a solution on the input
through uncoarsening. This process is also sometimes called projection and refinement, since
uncoarsening from one level to the previous is often done by projecting onto the previous
level, and then employing some refinement process to improve the solution according to some
heuristic.

By design, the multilevel framework is highly flexible. Various coarsening schemes can be
used, that may prioritise preserving different properties of the input when simplifying. The
restricted problem can be solved by any reasonable approach, and the refinement strategies
can be adapted to suit the application.

Our algorithm works by first coarsening the input into several levels of decreasing
resolution. The details of this coarsening is described in Section 2.1. Once the hierarchy of
graphs has been generated, we do a restricted search for local separators on each level of
resolution. The details are covered in Section 2.2, but the intuition is that searching for large
local separators is slow in practice, and by restricting our search we save computation. Since
the separators found are small, this does however also mean that we are only able to capture
small features of the structure.

Since small features obtained on low resolution can represent large features on the original
input, we obtain separators capturing features of varying sizes by searching for separators
across every level.

By projection and refinement, see Section 2.3, we then transform the minimal local
separators found across the levels into minimal local separators on the input. These can then
be packed and extracted by the approach of LSS. The procedure is visualised in Figure 3.
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Figure 3 Visualisation of the multilevel skeletonization approach. A solid cylinder with a handle
is coarsened until it is of small size. A number of small local separators are found (shown in blue),
and then projected back to the original input. Searching for small local separators again yields
the separators around the handle (shown in red), but separators are too large at this level to be
discovered around the cylinder. We combine the separators to obtain a general solution.

2.1 Coarsening
Given as input a graph, G = (V, E), we construct a sequence of increasingly simplified graphs,
G0, G1, . . . , Gl s.t. G0 ≻ G1 ≻ . . . ≻ Gl where l = O(log n) and Gi ≻ Gj denotes that Gj is
a minor of Gi, and Gi = (Vi, Ei). Moreover G0 = G and ∀i ∈ [0, l), |Vi| ≥ 2|Vi+1|.

We do this by a matching contraction scheme, in which we repeatedly construct and
contract maximal matchings. Various approaches to such coarsening schemes exist in
literature [21], and from these, we choose to consider light edge matching.

To construct Gi+1 from Gi, greedily find a maximal matching and contract it. Such a
matching can be constructed in O(|Ei|) time by visiting vertices in a random order, matching
them to an unmatched neighbour of smallest euclidean distance. We repeat this procedure
until the number of vertices has been at least halved.

In Figure 4 we show some of the graphs obtained during coarsening of a triangle mesh
resembling a statue of Neptune.

Figure 4 A series of increasingly simplified approximations of neptune.ply, from the Groningen
Skeletonization Benchmark, obtained through light edge matching contraction.
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Note that by contraction we always preserve the number of connected components. This
is one of the homotopy-preserving properties of the algorithm.

Theoretical Analysis

In the worst case, we may spend O(|Vi|) rounds of contraction in order to reach the desired
number of vertices. This is a well known problem of matching contraction schemes on general
graphs, but graphs obtained from the world of geometry tend to take a small number of
rounds to contract [1].

A general bound on the time spent on the coarsening phase is then
∑l

i=0(|Vi||Ei|) =
|E|

∑l
i=0 |Vi| = O(|V ||E|). For graphs that are contracted in a constant number of rounds

we get
∑l

i=0 |Ei| and if we furthermore have |Ei| = O(|Vi|), as is the case for triangle meshes
and voxel grids, the bound becomes O(|V |).

2.2 Restricted Separator Search
For a given connected set of vertices, V ′, we refer to the subgraph induced by vertices
adjacent to V ′, that are not in V ′ themselves, as the front of V ′ and denote it F (V ′).

A region growing based approach to computing local separators is given in [5], where a
separator, Σ, is iteratively grown until F (Σ) is disconnected. The approach uses an enclosing
ball around the vertices of Σ to guide what vertex of F (Σ) is added next, and the connectivity
of F (Σ) is then checked by traversal. As noted by the authors, it is possible to improve
performance of the search by using a dynamic connectivity data structure to maintain the
front, so that a traversal in every iteration is avoided.

In addition to adapting the algorithm to use a dynamic connectivity data structure,
we will also restrict the number of iterations the search performs. Given a vertex, v, set
Σ0 = ∅, F0 = {v}, and then iteratively construct Σi = Σi−1 ∪ {vi ∈ F (Σi−1)}, where vi

is the closest neighbour of the front to an enclosing sphere around Σi−1. Maintain F (Σi),
update the enclosing sphere and repeat until F (Σi) is disconnected or empty, or |Σi| exceeds
a threshold value. Pseudocode for this restricted separator search is shown in Algorithm 1.

Theoretical Analysis

We analyse the complexity of this restricted separator search in terms of the graph G′ =
Σ ∪ F (Σ) with n′ vertices and m′ edges, using the dynamic connectivity data structure of
Holm, de Lichtenberg and Thorup with updates in amortized O(log2 n′) time [17]. Since
the size of the separator is at most α and we add one vertex each iteration, we use at
most α iterations selecting the closest vertex from the front, updating the bounding sphere
and maintaining the dynamic connectivity structure. Selecting the closest vertex is done
naively with a scan through the front, taking O(n′) time and updating the bounding sphere
takes O(1) time each iteration. This gives a running time of O(αn′). Each edge in the
dynamic connectivity structure is inserted and removed at most once, with each operation
taking O(log2 n′) amortized time, totalling O(m′ log2 n′). The total running time is then
O(αn′ + m′ log2 n′).

In the general case we give no better worst case bound than O(α|V | + |E| log2 |V |). For
graphs of bounded maximum degree we can bound the size of the front. Let ∆ be the
maximum degree of G, then n′ = O(|Σ|∆) = O(α∆) and m′ = O(α∆2). This gives a time
of O(α2∆ + α∆2 log2(α∆)). In addition if we choose α to be a small constant, the bound
is further improved to O(∆2 log2 ∆). For graphs where ∆ = O(1) as for voxel grids or
knn-graphs, the search then becomes O(1). Note that for this bound to be applicable across
the entirety of the algorithm, the degree needs to remain bounded through coarsening.
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Algorithm 1 Restricted Separator Search
Given a spatially embedded graph, G, a starting vertex, v0, and a thresholding value, α,
search for a separator of size at most α and return it, or ∅ if failure. Here ϵ is a small constant
to prevent division by zero.

Restricted-Separator-Search(G, v0, α):
Σ = ∅
F = ({v0}, ∅)
c = pv0

i = 0
r = 0
repeat

v = arg minf∈V (F )∥c − pf ∥ // Scan front for closest vertex
if ∥c − pv∥ > r then

r = 1
2 (r + ∥c − pv∥) // Update the sphere

c = pv + r
ϵ+∥c−pv∥ (c − pv)

Σ = Σ ∪ {v}
remove(F, v)
for (x, y) ∈ E(Neighbourhood(G,v) − Σ) do

connect(F, x, y) // Maintain the front of Σ
i = i + 1

until number-of-components(F )> 1 or i = α

if number-of-components(F ) = 1 then
return ∅

return Σ

2.3 Projection and Refinement
For projecting separators to graphs of higher levels of detail, we employ a simple uncoarsening
technique. By storing information about what vertices were contracted during coarsening, we
can reverse the contractions that gave rise to the vertices of a given separator. Note however
that a separator that has been projected in such a way is not guaranteed to be minimal.

The simplest refinement scheme is thus one that uses the algorithm for minimising
separators as in LSS. The minimising algorithm is a heuristic approach that seeks to minimise
a separator such that the structure becomes that of a thin band. When used on separators
that are obtained through projection, there is not necessarily much room for choice. Therefore
we consider a variation of our refinement scheme, we thus choose to “thicken” the separators
after projection, by adding the adjacent vertices if it would not destroy the separator. This
gives the heuristic minimisation more options for creating separators of shorter length, as
visualised in Figure 5.

Projecting a separator can be done in linear time proportional to the size of the resulting
separator, while the minimisation in worst case takes quadratic time (see the full version).

After processing each separator in this way, we obtain a set of minimal separators for the
current level. If we accumulate separators indiscriminately, we will spend time projecting
and refining separators that will ultimately be discarded due to overlapping. If we perform
set packing on every level, we are going to be too eager in our efforts, discarding things
that might not overlap once projected further. Intuitively, we would like to only discard
separators if there is a large overlap.
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Figure 5 A separator undergoing expansion as part of refinement. (A) shows an input, (B) a
coarsened representation, (C) a computed separator denoted by red vertices, (D) the projected
separator denoted by red vertices and the added vertices denoted by orange, (E) shows the separator
obtained by minimising the thickened separator.

To do this, we associate with each vertex, v, of every graph, Gi, a capacity, ci
v, equal to

the sum of capacities of vertices contracted to obtain it. For vertices of G0 we define the
capacities as 1, formally ∀v ∈ V (G0), c0

v = 1. In this way, the capacity of a given vertex is
the number of vertices of the original input that it represents.

We then modify the greedy set packing algorithm of LSS, so that we include a separator
iff it would not cause any vertex to exceed its capacity. Since the capacities of G0 are 1, this
packing is equivalent to the original when applied to the highest level of resolution, and thus
we will still have a non-overlapping set of separators at the end.

Note however that this packing allows for duplicates to persist through packing, essentially
reducing the capacities of vertices while providing no valuable information. To counteract
this, we perform a filtering step using hashing to rid duplicates prior to the packing procedure.
Filtering and packing in this way takes time linear in the sum of sizes of separators in the set.

2.4 The Multilevel Skeletonization Algorithm

With the details of the phases in place, we can then combine these to construct the multilevel
skeletonization algorithm. Given a spatially embedded input graph, G = (V, E), and a
threshold value α, we construct a curve skeleton by the following:

Generate Gi from Gi−1 by coarsening, until |Gl| ≤ α for some l. This generates
the sequence of graphs of decreasing resolution G0, G1, . . . , Gl where l = O(log |V |) and∑l

i=0 |Vi| = O(|V |).
Then, starting at the lowest resolution, Gl, find restricted separators. We do this by

the restricted separator search, starting at each vertex with probability 2−x, where x is the
number of currently computed separators containing that vertex, using α as the restriction
on the size of the search. After computing the separators for a level, we perform capacity
packing, and then we project the computed separators to the next level and refine them.
This process is repeated for every level until we arrive at the original graph. At this point,
after performing capacity packing, we obtain a non-overlapping set of minimal separators
from which we extract the skeleton, using the extraction procedure of LSS [5]. Pseudocode
for this algorithm can be seen in Algorithm 2.
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Algorithm 2 Multilevel Skeletonization
Given a spatially embedded graph, G, and a thresholding value, α, compute a curve skeleton.

Multilevel-Skeletonization(G, α):
G0 = G

l = 0
repeat // Coarsening phase

l = l + 1
Gl = Coarsen(Gl−1)

until |V (Gl)| ≤ α

S = ∅ // Maintain set of minimal separators
for i = l to 0 do // From low to high resolution

S′ = ∅
for s ∈ S do // Project and refine from previous levels

S′ = S′ ∪ Project-Refine(s)
S = S′

for v ∈ V (Gi) with probability 2−x(v) do // Search on this level
s = Restricted-Separator-Search(Gi, v, α)
S = S ∪ {Minimise-Separator(s)}

S = Capacity-Pack(S)
return Extract-Skeleton(G, S)

Theoretical Analysis

For completeness’ sake we consider then the complexity of the algorithm. Recall that the
coarsening phase in the general worst case takes O(|V ||E|) time, but for not too irregular
input takes O(|V |) time. We then perform a restricted separator search from each vertex
across every level, which is O(α|V |2 + |V ||E| log2 |V |) in the general worst case, but O(α|V |)
for graphs that retain constant bounded degree through coarsening. We consider then the
time a single separator contributes to the total when expanding, filtering and packing. These
operations are linear in the size of the separator on each level, which is worst case O(|Vi|) on
level i. This totals

∑l
i=0 O(|Vi|) = O(|V |) for a single separator across all levels. Minimizing

a single separator takes worst case O(|Vi|2) on level i, which for a single separator contributes∑l
i=0 O(|Vi|2) = O(|V |2) across all levels. We also perform packing on each level, linear

in the sum of sizes of separators, which in total takes
∑l

i=0 O(|Vi|2) = O(|V |2) time. The
general worst case bound then becomes O(|V |3 + |V ||E| log2 |V |), which is an improvement
over LSS. It is worth mentioning however, that in practice the running time for both LSS
and our algorithm is heavily dominated by the search for separators, and that theoretically
expensive procedures, such as minimisation, make up only a small fraction of the running
time.

3 Experiments

In this work, our main objective was to make an algorithm that produces the same quality
of skeletons as LSS [5], only with improved running times, using new algorithmic ideas and
algorithm engineering. As we will show in this section, the improvements to practical running
times are very satisfactory.

As for quality, it is our overall assessment that the quality has not been compromised by
the speed-up.
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There is, however, no standard for how skeletons should be compared. In [27] it is
remarked that quantifying the quality of skeletons is an open challenge, but we shall instead
compare ourselves only to skeletons obtained by LSS, to quantify the deviation obtained by
employing the multilevel approach.

To do this, we will measure a number of metrics, namely the number of vertices in the
skeleton, the number of leaf nodes, branch nodes, chordless cycles which estimates the genus
of the input, and the directed Hausdorff distance in both directions. For our comparisons,
it is the relationship between directed Hausdorff distances that matter, rather than the
magnitudes. A high distance from an LSS skeleton to our skeleton, with a low distance the
other way, could indicate that LSS captures a feature that our skeleton does not. Likewise
for the inverse, which might indicate that we are capturing a feature that LSS does not deem
to exist. We give our Hausdorff distances divided by the radius of a bounding sphere, to
reduce influence from the differing scales of input.

We run our tests on the Groningen Skeletonization Benchmark [28], consisting of several
triangle meshes of varying structure. The test are executed on HPC Cluster nodes with Xeon
Gold 6226R (2.90GHz) CPUs, using 8 cores of a single CPU for each test. For running time
measurements, tests are run three times, and the median value is reported.

For comparisons we examine three algorithms, namely the local separator skeletonization
algorithm (LSS) [5], our multilevel algorithm using light edge matchings, described in
Section 2.1, as contraction scheme (LEM) as well as with light edge matchings and thickened
separators, described in Section 2.3, as the refinement scheme (LEMTS).

We note that the variation of LSS with which we compare our algorithms also includes
usage of a dynamic connectivity structure, so that the search procedures are identical up to
the threshold parameter.

Implementation

Our implementation is written in C++, built into the GEL library, and made publicly
available [10]. This is the same library that contains LSS, and as such our algorithms use
the same underlying data structures and subroutines. All programs are compiled using -O3
optimisation flags. Details regarding the dynamic connectivity structure are given in the full
version. We run the restricted searches in parallel internally on each level, using a simple
fork-join pattern, identical to that of LSS. To account for the multilevel structure of our
algorithm, we then pack using a single thread, project using at most two threads and repeat
the pattern for the next level. The decision to use only two threads for projection stems
from the fact that the overhead associated with spinning up threads quickly outweighs the
benefits of parallel projection since there are often few separators after packing.

3.1 Results

Here we present our results in terms of measurements on the Groningen Skeletonization
Benchmark. Initially we argue for our choice of α, showing how the threshold impacts both
skeleton quality as well as running time. We then present a number of results relating to the
skeletons themselves to showcase the quality of output. We then present our measurements
of running times, as well as discuss interesting observations.

Additional measurements are presented in the full version.
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The Right Amount of Patience – Determining a Threshold Value α

To show the effects of α on the running time, we consider a small test suite using subdivisions
of a mesh to generate various sizes of input. This is done to ensure a similar underlying
structure throughout the test. We test our multilevel algorithm for α = 8, 16, 32, 64, 128 (see
Figure 6). Not surprisingly, a lower threshold leads to a lower running time.

Figure 6 Running time measurements of varying values of α on subdivisions of a mesh.

Figure 7 Skeletons found on human_hand.ply for increasing patience thresholds. From left to
right: α = 8, 16, 32, 64, 128.

However, there may be a trade-off between skeleton quality and threshold value, which
we explore qualitatively.

We visually examine the skeletons generated for our choices of α on human_hand.ply, as
seen in Figure 7. For very low values of α, the skeletons have few curves in areas that are
relatively thick. With a low threshold, separators must be found on lower resolutions, which
in turn means that few separators can be found. As we progress to higher values of α, the
level of detail of the skeleton rises, up to a certain point. Intuitively, if the threshold is high
enough that the details can be captured on the higher levels of detail, then we gain nothing
from the lower resolution levels.

It could be argued that α = 16 or α = 32 generates the most visually appealing skeletons
for this particular input, however we find that α = 64 offers the best trade-off for running
time on other examined input such as that shown in Figure 8.

Thus, we run the remainder of our tests using α = 64.
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Figure 8 Each column indicates a different input, with each row showcasing a different method.
From top to bottom: shaded renders of the input, skeletons obtained by LSS, skeletons obtained by
LEM, skeletons obtained by LEMTS.
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Skeleton Quality

In Figure 8 we show some of the skeletons obtained by LSS, LEM and LEMTS. Note that
both LEM and LEMTS appear smoother, while also reaching the features that LSS finds
in many cases. In addition, it seems that for these inputs our methods find less spurious
features, giving a cleaner result. When comparing LEM and LEMTS the differences are
subtle. On horse.ply it can be seen that the vertex where the front legs meet the body is
positioned further to the left. This is due to LEMTS having a denser skeleton. On the other
hand, LEMTS seems to not capture the structure of the groin area of neptune.ply as well
as LEM. Although it appears as if LEMTS finds a cycle, this is not actually the case. The
skeletal branch is, however, not positioned as one would expect.

Table 1 Excerpt of measurements on skeletons. The metrics denoted by ∆ are relative to the
skeletons of LSS, with negative values implying that LSS has more vertices, leafs, branches etc.
Here H(A, B) denotes the directed Hausdorff distance between A and B, divided by the radius of a
bounding sphere, and ∗ denotes skeletons generated by our multilevel algorithms.

input algorithm ∆vertices ∆leafs ∆branches ∆genus H(LSS, ∗) H(∗, LSS)

19465 LEM -563 -3 -35 2 0.0437028 0.0415616
LEMTS -416 11 -24 3 0.0355444 0.0382796

fertility LEM -46 -3 -1 0 0.273804 0.0874419
LEMTS -30 -3 -1 0 0.240033 0.165239

happy4 LEM -589 -409 -21 -100 0.199295 0.0887277
LEMTS -560 -384 -22 -99 0.160472 0.100934

horse LEM -95 -1 -1 0 0.112222 0.111066
LEMTS -66 -2 -2 0 0.0883287 0.0851157

neptune LEM -73 -16 -5 0 0.200924 0.0508065
LEMTS -51 -15 -1 0 0.225756 0.0516766

In addition, we also showcase a small excerpt of measurements from the full version,
which can be seen in Table 1. Here it is clear that LEM and LEMTS produce slightly simpler
skeletons with fewer vertices, leaves, and branches. However, from visual inspection of the
models it is clear that (at least for the models in the table) the missing details in the skeleton
correspond to features which are so subtle that the skeletal details might be considered
spurious. For all inputs of the benchmark except happy4.ply, there is little deviation in the
genus compared to LSS.

For context on the strange genus found on happy4.ply, we show the generated skeletons
in Figure 9. Of note is that the mesh has several missing patches, which seems to cause
spurious small separators to be found on all of the local separator based methods. We
consider this an error case for all of the methods examined.

Running Time

Although the running time of local separator skeletonization methods depends very much on
the search for separators, which in turn depends on the structure of the input, we give the
running times of the examined methods in Figure 10 as a function of the number of vertices
in the input, over the entirety of the Groningen Skeletonization Benchmark [28].

Remarkably, we find that the multilevel algorithm not only outperforms LSS by several
orders of magnitude, but also that it seems to be less dependant on the underlying structure of
the triangle meshes, giving what appears to be a slightly superlinear curve. This effect is even
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Figure 9 A triangle mesh with a large number of missing patches on the surface, happy4.ply,
resulting in erroneous output for LSS, LEM, and LEMTS.

more pronounced when considering only the time to search for separators. Under assumptions
about the degree of the graphs, we showed that searching was O(1) for a single separator and
O(|V |) in total. This experiment seems to confirm that this assumption is fitting for classical
input, as is the case with the triangle meshes of the Groningen Skeletonization Benchmark.

In Table 2 we show an excerpt of the running time measurements, including measurements
of the phases of the algorithm. Here the vast gap in performance is clear, especially for
dragon.ply, which is the largest input for which we have been able to run LSS, given a time
frame of 20 hours. For this particular instance we achieve a running time that is almost a
thousand times faster.

Of note is that LEMTS spends more time on projection, as expected, but less time on
packing than LEM. As stated previously, the search for separators is often the dominating
phase, however there are types of input for which this is not the case, as evidenced by
19465.ply. The mesh consists of flat sheets with small details engraved, as can be seen in
Figure 11. For both LSS and the multilevel algorithms, a large portion of the time is spent
on packing and projection. This can occur if the separators are generally small and plentiful,
so that many of them may quickly be found. For 19465.ply these are particularly present
around the imprinted text on the top sheets. It is worth noting that this would likely also be
an example for which the structure of the input matters greatly for the running time of our
multilevel algorithms.

4 Conclusions and Future Work

We have proposed a multilevel algorithm for computing local separator-based curve skeletons,
and shown that the approach is very efficient. We obtain a practical running time that appears
near linear in the number of vertices of the input (see Figure 10) with up to thousandfold
improvement in running time while not deteriorating the quality of the output substantially,
if at all.

This type of running time improvement makes separator-based skeletonization applicable
as a tool in biomedical image analysis, including frame-by-frame skeletonization of videos [3].

The application to video skeletonization motivates an unexplored line of related work,
namely that of efficiently dynamically updating skeletons in a series of related shapes.

The multilevel approach offers great flexibility that has yet to be explored. It is easy
to imagine coarsening schemes targeting specific structures of input, such as contracting
clusters, rather than edges, on voxel input. These contraction schemes may provide new
trade-offs between practical performance and skeleton quality.
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(a) Running times of LSS. (b) Running times of LEM.

Figure 10 Running times in total (top) and for searching (bottom) as function of the number of
vertices on the Groningen Skeletonization Benchmark. Values over 20 hours omitted.

Table 2 Excerpt of running time measurements. In addition to measuring the total time, we also
measure the time spent on each phase of the algorithm.

input algorithm coarsen (s) search (s) project (s) pack (s) total (s)

19465
LSS - 25.8787 - 138.836 164.714
LEM 1.20002 9.18989 9.410914 12.4392 26.8306

LEMTS 1.21294 9.41457 14.851733 9.8696 26.5518

dragon
LSS - 46615.4 - 20637.9 67255.9
LEM 6.25851 49.6567 18.753684 3.42042 67.4554

LEMTS 6.19801 50.2347 24.6420235 3.22507 69.4672

fertility
LSS - 95.8574 - 42.1409 136.664
LEM 0.234681 2.38572 0.7753682 0.0600592 3.03186

LEMTS 0.244822 2.4305 1.8177949 0.0559833 3.44687

happy4
LSS - 7646.21 - 15731.9 23379.2
LEM 6.89638 49.6684 12.7328477 2.22244 64.2245

LEMTS 6.93433 50.1269 16.0581559 1.75872 65.4557

horse
LSS - 544.182 - 85.6915 628.3
LEM 0.504898 5.10887 1.2762728 0.0669417 6.27845

LEMTS 0.502791 5.17779 2.7604771 0.0542464 6.86374

neptune
LSS - 56.296 - 62.8555 119.232
LEM 0.312728 2.7382 1.0849813 0.230939 3.77785

LEMTS 0.308124 2.76549 2.4149765 0.182575 4.22093
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Figure 11 The triangle mesh 19465.ply, where packing makes up a large portion of the running
time for (all) local separator based skeletonization algorithms.

When applying coarsening to scale-free graphs, as might be the case for data visualisation
or areas of application that are not classical for skeletonization, we move into a domain known
from the field of graph partitioning to cause trouble for matching contraction schemes [1].
It is interesting to see if the improved practical performance, and the applicability to any
spatially embedded graph, opens up for new areas of application of skeletons.
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Abstract
We present an algorithm for computing the barcode of the image of a morphism in persistent
homology induced by an inclusion of filtered finite-dimensional chain complexes. The algorithm
makes use of the clearing optimization and can be applied to inclusion-induced maps in persistent
absolute homology and persistent relative cohomology for filtrations of pairs of simplicial complexes.
The clearing optimization works particularly well in the context of relative cohomology, and using
previous duality results we can translate the barcodes of images in relative cohomology to those in
absolute homology. This forms the basis for an implementation of image persistence computations
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1 Introduction

Over the last few decades, persistent homology has established its role as an important tool
in data science, with numerous applications in a variety of disciplines, including computer
vision, neuroscience, materials science, and evolutionary biology [18, 10, 15, 20, 7]. Recently,
there has also been renewed interest in image persistence, which is a natural extension of
persistent homology [21, 22, 17]. Persistent homology starts with a filtration of simplicial
complexes K• and concerns the barcode, which encodes the algebraic structure of the
persistence module H∗(K•). In contrast, image persistence starts with two filtrations L• and
K• that are related by a map of filtrations f• : L• → K•. This map induces a morphism
H∗(f•) : H∗(L•)→ H∗(K•). The image of this morphism, imH∗(f•), is again a persistence
module, and image persistence concerns the barcode of this persistence module.

A key part of the appeal of image persistence is that it enables the construction of
meaningful matchings, i.e., partial bijections, between the barcodes of the domain and
codomain of the morphism one starts with. The first such construction that appeared in
the literature was the induced matching construction, which was introduced by Bauer and
Lesnick [2] to give a proof of the famous stability theorem of Cohen-Steiner et al. [11]. Such
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constructions have now also appeared in work with a more practical focus, with Reani and
Bobrowski [21] and García-Redondo et al. [17] proposing and applying general schemes for
matching cycles in different filtrations using image persistence, as well as Stucki et al. [22]
applying such a method in the context of medical image data analysis.

The first algorithm for computing image persistence in a special case was proposed
by Cohen-Steiner et al. [12] for maps f• of the form L• = K• ∩ L ↪→ K• for some fixed
subcomplex L ⊆ K (one-filtration setting). An implementation for the algorithm from [12]
exists in the framework of the software Dionysus by Dmitriy Morozov [19]. The algorithm
described by Cohen-Steiner et al. is similar to the standard algorithm for a single filtration and
naturally does not make use of many important speed-ups that have been developed for the
computation of the barcode of a single filtration since the publication of [12]. Cohen-Steiner
et al. also propose an adaption of their method to the general (two-filtration) setting using a
mapping cylinder construction, which however has never been implemented and might not
be computationally feasible. The goal of the present work is to adapt some of the speed-ups
for a single filtration to the computation of image persistence, and to show that the resulting
algorithm also works for general injective maps f• without the intersection assumption and
without the need for the mapping cylinder construction.

The basic algorithm for computing persistent homology is based on performing matrix
reduction, a variant of column-wise Gaussian elimination, on a boundary matrix associated
to the given filtration of simplicial complexes. This algorithm can be made faster using the
clearing optimization, introduced by Chen and Kerber in [9], and also used implicitly in the
cohomology algorithm by de Silva et al. [16]. In short, this optimization makes use of the
homological grading of the boundary matrix to disregard certain unnecessary columns in
the reduction process. The basic algorithm for image persistence additionally requires the
reduction of a permuted boundary matrix, to which clearing cannot be straightforwardly
applied. We will remedy this by showing that one can delete the columns in the permuted
boundary matrix that were already reduced to 0 in the boundary matrix corresponding to
the codomain filtration.

The clearing optimization works particularly well in conjunction with cohomology based
algorithms. These were first studied by de Silva et al. in [16] for the single filtration case
and justified by certain duality results that provide a translation between barcodes for
persistent homology and for persistent cohomology, as well as the barcodes for persistent
relative homology H∗(K,K•) : H∗(K,K0) → · · · → H∗(K,K) and similarly for persistent
relative cohomology. These duality results were recently extended by Bauer and Schmahl in
[5] in order to also provide translations for images of H∗(f•) and H∗(f•), as well as their
relative counterparts H∗(f, f•) and H∗(f, f•). This allows us to perform cohomology based
computations and still obtain the desired barcodes in homology.

To apply clearing in the relative cohomology setting for image persistence, we will
reformulate the algorithm for image persistence by Cohen-Steiner et al. [12] in the purely
algebraic setting of filtered chain complexes of vector spaces. More precisely, we will consider
two filtrations of (co)chain complexes C• and C ′

• and a monomorphism φ• : C• → C ′
•.

This setup includes both the absolute homology case C∗(L•) ↪→ C∗(K•) and the relative
cohomology case C∗(K,K•) ↪→ C∗(L,L•) from before. The general idea for computing the
image of H∗(φ•) is to first write it as a subquotient of C ′

•:

imH∗(φ•) ∼=
φ•(Z∗(C•))

φ•(Z∗(C•)) ∩B∗(C ′
•) ,

where the intersection of persistence modules is to be interpreted indexwise, meaning that
(φ•(Z∗(C•)) ∩B∗(C ′

•))t = φt(Z∗(Ct)) ∩B∗(C ′
t).
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Performing matrix reductions that make use of the clearing optimization, we will find
a pair of inclusion-related filtration compatible bases for the filtrations appearing in the
equation above. Filtration compatible bases provide a formal framework for many standard
arguments for barcode computations via matrix reduction, and they can be interpreted as
special cases of matching diagrams, which are equivalent to barcodes [3]. Using the general
theory of matching diagrams, the data we compute can easily be shown to determine the
barcode of imH∗(φ•).

Applying these general considerations in the relative cohomology setting and combining
this with the translation between relative cohomology and absolute homology from [5] yields
an algorithm for computing the absolute homology image of f• : L• → K• by reducing two
coboundary matrices that can be reduced with clearing as summarized in our main result
Theorem 22. An implementation of this method based on Ripser [1] is publicly available [6]
and we provide some computational benchmarks. Our software works under the assumption
that L• = Rips•(X, d) and K• = Rips•(X, d′) are filtrations of Vietoris–Rips complexes
corresponding to two metrics d and d′ on a finite set X that satisfy d(x, y) ≥ d′(x, y) for
all x, y ∈ X. This ensures that Lt = Ripst(X, d) is a subcomplex of Kt = Ripst(X, d′) for
all t, with the maps ft : Lt → Kt being given by inclusion. The implementation also makes
uses of a version of the emergent and apparent pairs optimizations, which shortcuts the
construction of the coboundary matrix and reduces the memory requirements for storing
persistence pairings [1].

Contributions
We propose the first algorithm for the general problem of computing the image of a
map in persistent homology induced by an inclusion of filtrations of simplicial complexes,
without imposing any restrictions on the subfiltration (called the “two function setting”
in [12]) and without the inefficient use of a mapping cylinder (Theorem 22).
We show that our general method can be augmented by the most important optimiza-
tions in persistence computations, including clearing (Corollary 20), cohomology based
computations (Proposition 21), and apparent pairs (Section 3.4).
We provide an implementation in the framework of Ripser [6] and experiments on data
sets of varying difficulty (Section 3.5).
This enables the use of image persistence and consequently induced matchings in compu-
tational settings, such as supervised learning [22, 17].

Notation. Throughout the paper, we fix a totally ordered set (T,≤) to be {0, . . . , n} with
the obvious order and a field F over which all vector spaces are considered.

2 Linear Algebra for Filtrations

In this section, we develop some machinery based on filtration compatible bases, which forms
the foundation for our constructions of image persistence barcodes. First, we need to recall
some basic theory for persistence modules and barcodes. We write Vec for the category of
vector spaces over our fixed field F. We fixed T = {0, . . . , n} as a finite totally ordered index
set, and we write T for T considered as a poset category.

▶ Definition 1. The category of persistence modules indexed by T is defined as the category
VecT whose objects are functors T→ Vec and whose morphisms are natural transformations.

SoCG 2023
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Since T is a small category and Vec is an abelian category, the functor category VecT is
again abelian, with kernels, cokernels, images, direct sums, and more generally, all limits
and colimits given pointwise. The prime example for a persistence module is the persistent
homology of a filtration of spaces. Other examples are given by interval modules. If I ⊆ T is
an interval, the corresponding interval module C(I)• is defined by

C(I)t =
{
F if t ∈ I,
0 otherwise,

with structure maps C(I)t,u =
{

idF if t, u ∈ I,
0 otherwise.

These interval modules are of particular interest because they lead to a structure theory
for persistence modules.

▶ Definition 2. If there is a family of intervals (Iα)α∈A such that for a persistence module
M• we have M• ∼=

⊕
α∈A C(Iα)•, then M• is said to have a barcode given by (Iα)α∈A.

If a persistence module has a barcode, then it is unique, by a version of the Krull–Remak–
Schmidt–Azumaya Theorem [8, Theorem 2.7]. In this paper, we will only consider persistence
modules consisting of finite dimensional vector spaces, which are guaranteed to have a
barcode by Crawley-Boevey’s Theorem [14].

Persistent homology is the homology of a chain complex of persistence modules. In
practice, the persistence modules forming these chain complexes arise from filtrations of
simplicial complexes, so their structure maps are all inclusions. We will now study this kind
of persistence module more closely, as our later considerations will mostly happen in terms
of chain complexes rather than in terms of homology.

▶ Definition 3. We say that a persistence module M• is a filtration of the vector space
M = Mn if for all t ≤ u the structure map Mt,u is a subspace inclusion Mt ↪→Mu. For any
m ∈M , we define its support in M• as suppM•

(m) = {t ∈ T | m ∈Mt)}. A basis M of M
is said to be filtration compatible if Mt = M ∩Mt is a basis for Mt for all t ∈ T . An
ordered basis (M,≤) for M is said to be a filtration compatible ordered basis if it is filtration
compatible and m ≤ m′ ∈M implies suppm′ ⊆ suppm.

If M• and M ′
• are filtrations of vector spaces, we write M• ⊆ M ′

• if Mt ⊆ M ′
t . We write

M ′
•/M• for the persistence module given by (M ′

•/M•)t = M ′
t/Mt. Similarly, if M ′′

• is
another filtration with M ′′

• ⊆ M ′
•, we write M• ∩M ′′

• for the persistence module given by
(M• ∩M ′′

• )t = Mt ∩M ′′
t .

Observe that if M• is a filtration of vector spaces and M is a filtration compatible
basis, then (supp(m))m∈M is a barcode of M•. By interpreting M as a so-called matching
diagram, this may be seen as a special case of the general equivalence of matching diagrams
and barcodes [3]. This theory also yields the following result that forms the basis for our
computational results.

▶ Proposition 4. Let M• ⊆ M ′
• be filtrations of vector spaces with respective filtration

compatible bases M and M′ related by an inclusion M ⊆M′. Then M ′
•/M• has the barcode(

suppM ′
•
(m) \ suppM•

(m)
)

m∈M
∪

(
suppM ′

•
(m)

)
m∈M′\M.

We now state some helpful facts about filtration compatible bases. We refer to the full
version of this paper [4] for the proofs. We start with a lemma relating supports of basis
elements with filtration compatibility.

▶ Lemma 5. Let M• be a filtration of the vector space M with filtration compatible basis M.
Let M′ be another basis for M such that there exists a bijection g : M→M′ with suppM•

(m) =
suppM•

(g(m)) for all m ∈M. Then M′ is a filtration compatible basis for M•.
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Next, we extend a standard fact about intersections of vector spaces to filtrations.

▶ Lemma 6. Let M ′
•,M

′′
• ⊆M• be filtrations of vector spaces and let M′ and M′′ be filtration

compatible bases for M ′
• and M ′′

• , respectively, such that M′ ∪M′′ is linearly independent.
Then M′ ∩M′′ is a filtration compatible basis for M ′

• ∩M ′′
• . Moreover, for all m ∈M′ ∩M′′

suppM ′
•∩M ′′

•
(m) = suppM ′

•
(m) ∩ suppM ′′

•
(m).

We will use the special case where M ′
• is included in M ′′

• at the last filtration step (but not
necessarily before):

▶ Corollary 7. Let M ′
•,M

′′
• ⊆M• be filtrations of vector spaces M ′ ⊆M ′′ ⊆M , respectively.

Moreover, let M′ ⊆M′′ be filtration compatible bases for M ′
• and M ′′

• , respectively. Then M′

is a filtration compatible basis for M ′
• ∩M ′′

• . Moreover, for all m ∈M′

suppM ′
•∩M ′′

•
(m) = suppM ′

•
(m) ∩ suppM ′′

•
(m).

Finally, we state a version of the rank-nullity-theorem for filtrations.

▶ Lemma 8. Let ϕ• : M• → P• be a morphism of filtrations of vector spaces and consider the
linear map ϕ = ϕn : M → P . Let M be a filtration compatible basis for M•, let M′ = M∩kerϕ,
and assume that M′′ = (ϕ(m))m∈M\M′ is a linearly independent family of vectors. Then

M′ is a filtration compatible basis for kerϕ•,
M′′ is a filtration compatible basis for imϕ•,
suppker ϕ•

(m′) = suppM•
(m′) for all m′ ∈M′, and

suppim ϕ•
(ϕ(m)) = suppM•

(m) for all m ∈M \M′.

Note that if one drops the assumption of the above lemma that P•, and hence the image
imϕ•, is a filtration, then it may happen that M′ = M ∩ kerϕ is a basis for the vector space
kerϕ but not a filtration compatible basis for the filtration kerϕ•.

3 Computing Image Persistence Barcodes

Recall that we fixed a finite totally ordered index set T = {0, . . . , n} and a field F over which
we consider vector spaces. For our purposes, a chain (resp. cochain) complex is a graded
finite dimensional vector space with a differential of degree −1 (resp. 1) that squares to 0. A
chain complex of persistence modules C• with differential ∂• is called a filtration of a chain
complex of vector spaces C with differential ∂ if C• is a filtration of C as a vector space
and ∂n = ∂. Recall that a basis for the final vector space in a filtration is called filtration
compatible if it yields bases for the constituent vector spaces of the filtration by intersecting.
Further, recall that if the basis is ordered, we say that it is a filtration compatible ordered
basis if its order refines the order in which the basis elements appear in the filtration.

▶ Definition 9. If C• is a filtration of the (co)chain complex C with a filtration compatible
ordered basis C, then the matrix D representing the (co)boundary operator on C with respect
to C is called filtration (co)boundary matrix.

▶ Example 10. If K• : ∅ = K0 ⊆ K1 ⊆ · · · ⊆ Kn = K is a filtration of finite simplicial
complexes, we get a filtration of chain complexes C∗(K•). A filtration compatible ordered
basis is given by the simplices of K, ordered by a linear refinement of the order in which
they appear in the filtration. If DK is a corresponding filtration boundary matrix, then one
can check (see [16]) that (DK)⊥ is a filtration coboundary matrix for the filtration of relative
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cochains 0 = C∗(K,K) = C∗(K,Kn) ⊆ · · · ⊆ C∗(K,K0) = C∗(K, ∅) = C∗(K). The matrix
represents the coboundary operator on C∗(K) with respect to the dual basis corresponding
to the simplices of K, ordered by the opposite of the filtration order. Here, (−)⊥ denotes
taking the transpose of a matrix along its anti-diagonal.

To avoid notational clutter, we will from now on only talk about chain complexes in the
general setting, but everything also straightforwardly applies to cochain complexes.

▶ Definition 11. If X is a matrix, we write xi for the i-th column of the matrix X. For a
non-zero column vector xi, we define Pivotxi as the largest index where the column has a
non-zero entry. We write PivotsX for the set of all indices which occur as pivots of non-zero
columns of X. A matrix is called reduced if no two non-zero columns have the same pivot.

Note that any set of non-zero vectors with unique pivots is linearly independent. In particular,
the non-zero columns of a reduced matrix are linearly independent.

Computing the barcode for the homology of a filtration of a chain complex is done by
reducing a filtration boundary matrix D, i.e., performing a variant of Gaussian elimination
on the columns of this matrix until one obtains a reduced matrix. This can be expressed as
finding a reduced matrix R and a full-rank upper-triangular matrix V such that R = DV .
The columns of these matrices naturally represent elements of C by interpreting them as
coordinate vectors with respect to the ordered basis C. The barcode for persistent homology
may then be obtained from this data as follows.

▶ Theorem 12 (Cohen-Steiner et al. [13]). Let D be a filtration boundary matrix of a filtration
of chain complexes C• and assume we have a full-rank and upper-triangular matrix V such
that R = DV is reduced. Then H∗(C•) has a barcode given by the multiset{

suppC•
(rj) \ suppC•

(vj) | rj ̸= 0
}
∪

{
suppC•

(vi) | ri = 0 and i /∈ PivotsR
}
.

The supports of column vectors that appear in the theorem can easily be determined
from the initial data via pivots: If M is a filtration compatible ordered basis for a filtration
M• of a vector space M , then we can consider elements of M via their coordinate vectors
with respect to M. Because M is a filtration compatible ordered basis, we then have
suppM•

(v) = suppM•
(v′) if and only if Pivot v = Pivot v′ for any two such coordinate vectors

v and v′. In particular, this means that in the setting of simplicial complexes the support of
a column vector is the same as the support of its pivot simplex.

The theorem is formulated in a different language by Cohen-Steiner et al., but the
version above also follows as a special case from Theorem 14. Note that the theorem is
also compatible with the homological grading: Assume that C• =

⊕
d C•,d is graded with ∂

mapping C•,d to C•,d−1. If the filtration compatible ordered basis C used to build D is chosen
such that its intersection with each grading summand is a filtration compatible ordered basis
for that summand, then one gets a barcode for Hd(C•) by restricting the barcode given in
Theorem 12 to those intervals coming from columns that represent d-dimensional cycles.

3.1 Image Barcodes via Matrix Reduction
We now turn to the setting of image persistence. Let C• and C ′

• be filtrations of the chain
complexes C and C ′ with corresponding filtration compatible ordered bases C and C′. Let
D and D′ be the corresponding filtration boundary matrices. Assume that we are given an
injection of filtrations φ• : C• → C ′

• such that the map φ : C → C ′ on the final filtration step
is an isomorphism. Note that this is not a restriction, as any injection of filtrations can be
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extended to one satisfying this assumption, and subsequently restricting the barcodes to the
original indexing set provides the desired result for this more general setting as well. Let F
be the matrix representing φ with respect to C and C′ and define the mixed basis boundary
matrix Dφ = DF−1 = F−1D′. The columns of Dφ thus correspond to C′, while the rows
correspond to C.

▶ Example 13. If K• : ∅ = K0 ⊆ · · · ⊆ Kn = K and L• : ∅ = L0 ⊆ · · · ⊆ Ln = L

are filtrations of finite simplicial complexes, we get filtrations of chain complexes C∗(K•)
and C∗(L•). If we are given a monomorphism f• : L• → K• that induces an isomorphism
L→ K (i.e., assuming that Li ⊆ Ki for all i and L = K), then we are in the setting above.
Filtration compatible ordered bases are given by the simplices of K and L, ordered by a linear
refinement of the order in which they appear in the respective filtrations. Let DL and DK

denote the corresponding filtration boundary matrices, and let Df denote the mixed basis
boundary matrix for the induced map C∗(L•)→ C∗(K•). Then, analogously to Example 10,
we obtain that (DL)⊥, (DK)⊥ and (Df )⊥ are the filtration and mixed basis coboundary
matrices for the relative cohomology counterpart C∗(K,K•) → C∗(L,L•). In the mixed
matrix (Df )⊥, the columns thus correspond to L•, while the rows correspond to K•.

Our goal is to determine a barcode for imH∗(φ•) by reducing the matrices D and Dφ.
Assume that we have R = DV and Rφ = DφV φ reduced with V and V φ full-rank and
upper-triangular. The columns of the matrices R, D, V , Rφ, and Dφ naturally represent
elements of C by interpreting them as coordinate vectors with respect to C. Similarly, the
columns of V φ naturally represent elements of C ′ by interpreting them as coordinate vectors
with respect to C′. Recall that if X is a matrix, we denote its jth column by xj . The main
result can then be stated as follows.

▶ Theorem 14. The image of H∗(φ•) has a barcode given by the multisets{
suppC•

(rφ
j ) \ suppC′

•
(vφ

j ) ̸= ∅ | rφ
j ̸= 0

}
∪

{
suppC•

(vi) | ri = 0 and i /∈ PivotsR
}
.

Note that the intervals suppC•
(vi) in the barcode of imH∗(φ•) that are not bounded above

are precisely the same as those in the barcode of H∗(C•) as given in Theorem 12.
The proof of Theorem 14 will be based on a sequence of intermediate results. As mentioned

in the introduction, the general idea is to write

imH∗(φ•) ∼=
φ(Z∗(C•))

φ(Z∗(C•)) ∩B∗(C ′
•) ,

and to find filtration compatible bases Z and B for φ(Z∗(C•)) and φ(Z∗(C•)) ∩ B∗(C ′
•),

respectively, such that B ⊆ Z holds so that we can apply Proposition 4.
If X is a matrix, we will write colsX for the family of all its non-zero column vectors.

▶ Lemma 15. The family colsV φ is a filtration compatible basis for C ′
•, B = colsFRφ is a

filtration compatible basis for B∗(C ′
•), and for all j with rφ

j ̸= 0 we have

suppB∗(C′
•)(Fr

φ
j ) = suppC′

•
(vφ

j ).

Proof. We start by showing that colsV φ is a filtration compatible basis for C ′
•: We have

Pivot vφ
j = j since V φ is full-rank and upper-triangular. It follows that vφ

j has the same
support in C ′

• as the jth element of C′. Thus, colsV φ is a filtration compatible basis for C ′
•

by Lemma 5.
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Next, note that (∂(v))v∈cols V φ\ker ∂ = colsFRφ is linearly independent since Rφ is reduced
and F has full rank. Thus, we can apply Lemma 8 to the map of filtrations ∂• : C ′

• → C ′
•

and the filtration compatible basis colsV φ to obtain that colsFRφ is a filtration compatible
basis for B∗(C ′

•) = im ∂•. The assertion on the supports follows from the support formula in
Lemma 8. ◀

Now that we have a filtration compatible basis for B∗(C ′
•), we want to extend it to a

filtration compatible basis for φ•(Z∗(C•)).

▶ Lemma 16. Let X = colsRφ ∪ {vj | j /∈ PivotsRφ} and X′ = X ∩ ker ∂. Then X is a
filtration compatible basis for C•, Z = FX′ = B ∪ {Fvj | j /∈ PivotsRφ} is a filtration
compatible basis for φ•(Z∗(C•)), and for all x ∈ X′ we have

suppφ•(Z∗(C•))(Fx) = suppC•
(x).

Proof. We start by showing that X is a filtration compatible basis for C•. The same argument
as in the beginning of the proof of Lemma 15 yields that colsV is a filtration compatible
basis for C•. Next, note that X is linearly independent since all elements have unique pivots:
Rφ is reduced and we only consider those vj with Pivot vj = j /∈ PivotsRφ. Moreover,
we have a bijection X → colsV given by mapping vj to itself and mapping rφ

j to vi for
i = Pivot rφ

j . Recall that Pivot vi = i = Pivot rφ
j implies suppC•

(rφ
j ) = suppC•

(vi) . Since
colsV is a filtration compatible basis for C•, Lemma 5 now implies that X is also a filtration
compatible basis for C•.

Since R is reduced and thus (∂(v))v∈X\X′ ⊆ colsR is linearly independent, we can
apply Lemma 8 to the boundary operator ∂• : C• → C• and the filtration compatible
basis X. We obtain that X′ = F−1Z is a filtration compatible basis for ker ∂• = Z∗(C•) with
suppZ∗(C•)(x) = suppC•

(x) for all x ∈ X′. The claim now follows from the fact that φ• is
mono, so that its restriction is an isomorphism Z∗(C•)→ φ•(Z∗(C•)) represented by F . ◀

Since the filtration compatible basis B for B∗(C ′
•) extends to a basis Z for φ•(Z∗(C•)),

we can conclude that B is also a filtration compatible for φ•(Z∗(C•)) ∩B∗(C ′
•).

▶ Lemma 17. The family B = colsFRφ is a filtration compatible basis for φ•(Z∗(C•)) ∩
B∗(C ′

•), and for all j with rφ
j ̸= 0 we have

suppφ•(Z∗(C•))∩B∗(C′
•)(Fr

φ
j ) = suppC•

(rφ
j ) ∩ suppC′

•
(vφ

j ).

Proof. Recall that B is a filtration compatible basis for B∗(C ′
•), and Z extends B to one for

φ•(Z∗(C•)). Now Corollary 7 together with the support equalities from Lemmas 15 and 16
yield the claim. ◀

▶ Lemma 18. PivotsR = PivotsRφ.

Proof. The matrices D and Dφ = DF−1 have the same column space. Matrix reduction
does not change column spaces, so R and Rφ also have the same column space. In particular,
every non-zero column of R is a non-trivial linear combination of non-zero columns of Rφ

and vice versa. The pivots of a linear combination of a reduced set of column vectors must be
the same as the pivot of one of these vectors, so we indeed obtain PivotsR = PivotsRφ. ◀

We are now ready to prove the main result of this section.
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Proof of Theorem 14. By definition of the induced map in homology, we have

imH∗(φ•) ∼=
φ•(Z∗(C•))

φ•(Z∗(C•)) ∩B∗(C ′
•) .

The claim follows by applying Proposition 4 to the inclusion φ•(Z∗(C•)) ∩B∗(C ′
•) ⊆ B∗(C ′

•)
with the filtration compatible bases B ⊆ Z, with supports as previously determined in
Lemmas 16 and 17. Note that in the basis Z we choose columns Fvi with i /∈ PivotsRφ,
while the formula in Theorem 14 requires i /∈ PivotsR. These conditions are, however,
equivalent by Lemma 18. ◀

3.2 Clearing
The clearing optimization [9] is a key ingredient of efficient persistence computation. We first
recall the basic idea of clearing, which applies to the computation of persistent homology of
a filtration of chain complexes C• by reducing the boundary matrix D to R = DV . We keep
the notation from the beginning of this section, and we assume that our filtration compatible
basis C is compatible with the homological grading in the sense that the restriction of this
basis to each grading summand is again a basis of that summand. Our discussion focuses on
chain complexes, but of course the findings naturally apply to cochain complexes with the
appropriate adjustments to the grading.

If a column rj of the reduced matrix R is nonzero, then necessarily ri = 0 for i = Pivot rj .
The homological degree of the i-th element of C is one less than that of the j-th element.
This leads to the clearing procedure: Instead of reducing D by column operations from left
to right, we reduce columns in decreasing order of their homological degree (increasing in
the case of cohomology). Before reducing the columns in dimension d, we set rj = 0 for all j
which appear as pivots of the already reduced columns in dimension d+ 1.

Turning to the image setting, we also assume that the basis C′ and the map φ• : C• → C ′
•

are compatible with the grading. Here, there is no direct analogue to the procedure outlined
above, as the mixed basis boundary matrix Dφ fails to have the property described above;
rφ

j ̸= 0 does not imply rφ
i = 0 for i = Pivot rφ

j . In order to obtain a useful condition for
columns of Rφ to be zero, we need to additionally consider a reduction R′ = D′V ′ of the
boundary matrix D′ = FDφ.

▶ Proposition 19. Let R′ = D′V ′ and Rφ = DφV φ be reduced. For all indices j we have
rφ

j = 0 if and only if r′
j = 0.

Proof. First, note that rφ
j = 0 if and only if Frφ

j = 0 because F is invertible. Moreover,
FRφ and R′ have the same column space, since FRφ = R′(V ′)−1V φ. Thus, the number of
zero columns of Rφ is the same as the number of zero columns of R′ since their ranks are
equal and their non-zero columns are linearly independent. Now, it suffices to show that
rφ

j = 0 implies r′
j = 0, so assume rφ

j = 0. Then Frφ
j = 0, but Frφ

j is also the same as the
j-th column of R′(V ′)−1V φ. This is a linear combination of columns of R′ with non-zero
coefficient for r′

j since (V ′)−1V φ is full-rank and upper-triangular. Non-zero columns of R′

are linearly independent, so this linear combination can only be zero if r′
j = 0. ◀

In order to apply clearing to the reduction of Dφ, one can now reduce D′ with clearing as
usual, and clear the columns with the same indices in Dφ. Even more than that, one can not
only clear the columns of Dφ whose index appears as a pivot in R′, but rather every column
with the same index as a zero column in R′, meaning also those that have been reduced to
zero via column operations on D′. Thus, with this optimization, the reduction of Dφ only
establishes unique pivots among the non-zero columns, but no columns are reduced to zero.

SoCG 2023
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▶ Corollary 20. If D′ has already been reduced to R′, one can initialize the reduction Rφ of
Dφ by setting rφ

j = 0 for all j with r′
j = 0, and no further columns of Rφ will reduce to 0.

3.3 Assembling Barcodes from (Co)homology Computations
Recalling our concrete setting of persistent homology for simplicial complexes, assume that
we are given filtrations L• and K• of two isomorphic simplicial complexes L ∼= K and a
monomorphism f• : L• → K•, inducing an isomorphism f : L→ K. Following the notation
from Example 13 and applying the previous results with φ• = C∗(f•), we see that the barcode
of imH∗(f•) can be determined via reductions of DL and Df and that the reduction of Df

may be performed with clearing if DK has already been reduced before.
As known from the single filtration case, clearing requires a full persistence computation in

the first homological degree for which persistence is computed. As persistence computations
are often only feasible in low dimensions and practitioners are often only interested in
barcodes in low degrees, it is much more powerful to apply clearing for cohomological grading,
allowing for the initialization to be performed in degree 0. Thus, our goal is to perform
cohomological computations and still recover the image imH∗(f•) in homology.

As a first step towards that goal, we recall that imH∗(f•) and imH∗(f•) have the same
barcodes [5]. However, the persistent cochain complex giving rise to persistent cohomology is
not a filtration, so the basic matrix reduction algorithm does not directly apply there. Instead,
we perform computations in the relative cohomology setting given by the map H∗(f, f•).
Its image no longer has the same barcode as imH∗(f•), but there are some correspondence
results [5, Section 6.2], which we will summarize next. To state the result, for a barcode B
we write B† for the intervals in B that do not extend to any of the endpoints of our index
set T and B∞ for those intervals that do.

▶ Proposition 21 (Bauer, Schmahl [5]). For all degrees d, we have

B(imHd−1(f•))† = B(imHd(f, f•))†,

and the map I 7→ T \ I defines bijections

B(imHd(f•))∞ ↔ B(Hd(L,L•))∞ and B(imHd(f, f•))∞ ↔ B(Hd(K•))∞.

Note that none of the intervals in the barcodes considered here span the whole index set T ,
since we assume that our filtrations start with L0 = K0 = ∅.

Proposition 21 implies that in order to determine the barcode of imH∗(f•), it suffices to
compute B(H∗(L,L•))∞ and B(imH∗(f, f•))†. Following Example 10 and Theorem 12, we
observe that B(H∗(L,L•))∞ may be determined from a reduction of the coboundary matrix
(DL)⊥, and following Example 13 and Theorem 14, we know that B(imH∗(f, f•))† may be
determined from a reduction of the coboundary matrix (Df )⊥. In the relative cohomology
setting, the matrices (DL)⊥ and (Df )⊥ play the roles of D′ and Dφ in the general setting,
so by Corollary 20 we can simultaneously reduce these matrices with clearing.

We summarize the discussion in the following theorem. To simplify notation, we will
assume that we are given funtions k and l on K ∼= L that induce the filtrations K• and L•,
respectively, via their sublevel set filtrations. For example, if K• and L• are Vietoris–Rips
filtrations for different metrics on the same set of points, the functions l and k would be
given by the corresponding diameter functions. Recall that the column and row indices of
the matrices (Df )⊥ and (DL)⊥ correspond to the simplices of K ∼= L in different orders. We
denote the column of a matrix X corresponding to a simplex σ by xσ. Combining Theorem 14,
Corollary 20, and Proposition 21, we can now determine barcodes from reductions of boundary
matrices as follows.
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▶ Theorem 22. The matrices (Df )⊥ and (DL)⊥ can be reduced with clearing, and given
reductions S = (Df )⊥W and R = (DL)⊥V , the barcode of imH∗(f•) is the multiset

{[l(σ), k(Pivot sσ)) ̸= ∅ | sσ ̸= 0} ∪ {[l(τ),∞) | rτ = 0 and τ /∈ PivotsR} .

Recall that the column and row indices of the coboundary matrices indicated by (−)⊥

correspond to the simplices of K ∼= L in reverse filtration order. Hence, the pivot simplex of
a column vector appearing in the theorem will be the first simplex appearing in the filtration
among those that correspond to a non-zero entry of the column, while for the usual boundary
matrices DL, DK , etc., the pivot simplex of a column would be the one that appears last
in the filtration.We summarize the algorithm resulting from Theorem 22 in pseudocode in
Algorithm 1. To do so, we keep the notation from Section 3.3. In addition, for a column
vector c, we write PivotEntry c to denote the entry of c at its pivot index.

Algorithm 1 Algorithm to compute image persistence via two matrix reductions with
clearing in cohomological grading.

Input: Filtration boundary matrix DL with n columns, mixed basis boundary
matrix Df , maximum homological degree p for persistence to be computed

Result: Barcode of imH∗(f)
R← (DL)⊥; S ← (Df )⊥; B ← ∅
for m = 0, . . . , p do

while ∃σ <L τ with rσ ̸= 0, Pivot rσ = Pivot rτ , and dim σ = m do
rτ ← rτ − PivotEntry rτ

PivotEntry rσ
rσ

for σ with dim σ = m do
if rσ = 0 then

sσ ← 0
B ← B ⊔ {[l(σ),∞)}

else if σ /∈ PivotsR then
rPivot rσ

← sPivot rσ
← 0

while ∃σ <L τ with sσ ̸= 0 and Pivot sσ = Pivot sτ do
sτ ← sτ − PivotEntry sτ

PivotEntry sσ
sσ

for σ with dim σ = m, sσ ̸= 0, and l(Pivotwσ) < k(Pivot sσ) do
B ← B ⊔ {[l(σ), k(Pivot sσ))}

return B

3.4 Apparent and Emergent Pairs in Image Matrix Reduction
An important optimization in persistence computation leading to significant computational
improvements is given by utilizing the apparent pairs in the filtration, which are pairs (σ, τ)
in the filtration such that σ is the latest facet of τ in the filtration and τ is the earliest
cofacet of σ. Apparent pairs always form persistence pairs, since the corresponding columns
are reduced already in the (co)boundary matrix. More generally, if (σ, τ) is a persistence
pair and τ is the earliest cofacet of σ, we say that (σ, τ) is an emergent cofacet pair. The
special case where such a pair (σ, τ) has persistence 0 can be identified in Ripser [1] during
the construction of the columns of the coboundary matrix, terminating this construction
early without constructing the entire column.

This strategy turns out to carry over to the image setting as well. The criterion used in
Ripser for identifying the pivot index early is that its corresponding simplex appears in the
filtration simultaneously with the simplex corresponding to the column. When reducing the

SoCG 2023
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Table 1 Running time and memory usage for image barcode and standard barcode (of the
codomain filtration) for different data sets. The filtrations are defined by two different metrics on
the point cloud. The maximum homological degree for persistence to be computed is specified by p,
the number of points in the data set is specified by |X|.

Data Set p |X| image barcode standard barcode
S2 intrinsic → extrinsic 2 128 0.56 s, 45 MB 0.26 s, 47 MB

256 5.7 s, 315 MB 2.97 s, 316 MB
512 155 s, 5.7 GB 65.6 s, 5.7 GB

SO(3) intrinsic → extrinsic 3 64 0.71 s, 51.7 MB 0.39 s, 52.7 MB
128 13.7 s, 735 MB 7.3 s, 743 MB
256 317 s, 13.1 GB 160 s, 13.1 GB

Möbius strip → RP 2 1 256 0.34 s, 24.0 MB 0.11 s, 25.0 MB
512 2.66 s, 159 MB 0.73 s, 159 MB

1024 25.6 s, 1.06 GB 7.21 s, 1.06 GB
S2 → RP 2 2 32 0.37 s, 11.7 MB 0.00 s, 2.3 MB

64 10.9 s, 27.1 MB 0.02 s, 7.5 MB
128 574 s, 608 MB 0.24 s, 31.2 MB

mixed basis coboundary matrix (Df )⊥ for f• : L• → K•, we apply the criterion with respect
to the filtration K•, which determines the row order and hence the pivot of a column. Note
that the apparent or emergent pairs (σ, τ) identified this way thus have the same filtration
value for the filtration K•.

3.5 Computational Experiments
We provide an implementation [6] of the algorithm resulting from Theorem 22 including
the clearing optimization, based on the simple branch of Ripser [1], for the special case
where L• = Rips•(X, d) and K• = Rips•(X, d′) are filtrations of Vietoris–Rips complexes
corresponding to two metrics d and d′ on a finite set X that satisfy d(x, y) ≥ d′(x, y) for
all x, y ∈ X, with the map between filtrations given by the inclusions of Lt into Kt. Recall
that the inequality d ≥ d′ ensures that Lt is in fact a subcomplex of Kt. We did not include
a comparison with Dionysus [19], as the general two-filtration setting considered in this
paper is not supported. We further note that computation of image persistence is no longer
supported in the current version of Dionysus.

Our computations were done on a notebook computer with an Apple M2 processor
and 24 GB memory. The first example is given by X being {128, 256, 512} points sampled
uniformly from the unit sphere in R3, with the distance d being given by the geodesic
distance on the sphere and the distance d′ being given by the Euclidean distance in R3.
The second example consists of {64, 128, 256} points sampled uniformly at random from
SO(3), with d given by the geodesic distance on SO(3) ∼= RP 3 and d′ given by the Frobenius
norm distance on R3×3 (scaled by a factor of 1/

√
2 to ensure that d ≥ d′ holds). The third

example is constructed by sampling {256, 512, 1024} points uniformly from a cylinder with
height π over a unit circle, equipped with the quotient metric that identifies antipodal points,
resulting in a Möbius strip; the canonical map from the cylinder to the unit sphere given
by (ϕ, ψ) 7→ (sinϕ cosψ, cosϕ cosψ, sinψ) is nonexpanding, and it induces a nonexpanding
map from the Möbius strip to the projective plane, both with the intrinsic metric. The
fourth example is constructed by sampling {32, 64, 128} points from the unit sphere, and
considering the canonical quotient map to the projective plane. Running times and memory
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usage are summarized in Table 1. Note that the examples differ significantly in terms of
difficulty: while the first two examples comparing intrinsic and extrinsic metrics take only
roughly twice as long as a standard persistence computation, the other two examples are
more demanding, with the last one showing a huge difference in running time and memory
usage. We attribute this to the vastly different total orders of simplices for the two filtrations.
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1 Introduction

Motivation. Persistent homology [19, 50, 37] analyzes how the homology of a filtered
topological space changes as the filtration parameter increases. By assigning filtered spaces
(e.g., Vietoris–Rips filtrations) to data sets, it provides simple signatures of the data called
barcodes, which encode multi-scale information about the shape of the data. Thanks to recent
advances in ph computation and software [4, 49, 1, 39, 45, 26, 27], ph has become popular
for practical data applications [25]. A well-known stability result [16, 9, 12] guarantees
that small perturbations (in the Gromov–Hausdorff distance) of the input data lead to
small perturbations (in the bottleneck distance) of the barcodes of the ph of Vietoris–Rips
filtrations. However, Vietoris–Rips ph is notoriously unstable to outliers. Besides other
strategies [12, Section 1.7], a commonly proposed remedy for this is the introduction of a
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second filtration parameter controlling the local density of the point cloud, which leads to
the notions of two- and multi-parameter ph [14, 43, 17, 34, 41, 13]. A central computational
problem of two-parameter ph, somewhat akin to the computation of a barcode, is the
computation of a minimal free presentation or a minimal free resolution (mfr) of the ph
module. While a resolution contains more information than a presentation, the underlying
algorithmic problems are essentially the same, and we focus on the computation of a mfr
in this work. Such a resolution is often quite small in practice [23], and computing it is a
natural first step in computing invariants or metrics in the multi-parameter setting [13].

Computing a mfr of two-parameter ph is more involved than in the one parameter case.
The problem can be solved by classical Gröbner basis algorithms, which work in much greater
generality but do not scale well enough for practical TDA applications [35]. Recently, a
specialized algorithm was introduced [35, 32], which is far more efficient than the Gröbner
basis approach, both in theory and in practice. This has substantially lowered the barrier
to practical data analysis with two-parameter persistence [30]. For recent applications, see,
e.g., [11, 46].

Nevertheless, existing software for two-parameter ph is much slower and less scalable than
one-parameter ph implementations such as [4, 1, 39, 49]. The approach of [35, 32] boils down
to a matrix reduction scheme similar to the standard algorithm of one-parameter ph [50],
and has the same asymptotic run time, cubic in the size of the complex. However, modern
one-parameter ph algorithms incorporate several critical optimizations. In particular, it is
known that for Vietoris–Rips filtrations, clearing [5, 15] leads to major performance gains
when combined with a dual (cohomological) variant of the standard persistence algorithm
[18, 5]. All state-of-the-art software for computing Vietoris–Rips ph employ this strategy.
In two parameters, however, working with persistent cohomology (pc) is more challenging,
essentially because, in contrast to one parameter, relative simplicial cochains of filtered
complexes do not form free modules.

Contributions. In order to compute mfrs of ph of function-Rips bifiltrations more efficiently,
we introduce a cohomological variant of the algorithm of [35, 32], which we outline now.

Let K∗ be a finite simplicial Zn-filtration with K =
⋃

z∈Zn Kz. Assume that K∗ is
one-critical, i.e., the set {z | σ ∈ Kz} has a unique minimal element g(σ) for every σ ∈ K. We
define a certain cochain complex N•(K∗) of free persistence modules. In this paper, H•(K)
always denotes the reduced simplicial homology of K. If Hd(Kz) = 0 for all d but finitely
many indices z ∈ Zn (which can easily be ensured by adding additional simplices to K∗), then
Hd+n(N•(K∗)) is isomorphic to the dual module of Hd(K∗) for all d (see Proposition 6). This
can be seen as a generalization of a corresponding statement for one-parameter persistence,
in which case N•(K∗) equals the relative cochain complex C•(K, K∗) [18, Theorem 2.4]; see
also [10].

Given a (minimal) free resolution F• of an n-parameter persistence module M and a
choice of basis for each module of F•, we show that the matrices representing F• also represent
a (minimal) injective resolution of M ; see Theorem 10. In particular, this allows us to easily
convert a (minimal) free resolution of a module (e.g., Hd+n(N•(K∗))) to a (minimal) free
resolution of its dual (i.e., Hd(K∗)); see Corollary 14.

For n = 2, we propose a method to compute a mfr of Hd+2(N•(K∗)) (and thus Hd(K∗))
solely from the coboundary map δd+1 : Nd(K∗) → Nd+1(K∗); see Section 3.4. At the core of
this method is an algorithm for the following problem: given a morphism f : F → F ′ of free
persistence modules and a basis of the vector space colim im f , compute a basis of the free
persistence module ker f ; see Theorem 19. The algorithm is compatible with the clearing
optimization, which improves its performance considerably.
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We have implemented our approach [33] and report timing results from computational
experiments with function-Rips bifiltrations. On most instances considered, our approach
is significantly faster than the approach [23] used in mpfree, and on certain instances, our
implementation is able to outperform the approach of by a factor of up to 20.

A number of recent methods for computation of multiparameter persistence focus on
decreasing the size of the input complex without changing its homology [22, 42, 23, 2]. These
methods can be used as a preprocessing step to the computation of a minimal free resolution.
In our computational experiments, we explore the effect of the chunk preprocessing method of
[23] on the efficiency of our method. We find that in our experiments, our method generally
performs better without this preprocessing. In contrast, we observe that the preprocessing is
very helpful for the the approach of [35, 32], as previously reported [23]. We also observe
that applying the chunk algorithm on cochain complexes instead of chain complexes may
significantly increase the performance even for homology computation.

2 Background

2.1 Persistence modules
Let k be a field, let n ∈ N, let vec denote the category of finite dimensional k-vector
spaces, and consider Zn as a poset with the usual product partial order. A (pointwise
finite dimensional) Zn-persistence module, also called an n-parameter persistence module,
is a functor M : Zn → vec. The maps Mz≤z′ : Mz → Mz′ are called the structure maps of
M . If m ∈ Mz, we call z the grade of m, denoted by g(m). The total dimension of M is∑

z∈Zn dim Mz. We write Zn-pers for the abelian category of pointwise finite dimensional
Zn-persistence modules. Its morphisms are natural transformations. Zn-pers is equivalent
to a full subcategory of the category of multigraded modules over the ring k[x1, . . . , xn];
see [14]. The algebra k[x1, . . . , xn] is not a principal ideal domain unless n = 1; therefore,
Zn-persistence modules cannot be described by a barcode for n > 1.

Let V ∗ = Homk(V, k) denote the dual of a k-vector space V . The dual of a Zn-persistence
module M is the Zn-persistence module M∗ with (M∗)z = (M−z)∗ and (M∗)z≤z′ =
(M−z′≤−z)∗. An object M of an abelian category C is projective (respectively injective)
if the functor HomC(M, −) (respectively HomC(−, M)) is exact. The duality M 7→ M∗ is an
exact contravariant equivalence of categories and thus maps projective to injective modules
and vice versa.

For z ∈ Zn, let F (z) be the module with F (z)w =
{

k if z ≤ w,
0 otherwise, and F (z)w≤w′ = idk if

z ≤ w ≤ w′. A module F is free if there are elements (zi)i∈I ⊆ Zn, for some indexing set I,
such that there is an isomorphism b :

⊕
i∈I F (zi) → F . Every finitely generated projective

persistence module is free [40, 44, 28]. Let ei denote the element 1 ∈ F (zi)zi of the component
of

⊕
i∈I F (zi) indexed by i. The set {b(ei) | i ∈ I} is a basis of F . The multiset rk F := {zi |

i ∈ I} is uniquely determined by F and called its (graded) rank. A module M is finitely
generated if there is a pointwise surjection F → M from a free module F of finite rank; the
image of a basis of F under such a map is called a generating system of M .

A graded matrix M is a matrix with entries Mij ∈ k whose rows and columns are
decorated with row grades rgM

∗ and column grades cgM
∗ . The graded transpose of a graded

m × n-matrix M is the graded n × m-matrix MT with entries (MT )ij = Mm+1−j,n+1−i, row
grades rgMT

i = −cgM
n+1−i and column grades cgMT

j = −rgM
m+1−i. A morphism f : F → F ′ of

finite rank free modules F and F ′ with respective bases b1, . . . , bn and b′
1, . . . , b′

m is uniquely
represented by a graded m × n-matrix M with cgM

j = g(bj), rgM
i = g(b′

i), and entries Mij

such that f(bj) =
∑

i MijF ′
g(b′

i
)≤g(bj)(b′

i) for all j.

SoCG 2023
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▶ Lemma 1. A graded matrix M represents a morphism of finite rank free modules iff
Mij = 0 whenever rgM

i ̸≤ cgM
j .

Proof. This follows from the fact that Hom(F (z), F (z′)) =
{

k if z ≥ z′,
0 otherwise. ◀

If bases of free modules F, F ′ are fixed, we identify a morphism F → F ′ with the graded
matrix representing it. A free resolution (resp., injective resolution) of a module M is a chain
complex F• : · · · → F1 → F0 of free modules (resp., cochain complex I• : I0 → I1 → · · ·
of injective modules) concentrated in non-negative degrees that is quasi-isomorphic to M .
A (homological) d-ball is an acyclic chain complex of the form · · · → 0 → F (z) id→ F (z) →
0 → · · · for some z ∈ Zn, concentrated in degrees d, d − 1. A free resolution, and, more
generally, a chain complex of free modules, is called minimal if it contains no direct summand
isomorphic to a ball. An injective resolution is minimal if its dual is minimal. A morphism
F1 → F0 of free modules is called a (minimal) free presentation of a module M if it extends
to a (minimal) free resolution of M .

▶ Theorem 2 (see [21, Theorem 20.2], [38, Theorem 7.5]). Every finitely generated module
has a mfr. Every free resolution is isomorphic to the direct sum of a mfr with a direct sum
of homological balls. In particular, a mfr is unique up to isomorphism of chain complexes.

Thus, letting F• be a mfr of a finitely generated persistence module M , the graded ranks
βq(M) := rk Fq, called the graded Betti numbers of M , are independent of the choice of F•.

▶ Theorem 3 (Hilbert’s Syzygy theorem [38, Theorem 15.2], [21, Corollary 19.7]). Every
Zn-persistence module has a mfr of length at most n.

2.2 Filtrations
For P any poset, a (simplicial) P -filtration is a functor K∗ from Zn to the category of simplicial
complexes such that the simplicial maps Kz≤z′ are inclusions. We write K =

⋃
z∈Zn Kz.

▶ Example 4. Let S be a metric space and let diam σ = maxs,t∈σ d(s, t) for every finite,
non-empty σ ⊆ S. The Vietoris–Rips filtration V̂R∗(S) associated to S is the R-filtration
given by V̂Rr(S) = {σ ⊆ S | 0 < |σ| < ∞, diam σ ≤ r}. If S is finite and non-empty, let
r1 < r2 < · · · < rn be the distinct values diam σ can attain for σ ⊆ S. By setting

VRi(S) =

 V̂R(S)r1 if i ≤ 1,
V̂R(S)ri

if 1 < i < n,

V̂R(S)rn if n ≤ i,

we obtain a Z-filtration VR∗(S), which we also call a Vietoris–Rips filtration.

If K∗ is a Zn-filtration, its absolute and relative simplicial chains C•(K∗) and C•(K, K∗)
(with coefficients in k) form chain complexes of Zn-persistence modules, and the respective
cycles Zd(−), boundaries Bd(−) and homology Hd(−) are Zn-persistence modules for all d.
The dual cochain complex C• := (C•)∗ of a chain complex C• has components Cd = (Cd)∗. Its
cocycles Zd(C•), coboundaries Bd(C•) and cohomology Hd(C•) are Zn-persistence modules
for all d. Because (−)∗ is exact, there is a natural isomorphism Hd(C•) → Hd(C•)∗ for all d.
Our indexing convention is that a chain complex C• has the boundary morphisms ∂d : Cd →
Cd−1 and a cochain complex C• has coboundary morphisms δd = (∂d)∗ : Cd−1 → Cd. This
differs from the standard convention, but is chosen such that C• = (C•)∗ has δd = (∂d)∗.

A Zn-filtration K∗ is one-critical if for every σ ∈ K the set {z ∈ Zn | σ ∈ Kz} has a
unique minimal element g(σ), called the grade of σ. In this case, C•(K∗) =

⊕
σ∈K∗

F (g(σ))
is free, with a basis {eσ |σ ∈ K∗} satisfying g(eσ) = g(σ). In particular, ∂• can be represented
by a graded matrix [∂•].
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1Figure 1 A point set S (left) with |S| = 400, with density function ρ(p) :=
∑

q∈S\{p} exp
(
− d(p,q)2

2σ2

)
for σ = 0.15; graded Betti numbers (teal: β0, red: β1, orange: β2) and Hilbert function (shades of
blue increasing from dim = 0 to dim ≥ 10) of H0(VRρ

∗(S)) (middle) and H1(VRρ
∗(S)) (right).

▶ Example 5. The function-Rips bifiltration VRf
∗(S) associated to a finite metric space

S and a function f : S → Z is the one-critical Z2-filtration with VRf
x,y = {σ ∈ VRy(S) |

maxs∈σ f(s) ≤ x}. Figure 1 illustrates the Hilbert function and graded Betti-numbers of the
ph of a function-Rips bifiltration, where the function is a density function.

2.3 One-parameter persistence and clearing
We next turn attention to persistence modules over Z. For −∞ ≤ bi < di ≤ ∞, let I(b, d)
be the interval module with I(b, d)z =

{
k if b ≤ z < d,
0 otherwise and I(b, d)z≤z′ = idk if b ≤ z ≤ z′ < d.

Every pointwise finite-dimensional Z-persistence module is isomorphic to an essentially
unique direct sum

⊕
i∈I I(bi, di) [47, 50]. The collection of the pairs (bi, di) is called the

barcode of M .
Given a finite Z-filtered complex K∗, one is usually interested in computing the barcode

of H•(K∗). Since k[x] is a principal ideal domain, the submodules Zd(K∗), Bd(K∗) ⊆ Cd(K∗)
are free for all d. The standard algorithm [20, §3] computes bases of Zd(K∗) and Bd(K∗)
and thus the barcode of H•(K∗) by applying an order-respecting Gaussian column reduction
scheme to each graded matrix [∂d]. Each relative cochain module Cd(K, K∗) is also free, so
the same algorithm computes the barcode of H•(K, K∗) from the graded matrices [δd] = [∂d]T
representing the coboundary operators δd. The barcodes of H•(K∗) and H•(K, K∗) determine
each other in a simple way, as is seen by considering the long exact sequence of the pair
(K, K∗) [18, 10].

It has been observed that for Vietoris–Rips filtrations, computing H•(K, K∗) instead of
H•(K∗) is far more efficient. This increase in efficiency hinges on the use of the clearing
optimization scheme [5, 15, 4], which we now explain. The pivot of a matrix column is
the largest row index of a non-zero entry in that column. The standard algorithm applies
left-to-right column additions to bring [δd+1] into reduced form Rd+1, meaning that all
columns of Rd+1 have pairwise distinct pivots. If a column Rd

j is non-zero with pivot i, then
Rd+1

i = 0. Therefore, if Rd is known from previous computations, the reduction of [δd+1]j
to zero can be skipped. As the standard algorithm would typically spend most of its run
time on the columns of [δd+1] that are reduced to zero, skipping most of these accelerates
the algorithm considerably.

If the reduced homology Hd(K) is zero for all d, then the long exact sequence of the pair
(K, K∗) shows that Hd+1(K, K∗)∗ ∼= Hd(K∗) for all d, so one would expect that they can
be computed from the same data. Indeed, one can use clearing to compute Hd+1(K, K∗)
(respectively Hd(K∗)) from δd+1 (respectively ∂d+1) alone; see Algorithm 3 in the full version.

SoCG 2023
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2.4 Computation of 2-parameter persistence
The LW-Algorithm. Assume that C• is a chain complex of free Z2-persistence modules of
finite rank; e.g., C• = C•(K∗) for a one-critical Z2-filtration K∗, and let Dd be the matrix
representing ∂d : Cd → Cd−1 for all d. Theorems 2 and 3 imply that the kernel of a morphism
of finitely generated free Z2-modules is free. In particular, Zd(C•) is free for all d, so the
sequence 0 → Zd+1(C•) id+1−−−→ Cd+1

pd+1−−−→ Zd(C•) is a free resolution of Hd(K∗). From Dd,
the LW-Algorithm [35, 32] (see Algorithm 4 in the full version) computes a graded matrix
Id representing id : Zd(C•) ↪→ Cd. A variant of that algorithm (see Algorithm 5 in the full
version) computes from Dd+1 a graded matrix D′

d+1 : C ′
d+1 → Cd, whose columns represent

a minimal generating system of Bd(C•), together with a graded matrix I ′
d+1 representing the

kernel Z ′
d+1 of the morphism represented by D′

d+1. There is a unique graded matrix P ′
d+1

such that D′
d+1 = IdP ′

d+1, which can be obtained by Algorithm 9 in the full version. Then
I ′

d+1 and P ′
d+1 represent a free resolution

0 → Z ′
d+1

I′
d+1−−−→ C ′

d+1
P ′

d+1−−−→ Zd(C•) (1)

of Hd(C•). To obtain a mfr, it remains to split off summands from (1) that are isomorphic
to homological balls. There is an embarrassingly parallel algorithm that computes a minimal
chain complex quasi-isomorphic to a given one; see Remark 23 in the full version. In particular,
this algorithm can be used to convert a free resolution to a minimal one. It can also be
used to split off balls from the input complex C•. This is known as chunk preprocessing and
typically improves performance of the LW-algorithm by a considerable amount [22, 32, 23].

3 Cohomology computation

Let K∗ be a one-critical Zn-filtration. If n > 1, then neither C•(K∗) nor C•(K, K∗) are
complexes of free modules. Since the LW-algorithm assumes that the input complex is a
complex of free modules, the strategy from Section 2.4 cannot be used to compute H•(K∗)
or H•(K, K∗) directly. Instead, we consider a cochain complex N•(K∗) that can be used to
compute Hd(K∗).

3.1 The free cochain complex N•(K∗)

For a module M and z ∈ Zn, let M⟨z⟩ be the module with graded components M⟨z⟩w =
Mz+w. For z ≥ 0, the structure maps of M give a morphism M → M⟨z⟩. Note that
M⟨z⟩∗ = M∗⟨−z⟩. For a graded matrix A, let A⟨z⟩ be the graded matrix with A⟨z⟩ij = Aij ,
rgA⟨z⟩

i = rgA
i + z and cgA⟨z⟩

j = rgA
j + z for all i, j.

Fix a total order on the simplices of K∗, so that the boundary map ∂• of the chain complex
C•(K∗) =

⊕
σ∈K∗

F (g(σ)) is represented by the graded matrix [∂•]. Let ϵ = (1, . . . , 1) ∈ Zn.
Let

N•(K∗) =
⊕

σ

F (−g(σ) + ϵ)

be the cochain complex whose coboundary operator δ•
N is represented by [∂•]T ⟨−ϵ⟩ with

respect to the standard basis. It follows from Lemma 1 that this is a well-defined cochain
complex. The key property of this chain complex is summarized in the following proposition,
whose proof is deferred to the next subsection.

https://arxiv.org/abs/2303.11193{}{}{}#algocf.4{}{}{}
https://arxiv.org/abs/2303.11193{}{}{}#algocf.5{}{}{}
https://arxiv.org/abs/2303.11193{}{}{}#algocf.9{}{}{}
https://arxiv.org/abs/2303.11193{}{}{}#theorem.23{}{}{}
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▶ Proposition 6. If Hd(K∗) has finite total dimension for all d, then there is a natural
isomorphism Hd(K∗) ∼= Hd+n(N•(K∗))∗ for all d.

▶ Corollary 7. If H•(K∗) has finite total dimension and F• is a free resolution of
Hd+n(N•(K∗)), then (F•)∗ is an injective resolution of Hd(K∗).

3.2 The Calabi–Yau-property of persistence modules
Besides proving Proposition 6, we will need to convert the injective resolution of Hd(K∗)
from Corollary 7 into a free resolution of Hd(K∗). Both will follow from Theorem 10, which
establishes a property of persistence modules known as the Calabi–Yau property in some areas
of algebra [24]; see [29, Lemma 4.1] for a proof in a more general context. As it turns out,
there is a close correspondence between injective and free resolutions that we explore in this
section. For z ∈ Zn, we define the injective module I(z) = F (−z)∗; i.e., I(z)w =

{
k if w ≤ z,
0 otherwise,

and I(z)w≤w′ = id if w ≤ w′ ≤ z.

▶ Definition 8. For persistence modules M, N , let Hom(M, N) be the persistence module
with components Hom(M, N)z = Hom(M, N⟨z⟩).

Let PZn-pers and IZn-pers be the full subcategories of Zn-pers consisting of free and
injective modules, respectively.

▶ Lemma 9 (see [3, Proposition 2.10 in Chapter III]). The Nakayama functor

ν := Hom(−, F (0))∗ : PZn-pers → IZn-pers

is an equivalence of categories with quasi-inverse ν−1 = Hom(I(0)∗, −).

One checks that νF (z) = I(z) and ν−1I(z) = F (z). Therefore, N•(K∗) = (νC•(K∗)⟨ϵ⟩)∗.
For a chain complex C• and i ∈ Z, let C•[i] be the chain complex whose dth module is
(C•[i])d = Ci+d. Analogously, for a cochain complex C•, let C•[i] be the cochain complex
with (C•[i])d = Ci+d. Note that C•[i]∗ = (C•)∗[i].

▶ Theorem 10. If F• is a complex of free Zn-persistence modules such that Hd(F•) has
finite total dimension for all d, then F• and νF•[n]⟨ϵ⟩ are naturally quasi-isomorphic.

Proof. For z ∈ Zn, we write z = (z1, . . . , zn). For n ∈ N, let [n] := {1, . . . , n} and let([n]
k

)
:= {S ⊆ [n] | |S| = k}. For S = {s1 < . . . < sk} ∈

([n]
k

)
and z ∈ Zn, w ∈ Zk, we let

z|Sw := (z1, . . . , zs1−1, w1, zs1+1, . . . , zsk−1, wk, zsk+1, . . . , zn)

be the n-tuple obtained from z by replacing the components indexed by S by the entries
of w. For any module M ∈ Zn-pers and S ⊆ [n], we let ColimS M be the module with

(ColimS M)z = colimw∈Zk Mz|S
w

, (ColimS M)z≤z′ = colimw∈Zk Mz|S
w≤z′|S

w
.

For example, for n = 3 we get (Colim{1,3} M)(z1,z2,z3) = colim(w1,w2)∈Z2 M(w1,z2,w2). The
module ColimS M is constant along the axes specified by S. In particular, Colim M =
Colim[n] M is the module that is constantly colim M . For a module M , we define the
modules KkM =

⊕
S∈([n]

k ) ColimS M for each k. If S ⊆ S′, then there is a canonical
morphism ColimS M → ColimS′ M . For a free module F (z), these assemble to an exact
sequence

0 → F (z) → K1F (z) → · · · → KnF (z) → I(z)⟨ϵ⟩ → 0, (2)

SoCG 2023
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called the Koszul complex of F (z). The last morphism is the canonical morphism KnF (z) =
Colim F (z) = Lim I(z)⟨ϵ⟩ → I(z)⟨ϵ⟩. Let F• be a bounded complex of free modules. Using
νF (z) = I(z), we get an exact sequence

K• : 0 → F• → K1F• → · · · → KnF• → νF•⟨ϵ⟩ → 0 (3)

of chain complexes, given by taking a shifted copy of (2) for every F (z) in F•. We unsplice (3)
into short exact sequences

0 0 0

U
(1)
• U

(n−1)
•

0 F• K1F• K2F• KnF• νF•⟨ϵ⟩ 0

F• U
(2)
• νF•⟨ϵ⟩

0 0 0

· · · (4)

with chain complexes U
(k)
• for each k. Each of these short exact sequences gives a triangle in

the derived category Db(Zn-pers) [48, §10.4.9]. We obtain connecting homomorphisms

∂(1) : U
(1)
• [1] → F•, ∂(2) : U

(2)
• [1] → U

(1)
• , · · · ∂(n−1) : νF•⟨ϵ⟩[1] → U

(n−1)
•

in Db(Zn-pers). These fit into the long exact sequences

· · · → Hd+1(K1F•) → Hd+1(U1
• ) ∂(1)

−−−−→ Hd(F•) → Hd(K1F•) → · · · ,

· · · → Hd+2(K2F•) → Hd+2(U2
• ) ∂(2)

−−−−→ Hd+1(U (1)
• ) → Hd+1(K2F•) → · · · ,

...

· · · → Hd+n(KnF•) → Hd+n(νF•⟨ϵ⟩) ∂(n−1)

−−−−→ Hd+n−1(U (n−1)
• ) → Hd+n−1(KnF•) → · · · ,

(5)

induced by the short exact sequences (4). Since Hd(F•) is of finite total dimension for all
d, we have ColimS Hd(F•) = 0 if |S| > 0. The functor ColimS is exact for all S because it
is a directed colimit. In particular, Hd(KkF•) = Hd

(⊕
|S|=k ColimS F•

)
= 0 for all k > 0.

Therefore, the long exact sequences (5) show that all connecting homomorphisms ∂(k) are
quasi-isomorphisms. Thus, ∂(1) ◦ · · · ◦ ∂(n−1) : νF•[n]⟨ϵ⟩ −→ F• is a quasi-isomorphism. ◀

▶ Corollary 11. Let M ∈ Zn-pers be of finite total dimension.
1. If F• is a free resolution of M , then νF•[n]⟨ϵ⟩ is an injective resolution of M .
2. If I• is an injective resolution of M , then ν−1I•[−n]⟨−ϵ⟩ is a free resolution of M .

Proof of Proposition 6. With N•(K∗) = (νC•(K∗)⟨ϵ⟩)∗, Theorem 10 gives

Hd+n(N•(K∗))∗ ∼= Hd(N•(K∗)∗[n]) ∼= Hd(νC•(K∗)⟨ϵ⟩[n]) ∼= Hd(C•(K∗)) = Hd(K∗). ◀

▶ Lemma 12. A graded matrix M represents a morphism
⊕

j I(cgM
j ) →

⊕
i I(rgM

i ) iff
Mij = 0 whenever rgM

i ̸≤ cgM
j .

Proof. This follows from Hom(I(z), I(z′)) =
{

k if z ≥ z′

0 otherwise ◀

In particular, a graded matrix represents a morphism of free modules iff it represents a
morphism of injective modules (cf. Lemma 1).
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▶ Lemma 13. Let f :
⊕n

j=1 F (zj) →
⊕m

i=1 F (z′
i) be a morphism of free modules represented

by the graded matrix [f ]. Then the morphism νf :
⊕n

j=1 I(zj) →
⊕m

i=1 I(z′
i) is represented

by the same graded matrix [νf ] = [f ].

▶ Corollary 14. For M ∈ Zn-pers of finite total dimension and graded matrices U1, . . . , Un,
the following are equivalent:
1. U1, . . . , Un represent a free resolution · · · 0 → Fn

Un−−→ · · · U1−−→ F0 of M ,
2. U1⟨ϵ⟩, . . . , Un⟨ϵ⟩ represent an injective resolution I0 Un⟨ϵ⟩−−−→ · · · U1⟨ϵ⟩−−−→ In → 0 · · · of M ,

3. U1⟨ϵ⟩T , . . . , Un⟨ϵ⟩T represent a free resolution · · · 0 → Gn
Un⟨ϵ⟩T

−−−−→ · · · U1⟨ϵ⟩T

−−−−→ G0 of M∗.
In this case Iq = νFn−q⟨ϵ⟩ = G∗

q for all q.

▶ Example 15. Consider the module

M = ,

where Mz = k if z lies in the shaded region, Mz = 0 otherwise, and all structure morphisms
between non-zero vector spaces of M being identities. The first line of the following diagram
exhibits F• as a free resolution of M , and the second line exhibits νF•[2]⟨ϵ⟩ as an injective
resolution of M :

0 0

F2 F1 F0 M

0 0.

M νF2⟨ϵ⟩ νF1⟨ϵ⟩ νF0⟨ϵ⟩

( 1
−1

1

) ( 1 1 0
0 −1 1

)

( 1
−1

1

) ( 1 1 0
0 −1 1

)

3.3 Pulling back modules from the colimit
From now on, we consider Z2-persistence modules only. It remains to explain how we
compute H•(N•(K∗)). In principle, this could be done by a procedure analogous to the
LW-Algorithm described in Section 2.4: the horizontal sequence in the commutative diagram

Nd(K∗)

0 Zd+1(N•(K∗)) Nd+1(K∗) Zd+2(N•(K∗))

Nd+2(K∗)

Nd+3(K∗)

δd+1

id+1

pd+1

id+2

δd+3

δd+2
(6)

is a free resolution of Hd+2(N•(K∗)), and we can obtain matrices representing this resolution
as described in Section 2.4. This would, however, involve the coboundary maps δd+2 and

SoCG 2023
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δd+3, leading to a very expensive computation, especially for function-Rips bifiltrations.
Instead, we propose a method that computes a free resolution of Hd+2(N•(K∗)) from δd+1

only.
For a vector space V , denote by ∆V the persistence modules with components (∆V )z = V ,

such that all structure morphisms of ∆V are the identity. Let Colim M = ∆ colim M .

▶ Definition 16. For a module M ∈ Z2-pers and a vector space V ⊆ colim M , we let [V ]M ∈
Z2-pers be the preimage of ∆V under the canonical map ηM : M → Colim M .

▶ Lemma 17. If f : M → N is a morphism and N is free, then ker f = [colim ker f ]M .

Proof. If N is free, then ηN : N → Colim N is injective. For every submodule L ⊆ M , we
have L ⊆ η−1

M (Colim L) = [colim L]M , so ker f ⊆ [colim ker f ]M . It remains to show the
other inclusion [colim ker f ]M ⊆ ker f . Consider the commutative diagram

[colim ker f ]M

ker f M N

Colim ker f Colim M Colim N.

j

η[colim ker f]M
i

ηker f

f

ηM ηN

Colim i Colim f

The functor Colim is a directed colimit and thus exact. Therefore, Colim ker f = ker Colim f .
This implies ηN ◦ f ◦ j = Colim f ◦ Colim i ◦ η[colim ker f ]M

= 0. Since ηN is injective, we
obtain f ◦ j = 0. Therefore, j factors uniquely through ker f . This proves the claim. ◀

The lexicographic order ⪯lex and the colexicographic order ⪯colex are the total orders
on Z2 defined as

(x, y) ⪯lex (x′, y′) iff either x < x′ or x = x′ and y ≤ y′,

(x, y) ⪯colex (x′, y′) iff either y < y′ or y = y′ and x ≤ x′.

Two grades z1, z2 ∈ Z2 satisfy z1 ≤ z2 iff z1 ⪯colex z2 and z1 ⪯lex z2.

▶ Definition 18. For b ∈ km and r ∈ (Z2)m, the lex pivot of b with respect to r, l-piv(b), is
the smallest index i such that bi ̸= 0 and ri takes its maximum value with respect to ⪯lex.
The colex piot, c-piv(b), is defined analogously. For 0 ∈ km, we let l-piv(0) = c-piv(0) = 0.

▶ Theorem 19. Let M be a free Z2-persistence module of finite rank with a fixed basis, let
V ⊆ colim M be a subspace, and let B be a matrix representing a generating set of V . Then
[V ]M is free, and Algorithm 1 calculates a graded matrix representing a basis of [V ]M .

For a tuple r ∈ (Z2)m and a matrix M with m rows, let [M ]r be the graded matrix with
rg[M ]r

i = ri and cg[M ]r

j =
∨

Mij ̸=0 ri. Then [M ]r has the least possible column grades for
which [M ]r represents a map of free modules.

Proof of Theorem 19. Let m1, . . . , ms be a basis of M and r = (g(m1), . . . , g(ms)). Without
loss of generality, we assume that B represents a basis of V . The first for-loop in Algorithm 1
is a standard reduction scheme. In each iteration, the pivot index of one column decreases,
so the loop terminates. When it does, all columns have distinct colex-pivots. During each
iteration of the second for-loop, the lex-pivot of a column decreases. When it terminates, all
columns have distinct lex-pivots. During the second loop, line (∗) ensures that no column
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Algorithm 1 Computes a basis of [V ]M , where M =
⊕m

i=1 F (ri) and V ⊆ colim M .

Data: An m× n-matrix B representing a generating set of V , r = (r1, . . . , rm) ∈ (Z2)m.
Result: A graded m× n-matrix whose nonzero columns represent a basis of [V ]M .
function Bireduce(B):

p← 0 ∈ [m]n
for j = 1, . . . , n do

while i← c-piv(Bj) ̸= 0 do
if pi = 0 then pi ← j; break
Bj ← Bj + Bpi

p← 0 ∈ [m]n
for j′ = 1, . . . , n do

j ← j′

while i← l-piv(Bj) ̸= 0 do
if pi = 0 then pi ← j; break

(∗) if c-piv(Bj) < c-piv(Bpi ) then swap pi and j

Bj ← Bj + Bpi

return [B]r

is added to another column with a smaller colex-pivot. Since all columns have distinct
colex-pivots after the first for-loop, the colex-pivots of the columns thus do not change
during the second for-loop. Therefore, when the algorithm terminates, all columns of B have
pairwise distinct lex- and colex-pivots.

Let A = [B]r for the state of B when the algorithm terminates. Then A represents a
basis α1, . . . , αt of a free submodule N of M , with g(αj) = cgA

j . It remains to show that
N = [V ]M . Since all column operations performed by Algorithm 1 are invertible, A represents
a basis of V . Therefore, colim N = V , which implies N ⊆ [V ]M . Let v ∈ [V ]M . Then
there are unique coefficients ξj such that ηM (v) =

∑t
j=1 ξjηM (αj). Since ηM is injective,

Mg(v)≤z(v) =
∑t

j=1 ξjMg(αj)≤z(αj) for all z ≥ g(v) ∨
∨

ξj ̸=0 cgA
j . Since all columns of A

have distinct lex- and colex-pivots, v cannot have smaller grade than
∨

ξj ̸=0 cgA
j , so v ∈ N .

This proves the claim. ◀

3.4 The free resolution of cohomology
Assume C• is a cochain complex of free modules such that colim H•(C•) = 0, and recall
the commutative diagram (6). A matrix [δd+1] representing δd+1 is a generating system for
colim Zd+1(C•), and Lemma 17 states that Zd+1(C•) = [colim Zd+1(C•)]Cd+1 . Applying
Algorithm 1 to [δd+1] thus yields a graded matrix [id+1] representing a basis of Zd+1(C•).

▶ Lemma 20. If 0 → F2
f2−→ F1

f1−→ F0 is a free resolution of a module of finite total
dimension, then (νF0)∗ = ker(νf2)∗.

Proof. The sequence 0 → F2
f2−→ F1

f1−→ F0 is exact. By Theorem 10, the sequence
νF2

νf2−−→ νF1
νf1−−→ νF0 → 0 and therefore also the dual sequence 0 → (νF0)∗ (νf1)∗

−−−−→
(νF1)∗ (νf2)∗

−−−−→ (νF2)∗ are exact. ◀

Thus, if a matrix [f2] representing f2 is known, then the matrix [f1]T = [(νf1)∗] can be
computed by applying the LW-Algorithm (Algorithm 4 in the full version) to [f2]T = [(νf2)∗].
In particular, if Hd(C•) has finite total dimension, then so has Hd+2(N•(K∗)), so Lemma 20
can be applied to the free resolution (6) of Hd+2(N•(K∗)). This shows that [pd+1]T can be
computed by applying the LW-Algorithm to [id+1]T .

SoCG 2023
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Algorithm 2 Computes a minimal free resolution of H•(C•) for a cochain complex C• of
free Z2-modules, using clearing.

Input: Graded matrices [δ•] representing C•.
Output: Pairs of graded matrices representing a free resolution of Hd(C•) for d = 0, 1, . . . .
q ← ∅ ▷ pivots for clearing
for d = 0, 1, . . . do

for j ∈ q do [δd+1]j ← 0 ▷ clearing
[id+1]← Bireduce([δd+1])
n← #columns of [id+1]
q ← {piv[id+1]1, . . . , piv[id+1]n}
[id+1]T , [pd+1]T ← MGSWithKer([id+1]T ) ▷ See Algorithm 5 in the full version
yield MinimizeChainComplex([id+1], [pd+1]) ▷ mfr of Hd+2(νC•⟨ϵ⟩) ∼= Hd(C•)

▶ Corollary 21. Let C• be a cochain complex of free modules such that dim H•(C•) is finite.
Then Algorithm 2 computes free resolutions of Hd(C•).

▶ Remark 22 (Clearing). In general, [δd+1] is not injective. As in one-parameter persistent
cohomology, the first loop in Algorithm 1 spends a significant amount of time on reducing the
columns of [δd+1] that are eventually reduced to zero. The computation can be accelerated
considerably by using the pivots of the reduced matrix [δd] to implement a clearing scheme
before invoking Algorithm 1. This is implemented in Algorithm 2.

4 Experiments

We have implemented our cohomology algorithm in C++ [33]. We have also implemented
the algorithm [23] used in mpfree [31], in order to vary the implementation details. Where
applicable, the run time of our clone is similar to the one of mpfree. We have run our
implementation to compute mfrs of the ph of various function-Rips bifiltrations.

4.1 Setup
All computations are done with coefficients in k = F2. Matrix columns are implemented
as binary heaps [7]. Our code also implements an alternative representation of columns as
dynamically allocated arrays. We have run our code on a MacBook Pro 2017 with a 2.3 GHz
Dual-Core Intel Core i5 and 16GB RAM. The code is compiled using clang++ 15.0.7. Each
instance of our program may run four threads in parallel.

The run time of the homology algorithm for minimal presentation computation [23] is
dominated by chunk preprocessing and the LW-Algorithm. While it is standard to implement
chunk preprocessing in an embarrassingly parallel way, no way is known to parallelize the LW-
Algorithm. While the minimization step in Algorithm 2 is parallelized in our implementation,
the bigraded reduction (Algorithm 1) is not, although we hypothesize it could be parallelized
analogously to [36] or [6]. We found that the minimization is not a performance bottleneck
of our algorithm, so one would expect similar performance on a single core.

Datasets. We have generated point clouds S by sampling n-spheres Sn, n-tori S1 × · · · × S1

and orthogonal groups O(n). Additionally, we use some of the point clouds from [37]. To
each point p ∈ S, we associate the value

∑
q∈S\{p} exp

(
− d(p,q)2

2σ2

)
for a manually chosen

parameter σ. These values and a distance matrix are written to a file, from which the
program generates the coboundary matrices of the associated full function-Rips bifiltration.

https://arxiv.org/abs/2303.11193{}{}{}#algocf.5{}{}{}
https://arxiv.org/abs/2303.11193{}{}{}#algocf.5{}{}{}
https://arxiv.org/abs/2303.11193{}{}{}#algocf.7{}{}{}
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Chunk preprocessing. The LW-Algorithm works most efficiently if combined with chunk
preprocessing [22, 23]; this is the approach implemented in mpfree. Chunk preprocessing
(Algorithm 7 in the full version) applies a certain column operation scheme to the matrices
representing the chain complex C•. As an alternative, we propose to manipulate C•(K∗)
by row operations. Equivalently, one can see this procedure as column operations on the
matrices representing the cochain complex νC•(K∗); hence, we refer to this approach as
cochain complex chunk preprocessing; see Algorithm 8 in the full version.

Coning off. To ensure that Hd+2(N•(K∗)) ∼= Hd(K∗)∗, Corollary 21 requires that C• has
homology of finite total dimension. Therefore, our implementation offers the ability to
cone off the complex as follows. Let C• be a chain complex of free Z2-persistence modules.
The assignment C ′

d : y 7→ colimx∈Z(Cd)xy defines a chain complex C ′
• of free Z-persistence

modules. We compute the barcode of Hd(C ′
•) using the cohomological standard algorithm

with clearing (Algorithm 3 in the full version). This can be used to implement a clearing
mechanism in the homological standard algorithm, which we use to compute representatives
for the homology classes in the barcode of Hd(C ′

•). Let y0 such that y0 ≥ gy(σ) for all
σ, where g(σ) = (gx(σ), gy(σ)). Let Ĉ• = C•. For every bar (b, d) of Hd(C ′

•) of non-zero
length represented by a q-cycle c ∈ C ′

q of grade g(c) = b, we add a basis element ĉ of grade
g(ĉ) = (b, y0) to Ĉq+1 with ∂q+1(ĉ) = c. If d < ∞, then c bounds a chain c′ with g(c′) = d,
and we add a basis element ĉ′ of grade g(ĉ′) = (d, y0) to Ĉq+2 with ∂q+2(ĉ′) = c′ − ĉ. The
resulting chain complex Ĉ• satisfies H•(Ĉ•)xy = 0 for y ≥ y0. If not stated otherwise,
cohomology computation is done with this preprocessing applied to the density parameter.

Sparsification. We observe that the second for-loop in Algorithm 1 runs considerably longer
than the first. The loop also increases the matrix density, which many incur a high cost on
the subsequent steps in Algorithm 2. For an interpretation, see Remark 24 in the full version.
As a remedy, we have added a step that decreases the sparsity of the matrix using row
operations that are compatible with the column sparse matrix implementation. Specifically,
if a row contains only a single entry, any row addition from this row to another affects only a
single entry. Therefore, an entry in a row with grade g can be eliminated directly if there is a
row with grade g′ ≥ g containing only a single entry in the same column; see Algorithm 10 in
the full version. All cohomology computation run times are reported with this sparsification
scheme applied.

4.2 Results
An overview of the results is given in Table 1. We report only the time needed to compute
the mfr and, if applicable, to apply the chunk preprocessing. We do not report the time
necessary to set up the (co)boundary matrices. In all cases with d ≥ 2, computing Hd+2(N•)
(without chunk preprocessing) was faster than computing Hd with chunk preprocessing.
Our cohomology approach does not benefit from chunk preprocessing. The speedup of the
cohomology approach increases with dimension. For two instances, computation of Hd(K∗)
did not terminate within five minutes, while computing Hd+2(N•(K∗)) was no problem. We
also observe that the cohomology algorithm uses less memory for almost all instances with
d ≥ 2.

Matrix representations. The efficiency of the LW-Algorithm and of chunk preprocessing
does not vary very much depending on the matrix implementation; see Table 1 and Table 2
in the full version. In contrast, our cohomology algorithm runs faster in the implementation
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Table 1 Run times (in milliseconds) comparing our implementation of [35, 23] (including chunk
preprocessing) and our cohomology algorithm, applied a density-Rips filtration on 300 vertices
(d = 1), 100 vertices (d = 2) and 60 vertices (d = 3). RSS is peak resident memory as measured
by time. Speed up is the run time of the homology computation (including chunk preprocessing),
divided by the run time of the cohomology algorithm. The program has been killed after exceeding
five minutes of run time.

d sample chunk Hd sum RSS Hd+2 RSS speedup

1 c. elegans 5,457 40,841 46,298 6,423,600 119,444 6,526,976 0.39
2-torus 11,480 19,875 31,355 6,620,404 5,032 2,827,912 6.23
4-torus 6,342 28,627 34,969 5,916,816 50,607 3,384,472 0.69
dragon 9,721 18,489 28,210 5,774,492 5,064 2,829,620 5.57

2-sphere 8,657 29,180 37,837 6,421,312 25,021 4,098,268 1.51
4-sphere 7,699 33,619 41,318 6,642,260 47,355 7,154,632 0.87

O(3) 7,023 33,874 40,897 6,315,708 42,702 3,816,124 0.96

2 c. elegans 28,583 7,484 36,067 4,428,440 5,655 2,371,324 6.38
2-torus 39,630 2,191 41,821 3,216,372 5,054 2,334,712 8.27
4-torus 33,788 19,875 53,663 5,538,232 5,969 2,425,136 8.99
dragon 19,023 2,379 21,402 2,557,124 5,188 2,367,488 4.13

2-sphere 32,611 12,416 45,027 5,099,604 6,417 2,426,924 7.02
4-sphere 29,272 25,357 54,629 6,039,576 8,637 2,505,664 6.32

O(3) 31,780 29,123 60,903 6,654,692 6,796 2,445,996 8.96

3 c. elegans 38,349 2,393 40,742 3,515,708 8,984 4,227,820 4.53
2-torus >300,000 – – 7,141,648 11,725 5,072,192 >25.59
4-torus >300,000 – – 10,843,356 9,930 4,358,580 >30.21
dragon 67,463 2,334 69,797 6,666,732 9,782 4,900,800 7.14

2-sphere 59,385 3,110 62,495 4,280,112 9,051 4,185,036 6.90
4-sphere 92,365 8,577 100,942 5,526,344 8,818 4,197,636 11.45

O(3) 204,263 25,284 229,547 7,966,600 10,851 4,365,864 21.15

with binary heaps. We observe that the vector based implementations generally use less
memory than the heap based ones. This happens because, in contrast to vectors, heaps may
contain multiple entries for the same row index.

Cochain chunk preprocessing. For the homology computation, the cochain complex chunk
preprocessing described above often is more efficient than chunk preprocessing if combined
with the heap implementation of matrix columns, see Table 3 in the full version. This is
true in particular for higher homology dimensions. If combined with vector-based matrices,
cochain chunk preprocessing is less efficient than conventional chunk preprocessing in almost
all cases, and does not terminate at all within five minutes.
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Abstract
A geometric t-spanner for a set S of n point sites is an edge-weighted graph for which the (weighted)
distance between any two sites p, q ∈ S is at most t times the original distance between p and q.
We study geometric t-spanners for point sets in a constrained two-dimensional environment P . In
such cases, the edges of the spanner may have non-constant complexity. Hence, we introduce a
novel spanner property: the spanner complexity, that is, the total complexity of all edges in the
spanner. Let S be a set of n point sites in a simple polygon P with m vertices. We present an
algorithm to construct, for any constant ε > 0 and fixed integer k ≥ 1, a (2k + ε)-spanner with
complexity O(mn1/k + n log2 n) in O(n log2 n + m log n + K) time, where K denotes the output
complexity. When we consider sites in a polygonal domain P with holes, we can construct such a
(2k + ε)-spanner of similar complexity in O(n2 log m + nm log m + K) time. Additionally, for any
constant ε ∈ (0, 1) and integer constant t ≥ 2, we show a lower bound for the complexity of any
(t − ε)-spanner of Ω(mn1/(t−1) + n).

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases spanner, simple polygon, polygonal domain, geodesic distance, complexity

Digital Object Identifier 10.4230/LIPIcs.SoCG.2023.16

Related Version Full Version: https://arxiv.org/abs/2303.02997

1 Introduction

In the design of networks on a set of nodes, we often consider two criteria: few connections
between the nodes, and small distances. Spanners are geometric networks on point sites
that replace the small distance criterion by a small detour criterion. Formally, a geometric
t-spanner for a set S of n point sites is an edge-weighted graph G = (S, E) for which the
(weighted) distance dG(p, q) between any two sites p, q ∈ S is at most t · d(p, q), where d(p, q)
denotes the distance between p and q in the distance metric we consider [29]. The smallest
value t for which a graph G is a t-spanner is called the spanning ratio of G. The number of
edges in the spanner is called the size of the spanner.

In the real world, spanners are often constructed in some sort of environment. For
example, we might want to connect cities by a railway network, where the tracks should
avoid obstacles such as mountains or lakes. One way to model such an environment is by
a polygonal domain. In this paper, we study the case where the sites lie in a polygonal
domain P with m vertices and h holes, and we measure the distance between two points p, q

by their geodesic distance: the length of the shortest path between p and q fully contained
within P . An example of such a spanner is provided in Figure 1.

The spanning ratio and the size of spanners are not the only properties of interest. Many
different properties have been studied, such as total weight (or lightness), maximum degree,
(hop) diameter, and fault-tolerance [4, 9, 11, 14, 20, 27, 28, 30]. When we consider distance
metrics for which the edges in the spanner no longer have constant complexity, another
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Figure 1 A spanner on a set of point sites in a polygonal domain. Because of the orange edges,
the spanner has a relatively high complexity.

interesting property of spanners arises: the spanner complexity, i.e. the total complexity of
all edges in the spanner. In our railway example, this corresponds to the total number of
bends in the tracks. A spanner with a low number of bends may be desired, as trains can
drive faster on straight tracks, and it makes construction cheaper. In this paper, we study
this novel property for point sites in a polygonal domain, where the complexity of an edge
is simply the number of line segments in the path. In this setting, a single edge may have
complexity Θ(m). Naively, a spanner of size E could thus have complexity Θ(mE). Our goal
is to compute an O(1)-spanner of size O(n polylog n) with small complexity, preferably near
linear in both n and m.

When studying spanning trees of points, two variants exist: with or without Steiner
points. The same is true for spanners, where Steiner points can be used to obtain lighter
and sparser spanners [6, 27]. In this paper we focus on the variant where Steiner points are
not allowed, leaving the other variant to future research.

Related work. For the Euclidean distance in Rd, and any fixed ε > 0, there is a (1 + ε)-
spanner of size O(n/εd−1) [30]. For the more general case of metric spaces of bounded
doubling dimension we can also construct a (1 + ε)-spanner of size O(n/εO(d)) [13, 21, 24].
These results do not apply when the sites lie in a polygon, and we measure their distances
using the geodesic distance. Abam et al. [1] show there is a set of n sites in a simple
polygon P for which any geodesic (2 − ε)-spanner has Ω(n2) edges. They also construct a
geodesic (

√
10 + ε)-spanner of size O(n log2 n) for sites in a simple polygon, and a geodesic

(5 + ε)-spanner of size O(n
√

h log2 n) for sites in a polygonal domain. Recently, Abam et
al. [3] showed that a geodesic (2 + ε)-spanner with O(n log n) edges exists for points on a
polyhedral terrain, thereby almost closing the gap between the upper and lower bound on
the spanning ratio. However, they show only the existence of such a spanner, and leave
constructing one open. Moreover, all of these spanners can have high, Ω(nm), complexity.

Abam et al. [3] make use of spanners on an additively weighted point set in Rd. In this
setting, the distance between two sites p, q is w(p) + |pq| + w(q) for p ̸= q, where w(p) is
the non-negative weight of a site p ∈ S and |pq| denotes the Euclidean distance, and 0 for
p = q. Such additively weighted spanners were studied before by Abam et al. [2], who obtain
an O(5 + ε)-spanner of linear size, and an O(2 + ε)-spanner of size O(n log n). They also
provide a lower bound of Ω(n2) on the size of any (2 − ε)-spanner. Abam et al. [3] improve
these results and obtain a nearly optimal additively weighted (2 + ε)-spanner of size O(n).
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The other key ingredient for the geodesic (2 + ε)-spanner of Abam et al. [3] is a balanced
shortest-path separator. Such a separator consists of either a single shortest path between
two points on the boundary of the terrain, or three shortest paths that form a shortest-path
triangle. This separator partitions the terrain into two subterrains, and we call it balanced
when each of these terrains contains roughly half of the sites in S. In their constructive proof
for the existence of such a balanced separator, they assume that the three shortest paths in a
shortest-path triangle are disjoint, except for their mutual endpoints. However, during their
construction it can actually happen that these paths are not disjoint. When this happens, it
is unclear exactly how to proceed. Just like for the (2 + ε)-spanner, the computation of a
balanced separator is left for future research. We show how to get rid of the assumption that
the shortest paths are disjoint, and thereby confirm the result claimed by Abam et al. [3].

Next to spanners on the complete Euclidean geometric graph, spanners under line segment
constraints were studied [8, 10, 12, 16, 17]. Here, the goal is to construct a spanner on the
visibility graph of S with respect to a set of line segments between sites in S. If the segments
form a polygonal domain P , this setting is similar to ours, except that all vertices of P are
included as sites in S, and thus the complexity of each edge is constant.

Our results. We first consider the simple setting where the sites lie in a simple polygon, i.e.
a polygonal domain without holes. We show that in this setting any (3 − ε)-spanner may
have complexity Ω(nm), thus implying that the (2 + ε)-spanner of Abam et al. [3] may also
have complexity Ω(nm), despite having O(n log n) edges.

To improve this complexity, we first introduce a simple 2-spanner with O(n log n) edges
for an additively weighted point set in a 1-dimensional Euclidean space; see Section 2. In
Section 3, we use this result to obtain a geodesic 2

√
2-spanner with O(n log2 n) edges for a

point set in a simple polygon. We recursively split the polygon by a chord λ such that each
subpolygon contains roughly half of the sites, and build a 1-dimensional spanner on the sites
projected to λ. We then extend this spanner into one that also has bounded complexity. For
any constant ε > 0 and fixed integer k ≥ 1, we obtain a (2k + ε)-spanner with complexity
O(mn1/k + n log2 n). Furthermore, we provide an algorithm to compute such a spanner that
runs in O(n log2 n + m log n + K) time, where K denotes the output complexity. When we
output each edge explicitly, K is equal to the spanner complexity. However, as each edge is a
shortest path, we can also output an edge implicitly by only stating the two sites it connects.
In this case K is equal to the size of the spanner. Additionally, for any constant ε ∈ (0, 1) and
integer constant t ≥ 2, we show a lower bound for the complexity of any (t − ε)-spanner of
Ω(mn1/(t−1) +n). Therefore, the 2k +ε spanning ratio of our O(mn1/k +n log2 n) complexity
spanners is about a factor two off optimal.

In Section 4, we extend our results for a simple polygon to a polygonal domain. There
are two significant difficulties in this transition: (i) we can no longer partition the polygon
by a line segment such that each subpolygon contains roughly half of the sites, and (ii) the
shortest path between two sites p, q may not be homotopic to the path from p to q via another
site c. We solve problem (i) by using a shortest-path separator similar to Abam et al. [3].
To apply the shortest-path separator in a polygonal domain, we need new additional ideas.
In particular, we allow one additional type of separator in our version of a shortest-path
separator: two shortest paths from a point in P to the boundary of a single hole. We show that
this way there indeed always exists such a separator in a polygonal domain, and provide an
O(n2 log m + nm log m) time algorithm to compute one. To overcome problem (ii), we allow
an edge (p, q) to be any path from p to q. In networks, the connections between two nodes
are often not necessarily optimal paths, the only requirement being that the distance between
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c

q

p

S` Sr

O

Figure 2 Construction of the additively weighted 1-dimensional spanner. The green triangle
represents all points that are at distance at most dw(c, O) from O.

two hubs does not become too large. Thus allowing other paths between two sites seems a
reasonable relaxation. This way, we obtain in a geodesic (2k + ε)-spanner of size O(n log2 n)
and complexity O(mn1/k + n log2 n) that can be computed in O(n2 log m + nm log m + K)
time. Because our edges always consist of at most three shortest paths, we can again output
the edges implicitly in O(n log2 n) time. We also provide an alternative (2k + ε)-spanner of
size O(

√
hn log2 n) and complexity O(

√
h(mn1/k + n log2 n)) that can be constructed more

efficiently, i.e., in O(
√

hn log2 n + m log m + K) time.
Throughout the paper, we make the general position assumption that all vertices of P

and sites in S have distinct x- and y-coordinates. Symbolic perturbation, in particular a
shear transformation, can be used to remove this assumption [18].

2 A 1-dimensional additively weighted 2-spanner

We consider how to compute an additively weighted spanner G in 1-dimensional Euclidean
space, where each site p ∈ S has a non-negative weight w(p). The distance dw(p, q) between
two sites p, q ∈ S is given by dw(p, q) = w(p) + |pq| + w(q), where |pq| denotes the Euclidean
distance. Without loss of generality, we can map R1 to the x-axis, and the weights to the
y-axis, see Figure 2. This allows us to speak of the sites left (or right) of some site p.

To construct a spanner G, we first partition the sites into two sets Sℓ and Sr of roughly
equal size by a point O with w(O) = 0. The set Sℓ contains all sites left of O, and Sr all
sites right of O. Sites that lie on the vertical line through O are not included in either of the
sets. We then find a site c ∈ S for which dw(c, O) is minimal. For all p ∈ S, p ̸= c, we add
the edge (p, c) to G. Finally, we handle the sets Sℓ and Sr, excluding the site c, recursively.

▶ Lemma 1. The graph G is a 2-spanner of size O(n log n) and can be constructed in
O(n log n) time.

Proof sketch. For two sites p, q, consider the chosen center c at the level where p and q lie
on different sides of O. As the shortest path from p to q passes via O, we have

dG(p, q) ≤ dw(p, O) + 2dw(c, O) + dw(q, O) ≤ 2dw(p, O) + 2dw(q, O) = 2dw(p, q). ◀

3 Spanners in a simple polygon

3.1 A simple geodesic spanner
Just like Abam et al. [3], we use our 1-dimensional spanner to construct a geodesic spanner.
We are more interested in the simplicity of the spanner than its spanning ratio, as we base our
low complexity spanners, to be discussed in Section 3.2, on this simple geodesic spanner. Let
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p

q
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pλ

z′

r

λ

z

Figure 3 The shortest path π(p, q) crosses λ at r. The difference in length between the direct
path from z to r and the path through pλ can be bounded by considering the triangle T = (z, z′, r).

P be a simple polygon, and let ∂P denote the polygon boundary. We denote by d(p, q) the
geodesic distance between p, q ∈ P , and by π(p, q) the shortest (geodesic) path from p to q.
We analyze the simple construction using any 1-dimensional additively weighted t-spanner
of size O(n log n). We show that restricting the domain to a simple polygon improves the
spanning ratio from 3t to

√
2t. The construction can be refined to achieve a spanning ratio

of t + ε, see Section 3.2.2 and Lemma 3 of the full version [19].
As in [1] and [3], we first partition P into two subpolygons Pℓ and Pr by a line segment

λ, such that each subpolygon contains at most two thirds of the sites in S [7]. We assume,
without loss of generality, that λ is a vertical line segment and Pℓ is left of λ. Let Sℓ be
the sites in the closed region Pℓ, and Sr := S \ Sℓ. For each site p ∈ S, we then find the
point pλ on λ closest to p. Note that this point is unique, because the shortest path to a line
segment is unique in a simple polygon. We denote by Sλ the set of all projected sites. As
λ is a line segment, we can define a weighted 1-dimensional Euclidean space on λ, where
w(pλ) := d(p, pλ) for each pλ ∈ Sλ. We compute a t-spanner Gλ = (Sλ, Eλ) for this set. For
each pair (pλ, qλ) ∈ Eλ, we add the edge (p, q), which is π(p, q), to our spanner G. Finally,
we recursively compute spanners for Sℓ and Sr, and add their edges to G as well.

▶ Lemma 2. The graph G is a geodesic
√

2t-spanner of size O(n log2 n).

Proof. As Gλ has O(n log n) edges (Lemma 1) that directly correspond to edges in G, and
the recursion has O(log n) levels, we have O(n log2 n) edges in total. Let p, q be two sites
in S. If both are in Sℓ (or Sr), then there is a path of length

√
2td(p, q) by induction. So,

we assume w.l.o.g. that p ∈ Sℓ and q ∈ Sr. Let r be the intersection point of π(p, q) and λ.
Observe that pλ and qλ must be on opposite sides of r, otherwise r cannot be on the shortest
path. We assume, without loss of generality, that pλ is above r and qλ below r. Because
Gλ is a t-spanner, we know that there is a weighted path from pλ to qλ of length at most
tdw(pλ, qλ). As w(pλ) = d(p, pλ), this directly corresponds to a path in the polygon. So,

dG(p, q) ≤ dGλ
(pλ, qλ) ≤ tdw(pλ, qλ) = t(d(p, pλ) + |pλr| + |rqλ| + d(qλ, q)). (1)

Let z be the point where the shortest paths from p to pλ and r separate. See Figure 3 for
an illustration. Consider the right triangle T = (z, z′, r), where z′ is the intersection point
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of the line perpendicular to λ through z and the line containing λ. Note that z′ does not
necessarily lie within P . For this triangle we have that

|zr| ≥
√

2
2 (|zz′| + |z′r|). (2)

Next, we show that the path from z to pλ is a y-monotone convex polygonal chain ending
at or below z′. Consider the vertical ray through z upwards to the polygon boundary. We
call the part of ∂P between where the ray hits ∂P and λ the top part of ∂P . Similarly, for a
downwards ray, we define the bottom part of ∂P . There are no vertices on π(z, pλ) from the
bottom part of ∂P , because such a vertex would then also occur on the shortest path to r.
This is in contradiction with the definition of z. If z sees z′, then pλ = z′, otherwise the chain
must bend at one or more vertices of the top part of ∂P , and thus lie below z′. It follows
that π(z, pλ) is contained within T . Similarly, we conclude that π(z, r) is contained within
T . Additionally, this gives us that d(z, pλ) ≤ |zz′| + |z′pλ|, and d(z, r) ≥ |zr|. Together with
Equation (2) this yields d(z, pλ) + |pλr| ≤ |zz′| + |z′r| ≤

√
2|zr| ≤

√
2d(z, r). And thus

d(p, pλ) + |pλr| = d(p, z) + d(z, pλ) + |pλr| ≤ d(p, z) +
√

2d(z, r) ≤
√

2d(p, r).

Symmetrically, we find for q that d(q, qλ) + |qλr| ≤
√

2d(q, r). From this, together with
Equation (1), we conclude that dG(p, q) ≤ t

(√
2d(p, r) +

√
2d(r, q)

)
=

√
2td(p, q). ◀

Applying Lemma 2 to the spanner of Section 2 yields a 2
√

2-spanner of size O(n log2 n).

3.2 Low complexity geodesic spanners
In general, a geodesic spanner G = (S, E) in a simple polygon with m vertices may have
complexity O(m|E|). It is easy to see that the 2

√
2-spanner of Section 3.1 can have complexity

Ω(nm), just like the spanners in [3]. As one of the sites, c, is connected to all other sites,
the polygon in Figure 4 provides this lower bound. The construction in Figure 4 even shows
that the same lower bound holds for the complexity of any (3 − ϵ)-spanner. Additionally, the
following theorem implies a trade-off between the spanning ratio and the spanner complexity.

▶ Theorem 3. For any constant ε ∈ (0, 1) and integer constant t ≥ 2, there exists a set
of n point sites in a simple polygon P with m = Ω(n) vertices for which any geodesic
(t − ε)-spanner has complexity Ω(mn1/(t−1)).

The proofs of these lower bounds are in the full version [19]. Next, we present a spanner
that almost matches this bound. We first present a 4

√
2-spanner of bounded complexity, and

then generalize the approach to obtain a (2k + ε)-spanner of complexity O(mn1/k + n log2 n),
for any integer k ≥ 2.

3.2.1 A 4
√

2-spanner of complexity O(m
√

n + n log2 n)
To improve the complexity of the geodesic spanner, we adapt our construction for the
additively weighted spanner Gλ as follows. After finding the site cλ ∈ Sλ for which dw(cλ, O)
is minimal, we do not add all edges (pλ, cλ), pλ ∈ Sλ, to Gλ. Instead, we form groups of sites
whose original sites (before projection) are “close” to each other in P . For each group Si, we
add all edges (pλ, ci,λ), pλ ∈ Si, to Gλ, where ci,λ is the site in Si for which dw(ci,λ, O) is
minimal. Finally, we add all edges (ci,λ, cλ) to Gλ.

To make sure the complexity of our spanner does not become too large, we must choose
the groups in such a way that the spanner edges do not cross “bad” parts of P too often.
The following lemma states the properties that we require of our groups to achieve this.
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Θ(m)
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Figure 4 Any (3 − ε)-spanner in a simple polygon with m vertices may have complexity Ω(nm).

▶ Lemma 4. If the groups adhere to the following properties, then G has O(m
√

n + n log2 n)
complexity:
1. each group contains Θ(

√
n) sites, and

2. each vertex of P is only used by shortest paths within O(1) groups.

Proof. We will first prove the complexity of the edges in one level of the 1-dimensional
spanner is O(m

√
n + n). Two types of edges are added to the spanner: (a) edges from some

ci to c, and (b) edges from some p ∈ Si to ci. According to property 1, there are Θ(
√

n)
groups, and thus Θ(

√
n) type (a) edges, that each have a complexity of O(m). Thus the total

complexity of these edges is O(m
√

n). Let ri be the maximum complexity of a shortest path
between any two sites in Si and let Vi be the set of vertices this path visits. Property 2 states
that for any v ∈ Vi it holds that |{j | v ∈ Vj}| = O(1), which implies that

∑
i ri = O(m).

The complexity of all type (b) edges is thus O(n) +
∑

i riO(
√

n) = O(m
√

n + n).
Next, we show that in both recursions, the 1-dimensional recursion and the recursion on

Pℓ and Pr, not only the number of sites, but also the complexity of the polygon is divided
over the two subproblems. Splitting the sites into left and right of O corresponds to splitting
the polygon horizontally at O: all sites left (right) of O in the 1-dimensional space lie in the
part of the polygon below (above) this horizontal line segment. Thus, shortest paths between
sites left of O use part of the polygon that is disjoint from the shortest paths between the
sites right of O. This means that for two subproblems we have that m1 + m2 = m, where
mi denotes the maximum complexity of a path in subproblem i. The recursion for the
complexity is now given by

T (n, m) = T (n/2, m1) + T (n/2, m2) + O(m
√

n + n), with m1 + m2 = m.

In the full version [19] we show this solves to T (n) = O(m
√

n + n log n).
Similarly, the split by λ divides the polygon into two subpolygons, while adding at most

two new vertices. As all vertices, except for the endpoints of λ, are in Pℓ or Pr (not both),
the total complexity of both subpolygons is at most m + 4. We obtain the following recursion

T (n, m) = T (n/2, m1) + T (n/2, m2) + O(m
√

n + n log n), with m1 + m2 = m + 4,

which solves to T (n) = O(m
√

n + n log2 n). ◀

To form groups that adhere to these two properties, we consider the shortest path tree
SPT c of c: the union of all shortest paths from c to the vertices of P . We include the sites
p ∈ S \ {c} as leaves in SPT c as children of their apex, i.e., the last vertex on π(c, p). This
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c

c

λ

ppλ

p

Figure 5 The shortest path tree of c. Each group Si has an associated polygonal region Ri in P .

gives rise to an ordering of the sites in S, and thus of the weighted sites in Sλ, based on the
in-order traversal of the tree. We assign the first ⌈

√
n⌉ sites to S1, the second ⌈

√
n⌉ to S2,

etc. See Figure 5.
Clearly these groups adhere to property 1. Proving that they also adhere to property 2 is

more involved. For each group Si, consider the minimal subtree Ti of SPT c containing all
p ∈ Si. Ti defines a polygonal region Ri in P as follows. Refer to Figure 5 for an illustration.
Let vi be the root of Ti. Consider the shortest path π(vi, a), where a is the first site of Si in
Ti by the ordering used before. Let πa be the path obtained from π(vi, a) by extending the
last segment of π(vi, a) to the boundary of P . Similarly, let πb be such a path for the last
site of Si in Ti. We take Ri to be the region in P rooted at vi and bounded by πa, πb, and
some part of the boundary of P , that contains the sites in Si. In case vi is c, we split Ri

into two regions Rj and Rk, such that the angle of each of these regions at c is at most π.
The set Si is then also split into two sets Sj and Sk accordingly. The following three lemmas
on Ri and Ti together imply that the groups adhere to property 2.

▶ Lemma 5. Only vertices of P that are in Ti can occur in Ri.

▶ Lemma 6. All shortest paths between sites in Si are contained within Ri.

▶ Lemma 7. Any vertex v ∈ SPT c occurs in at most two trees Ti and Tj as a non-root node.

Note that the root r of Ti is never used in a shortest path between sites in Si, because
r cannot be a reflex vertex of Ri. Consequently, Lemma 4 states that the spanner has
complexity O(m

√
n + n log2 n).

▶ Lemma 8. The graph G is a geodesic 4
√

2-spanner of size O(n log2 n).

Proof. We prove the 1-dimensional spanner Gλ is a 4-spanner with O(n log n) edges. Together
with Lemma 2, this directly implies G is a 4

√
2-spanner with O(n log2 n) edges.

In each level of the recursion, we still add only a single edge for each site. Thus, the total
number of edges is O(n log n). Again, consider two sites pλ, qλ ∈ Sλ, and let cλ be the chosen
center point at the level where pλ and qλ are separated by O. Let Si be the group of pλ and Sj

the group of qλ. Both the edges (pλ, ci,λ) and (ci,λ, cλ) are in Gλ, similarly for qλ. We thus have
a path pλ → ci,λ → cλ → cj,λ → qλ in Gλ. Using that dw(pλ, ci,λ) ≤ dw(pλ, O) + dw(ci,λ, O),
because of the triangle inequality, and dw(ci,λ, O) ≤ dw(pλ, O), we find:
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dGλ
(pλ, qλ) = dw(pλ, ci,λ) + dw(ci,λ, cλ) + dw(cλ, cj,λ) + dw(cj,λ, qλ)

≤ dw(pλ, O) + 2dw(ci,λ, O) + 2dw(cλ, O) + 2dw(cj,λ, O) + dw(qλ, O)
≤ 4dw(pλ, O) + 4dw(qλ, O)
= 4dw(pλ, qλ) ◀

3.2.2 A (2k + ε)-spanner of complexity O(mn1/k + n log2 n)
In this section we sketch how to generalize the approach of Section 3.2.1 to obtain a spanner
with a trade-off between the (constant) spanning ratio and complexity. Fix N = n1/k, for
some integer constant k ≥ 1. Instead of Θ(

√
n) groups, we create Θ(N) groups. For each

of these groups we select a center, and then partition the groups further recursively. By
connecting each center to its parent center, we obtain a tree of height k. This results in a
spanning ratio of k2

√
2.

Abam et al. [3] refine their spanner construction to obtain a (2+ε)-spanner. We generalize
this refinement in Lemma 3 of the full version [19]. The main idea is as follows. For each
point pλ, we additionally include a collection of O(t2/ε2) evenly spread points on λ close
to pλ in Sλ. For an edge in Gλ between a point in the collection of pλ and a point in the
collection of qλ, we add the edge (p, q) to G. This way, we even obtain a (2k + ε)-spanner.

▶ Lemma 9. For any constant ε > 0 and integer constant k ≥ 1, there exists a geodesic
(2k + ε)-spanner of size O(cε,kn log2 n) and complexity O(cε,k(mn1/k + n log2 n)), where cε,k

is a constant depending only on ε and k.

3.3 Construction algorithm
In this section we propose an algorithm to construct the spanners of Section 3.2. The
following gives a general overview of the algorithm, which computes a (2k + ε)-spanner in
O(n log2 n + m log n) time. In the rest of this section we will discuss the steps in more detail.
1. Preprocess P for efficient shortest path queries and build both the vertical decomposition

VD and horizontal decomposition HD of P .
2. For each p ∈ S, find the trapezoid in VD and HD that contains p. For each trapezoid

∇ ∈ VD, store the number of sites of S that lies in ∇ and sort these sites on their
x-coordinate.

3. Recursively compute a spanner on the sites S in P :
a. Find a vertical chord λ of P such that λ partitions P into two polygons Pℓ and Pr,

and each subpolygon contains at most 2n/3 sites using the algorithm of Lemma 10.
b. For each p ∈ S, find the point pλ on λ and its weight using the algorithm of Lemma 11,

and add this point to Sλ.
c. Compute an additively weighted 1-dimensional spanner Gλ on the set Sλ using the

algorithm of Lemma 12 or Lemma 13.
d. For every edge (pλ, qλ) ∈ Eλ add the edge (p, q) to G.
e. Recursively compute spanners for Sℓ in Pℓ and Sr in Pr.

In step 1, we preprocess the polygon in O(m) time such that the distance between any
two points p, q ∈ P can be computed in O(log m) time [15, 22]. We also build the horizontal
and vertical decompositions of P , and a corresponding point location data structure, as a
preprocessing step in O(m) time [15, 26]. We then perform a point location query for each
site p ∈ S in O(n log m) time in step 2 and sort the sites within each trapezoid in O(n log n)
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time in total. The following lemma describes the algorithm to compute a vertical chord
that partitions P into two subpolygons such that each of them contains roughly half of the
sites in S. It is based on the algorithm of Bose et al. [7] that finds such a chord without
the constraint that it should be vertical. Because of this constraint, we use the vertical
decomposition of P instead of a triangulation in our algorithm.

▶ Lemma 10. In O(n + m) time, we can find a vertical chord of P that partitions P into
two subpolygons Pℓ and Pr, such that each subpolygon contains at most 2n/3 sites of S.

The following lemma states that we can find the projections pλ efficiently. The algorithm
produces not only these projected sites, but also the shortest path tree SPT λ of λ.

▶ Lemma 11. We can compute the closest point pλ on λ and d(p, pλ) for all sites p ∈ S,
and the shortest path tree SPT λ, in O(m + n log m) time.

▶ Lemma 12. Given SPT λ, we can construct a 4-spanner Gλ on the additively weighted
points Sλ, where the groups adhere to the properties of Lemma 4, in O(n log n + m) time.

Proof. The 4-spanner of Section 3.2.1 requires an additional step at each level of the recursion,
namely the formation of Θ(

√
n) groups. We first discuss the running time to construct a

4-spanner when forming the groups as in Section 3.2.1, and then improve the running time
by introducing a more efficient way to form the groups.

In Section 3.2.1, the groups are formed based on the shortest path tree of the site c.
Building the shortest path tree, and a corresponding point location data structure, takes
O(m) time [23]. Then, we perform a point location query for each site to find its apex in the
shortest path tree, and add the sites to the tree. These queries take O(n log m) time in total.
We form groups based on the traversal of the tree. Note that we do not distinguish between
sites with the same parent in the tree, as the tree Ti (and thus the region Ri) obtained
contains the same vertices of P regardless of the order of these sites. After obtaining the
groups, we again add only O(n) edges to the spanner. The overall running time of the
algorithm is thus O((m + n log m) log n).

This running time can be improved by using another approach to form the groups. To
form groups that adhere to the properties of Lemma 4, and thus result in a spanner of the
same complexity, we can use any partition of P into regions Ri, as long Ri as contains Θ(

√
n)

sites and
∑

i ri = O(m). Next, we describe how to form such groups efficiently using SPT λ.
We first define an ordering on the sites. This is again based on the traversal of some

shortest path tree. Instead of considering the shortest path tree of a point site, we consider
the shortest path tree SPT λ of λ. Again, all sites in S are included in this shortest path tree.
Additionally, we split the node corresponding to λ into a node for each distinct projection
point on λ (of the vertices and the sites) and add an edge between each pair of adjacent
points, see Figure 6. We root the tree at the node corresponding to the bottom endpoint
of λ. Whenever a node t on λ has multiple children, in other words, when multiple sites are
projected to the same point t, our assumption that all y-coordinates are distinct ensures that
all these sites lie either in Pℓ or Pr.

The groups are formed based on the in-order traversal of this tree, which can be performed
in O(m + n) time. As before, the first ⌈

√
n⌉ are in S1, the second in S2, etc. The groups

thus adhere to the first property. Next, we show they also adhere to the second property.
For each group Si, we again consider the minimal subtree Ti of SPT λ containing all

p ∈ Si. Ti defines a region Ri in P as follows. Let a be the first site of Si in Ti by the ordering
used before. Assume that a lies in Pℓ. We distinguish two cases: aλ ∈ Ti, or aλ /∈ Ti. When
aλ ∈ Ti, then let πa be the path obtained from π(aλ, a) by extending the last segment to
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Figure 6 The shortest path tree SPTλ and associated polygonal region Ri for each group Si.

the boundary of P . Additionally, we extend πa into Pr horizontally until we hit the polygon
boundary. When aλ /∈ Ti, consider the root vi of Ti. Let πa be the path obtained from
π(vi, a) by extending the last segment of the path to the boundary of P . Similarly, let πb be
such a path for the rightmost site of Si in Ti. We take Ri to be the region in P bounded by
πa, πb, and some part of the boundary of P that contains the sites in Si. See Figure 6. Note
that, as before, only vertices of P that are in Ti can occur in Ri. All shortest paths between
sites in Si are contained within Ri. Just as for the shortest path tree of c, Lemma 7 implies
that any vertex v ∈ SPT λ occurs in at most two trees Ti and Tj as a non-root vertex. We
conclude that any vertex is used by shortest paths within at most two groups.

After splitting λ at a point O, the tree SPT λ is also split into two trees Tℓ and Tr that
contain exactly the sites in Sℓ and Sr. We can thus reuse the ordering to form groups at
each level of the recursion. This way, the total running time at a single level of the recursion
is reduced to O(n). The overall running time thus becomes O(n log n + m). ◀

▶ Lemma 13. Given SPT λ, we can construct a 2k-spanner Gλ on the additively weighted
points Sλ, where groups are formed as in Section 3.2.2, in O(n log n + m) time.

Proof. To construct the (2k + ε)-spanner of Section 3.2.2, we can use the shortest path tree
of λ to form the groups as before. Note that we can select a center for each group after
computing the groups, as including the center in the subgroups does not influence spanning
ratio or complexity. After ordering the sites based on the in-order traversal of SPT λ, we can
build the tree of groups in linear time using a bottom up approach. As before, fix N = n1/k.
We first form the Θ(Nk) lowest level groups, containing only a single site, and select a center
for each group. Each group at level i is created by merging Θ(N) groups at level i − 1, based
on the same ordering. We do not perform this merging explicitly, but for each group we
select the site closest to O of the merged level-(i − 1) centers as the center. Because our
center property, being the closest to O, is decomposable, this indeed gives us the center of
the entire group. This way, we can compute the edges added in one level of the recursion in
linear time, so the running time remains O(n log n + m). ◀

The total running time thus becomes O((n(log n + log m) + m) log n) = O(n log2 n +
m log n). By splitting the polygon alternately based on the sites and the polygon vertices,
we can replace the final O(log n) factor by O(min(log n, log m)). Using the refinement of
Section 3.2.2, step 3 is performed on cε,kn sites, where cε,k is a constant depending only on ε

and k, increasing the running time for this step by a factor O(cε,k). Together with Lemma 9,
we obtain the following theorem.
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Figure 7 No shortest path between two points on P can separate the sites into two groups. We
can separate the sites using three shortest paths, for example using the orange triangle.

▶ Theorem 14. Let S be a set of n point sites in a simple polygon P with m vertices, and let
k ≥ 1 be any integer constant. For any constant ε > 0, we can build a geodesic (2k+ε)-spanner
of size O(cε,kn log2 n) and complexity O(cε,k(mn1/k+n log2 n)) in O(cε,kn log2 n+m log n+K)
time, where cε,k is a constant depending only on ε and k, and K is the output complexity.

4 Spanners in a polygonal domain

We consider a set of point sites S that lie in a polygonal domain P with m vertices and h

holes. Let ∂P denote the boundary of the outer polygon. Suppose we would try the same
construction as we used for a simple polygon in Section 3. Then, in a polygonal domain, we
run into two problems. First, we cannot split the polygonal domain into two subpolygons by a
line segment λ that roughly splits the sites in S, because any line segment that appropriately
partitions S might intersect one or more holes. Second, the shortest path π(p, q) between
two sites p, q ∈ S is no longer homotopic to a path π(p, c) ∪ π(c, q), which means our bound
on the complexity is no longer valid. In the next section, we describe these problems and
how we overcome them in more detail.

4.1 Low complexity geodesic spanners
Subdividing the domain. To apply our 1-dimensional spanner, we require only that the
splitting curve λ is a shortest path in P . Instead of partitioning the domain by a line segment,
we can thus use one or more shortest paths to partition the domain. Allowing only a shortest
path between two points on ∂P as our separator is not sufficient, as it is not always possible
to split the sites roughly equally this way. See Figure 7 for an example. Therefore, we use
a balanced shortest-path separator (sp-separator), based on the balanced sp-separator of
Abam et al. [3].

We use three types of separator: a shortest path between two points on ∂P (1-separator),
two shortest paths starting at the same point and ending at the boundary of a single hole
(2-separator), and three shortest paths π(u, v), π(v, w), and π(u, w) with u, v, w ∈ P (3-
separator). Let Pℓ be the polygonal domain to the left of λ, when λ is a 1-separator, and
interior to λ, when λ is a 2- or 3-separator. Symmetrically, Pr is the domain to the right
of, or exterior to, λ. See Figure 8 for an illustration. In the full version [19], we prove the
existence of such a separator. In the proof, we correct for a missing case in the proof by
Abam et al. [3] for the existence of a separator on a polyhedral terrain, thereby confirming
their result. We also require an additional step in the constructive proof, because unlike
a terrain, a polygonal domain is not continuous. This is where a 2-separator is required,
which does not occur on a terrain. Finally, we provide an algorithm to construct a balanced
sp-separator in a polygonal domain. This results in the following theorem.
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Figure 8 The three types of separators: A 1-separator (blue), a 2-separator (orange), and a
3-separator (green). For each separator Pℓ is the colored region.

c

v

w

Figure 9 Assigning the sites to groups based on the shortest path tree of c, as described in
Section 3.2.1, forms these colored groups. The shortest path from each site to c is shown dashed.
Each shortest path between the two sites of a group visits both vertices v and w.

▶ Theorem 15. Let S be a set of n point sites in a polygonal domain P with m vertices. A
balanced sp-separator exists and it can be computed in O(n2 log m + nm log m) time.

The spanner edges. In Section 3.2.1 and 3.3, we form groups of sites such that the shortest
paths within a group are (almost) disjoint from the shortest paths within other groups. We
use the shortest path tree of c (or λ) to obtain these groups. In a polygonal domain, the
paths π(p, q) and π(p, c) ∪ π(c, q), with p, q, c ∈ P , are not necessarily homotopic. Figure 9
gives an example of how this can result in many groups that use the same vertex of P in
their shortest paths.

So far, we assumed that every edge (p, q) ∈ E is a shortest path between p and q. To
obtain a spanner of low complexity, we can also allow an edge between p and q to be any
path between the two sites, as long as we keep the desired spanning ratio. Note that our
complexity lower bounds still hold in this case. In particular, for an edge (pλ, qλ) in the
1-dimensional spanner, the edge (p, q) that we add to G is no longer π(p, q). Instead, let
(p, q) be the shortest path from p to q via pλ and qλ, excluding any overlap of the path. We
denote this path by πλ(p, q). Formally, πλ(p, q) is defined as follows.

▶ Definition 16. The path πλ(p, q) is given by:
π(p, pλ) ∪ π(pλ, qλ) ∪ π(qλ, q), where π(pλ, qλ) ⊆ λ, if π(p, pλ) and π(q, qλ) are disjoint,
π(p, r) ∪ π(r, q), where r denotes the closest point to p of π(p, pλ) ∩ π(q, qλ), otherwise.
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In the full version [19], we show that using these paths as edges does not increase the
spanning ratio, and prove a similar result to Lemma 4 for this new edge type. Additionally,
we prove that using the shortest path tree of λ for the formation of the groups ensures that
any vertex of P is used by paths πλ(p, q) within only O(1) groups.

4.2 Construction algorithm

As before, let Sℓ be the sites in the closed region Pℓ, and Sr := S \ Sℓ. The following gives an
overview of the algorithm that computes a (2k+ε)-spanner of complexity O(mn1/k +n log2 n)
in O(n2 log m + nm log m) time for a set of point sites S in a polygonal domain P .

1. Find an sp-separator such that P is partitioned into two polygons Pℓ and Pr, and Sℓ

contains at least 2n/9 and at most 2n/3 sites using the algorithm of Theorem 15.
2. For each shortest path λ of the separator:

a. For each p ∈ S find the weighted point pλ on λ and add this point to Sλ.
b. Compute an additively weighted 1-dimensional spanner Gλ on the set Sλ.
c. For every edge (pλ, qλ) ∈ Eλ add the edge (p, q) = πλ(p, q) to G.

3. Recursively compute spanners for Sℓ in Pℓ and Sr in Pr.

According to Theorem 15, step 1 takes O(n2 log m + nm log m) time. In step 2, we find
the projected sites using the shortest path map of λ in O((m + n) log m) time [25], and then
compute the 1-dimensional spanner in O(n log n + m) time as in Lemma 13. This means
that the construction of the sp-separator dominates the construction time of the spanner.

▶ Theorem 17. Let S be a set of n point sites in a polygonal domain P with m vertices, and
let k ≥ 1 be any integer constant. For any constant ε > 0, we can build a geodesic (2k + ε)-
spanner of size O(cε,kn log2 n) and complexity O(cε,k(mn1/k + n log2 n)) in O(cε,k(n2 log m +
nm log m) + K) time, where cε,k is a constant depending only on ε and k, and K is the
output complexity.

We can no longer output the edges implicitly by stating only the endpoints of the edges.
Instead, we output an edge πλ(p, q) implicitly by stating the points pλ and qλ, when π(p, pλ)
and π(q, qλ) are disjoint, or the point r from Definition 16 when they are not disjoint. The
point r is the lowest common ancestor of the nodes p and q in SPT λ. This can be computed
in O(1) time after preprocessing SPT λ in O((n + m) log(n + m)) [5].

4.3 A (2 + ε)-spanner with a dependence on
√

h

Because the computation of a balanced shortest-path separator is quite expensive, we consider
another method to partition the domain by Abam et al. [1] using

√
h simple polygons, where

h is the number of holes in P . In the full version [19], we show this indeed improves the
construction time, albeit at an increase in complexity.

▶ Theorem 18. Let S be a set of n point sites in a polygonal domain P with m vertices and h

holes, and let k ≥ 1 be any integer constant. For any constant ε > 0, we can build a geodesic
(2k + ε)-spanner of size O(cε,k

√
hn log2 n) and complexity O(cε,k

√
h(mn1/k + n log2 n)) in

O(cε,k

√
hn log2 n + m log m + K) time, where cε,k is a constant depending only on ε and k,

and K is the output complexity.
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Abstract
In 1926, Levi showed that, for every pseudoline arrangement A and two points in the plane, A can
be extended by a pseudoline which contains the two prescribed points. Later extendability was
studied for arrangements of pseudohyperplanes in higher dimensions. While the extendability of
an arrangement of proper hyperplanes in Rd with a hyperplane containing d prescribed points is
trivial, Richter-Gebert found an arrangement of pseudoplanes in R3 which cannot be extended with
a pseudoplane containing two particular prescribed points.

In this article, we investigate the extendability of signotopes, which are a combinatorial structure
encoding a rich subclass of pseudohyperplane arrangements. Our main result is that signotopes of
odd rank are extendable in the sense that for two prescribed crossing points we can add an element
containing them. Moreover, we conjecture that in all even ranks r ≥ 4 there exist signotopes which
are not extendable for two prescribed points. Our conjecture is supported by examples in ranks
4, 6, 8, 10, and 12 that were found with a SAT based approach.
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1 Introduction

Given a family of hyperplanes H in Rd, any d points in Rd, not all on a common hyperplane
of H, define a hyperplane which is distinct from the hyperplanes in H. For dimension d = 2,
Levi [14] proved in his pioneering article on pseudoline arrangements that the fundamental
extendability of line arrangements also applies to the more general setting of pseudoline
arrangements. A pseudoline is a Jordan curve in the Euclidean plane such that its removal
from the plane results in two unbounded components, and a pseudoline arrangement is a
family of pseudolines such that each pair of pseudolines intersects in exactly one point, where
the two curves cross properly.
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▶ Theorem 1.1 (Levi’s extension lemma for pseudoline arrangements [14]). Given an arrange-
ment A of pseudolines and two points in R2, not on a common pseudoline of A. Then A
can be extended by an additional pseudoline which passes through the two prescribed points.

Several proofs for Levi’s extension lemma are known today (besides [14], see also [1, 9, 19])
and generalizations to higher dimensions have been studied in the context of oriented matroids,
which by the representation theorem of Folkman and Lawrence [10] have representations as
projective pseudohyperplane arrangements. For more about oriented matroids, see [8].

Goodman and Pollack [12] presented an arrangement of 8 pseudoplanes in R3 and a
selection of three points such that there is no extension of the arrangement with a pseudoplane
containing the points. Richter-Gebert [18] then investigated a weaker version with only two
prescribed points in dimension 3 such that the extending pseudohyperplane contains these
two points. He found an example of a rank 4 oriented matroid on 8 elements such that
there is no one element extension with an element containing the two prescribed cocircuits.
With the representation theorem this implies that even the weaker extendability with two
prescribed points does not hold. The existence of an extension theorem or of counterexamples
in higher dimensions/ranks remains open.

We present a proof of Levi’s extension lemma in a purely combinatorial setting and show
that the proof can be adapted to work for higher dimensions. We represent the geometry by
r-signotopes and prove extendability in even dimensions d, that is, when the rank r = d + 1
is odd; see Theorem 1.2. Surprisingly, there are non-extendable examples in rank 4, 6, 8,
10, and 12. We conjecture that there is no extension theorem for any even rank r ≥ 4; see
Conjecture 1.4.

Signotopes are in close relation to higher Bruhat orders which were introduced by Manin
and Schechtman [15] and further studied in [21]. In rank 3, signotopes correspond to pseudo-
line arrangements in the plane [9]. In higher ranks they are a subclass of pseudohyperplane
arrangements.

Before we formulate our extension theorem for r-signotopes, we introduce some notation
and discuss the relation between pseudoline arrangements and 3-signotopes (in Section 1.1).
This leads to a reformulation of Levi’s extension lemma which will be investigated in the
context of signotopes of odd rank in Section 1.2.

1.1 Signotopes
Signotopes are a combinatorial structure generalizing permutations and simple pseudoline
arrangements (i.e., no three pseudolines cross in a common point). For r ≥ 1 a signotope of
rank r (short: r-signotope) on n elements is a mapping σ from r-element subsets (r-subsets)
of [n] to + or −, i.e., σ :

([n]
r

)
→ {+, −} such that for every (r +1)-subset X = {x1, . . . , xr+1}

(r-packet) of [n] with x1 < x2 < . . . < xr+1 there is at most one sign change in the sequence

σ(X\{x1}), σ(X\{x2}), . . . , σ(X\{xr+1}).

Note that this sequence lists the signs of all induced r-subsets of X in reverse lexicographic
order. For 3-signotopes, the following 8 sign patterns on 4-subsets are allowed:

+ + ++, + + +−, + + −−, + − −−, − − −−, − − −+, − − ++, − + + + .

For sake of readability, we write X = (x1, . . . , xt) to denote a t-subset of [n] with sorted
elements x1 < x2 < . . . < xt. For such an X we denote by Xj = (x1, . . . , xj−1, xj+1, . . . , xt)
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the set without xj . With the convention − < +, the condition about sign changes in
r-signotopes can be written as a monotonicity condition for r-packets X = (x1, . . . , xr+1):

σ(X1) ≤ σ(X2) ≤ . . . ≤ σ(Xr+1) or σ(X1) ≥ σ(X2) ≥ . . . ≥ σ(Xr+1).

It is well-known that every arrangement of pseudolines is isomorphic to an arrangement
of x-monotone pseudolines [11]. In such a representation, we label the pseudolines from top
to bottom on the left by 1, . . . , n. Since two pseudolines cross exactly once, the pseudolines
appear in reversed order on the right. Now the corresponding 3-signotope σ is obtained as
follows: The sign of σ(a, b, c) for a < b < c indicates the orientation of the triangle formed by
the pseudolines a, b, c (see Figure 1). If the crossing of a and c is below b, it is σ(a, b, c) = +
and if the crossing of a and c is above b, it is σ(a, b, c) = −. In the following we identify the
crossings with the elements which cross, i.e. for 3-signotopes crossings are subsets of size 2.
The 3-signotope σ gives information about the partial order of the crossings from left to
right. If σ(a, b, c) = + it holds ab ≺ ac ≺ bc and if σ(a, b, c) = − it is bc ≺ ac ≺ ab.

a

b

c

+
a

b

c
−

Figure 1 Connection between pseudoline arrangements and 3-signotopes.

Felsner and Weil [9] showed that rank 3 signotopes are in bijection with simple pseudoline
arrangements in R2 with a fixed top cell. For r ≥ 4, r-signotopes correspond to special
pseudohyperplane arrangements in Rr−1, i.e., they are a subclass of oriented matroids of
rank r. A geometric representation of r-signotopes in the plane is presented in [16] (see
also [3] for the rank 3 case).

1.2 An extension theorem for signotopes
In Levi’s extension lemma for pseudoline arrangements, each of the two prescribed points
can either lie in a cell of the arrangement, on one pseudoline, or be the crossing point of
two pseudolines. To formulate an extension lemma in terms of 3-signotopes we restrict
our considerations to simple pseudoline arrangements and to crossing points as prescribed
points. Since the extending pseudoline passes through the two prescribed crossing points, the
extension yields a non-simple arrangement. However, by perturbing the extending pseudoline
at the non-simple crossing points, we arrive at a simple arrangement, see Figure 2.

Figure 2 Perturbing an extending pseudoline at the two non-simple crossing points.

A perturbation at a prescribed crossing together with the new inserted pseudoline yields
a triangular cell incident to the crossing. This cell is bounded by the two pseudolines

SoCG 2023
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defining the crossing and the extending pseudoline. Triangular cells play an important role
in the study of pseudoline arrangements, since it is possible to change the orientation of a
triangle by moving one of the pseudolines over the crossing of the two others. Such a local
perturbation is called a triangle flip, it does not change the orientation of any other triangle
in the arrangement. The triangular cells of the arrangement represented by a 3-signotope σ

are in one to one correspondence with 3-subsets such that if we change the sign of this
3-subset in σ we obtain a new signotope σ′. We call such a 3-subset a fliple. The notion of
fliples generalizes to higher ranks. In an r-signotope σ on [n], an r-subset X ⊆ [n] is a fliple
if both assignments + and − to σ(X) result in a signotope. It is worth noting that fliples
in signotopes are the analogon of mutations in oriented matroids. While every signotope
contains at least two fliples [9], it remains a central open problem in combinatorial geometry
to decide whether every uniform oriented matroid contains a mutation [8, Chapter 7.3].

Let A be an arrangement of pseudolines, which are labeled 1, . . . , n from top to bottom
on the left. When applying Levi’s extension lemma to extend A the left endpoint of the
extending line ℓ will be between two consecutive endpoints of pseudolines of A. To re-establish
the properties of the labeling, we have to set the label of ℓ accordingly and increase the label
of every pseudoline that starts below ℓ by one. To cope with this relabeling-issue in terms of
signotopes, we introduce the following notion. For k ∈ [n] and a subset X of [n], we define

X↓k = {x | x ∈ X, x < k} ∪ {x − 1 | x ∈ X, x > k}.

Note that the cardinality of X and X↓k is the same if and only if k /∈ X. For an r-signotope
σ on [n], we define the deletion of an element k ∈ [n] as σ↓k by

σ↓k(X↓k) := σ(X)

for all r-sets X ⊆ [n] with k /∈ X. This is an r-signotope on [n − 1] because each r-packet
has been an r-packet for σ.

▶ Definition. An r-signotope σ on [n] is t-extendable if for all pairwise disjoint (r − 1)-
subsets I1, . . . , It ∈

( [n]
r−1

)
, there exists k ∈ [n + 1] and an r-signotope σ∗ on [n + 1] with

fliples I∗
1 , . . . , I∗

t such that σ∗↓k = σ, and I∗
j ↓k = Ij for all j = 1, . . . , t. Hence the element k

extends σ to σ∗.

Note that a t-extendable r-signotope on n ≥ (r − 1)t elements is clearly (t− 1)-extendable.
While the 1-extendability is a simple exercise1, the first interesting part is the 2-extendability,
which we investigate in this paper.

▶ Theorem 1.2 (An extension theorem for signotopes of odd rank). For every odd rank r ≥ 3,
every r-signotope is 2-extendable.

Surprisingly, our proof of Theorem 1.2 (see Section 3) generalizes to the more general
setting, where the (r − 1)-subsets I and J , which are fliples in the extension, intersect.

▶ Corollary 1.3. Let σ be an r-signotope on [n], I and J be two (r − 1)-subsets of [n] such
that |I ∩ J | + r is odd. Then σ is extendable to an r-signotope σ∗ on [n + 1] with fliples I∗, J∗

and an extending element k ∈ [n + 1] such that σ∗↓k = σ, and I∗↓k = I, and J∗↓k = J .

1 For the sake of completeness, we give a proof of 1-extendability in Corollary 3.2 which uses more evolved
techniques.
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Despite the restrictions to simple arrangements and crossing points as prescribed points
we can derive Levi’s extension lemma (Theorem 1.1) in its full generality with little extra
work from Theorem 1.2. Details are deferred to Section 5.

The statement of Theorem 1.2 applies only to signotopes of odd rank. This is not just
a defect of our proof because signotopes in even rank indeed behave differently. For ranks
r = 4, 6, 8, 10, 12 we found signotopes on n = 2r elements, which are not 2-extendable. The
examples and the source code to verify their correctness are available as supplemental data [4];
see Section 4 for details. Based on these examples, we dare to conjecture:

▶ Conjecture 1.4 (No extension theorem for signotopes of even rank). For every even rank
r ≥ 4, there is an r-signotope which is not 2-extendable.

1.3 Signotopes as a rich subclass of oriented matroids
It is well known that the number of oriented matroids of rank r on n elements is 2Θ(nr−1)

[8, Corollary 7.4.3]. As shown by Balko [2, Theorem 3], r-signotopes are a rich subclass
of oriented matroids of rank r; see the full version [5] for a shorter proof of the following
proposition.

▶ Proposition 1.5 (Balko [2]). For r ≥ 3, the number of r-signotopes on [n] is 2Θ(nr−1).

In ranks 1 and 2 there are 2n and n! signotopes on [n], respectively. Rank 1 signotopes
are mappings from [n] to {+, −} without any additional property and 2-signotopes are
permutations. For rank r ≥ 3, the precise number of r-signotopes on [n] has been computed
for small values of r and n; see A6245 (rank 3) and A60595 to A60601 (rank 4 to rank 10)
on the OEIS [17].

2 Preliminaries

We now prepare for the proof of Theorem 1.2. As discussed in Section 1.1, signotopes of
rank 3 can be represented by an arrangement with x-monotone pseudolines. The order of the
crossings from left to right gives a partial order on the 2-subsets. In general, r-signotopes can
be represented by a sweepable arrangement of pseudohyperplanes in Rr−1, which similarly
allows to define a partial order on (r − 1)-subsets which correspond to the crossings of r − 1
elements. This partial order is combinatorially defined as follows. For an r-signotope σ and
every r-subset X = (x1, . . . , xr) define:

X1 ≻ X2 ≻ · · · ≻ Xr if σ(x1, . . . , xr) = +, and
X1 ≺ X2 ≺ · · · ≺ Xr if σ(x1, . . . , xr) = −.

Recall that we use the convention x1 ≤ . . . ≤ xr and Xi = X\{xi}. By taking the transitive
closure of all relations obtained from r-subsets, we obtain a partial order on the (r−1)-subsets
corresponding to σ [9, Lemma 10].

If we rotate an arrangement of pseudolines, i.e., we choose another unbounded cell as the
top cell, we get a pseudoline arrangement with the same cell structure. However, the signotope
does not stay the same. If we rotate only a single pseudoline, then the orientation of the
triangle spanned by 3 pseudolines stays the same if and only if the rotated pseudoline is not
involved (see for example the triangle spanned by {2, 3, 4} in the left-hand side arrangement,
resp. {1, 2, 3} in the right-hand side arrangement in Figure 3). When rotating clockwise,
the first element of σ becomes the last one in the rotated signotope σrot. In terms of the
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Figure 3 An illustration of a clockwise rotation of pseudolines. The rotated pseudoline is
highlighted red.

3-signotope σ the signs of the rotated signotope σrot are: σrot(a, b, c) = σ(a + 1, b + 1, c + 1)
if c ̸= n and σrot(a, b, n) = −σ(1, a + 1, b + 1).

In general, we define the clockwise rotated signotope σrot of a given r-signotope σ as:

σrot(x1, . . . , xr) =
{

−σ(1, x1 + 1, . . . , xr−1 + 1) if x1 < x2 < · · · < xr = n,

σ(x1 + 1, . . . , xr + 1) if x1 < x2 < · · · < xr < n.

Here we use the usual convention − · + = − and − · − = +. To keep track of the index
shift caused by a clockwise rotation, we define xrot = x − 1 if x ̸= 1 and 1rot = n, and

Xrot = {xrot : x ∈ X} =
{

(x1 − 1, x2 − 1, . . . , xk − 1) if x1 > 1;
(x2 − 1, . . . , xk − 1, n) if x1 = 1

for any subset X = (x1, . . . , xk) of [n] with x1 < . . . < xk. Note that this allows us to write
σrot(Xrot) = σ(X) if 1 ̸∈ X and σrot(Xrot) = −σ(X) if 1 ∈ X.

As the following lemmas show, this is indeed an r-signotope, which moreover has essentially
the same fliples. The proofs and further properties are deferred to the full version [5].

▶ Lemma 2.1. Let σ be an r-signotope on [n]. Then σrot is an r-signotope on [n].

▶ Lemma 2.2. Let σ be an r-signotope and let F be a fliple of σ. Then Frot is a fliple in
the clockwise rotated signotope σrot.

3 Extension theorem for signotopes

In this section, we give a proof for the extension theorem for signotopes of odd rank. The
central ingredient of our proof is as follows. If σ is an r-signotope on [n] and the prescribed
two (r−1)-sets I and J are incomparable in the partial order associated with σ (see Section 2),
then σ is extendable by a “last” element n + 1 such that I ∪ {n + 1} and J ∪ {n + 1} are
fliples in the extension. Figure 2 gives an illustration for the rank 3 case. More abstractly we
can extend the signotope when there is a down-set in the partial order on (r − 1)-sets which
has I and J as maximal elements. A down-set of a partial order (P, ≺) is a subset D ⊆ P
such that for all p ∈ P and d ∈ D with p ⪯ d it holds p ∈ D. Similarly, an up-set is a subset
U ⊆ P such that for all p ∈ P and u ∈ U with p ⪰ u it holds p ∈ U .

▶ Proposition 3.1 (Extension for incomparable elements). Let (P, ≺) be the partial order on
(r − 1)-sets corresponding to an r-signotope σ on [n]. For every down-set D ⊆ P there exists
an r-signotope σ∗ on [n + 1] such that all r-subsets of the form M ∪ {n + 1}, where M is a
maximal element of D, are fliples of σ∗ and σ∗↓n+1 = σ.
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Proof. Define the extended r-signotope σ∗ on [n + 1] as follows:

σ∗(x1 . . . , xr) =


σ(x1, . . . , xr) if x1, . . . , xr ∈ [n];
+ if xr = n + 1 and {x1, . . . , xr−1} ∈ D;
− if xr = n + 1 and {x1, . . . , xr−1} ̸∈ D.

First we show that σ∗ is an r-signotope on [n+1]. Consider an r-packet X = (x1, . . . xr+1).
We need to show that the sequence

σ∗(X1), σ∗(X2), . . . , σ∗(Xr+1)

has at most one sign change.
If xr+1 ≤ n, then all signs on the considered r-subsets are the same as for σ. Since σ is

an r-signotope, there is at most one sign change in the sequence.
In the other case, we have xr+1 = n + 1. For all j ≤ r we have n + 1 ∈ Xj . Furthermore,

σ∗(Xr+1) = σ(Xr+1) because n + 1 ̸∈ Xr+1. We consider two cases. First, if σ(Xr+1) = +
we have by definition of the partial order

X\{xr+1, xi} ≻ X\{xr+1, xj} for i < j.

By the property of a down-set this means that, whenever X\{xr+1, xi} ∈ D, we also have
X\{xr+1, xj} ∈ D for i < j. Let i∗ be the smallest integer such that X\{xr+1, xi∗} ∈ D.
Then by definition of σ∗ we have σ∗(Xj) = − for all j < i∗ and σ∗(Xj) = + for all j ≥ i∗.

Similar arguments apply if σ(Xr+1) = −. Then we have

X\{xr+1, xi} ≺ X\{xr+1, xj} for i < j.

This time let i∗ be the smallest integer such that X\{xr+1, xi∗} ̸∈ D. Then by definition
of σ∗ we have σ∗(Xj) = + for all j ≤ i∗ and σ∗(Xj) = − for all j > i∗.

Let M be a maximal element of the down-set D. By the analysis above it follows that
M ∪ {n + 1} is adjacent to a sign change in each packet in which it is contained. Hence it is
a fliple. ◀

From this proposition it follows that for all r ≥ 2 all r-signotopes are 1-extendable.
Moreover the 1-extension contains the extending element at the last position.

▶ Corollary 3.2 (1-extendability). For r ≥ 2 let σ be an r-signotope on [n] and I an (r − 1)-
subset. Then there is an extending r-signotope σ∗ on [n + 1] elements such that I ∪ {n + 1}
is a fliple and σ∗↓n+1 = σ.

The following two propositions show that, for odd rank, we can always find a rotation of
the corresponding signotope such that the two prescribed (r − 1)-subsets are incomparable.
We can then use Proposition 3.1 to define an extension.

▶ Proposition 3.3. Let σ be an r-signotope on [n]. For two (r − 1)-subsets I, J with I ≺ J

and 1 /∈ I ∩ J , it holds Irot and Jrot are incomparable in ≺rot or Irot ≺rot Jrot.

The proof of Proposition 3.3 needs some more structural properties of the partial order
and its interaction with the rotation. The details are deferred to the full version [5].

▶ Proposition 3.4. Let r ≥ 3 be an odd integer, let σ be an r-signotope on [n] and let I, J

be two disjoint (r − 1)-subsets. After at most n − 1 clockwise rotations, σ, I, and J are
transformed into σ′, I ′, and J ′, resp., such that I ′ and J ′ are incomparable in the partial
order ≺′ corresponding to σ′.
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Proof. Assume I and J are comparable in the partial order ≺ corresponding to the r-
signotope σ with I ≺ J , otherwise we are done. We show that after n clockwise rotations, all
signs of σ are reversed. Hence the partial order ≺′ corresponding to the (possible multiple
times) rotated signotope σ′ is the reversed relation to ≺.

The sign of an r-subset (z1, . . . , zr) changes from + to − or vice versa if and only if the
rotated element is contained in (z1, . . . , zr), i.e., if we rotate z1. Hence after rotating n times
in total every zi was rotated and thus the sign of an r-subset changes exactly r times. Since
r is odd, the sign after rotating n times is opposite. The obtained signotope σ′ is the reverse
of the original signotope σ and the corresponding partial order is also reversed.

Furthermore we cannot reverse the order of two disjoint (r − 1)-sets in one rotation as
shown in Proposition 3.3. Hence there will be a moment where the two disjoint sets are
incomparable. ◀

Although the following lemma is trivial in the setting of pseudoline arrangements, we
need to prove it in the context of general r-signotopes. We show that the extension of a
rotated signotope when rotated back does contain the original signotope. To show this we
need to investigate the interaction between the rotation and deletion of elements.

▶ Lemma 3.5. Let σ be an r-signotope on [n] and x ∈ [n]. Then it is σrot↓n = σ↓1 and
σrot↓xrot = (σ↓x)rot for x ̸= 1.

Proof. Because of the index shift it does not matter whether we delete the first element or
we rotate σ such that in the first element becomes the last and delete the last element in
this rotated signotope. Hence the first part σrot↓n = σ↓1 holds.

Now assume x ̸= 1 which implies xrot ̸= n. Both mappings are r-signotopes on [n − 1].
We need to check whether they map to the same signs. Let X be an r-subset of [n − 1] and
let X∗ be an r-subset of [n] with xrot /∈ X∗ and X∗↓xrot = X. We obtain

σrot↓xrot(X) = σrot↓xrot(X∗↓xrot) = σrot(X∗).

We will now rewrite the term to get the statement. Recall that rotating an r-signotope
on n elements exactly 2n times results in the original signotope. Hence rotating 2n − 1
times corresponds to a counterclockwise rotation, i.e., the inverse operation of a clockwise
rotation. We denote this counterclockwise rotation by rot(−1). Since xrot /∈ X∗, we have
x /∈ (X∗)rot(−1). By definition it is

σrot(X∗) = ε · σ((X∗)rot(−1)) = ε · σ↓x(((X∗)rot(−1))↓x) = ε · σ↓x(Xrot(−1)) = (σ↓x)rot(X),

where the sign ε = + (resp. ε = −) if n /∈ X∗ (resp. n ∈ X∗). Note that n ∈ X∗ is equivalent
to 1 ∈ Xrot(−1) for x ̸= 1. This completes the proof of the lemma. ◀

With Proposition 3.1, Proposition 3.4 and Lemma 3.5 we are now ready to prove
Theorem 1.2.

3.1 Proof of Theorem 1.2
Let σ be an r-signotope on [n] and let I, J be a pair of disjoint (r − 1)-subsets. By
Proposition 3.4 there exists k ∈ {0, . . . , n − 1} such that the k-fold rotated (r − 1)-subsets
Irot(k), Jrot(k) are incomparable in the k-fold rotated signotope σrot(k).

To extend the signotope σrot(k), we use the down-set D consisting of Irot(k), Jrot(k), and
all (r − 1)-subsets below. In this down-set Irot(k) and Jrot(k) are maximal elements since they
are incomparable. Hence we can apply Proposition 3.1 in order to add a new element at
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position n + 1 in the rotated signotope σrot(k) such that Irot(k) ∪ {n + 1} and Jrot(k) ∪ {n + 1}
are fliples. The extended signotope is denoted by σ∗

rot(k) and fulfills σ∗
rot(k)↓n+1 = σrot(k).

Finally, we need to find a rotation of σ∗
rot(k) which contains the original signotope σ. For

this we perform k+1 counterclockwise rotations (or equivalently, 2n+1−k clockwise rotations)
and denote the so-obtained signotope by σ∗. Note that we perform k + 1 counterclockwise
rotations since the newly added element needs to be rotated and the k-fold clockwise rotation
needs to be undone. After k + 1 counterclockwise rotations, the added element n + 1 in
σ∗

rot(k) becomes the element k + 1 in σ∗. It remains to show that σ∗↓k+1 = σ.
After the first counterclockwise rotation, the added element n + 1 in σ∗

rot(k) becomes the
first element 1 in (σ∗

rot(k))rot(−1). By Lemma 3.5 it holds ((σ∗
rot(k))rot(−1))↓1 = (σ∗

rot(k))↓n+1 =
σrot(k). After additional k counterclockwise rotations, the added element n + 1 in σ∗

rot(k)
becomes the element k + 1 in σ∗. Furthermore I ∪ {k + 1} and J ∪ {k + 1} are fliples of
σ∗ by Lemma 2.2. Since we do not rotate the extending element, applying the second part
of Lemma 3.5 multiple times shows ((σ∗

rot(k))rot(−1))↓1 = (σ∗↓k+1)rot(k). Together with the
previous equation this shows σrot(k) = (σ∗↓k+1)rot(k), which further implies σ = σ∗↓k+1.
Hence we obtain the signotope σ when deleting k + 1 from σ∗. This completes the proof of
Theorem 1.2.

3.2 Proof of Corollary 1.3
To prove Corollary 1.3, we proceed similar as in the proof of Theorem 1.2. By Proposition 3.1,
it suffices to show that after some rotations the (r − 1)-subsets corresponding to I and J are
incomparable.

Let s = |I ∩ J |. Since Theorem 1.2 covers the case s = 0, we may assume s ≥ 1. We
consider the following two cases.

First, assume that r is odd and s is even. For odd rank r, we have already seen that after
n rotations, the signotope is reversed and hence the corresponding partial order is reversed.
For even s, the relation between I and J is reversed s times (whenever we rotate one element
x ∈ I ∩ J). These are the only s times where we reverse the order in one single rotation.
Since s is even and the order is reversed after n rotations, the corresponding (r − 1)-subsets
must be incomparable in between.

Second, assume that r is even and s is odd. For even rank r, the n-fold rotation leaves
the signotope unchanged and hence also the partial orders are the same. Since s is odd, we
reverse the orientation of I and J exactly s times in a single rotation step. Hence they must
be incomparable in between.

The statement now follows from Proposition 3.1 and Lemma 3.5 similar as in the proof
of Theorem 3.1. This completes the proof of Corollary 1.3.

4 Examples in even rank: SAT attack and properties

Since the proof for the extension theorem (Theorem 1.2) applies only for odd ranks, we had
to investigate even ranks in a different manner. For rank 4, we used computer assistance
to enumerate all signotopes and then tested 2-extendability for each signotope. On 6 and
7 elements all 4-signotopes are 2-extendable. On 8 elements we found non-2-extendable
4-signotopes. For both, the enumeration and the 2-extendability test, we modeled SAT
instances which were then solved using the python interfaces pycosat [20] and pysat [13] to
run the SAT solver picosat, version 965, [6] and cadical, version 1.0.3 [7], respectively.

Using this two-level-SAT approach we managed to find the first examples of 4-signotopes
which are not 2-extendable. In order to keep symmetries and similarities of our nicely
structured example of rank 4, we restricted our search space to examples in rank r on
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2r elements. While for rank 4 all signotopes on 8 elements can be enumerated within a
few seconds, the complete enumeration in higher ranks is unpractical as the number of
r-signotopes on 2r elements grows faster than doubly exponential in r (cf. Proposition 1.5).
Hence, to be able to approach higher ranks, we further analyzed the structure of our non-2-
extendable rank 4 examples together with an analyze of the already found rank 6 examples.
These made it possible to find a recursive construction. See Section 4.3 for more details.

With the observed properties as additional constraints, we further restricted the search
space so that only “reasonable” candidates were enumerated. Under these restrictions, we
managed to find examples for rank 6, 8, 10, and 12 which are not 2-extendable.

4.1 SAT model for enumeration

To encode r-signotope on n elements, we proceed as following. We use Boolean variables SX

for every X ∈
([n]

r

)
to indicate whether σ(X) = +. To ensure that these variables model a valid

signotope, we add constraints which ensure that for every r-packet Y = {y1, . . . , yr+1} ∈
( [n]

r+1
)

there is at most one sign-change in the sequence

σ(Y1), . . . , σ(Yr+1).

More precisely, since there are exactly 2r + 2 possible assignment of this sequence, we
introduce auxiliary variables TY,t for t ∈ {1, . . . , 2r + 2} to indicate which of the assignments
applies.2

Next we introduce auxiliary variables FX,Y for every r-packet Y ∈
( [n]

r+1
)

and every r-tuple
X ∈

(
Y
r

)
to indicate whether X is a fliple when σ is restricted to Y . This is done in a

similar fashion as for the SX variables. Using the FX,Y variables, we can assert the variables
FX =

∨
Y ∈( [n]

r+1) : X⊂Y
FX,Y for every X ∈

([n]
r

)
to indicate whether X forms a fliple. Last

but not least, we introduce variables LX,k to indicate whether X is the k-th fliple. This will
allow us to enumerate only configurations with a prescribed number of fliples.

4.2 SAT model for testing 2-extendability

We are now ready to formulate a SAT instance to decide whether a given signotope σ on
[n] and given disjoint (r − 1)-tuples I, J can be extended by an additional element n + 1
such that I ∪ {n + 1} and J ∪ {n + 1} are fliples in the extension σ∗. This is sufficient to
test extendability since whenever there is an extension, there is a rotation such that the
signotope is extendable by an element at the last position. As in Section 4.1, we create a
SAT instance to find an (n + 1)-element signotope but we add constraints to fix σ and to
assert that I ∪ {n + 1} and J ∪ {n + 1} are fliples in σ∗.

For a given signotope σ on elements [n] we can now iterate over all disjoint (r − 1)-tuples
I, J and test whether there is a rotation of σ and I, J such that in the extension σ∗ by the
element n + 1 the r-tuples I ∪ {n + 1} and J ∪ {n + 1} are fliples. If for some I, J no such
rotations exists, we have certified that σ is not 2-extendable.

2 Alternatively one can assert ¬SYi
∨SYj

∨¬SYk
and SYi

∨¬SYj
∨SYk

for every Y and 1 ≤ i < j < k ≤ r+1.
Even though this approach does not require auxiliary variables to indicate the types of (r + 1)-tuples,
we need these auxiliary variables to assign the variables for fliples later anyhow.
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4.3 Structure of the examples supporting Conjecture 1.4
In order to find the first witnessing examples for Conjecture 1.4 in rank 4, we used the
two-step SAT approach as described in Sections 4.1 and 4.2. To make investigations in
higher ranks, we had to get a better understanding of the examples found in rank 4. Hence
we filtered those with regularities and symmetries to come up with a generalization of the
observed properties and analyzed their structure. Our aim was to find a relation between
examples in different ranks, for example using projection and deletion arguments. For this
we investigated the structure of our rank 4 examples together with some already found rank
6 examples.

One of the first and crucial observations was that there exist signotopes such that
for every choice of even indices I ⊂ Er :={2, 4, . . . , 2r} and every choice of odd indices
J ⊂ Or :={1, 3, . . . , 2r − 1} there is no such extension. In fact, for such examples it is
sufficient to check I = {2, 4, . . . , 2r − 2} and J = {1, 3, . . . , 2r − 3} to verify the non-2-
extendability. This observation not only allowed us to restrict the search space, but also to
speed up the extendability-test by a factor of Θ(r2) since not all pairs of (r − 1)-tuples I, J

need to be tested.
While we came up with further observations one by one over the time, we here give a

summary of all the properties, which we desire from the examples in rank r with n = 2r

elements. In the following we denote by X = (x1, x2, . . . , xr) an r-tuple and use the notation
(−)i = + if i is even and (−)i = − if i is odd.

(a) σ = σrot(4), where σrot(4) is obtained by the 4-fold rotation of σ.
(b) σ(2, 4, . . . , 2r) = − and σ(1, 3, . . . , 2r − 1) = +.
(c) If there is only one even or only one odd element in X, then the sign σ(X) depends

only on the position of that element in X. More specifically: If e = xi is the only even
element in X, then σ(X) = (−)i. If o = xi is the only odd element in X, then it is
σ(X) = (−)i+1.

(d) If x1, . . . , xi ∈ Er and xi+1, . . . , xr ∈ Or with 2 ≤ i ≤ r − 2, then the sign is σ(X) =
(−)i+1.

(e) Let x1, . . . , xi ∈ Or and xi+1, . . . , xr ∈ Er for 2 ≤ i < r − 2. If xr < 2r, then σ(X) = −.

If xj = 2j for all j = i + 1, . . . , r, then σ(X) = +.

Furthermore, we fix the following set of 8 fliples for rank 4.

F4 = {(1, 3, 5, 7), (2, 4, 6, 8), (2, 3, 7, 8), (1, 3, 4, 8),
(1, 2, 4, 7), (3, 5, 6, 8), (4, 5, 7, 8), (3, 4, 6, 7)}

Together with the 4-fold symmetry it is sufficient to mention only some of them:

F̂4 = {(1, 3, 5, 7), (2, 4, 6, 8), (4, 5, 7, 8), (3, 4, 6, 7), (1, 2, 4, 7)}

In rank 4, there are only four signs which are not determined by the above properties:

(1, 3, 4, 8), (4, 5, 7, 8), (2, 3, 7, 8), (3, 4, 6, 7)

By the 4-fold symmetry, the assignment of (1, 3, 4, 8) also determines the sign of (4, 5, 7, 8),
and vice versa. The third and fourth tuple have a similar interaction. Hence, there are
precisely 4 signotopes in rank 4 which fulfill the above properties. We fix one of the four
configurations (the choice does not play a role) and refer to it as σ4 in the following.

In order to find examples in higher ranks, we use the following property.
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Figure 4 An illustration how Theorem 1.2 implies Levi’s extension lemma (Theorem 1.1). When
perturbing the top-left arrangement, the multi-crossing point p (the intersection of 2, 3, and 4) is
split into three simple crossing points, including the point p′ (the intersection of 2 and 3). After the
extension, we again contract these three crossing points to one multi-crossing point.

(f) Let σr−2 be an example of rank r − 2 on 2r − 4 elements. For an r-tuple X ⊆ [2r] with
1, 3 /∈ X and 2, 4 ∈ X, we define the sign

σr(X) = σr−2(X↓1,2,3,4),

where X↓1,2,3,4 = (((X↓4)↓3)↓2)↓1 denotes the (r − 2) tuple on [2r − 4]. Note that
X↓1,2,3,4 is obtained by deleting the elements 2 and 4 from X and a further index shift
by −2 caused by deleting3 1 and 3, which are not contained in X.

Altogether, if we start with one example from rank 4 and recursively construct examples
in higher ranks with the desired properties and further prescribe (r/2)2 + (r/2) + 2 fliples for
rank r, it finally turned out that there is a unique example in each of the ranks r = 6, 8, 10, 12.
All examples and the source code to verify their correctness are available as supplemental
data [4].

In the future we hope to find an argument for the non-2-extendability based on the
described properties and construct an infinite family of examples. Even though we conjecture
that there is an infinite family, we want to clarify that we found examples in rank 4 and 6
which do not have the above properties and hence the assumptions might also be too strong.

5 Theorem 1.2 implies Levi’s extension lemma (Theorem 1.1)

As outlined in Section 1.2, it is sufficient to prove Levi’s extension lemma for simple
arrangements of pseudolines and for crossing points as prescribed points. Given a non-simple
arrangement, we can slightly perturb the multiple crossing points (as depicted in Figure 2)

3 Inspired by the language of oriented matroids, such an operation might be called contraction.
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to obtain a simple arrangement. We obtain simplicial cells instead of the multiple crossings.
This simple arrangement can then be extended, and each of the multiple crossing points of
the original arrangement can again be obtained by contracting the simplicial cells to a point.
Whenever a prescribed point lies on a pseudosegment or inside a cell, we can extend the
arrangement through an adjacent crossing. By perturbing the extending pseudoline, we can
ensure that the pseudoline passes through the originally prescribed point.
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1 Introduction

Extending partial drawings of graphs while preserving certain desirable properties such as
planarity is an algorithmic problem that received considerable attention in the last decade
in graph theory, graph drawing, and computational geometry. Drawing extension problems
are motivated, for instance, by visualizing networks, in which certain subgraphs represent
important motifs that require a specific drawing, or by visualizing dynamic networks, in
which new edges and vertices must be integrated in an existing, stable drawing. Generally
speaking, we are given a graph G and a (typically connected) subgraph H of G with a
drawing Γ(H), which is called a partial drawing of G. The drawing Γ(H) typically satisfies
certain topological or geometric properties, e.g., planarity, upward planarity, or 1-planarity,
and the goal of the corresponding extension problem is to extend Γ(H) to a drawing Γ(G) of
the whole graph G (if possible) by inserting the missing vertices and edges into Γ(H) while
maintaining the required drawing properties.

A fundamental result in this line of research is the work of Angelini et al. [1], who showed
that for planar graphs with a given partial planar drawing, the extension problem can be
solved in linear time, thus matching the time complexity of unconstrained planarity testing.
In fact, there is also a corresponding combinatorial characterization of planar graphs with
extensible partial planar drawings via forbidden substructures [25]. In contrast to the above
results, which consider topological graph embeddings, the planar drawing extension problem
is NP-hard in its geometric variant, where one has to decide if a partial planar straight-line
drawing Γ(H) can be extended to a planar straight-line drawing of G [30].

In this paper, we study the geometric drawing extension problem arising in the context
of one of the most fundamental graph drawing styles: orthogonal drawings [12, 16, 19, 29]. In
a planar orthogonal drawing, edges are represented as polylines comprised of (one or more)
horizontal and vertical segments with as few overall bends as possible, where edges are not
allowed to intersect except at common endpoints. Orthogonal drawings find applications in
various domains from VLSI and printed circuit board (PCB) design, to schematic network
visualizations, e.g., UML diagrams in software engineering, argument maps, or flow charts.

Given the above, a key optimization goal in orthogonal drawings is bend minimization.
This task is known to be NP-hard [22] when optimizing over all possible combinatorial
embeddings of a given graph, but can be solved in polynomial time for a fixed combinatorial
embedding using the network flow model of Tamassia [31]. Interestingly, the complexity of
the bend minimization problem without a fixed embedding depends on the vertex degrees,
which in the classical case of vertices being represented as points is naturally bounded by
4. If, however, the maximum vertex degree is 3, then there is a polynomial-time algorithm
for bend minimization [4], and this result has recently been improved to linear time [15];
more generally, the problem is fixed-parameter tractable (FPT) in the number of degree-4
vertices [14]. In addition, it has been recently shown that the bend minimization problem is
in XP (slice-wise polynomial) parameterized by the treewidth of the input graph [13].

Despite the general popularity of planar orthogonal graph drawings, the corresponding
extension problem has only been considered recently [2]. While the authors of that paper
showed that the existence of a planar orthogonal extension can be decided in linear time,
the orthogonal bend-minimal drawing extension problem in general is easily seen to be
NP-complete as it generalizes the case in which the pre-drawn part of the graph is empty [22].
Our paper addresses the parameterized complexity of the bend-minimal extension problem for
planar orthogonal graph drawings under the most natural parameterization of the problem,
which is the size of the subgraph that is still missing from the drawing. This parameter can
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be assumed to be small in many applications, e.g., when extending drawings of dynamic
graphs with few added edges and vertices, and has been used broadly in the study of previous
topological drawing extension problems (see, e.g., [17, 18]).

Contributions. In this paper, we establish the fixed-parameter tractability of the Bend-
Minimal Orthogonal Extension (BMOE) problem when parameterized by the size κ

of the missing subgraph (see the formal problem statement in Section 2). A general difficulty
we had to overcome on our way to obtain our fixed-parameter algorithm is the fact that while
there have been numerous recent advances in the parameterized study of drawing extension
problems [18,21,23], the specific drawing styles considered in those papers were primarily
topological in nature, while for bend minimization the geometry of the instance is crucial. In
order to overcome this difficulty, we develop a new set of tools summarized below.

In Section 3, we make the first and simplest step towards fixed-parameter tractability
of BMOE by applying an initial branching step to simplify the problem. This step allows
us to reduce our target problem to Bend-Minimal Orthogonal Extension on a Face
(F-BMOE), where the missing edges and vertices are drawn only in a marked face f and we
have some additional information about how the edges are geometrically connected.

Next, in Section 4, we focus on solving an instance of F-BMOE. We show that certain
parts of the marked face f are irrelevant and can be pruned away, and also use an involved
argument to reduce the case of f being the outer face to the case of f being an inner face.

Once that is done, we enter the centerpiece of our approach in Section 5, where the aim
is to obtain a suitable discretization of our instance. To this end, we split the face f into
so-called sectors, which group together points that have the same “bend distances” to all of
the connecting points on the boundary of f . Furthermore, we construct a sector-grid – a
point-set such that each sector contains a bounded number of points from this set, and every
bend-minimal extension can be modified to only use points from this set for all vertices and
bends. While this latter result would make it easy to handle each individual sector by brute
force, the issue is that the number of sectors can be very large, hindering tractability.

To deal with this obstacle, we capture the connections between sectors via a sector graph
whose vertices are precisely the sectors and edges represent geometric adjacencies between
sectors. Crucially, in Section 6 we show that the sector graph has treewidth bounded by a
function of κ. This is non-trivial and relies on the previous application of the pruning step in
Section 4. Having obtained this bound on the treewidth, the last step simply combines the
already constructed sector grid with dynamic programming to solve F-BMOE (and hence
also BMOE). It is perhaps worth pointing out the interesting contrast between the use of
treewidth here as an implicit structural property of the sector graph – a crucial tool in our
fixed-parameter algorithm – with the previously considered use of treewidth directly on the
input graph – which is not known to lead to fixed-parameter tractability [13].

Related work. Several variants of drawing extension problems have been studied over the
years. For instance, Chambers et al. [10] studied the problem of drawing a planar graph
using straight-line edges with a prescribed convex polygon as the outer face, and proposed
a method that produces drawings with polynomial area. Mchedlidze et al. [28] provide a
characterization (which can be tested in linear time) to determine whether given a planar
straight-line convex drawing of a biconnected subgraph G′ of a planar graph G with a fixed
planar embedding, this drawing can be extended to a planar straight-line drawing of G.
Recently, Eiben et al. studied the problem of extending 1-planar drawings. While the
problem was known to be NP-complete, they showed [18] that the problem is FPT when
parameterized by the edge deletion distance. Later, in [17], they showed that the 1-planar
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(a) Γ(G)
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(b) Γ(H)

Figure 1 An orthogonal drawing of (a) a graph G and (b) a subgraph H of G.

extension is polynomial-time solvable when the number of vertices and edges to be added
to the partial drawing is bounded. Hamm and Hliněný also studied the parameterized
complexity of the extension problem in the setting of crossing minimization [23].

Other types of extension problems have also been investigated, e.g., Da Lozzo et al. [27]
studied the upward planarity extension problem, and showed that this is NP-complete even
for very restricted settings. Brückner and Rutter [9] showed that the partial level planarity
problem is NP-complete again in severely restricted settings. For non-planar graph drawings,
it is even NP-hard to determine whether a single edge can be inserted into a simple partial
drawing of the remaining graph, i.e., a drawing in which any two edges intersect in at most
one point [3]. Extension problems have been investigated also for other types of graph
representations, in particular for intersection representations such as circular arc graphs [20]
or circle graphs [8]. In the context of bend-minimal planar orthogonal drawing extension,
Angelini et al. showed that the problem remains NP-hard even when a planar embedding of
the whole graph is provided in the input [2].

2 Preliminaries and Basic Tools

We assume familiarity with basic concepts in parameterized complexity theory, notably fixed-
parameter tractability and treewidth [11], and with standard graph drawing terminology.
Recall that a planar drawing Γ(G) is orthogonal if each edge is a polyline consisting of
horizontal and vertical segments. A bend in a polygonal chain representing an edge in Γ(G)
is a point shared by two consecutive segments of the chain. For instance, Figure 1a shows an
orthogonal drawing of a graph G in which edge ax has three bends.

Problem Statement. Let G be a planar graph and H be a connected subgraph of G. We
call the complement X = V (G) \ V (H) the missing vertex set of G, and EX = E(G) \E(H)
the missing edge set. Let Γ(H) be a planar orthogonal drawing of H. A planar orthogonal
drawing Γ(G) extends Γ(H) if its restriction to the vertices and edges of H coincides with
Γ(H). Moreover, Γ(G) is a β-extension of Γ(H) if it extends Γ(H) and the total number of
bends along the edges of EX is at most β, for some β ∈ N. For example, Figure 1a shows a
7-extension Γ(G) of the drawing Γ(H) in Figure 1b, with the missing vertices drawn in red.

Our problem of interest is defined as follows.
Bend-Minimal Orthogonal Extension (BMOE)
Input: (G, H, Γ(H)), integer β

Problem: Is there a β-extension Γ(G) of Γ(H)?

We remark that BMOE is known to be NP-hard even when restricted to the case where
β = 0 and V (H) = ∅ [22]. Also, unless specified otherwise, in the rest of the paper we only
consider orthogonal drawings which are planar. Our parameter of interest is the number of
vertices and edges missing from H, i.e., κ = |V (G) \ V (H)|+ |E(G) \ E(H)|.
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` σ

Figure 2 Two shape-equivalent orthogonal drawings such that the one on the right is obtained
from the one on the left by applying a (σ, ℓ)-strip removal operation.

B
s ε

Figure 3 Two shape-equivalent orthogonal drawings such that the one on the right is obtained
from the one on the left by applying Lemma 2 with the v-selection B.

Basic Tools. We introduce a set of redrawing operations that will be used as basic tools in
several proofs. It is worth noting that similar operations as the ones introduced here, which
are based on shortening or prolonging sets of parallel edges in orthogonal drawings, are well
known (see, e.g., [6]). However, in our specific setting we have parts of the drawing that are
given and cannot be modified, and handling this requires additional care in our arguments.

A feature point of an orthogonal drawing is a point representing either a vertex or a bend
of an edge. An edge-segment of an orthogonal drawing is a segment that belongs to a polyline
representing an edge. Two orthogonal drawings Γ(G) and Γ′(G) of a planar graph G are
shape-equivalent if one can be obtained from the other by only shortening or lengthening some
edge-segments. Figure 2 shows an example of two shape-equivalent drawings; in particular,
the one on the right can be obtained from the one on the left by suitably shortening the
blue (thicker) edge-segments. (We note that in the literature on orthogonal drawings, this is
equivalent to saying that Γ(G) and Γ′(G) have the same shape but two different metrics.)

Let Γ(G) be an orthogonal drawing of a graph G. Let ℓ be a horizontal (vertical) line
that contains no feature points of Γ(G) but intersects a set S of vertical (horizontal) edge-
segments. Let l be the shortest distance between the endpoints of the segments in S and ℓ.
For any 0 < σ < l, a (σ, ℓ)-strip removal operation consists of decreasing the y-coordinates
(x-coordinates) of all feature points above (to the right of) ℓ by σ. Analogously, for any σ > 0,
a (σ, ℓ)-strip addition operation consists of increasing the y-coordinates (x-coordinates) of all
feature points above (to the right of) ℓ by σ. See Figure 2 for an illustration of a (σ, ℓ)-strip
removal operation. The following property readily follows.

▶ Property 1. Let Γ(G) and Γ′(G) be two orthogonal drawings such that Γ′(G) is obtained
from Γ(G) by applying a (σ, ℓ)-strip removal or addition operation. Then Γ(G) and Γ′(G)
are shape-equivalent.

Let B be a rectangle that intersects Γ(G) such that only one side s of B is crossed by
edges of G. We call B a v-selection if s is vertical or a h-selection otherwise. Also, the
subdrawing of Γ(G) inside B is called the B-selected drawing; see Figure 3 for an illustration
of a v-selection and of the next lemma (whose proof easily follows from Property 1).

SoCG 2023
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▶ Lemma 2. Let Γ(G) be an orthogonal drawing and let B be a v-selection (h-selection) of
Γ(G). For any ϵ > 0, there is a drawing Γ′(G) that is shape-equivalent to Γ(G) and such
that the B-selected drawing has width (height) at most ϵ and height (width) equal as in Γ(G).

3 Initial Branching

In this section, we make the first step towards the fixed-parameter tractability of BMOE by
applying an initial branching step to simplify the problem – notably, this will allow us to
focus on only extending the drawing inside a single face of H, and to assume that H is an
induced subgraph of G.

We begin by introducing some additional notation that will be useful throughout the
paper. Let ⟨(G, H, Γ(H)), β⟩ be an instance of BMOE. A vertex w ∈ V (H) is called an
anchor if it is incident to an edge in the missing edge set EX . For a missing edge vw ∈ EX

incident to a vertex v ∈ V (H), we will use “ports” to specify a direction that vw could
potentially use to reach v in an extension of Γ(H); we denote these directions as d which
is an element from {↓ (north), ↑ (south), ← (east), → (west)}. Formally, a port candidate
for vw ∈ EX and v ∈ V (H) is a pair (v, d). A port-function is an ordered set of port
candidates which contains precisely one port candidate for each vw ∈ EX , v ∈ V (H), ordered
lexicographically by v and then by w.

We can now formalize the target problem that we will obtain from BMOE via our
exhaustive branching, which will be the focus of our considerations in Sections 4-6.
Bend-Minimal Orthogonal Extension on a Face (F-BMOE)
Input: A planar graph Gf ; an induced subgraph Hf of Gf with k = |Xf |, where
Xf = V (Gf ) \ V (Hf ); a drawing Γ(Hf ) of Hf consisting of a single inner face f ; a
port-function P.
Task: Compute the minimum β for which a β-extension of Γ(Hf ) exists and such that
(1) missing edges and vertices are only drawn in the face f and (2) each edge vx ∈ EX

where v ∈ V (H) connects to x via its port candidate defined by P, or determine that
no such extension exists.

For the Turing reduction formalized in the next lemma, it will be useful to recall the
definition of BMOE and κ from Section 2.

▶ Lemma 3. There is an algorithm that solves an instance I of BMOE in time 3O(κ)·T (|I|, k),
where T (a, b) is the time required to solve an instance of F-BMOE with instance size a and
parameter value b.

Proof Sketch. We exhaustively branch over all possible faces in which a missing vertex can
be drawn, as well as over possible ports that will be used by each edge incident to an anchor
in H. Also, additional care is needed with each missing edge with both endpoints in H in
order to make H an induced subgraph of G. For this, we branch to determine whether the
edge will be drawn as a straight-line segment (in which case we simply add it to H), or
whether it will have at least one bend (in which case we subdivide it, mark the newly created
vertex as missing, and remember that the total number of bends will decrease by 1). ◀

We note that the marked face f can be either the single inner face of Γ(Hf ) or the outer face.
On a different note, while BMOE was stated as a decision problem for complexity-theoretic
purposes, the output for F-BMOE is either an integer or “No”. Two instances of F-BMOE
are said to be equivalent if their outputs are the same. Note that checking whether an
instance of F-BMOE admits some β-extension can be done in polynomial time by using the
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algorithm in [2]. The pre-drawn graph given as input to the algorithm in [2] will be Γ(Hf )
with a slight modification: if a vertex v makes an angle larger than π

2 in the non-marked face
g of Γ(Hf ), then we add dummy vertices and connect them to v until all angles around v in
g are π

2 . This guarantees that a solution only draws missing vertices inside the marked face f

(and not in g). Hence, we will assume to be dealing with instances where such an extension
exists, and the task is to identify the minimum value of β. We will call a β-extension
minimizing the value of β a solution.

4 Preprocessing

We can now focus on solving an instance of F-BMOE with only a single marked face f being
of interest. The aim of this section is to make the first two steps that will allow us to solve
F-BMOE. This includes pruning out certain parts of the face which are provably irrelevant,
and reducing the case of f being the outer face to the case of f being an inner face.

4.1 Pruning
Let Γ(G) be an orthogonal drawing of a graph G and let f be a face of Γ(G). A reflex corner
p of f is a feature point that makes an angle larger than π inside f . Also, if p is an anchor,
then it is called an essential reflex corner. A projection ℓ of a reflex corner p is a horizontal
or vertical line-segment in the interior of f that starts at p and ends at its first intersection
with the boundary of f . Figure 4 (left) shows two projections ℓ1 and ℓ2 of a reflex corner p.

Observe that each projection ℓ of a reflex corner p divides the face f into two connected
regions, which are themselves orthogonal polygons. If p is not essential and one of the two
regions contains no reflex corners of its own (notice that inside this region, p needs no longer
be a reflex corner) and no anchors, we call the region redundant. Our aim will be to show
that such regions can be safely removed from the instance. More formally, recall that ℓ

intersects the boundary of f in p on one side and in an element e that is either a vertex
u or a point q on an edge of H on the other side of f . The pruning operation at ℓ for a
redundant region ι works as follows. (1) If both p and e are vertices (which are therefore
vertically or horizontally aligned) we add the edge pu into H, whose representation in Γ(H)
is ℓ. (2) If p is a vertex and e is an edge, we modify H by replacing q with a dummy vertex
vq that subdivides e and by adding the edge pvq (whose representation in Γ(H) is ℓ). (3)
If p is part of an edge e′ and e is also an edge, we modify H by replacing p and q with
two dummy vertices vp and vq that subdivide e′ and e and by adding the edge vpvq (whose
representation in Γ(H) is ℓ). We finally remove the boundary of ι from H and Γ(H), except
for the edge-segment ℓ and its end-vertices. The proof of the next lemma easily follows by
suitably using v-/h-selections, see also Figure 5 for an illustration.

▶ Lemma 4. Let I = ⟨Gf , Hf , Γ(Hf ), f,P⟩ be an instance of F-TBOE. Let ℓ be a projection
of some non-essential reflex corner in f , which gives rise to a redundant region ι. Then
pruning ι at ℓ results in an instance Iι that is equivalent to I.

We can show that exhaustively applying Lemma 4 results in an instance with the following
property: each projection of each non-essential reflex corner in f splits f into two faces, each
of which has at least one port on its boundary. We call such instances clean; see Figure 4.

▶ Lemma 5. There is a polynomial-time algorithm that takes as input an arbitrary instance
of F-TBOE and outputs an equivalent instance which is clean.

Given Lemma 5, we will hereinafter assume that our instances of F-TBOE are clean.
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p `1

`2

Figure 4 Left: A reflex corner p and its projections ℓ1 and ℓ2. Middle: A face (striped) with all
its non-essential reflex corners and projections (anchor vertices have a gray filling while non-anchors
are solid). Right: The corresponding clean instance (dummy vertices are drawn as small squares).
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Figure 5 Illustration for the proof of Lemma 4.

4.2 Outer Face
Given an instance of F-BMOE where the marked face f is the outer face of Γ(Hf ), let us begin
by constructing a rectangle that bounds Γ(Hf ) and will serve as a “frame” for any solution.

▶ Observation 6. Let I be an instance of F-BMOE and let R be a rectangle that contains
Γ(Hf ) in its interior. Then I admits a solution that lies in the interior of R.

Based on Observation 6, we shall assume that any instance I is modified such that the
outer face of Γ(Hf ) is a rectangle R containing no anchors (e.g., with four dummy vertices
at its corners connected in a cycle). Notice that, while this ensures that f is no longer the
outer face, f now contains a hole (that is, Hf is not connected anymore). The aim for the
rest of this section is to remove this hole by connecting it to the boundary of R.

To do so, let us consider an arbitrary horizontal or vertical line-segment ζ that connects
the boundary of R with an edge-segment in the drawing Γ(Hf ) and intersects no other
edge-segment of Γ(Hf ). Observe that, w.l.o.g., we can assume that each edge-segment in a
solution Γ(Gf ) only intersects ζ in single points (and not in a line-segment); otherwise, one
may shift ζ by a sufficiently small ϵ to avoid such intersections. Roughly speaking, our aim
will be to show that the instance I can be “cut open” along ζ to construct an equivalent
instance where the boundary of the polygon includes R, and to branch in order to determine
how the edges in a hypothetical solution cross through ζ. However, to do so we need to
ensure that there is a solution, in which the number of such crossings through ζ is bounded.

Let us consider the drawing of a missing edge e ∈ EX in Γ(Gf ). The intersection points of
e with ζ partition the drawing of e into polylines eζ

1, eζ
2, . . . , eζ

q , where each pair of consecutive
polylines eζ

i and eζ
i+1 touch ζ at a point, which we denote by zi (i = 1, . . . , q − 1). We

distinguish two cases depending on the structure of these polylines. A polyline eζ
j , 1 < j < q,

is called a ζ-handle if the unique region of the plane enclosed by eζ
j and ζ does not contain

Γ(Hf ); otherwise the polyline is called a ζ-spiral. See Figure 6 for an illustration.
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R ζ
eζjzj−1

zj

R ζ
eζjzj−1

zj

Figure 6 Illustration of ζ-handles (left) and ζ-spirals (right).

▶ Lemma 7. Assume I and ζ are fixed as above. Then I admits a solution such that no
missing edge contains a ζ-handle.

Proof Sketch. By planarity, the polyline e∗ representing any ζ-handle is not crossed by any
edge (except possibly at common endpoints). Consider the subdrawing Γζ of Γ(Gf ) formed
by all vertices and edge-segments in the interior of the unique region of the plane enclosed
by e∗ and ζ. At high-level, we scale-down Γζ and then define suitably h-/v-selections such
that the transformed version of Γζ can be moved to the other side of ζ without introducing
crossings. At this point we can redraw e∗ such that it does not cross ζ anymore and its
number of bends is not increased. ◀

Next we deal with ζ-spirals: while they cannot be completely avoided, we show that one
can bound the number of ζ-spirals for each edge by a function of the parameter k.

▶ Lemma 8. Assume I and ζ are fixed as above. Then I admits a solution with no ζ-handles
and at most 4k(k + 1) ζ-spirals.

Proof Sketch. The first part of the statement follows by Lemma 7. The second part can
be proved by observing that pairs of consecutive ζ-spirals of the same edge can be shortcut
and merged together into a single ζ-spiral if they do not enclose any vertex. On the other
hand a vertex blocking this operation must be a missing vertex, and hence we have at most
k consecutive blocked pairs for each of the at most 4k missing edges. ◀

With Lemma 8, we obtain that there exists a solution where the total number of edge-
segments crossing through ζ is at most 4k(k + 1). We can use this to branch on which edges
cross through ζ and use this to make a “bridge” connecting R to the hole in f , thus resulting
in an equivalent instance where f is modified to become an inner face with no holes.

▶ Lemma 9. There is an algorithm that takes as input an instance I of F-BMOE where f is
the outer face and solves it in time 2O(k2 log k) ·Q(|I|, k), where Q(a, b) is the time to solve an
instance of F-BMOE with instance size a and parameter value b such that f is the inner face.

Proof Sketch. We can assume that f is an inner face bounded by a rectangle R and containing
a segment ζ defined as above. By Lemma 8, it is not restrictive to consider solutions such
that each missing edge drawn in f contains no ζ-handles and at most 4k(k + 1) ζ-spirals.
That is, we shall consider solutions in which ζ is crossed at most 4k(k + 1) times. The first
task here is to branch over which missing edges will cross ζ (possibly multiple times) and in
which order. The second task is to show that the precise position of these crossings along
ζ is not important, because a hypothetical solution can always be redrawn so to use the
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given crossing points without increasing the number of bends. Once this is done, each such
crossing point can be replaced with a dummy vertex that subdivides ζ and belongs to the
new boundary of f , which now has no holes anymore. To this aim, we can use suitably
defined h-/v-selections and (σ, ℓ)-strip additions. ◀

5 Discretizing the Instances

Our next aim is to define the sector graph and show that it suffices to consider only a bounded
number of possible points in each sector for extending Γ(Hf ). Essentially, this allows us to
combinatorially extract those properties of Γ(Hf ) that are relevant for solving F-BMOE.

5.1 Sectors and the Sector Graph
For a point p ∈ f , the bend distance bd(p, (a, d)) to a port candidate (a, d) is the minimum
integer q such that there exists an orthogonal polyline with q bends connecting p and a in
the interior of f which arrives to a from direction d.

▶ Definition 10. Let P = ((a1, d1), . . . , (aq, dq)) be an ordered set of port candidates. For each
point p ∈ f , we define a bend-vector as the tuple vect(p) = (bd(p, (a1, d1)), . . . , bd(p, (aq, dq))).

▶ Definition 11. Given an ordered set of port candidates P, a sector F is a maximal
connected set of points with the same bend-vector w.r.t. P.

When P is not specified explicitly, we will assume it to be the set of port candidates
provided by the considered instance of F-BMOE. The face f is now partitioned into a set
F of sectors. It is worth noting that sectors are connected regions in the face f , they do
not overlap, and they cover the whole interior of f . We further notice that a sector can
be degenerate, it may be a single point or a line-segment, and that pairs of (non-adjacent)
sectors may have the same bend-vectors. At this point, we can define a graph representation
capturing the adjacencies between the sectors in our instance; see Figure 7 for an illustration.

▶ Definition 12. Sectors A and B are adjacent if there exists a point p in A and a direction
d ∈ {↑, ↓,←,→} such that the first point outside of A hit by the ray starting from p in
direction d is in B.

(a1, d1)

(a2, d2)

(a3, d3)

(a1, d1)

(a2, d2)

(a3, d3)

Figure 7 Left: partitioning a face f into a set F of sectors, with three anchors marked using
white circles. Right: the graph representation of F .

Observe that the relationship of being adjacent is symmetric; furthermore, for a specific
direction d we say that sector A is d-adjacent to B if A is adjacent to B for this choice of d.
The sector graph G is the graph whose vertex set is the set of sectors F , and adjacencies of
vertices are defined via the adjacency of sectors.
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It will be useful to establish some basic properties of the sector graph. For instance, it is
not difficult to observe that the sector graph is a connected planar graph. Furthermore, we
can show that the boundary between two sectors is, in a sense, simple. Concerning its size, we
observe that each sector contains at least one intersection point between two projections and
that any such intersection point can be shared by at most nine sectors (four non-degenerate
sectors plus five degenerate sectors). Hence:

▶ Observation 13. The number of vertices in G is upper-bounded by 9x2, where x is the
number of feature points in Γ(HF ).

5.2 The Sector-Grid
A property of sectors that will become important later is that, inside each sector, we only
need a bounded number of positions for the placement of feature points in a hypothetical
solution. In particular, our aim will be to construct a “universal” point-set with the property
that there exists a solution which places feature points only on these points, and where the
intersection of the point-set with each sector is upper-bounded by a function of the parameter.
Before we construct such a universal point-set, we will first need to subdivide sectors into
“subsectors” which have grid-like connections to each other. Crucially, we will show that the
number of subsectors in each sector is upper-bounded by a function of k.

Let us fix a sector S and a direction d ∈ {↑, ↓,←,→}, say w.l.o.g. d =→. Let a reflex
corner be critical if it is incident to at least two distinct sectors, and (S, d)-critical if it
is critical and also can be reached by a ray from some point in S traveling in direction d.
To construct the subsectors of S, let us project all (S, d)-critical reflex corners (for all four
choices of d) into S to obtain a grid, and make each induced grid cell in S a subsector of S.
Observe that for each subsector in each sector S, it holds that its entire boundary in each
direction is either the boundary of f , or touches the boundary of a single other “adjacent”
subsector (which may or may not belong to S).

Crucially, we show that the number of such subsectors obtained from each sector is not
too large. This will be important when using sectors for dynamic programming in Section 6,
since it will allow us to bound the size of the universal point-set in each sector.

▶ Lemma 14. For each S, d, there are at most 4k (S, d)-critical reflex corners.

By applying Lemma 14 on all sides of each sector S, we obtain that S is partitioned into
at most (8k)2 subsectors. Observe that we may refine the sector graph constructed earlier by
partitioning sectors into subsectors, with adjacencies between subsectors defined in the same
way as between sectors. Note that by definition, each pair of adjacent subsectors share the
complete side of the boundary that connects them. Hence, we can define a subsector-column
as a set of subsectors which form a path in the subsector graph and span the same vertical
strip in Γ(Hf ), and similarly a subsector-row is a set of subsectors which forms a path in the
subsector graph and span the same horizontal strip in Γ(Hf ).

With the above in mind, we proceed to build the universal point-set. As our first step,
we construct an auxiliary set of points we call a skeleton. Let us now choose an arbitrary
horizontal line-segment for each subsector-row that intersects it, and similarly an arbitrary
vertical line-segment for each subsector-column that intersects it. To construct the skeleton,
for each subsector v, we define the point pv to be the point at the intersection of the two
line-segments intersecting the subsector.

Let subgridsize(k) = 112k3 + 202k2 + 85k. We place a set of subgridsize(k) ×
subgridsize(k) points in a grid-like arrangement into each subsector v, where the points
are centered at pv and the grid underlying these points occupies a square area of ϵ× ϵ for a
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sufficiently small ϵ. In particular, we choose ϵ to be sufficiently small so that a horizontal or
vertical projection of any pair of grid points intersects with the same line-segment of Γ(Hf ).
We call this point-set Sv the subsector-grid of a subsector v; in the degenerate cases where v

is a line-segment or single point, the subsector-grid is a set of points on that segment or just
a single point, respectively.

▶ Lemma 15. There exists a solution such that each feature point not in Γ(Hf ) lies on a
subsector-grid point of some subsector.

Proof Sketch. The proof undergoes several steps. We first argue that if a polyline represent-
ing (part of) an edge drawn inside a sector-column (or analogously inside a sector-row) A
contains a large number of bends, then we can redraw it and obtain an equivalent solution.
This requires similar arguments as in Lemmas 7 and 8 (although in a different setting),
together with new arguments dealing with edges that have a “staircase” shape. The second
step is then to prove that similar redrawing arguments can be adopted to show that there
are not too many disjoint polylines that represent the same edge inside A. The last step is
to show that the feature points of a hypotethical solution that lies in a subsector can always
be mapped to the specific point-set defined by the subsector-grid. ◀

From Lemmas 14, 15 and by setting gridsize(k) = subgridsize(k)2 · (8k)2, we obtain:

▶ Corollary 16. Given an instance I of F-BMOE we can construct a point-set (called a
sector grid) in time O(|I|) with the following properties: (1) I admits a solution whose
feature points all lie on the sector grid, and (2) each sector contains at most gridsize(k)
points of the sector grid.

6 Exploiting the Treewidth of Sector Graphs

In this section, we complete the proof of our fixed-parameter tractability result by first
showing that the sector graphs in fact have treewidth bounded by a function of the parameter
k, and then by using this fact to design a dynamic programming algorithm solving F-BMOE.

6.1 Sector Graphs Are Tree-Like
We begin by introducing some notation that will be useful in this subsection. Let P =
((a1, d1), . . . , (aq, dq)) be the ordered set of port candidates for the considered face f . Also,
q ≤ 4k, because the degree of the vertices being added is at most 4. For each 1 ≤ i ≤ q, let
Pi = ((a1, d1), . . . , (ai, di)) be a prefix of length i of P. For each 1 ≤ i ≤ q, we denote by
Fi and Gi the set of sectors and the sector graph, respectively, obtained by considering the
bend distances to Pi. Using this terminology, we obtain that the graph Gq is precisely the
sector graph of our initial instance, which we will also simply denote as G. Furthermore, for
a sector F ∈ V (Gt) we denote by U t+1

F the set of sectors in Gt+1 that F is partitioned into
when one additionally considers bend distances to (at+1, dt+1).

▶ Lemma 17. The sector graph G1 is a tree.

Lemma 17 will be used as a base of an inductive argument establishing a bound on the
treewidth of G. See Figure 8 for an example of the sectors for two port candidates. We start
by considering how each sector F ∈ Ft maps to a subset U t+1

F of sectors in Ft+1. Towards
this aim, let us now consider an arbitrary sector F ∈ Ft for some 1 ≤ t ≤ q. We say that a
line-segment δ on the boundary of F is an F -baseline if (1) each point in F can be reached
by a ray starting at and orthogonal to δ, and (2) δ touches F on one side and points in f \F

on the other side. When F is clear from context, we simply use baseline for brevity.
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(a1, d1)

(a2, d2)

(a1, d1)

(a2, d2)

Figure 8 Sectors with respect to (a) the first port; (b) the second port; (c) P2. For a sector of
each color, the segment on the border highlighted with the same color is its baseline; for (c) different
sectors have different colors, and notice that at the intersection of the rays from (a1, d1) and (a2, d2)
there is also a single point sector.

δ

α

Figure 9 The segments colored red (blue) are local maxima (minima).

▶ Lemma 18. Each sector in Ft, 1 ≤ t ≤ q, admits at least one baseline.

The existence of a baseline is already quite helpful to obtain the desired bound on the
treewidth, but not yet sufficient on its own. In particular, this implies that each sector has
the shape of a histogram. Next, we show that the bend distances to any “additional port”
cannot differ too much within a sector.

▶ Lemma 19. For every sector F ∈ Ft, t ∈ [1, q − 1], and every pair F1, F2 ∈ U t+1
F ,

| bd(p, (at+1, dt+1))− bd(q, (at+1, dt+1))| ≤ 3 for every pair of points p ∈ F1, q ∈ F2.

With Lemmas 18 and 19, we are ready to proceed to the most difficult part of establishing
our bound on the treewidth of the sector graph. Let us fix some F -baseline δ for a sector
F in the sector graph Gt, 1 ≤ t ≤ q. Consider the polyline α obtained when traversing
F in clockwise fashion from one endpoint of δ to the other, where α does not intersect δ.
We call a line-segment in α a local maximum (minimum) if α makes a right (left) turn
both before and after the line-segment (see Figure 9). Let ξmax(F ) (ξmin(F )) denote the
number of local maxima (local minima) in F ; note that since each sector is a histogram,
ξmax(F ) = ξmin(F ) + 1.

▶ Lemma 20. For every sector F ∈ Ft, 1 ≤ t ≤ q − 1, we have |U t+1
F | ≤ 4 + ξmax(F ) and

max
F ′∈Ut+1

F

ξmax(F ′) ≤ ξmax(F ).

Fmin

Fmin

Figure 10 Cases of relative location of the Fmin sector in F relative to the F -baseline, Lemma 20.
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To obtain the main result of this section (Theorem 22), we will combine Lemma 20 with
the following lemma that bounds the number of local maxima in each sector.

▶ Lemma 21. For each sector F in V (G), ξmax(F ) ≤ 4k.

▶ Theorem 22. Let G be a sector graph of a face f of the drawing Γ(G). Then tw(G) ≤
(4 + 4k)4k.

Proof Sketch. We prove the claim by induction on the number of port candidates for f ,
where the base of an induction exactly follows from the result of Lemma 17. For the inductive
step, we assume that tw(Gt) = O(kt) and our aim will be to show that tw(Gt+1) is O(kt+1).
To do so, we replace each occurrence of a sector v in a bag with all of the sectors in U t+1

F . ◀

6.2 The Final Step

At this point, we have shown that an instance I = ⟨Gf , Hf , Γ(Hf ), f,P⟩ with k = |V (Gf ) \
V (Hf )| of F-BMOE admits a sector graph G of treewidth at most (4 + 4k)4k (Theorem 22),
and that a bend-minimal extension of Γ(Hf ) to an orthogonal planar drawing of Gf can
be assumed to only contain feature points on the sector-grid points as per Corollary 16, of
which there are at most gridsize(k) many per sector. This allows us to proceed to the final
ingredient for our algorithm:

▶ Lemma 23. F-BMOE can be solved in time 2kO(1) · |V (Gf )|.

Proof Sketch. Thanks to Theorem 22, we can use known results to compute a nice tree
decomposition (T, χ) of G of small width. Next we design a dynamic program that runs
along T and at each point stores all possible options of how a hypothetical bend-minimal
extension can intersect the sector-grid points of the sectors in the current bag. ◀

By combining Lemma 23 with Lemma 3 and Observation 13, we conclude:

▶ Corollary 24. BMOE can be solved in time 2κO(1) · n, where n is the number of feature
points of Γ(H).

7 Concluding Remarks

We have established the fixed-parameter tractability of the extension problem for bend-
minimal orthogonal drawings, marking a notable addition to our understanding of drawing
extension problems. What distinguishes this result from some of its predecessors on, e.g.,
extending 1-planar [17], simple k-planar [21] or crossing-minimal [23] drawings, is that
these examples were topological while orthogonal planar drawings are geometric in nature.
We believe this is one of the reasons why it seems impossible to use previously developed
techniques in our setting, a fact which inspired the development of a novel machinery that
we believe will find applications beyond the specific context of the problem studied here.

As an example of this, a minor adjustment of our technique is already sufficient to
also obtain a fixed-parameter algorithm for the problem of extending an orthogonal planar
drawing while preserving a bound δ on the number of bends per edge [5, 7] parameterized by
κ + δ. But the technique could also possibly be applied to more general drawing styles, such
as extending drawings restricted to boundedly many allowed edge slopes [24,26].
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Improved Bounds for Covering Paths and Trees in
the Plane
Ahmad Biniaz #
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Abstract
A covering path for a planar point set is a path drawn in the plane with straight-line edges such
that every point lies at a vertex or on an edge of the path. A covering tree is defined analogously.
Let π(n) be the minimum number such that every set of n points in the plane can be covered by
a noncrossing path with at most π(n) edges. Let τ(n) be the analogous number for noncrossing
covering trees. Dumitrescu, Gerbner, Keszegh, and Tóth (Discrete & Computational Geometry,
2014) established the following inequalities:

5n

9 − O(1) < π(n) <
(

1 − 1
601080391

)
n, and 9n

17 − O(1) < τ(n) ⩽
⌊5n

6

⌋
.

We report the following improved upper bounds:

π(n) ⩽
(

1 − 1
22

)
n, and τ(n) ⩽

⌈4n

5

⌉
.

In the same context we study rainbow polygons. For a set of colored points in the plane, a
perfect rainbow polygon is a simple polygon that contains exactly one point of each color in its
interior or on its boundary. Let ρ(k) be the minimum number such that every k-colored point
set in the plane admits a perfect rainbow polygon of size ρ(k). Flores-Peñaloza, Kano, Martínez-
Sandoval, Orden, Tejel, Tóth, Urrutia, and Vogtenhuber (Discrete Mathematics, 2021) proved that
20k/19 − O(1) < ρ(k) < 10k/7 + O(1). We report the improved upper bound of ρ(k) < 7k/5 + O(1).

To obtain the improved bounds we present simple O(n log n)-time algorithms that achieve paths,
trees, and polygons with our desired number of edges.
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1 Introduction

Traversing a set of points in the plane by a polygonal path possessing some desired properties
has a rich background. For example the famous traveling salesperson path problem asks for
a polygonal path with minimum total edge length [6, 29]. In recent years there has been
an increased interest in paths with properties such as being noncrossing [2, 9], minimizing
the longest edge length [8], maximizing the shortest edge length [4], minimizing the total or
the largest turning angle [1, 18], and minimizing the number of turns (which is the same as
minimizing the number of edges) [15, 30] to name a few.

The main focus of this paper is polygonal paths with a small number of edges. It is
related to the classical nine dots puzzle which asks for covering the vertices of a 3×3 grid
by a polygonal path with no more than 4 segments (Figure 1). It appears in Sam Loyd’s
Cyclopedia of Puzzles from 1914 [27].
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Figure 1 The nine dots puzzle.

Let P be a set of n points in the plane. A spanning path for P is a path drawn in the
plane with straight-line edges such that every point of P lies at a vertex of the path and
every vertex of the path lies at a point of P . In other words, it is a Hamiltonian path which
has exactly n − 1 edges. The path in the figure above is not a spanning path because two of
its vertices do not lie on given points. A covering path for P is a path drawn in the plane
with straight-line edges such that every point of P lies at a vertex or on an edge of the path.
A vertex of a covering path can be any point in the plane (not necessarily in P ). The path
in the figure above is a covering path with 4 edges. With these definitions, any spanning
path is also a covering path, but a covering path may not be a spanning path. A covering
tree for P is defined analogously as a tree drawn in the plane with straight-line edges such
that every point of P lies at a vertex or on an edge of the tree. A covering path or a tree is
called noncrossing if its edges do not cross each other. The edges of covering paths and trees
are also referred to as links in the literature [5].

Covering paths and trees have received considerable attention in recent years, see e.g.
[5, 15, 25]. In particular covering paths with a small number of edges find applications in
robotics and heavy machinery for which turning is an expensive operation [30]. Covering
trees with a small number of edges are useful in red-blue separation [20] and in constructing
rainbow polygons [19]. In 2010 F. Morić [14] and later Dumitrescu, Gerbner, Keszegh, and
Tóth [15] raised many challenging questions about covering paths and trees. Specifically they
asked the following two questions which are the main topics of this paper. As noted in [14],
analogous questions were asked by E. Welzl in Gremo’s Workshop on Open Problems 2011.

1. What is the minimum number π(n) such that every set of n points in the plane can be
covered by a noncrossing path with at most π(n) edges?

2. What is the minimum number τ(n) such that every set of n points in the plane can be
covered by a noncrossing tree with at most τ(n) edges?

For both π(n) and τ(n), a trivial upper bound is n − 1 (which comes from the existence
of a noncrossing spanning path) and a trivial lower bound is ⌈ n

2 ⌉ (because if no three points
are collinear then each edge covers at most two points). In 2014, Dumitrescu et al. [15]
established, among other interesting results, the following nontrivial bounds:

5n

9 − O(1) < π(n) <

(
1 − 1

601080391

)
n, and 9n

17 − O(1) < τ(n) ⩽
⌊

5n

6

⌋
.

The following is a related question that has recently been raised by Flores-Peñaloza,
Kano, Martínez-Sandoval, Orden, Tejel, Tóth, Urrutia, and Vogtenhuber [19] in the context
of rainbow polygons. For a set of colored points in the plane, a rainbow polygon is a simple
polygon that contains at most one point of each color in its interior or on its boundary. A
rainbow polygon is called perfect if it contains exactly one point of each color. The size of a
polygon is the number of its edges (which is the same as the number of its vertices).

3. What is the minimum number ρ(k) (known as the rainbow index) such that every k-colored
point set in the plane, with no three collinear points, admits a perfect rainbow polygon of
size ρ(k)?
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Question 3 is related to covering trees in the sense that (as we will see later in Section 4)
particular covering trees could lead to better upper bounds for ρ(k). Flores-Peñaloza et al. [19]
established the following inequalities:

20k

19 − O(1) < ρ(k) <
10k

7 + O(1).

The upper bounds on π(n), τ(n), and ρ(n) are universal (i.e., any point set admits these
bounds) and they are obtained by algorithms that achieve paths, trees, and polygons of
certain size [15, 19]. The lower bounds, however, are existential (i.e., there exist point sets
that achieve these bounds) and they are obtained by the same point set that is exhibited in
[15]. Perhaps there should be configurations of points that achieve better lower bounds for
each specific number.

1.1 Our contributions
Narrowing the gaps between the lower and upper bounds for π(n), τ(n), and ρ(n) are open
problems which are explicitly mentioned in [15, 19]. In this paper we report the following
improved upper bounds for the three numbers:

π(n) ⩽
(

1 − 1
22

)
n, τ(n) ⩽

⌈
4n

5

⌉
, and ρ(k) <

7k

5 + O(1).

The new bounds for π(n) and τ(n) are the first improvements in 8 years. To obtain these
bounds we present algorithms that achieve noncrossing covering paths, noncrossing covering
trees, and rainbow polygons with our desired number of edges. The algorithms are simple
and run in O(n log n) time where n is the number of input points. The running time is
optimal for paths because computing a noncrossing covering path has an Ω(n log n) lower
bound [15]. A noncrossing covering tree, however, can be computed in O(n) time by taking
a spanning star. We extend our path algorithm and achieve an upper bound of (1 − 1

22 )n + 2
for noncrossing covering cycles. This is a natural variant of the traveling salesperson tour
problem with the objective of minimizing the number of links, which is NP-hard [5].

Our algorithms share some similarities with previous algorithms in the sense that both
are iterative and use the standard plane sweep technique which scans the points from left to
right. However, to achieve the new bounds we employ new geometric insights and make use
of convex layers and the Erdős-Szekeres theorem [16].

Regardless of algorithmic implications, our results are important because they provide
new information on universal numbers π(n), τ(n), and ρ(n) similar to the crossing numbers
[3, 13, 22], the size of crossing families (pairwise crossing edges) [28], the Steiner ratio [6, 23],
and other numbers and constants studied in discrete geometry (such as [8, 10, 17]).

Remark. Collinear points are beneficial for covering paths and trees as they usually lead
to paths and trees with fewer edges. To avoid the interruption of our arguments we first
describe our algorithms for point sets with no three collinear points. In the end we show
how to handle collinearities.

1.2 Related problems and results
If we drop the noncrossing property, Dumitrescu et al. [15] showed that every set of n points
in the plane admits a (possibly self-crossing) covering path with n/2 + O(n/ log n) edges.
Covering paths have also been studied from the optimization point of view. The problem of

SoCG 2023
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computing a covering path with minimum number of edges for a set of points in the plane
(also known as the minimum-link covering path problem and the minimum-bend covering
path problem) is shown to be NP-hard by Arkin et al. [5]. Stein and Wagner [30] presented
an O(log z)-approximation algorithm where z is the maximum number of collinear points.

Keszegh [25] determined exact values of π(n) and τ(n) for vertices of square grids. The
axis-aligned version of covering paths is also well-studied and various lower bounds, upper
bounds, and approximation algorithms are presented to minimize the number of edges of such
paths; see e.g. [7, 12, 24]. Covering trees are studied also in the context of separating red
and blue points in the plane [20]. The problem of covering points in the plane with minimum
number of lines is another related problem which is also well-studied, see e.g. [11, 21, 26].

For problems and results related to rainbow polygons we refer the reader to the paper of
Flores-Peñaloza et al. [19]. In particular, they determine the exact rainbow indices for small
values of k by showing that ρ(k) = k for k ∈ {3, 4, 5, 6} and ρ(7) = 8.

1.3 Preliminaries
For two points p and q in the plane we denote by ℓ(p, q) the line through p and q, and by
pq the line segment with endpoints p and q. For two paths δ1 and δ2, where δ1 ends at the
same vertex at which δ2 starts, we denote their concatenation by δ1 ⊕ δ2.

A point set P is said to be in general position if no three points of P are collinear. We
denote the convex hull of P by CH(P ). A set K of k points in the plane in convex position,
with no two points on a vertical line, is a k-cap (resp. a k-cup) if all points of K lie on or
above (resp. below) the line through the leftmost and rightmost points of K. A classical
result of Erdős and Szekeres [16] implies that every set of at least

(2k−4
k−2

)
+ 1 points in the

plane in general position, with no two points on a vertical line, contains a k-cap or a k-cup.
This bound is tight in the sense that there are point sets of size

(2k−4
k−2

)
that do not contain

any k-cap or k-cup [16].

2 Noncrossing covering paths

In this section we prove that π(n) ⩽ (1 − 1/22)n. We start by the following folklore result
on the existence of noncrossing polygonal paths among points in the plane; see e.g. [15, 20].

▶ Lemma 1. Let P be a set of points in the plane in the interior of a convex region C,
and let p and q be two points on the boundary of C. Then P ∪ {p, q} admits a noncrossing
spanning path with |P | + 1 edges such that its endpoints are p and q, and its relative interior
lies in the interior of C.

In fact the spanning path that is obtained by Lemma 1 is a noncrossing covering path for
P ∪ {p, q} and it lies in the convex hull of P ∪ {p, q}. The following lemma shows that any
set of 23 points can be covered by a noncrossing path with 21 edges.

▶ Lemma 2. Let P be a set of at least 23 points in the plane such that no two points have
the same x-coordinate. Let H be the vertical strip bounded by the vertical lines through the
leftmost and rightmost points of P . Then there exists a noncrossing covering path for P with
|P | − 2 edges that is contained in H and its endpoints are the leftmost and rightmost points
of P .

Proof. Our proof is constructive. Let l and r be the leftmost and rightmost points of P ,
respectively. Let P ′ = P \ {l, r}, and notice that |P ′| ⩾ 21. We assume that P ′ is in general
position. In the end of the proof we briefly describe how to handle collinearities. By the



A. Biniaz 19:5

result of [16] the set P ′ has a 5-cap or a 5-cup. After a suitable reflection we may assume
that it has a 5-cup K with points p1, p2, p3, p4, p5 from left to right, as in Figure 2(a). Among
all 5-cups in P ′ we may assume that K is one for which p1 is the leftmost possible point.
Also among all such 5-cups (with leftmost point p1) we may assume that K is the one for
which p5 is the rightmost possible point. This choice of K implies that the region that is
the intersection of H with the halfplane above ℓ(p1, p2) and the halfplane to the left of the
vertical line through p1 is empty of points of P ′; this region is denoted by E1 in Figure 2(a).
Similarly the region that is the intersection of H with the halfplane above ℓ(p4, p5) and the
halfplane to the right of the vertical line through p5 is empty of points of P ′; this region is
denoted by E2 in Figure 2(a).

For brevity let ℓ12 = ℓ(p1, p2) and ℓ45 = ℓ(p4, p5). We distinguish two cases: (i) l lies
below ℓ12 or r lies below ℓ45, and (ii) l lies above ℓ12 and r lies above ℓ45.

(i) In this case we may assume, up to symmetry, that l lies below ℓ12 as in Figure 2. Let
c be the intersection point of ℓ12 with ℓ45, and d be the intersection point of ℓ45 with the
right boundary of H. Since K is a cup, c lies below K and hence in H. Consider the ray
emanating from p4 and passing through c. Rotate this ray clockwise around p4 and stop as
soon as hitting a point in the triangle △p2cp4; see Figure 2(a). Notice that such a point
exists because p3 is in △p2cp4. Denote this first hit by p′

3 (it might be the case that p′
3 = p3).

Then p1, p2, p′
3, p4, p5 is a 5-cup which we denote by K ′ (again, it might be the case that

K ′ = K). Let c′ be the intersection point of the rotated ray with ℓ12. Our choice of p′
3

implies that the triangle △cp4c′ is empty, i.e. its interior has no points of P ; this triangle is
denoted by E3 in Figure 2(a).

p2
p4

p′3

p1

p3

`12
c

c′

C1 C3

E3

d

δ1

δ2

δ3

l

r
p5

C2E1 E2

p2

p′3

p1

`12

d

p5

p3

r

p4

C1

C2

C3

δ1

δ2

δ3

l

E1 E2

(a) (b)

Figure 2 Illustration of the proof of Lemma 2. (a) l lies below ℓ12 and r lies below ℓ45. (b) l lies
below ℓ12 and r lies above ℓ45.

The points of P ′ lie in the interior or on the boundary of three convex regions C1, C2, C3
as depicted in Figures 2(a) and 2(b). The region C1 is the intersection of H and the halfplane
below ℓ12. The region C3 is the intersection of H and the halfplane above ℓ12 and the
halfplane below ℓ45. The region C2 is the intersection of H and five halfplanes (the halfplanes
above the lines ℓ12, ℓ45, ℓ(c′, p4), the halfplane to the right of the vertical line through p1, and
the halfplane to the left of the vertical line through p5). Let Pi be the set of points of P in the
interior (but not on the boundary) of each Ci. Then P1 ∪P2 ∪P3 = P \{l, p1, p2, p′

3, p4, p5, r},
and thus |P1| + |P2| + |P3| = |P | − 7.

SoCG 2023



19:6 Improved Bounds for Covering Paths and Trees in the Plane

We construct a covering path for P as follows. The four points p1, p2, p′
3, p4 can be covered

by the path (p1, c′, p4) which has two edges p1c′ and c′p4. Let δ1 be the noncrossing path
with |P1| + 1 edges that is obtained by applying Lemma 1 on (P1, C1, l, p1) where l and p1
play the roles of p and q in the lemma. We now consider two subcases.

r lies below ℓ45. In this case r is on the boundary of C3, as in Figure 2(a). Let δ2 and δ3
be the noncrossing paths with |P2| + 1 and |P3| + 1 edges that are obtained by applying
Lemma 1 on (P2, C2, p4, p5) and (P3, C3, p5, r), respectively. By interconnecting these
paths we obtain a noncrossing covering path δ1 ⊕ (p1, c′, p4) ⊕ δ2 ⊕ δ3 for P . This path
has (|P1| + 1) + 2 + (|P2| + 1) + (|P3| + 1) = |P | − 2 edges, and it lies in H.
r lies above ℓ45. In this case r is on the boundary of the convex region C2 ∪ E2, as in
Figure 2(b). Let δ2 and δ3 be the noncrossing paths obtained by applying Lemma 1 on
(P2, C2 ∪ E2, p5, r) and (P3, C3, p4, p5), respectively. Then δ1 ⊕ (p1, c′, p4) ⊕ δ3 ⊕ δ2 is a
noncrossing covering path for P . This path has |P | − 2 edges, and it lies in H.

p′3

`12

p2

C2

cc′

L
C3

p4

C1

p1

d
l

δ1

δ2

δ3l′

p5

r

p3

E1 E2

q1

`(q1, q2)
`(q3, q4)

q3

q2

l

q4

qk r

C1

c

δ1

l′

(a) (b)

Figure 3 Illustration of the proof of Lemma 2 where l lies above ℓ12 and r lies above ℓ45. (a)
l′ ̸= p1, and (b) l′ = p1 and r′ = p5 (here p1 = q2 and p5 = qk−1).

(ii) In this case l lies above ℓ12 and r lies above ℓ45. Let L and R be the downward rays
emanating from l and r, respectively. Rotate L counterclockwise around l and stop as soon as
hitting a point l′ of P . Since E1 is empty, l′ is either p1 or a point below ℓ12; see Figure 3(a).
Rotate R clockwise around r and stop as soon as hitting a point r′ of P . Since E2 is empty,
r′ is either p5 or a point below ℓ45. We distinguish two subcases.

l′ ̸= p1 or r′ ̸= p5. Up to symmetry we assume that l′ ̸= p1 as depicted in Figure 3(a).
Define c, c′, d, p′

3 and the 5-cup K ′ as in case (i), and recall that the triangle △cp4c′ is
empty. The points of P ′ lie in the interior or on the boundary of three convex regions
C1, C2, C3 as depicted in Figures 3(a). The region C1 is the intersection of H and the
halfplane below ℓ12 and the halfplane above ℓ(l, l′). The regions C2 and C3 are defined as
in case (i). Let Pi be the set of points of P in the interior (but not on the boundary) of each
Ci. Then P1 ∪P2 ∪P3 = P \{l, l′, p1, p2, p′

3, p4, p5, r}, and thus |P1|+ |P2|+ |P3| = |P |−8.
We cover l and l′ by the edge (l, l′) and cover the four points p1, p2, p′

3, p4 by the path
(p1, c′, p4) which has two edges. Let δ1, δ2, and δ3 be the noncrossing paths with
|P1| + 1, |P2| + 1, and |P3| + 1 edges obtained by applying Lemma 1 on (P1, C1, l′, p1),
(P2, C2 ∪ E2, p5, r), and (P3, C3, p4, p5), respectively; see Figures 3(a). By interconnecting
these paths we obtain a noncrossing covering path (l, l′) ⊕ δ1 ⊕ (p1, c′, p4) ⊕ δ3 ⊕ δ2 for P .
This path has 1 + (|P1| + 1) + 2 + (|P3| + 1) + (|P2| + 1) = |P | − 2 edges, and it lies in H .
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l′ = p1 and r′ = p5. In this case the lower chain on the boundary of CH(P ) has at least
5 vertices, including l, l′, r, r′, and a point in the triangle formed by L, R, and ℓ(p1, p5).
Let k ⩾ 5 be the number of vertices of this chain. Let q1, q2, . . . , qk denote the vertices of
this chain that appear in this order from left to right, as in Figure 3(b). Then q1 = l,
q2 = l′ = p1, qk = r, and qk−1 = r′ = p5.
Let c be the intersection point of ℓ(q1, q2) and ℓ(q3, q4), which lies in H. Then, the
four points q1, q2, q3, q4 can be covered by the path (q1, c, q4). All points of P lie in the
interior or on the boundary of a convex region C1 that is the intersection of H with
the halfplanes above ℓ(q1, q2) and ℓ(q3, q4); this region is shaded in Figure 3(b). Let
P1 be the points of P that lie in the interior (but not on the boundary) of C1. Then
P1 = P \ {q1, q2, q3, q4, qk} and |P1| = |P | − 5. Let δ1 be the covering path with |P1| + 1
edges that is obtained by applying Lemma 1 on (P1, C1, q4, qk) where q4 and qk play the
roles of p and q in the lemma. Then (q1, c, q4) ⊕ δ1 is a noncrossing covering path for P .
This path has 2 + (|P1| + 1) = |P | − 2 edges, and it lies in H.

This is the end of our proof (for P ′ being in general position).
One can simply adjust the above construction to work even if P ′ is not in general position.

For the sake of completeness here we give a brief description of an alternative (and perhaps
simpler) construction when P ′ has three or more collinear points. Let p1, p2, p3 be three
collinear points in P ′ from left to right and let ℓ13 be the line through these points. We
choose p1, p2, p3 in such a way that there is no point of P ′ on ℓ13 to the left of p1 or to the
right of p3. Up to symmetry we have two cases: (i) l lies on or above ℓ13 and r lies on or
below ℓ13, and (ii) both l and r lie below ℓ13.

In case (i) we first obtain a path by applying Lemma 1 on l, p1 and all points above ℓ13.
Then we connect p1 and p3 by one edge which also covers p2. Then we obtain another path
by applying Lemma 1 on r, p3 and all points below ℓ13. This gives a a covering path with
|P | − 2 edges.

In case (ii) we start from l and walk on the vertices of CH(P ) in clockwise direction (and
at the same time cover the visited vertices) and stop at the first vertex, say p0, for which the
next vertex, say x, is on or above ℓ13 (it could be the case that p0 = l). Denote the traversed
path between l and p0 by δl. First assume that x is above ℓ13. We connect p0 to x. Then we
obtain a path by applying Lemma 1 on x, p1 and all points above ℓ13. Then we connect p1
to p3 by one edge which also covers p2. Then we extend the current path to a covering path
for P by applying Lemma 1 on p3, r and the remaining points below ℓ13. Now assume that
x is on ℓ13, in which case x = p1. If there is no point of P ′ above ℓ13 then we connect p1
to p3 by one edge and then extend it to a covering path for P by applying Lemma 1 on p3,
r and the remaining points below ℓ13. Assume that there are points above ℓ13. We repeat
the above process from r by a counterclockwise walk on the vertices of CH(P ), and due to
symmetry, assume that p3 is the first visited vertex that lies on or above ℓ13. Let p4 denote
the vertex of CH(P ) after p3. Notice that p4 lies above ℓ13. Let c be the intersection point
of the lines ℓ(p0, p1) and ℓ(p3, p4). To obtain a covering path, we start with δl, connect its
endpoint p0 to c, and connect c to p3; these two edges cover p1 and p4. Then we continue by
a path obtained from Lemma 1 applied on p3, r and the remaining points. ◀

The following corollary, although very simple, will be helpful in the analysis of our
algorithm.

▶ Corollary 3. Let Q be a set of at least 22 points in the plane and let l be its leftmost point.
Then there exists a noncrossing covering path for Q with |Q| − 2 edges that lies to the right
of the vertical line through l and has l as an endpoint.
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Proof. We add a dummy point r to the right of all points in Q. Let P = Q ∪ {r}. We obtain
a noncrossing covering path δ for P with |P | − 2 edges by Lemma 2. Recall that r is an
endpoint of δ. Also recall from the proof of Lemma 2 that in all cases r gets connected to δ

by a path that is obtained from Lemma 1. No edge of this path has a point of P in its interior
(even if two consecutive edges happen to be collinear, we treat them as two different edges).
Thus, the edge of δ that covers r has no point in its interior. Therefore, by removing r and
its incident edge from δ we obtain a covering path with |Q| − 2 edges for Q that satisfies the
conditions of the corollary. ◀

▶ Theorem 4. Every set of n points in the plane admits a noncrossing covering path with
at most ⌈21n/22⌉ − 1 edges. Thus, π(n) ⩽ (1 − 1/22)n. Such a path can be computed in
O(n log n) time.

Proof. Let P be a set of n points in the plane. After a suitable rotation we may assume that
no two points of P have the same x-coordinate. Draw vertical lines in the plane such that
each line goes through a point of P , there are exactly 21 points of P between any pair of
consecutive lines, no point of P lies to the left of the leftmost line, and at most 21 points of
P lie to the right of the rightmost line; see Figure 4. Each pair of consecutive lines defines a
vertical strip containing 23 points; 21 points in its interior and 2 points on its boundary (the
point on the boundary of two consecutive strips is counted for both strips). For the 23 points
in each strip we obtain a noncrossing covering path with 21 edges using Lemma 2. Each
path lies in its corresponding strip and its endpoints are the two points on the boundary
of the strip. By assigning to each strip the point on its left boundary, it turns out that for
every 22 points we get a path with 21 edges.

21 21 21 ≤ 21

23 m ≤ 22

Figure 4 Illustration of the proof of Theorem 4.

Let m be the number of points on or to the right of the rightmost line, and notice that
m ⩽ 22. We distinguish between two cases m = 22 and m < 22.

If m = 22 (in this case n is divisible by 22) then we cover these 22 points by a noncrossing
path with 20 edges using Corollary 3. The union of this path and the paths constructed
within the strips is a noncrossing covering path for P . The total number of edges in this
path is 21n/22 − 1.

If m < 22 then m = n − 22⌊n/22⌋. In this case we cover the m points by an x-monotone
path with m − 1 edges (dashed segments in Figure 4). Again, the union of this path and the
paths constructed within the strips is a noncrossing covering path for P . The total number
of edges in this path is 21⌊n/22⌋ + m − 1 = n − ⌊n/22⌋ − 1 = ⌈21n/22⌉ − 1.

Each call to Lemma 2 and Corollary 3 takes constant time. Therefore, after rotating and
sorting the points in O(n log n) time, the rest of the algorithm takes linear time. ◀

Our path construction in Theorem 4 achieves a similar bound for covering cycles.
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▶ Corollary 5. Every set of n points in the plane admits a noncrossing covering cycle with
at most ⌈21n/22⌉ + 1 edges. Such a cycle can be computed in O(n log n) time.

Proof. Let δ be the path constructed by Theorem 4 on a point set P of size n. Recall m

from the proof of this theorem. If m < 22 then the two endpoints of δ are the leftmost
and rightmost points of P . Thus, by introducing a new point p with a sufficiently large
y-coordinate and connecting it to the two endpoints of δ, we obtain a noncrossing covering
cycle for P . If m = 22 then the dummy point that was introduced in Corollary 3 could be
chosen suitably to play the role of p. ◀

3 Noncrossing covering trees

In this section we prove the following theorem which gives an algorithm for computing a
noncrossing covering tree with roughly 4n/5 edges. We should clarify that the number of
edges of a tree is different from the number of its segments (where each segment is either
a single edge or a chain of several collinear edges of the tree). For example the tree in
Figure 6(b) has 10 edges and 7 segments, where the segments p1p7 and p5p8 consist of 3 and
2 collinear edges, respectively.

▶ Theorem 6. Every set of n points in the plane admits a noncrossing covering tree with at
most ⌈4n/5⌉ edges. Thus, τ(n) ⩽ ⌈4n/5⌉. Such a tree can be computed in O(n log n) time.

Proof. Let P be a set of n points in the plane. After a suitable rotation we may assume that
no two points of P have the same x-coordinate. We present an iterative algorithm to compute
a noncrossing covering tree for P that consists of at most ⌈4n/5⌉ edges. In a nutshell, the
algorithm scans the points from left to right and in every iteration (except possibly the last
iteration) it considers 4 or 5 new points and covers them with 3 or 4 new edges, respectively.
Thus the ratio of the number of new edges to the number of covered points would be at most
4/5. We begin by describing an intermediate iteration of the algorithm; the first and last
iterations will be described later. We assume that the scanned points in each iteration are in
general position. In the end of the proof we describe how to handle collinearities. Let m be
the number of points that have been scanned so far and let l be the rightmost scanned point
(our choice of the letter l will become clear shortly). We maintain the following invariant at
the beginning of every intermediate iteration.

Invariant. All the m points that have been scanned so far, are covered by a
noncrossing tree T with at most 4⌊m/5⌋ edges. The tree T lies to the left of the
vertical line through l and the degree of l in T is one.

In the current (intermediate) iteration we scan four new points, namely a, b, c, and r

where r is the rightmost point. Let H be the vertical strip bounded by the vertical lines
through l and r (l is the leftmost point and r is the rightmost point in H); see Figure 5(a).
Let Q = {l, a, b, c, r}. We consider three cases depending on the number of vertices of CH(Q).
Notice that r and l are two vertices of CH(Q).

CH(Q) has three vertices. Let a be the third vertex of CH(Q). Then b and c lie in the
interior of CH(Q), as in Figure 5(a). In this case two vertices of CH(Q), say l and r,
lie on the same side of ℓ(b, c). Thus l, b, c, and r form a convex quadrilateral. After
a suitable relabeling assume that l, b, c, r appear in this order along the boundary of
the quadrilateral. Let x be the intersection point of ℓ(l, b) and ℓ(r, c), which lies in the
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triangle △lra. We cover the four scanned points a, b, c, and r by three edges xl, xr, and
xa which lie in H. We add these edges to T . The degree of r is one in the new tree (no
matter which two vertices of CH(Q) lay on the same side of ℓ(b, c)). The invariant holds
and we proceed to the next iteration.

l

r

a

b
c

x

H

l

r
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b

c

x

l
r
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b
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`′
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l′

l
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l′
l

r
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c

b

a

x
`′

(a) (b) (c) (d) (e)

Figure 5 Illustration of the proof of Theorem 6. (a) CH(Q) has three vertices. (b) CH(Q) has
five vertices. (c)-(e) CH(Q) has four vertices.

CH(Q) has five vertices. We explain this case first as our argument is shorter, and also it
will be used for the next case. In this case Q contains a 4-cap or a 4-cup with endpoints
l and r. After a suitable reflection and relabeling assume it has the 4-cup l, b, c, r as in
Figure 5(b). Let x be the intersection point of ℓ(l, b) and ℓ(r, c), and observe that it lies
in H. We cover a, b, c, and r by three edges xl, xr, and xa which lie in H . We add these
edges to T . The degree of r is one in the new tree. The invariant holds for the next
iteration.
CH(Q) has four vertices. After a suitable relabeling assume that b and c are two vertices
of CH(Q) (other than l and r). Thus a lies in the interior of CH(Q). If both b and c lie
above or below ℓ(l, r) then l, b, c, r form a 4-cap or a 4-cup, in which case we cover the
points as in the previous case. Therefore we may assume that one point, say b, lies below
ℓ(l, r) and c lies above ℓ(l, r) as in Figures 5(c)-(e). We consider two subcases.

a lies in the triangle △lbc. By the invariant, l has degree one in T . Let l′ be the
neighboring vertex of l in T . Let ℓ′ be the ray emanating from l′ and passing through l.
We consider two subcases: (i) the segment bc does not intersect ℓ′ and (ii) the segment
bc intersects ℓ′.
In case (i) the segment bc lies below or above ℓ′. By symmetry assume that it lies
below ℓ′. Then a and r also lie below ℓ′, as in Figure 5(c). In this case ℓ(r, c) intersects
ℓ′. Let x be their intersection point, and observe that it lies in H . We replace the edge
l′l of T by l′x (this does not increase the number of edges because l has degree one).
Notice that l′x contains l. Then we cover a, b, c, and r by adding three edges xr, xb,
and xa to T . Therefore the number of edges of T is increased by 3. Moreover, r has
degree one in the new tree, and all the newly introduced edges lie to the left of the
vertical line through r. Thus the invariant holds for the next iteration.
In case (ii) the ray ℓ′ goes through △lbc. The point a lies below or above ℓ′. By
symmetry assume that it lies below ℓ′, as in Figure 5(d). Let x be the intersection
point of ℓ(a, b) and ℓ′, which lies in △lbc. We replace the edge l′l of T by l′x. Then
we cover a, b, c, and r by adding three edges xr, xb, and xc to T . Thus, the number
of edges of T is increased by 3, the vertex r has degree one in the new tree, and all
new edges lie to the left of the vertical line through r. The invariant holds for the next
iteration.
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a lies in the triangle △rbc. Here is the place where we use four new edges to cover
five vertices. In fact the ratio 4/5 comes from this case (In previous cases we were
able to cover four points by three new edges). In this case we scan the next point after
r which we denote by r′, as in Figure 5(e). Now let ℓ′ be the ray emanating from r′

and passing through r. The current setting is essentially the vertical reflection of the
previous case where r and r′ play the roles of l and l′, respectively. We handle this
case analogous to the previous case. Our analysis is also analogous except that now we
consider the edge r′x as a new edge. Thus we use four new edges to cover five points
a, b, c, r, and r′. All new edges lie to the left of the vertical line through r′, and the
degree of r′ is one in the new tree. Thus the invariant holds for the next iteration.

This is the end of an intermediate iteration. The noncrossing property of the resulting tree
follows from our construction. This iteration suggests a covering tree with roughly 4n/5
edges. To get the exact claimed bound we need to have a closer look at the first and last
iterations of the algorithm.

For the first iteration of the algorithm we scan only the leftmost input point. This point
will play the role of l for the second iteration (which is the first intermediate iteration). The
invariant holds for the second iteration because the tree has no edges at this point. If we
happen to use the edge l′l in the second iteration, then we take l′ = l and give the ray
ℓ′ an arbitrary direction to the right. Based on the above construction this could happen
only when we scan four points (a, b, c, r) in the second iteration. In this case the first
five points (l, a, b, c, r) are covered by four edges, and thus the invariant holds for the
following iteration. In the last iteration of the algorithm we are left with w ⩽ 4 points that
are not being scanned. We connect these w points by w edges to the rightmost scanned point.
Therefore, the algorithm covers all points by a noncrossing tree with at most ⌈4n/5⌉ edges.

If three or more of the scanned points are collinear then cover all collinear points by
one edge and connect the left endpoint of this edge to l. Then we connect every remaining
scanned point to l. The number of new edges is at most 3 (for 4 scanned points) and 4 (for 5
scanned points).

Each iteration takes constant time. Therefore, after rotating and sorting the points in
O(n log n) time, the rest of the algorithm takes linear time. ◀

4 Perfect rainbow polygons

Recall that a perfect rainbow polygon for a set of colored points, is a simple polygon that
contains exactly one point of each color in its interior or on its boundary. Figure 6(a) shows
a perfect rainbow polygon of size 9 (nine edges) for an 8-colored point set (i.e. colored by
8 different colors). There is a relation (as described below) between rainbow polygons and
noncrossing covering trees. We employ this relation (similar to [19]) and present an algorithm
that achieves a perfect rainbow polygon of size at most 7k/5 + O(1) for any k-colored point
set.

We adopt the following notation and definitions from [19]. Let T be a noncrossing
geometric tree. Recall that a segment of T is a chain of collinear edges in T . Let M be a
partition of the edges of T into a minimal number of pairwise noncrossing segments. Let s

denote the number of segments in M . A fork of T (with respect to M) is a vertex f that lies
in the interior of a segment ab ∈ M and it is an endpoint of another segment of M . The
multiplicity of f is a number in {1, 2} that is determined as follows. If the segments that
have f as an endpoint lie on both sides of ℓ(a, b) then f has multiplicity 2, otherwise (the

SoCG 2023



19:12 Improved Bounds for Covering Paths and Trees in the Plane
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(a) (b)

Figure 6 (a) A perfect rainbow polygon of size 9 for an 8-colored point set. (b) Left: A noncrossing
tree with ten edges that can be partitioned into seven segments {p1p7, p2p9, p3p8, p4p6, p5p8, p10p11,

p11p9}; p6 and p8 are two forks with multiplicity 1 and p9 is a fork with multiplicity 2. Right:
Obtaining a simple enclosing polygon from the tree.

segments lie on one side of the line) f has multiplicity 1. See the tree in Figure 6(b) for
an example. Let t denote the sum of multiplicities of all forks in T . The following lemma
expresses the size of a polygon enclosing T in terms of s and t.

▶ Lemma 7 (Flores-Peñaloza et al. [19]). Let T be a noncrossing geometric tree and M be a
partition of its edges into a minimal number of pairwise noncrossing segments. Let s be the
number of segments in M and t be the total multiplicity of forks in T . If s ⩾ 2 and t ⩾ 0,
then for every ε > 0 there exists a simple polygon of size 2s + t and of area at most ε that
encloses T .

There are simple intuitions behind Lemma 7. For example if we cut out the tree T from
the plane, then the resulting hole could be expressed as a desired polygon. Alternatively, if
we start from a vertex of T and walk around T (arbitrary close to its edges) until we come
back to the starting vertex, then the traversed tour could be represented as a desired polygon.
See Figure 6(b).

In view of Lemma 7, a better covering tree (i.e. for which 2s + t is smaller) leads to a
better polygon (i.e. with fewer edges). The following theorem (proven in the full version of
the paper at https://arxiv.org/abs/2303.04350) gives a covering tree for which 2s + t

is smaller (compared to that of [19]). Our construction in the proof of this theorem shares
some similarities with the construction in our proof of Theorem 6. However, the details of
the two constructions are different because they have different objectives.

▶ Theorem 8. Let K be a set of k points in the plane in general position. Then, in O(k log k)
time, one can construct a noncrossing covering tree for K consisting of at most ⌈ 3k

5 ⌉ + 2
pairwise noncrossing segments with at most ⌈ k

5 ⌉ forks of multiplicity 1.

With this lemma and theorem in hand, we present our algorithm for computing a perfect
rainbow polygon.

Algorithm. (in a nutshell). Let P be a set of n points in the plane in general position that
are colored by k distinct colors. The algorithm picks one point from each color (arbitrarily),
covers the chosen points by a noncrossing tree (using Theorem 8), and then obtains a perfect
rainbow polygon from the tree (using Lemma 7).

https://arxiv.org/abs/2303.04350
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Analysis. Let K be the set of k chosen points, and let T be the covering tree for K obtained
by Theorem 8. Then s ⩽ ⌈ 3k

5 ⌉ + 2 and t ⩽ ⌈ k
5 ⌉. Thus, the perfect rainbow polygon obtained

by Lemma 7 has size

2s + t ⩽ 2
(⌈

3k

5

⌉
+ 2

)
+

⌈
k

5

⌉
⩽

⌈
7k

5

⌉
+ 6.

The tree T can be obtained in O(k log k) time, by Theorem 8. To obtain a polygon (avoiding
points of P \ K) from T we need to choose a suitable ε in Lemma 7. As noted in [19], half
of the minimum distance between the edges of T and the points of P \ K is a suitable ε,
which can be found in O(n log n) time by computing the Voronoi diagram of the edges of T

together with the points of P \ K. Thus the total running time of the algorithm is O(n log n).
The following theorem summarizes our result in this section.

▶ Theorem 9. Every k-colored point set of size n in the plane in general position admits a
perfect rainbow polygon of size at most ⌈7k/5⌉ + 6. Thus, ρ(k) ⩽ ⌈7k/5⌉ + 6. Such a polygon
can be computed in O(n log n) time.

Remark. The general position assumption is necessary for our algorithm because if a non-
selected point (i.e. a point of P \ K) lies on a segment of T then the resulting polygon is not
a valid rainbow polygon as it contains two or more points of the same color.

5 Concluding remarks

A natural open problem is to improve the presented upper bounds or the known lower bounds
for π(n), τ(n), and ρ(k). Here are some directions for further improvements:

For the proof of Lemma 2 we used a 5-cap or a 5-cup which forced us to scan 21 points
in each iteration (due to the result of Erdős and Szekeres). If one could manage to use a
4-cap or a 4-cup instead, then it could improve the upper bound for π(n) further.
Our iterative algorithm in the proof of Theorem 6, covers 4 points by 3 edges in all cases
except in the last case (where CH(Q) has four vertices and a lies in △rbc) for which it
covers 5 points by 4 edges. The upper bound 4n/5 for τ(n) comes from this case. If one
could argue that this case won’t happen often (for example by showing that it won’t
happen in three consecutive iterations or by choosing a different ordering for points),
then it would lead to a slightly improved upper bound for τ(n).
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1 Introduction

Persistent homology [10,22,23] is a major branch of topological data analysis with applications,
for instance, in shape recognition [5], material science [34] and biology [29,35]. It studies the
homological properties of sequences of topological spaces. A standard construction is to take
the homogeneous union of balls, with increasing radius, centered at finitely many points of
Rd. We call these points sites and refer to that filtration as the union-of-balls filtration. For
computational purposes, one considers the homologically equivalent Čech filtration, which is
a sequence of simplicial complexes that captures the intersection patterns of the balls in the
union-of-balls filtration [22, Chap.3; 30].

The drawback of the Čech filtration (as well as of the closely-related Vietoris-Rips
filtration) is that for n sites, it consists of up to

(
n

m+1
)

m-simplices because every (m + 1)-
subset of balls intersects at a sufficiently large radius. A technique to overcome this large
size is to approximate the Čech (or Vietoris-Rips) filtration with another, much smaller
simplicial filtration with similar topological properties. Technically, that means that the
persistence modules induced by the homology of the Čech filtration and its approximation
are ϵ-interleaved for an arbitrary ϵ > 0 [12]. Several strategies have been devised to construct
such approximations with total size linear in n for any fixed ϵ (see related work). Many of
these approaches work by selecting only a subset of the simplices of the Čech filtration, in
which case we refer to the approximation as a sparsification.
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20:2 Sparse Higher Order Čech Filtrations

The union-of-balls filtration is a special case of the k-fold filtration built upon the k-fold
cover. For n sites in Rd and k ≥ 1 fixed, the k-fold cover is the subset of Rd consisting of
points contained in at least k balls of radius r centered at the sites. Besides being a natural
extension, k-fold filtrations are tightly related with the kth neighbor distance that arises in the
context of outlier removal and processing of non-homogeneous data densities [13,25,42,44].
For that reason, they have received increased attention recently, both with regards to
computational [17,24] and structural aspects [4].

For fixed k, the k-fold filtration can be equivalently expressed by its nerve, which is a
simplicial filtration called the kth order Čech filtration. It captures the intersection patterns
of all k-wise intersections of balls, which we call lenses. The aforementioned size issue for
Čech filtrations is even more important in the kth order case: the filtration is defined over(

n
k

)
vertices (one for each k-subset of sites) and consequently consists of

( (n
k)

m+1

)
m-simplices,

making it unrealistic to compute even for small values of n. Therefore we need to reduce its
size considerably while maintaining a good approximation quality.

Contributions. We propose the first sparsification of the k-fold filtration for a fixed k. It is
a simplicial filtration that, for n sites in Rd (with constant d) and a given parameter ϵ > 0,
is (multiplicatively) (1 + ϵ)-interleaved with the k-fold filtration. Moreover, the number of
m-simplices in our sparsification is

O

(
nkk(m+1)

(
96
ϵ

)δk(m+1)
)

, (1)

where δ is the doubling dimension of Rd. We point out that for constant k and ϵ, the size of
the filtration is linear in the number of sites. This is remarkable because the kth order Čech
filtration, which captures the k-fold filtration exactly, already contains

(
n
k

)
vertices. Hence

our construction avoids including the vast majority of lenses into the sparsification.
We give an output-sensitive algorithm to compute our sparsification up to dimension

mmax in

O

(
nk log n log Φ + Xkk+1

(
96
ϵ

)kδ

· mmax

)

expected time. Here Φ is the spread of the point set (i.e., the ratio of diameter and smallest
distance of two distinct points) and X is the size of the output complex, upper bounded
by (1) with m replaced by mmax. Again considering everything but n as constant, we get a
running time of O(n log n).

Techniques and related work. The seminal work by Sheehy [45] was the first one to
introduce a sparsification technique for Vietoris-Rips filtrations yielding linear size and
O(n log n) running time (assuming all other parameters as constant). His technique extends
to Čech complexes as well with minor adaptations. Subsequent work [6,8,11,19,46] introduces
several extensions, variations, and simplifications of Sheehy’s original sparsification; all these
works share essentially the same size and complexity bounds.

Our results are achieved by combining several of these techniques used for approximating
in the case k = 1, which required non-trivial adaptation for larger values of k. The main
idea is that for every site p, we define a removal radius such that, for radii larger than this
removal radius, all lenses involving p are ignored. That means, for larger and larger radii, we
construct simplicial complexes with fewer and fewer sites to keep the size small. To determine
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the removal radii of sites, we introduce the k-distance permutation which is an ordering of
the sites based on the distance to the kth closest neighbor. The k-distance permutation is a
generalization of the farthest point sampling [31] used in some sparsification schemes [19, 46]
and induces covering and packing properties analogous to those of nets.

Although we opted to extend sparsification techniques, there is an alternative line of
research by Choudhary et al. [14–16] that defines approximations of Čech complexes which
are not sparsifications. They arrive at slightly improved bounds than the sparsification for
k = 1. Approximate filtrations are also actively researched in practice [3, 7, 20,37,41].

The k-fold cover and the higher order Čech complexes are also studied with relation
to multiparameter persistence: considering the order k as a second varying parameter, we
obtain the multicover bifiltration. Blumberg and Lesnick [4] survey different multiparameter
persistence approaches and show a particularly strong stability result for multicovers.
Sheehy [44] introduces the barycentric bifiltrations, which is equivalent to the multicover but
whose size is prohibitively large. The question of computing the multicover bifiltration exactly
has been studied by Edelsbrunner and Osang [25], whose results have been refined by Corbet
et al. [17]. The latter authors obtain an equivalent bifiltration to the multicover one but has
total size (over all choices of k) O(nd+1) for n points in Rd [17, Prop. 5]. Their construction
rely on using higher order Voronoi diagrams and Delaunay complexes [26]. That reduces the
size of Čech complexes, but cannot lead to linear size without further improvements: the
Delaunay filtration’s d-skeleton is of size O(n⌈d/2⌉) [43], which is a substantial improvement
over the O(nd) size of the Čech d-skeleton, but still super-linear for d ≥ 3. Our approximation
foregoes those constructions to reduce the size dependency on n further, with the trade-off
that we get an exponential dependency on k.

The size reduction in our construction is a consequence of ignoring lenses after their
removal radius. The idea of removing a lens beyond a certain radius is justified geometrically
by the fact that the remaining lenses cover its entire area after a certain radius. This is
only true, however, if we freeze a lens before removing it, that is, keep it unchanged for a
short time while the surrounding lenses keep growing. This concept was already introduced
in [11], from where we also adapt the elegant technique of lifting the lenses to convex cones
in Rd × R. The additional dimension, which is the radius r, is needed because removing
simplices is not possible in filtrations.

The major geometric predicate for our computation is whether a set of balls is intersecting,
which can be dualized to computing the radius of the minimal enclosing ball of the ball’s
centers [21,27,28,38]. However, the aforementioned freezing of lenses makes this problem
technically more challenging. This question seems to be unaddressed in previous work, and
we give an efficient solution in the Euclidean setting.

Outline. Section 2 provides background definitions and results. Section 3 defines a k-
distance and uses it to construct the k-distance permutation of a point set P . In Section 4
the permutation is used to define a sparse lens filtration that approximates the k-fold cover.
That results in a nerve filtration that approximates the kth order Čech complex, as shown
in Section 5. The size bound of that filtration is given in Section 6. Section 7 provides an
algorithm for computing the discrete sparse Čech filtration. We conclude with Section 8.

2 Background

Lenses and k-fold covers. Given a point set P ⊆ Rd and a fixed k ∈ N, an element p ∈ P

is called a site and a k-subset of P is a subset with k sites. Let
(

P
k

)
be the collection of all

k-subsets of P and A ∈
(

P
k

)
. Let also Br(a) denote the closed ball centered at a of radius r.
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20:4 Sparse Higher Order Čech Filtrations

Figure 1 Example of 2- (left) and 3-fold (right) covers for a fixed radius.

The lens corresponding to the k-subset A at scale r is

Lr(A) :=
⋂

a∈A

Br(a).

The k-fold cover of P at scale r is the union of lenses at scale r over all k-subsets:

L(r, P ) :=
⋃

A∈( P
k )

Lr(A).

See Figure 1 for an example. Note the omission of k, which we consider fixed, in the notation.
When P is clear from context, we drop it from the notation as well and write Lr instead.

Nerves. We assume that the reader is familiar with (abstract) simplicial complexes [22,
Chap. 3]. For a finite collection C of subsets of Rd, we can define a simplicial complex with
vertex set C, called the nerve of C, as the set of all subsets of C that have a non-empty
mutual intersection. Note that the nerve can contain simplices of larger dimension than d.
The nerve of the set of all lenses of k-subsets of P at scale r is called the kth order Čech
complex with radius r over P , denoted by Čechr (P, k).

Filtrations and equivalence. A collection of topological spaces (e.g., subsets of Rd) C =
{Cr}r≥0 is called a filtration if for all r ≤ r′, it holds that Cr ⊆ Cr′ . The letter r denotes the
scale parameter of the filtration. For P and k fixed, the previous concepts yield two different
ways of obtaining filtrations. On the one hand, since Lr ⊆ Lr′ for r ≤ r′, we get the k-fold
filtration L := {Lr}r≥0. On the other hand, we observe that Čechr (P, k) is a subcomplex of
Čechr′ (P, k) for r ≤ r′ and hence we get the kth order Čech filtration {Čechr (P, k)}r≥0.

Let C and D be two filtrations. We say that C is (homotopy) equivalent [40, Chap. 9]
to D if there exists a family of maps {fr : Cr → Dr}r≥0 that are homotopy equivalences of
spaces and additionally commute with the inclusion maps of C and D.

Interleaving and approximations. Let ϵ ≥ 0. Two filtrations C and D are (multiplicatively)
(1 + ϵ)-interleaved if there exist families of linear maps f·, g· such that the diagram

Cr Cr(1+ϵ)2 Cr(1+ϵ)4

Dr(1+ϵ) Dr(1+ϵ)3

fr fr(1+ϵ)2

gr(1+ϵ) gr(1+ϵ)3
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commutes for all r. Informally, interleaved filtrations with small ϵ are good approximations of
each other because every Dr sits in between two instances of C with close-by scale parameters.

If {Cr}r≥0, {Dr}r≥0 are (1+ϵ1)-interleaved and {Dr}r≥0, {Er}r≥0 are (1+ϵ2)-interleaved,
then {Cr}r≥0 and {Er}r≥0 are (1 + ϵ1)(1 + ϵ2)-interleaved. Moreover, if Cr ⊆ Dr ⊆ Cr(1+ϵ)
for all r ≥ 0, then C and D are (1 + ϵ)-interleaved.

A filtration C is a (1 + ϵ)-approximation of another filtration D if there exist filtrations C′

and D′ such that C′ is equivalent to C, D′ is equivalent to D and C′ and D′ are (1+ϵ)-interleaved.
This is a symmetric relationship, so we can say that C and D are (1 + ϵ)-approximate. If
additionally Cr ⊆ Dr for all r ≥ 0 we call C a (1 + ϵ)-sparsification of D. We point
out that an approximation between two filtrations implies interleaved persistence modules
(see [22, Chap. 7]) in the sense of [12].

The Persistent Nerve Theorem. Consider a finite index set I and a family of filtrations
{U

(i)
r }r≥0 over Rd, one for each i ∈ I. The union filtration is {Ur}r≥0, where Ur :=

⋃
i∈I U

(i)
r ,

and the nerve filtration is {Nr}r≥0, where Nr is the nerve of Ur. The Persistent Nerve
Theorem [2, Thm. 3.9] states that if every U

(i)
r is closed and convex, then {Ur}r≥0 and

{Nr}r≥0 are equivalent. As a consequence, the Persistent Nerve Theorem implies that the
k-fold and the kth order Čech filtrations are equivalent: choose I as the set of all k-subsets
of P and U

(i)
r as the lens indexed by i at radius r, which is a closed and convex set.

Doubling dimension. The doubling constant ∆ of Rd is such that any ball of radius r can
be covered with at most ∆ balls of radius r/2, for all r ≥ 0. The doubling dimension of Rd

is δ := log2 ∆, which is of order Θ(d) and hence constant for this paper. Note that for finite
point sets in Rd the doubling dimension can be significantly smaller than d, for instance if
the points all lie close to a low-dimensional subspace.

To cover a ball B of radius r with balls of radius r/4, one needs at most ∆2 balls;
with balls of radius r/8 one needs ∆3 balls and so on. Thus, to cover B with balls of
radius r′, we have to find the smallest t such that r/2t ≤ r′. That is t = ⌈log2 r/r′⌉. Then,
∆t ≤ ∆log2 r/r′+1 = 2δ (r/r′)δ and (2r/r′)δ balls of radius r′ are sufficient to cover B.

Quadtreaps. A quadtreap [39] is a dynamic data structure for spherical range search. We
summarize its properties in a simplified form suitable for us: for a set X of n points in Rd

(with d constant), it can be built in O(n log n) expected time. It supports deletions of points
in X in expected O(log n) time. Moreover, given a query point q and a radius r, it returns
a list S ⊆ X which is guaranteed to contain all points in X of distance ≤ r from q, and is
guaranteed not to contain any point in X of distance ≥ 2r from q. The running time for
such a query is O(log n + |S|).

3 k-distance permutation

Given some integer k ≥ 1 and a finite data set P ⊆ Rd of n ≥ k sites, we define an order
on the points in P in which the sites are denoted by p1, . . . , pn. Writing Pi := {p1, . . . , pi},
our order ensures that the k-fold cover over Pi approximates the k-fold cover over P , with
increasing approximation quality when i increases.

The k-distance of x ∈ Rd to P , denoted by dk(x, P ), is the distance from x to its kth
closest neighbor in P . We define the k-distance permutation incrementally as follows: we
choose p1, . . . , pk as arbitrary, pairwise distinct sites from P . If p1, . . . , pi−1 are chosen for
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20:6 Sparse Higher Order Čech Filtrations

k < i ≤ n, we set

pi := argmax
q∈P \Pi−1

dk(q, Pi−1).

Note that for k = 1, we obtain the well-known farthest point sampling. We also define

λi := dk(pi, Pi−1)

for k + 1 ≤ i ≤ n and set λ1, . . . , λk to ∞, so that the sequence (λ1, λ2, · · · , λn) is non-
increasing. The next two properties of the k-distance permutation are reminiscent of the
packing and covering properties of ϵ-nets [47, Chap. 14].

▶ Lemma 1 (Covering). For all k ≤ i ≤ n − 1, we have L(r, Pi) ⊆ L(r, P ) ⊆ L(r + λi+1, Pi).

Proof. Recall the notation Lr = L(r, P ). Pi ⊆ P immediately implies L(r, Pi) ⊆ Lr.

Consider x ∈ Lr. Then, x ∈ Lr(A) for some A = {a1, a2, . . . , ak} ⊆ P . If A ⊆ Pi, the
result follows. Otherwise, without loss of generality let a1 /∈ Pi. By definition of λi+1,
dk(a1, Pi) ≤ λi+1 and hence there are sites b1, b2, . . . , bk ∈ Pi with d(a1, bj) ≤ λi+1 for all
1 ≤ j ≤ k. Consequently, d(x, bj) ≤ d(x, a1) + d(a1, bj) ≤ r + λi+1 and the k closest sites to
x in Pi are within distance r + λi+1 of x, implying x ∈ L(r + λi+1, Pi). ◀

▶ Lemma 2 (Packing). For all k + 1 ≤ i ≤ n, each p ∈ Pi has dk(p, Pi \ {p}) ≥ λi/2.

Proof. We do induction on i. For i = k + 1, let q be the kth closest neighbor of pk+1 in Pk.
We have dk(pk+1, Pk+1 \ {pk+1}) = λk+1 ≥ λk+1/2 and, for any p ∈ Pk+1 \ {pk+1},

dk(p, Pk+1 \ {p}) = max
p′∈Pk+1\{p}

d(p, p′) ≥ d(p, q) + d(p, pk+1)
2 ≥ d(q, pk+1)

2 = λk+1

2 .

Hence the statement is true for i = k + 1. Next we assume, for some i ≥ k + 1, that for
every p ∈ Pi, dk(p, Pi \ {p}) ≥ λi/2, and show the statement for i + 1.

For pi+1, we have dk(pi+1, Pi+1 \ {pi+1}) = λi+1 ≥ λi+1/2 and the statement follows.
Consider p ∈ Pi+1 \ {pi+1}. If pi+1 is not among the k nearest neighbors of p in Pi+1, then

dk(p, Pi+1 \ {p}) = dk(p, Pi \ {p}) ≥ λi

2 ≥ λi+1

2

by the induction hypothesis and because the λ-values are non-increasing. Otherwise, pi+1 is
among the k nearest neighbors of p in Pi+1 \ {p} and dk(p, Pi+1 \ {p}) ≥ d(p, pi+1).

If d(p, pi+1) ≥ λi+1/2, the claim follows. Otherwise, every site at distance smaller than
λi+1/2 of p is at distance smaller than λi+1 of pi+1. Since λi+1 = dk(pi+1, Pi), there can be
at most k − 2 sites of Pi \ {p} at distance smaller than λi+1 of pi+1. Thus, counting pi+1 as
well, there can be at most k − 1 sites of Pi+1 \ {p} at distance smaller than λi+1/2 of p and
it follows that dk(p, Pi+1 \ {p}) ≥ λi+1/2. ◀

Computation. We give a simple algorithm for computing the k-distance permutation that
has quadratic running time in the number of input points and discuss an approach for
improving it. We call a site ordered if it has already been assigned its index in the k-distance
permutation and unordered otherwise.

The simple approach is the following. Pick k sites p1, . . . , pk and compute, for each
y ∈ P \ Pk, the distances from y to pi, 1 ≤ i ≤ k. Store them in a max-heap Ty that also
has a fixed entry identifying y. Up until this point we need O(nk) time. The next steps
are repeated iteratively. For all unordered y, group the Ty in a list L. When p1, . . . , pi−1
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are chosen, the algorithm picks pi by scanning over L and choosing the point with largest
distance to its kth nearest ordered neighbor, which takes O(n) time. When pi is picked and
becomes ordered, remove its entry from L. Then, by traversing all remaining elements in
L, identify each unordered y with pi among y’s k nearest neighbors in Pi and insert d(pi, y)
to Ty. The (k + 1)-distance from y to the ordered sites, which was a previous entry in Ty,
is removed. This takes O(log k) time per element of L and hence O(n log k) per iteration.
Since there are n iterations, the total running time is of O(n2 log k).

This simple algorithm can be improved with the main insight that when pi is determined,
the kth nearest ordered neighbor of all remaining unordered sites is at most λi away. Hence,
unordered sites further than λi away from pi do not have to be updated. Whenever a site pi

is ordered, we can employ a quadtreap (Section 2) to only update the unordered sites within
distance λi. This last step can also be done in general metric spaces with elementary but
rather tedious techniques; see [33, Sec. 3.1]. Using the packing property, the total number of
updates reduces to O(nk log Φ) (with a constant that depends exponentially on the doubling
dimension of the point set). Finally, we replace the list L by a max-heap to avoid the linear
scan to search for the next ordered points. Appendix A of [9] provides further details on how
to achieve this improvement, which results in the next theorem.

▶ Theorem 3. The k-distance permutation can be computed in expected time O(nk log n log Φ)
with Φ the spread of the point set.

4 A sparse union of lenses

We define several spaces in this section and the following. Figure 2 has an overview.
Recall that the k-fold cover is defined as the union of all lenses at radius r, where every

lens is given by k sites. For large values of r, most of these lenses intersect, yielding a size
explosion in its nerve, the kth order Čech complex. At the same time, many lenses are
eventually covered by the union of other lenses and so may be removed from consideration.

To define the precise threshold for removal of a lens, recall that in Section 3 we ordered the
sites as p1, . . . , pn and obtained values λ1, λ2, . . . , λk = ∞, λk+1 ≥ . . . ≥ λn. Fix ϵ ∈ (0, 1].
Since it is fixed, we drop ϵ from the upcoming notation. The freezing radius of a site pi is

frz (pi) := (1 + ϵ)λi

ϵ
.

We extend the definition to lenses by setting frz (A) = min
p∈A

frz (p) . Then at radius r we only
consider lenses whose freezing radius is at least r and set

Ur :=
⋃

frz(A)≥r

Lr(A).

Notice that U := {Ur}r≥0 is not a filtration: Figure 3 illustrates that Ur might not be a
subset of Ur′ for r < r′. Even so, some useful inclusions hold as we see on the next lemma.

▶ Lemma 4. Ur ⊆ Lr ⊆ U(1+ϵ)r.

Proof. The first inclusion is clear. For the second inclusion, consider x ∈ Lr and let i be the
maximal index such that

r ≤ λi

ϵ
. (∗)
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a
b

c

d

Lr

a
b

c

d

Ur

{Ur}r≥0 is not a filtration

a
b

c

d

L̃r

r

a

b
c

d

Cr

ab
ac

cd

bc
bd

Sr

ab
ac

cd

bc
bd

Dr

(1 + ϵ)-interleaved

equivalent

(1 + ϵ)-interleaved

equivalent

Figure 2 Schematical view of the different filtrations introduced in Sections 4 and 5. We consider
k = 2, r > (1 + ϵ) frz (a) and r ∈ (frz (d) , (1 + ϵ) frz (d)].

c

b

a

c

a

b

Figure 3 Example in R2 with k = 2. Left: Ur at radius r = frz (c) . Right: Ur′ at radius
immediately after frz (c). Even though r < r′, Ur ⊈ Ur′ .

If i = n, then there is A ⊆ Pn with x ∈ Lr(A) because x ∈ Lr and P = Pn. By definition of
the freezing radius and inequality (∗), frz (A) ≥ frz (pi) = (1 + ϵ)λi/ϵ ≥ r(1 + ϵ) and thus
Lr(1+ϵ)(A) ⊆ U(1+ϵ)r. Since Lr(A) ⊆ L(1+ϵ)r(A), the result follows.

For i < n, notice that the Covering Property (Lemma 1) guarantees that x is contained
in a lens Lr+λi+1(A) for some A ⊆ Pi. Since i is maximal, λi+1/ϵ < r and so Lr+λi+1(A) ⊆
L(1+ϵ)r(A). Moreover, A ⊆ Pi and inequality (∗) imply frz (A) ≥ frz (pi) ≥ (1 + ϵ)r. Hence
the lens of A contributes to U(1+ϵ)r and as it contains x, the statement follows. ◀
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This lemma suggests that a (1 + ϵ)-interleaving with the filtration L = {Lr}r≥0 consisting
of all lenses should be possible if we adjust U to obtain an actual filtration. To do that we
slightly delay the removal of lenses. More precisely, we define

L̃r(A) :=


Lr(A) r < frz (A)

Lfrz(A)(A) frz (A) ≤ r ≤ (1 + ϵ) frz (A)

∅ (1 + ϵ) frz (A) < r.

One can visualize the evolution of a lens as a continuous process for increasing r: the lens
L̃r grows until it reaches its freezing radius and remains unchanged (it is “frozen”) for the
interval [frz (A) , (1 + ϵ) frz (A)]. Afterwards it completely disappears. We call (1 + ϵ) frz (A)
the removal radius of A. The construction is an adaptation of a similar one by Sheehy [45].

We write L̃r for the union of L̃r(A) over all A ∈
(

P
k

)
and L̃ := {L̃r}r≥0. We show next

that L̃ is a filtration.

▶ Lemma 5. L̃ is a filtration, i.e., for any r ≤ r′, L̃r ⊆ L̃r′ .

Proof. If the interval (r, r′] does not contain any removal radius, L̃r ⊆ L̃r′ because the
inclusions hold lens-wise. Since the number of different removal radii is bounded by the
number of sites and hence finite, it suffices to show that at a removal radius s, any lens that
is removed is already covered by lenses that are not being removed at s. In fact, we show
that such a lens is covered by lenses that are not yet frozen at s.

Let A be the k-subset associated with a lens being removed at s and x ∈ L̃s(A). By
definition, s = (1 + ϵ)t with t = frz (A). This implies that x ∈ L̃t(A) = Lt(A) ⊆ Lt because
the lens is frozen from radius t on. By Lemma 4, it follows that x ∈ U(1+ϵ)t = Us, and
therefore x is contained in a lens Ls(B) with frz (B) ≥ s. Thus L̃s(A) is covered by lenses
Ls(B) with frz (B) ≥ s and L̃ is a filtration. ◀

▶ Lemma 6. L̃ and L are (1 + ϵ)-interleaved.

Proof. We show that L̃r ⊆ Lr ⊆ L̃(1+ϵ)r. Note that by definition, L̃r ⊆ Lr. For the second
inclusion, observe that Ur ⊆ L̃r follows directly from their definition. Then, Lemma 4 yields
Lr ⊆ U(1+ϵ)r ⊆ L̃(1+ϵ)r. ◀

5 A sparse simplicial filtration

Since L̃r(A) is closed and convex for every r, the nerve of all (non-empty) L̃r(A) yields a
simplicial complex with the same homotopy type as the k-fold cover at radius r. However,
the collection of simplicial complexes obtained when varying r does not form a filtration
because simplices disappear from the nerve when passing a removal radius. To overcome this
problem, we adapt a construction of Cavanna et al. [11] that is similar to a function’s graph.

Cones. The idea is to “stack-up” the lenses L̃r(A) for all radii: the cone of A at radius r is

Cr(A) :=
⋃

α∈[0,r]

(
L̃α(A) × {α}

)
⊆ Rd × R.

We write Cr for the union of Cr(A) over all A ∈
(

P
k

)
. Figure 4 shows one cone.

▶ Lemma 7. The filtrations C = {Cr}r≥0 and L̃ are equivalent.
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r

Figure 4 A cone representing the evolution of a lens for k = 2. At first the lens grows, until it is
frozen. Then, the lens has static size and afterwards it disappears. At the radius where the lens
disappears, it is completely covered by other lenses (which are not displayed in the figure).

Proof. In the same sense as above Cr is a stacked-up version of L̃α for all α ≤ r, and we can
consider L̃r as a subspace of Cr via the map x 7→ (x, r) for x ∈ L̃r. Since L̃ is a filtration, there
is a strong deformation retraction R from Cr to L̃r, given by R((x, α), t) = (x, (1 − t)α + tr),
which naturally commutes with the canonical inclusions. The result follows. ◀

We define the nerve of the cones as the sparse kth order Čech complex,

Sr := Nrv
{

Cr(A) | A ∈
(

P

k

)}
.

Sr is a subcomplex of the kth order Čech complex for every r because L̃r ⊆ Lr. Moreover, if
r ≤ r′, Cr(A) ⊆ Cr′(A) for all A. Hence S = {Sr}r≥0 is a filtration. By the Persistent Nerve
Theorem [2, Thm. 3.9] and Lemmas 6 and 7 we obtain:

▶ Lemma 8. The filtrations S and C are equivalent. As a consequence, S is a (1 + ϵ)-
approximation of the k-fold filtration.

Discretization of the radius. The filtration S is challenging to compute, due to the freezing
of lenses. We elaborate on these issues in Section 7. We now define a variant of S which is
easier to compute and also is (1 + ϵ)-interleaved with the k-fold filtration.

Recall that the filtrations L̃, C and S are defined based on the freezing radii of sites,
which depend on a parameter ϵ > 0. To obtain a (1 + ϵ)-approximation for ϵ ∈ (0, 1]
in the end, we consider the above construction of S with parameter ϵ′ = ϵ

3 , obtaining a
(1 + ϵ

3 )-approximation of the k-fold filtration.
Next, for every r ≥ 0, let z ∈ Z be such that (1 + ϵ

3 )z ≤ r < (1 + ϵ
3 )z+1 and define

Dr := S(1+ϵ/3)z .

We call D := {Dr}r≥0 the discrete sparse kth order Čech filtration. It is formed by a discrete
set of snapshots of S and kept unchanged except when passing over a snapshot radius (this
is also referred to as the Left Kan extension of a discrete filtration [36, Chap. 10]).

▶ Theorem 9. D is a (1 + ϵ)-approximation of the k-fold filtration.

Proof. From the definition, Dr ⊆ Sr ⊆ D(1+ϵ/3)r. This interleaving implies that D is a
(1 + ϵ

3 )-approximation of S. Since S is a (1 + ϵ
3 )-approximation of the k-fold filtration, by

transitivity, we get that Dr is a (1 + ϵ
3 )2-approximation of the k-fold filtration. The result

follows by noting that (1 + ϵ
3 )2 ≤ 1 + ϵ for all ϵ ∈ (0, 1]. ◀
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6 Size analysis

We bound the size of D, i.e., the number of simplices it contains. Since Dr ⊆ Sr for all r ≥ 0,

it is enough to bound the size of S with parameter ϵ′ = ϵ/3. Let

C∞(A) :=
⋃
r≥0

Cr(A)

be the cone of A (without dependence on a radius). Then, the size of S equals the size of the
nerve of the cones C∞(A), where A ranges over all k-subsets of sites. However, the number
of vertices is not necessarily

(
n
k

)
because many cones are empty: this happens in particular

when the smallest radius for which the balls around the sites of A intersect is larger than
the removal radius of the lens. In fact, our argument shows that this is the case for the vast
majority of cones. The proof for vertices extends readily to the case of m-wise intersections of
cones, i.e. for (m − 1)-simplices, without change and thus we treat the general case directly.

For fixed m ≥ 1, we derive an upper bound for the number of sets {A1, . . . , Am} such
that the cones C∞(A1), . . . , C∞(Am) intersect. Such sets are in one-to-one correspondence
to the (m − 1)-simplices of the sparse kth order Čech filtration, hence we refer to these sets
as (m − 1)-simplices. Let σ = {C∞(A1), . . . , C∞(Am)} be a (m − 1)-simplex and the set of
sites P be ordered according to the k-distance permutation. We call a site pi involved in σ if
pi belongs to one of the sets A1, . . . , Am. Note that there are at most km sites involved in
σ. We say that σ is associated to a site pi if pi is involved in σ and all other involved sites
have index smaller than i. Our strategy is to upper bound the number of (m − 1)-simplices
associated to an arbitrary pi. We only need to consider simplices associated to pi that appear
in the filtration, i.e., simplices whose defining cones intersect.

Fix pi and ωi := (1 + ϵ′) frz (pi). Let B denote the ball of radius 2ωi centered at pi.

▶ Lemma 10. If σ := {C∞(A1), . . . , C∞(Am)} is an (m − 1)-simplex associated to pi whose
cones intersect, then all sites involved in σ are contained in B.

Proof. Let α denote the minimal radius such that all the balls around sites involved in σ

intersect. This is the radius of the minimum enclosing ball of the involved sites. Any common
intersection of the cones must happen at scale r ≥ α.

On the other hand, assume wlog that pi ∈ A1. Since pi has maximal index in A1, we have
that frz (A1) = frz (pi). Hence the removal radius of A1 is equal to ωi and it follows that the
cone of A1 is empty for all radii greater than ωi. Therefore any common intersection of the
cones of σ must happen at scale r ≤ ωi. Hence, as we assume that the cones do intersect, we
must have that α ≤ ωi.

Then, since d(q, pi) ≤ 2α, any involved site q lies within distance 2ωi from pi. ◀

Hence the involved sites of σ are close to pi in the sense of the lemma. We can furthermore
guarantee that the points of Pi are not too densely packed in B using the packing property
of the k-distance permutation.

▶ Lemma 11. The ball B contains at most Γ := k

(
96
ϵ

)δ

sites of Pi = {p1, . . . , pi}, where

δ is the doubling dimension of Rd.

Proof. We cover B by balls of radius λi/4. That can be done with at most ζ =
(

16(1 + ϵ′)2

ϵ′

)δ

balls (see Doubling Dimension in Section 2). By the Packing Lemma 2, each open ball of
radius λi/4 contains at most k sites of Pi, thus the total number of sites in B is at most kζ.
The bound follows because ϵ′ = ϵ

3 and ϵ ≤ 1, hence (1 + ϵ′)2 ≤ 16
9 < 2. ◀
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Bounding the number of non-empty m-intersections of cones is now a matter of simple
combinatorics. Recall the Γ notation from Lemma 11.

▶ Theorem 12. The number of (m − 1)-simplices of the sparse kth order Čech complex with
non-empty cone intersection is at most

n · Γkm = nkkm

(
96
ϵ

)δkm

.

Proof. Fix pi. Every (m − 1)-simplex associated to pi with non-empty cone intersection has
up to km involved sites, which all lie in B by Lemma 10. Moreover, all involved sites are in
Pi and, by Lemma 11, there are at most Γ of those sites in B to choose from. It follows that
there are at most Γkm different choices possible. This upper bound holds for every pi, so
multiplying by the number of sites n yields the result. ◀

We remark that the bounds on this section are not tight and slightly better ones could
be easily achieved, by keeping binomials in place or avoiding some approximations. However
the improvements would be minor.

7 Computation

We now present an algorithm to construct the discrete sparse Čech filtration. As in the
previous sections, let us fix a finite set P ⊆ Rd, an integer k > 0 and ϵ ∈ (0, 1]. Assume that
P = {p1, . . . , pn} has the indices ordered with respect to the k-distance permutation, and
that we have computed the corresponding values λ1, . . . , λn as discussed in Section 3. The
algorithm outputs the discrete sparse kth order Čech filtration {Dr}r≥0 as a list of simplices
with their corresponding critical value, i.e., the smallest parameter value r for which the
simplex is part of the filtration. Note that by definition of the discrete sparse Čech filtration,
every critical value is of the form (1 + ϵ/3)z for some integer z.

Friends. Our algorithm follows the approach and notation of Section 6. For every pi, we
compute all simplices associated to pi in the filtration together with their critical value. To
do so, we first find, among p1, . . . , pi−1, all sites of distance at most 2ωi from pi, where
ωi = (1 + ϵ′) frz (pi) (compare Lemma 10). We call these points friends of pi. We compute
friends using a quadtreap data structure, as introduced in Section 3, which we query for every
pi at 2ωi. pi is added to the quadtreap after the ith iteration (adding an element costs O(log n)
in expectation as well). Hence the expected running time for this loop is O(n log n + Σ),
where Σ is the number of reported points. These reported points have distance at most 4ωi

from the respective pi (since the queries are approximate), and by the same argument as

in Lemma 11, the number of sites reported for pi is at most k

(
192
ϵ

)δ

= O(k(1/ϵ)δ). We

traverse the list and remove all “false friends” of distance more than 2ωi. Thus we get the
friends of pi for all sites pi in expected time

O(n log n + nk(1/ϵ)δ). (2)

Note that the number of friends is bounded by Γ as defined in Lemma 11.

Vertices. Next, we compute the vertices of the filtration associated to pi, for each i ≥ k.
We proceed by brute-force, just enumerating all k-tuples formed by pi and k − 1 of its friends
and checking for every k-tuple whether their cone is non-empty. The last condition is simple
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to check, as the cone is non-empty if and only if the radius α of the minimum enclosing
ball of the k sites is at most frz (pi). In this case, the critical radius of the vertex is set to
(1 + ϵ/3)z, where z is the smallest integer such that (1 + ϵ/3)z ≥ α. Computing α and z per
vertex requires O(k) in expectation [18]. Hence we calculate all vertices in O((n − k)kΓk−1)
time.

Simplices. For higher-dimensional simplices associated to pi, we proceed inductively by
dimension, up to a maximal dimension mmax. Fix a (m − 1)-simplex σ = {A1, . . . , Am}
associated to pi. We compute all cofacets of σ in the filtration, that is, all m-simplices that
contain σ and one further vertex Am+1. Notice that one could order the k-subsets and avoid
computing all cofacets, computing instead only cofacets with larger index in the ordering.
This would remove a k factor from the computation expected time locally, but does not
change the final bound in Theorem 13, which has a kk factor. We compute all cofacets for
simplicity. Since each element of Am+1 is either a friend of pi or pi itself, we enumerate all
k-tuples consisting of these sites and check whether they form a vertex of the filtration. This
takes O(k) time per vertex, just by re-doing the check from the previous step, except that
k-tuples associated to pj must be checked at radius min{frz (pj) , ωi}. That is because if the
k-tuple cone becomes non empty only after ωi, then it cannot contribute to a coface of σ.

For a vertex Am+1 of the filtration, check whether the cones of A1, . . . , Am+1 intersect
is technically challenging because the cones might intersect for a radius where one or
several cones are frozen. One cannot resolve this question by a simple minimal enclosing
ball computation. In fact, we are not aware of an efficient way to compute the smallest
intersection radius of such cones in general. However, as demonstrated in [9, App. B], given
a collection of cones A1, . . . , Am+1 and a fixed radius r, we can decide whether the cones
(or rather, the corresponding lenses L̃r) intersect at radius r by a reduction to a minimum
enclosing ball of balls instance [28] in expected O(k(m + 1)) time. We use this predicate
and query whether the cones intersect at the smallest removal radius of A1, . . . , Am+1. That
decides whether the m-simplex is in the filtration, and its critical radius can be computed
by two more minimal enclosing ball computations. This is only possible because we have
discretized the filtration, as discussed in [9, App. B]. It follows that the expected running time
spent per (m − 1)-simplex of the filtration is O(mkΓk), and doing this over all simplices of
the filtration up to dimension mmax yields a total expected complexity of O(X · mmax · k · Γk)
for this step, where X is the total number of simplices in the filtration.

This concludes the description of the algorithm. Recalling (2) we obtain a complexity of

O
(

n log n + nk

ϵδ
+ (n − k)kΓk−1 + X · mmax · k · Γk

)
,

where the second and third terms are dominated by the last one because X ≥ n − k (see [9,
App. C]). Together with the algorithm from Section 3, we arrive at the result

▶ Theorem 13. Given a set P of n points, k ≥ 0 and ϵ ∈ (0, 1], the discrete sparse kth order
Čech filtration up to dimension mmax can be computed in time

O

(
nk log n log Φ + Xkk+1mmax

(
96
ϵ

)kδ
)

,

where Φ is the spread of P and X is the total number of simplices in the filtration.
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8 Conclusions

We introduced the first (1 + ϵ)-approximate filtration of the higher order k-fold filtration and
provided an algorithm for computing it. If k and ϵ are considered as constants and the input
point set has constant spread, the algorithm runs in time O(n log n) and yields a filtration of
size O(n), which are the same favorable properties of the well-studied case k = 1.

There are various avenues to strengthen and generalize our results. First of all, our method
has concentrated on the Euclidean case, but our approach mostly generalizes to point sets in
arbitrary metric spaces – the algorithm cannot use the quadtreap data structure anymore,
but there is no need for it, since the algorithm by Har-Peled and Mendel [33, Sec. 3.1] can
be adapted to the k-distance case with little effort. Also, the friends of pi (Section 7) can
be computed with a slight adaptation of their techniques; we used quadtreaps mostly for
the ease of presentation. However, the computation of critical values of simplices described
in [9, App. B] is for the Euclidean case only, and the complexity of this step remains unspecified
for a general metric space. This is common in related work; see, for instance [11, Sec. 5].

Another natural goal is to remove the dependence on the spread. This dependence is
caused by the computation of the k-distance permutation which is inspired by the algorithm
of [33, Sec. 3.1]. In the same paper [33, Sec. 3.2–3.3], they describe an approach to remove the
spread from the bound (for k = 1) using an approximate version of the greedy permutation.
While our construction of the sparsified filtration can be easily adapted to work with an
approximate version of the k-distance permutation, it seems less straight-forward to generalize
the computation to the k-distance, even in the Euclidean case. We leave this for future work.

The k-distance permutation relates to the Distance to Measure (DTM) [13], which is the
square average of the distances to the k nearest neighbors. The DTM has the advantage of
being robust, in terms of the Wasserstein distance, to perturbations on the sample [13, Sec. 3].
However, most of the existing methods for sparsifying filtrations obtained via the DTM [1,8,32]
require a preliminary approximation by weighted distances. Our approach might be adaptable
to directly sparsify DTM filtrations.

While we concentrate on the case of a single value of k, we pose the question whether
our methods can be used to approximate the multi-cover bifiltration, as studied in [17]. The
extension is not straight-forward because there is no direct relation between the approximate
filtrations on level k and k +1. We speculate that the technique of double-nerve constructions
of [17] could be useful in this context. The presence of an exponential factor on k in our size
bounds suggests a restriction of our approach’s usability to small portions of the bifiltration,
for small k. The exponential factor on k also carries over to the expected computation time.
Reducing that dependency on k is another possible line of future work. Note that [17, Prop. 5]
gives a size bound of O

(
nd+1) for the exact version, but we ask whether a polynomial bound

on k could be achieved without such a blow-up in the dependency on n.

Finally, a natural question is the practicality of our algorithm. We remark that even for
k = 1, while some work has been devoted to practical aspects of computing sparsifications [3,
7, 20, 37, 41], the actual practical computation is still an unresolved problem. We think that
the natural order for a practically efficient solution would be to first identify best practices
in the simpler k = 1 case and subsequently try to adapt them to larger values of k. So, while
we would be curious about the performance of our algorithm, such an evaluation seems to be
premature at the moment.
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We often rely on censuses of triangulations to guide our intuition in 3-manifold topology. However,
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1 Introduction

Many conjectures in computational geometry and topology are true in small cases, but turn
out to have a relatively large counterexample. Perhaps the most notable example of this
is the Hirsch conjecture, which posited that in a d-dimensional polytope with n facets, any
two vertices can be connected by a path of at most n − d edges. This is true when the
dimension is small (specifically, when d ⩽ 3 [20]), as well as when the number of facets
is small (specifically, when n ⩽ d + 6 [2]). However, this is not indicative of the general
behaviour: Santos showed that there is a 43-dimensional counterexample with 86 facets [31].

For an example from 3-manifold topology, consider the Seifert fibre spaces (see Hatcher’s
notes [15] for a definition). There are 302 Seifert fibre spaces that can be triangulated with no
more than 7 tetrahedra; for all of these, at least one minimal triangulation (triangulation
with the smallest possible number of tetrahedra) uses a standard prism-and-layering construc-
tion. This pattern does not persist: there is a Seifert fibre space whose unique (8-tetrahedron)
minimal triangulation is given by the isomorphism signature iLLLPQcbcgffghhhtsmhgosof
(the software Regina [8] can convert this back into a triangulation), and this is instead
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constructed from a gadget (called the brick B5) that was first identified in Martelli and Pet-
ronio’s census of minimal triangulations up to 9 tetrahedra [22]; although the first author [3]
and Matveev [24] have since extended the census, no other gadgets like this have been found.

We present a technique for finding large counterexamples in a similar setting; we study
arbitrary one-vertex triangulations, not just minimal ones. The obvious source of counter-
examples is a census of all triangulations up to a given number of tetrahedra. However,
this only captures small counterexamples because the number of triangulations grows super-
exponentially as we increase the number of tetrahedra; to date, the census of all closed
3-manifold triangulations only goes up to 10 tetrahedra, and this already includes over
2 billion triangulations, constituting over 63 GB of data [3].

How can we find a counterexample that is too large to appear in our census? We showcase
a method of selectively (rather than exhaustively) enumerating triangulations, which yields
large counterexamples to three conjectures posed by Saul Schleimer at the 2022 Dagstuhl
workshop on Computation and Reconfiguration in Low-Dimensional Topological Spaces.

1.1 The conjectures
Each conjecture concerns edges of one-vertex triangulations. Since such edges realise embed-
ded closed curves, we can ask whether they are embedded in an interesting way.

For instance, in a lens space, consider an edge e that forms a core curve, meaning that
the complement of a regular neighbourhood of the curve is a solid torus; in this case, we call
e a core edge. Finding such an edge certifies that the 3-manifold is a lens space.

▶ Conjecture 1. Every one-vertex triangulation of a lens space has a core edge.

Since solid torus recognition can be solved efficiently in practice [11, 5], proving Conjec-
ture 1 would have provided a relatively efficient method for recognising lens spaces. Lens
space recognition can also be used to determine whether a 3-manifold is elliptic (i.e., admits
spherical geometry). Indeed, Lackenby and Schleimer [21] recently used the following variant
of Conjecture 1 to show that recognising elliptic manifolds is in NP:

▶ Theorem ([21], Theorem 9.4). Let M be a lens space that is neither RP 3 nor a prism
manifold, and let T be any triangulation of M. Then the 86th iterated barycentric subdivision
of T contains a sequence of edges that forms a core curve.

The other two conjectures have similar motivations: special edges can help us recognise
certain 3-manifolds, so we would like to know whether such edges always exist.

The second conjecture concerns tunnel number: the smallest number of arcs that we
need to add to a knot so that the complement becomes a handlebody. Let T be an ideal
triangulation of the complement of a knot K, so that each edge e in T forms an arc α that
meets K at its endpoints. We call e a tunnel edge if the complement of K ∪ α is a genus-2
handlebody. If K is not the unknot, then the existence of a tunnel edge implies that K has
tunnel number equal to one; Figure 1 shows three knots with tunnel number one.

▶ Conjecture 2. Let K be a knot with tunnel number equal to one. Then every one-vertex
ideal triangulation of the complement of K has a tunnel edge.

The third conjecture concerns Seifert fibre spaces, which are fibred by circles in a
particular way (again, see Hatcher’s notes [15]); we call each circle fibre a Seifert fibre.
Seifert fibre spaces play a central role in torus decompositions for irreducible 3-manifolds:

The JSJ decomposition (due to Jaco and Shalen [17], and Johannson [19]) cuts such
3-manifolds into pieces that are either atoroidal or Seifert fibred.
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(a) The trefoil knot. (b) The figure-eight knot. (c) The (5, 2) torus knot.

Figure 1 Three knots with tunnel number equal to one.

The geometric decomposition from Thurston’s geometrisation conjecture (famously proved
by Perelman [25, 27, 26]) cuts such 3-manifolds into pieces that are either hyperbolic or
graph manifolds; the graph manifolds can be further decomposed into Seifert fibre spaces.

The small Seifert fibre spaces do not contain any embedded two-sided incompressible surfaces,
which makes them relatively difficult to work with.

▶ Conjecture 3. Every one-vertex triangulation of a small Seifert fibre space has an edge
isotopic to a Seifert fibre.

1.2 Using a targeted search to find counterexamples
As mentioned earlier, we have found counterexamples to all three conjectures listed in
section 1.1. The key ingredient for finding these examples is a heuristic for measuring how
“far away” a triangulation is from having no “distinguished” edges (such as core edges).

To see why such a heuristic is necessary, we note that the census of triangulations up to
10 tetrahedra contains 422 533 279 one-vertex triangulations of the 3-sphere (the simplest
possible lens space). All of these have at least one core edge; verifying this required 22 hours
of wall time on 12 threads, but this does not include the time required to: (1) generate the
census, and (2) identify the 3-spheres in this census (which had been done previously [3, 4]).

The upshot is that this exhaustive search was both expensive and unsuccessful. In
contrast, our heuristic enabled a targeted search, which produced all of our counterexamples
in just minutes of wall time. See section 5 for detailed computational results, as well as an
explanation of how to turn our counterexamples into infinite families.

We introduce our heuristic and our targeted search algorithm in section 4. In section 3,
we discuss some auxiliary algorithms, which are of independent interest; in particular, we
present (and implement) an improved algorithm for handlebody recognition. We finish by
mentioning some unanswered questions in section 6.

2 Preliminaries

2.1 Triangulations
A (generalised) triangulation T is a finite collection of tetrahedra whose triangular faces
may be affinely identified in pairs; each equivalence class of such faces is a face of T . The
size of T , denoted |T |, is the number of tetrahedra in T . The boundary of T consists of all
the faces that are not identified with any other faces. We allow faces of the same tetrahedron
to be identified, so our triangulations need not be simplicial complexes.

SoCG 2023
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The face identifications also yield equivalence classes of vertices and edges of the tetrahedra;
we call these classes the vertices and edges of T , respectively. In this paper, we are
particularly interested in one-vertex triangulations, which have exactly one vertex. The
degree of an edge e of T is the number of tetrahedra that meet e, counted with multiplicity.
The 1-skeleton of T is the subcomplex consisting only of the vertices and edges of T .

If a point lies on the boundary of a triangulation, then we say that it is boundary;
otherwise, we say that it is internal. If a face, edge or vertex consists entirely of boundary
points, then we say that it is boundary; otherwise, we say that it is internal.

For a triangulation T to be a 3-manifold, every point p in T must be non-singular –
i.e., have a small neighbourhood bounded by either a disc (if p is boundary) or a 2-sphere
(if p is internal). This could fail for vertices and midpoints of edges. For this paper, we
insist that no edge is identified with itself in reverse; this ensures that midpoints of edges are
non-singular.

We call T a 3-manifold triangulation if all its vertices are non-singular, because in
this case T will genuinely be a 3-manifold. However, we also allow vertices to be ideal,
meaning that a small neighbourhood of the vertex is bounded by a closed surface other than
the 2-sphere. Ideal triangulations (which contain one or more ideal vertices) give a useful
representation of the 3-manifold obtained by truncating the ideal vertices; this idea originated
with Thurston’s ideal triangulation of the figure-eight knot complement [33, Example 1.4.8].

To concretely encode a triangulation, we give each tetrahedron both a label and an
ordering of its four vertices. Two triangulations are isomorphic if they are identical up
to relabelling tetrahedra and/or reordering tetrahedron vertices. We can uniquely identify
any isomorphism class of triangulations using an efficiently-computable string called an
isomorphism signature. There are many ways to formulate isomorphism signatures; we
use the implementation in Regina [5, 8], which is described in [4].

2.2 The 2-3 and 3-2 moves
Given any one-vertex triangulation T with at least two tetrahedra, we can produce a new one-
vertex triangulation of the same 3-manifold by performing a 2-3 move about a (triangular)
face that meets two distinct tetrahedra. This replaces these two tetrahedra with three
tetrahedra attached around a new edge e; see Figure 2. We call the inverse move a 3-2
move about e; it is possible to perform a 3-2 move about an edge if and only if this edge is
an internal degree-3 edge that actually meets three distinct tetrahedra.

2-3

3-2

Figure 2 The 2-3 and 3-2 moves.
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Consider a 3-manifold M. We can think of the one-vertex triangulations of M with at
least two tetrahedra as nodes of an infinite graph, with two nodes connected by an undirected
arc if and only if the corresponding triangulations are related by a 2-3 move. This graph,
called the Pachner graph of M, is known to be connected [1, 23, 28, 30].

2.3 Normal surfaces
We now outline the basics of normal surface theory; see [14] and [16] for more comprehensive
discussion. A properly embedded surface S in a triangulation T is a normal surface if:

S meets each simplex (i.e., vertex, edge, triangle, or tetrahedron) of T transversely; and
S meets each tetrahedron ∆ of T in a finite (and possibly empty) collection of discs – known
as elementary discs – where each such disc is a curvilinear triangle or quadrilateral
whose vertices lie on different edges of ∆.

Up to normal isotopy – an ambient isotopy that preserves every simplex of T – every
elementary disc has one of the seven types shown in Figure 3.

(a) The four triangle types. (b) The three quadrilateral types.

Figure 3 The seven elementary disc types in a tetrahedron.

The simplest example of a normal surface is a vertex-linking surface, which consists
entirely of triangles. Such surfaces always exist, so finding these surfaces never gives us any
new information about the underlying 3-manifold. For this reason, we consider a normal
surface to be non-trivial when it includes at least one quadrilateral.

If T has size n, then we can represent any normal surface in T as a normal coordinate
vector in R7n that counts the number of elementary discs of each type in each tetrahedron. It
is often sufficient to focus on a class of surfaces called the vertex normal surfaces; roughly,
these form a finite and algorithmically enumerable “basis” for the set of all normal surfaces.

3 Key tools

This section discusses some new algorithms and implementations that were crucial for our
work. These algorithms may be of independent interest.

3.1 Handlebody recognition
To find counterexamples to Conjectures 1 and 2, we need algorithms to recognise solid tori and
genus-2 handlebodies. Regina includes an implementation of solid torus recognition [13, 18]
that is remarkably efficient in practice [8, 5, 11]. We generalise this to recognise handlebodies
of arbitrary genus, improving the earlier algorithm of Jaco and Tollefson [18, Algorithm 9.3].

Handlebodies are irreducible and have compressible boundary (see Definitions 2.2.1
and 3.3.2 of [23]), so we can exploit the following consequence of Corollary 6.4 of [18]:

SoCG 2023
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▶ Theorem 4. Let T be a triangulation of a compact irreducible 3-manifold with compressible
boundary. Then T contains a vertex normal essential compressing disc.

The strategy of our algorithm is to repeatedly cut along vertex normal compressing
discs; a triangulation T is a handlebody if and only if T eventually gets decomposed into a
collection of 3-balls. For computational reasons, we modify this approach in two ways.

First, we expand our focus beyond discs, to include any vertex normal surface S whose
Euler characteristic χ(S) is positive. The rationale is that χ(S) can be expressed as a linear
function in normal coordinates, which allows us to exploit linear programming techniques.
This leads to an algorithm for detecting non-trivial normal spheres and discs that is fast in
practice (even though, in theory, this is actually the exponential-time bottleneck for both
solid torus recognition and handlebody recognition); see [11] for details.

Second, because cutting along a normal surface can increase the number of tetrahedra
exponentially, we use a technique called crushing. Crushing was introduced by Jaco and
Rubinstein [16] following earlier unpublished work of Casson, and was later refined by the
first author [6]. Crushing a non-trivial normal surface has the following crucial benefit: it
produces a new triangulation with strictly fewer tetrahedra than before. The trade-off is
that crushing could have topological side-effects, as detailed in the following theorem:

▶ Theorem 5 ([6], Theorem 2). Let T be a triangulation of a compact orientable 3-manifold
M, and let S be a normal sphere or disc in T . Crushing S yields a triangulation T ′ whose
underlying 3-manifold M′ is obtained from M by zero or more of the following operations:

undoing connected sums;
cutting along properly embedded discs;
filling boundary 2-spheres with 3-balls; or
deleting 3-ball, 3-sphere, RP 3, L3,1 or S2 × S1 components.

For the rest of this section, call a connected orientable 3-manifold interesting if it has
exactly one boundary component and its first homology is Zg, where g is the genus of the
boundary surface. Our handlebody recognition algorithm relies on the following result:

▶ Proposition 6. Let T be a triangulation of an interesting 3-manifold, and suppose that T
contains a non-trivial normal sphere or disc S. Let T ′ denote the triangulation obtained by
crushing S. Then each component of T ′ is either closed or interesting. Moreover, T is a
handlebody if and only if every component of T ′ is either a 3-sphere or a handlebody.

Proof Outline. To understand the effect of crushing the surface S, it suffices to consider
the operations listed in Theorem 5 one at a time. The most intricate part of the proof is
showing that if we perform one of these operations on an interesting 3-manifold, then the
components of the resulting 3-manifold must all be either closed or interesting. This mostly
involves some fairly routine homology arguments. See the full version [9] for details. ◀

The last thing we rely on is an algorithm to recognise the 3-ball; this is a well-known
variant of 3-sphere recognition [16, 29, 32], and an implementation is available in Regina [5, 8].

The following handlebody recognition algorithm is now also available in Regina [8]:

▶ Algorithm 7 (Handlebody recognition). To test whether a triangulation T is a handlebody:
(1) Check that T is connected, orientable, and has exactly one boundary component. If T

fails to satisfy any of these conditions, then terminate and return false.
(2) Compute the genus g of the boundary of T .

In the case that g = 0, check whether T is a 3-ball. If it is, terminate and return
true; otherwise, terminate and return false.
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In the case that g > 0, check whether the first homology of T is Zg. If it is not,
terminate and return false.

(3) Create a list L of triangulations to process, which initially contains T (and nothing else).
While L is non-empty:

(i) Let F be the first triangulation that appears in L. Remove F from L.
(ii) Find a non-trivial normal sphere or disc S in F . If no such surface exists, then

terminate and return false.
(iii) Crush S. For each component C of the triangulation R that results from crushing:

If C is closed, check whether C is a 3-sphere. If it is, discard C and move on to
the next component of R; otherwise, terminate and return false.
If C has sphere boundary, check whether C is a 3-ball. If it is, discard C and
move on to the next component of R; otherwise, terminate and return false.
In any other case, add C to the list L, and move on to the next component of R.

(4) Once there are no more triangulations in L, terminate and return true.

▶ Theorem 8. Algorithm 7 correctly determines whether a given triangulation is a handlebody.

Proof Outline. By Proposition 6, every time we make a full pass through the loop in step 3,
we preserve the following invariant: every triangulation in L is interesting, and T is a
handlebody if and only if every triangulation in L is actually a handlebody with positive
genus. See the full version [9] for details. ◀

3.2 Detecting edges isotopic to Seifert fibres
To find counterexamples to Conjecture 3, we need to be able to test whether an edge is “bad”
in the sense that it is isotopic to a Seifert fibre. This is difficult to test conclusively. We
resort to searching for normal surfaces that must occur if an edge is bad; if any such surface
fails to exist, then we can certify that the edge is not bad. See the full version [9] for details.

3.3 Tracking edges as we perform 2-3 and 3-2 moves
Suppose that in some triangulation T , we already know which edges are (for instance) core
edges. Observe that if we create a new triangulation T ′ using a 3-2 move about an edge e of
T , then the only change to the 1-skeleton is that we remove the edge e. Thus, in principle,
we do not need to recompute which edges of T ′ are core edges.

In the other direction, if we create a new triangulation using a 2-3 move, then the only
change to the 1-skeleton is that we introduce a new edge e. In this case, we need to check
whether e is a core edge, but there should be no need to recompute this for the other edges.

In practice, the situation is complicated by the fact that performing 2-3 and 3-2 moves
in Regina could arbitrarily renumber the edges. Our solution is to use a bespoke imple-
mentation of 2-3 and 3-2 moves that provides, as part of the output, a description of how
the edges are renumbered. The source code is available at https://github.com/AlexHe98/
triang-counterex. There may be other applications for this idea of tracking how edges (or
more generally, simplices) get renumbered as we perform moves.

4 Removing “unwanted” edges using a targeted search

This section discusses the algorithm for finding counterexamples to Conjectures 1, 2 and 3.
We give the main ideas in 4.1 and 4.2, and then some implementation details in 4.3 and 4.4.

SoCG 2023
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4.1 The degree defect and the multiplicity defect
▶ Definitions 9. Let e be an edge in a one-vertex triangulation. Let d(e) denote the degree
of e, and let n(e) denote the number of distinct tetrahedra that meet e.

The degree defect of e, denoted δ(e), is given by |d(e) − 3|.
The multiplicity defect of e, denoted µ(e), is given by d(e) − n(e).

Observe that we can perform a 3-2 move about an edge e, and hence remove this edge e,
if and only if both the degree and multiplicity defects of e are zero. Thus, a natural way
to remove all “unwanted” edges (such as core edges) from a triangulation is to minimise
these defects across all “unwanted” edges. More precisely, our goal will be to minimise the
following complexity with respect to the lexicographical ordering:

▶ Definition 10. Let T be a one-vertex triangulation with some “unwanted” edges e1, . . . , ek,
where k ⩾ 1. The complexity of T (with respect to the “unwanted” edges) is given by(

k, max
1⩽i⩽k

µ(ei), max
1⩽i⩽k

δ(ei), |T |
)

.

Depending on context, the “unwanted” edges may be the core edges, tunnel edges, or
edges isotopic to Seifert fibres. Our primary objective is to reduce the number of these
edges, which is why this quantity appears as the first entry of our complexity. The last
entry is the size of the triangulation because, all else being equal, it would be nice for our
counterexamples to be as small as possible.

We have already discussed the rationale for the other two entries: we would like to
reduce the degree and multiplicity defects across all “unwanted” edges. The reason for
placing a higher priority on reducing multiplicity defect is best illustrated by recounting our
initial approach to this problem. At first, our complexity did not involve the multiplicity
defect at all. With this naïve approach, the search tended to get stuck enumerating lots of
triangulations with small degree defect, but without ever actually reducing this defect to 0.
We eventually realised that the search was getting trapped in a region of the Pachner graph
where the “unwanted” edges had multiplicity defect equal to 2. Placing a high priority on
reducing the multiplicity defect gives the search some impetus to avoid such regions.

4.2 The targeted search algorithm
▶ Algorithm 11. In a one-vertex triangulation, let P be a property of edges that is invariant
under ambient isotopy. Call an edge bad if it satisfies property P , and good otherwise. This
algorithm takes the following inputs:

A one-vertex triangulation T with n bad edges, where n ⩾ 1.
A non-negative integer x (the number of extra bad edges that we are allowed to use).

To search for a new triangulation with n − 1 bad edges:
(1) For each bad edge in T , check whether it is possible to perform a 3-2 move about this

edge. If such a move is possible, terminate and return the triangulation that results from
performing this move.

(2) Create a set S. Also create a priority queue Q that stores triangulations in order of
increasing complexity (with respect to the bad edges). Add T to both S and Q.

(3) While Q is non-empty:
(i) Remove the first triangulation F (i.e., a triangulation with smallest complexity)

from Q, and let m denote the number of bad edges in F .
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(ii) Call a 3-2 move about an edge e eligible if e is a good edge; for a 2-3 move, let
e denote the new edge that is created by this move, and call this move eligible if
either e is a good edge, or e is a bad edge but m < n + x. For each eligible move on
F , check whether (up to isomorphism) the set S already contains the triangulation
G that we obtain after performing this move. If not:

Add G to both S and Q.
Perform all possible sequences of 3-2 moves about bad edges in G. For each
triangulation T ′ that we obtain from such moves, if T ′ does not already appear
in the set S (up to isomorphism), then add T ′ to both S and Q.
If we can find such a sequence consisting of m − n + 1 3-2 moves, then the final
triangulation T ∗ in this sequence has n − 1 bad edges. Terminate and return T ∗.

Visit https://github.com/AlexHe98/triang-counterex to see an implementation of
this algorithm. We discuss the major details of this implementation in sections 4.3 and 4.4.

4.3 Troublesome regions, concurrent computation, and instability

In section 4.1, we mentioned regions of the Pachner graph where the “unwanted” edges have
low degree defect, but multiplicity defect equal to 2 (such edges naturally occur, for instance,
at the hearts of layered solid tori). Although placing a high priority on reducing multiplicity
defect does help the search avoid such regions, if the search nevertheless gets trapped in such
a region then it can be difficult to escape because the only way out is to perform moves that
increase the degree defect of the “unwanted” edges.

This phenomenon occurs more generally: a locally optimal move can send the search into
a “troublesome” region (which could, a priori, be infinite) of the Pachner graph where none
of the subsequently available moves decrease the complexity. In the case above, we get stuck
enumerating lots of triangulations with similar complexity; in section 5.1, we describe a case
where we start enumerating lots of triangulations with rapidly increasing complexity.

Algorithm 11 is especially vulnerable to falling into such troublesome regions if we deal
with triangulations one at a time in step 3. However, when we instead use multiple processes
to deal with several triangulations concurrently, the search is sometimes able to either avoid or
escape these troublesome regions. There are probably two drivers for this: (1) using multiple
processes causes the search to explore with more “breadth” than a purely greedy approach,
and (2) the search gains some randomness because the order in which triangulations are
inserted into the priority queue Q could vary each time we run the search. There may be
more direct methods to achieve similar behaviour; our method was good enough, and had a
low cost (both in human effort and in computational complexity).

One drawback is that it is impossible to know in advance how many concurrent processes
we should use. We will see in section 5 that there is often a “sweet spot” where the search
successfully terminates, but if we significantly increase or decrease the number of processes,
then the search tends to get trapped in a troublesome region.

Our solution is to implement Algorithm 11 so that it periodically prints an update on the
complexity of the triangulations that it is currently dealing with. If we manually observe that
the search is not making satisfactory progress, then we simply restart the search, possibly with
a change to the number of processes. Although it is not ideal that some human intervention
is required, this is not unheard of for difficult problems in computational topology that only
need to be solved once (such as finding a counterexample). Another example of this is the
work done in [7] to extend the census of prime knots up to 19 crossings.

SoCG 2023
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The last thing that we mention in this section is that our implementation is quite unstable.
Indeed, we have already noted that the search can produce different results when we change
the number of processes, or when we simply rerun the search. We have encountered one
other manifestation of this instability: refactoring the source code can drastically change the
behaviour of the search. We have not found a way to make the algorithm more stable.

4.4 Other implementation details
We now mention some other important details of our implementation of Algorithm 11.

First, since Algorithm 11 always considers triangulations up to isomorphism, we actually
store isomorphism signatures in the set S and the priority queue Q. As described in [4],
isomorphism signatures are an indispensable tool when exploring the Pachner graph.

Second, when the priority queue Q contains multiple triangulations with the same
complexity, we choose to prioritise such triangulations by insertion order.

Finally, we usually set the input variable x to be 0, in which case Algorithm 11 discards
all triangulations with more bad edges than the input triangulation T . However, there are
occasions where taking x > 0 may be beneficial; we discuss one such case in section 5.3.

5 The counterexamples

We present our experimental results in sections 5.1, 5.2 and 5.3. We then show how to turn
our counterexamples into infinite families in section 5.4.

Our computations were run on a laptop with an Intel Core i5-7200U processor, which has
just two physical cores divided into four logical processors. It is therefore remarkable that
we obtained all of our counterexamples in just a few minutes of wall time. This is mostly
because our targeted search was able to home in on an extremely small portion of the search
space: in total, we only needed to enumerate on the order of thousands of triangulations.

5.1 Triangulations with no core edges
The 20-tetrahedron triangulation T with isomorphism signature

uLLvQQvLAPvPAQccdfeghhgmklnorsqssttthsaaggggaaaaaaanaaagb

is a one-vertex 3-sphere with no core edges (for the 3-sphere, this means that every edge is
non-trivially knotted). To find this, we arbitrarily selected a one-vertex 3-sphere T2, which
has isomorphism signature cMcabbgqs and complexity (2, 5, 4, 2). After running Algorithm 11
twice, we obtained a 22-tetrahedron one-vertex triangulation T0 of the 3-sphere with no core
edges; the results are summarised in Figure 4.

To turn T0 into the smaller triangulation T , we ran a breadth-first search through the
Pachner graph, but with the restriction that we ignored any 2-3 move that introduces a core
edge. This took approximately 367 seconds of wall time.

It is worth noting that to remove one core edge from T2, we tried running Algorithm 11
with different numbers of processes, but using 24 processes produces the best results. In
particular, we initially tried 12 processes, but this produced the isomorphism signature

sLvAAvLAzMMQQcdceflkmjmqonprqprrhvrqnkkkksqeekocksf,

which has complexity (1, 2, 1, 18). The core edge in this triangulation has multiplicity defect
2 but degree defect 1; this is exactly one of the troublesome cases that we mentioned in
section 4.3. We needed to increase the number of processes to 24 to avoid this.
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(2, 5, 4, 2) cMcabbgqs

(1, 0, 3, 19) tLvLvAPMLwPQQkcfhfikjlopqpqssrqsrrupjjvvvhaavkbhevkmff

(0, 0, 0, 22) wLvvvQvvAAMMQQQkalkjnmrlprpqvqvvtstsuuunaaaqqaxggggagaakkcwiti

∼ 51 seconds, 1716 triangulations enumerated, 24 processes

∼ 43 seconds, 540 triangulations enumerated, 12 processes

Figure 4 Removing core edges from cMcabbgqs (3-sphere); x = 0.

(1, 8, 7, 2) cMcbbbadu

(0, 0, 0, 11) lLLLzzQQcbcgeijgjikkktsltaurattgg

∼ 58 seconds, 307 triangulations enumerated

Figure 5 Removing tunnel edges from cPcbbbadu (trefoil knot); x = 0, 8 processes.

Surprisingly, increasing the number of processes significantly beyond 24 also has an
adverse affect on the effectiveness of Algorithm 11. For example, with 36 processes, although
the search is sometimes able to remove a core edge, it seems to do so less reliably. Instead, we
find that the search has a tendency to get trapped in a different type of troublesome region:

After about 10 seconds, the search reaches a triangulation with complexity (2, 4, 16, 15).
After about 20 seconds, the search reaches a triangulation with complexity (2, 4, 23, 22).
After about 30 seconds, the search reaches a triangulation with complexity (2, 4, 26, 25).

When this happens, the complexity only increases further if we allow the search to continue.

5.2 Triangulations with no tunnel edges
We found ideal triangulations with no tunnel edges for three knots with tunnel number one:

the trefoil knot (results summarised in Figure 5);
the figure-eight knot (results summarised in Figure 6); and
the (5, 2) torus knot (results summarised in Figure 7).

Although the triangulations here are relatively small, and although we only enumerated
relatively few triangulations, our running times are much longer than those in section 5.1.

(2, 4, 3, 2) cPcbbbiht

(1, 6, 7, 5) fLLQcacdedejbqqww

(0, 0, 0, 12) mLvzALAQQccefhijliklklhnipouapufbvv

∼ 6 seconds, 26 triangulations enumerated

∼ 224 seconds, 903 triangulations enumerated

Figure 6 Removing tunnel edges from cPcbbbiht (figure-eight knot); x = 0, 24 processes.
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(2, 6, 6, 3) dLQbcccaekv

(1, 0, 3, 10) kLvvAQQkbfihjgjgiijmaacsgkgnww

(0, 0, 0, 12) mLvvAQLQQbfigjhlkljklkpaagrwmmmrauu

∼ 174 seconds, 800 triangulations enumerated

∼ 563 seconds, 880 triangulations enumerated

Figure 7 Removing tunnel edges from dLQbcccaekv ((5, 2) torus knot); x = 0, 24 processes.

This is probably because genus-2 handlebodies are harder to recognise than solid tori.

5.3 Triangulations with no edges isotopic to Seifert fibres
We found the following 11-tetrahedron one-vertex triangulation T of a small Seifert fibre
space1 with no edges isotopic to Seifert fibres:

lLLLLPMQccddfjiihikkkpkrwaaacttvc.

To do this, we began with the isomorphism signature fLLQcaceeedjkuxkj. Running Al-
gorithm 11 four times with x = 1 and 12 processes produced a 13-tetrahedron triangulation
T ∗ with no edges isotopic to Seifert fibres; the results are summarised in Figure 8. We then
used a breadth-first search (similar to the one from section 5.1) to turn T ∗ into T .

(4, 2, 2, 5) fLLQcaceeedjkuxkj

(3, 2, 3, 6) gLLAQbdedfffendolgn

(2, 2, 4, 8) ivLLQQccehgfgfhhjsquaaagj

(1, 0, 2, 12) mLLwPvMQQacdhghklkjlklnkamamvirvlji

(0, 0, 0, 13) nLvPwLzQQkccgfiikjmklmlmhnahlupmtrsvgb

∼ 3 seconds, 25 triangulations enumerated

∼ 6 seconds, 344 triangulations enumerated

∼ 12 seconds, 664 triangulations enumerated

∼ 15 seconds, 251 triangulations enumerated

Figure 8 Removing edges isotopic to Seifert fibres from fLLQcaceeedjkuxkj; x = 1, 12 processes.

The reason for taking x = 1 instead of x = 0 comes from early versions of our algorithm
for detecting good edges (in this context, edges not isotopic to Seifert fibres): we initially
included fewer normal surfaces in the analysis, so the results were not particularly conclusive.

1 Specifically, this is fibred over the 2-sphere with three exceptional fibres with slopes 1
2 , 2

3 and − 1
3 .
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At the time, we encountered triangulations for which every 2-3 move would create an edge
that we could not certify as good, so our short-term solution was to allow extra bad edges if
required. In the current version of the code, taking x = 1 no longer seems strictly necessary.

5.4 From one counterexample to infinitely many
The following result allows us to turn our counterexamples into infinite families:

▶ Proposition 12. Let M be either a closed 3-manifold, or a 3-manifold with a single
boundary component of positive genus (and no other boundary components). In the closed
case, let T be a one-vertex triangulation of M; in the bounded case, let T be a one-vertex ideal
triangulation of M. Let P be a property of edges of T that is invariant under ambient isotopy.
Call T interesting if every edge in T satisfies P . If M has an interesting triangulation,
then M has infinitely many interesting triangulations.

Proof. Let T be an interesting triangulation of M. Fix a tetrahedron ∆ of T , and let e and
f denote a pair of opposite edges of ∆. We obtain a new triangulation T ′ of M by replacing
∆ with a three-tetrahedron gadget, as shown in Figure 9. In terms of 1-skeletons, observe
that all we have done is introduce two new edges e′ and f ′ such that e′ is isotopic to e and
f ′ is isotopic to f . Thus, T ′ is an interesting triangulation of M. Repeating this procedure
indefinitely gives the desired infinite family of interesting triangulations of M. ◀

e

f

e

f
e′

f ′

Figure 9 Building a new interesting triangulation.

▶ Corollary 13. The 3-sphere has infinitely many triangulations with no core edges.

▶ Corollary 14. Let K be the trefoil knot, figure-eight knot, or (5, 2) torus knot. Then K

has infinitely many ideal triangulations with no tunnel edges.

▶ Corollary 15. There exists a small Seifert fibre space that has infinitely many triangulations
with no edges isotopic to Seifert fibres.

6 Discussion

6.1 Unanswered questions
For knots with tunnel number one, we found triangulations with no tunnel edges for all
three knots that we considered. There are many other such knots in the census of knots [7] –
in particular, every torus knot has tunnel number one – so it would be interesting to see
whether such counterexamples exist for all of these knots. A key obstacle to a systematic
investigation is the requirement for human supervision when running Algorithm 11, as
discussed in section 4.3. In any case, we tentatively propose the following conjecture:
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▶ Conjecture 16. Every knot with tunnel number one admits infinitely many ideal triangu-
lations with no tunnel edges.

In contrast, we have only been able to find triangulations with no core edges for the
3-sphere; we have tried two other lens spaces – L3,1 and L5,1 – but without success. Similarly,
although we have considered several small Seifert fibre spaces, we currently only have
counterexamples for one case. We nevertheless suspect that the answer to the following two
questions is “yes”, but new insights may be required to verify this:2

▶ Question 17. Is there a lens space other than the 3-sphere that admits infinitely many
triangulations with no core edges?

▶ Question 18. Is there another small Seifert fibre space that admits infinitely many
triangulations with no edges isotopic to Seifert fibres?

6.2 Future applications

Elementary moves such as 2-3 and 3-2 moves have many computational applications beyond
how we used them in this paper. The two most common are:
(1) using moves to improve a triangulation, which is often critical for making exponential-time

computations feasible; and
(2) finding a sequence of moves that transforms a triangulation T into another triangulation

T ′, which gives a computational proof that T and T ′ are homeomorphic.
Finding the right sequence of moves can be difficult, so a targeted search could be useful. In
particular, increasing the number of tetrahedra is sometimes unavoidable [4]:
(1) There are many triangulations T of the 3-sphere such that to simplify T to a smallest-

possible triangulation via 2-3 and 3-2 moves, we must visit at least one intermediate
triangulation with two more tetrahedra than T . There is also a triangulation of a graph
manifold for which simplification requires three additional tetrahedra.

(2) In the census of minimal triangulations up to 9 tetrahedra, there are many 3-manifolds
for which two additional tetrahedra are required to connect all the minimal triangulations
using 2-3 and 3-2 moves. There is also one 3-manifold – the lens space L3,1 – for which
three additional tetrahedra are required to connect all the minimal triangulations.

There are also situations where we might actually want to increase the number of
tetrahedra, provided this improves the triangulation with respect to another quantity. For
example, some algorithms in 3-manifold topology are known to be fixed-parameter tractable
in a quantity called the treewidth [10, 12]; for such algorithms, minimising the treewidth is
more important than minimising the number of tetrahedra.

As mentioned in section 1, increasing the number of tetrahedra is accompanied by a
super-exponential increase in the number of triangulations; even if we fix a 3-manifold, this is
still at least exponential. This means that exhaustive searches quickly run into problems with
not only running time, but also (often more importantly) memory management. However, our
work suggests that, with the right heuristics, we may be able to circumvent these problems;
the challenge is to actually devise such heuristics in the settings mentioned above.

2 The full version [9] presents new results that answer these questions (but also raise new questions).
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Abstract
In the classical linear degeneracy testing problem, we are given n real numbers and a k-variate linear
polynomial F , for some constant k, and have to determine whether there exist k numbers a1, . . . , ak

from the set such that F (a1, . . . , ak) = 0. We consider a generalization of this problem in which
F is an arbitrary constant-degree polynomial, we are given k sets of n real numbers, and have to
determine whether there exists a k-tuple of numbers, one in each set, on which F vanishes. We give
the first improvement over the naïve O∗(nk−1) algorithm for this problem (where the O∗(·) notation
omits subpolynomial factors).

We show that the problem can be solved in time O∗
(

nk−2+ 4
k+2

)
for even k and in time

O∗
(

n
k−2+ 4k−8

k2−5

)
for odd k in the real RAM model of computation. We also prove that for k = 4,

the problem can be solved in time O∗(n2.625) in the algebraic decision tree model, and for k = 5 it
can be solved in time O∗(n3.56) in the same model, both improving on the above uniform bounds.

All our results rely on an algebraic generalization of the standard meet-in-the-middle algorithm
for k-SUM, powered by recent algorithmic advances in the polynomial method for semi-algebraic
range searching. In fact, our main technical result is much more broadly applicable, as it provides a
general tool for detecting incidences and other interactions between points and algebraic surfaces
in any dimension. In particular, it yields an efficient algorithm for a general, algebraic version of
Hopcroft’s point-line incidence detection problem in any dimension.
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1 Introduction

Linear degeneracy testing is a computational problem in which we are given n real numbers and
a k-variate linear polynomial F , for some fixed constant k, as input, and we seek k numbers
a1, . . . , ak from the input set such that F (a1, . . . , ak) = 0 [4, 22]. An important special case
is the 3SUM problem, in which k = 3 and F is simply the sum of the three variables. This
problem was first studied as a bottleneck problem in computational geometry [30], since it is
reducible, in subquadratic time, to many problems in computational geometry, which are
now known as 3SUM-hard problems. It has acquired over the years the status of a basic
hard problem in fine-grained complexity theory [45]. The case where k is an arbitrary fixed
constant and F is the sum of the k variables is a fixed-parameter version of the NP-complete
subset sum problem, usually referred to as the k-SUM problem [13, 31, 35, 39]. Linear
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degeneracy testing has a higher-dimensional counterpart that is of crucial importance in
computational geometry, called affine degeneracy testing in Rd: Given a set of n points in Rd,
decide whether there exist a (d+1)-tuple of points lying on a (d−1)-flat [23]. Many problems
reduce to degeneracy testing in that sense, including degeneracy of Voronoi diagrams or
checking for incidences between geometric objects. Quoting Ailon and Chazelle [4], “the list
of problems (...) that can be reduced to degeneracy testing is nearly endless”.

In this contribution, we consider an algebraic generalization of the linear degeneracy
testing problem that we call k-POL, in which the polynomial F can be an arbitrary, bounded-
degree k-variate polynomial. For simplicity, we consider the k-partite version of the problem,
in which we are given k sets of n real numbers, and we consider k-tuples formed by picking
one number in each set.1

▶ Problem 1 (k-POL). Given k sets A1, . . . , Ak, each of n real numbers, and a constant-degree
real k-variate polynomial F ∈ Z[x1, . . . , xk], determine whether F has a zero in the Cartesian
product A1 × A2 × · · · × Ak, that is, determine whether there exist a1 ∈ A1, . . . , ak ∈ Ak such
that F (a1, . . . , ak) = 0.

The k-POL problem can be solved in O(nk−1 log n) time using standard algebraic tools,
such as the ones described in Basu, Pollack, and Roy [11]. To do so, we iterate over all (k −1)-
tuples (a1, . . . , ak−1) in A1 × · · · × Ak−1, find the O(1) real roots of F (a1, . . . , ak−1, x) = 0
for each such tuple, and sort the overall set of O(nk−1) roots. Then, for each ak ∈ Ak we
search ak in the resulting sequence, and declare a positive solution to the k-POL problem if
and only if one of the searches succeeds. To this date, no better algorithm is known for this
problem.

In this work, we present the first algorithm improving over this elementary method, that
solves k-POL in time O∗(nk−2+f(k)) for any k > 2, where f(k) = 4/k + O(1/k2) (a more
precise expression for f(k) is stated in the abstract and also given later), and the O∗(·)
notation hides subpolynomial factors. We also show how to further improve on our bounds
in the cases k = 4 and k = 5, in the nonuniform algebraic decision tree model. Before stating
our results in full detail, we briefly review the previous works on both classical and more
recent variants of the problem.

1.1 Previous related work
The best known upper bounds on the complexity of linear degeneracy testing in the uniform
real RAM model are O(nk/2 log n) for even values of k, and O(n⌈k/2⌉) for odd values of
k. The folklore algorithm yielding these upper bounds is referred to as the meet-in-the-
middle algorithm, due to its similarity to meet-in-the-middle attacks in cryptography. In the
nonuniform k-linear decision tree model, where only linear sign tests involving k distinct
input numbers are allowed and accounted for, Erickson proved that Ω(n⌈k/2⌉) queries are
necessary [22]. Ailon and Chazelle [4] gave a similar lower bound for t-linear decision trees,
where t is slightly larger than k. Note that linear degeneracy testing has long been known to
be solvable in polynomial time in the n-linear decision tree model (hence with unrestricted
linear sign tests), with the degree of the polynomial in the bound independent of n [8, 38].
The bound was subsequently improved by Cardinal, Iacono, and Ooms [13] and Ezra and

1 The single set version of the problem can be recovered by letting all sets be identical. This, however,
allows us to use the same number more than once. The reduction to the case where numbers can be
picked at most once is nontrivial, see for instance [15, 19]. We will skip over these issues here.
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Sharir [24]. In a remarkable breakthrough paper, Kane, Lovett, and Moran [33] finally
managed to show that linear degeneracy testing could be solved in O(n log2 n) time in the
2k-linear decision tree model.

The k-SUM problem is the special case of linear degeneracy testing in which the polynomial
F is simply the sum of the k variables. It is known to not be solvable in the uniform model
in time no(k) under the exponential time hypothesis (ETH) [39]. The simplest instance of
k-SUM is the well-known 3SUM problem, which is the case where k = 3. For a long time, the
3SUM problem has been conjectured to require Ω(n2) time. Subquadratic algorithms in the
word RAM model of computation were first presented by Baran, Demaine, and Pǎtraşcu for
the case where the input consists of integers [9]. It is only in 2014 that the real version was
shown to be solvable in (slightly) subquadratic time by Grønlund and Pettie [32]. Further
improvements were given by Chan [14]. Improvements on the decision tree complexity of
3SUM [32], and later in [29, 31], have been proposed before it was shown to be solvable
with O(n log2 n) 6-linear queries, as a special case of the aforementioned algorithm for linear
degeneracy testing [33]. While some slightly subquadratic-time uniform algorithms exist, the
existence of a uniform algorithm solving 3SUM in time O(n2−δ) for some positive constant δ

is still a major open problem. It has recently been shown that all nontrivial linear degeneracy
testing problems for k = 3 are equivalent under subquadratic reductions [19]. This makes
3SUM one of the cornerstone computational problems in fine-grained complexity theory [45].
The 4-SUM problem is closely related to the so-called “Sorting X + Y ” problem, in which
we are asked to sort the pairwise sums of elements in two sets of n real numbers [27]. See
also [35] for recent results on k-SUM.

The 3-POL problem, in which we look for three input numbers on which an arbitrary
given bounded-degree polynomial F vanishes, has first been studied in Barba et al. [10] in
both the real RAM and the algebraic decision tree models. In an algebraic decision tree, we
only count sign tests of constant-degree polynomials in the input data, and again forbid any
other operation to access the data explicitly; see [12, 40] and below. As shown in [10], the
3-POL problem can be solved in this model with only O∗(n12/7) sign tests, an improvement
over the O∗(n2) uniform upper bound.

When the three input sets A, B, C are sets of points in the plane, we obtain the collinearity
testing problem as a special case, in which we want to determine whether A × B × C contains
a collinear triple. Collinearity testing is a classical 3SUM-hard problem in computational
geometry [30] for which no subquadratic algorithm is known, even in the algebraic decision
tree model; see [7, 10] for a discussion. In the uniform model, the problem can be solved
in O(n2) time. The primitive operation needed to test for collinearity of a specific triple
(a, b, c) is the so-called orientation test, in which we test for the sign of the determinant∣∣∣∣∣∣

1 xa ya

1 xb yb

1 xc yc

∣∣∣∣∣∣ ,
which is a quadratic polynomial in the six coordinates of a triple of points in A × B × C.
Consequently, it is natural, and in fact necessary, to use the more general algebraic decision
tree model mentioned above (instead of linear decision trees). Partial results with subquadratic
algorithms in the algebraic decision tree model, both for the general 3-POL problem in the
plane and for collinearity testing, have been obtained by Aronov, Ezra, and Sharir [7].

For the more general problem of affine degeneracy testing in Rd, Erickson and Seidel [23]
proved a lower bound of Ω(nd) on the number of sidedness queries, in which one asks
whether a point lies above, on, or below some hyperplane. The lower bound is matched by
well-known algorithms [21]. The existence of a better real RAM algorithm, that would use
more sophisticated operations than only sidedness queries, is a major open problem.

SoCG 2023
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Table 1 Upper bounds on the uniform complexity of k-POL for the first few values of k ≥ 4.

k 4 5 6 7 8
Exponent 2.666 . . . 3.6 4.5 5.4545 . . . 6.4

1.2 Our results
We provide the first algorithm for the k-POL problem that achieves a polynomial-factor
improvement over the naïve method.

▶ Theorem 2. The k-POL problem is solvable in randomized expected time O∗
(

nk−2+ 4
k+2

)
for even k and O∗

(
n

k−2+ 4k−8
k2−5

)
for odd k in the real RAM computation model.

Note that the speedup factor over the simple O(nk−1 log n) algorithm mentioned earlier
gets close to linear for large k. The exponents for a few small values of k ≥ 4 are given in
Table 1. In the cases k = 4 and k = 5, we can be further improve those bounds, albeit only
in the more powerful algebraic decision tree model.

▶ Theorem 3. The 4-POL problem is solvable in time O∗(n21/8) in the algebraic decision
tree computation model.

▶ Theorem 4. The 5-POL problem is solvable in time O∗(n210/59) in the algebraic decision
tree computation model.

The exponents in the nonuniform bounds in Theorems 3 and 4 are 2.625 and ∼ 3.56,
respectively, which improve on the corresponding uniform bounds for k = 4 (2.666 . . .) and
k = 5 (3.6); see Table 1.

Application to affine degeneracy testing in d-space. One motivation for studying the
k-POL problem is the following restricted version of affine degeneracy testing in Rd. Let
A1, . . . , Ak be k sets of n points in Rd, where each of the sets Ai lies on its own algebraic curve
γi. The goal is to decide, in the real RAM computation model, whether there exist k points,
one in each set, that lie on a common (k − 2)-flat. We suppose that each γi is polynomially
parameterizable. That is, γi is given by the equations xj = fi,j(t), for j = 1, . . . , d, t ∈ R,
where the fi,j are polynomials of some constant maximum degree. Hence, we may represent
each set Ai as a set of n real numbers, which are the values of the parameter t that define
its points. An example of an instance with n = 4 and k = 3 is shown in Figure 1.

Up to a simple randomized preprocessing, we can assume that k = d + 1, that is, we
reduce the problem to one in which we look for d + 1 points lying on a common (d − 1)-flat.
Indeed, take a generic projection π : Rd → Rk−1 with respect to S = A1 ∪ · · · ∪ Ak, namely
a projection that does not introduce additional degeneracies in S. Thus a k-tuple of points
of π(S) lies on a hyperplane in Rk−1 if and only if its preimage in S lies on a (k − 2)-flat.
Note that for natural choices of distributions, a random projection is generic with respect to
S with probability one (see for instance [5] for a discussion).

We now consider the reduced problem, and note that the condition that d + 1 points
a1 ∈ A1, . . . , ad+1 ∈ Ad+1 lie on a common hyperplane is that the matrix

1 f1,1(a1) f1,2(a1) · · · f1,d(a1)
1 f2,1(a2) f2,2(a2) · · · f2,d(a2)

· · ·
1 fd+1,1(ad+1) fd+1,2(ad+1) · · · fd+1,d(ad+1)


has determinant zero. This determinant is a bounded-degree polynomial in the input.
Applying Theorem 2, we directly get the following result.
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Figure 1 An instance of the affine degeneracy testing in R2 for n = 4 and k = 3.

▶ Corollary 5 (Constrained affine degeneracy testing in Rd). Let A1, . . . , Ak be k sets of n

points in Rd, such that each of the sets Ai lies on its own constant-degree algebraic curve,
where all these curves are polynomially parameterizable. Then one can decide, in the real
RAM computation model, whether there exists k points, one in each set, that lie on a common
(k − 2)-flat, in randomized expected time O∗

(
nk−2+ 4

k+2

)
for even k and O∗

(
n

k−2+ 4k−8
k2−5

)
for odd k .

Hopcroft’s problem. Hopcroft’s classical problem is that of determining, given two
collections of n points and of n lines in the plane, whether some point lies on some line. An
elegant algorithm relying on cuttings was proposed by Matoušek [36], with running time
n4/32O(log∗ n). It has recently been slightly improved to O(n4/3) by Chan and Zheng [16].
Our main technical result, given in Theorem 6, is an algebraic generalization of this result,
in which we wish to detect incidences between points and algebraic surfaces of codimension
1 and of constant degree in arbitrary dimension. This involves a careful use of recent
algorithmic methods for hierarchical polynomial partitions, which also arise in the context of
semi-algebraic range searching; see below.

Organization of the paper. The next section is dedicated to solving this generalized
algebraic version of Hopcroft’s problem. In Section 3, we apply this result to the k-POL
problem and prove Theorem 2. In Section 4, we consider algorithms in the algebraic decision
tree model and prove Theorems 3 and 4.

2 Hopcroft’s Problem generalized

Our main technical result is of independent interest, and provides a broad generalization of
the classical Hopcroft’s problem [16, 36], originally formulated for points and lines in the
plane.

SoCG 2023
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2.1 Statement
▶ Theorem 6 (General Hopcroft’s problem). Let s ≥ 1 and t ≥ 1 be a pair of integers, and put
k = s + t. Let F be a real k-variate polynomial of constant degree. For any set P of N points
in Rt, and any set Q of M points in Rs, deciding whether there exists a pair (p, q) ∈ P × Q

such that F (p1, . . . , pt, q1, . . . , qs) = 0 can be done in randomized expected time

O∗
(

M1− t−1
ts−1 N1− s−1

ts−1 + M + N
)

in the real RAM model. Furthermore, one can obtain, within the same time and output
size bounds, a compact encoding of the signs sign(F (p1, . . . , pt, q1, . . . , qs)) ∈ {0, +, −} for all
(p, q) ∈ P × Q.

Hopcroft’s problem itself is a special case with t = s = 2 and F (p1, p2, q1, q2) = p1q1 +
p2 − q2 (with a suitable parameterization of the input lines). Our bound in this case is
O∗(M2/3N2/3+M +N), which is close to the best known upper bound O(M2/3N2/3+M +N),
due to Chan and Zheng [16]. The case s = t = 6 was stated by Aronov et al. [6] for another
application. A special case of Theorem 6 with t = s = 2 and N = M was also stated by
Barba et al. [10, Lemma 6.8]. When s ≠ t, we obtain an asymmetric incidence detection
problem, with distinct primal and dual space dimensions. (For a simple instance of this
asymmetric setup, think of points and arbitrary circles in the plane.)

2.2 Proof
To prove Theorem 6, we employ a modified version of the recent machinery of Matoušek
and Patáková [37, Theorems 1.1 and 1.3] for range searching with semi-algebraic sets in
higher dimensions (see also [1, 2, 3, 25, 26] for related results and applications). The original
study [37] gives, for N input points in Rt, a data structure of size O∗(N) that can be
constructed in O∗(N) randomized expected time, so that a query with a constant-complexity
semi-algebraic range can be answered in O∗(N1−1/t) time. The main technical result on
which their algorithm is based is the following lemma, which will be the main technical tool
for our algorithm too. (We have changed some of the notations in the lemma statement to
conform with the other notations used in this work.)

▶ Lemma 7 (Matoušek and Patáková [37]). For every integer t > 1 there is a constant K

such that the following hold. Given an N -point set P ⊂ Rt and a parameter r > 1, there are
numbers r1, r2, . . . , rt ∈ [r, rK ], positive integers ℓ1, ℓ2, . . . , ℓt, all of which are O(rC), for a
suitable constant C = C(t) depending on t, a partition

P = P ∗ ∪
t⋃

i=1

ℓi⋃
j=1

Pij

of P into disjoint subsets, and for every i, j, a connected set Sij ⊆ Rt, which is semi-algebraic
of constant complexity (that depends on r), containing Pij, such that |Pij | ≤ n/ri for all
i, j, |P ∗| ≤ rK , and the following holds:

(⋆) If h is a t-variate real polynomial of bounded degree and Z(h) is its zero set then, for
every i = 1, 2, . . . , t, the number of the sets Sij crossed by (intersected by but not contained
in) Z(h) is at most O(r1−1/t

i ).

The implied constants and parameters depend on the maximum degree of the polynomials
defining the partition, and the constant in the crossing bound for Z(h) also depends on the
degree of h. Furthermore, the sets P ∗, Pij , and Sij can be constructed, in the standard model
of algebraic computation [11], in randomized expected time O(nrC).
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Proof of Theorem 6. We map each point q = (q1, . . . , qs) ∈ Q to the surface σq =
{(x1, . . . , xt) | F (x1, . . . , xt, q1, . . . , qs) = 0} in Rt. Let Σ denote the resulting collection of
these M surfaces. Note that the surfaces of Σ have s degrees of freedom. If any of these
surfaces is the entire t-space we terminate the algorithm right away with a positive outcome.
Otherwise, the problem has been reduced to the problem of detecting an incidence between
some point of P and some surface of Σ. Note that the problem is fully symmetric in P and
Q, so we can also represent it in Rs, where the points of Q are represented as points, and
those of P as surfaces.

Fix a sufficiently large constant parameter r (see below for more concise details concerning
this choice). If N ≥ M we apply Lemma 7 to P ⊂ Rt, and if N ≤ M we apply Lemma 7 to
the corresponding points and surfaces in the dual representation in Rs. Assume without loss
of generality that N ≥ M , and follow the notations in Lemma 7.

For each i = 1, 2, . . . , t, each surface in Σ crosses (intersects but does not contain) at
most O

(
r

1−1/t
i

)
sets Sij . Denote by Σij the subset of surfaces that cross Sij . If there is

a surface σq that fully contains Sij then we have an incidence between σq and each point
p ∈ Pij (assuming, as we may, that none of the sets Pij is empty). Otherwise, let qij = |Σij |.
Then from (⋆) we have, for each i,

ℓi∑
j=1

qij ≤ cMr
1−1/t
i ,

for a suitable constant c > 0, independent of r. For each i = 1, . . . , t and j = 1, . . . , ℓi, we
face a subproblem involving Pij and Σij , of respective sizes at most N/ri and qij , which
we solve recursively, possibly switching to the dual setup, depending on which of these two
sizes is larger. In addition, we have the leftover set P ∗, which is of constant size, so we can
detect an incidence between some point of P ∗ and a surface of Σ in O(M) time. We stop
the recursion when the size of one of the sets becomes smaller than some constant threshold
n0, and then solve the problem using brute force, in time linear in the size of the other set.
Note that at each recursive step we can, in addition, keep track of the signs of the values of
F (p, q) for the points p in Pij and the points q defining surfaces in Σ that do not intersect
Sij , in order to construct the desired encoding of the signs.

Let T (N, M) denote the maximum running time of the procedure for sets P , Σ of
respective sizes at most N , M .

▷ Claim 8. For any fixed positive integer constants s and t, and real ε > 0, there is a
constant A such that for any set P of at most N points in Rt and any set Σ of at most M

algebraic surfaces in Rt with s degrees of freedom and constant maximum degree, we have

T (N, M) ≤ A
(

M1− t−1
ts−1 +εN1− s−1

ts−1 +ε + M1+ε + N1+ε
)

. (1)

Proof. The proof is by induction on N and M . The base case is N ≤ n0 or M ≤ n0. In
either case we have T (N, M) = O((N + M)n0) = O(N + M), which is subsumed by the
right-hand side of (1) if we choose A to be sufficiently large. Consider then the case where,
say, N ≥ M > n0, and assume that (1) holds for all smaller values N ′ ≤ N , M ′ < M or
N ′ < N , M ′ ≤ M . Apply Lemma 7 to the primal setup, where P ⊂ Rt is the set of points;
we would apply it in the dual setup, in which Q ⊂ Rs is the set of points that represent the
surfaces of Σ in the complementary case where M ≥ N > n0. We use the notations in that
lemma. Since r is a constant, the nonrecursive cost of the procedure is at most B(N + M),
where B is a constant that depends on r and on the various other constant parameters (this
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bound also accounts for the cost of processing of P ∗). By induction hypothesis, for each i

and j, the cost of the recursive processing of Pij and Σij is at most

A

(
p

1− s−1
ts−1 +ε

ij q
1− t−1

ts−1 +ε

ij + p1+ε
ij + q1+ε

ij

)
, (2)

where pij = |Pij |. Observe that we have pij ≤ N/ri for each j, and the quantities Ni :=∑ℓi

j=1 pij satisfy
∑t

i=1 Ni ≤ N (since the decomposition in Lemma 7 is into disjoint subsets).
Recall also that

∑ℓi

j=1 qij ≤ cMr
1−1/t
i for each i.

We now sum the bounds in (2) over j for each fixed i. We first note that

ℓi∑
j=1

p1+ε
ij ≤ (N/ri)ε

ℓi∑
j=1

pij = (N/ri)εNi.

Using Hölder’s inequality, the sum is upper bounded by

A

 ℓi∑
j=1

p
1− s−1

ts−1 +ε

ij q
1− t−1

ts−1 +ε

ij +
ℓi∑

j=1
p1+ε

ij +
ℓi∑

j=1
q1+ε

ij


≤ A

(N/ri)1− t+s−2
ts−1 +2ε

ℓi∑
j=1

p
t−1

ts−1 −ε

ij q
1− t−1

ts−1 +ε

ij + (N/ri)εNi + (cMr
1−1/t
i )1+ε


≤ A

(
(N/ri)1− t+s−2

ts−1 +2εN
t−1

ts−1 −ε

i (cMr
1−1/t
i )1− t−1

ts−1 +ε + (N/ri)εNi + (cMr
1−1/t
i )1+ε

)

= A

N1− t+s−2
ts−1 +2εN

t−1
ts−1 −ε

i M1− t−1
ts−1 +ε · c1− t−1

ts−1 +ε

r
(1+ 1

t )ε

i

+ (N/ri)εNi + (cr
1−1/t
i )1+εM1+ε


≤ A

N1− s−1
ts−1 +εM1− t−1

ts−1 +ε · c1− t−1
ts−1 +ε

r
(1+ 1

t )ε

i

+ (N/ri)εNi + (cr
1−1/t
i )1+εM1+ε

 ,

where in the last inequality we used the fact that Ni ≤ N for each i.
We then sum these bounds over i = 1, . . . , t, add the nonrecursive cost B(M + N), and

obtain the overall upper bound (recalling that ri ≥ r for each i)

A

(
N1− s−1

ts−1 +εM1− t−1
ts−1 +ε · tc1− t−1

ts−1 +ε

r(1+ 1
t )ε

+ N1+ε

rε
+

t∑
i=1

(cr
1−1/t
i )1+εM1+ε

)
+B(M +N). (3)

For r chosen sufficiently large, the factors tc
1− t−1

ts−1 +ε

r(1+ 1
t )ε

and 1
rε are both smaller than 1/4.

The only problematic factor is Z :=
∑t

i=1(cr
1−1/t
i )1+ε, which in general will be larger than

1. To address this issue, one can easily verify that, for M ≤ N , we have

M1+ε ≤ 1

N
(s−1)(t−1)

st−1 +ε
· N1− s−1

ts−1 +εM1− t−1
ts−1 +ε.

That is,

ZM1+ε ≤ Z

N
(s−1)(t−1)

st−1 +ε
· N1− s−1

ts−1 +εM1− t−1
ts−1 +ε,

and we can make the factor Z

N
(s−1)(t−1)

st−1 +ε
smaller than 1/4, assuming that n0 is sufficiently

large, an assumption that, as already noted, affects the choice of A.
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Substituting these bounds into (3), we obtain

T (N, M) ≤ A

(
1
2N1− s−1

ts−1 +εM1− t−1
ts−1 +ε + 1

4N1+ε

)
+ B(M + N),

which, by choosing A sufficiently large, is smaller than the right-hand side of (1). This
establishes the induction step and thereby completes the proof of the lemma for the case
M ≤ N . The complementary case M ≥ N is treated in a fully symmetric manner. This
completes the proof of Claim 8. ◁

Switching back to the O∗(·) notation, we have established Theorem 6. ◀

3 An improved real RAM algorithm for algebraic degeneracy testing

We can now apply Theorem 6 to obtain an improved algebraic degeneracy testing algorithm.
We first briefly summarize the best known algorithm for k-SUM.

3.1 The meet-in-the-middle algorithm for k-SUM
The meet-in-the-middle algorithm for k-SUM, assuming k even, proceeds by computing the
nk/2 sums of all (k/2)-tuples of numbers in the first k/2 sets, as well as all nk/2 sums of
(k/2)-tuples from the last k/2 sets. It then searches a pair of opposite sums that sum to
0, by sorting each of the collections of sums, in time O(nk/2 log n), and then by merging
the sequence of the former sums with the negated sequence of the latter. When k is odd,
we sort the collection of sums of the (k − 1)/2-tuples composed from numbers of the first
(k − 1)/2 sets, and of sums of the (k − 1)/2-tuples composed from the last (k − 1)/2 sets, in
time O(n(k−1)/2 log n). Then, for each number x ∈ A(k+1)/2, we shift the negated sequence
of the latter sums by −x, then merge it with the former sequence to detect a coincident pair
of values, which implies a positive answer. This takes time O(n(k+1)/2) = O(n⌈k/2⌉) overall.
This algorithm, for odd values of k, is hinted at by Erickson [22], and described by Ailon
and Chazelle [4].

3.2 An algebraic meet-in-the-middle algorithm
Our algorithm can be seen as an algebraic generalization of this elementary method. We
note that in the very special case where k is even, say, and F has the form

G(F1(x1, . . . , xk/2), F2(xk/2+1, . . . , xk))

for suitable constant-degree polynomials F1, F2 and G, the meet-in-the-middle algorithm can
be straightforwardly generalized to solve the k-POL problem within the same time bound.
In general, however, F does not have this separation-of-variables property, and we have to
resort to a more involved algorithm, with the running time asserted in Theorem 2.

Proof of Theorem 2. Let A1, . . . , Ak and F be as defined in the formulation of the k-POL
problem, and let t, s be integers satisfying t + s = k. Define P = A1 × · · · × At as a set of
N = nt points in Rt, and Q = At+1 × · · · × Ak as a set of M = ns points in Rs. We now
apply Theorem 6 with these values, and obtain a main term in the running time bound that
is proportional to

ns− st−s
st−1 nt− st−t

st−1 = nk−2+ k−2
st−1 ,
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up to some subpolynomial factors. It is easily checked that this term dominates the other
terms ns and nt (for 1 ≤ s, t ≤ k − 1). The running time bound is therefore O∗

(
nk−2+ k−2

st−1

)
.

To minimize this bound, s and t = k − s should be as close to k/2 as possible. Thus for even
values of k, we take t = s = k/2 and obtain the bound

O∗
(

nk−2+ 4
k+2

)
,

which is indeed an improvement over the simpler O∗(nk−1) solution discussed earlier. For
odd values of k, we take t = (k − 1)/2 and s = (k + 1)/2, and obtain the bound

O∗
(

n
k−2+ 4k−8

k2−5

)
,

again an improvement. This proves Theorem 2. ◀

4 Improved algorithms in the algebraic decision tree model

We present faster algorithms in the algebraic decision tree model for the special cases of
4-POL and 5-POL, and prove Theorems 3 and 4. In the algebraic decision tree model we
only count the number of sign tests of constant-degree polynomials in the input data; all
other operations are free of charge, but they are not allowed to explicitly access the real
numbers in the input, and can only manipulate them via the results of the sign tests. We
refer to [12, 41, 44] for seminal works on this model, and to [6, 10, 13, 33] for recent results
under this model. Before giving a description of the algorithms, we briefly recall the point
location data structure described in Aronov et al. [6], that will be used in both algorithms.

4.1 A simple point location data structure
Let Γ be a finite collection of x-monotone constant-degree algebraic curves in the plane from
−∞ to +∞, and let A(Γ) denote the arrangement of those curves. We define the order type
of A(Γ) as the following information:
1. The vertical order of the curves at x = −∞.
2. For each curve γ ∈ Γ, the left-to-right order of the intersection points of γ with the other

curves of Γ, where each point is tagged by its index, which is the number of intersections
of the same pair of curves that lie to its left.

We use the following lemma.

▶ Lemma 9 (Aronov et al. [6]). Let Γ be a finite collection of x-monotone constant-degree
algebraic curves in the plane. Using only the order type of A(Γ), one can construct a data
structure that allows to answer point location queries in A(Γ) in time O(log2 |Γ|).

The data structure itself is the one proposed by Lee and Preparata [34] (see also [20]). It
stores the information related to the levels of the arrangement, each consisting of a sequence
of vertices defined as intersections of pairs of curves. Each such intersection point q is encoded
by a triple (i, j, k), indicating that this is the kth intersection, in the left-to-right order, of
the curves γi, γj ∈ Γ (where k − 1 is the index of q, as defined above). To answer a query, we
perform a binary search on the levels of the arrangement. At each step of this binary search,
we need to know whether the query point lies above or below (or on) some level. For this,
we use a secondary binary search on the x-coordinates of the vertices of the level, which we
can obtain as a left-to-right sorted sequence from the discrete information in the order type.
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γ∗a,b

C1 C2
. . . Cdn/ge

D1

D2

...

Ddn/ge

2

Figure 2 Illustration of the algorithm for 4-POL. For each pair of values (a, b) ∈ A × B, we
test whether the dual curve γ∗

a,b (here a circle of equation w2 + z2 = 1) is incident to any pair
(c, d) ∈ C × D. We only need to search the data structures for the pairs of blocks Ci × Dj whose
boxes are intersected by γ∗

a,b, shown in gray. Note that the grid does not have to be uniform, but all
boxes contain the same number g2 of points of C × D. The number of intersected boxes is O(n/g).

The overall cost is therefore O(log2 |Γ|). We refer to [6] for a more detailed description. We
emphasize again that in the uniform model this structure requires quadratic storage and
construction time, but they are cost-free in the algebraic decision tree model, once the order
type has been produced.

The main point in using this simple method, even though its queries are less efficient than
standard point location techniques [18, 42], is that in order to construct the data structure,
we only need to know the order type of the arrangement, and that this order type can be
encoded by a predicate that involves only triples of curves of Γ (or by pairs for the vertical
order of the curves at x = −∞). The small arity of this predicate is a crucial factor in
the improvement of the running time in the algebraic decision tree model, compared to the
uniform real RAM model.

The assumption that the curves are x-monotone and extend along the whole x-axis can
be lifted, since every constant-degree algebraic curve in the plane can be decomposed into
O(1) x-monotone arcs, where the constant involved only depends on the degree of the curve.
This extension of the algorithm to the case of bounded arcs requires some care but is not
difficult. Using a segment tree over the x-projections of the arcs, we only need to pay an
extra logarithmic factor in the point location mechanism, hence point location queries are
answered in time O(log3 |Γ|).

4.2 Algorithm for 4-POL

We consider the special case k = 4 of the k-POL problem, with four input sets A, B, C, D of
n real numbers each.
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Proof of Theorem 3. Recall that we need to locate the points of P = A × B in the
arrangement of the curves in Γ = {γc,d | (c, d) ∈ C × D}, where γc,d = {(x, y) ∈ R2 |
F (x, y, c, d) = 0}. We can safely assume these are indeed one-dimensional curves and not
the entire plane.

We want to preprocess the arrangement A(Γ) into a point location data structure. However,
instead of computing a single data structure for the whole set, we partition each of C and D

into n/g blocks, each consisting of g consecutive points (maybe less for the last block), for a
suitable parameter g ≪ n that we will fix later. Denote the C-blocks as C1, . . . , C⌈n/g⌉ and
the D-blocks as D1, . . . , D⌈n/g⌉. We construct the point location data structure described in
Section 4.1 for each of the (n2/g2) cells of the form Ci × Dj , namely for the curves γc,d for
(c, d) ∈ Ci × Dj . We then search these structures with each of the O(n2) pairs in A × B, to
detect whether any such pair, regarded as a point in R2, lies on any of the curves. For each
pair (a, b) ∈ A × B, define the dual curve γ∗

a,b = {(z, w) ∈ R2 | F (a, b, z, w) = 0}. Again we
may assume that this is a one-dimensional curve and not the entire zw-plane. We observe
that we need to search with a pair (a, b) ∈ A × B only in the point location data structures
corresponding to pairs of blocks Ci × Dj for which γ∗

a,b crosses the axis-parallel box in the
wz-plane that defines Ci × Dj . (See Figure 2 for an illustration.) Observe that there are
only O(n/g) such pairs, and the cost of one query in one of the blocks of size g2 is O(log3 g),
so the total cost of the n2 searches is

O∗
(

n3

g

)
. (4)

It remains to describe the preprocessing phase, in which the point location data structures
are constructed. We proceed as in the earlier recent works [6, 10], using the so-called
Fredman’s trick [27, 28, 32].

▷ Claim 10. The point location data structures for all the cells Ci × Dj can be constructed
in time O∗(n3/2g3) in the algebraic decision tree model.

Proof of Claim 10. In order to construct the point location data structure for the cell Ci ×Dj ,
we need to determine the order type of the arrangement of curves represented by points in
Ci×Dj . To determine this order type, we define a Boolean predicate Hk,k′(c1, c2, c3; d1, d2, d3)
with the following arguments:

1. a triple of curves (γc1,d1 , γc2,d2 , γc3,d3), where c1, c2, c3 ∈ Ci and d1, d2, d3 ∈ Dj ,
2. two positive integers k, k′ bounded by a constant depending on the degree of the curves.

Hk,k′(c1, c2, c3; d1, d2, d3) determines the relative order along γc1,d1 of its kth leftmost
intersection with γc2,d2 and its k′th leftmost intersection with γc3,d3 . Specifically, it is true if
and only if the first intersection point lies to the left of the second point. (This suffices if
we assume that no pair of intersection points coincide. Otherwise we add a predicate that
is true when the two intersection points coincide.) Note that in practice Hk,k′ involves a
number of quantifiers proportional to k and k′, and eliminating these quantifiers is somewhat
involved. Still, since the curves are of constant degree, all of this can be done in constant
time using standard algebraic geometry techniques [11, 17].

To efficiently resolve all such comparisons, we split the predicate Hk,k′(c1, c2, c3; d1, d2, d3)
by considering (c1, c2, c3) as a point in R3 and (d1, d2, d3) as defining a constant-complexity
semi-algebraic range

σ(d1,d2,d3) := {(x1, x2, x3) | Hk,k′(x1, x2, x3; d1, d2, d3) is true}.
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For each of the O(1) pairs k, k′, the number of points (c1, c2, c3) involved is equal to the
number of blocks in C multiplied by the number of ordered triples in each block, namely
(n/g) · g3 = ng2. Similarly, there are ng2 ranges of the form σ(d1,d2,d3). We now have a
semi-algebraic batch range searching problem in R3, which has a symmetric dual version, in
which the c-coordinates define ranges and the d-coordinates define points, also involving ng2

points and ng2 ranges. We can thus apply Theorem 6 with N = M = ng2 and t = s = 3,
since both points and curves have three degrees of freedom, and conclude that this problem
can be solved in time

O∗
(

(ng2)3/2
)

= O∗(n3/2g3).

This gives us a compact encoding of all the values Hk,k′(c1, c2, c3; d1, d2, d3), hence the
outcome of all the necessary comparisons to construct the point location structures, one for
each pair Ci, Dj . The rest of the construction is free in the algebraic decision tree model.
This proves Claim 10. ◁

It remains to (roughly) balance the cost in Claim 10 with that of the search phase given
in (4); that is, ignoring subpolynomial factors, we set

n3

g
= n3/2g3 ⇒ g = n3/8.

With this choice of g, the overall cost is O∗(n21/8) = O∗(n2.625), a polynomial improvement
over the O∗(n2.667) uniform algorithm. This proves Theorem 3. ◀

4.3 Algorithm for 5-POL
We now consider the case k = 5, with five input sets A, B, C, D, E of n real numbers each.

Proof of Theorem 4. We will locate the points of P = A × B in the arrangement of curves
in Γ = {γc,d,e | (c, d, e) ∈ C × D × E}, where γc,d,e = {(x, y) ∈ R2 | F (x, y, c, d, e) = 0}. We
first partition each of the three sets C, D, E into blocks of g consecutive values. We refer to
the ith block of C, D, E as Ci, Di, Ei, respectively, where i ∈ {1, . . . , ⌈n/g⌉}.

Following the previous approach, we map each (a, b) ∈ A × B to the 2-surface σ∗
a,b =

{(z, w, u) ∈ R3 | F (a, b, z, w, u) = 0}. One can show that σ∗
a,b crosses only O((n/g)2) cells

of the form Ci × Dj × Eℓ. (This property, and the corresponding property in the 4-POL
algorithm, can be regarded as extensions of the Schwartz–Zippel lemma; see [43, 46].) For
each of the cells, we compute the point location data structure of Lemma 9, such that
detecting an incidence can be performed in O(log3 g) time. Hence, the time spent on the
query phase is

O∗ (n2 · (n/g)2) = O∗
(

n4

g2

)
. (5)

As for the preprocessing phase, we need to construct the point location data structure of
Lemma 9 for each cell of the form Ci × Dj × Eℓ.

▷ Claim 11. The point location data structures for all the cells Ci × Dj × Eℓ can be
constructed in time O∗(n42/17g84/17) in the algebraic decision tree model.

Proof of Claim 11. We need to infer the order type of the arrangements in each of these cells.
The order type can be inferred from the relative order of all pairs of intersections along
a curve γc,d,e. This involves three curves γc1,d1,e1 , γc2,d2,e2 , γc3,d3,e3 , where c1, c2, c3 ∈ Ci,
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d1, d2, d3 ∈ Dj , and e1, e2, e3 ∈ Eℓ and amounts to determining the signs of a constant
number of 9-variate real polynomials of the form Hk,k′(c1, c2, c3; d1, d2, d3; e1, e2, e3), defined
in complete analogy to the predicates in Claim 10. This can be solved using again batch
semi-algebraic range searching. We have (n/g) · g3 = ng2 triples of the form (c1, c2, c3) ∈ R3

and (n/g)2 · g6 = n2g4 6-tuples of the form (d1, d2, d3; e1, e2, e3) ∈ R6. We can therefore
apply Theorem 6 with N = ng2, M = n2g4, t = 3 and s = 6, and obtain the claimed running
time of O∗ ((n2g4)15/17(ng2)12/17) = O∗ (n42/17g84/17) . ◁

Balancing (roughly) the preprocessing cost of Claim 11 with the query cost in (5), we
obtain

n4

g2 = n42/17g84/17 ⇒ g = n13/59,

yielding an overall complexity of O∗ (n4−26/59) ≃ O∗ (n3.56), an improvement over the
uniform bound O(n3.6) obtained in the previous section. This proves Theorem 4. ◀

Open problems

An interesting open question is to give lower bounds for the k-POL problem that are
asymptotically larger than that for the k-SUM problem. Also, the techniques we use for
algebraic decision trees do not seem to allow any speedup over the real RAM algorithm for
k ≥ 6. It would be interesting to design faster nonuniform algorithms for any value of k.
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9 Ilya Baran, Erik D. Demaine, and Mihai Pǎtraşcu. Subquadratic algorithms for 3SUM.
Algorithmica, 50(4):584–596, 2008. doi:10.1007/s00453-007-9036-3.

10 Luis Barba, Jean Cardinal, John Iacono, Stefan Langerman, Aurélien Ooms, and Noam
Solomon. Subquadratic algorithms for algebraic 3SUM. Discrete Comput. Geom., 61(4):698–
734, 2019. Also in Proceedings of SoCG’17. doi:10.1007/s00454-018-0040-y.

11 Saugata Basu, Richard Pollack, and Marie-Françoise Roy. Algorithms in Real Algebraic
Geometry. Algorithms and Computation in Mathematics. Springer-Verlag, Berlin, Heidelberg,
2006. doi:10.1007/3-540-33099-2.

12 Michael Ben-Or. Lower bounds for algebraic computation trees (preliminary report). In
Proceedings of the 15th Annual ACM Symposium on Theory of Computing, STOC 1983, pages
80–86. ACM, 1983. doi:10.1145/800061.808735.

13 Jean Cardinal, John Iacono, and Aurélien Ooms. Solving k-SUM using few linear queries.
In 24th Annual European Symposium on Algorithms, ESA 2016, pages 25:1–25:17, 2016.
doi:10.4230/LIPIcs.ESA.2016.25.

14 Timothy M. Chan. More logarithmic-factor speedups for 3SUM, (median, +)-convolution,
and some geometric 3SUM-hard problems. ACM Trans. Algorithms, 16(1):7:1–7:23, 2020.
doi:10.1145/3363541.

15 Timothy M. Chan and Qizheng He. Reducing 3SUM to convolution-3SUM. In 3rd
Symposium on Simplicity in Algorithms, SOSA 2020, pages 1–7. SIAM, 2020. doi:10.1137/1.
9781611976014.1.

16 Timothy M. Chan and Da Wei Zheng. Hopcroft’s problem, log-star shaving, 2D fractional
cascading, and decision trees. In Proceedings of the 2022 ACM-SIAM Symposium on Discrete
Algorithms, SODA 2022, pages 190–210. SIAM, 2022. doi:10.1137/1.9781611977073.10.

17 David Cox, John Little, and Donal O’Shea. Ideals, Varieties, and Algorithms. An Introduction
to Computational Algebraic Geometry and Commutative Algebra. Springer Verlag, Heidelberg,
2007. doi:10.1007/978-3-319-16721-3.

18 Mark de Berg, Otfried Cheong, Marc J. van Kreveld, and Mark H. Overmars. Computational
Geometry: Algorithms and Applications, 3rd Edition. Springer, 2008. doi:10.1007/
978-3-540-77974-2.

19 Bartlomiej Dudek, Pawel Gawrychowski, and Tatiana Starikovskaya. All non-trivial variants of
3-LDT are equivalent. In Proccedings of the 52nd Annual ACM SIGACT Symposium on Theory
of Computing, STOC 2020, pages 974–981. ACM, 2020. doi:10.1145/3357713.3384275.

20 Herbert Edelsbrunner, Leonidas J. Guibas, and Jorge Stolfi. Optimal point location in a
monotone subdivision. SIAM J. Comput., 15(2):317–340, 1986. doi:10.1137/0215023.

21 Herbert Edelsbrunner, Joseph O’Rourke, and Raimund Seidel. Constructing arrangements
of lines and hyperplanes with applications. SIAM J. Comput., 15(2):341–363, 1986. doi:
10.1137/0215024.

22 Jeff Erickson. Bounds for linear satisfiability problems. Chic. J. Theor. Comput. Sci., 1999,
1999. URL: http://cjtcs.cs.uchicago.edu/articles/1999/8/contents.html.

23 Jeff Erickson and Raimund Seidel. Better lower bounds on detecting affine and spherical
degeneracies. Discrete Comput. Geom., 13:41–57, 1995. doi:10.1007/BF02574027.

24 Esther Ezra and Micha Sharir. A nearly quadratic bound for point-location in hyperplane
arrangements, in the linear decision tree model. Discrete Comput. Geom., 61(4):735–755, 2019.
doi:10.1007/s00454-018-0043-8.

25 Esther Ezra and Micha Sharir. Intersection searching amid tetrahedra in 4-space and efficient
continuous collision detection. In 30th Annual European Symposium on Algorithms, ESA 2022,
pages 51:1–51:17, 2022. doi:10.4230/LIPIcs.ESA.2022.51.

26 Jacob Fox, János Pach, Adam Sheffer, Andrew Suk, and Joshua Zahl. A semi-algebraic version
of Zarankiewicz’s problem. J. Eur. Math. Soc., 19(6):1785–1810, 2017. doi:10.4171/JEMS/705.

27 Michael L. Fredman. How good is the information theory bound in sorting? Theor. Comput.
Sci., 1(4):355–361, 1976. doi:10.1016/0304-3975(76)90078-5.

SoCG 2023

https://doi.org/10.1007/s00453-007-9036-3
https://doi.org/10.1007/s00454-018-0040-y
https://doi.org/10.1007/3-540-33099-2
https://doi.org/10.1145/800061.808735
https://doi.org/10.4230/LIPIcs.ESA.2016.25
https://doi.org/10.1145/3363541
https://doi.org/10.1137/1.9781611976014.1
https://doi.org/10.1137/1.9781611976014.1
https://doi.org/10.1137/1.9781611977073.10
https://doi.org/10.1007/978-3-319-16721-3
https://doi.org/10.1007/978-3-540-77974-2
https://doi.org/10.1007/978-3-540-77974-2
https://doi.org/10.1145/3357713.3384275
https://doi.org/10.1137/0215023
https://doi.org/10.1137/0215024
https://doi.org/10.1137/0215024
http://cjtcs.cs.uchicago.edu/articles/1999/8/contents.html
https://doi.org/10.1007/BF02574027
https://doi.org/10.1007/s00454-018-0043-8
https://doi.org/10.4230/LIPIcs.ESA.2022.51
https://doi.org/10.4171/JEMS/705
https://doi.org/10.1016/0304-3975(76)90078-5


22:16 Improved Algebraic Degeneracy Testing

28 Michael L. Fredman. New bounds on the complexity of the shortest path problem. SIAM J.
Comput., 5(1):83–89, 1976. doi:10.1137/0205006.

29 Ari Freund. Improved subquadratic 3SUM. Algorithmica, 77(2):440–458, 2017. doi:10.1007/
s00453-015-0079-6.

30 Anka Gajentaan and Mark H. Overmars. On a class of O(n2) problems in computational
geometry. Comput. Geom., 5:165–185, 1995. doi:10.1016/0925-7721(95)00022-2.

31 Omer Gold and Micha Sharir. Improved bounds for 3SUM, k-SUM, and linear degeneracy.
In 25th Annual European Symposium on Algorithms, ESA 2017, pages 42:1–42:13, 2017.
doi:10.4230/LIPIcs.ESA.2017.42.

32 Allan Grønlund and Seth Pettie. Threesomes, degenerates, and love triangles. J. ACM,
65(4):22:1–22:25, 2018. Also in Proceedings of FOCS’14. doi:10.1145/3185378.

33 Daniel M. Kane, Shachar Lovett, and Shay Moran. Near-optimal linear decision trees for
k-SUM and related problems. J. ACM, 66(3):16:1–16:18, 2019. Also in Proceedings of STOC’18.
doi:10.1145/3285953.

34 D. T. Lee and Franco P. Preparata. Location of a point in a planar subdivision and its
applications. SIAM J. Comput., 6(3):594–606, 1977. doi:10.1137/0206043.

35 Andrea Lincoln, Virginia Vassilevska Williams, Joshua R. Wang, and R. Ryan Williams.
Deterministic time-space trade-offs for k-SUM. In 43rd International Colloquium on Automata,
Languages, and Programming, ICALP 2016, pages 58:1–58:14, 2016. doi:10.4230/LIPIcs.
ICALP.2016.58.

36 Jiří Matoušek. Range searching with efficient hierarchical cuttings. Discrete Comput. Geom.,
10:157–182, 1993. doi:10.1007/BF02573972.

37 Jiří Matoušek and Zuzana Patáková. Multilevel polynomial partitions and simplified range
searching. Discrete Comput. Geom., 54(1):22–41, 2015. doi:10.1007/s00454-015-9701-2.

38 Stefan Meiser. Point location in arrangements of hyperplanes. Inf. Comput., 106(2):286–303,
1993. doi:10.1006/inco.1993.1057.
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Abstract
In SoCG 2022, Conroy and Tóth presented several constructions of sparse, low-hop spanners in
geometric intersection graphs, including an O(n log n)-size 3-hop spanner for n disks (or fat convex
objects) in the plane, and an O(n log2 n)-size 3-hop spanner for n axis-aligned rectangles in the plane.
Their work left open two major questions: (i) can the size be made closer to linear by allowing larger
constant stretch? and (ii) can near-linear size be achieved for more general classes of intersection
graphs?

We address both questions simultaneously, by presenting new constructions of constant-hop
spanners that have almost linear size and that hold for a much larger class of intersection graphs.
More precisely, we prove the existence of an O(1)-hop spanner for arbitrary string graphs with
O(nαk(n)) size for any constant k, where αk(n) denotes the k-th function in the inverse Ackermann
hierarchy. We similarly prove the existence of an O(1)-hop spanner for intersection graphs of
d-dimensional fat objects with O(nαk(n)) size for any constant k and d.

We also improve on some of Conroy and Tóth’s specific previous results, in either the number of
hops or the size: we describe an O(n log n)-size 2-hop spanner for disks (or more generally objects
with linear union complexity) in the plane, and an O(n log n)-size 3-hop spanner for axis-aligned
rectangles in the plane.

Our proofs are all simple, using separator theorems, recursion, shifted quadtrees, and shallow
cuttings.
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1 Introduction

Spanners – subgraphs of a given graph that preserve distances up to some multiplicative
factor – have numerous applications and have been studied extensively in both the graph
algorithms and the computational geometry literature [4, 37]. Traditionally, in computational
geometry, the focus has been on Euclidean spanners or metric spanners (i.e., spanners for a
weighted complete graph defined by n points, where the edge weights are Euclidean distances
or distances under some metric).

Recently, spanners for geometric intersection graphs have gained more attention. A
geometric intersection graph is an unweighted, undirected graph formed by n geometric
objects, where the vertices are the objects, and we place an edge between two objects iff
they intersect. Such graphs are popularly studied in computational geometry (e.g., see
[11, 12, 21, 22, 31]), and arise naturally in applications to wireless communication.

© Timothy M. Chan and Zhengcheng Huang;
licensed under Creative Commons License CC-BY 4.0

39th International Symposium on Computational Geometry (SoCG 2023).
Editors: Erin W. Chambers and Joachim Gudmundsson; Article No. 23; pp. 23:1–23:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:tmc@illinois.edu
https://orcid.org/0000-0002-8093-0675
mailto:zh3@illinois.edu
https://doi.org/10.4230/LIPIcs.SoCG.2023.23
https://arxiv.org/abs/2303.16303
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


23:2 Constant-Hop Spanners for More Geometric Intersection Graphs

Formally, in the unweighted setting, a t-hop spanner of a graph G is a subgraph Ĝ of G,
such that for each edge uv ∈ E(G), there is a path of at most t edges in Ĝ from u to v. (It
is sometimes just called a t-spanner, but the term “hop” emphasizes that we are considering
unweighted graph distances here.) The parameter t is called the hop stretch. For an arbitrary
unweighted graph with n vertices, it is known [5] that there exists a t-hop spanner with
O(n1+1/⌈t/2⌉) size (i.e., number of edges) for any constant integer t ≥ 3; this bound is tight
assuming the Erdős girth conjecture [27]. Our goal is to obtain better bounds in the setting
of geometric intersection graphs.

Previous results. Several papers studied hop spanners in the case of unit-disk graphs, i.e.,
intersection graphs of unit disks in the plane: Yan et al. [38] obtained 15-hop spanners
with O(n log n) size. Catusse et al. [13] obtained 5-hop spanners with O(n) size (with
improvements on the hidden constant factor in the size bound by Biniaz [10] and Dumitrescu
et al. [26]). Dumitrescu et al. [26] also obtained 3-hop spanners with O(n) size and 2-hop
spanners with O(n log n) size. Finally, Conroy and Toth [24] obtained 2-hop spanners with
O(n) size.

Conroy and Toth [24] also initiated the study of hop spanners for other families of
geometric intersection graphs. They obtained:

2-hop spanners for fat rectangles1 (e.g., squares) in the plane with O(n log n) size. (In
fact, they proved a nearly matching lower bound of Ω(n log n/ log log n) for squares, or
for homothets of any fixed convex object in the plane.)
3-hop spanners for fat convex objects (e.g., disks) in the plane with O(n log n) size.
3-hop spanners for arbitrary rectangles in the plane with O(n log2 n) size.

Main questions. Conroy and Tóth’s work represented significant progress on hop spanners
in geometric intersection graphs, but it also raised a number of intriguing questions:
1. Can the size of hop spanners be made closer to linear for the classes of graphs they

considered? Their bounds for arbitrary disks, rectangles, etc. all have extra logarithmic
factors. At the end of their paper, Conroy and Tóth explicitly asked: “is there a constant
t ∈ N for which every intersection graph of n disks or rectangles admits a t-hop spanner
with O(n) edges?”

2. Ignoring logarithmic factors, can near-linear size hop spanners be obtained for larger
classes of geometric intersection graphs than the ones they considered? In particular, no
O(n polylog n) size bounds were known for arbitrary line segments or arbitrary triangles
in the plane, or arbitrary balls in Rd for d ≥ 3. At the end of their paper, Conroy and
Tóth wrote: “it would be interesting to see other classes of intersection graphs (e.g., for
strings or convex sets in R2, set systems with bounded VC-dimension or semi-algebraic
sets in Rd) for which the general bound of O(n1+1/⌈t/2⌉) edges for t-hop spanners can be
improved”.

To appreciate the difficulty of these questions, it is worth mentioning the connection
to biclique cover size. A biclique cover of a graph G refers to a collection of bicliques
A1 × B1, . . . , As × Bs, such that E(G) =

⋃s
i=1(Ai × Bi). The size of the cover refers to

M =
∑s

i=1(|Ai| + |Bi|). Biclique covers are a standard technique closely related to range
searching, and have many applications in computational geometry (e.g., see [2, 17, 19]). Most
classes of geometric intersection graphs admit biclique covers with subquadratic size; in

1 All rectangles, squares, and hypercubes are axis-aligned throughout this paper.
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fact, for rectangles or axis-aligned boxes, there are standard constructions of biclique covers
with O(n polylog n) size (similar to the construction of range trees [3, 25]). Given a biclique
cover of size M , it is easy to build a 3-hop spanner of size O(M), as noted by Conroy and
Tóth [24], by just keeping two stars per biclique. In particular, Conroy and Tóth’s 3-hop,
O(n log2 n)-size spanners for rectangles were obtained essentially by using range-tree-style
divide-and-conquer.

However, biclique cover constructions typically require multiple logarithmic factor. This
makes the first question challenging for rectangles. For non-axis-aligned objects, the biclique
cover size is even larger; for example, for line segments, the known upper bound is near
n4/3 (e.g., see [19]). Thus, this would not yield better bounds than for general graphs for
hop stretch t ≥ 5. The situation is even worse for string graphs, i.e., intersection graphs of
curves (which could have large description complexity) in the plane. New ideas are needed
to address the second question.

Main new results. We make progress towards both of the above questions at once, by
obtaining the following result:

Ok(1)-hop spanners with O(nαk(n)) size for arbitrary string graphs.

Here, subscripts in the O notation indicate variables that are assumed to be constant; the
hidden constant factor may depend on such variables. The function αk(·) denotes the k-th
function in the inverse Ackermann hierarchy: α0(n) = n/2, α1(n) = log n, α2(n) = log∗ n

(the iterated logarithm), α3(n) = log∗∗ n (the iterated iterated logarithm), etc. Since these
functions are extremely slow-growing as k increases, we thus get constant-hop spanners
with almost linear size. Although inverse Ackermann has arisen in some past work on
Euclidean spanners before (namely, on the trade-off between size and hop-diameter [7, 33]),
its appearance here for hop spanners in geometric intersection graphs is still surprising.

String graphs include intersection graphs of arbitrary regions enclosed by closed curves in
the plane (e.g., see [34, Lemma 4]). Thus, our result is very general, encompassing arbitrary
line segments and triangles in R2 for the first time, and also including all the previous types
of geometric objects considered by Conroy and Tóth, such as disks, rectangles, and fat convex
objects in R2 – our result shows that fatness is not needed in R2.

We obtain a similar result also for higher-dimensional fat objects:

Ok(1)-hop spanners with Od,k(nαk(n)) size for intersection graphs of fat objects in Rd.

In particular, this includes the case of arbitrary balls in Rd, for which there were no prior
results for d ≥ 3. (In d = 2 dimensions, compared to Conroy and Tóth’s previous result on
fat objects, we work with a different definition of fatness that does not require convexity.)

More new results. The above new results improve previous size bounds for sufficiently large
hop stretch, but do not necessarily improve Conroy and Tóth’s 2-hop and 3-hop spanners.
We have additional new constructions that directly improve some of their specific results.
Notably, we obtain:

2-hop spanners with O(n log n) size for objects with linear union complexity in the plane.

Classes of objects with linear union complexity include arbitrary disks, pseudodisks, and
fat rectangles in R2. Thus, our result strictly improves the hop stretch in Conroy and
Tóth’s 3-hop, O(n log n)-size spanners for the case of disks, and also generalizes their 2-hop,

SoCG 2023
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O(n log n)-size spanners for the case of fat rectangles. So, our result significantly enlarges
the class of geometric intersection graphs that admit sparse 2-hop spanners.

In addition, we obtain:

3-hop spanners with O(n log n) size for rectangles in the plane.

This is a logarithmic-factor improvement over Conroy and Tóth’s previous result.
A summary of our results can be found in Table 1.

Techniques. Our proofs use interesting techniques. For string graphs, our approach (see
Section 2) is based on divide-and-conquer via graph separators. Separator theorems for string
graphs have been developed in a series of papers [28, 36, 34], but sublinear-size separators
exist only if the string graph is not too dense. On the other hand, if the graph is dense, there
exist high-degree vertices, whose neighborhoods form large stars. The key is to realize that
each such star can be viewed as a single object, since a connected union of strings can be
regarded as a new string. Besides recursion in the parts produced by the separator, we use
an extra recursive call to handle these stars. (Luckily, the separator bound for string graphs
is not influenced by how complicated the strings are.) This double recursion eventually leads
to inverse Ackermann complexity. The overall construction is simple.

Curiously, even if we are only interested in the very special case of vertical/horizontal line
segments (or rectangles), it is still important to generalize to strings with the above approach.
(In fact, we started this research more modestly with the case of vertical/horizontal segments,
using more traditional divide-and-conquer, but the above string-graph separator approach
wins out at the end.)

For fat objects in Rd, the approach is similar, except that we use shifted quadtrees
[9, 14, 16] and tree partitioning [30] to do divide-and-conquer (see Section 3). The key is to
view a union of fat objects containing a common point as a new fat object. Again, we get a
double recursion leading to inverse Ackermann.

For our 2-hop spanners for objects with linear union complexity in R2, we use logarith-
mically many layers of shallow cuttings (see Section 4). Shallow cuttings [35] have many
applications, for example, to static data structures for halfspace range searching [15] and
orthogonal range searching [1], dynamic geometric data structures [18], levels in arrange-
ments [15], incidences [20], epsilon-nets [35], and geometric set cover [23]. Interestingly, our
work adds one more (unexpected) application to the list. Given the shallow cutting lemma,
our proof is simple, this time, not even needing recursion; in fact, it is simpler than Conroy
and Tóth’s previous proofs for their 2-hop spanners for fat rectangles, as well as their 3-hop
spanners for fat convex objects in R2.

Our 3-hop spanners for rectangles in R2 (see Section 5) is perhaps the least exciting.
It is similar to Conroy and Tóth’s previous proof, using straightforward range-tree-style
divide-and-conquer, but exploiting known spanners in one dimension (namely, points and
intervals on the real line) as a base case.

2 String Graphs

Our spanner constructions for string graphs will use a separator theorem by Lee [34] (which
was an improvement over previous versions by Fox and Pach [28] and Matoušek [35]).

▶ Lemma 1 (String-graph separator [34]). For every string graph G with n vertices and
m edges, there exists a partition of V (G) into subsets V1, V2, X with |V1|, |V2| ≤ 2n/3,
|X| = O(

√
m), such that there are no edges between V1 and V2.
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Table 1 Our results on O(1)-hop spanners for different classes of geometric intersection graphs.

hop stretch size

String graphs 3 O(n log3 n)
Ok(1) O(nαk(n))

Fat objects in Rd 3 O(n log n)
Ok(1) Od,k(nαk(n))

Objects with union complexity U(·) 2 O(U(n) log n)
Rectangles in R2 3 O(n log n)

We first warm up by describing a 3-hop spanner with O(n log3 n) size, and a 7-hop
spanner with O(n log log n) size, before generalizing it to a larger-hop spanner with inverse
Ackermann complexity.

2.1 3-Hop Spanner with O(n log3 n) Size
String Graph Construction I

1. Repeatedly pick a vertex with degree larger than ∆, for a parameter ∆ to be chosen later,
and remove the vertex along with its neighborhood, until there are no vertices with at
most degree ∆ in the remaining graph. Let G′ be the remaining graph. A vertex and its
neighborhood forms a star, and at most n/∆ such stars are removed. Add the edges of
these stars (O(n) in total) to the output spanner Ĝ.

2. For each vertex u ∈ V (G) and for each star removed in step 1 that contains a vertex
adjacent to u, add an edge between u and an arbitrary such vertex in the star to Ĝ. At
most O(n · n/∆) edges are added this way.

3. Apply Lemma 1 to G′ to obtain V1, V2, X. Since G′ has O(∆n) edges, |X| = O(
√

∆n).
Recursively construct a 3-hop spanner for the subgraph induced by V1 ∪ X and for the
subgraph induced by V2 ∪ X. Add all their edges to Ĝ.

Hop stretch. For any edge uv, if both u and v belong to G′, then u and v are connected
by 3 hops by induction. Otherwise, one of its vertices, say, v, belongs to a star removed in
step 1. By step 2, the spanner Ĝ connects u to some vertex v′ in the same star as v. The
star connects v′ and v by 2 hops, so u and v are connected by 3 hops (see Figure 1).

Sparsity. The size S(n) of the spanner follows the recurrence

S(n) ≤ max
n1,n2≤2n/3: n1+n2≤n

(S(n1 + O(
√

∆n)) + S(n2 + O(
√

∆n)) + O(n · n/∆)).

By setting ∆ = n/ log2 n, the recurrence solves to S(n) = O(n log3 n).

▶ Theorem 2. Every string graph with n vertices admits a 3-hop spanner of size O(n log3 n).

2.2 7-Hop Spanner with O(n log log n) Size
To obtain hop spanners with still smaller size, we need a generalized version of Theorem 1
that partitions into multiple subsets (analogous to “r-divisions” in planar graphs [29]):

▶ Lemma 3 (String-graph separator: multiple-subsets version). Given parameters r and ∆
with ∆ = o(r), for every string graph G with n vertices and maximum degree ∆, there exist
O(n/r) subsets V i ⊂ V (G) of at most r vertices each, such that E(G) ⊂

⋃
i(V i × V i), and

the boundary complexity, defined as
∑

i |V i| − |V (G)|, is at most O(
√

∆n/
√

r).

SoCG 2023
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v u

v′

Figure 1 The light blue circle represents the star containing v. The blue dot at the center
represents the center of the star.

Proof. Apply Lemma 1 to obtain V1, V2, X, with |X| = O(
√

∆n), and recursively generate
subsets for the subgraph induced by V1 ∪ X and for the subgraph induced by V2 ∪ X. When
a subgraph has fewer than r vertices, output its vertex set.

Let B(n) count the boundary complexity of the subsets produced by the above division
procedure on an n-vertex string graph. We have the recurrence

B(n) ≤

{
max

n1,n2≤2n/3: n1+n2≤n
(B(n1 + O(

√
∆n)) + B(n2 + O(

√
∆n)) + O(

√
∆n)) if n ≥ r

0 if n < r

The recurrence solves to B(n) = O(
√

∆n/
√

r). ◀

String Graph Construction II

1. Follow step 1 of Construction I.
2. For each vertex u ∈ V (G) that is adjacent to a vertex of at least one star, add an edge

between u and an arbitrary such vertex in such a star to Ĝ. At most O(n) edges are
added this way.

3. For each pair of stars removed in step 1 such that there is a 2-hop path between them,
add an arbitrary such 2-hop path to Ĝ. At most O((n/∆)2) edges are added this way.

4. Apply Lemma 3 to G′ to obtain the subsets V i. Recursively construct a 7-hop spanner
for the subgraph induced by each V i. Add all their edges to Ĝ.

Hop stretch. For any edge uv, if both u and v belong to G′, then u and v are connected
by 7 hops by induction. Otherwise, one of its vertices, say, v belongs to a star removed in
step 1. By step 2, the spanner Ĝ connects u to some vertex v′ in a possibly different star.
By step 3, these two stars are connected by 2 hops in Ĝ. Inside a star, 2 hops suffice. Thus,
u and v are connected by 7 hops (see Figure 2).

Sparsity. The size of the spanner follows the recurrence

S(n) ≤ max
n1,n2,...≤r:

∑
i

ni≤n+O(
√

∆n/
√

r)

(∑
i

S(ni) + O(n + (n/∆)2)
)

.

By choosing ∆ =
√

n and r = n0.9, the recurrence solves to S(n) = O(n log log n).

▶ Theorem 4. Every string graph with n vertices admits a 7-hop spanner of size O(n log log n).

2.3 Ok(1)-Hop Spanner with O(nαk(n)) Size
Let t1 = 3 and tk = 5tk−1 + 3 for all k > 1. This implies tk = 3

4 (5k − 1). We next modify
the preceding construction to obtain a tk-hop spanner. The key is the following observation:
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v

v′

u

Figure 2 If uv ∈ E(G), then Ĝ connects u and v by 7 hops. The purple paths represent the
arbitrary 2-hop path added in step 3.

▶ Observation 5. The union C of strings that form a connected string graph may be viewed
as a string.

Proof. We can first eliminate cycles from C by removing infinitesimally small arcs, and
can then take an Euler traversal of the resulting tree to obtain a noncrossing path. (The
observation becomes even more obvious if one defines a string as any connected set in the
plane, as some authors did [28].) ◀

String Graph Construction III

1. Follow step 1 of Construction I.
2. Apply Lemma 3 to G′ to obtain the subsets V i. Let B be the boundary vertices, i.e.,

vertices that are in at least two subsets V i. Recursively construct a tk-hop spanner for
the subgraph induced by V i \ B for each V i. Add all their edges to Ĝ. Also, for each
vertex in B, create a star of size 1 (i.e., a singleton) and remove it from G′. The number
of stars is now O(n/∆ +

√
∆n/

√
r).

3. For each vertex u that is adjacent to a vertex of at least one star, add an edge between u

and an arbitrary such vertex in such a star to Ĝ; we say that u is assigned to this star.
At most O(n) edges are added this way.

4. For each star σ, define its extended star S(σ) to be the set of all vertices that are in σ or
assigned to σ, and define the new object U(σ) to be the union of all the strings in S(σ).
Recursively construct a tk−1-hop spanner Ĥ for these new objects, which can be viewed
as strings by Observation 5. For each edge U(σ)U(σ′) in the spanner Ĥ, add an edge
ww′ to Ĝ, where w ∈ S(σ) and w′ ∈ S(σ′) are intersecting strings chosen arbitrarily.

Hop stretch. For any edge uv, if both u and v belong to G′, then u and v are connected
by tk hops by induction. Otherwise, one of its vertices, say, v belongs to a star σ removed in
step 1 or 2. By step 3, the spanner Ĝ connects u to some vertex v′ in a possibly different
star σ′. Since u is in S(σ′) and v is in σ, the two objects U(σ) and U(σ′) intersect and, by
induction, are connected by tk−1 hops in the spanner Ĥ. Inside an extended star, 4 hops
suffice. Thus, u and v are connected by 5tk−1 + 3 hops in Ĝ (see Figure 3).

SoCG 2023
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σ′σt−1σ

S(σ)

U(σ) U(σ1) U(σt−1) U(σ′)

v

u

σ1

S(σ1) S(σt−1) S(σ′)

Ĥ

Ĝ
v′

Figure 3 v ∈ S(σ) and v′ ∈ S(σ′). If Ĥ connects U(σ) and U(σ′) by t hops, then Ĝ connects v

and v′ by 5t + 3 hops. The smaller boxes represent stars in Ĝ; the larger boxes represent extended
stars. Blue dots at the center of the boxes represent centers of the stars.

Sparsity. The size of the tk-hop spanner follows the recurrence

Sk(n) ≤ max
n1,n2,...≤r:

∑
i

ni≤n

(∑
i

Sk(ni) + Sk−1(O(n/∆ +
√

∆n/
√

r)) + O(n)
)

.

For the base case, we have S1(n) = O(n log3 n) by Theorem 2. For k = 2, by choosing
∆ = log3 n and r = ∆3, the recurrence gives S2(n) = O(n log∗ n). For k > 2, we choose
∆ = c0αk−1(n) and r = ∆3 for a sufficiently large constant c0. It is straightforward to show
by induction that Sk(n) ≤ c0nαk(n).

▶ Theorem 6. Every string graph with n vertices admits a 3
4 (5k − 1)-hop spanner of size

O(nαk(n)) for any k ≥ 2.

Remarks. We have not attempted to optimize the hop stretch in the above theorem. Since
the constant factor in the above size bound does not depend on k, we can also choose k = α(n)
and obtain an O(5α(n))-hop spanner with O(n) size.

Although we have cited Lee’s string-graph separator theorem [34], the weaker separator
bound by Fox and Pach [28] is actually sufficient to prove Theorems 4–6 (although for
Theorem 2, the bound would have more logarithmic factors).

3 Fat Objects in Rd

In this section, we turn our attention to the case of fat objects. We will use the following
definition of fatness [16]. Here, the side length of an object refers to the side length of its
smallest enclosing hypercube.

▶ Definition 7. A collection of objects is c-fat if for every hypercube γ with side length ℓ,
there exist c points hitting all objects that intersect γ and have side length at least ℓ.

Our spanner construction will use quadtrees together with a known “shifting lemma” [16]
(based on an earlier work [14]).

▶ Definition 8. A quadtree cell is a hypercube of the form [i1/2k, (i1 + 1)/2k) × · · · ×
[id/2j , (id + 1)/2k) for integers i1, . . . , id, k.

An object u of side length ℓ is C-aligned if it is contained in a quadtree cell with side
length at most Cℓ.
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▶ Lemma 9 (Quadtree shifting [16]). Fix an odd number d∗ > d. Let τ (j) = (j/d∗, . . . , j/d∗) ∈
Rd. For any object u ⊂ [0, 1)d, the shifted object u + τ (j) is (2d∗)-aligned for all but at most
d indices j ∈ {0, . . . , d∗ − 1}.

Choose d∗ = 2d + 1. By rescaling, we may assume that all input objects are in [0, 1)d.
Then for any pair of objects u and v, there exists at least one index j ∈ {0, . . . , d∗ − 1} such
that u + τ (j) and v + τ (j) are both (2d∗)-aligned. For each j, it suffices to construct a hop
spanner for the subset of all objects u such that u + τ (j) is (2d∗)-aligned; we can then output
the union of these d∗ spanners.

Thus, from now on, we may assume that all given objects are (2d∗)-aligned.
We warm up by describing a 3-hop spanner with O(n log n) size, before describing a

larger-hop spanner with inverse Ackermann complexity.

3.1 3-Hop Spanner of O(n log n) Size
Our 3-hop spanner will use the following lemma, which follows directly by taking a tree
centroid in the quadtree:

▶ Lemma 10 (Quadtree centroid [8, 14]). For any set of n points in Rd, there exists a
quadtree cell such that the number of points inside and the number of points outside are both
at most 2d

2d+1 n.

Fat Object Construction I

1. Apply Lemma 10 to the leftmost points of the objects to obtain a quadtree cell γ.
Recursively construct a 3-hop spanner for the objects completely inside γ and for the
objects completely outside γ. Add all their edges to Ĝ.

2. Let Pγ be a set of points hitting all objects that intersect ∂γ and have side length at least
ℓγ/(2d∗), where ℓγ denotes the side length of γ. A hitting set of size |Pγ | = Od(c) exists
by definition of c-fatness (since ∂γ can be covered by (2d∗)d hypercubes of side length
ℓγ/(2d∗)). For each point p ∈ Pγ , build a star S(p) connecting all objects hit by p, with
the center chosen arbitrarily. Add the edges of these stars to Ĝ. At most Od(cn) edges
are added this way.

3. For each object u and for each star S(p) that contains an object intersecting u, add an
edge between u and an arbitrary such object in S(p) to Ĝ. At most O(n) edges are added
this way.

Hop stretch. For any edge uv, if the objects u and v are both inside γ or both outside γ,
then u and v are connected by 3 hops by induction. Otherwise, one of the objects, say, v,
intersects ∂γ (see Figure 4). Observe that v has side length at least ℓγ/(2d∗), since v is
(2d∗)-aligned. Thus, v belongs to a star S(p) from step 2. By step 3, the spanner Ĝ connects
u to some object v′ in the same star S(p). Since v′ and v are connected by 2 hops in Ĝ, u

and v are connected by 3 hops.

Sparsity. The size S(n) of the spanner follows the recurrence

S(n) ≤ max
n1,n2≤2dn/(2d+1): n1+n2≤n

(S(n1) + S(n2) + Od(cn)).

The recurrence solves to S(n) = Od(cn log n).

▶ Theorem 11. The intersection graph of n fat objects in Rd admits a 3-hop spanner of size
O(n log n).
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u

v′
v

p

Figure 4 uv′ ∈ Ĝ, and v′ is connected to v via the center of star S(p) (the blue disk).

3.2 Ok(1)-Hop Spanner with Od,k(nαk(n)) Size
To obtain hop spanners of still smaller size, we need a generalized version of Lemma 10 that
partitions into multiple subsets:

▶ Definition 12. A generalized quadtree cell γ refers to either a quadtree cell or the difference
of an outer quadtree cell γ+ and an inner quadtree cell γ− (in the former case, we let γ+ = γ

and γ− = ∅).

▶ Lemma 13 (Quadtree partitioning). Given parameter r, for any set of n points in [0, 2)d,
there exists a partition of [0, 2)d into O(n/r) generalized quadtree cells, each containing at
most r points.

Proof. This follows directly by applying the tree partitioning scheme by Frederickson [30] to
the quadtree, or alternatively by applying Lemma 10 recursively (stopping when cells have
at most r points each, and with further splitting to ensure each generalized cell has at most
one inner quadtree cell – e.g., see [8]). ◀

▶ Observation 14. Given a collection of c-fat C-aligned objects in Rd, a union of a subset
of objects all hit by a common point can be viewed as a (4dc)-fat C-aligned object.

Proof. Consider a hypercube γ with side length ℓ. Expand γ into a hypercube γ̂ with side
length 2ℓ, keeping the same center. There exists a set P of 4dc points hitting all objects that
intersect γ̂ and have side length at least ℓ/2.

Now take a subset S of objects containing a common point p0. Let U be the union of the
objects in S. Suppose that U intersects γ and has side length at least ℓ.

Case 1: p0 ∈ γ̂. Some object u ∈ S has side length at least ℓ/2. Since u contains p0 and
thus intersects γ̂, we know that u is hit by P , and so U is hit by P .
Case 2: p0 ̸∈ γ̂. Some object u ∈ S intersects γ, and u must have side length at least ℓ/2.
Thus, u is hit by P , and so U is hit by P .

This proves (4dc)-fatness of U . The C-alignedness of U follows from the C-alignedness of
the individual objects in S. ◀

Let t1 = 3 and tk = 3tk−1 +3. This implies tk = 11
9 3k − 2

3 . We now describe a construction
of a tk-hop spanner.

Fat Object Construction II

1. Apply Lemma 13 to the leftmost points of the objects to obtain a set Γ of O(n/r)
generalized quadtree cells. For each γ ∈ Γ, construct a tk-hop spanner recursively for the
objects completely inside γ.
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Ĥ

Ĝ

U(p) U(q)

u

v

U(p1) U(pt−1)· · ·

S(p) S(p1) S(pt−1) S(q)

Figure 5 Assume that u ∈ S(p) and v ∈ S(q) for some p, q ∈ P . If Ĥ connects U(p) and U(q) by
t hops, then Ĝ connects u and v by 3t + 2 hops. Stars in Ĝ are shown as blue boxes. The blue dots
represent the centers of these stars.

2. For each γ ∈ Γ, let Pγ+ be a set of Od(c) points hitting all objects that intersect ∂γ+ and
have side length at least ℓγ+/(2d∗), where ℓγ+ denotes the side length of γ+. Similarly,
let Pγ− be a set of Od(c) points hitting all objects that intersect ∂γ− and have side length
at least ℓγ−/(2d∗), where ℓγ− denotes the side length of γ−. Let Pγ = Pγ+ ∪ Pγ− . For
each object u completely inside γ and each point p ∈ Pγ , add an edge between u and an
arbitrary object that is hit by p and intersects u (if exists) to Ĝ. At most Od(cn) edges
are added this way.

3. Let P =
⋃

γ∈Γ Pγ . Assign each object u that is hit by P to an arbitrary p ∈ P that hits u.
For each p ∈ P , build a star S(p) connecting all objects assigned to p, with the center
chosen arbitrarily. Add the edges of these stars to Ĝ. At most O(n) edges are added this
way.

4. For each p ∈ P , define the new object U(p) to be the union of the objects in S(p).
Recursively construct a tk−1-hop spanner Ĥ for these new objects, which are (4dc)-fat
and (2d∗)-aligned by Observation 14. For each edge U(p)U(p′) in the spanner Ĥ , add an
edge ww′ to Ĝ, where w ∈ S(p) and w′ ∈ S(p′) are intersecting objects chosen arbitrarily.

Hop stretch. For any edge uv, if both u and v are completely inside a generalized quadtree
cell in Γ, then u and v are connected by tk hops by induction.

Otherwise, consider the case where neither u nor v are completely inside a generalized
quadtree cell in Γ. Then u intersects ∂γ and v intersects ∂γ′ for some γ, γ′ ∈ Γ. Observe
that u has side length at least ℓγ+/(2d∗) (resp. ℓγ−/(2d∗)) if u intersects ∂γ+ (resp. ∂γ−),
because u is (2d∗)-aligned. So, u is hit by Pγ . Similarly, v is hit by Pγ′ . Thus, u and v

belong to two stars S(p) and S(q) from step 3 for some p, q ∈ P . The two objects U(p) and
U(q) intersect and, by induction, are connected by tk−1 hops in the spanner Ĥ . Inside a star,
2 hops suffice. Thus, u and v are connected by 3tk−1 + 2 hops in Ĝ (see Figure 5).

Lastly, consider the case when exactly one of the objects, say, u, is completely inside a
generalized quadtree cell γ in Γ, and the other object v intersects ∂γ. Then, v is hit by some
point q ∈ Pγ . By step 2, the spanner Ĝ connects u to some object v′ that is hit by the same
point q. Then v and v′ belong to two stars S(p) and S(p′) from step 3 for some p, p′ ∈ P .
The two objects U(p) and U(p′) intersect. By the same argument in the previous case, v and
v′ are connected by 3tk−1 + 2 hops in Ĝ, and so u and v are connected by 3tk−1 + 3 hops.
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Sparsity. The size of the tk-hop spanner for c-fat (2d∗)-aligned objects follows the recurrence

Sk,c(n) ≤ max
n1,n2,...≤r:

∑
i

ni≤n

(∑
i

Sk,c(ni) + Sk−1,4dc(Od(cn/r)) + Od(cn)
)

.

For the base case, we have S1,c(n) = Od(cn log n) by Theorem 11. For k > 1, we choose
r = αk−1(n). It is straightforward to verify by induction that Sk,c(n) = Od,k,c(nαk(n)).

▶ Theorem 15. The intersection graph of n c-fat objects in Rd admits a ( 11
9 3k − 2

3 )-hop
spanner of size Od,k,c(nαk(n)) for any k ≥ 1.

Remarks. Because the fatness parameter c grows as a function of k during recursion, the
constant factor in the above size bound depends on k.

Like in the previous section, it is also possible to obtain an intermediate result, namely, a
6-hop spanner with O(n log log n) size.

4 Objects with (Near) Linear Union Complexity in R2

In this section, we describe a different approach to construct hop spanners, using the shallow
cutting lemma introduced by Matoušek [35]. The variant below can be found in [23].

▶ Lemma 16 (Shallow cutting). Consider a family of well-behaved2 objects in R2, such
that the union of any n objects has complexity at most U(n), assuming that U(n)/n is
nondecreasing. Given a set of n objects in this family and parameters r and k, there exists a
collection of O((rk/n + 1)2U(n/k)) cells, such that (i) each cell intersects the boundaries of
at most n/r objects, and (ii) the cells cover all points of depth at most k. Here, the depth of
a point p is the number of objects that contain p.

Construction via Shallow Cuttings

1. For each i = 1, . . . , log n, apply Lemma 16 with k = 2i and r = n/2i−2 to obtain a
collection Ξi of O(U(n/2i)) cells. We may assume that each cell Ξi contains at least one
point of depth at most 2i (otherwise, the cell may be removed).

2. For each i and for each ξ ∈ Ξi such that there exists an object s(ξ) that contains ξ

completely, build a star centered at s(ξ) connecting all objects that intersect ξ. Add the
edges of these stars to Ĝ. Since there are at most 2i objects that contain ξ and 2i−2 objects
whose boundaries intersect ξ, the number of edges added is O(

∑log n
i=1 U(n/2i) · 2i) =

O(U(n) log n).

Hop stretch. For any edge uv, pick an arbitrary point p in the intersection of u and v, and
let k be the depth of p. Let i be the number such that 2i−1 ≤ k < 2i. Let ξ be the cell in Ξi

that contains p. At least 2i−1 objects contain p, but at most 2i−2 objects have boundaries
intersecting ξ. Thus, there must exist an object s(ξ) that completely contains ξ. Then, Ĝ

contains the edges s(ξ)u and s(ξ)v, and so u and v are connected by 2 hops (see Figure 6).

▶ Theorem 17. Consider a family of well-behaved objects in R2, such that the union of
any n objects has complexity at most U(n), assuming that U(n)/n is nondecreasing. The
intersection graph of n objects in this family admits a 2-hop spanner of size O(U(n) log n).

2 See [23] for a precise definition. Most families of objects in R2, such as disks, pseudodisks, etc. are
well-behaved.
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u

v

p

ξ

s(ξ)

Figure 6 Objects u and v intersect, p is an arbitrary point in u∩v, and ξ ∈ Ξi is the cell containing
p. Our counting argument shows that there must exist an object s(ξ) completely containing ξ, and
thus Ĝ must contain the path u → s(ξ) → v.

For example, it is known that U(n) = O(n) for disks and pseudodisks in the plane [32],
and U(n) = O(n log∗ n) for fat triangles in the plane [6]. So, we obtain 2-hop spanners of
size O(n log n) for disks and pseudodisks, and size O(n log n log∗ n) for fat triangles.

Remarks. It is possible to reduce the size bound to O(U(n) log log n) with 5 hops (by using
fewer shallow cuttings, with k = 2(1+δ)i , for i = 1, . . . , O(log log n)), but this approach does
not appear to yield further improvement for larger hop stretch.

5 Axis-Aligned Rectangles in R2

In this section, we describe a 3-hop spanner for the case where the input objects consist of
horizontal line segments H and vertical line segments V in the plane. Spanners for the more
general case of axis-aligned rectangles will then follow.

We first consider the special case where all vertical segments are lines. This problem is
1-dimensional in the sense that the y-coordinates of the segments are irrelevant. Borrowing
Conroy and Tóth’s technique [24] for 1D interval graphs, we divide the x-axis into disjoint
intervals I = {I1, . . . , Iℓ} as follows (see Figure 7):
1. I0 = {x0} is the interval containing only the x-coordinate of the leftmost endpoint among

all horizontal segments.
2. For integers k ≥ 1, Ik = (xk−1, xk], where xk−1 is the right boundary of Ik−1, and xk

is the largest number for which there exists a line segment hk = [x′
k, xk] ∈ H such that

x′
k ≤ xk−1. We say that hk is the covering segment of Ik.

▶ Lemma 18. The intersection graph G of n horizontal segments and vertical lines admits a
3-hop spanner Ĝ with O(n) edges.

Proof. For each interval I = (xL, xR], let hI be the covering segment. Keep all intersections
that involve hI in the slab I × R. Finally, for every segment h ∈ H, keep the intersections
with the leftmost and the rightmost vertical line that intersects h, denoted vL(h) and vR(h)
respectively. Let Ĝ be the subgraph that includes an edge for each intersection we keep.

Hop stretch. Consider h ∈ H and v ∈ V that intersect. Either vL(h) or vR(h) is in the
same interval I ∈ I as v; say it is vR(h). Both v and vR(h) intersect the covering segment
hI . Thus, Ĝ contains the 3-hop path h → vR(h) → hI → v.
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hk−1

hk

Ik−1 Ik

hk−2

Figure 7 Illustration of the disjoint intervals Ik−1 and Ik, and the covering segments hk−2, hk−1, hk

(drawn in purple). The blue squares indicate which intersections are kept.

Sparsity. For each covering segment hI , we have only kept intersections in the interval I,
so we have kept O(n) intersections over all intervals I. For each h ∈ H that is not a covering
segment, we have kept only two intersections involving h. ◀

Using Lemma 18, the standard binary divide-and-conquer along the y-axis gives us a
3-hop spanner with O(n log n) edges for the case of horizontal and vertical line segments.
Given a horizontal slab σ, we construct the 3-hop spanner as follows:
1. Construct a 3-hop spanner according to Lemma 18 to handle the intersections between

horizontal segments and long vertical segments, i.e., vertical segments that cross the
entire slab σ. Then remove the long vertical segments.

2. Divide σ into two horizontal subslabs, each containing half the number of horizontal
segments. For each of the two subslabs, construct a 3-hop spanner recursively.

Each segment, whether horizontal or vertical, appears in O(log n) of the recursive calls.
Therefore, the total number of edges in the spanner is bounded by O(n log n). Thus, we have
proved the following:

▶ Lemma 19. The intersection graph of n horizontal/vertical segments admits a 3-hop
spanner of size O(n log n).

We can extend the results for axis-aligned line segments to axis-aligned rectangles by
replacing each rectangle with four line segments, each being one side of the rectangle. We
build a spanner for these line segments. If two rectangles intersect, then either their sides
intersect, or one rectangle contains the other. The first case reduces to segment intersection.
For the case of containment, Conroy and Tóth [24] have shown that using O(n log n) edges,
there is a 2-hop spanner for the subgraph that includes only “corner intersections”, i.e.,
intersections where one rectangle contains a corner of the other rectangle.

▶ Theorem 20. The intersection graph of n axis-aligned rectangles in R2 admits a 3-hop
spanner of size O(n log n).

6 Open Questions

Although we have obtained almost linear size bounds for hop spanners in string graphs and
fat-object intersection graphs, a remaining question is whether these upper bounds could
be further improved to linear, or whether an inverse-Ackermann-type lower bound could be
proved.
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Another question is whether near-linear bounds are possible for other intersection graphs
not addressed here, e.g., for simplices in R3. Here, one might want to start more modestly
with any upper bound better than for general graphs.

References
1 Peyman Afshani and Konstantinos Tsakalidis. Optimal deterministic shallow cuttings for 3-d

dominance ranges. Algorithmica, 80(11):3192–3206, 2018. doi:10.1007/s00453-017-0376-3.
2 Pankaj K. Agarwal, Noga Alon, Boris Aronov, and Subhash Suri. Can visibility graphs be

represented compactly? Discret. Comput. Geom., 12:347–365, 1994. doi:10.1007/BF02574385.
3 Pankaj K. Agarwal and Jeff Erickson. Geometric range searching and its relatives. In Advances

in Discrete and Computational Geometry, volume 223 of Contemporary Mathematics, pages
1–56. AMS Press, 1999. URL: http://jeffe.cs.illinois.edu/pubs/survey.html.

4 Abu Reyan Ahmed, Greg Bodwin, Faryad Darabi Sahneh, Keaton Hamm, Mohammad
Javad Latifi Jebelli, Stephen G. Kobourov, and Richard Spence. Graph spanners: A tutorial
review. Comput. Sci. Rev., 37:100253, 2020. doi:10.1016/j.cosrev.2020.100253.

5 Ingo Althöfer, Gautam Das, David P. Dobkin, Deborah Joseph, and José Soares. On sparse span-
ners of weighted graphs. Discret. Comput. Geom., 9:81–100, 1993. doi:10.1007/BF02189308.

6 Boris Aronov, Mark de Berg, Esther Ezra, and Micha Sharir. Improved bounds for the
union of locally fat objects in the plane. SIAM J. Comput., 43(2):543–572, 2014. doi:
10.1137/120891241.

7 Sunil Arya, Gautam Das, David M. Mount, Jeffrey S. Salowe, and Michiel H. M. Smid.
Euclidean spanners: Short, thin, and lanky. In Proc. 27th Annual ACM Symposium on Theory
of Computing (STOC), pages 489–498, 1995. doi:10.1145/225058.225191.

8 Sunil Arya, David M. Mount, Nathan S. Netanyahu, Ruth Silverman, and Angela Y. Wu.
An optimal algorithm for approximate nearest neighbor searching fixed dimensions. J. ACM,
45(6):891–923, 1998. doi:10.1145/293347.293348.

9 Marshall W. Bern. Approximate closest-point queries in high dimensions. Inf. Process. Lett.,
45(2):95–99, 1993. doi:10.1016/0020-0190(93)90222-U.

10 Ahmad Biniaz. Plane hop spanners for unit disk graphs: Simpler and better. Comput. Geom.,
page 101622, 2020. doi:10.1016/j.comgeo.2020.101622.

11 Karl Bringmann, Sándor Kisfaludi-Bak, Marvin Künnemann, André Nusser, and Zahra
Parsaeian. Towards sub-quadratic diameter computation in geometric intersection graphs. In
Proc. 38th International Symposium on Computational Geometry (SoCG), pages 21:1–21:16,
2022. doi:10.4230/LIPIcs.SoCG.2022.21.

12 Sergio Cabello and Miha Jejčič. Shortest paths in intersection graphs of unit disks. Comput.
Geom., 48(4):360–367, 2015. doi:10.1016/j.comgeo.2014.12.003.

13 Nicolas Catusse, Victor Chepoi, and Yann Vaxès. Planar hop spanners for unit disk graphs.
In Proc. 6th International Workshop on Algorithms for Sensor Systems, Wireless Ad Hoc
Networks, and Autonomous Mobile Entities (ALGOSENSORS), pages 16–30, 2010. doi:
10.1007/978-3-642-16988-5_2.

14 Timothy M. Chan. Approximate nearest neighbor queries revisited. Discret. Comput. Geom.,
20(3):359–373, 1998. doi:10.1007/PL00009390.

15 Timothy M. Chan. Random sampling, halfspace range reporting, and construction of
(≤ k)-levels in three dimensions. SIAM J. Comput., 30(2):561–575, 2000. doi:10.1137/
S0097539798349188.

16 Timothy M. Chan. Polynomial-time approximation schemes for packing and piercing fat
objects. Journal of Algorithms, 46(2):178–189, 2003.

17 Timothy M. Chan. Dynamic subgraph connectivity with geometric applications. SIAM J.
Comput., 36(3):681–694, 2006. doi:10.1137/S009753970343912X.

18 Timothy M. Chan. Dynamic geometric data structures via shallow cuttings. Discret. Comput.
Geom., 64(4):1235–1252, 2020. doi:10.1007/s00454-020-00229-5.

SoCG 2023

https://doi.org/10.1007/s00453-017-0376-3
https://doi.org/10.1007/BF02574385
http://jeffe.cs.illinois.edu/pubs/survey.html
https://doi.org/10.1016/j.cosrev.2020.100253
https://doi.org/10.1007/BF02189308
https://doi.org/10.1137/120891241
https://doi.org/10.1137/120891241
https://doi.org/10.1145/225058.225191
https://doi.org/10.1145/293347.293348
https://doi.org/10.1016/0020-0190(93)90222-U
https://doi.org/10.1016/j.comgeo.2020.101622
https://doi.org/10.4230/LIPIcs.SoCG.2022.21
https://doi.org/10.1016/j.comgeo.2014.12.003
https://doi.org/10.1007/978-3-642-16988-5_2
https://doi.org/10.1007/978-3-642-16988-5_2
https://doi.org/10.1007/PL00009390
https://doi.org/10.1137/S0097539798349188
https://doi.org/10.1137/S0097539798349188
https://doi.org/10.1137/S009753970343912X
https://doi.org/10.1007/s00454-020-00229-5


23:16 Constant-Hop Spanners for More Geometric Intersection Graphs

19 Timothy M. Chan. Finding triangles and other small subgraphs in geometric intersection
graphs. In Proc. 34th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), 2023.
To appear. URL: https://arxiv.org/abs/2211.05345.

20 Timothy M. Chan and Sariel Har-Peled. On the number of incidences when avoiding an
induced biclique in geometric settings. In Proc. 34th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), 2023. To appear. URL: https://arxiv.org/abs/2112.14829.

21 Timothy M. Chan and Dimitrios Skrepetos. All-pairs shortest paths in geometric intersection
graphs. J. Comput. Geom., 10(1):27–41, 2019. doi:10.20382/jocg.v10i1a2.

22 Timothy M. Chan and Dimitrios Skrepetos. Approximate shortest paths and distance oracles in
weighted unit-disk graphs. J. Comput. Geom., 10(2):3–20, 2019. doi:10.20382/jocg.v10i2a2.

23 Chandra Chekuri, Kenneth L. Clarkson, and Sariel Har-Peled. On the set multicover problem
in geometric settings. ACM Trans. Algorithms, 9(1), December 2012. doi:10.1145/2390176.
2390185.

24 Jonathan B. Conroy and Csaba D. Tóth. Hop-spanners for geometric intersection graphs. In
38th International Symposium on Computational Geometry (SoCG), pages 30:1–30:17, 2022.
doi:10.4230/LIPIcs.SoCG.2022.30.

25 Mark de Berg, Otfried Cheong, Marc J. van Kreveld, and Mark H. Overmars. Computational
Geometry: Algorithms and Applications. Springer, 3rd edition, 2008. URL: https://www.
worldcat.org/oclc/227584184.

26 Adrian Dumitrescu, Anirban Ghosh, and Csaba D. Tóth. Sparse hop spanners for unit disk
graphs. Comput. Geom., page 101808, 2022. doi:10.1016/j.comgeo.2021.101808.

27 Paul Erdős. Extremal problems in graph theory. In Proc. Symp. on Graph Theory, Smolenice,
Acad. C.S.S.R., pages 29–36, 1963.

28 Jacob Fox and János Pach. A separator theorem for string graphs and its applications.
Combinatorics, Probability and Computing, 19(3):371–390, 2010.

29 Greg N. Frederickson. Fast algorithms for shortest paths in planar graphs, with applications.
SIAM Journal on computing, 16(6):1004–1022, 1987.

30 Greg N. Frederickson. Ambivalent data structures for dynamic 2-edge-connectivity and k

smallest spanning trees. SIAM Journal on Computing, 26(2):484–538, 1997.
31 Jie Gao and Li Zhang. Well-separated pair decomposition for the unit-disk graph metric and

its applications. SIAM J. Comput., 35(1):151–169, 2005. doi:10.1137/S0097539703436357.
32 Klara Kedem, Ron Livne, János Pach, and Micha Sharir. On the union of jordan regions

and collision-free translational motion amidst polygonal obstacles. Discret. Comput. Geom.,
1:59–70, 1986. doi:10.1007/BF02187683.

33 Hung Le, Lazar Milenkovic, and Shay Solomon. Sparse euclidean spanners with tiny diameter:
A tight lower bound. In Proc. 38th International Symposium on Computational Geometry
(SoCG), pages 54:1–54:15, 2022. doi:10.4230/LIPIcs.SoCG.2022.54.

34 James R. Lee. Separators in region intersection graphs. In Proc. 8th Innovations in Theoretical
Computer Science Conference (ITCS), pages 1:1–1:8, 2017. doi:10.4230/LIPIcs.ITCS.2017.
1.

35 Jirí Matoušek. Reporting points in halfspaces. Computational Geometry, 2(3):169–186, 1992.
36 Jirí Matoušek. Near-optimal separators in string graphs. Comb. Probab. Comput., 23(1):135–

139, 2014. doi:10.1017/S0963548313000400.
37 Giri Narasimhan and Michiel H. M. Smid. Geometric Spanner Networks. Cambridge University

Press, 2007.
38 Chenyu Yan, Yang Xiang, and Feodor F. Dragan. Compact and low delay routing labeling

scheme for unit disk graphs. In Proc. Algorithms and Data Structures, 11th International
Symposium (WADS), pages 566–577, 2009. doi:10.1007/978-3-642-03367-4_49.

https://arxiv.org/abs/2211.05345
https://arxiv.org/abs/2112.14829
https://doi.org/10.20382/jocg.v10i1a2
https://doi.org/10.20382/jocg.v10i2a2
https://doi.org/10.1145/2390176.2390185
https://doi.org/10.1145/2390176.2390185
https://doi.org/10.4230/LIPIcs.SoCG.2022.30
https://www.worldcat.org/oclc/227584184
https://www.worldcat.org/oclc/227584184
https://doi.org/10.1016/j.comgeo.2021.101808
https://doi.org/10.1137/S0097539703436357
https://doi.org/10.1007/BF02187683
https://doi.org/10.4230/LIPIcs.SoCG.2022.54
https://doi.org/10.4230/LIPIcs.ITCS.2017.1
https://doi.org/10.4230/LIPIcs.ITCS.2017.1
https://doi.org/10.1017/S0963548313000400
https://doi.org/10.1007/978-3-642-03367-4_49


Minimum L∞ Hausdorff Distance of Point Sets
Under Translation: Generalizing Klee’s Measure
Problem
Timothy M. Chan #

Department of Computer Science, University of Illinois at Urbana-Champaign, IL, USA

Abstract
We present a (combinatorial) algorithm with running time close to O(nd) for computing the minimum
directed L∞ Hausdorff distance between two sets of n points under translations in any constant
dimension d. This substantially improves the best previous time bound near O(n5d/4) by Chew, Dor,
Efrat, and Kedem from more than twenty years ago. Our solution is obtained by a new generalization
of Chan’s algorithm [FOCS’13] for Klee’s measure problem.

To complement this algorithmic result, we also prove a nearly matching conditional lower bound
close to Ω(nd) for combinatorial algorithms, under the Combinatorial k-Clique Hypothesis.
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1 Introduction

This paper is about the following problem:

▶ Problem 1. (L∞ Translational Hausdorff) Given a set P of n points and a set Q of m

points in Rd, compute the minimum directed L∞ Hausdorff distance from P to Q under
translation, i.e., compute minv∈Rd h⃗∞(P +v, Q) where h⃗∞(P, Q) := maxp∈P minq∈Q ∥p−q∥∞.

The problem has been extensively studied in computational geometry in the 1990s. The
analogous problem for undirected Hausdorff distance (defined as h∞(P, Q) = max{h⃗∞(P, Q),
h⃗∞(Q, P )}) is reducible [27] to the directed version if m = Θ(n). The motivation lies
in measuring the resemblance between two geometric objects represented as point clouds;
furthermore, a connection with an even more fundamental problem, Klee’s measure problem
(see next page), provides added theoretical interest (and is what attracted this author’s
attention in the first place). Huttenlocher and Kedem [22] introduced the problem and
presented the first algorithms for d = 2 (a subsequent paper [23] also examined variants in
L2). Chew and Kedem [17] gave an improved algorithm with running time O(mn log2(mn))
for d = 2 (in L∞), and generalized the algorithm to any constant dimension d with running
time O((mn)d−1 log2(mn)). Chew, Dor, Efrat, and Kedem [15] described further improved
algorithms in higher dimensions: in the main case m = n, their time bounds were O(n3 log2 n)
for d = 3, O(n(4d−2)/3 log2 n) for 4 ≤ d ≤ 7, and O(n5d/4 log2 n) for any constant d ≥ 8.
The exponent 5d/4 looks peculiar, and naturally raises the question of whether further
improvements are still possible, but none has been found in the intervening two decades
(except in the logarithmic factors [12, 14]).

Many other variants of Problem 1 have also been considered, for example, using other
metrics such as L2 (as already mentioned above), allowing rotation and/or scaling besides
translation, handling other objects besides points, allowing approximations, etc. (e.g., see
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24:2 Minimum L∞ Hausdorff Distance of Point Sets Under Translation

Table 1 Previous upper bounds [15] and new upper bounds for Problem 1 in the m = n case,
ignoring polylogarithmic factors.

dimension 2 3 4 5 6 7 8 9 10 11 12 · · ·

prev. bound n2 n3 n4.66··· n6 n7.33··· n8.66··· n10 n11.25 n12.5 n13.75 n15 · · ·
new bound n4 n5 n6 n7 n8 n9 n10 n11 n12 · · ·

[16, 4, 21, 24, 19, 18, 3]). Several other alternatives to the Hausdorff distance have also been
popularly studied in computational geometry, such as the Earth mover distance and the
Fréchet distance. We will ignore all these variants in the present paper, focusing only on
exact directed L∞ Hausdorff distance for point sets under translation.

Our new result is an algorithm for Problem 1 running in O(nd(log log n)O(1)) time (using
randomization) for any constant d ≥ 3 in the main m = n case (or with one extra logarithmic
factor if randomization is not allowed). The exponent d is thus a substantial improvement
over Chew et al.’s previous exponents for every d ≥ 4; see Table 1. In the general case, the
running time of our algorithm is O((mn)d/2(log log(mn))O(1)).

Connection to a generalized Klee’s measure problem. It suffices to focus on the decision
problem: deciding whether the minimum is at most a given value r. The original problem
reduces to the decision problem, at the expense of one extra logarithmic factor in the running
time by a well-known technique of Frederickson and Johnson [20] (in fact, when d ≥ 4, a
standard binary search suffices, since the optimal value lies in a universe of O((mn)2) possible
values which we can explicitly enumerate). In some cases, the extra logarithmic factor can
even be eliminated by a randomized optimization technique [12].

Equivalently, we want to decide whether there exists a vector v ∈ Rd with P + v ⊆
Q+[−r, r]d (where “+” denotes the Minkowski sum when it is clear from the context). Assume
(by rescaling) that r = 1/2. Let Q be the set of unit hypercubes {q + [−1/2, 1/2]d : q ∈ Q},
and let S∗ :=

⋃
B∈Q B. The condition is equivalent to P + v ⊆ S∗, i.e., v ∈

⋂
p∈P (S∗ − p).

Thus, the decision problem is equivalent to the following:

▶ Problem 2. (L∞ Translational Hausdorff Decision) Given a set P of n points and a set
Q of m unit hypercubes1 in Rd, decide whether

⋂
p∈P (S∗ − p) = ∅, where S∗ :=

⋃
B∈Q B.

For each B ∈ Q and p ∈ P , create a new unit hypercube B − p and give this hypercube
the color p. Problem 2 then immediately reduces to the following problem on N = mn

colored unit hypercubes: decide whether
⋂

χ Sχ = ∅, where Sχ :=
⋃

B ∈ B with color χ B. (In
other words, we want to decide whether there exists a “colorful” point that lies in hypercubes
of all colors.)

The unit hypercube case in turn reduces to the case of orthants (i.e., d-sided boxes which
are unbounded in one direction along each axis): we can build a uniform grid of unit-side
length and solve the subproblem inside each grid cell, but inside a grid cell, a unit hypercube
is identical to an orthant. (We can ignore grid cells that do not intersect hypercubes of all
colors.) Since a unit hypercube intersects only O(1) grid cells, these subproblems have total
input size O(N). All this motivates the definition of the following problem(s) on colored
orthants:

1 Throughout this paper, all hypercubes and boxes are axis-aligned.
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▶ Problem 3 (Generalized Klee’s Measure Problem). Given a set B of N colored orthants in
Rd,
(a) decide whether

⋂
χ Sχ = ∅,

(b) or more generally, compute a point of maximum or minimum depth among the Sχ’s (i.e.,
a point in the most or least number of regions Sχ),

(c) or alternatively, compute the volume of
⋂

χ Sχ,
where Sχ :=

⋃
B ∈ B with color χ B.

To recap, if Problem 3(a) can be solved in T (N) time, then Problem 2 can automatically
be solved in O(T (N)) = O(T (mn)) time (assuming superadditivity of T (·)).

Problem 3(a) is a generalization of the box coverage problem: determine whether the
union of a set of N boxes in Rd covers the entire space. This is because

⋂
χ Sχ = ∅ iff⋃

χ Sχ = Rd, and a box can be expressed as the complement of a union of at most 2d orthants
(we use S to denote the complement of a set S). Similarly, Problem 3(b) is a generalization
of the box depth problem: determine the minimum or maximum depth among N boxes in Rd.
Problem 3(c) is a generalization of Klee’s measure problem: compute the volume of the union
of a set of N boxes in Rd. This generalization allows us to compute the volume of the union
of more general shapes, so long as each shape can be expressed as the complement of a union
of orthants. (Note that we can clip to a bounding box to ensure that the volume is finite.)

The original Klee’s measure problem has been extensively studied in computational
geometry [2, 8, 13, 14, 28, 30]. The best known algorithm by Chan [14] for Klee’s measure
problem runs in O(Nd/2) time, based on a clever but simple divide-and-conquer. The box
coverage and box depth problem can be solved by similar algorithms, and in fact with slightly
lower time bounds by polylogarithmic factors using table lookup and bit packing tricks [14].

For d ≤ 3, a union of orthants has linear combinatorial complexity [7] and can be
constructed in near linear time. Thus, a straightforward way to solve Problem 3 is to first
construct all the regions Sχ explicitly, decompose each Sχ as a union of disjoint boxes,
and then run a known algorithm for Klee’s measure problem on the resulting O(N) boxes.
With this approach, Problem 3 can be solved in O(N log N) time for d = 2, and O(N3/2)
time for d = 3; consequently, Problem 2 can be solved in O((mn) log(mn)) time for d = 2,
and O((mn)3/2) time for d = 3. This was essentially how the previous known 2D and 3D
algorithms by Chew and Kedem [17] and Chew et al. [15] were designed.

However, for d ≥ 4, a union of N orthants may have Θ(N⌊d/2⌋) combinatorial complexity
in the worst case [7]. So, a two-stage approach that explicitly constructs all the regions
Sχ and then invokes an algorithm for Klee’s measure problem would be too slow! Chew
et al. [15] adapted Overmars and Yap’s algorithm for Klee’s measure problem [28] in a
nontrivial way to obtain an O(N5d/8 log N)-time algorithm for Problem 3, and consequently
an O(n5d/4 log n)-time algorithm for Problem 2 when m = n.

We present a new algorithm that solves Problem 3(c) in O(Nd/2 logd/2 N) time, matching
the known time bound for the original Klee’s measure problem up to logarithmic factors. In
fact, for Problem 3(a,b), the polylogarithmic factor can be lowered to poly-log log N factors
using table lookup and bit packing tricks. Consequently, we obtain an O(nd(log log n)O(1))
time bound for Problem 2 when m = n, or O((mn)d/2(log log(mn))O(1)) in general. Our
result is obtained by directly modifying Chan’s divide-and-conquer algorithm for Klee’s
measure problem [14]. The adaptation is not straightforward and uses interesting new ideas.
As mentioned, we cannot afford to separate into two stages. Instead, within a single recursive
process, we will handle two types of objects simultaneously, (i) the input orthants, and
(ii) features of the regions Sχ that have been found during the process. The analysis of the
recurrence is more delicate (though the overall algorithm remains simple).

SoCG 2023



24:4 Minimum L∞ Hausdorff Distance of Point Sets Under Translation

Conditional lower bounds. In the other direction, recently in SoCG’21, Bringmann and
Nusser [10] proved an Ω((mn)1−δ) conditional lower bound for Problem 1–2 for d = 2 for
an arbitrarily small constant δ > 0, under the Orthogonal Vectors (OV) Hypothesis [29]
(in particular, it holds under the Strong Exponential-Time Hypothesis (SETH) [29]). This
showed that Chew and Kedem’s upper bound for d = 2 is likely near optimal [17]. However,
Bringmann and Nusser did not obtain any lower bound in higher dimensions.

As observed by Chan [13], Klee’s measure problem and the box coverage problem have
an Ω(Nd/2−δ) lower bound for combinatorial algorithms under the Combinatorial k-Clique
Hypothesis, which states that there is no O(nk−δ

0 )-time combinatorial algorithm for detecting
a k-clique in a graph with n0 vertices, for any constant k ≥ 3. The notion of “combinatorial”
algorithms is not mathematically well-defined, but intuitively it refers to algorithms that
avoid the use of fast matrix multiplication (such as Strassen’s algorithm); all algorithms in
this paper and in Chew et al.’s previous paper fulfill this criterion. (Recently, Künnemann [26]
obtained new lower bounds for arbitrary, noncombinatorial algorithms for Klee’s measure
problem under the “k-Hyperclique Hypothesis”, but his bounds are not tight for d ≥ 4. See
also [11, 6, 5] for conditional lower bounds for other related geometric problems. See [25] for
a recent example of the usage of the Combinatorial k-Clique Hypothesis in computational
geometry, and [1, 9] for other examples involving the Combinatorial k-Clique Hypothesis
outside of geometry.)

Since our algorithms for Problem 3 have near Nd/2 running time, they are near optimal
for combinatorial algorithms under the Combinatorial k-Clique Hypothesis. However, this
does not necessarily imply optimality of our algorithms for Problem 1 or 2.

In the second part of this paper, we prove that Problems 1–2 have a conditional lower
bound of Ω(nd−δ) for m = n, or Ω((mn)d/2−δ) for m = nγ for any fixed γ ≤ 1, for
combinatorial algorithms under the Combinatorial k-Clique Hypothesis. This shows that
our combinatorial algorithm for Problem 1 is also conditionally near optimal. While the
previous conditional lower bound for Klee’s measure problem by Chan [13] was obtained by
reduction from d-clique, we will reduce from clique of arbitrarily large constant size. Our
new reduction is more challenging and more interesting, but still simple.

2 Algorithm

In this section, we present our new algorithm for the generalized Klee’s measure problem
(Problem 3) for any constant dimension d ≥ 4. From this result, new algorithms for
Problems 1–2 will immediately follow.

To solve Problem 3(c), we solve a generalization, where we are given a box “cell” γ and an
extra set E of boxes, and we want to compute the volume of

⋂
χ Sχ ∩

⋂
E∈E E ∩ γ. Initially,

γ = Rd and E = ∅. We assume that the coordinates of the input have been pre-sorted (this
requires only an initial O(N log N) cost).

Call an orthant or a box short if some of its (d − 2)-faces intersect γ’s interior, long if it
intersects γ’s interior but is not short, and trivial if it does not intersect γ’s interior or it
completely contains γ.

Our algorithm is inspired by Chan’s divide-and-conquer algorithm [14] for the original
Klee’s measure problem, with many similarities (for example, in how we use weighted medians
to divide a cell) but also major new innovation (in how we reduce the number of long objects,
and how we “convert” some objects of B into new objects in E during recursion). The
analysis of our algorithm requires a new charging argument and recurrence, causing some
extra logarithmic factors.
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=⇒

Figure 1 Shrinking the width of the shaded slabs to 0, to eliminate long boxes in E .

Defining weights. Consider a (d − 2)-face f of a short orthant of B such that f intersects
γ’s interior. If f is orthogonal to the i-th and the j-th axes, assign f a weight of 2(i+j)/d.
Note that this weight is Θ(1), and so each short orthant of B contributes a total weight of
Θ(1).

Similarly, consider a (d − 2)-face f of a box of E such that f intersects γ’s interior. If
f is orthogonal to the i-th and the j-th axes, assign f a weight of 2(i+j)/d/t, where t ≥ 1
is a parameter to be set later. Note that this weight is Θ(1/t), and so each short box of E
contributes a total weight of Θ(1/t).

Let T (Nlong, Wshort) denote the time complexity of the problem, where Nlong denotes the
total number of long and trivial orthants in B and long and trivial boxes in E , and Wshort
denotes the total weight of all short orthants in B and short boxes in E . Note that the total
number of orthants in B and boxes in E is upper-bounded by O(Nlong + tWshort).

Reducing the number of long objects. First, the trivial orthants and boxes can be easily
eliminated: We can remove all orthants of B and boxes of E that do not intersect γ’s interior.
If an entire color class of B does not intersect γ’s interior, or if some box of E completely
contains γ, we can return 0 as the answer. If there is an orthant of B completely containing
γ, we can remove its color class from B.

For each color χ, consider the long orthants of B with color χ; the union of these long
orthants are defined by at most 2d orthants (since it is the complement of a box with at most
2d sides). Keep these O(1) long orthants per color, and remove the rest. If there is a long
orthant with color χ but no short orthant with that color, then Sχ ∩ γ is a box – add this
box to E and remove the color class from B (in other words, we have “converted” an entire
color class in B into a single box in E). This step increases Wshort by at most Nlong/t. After
this step, each remaining long orthant can be “charged” to a short orthant of the same color,
and so the number of remaining long orthants of B is bounded by O(1) times the number of
short orthants, which is O(Wshort).

Next, for each i ∈ {1, . . . , d}, consider the long boxes of E having (d−1)-faces intersecting
γ that are orthogonal to the i-th axis. Compute the union of these boxes by a linear scan
after sorting, since this corresponds to computing the union of 1D intervals when projected to
the i-th axis. The union forms a disjoint collection of slabs. Readjust all the i-th coordinates
to shrink the width of these slabs to 0, without altering the volume of

⋂
χ Sχ ∩

⋂
E∈E E ∩ γ,

as illustrated in Figure 1. After doing this successively for every i ∈ {1, . . . , d}, all long boxes
of E are eliminated.

After this process, there are O(Wshort) remaining long orthants of B and zero long boxes
of E . Thus, Nlong is reduced to O(Wshort). The weight of the short orthants of B may
increase to at most Wshort + Nlong/t. We then have the following, for some constant c:

T (Nlong, Wshort) ≤ T (cWshort, Wshort + Nlong/t) + O(Nlong + tWshort). (1)

SoCG 2023
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Divide-and-conquer. Next, compute the weighted median m of the first coordinates of the
(d − 2)-faces of B and E intersecting γ’s interior that are orthogonal to the first axis. Divide
γ into two subcells γL and γR by the hyperplane {(x1, . . . , xd) : x1 = m}. Renumber the
coordinate axes 1, 2, . . . , d to 2, . . . , d, 1, and recursively solve the problem for γL and for γR.

To analyze the algorithm, consider a (d − 2)-face f of B (resp. E) orthogonal to the i-th
and j-th axes with i, j ̸= 1. After the axis renumbering, its weight changes from 2(i+j)/d to
2(i−1+j−1)/d (resp. from 2(i+j)/d/t to 2(i−1+j−1)/d/t), i.e., the weight decreases by a factor
of 22/d.

Next consider a (d − 2)-face f of B (resp. E) orthogonal to the first and the j-th axes
with j ≠ 1. After the axis renumbering, its weight changes from 2(1+j)/d to 2(d+j−1)/d (resp.
from 2(1+j)/d/t to 2(d+j−1)/d/t), i.e., the weight increases by a factor of 2(d−2)/d. But when
γ is divided into subcells γL and γR, the weight within each subcell decreases by a factor of
2; the net decrease in weight is thus a factor of 22/d.

Hence, Wshort decreases by a factor of 22/d in either subcell. (On the other hand, Nlong
may not necessarily decrease.) We then have

T (Nlong, Wshort) ≤ 2 T (Nlong, Wshort/22/d) + O(Nlong + tWshort). (2)

Putting it together. By combining (2) and (1) and letting T (N) := T (cN, N), we obtain

T (N) ≤ 2 T (cN, N/22/d) + O(tN) ≤ 2 T (cN/22/d, N/22/d + cN/t) + O(tN)

≤ 2 T
(

1+2c/t
22/d N

)
+ O(tN).

For the base case, we have T (O(1)) = O(td/2): when Wshort = O(1), there are O(1) orthants
of B and O(t) boxes of E , and so the problem can be solved by running a known algorithm
for Klee’s measure problem on O(t) boxes [14].

By the master theorem, the solution to the recurrence is

T (N) = O(td/2N1/ log2(22/d/(1+2c/t))) = O(td/2Nd/2+O(1/t)).

Choosing t = log N yields T (N) = O(Nd/2 logd/2 N). This completes the description and
analysis of the main algorithm.

Shaving logs by bit packing. For Problem 3(a), we can obtain a minor (but not-very-
practical) improvement in the polylogarithmic factors by using more technical but standard
bit-packing tricks, as we now briefly explain (see [14] for more details on these kinds of tricks):
The main observation is that actual coordinate values do not matter here, only their relative
order, so we can replace them with their ranks in the sorted list. Thus, the O(Nlong + tWshort)
input objects can be represented by O((Nlong + tWshort) log(Nlong + tWshort)) bits and packed
in O(((Nlong + tWshort) log(Nlong + tWshort))/w) words, assuming a w-bit word RAM model
of computation. The O(Nlong + tWshort) cost for various linear scans during recursion can
be reduced to O(((Nlong + tWshort) log2(Nlong + tWshort))/w), since sorting k b-bit numbers
can be done in O((kb log k)/w) time by a packed version of mergesort. Thus, the recurrence
changes to T (N) ≤ 2 T ( 1+2c/t

22/d N) + O(1 + (tN log2(tN))/w).
For the base case, we can use a bit-packed version of Chan’s algorithm for the box

coverage problem on O(t) boxes, which runs in T (O(1)) = O(1 + (t/w)d/2 logO(1) w) time [14,
Section 3.1]. The recurrence solves to T (N) = O(Nd/2+O(1/t) · (1 + (t/w)d/2 logO(1) w)).
Choosing t = log N yields T (N) = O(Nd/2 · (1 + ((log N)/w)d/2 logO(1) w)).
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The above may require nonstandard operations on w-bit words. By choosing w = δ log N

for a sufficiently small constant δ > 0, such operations can be simulated in constant time
via table lookup after preprocessing in 2O(w) = NO(δ) time. Hence, we obtain the final time
bound of O(Nd/2(log log N)O(1)).

Problem 3(b) can be solved similarly, with some modification to the steps to reduce the
number of long boxes in E , but this is identical to the modification of Chan’s algorithm
for the original box depth problem [14, Section 3.1]. To summarize, we have obtained the
following theorem:

▶ Theorem 1. For any constant d ≥ 4, Problem 3(c) can be solved in O(Nd/2 logd/2 N)
time, and Problems 3(a,b) can be solved in O(Nd/2(log log N)O(1)) time.

▶ Corollary 2. For any constant d ≥ 4, Problem 2 can be
solved in O((mn)d/2(log log(mn))O(1)) time. Problem 1 can be solved
in O((mn)d/2 log(mn)(log log(mn))O(1)) time deterministically, or in
O((mn)d/2(log log(mn))O(1)) expected time with randomization.

Proof. As mentioned in Section 1, Problem 1 reduces to Problem 2 by Frederickson and
Johnson’s technique [20] or by ordinary binary search, with an extra logarithmic factor.

Chan [12, Section 4.2] has described how to apply his randomized optimization technique
to reduce the following problem to its decision problem without losing a logarithmic factor:

Given N colored points in Rd, find the smallest hypercube that contains points of all
colors.

As noted in [12], Problem 1 reduces to this problem. On the other hand, as noted in
Section 1, the decision version of this problem (equivalent to finding a point that is inside
unit hypercubes of all colors) reduces to Problem 3(a), which we have just solved. ◀

3 Conditional Lower Bound

In this section, we prove a nearly matching conditional lower bound for Problems 1–2 for
combinatorial algorithms under the Combinatorial k-Clique Hypothesis. We first introduce an
intermediate problem which is more convenient to work with. Roughly speaking, Problem 2
considers the intersection of translates of a single shape (the shape being a union of unit
hypercubes), whereas the problem below considers the intersection of translates of multiple
shapes (each shape being a union of orthants).

▶ Problem 4. Let Z be a set of shapes, where each shape is a union of orthants in Rd. Let
m be the total number of orthants over all shapes of Z. Given a set S of n objects where
each object is a translate of some shape in Z, decide whether

⋂
S∈S S = ∅.

▶ Lemma 3. Problem 4 reduces to Problem 2 on O(n) points and O(m) unit hypercubes.

Proof. Assume (by rescaling) that the coordinates of all orthants of Z and all translation
vectors used in S are in [0, 1/2]. In particular, if

⋂
S∈S S is nonempty, it must contain a point

in [0, 1]d. Inside [0, 1]d, each orthant of Z may be replaced by an equivalent unit hypercube.
Let Z1, . . . , Zℓ be the shapes of Z. Let Bi be the unit hypercubes corresponding to the

orthants defining Zi (so that (Zi + t) ∩ [0, 1]d =
⋃

B∈Bi
(B + t) ∩ [0, 1]d for any t ∈ [0, 1/2]d).

We construct an instance of Problem 2 as follows: For each B ∈ Bi, add the shifted unit
hypercube B + ui to Q where ui := (4i, 0, . . . , 0) ∈ Rd. (This operation distributes objects in
different classes Bi to different parts of space, since the vectors ui are at least 4 units apart

SoCG 2023
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from each other along the first axis.) For each object S ∈ S, if S is the translate Zi + t, add
the point ui − t to P . Lastly, add two auxiliary unit hypercubes [0, 1]d and uℓ+1 + [0, 1]d to
Q, and two auxiliary points u0 and uℓ+1 to P .

We solve Problem 2 on these points of P and these unit hypercubes of Q, to determine
whether

⋂
p∈P (S∗ − p) = ∅, where S∗ :=

⋃
B∈Q B. For correctness, we just observe that⋂

p∈P (S∗ − p) is identical to
⋂

S∈S S inside [0, 1]d. This is because for each B ∈ Bi, (B +
ui) − (ui′ − t) may intersect [0, 1]d only if i = i′ (since ui and ui′ are far apart if i ̸= i′),
assuming t ∈ [0, 1/2]d. ◀

We now prove hardness of Problem 4 by reduction from the clique problem for graphs. We
first warm up with two simpler reductions yielding weaker lower bounds, before presenting
the final reduction in Lemma 6. (Readers who do not need intuition building may go straight
to Lemma 6’s proof.)

First attempt. First observe that the box coverage problem (deciding whether n boxes in
Rd cover the entire space, i.e., deciding whether the intersection of the complements of n

boxes is empty) easily reduces to Problem 4 with n orthants and n objects in Rd, since the
complement of a box is the union of O(1) orthants. By Lemma 3, we immediately obtain an
Ω(nd/2−δ) conditional lower bound for Problem 4, since the box coverage problem has an
Ω(nd/2−δ) lower bound under the Combinatorial k-Clique Hypothesis [13].

In the following lemma, we directly modify the (very simple) known reduction from clique
to the box coverage problem [13], to show the same lower bound even when the number of
orthants m is O(1):

▶ Lemma 4. Detecting a d-clique in a graph with n0 vertices reduces to Problem 4 with
m = O(1) orthants and n = O(n2

0) objects in Rd.

Proof. Let G = (V, E) be the given graph, with V = [n0] = {0, . . . , n0 −1}. We will construct
a set S of objects whose intersection is

{(x1, . . . , xd) ∈ [0, n0)d : {⌊x1⌋ , . . . , ⌊xd⌋} is a d-clique of G}. (3)

It would then follow that the intersection is nonempty iff a d-clique exists.
The construction is very simple: for each α, β ∈ {1, . . . , d} with α ̸= β and for each

u, v ∈ [n0] with uv ̸∈ E, add the complement of the box

Bα,β,u,v := {(x1, . . . , xd) : ⌊xα⌋ = u, ⌊xβ⌋ = v}

to S. (Note that if u = v, we consider uv ̸∈ E.) These boxes are unit squares when projected
to the α-th and β-th axes, and are thus translates of O(1) fixed boxes, and the complement
of each such fixed box can obviously be expressed as a union of O(1) orthants and can be
added to Z. Lastly, add the O(1) halfspaces bounding [0, n0)d to S. Then S has a total of
O(n2

0) translates and clearly satisfies the desired property (3). ◀

In combination with Lemma 3, the above lemma indeed implies an Ω(nd/2−δ) conditional
lower bound for Problem 2: if Problem 2 for m = O(1) has an O(nd/2−δ)-time combinatorial
algorithm, then the d-clique detection problem for a graph with n0 vertices has a combinatorial
algorithm with running time O((n2

0)d/2−δ) = O(nd−2δ
0 ), contradicting the Combinatorial

k-Clique Hypothesis.
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Figure 2 (left) A region Yα,β,a,b,u,v for (a, b) = (0, 1). (middle) A region Yα,β,a,b,u,v for (a, b) =
(0, 0). (right) A diagonal Dα,β (whose complement can be expressed as a union of the red and the
green orthants).

Second attempt. We now improve the lower bound by reducing from clique of a large size
2d. We use the following key idea: encode a pair of vertices in a single coordinate value.

▶ Lemma 5. Detecting a (2d)-clique in a graph G with n0 vertices reduces to Problem 4 with
m = O(n0) orthants and n = O(n3

0) objects in Rd.

Proof. Let G = (V, E) be the given graph, with V = [n0]. For any x ∈ [0, n2
0), let

ϕ0(x) = ⌊x⌋ mod n0 and ϕ1(x) = ⌊x/n0⌋. We will construct a set S of objects whose
intersection is

{(x1, . . . , xd) ∈ [0, n2
0)d : {ϕ0(x1), ϕ1(x1), . . . , ϕ0(xd), ϕ1(xd)} is a (2d)-clique in G}. (4)

It would then follow that the intersection is nonempty iff a (2d)-clique exists.
For each α, β ∈ {1, . . . , d} and a, b ∈ {0, 1} with (α, a) ̸= (β, b), and for each u, v ∈ [n0]

with uv ̸∈ E, define the region

Yα,β,a,b,u,v := {(x1, . . . , xd) ∈ [0, n2
0)d : ϕa(xα) = u, ϕb(xβ) = v}.

If α = β, then Yα,β,a,b,u,v is just a unit interval when projected to the α-th axis, and is
thus a translate of one of O(1) fixed boxes, and the complement of each such fixed box can
be expressed as a union of O(1) orthants and can be added to Z. From now on, assume
α ̸= β.

If (a, b) = (1, 1), then Yα,β,a,b,u,v is just an n0 × n0 square when projected to the α-th
and β-th axes, and is thus a translate of one of O(1) fixed boxes, and the complement of
each such fixed box can be expressed as a union of O(1) orthants and can be added to Z.

If (a, b) = (0, 1) (or (a, b) = (1, 0)), then Yα,β,a,b,u,v is a union of n0 rectangles of dimension
1 × n0 (or n0 × 1) when projected to the α-th and β-th axes (see Figure 2(left)), and is thus
a union of n0 translates of one of O(1) fixed boxes, and the complement of each fixed box
can be expressed as a union of O(1) orthants and can be added to Z.

If (a, b) = (0, 0), then Yα,β,a,b,u,v forms a n0 × n0 grid pattern when projected to the
α-th and β-th axes (see Figure 2(middle)). Although the complement of this region can’t be
expressed as a union of orthants, we can decompose the grid into subregions that can. The
most obvious approach is to decompose into rows or columns, but this still doesn’t work.
Instead, we will decompose into “diagonals”. More precisely, define

Dα,β := {(x1, . . . , xd) : ⌊xα⌋ mod n0 = 0, ⌊xβ⌋ mod n0 = 0,

⌊xα/n0⌋ + ⌊xβ/n0⌋ = n0, xα, xβ ≥ 0}.

Since Dα,β,a,b can be viewed as the region sandwiched between two staircases when pro-
jected to 2D, its complement Dα,β,a,b can be expressed as a union of O(n0) orthants (see
Figure 2(right)). Add the shape Dα,β,a,b to Z. The region Yα,β,a,b,u,v can be expressed as a
union of O(n0) translates of Dα,β when clipped to [0, n2

0)d.
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In any case, Yα,β,a,b,u,v ∩ [0, n2
0)d can be expressed as the intersection of [0, n2

0)d with
O(n0) translates of shapes from Z. Add these translates to S, for each α, β ∈ {1, . . . , d} and
a, b ∈ [g] with (α, a) ̸= (β, b), and for each u, v ∈ [n0] with uv ̸∈ E. Lastly, add the O(1)
halfspaces bounding [0, n2

0)d to S. Then S has a total of O(n3
0) translates and satisfies the

desired property (4). ◀

The above lemma implies a larger Ω(n2d/3−δ) conditional lower bound: if Problem 2 for
m = n1/3 has an O(n2d/3−δ)-time combinatorial algorithm, then the (2d)-clique detection
problem for a graph with n0 vertices has a combinatorial algorithm with running time
O((n3

0)2d/3−δ) = O(n2d−3δ
0 ), contradicting the Combinatorial k-Clique Hypothesis.

Final reduction. We obtain our final lower bound by generalizing the idea further. We reduce
from clique of still larger size and now encode g-tuples of vertices instead of pairs (incidentally,
the idea of encoding tuples has also appeared recently in Künnemann’s conditional lower
bound proofs for Klee’s measure problem [26]):

▶ Lemma 6. Let g be any integer constant. Detecting a (dg)-clique in a graph G with n0
vertices reduces to Problem 4 with m = O(ng−1

0 ) orthants and n = O(ng+1
0 ) objects in Rd.

More generally, for any given m ≤ ng−1
0 , detecting a (dg)-clique in a graph G with n0

vertices reduces to Problem 4 with m orthants and n = O(n2g
0 /m) objects in Rd.

Proof. Let G = (V, E) be the given graph, with V = [n0]. For any x ∈ [0, ng
0) and a ∈ [g],

let ϕa(x) be the (a + 1)-th least significant digit of ⌊x⌋ in base n. We will construct a set S
of objects whose intersection is

{(x1, . . . , xd) ∈ [0, ng
0)d : {ϕ0(x1), . . . , ϕg−1(x1), . . . , ϕ0(xd), . . . , ϕg−1(xd)}

is a (dg)-clique in G}. (5)

It would then follow that the intersection is nonempty iff a (dg)-clique exists.
For each α, β ∈ {1, . . . , d} and a, b ∈ [g] with (α, a) ̸= (β, b), and for each u, v ∈ [n0] with

uv ̸∈ E, define the region

Yα,β,a,b,u,v := {(x1, . . . , xd) ∈ [0, nd
0)d : ϕa(xα) = u, ϕb(xβ) = v}

= {(x1, . . . , xd) : xα ∈ [ina+1
0 + una

0 , ina+1
0 + (u + 1)na

0),
xβ ∈ [jnb+1

0 + vnb
0, jnb+1 + (v + 1)nb

0)
for some i ∈ [ng−a−1

0 ], j ∈ [ng−b−1
0 ]}.

If α = β, then Yα,β,a,b,u,v is a union of at most O(ng−1
0 ) unit intervals when projected

to the α-th axis, and is thus a union of O(ng−1
0 ) translates of O(1) fixed boxes, and the

complement of each fixed box can be expressed as a union of O(1) orthants and can be added
to Z.

If α ̸= β, then Yα,β,a,b,u,v forms a O(ng−1
0 ) × O(ng−1

0 ) grid pattern when projected to the
α-th and β-th axes. Define the “diagonal”

Dα,β,a,b = {(x1, . . . , xd) : xα ∈ [ina+1
0 , ina+1

0 + na
0), xβ ∈ [jnb+1

0 , jnb+1
0 + nb

0)
for some i, j ∈ [m] with i + j = m}.

Since Dα,β,a,b can be viewed as the region sandwiched between two staircases when projected
to 2D, its complement Dα,β,a,b can be expressed as a union of O(m) orthants. Add the shape
Dα,β,a,b to Z. The region Yα,β,a,b,u,v can be expressed as a union of O(n2(g−1)

0 /m) translates
of Dα,β,a,b when clipped to [0, ng

0)d.
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In any case, Yα,β,a,b,u,v ∩ [0, ng
0)d can be expressed as an intersection of [0, ng

0)d with
O(n2(g−1)

0 /m) translates of shapes from Z. Add all these translates to S, for each α, β ∈
{1, . . . , d} and a, b ∈ [g] with (α, a) ̸= (β, b), and for each u, v ∈ [n0] with uv ̸∈ E. Lastly,
add the O(1) halfspaces bounding [0, ng

0)d to S. Then S has a total of O(n2
0 · n

2(g−1)
0 /m) =

O(n2g
0 /m) translates and satisfies the desired property (5). ◀

The above lemma implies an Ω(ngd/(g+1)−δ) conditional lower bound for any integer
constant g: if Problem 2 for m = n(g−1)/(g+1) has an O(ngd/(g+1)−δ)-time combinatorial
algorithm, then the (dg)-clique detection problem for a graph with n0 vertices has a combi-
natorial algorithm with running time O((ng+1

0 )gd/(g+1)−δ) = O(ndg−(g+1)δ
0 ), contradicting

the Combinatorial k-Clique Hypothesis. The exponent gd/(g + 1) − δ exceeds d − 2δ, by
picking a sufficiently large g ≥ d/δ.

More generally, for any constant γ ≤ (g − 1)/(g + 1), if Problem 2 for m = nγ has an
O((mn)d/2−δ)-time combinatorial algorithm, then the (dg)-clique detection problem for a
graph with n0 vertices has a combinatorial algorithm with running time O(((n2g

0 /m)·m)d/2−δ)
= O(ndg−2gδ

0 ), contradicting the Combinatorial k-Clique Hypothesis.

▶ Theorem 7. Under the Combinatorial k-Clique Hypothesis, Problem 1 or 2 for n points
and n unit hypercubes in Rd does not have an O(nd−δ)-time combinatorial algorithm for any
constant δ > 0.

More generally, under the same hypothesis, for any fixed constant γ ≤ 1, Problem 1
or 2 for m = nγ points and n unit hypercubes in Rd does not have an O((mn)d/2−δ)-time
combinatorial algorithm for any constant δ > 0.

4 Final Remarks

To summarize, we have studied the L∞ translational Hausdorff distance problem for point
sets, a fundamental problem with a long history in computational geometry. We have
obtained a substantially improved upper bound for this problem, and the first conditional
lower bound in dimension 3 and higher, which nearly match the upper bound. Our technique
for the upper bound is interesting, in that it implies a natural colored generalization of
Klee’s measure problem can be solved in roughly the same time bound as the original Klee’s
problem. Our lower bound proof is interesting, in that it adds to a growing body of recent
work on fine-grained complexity in computational geometry, and more specifically illustrates
the power of the Combinatorial Clique Hypothesis.

Our near-O((mn)d/2) upper bound also applies to the variant of the problem for undirected
Hausdorff distance, since the undirected version of Problem 1 can also be reduced to
Problem 3(a) with N = O(mn). However, more effort might be needed to adapt our lower
bounds to the undirected problem (although we have not tried seriously).

For noncombinatorial algorithms, our reduction implies a lower bound of Ω((mn)dω/6−δ),
under the standard hypothesis that the k-clique problem for graphs with n0 vertices requires
Ω(ndω/3−δ′

0 ) time, where ω ∈ [2, 2.373) denotes the matrix multiplication exponent. Proving
better conditional lower bounds for noncombinatorial algorithms remains open. This might
require further new techniques, as we currently do not have tight conditional lower bounds
for the original Klee’s measure problem for noncombinatorial algorithms for d ≥ 4 [26].

As mentioned, Bringmann and Nusser [10] proved a near-mn lower bound for d = 2 under
the OV Hypothesis; their result is in some sense more robust (it holds for noncombinatorial
algorithms) and applies also to the L2 case (and Lp for any 1 ≤ p ≤ ∞). However, the
problem for L2 probably has higher complexity than for L∞: the best upper bounds are near
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n3 for d = 2 and near n5 for d = 3 [23], and near n⌈3d/2⌉+1 for d ≥ 4 [15], in the m = n case.
(See Bringmann and Nusser’s paper for a 3SUM-based lower bound for the L2 problem for
d = 2 in the “unbalanced” case when m is constant.)
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Abstract
We first introduce the notion of meta-rank for a 2-parameter persistence module, an invariant that
captures the information behind images of morphisms between 1D slices of the module. We then
define the meta-diagram of a 2-parameter persistence module to be the Möbius inversion of the
meta-rank, resulting in a function that takes values from signed 1-parameter persistence modules.
We show that the meta-rank and meta-diagram contain information equivalent to the rank invariant
and the signed barcode. This equivalence leads to computational benefits, as we introduce an
algorithm for computing the meta-rank and meta-diagram of a 2-parameter module M indexed
by a bifiltration of n simplices in O(n3) time. This implies an improvement upon the existing
algorithm for computing the signed barcode, which has O(n4) time complexity. This also allows
us to improve the existing upper bound on the number of rectangles in the rank decomposition of
M from O(n4) to O(n3). In addition, we define notions of erosion distance between meta-ranks
and between meta-diagrams, and show that under these distances, meta-ranks and meta-diagrams
are stable with respect to the interleaving distance. Lastly, the meta-diagram can be visualized in
an intuitive fashion as a persistence diagram of diagrams, which generalizes the well-understood
persistence diagram in the 1-parameter setting.
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1 Introduction

In the case of a 1-parameter persistence module, the persistence diagram (or barcode) captures
its complete information up to isomorphism via a collection of intervals. The persistence
diagram is represented as a multi-set of points in the plane, whose coordinates are the birth
and death times of intervals, each of which encodes the lifetime of a topological feature. This
compact representation of a persistence module enables its interpretability and facilitates
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its visualization. When moving to the multiparameter setting, the situation becomes much
more complex as a multiparameter persistence module may contain indecomposable pieces
that are not entirely determined by intervals or do not admit a finite discrete description [9].

Such an increased complexity has led to the study of other invariants for multiparameter
persistence modules. The first invariant is the rank invariant [9], which captures the
information from the images of internal linear maps in a persistence module across all
dimensions. Patel noticed that the persistence diagram in the 1-parameter setting is equivalent
to the Möbius inversion [25] of the rank function [24]. He then defined the generalized
persistence diagram as the Möbius inversion of a function defined on a subset of intervals of
R, denoted Dgm, with values in some abelian group.

The idea of Möbius inversion has been extended in many directions. Kim and Mémoli
defined generalized persistence diagrams for modules on posets [12, 17]. Patel and McCleary
extended Patel’s generalized persistence diagrams to work for persistence modules indexed
over finite lattices [22]. Botnan et al. [6] implicitly studied the Möbius inversion of the
rank function for 2-parameter modules, leading to a notion of a diagram with domain all
rectangles in Z2. Asashiba et al. used Möbius inversion on a finite 2D grid to define interval-
decomposable approximations [1]. Morozov and Patel [23] defined a generalized persistence
diagram in the 2-parameter setting via Möbius inversion of the birth-death function and
provided an algorithm for its computation. Their algorithm has some similarity with ours: it
utilizes the vineyards algorithm [13] to study a 2-parameter persistence module, by slicing it
over 1D paths.

Our work also involves the idea of slicing a 2-parameter module. This idea of slicing
appears in the fibered barcode [10, 20], which is equivalent to the rank function. To obtain
insight into the structure of a 2-parameter persistence module M , Lesnick and Wright [20]
explored a set of 1-parameter modules obtained via restricting M onto all possible lines of
non-negative slope. Buchet and Escolar [8] showed that any 1-parameter persistence module
with finite support could be found as a restriction of some indecomposable 2-parameter
persistence module with finite support. Furthermore, Dey et al. [15] showed that certain
zigzag (sub)modules of a 2-parameter module can be used to compute the generalized rank
invariant, whose Möbius inversion is the generalized persistence diagram defined by Kim and
Mémoli. Our work considers the images between slices of a 2-parameter module, which is
related to the work by Bauer and Schmal [3].

In [7], Botnan et al. introduced the notion of rank decomposition, which is equivalent
to the generalized persistence diagram formed by Möbius inversion of the rank function,
under some additional conditions. Botnan et al. further demonstrated that the process
of converting a module to a rank decomposition is stable with respect to the matching
distance [18]. Additionally, they introduced a visualization of this rank decomposition
via a signed barcode, which highlights the diagonals of rectangles appearing in the rank
decomposition, along with their multiplicity. They visualized the value of the signed barcode
with a 2-parameter persistence module generated by clustering a point cloud with a scale
and a density parameter.

Unlike the previous results that perform Möbius inversion over a higher-dimensional
poset such as Z2, our work involves Möbius inversion over a finite subcollection of intervals
of R, which leads to a simpler inversion formula. In this work, we introduce the notion of
meta-rank for a 2-parameter persistence module, which is a map from Dgm to isomorphism
classes of persistence modules. Instead of looking at images of linear maps between vector
spaces (as with the usual rank invariant), the meta-rank considers images of the maps
between 1-parameter persistence modules formed by slicing a 2-parameter persistence module
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Figure 1 Slicing a 2-parameter module M along vertical lines yields 1-parameter modules, such as
Ma

x , M b
x, and Mc

x. There are morphisms between these 1-parameter modules induced by the internal
morphisms of M , and the meta-rank captures the information about these morphisms. For example,
if M is defined as the direct sum of the two interval modules given by the two shaded rectangles,
then the meta-rank of M on [a, b) is the image of ϕx(a ≤ b), which has a barcode consisting of the
red interval. The meta-rank of M on [b, c) has a barcode consisting of the blue interval, and the
meta-rank of M on [a, c) is 0, as ϕx(a ≤ c) = ϕx(b ≤ c) ◦ ϕx(a ≤ b) = 0.

Figure 2 A meta-diagram viewed as a persistence diagram of signed diagrams (red and blue
mean positive and negative signs respectively).

along vertical and horizontal lines, see Figure 1. We then define the meta-diagram as the
Möbius inversion of the meta-rank, giving a map from Dgm to isomorphism classes of signed
persistence modules. This contrasts Botnan et al.’s approach [7] of using Möbius inversion in
2D, as our Möbius inversion formula over Dgm is simpler and consists of fewer terms.

Contributions. The meta-rank and meta-diagram turn out to contain information equivalent
to the rank invariant (Proposition 12) and signed barcode (Proposition 27) respectively.
Therefore, both meta-rank and meta-diagram can be regarded as these known invariants seen
from a different perspective. However, this different viewpoint brings forth several advantages
as listed below that make the meta-rank and meta-diagram stand out on their own right:
1. The meta-rank and meta-diagram of a 2-parameter persistence module M induced by a

bifiltration of a simplicial complex with n simplices can be computed in O(n3) time.
2. This immediately implies an improvement of the O(n4) algorithm of Botnan et al. [7] for

computing the signed barcodes.

SoCG 2023
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3. The O(n3) time algorithm for computing meta-rank and meta-diagram also implicitly
improves the bound on the number of signed bars in the rank decomposition of M to
O(n3) from the current known bound of O(n4). This addresses an open question whether
the size of the signed barcode is bounded tightly by the number of rectangles or not.

4. The meta-diagram can be viewed as a persistence diagram of signed diagrams as illustrated
in Figure 2. Such an intuitive visualization generalizes the classic persistence diagram – a
known technique in topological data analysis (TDA) – to summarize persistent homology.

5. The meta-diagram also generalizes the concept of a sliced barcode well-known in TDA [20].
It ensembles sliced bars on a set of lines, but not forgetting the maps between slices
induced by the module M being sliced.

For omitted proofs and further details, see the full version [11].

2 Preliminaries

We regard a poset (P, ≤) as a category, with objects the elements p ∈ P , and a unique
morphism p → q if and only if p ≤ q; this is referred to as the poset category for (P, ≤).
When it is clear from the context, we will denote the poset category by P .

Fix a field k, and assume all vector spaces have coefficients in k throughout this paper.
Let vec denote the category of finite-dimensional vector spaces with linear maps between
them. A persistence module, or module for short, is a functor M : P → vec. For any p ∈ P ,
we denote the vector space Mp := M(p), and for any p ≤ q ∈ P , we denote the linear map
φM (p ≤ q) := M(p ≤ q). When M is apparent, we drop the subscript from φM . We call
P the indexing poset for M . We focus on the cases when the indexing poset is R or R2,
equipped with the usual order and product order, respectively. Definitions and statements
we make follow analogously when the indexing poset is Z or Z2, which we will cover briefly
in Section 5. If the indexing poset for M is P ⊆ R, then M is a 1-parameter (or 1D)
persistence module. If the indexing poset for M is P ⊆ R2, with P not totally-ordered, then
M is a 2-parameter (or 2D) persistence module, or a bimodule for short.

Following [21], we require that persistence modules be constructible:

▶ Definition 1. A module M : R → vec is constructible if there exists a finite set S :=
{s1 < . . . < sn} ⊂ R such that:

For a < s1, M(a) = 0;
For si ≤ a ≤ b < si+1, φM (a ≤ b) is an isomorphism;
For sn ≤ a ≤ b, φM (a ≤ b) is an isomorphism.

Similarly, a bimodule M : R2 → vec is constructible if there exists a finite set S := {s1 <

. . . < sn} ⊂ R such that:
If x < s1 or y < s1, then M((x, y)) = 0,
For si ≤ x1 ≤ x2 < si+1 and sj ≤ y1 ≤ y2 < sj+1, φM ((x1, y1) ≤ (x2, y2)) is an
isomorphism,
If x1 ≥ sn or y1 ≥ sn and (x1, y1) ≤ (x2, y2), then φM ((x1, y1) ≤ (x2, y2)) is an
isomorphism.

In either case, such a module is S-constructible.

If a module is S-constructible, unless otherwise stated, assume S = {s1 < . . . < sn}. If
M is S-constructible, then M is S′-constructible for any S′ ⊇ S. For the rest of the paper,
we assume any given persistence module is constructible.

Of particular importance in the study of 1- and 2-parameter persistence modules are the
notions of interval modules and interval decomposable modules. We state the definitions:
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▶ Definition 2. For a poset (P, ≤), an interval of P is a non-empty subset I ⊂ P such that:
(convexity) If p, r ∈ I and q ∈ P with p ≤ q ≤ r, then q ∈ I.
(connectivity) For any p, q ∈ I, there is a sequence p = r0, r1, . . . , rn = q of elements of I,
where for all 0 ≤ i ≤ n − 1, either ri ≥ ri+1 or ri ≤ ri+1.

We denote the collection of all intervals of P as Int(P ).
For I ∈ Int(P ), the interval module kI is the persistence module indexed over P , with:

kI
p =

{
k if p ∈ I

0 otherwise
, φkI (p ≤ q) =

{
idk if p ≤ q ∈ I

0 otherwise
.

Given any M, N : P → vec, the direct sum M ⊕ N is defined point-wise at each p ∈ P .
We say a nontrivial M : P → vec is decomposable if M is isomorphic to N1 ⊕ N2 for
some non-trivial N1, N2 : P → vec, which we denote by M ∼= N1 ⊕ N2. Otherwise, M is
indecomposable. Interval modules are indecomposable [5].

A persistence module M : P → vec is interval decomposable if it is isomorphic to a direct
sum of interval modules. That is, if there is a multiset of intervals barc(M), such that:

M ∼=
⊕

I∈barc(M)

kI

If this multiset exists, we call it the barcode of M . If it exists, barc(M) is well-defined as
a result of the Azumaya-Krull-Remak-Schmidt theorem [2]. Thus, in the case where M is
interval decomposable, barc(M) is a complete descriptor of the isomorphism type of M .

Of particular importance in this work are right-open rectangles, which are intervals R ⊂ R2

of the form R = [a1, b1) × [a2, b2). If M can be decomposed as a direct sum of interval
modules kR with R a right-open rectangle, then we say M is rectangle decomposable.

1-parameter persistence modules are particularly nice, as they are always interval decom-
posable [14]. As a result, the barcode is a complete invariant for 1-parameter persistence
modules. On the other hand, bimodules do not necessarily decompose in this way. In fact,
there is no complete discrete descriptor for bimodules [9].

A number of invariants have been proposed to study bimodules. One of the first and the
most notable invariant is the rank invariant [9] recalled in Definition 3.
▶ Definition 3 ([9]). For P a poset, define D(P ) := {(a, b) ∈ P × P | a ≤ b}. For M : P →
vec, the rank invariant of M , rankM : D(P ) → Z≥0, is defined point-wisely as:

rankM (a, b) := rank(φM (a ≤ b))

For a bimodule, the rank invariant is inherently a 4D object, making it difficult to visualize
directly. RIVET [20] visualizes the rank invariant indirectly through the fibered barcode. In
[7], Botnan et al. defined the signed barcode based on the notion of a rank decomposition:
▶ Definition 4 ([7]). Let M : Rn → vec be a persistence module with rank function rankM .
Suppose R, S are multisets of intervals from Rn. Define kR := ⊕I∈RkR, and similarly kS .
Then (R, S ) is a rank decomposition for rankM if as integral functions:

rankM = rankR − rankS .

If R, S consist of right-open rectangles, then the pair is a rank decomposition by
rectangles. We have:
▶ Theorem 5 ([7], Theorem 3.3). Every finitely presented M : R2 → vec admits a unique
minimal rank decomposition by rectangles.
Here minimality comes in the sense that R ∩ S = ∅. The signed barcode then visualizes the
rank function in R2 by showing the diagonals of the rectangles in R and S .

SoCG 2023
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Figure 3 An illustration of M and its barcode for some values of mrkM in Example 9.

3 Meta-Rank

In this section, we introduce the meta-rank. While the rank invariant captures the information
of images between pairs of vector spaces in a persistence module, the meta-rank captures the
information of images between two 1-parameter persistence modules obtained via slicing a
bimodule. We begin with some preliminary definitions:

▶ Definition 6. Let M : R2 → vec be a bimodule. For s ∈ R, define the vertical slice
Ms

x : R → vec point-wise as Ms
x(a) := M(s, a), and with morphisms from a to b as

φs
x(a ≤ b) := φ((s, a) ≤ (s, b)). Analogously, define the horizontal slice Ms

y : R → vec by
setting Ms

y (a) := M(a, s) and φs
y(a ≤ b) := φ((a, s) ≤ (b, s)) for all a ≤ b ∈ R.

Define a morphism of 1-parameter persistence modules ϕx(s ≤ t) : Ms
x → M t

x for
s ≤ t ∈ R by ϕx(s ≤ t)(a) := φ((s, a) ≤ (t, a)). Analogously, define ϕy(s ≤ t) : Ms

y → M t
y for

s ≤ t ∈ R by ϕy(s ≤ t)(a) := φ((a, s) ≤ (a, t)).
Denote by Pvec the isomorphism classes of persistence modules over R. Each element of

Pvec can be uniquely represented by its barcode, which is what we do in practice. We recall
the definition of Dgm from [24], which serves as the domain for the meta-rank:

▶ Definition 7 ([24]). Define Dgm as the poset of all half-open intervals [p, q) ⊂ R for p < q,
and all half-infinite intervals [p, ∞) ⊂ R. The poset relation is inclusion.

▶ Definition 8. Suppose M : R2 → vec is S-constructible. Define the horizontal meta-rank
mrkM,x : Dgm → Pvec as follows:

For I = [s, si) with si ∈ S, mrkM,x(I) := [im(ϕx(s ≤ si − δ))], for some δ > 0 such that
si − δ ≥ s and si − δ ≥ si−1.
For I = [s, ∞), mrkM,x(I) := [im(ϕx(s ≤ sn))].
For all other I = [s, t), mrkM,x(I) := [im(ϕx(s ≤ t))].

Analogously, define the vertical meta-rank, mrkM,y : Dgm → Pvec by replacing each
instance of x above with y.

The results in this paper are stated in terms of the horizontal meta-rank, but hold
analogously for the vertical meta-rank. To simplify notation, we henceforth denote mrkM,x

as mrkM . When there is no confusion, we drop the subscript from mrkM .

▶ Example 9. As illustrated in Figure 3, let I be the connected gray interval and define the
bimodule M := kI . The barcodes for the 1-parameter modules Ma

x , M b
x, and M c

x are shown
in red next to their corresponding vertical slices. The barcode for mrkM ([a, b)) consists of
the blue interval, which is the overlap of the bars in Ma

x and M b
x, barc(Ma

x ) ∩ barc(M b
x).
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Figure 4 An illustration of M , depicting mrkM,x([0, 1)) ̸= mrkM,y([0, 1)).

Similarly, mrkM ([b, c)) has a barcode consisting of the purple interval, which is the overlap
of the bars in M b

x and M c
x. As the bars in the barcodes for Ma

x and M c
x have no overlap,

im(ϕx(a ≤ c)) = 0, therefore mrkM ([a, c)) = 0.

▶ Remark 10. In general, mrkx ̸= mrky. For example, consider the right-open rectangle R

with the lower-left corner the origin, and the upper right corner (1, 2), as in Figure 4. Let
M := kR. As illustrated, mrkM,x([0, 1)) = [0, 2) ̸= [0, 1) = mrkM,y([0, 1)).

The following Proposition 11 allows us to compute the meta-rank of a bimodule via the
meta-ranks of its indecomposable summands:

▶ Proposition 11. For M, N : R2 → vec, we have:

mrkM ⊕ mrkN = mrkM⊕N

where mrkM ⊕ mrkN : Dgm → Pvec is defined as:

(mrkM ⊕ mrkN )([s, t)) := [mrkM ([s, t)) ⊕ mrkN ([s, t))].

For a finite S ⊆ R, let S := S ∪ {∞}. Define S> : R ∪ {∞} → S as S>(t) := min{s ∈
S | s > t}. For M ∈ Pvec, [b, d) ∈ Dgm, let #[b, d) ∈ M denote the multiplicity of
[b, d) ∈ barc(M). The rank invariant and the meta-rank contain equivalent information:

▶ Proposition 12. For M : R2 → vec, one can compute rankM from mrkM and one can
compute mrkM from rankM . In particular, given (s, y) ≤ (t, y′) ∈ R2,

rankM ((s, y), (t, y′)) = #[bi, di) ∈ mrkM ([s, S>(t))) s.t. bi ≤ y ≤ y′ < di.

That is, the rank is the number of intervals in barc(mrkM ([s, S>(t)))) containing [y, y′].

The reason for needing S>(t) for the right endpoint is that if t ∈ S, mrkM ([s, t)) does not
capture the information of the image of ϕx(s ≤ t), only the image of ϕx(s ≤ t − δ).

Finally, we discuss the stability of the meta-rank. The meta-rank is stable with respect
to a notion of erosion distance, based on that of Patel [24]. We introduce truncated barcode:

▶ Definition 13. For ϵ ≥ 0, and I = [s, t) ∈ Dgm, define I[ϵ :] := [s+ϵ, t). For M : R → vec
define: barcϵ(M) := {I[ϵ :] | I ∈ barc(M)}. If I = [s, t) ∈ barc(M) has t − s ≤ ϵ, then I has
no corresponding interval in barcϵ(M).

▶ Definition 14. For M, N : R → vec, we say M ⪯ϵ N if there exists an injective function
on barcodes ι : barcϵ(M) ↪→ barc(N) such that for all J ∈ barcϵ(M), J ⊆ ι(J).

SoCG 2023
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For ϵ ≥ 0, M ∈ Pvec, let M ϵ refer to the ϵ-shift of M [19], with M ϵ(a) := M(a + ϵ) and
φMϵ(a ≤ b) := φM (a + ϵ ≤ b + ϵ). For I = [s, t) ∈ Dgm and a, b ∈ R, let Ib

a := [s + a, t + b),
with the convention ∞ + b := ∞ for any b ∈ R. We now define the erosion distance:

▶ Definition 15. Let M, N : R2 → vec. Define the erosion distance as follows:

dE(mrkM , mrkN ) := inf{ϵ > 0 | ∀I ∈ Dgm, mrkM (Iϵ
−ϵ)ϵ ⪯2ϵ mrkN (I) and

mrkN (Iϵ
−ϵ)ϵ ⪯2ϵ mrkM (I)}

if the set we are infimizing over is empty, we set dE(mrkM , mrkN ) := ∞.

▶ Proposition 16. dE as defined in Definition 15 is an extended pseudometric on the
collection of meta-ranks of constructible bimodules M : R2 → vec.

We compare bimodules M and N using the multiparameter interleaving distance [19].
The ϵ-shift and the truncation of the barcode in Definition 13 are necessary for stability,
due to the interleaving distance being based on diagonal shifts of bimodules, whereas the
meta-rank is based on horizontal maps instead of diagonal ones. We have the following:

▶ Theorem 17. For constructible M, N : R2 → vec, we have:

dE(mrkM , mrkN ) ≤ dI(M, N)

4 Meta-Diagram

We use the Möbius inversion formula from Patel [24] on the meta-rank function to get a
meta-diagram. This formula involves negative signs, so we need a notion of signed persistence
modules. Our ideas are inspired by the work of Betthauser et al. [4], where we consider
breaking a function into positive and negative parts.

▶ Definition 18. A signed 1-parameter persistence module is an ordered pair (M, N), where
M, N : Z → vec are 1-parameter persistence modules. M is the positively signed module,
and N is the negatively signed module.

▶ Definition 19. View Pvec as a commutative monoid with operation ⊕ given by [M ]⊕[N ] :=
[M ⊕ N ], and identity element [0]. Define SPvec to be the Grothendieck group of Pvec.

Each element of SPvec is an isomorphism class of ordered pairs [([M+], [M−])]. From
the completeness of barcodes for 1-parameter persistence modules, we assume without loss
of generality that each element M+, M− is given by ∗ := ⊕I∈barc(∗)kI and drop the internal
equivalence class notation to write an element of SPvec as [(M+, M−)]. Proposition 20
allows us to make a canonical choice of representative for each element of SPvec:

▶ Proposition 20. Let A ∈ SPvec. Then there is a unique representative A = [(M+, M−)]
with barc(M+) ∩ barc(M−) = ∅.

As a result of Proposition 20, when convenient, we represent an element of SPvec
uniquely by the sum of barcodes of this special representative, as in the following example:

▶ Example 21. Consider [(N+, N−)] ∈ SPvec where barc(N+) = {[0, 4], [1, 3], [2, 4]} and
barc(N−) = {[1, 3], [3, 4]}. By Proposition 20, [(N+, N−)] is uniquely represented by
[(M+, M−)] with barc(M+) = {[0, 4], [2, 4]} and barc(M−) = {[3, 4]}. In practice, we
will denote this element of SPvec as [0, 4] + [2, 4] − [3, 4] ∈ SPvec. If M, N ∈ Pvec,
denote by M + N the element [(M ⊕ N, 0)] ∈ SPvec, and denote by M − N the element
[(M, N)] ∈ SPvec. For an illustration, see Figure 5.
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Figure 5 Illustration of the barcodes for M, N ∈ Pvec and M + N, M − N ∈ SPvec. For M + N

and M − N , a red interval is positively signed and a blue interval is negatively signed.

With this notion of signed persistence module in hand, we now use a modified version of
the Möbius inversion formula from [24] to define a meta-diagram:

▶ Definition 22. Let M : R2 → vec be S-constructible. Define the horizontal meta-diagram
to be the function mdgmM : Dgm → SPvec via the Möbius inversion formula:

mdgmM,x([si, sj)) := mrkM,x([si, sj)) − mrkM,x([si, sj+1))
+ mrkM,x([si−1, sj+1)) − mrkM,x([si−1, sj))

mdgmM,x([si, ∞)) := mrkM,x([si, ∞)) − mrkM,x([si−1, ∞))

where s0 is any value s0 < s1 and sn+1 is any value sn+1 > sn. For any other [s, t) ∈ Dgm,
set mdgmM,x([s, t)) := 0. Define the vertical meta-diagram by replacing each instance of x

above with y.

We henceforth let mdgm refer to the horizontal meta-diagram of M , dropping the subscript
when there is no confusion. The following Möbius inversion formula describes the relation
between the meta-rank and meta-diagram. It is the direct analogue of [24, Theorem 4.1].

▶ Proposition 23. For [s, t) ∈ Dgm, we have:

mrk([s, t)) =
∑

I∈Dgm
I⊇[s,t)

mdgm(I)

▶ Proposition 24. For M, N : R2 → vec, we have:

mdgmM ⊕ mdgmN = mdgmM⊕N ,

where mdgmM ⊕ mdgmN : Dgm → SPvec is defined by

(mdgmM ⊕ mdgmN )([s, t)) := [mdgmM ([s, t))+ ⊕ mdgmN ([s, t))+,

mdgmM ([s, t))− ⊕ mdgmN ([s, t))−].

Proposition 24 allows us to compute meta-diagrams straightforwardly if we have an
indecomposable decomposition of a module. In particular, by Proposition 25, meta-diagrams
are simply computable for rectangle decomposable modules.

▶ Proposition 25. Suppose M = kR is an R2-indexed interval module supported on the
right-open rectangle R, with lower-left corner (s, t) and upper-right corner (s′, t′). We have:

mdgmM ([a, b)) =
{

[t, t′) if a = s and b = s′;
0 otherwise.

SoCG 2023
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▶ Corollary 26. Let M = ⊕R∈barc(M)kR be rectangle decomposable. Then the interval [t, t′)
appears in mdgm([s, s′)) with multiplicity n if and only if the right-open rectangle with
lower-left corner (s, t) and upper right corner (s′, t′) appears in barc(M) with multiplicity n.

4.1 Equivalence With Rank Decomposition via Rectangles
For M : R2 → vec, the rank decomposition by rectangles contains the same information as
the rank invariant, which by Proposition 12 contains the same information as the meta-rank.
We now show one can directly go from the meta-diagram to the rank decomposition:

▶ Proposition 27. Let M : R2 → vec be constructible. Define as follows:

R :=
⋃

I∈Dgm

 ⋃
[a,b)∈mdgmM (I)

I × [a, b)

 ,

S :=
⋃

I∈Dgm

 ⋃
−[a,b)∈mdgmM (I)

I × [a, b)

 ,

where all unions are the multiset union. Then (R, S ) is a rank decomposition for M .

Proof. It suffices to show that for all w1 := (x1, y1) ≤ w2 := (x2, y2) ∈ R2, rankM (w1, w2) =
rankkR(w1, w2) − rankkS (w1, w2). Suppose w1 ≤ w2 ∈ R2 as above. By Proposition 12,

rankM (w1, w2) = #[bi, di) ∈ mrkM ([x1, x′
2)) s.t. bi ≤ y1 ≤ y2 < di,

where for notational simplicity, x′
2 := S>(x2).

Now fix [b, d) such that b ≤ y1 ≤ y2 < d. By Proposition 23, we have:

#[b, d) ∈ mrkM ([x1, x′
2)) = #[b, d) ∈

∑
I∈Dgm

I⊇[x1,x′
2)

mdgmM (I)

=

#[b, d) ∈
∑

I∈Dgm
I⊇[x1,x′

2)

mdgm+
M (I)

 −

#[b, d) ∈
∑

I∈Dgm
I⊇[x1,x′

2)

mdgm−
M (I)


By Proposition 25 and Corollary 26, the term #[b, d) ∈

∑
I∈Dgm

I⊇[x1,x′
2)

mdgm+(I) is the number of

times I×[b, d) appears in R across all I ⊇ [x1, x′
2), and the term #[b, d) ∈

∑
I∈Dgm

I⊇[x1,x′
2)

mdgm−(I)

is the number of times I × [b, d) appears in S across all I ⊇ [x1, x′
2).

Thus, we see that rankM (w1, w2) is equal to the number of rectangles in R containing
w1 and w2 minus the number of rectangles in S containing w1 and w2. From the definition
of rectangle module and the fact that rank commutes with direct sums, the first term is
rank(kR)(w1, w2) and the second term is rank(kS )(w1, w2), and so we get:

rankM (w1, w2) = rankkR(w1, w2) − rankkS (w1, w2) ◀
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4.2 Stability of Meta-Diagrams
We now show a stability result for meta-diagrams. We need to modify the notion of erosion
distance to do so, as meta-diagrams have negatively signed parts. We proceed by adding the
positive part of one meta-diagram to the negative part of the other. This idea stems from
Betthauser et al.’s work [4], and was also used in the stability of rank decompositions in [7].

▶ Definition 28. For M, N : R2 → vec, define PN(M, N) : Dgm → vec as

PN(M, N)([s, t)) := mdgm+
M ([s, t)) + mdgm−

N ([s, t))

PN(M, N) is a non-negatively signed 1-parameter persistence module for all [s, t) ∈ Dgm,
allowing us to make use of the previous notion of ⪯ϵ (Definition 14) to define an erosion
distance for meta-diagrams. Unlike meta-ranks which have a continuous support, a meta-
diagram is only supported on (S)2 for some finite S ⊂ R. As a result, we first modify the
notion of erosion distance to fit the discrete setting.

Define maps S≥, S≤ : R ∪ {∞} → S by S≥(x) := min{s ∈ S | x ≥ s} and S≤(x) :=
max{s ∈ S | x ≤ s}, or some value less than s1 if this set is empty. We say S is evenly-spaced
if there exists c ∈ R such that si+1 − si = c for all 1 ≤ i ≤ n − 1. In the following, fix an
evenly-spaced finite S ⊂ R.

▶ Definition 29. For S-constructible M, N : R2 → vec, define the erosion distance:

dS
E(mdgmM , mdgmN ) := inf{ϵ ≥ 0 | ∀s ≤ t ∈ S,

PN(M, N)([S≤(s − ϵ), S≥(s + ϵ))ϵ ⪯2ϵ PN(N, M)([s, t)) and
PN(N, M)([S≤(s − ϵ), S≥(s + ϵ))ϵ ⪯2ϵ PN(M, N)([s, t))}

We have the following stability result for meta-diagrams,

▶ Theorem 30. For S-constructible M, N : R2 → vec, with S evenly-spaced, we have

dS
E(mdgmM , mdgmN ) ≤ dI(M, N).

For a stability result when S is not evenly-spaced, see the full version [11].

5 Algorithms

In this section, we provide algorithms for computing meta-ranks and meta-diagrams. The
input to these algorithms is a simplex-wise bifiltration:

▶ Definition 31. Let n ∈ Z, and [n] denote the poset {1, . . . , n} with the usual order. Let K

be a simplicial complex, and sub(K) denote all subsets of K which are themselves simplicial
complexes. A filtration is a function F : [n] → sub(K) such that for a ≤ b, F (a) ⊆ F (b).
We say a filtration is simplex-wise if for all 1 ≤ a ≤ n − 1, either F (a + 1) = F (a) or
F (a + 1) = F (a) ∪ {σ} for some σ ∈ K \ F (a). In the latter case, we denote this with
F (a) σ−→ F (a + 1). We say σ ∈ sub(K) arrives at a if σ ∈ F (a) and σ /∈ F (a − 1).

Define Pn := [n] × [n] equipped with the product order. A bifiltration is a function F :
Pn → sub(K). We say a bifiltration is simplex-wise if for all (a, b) ∈ Pn, for (x, y) = (a+1, b)
or (a, b + 1), if (x, y) ∈ Pn, then either F ((x, y)) = F ((a, b)), or F ((a, b)) σ−→ F ((x, y)) for
some σ /∈ F ((a, b)).

SoCG 2023
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Applying homology to a bifiltration yields a bimodule defined on Pn. Our theoretical
background in previous sections focused on the case of bimodules defined over R2. The same
ideas and major results follow similarly for a module defined over Pn. We quickly highlight
the differences in definitions when working with modules defined on Pn. The following
definitions are re-phrasings of the horizontal meta-rank and horizontal meta-diagram for
modules indexed over Pn, but as before, the statements are directly analogous in the vertical
setting. Let Int([n]) refer to all intervals of [n], which consists of {[a, b] | a ≤ b, a, b ∈ [n]}.

▶ Definition 32. For M : Pn → vec, define the meta-rank, mrkM : Int([n]) → Pvec by

mrkM ([s, t]) := [im(ϕx(s ≤ t))]

▶ Definition 33. For M : Pn → vec, define the meta-diagram, mdgmM : Int([n]) → SPvec
as follows: if 1 < s ≤ t < n, define:

mdgmM ([s, t]) := mrkM ([s, t]) − mrkM ([s, t + 1])
+ mrkM ([s − 1, t + 1]) − mrkM ([s − 1, t]),

mdgmM ([s, n]) := mrkM ([s, n]) − mrkM ([s − 1, n]),
mdgmM ([1, t]) := mrkM ([1, t]) − mrkM ([1, t + 1]), and
mdgmM ([1, n]) := mrkM ([1, n]).

5.1 Overview of the Algorithm
Henceforth, assume F : Pn → sub(K) is a simplex-wise bifiltration, and M is the result of
applying homology to F . Our algorithm to compute the meta-rank relies on the vineyards
algorithm from [13]. The algorithm starts with F as the input. Define γ1 to be the path
in P going from (1, 1) → (1, n) → (n, n), i.e. the path along the top-left boundary of P .
We compute the D = RU decomposition for the interval decomposition of the persistence
module given by the 1-parameter filtration found by slicing F over γ1, which we denote
Fγ1 . This decomposition gives us all the persistence intervals and persistence pairs (σi, σj)
and unpaired simplices corresponding to each interval, the former corresponding to a finite
interval and the latter an infinite interval. To simplify notation, for every unpaired simplex
corresponding to an infinite interval, we pair it with an implicit simplex arriving in an
extended F at (n + 1, n + 1). We store the persistence intervals in an ordered list, which
we denote intervals. All intervals in intervals restricted to [1, n] constitute together
the 1-parameter persistence module M1

x , which is precisely mrkM ([1, 1]). We then store
mrkM ([1, 1]) as a list, with the same ordering as intervals, leaving an empty placeholder
whenever an interval does not intersect [1, n].

We sweep γ through P , over one square at a time, going down through the first column,
until we reach γ2, the path (1, 1) → (2, 1) → (2, n) → (n, n). From there, we repeat the
process column-by-column until we reach γn, the path (1, 1) → (n, 1) → (n, n); see Figure 6.

After each change of a single vertex in our intermediary paths γ stemming from swapping
the upper-left boundary of a single square to the lower-right one, the resulting filtration Fγ

either remains the same, or changes in one of the ways illustrated in Figure 7.
After passing through each square, we update each interval in intervals in-place. If Fγ

remains the same, then there is no change to intervals. If Fγ changes by altering the arrival
time of a single simplex, then the pairings do not change, and the interval corresponding to
the shifted simplex either extends by one or shrinks by one. If a transposition occurs, see
Figure 7 (left), then we use the transposition update process from the vineyards algorithm.
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Figure 6 We start with γ1 on the left, and then push γ1 through the square to track along the
lower-right corner of the square (in blue). We repeat this process, descending down each square in
the first column until we reach γ2 (middle). Then we repeat this process column-by-column until
we’ve reached γn (right).

Figure 7 Three possible ways in which Fγ can change via being pushed through a one-by-one
square. In our algorithm, γ always starts along the red path, then shifts to the blue path.

If we start at γ1, then when we reach Fγ2 , we can restrict each interval in intervals to
[2, n + 1] and shift it back down one, and this corresponds to mrkM ([2, 2]), which we store
using the same rules as we did with mrkM ([1, 1]).

Since we are storing all intervals in meta-ranks in this ordered fashion, we can take
any interval in mrkM ([2, 2]), and see where it came from in mrkM ([1, 1]), which would
be the interval stored at the same index in both lists. By taking the intersection, we
get the corresponding interval which we put into this location in the list mrkM ([1, 2]).
We repeat the process of modifying γ one vertex at a time to get the paths γi from
(1, 1) → (i, 1) → (i, n) → (n, n) as above, updating intervals and getting mrkM ([i, i]) by
taking appropriate intersections and shifts. Since every list of intervals we store maintains
this ordering, we can take any interval in mrkM ([i, i]), and see the corresponding interval it
was previously (if any) in mrkM ([k, i − 1]) for all 1 ≤ k ≤ i − 1. Then by intersecting the
interval in mrkM ([i, i]) with its corresponding interval in mrkM ([k, i − 1]), we get a new
corresponding interval in mrkM ([k, i]). We repeat this process iteratively with i going from
1 to n, which at the end computes all of mrkM : Int([n]) → Pvec.

We now describe what can happen to the intervals as we pass over a single square in
which a transposition occurs, swapping σi and σi+1. From the analysis in [13, Section 3],
if the pairing function changes, then the intervals themselves do not change. If the pairing
function remains the same, then two of the persistence intervals will change. Suppose σi is
paired with τi and σi+1 is paired with τi+1. There are four possibilities, see Figure 8.

We describe the algorithm in Algorithm 1. The output of Algorithm 1 will be mrkM ,
stored as a collection of lists of the barcodes mrkM ([s, t]) for all s ≤ t ∈ [n].

We now prove the correctness of Algorithm 1.

▶ Proposition 34. For i ∈ [n], mrkM ([i, i]) is found by taking each interval in the barcode
for Fγi

, shifting it down by i − 1, and then taking the intersection with [1, n].

▶ Proposition 35. Let 1 < i ≤ n, and suppose we know mrkM ([i, i]) and mrkM ([k, i − 1])
for all 1 ≤ k ≤ i − 1, and that these lists of intervals are stored in the ordered fashion
previously described. From this information, we can compute mrkM ([k, i]).

SoCG 2023
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Figure 8 Four cases in which intervals change after a transposition. Observe that in each case,
both intervals change, and this change is in exactly one coordinate.

Algorithm 1 MetaRank(F ).12

Step 1. Compute D = RU for Fγ1 , getting the ordered list intervals and the pairing
for each interval.

3

4

Step 2. for each interval in intervals, intersect the interval with [1, n], and store the
result in the ordered list mrk([1, 1]).

5

6

Step 3. For i := 1 to n − 1, do7

Step 3.1. For j := n down to 2, do8

∗ update D, R, U , and intervals via the vineyards algorithm, as γ sweeps through
the square with upper-left corner (i, j) and lower-right corner (i + 1, j − 1).

9

10

Step 3.2. For each interval in intervals, shift the interval down by i − 1, and intersect
the interval with [1, n], storing the result in the ordered list mrk([i, i]).

11

12

Step 3.3. For k := 1 to i − 1, do13

∗ For each interval in mrk([i, i]), intersect with the corresponding interval in
mrk([k, i − 1]). Store this intersection in the ordered list mrk([k, i]).

14

15

▶ Theorem 36. Algorithm 1 correctly computes the meta-rank for the bimodule M induced
by homology of the input bifiltration F , and runs in time O(n3). As a result, the number of
rectangles in the rank decomposition for M is also O(n3).

Proof. By Proposition 34, we can compute mrkM ([1, 1]), and further mrkM ([i, i]) for all
i ∈ [n]. Then we can use Proposition 35 iteratively to fill in mrkM ([k, i]) for all 1 ≤ k < i ≤ n,
and we are done.

For the runtime analysis, first observe that the initial D = RU computation in Step 1
takes O(n3) time, and intervals can be computed from the decomposition in linear time.
The loop in Step 2 also takes linear time, as the size of intervals is O(n) which is fixed
throughout. Step 3 consists of a for loop with O(n) iterations. Step 3.1 consists of a for
loop with O(n) iterations, and each loop inside performs an update over a square using the
vineyards approach. A single update takes O(n) time in the worst case, so Step 3.1 takes
O(n2) time. Step 3.2 runs in linear time for the same reason as Step 2. Step 3.3 consists
of a for loop with O(n) iterations, with each iteration taking O(n) operations as the size
of each mrkM ([k, i]) is the same as intervals. Hence, Step 3.3 has total runtime O(n2).
Thus, each loop in Step 3 consists of substeps that run in O(n2) time, O(n) time, and O(n2)
time respectively, incurring a total cost of O(n3) over O(n) iterations.
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To summarize, we have a step with O(n3) cost, followed by a step with O(n) cost, followed
by a step with O(n3) cost, so the algorithm runs in O(n3) time.

By Definition 33, we can compute mdgmM from mrkM in O(n3) time, implying the
number of non-zero intervals in mdgmM is O(n3). By Proposition 27, each non-zero interval
in mdgmM corresponds uniquely to a single rectangle in the rank decomposition of M , and
so the number of such rectangles is likewise O(n3). ◀

6 Discussion

We conclude with some open questions. First, we would like to extend our approach to the
d-parameter setting. We expect that a proper extension would satisfy relationships with the
rank invariant and rank decompositions similar to Proposition 12 and Proposition 27. Such an
extension would also lead to a “recursive” formulation of the persistence diagram of diagrams
illustrated in Figure 2. Next, Theorem 36 implies that the number of rectangles needed in a
rank decomposition for a bimodule is bounded above by O(n3). It is not known whether this
bound is tight. Lastly, there have been multiple recent works that use algorithmic ideas from
1-parameter persistence to compute invariants in the multiparameter setting [15, 16, 23]. We
wish to explore in what ways these approaches can create new algorithms or improve upon
existing ones for computing the invariants of multi-parameter persistence modules.
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Abstract
Consider a weighted, undirected graph cellularly embedded on a topological surface. The function
assigning to each free homotopy class of closed curves the length of a shortest cycle within this
homotopy class is called the marked length spectrum. The (unmarked) length spectrum is obtained
by just listing the length values of the marked length spectrum in increasing order.

In this paper, we describe algorithms for computing the (un)marked length spectra of graphs
embedded on the torus. More specifically, we preprocess a weighted graph of complexity n in time
O(n2 log log n) so that, given a cycle with ℓ edges representing a free homotopy class, the length
of a shortest homotopic cycle can be computed in O(ℓ + log n) time. Moreover, given any positive
integer k, the first k values of its unmarked length spectrum can be computed in time O(k log n).

Our algorithms are based on a correspondence between weighted graphs on the torus and
polyhedral norms. In particular, we give a weight independent bound on the complexity of the unit
ball of such norms. As an immediate consequence we can decide if two embedded weighted graphs
have the same marked spectrum in polynomial time. We also consider the problem of comparing the
unmarked spectra and provide a polynomial time algorithm in the unweighted case and a randomized
polynomial time algorithm otherwise.
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1 Introduction

Combinatorial surfaces are well-studied in computational topology and are usually represented
as graphs cellularly embedded on a topological surface. Given a combinatorial surface S

with underlying graph G, many algorithms exist for computing the length of its shortest
homotopically non-trivial closed walk [23, 10, 13, 4, 3, 9, 2]. Here, the length of a walk is
the sum of the weights of its edges if the edges are weighted, or the number of edges if not.
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However, relatively little is known about how to compute the second shortest non-trivial
closed walk, the third shortest, etc. More precisely, for every closed walk c in G, we can
compute the length of the shortest closed walk freely homotopic to c on S. Obviously, this
length only depends on the free homotopy class of c. The ordered sequence of lengths of all
free homotopy classes of closed walks is called the length spectrum of S with respect to its
(weighted) graph G, while the mapping between free homotopy classes of curves and their
lengths is called the marked length spectrum. The marked length spectrum thus records for
every length in the sequence from which free homotopy class it comes from. These notions
are well studied in the realm of hyperbolic or Riemannian surfaces [15, 1, 16]. A striking
result in that respect is that the marked length spectrum of a non-positively curved surface
entirely determines the geometry of the surface [15]. In other words, one may learn the
geometry of a surface by just looking at the length of its curves. However, the unmarked
length spectrum does not determine the surface even in constant curvature [25].

Analogously, Schrijver [19, Th. 1] proved that embedded graphs that are minor-minimal
among graphs with the same marked length spectrum, which he calls kernels, are determined
by their marked length spectrum up to simple transformations. In [20] Schrijver restricts
to unweighted graphs on the torus and notices that the marked length spectrum extends
to an integer norm in R2, i.e. a norm taking integer values at integer vectors. See figure 1.
Moreover, its dual unit ball is a finite polygon with integer vertices (see [17, 18]). This allows

Figure 1 Left, an unweighted graph on the torus. Right, four dilates of the unit ball of the
associated norm. Note that the vertical and horizontal generators of the torus have length four as
can be seen from the right diagram.

him to reconstruct for every integer norm a graph whose marked length spectrum is given by
this norm.

The aim of our paper is threefold. We first extend the results of Schrijver [20] to weighted
graphs on the torus. There are good reasons to focus on the torus. For instance, the marked
length spectrum of a graph embedded on the torus being a norm is due to the equivalence
between homotopy and homology, which is not true for higher genus surfaces. For weighted
graphs, the marked length spectrum function still extends to a norm on R2, that we denote
by NG,w, but not necessarily to an integer norm. However, we show that it is a polyhedral
norm for any choice of weights w, i.e. that the unit ball BG,w := {α ∈ R2 | NG,w(α) ≤ 1}
is always a polygon. We also prove that the number of extremal points of this polygon is
bounded by a linear function of the number of vertices of G, independent of the weights w.

▶ Theorem 1. Let (G, w) be a weighted graph with |V | vertices cellularly embedded on the
torus. Then NG,w is a polyhedral norm. Moreover, its unit ball BG,w is a polygon with no
more than 4|V | + 5 extremal points, and the ratio of the coordinates of each extremal point is
rational.
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We also extend Schrijver’s reconstruction of a toroidal graph from an integer norm [20] to
the weighted case for non-integer polyhedral norms. See Theorem 7 in Section 3.

Our second goal is to provide algorithms to compute the unit ball BG,w and to compute the
length spectrum. Our complexity estimates assume the standard RAM model of computation
or the standard real-RAM model for non-integer weights supporting constant time arithmetic
operations. We denote by n the complexity of G, i.e. its total number of edges and vertices.

▶ Theorem 2. The unit ball BG,w can be computed in O(n2 log log n) time.

This allows us to compute the length of the shortest closed walk freely homotopic to an input
closed walk of ℓ edges in O(ℓ + log n) time. It is a priori not obvious to sort the values of the
length spectrum from their homotopy classes. However, by decomposing the unit ball into
unimodular sectors, i.e., sectors generated by the columns of unimodular matrices, we are
able to compute efficiently the first k values of the length spectrum.

▶ Theorem 3. Let (G, w) be a weighted graph of complexity n cellularly embedded on the
torus and let k be a positive integer. After O(n2 log log n) preprocessing time, the first k

values of the length spectrum of (G, w) can be computed in O(k log n) time.

Recently, Ebbens and Lazarus [7] used shortest path computations in the universal cover
of the torus to determine the length spectrum. They compute the first k values of the length
spectrum in time O(kn2 log(kn)). This is to be compared to O(k log n) in our submission.

Finally, we provide algorithms to check whether two weighted graphs have the same
(un)marked length spectrum. In the unweighted case it takes the following simple form.

▶ Theorem 4. The equality of marked and unmarked spectra of two unweighted graphs G

and G′ embedded on tori can be tested in time O(n2) and O
(
n3)

, respectively.

Our algorithm for the marked length spectrum is also polynomial in the weighted case
(Theorem 18). However, to compute the unmarked length spectrum we reduce the equality of
length spectra to polynomial identity testing (PIT). See Theorem 19. It becomes deterministic
polynomial in the unweighted case as stated in Theorem 4 above.

In contrast with [19], we provide in the full version an example of isospectral toroidal
graphs whose associated unit balls are not related by any linear transformation. Hence, they
cannot have the same marked spectrum even after applying a homeomorphism on the torus.
Also, in the full version on arXiv, we show that in Theorems 2 and 3 the log log n factor can
be omitted if G is unweighted.

Organization of the paper

We start by discussing some preliminaries in Section 2. We next prove Theorem 1 in Section 3.
Theorem 2 is the object of Sections 4 and 5, while Theorem 3 is proved in Section 6. The
equality of length spectra is finally discussed in Section 7.

2 Preliminaries

Let G = (V, E) be an undirected graph with vertex set V and edge set E. We allow G to
have loop and multiple edges. We denote by n := |V | + |E| the complexity of G. A weight
function for G is a map w : E → R+. The positive value w(e) is the weight (or length) of
the edge e ∈ E. We write (G, w) for a graph G with weight function w. A walk is a finite
alternating sequence of vertices and edges, starting and ending with a vertex, such that any
two successive elements in the sequence are incident. We also use path as a synonym for walk.
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The length w(c) of a walk c is the sum of the weights of its edges, counted with multiplicity.
A walk is closed when its first and last vertices coincide. This vertex is the basepoint of the
closed walk. A closed walk without repeated vertices is also called a simple cycle.

Throughout this paper, we will use S to denote a topological surface and T to denote the
topological orientable surface of genus 1, i.e., a torus. In this paper we assume that G is
cellularly embedded on S, which means that the complement S \ G is a collection of open
disks. This embedding can be represented using one of the standard representations, e.g.,
the incidence graph of flags [8] or rotation systems [14]. A surface together with a cellular
embedding of a weighted graph is called a combinatorial surface.

Homotopy

Two walks of G are said homotopic if they are homotopic as curves in S, i.e., one can be
continuously deformed into the other on S while keeping the endpoints fixed. Similarly, two
closed walks are freely homotopic if they are so as curves in S. Here, we do not require
the basepoint to stay fixed during the homotopy. Closed walks (freely) homotopic to a
walk reduced to a vertex are said trivial. Homotopy is an equivalence relation between
walks. The set of homotopy classes of closed walks with fixed basepoint v defines a group
under concatenation. It is called the fundamental group of S, and denoted by π1(S, v). The
fundamental group of the torus is Abelian and isomorphic to Z2. See e.g. [22]. π1(T, v) is
thus in bijection with its set of conjugacy classes, hence with the set of free homotopy classes.

A closed walk is tight if it is shortest in its free homotopy class. Note that a homotopy
class may contain more than one tight closed walk. Let C denotes the set of free homotopy
classes of S. The map C → R+ that associates to every free homotopy class the length of
a tight closed walk in the class is the marked length spectrum of S with respect to (G, w).
The unmarked length spectrum is the list containing in increasing order the lengths of the
non-trivial free homotopy classes of G, counted with multiplicity: if two homotopy classes
have the same length, then this length will appear twice in the list.

Homology

Let F be the set of faces of the cellular embedding of G in S. We also call a face, an edge or a
vertex, a k-cell for k = 2, 1, 0, respectively. The group of 2-chains, C2, is the group of formal
linear combinations of faces with integer coefficients with the obvious addition as group
operation. A typical element of C2 has the form Σf∈F nf f with nf ∈ Z. Likewise, the group
C1 of 1-chains and the group C0 of 0-chains are the groups of formal linear combinations of
edges and vertices, respectively. Cells are assumed to be oriented and a cell multiplied by −1
represents the same cell with opposite orientation.

For k = 1, 2, the boundary operator ∂k : Ck → Ck−1 is the linear extension of the map
that sends a k-cell to the formal sum of its boundary facets, where the coefficient of a facet
in the sum is 1 if its orientation is induced by the orientation of the k-cell and −1 otherwise.
The kernel of ∂k is denoted by Zk. Its elements are called k-cycles, not to be confused
with cycles in the graph theoretical sense. The image of ∂k is denoted by Bk−1. The first
homology group of S with respect to the coefficients Z is the group H1(S;Z) := ker ∂1/ Im ∂2.
From homology theory, H1(S;Z) does not depend on the specific cell decomposition induced
by the cellular embedding of G. We can similarly define the first homology group with real
coefficients H1(S;R). Since the 1-chains only depend on the graph G, we also write Z1(G;Z)
for the group of 1-cycles. The Hurewicz theorem states that the map π1(S, v) → H1(S;Z)
that sends (the homotopy class of ) a closed walk to the (homology class of the) formal sum
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of its oriented edges is onto with kernel the commutator subgroup of π1(S, v). In the case of
the torus, π1(T, v) is commutative, so that the above map is an isomorphism. From now on
we will identify homotopy and first homology classes on the torus. We will denote by the
same letter a closed walk on G and the corresponding 1-cycle in Z1(G;Z). The homotopy or
homology class of a closed walk or 1-cycle c will be indifferently denoted by [c].

Intersection numbers

Given two closed oriented curves c, d on S (endowed with an orientation) with transverse
intersections, we may assign a sign to each intersection according to whether the tangents
of c and d at the intersection form a positively oriented basis. The sum of the signs over
all intersections is called the algebraic intersection number. It is a classical result that this
number only depends on the homology classes [c] and [d] and that it defines an antisymmetric,
nondegenerate bilinear form on H1(S;Z), denoted by the pairing ⟨[c], [d]⟩. Of course the
total number of intersections of c and d is at least |⟨[c], [d]⟩|.

The universal cover of the torus

We can form a torus by identifying the opposite sides of a square. Equivalently, we can see a
torus as the quotient of the plane R2 by the action of the group of translations generated by
(1, 0) and (0, 1), which we identify with the lattice Z2. Hence, T is identified with R2/Z2 and
we have a quotient map q : R2 → T . The plane R2, with the map q, is called the universal
cover of T . Given a curve c with source point v on T , and a point ṽ ∈ q−1(v), there is a
unique curve c̃ in the plane with source ṽ that projects to c, i.e., such that q(c̃) = c. The
curve c̃ is a lift of c. If c is a closed curve, then the vector from the source to the target
of c̃ has integer coordinates and only depends on [c]. Hence, each homotopy class can be
identified with a lattice translation. Such translations are called covering transformations
(or translations). A curve is freely homotopic to a simple curve if and only if the coordinates
of the corresponding covering translation are coprime [22, Sec. 6.2.2]. By the identification
between Z2, π1(T, v) and H1(T ;Z), any pair (α, β) of homology classes that generates
H1(T ;Z) must correspond to an invertible integer transformation, hence to a unimodular
matrix. Equivalently, ⟨α, β⟩ = ±1. (α, β) is a positively oriented basis when ⟨α, β⟩ = 1.

Integer and intersection norms

Let N : Zd → R≥0 satisfy the norm axioms:
N(α + β) ≤ N(α) + N(β) (subadditivity)
N(kα) = |k|N(α) (absolute homogeneity)
N(α) = 0 =⇒ α = 0 (separation)

Then N extends to Qd using homogeneity, and can be extended to Rd so that it is continuous.
It can be shown that this indeed provides a well-defined norm over Rd [24]. Such a function N ,
or its real extension, is called an integer norm if N(Zd) ⊆ Z≥0. Integer norms are polyhedral,
i.e. their unit ball is a centrally symmetric polytope, and their dual unit ball is a centrally
symmetric polytope with integer vertices [24, 20, 17]. See also [5, Sec. 6.0.4]. Integer norms
naturally arise as length functions defined over homology classes of curves on surfaces. There
are several ways to define curves and their lengths with respect to a graph G embedded on a
surface S. One can consider continuous curves on S and define their length as the number of
crossings with G. Schrijver [20] applies this framework when S is a torus and shows that
this indeed defines a norm. He also considers a framework where the curves are in general
position with respect to G, thus avoiding its vertices, and G is required to be 4-regular.
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26:6 Algorithms for Length Spectra of Combinatorial Tori

In [19] Schrijver shows that the first framework reduces to the second by considering the
medial graph of G. In turn, the second framework reduces to our framework by duality, in
the special case where the faces are quadrilaterals and the edges are unweighted.

3 Length spectrum and polyhedral norms on homology

In this section, given a weighted graph (G, w) embedded on a torus T , we introduce a
norm on the first homology group of the torus that will be used throughout the article. A
correspondence between graphs on the torus and polyhedral norms has been known for some
time [20]. But, as far as we know, it has been studied only in the unweighted case and
furthermore never analyzed from a computational point of view. For α ∈ H1(T ;Z) let

NG,w(α) := inf

 ∑
e∈E(G)

|xe|w(e) :
∑

e∈E(G)

xee ∈ Z1(G;Z) and [
∑

e∈E(G)

xee] = α

 . (1)

In the full version we show that NG,w satisfies the norm axioms. Hence, as explained in
the subsection “Integer and intersection norms” of Section 2, NG,w extends to a norm on
H1(T ;R) (because H1(T ;Z) is naturally a lattice in H1(T ;R)). The next lemma asserts that
NG,w is indeed the marked length spectrum of T with respect to (G, w).

▶ Lemma 5. For every α ∈ H1(T ;Z) we have

NG,w(α) = inf
{∑

i∈I

xi · w(ci) : [
∑
i∈I

xi · ci] = α and xi ∈ Z≥0 for i ∈ I

}
, (2)

where {ci}i∈I is the (finite) set of all simple cycles in G. The infimum in (2) is attained.
Furthermore, for every α ∈ H1(T ;Z), NG,w(α) is the length of a shortest closed walk c in G

with [c] = α. In other words, NG,w is the marked length spectrum of T with respect to (G, w).

In the proof of Theorem 1 below we show that the extremal points of the unit ball
BG,w = {α ∈ H1(T ;R) | NG,w(α) ≤ 1} of NG,w correspond to homology classes that can be
represented by simple cycles in G. The next lemma gives a bound on their number.

For a subset X of a real vector space let conv(X) denote the convex hull of X. Note that
H1(T ;Z) is naturally a subset of the real vector space H1(T ;R).

▶ Lemma 6. Let G be a graph with |V | vertices cellularly embedded on the torus T , and let
SCG ⊂ H1(T ;Z) be the set of homology classes of curves that can be represented as simple
cycles in G. Then, in H1(T ;R) we have | conv(SCG) ∩ H1(T ;Z)| ≤ 4|V | + 5.

Proof. Identify H1(T ;Z) with Z2 via an arbitrary positively oriented basis. H1(T ;R) is then
identified with R2, and the algebraic intersection pairing is given by ⟨(x, y), (x′, y′)⟩ = xy′−x′y,
whose absolute value is the Euclidean area of the parallelogram generated by these vectors.

Let α, β ∈ SCG be represented by simple cycles cα, cβ in G. On the one hand, the number
of intersections between cα and cβ is bounded by |V |, since each intersection corresponds to
at least one vertex of G, and all these vertices must be different. On the other hand, it is
bounded below by the algebraic intersection number |⟨α, β⟩|. Hence, |⟨α, β⟩| ≤ |V |.

Denote by ∥·∥ the Euclidean norm on R2 and by dist(·, ·) the Euclidean distance, and
consider α, β ∈ SCG such that |⟨α, β⟩| is maximal. Then for any γ ∈ SCG, we have
|⟨γ, α⟩| ≤ |⟨α, β⟩| and |⟨γ, β⟩| ≤ |⟨α, β⟩|. Note that, since these numbers are the areas of the
corresponding parallelograms, |⟨γ, α⟩| = ∥α∥ · dist(γ,Rα), |⟨γ, β⟩| = ∥β∥ · dist(γ,Rβ) and
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|⟨α, β⟩| = ∥α∥ · dist(β,Rα) = ∥β∥ · dist(α,Rβ), where Rα,Rβ denote the one-dimensional
R-subspaces generated by α, β respectively. It follows that dist(γ,Rα) ≤ dist(β,Rα) and
dist(γ,Rβ) ≤ dist(α,Rβ), and so SCG is contained in the parallelogram P with vertices
±α ± β, see Figure 2. Clearly, the area A(P ) of P is 4|⟨α, β⟩|. At the same time, by Pick’s

α

P

β

SCG

conv(SCG)

Figure 2 The elements of SCG are contained in a parallelogram P of area at most 4|V |.

theorem A(P ) = I + B/2 − 1, where I is the number of integer points strictly inside P and
B is the number of integer points on its boundary. Since α and β are homology classes
represented by simple cycles, their corresponding vectors in Z2 have coprime coordinates, i.e.
the only integer points on the vectors α and β are their endpoints. It follows that the only
integer points on the boundary of P are ±α, ±β, ±α ± β and so B = 8.

Finally, since SCG ⊂ P , we have conv(SCG) ⊂ P as well, and so

| conv(SCG) ∩ Z2| ≤ I + B = A(P ) + B/2 + 1 = 4|⟨α, β⟩| + 5 ≤ 4|V | + 5. ◀

In the full version, it is shown that the order of the bound in Lemma 6 is optimal. We now
pass to the proof of Theorem 1. In the unweighted case, the polyhedrality of the norm follows
from its integrality [20]. However, this argument does not apply in the weighted case.

Proof of Theorem 1. We refer to the full version for a proof that NG,w satisfies the norm
axioms. Hence, as explained in Section 2, NG,w extends to a norm on H1(T ;R). To prove
the polyhedrality of this norm, we show that

BG,w = conv
({

[ci]
w(ci)

| i ∈ I

})
, (3)

where {ci}i∈I is the (finite) set of all oriented simple cycles in G, as in Lemma 5.
Denote the right-hand side of (3) by B′

G,w. Clearly, for every i ∈ I we have NG,w([ci]) ≤
w(ci), so B′

G,w ⊂ BG,w. Conversely, take any homology class α ∈ H1(T ;Z). By Lemma 5,
we have NG,w(α) =

∑
i∈I xi · w(ci) for some xi ∈ Z≥0 such that α = [

∑
i∈I xi · ci]. Then

α

NG,w(α) =
∑

i∈I xi · [ci]∑
i∈I xi · w(ci)

=
∑
i∈I

xiw(ci)∑
j∈I xj · w(cj) · [ci]

w(ci)

is a representation of α
NG,w(α) as a convex combination of [ci]

w(ci) , i ∈ I. Hence BG,w ⊂ B′
G,w

and we get (3). By definition, the [ci] can be represented by simple cycles in G. By Lemma
6 their number is at most 4|V | + 5, and so the number of extremal points of BG,w is also at
most 4|V | + 5. The slopes of [ci]/w(ci) are rational since the [ci] belong to H1(T ;Z). ◀
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26:8 Algorithms for Length Spectra of Combinatorial Tori

Finally, we show how to reconstruct a weighted graph (G, w) embedded on the torus T

from a polyhedral norm on R2.

▶ Theorem 7. Let N : R2 → R be a polyhedral norm all of whose extremal points have
rational slopes. Let {±(pi, qi)}i=1,...,n be the set of non-zero integral vectors closest to the
origin on the rays issued from the origin in the direction of the extremal points of the unit
ball {v ∈ R2 : N(v) ≤ 1}. Then there exists a weighted 4-valent graph (G, w) embedded on
the torus T with

∑
1≤i<j≤n

|piqj − pjqi| vertices so that N(G,w) = N .

4 Good short basis

Our computation of the length spectrum and of its unit ball relies on the initial computation
of a good short basis. By a short basis we mean a pair of tight simple cycles (a, b) in G

such that a is a shortest non-trivial closed walk and b is a shortest non-trivial closed walk
satisfying ⟨[a], [b]⟩ = 1. We say that (a, b) is a good basis if ([a], [b]) is a positively oriented
basis of H1(T ;Z) and a and b intersect along a connected path, possibly reduced to a vertex.

▶ Lemma 8. Let (G, w) be a weighted graph of complexity n cellularly embedded on the torus.
A good short basis can be computed in O(n log n) time.

Sketch of proof. We first compute a shortest non-trivial closed walk a in O(n log n) time
following Kutz [13, Th. 1]. This closed walk must be a tight simple cycle as otherwise
it could be decomposed into shorter non-trivial closed walks. We claim that among all
shortest non-trivial closed walks b satisfying ⟨[a], [b]⟩ = 1 there is one that intersects a along
a connected path. See full version. Cutting T along a yields an annulus A with two copies
a′ and a′′ of a as boundary components. By the above claim, b intersects A in a shortest
path connecting two copies of the same vertex respectively on a′ and a′′. We find this
shortest path using the multiple-source shortest path algorithm of Klein; see [12] and [2,
Th. 3.8]. This algorithm builds a data structure in O(n log n) time that allows to query
for the distance between any vertex on a′ and any other vertex in A in O(log n) time. We
need to query for the O(n) pairs of copies of vertices of a and retain a pair (u′, u′′) that
minimizes the distance. In order to find an explicit representative of b, we can in a second
step run Dijkstra’s algorithm with source u′ in A. Finally, to ensure that b intersects a along
a connected path, we can replace the subpath between u′ and the last occurrence of a vertex
on a′ by a subpath of a′ with the same length and do similarly on a′′. The total running
time is O(n log n). We obtain b by gluing back the two copies of a. ◀

We shall always express a homology class in the basis (a, b) and identify the class with a
vector in Z2. Hence, [a] and [b] are identified with (1, 0) and (0, 1), respectively.

5 Computing the unit ball

Here, we provide an algorithm for computing the unit ball BG,w of NG,w corresponding to the
weighted graph (G, w). Let T SCG,w ⊂ H1(T ;Z) be the set of homology classes that admit a
tight and simple representative in G. Of course, T SCG,w ⊆ SCG, and the homology classes
of a and b computed in Section 4 are in T SCG,w by construction. In Section 3, we proved
that BG,w is the convex hull of a set {α/NG,w(α)}α∈SCG

containing O(|V |) classes. We shall
compute a subset H of T SCG,w whose normalized vectors, {α/NG,w(α)}α∈H , include all
the extremal points of BG,w. Since the coordinates of each element of T SCG,w must be
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coprime, the set of directions defined by the elements of T SCG,w are pairwise distinct and
naturally ordered angularly. We search for H by exploring the whole set of directions using
dichotomy together with a simple pruning strategy. Suppose we need to explore the angular
sector ∠(α, β), where (α, β) forms a basis of H1(T ;Z). The dichotomy consists in splitting
the sector into the sectors ∠(α, γ) and ∠(γ, β) with γ := α + β. Note that (α, γ) and (γ, β)
are again bases of H1(T ;Z). In particular, the coordinates of γ are coprime. Since for any
nonzero η ∈ H1(T ;Z), the vector η/NG,w(η) lies on the boundary of the unit ball, it follows
by convexity of BG,w that the segment [ α

NG,w(α) , β
NG,w(β) ] is a subset of a supporting line of

BG,w whenever γ/NG,w(γ) lies on this segment. This last condition has a simple certificate.

▷ Claim 9. γ
NG,w(γ) lies on the segment [ α

NG,w(α) , β
NG,w(β) ] if and only if

NG,w(α + β) = NG,w(α) + NG,w(β).

It follows from the previous discussion that if NG,w(α + β) = NG,w(α) + NG,w(β), then the
interior of the sector ∠(α, β) cannot contain any extremal point and we can prune this whole
sector in our search. This leads to the pseudo-code of Algorithm 1 for computing H. In the
sequel, we say that a pair of closed walks in G is good if they are simple and tight cycles,
if their homology classes form a basis of H1(T ;Z), and if they moreover intersect along a
connected path, possibly reduced to a vertex.

Algorithm 1 Compute H.

Require: A weighted graph (G, w) cellularly embedded on the torus
Ensure: A short basis (a, b) and a sorted list H = [((xi, yi), ci, w(ci))] where ci is a simple

tight cycle in G, (xi, yi) ∈ Z2 represents its homology class [ci] = xi[a] + yi[b], and
w(ci) = NG,w([ci]). Also, the extremal points of BG,w are contained in the set of vectors
{[ci]/w(ci) : i ∈ {0, . . . , size(H) − 1}}.

1: Compute a good short basis (a, b) as explained in Section 4
2: h1 := ((1, 0), a, w(a)) {Note that NG,w([a]) = w(a)}
3: h2 := ((0, 1), b, w(b)) {and that NG,w([b]) = w(b).}
4: h1 := ((−1, 0), a, w(a))
5: H := {h1, h2} {Initialise H.}
6: S := {∠(h1, h2),∠(h2, h1)} {Initialise a set of sectors to explore with the upper quadrants.}
7: while S ̸= ∅ do
8: Extract and remove from S a sector ∠(h, h′)
9: (x, y), c, ℓ := h {Note that NG,w([c]) = ℓ.}

10: (x′, y′), c′, ℓ′ := h′ {Similarly NG,w([c′]) = ℓ′.}
Require: (c, c′) is a good pair
11: Compute a tight representative c′′ of γ′′ := [c] + [c′] with its norm ℓ′′ := NG,w(γ′′) = w(c′′)
12: if ℓ′′ < ℓ + ℓ′ then
13: h′′ := ((x + x′, y + y′), c′′, ℓ′′)
14: Insert h′′ in H between h and h′

15: S := S ∪ {∠(h, h′′),∠(h′′, h′)}
16: end if
17: end while
18: H := H ∪ H {Add the symmetric of H w.r.t. the origin.}

By subadditivity of the norm, the test in Line 12 of Algorithm 1 may only fail when
NG,w([c′′]) = NG,w([c])+NG,w([c′]). It then follows from Claim 9 and the preceding discussion
on our pruning strategy that we are not missing any direction of extremal points in the upper
plane when adding homology classes in Line 14. Moreover, Line 18 and the central symmetry
of the unit ball ensure that the above algorithm indeed computes a set of homology classes
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whose normalized vectors contains the extremal points of BG,w. It remains to explain how
to perform the computation in Line 11 and to analyse the complexity of Algorithm 1.

▶ Lemma 10. Let (α, β) be a homology basis such that α and β have representatives,
respectively cα and cβ, forming a good pair. We can compute a tight representative cα+β for
α + β in O(n log log n) time.

Sketch of proof. By hypothesis, cα and cβ intersect along a connected path pαβ . The path
pαβ may be oriented the same way or not in cα and cβ . We consider the case where it is
oriented the same way (see the full version for the other case). Then cα = pα · pαβ and
cβ = pβ · pαβ for some paths pα, pβ in G. We cut T along cα ∪ cβ , viewed as a subgraph of G.
We obtain a hexagonal plane domain D with sides pβ , pαβ , pα, pβ , pαβ , pα in the clockwise
order around the boundary of D. See Figure 3. The universal cover of T is tessellated by

pαβ

pα

pβ

D

pβ

pα

pαβ

G

Figure 3 Cutting T along cα ∪ cβ .

translated copies of D glued along their sides so that the side p of a domain is glued to the
side p of the adjacent domain. See Figure 4. As before, let γ = α + β. Since (α, γ) is a
positively oriented basis, we know that ⟨α, γ⟩ = 1. Hence, any representative of γ must cross
cα. Let cγ be a tight representative of γ with a lift c̃γ in the universal cover starting from a
vertex ṽ on the side pα or pαβ of a domain D0 and ending at the vertex w̃ := ṽ + τα + τβ ,
where τα and τβ are the covering translations corresponding to α and β respectively. There
are two situations according to whether ṽ lies on the side pα or pαβ of D0. See Figure 5.

If ṽ lies on the side pα of D0 then w̃ belongs to the side pα of D1 := D0 + τα. We claim
that D0 ∪ D1 is convex, i.e., any two vertices in D0 ∪ D1 can be joined by a shortest path
contained in D0 ∪ D1. Indeed, since cα is tight, any bi-infinite concatenation of its lifts
is a geodesic line in the weighted lift of G in the universal cover of T . Similarly, any
bi-infinite concatenation of lifts of cβ is a geodesic line and thus delimits two convex
half-planes. See the dotted and broken lines in Figure 5. It follows that D0 ∪ D1 is the
intersection of four half-planes, hence is convex. We can thus assume that cγ has a lift
in D0 ∪ D1 with endpoints ṽ and w̃ on the boundary of D0 ∪ D1. We can glue the pα

side of D0 with the pα side of D1 and search for the shortest generating cycle of the
resulting annulus in O(n log n) time as in [6, Prop. 2.7(e)], or, more efficiently, in time
O(n log log n) as in [11, Theorem 7].
If ṽ lies on the side pαβ of D0 we can compute c̃γ in linear time. See the full version.

In all cases we may compute a tight representative of γ in O(n log log n) time. ◀

▶ Lemma 11. The tight representative cα+β computed in Lemma 10 can be modified in O(n)
time in order to satisfy the additional following property (P): The intersection of any lift of
cα+β in the universal cover with any line is either empty or a common connected subpath.
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τα + τβ
τα + τβ

τα
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Figure 4 The universal cover of T . Left: pαβ is oriented consistently with both cα and cβ . Right:
pαβ has opposite orientation in cα and cβ .

▶ Lemma 12. Let (α, β) be a homology basis such that α and β have representatives,
respectively cα and cβ, forming a good pair. If NG,w(α + β) < NG,w(α) + NG,w(β), then the
tight representative cα+β computed in Lemma 11 is such that (cα, cα+β) and (cα+β , cβ) are
good pairs.

Since in Algorithm 1 we only add α + β to H at line 14 when α, β are already in H with
NG,w(α + β) < NG,w(α) + NG,w(β), Lemma 12 immediately implies

▶ Corollary 13. H ⊂ T SCG,w ⊂ SCG

▶ Corollary 14. The number of iterations in the while loop of Algorithm 1, from Line 7
to 17, is bounded by twice the size of T SCG,w.

▶ Proposition 15. Algorithm 1 runs in O(n2 log log n) time.

Proof. From Corollary 14, Algorithm 1 enters at most 2|T SCG,w| times the while loop be-
tween Lines 7 and 17. This is O(n) iterations by Lemma 6. Each iteration takes O(n log log n)
time for executing Line 11 by Lemmas 10 and 11. Lemma 12 ensures that only good pairs are
stored at Line 15, so that the requirement for executing Line 11 is always satisfied. Line 18
moreover takes time O(|H|) = O(n). Since every other line takes constant time to execute,
the total time for running Algorithm 1 is O(n · n log log n + n) = O(n2 log log n). ◀

We are now ready to prove that BG,w can be computed in O(n2 log log n) time.

Proof of Theorem 2. Proposition 15 states that we can compute in O(n2 log log n) time a
list H of O(n) vectors, with their norms, that contains the directions of the extremal points of
the unit ball BG,w. After normalising the vectors we compute their convex hull in O(n log n)
time with any classical convex hull algorithm. Overall, this leads to an O(n2 log log n) time
algorithm for computing BG,w. ◀

SoCG 2023
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pα

D0 D1

ṽ

pαβ

D1

ṽ

w̃

c̃γ

c̃γ

w̃

pαβ

D1

ṽ0

w̃0

c̃γ

Figure 5 Top: if cγ crosses pα, then cγ has a lift in D0 ∪ D1. The dotted and broken lines are
supporting geodesics for the considered regions. Bottom: when cγ crosses pαβ it has a lift contained
in the union of D1 with two lifts of pαβ . We can shift the origin of the lift to ṽ0.

For further reference, we establish a useful property of the ordered set of elements in H.
Namely, two consecutive cycles in H define a unimodular cone.

▶ Lemma 16. The sorted list H = [((xi, yi), ci, w(ci))] computed by Algorithm 1 is such that
the rays R≥0ci are ordered cyclically by angle, and ⟨[ci], [ci+1]⟩ = 1 for all i. In particular,
the half-open cones Ci = Z≥0[ci] + Z>0[ci+1] constitute a partition of H1(T ;Z).

6 Computing the length spectrum

We now give a proof of Theorem 3.

Proof. First, as described in Sections 4 and 5, we compute in time O(n2 log log n) a short
basis (a, b) and a list H of triples ((xi, yi), ci, w(ci)), where ci is a simple tight cycle in G,
(xi, yi) ∈ Z2 represents its homology class [ci] = xi[a] + yi[b] and w(ci) = NG,w([ci]). From
Lemma 16, this provides a partition of H1(T ;Z) into half-open cones Ci = Z≥0[ci]+Z>0[ci+1].
Note that by construction NG,w is linear over each Ci.

We then compute the values of the length spectrum iteratively, in increasing order, storing
them into a list Λ, initially empty. Intuitively, the algorithm consists in sweeping H1(T ;Z)
by increasing the radius of the λ-ball λBG,w from λ = 0. Each time a lattice point is swept,
its norm λ is added to Λ. We actually sweep the cones Ci in parallel.

By Lemma 16, the half-open cones Ci decompose the ball λBG,w into sectors Cλ
i :=

λBG,w ∩ Ci. For each sweeping value λ and each i we store two ordered subsets of Cλ
i into

dequeues (double-ended queues) F h
i and F v

i corresponding to the horizontal and vertical
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sweeping front, respectively. Formally F h
i = ((xh

1 , yh
1 ), . . . , (xh

ih
, yh

ih
)), where each (xh

j , yh
j ) ∈

Z≥0 ×Z>0 is such that xh
j [ci] + yh

j [ci+1] ∈ Cλ
i and (xh

j + 1)[ci] + yh
j [ci+1] ̸∈ λBG,w. Moreover,

the homology classes in F h
i are ordered by their norms in increasing order. Similarly,

F v
i = ((xv

1, yv
1), . . . , (xv

iv
, yv

iv
)) contains the list (ordered by norm in increasing order) of

coordinates of the homology classes contained in λBG,w but whose translates by [ci+1] have
norms larger than λ. Initially F h

i is the empty dequeue and F v
i contains the coordinates

(0, 0) of the zero class. See Figure 6

Figure 6 Here, the point (x, y) represents the class x[ci] + y[ci+1]. The solid red line represents
the points whose norm is λ. The dashed lines correspond to the norms of (xh

1 , yh
1 ) and (xv

1 , yv
1 ).

▷ Claim 17. The coordinates in the ([ci], [ci+1]) basis of the homology class in Ci \ Cλ
i with

the smallest norm is either (xh
1 + 1, yh

1 ) or (xv
1, yv

1 + 1).

We are now ready to describe the sweeping algorithm. We store the indices i of the sectors
Cλ

i in a (balanced) binary search tree S allowing minimum extraction, deletion and insertion
in logarithmic time. The key of sector Cλ

i used for comparisons in the tree is the minimum
norm of a homology class in Ci \Cλ

i . From the previous claim it can be computed in constant
time from F h

i and F v
i as

key[i] = min(NG,w([(xh
1 + 1)ci + yh

1 ci+1]), NG,w([xv
1ci + (yv

1 + 1)ci+1]))
= min((xh

1 + 1)w(ci) + yh
1 w(ci+1), xv

1w(ci) + (yv
1 + 1)w(ci+1))

Suppose we have computed the m first values of the length spectrum, i.e., Λ = (λ1, λ2, . . . , λm),
and we want to compute λm+1. We extract and remove from S the sector Cλm

i , with
i = S. min(), i.e., with a non-swept homology class α of minimal norm. Hence, we have
λm+1 = key[i]. We update F h

i and F v
i as follows. If α = (xh

1 + 1)[ci] + yh
1 [ci+1], then

we remove (xh
1 , yh

1 ) from the bottom of F h
i and push (xh

1 + 1, yh
1 ) on its top. Likewise, if

α = xv
1[ci] + (yv

1 + 1)[ci+1], we remove (xv
1, yv

1) from the bottom of F v
i and push (xv

1, yv
1 + 1)

on its top. We do both if α = (xh
1 + 1)[ci] + yh

1 [ci+1] = xv
1[ci] + (yv

1 + 1)[ci+1]. Clearly, the
updated dequeues contain the required lattice points with respect to the sweeping value
λ = λm+1. We then update S by inserting i with its new key resulting from the updates of
F h

i and F v
i . We finally add λm+1 to Λ. By Corollary 13 and Theorem 1, S contains O(n)

items. The running time for a sweeping step is thus O(log n) time for interacting with S
plus constant time for updating F h

i , F v
i and Λ. We can thus compute the first k values of

the length spectrum in O(n2 log log n + k log n) time. ◀

SoCG 2023
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7 Deciding equality of length spectra

We now present an application of Algorithm 1 to the following decision problem: given
two weighted graphs (G, w) and (G′, w′) embedded on tori do they have the same length
spectra? This question actually covers two problems: the equality of the marked and of
the unmarked length spectrum. As we show, the former reduces to the linear equivalence
of polyhedral norms which has a straightforward quadratic time solution. In contrast the
latter reduces to the problem of polynomial identity testing which is only known to be in the
co-RP complexity class [21]. In particular, this problem is in co-NP. For unweighted graphs
however, the complexity is deterministic polynomial.

We first aim to compare the length spectrum as maps from H1(T ;Z) → R. We are given
two weighted graphs (G, w) and (G′, w′) embedded on tori T and T ′ respectively. We say
that (G, w) and (G′, w′) have the same marked spectrum if there exists a homeomorphism
ϕ : T → T ′ such that for all γ ∈ H1(T ;Z) we have NG′,w′(ϕ∗(γ)) = NG,w where ϕ∗(γ)
denotes the class [ϕ(c)] where c is a curve representative of γ.

▶ Theorem 18. Let (G, w) and (G′, w′) be two weighted graphs cellularly embedded on tori T

and T ′, each with complexity bounded by n. Then there is an algorithm that answers whether
(G, w) and (G′, w′) have the same marked spectrum in time O(n2 log log n).

Now we consider the more delicate question of comparing unmarked spectra. That is, we
want to decide whether the list of values {NG,w(α) : α ∈ H1(T ;Z)} and {NG′,w′(α′) : α′ ∈
H1(T ′;Z)} coincide where each value comes with multiplicity according to the number of
homology classes that realize this length. This equality of unmarked length spectra is always
decidable and we show that it belongs to the co-RP complexity class, i.e. our algorithm can
detect if the unmarked spectra of (G, w) and (G′, w′) are different in random polynomial
time. For this specific test, we need to have access to all integral linear relations between
the weights at once. That is, our algorithm needs to have access to the Q-vector space
{(xe)e∈E(G) ∈ QE(G) :

∑
e xewe = 0}. We assume that the weights are given in the following

form : we are given r real numbers o = (o1, o2, . . . , or) that do not satisfy any integral linear
relations, and for each edge e ∈ E(G) its weight is given as a linear combination of these real
numbers with integral coefficients we = we,1o1 + . . . + we,ror. We call complexity of these
weights the sum ∥w∥o :=

∑
e∈E(G)

∑r
i=1 |we,i|. Note that this complexity depends on the

choice of the numbers o1, . . . , or and not only on the values we as real numbers.

▶ Theorem 19. Let (G, w) and (G′, w′) be two weighted graphs cellularly embedded on
tori T and T ′, each with complexity bounded by n, where each weight is specified as we =
we,1o1 + . . . + we,ror with we,i ∈ Z and o1, . . . , or are r given real numbers. There is an
algorithm to decide whether (G, w) and (G′, w′) have different (unmarked) spectra that runs
in random polynomial time in the total input size n + log (∥w∥o + ∥w′∥o). Moreover, for fixed
r, there is a deterministic algorithm that runs in time O(n2 · (∥w∥o + ∥w′∥o)r).

Let us explain how to deduce Theorem 4 from Theorems 18 and 19. We emphasize that
Theorem 19 allows us to deduce deterministic polynomial time only in the unweighted case.
Even with rational weights we are not aware of a deterministic polynomial time algorithm.

Proof of Theorem 4. The case of marked spectrum is simply a particular case of Theorem 18,
where we use the fact that the unit ball can be computed in quadratic time in the unweighted
case. For the equality of unmarked spectrum, we have r = 1 and o1 = 1. The second part of
Theorem 19 hence gives deterministic polynomial time in O(n2·(

∑
e∈E(G)∪E(G′)

1)) = O(n3). ◀



V. Delecroix, M. Ebbens, F. Lazarus, and I. Yakovlev 26:15

References
1 Peter Buser. Geometry and Spectra of Compact Riemann Surfaces. Birkhäuser, 1992.
2 Sergio Cabello, Erin W. Chambers, and Jeff Erickson. Multiple-source shortest paths in

embedded graphs. SIAM Journal on Computing, 42(4):1542–1571, 2013.
3 Sergio Cabello, Éric Colin de Verdière, and Francis Lazarus. Algorithms for the edge-width of

an embedded graph. Computational Geometry, 45(5-6):215–224, 2012.
4 Sergio Cabello and Bojan Mohar. Finding shortest non-separating and non-contractible cycles

for topologically embedded graphs. Discrete & Computational Geometry, 37(2):213–235, 2007.
5 Marcos Cossarini. Discrete surfaces with length and area and minimal fillings of the circle.

PhD thesis, Instituto de Matemática Pura e Aplicada (IMPA), 2018.
6 Éric Colin de Verdière and Jeff Erickson. Tightening nonsimple paths and cycles on surfaces.

SIAM Journal on Computing, 39(8):3784–3813, 2010.
7 Matthijs Ebbens and Francis Lazarus. Computing the length spectrum of combinatorial graphs

on the torus. 38th International Symposium on Computational Geometry: Young Researchers
Forum, 2022.

8 David Eppstein. Dynamic generators of topologically embedded graphs. In Proceedings of the
fourteenth annual ACM-SIAM symposium on Discrete algorithms, pages 599–608, 2003.

9 Jeff Erickson. Combinatorial optimization of cycles and bases. In Afra Zomorodian, edi-
tor, Advances in Applied and Computational Topology, Proceedings of Symposia in Applied
Mathematics, 2012.

10 Jeff Erickson and Sariel Har-Peled. Optimally cutting a surface into a disk. Discrete &
Computational Geometry, 31(1):37–59, 2004.

11 Giuseppe F. Italiano, Yahav Nussbaum, Piotr Sankowski, and Christian Wulff-Nilsen. Improved
algorithms for min cut and max flow in undirected planar graphs. In Proceedings of the Forty-
Third Annual ACM Symposium on Theory of Computing, STOC ’11, pages 313–322, New York,
NY, USA, 2011. Association for Computing Machinery. doi:10.1145/1993636.1993679.

12 Philip N Klein. Multiple-source shortest paths in planar graphs. In Proceedings of the sixteenth
annual ACM-SIAM symposium on Discrete algorithms, pages 146–155, 2005.

13 Martin Kutz. Computing Shortest Non-Trivial Cycles on Orientable Surfaces of Bounded
Genus in Almost Linear Time. In 22nd Annual ACM Symposium on Computational Geometry,
pages 430–437, 2006.

14 Bojan Mohar and Carsten Thomassen. Graphs on surfaces, volume 10. JHU press, 2001.
15 Jean-Pierre Otal. Le spectre marqué des longueurs des surfaces à courbure négative. Annals

of Mathematics, 131(1):151–162, 1990.
16 Hugo Parlier. Interrogating surface length spectra and quantifying isospectrality. Mathe-

matische Annalen, 370(3):1759–1787, 2018. URL: https://math.uni.lu/parlier/Papers/
Isospectral2016-11-07.pdf.

17 Mikael de la Salle. On norms taking integer values on the integer lattice. Comptes Rendus
Mathématique, 354(6):611–613, 2016.

18 Abdoul Karim Sane. Intersection norms and one-faced collections. Comptes Rendus Mathéma-
tique, 358(8):941–956, 2020.

19 Alexander Schrijver. On the uniqueness of kernels. Journal of Combinatorial Theory, Series
B, 55(1):146–160, 1992.

20 Alexander Schrijver. Graphs on the torus and geometry of numbers. Journal of Combinatorial
Theory, Series B, 58(1):147–158, 1993.

21 Jacob T. Schwartz. Fast probabilistic algorithms for verification of polynomial identities. J.
Assoc. Comput. Mach., 27:701–717, 1980. doi:10.1145/322217.322225.

22 John Stillwell. Classical topology and combinatorial group theory, volume 72. Springer Science
& Business Media, 1993.

23 Carsten Thomassen. Embeddings of graphs with no short noncontractible cycles. Journal of
Combinatorial Theory, Series B, 48(2):155–177, 1990.

SoCG 2023

https://doi.org/10.1145/1993636.1993679
https://math.uni.lu/parlier/Papers/Isospectral2016-11-07.pdf
https://math.uni.lu/parlier/Papers/Isospectral2016-11-07.pdf
https://doi.org/10.1145/322217.322225


26:16 Algorithms for Length Spectra of Combinatorial Tori

24 William P. Thurston. A norm for the homology of 3-manifolds. In Mem. Amer. Math. Soc.,
volume 339, pages 99–130. AMS, 1986.

25 Marie-France Vignéras. Isospectral and non-isometric Riemannian manifolds. Ann. Math. (2),
112:21–32, 1980. doi:10.2307/1971319.

https://doi.org/10.2307/1971319


Computing a Dirichlet Domain for a Hyperbolic
Surface
Vincent Despré # Ñ

Université de Lorraine, CNRS, Inria, LORIA, F-54000 Nancy, France

Benedikt Kolbe # Ñ

Hausdorff Center for Mathematics, Universität Bonn, Germany

Hugo Parlier # Ñ

Department of Mathematics, University of Luxembourg, Luxembourg

Monique Teillaud # Ñ

Université de Lorraine, CNRS, Inria, LORIA, F-54000 Nancy, France

Abstract
This paper exhibits and analyzes an algorithm that takes a given closed orientable hyperbolic surface
and outputs an explicit Dirichlet domain. The input is a fundamental polygon with side pairings.
While grounded in topological considerations, the algorithm makes key use of the geometry of the
surface. We introduce data structures that reflect this interplay between geometry and topology and
show that the algorithm runs in polynomial time, in terms of the initial perimeter and the genus of
the surface.
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1 Introduction and motivation

Hyperbolic surfaces and their moduli spaces play an ubiquitous role in mathematics, namely,
through relationships with other areas including Riemannian geometry, number theory,
geometric group theory and mathematical physics. Algorithms for surface groups, as combi-
natorial or topological objects, have a rich history dating back to Dehn. Recently, in part
motivated by applications in other sciences [1, 17], there has been a push to understand
hyperbolic structures on surfaces from the point of view of computational geometry.

Dealing with hyperbolic surfaces necessarily involves describing them – or even visualizing
them – meaningfully. A fundamental domain (in the hyperbolic plane) with a side pairing
is one way to determine a hyperbolic metric on the surface. Lengths of curves in a pants
decomposition and their associated pasting parameters (so-called Fenchel-Nielsen coordinates)
are another. No matter which construction or parameter set used, it is always interesting
to know to which extent two different constructions output the “same” surface, where
“same” can have different meanings. However, these representations, either by a fundamental
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domain or a set of Fenchel-Nielsen coordinates, are not unique, and determining a canonical
representation is challenging for either option. In this paper, we tackle this question for
fundamental domains, by computing a so-called Dirichlet domain.

Roughly speaking, a Dirichlet domain of a hyperbolic surface is a fundamental polygon
in the hyperbolic plane, with a special point where distances to that point in the polygon
correspond to distances on the surface. Another way of thinking of them is that it is a
Voronoi cell associated to a lift of a single point of the surface to its universal cover H2.
A more precise definition is given in the next section. Note that, any given surface has
infinitely many Dirichlet domains up to isometry. This is namely due to the fact that (closed)
hyperbolic surfaces are not homogeneous, and generically any choice for a basepoint of the
Dirichelet domain will give a different domain. This is in strong contrast to, for example, flat
tori. Nonetheless, when describing a surface via fundamental domains, the prize for the most
relevant geometric domain undoubtedly goes to Dirichlet domains because they visualize
the distance function for a given point. As far as we know, there is only one algorithm
in the literature that computes a Dirichlet domain for a hyperbolic surface and a given
point [19]. In the case of arithmetic surfaces, this algorithm has subsequently been improved
and experiments indicate a significant speed up [18]. Unfortunately, the complexity of the
algorithm is not studied and an analysis seems complicated.

The contribution of this paper is an algorithm that computes a Dirichlet domain efficiently,
and its analysis. The point defining the domain is not given as input, but it is part of the
output. The Dirichlet domain of a given input point can then be computed with a complexity
that only depends of the genus of the surface [10]. Our main result is the following:

▶ Theorem 1. Let S be a closed orientable hyperbolic surface of genus g given by a funda-
mental polygon of perimeter L and side pairings. A Dirichlet domain for S can be computed
in O

(
(gL)6g−4)

time.

A key ingredient is the use of Delaunay triangulations on hyperbolic surfaces, an area
of research that has recently gained traction, both from an experimental and a theoretical
perspective [3, 7, 4, 15, 8, 12]. Recently, it has been shown that the well-known flip algorithm
that computes the Delaunay triangulation of a set of points in the Euclidean plane E2

also works on a hyperbolic surface; the complexity result announced in Theorem 1 crucially
depends on the only known upper bound on the complexity of this Delaunay flip algorithm [11].
The algorithm subsumes the real RAM model; studying the algebraic numbers involved in
the computations goes beyond the scope of this paper.

The paper is structured as follows: In Section 3, we give an overview of the algorithm
and we present the data structure. Sections 4 and 5 explain in detail the main two steps of
the algorithm, which output a geometric triangulation of the surface having only one vertex.
Finally, in Section 6 we conclude, using known results, the proof of Theorem 1 with the last
step of the algorithm.

2 Preliminaries

We begin by recalling a collection of facts and setting notations, and we refer to [2, 5, 14]
for details. The surfaces studied in this paper are assumed to be closed, orientable, and of
genus g ≥ 2. We begin with a topological surface and endow it with a hyperbolic metric to
obtain a hyperbolic surface, denoted by S. A hyperbolic surface is locally isometric to its
universal covering space, the hyperbolic plane H2. Such surfaces can always be obtained by
considering the quotient of H2 under the action of Γ, a discrete subgroup of isometries of H2

isomorphic to the fundamental group π1(S).



V. Despré, B. Kolbe, H. Parlier, and M. Teillaud 27:3

Let S := H2/Γ be a hyperbolic surface of genus g and fundamental group Γ. The
projection map is denoted as ρ : H2 → S = H2/Γ. We denote by x̃ ∈ ρ−1(x) one of the lifts,
to H2, of an object x on S. More generally, objects in H2 are denoted with .̃

A fundamental domain F for the action of Γ is defined as a closed domain, i.e., int(F) = F ,
such that ΓF = H2 and the interiors of different copies of F under Γ are disjoint.

For a point x̃ ∈ H2, the Dirichlet domain D
x̃

is defined as the Voronoi cell containing x̃,
of the Voronoi diagram associated to the point set Γx̃. In other words,

D
x̃

= { ỹ ∈ H2 | dH2(x̃, ỹ) ≤ dH2(x̃, Γỹ) } = { ỹ ∈ H2 | dH2(x̃, ỹ) ≤ dH2(Γx̃, ỹ) },

where the equality is true since Γ acts by isometries with respect to dH2 . The Dirichlet
domain is a compact convex fundamental domain for Γ with finitely many geodesic sides [2,
§9.4] and is generally considered a canonical choice of fundamental domain. A property
of Dirichlet domains, of interest for the conception of algorithms, is that, by the triangle
inequality,

diam(D
x̃
) ≤ 2 diam(S) ≤ 2 diam(D

x̃
),

where diam(·) denotes the diameter.

2.1 The Poincaré disk model
As they play an important part in our investigations, for completeness, we quickly recall the
Poincaré disk model of the hyperbolic plane and its isometries. In this model, the hyperbolic
plane H2 is represented as the open unit disk in the complex plane C and the unit circle
consists of the points at infinity. The geodesics for the hyperbolic metric are either diameters
of the unit disk or circle arcs meeting the unit circle orthogonally.

The representations of the fundamental group of an orientable surface we’re interested in
consist of orientation-preserving isometries of H2, represented by either of the two matrices

±
(

a b

b̄ ā

)
with a, b ∈ C such that |a|2 − |b|2 = 1. The image of a point of H2 represented by z ∈ C is
the point represented by az + b

b̄z + ā
. Composition of isometries corresponds to multiplication of

either of their representing matrices.
All isometries in the fundamental group of a surface are hyperbolic translations, which

are characterized by having two distinct fixed points at infinity. An isometry is a hyperbolic
translation if and only if the absolute value of the trace of its matrix is larger than 2.

2.2 Curves, paths, and loops
A closed curve is the image of S1 under a continuous map and it is said to be non-trivial (or
essential) if it is not freely homotopic to a point. Similarly, a path is a continuous image of
the interval [0, 1], and the images of 0 and 1 are referred to as its endpoints. A loop is a
path whose endpoints are equal; this endpoint is referred to as its basepoint. More generally
we refer to [14] for basic topological notions concerning curves on surfaces.

For a closed curve or loop c, we will denote by [c] its free homotopy class, and, if c is a
loop based in a point p, by [c]p its homotopy class of loops based in p. For a path c between
points p and q, we denote by [c]p,q the homotopy class of the path with fixed endpoints. We

SoCG 2023
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will readily make use of the fact that if c is a closed non-trivial curve on a hyperbolic surface,
then there is a unique closed geodesic in the homotopy class [c]. Similarly, if c is a loop based
in p, in [c]p there is a unique geodesic loop, and if c is a path between p and q, in [c]p,q there
is a unique geodesic path. If c is a simple closed curve then the closed geodesic in [c] is also
simple, but this is no longer necessarily the case for loops or paths with basepoints.

The intersection number i(c, c′) between homotopy classes of curves c and c′ is defined as
the minimal intersection among its representatives. Note that closed geodesics on a hyperbolic
surface always intersect minimally. The situation for paths is slightly different. The unique
geodesic representatives of paths (with fixed endpoints) might not intersect minimally. For
instance, take four points close together on a surface and such that their distance paths
intersect. While the geodesics intersect it is possible to move one of them (keeping the end
points fixed) by a homotopy such that they no longer intersect. This subtlety plays a key
technical role in our story.

2.3 Fundamental polygon
Let S be a (closed) hyperbolic surface of genus g and fundamental group Γ. A polygon
P ⊂ H2 (i.e., a circular sequence of geodesic edges) bounding a fundamental domain for Γ
(as defined in the introduction) is called a fundamental polygon. Poincaré’s theorem implies
that Γ is generated by the side pairings on P [2, §9.8]. The edges and vertices of P project
to a graph GP on S; the region enclosed by P projects to the unique face of GP .

The numbers nG of vertices and mG of edges of GP satisfy Euler’s relation nG −mG +1 =
2 − 2g, as there is only one face. It follows that if GP only has one vertex, then that vertex
is incident to the mG = 2g edges, which are actually all loops. The number of vertices is
maximal when they all have degree 3 (then there are no loops); in this case 3nG = 2mG, so,
mG = 6g − 3 and nG = 4g − 2. More generally, the number 2mG of edges and vertices of P

lies between the two extreme cases: 4g ≤ 2mG ≤ 12g − 6. Some vertices of P project to the
same vertex of GP , i.e., they belong to the same orbit under Γ. The graph GP has a loop
for each edge of P whose vertices are in the same orbit; then the projected point on S is
incident to that loop twice.

3 Algorithm overview

Let S be a (closed) hyperbolic surface of genus g and fundamental group Γ.
We propose the algorithm sketched below to compute a Dirichlet fundamental domain of

S. The output of Step 1 will be denoted with primes; it will be used as input for Step 2,
whose output will be denoted with double primes.

1. Find a system β′
0, . . . , β′

2g−1 of simple topological loops based at a common point b′ that
cuts S into a disk. Construct a topological polygon Π′ from lifts of these loops, together
with side pairings. This step is described precisely in Section 4.

2. Construct a point b′′ so that the topological polygon Π′ leads to an embedded polygon
Π′′ when based at a lift b̃′′ of b′′ (Section 5).

3. Construct the Dirichlet domain of b̃′′ (Section 6).

Obviously, the complexity of the algorithm heavily depends on the data structure used
to store the objects involved in the constructions. As the algorithm actually operates in
the universal covering space H2 of S, it is natural to present the data structure in H2. We
assume that, as input, we are given a fundamental polygon Π ⊂ H2 for Γ, together with side
pairings, as in Section 2.3. The data structure described below is actually equivalent to a



V. Despré, B. Kolbe, H. Parlier, and M. Teillaud 27:5

combinatorial map [16, Section 3.3] on S, enriched with geometric information. In particular,
for each vertex x of GΠ (the projection of Π onto S, as in Section 2.3), the sequence of edges
around x is ordered (edges that correspond to a loop appear twice).

Description of the input

Let a representative ẽi, i = 0, . . . , m − 1 be chosen for each couple of paired edges of Π and
denote as γ0, . . . , γm−1 ∈ Γ the corresponding side pairings in Π: the other edge of the couple
is γi

−1ẽi, where γi
−1 is the inverse of γi. We denote the set of the 2m edges of Π as EΠ and

the set of its 2m vertices as VΠ. We choose a representative ṽj , j = 0, . . . , n − 1 for each orbit
of vertices of Π; n is the number of vertices of GΠ.

Each element of Γ can be represented as a word on the alphabet AΓ = {1, γ0, . . . , γm−1,

γ0
−1, . . . , γm−1

−1}, where 1 denotes the identity in Γ. Here, letters of AΓ and the cor-
responding generators in Γ are denoted by the same symbol; this should not cause any
confusion.

The core of the data structure is a doubly linked circular list of edges of Π, which stores
the combinatorial information. Additional information is necessary to store the geometry
(i.e., the positions of the vertices of Π in H2) and the side pairings. The data stored for each
edge and vertex is constant, so the size of the data structure is O(g) (we do not try to shave
constants in the O()). Notation introduced below is illustrated by Figure 1.

Concretely, for each edge x̃ ∈ EΠ, the data structure stores:
two pointers prev(x̃) and next(x̃) that give access to the previous and next edges in Π,
respectively (in counterclockwise order);
two pointers source(x̃) and target(x̃) that give access to the source and target vertices of
x̃ in Π, respectively (in counterclockwise order); when ρx̃ is a loop in GΠ, source(x̃) and
target(x̃) lie in the same orbit under Γ;
a pointer to the paired edge pair(x̃) in Π;
a letter w(x̃) ∈ AΓ that encodes the relation between x̃ and pair(x̃):

w(x̃) =
{

1 if x̃ = ẽi

γi if x̃ = γi
−1ẽi

for some i ∈ {0, . . . , m − 1}.

By definition, pair(x̃) =
{

γi
−1x̃ when w(x̃) = 1 (x̃ = ẽi)

γix̃ when w(x̃) = γi

.

For each vertex ỹ ∈ VΠ, the data structure stores:
point(ỹ), which is the representative point of its orbit: point(ỹ) = ṽj for some j ∈
{0, . . . , n − 1};
a word γ

ỹ
on AΓ (equivalently, γ

ỹ
∈ Γ), which specifies the precise position γ

ỹ
point(ỹ) of

ỹ in H2.

The graph GΠ lifts in the universal cover H2 to the (infinite) graph ρ−1GΠ = ΓΠ. In
particular, the sequence of edges of ΓΠ incident to a given vertex ṽ ∈ ρ−1v is a sequence of
lifts of the edges incident to v in GΠ. Each of these lifts is the image by an element of Γ of an
edge of Π. The precise positions in H2 of all vertices of Π in the orbit ρ−1v can be computed
using the information point(·) and w(·) stored in the data structure. Relations in the finitely
presented group [6, Chapter 5.5] Γ can be deduced by comparing the two sequences of edges
of ΓΠ – clockwise and counterclockwise – around each vertex.
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−1ẽ0
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−1ẽ2
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ẽ3
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−1ẽ4

ẽ4
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−1ẽ1
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−1ṽ

γ1
−1ṽ
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−1s̃

γ3γ6
−1s̃

ũ

γ1
−1ũ

γ6γ1
−1ũ

w̃

γ3
−1w̃

γ2
−1w̃

S
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γ6

γ1γ2
−1ẽ2

γ3

γ0ẽ2

γ0Π
γ1

−1Π

γ1
−1ẽ0γ2

−1Π

γ2
−1γ0

−1ẽ0

γ2Π

γ0
−1ẽ1

γ2γ1
−1ẽ1

γ1Π

γ4
−1ũ

Figure 1 (Top) The graph GΠ. The arrow around vertex v shows its incident edges. (Bottom)
The fundamental polygon Π. Vertices s̃, ũ, ṽ, and w̃ of Π are chosen as representatives of the orbits
of s, u, v, and w, respectively. The arrows show the combinatorics of the tiling ΓΠ at the three
vertices of Π in the orbit ρ−1v: ṽ, γ0ṽ = γ2γ1

−1ṽ, and γ1
−1ṽ = γ2

−1γ0ṽ.

4 Constructing the initial system of simple loops

Step 1 of the algorithm described in Section 3 is reminiscent of a construction that is quite
common in the topology literature: it consists in computing a spanning tree T of GΠ, then
the edges of T are contracted, so that each vertex of T is merged into the root, and each
edge of GΠ that is not an edge of T is transformed into a loop based at the root.

Instead, our construction is performed in the dual of GΠ, which allows for a simpler
presentation. Note also that topology is not enough in this work. We will actually compute
the geometry of each loop by constructing lifted vertices in H2 and side pairings.

The main result of this section is as follows:
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▶ Proposition 2. Let S be a closed orientable surface of genus g and Π a fundamental
polygon of S with 2m edges and side pairings as described in Section 3. A system of loops
based at a common point on S, whose lifts form a topological polygon Π′ in H2, together with
side pairings, can be constructed in time O(g). The total geodesic length of this system of
loops is O(gL), where L denotes the perimeter of Π.

The topological polygon Π′ is given by a circular list of vertices in H2; its edges are
homotopic with fixed endpoints to paths forming a fundamental domain. Π′ is not a
fundamental polygon as in Section 2.3: the geodesic segments between its vertices (i.e.,
endpoints of these paths) will intersect in general, so they do not bound a fundamental
domain. Section 5 will present the construction of a fundamental polygon from this topological
polygon (Step 2 of the algorithm).

The algorithm that constructs Π′ proceeds in three phases:
(i) Compute a spanning tree T of GΠ.
(ii) Compute a set of loops that topologically cuts the surface into a disk.
(iii) Construct a topological polygon Π′ by lifting the loops of the previous phase. The side

pairings in Π′ are also computed.

The rest of this section is devoted to proving Proposition 2, by detailing the construction.

Proof. The notation in this proof is the same as in Section 3.
Phase (i) is performed by a standard construction of a spanning tree T in time O(m),

i.e., O(g). The tree has n − 1 edges.
Let us denote as GΠ

⋆ the dual of GΠ. For phase (ii), we use a tree-cotree decomposition
(T , C, X ), which is a partition of the edges of GΠ: C consists of the edges of GΠ \ T that are
dual to the edges of a spanning tree of GΠ

⋆; X contains the 2g remaining edges. Here, C
is empty since GΠ has only one face, so X = GΠ \ T . Completing the 2g edges of X with
the unique paths in T between their endpoints would lead to a basis of the homology [13].
Instead of considering X , we actually consider the dual X ⋆: since C⋆ is empty, the edges of
X ⋆ are already loops based at a single point and they form a basis of the homology.

Phase (iii) computes realizations in H2 of the 2g loops of X ⋆. We first choose a point b̃′

in the interior of Π. The loops will be obtained by constructing 4g paths incident to b̃′.
Let us re-index the edges of Π so that X̃ = {ẽi, i = 0, . . . , 2g−1}∪{γi

−1ẽi, i = 0, . . . , 2g−1};
the associated side pairings in Π are re-indexed accordingly. For each i ∈ {0, . . . , 2g − 1}, we
take a path β̃′

i with endpoints b̃′ and γib̃′; the path γi
−1β̃′

i has endpoints b̃′ and γi
−1b̃′. The

two paths β̃′
i and γi

−1β̃′
i project onto S on the same loop β′

i based at b′, and which lies in
the homotopy class of the dual edge e⋆

i of ei ∈ X (Figure 2).
The order in which β′

0, . . . , β′
2g−1 appear around b′ on S is simply given by the order of

the elements of X̃ around Π, which is obtained in O(g) operations by traversing the boundary
of Π (as mentioned in Section 2.3, each loop appears twice in the sequence). However, in
general the geodesic segments between the endpoints of each path may intersect and not
appear in the right order around b̃′.

To construct Π′, we will walk in the faces of the graph ΓΠ and construct 4g lifts of
β′

0, . . . , β′
2g−1 and their vertices in the orbit Γb′, which will form the ordered sequence of

edges of the topological polygon Π′. Along the construction, we will create a table t that
stores for each vertex x̃ of Π′ the element γ ∈ Γ (as a word) such that x̃ = γb̃. We describe
the walk in the next paragraph.

Without loss of generality, we start with β̃′
0 as a first edge of Π′, incident to b̃′. Its other

vertex is γ0b̃′; we store 1 and γ0 in t for the first two vertices of Π′. The next edge of Π′

is incident to the endpoint γ0b̃′ of β̃′
0. It is given by the dual of the first edge of Π – when
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Π

b̃′

ẽ0

γ0
−1ẽ0 = pair(ẽ0)

ẽj

β̃′
j

γ0
−1β̃′

0
γj

−1β̃′
j

γj b̃′γ0b̃′

γ0
−1b̃′

γj
−1b̃′

γj
−1ẽj

Figure 2 Edges of Π, which are geodesics in H2, are represented as straight lines. Lifts of e0

and ej , which belong to X , are shown in green, while edges of Π that belong to T̃ are black. Lifts
incident to b̃′ of the loops β0, . . . , β2g−1 corresponding to edges of X̃ appear as blue curves.

following Π in counterclockwise order – that is an element of X̃ , which is found in the data
structure presented in Section 3 as next(next(. . . next(pair(ẽ0))) . . .) (see Figure 3). Here the
iteration on the edges of Π stops as soon as it encounters an element of X̃ ; it is an edge
ẽj or γj

−1ẽj , for some j ∈ 0, . . . , 2g − 1. The edge of Π′ following β̃′
0 after γ0b̃′ is thus γ0β̃′

j

or γ0γj
−1β̃′

j and its next vertex is γ0γj b̃′ or γ0γj
−1b̃′. We store either γ0γj or γ0γj

−1 in t.
We repeat the same operations for each edge of Π′. The total number of accesses to next(·)
during the process is exactly the number of edges of Π, and there are a constant number of
other operations for each edge, so, the boundary of Π′ is constructed in O(g) time.

The side pairing between any two paired sides is easily obtained by comparing the elements
of t that yield their respective vertices when applied to b̃′.

The homotopy class of each loop β′
i contains the path formed by the projection onto

S of the path c̃′
i formed by the shortest path in Π between b̃′ and a point on ẽi (e.g., the

midpoint), followed by the shortest path in γiΠ between this (mid)point and the other vertex
γib̃′ of β̃′

i (see Figure 4). These two shortest paths are contained respectively in Π and γiΠ,
so, each of them is not longer than the diameter of Π, which is bounded by half the perimeter
L of Π. Thus the geodesic length of β′

i, for i = 0, . . . , 2g − 1, is not larger than L. ◀

▶ Remark 3. The topological polygon Π′ is obtained as a circular sequence of images of
some lifts β̃′

i, i = 0, . . . , 2g − 1 by elements of Γ. The shape formed by the sequence of the
images of all shortest paths c̃′

i (see the last paragraph of the proof) by the same elements of
Γ contains a lift of the tree T that is a tree in H2.

It is crucial to notice that the point b̃′ from which the topological polygon Π′ is constructed
can be any point in the interior of Π. The following section shows how to choose a point
that yields a polygon embedded in H2.

5 Finding an embedded system of loops

We want to find a collection of geodesic loops on a hyperbolic surface S, all based in a single
point and disjoint otherwise, such that the complementary region of the loops is a convex
hyperbolic polygon. What we show is that in fact we can retain the choice of topological
loops β′

0, . . . , β′
2g−1 made in Section 4 by moving the basepoint appropriately to ensure that

their geodesic realizations satisfy the desired properties.
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Figure 3 Construction of the edges of Π′, colored in orange.
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Figure 4 Bounding the geodesic length of β′
j .
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Consider the set of topological loops β′
0, . . . , β′

2g−1 all based at point b′ constructed in
the previous section. We choose a pair that intersects minimally exactly once which, up to
reordering, we suppose are β′

0 and β′
1. For future reference we set L0 := max{ℓ(β′

0), ℓ(β′
1)},

where ℓ denotes the length.

▶ Remark 4. While all of the loops are based at the same point, they each correspond to free
homotopy classes of closed curves that may or may not intersect. We can actually fix any
loop to be β′

0 and find a loop β′
1 (essentially) intersecting it exactly once (meaning that the

corresponding closed curves intersect exactly once). Indeed, the set β′
0, . . . , β′

2g−1 contains
curves that pairwise intersect at most once, and are all non-separating and thus homologically
non-trivial. As it generates homotopy, it also generates homology and in particular every
curve must be intersected by at least one other curve. As they can intersect at most once,
they intersect exactly once.

We begin by taking the unique geodesic loops, based in b′, in the free homotopy classes
of β′

0 and β′
1, and we replace the curves with these geodesic representatives (we keep

the same notation for convenience). Now we further consider the unique simple closed
geodesic representatives in the free homotopy class of β′

0 and β′
1, which we denote β′′

0 and
β′′

1 , respectively. By hypothesis, they intersect in a single point b′′, which will be our new
basepoint.

We now define a path between b′′ and b′ as follows. We consider a single lift β̃′
0 of β′

0. Its
endpoints both correspond to distinct lifts of b′ which are related by a unique translation
g0 in Γ. The copies of β̃′

0 by iterates of g0 form a piecewise geodesic line β̂′
0 with the same

endpoints at infinity as the geodesic axis of g0. This line β̂′
0 separates H2 into two half-spaces,

only one of which is convex – unless β′
0 is smooth at b′, in which case the two half-spaces

are convex. We now choose an endpoint of β̃′
0 and consider the lift of β′

1 that lies in the
convex half-space and shares the same endpoint; in the case when the two half-spaces are
convex, we can take any of them. This lift we denote by β̃′

1 and, as before, we consider
the corresponding translation g1 in Γ and its geodesic axis and its corresponding piecewise
geodesic line β̂′

1. Now, we obtain b̃′′ as the intersection of the axes of g0 and g1. We consider
the unique geodesic path c̃ between b̃′ and b̃′′ and its projection c on S.

We observe that the axis of g0 must lie in an R neighborhood of β̂′
0 where R < ℓ(β′

1).
In particular, the axis of g1 intersects β̃′

0 (see Figure 5). Similarly, the axis of g0 intersects
β̃′

1. By following an arc of β̃′
0 from b̃′ and then a segment on the axis g1, we obtain a path

between b̃′ to b̃′′.
Observe that for i = 0, 1, β′′

i , based in b′′, is freely homotopic to c−1 · β′
i · c and that there

is a homeomorphism of S, isotopic to the identity, that takes b′ to b′′ and that sends (the
homotopy class of) β′

i to β′′
i . This homeomorphism is often referred to as the point pushing

map (see for instance [14, Section 4.2] for details).
We can apply this same homeomorphism to the remaining curves. For i = 0, . . . , 2g − 1

we set the homotopy class of loop β′′
i to be:

[β′′
i ]b′′ = [c−1 · β′

i · c]b′′ . (5.1)

As we have just moved the basepoint by a homeomorphism, the homotopy classes [β′′
i ]b′′ all

have simple representatives and can be realized disjointly outside of b′′. The following lemma
implies that their unique geodesic representatives enjoy this same property. It is well known
to specialists, but we include a proof sketch for completeness.

▶ Lemma 5. Let Σ be a hyperbolic surface with piecewise-geodesic boundary such that the
interior angles on the singular points s0, . . . , sk−1 of the boundary are cone points of angle
≤ π. If [α]pi,qi , [α′]pj ,qj are simple homotopy classes of paths (with endpoints pi, pj , qi, qj
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c̃
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0

β̃′
1

g1(b̃′)

g0(b̃′)

b̃′

b̃′′

g1g0(b̃′)

g0g1(b̃′)

β̂′
1

β̂′
0

Figure 5 c is homotopic on S to the projection of the concatenation of the bold arc of β̃′
0 from b̃′

and the bold segment of the axis of g1.

in the set s0, . . . , sk−1), and disjoint except for possibly in their endpoints, then the unique
geodesic representatives are also simple and disjoint.

Sketch of proof. We consider Σ̃, the universal cover of Σ, which we view as a (geodesically
convex) subset of H2. We lift ∂Σ to Σ̃ and representatives of [α]pi,qi

and [α′]pj ,qj
, which

are simple and disjoint, to the universal cover. Observe that being simple and disjoint is
equivalent to all individual lifts in H2 being simple and pairwise disjoint. Now take two
individual lifts of either α or α′, and their unique geodesic representatives. We will see that
they are also disjoint. Note that in general, given two simple disjoint paths in the hyperbolic
(or Euclidean) plane, the unique geodesics between their endpoints might intersect (as already
mentioned in Section 2.2). However:
Observation: Let C ⊂ H2 be a convex with non-empty boundary, and p0, q0, p1, q1 ∈ ∂C.
Let α1 : [0, 1] → C and α2 : [0, 1] → C be simple paths, disjoint in their interior, with
α0(0) = p0, α0(1) = q0 and α1(0) = p1, α1(1) = q1. Then the unique geodesic between p0 and
q0 and the unique geodesic between p1 and q1 are disjoint in their interior as well.

A key point is that, thanks to the angle condition on the cone points, Σ̃ is a convex region
of H2. (This is just a slightly more sophisticated observation than the elementary fact that a
polygon with all interior angles less than π is convex.) The observation now implies that the
lifts of geodesics corresponding to α and α′ are disjoint in their interior if and only if there
are representatives of [α]pi,qi

and [α′]pj ,qj
that are, too, which, by hypothesis, is the case. ◀

We can now apply Lemma 5 to the geodesic representatives of [β′′
i ]b′′ . For simplicity we

denote by β′′
i the unique geodesic loop in the corresponding homotopy class.

▶ Theorem 6. Let β′′
0 , . . . , β′′

2g−1 be a set of topological loops based in b′′ that cuts a surface S

into a disk. Assume that β′′
0 and β′′

1 are closed geodesics. Then, the geodesic loops homotopic
to β′′

0 , . . . , β′′
2g−1 are simple and pairwise disjoint in their interiors. Furthermore, by cutting

S along those geodesics and lifting to H2, one obtains a convex hyperbolic polygon with 4g

edges.
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27:12 Computing a Dirichlet Domain for a Hyperbolic Surface

Proof. As β′′
0 and β′′

1 are closed geodesics, they form 4 angles in b′′, and the opposite ones are
equal. These angles thus satisfy 2θ + 2θ′ = 2π so in particular both θ and θ′ are strictly less
than π. Thus by cutting along β′′

0 and β′′
1 , we obtain a genus g − 1 surface with a boundary

consisting of 4 geodesic segments, and with 4 cone point singularities of angles < π (see
Figure 6).

Figure 6 A visualization of the cutting along β′′
0 and β′′

1 .

We now proceed inductively for i ≥ 2 and consider the unique geodesic path β′′
i , which by

virtue of Lemma 5, has disjoint interior from the previous geodesic segments. Furthermore,
as each segment further splits the angles, the angles are all less than π.

The end result is a polygon with all interior angles less than π which, by elementary
hyperbolic geometry, is convex. ◀

▶ Proposition 7. Let S be hyperbolic of genus g and Π′ a topological fundamental polygon of
S with 4g edges and side pairings as described at the end of Section 4. A convex fundamental
polygon Π′′ with its side pairing and whose vertices project to a single vertex on S, can be
constructed in O(g) time. The perimeter of Π′′ is O(gL), where L denotes the perimeter
of Π.

Proof. We need to compute the output convex polygon Π′′ i.e., 4g lifts of b′′ and 2g side
pairings γ′′

0 , · · · , γ′′
2g−1. As homotopy classes of β′′

i and β′
i are conjugates for i = 0, . . . , 2g − 1

(Equation 5.1), the side pairing γ′′
i is equal to γ′′

i for each i.
The key point here is the computation of a lift of b′′. The first step consists in finding

the loops β′
0 and β′

1 satisfying i(β′
0, β′

1) = 1. As shown in Remark 4, we can choose any loop
for β′

0. We also fix b̃′
0 to be an endpoint of one of the two paired sides of Π′ that are lifts of

β′
0. We know the ordered sequence of loops around b′ (see the proof of Proposition 2); recall

that each loop β′
0, . . . , β′

2g−1 appears twice in the sequence (Section 2.3). We take as β′
1 one

of the loops that alternate with β′
0 in the sequence, and choose for β̃′

1 one of its two lifts that
are incident to b̃′

0.
The second step consists in finding the free geodesics in the homotopy classes of β′

0 and
β′

1, respectively. Using t, we find the word g0 on {γ′
0, · · · , γ′

2g−1} representing the translation
that sends b̃′

0 to the other endpoint of β̃′
0 (see Figure 7). The sequences gn

0 (b̃′
0) and g−n

0 (b̃′
0)

converge in C to two points on the unit circle: these points are the two (infinite in H2) fixed
points of the translation g0, i.e., the two solutions of equation g0(z) = z in C. The axis of g0,
i.e., the geodesic between these two points, projects onto S to the free geodesic in [β′

0].
We repeat the same process with β̃′

1 and find the geodesic in H2 that projects to the free
geodesic in [β′

1]. The point b̃′′
0 comes as the intersection point of the two geodesics in H2. We

now define β̃′′
0 as the geodesic segment between b̃′′

0 and g0(b̃′′
0), and β̃′′

1 in the same way. This
step is performed in constant time.

We can now compute the 4g lifts of b′′ that are the vertices of Π′′ by applying the elements
of t to b̃′′

0 . This last step has complexity O(g).
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β̃′0

β̃′1

g1(b̃′)

g0(b̃′)

b̃′

b̃′′

g∞1 (b̃′)

g∞0 (b̃′)

g−∞0 (b̃′)

g−∞1 (b̃′)

Figure 7 The computation of b′′ from b′.

Recall that the upper bound on the geodesic perimeter of Π′ given by Proposition 2 holds
for the geodesic perimeter of Π′ constructed from any basepoint b′ in the interior of Π. So, it
also holds for the new basepoint b′′ and gives a bound on the perimeter of Π′′. ◀

6 Finding a Dirichlet domain from an embedded system of loops

We first summarize what we have obtained so far. We started with a polygon Π of perimeter
L and we obtained a convex polygon Π′′ of total length O(gL). Additionally, all vertices of Π′′

project on a single vertex b′′ on S. This construction has complexity O(g) by Propositions 2
and 7.

For the sake of clarity, the two steps 1 and 2 of the algorithm (Section 3) were distinct
and were presented in different sections (respectively, Sections 4 and 5). However, we can
remark that they could have been merged by placing the point b′, which is left undefined in
Section 4, directly at b′′ as defined in Section 5. This is probably what would be done in
practice.

Now it is easy to compute a Dirichlet domain. Indeed, we can triangulate Π′′ easily since
it is convex and, thus, we obtain a geometric triangulation T , on to which the Delaunay flip
algorithm can be applied [11]. The complexity of this algorithm depends on the diameter of
T , for which the perimeter of Π′′ is an upper bound.
▶ Remark 8. Remark 3 can be expressed in a much simpler way at this point: Π′′ itself
contains a lift T̃ of T . As Π′′ is convex, the geodesic segments dual to the edges of T̃
are contained in Π′′ and induce a partition of Π′′. We can actually use these segments to
triangulate Π′′. In this way, in the case when the input polygon Π is already a Dirichlet
domain, we already have a Delaunay tesselation, and no flip is performed by the algorithm.

The output of the flip algorithm is a Delaunay triangulation DT of S with the single
vertex b′′ computed in Section 5. To obtain a Dirichlet domain from DT , we just have to
compute the triangles of D̃T incident to a lift b̃′′ of b′′ and their dual: we compute the
circumcenter of each triangle to get the vertices of the Dirichlet domain and we put a geodesic
between vertices that correspond to adjacent triangles around b̃′′. This step is also clearly
done in O(g) operations. Putting all together we obtain the following theorem:

SoCG 2023
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▶ Theorem 9. Let S be a closed orientable hyperbolic surface of genus g given by a funda-
mental polygon of perimeter L and side pairings. A Dirichlet domain of S can be computed
in time O (f(gL) + g) where f(∆) is the complexity of the flip algorithm for a triangulation
of diameter ∆ with a single vertex.

Using the best known bound O
(
∆6g−4)

for the flip algorithm so far [11], we obtain
Theorem 1 stated in the introduction as a corollary. Note that the constant in the O()
depends on the metric on S. However, there are experimental and theoretical insights
suggesting that the actual complexity of the flip algorithm may be much better [9].
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Abstract
In Coordinated Motion Planning (CMP), we are given a rectangular-grid on which k robots occupy
k distinct starting gridpoints and need to reach k distinct destination gridpoints. In each time step,
any robot may move to a neighboring gridpoint or stay in its current gridpoint, provided that it does
not collide with other robots. The goal is to compute a schedule for moving the k robots to their
destinations which minimizes a certain objective target – prominently the number of time steps in
the schedule, i.e., the makespan, or the total length traveled by the robots. We refer to the problem
arising from minimizing the former objective target as CMP-M and the latter as CMP-L. Both
CMP-M and CMP-L are fundamental problems that were posed as the computational geometry
challenge of SoCG 2021, and CMP also embodies the famous (n2 − 1)-puzzle as a special case.

In this paper, we settle the parameterized complexity of CMP-M and CMP-L with respect to
their two most fundamental parameters: the number of robots, and the objective target. We develop
a new approach to establish the fixed-parameter tractability of both problems under the former
parameterization that relies on novel structural insights into optimal solutions to the problem. When
parameterized by the objective target, we show that CMP-L remains fixed-parameter tractable
while CMP-M becomes para-NP-hard. The latter result is noteworthy, not only because it improves
the previously-known boundaries of intractability for the problem, but also because the underlying
reduction allows us to establish – as a simpler case – the NP-hardness of the classical Vertex Disjoint
and Edge Disjoint Paths problems with constant path-lengths on grids.
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1 Introduction

Who among us has not struggled through solving the 15-puzzle? Given a small square board,
tiled with 15 tiles numbered 1, . . . , 15, and a single hole in the board, the goal of the puzzle
is to slide the tiles in order to reach the final configuration in which the tiles appear in
(sorted) order; see Figure 1 for an illustration. The 15-puzzle has been generalized to an
n × n square-board, with tiles numbered 1, . . . , n2 − 1. Unsurprisingly, this generalization
is called the (n2 − 1)-puzzle. Whereas deciding whether a solution to an instance of the
(n2 − 1)-puzzle exists (i.e., whether it is possible to sort the tiles starting from an initial
configuration) is in P [20], determining whether there is a solution that requires at most
ℓ ∈ N tile moves has been shown to be NP-hard [9, 26].
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28:2 The Parameterized Complexity of Coordinated Motion Planning

Figure 1 The left figure shows an initial configuration of the 15-puzzle and the right figure shows
the desirable final configuration. Source: https://en.wikipedia.org/wiki/15_puzzle.

Deciding whether an (n2 − 1)-puzzle admits a solution is a special case of Coordinated
Motion Planning (CMP), a prominent task originating from robotics which has been exten-
sively studied in the fields of Computational Geometry and Artificial Intelligence (where
it is often referred to as Multi-Agent Path Finding). In CMP, we are given an n × m

rectangular-grid on which k robots occupy k distinct starting gridpoints and need to reach k

distinct destination gridpoints. Robots may move simultaneously at each time step, and at
each time step, a robot may move to a neighboring gridpoint or stay in its current gridpoint
provided that (in either case) it does not collide with any other robots; two robots collide
if they are occupying the same gridpoint at the end of a time step, or if they are traveling
along the same grid-edge (in opposite directions) during the same time step. We are also
given an objective target, and the goal is to compute a schedule for moving the k robots to
their destination gridpoints which satisfies the specified target. The two objective targets we
consider here are (1) the number of time steps used by the schedule (i.e., the makespan),
and (2) the total length traveled by all the robots (also called the “total energy”, e.g., in the
SoCG 2021 Challenge [1]); the former gives rise to a problem that we refer to as CMP-M,
while we refer to the latter as CMP-L. An illustration is provided in Figure 2.

robots
Time Green Red Blue Purple Orange Yellow
0 (1,3) (2,2) (5,2) (4,2) (2,1) (3,1)
1 (2,3) (2,2) (5,3) (3,2) (2,1) (3,1)
2 (3,3) (2,3) (5,4) (2,2) (3,1) (3,2)
3 (4,3) (2,4) (5,5) (1,2) (4,1) (3,3)
4 (5,3) (1,4) (4,5) (1,1) (5,1) (3,4)

Figure 2 An illustration (left) of an instance of CMP-M with six robots, indicated using distinct
colors (blue, green, yellow, red, orange, purple), and a makespan ℓ = 4. The starting points are
marked using a disk shape (filled circle) and destination points using an annular shape. A schedule
indicating each of the robot’s position at each of the four time steps is shown in the table (right).

In this paper, we settle the parameterized complexity of CMP-M and CMP-L with respect
to their two most fundamental parameters: the number k of robots, and the objective target.
In particular, we obtain fixed-parameter algorithms for both problems when parameterized

https://en.wikipedia.org/wiki/15_puzzle
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by k and for CMP-L when parameterized by the target, but show that CMP-M remains
NP-hard even for fixed values of the target. Given how extensively CMP has been studied in
the literature (see the related work below), we consider it rather surprising that fundamental
questions about the problem’s complexity have remained unresolved. We believe that one
aspect contributing to this gap in our knowledge was the fact that, even though the problems
seem deceptively easy, it was far from obvious how to obtain exact and provably optimal
algorithms in the parameterized setting. Furthermore, en route to the aforementioned
intractability result, we establish the NP-hardness of the classical Vertex Disjoint Paths
and Edge Disjoint Paths problems on grids when restricted to bounded-length paths.

1.1 Related Work
CMP has been extensively studied by researchers in the fields of computational geometry,
AI/Robotics, and theoretical computer science in general. In particular, CMP-M and CMP-L
were posed as the Third Computational Geometry Challenge of SoCG 2021, which took place
during the Computational Geometry Week in 2021 [1]. The CMP problem generalizes the
(n2 −1)-puzzle, which was shown to be NP-hard as early as 1990 by Ratner and Warmuth [26].
A simpler NP-hardness proof was given more recently by Demaine et al. [9]. Several recent
papers studied the complexity of CMP with respect to optimizing various objective targets,
such as: the makespan, the total length traveled, the maximum length traveled (over all
robots), and the total arrival time [2, 8, 15, 32]. The continuous geometric variants of CMP,
in which the robots are modeled as geometric shapes (e.g., disks) in a Euclidean environment,
have also been extensively studied [3, 8, 12, 25, 27]. Finally, we mention that there is a
plethora of works in the AI and Robotics communities dedicated to variants of the CMP
problem, for both the continuous and the discrete settings [4, 17, 28, 29, 31, 33, 34].

The fundamental vertex and edge disjoint paths problems have also been thoroughly
studied, among others due to their connections to graph minors theory. The complexity of
both problems on grids was studied as early as in the 1970’s motivated by its applications in
VLSI design [13, 21, 24, 30], with more recent results focusing on approximation [5, 6].

1.2 High-Level Overview of Our Results and Contributions
As our first set of results, we show that CMP-M and CMP-L are fixed-parameter tractable
(FPT) parameterized by the number k of robots, i.e., can be solved in time f(k) · nO(1) for
some computable function f and input size n. Both results follow a two-step approach for
solving each of these problems. In the first step, we obtain a structural result revealing that
every YES-instance of the problem has a canonical solution in which the number of “turns”
(i.e., changes in direction) made by any robot-route is upper bounded by a function of the
parameter k; this structural result is important in its own right, and we believe that its
applications extend beyond this paper. This first step of the proof is fairly involved and
revolves around introducing the notion of “slack” to partition the robots into two types,
and then exploiting this notion to reroute the robots so that their routes form a canonical
solution. In the second step, we show that it is possible to find such a canonical solution (or
determine that none exists) via a combination of delicate branching and solving subinstances
of Integer Linear Programming (ILP) in which the number of variables is upper bounded by
a function of the parameter k; fixed-parameter tractability then follows since the latter can
be solved in FPT-time thanks to Lenstra’s result [14, 16, 19].

Next, we consider the other natural parameterization of the problem: the objective target.
For CMP-L, this means parameterizing by the total length traveled, and there we establish
fixed-parameter tractability via exhaustive branching. The situation becomes much more
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intriguing for CMP-M, where we show that the problem remains NP-hard even when the
target makespan is a fixed constant. As a by-product of our reduction, we also establish
the NP-hardness of the classical Vertex and Edge Disjoint Paths problems on grids when
restricted to bounded-length paths.

The contribution of our intractability results are twofold. First, the NP-hardness of CMP
with constant makespan is the first result showing its NP-hardness in the case where one
of the parameters is a fixed constant. As such, it refines and strengthens several existing
NP-hardness results for CMP [2, 8, 15]. It also answers the open questions in [15] about the
complexity of the problem in restricted settings where the optimal path of each robot passes
through a constant number of starting/destination points, or where the overlap between any
two optimal paths is upper bounded by a constant, by directly implying their NP-hardness.
Second, the NP-hardness results for the bounded-length vertex and edge disjoint paths
problems on grids also refine and deepen several intractability results for these problems.
All previous NP-hardness (and APX-hardness) results for the vertex and edge disjoint paths
problems on grids [2, 6, 8, 9, 15, 21, 24, 26] yield instances in which the path length is
unbounded. Last but not least, we believe that the NP-hardness results we derive are of
independent interest, and have the potential of serving as a building block in NP-hardness
proofs for problems in geometric and topological settings, where it is very common to start
from a natural problem whose restriction to instances embedded on a grid remains NP-hard.

2 Preliminaries and Problem Definition

We use standard terminology for graph theory [10] and assume basic familiarity with the
parameterized complexity paradigm including, in particular, the notions of fixed-parameter
tractability and para-NP-hardness [7, 11]. For n ∈ N, we write [n] for the set {1, . . . , n}.

Let G be an n × m rectangular grid, where n, m ∈ N. Let {Ri | i ∈ [k]}, k ∈ N, be a set
of robots that will move on G. Each Ri, i ∈ [k], is associated with a starting gridpoint si

and a destination gridpoint ti in V (G), and hence can be specified as the pair Ri = (si, ti);
we assume that all the si’s are pairwise distinct and that all the ti’s are pairwise distinct,
and we denote by R = {(si, ti) | i ∈ [k]} the set of all robots. At each time step, a robot may
either stay at the gridpoint it is currently on, or move to an adjacent gridpoint, and robots
may move simultaneously. We reference the sequence of moves of the robots using a time
frame [0, t], t ∈ N, and where in time step x ∈ [0, t] each robot remains stationary or moves.

Let a route for Ri be a tuple Wi = (u0, . . . , ut) of vertices in G such that (i) u0 = si and
ut = ti and (ii) ∀j ∈ [t], either uj−1 = uj or uj−1uj ∈ E(G). Intuitively, Wi corresponds to a
“walk” in G, with the exception that consecutive vertices in Wi may be identical (representing
waiting time steps), in which Ri begins at its starting point at time step 0, and is at its
destination point at time step t. Two routes Wi = (u0, . . . , ut) and Wj = (v0, . . . , vt), where
i ̸= j ∈ [k], are non-conflicting if (i) ∀r ∈ {0, . . . , t}, ur ̸= vr, and (ii) ∄r ∈ {0, . . . , t − 1}
such that vr+1 = ur and ur+1 = vr. Otherwise, we say that Wi and Wj conflict. Intuitively,
two routes conflict if the corresponding robots are at the same vertex at the end of a time
step, or go through the same edge (in opposite directions) during the same time step.

A schedule S for R is a set of routes Wi, i ∈ [k], during a time interval [0, t], that are
pairwise non-conflicting. The integer t is called the makespan of S. The (traveled) length of
a route (or its associated robot) within S is the number of time steps j such that uj ̸= uj+1,
and the total traveled length of a schedule is the sum of the lengths of its routes.

We are now ready to define the problems under consideration.
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Coordinated Motion Planning with Makespan Minimization (CMP-M)
Given: An n × m rectangular grid G, where n, m ∈ N, and a set R = {(si, ti) | i ∈ [k]} of
pairs of gridpoints of G where the si’s are distinct and the ti’s are distinct; k, ℓ ∈ N.
Question: Is there a schedule for R of makespan at most ℓ?

The Coordinated Motion Planning with Length Minimization problem (CMP-L)
is defined analogously but with the distinction being that, instead of ℓ, we are given an
integer λ and are asked for a schedule of total traveled length at most λ. For an instance I
of CMP-M or CMP-L, we say that a schedule is valid if it has makespan at most ℓ or has
total traveled length at most λ, respectively. We remark that even though both CMP-M
and CMP-L are stated as decision problems, all the algorithms provided in this paper are
constructive and can output a valid schedule (when it exists) as a witness.

We will assume throughout the paper that k ≥ 2; otherwise, both problems can be solved
in linear time. Furthermore, we remark that the inputs can be specified in O(k · (log n +
log m) + log ℓ) (or + log λ) bits, and our fixed-parameter algorithms work seamlessly even if
the inputs are provided in such concise manner. On the other hand, the lower-bound result
establishes “strong” NP-hardness of the problem (i.e., also applies to cases where the input
contains a standard encoding of G as a graph).

For two gridpoints p = (xp, yp) and q = (xq, yq), the Manhattan distance between p and
q, denoted ∆(p, q), is ∆(p, q) = |xp − xq| + |yp − yq|. For two robots Ri, Rj ∈ R and a time
step x ∈ N, denote by ∆x(Ri, Rj) the Manhattan distance between the grid points at which
Ri and Rj are located at time step x. The following notion will be used in several of our
algorithms:

▶ Definition 1. Let (G, R, k, •) be an instance of CMP-M or CMP-L and let T = [t1, t2] for
t1, t2 ∈ N. For a robot Ri with corresponding route Wi, let up and uq be the gridpoints in
Wi at time steps t1 and t2, respectively. Define the slack of Ri w.r.t. T , denoted slackT (Ri),
as (t2 − t1) − ∆(up, uq) (alternatively, (q − p) − ∆(up, uq)).

Observe that the slack measures the amount of time (i.e., number of time steps) that robot
Ri “wastes” when going from up to uq relative to the shortest time needed to get from up

to uq. For a robot Ri with route Wi, for convenience we write slackT (Wi) for slackT (Ri).
When dealing with CMP-M, we write slack(Ri) as shorthand for slack[0,ℓ](Ri), and when
dealing with CMP-L, we write slack(Ri) as shorthand for slack[0,λ](Ri).

3 CMP Parameterized by the Number of Robots

In this section, we establish the fixed-parameter tractability of CMP-M and CMP-L parame-
terized by the number k of robots. Both results follow the two-step approach outlined in
Subsection 1.2: showing the existence of a canonical solution, and then reducing the problem
via branching to a tractable fragment of Integer Linear Programming. These two steps are
described for CMP-M in Subsections 3.1 and 3.2, while Subsection 3.3 shows how the same
technique is used to establish the fixed-parameter tractability of CMP-L.

3.1 Canonical Solutions for CMP-M
We begin with a few definitions that formalize some intuitive notions such as “turns”.

Let W = (u0, . . . , uℓ), where ℓ > 2, be a route in an n × m grid G, where n, m ∈ N. We
say that W makes a turn at ui = (xi, yi), where i ∈ {1, . . . , ℓ − 1}, if the two vectors −−−−→ui−1ui

and −−−−→uiui+1 have different orientations (i.e., either one is horizontal and the other is vertical,
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or they are parallel but have opposite directions). We write ⟨ui−1, ui, ui+1⟩ for the turn at
ui. A turn ⟨ui−1, ui, ui+1⟩ is a U-turn if −−−−→ui−1ui = −−−−−→uiui+1; otherwise, it is a non U-turn.
The number of turns in W , denoted ν(W ), is the number of vertices in W at which it makes
turns. A sequence M = [ui, . . . , uj ] of consecutive turns is said to be monotone if all the
turns in each of the two alternating sequences [ui, ui+2, ui+4, . . .] and [ui+1, ui+3, ui+5, . . .],
in which M can be partitioned, have the same direction (see Figure 3).

ui

ui+1 ui+2

ui+3 ui+4

uj−1

uj

Figure 3 Illustration of a monotone sequence of consecutive turns.

Let T = [t1, t2] ⊆ [0, ℓ]. We say that a route Wi for Ri has no slack in T if slackT (Ri) = 0;
that is, robot Ri does not “waste” any time and always progresses towards its destination
during T . The following observation is straightforward:

▶ Observation 2. Let Wi be a route for Ri and T ⊆ [0, ℓ] be a time interval such that
slackT (Ri) = 0. The sequence of turns that Wi makes during T is a monotone sequence
(and in particular does not include any U-turns).

Let Wi = (si = u0, . . . , ut = ti) be a route for Ri in a valid schedule S of a YES-instance
of CMP-M or CMP-L, and let W = (uq, uq+1, . . . , ur) be the subroute of Wi during a time
interval T ⊆ [0, t]. We say that a route W ′ = (vq, . . . , vr) is equivalent to W if: (i) vq = uq

and vr = ur (i.e., both routes have the same starting and ending points); (ii) |W | = |W ′|;
and (iii) replacing Wi in S with the route (si = u0, . . . , uq−1, vq, . . . , vr, ur+1, . . . , ut = ti)
still yields a valid schedule of the instance.

▶ Definition 3. Let I = (G, R, k, •) be a YES-instance of CMP-M or CMP-L. A valid
schedule S for (G, R, k, •) is minimal if the sum of the number of turns made by all the
routes in S is minimum over all valid schedules of I.

The following lemma is the building block for the crucial Lemma 5, which will establish
the existence of a canonical solution (for a YES-instance) in which the number of turns made
by “small-slack” robots is upper bounded by a function of the parameter. This is achieved
by a careful application of a “cell flattening” operation depicted in Figure 4.

More specifically, we show that if in a solution a robot has no slack during a time interval
but its route makes a “large” number of turns, then there exists a “cell” corresponding to a
turn in its route that can be flattened, resulting in another (valid) solution with fewer turns.
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up

ur us

C

up−1 up

us

up−1

Figure 4 Illustration of a cell in a route (left) and its flattening (right).

▶ Lemma 4. Let S be a minimal (valid) schedule for a YES-instance of CMP-M. Let Wi

be a route in S and Ti ⊆ [0, ℓ] be a time interval during which Wi has no slack. Then there
is an equivalent route, W ′

i , to Wi such that the number of turns that W ′
i makes during Ti,

νTi
(W ′

i ), satisfies νTi
(W ′

i ) ≤ 3kk.

By carefully subdividing a time interval into roughly σ(k) subintervals, for a function σ(k)
that upper bounds the slack of a robot, and applying Lemma 4 to each of these subintervals,
we can extend the result in Lemma 4 to robots whose slack is upper bounded by σ(k):

▶ Lemma 5. Let (G, R, k, ℓ) be a YES-instance of CMP-M, and let Ti ⊆ [0, ℓ]. Then
(G, R, k, ℓ) has a minimal schedule such that, for each Ri, i ∈ [k], satisfying slackTi

(Wi) ≤
σ(k) for an arbitrary function σ, its route Wi satisfies νTi(Wi) ≤ τ(k), where τ(k) =
3kk(σ(k) + 1) + σ(k).

Lemma 5 already provides us with the property we need for “small-slack” robots: their
number of turns can be upper-bounded by a function of the parameter. We still need to deal
with the more complicated situation of “large-slack” robots. Our next course of action will
be establishing the existence of a sufficiently large time interval during which the “large-slack”
robots are far from the “small-slack” ones. We begin with an observation linking the slack of
two robots that “travel together”.

▶ Observation 6. Let R, R′ ∈ R and let T = [t1, t2] ⊆ [0, ℓ]. Let u, u′ be the gridpoints at
which R and R′ are located at time step t1, respectively, and v, v′ those at which R and R′

are located at time t2, respectively. Suppose that ∆(u, u′) ≤ d(k) and ∆(v, v′) ≤ d(k), for
some function d(k). Then slackT (R′) ≤ slackT (R) + 2d(k).

Intuitively speaking, the above observation implies that a robot with a large slack in some
time interval cannot be close to a robot with a small slack for the whole interval (otherwise,
both robots would be moving at “comparable speeds”, which would contradict that one of
them has a small slack and the other a large-slack).

Next, we observe that either the slack of all the robots can be upper-bounded by a
function h, or there is a sufficiently large multiplicative gap between the slack of some robots.
This will allow us to partition the set of robots into those with small or large slack. For any
function h, let h(j) = h ◦ · · · ◦ h︸ ︷︷ ︸

j times
denote the composition of h with itself j times.
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▶ Lemma 7. Let (G, R, k, ℓ) be an instance of CMP-M and let T ⊆ [0, ℓ]. Let h(k)
be any computable function satisfying h(p)(k) ≤ h(q)(k) for p ≤ q ∈ [k]. Then either
slackT (Ri) ≤ h(k)(k) for every i ∈ [k], or there exists j ∈ N with 2 ≤ j ≤ k, such that R
can be partitioned into (RS , RL) where RL ̸= ∅, slackT (R) ≤ h(j−1)(k) for every R ∈ RS,
and slackT (R′) > h(j)(k) for every R′ ∈ RL.

The next definition yields a time interval with the property that small-slack robots are
sufficiently far from large-slack ones during that interval. Such an interval will be useful,
since within it we will be able to re-route the large-slack robots (which are somewhat flexible)
to reduce the number of turns they make, while avoiding collision with small-slack robots.

▶ Definition 8. Let σ(k), γ(k), d(k) be functions such that σ(k) < γ(k). An interval
T = [t1, t2] ⊆ [0, ℓ] is a [σ, γ]-good interval w.r.t. d(k) if R can be partitioned into RS and
RL such that: (i) every R ∈ RS satisfies slackT (R) ≤ σ(k) and every R′ ∈ RL satisfies
slackT (R′) ≥ γ(k); (ii) for every time step t ∈ T , ∆t(R, R′) ≥ d(k) for every R ∈ RS and
every R′ ∈ RL; and (iii) there exists a robot Ri ∈ RL such that νT (Wi) > 3kk(σ(k)+1)+σ(k).
If the function d(k) is specified or clear from the context, we will simply say that T is a
[σ, γ]-good interval (and thus omit writing “w.r.t. d(k)”).

The following key lemma asserts the existence of a good interval assuming the solution
contains a robot that makes a large number of turns:

▶ Lemma 9. Let (G, R, k, ℓ) be a YES-instance of CMP-M and let S be a minimal schedule
for (G, R, k, ℓ). If there exists R′ ∈ R with route W ′ such that ν(W ′) > 3k3+1·(3kk ·(3132k2−2k ·
k132k2−2k + 1) + 3132k2−2k · k132k2−2k ), then there exists a [σ, γ]-good interval T ⊆ [0, ℓ] w.r.t. a
function d(k) such that k13k−1 ≤ σ(k) ≤ 3132k2−2k · k132k2−2k , and d(k) = γ(k) = σ13(k).

Once we fix a good interval T , we can finally formalize/specify what it means for a robot
to have small or large slack within T :

▶ Definition 10. Let T = [t1, t2] ⊆ [0, ℓ] be a [σ, γ]-good interval with respect to some
function d(k), where σ(k) < γ(k) are two functions, and let Ri ∈ R. We say that Ri is a
T -large slack robot if slackT (Ri) ≥ γ(k); otherwise, slackT (Ri) ≤ σ(k) and we say that Ri

is a T -small slack robot.

At this point, we are finally ready to prove Lemma 11, which is the core tool that
establishes the existence of a solution with a bounded number of turns (w.r.t. the parameter),
even in the presence of large-slack robots: for each solution with too many turns, we can
produce a different one with strictly less turns. Note that if one simply replaces the routes
of large-slack robots so as to reduce their number of turns, then the new routes may bring
the large-slack robots much closer to the small-sack robots and hence may lead to collisions.
Therefore, the desired rerouting scheme needs to be carefully designed, and it exploits the
properties of a good interval: property (i) is used to reorganize and properly reroute these
robots, while property (ii) is used to avoid collisions.

▶ Lemma 11. Let (G, R, k, ℓ) be a YES-instance of CMP-M and let S be a minimal schedule
for (G, R, k, ℓ). Let T = [t1, t2] ⊆ [0, ℓ] be a [σ, γ]-good interval with respect to d(k), where
k13k−1 ≤ σ(k) ≤ 3132k2−2k · k132k2−2k , and d(k) = γ(k) = σ13(k). For every T -large-slack
robot Ri, there is a route W ′

i that is equivalent to Wi and such that νT (W ′
i ) is at most 3k3

and W ′
i is identical to Wi in [0, ℓ] \ T .

We now establish the canonical-solution result that forms the culmination of this section.
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▶ Theorem 12. Let (G, R, k, ℓ) be an instance of CMP-M such that at least one dimension
of the grid G is lower bounded by 2k · (3kk(3132k2−2k ·k132k2−2k +1)+3132k2−2k ·k132k2−2k )+4k.
If (G, R, k, ℓ) is a YES-instance, then it has a valid schedule S in which each route makes at
most ρ(k) = 3k3+1 · (3kk(3132k2−2k · k132k2−2k + 1) + 3132k2−2k · k132k2−2k ) turns.

Proof. Suppose that (G, R, k, ℓ) is a YES-instance of CMP-M. We proceed by contradiction.
Let S be a minimal schedule for (G, R, k, ℓ) and assume that S has a route Wi for Ri that
makes more than ρ(k) turns. By Lemma 9, there exists a [σ, γ]-good interval T ⊆ [0, ℓ] such
that νT (Wi) > 3kk(σ(k) + 1) + σ(k), where σ and γ are the function specified in Lemma 9.
By Lemma 11, there is an equivalent route W ′

i to Wi that agrees with Wi outside of T and
such that νT (W ′

i ) ≤ 3k3 < 3kk(σ(k) + 1) + σ(k), which contradicts the minimality of S. ◀

3.2 Finding Canonical Solutions
Having established the existence of canonical solutions with a bounded number of turns, we
can proceed to describe the proof of the FPT result. In the proof, we identify a “combinatorial
snapshot” of a solution whose size is upper-bounded by a function of the parameter k. We
then branch over all possible combinatorial snapshots and, for each such snapshot, we reduce
the problem of determining whether there exists a corresponding solution to an instance of
Integer Linear Programming in which the number of variables is upper-bounded by a function
of the parameter, which can be solved in FPT-time by existing algorithms [14, 16, 19].

In particular, the aforementioned combinatorial snapshot will be a tuple (Gsnap, Rsnap,

Wsnap, ι) where Gsnap is a bounded-size subgrid, Rsnap is a tuple of k pairs of starting and
ending vertices in Gsnap, Wsnap specifies a set of routes connecting the individual starting
and ending vertices, and ι contains information about the order in which vertices are visited
by the routes in Wsnap. For each snapshot, we construct an ILP instance with variables that
capture (1) the amount of “expansion” necessary to go from the snapshot to the full input
grid, and (2) the amount of waiting a robot performs at certain “critical” junctions in the
route. Constraints are then used to ensure that each robot arrives in time, that the routes
correspond to the information in ι and do not lead to conflicts, and finally that the amount
of expansion needed matches the size of the input grid.

▶ Theorem 13. CMP-M is FPT parameterized by the number of robots.

3.3 Minimizing the Total Traveled Length
In this subsection, we discuss how the strategy for establishing the fixed-parameter tractability
of CMP-M parameterized by the number k of robots can be used for CMP-L.

The main difference between the two problems can be intuitively stated as follows: for
CMP-M “time matters” but travel length could be lax, whereas for CMP-L “travel length
matters” but time can be lax. The key tool we use to handle the complications arising in
CMP-L when showing the existence of a canonical solution is a result that exhibits a schedule
for any instance of CMP-L whose travel length is within a quadratic additive factor in k from
any length-optimal solution. Denote by distmin the sum of the Manhattan distances, over
all the robots, between the starting point of the robot and its destination point. We have:

▶ Theorem 14. Let I = (G, R, k, λ) be a YES-instance of CMP-L. There is a schedule S
for I satisfying that the total travel length of S is at most distmin +c(k), where c(k) = O(k2)
is a computable function, and in which the number of turns made by each robot is O(k).
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The above theorem is then exploited for showing that if a robot makes a large number of
turns, then we can find a time interval and a large rectangle of the grid such that, during
that time interval, all the robots that are present in that rectangle behave “nicely”. We
formalize these notions in the following definitions:

Let M = [ui, . . . , uj ] be a monotone sequence of turns made by a robot R ∈ R during
some time interval. The rectangle of M , denoted rectangle(M), is the rectangle with
diagonally-opposite vertices ui and uj . We refer to Figure 5 for illustration.

ui

ui+1 ui+2

ui+3 ui+4

uj−1

uj

Figure 5 rectangle(M) (the green-shaded area) for a monotone sequence M = [u1, . . . , uj ].

▶ Definition 15. Let W be a subroute of a robot R ∈ R during some time interval T such
that the sequence M of turns in W is monotone. Let σ(k) be a function to be specified later.
We say that rectangle(M) is good w.r.t. σ(k) and a time subinterval T ′ ⊆ T if: (i) the set of
robots present in rectangle(M) is the same during each time step of T ′; (ii) each robot Ri

present in rectangle(M) during T ′ satisfies slackT ′(Ri) ≥ σ(k); (iii) each robot Ri present
in rectangle(M) during T ′ is traveling in the same direction as (the directions of the turns
in) M ; and (iv) each robot Ri present in rectangle(M) during T ′ satisfies νT ′(Wi) ≥ σ(k).

Next, we show that if a robot makes a large number of turns, then a good rectangle exists:

▶ Lemma 16. Let I = (G, R, k, λ) be a YES-instance of CMP-L, let S be a valid schedule
for I, and assume that λ < distmin + c(k), where c(k) = O(k2) is the computable function
in Theorem 14. Let σ(k) = 4k2 and τ(k) = 3kk(σ(k) + 1) + σ(k). Let R be a robot such that
the walk W of R during the time interval T spanning S satisfies ν(W ) = Ω(τ(k)2k+1). Then
there exists a subwalk W ′ for R and a time interval T ′ ⊆ T such that the sequence of turns
M ′ in W ′ corresponding to T ′ is monotone and rectangle(M ′) is good w.r.t. σ(k) and T ′.

Using Theorem 14 and Lemma 16, we can prove that, given a good rectangle, we can
reroute the robots that are present in that rectangle during a certain time interval so as to
reduce the number of turns they make, which leads to the existence of a canonical solution:

▶ Theorem 17. If I = (G, R, k, λ) is a YES-instance of CMP-L, then I has a valid schedule
S in which each route makes at most O(τ(k)2k+1) turns, where τ(k) = 3kk(σ(k) + 1) + σ(k),
and σ(k) = 4k2.
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At this point, we can turn to the second step of our approach, notably checking whether
an instance of CMP-L admits a solution in which the number of turns is upper-bounded by
a function of the parameter. Luckily, here the proof of Theorem 13 can be reused almost
as-is, with only a single change in the ILP encoding at the end.

▶ Theorem 18. CMP-L is FPT parameterized by the number of robots.

4 CMP Parameterized by the Objective Target

Having resolved the parameterization by the number k of robots, we now turn our attention to
the second fundamental measure in CMP problems, notably the objective target. Unlike the
case where we parameterize by the number k of robots, here the complexity of the problem
strongly depends on the considered variant. We begin by establishing the fixed-parameter
tractability of CMP-L parameterized by λ via an exhaustive branching algorithm. The rest
of this section then deals with the significantly more complicated task of establishing the
intractability of CMP-L parameterized by ℓ.

▶ Theorem 19. CMP-L is FPT parameterized by the objective target λ.

4.1 Intractability of CMP-M with Small Makespans
The aim of this subsection is to establish that CMP-M is NP-hard even when the makespan
ℓ is upper bounded by a constant. Before we proceed to show this NP-hardness result for
CMP-M, we will establish the NP-hardness of d-Bounded Length Vertex Disjoint
Paths on grids, as well as its edge variant d-Bounded Length Edge Disjoint Paths,
which can be seen as a stepping stone for the para-NP-hardness proof for CMP-M. In fact,
the NP-hardness result for these two classical disjoint paths problems on grids with constant
path lengths is significant in its own right, as discussed earlier in the paper.

All our reductions start from 4-Bounded Planar 3-SAT, a problem which is known to
be NP-complete [18, 22]. The incidence graph of a CNF formula is the graph whose vertices
are the variables and clauses of the formula, and in which two vertices are adjacent if and
only if one is a variable, the other is a clause, and the variable-vertex occurs either as a
positive or a negative literal in the clause-vertex. In 4-Bounded Planar 3-SAT, we are
asked to evaluate a CNF formula whose incidence graph is planar and in which each clause
contains exactly 3 distinct literals and each variable occurs in at most 4 clauses. On the
other hand, in the aforementioned d-Bounded Length Vertex (resp. Edge) Disjoint
Paths problems, we are given a graph with a set of vertex-pairs (called requests), and are
asked to determine if there is a set of vertex (resp. edge) disjoint paths containing an s-t
path of length at most d ∈ N for every (s, t) ∈ R.

For all three reductions, consider an instance φ of 4-Bounded Planar 3-SAT and let Gφ

be its incidence graph. We start with an orthogonal drawing Ω of Gφ in a polynomial-size grid.
Our first goal is to show how to encode the satisfiability of φ as an instance of d-Bounded
Length Vertex Disjoint Paths on grids; the reduction for d-Bounded Length Edge
Disjoint Paths is almost the same, and both can be seen as a stepping stone towards
CMP-M. We encode variable assignment and clause satisfaction using bounded-length path
requests that conform to the drawing Ω. To model a variable-assignment, we create a variable
gadget with a single request between two vertices, s and t, on this gadget such that this
request can be fulfilled by selecting one of the two s-t paths in this gadget, each of length
27. Selecting one of the two paths corresponds to assigning the variable a truth value; an
illustration is provided in Figure 6. We model clause-satisfaction by creating, for each clause,
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a clause-gadget, where a clause-gadget for a clause C contains two vertices, sC and tC , with
a request between them that can be fulfilled in one of three ways, each corresponding to
choosing a length-27 path between sC and tC in the gadget (see Figure 7).

sx

tx

sx tx

Figure 6 Variable Gadget examples. In both cases, there is a request (sx, tx). Each of the full
black circles is a request (v, v) forcing only two different paths of length at most 27 between sx and
tx. Examples of a left-right variable gadget (left) and a top-bottom variable gadget (right).

1719

810

sC

tC

Figure 7 Clause gadget example. There is a request (sC , tC). Each of the full black circles is a
request (v, v). There are three possible ways to leave sC . Choosing to go left forces us to take the
green path of length 27. The orange path going down reaches the intersection point with the purple
path (going up) after 19 steps on the orange path, but only 17 on the purple. Hence, the purple can
choose between going down and taking 10 steps to reach tC , or going right and taking 8 more steps,
but the orange is forced to go right and reach tC in 8 steps from the intersection point.

To implement the above idea, we needed to overcome several issues. First, the position of a
variable in the embedding could be very far from the position of the clauses that it is incident
to, hence prohibiting us from using bounded-length requests to encode the variable-clause
incidences. Second, due to planarity constraints, embedding the three paths corresponding to
a clause-gadget such that each intersects a different variable gadget, is only possible if two of
the clause-paths intersect, which could create shortcuts (i.e., paths that do not intersect the
variable gadgets). Third, requests may use grid paths that are not part of the embedding.

To handle the first issue, instead of using a single variable-gadget per variable, we use a
“cycle” of copies of variable gadgets such that a variable assignment in any gadget of this
cycle forces the same variable assignment in all copies, thus ensuring assignment consistency.
The clause gadget for C is placed around the position of the vertex corresponding to C in Ω,
whereas the cycle corresponding to a variable x is placed around the edges of Ω joining the
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position of x in Ω to that of C; see Figure 8. To fit all the variable cycles around a clause
gadget in the embedding, we use a connection gadget, which is a path of copies of variable
gadgets propagating the same variable assignment as in the corresponding variable cycle.

C

y

z

x

C1

C2

Figure 8 Part of an orthogonal drawing of Gφ. Clause C contains variables x, y, z. The variable
x is also in clauses C1 and C2. The dashed lines represent the variable cycles.

To model clause-satisfaction for a clause C, each of the three sC-tC paths in the clause
gadget of C overlaps with a copy of a variable gadget corresponding to one of the variables
whose literal occurs in C. If an assignment to variable x whose literal occurs in C does
not satisfy C, then the path corresponding to this assignment in the copies of the variable
gadgets for x intersects the sC-tC path corresponding to x in the clause-gadget of C, thus
prohibiting the simultaneous choice of these clause-path and variable path.

To handle the second issue, we prevent any shortcuts from being taken by making each
created shortcut longer than the prescribed upper bound on the path length (i.e., 27).

Finally, to handle the third issue, when dealing with vertex disjoint paths we can artificially
place an obstacle on a vertex v in the grid to “block” that vertex (i.e., to prevent it from
being used by any path other than (v, v)) by adding the request (v, v), thus forcing the set
of possible paths between s and t for every request (s, t), where s ̸= t, to be chosen from the
paths prescribed by the encoding of the instance of 4-Bounded Planar 3-SAT. A slight
extension of this idea also works for edge disjoint paths. This allows us to establish:

▶ Theorem 20. d-Bounded Length Vertex Disjoint Paths and d-Bounded Length
Edge Disjoint Paths are NP-hard even when restricted to instances where d = 27 and G

is a grid-graph.

These high-level ideas are then used to obtain the targeted NP-hardness proof of CMP-M
for a fixed makespan of 26, by having an (s, t) path request correspond to routing some robot
from its starting gridpoint s to its destination gridpoint t. However, the way we force robots
to follow the prescribed paths here is completely different and presents the main difficulty
when going from d-Bounded Length Vertex Disjoint Paths on grids to CMP-M; in
particular, it is no longer possible to block certain points on the grid by creating “dummy
requests”. To ensure that the prescribed paths are followed, we block certain regions of the
embedding by adding a large number of auxiliary non-stationary robots, and coordinating
their motion so that they block the desired regions while still allowing the original robots to
follow the set of paths prescribed by the encoding; this task turns out to be highly technical.
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We introduce a set of new gadgets whose role is to force the main robots in the reduction
to follow the paths prescribed by the embedding. Those gadgets are dynamic, as opposed to
the “static blocker gridpoints” used in the d-Bounded Length Vertex Disjoint Paths
on grids reduction. The two main new gadgets employed are a gadget simulating a “stream”
of robots and a gadget simulating an “arrow” of robots.

The stream gadget consists of a relatively large number of robots, all moving along the
same line, such that each needs to move precisely the makespan many steps in the same
direction, and hence cannot afford to waste a single time step. The robots in the stream
gadget will be used to either push the main robots in a certain direction, or to prevent them
from taking shorter paths than the prescribed ones. See Figure 9 for an illustration. In the
figure, the main red robot is pushed right by the green stream and forced to move right along
the same horizontal line by the two blue streams sandwiching it.

Figure 10 shows an example of an arrow gadget. In this gadget, there is an orange
robot whose destination is 26 steps somewhere down and to the left. The gadget is again a
“stream” of robots that force the orange robot to select one of the two directions towards its
destination in the first step, and then to stick to this selection for a number of steps that
depends on the size of the arrow. For example, in Figure 10, there is a “right arrow” of green
robots that all want to go 26 steps right. Since the orange robot has a slack of 0, the right
arrow forces it to either take the first 5 steps all to the left, or the first 7 steps all down.

Figure 9 Example of streams.

Figure 10 An example of an arrow.

Other gadgets are needed to ensure that robots in the stream and arrow gadgets do
not collide with anything. Using such enforcement gadgets, we can simulate the gadgets
constructed in the reduction for d-Bounded Length Vertex Disjoint Paths on grids,
thus encoding the instance of 4-Bounded Planar 3-SAT as an instance of CMP-M.

▶ Theorem 21. CMP-M is NP-hard even when restricted to instances where ℓ = 26.

5 Conclusion

In this work, we settled the parameterized complexity of both CMP-M and CMP-L with
respect to their two most fundamental parameters: the number of robots, and the objective
target. Along the way, we established the NP-hardness of the classical Vertex Disjoint Paths
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and the Edge Disjoint Paths problem with constant path-lengths on grids, strengthening the
existing lower bounds for these problems as well. Our results reveal structural insights into
the properties of optimal solutions that may also prove useful in contexts that lie outside of
this work. We conclude by stating two open questions that arise from our work.

1. What is the parameterized complexity of other variants of CMP, such as the ones where
the objective is to minimize the maximum length traveled or the total arrival time?

2. Can the fixed-parameter tractability of CMP-M or CMP-L parameterized by the number
k of robots be lifted to grids with obstacles/holes, or more generally to planar graphs?
It is worth noting that neither the structural results developed in this paper, nor other
known techniques [23], seem to be applicable to these more general settings.
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Abstract
We show that, for planar point sets, the number of non-crossing Hamiltonian paths is polynomially
bounded in the number of non-crossing paths, and the number of non-crossing Hamiltonian cycles
(polygonalizations) is polynomially bounded in the number of surrounding cycles. As a consequence,
we can list the non-crossing Hamiltonian paths or the polygonalizations, in time polynomial in
the output size, by filtering the output of simple backtracking algorithms for non-crossing paths
or surrounding cycles respectively. To prove these results we relate the numbers of non-crossing
structures to two easily-computed parameters of the point set: the minimum number of points
whose removal results in a collinear set, and the number of points interior to the convex hull. These
relations also lead to polynomial-time approximation algorithms for the numbers of structures of all
four types, accurate to within a constant factor of the logarithm of these numbers.
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1 Introduction

In how many ways can we “connect the dots”, turning planar points into the vertices of
a simple polygon? Despite heavy study, the answer is still unclear. Steinhaus proved in
the 1960s that general-position points always have at least one polygonalization [32], but
the condition is too strong: non-collinearity suffices. Points in convex position have only
one polygonalization; other inputs can have exponentially many, but with upper and lower
bounds that are far from matching [16,31]. The complexity of counting polygonalizations
is unknown [13, 22, 24]. Although all polygonalizations can be listed in singly-exponential
time [35,37], it was unknown (prior to our work) how to list them more quickly when there
are few, for instance in polynomial time per output or in time polynomial in the output size.

Our main result is that both polygonalizations and a closely related structure, non-
crossing Hamiltonian paths, can be listed in time polynomial in the output size by simple
backtracking algorithms. These algorithms search spaces of easier-to-list structures, the
surrounding polygons [37] and non-crossing paths, respectively. To prove these new results,
following our work on monotone parameters of point sets [12], we relate the numbers of all
four types of structures (polygonalizations, surrounding polygons, non-crossing Hamiltonian
paths, and non-crossing paths) to two easily-computed parameters that depend only on
the order-type of the points: the smallest number of points whose removal results in a
collinear subset, and the number of points interior to the convex hull. These relations imply
that the number of polygonalizations is at most polynomial in the number of surrounding
polygons, and that the number of non-crossing Hamiltonian paths is at most polynomial in
the number of non-crossing paths. Therefore, an algorithm for the easier-to-list structures
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will take output-polynomial time when its output is filtered to generate only the harder-
to-list structures. Our methods also provide a polynomial-time approximation algorithm
for counting these structures, obtaining a constant approximation ratio with respect to the
logarithm of the count.

We do not calculate explicitly the exponents of the polynomials relating these numbers of
structures, as our upper bounds are quite imprecise. Instead, in a final section, we describe
point sets whose exponential numbers of non-crossing structures can be calculated precisely.
These examples demonstrate that the exponent of paths in terms of Hamiltonian paths
can be at least log2 3 ≈ 1.585 and that the exponent of surrounding polygons in terms of
polygonalizations can be at least log2

(
(3 +

√
5)/2

)
≈ 1.388.

Output-polynomial time bounds, such as we prove, are not as good as a time bound
that multiplies the output size by a polynomial of the input size, and even less good than
polynomial delay for each output structure. Nevertheless, our results represent a significant
improvement on previously known time bounds, which are singly exponential even for inputs
whose output size is subexponential.

Because of space limitations, we omit many proofs from this proceedings version. A full
version of this paper is available at arXiv:2303.00147.

1.1 Related work
A planar straight line graph, with given points as vertices, consists of line segments having
the points as endpoints, with no line segment passing through a given point and no two line
segments intersecting except at a shared endpoint. When the form of the resulting graph is
constrained, one obtains non-crossing structures of various types, including triangulations
(non-crossing maximal planar graphs), non-crossing spanning trees, and polygonalizations
(non-crossing Hamiltonian cycles). Extensive research in discrete and computational geometry
has sought upper and lower bounds for numbers of non-crossing structures, and studied
algorithmic problems of counting or listing these structures for a given point set, or of finding a
non-crossing structure that is optimal for some objective function [2–4,8,11,15,16,19,22,29–31].
Many problems of this sort have algorithms for listing all graphs, with polynomial time
per output, based on systems of local moves that link the state space into a connected
structure [1, 5, 7, 20,33,35–37].

However, for polygonalizations and non-crossing Hamiltonian paths no such structure
is known, and natural systems of local moves that change two or three edges at a time are
known not to connect all polygonalizations [18]. Certain generalizations of polygonalizations
have state spaces connected by local moves [9, 37], but this does not directly yield fast
algorithms for polygonalizations, because of the many non-polygonalizations in these state
spaces. As a 2011 survey of Welzl summarizes, “Basically nothing is known for related
algorithmic questions (determining the number of simple polygonizations for a given point
set, enumerating all simple polygonizations)” [34]. The shortest polygonalization is the NP-
hard Euclidean traveling salesperson tour [28], and several other optimal polygonalizations are
also NP-hard [10,14]; the complexity of the longest polygonalization is another unknown [11].

Past work on non-crossing Hamiltonian paths includes approximation to the longest
path [3,11] and the existence of properly colored paths for colored point sets [6]. The number
of non-crossing Hamiltonian paths can range from one, for collinear points, to exponentially
large; for instance, n ≥ 2 points in convex position have exactly n2n−3 paths [27].

The surrounding polygons that we use for our polygonalization algorithm are another
class of planar straight line graphs: they are the simple polygons that use a subset of the input
points as vertices, and contain all of them. Yamanaka et al. [37] introduced these polygons,

https://arxiv.org/abs/2303.00147
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and showed how to list them in polynomial time per polygon, from which they derived a singly-
exponential time bound and polynomial space bound for listing polygonalizations. Despite
this progress they were unable to obtain an output-sensitive time bound for polygonalizations.
It is their algorithm that we follow here, with a new output-sensitive analysis. Yamanaka
et al. also prove that, in the worst-case exponential bounds for numbers of polygonalizations
and surrounding polygons, the bases of the exponentials are within 1 of each other; however,
this analysis does not imply our stronger result, that on arbitrary instances the numbers
of these two types of polygons are bounded by polynomials of each other. The examples
from our final section confirm theoretically the empirical results of Yamanaka et al. that
polygonalizations and surrounding polygons can grow at different rates.

2 Two simple backtracking algorithms

In this section we outline two simple algorithms (one a standard backtracking search, and
the other the reverse search algorithm of Yamanaka et al. [37]) for listing non-crossing paths
and surrounding cycles. These known algorithms will be the ones we use to prove our new
time bounds for listing non-crossing Hamiltonian paths and polygonalizations. We state
these bounds as theorems in this section, and defer the proofs to later sections.

▶ Definition 1. Define a non-crossing path for a set of points S to be a non-self-intersecting
polygonal curve P that passes through a subset of points of S, has endpoints in S, and turns
only at points of S. Define the vertices of a non-crossing path to be the set P ∩ S, counting a
point of S as a vertex even when P passes straight through that point. Define a non-crossing
path sequence to be the sequence of vertices in a non-crossing path of a given set of points in
the plane, including also one-vertex sequences and the empty sequence. Let |S| denote the
number of points in S, let #path(S) denote the number of non-crossing paths with vertices
in S, and let #ham(S) denote the number of non-crossing Hamiltonian paths of S.

Each non-crossing path corresponds to two sequences (one for each end-to-end order in
which its vertices can be placed). We can form a rooted tree with the non-crossing path
sequences as its nodes, in which the empty sequence is the root, by defining the parent of any
other sequence to be the subsequence obtained by removing its last vertex. The non-crossing
path sequences can be listed in polynomial time per sequence by performing a depth-first
search of this tree. With a little care in listing the children of each node quickly, we can
reduce this to linear time per sequence:

▶ Subroutine 2 (listing children of a non-crossing path sequence). To find the children of a
non-crossing path sequence σ, ending at point p:

Apply the simple stack-based linear time algorithm of Lee to determine the visibility
polygon V of the final vertex of the path, the region of the plane within which that vertex
can be connected to another point by a segment that does not cross the existing path [21].
Let U be the set of points not in σ, and find the radial ordering of U around p. When
there are ties, keep only the closest of the tied points to p.
Merge the radial orderings of U and V to determine, for each point u in U , the edge of V

that is crossed by a ray from p through u.
Whenever the merge finds a point u that is closer to p than the corresponding edge of V ,
make a child sequence by concatenating u to the end of σ.

The radially-sorted lists of all points around each of the given point can be precomputed
and stored in O(|S|2) time; essentially, this is the same as the problem of constructing and
storing an arrangement of lines dual to the points. With this precomputation, all steps of
this algorithm take time O(|S|).

SoCG 2023
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▶ Subroutine 3 (listing all non-crossing paths). To list all non-crossing paths of a given set
of points, perform a depth-first search of the tree of non-crossing path sequences, using
Subroutine 2 to list the children of each node in the tree. For each node that the search
reaches, output it as a path whenever the starting vertex of the sequence has a smaller index
than the ending vertex, so that we only output each non-crossing path once. For a point set
S, we spend O(|S|2) preprocessing time and O(|S|) time per path. The number of paths is
always Ω(|S|2), even for collinear point sets, because a Hamiltonian path always exists and
contains that many paths within it, so the preprocessing time is dominated by the per-path
time and the total time is O(|S| · #path(S)).

With these subroutines in hand, we can list all non-crossing Hamiltonian paths by the
following very simple algorithm.

▶ Algorithm 4 (listing non-crossing Hamiltonian paths). To list all non-crossing Hamiltonian
paths in a point set S:

List all non-crossing paths by Subroutine 3.
Whenever a path uses all points of S, output it as a non-crossing Hamiltonian path.

▶ Theorem 5. For a point set S (not assumed to be in general position), Algorithm 4 takes
time (|S| · #ham(S))O(1) to list all non-crossing Hamiltonian paths.

Proof. This follows from Theorem 20, later in this paper, which states that

#path(S) =
(
|S| · #ham(S)

)O(1)
. ◀

A very similar tree search can also be used for polygonalizations, instead of Hamiltonian
paths.

▶ Definition 6. Yamanaka et al. [37] define a surrounding polygon of a point set S to
be a simple polygon having a subset of the points as its vertices, surrounding all of the
vertices. These include the polygonalizations (in which the subset is all of the points) as well
as other polygons; in particular, the convex hull is always a surrounding polygon. Define
#surround(S) to be the number of surrounding polygons in S, and #poly(S) to be the
number of polygonalizations in S.

Yamanaka et al. define a tree structure on surrounding polygons in which the root is the
convex hull, and the parent of any surrounding polygon is obtained by removing one vertex
(in a canonically chosen way) from its cyclic sequence of vertices. It follows from a version of
the two-ears theorem for polygons (often credited to G. H. Meisters, but used earlier by Max
Dehn [17,23]) that every polygon that is not the convex hull has a parent.

▶ Subroutine 7 (listing surrounding polygons). As Yamanaka et al. [37] describe, the sur-
rounding polygons of point set S can be listed in time |S|O(1) per polygon, and space O(|S|),
by a depth-first search of the tree of polygons. The algorithm uses the method of reverse
search [5] to perform the depth-first search while only maintaining the identity of a bounded
number of tree nodes.

Again, we can use this to list all polygonalizations, as was already done by Yamanaka
et al. [37].

▶ Algorithm 8 (listing polygonalizations). To list all polygonalizations of a point set S:
List all surrounding polygons by Subroutine 7.
Whenever a polygon uses all points of S output it as a polygonalization
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Yamanaka et al. analyzed this algorithm as having singly-exponential time, but we
instead prove that it is output-sensitive:

▶ Theorem 9. For a point set S (not assumed to be in general position), Algorithm 8 takes
time

(
|S| · #poly(S)

)O(1) to list all polygonalizations.

Proof. This follows from Theorem 27, later in this paper, which states that

#surround(S) = #poly(S)O(1). ◀

3 Counting paths

The main result of this section is to prove a polynomial relation between the number of
non-crossing paths and the number of non-crossing Hamiltonian paths, in any point set. This
result combines a lower bound on the non-crossing Hamiltonian paths of a point set S, and
an upper bound on the number of non-crossing paths, both expressed as a function of the
following quantity.

▶ Definition 10. Following [12], define offline(S) to be the smallest k such that removing
k points from S leaves a collinear subset.

It will be convenient to have the following standard bound on logarithms of binomial
coefficients. We use log to denote the natural logarithm, but this choice of base makes no
difference to the following lemma, because a change of base would only change the logarithm
by a constant factor.

▶ Lemma 11. For integers k and n with k ≤ n/2,

log
(

n

k

)
= Θ

(
k log n

k

)
.

Proof. By applying Stirling’s formula, taking logarithms, and omitting terms that are
O(log n), we obtain

log
(

n

k

)
≈ log nn

kk(n − k)n−k
= k log n

k
+ (n − k) log n

n − k
.

This expression is symmetric in k and n − k, and when k ≤ n/2, the first term of this
approximation is the larger of the two. ◀

3.1 Upper bound
We begin our bounds on non-crossing paths with the simplest one to prove, the upper bound.
It is known that the number of paths is at most singly-exponential in the number n of vertices;
we prove a tighter bound depending exponentially on the smaller number offline(S) and
only polynomially on n.

▶ Lemma 12. Let S be a set of n points, with offline(S) = k. Then

log #path(S) = O

(
log n + k

(
log n

k + 1

))
.
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Figure 1 Left: A point p (blue), a point set S (red and yellow), and the visible vertices of S from
p (the three red vertices). Note that points of S that lie within convex hull edges are not counted as
vertices. Right: A maximal visible-vertex path (red edges) for S ∪ {p} starting from p, showing for
one of its steps the hull (light blue) and visible vertices (red) of the remaining points.

Proof. We describe a method for encoding a non-crossing path using this many bits of
information, so that each path is uniquely described by this encoding. For an encoding with b

bits of information, the number of paths can be at most 2b and the logarithm of this number
is O(b). Let K be a subset of S, with |K| = k, such that S \ K lies on a line L, and let P

be any given non-crossing path in S. Let ℓ = |L ∩ S|; because k is the minimum number of
points that can be removed to form a collinear set, no point of K can lie on L, and ℓ = n − k.
To describe P , we combine the following pieces of information:

The set Q of points of L ∩ S that belong to P , but for which zero or one of their neighbors
in the path belong to L. Each such point is one of the two neighbors of a point in
K, or one of the two ends of P , so |Q| ≤ 2k + 2. Q can be encoded by specifying its
size and the subset of L ∩ S of that size, out of

(
ℓ

|Q|
)

possibilities, so by Lemma 11 the
number of bits needed to specify it is O

(
log n + k + k log(n/k)

)
. (Both the log n term

and the +1 in the statement of the lemma are included to handle the case when k = 0
but |Q| > 0. Lemma 11 applies only when k ≤ n/2 but for larger k the bound to be
proven is superlinear and the result is immediate.)
For each point in Q, a specification of whether it has a neighbor in L, and if so in which
direction. This takes O(k) bits of information.
The induced subgraph P [K ∪ Q], a linear forest using only the points in K ∪ Q, and
omitting the edges of P that lie entirely within L. As with any type of planar straight-line
graph, the number of linear forests on O(k) points is singly exponential in k [30], so P [K]
can be encoded with O(k) bits of information.

Then P may be recovered by combining the induced subgraph P [K ∪ Q] with segments of
L starting and ending at points of Q and continuing in the specified direction from each of
these points. All pieces of this encoding add up to the stated bound on the number of bits
needed to encode the entire path. ◀

3.2 Visible-vertex paths
Our lower bounds will greedily construct paths such that, at each step, the remaining unused
points have a convex hull that is uncrossed by the current path and is visible from the
endpoint of the current path.

▶ Definition 13. Define a visible vertex of a finite point set S, from a point p that is not in
the convex hull of S, to be a vertex q of the convex hull of S such that the open line segment
pq is disjoint from the convex hull of S (Figure 1, left). We do not consider points interior
to edges of the convex hull to be vertices, and in particular they are not visible vertices, even
when segment pq is disjoint from the hull.
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▶ Observation 14. Every nonempty finite point set S and point p not in the convex hull of
S has at least one visible vertex of S from p. If S ∪ {p} is not collinear, there are at least
two visible vertices.

Define a visible-vertex path to be a polygonal chain formed by a greedy algorithm that
builds a sequence of vertices, beginning with any vertex of the convex hull, by repeatedly
appending to the sequence a visible vertex of the remaining points not yet in the sequence,
as viewed from the last point of the sequence (Figure 1, right). A maximal visible-vertex
path is a visible-vertex path that uses all of the points in a given point set S; this name is
justified by the following lemma.

▶ Lemma 15. Every visible-vertex path is a non-crossing path. Every maximal visible-vertex
path is a non-crossing Hamiltonian path. Every non-maximal visible-vertex path can be
extended to a longer visible-vertex path.

Proof. Maximal visible-vertex paths are Hamiltonian, by definition: they are defined to be
paths that use all the points. Because each step in a visible-vertex path is defined locally,
without respect to the earlier parts of the path, the ability to extend every non-maximal
path follows immediately from Observation 14.

It remains to prove that the resulting paths are non-crossing. For every segment pq of
the path, the next segment is incident to q and therefore cannot cross pq. All segments after
the next segment lie within the convex hull of the remaining points after q. Since p and q

are vertices of their respective convex hulls, the convex hull of the points after them in the
path does not contain them. Moreover, segment pq does not cross this hull, because if it did
then q would not be visible from p. Thus, these later segments are disjoint (as closed line
segments) from the closed line segment pq and so cannot cross pq nor even pass through q.
Therefore, pq cannot intersect any later segment. For each pair of segments in the path, a
crossing is ruled out by applying this argument to the earlier of the two segments in the
path, so no crossing can exist. ◀

▶ Lemma 16. In every finite point set S, every two vertices p and q of the convex hull of S

form the endpoints of a non-crossing Hamiltonian path.

Proof. Form a maximal visible-vertex path beginning at p, at each step choosing a visible
vertex that is not q when this is possible. By Observation 14, the path will have two points
to choose between (one of which is not q) until the remaining points become collinear. Once
they do, all remaining points that are not q will lie between q and the current end of the
path, so q cannot be included in the path until it is the last point remaining. ◀

3.3 Lower bound for far-from-collinear sets
To lower-bound the number of non-crossing Hamiltonian paths in a point set S, as a function
of offline(S), we divide into two cases: the case where offline(S) is large (at least
proportional to a constant fraction of |S|) and the case where it is small. The following
lemma is valid for all non-collinear S, but is only tight (within a constant factor of the
logarithm) in the large case.

▶ Lemma 17. For every point set S that does not lie on a single line, the number of
non-crossing Hamiltonian paths is at least 3

2 · 2offline(S).

Proof. We form a tree T of visible-vertex paths, in which the root is the empty sequence
of vertices and the parent of any nonempty path is obtained by removing its last vertex
(Figure 2). By Lemma 15, the leaves of T are non-crossing Hamiltonian paths. The root
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Figure 2 A tree of the visible-vertex paths in a point set, where the parent of each path is
obtained by removing its last point. This point set has offline(S) = 2. The root and the next two
levels of nodes each have multiple children, but some nodes on the last level shown in the figure
have only one child, because the last point on the path is collinear with all remaining points.

node of T has at least three children (one for each convex hull vertex). In the nodes of T at
distance at most offline(S) from the root, the last point in the path represented by each
node is not collinear with the remaining points, by the definition of offline. It follows by
Observation 14 that these nodes have at least two choices of visible vertices and therefore
that they have at least two children.

As a tree in which the root node has at least three children and the nodes in the next
offline(S) levels have at least two children, T has at least 3 · 2offline(S) leaves. Each leaf is
a non-crossing Hamiltonian path, and each non-crossing Hamiltonian path can come from at
most two leaves (one for each endpoint, if both endpoints are convex hull vertices). Therefore,
there are at least 3

2 · 2offline(S) non-crossing Hamiltonian paths. ◀

3.4 Lower bound for near-collinear sets
Although the next lemma covers only a special class of point sets, it is the key to our lower
bounds for the case where offline(S) is small.

▶ Lemma 18. Let S be a set of points with |S| = n, such that ℓ points of S lie on a line L

and the remaining points all lie on the same side of the line. Then

#ham(S) ≥
(

n − ⌈ℓ/2⌉
⌊ℓ/2⌋

)
.

Proof. We may assume without loss of generality that ℓ ≥ 2, for otherwise the lemma
states only that there exists a single non-crossing Hamiltonian path, known to be true. For
convenience consider an orientation of the plane in which L is horizontal and S lies in the
closed halfspace above L. We will prove the lemma by constructing many non-crossing
Hamiltonian paths in which the points of L ∩ S appear in left-to-right order, and no point
in L has two neighbors in S \ L. For any such path, define its signature to be the binary
sequence with a 1-bit for points in L and a 0-bit for points in S \ L (Figure 3). It has length
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Figure 3 Partition of the halfspace above L into convex subsets, a non-crossing Hamiltonian
path respecting the partition, and its signature, a 010-avoiding binary sequence.

n, with ℓ 1-bits, and does not have any three consecutive bits in the pattern 010. The number
of 010-avoiding sequences with n bits and ℓ 1-bits is [25]

n−ℓ∑
j=0

(−1)j

(
n − ℓ − 1

j

)(
|n − 2j|

ℓ − j

)
≥

(
n − ⌈ℓ/2⌉

⌊ℓ/2⌋

)
,

where for the simpler formula on the right hand side of the inequality the 1-bits are grouped
into ⌊ℓ/2⌋ pairs (with one group of three if ℓ is odd) and we count only the sequences in
which each pair or triple appears consecutively. (By the assumption that ℓ ≥ 2, at least one
such grouping is possible.) As we argue in the remainder of the proof, every 010-avoiding
sequence is the signature of at least one non-crossing Hamiltonian path, so this lower bound
on the number of 010-avoiding sequences also provides a lower bound on the number of
non-crossing Hamiltonian paths.

For a given 010-avoiding sequence σ, let ni denote the length of the ith non-empty block
of consecutive 0-bits in σ. We will partition the halfplane above L into convex sets Ci, each
containing ni points of S \ L, by a greedy process that maintains a convex subset of the
halfplane containing the remaining points to be partitioned. Initially the convex subset is
the entire halfplane and the remaining points are S \ L. On the ith step (for any i other
than the last one), let pi be the point of S ∩ L that corresponds to the 1-bit of σ following
the ith block of 0-bits. Sort the remaining points of S \ L radially around pi (in left to right
order with respect to L) breaking ties in favor of closer points to pi, and let qi be the point
in position ni of this sorted order. Draw line piqi, separating Ci on its left from a remaining
convex subset on its right. Assign the ni points up to qi in the radial sorted order to set Ci,
and leave the remaining points (possibly including farther points on line piqi) unassigned. In
the final step of this construction, assign all remaining points to the final remaining convex
region. For instance, in Figure 3, the leftmost set C1 (yellow) is separated from the rest of
the halfplane by line p1q1. Here p1 is the leftmost point of L, and q1 is the fifth point in
the radial ordering around p1. Point q1 lies on the boundary of four convex regions but is
assigned to the first, C1. Line p1q1 also contains another point of S, farther from p1, which
is assigned to C4 (green).

Once this partition into convex sets has been determined, use Lemma 16 to find a non-
crossing Hamiltonian path within each convex set Ci that starts and ends at its (one or two)
points on L, and connect these paths in sequence by segments of L to form a non-crossing
Hamiltonian path for all of S, with the given 010-avoiding sequence σ as its signature. ◀
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3.5 Putting the bounds together
Combining the two different lower bounds into a single formula, we have:

▶ Lemma 19. Let S be a set of n points with offline(S) = k. Then

log #ham(S) = Ω
(

k

(
log n

k + 1

))
.

Proof. For any k, the logarithm of the number of non-crossing Hamiltonian paths is Ω(k)
by Lemma 17. For k ≥ n/3, log(n/k) = O(1), so for this range of k, this Ω(k) bound is
equivalent to the bound stated in the theorem.

For smaller values of k, let K be any set of k points whose removal from S leaves a
collinear set of size ℓ = n − k = Ω(n), belonging to a line L. Partition K into the two subsets
K1 and K2 on the two sides of L, with |K1| ≥ |K2|; let |K1| = k′ ≥ k/2. Let p be the first
point of S ∩ L, in the sorted sequence of the points along this line, let ℓ′ = ℓ − 1 be the
number of remaining points in S ∩ L, and let n′ = ℓ′ + k′. By Lemma 18, the number of
non-crossing Hamiltonian paths of S \ K2 that start at p is at least(

n′ − ⌈ℓ′/2⌉
⌊ℓ′/2⌋

)
=

(
⌊ℓ′/2⌋ + k′

k′

)
.

Each such path can be extended to a non-crossing Hamiltonian path of all of S by con-
catenating any non-crossing path through p and the points of K2. By the assumption that
k < n/3, the bottom term of the right binomial coefficient is at most half the top term,
allowing us to apply Lemma 11. By this lemma, and the facts that k′ = Θ(k) and ℓ′ = Θ(n),
the logarithm of this binomial coefficient is Ω

(
k log(n/k)

)
as stated. ◀

Although the upper bound of Lemma 12 and the lower bound of Lemma 19 are not quite
the same, we can combine them to achieve a constant factor approximation to the logarithm
of the number of non-crossing paths, or Hamiltonian paths.

▶ Theorem 20. For a given point set S,

#path(S) =
(
|S| · #ham(S)

)O(1)
.

Proof. Taking logs of both sides, it is equivalent to write that

log #path(S) = O(log |S| + log #ham(S)).

This follows immediately from Lemma 19 and Lemma 12, according to which log #ham(S)
is lower-bounded and log #path(S) upper-bounded (respectively) to within constant factors
by formulas that differ from each other only in an additive log |S| term. ◀

4 Counting cycles

For counting both surrounding cycles and polygonalizations of general-position point sets,
in place of offline(S) (which the general-position assumption makes trivial) we use the
following parameter:

▶ Definition 21. Let inhull(S) denote the number of points of S that are interior to the
convex hull of S.

For counting cycles and polygonalizations of point sets that are not assumed to be in
general position, we will use a combined analysis in terms of both offline and inhull.
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4.1 Omitted lemmas
Our bounds for surrounding cycles and polygonalizations follow similar arguments to our
bounds for paths. We defer many details and all proofs to the full version of this paper
because of space limitations.

▶ Lemma 22. Let S be a set of n points, with inhull(S) = h. Then

log #surround(S) = O
(

h
(

log n

h
+ 1

))
.

▶ Corollary 23. Let S be a set of n points with min(offline(S), inhull(S)) = m. Then

log #surround(S) = O
(

m
(

log n

m
+ 1

))
.

▶ Lemma 24. Let S be a set of n points for which at most |S|/7 points lie on any line, and
at most |S|/7 points lie on the convex hull. Then the number of polygonalizations of S is at
least singly exponential in S.

▶ Lemma 25. Let S be a set of points with |S| = n, such that h points of S lie on its convex
hull (either as vertices or within its edges). Then

#ham(S) ≥
(

⌊h/4⌋ + ⌈(n − h)/2⌉ − 1
⌈(n − h)/2⌉

)
4.2 Putting the bounds together
Combining our lower bounds into a single formula, we have:

▶ Lemma 26. Let S be a set of n points with min(offline(S), inhull(S)) = m. Then

log #poly(S) = Ω
(

m
(

log n

m
+ 1

))
.

Proof. We consider the following cases:
If inhull(S) ≤ 6n/7, the result follows from Lemma 25. In particular this applies when
the largest subset of collinear points in S has size ≥ n/7 and is part of the convex hull.
If the largest subset of collinear points in S has size ≥ n/7 but is not part of the convex
hull, then let L be the line through this subset. Because L does not lie on the convex hull,
S \ L includes points on both sides of L, with at least m/2 points in one of these two
halfplanes. By Lemma 18 the number of Hamiltonian paths through the points in L and
the points in this halfplane, starting and ending at the two extreme points of L, meets
or exceeds the lower bound in the statement of this lemma. Each of these Hamiltonian
paths can be completed to a polygonalization through the points in the other halfplane
bounded by L, by Lemma 16.
In the remaining case, the largest subset of collinear points in S has size < n/7 and
inhull(S) ≥ 6n/7. In this case, m = Ω(n) and the bound of the lemma reduces to Ω(n).
The result follows from Lemma 24.

Since all cases have at least the number of polygonalizations stated, the bound holds.
For a bound of Ω(i), apply Lemma 24, and for Ω(i log n/i) when i ≤ n/2, apply Lemma 25,

in both cases using Lemma 11 to estimate the logarithm of the binomial coefficient. ◀

From the fact that the upper bound of Corollary 23 and the lower bound of Lemma 26
have exactly the same form, we obtain a constant factor approximation to the logarithm of
the number of surrounding cycles and of polygonalizations. For our bound on the complexity
of the algorithm for listing polygonalizations we need it in the following form:

SoCG 2023
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Figure 4 Coloring-based arguments for the number of non-crossing paths and Hamiltonian paths
of a point set in convex position. Each 2-coloring of the points and choice of starting point determines
a non-crossing Hamiltonian path in which the colors determine the direction of the next step; each
3-coloring and choice of starting point determines a path, skipping vertices of one of the colors.

▶ Theorem 27. For a given point set S,

#surround(S) = #poly(S)O(1).

5 Nonlinearity

In this section we investigate the exponent of the polynomial bounds on non-crossing paths
as a function of non-crossing Hamiltonian paths, and on surrounding cycles as a function of
polygonalizations. In both cases we show that the exponent is bounded away from one, for
inputs in which the number of non-crossing configurations is exponential. This implies, in
particular, that the backtracking algorithms that we investigate for Hamiltonian paths and
polygonalizations can in some instances be forced to take an amount of time per output that
is exponential in the input size, despite being polynomial in the output size.

The construction for paths and Hamiltonian paths is very simple:

▶ Theorem 28. There exist sets S of points for which

#path(S) ≥ #ham(S)log2 3−o(1) ≈ #ham(S)1.585

and moreover for which both the number of non-crossing paths and the number of non-crossing
Hamiltonian paths is exponential in |S|.

Proof. We may take S to be in convex position. If a set S in convex position has n points,
it has n2n−3 non-crossing Hamiltonian paths [27], but

n

4 (3n−1 + 3)

non-crossing paths in total, considering a single vertex to count as a path of length zero.
Both bounds can be proven by a simple coloring argument (Figure 4). For non-crossing

Hamiltonian paths, consider the 2n ways of coloring the points red and blue, and n choices
of where to start. For each choice, follow a path that, at each red point, steps clockwise to
the next available vertex, and at each blue point steps counterclockwise. Each non-crossing
Hamiltonian path is found for exactly eight choices: the path can start at either end, and
the final two vertex colors are irrelevant. Thus, the number of paths is n2n/8.
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Figure 5 Points formed by replacing an edge of a triangle by a convex chain of points within the
triangle, and a surrounding polygon (yellow) for these points. Points can be omitted as polygon
vertices (red) only when they lie between the two neighbors of the apex (the rightmost point of the
figure).

For the bound on non-crossing paths, consider instead the 3n ways of coloring the points
red, blue, and yellow, and skip the yellow points both in choosing a starting point and in
considering which vertices are available in subsequent steps of the path. Cyclically permuting
the colors in a coloring groups the 3n colorings into 3n−1 orbits, each of which has a total
of 2n red or blue starting points, so there are 2n · 3n−1 choices. Again, each path is found
for exactly eight choices, except for the single-vertex paths, which are found for only two
choices. The total number of paths is obtained by dividing 2n · 3n−1 by eight, and adjusting
for the number of single-vertex paths. ◀

For an analogous separation between surrounding polygons and polygonalizations, we
replace one edge of a triangle by a convex chain of n − 2 edges, within the triangle (Figure 5).
The polygonalizations of this point set are obtained from non-crossing Hamiltonian paths
through the points of the convex chain, with both ends of the path connected to the one
point that does not belong to the convex chain (which we call the apex). The edges to the
apex cannot cross any other edge, so all Hamiltonian paths lead to polygonalizations in this
way. Therefore, by the same formula already used above, the number of polygonalizations is
exactly (n − 1)2n−4.

A surrounding polygon for these points must have the apex as a vertex (because it lies
on the convex hull). It must also include as vertices all of the points of the convex chain that
lie outside the two neighbors of the apex. The points of the convex chain that lie between
the two neighbors of the apex may either be vertices of the surrounding polygon, or omitted;
if omitted, they will automatically be surrounded. We may parameterize a surrounding
polygon by three non-negative numbers: a, the number of outer points of the convex chain
that lie outside the two neighbors of the apex, b, the number of inner points that lie between
these two neighbors and are vertices of the polygon, and c, the number of omitted points
that are not vertices of the surrounding polygon. Necessarily, a + b + c = n − 3, because the
points that are counted by these three numbers include all points except the apex and its
two neighbors.

Once a, b, and c have been chosen, the surrounding polygon itself may be determined
by three more choices: how to partition the outer a points into left and right subsets, with
a + 1 possibilities, how to alternate between outer and inner points along the polygon, with(

a+b
a

)
possibilities, and how to partition the points between the two neighbors of the apex
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into inner points and omitted points, with
(

b+c
b

)
possibilities. Therefore, the total number of

surrounding polygons of this point set is∑
a+b+c=n−3

(a + 1)
(

a + b

a

)(
b + c

b

)
.

These numbers, for n = 3, 4, 5, . . . , are

1, 4, 13, 40, 120, 354, 1031, 2972, 8495, 24110, . . . ,

a sequence having the generating function (1 − 2x)/(1 − 3x + x2)2 and growing proportionally
to n(φ + 1)n, where φ = (1 +

√
5)/2 is the golden ratio [26]. This example proves:

▶ Theorem 29. There exist sets S of points for which

#surround(S) ≥ #poly(S)log2(φ+1)−o(1) ≈ #poly(S)1.388

and moreover for which both the number of surrounding polygons and the number of polygo-
nalizations is exponential in |S|.

6 Conclusions

We have developed simple output-sensitive algorithms for listing all non-crossing Hamiltonian
paths and all polygonalizations for a point set. However, their dependence on the output size
is polynomial, not linear. It would be of interest to find alternative algorithms with a better
dependence on the output size, as well as more accurate approximations for the numbers of
non-crossing structures.
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Abstract
A disk graph is an intersection graph of disks in the Euclidean plane, where the disks correspond to
the vertices of the graph and a pair of vertices are adjacent if and only if their corresponding disks
intersect. The problem of determining the time complexity of computing a maximum clique in a
disk graph is a long-standing open question that has been very well studied in the literature. The
problem is known to be open even when the radii of all the disks are in the interval [1, (1 + ε)], where
ε > 0. If all the disks are unit disks then there exists an O(n3 log n)-time algorithm to compute a
maximum clique, which is the best-known running time for over a decade. Although the problem of
computing a maximum clique in a disk graph remains open, it is known to be APX-hard for the
intersection graphs of many other convex objects such as intersection graphs of ellipses, triangles,
and a combination of unit disks and axis-parallel rectangles. Here we obtain the following results.

We give an algorithm to compute a maximum clique in a unit disk graph in O(n2.5 log n)-time,
which improves the previously best known running time of O(n3 log n) [Eppstein ’09].
We extend a widely used “co-2-subdivision approach” to prove that computing a maximum
clique in a combination of unit disks and axis-parallel rectangles is NP-hard to approximate
within 4448/4449 ≈ 0.9997. The use of a “co-2-subdivision approach” was previously thought
to be unlikely in this setting [Bonnet et al. ’20]. Our result improves the previously known
inapproximability factor of 7633010347/7633010348 ≈ 0.9999.
We show that the parameter minimum lens width of the disk arrangement may be used to make
progress in the case when disk radii are in [1, (1 + ε)]. For example, if the minimum lens width
is at least 0.265 and ε ≤ 0.0001, which still allows for non-Helly triples in the arrangement, then
one can find a maximum clique in polynomial time.
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1 Introduction

An intersection graph of a set S of geometric objects is a graph where each object in S

corresponds to a vertex in G and two vertices in G are adjacent if and only if the corresponding
objects intersect. A set of vertices C ⊆ V is called a clique if they are mutually adjacent. In
this paper, we are interested in the problem of finding a maximum clique, i.e., a largest set
of mutually adjacent vertices. We mainly focus on disk graphs, i.e., the intersection graphs of
disks in R2 (Figure 1). Disk graphs are often used to model ad-hoc wireless networks [22].
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Figure 1 (a) An arrangement of disks A. The minimum width β over all the lenses is determined
by the disks centered at p and q. A non-Helly triple is shown in red. (b) A disk graph corresponding
to A, where a maximum clique is shown in blue.

The time complexity question for finding a maximum clique in a disk graph is known
to be open for over two decades [3, 4, 17]. The question is open even in severely restricted
setting such as when the radii of the disks are of two types [9] or when the disk radii are in the
interval [1, 1+ε] for a fixed ε > 0 [5]. However, there exists randomized EPTAS, deterministic
PTAS, and subexponential-time algorithms for computing a maximum clique in arbitrary
disk graphs [5, 6]. For unit disk graphs, i.e., when all the radii are the same, Clark et al. [13]
showed that a maximum clique can be found in O(n4.5)-time. Their algorithm searches for
a maximum clique over all the lenses of pairwise intersecting disks. Later, Eppstein [14]
showed how the algorithm could be implemented in O(n3 log n)-time by searching through
a careful ordering of the lenses and using a data structure of [2] to maintain a maximum
clique throughout the search. Faster algorithms are known in constrained settings where the
centers of the disks lie within a narrow horizontal strip [8]. Polynomial-time algorithms exist
for many other intersection graph classes such as for circle graphs [29], trapezoid graphs [16],
circle trapezoid graphs [16], intersection graphs of axis-parallel rectangles [23], and so on.

Although the maximum clique problem is open for disk graphs, a number of APX-hardness
results are known in the literature for intersection graphs of other geometric objects. A
common approach to prove the NP-hardness result for computing a maximum clique in an
intersection graph class I is to take a co-2k-subdivision approach, as follows. A 2k-subdivision,
where k is a positive integer, of a graph G is obtained by replacing each edge (u, v) of G

with a path (u, d1, . . . , d2k, v) of 2k division vertices. A co-2k-subdivision approach takes
a graph class for which finding a maximum independent set is NP-hard and shows that
the complement graph of its 2k-subdivision has an intersection representation in class I.
Since the NP-hardness of computing a maximum independent set is preserved by the even
subdivision [12] and since a maximum independent set in a graph corresponds to a maximum
clique in the complement graph, this establishes the NP-hardness result for computing a
maximum clique in class I. Some of the intersection graph classes for which the maximum
clique problem has been proved to be APX-hard using the co-2k-subdivision approach are
intersection graphs of ellipses [3], triangles [3], string graphs [27], grounded string graphs [25],
and so on. Cabello [10] used the co-2k-subdivision approach to prove the NP-hardness of
computing a maximum clique in the intersection graph of rays, which settled a 21-year-old
open problem posed by Kratochvíl and Nešetřil [26]. To the best of our knowledge, no
hardness of approximation result is known for this graph class.

Since there is strong evidence that a co-2k-subdivision approach may not be sufficient
to prove the NP-hardness of computing a maximum clique in a disk graph [6], Bonnet et
al. [7] attempted to explore alternative approaches. While they were not able to prove the



J. Espenant, J. M. Keil, and D. Mondal 30:3

NP-hardness for disk graphs, they showed that the problem of computing a maximum clique
in an intersection graph that contains both unit disks and axis-parallel rectangles is not
approximable within a factor of 7633010347/7633010348 in polynomial time, unless P=NP.
This result is interesting since the maximum clique problem is polynomial-time solvable when
all objects are either unit disks [13] or axis-parallel rectangles [23]. To obtain this result,
Bonnet et al. [7] introduced a new problem called “Max Interval Permutation Avoidance”,
proved it to be APX-hard, and reduced it to the problem of computing a maximum clique
in a combination of unit disks and axis-parallel rectangles. Furthermore, they stated that
the intersection graph of unit disks and axis-parallel rectangles is “a class for which the
co-2-subdivision approach does not seem to work”.

Our Contribution
In this paper we make significant progress on the maximum clique problem for unit disk
graphs, disk graphs with disk radii lying in the interval [1, 1 + ε], and intersection graphs of
unit disks and axis-parallel rectangles.

Unit disk graph. We give an algorithm to compute a maximum clique in a unit disk
graph in O(n2.5 log n)-time, which improves the previously best known running time of
O(n3 log n) [14]. Our algorithm is based on a divide-and-conquer approach that, unlike the
previous algorithms that search a clique over all the lenses, shows how to efficiently merge
solutions to the subproblems to achieve a faster time complexity. Such techniques have
previously been used to accelerate computation for other computational geometry problems,
e.g., when finding a closest pair in a point set [28], but appeared to be highly non-trivial
while adapting it for the unit disk graph setting.

Intersection graph of unit disks and axis-parallel rectangles. We extend the co-2-
subdivision approach to prove a (4448/4449 ≈ 0.9997)-inapproximability result for com-
puting a maximum clique in an intersection graph that contains both unit disks and axis-
parallel rectangles, and thus improve the previously known inapproximability factor of
7633010347/7633010348 ≈ 0.9999 [7]. Note that the use of a co-2-subdivision approach was
previously thought to be unlikely in this setting by Bonnet et al. [7]. The key idea behind our
NP-hardness reduction is to show that every Hamiltonian cubic graph admits a well-behaved
edge orientation and vertex labeling, i.e., its vertices can be labeled and the edges can be
oriented such that every vertex has two outgoing or two incoming edges where the labels of
these corresponding neighbors are consecutive. While such orientation and labeling are of
independent interest, they allow us to represent the complement of the 2-subdivision of a
Hamiltonian cubic graph using a combination of unit disks and axis-parallel rectangles.

(ε, β)-disk graph. In an attempt to make progress on the case when the disk radii are in
the interval [1, 1 + ε], we introduce (ε, β)-disk graphs. A (ε, β)-disk graph, where ε and β are
positive constants, is a disk graph where the radii of the disks are in the interval [1, 1 + ε]
and every lens is of width at least β. The parameter β can be thought of as the minimum
width over all the lenses in the disk arrangement, where a lens is the convex intersection
region of a pair of disks (Figure 1(a)). We show that the parameter β, i.e., the minimum
lens width of the disk arrangement, may be used to make progress in the case when disk
radii are in [1, (1 + ε)]. For example, if the minimum lens width is at least 0.265, then one
can find a maximum clique for ε ≤ 0.0001 in polynomial time.

SoCG 2023
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Figure 2 (a) Illustration for a lens. (b) Computation of a maximum clique, where the centers of
the disks are shown in dots. The unit disks centered at x and y are shown in dotted circles. The
centers inside L(D|xy|

x , D
|xy|
y ) are shown in red.

The existence of non-Helly triple in a disk arrangement, i.e., three pairwise intersecting
disks without any common point of intersection (Figure 1(a)), typically makes the problem
of finding a clique challenging (see Sec. 5). Since β is a lower bound on the width of every
lens, a natural question is whether our choice for β ≥ 0.265 already forbids the existence of
non-Helly triples. We note that our choice for β still allows for non-Helly triples, and thus
the result is non-trivial. We show that the lower bound on β could be leveraged to find for
each non-Helly triple, a maximum clique that includes this triple. This extends the prior
approach of finding a maximum clique in a unit disk graph that searches over all the pairwise
intersecting disks [13] to a more general setting where the disk radii are in [1, 1.0001]. We
believe that our proposed approach is interesting from the perspective of finding a way to
make progress beyond unit disks even though the lower bound on β is large and the gain on
ε is small.

2 Preliminaries

By Dr
q we denote a disk with radius r and center q. For the simplicity of the presentation,

sometimes we omit the radius and simply use Dq to denote a disk with center q. Let Dp

and Dq be a pair of disks. By L(Dp, Dq) we denote the lens (i.e. the intersection region) of
these disks (Figure 2(a)). For a line segment ab, we denote by |ab| the length of the segment
or the Euclidean distance between the points a and b. The width of a lens L(Dp, Dq) is the
length of the line segment determined by the intersection of pq and L(Dp, Dq).

Let G be a graph. The complement graph G of G is a graph on the same set of vertices
where G contains an edge if and only if it does not appear in G. A set S of vertices in G

is called independent if no two vertices in S are adjacent in G. A maximum independent
set α(G) is an independent set of largest cardinality. G is called bipartite if its vertices can
be partitioned into two independent sets. G is called a cobipartite graph if the complement
graph of G is a bipartite graph. G is called cubic if every vertex of G is of degree three. G is
Hamiltonian if it has a cycle that contains each vertex of G exactly once.

3 Unit Disk Graph (UDG)

In this section we provide an O(n2.5 log n)-time algorithm to compute a maximum clique in
a unit disk graph, where a geometric representation of the graph is given as an input.
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Clark et al. [13] gave an O(n4.5)-time algorithm to compute a maximum clique in a unit
disk graph. The idea of the algorithm is as follows. For each edge (x, y) of the graph, consider
two disks Dx and Dy such that their boundaries pass through y and x, respectively. Let S be
the set of unit disks with centers in L(D|xy|

x , D
|xy|
y ). Clark et al. showed that the subgraph of

G induced by the vertices corresponding to S is a cobipartite graph G(S). One can thus find
a maximum clique in G(S) by computing a maximum independent set in the bipartite graph
G(S). If (x, y) is the longest edge of a maximum clique M in G, then S must include all
the centers of the disks in M and G(S) will contain the largest clique in G. Therefore, one
can try the above strategy over all edges and find a maximum clique in G. Since G contains
O(n2) edges and since a maximum independent set in a bipartite graph can be computed in
O(n2.5) time by leveraging a maximum matching [21], the running time becomes O(n4.5).

Breu [8] observed that Clark et al.’s approach [13] to find a maximum clique can be
implemented in O(n3.5 log n) time using a result of Aggarwal et al. [2]. Specifically, Aggarwal
et al. [2] showed how to compute a maximum independent set in G(S) in O(n1.5 log n) time
using a data structure of [20, 24], and hence over O(n2) lenses the running time becomes
O(n3.5 log n).

Eppstein [14] observed that while searching through the lenses, instead of computing the
maximum independent set from scratch, one can exploit geometric properties to efficiently
update and maintain a maximum independent set as follows. For a unit disk center p,
let q be a point on the plane such that |pq| = 2. Consider two disks Dp and Dq such
that their boundaries pass through q and p, respectively. One can now rotate the lens
L(D|pq|

p , D
|pq|
q ) around p and update the maximum independent set in the graph corresponding

to L(D|pq|
p , D

|pq|
q ) each time a point (i.e., a center of a unit disk) enters or exists from the lens.

An update can be processed by an alternating path search in O(n log n) time [2]. Since the
number of changes to L(D|pq|

p , D
|pq|
q ) is bounded by O(n), the time spent for p is O(n2 log n).

Hence the overall running time is O(n3 log n).

3.1 Idea of Our Algorithm
Let G be a disk graph with n vertices, where each disk is of radius r. Let P be the set of
centers of the disks corresponding to the vertices of G. To find a maximum clique we take a
divide-and-conquer approach as follows.

We rotate the plane so that no two points are in the same vertical or horizontal line. It
is straightforward to perform such a rotation in O(n2) time. We sort the points in P with
respect to their x-coordinates and find a vertical line V through a median x-coordinate such
that at most ⌈n/2⌉ points of P are on each half-plane of V . Let Pl and Pr be the points
on the closed left halfplane and closed right halfplane of V , respectively. We will find a
maximum clique in Pl and Pr recursively.

Let M be a maximum clique in G. If the set of disk centers corresponding to M is a
subset of either Pl or Pr, then such a clique must be returned as a solution to one of these
two subproblems. Otherwise, each of Pl and Pr contains some points of M . To tackle such a
case, it suffices to find a maximum clique in the vertical slab between the vertical lines Vl

and Vr, where Vl and Vr are 2r units apart from V on the left halfplane and right halfplane,
respectively. Let Q ⊆ P be the set of points in the vertical slab. Then the maximum clique
of G is the maximum clique found over the disks corresponding to the sets Pl, Pr and Q.

Let T (n) be the time to compute a maximum clique in G. Let F (n) be the time to
compute a maximum clique in the vertical slab. Then T (n) is defined as follows.

T (n) = 2T
(n

2

)
+ F (n). (1)

SoCG 2023
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Figure 3 (a) The square S with the disk centers in black dots. (b)–(c) Illustration for Remark 2.

We now sort the points of Q with respect to their y-coordinates and find a horizontal
line H through the median y-coordinate such that at most ⌈|Q|/2⌉ points of Q are on each
half-plane of H . Let Qt and Qb be the points on the closed top halfplane and closed bottom
halfplane of H, respectively. We now find a maximum clique in Qt and Qb recursively. If
the set of disk centers corresponding to M is a subset of either Qt or Qb, then such a clique
must be returned as a solution to one of these two subproblems. Otherwise, each of Qt and
Qb contains some points of M . It now suffices to find a maximum clique in the square S of
side length 4r with its center located at the intersection point of V and H (Figure 3(a)). Let
B(n) be the time to compute the maximum clique in S. Then F (n) is defined as follows.

F (n) = 2F
(n

2

)
+ B(n). (2)

In the following, we will show that a maximum clique in S can be computed in O(n2.5 log n)
time. Consequently, B(n) ∈ O(n2.5 log n) and by Equation 2 and master theorem, F (n) ∈
O(n2.5 log n). Consequently, the time complexity determined by Equation 1 is O(n2.5 log n).
Note that computing a maximum clique in the square S of side length 4r appears to be the
bottleneck of our algorithm.

3.2 Computing a Maximum Clique in the Square S

Let M be a maximum clique in G and let C be the centers of the disks in M . Assume that
C ̸⊆ Pl, C ̸⊆ Pr, C ̸⊆ Qt and C ̸⊆ Qb, i.e., C is a subset of the points in S. We now show
how to find M . Let o be the center of S, i.e., the intersection point of H and V . Without loss
of generality assume that o is at (0, 0). Let Ri, where 1 ≤ i ≤ 4, be the region determined
by the intersection of the ith quadrant and S (Figure 3(a)). We now give two remarks.
Remark 1 follows directly from our assumption that C ̸⊆ Pl, C ̸⊆ Pr, C ̸⊆ Qt and C ̸⊆ Qb.

▶ Remark 1. C must satisfy at least one of the following two conditions. (a) R1 and R3 each
contains a point from C. (b) R2 and R4 each contains a point from C.

▶ Remark 2. Let p and g be two points inside R1 where the x- and y-coordinates of g are at
least as large as that of p. Let D2r

p and D2r
g be two disks of the same radius 2r centered at p

and g, respectively. Then (R3 ∩ D2r
g ) ⊆ (R3 ∩ D2r

p ).



J. Espenant, J. M. Keil, and D. Mondal 30:7

Proof. Consider first the case when g and p lie on the same vertical line (Figure 3(b)). Note
that the interval (H ∩ D2r

g ) increases as we move the center g vertically downward and the
interval reaches the maximum when g hits H . Therefore, (H ∩ D2r

g ) ⊆ (H ∩ D2r
p ). Since g is

vertically above p and both have the same radius, (R3 ∩ D2r
g ) ⊆ (R3 ∩ D2r

p ). The argument
when g and p lie on the same horizontal line is symmetric.

Consider now the case when x- and y- coordinates of g are larger than that of p (Fig-
ure 3(c)). We can move D2r

g vertically down to reach a point g′ that has the same y-coordinate
as that of p. Consequently, (R3 ∩D2r

g ) ⊆ (R3 ∩D2r
g′ ). Finally, we move D2r

g′ towards p. Hence
we obtain (R3 ∩ D2r

g′ ) ⊆ (R3 ∩ D2r
p ). ◀

We are now ready to describe the algorithm. The algorithm considers two cases depending
on whether every disk center in C is within a distance of 2r from o. It processes each case in
O(n2.5 log n) time, and then returns the maximum clique found over the whole process.

The high-level idea for finding a maximum clique is as follows. For the first case, we
assume every disk center in C to be within a distance of 2r from o. The algorithm makes a
guess for the farthest disk center q in C from o and then finds the other disks in the maximum
clique by defining a lens that would contain all the disk centers of C. For the second case,
we assume that at least one disk center in C has a distance of more than 2r from o. The
algorithm makes a guess for the first point p ∈ C in some particular point ordering and then
finds the other disks in the maximum clique by defining a lens that would contain all the
disk centers of C. We now describe the details.

Case 1 (Every disk center in C is within a distance of 2r from o)
Let q be a point of C that has the largest distance from o. Without loss of generality assume
that q lies in R2. We now order the points of R2 that are within distance 2r from o in
decreasing order of their distances from o (breaking ties arbitrarily). Figure 4(a) illustrates
this order in orange concentric circles. Let σ be the resulting point ordering. We iteratively
consider each point in σ to be q and then find a maximum clique as follows.

Let D
|oq|
o be a disk centered at o = (0, 0) such that its boundary passes through q

(Figure 4(b)). Since q is the furthest point of C from o, every point of C is contained in
D

|oq|
o . Let t be a point in R4 that lies on the line through o and q at a distance of 2r from q.

We now show that every point of C is in L(D2r
q , D2r

t ). Suppose for a contradiction that
there exists a point e ∈ C which is not in L(D2r

q , D2r
t ). If e belongs to S \ D2r

q , then De

cannot intersect Dq. Therefore, e must lie in the region D
|oq|
o ∩ (D2r

q \ D2r
t ). Note that q, o

and t lie on the same line. Since the boundaries of both D
|oq|
o and D2r

t pass through q and
|qt| ≥ |qo|, we have D

|oq|
o ⊆ D2r

t , and hence the point e cannot exist.
Since the intersection graph induced by the disks with centers in L(D2r

q , D2r
t ) is a

cobipartite graph [13], a maximum clique in this graph can be computed in O(n1.5 log n)
time [2]. Over all choices for q in σ, the running time becomes O(n2.5 log n).

Case 2 (There exists a disk center in C with distance more than 2r to o)
Without loss of generality assume that R2 contains a disk center that belongs to C and has
a distance of more than 2r from o. We now consider the points of R2 that have a distance of
more than 2r from o and order them by sweeping a disk as described below. Let o′ be the
top left corner of R2. Let D2r

a be a disk of radius 2r such that its boundary passes through
o′ and its center a lies on the line oo′ (Figure 5(a)). We now move D2r

a along the line o′o

SoCG 2023
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Figure 5 (a)–(b) Illustration for sweeping D2r
a . (c) Illustration for Case A of Lemma 3.

by moving the center a towards o. We order the points in the order D2r
a hits them at its

boundary as we move a towards o (breaking ties arbitrarily). Figure 4(c) illustrates this
order in blue circular arcs. Let σ′ be the resulting point ordering.

Let p be the first point of C in R2 that is hit by D2r
a at its boundary. Then the boundary

of D2r
p passes through a (Figure 5(b)). Let b be the point of intersection between D2r

p and H

that is closer to o. Let g be the point of intersection between D2r
p and V that is closer to o.

In the following lemma (Lemma 3), we show that every point of C belongs to the
lens L(D2r

p , D2r
a ). Since the corresponding intersection graph is a cobipartite graph [13], a

maximum clique in this graph can be computed in O(n1.5 log n) time [2]. Over all choices for
p in σ′, the running time becomes O(n2.5 log n).

▶ Lemma 3. Let p be the first point of C in R2 that is hit by D2r
a at its boundary. Then

every point of C belongs to the lens L(D2r
p , D2r

a ).

Proof. Suppose for a contradiction that there exists a point e ∈ C that does not belong to
L(D2r

p , D2r
a ). We now consider the following three subcases and in each case we show that

such a point e cannot exist.
Case A (e ∈ R2): Figure 5(c) highlights the potential locations for e in yellow. If e ∈

(D2r
a \ D2r

p ), then e fails to intersect p. If e ∈ (D2r
p \ D2r

a ), then e ∈ C must be the first
point (instead of p) in R2 that is hit by D2r

a , which leads to a contradiction.
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Figure 6 Illustration for Case C of Lemma 3. (a) The boundaries of D2r
f and D2r

p are shown
in red and purple, respectively. (b) The scenario when f coincides with g. (c) The scenario when
f ̸= g.

Case B (e ∈ R4): Since Dr
p and Dr

e intersect, e must lie inside D2r
p . Note that |po| > 2r.

Since p belongs to C, we have C ⊆ D2r
p , and hence, R4 cannot contain any point of C.

Case C (e ∈ R1 or e ∈ R3): Without loss of generality assume that e ∈ R3. The argu-
ment when e ∈ R1 is symmetric. We have explained in Case B that R4 cannot contain
any point of C. Therefore, by Remark 1, R1 and R3 each contains a point from C. Let
f ∈ C be a point in R1. Then Dr

e must intersect Dr
f . In other words, e must belong to

D2r
f (Figure 6(a)). It now suffices to show that the region R3 ∩ L(D2r

f ∩ D2r
p ), which is

the potential location for e (shown in yellow), is a subset of L(D2r
p , D2r

a ).

Consider first the case when f coincides with g. Since g is on the boundary of D2r
p , the

boundary of D2r
g passes through p. Note that if we walk along the boundary of D2r

p starting
at g clockwise, then we first hit g and then a. If we keep walking then we must hit the
boundary of D2r

g before the boundary of D2r
a . Therefore, the region of L(D2r

p , D2r
g ) on the

left halfplane of line oo′ (as shown in rising pattern in Figure 6(b)) is a subset of L(D2r
p , D2r

a ).
Consequently, R3 ∩ L(D2r

p , D2r
g ) is a subset of L(D2r

p , D2r
a ).

Consider now the case when f ̸= g and f ∈ (R1 ∩ D2r
p ) (Figure 6(c)). Since the

x- and y-coordinates of f are at least as large as that of g, by Remark 2, we obtain
(R3 ∩ D2r

f ) ⊆ (R3 ∩ D2r
g ). Together with the argument that R3 ∩ L(D2r

p , D2r
g ) is a subset of

L(D2r
p , D2r

a ), one can observe that R3 ∩ L(D2r
p , D2r

f ) is a subset of L(D2r
p , D2r

a ). ◀

Since a maximum clique in S can be computed in O(n2.5 log n) time, the strategy of
Section 3.1 yields a running time of O(n2.5 log n).

▶ Theorem 4. Given a set of n unit disks in the Euclidean plane, a maximum clique in the
corresponding disk graph can be computed in O(n2.5 log n) time.

4 Combination of Unit Disks and Axis-Parallel Rectangles

In this section we show that the maximum clique problem for an intersection graph of unit
disks and axis-parallel rectangles is NP-hard to approximate within a factor of 4448

4449 ≈ 0.9997.
We first show an inapproximability result for computing a maximum independent set and
then use this result to prove the APX-hardness for computing a maximum clique.
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4.1 Inapproximability of Computing a Maximum Independent Set
The proof of the following theorem is obtained by leveraging an inapproximability result
of [11] and a graph transformation technique of [18] (see the full version [15]).

▶ Theorem 5. The problem of computing a maximum independent set in a 2-subdivision of
a Hamiltonian cubic graph is NP-hard to approximate within 4448

4449 ≈ 0.9997, even when a
Hamiltonian cycle is given as an input.

Let G be a Hamiltonian cubic graph with n vertices and let H be a 2-subdivision of
G. In Section 4.2 we show that given a Hamiltonian cycle of G, H can be represented as
an intersection graph of unit disks and axis-parallel rectangles in polynomial time. Since a
maximum independent set in H corresponds to a maximum clique in H and vice versa, the
inapproximability result follows from Theorem 5.

4.2 Representing H with Unit Disks and Axis-parallel Rectangles
The number of edges in G is m = 3n/2. We first show that the edges of G can be oriented
and labeled with distinct positive integers from 1 to 3n/2 such that each vertex has exactly
two of its incident edges with the same orientation and they are labeled with consecutive
numbers. We will refer to such labeling as a pair-oriented labeling. Figure 7(i) illustrates a
pair-oriented labeling of a cubic graph, e.g., v5 has two incoming edges which are labeled
with 2 and 3, and v7 has two outgoing edges which are labeled with 8 and 9. We will use
this labeling to construct the required intersection representation for H.

▶ Lemma 6. Let G be a Hamiltonian cubic graph with n vertices. Then G admits a pair-
oriented labeling. Furthermore, given a Hamiltonian cycle C in G, a pair-oriented labeling
for G can be computed in polynomial time.

Proof (Outline). We first orient the edges of G, as follows. Let (v1, v2, . . . , vn) be the
ordering of the vertices of G on C. For each edge (vi, vj), where i < j, we orient the edge
from vi to vj , as illustrated in Figure 7(a).

We now give an incremental construction for the edge labeling. We first find the smallest
index k such that vk has a pair of outgoing edges that are not yet labeled. We now find
a maximal edge sequence Sk of non-Hamiltonian edges e1, e2, . . . , eq such that for each i

from 1 to q − 1, there is a Hamiltonian edge that connects the source vertex of ei+1 to
the target vertex of ei. Figure 7(c) illustrates such a maximal edge sequence e1, e2, where
e1 = (v1, v5) and e2 = (v4, v6), and the edge (v4, v5) is a Hamiltonian edge. Let ℓ be
the largest number that has been used for edge labeling so far. We then label the edges
e1, e2, . . . , eq with ℓ + 2, ℓ + 4, . . . , ℓ + 2q and the Hamiltonian edges that they nest with
ℓ + 1, ℓ + 3, . . . , ℓ + (2q + 1). Let Vk be the set of vertices that appear on the edges of Sk. It is
now straightforward to verify that every vertex of Vk has two edges with the same orientation
and these edges are labeled with consecutive numbers. We repeatedly find such maximal
edge sequences starting at the vertex with the smallest index that has two outgoing edges
that are not yet labeled (Figure 7(a)–(g)). The remaining unlabeled edges are then labeled
arbitrarily using remaining integers (Figure 7(h)) and finally, the orientation of the edge
(v1, vn) is reversed to obtain the required pair-oriented labeling (Figure 7(i)). ◀

Let γ be a pair-oriented labeling of G (Figure 8(a)–(b)). By γ(e) we denote the label of
an edge e. Let e be an edge of G with source s and target t. We now label the two division
vertices corresponding to e in the 2-subdivision H . The division vertex adjacent to s receives
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Figure 7 Construction of a pair-oriented labeling of a Hamiltonian cubic graph. The first maximal
edge sequence S1 is shown in blue. S1 consists of the non-Hamiltonian edges e1, e2, and the set V1

consists of their end vertices, i.e., {v1, v4, v5, v6}. The second and third maximal edge sequences are
shown in red and green, respectively.
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Figure 8 (a)–(b) G, and its pair-oriented labeling. (c) Labeling of the division vertices of H.

the label sγ(e) and the division vertex adjacent to t receives the label tγ(e). We refer to sγ(e)
and tγ(e) as a type-s and type-t label, respectively. By the property of γ (Lemma 6), each
original vertex v in H is now adjacent to exactly two division vertices of the same type with
their indices numbered with consecutive numbers. For example in Figure 8(c), the vertices d

and b are adjacent to s3, s4 and t2, t3, respectively.
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Figure 9 (a) Arrangement of the unit disks corresponding to type-s division vertices. (b)
Illustration for the intersection representation of H. Only a subset of unit disks and the rectangles
corresponding to b and d are shown for better readability.

The intersection representation of H now follows from the construction of [7]. We briefly
describe the construction at a high level for completeness. Consider a set of unit disks Cs for
the type-s vertices with centers in the second quadrant such that they intersect the negative
x-axis and positive y-axis, but not the positive x-axis or negative y-axis. Furthermore, the
ordering of the disks obtained by walking from (0, 0) to (−∞, 0) is reversed when walking
from (0, 0) to (0, ∞) (Figure 9(a)). Let Is be the convex region determined by the intersection
of all type-s disks. The set of unit disks Ct for type-t vertices is placed on the 4th quadrant
symmetrically. Let It be the convex region determined by the intersection of all the type-t
disks. For a sufficiently large radius, the disk boundaries appear similar to a set of halfplanes
(Figure 9(b)) and each disk in Cs intersects every disk in Ct except for the one with the same
label. Therefore, all the intersections between division vertices of H are realized. Note that
the original vertices of H in H form a clique in H and each original vertex is adjacent to all
but three division vertices in H . We now represent the original vertices of H with rectangles
such that all of them enclose the point (0, 0). Let b be an original vertex of H . Without loss
of generality assume that b has two type-t neighbors and one type s neighbor (Figure 8(c)).
By the property of the pair-oriented labeling, the type-t neighbors are labeled consecutively.
Let ti, ti+1, sj be the neighbors of b. We now create a rectangle Rb to represent b. We place
the top-left corner of Rb near the intersection point of the boundaries of the disks for ti, ti+1
such that Rb does not intersect these disks but intersects all other type-t disks. We place
the bottom-right corner of Rb near the circular segment determined by the disk for sj on It

such that Rb does not intersect the disk for sj but intersects all other type-s disks. We refer
to [7] for a formal reduction.

▶ Theorem 7. The problem of computing a maximum clique in an intersection graph of unit
disks and axis-parallel rectangles is NP-hard to approximate within a factor of 4448

4449 ≈ 0.9997.
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Figure 10 (a) A non-Helly triple {Da, Db, Dc}. Illustration for (b) Case 1 and (c) Case 2.

5 Finding a Maximum Clique in an (ε, β)-disk graph

In this section, we give a polynomial-time algorithm to compute a maximum clique in an
(ε, β)-disk graph. By definition, the radii of the disks are in [1, 1+ε] and every lens is of width
at least β. We give an O(n4)-time algorithm when β ≥ 0.265 and ε ≤ 0.0001. Although β

could be expressed as a function of ε, for simplicity of the presentation, we set specific values
to β and ε and often use crude bounds to simplify the arguments. Therefore, we believe one
can choose slightly better parameters by using a tedious case analysis.

Let G be an (ε, β)-disk graph. Let M be a set of disks determining a maximum clique in
G. In the following, we will use Helly’s theorem [19], i.e., for a collection of convex sets in Rd,
if the intersection of every (d + 1) of these sets is non-empty then the collection must have
a non-empty intersection. Recall that for three disks {Da, Db, Dc}, if (Da ∩ Db ∩ Dc) = ∅,
then we call them a non-Helly triple. Otherwise, we refer to them as a Helly triple.

Consider three unit disks with centers at the corners of an equilateral triangle. If these
disks intersect exactly at one point, then the width of each lens is (2 − 2 cos 30◦) ≈ 0.2679,
which is larger than β. Therefore, in an (ε, β)-disk graph, we may have non-Helly triples.
We now consider two cases depending on whether M contains a non-Helly triple or not.

5.1 M does not contain any non-Helly triple
If M does not contain any non-Helly triple, then by Helly’s theorem [19], the disks in M have
a non-empty intersection. Let R be the set of connected regions or cells determined by the
arrangement of the disk boundaries. We examine for each cell r in R, the number of disks
that contains r, and find a maximum set of mutually intersecting disks. It is straightforward
to compute the arrangement of n disks in O(n3)-time (even faster algorithms exist [1]) and
each cell can be checked in O(n) time. Hence finding a maximum clique takes O(n4) time.

5.2 M contains a non-Helly triple
If M contains a non-Helly triple, then let {Da, Db, Dc} be such a non-Helly triple in M

(Figure 10(a)). Let wab, wbc, wca be the midpoint of the lenses L(Da, Db), L(Db, Dc) and
L(Dc, Da), respectively. The following two lemmas give some properties corresponding to
the non-Helly triple and their proof is included in the full version [15].
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▶ Lemma 8. If {Da, Db, Dc} is a non-Helly triple, β ≥ 0.265, and ε ≤ 0.0001, then the
lenses L(Da, Db), L(Db, Dc) and L(Dc, Da) are of width less than 0.275. Furthermore, the
interior angles of ∆abc are in the interval [58.024◦, 60.988◦].

▶ Lemma 9. If {Da, Db, Dc} is a non-Helly triple, β ≥ 0.265, and ε ≤ 0.0001, then ∆abc and
∆wabwbcwca satisfy the following properties. (a) 1.725 ≤ |ab|, |bc|, |ca| ≤ (1.735+2ε). (b) For
each point q in {wab, wbc, wca}, the distances from q to the center of the two disks containing
q are in the interval [0.8625, (0.8675 + ε)]. (c) The length of each side of ∆wabwbcwca is in
the interval [0.883, 0.887].

Let O be the disks in the disk graph representation and let O′ be O \ {Da, Db, Dc}.
We refer to a disk in O′ as type-k, where 0 ≤ k ≤ 3, if it contains exactly k points from
{wab, wbc, wca}. In the following we show that for a pair of disks Dp, Dq, if each of them
intersects all the disks in {Da, Db, Dc}, then they must mutually intersect. As a consequence,
we can find a maximum clique including {Da, Db, Dc} in O(n) time and a maximum clique
over all possible O(n3) choices of non-Helly triples in O(n4) time.

Case 1 (At least one of Dp and Dq is of Type-0): We show that this case is trivial because
a type-0 disk that intersects all the disks in the non-Helly triple but avoids {wab, wbc, wca}
cannot exist.

Consider the disk Dp. We first show that if p lies inside ∆wabwbcwca, then Dp must
contain a corner of ∆wabwbcwca. By Lemma 9, the maximum side length of ∆wabwbcwca is
at most 0.887. Therefore, the circumradius for ∆wabwbcwca is bounded by 0.887√

3 ≤ 1. Hence
Dp must contain a corner of ∆wabwbcwca.

We now show that if p lies outside of ∆wabwbcwca, then Dp cannot create a lens of width
β with Da, Db, Dc. Without loss of generality assume that the left-halfplane of the line
through wabwca contains p and the right-halfplane contains the centers b, c (Figure 10(b)).

Consider a disk Dp′ with the same radius as that of Dp such that its center p′ lies outside
of ∆abc and its boundary passes through wab and wca. The following lemma gives an upper
bound on |ap′| and ∠acp′ and its proof is included in the full version [15].

▶ Lemma 10. Let Dp′ be a disk such that the boundary of Dp′ passes through wab and wca

and the center p′ lies outside of ∆abc. Then |ap′| < (0.25 + ε) and ∠acp′ ≤ 17.5◦.

We now show that Dp′ cannot create a lens of width β with Dc. Since |p′wca| is fixed,
the distance |p′c| decreases with the increase in ∠p′cwca and decrease in |cwca|. Since
∠p′cwca < 17.5◦ and |cwca| ≥ 0.8625, by using basic trigonometry on ∆p′cwca one can
observe that |p′c| ≥ 1.78 > (2 − β). Therefore, Dp′ cannot create a lens of width β with Dc.

Since Dp does not contain wab and wbc, p lies above or below the bisector ℓ of wabwca.
Consider moving p′ to p. Since moving p′ above or below ℓ decreases the width of either
L(Dp′ , Db) or L(Dp′ , Dc), Dp cannot have a lens of width β with Db and Dc simultaneously.

Case 2 (Dp and Dq are of Type-1): Without loss of generality assume that Dp and Dq

contains wab and wbc, respectively (Figure 10(c)). Let ar, cr, pr, qr be the radii of Da, Dc,
Dp, Dq, respectively. It now suffices to show that |pq| ≤ pr + qr, i.e., Dp and Dq must
intersect. Note that by the property of (ε, β)-graph, an intersection would imply a lens of
width at least β, and hence we only show that |pq| ≤ pr + qr.

Let D′
a and D′

c be the disks obtained by shrinking the radii of Da and Dc by β. Since the
width of the lenses created by the non-Helly triple is less than 0.275, the points wab, wbc, wca

lie outside of D′
a and D′

c. Since the width of each lens is at least β, Dp must intersect D′
c.

Consider a line ℓ through ac with b on its right half-plane.



J. Espenant, J. M. Keil, and D. Mondal 30:15

Consider first the scenario when p and q are on the right half-plane of ℓ. If p is above the
line through bc and q is below the line through ab, then aq and pc intersect (Figure 11(a)).
Therefore, |pq|≤|aq| + |pc| − |ac|≤(ar + qr − 0.265)+(pr + cr − 0.265)−(ar + cr − 0.275)<(pr +
qr). Otherwise, p, q lie on the right halfplane of the line through wabwbc in the wedge
determined by ∠abc and its opposite angle, as shaded in orange in Figure 11(b). Since
max{|wabwbc|, |bwab|, |bwbc|} ≤ 1+ε, it is straightforward to observe that Dp and Dq intersect.
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Figure 11 Illustration for the locations of p and q. (a)–(b) Case 1. (c) Case 2.

If p and q are on different sides of ℓ (Figure 11(c)), then without loss of generality assume
that p lies on the left half-plane and q lies on the right half-plane. Here we show that
|ap| ≤ (0.25 − ε) (see the full version [15] for details). Consequently, |pq| ≤ |ap| + |aq| ≤
(0.25 − ε) + (ar + qr − 0.265) = (pr + qr) + (ar − pr) − ε − 0.015 < (pr + qr).

Case 3 (Dp and Dq are of Type-2 or Type-3): Since Dp and Dq each contains at least
two points from {wab, wbc, wca}, they must intersect.

Case 4 (One of Dp and Dq is of type-1 and the other is of type-2 or type-3): The
case when Dp and Dq contains a common point from {wab, wbc, wca} is trivial. Therefore,
without loss of generality assume that Dp is of type-1 and contains wab, and Dq is of type-2
and contains wbc and wca. We use the same setting as in Case 2, i.e., ℓ is the line through ac

and b lies on the right half-plane. We now move Dq counter-clockwise without changing the
distance of |pq| and stop as soon as wca hits the boundary of Dq. By an analysis similar to
Case 2, we now can observe that |pq| ≤ pr + qr, and hence Dp and Dq must intersect.

▶ Theorem 11. Given a set of n disks in the Euclidean plane such that the width of every
lens is at least 0.265 and the radii are in the interval [1, 1.0001], a maximum clique in the
corresponding disk graph can be computed in O(n4) time.

6 Conclusion and Directions for Future Work

We gave an O(n2.5 log n)-time algorithm to compute a maximum clique in a unit disk graph.
A natural avenue for future research would be to improve the time complexity of the algorithm.
We proved that for the combination of unit disks and axis-parallel rectangles, a maximum
clique is NP-hard to approximate within a factor of 4448/4449. We obtained the result using a
co-2-subdivision approach, and along the way, we showed that every Hamiltonian cubic graph
admits a pair-oriented labeling. It would be interesting to improve the inapproximability
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factor, and one way to achieve this would be to examine whether pair-oriented labelings
exist also for non-Hamiltonian cubic graphs. We showed that if the width of every lens is
at least 0.265, then one can find a maximum clique in polynomial time in a more general
setting where the disk radii are in [1, 1.0001]. We believe that with tedious case analysis,
these numbers may be improved slightly, however, it would be challenging to lower β down
to 0.2 using the current technique.
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1 Introduction

Given a family C of planar graphs and a positive integer n, a point set P ⊆ R2 is called an
n-universal point set for the class C or simply n-universal for C if for every graph G ∈ C on n

vertices there exists a straight-line crossing-free drawing of G such that every vertex of G is
placed at a point of P .

To determine the minimum size of universal sets for classes of planar graphs is a
fundamental problem in geometric graph theory, see e.g. Problem [17] in the Open Problem
Garden. More specifically, the quest is for good bounds on the minimum size fC(n) of an
n-universal point set for a class C.

Schnyder [21] showed that for n ≥ 3 the [n − 1] × [n − 1]-grid forms an n-universal point
set for planar graphs, even if the combinatorial embedding of the planar graph is prescribed.
This shows that f(n) := fP(n) ≤ n2 ∈ O(n2), where P is the class of all planar graphs.
Asymptotically, the quadratic upper bound on f(n) remains the state of the art. Only
the multiplicative constant in this bound has seen some improvement, the current upper
bound is f(n) ≤ 1

4 n2 + O(n) by Bannister et al. [5]. For several subclasses C of planar
graphs, better upper bounds are known: A classical result by Gritzmann et al. [13] is that
every outerplanar n-vertex graph embeds straight-line on any set of n points in general
position, and hence fout-pl(n) = n. Near-linear upper bounds of fC(n) = O(n polylog(n))
are known for 2-outerplanar graphs, simply nested graphs, and for the classes of bounded
pathwidth [4, 5]. Finally, for the class C of planar 3-trees (also known as Apollonian networks
or stacked triangulations), fC(n) = O(n3/2 log n) has been proved by Fulek and Tóth [12].

As for lower bounds, the trivial bounds n ≤ fC(n) ≤ f(n) hold for all n ∈ N and all
planar graph classes C. The current lower bound f(n) ≥ 1.293n − o(n) from [20] has been
shown using planar 3-trees, we refer to [6, 8, 9, 15] for earlier work on lower bounds.

Choi, Chrobak and Costello [7] recently proved that point sets chosen uniformly at random
from the unit square must have size Ω(n2) to be universal for n-vertex planar graphs with
high probability. This suggests that universal point sets of size o(n2) -if they exist- will not
look nice, e.g., they will have a large ratio between shortest and largest distances.

In this paper we study a specific ordered point set H (the exploding double chain) and
denote the initial piece of size 2n − 2 in H as Hn. Let C be the class of all planar graphs G

which have a plane straight-line drawing on the point set Hn where n = |V (G)|. That is, Hn

forms an n-universal point set for C.
A graph is POSH (partial one-sided Hamiltonian) if it is a spanning subgraph of a

graph admitting a plane embedding with a one-sided Hamiltonian cycle (for definitions see
Section 2). Triangulations with a one-sided Hamiltonian cycle have been studied before by
Alam et al. [2] in the context of cartograms. They conjectured that every plane 4-connected
triangulation has a one-sided Hamiltonian cycle. Later Alam and Kobourov [3] found a plane
4-connected triangulation on 113 vertices which has no one-sided Hamiltonian cycle.

Our main result (Theorem 3) is that every POSH graph is in C. We let

C′ := {G : G is POSH}.

Theorem 3 motivates further study of C′. On the positive side we show that every
bipartite plane graph is POSH (proof in Section 4). We proceed to use the construction for
bipartite graphs to show that subcubic planar graphs have a POSH embedding in Section 5.
On the negative side, we also show that not all 2-trees are POSH. We conclude with some
conjectures and open problems in Section 7.

An exploding double chain was previously used by Löffler and Tóth [16]. They show
that every planar graph with n vertices has a 1-bend drawing on a subset Sn of H with
|Sn| = 6n − 10. Our result about bipartite graphs implies a better bound:
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▶ Corollary 1. There is a point set P = H2n−2 of size 4n − 6 such that every n-vertex planar
graph admits a 1-bend drawing with bends and vertices on P .

Proof. The dual of a plane triangulation is a bridgeless 3-regular graph of 2n − 4 vertices; it
has a perfect matching by Petersen’s Theorem [19]. Hence, subdividing at most n−2 edges can
make any planar graph on n vertices bipartite. Thus Hn+n−2 of size 2(n+n−2)−2 = 4n−6
is sufficient to accomodate 1-bend drawings of all n-vertex planar graphs. ◀

Universality for 1-bend and 2-bend drawings with no restriction on the placement of bends
has been studied by Kaufmann and Wiese [14], they show that every n-element point set is
universal for 2-bend drawings of planar graphs.

2 The point set and the class of POSH graphs

In this section we define the exploding double chain H and the class C′ of POSH graphs and
show that for every n ≥ 2 the initial part Hn of size 2n − 2 of H is n-universal for C′.

A sequence (yi)i∈N of real numbers satisfying y1 = 0, y2 = 0 is exploding and the
corresponding point set H = {pi, qi|i ∈ N}, where pi = (i, yi), qi = (i, −yi), is an exploding
double chain, if for all n ∈ N, yn+1 is large enough that all intersections of lines going through
two points of Hn = {pi, qi|i ∈ [n]} with the line x = n + 1 lie strictly between yn+1 and
−yn+1. It is p1 = q1 and p2 = q2, thus |Hn| = 2n − 2. Figure 1 shows H6. This fully
describes the order type of the exploding double chain. Note that the coordinates given
here can be made integers, but the largest coordinate of Hn is exponential in n, which is
unavoidable for the order type. However, the ratio of largest to smallest distance does not
have to be: We can alter the construction setting yi = i, but letting the x-coordinates grow
slowly enough as to achieve the same order type, but with a linear ratio.

An explicit construction of a point set H in this order type is given in the full version.

y

xq3p3

p2 q2

p1 q1

q4p4

q5

q6p6

p5

Figure 1 An example of a point set H6 in a rotated coordinate system.

A plane graph G has a one-sided Hamiltonian cycle with special edge vu if it has a
Hamiltonian cycle (v = v1, v2, . . . , vn = u) such that vu is incident to the outer face and for
every j = 2, . . . , n, the two edges incident to vj in the Hamiltonian cycle, i.e., edges vj−1vj

and vj+1vj , are consecutive in the rotation of vj in the subgraph induced by v1, . . . , vj , vj+1
in G. In particular, the one-sided condition depends on the Hamiltonian cycle, its direction
and its special edge. A more visual reformulation of the second condition is obtained using
the closed bounded region D whose boundary is the Hamiltonian cycle. It is that in the
embedding of G for every j either all the back-edges vivj with i < j are drawn inside D or
in the open exterior of D. We let VI be the set of vertices vj which have a back-edge vivj

with i < j − 1 drawn inside D and VO = V \ VI . The set VI is the set of vertices having
back-edges only inside D while vertices in VO have back-edges only outside D.

SoCG 2023
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v1 v2

vu

v3

v4

vu

v1

v2

v3

v4

v5 v6

v7

v8

Figure 2 K4 and a slightly larger graph both with a one-sided Hamiltonian cycle. Red angles
indicate a side with no back-edge.

Recall that C′ is the class of planar graphs which are spanning subgraphs of plane graphs
admitting a one-sided Hamiltonian cycle. It is worth noting all subgraphs are POSH.

▶ Proposition 2. Any subgraph of a POSH graph is POSH.

Proof. As edge deletions preserve the POSH property by definition, it suffices to show that
deleting a vertex preserves it as well. Let G be a POSH graph and let G′ be its supergraph
with a one-sided Hamiltonian cycle. Now after deleting v from G′, adding an edge between
its neighbours on the Hamiltonian cycle (if it does not exist) can be done along the two edges
of v along the cycle. This is a supergraph of G \ v with a one-sided Hamiltonian cycle. ◀

3 The embedding strategy

Our interest in POSH graphs is motivated by the following theorem.

▶ Theorem 3. Let G′ be POSH and let v1, . . . , vn be a one-sided Hamiltonian cycle of a
plane supergraph G of G′ on the same vertex set. Then there is a crossing-free embedding
of G′ on Hn with the property that vi is placed on either pi or qi.

Proof. It is sufficient to describe the embedding of the supergraph G on Hn. For the proof
we assume that in the plane drawing of G the sequence v1, . . . , vn traverses the boundary
of D in counter-clockwise direction. For each i vertex vi is embedded at v̄i = pi if vi ∈ VI

and at v̄i = qi if vi ∈ VO.
Let Gi = G[v1, . . . , vi] be the subgraph of G induced by {v1, . . . , vi}. The path Λi =

v1, . . . , vi separates Gi. The left part GLi consists of the intersection of Gi with D, the right
part GRi is Gi minus all edges which are interior to D. The intersection of GLi and GRi

is Λi and their union is Gi. The counter-clockwise boundary walk of Gi consists of a path
∂Ri from v1 to vi which is contained in GRi and a path from vi to v1 which is contained in
GLi, let ∂Li be the reverse of this path.

Let Ḡi be the straight-line drawing of the plane graph Gi obtained by placing each
vertex vj at the corresponding v̄j . A vertex v̄ of Ḡi is said to see a point p if there is no
crossing between the segment v̄p and an edge of Ḡi. By induction on i we show:
1. The drawing Ḡi is plane, i.e., non-crossing.
2. Ḡi and Gi have the same outer boundary walks.
3. Every vertex of ∂Li in Ḡi sees all the points pj with j > i and every vertex of ∂Ri in Ḡi

sees all the points qj with j > i.

For i = 2 the graph Gi is just an edge and the three claims are immediate, for Property 3
just recall that the line spanned by p1 and p2 separates the p-side and the q-side of Hn.

Now assume that i ∈ {3, . . . , n}, the properties are true for Ḡi−1 and suppose that vi ∈ VI

(the argument in the case vi ∈ VO works symmetrically). This implies that all the back-edges
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of vi are in the interior of D whence all the neighbors of vi belong to ∂Li−1. Since vi ∈ VI

we have v̄i = pi and Property 3 of Ḡi−1 implies that the edges connecting to v̄i can be added
to Ḡi−1 without introducing a crossing. This is Property 1 of Ḡi.

Since Gi−1 and Ḡi−1 have the same boundary walks and vi (respectively v̄i) belong to
the outer faces of Gi (respectively Ḡi) and since vi has the same incident edges in Gi as v̄i

in Ḡi, the outer walks of Gi and Ḡi again equal each other, i.e., Property 2.
Let j be minimal such that vjvi is an edge and note that ∂Li is obtained by taking

the prefix of ∂Li−1 whose last vertex is vj and append vi. The line spanned by v̄j and
v̄i = pi separates all the edges incident to v̄i in Ḡi from all the segments v̄ℓpk with ℓ < j and
v̄ℓ ∈ ∂Li and k > i. This shows that every vertex of ∂Li in Ḡi sees all the points pk with
k > i. For the proof of the second part of Property 3 assume some edge v̄iv̄j crosses the
line of sight from v̄l to qk, k > i, we refer to Figure 3. First note that this is only possible
if l ≤ j, since otherwise v̄j v̄l separates v̄i = pi and qk, because pi is on the left as can be
seen at x = i and qk is on the right as can be seen at x = k by definition. Since j = l is
impossible by construction, we are left with the case l < j. Then one of v̄i and v̄l, say v̄, lies
to the right of the oriented line v̄jqk. However that implies that v̄j v̄ has qk on its left, which
is a contradiction to the definition of qk at x = k. This completes the proof of Property 3
and thus the inductive step.

Finally, Property 1 for Ḡn implies the theorem. ◀

qj

pi qk

qk

Figure 3 Vertices from ∂Ri see qk

4 Plane bipartite graphs

In this section we consider bipartite plane graphs and show that they are POSH.

▶ Theorem 4. Every bipartite plane graph G = (V, E) is a subgraph of a plane graph G′ on
the same vertex set V which has a one-sided Hamiltonian cycle, i.e., G is POSH.

Proof. Quadrangulations are the plane graphs with all faces of degree four. Equivalently
they are the maximal plane bipartite graphs, i.e., any bipartite plane graph except stars is a
subgraph of a quadrangulation. Thus since POSH graphs are closed under taking subgraphs,
it suffices to prove the theorem for quadrangulations.

Let Q be a quadrangulation and let VB and VW be the black and white vertices of a
2-coloring. Label the two black vertices of the outer face as s and t. Henceforth, when talking
about a quadrangulation we think of an embedded quadrangulation endowed with s and t.
A separating decomposition is a pair D = (Q, Y ) where Q is a quadrangulation and Y is an
orientation and coloring of the edges of Q with colors red and blue such that:
1. The edges incident to s and t are incoming in color red and blue, respectively.
2. Every vertex v ̸∈ {s, t} is incident to a non-empty interval of red edges and a non-empty

interval of blue edges. If v is white, then, in clockwise order, the first edge in the interval
of a color is outgoing and all the other edges of the interval are incoming. If v is black,
the outgoing edge is the clockwise last in its color (see Figure 4).

SoCG 2023
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Figure 4 Edge orientations and colors at white and black vertices.[10]

Separating decompositions of a quadrangulation Q have been defined by de Fraysseix
and Ossona de Mendez [18]. They show a bijection between separating decompositions and
2-orientations (orientations of the edges of Q such that every vertex v ̸∈ {s, t} has out-degree
2) and show the existence of a 2-orientation of Q with an argument related to flows and
matchings. An inductive proof for the existence of separating decompositions was given by
Felsner et al. [11], this proof is based on identifying pairs of opposite vertices on faces.

In a separating decomposition the red edges form a tree directed towards s, and the blue
edges form a tree directed towards t. Each of the trees connects all the vertices v ̸∈ {s, t}
to the respective root. Felsner et al. ([10, 11]) show that the edges of the two trees can be
separated by a curve which starts in s, ends in t, and traverses every vertex and every inner
face of Q. This curve is called the equatorial line.

If Q is redrawn such that the equatorial line is mapped to the x-axis with s being the
left end and t being the right end of the line, then the red tree and the blue tree become
alternating trees ([11], defined below) drawn in the upper respectively lower half-plane defined
by the x-axis. Note that such a drawing of Q is a 2-page book embedding, we call it an
alternating 2-page book embedding to emphasize that the graphs drawn on the two pages of
the book are alternating trees.

t

s

t

s

Figure 5 A quadrangulation Q with a separating decomposition S, and the alternating 2-page
book embedding induced by the equatorial line of S[10].

An alternating tree is a plane tree T with a plane drawing such that the vertices of T are
placed at different points of the x-axis and all edges are embedded in the half-plane above
the x-axis (or all below). Moreover, for every vertex v it holds that all its neighbors are on
one side, either they are all left of v or all right of v. In these cases we call the vertex v

respectively a right or a left vertex of the alternating layout. Note that every vertex is a left
vertex in one of the two trees and a right vertex in the other.

Let Q be a plane quadrangulation on n vertices and let S be a separating decomposition
of Q. Let s = v1, v2, . . . , vn = t be the spine of the alternating 2-page book embedding of Q

based on S. Let Q+ be obtained from Q by adding vnv1 and all the edges vivi+1 which do
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not yet belong to the edge set of Q. By construction v1, v2, . . . , vn is a Hamiltonian cycle of
Q+ and since the trees are alternating, black vertices have only blue edges to the left and
white vertices have only red edges to the left. Thus this Hamiltonian cycle is one-sided with
reverse edge vnv1 = ts. Hence Q is POSH. ◀

It is worth noting that the Hamiltonian cycle read in the reverse direction, i.e., as
vn, vn−1, . . . , v1, is again one-sided, now the reverse edge is v1vn = st.

5 Planar subcubic graphs

In this section we identify another large subclass of the C′. Recall that 3-regular graphs are
also known as cubic graphs and in subcubic graphs all vertices have degree at most 3.

▶ Theorem 5. Every planar subcubic graph G is a spanning subgraph of a planar graph G′

which has an embedding with a one-sided Hamiltonian cycle, i.e., G has a POSH embedding.

▶ Remark 6. Note that we do not claim the theorem for all plane subcubic graphs. However,
we are not aware of any connected subcubic plane graph, which is not POSH.

To prove this, we use Theorem 4 and the following lemmas:

▶ Lemma 7. Let G be a subcubic graph. Then G admits a matching M such that contracting
all the edges of M results in a bipartite multi-graph.

Proof. Let (X, Y ) be a partition the vertex-set of G such that the size of the cut, i.e., the
number of edges in G with one endpoint in X and one endpoint in Y , is maximized. We
claim that the induced subgraphs G[X] and G[Y ] of G are matchings. Suppose that a vertex
v ∈ X has at least two neighbors in G[X]. Then v has at most one neighbor in Y , and hence
moving v from X to Y increases the size of the cut by at least one, a contradiction. The
same argument works for G[Y ].

Let M be the matching in G consisting of all the edges in G[X] and G[Y ]. Contracting
the edges in M transforms G[X] and G[Y ] into independent sets, and hence results in a
bipartite multi-graph G/M . ◀

A separating k-cycle of a plane graph D is a simple cycle of length k, i.e., k edges, such
that there are vertices of D inside the cycle.

▶ Lemma 8. Let G be a subcubic planar graph. Then G admits a plane embedding DG and a
matching M such that contracting all the edges of M in DG results in a bipartite multi-graph
without separating 2-cycles.

Proof. Let G be a subcubic planar graph. Without loss of generality G is connected,
otherwise we just deal with the components first, then embed G in a way that all components
are incident to the outer face.

Note that a 2-cycle can only arise by contracting one matching edge of a triangle or two
matching edges of a quadrilateral. Consider an embedding D of G which minimizes the
number of separating 3-cycles and among those minimizes the number of separating 4-cycles.

▷ Claim 9. D has no separating 3-cycle.

Proof. For illustration, see Figure 6. We will first show D has no separating diamond, that is,
two triangles sharing an edge e = uv, at least one of which is a separating 3-cycle. Otherwise
place u very closely to v. Now e is short and we reroute the other two edges of u such that

SoCG 2023



31:8 Linear Size Universal Point Sets for Classes of Planar Graphs

Figure 6 Procedure to eliminate triangles with an inner vertex. The procedure on the left
eliminates isolated separating triangles, while the one on the right deals with separating diamonds.

they stay close to the corresponding edge of v. Since one of the triangles containing e was
assumed to be separating the new drawing has fewer separating 3-cycles, a contradiction.

We are ready to show D has no separating 3-cycle. If T is a separating 3-cycle some edge
has to go from a vertex v of T into its interior. Since v has degree at most 3 it has no edge to
the outside of T . We can then redraw the edge e of T not incident to v outside of T closely
to its two other edges. Again the new drawing has fewer separating 3-cycles: indeed, if the
redrawn edge would be part of another 3-cycle, T is part of a separating diamond. ◁

Now choose an edge set M of minimum cardinality, such that contracting it yields a
bipartite multi-graph. The proof of Lemma 7 implies that M is a matching. Among those
matchings, we choose M such that the number of separating 4-cycles which have 2 edges in
M is minimized. Such separating 4-cycles are said to be covered by M .

▷ Claim 10. M covers no separating 4-cycle.

Proof. Suppose Q = v1v2v3v4 is a separating 4-cycle such that v1v2 and v3v4 ∈ M and v1
has an edge eI to the inside, thus no edge to the outside.

v1 v2

v3v4

v1 v2

v3v4

v1 v2

v3v4

v1 v2

v3v4

Figure 7 Procedure to eliminate quadrilaterals with an inner vertex. The redrawing (left) cannot
be applied in the right case, where we are changing the blue matching to avoid a separating 2-cycle.

If v4 has no edge to the outside either, we change D to a drawing D′ by redrawing the
part Γ of D inside Q outside of it reflected across v1v4, see Figure 7. In D′ the original
separating 4-cycle is no longer separating. We claim that no new separating 3-cycle or 4-cycle
that is covered by M was created. The claim contradicts the choice of D or M .

To prove the claim note that S = {v2, v3} is a 2-separator, unless Q is the outer face of
D, so let’s assume first that it is not. Thus a separating 3- or 4-cycle has to live on one side
of S, since the shortest path between them in Q ∪ Γ except their edge is of length 3 except if
both v2 and v3 are adjacent to the same vertex of Γ, in which case Q is the outer face, a
contradiction. Let X be the component of G \ S containing Γ. Then the number of vertices
inside 3- or 4-cycles that are not part of X is unchanged in D′, since the face X is located in
is still the same. The only 3- or 4-cycles in X ∪ S that were not reflected in their entirety
are the ones containing the edge v2v3. Since Q is assumed not to be the outer face, at least
one of v2 and v3 is not connected to Γ. Thus such a cycle C is a 4-cycle consisting of v2, v3,
one of v1 or v4 as well as a common neighbour of v2 and v4 or v1 and v3 in Γ. However v1v2
or v3v4 respectively would be the only edge in M ∩ C. This is a contradiction to the fact
that contracting M yields a bipartite graph.
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Now if Q is the outer face of D, it is still true that the only cycles not reflected in their
entirety contain v2v3. However v2 and v3 could both be adjacent to a vertex in Γ, either a
common neighbour for a 3-cycle or two adjacent neighbours for a 4-cycle. Since v2 and v3
are already covered by M , this 3-cycle would contain no edge in M , whereas the 4-cycle
would contain at most one. Therefore both of these contradict the definition of M .

Therefore, we know that v4 has an edge eO to the outside. This edge does not go to any
vertex of the quadrilateral, because the only candidate left would be v2, but this would yield
that one of the triangles v2v3v4 and v1v2v4 is separating.

Change the matching M to an edge set M ′ by removing v1v2 and v3v4 from it and adding
eO and eI . Contracting M ′ still results in a bipartite graph, because the same four facial
cycles that contained our previous edges contain exactly one new edge each as well, so their
size after contraction does not change. Thus M ′ is a matching, because it has the same
cardinality as M and is therefore minimal as well. We conclude M ′ does not cover v2 or
v3, because M did not contain any other edge than v1v2 and v3v4 at them either. Since
M ′ does not contain two edges from quadrilateral v1, . . . , v4 but M is minimal, there has
to be a separating quadrilateral, of which M ′ contains two edges, but M doesn’t. If such a
separating quadrilateral Q contains eI , then it has to contain another edge incident to v1. It
cannot contain v1v2, because we know v2 is not covered by M ′. Therefore it contains v1v4
and consequently eO. The same argumentation works to show that if it contains eO, then
it also contains eI . This is a contradiction to the existence of M ′ because the endpoints of
eO and eI are on the outside and the inside of the quadrilateral respectively and therefore
non-adjacent. ◁

So we proved that our choice of M makes sure that no separating 2-cycles will be present
in the contracted plane bipartite multi-graph. ◀

▶ Remark 11. The embedding D and the matching M can be constructed starting from an
arbitrary embedding and matching by iterative application of the operations used in the
proof.

Proof of Theorem 5. Now let B be the plane bipartite multi-graph obtained from G by
contracting the edges in M without changing the embedding any further. Let B′ be the
underlying simple graph of B and let Q be a quadrangulation or a star which has B′ as a
spanning subgraph. The proof of Theorem 4 shows that there is a left to right placement
v1, . . . , vs of the vertices of Q on the x-axis such that for each i ∈ [s] all the edges vjvi with
j < i − 1 are in one half-plane and all edges vivj with j > i + 1 are in the other half-plane.
Delete all the edges from Q which do not belong to B′, and duplicate the multi-edges of B

in the drawing. This yields a 2-page book embedding Γ of B.

Figure 8 How to add leaves: The leaf is plotted as a square, its new adjacent edge fat.
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Let v be a contracted vertex of B. Vertex v was obtained by contracting an edge uw ∈ M .
If u and/or w did not have degree 3, we add edges at the appropriate places into the
embedding that end in leaves, see Figure 8. To add an edge to u for instance, choose a face f

incident to u that is not contracted into a 2-cycle. Let e and e′ be the two edges incident to
both v and f . If the angle between e and e′ contains part of the spine (the x-axis), we put
the leaf on the spine close to v connected to v with a short edge below or above the spine, in
a way to accomodate the local vertex condition of v. If it doesn’t, assume without loss of
generality it is in the upper half-plane and that edge e is the edge closer to the spine. This
edge is unique because both edges at v delimiting f go upwards and therefore both to the
same side, say right of v. Route the new edge closely along e then put the leaf just next to
the other endpoint x of e. Edges that would cross this new edge cannot cross e, thus the only
possibility are edges incident to x that emanate into the upper halfspace. However those
edges have to go to the left of x by its local vertex condition. These edges do not exist, as any
such edge would have to cross e′, see the dashed line in Figure Figure 8. Thus the new edge
is uncrossed. This procedure will be done to every vertex first. Note that the resulting graph
stays bipartite and the local vertex conditions are still fulfilled, but now every contracted
vertex has degree 4. This makes the case distinction of splitting the vertices easier.

We now show how to undo the contractions, i.e., split vertices, in the drawing Γ in such
a way that at the end we arrive at a one-sided 2-page book drawing Γ⋆ of G, that is, a
2-book embedding of G with vertex-sequence v1, . . . , vn such that for every j ∈ {1, . . . , n} the
incident back-edges vivj with 1 ≤ i < j are all drawn either on the spine or on the same page
of the book embedding (all above or all below the spine). Once we have obtained such a book
embedding, we can delete the artificial added leaves, then add the spine edges (including the
back edge from the rightmost to the leftmost vertex) to G to obtain a supergraph G+ of G

which has a one-sided Hamiltonian cycle, showing that G is POSH.
Before we advance to show how we split a single vertex v of degree four into an edge

uw ∈ M , we first want to give an overview of the order in which the different splits, the far
splits and local splits are applied. We will then describe what these different splits actually
mean. To split all the degree four vertices we proceed as follows:

First we split all vertices which are subject to a far split, from the outside inwards. More
precisely, define a partially ordered set on the edges incident1 to vertices subject to a far
split in the following way: Every edge e defines a region Re which is enclosed by e and the
spine. Now order the edges by the containment order of regions Re. From this poset, choose
a maximum edge and then a vertex that needs a far split incident to that edge. When no
further far split is possible we do all the local splits. These splits are purely local, so they
cannot conflict with each other. Therefore their order can be chosen arbitrarily.

We label the edges of v in clockwise order as e1, e2, e3, e4 such that in G the edges e1, e2
are incident to u and e3, e4 are incident to w. If the two angles ∠e2e3 and ∠e4e1 together
take part of both half-planes defined by the spine, then it is possible to select two points
left and right of the point representing v in Γ and to slightly detour the edges ei such that
no crossings are introduced and one of the two points is incident to e1, e2 and the other to
e3, e4. The addition of an edge connecting the two points completes the split of v into the
edge uw ∈ M . Figure 9 shows a few instances of this local split.

The above condition about the two angles is not fulfilled if and only if all four edges of v

emanate into the same halfspace, say the upper one, and the clockwise numbering starting at
the x-axis is either e4, e1, e2, e3 or e2, e3, e4, e1. The two cases are the same up to exchanging

1 There will be a clarification later as to what this means exactly.
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Figure 9 Four cases for the local split of a vertex v.

the names of u and w, therefore we can assume the first one. A more important distinction is
whether most ei end to the left or right of v. Note that in the ordering given by Γ, all ei go
to the same side, since they are all in the same halfplane. However, if v is not the first vertex
we are splitting, it may happen, that a single edge on the spine to the other side exists, see
Figure 10. For all i ∈ [4] let vi be the other endpoint of ei than v. While it can happen that
some of the vi coincide due to multi-edges, we will first discuss the case that they don’t. In
the left case we put u slightly left of v1 while in the right case u is put slightly right of v2,
connecting u to this close vertex by a spine edge. In both cases we leave w at the former
position of v. Figure 10 shows the right case and Figure 11 the left.

v v2v3 v1v4 w v2v3 v1v4 u

Figure 10 Far split with vi to the right except for the spine edge neighbor.

To see that in the left case edges uv2 and uw are completely free of crossings, observe
that we can route them close to the path v2vv1 and the edge v1v respectively in the original
drawing (dashed in Figure 11). It is important to note here, that due to the order in which
we chose to do the splits, v1 and v2 are still original vertices of B, that is, they have not
been split in the upper half-plane and thus still don’t have two edges emanating to the upper
half-plane to both sides. Therefore, similarly to the argumentation for adding leaves, no edge
incident to v1 crosses uw or uv2. The right case is analogous, just exchange the roles of v1
and v2.

This kind of split is a far split. For the purposes of incidence in the poset structure
mentioned above, vertices are not only considered incident to any edge they are an endpoint
of, but the spine neighbour of u (v1 or v2) is also considered to be incident to the edge
uw. For illustration, consider the outermost black edge in Figure 10 (left), it is considered
incident to v.

In the following we describe how the different kinds of splits are affected by the presence
of multi-edges. The first thing to note is that local splits can be done in the same way, since
we did not mention the end vertices at all.

Concerning the far splits, firstly we talk about the case that exactly two edges go from
one vertex to another: As depicted in Figures 10 and 11 the case v2 = v3 and/or v4 = v1
is unproblematic, in this case we keep the dashed line(s) in the drawing. Double-edges are

SoCG 2023



31:12 Linear Size Universal Point Sets for Classes of Planar Graphs

wv
v3 v2 u v4v3 v2 v1v4v1

Figure 11 Far split within the gray region with vi to the left in the upper half-plane.

wvv4v1 = v2 v3 u v4v1 = v2 v3

Figure 12 If v1 = v2, a double spine edge is created. Here e3 = vv3 is a spine edge.

consecutive because non-consecutive double-edges are separating 2-cycles, which we avoided
in the construction. Thus the last case of a double-edge to consider is v1 = v2. In this case,
we follow the same strategy of placement of u and w, but this results in a double-edge on the
spine between u and v1 = v2, see Figure 12. As in later local splits, we might be interested
what half-space the angle between the two spine edges is part of, we interpret one of these
edges as a spine edge and the other as an edge which is above or below the spine depending
on the right vertex of the two. This might be u or v1, depending on whether we are in the
left or right case. It is important for the one-sidedness condition to choose this direction so
that all left neighbours of the right vertex of the two are reached by edges emanating into
the same halfspace and/or spine edges.

vrv`
wrw`

u`ur

Figure 13 Doing a double split means splitting two vertices simultaneously.

Secondly, if there are three edges between a left vertex vℓ and a right vertex vr, say in
the upper half-plane, we will split both simultaneously, for illustration, see Figure 13. Since
three edges go between these two vertices, there is just one more edge e left for vℓ. Therefore
we can find a place on the spine just to the right or to the left of vℓ which is free, because
the edge e is on the other side. Now we split vℓ into uℓ and wℓ and vr into ur and wr

simultaneously where wℓ and wr are the vertices with the edge that goes somewhere else on
both sides. From left to right we put ur then uℓ just left of the position of vl, which is the
new position of wℓ. The three of them are connected by spine edges, just ur and wℓ have
an edge in the lower half-plane. These edges are not crossed, because the vertices are close
enough together. Finally we put wr at the position of vr and add edges to wr and wℓ in the
upper half-plane. These edges are not crossed, because any edge crossing them would have
crossed the triple edge in the original drawing.



S. Felsner, H. Schrezenmaier, F. Schröder, and R. Steiner 31:13

This kind of split is a double split. These splits are purely local, so they can be performed
together with the local splits in the end.

The last case is that all four edges of a given vertex go to the same vertex, this is a
full connected component of the bipartite graph, because it has maximum degree 4. This
component goes back to a K4 component in the cubic graph that had two independent edges
contracted. A one-sided Hamiltonian cycle of K4 is illustrated in Figure 2. We apply another
local double split which consists of replacing the 4 parallel edges by this drawing, embedded
close to the place of one of the original vertices.

This completes the proof of Theorem 5. ◀

6 2-Trees

From the positive results in Sections 4 and 5 one might expect that “sufficiently sparse”
planar graphs are POSH. This section shows that 2-trees are not.

A 2-tree is a graph which can be obtained, starting from a K3, by repeatedly selecting an
edge of the current graph and adding a new vertex which is made adjacent to the endpoints
of that edge. We refer to this operation as stacking a vertex over an edge.

From the recursive construction it follows that a 2-tree on n vertices is a planar graph
with 2n − 3 edges. We also mention that 2-trees are series-parallel planar graphs. Another
well studied class which contains 2-trees as a subclass is the class of (planar) Laman graphs.

Fulek and Tóth have shown that planar 3-trees admit n-universal point sets of size
O(n3/2 log n). Since every 2-tree is an induced subgraph of a planar 3-tree the bound carries
over to this class.

▶ Theorem 12. There is a 2-tree G on 499 vertices that is not POSH.

Proof. Throughout the proof we assume that a 2-tree G is given together with a left to right
placement v1, . . . , vn of the vertices on the x-axis such that adding the spine edges and the
reverse edge vnv1 to G yields a plane graph with a one-sided Hamiltonian cycle.

For an edge e of G we let X(e) be the set of vertices which are stacked over e and S(e) the
set of edges which have been created by stacking over e, i.e., each edge in S(e) has one vertex
of e and one vertex in X(e). We partition the set X(e) of an edge e = vivj with i < j into a
left part XL(e) = {vk ∈ X(e) : k < i}, a middle part XM(e) = {vk ∈ X(e) : i < k < j}, and
a right part: XR(e) = {vk ∈ X(e) : j < k}.

▷ Claim 13. For every edge |XR(e)| ≤ 2.

Suppose that |XR(e)| ≥ 3. Each vertex in this set has all its back-edges on the same side.
Two of them use the same side for the back edges to the vertices of e. This implies a crossing
pair of edges, a contradiction.

▷ Claim 14. If for all e′ ∈ S(e) we have |X(e′)| ≥ 3, then |XM(e)| ≤ 3.

Suppose that e = vivj with i < j is in the upper half-plane and there are four vertices
x1, x2, x3, x4 in XM(e). One-sidedness implies that the four edges xkvj are in the upper
half-plane. Thus if x1, x2, x3, x4 is the left to right order, then the edges vix2, vix3, and vix4
have to be in the lower half-plane. Now let e′ = vix3 and consider the three vertices in X(e′).
Two of them, say y1, y2, are on the same side of x3. First suppose y1, y2 ∈ X(e′) are left of
x3. The edges of vix2 and x2vj enforce that y1, y2 are between x2 and x3. Due to edge x2vj

the edges viy1, viy2 are in the lower half-plane. One-sidedness at x3 requires that y1x3 and
y2x3 are also in the lower half-plane. This makes a crossing unavoidable.
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Now suppose that y1, y2 ∈ X(e′) are right of x3. The edges vix4 and x4vj enforce that
y1, y2 are between x3 and x4. Due to the edge x3vj the edges viy1 and viy2 are in the lower
half-plane. Now let y1 be left of y2. One-sidedness at y2 requires that x3y2 is also in the
lower half-plane, whence, there is a crossing between viy1 and x3y2. This completes the proof
of the claim.

e

vi
x1

x4 vj ex2x1
vi vjx2

x3

e′

Claim 14 Claim 15

Figure 14 Illustrating the proofs of the claims.

▷ Claim 15. If XL(e) ≥ 2 and x is the rightmost element of XL(e), then XL(e′) ≤ 1 for
some e′ ∈ S(e) incident with x and XR(e′) = ∅ for both.

Suppose that e = vivj with i < j is in the upper half-plane and there are two vertices
x1, x2 in XL(e). We assume that x2 is the rightmost element of XL(e). From one-sidedness at
vj we know that x1vj and x2vj are in the upper half-plane. Now x1vi and hence also x2vi are
in the lower half-plane. All the vertices of X(x2vi) and X(x2vj) are in the region bounded
by x1vj , vjvi, vix1, in particular XR(e′) = ∅ for both. Suppose for contradiction that we
have y1, y2 ∈ XL(x2vi) and z1, z2 ∈ XL(x2vj). By one-sidedness the edges from x2 to the
four vertices y1, y2, z1, z2 are in the same half-plane. If they are in the lower half-plane and
y1 is left of y2 there is a crossing between y1x2 and y2vi. If they are in the upper half-plane
and z1 is left of z2 there is a crossing between z1x2 and z2vj . The contradiction shows that
XL(x2vi) ≤ 1 or XL(x2vj) ≤ 1, since x = x2 this completes the proof of the claim.

We are ready to define the graph G and then use the claims to prove that G is not POSH.
The graph G contains a base edge e and seven vertices stacked on e, i.e., |X(e)| = 7. For each
edge e′ ∈ S(e) there are five vertices stacked on e′. Finally, for each edge e′′ introduced like
that three vertices are stacked on e′′. Note that there are 7 · 2 = 14 edges e′, 14 · 5 · 2 = 140
edges e′′ and 140 · 3 · 2 = 840 edges introduced by stacking on an edge e′′. In total the number
of edges is 995 = 2n − 3, hence, the graph has 499 vertices.

Now suppose that G is POSH and let v1, . . . , vn be the order of vertices on the spine of
a certifying 2-page book embedding. Let e = vivj with i < j be the base edge. Assume
by symmetry that e is in the upper half-plane. From Claim 13 we get |XR(e)| ≤ 2 and
from Claim 14 we get |XM(e)| ≤ 3, it follows that |XL(e)| ≥ 2. Let x1 and x2 be elements
of XL(e) such that x2 is the rightmost element of XL(e). Let e′ = x2vi and e′′ = x2vj

then XR(e′) = ∅ = XR(e′′) by Claim 15. From Claim 14 applied to e′ and e′′ we deduce
that |XM(e′)| ≤ 3 and |XM(e′′)| ≤ 3. Hence |XL(e′)| ≥ 2 and |XL(e′′)| ≥ 2. This is in
contradiction with Claim 13. Thus there is no spine ordering for G which leads to a one-sided
crossing-free 2-page book embedding. ◀



S. Felsner, H. Schrezenmaier, F. Schröder, and R. Steiner 31:15

7 Concluding remarks

We have examined the exploding double chain as a special point set (order type) and shown
that the initial part Hn of size 2n − 2 is n-universal for graphs on n vertices that are POSH.
We believe that the class of POSH graphs is quite rich. On the sparse side, the result
on bipartite graphs might be generalized, while for triangulations, the sheer number of
Hamiltonian cycles in 5-connected graphs [1] makes it likely one of them is one-sided.

▶ Conjecture 16. Every triangle-free planar graph is POSH.

▶ Conjecture 17. Every 5-connected planar triangulation is POSH.

We have shown that 2-trees and their superclasses series-parallel and planar Laman
graphs are not contained in the class C′ of POSH graphs. The question whether these classes
admit universal point sets of linear size remains intriguing.
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Abstract
We consider ternary disc packings of the plane, i.e. the packings using discs of three different radii.
Packings in which each “hole” is bounded by three pairwise tangent discs are called triangulated.
Connelly conjectured that when such packings exist, one of them maximizes the proportion of the
covered surface: this holds for unary and binary disc packings. For ternary packings, there are 164
pairs (r, s), 1 > r > s, allowing triangulated packings by discs of radii 1, r and s. In this paper,
we enhance existing methods of dealing with maximal-density packings in order to study ternary
triangulated packings. We prove that the conjecture holds for 31 triplets of disc radii and disprove it
for 40 other triplets. Finally, we classify the remaining cases where our methods are not applicable.
Our approach is based on the ideas present in the Hales’ proof of the Kepler conjecture. Notably,
our proof features local density redistribution based on computer search and interval arithmetic.
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1 Introduction

Given a finite set S of discs, a packing of the plane by S is a collection of translated copies
of discs from S with disjoint interiors.

Given a packing P , its density δ(P ) is the proportion of the plane covered by the discs.
More formally,

δ(P ) := lim sup
n→∞

area([−n, n]2 ∩ P )
area([−n, n]2) .

Nowadays, the density of disc packings is widely studied in different contexts. The worst-
case optimal density of packings in triangular and circular containers is found in [11, 12]. In
computer science, there are various connections between sphere packings and error-correcting
codes [4]. Researchers in chemical physics used Monte Carlo simulations on 2-disc packings
and, among others, obtained lower bounds on the maximal density of packings with particular
disc sizes [7]. Two other groups of physicists found lower bounds on maximal densities of
packings in R3 with 2 sizes of spheres [26, 31]. Upper bounds on the density are usually
much harder to obtain.

The main problem we are interested in is the following: given a finite set of ball sizes in
R2 (or R3), find a packing of the plane (or of the space) maximizing the density.
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Figure 1 Disc packings self-assembled from colloidal nanodiscs and nanorods in [32] (on the left)
which very accurately correspond to triangulated packings (on the right).

Answering this question has a few practical applications. Chemists, for example, are
interested in the disc and sphere sizes maximizing the density in order to eventually design
compact materials using spherical nanoparticles of given sizes [7, 26,32]. Figure 1 gives an
illustration of experimental results from [32].

The first known studies of the densest packings go back to Kepler. Many advances in
this area have been made since then.

1.1 1-sphere packings
In a Kepler manuscript dated by 1611, we find a description of the “cannonball” packing
followed by an assertion that it is a densest 1-sphere packing (i.e. packing by equally sized
spheres) of the three-dimensional Euclidean space. This assertion is widely known by name
of the Kepler conjecture. The “cannonball” packing, also called face-centered-cubic (FCC)
packing, belongs to a family of packings formed by stacking layers of spheres centered in the
vertices of a triangular lattice, like it is shown in Figure 2. After placing the first two layers, at
each step, there are two choices of how to place the next layer. This gives us an uncountable
set of packings having the same density. These packings are called close-packings.

▶ Conjecture 1 (Kepler 1611). The density δ(P ) of packing P of R3 by unit spheres never
exceeds the density of a close-packing:

δ(P ) ≤ π

3
√

2
. (1)

The first advancement in a proof of the Kepler conjecture was made by Gauss who, in
1831, showed that close sphere packings maximize the density among all possible lattice
packings, i.e. those where the disc centers form a lattice [19]. However, the proof of the whole
conjecture took four centuries to be found. Hilbert included this conjecture, also named “the
sphere packing problem”, in his famous list of 23 problems published in 1900.

The Kepler conjecture was finally proved in a series of 6 papers submitted by Hales and
Furgeson in 1998 [20,22]. Their computer-assisted proof took 8 years to be fully reviewed.
In 2003, Hales founded a project called Flyspeck in order to fully verify his proof by an
automated theorem prover. Flyspeck was completed in 2014 including the proof of the Kepler
conjecture in the list of computer verified proofs [21].

The rough idea of the proof consists of locally redistributing the density function and show-
ing inequality (1) for this redistributed density. Lagarias calls this approach “localization” [29].
In our work, we use the same general ideas discussed in detail in Section 2.
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Figure 2 First step of construction of a
3D close-packing.

Figure 3 2D hexagonal packing.

1.2 Disc packings
The two-dimensional variant of the Kepler conjecture claims the 2D hexagonal packing on
the plane (see Fig. 3) to have the highest density among all planar packings by identical
discs.

In 1772, Lagrange proved it to be a densest among lattice packings. The general result
was first shown by Thue in 1910 [33]. His proof was however considered incomplete, a reliable
proof was given by Fejes-Tóth in 1942 [8].

The proof of the two-dimensional Kepler conjecture contains the basics of the strategy used
to prove similar results for packings with several disc sizes, like binary packings (discussed
below) and ternary packings which are studied in this paper.

Packings of the plane where, as in the hexagonal one, each “hole” is bounded by three
pairwise tangent discs are called triangulated. More formally,

▶ Definition 2. A packing is called triangulated if the graph formed by connecting the
centers of every pair of tangent discs is a triangulation.

Fejes Tóth in [9] called such packings “compact”: since triangulated packings have
no “huge holes”, they intuitively look the most compact. Moreover, around each disc, its
neighbors form a corona of tangent discs which looks like a locally “optimal” way to pack.
For these reasons, triangulated packings appear to be the best candidates to maximize the
density on the whole plane.

Notice that, for a fixed n, there exists only a finite number of n-tuples of disc radii
(r1, · · · , rn) s.t. 1 = r1 > · · · > rn > 0 allowing a triangulated packing where all n disc sizes
are present [30].

Let us consider binary packings of the plane. Given two discs of radii 1 and r < 1, what
is the maximal density of a packing by copies of these discs? We can always obtain π

2
√

3 , the
density of the hexagonal packing, by using only one of the discs which gives as a lower bound
on the maximal density. Florian in [18] derived an upper bound on the density which is
equal to the density in the triangle formed by 2 small and one big pairwise tangent discs. [14]
gives tighter lower and upper bounds of maximal density of binary packings of the plane, for
all values of r ∈ (0, 1).

There are 9 values of r allowing triangulated binary packings where both disc sizes are
present [28]. Such packings are shown in Fig. 4. Each of the depicted packings is periodic,
i.e. if P is a packing in question, there are two non-collinear vectors u and v, called periods,
such that P + u = P + v = P . Notice that in this paper, we always consider packings of the

SoCG 2023
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b                          b                           b1                                              

4                                                                                        

7                                        9

6

2 3

b                          b                           b

b                          b                           b

5

 8

Figure 4 9 triangulated periodic binary packings maximizing the density among packings with
the respective disc sizes.

whole plane, and since the triangulated packings we show here and below are all periodic,
it is enough to represent their fundamental domain (a parallelogram formed by the period
vectors, marked in black in Fig. 4) to see how the whole plane is packed.

Notice that for each of these values of r, there is actually an infinite number of packings
having the same density as the one depicted in Fig. 4. First, changing a finite portion of a
packings does not affect its density. Moreover, for b1, b3, and b7, there exist non-periodic
triangulated packings with a different global structure, having the same density as the ones
from Fig. 4 [28]. For the sake of simplicity, we choose to depict the periodic ones.

It turns out that for each of these 9 radii, the density is maximized by a triangulated
binary packing – namely, the ones shown in Figure 4 [1, 24,25,27]. This result suggests the
following conjecture [2].

▶ Conjecture 3 (Connelly, 2018). If a finite set of discs allows a triangulated saturated
packing, then the density of packings by these discs is maximized on a triangulated packing.

A packing by a set of discs is called saturated if no more discs from this set can be added
to the packing without intersecting already placed discs. In our setup, we always assume
packings to be saturated since we are interested in the upper bounds on the density.

The Connelly conjecture holds for 1-disc (unary) packings and 2-disc (binary) packings.
To study this conjecture, the next step is to verify it for 3-disc (ternary) packings which was
the main motivation of our work.
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1.3 Our results

Let us turn to the ternary packings. To begin with, we need to find the sizes of discs allowing
triangulated ternary packings. This problem was solved in [15]: there are 164 pairs (r, s)
featuring triangulated packings with discs of radii 1, r, s, 1 > r > s. In this paper, a triplet
of disc radii associated to each of such pairs is called a case.

The ternary cases are indexed by positive integers from 1 to 164, like in [15]. To avoid
confusion, the binary cases (pairs of disc radii allowing binary triangulated packings) are
denoted by b1, . . . , b9 which respectively correspond to the cases 1–9 in [1].

The Connelly conjecture is applicable only to the cases having triangulated saturated
packings. This eliminates 15 cases where no triangulated packing is saturated and leaves us
with 149 cases.

Our main contribution is a classification of 71 cases formulated in the following theorem:

▶ Theorem 4.
(a) For the 16 following cases: 53, 54, 55, 56, 66, 76, 77, 79, 93, 108, 115, 116, 118, 129,

131, 146, the density is maximized by a triangulated ternary packing.
(b) For the cases 1–15, the density is maximized by triangulated binary packings. For cases

1–5, it is the triangulated packing of b8; for case 6 – b4; for cases 7–9 – b7; for cases
10–16 – b9.

(c) For the 40 following cases: 19, 20, 25, 47, 51, 60, 63, 64, 70, 73, 80, 92, 95, 97, 98, 99,
100, 104, 110, 111, 117, 119, 126, 132, 133, 135, 136, 137, 138, 139, 141, 142, 151, 152,
154, 159, 161, 162, 163, 164, there exists a non-triangulated packing denser than any
triangulated one.

The values of radii corresponding to the cases from Theorem 4 are given in [15]. The
triangulated packings maximizing the density for the cases from Th. 4.(a) are depicted in
Fig. 5. For Th. 4.(b), the binary triangulated packings which maximize the density are
present in Fig. 4 while the ternary triangulated packings are given in Fig. 7. An instance of
a triangulated ternary packing and a non-triangulated binary denser packing for Th. 4.(c)
are given in Fig. 8 while the complete list can be found in the appendix of the extended
version of the paper [17].

All in all, we proved the Connelly conjecture to be false and classified the 149 cases where
it was applicable in several groups: 16 cases for which the conjecture holds (Th. 4.(a)), 15
cases where the density is maximized on a triangulated packing using only two discs out of
three (Th. 4.(b)), 40 (periodic) counter examples to the initial conjecture (Th. 4.(c)), and
the other cases where our proof strategy does not work. Figure 6 represents each case (i.e.
a triplet of disc radii 1, r, s, 1 > r > s) as a point with coordinates (r, s

r ) and its number
from [15]. The color of the point and the number corresponds to the class we assigned to the
case.

Section 2 is dedicated to the cases where a ternary triangulated packing is proved to
maximize the density. We explain the approach used in the similar proof for binary packings
from [1] and how we enhance it to make it work in our context. The first improvement was
the generalization of the code universal to all the cases (instead of treating them one by one
as in [1]). The second necessary generalization was leaving a bunch of parameters as free
variables instead of fixing them arbitrary. The theoretical background of the proof strategy
is given in Section 2.1. Section 2.2 provides the main ideas of the computational part of
the proof of Th. 4.(a) (the detailed version of this section is given in Section 3 of the full
version [17]). We prove Th. 4.(b) in Section 2.3 by adjusting the proof of Th. 4.(a).

SoCG 2023
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53                               54                              55                               56                

93                              108                             115                             116               

66                              76                               77                               79

118                            129                             131                             146 

Figure 5 The 16 triangulated ternary packings proved to maximize the density (the numbers
correspond to the numbering in [15]).
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Figure 6 The “map” of the 164 cases with triangulated ternary packings. Each case (i.e. a
triplet of disc radii 1, r, s, 1 > r > s) corresponds to a point with coordinates (r, s

r
) and its number

from [15]. The cases where no triangulated packing is saturated are marked in grey. The cases with
a ternary triangulated packing proved to maximize the density are marked by green + with larger
case numbers. The cases where we proved a triangulated binary packing to maximize the density
are marked by dark green +. The cases with counter examples are red ( ). The cases featuring two
coronas (find the details in Section 5.1) are orange. The cases with empty polyhedra (see Section 5.2)
are blue. The remaining cases are marked in black (Section 5.3).
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Our proof, as quite a few recent results in the domain, like [11,14,20], is based on computer
calculations. The main details of the implementation are provided in Section 3. The complete
code is given at the url: https://github.com/tooticki/ternary_triangulated_disc_packings.

Cases from Th. 4.(c) are treated in Section 4. We obtain a counter-example for each of
these cases by applying the flip-and-flow method [3] on the triangulated binary packings
with disc radii ratio close to the radii ratios of pairs of discs of this case.

Section 5 is dedicated to the remaining cases. Section 5.1 presents the 22 cases where
one of the discs appears with at least two different neighborhoods. Our proof technique is
not sufficient to treat such cases, handling them requires a less local approach.

Section 5.2 treats the 52 cases where we did not find a set of constants satisfying all
required inequalities needed in our proof. Even though after several attempts with higher
and higher precision, we concluded that the existence of valid constants is quite unlikely, it
cannot be rigorously proved for the moment. We thus leave this as an open problem.

Finally, Section 5.3 is dedicated to the 4 cases where the existence of such set of constants
is more probable since we could find the parameters satisfying the majority of constraints,
but a few of them were still not satisfied. Whether the density is maximized in these cases is
also an open problem.

2 Proof of Th. 4 (a) and (b)

In this section, we give the proof of the first two parts of Theorem 4. We follow almost the
same steps of the proof as in [1] where the same result is proven for binary triangulated
packings and in [13] which treats computationally the “simplest” case among the ternary
triangulated packings (case 53).

From the theoretical point of view, the transition from binary packings to ternary ones
seems to be straightforward. In practice, however, we have much more cases to treat (149
instead of 9) and for each of them, the problem is much more complex due to the high
number of local combinatorial configurations in possible packings. This requires a more
refined and sensitive choice of parameters than in [1].

2.1 Proof strategy
This section is strongly based on [1]: we use the idea of the proof and quite a few intermediate
results. Thus, for the sake of simplicity, we preserve the same notations.

Let us describe the theoretical background of the proof which is common for all cases,
the only difference being the choice of the parameters described in Section 3.

We are given 3 discs of radii 1, r and s, 1 > r > s and a ternary triangulated packing of
the plane by copies of these discs conjectured to maximize the density, let us denote it by
P ∗. Our aim is to prove that for any other packing P using the same discs, its density δ(P )
does not exceed the density δ∗ of P ∗.

The main idea common to all the results about the maximal density of triangulated
packings was called “cell balancing” by Heppes [25] and it perfectly matches this title. It
consists of two steps: first we locally “redistribute” the density among some well-defined cells
(triangles of the triangulation in [1, 25, 27] and a mixture of Delaunay simplices and Voronoi
cells, both encoded in so-called decomposition stars, in [23]) preserving the global density
value. Then we prove that the redistributed density of any cell of P never exceeds δ∗ .

First, let us define triangulations for packings by several sizes of discs. The FM-
triangulation of a packing was introduced in [10] (it is a particular case of weighted Delaunay
triangulations [5]). Some of its useful properties are given in [1] (Section 4). The vertices of

https://github.com/tooticki/ternary_triangulated_disc_packings
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the FM-triangulation are the disc centers. There is an edge between two disc centers if and
only if there is a point p ∈ R2 and a distance d > 0 such that p is at distance d from the
both discs and at least d from any other disc.

Let T and T ∗ respectively denote the FM-triangulations of P and P ∗. The cells we are
interested in are the triangles of these triangulations. Instead of working with densities, we
introduce an additive function E, called emptiness, which, for a triangle T in T , is defined by

E(T ) := area(T ) × δ∗ − area(T ∩ P ) .

This function was used in [27] by the name of “excess”. It was inspired by “surplus area”
introduced in [25] defined as area(T ) − area(T ∩P )

δ∗ , identical to emptiness up to multiplication
by δ∗. A similar but more complex function called “score” is used in the proof of the Kepler
conjecture [29].

The emptiness function reflects how “empty” the triangle is compared to δ∗. Indeed,
E(T ) is positive if the density of T is less than δ∗, negative if T is denser, and equals zero if
δ(T ) = δ∗. We use it rather than the density because of its additivity: the emptiness of a
union of two triangles equals the sum of their emptiness values. This property does not hold
for the density.

To prove that δ ≤ δ∗, it is enough to show that
∑

T ∈T
E(T ) ≥ 0 [1]. This intuitively means

that P is globally more empty and less dense than P ∗.
Instead of working directly with the emptiness, we define a so-called potential which plays

the role of density redistribution mentioned above. We do it since this function, constructed
explicitly, is easier to manipulate. We will construct a potential U such that for any triangle
T ∈ T , its potential does not exceed its emptiness:

E(T ) ≥ U(T ) (2)

and the sum of potentials of all triangles in T is non-negative:∑
T ∈T

U(T ) ≥ 0 (3)

If, for P ∗, there exists U satisfying (2) and (3) for any packing P , then P ∗ maximizes
the density among packings using the same disc radii:

(2),(3) =⇒
∑
T ∈T

E(T ) ≥ 0 =⇒ δ∗ ≥ δ .

The rest of the proof consists in construction of potential U satisfying both (2) and (3)
for any packing P .

2.2 Sketch of our proof of Th. 4 (a)
This section provides the short version of our proof, please find the detailed version in [17].

We follow the method of “localizing potentials” introduced by Kennedy in [27]. The idea
is to distribute the potential U of each triangle among its vertices in a way that the sum of
vertex potentials of the triangles around each vertex of any packing is non-negative. This
local constraint of non-negativity implies inequality (3).

We choose the potential function as simple as possible to facilitate further calculations.
As in [27] and [1], the potential in a vertex of a triangle depends only on the three disc radii
of the triangle and the angle in the vertex.

SoCG 2023
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Let us first introduce tight triangles: the triangles formed by three tangent discs. For
ternary packings, there are always 10 of them. Let Vxyz denote the vertex potential of the
tight triangle formed by discs of radii x, y, z in the vertex corresponding to the center of the
y-disc, we call these constants tight vertex potentials and we fix them below.

Given a triangle T with discs of radii x, y, z and with vertex v in the center of the y-disc,
we denote by v̂ the angle of v in T and by x̂yz the angle in the center of the y-disc of the
tight triangle formed by the discs of radii x, y, z. We define the vertex potential of T in v as

.
Uv(T ) := Vxyz + my|v̂ − x̂yz|,

where my is a constant fixed below.
As in [1], we choose constants Vxyz and my in a way to satisfy the non-negativity around

each vertex v ∈ T :∑
T ∈T |v∈T

.
Uv(T ) ≥ 0 . (•)

Besides that, tight vertex potentials should satisfy 5 equations in order to guarantee (2),(3)
in P ∗ (you can find them in Section 3.2.1 of the full version of the paper [17]). In [1], the
remaining tight vertex potentials are all set to 0 for the sake of simplicity. This strategy does
not work in our case; we thus leave 6 tight vertex potentials V1r1, V1s1, Vr1r, Vrsr, Vs1s, Vsrs

as free variables at this point.
The solutions of inequalities (•) form a polyhedron in R9 containing all valid values of the

tight vertex potentials and constants m1, mr, ms. You can find more details on the vertex
potentials in [17], the implementation details of the polyhedra are discussed in Section 3.2.

Choosing values of Vxyz and my among all the solutions found above, we seek to satisfy (2):
we pick the solution where Vxyz and my are “small” (find details in [17]).

This is however not enough because of two “limit” cases of triangles. The first are so-called
“stretched” triangles: those where one of the angles is very large which causes high vertex
potential and low emptiness. However, the triangle sharing the longest edge of a stretched
triangle always features low vertex potentials and high emptiness. We thus introduce an
edge potential Ū aiming to make stretched triangles share their potential with their empty
neighbors. You can find the exact formulas of the edge potentials in Section 3.2.2 of the full
version of the paper [17].

The second problematic case are so-called ϵ-tight triangles: those which are close to tight
ones. In tight triangles, the emptiness is equal to the potential by definition which means
that these values are close in ϵ-tight triangles. To verify (2) in this case, we have to compare
the derivatives of the emptiness and the potential. This part is explained in Section 3.3.1
of [17].

As these cases are treated, we verify (2) for the remaining triangles using interval
arithmetic which is discussed in Section 3.1. The details of this verification process are given
in Section 3.3.2 of [17].

2.3 Proof of Th. 4 (b)
Cases 1-18 are special: they are called large separated in [15] since they do not contain
pairs of adjacent medium and small discs (see Fig. 7 for the first 15). For each of these
cases, in addition to ternary triangulated packings, there are other triangulated packings
using only two discs out of three. It happens because the radii of small and medium discs
coincide with the radii of small discs of two cases among b1–b9. It is thus possible to assemble
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packings having the same density as the binary packings of mentioned cases using only two
of three discs. It turns out that in all these cases, the density of one of the mentioned binary
packings exceeds the density of the ternary one. That means, for each of cases 1-18, the
densest packing among the triangulated ones is a binary packing corresponding to a case
from b1–b9 (Fig. 4).

1                            2                            3                            4                             5 

11                          12                          13                          14                          15

6                            7                            8                            9                            10 

Figure 7 Triangulated ternary packings for cases 1-15, where a triangulated binary packing
maximizes the density. For cases 1–5, it is the triangulated packing of b8; for case 6 – b4; for cases
7–9 – b7; for cases 10–16 – b9.

Indeed, each of these ternary packings is formed as a “combination” of two binary packings
one of which is denser than the other. Thus, the densest of the binary packings will also be
denser than its combination with a less dense packing.

We were able to show that the denser triangulated binary packing maximizes the density
among all packings (not only triangulated ones) for the cases from 1 to 15 (Fig. 7). The
proof is almost the same as in Section 2.

Let i be the case number and P3 denote its triangulated ternary packing. Let P ∗
2 denote

the densest triangulated binary packing using two discs of case i and let P2 denote the less
dense triangulated binary packing using two discs of case i. We already know that P ∗

2 is
denser than the two others, δ(P ∗

2 ) > δ(P3) > δ(P2). Our aim is to show that P ∗
2 maximizes

the density among all packings by the discs of case i.
The only difference with the strategy used for other cases concerns vertex potentials.

Since P ∗
2 uses only two discs out of three, it features only 2 coronas instead of 3. Thus, these

2 coronas together with the 10 equations for tight triangles, give us at most 11 independent
equations instead of 12.

We now need to chose 7 free variables instead of 6. We can pick 6 tight potentials of
isosceles triangles as before. There remains to choose the last free variable. Vertex potentials
of equilateral tight triangles cannot be picked because of the equations of type Vxxx = Exxx:
they are already fixed. The remaining vertex potentials of isosceles triangles (Vxxy, x ≠ y)
cannot be used since they are dependent of the first 6 free variables and the equations
2Vxxy + Vxyx = Exyx. The only candidates thus are V1rs, V1sr, Vr1s; we add one of them.

SoCG 2023
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For cases 16, 17, and 18, the densest binary packing is b5 which features two different
coronas around the small disc, so our method is not applicable to them as discussed in
Section 5.1.

To summarize, for cases 1-18, among triangulated packings, the density is maximized by
a binary packing, not a ternary one as in the Connelly conjecture. However, whether this
packing maximizes the density among all packings is still an open question for cases 16–18.

3 Computer implementation

As many proofs of the domain, notably the proof of the Kepler Conjecture [20], the proofs
of the maximal density for triangulated packings, like ours and those from [1, 13, 27], es-
sentially rely on computer calculations. In this section, we discuss the details of computer
implementation. You can find the complete code at https://github.com/tooticki/ternary_
triangulated_disc_packings.

The treatment of each case consists of two steps summarized in Section 2.2. We first
choose all the values necessary to define the potential: tight vertex potentials Vxqy, constants
mq and capping values Zq (Section 3.2.1, [17]), the value of ϵ (Section 3.3.1, [17]), and the
constants lxy, qxy of the edge potentials (Section 3.2.2, [17]). We choose them in a way to
satisfy the “global” inequality (3). The second step is to verify the “local” inequality (2) on
all possible triangles.

3.1 Interval arithmetic

We use interval arithmetic in two completely different contexts: to work with real numbers
non representable in computer memory and to verify inequalities on uncountable but compact
sets of values. More precisely, we use intervals to store the values of radii of discs which
are algebraic numbers obtained as roots of polynomials in [15] as well as the value of π.
The other situation where we use intervals is to verify the local inequalities on a compact
continuum set of triangles.

In interval arithmetic, each value is represented by an interval which contains it and whose
endpoints are exact values finitely representable in computer memory (floating-point numbers).
Performing functions in interval arithmetic preserves both properties. More precisely, if
x1, . . . , xn are intervals, and f is an n-ary function, the interval f(x1, . . . , xn) must contain
f(y1, . . . , yn) for all (y1, . . . , yn) ∈ x1× . . . ×xn and its endpoints are floating-point numbers.

To verify an inequality on two intervals x1 < x2, it is enough to compare the right
endpoint of x1 and the left endpoint of x2. The returned value is True only if each pair of
values from these intervals satisfy the inequality. However, if the result is False, that does
not mean that the inequality is false on the numbers represented by x1 and x2, it might also
mean that these intervals overlap.

We worked with interval arithmetic implemented in SageMath [6], called Arbitrary
Precision Real Intervals 1. The intervals endpoints are floating-point numbers, the precision
we use in the majority of cases is the default precision of the library where the mantissa
encoding has 53 bits.

1 https://doc.sagemath.org/html/en/reference/rings_numerical/sage/rings/real_mpfi.html

https://github.com/tooticki/ternary_triangulated_disc_packings
https://github.com/tooticki/ternary_triangulated_disc_packings
https://doc.sagemath.org/html/en/reference/rings_numerical/sage/rings/real_mpfi.html
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3.2 Polyhedra
As mentioned in Section 2.2, we choose the values of vertex potentials in tight triangles and
constants m1, mr, ms in a way to satisfy all the necessary constraints (more details are given
in [17]). These constraints together define a subset of R9 (where the variables are 6 tight
vertex potentials V1r1, V1s1, Vr1r, Vrsr, Vs1s, Vsrs and 3 constants m1, mr, ms). We use the
Polyhedra module2 of SageMath to work with them (it allows us to store the solutions of a
system of linear inequalities as a convex polyhedron).

Even more constraints are added by ϵ-tight triangles, since there should exist a positive
value of ϵ satisfying the inequalities on derivatives of emptiness and potential given in [17].
To guarantee that, we verify if the inequality hold for ϵ = 0, in other words, we make sure
that it holds for some non-negative ϵ. We do it in SageMath: to compute both parts of
the inequality, we use interval arithmetic and calculations of derivatives. The obtained
inequalities are intersected with the polyhedron calculated above. For all the cases considered
in this section, this intersection is not empty (the cases where it was empty are discussed in
Section 5.2). Then we find the maximal value of ϵ > 0 allowing the intersection not to be
empty and this permits us to fix ϵ.

For all the cases treated in this section, these constraints together define a compact
polyhedron in R9 (where the variables are the 6 tight vertex potentials and m1, mr, ms).

After we get a polyhedron of valid values, we are free to choose a point inside to fix them.
Our aim at that step is to minimize potentials of all triangles in order to satisfy (2). We thus
find the three vertices of the polyhedron minimizing m1, mr and ms respectively, compute a
linear combination of them (the weights that worked well in practice were respectively 1,1
and 4), and take a point between this one and the center of the polyhedron in order to avoid
the approximations problems on the border which are discussed in the next paragraph. Our
method to choose the point described above is a heuristic.

Implementing construction of polyhedra, we encounter the following problem: the Polyhe-
dra class does not allow coefficients of constraints to be intervals, while some of the coefficients
of our inequalities are stored as such due to their dependency of π and disc radii. Polyhedra
do not support intervals as a base ring for a good reason: solutions of a system of linear
inequalities with interval coefficients might not form a convex polyhedron. We choose to
replace the intervals with their centers and work with an approximation of the actual set
of valid values for tight potentials and m1, mr, ms. Our polyhedron is stored in a field of
rational values, since this field is computationally quite efficient.

That means, after choosing a point inside this approximated polyhedra, we cannot know
if this point actually satisfies all the constraints. To make sure it does, we then rigorously
verify that all the inequalities with interval coefficients hold in this point.

4 Counter-examples: proof of Th. 4 (c)

Starting to work on the density of ternary saturated triangulated packings, we believed the
Connelly conjecture to hold, i.e. that for all of the 149 cases, a triangulated packing would
maximize the density. Realization that our proof strategy failed for many of them made us
suspect the conjecture to be false. Knowing that the density of binary triangulated packings
(all of them are given in Figure 4) often exceeds the density of ternary triangulated packings
in question gave us an idea to use them in order to find counter examples.

2 https://doc.sagemath.org/html/en/reference/discrete_geometry/sage/geometry/polyhedron/
constructor.html
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The first result we obtained was for case 110 [16]. After generalization, we ended up with
40 counter examples (19, 20, 25, 47, 51, 60, 63, 64, 70, 73, 80, 92, 95, 97, 98, 99, 100, 104, 110,
111, 117, 119, 126, 132, 133, 135, 136, 137, 138, 139, 141, 142, 151, 152, 154, 159, 161, 162,
163, 164). They are all non triangulated packings using only two discs out of three which
have greater densities than triangulated packings using all three discs. We obtained each of
them deforming a triangulated binary packing with discs whose size ratio is close to the one
of a pair of discs in the triplet associated to the case. Tiny deformations do not dramatically
lower the density and these packings are dense enough to beat the ternary triangulated ones.

δb7 ≈ 0.931901 rb7 ≈ 0.280776 δ ′ 73 ≥ 0.924545 s73 ≈ 0.263654 δ73 0.920565 s73 ≈ 0.263654

Figure 8 Left: a triangulated binary packing of case b7. Middle: a deformation where the small
discs are replaced with the small discs of case 73. Right: a triangulated periodic packing of case 73,
its fundamental domain and description are given in [15].

Let us explain our method on an example. Recall that the pairs of discs allowing binary
triangulated packings are denoted by b1, . . . , b9 while the triplets with ternary triangulated
packings are indexed by positive integers from 1 to 164. Let us consider case 73, its
triangulated ternary packing is given in Figure 8, on the right. Notice that the radius of the
small disc (s73 ≈ 0.263) of case 73 is close to the radius of the small disc (rb7 ≈ 0.281) of
case b7. Let us deform the triangulated binary packing of b7 (Figure 8, on the left) replacing
the small disc of b7 by the small disc from 73. We choose a deformation which breaks as few
contacts between discs as possible (Figure 8, in the middle). Observe that the only broken
contact is between the two small discs: they are not tangent anymore. The density of this
new non-triangulated packing δ′ ≈ 0.9245 is higher than the density of the triangulated
packing 73 δ73 ≈ 0.9206 (Figure 8, on the right).

This method is called flip-and-flow [3]. The 40 counter examples were found by computer
search. First, for each case bi, we find the set of pairs of radii from the cases 1-164 with
radii ratio “close enough” (we choose the distance heuristically) to the ratio of the discs
of bi. Then we deform the triangulated packing of bi to obtain packings with the found
disc ratios. Our way to deform packings was chosen in order to minimize the number of
broken contacts between discs since intuitively it is the best way to keep the density high.
Finally, the densities of 40 packings obtained by our method were higher than the densities
of the respective ternary triangulated packings which leaves us with the counter examples
illustrated in the appendix of the full version of the paper [17].

Our method is not universal: there might be other deformations for certain cases to obtain
even higher density and even more counter examples. Besides that, there might be other
cases with ternary counter examples (notably, among the cases discussed in Sections 5.2).
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5 Other cases

5.1 2 coronas
Among the necessary conditions on vertex potentials in tight triangles given in [17], we saw
that the sum of potentials in the corona around any vertex of triangulated packing T ∗ must
be equal to zero. In all the proved cases, each disc has only one possible corona in T ∗. It is
not always the case, more precisely, among the cases where T ∗ is saturated, and for which we
did not find counter examples, there are 22 cases where one of the discs appears with at least
two different coronas in T ∗: 16, 17, 18, 36, 49, 52, 57, 58, 65, 78, 84, 90, 106, 114, 120, 148,
153, 155, 156, 157, 158, 160. Each of these cases features a supplementary corona consisting
of 6 discs of the same size as the central one. We thus have to add a supplementary condition
6Vxxx = 0, where x is the radius of the disc with two coronas. This however contradicts the
condition 3Vxxx = Exxx in all of these cases. Our density redistribution would need to be
less local to solve this problem. In the context of binary triangulated packings, such a case
(b5, see Figure 4) is treated in detail in Section 5.3 of [1].

5.2 Empty polyhedra
In Section 3.2, we construct a polyhedron in R9 aiming to contain all valid values of tight
vertex potentials and m1, mr, ms. In this section, we talk about the 52 cases where the
polyhedron obtained by our computations is empty: 21, 22, 23, 26, 27, 34, 35, 46, 48, 50, 59,
61, 67, 68, 69, 71, 72, 74, 81, 82, 83, 85, 86, 87, 88, 89, 91, 94, 96, 101, 102, 103, 105, 107,
109, 112, 113, 121, 122, 123, 124, 125, 127, 128, 130, 134, 140, 143, 145, 147, 149, 150.

The polyhedron formed by the inequalities on vertex potentials and the inequality for ϵ-
triangles (which are given in [17]), represents the values satisfying (•) featuring a non-negative
valid ϵ. These constraints are necessary for our proof to be correct. If this polyhedron is
empty there are no valid values of tight potentials and m1, mr, ms and thus our strategy of
proof is not applicable.

Nevertheless, our computations are limited by computer memory which can represent only
certain values. Normally, we avoid this problem by using interval arithmetic (Section 3.1).
However, we can not apply this solution with polyhedra. First, as mentioned in Section 3.2,
in SageMath, the polyhedra module does not support the interval field as a base ring.
Implementing another way to represent “interval polyhedra” would be unreasonable due to
memory and time constraints of calculations: the polyhedra are constructed from thousands
of inequalities, and performing computations in interval field significantly increases time
and memory costs. Instead, we use the ring of rationals to store the inequalities coefficients.
Therefore, the polyhedron we work with is an approximation of the actual polyhedron and
may not contain all the valid sets of values.

Yet, we believe that the polyhedra in question are probably actually empty in these
cases, so the precision issues are not the principal obstacle. All in all, some of the cases from
this section might actually maximize the density but we would need an essentially different
approach to be able to prove it. Looking forward, further attempts to treat these cases would
likely need to use a less local density distribution.

5.3 The 4 mysterious cases
In the four remaining cases (45, 62, 75, and 144) the polyhedron from Section 3.2 is not
empty, like for the cases from the previous section. Nevertheless, we could not find a point in
it to guarantee the local inequality (2) in all triangles: the problematic triangles are always
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45                              62                             75                              144

Figure 9 Triangulated ternary packings of the four mysterious cases.

those close to one of the tight ones. Minimizing mq and the tight potentials is an obvious
strategy to minimize the potentials and eventually satisfy (2) but the capping constants Zq

also dramatically affect potentials.
Trying to find appropriate values of Vxyz, mq and Zq, we represented all the constraints

coming from (3) as a linear optimization problem. This allowed us to encode problematic
triangles violating (2) as constraints and add them to the system, one by one, each time one
appears during local verification, in hope to finally “converge” to a solution which would
satisfy (2) on all triangles. However, this method failed: no solutions were found.

The fact that we could not choose a set of appropriate constants in these cases does
not prove that they do not exist (due to the approximation issues already discussed in the
previous section as well as the new ones coming from encoding our constraints into a rational
linear problem). We, however, believe that these cases, as well as those from the previous
section, just cannot be treated by our proof methods. They probably require a less local
emptiness redistribution then the one we use.
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Labeled Nearest Neighbor Search and Metric
Spanners via Locality Sensitive Orderings
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Abstract
Chan, Har-Peled, and Jones [SICOMP 2020] developed locality-sensitive orderings (LSO) for
Euclidean space. A (τ, ρ)-LSO is a collection Σ of orderings such that for every x, y ∈ Rd there is an
ordering σ ∈ Σ, where all the points between x and y w.r.t. σ are in the ρ-neighborhood of either x

or y. In essence, LSO allow one to reduce problems to the 1-dimensional line. Later, Filtser and Le
[STOC 2022] developed LSO’s for doubling metrics, general metric spaces, and minor free graphs.

For Euclidean and doubling spaces, the number of orderings in the LSO is exponential in the
dimension, which made them mainly useful for the low dimensional regime. In this paper, we develop
new LSO’s for Euclidean, ℓp, and doubling spaces that allow us to trade larger stretch for a much
smaller number of orderings. We then use our new LSO’s (as well as the previous ones) to construct
path reporting low hop spanners, fault tolerant spanners, reliable spanners, and light spanners for
different metric spaces.

While many nearest neighbor search (NNS) data structures were constructed for metric spaces
with implicit distance representations (where the distance between two metric points can be computed
using their names, e.g. Euclidean space), for other spaces almost nothing is known. In this paper
we initiate the study of the labeled NNS problem, where one is allowed to artificially assign labels
(short names) to metric points. We use LSO’s to construct efficient labeled NNS data structures in
this model.
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1 Introduction

1.1 Locality Sensitive Ordering
Chan, Har-Peled, and Jones [30] recently introduce a new and powerful tool into the
algorithmist’s toolkit, called locality sensitive ordering (abbreviated LSO). LSO provides an
order over the points of a metric space (X, dX), this order being very useful, as it helps to
store, sort, and search the data (among other manipulations).

▶ Definition 1 ((τ, ρ)-LSO). Given a metric space (X, dX), we say that a collection Σ of
orderings is a (τ, ρ)-LSO if |Σ| ≤ τ , and for every x, y ∈ X, there is a linear ordering σ ∈ Σ
such that (w.l.o.g.1) x ⪯σ y and the points between x and y w.r.t. σ could be partitioned into
two consecutive intervals Ix, Iy where Ix ⊆ BX(x, ρ · dX(x, y)) and Iy ⊆ BX(y, ρ · dX(x, y)).
ρ is called the stretch parameter.

1 That is either x ⪯σ y or y ⪯σ x, and the guarantee holds w.r.t. all the points between x and y in the
order σ.
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dX(x, xσ) ≤ dX(z, xσ) ≤ dX(y, xσ)

Collection of orderings Σ over subsets of X

Figure 1 Illustration of different types of LSO.

Morally speaking, given a problem, LSO can reduce it from a general and complicated space
to a much simpler space: 1-dimensional line. Chan et al. [30] constructed

(
Od(ϵ−d) · log 1

ϵ , ϵ
)
-

LSO for the d-dimensional Euclidean space. They used their LSO to design simple dynamic
algorithms for approximate nearest neighbor search, bichromatic closest pair, MST, spanners,
and fault-tolerant spanners. Later, Buchin, Har-Peled, and Oláh [27, 28] constructed
reliable spanners using LSO, obtaining considerably superior results compared with previous
techniques.

Filtser and Le [49] generalized Chan et al. [30] result to doubling spaces,2 showing that
every metric space with doubling dimension d admits a

(
ϵ−O(d), ϵ

)
-LSO. Furthermore, they

generalized the concept of LSO to other metric spaces, defining the two related notions
of triangle-LSO (which turn to be useful for general metric spaces), and left-sided LSO
(which turn to be useful for topologically restricted graphs). Here, instead of presenting the
left-sided LSO’s of [49], we introduce the closely related notion of rooted-LSO, which has
some additional structure. All the results and constructions for left-sided LSO in [49] hold
for rooted LSO as well. We refer to [49] for a comparison between the different notions, and
to Figure 1 for an illustration.

▶ Definition 2 ((τ, ρ)-Triangle-LSO). Given a metric space (X, dX), we say that a collection
Σ of orderings is a (τ, ρ)-triangle-LSO if |Σ| ≤ τ , and for every x, y ∈ X, there is an ordering
σ ∈ Σ such that (w.l.o.g.1) x ≺σ y, and for every a, b ∈ X such that x ⪯σ a ⪯σ b ⪯σ y it
holds that dX(a, b) ≤ ρ · dX(x, y).

▶ Definition 3 ((τ, ρ)-rooted-LSO). Given a metric space (X, dX), we say that a collection
Σ of orderings over subsets of X is a (τ, ρ)-rooted-LSO if the following hold:

Each point x ∈ X belongs to at most τ orderings in Σ.
Each ordering σ ∈ Σ is associated with a point xσ ∈ X, which is the first in the order, and
such that the ordering is w.r.t. distances from xσ (i.e. y ≺σ z ⇒ dX(xσ, y) ≤ dX(xσ, z)).
For every pair of points u, v, there is some σ ∈ Σ containing both x, y, and such that
dG(u, xσ) + dG(xσ, v) ≤ ρ · dG(u, v).

2 A metric (X, d) has doubling dimension d if any ball of radius 2r can be covered by 2d balls of radius r.
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Filtser and Le [49] constructed triangle LSO for general metrics, and rooted LSO for the
shortest path metrics of trees, treewidth graphs, planar graphs, and graph excluding a fixed
minor. They used their LSO’s to construct oblivious reliable spanners for the respective
metric spaces, considerably improving previous constructions (that used different techniques).
All the known results on LSO’s are summarized in Table 1.

Table 1 Summary of all known results, on all the different types of locality sensitive orderings
(LSO). k ∈ N, t > 1, ϵ ∈ (0, 1) is an arbitrarily small parameter. (∗) Od hides an arbitrary function
of d, the number of orderings in [30] LSO is Od(ϵ−d) · log 1

ϵ
= 2O(d) · d

3
2 d · ϵ−d · log 1

ϵ
.

LSO type Metric Space # of orderings (τ) Stretch (ρ) Ref

(Classic) LSO Euclidean space Rd Od(ϵ−d) · log 1
ϵ

(∗) ϵ [30]
Doubling dimension d ϵ−O(d) ϵ [49]

Triangle-LSO

General metric O(n 1
k · log n · k2

ϵ · log k
ϵ ) 2k + ϵ [49]

Euclidean space Rd e
d

2t2 ·(1+ 2
t2 ) · Õ( d1.5

ϵ·t ) (1 + ϵ)t Thm. 4
ℓd

p for p ∈ [1, 2] eO(d/tp) · Õ(d) t Thm. 5
ℓd

p for p ∈ [2, ∞] Õ(d) d1− 1
p FullV[46]

Doubling dimension d 2O(d/t) · d · log2 t t Thm. 6

Rooted LSO
Tree log n 1 [49]
Treewidth k k · log n 1 [49]
Planar / fixed minor free O( 1

ϵ · log2 n) 1 + ϵ [49]

Previously constructed LSO for the Euclidean space [30], as well as for metric spaces with
doubling dimension d [49], have exponential dependency on the dimension in their cardinality,
a phenomena often referred to as “the curse of dimensionality”. When the dimension is high, it
can be a major obstacle. Indeed, the distances induced by n point in an O(log n)-dimensional
Euclidean space induce a metric space which is much more structured than a general metric
space. Therefore one might expect them to admit better LSO. However, using [30] one can
only construct (n, ϵ)-LSO (note that every metric admits (⌈ n

2 ⌉, 0)-LSO 3).
Every n point metric space has doubling dimension at most log n. Consider the case

where the doubling dimension is somewhat large (e.g.
√

log n) but not maximal. It is much
more structured than general metric, however the only construction we have [49] gives us
ϵ−O(d) orderings, which might be too large. In the small number of orderings regime, could
we take advantage of the doubling structure to construct better LSO then for general metrics?

Our Contribution. In this paper we construct new triangle-LSO for high dimensional spaces.
We then present many applications for the newly constructed LSO’s, as well as for the
previously constructed LSO’s. Old and new LSO construction are summarized in Table 1.

▶ Theorem 4. For every t ∈ [4, 2
√

d], δ ∈ (0, 1], and d ≥ 1, the d-dimensional Euclidean
space Rd admits

(
O

(
d1.5

δ·t · log( 2
√

d
t ) · log d

δ · e
d

2t2 ·(1+ 2
t2 )

)
, (1 + δ)t

)
-triangle LSO.

For t = 2
3
√

d and δ = 1
2 , we obtain

(
O(d log d),

√
d
)

-triangle LSO. In particular, for every
set of n points in ℓ2, using the Johnson Lindenstrauss dimension reduction [61], for every
fixed t > 1, we can construct

(
n

1
t2 · Õ( log1.5 n

t ), O(t)
)

-triangle LSO, or
(
Õ(log n), O(

√
log n)

)
-

triangle LSO, a quadratic improvement compared with general n-point metric spaces!

3 This follows from a theorem by Walecki [7] who showed that the edges of the Kn clique graph can be
partitioned into ⌈ n

2 ⌉ Hamiltonian paths.
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Interestingly, we show that the
(

O(d log d),
√

d
)

-triangle LSO Σ for ℓ2, is in the same time

also a
(

O(d log d), d
1
p

)
-triangle LSO for ℓp where p ∈ [1, 2], and

(
O(d log d), d1− 1

p

)
-triangle

LSO for ℓp where p ∈ [2, ∞]. For p ∈ [1, 2], we generalize Theorem 4 to ℓp spaces to get the
entire #ordering-stretch trade-off. Finally, we generalize Theorem 4 to general metric spaces
with doubling dimension d.

▶ Theorem 5. For every p ∈ [1, 2], t ∈ [5, d
1
p ] and d ≥ 1, the d-dimensional ℓp space admits(

eO( d
tp ) · Õ(d), t

)
-triangle LSO.

▶ Theorem 6. Given a metric space (X, dX) with doubling dimension d, and parameter
t ∈ [Ω(1), d], X admits

(
2O(d/t) · d · log2 t, t

)
-triangle LSO.

For t = d, we get (Õ(d), d)-triangle LSO, again much better then general metric spaces!

1.2 Labeled Nearest Neighbor Search
Nearest neighbor search (abbreviated NNS) is a classical and fundamental task used in
numerous domains including machine learning, clustering, document retrieval, databases,
statistics, data compression, database queries, computational biology, data mining, pattern
recognition, and many others. In the NNS problem we are given a set P of points in a
metric space (X, dX). The goal is to construct a succinct data structure that given a query
point q ∈ X, quickly returns a point p ∈ P closest to q (i.e. arg minp∈P dX(p, q)). In order
to keep the size of the data structure, and the query time small, usually approximation
is allowed. In the t-approximate nearest neighbor problem (abbreviated t-NNS) the goal
is to return a point p at distance at most t · minp∈P dX(p, q) from q. The problem was
extensively studied in ℓp spaces (see the survey [11]), and also in various norm spaces over
Rd (see e.g. [12, 13]). NNS data structures were also constructed beyond normed spaces.
Some examples are Earth-Mover distance [60], Edit Distance [79, 11], and Fréchet distance
[59, 41, 43, 47]. We observe that a crucial property shared by these examples, is that they
have an “implicit distance representation”. That is, it is possible to compute the distance
between two points using only their names (e.g. the coordinates values in Rd used as names:
dRd ((x1, . . . , xd), (y1, . . . , yd)) = ∥(x1, . . . , xd) − (y1, . . . , yd)∥2).

For general metric spaces, Krauthgamer and Lee [66] introduced the black box model.
Here one is given access to an exact distance oracle 4 DO that answer distance queries in tDO
time. They showed that one can construct an efficient (1 + ϵ)-NNS (that is with polynomial
space, and polylogarithmic query time), if and only if the doubling dimension of X is at
most O(log log n).

Indeed, for metric spaces with large doubling dimension, distance queries provide very
limited information. Consider for example the case where the input metric is the star graph
(inducing uniform metric on the leaves, see illustration below), and the query point attached
to one of the leaves with an edge of infinitesimal weight, one must query all the points before
finding any finite approximation to the nearest neighbor.

ε
q

p

4 An exact distance oracle D is a data structure that given two points x, y, returns est(x, y) = dX(x, y).
A distance oracle of stretch t returns a value est(x, y) in [dX(x, y), t · dX(x, y)].
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An interesting case studied by Abraham, Chechik, Krauthgamer, and Wieder [3] is that
of planar graphs. Here we are given a huge weighted planar graph G = (V, E, w) with N

vertices, and a subset of n vertices X ⊆ V . The goal is to solve the (1 + ϵ)-NNS problem
w.r.t. the shortest path metric dG, input set X and queries from V . Assuming access
to an exact distance oracle4 DO that answer distance queries in tDO time, and given a
planar graph G of maximum degree ∆, Abraham et al. [3] constructed a (1 + ϵ)-NNS
data structure for planar graph of size n · O(ϵ−1 · log log N + ∆ · log2 n) and query time
O((ϵ−1 · log log n + tDO) · log log N + log n · ∆ · tDO).

Linear dependence on the degree is a very limiting requirement, as planar graphs have
apriori unbounded degree. Moreover, exact distance computations (even in planar graphs)
are time consuming, and if the graph is big enough could be infeasible. Exact distance
oracle is a highly non-trivial assumption, it is an expensive data structure, 5 better to be
avoided. One might hope to relax either the max degree assumption, or to use the much
more reasonable and efficient data structure of approximate distance oracle [84, 64, 70].
Unfortunately, Abraham et al. [3] showed both assumptions to be necessary. Specifically,
the dependence on the degree is necessary, as every NNS data structure with space at most
O( N

∆ log∆ n ) must probe the distance oracle at least Ω(∆ log∆ n) times. Furthermore, they
show that if one is only given access to a (1 + ϵ)-distance oracle, then there is a planar graph
(in fact a tree) with maximum degree O(log n), aspect ratio O( log n

ϵ ), N ≤ n2, and the NNS
data structure is forced to make Ω(n) queries to the distance oracle.

To conclude this discussion, exact distance oracle (assumed both by the black box
model [66] and [3]) is an expensive data structure, which enables us to construct efficient
NNS only under very limiting assumptions (small doubling dimension / constant maximum
degree in planar graphs). On the other hand in many metric spaces with “implicit distance
representation” efficient NNS were constructed. The crux is that the information stored in
the name (e.g. coordinate values) used to preform various manipulations on the data, in
addition to distance computation. What if in planar graphs, or even in completely general
metric spaces, we could choose the names of the metric points, or alternatively assigning
each point a short label, would it be possible to construct efficient NNS data structures?

To answer this question, we introduce the labeled t-NNS problem.

▶ Definition 7 (Labeled t-NNS). Consider an N -point metric space (X, dX), where one can
assign to each point x ∈ X an arbitrary short label lx. Given a subset P ⊆ X of size n

(unknown in advance) together with their labels {lx}x∈P (but without access to (X, dX) or
any additional information) the goal is to construct a NNS search data structure as follows:
given a query q ∈ X together with its assigned label ℓq, the data structure will return a
t-approximate nearest neighbor p ∈ P : dX(p, q) ≤ t · minx∈P dX(x, q). The parameters of
study are: label size, data structure size, query time, and approximation factor t.

We also consider the scenario where the set P is changing dynamically: points are
added and removed from P . Here we are required to maintain a data structure for P , while
minimizing the update time (as well as all the other parameters).6

In the labeled NNS model we get to assign a short label (alternatively choose a name)
for each point in a big metric space (X, dX). These labels try to imitate the natural hint
provided by the name of the points themselves in metric spaces with implicit distance

5 After a long line of work, the state of the art (by Long and Pettie [73]) requires either super-linear space
N1+o(1), or very large query time No(1), both quite undesirable.

6 For example, consider a NNS data structure for a set P . Dynamic NNS, should be able to efficiently
update the data structure to work w.r.t. a slightly updated set P ′ = P ∪ {x} \ {y} instead of P .
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representation. The main object of study here is the trade-off between label size, and the
approximation of the resulting NNS. A trivial choice of label for each point x will be simply
to store distances to all other points. However the label size Ω(N) is infeasible. A more
sophisticated solution is the following: fix constants k, t ∈ N, and embed all the points in
(X, dX) into d = Õ(N 1

k )-dimensional ℓ∞ [75, 1]. That is we assign each point x a vector
vx ∈ Rd such that ∀x, y ∈ X, dX(x, y) ≤ ∥vx −vy∥∞ ≤ (2k −1) ·dX(x, y), and use the vectors
as labels. Given an n point subset P ⊆ X with its respective labels (vectors), use Indyk’s
NNS [58] over {vx}x∈P to construct a NNS data structure DInd with approximation factor
O(log1+ 1

t
log d) = O(t · log log N) w.r.t. the ℓ∞ vectors, space Õ(d · n1+ 1

t ) = Õ(N 1
k · n1+ 1

t )
and query time Õ(n1+ 1

k ). Given a query q, we will simply query DInd on the vector vq, and
on answer vp will return p. Note that the query time and space are the same as above, while
the approximation factor will be O(k · t · log log N).

Our Contribution. Our results for the labeled t-NNS are summarized in Table 2. We begin
by proving meta theorem showing that (τ, ρ)-rooted LSO implies a labeled ρ-NNS with label
size O(τ), space O(n · τ), query time O(τ), and update time O(τ · log log N). As a result we
conclude efficient labeled (1+ϵ)-NNS data structures for fixed minor free graphs (and planar),
and exact labeled NNS for treewidth graphs. Another interesting corollary is an efficient
labeled NNS for metrics with small correlation dimension (a generalization of doubling, see
[29]).

Table 2 Labeled NNS data structures for different families. The ∗ sign is replacing O(log log N).
The second to last line is a lower bound. Space is measured in machine words. The label size and
query time always equal. The space in all the cases above equals n times the label size.

Family stretch label query time update time Ref
Minor free 1 + ϵ O( 1

ϵ log2 N) O( 1
ϵ log2 N) 1

ϵ · Õ(log2 N) FullV[46]
Treewidth k 1 O(k log N) O(k log N) k · Õ(log N) FullV[46]
Correlation k 1 + ϵ Õk,ϵ(

√
N) Õk,ϵ(

√
N) Õk,ϵ(

√
N) FullV[46]

Ultrametric 1 O(log N) ∗ ∗ FullV[46]

General Metric 8(1 + ϵ)k O( k
ϵ N

1
k · log N) O( 1

ϵ · ∗) O( k
ϵ N

1
k · ∗) FullV[46]

t < 2k + 1 Ω̃(N 1
k ) arbitrary arbitrary FullV[46]

Doubling d t 2O(d/t) · Õ(d) · log N 2O(d/t) · Õ(d) · ∗ 2O(d/t) · Õ(d) · ∗ FullV[46]

Next, we prove a meta theorem, showing that (τ, ρ)-triangle LSO implies a labeled 2ρ-NNS
with label size O(τ · log N), space O(n · τ · log N), and query and update time O(τ · log log N).
We conclude an efficient labeled NNS for graphs with large doubling dimension. For the
high-dimensional Euclidean space, approximate nearest neighbor search was extensively
studied (see the survey [11], and additional discussion in the full version [46]). However, for
the case of doubling metrics, NNS never went beyond 1 + ϵ approximation. In particular, in
all existing solutions the query time and space have exponential dependence on the dimension
(see references in the full version [46]). Thus ours are the first results in this regime, removing
“the curse of dimensionality”.

As an additional corollary of the triangle LSO to labeled NNS meta theorem one can
derive a NNS of for general metric spaces which considerably improved upon the labeled
NNS based on [75]+[58] discussed above. However, the query time turns out to be somewhat
large. We provide direct constructions for labeled NNS for general metrics, getting label size
Õ(ϵ−1 · N

1
k ), stretch 8(1 + ϵ)k and very small query time: O(ϵ−1 · log log N). We show that

the standard information theoretic bound applies for the labeled NNS as well, specifically, for
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stretch t < 2k + 1, the label size must be Ω̃(n 1
k ) (regardless of query time). Finally, we put

special focus on the regime where the stretch is O(log N). We obtain labeled NNS scheme
with very short label and small query time. Most notably, assuming polynomial aspect ratio,
and allowing the bound on the label to be only in expectation, we can obtain O(1) label size,
and O(log log N) query time.

1.3 Spanners
Given a metric space (X, dX), a metric spanner is a graph H over X points, such that that
the shortest path metric dH in H, closely resembles the metric dX . Formally, a t-spanner
for X is a weighted graph H(X, E, w) that has w(u, v) = dX(u, v) for every edge (u, v) ∈ E

and dH(x, y) ≤ t · dX(x, y) for every pair of points x, y ∈ X. 7 The classic parameter of
study is the trade-off between stretch and sparsity (number of edges). Althöfer et al. [8]
showed that every n point metric space admits a 2k − 1 spanner with O(n1+ 1

k ) edges, while
every set of n points in Rd, or more generally metric space of doubling dimension d, admits
a (1 + ϵ)-spanner with n · ϵ−O(d) edges [38, 52]. We refer to the book [77], and the survey [4]
for an overview.

Path Reporting Low Hop Spanners. Recently, Kahalon, Le, Milenkovic, and Solomon [62]
studied path reporting low-hop spanners. While a t-spanner guarantees that a “short” path
exists between every two points, such a path might be very long, and finding it is a time
consuming operation. A path reporting t-spanner, is a spanner accompanied with a data
structure that given a query pair {x, y}, efficiently retrieves a path between x and y (of
total weight ≤ t · dX(x, y)). A path P with h edges is called an h-hop path. H is an h-hop
t-spanner of X if for every x, y ∈ X, there is an h-hop path P from x to y in H, such that
w(P ) ≤ t · dX(x, y). Clearly, the time required to report a path is at least as large as the
number of edges along the path, thus we wish to minimize the number of hops.

Low number of hops is a highly desirable property in network design, as each transmission
causes delays, which are non-negligible when the number of transmissions is large [5, 23].
Low hop networks are also known to be more reliable [23, 87, 82], and used in electricity and
telecommunications [23], and many other (practical) network design problems [71, 16, 55, 54,
81]. Hop-constrained network approximation is often used in parallel computing [36, 14], as
the number of hops governs the number of required parallel rounds (e.g. in Dijkstra).

Kahalon et al. [62] constructed path reporting low-hop spanners for many spaces, such
as path reporting 2-hop O(k)-spanners with O(n1+ 1

k · k · log n) edges, and O(1) query time
for general metrics, and path reporting 2-hop (1 + ϵ)-spanners with O( n

ϵ2 · log3 n) edges
and O(ϵ−2 · log2 n) query time for planar graphs. They showed a plethora of applications
for their spanners: compact routing schemes, fault tolerant routing, spanner sparsification,
approximate shortest path trees, minimum weight trees (MST), and online MST verification.

Our Contribution. Kahalon et al. [62] first constructed path reporting low hop spanners for
trees, and then reduced each type of metric to the case of trees. We observe that it is actually
enough to reduce to the even simpler case of paths, and obtain a host of such spanners using
LSO’s. We then manually improve some of the resulting spanners, most notably we create

7 Frequently the literature is concerned with graph spanners, where given a graph G = (V, E, w) the
goal is to find a subgraph H preserving distances. Here we study metric spanners, where there is no
underlying graph.
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Table 3 Summary of old and new results on path reporting low hop spanners. The spanners are
for n point metrics, and all report paths with hop bound 2. Here ϵ ∈ (0, 1), k, d ≥ 1 are integers.
The space required for the path reporting data structure is asymptotically equal to the sparsity of
the spanner in all the cases other than Euclidean space, where there is an additional additive factor
of Od(ϵ−2d) log 1

ϵ
.

Metric family stretch sparsity query time Ref

O(k) O
(

n1+ 1
k · k · log n

)
O(1) [62]

General Metric 2k − 1 O(n1+ 1
k · k) O(k) FullV[46], [85]

(1 + ϵ)(4k − 2) O(n1+ 1
k · ϵ−1 · k · log Φ) O(ϵ−1 · log 2k) FullV[46]

Doubling 1 + ϵ ϵ−O(d) · n · log n ϵ−O(d) [62]
Dimension t 2−O(d/t) · Õ(n) 2−O(d/t) · d · log2 t FullV[46]
Euclidean 1 + ϵ Od(ϵ−d) · log 1

ϵ · n · log n Od(1) FullV[46]
Rd (1 + ϵ)t Õ( d1.5

ϵ·t ) · e
2d
t2 ·(1+ 8

t2 ) · n log n Õ( d1.5

ϵ·t ) · e
2d
t2 ·(1+ 8

t2 ) FullV[46]
ℓd

p, p ∈ [1, 2] t Õ(d) · eO( d
tp ) · n log n Õ(d) · eO( d

tp ) FullV[46]
ℓd

p, p ∈ [2, ∞] 2 · d1− 1
p Õ(d) · n log n Õ(d) FullV[46]

Tree 1 O (n · log n) O(1) [62]
Fixed 1 + ϵ O

(
n · ϵ−2 · log3 n

)
O(ϵ−2 · log2 n) [62]

Minor Free 1 + ϵ O(n · ϵ−1 · log2 n) O(ϵ−1 · log n) FullV[46]
Planar 1 + ϵ O(n · ϵ−1 · log2 n) O(ϵ−1) FullV[46]

Treewidth k 1 O(n · k · log n) O(k) FullV[46]

path reporting 2-hop (1 + ϵ)-spanner for planar graph with O( n
ϵ log2 n) edges and O( 1

ϵ )-query
time, and a path reporting 2-hop (1 + ϵ)-spanner for points in d-dimensional Euclidean space
with Od(ϵ−d) · log 1

ϵ · n log n edges and Od(1)-query time. See Table 3 for a summary of old
and new results.

Fault tolerant spanners. Levcopoulos, Narasimhan, and Smid [72] introduced the notion of
a fault-tolerant spanner. A graph H = (X, EH , w) is an f -vertex-fault-tolerant t-spanner of
a metric space (X, dX), if for every set F ⊂ X of at most f vertices, it holds that ∀u, v /∈ F ,
dH\F (u, v) ≤ t · dX(u, v). For general metrics, after a long line of work [34, 39, 20, 22, 40,
21, 80], it was shown that every n-vertex graph admits an efficiently constructible f -vertex-
fault-tolerant (2k − 1)-spanner with O(f1−1/k · n1+1/k) edges, which is optimal assuming
the Erdös’ Girth Conjecture [44]. For n-points in d dimensional Euclidean space, or more
generally in a space of doubling dimension d, f -vertex fault tolerant (1 + ϵ)-spanner were
constructed with ϵ−O(d) · f · n edges [72, 74, 83].

Kahalon et al. [62] initiated the study of low-hop fault tolerant spanners (previous
constructions had Ω(log n) hops). An h-hop f -fault tolerant t-spanner H of a metric (X, dx)
is a graph over X such that for every set F ⊆ X of at most f vertices, for every x, y /∈ F ,
the spanner without F : H[X \ F ] contains an h-hop path between x to y of weight at most
t · dX(x, y). The advantages of such a spanner are straightforward, we refer to [62] for a
discussion. Kahalon et al. constructed a 2-hop f -fault tolerant spanner for doubling spaces
with n · f2 · ϵ−O(d) · log n edges. Note that a linear dependence on f is necessary (as if a point
has degree ≤ f in H, we can delete all it’s neighbors and get distortion ∞). It is natural to
ask whether it is possible to construct such a spanner with only a linear dependence, and
not quadratic as in [62].

Our Contribution. One can easily construct f -fault tolerant 1-spanner for the path graph
with O(nf) edges. We observe that using O(nf log n) edges, it is possible to obtain f -fault
tolerant 2-hop 1-spanner for the path graph (note that O(n log n) edges are necessary for
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Table 4 Summary of old and new results on 2-hop f -fault tolerant spanners. The spanners are
for n point metrics, and all report paths with hop bound 2. Here ϵ ∈ (0, 1), k, d ≥ 1 are integers.

Family Stretch Edges Ref
Doubling 1 + ϵ ϵ−O(d) · f2 · n · log n [62]
dimension d 1 + ϵ ϵ−O(d) · f · n · log n FullV[46]

t 2−O(d/t) · f · Õ(n) FullV[46]
General Metric 4k + ϵ Õ(n1+ 1

k · f · ϵ−1) FullV[46]
Euclidean 1 + ϵ Od(ϵ−d) log 1

ϵ · f · n · log n FullV[46]
Rd (1 + ϵ)k e

2d
k2 ·(1+ 8

k2 ) · Õ( d1.5

ϵ·k ) · f · n · log n FullV[46]
ℓd

p, p ∈ [1, 2] k eO( d
kp ) · Õ(d) · f · n · log n FullV[46]

ℓd
p, p ∈ [2, ∞] 2 · d1− 1

p Õ(d) · f · n · log n FullV[46]
Treewidth k 2 O(n · k · f · log n) FullV[46]
Fixed Minor Free 2 + ϵ O( n

ϵ · f · log2 n) FullV[46]

every 2-hop spanner [6, 68]). Using the various old and new LSO’s, we obtain a host of f -fault
tolerant 2-hop spanners for various metric spaces. Most notably, for metrics with doubling
dimension d, we obtain an f -fault tolerant 2-hop (1 + ϵ)-spanner with ϵ−O(d) · f · n · log n

edges, getting the desired linear dependence on f . See Table 4 for a summary of results.

Reliable spanners. A major limitation of fault tolerant spanners is that the number of
failures must be determined in advance. In particular, such spanners cannot withstand
a massive failure. One can imagine a scenario where a significant portion (even 90%) of
a network fails and ceases to function (due to, e.g., close-down during a pandemic), it is
important that the remaining parts of the network (or at least most of it) will remain highly
connected and functioning. To this end, Bose et al. [26] introduced the notion of a reliable
spanner. A ν-reliable spanner is a graph such that for every failure set B ⊆ X, the residual
spanner H \ B is a t-spanner for X \ B+, where B+ ⊇ B is a superset of cardinality at most
(1 + ν) · |B|. An oblivious ν-reliable t-spanner is a distribution D over spanners, such that
for every failure set B, H \ B is a t-spanner for X \ B+

H , where the superset B+
H depends on

both B and the sampled spanner H . The guarantee is that the cardinality of B+
H is bounded

by (1 + ν) · |B| in expectation.
ν-Reliable spanners were constructed for d dimensional Euclidean and doubling spaces

with n · ϵ−O(d) · Õ(log n) edges [27, 28, 49] by a reduction from (classic) LSO’s. Oblivious
reliable spanners were constructed also for planar, minor free, treewidth graphs, and general
metrics [49] by reductions from triangle, and rooted LSO’s (as well as from sparse covers
[57]).

Our Contribution. Our newly constructed triangle LSO’s for high dimensional Euclidean, ℓp

spaces, and doubling spaces, directly imply reliable spanners for these spaces, obtaining the
first results without exponential dependence on the dimension. See Table 5 for a summary.

Light spanners. An extensively studied parameter is the lightness of a spanner, defined as
the ratio w(H)/w(MST (X)), where w(H) resp. w(MST (X)) is the total weight of edges in
H resp. a minimum spanning tree (MST) of X. Obtaining spanners with small lightness (and
thus total weight) is motivated by applications where edge weights denote e.g. establishing
cost. The best possible total weight that can be achieved in order to ensure finite stretch is
the weight of an MST, thus making the definition of lightness very natural.
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Table 5 Summary of previous and new constructions of ν-reliable spanners.

Family stretch guarantee size ref
Euclidean 1 + ϵ Deterministic n · Õd(ϵ−7d)ν−6 · Õ(log n) [27]
(Rd, ∥ · ∥2) 1 + ϵ Oblivious n · Õd(ϵ−2d) · Õ(ν−1(log log n)2) [28]

(1 + ϵ)t Oblivious ν−1 · e
4d
t2 ·(1+ 8

t2 ) · Õ(n · d3

ϵ2·t2 ) FullV[46]
ℓd

p for p ∈ [1, 2] t Oblivious ν−1 · eO( d
tp ) · Õ(n · d2) FullV[46]

ℓd
p for p ∈ [2, ∞] 2 · d1− 1

p Oblivious ν−1 · Õ
(
n · d2)

FullV[46]
Doubling 1 + ϵ Deterministic n · ϵ−O(d)ν−6 · Õ(log n) [49]

dimension d 1 + ϵ Oblivious n · ϵ−O(d)ν−1 log ν−1 · Õ(log log n)2 [49]
t Oblivious Õ(n) · ν−1 · 2O(d/t) FullV[46]

General metric 8t + ϵ Oblivious Õ(n1+1/t · ϵ−2) · ν−1 [49]
Tree 2 Oblivious n · O(ν−1 log3 n) [49]

Treewidth k 2 Oblivious n · O(ν−1k2 log3 n) [49]
Planar/Minor-free 2 + ϵ Oblivious n · O(ν−1ϵ−2 log5 n) [49]

Table 6 Summary of previews and new results of light spanners for high dimensional metric
spaces. Interestingly, for p ∈ [1, 2] [49] obtain lightness O( t1+p

log2 t
· nO( log2 t

tp ) · log n) regardless of
dimension, which is superior to ours for d ≫ log n.

Metric space Stretch Lightness Ref
O(t) O(n

1
t2 · log n · t) [69]

Euclidean space O(t) O(e
d

t2 · log2 n · t) [50]
(1 + ϵ)2t e

d
2t2 ·(1+ 2

t2 ) · Õ( d1.5

ϵ2 ) · log n FullV[46]
(1 + ϵ)4t e

d
2t2 ·(1+ 2

t2 ) · Õ( d1.5

ϵ2 ) · log∗ n FullV[46]
O(t) O(2 d

t · t · log2 n) [50]
Doubling dimension d O(t) 2O(d/t) · d · log2 t · log∗ n FullV[46]

d O(d · log2 n) [50]
d O(d · log2 d · log∗ n) FullV[46]

ℓd
p for p ∈ [1, 2] t O( t1+p

log2 t
· nO( log2 t

tp ) · log n) [50]
t eO( d

tp ) · Õ(d · t) · log∗ n FullV[46]
ℓd

p for p ∈ [2, ∞] 4 · d1− 1
p Õ(d2− 1

p ) · log∗ n FullV[46]

Obtaining light spanners for general graphs has been the subject of an active line of
work [8, 31, 42, 18, 35, 51], where the state of the are by Le and Solomon [69] who obtained
(1+ϵ)(2k−1) spanner with lightness O(ϵ−1 ·n 1

k ). Light spanners were also studied extensively
in Euclidean spaces (see the book [77]), doubling spaces [53, 51, 25], planar and minor free
graphs [63, 65, 24, 67, 37], and high dimensional Euclidean and doubling spaces [56, 50, 69].

Our Contribution. Recently Le and Solomon [69] obtain a general framework for construct-
ing light spanners from spanner oracles. We construct new spanner oracles using LSO’s. As
a result we derive new light spanners, that improve the state of the art for high dimensional
spaces (and match the state of the art for low dimensional doubling spaces). See Table 6 for
a summary of results.
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1.4 Technical ideas
Triangle LSO for high dimensional Euclidean space. Our construction is very natural:
partition the space randomly in every distance scale ξi (for some large ξ) into clusters of
diameter ξi, such that close-by points are likely to be clustered together. In the created
ordering σ, points in each cluster will be ordered consecutively and recursively. In particular,
the ordering σ will correspond to a laminar partition obtained by the clustering in all possible
scales. For a pair of points x, y ∈ Rd to be satisfied in the resulting ordering σ, they have to
be clustered together in all the distance scales ξi ≥ t · ∥x − y∥2.

Our space partition in each scale is done using ball carving (ala [10]): pick a uniformly
random series of centers z1, z2, . . . ,. Each points is assigned to the cluster of the first
center at distance at most R = 1

2 · ξi. We show that a finite random seed of size dO(d) is
enough to sample such a clustering (in all possible distance scales, simultaneously). The
probability that two points x, y are clustered together is then equal to the ratio between the
volumes of intersection and union of balls: Pr[x, y clustered together] = Vold(B(x,R)∩B(y,R))

Vold(B(x,R)∪B(y,R)) ≥

Ω( 1√
d
) ·

(
1 − ( ∥x−y∥2

R )2
)d/2

. We bound this ratio for the case ∥x − y∥2 ≤ R√
d

using a lemma
from [33]. For the general case, we prove that the ratio between these volumes is at least
Ω( R√

d·∥p−q∥2
) · (1 − ( ∥p−q∥2

R )2) d
2 , slightly improving a similar fact from [9], by a R

∥p−q∥2
factor.

This ratio eventually governs our success probability (when replacing R/∥p−q∥2 by twice the
stretch 2t). The improved analysis of the volumes ratio is significant for the O(

√
d)-stretch

regime, improving the number of orderings to Õ(d) (compered with Õ(d1.5) orderings if we
were using [9]).

To generalize this construction to ℓp spaces, we use the exact same construction, replacing
ℓ2 balls with ℓp balls. The volume ratio lemma from [32] for close-by points is replaced by a
crude observation without any significant consequences to the resulting number of orderings.
For the general case, we directly analyze the ratio of volumes for ℓp-balls (our computation
is similar to [78]). The rest of the analysis is the same.

Triangle LSO for doubling spaces. Ultrametrics are trees with additional structure, where
each ultrametric admits a (1, 1)-triangle LSO. (τ, ρ)-ultrametric cover of a metric space
(X, dX) is a collection U of τ ultrametrics such that every pair x, y ∈ X is well approximated
by the ultrametrics: dX(x, y) ≤ minU∈U dU (x, y) ≤ ρ · dX(x, y). Filtser and Le [49] showed
that (τ, ρ)-ultrametric cover implies (τ, ρ)-triangle LSO. We construct

(
2O(d/t) · d · log2 t, t

)
-

ultrametric cover for spaces with doubling dimension d, implying Theorem 6.
Our starting point for constructing the ultrametric cover is Filtser’s [45] padded partition

cover, which is a collection of ≈ 2O(d/t) space partitions where all clusters are of diameter
at most ∆, and every ball of radius ∆

t is fully contained in a single cluster in one of the
partitions. We take a single partition from each distance scales, where the gap between the
distance scales is somewhat large: O( t

ϵ ). Initially these partitions are unrelated, and we
“force” them to be laminar, while keeping the padding property. Each such laminar partition
induces an ultrametric, and their union is the desired ultrametric cover.

Labeled NNS. Morally, given a (τ, ρ) LSO (or triangle LSO), the NNS label of every point
is simply its position in each ordering. Given a query q, we simply find its successor and
predecessor in each one of the orderings, one of them is guaranteed to be an approximate
nearest neighbor (abbreviated ANN). We can find the successor and predecessor in each
ordering in O(log log N) time using Y-fast trie [86], it only remains to choose one of the 2τ

candidates to be the ANN. To solve this problem we again deploy the LSO structure, and
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construct a 2-hop 1-spanner for the implicit path graph induced by each ordering. Specifically,
each point will be associated with O(log N) edges (the name and weight of which will be
added to the NNS label), where given two points x ≺σ y, in O(1) time we will be able to
find a point z such that x ⪯σ z ⪯σ y and x and y stored {x, z}, {y, z} respectively. Then
dX(x, z) + dX(z, y) will provide us the desired estimate of dX(x, y), which will be used to
choose the ANN.

The case of rooted LSO is simpler- the label of each point z will consist of its position in
all the orderings σ it belongs to, and the distance to the first point xσ (w.r.t. dX). Given a
query q, for each ordering σ containing q, the leftmost point yσ ∈ P in the ordering will be a
candidate ANN. We will estimate the distance from q to yσ by dX(q, xσ) + dX(xσ, yσ), and
return the point with minimum estimation.

For general metrics, the number of orderings is polynomial, N
1
k which results in similar

NNS label size, and query time (following the approach above). While the NNS label
essentially cannot be improved, we can significantly reduce the query time. Our solution is
to use Ramsey trees [19, 76, 17, 2], which are a collection of embeddings into ultrametrics
U such that each point x has a single home ultrametric Ux ∈ U which well approximate all
the distances to x. We thus reduce the labeled NNS problem to ultrametrics, where it can
be efficiently solved. For the case of approximation factor O(log N) the required number of
ultrametrics is O(log N), which leads us to label size O(log2 N). To reduce it even farther, we
use the novel clan embedding [48], where instead of embedding the space X into a collection
of ultrametrics, we embed it into a single ultrametric (but where each point might have
several copies). This allows us to reduce the label size to O(log N) (in expectation), and with
one additional easing assumption (either polynomial aspect ratio or small failure probability)
to even O(1) label size.

Path reporting low hop spanners. A (τ, ρ)-tree cover is similar to ultrametric cover discussed
above, where the ultrametrics are replaced by trees. Kahalon et al. [62] first constructed
path reporting low hop spanner for a tree metric, and then for each metric space of interest,
they considered it’s tree cover, and constructed a path reporting low hop spanner for each
tree in the cover. The spanner for the global metric is obtained by taking the union of all
these spanners constructed for the trees in the cover. To report a queried distance, they
simply computed the paths in all the trees, and returned the shortest observed path.

Thus Kahalon et al. idea is to reduce the problem to the fairly simple case of tree metrics.
We reduce each metric space into the even simpler case of paths using LSO. Given an LSO
(or triangle LSO) we simply construct a path reporting 2-hop path for each path associated
with an ordering, and similarly to [62], check all the path spanners and return the shortest
observed path. The resulting query time has linear dependence on the number of orderings.
The case of rooted LSO is simpler, where it is enough to add a single edge per ordering, to
the leftmost point in the ordering.

Next we present some improvements to the query. First, for the case of Euclidean space
(low dimensional), we observe that given two points x, y, the ordering satisfying them could
be computed in Od(1) time, implying that we don’t need to check all the orderings, and
return a 2 hop path in Od(1) time. Next, for the case of planar graphs, using the structure of
cycle separators (which are used to construct the rooted LSO), in O(1) time one can narrow
the number of potential orderings to O(ϵ−1), implying O(ϵ−1) query time. For general graphs
we observe that the celebrated Thorup Zwick distance oracle [85] can be used to produce a
path reporting 2-hop (2k − 1)-spanner with O(n1+ 1

k · k) edges and O(k) query time. Finally,
we use sparse covers [15] to obtain an exponential improvement in the query time, while
incurring a factor 2 increase in the stretch.
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Fault tolerant spanners. The 2-hop f -fault tolerant spanner for doubling metrics by
Kahalon et al. [62] is based on a quite sophisticated tool of robust tree cover. We have a
superior, and an extremely simple construction. First we observe that the path graph has
a 2-hop f -fault tolerant 1-spanner with O(nf log n) edges. Indeed, add edges from all the
vertices to the middle f + 1 vertices, delete the middle vertices and recurse on each side. We
then apply this construction on each of the path graphs induced by the LSO (or triangle
LSO) to obtain our results. The case of rooted LSO is even simpler: for every path it is
enough to add all the edges to the first f + 1 points.
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1 Introduction

Many optimization problems involving collections of geometric objects in the d-dimensional
space are known to admit a polynomial-time approximation scheme (PTAS). Arguably the
earliest example of such behavior is the problem of finding the maximum number of pairwise
non-intersecting disks or squares in a collection of unit disks or unit squares, respectively [38].
Such subcollection is usually called an independent packing. This result was later extended
to collections of arbitrary disks and squares and, more generally, fat objects [11, 30]. The
reason for the abundance of approximation schemes for geometric problems is that shifting
and layering techniques can be used to reduce the problem to small subproblems that can be
solved by dynamic programming. In fact, the same phenomenon occurs for graph problems,
as evidenced by the seminal work of Baker [4] on approximation schemes for local problems,
such as Independent Set, on planar graphs and its generalizations first to apex-minor-free
graphs [29] and further to graphs embeddable on a surface of bounded genus with a bounded
number of crossings per edge [37]. The notion of intersection graph allows to jump from the
geometric world to the graph-theoretic one. Given a collection O of geometric objects in
Rd, we can consider its intersection graph, the graph whose vertices are the objects in O
and where two vertices Oi, Oj ∈ O are adjacent if and only if Oi ∩ Oj ̸= ∅. An independent
packing in O is then nothing but an independent set in the corresponding intersection graph.
Notice that intersection graphs of unit disks or squares are not minor-closed, as they contain
arbitrarily large cliques. Our motivating question is the following:
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Is there any underlying graph-theoretical reason for the existence of the seemingly unrelated
PTASes for Independent Set mentioned above?

We provide a positive answer to this question that also allows us to further generalize to a
family of independent packing problems. The similar question of whether there is a general
notion under which PTASes using Baker’s technique can be obtained was asked in [37].

Baker’s layering technique relies on a form of decomposition theorem for planar graphs
that can be roughly summarized as follows. Given a planar graph G and k ∈ N, the vertex
set of G can be partitioned into k + 1 possibly empty sets in such a way that deleting any
part induces a graph of treewidth at most O(k) in G. Moreover, such a partition together
with tree decompositions of width at most O(k) of the respective graphs can be found in
polynomial time. A statement of this form is typically referred to as a Vertex Decomposition
Theorem (VDT) [48]. VDTs are known to exist in planar graphs [4], graphs of bounded-genus
and apex-minor-free graphs [29], and H-minor-free graphs [17, 19]. However, their existence
is in general something too strong to ask for, as is the case of intersection graphs of unit
disks or squares and hence fat objects in general. There are then two natural ways in which
one can try to relax the notion of VDT. First, we can consider an approximate partition of
the vertex set, where a vertex can belong to some constant number of sets. Second, we can
look for a width parameter less restrictive than treewidth.

Dvořák [24] pursued the first direction and introduced the notion of efficient fractional
treewidth-fragility. We state here an equivalent formulation from [28]. A class of graphs
G is efficiently fractionally treewidth-fragile if there exists a function f : N → N and an
algorithm that, for every k ∈ N and G ∈ G, returns in time poly(|V (G)|) a collection of
subsets X1, X2, . . . , Xm ⊆ V (G) such that each vertex of G belongs to at most m/k of the
subsets and moreover, for i = 1, . . . , m, the algorithm also returns a tree decomposition of
G − Xi of width at most f(k). Several graph classes are known to be efficiently fractionally
treewidth-fragile. In fact, a hereditary class G is efficiently fractionally treewidth-fragile in
each of the following cases (see, e.g., [28]): G has sublinear separators and bounded maximum
degree, G is proper minor-closed, or G consists of intersection graphs of convex objects with
bounded aspect ratio in Rd (for fixed d) and the graphs in G have bounded clique number.
Dvořák [24] showed that Independent Set admits a PTAS on every efficiently fractionally
treewidth-fragile graph class. This result was later extended [26, 28] to a framework of
maximization problems including, for example, Max Weight Distance-d Independent
Set, Max Weight Induced Forest and Max Weight Induced Matching. However,
the notion of fractional treewidth-fragility falls short of capturing classes such as unit disk
graphs, as it implies the existence of sublinear separators [24].

One can then try to pursue the second direction mentioned above and further relax the
notion of efficient fractional fragility by considering width parameters more powerful than
treewidth (i.e., bounded on a larger class of graphs) and algorithmically useful. A natural
candidate is the recently introduced tree-independence number [15], a width parameter defined
in terms of tree decompositions which is more powerful than treewidth (see Section 3). Several
algorithmic applications of boundedness of tree-independence number have been provided,
most notably polynomial-time solvability of Max Weight Independent Packing [15]
(see Section 5 for the definition), a common generalization of Max Weight Independent
Set and Max Weight Induced Matching, and of its distance-d version, for d even [45].
Investigating the notion of efficient fractional tree-independence-number-fragility (tree-α-
fragility for short) was recently suggested in a talk by Dvořák [25], where it was stated that,
using an argument from [27], it is possible to show that intersection graphs of balls and cubes
in Rd are fractionally tree-α-fragile.
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A successful notion related to fractional treewidth-fragility is the layered treewidth of
a graph [21]. Despite currently lacking any direct algorithmic application, it proved useful
especially in the context of coloring problems (we refer to [22] for additional references). We
just mention that classes of bounded layered treewidth include planar graphs and, more
generally, apex-minor-free graphs and graphs embeddable on a surface of bounded genus
with a bounded number of crossings per edge, amongst others [20]. It can be shown that
bounded layered treewidth implies fractional treewidth-fragility (see Section 4). Layered
treewidth is also related to local treewidth, a notion first introduced by Eppstein [29], and in
fact, on proper minor-closed classes, having bounded layered treewidth coincides with having
bounded local treewidth (see, e.g., [20]).

1.1 Our results
In this paper, we investigate the notion of efficient fractional tree-α-fragility and show that
it answers our motivating question in the positive, thus allowing to unify and extend several
known results. Our main result can be summarized as follows and will be proved in Section 4
and Section 5.

▶ Theorem 1. Max Weight Independent Packing admits a PTAS on every efficiently
fractionally tree-α-fragile class. Moreover, the class of intersection graphs of fat objects in
Rd, for fixed d, is efficiently fractionally tree-α-fragile1.

The message of Theorem 1 is that a doubly-relaxed version of a VDT suffices for algorithmic
applications and is general enough to hold for several interesting graph classes. Theorem 1
cannot be improved to guarantee an EPTAS, unless FPT = W[1]. Indeed, Marx [42] showed
that Independent Set remains W[1]-complete on intersection graphs of unit disks and
unit squares. The natural trade-off in extending the tractable families with respect to
approximation is that fewer problems will admit a PTAS. In our case this is exemplified by
the minimization problem Feedback Vertex Set, which admits no PTAS, unless P = NP,
on unit ball graphs in R3 [32] but admits an EPTAS on disk graphs in R2 [41].

In Section 4, we also show that fractionally tree-α-fragile classes have bounded biclique
number, where the biclique number of a graph G is the maximum n ∈ N such that the
complete bipartite graph Kn,n is an induced subgraph of G. This shows in particular that,
unsurprisingly, the notion of fractional tree-α-fragility falls short of capturing intersection
graphs of rectangles in the plane. Whether Independent Set admits a PTAS on these
graphs remains one of the major open problems in the area (see, e.g., [34]). We also show
that the absence of large bicliques is not sufficient for guaranteeing fractional tree-α-fragility:
n-dimensional grids of width n are K2,3-free but not fractionally tree-α-fragile.

We begin our study of fractional tree-α-fragility by introducing, in Section 3, a subclass
of fractionally tree-α-fragile graphs, namely the class of graphs with bounded layered tree-
independence number. We obtain the notion of layered tree-independence number by relaxing
the successful notion of layered treewidth and show that, besides graphs of bounded layered
treewidth, classes of intersection graphs of unit disks in R2 and of paths with bounded
horizontal part2 on a grid have bounded layered tree-independence number. Moreover, we
observe that, for minor-closed classes, having bounded layered tree-independence number
is equivalent to having bounded layered treewidth, thus extending a characterization of
bounded layered treewidth from [20].

1 Here we use a definition of fatness slightly generalizing that of Chan [11] (see Section 4.1).
2 The horizontal part of a path is the interval corresponding to the projection of the path onto the x-axis.
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We then consider the behavior of layered tree-independence number with respect to
graph powers. We show that odd powers of graphs of bounded layered tree-independence
number have bounded layered tree-independence number and that this does not extend to
even powers. Combined with Theorem 1, this gives the following result which applies, for
example, to unit disk graphs and cannot be extended to odd d ∈ N (see Section 5.2).

▶ Theorem 2. For a fixed positive even integer d, the distance-d version of Max Weight
Independent Packing admits a PTAS on every class of bounded layered tree-independence
number, provided that a tree decomposition and a layering witnessing small layered tree-
independence number can be computed efficiently.

Finally, we show that the approach to PTASes through tree-independence number is
competitive in terms of running time for some classes of intersection graphs. Specifically, in
Section 5.3, we obtain PTASes for Max Weight Independent Set for intersection graphs
of families of unit disks, unit-height rectangles, and paths with bounded horizontal part on a
grid, which improve or generalize results from [6, 12, 43] mentioned in the next section.

We believe that the notion of fractional tree-α-fragility can find further applications in
the design of PTASes. In fact, it would be interesting to obtain an algorithmic meta-theorem
similar to those for fractionally treewidth-fragile classes [28, 26] and classes of bounded
tree-independence number [45]. Although our interest is in approximation schemes, we notice
en passant that the observations from Section 3 lead to a subexponential-time algorithm for
the distance-d version of Max Weight Independent Packing, for d even, on unit disk
graphs. We finally remark that all our PTASes for intersection graphs of geometric objects
are not robust i.e., they require a geometric realization to be part of the input.

1.2 Other related work

Disk graphs. Very recently, Lokshtanov et al. [41] established a framework for designing
EPTASes for a broad class of minimization problems (specifically, vertex-deletion problems)
on disk graphs including, among others, Feedback Vertex Set and d-Bounded Degree
Vertex Deletion. Previous sporadic PTASes on this class were known only for Vertex
Cover [30, 50], Dominating Set [35], Independent Set [11, 30] and Max Clique [8].
Theorem 1 adds several maximization problems to this list (see Section 5).

Unit disk graphs. Unit disk graphs are arguably one of the most well-studied graph classes
in computational geometry, as they naturally model several real-world problems. Great
attention has been devoted to approximation algorithms for Max Weight Independent
Set on this class (see, e.g., [39, 46, 49]). To the best of our knowledge, the fastest known
PTAS is a (1 − 1/k)-approximation algorithm with running time O(kn

4⌈ 2(k−1)√
3

⌉) [43]. We also
remark that a special type of Decomposition Theorem was recently shown to hold for the
class of unit disk graphs. A Contraction Decomposition Theorem (CDT) is a statement of
the following form: given a graph G, for any p ∈ N, one can partition the edge set of G into
E1, . . . , Ep such that contracting the edges in each Ei in G yields a graph of treewidth at most
f(p), for some function f : N → N. CDTs are useful in designing efficient approximation and
parameterized algorithms and are known to hold for classes such as graphs of bounded genus
[18] and unit disk graphs [5]. Since these classes are efficiently fractionally tree-α-fragile, our
results can be seen as providing a different type of relaxed decomposition theorems for them.
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Intersection graphs of unit-height rectangles. As observed by Agarwal et al. [1], this class
of graphs arises naturally as a model for the problem of labeling maps with labels of the
same font size. Improving on [38], they obtained a (1 − 1/k)-approximation algorithm for
Max Weight Independent Set on this class with running time O(n2k−1). Chan [12]
provided a (1 − 1/k)-approximation algorithm with running time O(nk).

Intersection graphs of paths on a grid. Asinowski et al. [3] introduced the class of Vertex
intersection graphs of Paths on a Grid (VPG graphs for short). A graph G is a VPG graph if
there exists a collection P of paths on a grid G such that P is in one-to-one correspondence
with V (G) and two vertices are adjacent in G if and only if the corresponding paths intersect.
It is not difficult to see that this class coincides with the well-known class of string graphs.
If every path in P has at most k bends i.e., 90 degrees turns at a grid-point, the graph is
a Bk-VPG graph. Golumbic et al. [36] introduced the class of Edge intersection graphs of
Paths on a Grid (EPG graphs for short) which is defined similarly to VPG, except that two
vertices are adjacent if and only if the corresponding paths share a grid-edge. It turns out
that every graph is EPG [36] and Bk-EPG graphs have been defined similarly to Bk-VPG
graphs. Approximation algorithms for Independent Set on VPG and EPG graphs have
been deeply investigated, especially when the number of bends is a small constant (see,
e.g., [7, 33, 40, 44]). It is an open problem whether Independent Set admits a PTAS on
B1-VPG graphs [44]. Concerning EPG graphs, Bessy et al. [6] showed that the problem
admits no PTAS on B1-EPG graphs, unless P = NP, even if each path has its vertical
segment or its horizontal segment of length at most 1. On the other hand, they provided a
PTAS for Independent Set on B1-EPG graphs where the length of the horizontal part of
each path is at most a constant c with running time O∗(n 3c

ε ).

2 Preliminaries

We consider only finite simple graphs. If G′ is a subgraph of G and G′ contains all the
edges of G with both endpoints in V (G′), then G′ is an induced subgraph of G and we write
G′ = G[V (G′)]. For a vertex v ∈ V (G) and r ∈ N, the r-closed neighborhood Nr

G[v] is the
set of vertices at distance at most r from v in G. The degree dG(v) of a vertex v ∈ V (G) is
the number of edges incident to v in G. The maximum degree ∆(G) of G is the quantity
max {dG(v) : v ∈ V }. Given a graph G = (V, E) and V ′ ⊆ V , the operation of deleting the
set of vertices V ′ from G results in the graph G − V ′ = G[V \ V ′]. A graph is Z-free if it
does not contain induced subgraphs isomorphic to graphs in a set Z. The complete bipartite
graph with parts of sizes r and s is denoted by Kr,s. An independent set of a graph is a set
of pairwise non-adjacent vertices. The maximum size of an independent set of G is denoted
by α(G). A clique of a graph is a set of pairwise adjacent vertices. A matching of a graph is
a set of pairwise non-incident edges. An induced matching in a graph is a matching M such
that no two vertices belonging to different edges in M are adjacent in the graph.

Intersection graphs of unit disks and rectangles. We now explain how the geometric
realizations of these intersection graphs are encoded. A collection of unit disks with a
common radius c ∈ R is encoded by a collection of points in R2 representing the centers of
the disks. Unless otherwise stated, when we refer to a rectangle we mean an axis-aligned
closed rectangle in R2. As is typically done for intersection graphs of rectangles, we assume
that the vertices of the rectangles are on an integer grid G and each rectangle is encoded by
the coordinates of its vertices. Given an intersection graph G of a family R of rectangles, a
grid representation of G is a pair (G, R) as above.
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VPG and EPG graphs. Given a rectangular grid G, its horizontal lines are referred to as
rows and its vertical lines as columns. For a VPG (EPG) graph G, the pair R = (G, P) is a
VPG representation (EPG representation) of G. More generally, a grid representation of a
graph G is a triple R = (G, P, x) where x ∈ {e, v}, such that (G, P) is an EPG representation
of G if x = e, and (G, P) is a VPG representation of G if x = v. Note that, irrespective
of whether x = e (that is, G is an EPG graph) or x = v (that is, G is a VPG graph), if
two vertices u, v ∈ V (G) are adjacent in G then Pu and Pv share at least one grid-point. A
bend-point of a path P ∈ P is a grid-point corresponding to a bend of P and a segment of P

is either a vertical or horizontal line segment in the polygonal curve constituting P . Paths
in P are encoded as follows. For each P ∈ P, we have one sequence s(P ) of points in R2:
s(P ) = (x1, y1), (x2, y2), . . . , (xℓP

, yℓP
) consists of the endpoints (x1, y1) and (xℓP

, yℓP
) of P

and all the bend-points of P in their order of appearance when traversing P from (x1, y1) to
(xℓP

, yℓP
). If each path in P has a number of bends polynomial in |V (G)|, then the size of this

data structure is polynomial in |V (G)|. Given s(P ), we can easily determine the horizontal
part h(P ) of the path P . Note that our results for VPG and EPG graphs (Theorems 11
and 26), although stated for constant number of bends, still hold for polynomial (in |V (G)|)
number of bends, with a worse polynomial running time.

PTAS. A PTAS for a maximization problem is an algorithm which takes an instance I of
the problem and a parameter ε > 0 and produces a solution within a factor 1 − ε of the
optimal in time nO(f(1/ε)). A PTAS with running time f(1/ε) · nO(1) is called an efficient
PTAS (EPTAS for short).

3 Layered and local tree-independence number

The key definitions of this section are those of tree-independence number and layering, which
we now recall. A tree decomposition of a graph G is a pair T = (T, {Xt}t∈V (T )), where T is
a tree whose every node t is assigned a vertex subset Xt ⊆ V (G), called a bag, such that the
following conditions are satisfied:
(T1) Every vertex of G belongs to at least one bag;
(T2) For every uv ∈ E(G), there exists a bag containing both u and v;
(T3) For every u ∈ V (G), the subgraph Tu of T induced by {t ∈ V (T ) : u ∈ Xt} is connected.
The width of T = (T, {Xt}t∈V (T )) is the maximum value of |Xt| − 1 over all t ∈ V (T ). The
treewidth of a graph G, denoted tw(G), is the minimum width of a tree decomposition of
G. The independence number of T , denoted α(T ), is the quantity maxt∈V (T ) α(G[Xt]). The
tree-independence number of a graph G, denoted tree-α(G), is the minimum independence
number of a tree decomposition of G. Clearly, tree-α(G) ≤ tw(G) + 1, for any G. On the
other hand, tree-independence number is more powerful than treewidth, as there exist classes
with bounded tree-independence number and unbounded treewidth (for example, chordal
graphs have tree-independence number 1 [15]).

A layering of a graph G is a partition (V0, V1, . . . , Vt) of V (G) such that, for every edge
vw ∈ E(G), if v ∈ Vi and w ∈ Vj , then |i − j| ≤ 1. Each set Vi is a layer. The layered
width of a tree decomposition T = (T, {Xt}t∈V (T )) of a graph G is the minimum integer ℓ

such that, for some layering (V0, V1, . . .) of G, and for each bag Xt and layer Vi, we have
|Xt ∩ Vi| ≤ ℓ. The layered treewidth of a graph G is the minimum layered width of a tree
decomposition of G. Layerings with one layer show that the layered treewidth of G is at most
tw(G) + 1. We now introduce the analogue of layered treewidth for the width parameter
tree-independence number.
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▶ Definition 3. The layered independence number of a tree decomposition T = (T, {Xt}t∈V (T ))
of a graph G is the minimum integer ℓ such that, for some layering (V0, V1, . . .) of G, and for
each bag Xt and layer Vi, we have α(G[Xt ∩ Vi]) ≤ ℓ. The layered tree-independence number
of a graph G is the minimum layered independence number of a tree decomposition of G.

Layerings with one layer show that the layered tree-independence number of G is at most
tree-α(G). Moreover, the layered tree-independence number of a graph is clearly at most its
layered treewidth. The proof of [21, Lemma 10] shows, mutatis mutandis, that graphs of
bounded layered tree-independence number have O(

√
n) tree-independence number:

▶ Lemma 4. Every n-vertex graph with layered tree-independence number k has tree-
independence number at most 2

√
kn.

Given a width parameter p, a graph class G has bounded local p if there is a function
f : N → N such that for every integer r ∈ N, graph G ∈ G, and vertex v ∈ V (G), the subgraph
G[Nr[v]] has p-width at most f(r). In [21], it is shown that if every graph in a class G has
layered treewidth at most ℓ, then G has bounded local treewidth with f(r) = ℓ(2r + 1) − 1.

▶ Lemma 5 (⋆). If every graph in a class G has layered tree-independence number at most ℓ,
then G has bounded local tree-independence number with f(r) = ℓ(2r + 1).

▶ Corollary 6 (⋆). The layered tree-independence number of Kn,n is at least n/5.

Figure 1 Examples showing that VPG/EPG graphs and intersection graphs of rectangles have
unbounded layered tree-independence number: VPG/EPG representation (left) and representation
by intersection of rectangles (right) of K4,4.

▶ Theorem 7 (⋆). The following are equivalent for a minor-closed class G:
1. Some apex3 graph is not in G;
2. G has bounded local tree-independence number;
3. G has linear local tree-independence number (i.e., f(r) is linear in r);
4. G has bounded layered tree-independence number.

For p ∈ N, the p-th power of a graph G is the graph Gp with vertex set V (Gp) = V (G),
where uv ∈ E(Gp) if and only if u and v are at distance at most p in G. Bonomo-Braberman
and Gonzalez [9] showed that fixed powers of bounded treewidth and bounded degree graphs
are of bounded treewidth: For any graph G and p ≥ 2, tw(Gp) ≤ (tw(G)+1)(∆(G)+1)⌈ p

2 ⌉−1.
It follows from [23] that powers of graphs of bounded layered treewidth and bounded maximum
degree have bounded layered treewidth. The upper bound therein was later improved by
Dujmović et al. [22], who showed that if G has layered treewidth k, then Gp has layered
treewidth less than 2pk∆(G)⌊ p

2 ⌋. Using a result from [45], we show that odd powers of
bounded layered tree-independence number graphs have bounded layered tree-independence
number and that this does not extend to even powers.

3 An apex graph is a graph that can be made planar by deleting a single vertex.
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▶ Theorem 8 (⋆). Let G be a graph and let d be a positive integer. Given a tree decomposition
T = (T, {Xt}t∈V (T )) of G and a layering (V1, . . . , Vm) of G such that, for each bag Xt and
layer Vi, α(G[Xt ∩ Vi]) ≤ k, it is possible to compute in O(|V (T )| · (|V (G)| + |E(G)|)) time a
tree decomposition T ′ = (T, {X ′

t}t∈V (T )) of G1+2d and a layering (V ′
1 , . . . , V ′

⌈ m
1+2d ⌉) of G1+2d

such that, for each bag X ′
t and layer V ′

i , α(G1+2d[X ′
t ∩ V ′

i ]) ≤ (1 + 4d)k. In particular, if G

has layered tree-independence number k, then G1+2d has layered tree-independence number
at most (1 + 4d)k.

▶ Lemma 9 (⋆). Fix an even k ∈ N. There exist graphs G with layered tree-independence
number 1 and such that the layered tree-independence number of Gk is arbitrarily large.

3.1 Intersection graphs with bounded layered tree-independence number
▶ Theorem 10 (⋆). Let G be the intersection graph of a family D of n unit disks. It is
possible to compute, in O(n) time, a tree decomposition T = (T, {Xt}t∈V (T )}) and a layering
(V1, V2, . . .) of G such that |V (T )| = O(n) and, for each bag Xt and layer Vi, α(G[Xt∩Vi]) ≤ 8.
In particular, G has layered tree-independence number at most 8.

▶ Theorem 11 (⋆). Let G be a graph on n vertices together with a grid representation
R = (G, P, x) such that each path in P has horizontal part of length at most ℓ − 1, for some
fixed ℓ ≥ 1, and number of bends constant. It is possible to compute, in O(n2) time, a tree
decomposition T = (T, {Xt}t∈V (T )) and a layering (V1, V2 . . .) of G such that |V (T )| = O(n2)
and, for each bag Xt and layer Vi, α(G[Xt ∩ Vi]) ≤ 4ℓ − 1. In particular, G has layered
tree-independence number at most 4ℓ − 1.

4 Fractional tree-α-fragility

Let p be a width parameter in {tw, tree-α}. Fractional tw-fragility was first defined in [24].
We provide here an equivalent definition from [26], which was explicitly extended to the case
p = tree-α in [25].

▶ Definition 12. For β ≤ 1, a β-general cover of a graph G is a multiset C of subsets of
V (G) such that each vertex belongs to at least β|C| elements of the cover. The p-width of the
cover is maxC∈C p(G[C]).

For a parameter p, a graph class G is fractionally p-fragile if there exists a function
f : N → N such that, for every r ∈ N, every G ∈ G has a (1 − 1/r)-general cover with p-width
at most f(r).

A fractionally p-fragile class G is efficiently fractionally p-fragile if there exists an algorithm
that, for every r ∈ N and G ∈ G, returns in poly(|V (G)|) time a (1 − 1/r)-general cover C of
G and, for each C ∈ C, a tree decomposition of G[C] of width (if p = tw) or independence
number (if p = tree-α) at most f(r), for some function f : N → N.

Note that classes of bounded tree-independence number are efficiently fractionally tree-α-
fragile thanks to [14]. Hence, the family of efficiently fractionally tree-α-fragile classes
contains the two incomparable families of bounded tree-independence number classes and
efficiently fractionally tw-fragile classes (to see that they are incomparable, consider chordal
graphs and planar graphs). We now identify one more subfamily:

▶ Lemma 13. Let ℓ ∈ N and let G be a graph. For each r ∈ N, given a tree decomposition
T = (T, {Xt}t∈V (T )) of G and a layering (V0, V1, . . .) of G such that, for each bag Xt and
layer Vi, α(G[Xt ∩ Vi]) ≤ ℓ, it is possible to compute in O(|V (G)|) time a (1 − 1/r)-general
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cover C of G and, for each C ∈ C, a tree decomposition of G[C] with independence number
at most ℓ(r − 1). In particular, if every graph in a class G has layered tree-independence
number at most ℓ, then G is fractionally tree-α-fragile with f(r) = ℓ(r − 1).

Proof. Fix r ∈ N. Let T = (T, {Xt}t∈V (T )) and (V0, V1, . . .) be the given tree decomposition
and layering of G, respectively. For each m ∈ {0, . . . , r − 1}, let Cm =

⋃
i̸≡m (mod r) Vi. We

claim that C = {Cm : 0 ≤ m ≤ r −1} is a (1−1/r)-general cover of G with tree-independence
number at most ℓ(r − 1). Observe first that each v ∈ V (G) is not covered by exactly one
element of C and so it belongs to r − 1 = (1 − 1/r)|C| elements of C. Let now C ∈ C.
Each component K of G[C] is contained in at most r − 1 (consecutive) layers and so, since
α(G[Xt ∩ Vi]) ≤ ℓ for each bag Xt and layer Vi, restricting the bags in T to V (K), gives
a tree decomposition of K with independence number at most ℓ(r − 1). We then merge
the tree decompositions of the components of G[C] into a tree decomposition of G[C] with
independence number at most ℓ(r − 1) in linear time. ◀

Note that the same argument of Lemma 13 shows that, if every graph in a class G has
bounded layered treewidth, then G is fractionally tw-fragile. The following result implies
that, if a class is fractionally tree-α-fragile, then it has bounded biclique number.

▶ Theorem 14. For any function f : N → N and integer r > 2, there exists n ∈ N such that
no (1 − 1/r)-general cover of Kn,n has tree-independence number less than f(r). Hence, the
class {Kn,n : n ∈ N} is not fractionally tree-α-fragile.

Proof. Fix arbitrary f : N → N and r > 2. Consider a copy G of Kn,n, with n > f(r)/(1 −
2/r). Let C be a (1 − 1/r)-general cover of G. Then, every vertex of G belongs to at least
(1−1/r)|C| elements of C and so there exists C ∈ C of size at least 2n(1−1/r). Let A and B be
the two bipartition classes of G. Then, |A∩C| ≥ |C|−|B| ≥ 2n(1−1/r)−n = n(1−2/r) > f(r)
and, similarly, |B ∩ C| > f(r). Therefore, G[C] contains Kf(r),f(r) as an induced subgraph
and since tree-α(Kf(r),f(r)) = f(r) [15], tree-α(G[C]) ≥ f(r). ◀

However, the following result shows that small biclique number does not guarantee
fractional tree-α-fragility.

▶ Theorem 15. The class of K2,3-free graphs is not fractionally tree-α-fragile.

Proof. Let Gn be the n-dimensional grid graph of width n, i.e., the graph with vertex set
V (Gn) = [n]n = {(a1, . . . , an) : 1 ≤ a1, . . . , an ≤ n}, where two vertices (a1, . . . , an) and
(b1, . . . , bn) are adjacent if and only if

∑
1≤i≤n |ai − bi| = 1. It is not difficult to see that

Gn is K2,3-free, for each n ∈ N. We show that the class {Gn : n ∈ N} is not fractionally
tree-α-fragile.

Fix arbitrary f : N → N and r > 2. For such a choice, fix n ∈ N such that r−4
2r n + 1 ≥

R(3, f(r)), where R(3, s) denotes the smallest integer m for which every graph on m vertices
either contains a clique of size 3 or an independent set of size s. We now show that every
(1−1/r)-general cover of Gn has tree-independence at least f(r). Let C be a (1−1/r)-general
cover of Gn. Then, every vertex of Gn belongs to at least (1 − 1/r)|C| elements of C and so
there exists C ∈ C containing at least (1 − 1/r)|V (Gn)| = (1 − 1/r)nn vertices of Gn. Fix
such a C and let G be the subgraph of Gn induced by C. We claim that tree-α(G) ≥ f(r).

Observe first that, for each v ∈ V (Gn), n ≤ dGn
(v) ≤ 2n. Hence, 2|E(Gn)| =∑

v∈V (Gn) dGn
(v) ≥ n · nn. Consider now the graph G′ obtained from Gn by deleting

the vertex set C. Clearly, G′ has at most nn/r vertices. Since deleting a vertex from Gn

decreases the number of edges of the resulting graph by at most 2n, we have that |E(G)| ≥
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|E(Gn)| − 2n|V (G′)|, from which
∑

v∈V (G) dG(v) ≥ n · nn − 2 · 2n · nn/r = n · nn(1 − 4/r).
Therefore, the average degree of G is at least n(1 − 4/r) and so tw(G) ≥ r−4

2r n, for example
by [13, Corollary 1]. This implies that every tree decomposition of G has a bag of size at
least r−4

2r n+1 ≥ R(3, f(r)) and, since G is triangle-free, it follows that tree-α(G) ≥ f(r). ◀

4.1 Intersection graphs of fat objects
In this section we show that the class of intersection graphs of fat objects in Rd is efficiently
fractionally tree-α-fragile. Let d ≥ 2 be a fixed integer. A box of size r is an axis-aligned
hypercube in Rd of side length r. The size of an object O in Rd, denoted s(O), is the side
length of its smallest enclosing axis-aligned hypercube.

Chan [11] considered the following definition of fatness: A collection of objects in Rd is
fat if, for any r and size-r box R, we can choose c points in Rd such that every object that
intersects R and has size at least r contains at least one of the chosen points. Chan also
stated that a collection of balls or boxes with bounded aspect ratios are fat (recall that the
aspect ratio of a box is the ratio of its largest side length over its smallest side length). We
slightly generalize this fatness definition as follows.

▶ Definition 16. A collection of objects in Rd is c-fat if, for any r and any size-r closed box
R, for every sub-collection P of pairwise non-intersecting objects which intersect R and are
of size at least r, we can choose c points in Rd such that every object in P contains at least
one of the chosen points.

▶ Remark 17. When working with a c-fat collection of objects, we assume that some reasonable
operations can be done in constant time: determining the center and size of an object, deciding
if two objects intersect and constructing the geometric realization of the collection.

▶ Theorem 18 (⋆). Let O be a c-fat collection of objects in Rd and let G be its intersection
graph. For each r0 > 1, let f(r0) = 2

⌈
1

1−
(

1− 1
r0

) 1
d

⌉
. Then, we can compute in linear time a

(1 − 1/r0)-general cover C of G of size at most (f(r0)/2 − 1)d. Moreover, for each C ∈ C,
we can compute in linear time a tree decomposition T = (T, {Xt}t∈V (T )) of G[C], with
|V (T )| ≤ |V (G)| + 1, such that α(T ) ≤ cf(r0)2d.

▶ Corollary 19 (⋆). There exist fractionally tree-α-fragile classes of unbounded local tree-
independence number.

5 PTASes

Let us begin by defining Max Weight Independent Packing. Given a graph G and a
finite family H = {Hj}j∈J of connected non-null subgraphs of G, an independent H-packing
in G is a subfamily H′ = {Hi}i∈I of subgraphs from H (that is, I ⊆ J) that are at pairwise
distance at least 1, that is, they are vertex-disjoint and there is no edge between any two
of them. If the subgraphs in H are equipped with a weight function w : J → Q+ assigning
weight wj to each subgraph Hj , the weight of an independent H-packing H′ = {Hi}i∈I in G

is
∑

i∈I wi. Given a graph G, a finite family H = {Hj}j∈J of connected non-null subgraphs
of G, and a weight function w : J → Q+ on the subgraphs in H, the problem Max Weight
Independent Packing asks to find an independent H-packing in G of maximum weight.
In the special case when F is a fixed finite family of connected non-null graphs and H is the
set of all subgraphs of G isomorphic to a member of F , the problem is called Max Weight
Independent F-Packing and is a common generalization of several problems, among
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which: Independent F-Packing [10], Max Weight Independent Set (F = {K1}),
Max Weight Induced Matching (F = {K2}), Dissociation Set (F = {K1, K2} and
the weight function assigns to each subgraph Hj the weight |V (Hj)|) [47, 51].

5.1 Packing subgraphs at distance at least 1 in efficiently fractionally
tree-α-fragile classes

Our PTAS relies on the following result.

▶ Theorem 20 (Dallard et al. [15]). Let k and h be two positive integers. Given a graph G and
a finite family H = {Hj}j∈J of connected non-null subgraphs of G such that |V (Hj)| ≤ h for
every j ∈ J , Max Weight Independent Packing can be solved in time O(|V (G)|h(k+1) ·
|V (T )|) if G is given together with a tree decomposition T = (T, {Xt}t∈V (T )) with α(T ) ≤ k.

▶ Theorem 21. Let h ∈ N and let f : N → N be a function. There exists an algorithm that,
given r ∈ N, an n-vertex graph G equipped with a (1 − 1/r)-general cover C = {C1, C2, . . .}
and, for each i, a tree decomposition Ti = (Ti, {Xt}t∈V (Ti)) of G[Ci] with α(Ti) ≤ f(r), a
finite family H = {Hj}j∈J of connected non-null subgraphs of G such that |V (Hj)| ≤ h for
every j ∈ J , and a weight function w : J → Q+ on the subgraphs in H, returns in time
|C| · O(nh(f(r)+1) · t), where t = maxi |V (Ti)|, an independent H-packing in G of weight at
least a factor (1 − h/r) of the optimal.

Proof. For each i ≥ 1, we proceed as follows. Using the algorithm from Theorem 20, we simply
compute a maximum-weight independent H-packing Pi in G[Ci] in time O(nh(f(r)+1) · t).
The total running time is then |C| · O(nh(f(r)+1) · t). For a collection A of subgraphs of
G, each isomorphic to a member of H, and a subset C ⊆ V (G), let w(A) =

∑
A∈A w(A)

and let A ∩ C = {A ∈ A : A ⊆ C}. Observe that, given a subgraph H of G, each vertex
v ∈ V (H) is not contained in at most |C|/r elements of the (1 − 1/r)-general cover C. Hence,
V (H) is contained in at least (1 − |V (H)|/r)|C| elements of C. Let P = {P1, P2, . . .} be an
independent H-packing in G of maximum weight. Then,∑

Ci∈C
w(P ∩ Ci) =

∑
Ci∈C

∑
Pj∈P

w(Pj)1{Pj⊆Ci}

=
∑

Pj∈P
w(Pj)

∑
Ci∈C

1{Pj⊆Ci}

≥
∑

Pj∈P
w(Pj)(1 − |V (Pj)|/r)|C|

≥
∑

Pj∈P
w(Pj)(1 − h/r)|C|

= |C|(1 − h/r)w(P).

By the pigeonhole principle, there exists Ci ∈ C such that w(P ∩ Ci) ≥ (1 − h/r)w(P).
We then return the maximum-weight independent H-packing Pi in G[Ci] computed above.
Since P ∩ Ci is an independent H-packing in G[Ci], we have that w(Pi) ≥ w(P ∩ Ci) ≥
(1 − h/r)w(P). ◀

Theorem 21 immediately implies that Max Weight Independent Packing admits a
PTAS in any efficiently fractionally tree-α-fragile class. A special case is the following.
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▶ Corollary 22 (⋆). There exists an algorithm that, given r ∈ N, a c-fat collection O of n

objects in Rd and its intersection graph G, and a weight function w : V (G) → Q+, returns in
time (f(r)/2 − 1)d · O(n(cf(r)2d+2)), where f(r) = 2

⌈
1

1−
(

1− 1
r

) 1
d

⌉
, an independent set in G of

weight at least a factor (1 − 1/r) of the optimal.

5.2 Packing subgraphs at distance at least d in graphs with bounded
layered tree-independence number

Max Weight Independent Packing has a natural generalization. For a fixed positive
integer d, given a graph G and a finite family H = {Hj}j∈J of connected non-null subgraphs
of G, a distance-d H-packing in G is a subfamily H′ = {Hi}i∈I of subgraphs from H that
are at pairwise distance at least d. If we are also given a weight function w : J → Q+, Max
Weight Distance-d Packing is the problem of finding a distance-d H-packing in G of
maximum weight. The case d = 2 coincides with Max Weight Independent Packing.

▶ Theorem 23 (⋆). Let h, ℓ ∈ N. Let d be an even positive integer. There exists an
algorithm that, given r ∈ N, an n-vertex graph G equipped with a tree decomposition T =
(T, {Xt}t∈V (T )}) and a layering (V1, V2, . . .) of G such that, for each bag Xt and layer Vi,
α(G[Xt ∩ Vi]) ≤ ℓ, a finite family H = {Hj}j∈J of connected non-null subgraphs of G such
that |V (Hj)| ≤ h for every j ∈ J , and a weight function w : J → Q+, returns in time
r · |V (T )| · nO(r) a distance-d H-packing in G within a factor (1 − h/r) of the optimal.

Combining Theorem 23 with Theorem 10, we obtain the following:

▶ Corollary 24. Let d ∈ N be even. Max Weight Distance-d Packing admits a PTAS
for unit disk graphs.

Observe that Theorem 23 cannot be extended to odd values of d, unless P = NP. Indeed,
Eto et al. [31] showed that, for each ε > 0 and fixed odd d ≥ 3, it is NP-hard to approximate
Distance-d Independent Set to within a factor of n1/2−ε for chordal graphs.

Since unit disk graphs have O(
√

n) tree-independence number (Theorem 10 and Lemma 4)
and since Max Weight Distance-d Packing is solvable in time nO(k), where k is the tree-
independence number of the input graph [45], we immediately obtain a subexponential-time
algorithm on unit disk graphs.

▶ Lemma 25. For any fixed even d ∈ N, Max Weight Distance-d Packing can be solved
in 2O(

√
n log n) time on unit disk graphs.

A subexponential-time algorithm for Independent Set on unit disk graphs was first
given in [2] and later extended in [16] to intersection graphs of fat objects.

5.3 Packing independent unit disks, unit-width rectangles and paths
with bounded horizontal part on a grid

The following PTASes are obtained by showing that the tree-independence number of graphs
whose geometric realizations are contained in an axis-aligned rectangle with bounded width
is bounded.

▶ Theorem 26 (⋆). Max Weight Independent Set admits a PTAS when restricted to:
Intersection graphs of a family of n unit disks of common radius c ≥ 1. The running time
is O(c⌈ 2

ε ⌉ · n2⌈ 2
ε ⌉+3).

Intersection graphs of a family of n width-c rectangles together with a grid representation
(G, R). The running time is O(c⌈ 1

ε ⌉ · n⌈ 1
ε ⌉· c

2 +4).
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Graphs on n vertices with a grid representation R = (G, P, x) such that each path in P
has number of bends constant and the horizontal part of each path in P has length at
most c, for some fixed c ∈ N. If x = v, the running time is O(c⌈ 1

ε ⌉ · n⌈ 1
ε ⌉c+4). If x = e,

the running time is O(c⌈ 1
ε ⌉ · n3(⌈ 1

ε ⌉c+1)).
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Abstract
The Hilbert metric is a distance function defined for points lying within a convex body. It generalizes
the Cayley-Klein model of hyperbolic geometry to any convex set, and it has numerous applications in
the analysis and processing of convex bodies. In this paper, we study the geometric and combinatorial
properties of the Voronoi diagram of a set of point sites under the Hilbert metric. Given any m-
sided convex polygon Ω in the plane, we present two randomized incremental algorithms and one
deterministic algorithm. The first randomized algorithm and the deterministic algorithm compute
the Voronoi diagram of a set of n point sites. The second randomized algorithm extends this to
compute the Voronoi diagram of the set of n sites, each of which may be a point or a line segment.
Our algorithms all run in expected time O(mn log n). The algorithms use O(mn) storage, which
matches the worst-case combinatorial complexity of the Voronoi diagram in the Hilbert metric.
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1 Introduction

The Hilbert metric was introduced by David Hilbert in 1895 [12]. Given a convex body
Ω in d-dimensional space, it defines a distance function between any pair of points in the
interior of Ω. (Definitions are presented in Section 2.1.) The Hilbert geometry has a number
of natural properties. For example, straight line segments are geodesics. It generalizes the
Cayley-Klein model of hyperbolic geometry (on Euclidean balls) to any convex body. It is
also invariant under projective transformations. Hilbert geometry provides new insights into
classical questions from convexity theory. It also provides new insights into the study of
metric and differential geometries (such as Finsler geometries). An excellent resource on the
Hilbert geometries is the handbook on Hilbert geometry by Papadopoulos and Troyanov [18].

Hilbert geometry is also relevant to the topic of convex approximation. Efficient
approximations of convex bodies have been applied to a wide range of applications,
including approximate nearest neighbor searching both in Euclidean space [6] and more
general metrics [1], optimal construction of ε-kernels [4], solving the closest vector problem
approximately [10,11,14,19], computing approximating polytopes with low combinatorial
complexity [3,5]. These works all share one thing in common – they approximate a convex
body by covering it with elements that behave much like metric balls. These covering
elements go under various names: Macbeath regions, Macbeath ellipsoids, Dikin ellipsoids,
and (2, ε)-covers. While these all behave like metric balls, the question is in what metric
space? Vernicos and Walsh showed that these shapes are, up to a constant scaling factor,
equivalent to Hilbert balls [2, 21].

In spite of its obvious appeals, there has been remarkably little work the design of
algorithms in the Hilbert geometry on convex polygons and polytopes. Two notable exceptions
are the work of Nielsen and Shao, which investigates properties and efficient construction of
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35:2 Voronoi Diagrams in the Hilbert Metric

Hilbert balls in convex polygons [15], and Nielsen and Sun, which investigates clustering in
Hilbert simplex geometry [16].

In this paper, we investigate perhaps the most fundamental computational questions
one might ask about a metric geometry: How to construct the Voronoi diagram of a set of
sites, points and/or line segments, in the plane? Given any convex polygon Ω bounded by m

sides, we present two randomized algorithms and one deterministic algorithm for computing
the Voronoi diagram of an n-element point set in the Hilbert metric induced by Ω. The
first randomized algorithm works for point sites, while the second works for point sites
and segment sites. Both run in O(mn log n) expected time. The deterministic algorithm
works for point sites in O(mn log n) time and uses a divide-and-conquer approach. Due to
space limitations the deterministic algorithm will be presented in the arXiv version of the
paper. All the algorithms use O(mn) space. We show that the worst-case combinatorial
complexity of the Voronoi diagram is Θ(mn), so all the algorithms are worst-case optimal up
to logarithmic factors.

2 Preliminaries

Throughout, let Ω denote a convex body in Rd, that is, a compact, full-dimensional convex
set. Let ∂ Ω and int(Ω) denote its boundary and interior, respectively. Given points p, q ∈ Rd,
let ∥p − q∥ denote the Euclidean distance between these points. Given two distinct points
p, q ∈ Ω, let χ(p, q) denote the chord defined as the intersection of the line passing through p

and q with Ω.

2.1 Funk and Hilbert Metrics
Before defining the Hilbert metric, it will be convenient to define a simpler (asymmetric)
distance function called the Funk weak metric.

▶ Definition 1 (Funk weak metric). Given a convex body Ω in Rd and two distinct points
p, q ∈ int(Ω), let y denote point where a ray shot from p to q intersects ∂ Ω. Define the Funk
weak metric to be

FΩ(p, q) = ln ∥p − y∥
∥q − y∥

,

and define FΩ(p, p) = 0 (see Figure 1(a)).

p
q

y

Ω

(a)

Ω

(b)

x

p
q

y

Figure 1 (a) The Funk weak metric and (b) the Hilbert metric.

Observe that in the limit as q approaches y along the chord χ(p, y) the Funk distance
increases to +∞, and thus, the boundary is infinitely far away from any interior point of Ω.
The Funk weak metric is not symmetric, but it satisfies triangle inequality. Symmetrizing
this yields a true metric, called the Hilbert metric [12].
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▶ Definition 2 (Hilbert metric). Given a convex body Ω in Rd and two distinct points
p, q ∈ int(Ω), let x and y denote endpoints of the chord χ(p, q), so that the points are in the
order ⟨x, p, q, y⟩. Define the Hilbert metric to be

dΩ(p, q) = FΩ(p, q) + FΩ(q, p)
2 = 1

2 ln ∥p − y∥∥q − x∥
∥q − y∥∥p − x∥

,

and define dΩ(p, p) = 0 (see Figure 1(b)).

Hilbert showed that line segments are geodesics, and if q lies on the line segment between
p and r, then dΩ(p, q) + dΩ(q, r) = dΩ(p, r). Note however that generally there may be
multiple shortest paths between two points, and hence geodesics need not be line segments
(see, e.g., [7]). As in the Funk weak metric, the boundary of Ω is infinitely far away from any
interior point. Observe that the quantity in the ln term in the definition is the cross ratio of
(p, q; y, x). It follows that the Hilbert metric is invariant under projective transformations.
For further information, see the first chapters of the handbook on Hilbert geometry by
Papadopoulos and Troyanov [18].

3 Hilbert Metric Balls

In this section we consider the properties of metric balls in the Hilbert metric. Given a
convex body Ω in Rd, p ∈ int(Ω), and r ≥ 0, let us denote the Hilbert ball of radius r centered
at p by

BΩ(p, r) = {q ∈ Ω : dΩ(q, p) ≤ r}.

We can extend the notion of distance to any nonempty set P in the natural way by taking
the minimum distance to the set, that is, dΩ(q, P ) = inf{dΩ(q, p) : p ∈ P}. This allows us
to talk about the Hilbert ball of other shapes, such as line segments. We will consider balls
generated by both points and line segments.

3.1 Hilbert Balls of Points
Nielsen and Shao [15] provided a characterization of Hilbert balls when Ω is an m-sided
convex polygon in R2, showing that the ball is a convex polygon bounded by at most 2m

sides. We generalize their result to arbitrary convex polytopes in Rd. This provides an
alternative (and more elementary) proof that Hilbert balls are convex (also proved in [17,20]).

▶ Lemma 3. Given any convex polygon Ω in R2 bounded by m sides, p ∈ int(Ω), and r ≥ 0,
the ball BΩ(p, r) is a convex polygon bounded by at most 2m sides. It can be constructed in
O(m) time.

Proof. For now, let us take Ω to be any convex body (not necessarily a polytope) in R2. Let
S1 denote the unit sphere, that is the set of all unit vectors in R2. For each u ∈ S1, consider
the ray emanating from p in direction u, and define qr(u) ∈ Ω to be the (unique) point along
this ray whose Hilbert distance from p is r. Clearly, the boundary of BΩ(p, r) is just the set
of points qr(u) over all u ∈ S1.

For any u ∈ S1, let h(u) denote any support line of Ω at the point where the ray
emanating from p in the direction u intersects the boundary of Ω (see Figure 2(a)). Define
h(−u) analogously for the ray emanating from p in the direction −u. Let g(u) (= g(−u))
denote the point where h(u) and h(−u) intersect. (Through an infinitesimal perturbation of
Ω, we may assume that h(u) and h(−u) are not parallel.) Let br(u) denote the ray originating
at g(u) and passing through qr(u), and define br(−u) analogously for qr(−u).
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p

Ω

(a)

h(u)h(−u)

u

−u

br(u)br(−u)

g(u)

p

(b)

u

−u

g(u)

qr(u)
qr(−u)

BΩ(p, r)

p

−u

u
f+

f−

(c)

W (u)
Br(u)

Figure 2 The Hilbert ball of a point p.

Let W (u) denote the convex wedge whose apex is at g(u) and is bounded by h(u) and
h(−u) (see Figure 2(b)). It follows from basic properties of projective geometry that every
line passing through p on this plane is cut by h(u), h(−u), br(u), and p into four points that
share the same cross ratio. This implies that every point on br(u) is at Hilbert distance
r from p with respect to W (u). The same applies symmetrically to br(−u), and therefore
the sub-wedge of W (u) bounded by br(u) and br(−u) is just the Hilbert ball of radius r

centered at p for W (u). (This was observed by Nielsen and Shao in their analysis of the
two-dimensional case.) Let us call this sub-wedge Br(u) (shaded in yellow in Fig. 2(b)).

Note that p ∈ Ω ⊆ Br(u), and therefore Hilbert distances from p in Br(u) are at least as
large as they are in Ω. Therefore, for all u ∈ S1, BΩ(p, r) ⊆ Br(u), and hence

BΩ(p, r) ⊆
⋂

u∈S1
Br(u).

On the other hand, by definition of Br(u), we know that Br(u) and BΩ(p, r) both cover the
exactly the same portion of the chord parallel to u passing through p. Since these chords
cover all the boundary points of BΩ(p, r), we have

BΩ(p, r) =
⋂

u∈S1
Br(u).

Clearly, Br(u) is the intersection of a (possibly infinite) set of convex wedges, and so it is
also convex.

Suppose now that Ω is an m-sided convex polygon. We say that two sides f+ and f−

form a complementary pair if there exists u ∈ S1 such that the rays emanating from p in
the directions u and −u hit f+ and f−, respectively (see Figure 2(c)). We can partition
the elements of S1 into equivalence classes according to the associated complementary pair.
All the unit vectors u from any one equivalence class share the same support lines h(u)
and h(−u), and therefore all of them contribute the same wedge Br(u) to BΩ(p, r). By
considering the chords χ(v, p) for each each of the m vertices of Ω, it follows directly that
the number of complementary pairs is at most m. These chords partition Ω into at most m

double wedges about p, each of which contributes two edges to the final ball, for a total of
2m sides.

The final Hilbert ball BΩ(p, r) can be constructed in O(m) time by observing that the
sorted sequence of double wedges about p can be generated in linear time and then generating
the two line segments bounding Br(u) within each double wedge (assuming a standard
representation of Ω as a cyclic sequence of vertices). ◀
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This result can be readily generalized to the higher dimensional case, but the worst-case
number of bounding facets is quadratic in the number of facets. (Due to space limitations,
the proof appears in the arXiv of the version of the paper.)

▶ Lemma 4. Given any convex polytope Ω in Rd bounded by m facets, p ∈ int(Ω), and r ≥ 0,
BΩ(p, r) is a convex polytope bounded by O(m2) facets.

Given the characterization on Hilbert ball in Ω ∈ R2, a natural question arises, how can
we define Hilbert balls for points at infinity, that is, on ∂ Ω? Let q be a point in Ω, we define
the Hilbert ball at p ∈ ∂ Ω whose boundary passes through q to be limit of any sequence of
Hilbert balls passing through q whose centers approach p. We show this limit is unique and
yields a convex polygon with at most m sides.

▶ Lemma 5. Given any convex polygon Ω in R2 bounded by m sides, p ∈ ∂ Ω, q ∈ int(Ω),
there exists a unique ball, B, centered at p containing q on its boundary which is a convex
polygon with at most m sides.

Proof. Let us begin by considering an arbitrary sequence of Hilbert balls {Bn}n∈N centered
at points pn such that {pn}n∈N converges to a point p on a side e of Ω (see Fig. 3(a)). Since
our sequences converges to p there must be some n0 ∈ N such that ∀n ≥ n0 in the sequence
the wedges that contributes the boundary sides to Bn, n ≥ n0 all share the side e except
the one made by the spokes through the vertices of e and p. Call this other wedge W with
sides f+ and f−. It can be see that as {pn}n≥n0 approaches p, the measure of the region
contributed by the wedge W vanishes to 0. Likewise, for any wedge W ′ between some e′ and
e, the portion of the boundary contributed between pn and e vanishes in the limit. Hence we
need only look at the boundaries contributed by the wedges between e and other sides of Ω.

f+

f−

q q

(a) (b)

e′′

epn p

Figure 3 The Hilbert ball of a point p on ∂ Ω through a point q.

To construct this boundary let q lie on the wedge between e and e′′ from the perspective
of pn. By tracing the line through q to the apex of the wedge we are able to determine the
boundary of an arbitrary pn through q and a point on the boundaries of the neighboring
wedges, from here we can walk along the wedges using the same process to complete the
boundary. As pn approaches p we can see that this converges to the unique polygonal
boundary made by the same procedure applied to p. Since each wedge contributes one side
to the boundary and there are m − 1, paired with the edge e this gives the ball centered at p

has at most m sides. ◀

3.2 Hilbert Balls of Lines and Line Segments
In this section we will describe the ball of radius r about an arbitrary line segment in Ω. Let
us first consider the case of line ℓ that intersects Ω. Let BΩ(ℓ, r) denote the set of points
of Ω that lie within Hilbert distance r of ℓ. We will consider just the 2-dimensional case,
but the general case in Rd can be generated by considering the union of 2-dimensional slices
generated by planes passing through ℓ. Given any point q in the interior of Ω, the following
lemma characterizes the point of ℓ that is closest to q.

SoCG 2023



35:6 Voronoi Diagrams in the Hilbert Metric

▶ Lemma 6. Given any convex body Ω in R2 in general position and a line ℓ that intersects
the interior of Ω, for any q ∈ int(Ω) that is not on ℓ, its closest point on ℓ is uniquely
determined to be the point p ∈ ℓ such that there exist support lines from each of the endpoints
of the chord χ(q, p) that intersect at a point lying on ℓ (see Fig. 4(a)).

Proof. We begin by showing that, assuming general position, for any point q ∈ int(Ω), there
exists a unique point p satisfying the desired properties. We first consider the simpler case
where Ω is strictly convex, and we will generalize later. Let us also assume for the sake of
illustration that ℓ is horizontal. Define t0 and t1 to be the leftmost and rightmost points of
intersection of ℓ with Ω, respectively (see Fig. 4(b)).

(a) (b) (c)

q

t p t0 t1t
ℓ

h+(t)

h−(t)

t

q

Ω

χ(p, q) h+(t)

h−(t)

W (t)

Figure 4 The closest point to q on line ℓ.

Consider a point t that moves continuously along ℓ \ Ω, which starts at t0, moves to the
left until reaching x = −∞, then wraps around to x = +∞, and finally moves to t1. At
each such point t, let h+(t) and h−(t) denote the two support lines of Ω that pass through
t above and below ℓ, respectively. Since Ω is strictly convex, each pair of supporting lines
defines a unique chord by joining the points where these support lines intersection ∂ Ω. It is
a straightforward consequence of convexity that points where these support lines intersect
∂ Ω move continuously and monotonically along both sides of the boundary of Ω from t0 to
t1. Thus, every point of Ω lies on exactly one of these chords. Given point q ∈ int(Ω), the
chord passing through q satisfies the conditions of the lemma. (Note that if Ω has vertices,
multiple points t may generate the same chord. So even though the chord is unique, the
associated supporting lines need not be.)

We can generalize to the case where Ω is not strictly convex. Suppose, for example, that
it is an m-sided convex polygon. We may assume through an infinitesimal perturbation of ℓ

that the linear extensions of any two edges of Ω do not intersect on ℓ. If we extend each edge
of Ω until it intersects ℓ, we have m distinct points on ℓ \ Ω. It is no longer true that each
point t generates a unique chord, but each point along the extended edge generates a chord
in conjunction with the supporting vertex on the opposite side ℓ (see Fig. 4(c)). It follows
from monotonicity that for any q ∈ int(Ω), exactly one of these chords passes through q.

Because the endpoints of each of these chords lies on opposite sides of ℓ, each chord
intersects ℓ. We assert that the point p where this chord intersects ℓ is the unique closest
point to q. To see why, consider the wedge W (t) bounded by h+(t) and h−(t). Because the
three lines ℓ, h+(t), and h−(t) are coincident at t, every line passing through q cuts these
lines so that the cutting points have the same cross ratios. It follows that every point on
ℓ is equidistant to q with respect to the Hilbert distance defined by W (t). But (assuming
general position) Ω intersects each such line through q along a strictly smaller subsegment,
and hence the Hilbert distance between q and any point on ℓ other than p is strictly larger
than dΩ(q, p). Therefore, p is the unique closest point to q on ℓ. ◀
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▶ Lemma 7. Given any convex polygon Ω in R2 bounded by m sides, any line ℓ that intersects
the interior of Ω, and r ≥ 0, the Hilbert ball BΩ(ℓ, r) is a convex polygon bounded by at most
2m sides. Furthermore, this ball can be constructed in O(m) time.

Proof. Our proof is constructive. As in Lemma 6, let us assume that ℓ is horizontal. Consider
the m points where the linear extensions of the edges of Ω intersect ℓ. We assume by general
position that these points are distinct. As mentioned in the earlier proof, each of these points
t generates two support lines h+(t) and h−(t) lying above and below ℓ, respectively. It also
generates a continuous family of chords, by joining each point on the corresponding side e(t)
of Ω to the vertex of Ω through which the other support line passes (see Fig. 5(a) and (b)).

(a) (b) (c)

t

h+(t)

h−(t)

ℓ ℓ ℓ

b+r (t)

b−r (t)

W (t)

q

e(t)

Figure 5 The Hilbert ball of a line ℓ.

Let W (t) denote the double wedge bounded by h+(t) and h−(t). Given the radius r,
we can draw a ray b+

r (t) emanating from t and passing above ℓ so that for every point q

on b+
r (t), its Hilbert distance from ℓ with respect to W (t) is r. As shown in Lemma 6, if q

also lies on one of the chords generated by edge e(t), then this is also true with respect to
the Hilbert distance defined by Ω. Therefore, such a point q lies on the upper boundary of
BΩ(ℓ, r) (see Fig. 5(b)). Analogously, we can find the ray b−

r (t), which generates the lower
boundary of of BΩ(ℓ, r) for the chords generated by e(t).

All that remains to complete the entire ball is to repeat this process for each of the m

points t where the extensions of the sides of Ω intersect ℓ. The ball BΩ(ℓ, r) is clearly a
simple polygon bounded by at most 2m sides. Convexity follows by observing that, due
to the monotonicity of the points t along the line ℓ, the slopes of its sides along the upper
boundary of the ball decrease monotonically and the slopes of sides along the lower boundary
of the ball increase monotonically. ◀

Given two points a, b ∈ Ω, the Hilbert ball of a line segment ab can be formed by first
constructing the Hilbert ball for the line ℓ that passes through these points (see Fig. 6(a)),
then cutting this ball through the chords of the line-ball construction passing through points
a and b (see Fig. 6(b)), and finally filling in the missing ends with the portions of the Hilbert
balls centered at the points a and b (see Fig. 6(c)).

▶ Lemma 8. Given any convex polygon Ω in R2 bounded by m sides, any line segment ab

for a, b ∈ Ω, and r ≥ 0, the Hilbert ball BΩ(ab, r) is a convex polygon bounded by at most 4m

sides. Furthermore, this ball can be constructed in O(m) time.

4 Characterizing Voronoi Diagrams in the Hilbert Metric

Using our understanding of Hilbert balls we can characterize the Voronoi diagram of a set of
point sites in the Hilbert metric. Throughout, let Ω denote a convex polygon in R2, and
unless otherwise stated, distances will be in the Hilbert metric induced by Ω, which we

SoCG 2023



35:8 Voronoi Diagrams in the Hilbert Metric

(a) (b) (c)

ℓ ℓ baba ba

Figure 6 Three-step process for building the Hilbert ball of a line segment ab.

denote by dΩ(·, ·) or simply d(·, ·), when Ω is clear. Let S denote a set of n points lying
within the interior of Ω, which we call sites. For p ∈ S, define its Voronoi cell to be

V (p) = VS(p) =
{

q ∈ Ω : d(q, p) ≤ d(q, p′), ∀p′ ∈ S \ {p}
}

.

Although points on the boundary of Ω are infinitely far from points in the interior of Ω, we
can compare the relative distances between a fixed boundary point and two interior points
by considering the limit as an interior point approaches this boundary point. The Voronoi
diagram of S in the Hilbert metric induced by Ω, denoted VorΩ(S), is the cell complex of
Ω induced by the Voronoi cells V (p) for all p ∈ S. We assume that the points of S are in
general position, and in particular, the line passing through any pair of sites of S and the
lines extending any two edges of Ω are not coincident at a common point (including all three
being parallel). If this assumption does not hold, the bisectors separating Voronoi cells can
widen into 2-dimensional regions.

Recall that a set R ⊆ Rd is a star (or is star-shaped) with respect to a point p ∈ R if for
each q ∈ R, the segment pq lies within R. We next show that Hilbert Voronoi cells are stars.

▶ Lemma 9. Voronoi cells in the Hilbert Metric are stars with respect to their defining sites.

Proof. If this were not the case, there would exist a site p and points x, y ∈ Ω such that x ∈
V (p), y /∈ V (p), and y lies on the line segment px. By collinearity, d(p, x) = d(p, y) + d(x, y).
Letting q be the closest site to y, we have d(q, y) < d(p, y) and d(p, x) ≤ d(q, x). Combining
these we have d(q, x) + d(p, y) > d(q, y) + d(p, x), or equivalently d(q, x) > d(q, y) + d(x, y).
But this violates the triangle inequality, yielding a contradiction. ◀

4.1 Bisectors in the Hilbert Metric
Given two sites p, p′ ∈ int(Ω), we define their Hilbert bisector, denoted the (p, p′)-bisector,
to be {z ∈ Ω : dΩ(z, p) = dΩ(z, p′)}. We will explore the conditions for a point z to lie
on the bisector. Let x and y denote the endpoints of the chord χ(z, p), and define x′ and
y′ analogously for χ(z, p′). Label these points in the order ⟨x, z, p, y⟩ and ⟨x′, z, p′, y′⟩ (see
Figure 7(a)). Finally, let ℓx, ℓp, and ℓy denote the lines passing through the line segments
xx′, pp′ and yy′, respectively. If these three lines are coincident on some point q then by
basic properties of projective geometry, the cross ratios (z, p; y, x) and (z, p′; y′, x′) are equal.
It follows that dΩ(z, p) = dΩ(z, p′), and hence z is on the bisector. If not, then the cross
ratios are different and the Hilbert distances are different. Observe that as z approaches the
boundary of Ω (on the same side of ℓp as ℓx), the points z, x, and x′ converge on a common
point on ∂ Ω, and ℓx approaches a support line for Ω at this point (see Figure 7(b)). Thus,
we obtain the following characterization of bisector points.
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Figure 7 Conditions for a point z to lie on the Hilbert bisector between sites p and p′.

▶ Lemma 10. Given a convex body Ω in R2, sites p, p′ ∈ int(Ω) and any other point
z ∈ int(Ω), z lies on the (p, p′)-bisector if any only if lines ℓx, ℓp, and ℓy (defined above) are
coincident. Further, a point x ∈ ∂ Ω is on the Hilbert bisector if the coincidence holds when
ℓx is any support line at x.

When Ω is an m-sided convex polygon in R2, we can provide a more precise characterization
of the bisectors. Given two sites p, p′ ∈ int(Ω), we will show below that the (p, p′)-bisector is a
piecewise conic (see Lemma 14). Assuming this for now, we can characterize the breakpoints
in this curve. Letting {v1, . . . , vm} denote the vertices of Ω, the 2m chords χ(vi, p) subdivide
Ω into 2m triangular regions, which we call p’s sectors with respect to Ω (see Figure 8(a)).

Ω Ω

(a) (b)

p p
p′

Figure 8 (a) The sectors of p with respect to Ω and (b) the Hilbert bisector (in red) between p

and p′.

4.2 Bisector Segments and Combinatorial Complexity
For each point z on the (p, p′)-bisector, let e and f denote the edges where the endpoints
of chord χ(z, p) intersect ∂ Ω, and let e′ and f ′ denote the corresponding edges of χ(z, p′).
Observe that the pair (e, f) is uniquely determined by the sector of p containing z, and the
pair (e′, f ′) is similarly determined by the sector of p′ containing z. Therefore, the points
of the (p, p′)-bisector can be grouped into a discrete set of equivalence classes based on
their sector memberships with respect to p and p′ (see Figure 8(b)). We refer to these as
bisector segments. Observe that by the star-shaped nature of Voronoi cells, as we travel
along the bisector, we encounter the (up to 2m) sectors of p in cyclic order (say clockwise
as in the figure), and we visit (up to 2m) the sectors of p′ in the opposite cyclic order
(counterclockwise). We will see below that, each bisector segment can be described by a
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35:10 Voronoi Diagrams in the Hilbert Metric

simple parametric function involving p, p′, and the four edges defining the equivalence class.
Star-shapedness implies that the bisector is simply connected. Combining the total number
of sectors involved for each site, we have:

▶ Lemma 11. Given an m-sided convex polygon Ω in R2 and sites p, p′ ∈ int(Ω), the (p, p′)-
bisector is a simply connected piecewise curve consisting of at most 4m bisector segments.

Given a set of n sites S in Ω, the Voronoi diagram consists of a collection of n Voronoi cells.
The intersection of two cells V (p) and V (p′) (if nonempty) is a portion of (p, p′)-bisector,
which we call a Voronoi edge. As shown in the above lemma, each such edge is composed
of at most 4m = O(m) bisector segments. A cell’s boundary may also contain a portion of
the boundary of Ω. The intersection of two Voronoi edges (if nonempty) is a Voronoi vertex.
Because the diagram is a planar graph, we have the following bounds by a straightforward
application of Euler’s formula.

▶ Lemma 12. Given an m-sided convex polygon Ω in R2 and a set of n sites S in Ω,
VorΩ(S) has n Voronoi cells, at most 3n Voronoi edges, and at most 2n Voronoi vertices.
Each Voronoi edge consists of at most 4m bisector segments. Therefore, the entire diagram
has total combinatorial complexity O(mn). The average number of Voronoi edges per cell is
O(1), and the average number of bisector segments per cell is O(m).

The following lemma shows that the bound on the combinatorial complexity is tight in
the worst case.

▶ Lemma 13. For all sufficiently large m and n, there exists a convex polygon Ω′ with m

sides and a set S of n sites within Ω′ such that VorΩ′(S) has combinatorial complexity Ω(mn).
(Here we are using Ω(·) in the asymptotic sense.)

Proof. We start the construction with an axis parallel rectangle R that is slightly taller than
wide, and the set S consists of n points positioned on a short horizontal line segment near
the center of this rectangle (see Figure 9(a)). (This violates our general position assumptions,
but the construction works if we perturb the sides of the rectangle.) Also, create a set of
m − 4 points V = {v1, . . . , vm−4} along the left edge of R. We can adjust the spacing of
points of V and S and the side lengths of R so that there exists a diamond shape (shaded in
orange in the figure) so that for any point q in this region, the chord χ(vi, q) intersects the
boundary of R along its vertical sides. Observe that within the diamond, each consecutive
pair of sites contributes an edge to the Voronoi diagram, which is easily verified to be a
vertical line segment within the diamond.

v1
v2
v3
...

vm−4

p p′

(a) (b)

Ω′

(c)

R

S S

v1
v2
v3
...

vm−4

Figure 9 Proof of Lemma 13.

To form Ω′, we bend the left side of the rectangle out infinitesimally (see Figure 9(b)) so
the points of V become vertices of a convex polygon. The bending does not alter the shape
of the Voronoi edges significantly, except to break each edge up into multiple arcs.



A. H. Gezalyan and D. M. Mount 35:11

We assert that each consecutive pair of points p, p′ ∈ S contributes at least m − 4 arcs to
the Voronoi diagram. To see why, observe that there are m − 4 sectors about p and p′, and
vertical line passing between p and p′ intersects the boundaries between these sectors (see
the red curve in Figure 9(c)). Due to the infinitesimal bending of the left side of R, each
crossing produces a new segment on the bisector. Since there are n − 1 consecutive pairs of
sites, the total complexity of VorΩ′(S) is at least (m − 4)(n − 1) = Ω(mn), as desired. ◀

4.3 Bisector Segments Structure
In this section we discuss the properties of bisectors in the Hilbert metric. We consider
cases involving both points, lines, and combinations thereof. In particular, we prove that the
bisectors are piece-wise conics.

First, we will characterize the local structure of a bisector between two point sites a

and b with respect to Ω. Let us hypothesize that a point q ∈ int(Ω) lies on the bisector
between these sites (see Fig. 10(a)). Draw chords aq and bq. Let us make the general-position
assumption that these chords do not intersect vertices of Ω. Consider the two edges of Ω
incident chord aq, and let pa be the point (possibly at infinity) where the linear extensions
of these edges intersect (see Fig. 10(b)). Define pb analogously for the chord bq.

b

a

q

Ω

b

a

pa

pbq

a′
−1

x
1

−1

b′

y

1

b

a

pa

pbq

a′
−1

x

1

−1

b′

y

1

(a) (b) (c)

Figure 10 Segments of a point-point bisector.

If there are only two distinct edges involved (implying that pa = pb), the problem can be
reduced to a simple 1-dimensional case by projection through the point where the extensions
of the two edges meet. Otherwise, there are two wedges with apexes at the points pa and pb

such that Ω is contained within their intersection. The shape resulting from the intersection
of the two wedges may be a convex quadrilateral (as shown in Fig. 10(b)), but if two edges
coincide, we obtain a triangle (see Fig. 10(c)). Also, this shape may be unbounded, which
we treat as wrapping around the projective plane.

Shoot two rays originating at pa passing through a and q, and let a′ and x denote the
respective points these rays hit on the opposite side of the quadrilateral (see Fig. 10(b)).
Define b′ and y analogously for rays originating at pb through b. Let us parameterize points
on these two edges so that −1 and 1 are the edge endpoints, and the points along the edge
appear in the orders ⟨−1, a′, x, 1⟩ and ⟨−1, b′, y, 1⟩, respectively. We can now think of points
{a′, x, b′, y} as reals, where −1 < a′ ≤ x < 1 and −1 < b′ ≤ y < 1. (Due to space limitations,
the proof appears in the arXiv version of the paper.)

▶ Lemma 14. Given a convex polygon Ω and two sites a, b ∈ int(Ω), the bisector between a

and b in the Hilbert metric is a piecewise conic curve.
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Next, let us consider the case where a is a point site and b = b0b1 is a line segment, where
a, b0, b1 ∈ Ω. As before, we wish to characterize the set of points q lying on the Hilbert
bisector between a and b with respect to Ω. Let ℓb denote the linear extension of this line
segment.

Recall from Lemma 6 that the closest point on ℓb is uniquely determined to be the point
bq such that there exist support lines to Ω at the endpoints of the chord χ(q, bq) that intersect
at a point on ℓb (see Fig. 11(a)).

bq

q
Ω a

pa

pbq

a′
−1

x
1

−1

b′

y

1

(a) (b)

pb

b

ℓ

ℓ′
ℓb

bq
b

bq

q

(c)

pb

b
ℓb

pa

aq

ℓa

a

Figure 11 (a) Closest point on b to point q, (b) point-segment bisector, (c) segment-segment
bisector.

Given the point pb, we carry out the same construction as in the point-point bisector
case, where the point pa is defined exactly as before. We centrally project the points a and
q through pa until they hit the far side of the pb-wedge, and symmetrically we centrally
project the segment b and point q through pb until they hit the far side of the pa-wedge (see
Fig. 11(b)). (Note that the entire segment b projects to the single point b′.) The values x

and y, which determine curve containing the bisector, satisfy exactly the same conditions
here as they do in the point-point case.

The segment-segment case is exactly analogous. Again, we find the point pa through
which the supporting lines pass, and obtain the same parameterization through central
projections. The values x and y, which determine curve containing the bisector, satisfy
exactly the same conditions here as they do in the point-point case.

It is interesting that unlike the Euclidean case, at a local level there is no fundamental
difference between Hilbert bisectors in the point-point case and bisectors in the point-line or
line-line cases. They are all conics, which may degenerate to lines in special configurations.

▶ Lemma 15. Given a convex polygon Ω and two sites a, b ∈ int(Ω), either or both of
which may be points or line segments, the bisector between a and b in the Hilbert metric is a
piecewise conic curve.

5 Randomized Incremental Algorithm

In this section we present two randomized incremental algorithms to compute the Hilbert
Voronoi diagram of a set S of n sites. In both cases, the domain is an m-sided convex polygon
Ω. First, we describe the algorithm in the case when S of n point sites. Second, we explain
the changes when the sites are line segments. Both algorithms follow the structure of the
randomized incremental algorithm for abstract Voronoi diagrams by Mehlhorn, Meiser, and
Ó’Dúnlaing [13]. (A discussion on the relation of the Hilbert metric to abstract Voronoi
diagrams can be found in the arXiv version of the paper.)
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5.1 Point Sites
In this section we consider the construction of a Voronoi diagram for a set S of n point sites.
The algorithm given in [13] starts by computing a bounding enclosure, but our body Ω serves
that role. Let S be our set of sites. Consider an arbitrary iteration of the algorithm, and let
R denote the set of sites already added to the diagram. To facilitate the constructing of our
algorithm we maintain two data structures: Vor(R) the current Voronoi diagram of R as a
cell complex, and G(R) the conflict graph of R with respect to S (defined below).

Vor(R) may be stored in any standard data structure for planar subdivisions, such as a
doubly connected edge list [9]. The vertices of Vor(R) are the Voronoi vertices and the edges
are the bisectors connecting them. To facilitate efficient tracing of bisectors, we augment
each Voronoi cell with spokes, that is, line segments emanating from each site in the diagram
to the segment vertices of the bisectors forming its Voronoi cell (see Fig. 12).

The conflict graph G(R) is defined as follows. Its vertices consist of the edges of Vor(R)
together with the remaining sites S \ R. There is an edge between e ∈ Vor(R) and p ∈ S \ R

if and only if the addition of p would result in edge e either being removed or trimmed.

Ω Ω

p
p′

p p′

(a) (b) (c)

p′

pp
t

Figure 12 Inserting a new site in the randomized algorithm.

The algorithm randomly permutes the sites and inserts them one by one. The first two
sites are inserted by brute force and the conflict graph is initialized based on the single
bisector between these sites. Otherwise, let us assume that we have already inserted some
subset R of sites and are now inserting the next site p ∈ S \ R. We need to (1) trace the
boundary of p’s Voronoi cell in Vor(R ∪ {p}) and (2) update the conflict graph. To trace a
bisector between two sites we use the following method:

Let V (p) denote the Voronoi cell of p after its insertion. We select any edge e that
conflicts with p and we compute any point t on this edge that lies within p’s Voronoi cell. We
proceed to walk along the bisector, continuously maintaining the distances to the associated
sites until reaching a point on the boundary of V (p). Starting at this point, we proceed
to trace the boundary of V (p) in counterclockwise order about p (see Figure 12(b)). This
involves two types of traces:

Bisector Trace: We are tracing the bisector between p and some existing site p′ (see
Figure 12(c)). We consider the sectors of p and p′ containing the current portion
of the (p, p′)-bisector. By applying the parameterization from Lemma 14, we can trace
the bisector until (1) we encounter the boundary of either sector, (2) we encounter the
bisector between p′ and another site, or (3) we encounter the boundary of Ω.
In the first case, we create a new segment vertex here, add spokes to this vertex, erase
the extension of the sector edge (shown as a broken line in Figure 12(c)) and continue
the tracing in the new sector. In the second case, we create a new Voronoi vertex, add
spokes to this vertex from its three defining sites, and continue the trace along the new
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bisector. In the third case, we insert two spokes joining the point where the bisector
encounters the boundary to p and p′, respectively. We then transition to the boundary
trace described next.

Boundary Trace: We are tracing the Voronoi cell of p along the boundary of Ω. We walk
along the boundary of Ω in counterclockwise order, considering each consecutive sector
of the closest site p′, prior to p’s insertion. By applying the parameterization from
Lemma 14, we determine whether the (p, p′)-bisector intersects the boundary of Ω within
the intersection of the current pair of sectors. If so, we identify this point on the ∂ Ω, add
spokes to each of p and p′, and then resume tracing along the (p, p′)-bisector. Otherwise,
we encounter one of the two sector boundaries, and we continue the tracing the next
sector.

Along the way, we erase spokes from the current diagram, and/or introduce new spokes
connected to p. When we return to our starting point, the insertion is completed.

While we are tracing the bisector for the new site, we can simultaneously update the
conflict graph. Whenever we arrive at a new Voronoi vertex in the diagram, we construct
a Hilbert ball at this point whose radius is the distance to the newly added site p (recall
Lemma 3). This includes Voronoi vertices “at infinity”, which arise whenever a bisector
extends all the way to the boundary of Ω. Let p′ and p′′ be the two other sites of R that
share this vertex. All the sites of S \ R in this ball are added as conflict-graph neighbors of
the two new Voronoi edges between p and p′ and p and p′′.

The algorithm given in [13] runs in O(n log n) expected time, under the update assumption
of Clarkson and Shor [8], which states that the time to insert a new site p is proportional
to the number of objects that conflict with regions that conflict with p. In our context, we
need to add an additional factor of O(m). First, this is needed because bisectors are no
longer of constant complexity, but consist of O(m) segments. Our algorithm processes each
new segment in O(1) time. Second, when updating the conflict graph, in order to determine
which points conflict with the newly created edges, we need to construct a Hilbert ball at
each newly created Voronoi vertex, and this takes time O(m). The overall expected running
time is thus larger by a factor of O(m), implying the following.

▶ Theorem 16. Given an m-sided convex polygon Ω in R2 and a set of n point sites S in
Ω, the randomized incremental algorithm computes VorΩ(S) in expected time O(mn log n)
(where the expectation is over all possible insertion orders).

5.2 Segment Sites
In this section, we present a sketch of the modifications necessary to generalize the algorithm
from Section 5.1 to the case of line segments (due to space limitations, a more detailed
account of the changes can be found in the arXiv version of the paper). Since the algorithm
by Mehlhorn, Meiser, and Ó’Dúnlaing [13] is quite general, the approach applies here as well,
but with a few changes.

First, we need to modify the notion of spokes to apply to segment objects. This is done by
joining each bisector segment endpoint to its closest point on the segment (see Section 3.2).
Second, the sector tracing process will be changed, but the complexity of the bisector is
unaffected (see Lemma 15). Finally, the updating of the conflict graph is different, due to
the fact that the circumcircles involved are now defined by combinations of point sets and
segment sites.

Other than these changes, the algorithm and its analysis go through exactly as before.
We suffer the same additional O(m) in the running time due to complexity of Ω.
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▶ Theorem 17. Given an m-sided convex polygon Ω in R2 and a set of n point and line-
segment sites S in Ω, the randomized incremental algorithm computes VorΩ(S) in expected
time O(mn log n) (where the expectation is over all possible insertion orders).
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Abstract
Klee’s measure problem (computing the volume of the union of n axis-parallel boxes in Rd) is
well known to have n

d
2 ±o(1)-time algorithms (Overmars, Yap, SICOMP’91; Chan FOCS’13). Only

recently, a conditional lower bound (without any restriction to “combinatorial” algorithms) could be
shown for d = 3 (Künnemann, FOCS’22). Can this result be extended to a tight lower bound for
dimensions d ≥ 4?

In this paper, we formalize the technique of the tight lower bound for d = 3 using a combinatorial
object we call prefix covering design. We show that these designs, which are related in spirit to
combinatorial designs, directly translate to conditional lower bounds for Klee’s measure problem
and various related problems. By devising good prefix covering designs, we give the following lower
bounds for Klee’s measure problem in Rd, the depth problem for axis-parallel boxes in Rd, the
largest-volume/max-perimeter empty (anchored) box problem in R2d, and related problems:

Ω(n1.90476) for d = 4,
Ω(n2.22222) for d = 5,
Ω(nd/3+2

√
d/9−o(

√
d)) for general d,

assuming the 3-uniform hyperclique hypothesis. For Klee’s measure problem and the depth problem,
these bounds improve previous lower bounds of Ω(n1.777...), Ω(n2.0833...) and Ω(nd/3+1/3+Θ(1/d))
respectively.

Our improved prefix covering designs were obtained by (1) exploiting a computer-aided search
using problem-specific insights as well as SAT solvers, and (2) showing how to transform combinatorial
covering designs known in the literature to strong prefix covering designs. In contrast, we show that
our lower bounds are close to best possible using this proof technique.
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1 Introduction

For various problems in computational geometry, the best known algorithms display a running
time of the form nΘ(d) where d denotes the number of dimensions: Klee’s measure problem
and the depth problem for axis-parallel boxes in Rd can be solved in time nd/2±o(1) [31, 12, 13],
a recent algorithm [15] computes the largest-volume empty axis-parallel box among a given set
of points in time Õ(n(5d+2)/6), the star discrepancy can be computed in time O(nd/2+1) [17],
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the maximum-weight rectangle problem can be solved in time O(nd) [6], to name few examples.
Indeed, for all listed problems, it can be shown [12, 20, 6] that an no(d)-time algorithm
would refute the Exponential Time Hypothesis (ETH). Thus, the subsequent challenge is
to determine running times nf(d) with f(d) = Θ(d) that are optimal under fine-grained
complexity assumptions. By the nature of these running times (which quickly increase with
d), it is particularly interesting to determine optimal time bounds for small dimensions such
as d ∈ {2, 3, 4, 5}.

For some of these problems, strong conditional lower bounds are known: For Klee’s
measure problem and the depth problem, Chan [12] gives a tight conditional lower bound of
nd/2−o(1) for combinatorial algorithms – roughly speaking, algorithms that avoid the algebraic
techniques underlying fast matrix multiplication algorithms. When considering general
algorithms (not only combinatorial ones), tight lower bounds are only known for weighted
problems or small dimensions: For the weighted depth problem and the maximum-weight
rectangle problem, tight lower bounds of nd/2−o(1) and nd−o(1), respectively, can be shown
under the Weighted k-Clique Hypothesis [5]. Showing strong lower bounds for the simpler,
unweighted problems appears to be more difficult, however. For Klee’s measure problem and
the unweighted depth problem, a recent result shows an nd/(3−3/d)−o(1) conditional lower
bound under the 3-uniform hyperclique hypothesis [27], which yields a tight bound for d = 3,
but not for d ≥ 4.

Thus, the motivating question of this paper is the following:

Can we prove conditional optimality of known algorithms for Klee’s measure problem, the
depth problem and related problems for small dimensions d ≥ 4, such as d ∈ {4, 5, 6}?

1.1 Our Results
As a starting point of this work, we formalize the approach used in [27] to obtain tight
hardness for d = 3. To this end, we define the following combinatorial object, which we term
prefix covering designs (due to its conceptual similarity to certain combinatorial designs1).

In the following definition, let
(

S
t

)
denote the set of t-element subsets of S.

▶ Definition 1. Let d, K, α ∈ N with d ≥ 3 and K ≥ 4. A (d, K, α)-prefix covering design
consists of d sequences s1, . . . , sd over [K] with the following properties.

Triplet condition: For every {a, b, c} ∈
([K]

3
)
, there are i, i′, i′′ ∈ [d] and ℓ, ℓ′, ℓ′′ ∈ N0

such that
each element of {a, b, c} is contained in si[..ℓ], si′ [..ℓ′], or si′′ [..ℓ′′]. (Here, s[..ℓ] denotes
the prefix of the first ℓ elements of s.)
ℓ + ℓ′ + ℓ′′ ≤ α.

Singleton condition: For every x ∈ [K] occurring more than once in s1, . . . , sd, define
ℓmin(x) (ℓmax(x)) as the minimal (maximal) ℓ such that there is some i with si[ℓ] = x.
Then we have

ℓmin(x) + ℓmax(x) ≤ α + 1.

As an example, it is straightforward to see that for any d, the sequences s1 = (1, d+1), s2 =
(2, d + 1), . . . , sd = (d, d + 1) constitute a (d, d + 1, 3) prefix covering design.2

1 In fact, we will later establish a formal connection between these concepts.
2 For the triplet condition, note that the triplet {a, b, c} ∈

([d]
3

)
is contained in the prefixes

sa[..1], sb[..1], sc[..1] of total length α = 3 and that any triplet {a, b, d + 1} with {a, b} ∈
([d]

2

)
is
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Prefix covering designs constitute the core of the proof technique used in [27]. Specifically,
we show that the existence of good prefix covering designs directly leads to strong lower
bounds for several problems (these reductions are implicit in [27] or adapted to prefix covering
designs from [20]).

▶ Proposition 2. Let d, K, α ∈ N such that there exists a (d, K, α) prefix covering design.
Unless the 3-uniform Hyperclique Hypothesis fails, there is no ε > 0 such that there exists an
O(n K

α −ε)-time algorithm for any of the following problems:
Klee’s Measure problem in Rd,
Depth problem in Rd,
Largest-Volume Empty Anchored Box problem in R2d,
Maximum-Perimeter Empty Anchored Box problem in R2d.

Beyond these problems, similar reductions are also possible for related problems such as
the Bichromatic Box problem in R2d (given sets of red and blue points, find the axis-parallel
box containing the maximum number of blue points while avoiding any red point) and
various related discrepancy problems such as the Star Discrepancy, see [20]. Note that there
is a blow-up in the dimension for the Empty Anchored Box problems, which turns out to
be unavoidable assuming the 3-uniform hyperclique hypothesis, as there are O(n(1/2−ε)d)-
algorithms for these problems (see below). At this point, we only give a rough sketch of the
reduction, with the full proof deferred to the full version of this paper [22], where we also
formally define all listed problems and discuss the 3-uniform hyperclique hypothesis.

Proof sketch for Proposition 2. For each problem, we give a reduction from the 3-uniform
hyperclique problem: Given a 3-uniform hypergraph G = (V, E) with V = V (1) ∪ · · · ∪ V (K)

and |V (1)| = · · · = |V (K)| = n, determine whether there are v(1) ∈ V (1), . . . , v(K) ∈ V (K)

that form a clique in G. The 3-uniform hyperclique hypothesis states that this problem
requires running time nK−o(1).

Intuitively, a special case of each of the problems listed above is to find an axis-parallel box
Q satisfying certain properties. More specifically, any candidate box Q is given by choosing
some value vi ∈ {0, . . . , U − 1} for each dimension i ∈ [d]. We use a (d, K, α) prefix covering
design s1, . . . , sd to interpret the values v1, . . . , vd as choices of vertices in V (1), . . . , V (K):
Namely, with si = (si[1], . . . , si[L]), we think of any number vi ∈ {0, . . . , U − 1} with U = nL

as a base-n number vi = (vi[1], . . . , vi[L]). We interpret (vi[1], . . . , vi[L]) ∈ {0, . . . , n − 1}L

as choosing the (vi[ℓ] + 1)-st vertex in V (si[ℓ]) for all 1 ≤ ℓ ≤ L.
With this encoding fixed, it remains to ensure that the only true solutions Q encode

a clique in G. This consists of two tasks: (1) ensuring that the candidate box Q chooses
vertices consistently, i.e., for each V (x) such that x occurs in more than one si, we need
to make sure that the same vertex is chosen in each occurrence, and (2) ensuring that the
chosen vertices form a clique. Crucially, for both tasks, our geometric problems allow us
to exclude candidate boxes Q where the vi have certain prefixes. Specifically, due to the
singleton condition, we only need to construct O(nα) boxes to ensure consistency of the
remaining candidate solutions Q. Likewise, the triplet condition is used to ensure that all
candidate boxes Q that encode a non-clique (for which one of the triplets {v(a), v(b), v(c)} is
not an edge in G) are excluded, using only O(nα) additional boxes. In total, this creates an
instance of size O(nα) for the target problem, which yields an n

K
α −o(1) lower bound under

the 3-uniform hyperclique hypothesis. ◀

contained in the prefixes sa[..2], sb[..1] of total length α = 3. The singleton condition only needs
to be checked for x = d + 1, for which we note that ℓmin(d + 1) = ℓmax(d + 1) = 2 and thus
ℓmin(d + 1) + ℓmax(d + 1) = 4 ≤ α + 1 for α = 3.
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From Proposition 2, we obtain the following direct corollary.

▶ Corollary 3. For any d ≥ 3, let γd := sup{ K
α | there is a (d, K, α) prefix covering design}.

Then for no ε > 0 there exists an O(nγd−ε)-algorithm for any of the problems listed in
Proposition 2, unless the 3-uniform hyperclique hypothesis fails.

The tight conditional lower bound [27] for Klee’s Measure problem and the depth problem
in R3 follows from the following construction: For any g ∈ N, we set K = 3g, write
[K] = {a1, . . . , ag, b1, . . . , bg, c1, . . . , cg} and observe that

s1 = (a1, . . . , ag, bg, . . . , b1), s2 = (b1, . . . , bg, cg, . . . , c1), s3 = (c1, . . . , cg, ag, . . . , a1)

provide a (3, 3g, 2g + 1) prefix covering design. Thus, we obtain γ3 ≥ limg→∞
3g

2g+1 = 3
2 ,

establishing an n
3
2 −o(1) conditional lower bound for KMP in R3 and related problems.3

Given the direct applicability of prefix covering designs to Klee’s measure problem,
the depth problem and many related problems, it is only natural to ask what the highest
obtainable lower bounds are using this technique. For one, designing better prefix covering
designs gives stronger lower bounds. On the other hand, establishing limits for prefix covering
designs may indicate potential for improved algorithms for KMP and related problems (such
a phenomenon has been observed in other contexts, e.g., [11]).

Our first result is that prefix covering designs cannot establish a higher lower bound than
n

d
3 +O(

√
d). The following bound will be proved in Section 3.

▶ Proposition 4. We have that γd ≤ d

3(1−
√

2
d )

= d
3 +

√
2
9 ·

√
d + o(

√
d).

However, as d

3(1−
√

2/d)
≥ d

2 for d ≤ 18, this result does not rule out tight lower bounds for
small dimensions. In fact, combining a computer-aided search with problem-specific insights,
we give improved constructions for d ∈ {4, 5}, which give lower bounds that are surprisingly
close to d

2 .

▶ Theorem 5. There is a (4, 40, 21) prefix covering design, which yields γ4 ≥ 40
21 > 1.90476.

There is a (5, 40, 18) prefix covering design, which yields γ5 ≥ 40
18 > 2.22222.

Proof. The following sequences give a (4, 40, 21) prefix covering design:

s1 = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 40, 19, 28, 37, 26),
s2 = (11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 30, 9, 38, 27, 36),
s3 = (21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 20, 39, 8, 7, 37),
s4 = (31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 10, 29, 18, 17, 27).

The following sequences give a (5, 40, 18) prefix covering design:

s1 = (1, 2, 3, 4, 5, 6, 7, 8, 24, 31, 38, 30, 14),
s2 = (9, 10, 11, 12, 13, 14, 15, 16, 32, 40, 6, 31, 22),
s3 = (17, 18, 19, 20, 21, 22, 23, 24, 8, 7, 39, 15, 30),
s4 = (25, 26, 27, 28, 29, 30, 31, 32, 40, 16, 23, 39, 6),
s5 = (33, 34, 35, 36, 37, 38, 39, 40, 16, 32, 15, 23).

For the readers’ convenience, we provide checker programs to verify the singleton and triplet
conditions in [21] (see the full version of this paper [22] for details). ◀

3 It is not hard to prove that γ3 ≤ 3
2 , resulting in γ3 = 3

2 . This raises the question whether we can find
exact values of γd for d ≥ 4.
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For Klee’s measure problem and the depth problem in R4 and R5, the gap between the
resulting conditional lower bound and the known upper bound is thus at most O(n0.09524)
and O(n0.27778), respectively. This improves over previous hyperclique-based lower bounds
of Ω(n1.777) and Ω(n2.0833), respectively.

These results may (re-)ignite hope that it might be possible to find prefix covering designs
that establish tight lower bounds for d = 4 and d = 5. Alas, by a careful investigation of the
limits of prefix covering designs, we refute this hope.

▶ Theorem 6. We have γ4 < 2.

This result is proven via a careful analysis of the structure of prefix covering designs with
quality K

α approaching 2: We show that certain levels (i.e., s1[ℓ], . . . , s4[ℓ] for certain values
of ℓ) must have a very rigid structure. Essentially, every element on such a level must have
exactly a single copy on a corresponding other level. A detailed analysis of all possibilities
displays a contradiction; we cannot get a quality K

α that is arbitrarily close to 2. The proof
is in the full version of this paper [22]. It remains an interesting question to determine the
precise value of γ4; our results yield 1.90476 ≤ γ4 < 2.

Connection to covering designs

Our previous results give evidence of the intricacy of designing good prefix covering designs.
Unfortunately, designing optimized designs for small dimensions like d = 4 and d = 5 offers
little insights into the asymptotics in d as well as the general structure of good prefix designs
for larger dimensions.

We address this by providing general constructions that are applicable for all d and make
use of the extensive literature on combinatorial designs. Specifically, we observe an interesting
connection between so-called covering designs (see, e.g., the surveys [29, 24, 25, 23] and [14]
for an algorithmic application in computational geometry) and prefix covering designs. A
(v, k, t) covering design is a collection of k-sized subsets B1, . . . , Bb – called blocks – of [v]
such that every t-element subset of [v] is fully contained in some block Bi. These covering
designs constitute a relaxation of balanced incomplete block designs.

Note that a (d, K, α) prefix covering design s1, . . . , sd where each si has length at most L

is superficially similar to a (v, k, t)-covering design with v = K elements, block size k = L,
parameter t = 3 and d blocks: in both designs, we cover triplets among v = K elements
using d sequences/blocks. However, there are two key differences. (1) In covering designs, we
cover each triplet in a single block, while in prefix covering designs, we may use prefixes from
up to three sequences. (2) The sequences of prefix covering designs are inherently ordered
(due to the prefix nature of the singleton and triplet conditions), while covering designs have
unordered blocks. A priori, it is unclear whether there is a general way to use good covering
designs to obtain good prefix covering designs or vice versa. Maybe surprisingly, we show
how to use good (v, k, t) covering designs with t = 2 (rather than t = 3, which might appear
as the more natural correspondence) to obtain strong prefix covering designs.

Specifically, for any such covering design satisfying a mild matching-like condition (which
is satisfied by many constructions known in the literature), we obtain high-quality prefix
covering designs. We will see below that by plugging in known constructions, we get prefix
covering designs that are close to optimal when d → ∞.

▶ Theorem 7. Let d ≥ 3, k ∈ N and v be a multiple of d such that there is a (v, k, 2) covering
design with d blocks with the following property: For every block Bi, there exists Ui ⊆ Bi of
size v

d such that U1, . . . , Ud partition [v]. Then γd ≥ d
3−2 v

kd
.

SoCG 2023



36:6 Higher Lower Bounds for Klee’s Measure Problem & Related Problems in Rd, d ≥ 4

Let us give an example application of this theorem (see Sections 1.2 and the full version
of this paper [22] for stronger consequences). It is well known that the projective plane of
order q (where q is a prime power) yields a set of v = q2 + q + 1 points, d = q2 + q + 1
lines, with k = q + 1 points on each line, such that every pair of points is connected by a
line. This yields a (v, k, 2)-design with d = v = q2 + q + 1 and k = q + 1. One can show
that this design satisfies the matching-like condition (see the full version of this paper [22]).
Thus, for infinitely many d, we obtain a lower bound of γd ≥ d

3− 2
q+1

. Since q = O(
√

d), we

obtain γd ≥ d
3−Ω(1/

√
d) = d

3 + Ω(
√

d) for infinitely many d, improving over the lower bound
of γd ≥ d

3 + 1
3 + 1

3(d−1) that is implicit in [27].

1.2 Consequences: Improved conditional lower bounds
Using Theorem 7, we may take any (v, k, 2) covering design with d blocks that is known
in the literature, check whether it satisfies the matching-like condition, and obtain the
corresponding lower bound on γd. In Table 1, we list lower bounds on γd, d ≤ 10 obtained
this way, specifically, by using covering designs listed in the La Jolla Covering Repository [23]
(see Section 2 for details). Notably, the resulting lower bounds improve over the constructions
in [27] for d ≥ 4.

We also provide a lower bound for all γd that is close to optimal when d → ∞.

▶ Theorem 8. There is some function f(d) = d/3 + 2
√

d/9 − o(
√

d) such that γd ≥ f(d) for
all d ≥ 3.

This lower bound is obtained by showing how to extend the projective planes covering
designs (in a suitable way) to obtain strong prefix covering designs for all values of d.

By the above theorem, we obtain a nd/3+2/9
√

d−o(
√

d) conditional lower bound for Klee’s
measure problem and related problems. Note that Chan’s reduction from K-clique [12] can
be interpreted as a lower bound of n(ω/6)d−o(1) assuming that current K-clique algorithms
are optimal. If ω = 2, this cannot give any higher lower bound than nd/3−o(1).

Table 1 also lists the corresponding upper bound of O(nd/2) for Klee’s measure problem
and the depth problem for comparison. The gaps for the Largest-Volume/Maximum-Perimeter
Empty (Anchored) Box problem in Rd are a bit larger: Chan [15] obtains an upper bound4

for the anchored version of Õ(nd/3+⌊d/2⌋/6) ≤ Õ(n5d/12) for d ≥ 4. In particular, this yields
upper bounds of Õ(n2.5), Õ(n3.3334), and Õ(n4.1667) for d = 6, d = 8 and d = 10, respectively,
while we supply a conditional lower bound of nγd/2−o(1) for even d ≥ 6, which yields lower
bounds of n1.5−o(1), n1.9047−o(1) and n2.2222−o(1) for d = 6, d = 8 and d = 10, respectively.
It is an interesting question whether we can prove a higher lower bound than nd/4−o(1) for
any d or whether Chan’s algorithms can be improved further.

Related Work. Klee’s measure problem has been well-studied since the 1970s [26, 7,
19, 32, 31, 12, 13, 27], including algorithms beating nd/2±o(1) for various special cases,
e.g., [2, 8, 1, 9, 33, 10].

The depth problem for axis-parallel boxes is closely related to Klee’s measure problem
and often admits similar algorithmic ideas, see particularly [13].

Finding a largest-volume empty axis-parallel box has initially been mostly studied in
two dimensions (see, e.g., [30, 16, 3]). In higher dimensions, Backer and Keil [4] give a
Õ(nd) algorithm, which was recently improved to Õ(n(5d+2)/6) by Chan [15]. Note that

4 While Chan focuses on the Largest-Volume Empty Box problem, he states that his algorithms for d ≥ 4
also work for the Maximum-Perimeter version, see [15, Section 5].
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Table 1 The exponents of the upper and conditional lower bounds for Klee’s measure problem
and the depth problem in Rd for d ≤ 10. The upper bound column is due to the nd/2±o(1)-
time algorithms [31, 12, 13], the conditional lower bounds are based on the 3-uniform hyperclique
hypothesis and result from [27] (3rd column), Theorem 5 (4th column) and from combining Theorem 7
with covering designs found in the La Jolla Covering Repository maintained by D. Gordon [23] (5th
column).

d Upper bound Previously
known lower
bound

SAT-solver
lower bound

Covering
designs lower
bound

3 1.5 1.5 1.5
4 2 1.7777 1.9047 1.8461
5 2.5 2.0833 2.2222 2.1929
6 3 2.4 2.5714
7 3.5 2.7222 3
8 4 3.0476 3.3333
9 4.5 3.375 3.6818
10 5 3.7037 4.0540

our lower bounds are most interesting for the anchored version of the problem, which is
solvable in faster running time Õ(n5d/12) [15]. Approximation algorithms have been given
in [18]. Giannopoulos et al. [20] give a reduction from d-clique, which can be understood as
an n(ω/12)d−o(1) lower bound assuming that current clique algorithms are optimal.

2 Constructions

In this section, we prove our general result transforming covering designs to prefix covering
designs (Theorem 7). All remaining proofs and details on constructing prefix covering designs
can be found in the full version of this paper [22].

For a (d, K, α) prefix covering design (PCD) with sequences s1, s2, . . ., sd we call elements
s1[i], s2[i], . . ., sd[i] the i-th level of the PCD.

When analyzing such prefix covering designs, it is helpful to distinguish between the “first”
occurrence of some element, which we call the primary element, and all other occurrences,
which we call copies. We call a pair (i, ℓ) a position if 1 ≤ i ≤ d, 1 ≤ ℓ, and there exists ℓ-th
element in si.

▶ Definition 9. For any prefix covering design s1, . . . , sd, we call a position (i, ℓ) the primary
position of value x (1 ≤ x ≤ K) if and only if si[ℓ] = x and si′ [ℓ′] ̸= x for every other
position (i′, ℓ′) such that (ℓ′, i′) precedes (ℓ, i) in the lexicographic ordering.

Every other occurrence (i′, ℓ′) with si′ [ℓ′] = x is called a copy of x.

Note that if (i, ℓ) is a primary position of value x, then ℓ = ℓmin(x).

▶ Definition 10. A (v, k, t) covering design where v ≥ 2, k ≥ t ≥ 1 is a collection of
k-element subsets (called blocks) of [v] such that any t-element subset is contained in at least
one block.

In the following proof, we will be extensively using (v, k, t) covering designs for t = 2. So,
every pair of elements is contained in at least one block.

Proof of Theorem 7. Consider some (v, k, 2) covering design consisting of d blocks where
v is divisible by d and set v′ := v

d ∈ N. Define B1, B2, . . ., Bd as the blocks of this
covering design. Assume there exist sets U1 ⊆ B1, U2 ⊆ B2, . . ., Ud ⊆ Bd such that
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s1 8 9 10 1 2 3
s2 11 12 13 4 1 5
s3 14 15 16 7 1 6
s4 17 18 19 6 2 4
s5 20 21 22 2 5 7
s6 23 24 25 3 4 7
s7 26 27 28 5 3 6

Figure 1 Example of a (7, 28, 10) PCD construction from a (7, 3, 2) covering design with 7 blocks.

|U1| = |U2| = . . . = |Ud| = v′ and U1, U2, . . . , Ud partition [v]. Then we will prove that for
every ε > 0, there exist K and α such that K

α ≥ d
3−2 v

kd
− ε and (d, K, α) PCD exists. From

this we automatically get that γd ≥ d
3−2 v

kd
by going to the limit.

First, we present a slightly worse construction.
Order elements inside blocks of a given covering design in such a way that elements of

Ui are located in the first v′ positions of Bi, i.e., {Bi[j] | 1 ≤ j ≤ v′} = Ui. To construct
sequences of our PCD, we take these blocks of the covering design and put kd new different
elements in front of them by prepending k elements in each sequence. In other words, the
resulting PCD has sequences s1, s2, . . ., sd each of length 2k such that si[j] = v +(i−1) ·k +j

for j ≤ k and si[j] = bi[j − k] for j > k. An example for d = 7 is given in Figure 1. We will
prove that this gives a (d, K, α) PCD with K = (v′ + k)d and α ≤ 3k + v′.

There are v′d elements from a covering design and kd more unique elements that we
added, so K = (v′ + k)d. It remains to check that α ≤ 3k + v′.

First, we check the singleton condition. Due to our ordering of the covering design blocks,
all primary positions of all elements are located in the first k + v′ levels, so ℓmin(x) ≤ k + v′

for every element x. At the same time, there are 2k elements in each sequence in total, so
ℓmax(x) ≤ 2k. Thus, ℓmin(x) + ℓmax(x) ≤ (k + v′) + 2k = 3k + v′ for each x ∈ [K].

Second, we check the triplet condition. Assume we chose three elements a, b and c. Define
their primary positions as (ia, ℓa), (ib, ℓb) and (ic, ℓc) respectively. Without loss of generality,
assume that ℓa ≤ ℓb ≤ ℓc. Consider two cases.

1. If there is at most one element from the covering design among these three, then ℓa ≤ k,
ℓb ≤ k and ℓc ≤ k + v′, so we can cover them with prefixes sia

[..ℓa], sib
[..ℓb] and sic

[..ℓc]
of total size ℓa + ℓb + ℓc ≤ k + k + (k + v′) = 3k + v′.

2. If there are at least two elements from the covering design among these three, then b and
c are in the covering design. By the definition of a covering design, there should be a
sequence si that contains both b and c. Thus we can cover all three elements with two
prefixes: si[..2k] (whole sequence) and sia [..ℓa] of total size 2k+ℓa ≤ 2k+(k+v′) = 3k+v′.

This concludes the proof that α ≤ 3k + v′ and already gives a bound γd ≥ K
α ≥ (k+v′)d

3k+v′ =
d
3 · 3k+3v′

3k+v′ = d
3 ·
(

1 + 2v′

3k+v′

)
= d

3 ·
(

1 + 2v
3dk+v

)
.

To improve this construction we will replicate the covering design n times for some
positive integer n. Define Bj

i for 1 ≤ i ≤ d and 1 ≤ j ≤ n as the i-th block of the j-th copy
of the covering design. We want different copies of the covering design to be over different
elements, so the v elements of Bj are {(j − 1)v + 1, . . . , jv}. Define U j

i as v′-element subsets
of Bj

i such that U j
1 , U j

2 , . . ., U j
d partition {(j − 1)v + 1, . . . , jv}. Define Rj

i := Bj
i \ U j

i as the
remaining k − v′ elements of each block. Also, for every sequence of our PCD, we define
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s1 22 23 24 25 26 27 28 1 8 15 19 20 12 13 5 6
s2 29 30 31 32 33 34 35 2 9 16 15 21 8 14 1 7
s3 36 37 38 39 40 41 42 3 10 17 15 18 8 11 1 4
s4 43 44 45 46 47 48 49 4 11 18 19 16 12 9 5 2
s5 50 51 52 53 54 55 56 5 12 19 21 17 14 10 7 3
s6 57 58 59 60 61 62 63 6 13 20 16 17 9 10 2 3
s7 64 65 66 67 68 69 70 7 14 21 20 18 13 11 6 4

Figure 2 Example of a (7, 70, 24) prefix covering design obtained by a scaled construction with
v = 7 (v′ = 1), k = 3, d = 7 and n = 3.

m := nk − (n − 1)v′ unique elements that are put at the beginning of this sequence. Let
these unique elements for sequence i be called Ai (Ai = {nv + (i − 1)m + 1, . . . , nv + im}).
Now we are ready to construct the sequences s1, . . . , sd of our prefix covering design by

si = (Ai, U1
i , U2

i , . . . , Un
i , Rn

i , Rn−1
i , . . . , R1

i ).

An example of such a construction is given in Figure 2.
We will prove that such a PCD has K = (nk + v′)d and α ≤ 3nk − (2n − 3)v′, similarly

to the proof for the simpler construction. First, there are v′d elements from every covering
design, and there are n designs, so overall, there are nv′d elements from covering designs.
Additionally, there are md = nkd − (n − 1)v′d more unique elements that we added, so
K = (nk + v′)d indeed. It remains to check that α ≤ T where T := 3nk − (2n − 3)v′. We
will use that T = 2m + nk + v′ = 3m + nv′.

First, we check the singleton condition. Due to our ordering of the covering design blocks,
all primary positions of all elements are located in the first m+nv′ levels, so ℓmin(x) ≤ m+nv′

for every element x. If ℓmin(x) ≤ m, this element has only one occurrence, and we do not
need to check the singleton condition for it. If ℓmin(x) = m + (n − i)v′ + j for some 1 ≤ i ≤ n

and 1 ≤ j ≤ v′, then it means that element x belongs to the (n − i + 1)-st covering design,
and its other occurrences are located in the levels from m + nv′ + (i − 1)(k − v′) + 1 to
m + nv′ + i(k − v′). So ℓmax(x) ≤ m + nv′ + i(k − v′). Consequently, ℓmin(x) + ℓmax(x) ≤
(m+(n−i)v′+j)+(m+nv′+i(k−v′)) = 2m+2nv′+i(k−2v′)+j ≤ 2m+2nv′+n(k−2v′)+v′ =
2m + nk + v′ = T < T + 1 where we used the fact that k − 2v′ = k − 2 v

d ≥ 0 due to the
lemma below. We have even proved a slightly stronger inequality:

ℓmin(x) + ℓmax(x) ≤ T. (1)

▶ Lemma 11. For every (v, k, 2) covering design with d ≥ 2 blocks, k ≥ 2v/d holds.

Proof of Lemma. If k < v, then every element x ∈ [v] should be located in at least two sets:
otherwise, we would cover only k − 1 < v − 1 pairs involving x, which contradicts the fact
that it is a covering design. But if every element is located in at least two sets, then the sum
of all set sizes kd is at least 2v. Dividing both numbers by d, we get the desired inequality.

If k ≥ v, then k ≥ v ≥ 2 v
d because d ≥ 2. ◀

Second, we check the triplet condition. Consider any three elements a, b and c. Define
their primary positions as (ia, ℓa), (ib, ℓb) and (ic, ℓc) respectively. Without loss of generality,
assume that ℓa ≤ ℓb ≤ ℓc. Consider two cases.

1. If at most one element out of these three is from covering designs, we know that ℓa ≤ m,
ℓb ≤ m and ℓc ≤ m+nv′, so we can cover them with prefixes sia [..ℓa], sib

[..ℓb] and sic [..ℓc]
with total size ℓa + ℓb + ℓc ≤ m + m + (m + nv′) = 3m + nv′ = T .
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2. If at least two elements out of these three are from covering designs, then b and c are in
the covering designs. By the definition of a covering design there should be a sequence
si that contains both b and c.5 Then we can cover all three elements with two prefixes:
si[.. max(ℓi

b, ℓi
c)] and sia [..ℓa] where ℓi

b and ℓi
c are positions of elements b and c, respectively,

in the sequence i. We already know that elements b and c satisfy (1). It follows that
ℓa + ℓi

b ≤ ℓb + ℓi
b ≤ T and ℓa + ℓi

c ≤ ℓc + ℓi
c ≤ T . From this we can conclude that

ℓa + max(ℓi
b, ℓi

c) ≤ T , as desired.

This concludes the proof that α ≤ T = 3nk − (2n − 3)v′. This construction gives us a
bound γd ≥ K

α ≥ (nk+v′)d
3nk−(2n−3)v′ = (k+ v′

n )d

3k−(2− 3
n )v′ where n ∈ N can be chosen arbitrarily. When n

approaches infinity, this value approaches kd
3k−2v′ = d

3− 2v′
k

= d
3−2 v

kd
. Thus, for every ε > 0

there exists n such that such a construction gives K
α ≥ d

3−2 v
kd

− ε, as desired. ◀

We say that a (v, k, 2) covering design with d blocks admits a multi-matching if for every
block Bi we can choose a subset Ui of size v/d such that U1, U2, . . . , Ud partition [v]. The
following observation shows that in Theorem 7 it is not a restriction to assume that v is
divisible by d, since we can always suitably scale covering designs:

▶ Observation 12. Every (v, k, 2) covering design with d blocks can be transformed into
a (vd, kd, 2) covering design with d blocks by replacing each of v elements with d distinct
elements. If this scaled covering design admits a multi-matching, we get a lower bound for γd

of d

3−2 (vd)
(kd)d

= d
3−2 v

kd
.

The bound we give depends on the existence of specific covering designs admitting multi-
matchings. This lower bound can be transformed into a general lower bound depending
only on d (see the full version of this paper [22] for details); one can also obtain lower
bounds for specific values of d: for a fixed value of d, the lower bound can be obtained by
finding a covering design that minimizes the value freq := kd

v which we call frequency (for a
fixed covering design, the frequency is the average number of occurrences of elements). We
searched for covering designs in the La Jolla Covering Repository [23], fixing the number
of blocks to d and choosing the ones with the smallest frequencies. Then we multiplied the
number of elements and set sizes in these covering designs by d using Observation 12 (because
Theorem 7 works only for covering designs with v divisible by d) and checked whether they
admit multi-matching. Perhaps surprisingly, for all specific values of d that we checked, the
obtained covering designs indeed admit a multi-matching. The covering designs used and
their multi-matchings can be found in [21] along with a computer program that checks that
provided constructions are indeed covering designs, and they indeed admit multi-matchings.

The question remains whether the frequency in some dimension d could be minimized
by a covering design that does not admit a multi-matching. Indeed, one can construct
covering designs that do not admit a multi-matching. However, since we aim to minimize
the frequencies, we are considering covering designs that should have a relatively small
degree of redundancy – otherwise, they probably could be improved. In the full version of
this paper [22], we formulate the corresponding conjecture that “sufficiently good” covering
designs always admit a multi-matching and discuss some evidence. We also provide weaker
bounds obtained from covering designs not admitting multi-matchings.

5 b and c may belong to different copies of our covering design, but all copies are identical, so equivalent
elements from all covering designs occur in the same sequences, so there indeed should exist such si.



E. Gorbachev and M. Künnemann 36:11

3 Limits

In this section, we prove limits of prefix covering designs, i.e., upper bounds on γd = sup{ K
α |

there exists a (d, K, α) prefix covering design}. The proof that γ4 < 2 is in the full version
of this paper [22]. The following lemma formalizes the intuition that increasing the value of
K can only lead to better (more precisely, not worse) prefix covering designs.

▶ Lemma 13 (Scaling Lemma). For every (d, K, α) PCD and positive integer λ ∈ N, there
also exists a (d, λ · K, λ · α) PCD.

The proof of this fact is in the full version of this paper [22].

Proof of Proposition 4. For a fixed (d, K, α) PCD define g :=
⌈

K
d

⌉
. If α ≥ 3g then K

α ≤
K
3g ≤ K

3K/d = d
3 and the proposition statement holds. Otherwise define a :=

⌈
g − α

3
⌉

≥ 1, i.e.,

3(g − a) ≤ α < 3(g − a + 1). We will prove that a <
√

2
d + 2. If a = 1, it is correct, so from

now on we assume that a ≥ 2.
Define B as the set of all elements x that have ℓmin(x) > g−a. We claim that |B| ≥ d(a−1):

The number of (not necessarily distinct) elements in the first (g − a) positions (over all si) is
d · (g − a) = dg − da < d · ( K

d + 1) − da = K − d(a − 1). Since there are K distinct numbers
in total, the claim follows.

To prove the proposition, we will define a graph GB with vertex set B. We connect two
elements x, y ∈ B by an edge if and only if there is some sequence si containing both x and y.
We obtain our result by proving both an upper and a lower bound on the number of edges.

For a lower bound on the number of edges, consider how triplets {a, b, c} ∈
(

B
3
)

are covered
by prefixes: For any such triplet {a, b, c}, there are prefixes si[..ℓ], si′ [..ℓ′] and si′′ [..ℓ′′] which
contain a, b and c and satisfy ℓ + ℓ′ + ℓ′′ ≤ α.

▷ Claim 14. Without loss of generality, we may assume that at least one of ℓ, ℓ′ and ℓ′′ is
zero.

Proof. If all of them are at least g − a + 1, then ℓ + ℓ′ + ℓ′′ ≥ 3(g − a + 1) > α, which yields
a contradiction. Otherwise, if at least one of them is at most g − a, then this prefix cannot
contain any of a, b and c as ℓmin(a), ℓmin(b), ℓmin(c) > g − a. We can set this prefix to the
empty prefix without loss of generality. ◁

So indeed, we can imagine that triplets of elements in B must be covered by using only
two prefixes, not three. In particular, for every triplet of elements from B, at least two of
them must occur in the same sequence, i.e., they must have an edge in GB . Put differently,
the complement graph of GB is triangle-free and thus contains at most |B|2/4 edges by
Mantel’s Theorem [28] (a special case of Turan’s Theorem). We conclude that GB has at
least

(|B|
2
)

− |B|2

4 = |B|2−2|B|
4 ≥ (|B|−2)2

4 edges because |B| ≥ 2.
We now show that either the number of edges is at most dg2/2 or |B| ≤ 2g. We

ask on which positions elements from B can be located in the sequences. We know that
ℓmin(x) ≥ g − a + 1 for any x ∈ B. At the same time, if some element from B is located in
position ≥ 2(g − a) + 3 (in some sequence i), then this must be its only occurrence since
otherwise, it would violate the singleton condition. Furthermore, any covering of a triplet
with such an element cannot contain elements from B in other sequences because it would
take a prefix of length at least 2(g − a) + 3 in sequence i and a prefix of length at least
g − a + 1 in some other sequence, which would violate the triplet condition. From this, we
can conclude that if every triplet with this element and other elements in B is covered, all
elements from B have to occur in sequence i. We can assume that all elements have indices
at most α (otherwise, they are useless for coverings), so there are at most α − (g − a) ≤ 2g

SoCG 2023
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elements from B in this sequence. This yields |B| ≤ 2g. In the remaining case all x ∈ B

satisfy ℓmax(x) ≤ 2(g − a) + 2 and ℓmin(x) > (g − a), so there are at most g − a + 2 ≤ g

elements from B in each sequence. Thus, there are at most d ·
(

g
2
)

pairs of elements from B

that occur in the same sequence.
From the above lower and upper bounds on the number of edges, we derive that
(|B| − 2)2

4 ≤ d ·
(

g

2

)
<

dg2

2 .

Combining this with the fact that d(a − 1) ≤ |B|, we deduce that d(a − 1) − 2 ≤ |B| − 2 <√
2dg. (Note that in the case |B| ≤ 2g, the upper bound is trivially satsified since d ≥ 2.)

Consequently,

a <

√
2dg + 2

d
+ 1 ≤

√
2
d

g + 2

for d ≥ 2. We plug this inequality into our initial inequality on α:

α ≥ 3(g − a) > 3g

(
1 −

√
2
d

− 2
g

)
≥ 3K

d

(
1 −

√
2
d

− 2
g

)
.

It follows that
K

α
≤ K

3K
d

(
1 −

√
2
d − 2

g

) = d

3 ·
(

1 −
√

2
d − 2

g

) .

Due to Scaling Lemma 13 we know that if there exists a (d, K, α) PCD then there also
exists a (d, K · λ, α · λ) PCD for every positive integer λ. If we plug this covering design into
the inequality above, we will get that

K

α
= λ · K

λ · α
≤ d

3 ·
(

1 −
√

2
d − 2

g′

)
where g′ :=

⌈
K·λ

d

⌉
. If we take λ → +∞ then 2

g′ → 0 and in the limit, we get the desired
upper bound on K

α :

K

α
≤ d

3 ·
(

1 −
√

2
d

) = d

3 ·

1 +

√
2
d

1 −
√

2
d

 = d

3 +
√

2d

3
(

1 −
√

2
d

) = d

3 +
√

2
9 ·

√
d + o(

√
d).◀

4 Conclusion and Outlook

In this work, we make progress on obtaining tight conditional lower bounds for Klee’s measure
problem and related problems for d ≥ 4. We give improved lower bounds that leave gaps
of only O(n0.09524), O(n0.27778) and O(n0.4286) for d = 4, d = 5 and d = 6, respectively.
On the negative side, we prove that the proof technique via prefix covering designs and
Proposition 2 – despite yielding a tight lower bound for d = 3 – cannot give tight lower
bounds for d ≥ 4, so that a novel reduction approach is needed for this task. Of course, it
remains a tantalizing possibility that the nd/2±o(1) running time for Klee’s measure problem
for large dimensions d ≥ 4 can be broken.

We feel that the prefix covering designs formalized in this work are interesting in their
own right. We establish a connection to the well-studied covering designs, by giving a
framework that turns 2-covering designs into prefix covering designs. This connection leads
to the asymptotic bound γd = d

3 + Θ(
√

d), leading to an nd/3+Θ(
√

d) conditional lower bound
for Klee’s measure problem and related problems, improving over a previous bound of
nd/3+1/3+Ω(1/d).
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Abstract
The (combinatorial) graph Laplacian is a fundamental object in the analysis of, and optimization
on, graphs. Via a topological view, this operator can be extended to a simplicial complex K and
therefore offers a way to perform “signal processing” on p-(co)chains of K. Recently, the concept of
persistent Laplacian was proposed and studied for a pair of simplicial complexes K ↪→ L connected
by an inclusion relation, further broadening the use of Laplace-based operators.

In this paper, we significantly expand the scope of the persistent Laplacian by generalizing
it to a pair of weighted simplicial complexes connected by a weight preserving simplicial map
f : K → L. Such a simplicial map setting arises frequently, e.g., when relating a coarsened simplicial
representation with an original representation, or the case when the two simplicial complexes are
spanned by different point sets, i.e. cases in which it does not hold that K ⊂ L. However, the
simplicial map setting is much more challenging than the inclusion setting since the underlying
algebraic structure is much more complicated.

We present a natural generalization of the persistent Laplacian to the simplicial setting. To shed
insight on the structure behind it, as well as to develop an algorithm to compute it, we exploit the
relationship between the persistent Laplacian and the Schur complement of a matrix. A critical step
is to view the Schur complement as a functorial way of restricting a self-adjoint positive semi-definite
operator to a given subspace. As a consequence of this relation, we prove that the qth persistent Betti
number of the simplicial map f : K → L equals the nullity of the qth persistent Laplacian ∆K,L

q .
We then propose an algorithm for finding the matrix representation of ∆K,L

q which in turn yields a
fundamentally different algorithm for computing the qth persistent Betti number of a simplicial map.
Finally, we study the persistent Laplacian on simplicial towers under weight-preserving simplicial
maps and establish monotonicity results for their eigenvalues.
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37:2 A Generalization of the Persistent Laplacian to Simplicial Maps

1 Introduction

The graph Laplacian is an operator on the space of functions defined on the vertex set of
a graph. It is one of the main tools in the analysis of and optimization on graphs. For
example, the spectral properties of the graph Laplacian are extensively used in spectral
clustering and other applications [2, 13, 17, 18, 21] and for efficiently solving systems of
equations [12, 15, 19, 20].

As opposed to the traditional way of defining the graph Laplacian as the difference of the
degree matrix and the adjacency matrix, it can also be defined from an algebraic topology
perspective by considering the boundary operators and specific inner products defined on
simplicial chain groups [2]. This point of view permits extending the graph Laplacian to
operators on higher dimensional chain groups. Namely, this leads to the qth combinatorial
Laplacian ∆K

q on the qth chain group of a given simplicial complex K, in which the case
q = 0 corresponds to the standard graph Laplacian [5, 6, 7, 10]. One fundamental property
of the qth combinatorial Laplacian is that the qth Betti number of K equals the nullity of
∆K

q .
By adopting the algebraic topology view, the qth persistent Laplacian ∆K,L

q was inde-
pendently introduced in [14, 22] for a pair of simplicial complexes K ↪→ L connected by
an inclusion. The theoretical properties of ∆K,L

q and algorithms to compute it have been
extensively studied in [16]. One of these properties is that the nullity of ∆K,L

q equals the per-
sistent Betti number of the inclusion K ↪→ L, which is a generalization of the corresponding
property of the combinatorial Laplacian mentioned above.

Figure 1 The 1-dimensional simplicial complex, i.e. graph, K is coarsened to produce the one on
the right K̃. Vertices of the same color are “collapsed” to a “supernode” in K̃. This vertex map
induces a simplicial map at the simplicial complex level.

Although the persistent Laplacian for a pair K ↪→ L has been used in some applications [1,
9, 11], the requirement that the complexes should be connected by an inclusion is restrictive
and limits its applicability. Consider the scenario when we have two simplicial complexes
K

ι
↪→ L related by an inclusion so that their sizes are prohibitively large. Instead of tackling

the direct computation of the persistent Betti numbers induced by the simplicial inclusion ι,
practical needs may suggest that instead one sparsifies the complexes K and L to obtain
(smaller) complexes and in the process one obtains a simplicial map connecting them (see
Figure 1 for an illustration of the coarsening procedure in the case of graphs). This is the
scenario described for example in [4, 3] and can be expressed through the following diagram
where vertical arrows indicate the sparsification process:

K L

K̃ L̃

ι

φι
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This, therefore, motivates the study of persistent Laplacian for the setting where our
input spaces (simplicial complexes) are connected by more general maps beyond inclusion, in
particular, simplicial maps. This is the setting that we will study in this paper.

Contributions

We introduce a generalized version of the persistent Laplacian for weight preserving simplicial
maps f : K → L between two weighted simplicial complexes K and L. Our work utilizes
ideas from several different disciplines, including operator theory, spectral graph theory, and
persistent homology. In more detail:

In Section 2, we provide two equivalent definitions of the (up and down) persistent
Laplacian for a weight preserving simplicial map f : K → L. While one definition is more
useful when proving some properties of the persistent Laplacian, the other definition
provides a cleaner interpretation of the matrix representation of the persistent Laplacian.
We also present one of the main properties of the persistent Laplacian, Theorem 7,
which establishes that the nullity of ∆f :K→L

q equals the persistent Betti number of
the (arbitrary) simplicial map f : K → L, analogous to the nonpersistent and the
inclusion-based persistent cases.
In Section 3, we show that the Schur complement of a principal submatrix in a matrix
can be viewed as a (Schur) restriction of a self-adjoint positive semi-definite operator
to a subspace. In order to accomplish this, we find it useful to utilize some concepts
and language from category theory. Viewing the set of self-adjoint positive semi-definite
operators as the poset category of the Loewner order1, we prove that Schur restriction is
a right adjoint to the functor that extends an operator on a subspace to the whole space
by composing with projection onto that subspace. We present our core observation about
the Schur restriction, Theorem 11, which states that up and down persistent Laplacians
can be obtained via Schur restrictions of the combinatorial up and down Laplacians.
In Section 4, we present an algorithm to find a matrix representation of the persistent
Laplacian for simplicial maps by the relation between up/down persistent Laplacians and
the Schur restriction. We also analyze its complexity.
In Section 5, we study the eigenvalues of up and down persistent Laplacians and prove
monotonicity of these eigenvalues under the composition of simplicial maps.

Proofs of theorems and some extra details are available in the full version of this paper [8].

2 Persistent Laplacian for simplicial maps

2.1 Basics
Simplicial complexes and chain groups. An (abstract) simplicial complex K over a finite
ordered vertex set V is a non-empty collection of non-empty subsets of V with the property
that for every σ ∈ K, if τ ⊆ σ, then τ ∈ K. An element σ ∈ K is called a q-simplex if the
cardinality of σ is q + 1. We denote the set of q-simplices by SK

q .
An oriented simplex, denoted [σ], is a simplex σ ∈ K whose vertices are ordered. As we

start with an ordered vertex set, we always assume that the orientation on the simplices are
inherited from the order on the vertex set. Let SK

q := {[σ] : σ ∈ K}.

1 For two self-adjoint positive semi-definite operators L1 and L2, the Loewner order is given by: L1 ⪰ L2
if and only if L1 − L2 is positive semi-definite.
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37:4 A Generalization of the Persistent Laplacian to Simplicial Maps

The qth chain group CK
q := Cq(K,R) of K is the vector space over R with basis SK

q . Let
nK

q := |SK
q | = dimR(CK

q ).
The boundary operator ∂K

q : CK
q → CK

q−1 is defined by

∂K
q ([v0, ..., vq]) :=

q∑
i=0

(−1)i[v0, ..., v̂i, ..., vq] (1)

for every q-simplex σ = [v0, ..., vq] ∈ SK
q , where [v0, ..., v̂i, ..., vq] denotes the omission of the

ith vertex, and extended linearly to CK
q .

A weight function on a simplicial complex K is any positive function wK : K → (0, ∞).
A simplicial complex is called weighted if it is endowed with a weight function. For every
q ∈ N, let wK

q := wK |SK
q

, the restriction of wK onto SK
q . We define an inner product ⟨·, ·⟩wK

q

on CK
q as follows:

⟨[σ], [σ′]⟩wK
q

:= δσσ′ · (wK
q (σ))−1 (2)

for all σ, σ′ ∈ SK
q , where δσσ′ is the Kronecker delta.

Cochain groups as dual of chain groups. For clarification of some of our results/notations
later, we also introduce certain concepts related to cochain groups. The cochain group Cq

K

of K is the linear space consisting of all linear maps defined on CK
q , i.e., Cq

K := hom(CK
q ,R).

The cochain group Cq
K also possesses a natural basis Sq

K := {χ[σ] | [σ] ∈ SK
q }, where χ[σ] is

the linear map such that χ[σ]([τ ]) = δ[σ],[τ ] for any [τ ] ∈ SK
q . We define an inner product

⟨⟨·, ·⟩⟩wK
q

on Cq
K as follows: for any χ[σ], χ[σ′] ∈ Sq

K ,

⟨⟨χ[σ], χ[σ′]⟩⟩wK
q

:= δσσ′ · wK
q (σ). (3)

Then, the map jK
q : CK

q → Cq
K sending a chain c to the linear map ⟨c, ·⟩wK

q
is an isometry

w.r.t. the inner products of the two spaces. Moreover, the following diagram commutes:

CK
q CK

q+1

Cq
K Cq+1

K

(∂K
q+1)∗

jK
q

jK
q+1

δq
K

In this way, the adjoint (∂K
q+1)∗ of the boundary map ∂K

q+1 can be identified with the
coboundary map δq

K . Similarly, (δq
K)∗ can be identified with ∂K

q+1. In the paper, we adopt
the notation L∗ to denote the adjoint of a linear map L between two inner product spaces.

Combinatorial Laplacian for simplicial complexes. Given a weighted simplicial complex
K, one defines the qth combinatorial Laplacian ∆K

q as follows:

∆K
q := ∂K

q+1 ◦ (∂K
q+1)∗ + (∂K

q )∗ ◦ ∂K
q : CK

q → CK
q ,

where ∆K
q,up := ∂K

q+1 ◦ (∂K
q+1)∗ is called the qth up Laplacian and ∆K

q,down := (∂K
q )∗ ◦ ∂K

q

is called the qth down Laplacian. Thanks to the renowned theorem by Eckmann [6], the
combinatorial Laplacian is able to capture topological information of underlying simplicial
complexes: the nullity of ∆K

q agrees with the qth Betti number of K.
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Simplicial maps. A simplicial map from a simplicial complex K into a simplicial complex
L is a function from the vertex set of K to vertex set of L, f : SK

0 → SL
0 , such that for every

σ ∈ K, we have that f(σ) ∈ L. For every q ∈ N, a simplicial map f : K → L induces a linear
map fq : CK

q → CL
q by the formula

fq([v0, ..., vq]) =
{

[f(v0), ..., f(vq)] if f(v0), ..., f(vq) are distinct
0 otherwise

(4)

for every oriented q-simplex [v0, ..., vq] ∈ SK
q . The linear map fq does not have to preserve

the orientation. That is, we could have that fq([σ]) = −[τ ] for some [σ] ∈ SK
q and [τ ] ∈ SL

q .
In this case, we write sgnfq

(σ) = −1. We write sgnfq
(σ) = 1 if fq([σ]) = [τ ].

▶ Definition 1. A simplicial map f : K → L between two weighted simplicial complexes is
called weight preserving if for every [τ ] ∈ Im(fq) we have that

wL
q (τ) =

∑
σ∈SK

q ,

fq([σ])=±[τ ]

wK
q (σ). (5)

2.2 The Persistent Laplacian for simplicial maps
The persistent Laplacian, whose definition we now recall, was initially defined only for
inclusion maps. Given an inclusion map ι : K ↪→ L between two simplicial complexes, we
have the following commutative diagram

CK
q CK

q−1

CL,K
q+1

CL
q+1 CL

q

∂K
q

(∂L,K
q+1 )∗

(∂K
q )∗

∂L,K
q+1

∂L
q+1

Here, CL,K
q+1 denotes the subspace CL,K

q+1 := {c ∈ CL
q+1 | ∂L

q+1(c) ∈ CK
q } of CL

q+1, and ∂L,K
q+1

denotes the restriction of ∂L
q+1 to CL,K

q+1 , i.e., ∂L,K
q+1 := ∂L

q+1|CL,K
q+1

: CL,K
q+1 → CK

q . Then, the

qth up persistent Laplacian is defined as ∆K,L
q,up := ∂L,K

q+1 ◦ (∂L,K
q+1 )∗, the qth down Laplacian is

∆K
q,down = (∂K

q )∗ ◦ ∂K
q , and the qth persistent Laplacian is defined as

∆K,L
q := ∆K,L

q,up + ∆K
q,down : CK

q → CK
q . (6)

Similarly to the case of the combinatorial Laplacian, the nullity of ∆K,L
q recovers the persistent

Betti number of the inclusion map ι : K ↪→ L (cf. [16, Theorem 2.7]).

Re-examination of the persistent Laplacian for inclusion maps. Notice that (a) the
definition of CL,K

q+1 seems to depend on the fact that the map ι is an inclusion and (b) the
down Laplacian part ∆K

q,down does, a priori, not exhibit any dependence on L. However,
the apparent dependence/independence mentioned in (a) and (b), respectively, are illusory.
We now re-examine the definition above in order to motivate our extension of the notion of
persistent Laplacian for simplicial maps.
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37:6 A Generalization of the Persistent Laplacian to Simplicial Maps

First of all, we note that the expression ∂L
q+1(c) ∈ CK

q in the definition of CL,K
q+1 above is

somewhat misleading. In fact, we are implicitly identifying CK
q with its image ιq(CK

q ) under
the the inclusion map ιq : CK

q → CL
q induced by ι. With this consideration, we rewrite CL,K

q+1
in a more precise way:

CL,K
q+1 =

{
c ∈ CL

q+1 | ∂L
q+1(c) ∈ ιq(CK

q )
}

. (7)

Expression (7) makes it clear that a certain set ιq(CK
q ) is used in order to define the

up Laplacian in the case of inclusions. This motivates us to consider the following dual
construction which can be used to re-define the down Laplacian also in the case of inclusions

CK,L
q−1 :=

{
c ∈ CK

q−1 | (∂K
q )∗(c) ∈ (ιq)∗(CL

q )
}

. (8)

As ιq is injective, (ιq)∗(CL
q ) = CK

q , and thus CK,L
q−1 = CK

q−1. In this way, we see that using
inclusion maps leads to concealing certain “persistence-like” structure inherent to the down
part of the persistent Laplacian. An advantage of the formulation of the persistent Laplacian
for general simplicial maps is that it will explicitly reveal this hidden structure.

Finally, we observe that for any c ∈ CL,K
q+1 , in fact, ∂L

q+1(c) ∈ ιq(ker(∂K
q )) ⊆ ιq(CK

q ). This
is simply due to the fact that ∂K

q ◦ ∂L
q+1(c) = ∂L

q ◦ ∂L
q+1(c) = 0. Here, we implicitly identify

∂L
q+1(c) with ι−1

q (∂L
q+1(c)) where ι−1

q is the inverse of ιq on its image. Hence, we have the
following more refined expression for CL,K

q+1 :

CL,K
q+1 =

{
c ∈ CL

q+1 | ∂L
q+1(c) ∈ ιq(ker(∂K

q ))
}

. (9)

Integrating all these observations leads to our definition for the persistent Laplacian for
general simplicial maps which we describe next.

Persistent Laplacian for simplicial maps. Suppose that we have a weight preserving
simplicial map f : K → L and let q ∈ N. Consider the subspaces

CL←K
q+1 :=

{
c ∈ CL

q+1 | ∂L
q+1(c) ∈ fq(ker(∂K

q ))
}

,

CK→L
q−1 :=

{
c ∈ CK

q−1 | (∂K
q )∗(c) ∈ ker(fq)⊥

}
.

Note that CL←K
q+1 ⊆ CL

q+1 and CK→L
q−1 ⊆ CK

q−1. Moreover, these spaces are natural gen-
eralizations of CL,K

q+1 and CK,L
q−1 , respectively (cf. Equation (7) and Equation (8)), as

ker(ιq)⊥ = CK
q = (ιq)∗(CL

q ).
Let ∂L,K

q+1 denote2 the restriction of ∂L
q+1 to CL←K

q+1 . Let δK,L
q−1 denote3 the restriction of

(∂K
q )∗ to CK→L

q−1 . Furthermore, we let f̂q : ker(fq)⊥ → Im(fq) denote the restriction of fq

onto ker(fq)⊥. Before we proceed, we comment on some properties of f̂q and ker(fq)⊥. We
note that ker(fq)⊥ possesses a canonical basis as follows. For every [τ ] ∈ Im(fq), we define

cτ,f
q :=

∑
σ∈SK

q ,

fq([σ])=±[τ ]

sgnfq
(σ) wK

q (σ) [σ] ∈ CK
q .

When the map f is clear from the content, we will simply write cτ
q . We let J := {cτ

q | [τ ] ∈
Im(fq)}.

2 The notation ∂L,K
q+1 has been used before as the restriction of ∂L

q+1 to CL,K
q+1 . As CL←K

q+1 generalizes the
space CL,K

q+1 , we stick to the same notation ∂L,K
q+1 to denote the restriction of ∂L

q+1 to CL←K
q+1

3 Recall that (∂K
q )∗ can be identified with the coboundary map δq−1

K in a sense specified in Subsection 2.1,
hence we use δK,L

q−1 to denote this restriction.
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▶ Lemma 2. The set J is an orthogonal basis for ker(fq)⊥. Moreover, the map f̂q :
ker(fq)⊥ → Im(fq) is an isometry between inner product spaces.

Now, we consider the following diagram which contains all the notations we defined above:

CK
q CK

q−1

ker(fq)⊥ CK→L
q−1

CL←K
q+1 Im(fq)

CL
q+1 CL

q

f̂q

(δK,L
q−1 )∗

δK,L
q−1

∂L,K
q+1

(f̂q)−1

(∂L,K
q+1 )∗

We define up and down persistent Laplacian respectively as:

∆K
f→L

q,up :=∂L,K
q+1 ◦ (∂L,K

q+1 )∗ : Im(fq) → Im(fq), (10)

∆K
f→L

q,down :=f̂q ◦ δK,L
q−1 ◦ (δK,L

q−1 )∗ ◦ f̂−1
q : Im(fq) → Im(fq). (11)

As f̂q preserves inner product, we have that f̂−1
q = f̂∗q . Thus, both up and down persistent

Laplacians are self-adjoint and non-negative operators on Im(fq). We then define the q-th
persistent Laplacian ∆K

f→L
q : Im(fq) → Im(fq) by:

∆K
f→L

q := ∆K
f→L

q,down + ∆K
f→L

q,up . (12)

When the map f : K → L is clear, we will write ∆K,L
q for the persistent Laplacian.

▶ Remark 3. By slightly abuse of notation, we also let f denote the simplicial map f :
K → Im (f). Then, it follows from the definition of the down persistent Laplacian that

∆K
f→L

q,down = ∆K
f→Im (f)

q,down .

▶ Remark 4. When considering an inclusion ι : K → L, one can see that CK→L
q−1 = CK,L

q−1 = CK
q ,

CL←K
q+1 = CL,K

q+1 and ιq : CK
q ↪→ CL

q is an isometric embedding. Thus, our definition of
persistent Laplacian generalizes the inclusion-based persistent Laplacian

▶ Remark 5 (An alternative definition of the persistent Laplacian). The weight preserving
property of the simplicial map guarantees that ker(fq)⊥ and Im(fq) are isometric, see Lemma 2.
Thus, we could have, equivalently, defined the (up and down) persistent Laplacian as an
operator on ker(fq)⊥ instead of Im(fq) as follows:

∆K
f→L

q,up :=f̂−1
q ◦ ∂L,K

q+1 ◦ (∂L,K
q+1 )∗ ◦ f̂q : ker(fq)⊥ → ker(fq)⊥,

∆K
f→L

q,down :=δK,L
q−1 ◦ (δK,L

q−1 )∗ : ker(fq)⊥ → ker(fq)⊥.

Note that when we have an inclusion ι : K ↪→ L, the (up/down) persistent Laplacian
in [14, 16, 22] is defined on CK

q , which is the same as ker(ιq)⊥ and isometrically isomorphic
to Im(ιq).
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The two different definitions have their own advantages. Seeing the persistent Laplacian
as an operator on Im(fq) increases the interpretability of this operator as the matrix
representation can be computed using the canonical basis of Im(fq). On the other hand,
seeing the persistent Laplacian on ker(fq)⊥ helps us understanding some of its properties
more easily. For example, see proof of Theorem 21.
▶ Remark 6 (Cochain formulation of the persistent Laplacian). Our generalization of the
persistent Laplacian reveals a way to define a persistent Laplacian using the cochain spaces
via dualization. If f : K → L is a simplicial map, then it induces a linear map in the cochain
spaces fq : Cq

L → Cq
K , where Cq

K = hom(CK
q ,R). Then, the following subspaces can be used

to define a persistent Laplacian using cochains which in a sense extends the inclusion-based
cochain formulation of the persistent (sheaf) Laplacian in [23]:

Cq+1
L←K := {c ∈ Cq+1

L | (δL
q )∗(c) ∈ (fq)∗(ker(δK

q−1)∗)},

Cq−1
K→L := {c ∈ Cq−1

K | δK
q−1(c) ∈ ker((fq)∗)⊥}.

It turns out that the operator defined via these spaces are the same as the persistent Laplacian
defined using chains; see the full version of this paper for more details.

Let βK
f→L

q denote the rank of the linear map Hq(K) → Hq(L) induced by f . βK
f→L

q is
called the persistent Betti number of the map f : K → L. When the map f : K → L is clear
from the content, we simply write βK,L

q . With the machinery developed above together with
several key observations that relates the (up and down) persistent Laplacians and Schur
restriction of an operator, we have the following result.

▶ Theorem 7 (Persistent Laplacians recover persistent Betti numbers). Let f : K → L be a
simplicial map and q ∈ N. Then, βK,L

q = nullity(∆K,L
q ).

▶ Remark 8. As the persistent Betti number does not depend on the weights on the simplicial
complexes, weights can be assigned to K and L such that the simplicial map f : K → L is
weight preserving. Then, one can use the persistent Laplacian to compute the persistent
Betti number of f .

3 Schur Restriction and the Persistent Laplacian

One of the main contributions in [16] is a characterization of the up persistent Laplacian for
inclusion maps via the so-called Schur complement. In this section, we establish that this
characterization also holds in our setting of simplicial maps.

Let M ∈ Rn×n be a block matrix M =
(

A B

C D

)
where A ∈ R(n−d)×(n−d) and D ∈ Rd×d.

The (generalized) Schur complement of D in M is M/D := A − BD†C, where D† is the
Moore-Penrose generalized inverse of D.

A linear operator L : V → V on a finite dimensional real inner product space V is called
positive semi-definite if ⟨L(v), v⟩ ≥ 0 for all v ∈ V , and it is called self-adjoint if L∗ = L.
The Schur complement, more generally, can be seen as a way of restricting a self-adjoint
positive semi-definite operator on a real inner product space onto a subspace as follows.
Assume that L : V → V is a self-adjoint positive semi-definite opeator on V , where V is a
finite dimensional (dimR V = n) real inner product space. Let W ⊆ V be a d-dimensional
subspace and let W⊥ be its orthogonal complement. By choosing bases for W and W⊥, we

can represent L as a block matrix, say [L] =
(

A B

C D

)
where A ∈ Rd×d, D ∈ R(n−d)×(n−d).
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Then, [L]/D = A − BD†C can be interpreted as the restriction of L onto W, represented by
the already chosen basis. We will see that the resulting operator represented by [L]/D is
independent of choice of basis (i.e. it is well-defined) and we call this operator the Schur
restriction of L onto W , and denote it by Sch(L, W ).

▶ Proposition 9 (The Schur restriction is well-defined). Let L : V → V be a self-adjoint
positive semi-definite operator and let W ⊆ V be a subspace. Then, Sch(L, W ) is independent
of choice of bases of W and W⊥. More explicitly, if B1 and C1 are ordered bases for W and
B2 and C2 are ordered bases for W⊥, then the matrix representations of Sch(L, W ) obtained
from the ordered bases B1 ∪ B2 and C1 ∪ C2 are similar matrices via the change of basis matrix
from B1 to C1.

As Proposition 9 guarantees that the Schur restriction of a self-adjoint positive semi-
definite operator onto a subspace is well-defined, the next proposition reveals the recipe to
acquire the Schur restriction and also justifies the name, “Schur restriction”.

▶ Proposition 10. Let f : V̂ → V be a linear map between two finite dimensional real
inner product spaces and let L = f ◦ f∗ : V → V . Let W ⊆ V be a subspace. Let
fW : f−1(W ) → W be the restriction of f on f−1(W ) and the codomain is also restricted to
W . Then, Sch(L, W ) = fW ◦ f∗W .

The proof we present for Proposition 10 heavily depends on the extremal characterization
of Schur restrictions. It states that Schur restriction, as a functor, is a right adjoint. One of
the most significant applications of Proposition 10 is the following theorem that establishes
a relation between persistent Laplacians and the Schur restriction.

▶ Theorem 11 (Up and down persistent Laplacians as Schur restrictions). For a weight-
preserving simplicial map f : K → L, we have that

∆K,L
q,down = f̂q ◦ Sch(∆K

q,down, ker(fq)⊥) ◦ f̂−1
q and

∆K,L
q,up = ιIm(fq) ◦ Sch(∆L

q,up, fq(ker(∂K
q ))) ◦ projfq(ker(∂K

q )),

where ιIm(fq) : fq(ker(∂K
q )) ↪→ Im(fq) is the inclusion map and projfq(ker(∂K

q ) : Im(fq) →
fq(ker(∂K

q )) is the projection map.

4 Matrix Representation of Persistent Laplacian and an Algorithm

Based on the Schur restriction characterization of persistent Laplacians, i.e. Theorem 11, in
the previous section, we now derive an algorithm for computing the matrix representation of
persistent Laplacians.

4.1 Matrix Representation of Persistent Laplacian
Let f : K → L be a weight preserving simplicial map. Recall that for every oriented q-simplex
[τ ] ∈ Im(fq), we defined the K q-chain

cτ
q :=

∑
σ∈SK

q ,

f([σ])=±[τ ]

sgnfq
(σ)wK

q (σ)[σ] ∈ CK
q .
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By Lemma 2, the set J = {cτ
q | τ ∈ Im(fq)} forms a orthogonal basis for ker(fq)⊥.

Assume that {[τ1], ..., [τn]} ⊆ Im(fq) is the set of all oriented q-simplices in L that are hit by
fq. Assume that for every [τi], {[σi

1], ...., [σi
di

]} ⊆ SK
q is the set of all oriented q-simplices in

K that are mapped to ±[τi]. Define

σi,k := sgnfq
(σi

1)[σi
1] − sgnfq

(σi
k)[σi

k]

for i = 1, ..., n and k = 2, ..., di for di ≥ 2. Then, the set

B = {σi,k | 1 ≤ i ≤ n , 2 ≤ k ≤ di} ∪ {[σ] ∈ SK
q | fq([σ]) = 0}

forms a basis for ker(fq). Thus J ∪ B forms a basis for Cq(K). Writing coordinates of basis
elements of J ∪ B using the canonical basis SK

q as column vectors, we obtain the change of
basis matrix MJ∪B→SK

q
.

Matrix representation of down persistent Laplacian

Let [∆K
q,down] be the matrix representation of ∆K

q,down with respect to the canonical basis SK
q .

Then, N := (MJ∪B→SK
q

)−1[∆K
q,down]MJ∪B→SK

q
is the matrix representation of ∆K

q,down with
respect to J ∪ B. Given an integer m, let [m] denote the set [m] = {1, 2, . . . , m}. The matrix
N has dimension nK

q × nK
q where nK

q = |SK
q |. Let n := |J | = dim(Im(fq)) = dim(ker(fq)⊥)

and let

X = N([n], [n]), Y = N([n], [nK
q ]−[n]), Z = N([nK

q ]−[n], [n]), T = N([nK
q ]−[n], [nK

q ]−[n]).
(13)

Then, we can write N as a block matrix N =
(

X Y

Z T

)
. Let WIm(fq) denote the diagonal

matrix WIm(fq) = diag(w(τ1), w(τ2), ..., w(τn)). Then, we are now ready to write the matrix
representation of ∆K,L

q,down with respect to the canonical basis {[τ1], ..., [τn]} of Im(fq).

▶ Proposition 12. With the notations above, the matrix representation of ∆K,L
q,down with

respect to the canonical basis {[τ1], ..., [τn]} of Im(fq) is given by

WIm(fq)(X − Y T †Z)W−1
Im(fq).

Figure 2 A weight preserving simplicial map f : K → L between two weighted simplicial
complexes K and L. K has all the weights equal to 1. In L, the edge xy and the vertex y has
weights 2 and the rest of the simplicies have weight 1. The map f is given by a 7→ x, b 7→ y, c 7→ z,
d 7→ b. And, ordering on the vertices are given by a < b < c < d and x < y < z.
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▶ Example 13. We will compute the matrix representation of the 1st down persistent
Laplacian of the weight preserving simplicial map depicted in Figure 2. The 1st combinatorial
down Laplacian of K is given by

[∆K
1,down] =


2 −1 1 1 −1

−1 2 1 0 1
1 1 2 1 0
1 0 1 2 1
1 1 0 1 2

 .

with respect to the canonical (ordered) basis SK
1 = {[ab], [bc], [ac], [ad], [bd]}. Following the

notation described above, we have that J = {[ab] + [ad], [bc], [ac]} and B = {[ab] − [ad], [bd]}.
Thus, we have the change of basis matrix as

MJ∪B→SK
1

=


1 0 0 1 0
0 1 0 0 0
0 0 1 0 0
1 0 0 −1 0
0 0 0 0 1

 .

Then, we compute

N = (MJ∪B→SK
1

)−1[∆K
1,down]MJ∪B→SK

1
=


3 − 1

2 1 0 0
−1 2 1 −1 1
2 1 2 0 0
0 − 1

2 0 1 −1
0 1 0 −2 2

 .

Now, by extracting X, Y, Z, and T as described above in Equation (13), and realizing
that WIm(f1) = diag(2, 1, 1), we write the matrix representation of the 1st down persistent
Laplacian ∆K,L

1,down with respect to the basis {[xy], [yz], [xz]} as follows

[∆K,L
1,down] = WIm(fq)(X − Y T †Z)W−1

Im(fq) =

 3 −1 2
− 1

2
3
2 1

1 1 2

 .

Matrix representation of up persistent Laplacian

In order to write the matrix representation of up persistent Laplacian we need to choose bases
B1 and B2 for fq(ker(∂K

q )) and fq(ker(∂K
q ))⊥ ⊆ Im(fq) respectively, where fq(ker(∂K

q ))⊥
denotes the orthogonal complement of fq(ker(∂K

q )) inside the ambient space Im(fq). Let
D = {[τn+1], ..., [τn+l]} = SL

q − fq(±SK
q ). Then, B1 ∪ B2 ∪ D is basis for Cq(L). Writing the

coordinates of this new basis elements with respect to the canonical basis SL
q as column

vectors, we obtain the change of basis matrix

MB1∪B2∪D→SL
q

=
(

R1 R2 0n×l

0l×rkR1 0l×rkR2 Il

)
where R :=

(
R1 R2

)
is the n × n change of basis matrix from B1 ∪ B2 to the canonical basis

of Im(fq), and Il is the l × l identity matrix.
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Let [∆L
q,up] be the matrix representation of ∆L

q,up with respect to the canonical basis of
Cq(L). Then, Q = (MB1∪B2∪D→SL

q
)−1[∆L

q,up]MB1∪B2∪D→SL
q

is the matrix representation of
∆L

q,up with respect to B1 ∪B2 ∪D. Let np = dim(fq(ker(∂K
q ))) and let E = Q([np], [np]).Thus

we can write Q as a block matrix

Q =
(

E F

G H

)
where F, G, H are chosen appropriately to E. We are now ready to write the matrix
representation of ∆K,L

q,up with respect to the canonical basis of Im(fq).

▶ Proposition 14. With the notations above, the matrix representation of ∆K,L
q,up with respect

to the canonical basis of Im(fq) is given by

(
R1 R2

) (
E − FH†G 0np×(n−np)
0(n−np)×np

0(n−np)×(n−np)

) (
R1 R2

)−1
. (14)

▶ Example 15. We will compute the matrix representation of the 1st up persistent Laplacian
of the weight preserving simplicial map depicted in Figure 2. We will stick to the notation used
above. We start by choosing bases B1 and B2 for fq(ker(∂K

q )) and fq(ker(∂K
q ))⊥ ⊆ Im(fq)

respectively. Observe that fq(ker(∂K
q )) is spanned by [xy] + [yz] − [xz]. So, we can choose

B1 = {[xy] + [yz] − [xz]} and B2 = {2[xy] − [yz], [yz] + [xz]}. As f1 : CK
q → CL

1 is surjective,
we see that D = ∅. Thus, B1 ∪ B2 is a basis for CL

1 . Then, we have the change of basis
matrix as

MB1∪B2∪D→SL
q

= MB1∪B2→SL
q

=

 1 2 0
1 −1 1

−1 0 1


where SL

1 = {[xy], [yz], [xz]} is the canonical (ordered) basis of CL
1 . Moreover, we get that(

R1 R2
)

= MB1∪B2 = MB1∪B2∪D→SL
q

. With respect to SL
1 , the matrix representation of

1st combinatorial up Laplacian of L is given by

[∆K,L
1,up] =

 1
2 1 −1
1
2 1 −1

− 1
2 −1 1

 .

Now, we compute

Q = (MB1∪B2∪D→SL
q

)−1[∆L
q,up]MB1∪B2∪D→SL

q
=

 5
2 0 0
0 0 0
0 0 0



and, we extract E =
( 5

2
)
, F =

(
0 0

)
, G =

(
0
0

)
and H =

(
0 0
0 0

)
. Thus, E − FH†G =

( 5
2
)
.

Thus, the matrix representation of ∆K,L
1,up with respect to the basis SL

1 = {[xy], [yz], [xz]} is
given by

[∆K,L
1,up] =

(
R1 R2

) E − FH†G 0 0
0 0 0
0 0 0

 (
R1 R2

)−1 =

 1
2 1 −1
1
2 1 −1

− 1
2 −1 1

 .
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▶ Remark 16. By combining Example 13 and Example 15, we can see that the matrix
representation of the 1st persistent Laplacian ∆K,L

1 is given by

[∆K,L
1 ] = [∆K,L

1,down] + [∆K,L
1,up] =

 7
2 0 1
0 5

2 0
1/2 0 3

 .

Then, we can justify Theorem 7 by observing that det([∆K,L
1 ]) = 25 ̸= 0. That is,

dim(ker(∆K,L
1 )) = 0 = βK,L

1 .

Figure 3 A weight preserving simplicial map f ′ : K′ → L′ between two weighted simplicial
complexes K′ and L′. K′ has all the weights equal to 1. In L′, the edge xy and the vertex y has
weights 2 and the rest of the simplicies have weight 1. The map f ′ is given by a 7→ x, b 7→ y, c 7→ z,
d 7→ b. And, ordering on the vertices are given by a < b < c < d and x < y < z.

▶ Example 17. Computing the matrix representation of the 1st persistent Laplacian of the
map f ′ : K ′ → L′ depicted in Figure 3 is similar to what we did for f : K → L in Example 13
and Example 15. Actually, [∆K′,L′

1,down] = [∆K,L
1,down] as CK

1 = CK′

1 , CL
1 = CL′

1 , and f1 = f ′1 And,
[∆K′,L′

1,up ] = 03×3 as CL
2 = {0}. Thus,

[∆K′,L′

1 ] = [∆K′,L′

1,down] + [∆K′,L′

1,up ] = [∆K,L
1,down] + 03×3 =

 3 −1 2
− 1

2
3
2 1

1 1 2

 .

Then, observe that dim(ker(∆K′,L′

1 )) = 1 = βK′,L′

1 . Actually, the kernel of the matrix [∆K′,L′

1 ]
is generated by the vector

(
1 1 −1

)T, which corresponds to the cycle [xy] + [yz] − [xz]
that can be seen as the image of the homology class that persists through the map f ′.

4.2 An Algorithm for Computing the Persistent Laplacian

By Proposition 12 and Proposition 14, we have the matrix representations of up and down
persistent Laplacians with respect to the canonical basis of Im (fq). So, simply adding them
up, gives us the matrix representation of the persistent Laplacian ∆K,L

q with respect to the
canonical basis. In the process for finding these matrices, we use explicit bases SK

q , SL
q ,

B ∪ J and B1 ∪ B2 ∪ D. However, we do not have an explicit basis for fq(ker(∂K
q )). Yet, we

do not need to compute ker(∂K
q ) in order to compute fq(ker(∂K

q )) by the following lemma.

▶ Lemma 18. fq(ker(∂K
q )) = ker(∆K,L

q,down).
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Algorithm 1 An algorithm for matrix representation of persistent Laplacian.

1: Data: MJ∪B→SK
q

, [∆K
q,down], [∆L

q,up] and WIm(fq)

2: Result: [∆K,L
q ]

3: N := M−1
J∪B→SK

q
[∆K

q,down]MJ∪B→SK
q

4: n := dim(WIm(fq))
5: [∆K,L

q,down] := WIm(fq)(N/N([nK
q ] − [n], [nK

q ] − [n]))W−1
Im(fq)

6: Form R =
(
R1 R2

)
by computing ker([∆K,L

q,down])
7: Expand matrix R with the identity matrix to form (nL

q × nL
q ) matrix MB1∪B2∪D→SL

q

8: Q := M−1
B1∪B2∪D→SL

q
[∆L

q,down]MB1∪B2∪D→SL
q

9: np := the number of columns of R1
10: SchQ := Q/Q([nL

q ] − [np], [nL
q ] − [np])

11: Form the n × n matrix PadSchQ by zero padding to SchQ
12: [∆K,L

q,up] = R−1PadSchQ R

13:
14: return [∆K,L

q,down] + [∆K,L
q,up]

4.2.1 Complexity
With the data we started in the Algorithm 1, we multiply matrices of dimension nK

q and
take Schur complement in a matrix of dimension nK

q in order to compute [∆K,L
q,down]. Thus,

it takes O((nK
q )3) time to compute [∆K,L

q,down]. To compute [∆K,L
q,up], we compute kernel of a

matrix of dimension n < nL
q , take Schur complement in a matrix of dimension nL

q , multiply
matrices of dimension nL

q and of dimension n. Hence, it takes O((nL
q )3) time to compute

[∆K,L
q,up]. Therefore, it takes O((nK

q )3) + (nL
q )3) time to compute [∆K,L

q ] in total.
It is important to note that the data we started in the Algorithm 1 also takes time to

compute. Starting with boundary matrices and weight matrices, it takes O((nK
q )2) time

to compute [∆K
q,down] and it takes O(nL

q+1) to compute [∆L
q,up] as discussed in [16]. Thus,

starting from scratch, Algorithm 1 computes [∆K,L
q ] in O((nK

q )3 + (nL
q )3 + nL

q+1) time.
Note that by Theorem 7, as a by-product, the above algorithm can also output the

persistent Betti number for a simplicial map f : K → L in the same time complexity. This
provides an alternative way to compute persistent Betti numbers for f : K → L that is
different from the existing algorithm by Dey et al. [3] already in the literature.

5 Monotonicity of (up/down) persistent eigenvalues

For a simplicial map f : K → L, the up and down persistent Laplacians are self-adjoint
positive semi-definite operators. Therefore, they have non-negative eigenvalues. We denote
them by 0 ≤ λK,L

q,up,1 ≤ λK,L
q,up,2 . . . ≤ λK,L

q,up,n, and 0 ≤ λK,L
q,down,1 ≤ λK,L

q,down,2 . . . ≤ λK,L
q,down,n,

allowing repetition, where n = dim(Im (fq)). And, we call them the up persistent eigenvalues
and the down persistent eigenvalues.

When the simplicial maps involved are inclusions, we have the following known mono-
tonicity result for the up persistent Laplacian.

▶ Theorem 19 ([16, Theorem 5.3]). Let f : K ↪→ L and g : L ↪→ M be inclusion maps for
simplicial complexes K, L and M . Then, for any q ∈ N and k = 1, 2, . . . , nK

q ,

λK,M
q,up,k ≥ λL,M

q,up,k and λK,M
q,up,k ≥ λK,L

q,up,k.
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In Theorem 19, the monotonicity result of up persistent eigenvalues λK,M
q,up,k ≥ λK,L

q,up,k

follows from the fact that ∆K,M
q,up ⪰ ∆K,L

q,up. In the case of surjective maps, we present an
analogous statement for the down persistent Laplacians as follows.

▶ Proposition 20. Let f : K ↠ L and g : L ↠ M be weight preserving surjective simplicial
maps. Then, ∆K,M

q,down ⪰ ∆L,M
q,down.

When the surjectivity assumption is removed, it is no longer guaranteed that the compo-
sition of two weight preserving maps is weight preserving. However, under the assumption
that two maps and their composition are weight preserving, we get the monotonicity of the
down persistent eigenvalues.

▶ Theorem 21. Let f : K → L and g : L → M be weight preserving simplicial maps
and assume that g ◦ f : K → M is also weight preserving. Then, for any q ∈ N and
k = 1, 2, . . . , dim(Im (gq ◦ fq)),

λK,M
q,down,k ≥ λL,M

q,down,k and λK,M
q,down,k ≥ λK,L

q,down,k.

However, this type of monotonicity does not hold in general for up persistent eigenvalues
even if we require weight preserving conditions for the involved simplicial maps as we did in
Theorem 21. See the counterexample as follows.

Figure 4 Composition of two weight preserving simplicial maps f : K → L and g : L → M ,
where f is given by collapsing the vertices h and c to the same vertex z. And, g is given by the
identity map on the vertices.

▶ Example 22 (Up persistent eigenvalues are not monotonic). Considering the simplicial
complexes K, L, M and the simplicial maps f , g depicted in Figure 4, we compute spectra
of ∆K,M

1,up and ∆L,M
1,up . It turns out that ∆K,M

1,up has eigenvalues 0 ≤ 0 ≤ 0 ≤ 0 ≤ 0 ≤ 3 and
∆L,M

1,up has eigenvalues 0 ≤ 0 ≤ 0 ≤ 0 ≤ 3 ≤ 3. So, 0 = λK,M
1,up,5 ≱ λL,M

1,up,5 = 3.

Recall from Theorem 11 that ∆K,L
q,up = ιIm (fq) ◦ Sch(∆L

q,up, fq(ker(∂K
q ))) ◦ projfq(ker(∂K

q )).
This formulation reveals that the up persistent Laplacian is obtained by extending the operator
Sch(∆L

q,up, fq(ker(∂K
q ))) defined on fq(ker(∂K

q )) to its superspace Im (fq) by “padding zeros”.
This extension naturally introduces inevitable 0 eigenvalues to the up persistent Laplacian
and we call them inevitable 0 eigenvalues. Considering again Example 22, we see that
g1(f1(ker(∂K

1 ))) has dimension 1 and codimension 5 inside Im (g1 ◦ f1). Thus, ∆K,M
1,up has 5

inevitable 0 eigenvalues. Similarly, ∆L,M
1,up has 4 inevitable 0 eigenvalues as the codimension

of g1(ker(∂L
1 )) inside Im (g1) is 4. Disregarding these inevitable 0 eigenvalues from their
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spectra, we see that ∆K,M
1up essentially has {3} as its spectrum, while ∆L,M

1,up essentially has
{3, 3} as its spectrum. Then, it seems that if we disregard inevitable 0 eigenvalues, we will
obtain monotonicity for the eigenvalues of up persistent Laplacians. This is indeed the case:

We call Sch(∆L
q,up, fq(ker(∂K

q ))) the essential up persistent Laplacian, whose spectrum is
the same as the spectrum of ∆K,L

q,up up to a difference in the multiplicity of the 0 eigenvalue.
Then, we establish monotonicity of the eigenvalues of the essential up persistent Laplacian,
which are denoted by λK,L,ess

q,up,k , and are called essential up persistent eigenvalues.

▶ Theorem 23. Let f : K → L and g : L → M be weight preserving simplicial maps. Then,
for any q ∈ N and k = 1, 2, . . . , dim(gq(fq(ker(∂K

q )))), we have λK,M,ess
q,up,k ≥ λL,M,ess

q,up,k .

This monotonicity result on essential up persistent eigenvalues is stronger than the
monotonicity result for inclusion maps (cf. Theorem 19) in that the latter is a direct
consequence of the former.

6 Discussion

Once an invariant is associated to a simplicial filtration/tower, one of the most natural
questions would be about its stability. So, it is highly desirable to explore the stability of the
(up/down) persistent eigenvalues/eigenspaces that could potentially generalize the stability
of up persistent eigenvalues in the inclusion-based persistent Laplacian [16, Theorem 5.10].

The persistent diagram of a Rips complex can be approximated by using simplicial towers
obtained from the Rips complex such as sparsified Rips complex or graph induced complex as
described in [4, 3]. Therefore, one might consider if the spectrum of the (up/down) persistent
Laplacian can also be approximated via a similar sparsification process.
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Abstract
Persistent homology has been widely used to study the topology of point clouds in Rn. Standard
approaches are very sensitive to outliers, and their computational complexity depends badly on the
number of data points. In this paper we introduce a novel persistence module for a point cloud
using the theory of Christoffel-Darboux kernels. This module is robust to (statistical) outliers in the
data, and can be computed in time linear in the number of data points. We illustrate the benefits
and limitations of our new module with various numerical examples in Rn, for n = 1, 2, 3. Our work
expands upon recent applications of Christoffel-Darboux kernels in the context of statistical data
analysis and geometric inference [13]. There, these kernels are used to construct a polynomial whose
level sets capture the geometry of a point cloud in a precise sense. We show that the persistent
homology associated to the sublevel set filtration of this polynomial is stable with respect to the
Wasserstein distance. Moreover, we show that the persistent homology of this filtration can be
computed in singly exponential time in the ambient dimension n, using a recent algorithm of
Basu & Karisani [1].
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1 Introduction

Persistent homology is a central tool in the field of topological data analysis. It was developed
in the early 2000s in order to extract topological and geometric information out of point-cloud
data. Since discrete points in Rn do not have any meaningful topological features in and of
themselves, one needs to find a way to construct an “interesting” topological space out of
them. An obvious approach is to look at the collection of balls of radius r centered around
the data points. When the radius r is chosen correctly, these balls will intersect in ways that
reflect the topology of the set the data is sampled from. However, it is not clear a priori
which radius should be chosen, and in fact, a single “correct” choice need not even exist.
The solution is to look at all radii r ≥ 0, and to track which topological features persist
over time as r increases. More concretely: if r ≤ r′, then the balls of radius r include into
those of radius r′, and this collection of inclusions forms what is called a filtration. Persistent
homology tracks “birth-death events” of homology classes in such a filtration, see Figure 1.
Classical approaches to obtain a filtration of topological spaces out of a point cloud, such as
the Čech filtration (outlined above) and the Vietoris-Rips filtration [23] suffer from two main
problems:
1. The complexity of computing the persistent homology depends badly on the number of

data points.
2. The persistent homology of these filtrations is very sensitive to outliers in the data.
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These issues have been addressed in the literature in several ways. Alpha complexes [9] are used
to compute the persistent homology of the Čech filtration efficiently by first intersecting the
metric balls with a Voronoi diagram. Witness complexes [18] build a small simplicial complex
based on a subsample of the data, thus reducing computational complexity. Heuristically,
these subsamples may be chosen to reduce sensitivity to outliers in the full data set, although
this effect remains hard to quantify [19]. Chazal et al. [4] introduce the distance-to-measure
function, which they apply to perform geometric inference of point clouds in Rn. The key
feature of this function is that it is stable with respect to the Wasserstein distance, implying
robustness to (statistical) outliers in the data. Buchet et al. [3] use this property to construct
a filtration which is also provably stable in this sense. However, it is hard to compute the
associated persistent homology, and they therefore employ an approximation scheme.

In this paper, we propose a novel filtration based on so-called Christoffel-Darboux kernels.
As we explain in more detail below, the resulting persistent homology can be computed
in linear time in the number of data points, and is provably robust to statistical outliers.
Christoffel-Darboux (CD) kernels have a long history in fundamental mathematics, with
applications to orthogonal polynomials and in approximation theory (see [13] for an overview).
They are the reproducing kernels Kµ

d : Rn × Rn → R for the Hilbert space R[x]d of n-
variate, real polynomials of degree d ∈ N with respect to the inner product ⟨p, q⟩ =

∫
pqdµ

induced by a finite measure µ on Rn. Such reproducing kernels completely describe the
inner product ⟨·, ·⟩, and in our setting the kernels Kµ

d thus capture information about the
underlying measure µ. For instance, the Christoffel polynomial P µ

d (x) := Kµ
d (x, x) can be

used to estimate the support supp(µ) ⊆ Rn of µ. Roughly speaking, P µ
d (x) is small when

x ∈ supp(µ) and large when x ̸∈ supp(µ) (see Proposition 10 below). This property has
recently been applied to perform geometric inference in a statistical setting by Lasserre,
Pauwels and Putinar [12, 13, 15]. In these works, the authors consider CD kernels for the
empirical measure µX associated to a set of samples X drawn according to some unknown
measure µ. For fixed d ∈ N, the polynomial P µX

d associated to X is straightforward to
compute. Moreover, the sublevel set {x ∈ Rn : P µX

d (x) ≤ t} captures the support of µ well
for suitably selected t ≥ 0, see Figure 2. However, a key issue of this approach is that the level
t ≥ 0 must be selected “by hand” based on heuristics, and the quality of geometric inference
depends heavily on this choice. This problem motivates our use of persistent homology, which
considers all sublevel sets simultaneously.

1.1 Contributions and outline
We propose a new scheme for topological data analysis of a finite point cloud X ⊆ [−1, 1]n,
based on Christoffel-Darboux kernels. Our scheme unites recent applications of CD kernels
in (statistical) data analysis with ideas from persistent homology. It consists of three steps:
1. Moment matrix. Fix d ∈ N. Choose a basis b = (bα) for the space R[x]d of n-variate

polynomials of degree at most d. Compute the moment matrix Md(b) of size
(

n+d
d

)
,

whose entries can be computed from X in linear time via:

Md(b)α,β := 1
|X |

∑
x∈X

bα(x)bβ(x) (α, β ∈ Nn, |α|, |β| ≤ d).

2. Christoffel polynomial. Invert the moment matrix to obtain the Christoffel polynomial :

Pd(x) := b(x)⊤(
Md(b)

)−1b(x),

whose sublevel sets are known to approximate the set X , see Figure 2.
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(a) The samples X . (b) {x : dX (x) ≤ 0.1}. (c) {x : dX (x) ≤ 0.2}. (d) {x : dX (x) ≤ 0.45}.

t1 ≈ 0.2 t2 = 0.4 t

H1

H0

(e) The interval modules. (f) The persistence diagram.

Figure 1 A filtration of [−1, 1]2 by the distance function dX : x 7→ dist(x, X ) to a set of equidistant
points X on a circle of radius 0.4, and the corresponding persistence diagram. Note that there are 8
intervals that are born at t = 0 and die at t ≈ 0.2, which show up as a single dot in the diagram.
Throughout, we indicate the number of such overlapping dots in the diagram if necessary for clarity.

Figure 2 The level sets of the Christoffel polynomial x 7→ P µX
10 (x) associated to the empirical

measure µX of two sample sets X ⊆ [−1, 1]2 (in blue). The level sets indicated in red capture the
support of the underlying measure µ quite well.

SoCG 2023
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3. Persistence module. Define the sublevel set filtration:

Xt := {x ∈ [−1, 1]n : log Pd(x) ≤ t} (t ≥ 0),

and compute its associated persistence module:

CD(X , d) := PH∗([−1, 1]n, log Pd).

Robustness to statistical outliers. We show that the module CD(X , d) is stable and robust
under perturbations of the input data X . To be precise, we show local Lipschitz continuity
of the function X 7→ CD(X , d), in the Bottleneck and Wasserstein distance. We also give an
estimate of the Lipschitz constant in terms of a concrete measure of algebraic degeneracy of
the set X . This is our main technical result, see Section 3.1.

Exact algorithm with linear dependence on the number of samples. We give an exact
algorithm for computing the persistence module CD(X , d) in Section 3.2, whose runtime is
linear in the number of data points, but depends exponentially on the dimension n. This
algorithm is a combination of 1) a known procedure to compute CD kernels and 2) the recent
work [1], in which the authors propose an algorithm for computing the persistent homology
of semialgebraic filtrations.

Numerical examples. We provide several numerical examples in Section 4 that illustrate
the geometric properties of our scheme, and its potential benefits and downsides compared
to existing methods. Unfortunately, there is no practical implementation available of the
algorithm proposed in [1]. In order to perform numerical experiments, we therefore propose
a simple scheme for approximating CD(X , d) in Section 3.3, based on a triangulation of the
sample space [−1, 1]n. These experiments show that our novel persistence module is able to
accurately capture underlying homological features of point clouds, even in the presence of
outliers.

2 Background

Notations and conventions. Throughout, x, y, z ∈ Rn are n-dimensional variables. We
denote by R[x] the n-variate polynomial ring. We write R[x]d ⊆ R[x] for the subspace of
polynomials of (total) degree at most d, which has (real) dimension s(n, d) =

(
n+d

d

)
. For

ease of exposition, we assume throughout that sets of samples X ,Y are contained in the box
[−1, 1]n, which can always be achieved by a rescaling.

2.1 Persistent homology
Persistent homology is a central tool in topological data analysis, and has received a lot of
attention over recent years [8]. It serves to track homology classes through a diagram of
spaces, typically arising from a filtration: Let X be a filtered topological space, that is, for
each t ∈ R, there is a subspace Xt ⊆ X, such that if s ≤ t, Xs ⊆ Xt. For convenience, we
assume that the filtration is exhaustive, i.e.

⋃
t Xt = X. Applying homology with coefficients

in F to each Xt then yields a diagram of spaces H∗(Xt;F): For every s ≤ t, the inclusion
map ιt

s : Xs → Xt induces a map ht
s = (ιt

s)∗ : H∗(Xs;F)→ H∗(Xt;F), and the collection of
maps {ht

s} satisfy:
1. For all r ≤ s ≤ t, ht

s ◦ hs
r = ht

r;
2. For all t ∈ R, ht

t = idH∗(Xt;F).
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This diagram of spaces is the persistent homology of X, denoted by PH∗(Xt;F). Any R-
indexed collection of vector spaces with maps satisfying 1. and 2. above is called a persistence
module. More succinctly put, a persistence module is a functor from the poset (R,≤) to the
category of vector spaces over some field. The vector spaces can be taken over any field F,
but we always work over a finite field.

▶ Example 1. Let X be a topological space, and let f : X→ R be a continuous function.
Then the sublevel set filtration of X with respect to f is given by Xt = {x ∈ X | f(x) ≤ t}.
Applying homology to this filtration yields a persistence module, which we denote by
PH∗(X, f).

If H∗(Xt) is finite dimensional for each t ∈ R (which is a mild requirement, and will
always be satisfied in our setting), then PH∗(X) is completely described by a set of intervals,
denoted by Dgm(PH∗(X)). The presence of an interval [tb, td) ∈ Dgm(PHp(X)) tells us that
a particular p-dimensional homology class is born at time tb, and lives until time td, where it
then dies. If td =∞, this means that this homology class lives forever, and corresponds to a
global homology class in Hp(X). The diagram Dgm(PH∗(X)) can be conveniently visualized,
see Figure 1.

2.1.1 Stability
An important property of a persistence module one needs to verify before using it in an
application, is that it is stable with respect to the input data. Intuitively, this means that
small perturbations of the input data should result only in small perturbations in the obtained
persistence diagrams. We make this precise below.

▶ Definition 2. A matching between two multi-sets A and B is a bijection χ between two
subsets A′ ⊂ A and B′ ⊂ B. We denote this by χ : A ↛ B. If χ matches a ∈ A to b ∈ B, we
write (a, b) ∈ χ. If c ∈ A ∪B is unmatched by χ, we abuse notation and write c /∈ χ.

▶ Definition 3. Let I = ⟨tb1 , td1⟩ and J = ⟨tb2 , td2⟩ be two intervals in R = R ∪ {−∞,∞}.
Then the cost of I is given by

c(I) := (td1 − tb1)/2

and the cost of the pair (I, J) is given by:

c(I, J) := max{|tb1 − tb2 |, |td1 − td2 |}

Now let D1 and D2 be two multi-sets of intervals in R = R ∪ {−∞,∞}. The cost of a
matching χ : D1 ↛ D2 is defined as

cost(χ) := max
{

sup
(I,J)∈χ

c(I, J), sup
I /∈χ

c(I)
}

Finally, the Bottleneck distance between D1 and D2 is given by:

dB(D1,D2) := inf
χ:D1↛D2

cost(χ)

The Bottleneck distance is the most widely used distance on the space of persistence diagrams,
and it satisfies the following:

▶ Theorem 4 ([6]). Suppose X is a CW-complex, and f, g : X → R are two continuous
functions on X. Then

dB(Dgm(PHp(X, f)), Dgm(PHp(X, g))) ≤ ∥f − g∥∞ := max
x∈X
|f(x)− g(x)|.

SoCG 2023
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▶ Definition 5. Let X and Y be two subsets of a metric space (M, d). Write Uε(X) :=
{m ∈M | dist(m, X) ≤ ε}. Then the Hausdorff distance between X and Y is given by:

dH(X, Y) : = inf{ε ≥ 0 |Y ⊆ Uε(X) and X ⊆ Uε(Y )}

= max
{

sup
x∈X

dist(x, Y), sup
y∈Y

dist(y, X)
}

.

▶ Example 6. Let X ⊆M, be a subset of a metric space (M, d). Then the distance function

dX : M → R, x 7→ dist(x, X)

is a continuous function on M , and defines a sublevel set filtration and a persistence module,
which we suggestively denote by PHp(Č(X)). Note that if Y is another subset of M , then
∥dX − dY∥∞ = dH(X, Y), so it follows from Theorem 4 that

dB

(
Dgm(PHp(Č(X))), Dgm(PHp(Č(Y)))

)
≤ dH(X, Y).

In the above example, X is typically a finite subset of Rn, and this is often used as one of
the motivating examples for persistent homology. When X is sampled from some unknown
shape X inside of Rn, its persistent homology can be used to estimate the homology of X. It
can be computed using the Čech filtration of X, which is a filtered simplicial complex whose
homotopy type at each stage agrees with that of the sublevel set of dX at the same scale.
It is true, but not entirely straight-forward, that the two persistence modules arising from
these constructions are isomorphic [2, 5].

2.1.2 Wasserstein distance
In Section 3.1, we will show stability results for our novel persistence module in terms of
the Wasserstein distance. The Wasserstein distance is a metric on the space of probability
measures supported on Rn. It is commonly used in the context of optimal transport and
(statistical) data analysis, see, e.g., [16]. The primary advantage of the Wasserstein distance
over the Hausdorff distance is that it is much less sensitive to outliers, and therefore more
suited to applications in statistics. For our purposes, it is enough to consider probability
measures with finite support.

▶ Definition 7. Let µX , µY be two probability measures with finite supports X ,Y ⊆ Rn,
respectively. The Wasserstein distance dW (µX , µY) is then given by the optimum solution to
the linear program:

dW (µX , µY) := min
γ

∑
x∈X ,y∈Y

γ(x, y) · ∥x− y∥2 (1)

s.t.
∑
y∈Y

γ(x, y) = µX (x) (2)

∑
x∈X

γ(x, y) = µY(y) (3)

γ : X × Y → R≥0. (4)

One can think of dW (µX , µY) as the amount of “work” required to transform the measure
µX into µY . For instance, if Y = {y} is a singleton, then dW (µX , µ{y}) is simply given by:

dW (µX , µ{y}) =
∑
x∈X

µX (x) · ∥x− y∥2.
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2.2 The Christoffel-Darboux kernel
In this section, we introduce some basic facts on Christoffel-Darboux kernels, with emphasis
on the statistical setting. We refer to the book of Lasserre, Pauwels and Putinar [13] for a
comprehensive treatment. Let µ be a finite, positive Borel measure on Rn with compact,
full-dimensional support. (In our setting, it is helpful to think of µ as the restriction of the
Lebesgue measure to a sufficiently nice compact subset of Rn). Then µ induces an inner
product on the space R[x] of n-variate, real polynomials via:

⟨p, q⟩µ :=
∫

p(x)q(x)dµ(x). (5)

We can choose an orthonormal basis b = {bα : α ∈ Nn} for R[x] with respect to ⟨·, ·⟩µ, which
we order so that bα ∈ R[x] is of total degree |α| =

∑n
i=1 αi for each α ∈ Nn. That is, we

have the orthogonality relations:

⟨bα, bβ⟩µ =
∫

bα(x)bβ(x)dµ(x) = δαβ (α, β ∈ Nn). (6)

Using this orthonormal basis, we can define the Christoffel-Darboux kernel.

▶ Definition 8. For d ∈ N, the Christoffel-Darboux kernel Kµ
d : Rn × Rn → R of degree d

for the measure µ is defined as:

Kµ
d (x, y) :=

∑
|α|≤d

bα(x)bα(y). (7)

The Christoffel-Darboux kernel Kµ
d is also called the reproducing kernel for the Hilbert space

(R[x]d, ⟨·, ·⟩µ), as we have the reproducing property:∫
Kµ

d (x, y)p(y)dµ(y) = ⟨Kµ
d (x, ·), p(·)⟩µ = p(x) (p ∈ R[x]d). (8)

We note that the kernel Kµ
d is independent of our choice of basis {bα}, and it can be computed

via the Gram-Schmidt procedure even if we do not have access to an explicit orthonormal
basis.

▶ Proposition 9 (Gram-Schmidt, see Prop. 4.1.2 in [13]). Let d ∈ N and let b = {bα : |α| ≤ d}
be any basis for R[x]d. For x ∈ Rn, write bd(x) = (bα(x))|α|≤d ∈ Rs(n,d) and consider the
matrix Mµ

d (b) ∈ Rs(n,d)×s(n,d) given by the entrywise integral:

Mµ
d (b) :=

∫
bd(x)bd(x)⊤dµ(x),

i.e., (Mµ
d (b))α,β =

∫
bα(x)bβ(x)dµ(x) (α, β ∈ Nn

d ). (9)

The matrix Mµ
d (b) is strictly positive semidefinite, i.e., its eigenvalues are all stricly larger

than 0. Moreover, we have:

Kµ
d (x, y) = bd(x)⊤(

Mµ
d (b)

)−1bd(y).

The Christoffel polynomial. For our purposes, we are mostly interested in the Christoffel
polynomial P µ

d : Rn → R, defined in terms of an orthonormal basis b for (R[x]d, ⟨·, ·⟩µ) as:

P µ
d (x) := Kµ

d (x, x) =
∑

|α|≤d

bα(x)2. (10)

SoCG 2023
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The Christoffel polynomial is a sum of squares of polynomials, implying immediately that
P µ

d (x) ≥ 0 for all x ∈ Rn. In fact, by definiteness of the inner product (5), it is strictly
positive on Rn. It has a remarkable alternative definition in terms of a variational problem:

1
P µ

d (z) = min
p∈R[x]d

{∫
p2(x)dµ(x) : p(z) = 1

}
(z ∈ Rn).

The Christoffel polynomial encodes information on the support of µ. Roughly speaking,
P µ

d (x) is rather large when x ̸∈ supp(µ), and rather small when x ∈ supp(µ) (see Figure 2).
This can be made precise in the regime d→∞.

▶ Proposition 10 (see Sec. 4.3 of [13]). Under certain assumptions on the measure µ, we
have:

lim
d→∞

P µ
d (x) =

{
O(dn) x ∈ int

(
supp(µ)

)
,

Ω(exp(αd)) x ̸∈ supp(µ),

for any fixed x ∈ Rn. Here, the constant α is proportional to dist(x, supp(µ)).

When µ is the restriction of the Lebesgue measure to a sufficiently nice compact subset
X ⊆ Rn, a stronger result is shown by Lasserre and Pauwels [12].

▶ Theorem 11 (reformulation of Thm. 7.3.2 in [13]). Let X ⊆ Rn be a compact set satisfying
the conditions of Assumption 7.3.1 in [13], and let µ be the restriction of the Lebesgue
measure to X. Then there exist sequences (tk)k∈N and (dk)k∈N such that the sublevel sets
Xk := {x ∈ Rn : P µ

dk
(x) ≤ tk} satisfy:

lim
k→∞

dH(Xk,X) = 0, and lim
k→∞

dH(∂Xk, ∂X) = 0.

Here, ∂X and ∂Xk denote the boundary of X and Xk, respectively.

2.2.1 The empirical setting
Assume now that we do not have explicit knowledge of the measure µ, but are instead given
a sequence X ⊆ Rn of N samples X1, X2, . . . , XN ∈ Rn, drawn independently according to µ.
These samples induce a probability measure µX given by µX = 1

N

∑N
i=1 δXi

, which we call
the emperical measure associated to X . Under a non-degeneracy assumption (Assumption 13
below), the measure µX induces an inner product of the form (5) on R[x]d by:

⟨p, q⟩µX :=
∫

p(x)q(x)dµX (x) = 1
N

N∑
i=1

p(Xi)q(Xi). (11)

In light of (11) and Proposition 9, it is straightforward to compute the Christoffel-Darboux
kernel KµX

d of degree d for the measure µX (and thus to compute P µX
d ). Indeed, the entries

of the matrix MµX
d (b) in (9) may each be computed in time O(N), after which MµX

d (b) can
be inverted in time O(s(n, d)3).

▶ Proposition 12. The empirical Christoffel-Darboux kernel KµX
d of degree d for N samples

in Rn may be computed in time O(Ns(n, d)2 + s(n, d)3).

The above procedure only works when the matrix MµX
d (b) is invertible, or equivalently, when

the “inner product” ⟨·, ·⟩µX on R[x]d is definite. We shall make this assumption throughout.
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▶ Assumption 13. We say a sample set X is non-degenerate (up to degree d) if the inner
product ⟨·, ·⟩µX associated to the empirical measure µX induced by X via (11) is definite for
polynomials up to degree d.

Assumption 13 is satisfied if and only if the samples X are not contained in an algebraic
hypersurface of degree d (i.e., the zero set of a polynomial of degree at most d). This implies
in particular that N ≥ s(n, d) + 1.

Under certain assumptions on µ, Lasserre and Pauwels [12] show that the (emperical)
Christoffel polynomial P µX

d converges to the (population) Christoffel polynomial P µ
d as the

number of samples N →∞. The rate of this convergence can be quantified, see [22].

▶ Theorem 14 ([12], see also [13]). Let X = (X1, X2, . . . , XN ) be sampled from µ as in the
above. Then for each x ∈ [−1, 1]n, we have limN→∞ |P µ

d (x)− P µX
d (x)| = 0 almost surely.

3 A persistence module based on the Christoffel polynomial

Theorems 11 and 14 motivate the use of the Christoffel polynomial in (statistical) data
analysis. They show that certain sublevel sets of the empirical Christoffel polynomial
approximate the support of the underlying population measure µ well (in Hausdorff distance)
as the number of samples grows. However, Theorem 11 gives very little explicit information
on which (sub)level set to consider. This is the primary motivation for considering a persistent
scheme instead, which we introduce now.

▶ Definition 15. Fix d ∈ N, and let X ⊆ [−1, 1]n be a set of samples whose associated
empirical measure µX satisfies Assumption 13. Let P µX

d : Rn → R be the corresponding
Christoffel polynomial (10). For t ≥ 0, we consider the compact sublevel set

Xt := {x ∈ [−1, 1]n : log P µX
d (x) ≤ t} = {x ∈ [−1, 1]n : P µX

d (x) ≤ 10t}, (12)

which is well-defined as P µX
d (x) ≥ 1 for all x ∈ Rn. By definition (Xt)t≥0 is a filtration,

i.e, Xt ⊆ Xt′ for any t ≤ t′. In light of Example 1, we can therefore define the persistence
module

CD(X , d) := PH∗([−1, 1]n, log P µX
d ). (13)

Notably, we do not consider the level sets of P µX
d , but rather those of log P µX

d . Before
we motivate this choice, let us first observe that from a computational perspective, this
logarithmic rescaling makes no difference. Indeed, one can obtain the persistence module of
the filtration ([−1, 1]n, log P µX

d ) by first computing the module associated to ([−1, 1]n, P µX
d )

and then rescaling all interval modules. We choose to work with log P µX
d for two reasons. First,

as we will see below, this choice allows us to prove a stronger and more elegant stability result
for the module CD(X , d). Second, the logarithmic scaling produces persistence diagrams that
better fit the underlying topology in practice. Proposition 10 provides a rather convincing
theoretical argument for this observation. Indeed, if x ∈ [−1, 1]n is a point outside of the
support of the underlying measure µ, it tells us that P µ

d (x) ≈ exp
(
dist(x, supp(µ)) · d

)
,

which is to say that log P µ
d (x) scales linearly in the distance dist(x, supp(µ)), an intuitively

desirable property.

3.1 Stability and robustness
In this section, we show that the module CD(X , d) is locally stable under small perturbations
of the sample set X , measured in the Wasserstein distance (1). Namely, we show in
Proposition 19 that:

dB

(
Dgm(CD(X , d)), Dgm(CD(Y, d))

)
≤ log

(
CX · dW (µX , µY) + 1

)
SoCG 2023
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for fixed X ⊆ [−1, 1]n and any Y ⊆ [−1, 1]n for which dW (µX , µY) is sufficiently small. Here,
the constant CX depends on n, d, and the supremum norm

∥ log P µX
d ∥∞ := max

x∈[−1,1]n
| log P µX

d (x)|,

which we interpret as a “measure of algebraic degeneracy” of the set X (see Assumption 13).
For arbitrary sets X and Y, we show in Proposition 18 that

dB

(
Dgm(CD(X , d)), Dgm(CD(Y, d))

)
≤ log

(
CX ,Y · dW (µX , µY) + 1

)
, (14)

where the constant CX ,Y now additionally depends on ∥ log P µY
d ∥∞. If one restricts to

“sufficiently non-degenerate” sample sets (i.e., those having ∥ log P µX
d ∥∞ bounded from

above), relation (14) may be read as a global stability result.
For the proof of these statements, note first that in light of Corollary 4, we have:

dB

(
Dgm(CD(X , d)), Dgm(CD(Y, d))

)
≤ ∥ log P µX

d − log P µY
d ∥∞ (15)

and so it suffices to consider the quantity ∥ log P µX
d − log P µY

d ∥∞. We start by showing the
following.

▶ Theorem 16. Let X ,Y ⊆ Rn be as in the above. Write Cn,d := 4 · s(n, d) · d2, where
s(n, d) := dimR[x]d =

(
n+d

d

)
. Then for all x ∈ Rn, we have that:

|P µX
d (x)− P µY

d (x)| ≤ Cn,d · ∥P µX
d ∥∞ · dW (µX , µY) · P µY

d (x).

We prove Theorem 16 in [17, Appendix A] by adapting the techniques of Section 6.2 in [13]
to our setting. This requires some small technical statements on Wasserstein distance and
supremum norms of polynomials on compact domains, which we also give there.

We have the following immediate consequence:

▶ Corollary 17. Let X ,Y as in the above, and let Cn,d > 0 be the constant of Theorem 16.
Then for all x ∈ [−1, 1]n, we have:

|P µX
d (x)/P µY

d (x)− 1| ≤ Cn,d · ∥P µX
d ∥∞ · dW (µX , µY).

After taking logarithms (see [17, Appendix A] for details), we then obtain:

▶ Proposition 18. Let X ,Y ⊆ Rn be as above, and let Cn,d > 0 be the constant of Theorem 16.
Then we have:

∥ log P µX
d − log P µY

d ∥∞ ≤ log
(
Cn,d ·max{∥P µX

d ∥∞, ∥P µY
d ∥∞} · dW (µX , µY) + 1

)
. (16)

Note that when the quantity C := Cn,d · max{∥P µX
d ∥∞, ∥P µY

d ∥∞} is close to 0, the
bound (16) tells us that ∥ log P µX

d − log P µY
d ∥∞ ≤ C · dW (µX , µY). On the other hand, if

C ≫ 1, the bound on ∥ log(P µX
d )− log(P µY

d )∥∞ is exponentially smaller than in Theorem 16.
Finally, we may get rid of the dependence on Y in Corollary 17 after making an additional
assumption.

▶ Proposition 19. Let X ⊆ [−1, 1]n be a (fixed) sample set satisfying Assumption 13.
Let Cn,d > 0 be the constant of Theorem 16, and assume that Y ⊆ [−1, 1]n is such that
Cn,d · ∥P µX

d ∥∞ · dW (µX , µY) ≤ 1/2. Then we have ∥P µY
d ∥∞ ≤ 2∥P µX

d ∥∞. In particular, the
bound (16) then reads:

∥ log P µX
d − log P µY

d ∥∞ ≤ log
(
Cn,d · 2∥P µX

d ∥∞ · dW (µX , µY) + 1
)
.
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3.2 An exact algorithm for the persistence module

As we explain in Section 2.2 (see Proposition 12), the Christoffel polynomial P µX
d of degree d

may be computed in time O(s(n, d)3 + Ns(n, d)2), where N = |X | is the number of samples
and s(n, d) =

(
n+d

d

)
is the size of the moment matrix (9). Once we have access to P µX

d , it
remains to compute the persistent homology of the filtration {x ∈ [−1, 1]n : P µX

d (x) ≤ t}t≥0.
The set [−1, 1]n is a particularly simple example of a basic (closed) semialgebraic set. That
is, a subset of Rn defined by a finite number of polynomial (in)equalities; namely:

[−1, 1]n = {x ∈ Rn : gi(x) := 1− x2
i ≥ 0 for i = 1, 2, . . . , n}.

We may therefore use the following recent result of Basu and Karisani [1].

▶ Theorem 20 (Basu, Karisani (2022)). For fixed p ∈ N, there is an algorithm that
takes as input a description of a closed and bounded semialgebraic set X = {x ∈ Rn :
gi(x) ≥ 0, i = 1, 2, . . . , m}, and a polynomial P ∈ R[x], and outputs the persistence diagram
associated to the filtration {x ∈ X : P (x) ≤ t}t≥0 up to dimension p. The complexity of
this algorithm is bounded by (md)O(n), where d = max{deg(gi), deg(P )} is the largest degree
amongst P and the polynomial inequalities defining X.

▶ Corollary 21 (Exact algorithm). For fixed p ∈ N, there is an exact algorithm that computes
the persistence diagram associated to CD(X , d) up to dimension p. Its runtime is bounded by
O(s(n, d)3 + Ns(n, d)2) + (nd)O(n).

3.3 An effective approximation scheme

To the authors’ knowledge, no implementation exists of the algorithm mentioned in Theo-
rem 20 at the time of writing. In order to perform numerical experiments, we use a simple
approximation scheme for CD(X , d). This method works in the more general case of approxi-
mating PH∗([−1, 1]n, f) for any Lipschitz continuous function f : [−1, 1]n → R. Succinctly
put, we first fix m ∈ N, and construct the Freudenthal triangulation [10, 7] of [−1, 1]n, with
vertices equal to the lattice points of 2

m · Z
n contained in [−1, 1]n. See Figure 3. We denote

this triangulation by Km. Note that the diameter of any simplex in this triangulation is equal
to 2
√

n/m. We then evaluate f on each of the vertices, and compute the persistent homology
of the lower-star filtration on Km induced by these function values. This persistence module,
denoted by by PH∗(Km, f), approximates PH∗([−1, 1]n, f). The diagram of this module
can be computed in polynomial time in the number of lattice points, which in our case is
(m + 1)n. The following proposition gives a guarantee on the quality of this approximation:

▶ Proposition 22. Let f : [−1, 1]n → R be a Lipschitz continuous function with Lipschitz
constant Lf , choose m ∈ N, and let Km be as above. Then

dB(Dgm(PH∗([−1, 1]n, f)), Dgm(PH∗(Km, f))) ≤ Lf · 2
√

n/m.

Since the function log P µX
d : [−1, 1]n → R is differentiable and [−1, 1]n is compact, log P µX

d

is Lipschitz continuous, and so the above proposition applies to our setting. For a proof and
a more detailed discussion on this approximation scheme, we refer to [17, Appendix B].

▶ Remark 23. The stability results (14), (15) apply directly to PH∗(Km, P µX
d ). That is, the

approximated modules are also stable in the Wasserstein distance, see [17, Appendix B].
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(1, 1)

(1,−1)

(−1, 1)

(−1,−1)

Figure 3 The Freudenthal triangulation of [−1, 1]2 on the lattice 2
m

· Z2 (with m = 3).

4 Numerical examples

In this section we illustrate our new scheme by computing the persistence diagram of CD(X , d)
for various toy examples X ⊆ [−1, 1]n for n = 1, 2, 3. In each case, the sets X are drawn
from a measure supported [−1, 1]n, after which some additional noise may be added. We
compute the Christoffel polynomials using the method outlined in Section 2.2.1 and the
linear algebra packages of NumPy [11] and Scipy [21]. To approximate the persistence of
the resulting filtrations, we employ the method of Section 3.3, where we set the resolution
m = 250 for n = 1, 2 and m = 50 for n = 3. See [17, Appendix B]. The persistence of the
resulting lower-star filtration is computed using Gudhi [20]. We also use Gudhi to compute
the (exact) persistent homology of the Čech filtration.

We add noise to our data sets X in two ways. We say we add uniform noise when
the noisy data X̃ is obtained from X by adding M points chosen uniformly at random
from [−1, 1]n. We say we add Gaussian noise (with standard deviation σ ≥ 0), when X̃
is obtained from X by adding to each coordinate of each sample x ∈ X an independently
drawn perturbation t ∼ N(0, σ).

A univariate example. It is rather instructive to consider first a simple univariate example.
Let X ⊆ [−1, 1] be drawn from a uniform measure µ supported on five disjoint intervals
I1, I2, . . . , I5 ⊆ [−1, 1]. The corresponding Christoffel polynomials (d = 4, 8, 12) and persis-
tence diagrams for this situation are plotted in Figure 4. We would expect the persistence
diagram of CD(X , d) to reflect the simple topology of supp(µ); namely we expect CD(X , d)
to consist of five interval modules, each corresponding to one of the connected components
of supp(µ). For d = 8, 12, we observe that this is indeed the case. For d = 4, however, we see
there are only four interval modules. In the one-dimensional setting, this can be explained
rather nicely. Indeed, “birth-events” correspond to (local) minima of P µX

d , and “death-events”
correspond to (local) maxima. As P µX

4 is of degree 8, it can have at most 7 critical points,
resulting in four interval modules (one of which is of infinite length).
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The figure eight. In Figure 5, we plot log P µX
12 and CD(X , 12) when X is drawn from a

measure supported on two circles in three different configurations: disjoint, just intersecting,
and overlapping. We observe that CD(X , 12) correctly captures the underlying topology in
all three cases (for clarity, the number of overlapping points in the diagram is indicated).

Feature sizing. We consider the influence of feature size in the data on our persistence
module. We draw samples X from a configuration of two circles in [−1, 1]n. In Figure 6, we
depict the diagram of CD(X , 10) as we decrease the radius of one of the circles. Similarly, in
Figure 7, we depict the diagram of CD(X , 10) as we decrease the number of samples drawn
from one of the circles. In both cases, the decrease in feature size corresponds to a decrease
in the length of the corresponding interval in CD(X , 10). Interestingly, this is due to an
earlier time of death in the former case, and due to a later time of birth in the latter.

Comparison to the Čech module. We compare our new module CD(X , 12) to Čech
persistence in Figure 8, where X is drawn from a measure supported on a ball, a triangle, and
a square (N = 10000). We consider four cases: a pure sample X , two samples with uniform
noise (M = 50 and M = 2500) in [−1, 1]n, and a sample with Gaussian noise (σ = 0.03). We
observe that both the Christoffel-Darboux and Čech module are able to correctly capture the
underlying topology for the pure sample and for the sample with Gaussian noise. However,
only the Christoffel-Darboux module is able to do so for the samples with uniform noise,
whereas the Čech module recovers no meaningful information there.

Stability under uniform noise. We consider a set X consisting of evenly spaced points on
the 1-skeleton of a cube1 in R3 (50 points per edge) with edge-length 1.5. The significant
persistent features of X consist of a single interval (of infinite length) in H0; five intervals
in H1 and one interval in H2, see Figure 9. We investigate how well the features in H1 can
be recovered after adding an increasing amount of uniform noise to X , comparing Čech
persistence to CD(X , d), d = 6, 8, 10. To measure this, we follow [3] and use the signal-to-
noise ratio; meaning the ratio between the size of the smallest interval in H1 inherent to X
and the size of the largest interval (in H1) induced by the noise. In Table 1, we report the
median signal-to-noise ratios over 100 experiments. We reiterate that the Christoffel-Darboux
persistence is computed approximately, which could affect these results. See [17, Appendix
B] for a more detailed discussion. We observe that the ratios for the Christoffel-Darboux
modules are much better than those for the Čech module. Furthermore, we note that the
module of degree d = 6 outperforms the modules of degree d = 8 and d = 10. This is
consistent with our stability results in Section 3.1, which are stronger for small values of d.

Table 1 Signal-to-noise ratios for persistent homology in dimension 1 for the cube skeleton in
the presence of uniform noise (median values over 100 experiments). See also Figure 9.

uniform noise (M) baseline 25 50 100 250 500 1000
Čech ≫ 10 3.6 2.4 2.0 1.6 1.4 1.3
Christoffel-Darboux (d = 6) ≫ 10 7.8 5.7 5.3 3.7 2.3 1.2
Christoffel-Darboux (d = 8) ≫ 10 4.9 2.8 2.6 2.5 2.1 1.2
Christoffel-Darboux (d = 10) ≫ 10 8.8 4.0 2.3 1.9 1.8 1.3

1 Because the cube skeleton is degenerate, we add a small amount of Gaussian noise (σ = 0.025) to X to
ensure the Christoffel polynomial for µX is well-defined.
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Figure 4 Left: Christoffel polynomials (d = 4, 8, 16) for samples X ⊆ [−1, 1] drawn from a
measure supported on five intervals in [−1, 1] (in blue, N = 500). Right: diagrams of CD(X , d).
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Figure 5 Left: level sets (in black) of the Christoffel polynomial P µX
12 of degree 12 for three sets

of samples X ⊆ [−1, 1]n (in blue, N = 3000). Right: the corresponding diagrams of CD(X , 12).
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Figure 6 Level sets of log P µX
10 and diagrams of CD(X , 10) for samples X drawn from a measure

supported on two circles. The radius r of the left circle decreases. Only degree 1 homology is shown.

Figure 7 Level sets of log P µX
10 and diagrams of CD(X , 10) for samples X drawn from a measure

supported on two circles. The number of samples N drawn from the left circle decreases. Only
degree 1 homology is shown.
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Figure 8 Left: level sets of log P µX
12 for sample sets X in [−1, 1]2 with different types of noise.

Center: persistence diagrams of CD(X , 12). Right: persistence diagrams for the Čech filtration.
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Figure 9 Left: sample sets obtained from the 1-skeleton of a cube in [−1, 1]3 by adding Gaussian
and uniform noise, respectively. Right: the corresponding Čech and Christoffel-Darboux persistence.

5 Discussion

We have introduced a new scheme for computing persistent homology of a point cloud
in Rn, based on the theory of Christoffel-Darboux kernels. Our scheme is stable w.r.t. the
Wasserstein distance. It admits an exact algorithm whose runtime is linear in the number of
samples, but depends rather heavily on the ambient dimension n and the degree d of the
kernel. In several examples (n = 1, 2, 3), it was able to capture key topological features of
the point cloud, even in the presence of uniform noise.

Computing the persistent homology. The persistence module CD(X , d) arises from a
particularly simple filtration of a semialgebraic set by a polynomial. This is what allows us
to invoke the result of Basu & Karisani in Section 3.2 to compute its persistence diagram.
Their result in fact applies in a much more general setting, but no practical implementation
of the resulting algorithm exists. Our present work thus motivates the search for effective
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exact algorithms in simple special cases. We instead rely in this work on the approximation
scheme described in Section 3.3. We are only able to bound the error of this scheme in
terms of the Lipschitz constant of P µX

d (which may be large, see also below). The practical
performance of our scheme appears to be much better than this bound would suggest. It
would therefore be desirable to prove further theoretical results that back this up.

Regularization. Our stability results of Section 3.1 depend on the “algebraic degeneracy”
of the sample set X . Such dependence is undesirable, and not present in stability results
for most conventional persistence modules. This dependence can potentially be avoided
by considering a regularization of the Christoffel polynomial, obtained by adding a small
multiple of the identity to the moment matrix (9): M ←M +ε · Id. One can also think of this
as adding a small multiple of the uniform measure on [−1, 1]n to the empirical measure µX ,
which ensures that the corresponding inner product is definite. In [14], the authors already
studied the impact of such modifications in the setting of functional approximation. There,
it allows them to work over (near-)degenerate sets X , while still accurately capturing the
geometry of their problem. Preliminary experiments show this approach can be applied in
our setting as well, and it would be very interesting to explore this further.

Selecting the degree d. Another important consideration is the selection of the degree d of
the Christoffel polynomial P µX

d . On the one hand, Proposition 10 and Theorem 11 suggest
that the polynomial captures the support of the underlying measure µ better when d is large.
On the other hand, Proposition 18 and Table 1 suggest that CD(X , d) is more stable under
perturbations of the data X for smaller d. Furthermore, computing P µX

d rapidly becomes
more costly as d grows. It is a hard open question what the “optimal” choice of d is w.r.t. n.
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Abstract
A graph is 2-planar if it has local crossing number two, that is, it can be drawn in the plane such
that every edge has at most two crossings. A graph is maximal 2-planar if no edge can be added
such that the resulting graph remains 2-planar. A 2-planar graph on n vertices has at most 5n − 10
edges, and some (maximal) 2-planar graphs – referred to as optimal 2-planar – achieve this bound.
However, in strong contrast to maximal planar graphs, a maximal 2-planar graph may have fewer
than the maximum possible number of edges. In this paper, we determine the minimum edge density
of maximal 2-planar graphs by proving that every maximal 2-planar graph on n ≥ 5 vertices has at
least 2n edges. We also show that this bound is tight, up to an additive constant. The lower bound
is based on an analysis of the degree distribution in specific classes of drawings of the graph. The
upper bound construction is verified by carefully exploring the space of admissible drawings using
computer support.
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1 Introduction

Maximal planar graphs a.k.a. (combinatorial) triangulations are a rather important and
well-studied class of graphs with a number of nice and useful properties. To begin with, the
number of edges is uniquely determined by the number of vertices, as every maximal planar
graph on n ≥ 3 vertices has 3n − 6 edges. It is natural to wonder if a similar statement can
be made for the various families of near-planar graphs, which have received considerable
attention over the past decade; see, e.g. [11, 15].

In this paper we focus on k-planar graphs, specifically for k = 2. These are graphs with
local crossing number at most k, that is, they admit a drawing in R2 where every edge
has at most k crossings. The class of 1-planar graphs was introduced by Ringel [21] in the
context of vertex-face colorings of planar graphs. Later, Pach and Tóth [20] used upper
bounds on the number of edges in k-planar graphs to derive an improved version of the
Crossing Lemma, which gives a lower bound on the crossing number of a simple (no loops
or multi-edges) graph in terms of its number of vertices and edges. The class of k-planar
graphs is not closed under edge contractions and already for k = 1 there are infinitely many
minimal non-1-planar graphs, as shown by Korzhik [17].
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The maximum number of edges in a k-planar graph on n vertices increases with k, but
the exact dependency is not known. A general upper bound of O(

√
kn) is known due to

Ackerman and Pach and Tóth [1, 20] for graphs that admit a simple k-plane drawing, that
is, a drawing where every pair of edges has at most one common point. Only for small k we
have tight bounds. A 1-planar graph on n vertices has at most 4n − 8 edges and there are
infinitely many optimal 1-planar graphs that achieve this bound, as shown by Bodendiek,
Schumacher, and Wagner [7]. A 2-planar graph on n vertices has at most 5n − 10 edges and
there are infinitely many optimal 2-planar graphs that achieve this bound, as shown by Pach
and Tóth [20]. In fact, there are complete characterizations, for optimal 1-planar graphs by
Suzuki [23] and for optimal 2-planar graphs by Bekos, Kaufmann, and Raftopoulou [6].

Much less is known about maximal k-planar graphs, that is, graphs for which adding any
edge results in a graph that is not k-planar anymore. In contrast to planar graphs, where
maximal and optimal coincide, it is easy to find examples of maximal k-planar graphs that
are not optimal; a trivial example is the complete graph K5. In fact, the difference between
maximal and optimal can be quite large for k-planar graphs, even – perhaps counterintuitively
– maximal k-planar graphs for k ≥ 1 may have fewer edges than maximal planar graphs on
the same number of vertices. Hudák, Madaras, and Suzuki [16] describe an infinite family of
maximal 1-planar graphs with only 8n/3 + O(1) ≈ 2.667n edges. An improved construction
with 45n/17+O(1) ≈ 2.647n edges was given by Brandenburg, Eppstein, Gleißner, Goodrich,
Hanauer, and Reislhuber [8] who also established a lower bound by showing that every
maximal 1-planar graph has at least 28n/13 − O(1) ≈ 2.153n edges. Later, this lower bound
was improved to 20n/9 ≈ 2.22n by Barát and Tóth [4].

Maximal 2-planar graphs were studied by Auer, Brandenburg, Gleißner, and Hanauer [3]
who constructed an infinite family of maximal 2-planar graphs with n vertices and 387n/147+
O(1) ≈ 2.63n edges.1 We are not aware of any nontrivial lower bounds on the number of
edges in maximal k-planar graphs, for k ≥ 2.

Results. In this paper, we give tight bounds on the minimum number of edges in maximal 2-
planar graphs, up to an additive constant.

▶ Theorem 1. Every maximal 2-planar graph on n ≥ 5 vertices has at least 2n edges.

▶ Theorem 2. There exists a constant c ∈ N such that for every n ∈ N there exists a
maximal 2-planar graph on n vertices with at most 2n + c edges.

Related work. Maximality has also been studied for drawings of simple graphs. Let D be a
class of drawings. A drawing D ∈ D is saturated if no edge can be added to D so that the
resulting drawing is still in D. For the class of simple drawings, Kynčl, Pach, Radoičić and
Tóth [18] showed that every saturated drawing on n vertices has at least 1.5n edges and there
exist saturated drawings with no more than 17.5n edges. The upper bound was improved
to 7n by Hajnal, Igamberdiev, Rote and Schulz [12]. Chaplick, Klute, Parada, Rollin, and
Ueckerdt [9] studied saturated k-plane drawings, for k ≥ 4, and obtained tight bounds linear
in n, where the constant depends on k, for various types of crossing restrictions. For the class
of 1-plane drawings, Brandenburg, Eppstein, Gleißner, Goodrich, Hanauer, and Reislhuber [8]

1 Maximality is proven via uniqueness of the 2-plane drawing of the graph. However, there is no explicit
proof of the uniqueness in this short abstract.
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showed that there exist saturated drawings with no more than 7n/3 + O(1) ≈ 2.33n edges.
On the lower bound side, the abovementioned bound of 20n/9 ≈ 2.22n edges by Barát and
Tóth [4] actually holds for saturated 1-plane drawings. For the class of 2-plane drawings,
Auer, Brandenburg, Gleißner, and Hanauer [3] describe saturated drawings with no more
than 4n/3 + O(1) ≈ 1.33n edges, and Barát and Tóth [5] show that every saturated 2-plane
drawing on n vertices has at least n − 1 edges.

Although the general spirit is similar, saturated drawings are quite different from maximal
abstract graphs. To obtain a sparse saturated drawing, one can choose both the graph and
the drawing, whereas for sparse maximal graphs one can choose the graph only and needs to
get a handle on all possible drawings. Universal lower bounds for saturated drawings carry
over to the maximal graph setting, and existential upper bounds for maximal graphs carry
over to saturated drawings. But bounds obtained in this fashion are far from tight usually;
compare, for instance, the range of between n and 4n/3 edges for saturated 2-plane drawings
to our bound of 2n edges for maximal 2-planar graphs.

2 Preliminaries

A drawing of a graph G = (V, E) is a map γ : G → R2 that maps each vertex v ∈ V to
a point γ(v) ∈ R2 and each each edge uv ∈ E to a simple (injective) curve γ(uv) with
endpoints γ(u) and γ(v), subject to the following conditions: (1) γ is injective on V ; (2) for
all uv ∈ E we have γ(uv)∩γ(V ) = {γ(u), γ(v)}; and (3) for each pair e0, e1 ∈ E with e0 ̸= e1
the curves γ(e0) and γ(e1) have at most finitely many intersections, and each such intersection
is either a common endpoint or a proper, transversal crossing (that is, no touching points
between these curves). The connected components of R2 \ γ(G) are the faces of γ. The
boundary of a face f is denoted by ∂f .

To avoid notational clutter we will often identify vertices and edges with their geometric
representations in a given drawing. A drawing is simple if every pair of edges has at most
one common point. A drawing is k-plane, for k ∈ N, if every edge has at most k crossings.
A graph is k-planar if it admits a k-plane drawing. A graph is maximal k-planar if no edge
can be added to it so that the resulting graph is still k-planar.

To analyze a k-planar graph one often analyzes one of its k-plane drawings. It is, therefore,
useful to impose additional restrictions on this drawing if possible. One such restriction
is to consider a crossing-minimal k-plane drawing, that is, a drawing that minimizes the
total number of edge crossings among all k-plane drawings of the graph. For small k, such a
drawing is always simple; for k ≥ 4 this is not the case in general [22, Footnote 112].

▶ Lemma 3 (Pach, Radoičić, Tardos, and Tóth [19, Lemma 1.1]). For k ≤ 3, every crossing-
minimal k-plane drawing is simple.

In figures, we use the following convention to depict edges: Uncrossed edges are shown
green, singly crossed edges are shown purple, doubly crossed edges are shown blue, and edges
for which the number of crossings is undetermined are shown black.

Connectivity. Next let us collect some basic properties of maximal k-planar graphs and
their drawings. Some of these may be folklore, but for completeness we include the (simple)
proofs in the full version [14].

▶ Lemma 4. Let D be a crossing-minimal k-plane drawing of a maximal k-planar graph G,
and let u and v be two vertices that lie on (the boundary of) a common face in D. Then uv

is an edge of G and it is uncrossed in D.
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▶ Lemma 5. Let D be a crossing-minimal k-plane drawing of a maximal k-planar graph
on n vertices, for k ≤ 2 ≤ n. Then every vertex is incident to an uncrossed edge in D.

▶ Lemma 6. For k ≤ 2, every maximal k-planar graph on n ≥ 3 vertices is 2-connected.

3 The Lower Bound

In this section we develop our lower bound on the edge density of maximal 2-planar graphs
by analyzing the distribution of vertex degrees. As we aim for a lower bound of 2n edges,
we want to show that the average vertex degree is at least four. Then, the density bound
follows by the handshaking lemma. However, maximal 2-planar graphs may contain vertices
of degree less than four. By Lemma 6 we know that the degree of every vertex is at least
two. But degree-two vertices, so-called hermits, may exist, as well as vertices of degree three.

In order to lower bound the average degree by four, we employ a charging scheme where
we argue that every low-degree vertex, that is, every vertex of degree two and three claims
a certain number of halfedges at an adjacent high-degree vertex, that is, a vertex of degree
at least five. Claims are exclusive, that is, every halfedge at a high-degree vertex can be
claimed at most once. We use the term halfedge because the claim is not on the whole edge
but rather on its incidence to one of its high-degree endpoints. The incidence at the other
endpoint may or may not be claimed independently (by another vertex). For an edge uv we
denote by −⇀uv the corresponding halfedge at v and by −⇀vu the corresponding halfedge at u.
A halfedge −⇀uv inherits the properties of its underlying edge uv, such as being crossed or
uncrossed in a particular drawing. Vertices of degree four have a special role, as they are
neither low– nor high-degree. However, a vertex of degree four that is adjacent to a hermit
is treated like a low-degree vertex. More precisely, our charging scheme works as follows:
(C1) Every hermit claims two halfedges at each high-degree neighbor.
(C2) Every degree-three vertex claims three halfedges at some high-degree neighbor.
(C3) Every degree four vertex that is adjacent to a hermit h claims two halfedges at some

neighbor v of degree ≥ 6. Further, the vertices h and v are adjacent, so h also claims
two halfedges at v by (C1). If deg(v) = 6, then v is adjacent to exactly one hermit.

(C4) At most one vertex claims (one or more) halfedges at a degree five vertex.

The remainder of this section is organized as follows. First, we present the proof of
Theorem 1 in Section 3.1. Then we prove the validity of our charging scheme along with
some useful properties of low-degree vertices in Section 3.2–3.5. Specifically, we will use the
following statements in the proof of Theorem 1 below.

▶ Lemma 7. Let G be a maximal 2-planar graph on n ≥ 5 vertices, let h be a hermit, and
let x, y be the neighbors of h in G. Then we have deg(x) ≥ 4 and deg(y) ≥ 4.

▶ Lemma 8. Let G be a maximal 2-planar graph on n ≥ 5 vertices. Then a vertex of degree i

in G is adjacent to at most ⌊i/3⌋ hermits.

3.1 Proof of Theorem 1
Let G be a maximal 2-planar graph on n ≥ 5 vertices, and let m denote the number of edges
in G. We denote by vi the number of vertices of degree i in G. By Lemma 6 we know that G

is 2-connected and, therefore, we have v0 = v1 = 0. Thus, we have

n =
n−1∑
i=2

vi and by the handshaking lemma 2m =
n−1∑
i=2

i · vi. (1)
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Vertices of degree four or higher can be adjacent to hermits. Let vhj
i denote the number

of vertices of degree i incident to j hermits in G. By Lemma 8 we have

vi =
⌊i/3⌋∑
j=0

vhj
i for all i ≥ 3. (2)

By Lemma 7 both neighbors of a hermit have degree at least four. Thus, double counting
the edges between hermits and their neighbors we obtain

2v2 ≤ vh1
4 + vh1

5 + vh1
6 + 2vh2

6 + vh1
7 + 2vh2

7 + 2v8 + vh1
9 + 2vh2

9 + 3vh3
9 +

n−1∑
i=10

⌊i/3⌋vi. (3)

If a vertex u claims halfedges at a vertex v, we say that v serves u. According to (C2),
every vertex of degree three claims three halfedges at a high-degree neighbor. Every degree
four vertex that is adjacent to a hermit together with this hermit claims four halfedges at a
high-degree neighbor by (C3). We sum up the number of these claims and assess how many
of them can be served by the different types of high-degree vertices.

In general, a high-degree vertex of degree i ≥ 5 can serve at most ⌊i/3⌋ such claims.
For i ∈ {5, 6, 7, 9}, we make a more detailed analysis, taking into account the number of
adjacent hermits. Specifically, by (C3) and (C4) a degree five vertex serves at most one
low-degree vertex, which is either a hermit or a degree-three vertex. A degree six vertex
can serve two degree-three vertices but only if it is not adjacent to a hermit. If a degree six
vertex serves a degree four vertex, it is adjacent to exactly one hermit by (C3). In particular,
a degree six vertex that is adjacent to two hermits does not serve any degree three or degree
four vertex. Altogether we obtain the following inequality:

v3+vh1
4 ≤ vh0

5 +2vh0
6 +vh1

6 +2vh0
7 +2vh1

7 +vh2
7 +2v8+3vh0

9 +2vh1
9 +2vh2

9 +vh3
9 +

n−1∑
i=10

⌊i/3⌋vi. (4)

The combination ((3) + (4))/2 together with (2) yields

v2 + 1
2v3 ≤ 1

2v5 + v6 + 3
2v7 + 2v8 + 2v9 +

n−1∑
i=10

⌊i/3⌋vi. (5)

Now, using these equations and inequalities, we can prove that m − 2n ≥ 0, to complete the
proof of Theorem 1. Let us start from the left hand side, using (1).

m − 2n = 1
2

n−1∑
i=2

ivi − 2
n−1∑
i=2

vi =
n−1∑
i=2

i − 4
2 vi

= −v2 − 1
2v3 + 1

2v5 + v6 + 3
2v7 + 2v8 + 5

2v9 +
n−1∑
i=10

i − 4
2 vi

By (5) the right hand side is nonnegative, quod erat demonstrandum.

3.2 Admissible Drawings
So far we have worked with the abstract graph G. In order to discuss our charging scheme,
we also use a suitably chosen drawing of G. Specifically, we consider a maximal 2-planar
graph G on n ≥ 5 vertices and a crossing-minimal 2-plane drawing D of G that, among all
such drawings, minimizes the number of doubly crossed edges. We refer to a drawing with
these properties as an admissible drawing of G. By Lemma 3 we know that D is simple.
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3.3 Hermits and degree four vertices
▶ Lemma 9. Let h be a hermit and let x, y be its neighbors in G. Then x and y are adjacent
in G and all three edges xy, hx, hy are uncrossed in D.

We refer to the edge xy as the base of the hermit h, which hosts h.

▶ Lemma 10. Every edge of G hosts at most one hermit.

By Lemma 7 both neighbors of a hermit have degree at least four. A vertex is of type T4-H
if it has degree exactly four and it is adjacent to a hermit. The following lemma characterizes
these vertices and ensures that every hermit has at least one high-degree neighbor.

▶ Lemma 11. Let u be a T4-H vertex with neighbors h, v, w, x in G such that h is a hermit
and v is the second neighbor of h. Then both uw and ux are doubly crossed in D, and the two
faces of D \ h incident to uv are triangles that are bounded by (parts of) edges incident to u

and doubly crossed edges incident to v. Furthermore, we have deg(v) ≥ 6, and if deg(v) = 6,
then h is the only hermit adjacent to v in G.

In our charging scheme, each hermit h claims two halfedges at each high-degree neighbor v:
the halfedge −⇀

hv and the halfedge −⇀uv, where uv denotes the edge that hosts h. Each T4-H
vertex u claims the two doubly crossed halfedges at v that bound the triangular faces incident
to uv in D.

v

u
h

3.4 Degree-three vertices
We distinguish four different types of degree-three vertices in G, depending on their neigh-
borhood and on the crossings on their incident edges in D. Consider a degree-three vertex u

in G. By Lemma 5 every vertex is incident to at least one uncrossed edge in D.

T3-1: exactly one uncrossed edge. The two other edges incident to u are crossed.

▶ Lemma 12. Let u be a T3-1 vertex with neighbors v, w, x in G such that the edge uv

is uncrossed in D. Then the two faces of D incident to uv are triangles that are bounded
by (parts of) edges incident to u and doubly crossed edges incident to v. Furthermore, we
have deg(v) ≥ 5.

In our charging scheme, each T3-1 vertex u claims three halfedges at its adjacent high-
degree vertex v: the uncrossed halfedge −⇀uv along with the two neighboring halfedges at v,
which are doubly crossed by Lemma 12.

v

u
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T3-2: exactly two uncrossed edges. The third edge incident to u is crossed.

▶ Lemma 13. Let u be a T3-2 vertex in D with neighbors v, w, x such that uv is crossed
at a point α. Then α is the only crossing of uv in D. Further, the edge that crosses uv is
doubly crossed, it is incident to w or x, and its part between w or x and α is uncrossed.

By the following lemma, we are free to select which of the two edges uv and ux incident
to a T3-2 vertex are singly crossed; see Figure 1 (left and middle).

▶ Lemma 14. Let u be a T3-2 vertex in D, and let the neighbors of u be v, w, x such that
the edge uv is (singly) crossed by a (doubly crossed) edge wb. Then there exists an admissible
drawing D′ of G such that (1) D′ is identical to D except for the edge wb and (2) the edge wb

crosses the edge ux in D′.

v

u

b x

w

v

u

x

w

b

u

v x

w

Figure 1 Illustration of Lemma 14 (left and middle); halfedges claimed (marked orange) and
assessed (marked lightblue) by a T3-2 vertex u (right).

▶ Lemma 15. Let u be a T3-2 vertex with neighbors v, w, x s.t. the edge uv is singly crossed
by a doubly crossed edge wb in D. Then deg(w) ≥ 5 and min{deg(v), deg(x)} ≥ 4.

A halfedge −⇀wx is peripheral for a vertex u of G if (1) u is a common neighbor of w and x;
(2) deg(w) ≥ 5; and (3) deg(x) ≥ 4. In our charging scheme, every T3-2 vertex u claims
three halfedges at the adjacent high-degree vertex w: the halfedge −⇀uw, the doubly crossed
halfedge −⇀

bw, and one of the uncrossed peripheral halfedges −⇀vw or −⇀xw; see Figure 1 (right).
While the former two are closely tied to u, the situation is more complicated for the latter
two halfedges. Eventually, we need to argue that u can exclusively claim (at least) one of
the two peripheral halfedges. But for the time being we say that it assesses both of them.

T3-3: all three incident edges uncrossed. We say that such a vertex is of type T3-3. As
an immediate consequence of Lemma 4 each T3-3 vertex u together with its neighbors N(u)
induces a plane K4 in D. We further distiguish two subtypes of T3-3 vertices.

The first subtype accounts for the fact that there may be two adjacent T3-3 vertices in D.
We refer to such a pair as an inefficient hermit. Observe that two T3-3 vertices z, z′ that
form an inefficient hermit have the same neighbors in G \ {z, z′} by Lemma 4. A T3-3 vertex
that is part of an inefficient hermit is called a T3-3 hermit.

▶ Lemma 16. Let z be a T3-3 vertex in D, and let z′ be a neighbor of z in G with deg(z′) ≤ 3.
Then z′ is also a T3-3 vertex, that is, the pair z, z′ forms an inefficient hermit in D.

▶ Lemma 17. Let z, z′ be an inefficient hermit in D, and let x, y be their (common) neighbors
in G. Then xy is an uncrossed edge in D, and the degree of x and y is at least five each.

In particular, Lemma 17 implies that every T3-3 hermit is part of exactly one inefficient
hermit. In our charging scheme, each T3-3 hermit claims three halfedges at one of its (two)
adjacent high-degree vertices. More precisely, let z, z′ be an inefficient hermit and let x, y be

SoCG 2023



39:8 The Number of Edges in Maximal 2-Planar Graphs

its neighbors in G. Then the vertices x, y, z, z′ induce a plane K4 subdrawing Q of D. The
vertex z claims the three halfedges of Q at x, and z′ claims the three halfedges of Q at y.

The second subtype is formed by those T3-3 vertices that are not T3-3 hermits; we call
them T3-3 minglers. By Lemma 16 all neighbors of a T3-3 mingler have degree at least four.

▶ Lemma 18. Let u be a T3-3 mingler in D, and let v, w, x be its neighbors. Then each
of v, w, x has degree at least four. Further, at least one vertex among v, w, x has degree at
least six, or at least two vertices among v, w, x have degree at least five.

Let Q denote the plane K4 induced by u, v, w, x in D. In our charging scheme, the T3-3
mingler u claims the three halfedges of Q at one of its high-degree neighbors. That is, the
vertex u assesses all of its (up to six) peripheral halfedges at high-degree neighbors.

3.5 The charging scheme
In this section we argue that our charging scheme works out, that is, all claims made by
low-degree vertices and T4-H vertices can be served by adjacent high-degree vertices. Figure 2
presents a summary of the different types of vertices and their claims.

v

u

(a) T3-1.

u

v

(b) T3-2.

u

v

? ?

(c) T3-3.

v

u
h

(d) T4-H.

Figure 2 A vertex u with deg(u) ∈ {3, 4} and an adjacent high-degree vertex v at which u claims
halfedges. Claimed halfedges are marked orange. Assessed halfedges are marked lightblue: A T3-2
vertex claims one of the two lightblue peripheral edges, and a T3-3 vertex claims a triple of halfedges
at one of its high-degree neighbors.

For some halfedges it is easy to see that they are claimed at most once; these halfedges
are shown orange in Figure 2. In particular, it is clear that a halfedge that is incident to
the vertex that claims it is claimed at most once. We also need to consider the claims by
hermits, which are not shown in the figure (except for the hermit adjacent to a T4-H vertex).

▶ Lemma 19. Every halfedge claimed by a hermit is claimed by this hermit only.

The next lemma settles the validity of our charging scheme for T3-1 and T4-H vertices.

▶ Lemma 20. Every doubly crossed halfedge is claimed at most once.

It remains to argue about the claims to peripheral halfedges by T3-2 and T3-3 vertices.
Every T3-2 vertex assesses two peripheral halfedges of which it needs to claim one, and
every T3-3 vertex assesses three pairs of halfedges of which it needs to claim one. In order
to find a suitable assignment of claims for these vertices it is crucial that not too many
vertices compete for the same sets of halfedges. Fortunately, we can show that this is not the
case. We say that an edge of G is assessed by a low-degree vertex u if (at least) one of its
corresponding halfedges is assessed by u.

▶ Lemma 21. Every edge is assessed by at most two vertices.
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Proof. For a contradiction consider three vertices u0, u1, u2 of type T3-2 or T3-3 that
assess one of the halfedges of an edge uv. Then the edge uv is uncrossed in D, and all
of u0, u1, u2 are common neighbors of u and v in G. Moreover, we may suppose that all
edges between u0, u1, u2 and u, v are uncrossed in D: For T3-3 vertices all incident edges are
uncrossed, anyway, and for T3-2 vertices this follows by Lemma 14. In other words, we have
a plane K2,3 subdrawing B in D between u0, u1, u2 and u, v. Let ϕ0, ϕ1, ϕ2 denote the three
faces of B such that ∂ϕi = uuivui⊕1, where ⊕ denotes addition modulo 3.

Consider some i ∈ {0, 1, 2}. As deg(ui) = 3, there is exactly one vertex xi /∈ {u, v} that
is adjacent to ui in G. The edge from ui to xi in D enters the interior of exactly one of ϕi

or ϕi⊕2. In other words, for exactly one of ϕi or ϕi⊕2, no edge incident to ui enters its interior.
It follows that G− := G \ {u, v} is disconnected, in particular, the vertices u0, u1, u2 are split
into at least two components. Suppose without loss of generality that u0 is separated from
both u1 and u2 in G−, and let C0 denote the component of G− that contains u0. Let D0
denote the subdrawing of D induced by C0 along with all edges between C0 and u, v. Observe
that uu0v is an uncrossed path along the outer face of D0.

We remove D0 from D and put it back right next to the uncrossed path uu1v, in the
face (ϕ0 or ϕ1) incident to u1 that is not entered by any edge incident to u1; see Figure 3
for illustration. Furthermore, we flip D0 with respect to u, v if necessary so as to ensure
that the two uncrossed paths uu1v and uu0v appear consecutively in the circular order of
edges incident to u and v, respectively, in the resulting drawing D′, effectively creating a
quadrilateral face uu1vu0. The drawing D′ is an admissible drawing of G, to which we can
add an uncrossed edge u0u1 in the face uu1vu0, a contradiction to the maximality of G.
Therefore, no such triple u0, u1, u2 of vertices exists in G. ◀

v

u

u0 u1
u2

φ0

φ1 φ2
C0

v

u

u0u1
u2

C0

Figure 3 Redrawing in case that three vertices u0, u1, u2 claim a halfedge of the edge uv.

Note that Lemma 21 settles the claims by T3-3 hermits, as they come in pairs that
assess the same halfedges. By Lemma 21 no other vertex assesses these halfedges, so our
scheme of assigning the halfedges at one endpoint to each works out. It remains to consider
T3-2 vertices and T3-3 minglers. Let us start with the T3-2 vertices. Consider an edge or
halfedge e that is assessed by a low-degree vertex u. We say that e is contested if there
exists another low-degree vertex u′ ≠ u that also assesses e. An edge or halfedge that is not
contested is uncontested.

▶ Lemma 22. The claims of all T3-2 vertices can be resolved in a greedy manner.

Proof. Let u be a T3-2 vertex in D, and let −⇀wv and −⇀xv denote the halfedges that u

assesses. We start a sequence of greedy selections for the claims of vertices u1, u2, . . . , uk

by letting u1 := u claim one of −⇀wv and −⇀xv arbitrarily, say, let u claim −⇀wv (and withdraw
its assessment of −⇀xv). More generally, at the i-th step of our selection procedure we have a
vertex ui that has just claimed one of its assessed halfedges −−⇀wivi. By Lemma 21 there is at
most one other vertex ui+1 that also assesses −−⇀wivi. If no such vertex ui+1 exists, then we are
done and the selection procedure ends here with i = k. Otherwise, we consider two cases.
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Case 1: ui+1 is a T3-2 vertex. Then there is only one other (than −−⇀wivi) halfedge that ui+1
assesses, denote it by −−−⇀xi+1vi. We let ui+1 claim −−−⇀xi+1vi and proceed with the next step. ◁

Case 2: ui+1 is a T3-3 mingler. Then ui+1 also assesses −−⇀viwi, which is uncontested now,
and it also assesses a second halfedge −−−−⇀xi+1wi at wi. We let ui+1 claim both −−⇀viwi and −−−−⇀xi+1wi

and then proceed with the next step. ◁

For the correctness of the selection procedure it suffices to note that at every step exactly
one halfedge is claimed that is (still) contested, and the claims of the (unique) vertex that
assesses this halfedge are resolved in the next step. In particular, at the end of the procedure,
all (still) assessed edges are unclaimed. As long as there exists another T3-2 vertex in D that
has not claimed one of the two halfedges it requires, we start another selection procedure
from there. Thus, eventually the claims of all T3-2 vertices are resolved. ◀

At this point it only remains to handle the claims of the remaining T3-3 minglers. They
are more tricky to deal with compared to the T3-2 vertices because they require two halfedges
at a single high-degree vertex. We may restrict our attention to a subclass of T3-3 minglers
which we call tricky, as they assess a directed 3-cycle of contested halfedges. Consider a T3-3
mingler u, and let v, w, x be its neighbors in G. We say that u is tricky if (1) it assesses
all six halfedges among its neighbors and (2) all of the halfedges −⇀vw, −⇀wx, −⇀xv or all of the
halfedges −⇀vx, −⇀xw, −⇀wv (or both sets) are contested. A T3-3 mingler that is not tricky is easy.

▶ Lemma 23. The claims of all easy T3-3 minglers can be resolved in a postprocessing step.

Proof. Let M denote the set of easy T3-3 minglers in D. We remove M along with all
the corresponding assessments from consideration, and let all other (that is, tricky) T3-3
minglers make their claims. We make no assumption about preceding claims, other than that
every vertex (1) claims edges incident to one vertex only and (2) claims only edges it assesses.
After all tricky T3-3 minglers have made their claims, we process the vertices from M , one
by one, in an arbitrary order. In the following, the terms assessed and (un)contested refer
to the initial situation, before any claims were made. The current state of a halfedge is
described as either claimed or unclaimed.

Consider a vertex u ∈ M . If not all six halfedges are assessed by u, then not all of its
neighbors are high-degree, in which case, at most one peripheral edge of u is contested. Thus,
there always exists one pair of halfedges that is unclaimed and can be claimed by u. In
the other case, let H denote the set of six halfedges that are assessed by u. By (2) every
uncontested halfedge in H is unclaimed. By Lemma 21 every edge is assessed by at most
two vertices. Thus, for each of the edges vx, xw, wv at most one vertex other than u assesses
this edge. This other vertex may have claimed a corresponding halfedge, but by (1) for every
edge vx, xw, wv at least one of its two corresponding halfedges is unclaimed.

As u is easy, at least one of −⇀vw, −⇀wx, −⇀xv and at least one of −⇀vx, −⇀xw, −⇀wv is uncontested.
Suppose without loss of generality that −⇀vw is uncontested. We conclude with three cases.

Case 1: −⇀vx is uncontested. At least one of −⇀xw or −⇀wx is unclaimed. Thus, we can let u claim
one of the pairs −⇀xw, −⇀vw or −⇀wx, −⇀vx. ◁

Case 2: −⇀xw is uncontested. Then we let u claim −⇀vw, −⇀xw. ◁

Case 3: −⇀wv is uncontested. If one of −⇀xw or −⇀xv is unclaimed, then we let u claim it together
with the matching halfedge of the edge vw, which is uncontested by assumption. Otherwise,
both −⇀xw and −⇀xv are claimed. Then both −⇀wx and −⇀vx are unclaimed, and so u can safely claim
these two halfedges. ◀
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It remains to resolve the claims of tricky T3-3 minglers. Note that the classification tricky
vs. easy depends on the other T3-3 minglers. For instance, a T3-3 mingler that is tricky
initially may become easy after removing another easy T3-3 mingler. Here we have to deal
with those T3-3 minglers only that remain tricky after all easy T3-3 minglers have been
iteratively removed from consideration.

▶ Lemma 24. The claims of all tricky T3-3 minglers can be resolved in a greedy manner.

Proof. Let u be a tricky T3-3 mingler, and let v, w, x be its neighbors in G. As for each
tricky T3-3 mingler all three peripheral edges are contested by other tricky T3-3 minglers,
there exists a circular sequence u = u1, . . . , uk, with k ≥ 2, of tricky T3-3 minglers that are
neighbors of v in G and whose connecting edges appear in this order around v in D. We
distinguish two cases, depending on the parity of k.

Case 1: k is even. Then we let each ui, for i odd, claim the two halfedges at v that it assesses.
This resolves the claims for all ui, with i odd, and we claim that now all ui, with i even, are
easy. To see this, consider a vertex ui, with i even. Both of its assessed halfedges at v are
now claimed; denote these halfedges by −⇀wiv and −⇀xiv. It follows that both −⇀vwi and −⇀vxi are
unclaimed and ui is the only vertex that still assesses them. As there is no directed 3-cycle
of contested halfedges among the halfedges assessed by ui anymore, the vertex ui is easy. ◁

Case 2: k is odd. Then we let each ui, for i < k odd, claim the two halfedges at v that it
assesses. This resolves the claims for these ui and makes all ui, with i < k − 1 even, easy, as
in Case 1 above. It remains to argue about uk−1 and uk. Let xiv denote the edge assessed
by both ui and ui+1, for 1 ≤ i < k, and let xkv denote the edge assessed by both uk and u1.
As −⇀xkv is claimed by u1, we can let uk claim −⇀vxk and −−−−⇀xk−1xk along with it. This makes uk−1
easy, as both −−−⇀vxk−2 and −−−⇀vxk−1 are uncontested now. However, we still need to sort out the
bold claim on −−−−⇀xk−1xk by uk. To this end, we apply the same greedy selection procedure as
in the proof of Lemma 22, except that here we start with the selection of −−−−⇀xk−1xk, as the only
contested halfedge that is claimed, and here we can only encounter (tricky) T3-3 minglers
over the course of the procedure. ◁

We get rid of at least two tricky T3-3 minglers, either by resolving their claims or by
making them easy. Thus, after a finite number of steps, no tricky T3-3 mingler remains. ◀

Our analysis of the charging scheme is almost complete now. However, we still need to
justify our claim about degree five vertices in Property (C4). In principle it would be possible
that two halfedges at a degree five vertex are claimed by a hermit and the remaining three
by a degree-three vertex. But we can show that this is impossible.

▶ Lemma 25. At most one low-degree vertex claims halfedges at a degree five vertex.

4 The Upper Bound: Proof outline of Theorem 2

In this section we describe a construction for a family of maximal 2-planar graphs with few
edges. We give a complete description of this family. But due to space constraints we give a
very rough sketch only for the challenging part of the proof: to show that these graphs are
maximal 2-planar. The full version [14] provides a complete version of this section, with all
proofs.

The graphs can roughly be described as braided cylindrical grids. More precisely, for a
given k ∈ N we construct our graph Gk on 10k + 140 vertices as follows.
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Take k copies of C10, the cycle on 10 vertices, and denote them by D1, . . . , Dk. Denote the
vertices of Di, for i ∈ {1, . . . , 10}, by vi

0, . . . , vi
9 so that the edges of Di are {vi

jvi
j⊕1 : 0 ≤

j ≤ 9}, where ⊕ denotes addition modulo 10.
For every i ∈ {1, . . . , k − 1}, connect the vertices of Di and Di+1 by a braided matching,
as follows. For j even, add the edge vi

jvi+1
j⊕8 to Gk and for j odd, add the edge vi

jvi+1
j⊕2

to Gk. See Figure 4 (left) for illustration.
To each edge of D1 and Dk we attach a gadget X ≃ K9 \ (K2 + K2 + P3) so as
to forbid crossings along these edges. Denote the vertices of X by x0, . . . , x8 such
that degX(x0) = degX(x1) = 8, degX(x8) = 6 and all other vertices have degree seven.
Let x6, x7 be the non-neighbors of x8. To an edge e of D1 and Dk we attach a copy of X

so that e takes the role of the edge x6x7 in this copy of X. As altogether there are 20
edges in D1 and Dk and each copy of X adds seven more vertices, a total of 20 · 7 = 140
vertices are added to Gk with these gadgets.
Finally, we add the edges vi

jvi
j⊕2, for all 0 ≤ j ≤ 9 and i ∈ {1, k}.

This completes the description of the graph Gk. Note that Gk has 10k + 140 vertices
and 10k + 10(k − 1) + 20 · 31 + 2 · 10 = 20k + 630 edges. So to prove Theorem 2 asymptotically
it suffices to choose c ≥ 630 − 2 · 140 = 350 and show that Gk is maximal 2-planar. Using
some small local modifications we can then obtain the statement for all values of n.

To show that Gk is 2-planar it suffices to give a 2-plane drawing of it. Such a drawing can
be deduced from Figure 4: (1) We nest the cycles D1, . . . , Dk with their connecting edges
using the drawing depicted in Figure 4 (left), (2) draw all copies of X attached to the edges
of D1 and Dk using the drawing depicted in Figure 4 (right), and (3) draw the remaining
edges among the vertices of D1 and Dk inside and outside D1 and Dk, respectively.

vi0 vi9
vi8

vi7
vi6

vi5vi4
vi3

vi2

vi1

vi+1
0 vi+1

9

vi+1
8

vi+1
7

vi+1
6

vi+1
5vi+1

4

vi+1
3

vi+1
2

vi+1
1

vi+1
9

vi+1
5

x6 x7

x3 x5

x1

x4 x2

x8

x0

Figure 4 The braided matching between two consecutive ten-cycles in Gk, shown in blue (left);
the gadget graph X that we attach to the edges of the first and the last ten-cycle of Gk (right).

It is much more challenging, though, to argue that Gk is maximal 2-planar. In fact, we
do not know of a direct argument to establish this claim. Instead, we prove that Gk admits
essentially only one 2-plane drawing, which is the one described above. Then maximality
follows by just inspecting this drawing and observing that no edge can be added there because
every pair of non-adjacent vertices is separated by a cycle of doubly-crossed edges.

This leaves us having to prove that Gk has a unique 2-plane drawing. We solve the
problem in a somewhat brute-force way: by enumerating all 2-plane drawings of Gk, using
computer support. Still, it is not immediately clear how to do this, given that (1) the space of
(even 2-plane) drawings of a graph can be vast; (2) (Gk) is an infinite family; and (3) already
for small k, even a single graph Gk is quite large.
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First of all, the gadget graph X is of small constant size. So it can be analyzed separately,
and there is no need to explicitly include these gadgets into the analysis of Gk. Instead, we
account for the effect of the gadgets by considering the edges of D1 and Dk as uncrossable.
In this way, we also avoid counting all the variations of placing the attached copy of X on
either side of the corresponding cycle as different drawings. In fact, the gadget X itself has
a few formally different 2-plane drawings due to its automorphisms. But for our purposes
of arguing about the maximality of Gk, these differences do not matter. However, these
variations are the reason that the 2-plane drawing of Gk is essentially unique only.

We also disregard the length two edges along D1 and Dk. Denote the resulting subgraph
of Gi by G−

i . We iteratively enumerate the 2-plane drawings of G−
i , for all i ∈ N, where only

the edges of the first cycle D1 are labeled uncrossable (but not the edges of the last cycle Di).
All drawings are represented as a doubly-connected edge list (DCEL) [10, Chapter 2]. As
a base case, we use the unique (up to orientation, which we select to be counterclockwise,
without loss of generality) plane drawing of G−

1 = D1. For each drawing Γ computed, with a
specific ten-cycle of vertices labeled as D, we consider all possible ways to extend Γ by adding
another ten-cycle of new, labeled vertices and connect it to D using a braided matching, as
in the construction of Gk and depicted in Figure 4 (left).

So in each iteration we have a partial drawing Γ and a collection H of vertices and edges
still to be drawn. We then exhaustively explore the space of simple 2-plane drawings of Γ∪H .
Our approach is similar to the one used by Angelini, Bekos, Kaufmann, and Schneck [2] for
complete and complete bipartite graphs. We consider the edges to be drawn in some order
such that whenever an edge is considered, at least one of its endpoints is in the drawing
already. When drawing an edge, we go over (1) all possible positions in the rotation at the
source vertex and for each such position all options to (2) draw the edge with zero, one or
two crossings. Each option to consider amounts to a traversal of some face incident to the
source vertex, and up to two more faces in the neighborhood. At every step we ensure that
the drawing constructed remains 2-plane and simple, and backtrack whenever an edge cannot
be added or the drawing is complete (that is, it is a 2-plane drawing of G−

i , for some i ∈ N).
Every drawing for Γ ∪ H obtained in this fashion is then tested, as described below. If

the tests are successful, then the drawing is added to the list of drawings to be processed, as
a child of Γ, and such that the ten-cycle in H takes the role of D for future processing.

As for the testing a drawing Γ, we are only interested in a drawing that can – eventually,
after possibly many iterations – be extended in the same way with an uncrossable ten-
cycle Dk. In particular, all vertices and edges of Dk must lie in the same face of Γ. Hence,
we test whether there exists a suitable potential final face in Γ where Dk can be placed; if
not, then we discard Γ from further consideration. We also go over the faces of Γ and remove
irrelevant faces and vertices that are too far from any potential final face to ever be able to
interact with vertices and edges to be added in future iterations. Finally, we check whether
the resulting reduced drawing has already been discovered by comparing it to all the already
discovered drawings (by testing for an isomorphism that preserves the cycle D). If not, then
we add it to the list of valid drawings.

For each drawing for which we found at least one child drawing, we also test whether there
exists a similar extension where the cycle in H is uncrossable. Whenever such an extension
is possible, we found a 2-plane drawing of Gi, for some i ∈ N. The algorithm for G−

i runs
for about 1.5 days and discovers 86 simple 2-plane drawings of G−

i . In only one of these
drawings the last ten-cycle is uncrossed: the drawing described above (see Figure 4). The
algorithm for the gadget X runs for about 3min. and discovers 32 simple 2-plane drawings,
as expected. The full source code is available in our repository [13].
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5 Conclusions

We have obtained tight bounds on the number of edges in maximal 2-planar graphs, up to an
additive constant. Naturally, one would expect that our approach can also be applied to other
families of near-planar graphs, specifically, to maximal 1- and 3-planar graphs. Intuitively,
for k-planar graphs the challenge with increasing k is that the structure of the drawings gets
more involved, whereas with decreasing k we aim for a higher bound.
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Abstract
We study dynamic planar graphs with n vertices, subject to edge deletion, edge contraction, edge
insertion across a face, and the splitting of a vertex in specified corners. We dynamically maintain a
combinatorial embedding of such a planar graph, subject to connectivity and 2-vertex-connectivity
(biconnectivity) queries between pairs of vertices. Whenever a query pair is connected and not
biconnected, we find the first and last cutvertex separating them.

Additionally, we allow local changes to the embedding by flipping the embedding of a subgraph
that is connected by at most two vertices to the rest of the graph.

We support all queries and updates in deterministic, worst-case, O(log2 n) time, using an
O(n)-sized data structure.
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1 Introduction

In dynamic graph algorithms, the task is to efficiently update information about a graph that
undergoes updates from a specified family of potential updates. Simultaneously, we want
to efficiently support questions about properties of the graph or relations between vertices.
Two vertices u and v are 2-vertex connected (i.e. biconnected) in a graph G, whenever
after the removal of any vertex in G (apart from u and v) they are still connected in G.
This work considers dynamically maintaining a combinatorial embedding of a graph that
is planar, subject to biconnectivity queries between vertices. We show how to efficiently
maintain G in O(log2 n) time per update operation using linear space. We additionally
support biconnectivity queries in O(log2 n) time. The competitive parameters for dynamic
algorithms include update time, query time, the class of allowed updates, the adversarial
model, and whether times are worst-case or amortized. We present a deterministic algorithm:
which means that all statements hold in the strictest adversarial model; against adaptive
adversaries. Interestingly, for general graphs, there seems to be a large class of problems for
which the deterministic amortized algorithms grossly outperform the deterministic worst-case
time algorithms: for dynamic connectivity the state-of-the-art worst-case update time is of
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the form O(no(1)) [14], whilst the state-of-the-art amortized update time is Õ(log2 n) [21, 44];
for planarity testing, the best amortized solution has O(log3 n) [26] update time, compared
to O(n2/3) worst-case [12] (in a restricted setting). For biconnectivity in general graphs the
current best worst-case solution has update time O(

√
n) [6], while the best amortized update

time is Õ(log3 n) [21, 43, 27].
In this work, we provide algorithms for updating connectivity information of a

combinatorially embedded planar graph, that is both deterministic, worst-case, and fully-
dynamic.

▶ Theorem 1. We maintain a planar combinatorial embedding in O(log2 n) time subject to:
delete(e): where e is an edge, deleting the edge e,
insert(u, v, f): where u, v are incident to the face f , inserting an edge uv across f ,
find-face(u, v): returns some face f incident to both u and v, if any such face exists.
contract(e): where e is an edge, contract the edge e,
split(v, c1, c2): where c1 and c2 are corners (corresponding to gaps between consecutive
edges) around the vertex v, split v into two vertices v12 and v21 such that the edges of v12
are the edges of v after c1 and before c2, and v21 are the remaining edges of v,
flip(v): for a vertex v: flip the orientation of the connected component containing v.

We may answer the following queries in O(log2 n) time:
connected(u, v), where u and v are vertices, answer whether they are connected,
biconnected(u, v), where u and v are connected, answer whether they are biconnected.
When not biconnected, we may report the separating cutvertex closest to u.
Our update time of O(log2 n) should be seen in the light of the fact that even just

supporting edge-deletion, insertion, and find-face(u, v), currently requires O(log2 n) time [30].
We briefly review the concepts in this paper and the state-of-the-art.

Biconnectivity. For each connected component of a graph, the cutvertices are vertices
whose removal disconnects the component. These cutvertices partition the edges of the graph
into blocks where each block is either a single edge (a bridge or cut-edge), or a biconnected
component. A pair of vertices are biconnected if they are incident to the same biconnected
component, or, equivalently, if there are two vertex-disjoint paths connecting them. This
notion generalises to k-connectivity where k objects of the graph are removed. While k-edge-
connectivity is always an equivalence relation on the vertices, k-vertex-connectivity happens
to be an equivalence relation for the edges only when k ≤ 2.

Dynamic higher connectivity. Dynamic higher connectivity aims to facilitate queries to
k-vertex-connectivity or k-edge-connectivity as the graph undergoes updates. For two-edge
connectivity and biconnectivity in general graphs, there has been a string of work [11,
16, 6, 17, 21, 43, 27], and the current best deterministic results have O(log2 n log log2 n)
amortized update time for 2-edge connectivity [27], and spend an additional amortized
log(n)-factor for biconnectivity [21, 43]. Thus, the current state of the art for deterministic
two-edge connectivity is log log(n)-factors away from the best deterministic connectivity
algorithm [44], while deterministic biconnectivity is log(n)-factors away. See [10, 19, 18, 21,
43, 31, 29, 44, 32, 35, 14] for more work on dynamic connectivity. For k-(edge-)connectivity
with k > 2, only partial results have appeared, including incremental [39, 3, 38, 37, 25]
and decremental [13, 42, 22, 1] results. The strongest lower bound is by Pătraşcu et
al. [40], and implies that the update- and query time cannot both be o(log n) for any of
the mentioned fully dynamic problems on general graphs, and this holds even for planar
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embedded graphs. For special graph classes, such as planar graphs, graphs of bounded
genus, and minor-free graphs, there has been a bulk of work on connectivity and higher
connectivity, e.g. [9, 20, 13, 15, 5, 33, 34, 23, 22]. For dynamic planar embedded graphs, there
are poly-logarithmic worst-case algorithms for two-edge [20] and two-vertex [16] connectivity,
that assume a fixed planar embedding, allowing only edge-deletions and edge-insertions
across a face. In this paper, we obtain the same O(log2 n) time bound as in [20, 16], but
our graphs are subject to a wider range of dynamic updates, including Whitney-flips, and
edge-contractions.

An open question remains whether higher connectivity can generally be maintained
in polylogarithmic worst-case time for dynamic planar graphs (k-connectivity and k-edge
connectivity, k > 2). Particularly, this is highly motivated already when k = 3: In the quest
for fully-dynamic planarity testing with worst-case polylogarithmic update times, an efficient
algorithm for 3-vertex connectivity would be a major milestone. Namely, a 3-connected
graph has a unique planar embedding (up to reflection). Much of the work on (dynamic)
planarity testing [28, 36, 7, 25, 24] goes via understanding (changes to) the SPQR-tree; a
tree over the 3-connected components and their interrelations. Given this, it is likely that
any efficient worst-case fully-dynamic planarity testing algorithm would rely upon an efficient
worst-case fully-dynamic 3-connectivity data structure. Note here that supporting changes
to the embedding is crucial for this venture, since a deletion-insertion-sequence may require
changes to the embedding, in order to remain planar. This paper presents the first step in
this quest towards worst-case polylogarithmic fully-dynamic planarity testing, as we present
a worst-case polylogarithmic data structure for 2-vertex connectivity subject to the required
embedding-changing operations.

Techniques. Exploiting properties of planar graphs, we use the tree-cotree decomposition: a
partitioning of edges into a spanning tree of the graph and a spanning tree of its dual. Using
tree-cotree decompositions to obtain fast dynamic algorithms is a technique introduced by
Eppstein [4], who obtains algorithms for dynamic graphs that have efficient genus-dependent
running times. Note that the construction in [4] does not facilitate inserting edges in a way
that minimises the resulting genus. Such queries are, however, allowed in the structure by
Holm and Rotenberg [23], which also utilises the tree-cotree decomposition.

On this spanning tree and cotree, we use top-trees to handle local biconnectivity
information. Much of our work concerns carefully choosing which biconnectivity information
is relevant and sufficient to maintain, as top-tree clusters are merged and split. Note that the
ideas for two-edge connectivity introduced by Hershberger et al. in [20], i.e. ideas of using
topology trees on a vertex-split version of the graph to keep track of edge bundles, do not
transfer to the problem at hand, since vertex-splitting changes the biconnectivity structure.

2 Preliminaries

We study a dynamic plane embedded graph G = (V, E), where V has n vertices. We assume
access to G and some combinatorial embedding [4] of G that specifies for every vertex in
G the cyclical ordering of the edges incident to that vertex. Throughout the paper, we
maintain some associated spanning tree TG = (V, E′) over G. We study the combinatorial
embedding subject to the update operations specified in Theorem 1. This is the same setting
and includes the same updates as by Holm and Rotenberg [23].
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Spanning and co- trees. If G is a connected graph, a spanning tree TG is a tree where its
vertices are V , and the edges of TG are a subset of E such that TG is connected. Given TG,
the cotree T ∆

G has as vertices the faces in G, and as edges of T ∆
G are all edges dual to those

in G \ TG. It is known that the cotree is a spanning tree of the dual graph of G [8].

Induced graph. We adopt the standard notion of (vertex) induced subgraphs: for any
V ′ ⊆ V , G[V ′] is the subgraph created by all edges e ∈ E with both endpoints of e in V ′.
For any G and V ′, we denote by G \ G[V ′] the graph G minus all edges in G[V ′]. Observe
that for (V1, V2) the set G[V1 ∪ V2] is not necessarily equal to G[V1] ∪ G[V2] (Figure 1).

Top trees. Our data structure maintains a specific variant of a top tree τ op
G over the

graph G [2, 41, 23]. This data structure (Figure 2) is a hierarchical decomposition of a
planar, embedded, graph G based on a spanning tree TG of G. Formally, for every connected
subgraph S of TG we define the boundary vertices of S as the vertices incident to an edge in
TG \ S. A cluster is a connected subgraph of TG with at most 2 boundary vertices. A cluster
with one boundary vertex is a point cluster ; otherwise a path cluster. A top tree τ op

G is a
hierarchical decomposition of G (with depth O(log n)) into point and path clusters that is
structured as follows: the leaves of τ op

G are the path and point clusters for each edge (u, v) in
TG (a leaf in τ op

G is a point cluster if and only if the corresponding edge (u, v) is a leaf in TG).
Each inner node ν ∈ τ op

G merges a constant number of child clusters sharing a single vertex
into a new point or path cluster. The vertex set of ν is the union of those corresponding
to its children. We refer to combining a constant number of nodes into a new inner node
as a merge. We refer to its inverse as a split. Furthermore, for planar embedded graphs,
we restrict our attention to embedding-respecting top trees; that is, given for each vertex
a circular ordering of its incident edges, top trees that only allow merges of neighbouring
clusters according to this ordering. In other words, if two clusters ν and µ share a boundary
vertex b, and are mergable according to the usual rules of top trees, we only allow them to
merge if furthermore they contain a pair of neighbouring edges eµ ∈ µ and eν ∈ ν where eµ

is a neighbour of eν around b. Holm and Rotenberg [23] show how to dynamically maintain
τ op

G (and the spanning tree and cotree) with the following property:

▶ Property 1. Let ν ∈ τ op
G be a point cluster with boundary vertex u. The graph G[ν] is a

contiguous segment of the extended Euler tour of TG.

▶ Corollary 1. Let ν ∈ τ op
G be a point cluster with boundary vertex u. The edges of G[ν] that

are incident to u form a connected interval in the clockwise order around u.

Edge division. For ease of exposition, we perform the trick of subdividing edges into paths
of length three. We refer to Go as the original and G as this edge-divided graph. Since Go is
planar, this does not asymptotically increase the number of vertices. We note:
1. Edge subdivision respects biconnectivity (since edge subdivision preserves the cycles in

the graph; it preserves biconnectivity).

(a) (b) (c)

Figure 1 (a) A planar graph G. (b) A set β ⊂ V and γ ⊂ V . We show G[β] and G[γ]. The set
G[β] ∪ G[γ] contains no black edges. (c) We show G \ G[γ].
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u v
R

E

PFFP

Figure 2 We recursively decompose G based on a spanning tree TG. Square vertices are boundary
vertices. We highlight path clusters. The root node has three children, where one is a path cluster
that exposes {u, v}. The letters indicate the later defined merge type.

2. Any spanning tree of Go can be transformed into a spanning tree of G where all non-tree
edges have end points of degree two: for each non-tree edge in G, include exactly the first
and last edge on its corresponding path in the spanning tree. This property can easily be
maintained by any dynamic tree algorithm.

3. Dynamic operations in Go easily transform to constantly many operations in G.
With this in place, our top tree structure automatically maintains more information about
the endpoints of non-tree edges and their ordering around each endpoint.

Paper notation. We refer to vertices in G with Latin letters. We refer to nodes in the top
tree τ op

G with Greek letters. We refer indistinguishably to nodes ν ∈ τ op
G and their associated

vertex set. Vertices u and v are boundary vertices. For a path cluster ν ∈ τ op
G with boundary

vertices {u, v} we call its spine π(ν) the path in TG that connects u and v. For any path, its
internal vertices exclude the two endpoints. For a point cluster with boundary vertex u, its
spine π(ν) is u. We denote by τ op

G (ν) the subtree rooted at ν.

Slim-path top trees over G. We use a variant of the top tree called a slim-path top tree
by Holm and Rotenberg [23]. This variant of top trees upholds the slim-path invariant: for
any path-cluster ν, all edges (of the spanning tree TG) in the cluster that are incident to a
boundary vertex belong to the spine. In other words: for every path cluster ν ∈ τ op

G , for each
boundary vertex u, there is exactly one edge in the induced subgraph G[ν] that is connected
to u. The root of this top tree is the merge between a path cluster with boundary vertices u

and v, with at most two point clusters λ, µ, with π(λ) = {u} and π(µ) = {v}.1 Holm and
Rotenberg show how to obtain (and dynamically maintain) this top tree with four types of
merges between clusters, illustrated by Figure 3 and 4. Our operations merge:
(Root merge) at most two point clusters and a path cluster to create the root node,
(Point merge) two point clusters µ, ν with π(µ) = π(ν).
(End merge) a point and a path cluster that results in a point cluster, and
(Four-way merge) two path clusters µ, ν and at most two point clusters α, β, where their

common intersection is one central vertex m. If there are two point clusters, they are not
adjacent around m. This merge creates a path cluster.

Holm and Rotenberg [23] dynamically maintain the above data structure with at most
O(log n) merges and splits per graph operation (where each merge or split requires O(log n)
additional operations). Their data structure supports two additional critical operations:
Expose(u, v) selects two vertices u, v of G and ensures that for the unique path cluster

ν of the root node, u and v are the two endpoints of π(ν); (O(log n) splits/merges).

1 In the degenerate case where the graph is a star, we add one dummy edge to G to create a path cluster.

SoCG 2023



40:6 Planar Biconnectivity

Meet(u, v, w) selects three vertices u, v, w of G and returns their meet in TG, defined as the
unique common vertex on all 3 paths between the vertices. Moreover, they also support
this operation on the cotree T ∆

G ; (O(log n) time).
When ν is a node in an embedding-respecting slim-path toptree, and G is formed from Go

via edge-subdivisions, note that G[ν] has the following properties:
For a point cluster ν with boundary vertex b that encompasses the tree-edges e1 to el in
the circular ordering around b, G[ν] corresponds to the sub-graph in Go induced by all
vertices in ν, except edges to b that are not in e1, . . . , el.
When ν is a path cluster, G[ν] corresponds to the sub-graph in Go induced by all vertices
in ν except non-tree edges incident to either of the two boundary vertices.

3 Dynamic biconnectivity queries and data structure

We want to maintain a slim-path top tree, subject to the aforementioned operations, that
additionally supports biconnectivity queries in O(log2 n) time. Our data structure consists
of the slim-path top tree from [23] with three invariants which we formalise later:
1. For each cluster ν ∈ τ op

G , we store the biconnected components in G[ν] which are relevant
for the exposed vertices (u, v).

2. For each cluster ν, we store the information required to navigate through the top tree.
3. For each stored biconnected component, we store its “border” along the spine π(ν).
We show the technical details for our invariants. The full version contains the proofs and
larger figures. We specify for each ν ∈ τ op

G , for each endpoint u of the spine, a designated
face:

▶ Lemma 1. Let ν ∈ τ op
G be a path cluster. Each boundary vertex u (resp. v) is incident to

a unique face fdes
u (ν) (resp. fdes

v (ν)) of G[ν]. Moreover, all edges in G that are not in G[ν]
are contained in either fdes

u (ν) or fdes
v (ν).2

▶ Lemma 2. Let ν ∈ τ op
G be a point cluster with boundary vertex u. The subgraph G[ν] has

a unique face fdes
u (ν) such that all edges in G that are not in G[ν] are contained in fdes

u (ν).

▶ Corollary 2. Let ν ∈ τ op
G have a boundary vertex u, let µ be a descendent of ν and x be

the boundary vertex of µ closest to u in T . Then fdes
u (ν) ⊆ fdes

x (µ).

2 Formally, we can say that an edge, vertex, or face in G is contained in face f of a subgraph G′, if it is
contained in f in any drawing of G that is consistent with the current combinatorial embedding.

u

v
w

w

v

End merge

Point Merge

Four-way merge
x

Figure 3 A graph G which we already split into five point clusters (circles) and three path clusters
(ovals). We show the combinations of clusters that create three merge types. To obtain the root:
execute the three suggested merges and merge the remaining components.



J. Holm, I. van der Hoog, and E. Rotenberg 40:7

u w
w

w

vw

u v u v

(a)

(b) (c)

fdesu (µ1) = fdesw (µ1) fdesw (µ2) fdesw (µ3) fdesw (µ4)

Figure 4 (a) Nodes µi with faces fdes
u (µ1) and fdes

w (µi). We color BCu(µ1, fdes
u (µ1)) and

BCw(µi, fdes
w (µi)). (b) The four-way merge introduces a new node ν. Edges in G[ν] that are not

the induced subgraph of G[µj ] for j ∈ {1, 2, 3, 4} are dashed/dotted. (c) Every dotted edge is part
of a new biconnected component B ∈ BC∗

u(ν) which we show as tiled.

Lemmas 1 and 2 inspire the following definition: for all ν ∈ τ op
G , for each boundary vertex u

(or v) of ν, there exists a unique face f which we call its designated face fdes
u (ν) (or fdes

v (ν)).
For biconnectivity between the exposed vertices, we are only interested in biconnected
components that are edge-incident to fdes

u (ν) or fdes
v (ν). Let for a node ν with boundary

vertex u, a biconnected component B be edge-incident to fdes
u (ν). Let µ be a descendant

of ν and B ⊆ G[µ] then, by Corollary 2, B must be edge-incident to fdes
x (µ) where x is the

boundary vertex of µ closest to u. This relation inspires us to define the projected face of u

in µ as f̂des
u (µ) = fdes

x (µ).

Relevant and alive biconnected components. Consider for a cluster ν, a biconnected
component B of the induced subgraph G[ν]. We say that B is relevant with respect to ν if
B is vertex-incident to the spine π(ν). We say that B is alive with respect to a face f in
G[ν] if B is edge-incident to f . We denote by BC(ν, f) the set of biconnected components
in the induced subgraph G[ν] that are relevant with respect to ν and alive with respect to f .
Intuitively, we want to keep track of the relevant and alive components (with respect fdes

u (ν)
or fdes

v (ν)). To save space, we store only the relevant biconnected components of ν that are
not in its children. Formally (Figure 4), we define an invariant:

▶ Invariant 1. For each cluster ν ∈ τ op
G (apart from the root) with children µ1, µ2, . . . µs

where u is a boundary vertex of ν, we store a unique object for each element in:

BC∗
u(ν) := BC(ν, fdes

u (ν)) \
⋃s

i=1BC(µi, f̂des
u (µi)).

Storing biconnected components in this way does not make us lose information:

▶ Lemma 3. Let ν ∈ τ op
G with boundary vertex u and B ∈ BC(ν, fdes

u (ν)). There exists a
unique node µ in τ op

G (ν) where: B ∈ BC∗
x(µ) and x is the closest boundary vertex of µ to u.

In the remainder of this paper, we show that for each cluster ν ∈ τ op
G with boundary

vertex v, the set BC∗
v (ν) contains constantly many elements. Moreover, the root vertices

(u, v) are biconnected at the root µ if and only if they share a biconnected components
in BC∗

u(µ). In this section, we define two additional invariants so that we can maintain
Invariant 1 in O(log n) additional time per split and merge. This will imply Theorem 1.
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α̊↑

α̊↓

β̊

(a) (b) (c)

Figure 5 (a) A path cluster α with π(α) in black and edges in TG in black or grey. We show
the tourpaths α̊↑ and α̊↓ in blue and green. (b) A point cluster β with the path β̊. (c) Any edge in
G[α ∪ β] \ (G[α] ∪ G[β]) must intersect one of {α̊↑, α̊↓} and β̊.

The core of our data structure is a slim-path top tree τ op
G on G, that supports the expose

operation in O(log n) splits and merges. In addition, it supports the meet operation in both
the spanning tree TG and its cotree T ∆

G in O(log n) time. To maintain Invariant 1 in O(log n)
time per split and merge, we add the following invariant for τ op

G where:

▶ Invariant 2.
(a) each node ν has pointers to its boundary vertices and parent node.
(b) each path cluster ν stores: the length of π(ν) and its outermost spine edges.
(c) each point cluster ν stores: the number of tree edges in ν incident to the boundary vertex.
(d) each x ∈ V points to the lowest common ancestor in τ op

G where x is a boundary vertex.
Finally we add one final invariant which uses three additional concepts: slices of

biconnected components, index orderings on the spine and an orientation on edges incident
to a spine.

Biconnected component slices. For any node ν ∈ τ op
G and any biconnected component

B ⊆ G[ν], its slice is the interval B ∩ π(ν) (which may be empty, or one vertex).

▶ Lemma 4. Let ν ∈ τ op
G . For all (maximal) biconnected components B in G[ν], if B ∩ π(ν)

is not empty, it is a path (possibly consisting of a single vertex).

Index orderings. For any ν ∈ τ op
G and w ∈ π(ν), let w be the i’th vertex on π(ν). We say

that i is the index of w in π(ν). We can use Invariant 2 to obtain this index:

▶ Lemma 5. Given Invariant 2, a path cluster ν and a vertex w ∈ π(ν), we can compute
for every path cluster β with π(β) ⊆ π(ν) the index of w in π(β) in O(log n) total time.

Similarly in a point cluster ν, for each tree edge in ν incident to the boundary vertex u

we define its clockwise index in ν as its index in the clockwise ordering of the edges around u.

▶ Lemma 6. Given Invariant 2, and an edge e = (u, x) ∈ TG, we can compute the clockwise
index of e in every point cluster ν ∈ τ op

G that contains e and has u as boundary vertex,
simultaneously, in worst case O(log n) total time.

Euler tour paths and endpoint orientations. Consider the Euler tour of TG and an
embedding of that Euler tour such that the Euler tour is arbitrarily close to the edges in TG.
Each edge e in G that is not in TG must intersect the Euler tour twice. We classify each
endpoint of e based on where it intersects this Euler tour. Formally, we define (Figure 5):

▶ Definition 3. For a point cluster ν with boundary vertex u, we denote by ν̊ its tourpath
(the segment of the Euler tour in TG from u to u that is incident to edges in G[ν]).



J. Holm, I. van der Hoog, and E. Rotenberg 40:9

▶ Definition 4. For a path cluster ν with boundary vertices u and v. We denote by ν̊↑ and
ν̊↓ its two tourpaths (the two paths in the Euler tour in TG from u to v).

▶ Definition 5 (Figure 6). For any tourpath α̊ let e1 be the first and e2 be the last edge of TG

incident to α̊. We denote by ffirst(α̊) the unique face in G (incident to e1) whose interior
contains the start of α̊. The face f last(α̊) is defined analogously using e2.

▶ Observation 6. Let ν be a path cluster with the slim-path property. Any edge in G[ν] is
either an edge in TG or it must intersect one of {ν̊↑, ν̊↓}.

We introduce one last concept. Let e = (x, y) be an edge of G not in TG where e is an edge
with an endpoint in G[α] and in G[β] (for two clusters α, β ∈ τ op

G ). We intuitively refer
for an endpoint x of e, to the tourpath intersected by e “near” x. Let α be a path cluster.
We say that the endpoint x ∈ α of e is a northern endpoint if e intersects α̊↑ near x, and
a southern endpoint if e intersects α̊↓ near x. This distinction between north and south
endpoints inspires the notion of biconnected component borders (Figure 7):

▶ Definition 7 (Biconnected component borders). Let B be a subset of the edges in G[ν] that
induces a biconnected subgraph such that B ∩ π(ν) is a path (or singleton vertex).

Let ν be a point cluster. Consider the clockwise ordering of edges in B incident to its
boundary vertex u, starting from fdes

u (ν). The border of B is:
the vertex u together with its eastern border: the first edge of B in this ordering, and
its western border: the last edge of B in this ordering.

Let ν be a path cluster. Denote by a the “eastmost” vertex of B ∩ π(ν) and by b its
“westmost” vertex. If a = b then the border is empty. Otherwise:

the eastern border of B is a, together with the first northern and last southern edge
of B that is incident to a.
the western border of of B is b, together with the last northern and first southern
edge of B that is incident to b.

▶ Invariant 3. For any ν ∈ τ op
G with boundary vertex u, for all B ∈ BC∗

u(ν) we store the
borders of B in ν and their indices and clockwise indices in ν.

Using invariants for biconnectivity. Invariant 2 allows us to not only obtain the meet
between vertices, but also the edges of their path to this meet (incident to the meet):

▶ Theorem 2. Given Invariant 2, let ν be a path cluster with boundary vertices u and v and
w ̸∈ π(ν) be a vertex in G[ν]. We can obtain the meet m = meet(u, v, w) and the last edge
e∗ in the path from w to m (in TG) in O(log n) time.

(a) (b)

Figure 6 (a) A graph with the spine of a node ν shown in blue. We show the faces
(ffirst(α̊↑), f last(α̊↑), ffirst(α̊↓), f last(α̊↓) in green. (b) The cotree T ∆

G . Vertices are triangles.
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(a) (b) (c)

Figure 7 Three times a cluster ν with π(ν) as red vertices and a yellow (not maximal) set of
biconnected edges in G[ν]. We show: (a) a border in a point cluster (b) a border in a path cluster
and (c) a set of biconnected edges in G[ν] that has an empty border.

In our later analysis, we show that for each merge, the only edges e◦ which can be part
of new relevant and alive biconnected components are the edges incident to some convenient
meets in the dual graph. Given such an edge e◦, we identify a convenient edge e∗ of the newly
formed biconnected component B. We identify the already stored biconnected components
B∗ ∈ BCu(ν) which contain e∗ (these components B∗ get “absorbed” into B). We use
Invariant 3 to identify all such B∗ that contain e∗:

▶ Theorem 3. Let e∗ ∈ TG be an edge incident to a vertex u. Let k be the maximum over
all u and ν of the number of elements in BC∗

u(ν). In O(k log n) total time we can, for all
of the O(log n) nodes ν ∈ τ op

G that contain e∗, for each B∗ ∈ BC∗
u(ν), determine if e∗ is in

between the border of B∗ in ν.

Finally, Invariants 2 + 3 will suffice to maintain Invariant 1 in O(log n) time per split
and merge (and thus, in O(log2 n) time per update operation) which will prove Theorem 1.

4 Summary of the remainder of this paper

We present a high-level overview of how Theorem 1 is obtained in the remainder of this paper.
At all times, we dynamically maintain a (combinatorial) embedding of some edge-divided
graph G. We maintain the top tree τ op

G by Holm and Rotenberg from [23] augmented with
three aforementioned invariants. All updates the combinatorial embedding in Theorem 1 can
be realized by O(log n) split and merge operations on the top tree (and co-tree). On a high
level, we maintain all three invariants with O(log n) additional time per split and merge in
the top tree (and co-tree). Thus, we have O(log2 n) total update time.

4.1 Invariant 2: pointers in the top tree
Invariant 2 specifies that we want to store for each cluster ν in the top tree some “metadata”.
This metadata can be stored using O(1) space and O(log n) additional time per split and
merge. Indeed, per split we simply delete the constant-complexity data. It may occur that
for a vertex x ∈ V , we delete the lowest common ancestor in τ op

G where x is the boundary
vertex: Since a top tree is a balanced tree with O(1) boundary vertices per node, we find the
new lowest common ancestor in O(log n) time. For a merge, we simply compute components
(a), (b) and (c) in O(1) additional time. For the O(1) boundary vertices, we test if there
exists a vertex x ∈ V for which Invariant 2(d) changes in O(log n) additional time.

4.2 Invariant 1: maintaining BC∗
u(ν)

We define k as the maximum over all vertices u and clusters ν, of the size of BC∗
u(ν). During

each split, a cluster ν with boundary vertex u is destroyed and we simply delete BC∗
u(ν) in

O(k) time. What remains is to show that when we merge clusters in our top trees to create
a vertex ν with boundary vertex u, we can identify the new BC∗

u(ν).



J. Holm, I. van der Hoog, and E. Rotenberg 40:11

Suppose we merge clusters α and β to create a cluster ν with boundary vertex u

(Figure 8 (a)). We want to construct the set BC∗
u(ν) of “newly formed” relevant and alive

biconnected components. We assumed that every such set contains at most k elements. Any
B ∈ BC∗

u(ν) contains at least one edge e◦ in G[α ∪ β]\(G[α] ∪ G[β]). Assume, for now, that
there exist at most O(k) such edges e◦.

Any edge e◦ in G[α ∪ β]\(G[α] ∪ G[β]) must be part of some new biconnected component
B in G[ν]. Indeed: e◦ has one endpoint x in G[α] and y in G[β]. The edge e◦ together
with the path π◦ in the spanning tree connecting x and y must form a cycle. To determine
whether B is a relevant and alive biconnected component, we want to (implicitly) compute
the out-most cycle bounding B. This is not straightforward: as the biconnected component
B contains the aforementioned cycle, but may also absorb biconnected components Bα in
G[α] and Bβ in G[β] (Figure 8 (b)).

Testing whether B is relevant. The new biconnected component B is in BC∗
u(ν) whenever

it (partially) coincides with at least one edge from the spine π(ν). We show that this occurs
if and only if π◦ (partially) coincides with π(ν) and we test this in O(log n) time.

Testing whether B is alive. The newly formed biconnected component B is alive whenever
it is incident to the face fdes

u (ν) in the graph G[ν]. We want for a given pair (e◦, B) test
whether B is alive in O(k log n) time. In the full version we show how to do this efficiently.
The core idea of this proof is (Figure 11 (a)) that B is alive if and only if one of two things
is true:
1. {e◦} ∪ π◦ incident to fdes

u (ν), or
2. B contains some (maximal) pre-stored biconnected B∗ incident to fdes

u (ν).
We test case 1 with conventional methods in O(log n) time. For case 2, we identify a special
edge e∗ on π◦. We show that such a pre-stored biconnected component B∗ exists only if
e∗ ∈ B∗. Since the top tree has height O(log n), e∗ may be contained in O(k log n) pre-stored
biconnected components. We find these in O(1) amortized constant time per biconnected
component. I.e., our invariants allow us to apply Theorem 3 to identify such a B∗ in
O(k log n) worst case total time. Given the maximal B∗ that contains e∗, we test whether
B∗ is incident to fdes

u (ν) using an additional O(log n) time (searching over its boundary).

(a)

u

e◦

(b)

u

e◦

Bα

Bβ

π◦e∗

Figure 8 (a) Suppose that we merge a path cluster α (blue) with a point cluster β (yellow)
to create a new point cluster ν (we call this an end merge). We are interested in all “new”
biconnected components in G[ν]. Every such new biconnected component must contain an edge
e◦ in G[α ∪ β]\(G[α] ∪ G[β]). (b) Consider the path π◦ along the spanning tree that connects the
two endpoints of e◦ (red). This creates a cycle, and thus a new biconnected component B in the
graph G[ν]. The component B consists of this cycle, but may additionally “absorb” biconnected
components Bα in G[α] and Bβ in G[β].
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u

u

G biconnected in {e◦} ∪G[β] ∪ (G[α] ∩ TG)

u

O biconnected in {e◦} ∪G[α] ∪ (G[β] ∩ TG)

u

e◦

The maximal cycle containing e◦ and e∗ is the join of: G, O, P , A where:

uu

e◦

e∗

Figure 9 A cluster ν with as children a point cluster α and a path cluster β. There may be
many edges in G[α ∪ β]. These edges are all contained in some maximal cycle which we show in
blue. For the edge e◦, we show the biconnected component G in {e◦} ∪ G[β] ∪ (TG ∩ G[α]) and O in
{e◦} ∪ G[α] ∪ (TG ∩ G[β]). Similarly, for the edge e∗ we show the biconnected components P and A.
On an intuitive level, the maximal blue cycle is their “join”.

Thus, we identify for every such edge e◦ in O(k log n) time whether it created a new
relevant and alive biconnected component B ∈ BC∗

u(ν). If so, we create an object representing
B ∈ BC∗

u(ν) in O(1) additional time.

4.3 Invariant 3: storing the border of B

For each B ∈ BC∗
u(ν), we show in the full version that we can not only compute B but also

its border to store in Invariant 3. The core idea (Figure 11 (b)) is that when merging two
clusters α and β we can “project” e◦ onto G[α] and G[β] to find the border of B in the
respective graphs. However, two complications arise:

Firstly, we observed earlier that B may be the result of combining the cycle e◦ ∪π◦ with a
biconnected component Bα in G[α] (additionally, some biconnected component Bβ in G[β]).
Whenever that is the case, the eastern border of B is not the border of the path π◦ ∩ π(ν),
but it rather gets “extended” to be the eastern border of Bα. This complication is relatively
easy to solve: In the previous subsection we explained that we can find Bα. Since we merge
the trees bottom-up, we have already restored Invariant 3 for the node α. Thus, we obtain
the eastern border of Bα in O(1) additional time and set it to be the eastern border of B.

Secondly, a merge can contain up to four clusters, not only two. We perform an extensive
case analysis where we show that we can construct the border of B in G[ν] by pairwise
joining projected borders (for an example, see Figure 9).

4.4 Finalising our argument

Up to this point, we showed that we can maintain our data structure and its invariants
in O(k2 log2 n) time per operation in G. The integer k has two functions: first, it upper
bounds the number of elements in BC∗

u(ν) for any u ∈ V and ν ∈ τ op
G . Second we

assumed that to maintain BC∗
u(ν), for each merge we need to inspect at most O(k) edges

e◦ ∈ G[α ∪ β]\(G[α] ∪ G[β]) in O(k log n) time each. In the full version we prove Theorem 1
by proving that such a k exists and that it is constant.
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u

u

Figure 10 An End merge between a point cluster α and a path cluster β to create a new path
cluster ν. We show two Euler tours α̊ and β̊↑ in blue and red. The tour α̊ corresponds to the red
path in the dual between two faces. The tour β̊↑ to the blue path. The purple path is their meet.
Any edge e◦ ∈ G[α ∪ β]\(G[α] ∪ G[β]) intersects both α̊ and β̊↑ (or α̊ and β̊↓) and must thus lie
on the purple path (or an alternative meet in the dual). The first edge on this path is e⋆, as any
further edge cannot be incident to the face fdes

u (ν).

Proving k exists and that it is a constant. Consider any edge e◦ ∈ G[α ∪ β]\(G[α] ∪ G[β]).
We observe that e◦ must intersect a tourpath of α and a tourpath of β. For any fixed pair
of tourpaths (α̊, β̊) we consider our co-tree (i.e., the spanning tree on the dual of G). The
Euler tour around α̊ is a path in the dual. Similarly, the Euler tour around β̊ is a path and
their common intersection is a meet in the dual (Figure 10). All edges that intersect both α̊

and β̊ must lie on this meet (this concept is similar to the edge bundles by Laporte et al. in
[30]). Thus, by Theorem 2, we can obtain for each pair (α̊, β̊) this meet in O(log n) time.

We show that we may restrict our attention to the first edge e⋆ of this bundle (i.e. the
first edge encountered on the meet). Indeed, the cycle formed by TG and e⋆ encloses all other
edges e◦ of the bundle in a face f⋆. We are only interested in biconnected components that
are alive (incident to the face fdes

u (ν)). For all other edges e◦ their respective biconnected
components B either include e⋆, or are contained in f⋆ and can therefore not be incident to
fdes

u (ν). It follows that whenever we create a new node ν with boundary vertex u, for every
pair of tourpaths of its children, there is a unique edge e⋆ which can form a new biconnected
component in BC∗

u(ν). Each merge involves at most 4 children that collectively have at most
6 tourpaths, and thus k is upper bound by 6 choose 2 (which is 15).

One special case. The above proof strategy applies to almost all our merge types. There
exists however, one special case. During a four-way merge, whenever α and β are path clusters
around a central vertex m, there exists no such “maximal” edge e⋆ (Figure 11 (c)). Thus,
we cannot identify the biconnected components created by the edge bundle between G[α]
and G[β]. We observe that any such component is only useful for answering biconnectivity
queries between u and v if it connects the edges e1 and e2 of π(ν) incident to m. Indeed, if
removing m separates e1 and e2 then it must also separate u and v (which are the boundary
vertices of the root). We test if removing m separates e1 and e2 in G in O(log n) time. Note
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that testing if removing a vertex separates two other vertices is already possible in O(log2 n)
time using [23] (by splitting m along the right corners and testing for connectivity). However
to have O(log2 n) total update time, we want O(log n) update time per merge. In the full
version we open their black box slightly to test this in O(log n) time instead.

4.5 Conclusion
We have presented an efficient data structure for 2-vertex connectivity in dynamic planar
graphs subject to edge-insertions, edge-deletions, contractions, splits, and local changes to
the embedding in the form of flips. In this process, and with this result, we may have taken a
first step towards worst-case deterministic fully-dynamic planarity testing in polylogarithmic
time; one of the fundamental research questions in dynamic graph drawing.

Our technique is to consider the planar top-tree, and our contribution includes insights
into important features and information to store in the top-tree clusters. Top-tree clusters
can be seen as sketches of subgraphs, and thus, these insights about subgraph features for this
computational problem, may have independent interest. Indeed, the concepts of designated
face and alive, may be useful when constructing a dynamic data structure for fully-dynamic
planar 3-vertex connectivity, or even for higher vertex connectivity in dynamic planar graphs.

Looking forward, there is a multitude of planar graph problems which would be interesting
to examine in the worst-case deterministic fully-dynamic setting. Examples of such problems
include k ≥ 3-vertex connectivity, k-edge connectivity, arboricity decomposition, and various
questions about constrained planar drawings of directed graphs. Approaching any of these
related questions would require new ideas and techniques.
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Figure 11 Three challenges that are encountered in our paper and described in our overview.
(a) Let e◦ have some endpoint w and consider the path in TG to some vertex m. Let B be the
biconnected component of G[ν] that contains e◦. There exists some child µ of ν where m is the
central vertex of the merge. If B contains some pre-stored biconnected component B∗ (red) then B

includes either the edge e1 or e2 in G[µ] incident to m.
(b) Consider an End Merge and an edge e◦ intersecting the purple and green Euler tours. The edge
e◦ is part of a biconnected component with the blue cycle as its outer cycle. We find for e◦, however,
only the purple and green cycles in G[α] and G[β] separately. We smartly join these cycles together
with the cycles for e∗ to get the out-most cycle bounding the new biconnected component B∗.
(c) In a four-way merge, the edges incident to the outer face of the embedding may be arbitrary
edges in the edge bundle between the two path clusters. Neither edges incident to the outer face are
incident to fdes

u (ν) or fdes
v (ν). Since we have no techniques for finding these edges, we instead test if

the central vertex separates (u, v).
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Abstract
Given a complete simple topological graph G, a k-face generated by G is the open bounded region
enclosed by the edges of a non-self-intersecting k-cycle in G. Interestingly, there are complete
simple topological graphs with the property that every odd face it generates contains the origin.
In this paper, we show that every complete n-vertex simple topological graph generates at least
Ω(n1/3) pairwise disjoint 4-faces. As an immediate corollary, every complete simple topological
graph on n vertices drawn in the unit square generates a 4-face with area at most O(n−1/3). Finally,
we investigate a Z2 variant of Heilbronn’s triangle problem for not necessarily simple complete
topological graphs.
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1 Introduction

A topological graph is a graph drawn in the plane such that its vertices are represented by
points and its edges are represented by non-self-intersecting arcs connecting the corresponding
points. The arcs are not allowed to pass through vertices different from their endpoints, and
if two edges share an interior point, then they must properly cross at that point in common.
A topological graph is simple if every pair of its edges intersect at most once, either at a
common endpoint or at a proper crossing point. A topological graph is called plane if there
are no two crossing edges. If the edges are drawn as straight-line segments, then the graph is
said to be geometric. Simple topological graphs have been extensively studied [1, 22, 13, 5, 8],
and are sometimes referred to as simple drawings [8, 2]. In this paper, we study the crossing
pattern of the faces generated by a simple topological graph.

If γ ⊂ R2 is a Jordan curve (i.e. non-self-intersecting closed curve), then by the Jordan
curve theorem, R2 \ γ has two connected components one of which is bounded. For any
Jordan curve γ ⊂ R2, we refer to the bounded open region of R2 \ γ given by the Jordan
curve theorem as the face inside of γ. We refer to the area of γ as the area of the face inside
of γ, which we denote by area(γ).

It is known that every complete simple topological graph G of n vertices contains many
non-self-intersecting k-cycles, for k = (log n)1/4−o(1) (e.g. see [13, 22, 14, 12]). A k-face
generated by G is the face inside of a non-self-intersecting k-cycle in G. For simplicity, we

© Alfredo Hubard and Andrew Suk;
licensed under Creative Commons License CC-BY 4.0

39th International Symposium on Computational Geometry (SoCG 2023).
Editors: Erin W. Chambers and Joachim Gudmundsson; Article No. 41; pp. 41:1–41:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:alfredo.hubard@univ-eiffel.fr
mailto:asuk@ucsd.edu
https://doi.org/10.4230/LIPIcs.SoCG.2023.41
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


41:2 Disjoint Faces in Drawings of the Compl. Graph and Topological Heilbronn Problems

Figure 1 The complete twisted graph on 5 vertices.

say that a k-face is in G, if G generates it, and we call it an odd (even) face if k is odd
(even). Let us remark that a k-face in G may contain other vertices and edges from G.
Moreover, notice that if G is simple then every 3-cycle in G must be non-self-intersecting, so
for convenience, we call 3-faces triangles.

Surprisingly, one cannot guarantee two disjoint 3-faces in complete simple topological
graphs. In the next section, we will show that the well-known construction due to Harborth
and Mengerson [7], known as the twisted graph and depicted in Figure 1, shows the following.

▶ Proposition 1. For every n ≥ 1, there exists a complete n-vertex simple topological graph
such that every odd face it generates contains the origin.

See Figure 1. However, the main result in this paper shows that we can guarantee many
pairwise disjoint 4-faces.

▶ Theorem 2. Every n-vertex complete simple topological graph generates at least Ω(n1/3)
pairwise disjoint 4-faces.

We apply the results mentioned above to a topological variant of Heilbronn’s triangle
problem. Over 70 years ago, Heilbronn asked: What is the smallest h(n) such that any
set of n points in the unit square spans a triangle whose area is at most h(n)? A simple
triangulation argument shows that h(n) ≤ O( 1

n ). This was improved several times by Roth
and Schmidt [19, 16, 17, 18, 21], and currently, the best known upper bound is 1

n8/7−o(1)

due to Komlós, Pintz, and Szemerédi [9]. Heilbronn conjectured that h(n) = Θ( 1
n2 ), which

was later disproved by Komlós, Pintz, and Szemerédi [10], who showed that h(n) ≥ Ω( log n
n2 ).

Erdős [4] conjectured that this new bound is asymptotically tight.
Here, we study Heilbronn’s problem for topological graphs. A simple variant of Proposi-

tion 1 shows that one cannot guarantee a small triangle in a complete simple topological
graph drawn in the unit square.
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▶ Proposition 3. For every n ≥ 1 and ε > 0, there exists a complete n-vertex simple
topological graph in the unit square such that every odd face it generates has area at least
1 − ε.

On the other hand, as an immediate corollary to Theorem 2, we have the following.

▶ Corollary 4. Every n-vertex complete simple topological graph drawn in the unit square
generates a 4-face with area at most O( 1

n1/3 ).

In the other direction, a construction due to Lefmann [11] shows that the complete n-vertex
geometric graph can be drawn in the unit square such that every 4-face has area at least
Ω

(
log1/2 n

n3/2

)
. It would be interesting to see if one can improve this bound for simple topological

graphs. Lastly, let us mention that Heilbronn’s triangle problem has been studied for k-gons,
and we refer the interested reader to [11] for more results.

Our paper is organized as follows. In Section 2, we establish Propositions 1 and 3. In
Section 3, we establish a lemma on finding 4-faces in complete simple topological graph.
In Section 4, we use this lemma to prove Theorem 2. Finally in Section 5, we consider
Heilbronn’s triangle problem for (not necessarily simple) topological graphs.

2 The complete twisted graph

The complete twisted graph on n vertices is a complete simple topological graph with vertices
labelled 1 to n which we will draw on the horizontal axis from left to right, with the property
that two edges intersect if their indices are nested, i.e., edges (i, j) and (k, ℓ), with i < j,
k < ℓ, intersect if and only if i < k < ℓ < j or k < i < j < ℓ. See Figure 1. The complete
twisted graph was introduced by Harborth and Mengerson [7] as an example of a complete
simple topological graph with no subgraph that is weakly isomorphic1 to the complete convex
geometric graph on five vertices. See also [13, 22] for more applications.

▶ Proposition 5. There exists a common point in the interior of all the odd faces generated
by the complete twisted graph. Moreover, for every ε > 0, the complete twisted graph can be
drawn in the unit square such that every odd face has area at least 1 − ε.

We will need the following claim, which is essentially equivalent to the Jordan curve
theorem for piecewise smooth curves. In what follows, a ray is a straight, semi-infinite arc.

▶ Lemma 6. Let γ be a piecewise smooth Jordan closed curve in R2. Let v⃗ be a direction
such that every line parallel to v⃗ intersects γ in a finite number of points. Then R2 \ γ has
two path-connected components, one bounded and one unbounded. Let p be a point not on
γ. Then p is in the bounded region of R2 \ γ if and only if the ray α emanating from p in
direction v⃗ properly crosses γ in an odd number of points.

By Sard’s lemma (see for instance [6]), given a smooth curve γ, almost every v⃗ satisfies
the assumption, and in the proof below, the directions that satisfy this assumption will be
referred to as generic. A differentiable geometry proof of Lemma 6 in the case of γ smooth
can be found in [6] (see exercise 12 in Chapter 2.5). The proof we give below is an adaptation
of a well-known elementary proof for the case when γ is piecewise linear (polygons), which
can be found in Chapter 5.3 of [3] for instance.

1 Two simple topological graphs G and H are weakly isomorphic if there is an incidence preserving
bijection between G and H such that two edges of G cross if and only if the corresponding edges in H
cross as well.

SoCG 2023



41:4 Disjoint Faces in Drawings of the Compl. Graph and Topological Heilbronn Problems

Figure 2 Parity of proper crossings under a perturbation of the arc, a local picture.

Proof of Lemma 6. Partition γ into a finite number of smooth arcs. If two points p and p′

are connected by a segment that doesn’t intersect γ, and the rays α and α′ have direction v⃗

and emanate from p and p′ respectively, then they satisfy |γ ∩ α|(mod 2) = |γ ∩ α′|(mod 2).
Indeed, as we move α to α′, the only moments where the number of intersections between α

and γ might change is when the tangent of γ is parallel to v⃗, or when we pass a singular
point, in which, the ray locally leaves the two smooth arcs of γ on the same side. In these
cases, the number of proper intersections between α and γ changes by two. Proper crossings
can only appear or disappear in pairs when α is perturbed parallel to itself. See Figure 2.
By a similar argument, changing v⃗ for fixed p does not change the parity of the number of
intersections.

In what follows, we denote by w2(p, γ) the parity of the number of intersections between
γ and any ray α emanating from p in a generic direction. Notice that if p and q are connected
by a piecewise linear arc that avoids γ, by the aforementioned argument for each straight
segment of the arc, we obtain w2(p, γ) = w2(q, γ).

Consider for every pair of points p and q in the same path-connected component of R2 \ γ,
two rays αp and αq that emanate in the generic direction v⃗ from p and q respectively. Then
modify αp and αq by stopping each ray just before the first proper crossing it has with γ. We
then extend αp to a piecewise linear arc by following γ very closely without ever intersecting
γ. Since γ is piecewise smooth, if p and q are in the same path-connected component, then
the extension of αp can be chosen so that it eventually reaches the end point of the segment
αq. This is a piecewise linear arc connecting p and q that avoids γ. Furthermore, two points
that lie near γ and on opposite sides γ, have different parity so we can conclude that the
two path-connected components of R2 \ γ can be identified with the two possible values of
w2(., γ). Finally, observe that for any point p sufficiently far from γ there exists a ray that
doesn’t intersect γ, hence w2(p, γ) = 0, and we can conclude that a point is in the bounded
component of R2 \ γ if and only if w2(p, γ) = 1. ◀

Proof of Proposition 5. Consider the complete n-vertex twisted graph such vertex vi is
placed at (i, 0). See Figure 1. Let p = (n + 1, 0) and consider a ray emanating out of p that
passes just above the vertices. This ray intersects each edge of the twisted drawing exactly
once. Hence, for any non-self intersecting odd cycle γ in G, w2(p, γ) = 1. By Lemma 6, p

lies in the face of γ. To upgrade this drawing so that each odd face has large area, we can
apply a homeomorphism ϕ to the plane such that the drawing lies in the unit square, all
the vertices cluster around the origin, and each face that contains ϕ(p) has area at least
1 − ε. ◀

3 Finding a 4-face inside a large face

In this section, we establish several lemmas that will be used in the proof of Theorem 2.
First, let us clarify some terminology. Given a planar graph H drawn in the plane with no
crossing edges, the components of the complement of H are called the faces of H. Let G

be a complete simple topological graph and let T be a triangle in G. We let V (T ) denote
the set of vertices of the 3-cycle in G that generates T . We say that T is incident to vertex
v ∈ V (G), if v ∈ V (T ). We say that triangle T is empty, if there is no vertex from G that
lies in T . We will repeatedly use the following lemma due to Ruiz-Vargas (see also [5]).
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▶ Lemma 7 ([20]). Let G be a complete simple topological graph and H be a connected plane
subgraph of G with at least two vertices. Let v be a vertex of G that is not in H, and let F

be the face of H that contains v. Then there exist two edges of G emanating out of v to the
boundary of F such that their interior lies complete inside of F .

If the plane subgraph H ⊂ G in Lemma 7 contains a single edge incident to vertex v, then
by deleting this edge and applying Lemma 7 to v and the remaining plane subgraph, we
obtain the following.

▶ Lemma 8. Let G be a complete simple topological graph and H be a connected plane
subgraph of G with at least two vertices. Let v be a vertex of H with degree one, and let F be
the face of H whose boundary contains v. Then there exist an edge of G emanating out of v

to the boundary of F such that its interior lies complete inside of F .

We will also need the following lemma, which is a simple consequence of Lemma 7.

▶ Lemma 9. Let G be a complete simple topological graph on four vertices, and let T be a
triangle in G with a vertex v ∈ V (G) inside of it. Then G generates a 4-face that lies inside
of the triangle T .

Lastly, we will need following key lemma, which can be considered as a generalization of
Lemma 9. Given a plane graph H and a face F in H, the size of F , denoted by |F |, is the
total length of the closed walk(s) in H bounding the face F . Given two vertices u, v along
the boundary of F , the distance between u and v is the length of the shortest walk from u

to v along the boundary of F .

▶ Lemma 10. Let k ≥ 5 and G be a complete simple topological graph and H be a connected
plane subgraph of G with minimum degree two. Let F be a face of H such that |F | = k and
F contains at least 6(k − 4) vertices of G in its interior. Then G generates a 4-face that lies
inside of F .

Proof. We proceed by induction on k, the size of F . For the base case k = 5, since H has
minimum degree two, the boundary of F must be a simple 5-cycle. Let v1, . . . , v5 be the
vertices along the boundary of F appearing in clockwise order. Let u1, . . . , u6 be the vertices
of G in the interior of F . By applying Lemma 7 to ui and the plane graph H, we obtain
two edges emanating out of ui to the boundary of F , whose interior lies completely inside of
F . If the endpoints of these edges have distance more than one along the boundary of F ,
then we have generated a 4-face inside of F and we are done. Therefore, we can assume that
for each ui, the two edges emanating out of it obtained from Lemma 7 have endpoints at
distance one (consecutive) along the boundary of F .

Since |F | = 5, by the pigeonhole principle, there are two vertices, say u1 and u2, such
that the two edges emanating out of u1 and u2 obtained from Lemma 7 go to the same two
consecutive vertices, say v1, v2. If these 4 edges are non-crossing, then we obtain a triangle
with a vertex inside of it. See Figure 3a. By Lemma 9, we obtain a 4-face inside of F and
we are done. Therefore, without loss of generality, we can assume that edges u2v1 and u1v2
cross.

Let H ′ = H ∪ {u1v1, u1v2, u2v2}, and let F ′ be the face such that u2 lies on the boundary
of F ′. See Figure 3b. Since u2 has degree one in H ′, we apply Lemma 8 to u2 and H ′ to
obtain an edge u2vi emanating out of u2 to the boundary of F ′, whose interior lies in F ′.

If vi = v3, then we obtain a 4-face inside of F by following the sequence of vertices
(v3, u2, v1, v2) in G. If vi = v4, then we obtain a 4-face inside of F by following the sequence
vertices (v4, u2, v2, v3) in G. If vi = v5, then we obtain the 4-face inside of F by following
sequence vertices (v5, v1, v2, u2) in G. Finally, if vi = u1, then by following the sequence
vertices (u2, u1, v1, v2) in G, we obtain a 4-face inside of F .
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(a) Non-crossing edges.
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(b) Plane subgraph H ′.

Figure 3 Finding a 4-face inside a 5-face.
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(a) Non-crossing edges.
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(b) Plane subgraph H ′.

Figure 4 Finding a 4-face inside a face of size k.

For the inductive step, assume that the statement holds for all k′ < k. Let F be a face
of H such that |F | = k, and let (v1, v2, . . . , vk, v1) be the closed walk(s) along the entire
boundary of F . Set t = 6(k − 4), and let u1, . . . , ut be vertices of G that lie in the interior of
F . For each ui, we apply Lemma 7, with respect to H, to obtain two edges emanating out of
ui to the boundary of F , such that their interior lies inside of F . The proof now falls into
the following cases.

Case 1. Suppose there is a ui such that the two edges emanating out of ui obtained from
Lemma 7 have endpoints at distance two along the boundary of F . Then we have created a
4-face inside of F and we are done.

Case 2. Suppose there is a vertex ui such that the two edges emanating out of ui obtained
from Lemma 7 have endpoints at distance at least 3. Then these two edges emanating out
of ui partition F into two parts, Fs and Fr, such that |Fs| = s, |Fr| = r, 5 ≤ s, r ≤ k − 1
and s + r = k + 4. By the pigeonhole principle, G has at least 6(s − 4) vertices inside of Fs

or 6(r − 4) vertices inside Fr. Indeed, otherwise the total number of vertices inside of F

(including vertex ui) is at most

6(s − 4) − 1 + 6(r − 4) − 1 + 1 = 6(k − 4) − 1,

contradiction. Hence, we can apply induction to Fs or Fr to obtain a 4-face inside of F and
we are done.

Case 3. Assume for each ui, the two edges emanating out of ui obtained from Lemma 7
have endpoints that have distance one along the boundary of F (consecutive vertices along
F ). Since t = 6(k − 4) > k, by the pigeonhole principle, there are two vertices, say u1 and u2,
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such that the two edges emanating out of u1 and u2 obtained from Lemma 7 go to the same
two vertices, say v1, v2. If these four edges are noncrossing, then we have a triangle with a
vertex inside. By Lemma 9, we obtain a 4-face inside of F and we are done. See Figure 4a.
Therefore, without loss of generality, we can assume that edges u1v2 an u2v1 cross.

Let H ′ = H ∪ {u1v1, u1v2, u2v2}, which implies that u2 has degree one in H ′. Let F ′ be
the face that contains u2 on its boundary. See Figure 4b. We apply Lemma 8 to u2 and the
plane graph H ′, to obtain an edge u2vi whose interior lies inside of F ′ and vi lies on the
boundary of F ′. If vi = v3, then we obtain a 4-face inside of F by following the sequence of
vertices (u2, v1, v2, v3) in G. If vi = u1, then we obtain a 4-face inside of F by following the
sequence of vertices (u2, u1, v1, v2) in G. If vi = vk, then again, we obtain a 4-face inside of
F by following the sequence of vertices (u2, vk, v1, v2) in G.

Finally, if vi ̸= vk, u1, v3, then at least one of u2v2 ∪ u2vi or u2v1 ∪ u2vi partitions F into
two parts, Fs and Fr, such that |Fs| = s, |Fr| = r, where 5 ≤ s, r ≤ k − 1 and s + r = k + 4.
By following the arguments in Case 2, we can apply induction on Fs or Fr to obtain a 4-face
inside of F . This completes the proof. ◀

4 Pairwise disjoint 4-faces in simple drawings

In this section, we prove Theorem 2. Roughly speaking, we follow the arguments of Fulek
and Ruiz-Vargas [5] by constructing a large planar subgraph H ⊂ G using Lemma 7. Then,
by combining the pigeonhole principle with Dilworth’s theorem, H will contain either
1. a planar K2,t for t large, or
2. many nested triangles, or
3. many interior disjoint triangles.
Here, large and many means Ω(n 1

3 ). In the first case, it is easy to find many pairwise disjoint
4-faces. In the second case, we use Lemma 10 to find them. In the last case however, the
set of interior disjoint triangles may not give rise to many pairwise disjoint 4-faces, as it is
possible that the triangles are empty. In order to rectify this, we carefully construct our
planar subgraph H using Lemma 11 below. We now flesh out the details of the proof.

Proof of Theorem 2. Let G = (V, E) be a complete n-vertex simple topological graph. We
can assume that n ≥ 40 since otherwise the statement is trivial. Notice that the edges of G

divide the plane into several cells (regions), one of which is unbounded. We can assume that
there is a vertex v0 ∈ V such that v0 lies on the boundary of the unbounded cell. Indeed,
otherwise we can project G onto a sphere, then choose an arbitrary vertex v0 and then project
G back to the plane such that v0 lies on the boundary of the unbounded cell. Moreover, the
new drawing is isomorphic to the original one as topological graphs.

Consider the topological edges emanating out from v0 in clockwise order, and label
their endpoints v1, . . . , vn−1. For convenience, we write vi ≺ vj if i < j. Given subsets
U, W ⊂ {v1, . . . , vn−1}, we write U ≺ W if u ≺ w for all u ∈ U and w ∈ W . We start by
partitioning our vertex set

P : V (G) = V0 ∪ V1 ∪ · · · ∪ V⌊ n−1
5 ⌋,

such that for j < ⌊ n−1
5 ⌋, we have

Vj = {v5j+1, v5j+2, v5j+3, v5j+4, v5j+5},

and
∣∣∣V⌊ n−1

5 ⌋

∣∣∣ ≤ 5. Let H ⊂ G be a plane subgraph of G, and let T, T ′ be two triangles
in H that are incident to v0. We say that T and T ′ are adjacent if V (T ) = {v0, vi, vj}
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and V (T ′) = {v0, vj , vk} such that vi ≺ vj ≺ vk, and the edges v0vi, v0vj , v0vk appear
consecutively in clockwise order among the edges emanating out of v0 in H (not in G). See
Figures 6c and 7a for an example.

In what follows, we will construct a plane subgraph H ⊂ G so that, at each step, we use
Lemma 7 to add at least one edge within the vertex set {v1, . . . , vn−1}. The goal at each step
is to add an edge without creating any empty triangles incident to v0. If we are forced to
create such an empty triangle, we then create another triangle incident to v0 that is adjacent
to it, so that we obtain a 4-face. We now give the details of this process.

▶ Lemma 11. For each i ∈ {0, 1, . . . , ⌊n/12⌋}, there is a plane subgraph Hi ⊂ G such that
V (Hi) = V (G) and Hi satisfies the following properties.
1. Hi has at least i edges with both endpoints in the vertex set {v1, . . . , vn−1}.
2. The number of parts Vj ∈ P with the property that each vertex in Vj has degree one in Hi

is at least ⌊(n − 1)/5⌋ − 2i.
3. If the vertex set {v0, vk, vℓ} induces an empty triangle T in Hi, then both vertices vk, vℓ

must lie in the same part Vj ∈ P and ℓ = k + 1. Moreover, given that such an empty
triangle T exists, there must be another triangle T ′ adjacent to T in Hi, such that
V (T ′) = {v0, vt, vt′} and vt, vt′ ∈ Vj.

4. If the edge v0vt is not in Hi, then vt is an isolated vertex in Hi.

Proof. We start by setting H0 as the plane subgraph of G consisting of all edges emanating
out of v0. Clearly, H0 satisfies the properties above. For i < n/12, having obtained Hi with
the properties described above, we obtain Hi+1 as follows.

Fix a part Vj ∈ P such that each vertex in Vj has degree one in Hi and |Vj | = 5. For
simplicity, set ui = v5j+i, for i ∈ {1, . . . , 5}, which implies Vj = {u1, u2, u3, u4, u5}. Since⌊

n − 1
5

⌋
− 2i ≥ n − 1

5 − n

6 > 1,

such a part Vj ∈ P exists. Clearly, all vertices in Vj lie on the boundary of a face F in the
plane graph Hi. We then apply Lemma 8 to the plane graph Hi and the vertex u3, and
obtain edge u3vk, whose interior lies within F and vk is on the boundary of F . We now
consider the following cases.

Case 1. Suppose vk ̸= u2, u4. See Figure 5a. We then set Hi+1 = Hi ∪ {u3vk}. Clearly,
Hi+1 does not contain two crossing edges. Moreover, the number of edges in Hi+1 within the
vertex set {v1, . . . , vn−1} is at least i + 1. Also, the only vertices that no longer have degree
one in Hi+1 are u3 and vk. Hence, the number of parts Vℓ ∈ P with the property that all
vertices in Vℓ have degree one in Hi+1 is at least⌊

n − 5
2

⌋
− 2i − 2 =

⌊
n − 5

2

⌋
− 2(i + 1).

Since vk ̸= u2, u4, no empty triangles incident to v0 were created. Also, no edge emanating
out of v0 was deleted from Hi. Thus, Hi+1 satisfies the conditions described above.

Case 2. Suppose vk = u2 or vk = u4. Without loss of generality, we can assume vk = u4,
since otherwise a symmetric argument would follow. If there is a vertex of G inside the
triangle T = {v0, u3, u4}, then we set Hi+1 = Hi ∪ {u3u4}. By the same arguments as above,
Hi+1 satisfies the properties described above.
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(a) vk ̸= u2, u4.
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(b) vk = u4.

Figure 5 Cases 1 and 2 in Lemma 11.

Hence, we can assume that the triangle T , where V (T ) = {v0, u3, u4}, is empty in G. Set
H ′ = Hi ∪ {u3u4}, and let F ′ be the face in H ′ whose boundary contains u2. See Figure 5b.
We apply Lemma 8 to H ′ and u2 and obtain another edge u2vℓ whose interior lies inside F ′.
If vℓ = u3, then we set Hi+1 = Hi ∪ {u3u4, u2u3}, which implies that the empty triangle T is
adjacent to triangle T ′, where V (T ′) = {v0, u2, u3}. Clearly, Hi+1 has at least i + 2 > i + 1
edges within the vertex set {v1, . . . , vn−1}. The number of parts Vℓ ∈ P with the property
that all vertices in Vℓ have degree one in Hi+1 is at least⌊

n − 5
2

⌋
− 2i − 1 >

⌊
n − 5

2

⌋
− 2(i + 1).

If vℓ ̸= u1, u3, then edge u2vℓ does not create any empty triangles incident to v0 and
we set Hi+1 = Hi ∪ {u2vℓ}. By the same argument as above, Hi+1 satisfies the desired
properties.

Finally, let us consider the case that vℓ = u1. If the triangle T ′ is not empty, where
V (T ′) = {v0, u1, u2}, we set Hi+1 = Hi ∪ {u1u2} and we are done by the arguments above.
Therefore, we can assume that the triangle T ′ is also empty.

Let H ′′ = (Hi ∪ {u1u2}) \ {u3}. Let F ′′ be the face whose boundary contains u4 in H ′′.
See Figure 6a. We apply Lemma 8 to H ′′ and the vertex u4 to obtain edge u4vt whose
interior lies inside F ′′. We now examine Hi ∪ {u1u2, u3u4, u4vt}. The proof now falls into
the following cases.

Case 2.a. Suppose edge u4vt crosses edge v0u3. If vt = u5, then {v0, u4, u5} induces a
non-empty triangle in G, so we set Hi+1 = Hi ∪{u4u5}\{v0v3}. Then u3 is an isolated vertex
in Hi+1 and we did not create any empty triangles incident to v0, and we are done. See Figure
6b. If vt = u2, then we set Hi+1 = Hi ∪ {u1u2, u2u4} \ {v0u3}. Then the empty triangle on
{v0, u1, u2} is adjacent to the triangle on {v0, u2, u4} in Hi+1, u3 is an isolated vertex, and
we are done. See Figure 6c. Otherwise, if vt ̸= u2, u5, we set Hi+1 = (Hi ∪ {u4vt}) \ {v0u3}.
Then u3 is an isolated vertex, we do not create any empty triangles incident to v0, and we
are done. See Figure 6d.

Case 2.b. Suppose edges v0u3 and u4vt do not cross. If vt = u5, then we set Hi+1 =
Hi ∪ {u3u4, u4u5}, and the empty triangle on the vertex set {v0, u3, u4} is adjacent to
the triangle on {v0, u4, u5}, and we are done. See Figure 7a. If vt ̸= u5, then we set
Hi+1 = Hi ∪ {u4vt}. Since we do not create any empty triangles incident to v0, we are done.
See Figure 7b. This completes the proof of the statement. ◀
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(d) vt ̸= u2, u5

Figure 6 Cases 2.a in Lemma 11. Edge u4vt crosses v0v3.
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Figure 7 Case 2.b in Lemma 11. Edge u4vt does not cross v0v3.

Set H = H⌊n/12⌋. We now will use the plane graph H and the vertices of G to find many
pairwise disjoint 4-faces. If there is a vertex vj ∈ {v1, . . . , vn−1} with degree at least n1/3

in H, then together with v0, we have a plane drawing of K2,⌊n1/3⌋. Indeed, recall that in
H, every vertex is either connected to v0, or an isolated vertex. This gives rise to Ω(n1/3)
pairwise disjoint 4-faces and we are done.

Hence, we can assume that every vertex vi ∈ {v1, . . . , vn−1} has degree at most n1/3.
Since there are at least n/12 edges induced on the vertex set {v1, . . . , vn−1} in the plane
graph H, there is a plane matching M on {v1, . . . , vn−1} of size at least n2/3/16. Notice
that there is a natural partial ordering ≺∗ on M . Given two edges vivj , vkvℓ ∈ M , we write
vkvℓ ≺∗ vivj if vi ≺ vk ≺ vℓ ≺ vj . By Dilworth’s theorem, M contains either a chain or
antichain of length at least n1/3/4 with respect to the partial ordering ≺∗. The proof now
falls into two cases.

Case 1. Suppose we have an antichain M ′ of size n1/3/4. Let

M ′ = {vℓ1vr1 , vℓ2vr2 , . . . , vℓtvrt},

where t = n1/3/4 and ℓi < ri for all i. Since H is a plane drawing, and every non-isolated
vertex is connected to v0, we have

{vℓ1 , vr1} ≺ {vℓ2 , vr2} ≺ · · · ≺ {vℓt
, vrt

}.
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See Figure 8a. If at least half of the edges in M ′ give rise to a non-empty triangle incident to
v0, then we apply Lemma 9 to each such triangle to obtain Ω(n1/3) pairwise disjoint 4-faces.
Hence, we can assume at least half of these triangles are empty. By construction of H, each
such empty triangle has another triangle adjacent to it. Since the three edges emanating out
of v0 of two adjacent triangles must be consecutive in H (by definition), this corresponds to
Ω(n1/3) pairwise disjoint 4-faces. See Figure 8b.

0v

vl1
vr1 vl2 vr2

vlt vrt

...

(a) Anti-chain of size t.

vr2
vlt

0v

vl1 vr1
vl2

vrt

...

(b) Disjoint 4-faces.
0v

vr2vl2 vrt
vlt

vl1
vr1...

(c) Chain of length t

Figure 8 Large antichain and chain.

Case 2. Suppose we have a chain M ′ ⊂ M of size n1/3/4. Hence,

M ′ = {vℓ1vr1 , vℓ2vr2 , . . . , vℓtvrt},

where t = n1/3/4 and we have

vℓtvrt ≺∗ · · · ≺∗ vℓ2vr2 ≺∗ vℓ1vr1 .

See Figure 8c. Set M ′′ ⊂ M ′ such that M ′′ = {vℓ7j
vr7j

}j . Hence, |M ′′| ≥ Ω(n1/3). Let us
consider edges vℓ7vr7 and vℓ14vr14 from M ′′, and the region F enclosed by the six edges.

vℓ7vr7 , vℓ14vr14 , v0vℓ7 , v0vℓ14 , v0vr7 , v0vr14 .

See Figure 9. Let H ′ be the plane subgraph on the vertex set {v0, vℓ14 , vr14 , vr7 , vℓ7} and the
six edges listed above. By construction of M ′′, we know that there are at least 12 vertices
of V (G) inside F . Since |F | = 6, we can apply Lemma 10 to find a 4-face inside of F . By
repeating this argument for each consecutive pair of edges in the matching M ′′ with respect
to the partial order ≺∗, we obtain Ω(n1/3) pairwise disjoint 4-faces. ◀

0v

vl7
vl vr14

F

vr7

14

Figure 9 Face F of size 6.
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5 Z2-cycles in topological graphs

Now we pass to a variant of Heilbronn’s triangle problem for not necessarily simple topological
graphs. Specifically, if γ is piecewise smooth closed curve with transverse self intersections,
then one can consider Lemma 6, from Section 2, as a definition of the Z2-inside of γ. That
is, p is in the interior of γ if any arc with one endpoint at p and the other outside a large
disk containing γ, intersects γ an odd number of times at proper crossings.

Does every complete topological graph drawn inside the unit square contain a cycle
whose Z2-inside has small area? More generally, we will consider this question for the group
of Z2-cycles instead of graph cycles. The result of this section is a negative answer to
this question. Using a simple probabilistic construction, we show that there are complete
topological graphs in the unit square in which every cycle has constant area.

5.1 Chain complexes
Let us recall the basic objects of cellular homology, refer to [15] for a gentle introduction.
If X is a cell complex, for each i, the group of i-th chain group, denoted by Ci(X,Z2) is
the group of formal linear combinations of the i-dimensional cells. An element of Ci(X,Z2)
has the form

∑
σ∈Fi(X) aσσ, where σ is an element of Fi, the set of i-dimensional cells, and

aσ is an element of Z2, the field with two elements. The boundary operator is a linear
map ∂Ci(X,Z2) → Ci−1(X,Z2), which can be succinctly described using a pair of basis,
one for Ci(X,Z2) and one for Ci−1(X,Z2) which have an element for each cell, then the
boundary map of a cell σ is the linear combinations of the (i − 1)-cells that are incident to σ.
The kernel of the boundary operator is the group of cycles Zi(X,Z2) and its image is the
group of boundaries Bi−1(X,Z2), the quotient group Zi(X,Z2)/Bi(X,Z2) is the i-th cellular
homology group Hi(X,Z2). In the following we will use that a two dimensional disk has
trivial homology. This is the case because homology is invariant under homotopy equivalences
and a disk can be contracted to a point which can be modeled with a cell complex that has
no higher dimensional cells.

Consider Kn as a simplicial complex, in other words, F1(Kn) is the set of edges and
F0(Kn) is the set of vertices of the complete graph.

In this case the boundary ∂ : C1(Kn,Z2) → C0(Kn,Z2) is defined as follows: if e = (i, j)
is an edge, then the chain 1e is mapped to ∂(e) = 1i + 1j. The kernel of ∂ is the group
of 1-cycles of Kn, Z1(Kn) := ker ∂. Elements in Z1(Kn) can be identified with (possibly
disjoint) graphs in which every vertex has even degree.

Let us consider the planar graph induced by G by introducing a vertex at every intersection
between two edges, and let Ĝ be the cell decomposition of the smallest closed topological
disk that contains G. More precisely, every intersection between edges of G is a vertex of
Ĝ (including the vertices of G). Two consecutive intersections along an edge of G share an
edge in Ĝ. The regions of R2 \ G are the 2 dimensional cells of Ĝ. Consider the chain groups
Ci(Ĝ,Z2), and observe that for i = 0, 1 there exists linear maps fi : Ci(Kn,Z2) → Ci(Ĝ,Z2).
For example, for a given edge e ∈ E(Kn), f1(e) is the linear combination of the edges in Ĝ

that support the arc representing e, and similarly, for the vertices.
It is not hard to see that this chain map induces a well defined map between cycle groups,

f1 : Z1(Kn) → Z1(Ĝ). Now, since the homology group H1(Ĝ,Z2) is trivial, for any cycle
z ∈ Z1(Ĝ) there exists a 2 chain c ∈ C2(Ĝ,Z2) such that ∂(c) = z. On the other hand, if
some other chain c′ ≠ c satisfied ∂c′ = z, then ∂(c + c′) = 0, hence c + c′ would be a two
dimensional cycle, but since there are no 3 dimensional faces, this would imply that the
homology group H2(Ĝ,Z2) ̸= 0, which is absurd. So there exists a unique chain c such that
∂c = z, and the interior of its support corresponds to the set of points {p ∈ R2 : w2(p, z) = 1}.
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Figure 10 A possible edge in the construction of proposition 12 before re-scaling and perturbing.

5.2 A topological graph without Z2-cycles of small area
▶ Proposition 12. There exists a drawing of the complete graph inside [0, 1]2 such that the
Z2-inside of every Z2-cycle of the complete graph has area at least 1

4 .

We begin describing a random construction. Consider a rectangle of size m × 1, with
corners at {(0, 0), (0, 1), (m, 0), (m, 1)} where m will be a large number with respect to n

that we will define later on. We perform the area analysis for this drawing, but notice that
by applying the linear transformation (x, y) → ( x

m , y), we can transform it back to the unit
square.

We place all the points in general position on a small neighbourhood of the lower corner
(0,0) of the rectangle. The drawing will be random and at the end it will be perturbed by an
arbitrary small amount so that it is in general position. To refer to this small perturbation
we use the word “near” in the description below. Notice that one could perturb each edge so
that it stays piecewise linear or one could smooth each edge, as long as areas of cycles do not
change too much and every intersection is a proper crossing (in the language of differentiable
topology this corresponds to the curves being transverse and in PL topology to general
position).

Each edge will go all the way to near (m, 0) and come back near (0, 0). Choose two
vertices i, j, the edge e = (i, j) will be represented by an arc that begins at the vertex i and
is a concatenation of almost vertical and almost horizontal arcs. More precisely, for each
k ∈ {0, 1, 2, . . . m − 1} assume that we have constructed a path αij(k) that begins at i (near
(0, 0)) and ends at (k, Yk) with Yk ∈ {0, 1}, let Yk+1 be a Bernoulli random variable with
probability 1

2 , and extend the arc αij(k) by concatenating it with the segment {(k + t, yk) :
t ∈ [0, 1]} if Yk+1 = Yk, and by the concatenation of the segments {(k, t) : t ∈ [0, 1]} followed
by {(k + t, Yk+1) : t ∈ [0, 1]} if Yk+1 ̸= Yk.

When we reach x = m, if y = 1, we concatenate it to (m, 0). In both cases y = 0, 1, we
end the arc by concatenating all the way back to the vertex j near (0, 0) with a long near
horizontal arc close to the x-axis. Finally, we perturb what we have constructed a very small
amount so that the intersections between any two such edges is a finite set of points where
they cross properly, and we re-scale the x-axis so that the whole picture is contained in the
unit square.

Proof of Proposition 12. We work with the rectangle and make some observations about the
re-scaling and perturbing at the end of the proof. Using the random construction described
above, to compute the expected area of a cycle z, consider a point p in the interior of the
rectangle, say that p has coordinates (k + 1

2 , 1
2 ), and consider the horizontal segment of

a fixed edge e that joins (k, Yk) with (k + 1, Yk+1). The vertical ray emanating up from
p, intersects this edge with probability 1

2 . Conditioned on all the other edges of a cycle z

containing e, the square {(k, 0), (k, 1), (k + 1, 1), (k + 1, 0)} is Z2-inside z with probability 1
2

and Z2-outside z with probability 1
2 . This implies that the area of every cycle is a sum of m

independent Bernoulli random variables with probability 1
2 , so E[area(z)] ≥ m

2 , and Chernoff
bound yields:

Pr(area(z) <
m

3 ) ≤ e− m
128 .
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There are exactly 2(n−1
2 ) − 1 non-zero elements in Z1(Kn), while the areas of two different

cycles z and z′ that share some edge are dependent random variables, if we let m = 64n2,
the union bound yields

Pr(∃z ∈ Z1(Kn), area(z) <
m

3 ) ≤ 2− n
2

Since this probability is strictly smaller than 1, there exists some drawing such that the
area of every cycle is at least m

3 , which after perturbing and re-scaling by 1
m , corresponds to

all cycles having area at least 1
3 − ϵ, for any given ϵ > 0. ◀

▶ Remark 13. If we only cared about graph cycles, i.e. connected subgraphs of Kn in which
each vertex has degree two, then it is enough to take m = O(n log n).
▶ Remark 14. There is nothing special about 1

4 or about 1
3 , at the cost of making m larger,

we can force all cycles to have area at least 1
2 − ϵ for any ϵ > 0. It is easy to see that for any

complete topological graph there exists z ∈ Z1(G) with area(z) ≤ 1
2 .

In the aforementioned construction, for two fixed edges e, e′, and a fixed integer i, there is a
constant probability that e and e′ cross near the vertical line at {(i, x) : x ∈ R1}, hence the
expected number of crossings is Ω(n6)

▶ Problem 15. For a fixed k, is there a function ϵk(n) with ϵk(n) → 0 when n → ∞, such
that for every drawing of Kn in which every pair of edges intersect at most k times, we can
find a cycle of area at most ϵk(n)?
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Motivated by the algorithmic study of 3-dimensional manifolds, we explore the structural relationship
between the JSJ decomposition of a given 3-manifold and its triangulations. Building on work of
Bachman, Derby-Talbot and Sedgwick, we show that a “sufficiently complicated” JSJ decomposition
of a 3-manifold enforces a “complicated structure” for all of its triangulations. More concretely, we
show that, under certain conditions, the treewidth (resp. pathwidth) of the graph that captures
the incidences between the pieces of the JSJ decomposition of an irreducible, closed, orientable
3-manifold M yields a linear lower bound on its treewidth tw(M) (resp. pathwidth pw(M)), defined
as the smallest treewidth (resp. pathwidth) of the dual graph of any triangulation of M.

We present several applications of this result. We give the first example of an infinite family
of bounded-treewidth 3-manifolds with unbounded pathwidth. We construct Haken 3-manifolds
with arbitrarily large treewidth – previously the existence of such 3-manifolds was only known in
the non-Haken case. We also show that the problem of providing a constant-factor approximation
for the treewidth (resp. pathwidth) of bounded-degree graphs efficiently reduces to computing a
constant-factor approximation for the treewidth (resp. pathwidth) of 3-manifolds.
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1 Introduction

Manifolds in geometric topology are often studied through the following two-step process.
Given a piecewise linear d-dimensional manifold M, first find a “suitable” triangulation of
it, i.e., a decomposition of M into d-simplices with “good” combinatorial properties. Then
apply algorithms on this triangulation to reveal topological information about M.
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The work presented in this article is motivated by this process in dimension d = 3. Here
every manifold can be triangulated [41] and questions about them typically admit algorithmic
solutions [32, 36, 50].1 At the same time, the feasibility of a particular computation can
greatly depend on structural properties of the triangulation in use. Over the past decade,
this phenomenon was recognized and exploited in various settings, leading to fixed-parameter
tractable (FPT) algorithms for several problems in low-dimensional topology, some of which are
even known to be NP-hard [13, 14, 15, 16, 17].2 Although these algorithms have exponential
running time in the worst case, for input triangulations with dual graph of bounded treewidth
they always terminate in polynomial (in most cases, linear) time.3 Moreover, some of
them have implementations that are highly effective in practice, providing useful tools for
researchers in low-dimensional topology [11, 12].

The theoretical efficiency of the aforementioned FPT algorithms crucially depends on
the assumption that the dual graph of the input triangulation has small treewidth. To
understand their scope, it is thus instructive to consider the treewidth tw(M) of a compact
3-manifold M, defined as the smallest treewidth of the dual graph of any triangulation of M.
Indeed, the relation between the treewidth and other quantities associated with 3-manifolds
has recently been investigated in various contexts [22, 23, 24, 26, 39]. For instance, in
[26] together with Wagner we have shown that the treewidth of a non-Haken 3-manifold
is always bounded below in terms of its Heegaard genus. Combined with earlier work of
Agol [1] – who constructed non-Haken 3-manifolds with arbitrary large Heegaard genus –
this implies the existence of 3-manifolds with arbitrary large treewidth. Despite the fact
that, asymptotically, most triangulations of most 3-manifolds must have dual graph of large
treewidth [26, Appendix A], this collection described by Agol has remained, to this date, the
only known family of 3-manifolds with arbitrary large treewidth.

The main result. In this work we unravel new structural links between the triangulations
of a given 3-manifold and its JSJ decomposition [28, 29, 30]. Employing the machinery of
generalized Heegaard splittings [46], the results developed in [26], and building on the work
of Bachman, Derby-Talbot and Sedgwick [4, 5], we show that, under suitable conditions,
the dual graph of any triangulation of a given 3-manifold M inherits structural properties
from the decomposition graph that encodes the incidences between the pieces of the JSJ
decomposition of M. More precisely, in Section 4 we prove the following theorem.

▶ Theorem 1 (Width inheritance). For any closed, orientable and irreducible 3-manifold M

with sufficiently complicated4 torus gluings in its JSJ decomposition D, the treewidth and
pathwidth of M and that of the decomposition graph Γ(D) of D satisfy

tw(Γ(D)) ≤ 18 · (tw(M) + 1) (1) and pw(Γ(D)) ≤ 4 · (3 pw(M) + 1). (2)

An algorithmic construction. Much work in 3-dimensional topology has been devoted
to the study of 3-manifolds constructed by pasting together simpler pieces along their
boundary surfaces via “sufficiently complicated” gluing maps, and to understand how different

1 In higher dimensions none of these statements is true in general. See, e.g., [38], [40] or [42, Section 7].
2 See [7] for an FPT algorithm checking tightness of (weak) pseudomanifolds in arbitrary dimensions.
3 The running times are given in terms of the size of the input triangulation, i.e., its number of tetrahedra.
4 The notion of “sufficiently complicated” under which we establish Theorem 1 is discussed in Section 4.
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decompositions of the same 3-manifold interact under various conditions, see, e.g., [3, 4, 5,
6, 33, 37, 44, 49]. Theorem 1 allows us to leverage these results to construct 3-manifolds,
where we have tight control over the treewidth and pathwidth of their triangulations [22].
By combining Theorem 1 and [3, Theorem 5.4] (cf. [5, Appendix]), in Section 5 we prove

▶ Theorem 2. There is a polynomial-time algorithm that, given an n-node graph G with
maximum node-degree ∆, produces a triangulation TG of a closed 3-manifold MG, such that
1. the triangulation TG contains O∆(pw(G) · n) tetrahedra,5
2. the JSJ decomposition D of MG satisfies Γ(D) = G, and
3. there exist universal constants c, c′ > 0, such that

a. (c/∆) tw(MG) ≤ tw(G) ≤ 18 · (tw(MG) + 1), and
b. (c′/∆) pw(MG) ≤ pw(G) ≤ 4 · (3 pw(MG) + 1).

Applications. In Section 6 we present several applications of Theorem 2. First, we construct
a family of bounded-treewidth 3-manifolds with unbounded pathwidth (Corollary 12). Second,
we exhibit Haken 3-manifolds with arbitrary large treewidth (Corollary 13). To our knowledge,
no such families of 3-manifolds had been known before. Third, we show that the problem of
providing a constant-factor approximation for the treewidth (resp. pathwidth) of bounded-
degree graphs reduces in polynomial time to computing a constant-factor approximation for
the treewidth (resp. pathwidth) of 3-manifolds (Corollary 14). This reduction, together with
previous results [43, 51, 52], suggests that this problem may be computationally hard.

Outline of the proof of Theorem 1. We now give a preview of the proof of our main result.
As the arguments for showing (1) and (2) are analogous, we only sketch the proof of (1). To
show that tw(Γ(D)) ≤ 18(tw(M) + 1), we start with a triangulation T of M whose dual graph
has minimal treewidth, i.e., tw(Γ(T)) = tw(M). Following [26, Section 6], we construct from
T a generalized Heegaard splitting H of M, together with a sweep-out Σ = {Σx : x ∈ H}
along a tree H, such that the genus of any level surface Σx is at most 18 · (tw(Γ(T)) + 1).
If H is not already strongly irreducible, we repeatedly perform weak reductions until we
get a strongly irreducible generalized Heegaard splitting H′ with associated sweep-out
Σ′ = {Σ′

x : x ∈ H} along the same tree H. Crucially, weak reductions do not increase the
genera of level surfaces [46, Section 5.2], thus 18 · (tw(Γ(T)) + 1) is still an upper bound
on those in Σ′. Now, by the assumption of the JSJ decomposition of M being “sufficiently
complicated,” each JSJ torus can be isotoped in M to coincide with a connected component
of some thin level of H′. This implies that, after isotopy, each level set Σ′

x is incident to at
most 18 · (tw(Γ(T)) + 1) + 1 JSJ pieces of M. Sweeping along H, we can construct a tree
decomposition of Γ(D) where each bag contains at most 18 · (tw(Γ(T)) + 1) + 1 nodes of Γ(D).
Hence tw(Γ(D)) ≤ 18 · (tw(Γ(T)) + 1) = 18 · (tw(M) + 1). ◀

Organization of the paper. In Section 2 we review the necessary background on graphs and
3-manifolds. Section 3 contains a primer on generalized Heegaard splittings, which provides
us with the indispensable machinery for proving our main result (Theorem 1) in Section 4.
In Section 5 we describe the algorithmic construction of 3-manifolds that “inherit” their
combinatorial width from that of their JSJ decomposition graph (Theorem 2). Then, in
Section 6 we present the aforementioned applications of this construction (Corollaries 12–14).
We conclude the paper with a discussion and some open questions in Section 7.

5 Similar to the standard big-O notation, O∆(x) means “a quantity bounded above by x times a constant
depending on ∆.” To ensure that 3a is satisfied, but not necessarily 3b, O∆(tw(G) ·n) tetrahedra suffice.
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2 Preliminaries

2.1 Graphs
A (multi)graph G = (V, E) is a finite set V = V (G) of nodes6 together with a multiset
E = E(G) of unordered pairs of not necessarily distinct nodes, called arcs. The degree dv of
a node v ∈ V equals the number of arcs containing it, where loop arcs are counted twice.
G is k-regular, if dv = k for all v ∈ V . A tree is a connected graph with n nodes and n − 1
arcs. A tree decomposition of a graph G = (V, E) is a pair (X = {Bi : i ∈ I}, T = (I, F ))
with bags Bi ⊆ V and a tree T = (I, F ), such that 1.

⋃
i∈I Bi = V (node coverage), 2. for

all arcs {u, v} ∈ E, there exists i ∈ I such that {u, v} ⊆ Bi (arc coverage), and 3. for all
v ∈ V , Tv = {i ∈ I : v ∈ Bi} spans a connected sub-tree of T (sub-tree property).

The width of a tree decomposition equals maxi∈I |Bi| − 1, and the treewidth tw(G) is the
smallest width of any tree decomposition of G. Replacing all occurrences of “tree” with “path”
in the definition of treewidth yields the notion of pathwidth pw(G). We have tw(G) ≤ pw(G).

2.2 Manifolds
A d-dimensional manifold is a topological space M, where each point x ∈ M has a neighbor-
hood homeomorphic to Rd or to the closed upper half-space {(x1, . . . , xd) ∈ Rd : xd ≥ 0}.
The latter type of points of M constitute the boundary ∂M of M. A compact manifold is
said to be closed if it has an empty boundary. We consider manifolds up to homeomorphism
(“continuous deformations”) and write M1 ∼= M2 for homeomorphic manifolds M1 and M2.

3-Manifolds and surfaces

The main objects of study in this paper are 3-dimensional manifolds, or 3-manifolds for short.
Here we give a brief introduction to 3-manifolds tailored to our purposes. We refer the reader
to [48] (and the references therein) for more details. All 3-manifolds and surfaces encountered
in this article are compact and orientable. We let Sg denote the closed, connected, orientable
surface of genus g. We also refer to the d-dimensional torus and sphere as Td and Sd,
respectively (hence S0 = S2 and S1 = T2). The genus g(S) of a (not necessarily connected)
surface S is defined to be the sum of the genera of its connected components.

Triangulations and the treewidth of 3-manifolds. A triangulation T of a given 3-manifold
M is a finite collection of abstract tetrahedra glued together along pairs of their triangular
faces, such that the resulting space is homeomorphic to M. Unpaired triangles comprise a
triangulation of the boundary of M. Note that the face gluings may also identify several
tetrahedral edges (or vertices) in a single edge (or vertex) of T. Every compact 3-manifold
admits a triangulation [41] (cf. [9]). Given a triangulation T, its dual graph Γ(T) is the
multigraph whose nodes correspond to the tetrahedra in T, and arcs to face gluings (Figure 1).

For a compact 3-manifold M, its treewidth tw(M) (resp. pathwidth pw(M)) is defined as
the smallest treewidth (resp. pathwidth) of the dual graph of any triangulation of M.

Incompressible surfaces and essential disks. Given a 3-manifold M, a surface S ⊂ M is
said to be properly embedded in M if ∂S ⊂ ∂M and (S \ ∂S) ⊂ (M \ ∂M). Given a properly
embedded surface S ⊂ M, an embedded disk D ⊂ M with int(D) ∩ S = ∅ and ∂D ⊂ S a

6 Throughout this paper we use the terms edge and vertex to refer to an edge or vertex in a 3-manifold
triangulation, whereas the terms arc and node denote an edge or vertex in a graph, respectively.
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(ii) Γ(T )(i) T

∆1

0
1

3
∆2

0
1

2

3

2
∆1 ∆2

ϕ1

ϕ2 ϕ3

ϕ3

ϕ1

ϕ2

Figure 1 (i) Example of a triangulation T with two tetrahedra ∆1 and ∆2, and three face gluing
maps φ1, φ2 and φ3. The map φ1 is specified to be ∆1(123)←→ ∆2(103). (ii) The dual graph Γ(T)
of the triangulation T. Reproduced from [23, Figure 1].

curve not bounding a disk on S is called a compressing disk. If such a disk exists, S is said
to be compressible in M, otherwise – and if S is not a 2-sphere – it is called incompressible.
A 3-manifold M is said to be irreducible, if every embedded 2-sphere bounds a 3-ball in M.
A disk D ⊂ M properly embedded in a 3-manifold M is called inessential if it cuts off a
3-ball from M, otherwise D is called essential. A compact, orientable, irreducible 3-manifold
is called Haken if it contains an orientable, properly embedded, incompressible surface, and
otherwise is referred to as non-Haken.

Heegaard splittings of closed 3-manifolds. A handlebody H is a connected 3-manifold
homeomorphic to a thickened graph. The genus g(H) of H is defined as the genus of
its boundary surface ∂H. A Heegaard splitting of a closed, orientable 3-manifold M is
a decomposition M = H ∪S H′ where H and H′ are homeomorphic handlebodies with
H ∪ H′ = M and H ∩ H′ = ∂H = ∂H′ = S called the splitting surface. Introduced in [21],
the Heegaard genus g (M) of M is the smallest genus g(S) over all Heegaard splittings of M.

The JSJ decomposition. A central result by Jaco–Shalen [28, 29] and Johannson [30]
asserts that every closed, irreducible and orientable 3-manifold M admits a collection T of
pairwise disjoint embedded, incompressible tori, where each piece of the complement M \ T
is either Seifert fibered7 or atoroidal8. A minimal such collection of tori is unique up to
isotopy and gives rise to the so-called JSJ decomposition (or torus decomposition) of M [20,
Theorem 1.9]. We refer to this collection of incompressible tori as the JSJ tori of M. The
graph with nodes the JSJ pieces, and an arc for each JSJ torus (with endpoints the two
nodes corresponding to its two adjacent pieces) is called the dual graph Γ(D) of the JSJ
decomposition D of M.

3 Generalized Heegaard Splittings

A Heegaard splitting of a closed 3-manifold is a decomposition into two identical handlebodies
along an embedded surface. Introduced by Scharlemann and Thompson [47], a generalized
Heegaard splitting of a compact 3-manifold M (possibly with boundary) is a decomposition
of M into several pairs of compression bodies along a family of embedded surfaces, subject to
certain rules. Following [46, Chapters 2 and 5],9 here we give an overview of this framework.

7 See [48, Section 3.7] or [20, p. 18] for an introduction to Seifert fibered spaces.
8 An irreducible 3-manifold M is called atoroidal if every incompressible torus in M is boundary-parallel.
9 For an open-access version, see [45, Sections 3.1 and 4].
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42:6 On the Width of Complicated JSJ Decompositions

3.1 Compression bodies and forks
A compression body C is a 3-manifold with boundary obtained by the following procedure.
1. Consider the thickening S × [0, 1] of a closed, orientable, possibly disconnected surface S,
2. optionally attach some 1-handles, each being of the form D × [0, 1] (thickened edge, where

the disk D is the cross-section), to S × {1} along D × {0} ∪ D × {1}, and
3. optionally fill in some collection of 2-sphere components of S × {0} with 3-balls.
We call ∂−C = S × {0} \ {filled-in 2-sphere components} the lower boundary of C and
∂+C = ∂ C \ ∂−C its upper boundary. By construction, g(∂+C) ≥ g(∂−C). Note that, if ∂−C
is empty, then C is a handlebody. We allow compression bodies to be disconnected.

A fork, more precisely an n-fork, F is a tree with n + 2 nodes V (F ) = {ρ, γ, τ1, . . . , τn},
where ρ, called the root, is of degree n + 1, and the other nodes are leaves. One of them,
denoted γ, is called the grip, and the remaining leaves τ1, . . . , τn are called tines. A fork can
be regarded as an abstraction of a connected compression body C, where the grip corresponds
to ∂+C and each tine corresponds to a connected component of ∂−C, see, e.g., Figure 2.

h1

h2

T2 × [0, 1]

S2 × [0, 1]

(a) A compression body C. (b) C after some isotopy.

∂+C ← grip

← root

←
tine

∂
(1)
− C ∂

(2)
− C

==
T2 × {0} S2 × {0}

(c) A 2-fork representing C.

Figure 2 The compression body C is obtained by first thickening the disconnected surface T2 ∪ S2

to (T2∪S2)× [0, 1], then attaching two 1-handles (h1 and h2) between T2×{1} and S2×{1}. For the
lower boundary of C we have ∂−C = (T2∪S2)×{0}, and for its upper boundary ∂+C = ∂ C\∂−C ∼= S4..

Non-faithful forks. In certain situations (notably, in the proof of Theorem 1, cf. Section 4)
it is useful to also take a simplified view on a generalized Heegaard splitting. To that end,
one may represent several compression bodies by a single non-faithful fork, where the grip
and the tines may correspond to collections of boundary components. To distinguish faithful
forks from non-faithful ones, we color the roots of the latter with gray, see Figure 3.

⇝

Figure 3 Two faithful forks bundled into a non-
faithful fork. The colors show the grouping of the tines.

Γ

C H

Figure 4 Spines of a compression
body C and of a handlebody H.

Spines and sweep-outs of compression bodies. A graph Γ embedded in a compression
body C is called a spine of C, if every node of Γ that is incident to ∂−C is of degree one, and
C \ (Γ ∪ ∂−C) ∼= ∂+C × (0, 1], see Figure 4. Assume first that ∂−C ̸= ∅. A sweep-out of C
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along an interval, say [−1, 1], is a continuous map f : C → [−1, 1], such that f−1(±1) = ∂±C,

f−1(t) ∼=


∂+C, if t ∈ (0, 1),
Γ ∪ ∂−C, if t = 0, and
∂−C, if t ∈ (−1, 0).

(3)

Writing Σt = f−1(t), we get a 1-parameter family of surfaces (except for Σ0) “sweeping
through” C. For handlebodies, the definition of a sweep-out is similar, but it “ends at 0”
with the spine: f−1(1) = ∂H, f−1(t) ∼= ∂H if t ∈ (0, 1), and f−1(0) = Γ, see Figure 5.

1

0

−1

Σ1

Σ0

Σ−1

1

1/2

0

Σ1

Σ1/2

Σ0

Figure 5 Sweep-outs of the compression body C and of the handlebody H shown in Figure 4.

▶ Remark 3 (Sweep-out along a fork). It is straightforward to adapt the definition of sweep-out
in a way that, instead of an interval, we sweep a compression body C along a (faithful or
non-faithful) fork F . Such a sweep-out is a continuous map f : C → ∥F∥ (where ∥F∥ denotes
a geometric realization of F ) that satisfies very similar requirements to those in (3), however,
the components of the lower boundary ∂−C may appear in different level sets, see Figure 6.

1

0

−1

Σ1

Σ0

Σ−1

grip

root

tines

Σγ

Σρ

Στ1 ∪ Στ2

Figure 6 Sweep-out of a compression body along [−1, 1] (left) and along its faithful fork (right).

3.2 Generalized Heegaard splittings and fork complexes
Heegaard splittings revisited. Let M be a 3-manifold, and {∂1M, ∂2M} be a partition
of the components of ∂M. A Heegaard splitting of (M, ∂1M, ∂2M) is a triplet (C1, C2, S),
where C1 and C2 are compression bodies with C1 ∪ C2 = M, C1 ∩ C1 = ∂+C1 = ∂+C2 = S,
∂−C1 = ∂1M, and ∂−C2 = ∂2M. The genus of the Heegaard splitting (C1, C2, S) is the genus
g(S) of the splitting surface S. The Heegaard genus g (M) of M is the smallest genus of any
Heegaard splitting of (M, ∂1M, ∂2M), taken over all partitions {∂1M, ∂2M} of ∂M.

▶ Proposition 4 ([46, Theorem 2.1.11], cf. [23, Appendix B]). For any partition {∂1M, ∂2M}
of the boundary components of M, there exists a Heegaard splitting of (M, ∂1M, ∂2M).

Generalized Heegaard splittings. A generalized Heegaard splitting H of a 3-manifold M

consists of 1. a decomposition M =
⋃

i∈I Mi into submanifolds Mi ⊆ M intersecting along
closed surfaces (Figure 8a), 2. for each i ∈ I a partition {∂1Mi, ∂2Mi} of the components
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∂1M M ∂2M ∂−C1 {

C1

S

{

C2

∂−C2

∂−C1

{

C1

S

{

C2

∂−C2

Figure 7 Schematic of a 3-manifold M with a partition of its boundary components (left). Faithful
(center) and non-faithful (right) fork complexes representing a Heegaard splitting of (M, ∂1M, ∂2M).

of ∂Mi that together satisfy an acyclicity condition: there is an ordering, i.e., a bijection
ℓ : I → {1, . . . , |I|}, such that, for each i ∈ I the components of ∂1Mi (resp. ∂2Mi) not
belonging to ∂M are only incident to submanifolds Mj with ℓ(j) < ℓ(i) (resp. ℓ(j) > ℓ(i)),
and 3. a choice of a Heegaard splitting (C(i)

1 , C(i)
2 , Si) for each (Mi, ∂1Mi, ∂2Mi). Such a

choice of splitting surfaces Si (i ∈ I) is said to be compatible with ℓ, see, e.g., Figure 8b.

M2

M1

M4

M3

R1

R2

R3

R4

(a) A decomposition of M into
four submanifolds M1, . . . ,M4
intersecting along (possibly dis-
connected) closed surfaces Ri.

S2

S1

S4

S3

∂1M1 = ∅
∂2M1 = R1 ∪R2

∂1M3 = R2
∂2M3 = R4

∂1M2 = R1
∂2M2 = R3

∂1M4 = R3 ∪R4
∂2M4 = ∅

(b) An admissible choice of
splitting surfaces Si for the Mi

that is compatible with the
trivial ordering ℓ(i) 7→ i.

S2

S1

S4

S3

(c) The faithful fork complex
that represents the generalized
Heegaard splitting shown in
the center (Figure 8b).

Figure 8 Schematics of a generalized Heegaard splitting (based on figures from [23, Section 2.4]).

Just as compression bodies can be represented by forks, (generalized) Heegaard splittings
can be visualized via fork complexes, see Figures 7 and 8c (cf. [46, Section 5.1] for details).

Sweep-outs of 3-manifolds. A generalized Heegaard splitting H of a 3-manifold M induces
a sweep-out f : M → ∥F∥ of M along any fork complex F that represents H (here ∥F∥ denotes
a drawing, i.e., a geometric realization of the abstract fork complex F) by concatenating the
corresponding sweep-outs of the compression bodies that comprise H (cf. Remark 3). We
also refer to a sweep-out f : M → ∥F∥ by the ensemble Σ = {Σx : x ∈ ∥F∥} of its level sets,
where Σx = f−1(x).

The width of a generalized Heegaard splitting. For a generalized Heegaard splitting H,
the surfaces Si (i ∈ I) are also called the thick levels, and the lower boundaries ∂−C(i)

1 , ∂−C(i)
2

are called the thin levels of H. The width w(H) of H is the sequence obtained by taking a
non-increasing ordering of the multiset {g(Si) : i ∈ I} of the genera of the thick levels.

A generalized Heegaard splitting H of a 3-manifold M for which w(H) is minimal with
respect to the lexicographic order (<) among all splittings of M is said to be in thin position.
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3.3 Weak reductions
A Heegaard splitting (C1, C2, S) of a connected 3-manifold is said to be weakly reducible [18],
if there are essential disks Di ⊂ Ci (i = 1, 2)10 with ∂D1 ∩ ∂D2 = ∅, see Figure 9. In this case
we also say that the splitting surface S is weakly reducible. A generalized Heegaard splitting
H is weakly reducible, if at least one of its splitting surfaces is weakly reducible; otherwise H

is called strongly irreducible. Every 3-manifold possesses a strongly irreducible generalized
Heegaard splitting and this fact can be exploited in various contexts (e.g., in the proof of
Theorem 1). The usefulness of such splittings is mainly due to the following seminal result.

▶ Theorem 5 ([46, Lemma 5.2.4], [47, Rule 5]). Let H be a strongly irreducible generalized
Heegaard splitting. Then every connected component of every thin level of H is incompressible.

Given a weakly reducible generalized Heegaard splitting H with a weakly reducible
splitting surface11 S and essential disks D1 and D2 as above, one can execute a weak
reduction at S. This modification amounts to performing particular cut-and-paste operations
on S guided by D1 and D2, and decomposes each of the two compression bodies adjacent to S
into a pair of compression bodies. Importantly, this operation results in another generalized
Heegaard splitting H′ of the same 3-manifold with w(H′) < w(H).

For an example, we refer to the [25, Appendix A.1], and for further details to [46,
Proposition 5.2.3] (notably, Figures 5.8–5.13 therein, but also Lemma 5.2.2, Figures 5.6 and
5.7, and Proposition 5.2.4), including an exhaustive list of instances of weak reductions.12

D1

S D2

Figure 9 Local picture of a portion of a weakly reducible splitting surface S.

4 The Main Result

In this section we prove Theorem 1. The inequalities (1) and (2) are deduced in the same way,
thus we only show the proof of (1) in detail, and then explain how it can be adapted to that
of (2). First, we specify what we mean by a “sufficiently complicated” JSJ decomposition.

▶ Definition 6. Given δ > 0, the JSJ decomposition of an irreducible 3-manifold M is
δ-complicated, if any incompressible or strongly irreducible Heegaard surface S ⊂ M with
genus g(S) ≤ δ can be isotoped to be simultaneously disjoint from all the JSJ tori of M.

10 The assumption that Di is essential in the compression body Ci implies that ∂Di ⊂ ∂+Ci = S (i = 1, 2).
11 For future reference we remind the reader that splitting surfaces, also called thick levels, correspond to

grips in the faithful fork complex that represents the generalized Heegaard splitting H.
12 In the open-access version [45] these are Proposition 4.2.3 and Figures 87–92 (as well as Lemma 4.2.2,

Figures 85 and 86, and Lemma 4.2.4).
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42:10 On the Width of Complicated JSJ Decompositions

Proof of inequality (1). Our goal is to prove that tw(Γ(D)) ≤ 18(tw(M) + 1), where Γ(D)
is the dual graph of the δ-complicated JSJ decomposition of the irreducible 3-manifold M.
To this end, we set δ = 18(tw(M) + 1) and fix a triangulation T of M, whose dual graph Γ(T)
has minimal treewidth, i.e., tw(Γ(T)) = tw(M). Now, (1) is established in four stages.

1. Setup. By invoking the construction in [26, Section 6], from T we obtain a generalized
Heegaard splitting H of M together with a sweep-out f : M → ∥F•∥ along a non-faithful fork
complex F• representing H. By construction, F• is a tree with all of its nodes having degree
one or three (Figure 10), moreover all non-degenerate level surfaces Σx = f−1(x) have genus
bounded above by 18(tw(M) + 1). Let F◦ be the faithful fork complex representing H. Note
that F◦ is obtained from F• by replacing every non-faithful fork F ∈ F• with the collection
CF of faithful forks that accurately represents the (possibly disconnected) compression body
C corresponding to F . The inverse operation, i.e., for each F ∈ F• bundling all faithful forks
in CF into F (see Figure 3), induces a projection map π : ∥F◦∥ → ∥F•∥ between the drawings
(cf. Figures 11(i)–(ii)). Note that every fork, tine, or grip in F• corresponds to a collection of
the corresponding items in F◦ and so the projection map is well-defined. ◁

S1

S0

S3

S4

S2

S5

S6

S7

Sr

(i) (ii)

S1

S0

S3

S4

S2

S5

S6

S7

Sr

Γ(T)

0

41

2 3

r
Γ(T)

1

2

4

0

3

A

B

C

F•

Figure 10 (i) A. The dual graph Γ(T) of some triangulation T of a 3-manifold M. B. Low-
congestion routing of Γ(T) along a host tree with marked root arc r. C. Drawing of a non-faithful
fork complex F• that represents the generalized Heegaard splitting of M induced by the routing of
Γ(T). The genera of all (possibly disconnected) thick levels Si is bounded above by 18(tw(M) + 1).
(ii) Color-coded segmentation of ∥F•∥ in preparation for the next stage of the proof (cf. Figure 11).

2. Weak reductions. In case H is weakly reducible, we repeatedly perform weak reductions
until we obtain a strongly irreducible generalized Heegaard splitting H′ of M. Since weak
reductions always decrease the width of a generalized Heegaard splitting, this process
terminates after finitely many iterations. Throughout, we maintain that the drawings of
the associated faithful fork complexes follow ∥F•∥. Let F′

◦ be the faithful fork complex
representing the final splitting H′, f ′ : M → ∥F′

◦∥ be the sweep-out of M induced by H′,
and π′ : ∥F′

◦∥ → ∥F•∥ be the associated projection map (Figure 11(iii)). Due to the nature
of weak reductions, 18(tw(M) + 1) is still an upper bound on the genus of any (possibly
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disconnected) level surface of π′ ◦ f ′ : M → ∥F•∥. As M is irreducible, we may assume that
no component of such a level surface is homeomorphic to a sphere (cf. [34, p. 337]). It follows
that the number of components of any level set of π′ ◦ f ′ is at most 18(tw(M) + 1). ◁

3. Perturbation and isotopy. We now apply a level-preserving perturbation π′ ⇝ π′′ on π′,
after which each thin level of H′ lies in different level sets of π′′◦f ′ : M → ∥F•∥ (Figure 11(iv)).
Since H′ is strongly irreducible, its thick levels are strongly irreducible (by definition), and
its thin levels are incompressible (by Theorem 5). Moreover, all these surfaces have genera at
most 18(tw(M) + 1). Hence, as the JSJ decomposition of M is assumed to be δ-complicated
with δ = 18(tw(M) + 1), we may isotope all JSJ tori to be disjoint from all the thick and
thin levels of H′. Then, by invoking [4, Corollary 4.5] we can isotope each JSJ torus of M to
coincide with a component of some thin level of H′ (Figure 11(v)). As a consequence, every
compression body of the splitting H′ is contained in a unique JSJ piece of M. ◁

−→

(i)

(ii)

(iii)

(v)

(vi)

2

3

1

4 5

6

7

8

9

(iv)

B4

B3

Bjoin B6
B7

B+
8

B−
8 = Bout

B
(2)
in

B2

9

B
(1)
in

S6

S(1)
6

S(2)
6

Figure 11 Overview of the proof of inequality (1). The figure shows the circled area in Figure 10(ii).
Stage 1: Construction of initial fork complex (i) and split into faithful fork complex (ii). Stage 2:
Weak reductions (iii), see [46, Proposition 5.2.3, Figures 5.8–5.13] for a complete list and their effects
on the underlying fork complexes. Stage 3: perturbations and isotopy (iv). Stage 4: Construction of
tree decomposition (v) and (vi).

4. The tree decomposition of Γ(D). First note that every level set (π′′ ◦ f ′)−1(x) is incident
to at most 18(tw(M) + 1) + 1 = 18 tw(M) + 19 JSJ pieces of M. The “plus one” appears,
because if (π′′ ◦ f ′)−1(x) contains a JSJ torus, then this torus is incident to two JSJ pieces of
M. Also note that, because of the perturbation performed in the previous stage, each level
set (π′′ ◦ f ′)−1(x) can contain at most one JSJ torus of M.

We now construct a tree decomposition (X, T ) of Γ(D) of width 18(tw(M)+1). Eventually,
T will be a subdivision of F• (which is a tree) with nodes corresponding to the bags in X,
which we now describe. By [26, Section 6 (p. 86)], each leaf l of F• corresponds to a spine of
a handlebody Hl. We define a bag that contains the unique node of Γ(D) associated with

SoCG 2023
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the JSJ piece containing Hl. As we sweep through ∥F•∥ (cf. the arrows on Figure 10(2)),
whenever we pass through a point x ∈ ∥F•∥ such that the level set (π′′)−1(x) contains a tine
of ∥F′

◦∥, one of four possible events may occur (illustrated in Figure 11(v)–(vi)): 1. A new
JSJ piece appears. In this case we take a copy of the previous bag, and add the corresponding
node of Γ(D) into the bag. 2. A JSJ piece disappears. Then we delete the corresponding
node of Γ(D) from a copy of the previous bag. 3. Both previous kinds of events happen
simultaneously. In this case we introduce two new bags. The first to introduce the new JSJ
piece, the second to delete the old one. 4. If neither a new JSJ piece is introduced, nor an old
one is left behind, we do nothing. Whenever we arrive at a merging point in the sweep-out
(i.e., a degree-three node of ∥F•∥), we introduce a new bag, which is the union of the two
previous bags. Note that the two previous bags do not necessarily need to be disjoint. ◁

It remains to verify that (X, T ) is, indeed, a tree decomposition of Γ(D) of width at
most 18 tw(M) + 18. Node coverage: Every node of Γ(D) must be considered at least once,
since we sweep through the entirety of ∥F•∥. Arc coverage: we must ensure that all pairs of
nodes of Γ(D) with their JSJ pieces meeting at a tine are contained in some bag. This is
always the case for 1, because a new JSJ piece appears while all other JSJ pieces are still
in the bag. It is also the case for 2, because a JSJ piece disappears but the previous bag
contained all the pieces. In 3 a new JSJ piece appears and at the same time another JSJ
piece disappears. However, in this case we first introduce the new piece, thus making sure
that adjacent JSJ pieces always occur in at least one bag. Sub-tree property: This follows
from the fact that a JSJ piece, once removed from all bags, must be contained in the part of
∥F•∥ that was already swept. Now, every JSJ piece incident to a given level set (π′′ ◦f ′)−1(x)
of the sweep-out must contribute a positive number to its genus. Hence, it follows that every
bag can contain at most 18 tw(M) + 19 elements (with equality only possible where a tine
simultaneously introduces and forgets a JSJ piece). This proves inequality (1). ◀

Proof of inequality (2). We start with the results from [26, Section 5] yielding a fork-complex
F• whose underlying space ∥F•∥ is a path, and the genus of the level sets of the associated
sweep-out is bounded above by 4(3 pw(M) + 1). Setting δ = 4(3 pw(M) + 1), the remainder
of the proof is analogous with the proof of inequality (1). ◀

5 An algorithmic construction

Here we establish Theorem 2 that paves the way to the applications in Section 6. In what
follows, ∆ denotes an arbitrary, but fixed, positive integer. Let G = (V, E) be a graph with
|V | = n and maximum degree ∆. Theorem 2 asserts that, in poly(n) time one can construct a
triangulation TG of a closed, irreducible 3-manifold MG, such that the dual graph Γ(D) of its
JSJ decomposition D equals G, moreover, the pathwidth (resp. treewidth) of G determines
the pathwidth (resp. treewidth) of MG up to a constant factor.

Our proof of Theorem 2 rests on a synthesis of work by Lackenby [35] and by Bachman,
Derby-Talbot and Sedgwick [5]. In [35, Section 3] it is shown that the homeomorphism
problem for closed 3-manifolds is at least as hard as the graph isomorphism problem. The
proof relies on a simple construction that, given a graph G, produces a closed, orientable,
triangulated 3-manifold whose JSJ decomposition D satisfies Γ(D) = G. This gives the
blueprint for our construction as well. In particular, we use the same building blocks that are
described in [35, p. 591]. However, as opposed to Lackenby, we paste together these building
blocks via high-distance torus gluings akin to the construction presented in [5, Section 4].
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This ensures that we can apply Theorem 1 for the resulting 3-manifold MG and deduce
the right-hand-side inequalities of 3a and 3b. The left-hand-side inequalities are shown by
inspecting TG. We now elaborate on the ingredients of the proof of Theorem 2.

The building blocks. We first recall the definition of the building blocks from [35, p. 591].
Let k ∈ N be a positive integer. Consider the 2-dimensional torus T2 = S1 × S1, and let T2

k

denote the compact surface obtained from T2 by the removal of k pairwise disjoint open
disks. We define N(k) = T2

k × S1. Note that the boundary ∂N(k) of N(k) consists of k tori,
which will be the gluing sites. See Figure 12 for the example of N(3).

We choose a triangulation T(k) for N(k) that induces the minimal 2-triangle triangulation
of the torus (cf. Figure 13) at each boundary component. Note that T(k) can be constructed
from O(k) tetrahedra. An explicit description of T(k) is given in [25, Appendix B].

N(3) = × S1

Figure 12 Illustration of N(3). Figure 13 Minimal triangulation of the torus T2.

Overview of the construction of MG. We now give a high-level overview of constructing
MG from the above building blocks. Given a graph G = (V, E), for each node v ∈ V we pick
a block Nv

∼= N(dv), where dv denotes the degree of v. Next, for each arc e = {u, v} ∈ E,
we pick a homeomorphism ϕe : T2 → T2 of sufficiently high distance (we discuss this notion
below) and use it to glue together a boundary torus of Nu with one of Nv. After performing
all of these gluings, we readily obtain the 3-manifold MG (cf. Figure 14(i)–(ii)).

▷ Claim 7 (Based on [35, p. 591]). The JSJ decomposition D of MG satisfies Γ(D) = G.

For a proof of Claim 7 we refer to [25, Appendix A.2].

High-distance torus gluings. As already mentioned, to ensure that we can apply Theorem 1
to MG, we use torus homeomorphisms of “sufficiently high distance” to glue the building
blocks together. This notion of distance, which is defined through the Farey distance, is
somewhat technical. Thus, we refer to [5, Section 4.1 and Appendix] for details, and rather
recall a crucial result that makes the usefulness of distance in the current context apparent.

▶ Theorem 8 ([5, Appendix], [3, Theorem 5.4]13). There exists a computable constant K,
depending only on the homeomorphism types of the blocks, so that if any set of blocks are
glued with maps of distance at least Kδ along their torus boundary components to form a
closed 3-manifold M, then the JSJ decomposition of M is δ-complicated (cf. Definition 6).

Triangulating the gluing maps. We have already discussed that the block N(k) admits a
triangulation T(k) with O(k) tetrahedra, where T(k) induces a minimal, 1-vertex triangulation
at each torus boundary of N(k). It is shown in [5, Section 4.2] that the gluings beading these
blocks together can be realized as layered triangulations [27]. These triangulations manifest
as “daisy chains” in the dual graph Γ(TG) of the final triangulation TG, see Figure 14(iii).

13 The notation and the statement of Theorem 8 have been adapted to match the present context.
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Figure 14 Schematic overview of the construction underlying Theorem 2.

▶ Lemma 9 ([5, Lemma 4.6]). There exist torus gluings with distance at least D, that can be
realized as layered triangulations using 2D tetrahedra.

▷ Claim 10. There exist universal constants c, c′ > 0 such that

(c/∆) tw(MG) ≤ tw(G) and (c′/∆) pw(MG) ≤ pw(G).

Proof. Since every node of G has degree at most ∆, the construction of MG only uses building
blocks homeomorphic to N(1), . . . ,N(∆). Hence, for each v ∈ V the triangulation T(dv)
of the block Nv contains O(∆) tetrahedra. This, together with the above discussion on
triangulating the gluing maps implies that (upon ignoring multi-arcs and loop arcs, which
are anyway not “sensed” by treewidth or pathwidth), the dual graph Γ(TG) is obtained from
G by 1. replacing each node v ∈ V with a copy of the graph Γ(T(dv)) that contains O(∆)
nodes, and by 2. possibly subdividing each arc e ∈ E several times.

Now, the first operation increases the treewidth (resp. pathwidth) at most by a factor of
O(∆), while the arc-subdivisions keep these parameters basically the same, cf. Lemma 11.
Hence tw(Γ(TG)) ≤ O(∆ tw(G)) and pw(Γ(TG)) ≤ O(∆ pw(G)), and the claim follows. ◁

▶ Lemma 11 (Folklore, cf. [8, Lemma A. 1]). Let G = (V, E) be a graph. If G′ is a graph
obtained from G by subdividing a set F ⊆ E of arcs an arbitrary number of times. Then

pw(G′) ≤ pw(G) + 2 and tw(G′) ≤ max{tw(G), 3}.

Finishing the proof of Theorem 2. We have already shown 2 (Claim 7) and the left-hand-
sides of the inequalities 3a and 3b (Claim 10). To prove the remaining parts of Theorem 2, let
δ = max{18(tw(G) + 1), 4(3 pw(G) + 1)} = O(pw(G)). By Theorem 8, there is a computable
constant K∆ depending only on N(1), . . . ,N(∆) and hence only on ∆, so that if we glue
together the blocks via maps of distance at least K∆δ, then the JSJ decomposition of MG is
δ-complicated. By Lemma 9, each such gluing map can be realized as a layered triangulation
consisting of 2K∆δ tetrahedra. Since G has at most ∆n/2 arcs, these layered triangulations
contain at most 2K∆δ∆n/2 = ∆K∆δn = O(∆K∆ pw(G) · n) = O∆(pw(G) · n) tetrahedra
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altogether. Since the triangulated blocks T(dv) contain O(∆ · n) tetrahedra in total, the
triangulation TG of the manifold MG can be built from O∆(pw(G) · n) ≤ O∆(n2) tetrahedra.
Last, as it follows from [5, Section 4], the construction can be executed in quadratic time. ◀

6 Applications

▶ Corollary 12. There exist 3-manifolds (Mh)h∈N with tw(Mh) ≤ 2 and pw(Mh) h→∞−→ ∞.

▶ Corollary 13. There exist Haken 3-manifolds (Nk)k∈N with tw(Nk) k→∞−→ ∞.

Proof of Corollaries 12 and 13. Using Theorem 2, the construction of bounded-treewidth
(Haken) 3-manifolds with arbitrarily large pathwidth follows by taking Mh = MTh

(with the
notation of Theorem 2), where Th is the complete binary tree of height h. The construction of
Haken 3-manifolds of arbitrary large treewidth is deduced by setting Nk = MGrid(k), where
Grid(k) denotes the k × k grid graph. See Figure 15. Obtained as JSJ decompositions, where
the JSJ tori are two-sided, incompressible surfaces, all of these manifolds are Haken. ◀

(ii) tw(k × k-grid) = k(i) tw(Th) = 1, pw(Th) = dh/2e

T3 Grid(5)

Figure 15 (i) The complete binary tree Th of height h has pathwidth ⌈h/2⌉, cf. [10, Theorem 67].
(ii) The k × k grid graph is known to have pathwidth and treewidth both equal to k.

▶ Corollary 14. Approximating the treewidth (resp. pathwidth) of closed, orientable 3-
manifolds up to a constant factor is at least as hard as giving a constant-factor approximation
of the treewidth (resp. pathwidth) of bounded-degree graphs.

Proof. The argument for treewidth and pathwidth is the same. Given a graph G with
maximum vertex degree ∆, we use the polynomial-time procedure from Theorem 2 to build a
3-manifold M with tw(M) within a constant factor of tw(G). An oracle for a constant-factor
approximation of tw(M) hence gives us a constant-factor approximation of tw(G) as well. ◀

▶ Remark 15. Computing a constant-factor approximation of treewidth (resp. pathwidth)
for arbitrary graphs is known to be conditionally NP-hard under the Small Set Expansion
Hypothesis [43, 51, 52]. For proving Corollary 14, however, we rely on the assumption that
the graph has bounded degree. Thus the conditional hardness of approximating the treewidth
(resp. pathwidth) of a 3-manifold does not directly follow. Establishing such a hardness
result would add to the growing, but still relatively short list of algorithmic problems in
low-dimensional topology that are known to be (conditionally) hard, cf. [2, 5, 19, 31, 35].

7 Discussion and Open Problems

We have demonstrated that 3-manifolds with JSJ decompositions with dual graphs of
large treewidth (resp. pathwidth) and “sufficiently complicated” gluing maps cannot admit
triangulations of low treewidth (resp. pathwidth). This provides a technique to construct
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a wealth of families of 3-manifolds with unbounded tree- or pathwidth that hopefully will
prove to be useful for future research in the field.

One obvious limitation of our construction is a seemingly heavy restriction on the JSJ
gluing maps in order to deduce a connection between the treewidth of a 3-manifold and that
of the dual graph of its JSJ decomposition. Hence, a natural question to ask is, how much
this restriction on gluing maps may be relaxed while still allowing meaningful structural
results about treewidth. In particular, we have the following question.
▶ Question 1. Given a 3-manifold M with JSJ decomposition D and no restrictions on its
JSJ gluings. Is there a lower bound for tw(M) in terms of tw(Γ(D))?

Note that the assumption that we are considering the JSJ decomposition of M is necessary:
Consider a graph G = (V, E) and a collection of 3-manifolds {Mv}v∈V , where Mv has deg(v)
torus boundary components. Assume that we glue the manifolds Mv along the arcs of G to
obtain a closed 3-manifold M. Without restrictions on how these pieces are glued together,
this cannot result in a lower bound tw(M) in terms of tw(G): we can construct Seifert fibered
spaces M in this way, even if G = (V, E) is the complete graph with |V | arbitrarily large. At
the same time, Seifert fibered spaces have constant treewidth, see [24].
▶ Question 2. What is the complexity of computing the treewidth of a 3-manifold?

We believe that this should be at least as hard as computing the treewidth of a graph.

References
1 I. Agol. Small 3-manifolds of large genus. Geom. Dedicata, 102:53–64, 2003. doi:10.1023/B:

GEOM.0000006584.85248.c5.
2 I. Agol, J. Hass, and W. Thurston. The computational complexity of knot genus and spanning

area. Trans. Am. Math. Soc., 358(9):3821–3850, 2006. doi:10.1090/S0002-9947-05-03919-X.
3 D. Bachman. Stabilizing and destabilizing Heegaard splittings of sufficiently complicated

3-manifolds. Math. Ann., 355(2):697–728, 2013. doi:10.1007/s00208-012-0802-4.
4 D. Bachman, R. Derby-Talbot, and E. Sedgwick. Heegaard structure respects complicated JSJ

decompositions. Math. Ann., 365(3-4):1137–1154, 2016. doi:10.1007/s00208-015-1314-9.
5 D. Bachman, R. Derby-Talbot, and E. Sedgwick. Computing Heegaard genus is NP-hard. In

A Journey Through Discrete Mathematics: A Tribute to Jiří Matoušek, pages 59–87. Springer,
Cham, 2017. doi:10.1007/978-3-319-44479-6_3.

6 D. Bachman, S. Schleimer, and E. Sedgwick. Sweepouts of amalgamated 3-manifolds. Algebr.
Geom. Topol., 6:171–194, 2006. doi:10.2140/agt.2006.6.171.

7 B. Bagchi, B. A. Burton, B. Datta, N. Singh, and J. Spreer. Efficient algorithms to decide
tightness. In 32nd Int. Symp. Comput. Geom. (SoCG 2016), volume 51 of LIPIcs. Leibniz Int.
Proc. Inf., pages 12:1–12:15. Schloss Dagstuhl–Leibniz-Zent. Inf., 2016. doi:10.4230/LIPIcs.
SoCG.2016.12.

8 R. Belmonte, T. Hanaka, M. Kanzaki, M. Kiyomi, Y. Kobayashi, Y. Kobayashi, M. Lampis,
H. Ono, and Y. Otachi. Parameterized complexity of (A, ℓ)-path packing. Algorithmica,
84(4):871–895, 2022. doi:10.1007/s00453-021-00875-y.

9 R. H. Bing. An alternative proof that 3-manifolds can be triangulated. Ann. Math. (2),
69:37–65, 1959. doi:10.2307/1970092.

10 H. L. Bodlaender. A partial k-arboretum of graphs with bounded treewidth. Theor. Comput.
Sci., 209(1–2):1–45, 1998. doi:10.1016/S0304-3975(97)00228-4.

11 B. A. Burton. Computational topology with Regina: algorithms, heuristics and implementa-
tions. In Geometry and Topology Down Under, volume 597 of Contemp. Math., pages 195–224.
Am. Math. Soc., Providence, RI, 2013. doi:10.1090/conm/597/11877.

12 B. A. Burton, R. Budney, W. Pettersson, et al. Regina: Software for low-dimensional topology,
1999–2022. Version 7.2. URL: https://regina-normal.github.io.

https://doi.org/10.1023/B:GEOM.0000006584.85248.c5
https://doi.org/10.1023/B:GEOM.0000006584.85248.c5
https://doi.org/10.1090/S0002-9947-05-03919-X
https://doi.org/10.1007/s00208-012-0802-4
https://doi.org/10.1007/s00208-015-1314-9
https://doi.org/10.1007/978-3-319-44479-6_3
https://doi.org/10.2140/agt.2006.6.171
https://doi.org/10.4230/LIPIcs.SoCG.2016.12
https://doi.org/10.4230/LIPIcs.SoCG.2016.12
https://doi.org/10.1007/s00453-021-00875-y
https://doi.org/10.2307/1970092
https://doi.org/10.1016/S0304-3975(97)00228-4
https://doi.org/10.1090/conm/597/11877
https://regina-normal.github.io


K. Huszár and J. Spreer 42:17

13 B. A. Burton and R. G. Downey. Courcelle’s theorem for triangulations. J. Comb. Theory,
Ser. A, 146:264–294, 2017. doi:10.1016/j.jcta.2016.10.001.

14 B. A. Burton, T. Lewiner, J. Paixão, and J. Spreer. Parameterized complexity of discrete
Morse theory. ACM Trans. Math. Softw., 42(1):6:1–6:24, 2016. doi:10.1145/2738034.

15 B. A. Burton, C. Maria, and J. Spreer. Algorithms and complexity for Turaev–Viro invariants.
J. Appl. Comput. Topol., 2(1–2):33–53, 2018. doi:10.1007/s41468-018-0016-2.

16 B. A. Burton and W. Pettersson. Fixed parameter tractable algorithms in combinatorial
topology. In Proc. 20th Int. Conf. Comput. Comb. (COCOON 2014), pages 300–311, 2014.
doi:10.1007/978-3-319-08783-2_26.

17 B. A. Burton and J. Spreer. The complexity of detecting taut angle structures on triangulations.
In Proc. 24th Annu. ACM-SIAM Symp. Discrete Algorithms (SODA 2013), pages 168–183,
2013. doi:10.1137/1.9781611973105.13.

18 A. J. Casson and C. McA. Gordon. Reducing Heegaard splittings. Topology Appl., 27(3):275–
283, 1987. doi:10.1016/0166-8641(87)90092-7.

19 A. de Mesmay, Y. Rieck, E. Sedgwick, and M. Tancer. The unbearable hardness of unknotting.
Adv. Math., 381:Paper No. 107648, 36, 2021. doi:10.1016/j.aim.2021.107648.

20 A. Hatcher. Notes on basic 3-manifold topology. Available at https://pi.math.cornell.edu/
~hatcher/3M/3Mfds.pdf (accessed: February 18, 2023).

21 P. Heegaard. Sur l’"Analysis situs". Bull. Soc. Math. France, 44:161–242, 1916. doi:10.24033/
bsmf.968.

22 K. Huszár. Combinatorial width parameters for 3-dimensonal manifolds. PhD thesis, IST
Austria, June 2020. doi:10.15479/AT:ISTA:8032.

23 K. Huszár. On the pathwidth of hyperbolic 3-manifolds. Comput. Geom. Topol., 1(1):1–19,
2022. doi:10.57717/cgt.v1i1.4.

24 K. Huszár and J. Spreer. 3-Manifold triangulations with small treewidth. In 35th Int. Symp.
Comput. Geom. (SoCG 2019), volume 129 of LIPIcs. Leibniz Int. Proc. Inf., pages 44:1–44:20.
Schloss Dagstuhl–Leibniz-Zent. Inf., 2019. doi:10.4230/LIPIcs.SoCG.2019.44.

25 K. Huszár and J. Spreer. On the width of complicated JSJ decompositions, 2023. 22 pages, 19
figures. arXiv:2303.06789.

26 K. Huszár, J. Spreer, and U. Wagner. On the treewidth of triangulated 3-manifolds. J. Comput.
Geom., 10(2):70–98, 2019. doi:10.20382/jogc.v10i2a5.

27 W. Jaco and J. H. Rubinstein. Layered-triangulations of 3-manifolds, 2006. 97 pages, 32
figures. arXiv:math/0603601.

28 W. Jaco and P. B. Shalen. A new decomposition theorem for irreducible sufficiently-large 3-
manifolds. In Algebraic and Geometric Topology, volume 32, part 2 of Proc. Sympos. Pure Math.,
pages 71–84. Am. Math. Soc., Providence, RI, 1978. doi:10.1090/pspum/032.2/520524.

29 W. H. Jaco and P. B. Shalen. Seifert fibered spaces in 3-manifolds. Mem. Am. Math. Soc.,
21(220):viii+192, 1979. doi:10.1090/memo/0220.

30 K. Johannson. Homotopy equivalences of 3-manifolds with boundaries, volume 761 of Lect.
Notes Math. Springer, Berlin, 1979. doi:10.1007/BFb0085406.

31 D. Koenig and A. Tsvietkova. NP-hard problems naturally arising in knot theory. Trans. Am.
Math. Soc. Ser. B, 8:420–441, 2021. doi:10.1090/btran/71.

32 G. Kuperberg. Algorithmic homeomorphism of 3-manifolds as a corollary of geometrization.
Pacific J. Math., 301(1):189–241, 2019. doi:10.2140/pjm.2019.301.189.

33 M. Lackenby. The Heegaard genus of amalgamated 3-manifolds. Geom. Dedicata, 109:139–145,
2004. doi:10.1007/s10711-004-6553-y.

34 M. Lackenby. Heegaard splittings, the virtually Haken conjecture and property (τ). Invent.
Math., 164(2):317–359, 2006. doi:10.1007/s00222-005-0480-x.

35 M. Lackenby. Some conditionally hard problems on links and 3-manifolds. Discrete Comput.
Geom., 58(3):580–595, 2017. doi:10.1007/s00454-017-9905-8.

SoCG 2023

https://doi.org/10.1016/j.jcta.2016.10.001
https://doi.org/10.1145/2738034
https://doi.org/10.1007/s41468-018-0016-2
https://doi.org/10.1007/978-3-319-08783-2_26
https://doi.org/10.1137/1.9781611973105.13
https://doi.org/10.1016/0166-8641(87)90092-7
https://doi.org/10.1016/j.aim.2021.107648
https://pi.math.cornell.edu/~hatcher/3M/3Mfds.pdf
https://pi.math.cornell.edu/~hatcher/3M/3Mfds.pdf
https://doi.org/10.24033/bsmf.968
https://doi.org/10.24033/bsmf.968
https://doi.org/10.15479/AT:ISTA:8032
https://doi.org/10.57717/cgt.v1i1.4
https://doi.org/10.4230/LIPIcs.SoCG.2019.44
https://arxiv.org/abs/2303.06789
https://doi.org/10.20382/jogc.v10i2a5
https://arxiv.org/abs/math/0603601
https://doi.org/10.1090/pspum/032.2/520524
https://doi.org/10.1090/memo/0220
https://doi.org/10.1007/BFb0085406
https://doi.org/10.1090/btran/71
https://doi.org/10.2140/pjm.2019.301.189
https://doi.org/10.1007/s10711-004-6553-y
https://doi.org/10.1007/s00222-005-0480-x
https://doi.org/10.1007/s00454-017-9905-8


42:18 On the Width of Complicated JSJ Decompositions

36 M. Lackenby. Algorithms in 3-manifold theory. In I. Agol and D. Gabai, editors, Surveys in
3-manifold topology and geometry, volume 25 of Surv. Differ. Geom., pages 163–213. Int. Press
Boston, 2020. doi:10.4310/SDG.2020.v25.n1.a5.

37 T. Li. Heegaard surfaces and the distance of amalgamation. Geom. Topol., 14(4):1871–1919,
2010. doi:10.2140/gt.2010.14.1871.

38 C. Manolescu. Lectures on the triangulation conjecture. In Proc. 22nd Gökova Geom.-Topol.
Conf. (GGT 2015), pages 1–38. Int. Press Boston, 2016. URL: https://gokovagt.org/
proceedings/2015/manolescu.html.

39 C. Maria and J. Purcell. Treewidth, crushing and hyperbolic volume. Algebr. Geom. Topol.,
19(5):2625–2652, 2019. doi:10.2140/agt.2019.19.2625.

40 A. Markov. The insolubility of the problem of homeomorphy (in Russian). Dokl. Akad. Nauk
SSSR, 121:218–220, 1958.

41 E. E. Moise. Affine structures in 3-manifolds. V. The triangulation theorem and Hauptvermu-
tung. Ann. Math. (2), 56:96–114, 1952. doi:10.2307/1969769.

42 B. Poonen. Undecidable problems: a sampler. In Interpreting Gödel, pages 211–241. Cambridge
Univ. Press, 2014. doi:10.1017/CBO9780511756306.015.

43 P. Raghavendra and D. Steurer. Graph expansion and the unique games conjecture. In Proc.
2010 ACM Int. Symp. Theor. Comput. (STOC’10), pages 755–764. ACM, New York, 2010.

44 M. Scharlemann and J. Schultens. Comparing Heegaard and JSJ structures of orientable
3-manifolds. Trans. Am. Math. Soc., 353(2):557–584, 2001. doi:10.1090/S0002-9947-00-
02654-4.

45 M. Scharlemann, J. Schultens, and T. Saito. Lecture notes on generalized Heegaard splittings,
2005. Open-access version of [46] with slightly different structure. arXiv:math/0504167.

46 M. Scharlemann, J. Schultens, and T. Saito. Lecture Notes on Generalized Heegaard Splittings.
World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2016. doi:10.1142/10019.

47 M. Scharlemann and A. Thompson. Thin position for 3-manifolds. In Geometric topology
(Haifa, 1992), volume 164 of Contemp. Math., pages 231–238. Am. Math. Soc., Providence,
RI, 1994. doi:10.1090/conm/164/01596.

48 J. Schultens. Introduction to 3-Manifolds, volume 151 of Grad. Stud. Math. Am. Math. Soc.,
Providence, RI, 2014. doi:10.1090/gsm/151.

49 J. Schultens and R. Weidmann. Destabilizing amalgamated Heegaard splittings. In Workshop
on Heegaard Splittings, volume 12 of Geom. Topol. Monogr., pages 319–334. Geom. Topol.
Publ., Coventry, 2007. doi:10.2140/gtm.2007.12.319.

50 P. Scott and H. Short. The homeomorphism problem for closed 3-manifolds. Algebr. Geom.
Topol., 14(4):2431–2444, 2014. doi:10.2140/agt.2014.14.2431.

51 Y. Wu, P. Austrin, T. Pitassi, and D. Liu. Inapproximability of treewidth, one-shot pebbling,
and related layout problems. J. Artificial Intelligence Res., 49:569–600, 2014. doi:10.1613/
jair.4030.

52 K. Yamazaki. Inapproximability of rank, clique, Boolean, and maximum induced matching-
widths under small set expansion hypothesis. Algorithms (Basel), 11(11):Paper No. 173, 10,
2018. doi:10.3390/a11110173.

https://doi.org/10.4310/SDG.2020.v25.n1.a5
https://doi.org/10.2140/gt.2010.14.1871
https://gokovagt.org/proceedings/2015/manolescu.html
https://gokovagt.org/proceedings/2015/manolescu.html
https://doi.org/10.2140/agt.2019.19.2625
https://doi.org/10.2307/1969769
https://doi.org/10.1017/CBO9780511756306.015
https://doi.org/10.1090/S0002-9947-00-02654-4
https://doi.org/10.1090/S0002-9947-00-02654-4
https://arxiv.org/abs/math/0504167
https://doi.org/10.1142/10019
https://doi.org/10.1090/conm/164/01596
https://doi.org/10.1090/gsm/151
https://doi.org/10.2140/gtm.2007.12.319
https://doi.org/10.2140/agt.2014.14.2431
https://doi.org/10.1613/jair.4030
https://doi.org/10.1613/jair.4030
https://doi.org/10.3390/a11110173


Reconfiguration of Colorings in Triangulations of
the Sphere
Takehiro Ito #

Graduate School of Information Sciences, Tohoku University, Sendai, Japan

Yuni Iwamasa #

Graduate School of Informatics, Kyoto University, Japan

Yusuke Kobayashi #

Research Institute for Mathematical Sciences, Kyoto University, Japan

Shun-ichi Maezawa #

Department of Mathematics, Tokyo University of Science, Japan

Yuta Nozaki #

Faculty of Environment and Information Sciences, Yokohama National University, Japan
SKCM2, Hiroshima University, Japan

Yoshio Okamoto #

Graduate School of Informatics and Engineering, The University of Electro-Communications,
Tokyo, Japan

Kenta Ozeki #

Faculty of Environment and Information Sciences, Yokohama National University, Japan

Abstract
In 1973, Fisk proved that any 4-coloring of a 3-colorable triangulation of the 2-sphere can be obtained
from any 3-coloring by a sequence of Kempe-changes. On the other hand, in the case where we are
only allowed to recolor a single vertex in each step, which is a special case of a Kempe-change, there
exists a 4-coloring that cannot be obtained from any 3-coloring.

In this paper, we present a linear-time checkable characterization of a 4-coloring of a 3-colorable
triangulation of the 2-sphere that can be obtained from a 3-coloring by a sequence of recoloring
operations at single vertices. In addition, we develop a quadratic-time algorithm to find such a
recoloring sequence if it exists; our proof implies that we can always obtain a quadratic length
recoloring sequence. We also present a linear-time checkable criterion for a 3-colorable triangulation
of the 2-sphere that all 4-colorings can be obtained from a 3-coloring by such a sequence. Moreover,
we consider a high-dimensional setting. As a natural generalization of our first result, we obtain
a polynomial-time checkable characterization of a k-coloring of a (k − 1)-colorable triangulation
of the (k − 2)-sphere that can be obtained from a (k − 1)-coloring by a sequence of recoloring
operations at single vertices and the corresponding algorithmic result. Furthermore, we show that
the problem of deciding whether, for given two (k +1)-colorings of a (k −1)-colorable triangulation of
the (k − 2)-sphere, one can be obtained from the other by such a sequence is PSPACE-complete for
any fixed k ≥ 4. Our results above can be rephrased as new results on the computational problems
named k-Recoloring and Connectedness of k-Coloring Reconfiguration Graph, which
are fundamental problems in the field of combinatorial reconfiguration.
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1 Introduction

In 1973, Fisk [14] proved that all 4-colorings of a 3-colorable triangulation of the 2-sphere
are Kempe-equivalent, that is, for any two 4-colorings of the graph, one is obtained from
the other by a sequence of Kempe-changes. The method of Kempe-changes is known as a
powerful tool for coloring of graphs (see e.g., [19, 10]), and has been intensively studied in
graph theory (see e.g., [26, 24, 27, 28, 13, 1, 12, 2]). In particular, Mohar [27] proved that
all 4-colorings of a 3-colorable planar graph are Kempe-equivalent using Fisk’s result, and
then Feghali [12] improved this for 4-critical planar graphs. Mohar and Salas [28] extended
Fisk’s result to toroidal triangulations.

The formal definitions of Kempe-change and Kempe-equivalence are given as follows. Let
α : V (G)→ {0, 1, . . . , k − 1} be a k-coloring of a graph G, let a, b be two distinct colors in
{0, 1, . . . , k − 1}, and let C be a connected component of the subgraph of G induced by the
vertices colored with either a or b. Then, a Kempe-change of α (at C) is an operation to give
rise to a new k-coloring by exchanging the colors a and b on all vertices in C. In particular, if
C consists of a single vertex, then we refer to such a Kempe-change at C as a single-change.
Two k-colorings of G are Kempe-equivalent if one is obtained from the other by a sequence
of Kempe-changes, and single-equivalent if one is obtained from the other by a sequence of
single-changes.

Let us return to Fisk’s result for the Kempe-equivalence. Let G be a 3-colorable triangu-
lation of the 2-sphere. The proof consists of the following two statements: All 3-colorings of
G are Kempe-equivalent under 4-colorings, and any 4-coloring of G is Kempe-equivalent to a
3-coloring. Here, a 3-coloring means that a coloring uses only three colors in {0, 1, 2, 3}. The
first statement, which is folklore, can be easily obtained as follows. Since G is a 3-colorable
triangulation, for any two 3-colorings α, β of G there uniquely exists a permutation π on
{0, 1, 2, 3} such that β = π ◦ α. Then, according to π, we can obtain β from α by a sequence
of Kempe-changes (under 4-colorings) each of which changes a color at only one vertex,
namely, a sequence of single-changes, by using the fourth color not appearing in α; see
Figure 1 for example. Therefore, the nontrivial and crucial part in Fisk’s result is to show
the second statement.

The above observation for the first statement says that all 3-colorings of G are single-
equivalent under 4-colorings. On the other hand, in general, some 4-coloring is not single-
equivalent to any of 3-colorings (Figure 2). Here natural questions arise: What 4-colorings
are single-equivalent to some 3-coloring? and which 3-colorable triangulations of the 2-sphere
have the property that all 4-colorings are single-equivalent?

In this paper, we resolve these questions in the following sense, where n denotes the
number of vertices of G.
1. We present an O(n)-time checkable characterization for a 4-coloring of G to be single-

equivalent to some 3-coloring (Theorem 2). In addition, we show that, for any 4-colorings
α, β of G single-equivalent to some 3-coloring, there exists a sequence of single-changes of
length O(n2) from α to β and we can obtain it in O(n2) time (Theorem 6).
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Figure 1 Single-equivalence of two 3-colorings of a 3-colorable triangulation of the 2-sphere.
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Figure 2 A 4-coloring of a 3-colorable triangulation of the 2-sphere such that it is not single-
equivalent to any 3-coloring; no vertex can be recolored by a single-change. This coloring is “frozen”.

2. We provide an O(n)-time checkable criterion for a 3-colorable triangulation of the 2-sphere
that all 4-colorings are single-equivalent (Theorem 8).

Furthermore, we consider a triangulation of a high-dimensional sphere. Let G be a (k − 1)-
colorable triangulation of the (k − 2)-sphere for some positive integer k ≥ 4. Then, by the
same argument as in the case of k = 4 above, all (k − 1)-colorings of G are single-equivalent
under k-colorings. The following is a generalization of our first results (Theorem 2 and
Theorem 6):
3. We present a characterization for a k-coloring of a (k − 1)-colorable triangulation G of

the (k − 2)-sphere to be single-equivalent to some (k − 1)-coloring. In addition, we show
that, for any k-colorings α, β of G single-equivalent to some (k − 1)-coloring, there exists
a sequence of single-changes of length O(n2⌊(k−1)/2⌋) from α to β and we can obtain it in
O(n2⌊(k−1)/2⌋) time.

In fact, the third result can be further generalized to (k − 1)-colorable triangulations of
connected closed (k − 2)-manifolds satisfying a certain condition. This result is omitted in
this paper, and given in the full version [21].

Our results are deeply related to the computational problems named k-Recoloring and
Connectedness of k-Coloring Reconfiguration Graph, which ask the connectedness
of a k-coloring reconfiguration graph. Here, the k-coloring reconfiguration graph of a k-
colorable graph G, denoted by Rk(G), is a graph such that its vertex set consists of all
k-colorings of G and there is an edge between two k-colorings α and β of G if and only if β

is obtained from α by recoloring only a single vertex in G, i.e., by a single-change. Thus,

SoCG 2023



43:4 Reconfiguration of Colorings in Triangulations of the Sphere

two k-colorings of G are single-equivalent if and only if they are connected in Rk(G). Then
k-Recoloring and Connectedness of k-Coloring Reconfiguration Graph are
defined as follows.
k-Recoloring
Input: A k-colorable graph G and k-colorings α and β of G.
Output: YES if α and β are connected in Rk(G), and NO otherwise.

Connectedness of k-Coloring Reconfiguration Graph
Input: A k-colorable graph G.
Output: YES if Rk(G) is connected, and NO otherwise.

The problems k-Recoloring and Connectedness of k-Coloring Reconfiguration
Graph are fundamental in the recently emerging field of combinatorial reconfiguration (see
[35, 30] for surveys and [22] for a general solver), which are extensively studied. It is shown
that k-Recoloring is polynomial-time solvable if k ≤ 3 [6], while PSPACE-complete if
k ≥ 4 [3]. According to [35, Section 3.2], the situation is very different from that for
Kempe-equivalence, whose complexity is widely open. Bonsma and Cereceda [3] considered
k-Recoloring for (bipartite) planar graphs; k-Recoloring for planar graphs is PSPACE-
complete if 4 ≤ k ≤ 6 and that for bipartite planar graphs is PSPACE-complete if k = 4.
Cereceda, van den Heuvel, and Johnson [4] showed that Rk(G) is connected for any (k − 2)-
degenerate graph. By combining it with the fact that any planar graph is 5-degenerate and
any bipartite planar graph is 3-degenerate, we see that k-Recoloring and Connectedness
of k-Coloring Reconfiguration Graph are in P (all instances are YES-instances) for
any planar graph with k ≥ 7 and for any bipartite planar graph with k ≥ 5. In another
paper [5], Cereceda, van den Heuvel, and Johnson also showed that Connectedness of
3-Coloring Reconfiguration Graph is coNP-complete in general and is in P for bipartite
planar graphs.

The problem Connectedness of k-Coloring Reconfiguration Graph is also
fundamental in the studies of the Glauber dynamics (a class of Markov chains) for k-colorings
of a graph, which are used for random sampling and approximate counting. In each step of
the Glauber dynamics of k-colorings, we are given a k-coloring of a graph. Then, we pick a
vertex v and a color c uniformly at random, and change the color of v to c when the neighbors
of v are not colored by c. Hence, one step of this Markov chain is exactly a single-exchange
as long as we move to another coloring, and the state space is identical to the k-coloring
reconfiguration graph. The connectedness of the k-coloring reconfiguration graph ensures
that the Markov chain is irreducible. For the Glauber dynamics, the mixing property is one
of the main concerns. It is an open question whether the Glauber dynamics of k-colorings
has polynomial mixing time when k ≥ ∆ + 2, where ∆ is the maximum degree of a graph [23].
From continuing work in the literature, we know that the Glauber dynamics mixes quickly
when k > 2∆ [23], k > 6

11 ∆ [36], and finally k > ( 6
11 − ε)∆ for a small absolute constant

ε > 0 [7]. Results on restricted classes of graphs have also been known. For example, Hayes,
Vera and Vigoda [17] proved that the Glauber dynamics mixes fast for planar graphs when
k = Ω(∆/ log ∆).

Our proofs provide algorithms for special cases of k-Recoloring and Connectedness
of k-Coloring Reconfiguration Graph. Here, we are supposed to be given a simplicial
complex K whose geometric realization is homeomorphic to the (k − 2)-sphere such that its
1-skeleton G is (k−1)-colorable. As we have seen, all (k−1)-colorings of G belong to the same
connected component of Rk(G); we refer to it as the (k − 1)-coloring component of Rk(G).
Our third result (including the first) implies that, provided one of the input k-colorings α
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and β belongs to the (k − 1)-coloring component of Rk(G), the problem k-Recoloring
for G can be solved in linear time in the size #K of the input simplicial complex K. In
particular, if k is fixed, then our result says that it can be solved in polynomial time in
n. Our second result implies that Connectedness of 4-Coloring Reconfiguration
Graph for a 3-colorable triangulation of the 2-sphere can be solved in linear time in n.

We further investigate the computational complexity of the recoloring problem for a
(k−1)-colorable triangulation G of the (k−2)-sphere. It is still open whether k-Recoloring
for G can be solved in polynomial time, although we prove the polynomial-time solvability of
the special case where one of the input k-colorings α and β belongs to the (k − 1)-coloring
component of Rk(G). In this paper, we additionally show that, if the number of colors which
we can use increases by one, then it is difficult to check the single-equivalence between given
two colorings:
4. For any fixed k ≥ 4, the problem (k + 1)-Recoloring is PSPACE-complete for (k − 1)-

colorable triangulations of the (k − 2)-sphere (Theorem 13).
In the case of k = 4, our result is stronger than the PSPACE-completeness of 5-Recoloring
for planar graphs, which is known in the literature [3].

We here emphasize that, for our algorithmic results, we are given a triangulation of a
sphere, but not only its 1-skeleton. We need this assumption since our algorithm uses the
triangulation and obtaining the triangulation from the 1-skeleton is hard. Indeed, for each
fixed d ≥ 5, the sphere recognition problem is undecidable [37, 8]: Namely it is undecidable
whether a given simplicial complex is a triangulation of the d-sphere. This implies that it is
also undecidable whether a given graph is the 1-skeleton of some triangulation of the d-sphere.
When d = 3, the sphere recognition is decidable [31, 34], but not known to be solved in
polynomial time (while it is known to be in NP [33]); the decidability is open when d = 4.
Therefore, when d ≥ 3, to filter out the intrinsic intractability of sphere recognition, we
assume that a triangulation is also given along with a graph. On the other hand, when d = 2,
we can decide whether a graph is the 1-skeleton of some triangulation in linear time [20]. In
this case, the size of a triangulation is the same as the size of its 1-skeleton in the order of
magnitude by Euler’s formula, and therefore, the assumption that a triangulation is also
given is not relevant.

Organization

This paper is organized as follows. In Section 2, we introduce notation. We provide a linear-
time checkable characterization of the 3-coloring component of a 3-colorable triangulation
of the 2-sphere in Section 3, which answers the first question. Section 4 is devoted to
resolving the second question: We present a linear-time checkable criterion for a 3-colorable
triangulation of the 2-sphere that any two 4-colorings are single-equivalent. In Section 5, we
show the PSPACE-completeness of (k + 1)-Recoloring for (k − 1)-colorable triangulations
of the (k − 2)-sphere for k ≥ 4. The arguments on our third result (a high-dimensional
generalization of our first result) and several proofs of the statements marked with ⋆ are
omitted. They are given in the full version of this paper [21].

2 Preliminaries

For a set A, we denote by #A the cardinality of A.
Let G = (V, E) be a graph. For v ∈ V , we denote by NG(v) the set of neighbors of v and

by δG(v) the set of edges incident to v; we simply write N(v) and δ(v) if G is clear from the
context. A map α : V → {0, 1, . . . , k − 1} is called a k-coloring if α(u) ̸= α(v) for each edge

SoCG 2023
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StK(v) LkK(v) StK(e) LkK(e)

Figure 3 An example of the star complexes and the link complexes of a 2-dimensional simplicial
complex K.

{u, v} ∈ E. A vertex v ∈ V is said to be recolorable with respect to a k-coloring α if there is
a k-coloring α′ such that α′(u) = α(u) for u ∈ V \ {v} and α′(v) ̸= α(v), i.e., we can change
the color α(v) of v.

Let Sd denote the d-sphere. A triangulation of Sd is a pair of a simplicial complex K

and a homeomorphism h : |K| → Sd, where |K| denotes the geometric realization of K. See,
for instance, Munkres [29] for fundamental terminology in simplicial complexes. Throughout
this paper, we identify |K| with Sd and omit to write h. For a simplex σ ∈ K, its star
complex StK(σ) and link complex LkK(σ) are defined by

StK(σ) := {τ ∈ K | σ and τ are faces of a common simplex in K},
LkK(σ) := {τ ∈ K | σ ∩ τ = ∅, σ ∗ τ ∈ K},

where σ ∗ τ denotes the join of σ and τ (see [29, Section 62]). Figure 3 shows examples. Also,
let Std

K(σ) denote the d-simplices in StK(σ). For a subset K ′ ⊆ K, we define |K ′| ⊆ Sd by
|K ′| :=

⋃
σ∈K′ σ. For instance, if v is a vertex of a triangulation of a surface without boundary,

then | StK(v)| and |LkK(v)| are homeomorphic to a closed disk and a circle, respectively.
In this paper, we specify a triangulation by an embedded graph G in Sd, which is actually
the 1-skeleton of a triangulation K. Also, we suppose that the input of k-Recoloring and
Connectedness of k-Coloring Reconfiguration Graph is the simplicial complex
K; for example, we are given the set of faces of a triangulation of the 2-sphere. We use
StG(σ) instead of StK(σ) by abuse of notation. For example, St0

G(v) \ {v} = NG(v) and
St1

G(v) \ LkG(v) = δG(v). Also, we simply write St(σ) and Lk(σ) if G or K is clear from the
context.

It is well-known that a triangulation of the 2-sphere is 3-colorable if and only if every
vertex has an even degree (i.e., Eulerian). In this sense, a 3-colorable triangulation is said
to be even. More generally, a triangulation K of a closed d-manifold is even if # Std(σd−2)
is even for every (d− 2)-simplex σd−2 ∈ K, where d ≥ 2. If the 1-skeleton of K is (d + 1)-
colorable, then K is even. By [16, Sections I.4 and VI.2], the converse is also true for Sd,
more generally, for simply-connected manifolds. Hence, it is easy to check whether a given
triangulation of Sd is (d + 1)-colorable.

3 A characterization of the (k − 1)-coloring component

In this section, we resolve the first question posed in Section 1: In a 3-colorable triangulation G

of the 2-sphere, what 4-colorings are single-equivalent to some 3-coloring? A characterization
for high-dimensional cases can be obtained by a similar argument, which is omitted and
given in the full version of this paper [21].

Let G = (V, E) be a 3-colorable triangulation of the 2-sphere. Recall that all 3-colorings
of G belong to the same connected component of R4(G); we refer to it as the 3-coloring
component of R4(G). Let n denote the number #V of vertices of G.
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Figure 4 An example of the signature assignment to the faces. Red edges depict the +-nonsingular
edges and blue edges depict the −-nonsingular edges.

Let F be the set of faces of G. We first define the signature on a face in F with respect
to a 4-coloring of G and its related concepts, which were originally introduced in [18] (see
also [32, Section 8 of Chapter 2]). These play an important role in our characterization.

Let α : V → {0, 1, 2, 3} be a 4-coloring of G. We assign a signature +1/−1 to each face
f ∈ F so that, for every pair of adjacent faces f, f ′ with f = {u, v, w} and f ′ = {u′, v, w},
they have the same signature if and only if α(u) ̸= α(u′), where two faces f, f ′ ∈ F are said to
be adjacent if f and f ′ share an edge, i.e., #(f ∩f ′) = 2. Such an assignment can be obtained
as follows. For each face f = {u, v, w} ∈ F , we denote by [α(f)] the cyclically ordered set
[α(u)α(v)α(w)] on {α(u), α(v), α(w)}, where u, v, w are arranged in counterclockwise order
in G if we see it from the outside of the 2-sphere. We define εα : F → {+1,−1} by

εα(f) :=
{

+1 if [α(f)] ∈ {[123],−[023], [013],−[012]},
−1 if [α(f)] ∈ {−[123], [023],−[013], [012]},

where the minus sign − indicates the opposite order, that is, −[ijk] = [jik]. We note here
that when we regard [123],−[023], [013],−[012] as oriented 2-simplices, they appear in the
boundary of an oriented 3-simplex [0123]: ∂[0123] = [123] ∪ −[023] ∪ [013] ∪ −[012]. A face
f ∈ F with εα(f) = +1 (resp. εα(f) = −1) is called a +-face (resp. −-face) with respect
to α. Figure 4 shows an example. Recall that, for v ∈ V , the set of faces containing v is
denoted as St2(v). For a 4-coloring α, let F +

α (v) (resp. F −
α (v)) denote the set of +-faces

(resp. −-faces) in St2(v).
An edge e ∈ E is said to be singular with respect to α if the two adjacent faces f, f ′ ∈ F

sharing e have different signatures, i.e., εα(f) ̸= εα(f ′), and to be nonsingular if it is
not singular [14, 15]. A nonsingular edge is particularly said to be +-nonsingular (resp.
−-nonsingular) if εα(f) = εα(f ′) = +1 (resp. εα(f) = εα(f ′) = −1). Figure 4 also illustrates
the +- and −-nonsingular edges. For v ∈ V , we denote by NSα(v), NS+

α (v), and NS−
α (v)

the set of nonsingular, +-nonsingular, and −-nonsingular edges incident to v, respectively.
Also, the set of nonsingular edges is denoted as NSα. The following are obtained by direct
observations.

▶ Lemma 1. Let α be any 4-coloring of a 3-colorable triangulation G of the 2-sphere.
(1) A vertex v ∈ V is recolorable with respect to α if and only if all edges incident to v are

singular, i.e., NSα(v) = ∅.
(2) The coloring α is a 3-coloring if and only if all edges are singular, i.e., NSα = ∅.

We can derive a necessary condition for a 4-coloring α of G to belong to the 3-coloring
component of R4(G) as follows. Let α′ be a 4-coloring obtained from α by changing the
color of v, i.e., α′(v) ̸= α(v) and α′(u) = α(u) for all u ∈ V \ {v}. Then the signatures of all
faces in St2(v) are inverted (see also Figure 5):

SoCG 2023
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Figure 5 An example of the change of the signatures by a single-change. As in Figure 4, red and
blue edges depict the +- and −-nonsingular edges, respectively.

εα′(f) =
{
−εα(f) if f ∈ St2(v),
εα(f) if f /∈ St2(v).

(1)

This implies that, if α and α′ belong to the same connected component in R4(G), then we
have #F +

α (v) = #F +
α′(v) and #F −

α (v) = #F −
α′(v) for all v ∈ V . Furthermore, Lemma 1 (2)

implies that, if α is a 3-coloring of G, then we have εα(f) ̸= εα(f ′) for all v ∈ V and all
adjacent f, f ′ ∈ St2(v). Therefore, it follows from the above equation and Lemma 1 (2) that
the following balanced condition holds if α belongs to the 3-coloring component of R4(G):
(B) For each v ∈ V ,

#F +
α (v) = #F −

α (v). (2)

Our main result in this subsection is showing that the balanced condition (B) is also
sufficient, that is, condition (B) characterizes the 3-coloring component of R4(G).

▶ Theorem 2. Let α : V → {0, 1, 2, 3} be a 4-coloring of a 3-colorable triangulation G of the
2-sphere. Then, α belongs to the 3-coloring component of R4(G) if and only if it satisfies the
balanced condition (B).

For the proof of Theorem 2, we observe the behavior of NSα when we recolor a vertex
from a 4-coloring α. If we change the color α(v) of a vertex v, then it follows from the
equation (1) that all singular edges in Lk(v) will be nonsingular and vice versa (see Figure 5).
Thus, the following holds, where, for sets A and B, let A△B denote the symmetric difference
(A \B) ∪ (B \A) of A and B.

▶ Lemma 3. Let α be a 4-coloring of a 3-colorable triangulation G of the 2-sphere and α′ a
4-coloring obtained from α by changing the color of a vertex v. Then

NSα′(u) =
{

NSα(u) if u /∈ N(v),
NSα(u)△ (Lk(v) ∩ δ(u)) if u ∈ N(v).

In particular, NSα′ = NSα△(Lk(v) ∩ E).

In our proof, the set NSα of nonsingular edges is viewed as the disjoint union of
noncrossing closed trails in G. Here, a closed trail is a closed walk such that all edges
are distinct. For a closed trail C of G and a vertex v ∈ V , we denote by Cv the
set of subpaths of C obtained from the restriction of C to δ(v), i.e., Cv := {{e, e′} |
{e, e′} is a subpath of C such that e, e′ ∈ δ(v)}. A closed trail C of G is said to be noncross-
ing if for any vertex v, no pair of subpaths P, P ′ ∈ Cv crosses in S2, i.e., P ′ is contained in
the closure of a connected component of | St(v)| \ P in S2, where P is viewed as a curve in
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Figure 6 An example of NS-pairings. A part of a triangulation of a 2-sphere is depicted. Colors
show closed trails. This NS-pairing is admissible. The gray areas show innermost closed trails.

S2. For a noncrossing closed trail C with a fixed orientation, we define LC by the union of
connected components of S2 \C such that it lies on the left side of some edge in C. Similarly,
we define RC by the union of connected components of S2 \ C such that it lies on the right
side of some edge in C. Since C is noncrossing, the family {LC , RC} forms a bipartition of
S2 \ C.

By fixing a certain face fout ∈ F as the outer face of G, we can define the volume of a set
of noncrossing closed trails in G as follows. We say that one of LC and RC is the outside of
C if it contains the outer face fout. The other is called the inside of C. Let FC ⊆ F denote
the set of faces in the inside of C. Then, for a set C of noncrossing closed trails in G, its
volume, denoted as vol(C), is the sum of the number of faces contained in the inside of C

over all C ∈ C, i.e., vol(C) :=
∑

C∈C #FC . It is clear that vol(C) = 0 if and only if C = ∅.
We will prove that any 4-coloring satisfying the balanced condition (B) has a recolorable
vertex v such that, by changing the color of v, the volume of a set of noncrossing closed
trails corresponding to the resulting 4-coloring strictly decreases from that of the original
one. This implies that, by repeating this, we can obtain a 4-coloring such that its volume is
zero, i.e., a 3-coloring.

We here see how NSα corresponds to a set of noncrossing closed trails in G. It is known
that, for any 4-coloring α of G and v ∈ V , the number # NSα(v) of nonsingular edges
incident to v is even (see e.g., [14, Lemma 5]). For v ∈ V , let πv be a partition of NSα(v)
such that each member of πv is of size two (such a partition exists since # NSα(v) is even),
and define π :=

⋃
v∈V πv. We refer to π as an NS-pairing (with respect to α). An NS-pairing

π =
⋃

v∈V πv uniquely determines a family Cπ of closed trails in G satisfying that all closed
trails in Cπ are disjoint and πv =

⋃
C∈Cπ

Cv for all v ∈ V . Note that NSα equals the disjoint
union of all closed trails C ∈ Cπ. Figure 6 provides an example of the set of closed trails
induced by an NS-pairing.

An NS-pairing π =
⋃

v∈V πv is said to be admissible if the following hold for any v ∈ V :
(A1) All members of πv consist of one +-nonsingular edge and one −-nonsingular edge;
(A2) No two pairs P, P ′ ∈ πv cross in | St(v)| ⊆ S2.
Let π be an admissible NS-pairing. Since each C ∈ Cπ is noncrossing by (A2), the inside of
C, and hence FC , are well-defined. We define the face set family Lπ ⊆ 2F by Lπ := {FC |
C ∈ Cπ}.
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The admissibility of π induces interesting properties on Cπ and Lπ as follows. Here, a
set family F ⊆ 2A is said to be laminar if, for any X, Y ∈ F , we have X ⊆ Y , X ⊇ Y , or
X ∩ Y = ∅.

▶ Lemma 4. Let π be an admissible NS-pairing with respect to a 4-coloring α.
(1) The restriction of α to C is a 2-coloring.
(2) The family Lπ is laminar.

Proof. (1). Take any member {{u, v}, {v, w}} of πv, which forms a subpath of some C ∈ Cπ.
It suffices to show that α(u) = α(w). We may assume that α(v) = 3.

Let n+ (resp. n−) denote the number of +-faces (resp. −-faces) in St2(v) ∩ FC . By
the definition of the signature map εα, we have α(w) ≡ α(u) + (n+ − n−) (mod 3) or
α(w) ≡ α(u) − (n+ − n−) (mod 3). Since πv is noncrossing, the set of nonsingular edges
incident to v in the inside of C is of the form of the union of a subset of πv. Moreover, since
all members of πv consist of one +-nonsingular edge and one −-nonsingular edge, the number
of +-nonsingular edges incident to v in the inside of C equals that of −-nonsingular edges.
This implies that n+ = n−. Thus α(u) = α(w) follows, as required.

(2). Take any two closed trails C, C ′ ∈ Cπ. Since π is admissible, in particular, no pair of
members in πv crosses in | St(v)| for any v ∈ V , the closed trail C ′ is contained in either the
inside or the outside of C. Thus, in the former case we have FC′ ⊆ FC , and in the latter
case we have FC ⊆ FC′ or FC ∩ FC′ = ∅, which implies that Lπ is laminar. ◀

Lemma 4 (2) implies that Cπ has an innermost closed trail in S2, which corresponds to a
minimal set in Lπ.

We are ready to prove Theorem 2.

Proof of Theorem 2. We have already seen the only-if part. In the following, we show the
if part. Let α : V → {0, 1, 2, 3} be a 4-coloring of G satisfying the balanced condition (B)
but not a 3-coloring, i.e., NSα ̸= ∅ by Lemma 1 (2).

We first see that α has an admissible NS-pairing. Since 2·#F +
α (v) = 2·# NS+

α (v)+#(δ(v)\
NSα(v)) and 2·#F −

α (v) = 2·# NS−
α (v)+#(δ(v)\NSα(v)), we have # NS+

α (v) = # NS−
α (v) by

(B). We construct an admissible NS-pairing as follows. For v ∈ V , let π′ := ∅, N+
v := NS+

α (v),
and N−

v := NS−
α (v). While N+

v ̸= ∅ and N−
v ̸= ∅, we take e+ ∈ N+

v and e− ∈ N−
v such

that one of the connected components of | St(v)| \ {e+, e−} contains no edges in N+
v ∪N−

v

(such a pair (e+, e−) always exists) and update π′ ← π′ ∪ {{e+, e−}}, N+
v ← N+

v \ {e+},
and N−

v ← N−
v \ {e−}. After the above procedure stops, we define πv as the resulting π′.

Then, we can see that πv satisfies (A1) and (A2). Therefore, π :=
⋃

v∈V πv is an admissible
NS-pairing.

The following claim is crucial for the proof of Theorem 2.

▷ Claim 5. There exists a recolorable vertex v0 ∈ V such that the 4-coloring α′ obtained
from α by recoloring v0 has an admissible NS-pairing π′ satisfying vol(Cπ′) < vol(Cπ).

If this claim is true, then by recoloring such v0 repeatedly, we finally obtain a 4-coloring α∗

and an admissible NS-pairing π∗ with respect to α∗ such that vol(Cπ∗) = 0. The equality
vol(Cπ∗) = 0 implies NSα∗ = ∅, i.e., α∗ is actually a 3-coloring by Lemma 1 (2). Therefore,
α belongs to the 3-coloring component of R4(G), as required.

In the following, we prove Claim 5. Take an arbitrary innermost closed trail C ∈ Cπ,
the existence of which is guaranteed by Lemma 4 (2), and an edge e = {v1, v2} ∈ C. Let
{v0, v1, v2} be the face in the inside of C, or in FC . Since α is a 4-coloring, the color α(v0) is
different from both α(v1) and α(v2). Therefore v0 does not belong to C by Lemma 4 (1),
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Figure 7 Reducing the volume. In this example, C′ = {C′
1, C′

2}.

implying that St2(v0) ⊆ FC . Since C is an innermost closed trail, no edge incident to the
vertex v0 is nonsingular with respect to α. Thus, by Lemma 1 (1), we can change the color
of v0.

Let α′ be the 4-coloring obtained from α by changing the color of v0. For each v ∈ N(v0),
we have # (δ(v) ∩ Lk(v0)) = 2, and denote δ(v) ∩ Lk(v0) by Pv. We define π′ =

⋃
v∈V π′

v by

π′
v :=


πv if v /∈ N(v0),
πv ∪ {Pv} if v ∈ N(v0) and NSα(v) ∩ Lk(v0) = ∅,
(πv \ {P}) ∪ {P △ Pv} if v ∈ N(v0) and πv contains P with |P ∩ Pv| = 1,

πv \ {Pv} if v ∈ N(v0) and πv contains Pv.

See also Figure 5. Then π′ is an NS-pairing with respect to α′ by Lemma 3.
Moreover, we can see that π′ is admissible as follows. It is clear that π′

v ∩ πv satisfies
(A1) and (A2) for each v ∈ V , implying that π′

v satisfies (A1) and (A2) if v /∈ N(v0), or
v ∈ N(v0) and πv contains Pv. Since the edge {v0, v} is singular with respect to α′, the path
Pv (resp. P △Pv) does not cross any P ′ ∈ πv (resp. P ′ ∈ πv \ {P}); π′

v satisfies (A2) even for
other v. Suppose that Pv = {{u, v}, {v, w}}. Then, we have εα′({u, v, v0}) = εα({w, v, v0})
and εα′({w, v, v0}) = εα({u, v, v0}). This implies that, if v ∈ N(v0) and πv contains P with
|P ∩ Pv| = 1, then P △ Pv consists of one +-nonsingular edge and one −-nonsingular edge
with respect to α′, and if v ∈ N(v0) and NSα(v) ∩ Lk(v0) = ∅, then Pv consists of one
+-nonsingular edge and one −-nonsingular edge with respect to α′. Thus π′

v satisfies (A1)
for other v.

Let C′ be the set of the closed trails in Cπ′ containing some e ∈ Lk(v0) ∩NSα′ . Then, we
have FC =

⋃
C′∈C′ FC′ ∪ St2(v0) and Cπ′ = Cπ \ {C} ∪ C′. Therefore, we obtain vol(Cπ′) =

vol(Cπ)−# St2(v0) < vol(Cπ); see also Figure 7
This completes the proof of the claim (and hence that of Theorem 2). ◀

Our proof of Theorem 2 is constructive; for a 4-coloring α satisfying the balanced
condition (B), we explicitly construct a sequence of single-changes from α to a certain
3-coloring α∗. This leads to the following.

▶ Theorem 6 (⋆). Let G be a 3-colorable triangulation of the 2-sphere. For any α and
β belonging to the 3-coloring component of G, we can obtain in O(n2) time a sequence of
single-changes of length O(n2) from α to β. In particular, the diameter of the 3-coloring
component of G is O(n2).

Theorems 2 and 6 immediately imply the polynomial-time solvability of 4-Recoloring
for G if one of the given α or β belongs to the 3-coloring component. We here note that, for
a 4-coloring α of G, we can check if it satisfies the balanced condition (B) in O(#F ) = O(n)
time.
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G

G1 G2

Figure 8 A triangulation is split by the separating triangle C highlighted by red lines.

0

0

1

1

2

2

Figure 9 The octahedral graph with a 3-coloring.

▶ Corollary 7. Let G be a 3-colorable triangulation of the 2-sphere. 4-Recoloring for
G can be solved in O(n) time, provided one of the input 4-colorings α and β belongs to
the 3-coloring component of R4(G). In addition, if both α and β belong to the 3-coloring
component, then we can obtain a reconfiguration sequence from α to β in O(n2) time.

4 Connectedness of the 4-coloring reconfiguration graph

In this section, we solve the second question posed in Introduction: In what 3-colorable
triangulation of the 2-sphere all 4-colorings are single-equivalent? To explain the answer, we
introduce some notation. Since we deal with only the case of the 2-sphere in this section, we
simply use the term a triangulation instead of a triangulation of the 2-sphere.

A separating triangle in a triangulation is a cycle of length 3 that does not bound a
face. Note that a triangulation with at least five vertices is 4-connected if and only if it
has no separating triangles. A triangulation with a separating triangle C can be split into
two triangulations, the subgraph induced by the inside of C and that by the outside of C,
respectively (Figure 8). Note that they share C. By iteratively applying this procedure to a
triangulation G with k separating triangles, we obtain a collection of k + 1 triangulations
without separating triangles. We call the k + 1 triangulations 4-connected pieces of G. It is
known [11] that the collection of the 4-connected pieces is uniquely determined. It is easy to
see that G is 3-colorable if and only if every 4-connected piece of G is 3-colorable.

The octahedral graph is the 1-skeleton of the octahedron (Figure 9), which has six vertices,
twelve edges, and eight faces, and is 3-colorable. A triangulation is said to be octahedron-
stacked if every 4-connected piece of G is isomorphic to the octahedral graph. The following
is the main theorem in this section.

▶ Theorem 8 (⋆). Let G be a 3-colorable triangulation. Then, R4(G) is connected if and
only if G is octahedron-stacked.
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Figure 10 The 4-contraction of v at {w1, w3}.
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Figure 11 The twin-contraction of {u, v} at {w1, w3}.

Since we can enumerate all separating triangles in linear time [9], the criterion in Theorem
8 can be used to obtain a linear-time algorithm for Connectedness of 4-Coloring
Reconfiguration Graph for a 3-colorable triangulation of the 2-sphere, as follows.

▶ Corollary 9. Connectedness of 4-Coloring Reconfiguration Graph for a 3-
colorable triangulation G of the 2-sphere is solvable in O(n) time.

We prove Theorem 8 by combining some lemmas together with the so-called generating
theorem. The following lemma deals with splitting a triangulation to obtain a 4-connected
piece, and allows us to focus on 4-connected 3-colorable triangulations. Due to space limit,
we leave a proof to the readers.

▶ Lemma 10. Let G be a 3-colorable triangulation with a separating triangle C, and let G1
and G2 be the two triangulations obtained by splitting along C. Then R4(G) is connected if
and only if both R4(G1) and R4(G2) are connected.

The if part of Theorem 8 is easily proven by Lemma 10 and the fact that R4(G) is
connected, where G is the octahedral graph. To prove the only if part, we now define two
operations to reduce a 3-colorable triangulation G to a smaller triangulation G′ as follows.
Let v be a vertex of degree four in G and let {w1, w2, w3, w4, w1} be the cycle that forms
the link of v. The 4-contraction of v at {w1, w3}, illustrated in Figure 10, is to remove v,
identify the vertices w1 and w3, and replace the two pairs of multiple edges obtained from
{{w1, w2}, {w2, w3}} and {{w1, w4}, {w3, w4}} with two single edges, respectively. Let u and
v be adjacent vertices of degree four, where {w1, w2, w3, v, w1} and {w1, u, w3, w4, w1} are the
cycles that form the links of u and v, respectively. The twin-contraction of {u, v} at {w1, w3},
illustrated in Figure 11, is to remove u and v, identify the vertices w1 and w3, and replace
the two pairs of multiple edges obtained from {{w1, w2}, {w2, w3}} and {{w1, w4}, {w3, w4}}
with two single edges, respectively.

Notice that we do not perform these operations if they give rise to multiple edges.
Matsumoto and Nakamoto proved the following generating theorem.
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▶ Theorem 11 ([25]). For every 4-connected 3-colorable triangulation G, there exists a
sequence G0, G1, . . . , Gℓ from G0 := G such that Gℓ is the octahedral graph, Gi is a 4-
connected 3-colorable triangulation for 0 ≤ i ≤ ℓ, and Gi is obtained from Gi−1 by either a
4-contraction or a twin-contraction for 1 ≤ i ≤ ℓ.

For a 4-contraction and a twin-contraction, we need the following lemma.

▶ Lemma 12. Let G be a 4-connected 3-colorable triangulation, and let G′ be a 4-connected
3-colorable triangulation obtained from G by either a 4-contraction or a twin-contraction. If
R4(G′) is disconnected, then so is R4(G).

It is not difficult to see that if the octahedral graph is obtained from a 3-colorable
triangulation G by a 4-contraction, then R4(G) is disconnected, and if the octahedral graph
is obtained from a 3-colorable triangulation G by a twin-contraction, then G has a separating
triangle, i.e. G is not 4-connected. Therefore, it follows from Theorem 11 and Lemma 12
that for a 4-connected 3-colorable triangulation G, R4(G) is disconnected, unless G is the
octahedral graph. By Lemma 10, this completes the proof of the only if part of Theorem 8.

The proof of Theorem 8 implies that if the answer to Connectedness of 4-Coloring
Reconfiguration Graph is NO, then in a given 3-colorable triangulation G, we can find
in polynomial time a 4-coloring that does not belong to the 3-coloring component of R4(G).
This would be a certificate for being a NO-instance.

5 PSPACE-completeness

As in Section 1, we show the following result in this section.

▶ Theorem 13 (⋆). For k ≥ 4, the problem (k + 1)-Recoloring for (k − 1)-colorable
triangulations of the (k − 2)-sphere is PSPACE-complete.

When restricted to the case k = 4, Theorem 13 implies that 5-Recoloring is PSPACE-
complete even for planar 3-colorable triangulations (i.e., even triangulations).

In order to prove Theorem 13, we introduce a new recoloring problem. For a list coloring,
we associate a list assignment L = (L(v))v∈V (G) with a graph G such that each v ∈ V (G)
is assigned a list L(v) of colors. For a list assignment L of a graph G, a map α on V (G) is
an L-coloring if α(v) ∈ L(v) for every v ∈ V (G) and α(u) ̸= α(v) for every {u, v} ∈ E(G).
For a graph G and a list assignment L of G, the L-coloring reconfiguration graph, denoted
by R(G, L), is defined as follows: Its vertex set consists of all L-colorings of G and there
is an edge between two L-colorings α and β of G if and only if β is obtained from α by
recoloring only a single vertex in G. We consider the following reconfiguration problem
named List-Recoloring.
List-Recoloring
Input: A graph G, a list assignment L of G, and two L-colorings α and β of G.
Output: YES if α and β are connected in R(G, L), and NO otherwise.
Bonsma and Cereceda [3] proved that List-Recoloring is PSPACE-complete for particularly
restricted graphs and list assignments.

We give a brief outline of the reduction from List-Recoloring to 5-Recoloring. In [3],
restricted graphs are planar (not necessarily even triangulations) and a list of restricted list
assignments is {0, 1, 2} or {0,1}. We construct an even triangulation graph from a restricted
graph used in [3] by inserting some vertices and graphs into faces and consider a 5-coloring
by using colors 0, 1, 2, 3, 4. Then, inserted graphs have a 5-coloring such that for each vertex
v, all colors except for the color assigned to v appear in the neighbor of v. Such a 5-coloring
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is called a frozen 5-coloring. We insert new graphs in such a way that their frozen 5-colorings
do not conflict. Since the coloring in the inserted graphs are frozen, for each vertex v not
contained in the original graph, all colors except for the color assigned to v appear in the
neighbor of v, i.e., all vertices not contained in the original graph have the property being
“frozen.” Therefore, the vertices contained in the original graph can only use colors in a
restricted list assignment used in [3]. Consequently, 5-Recoloring in our even triangulation
is the same as List-Recoloring in a restricted graph in [3].
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Abstract
A graph is 2-degenerate if every subgraph contains a vertex of degree at most 2. We show that every
2-degenerate graph can be drawn with straight lines such that the drawing decomposes into 4 plane
forests. Therefore, the geometric arboricity, and hence the geometric thickness, of 2-degenerate
graphs is at most 4. On the other hand, we show that there are 2-degenerate graphs that do not
admit any straight-line drawing with a decomposition of the edge set into 2 plane graphs. That is,
there are 2-degenerate graphs with geometric thickness, and hence geometric arboricity, at least 3.
This answers two questions posed by Eppstein [Separating thickness from geometric thickness. In
Towards a Theory of Geometric Graphs, vol. 342 of Contemp. Math., AMS, 2004].
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1 Introduction

A graph is planar if it can be drawn without crossings on a plane. Planar graphs exhibit
many nice properties, which can be exploited to solve problems for this class more efficiently
compared to general graphs. However, in many situations, graphs cannot be assumed to be
planar even if they are sparse. It is therefore desirable to define graph classes that extend
planar graphs. Several approaches for extending planar graphs have been established over the
last years [4, 14]. Often these classes are defined via drawings, for which the types of crossings
and/or the number of crossings are restricted. A natural way to describe how close a graph
is to being a planar graph is provided by the graph parameter thickness. The thickness of a
graph G is the smallest number θ(G) such that the edges of G can be partitioned into θ(G)
planar subgraphs of G. Related graph parameters are geometric thickness and book thickness.
Geometric thickness was introduced by Kainen under the name real linear thickness [17].
The geometric thickness θ̄(G) of a graph G is the smallest number of colors that is needed to
find an edge-colored geometric drawing (i.e., one with edges drawn as straight-line segments)
of G with no monochromatic crossings. For the book thickness bt(G), we additionally require
that only geometric drawings with vertices in convex position are considered.

An immediate consequence from the definitions of thickness, geometric thickness and
book thickness is that for every graph G we have θ(G) ≤ θ̄(G) ≤ bt(G). Eppstein shows that
the three thickness parameters can be arbitrarily “separated”. Specifically, for any number k
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44:2 On the Geometric Thickness of 2-Degenerate Graphs

there exists a graph with geometric thickness 2 and book thickness at least k [10] as well
as a graph with thickness 3 and geometric thickness at least k [11]. The latter result is
particularly notable since any graph of thickness k admits a k-edge-colored drawing of G

with no monochromatic crossings if edges are not required to be straight lines. This follows
from a result by Pach and Wenger [22], stating that any planar graph can be drawn without
crossings on arbitrary vertex positions with polylines.

Related to the geometric thickness is the geometric arboricity ā(G) of a graph G, in-
troduced by Dujmović and Wood [6]. It denotes the smallest number of colors that are
needed to find an edge-colored geometric drawing of G without monochromatic crossings
where every color class is acyclic. As every such plane forest is a plane graph, we have
θ̄(G) ≤ ā(G). Moreover, every plane graph can be decomposed into three forests [24], and
therefore 3θ̄(G) ≥ ā(G).

Bounds on the geometric thickness are known for several graph classes. Due to Dillencourt
et al. [5] we have n

5.646 + 0.342 ≤ θ̄(Kn) ≤ n
4 for the complete graph Kn. Graphs with

bounded degree can have arbitrarily high geometric thickness. In particular, as shown by
Barárt et al. [2], there are d-regular graphs with n vertices and geometric thickness at least
c
√

dn1/2−4/d−ε for every ε > 0 and some constant c. However, due to Duncan et al. [8], if
the maximum degree of a graph is 4, its geometric thickness is at most 2. For graphs with
treewidth t, Dujmović and Wood [6] showed that the maximum geometric thickness is ⌈t/2⌉.
Hutchinson et al. [15] showed that graphs with n vertices and geometric thickness 2 can have
at most 6n − 18 edges. As shown by Durocher et al. [9], there are n-vertex graphs for any
n ≥ 9 with geometric thickness 2 and 2n − 19 edges. In the same paper, it is proven that it
is NP-hard to determine if the geometric thickness of a given graph is at most 2. Computing
thickness [18] and book thickness [3] are also known to be NP-hard problems. For bounds on
the thickness for several graph classes, we refer to the survey of Mutzel et al. [19]. A good
overview on bounds for book thickness can be found on the webpage of Pupyrev [23].

A graph G is d-degenerate if every subgraph contains a vertex of degree at most d. So we
can repeatedly find a vertex of degree at most d and remove it, until no vertices remain. The
reversal of this vertex order (known as a degeneracy order) yields a construction sequence
for G that adds vertex by vertex and each new vertex is connected to at most d previously
added vertices (called its predecessors). Adding a vertex with exactly two predecessors is
also known as a Henneberg 1 step [12]. In particular, any 2-degenerate graph is a subgraph
of a Laman graph (i.e., a graph that is generically minimal rigid), however not every Laman
graph is 2-degenerate. All d-degenerate graphs are (d, ℓ)-sparse, for any

(
d+1

2
)

≥ ℓ ≥ 0, that
is, every subgraph on n vertices has at most dn − ℓ edges.

Our Results. In this paper, we study the geometric thickness of 2-degenerate graphs. Due
to the Nash-Williams theorem [20, 21], every 2-degenerate graph can be decomposed into 2
forests and hence has arboricity at most 2 and therefore thickness at most 2. On the other
hand, as observed by Eppstein [10], 2-degenerate graphs can have unbounded book thickness.
Eppstein’s examples of graphs with thickness 3 and arbitrarily high geometric thickness are
3-degenerate graphs [11]. Eppstein asks whether the geometric thickness of 2-degenerate
graphs is bounded by a constant from above and whether there are 2-degenerate graphs with
geometric thickness greater than 2. The currently best upper bound of O(log n) follows from
a result by Duncan for graphs with arboricity 2 [7]. We improve this bound and answer both
of Eppstein’s questions with the following two theorems.

▶ Theorem 1. For each 2-degenerate graph G we have θ̄(G) ≤ ā(G) ≤ 4.

▶ Theorem 2. There is a 2-degenerate graph G with ā(G) ≥ θ̄(G) ≥ 3.
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2 Proof of Theorem 1: The upper bound

In this section, we prove Theorem 1. To this end, we describe, for any 2-degenerate graph, a
construction for a straight-line drawing such that the edges can be colored using four colors,
avoiding monochromatic crossings and monochromatic cycles. This shows that 2-degenerate
graphs have geometric arboricity, and hence geometric thickness, at most four.

Before we give a high-level description of the construction we introduce some definitions.
For a graph G we denote its edge set with E(G) and its vertex set with V (G). Consider a
2-degenerate graph G with a given, fixed degeneracy order. We define the height of a vertex
height(v) as the length t of a longest path u0 · · · ut with ut = v such that for each 1 ≤ i ≤ t

vertex ui−1 is a predecessor of ui. The set of vertices of the same height is called a level of
G. By definition, each vertex has at most two neighbors of smaller height.

Our construction process embeds G level by level with increasing height. The levels are
placed alternately either strictly below or strictly to the right of the already embedded part of
the graph. If a level is placed below, then we use specific colors v and vs (short for “vertical”
and “vertical slanted”, respectively) for all edges between this level and levels of smaller
height. Similarly, we use specific colors h and hs (short for “horizontal” and “horizontal
slanted”, respectively) if a level is placed to the right. See Figure 1 (right).

To make our construction work, we need several additional constraints to be satisfied
in each step which we will describe next. For a point p in the plane, we use the notation
x(p) and y(p) to refer to the x- and y-coordinates of p, respectively. Consider a drawing
D of a 2-degenerate graph G of height k together with a coloring of the edges with colors
{h, hs, v, vs}. For the remaining proof, we assume that each vertex of G has either 0 or exactly
2 predecessors. If not, we add a dummy vertex without predecessors to the graph and make
it the second predecessor of all those vertices that originally only had 1 predecessor. We say
that D is feasible if it satisfies the following constraints:
(C1) For each vertex in G the edges to its predecessors are colored differently. If k > 0, then

each vertex of height k in G is incident to one edge of color h and one edge of color hs.
(C2) There exists some xD ∈ R such that for each vertex v ∈ V (G) we have x(v) > xD if

and only if height(v) = k.
(C3) There is no monochromatic crossing.
(C4) No two vertices of G lie on the same horizontal or vertical line.
(C5) Each v ∈ V (G) is h-open to the right, that is, the horizontal ray emanating at v directed

to the right avoids all h-edges.
(C6) Each v ∈ V (G) is v-open to the bottom, that is, the vertical ray emanating at v directed

downwards avoids all v-edges.
These constraints are schematized in Figure 1.

We now show how to construct a feasible drawing for G. We prove this using induction
on the height of the graph. The base case k = 0 is trivial, as there are no edges in the graph.
Assume that k ≥ 1 and the theorem is true for all 2-degenerate graphs with height k − 1.
Let H denote the subgraph of G induced by vertices with height less than k. By induction,
there is a feasible drawing D of H.

As a first step, we reflect the drawing D at the straight line x = −y. Thus, a point (x, y)
before transformation becomes (−y, −x). Additionally, we swap the colors hs and vs as well
as the colors h and v. Let D′ denote the resulting drawing. From now on, all appearing
coordinates of vertices refer to coordinates in D′. By construction, D′ satisfies (C3–C6).
Applying (C1) to D shows that in D′ each vertex of height k − 1 is incident to one edge of
color v and one edge of color vs. Applying (C2) to D shows that there exists yD′ ∈ R such
that for each vertex v ∈ V (H) we have y(x) < yD′ in D′ if and only if height(v) = k − 1.

SoCG 2023
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no vertex

no vertex
no vertex &
no h-crossing

no vertex &
no v-crossing

height
= k

hs

h

xD′

height
≤ k−2

height
= k−1

h

hs

Figure 1 Left: For each vertex v in a feasible drawing, there are no other vertices on the vertical
and the horizontal line through v. Moreover, v is h-open to the right and v-open to the bottom.
Right: All vertices in the highest level (of height k) are placed to the right of all vertices of smaller
height. Moreover, each vertex in that level is incident to one edge of color h and one edge of color hs.

}
}}> ε

> ε

> ε

slope m

xD′

Figure 2 Horizontal lines intersecting straight lines of slope m. Conditions (ii–iv) are illustrated.

As the second (and last) step, we place the points of height k of G such that the resulting
drawing is feasible. Let Lk denote the set of these vertices and let xD′ denote the largest
x-coordinate among all vertices in D′. Choose a sufficiently small slope m, with m > 0, and
a sufficiently small ε, with ε > 0, such that the following holds.

(i) For any distinct u, v ∈ V (H) with y(u) < y(v), the horizontal line through v and the
straight line through u with slope m intersect at a point p with x(p) > xD′ .

(ii) For any distinct u, v ∈ V (H) we have that ε < |y(u) − y(v)|.
(iii) For any distinct u, u′, v, v′ ∈ V (H) let p be the intersection point of the straight line

through u with slope m and the horizontal line through v and let p′ be the intersection
point of the straight line through u′ with slope m and the horizontal line through v′. If
x(p) ̸= x(p′), then ε < |x(p) − x(p′)|.

(iv) For any distinct u, v ∈ V (H) we have that ε is smaller than the distance between the
two straight lines of slope m through u and v, respectively.

The constraints are summarized in Figure 2. Such a choice of m and ε is possible, by
choosing m according to Condition (i) first and then ε according to the Conditions (ii–iv).

For each vertex w ∈ Lk let u and v be the two predecessors of w in H with y(u) < y(v)
and let pw denote the intersection point of the straight line of slope m passing through u

(called a slanted line) and the horizontal line passing through v. We will place w close to pw

and connect w to v using an edge of color h and we connect w to u using an edge of color
hs. To determine the exact location of the vertices, we consider the horizontal lines through
vertices v ∈ V (H) from bottom to top (with increasing y-coordinate) and for each such line
consider the intersections with slanted lines through vertices u ∈ V (H) with y(u) < y(v)
from left to right (with increasing x-coordinate). Let p1, . . . , pt denote the intersection points
in the order just described. For each intersection point pi let ℓi denote the straight line
through pi with slope −1/m (which is negative as m > 0), that is, ℓi is perpendicular to
straight lines of slope m. Every vertex w ∈ Lk with pw = pi will be placed on ℓi at a certain
distance from pw (specified later). Note that there might be multiple points with the same
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h

hs

slope m
90◦

u

v

w
radius ε/2k

height ≤ k − 1

pw = pi

ℓi

Figure 3 The placement of the kth point w in order of vertices in Lk.

Bi

slope m

Bj
v

Bislope m

Bj

u

pi pj

pi

pj

Figure 4 The placement of several points with a common “horizontal” predecessor v (left) or a
common “slanted” predecessor u (right). Edges with color h are drawn blue, edges with color hs are
drawn red.

predecessors and hence multiple vertices w ∈ Lk with pw = pi. For each pi we order all
such vertices arbitrarily. This gives an ordering of all vertices in Lk based on the ordering
p1, . . . , pt. If w is the kth vertex in this order, w is placed on ℓi to the bottom-right of pi

at distance ε/2k from pi; see Figure 3. In this fashion, all vertices in Lk are placed with
decreasing distance to their respective intersection point; see Figure 4.

We call the resulting drawing DG. We claim that DG demonstrates that the geometric
arboricity of G is at most four.

Vertices on distinct points, edges intersect in at most one point in DG. For each i ≤ t

let δi denote the distance between pi and the first vertex w placed close to pi. Then
δi ≤ δi−1/2 for each i with 1 < i ≤ t. For each i ≤ t let Bi be the region formed by
all points q ∈ R of distance at most δi to pi with x(q) > x(pi) and y(q) < y(pi) (Bi is a
quarter of a disk). Then all vertices w ∈ Lk with pw = pi are placed on distinct points
along the intersection of the line ℓi with Bi; see Figure 4.
Due to Conditions (ii) and (iv), all the regions Bi are disjoint. By construction, no two
vertices are placed on the same point within a region Bi. This shows that no two vertices
in G are placed on the same point in DG. Moreover, for the same reasons, for each vertex
v ∈ V (H) the edges between v and vertices in Lk do not contain vertices in their interior
and intersect in v only. This shows no edge in G contains vertices in its interior and any
two edges in G intersect in at most one point.

(C1) By construction, each vertex in Lk is incident to an edge of color h and an edge of
color hs. Hence, DG satisfies (C1).

(C2) By Condition (i), any horizontal line through some vertex of H and a slanted straight
line through a vertex of height k − 1 in H intersect in some point with x-coordinate larger
than xD′ . Each vertex w ∈ Lk is placed slightly to the right of such an intersection point.
Hence, DG satisfies (C2) with xDG

= xD′ .
(C3) The edges in the drawing D′ of H were not changed, so there are still no monochromatic

crossings of those edges. Consider an edge vw with v ∈ V (H) and w ∈ Lk.

SoCG 2023



44:6 On the Geometric Thickness of 2-Degenerate Graphs

height
= k

v/vs

xD′

height
≤ k−2

height
= k−1

slope m
w

v

hs

L

Figure 5 Checking Constraint (C3) for hs-colored edges.

First, assume that its color is h. Then x(w) > x(v) and y(w) < y(v) by construction.
Consider an edge e of color h in H. We shall prove that e does not cross vw. If both
endpoints of e lie above v, then e does not cross vw. If e crosses the horizontal line
through v in some point p, then x(p) < x(v) since v is h-open to the right in D′. Moreover,
one endpoint of e lies above v while the other endpoint lies below w due to Condition (ii).
So e does not cross vw. If both endpoints of e lie below v, then their y-coordinates are
smaller than y(w) due to Condition (ii). Hence, e does not cross vw in either case.
Now consider an edge v′w′ of color h with v′ ∈ V (H), y(v′) < y(v) and w′ ∈ Lk. As
y(w) > y(v′) by Condition (ii) and y(w′) < y(v′) by construction, these two edges do not
cross. This shows that edges of color h do not cross in DG.
Now assume that the color of vw is hs. By construction, v is the predecessor of w of
the smallest y-coordinate. Since w has at least one predecessor of height k − 1 and, by
induction, all vertices of this height are placed below the vertices of smaller height in D′,
we have that height(v) = k − 1. Consider the slanted straight line L (of slope m) through
v. By Condition (i), L does not intersect the convex hull of vertices of height less than
k − 1 in D′; see Figure 5. By induction, all vertices of height k − 1 in H are incident
to edges of color v and vs only. Hence, L does not intersect any edge of color hs in D′.
The edge vw has a positive slope slightly smaller than L and hence does not intersect
any edge of color hs in D′ either. It remains to show that vw does not intersect edges
v′w′ of color hs with v′ ∈ V (H), v′ ̸= v, and w′ ∈ Lk. Consider the slanted straight line
L′ (of slope m) through v′. Without loss of generality, assume that L is above L′ (the
case L = L′ produces no crossing since then v = v′). The edge v′w′ has a positive slope
slightly smaller than L′. By Condition (iv), the distance between L and w is smaller than
the distance between L and L′. Hence vw does not cross v′w′.
This shows that edges of color hs do not cross in DG and hence DG satisfies (C3).

(C4) No two vertices from H lie on a common vertical or horizontal line by induction.
Consider w ∈ Lk and the region Bi containing w. Due to Condition (ii) no horizontal
line through Bi contains a vertex from H . Moreover, by (C2) no vertical line through Bi

contains a vertex from H. Note that either two different regions Bi/Bj are separated
by a horizontal line or y(pi) = y(pj). In both cases, vertices placed in Bi/Bj cannot
have the same y-coordinate. This is clear in the former case and in the latter it is true
since we never select the same distance from pi/pj when placing the vertices. For the
x-coordinates we can argue similarly. Hence, DG satisfies (C4).

(C5) First, consider a vertex v ∈ V (H) and the horizontal ray L emanating at v to
the right. In the drawing D′, each vertex in H is h-open to the right, so L does
not intersect any h-colored edge from H. It remains to consider h-colored edges v′w

with v′ ∈ V (H) and w ∈ Lk. Then x(w) > x(v′) and y(v′) > y(w) > y(v′) − ε by
construction. So if y(v′) < y(v), L does not intersect v′w. If y(v′) > y(v), then observe
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that y(w) > y(v′) − ε > y(v) by Condition (ii). Hence L does not intersect v′w in either
case and v is h-open to the right in GD.
Now consider a vertex w ∈ Lk and the horizontal ray L emanating at w to the right. By
(C2), L does not intersect any edge from H. It remains to consider h-colored edges v′w′

with w′ ∈ Lk. Let v be the neighbor of w in H with vw colored h.
If v′ = v, consider the region Bi containing w. If w′ is in Bi, then w′ and w lie on the
diagonal ℓi in Bi. If w′ is in Bj with j < i, then w′ is placed to the left of w, and if w′ is
on Bj with j > i, then w′ is placed above w. In either case, L does not intersect v′w′.
Now suppose that v′ ̸= v. Assume that y(v′) < y(v) then by Condition (ii) and by
construction y(w) > y(v′) > y(w′). If on the other hand y(v′) > y(v) then y(v′) > y(w′) >

y(v) > y(w), again by Condition (ii) and by construction. In both cases, it follows that L

does not intersect v′w′.
This shows that each vertex of G is h-open to the right in DG.

(C6) In the drawing D′, each vertex in H is v-open to the bottom. The vertices in Lk are
not incident to any edges of color v. Hence, all vertices of G are v-open to the bottom in
DG. So (C6) is satisfied.

No monochromatic cycles. (C1–C6) are satisfied, thus DG is feasible, and uses 4 colors.
Consider any cycle in G and a vertex w of largest height in the cycle. Then its neighbors
u and v in the cycle have to be its predecessors. Due to (C1), uw and vw do not have
the same color. Hence there are no monochromatic cycles.

3 Proof of Theorem 2: The lower bound

In this section, we shall describe a 2-degenerate graph with geometric thickness at least 3.
For a positive integer n let G(n) denote the graph constructed as follows. Start with a vertex
set Λ0 of size n and for each pair of vertices from Λ0 add one new vertex adjacent to both
vertices from the pair. Let Λ1 denote the set of vertices added in the last step. For each pair
of vertices from Λ1 add 89 new vertices, each adjacent to both vertices from the pair. Let
Λ2 denote the set of vertices added in the last step. For each pair of vertices from Λ2 add
one new vertex adjacent to both vertices from the pair. Let Λ3 denote the set of vertices
added in the last step. This concludes the construction. Observe that for each i = 1, 2, 3,
each vertex in Λi has exactly two neighbors in Λi−1. Hence, G(n) is 2-degenerate. We claim
that for sufficiently large n the graph G(n) has geometric thickness at least 3. To prove
this result, we need several geometric and topological insights that are summarized in the
following lemmas.

Let Gk denote the grid formed by k horizontal straight-line segments crossing k vertical
straight-line segments. The grid Gk has four sides: the sets of left and right endpoints of the
horizontal segments and the sets of lower and upper endpoints of the vertical segments form
the four sides of Gk, respectively. The first and the last horizontal segment and the first
and the last vertical segment form the boundary of Gk while all other segments are called
the inner edges of Gk. We call an arrangement of straight-line segments combinatorially
equivalent to Gk a k-grid. Here, we call two arrangements of straight lines or straight-line
segments combinatorially equivalent if the embeddings given by the arrangement of their
graphs (skeletons) are combinatorially equivalent. We point out that a k-grid sometimes
refers to a set of disjoint red segments and a set of disjoint blue segments where every pair of
red/blue segment intersects; e.g., [1]. Note that our definition is more restrictive. Among
others, no two segments share an endpoint in our notion of a k-grid. The following lemma
shows how both concepts are related. A proof is given in the full version [16, Section 3.1].
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A B

Figure 6 A tidy drawing of H4, the full 1-subdivision of K4,4. In particular, edges incident to A

do not cross each other, edges incident to B do not cross each other, and, hence, there are no three
pairwise crossing edges.

▶ Lemma 3. Each arrangement of k2k−1 disjoint red straight-line segments and k disjoint
blue straight-line segments, where each red segment crosses each blue segment, contains a
k-grid.

In the following, we need a grid-structure with some additional properties summarized in
the following definitions. For any point set Q in the plane, we call a straight-line segment in
the plane a Q-edge if it has an endpoint in Q. We call two point sets A and B separated if
A ∪ B is in convex position and the convex hull of A does not intersect the convex hull of B

(that is, along the boundary of the convex hull of A ∪ B the sets do not interleave).
Consider a complete bipartite graph Kn,n with bipartition classes A and B. Let Hn

denote the graph obtained from Kn,n by subdividing each edge exactly once. Let C denote
the set of subdivision vertices of Hn. Observe that each edge of Hn has one endpoint in
C and the other endpoint in A ∪ B, and hence is either an A-edge or a B-edge. We call a
geometric drawing of Hn tidy, if A and B are separated, there is no crossing between any two
A-edges, and there is no crossing between any two B-edges. Figure 6 shows a tidy drawing of
H4. Note that we make no (convexity) assumptions on the positions of subdivision vertices.
Since A and B are separated, a tidy drawing induces an ordering of A and B by traversing
these points along the convex hull of A ∪ B in the counterclockwise direction starting with
the vertices in A. An edge of Hn is called an inner edge if it is not incident to the first or
last vertex of A and not incident to the first or last vertex of B in the order given above.
Similarly, we call an edge of the underlying copy of Kn,n an inner edge if it corresponds to
two inner edges of Hn.

Consider a k-grid T in Hn with one side in A and one side in B (and the respective
opposite sides in C). We call the sides of T that are contained in A or B the A-side and
B-side, respectively. Let a1, . . . , ak denote the vertices of the A-side of T in the order given
by A and let b1, . . . , bk denote the vertices of the B-side of T in the order given by B. For
each i let xA

i denote the crossing point between the A-edge of T with endpoint ai and the
B-edge in T farthest away from ai. For i, j ≤ k, with i < j, the Ai,j-corridor of T is the
polygon enclosed by xA

i , ai, ai+1, . . . , aj , xA
j . Crossing points xB

1 , . . . , xB
k and Bi,j-corridors

are defined similarly. Figure 7 (right) shows examples of such corridors. A tidy k-grid is a
topological subgraph T of a tidy drawing of Hn such that

T is a k-grid with one side in A and one side in B (and the opposite sides in C),
for each i ≤ k, the segment aix

A
i is contained in the A1,k-corridor of T ,

for each i ≤ k, the segment bix
B
i is contained in the B1,k-corridor of T .

Figure 7 shows a tidy 3-grid and a 4-grid that is not tidy.
Our arguments require a tidy grid such that every cell contains a (subdivision) vertex

from C. Such a grid is called dotted. The following lemma shows that we can always find a
suitable dotted grid. A proof is given in the full version [16, Section 3.2].
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A B A B

Figure 7 Left: A 4-grid with sides in A and B that is not tidy: there is a (red) A-edge not
contained in the A1,k-corridor as well as a (blue) B-edge not contained in the B1,k-corridor. Right:
A tidy (sub)grid. The A1,2-corridor and the B2,3-corridor are highlighted.

Figure 8 Left: An illustration of Γ(5, 4). Only edges incident to the central vertices are sketched.
Middle: Two monotone paths in Γ(5, 4). Right: The four (3, 3)-quadrants.

▶ Lemma 4. There is a constant c2 such that for any integers n and k, with n ≥ 2c2k428k

and k ≥ 3, each tidy drawing of Hn contains a dotted tidy k-grid.

Next, we will consider connections between the vertices inside of a dotted grid. To find
such connections running in certain directions within the grid, we shall use a Ramsey type
argument, summarized in the following Lemma 5. We will apply this lemma in such a way
that the mentioned color r corresponds to connections within the grid. For positive integers
k and t let Γ(k, t) denote the graph whose vertex set consists of disjoint sets V j

i , i,j ≤ k,
on t vertices each, such that u ∈ V j

i and v ∈ V q
p are adjacent if and only if i ≠ p and

j ̸= q. See Figure 8 (left) for an illustration of Γ(5, 4). Let r ≥ 3. We call an r-coloring of
E(Γ(k, t)) admissible if each monochromatic copy of K5 is of color r and any path uvw is
not monochromatic in some color c with 3 ≤ c < r in case u ∈ V j

i , v ∈ V q
p , and w ∈ V y

x with
1 ≤ i < p < x ≤ k and with 1 ≤ j < q < y ≤ k or 1 ≤ y < q < j ≤ k. Loosely speaking,
Γ(k, t) is the t-blowup of the complement of a k×k-grid graph, and an r-coloring is admissible
if any monochromatic copy of K5 has color r and each monotone monochromatic path on at
least two edges is colored with some color in {1, 2, r}. Given i and j, the (i, j)-quadrants of
Γ(k, t) are the four subgraphs induced by

⋃
p<i,q<j

V q
p ,

⋃
p<i,q>j

V q
p ,

⋃
p>i,q<j

V q
p , and

⋃
p>i,q>j

V q
p ,

respectively. See Figure 8 for an illustration. A proof of the following lemma is given in the
full version [16, Section 3.3].

▶ Lemma 5. Let r and t denote positive integers. There is a constant c3 such that for each
k ≥ c3 and each admissible r-coloring of E(Γ(k, t)) there are i, j ≤ k such that each vertex
in V j

i is incident to four edges of color r with endpoints in different (i, j)-quadrants.

We also use the following bound on Erdős–Szekeres numbers.
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▶ Lemma 6 ([13]). There is a constant c4 such that for each positive integer k each set of
2k+c4

√
k log k points in general position in the plane contains a subset of k points in convex

position.

Finally, we prove that the graph G(n) described in the beginning of this section has
geometric thickness at least 3.

▶ Theorem 7. Let k, m, n be integers with k ≥ c3 (with c3 from Lemma 5 for r = 11 and
t = 5), n ≥ 2c2210k2

(with c2 from Lemma 4) and m ≥ 12n. For each N ≥ 22m+c4
√

2m log(2m)

(with c4 from Lemma 6) the graph G(N) has geometric thickness at least 3.

Proof. Consider any geometric drawing of G = G(N). We assume that the vertices are in
general position, otherwise we can apply a small perturbation at the vertices to achieve this
without introducing any new crossings. For the sake of a contradiction, suppose that there is
a partition of G into two plane subgraphs A and B. We refer to the sets Λ0, Λ1, Λ2, and Λ3
as points sets like in the definition of G. Our proof proceeds as follows. We find a large tidy
drawing of Hn with base points in Λ0 and subdivision vertices in Λ1. Lemma 4 guarantees a
dotted grid in this drawing. Then we consider the connections of the vertices in the grid cells
via Λ2. We use Lemma 5 to show that many connections stay within the grid and hence
many vertices of Λ2 lie in the grid as well. Finally, we consider the connections of vertices
from Λ2 within the grid and use Lemma 5 again, to find a configuration of vertices from Λ2
that leads to a contradiction.

Consider the point set Λ0. Lemma 6 yields a set Λ′
0 ⊆ Λ0 of 2m points in convex position,

since N ≥ 22m+c4
√

2m log(2m). We consider the points in Λ′
0 in counterclockwise order with

an arbitrary first vertex. Consider the copy of Hm in G between the set A of the first m

vertices of Λ′
0 and the set B of the last m vertices of Λ′

0. The edges of the underlying copy
of Km,m are of four different types: in Hm they correspond to two edges from A, or to two
edges from B, or one edge from A and one edge from B (where either the edge from A has
an endpoint in A and the edge from B has an endpoint in B or vice versa). Since m ≥ 12n

there is, due to the bipartite Ramsey theorem (precise statement given in the full version [16,
Lemma 6]), a copy of Kn,n with all edges of the same type, leading to a corresponding copy
H of Hn. Since n ≥ 3, this type cannot be one of the types with edges only from A or only
from B as both A and B are planar but K3,3 is not. Without loss of generality, assume that
all edges in H incident to A are in A and all edges incident to B are in B. Observe that H is
a tidy geometric drawing of Hn since A and B are crossing-free and the sets A and B are
separated (their convex hulls do not intersect and A ∪ B = Λ′

0 is in convex position). Further
note that 22k2 ≥ (k2 + 1)428 for k ≥ 4. Hence n ≥ 2c2210k2

≥ 2c2(k2+1)428(k2+1) , and there is,
by Lemma 4, a dotted tidy (k2 + 1)-grid T in H with vertices from Λ1 in the cells.

Let Λ′
1 ⊆ Λ1 denote a set of vertices consisting of one vertex from each cell of T . Consider

the graph Γ1 with vertex set Λ′
1 where two vertices are adjacent if and only if they are in

distinct rows and distinct columns of T . Then Γ1 forms a copy of Γ(k2, 1). We will define
an edge coloring Φ of Γ1 based on the drawing of the edges between Λ′

1 and Λ2. Consider
two vertices x, x′ ∈ Λ′

1. There are 89 vertices in Λ2 adjacent to both x and x′. We will
distinguish 11 different cases how the edges between such y ∈ Λ2 and x, x′ are drawn. Then,
by the pigeonhole principle, there will be nine vertices from Λ2 with the same type of drawing
of xy and x′y. The cases are not disjoint from each other and we break ties arbitrarily. If
there are nine vertices y ∈ Λ2 with xy, x′y ∈ E(A), then Φ(xx′) = 1. If there are nine such
vertices with xy, x′y ∈ E(B), then Φ(xx′) = 2. Now assume that there are no such nine
vertices, so there are 73 such vertices where one edge is from A and the other edge is from
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L′y
z

Figure 9 This arrangement is not realizable by straight-line segments, since the straight line
through L′ does not intersect any of the other lines twice and does not intersect itself.

B. These edges either leave T or stay within T . If we have at least nine vertices that stay
within T , we pick Φ(xx′) = 11. Otherwise, we can assume that there are at least 65 vertices
y, for which the bicolored path xyx′ leaves T . The cell containing x is the intersection of
an A-corridor and a B-corridor of T . So an edge xy intersects the boundary of T either at
one of the two “ends” of the A-corridor (if xy ∈ E(A)) or at one of the two “ends” of the
B-corridor (if xy ∈ E(B)). Similarly, an edge x′y has four options to leave T . Also observe
that each of xy and x′y can intersect the boundary of T only once, see Figure 9. The figure
shows the boundary edges of T and a supposedly straight-line segment L′ intersecting the
boundary twice. This arrangement can’t be realized by straight lines as the straight line
through L′ intersects itself once or some other line twice otherwise. This gives 8 possibilities
how the intersections can be located (under the assumption that xy and x′y are not both
in A and not both in B). We use colors 3, . . . , 10 to encode these possibilities. Whenever
there is a set Ŷ of nine vertices from Λ2 such that the paths xyx′ have the same locations of
intersections for all y ∈ Ŷ , the edge xx′ receives the corresponding color. If xx′ is neither
colored with 1, 2, or 11, we have at least 65 vertices connected via leaving T , and therefore
at least one of the eight possibilities how to leave T occurs nine times. So Φ is well defined
(up to breaking ties arbitrarily).

We claim that Φ is admissible. We first prove that colors 3, . . . , 10 do not induce a
monotone monochromatic path on two edges. For the sake of a contradiction, suppose that
there is such a path xx′x′′. By symmetry, we assume that there are vertices y, y′ and edges
xy′, x′y ∈ E(A), and x′y′, x′′y ∈ E(B) such that xy′ and x′y leave T at the same sides of
their respective A-corridors and x′y′ and x′′y leave T at the same sides of their respective
B-corridors. The situation is depicted in Figure 10. We claim that this arrangement is
not stretchable. To see this consider the 4-cycle between the intersections of xy′, x′′y and
the grid boundary as depicted in Figure 10 (right). This cycle needs to be embedded as
a quadrilateral. For two opposing corners (the depicted crossings L1/L2 and Lx/Lx′′) we
have to embed the edges such that the “stubs” lie in the inside of the quadrilateral. To
achieve this for one corner we need an incident concave angle in the quadrilateral and hence
the realization of the quadrilateral would require at least two concave angles, which is not
possible. Hence, such an arrangement is not stretchable. As a consequence, the colors
3, . . . , 10 do not induce a monotone monochromatic path on two edges. This immediately
shows that these colors also do not induce a monochromatic copy of K5. The color classes 1
and 2 correspond to subgraphs of the plane graphs A and B, respectively. Hence, they do
not induce monochromatic copies of K5 as well. This shows that all monochromatic copies
of K5 are of color r = 11. Therefore, Φ is admissible.

Now divide the (k2 + 1)-grid T into k2 many (k + 1)-grids T j
i , with i, j, ≤ k, where T j

i

consists of the A-edges on position (i − 1)k + 1, . . . , ik + 1 (in the ordering of A) and the
B-edges with positions (j − 1)k + 1, . . . , jk + 1 (in the ordering of B). See Figure 11. Let Γj

i

denote the subgraph of Γ1 corresponding to T j
i . Then Γj

i is a copy of Γ(k, 1) and Φ is an
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x′

x′′

x

y

y′

Lx

L1

Lx′′

L2

x′′

x

Figure 10 Left: A monotone path that is monochromatic under Φ in some color in {3, . . . , 10}.
Note that it is not possible that x′y and x′y′ intersect. Right: The edges from the left part forming
an arrangement that can’t be realized by straight-line segments.
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Figure 11 A (k2 + 1)-grid T contains k2 many (k + 1)-subgrids. (Here k = 5.)

admissible 11-coloring of Γj
i . Consider some fixed i, j ≤ k. Due to the choice of k there is,

by Lemma 5, an edge xx′ in Γj
i of color r = 11 (we do not need the stronger statement of the

lemma here). Hence, there is a set Y j
i ∈ Λ2 of nine vertices such that for each y ∈ Y j

i the
edges xy and x′y stay within T . Let Ax and Bx denote the A-corridor and B-corridor whose
intersection forms the cell containing x. Similarly, let Ax′ and Bx′ denote the respective
corridors for the cell containing x′. As argued above, edges within T cannot leave their
respective corridors. So each y ∈ Y j

i lies either in the cell Ax ∩ Bx′ or in the cell Bx ∩ Ax′ .
By the pigeonhole principle, there is a set Ỹ j

i ⊆ Y j
i of five vertices that lie in the same cell of

T . Note that this cell is contained in T j
i .

Consider the copy of Γ(k, 5) whose vertex set consists of the union of all sets Ỹ j
i , with

i, j ≤ k, where two vertices y ∈ Ỹ j
i and y′ ∈ Ỹ j′

i′ are connected if and only if i ̸= i′ and
j ̸= j′. For any two vertices y, y′ ∈ V (Γ(k, 5)) there is a (unique) vertex in Λ3 adjacent to
both vertices. We define a coloring Ψ of the edges of Γ(k, 5) similar to the coloring Φ above,
except that the color of an edge yy′ in Γ(k, 5) is determined by the drawing of the unique
edges yz and y′z, z ∈ Λ3 (instead of a set of nine edge pairs behaving identically). Then Ψ
is admissible by arguments similar to those applied for Φ. Due to the choice of k there are,
by Lemma 5, indices i, j ≤ k such that each vertex in Ỹ j

i is incident to four edges of color 11
under Ψ with endpoints in different (i, j)-quadrants of Γ(k, 5). See Figure 12 for illustrations.

Let Y = Ỹ j
i for the specific indices i and j from above. Consider the A-corridor A and

B-corridor B of T whose intersection forms the cell containing the set Y . For a vertex y ∈ Y

consider four vertices y1, . . . , y4 from different quadrants with Ψ(yyℓ) = 11, ℓ = 1, . . . , 4.
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z4

z3
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z2 y2

y1

y4

y3

Y
y

y2y1

y4
y3

Y

Figure 12 Left: Every vertex y ∈ Y is incident to four edges in Γ(k, 5) of color 11 with endpoints
in different quadrants. Right: In G, each y ∈ Y has two edges of the same type (A/B) that leave in
the same direction relative to y; here yz1 and yz2.

y

y′

y′′

x

z

z′

z′′

z̃

z̃′

z̃′′

T j
i

A

Figure 13 Construction in the proof of Theorem 7. Obtaining a monochromatic crossing at xy,
xy′ or xy′′ is unavoidable.

Each edge yyℓ ∈ Γ(k, 5) corresponds to two edges (of G) yzℓ and yℓzℓ for some zℓ ∈ Λ3 such
that zℓ lies within T . In particular, zℓ lies either in A or in B but not in the cell containing
y. As y1, . . . , y4 are from four different quadrants, two of the vertices z1, . . . , z4 lie in A or
two lie in B. Moreover, for either A or B two vertices lie on different “sides” of y within
the corridor. If for y we have |A ∩ {z1, . . . , z4}| ≥ 2 and at least two of these vertices lie on
different sides in A relative to y, we call y an A-vertex, otherwise we call y a B-vertex.

To get a contradiction we now show that Y contains at most two A-vertices and at
most two B-vertices, which violates |Y | = 5. Due to the choice of Y ⊆ Y j

i , there are
vertices x, x′ ∈ V (T j

i ) = V (Γj
i ) such that there are edges xy ∈ E(A) and x′y ∈ E(B) with

Φ(xy) = Φ(x′y) = 11. That is, xy ∈ A and x′y ∈ B. For the sake of a contradiction,
suppose that there are three A-vertices y, y′, y′′ in Y . Then there are three vertices ỹ, ỹ′,
ỹ′′ ∈ V (Γ(k, 5)) ⊆ Λ2 and three vertices z, z′, z′′ ∈ Λ3 such that yz, y′z′, y′′z′′ ∈ E(A),
ỹz, ỹ′z′, ỹ′′z′′ ∈ E(B), and z, z′, z′′ lie in A on the same side relative to y, but not in T j

i .
By the same reasoning we can find three vertices z̃, z̃′, z̃′′ such that yz̃, y′z̃′, y′′z̃′′ ∈ E(A),
but now these vertices lie on the other side in A relative to x (but also outside T j

i ). The
edges L = {yz̃, yz, y′z̃′, y′z′, y′′z̃′′, y′′z′′} split T j

i in four zones. In one of these zones, x has
to be located. No matter which zone we pick, there will always be a crossing of an edge
from {xy, xy′, xy′′} ⊆ E(A) with an edge in L ⊆ E(A) (see Figure 13), a contradiction.
Consequently, there are no three A-vertices in Y .
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Figure 14 This arrangement of 3k red segments and 3k blue segments contains no copy of Gk+1.
For each color and each slope there are k parallel segments (here k = 2 is depicted).

Similarly, there are no three B-vertices in Y . This contradicts |Y | ≥ 5. Hence, the
geometric thickness of G is at least 3. ◀

Theorem 2 is a direct consequence of Theorem 7.

4 Conclusions

We proved that the largest geometric thickness among 2-degenerate graphs is either 3 or 4,
answering two questions posed by Eppstein [11]. It remains open to decide whether there is
a 2-degenerate graph of geometric thickness or geometric arboricity 4.

Our proof of the lower bound shows a geometric thickness of at least 3 for a tremendously
large 2-degenerate graph. This is mainly due to using several rounds of Ramsey type
arguments. We make little attempts to reduce this size and there are several places in the
proof where a smaller size could be attained easily, for instance by using better or more
specific Ramsey numbers (Lemma 5). In one step in the proof (Lemma 3) we are given
a collection of red and blue straight-line segments in the plane and we need to find k red
segments and k blue segments forming a grid combinatorially equivalent to Gk (which is
formed by k horizontal segments crossing k vertical lines). We need exponentially many
segments to be given, however it seems that a linear number suffices. An arrangement of 3k

red segments and 3k blue segments without copy of Gk+1 is given in Figure 14.

▶ Question 1. Given an arrangement of 3k disjoint red straight-line segments and 3k disjoint
blue straight-line segments, where each red segment crosses each blue segment, are there
always k red segments and k blue segments forming a grid combinatorially equivalent to Gk?

The 2-degenerate graphs form a subclass of Laman graphs, which in turn form a subclass
of all graphs of arboricity 2. Our lower bound gives a graph of geometric thickness 3 in
either of these classes. However, for both larger classes it is unknown whether the geometric
thickness is bounded by a constant from above.
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Abstract
We propose an extension of the classical union-of-balls filtration of persistent homology: fixing a
point q, we focus our attention to a ball centered at q whose radius is controlled by a second scale
parameter. We discuss an absolute variant, where the union is just restricted to the q-ball, and a
relative variant where the homology of the q-ball relative to its boundary is considered. Interestingly,
these natural constructions lead to bifiltered simplicial complexes which are not k-critical for any
finite k. Nevertheless, we demonstrate that these bifiltrations can be computed exactly and efficiently,
and we provide a prototypical implementation using the CGAL library. We also argue that some of
the recent algorithmic advances for 2-parameter persistence (which usually assume k-criticality for
some finite k) carry over to the ∞-critical case.
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1 Introduction

In the past years, the theory of multi-parameter persistent homology has gained increasing
popularity. This theory extends the theory of (single-parameter) persistent homology by
filtering a data set with several scale parameters and observing how the topological properties
change when altering the ensemble of parameters. Most standard examples define two scale
parameters, where the first one is based on the distance within the data set and the second
one on its local density. The motivation for that choice is an increased robustness against
outliers in the data set.

Localized bifiltrations. We suggest a different type of bifiltration where the second parameter
controls the locality of the data. Let P be a finite set of data points in Euclidean space Rd

and q ∈ Rd a further point that we call the center. For two real values s, r ≥ 0, we define

Ls,r =

 ⋃
p∈P

Bs(p)

 ∩Br(q)
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45:2 The Localized Union-Of-Balls Bifiltration

where Bα(x) is the ball of radius
√
α centered at x (taking the square root is not standard,

but will be convenient later). In other words, we consider the union of balls around the
data points (as in many applications of persistent homology), but we limit attention to a
neighborhood around the center. It is immediate that Ls,r ⊆ Ls′,r′ for s ≤ s′ and r ≤ r′

so L := (Ls,r)s,r≥0 is a nested sequence of spaces. We define the collection of spaces L to
be the absolute localized bifiltration, see Figure 1 for an illustration. The goal of this paper
is to compute a combinatorial representation of this bifiltration: a bifiltration of simplicial
complexes which is homotopy equivalent to the absolute localized bifiltration at every choice
(s, r) of parameters.

Alternatively, we consider the variant where all points of Ls,r on the boundary of Br(q)
are identified (see Figure 2). This version gives rise to a bifiltration that we call the relative
localized bifiltration. This sometimes reveals more local information around q (as in Figure 2)
and is more frequently used in applications (see related work below). Again, we are asking
for an equivalent simplicial description.

Figure 1 Illustration of Ls,r. The radius s controls the radius around the points in P (black
dots) and grows in the horizontal direction. The radius r of the center point (red cross) grows in
vertical direction. The sets Ls,r are marked in dark, red color.

An interesting feature of these localized bifiltrations is that topological changes arise along
curves in the two-dimensional parameter space spanned by s and r. The perhaps simplest
example is obtained by setting d = 1, q = 0 and P = {1}. Then, Ls,r ̸= ∅ if and only if
r+ s ≥ 1. Hence, the empty and non-empty regions are separated by a line in the parameter
space. This implies that any equivalent simplicial bifiltration is ∞-critical, meaning that
there is no integer k for which it is k-critical. See Figure 3 for an illustration of k-criticality.

Given that ∞-critical simplicial bifiltrations are obtained from such a simple construction,
we pose the question whether such bifiltrations allow for an efficient algorithmic treatment.
In this paper, we focus on the first step, the generation of such bifiltrations. This requires
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Figure 2 Left: The two examples of Ls,r are both contractible and therefore cannot be distin-
guished further by homological methods. Right: The quotient space of Ls,r relative to Ls,r ∩ ∂Br(q)
can be visualized by coning all points on the boundary of the ball with a (virtual) vertex, drawn as
a black dot here. In the upper example, the resulting space has one hole, whereas the lower example
has two. Therefore the homology of the spaces changes and allows for distinction.

s

r

s

r

s

r

Figure 3 The active region and entry curve of a fixed simplex in the parameter space of a
simplicial bifiltration, if it is 1-critical (left), 4-critical (middle) and ∞-critical (right). For a more
formal definition of k-criticality, see, for instance, [19].

to compute, for every simplex its entry curve, that is, the boundary between the region of
the parameter space where the simplex is present and where it is not present (see Figure 3).
A natural idea might be to reduce to the k-critical case, approximating the entry curve
by a staircase with k steps (a sequence of horizontal and vertical segments). However, to
ensure an accurate approximation, the value of k might be quite high which complicates the
algorithmic treatment and introduces another parameter to the problem. Also, resorting to
an approximation is unsatisfying, especially for the generation step which is only the first
step in the computational pipeline: while a discretization might suffice for many tasks, it
restricts the possibilities of subsequent steps. We therefore advocate the computation of an
exact representation instead.

Contributions. We give algorithms to compute absolute and relative localized bifiltrations
exactly and efficiently. The entry time of every simplex into the bifiltration is described by a
curve in the 2-dimensional parameter space that consists of line segments and parabolic arcs.

SoCG 2023
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In the absolute case, a simplicial bifiltration is obtained using alpha complexes (also
known as Delaunay complexes) and the Persistent Nerve Theorem. To determine the entry
curve of a (Delaunay) simplex, we solve a convex minimization problem on the dual Voronoi
polytope parameterized in s. We show that the solutions yield a polygonal chain within the
Voronoi polytope, and every line segment translates to one arc of the entry curve in the
parameter space. We also describe an efficient algorithm to compute the entry curves of all
simplices in amortized constant time per simplex.

In the relative case, we use a variant of the Persistent Nerve Theorem for pairs. However,
the Voronoi partition does not satisfy the prerequisites of this Nerve theorem; we show how
to subdivide the Voronoi cells for planar inputs to overcome this problem. The entry curves
of simplices are determined by the same convex optimization problem as in the absolute case,
but now asking for a maximal solution, and can be treated with similar methods.

We provide a prototypical implementation1 of the absolute case in the plane, based on the
Cgal library. This software allows us to visualize the entry curves of localized bifiltrations
and serves as a starting point for subsequent algorithmic studies of ∞-critical bifiltrations.
We argue that an algorithmic treatment is in reach by showing that barcode templates of
such bifiltrations are computable with the same strategy as in the 1-critical case.

Related work. Applying the homology functor with field coefficients to absolute (relative)
localized bifiltrations leads to persistence modules which we call absolute (relative) localized
persistence modules. Horizontal and vertical slices of the relative localized persistence module
are known as persistent local homology (PLH) modules in literature, see the survey [25].

A persistent version of local homology was first considered by Bendich et al. [5] to infer the
local homology of a stratified space given by a point cloud. Their PLH modules are defined
via extended persistence diagrams [16] and the inherent two parameters (s and r in our
notation) are taken into account through vineyards [17]. The study of stratified spaces with
the help of PLH is continued in [7], where points of stratified spaces are clustered into same
strata. In [5] and [7], PLH modules are computed with modified alpha complexes. Skraba
and Wang [38] define two variants of PLH and show how both of them can be computed via
approximations by Vietoris-Rips complexes. A further application is given by Ahmed, Fasy
and Wenk who define a PLH based distance on graphs used for road network comparison [1].

The work mentioned above relies on relative versions of PLH. A persistence module
similar to a horizontal slice of an absolute localized persistence module is used by Stolz [39]
for outlier robust landmark selection. Von Rohrscheidt and Rieck [40] consider (samples
of) tri-persistence modules to measure how far a given neighborhood of a point is from
being Euclidean to obtain the “manifoldness” of point clouds. These tri-persistence modules
are obtained by removing the open ball Bo

t (q) from Ls,r. PLH modules of a filtration
(Ls,r ∩ ∂Br(q))s≥0 in combination with multi-scale local principal component analysis are
used in [6] to extract relevant features for machine learning from a data set. Other applications
of variants of persistent local (co)homology include [21], [41] and [42].

Our work suggests bifiltrations for multi-parameter persistence. Other natural construc-
tions of bifiltrations resulting from point-set inputs are the density-Rips bifiltration [13],
the degree-Rips bifiltration [32, 36, 37] and the multi-cover filtration [18, 24]; see [10] for a
comparison of these approaches in terms of stability properties. In all these approaches, the
second scale parameter models the density of a point, which is different from our approach
where it rather models the locality with respect to a point q.

1 https://bitbucket.org/mkerber/demo_absolute_2d/src/master/

https://bitbucket.org/mkerber/demo_absolute_2d/src/master/
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Computational questions in multi-parameter persistence have received a lot of attention
recently, including algorithms for visualization [32], decomposition [11, 22], compression [2,
26, 33] and distances [9, 29, 30]. In all aforementioned approaches, the input is assumed to
be a simplicial bifiltration that is at least k-critical (and usually even 1-critical), so none of
these algorithms is readily applicable to the filtrations computed in this work.

The ∞-critical bifiltrations appearing in our work yield persistence modules that fulfill
the tameness conditions of Miller [35]. In [35] the foundations to vastly generalize the
aforementioned k-critical setting are laid. However, it is of rather theoretical nature and in
contrast, we propose an inital setup for a concrete algorithmic treatment which might be
followed along the suggested route in [34] (see Section 20).

2 The absolute case

We need the following concepts to formally state our problem: For s, r ∈ R, we write
(s, r) ≤ (s′, r′) if s ≤ s′ and r ≤ r′. A bifiltration is a collection of topological spaces
X := (Xs,r)s,r≥0 such that Xs,r ⊆ Xs′,r′ whenever (s, r) ≤ (s′, r′). A bifiltration is finite
simplicial if each Xs,r is a subcomplex of some simplicial complex K.

A map of bifiltrations ϕ : X → Y is a collection of continuous maps (ϕs,r : Xs,r →
Ys,r)s,r≥0 that commute with the inclusion maps of X and Y . Two bifiltrations are equivalent
if there is a map ϕ : X → Y such that each ϕs,r gives a homotopy equivalence (i.e., there
exists a map ψ : Y → X with each ψs,r being a homotopy inverse to ϕs,r).

For a finite point set P in Rd, called sites from now on, and a center point q ∈ Rd (not
necessarily a site), we consider the bifiltration L defined by

Ls,r =

 ⋃
p∈P

Bs(p)

 ∩Br(q)

with Bs(p) the set of points in distance at most
√
s from p. Our goal is to compute a finite

simplicial bifiltration that is equivalent to L.

Localized alpha complexes. The filtration Ls,∞ is the union-of-balls filtration, one of the
standard filtration types in persistent homology (with one parameter). It is also well-known
that alpha complexes [23] provide a practically feasible way of computing an equivalent
simplicial representation (at least if d is small). We summarize this technique next; the only
difference is that we localize the alpha complexes with respect to Br(q), which introduces a
second parameter but results in no theoretical problem:

For a site p, its Voronoi region is the set of points in Rd for which p is a closest site:

Vor(p) := {x ∈ Rd | ∥x− p∥ ≤ ∥x− p′∥ ∀p′ ∈ P}.

Every Vor(p) is closed and convex. The restricted cover Us,r := {Us,r(p) | p ∈ P} is given by

Us,r(p) := Bs(p) ∩Br(q) ∩ Vor(p).

For every s, r ≥ 0, we have that
⋃

p∈P Us,r(p) = Ls,r. The localized alpha complex is the
nerve of Us,r, that is, the abstract simplicial complex that encodes the intersection pattern
of the restricted cover elements:

As,r := Nrv Us,r = {{p0, . . . , pk} ⊆ P | Us,r(p0) ∩ . . . ∩ Us,r(pk) ̸= ∅}.

SoCG 2023
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See Figure 4 for an illustration. All Us,r(p) are closed and convex, and Us,r(p) ⊆ Us′,r′(p)
for (s, r) ≤ (s′, r′). With these conditions, the Persistent Nerve Theorem [4, 15] ensures that
there is a homotopy equivalence between Ls,r and As,r for every s, r ≥ 0, and moreover,
these homotopy equivalences commute with the inclusion maps of Ls,r and As,r. Hence, the
bifiltrations are equivalent.

Figure 4 The Voronoi regions, the restricted cover Us,r (in gray) and the localized alpha complex
As,r for two different choices of (s, r). On the right, the upper blue vertices are indeed not connected
although the gray balls intersect, because they do not intersect within the (red) center circle.

Assuming that the sites are in generic position, that is, not more than k + 2 sites lie on a
common k-dimensional sphere for 1 ≤ k ≤ d− 1, the complexes As,r are subcomplexes of
the Delaunay triangulation of P , whose size is known to be at most O(n⌈d/2⌉) [3] and which
can be computed efficiently, especially in dimensions 2 and 3 [28, 43].

Entry curves. We further specify what it means to “compute” the finite simplicial bifiltration
A: computing the Delaunay triangulation of P yields all simplices belonging to A. For each
simplex σ ∈ A, we want to compute an explicit representation of its active region, defined as

Rσ := {(s, t) ∈ R2 | σ ∈ As,r}.

The active region is closed under ≤ in R2, meaning that if (x, y) ∈ Rσ, the whole upper-right
quadrant anchored at (x, y) also belongs to Rσ. We call the boundary of the active region
the entry curve of σ. See Figure 5 for an illustration of a family of entry curves.

To understand the structure of the entry curve, we define for σ = (p0, . . . , pk) the polytope
Vσ := Vor(p0) ∩ . . . ∩ Vor(pk). Then, letting p be some point of σ, we have that σ ∈ As,r if
and only if Vσ ∩Bs(p) ∩Br(q) ̸= ∅. Since Vσ is convex, there is a unique point p̂ ∈ Vσ as well
as q̂ ∈ Vσ with minimal distance to p as well as q. We write s0 := ∥p− p̂∥2, s1 := ∥p− q̂∥2

and r1 := ∥q − q̂∥2.

▶ Lemma 1. The active region Rσ lies in the half-plane s ≥ s0. Moreover, restricted to the
half-plane s ≥ s1, Rσ is bounded by the line r = r1, that is, the area above that line is in Rσ

and the area below the line is not.

Proof. The first part follows because by definition, for s < s0, the intersection Vσ ∩Bs(p) is
empty. Likewise, for r < r1, the intersection Vσ ∩Br(q) is empty, so Rσ is contained in the
half-plane r ≥ r1. Moreover, for s ≥ s1, the point q̂ lies in Vσ ∩ Bs(p), so the intersection
Vσ ∩Bs(p) ∩Br(q) is non-empty if and only if q̂ ∈ Br(q), which is equivalent to r ≥ r1. ◀



M. Kerber and M. Söls 45:7

s

r

Figure 5 Section of entry curves of a planar absolute localized bifiltration on 25 input points.

It remains to compute the entry curve in the s-range [s0, s1]. For that, we want to compute
for each such s, what is the minimal r-value for which Vσ ∩Bs(p) ∩Br(q) ̸= ∅. This minimal
r-value, in turn, is simply the distance of q to the set Vσ ∩Bs(p). We will study this geometric
problem in the next subsection; the solution will give us a parameterization of the boundary
of the active region Rσ by line segments and parabolic arcs.

Minimizing paths. Slightly generalizing the setup of the previous paragraph, let p, q ∈ Rd,
and let V be a closed convex polytope in Rd, that is, the intersection of finitely many closed
half-spaces in Rd. Let p̂, q̂ be the points in V with minimal distance to p and q, respectively.
Note that p = p̂ is possible if p ∈ V , and p̂ ∈ ∂V otherwise. This holds likewise for q. We
set s0 := ∥p− p̂∥2 and s1 := ∥p− q̂∥2. For any s ∈ [s0, s1], the intersection V ∩Bs(p) is not
empty, and we let γs denote the point in that intersection that is closest to q. See Figure 6
for an illustration of the case d = 2. The proofs of the next two statements are elementary
and only exploit convexity of V and that consequently, the distance function to q restricted
to V has only one local minimum. The proofs are in Appendix A of the full version.

▶ Lemma 2. We have that ∥p− γs∥2 = s. In particular, the function ∥p− γs∥2 is strictly
increasing for s ∈ [s0, s1].

▶ Lemma 3. The function γ : [s0, s1] → Rd, s 7→ γs is continuous and injective.

It follows that γ defines a path in Rd which we call the minimizing path for (V, p, q). A
minimizing path in the plane is displayed in Figure 6 (in blue). Because of the following
lemma, we henceforth assume wlog that we only consider instances (V, p, q) where V is
full-dimensional. The statement follows easily by the Pythagorean Theorem – see full version.

▶ Lemma 4 (Dimension reduction). Let V be a polytope in Rd contained in an affine subspace
W . Let p, q ∈ Rd and p′, q′ be the orthogonal projections of p and q to W , respectively. Then,
the minimizing path of (V, p, q) equals the minimizing path of (V, p′, q′) up to a shift in the
parameterization.

SoCG 2023
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q

p
p̂

q̂

Bs(3)(p) Bs(2)(p) Bs(1)(p)

γs(1)

γs(2)

γs(3)

Figure 6 For three radii s(1) < s(2) < s(3), the sets V ∩ Bsi (p) and the corresponding points
γs1 , γs2 , γs3 are illustrated. In fact, all points γs lie on the blue curve from p̂ to q̂. The red arcs are
arcs of a circle centered at q and indictate that γsi is indeed the minimizing point for si.

A face of a convex polytope V is the intersection of V with a hyperplane H such that all of
V lies in one of the closed half-spaces induced by H.

▶ Lemma 5 (Face lemma). Let γ be the minimizing path of (V, p, q) and let F be a face of V .
Then, γ ∩ F , the part of γ that runs along F , is a subset of the minimizing path of (F, p, q).

Proof. Let x be a point on γ ∩ F . By definition, x = γs for some s, that is, x is the closest
point to q in V ∩Bs(p). Since F ⊆ V , x is also the closest point to q in F ∩Bs(p), so x lies
on the minimizing path of F . ◀

By the Face Lemma, we know that the part of the minimizing path of (V, p, q) that runs
along ∂V coincides with the minimizing paths of its faces. It remains to understand the
minimizing path in the interior of V . The central concept to understand this sub-path is the
following simple definition:

▶ Definition 6. The bridge of (V, p, q) is the (possibly empty) line segment V ∩ pq, where pq
is the line segment of p and q.

▶ Lemma 7 (Bridge lemma). Let γ denote the minimizing path of (V, p, q). Then, the bridge
is a subset of γ. Moreover, every point on γ that does not belong to the bridge lies on ∂V .

Proof. Fix a point x on the bridge and let s := ∥x−p∥2. It is simple to verify that s ∈ [s0, s1].
We argue that x = γs: indeed, the point x is the closest point to q in Bs(p) (as it lies on
pq), and since it also lies in V , it minimizes the distance to q for the subset V ∩Bs(p). That
proves the first part.
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For the second part, assume for a contradiction the existence of a point y = γs for some
s ∈ [s0, s1] that is in the interior of V , but not on the bridge. Since y must lie on the
boundary of V ∩Bs(p), and is not on ∂V , it must lie in the interior of some spherical patch of
∂Bs(p). The distance function to q, restricted to the (d− 1)-dimensional sphere ∂Bs(p) has
no local minimum except at the intersection of pq with the boundary, but since y does not
lie on the bridge, it is not that minimizing point. Hence, moving in some direction along the
spherical patch decreases the distance to q, contradicting the assumption that y = γs. ◀

The Bridge Lemma tells us that the minimizing path runs through the interior of V
at most along a single line segment, the bridge; before and after the bridge, it might have
sub-paths on the boundary. Figure 6 gives an example where all three sub-paths are present.

▶ Theorem 8 (Structure Theorem). The minimizing path of (V, p, q) is a simple path starting
at p̂ and ending at q̂, and every point on the path lies on the bridge of some face of V . In
particular, the path is a polygonal chain.

Proof. It is clear that the path goes from p̂ to q̂ and is simple because γ is injective. Since
every point x on the path lies in the relative interior of some face F , the Face Lemma implies
that x lies on the minimizing path of (F, p′, q′) (with p′, q′ the projections in the subspace
of F ), and the Bridge lemma implies that x lies on the bridge of F . Hence, the path is
contained in a union of finitely many line segments, and therefore is a polygonal path. ◀

Algorithm. Let σ be a Delaunay simplex, V its Voronoi polytope, and p one of the closest
sites. We follow the natural approach to compute the minimizing path for (V, p, q) first.
Then, for every line segment ab on the minimizing path, we use the parameterization

s = ∥p− ((1 − t)a+ tb)∥2 r = ∥q − ((1 − t)a+ tb)∥2, (1)

which for t ∈ [0, 1] yields a branch of the entry curve. Both s and r are quadratic polynomials
in t, therefore the resulting curve is a parabola or line – see Appendix C of the full version
for a simple proof.

To compute the minimizing path, we outline the construction and defer details to Appendix
B of the full version: we compute the points p̂ and q̂ which are the start- and endpoint of
that path. Then we compute the bridges of V and of all its faces. This yields a collection of
line segments and we compute the induced graph whose vertices are endpoints of bridges (in
this graph, bridges can be split into sub-segments if the endpoint of another bridge lies in
the interior). This graph can be directed such that the distance to p increases along every
edge. In this graph, we walk from p̂ to q̂ to compute the minimizing path; the only required
predicate is to determine the next edge to follow at a vertex x. This is the edge along which
the distance to q drops the most which can be easily determined by evaluating the gradient
of the (squared) distance function to q restricted to the outgoing edges.

We sketch the complexity analysis of this algorithm, again defering to Appendix B of
the full version for details: Let N be the size of the Delaunay triangulation. Computing all
bridges over all Delaunay simplices is linear in N . Writing f for the number of faces of V ,
the graph constructed for V consists of f bridges. Since bridges do not (properly) cross, the
constructed graph for V has still O(f) edges, and the traversal to find the minimizing path
is done in O(f) as well. This immediately yields the complexity bound.

▶ Theorem 9. Let P be n points in general position in Rd where d is constant. Let N be the
size of the Delaunay triangulation of P . We can compute the entry curves of all Delaunay
simplices in time O(N).
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3 Implementation

We have implemented the case of absolute localized bifiltrations in the plane using the Cgal
library. Our code computes the Delaunay triangulation [43] and computes the minimizing
path for each simplex, using a simplified algorithm for the plane. For the minimizing path of
a Delaunay vertex, we refer to Figure 7 for an illustration: The path is obtained by starting
in p and following the bridge until the boundary is hit. The path must continue in one of
the two directions along the boundary and follows the boundary until q̂ is met (see the red
path in Fig. 7). The decision on which direction to follow can be answered by projecting q
to the supporting line of the boundary segment that is hit by the bridge and going towards
that projection point q′ (the bridge might also hit the boundary in a vertex; we ignore this
degenerate case in our prototype).

All geometric predicates required for this implementation are readily available in the
geometric kernel of Cgal [12]. For the absolute, planar problem, it was possible to work
exclusively with the Delaunay triangulation, avoiding the explicit construction of the Voronoi
polytope, but this will probably not be possible for other variants. In either case, the exact
geometric computation paradigm of Cgal guarantees that the obtained parameterization is
an exact representation of the simplicial bifiltration for the input data.

q̂
p

q

q
′

Figure 7 Illustration of the minimizing path in the plane for a Voronoi region.

4 The relative case

Relative localized bifiltrations. To better fit the situation studied in this section, we
re-define (s, r) ≤ (s′, r′) if s ≤ s′ and r ≥ r′. With this poset, we can define bifiltrations,
finite simplicial bifiltrations, and equivalence in an analogous way as in Section 2. We extend
these notions to pairs: A bifiltration of pairs is a collection of pairs of topological spaces
(or simplicial complexes) (X,A) := (Xs,r, As,r)s,r≥0 such that X and A are bifiltrations
and As,r ⊆ Xs,r. We have a finite simplicial bifiltration of pairs if X is a finite simplicial
bifiltration, and As,r is a subcomplex of Xs,r (which implies that also A is finite simplicial).
We call two bifiltrations of pairs (X,A) and (Y,B) equivalent if there is an equivalence
ϕ : X → Y such that the restriction maps (ϕ|As,r )s,r≥0 yield an equivalence of A and B.

For a finite point set P , a center q and s, r ≥ 0, set Ls =
⋃

p∈P Bs(p) for the union of
balls and Bo

r (q) for the open ball around the center. Then the relative localized bifiltration is
the following collection of pairs of spaces

(L,LCq) := (Ls, Ls \Bo
r (q))s,r≥0.
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Indeed, it can be checked easily that this construction yields a bifiltration of spaces (notice
the contravariance in the r-parameter). Our computational task is to find a finite simplicial
bifiltration of pairs equivalent to it.

What is the significance of this bifiltration? Note first that in general, a pair of bifiltrations
(X,A) induces a (relative) persistence module (Hn(Xs,r, As,r))s,r≥0, leading to

Hn((L,LCq)) = (Hn(Ls, Ls \Bo
r (q)))s,r≥0,

which we call the localized relative persistence module. By excision and the fact that all pairs
are “good pairs” [27], we have isomorphisms [38]

Hn(Ls, Ls \Bo
r (q)) ∼= Hn(Ls ∩Br(q), Ls ∩ ∂Br(q)) ∼= H̃n(Ls ∩Br(q)/(Ls ∩ ∂Br(q)))

with H̃ denoting reduced homology. These isomorphisms imply that the relative localized
persistence module corresponds point-wise to the space considered in Figure 2 (right).
Moreover, the excision isomorphism commutes with the inclusion maps Ls ⊆ Ls′ for s ≤ s′

which implies that the rows of the localized relative persistence module (with fixed r) are
isomorphic to the module (Hn(Ls ∩Br(q), Ls ∩∂Br(q)))s≥0 which was studied in [5], [7], [38].
Also the columns of the bifiltration (with s fixed) have been studied earlier in [38]. Hence,
the localized relative bifiltration encodes both types of modules of local persistent homology
studied in previous work (see Appendix D of the full version for a summary of basic notions).

We also remark that the computation of the relative localized persistence module can easily
be reduced to the case of absolute homology via the well-known coning construction [27, p.125],
yielding isomorphisms Hn(X,A) ∼= H̃n(X ∪ ω ∗ A) for pairs of topological spaces (X,A)
with ω denoting a new vertex. These isomorphisms are functorial, yielding an isomorphism
between the relative persistence module of a pair of bifiltrations and the absolute persistence
module of a bifiltration (using reduced homology). Moreover, if the pair (X,A) is finite
simplicial, so is X ∪ ω ∗A.

Nerves of pairs. To obtain an equivalent pair of finite simplicial complexes, we will define
suitable covers for Ls and Ls \Bo

r (q) and construct the corresponding nerve complexes. For
a (compact) topological space X, a cover UX of closed sets is good if the intersection of
any subset of cover elements of UX is empty or contractible. In particular, a closed convex
cover (as used in Section 2) is good because convex sets are contractible, and a non-empty
intersection of convex sets is convex.

For a pair (X,A) of spaces with A ⊆ X closed, a closed cover UX of X induces a cover
UA of A by restricting every cover element to A. We say that the cover UX is good for the
pair (X,A) if UX and UA are both good covers. With this definition, we obtain the following
version of the Persistent Nerve Theorem; it follows directly from the results of [4] and we
summarize the argument in Appendix A of the full version.

▶ Theorem 10 (Functorial nerve theorem of pairs). Let A ⊆ X ⊆ Rd and UX be a good cover
for the pair (X,A). Then the spaces X and Nrv UX are equivalent via a map ϕ : X → Nrv UX ,
and the restriction map of ϕ to A yields a homotopy equivalence of A and Nrv UA. Moreover,
the map ϕ is functorial which means that if X ⊆ X ′ and A ⊆ A′, the cover UX′ is obtained
by enlarging each element of UX (or leaving it unchanged) and is a good cover for the
pair (X ′, A′), then the maps ϕ and ϕ′ commute with the inclusion maps X → X ′ and
Nrv UX → Nrv UX′ , and the restricted maps to A and A′ commute with the inclusion maps
A → A′ and Nrv UA → Nrv UA′ .
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This (rather bulky) theorem implies the following simple corollary in our situation: If we can
find a filtration of (good) covers Us for the union of balls Ls, such that for every r ≥ 0, the
induced cover Us,r on Ls \Bo

q (r) is a good cover, then the pair (Nrv Us,Nrv Us,r)s,r≥0 is a
finite simplicial bifiltration of pairs equivalent to the localized relative bifiltration.

A good cover in the plane. A natural attempt to construct a good cover for (Ls, Ls \Bo
r (q))

would be to consider the cover induced by the Voronoi regions of P , namely {Vor(p)∩Bs(p)|p ∈
P}, similar as in Section 2. While this cover is good for Ls, it is not good for the pair, because
the removal of an (open) ball can lead to non-contractible cover elements and intersections;
Figure 8 illustrates several problems.

Br1
(q)

Br2
(q)

Br3
(q)

V1

V2

V3

Figure 8 Problems that arise when removing a ball Br(q) from the Voronoi cover: for radius
r1, the Voronoi region V1 becomes non-simply connected. For r2, the Voronoi regions V1 and V2

intersect in two connected components. For r3, the Voronoi region V2 is disconnected.

While the Voronoi cover itself does not work, we show that after suitably subdividing
the Voronoi cells into convex pieces, the induced cover is good for the pair (Ls, Ls \Bo

r (q)).
We will give the construction and will informally explain en passant why it removes all
obstructions for being good that are visible in Figure 8.

The construction has two parts: first, we split the Voronoi cell Vor(p) that contains q into
two pieces, by cutting along the line pq (we assume for simplicity that q lies in the interior of
some Voronoi cell). This initial cut ensures in particular that q does not lie in the interior of
a cover set anymore; this is a necessary condition because otherwise, removing a sufficiently
small open ball Bo

r (q) yields a non-simply connected set in the induced cover for Ls \Bo
r (q)

(compare radius r1 in Figure 8). This cut also avoids configurations where Vor(p) ∩ Bs(p)
gets disconnected because Br(q) is touching Bs(p) from the inside; we refer to the proof of
Lemma 16 in Appendix A of the full version for details.

To understand the second part of the construction, we call a line segment or ray e

problematic if the distance function to q, restricted to e, has a local minimum in the interior
of e. This is equivalent to the property that the orthogonal projection of q on the supporting
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line of the segment lies on e. Observe in Figure 8 that both for radius r2 and r3, the issue
comes from a problematic edge (for r2, the edge between V1 and V2 is problematic, for r3,
the edge between V2 and V3 is problematic).

In the second part of the construction, we go over all problematic edges in the Voronoi
diagram of P . For every such edge e, let q̂ denote the orthogonal projection of q on that edge.
The line segment qq̂ cuts through one of the polygons P incident to e, and we cut P using
this line segment into two parts. This ends the description of the subdivision. We denote the
set of 2-dimensional polygons obtained as S2(P, q). See Figure 9 for an illustration. Note
that the cuts introduced here cut every problematic edge into two non-problematic sub-edges
and also avoids that a polygon gets disconnected when removing Br(q).

Figure 9 Illustration of the subdivision S2(P, q). The subdivision lines are in red.

Importantly, all cuts introduced are line segments on lines through q. This implies that
no two of the cuts can cross. Moreover, no edge arising from a cut can be problematic. This
leads to the following theorem, whose proof is given in Appendix A of the full version.

▶ Theorem 11. The cover {Ls ∩ V | V ∈ S2(P, q)} is good for (Ls, Ls \Bo
r (q))s,r≥0.

Every cut increases the number of polygons by one, and the number of edges by at most
3. Since we introduce at most one cut per Voronoi edge, plus one initial cut, the complexity
of the subdivision is O(n).

Entry curves. It is left to compute the entry curves of every simplex in the nerve induced by
S2(P, q). The described method generalizes also to higher dimensions assuming a subdivision
inducing a good cover is available, but we keep the description planar for simplicity. In this
case, every simplex σ represents a polygon, edge, or vertex of the planar subdivision defined
by S2(P, q), which we denote by V . Note that σ has two entry curves: one for Ls and one
for Ls \Bo

r (q). The former is simple to describe: since Ls does not depend on r, the entry
curve is determined by the line of the form s = ∥p− p̂∥2, with p a closest site to V and p̂ the
closest point to p in V .
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For Ls \Bo
r (q), we fix s and search for the largest r such that Bs(p) ∩ V \Bo

r (q) is not
empty. This is equivalent to finding the point on V ∩Bs(p) with maximal distance to q, which
is the opposite problem to what was considered in Section 2. For brevity, we restrict the
discussion to the case of bounded polytopes V , postponing the (straight-forward) extension
to unbounded polytopes to Appendix B of the full version. We set q∗ as a point in V with
maximal distance to q, s0 := ∥p− p̂∥2 and s1 := ∥p− q∗∥2. For s ∈ [s0, s1], we define Γs to
be a point with maximal distance to q in the set V ∩Bs(p).

q

p
p̂

q
∗

Γs2

Γs1

Γs3

Bs3
(p)

Bs2
(p)

Bs1
(p)

Figure 10 Illustration of Γs for the same (V, p, q) as in Figure 6. The point Γs2 remains the
maximal point for a range of s-values, and the maximizing “path” (blue) jumps at some value of s.

The maximizing problem is not as well-behaved as the minimization problem: for general
polytopes V , the point Γs might not be unique, and there can be discontinuities in the image
of Γ; see Figure 10 for an example. However, such problems are caused by local extrema on
the boundary of Bs(p) ∩ V which can be excluded for the polytopes of S2(P, q). Hence, we
can define the maximizing curve Γ : [s0, s1] → Γs and infer (see Appendix B of full version):

▶ Lemma 12. For V ∈ S2(P, q), the point Γs is unique and the curve Γ is continuous.

The structure of the curve Γ is similar to its minimizing counterpart γ. The Dimension
Reduction Lemma and the Face Lemma also hold for Γ, with identical proofs. We define the
anti-bridge as the intersection of V with the ray emanating from p in the direction −pq (see
Figure 11). With that, we obtain the statement that the anti-bridge is part of Γ, and the
rest of Γ lies on ∂V , with an analogue proof as for the bridge lemma. This leads to

▶ Theorem 13 (Structure Theorem, maximal version). The maximizing path Γ is a subset of
the union of all anti-bridges over all faces of V . In particular, it is a polygonal chain.

The theorem also infers a way to compute the entry curve of σ constructing and traversing
a graph obtained by anti-bridges. We omit further details which are analogous to the
minimization case, and yield the same bound as in Theorem 9.

5 Barcode templates for ∞-critical bifiltrations

We demonstrate in this section that representing a bifiltration via non-linear entry curves does
not prevent an efficient algorithmic treatment. We focus on the case of the computation of
barcode templates as introduced by Lesnick and Wright [32]. The idea is as follows: restricting
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q

q
∗

p

p̂

Figure 11 Illustration of the maximizing path Γ for a polygon with only one local minimum and
one local maximum on the boundary. The path goes through the interior along the anti-bridge.

a bifiltration to a line of positive slope (called a slice) gives a filtration in one parameter,
and hence a persistence barcode. While we cannot associate a persistence barcode to the
bifiltration [13], the collection of barcodes over all slices yields a wealth of information about
the bifiltration. The software library RIVET2 provides a visualization of these sliced barcodes
for finite simplicial bifiltrations. To speed up the visualization step, RIVET precomputes
all combinatorial barcodes, that is, it clusters slices together on which the simplices enter
the filtration in the same order – it is well-known that the barcode combinatorially only
depends on this order, not the concrete critical values. The barcode template is then, roughly
speaking, the collection of all these combinatorial barcodes. Barcode templates have also
been used for exact computations of the matching distance of bifiltrations [9, 29].

All aforementioned approaches assume the bifiltration to be 1-critical, which means in
our notation that the active region of every simplex σ is the upper-right quadrant of a point
vσ ∈ R2. We argue that this restriction is unnecessary: indeed, the combinatorial barcode is
determined by the order in which the slice intersects the entry curves of all simplices. For a
finite set M of points in R2, a non-vertical line partitions M into (M↑,M↓,Mon), denoting
the points above the line, below the line, and on the line, respectively.

▶ Lemma 14. Let I denote the set of intersection points of pairs of entry curves. If two
slices have the same partition of I, they have the same combinatorial barcode.

Proof. Let ℓ1, ℓ2 be slices with different barcodes. This means, that there is at least one
pair of simplices (σ, τ) for which the entry curves are intersected in a different order. When
continuously transforming ℓ1 into ℓ2, we therefore have to cross an intersection point of these
entry curves, and hence the partition changes. ◀

Using standard point-line duality [20, Ch. 8] which is known to preserve above/below
orders of points and lines, we obtain at once:

▶ Corollary 15. Let dual(I) be the line arrangement obtained by the dual of all points in
I. Every region of this arrangement is dual to a set of slices with the same combinatorial
barcode.

2 https://rivet.readthedocs.io/en/latest/index.html#
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We mention that this result generalizes the well-studied 1-critical case: the entry curve of
every σ consists of a vertical and a horizontal ray emanating from a point vσ in this case,
and the curves of σ and τ intersect in the join of vσ and vτ . Hence I is the union of all
pairwise joins of the critical values of all vertices.

Computationally, the only complication consists in computing the intersection points
of the entry curves, which have a more complicated structure than in the 1-critical case.
However, if the curves are semi-algebraic (and of small degree), as in the case studied in this
paper, computing these intersection points is feasible and efficient software is available [8].

6 Conclusion

Localized persistence modules are, on the one hand, a suitable set of examples for further
algorithmic work in the pipeline of ∞-critical multi-parameter persistence. On the other
hand, because one-dimensional sub-modules of the module have been considered in the
context of applications, we hope that the module itself can be of use in applied contexts.

There are many natural follow-up questions for our work: most directly, the only obstacle
to extend our relative approach in higher dimensions is the subdivision scheme which is
currently only proved for R2. Another future task is the implementation of our approaches
beyond the absolute case in the plane. Such implementations are well in-reach, given that all
underlying geometric primitives are provided by the Cgal library.

One aspect we have not touched upon is stability. A natural assumption is that if P and
P ′ as well as the centers q and q′ are ε-close in the L∞-distance, then the localized bifiltrations
for (P, q) and (P ′, q′) are ε-interleaved [14, 31]. This claim is true (and straight-forward to
prove) if we re-define the notion Bα(x) to be ball of radius α around x (instead of

√
α as in

this work). While our non-standard notion for balls prevents us from making this claim, we
point out that it simplifies the description of the entry curves. In the standard notion, the
parameterization in (1) in Section 2 would involve square roots and therefore does not yield
parabolic arcs. We decided to favor the simplicity of the entry curves in this work.

We hope that our initial efforts will result in an algorithmic treatment of multi-parameter
persistence that can cope with ∞-critical filtrations with comparable efficiency as in the
1-parameter case. A natural next question is whether minimal presentations of ∞-critical
filtrations can be computed efficiently, generalizing the recent approaches from [26, 33].

Localizing the union-of-balls filtration in a center yields more fine-grained information
about the point set in the vicinity of the center. We pose the question whether and how
this information can be leveraged in the numerous application domains of topological data
analysis. We speculate that even in situations where the data set does not contain a canonical
center location, considering a sample of centers and analyzing the ensemble of localized
bifiltrations yields a more discriminative topological proxy then the union-of-balls filtration.
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1 Introduction

Geometric set cover is a fundamental and well-studied problem in computational geometry [19,
16, 31, 26, 29]. Here, we are given a universe P of n points in Rd, and a family S of m sets,
where each set S ∈ S is a geometric object (we assume S to be a closed set in Rd and S

covers all points in P ∩ S), e.g., a hyperrectangle. Our goal is to select a collection S ′ ⊆ S
of these sets that contain (i.e., cover) all elements in P , minimizing the cardinality of S ′

(see Figure 1 for an illustration). The frequency f of the set system (P,S) is defined as the
maximum number of sets that contain an element in P .

In the offline setting of some cases of geometric set cover, better approximation ratios are
known than those for the general set cover, e.g., there is a polynomial-time approximation
scheme (PTAS) for (axis-parallel) squares [30]. However, much less is understood in the
online and in the dynamic variants of geometric set cover. In the online setting, the sets are
given offline and the points arrive one-by-one, and for an uncovered point, we have to select
a (covering) set in an immediate and irrevocable manner. To the best of our knowledge, even
for 2-D unit squares, there is no known online algorithm with an asymptotically improved
competitive ratio compared to the O(log n log m)-competitive algorithm for general online
set cover [3, 14]. In the dynamic case, the sets are again given offline and at each time step a
point is inserted or deleted. Here, we are interested in algorithms that update the current
solution quickly when the input changes. In particular, it is desirable to have algorithms
whose update times are polylogarithmic. Unfortunately, hardly any such algorithm is known
for geometric set cover. Agarwal et al. [2] initiated the study of dynamic geometric set
cover for intervals and 2-D unit squares and presented (1 + ε)- and O(1)-approximation
algorithms with polylogarithmic update times, respectively. To the best of our knowledge,
for more general objects, e.g., rectangles, three-dimensional cubes, or hyperrectangles in
higher dimensions, no such dynamic algorithms are known. Note that in dynamic geometric
set cover, the inserted points are represented by their coordinates, which is more compact
than for general (dynamic) set cover (where for each new point p we are given a list of the
sets that contain p, and hence, already to read this input we might need Ω(f) time).

(a) (b) (c)

Figure 1 (a) A set of squares S and a set of points P , (b) A set cover (in green) S ′ ⊆ S covering
P , (c) A hitting set (green points) P ′ ⊆ P for S.

Related to set cover is the hitting set problem (see Figure 1 for an illustration) where,
given a set of points P and a collection of sets S, we seek to select the minimum number
of points P ′ ⊆ P that hit each set S ∈ S, i.e., such that P ′ ∩ S ̸= ∅. Again, in the offline
geometric case, there are better approximation ratios known than for the general case, e.g., a
PTAS for squares [30], and an O(log log OPT)-approximation for rectangles [4]. However, in
the online and the dynamic cases, only few results are known that improve on the results for
the general case. In the online setting, there is an O(log n)-competitive algorithm for d = 1,
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i.e., intervals, and an O(log n)-competitive algorithm for unit disks [21]. In the dynamic case,
the only known algorithms are for intervals and unit squares (and thus, also for quadrants),
yielding approximation ratios of (1 + ε) and O(1), respectively [2].

1.1 Our results
In Section 2 we study online set cover for axis-parallel squares of arbitrary sizes and provide
an online O(log n)-competitive algorithm. We also match (asymptotically) the lower bound
of Ω(log n), and hence, our competitive ratio is tight. In our online model (as in [3]), we
assume that the sets (squares) are given initially and the elements (points) arrive online.

Our online algorithm is based on a new offline algorithm that is monotone, i.e., it has the
property that if we add a new point p to P , the algorithm outputs a superset of the squares
that it outputs given only P without p. The algorithm is based on a quad-tree decomposition.
It traverses the tree from the root to the leaves, and for each cell C in which points are still
uncovered, it considers each edge e of C and selects the “most useful” squares containing e,
i.e., the squares with the largest intersection with C. We assume (throughout this paper)
that all points and all corners of the squares have integral coordinates in [0, N)2 for a given
N , and we obtain a competitive ratio of O(log N). If we know that all the inserted points
come from an initially given set of n candidate points P0 (as in, e.g., Alon et al. [3]), we
improve our competitive ratio to O(log n). For this case, we use the BBD-tree data structure
due to Arya et al. [6] which uses a more intricate decomposition into cells than a standard
quad-tree, and adapt our algorithm to it in a non-trivial manner. Due to the monotonicity
of our offline algorithm, we immediately obtain an O(log n)-competitive online algorithm.

In Section 3 we present an O(log N)-competitive algorithm for online hitting set for
squares of arbitrary sizes, where the points are given initially and the squares arrive online.
This matches the best-known O(log N)-competitive algorithm for the much simpler case of
intervals [21]. Also, there is a matching lower bound of Ω(log N), even for intervals.

In a nutshell, if a new square S is inserted by the adversary, we identify O(log N) quad-tree
cells for which S contains one of its edges. Then, we pick the most useful points in these
cells to hit such squares: those are the points closest to the four edges of the cell. We say
that this activates the cell. In our analysis, we turn this around: we show that for each
point p ∈ OPT there are only O(log N) cells that can possibly get activated if a square S is
inserted that is hit by p. This yields a competitive ratio of O(log N).

Then, in Section 4 and 5 we present our dynamic algorithms for set cover and hitting set
for hyperrectangles in d dimensions. Note that no dynamic algorithm with polylogarithmic
update time and polylogarithmic approximation ratio is known even for set cover for rectangles
and it was asked explicitly by Chan et al. [18] whether such an algorithm exists. Thus,
we answer this question in the affirmative for the case when only points are inserted and
deleted. Note that this is the relevant case when we seek to store our solution explicitly, as
discussed above. Even though our considered objects are very general, our algorithms need
only polylogarithmic worst-case update time. In contrast, Abboud et al. [1] showed that
under Strong Exponential Time Hypothesis any general (dynamic) set cover algorithm with
an amortized update time of O(f1−ε) must have an approximation ratio of Ω(nα) for some
constant α > 0, and f can be as large as Θ(m).

We first discuss our algorithm for set cover. We start with reducing the case of hyper-
rectangles in d dimensions to 2d-dimensional hypercubes with integral corners in [0, 4m]2d.
Then, a natural approach would be to adapt our algorithm for squares from above to these
hypercubes. A canonical generalization would be to build a quad-tree, traverse it from
the root to the leaves, and to select for each cell C and for each facet F of C the most

SoCG 2023
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useful hypercube S containing F , i.e., the hypercube S with maximal intersection with C.
Unfortunately, this is no longer sufficient, not even in 3-D: it might be that there is a cell C

for which it is necessary that we select cubes that contain only an edge of C but not a facet
of C (see Figure 2). Here, we introduce a crucial new idea: for each cell C of the (standard)
quad-tree and for each dimension i ∈ [2d], consider the hypercubes which are “edge-covering”
C along dimension i. Based on these hypercubes a (2d−1)-dimensional recursive secondary
structure is built on all the dimensions except the i-th dimension (see Figure 11).

Figure 2 The red cube is the only cube that covers a facet of the (uncolored) cell. The green
cube (from OPT) only covers an edge of the cell. Note that there is no corner of a cube from OPT
in the cell. Picking the red cube does not cover the the intersection of the green cube with the cell.

We call the resulting tree the extended quad-tree. Even though it is much larger than
the standard quad-tree, we show that each point is contained in only (log m)O(d) cells.
Furthermore, we use it for our second crucial idea to reduce the frequency of the set cover
instance: we build an auxiliary instance of general set cover with bounded frequency. It has
the same points as the given instance of geometric set cover, but different sets: for each node
corresponding to a one-dimensional cell C of the extended quadtree, we consider each of its
endpoints p and introduce a set that corresponds to the “most useful” hypercube covering p,
i.e., the hypercube covering p with maximal intersection with C. Since each point is contained
in only (log m)O(d) cells, the resulting frequency is bounded by (log m)O(d). Also, we show that
our auxiliary set cover instance admits a solution with at most OPT·(log m)O(d) sets. Then we
use a dynamic algorithm from [12] for general set cover to maintain an approximate solution
for our auxiliary instance, which yields a dynamic (log m)O(d)-approximation algorithm.

We further adapt our dynamic set cover algorithm mentioned above to hitting set for
d-dimensional hyperrectangles with an approximation ratio of (log n)O(d). Finally, we extend
our algorithms for set cover and hitting set for d-dimensional hyperrectangles even to the
weighted case, at the expense of only an extra factor of (log W )O(1) in the update time and
approximation ratio, assuming that all sets/points in the input have weights in [1, W ].

Due to space limitations, many proofs are omitted and we refer the readers to the full
version [28] for the details. See the following tables for a summary of our results.

Table 1 Online algorithms for geometric set cover and hitting set.

Problem Objects Competitive ratio Lower bound

Set cover intervals 2 2
2-D squares O(log n) Ω(log n)

Hitting set intervals O(log N) [21] Ω(log N) [21]
2-D squares O(log N) Ω(log N)[21]
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Table 2 Dynamic algorithms for geometric set cover and hitting set. Update times in [2] are
amortized and for the unweighted case. Our results are for worst-case update times.

Problem Objects Approximation ratio Update time

Set cover 2-D unit squares O(1) [2] (log n)O(1)

d-D hyperrectangles O(log4d−1 m) log W O(log2d m) log3(W n)

Hitting set unit squares O(1) [2] (log n)O(1)

d-D hyperrectangles O(log4d−1 n) log W O(log2d−1 n) log3(W m)

1.2 Other related work
The general set cover is well-studied in both online and dynamic settings. Several variants and
generalizations of online set cover have been considered, e.g., online submodular cover [25],
online set cover under random-order arrival [22], online set cover with recourse [23], etc.

For dynamic setting, Gupta et al. [23] initiated the study and provided O(log n)-
approximation algorithm with O(f log n)-amortized update time, even in the weighted
setting. Similar to our model, in their model sets are given offline and only elements can
appear or depart. After this, there has been a series of works [1, 9, 11, 10, 12, 23, 24, 7].

Bhattacharya et al. [12] have given deterministic (1 + ε)f -approximation in
O(f log2(Wn)/ε3)-worst-case update time, and O

(
(f2/ε3) + (f/ε2) log(W )

)
-amortized up-

date time, where W denotes the ratio of the weights of the highest and lowest weight
sets. Assadi and Solomon [7] have given a randomized f -approximation algorithm with
O(f2)-amortized update time.

Agarwal et al. [2] studied another dynamic setting for geometric set cover, where both
points and sets can arrive or depart, and presented (1 + ε)- and O(1)-approximation with
sublinear update time for intervals and unit squares, respectively. Chan and He [17] extended
it to set cover with arbitrary squares. Recently, Chan et al. [18] gave (1 + ε)-approximation
for the special case of intervals in O(log3 n/ε3)-amortized update time. They also gave
O(1)-approximation for dynamic set cover for unit squares, arbitrary squares, and weighted
intervals in amortized update time of 2O(

√
log n), n1/2+ε, and 2O(

√
log n log log n), respectively.

Dynamic algorithms are also well-studied for other geometric problems such as maximum
independent set of intervals and hyperrectangles [27, 13, 15], and geometric measure [20].

2 Set cover for squares

In this section we present our online and dynamic algorithms for set cover for squares.
We are given a set of m squares S such that each square S ∈ S has integral corners
in [0, N)2. W.l.o.g. assume that N is a power of 2. We first describe an offline O(log N)-
approximate algorithm. Then we construct an online algorithm based on it, such that it
has an approximation ratio of O(log N) as well. For our offline algorithm, we assume that
in addition to S and N , we are given a set of points P that we need to cover, such that
P ⊆ [0, N)2, and each point p ∈ P has integral coordinates.

Quad-tree

We start with the definition of a quad-tree T = (V, E), similarly as in, e.g., [5, 8]. In T each
node v ∈ V corresponds to a square cell Cv ⊆ [0, N)2 whose corners have integral coordinates.
The root r ∈ V of T corresponds to the cell Cr := [0, N)2. Recursively, consider a node v ∈ V ,
corresponding to a cell Cv and assume that Cv = [x(1)

1 , x
(1)
2 ) × [x(2)

1 , x
(2)
2 ). If Cv is a unit
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level 1 cell

level 2 cell

level 3 cell

Figure 3 Left figure shows a quad-tree cell in purple. The maximum area-covering square (solid
black) is picked, while the other edge-covering squares (dashed) are not. Right figure shows the
quad-tree cells (level-wise color-coded) containing an uncovered point. In increasing order of depth
of these cells, at most 4 maximum-area covering squares (solid black) are picked together per cell.

square, i.e., |x(1)
2 − x

(1)
1 | = |x

(2)
2 − x

(2)
1 | = 1, then we define that v is a leaf. Otherwise, we

define that v has four children v1, v2, v3, v4 that correspond to the four cells that we obtain
if we partition Cv into four equal sized smaller cells, i.e., define x

(1)
mid := (x(1)

2 − x
(1)
1 )/2 and

x
(2)
mid := (x(2)

2 − x
(2)
1 )/2 and Cv1 = [x(1)

1 , x
(1)
mid)× [x(2)

1 , x
(2)
mid), Cv2 = [x(1)

1 , x
(1)
mid)× [x(2)

mid, x
(2)
2 ),

Cv3 = [x(1)
mid, x

(1)
2 )× [x(2)

1 , x
(2)
mid), and Cv4 = [x(1)

mid, x
(1)
2 )× [x(2)

mid, x
(2)
2 ). Note that the depth of

this tree is log N , where depth of a node in the tree is its distance from the root of T , and
depth of T is the maximum depth of any node in T . By the construction, each leaf node
contains at most one point and it will lie on the bottom-left corner of the corresponding cell.

Offline algorithm

In the offline algorithm Aoff, we traverse T in a breadth-first-order, i.e., we order the nodes in
V by their distances to the root r and consider them in this order (breaking ties arbitrarily but
in a fixed manner). Suppose that in one iteration we consider a node v ∈ V , corresponding
to a cell Cv. We check whether the squares selected in the ancestors of v cover all points in
P ∩Cv. If this is the case, we do not select any squares from S in this iteration (corresponding
to v). Observe that hence we also do not select any squares in the iterations corresponding
to the descendants of v in T (so we might as well skip the whole subtree rooted at v).

Suppose now that the squares selected in the ancestors of v do not cover all points in
P ∩ Cv. We call such a node to be explored by our algorithm. Let e be an edge of Cv. We
say that a square containing e is edge-covering for e. We select a square from S that is
edge-covering for e and that has the largest intersection with Cv among all such squares in
S (we call such a square maximum area-covering for Cv for edge e). We break ties in an
arbitrary but fixed way. If there is no square in S that is edge-covering for e then we do
not select a square corresponding to e. We do this for each of the four edges of Cv. See
Figure 3. If we reach a leaf node, and if there is an uncovered point (note that it must be on
the bottom-left corner of the cell), then we select any arbitrary square that covers the point
(the existence of such a square is guaranteed as some square in OPT covers it). See Figure 4.
This guarantees the feasibility of the solution.
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C

p

S

Figure 4 Point p lies in a leaf cell C (which may not even have any edge-covering squares). In
this case, we pick an arbitrary square S to cover the point (since one such square always exists).

▶ Lemma 1. Aoff outputs a feasible set cover for the points in P .

Approximation ratio

Let ALG ⊆ S denote the selected set of squares and let OPT denote the optimal solution. To
prove O(log N)-approximation guarantee, the main idea is the following: consider a node
v ∈ V and suppose that we selected at least one square in the iteration corresponding to
v. If Cv contains a corner of a square S ∈ OPT, then we charge the (at most four) squares
selected for v to S. Otherwise, we argue that the squares selected for v cover at least as
much of Cv as the squares in OPT, and that they cover all the remaining uncovered points
in P ∩ Cv. Thus we do not select any further squares in the descendants of v. The squares
selected for v are charged to the parent of v (which contains a corner of a square S ∈ OPT).
See Figure 5. Since each corner of each square S ∈ OPT is contained in O(log N) cells, we
show that each square S ∈ OPT receives a total charge of O(log N). Thus, we obtain the
following lemma.

▶ Lemma 2. We have that |ALG| = O(log N) · |OPT|.

Figure 5 Charging picked (red) edge-covering squares to the corner of a (cyan) square in OPT.
In the image on the left, the (yellow) cell contains a corner of the square from OPT, and in the
image on the right, the parent of the cell contains such a corner.

SoCG 2023
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2.1 Online set cover for squares
In the following, we first present an O(log N)-competitive online algorithm for online set
cover for squares. Then we improve its competitive ratio to O(log n) in the setting where we
are given a set of n points at the beginning, and the adversary can introduce only points
from this set.

2.1.1 O(log N)-competitive online algorithm
We want to turn our offline algorithm Aoff into an online algorithm Aon, assuming that in
each round a new point is introduced by the adversary. The key insight for this is that the
algorithm above is monotone, i.e., if we add a point to P , then it outputs a superset of the
squares from S that it had output before (when running it on P only). For a given set of
points P , let ALG(P ) ⊆ S denote the set of squares that our (offline) algorithm outputs.

▶ Lemma 3. Consider a set of points P and a point p. Then ALG(P ) ⊆ ALG(P ∪ {p}).

Initially, P = ∅. If a point p is introduced by the adversary, then we compute ALG(P )
(where P denotes the set of previous points, i.e., without p) and ALG(P ∪ {p}) and we add
the squares in ALG(P ∪ {p}) \ ALG(P ) to our solution. Therefore, due to Lemma 2 and
Lemma 3 we obtain an O(log N)-competitive online algorithm.

2.1.2 O(log n)-competitive online set cover for squares
We assume now that we are given a set P̃ ⊆ R2 with |P̃ | = n such that in each round a
point from P̃ is inserted to P , i.e., P ⊆ P̃ after each round. We want to get a competitive
ratio of O(log n) in this case. If N = nO(1) then this is immediate. Otherwise, we extend
our algorithm such that it uses the balanced box-decomposition tree (or BBD-tree) data
structure due to Arya et al. [6], instead of the quad-tree. Before the first round, P = ∅ and
we initialize the BBD-tree which yields a tree T̃ = (Ṽ , Ẽ) with the following properties:

each node v ∈ Ṽ corresponds to a cell C̃v ⊆ [0, N)2 which is described by an outer box
bO ⊆ [0, N)2 and an inner box bI ⊆ bO; both of them are axis-parallel rectangles and
C̃v = bO \ bI (Note that bI could be the empty set).
the aspect ratio of bO, i.e., the ratio between the length of the longest edge to the length
of the shortest edge of bO, is bounded by 3.
if bI ̸= ∅, then bI is sticky which intuitively means that in each dimension, the distance
of bI to the boundary of bO is either 0 or at least the width of bI . Formally, assume
that bO = [x(1)

O , x
(2)
O ] × [y(1)

O , y
(2)
O ] and bI = [x(1)

I , x
(2)
I ] × [y(1)

I , y
(2)
I ]. Then x

(1)
O = x

(1)
I

or x
(1)
I − x

(1)
O ≥ x

(2)
I − x

(1)
I . Also x

(2)
O = x

(2)
I or x

(2)
O − x

(2)
I ≥ x

(2)
I − x

(1)
I . Analogous

conditions also hold for the y-coordinates.
each node v ∈ Ṽ is a leaf or it has two children v1, v2 ∈ Ṽ ; in the latter case C̃v = C̃v1 ∪̇C̃v2 .
the depth of T̃ is O(log n) and each point q ∈ [0, N)2 is contained in O(log n) cells.
each leaf node v ∈ Ṽ contains at most one point in P̃ .

In the construction of the BBD-tree, we make the cells at the same depth disjoint so
that a point p may be contained in exactly one cell at a certain depth. Hence, for a cell
C̃v = bO \ bI we assume both bO and bI to be closed set. We now describe an adjustment of
our offline algorithm from Section 2, working with T̃ instead of T . Similarly, as before, we
traverse T̃ in a breadth-first-order. Suppose that in one iteration we consider a node v ∈ Ṽ
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corresponding to a cell C̃v. We check whether the squares selected in the ancestors of v cover
all points in P ∩ C̃v. If this is the case, we do not select any squares from S in this iteration
corresponding to v.

Suppose now that the squares selected in the ancestors of v do not cover all points in
P ∩ C̃v. Similar to Section 2, we want to select O(1) squares for C̃v such that if C̃v contains
no corner of a square S ∈ OPT, then the squares we selected for C̃v should cover all points
in P ∩ C̃v. Similarly as before, for each edge e of bO we select a square from S that contains
e and that has the largest intersection with bO among all such squares in S. We break ties
in an arbitrary but fixed way. However, as C̃v may not be a square and can have holes (due
to bI), apart from the edge-covering squares, we need to consider two additional types of
squares in OPT with nonempty overlap with C̃v: (a) crossing C̃v, i.e., squares that intersect
two parallel edges of bO; (b) has one or two corners inside bI . See Figure 6.

bO

bI

bO

bI

Figure 6 Possible intersections of a (cyan) square from OPT with a cell, such that no corner of
the square is in the cell. The left image shows edge-covering, and crossing squares. The right image
shows squares with one of two corners inside bI .

The following greedy subroutine G will be useful in our algorithm to handle such prob-
lematic cases. Let R be a box of width w and height h such that w/h ≤ B, for some
constant B ∈ N; and PR be a set of points inside R that can be covered by a collection of
vertically-crossing (i.e., they intersect both horizontal edges of R) squares S ′. Then, the set
of squares picked according to G covers PR in the following way:

While there is an uncovered point p′ ∈ PR:
Consider the leftmost such uncovered point p ∈ PR.
Select the vertically-crossing square intersecting p (by assumption, such a square exists)
with the rightmost edge.

(The above subroutine is for finding vertically-crossing squares. For finding horizontally-
crossing squares, we can appropriately rotate the input 90◦ anti-clockwise, and apply the
same subroutine.) Then, we have the following claim about the aforementioned subroutine.

▷ Claim 4. Let R be a box of width w and height h such that w/h ≤ B, for some constant
B ∈ N; and PR be a set of points inside R that can be covered by a collection of vertically-
crossing (i.e., they intersect both horizontal edges of R) squares S ′. Then we can find at
most B + 1 squares from S ′ that can cover all points inside R.

We have an analogous claim for horizontally-crossing squares when h/w ≤ B.

Now we describe our algorithm. First, we take care of the squares that can cross bO. So,
we apply the greedy subroutine G on bO. As bO has bounded aspect ratio of 3, from Claim 4,
we obtain at most (3 + 1) + (1 + 1) = 6 squares that can cross Cv vertically or horizontally.
If bI = ∅, we do not select any more squares. Otherwise, we need to take care of the squares
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that can have one or two corners inside bI . Let ℓ1, ℓ2, ℓ3, ℓ4 denote the four lines that contain
the four edges of bI . Observe that ℓ1, ℓ2, ℓ3, ℓ4 partition bO into up to nine rectangular
regions, one being identical to bI . See Figure 7. For each such rectangular region R, if it
is sharing a horizontal edge with bI , we again use G to select vertically-crossing squares.
Otherwise, if R is sharing a vertical edge with bI , we use the subroutine G appropriately to
select horizontally-crossing squares. This takes care of squares having two corners inside
bI . Otherwise, if the rectangular region R does not share an edge with bI , then we check if
there is a square S ∈ S with a corner within bI that completely contains R. We add S to our
solution too. This finally takes care of the case when a square has a single corner inside bI .

Finally, to complete our algorithm, before its execution, we do the following: for every
leaf v for which Cv contains at most one point p ∈ P̃ , we associate a fixed square which
covers p. Then, if our algorithm reaches a leaf v while traversing that has an uncovered point
p, we pick the associated square with this leaf that covers it. This condition in our algorithm
guarantees feasibility.

bO

bI

R1 R2 R3

R4 R5

R6 R7 R8

ℓ2ℓ1

ℓ3

ℓ4

Figure 7 Outer box bO being partitioned into at most 9 rectangles due to inner box bI .

Then using the following lemma, we can establish a similar charging scheme as in Section 2.

▶ Lemma 5. Let C̃v be a cell such that the squares selected in the ancestors of v do not
cover all points in P ∩ C̃v. Then
(a) we select at most O(1) squares for C̃v and
(b) if C̃v contains no corner of a square S ∈ OPT, then the squares we selected for C̃v cover

all points in P ∩ C̃v.
To pay for our solution, we charge each corner q of a square S ∈ OPT at most O(log n)

times. Hence, our approximation ratio is O(log n). Similarly as in Section 2, we can modify
the above offline algorithm to an online algorithm with an approximation ratio of O(log n).

▶ Theorem 6. There is a deterministic O(log n)-competitive online algorithm for set cover
for axis-parallel squares of arbitrary sizes.

It is a natural question whether algorithms having a competitive factor better than
O(log n) are possible for online set cover for squares. We answer this question in the negative.

▶ Theorem 7. Any deterministic or randomized online algorithm for set cover for unit
squares has a competitive ratio of Ω(log n), even if all squares contain the origin and all
points are contained in the same quadrant.

3 Online hitting set for squares

Now we present our online algorithm for hitting set for squares. We are given a fixed set
of points P ⊆ [0, N)2 with integral coordinates. We maintain a set P ′ of selected points
such that initially P ′ := ∅. In each round, we are given a square S ⊆ [0, N)2 whose corners
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have integral coordinates. We assume w.l.o.g. that N is a power of 2. Let Q be all (grid)
points with integral coordinates in [0, N)2, i.e., P ⊆ Q. For each point q ∈ Q we say that
q = (qx, qy) is of level ℓ if both qx and qy are integral multiples of N/2ℓ, but not both are
integral multiples of N/2(ℓ−1). We build the same quad-tree as in Section 2. We say that a
cell Cv is of level ℓ if its side length equals N/2ℓ.

We present our algorithm now. Suppose that in some round a new square S is given. If
S ∩ P ′ ≠ ∅ then we do not add any point to P ′. Suppose now that S ∩ P ′ = ∅. Let q be a
point of smallest level among all points in Q∩S (if there are many such points, then we select
an arbitrary point in Q∩S of smallest level). Intuitively, we interpret q as if it were the origin
and partition the plane into four quadrants. We define OT R := {(px, py) | px ≥ qx , py ≥ qy},
and ST R := OT R ∩ S, and define similarly OT L, OBR, OBL, and ST L, SBR, SBL. Consider
OT R and ST R. For each level ℓ = 0, 1, . . . , log N , we do the following. Consider each cell C

of level ℓ in some fixed order such that C ⊆ OT R and ST R is edge-covering for some edge e

of C. Then, for each edge identify the point pb (pt, pl, pr, resp.) in P ∩ C that is closest to
its bottom (top, left, and right, resp.) edge. We add these (at most 4) points to our solution
if at least one of pb, pt, pl, pr is contained in ST R (see Figure 8). If we add at least one such
point p of the cell C to P ′ in this way, we say that C gets activated. Note that we add
possibly all of the points pb, pt, pl, pr to P ′ even though only one may be contained in ST R.
This is to ensure that C gets activated at most once during a run of the online algorithm. If
for the current level ℓ we activate at least one cell C of level ℓ, then we stop the loop and do
not consider the other levels ℓ + 1, . . . , log N . Otherwise, we continue with level ℓ + 1. We
do a symmetric operation for the pairs (OT L, ST L), (OBR, SBR), and (OBL, SBL).

For the analysis of the algorithm, we show that for a point p ∈ OPT, the number of rounds
for which the adversary can possibly introduce a square S such that p ∈ S and S ∩ P ′ = ∅ is
O(log N). More specifically, we identify a set of cells Cp such that |Cp| = O(log N) and in
any such round where p ∈ S, one of the cells in Cp is activated. The competitive ratio of the
algorithm follows from the fact that any cell of the quad-tree is activated at most once.

S

q

STR

C

pb

pl

pt

pr

STL

SBL SBR

Figure 8 In the cell C (contained in OTR) the red points are chosen by the algorithm.

▶ Theorem 8. There is an O(log N)-competitive deterministic online algorithm for hitting
set for axis-parallel squares of arbitrary sizes.

This is tight, as even for intervals, Even et al. [21] have shown an Ω(log N) lower bound.
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4 Dynamic set cover for d-dimensional hyperrectangles

In this section, we will design an algorithm to dynamically maintain an approximate set cover
for d-dimensional hyperrectangles. The main result we prove in this section is the following.

▶ Theorem 9. After performing a pre-processing step which takes O(m log2d m) time, there is
an algorithm for dynamic set cover for d-dimensional hyperrectangles with an approximation
factor of O(log4d−1 m) and an update time of O(log2d+2 m).

Our goal is to adapt the quad-tree based algorithms designed in the previous sections of
the paper. As a first step towards that, we transform the problem such that the points and
hyperrectangles in Rd get transformed to points and hypercubes in R2d, and the new problem
is to cover the points in R2d with these hypercubes. As discussed in the introduction, a
simple 2d-dimensional quad-tree on the hypercubes does not suffice for our purpose. We
augment the quad-tree in two ways: (a) at each node, we collect the hypercubes which are
edge-covering w.r.t. that node and “ignore” that dimension in which they are edge-covering,
and (b) recursively construct a (2d−1)-dimensional quad-tree on these hypercubes based
on the remaining 2d−1 dimensions. We call this new structure an extended quad-tree. This
yields the important property that any point in R2d will belong to only O(log2d m) cells in the
extended quad-tree. Furthermore, at the 1-dimensional cells of the extended quad-tree, for
each cell we will identify O(1) “most useful” hypercubes. This ensures that any point belongs
to only O(log2d m) of these most useful hypercubes. As a result, a “bounded frequency” set
system can be constructed with the most useful hypercubes. The dynamic algorithm from
Bhattacharya et al. [12] (for general set cover) works efficiently on bounded frequency set
systems and applying it in our setting leads to an O(log4d−1 m)-approximation algorithm.

4.1 Transformation to hypercubes in R2d

Recall that the input is a set of points P and S is a collection of hyperrectangles in Rd.
By a standard rank-space reduction, we can assume that each corner of each hyperrectangle

in S is contained in {0, 1, ..., 2m}d and that the intersection of any two input hyperrectangles
in S is either d-dimensional or empty. Also, we perturb each input point p ∈ P slightly so
that p is not contained in the face of any hyperrectangle in S, without changing the collection
of hyperrectangles that cover p.

The first step of the algorithm is to transform the hyperrectangles in S to hypercubes
in R2d. Consider a hyperrectangle S ∈ S with a = (a1, . . . , ad) and b = (b1, . . . , bd) being
the “lower-left” and the “upper-right” corners of S, respectively. Let ∆ = maxd

j=1(bj − aj).
Then S is transformed to a hypercube S′ in R2d with side-length ∆ and “top-right” corner
(−a1,−a2, . . . ,−ad, b1, b2, . . . , bd). Let S ′ be the collection of these m transformed hypercubes.
Let P ′ be the set of n points in R2d obtained by transforming each point p = (p1, . . . , pd) ∈ P

to p′ = (−p1, . . . ,−pd, p1, . . . , pd). See Figure 9 for an example.

▶ Observation 10. A point p = (p1, . . . , pd) lies inside S if and only if the point p′ =
(−p1, . . . ,−pd, p1, . . . , pd) lies inside S′.

After applying the above transformation, we note that the coordinates of each corner
of each hypercube in S ′ will be contained in {−4m, ..., 0}d × {−2m, ..., 2m}d. We perform
a suitable shifting so that all the corners of the hypercubes in S ′ will be contained in
{0, ..., 4m}2d. Then, our assumption on the input set of hyperrectangles S and the input
points P implies that for any point p′ ∈ P ′, it does not lie on a face of any hypercube in S ′.
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p = (p1)

a = (a1) b = (b1)

(−a1, b1)

(a) (b)

p′ = (−p1, p1)

(−b1, a1)

S′

Figure 9 (a) A point p in 1-D lying inside an interval S = [a1, b1], and (b) the transformation of
p into a point p′ = (−p1, p1), and the transformation of S into a square S′ in 2-D.

4.2 Constructing a bounded frequency set system

We will now present a technique to select a set Ŝ ⊆ S ′ with the following properties:
1. (Bounded frequency) Any point in P ′ lies inside O(log2d m) hypercubes in Ŝ.
2. An α-approximation dynamic set cover algorithm for (P ′, Ŝ) implies an O(α log2d−1 m)-

approximation dynamic set cover algorithm for (P ′,S ′).
3. The time taken to update the solution for the set system (P ′, Ŝ) is O(log2d m · log2 n).
4. The time taken to construct the set Ŝ is O(m log2d m).

4.2.1 Extended quad-tree for 2-dimensional squares

Given a set of squares S ′, we construct a 2-dimensional quad-tree T (as defined in Section 2)
such that its root cell contains all the squares in S ′. Consider a node v ∈ T and a square
S ∈ S ′. Let C and par(C) be the cell corresponding to node v and the parent node of v,
respectively. Let proji(C), proji(par(C)) and proji(S) be the projection of C, par(C) and S,
respectively, on to the i-th dimension. Then S is i-long at v if and only if proji(C) ⊆ proji(S)
but proji(par(C)) ̸⊆ proji(S). See Figure 10(a). For all u ∈ T, let S(u, i) ⊆ S ′ be the squares
which are i-long at node u. Intuitively, these are squares that cover the edge of C in the i-th
dimension but do not cover any edge of par(C) in the i-th dimension. Now, at each node of
T we will construct two secondary structures as follows: the first structure is a 1-dimensional
quad-tree built on the projection of the squares in S(u, 1) on to the second dimension, and
the second structure is a 1-dimensional quad-tree built on the projection of the squares in
S(u, 2) on to the first dimension.

In each secondary structure, an interval I (corresponding to a square S ∈ S ′) is assigned to
a node u if and only if u is the node with the smallest depth (the root is at depth zero) where
I intersects either the left endpoint or the right endpoint of the cell Cu. See Figure 10(b). By
this definition, any interval will be assigned to at most two nodes in the secondary structure.

Now we will use T to construct the geometric collection Ŝ. Let Vsec be the set of nodes in
all the secondary structures of T. For any node u ∈ Vsec, among its assigned intervals which
intersect the left (resp., right) endpoint of the cell Cu, identify the maximal interval Iℓ (resp.,
Ir), i.e., the interval which has maximum overlap with Cu. See Figure 10(c). We then do
the following set of operations over all the nodes in Vsec: For a node u ∈ Vsec, denote by S′

and S′′ the corresponding squares for the assigned intervals Iℓ and Ir, respectively. Further,
let w be the node in T, on which the secondary structure of u was constructed. Then, we
include in Ŝ the rectangles S1 ∩ Cw and S2 ∩ Cw.
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par(C)

S I

par(u)

u

(a) (b) (c)
dim 2

dim 1
C

Ir

Iℓ
Cu

(b)

Figure 10 (a) A square S which is 1-long at node v (corrs. cell C is highlighted in darker orange),
(b) I is assigned to the two children of v, and (c) the maximal intervals Iℓ and Ir at Cv.

4.2.2 Extended quad-tree for 2d-dimensional hypercubes

For 2d-dimensions, we need a generalization of the quad-tree defined in Section 2. For d′ > 2,
a d′-dimensional quad-tree is defined analogously to the the quad-tree defined in Section 2,
where instead of four, each internal node will now have 2d′ children. Assume by induction
that we have defined how to construct the extended quad-tree for all dimensions less than or
equal to 2d−1. (The base case is the extended quad-tree built for 2-dimensional squares.) We
define now how to construct the structure for 2d-dimensional hypercubes. First construct the
regular 2d-dimensional quad-tree T for the set of hypercubes S ′. Consider any node v ∈ T.
Generalizing the previous definition, for any 1 ≤ i ≤ 2d, a hypercube S ∈ S ′ is defined to be
i-long at node v if and only if proji(C) ⊆ proji(S), but proji(par(C)) ̸⊆ proji(S). For all v ∈ T,
let S(v, i) ⊆ S ′ be the hypercubes which are i-long at node v. Now, at each node of T we will
construct 2d secondary structures as follows: for all 1 ≤ i ≤ 2d, the i-th secondary structure
is a (2d−1)-dimensional extended quad-tree built on S(v, i) and all its 2d dimensions except
the i-th dimension. Specifically, any hypercube S ∈ S(v, i) of the form ℓ1×· · ·× ℓi×· · ·× ℓ2d

is projected to a (2d−1)-dimensional hypercube ℓ1 × · · · × ℓi−1 × ℓi+1 × · · · × ℓ2d. Let Ŝv be
the collection of the (2d−1)-dimensional hyperrectangles that are inductively picked for the
secondary structure constructed at v ∈ T using the routine. Define the function g which
maps a (2d−1)-dimensional hyperrectangle picked as part of the collection Ŝv (for a v ∈ T)
to its corresponding 2d-dimensional hypercube S ∈ S ′. We now define the collection of sets
Ŝ consisting of 2d-dimensional hyperrectangles: Ŝ ←

⋃
v∈T

(⋃
S′∈Ŝv

(g(S′) ∩ Cv)
)
. Then we

prove the following three key properties of Ŝ.

▶ Lemma 11. (Feasibility) Any point p ∈ P ′ is covered by at least one set in Ŝ.

▶ Lemma 12. (Bounded frequency) Any point in P ′ lies inside O(log2d m) sets in Ŝ.

▶ Lemma 13. If there is an α-approximation dynamic set cover algorithm for (P ′, Ŝ) then
there is an O(α log2d−1 m)-approximation dynamic set cover algorithm for (P ′,S ′).

4.3 The final algorithm

We run the O(f)-approximate algorithm by Bhattacharya et al. [12] for the dynamic set
cover problem as a black box on the instance (P ′, Ŝ). If ALG is the reported solution, we
also report ALG as our solution for the instance (P ′,S ′). One can prove that this yields
Theorem 9.
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Figure 11 Extended quad-tree with a 2 × 2 × 2 cube as the root.

4.4 Weighted setting

We present an extension of our algorithm to the setting where each hyperrectangle S ∈ S has
a weight wS ∈ [1, W ]. First, we round the weight of each set S to the smallest power of two
greater than or equal to wS , leading to O(log W ) weight classes. Next, for each weight class,
we build an extended quad-tree as in the previous section. Finally, let Ŝ be the collection
of (maximal) hypercubes obtained from all the O(log W ) extended quad-trees. We run the
dynamic set cover algorithm of Bhattacharya et al. [12] on (P ′, Ŝ).

▶ Theorem 14. There is an algorithm for weighted dynamic set cover for d-dimensional
hyperrectangles with an approximation factor of O(log4d−1 m · log W ) and an update time of
O(log2d m · log3(Wm)).

5 Dynamic hitting set for d-dimensional hyperrectangles

In this section we claim a dynamic algorithm for hitting set for d-dimensional hyperrectangles.
We obtain this by reducing the problem to an instance of dynamic set cover for 2d-dimensional
hypercubes and use the algorithm designed in the previous section to solve the instance.

▶ Theorem 15. After performing a pre-processing step which takes O(n log2d n) time, there is
an algorithm for hitting set for d-dimensional hyperrectangles with an approximation factor of
O(log4d−1 n) and an update time of O(log2d+2 n). In the weighted setting, the approximation
factor is O(log4d−1 n · log W ) and the update time is O(log2d n log3(Wn)).
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Abstract

In STOC’95 [6] Arya et al. showed that any set of n points in Rd admits a (1 + ϵ)-spanner with
hop-diameter at most 2 (respectively, 3) and O(n log n) edges (resp., O(n log log n) edges). They also
gave a general upper bound tradeoff of hop-diameter k with O(nαk(n)) edges, for any k ≥ 2. The
function αk is the inverse of a certain Ackermann-style function, where α0(n) = ⌈n/2⌉, α1(n) =

⌈√
n
⌉
,

α2(n) = ⌈log n⌉, α3(n) = ⌈log log n⌉, α4(n) = log∗ n, α5(n) = ⌊ 1
2 log∗ n⌋, . . . . Roughly speaking, for

k ≥ 2 the function αk is close to ⌊ k−2
2 ⌋-iterated log-star function, i.e., log with ⌊ k−2

2 ⌋ stars.
Despite a large body of work on spanners of bounded hop-diameter, the fundamental question of

whether this tradeoff between size and hop-diameter of Euclidean (1 + ϵ)-spanners is optimal has
remained open, even in one-dimensional spaces. Three lower bound tradeoffs are known:

An optimal k versus Ω(nαk(n)) by Alon and Schieber [4], but it applies to stretch 1 (not 1 + ϵ).

A suboptimal k versus Ω(nα2k+6(n)) by Chan and Gupta [13].

A suboptimal k versus Ω( n

26⌊k/2⌋ αk(n)) by Le et al. [38].
This paper establishes the optimal k versus Ω(nαk(n)) lower bound tradeoff for stretch 1 + ϵ, for any
ϵ > 0, and for any k. An important conceptual contribution of this work is in achieving optimality by
shaving off an extremely slowly growing term, namely 26⌊k/2⌋ for k ≤ O(α(n)); such a fine-grained
optimization (that achieves optimality) is very rare in the literature.

To shave off the 26⌊k/2⌋ term from the previous bound of Le et al., our argument has to drill much
deeper. In particular, we propose a new way of analyzing recurrences that involve inverse-Ackermann
style functions, and our key technical contribution is in presenting the first explicit construction
of concave versions of these functions. An important advantage of our approach over previous
ones is its robustness: While all previous lower bounds are applicable only to restricted 1-dimensional
point sets, ours applies even to random point sets in constant-dimensional spaces.
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47:2 Sparse Euclidean Spanners with Optimal Diameter

1 Introduction

Let P be a set of n points in Rd and let GP = (P,
(

P
2
)
, ∥ · ∥) be the complete weighted

graph induced by P , which contains an edge (p, q) of weight w(p, q) = ∥p − q∥, for every
p, q ∈ S. A subgraph graph G = (P, E, ∥ · ∥) of GP , E ⊆

(
P
2
)
, is called a geometric graph.

For a parameter t ≥ 1, a geometric graph G is called a t-spanner for P if, for all p, q ∈ S, G

contains a t-spanner path between p and q (i.e., a path of weight at most t∥p− q∥).
Euclidean spanners have been studied extensively [17, 35, 5, 12, 19, 6, 20, 8, 47, 2, 13,

21, 51, 53, 23, 39, 32, 38]. They are important in theory and practice, having found many
applications, e.g., in geometric approximation algorithms, network topology design, and
distributed computing [19, 40, 47, 26, 28, 27, 31, 41]; see also the book [42].

The most basic requirement of a spanner is to be sparse, while achieving small stretch.
Cornerstone results settle the stretch-size tradoeff: for any d-dimensional n-point Euclidean
space and for any ϵ > 0, there exists a (1+ϵ)-spanner with Oϵ,d(n) edges [58, 18, 34, 48, 35, 5],
where the Oϵ,d suppresses the dependence on ϵ and d. (More precisely, the size upper bound
is n · O(ϵ−d+1), and it was shown to be tight [39].) In many applications, however, the
spanner should have additional useful properties of the underlying metric. One such property
is the (hop-)diameter : a t-spanner for P has (hop-)diameter of k if, for any p, q ∈ S, there is
a t-spanner path between p and q with at most k edges (or hops). Having a small diameter
is important for various applications (e.g., routing protocols) [7, 1, 2, 13, 21, 32].

While the stretch-size tradeoff is fully understood including the dependence on ϵ and d,
the extended tradeoff of stretch-size-diameter is not fully understood yet even for fixed ϵ and
d. Our goal is to achieve a full understanding of this tradeoff for fixed ϵ and d.

If the points are in general position, a 1-spanner must include basically all
(

n
2
)

edges of
the underlying metric. For points lying on a line, the simple path connecting them provides
1-spanner, but its diameter is worst-possible, n − 1. Surprisingly perhaps, all previous
lower bounds for the stretch-size-diameter tradeoff apply to line metrics. Understanding line
metrics, and more generally tree metrics, is also important from the upper bounds front. In
particular, the problem of constructing sparse 1-spanners with bounded diameter for line
and tree metrics is closely related to several other fundamental problems. As an example,
consider the extremely well-studied problem of partial sums, where we are given an array A

of semigroup elements A[1], . . . , A[n] and are asked to construct a small-sized data structure,
so that given a query i, j for 1 ≤ i < j ≤ n, the partial sum

∑
i≤k≤j A[k] can be computed

efficiently. A 1-spanner for the corresponding set A[1], . . . , A[n] with bounded diameter is
basically what we are looking for: A 1-spanner path between A[i] and A[j] that consists
of at most k edges can be used for answering a query i, j within time O(k). Other closely
related problems include the tree product queries in semigroup problem (a generalization of
partial sums) and its variants (see [55, 58, 4, 16, 46, 2], and the references therein), the MST
verification problem [37, 36, 44], and the problem of shortcutting digraphs [56, 57, 10].

1.1 Previous Work on Spanners with Tiny diameter

1.1.1 Upper bounds
1-spanners for line and tree metrics. Let T = (T, rt) be a (possibly weighted) n-vertex
rooted tree, and let MT be the tree metric induced by T . A spanning subgraph G of
MT is said to be a 1-spanner for T , if for every pair of vertices, their distance in G is
equal to their distance in T . One can define t-spanners for T , with t ≥ 1, but essentially
all previous work here concerned stretch 1. Alon and Schieber [4] showed that for any
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n-point tree metric, a 1-spanner with diameter 2 (respectively, 3) and O(n log n) edges (resp.,
O(n log log n) edges) can be built within time linear in its size; for k ≥ 4, they showed that
1-spanners with diameter at most 2k and O(nαk(n)) edges can be built in O(nαk(n)) time.
The function αk is the inverse of a certain Ackermann-style function at the ⌊k/2⌋th level
of the primitive recursive hierarchy, where α0(n) = ⌈n/2⌉, α1(n) = ⌈

√
n⌉, α2(n) = ⌈log n⌉,

α3(n) = ⌈log log n⌉, α4(n) = log∗ n, α5(n) =
⌊ 1

2 log∗ n
⌋
, etc. Roughly speaking, for k ≥ 2

the function αk is close to ⌊k−2
2 ⌋-iterated log-star function, i.e., log with ⌊k−2

2 ⌋ stars. Also,
α2α(n)+2(n) ≤ 4, where α(n) is the one-parameter inverse Ackermann function, which is an
extremely slowly growing function. (See [38] for a formal definition.) Bodlaender et al. [11]
constructed 1-spanners with diameter at most k and O(nαk(n)) edges, but for k ≥ 4 their
construction time is rather high (Ω(n2)). Solomon [52] gave a linear-time construction with
the same diameter-size tradeoff k versus O(nαk(n)) as [11].

Alternative constructions, by Yao [58] for line metrics and by Chazelle [14] for general
tree metrics, achieve a tradeoff of m edges versus diameter Θ(α(m, n)), where α(m, n) is the
two-parameter inverse-Ackermann function (defined in [38]). However, these constructions
provide 1-spanners with diameter Γ′ · k, only for constant Γ′ > 30.

1.1.1.1 (1 + ϵ)-spanners

The seminal STOC’95 of Arya et al. [6] established the “Dumbbell Theorem”: For any d-
dimensional Euclidean space, a (1+ϵ, O( log(1/ϵ)

ϵd ))-tree cover can be constructed in O( log(1/ϵ)
ϵd ·

n log n + 1
ϵ2d · n) = Oϵ,d(n log n) time. (For the definition of tree cover, see e.g. [32].) The

consequence of the Dummbell Theorem is that any construction of 1-spanners for tree metrics
can be tranformed into a construction of Euclidean (1 + ϵ)-spanners, and the running time
of the transformation is Oϵ,d(n log n) (plus a linear term in the size bound of the 1-spanner
construction). The construction of 1-spanners for tree metrics from [52] thus yields an
O(n log n)-time construction of Euclidean (1 + ϵ)-spanners with diameter k and O(nαk(n))
edges. Moreover, this result of [52] generalizes for the wider family of doubling metrics via
the recent tree cover theorem of Bartal et al. [9].

1.1.2 Lower bounds
The celebrated work of Yao [58] provided the first lower bound on 1-spanners for tree metrics,
where a tradeoff of m edges versus diameter of Ω(α(m, n)) was proved for the uniform line
metric. A stronger lower bound on 1-spanners, still for the uniform line metric, was given in
[4]: diameter k versus Ω(nαk(n)) edges, for any k; as shown in [38], the lower bound of [4]
implies that of [58], but the converse isn’t true. These lower bounds apply only to 1-spanners.

Chan and Gupta [13] extended the lower bound of [58] to (1 + ϵ)-spanners, still for line
metrics, proving a lower bound tradeoff of m edges versus diameter of Ω(α(m, n)). This
tradeoff only provides a meaningful lower bound for sufficiently large values of diameter
(above say 30). Specifically, the result of [13] can be used to show that any (1 + ϵ)-spanner
for a certain line metric with diameter at most k must have Ω(nα2k+6(n)) edges. When
k = 2 (resp. k = 3), this gives Ω(n log∗∗∗∗ n) (resp. Ω(n log∗∗∗∗∗ n)) edges, which is far from
the upper bound of O(n log n) (resp., O(n log log n)).

In SoCG’22 Le et al. [38] gave the following suboptimal lower bound tradeoff, for (1 + ϵ)-
spanners of the uniform line metric: k versus Ω( n

26⌊k/2⌋ αk(n)). While the result of [38] is
tight for constant k, the following question remains open for more than three decades:

▶ Question 1.1. Is there a lower bound of k versus Ω(nαk(n)) between the diameter and the
number of edges, for all k, for Euclidean (1 + ϵ)-spanners?

SoCG 2023
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1.1.2.1 Putting Question 1.1 into perspective.

Question 1.1 has been answered affirmatively by [38] for constant values of k. Recall
that α2α(n)+4(n) ≤ 4, where α(n) is the one-parameter inverse Ackermann function. In
other words, the gap underlying Question 1.1 holds only for k = ω(1), . . . , O(α(n)), which
is admittedly a very small regime. The gap itself is exponential in k, which is at most
exponential in α(n), hence it is a very small gap.

One might wonder – why is Question 1.1 of any interest? Indeed, from a quantitative
perspective, α(n) grows asymptotically even more slowly than log∗ n, which, in turn, is at
most 5 for n < 265536. Thus a gap of exp(α(n)) is a constant factor gap for all practical
purposes. However, we argue that Question 1.1 is important from a qualitative perspective.
Indeed, there are numerous breakthrough works whose “only goal” was to shave off factors
that grow as slowly as inverse-Ackermann type functions. For example, for the Union-Find
data structure, efforts to achieve a linear time algorithm led to a lower bound showing that
inverse-Ackermann function dependence is necessary [25], matching Tarjan’s cornerstone
upper bound [54]. Another prime example is in the context of the MST problem, where the
inverse-Ackermann function dependence was shaved off from the upper bound of [15] to achieve
a linear time algorithm by means of randomization [33] or under certain assumptions [24]; and
it remains a major question whether there exists a linear time deterministic comparison-based
MST algorithm. Yet another example is in the context of Davenport-Schinzel sequences,
whose study involves optimizing inverse-Ackermann style functions – including the functions
α(n) and αk(n) – has led to important advances in discrete and computational Geometry.
Indeed, Davenport and Schinzel [29] gave sharp bounds on sequences of order 1 and 2, namely
λ1(n) = n and λ2(n) = 2n − 1, and since then numerous applications of the sequences
have been found, such as to geometric containment problems, computing shortest paths,
and convex hulls. Achieving a tight bound for order-3 sequences spanned a long line of
work [29, 22, 30, 43], and it is now understood that λ3(s) = 2nα(n) + O(n

√
α(n)), i.e., the

asymptotic behavior is known up to the leading constant. The case for k ≥ 4 also spanned
much work [22, 30, 49, 50, 3, 43, 45] and was settled up to leading constants in front of α(n)
in the exponent, i.e., λ4(n) = Θ(n2α(n)), λ5(n) = Θ(nα(n)2α(n)), λ6(n) = 2(1+o(1))αt(n)/t!.

We stress that in this work we are not merely shaving off an inverse-Ackermann function
dependence slack from a previous upper bound (that of [38]) – we shave off such a slack to
achieve a tight bound. This is a rare example where such a tiny slack is shaved to achieve
optimality, and we believe that it is a significant evidence for the importance of our result,
especially in light of our technical contribution.

1.1.2.2 A robust lower bound?

All previous lower bounds [58, 4, 13, 38] apply to very specific line metrics: either to the
uniform line metric [58, 4, 38] or to one that is derived from hierarchically well-separated
trees (HSTs) and is very far from being uniform [13].

A natural question is whether one can improve the longstanding construction of Euclidean
(1 + ϵ)-spanners by Arya et al. [6] for “typical” point sets, which arise in real-life applications
– such as random points in low-dimensional spaces. While random point sets are important
from a practical perspective, none of the previous lower bounds [58, 4, 13, 38] precludes the
existence of improved spanner constructions for such point sets.

▶ Question 1.2. Can one improve the k versus O(nαk(n)) longstanding upper bound by
Arya et al. [6] for random point sets in constant-dimensional Euclidean space?
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1.2 Our Contribution
1.2.1 The basic lower bound (settling Question 1.1 in the affirmative)
We prove that any (1 + ϵ)-spanner for the uniform line metric with diameter k has Ω(nαk(n))
edges, for any k. We first prove the following general statement, which applies to subspaces
of the uniform line metrics of any density.

▶ Theorem 1. Let P be a set of p points in the interval [0, L] such that every unit sub-interval
[i, i + 1] for integer i, 1 ≤ i ≤ L− 1 contains at most 1 point of P . For any ϵ ∈ [0, 1/4] and
integer k ≥ 1, any (1 + ϵ)-spanner with diameter k for P contains Ω

(
(p2/L)αk(p)

)
edges.

For technical reasons we prove a more general lower bound, stated in Lemmas 12, 14,
and 16, which applies to Steiner spanners, namely, spanners that may contain additional
Steiner points. The following direct corollary of Theorem 1 improves the previous lower
bound by Le et al. [38] by a factor of 2Ω(k), and it settles Question 1.1 in the affirmative.

▶ Corollary 2 (The longstanding upper bound is tight for all k). Let P = {0, 1, . . . , n− 1} be
the set of n points on the uniform line metric contained on interval [0, n). For any ϵ ∈ [0, 1/4]
and integer k ≥ 1, any (1 + ϵ)-spanner with diameter k for P contains Ω (nαk(n)) edges.

1.2.2 A robust lower bound (settling Question 1.2 in the negative)
Our lower bound of Theorem 1 applies to subspaces of the uniform line metric. We first
demonstrate that this lower bound can be naturally extended to obtain analogs for constant
dimensions. Second, we show that this lower bound carries over for random point sets in
spaces of constant dimension, thereby settling Question 1.2 in the negative. We note that
our approach seamlessly extends to higher constant dimensions.

The constant-dimensional hypercube and grid

The proof of the following theorem is omitted from this version due to space constraints.

▶ Theorem 3. Let P be a set of p points in the hypercube [0, L]d for a constant d ≥ 2 and
some integer L ≥ 0 such that every unit hypercube with integer vertices in [0, L]d contains at
most one point of P . For any ϵ ∈ [0, 1/4] and any integer k ≥ 1, any (1 + ϵ)-spanner with
diameter k for P contains Ω

(
(pd/Ld)αk(pd)

)
edges.

Thus for d = 2 and d = 3, we get lower bounds Ω((p2/L2)αk(p2)) and Ω((p3/L3)αk(p3)).

▶ Corollary 4. Let P be the set of nd points on the d-dimensional grid [0, n)d, for a constant
d ≥ 2. Then, for any ϵ ∈ [0, 1/4] and any integer k ≥ 1, any (1 + ϵ)-spanner with diameter k

for P contains Ω
(
ndαk(nd)

)
edges.

Random point sets in the d-dimensional hypercube

We omit the proof of the following theorem from this version due to space constraints.

▶ Theorem 5. Let P be a set of n points sampled uniformly at random on the hypercube
[0, 1]d for any constant d ≥ 1. For any ϵ ∈ [0, 1/4], and any integer k ≥ 1, any (1+ϵ)-spanner
with diameter k for P contains Ω(nαk(n)) edges.

Remark. Theorem 5 applies to d = 1 as well, i.e., random points on the unit interval [0, 1].

SoCG 2023
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1.2.3 A concave inverse-Ackermann function
Our technique for proving Theorem 1 requires a significantly deeper understanding of inverse-
Ackermann style functions than used in previous works [58, 4, 13, 38]. A key technical
contribution in our work is an explicit construction of continuous versions of these functions.
To our knowledge, this work is the first to introduce such functions for αk(n) for k > 4. We
then show that these functions are concave, which allows us to apply Jensen’s inequality in
our inductive proof, leading to a lower bound that is not only optimal for all values of k,
but is also more robust, and in particular precludes the existence of better constructions for
random point sets.

▶ Theorem 6. Fix an arbitrary constant 1
10000 ≤ ∆ ≤ 1

256 . There exists a family of functions
{fk(x) : k ≥ 2, k ∈ Z} such that each fk : R+ → R+ is twice differentiable in (0, +∞) and:
1. For x > 1, f2(x) = log x; f3(x) = log log x; and fk(x) = ∆ + fk(fk−2(x)) for every k ≥ 4.
2. For all x ∈ R≥1 and k ≥ 4, function x2fk(x) is convex.
3. For all x ∈ R≥0 and k ≥ 4, it holds that fk(x) ≥ ∆

5 αk(⌈x⌉)− 1.
4. For all x ∈ R≥0 and k ≥ 2, it holds that fk(⌈x⌉) ≤ αk(⌈x⌉).
5. For all k ≥ 2, k ∈ Z and x ≥ 200, x ∈ R, it holds that 2

⌊
x

fk(x)

⌋
fk

(
2⌊x/fk(x)⌋

4

)
≥ x/2.

Items 3 and 4 of Theorem 6 imply that fk(n) = Θ(αk(n)). Item 2 is a key property of
our function fk(x), which does not hold for its discrete counterpart αk(n).

2 One-dimensional instances

This section is dedicated to proving Theorem 1. The proof is by double induction on the
number of points and the diameter of the spanner. There are two base cases in the proof:
k = 2 and k = 3 presented in Section 2.2 and Section 2.3, respectively. The proof for k ≥ 4
is given in Section 2.4. Together, they imply Theorem 1. We choose ∆ = 1/256.

For a constant d and given set of points P on the d-dimensional hypercube [0, L]d, we
require that every unit hypercube with integer vertices in [0, L]d contains at most one point
in P . We call the condition unit interval condition.

2.1 Classification of cross edges
Given a point set P contained on an interval [0, n] and given an ϵ ∈ [0, 1/4], let H be any
(1 + ϵ)-spanner for P . Consider Algorithm 1 with parameter ℓ = 0 being the recursion level, k

being the diameter, and I being the interval containing P . This algorithm is used to classify
the edges of H only. It divides I into a smaller set of b subintervals and defines a set of
separators, which are the endpoints of the subintervals excluding the two endpoints of I. A
cross edge of the interval I at level ℓ is an edge (1) needed to preserve the distance between
two points in P and (2) crossing a separator.

Next we study properties of cross edges and classify them.

▶ Lemma 7. Let e be a cross edge of some interval I = [c, d] and let L := |d− c| denote the
interval length. Then, both endpoints of e are within [c− L/4, d + L/4].

Proof. Suppose toward the contradiction that there is an edge containing an endpoint outside
of [c−L/4, d + L/4]. Without loss of generality we take the case where the right endpoint of
e has coordinate larger than d + L/4. Let x < y be two points in I for which e is on their
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Algorithm 1 Procedure describing the terms used in the proof. It is initially invoked with a given
set of p points P on interval I, and ℓ = 0. Here, H is a (1 + ϵ)-spanner for P .

procedure CrossEdges(P, I = [c, d], k, H, ℓ)
if (k ≤ 3 and p ≤ 1) or (k ≥ 4 and fk(p) < 1) then return
Let b← 2 if k = 2, b← ⌈√p⌉ if k = 3, and b← 2 · ⌊p/fk−2(p)⌋ otherwise.
M ← (d− c)/b ▷ dividing I into b subintervals
for 1 ≤ j ≤ b− 1 do

Ij ← [c + (j − 1)M, c + jM ]
Pj ← P ∩ [c + (j − 1)M, c + jM)

Pb ← P ∩ [c + (b− 1)M, c + bM ]
Let {c + jM | 1 ≤ j ≤ b− 1} be the set of separators of I.
A cross edge of interval I is every edge e = (x, y) of H such that: (i) e is on some

(1 + ϵ)-spanner path between two points in P and (ii) there exists a separator s such that
x ≤ s ≤ y.

for 1 ≤ j ≤ b do CrossEdges(Pj , Ij , k, H, ℓ + 1)

(1 + ϵ) spanner path, say πx,y, in H. Since πx,y is a (1 + ϵ)-spanner path, its length πx,y

must be at most (1 + ϵ)|y − x| ≤ 5|y − x|/4 ≤ |y − x| + L/4. However, the length of πx,y

is strictly greater than |x− y|+ L/4 since the right endpoint of e is larger than d + L/4, a
contradiction. ◀

We classify the cross edges as follows. We call a cross edge of some interval interior if
it contains both endpoints inside of the interval. If both of its endpoints are outside of the
interval, we call it exterior. Otherwise, we call it mixed. See Figure 1 for an illustration.

01s 1x 2s 2x 3x 3sn

Figure 1 The separators are marked by short red lines. Here P = {x1, x2, x3}. The spanner
could use Steiner points which are points not in P ; they are s1, s2, s3 in this figure. The red edge
(s1, s3) is an exterior cross edge of [0, n]; the blue edge (x1, s2) is an interior cross edge of [0, n]; and
the green edge (x2, s3) is a mixed cross edge of [0, n]. Edge (s1, x1) is not a mixed edge since it does
not cross any separator.

▶ Lemma 8. Let e be an interior cross edge of some interval. Then, it cannot be an interior
cross edge of any other interval.

Proof. Let ℓ be the level at which e is an interior cross edge of some interval I = [c, d].
By definition, e cannot be an interior cross edge of any other interval at level ℓ, since the
intervals at the same level are disjoint. Since the intervals of levels lower than ℓ contain no
separators inside [c, d], e cannot be a cross edge at these levels. Finally, after level ℓ, I is
split at the separators into smaller intervals, and hence e cannot have two endpoints in the
same interval at levels higher than ℓ. ◀

▶ Lemma 9. Let e be an exterior cross edge of some interval. Then, it cannot be an exterior
cross edge of any other interval.
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Proof. Suppose that e = (u, v) is an exterior cross edge of more than one interval. Among
such intervals, let [c, d] be of the highest level, say ℓ. We have that u < c and d < v since e

is exterior. Let L = |d − c|. The length of intervals at levels lower than ℓ are at least 2L.
From Lemma 7, we know that c− L/4 ≤ u and v ≤ d + L/2, so the length of e is at most
3L/2. This means that e cannot be an exterior edge at levels lower than ℓ. ◀

▶ Lemma 10. Let e be a mixed cross edge of some interval. Then, it can be a mixed cross
edge for at most one other interval, an exterior cross edge for at most one other interval and
an interior cross edge for at most one other interval.

Proof. Let ℓ be the level at which e = (u, v) is a mixed cross edge of some interval I = [c, d]
of length L := |d− c|. Without loss of generality, we assume that u ∈ [c, d] and v ≥ d. By
Lemma 7, v < d + L/4. Let I ′ = [c′, d′] be another interval such that I ′ ̸= I and e is a cross
edge of I ′. We consider three cases.

If the level of I ′ is strictly smaller than ℓ. If d is not a separator of I ′, then by definition
e cannot be a cross edge of I ′. If d is a separator of I ′, then d′ ≥ d + L. On the other hand,
v < d + L/4, so e = (u, v) must be an interior cross edge of I ′. By Lemma 8, it cannot be an
interior cross edge of any other interval.

If the level of I ′ is exactly ℓ. I. Since v < d + L/4, the only case where e is a cross edge
of I ′ is that d is the left endpoint of I ′ and e is a mixed cross edge of I ′. Thus, e could not
be a mixed cross edge of any other interval at level ℓ.

If the level of I ′ is strictly larger than ℓ. Then the length of I ′ is at most L/b. Since u is
on the left of at least one separator, say s, of I and v > d, the distance between s and d is at
least L/b. It follows that the length of e is at least L/b. Hence, the only possible way for e

to be a cross edge of I ′ is that it is an exterior cross edge. By Lemma 9, e′ will not be an
exterior cross edge of any other interval. ◀

▶ Corollary 11. Every cross edge considered in the process above is counted at most 4 times.

In the sequel, we will be proving the lower bound on the number of cross edges. We say
that a point of P in an interval I is global if it is incident on at least one cross edge of I.
Otherwise, we say that it is non-global.

2.2 Hop-diameter 2
In this section, we show one of the two base cases of our inductive proof: a lower bound for
diameter k = 2.

▶ Lemma 12. Let P be a set of p ≥ 2 points in the interval [0, L] satisfying the unit interval
condition. For any ϵ ∈ [0, 1/4], any Steiner (1 + ϵ)-spanner for P with diameter 2 contains
at least T2(p, L) ≥ p2 log p

16L edges.

Proof. Our proof is by induction on the number of points in P . Let H be any (1 + ϵ)-
spanner for P with diameter 2. We split the interval [0, L] into two disjoint intervals
[0, L/2] and [L/2, L]. Let the number of points in the intervals be p1 := |P ∩ [0, L/2]| and
p2 := |P ∩ (L/2, L]|. We claim that the number of edges of H can be lower bounded by
T2(p, L) which satisfies:

T2(p, L) ≥ T2(p1, L/2) + T2(p2, L/2) + min(p1, p2)/4 (1)

The base cases are T2(0, L0) = T2(1, L0) = 0, for any L0 > 0. The terms T2(p1, L/2) (resp.,
T2(p2, L/2)) come from the cross edges contributed by the intervals in [0, L/2] (resp., [L/2, L])
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and their recursive divisions in Algorithm 1. We will show in Claim 13 that the number of
cross edges of [0, L] is at least min(p1, p2). By Corollary 11, each cross edge is counted at
most 4 times. Thus, we use min(p1, p2)/4 in Equation (1). This implies that the number of
edges of H is bounded by T2(p, L).

▷ Claim 13. H contains at least min(p1, p2) cross edges of the interval [0, L].

Proof. Without loss of generality, assume p1 ≤ p2. For contradiction, assume that the number
of cross edges is less than p1. This means that there is a non-global point a in [0, L/2].
(Recall that we call a point non-global if it is not incident on any cross edge of the interval
[0, L].) A path from a to any point b in P ∩ [L/2, L] is of the form (a, ab, b), where ab is a
point on the left of L/2. Then (ab, b) is a cross edge by definition. That is, for each point
in P ∩ [L/2, L], there is a corresponding cross edge in the path to a. Thus, [0, L] contains
p2 ≥ p1 different cross edges, which is a contradiction. ◁

We now solve the recurrence in Equation (1). We prove by induction that T2(p, L) ≥
p2 log p

16L . Note that L ≥ p by the unit interval conditoin in Lemma 12. Assume without loss
of generality that p1 ≤ p2. First, we assume that p1 ≥ p/4.

T2(p, L) ≥ T2(p1, L/2) + T2(p2, L/2) + p1

4 ≥
p2

1 log p1

8L
+ p2

2 log p2

8L
+ p1

4 ≥
p2 log(p/2)

16L
+ p1

4

= p2(log(p)− 1) + 4Lp1

16L
≥ p2(log(p)− 1) + 4pp1

16L
≥ p2 log p

16L
(since p1 ≥ p/4)

The second inequality follows by induction hypothesis, third by Jensen’s inequality, fourth
by the unit interval condition, and the fifth since p1 ≥ p/4. When p1 < p/4, we have the
following.

T2(p, L) ≥ T2(p1, L/2) + T2(p2, L/2) + p1

4 ≥ T2(p2, L/2) ≥ (3p/4)2 log(3p/4)
8L

≥ p2 log p

16L

The penultimate inequality follows by using p2 ≥ 3p/4 and the induction hypothesis, whereas
the last one holds for all p ≥ 14. When 2 ≤ p ≤ 13, we use T2(p1, L/2)+T2(p2, L/2)+p1/4 ≥
p2

1 log p1
8L + p2

2 log p2
8L + p1

4 ≥
p2 log p

16L , where the last inequality can be manually verified. The
lemma now follows. ◀

2.3 Hop-diameter 3
In this section, we show the remaining base case of our inductive proof: a lower bound for
diameter k = 3.

▶ Lemma 14. Let P be a set of p ≥ 2 points in the interval [0, L] satisfying the unit interval
condition. For any ϵ ∈ [0, 1/4], any Steiner (1 + ϵ)-spanner for P with diameter 3 contains
at least T3(p, L) ≥ p2 log log p

800L edges.

Proof. Let H be any (1 + ϵ)-spanner for P with diameter 3. We split the interval [0, L] into
b := ⌈√p⌉ disjoint intervals of length L/b: [0, L/b], [L/b, 2(L/b)], . . . , [(b − 1)(L/b), L]. Let
Pi = P ∩ [(i − 1)(L/b), i(L/b)) for 1 ≤ i < b and Pb = P ∩ [L − L/b, L]. In other words,
we divide the interval as in Algorithm 1. Let the number of points in the i-th interval be
denoted by pi := |Pi|. We claim that the number of edges of H can be lower bounded by
T3(p, L) which satisfies:

T3(p, L) ≥
b∑

i=1
T3(pi, L/b) + |EC |/4 (2)
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Here EC denotes the set of cross edges for the interval [0, L] and the term T3(pi, li),
where 1 ≤ i ≤ b, is the lower bound on the number of cross edges of H at higher levels
restricted to preserving distances in Pi. By Corollary 11, each cross edge is counted at most
4 times. Thus, we use |EC |/4 in Equation (2). Thus, |E(H)| ≥ T3(p, L). The base cases are
T3(0, L0) = T3(1, L0) = 0, for any L0 > 0.

We now inductively show that T3(p, L) ≥ p2 log log p
800L . Suppose first that there is a collection

of c ≤ √p/2 intervals which in total contain at least 9p/10 points. Without loss of generality,
assume that these are the first c intervals; that is,

∑c
i=1 bi = 9p/10. In this case, we show

that the inequality holds even without the contribution of the cross edges.

c∑
i=1

T3(pi, L/b) ≥
c∑

i=1

p2
i log log pi

800L/b
≥ c ·

( 9p
10c

)2 log log
( 9p

10c

)
800L/b

≥ 81
50 ·

p2 log log
(

9√
p

5

)
800L

≥ p2 log log p

800L

The first inequality follows from the induction hypothesis, second by Jensen’s inequality,
and third using b ≥ √p and c ≤ √p/2. We next bound the number of cross edges in the
complementary case.

▷ Claim 15. Assume that there is no collection of c ≤ √p/2 intervals that in total contain
at least 9p/10 points. Then, |Ec| ≥ p/100.

Proof. Suppose first there are at least p/10 global points. The number of cross edges
they contribute is at least p/20, since each edge can be counted at most twice. In the
complementary regime, there are at least 9p/10 non-global points. By the assumption of the
claim, we know that they are contained in at least √p/2 intervals. Consider two non-global
points x and y contained in two different intervals, X and Y , respectively. Since x and y are
non-global, i.e., they are not incident on any cross edge, every 3-hop path between x and y

must be of the form ⟨x, x′, y′, y⟩, where x′ ∈ X and y′ ∈ Y . We conclude that every pair of
different intervals containing non-global points induces a different cross edge. Hence, the
number of cross edges can be lower bounded by

(√
p/2
2

)
≥ p

100 for p ≥ 5. When 2 ≤ p ≤ 4,
there is at least one cross edge, and the bound holds as well. ◁

We now solve Equation (2) by induction. By Claim 15, we have:

T3(p, L) ≥
b∑

i=1
T3(pi, L/b) + p

400 ≥
b∑

i=1

p2
i log log pi

800L/b
+ p

400 ≥ b · (p/b)2 log log(p/b)
800L/b

+ p

400

= p2 log log(p/b)
800L

+ p

400 = p2 log log(p/b) + 2pL

800L
≥ p2 log log p

800L

The second inequality follows from the induction hypothesis, third by Jensen’s inequality,
and the last from the unit interval condition and the choice b = ⌈√p⌉. The lemma now
follows. ◀

2.4 Hop-diameter k ≥ 4
In this section, we show a lower bound for k ≥ 4, concluding the proof of Theorem 1. Our
proof will use function fk(x) in Theorem 6 with ∆ = 1/256. In particular, we will show
the lower bound Ω( p2fk(p)

L ) on the number of edges. Since fk(p) = Ω(αk(b)) by Item 3 of
Theorem 6, the number of edges of the spanner is Ω( p2αk(p)

L ) as claimed in Theorem 1.
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▶ Lemma 16. Let P be a set of p ≥ 2 points in the interval [0, L] satisfying the unit interval
condition. For any ϵ ∈ [0, 1/4], any Steiner (1 + ϵ)-spanner for P with hop-diameter k ≥ 2
contains at least Tk(p, n) ≥ p2fk(p)

800L edges.

Proof. The base cases k = 2 and k = 3 follow from the definition of f2(x) = log x and
f3(x) = log log x and Lemmas 12 and 14. The base case for p happens when fk(p) < 1. Here,
we use the fact that any spanner on p points must have at least p−1 edges and p−1 ≥ p2fk(p)

800L

so the claim follows.
Let H be any (1+ϵ)-spanner for P with hop-diameter k. We split the interval [0, L] into b :=

2 · ⌊p/fk−2(p)⌋ disjoint intervals of length L/b: I1 = [0, L/b), I2 = [L/b, 2(L/b)), . . . , Ib−1 =
[(b−2)(L/b), (b−1)(L/b)), Ib = [(b−1)(L/b), L]. Let the number of points in the i-th interval
be denoted by pi := |P ∩ Ib|. By the same proof of Lemma 14, the number of edges of H can
be lower bounded by Tk(p, n) which satisfies:

Tk(p, L) ≥
b∑

i=1
Tk(pi, L/b) + |EC |/4 (3)

Here EC denotes the set of cross edges for the interval [0, L] and the term Tk(pi, L/b), where
1 ≤ i ≤ b, come from the cross edges contributed by the i-th interval and its recursive
subdivisions.

We now inductively show that Tk(p, L) ≥ p2fk(p)
800L for k ≥ 4. Suppose first that there is a

collection of c ≤ b/4 intervals that in total contain at least 3p/4 points. Then the inequality
holds even without considering |EC |. Recall that by Item 2 in Theorem 6, x2fk(x) is convex
and hence we can apply the Jensen’s inequality.

Tk(p, L) ≥
c∑

i=1
Tk(pi, L/b) ≥

c∑
i=1

p2
i fk(pi)

800L/b

≥ c ·
( 3p

4c

)2
fk

( 3p
4c

)
800L/b

(Jensen’s inequality)

≥ 9
4 ·

p2fk

( 3p
b

)
800L

≥ 9
4 ·

p2fk (fk−2(p))
800L

(using c ≤ b/4 and b := 2 · ⌊p/fk−2(p)⌋)

= 9
4 ·

p2(fk(p)−∆)
800L

(by Item 1 in Theorem 6)

≥ p2fk(p)
800L

using that fk(p) ≥ 1

Now we consider the complementary case where there is no collection of c ≤ b/4 intervals
that in total contain at least 3p/4 points. For this case, we need to take the number of cross
edges into account.

▷ Claim 17. Assume that there is no collection of c ≤ b/4 intervals that in total contain at
least 3p/4 points. Then, |EC | ≥ p/25600.

Proof. If there is at least p/4 global points, then we have at least p/8 cross edges. In the
complementary regime, there are at least 3p/4 non-global points. By assumption, they are
contained in at least b/4 non-global blocks. From each interval that contains non-global
points we take exactly one non-global point and let the resulting set of points be denoted
P ′. We use the induction hypothesis with k − 2 on P ′. Note that |P ′| ≥ b/4. The following
observation allows us to use the scaled version of the induction hypothesis.
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▶ Observation 18. Suppose that a set of points P ′ on interval [0, L] satisfies that when we
divide [0, L] into consecutive intervals of length M , every such interval contains at most one
point from P ′ and H ′ be any (1 + ϵ) spanner of P ′ with hop-diameter k. Let Q′ be a set
of points in P ′ scaled down by a factor of L. Such a set of points is contained on interval
[0, L/M ] and it satisfies the unit interval condition. Let H ′′ be the scaled version of H ′.
Then, H ′′ is a (1 + ϵ)-spanner for Q′ with hop-diameter k.

We proceed to lower bound the number of cross edges, using the observation.

Tk−2(|P ′|, b) ≥ Tk−2

(
b

4 , b

)
≥

b2

16 fk−2
(

b
4
)

800b
=

2⌊p/fk−2(p)⌋fk−2

(
2⌊p/fk−2(p)⌋

4

)
12800 ≥ p

25600

The second inequality follows by the induction hypothesis for k − 2, and the last by Item 5
in Theorem 6. This concludes the proof of Claim 17. ◁

We now solve Equation (3) by induction. Recall that we choose ∆ = 1/256. By Claim 17,
we have:

Tk(p, L) ≥
b∑

i=1
Tk(pi, L/b) + p

102400

≥
b∑

i=1

p2
i fk(pi)

800L/b
+ p

102400 (induction hypothesis)

≥ b ·
(

p
b

)2
fk

(
p
b

)
800L/b

+ p

102400 (Jensen’s inequality)

=
p2fk

(
p

2⌊p/fk−2(p)⌋

)
800L

+ p

102400 (replacing b := 2⌊p/fk−2(p)⌋)

≥ p2(fk(p)− 3∆)
800L

+ p

102400

≥ p2fk(p)
800L

(using p ≤ L and ∆ = 1/256)

The lemma now follows. ◀

3 Concave Ackermann-type functions

In this section, we introduce the concave inverse-Ackermann function fk(x). We omit the
details from this extended abstract due to space constraints. We fix a constant ∆ < 1/256.

▶ Definition 19 (fk(n) for even k). For all x ∈ R≥0 and even k ≥ 2, we let fk(x) be:

f2(x) = log x

fk(x) = akx3 + bkx2 + ckx−∆ for 0 ≤ x ≤ 1, k ≥ 4
fk(x) = ∆ + fk(fk−2(x)) for x > 1, k ≥ 4

Constants ak, bk, and ck are chosen so that they satisfy the following relations.

ak + bk + ck = ∆ ∀k ≥ 4 (4)

3a4 + 2b4 + c4 = c4

ln 2 (5)
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6a4 + 2b4 = 2b4 − c4 ln 2
ln2 2

(6)

3ak + 2bk + ck = ck · (3ak−2 + 2bk−2 + ck−2) (7)
6ak + 2bk = 2bk · (3ak−2 + 2bk−2 + ck−2)2 + ck · (6ak−2 + 2bk−2) (8)

In this section, we solve the recurrence in Definition 19 for even k by giving estimates on
the values of ak, bk and ck. We will use these estimates in the proof of Theorem 6, which is
omitted from this extended abstract due to space constraints.

For k = 4, by solving a linear system of equations defined by Equations (4), (5), and (8)
we obtain the following estimates.

▶ Lemma 20. a4, b4 and c4 satisfy the following equation:

−0.0819∆ ≤ a4 ≤ −0.0818∆
0.2966∆ ≤ b4 ≤ 0.2967∆
0.7852∆ ≤ c4 ≤ 0.7853∆ (9)

In estimating the values of ak, bk and ck, we will use the following sequences:

λ4 = 1.1328∆, λk = 3∆λk−2

1 + 4λk−2

r4 = 11.0439, rk =
Λ3

k−2 + Λk−2

2Λ3
k−2 − 2Λ2

k−2 + Λk−2
rk−2

, where Λk = 0.3777 · (3∆)(k−2)/2 (10)

▶ Lemma 21. λk ≥ 0.3265(3∆) k−2
2 and rk < 25 for all k ≥ 4.

Proof. Solving the recurrence we get

λk = 236 · (1− 3∆) · 3(k−2)/2

(625 + 957∆)
( 1

∆
)(k−2)/2 − 944 · 3(k−2)/2

≥ 236 · (1− 3∆) · (3∆)(k−2)/2

625 + 957∆ ≥ 0.3265 · (3∆)
k−2

2 .

The last inequality holds whenever ∆ ≤ 1/32.
We use induction to show that rk < 25; the base case holds by definition of r4. Observe

that 0 ≤ Λk ≤ Λ4 ≤ 0.3777 · (3∆) ≤ 0.3777 · 3
256 . By induction, rk−2 < 25. Thus, we have

rk = Λ3
k−2+Λk−2

2Λ3
k−2−2Λ2

k−2+
Λk−2
rk−2

≤ rk−2 + 3000Λk−2, where the last inequality follows since the left-

hand side grows with Λk−2 for all 0 ≤ Λk ≤ 0.3777 · 3
256 , when 11.0439 ≤ rk−2 < 25. It follows

that: rk ≤ r4 +3000
∑(k−2)/2

i=1 Λk ≤ r4 +3000
∑∞

i=1 Λk ≤ 11.0439+3000 ·0.3777 · 3∆
1−3∆ < 25 ,

as desired. ◀

▶ Lemma 22. Let Xk = 2ak + bk + ∆ and Yk = 6ak + 2bk. Then

0.3265 · (3∆)(k−2)/2 ≤ λk ≤ Xk ≤ 0.3777 · (3∆)(k−2)/2 (11)

11.041 ≤ Xk

Yk
≤ rk < 25 (12)

∆−Xk ≤ ak ≤ ∆−Xk + Xk

22 (13)

−3∆ + 3Xk −
Xk

11 ≤ bk ≤ −3∆ + 3Xk (14)

3∆− 2Xk ≤ ck ≤ 3∆− 2Xk + Xk

22 (15)
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Proof. Observe by Equation (4) that Xk = 2ak + bk + ∆ = 3ak + 2bk + ck and that
ck = Yk

2 − 2Xk + 3∆. Thus, the system from Definition 19 for k ≥ 6 can be written as follows.

Xk = Xk−2 · (
Yk

2 − 2Xk + 3∆)

Yk = X2
k−2 · (6Xk − 2Yk − 6∆) + Yk−2 · (

Yk

2 − 2Xk + 3∆)

Solving the above system of equations for Xk and Yk, we get:

Xk =

∣∣∣∣ 6Xk−2∆ −Xk−2
(6Yk−2 − 12X2

k−2)∆ (4X2
k−2 + 2− Yk−2)

∣∣∣∣∣∣∣∣ (4Xk−2 + 2) −Xk−2
(4Yk−2 − 12X2

k−2) (4X2
k−2 + 2− Yk−2)

∣∣∣∣ =
6∆(X3

k−2 + Xk−2)
2X3

k−2 + 4X2
k−2 + 4Xk−2 − Yk−2 + 2

Yk =

∣∣∣∣ (4Xk−2 + 2) 6Xk−2∆
(4Yk−2 − 12X2

k−2) (6Yk−2 − 12X2
k−2)∆

∣∣∣∣∣∣∣∣ (4Xk−2 + 2) −Xk−2
(4Yk−2 − 12X2

k−2) (4X2
k−2 + 2− Yk−2)

∣∣∣∣ =
6∆(2X3

k−2 − 2X2
k−2 + Yk−2)

2X3
k−2 + 4X2

k−2 + 4Xk−2 − Yk−2 + 2

(16)

For the base case, X4 = 2a4 + b4 + ∆ and Y4 = 6a4 + 2b4. By Lemma 20, we have:

1.1328∆ ≤ X4 ≤ 1.1331∆ and 0.1018∆ ≤ Y4 ≤ 0.1026∆ (17)

Next, we show both Equation (11) and Equation (12) by induction; the base case (k = 4)
holds by Equation (17). By Equation (16), we have: Xk ≤

6∆(X3
k−2+Xk−2)

2X3
k−2+4X2

k−2+4Xk−2−
Xk−2
11.041 +2

≤

3∆Xk−2 ≤ 3∆ · 0.3777 · (3∆)(k−4)/2 = 0.3777 · (3∆)(k−2)/2 The lower bound on Xk follows
also by induction: Xk = 6∆(X3

k−2+Xk−2)
2X3

k−2+4X2
k−2+4Xk−2−Yk−2+2 ≥

3∆Xk−2
1+4Xk−2

≥ 3∆λk−2
1+4λk−2

= λk , by Equa-

tion (10). For the lower bound on Xk

Yk
, by Equation (16), we have: Xk

Yk
= X3

k−2+Xk−2
2X3

k−2−2X2
k−2+Yk−2

≥
X3

k−2+Xk−2

2X3
k−2−2X2

k−2+
Xk−2
11.041

≥ 11.041, where the last inequality holds since Xk−2 ≤ 1.1331∆ ≤ 1.1331
256 .

Finally, we show an upper bound on Xk

Yk
= X3

k−2+Xk−2
2X3

k−2−2X2
k−2+Yk−2

≤ X3
k−2+Xk−2

2X3
k−2−2X2

k−2+
Xk−2
rk−2

≤

Λ3
k−2+Λk−2

2Λ3
k−2−2Λ2

k−2+
Λk−2
rk−2

= rk < 25 , by Lemma 21. This concludes the inductive proof of Equa-

tion (11) and Equation (12). For Equations (13)–(15), we express ak, bk, and ck in terms of
Xk and Yk as follows: ak = ∆ + Yk

2 −Xk, bk = −3∆ + 3Xk − Yk, and ck = 3∆ + Yk

2 − 2Xk.
Eq. (13)-(15) follow. ◀
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Abstract
Any surface that is intrinsically polyhedral can be represented by a collection of simple polygons
(fragments), glued along pairs of equally long oriented edges, where each fragment is endowed
with the geodesic metric arising from its Euclidean metric. We refer to such a representation as a
portalgon, and we call two portalgons equivalent if the surfaces they represent are isometric.

We analyze the complexity of shortest paths. We call a fragment happy if any shortest path on
the portalgon visits it at most a constant number of times. A portalgon is happy if all of its fragments
are happy. We present an efficient algorithm to compute shortest paths on happy portalgons.

The number of times that a shortest path visits a fragment is unbounded in general. We contrast
this by showing that the intrinsic Delaunay triangulation of any polyhedral surface corresponds to
a happy portalgon. Since computing the intrinsic Delaunay triangulation may be inefficient, we
provide an efficient algorithm to compute happy portalgons for a restricted class of portalgons.
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1 Introduction

We define a portalgon P to be a collection of simple polygons (fragments) with some pairs
of edges identified, see Figure 1. When we stitch together all fragments of a portalgon we
obtain a two-dimensional surface Σ, whose intrinsic metric is polyhedral [7, 19]. Note that
Σ is not necessarily embeddable in R3 with flat faces or without self-intersections, and not
necessarily orientable. We say that P is a representation of Σ; crucially, the same surface may
in principle have many different representations. Portalgons can be seen as a generalization
of simple polygons, polygons with holes, polyhedral surfaces, and even developable surfaces.

We are interested in the computational complexity of computing shortest paths on portal-
gons. In particular, we analyze the shortest path map SPM(s); a representation of all shortest
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Σ

P

Σ

P

P

Σ

Σ

P

(a) (b) (c) (d)

e−

e+

Figure 1 Examples of portalgons. Arrows of the same color represent portals that are identified
with each other. (a) A portalgon that represents a polygon with a hole. (b) A portalgon that
represents the surface of a bottomless pyramid. (c) A portalgon that represents the surface of a
cylinder. (d) A portalgon that represents a Möbius strip, a non-orientable surface.

paths from a source point s to all other points in the portalgon. Our main insights are:
The complexity of a shortest path on a surface Σ, represented by a given portalgon P,
may be unbounded in terms of the combinatorial properties of Σ and P.
The complexity of a shortest path depends on a parameter of the particular portalgon P
representing the surface that we refer to as its happiness h. In particular, we show that
the maximum complexity of a shortest path is Θ(n + hm), where n is the total number
of vertices in the portalgon, m ≤ n is the number of portals.
Given a source point in P , the complexity of its shortest path map is O(n2h). Moreover,
if P is triangulated, it can be computed in O(λ4(k) log2 k) time, where k is the output
complexity, and λ4(k) the length of an order-4 Davenport-Schinzel sequence on k symbols.
Every surface with a polyhedral intrinsic metric admits a representation as a portalgon
where the happiness h is constant. Specifically, one such representation is given by its
intrinsic Delaunay triangulation. In such portalgons shortest paths have complexity O(n).
Since the intrinsic Delaunay triangulation is not easy to compute, we investigate the
problem of transforming a given portalgon of happiness h into one with constant happiness.
We present an algorithm to do so in O(n + log h) time, for a restricted class of portalgons.
The question of how to compute such a good representation, in general, remains open.

1.1 Comparison to related work
Shortest paths have been studied in many different geometric settings, such as simple polygons,
polygonal domains, terrains, surfaces, and polyhedra (see e.g. [5, 11, 13, 24]; refer to [21]
for a comprehensive survey). The efficient computation of shortest paths is a fundamental

s

t

s

t
(a) (b)

Figure 2 (a) A portalgon where a shortest path between s and t (dashed) has unbounded
complexity. (b) A different representation of the same surface where the path has constant complexity.
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problem in computational geometry [20, 23, 12, 5, 27, 26]. When the environment is a simple
polygon the situation is well understood [12, 11]. For polygons with holes, efficient solutions
have also been known for quite a while [13], recently culminating in an optimal O(n + k log k)
time algorithm, where n is the total number of vertices of the polygon, and k the number of
holes [26]. For more complex environments, like the surface of a convex polyhedron, several
algorithms have been developed [5, 22, 28], and even implemented [14, 15]. However, for
more general surfaces the situation is less well understood.

Portalgons generalize many of the geometric settings studied before. Hence, our goal is
to unify existing shortest paths results. To the best of our knowledge, this has not been
attempted before, even though several questions closely related to the ones addressed in
this work were posed as open problems in a blog post almost two decades ago [9]. Instead,
portalgons are a rather unexplored concept which, though it has been long adopted into
popular culture [6, 8, 25], have only been studied from a computational point of view in the
context of annular ray shooting by Erickson and Nayyeri [10].

When measuring the complexity of a shortest path, we can distinguish between its intrinsic
complexity, and complexity caused by the representation of the underlying surface. For
example, a shortest path π on a convex polyhedron Σ in R3 with n vertices, may cross (and
thus bend) at O(n) edges. Hence, a description of π on Σ has complexity O(n). However, it
is known that any convex polyhedron in R3 can be unfolded into a simple planar polygon
PΣ, and in such a way that a shortest path π corresponds to a line segment in PΣ [1, 2, 5].
Hence, π actually has a constant complexity description in PΣ. It is easy to see that some
portalgons may have shortest paths of unbounded complexity; as illustrated in Figure 2(a).
This unbounded complexity, however, is completely caused by the representation, and indeed
there is another equivalent portalgon without this behavior (Figure 2(b)). We introduce a
parameter that explicitly measures the potential for shortest paths to have high complexity,
which we call happiness – refer to Section 2 for a formal definition.

In Section 3, we analyze the complexity of shortest paths in terms of the happiness. Our
first main result is that, if we have a portalgon with n vertices and happiness h, then the
complexity of its shortest path map from a given source point is O(n2h). Moreover, we show
that, for triangulated portalgons, it can be computed in an output-sensitive fashion: if k is
the complexity of the shortest path map, then it can be computed in O(λ4(k) log2 k) time.

It is worth noting that our analysis of the shortest path map has similarities with
techniques used to compute shortest paths on polyhedral surfaces, most notably [5, 22].
However, the fact that portalgons are more general implies important differences with
previous methods. We need to handle surfaces of non-zero genus (e.g., see Figure 3), while

Figure 3 (a) A portalgon representing a flat torus. (b) Interestingly, a flat torus can be embedded
isometrically in R3; however, the resulting embedding has very high complexity [4, 16] (image from
https://www.imaginary.org/es/node/2375).
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Chen and Han [5] require genus zero to compute the map in the interior of triangles (see the
proof of their Theorem 4). Moreover, Σ may be non-embeddable in Euclidean space with
flat triangles. Another difference is that shortest paths in portalgons can cross the same
portal edge multiple times, something that is often (explicitly or implicitly) assumed to be
impossible in algorithms for polyhedral surfaces (e.g., in [22]).

The fact that the complexity of the shortest path map can be upper bounded by a
function of the happiness, leads to the following natural question: for a given surface Σ, can
it always be represented by a portalgon P with bounded happiness? In Section 4, we prove
that the answer to this question is “yes”. In particular, our second main result is that for
any portalgon, its intrinsic Delaunay triangulation [3] has constant happiness.

In turn, this then leads to another natural question: given a surface Σ, can we actually
efficiently compute a portalgon representing it that has bounded, preferably constant, happi-
ness? Clearly, the answer to this question depends on how Σ is represented. When Σ is given
as a portalgon P , possibly with unbounded happiness, this question then corresponds to the
problem of transforming P into an equivalent portalgon with constant happiness. This is
the problem we study in Section 5. Given the above result, the natural approach is to try
to construct the intrinstic Delaunay triangulation of P. Unfortunately, it is unknown if it
is possible to do that efficiently (that is, with guarantees in terms of n and h). Our third
main result shows that for a restricted class of portalgons we can give such guarantees. In
particular, if the input portalgon has only one portal, n vertices, and happiness h, we can
construct an equivalent portalgon that has constant happiness in O(n + log h) time.

2 Definitions and observations

Portalgons. We define a portalgon P to be a pair (F , P ), where F is a collection of simple
polygons, called fragments, and P is a collection of portals. A portal is an unordered pair
e = (e−, e+) of directed, distinct, equal length, edges from some fragment(s) of F . We refer
to e− and e+ as portal edges, see Figure 1(c), and require that each portal edge appears in
one portal. If p− is a point on e−, then p+ will denote the corresponding point on e+.

Let n be the total number of vertices in the fragments of P , and let m be the number of
portal edges; the number of portals is m/2. Note that m ≤ n. We denote the number of
vertices and the number of portal edges in a fragment F ∈ F by nF and mF , respectively.

If we “glue” the edges of the fragments along their common portal edges, then the portalgon
P describes a surface (2-manifold with boundary) Σ = Σ(P), see Figure 1. Specifically, Σ is
the space obtained from P by taking the collection F and identifying corresponding pairs of
points on portal edges. We can write Σ as a quotient space (

⋃
F ∈F F )/ ∼, where ∼ is an

equivalence relation that glues corresponding portal edges e− and e+.

Fragment Graph. A portalgon P = (F , P ) induces a (multi)graph that we refer to as the
fragment graph G of P (see Figure 4). Each fragment F ∈ F is a node in G, and there is a
link between F1 and F2 in G if and only if there is a portal e with e− in F1 and e+ in F2, or
vice versa. Note there may be multiple portals connecting F1 and F2.

Paths and shortest paths. A path π from s ∈ Σ to t ∈ Σ is a continuous function mapping
the interval [0, 1] to Σ, where s = π(0) and t = π(1). For two points p = π(a) and q = π(b),
we use π[p, q] to denote the restriction of π to the interval [a, b]. The fragments of P split
π into a set Π of maximal, non-empty, subpaths π1, .., πz, where (the image of) each πi is
contained in a single fragment. To be precise, for each fragment F , the intersection of (the
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1 2 3 4 1

2

3

4

Figure 4 The fragment graph of a portalgon with four fragments and five portals.

image of) π with F is a set of maximal subpaths, and Π is the union of those sets over all
fragments F 1. We define the length of π as the sum of the lengths of its subpaths, and the
distance d(s, t) between s ∈ Σ and t ∈ Σ as the infimum of length over all paths between s

and t. We inherit the property that d(s, t) = 0 if and only if s = t from the metric in each
fragment. It then follows that d is also a metric. Moreover, (Σ, d) is a geodesic space.

Observe that if π is a shortest path between s and t, each subpath πi is a polygonal
path whose vertices are either endpoints of πi or vertices of the fragment containing πi.
Furthermore, when π crosses a portal the path does not bend (otherwise we can again
locally shortcut it). It then follows that a shortest path π is also polygonal and can be
uniquely described by an alternating sequence s = v1, E1, v2, .., Ek, vk+1 = t of vertices (s, t,
or portalgon vertices) and sequences of portal edges crossed by the path. We refer to such a
description as the combinatorial representation of the path, and to the total length of these
sequences as the complexity of π. In the remainder of the paper, we will use π(s, t) to denote
an arbitrary minimum complexity shortest path between s and t. As we observed before (see
Figure 2(b)), a shortest path may still intersect a single portal edge many times, and hence
the complexity of a shortest path may be unbounded in terms of n and m.

Isometry. A map f : X → Y between metric spaces X and Y is an isometry if dX(x, x′) =
dY (f(x), f(x′)) for all x, x′ ∈ X. We say that f is a local isometry at a point x if there exists
an open neighborhood Ux of x such that the restriction of f to Ux is an isometry.

Equivalent portalgons. Given a portalgon P , there are many other portalgons that describe
the same surface Σ. For instance, we can always cut a fragment into two smaller fragments
by transforming a chord of the fragment into a portal, or, assuming this does not cause
any overlap, we can glue two fragments along a portal, see Figure 5. More formally, two
portalgons P and Q are equivalent, denoted P ≡ Q, if there is a bijective isometry between
them (i.e., if for any pair of points s, t ∈ P , their distance in P and Q is the same).

1 Note that if π passes through a vertex of P that appears in multiple portals, Π contains subpaths for
which the image consists of only a single point; the vertex itself. We later restrict our attention to
minimum complexity paths, which allows us to get rid of such singleton paths.

≡≡≡≡

Figure 5 Five equivalent portalgons, with the shortest path between (the same) two points.
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s

q

t

p

Figure 6 A simple h-happy portalgon in which a shortest path has complexity Ω(hm) as it crosses
Ω(m) portal edges (the blue portal edges) Ω(h) times each.

Happiness. Our ultimate goal will be to find, for a given input portalgon, an equivalent
portalgon such that all its shortest paths have bounded complexity. To this end, we introduce
the notion of a happy portalgon, and more specifically, a happy fragment of a portalgon.

Let P = (F , P ) be a portalgon, let F ∈ F be a fragment in F , and let Π(p, q) denote
the set of all shortest paths between p, q ∈ Σ. We define c(X) as the number of connected
components in X. The happiness H(F ) = maxp,q∈Σ maxπ∈Π(p,q) c(F ∩ π) of fragment F is
defined as the maximum number of times a shortest path π between any pair of points p, q ∈ Σ
can go through the fragment. The happiness of P is then defined as H(P) = maxF ∈F H(F )
the maximum happiness over all fragments. We call a portalgon h-happy when H(P) ≤ h.
Further, we sometimes refer to an O(1)-happy portalgon as happy (without an h value).

▶ Lemma 1. Let P = (F , P ) be an h-happy portalgon, and let P ′ = (F ′, P ′) be a triangulation
of P. The happiness of P ′ is at most h; that is, P ′ is an h-happy portalgon.

Note that if P has n vertices and m portals, any triangulation P ′ of P consists of n

vertices and O(m + n) portals. The fact that in an h-happy portalgon a shortest path crosses
every portal at most h − 1 times implies the following.

▶ Lemma 2. Let P be an h-happy portalgonand let s and t be two points in P. A shortest
path π(s, t) between s and t has complexity O(n + hm). This bound is tight in the worst case.

Proof. The vertices of π(s, t) are either: (i) s or t itself, (ii) vertices of P, or (iii) points
in which π(s, t) crosses a portal edge. There are only two vertices of type (i) on π(s, t). A
shortest path can visit any vertex of P at most once; hence, there are at most n vertices of
type (ii). Finally, since P is h-happy, π(s, t) crosses every fragment F ∈ F at most h times.
A shortest path of complexity Ω(n) is easy to attain in a fragment without portals and a
chain with Ω(n) reflex vertices. We get the Ω(hm) term using a portalgon like in Figure 6.
For any h, we can choose the length of the red portal so that the portalgon is h-happy. ◀

Shortest path map. Given a portalgon P, a source point s ∈ Σ, and a region X ⊆ Σ the
shortest path map SPMX (s) of s is a subdivision of X into maximally connected regions,
such that for all points q in the interior of a region R ∈ SPMX (s) the shortest path from s

to q is unique, and has the same combinatorial structure, i.e., visits the same sequence
of vertices and portal edges of P. Note that the complexity of SPMX (s) depends on the
representation of the surface Σ = Σ(P), that is, the portalgon P . So changes to P may affect
the complexity of SPMX (s). For example, splitting faces of P increases the complexity of
SPMX (s). Hence, when Σ is fixed, an important problem is to find a good portalgon (i.e.
one for which SPM(s) = SPMΣ(s) has low complexity) representing it.

Intrinsic Delaunay triangulation. A triangulation of a portalgon is an equivalent portalgon
whose vertex set is the same, and all of whose fragments are triangles. In particular, among
all such triangulations, the intrinsic Delaunay triangulation is such that for any interior edge
of the triangulation, for the two triangles t and t′ incident to that edge, the corners of t and
t′ not incident to that edge sum up to at most 180 degrees [3].
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T

π

e′

Iσ(π),e′d(s, v)

e

Iσ(π),e

q

Figure 7 The length of the path π from s to point p in triangle T is d(s, v) + ∥p − v∥. The
signature of π defines intervals Iσ(π),e and Iσ(π),e′ on edges e and e′ of T , as well as a distance
function dσ(π) illustrated by the path to point q in T .

3 Shortest paths in portalgons

In this section we sketch how to compute the shortest path map SPMP := SPMP(s) of a
vertex s of a triangulated h-happy portalgon P (a full description is in the full version [18]).

For a path π starting from the source s, define its signature, denoted σ(π), to be the
sequence of vertices and portals it passes through. Note that paths may simultaneously pass
through a vertex and a portal (or multiple portals incident to that vertex). In this case, we
break ties in the sequence by placing vertices before portals, and portals in the order that
the path would pass through them if it were perturbed away from vertices (in a consistent
way), where we always perturb the start of the path into a fixed triangle Ts incident to s.

If π is a shortest path from the source s to a point p in a triangle T , and v is the last
vertex on σ(π), then the length of π is d(s, v) + d(v, p), where d(v, p) can be expressed as
the length of a line segment. We think of T as being embedded locally isometrically in
the Euclidean plane, and by unfolding the fragments that π passes through after v, we can
compute a copy of v in the plane, as well as copies of the portals and triangles that π passes
through after v; see Figure 7. The locations of these copies in the plane depend only on σ(π)
(but not on p or π itself). Then, d(v, p) is the Euclidean distance between the copies of v

and p in the plane. Let e be an edge of T , and define Iσ(π),e to be the interval of points p on
e for which the segment vp passes through all the unfolded copies of portals of σ(π) after v.
For a point q in T , define

fσ(π)(q) =
{

d(s, v) + ∥vq∥ if the segment vq passes through Iσ(π),e,
∞ otherwise

Define dσ(π)(q) to be the infimum length over paths from s to q with signature σ(π). This
infimum is not necessarily realized by a path with the same signature, but is realized by a
path that potentially bends around additional vertices, which are therefore inserted in its
signature. We say that such a signature reduces to σ(π). Note that if fσ(π)(q) is finite, then
fσ(π)(q) = dσ(π)(q). If π is a shortest path from s to p, then π has length fσ(π)(p). For a
portal e of T , let fσ(π)|e : e → R ∪ {∞} be the restriction of fσ(π) to points on e.

3.1 A data structure for maintaining a lower envelope
Let F be a set of m partial functions, each pair of which can intersect at most twice. We
describe a data structure storing the lower envelope envF of F , that supports the operations:

NextLocalMinimum(δ): report the smallest local minimum of envF that is larger than δ.
NextVertex(f, q): given a function f ∈ F that realizes envF at point q, find (if it exists) the

lowest endpoint (v, δ′) of the segment of envF containing (q, f(q)) for which δ′ > f(q).
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Figure 8 The information that we maintain while computing the SPM of the edges.

Insert(f): insert a new function into F .

▶ Lemma 3. We can maintain envF of a set F of partial functions, each pair of which
intersects at most twice, in a data structure so that any sequence of m Insert operations and
k NextLocalMinimum and NextVertex queries take O(k log2 m + λ4(m) log m) time.

3.2 Computing a shortest path map
We first compute the shortest path map of s, restricted to the edges of the portalgon. As in
earlier work [22, 23] we propagate a wavefront of points at distance δ from s from 0 to ∞.
However, it will be more convenient to view this as a collection of simultaneous sweepline
algorithms. For each portal edge e, we sweep a horizontal line at height δ upward through
the “position along e × distance from s” space (see Figure 8), while we construct the part
of SPMe below the sweep line. The main challenge is computing the next event –the first
vertex in the lower envelope of the distance functions above the sweep line– in time.

For each portal e connecting two fragments TA and TB , we maintain the following:
1. Let SA(e, δ) (resp. SB(e, δ)) be the set of signatures of shortest paths from s to points

on the boundary of TA (resp. TB), where the last element of the signature is not e, and
the length of the path is at most δ. We represent each signature σ ∈ SA(e, δ) ∪ SB(e, δ)
implicitly by storing the interval Iσ,e, the position of (the unfolded copy of) the last
vertex v on σ, and d(s, v), so that we can compute fσ|e in constant time.

2. We store the lower envelope envA(e, δ) (resp. envB(e, δ)) of the functions fσ|e, where σ

ranges over the signatures SA(e, δ) (resp. SB(e, δ)), in the data structure of Lemma 3.
3. Let env(e, δ) be the lower envelope of the functions envA(e, δ) and envB(e, δ). We maintain

only the part of env(e, δ) that lies below the sweep line, denoted env≤δ(e, δ).
4. We maintain a binary search tree env=δ(e, δ) storing the intersection points of envA(e, δ)

and envB(e, δ) with the sweep line, in order along the sweep line. For each intersection
point we store the function(s) from envA(e, δ) or envB(e, δ) realizing this intersection.

5. Finally, we maintain a set of events pertaining to the edge e. We aggregate the events of
all edges in a global priority queue, and use it to advance the sweep line algorithm to the
next relevant value. The events that we store for an edge e are the values δ′ > δ such that
a. δ′ corresponds to a minimum of a function fσ|e with σ ∈ SA(e, δ) ∪ SB(e, δ),
b. δ′ corresponds to a vertex of envA(e, δ) or envB(e, δ), or
c. δ′ corresponds to an intersection between functions fσ|e on envA(e, δ) and fσ′|e on

envB(e, δ), where fσ|e and fσ′|e are neighbors in env=δ(e, δ).
For each event, we also keep track of the type and corresponding functions.

▶ Lemma 4. env≤δ(e, δ) encodes the shortest paths of length ≤ δ to points on the edge e.
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Figure 9 (a) The different event types: a. local minima in envA or envB , b. breakpoints of envA

or envB , and two events of type c. first intersections of envA and envB . (b) We will detect the
intersection between envA and envB once fσ|e and fσ′|e become neighbors in env=δ at time δ+.

Event handling. At an event (of any type), the order in which the functions of envA(e, δ)
and envB(e, δ) intersect the sweep line changes. We therefore update env=δ(e, δ) by removing
and inserting the appropriate functions associated with this event, and additionally make
sure that we discover any additional events. To this end, we can use the NextVertex and
NextLocalMinimum queries on the data structures storing envA(e, δ) and envB(e, δ).

As a result of the event, a new function, say fσ′|e ∈ envB(e, δ), may have appeared on
env≤δ(e, δ). We insert it into env≤δ(e, δ), and propagate σ′, extended by edge e, into the sets
SB(e′, δ) of the other two edges e′ incident to TA. We therefore call Insert to insert a new
function into envA(e′, δ), and NextLocalMinimum(δ) to update the next local minimum. 2

Analysis. Let k = | SPM∂P | denote the complexity of the shortest path restricted to the
edges. Let kA and kB be the number of signatures in SA(e, ∞) and SB(e, ∞), respectively.
We argue that the total number of events on e is O(λ4(kA)+λ4(kB))+| SPMe |) (essentially by
charging them to envA(e, ∞) and envB(e, ∞)). A signature σ appears in SB(e, δ) only when
there is a shortest path to another edge e′ of TB . Since every such edge e′ propagates to the
edges of the two triangles incident to e′ it then follows that

∑
e∈∂P(|SA(e, δ)| + |SB(e, δ)|) =

O(| SPM∂P |). Thus, the total number of events, over all edges e, is O(λ4(k)). Since we can
handle every event in O(log2 k) time, we can then compute SPM∂P in O(λ4(k) log2 k) time.

▶ Lemma 5. For an h-happy portalgon, the complexity of SPM∂P is O(n2h).

Extension into the Interior. For each triangle T , we can now compute SPMT from SPM∂T

reusing the algorithm from Mitchell et al. [22]. We therefore obtain the following result.

▶ Theorem 6. Let P be a triangulated h-happy portalgon with n vertices and m portals, and
let s be a given source point. The shortest path map SPMP(s) of s has complexity k = O(n2h)
and can be computed in O(λ4(k) log2 k) time.

4 Existence of happy portalgons

In this section, we show that for every portalgon there exists an equivalent O(1)-happy
portalgon; specifically, the intrinsic Delaunay triangulation [3] T of Σ induces a happy

2 Mitchell, Mount, and Papadimitriou [22] use a similar overall algorithm. They define a notion of TA-free
paths that arrive at edge e from TB . They prove that these paths act sufficiently like “real” shortest
paths so that they can explicitly maintain the set of shortest TA-free and TB-free paths. Unfortunately,
some of the arguments used hold only when a shortest path may cross a portal edge at most once (i.e.,
when P is 1-happy). In case of the weighted region problem, Mitchel and Papadimitriou show how to
deal with this by extending this notion of TA-free paths to locally TA-free paths [23]. However, it is
unclear how to bound the number of such paths when the genus may be non-zero.
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portalgon, whose fragments correspond to the triangles of T . The resulting portalgon may
have more fragments than the original, but its total complexity is still linear.

4.1 Intrinsic Delaunay triangulation
Let T be a triangulated portalgon, and let Σ be its surface; let V be the set of vertices of
Σ. Intuitively, the intrinsic Delaunay triangulation of Σ has a (straight) edge between two
vertices u, v ∈ V when there exists a circle with u and v on its boundary that contains no
other vertices of V when we “unfold” Σ, for example by identifying edges of T as in Section 3.

To simplify geometric arguments, we derive a simply-connected space Σ̂ from Σ. We
can think of Σ̂ as the universal cover of Σ \ V , with vertices reinserted at the corresponding
locations. More formally, we can define Σ̂ by considering the directed fragment graph G

of T . For any portal e of T , we denote by Te− , Te+ ∈ F the triangles (nodes of G) that
contain the respective portal edge; G has a link ė from Te− to Te+ and a link ė−1 from Te+

to Te− . We say that ė and ė−1 are inverses of each other. A walk in G from a triangle T

to a triangle T ′ is a (possibly empty, if T = T ′) sequence of links of G, such that T is the
source of the first link, and the source of the (i + 1)-st is the target of the i-th link, and the
target of the last link is T ′. For a walk w from T to T ′, we write w : T →G T ′ and say that
a walk is backtracking if it contains two consecutive links that are inverses of each other. Fix
an arbitrary root triangle T0, and for a walk w : T0 →G T , let Tw be a copy of the target
triangle T placed in the Euclidean plane by unfolding T0, T1, . . . , Tw along their common
portals. Let F̂ =

⊔
{Tw | T ∈ F , w : T0 → T, w is not backtracking} be the disjoint union

of Euclidean triangles of target triangles of walks starting at T0. We can now define Σ̂ as
F̂/∼̂, where for any two walks w and w′, where w′ is obtained from w by removing its final
link, ∼̂ glues Tw′ to Tw along the sides corresponding to the last link of w. Let q : Σ̂ → Σ be
the map that sends points of Σ̂ to their corresponding point in Σ. A map ĝ : X → Σ̂ is a lift
of g : X → Σ if g = q ◦ ĝ. Any path π : [0, 1] → Σ has a lift π̂ in Σ̂.

There is a map f : Σ̂ → R2 whose restriction to any triangle of Σ̂ is an isometry, and
whose restriction to any pair of adjacent triangles is injective. We can think of f as unfolding
Σ̂ so that it lies flat in the plane and is locally isometric everywhere except at the vertices
(vertices are the only source of curvature), see Figure 10.

▶ Observation 7. Let Br(x, y) = {p ∈ R2 | ∥p − (x, y)∥ < r} be the open disk in the plane of

Figure 10 Σ (left) and a local region of Σ̂ (right). The dual graph of Σ̂ is an infinite tree (red).
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Figure 11 Although f is not injective in general, for a triangle T of a Delaunay triangulation,
the restriction of f to C(T ) is injective and contains no vertices of the triangulation in the interior.

radius r centered at (x, y). If a component U of f−1(Br(x, y)) contains no vertices, then the
restriction of f to the closure of U is an isometry.

For a triangle T of Σ̂, let D(T ) be the open disk bounded by the circumcircle of f(T ),
and let C(T ) be the closure of the component of f−1(D(T )) that contains the interior of T .
A triangle T of Σ̂ is Delaunay if C(T ) does not contain any vertices of triangles adjacent to
T in its interior. T is an intrinsic Delaunay triangulation of Σ if and only if all triangles of F̂
are Delaunay. Lemma 8 generalizes a well-known property of Delaunay triangulations in R2.

▶ Lemma 8. [Bobenko et al. [3]] If T̂ is an intrinsic Delaunay triangulation of Σ̂, then for
any T ∈ T̂ , C(T ) contains no vertices in its interior.

Together with Observation 7 this implies the following corollaries, see also Figure 11.

▶ Corollary 9. For any triangle T of an intrinsic Delaunay triangulation of Σ̂, the restriction
of f to C(T ) is injective, and shortest paths intersect C(T ) in straight segments.

▶ Corollary 10. For any triangle T of an intrinsic Delaunay triangulation of Σ̂, ∂f(C(T ))
is a union of chords and circular arcs of ∂D(T ), where each chord is a boundary edge.

4.2 Intrinsic Delaunay triangulations are happy
We are now ready to prove the main result of this section: the intrinsic Delaunay triangulation
of any portalgon has happiness less than 7.

Let the portalgon T be an intrinsic Delaunay triangulation of Σ. We want to bound
the number of intersections between a shortest path π on Σ and portals (edges of the
triangulation). For this, let π be a shortest path between two given points on Σ, and among
all such paths, assume that π has a minimum number of crossings with portals of T .

Now consider an arbitrary edge e between two vertices u and v in V and let m be its
midpoint. We will show that π intersects e only constantly often. For a contradiction,
suppose that π intersects e at least 7 times. To bound the total number of intersections with
e we analyze the geometry of π̂ in a local neighborhood of a lift ê of e; in particular, we will
argue that there cannot be many other copies of e in the neighbourhood of ê that are all
crossed by π. Since clearly there can also not be any copies of e far away that are crossed
by π (since then it would be better to walk along e), the result will follow. Here, we give a
sketch of the arguments, the full proof can be found in the full version [18].

Arbitrarily fix one of the triangles T incident to e and consider the neighborhood C(T̂ )
of ê for the corresponding lift T̂ incident to ê. By Corollary 9, the restriction of f to C(T̂ ) is
an isometry, and π̂ is locally a straight line segment. Let pi be the i-th point of intersection
of π with e, and define λi such that π(λi) = pi. Let êi be a lift of e containing π̂(λi), and let
p̂i, T̂i, ûi, m̂i, v̂i be the respective lifts of pi, T , u, m, v incident to êi, see Figure 12 (left).
Let Di := D(T̂i), and let fi be the restriction of f to Ci := C(T̂i). Let ci be the center of
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Figure 12 The crossing pi of π with e is inward.

Di, i.e., the circumcenter of f(T̂i). Define HI
i and HO

i to be the two half-planes bounded by
the line through f(êi), such that HI

i contains ci (if ci = f(m̂i), label the half-planes by HI
i

and HO
i arbitrarily). We respectively call HI

i and HO
i the inner and outer half-plane of êi,

and define CI
i := f−1

i (HI
i ) to be the inner component of êi, and CO

i := f−1
i (HO

i ) to be the
outer component of êi. We call the crossing pi inward if pi is a non-transversal crossing or
π̂ crosses p̂i from CO

i to CI
i , see Figure 12 (right).

Let s be the segment of e from u to m. Assume without loss of generality that at least
four of the (at least seven) crossings of π with e lie on s (otherwise relabel u and v).

▶ Lemma 11. For any inward crossing pi of π with s, none of the crossings pj with j > i

lie on the segment of s between u and pi.

If pi of π is not inward, then it is inward on the reverse of π. Corollary 12 follows.

▶ Corollary 12. If some crossing pi of π with s is not inward, then none of the crossings ph

with h < i lie on the segment of s between u and pi.

Lemma 11 implies that for the sequence of intersections pi of π with s, the distance
function from u to pi along s has only one local minimum. So there exists a subsequence of
at least three crossings ph, pi and pj (h < i < j) of π with s such that pi lies between ph

and pj . Assume without loss of generality that the distances (along s) from u to ph, pi, and
pj are increasing (the other case follows by considering the reverse of π). We now observe:

▶ Observation 13. f(m̂i) ̸= ci

By Corollary 12, pi is an inward crossing. We show how the possible locations of the
subsequent crossings inside Ci are constrained. Define D′

i to be the disk concentric with Di,
whose boundary passes through f(m̂i). Any chord of Di that passes through D′

i is at least
as long as e. Let eh := f(êh) ∩ Di. We observe:

▶ Lemma 14. eh cannot intersect the closure of D′
i.

We will arrive at a contradiction to our initial assumption by showing that:

▶ Lemma 15. If π crosses e at least 7 times then eh must intersect the closure of D′
i.

We conclude that π intersects e at most 6 times.We thus obtain:

▶ Theorem 16. Let P be a portalgon with n vertices. There exists a portalgon P ′ ≡ P with
O(n) vertices that is O(1)-happy.
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5 Making portalgons happy

While the approach in Section 4 is, in principle, constructive, its running time depends on
the number of edge flips required to reconfigure an initial triangulation of P into the intrinsic
Delaunay triangulation. This number does not (only) depend on the input complexity, except
for the case where there is a bound on the minimum angle on the input triangles [17].

In this section, we analyze what can be done when there is no such bound. We study
conditions for a portalgon P to be happy, and present a method to rearrange an unhappy
portalgon into an equivalent one that is happy. In the full version [18], we show we can
reduce any portalgon whose fragment graph has at most one cycle to a portalgon with just
one fragment and one portal. Thus, here we only consider one portal, and give an efficient
method to compute an equivalent happy portalgon. For brevity, we present the case where
the portal edges are parallel. We also note that if the angle between the two edges is at least a
constant, the fragment is already happy. Hence, the interesting case is that of nearly-parallel
edges.

Single parallel portal analysis. The happiness of a fragment with a single portal depends
on the shift of the two (parallel) portal edges. The shift of two portal edges e−, e+ is the
distance between the two perpendiculars to the portal edges that go through the start vertices
of e− and e+, respectively. In the following, we assume without loss of generality that the
portals are horizontal, thus the shift ∆ is simply the difference in x-coordinate between the
start vertices of the portal edges. Let v denote the vertical distance between e− and e+.

▶ Lemma 17. Let F be a fragment with exactly two portal edges e−, e+, which are parallel
and belong to the same portal. If the shift ∆ of e−, e+ is 0, then the fragment is 2-happy.

If ∆ ̸= 0, a fragment might be happy or not. Next we present a method to transform a
fragment that is not happy into an equivalent portalgon that is happy. The idea is to create
a new portal by cutting F through a line in the direction orthogonal to the line through
the two start vertices of the portals. First we present the idea for the case where F is a
parallelogram with two parallel portal edges e− and e+. Assume without loss of generality
that e− is above e+, and that e− starts to the left of e+. In this case, the slope of the line in
the direction orthogonal to the portal start points is z = −∆/v. We begin at the leftmost
vertex of e+, and shoot a ray with slope z in the interior of F until we hit the boundary.
Every time the ray crosses the portal, we “cut” along this ray, creating a new portal along it.
This creates several smaller fragments, which we glue together along the pieces of the original
portals, into one fragment. The resulting fragment is a rectangle F ′. See Figure 13 for an
illustration. Note that, by definition of z, this new fragment F ′ now has shift zero. Hence:

▶ Lemma 18. For any parallelogram with two parallel portal edges, there is an equivalent
parallelogram that has ∆ = 0 and therefore is 2-happy.

For a fragment with two parallel portals and non-zero shift, there is a unique equivalent
fragment with zero shift, which is the one obtained by cutting along the perpendicular ray.
However, if F is not a parallelogram, it may occur that when gluing together the new smaller
fragments we obtain a non-simple polygon. Therefore, we may not be able to transform F

into a single equivalent happy fragment, as shown in Figure 14. In that case, cutting along
the perpendicular ray produces a non-simple fragment.

Fortunately, we can transform any fragment with two parallel portal edges into a small
constant number of happy fragments.
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≡ ≡

e−

e+

Figure 13 Left: a fragment with two parallel edges and non-zero shift. Center: result of cutting
the fragment along a ray orthogonal to the line through the two start vertices of the portals, resulting
in a new fragment with several portals. The latter is equivalent to a fragment with one portal and
zero shift (right).

≡≡

Figure 14 Example of a fragment (left) where the technique of cutting along the perpendicular
ray produces a non-simple polygon (center). This can be fixed by using one more fragment (right).

▶ Lemma 19. Let P be a portalgon with one fragment F with n vertices, and one portal
whose edges are parallel. There exists a 5-happy portalgon P ′ equivalent to P consisting of at
most three fragments and total complexity O(n).

Proof sketch. Assume w.l.o.g. that e− and e+ are horizontal and oriented left-to-right. We
argue that when no three vertices of F are colinear, and F is not already 5-happy, we can
split F into at most seven 4-happy fragments of complexity O(n). See Figure 15.

Let m be the line through the start points of e− and e+. If there is no translate of m

whose intersection with F contains a segment connecting e− to e+, F is already 5-happy.
Let mℓ be the leftmost such translate of m and mr the rightmost such translate; mℓ contains
a vertex ℓ of F and mr contains a vertex r of F (possibly, ℓ or m is an endpoint of e− or e+).
Let a− and a+ be the intersection points of mℓ with e− and e+, and let b− and b+ be the
intersection points of mr with e− and e+. We cut the parallelogram Z = a−b−a+b+ from F ,
which splits F into at most seven fragments.

We now transform Z into a 2-happy fragment using Lemma 18. Let T and B be the
fragments containing the starting points of e− and e+, respectively. We argue that T is
4-happy (other arguments are symmetric): consider the maximal connected components of a

a+

e−

e+

ℓ
r

m` mr

Z

a− b−

b+

m

(a) (b) (c)

Figure 15 (a) Fragment with two parallel portals e− and e+. (b) Lines mℓ and mr define a
parallelogram Z, which splits F in at most seven fragments. (c) The resulting 5-happy fragments.
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shortest path π = π(s, t) with F . Such a component either: (i) contains s, (ii) contains t, or
(iii) connects a point pi on e− to a point qi on e+. Each such component can intersect a−a+

at most once, so each such component can intersect T at most once.
We can further classify the type (iii) components into three types, depending on whether

pi lies on the part of e− in T and whether qi lies on the part of e+ in B. A case-by-case
analysis shows that there are up to four components of π ∩ F that intersect T , and each of
them intersects T in one consecutive subpath. Hence, T is 4-happy. ◀

▶ Lemma 20. Let F be a parallelogram with two parallel portal edges. We can compute an
equivalent 2-happy parallelogram F ′ in O(1) time.

Proof sketch. To compute the new, equivalent fragment F ′, we could explicitly generate
the ray with slope z, and compute its intersection points with the portal edges, tracing the
ray until it hits a non-portal edge of the fragment. However, this would result in a running
time linear in the number of such intersections. Instead, we show in the full version that
after cutting along the ray and gluing the pieces together, the result is always a rectangle (as
in Figure 13, right) that can be computed directly in O(1) time. ◀

Single non-parallel portal analysis. In the full version [18], we address the case where the
fragment is not a parallelogram, and, more interestingly, where the two portal edges are
not parallel. The proof of the equivalent of Lemma 19 proceeds analogously, but is more
technical. Lemma 20, however, does not have a direct analogue. In particular, the time
required to compute an equivalent happy portalgon depends also on the bit complexity of
the input coordinates. However, we show that we can achieve O(log h) time for h the initial
happiness of the portalgon. We do this by encoding a single pass through the portal in a
transformation matrix M , and computing Mh by performing an exponential search in h.
This result is summarized as follows.

▶ Theorem 21. Let P be an h-happy portalgon with n vertices and fragment graph G,
such that G has at most one simple cycle. We can transform P into an equivalent 5-happy
portalgon P ′ of total complexity O(n) in O(n + log h) time.
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Abstract
The geodesic edge center of a polygon is a point c inside the polygon that minimizes the maximum
geodesic distance from c to any edge of the polygon, where geodesic distance is the shortest path
distance inside the polygon. We give a linear-time algorithm to find a geodesic edge center of a simple
polygon. This improves on the previous O(n log n) time algorithm by Lubiw and Naredla [European
Symposium on Algorithms, 2021]. The algorithm builds on an algorithm to find the geodesic vertex
center of a simple polygon due to Pollack, Sharir, and Rote [Discrete & Computational Geometry,
1989] and an improvement to linear time by Ahn, Barba, Bose, De Carufel, Korman, and Oh
[Discrete & Computational Geometry, 2016].

The geodesic edge center can easily be found from the geodesic farthest-edge Voronoi diagram of
the polygon. Finding that Voronoi diagram in linear time is an open question, although the geodesic
nearest edge Voronoi diagram (the medial axis) can be found in linear time. As a first step of our
geodesic edge center algorithm, we give a linear-time algorithm to find the geodesic farthest-edge
Voronoi diagram restricted to the polygon boundary.
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1 Introduction

The most basic “center” problem is Sylvester’s problem: given n points in the plane, find the
smallest disc that encloses the points. The center of this disc is a point that minimizes the
maximum distance to any of the given points. We consider a center problem that differs in
two ways from Sylvester’s problem. First, the domain is a simple polygon and the distance
measure is not Euclidean distance, but rather the shortest path, or “geodesic” distance inside
the polygon. Second, the sites are not points but rather the edges of the polygon. More
precisely, the problem is to find, given a simple polygon in the plane, the geodesic edge
center, which is a point in the polygon that minimizes the maximum geodesic distance to
a polygon edge. See Figure 1. More formally, let E be the set of edges of the polygon P ,
and for point p ∈ P and edge e ∈ E, define d(p, e) to be the geodesic distance from p to e.
Define the geodesic radius of a point p ∈ P to be r(p) := max{d(p, e) : e ∈ E}. Then the
geodesic edge center is a point p ∈ P that minimizes r(p).

Our main result is a linear-time algorithm to find the geodesic edge center of a simple
n-vertex polygon. This improves our previous O(n log n) time algorithm [15]. The algorithm
follows the strategies used to find the geodesic vertex center, which is a point in the polygon
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49:2 The Geodesic Edge Center of a Simple Polygon

Figure 1 Point c is the edge center of this polygon. Edges e, e′, e′′ (in blue) are geodesically
farthest from c – the geodesic paths (in red) from c to these edges all have the same length.

that minimizes the maximum geodesic distance to a polygon vertex. In 1989, Pollack, Sharir
and Rote [25] gave an O(n log n) time algorithm for the geodesic vertex center problem. A
main tool – which is used in all subsequent algorithms – is a linear-time chord oracle that
finds, given a chord, which side of the chord contains the center. In 2016, Ahn, Barba, Bose,
De Carufel, Korman, and Oh [2] improved the runtime for the geodesic vertex center to O(n).
Their most important new contribution is the use of ϵ-nets to perform a divide-and-conquer
search. Our algorithm follows the approach of Ahn et al., modified to deal with farthest
edges rather than farthest vertices. We simplify some aspects and we repair some errors in
their approach. The edge-center problem is more general than the vertex center problem via
the reduction of splitting each vertex into two vertices joined by a very short edge.

In general, the center of a set of sites can be determined from the farthest Voronoi diagram
of those sites, but computing the Voronoi diagram can be more costly. As the first step of
our center algorithm we give a linear-time algorithm to compute the geodesic farthest-edge
Voronoi diagram restricted to the boundary of the polygon. Computing the whole geodesic
farthest-edge Voronoi diagram in linear time is an open problem.

Background on centers and farthest Voronoi diagrams. Megiddo [19] gave a linear-time
algorithm to find the center of a set of points in the plane (Sylvester’s problem) using the
“prune-and-search” technique (see also Dyer [11]), which is used in the final stages of all
geodesic center algorithms. However, computing the farthest Voronoi diagram of points in
the plane takes Θ(n log n) time [26].

Our problem involves distances that are geodesic rather that Euclidean, and sites that
are segments (edges) rather than points. These have been studied separately, although there
is almost no work combining them.

For Euclidean distances, Megiddo’s method extends to linear-time algorithms to find the
center of line segments or lines in the plane [6]. The farthest Voronoi diagram of segments in
the plane was considered by Aurenhammer et al. [4], who called it a “stepchild in the vast
Voronoi diagram literature”. They gave an O(n log n) time algorithm which was improved to
output-sensitive time O(n log h), where h is the number of faces of the diagram [24].

For geodesic distances with point sites Ahn et al. gave a linear-time algorithm to find the
geodesic center of the vertices of a polygon [2]. The corresponding farthest Voronoi diagram
can be found in time O(n log log n) [23], and in expected linear time [5]. More generally, for
m points inside an n-vertex polygon, an algorithm to find their farthest Voronoi diagram
was first given by Aronov et al. [3] with run-time O((n+m) log(n+m)), and improved in a
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sequence of papers [23, 5, 22], culminating in an optimal run time of O(n+m logm) [29].
This is also the best-known bound for finding the center of m points in a simple polygon.
For sites more general than point sites inside a polygon, the only result we are aware of is
our O((n+m) log(n+m)) time algorithm to find the geodesic center of m half-polygons [15],
with edges being a special case.

Finally, we mention a curious difference between nearest and farthest site Voronoi diagrams
of edges in a polygon. The nearest Voronoi diagram of the edges of a polygon is the medial
axis, one of the most famous and useful Voronoi diagrams. The medial axis can be found in
linear time [9]. By contrast, the farthest Voronoi diagram of edges in a polygon has received
virtually no attention, except for a convex polygon (which avoids geodesic issues) where
there is an O(n log n) time algorithm [10], and a recent expected linear-time algorithm [14].

2 Overview of the algorithm

Before giving the overview of our algorithm, we outline the previous work that our algorithm
builds upon, and explain what is novel about our contributions.

Pollack et al. [25] gave an O(n log n) time algorithm to find the geodesic vertex center
of a simple polygon. A main ingredient is to solve the problem one dimension down. In
particular, they develop an O(n) time chord oracle that, given a chord of the polygon, finds
the relative center restricted to the chord and from that, determines whether the center of
the polygon lies to left or right of the chord. By applying the chord oracle O(log n) times,
they limit the search to a convex subpolygon where Euclidean distances can be used. This
reduces the problem to finding a minimum disc that encloses some disks, which Megiddo [20]
solved in linear time using the same approach as for his linear programming algorithm. We
extended the chord oracle to handle farthest edges instead of vertices [15].

The idea used in the chord oracle algorithm is central to further developments. Expressed
in general terms, the goal is to find a point in a domain (either a chord or the whole polygon)
that minimizes the maximum distance to a site (a vertex or edge of the polygon). The idea is
to first find what we will call a coarse cover of the domain by a linear number of elementary
regions R (intervals or triangles), each with an associated easy-to-compute convex function
fR that captures the geodesic distance to a potential farthest edge, and with the property
that the upper envelope of the functions is the geodesic radius function. Thus, the goal is to
find the point x that minimizes the upper envelope of the functions fR. When the domain is
a chord, the chord oracle solves this in linear time.

When the domain is the whole polygon, and the sites are vertices, Ahn et al. [2] gave
a linear-time algorithm. They find a coarse cover of the whole polygon starting from
Hershberger and Suri’s algorithm [13] (based on matrix-searching techniques [1]) to find the
farthest vertex from each vertex. They then use divide-and-conquer based on ϵ-nets – their
big innovation – to reduce the domain to a triangle. After that, the vertex center is found
using Megiddo-style prune-and-search techniques like those used by Pollack et al.

Our algorithm uses a similar approach, modified to deal with farthest edges rather than
vertices. Another difference is that we give a simpler method of finding a coarse cover of the
polygon by first finding the geodesic farthest-edge Voronoi diagram on the polygon boundary.
There is a linear-time algorithm to find the geodesic farthest vertex Voronoi diagram on the
polygon boundary by Oh, Barba, and Ahn [22]. Our algorithm is considerably simpler, and
it is a novel idea to use the boundary Voronoi diagram to find the center.

Other differences between our approach and that of Ahn et al. are introduced in order to
repair some flaws in their paper. They use ϵ-net techniques, but their range space does not
have the necessary properties for finding ϵ-nets in deterministic linear time. We remedy this
by using a different range space, thereby repairing and generalizing their result.

SoCG 2023
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Algorithm overview

Phase I: Finding the farthest-edge Voronoi diagram restricted to the polygon
boundary (Section 4)

We first show that the linear-time algorithm of Hershberger and Suri [13] that finds the
farthest vertex from each vertex can be modified to find the farthest edge from each vertex.
A polygon edge e whose endpoints have the same farthest edge g is then part of the farthest
Voronoi region of g. To find the Voronoi diagram on a transition edge e that has different
farthest edges at its endpoints, we must find the upper envelope of the coarse cover of e. We
use the fact that the coarse cover of e is constructed from two shortest path trees inside a
smaller subpolygon called the hourglass of e. The hourglasses of all transition edges can be
found in linear time. In each hourglass, the shortest path trees allow us to construct the
upper envelope incrementally in linear time – this is a main new aspect of our work.

Phase II: Finding the geodesic edge center (Section 5)

We first find a coarse cover of the polygon by triangles, each bounded by two polygon chords
plus a segment of an edge, and each with an associated convex function that captures the
geodesic distance to a potential farthest edge – the potential farthest edges are those that
have non-empty Voronoi regions on the boundary of P . The problem of finding the edge
center is then reduced to the problem of finding the point that minimizes the upper envelope
of the coarse cover functions.

To find this point we use divide-and-conquer, reducing in each step to a smaller subpolygon
with a constant fraction of the coarse cover elements. There are two stages. In Stage 2, once
the subpolygon is a triangle, the prune-and-search approach of Megiddo’s can be applied.
In Stage 1 every coarse cover triangle that intersects the subpolygon has a boundary chord
crossing the subpolygon, and ϵ-net techniques are used to reduce the number of such chords,
and hence the number of coarse cover elements. Our approach follows that of Ahn et al. [2]
but we repair some flaws – another main new aspect of our work. Ahn et al. recurse on
subpolygons called “4-cells” that are the intersection of four half-polygons (a half-polygon
is the subpolygon to one side of a chord). We instead recurse on “3-anchor hulls” that are the
geodesic convex hulls of at most three points or subchains of the polygon boundary. These
define a range space whose ground set is a set of chords and whose ranges are subsets of
chords that cross a 3-anchor hull. We prove that our range space has finite VC-dimension,
which repairs the faulty proof in Ahn et al. for 4-cells. Even more crucially, we give a
“subspace oracle” that permits an ϵ-net to be found in deterministic linear time, something
missing from their approach.

3 Preliminaries

Although our algorithm follows the pattern of the geodesic vertex center algorithm by Ahn
et al. [2], we must re-do everything from the ground up to deal with farthest edges. In this
section we summarize some basic results, deferring proofs and details to the full version [17].

Notation and definitions. A chord of a polygon is a straight line segment in the (closed)
polygon with both endpoints on the boundary, ∂P . For a point p ∈ P and a point or line
segment s in P , π(p, s) is the unique shortest (or geodesic) path from p to s, and t(p, s) is
its terminal point. The length of π(p, s), denoted d(p, s), is the geodesic distance from
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p to s. For point p in P , a farthest edge, F (p), is an edge for which d(p, F (p)) ≥ d(p, e),
for every edge e of P . The geodesic radius of point p is r(p) := d(p, F (p)). The geodesic
edge center is a point p ∈ P that minimizes r(p).

General position assumptions. As is standard for Voronoi diagrams of segments, e.g.,
see [4], we use the following tie-breaking rule to prevent 2-dimensional Voronoi regions with
more than one farthest edge.

Tie-breaking rule. Suppose that p is a point of P , e and f are two edges that meet at reflex
vertex u, and π(p, e) = π(p, f) = π(p, u). Let line b be the angle bisector of u. For p not on
b, break the tie d(p, e) = d(p, f) by saying that the distance to the edge on the opposite side
of b is greater.

We make the following general position assumptions, which we claim can be effected by
perturbing vertices.

▶ Assumptions 1. (1) No three vertices of P are collinear. (2) After imposing the tie-breaking
rule, no vertex is equidistant from two or more edges. (3) No point on the polygon boundary
has more than two farthest edges and no point in the interior of the polygon has more than a
constant number (six) of farthest edges.

It follows that the set of points with more than one farthest edge is 1-dimensional, does
not contain any vertex of P , and intersects ∂P in isolated points; see the full version [17].

Properties of farthest edges. We need the following basic “triangle property” (proved in
the full version [17]) about shortest paths that cross.

▶ Lemma 1. Suppose the points p, q and the edges e, f occur in the order p, q, e, f along
the polygon boundary ∂P . Then d(p, e) + d(q, f) ≥ d(p, f) + d(q, e).

We then characterize what two paths to farthest edges are like, see Figure 2 and the full
version [17]. In particular, we generalize the farthest-vertex Ordering Property [3] as follows.

The ordering property. As p moves clockwise around ∂P , so does F (p).

Shortest paths to/from edges. As basic tools, we need linear-time algorithms to find
shortest paths from a given point to all edges of the polygon, and to find shortest paths from
a given edge to all vertices of the polygon. See the full version [17].

Separators and funnels. A geodesic path between two vertices of P separates ∂P into two
parts, and when we focus on which vertices/edges are in opposite parts, we call the geodesic
path a “separator”. Separators, first introduced by Suri [27], are a main tool for finding
all farthest vertices in a polygon. In the full version [17] we extend the basic properties of
separators to the case of farthest edges and prove: (1) If vertex v and edge e (e need not
be farthest from v) are separated by a geodesic path π(a, b), then the shortest path from v

to e is contained, except for one edge, in the shortest path trees of a and b; (2) A constant
number of separators suffice to separate every vertex from its farthest edge.
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Figure 2 Schematics for possible and impossible orderings of points p, q and their farthest edges
F (p) and F (q). (a) The only possible ordering if F (p) = F (q). (b),(c) The two possible orderings if
F (p) ̸= F (q). (d) The impossible ordering if F (p) ̸= F (q).

3.1 Chord oracles and coarse covers
In this section we describe the chord oracle results that we need from previous work, and we
give a unified explanation of those algorithms and our current algorithm in terms of coarse
covers. The basic function of a chord oracle is to decide, given a chord K, whether the center
lies to the left or right (or on) the chord. Pollack et al. [25] gave a linear-time chord oracle
for the geodesic vertex center, which is at the heart of all further geodesic center algorithms.
We extended the chord oracle to the case of the geodesic edge center [15].

In both cases, a main step is the “one-dimension down” problem of finding the relative
center, which is a point cK on K that minimizes the geodesic radius function r(x). The
directions of the first segments of the paths from cK to its farthest sites determine whether
the center of P lies left/right/on K (see the full version [17]).

Algorithms to find the relative center of a chord or the center of a polygon rely on a
basic convexity property of the geodesic radius function (see the full version [17]) and all
follow the same pattern, which can be formalized via the concept of a coarse cover of the
chord/polygon. The idea is that a coarse cover for a domain (a chord/polygon) is a set of
elementary regions R (intervals/triangles) covering the domain, where each region R has an
associated easy-to-compute convex function fR, such that the upper envelope of the fR’s
is the geodesic radius function. We give a precise definition for the case of farthest edges
(following [15] and specialized for our Assumptions 1).

▶ Definition 2. A coarse cover of chord K [or polygon P ] is a set of triples (R, f, e) where
1. R is a subinterval of K [or a triangle of P ], f is a function defined on domain R, and e

is an edge of P .
2. For all x ∈ R, f(x) = d(x, e) and either: f(x) = d2(x, v) + κ where d2 is Euclidean

distance, κ is a constant and v is a vertex of P ; or f(x) = d2(x, ē), where d2 is Euclidean
distance and ē is the line through e.

3. For any point x ∈ K [or P ], and any edge e that is farthest from x, there is a triple
(R, f, e) in the coarse cover with x ∈ R.
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Condition (3) implies that the upper envelope of the functions of the coarse cover is the
geodesic radius function. Thus the [relative] center problem breaks into two subproblems:
(1) find a coarse cover; and (2) find the point x that minimizes the upper envelope of the
coarse cover functions. The high-level idea for solving step (2) in linear time (for a chord
or polygon domain) is to recursively reduce the domain (the search space) to a subinterval
or subpolygon while eliminating elements of the coarse cover whose functions are strictly
dominated by others. As for step (1) – constructing a coarse cover – see Section 4 for a chord
and Section 5 for a polygon.

We call the chord oracle in Phase II when we use divide-and-conquer to search for the
center in successively smaller subpolygons. We actually need two variations of the basic
chord oracle. First, we need a geodesic oracle that tests which side of a geodesic contains the
center. Secondly, we do not construct a coarse cover of a chord/geodesic from scratch; rather,
we intersect the triangles of the coarse cover of the subpolygon with the chord/geodesic, thus
avoiding runtime dependence on n. These variations are described in the full version [17].

4 Phase I: Finding the farthest-edge Voronoi diagram restricted to the
polygon boundary

Based on Assumptions 1, the boundary of P consists of chains with a single farthest edge,
separated by points (not vertices) that have two farthest edges (see Figure 4). Our goal is
to find these points. The first step of the algorithm is to find the farthest edge from each
vertex of the polygon in linear time. To do this, we extend the algorithm of Hershberger and
Suri [13] that finds the farthest vertex from each vertex. Details are in the full version [17].
The next step is to fill in the Voronoi diagram along the polygon edges. For an edge ab
where vertices a and b have the same farthest edge, i.e., F (a) = F (b), all points on the edge
ab have the same farthest edge, by the Ordering Property. An edge ab with F (a) ̸= F (b)
is a transition edge. We will find the farthest-edge Voronoi diagram on one transition
edge in linear time. To handle all the transition edges in linear time, we will show that for
each transition edge ab we can restrict our attention to the hourglass H(a, b) which is the
subpolygon of P bounded by ab, π(a, F (b)), π(b, F (a)) and the portion of ∂P between the
terminals t(a, F (b)) and t(b, F (a)). In the full version [17] we show that the hourglasses of
all transition edges can be found in linear time and that the sum of their sizes is linear.

In this section, we show how to construct the farthest-edge Voronoi diagram along one
polygon edge ab in time linear in the size of the polygon. We do not assume that the polygon
is an hourglass. For purposes of description, imagine ab horizontal with a at the left, and the
polygon interior above ab. We use the coarse cover (Definition 2) of the edge ab, which can
be found in linear time (Lubiw and Naredla [16]). Elements of the coarse cover are triples
(I, f, e) where I is a subinterval of ab and f(x) = d(x, e) for any x ∈ I. By resolving overlaps
of coarse cover intervals I, we find the upper envelope of the coarse cover functions f , which
immediately gives the Voronoi diagram on ab. This is easy if we sort the endpoints of the
intervals I, but we cannot afford to sort. Instead, we will insert the coarse cover elements
one by one, maintaining a list M of [pairwise internally] disjoint subintervals of ab together
with an associated distance function fM (x). An efficient insertion order depends on the fact
that elements of the coarse cover of edge ab are associated with edges of the shortest path
trees Ta and Tb (that consist of the shortest paths from a and b, respectively, to all the edges
of P ). We will use the ordering of the trees as embedded in the plane.
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Oh, Barba, Ahn [23] gave a linear-time algorithm to find the farthest vertex Voronoi
diagram on the boundary of P . The approach is similar, but they add coarse cover elements
by iterating over the sites (the vertices in their case), which involves a complicated algorithm
to sweep back and forth along M maintaining a shortest path to the current vertex, and a
tricky amortized analysis (see [23, Lemma 7]). Our approach is simpler and more general.

4.1 Farthest-edge Voronoi diagram on one edge
In previous work [15, 16] we constructed a coarse cover (see Definition 2) of an edge ab from
the shortest path trees Ta and Tb. The trees are first augmented with 0-length edges so that
the paths to every polygon edge e end with a tree edge perpendicular to e. In particular,
every polygon edge corresponds to a leaf in each tree.

Direct edges of Ta and Tb away from their roots. Each edge uv of Ta \ Tb with u ̸= a

corresponds to an a-side coarse cover element (I, f, e) where e corresponds to the farthest
leaf of Ta descended from v. For example, in Figure 3, see edge a3 of Ta and interval Ia3 .
There are symmetrically defined b-side coarse cover elements. Each edge uv of Ta ∩ Tb with
u visible from ab corresponds to a central triangle coarse cover element (I, f, e) where e
corresponds to the farthest leaf of Ta descended from v. For example, see edge a5 = b5 and
interval Ia5 . Each polygon edge e that has an interior point visible from ab corresponds to a
central trapezoid coarse cover element (I, f, e) where I consists of the points on ab whose
shortest paths to e arrive perpendicularly. For example, see edge e4 and interval Ie4 .

▶ Lemma 3 (proved in the full version [17]). For any edge e of P , let C(e) be the set of coarse
cover elements (I, f, e) for e. If C(e) is nonempty, then its elements correspond to a (possibly
empty) path in Ta directed towards a leaf, followed by a central triangle or trapezoid, followed
by a (possibly empty) path in Tb directed towards the root. Furthermore, the corresponding
intervals on ab appear in order, are [internally] disjoint, and their union is an interval.

We next construct a single tree T whose edges correspond to coarse cover elements of ab.
Then we incrementally construct the farthest-edge Voronoi diagram on ab by adding coarse
cover elements in a depth first search (DFS) order of T .

Constructing tree T . Starting with Ta, attach an edge for each central trapezoid element
to the associated leaf vertex of Ta; add the path of b-side triangle elements for each polygon
edge e after the central triangle or trapezoid for e; and contract original edges of Ta that are
not associated with coarse cover elements. See Figure 3(right). We give more detail of these
steps in the full version [17]. The resulting tree T can be constructed in linear time and its
edges are in one-to-one correspondence with the coarse cover elements.

▶ Observation 4. If uv and vw are edges of T , then the corresponding coarse cover intervals
I1 and I2 appear in that order along ab and intersect in a single point.

DFS algorithm for the Voronoi diagram. We add the coarse cover elements following a
DFS of T with children of a node in clockwise order. We maintain a list M of interior disjoint
subintervals of ab whose union is an interval starting at a. Each subinterval in M records
the coarse cover element it came from. Define fM to be the distance function determined by
the intervals of M . Initially, M is the single point a, and fM is −∞. At the end M will be
the upper envelope of the coarse cover functions (though this property is not guaranteed
throughout). To handle edge uv of T with associated coarse cover element (I, f, e), we
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Figure 3 Coarse cover elements corresponding to some (not all) edges of Ta (red) and Tb (blue):
(left) coarse cover elements for e4; (middle) coarse cover elements for e7; (right) the corresponding
part of tree T . When Ia6 is handled by Insert it wins the comparison with Ia4 so it replaces Ia4 up
to the cross-over point t, and the algorithm discards the rest of Ia6 , together with Ie4 and Ib3 .

compare f to fM beginning at the left endpoint of I. We maintain a pointer pu that gives
an interval of M containing this endpoint. The recursive routine Insert(u, pu) inserts into
M the portions of coarse cover elements that are associated with u’s subtree and that define
the upper envelope. At the top level, we call Insert(a, pa), where pa points to a.

Insert(u, pu) # u is a node of T and pu is a pointer to an interval of M
for each child v of u in clockwise order do

(I, f, e) := the coarse cover element associated with the edge uv of T
l := left endpoint of I; r := right endpoint of I
Invariant: pu points to an interval of M that contains l
if f(l+) > fM (l+) where l+ is just to the right of l then

replace intervals of M starting at pu with a subinterval of I ending at
the “cross-over” point t < r where fM starts to dominate f , or at r

if f dominates until r and v is not a leaf of T then
call Insert(v, pv), where pv is a pointer to interval I in M

Runtime. Each edge of T is handled once, and causes at most one new interval to be
inserted into M , so the total number of endpoints inserted into M is O(n). We can access
fM (l+) in constant time using the pointer pu. Then the endpoints of intervals of M that we
traverse as we do the insertion vanish from M . Thus the runtime is O(n).

Correctness. The following lemma implies that the final M is the upper envelope of the
coarse cover functions.

▶ Lemma 5. The algorithm only discards pieces of coarse cover elements that do not form
part of the final upper envelope.

Proof. We examine the behaviour of the algorithm for edge uv of T with associated coarse
cover element (I, f, e), where I = [l, r]. We insert the subinterval [l, t] into M (or no
subinterval). Because f(x) ≥ fM (x) for x ∈ [l, t], any subintervals of M that are removed
due to the insertion do not determine the upper envelope, so their removal is correct.
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If we insert all of interval I into M and recursively call Insert(v, pv), then this is correct
by induction. So suppose we insert a proper subinterval of I or none of I. We must prove that
no later part of I, and no element of the coarse cover associated with edges of the subtree
rooted at v determines the upper envelope. Let t+ be a point just to the right of t (or just
to the right of l if we insert no part of I). Then fM (t+) > f(t+). Number the polygon edges
e1, e2, . . . , em clockwise from a to b. Suppose that e = ei, so f(x) = d(x, ei) for x ∈ I, in
particular, f(t+) = d(t+, ei). Suppose that fM (t+) = d(t+, ek). Then d(t+, ek) > d(t+, ei).

Now consider the edges of T descended from v plus the edge uv. Consider the correspond-
ing coarse cover elements, Cv, and let ej be any polygon edge associated with any element
in Cv. Note that the intervals on ab associated with coarse cover elements of Cv lie to the
right of r, except for I associated with uv. We will prove that for any point x ∈ ab to the
right of t+, d(x, ek) > d(x, ej), which implies that none of the coarse cover elements in Cv

determines the upper envelope, nor does any part of I to the right of t. Thus the algorithm
is correct to discard them.

We first prove the result for x = t+. If uv corresponds to a central triangle/trapezoid
for ei or a b-side triangle, then T has a single path descending from v, all of whose edges
are associated with ei, i.e., j = i. Otherwise, by the definition of an a-side coarse cover
element, ei corresponds to the farthest leaf of Ta descended from v, which implies that
d(x, ei) ≥ d(x, ej) for all x ∈ I, and in particular for x = t+. Thus, in either case we have
d(t+, ek) > d(t+, ei) ≥ d(t+, ej).

We next claim that k < j. The current fM values arise from tree edges already processed.
These consist of: (1) edges on the path from a to u; and (2) edges of T counterclockwise from
this path. Edges on the path from a to u have coarse cover intervals on ab to the left of l, by
Observation 4. Thus type (1) edges do not determine fM (t+). By the depth-first-search order,
type (2) edges have coarse cover elements corresponding to polygon edges counterclockwise
from ej . Thus k < j.

To complete the proof of Lemma 5, consider any point x ∈ ab to the right of t+. The
clockwise ordering around the polygon boundary is x, t+, ek, ej , so by Lemma 1 and the fact
that d(t+, ek) > d(t+, ej), we get d(x, ek) > d(x, ej), as required. ◀

5 Phase II: Finding the geodesic edge center

The first step of Phase II is to construct a coarse cover (Definition 2) of the polygon in
linear time. As shown in Figure 4 the funnel Y (e) that consists of shortest paths between a
chain on ∂P with farthest edge e and e itself can be partitioned into its shortest path map.
If the result includes trapezoids, we partition each one into two triangles1. Each triangle is
bounded by two polygon chords and a segment of a polygon edge, and the distance to e has
the form required by Definition 2 (see the full version [17]). We seek the point inside P that
minimizes the upper envelope of the functions of the coarse cover. Note that Phase I can
detect if the edge center lies on ∂P so we may assume that the center is interior to P .

Our final divide-and-conquer algorithm follows the vertex center algorithm of Ahn et
al. [2], generalized to farthest edges, and repairing flaws in their approach. At each step of
the algorithm we have a subpolygon Q whose interior contains the center together with the
coarse cover elements needed to compute the edge center and we shrink the subpolygon and
eliminate a constant fraction of the coarse cover. Each recursive step takes time linear in
the size of the subproblem (the size of Q plus the size of its coarse cover). The subpolygons

1 Thus our triangles are not necessarily “apexed” triangles as in [2].
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Figure 4 The farthest-edge Voronoi diagram restricted to the polygon boundary consists of chains
C(e), C(f), C(g) farthest from edges e, f, g, respectively. To construct the coarse cover, the funnel
Y (e) (shaded) is partitioned (by dashed segments) into a shortest path map from e to C(e).

we work with are 3-anchor hulls defined as follows (see Figure 6). An anchor is a point
inside P , or a subchain of ∂P . A 3-anchor hull is the geodesic convex hull of at most three
anchors. These are weakly simple in general, but we only recurse on simple 3-anchor hulls.

The algorithm has two stages. In Stage 1 no triangle of the coarse cover contains Q
(this is true initially when Q = P ), so every triangle has a chord crossing Q and we use
ϵ-net techniques on the set of such chords to reduce to a smaller cell Q′ that is crossed by
a fraction of the chords, and hence by a fraction of the coarse cover triangles. Once Q is
contained in a triangle of the coarse cover we show (see the full version [17]) that the size
of Q, denoted |Q|, is at most 6. In fact, we will exit Stage 1 as soon as |Q| ≤ 6. It is then
easy to reduce Q to a triangle. After that, we switch to Stage 2, where the convexity of Q
allows us to use a Megiddo-style prune-and-search technique (as Ahn et al. do) to recursively
reduce the size of the subproblem. Stage 2 is deferred to the full version [17].

5.1 Stage 1: Algorithm for large Q

Consider a subproblem corresponding to a simple 3-anchor hull Q with |Q| > 6. We give an
algorithm that either finds the edge center or reduces to a subproblem with |Q| ≤ 6, which is
handled by Stage 2. In Stage 1, no triangle of the coarse cover contains Q (as proved in the
full version [17]) so each one has a chord crossing Q – we denote this set of chords by K(Q).

To apply ϵ-net techniques we define a 3-anchor range space as follows. The ground set
is a set K of chords of P , and for each 3-anchor hull H of P there is a range K(H) consisting
of all chords of K that cross H. Here a chord crosses a set if both open half-polygons of
the chord contain points of the set.

The algorithm finds a constant size ϵ-net of the 3-anchor range space on K(Q), which is a
set N ⊆ K(Q) such that any 3-anchor hull not intersected by a chord of N is intersected by
only a constant fraction of the chords of K(Q) – this is the important property that allows us
to discard a fraction of the chords. The set of chords N forms an arrangement that partitions
Q into cells. We use the chord oracle to determine which cell contains the center. We then
add geodesic paths to subdivide this cell into a constant number of 3-anchor hulls and use a
geodesic oracle (see the full version [17]) to find which 3-anchor hull contains the center,
and to shrink it to a simple 3-anchor hull Q′. The algorithm recurses on Q′, whose coarse
cover is a fraction of the size.
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More details of the algorithm can be found in the full version [17]. For now, we expand
on the aspects of the algorithm that differ from the approach of Ahn et al. [2]. Instead of
3-anchor hulls, their algorithm works with 4-cells, formed by taking the intersection of at
most four half-polygons, where a half-polygon is the part of P to one side of a chord. The
number (three versus four) is not significant, but we bound our regions by geodesics instead
of chords in order to obtain the following two results.

1. The 3-anchor range space has finite VC-dimension. This implies that constant-sized
ϵ-nets exist. Furthermore, there is a “subspace oracle” that allows us to find an ϵ-net N in
deterministic linear time [28, Chapter 47, Theorem 47.4.3]. For further background see the
full version [17], and the paper by Chazelle and Matoušek [8].

Ahn et al. claim that their range space (of chords crossing 4-cells) has finite VC-dimension
but their proof is flawed. Our proof shows that their range space does in fact have finite
VC-dimension. They do not mention subspace oracles, without which their algorithm runs in
expected linear time rather than deterministic linear time as claimed. We expand on these
aspects in Section 5.2 below.

2. A cell of the arrangement of N can be partitioned into constantly many 3-anchor hulls.
The method used by Ahn et al. to subdivide a cell of N into 4-cells by adding a constant

number of chords is incomplete, see Figure 5. We see how to repair their partition step but
we find 3-anchor hulls more natural.

Figure 5 Ahn et al. [2] subdivide a cell of N by adding vertical chords (dashed) at endpoints and
intersection points of chords of N (blue), which leaves a 5-cell in this example.

5.2 Epsilon-net results for Stage 1
In this section we expand on the ϵ-net results needed for Stage 1 of the algorithm as described
above. We also give details of the flaws in the approach of Ahn et al. [2]. For an overview of
ϵ-nets as used for geometric divide-and-conquer, see the full version [17] (also see Chazelle [7]
or Mustafa [21]). To show that ϵ-nets of constant size exist we need the following result.

▶ Lemma 6. The 3-anchor range space has VC-dimension less than 259.

Our proof of Lemma 6 works equally well for 4-anchor hulls – the bound becomes 372. A
4-cell is a special case of a 4-anchor hull so our proof implies finite VC-dimension (≤ 372)
for the 4-cell range space, which repairs the claim by Ahn et al.2. We explain the flaw in

2 In response to our enquiries, Eunjin Oh independently suggested a similar remedy.
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Figure 6 A simple 3-anchor hull Q (outlined in red) with anchors v1, v2 and the polygon chain c3

(thick black). Solid blue chords cross Q, while dashed blue chords do not. The expanded 3-anchor
hull ψ(Q) (lightly shaded) has expanded anchors: a1, the face in the chord arrangement containing
v1; a2, the edge with v2 in its interior; and a3, the polygon chain extending c3 to chord endpoints.
The same chords cross Q and ψ(Q).

their proof. Let us refer to the set of chords intersecting a 4-cell as a “4-cell range”. Ahn et
al. prove that the 1-cell range space has VC-dimension at most 65,535. They note that a
4-cell is the intersection of four 1-cells, and then claim in their Lemma 9.1 that this implies
finite VC-dimension for the 4-cell range space. As justification, they refer to Proposition
10.3.3 of Matousek’s text [18], which states that the VC-dimension is bounded for any family
whose sets can be defined by a formula of Boolean connectives (union, intersection, set
difference). However, Matousek’s proposition cannot be applied in this situation because,
although a 4-cell is the intersection of four 1-cells, it is not true that a 4-cell range is the
intersection of four 1-cell ranges. In particular, a chord can intersect two 1-cells, but not
intersect the intersection of the two 1-cells. For example, a line of slope −1 can intersect the
+x half-plane and the +y half-plane without intersecting the +x,+y quadrant.

Proof of Lemma 6. We will prove that the shattering dimension is 6 and then apply the result
that a range space with shattering dimension d has VC-dimension bounded by 12d ln (6d)
(Lemma 5.14 from Har-Peled [12]). For d = 6, this is less than 259.

We must show that for a set K of chords with |K| = m, the number of distinct ranges
is O(m6). We prove that the range space for K is the same if we replace 3-anchor hulls by
“expanded 3-anchor hulls” that are defined in terms of K, more precisely, in terms of the
arrangement A(K) of the chords K plus the edges of P . Define an expanded anchor to be
an internal face, edge, or vertex of A(K), or a polygon chain with endpoints in V (K), the set
of endpoints of chords K. An expanded 3-anchor hull is the geodesic convex hull of at
most three expanded anchors.

▶ Lemma 7. The set of ranges R = {K(Q) | Q is a 3-anchor hull } is the same as the set
of ranges R = {K(Q) | Q is an expanded 3-anchor hull }.

Proof. To prove R ⊆ R, consider a 3-anchor hull Q. Replace any point anchor p by the
smallest (by containment) internal vertex, edge, or face of A(K) that contains p. See Figure 6.
Replace any polygon chain anchor C by the smallest chain of ∂P containing C and with
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endpoints in V (K). Let ψ(Q) be the geodesic convex hull of these expanded anchors. Then
ψ(Q) is an expanded 3-anchor hull that contains Q, and it is straight-forward to prove that
K(Q) = K(ψ(Q)) (see the full version [17]).

For the other direction, let Q be an expanded 3-anchor hull. Replace an expanded anchor
that is a face, edge, or vertex of A(K) by a point anchor in the interior of that face, edge,
or vertex. An expanded anchor that is a polygon chain remains unchanged. Let γ(Q) be
the geodesic convex hull of the resulting anchors. Observe that γ(Q) is a 3-anchor hull and
ψ(γ(Q)) = Q. As above, this implies that K(Q) = K(γ(Q)). ◀

To complete the proof of Lemma 6 we claim that the number of expanded 3-anchor hulls
of K is O(m6). An expanded anchor may be an internal vertex, edge, or face of A(K), of
which there are O(m2) possibilities. Otherwise, an expanded anchor is a chain of ∂P between
vertices of V (K), also with O(m2) possibilities. Thus the number of expanded 3-anchor hulls
is O((m2)3) = O(m6). ◀

Subspace oracle

To prove that the 3-anchor range space has a subspace oracle, we present a deterministic
algorithm that, given a subset K′ ⊆ K with |K′| = m, computes the set of ranges R =
{K′(Q) | Q is a 3-anchor hull} in time O(m7). The idea is to use Lemma 7 and to construct
A(K′) minus the edges of P , and find, for each chord K ∈ K′, which of the O(m2) expanded
anchors in A(K′) intersects each side of K, and then, for each of the O(m6) expanded
3-anchor hulls, eliminate the chords that have all three expanded anchors to one side, leaving
the chords that cross the hull. For further details see [17].
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Abstract
Knots are commonly represented and manipulated via diagrams, which are decorated planar graphs.
When such a knot diagram has low treewidth, parameterized graph algorithms can be leveraged to
ensure the fast computation of many invariants and properties of the knot. It was recently proved
that there exist knots which do not admit any diagram of low treewidth, and the proof relied on
intricate low-dimensional topology techniques. In this work, we initiate a thorough investigation of
tree decompositions of knot diagrams (or more generally, diagrams of spatial graphs) using ideas
from structural graph theory. We define an obstruction on spatial embeddings that forbids low tree
width diagrams, and we prove that it is optimal with respect to a related width invariant. We then
show the existence of this obstruction for knots of high representativity, which include for example
torus knots, providing a new and self-contained proof that those do not admit diagrams of low
treewidth. This last step is inspired by a result of Pardon on knot distortion.
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1 Introduction

A (tame) knot is a polygonal embedding of the circle S1 into R3, and two knots are considered
equivalent if they are isotopic, i.e., if they can be continuously deformed one into the other
without introducing self-intersections. The trivial knot, or unknot, is, up to equivalence,
the embedding of S1 as a triangle. The investigation of knots and their mathematical
properties dates back to at least the nineteenth century [1] and has developed over the years
into a very rich and mature mathematical theory. From a computational perspective, a
fundamental question is to figure out the best algorithm testing whether a given knot is the
unknot. Note that it is neither obvious from the definitions that a non-trivial knot exists, nor
that the problem is decidable. This was famously posed as an open problem by Turing [50].
The current state of the art on this problem is that it lies in NP [21] and co-NP [29], a
quasipolynomial time algorithm has been announced [30] but no polynomial-time algorithm is
known. More generally, algorithmic questions surrounding knots typically display a wide gap
between the best known algorithms (which are almost never polynomial-time, and sometimes
the complexity is a tower of exponentials) and the best known complexity lower bounds. We
refer to the survey of Lackenby for a panorama of algorithms in knot theory [28].
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Figure 1 Diagrams of two trivial knots on the left, a bowline knot and a knotted spatial graph.

In recent years, many attempts have been made to attack such seemingly hard problems
via the route of parameterized algorithms. In particular, the treewidth of a graph is a
parameter quantifying how close a graph is to a tree, and thus algorithmic problems on
graphs of low treewidth can often be solved very efficiently using dynamic programming
techniques on the underlying tree structure of instance. The concept of branchwidth,
which we also use below, is somewhat equivalent and always within a constant factor of
treewidth [39]. One approach is to study a knot via one of its diagrams (see Figure 1), that
is, a decorated graph obtained by a planar projection where it is indicated on each vertex
which strand goes over or under. Then, if such a diagram has low treewidth, one can apply
these standard dynamic programming techniques to solve seemingly hard problems very
efficiently. While this approach has not yet been successful for unknot recognition beyond
treewidth 2 [5], it has proved effective for the computation of many knot invariants, including:
Jones and Kauffman polynomials [33] (which are known to be #P -hard to compute in
general [27]), HOMFLY-PT polynomials [6], and quantum invariants [34, 8]. Since any knot
admits infinitely many diagrams, these algorithms naturally lead to the following question
raised by Burton [7, p.2694], and Makowsky and Mariño [33, p.755]: do all knots admit
diagrams of constant treewidth, or conversely does there exist a family of knots for which all
the diagrams have treewidth going to infinity. This question was answered recently by de
Mesmay, Purcell, Schleimer and Sedgwick [9] who proved that, among other examples, torus
knots Tp,q are such a family. The proof relies at its core on an intricate result of Hayashi
and Shimokawa [23] on thin position of multiple Heegaard splittings.

Our results. The main purpose of this work is to provide new techniques to characterize
which knots, or more generally which spatial graphs (polygonal embeddings of graphs
into R3, considered up to isotopy, see for example Figure 1), do not admit diagrams of low
treewidth. Our starting point is similar to the one in [9]: we first observe that if a knot or
a spatial graph admits a diagram of low treewidth, then there is a way to sweep R3 using
spheres arranged in a tree-like fashion which intersect the knot a small number of times
(Proposition 5). This corresponds roughly to a map f : R3 → T where T is a trivalent tree,
where the preimage of each point interior to an edge is a sphere with a small number of
intersections with the knot (we refer to Section 2 for the precise technical definitions of all
the concepts discussed in this introduction). We call this a sphere decomposition1, and
the resulting measure (maximal number of intersections) the spherewidth of the knot.

1 Our sphere decompositions are different from the ones in [9] but functionally equivalent for knots.
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Thus, in order to lower bound the treewidth of all the diagrams of a knot, it suffices to
lower bound its spherewidth. We provide a systematic technique to do so using a perspective
taken from structural graph theory. In the proof of the celebrated Graph Minor Theorem of
Robertson and Seymour [41], handling families of graphs with bounded treewidth turns out
not to be too hard [38], and in contrast, a large part is devoted to analyzing the structure
shared by graphs of large treewidth. There, a fundamental contribution is the concept of
tangle2. We refer to Diestel [13] or Grohe [18] for nice introductions to tangles and their
applications. Informally, a tangle of order k in a graph G is a choice, for each separation of
size at most k, of a “big side” of that separation, where the highly-connected part of the
graph lies. In addition, there are some compatibility properties, in particular no three “small
sides” should cover the whole graph. Such a tangle turns out to be exactly the structure
dual to branchwidth, in the sense that, as is proved in [39], for any graph G, the maximal
possible order of a tangle is exactly equal to its branchwidth. We develop a similar concept
dual to sphere decompositions which we call a bubble tangle. Informally, a bubble tangle
of order k for a knot or spatial graph K is a map that, for each sphere intersecting K at
most k times, chooses a “big side” indicating where the complicated part of K lies. There
are again some compatibility conditions which add topological information to the collection
of “small sides”. Then our first result is the following.

▶ Theorem 1. For any knot or spatial graph K, the maximum order of a bubble tangle for
K is equal to the spherewidth of K.

This provides a convenient and systematic pathway to prove lower bounds on the
spherewidth, and thus on the treewidth of all possible diagrams: it suffices to prove the
existence of a bubble tangle of high order. However, making choices for the uncountable
family of spheres with a small number of intersections with K, and then verifying the needed
compatibility conditions is very unwieldy. Our second contribution is to provide a way to
define such a bubble tangle in the case of knots (or spatial graphs) which are embedded on
some surface Σ in R3. Given a surface Σ in R3, a compression disk is a disk properly
embedded in R3 ∖ Σ whose boundary is a non-contractible curve on Σ. The compression-
representativity of an embedding of a knot or spatial graph K on a surface Σ in R3 is
the smallest number of intersections between K and a cycle on Σ that bounds a compression
disk. The compression-representativity of a knot or spatial graph is the supremum of
that quantity over all embeddings on surfaces (this was originally defined by Ozawa [36]).
Our second theorem is the following.

▶ Theorem 2. For any knot or spatial graph K embedded on a surface Σ in R3, there
exists a bubble tangle of order 2/3 of the compression-representativity of the embedding.
Therefore, for any knot or spatial graph K, there exists a bubble tangle of order 2/3 of the
compression-representativity of K.

Combining together Theorems 1 and 2 with Proposition 5 provides a large class of knots
of high spherewidth, and our tools are versatile enough to apply to spatial graphs, while
previous ones did not. In particular, observing that torus knots Tp,q have high compression-
representativity, we obtain the following corollary, which improves the lower bound obtained
by [9], without relying on deep knot-theoretical tools.

2 It turns out that the word tangle holds a completely different meaning in knot theory, and, to avoid
confusion, in this article we will always use it with the graph theory meaning.

SoCG 2023



50:4 A Structural Approach to Tree Decompositions of Knots and Spatial Graphs

▶ Corollary 3. A torus knot T (p, q) has spherewidth at least 2/3 min(p, q), and thus any
diagram of T (p, q) has treewidth at least 1/3 min(p, q).

Related work and proof techniques. The results in this article and many of their proof
techniques stem from two very distinct lineages in quite distant communities, the first one
being knot theory or more generally low-dimensional topology, and the second one being
structural graph theory. While there have been some recent works aiming at building
bridges between combinatorial width parameters and topological quantities (for example the
aforementioned [9], but also [25, 26, 35] for related problems in 3-manifold theory), the main
contribution in this article is that we dive deeper in the structural graph theory perspective
via the concept of a tangle. The latter has now proved to be a fundamental tool in graph
theory and beyond (see for example Diestel [10, Preface to the 5th edition]).

The duality theorem of Robertson and Seymour between branchwidth and tangles in [39]
has been generalized many times since its inception, for example in order to encompass
other notions of decompositions and their obstructions [2, 32], to apply more generally to
matroids [17] and to the wide-ranging setting of abstract separations systems [11, 12]. The key
difference in our work, and why it does not fit into these generalizations, is that our notions
of sphere decomposition and bubble tangles inherently feature the topological constraint of
working with 2-spheres. This is a crucial constraint, as it would be easy to sweep any knot
with width at most 2 if one were allowed to use arbitrary surfaces during the sweeping process.
Furthermore, in planar graphs, it was shown by Seymour and Thomas [48] that the separations
involved in an optimal branch decomposition can always be assumed to take the form of
1-spheres, i.e., Jordan curves. This property led to the ratcatcher algorithm to compute the
branchwidth of planar graphs in polynomial time [48], and to sphere-cut decompositions
and their algorithmic applications (see for example [14]). Our sphere decompositions are
the generalization one dimension higher of these sphere-cut decompositions, and Theorem 1
identifies bubble tangles as a correct notion of dual obstruction for those. We believe that
these notions could be of further interest beyond knots, in the study of graphs embedded in
R3 with some topological constraints, e.g., linkless graphs [42].

The representativity (also called facewidth) of a graph embedded on a surface S is
the smallest number of intersections of a non-contractible curve with that graph. Theorem 2
will not come as a surprise for readers accustomed to graph minor theory, as Robertson
and Seymour proved a very similar-looking theorem in Graph Minors XI [40, Theorem 4.1],
showing that that the branchwidth of a graph embedded on a surface is lower bounded
by its representativity, which they prove by exhibiting a tangle. The key difference is
that our notion of compression-representativity only takes into account the length of cycles
bounding compression disks, instead of all the non-contractible cycles. Here again, this
topological distinction is crucial to give a meaningful concept for knots, as for example the
graph-theoretical representativity of a torus knot is zero. Due to this difference, the proof
technique of Robertson and Seymour does not readily apply to prove Theorem 2; instead we
have to rely on more topological arguments.

From the knot theory side, there is a long history in the study of the “best” way to sweep
a knot while trying to minimize the number of intersections in this sweepout. One of the
oldest knot invariants, the bridge number, can be seen through this lens (see for example [47]).
A key concept in modern knot theory, introduced by Gabai in his proof of the Property
R conjecture [16], is the notion of thin position which more precisely quantifies the best
way to place a knot to minimize its width. It is at the core of many advances in modern
knot theory (see for example Scharlemann [43]). Recent developments in thin position have
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highlighted that in order to obtain the best topological properties, it can be helpful to
sweep the knot in a tree-like fashion compared to the classical linear one. This approach
leads to definitions bearing close similarities to our sphere decompositions (this is one of
the ideas behind generalized Heegaard splittings [45, 44], see also [23, 24, 49]). The concept
of compression-representativity of a knot or a spatial graph finds its roots in the works of
Ozawa [36], and Blair and Ozawa [4] who defined it under the simple name of representativity,
taking inspiration from graph theory. They proved that it provides a lower bound on the
bridge number and on more general linear width quantities. Our Theorem 2 strengthens
their results by showing that it also lower bounds the width of tree-like decompositions.
Furthermore, while specific tools have been developed to lower bound various notions of
width of knots or 3-manifolds, we are not aware of duality theorems like our Theorem 1.
It shows that our bubble tangles constitute an obstruction that is, in a precise sense, the
optimal tool for the purpose of lower bounding spherewidth.

Finally, an important inspiration for our proof of Theorem 2 comes from a seemingly
unrelated breakthrough of Pardon [37], who solved a famous open problem of Gromov [19]
by proving the existence of knots with arbitrarily high distortion. The distortion for two
points on an embedded curve in R3 is the ratio between the intrinsic and Euclidean distance
between the points. The distortion of the entire curve is the supremum over all pairs of
points. The distortion of a knot is the minimal distortion over all embeddings of the knot.
While this metric quantity seems to have nothing to do with tree decompositions, it turns
out that the technique developed by Pardon can be reinterpreted in our framework. With
our terminology, his proofs amounts to first lower bounding the distortion by a constant
factor of the spherewidth, and then defining a bubble tangle for knots of high representativity.
The lower bound is nicely explained by Gromov and Guth [20, Lemma 4.2], where the
simplicial map is similar to our sphere decompositions, up to a constant factor. Then our
proof of Theorem 2 is inspired by the second part of Pardon’s argument, with a quantitative
strengthening to obtain the 2/3 factor, whereas his argument would only yield 1/2.

Organization of this paper. After providing background and defining our key concepts
in Section 2, we prove Theorem 1 in Section 3, and Theorem 2 in Section 4. We provide
examples in Section 5. Due to the line limitations, some proofs are not included in this
extended abstract and are deferred to the full version [31].

2 Preliminaries

We include the most relevant definitions, but some familiarity with low-dimensional topology
will help, see for example in the textbook of Schultens [46]. We refer to Diestel [10] for a nice
introduction to graph theory and in particular its structural aspects. We denote by V (G),
E(G), and L(G) the vertices, edges and leaves (degree one vertices) of a graph G.

Low-dimensional topology. Following standard practice, instead of considering knots and
spatial graphs within R3, we compactify it and work within S3. We denote by C(A) the
connected components of a subset A of S3, and thus by |C(A)| its number of connected
components. As is standard in low-dimensional topology, we work in the Piecewise-Linear
(PL) category, which means that all the objects that we use in this article are assumed to
be piecewise-linear, i.e., made of a finite number of linear pieces with respect to a fixed
triangulation of S3. This allows us to avoid pathologies such as wild knots or the Alexander
horned sphere. An embedding of a compact topological space X into another one Y is a
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Figure 2 A double bubble: two spheres that intersect in a single disk.

continuous injective map, and it is proper if it maps the boundary ∂X within the boundary
∂Y . A 3-dimensional version of the Schoenflies theorem guarantees that for any PL 2-sphere
S embedded in S3, both components of S3 ∖S are balls (see for example [3, Theorem XIV.1]).
A knot is a PL embedding of S1 into S3, a link is a disjoint union of knots, and a spatial
graph is a PL embedding of a graph G into S3. All these objects are considered equivalent
when they are ambient isotopic, i.e., when there exists a continuous deformation preserving
the embeddedness. Knots and links are a special instance of spatial graphs, and henceforth we
will mostly focus on spatial graphs, generally denoted by the letter G. For technical reasons,
it is convenient to thicken our embedded graphs as follows. A thickened embedding φ of
a graph G is an embedding of G in S3 where each vertex is thickened to a small ball, two
balls are connected by a polygonal edge if and only if they are adjacent in the graph G, and
pairs of edges are disjoint. We emphasize that we do not thicken edges, which might be
considered nonstandard. We will also work with graphs embedded on surfaces which are
themselves embedded in S3: such embeddings will also always be thickened, that is, vertices
on the surface are thickened into small disks. From now on, all the graph embeddings will be
thickened, and thus to ease notations we will omit the word thickened.

As mentioned in the introduction, for Σ a surface embedded in S3, a compression disk
is a properly embedded disk D in S3 ∖ Σ such that the boundary ∂D is a non-contractible
curve on Σ. A compressible curve γ of Σ is the boundary of a compressing disk of Σ. For a
spatial graph G embedded on a surface Σ in S3, the compression representativity of G on
Σ, written c-rep(G, Σ) is min {|C(α ∩ G|) | α compressible curve of Σ} (we count connected
components to correctly handle thickened vertices). The compression representativity c-rep(G)
of G is the supremum of c-rep(G, Σ) over all nested embeddings G ↪→ Σ ↪→ S3.

In order to define spherewidth and bubble tangles, we require a precise control of the
event when two spheres merge together to yield a third one, which is mainly encapsulated in
the concept of double bubble. A double bubble is a triplet of closed disks (D1, D2, D3) in
S3, disjoint except on their boundaries, that they share: D1 ∩ D2 = D1 ∩ D3 = D2 ∩ D3 =
D1 ∩D2 ∩D3 = ∂D1 = ∂D2 = ∂D3, see Figure 2. Such a double bubble defines three spheres,
which, by the PL Schoenflies theorem, bound three balls.

Two surfaces (resp. a knot and a surface) embedded in S3 are transverse if they intersect
in a finite number of connected components, where the intersection is locally homeomorphic
to the intersection of two orthogonal planes (resp. to the intersection of a plane and an
orthogonal line). Likewise, we say that a surface is transverse to a ball if it is transverse
to its boundary. A surface is transverse to a graph if it is transverse to all the thickened
vertices and edges it intersects. A double bubble is transverse to a graph or a surface if each
of its three spheres is and if the vertices of the graph do not intersect the spheres on their
shared circle ∂Di. Intersections are tangent when they are not transverse, and a sphere S

is said finitely tangent to a graph G embedded in S3 if they do not intersect transversely
but the number of intersections |E(G) ∩ S| is still finite.

Spherewidth. In this paragraph, we introduce sphere decompositions, which are the main
way that we use to sweep knots and spatial graphs using spheres.
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▶ Definition 4 (Sphere decomposition). Let G be a graph embedded in S3. A sphere
decomposition of G is a continuous map f : S3 → T where T is a trivalent tree with at
least one edge:

For all x ∈ L(T ), f−1(x) is a point disjoint from G.
For all x ∈ V (T ) ∖ L(T ), f−1(x) is a PL double bubble transverse to G.
For all x interior to an edge, f−1(x) is a sphere transverse or finitely tangent to G.

The weight of a sphere S (with respect to G) is the number of connected components
in its intersection with G. The width of a sphere decomposition f is the supremum of the
weight of f−1(x) over all points x interior to edges of the tree T . The spherewidth of the
graph G, denoted by sw(G), is the infimum, over all sphere decompositions f , of the width
of f : sw(G) = inff :S3 7→T supx∈e̊∈E(T ) |C(f−1(x) ∩ G)|. Therefore, a sphere decomposition is
a way to continuously sweep S3 using spheres, which will occasionally merge or split in the
form of double bubbles, and the spherewidth is a measure of how well we can sweep a graph
G using sphere decompositions. This is similar to the level sets given by a Morse function,
but note that our double-bubble singularities are not of Morse type, and those are key to the
proof of Theorem 1.

Sphere
decomposition

Figure 3 A width-4 sphere decomposition of a pretzel knot.

The point of using thickened embeddings instead of usual ones is that this allows
disjoint spheres of a sphere decomposition to intersect a same vertex of a graph embedding.
This is motivated by the following proposition, which provides a bridge between sphere
decompositions and tree decompositions of diagrams of knots and spatial graphs.

▶ Proposition 5. Let G be a knot or a graph embedded in S3, and D be a diagram of G.
Then the spherewidth of G is at most twice the tree-width of D.

The proof is very similar to that of Lemma 3.4 in [9] and is included to the full version [31].

Bubble tangle. Bubble tangles are our second main concept in this article. They will
constitute an obstruction to spherewidth, by designating, for each sphere in S3 not intersecting
the graph too many times, the side of the sphere that is easy to sweep. We first observe
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that some balls have to be easy to sweep: intuitively this will be the case of any unknotted
segment or empty ball (see Figure 4). Let G be a graph embedded in S3. A closed ball B in
S3 is said to be G-trivial if its boundary is transverse to G and one of the following holds
(where B(0, 1) is the unit ball of R3):

B ∩ G = ∅.
B ∖ G is homeomorphic to B(0, 1) ∖ [−1, 1] × {(0, 0)} ⊂ R3.
B ∖ G is homeomorphic to B(0, 1) ∖ [−1, 0] × {(0, 0)} ⊂ R3.

/

Figure 4 Representation of a G-trivial ball and a non G-trivial ball.

We can now introduce bubble tangles.

▶ Definition 6. Let G be an embedding of a graph in S3 and n ∈ N. A bubble tangle T of
order n ≥ 2, is a collection of closed balls in S3 such that:
(T1) For every closed ball B in T , |C(∂B ∩ G)| < n.
(T2) For every sphere S in S3 transverse to G, if |C(S ∩ G)| < n then exactly one of the

two closed balls B̄1 is in T or B̄2 is in T , where S3 ∖ S = {B1, B2}.
(T3) For every triple of balls B1, B2 and B3 induced by a double bubble transverse to G,

{B1, B2, B3} ̸⊂ T .
(T4) For every closed ball B in S3, if B is G-trivial and |C(∂B ∩ G)| < n, then B ∈ T .

For every transverse sphere S such that |C(S ∩ G)| < n, a bubble tangle chooses one of
the two balls having S as the boundary. We think of the ball in T as being a “small side”,
since T4 stipulates that balls containing trivial parts of G are in T , while the other one is
the “big side”. Then the key property T3 enforces that no three small sides forming a double
bubble should cover the entire S3.

▶ Remark 7. Tangles in graph theory are often endowed with an additional axiom, specifying
that small sides should be stable under inclusion (see e.g., [17, Axiom (T3A)]). Our bubble
tangles are weaker in the sense that we do not enforce this axiom, but still strong enough
to guarantee duality (Theorem 1) and the connection to compression-representativity (The-
orem 2). Whether such an axiom can be additionally enforced in our definition of bubble
tangle while preserving these properties is left as an open problem.

3 Obstruction and duality

In this section, we prove Theorem 1: given a graph G embedded in S3, the highest possible
order of a bubble tangle is equal to the spherewidth of G. In the following, G is an embedding
of a graph in S3 and the order of all bubble tangles that we consider is at least 3, the
theorem being trivial otherwise. The proof is split into two inequalities: Proposition 8 and
Proposition 11 which together immediately imply Theorem 1.
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Bubble tangles as obstruction. We first show that a bubble tangle of order k and a sphere
decomposition of width less than k cannot both exist at the same time.

▶ Proposition 8. Let G be an embedding of a graph in S3. If G admits a bubble tangle T of
order k then sw(G) ≥ k.

The proof of this proposition is similar to its graph-theoretical counterparts showing that
tangles are an obstruction to branchwidth (see, e.g., [39]). The main difference with these
proofs lies in the continuous aspects of our sphere decomposition, which we control using
Lemmas 9 and 10.

Let S and S′ be two disjoint spheres in S3. Then S3 ∖ (S ∪ S′) has three connected
components: two balls and a space I homeomorphic to S2 × [0, 1]. The spheres S and S′ are
said to be braid-equivalent if (I ∪ S ∪ S′) ∖ G is homeomorphic to Sk × [0, 1] where Sk

is the 2-sphere with k holes. The intuition behind this definition is that it means that G

forms a braid between S and S′. The following lemma explains how braid-equivalent spheres
interact with a bubble tangle.

Figure 5 The three innermost spheres are braid-equivalent, not the fourth one.

▶ Lemma 9. Let T be a bubble tangle and S, S′ be two braid-equivalent spheres. Let us write
S3 ∖ S = {B1, B2} and S3 ∖ S′ = {B′

1, B′
2} such that B1 ⊂ B′

1. If B1 ∈ T then B′
1 ∈ T .

In the following, we will assume that there exists a bubble tangle T of order k and a
sphere decomposition f : S3 → T of G of width less than k in order to reach a contradiction.
Let e = (u, v) ∈ E(T ) be an edge and x be a point of e so that f−1(x) is transverse to
G. Notice that x cuts T in two trees : Tu(x) and Tv(x) where Tu(x) is the tree containing
the endpoint u. By definition f−1(x) = S is a sphere in S3 such that |C(G ∩ S)| < k. It
follows by T2 that exactly one of f−1(Tu(x)) or f−1(Tv(x)) belongs to T . We define an
orientation o : T → V (T ) induced by T as follows: if f−1(x) is transverse to G, o(x) := v if
f−1(Tu(x)) ∈ T , or o(x) := u if f−1(Tv(x)) ∈ T . In other words, at a point x where f−1(x)
is transverse to G the orientation o orients x outwards, toward the “big side”. If f−1(x) has
a tangency with G, note that for any close enough neighbor y of x, f−1(y) is transverse to
G, and we define o(x) := o(y), making an arbitrary choice if needed. As we consider edges of
the tree T to be intervals, we will use interval notations: we write [u, v] for the edge (u, v),
and more generally [x, y] to describe all the points on the edge between x and y. We say
that an orientation o is consistent if for any x on some edge such that f−1(x) is transverse
to G, o is constant on [x, o(x)]. The following lemma shows that the orientation o can be
assumed to be consistent on all the edges of the tree T .

▶ Lemma 10. Let us assume that there exists a bubble tangle T of order k and a sphere
decomposition f : S3 → T of G of width less than k. Then there exists a sphere decomposition
to the same tree such that o is consistent on T .
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Lemma 10 ensures that for any edge e = (u, v) of T , there exists a point xe so that all the
points in (xe, v) are oriented towards v, while all the points in (u, xe) are oriented towards u.
Hence, by subdividing each edge e of T at this xe, we can think of o as assigning a direction
to each edge. This directed tree is the main tool that we use in the proof of Proposition 8.

Proof of Proposition 8. Let us assume that there exists both a bubble tangle of order k

and a sphere decomposition f : S3 → T of width less than k. By Lemma 10, there exists
a sphere decomposition of width less than k so that the orientation o as defined above is
consistent. Denoting by T ′ the tree T where each edge has been subdivided once, this
orientation corresponds to a choice of direction for each edge of T ′. Every directed acyclic
graph, and thus in particular the tree T ′ contains at least one sink, see Figure 6.

This sink cannot be a leaf of the tree. Indeed, let e = [ℓ, u] be an edge of T incident to
a leaf ℓ. By definition, f−1(ℓ) is a point disjoint from G, and thus for any y in (ℓ, u) close
enough to ℓ, f−1(y) is a sphere disjoint from G. Hence f−1(Tℓ(y)) is a G-trivial ball and
belongs to T . It follows that all edges incident to leaves of T ′ are oriented inward. This sink
cannot be a degree-two vertex either, as the tree T ′ was defined in such a way that the two
edges adjacent to a degree-two vertex are always oriented outwards. Finally, this sink cannot
be a degree-three vertex as this would mean that the three balls induced by a double bubble
are in T , which would violate T3. We have thus reached a contradiction. ◀
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Figure 6 An example of T ′ from T leading to at least one sink.

Tightness of the obstruction. In this paragraph, we show that bubble tangles form a tight
obstruction to sphere decompositions, in the sense that a bubble tangle of order k exists
whenever a sphere decomposition of width less than k does not exist.

▶ Proposition 11. Let G be an embedding of a graph in S3 and k be an integer at least three.
If G does not admit a sphere decomposition of width less than k, then there exists a bubble
tangle of order k.

The idea of the proof is to show that, given a collection of closed balls satisfying the
axioms T1 and T4 of bubble tangles, then either we can extend this collection to a bubble
tangle, or there exists a partial sphere decomposition of width k which sweeps the space
“between” the balls of the collection. We first introduce the relevant definition.

Let G a graph embedded in S3. A partial sphere decomposition of G is a continuous
map f : S3 → T where T is a trivalent tree with at least one edge such that:

For all x ∈ L(T ), f−1(x) is a point disjoint from G or a closed ball B.
For all x ∈ V (T ) ∖ L(T ), f−1(x) is a double bubble transverse to G.
For all x interior to an edge, f−1(x) is a sphere transverse or finitely tangent to G.

The leaves of T having preimages by f which are not points are called non-trivial leaves.
Let G be a graph embedding in S3 and A be a collection of closed balls in S3. A partial
sphere decomposition f conforms to A if, for all x ∈ L(T ), f−1(x) is either a point disjoint
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from G, or a closed ball B such that there exists A ∈ A such that ∂B and ∂A are braid
equivalent and B ⊂ A. In the latter case we say that x conforms to A. The width of a partial
sphere decomposition is defined like the width of standard sphere decompositions: it is the
supremal weight of spheres that are pre-images of points in the interiors of edges of T .

Now, the proof of Proposition 11 hinges on the following key lemma. Its proof is similar
to branchwidth-tangle duality proofs [39] in that it builds a bubble tangle inductively, but
the continuous nature of our objects makes us rely on transfinite induction in the form of
Zorn’s lemma.

▶ Lemma 12. Let G be an embedding of a graph in S3, k be an integer at least 3 and A be a
collection of closed balls in S3 satisfying T1 and T4. Then one of the following is true :

A extends to a bubble tangle of order k.
there is a partial sphere decomposition of width less than k that conforms to A.

Proof of Proposition 11. We denote by A the collection of G-trivial balls. By definition, A
satisfies T4, and since G-trivial balls have weight at most two, it also satisfies T1 for k at
least three. Therefore, by Lemma 12, either A extends to a bubble tangle of order k, or there
exists a partial sphere decomposition of width less than k conforming to it. In the first case,
we are done. In the second case, we are also done, since, given a partial sphere decomposition
of width less than k conforming to G-trivial balls, it is straightforward to sweep within the
G-trivial balls so as to obtain a sphere decomposition of width less than k. ◀

4 From compression representativity to bubble tangles

The goal of this section is to show Theorem 2: when a graph G is embedded on a compact,
orientable, and non-zero genus surface Σ, there exists a bubble tangle naturally arising from
the compression representativity of G on Σ. In the following, we assume Σ is compact,
orientable, and not a sphere.

Under these hypotheses, the idea of the proof is to show that there exists a natural
choice of small side for every sphere with fewer intersections with G than the compression
representativity. Intuitively, such a sphere will only cut disks or “trivial parts” of Σ on one of
its sides, which we will designate as the small one. That is justified by the following lemma.

▶ Lemma 13. Let Σ be a surface embedded in S3 and S be a sphere in S3 that intersects Σ
transversely such that there is at least one non-contractible curve in the intersection. Then
one of the non-contractible curves is compressible.

Proof. As Σ and S are transverse, the intersection of S and Σ consists of a disjoint union of
simple closed curves. Each one of these curves bounds two disks on S. Let α be a curve of
S ∩ Σ that is innermost in S, i.e. it bounds a disk D in S that does not contain any other
curve of S ∩ Σ. If α is non-contractible, then the disk D is a compression disk for α, and
thus α is compressible. Otherwise, α bounds a disk DΣ in Σ (see for example Epstein [15,
Theorem 1.7]). We deform S continuously by “pushing” D through DΣ while keeping S

embedded (see Figure 7) until α disappears from Σ ∩ S.
Repeating this process on a new innermost curve of S will eventually yield a non-

contractible compressible curve. Indeed, the number of curves in the intersection is finite
(recall that both surfaces are piecewise linear), decreases at each step, and one of the curves
in Σ ∩ S is non-contractible. ◀

A direct consequence of this lemma is that if G is embedded on a surface Σ, a sphere
S intersects Σ, and the intersection has weight less than c-rep(G, Σ), then all the simple
closed curves in the intersection are contractible. Therefore, one of the two balls bounded
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α

Σ S Σ S

Figure 7 Removing a trivial curve from S ∩ Σ.

by S contains the meaningful topology of Σ, while the other one only contains spheres with
holes (see Figure 8). In order to formalize this, we will rely on fundamental groups (see for
example Hatcher [22] for an introduction to this concept). The inclusion of a subsurface X

on Σ induces a morphism i∗ : π1(X) → π1(Σ). If this morphism is trivial, we say that X is
π1-trivial with respect to Σ.

▶ Definition 14 (Compression bubble tangle on an embedded surface). Let G be a graph
embedded on Σ, a surface embedded in S3 such that c-rep(G, Σ) ≥ 3 and set k = 2

3 c-rep(G, Σ).
The compression bubble tangle c-T , is the collection of balls in S3 defined as follows: for
any sphere S in S3 transverse to G such that |C(S ∩ G)| < k, by Lemma 13, there is exactly
one connected component A of Σ ∖ S that is π1-trivial. Exactly one of the open balls B of
S3 ∖ S contains A, and we put the closed ball in c-T : B̄ ∈ c-T .

Σ ∖ A

A

B

Figure 8 Intersection between a torus knot T6,5 embedded on a torus and a sphere. Here the
ball B containing the disk on the right is in the compression bubble tangle.

The main step in the proof of Theorem 2 is to prove that a compression bubble tangle on
the torus is indeed a bubble tangle.

▶ Proposition 15. A compression bubble tangle is a bubble tangle.

Note that Propositions 15 and 8 directly imply Theorem 2 (the theorem is trivial if
c-rep(G, Σ) < 3). Therefore, the rest of this section is devoted to proving Proposition 15.

By definition, a compression bubble tangle satisfies T1 and T2. We then notice that T4
is verified whenever the compression representativity of G on Σ is greater than 2.

▶ Lemma 16. If c-rep(G, Σ) ≥ 3 then for all G-trivial balls B, B ∩ Σ is π1-trivial.
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The hard part of the proof is to show that T3 is satisfied. This is more delicate than it
seems at first glance, since any surface can be obtained by gluing three disks, and these three
disks can even come from a double bubble: we provide an example in the appendix of the
full version [31].

Henceforth, we will proceed by contradiction and assume that we can cover S3 by three
closed balls B1, B2, B3 of c-T that induce a double bubble DB transverse to Σ and G. Thus
Σ is covered by three surfaces with boundary: Σ ∩ B1, Σ ∩ B2 and Σ ∩ B3 which are π1-trivial
by definition of c-T . In the following, we write Si = ∂Bi. We first show that we can
furthermore assume that these surfaces are a disjoint union of closed disks on Σ.

▶ Lemma 17. Let G be a graph embedded on Σ, a surface embedded in S3. Let c-T be the
compression bubble tangle associated to G and Σ. If there is a double bubble DB transverse to
Σ, inducing three balls B1, B2, B3 ∈ c-T 3 such that B1 ∪ B2 ∪ B3 = S3, then we can isotope
the double bubble so that we additionally have that Bi ∩ Σ is a union of closed disks.

Then we define Γ induced by the double bubble DB to be the intersection of the
double bubble with Σ: where vertices are the intersection of the common boundary of the
three disks with Σ and edges are the intersections of Σ with the disks. By Lemma 17, we
can assume that this graph is trivalent and cellularly embedded. It is naturally weighted
by endowing each edge with its weight, i.e., the number of connected components in its
intersection with G. Let us now state the lemma we will use for the sake of contradiction.

▶ Lemma 18. The total weight of Γ is less than c-rep(G, Σ):∑
e∈E(Γ)

|C(e ∩ G)| < c-rep(G, Σ).

Proof. Since each edge of Γ bounds exactly two faces of Γ, i.e, disks of Σ; and Γ = DB ∩ Σ
we get the following equality:

|C(S1 ∩ G)| + |C(S3 ∩ G)| + |C(S3 ∩ G)| = 2
∑

e∈E(Γ)

|C(e ∩ G)| (1)

By definition of c-T , each ball Bi satisfies |C(Si ∩ G)| < 2
3 c-rep(G, Σ) so that:

|C(S1 ∩ G)| + |C(S3 ∩ G)| + |C(S3 ∩ G)| < 3 · 2
3c-rep(G, Σ) = 2c-rep(G, Σ). (2)

Combining (1) and (2) concludes the proof: 2
∑

e∈E(Γ)
|C(e ∩ G)| < 2c-rep(G, Σ). ◀

Hence, if Γ contained a simple closed curve that is compressible, we would obtain the
contradiction that we are looking for. The rest of the proof almost consists of finding such a
compressible curve, leading to the following proposition.

▶ Proposition 19. There exists a set of edges X on Γ such that:∑
e∈X

|C(e ∩ G)| ≥ c-rep(G, Σ).

The proof of Proposition 19 is the technical crux of Theorem 2. It consists in defining
a merging process, which gradually merges two balls of a double bubble, and proving that
at some point in this merging process, one ball will intersect Σ in a non-trivial way, and
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thus yield a compressible curve via Lemma 13. An additional difficulty is that this curve
might be non-simple in Γ; we circumvent this issue by finding a fractional version of such a
curve instead, which will be strong enough to prove Proposition 19. This proposition directly
implies Proposition 15, and thus Theorem 2:

Proof of Proposition 15. A compression bubble tangle immediately satisfies the bubble
tangle axioms T1 and T2 by definition, and T4 by Lemma 16. For the axiom T3, assume by
contradiction that there exist three closed balls B1, B2, B3 ∈ c-T covering S3 and inducing a
double bubble transverse to Σ. By Lemma 17, we can assume the graph Γ induced by the
intersection of the double bubble with Σ is cellularly embedded. Then by Proposition 19,
the total weight of Γ is at least c-rep(G, Σ). This is a contradiction with Lemma 18. ◀

5 Examples

A torus knot Tp,q is a knot embedded on an unknotted torus T in S3, for example a standard
torus of revolution. It winds p times around the revolution axis, and q times around the
core of the torus. We refer to Figure 8 for an illustration of T6,5. The proof of Corollary 3
(see [31, Corollary 1.3]) follows by combining Proposition 5 and Theorems 1 and 2.

More generally, the same argument can be applied to lower bound the treewidth of the
(p, q)-cabling [1, Section 5.2] of any nontrivial knot. We refer to Ozawa [36, Theorem 6] for
examples of spatial embeddings of any graph with high compression representativity, and
thus high spherewidth.

We conclude by observing that the proof of Theorem 2 offers more flexibility than
what the theorem states and can also be applied in some settings where the compression-
representativity is low. For example, a connected sum of two knots K1#K2 has compression-
representativity two (see [36, Corollary 9]), but if one these two knots, say K1, has high
compression-representativity separately, then we can still define a bubble-tangle of high order
by considering as big sides the balls containing the surface that K1 is embedded on.
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1 Introduction

In topological data analysis, persistent homology is one of the main tools used for extracting
and analyzing multiscale geometric and topological information from metric spaces.

Typically, the persistent homology pipeline (as induced by the Vietoris-Rips filtration) is
explained via the diagram:

Metric Spaces → Simplicial Filtrations → Persistence Modules

where, from left to right, the second map is homology with field coefficients. Throughout the
paper, we fix a base field F.

Pairs of birth and death times of topological features (such as connected components,
loops, voids and so on) give rise to the barcode, or also called the persistence diagram, of
a given metric space [13, 4]. The so-called bottleneck distance dB between the persistent
homology barcodes arising from the Vietoris-Rips filtration of metric spaces provides a
polynomial time computable lower bound for the Gromov-Hausdorff distance dGH between
the underlying metric spaces [8, 10]. However, this bound is not tight, in general (cf. [17,
Example 6.6]). A restricted version of this theorem states:
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▶ Theorem 1 (Stability Theorem for dB). Let X and Y be two finite metric spaces. Let
Bk(X) (resp. Bk(Y )) denote the barcode of the persistence module Hk (VR•(X)) (resp.
Hk (VR•(Y ))). Then, we have

sup
k∈Z≥0

dB(Bk(X), Bk(Y )) ≤ 2 · dGH(X, Y ).

In this paper, with the goal of refining the standard stability result alluded to above,
we concentrate on the usually implicit but conceptually important intermediate step which
assigns a filtered chain complex (FCC) to a given simplicial filtration:

Metric spaces → Simplicial Filtrations → FCCs → Persistence Modules.

Related work on FCCs

An FCC is an ascending sequence of chain complexes connected by monomorphisms. For
instance, an FCC induced by a simplicial filtration {Xt}t∈R can be represented by the
following commutative diagram: for any t ≤ t′,

C∗(Xt) : · · · Ck+1(Xt) Ck(Xt) · · ·

C∗(Xt′) : · · · Ck+1(Xt′) Ck(Xt′) · · ·

∂k+2 ∂k+1 ∂k

∂k+2 ∂k+1 ∂k

,

where each Xt is a simplical complex and C∗(Xt) denotes the simplical chain complex of Xt.

Studies of the decomposition of FCCs in several different settings can be found in
[18, 12, 15, 5, 6]. We follow the convention of Usher and Zhang [18], where they study a
notion of Floer-type complexes as a generalization of FCCs and prove a stability result for
the usual bottleneck distance of concise barcodes of Floer-type complexes. In particular,
they studied FCCs in detail and considered the notion of verbose barcode BVer,k of FCCs,
which consists of the standard barcode (which the authors call concise barcode and denote as
BCon,k := Bk) together with additional ephemeral bars, i.e. bars of length 0.

They also proved that every FCC decomposes into the direct sum of indecomposables
E(a, a + L, k), which they called elementary FCCs, of the following form (see [18, Definition
7.2]): if L ∈ [0, ∞) and a ∈ R, then E(a, a + L, k) is given by

t < a : · · · → 0 0 0 0 → · · ·

t ∈ [a, a + L) : · · · → 0 0 Fx 0 → · · ·

t ∈ [a + L, ∞) : · · · → 0 Fy Fx 0 → · · ·

∂k+2=0 ∂k+1=0

=

∂k=0

∂k+2=0 ∂k+1=0 ∂k=0

=
∂k+2=0 ∂k+1: y 7→ x ∂k−1

If L = ∞, then E(a, ∞, k) (with the convention that a + ∞ = ∞) is given by

t < a : · · · → 0 0 0 0 → · · ·

t ∈ [a, ∞) : · · · → 0 0 Fx 0 → · · ·

∂k+2=0 ∂k+1=0

=

∂k=0

∂k+2=0 ∂k+1=0 ∂k=0

The degree-l verbose barcode of the elementary FCC E(a, a + L, k) is {(a, a + L)} for l = k

and is empty for l ̸= k.
The concise barcode of an FCC is defined as the collection of non-ephemeral bars, i.e. bars

corresponding to elementary FCCs with L ̸= 0 in its decomposition, which agrees with the
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standard barcode. Indeed, the k-th persistent homology of the elementary FCC E(a, a + L, k)
is the interval persistence module associated to the interval [a, a + L), for L ∈ [0, ∞]. In
particular, Hk(E(a, a, k)) is the trivial persistence module.

In real calculations, barcodes are often computed for simplexwise filtrations first (i.e.,
simplices are assumed to enter the filtration one at a time), in which case all elementary FCCs
corresponds to intervals with positive length. This implies that, although not outputted,
verbose barcodes are computed in many persistence algorithms. For VR FCCs, we made a
small modification of the software Ripser introduced by Bauer (see [1]) to extract verbose
barcodes of finite metric spaces.

In this paper, we focus on the ephemeral bars in the barcode, or equivalently, on the
diagonal points in the persistence diagram.

Overview of our results

One drawback of the bottleneck stability result described in Theorem 1 is that one asks for
optimal matchings between the concise (i.e. standard) barcodes BCon,k(X) and BCon,k(Y )
for each individual degree k independently.

With the goal of finding a coherent or simultaneous matching of barcodes across all
degrees at once, we study the interleaving distance dI between FCCs and establish an
isometry theorem between dI and the matching distance dM between the verbose barcodes
(see Definition 18):

▶ Theorem 2 (Isometry theorem). For any two FCCs (C∗, ∂C , ℓC) and (D∗, ∂D, ℓD), let BC
Ver,k

and BD
Ver,k denote their degree-k verbose barcodes, respectively, and let dM

(
BC

Ver, BD
Ver
)

:=
supk∈Z≥0

dM

(
BC

Ver,k, BD
Ver,k

)
. Then,

dM
(
BC

Ver, BD
Ver
)

= dI ((C∗, ∂C , ℓC) , (D∗, ∂D, ℓD)) .

To prove that dM ≤ dI (see §3.3.1), we adapted ideas implicit in [18, Proposition 9.3]
which the authors used to establish the stability of Floer-type complexes (on the same
underlying chain complex). For the other direction, dM ≥ dI (see §3.3.2), we use an idea
similar to the one used for proving that the bottleneck distance dB between concise barcodes
is upper bounded by dI between persistent modules, cf. [14, Theorem 3.4].

Unlike dB between concise barcodes, dM between verbose barcodes of VR RCCs is not
stable under the Gromov-Hausdorff distance between metric spaces. Indeed, dM is only finite
if the two underlying metric spaces have the same cardinality. We remedy this issue in §4.2
by incorporating the notion of tripods as in [16].

For a surjection ϕX : Z ↠ X, we equip Z with the pullback ϕ∗
XdX of the distance

function dX and call the pair (Z, ϕ∗
XdX) the pullback (pseudo) metric space (induced by ϕX).

We call the degree-k verbose barcode of (Z, ϕ∗
XdX) a degree-k pullback barcode of X. We

define the pullback bottleneck distance between verbose barcodes of two finite metric spaces
X and Y to be the infimum of the matching distance between the verbose barcodes of the
VR FCCs induced by the respective pullbacks (Z, ϕ∗

XdX) and (Z, ϕ∗
Y dY ), where the infimum

is taken over tripods R : X
ϕX

↞−−−− Z
ϕY−−−−↠ Y . We denote the result by d̂B; see Definition

24. Similarly, we define the pullback interleaving distance between two VR FCCs, and denote
it by d̂I (see Definition 23).
▶ Remark 3 (Terminology). We point out the following regarding the use of the term “distance”
when referring to d̂B and d̂I:

SoCG 2023
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(1) d̂B between degree-0 verbose barcodes satisfies the triangle inequality [17, Corollary 6.7].
(2) The question whether d̂B between positive-degree verbose barcodes satisfies the triangle

inequality is still open.
(3) d̂I does not satisfy the triangle inequality; see [17, Remark 6.8] for details.
Due to Items (2) and (3), the term “distance” is being abused through the use of the
terminology “pullback bottleneck distance” and “pullback interleaving distance”. We do so
for consistency with Item (1) and due to the fact that in [17, Remark 6.8] we provide a
way to modify d̂I and d̂B so that they do satisfy the triangle inequality (while still being
Gromov-Hausdorff stable).

It is important to note that in general, the pullback bottleneck distance d̂B (or the
pullback interleaving distance d̂I) depends on the underlying metric spaces, rather than
solely on the verbose barcodes (or FCCs). Nonetheless, we use the current terminology to
emphasize the roles of verbose barcodes and FCCs in our discussion.

It follows from Theorem 2 and the definitions of d̂B and d̂I that we have the following:

▶ Corollary 4. Let (X, dX) and (Y, dY ) be two finite metric spaces. Then,

sup
k∈Z≥0

d̂B (BVer,k(X), BVer,k(Y )) ≤ d̂I
((

C∗(VR(X)), ∂X , ℓX
)

,
(
C∗(VR(Y )), ∂Y , ℓY

))
.

In the theorem below, we show that the pullback bottleneck distance d̂B is stable under
the Gromov-Hausdorff distance dGH, and that the bottleneck distance dB between concise
barcodes is not larger than d̂B between verbose barcodes. We show in several examples below
and in §4.3 that d̂B between verbose barcodes can be strictly larger than dB between concise
barcodes. Thus, the stability of d̂B improves the stability of the standard bottleneck distance
dB (cf. Theorem 1). See §4.2 for the proof of Theorem 5.

▶ Theorem 5 (Pullback stability theorem). Let (X, dX) and (Y, dY ) be two finite metric
spaces. Then, for any k ∈ Z≥0,

dB (BCon,k(X), BCon,k(Y )) ≤ d̂B (BVer,k(X), BVer,k(Y )) ≤ 2 · dGH(X, Y ). (1)

See Figure 1 for a pair of 3-point metric spaces which dB between concise barcodes fails
to distinguish, but the d̂B between verbose barcodes succeeds at telling apart.

a b

c1

X1

a b

c2

X2

BVer,0 (0, a), (0, b), (0, ∞) (0, a), (0, b), (0, ∞)

BVer,1 (c1, c1) (c2, c2)

dB (BCon(X1), BCon(X2)) d̂B (BVer(X1), BVer(X2)) 2 · dGH(X1, X2)

0 |c1 − c2| |c1 − c2|

Figure 1 First table: three-point metric spaces X1 and X2 together with their verbose barcodes.
Here a ≤ b ≤ ci for i = 1, 2. Second table: the bottleneck distance between concise barcodes, the
pullback bottleneck distance between verbose barcodes and twice of the Gromov-Hausdorff distance
between X1 and X2. See Example 28.
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In order to have a more concrete understanding of the pullback bottleneck distance and
in order to explore the possibility of computing it, we study the relation between the verbose
barcode of a pullback metric space (Z, ϕ∗

XdX) with the verbose barcode of the original space
X. We conclude that the verbose barcodes of Z and X only differ on some distinguished
diagonal points; see Proposition 6 below.

We now set up some notation about multisets1. For a non-negative integer m, by {x}m

we will denote the multiset containing exactly m copies of x. For any multiset A and any
l ≥ 1, we let Pl(A) be the multiset consisting of sub-multisets of A each with cardinality l.

▶ Proposition 6 (Pullback barcodes). Let k ≥ 0, m ≥ 1 and Z = X ⊔ {xj1 , . . . , xjm
} for

some j1 ≤ · · · ≤ jm. Then, for k ≥ 0,

BVer,k(Z) = BVer,k(X)⊔
m−1⊔
i=0

{
diam([xji+1 , βi]) · (1, 1) : βi ∈ Pk

(
(X \ {xji+1 }) ⊔ {xj1 , . . . , xji }

)}
.

(2)

In particular, BVer,0(Z) = BVer,0(X) ⊔ {(0, 0)}m.

Because concise barcodes can be obtained from verbose barcodes by excluding all diagonal
points, the above proposition interestingly implies that BCon,k(Z) = BCon,k(X) for any k.

To better understand Equation (2) in the case when k ≥ 1, we give a graphical explanation
in Figure 2. Let (X, dX) be a finite metric space with X = {x1, . . . , xn}. Each finite
pullback metric space (Z, ϕ∗

XdX) of X can be written as a multiset Z = X ⊔ {xj1 , . . . , xjm
}

equipped with the pullback pseudo-metric ϕ∗
XdX induced from dX , for some m ≥ 0 and

1 ≤ j1 ≤ · · · ≤ jm ≤ n. In other words, the extra points in Z are “repeats” of the points in
X. We will call each point in X the parent of its repeated copies: to be more precise, for
each z ∈ Z, the point ϕX(z) ∈ X will be called the parent of z. Write

Z = X ⊔
{

x1, . . . , x1︸ ︷︷ ︸
m1

, . . . , xn, . . . , xn︸ ︷︷ ︸
mn

}
,

where each mj ≥ 0 is the multiplicity of the extra copies of xj in Z and m1 + · · · + mn = m.

i = 0 :

=X︷ ︸︸ ︷
x1, x2, . . . , xn,

m1︷ ︸︸ ︷
x1, x1, . . . , x1,

m2︷ ︸︸ ︷
x2, x2, . . . , x2, . . . ,

mn︷ ︸︸ ︷
xn, xn, . . . , xn

i = m1 − 1 : x1, x2, . . . , xn, x1, x1, . . . , x1, x2, x2, . . . , x2, . . . , xn, xn, . . . , xn

i = m1 : x1, x2, . . . , xn, x1, x1, . . . , x1, x2, x2, . . . , x2, . . . , xn, xn, . . . , xn

i = m1 + · · · + mn−1 : x1, x2, . . . , xn, x1, x1, . . . , x1, x2, x2, . . . , x2, . . . , xn, xn, . . . , xn

Figure 2 With the same notation as in Equation (2), for each i (i.e. for each row), the point xji+1

is colored in blue. For each i the multiset βi in Equation (2) ranges over all k element sub-multisets
of the red-colored multiset. Notice that each red-colored multiset consists of every point before xji+1

(from left to right) excluding the parent of xji+1 .

We examine the relationship between d̂B and dB, and obtain an interpretation of d̂B in
terms of matchings of points in the barcodes. To compute dB, one looks for an optimal
matching where points from a barcode can be matched to any points on the diagonal. However,

1 We use the notation {·} for multisets as well when its meaning is clear from the content.
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aX1 : X2 :

BVer,0 = BCon,0 {(0, a), (0, ∞)} {(0, ∞)}

(0, a)

(0, ∞)

dB = a
2

birth

death

(0, a)

(0, ∞)

d̂B = a

birth

death

Figure 3 Top: X1 a two-point space, X2 the one-point space, and their 0-th verbose (or concise)
barcode. Bottom: visualization of dB and d̂B, where in both figures the point (0, ∞) is matched
with (0, ∞) and the ℓ∞-metric is used to compute the distances.

in the computation of d̂B, points are only allowed to be matched to verbose barcodes and
a particular sub-multiset of the diagonal points, where the choice of these diagonal points
depends on the metric structure of the two underlying metric spaces.

For degree-0, since the verbose barcode of any pullback (pseudo-)metric space Z of X

only differs from the verbose barcode of X in multiple copies of the point (0, 0), the distance
d̂B is indeed computing an optimal matching between concise barcodes which only allows
bars to be matched to other bars or to the origin (0, 0) (see Figure 3). Combined with
the fact that degree-0 bars are all born at 0, we obtain the following explicit formula for
computing the distance d̂B for degree-0 (see [17, §6.2.1] for the proof):

▶ Proposition 7 (Pullback bottleneck distance in degree 0). Let X and Y be two finite metric
spaces such that card(X) = n ≤ n′ = card(Y ). Suppose the death time of finite-length
degree-0 bars of X and Y are given by the sequences a1 ≥ · · · ≥ an−1 and b1 ≥ · · · ≥ bn′−1,
respectively. Then

d̂B(BVer,0(X), BVer,0(Y )) = max
{

max
1≤i≤n−1

|ai − bi|, max
n≤i≤n′−1

bi

}
.

For higher degrees, the situation becomes more complicated because in addition to the
point (0, 0), other choices of diagonal points need to be considered, as evidenced by the
formula for pullback barcodes in Proposition 6. We leave this as our future work.

2 Filtered chain complexes (FCCs)

We recall the notion of FCCs and provide some properties and examples for VR FCCs.
Usher and Zhang express FCCs as the triples (C∗, ∂C , ℓC), where (C∗, ∂C) denotes a chain

complex and ℓC : C∗ → R ⊔ {−∞} is a filtration function such that (1) ℓC ◦ ∂C ≤ ℓC , and (2)
ℓC(x) = −∞ iff x = 0, ℓC(λx) = ℓC(x) for λ ≠ 0, and ℓC(x+y) ≤ max{ℓC(x), ℓC(y)}, ∀x, y ∈
C. A morphism of FCCs from (C∗, ∂C , ℓC) to (D∗, ∂D, ℓD) is a chain map Φ∗ : C∗ → D∗
that is filtration preserving, i.e. ℓD ◦ Φ∗ ≤ ℓC . Let FCC denote the category of FCCs. We
refer readers to [18] or [17, §3] for more details about general FCCs.
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VR FCCs. A pseudo-metric dX on X is a function dX : X × X → [0, +∞) satisfying the
axioms for a metric, except that different points are allowed to have distance 0.

Given a finite pseudo-metric space (X, dX) and ϵ ≥ 0, the ϵ-Vietoris–Rips complex
VRϵ(X) is the simplicial complex with vertex set X, where

a finite subset σ ⊂ X is a simplex of VRϵ(X) ⇐⇒ diam(σ) ≤ ϵ.

Let diam(X) be the diameter of X. Let VR(X) := VRdiam(X)(X), which is the full complex
on X. For each k ∈ Z≥0, we denote by Ck(VR (X)) the free F-vector space generated by
k-simplices in VR(X), and let C∗(VR(X)) be the free simplicial chain complex induced by
VR(X) over coefficients in F, with the standard simplicial boundary operator ∂X . Notice that
up to homotopy equivalence the simplicial complex VR(X) only depends on the cardinality
of X, so does the chain complex (C∗(VR(X)), ∂X).

Define the filtration function ℓX : C∗(VR(X)) → R ⊔ {−∞} by

ℓX

(
r∑

i=1
λiσi

)
:= max

λi ̸=0
{diam(σi)} ,

where the σi are simplices, and ℓX(0) := −∞. Then
(
C∗(VR(X)), ∂X , ℓX

)
is an FCC.

2.1 Verbose and concise barcodes
For a vector space equipped with a filtration function ℓ, a finite collection (x1, . . . , xr) of
elements C is said to be (ℓ-)orthogonal if, for all λ1, . . . , λr ∈ F,

ℓ

(
r∑

i=1
λixi

)
= max

λ ̸=0
ℓ(xi).

Let A : C → D be a linear map with rank r. A (unsorted) singular value decomposition of A

is a choice of orthogonal ordered bases (y1, . . . , yn) for C and (x1, . . . , xm) for D such that
(see [18, Definition 3.1]):

(yr+1, . . . , yn) is an orthogonal ordered basis for Ker A;
(x1, . . . , xr) is an orthogonal ordered basis for Im A;
Ayi = xi for i = 1, . . . , r.

The existence of a singular value decomposition for linear maps between finite-dimensional
orthogonalizable F-spaces is guaranteed by [18, Theorem 3.4].

▶ Definition 8 (Verbose barcode and concise barcode, [18, Definition 6.3] ). Let (C∗, ∂C , ℓC)
be an FCC over F and for each k ∈ Z write ∂k = ∂C |Ck

. Given any k ∈ Z choose a singular
value decomposition ((y1, . . . , yn), (x1, . . . , xm)) for the F-linear map ∂k+1 : Ck+1 → Ker ∂k

and let r denote the rank of ∂k+1. Then the degree-k verbose barcode of (C∗, ∂C , ℓC) is the
multiset B(C∗,∂C ,ℓC )

Ver,k (or BC
Ver,k for simplicity) of elements of R × [0, ∞] consisting of

a pair (ℓ(xi), ℓ(yi)) for each i = 1, . . . , r = rank(∂k+1); and
a pair (ℓ(xi), ∞) for each i = r + 1, . . . , m = dim(Ker ∂k).

The concise barcode of (C∗, ∂C , ℓC) is the submultiset of the verbose barcode consisting of
those elements where ℓ(yi) − ℓ(xi) ̸= 0.

▶ Remark 9. Let X be a finite metric space. The degree-0 verbose barcode BVer,0 and the
degree-0 concise barcode BCon,0 of the VR FCC

(
C∗(VR(X)), ∂X , ℓX

)
are the same. Notice

that this is not necessarily true for pseudo-metric spaces, in which case verbose barcode may
contain several copies of (0, 0).

SoCG 2023
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▶ Example 10 (Verbose barcodes of VR FCCs). Let n := card(X). The number of k-verbose
barcodes (with multiplicity) of the VR FCC of a finite pseudo-metric space X is

card(BVer,k(X)) = dim(Ker(∂k)) =


n, k = 0,(

n−1
k+1
)
, for 1 ≤ k ≤ n − 2,

0, for k ≥ n − 1.

2.2 Decomposition of FCCs

We recall from [18] that the collection of verbose barcodes is a complete invariant of FCCs,
because every FCC decomposes uniquely up to isomorphism into the following form:

(C∗, ∂C , ℓC) ∼=
⊕
k∈Z

⊕
(a,a+L)∈BVer,k

E(a, a + L, k).

Also, the collection of concise barcodes is an invariant up to the so-called filtered homotopy
equivalence. In addition, for the case of VR FCCs, we show that isometry implies filtered
chain isomorphism while the inverse is not true.

For the purpose of this paper, we use the theorem below as definitions of filtered chain
isomorphism (f.c.i.) and filtered homotopy equivalence (f.h.e.) between FCCs, and refer
readers to [18] for the original definitions of these two concepts.

▶ Theorem 11 (Theorem A & B, [18]). Two FCCs (C∗, ∂C , ℓC) and (D∗, ∂D, ℓD) are
1. filtered chain isomorphic iff they have identical verbose barcodes in all degrees;
2. filtered homotopy equivalent iff they have identical concise barcodes in all degrees.

▶ Example 12 (f.h.e. but not f.c.i.). Let X and Y be (ultra-)metric spaces of 4 points
given in Figure 4. The FCCs

(
C∗(VR(X)), ∂X , ℓX

)
and

(
C∗(VR(Y )), ∂Y , ℓY

)
arising from

Vietoris-Rips complexes have the same concise barcodes but different verbose barcodes.

x3

x1x0

x2

22
2

1

1 1

y3

y0 y1

y2

2
2 2

2

1

1

Figure 4 Four-point metric spaces X (left) and Y (right).

We compute from Definition 8 that the verbose barcodes of X and Y are

BVer,k(X) =


{(0, 1), (0, 1), (0, 2), (0, ∞)} , k = 0
{(1, 1), (2, 2), (2, 2)} , k = 1
{(2, 2)} , k = 2
∅, otherwise.
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and

BVer,k(Y ) =


{(0, 1), (0, 1), (0, 2), (0, ∞)} , k = 0
{(2, 2), (2, 2), (2, 2)} , k = 1
{(2, 2)} , k = 2
∅, otherwise,

respectively. The concise barcodes of X and Y are

BCon,k(X) = BCon,k(Y ) =
{

{(0, 1), (0, 1), (0, 2), (0, ∞)} , k = 0
∅, otherwise.

Let (X, dX) and (Y, dY ) be two finite pseudo-metric spaces with |X| = |Y |. Then, any
bijection f : X → Y induces a chain isomorphism f∗ : C∗(VR(X))

∼=−→ C∗(VR(Y )). It is not
difficult to check that the respective VR FCCs of two isometric pseudo-metric spaces are
filtered chain isomorphic.

▶ Proposition 13 (Isometry implies f.c.i.). Let (X, dX) and (Y, dY ) be two finite pseudo-
metric spaces. If (X, dX) and (Y, dY ) are isometric, then the FCCs

(
C∗(VR(X)), ∂X , ℓX

)
and

(
C∗(VR(Y )), ∂Y , ℓY

)
are filtered chain isomorphic.

However, the converse of Proposition 13 is not true.

▶ Example 14 (f.c.i. but not isometric). Let X and Y be (ultra-)metric spaces of 5 points
given in Figure 5. The distance matrices for X and Y are, respectively:


0 0.5 2 2 2

0.5 0 2 2 2
2 2 0 1 1
2 2 1 0 1
2 2 1 1 0

 and


0 0.5 1 2 2

0.5 0 1 2 2
1 1 0 2 2
2 2 2 0 1
2 2 2 1 0

 .

Notice that X and Y are not isometric. Indeed, in Y every vertex belongs to an edge of
length 1, but the top point in X only belongs to edges of length 0.5 and 2.

22
2

1
1 1

0.5

22
2

2
2

2
2

1

1

0.5
1

2 2

Figure 5 Five-point metric spaces X (left) and Y (right).
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However, the VR FCCs of X and Y have the same verbose barcodes:

BVer,k(X) = BVer,k(Y ) =



{(0, 0.5), (0, 1), (0, 1), (0, 2), (0, ∞)} , k = 0
{(1, 1), (2, 2), (2, 2), (2, 2), (2, 2), (2, 2)} , k = 1
{(2, 2), (2, 2), (2, 2), (2, 2)} , k = 2
{(2, 2)} , k = 3
∅, otherwise.

3 Isometry theorem (dI = dM)

In TDA, it is well-known that, under mild conditions (e.g. q-tameness, see [9]), an isometry
theorem holds: the interleaving distance between persistence modules is equal to the bottle-
neck distance between their concise barcodes (cf. [11, 7, 11]). In our notation, this means
that for any degree k and any two FCCs (C∗, ∂C , ℓC) and (D∗, ∂D, ℓD),

dB
(
BC

Con,k, BD
Con,k

)
= dI (Hk ◦ (C∗, ∂C , ℓC) , Hk ◦ (D∗, ∂D, ℓD)) .

We prove an analogous isometry theorem for the verbose barcode, i.e., Theorem 2.

3.1 Interleaving distance dI between FCCs
For detailed proofs of results in this subsection, see [17, §4.1]. Let dI be the categorical
interleaving distance in the category of filtered chain complexes given by [2, Definition 3.2].

▶ Proposition 15. Let (C∗, ∂C , ℓC) and (D∗, ∂D, ℓD) be two FCCs. Then

dI ((C∗, ∂C , ℓC), (D∗, ∂D, ℓD)) < ∞ ⇐⇒ (C∗, ∂C) ∼= (D∗, ∂D).

Because of Proposition 15, the interleaving distance between FCCs is only interesting
when we consider the case when two FCCs have the same underlying chain complexes. Let
(C∗, ∂C) be a finite-dimensional non-zero chain complex over F, and let Iso((C∗, ∂C)) be the
set of chain isomorphisms on (C∗, ∂C).

▶ Theorem 16. Let (C∗, ∂C) be a non-zero chain complex and let ℓ1, ℓ2 : C∗ → R ⊔ {−∞}
be two filtration functions such that both (C∗, ∂C , ℓ1) and (C∗, ∂C , ℓ2) are FCCs. Then

dI ((C∗, ∂C , ℓ1), (C∗, ∂C , ℓ2)) = inf
Φ∗∈Iso(C∗,∂C )

∥ℓ1 − ℓ2 ◦ Φ∗∥∞.

Here we follow the convention (−∞) − (−∞) = 0 when computing ∥ℓ1 − ℓ2∥∞. When ℓ1 is
the trivial filtration function, we have dI ((C∗, ∂C , ℓ1), (C∗, ∂C , ℓ2)) = ∥ℓ2∥∞.

▶ Example 17 (dI between Elementary FCCs). For La, Lb < ∞, the interleaving distance
between elementary FCCs E(a, a + La, k) and E(b, b + Lb, l) is finite iff k = l. And

dI (E(a, a + La, k), E(b, b + Lb, k)) = max{|a − b|, |(a + La) − (b + Lb)|}.

3.2 Matching distance dM between verbose barcodes
Let H := {(p, q) : 0 ≤ p < q ≤ ∞}, and let ∆ := {(r, r) : r ∈ R≥0 ⊔ {+∞}}. We denote
H := H ⊔ ∆ the extended real upper plane. Let d∞ be the metric on H inherited from the
l∞-metric, where for p, q, p′, q′ ∈ R≥0 ⊔ {∞},

d∞((p, q), (p′, q′)) =


max {|p − p′|, |q − q′|} , q, q′ < ∞,
|p − p′|, q = q′ = ∞,
∞, otherwise.
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Denote by ∆∞ (or H∞ and H∞, respectively) the multiset consisting of each point on ∆
(or H and H, respectively), taken with (countably) infinite multiplicity. Let H∞ be equipped
with the metric d∞ inherited from H.

▶ Definition 18 (The Matching Distance dM). Let A and B be two non-empty sub-multisets
of H∞. The matching distance between A and B is

dM(A, B) := min
{

max
a∈A

d(a, ϕ(a)) : A
ϕ−→ B a bijection

}
,

where dM(A, B) = ∞ if card(A) ̸= card(B).

▶ Definition 19 (The Bottleneck Distance dB). Let A and B be two finite non-empty sub-
multisets of H∞. The bottleneck distance between A and B is

dB(A, B) := dM(A ⊔ ∆∞, B ⊔ ∆∞).

Unlike the bottleneck distance dB, the diagonal points that can be matched in dM between
verbose barcodes are limited (see also [17, Proposition 4.11]). Thus,

▶ Proposition 20. Given two FCCs (C∗, ∂C , ℓC) and (D∗, ∂D, ℓD) and any degree k, we have

dB
(
BC

Con,k, BD
Con,k

)
≤ dM

(
BC

Ver,k, BD
Ver,k

)
.

Given (C∗, ∂C , ℓC) and a chain isomorphism Φ∗ on (C∗, ∂C), because (C∗, ∂C , ℓ) and
(C∗, ∂C , ℓ ◦ Φ∗) are filtered chain isomorphic, they have the same verbose barcode (see [17,
Proposition 4.14]). By checking that Φ∗ maps a singular value decomposition of (C∗, ∂C , ℓ)
to a singular value decomposition of (C∗, ∂C , ℓ ◦ Φ∗), we see that chain isomorphisms induce
permutations of verbose barcodes. For more details, see [17, §4.2].

3.3 Proof of the isometry theorem
We now prove Theorem 2. If two FCCs have non-isomorphic underlying chain complexes,
then dI between the two FCCs is ∞, and so is dM between their verbose barcodes. Thus,
it remains to consider the case when two FCCs have the same (or isomorphic) underlying
chain complexes.

3.3.1 The inequality dM ≤ dI

Although [18, Proposition 9.3] states a weaker result than the lemma below, their proof
indeed implies the following (see [17, §4.3.1] for more details):

▶ Lemma 21. Let (C∗, ∂C) be a finite-dimensional non-zero chain complex over F and let
ℓ1, ℓ2 : C∗ → R ⊔ {−∞} be two filtration functions. Denote by B1

Ver and B2
Ver the verbose

barcodes of (C∗, ∂C , ℓ1) and (C∗, ∂C , ℓ2), respectively. Then, we have

dM
(
B1

Ver, B2
Ver
)

= sup
k∈Z≥0

dM
(
B1

Ver,k, B2
Ver,k

)
≤ ∥ℓ1 − ℓ2∥∞.

▶ Proposition 22. With the same notation as in Lemma 21, we have

dM
(
B1

Ver, B2
Ver
)

≤ dI ((C∗, ∂C , ℓ1) , (C∗, ∂C , ℓ2)) .
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Proof. Given any Φ∗ ∈ Iso(C∗, ∂C), [17, Proposition 4.14] implies that B2
Ver = B(C∗,∂C ,ℓ2◦Φ∗)

Ver
agrees with the verbose barcodes of (C∗, ∂C , ℓ2 ◦ Φ∗). Combined with Lemma 21, we have

dM
(
B1

Ver, B2
Ver
)

= dM

(
B1

Ver, B(C∗,∂C ,ℓ2◦Φ∗)
Ver

)
≤ ∥ℓ1 − ℓ2 ◦ Φ∗∥∞,

for any Φ∗ ∈ Iso(C∗, ∂C). Therefore,

dM
(
B1

Ver, B2
Ver
)

≤ min
Φ∗∈Iso(C∗,∂C )

∥ℓ1 − ℓ2 ◦ Φ∗∥∞ = dI ((C∗, ∂C , ℓ1) , (C∗, ∂C , ℓ2)) ,

where the equality follows from Theorem 16. ◀

3.3.2 The inequality dM ≥ dI

We prove dM ≥ dI via an idea similar to the one used for proving that dB of concise barcodes
is no larger than dI between persistent modules, cf. [14, Theorem 3.4].

Proof of Theorem 2 “dM ≥ dI”. The proof is trivial if (C∗, ∂C , ℓC) and (D∗, ∂D, ℓD) have
non-isomorphic underlying chain complexes. We now consider the case when the chain
complexes (C∗, ∂C) and (D∗, ∂D) are isomorphic, and we assume without loss of generality
that (D∗, ∂D) = (C∗, ∂C) and write ℓ1 := ℓC , ℓ2 := ℓD.

Take any number δ ≥ dM
(
B1

Ver, B2
Ver
)
. Then for any k ∈ Z≥0, there is a bijection

fk : B1
Ver,k → B2

Ver,k such that

max
a∈B1

Ver,k

d∞(a, fk(a)) ≤ δ. (3)

For a ∈ B1
Ver,k ⊂ H∞, assume that a = (a1, a2). Also, write b = fk(a) and assume that

b = (b1, b2). Next we construct an isomorphism between the following elementary FCCs:

hk : E(a1, a2, k) → E(b1, b2, k).

Notice that a2 and b2 are either both finite or both infinite, otherwise the left hand side of
Equation (3) is equal to ∞, which contradicts with δ < ∞.

Case (1): a2 = b2 = ∞, so E(a1, a2, k) and E(b1, b2, k) have the same underlying chain
complex:

. . . 0 Fxk 0 . . . ,
∂k=0

and the filtration functions are given by ℓ1(xk) = a1 and ℓ2(xk) = b1, respectively. We define
the chain isomorphism to be

hk : E(a1, ∞, k) → E(b1, ∞, k) with xk 7→ xk.

Case (2): a2, b2 < ∞, so E(a1, a2, k) and E(b1, b2, k) have the same underlying chain
complex:

. . . 0 Fyk+1 Fxk 0 . . . ,
∂k+1:yk+1 7→xk ∂k=0

and the filtration functions are given by ℓ1(xk) = a1, ℓ1(yk+1) = a2 and ℓ2(xk) = b1,
ℓ2(yk+1) = b2, respectively. We define the chain isomorphism to be

hk : E(a1, a2, k) → E(b1, b2, k) with xk 7→ xk, yk+1 7→ yk+1.
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In either case, it is straightforward to check that hk satisfies the following condition

∥ℓ1 − ℓ2 ◦ hk∥∞ ≤ max {|a1 − a2, b1 − b2|} = d∞(a, f(a)) ≤ δ.

We write hk,a whenever it is needed to emphasize that hk depends on a.
By [18, Proposition 7.4] we have the following decomposition of FCCs

(C∗, ∂C , ℓ1) ∼=
⊕

k∈Z≥0

⊕
a∈B1

Ver,k

E(a1, a2, k) and (C∗, ∂C , ℓ2) ∼=
⊕

k∈Z≥0

⊕
b∈B2

Ver,k

E(b1, b2, k).

Let h :=
⊕

k∈Z≥0

⊕
a∈B1

Ver,k
hk,a : (C∗, ∂C , ℓ1) → (C∗, ∂C , ℓ2), which is then a chain isomor-

phism such that

∥ℓ1 − ℓ2 ◦ h∥∞ = max
k∈Z≥0

max
a∈B1

Ver,k

∥ℓ1 − ℓ2 ◦ hk,a∥∞ ≤ δ.

It then follows from Theorem 16 that

dI ((C∗, ∂C , ℓ1) , (C∗, ∂C , ℓ2)) = min
Φ∗∈Iso(C∗,∂C )

∥ℓ1 − ℓ2 ◦ Φ∗∥∞ ≤ ∥ℓ1 − ℓ2 ◦ h∥∞ ≤ δ.

Letting δ ↘ dM
(
B1

Ver, B2
Ver
)
, we obtain the desired inequality dI ≤ dM. ◀

4 Improved stability result for VR FCCs

In this section, we overcome the problem that the matching distance between verbose barcodes
are not stable under the Gromov-Hausdorff distance, by incorporating the notion of tripods
(see [16]). A tripod between two sets X and Y is a pair of surjections from another set Z to
X and Y respectively, cf. [16]. We will express this by the diagram

R : X
ϕX

↞−−−− Z
ϕY−−−−↠ Y.

Define dis(R) := supz,z′∈Z |dX(ϕX(z), ϕX(z′)) − dY (ϕY (z), ϕY (z′))| .

In §4.1, we define the pullback bottleneck distance between verbose barcodes of VR FCCs
of two finite metric spaces X and Y and the pullback interleaving distance between VR FCCs.
We prove the pullback stability theorem (Theorem 5) in §4.2, and provide examples in §4.3
to show that verbose barcodes improve the stability of concise barcodes in many cases.

For notational simplicity, we will omit the differential map ∂X for VR FCC of X.

4.1 Pullback interleaving distance and pullback bottleneck distance
Using the notion of tripod, we construct a new distance between filtered chain complexes:

▶ Definition 23 (Pullback interleaving distance). For two finite metric spaces X and Y , we
define the pullback interleaving distance between the VR FCCs of X and Y to be

d̂I
((

C∗(VR(X)), ℓX
)

,
(
C∗(VR(Y )), ℓY

))
:=

inf
{

dI
((

C∗(VR (Z)) , ℓZX
)

,
(
C∗(VR (Z)) , ℓZY

))
| X

ϕX

↞−−−− Z
ϕY−−−−↠ Y a tripod

}
,

where ZX := (Z, ϕ∗
XdX) and ZY := (Z, ϕ∗

Y dY ).

With a similar idea and again using tripods, we refine the standard bottleneck distance
and introduce a new notion of distance between verbose barcodes:
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▶ Definition 24 (Pullback bottleneck distance). Let k ∈ Z≥0. For two finite metric spaces X

and Y , the pullback bottleneck distance between BVer,k(X) and BVer,k(Y ) is defined to be

d̂B ((BVer,k(X), BVer,k(Y ))) :=

inf
{

dM (BVer,k(ZX), BVer,k(ZY )) | X
ϕX

↞−−−− Z
ϕY−−−−↠ Y a tripod

}
,

where ZX := (Z, ϕ∗
XdX) and ZY := (Z, ϕ∗

Y dY ). In addition, we define

d̂B (BVer(X), BVer(Y )) := sup
k∈Z≥0

d̂B (BVer,k(X), BVer,k(Y )) .

We refer readers to Remark 3 for clarification regarding the usage of terminology, especially
the term “distance”, when referring to d̂B and d̂I.

▶ Remark 25. For two finite metric spaces X and Y with the same cardinality, we have

d̂B(BVer(X), BVer(Y )) ≤ dM(BVer(X), BVer(Y )).

The above inequality can be strict. For instance, consider the four-point metric spaces X

and Y given in Example 12, for which we have (see [17, Remark 5.4])

d̂B(BVer(X), BVer(Y )) = 0 < 1 = dM(BVer(X), BVer(Y )).

4.2 Pullback stability theorem
In this section, we prove that the pullback interleaving distance d̂I and the pullback bottleneck
distance d̂B are stable under the Gromov-Hausdorff distance dGH (cf. Theorem 5) and see
that it improves that stability of the standard bottleneck distance dB (cf. Theorem 1).

We first show that d̂I is stable.

▶ Proposition 26 (Stability of Pullback Interleaving Distance). Let (X, dX) and (Y, dY ) be
two finite metric spaces. Then,

d̂I
((

C∗(VR(X)), ℓX
)

,
(
C∗(VR(Y )), ℓY

))
≤ 2 · dGH(X, Y ).

Corollary 4 and Proposition 26 together yield the stability of d̂B. In addition, we prove
that d̂B is an improvement of dB , as lower bounds of dGH between metric spaces:

Proof of Theorem 5. It remains to prove dB (BCon,k(X), BCon,k(Y )) ≤

d̂B (BVer,k(X), BVer,k(Y )). For any tripod X
ϕX

↞−−−− Z
ϕY−−−−↠ Y , let ZX := (Z, ϕ∗

XdX) and
ZY := (Z, ϕ∗

Y dY ). By Proposition 6 and the fact that concise barcode is the corresponding
verbose barcode excluding the diagonal points, we have that BCon,k(X) = BCon,k(ZX) and
BCon,k(Y ) = BCon,k(ZY ). Combined with Proposition 20, we have

dB (BCon,k(X), BCon,k(Y )) = dB (BCon,k(ZX), BCon,k(ZY )) ≤ dM (BVer,k(ZX), BVer,k(ZY )) .

◀

To prove Proposition 26, we first establish the stability of the interleaving distance
between VR FCCs by showing that it is stable under the ℓ∞ metric between two metrics
over the same underlying set.
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▶ Proposition 27. Let X be a finite set. Let d1 and d2 be two distance functions on X, and
let ℓ1 and ℓ2 be the filtration functions induced by d1 and d2 respectively. Then,

|∥d1∥∞ − ∥d2∥∞| ≤ dI
(
(C∗(VR(X)), ℓ1), (C∗(VR(X)), ℓ2)

)
≤ ∥d1 − d2∥∞.

Proof of Proposition 26. Suppose R : X
ϕX

↞−−−− Z
ϕY−−−−↠ Y is a tripod between X and Y

with distortion dis(R) ≤ δ. By Proposition 27, we obtain

dI
((

C∗(VR (Z)) , ℓZX
)

,
(
C∗(VR (Z)) , ℓZY

))
≤ ∥ϕ∗

XdX − ϕ∗
Y dY ∥∞ = dis(R).

We finish the proof, by taking infimum over all tripods R on the above inequality and using
the fact that 2 · dGH(X, Y ) = infR dis(R) (see [3, §7.3.3]). ◀

See [17, §5.3] for the remaining proofs and examples for results in this subsection.

4.3 Tightness and strictness of the pullback stability theorem
We show through examples that both inequalities in Theorem 5 are tight and can be strict.

▶ Example 28. Recall the 3-point metric spaces X1 and X2 from Figure 1, assuming
a ≤ b ≤ ci for i = 1, 2. Computing each of the distance given in Theorem 5, we obtain:

dB (BCon(X1), BCon(X2)) d̂B (BVer(X1), BVer(X2)) 2 · dGH(X1, X2)

0 |c1 − c2| |c1 − c2|

The first and third column in the above table are straightforward calculations. For the second
column, notice that for any tripod X1

ϕ1
↞−−−− Z

ϕ2−−−−↠ X2, we have

BVer,card(Z)−2(Z1) = {(c1, c1)} and BVer,card(Z)−2(Z2) = {(c2, c2)},

where Z1 := (Z, ϕ∗
1dX1) and Z2 := (Z, ϕ∗

2dX2). Thus,

d̂B (BVer(X1), BVer(X2)) ≥ dM
(
BVer,card(Z)−2(Z1), BVer,card(Z)−2(Z2)

)
= |c1 − c2|.

This example shows that d̂B between verbose barcodes gives a better bound for the
Gromov-Hausdorff distance dGH, compared with dB between concise barcodes.

▶ Example 29. Let X and Y be metric spaces of 4 points given in Figure 4. Let Z be the
complete graph on 4 vertices with edge length 1, and W be the cycle graph on 4 vertices with
edge length 1. See Figure 6 for the illustration of all 4 spaces and their verbose barcodes.

From Figure 7, we notice that the pair of metric spaces (X, Y ) is such that

dB(BCon(X), BCon(Y )) = d̂B(BVer(X), BVer(Y )) = 0 < 1 = 2 · dGH(X, Y ),

which tells us the fact that d̂B between distinct verbose barcodes can be zero. To see
d̂B(BVer,1(X), BVer,1(Y )) = 0, consider that pullback metric space ZX that repeats the top
point in X and ZY that repeats any one point in Y , and see that BVer,1(ZX) = BVer,1(ZY ) =
{(1, 1), (2, 2)5}. The pair (X, Y ) shows the tightness of dB ≤ d̂B.

The pair (Z, W ) is such that

dB(BCon(Z), BCon(W )) = 1
2 < 1 = d̂B(BVer(Z), BVer(W )) = 2 · dGH(Z, W ),

which is another example of d̂B and d̂I providing better bounds of dGH compared to the
standard bottleneck distance dB, as well as an example for the tightness of d̂B ≤ 2 · dGH.
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22
2

1

1 1

X

2
2 2

2

1

1

Y

1 1 1
1

1

1

Z

1

1

1

1

W

BVer,0 (0, 1)2, (0, 2), (0, ∞) (0, 1)2, (0, 2), (0, ∞) (0, 1)3, (0, ∞) (0, 1)3, (0, ∞)

BVer,1 (1, 1), (2, 2)2 (2, 2)3 (1, 1)3 (1, 2), (2, 2)2

BVer,2 (2, 2) (2, 2) (1, 1) (2, 2)

Figure 6 The 4-point metric spaces X, Y, Z and W ; and their verbose barcodes.

One more example that the stability of d̂B improves that of dB (see [17, Example 5.11]):

▶ Proposition 30. Let X be the one-point space, and Y be any finite metric space. Then,

dB (BCon(X), BCon(Y )) = diam(Y )
2 < diam(Y ) = d̂B (BVer(X), BVer(Y )) = 2 · dGH(X, Y ).

5 About computing the pullback bottleneck distance

To have a more concrete understanding of the pullback bottleneck distance, we study verbose
barcodes under pullbacks.

Let (X, dX) be a finite metric space with X = {x1, . . . , xn}. For any surjection ϕ : Z ↠ X,
the pullback (pseudo) metric space (induced by ϕ) is defined as the pair (Z, ϕ∗dX), where
ϕ∗dX is the pullback of the distance function dX . In other words, for any z1, z2 ∈ Z,

(ϕ∗dX)(z1, z2) := dX (ϕX(z1), ϕX(z2)) .

For each z ∈ Z, the point ϕX(z) ∈ X is called the parent of z.

▶ Proposition 31. Assume X = {x1, . . . , xn} is a pseudo-metric space and Z = X ⊔ {z}.
Suppose ϕ : Z → X is such that z 7→ xj for some j = 1, . . . , n. Then

BVer,0(Z) = BVer,0(X) ⊔ {(0, 0)},

and for k ≥ 1,

BVer,k(Z) = BVer,k(X) ⊔ {diam([xj , xj , xi1 , . . . , xik ]) · (1, 1) : xil ∈ X − {xj} , ∀l = 1, . . . , k}
= BVer,k(X) ⊔ {diam([xj , xj , β]) · (1, 1) : β ∈ Pk(X \ {xj})} .

Each finite pullback metric space Z of X can be written as a multiset Z = X ⊔
{xj1 , . . . , xjm

} equipped with the inherited metric from X for some m ≥ 0 and j1 ≤ · · · ≤ jm.
We apply the Proposition 31 to prove Proposition 6.

Proof of Proposition 6. We prove by induction on m. When m = 1, the statement follows
immediately from Proposition 31. Suppose m ≥ 2 and that the statement holds for Z ′ :=
X ⊔

{
xj1 , . . . , xjm−1

}
. Recall that Pk(A) denotes the multiset consisting of sub-multisets of

A each with cardinality k. By Proposition 31 and the induction hypothesis, we obtain:
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dB(BCon,0(·), BCon,0(·)) X Y Z W

X 0 0 1 1
Y 0 1 1
Z 0 0
W 0

d̂B(BVer,0(·), BVer,0(·)) X Y Z W

X 0 0 1 1
Y 0 1 1
Z 0 0
W 0

dB(BCon,1(·), BCon,1(·)) X Y Z W

X 0 0 0 1
2

Y 0 0 1
2

Z 0 1
2

W 0

d̂B(BVer,1(·), BVer,1(·)) X Y Z W

X 0 0 1 1
Y 0 1 1
Z 0 1
W 0

2 · dGH(·, ·) X Y Z W

X 0 1 1 1
Y 0 1 1
Z 0 1
W 0

Figure 7 The bottleneck distance dB between concise barcodes, the pullback bottleneck distance
d̂B between verbose barcodes, and the Gromov-Hausdorff distance between spaces.

BVer,k(Z) = BVer,k(Z′) ⊔
{

diam([xjm , β]) · (1, 1) : β ∈ Pk

(
(X \ {xjm }) ⊔

{
xj1 , . . . , xjm−1

})}
= BVer,k(X) ⊔

m−2⊔
i=0

{
diam([xji+1 , βi]) · (1, 1) : βi ∈ Pk

(
(X \ {xji+1 }) ⊔ {xj1 , . . . , xji }

)}
⊔
{

diam([xjm , βm−1]) · (1, 1) : βm−1 ∈ Pk

(
(X \ {xjm }) ⊔

{
xj1 , . . . , xjm−1

})}
= BVer,k(X) ⊔

m−1⊔
i=0

{
diam([xji+1 , βi]) · (1, 1) : βi ∈ Pk

(
(X \ {xji+1 }) ⊔ {xj1 , . . . , xji }

)}
.

◀

When considering degree 0, Proposition 6 implies Proposition 7, which imposes the
strategy of matching bars in concise barcodes only to other bars or to the origin (0, 0) unlike
in the case of dB when bars are allowed to be matched to any point on the diagonal.

See [17, §6] for proofs and further details of this section.
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Abstract Voronoi-Like Graphs: Extending
Delaunay’s Theorem and Applications
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Abstract
Any system of bisectors (in the sense of abstract Voronoi diagrams) defines an arrangement of simple
curves in the plane. We define Voronoi-like graphs on such an arrangement, which are graphs whose
vertices are locally Voronoi. A vertex v is called locally Voronoi, if v and its incident edges appear in
the Voronoi diagram of three sites. In a so-called admissible bisector system, where Voronoi regions
are connected and cover the plane, we prove that any Voronoi-like graph is indeed an abstract
Voronoi diagram. The result can be seen as an abstract dual version of Delaunay’s theorem on
(locally) empty circles.

Further, we define Voronoi-like cycles in an admissible bisector system, and show that the
Voronoi-like graph induced by such a cycle C is a unique tree (or a forest, if C is unbounded). In the
special case where C is the boundary of an abstract Voronoi region, the induced Voronoi-like graph
can be computed in expected linear time following the technique of [Junginger and Papadopoulou
SOCG’18]. Otherwise, within the same time, the algorithm constructs the Voronoi-like graph of
a cycle C′ on the same set (or subset) of sites, which may equal C or be enclosed by C. Overall,
the technique computes abstract Voronoi (or Voronoi-like) trees and forests in linear expected time,
given the order of their leaves along a Voronoi-like cycle. We show a direct application in updating
a constraint Delaunay triangulation in linear expected time, after the insertion of a new segment
constraint, simplifying upon the result of [Shewchuk and Brown CGTA 2015].
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1 Introduction

Delaunay’s theorem [6] is a well-known cornerstone in Computational Geometry: given a
set of points, a triangulation is globally Delaunay if and only if it is locally Delaunay. A
triangulation edge is called locally Delaunay if it is incident to only one triangle, or it is
incident to two triangles, and appears in the Delaunay triangulation of the four related
vertices. The Voronoi diagram and the Delaunay triangulation of a point set are dual to each
other. These two highly influential and versatile structures are often used and computed
interchangeably; see the book of Aurenhammer et al. [2] for extensive information.

Let us pose the following question: how does Delaunay’s theorem extend to Voronoi
diagrams of generalized (not necessarily point) sites? We are interested in simple geometric
objects in the plane such as line segments, polygons, disks, or point clusters, as they often
appear in application areas, and answering this question is intimately related to efficient
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construction algorithms for Voronoi diagrams (or their duals) on these objects. We consider
this question in the framework of abstract Voronoi diagrams in the plane [11] so that we can
simultaneously answer it for various concrete and fundamental cases under their umbrella.

Although Voronoi diagrams and Delaunay triangulations of point sites have been widely
used in many fields of science, being available in most software libraries of commonly used
programming languages, practice has not been the same for their counterparts of simple
geometric objects. In fact it is surprising that certain related questions may have remained
open or non-optimally solved. Edelsbrunner and Seidel [7] defined Voronoi diagrams as lower
envelopes of distance functions in a space one dimension higher, making a powerful link to
arrangements, which made their rich combinatorial and algorithmic results applicable, e.g.,
[15]. However, there are different levels of difficulty concerning arrangements of planes versus
more general surfaces, which play a role, especially in practice.

In this paper we define Voronoi-like graphs based on local information, inspired by
Delaunay’s theorem. Following the framework of abstract Voronoi diagrams (AVDs) [11], let
S be a set of n abstract sites (a set of indices) and J be their underlying system of bisectors,
which satisfies some simple combinatorial properties (see Sections 2, 3). Consider a graph
G on the arrangement of the bisector system possibly truncated within a simply connected
domain D. The vertices of G are vertices of the bisector arrangement, its leaves lie on the
boundary ∂D, and the edges are maximal bisector arcs connecting pairs of vertices. A vertex
v in G is called locally Voronoi, if v and its incident edges within a small neighborhood
around v appear in the Voronoi diagram of the three sites defining v (Def. 3), see Figure 4.
The graph G is called Voronoi-like, if its vertices (other than its leaves on ∂D) are locally
Voronoi vertices (Def. 4), see Figure 5. If the graph G is a simple cycle on the arrangement
of bisectors related to one site p and its vertices are locally Voronoi of degree 2, then it is
called a Voronoi-like cycle, for brevity a site-cycle (Def. 10).

A major difference between points in the Euclidean plane, versus non-points, such as
line segments, disks, or AVDs, can be immediately pointed out: in the former case the
bisector system is a line arrangement, while in the latter, the bisecting curves are not even
pseudolines. On a line arrangement, it is not hard to see that a Voronoi-like graph coincides
with the Voronoi diagram of the involved sites: any Voronoi-like cycle is a convex polygon,
which is, in fact, a Voronoi region in the Voronoi diagram of the relevant sites. But in the
arrangement of an abstract bisector system, many different Voronoi-like cycles can exist for
the same set of sites, see, e.g., Figure 10. Whether a Voronoi-like graph corresponds to a
Voronoi diagram is not immediately clear.

In this paper we show that a Voronoi-like graph on the arrangement of an abstract
bisector system is as close as possible to being an abstract Voronoi diagram, subject to,
perhaps, missing some faces (see Def. 5). If the graph misses no face, then it is a Voronoi
diagram. Thus, in the classic AVD model [11], where abstract Voronoi regions are connected
and cover the plane, any Voronoi-like graph is indeed an abstract Voronoi diagram. This
result can be seen as an abstract dual version of Delaunay’s theorem.

Voronoi-like graphs (and their duals) can be very useful structures to hold partial Voronoi
information, either when dealing with disconnected Voronoi regions, or when considering
partial information concerning some region. Building a Voronoi-like graph of partial informa-
tion may be far easier than constructing the full diagram. In some cases, the full diagram
may even be undesirable as in the example of Section 6 in updating a constrained Delaunay
triangulation.

The term Voronoi-like diagram was first used, in a restricted sence, by Junginger and
Papadopoulou [8], defining it as a tree (occasionally a forest) that subdivided a planar
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region enclosed by a so-called boundary curve defined on a subset of Voronoi edges. Their
Voronoi-like diagram was then used as an intermediate structure to perform deletion in
an abstract Voronoi diagram in linear expected time. In this paper the formulation of a
Voronoi-like graph is entirely different; we nevertheless prove that the Voronoi-like diagram
of [8] remains a special case of the one defined in this paper. We thus use the results of [8]
when applicable, and extend them to Voronoi-like cycles in an admissible bisector system.

In the remainder of this section we consider an admissible bisector system J following the
classic AVD model [11], where bisectors are unbounded simple curves and Voronoi regions
are connected. To avoid issues with infinity, we asume a large Jordan curve Γ (e.g, a circle)
bounding the computation domain, which is large enough to enclose any bisector intersection.
In the sequel, we list further results, which are obtained in this paper under this model.

We consider a Voronoi-like cycle C on the arrangement of bisectors Jp ⊆ J ∪Γ, which are
related to a site p ∈ S. Let SC ⊆ S \ {p} be the set of sites that (together with p) contribute
to the bisector arcs in C. The cycle C encodes a sequence of site occurrences from SC . We
define the Voronoi-like graph Vl(C), which can be thought of as a Voronoi diagram of site
occurrences, instead of sites, whose order is represented by C. We prove that Vl(C) is a tree,
or a forest if C is unbounded, and it exists for any Voronoi-like cycle C. The uniqueness
of Vl(C) can be inferred from the results in [8]. The same properties can be extended to
Voronoi-like graphs of cycles related to a set P of k sites.

We then consider the randomized incremental construction of [8], and apply it to a
Voronoi-like cycle in linear expected time. If C is the boundary of a Voronoi region then
Vl(C), which is the part of the abstract Voronoi diagram V(SC), truncated by C, can be
computed in expected linear time (this was previously shown [8, 10]). Otherwise, within the
same time, the Voronoi-like graph of a (possibly different) Voronoi-like cycle C ′, enclosed
by C, is computed by essentially the same algorithm. We give conditions under which we
can force the randomized algorithm to compute Vl(C), if desirable, without hurting its
expected-linear time complexity, using deletion [8] as a subroutine. The overall technique
follows the randomized linear-time paradigm of Chew [5], originally given to compute the
Voronoi diagram of points in convex position. The generalization of Chew’s technique can
potentially be used to convert algorithms working on point sites, which use it, to counterparts
involving non-point sites that fall under the umbrella of abstract Voronoi diagrams.

Finally, we give a direct application for computing the Voronoi-like graph of a site-cycle
in linear expected time, when updating a constrained Delaunay triangulation upon insertion
of a new line segment, simplifying upon the corresponding result of Shewchuk and Brown[16].
The resulting algorithm is extremely simple. By modeling the problem as computing the
dual of a Voronoi-like graph, given a Voronoi-like cycle (which is not a Voronoi region’s
boundary), the algorithmic description becomes almost trivial and explains the technicalities,
such as self-intersecting subpolygons, that are listed by Shewchuk and Brown.

The overall technique computes abstract Voronoi, or Voronoi-like, trees and forests in
linear expected time, given the order of their leaves along a Voronoi-like cycle. In an extended
paper, we also give simple conditions under which the cycle C is an arbitrary Jordan curve
of constant complexity. All omitted proofs appear in [14].

2 Preliminaries and definitions

We follow the framework of abstract Voronoi diagrams (AVDs), which have been defined
by Klein [11]. Let S be a set of n abstract sites (a set of indices) and J be an underlying
system of bisectors that satisfy some simple combinatorial properties (some axioms). The
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Figure 1 Related segment bisectors intersecting twice. VR(p, {p, q, r}) is shaded.

bisector J(p, q) of two sites p, q ∈ S is a simple curve that subdivides the plane into two open
domains: the dominance region of p, D(p, q), having label p, and the dominance region of q,
D(q, p), having label q.

The Voronoi region of site p is

VR(p, S) =
⋂

q∈S\{p}

D(p, q).

The Voronoi diagram of S is V(S) = R2 \
⋃

p∈S VR(p, S). The vertices and the edges of V(S)
are called Voronoi vertices and Voronoi edges, respectively.

Variants of abstract Voronoi diagrams of different degrees of generalization have been
proposed, see e.g., [12, 3]. Following the original formulation by Klein [11], the bisector
system J is called admissible, if it satisfies the following axioms, for every subset S′ ⊆ S:

(A1) Each Voronoi region VR(p, S′) is non-empty and pathwise connected.
(A2) Each point in the plane belongs to the closure of a Voronoi region VR(p, S′).
(A3) Each bisector is an unbounded simple curve homeomorphic to a line.
(A4) Any two bisectors intersect transversally and in a finite number of points.

Under these axioms, the abstract Voronoi diagram V(S) is a planar graph of complexity
O(n), which can be computed in O(n log n) time, randomized [13] or deterministic [11].

To avoid dealing with infinity, we assume that V(S) is truncated within a domain DΓ
enclosed by a large Jordan curve Γ (e.g., a circle or a rectangle) such that all bisector
intersections are contained in DΓ. Each bisector crosses Γ exactly twice and transversally.
All Voronoi regions are assumed to be truncated by Γ, and thus, lie within the domain DΓ.

We make a general position assumption that no three bisectors involving one common
site intersect at the same point, that is, all vertices in the arrangement of the bisector system
J have degree 6, and Voronoi vertices have degree 3.

Bisectors that have a site p in common are called related, in particular, p-related. Let
Jp ⊆ J denote the set of all p-related bisectors in J . Under axiom A2, if related bisectors
J(p, q) and J(p, s) intersect at a vertex v, then J(q, s) must also intersect with them at the
same vertex, which is a Voronoi vertex in V ({p, q, s}) (otherwise, axiom A2 would be violated
in V ({p, q, s})). In an admissible bisector system, related bisectors can intersect at most
twice [11]; thus, a Voronoi diagram of three sites may have at most two Voronoi vertices, see
e.g., the bisectors of three line segments in Figure 1. The curve Γ can be interpreted as a
p-related bisector J(p, s∞), for a site s∞ representing infinity, for any p ∈ S.

▶ Observation 1. In an admissible bisector system, related bisectors that do not intersect or
intersect twice must follow the patterns illustrated in Figures 2 and 3 respectively.
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Figure 2 Non-intersecting bisectors; (a) is legal (✓); (b) is illegal (×).
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Figure 3 Bisectors intersecting twice; legal (✓) and illegal(×).

Proof. In Figure 3(c) the pattern is illegal because of axiom A1, and in Figure 3(d) because
of combining axioms A2 and A1: J(s, t) must pass through the intersection points of J(p, s)
and J(t, p), by A2. Then any possible configuration of J(s, t) results in violating either axiom
A1 or A2. If bisectors do not intersect, any pattern other than the one in Figure 2(a) can be
shown illegal by combining axioms A1 and A2. ◀

▶ Observation 2 ([8]). In an admissible bisector system, no cycle in the arrangment of
bisectors related to p can have the label p on the exterior of the cycle, for all of its arcs.

Any component α of a bisector curve J(p, q) is called an arc. We use sα ∈ S to denote
the site such that arc α ⊆ J(p, sα). Any component of Γ is called a Γ-arc. The arrangement
of a bisector set Jx ⊆ J is denoted by A(Jx).

3 Defining abstract Voronoi-like graphs and cycles

In order to define Voronoi-like graphs in a broader sense, we can relax axioms A1-A4 in this
section. In particular, we drop axiom A1 to allow disconnected Voronoi regions and relax
axiom A3 to allow disconnected (or even closed) bisecting curves. The bisector J(p, q) of
two sites p, q ∈ S still subdivides the plane into two open domains: the dominance region of
p, D(p, q), and the dominance region of q, D(q, p), however, D(p, q) may be disconnected or
bounded. Axioms A2 and A4 remain. Unless otherwise specified, we use the general term
abstract bisector system to denote such a relaxed variant in the subsequent definitions and in
Theorem 6. The term admissible bisector system always implies axioms A1-A4.

Let G = (V, E) be a graph on the arrangement of an abstract bisector system J , truncated
within a simply connected domain D ⊆ DΓ (the leaves of G are on ∂D). The vertices of G

are arrangement vertices and the edges are maximal bisector arcs connecting pairs of vertices.
Figure 5 illustrates examples of such graphs on a bisector arrangment (shown in grey). Under
the general position assumption, the vertices of G, except the leaves on ∂D, are of degree 3.

▶ Definition 3. A vertex v in graph G is called locally Voronoi, if v and its incident graph
edges, within a small neighborhood around v, N(v), appear in the Voronoi diagram of the set
of three sites defining v, denoted Sv, see Figure 4(a).
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Figure 4 (a) Vertex v is locally Voronoi: G ∩ N(v) = V({p, s, t}) ∩ N(v); N(v) is shaded, G is
bold, and bisectors are grey. (b) Vertex v is locally farthest Voronoi.
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Figure 5 Voronoi-like graphs shown in bold on an arrangement of bisectors shown in grey.

If instead we consider the farthest Voronoi diagram of Sv, then v is called locally Voronoi
of the farthest-type, see Figure 4(b). An ordinary locally Voronoi vertex is of the nearest-type.

▶ Definition 4. A graph G on the arrangement of an abstract bisector system, enclosed
within a simply connected domain D, is called Voronoi-like, if its vertices (other than its
leaves on ∂D) are locally Voronoi vertices. If G is disconnected, we further require that
consecutive leaves on ∂D have consistent labels, i.e., they are incident to the dominance
region of the same site, as implied by the incident bisector edges in G, see Figure 5.

The graph G is actually called an abstract Voronoi-like graph but, for brevity, we usually
skip the term abstract. We next consider the relation between a Voronoi-like graph G and
the Voronoi diagram V(S) ∩ D, where S is the set of sites involved in the edges of G. Since
the vertices of G are locally Voronoi, each face f in G must have the label of exactly one site
sf in its interior, which is called the site of f .

▶ Definition 5. Imagine we superimpose G and V(S) ∩ D. A face f of V(S) ∩ D is said to
be missing from G, if f is covered by faces of G that belong to sites that are different from
the site of f , see Figure 7, which is derived from Figure 6.

▶ Theorem 6. Let r be a face of an abstract Voronoi-like graph G and let sr denote its site
(the bisectors bounding r have the label sr inside r). Then one of the following holds:
1. there is a Voronoi face r′ in V(S) ∩ D, of the same site as r, r′ ⊆ VR(sr, S), such that

r′ ⊆ r, see Figure 7.
2. face r is disjoint from the Voronoi region VR(sr, S). Further, it is entirely covered by

Voronoi faces of V(S) ∩ D, which are missing from G, see Figure 8.

Proof. Imagine we superimpose G and V(S) ∩ D. Face r in G cannot partially overlap
any face of the Voronoi region VR(sr, S) because if it did, some sr-related bisector, which
contributes to the boundary of r, would intersect the interior of VR(sr, S), which is not
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Figure 6 A Voronoi diagram of 4 segments.

(a) (b)

f

r′ r

Figure 7 (a) Voronoi diagram V (S) ∩ D; (b) Voronoi-like graph G; r′ ⊆ r; f is missing from (b).

possible by the definition of a Voronoi region. For the same reason, r cannot be contained in
VR(sr, S). Since Voronoi regions cover the plane, the claim, except from the last sentence in
item 2, follows.

Consider a Voronoi face c′ of V(S) ∩ D that overlaps with face r of G in case 2, where
the site of c′, sc, is different from sr. Since c′ overlaps with r, it follows that c′ cannot be
entirely contained in any face of site sc in G. Furthermore, c′ cannot overlap partially with
any face of sc in G, by the proof in the previous paragraph. Thus, c′ is disjoint from any
face of G of site sc, i.e., it must be missing from G. In Figure 8, face c′ contains r. ◀

▶ Corollary 7. If no Voronoi face of V(S) ∩ D is missing from G, then G = V(S) ∩ D.

Let us now consider an admissible bisector system, satisfying axioms A1-A4.

▶ Corollary 8. In an admissible bisector system J , if D corresponds to the entire plane,
then any Voronoi-like graph on J equals the Voronoi diagram of the relevant set of sites.

In an admissible bisector system, Voronoi regions are connected, thus, only faces incident
to ∂D may be missing from V(S) ∩ D.

rr1
c′

c1 c1

(a) (b)

r1

q
p

q
p

Figure 8 (a) Voronoi-like graph G; (b) V (S) ∩ D; face c′, which covers r, is missing from G.
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Figure 9 A Voronoi-like cycle for site p. Sc = {s, t, k, q, r, l}.

▶ Corollary 9. In an admissible bisector system, any face f of G that does not touch ∂D

either coincides with or contains the Voronoi region VR(sf , S).

Thus, in an admissible bisector system, we need to characterize the faces of a Voronoi-like
graph that interact with the boundary of the domain D. That is, we are interested in
Voronoi-like trees and forests.

Let p be a site in S and let Jp denote the set of p-related bisectors in J .

▶ Definition 10. Let C be a cycle in the arrangement of p-related bisectors A(Jp ∪ Γ) such
that the label p appears in the interior of C. A vertex v in C is called degree-2 locally
Voronoi, if its two incident bisector arcs correspond to edges in the Voronoi diagram V(Sv)
of the three sites that define v (p ∈ Sv). In particular, C ∩ N(v) ⊆ V(Sv) ∩ N(v), where N(v)
is a small neighborhood around v. The cycle C is called Voronoi-like, if its vertices are either
degree-2 locally Voronoi or points on Γ. For brevity, C is also called a p-cycle, or site-cycle,
if the site p is not specified. If C bounds a Voronoi region, then it is called a Voronoi cycle.

C is called bounded if it contains no Γ-arcs, otherwise, it is called unbounded.

The part of the plane enclosed by C is called the domain of C, denoted as DC . Any
Γ-arc of C indicates an opening of the domain to infinity. Figure 9 illustrates a Voronoi-like
cycle for site p, which is unbounded (see the Γ-arc γ). It is easy to see in this figure that
other p-cycles exist, on the same set of sites, which may enclose or be enclosed by C. The
innermost such cycle is the boundary of a Voronoi region, see Figure 10.

Let SC ⊆ S \ {p} denote the set of sites that (together with p) contribute the bisector
arcs of C, SC = {sα ∈ S \ {p} | α ∈ C \ Γ}. We refer to SC as the set of sites relevant to C.
Let Ĉ denote the Voronoi cycle Ĉ = ∂(VR(p, SC ∪ {p}) ∩ DΓ).

▶ Observation 11. In an admissible bisector system, there can be many different Voronoi-like
cycles involving the same set of sites. Any such cycle C must enclose the Voronoi cycle Ĉ.
Further, SĈ ⊆ SC . In the special case of a line arrangement, e.g., bisectors of point-sites in
the Euclidean plane, a site-cycle C is unique for SC ; in particular, C = Ĉ.

A Voronoi-like cycle C must share several bisector arcs with its Voronoi cycle Ĉ, at least
one bisector arc for each site in SĈ . Let C ∩ Ĉ denote the sequence of common arcs between
C and Ĉ. Several other p-cycles C ′, where SĈ ⊆ SC′ ⊆ SC , may lie between C and Ĉ, all
sharing Other p-cycles may enclose C. Figure 10 shows such cycles, where the innermost one
is Ĉ; its domain (a Voronoi region) is shown in solid grey.
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Figure 10 Voronoi-like cycles for site p, Sc = {s, t, k, q, r, l}.
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Figure 11 The Voronoi-like graph Vl(C) (red tree) of the site-cycle C of Fig. 9.

4 The Voronoi-like graph of a cycle

Let J be an admissible bisector system and let C be a Voronoi-like cycle for site p, which
involves a set of sites SC (p ̸∈ SC). Let JC ⊆ J be the subset of all bisectors that are related
to the sites in Sc. The cycle C corresponds to a sequence of site-occurrences from SC , which
imply a Voronoi-like graph Vl(C) in the domain of C, defined as follows:

▶ Definition 12. The Voronoi-like graph Vl(C), implied by a Voronoi-like cycle C, is a graph
on the underlying arrangement of bisectors A(JC) ∩ DC , whose leaves are the vertices of
C, and its remaining (non-leaf) vertices are locally Voronoi vertices, see Figure 11. (The
existence of such a graph on A(JC) ∩ DC remains to be established).

In this section we prove the following theorem for any Voronoi-like cycle C on A(Jp ∪ Γ).

▶ Theorem 13. The Voronoi-like graph Vl(C) of a p-cycle C has the following properties:
1. it exists and is unique;
2. it is a tree if C is bounded, and a forest if C is unbounded;
3. it can be computed in expected linear time, if it is the boundary of a Voronoi region;

otherwise, in expected linear time we can compute Vl(C ′) for some p-cycle C ′ that is
enclosed by C (possibly, C ′ = C or C ′ = Ĉ).

Recall that Ĉ denotes the Voronoi-cycle enclosed by C, where Ĉ = ∂[VR(p, SC ∪{p})∩DΓ].
Then Vl(Ĉ) is the Voronoi diagram V(SC) ∩ DĈ . To derive Theorem 13 we show each item
separately in subsequent lemmas.

▶ Lemma 14. Assuming that it exists, Vl(C) is a forest, and if C is bounded, then Vl(C) is
a tree. Each face of Vl(C) is incident to exactly one bisector arc α of C, which is called the
face (or region) of α, denoted R(α, C).
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Figure 12 Three cases of the arc insertion operation.

If C is the boundary of a Voronoi region, the tree property of the Voronoi diagram
V(S) ∩ DC had been previously shown in [8, 4]. Lemma 14 generalizes it to Voronoi-like
graphs for any Voronoi-like cycle C.

In [8], a Voronoi-like diagram was defined as a tree structure subdividing the domain of
a so-called boundary curve, which was implied by a set of Voronoi edges. A boundary curve
is a Voronoi-like cycle but not necessarily vice versa. That is, the tree structure of [8] was
defined using some of the properties in Lemma 14 as its definition, and the question whether
such a tree always existed had remained open. In this paper a Voronoi-like graph is defined
entirely differently, but Lemma 14 implies that the two structures are equivalent within the
domain of a boundary curve. As a result, we can use and extend the results of [8].

Given a p-cycle C, and a bisector J(p, s) that intersects it, an arc-insertion operation can
be defined as follows [8]. Let α ⊆ J(p, s) be a maximal component of J(p, s) in the domain
of C, see Figure 12. Let Cα = C ⊕ α denote the p-cycle obtained by substituting with α the
superflous portion of C between the endpoints of α. (Note that only one portion of C forms
a p-cycle with α, thus, no ambiguity exists). There are three different main cases possible
as a result, see Figure 12: 1) α may lie between two consecutive arcs of C, in which case
|Cα| = |C| + 1; 2) α may cause the deletion of one or more arcs in C, thus, |Cα| ≤ |C|; 3)
the endpoints of α may lie on the same arc ω of C, in which case ω splits in two different
arcs, thus, |Cα| = |C| + 2. In all cases Cα is enclosed by C (| · | denotes cardinality).

The arc-insertion operation can be naturally extended to the Voronoi-like graph Vl(C)
to insert arc α and obtain Vl(Cα). We use the following lemma, which can be extracted
from [8] (using Theorem 18, Theorem 20, and Lemma 21 of [8]).

▶ Lemma 15 ([8]). Given Vl(C), arc α ∈ J(p, s) ∩ DC , and the endpoints of α on C,
we can compute the merge curve J(α) = ∂R(α, Cα), using standard techniques as in
ordinary Voronoi diagrams. If the endpoints of α lie on different arcs of C, or Γ, the
time complexity is O(|J(α)| + |C \ Cα|). Otherwise, α splits a bisector arc ω, and its re-
gion R(ω, C), into R(ω1, Cα) and R(ω2, Cα); the time complexity increases to O(|J(α)| +
min{|R(ω1, Cα)|, |R(ω2, Cα)|}).

The correctness proofs from [8, 10], which are related to Lemma 15, remain intact if
performed on a Voronoi-like cycle, as long as the arc α is contained in the cycle’s domain;
see also [10, Lemma 9]. Thus, Lemma 15 can be established.

Next we prove the existence of Vl(C) by construction. To this goal we use a split relation
between bisectors in Jp or sites in SC , which had also been considered in [9], see Figure 13.

▶ Definition 16. For any two sites s, t ∈ SC , we say that J(p, s) splits J(p, t) (we also say
that s splits t, with respect to p), if J(p, t) ∩ D(p, s) contains two connected components.

From the fact that related bisectors in an admissible bisector system intersect at most
twice, as shown in Figs. 2 and 3, we can infer that the split relation is asymmetric and
transitive, thus, it is also acyclic. The split relation induces a strict partial order on SC ,
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Figure 13 J(p, s) splits J(p, t). In the partial order, s <p t.

where s <p t, if J(p, s) splits J(p, t), see Figure 13. Let op be a topological order of the
resulting directed acyclic graph, which underlies the split relation on Sc induced by p.

The following lemma shows that Vl(C) exists by construction, see [14]. It builds upon a
more-restricted version regarding a boundary curve, which was considered in [9].

▶ Lemma 17. Given the topological ordering of the split relation op, Vl(C) can be constructed
in O(|C|2) time; thus, Vl(C) exists. Further, at the same time, we can construct Vl(C ′) for
any other Voronoi-like cycle C ′ that is enclosed by C, SC′ ⊆ SC .

The following lemma can also be extracted from [8, 10]. It can be used to establish the
uniqueness of Vl(C). Similarly to Lemma 15, its original statement does not refer to a p-cycle,
however, nothing in its proof prevents its adaptation to a p-cycle, see [10, Lemma 29].

▶ Lemma 18. [10] Let C be a p-cycle and let α, β be two bisector arcs in C, where sα ̸= sβ.
Suppose that a component e of J(sα, sβ) intersects R(α, C). Then J(p, sβ) must intersect
DC with a component β′ ⊆ J(p, sβ) ∩ DC such that e is a portion of ∂R(β′, C ⊕ β′).

By Lemma 18, if J(sα, sβ) intersects R(α, C), then a face of sβ must be missing from
Vl(C) (compared to Vl(Ĉ)) implying that an arc of J(p, sβ) must be missing from C. Thus,
Vl(C) must be unique.

We now use the randomized incremental construction of [8] to construct Vl(C), which
in turn follows Chew [5], to establish the last claim of Theorem 13. Let o = (α1, . . . αn)
be a random permutation of the bisector arcs of C, where each arc represents a different
occurrence of a site in SC . The incremental algorithm works in two phases. In phase 1, delete
arcs from C in the reverse order o−1, while registering their neighbors at the time of deletion.
In phase 2, insert the arcs, following o, using their neighbors information from phase 1.

Let Ci denote the p-cycle constructed by considering the first i arcs in o in this order. C1
is the p-cycle consisting of J(sα1 , p) and the relevant Γ-arc. Given Ci, let α′

i+1 denote the
bisector component of J(p, sαi+1) ∩ DCi

that contains αi+1 (if any), see Figure 12 where α

stands for α′
i+1. If αi+1 lies outside Ci, then α′

i+1 = ∅ (this is only possible if Ci is not a
Voronoi cycle). Let cycle Ci+1 = Ci ⊕ α′

i+1 (if α′
i+1 = ∅, then Ci+1 = Ci). Given α′

i+1, and
Vl(Ci), the graph Vl(Ci+1) is obtained by applying Lemma 15.

Let us point out a critical case, which clearly differentiates from [5]: both endpoints of
α′

i+1 lie on the same arc ω of Ci, see Figure 12(c) where α stands for α′
i+1. That is, the

insertion of αi+1 splits the arc ω in two arcs, ω1 and ω2 (note sαi+1 <p sω) Because of this
split, Ci, and thus Vl(Ci), is order-dependent: if αi+1 were considered before ω, in some
alternative ordering, then ω1 or ω2 would not exist in the resulting cycle, and similarly for
their faces in Vl(Ci+1). The time to split R(ω, Ci) is proportional to the minimum complexity
of R(ω1, Ci+1) and R(ω2, Ci+1), which is added to the time complexity of step i. Another
side effect of the split relation is that αi+1 might fall outside Ci, unless C is a Voronoi-cycle,
in which case Ci+1 = Ci. Then Cn ̸= C, in particular, Cn is enclosed by C.

Because the computed cycles are order-dependent, standard backwards analysis cannot be
directly applied to step i. In [10] an alternative technique was proposed, which can be applied
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to the above construction. The main difference from [10] is the case Ci+1 = Ci, however,
such a case has no effect to time complexity, thus, the analysis of [10] can be applied.

▶ Proposition 19. By the variant of backwards analysis in [10], the time complexity of step
i is expected O(1).

4.1 Relations among the Voronoi-like graphs Vl(C), Vl(C ′), and Vl(Ĉ)

In the following proposition, the first claim follows from Theorem 6 and the second follows
from the proof of Lemma 17.

▶ Proposition 20. Let C ′ be a Voronoi-like cycle between C and Ĉ such that SĈ ⊆ SC′ ⊆ SC .
1. R(α, C ′) ⊇ R(α, Ĉ), for any arc α ∈ C ′ ∩ Ĉ.
2. R(α, C ′) ⊆ R(α, C), for any arc α ∈ C ∩ C ′.

Proposition 20 indicates that the faces of Vl(C ′) shrink as we move from the outer cycle
C to an inner one, until we reach the Voronoi faces of Vl(Ĉ), which are contained in all
others. It also indicates that Vl(C), Vl(C ′) and Vl(Ĉ) share common subgraphs, and that
the adjacencies of the Voronoi diagram Vl(Ĉ) are preserved. More formally,

▶ Definition 21. Let Vl(C ′, C ∩ C ′) be the following subgraph of Vl(C ′): vertex v ∈ Vl(C ′)
is included in Vl(C ′, C ∩ C ′), if all three faces incident to v belong to arcs in C ∩ C ′; edge
e ∈ Vl(C ′) is included to Vl(C ′, C ∩ C ′) if both faces incident to e belong to arcs in C ∩ C ′.

▶ Proposition 22. For any Voronoi-like cycle C ′, enclosed by C, where SC′ ⊆ SC , it holds:
Vl(C ′, C ∩ C ′) ⊆ Vl(C).

Depending on the problem at hand, computing Vl(C ′) (instead of the more expensive
task of computing Vl(C)) may be sufficient. For an example see [14, Section 5].

Computing Vl(C) in linear expected time (instead of Vl(C ′)) is possible if the faces of
Vl(C) are Voronoi regions. This can be done by deleting the superflous arcs in C ′ \ C, which
are called auxiliary arcs (created by arc-splits). A concrete example is given in Section 6.
During any step of the construction, if R(α′, Ci) is a Voronoi region, but α′ ∩ C = ∅, we can
call the site-deletion procedure of [8] to eliminate α′ and R(α′, Ci) from Vl(Ci). In particular,

▶ Proposition 23. Given Vl(Ci), 1 ≤ i ≤ n, we can delete R(α, Ci), if R(α, Ci) ⊆ VR(sα, Sα),
where Sα ⊆ SC is the set of sites that define ∂R(α, Ci), in expected time linear on |Sα|.

There are two ways to use Proposition 23, if applicable:
1. Use it when necessary to maintain the invariant that Ci encloses C (by deleting [8] any

auxiliary arc in Ci−1 that blocks the insertion of αi, thus, eliminating the case Ci = Ci−1).
2. Eliminate any auxiliary arc at the time of its creation. If the insertion of αi splits an arc

ω ∈ Ci−1 into ω1 and ω2, but ω2 ̸∈ C, then eliminate R(ω2, Ci) by calling [8].

The advantage of the latter is that Voronoi-like cycles become order-independent, therefore,
backwards analysis can be applied to establish the algorithm’s time complexity. We give the
backwards analysis argument on the concrete case of Section 6; the same type of argument,
only more technical, can be derived for this abstract formulation as well.
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5 Extending to Voronoi-like cycles of k sites

Theorem 13 can be extended to a Voronoi-like k-cycle, for brevity, a k-cycle, which involves
a set P of k sites whose labels appear in the interior of the cycle. A k-cycle Ck lies in the
arrangement A(JP ∪ Γ) and its vertices are degree-2 locally Voronoi, where JP is the set of
bisectors related to the sites in P . It implies a Voronoi-like graph Vl(Ck) involving the set of
sites SC ⊆ S \ P , which (together with the sites in P ) define the bisector arcs of Ck. The
definition of Vl(Ck) is analogous to Def. 12.

There are two types of k-cycles on A(JP ∪ Γ) of interest: 1. k-site Voronoi-like cycles
whose vertices are all of the nearest type, e.g., the boundary of the union of k neighboring
Voronoi regions; and 2. order-k Voronoi-like cycles whose vertices are both of the nearest and
the farthest type, e.g., the boundary of an order-k Voronoi face. In either case we partition
a k-cycle Ck into maximal compound arcs, each induced by one site in SC . Vertices in the
interior of a compound arc are switches between sites in P , and the endpoints of compound
arcs are switches between sites in Sc. For an order-k cycle, the former vertices are of the
farthest type, whereas the latter (endpoints of compound arcs) are of the nearest type.

▶ Lemma 24. Assuming that it exists, Vl(Ck) is a forest, and if Ck is bounded, then Vl(Ck)
is a tree. Each face of Vl(Ck) is incident to exactly one compound arc α of Ck, which is
denoted as R(α, Ck).

The remaining claims of Theorem 13 can be derived similarly to Section 4, see [14].

6 Updating a constraint Delaunay triangulation

We give an example of a Voronoi-like cycle C, which does not correspond to a Voronoi region,
but we need to compute the adjacencies of the Voronoi-like graph Vl(C). The problem appears
in the incremental construction of a constraint Delaunay triangulation (CDT), a well-known
variant of the Delaunay triangulation, in which a given set of segments is constrained to
appear in the triangulation of a point set Q, which includes the endpoints of the segments,
see [16] and references therein.

Every edge of the CDT is either an input segment or is locally Delaunay (see Section 1).
The incremental construction to compute a CDT, first constructs an ordinary Delaunay
triangulation of the points in Q, and then inserts segment constraints, one by one, updating
the triangulation after each insertion. Shewchuk and Brown [16] gave an expected linear-time
algorithm to perform each update. Although the algorithm is summarized in a pseudocode,
which could then be directly implemented, the algorithmic description is quite technical
having to make sense of self-intersecting polygons, their triangulations, and other exceptions.
We show that the problem corresponds exactly to computing (in dual sense) the Voronoi-like
graph of a Voronoi-like cycle. Thus, a very simple randomized incremental construction, with
occasional calls to Chew’s algorithm [5] to delete a Voronoi region of points, can be derived.
Quoting from [16]: incremental segment insertion is likely to remain the most used CDT
construction algorithm, so it is important to provide an understanding of its performance
and how to make it run fast. We do exactly the latter in this section.

When a new constraint segment s is inserted in a CDT, the triangles, which get destroyed
by that segment, are identified and deleted [16]. This creates two cavities that need to be
re-triangulated using constrained Delaunay triangles, see Figure 14(a),(b), borrowed from
[16], where one cavity is shown shaded (in light blue) and the other unshaded. The boundary
of each cavity need not be a simple polygon. However, each cavity implies a Voronoi-like
cycle, whose Voronoi-like graph re-triangulates the cavity, see Figure 14(c),(d).
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Figure 14 Point set from [16, Fig. 3]. (a) The given CDT and the segment s superimposed; (b)
the cavity P in blue; (c) Vl(C) in red, C = ∂VR(s, S ∪ {s}) in black; (d) the re-triangulated P .
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Figure 15 The Voronoi-like cycle C and Vl(C) (in red) for the example of Fig. 14.

Let P = (p1, p2, . . . , pn) denote one of the cavities, where p1 . . . pn is the sequence of
cavity vertices in counterclockwise order, and p1, pn are the endpoints of s. Let S denote
the corresponding set of points (|S| ≤ n) and let Js denote the underlying bisector system
involving the segment s and points in S. Let C be the s-cycle in A(JS ∪ Γ) that has one
s-bisector arc for each vertex in P , in the same order as P , see Figure 15. Note that one
point in S may contibute more than one arc in C.

▶ Lemma 25. The s-cycle C exists and can be derived from P in linear time.

Proof. Let pi ∈ P, 1 < i < n. The diagonal of the original CDT, which bounded the triangle
incident to pipi−1 (resp. pipi+1) was a locally Delaunay edge intersected by s. Thus, there is
a circle through pi that is tangent to s that contains neither pi−1 nor pi+1, see Figure 16.

s

pi

pi−1

pi+1

αi

Figure 16 Proof of Lemma 25.
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Hense, an arc of J(pi, s) must exist, which contains the center of this circle, and extends from
an intersection point of J(pi, s) ∩ J(pi−1, s) to an intersection point of J(pi, s) ∩ J(pi+1, s).
The portion of J(pi, s) between these two intersections corresponds to the arc of pi on C,
denoted αi. Note that the s-bisectors are parabolas that share the same directrix (the line
through s), thus, they may intersect twice. It is also possible that pi−1 = pi+1. In each
case, we can determine which intersection is relavant to arc αi, given the order of P . Such
questions can be reduced to in-circle tests involving the segment s and three points. ◀

Let CDT(P ) denote the constraint Delaunay triangulation of P . Its edges are either
locally Delaunay or they are cavity edges on the boundary of P .

▶ Lemma 26. The CDT(P ) is dual to Vl(C), where C is the s-cycle derived from P .

Proof. The claim can be derived from the definitions, Lemma 25, which shows the existence
of C, and the properties of Theorem 13. The dual of Vl(C) has one node for each s-bisector
arc of C, thus, one node per vertex in P . An edge of Vl(C) incident to two locally Voronoi
vertices v, u involves four different sites in S; thus, its dual edge is locally Delaunay. The
dual of an edge incident to a leaf of C, is an edge of the boundary of P . ◀

Next, we compute Vl(C) in expected linear time. Because C is not the complete boundary
of a Voronoi-region, if we apply the construction of Theorem 13, the computed cycle Cn may
be enclosed by C. This is because of occasional split operations, which may create auxiliary
arcs that have no correspondence to vertices of P . However, we can use Proposition 23 to
delete such auxiliary arcs and their faces. The sites in S are points, thus, any Voronoi-like
cycle in their bisector arrangement coincides with a Voronoi region. By calling Chew’s
algorithm [5] we can delete any face of any auxiliary arc in expected time linear in the
complexity of the face. The side effect of always deleting auxiliary arcs is that the computed
s-cycles are order-independent, making it possible to use backwards analysis to analyse
the time complexity of step i, which remains O(1), despite the additional calls to Chew’s
procedure. We give a proof and additional algorithmic details in [14].

It is easy to dualize the technique to directly compute constraint Delaunay triangles.
In fact, the cycle C can remain conceptual. The dual nodes are graph theoretic, each one
corresponding to an s-bisector arc, which in turn corresponds to a cavity vertex. This
explains the polygon self-crossings of [16] if we draw these graph-theoretic nodes on the
cavity vertices during the intermediate steps of the construction.

7 Concluding remarks

We have also considered the variant of computing, in linear expected time, a Voronoi-like
tree (or forest) within a simply connected domain D, of constant boundary complexity, given
the ordering of some Voronoi faces along the boundary of D. In an extended version we will
provide conditions under which the same essentially technique can be applied.

In future research, we are also interested in considering deterministic linear-time algorithms
to compute abstract Voronoi-like trees and forests as inspired by [1].
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Abstract
Modern time series analysis requires the ability to handle datasets that are inherently high-
dimensional; examples include applications in climatology, where measurements from numerous
sensors must be taken into account, or inventory tracking of large shops, where the dimension is
defined by the number of tracked items. The standard way to mitigate computational issues arising
from the high dimensionality of the data is by applying some dimension reduction technique that
preserves the structural properties of the ambient space. The dissimilarity between two time series
is often measured by “discrete” notions of distance, e.g. the dynamic time warping or the discrete
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1 Introduction

Time series analysis lies in the core of various modern applications. Typically, a time series
consists of various (physical) measurements over time. Formally, it is a finite sequence of points
in Rd. Depending on the use case, the ambient space may be extremely high-dimensional,
for example d ∈ 2Ω(log n), or even d ∈ 2Ω(n), where n is the number of given sequences. For
example, large facilities nowadays supervise their production lines using a plethora of sensors.
Another concrete example are climatology applications, where data consist of measurements
from multiple sensors, each one corresponding to a different dimension.

Many analysis techniques are based on (dis-)similarity between time series, c.f. [27]. This
is often measured by distance functions such as the Euclidean distance, which however
requires the time series to be of same length and does not include any form of alignment
between the sequences. This is of course less expressive than distances which are indeed
defined over an optimal alignment, e.g. the dynamic time warping, or the discrete Fréchet
distance, which are based on Euclidean distances between the points but enable compensation
of differences in phase. A common downside of these distances is that they take into account
solely the points of a time series. Hence, they are sensitive to differences in sampling rates or
data gaps. Here, the continuous Fréchet distance offers a popular alternative which aims to
alleviate this issue by assuming that time series are discretizations of continuous functions of
time. It is an extension of the discrete Fréchet distance that takes into account all points on
the polygonal curves obtained by linearly interpolating between any two consecutive points
in a sequence (where the interpolation is carried out only implicitly).

Two main parameters typically govern computational tasks associated with the Fréchet
distance: the lengths of the time series and the number of dimensions of the ambient space. In
this paper, we study the problem of compressing the input with respect to the latter parameter
using a dimension reducing linear transform that preserves Euclidean distances within a
factor of (1± ε). These transforms, which are usually named Johnson-Lindenstrauss (JL)
transforms or embeddings, are a popular tool in dimensionality reduction. The preservation
of pairwise distances within a factor of (1 ± ε) is sometimes called JL guarantee. Recent
work has provided various probability distributions over JL transforms [14, 21, 1, 28, 24],
which are efficient to sample from and which yield the JL guarantee with at least constant
positive probability while the target dimension is only O(ε−2 log n), where n is the size of
the input point set. Towards applying this result on time series, one can easily guarantee
that all Euclidean distances between points of the time series are preserved. While this has
direct implications on “discrete” notions of distances between time series, the case of the
continuous Fréchet distance is far more intriguing.

1.1 Related Work
In their seminal paper [23], Johnson and Lindenstrauss proved the following statement, which
is commonly known as the Johnson-Lindenstrauss lemma and coined the term JL embedding.

▶ Theorem 1 ([23]). For any n ∈ N and ε ∈ (0, 1) there exists a probability distribution over
linear maps f : Rd → Rd′ , where d′ ∈ O(ε−2 log n), such that for any n-point set X ⊂ Rd the
following holds with high probability over the choice of f :

∀p, q ∈ X : (1− ε)∥p− q∥ ≤ ∥f(p)− f(q)∥ ≤ (1 + ε)∥p− q∥.

In their proof, Johnson and Lindenstrauss [23] show that this can be achieved by orthogonally
projecting the points onto a random linear subspace of dimension O(ε−2 log n) – and indeed



I. Psarros and D. Rohde 53:3

there are point sets that require Ω(ε−2 log n) dimensions [5, 25, 26]. Several proofs of their
statement followed, these however don’t require a proper projection but only a multiplying
the points with a certain random matrix, cf. [22, 14, 1, 24, 4].

The impact of a JL embedding on higher-dimensional objects other than points has
already been studied. Magen [29, 30] shows that applying a (scaled) JL embedding not only
to a given set P ⊂ Rd of points, but to P ∪W , where W ⊂ Rd is a well-chosen set of points
determined by P , approximately preserves the height and angles of all triangles determined
by any three points in P . Magen even extends this result and shows that by a clever choice
of W , the volume (Lebesgue measure) of the convex hull of any k − 1 points from P is
approximately preserved when the target dimension is in Θ(ε−2k log|P |). Furthermore, in
this case the distance of any point from P to the affine hull of any k − 1 other points from
P is also approximately preserved. Furthermore, JL embeddings can even be utilized to
preserve all pairwise Euclidean and geodesic distances on a smooth manifold [8].

Fréchet distance preserving embeddings are a relatively unexplored topic. Recently
Driemel and Krivosija [17] studied the first Fréchet distance preserving embedding for c-
packed curves, which are curves whose intersections with any ball of radius r are of length
at most cr. This class of curves was introduced by Driemel et al. [16] and has so far been
considered a viable assumption for realistic curves, see e.g. [3, 9, 15]. Driemel and Krivosija
consider projections on random lines, where curves are orthogonally projected on a vector
which is sampled uniformly at random from the unit sphere. They observed that in any
case (even if the curves are not c-packed), the discrete Fréchet distance between the curves
decreases. Furthermore, they show that with high probability the discrete Fréchet distance
between two curves σ and τ , of complexity (number of vertices of the curve) at most m,
decreases by a factor in O(m). Finally, they proved that there exist c-packed curves such
that the discrete Fréchet distance decreases by a factor in Ω(m). The latter also holds for
the continuous Fréchet distance and for the dynamic time warping distance.

More recently, Meintrup et al. [32] studied JL embeddings in the context of preserving
the Fréchet distance to facilitate k-median clustering of curves in a high-dimensional ambient
space. They show that when the dimension is reduced to Θ(ε−2 log N), where N is the total
number of vertices of the given curves, the Fréchet distances are preserved up to a combined
multiplicative error of (1± ε) and additive error of ±εL, where L is the largest arclength of
any input curve. For their proof, they only use the JL guarantee, i.e., the (1± ε)-preservation
of Euclidean distances, and properties of the polygonal curves and the Fréchet distance, while
linearity is not taken into account. In this setting, it seems that the additive error is possible
– Meintrup et al. give a simple example where some vertex-to-vertex distances expand and
others contract, which induces an additive error to the Fréchet distance. Meintrup et al.
complement their results with experimental evaluation showing that in real world data and
using a JL transform (which is a linear map), the Fréchet distance is preserved within
the multiplicative error only in almost any case. The other cases can not be distinguished
between a failed attempt to obtain a JL embedding (recall the probabilistic nature) and a
successful attempt to obtain a JL embedding with the additive error occuring.

1.2 Our Contributions
We study the ability of random projections à la Johnson and Lindenstrauss to preserve the
continuous Fréchet distances among a given set of n polygonal curves, each of complexity
(number of vertices of the curve) at most m. We show that there exists a set X of vectors (in
Rd), of size polynomial in n and m and depending only on the given curves, such that any
JL transform for the curves vertices and X also preserves the continuous Fréchet distance
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between any two of the given polygonal curves within a factor of (1± ε), without additional
additive error. This effectively extends the JL guarantee to pairwise Fréchet distances. By
plugging in any known JL transform from one of [14, 21, 1, 28, 24] we obtain our main
dimension reduction result which states that one can reduce the number of dimensions to
O(ε−2 log(nm)). We achieve our result using a completely different approach than Meintrup
et al. [32]. Our approach relies on Fréchet distance predicates originating from [2]. These
allow a reduction from deciding the continuous distance to a finite set of events occurring.
Using only the predicates, it is relatively easy to prove that the Fréchet distance between
two curves does not expand by more than a factor of (1 + ε) under a (linear) JL transform.
To prove that the Fréchet distance does not contract by more than a factor of (1 − ε) is
however much more challenging. We achieve this by proving that all distances between one
fixed point and any point on a fixed line do not contract by more than a factor of (1− ε)
when a JL transform is applied to a well-chosen set of four vectors determined by the point
and the line, which is then applied to any vertex of any curve and any line determined by an
edge of any curve. We note that this result is comparable to a result by Magen [29, 30], but
our statement is stronger since it takes into account all distances between the fixed point
and the line and not only the affine distance, i.e., the distance between the point and its
orthogonal projection onto the line.

Our motivation is that distance preserving dimensionality reductions imply improved
algorithms for various tasks. Best-known algorithms for many proximity problems under the
continuous Fréchet distance have exponential dependency on the dimension, in at least one of
their performance parameters. Such algorithms either directly employ the continuous Fréchet
distance, e.g. the approximation algorithms for k-clustering problems [13], or approximate it
with the discrete Fréchet distance by resampling the time series to a higher granularity. For
example, to the best of our knowledge, the best solution for the approximate near neighbor
(ANN) problem in general dimensions derives from building the data structure of Filtser et
al. [20], which originally solves the problem for the discrete Fréchet distance, on a modified
input. The idea is that a new dense set of vertices can be added to each input polygonal curve
so that the discrete Fréchet distance of the resulting curves approximates the continuous
Fréchet distance of the original curves. Under the somewhat restrictive assumption that the
arclength of each curve is short, a small number of new vertices suffices. Even in this case
though, the space and preprocessing time of the data structure depends exponentially on the
number of dimensions. Obviously, polynomial-time algorithms (e.g. [10]) can also benefit
from reducing the number of dimensions, especially when it comes to real applications.

Our embedding naturally inherits desired properties of the JL transforms like the fact
that they are oblivious to the input. This makes it directly applicable to data structure
problems like the above-mentioned ANN problem. Moreover, we show that our embedding is
also applicable to estimating clustering costs. First, we show that one can approximate the
optimal k-center cost within a constant factor, with an algorithm that has no dependency
on the original dimensionality apart from an initial step of randomly projecting the input
curves. Second, we show that one can use any algorithm for computing the k-median cost in
the dimensionality-reduced space to get a constant factor approximation of the k-median
cost in the original space.

1.3 Organization
The paper is organized as follows. In Section 2 we introduce the necessary notation, definitions
and the concept of Fréchet distance predicates. In Section 3 we prove our main result in
two steps. First, as a warm-up, we prove that an application of any JL transformation
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for the given curves vertices and a polynomial-sized set X determined by these does not
increase Fréchet distances by more than a factor of (1 + ε). In Section 3.1 we prove the
challenging part that this also does not decrease Fréchet distances by less than a factor
of (1 − ε). Interestingly, here a different polynomial-sized set X ′ is used. In Section 3.2
we combine both to our main result. Finally, in Section 4 we apply our main result to
clustering of curves; we modify an existing approximation algorithm for the (k, ℓ)-center
problem (see [10]) which has negligibly decreased approximation quality compared to the
original and we prove that applying any algorithm for the (k, ℓ)-median problem (such as the
one from [13]) on the embedded curves leads to a constant factor approximation in terms of
clustering cost. Section 5 concludes the paper.

2 Preliminaries

For n ∈ N we define [n] = {1, . . . , n}. By ∥·∥ we denote the Euclidean norm, by ⟨·, ·⟩ we
denote the Euclidean dot product and by Sd−1 = {p ∈ Rd | ∥p∥ = 1} we denote the unit
sphere in Rd. We define line segments, the building blocks of polygonal curves.

▶ Definition 2. A line segment between two points p1, p2 ∈ Rd, denoted by p1p2, is the
set of points {(1 − λ)p1 + λp2 | λ ∈ [0, 1]}. For λ ∈ R we denote by lp (p1p2, λ) the point
(1− λ)p1 + λp2, lying on the line supporting the segment p1p2.

We formally define polygonal curves.

▶ Definition 3. A (parameterized) curve is a continuous mapping τ : [0, 1]→ Rd. A curve
τ is polygonal, if and only if, there exist v1, . . . , vm ∈ Rd, no three consecutive on a line,
called τ ’s vertices and t1, . . . , tm ∈ [0, 1] with t1 < · · · < tm, t1 = 0 and tm = 1, called τ ’s
instants, such that τ connects every two consecutive vertices vi = τ(ti), vi+1 = τ(ti+1) by a
line segment.

We call the line segments v1v2, . . . , vm−1vm the edges of τ and m the complexity of
τ , denoted by |τ |. Sometimes we will argue about a sub-curve τ [i, j] of a given curve τ ,
which is the polygonal curve determined by the vertices vi, . . . , vj . We define two notions of
continuous Fréchet distances. We note that the weak Fréchet distance is used only rarely.

▶ Definition 4. Let σ, τ be curves. The weak Fréchet distance between σ and τ is

dwF(σ, τ) = inf
f : [0,1]→[0,1]
g : [0,1]→[0,1]

max
t∈[0,1]

∥σ(f(t))− τ(g(t))∥,

where f and g are continuous functions with f(0) = g(0) = 0 and f(1) = g(1) = 1. The
Fréchet distance between σ and τ is

dF(σ, τ) = inf
f : [0,1]→[0,1]
g : [0,1]→[0,1]

max
t∈[0,1]

∥σ(f(t))− τ(g(t))∥,

where f and g are continuous bijections with f(0) = g(0) = 0 and f(1) = g(1) = 1.

We define the type of embedding we are interested in. Since we want to keep our results
general, we do not specify the target number of dimensions. As a consequence, we drop the
JL-terminology and call these (1± ε)-embeddings.

▶ Definition 5. Given a set P ⊂ Rd of points and ε ∈ (0, 1), a function f : Rd → Rd′ is a
(1± ε)-embedding for P , if it holds that

∀p, q ∈ P : (1− ε)∥p− q∥ ≤ ∥f(p)− f(q)∥ ≤ (1 + ε)∥p− q∥.
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53:6 Random Projections for Curves in High Dimensions

We note that if f is linear and 0 ∈ P , then ∀p ∈ P : (1− ε)∥p∥ ≤ ∥f(p)∥ ≤ (1 + ε)∥p∥.
We now define valid sequences with respect to two polygonal curves. Such a sequence

can be seen as a discrete skeleton in deciding the continuous Fréchet distance and is derived
from the free space diagram concept used in Alt and Godau’s algorithm [6].

▶ Definition 6. Let σ, τ be polygonal curves with vertices vσ
1 , . . . , vσ

|σ|, respectively vτ
1 , . . . , vτ

|τ |.
A valid sequence with respect to σ and τ is a sequence F = (i1, j1), . . . , (ik, jk) with

i1 = j1 = 1, ik = |σ| − 1, jk = |τ | − 1,
(il, jl) ∈ [|σ| − 1]× [|τ | − 1],
(il − il−1, jl − jl−1) ∈ {(0, 1), (1, 0), (0,−1), (−1, 0)} for all 1 < l < k and
any pair (il, jl) ∈ [|σ| − 1]× [|τ | − 1] appears at most once in F .

A valid sequence is said to be monotone if (il − il−1, jl − jl−1) ∈ {(0, 1), (1, 0)} for all
1 < l < k.

Further decomposing the free space diagram concept, any valid sequence for two curves
σ, τ and any radius r ≥ 0 induces a set of predicates which truth values in conjunction
determine whether dF(σ, τ) ≤ r, respectively dwF(σ, τ) ≤ r.

▶ Definition 7 ([2, 19]). Let σ, τ be polygonal curves with vertices vσ
1 , . . . , vσ

|σ|, respectively
vτ

1 , . . . , vτ
|τ | and r ∈ R≥0. We define the Fréchet distance predicates for σ and τ with respect

to r.
(P1)σ,τ,r: This predicate is true, iff ∥σ1 − τ1∥ ≤ r.
(P2)σ,τ,r: This predicate is true, iff ∥σ|σ| − τ|τ |∥ ≤ r.
(P3)σ,τ,r

(i,j) : This predicate is true, iff there exists a point p ∈ vσ
i vσ

i+1 with ∥p− vτ
j ∥ ≤ r.

(P4)σ,τ,r
(i,j) : This predicate is true, iff there exists a point p ∈ vτ

j vτ
j+1 with ∥p− vσ

i ∥ ≤ r.
(P5)σ,τ,r

(i,j,k): This predicate is true, iff there exist p1 = lp
(
vσ

j vσ
j+1, t1

)
and p2 = lp

(
vσ

j vσ
j+1, t2

)
with ∥vτ

i − p1∥ ≤ r, ∥vτ
k − p2∥ ≤ r and t1 ≤ t2.

(P6)σ,τ,r
(i,j,k): This predicate is true, iff there exist p1 = lp

(
vτ

i vτ
i+1, t1

)
and p2 = lp

(
vτ

i vτ
i+1, t2

)
with ∥vσ

j − p1∥ ≤ r, ∥vσ
k − p2∥ ≤ r and t1 ≤ t2.

The following two theorems state the aforementioned facts. These will be one of our main
tools in obtaining our main results. We note that these are rephrased here to fit our needs.

▶ Theorem 8 ([19]). Let σ, τ be polygonal curves and r ∈ R≥0. There exists a valid sequence
F with respect to σ and τ , such that (P1)σ,τ,r ∧ (P2)σ,τ,r ∧Ψσ,τ,r

w (F) is true, where

Ψσ,τ,r
w (F) =

∧
(i,j)∈[|σ|]×[|τ |]
(i,j−1),(i,j)∈F

(P3)σ,τ,r
(i,j)

∧
(i,j)∈[|τ |]×[|σ|]
(i−1,j),(i,j)∈F

(P4)σ,τ,r
(i,j) ,

if, and only if, dwF(σ, τ) ≤ r.

▶ Theorem 9 ([2, 19]). Let σ, τ be polygonal curves and r ∈ R≥0. There exists a monotone
valid sequence F with respect to σ and τ , such that (P1)σ,τ,r ∧ (P2)σ,τ,r ∧Ψσ,τ,r(F) is true,
where

Ψσ,τ,r(F) =
∧

(i,j)∈[|σ|]×[|τ |]
(i,j−1),(i,j)∈F

(P3)σ,τ,r
(i,j)

∧
(i,j)∈[|τ |]×[|σ|]
(i−1,j),(i,j)∈F

(P4)σ,τ,r
(i,j)

∧
(i,j,k)∈[|τ |]×[|σ|]×[|τ |]

(i,j−1),(i,k)∈F
j<k

(P5)σ,τ,r
(i,j,k)

∧
(i,j,k)∈[|τ |]×[|σ|]×[|σ|]

(i−1,j),(k,j)∈F
i<k

(P6)σ,τ,r
(i,j,k),

if, and only if, dF(σ, τ) ≤ r.
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3 Linear Embeddings preserve Fréchet Distances

In this section we prove our main results on embeddings of polygonal curves that approx-
imately preserve the Fréchet distance. In the following Lemma 10, we show that linear
(1± ε)-embeddings for a polynomial number of points determined by the input polygonal
curves imply embeddings for the curves that are not expansive by a factor greater than
(1 + ε). Similarly, in Section 3.1, we show that linear (1± ε)-embeddings for a polynomial
number of points determined by the curves, imply embeddings for the curves that are not
contractive by a factor smaller than (1− ε). Combining these two bounds yields our main
results in Section 3.2. Our main dimensionality reduction result states that one can embed
a set of n polygonal curves of complexity at most m into a Euclidean space of dimensions
d′ ∈ O(ε−2 log(nm)), so that all Fréchet distances are preserved within a factor of (1± ε).
The embedding is implemented by mapping the vertices of each polygonal curve with a JL
transform. The image of each input curve is a curve in Rd′ having as vertices the images of
the original vertices.

▶ Lemma 10. Let σ, τ be polygonal curves with vertices vσ
1 , . . . , vσ

|σ|, respectively vτ
1 , . . . , vτ

|τ |,
and let f be a linear (1± ε)-embedding for P = {vσ

1 , . . . , vσ
|σ|, vτ

1 , . . . , vτ
|τ |} ∪ P ′, where P ′ is

a set of points determined by σ and τ with |P ′| ∈ O(|σ|2 · |τ |+ |τ |2 · |σ|). Let σ′ and τ ′ be
polygonal curves with vertices f(vσ

1 ), . . . , f(vσ
|σ|), respectively f(vτ

1 ), . . . , f(vτ
|τ |). It holds that

dwF(σ′, τ ′) ≤ (1 + ε) dwF(σ, τ) and
dF(σ′, τ ′) ≤ (1 + ε) dF(σ, τ).

The proof follows by an application of the (1± ε)-embedding to all points determined by
the (weak) Fréchet distance predicates. The proof can be found in the full paper [35].

3.1 Lower Bound
In this section, we show that we can use linear (1± ε)-embeddings for a polynomial number
of points determined by the input polygonal curves to define embeddings for the curves that
are not contractive with respect to their Fréchet distance by a factor smaller than (1− ε).

We first introduce a few necessary technical lemmas and then we proceed with the main
result. We make use of the following lemma, which indicates that inner products are (weakly)
concentrated in (1± ε)-embeddings. Slightly different versions of this lemma have been used
before (see e.g. [7, 34, 36]). Our statement is a bit more generic, it holds for any linear
(1± ε)-embedding, and we make use of the involved scaling factors, we include a proof in [35].

▶ Lemma 11. Let f be a linear (1± ε)-embedding for a finite set P ⊂ Rd with 0 ∈ P . For
all p, q ∈ P it holds that

⟨p, q⟩ − 16ε(∥p∥ · ∥q∥) ≤ ⟨f(p), f(q)⟩ ≤ ⟨p, q⟩+ 14ε(∥p∥ · ∥q∥).

Next, we prove that (1± ε)-embeddings for a specific point set do not contract distances
between any point on a fixed ray starting from the origin and a fixed point lying in a certain
halfspace by a factor smaller than (1− 3ε).

▶ Lemma 12. Let x ∈ Rd and u ∈ Sd−1 such that ⟨x, u⟩ ≤ 0. Let f be a linear (1± ε/16)-
embedding for {0, x, u}. For any λ ≥ 0, we have

∥f(x)− λ · f(u)∥ ≥ (1− 3ε)∥x− λu∥.
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Proof. By Lemma 11 and Definition 5: i) ⟨f(x), f(u)⟩ ∈ ⟨x, u⟩±ε∥x∥, ii) ∥f(x)∥ ∈ (1±ε)∥x∥
and iii) ∥f(u)∥ ∈ (1± ε). For any λ ≥ 0 we have:

∥f(x)− λ · f(u)∥2 = ∥f(x)∥2 + λ2 · ∥f(u)∥2 − 2λ · ⟨f(x), f(u)⟩
≥ (1− ε)2∥x∥2 + (1− ε)2λ2 − 2λ⟨x, u⟩ − 2λε∥x∥ (1)
≥ (1− ε)2∥x∥2 + (1− ε)2λ2 − (1− ε)2 · 2λ · ⟨x, u⟩ − 2λε · ∥x∥ (2)
≥ (1− ε)2∥x− λu∥2 − 2ελ∥x∥
≥ (1− ε)2∥x− λu∥2 − 2ε∥x− λu∥2 (3)
≥ (1− 3ε)2∥x− λu∥2,

where the last inequality holds, since ε/16 ∈ (0, 1/4]. In Equation (1) we use events i), ii),
iii), in Equation (2) we use the fact that ⟨x, u⟩ ≤ 0, and in Equation (3) we use the fact that
⟨x, u⟩ ≤ 0 and λ ≥ 0 implies that ∥x− λu∥ ≥ λ and ∥x− λu∥ ≥ ∥x∥. ◀

We now prove our main technical lemma. This says that given a fixed line and a fixed
point p, there is a set P of points such that any linear (1 ± ε)-embedding for P does not
contract distances between p and any point on the line by a factor smaller than (1 − 3ε).
A somewhat similar statement appears in [29] which however focuses on the distortion of
point-line distances, i.e., how the distance between a point and its orthogonal projection
onto the line changes after the embedding.

▶ Lemma 13. Let x, y, z ∈ Rd and ℓ = {lp (yz, λ) | λ ∈ R} be the line supporting yz. Let
f be a linear (1 ± ε/16)-embedding for {0, u,−u, x − (t + ⟨x, u⟩ · u)}, where u ∈ Sd−1 and
t ∈ Rd, such that ⟨u, t⟩ = 0 and {t + λu | λ ∈ R} = ℓ. For all λ ∈ R it holds that

∥f(x)− f(t + λu)∥ ≥ (1− 3ε)∥x− (t + λu)∥.

Proof. We first note that such an element t exists, namely the orthogonal projection of 0
onto ℓ. Let p = t + ⟨x− t, u⟩ ·u = t + ⟨x, u⟩ ·u be the projection of x onto ℓ and let x′ = x−p.
Notice that

⟨x′, u⟩ = ⟨x, u⟩ − ⟨t + ⟨x, u⟩ · u, u⟩ = ⟨x, u⟩ − ⟨t, u⟩ − ⟨x, u⟩ = 0.

We apply Lemma 12 on the vectors x′, u. This implies that for any λ ≥ 0,

∥f(x′)− λf(u)∥ ≥ (1− 3ε)∥x′ − λu∥
⇐⇒ ∥f(x− p)− λf(u)∥ ≥ (1− 3ε)∥x− p− λu∥
⇐⇒ ∥f(x− (t + ⟨x, u⟩ · u))− λf(u)∥ ≥ (1− 3ε)∥x− (t + ⟨x, u⟩ · u)− λu∥
⇐⇒ ∥f(x)− f(t)− ⟨x, u⟩ · f(u)− λf(u)∥ ≥ (1− 3ε)∥x− t− ⟨x, u⟩ · u− λu∥
⇐⇒ ∥f(x)− f(t + (⟨x, u⟩+ λ) · u)∥ ≥ (1− 3ε)∥x− (t + (⟨x, u⟩+ λ) · u)∥.

Now by reparametrizing λ′ ← ⟨x, u⟩+ λ, we conclude that for any λ′ ≥ ⟨x, u⟩,

∥f(x)− f(t + λ′ · u)∥ ≥ (1− 3ε)∥x− (t + λ′ · u)∥. (4)

Finally, we apply Lemma 12 on the vectors x′,−u. Notice that ⟨x′,−u⟩ = −⟨x′, u⟩ = 0.
This implies that for any λ ≥ 0,

∥f(x′)− λf(−u)∥ ≥ (1− 3ε)∥x′ − λ(−u)∥
⇐⇒ ∥f(x− p)− λf(−u)∥ ≥ (1− 3ε)∥x− p− λ(−u)∥
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⇐⇒ ∥f(x− (t + ⟨x, u⟩ · u))− λf(−u)∥ ≥ (1− 3ε)∥x− (t + ⟨x, u⟩ · u)− λ(−u)∥
⇐⇒ ∥f(x)− f(t)− ⟨x, u⟩ · f(u)− λf(−u)∥ ≥ (1− 3ε)∥x− t− ⟨x, u⟩ · u− λ(−u)∥
⇐⇒ ∥f(x)− f(t + (⟨x, u⟩ − λ) · u)∥ ≥ (1− 3ε)∥x− (t + (⟨x, u⟩ − λ) · u)∥.

Now by reparametrizing λ′ ← ⟨x, u⟩ − λ, we conclude that for any λ′ ≤ ⟨x, u⟩,

∥f(x)− f(t + λ′ · u)∥ ≥ (1− 3ε)∥x− (t + λ′ · u)∥. (5)

Equation (4) and Equation (5) conclude the lemma. ◀

Using the lemma above we can finally prove the main result of this section.

▶ Lemma 14. Let σ, τ be polygonal curves with vertices vσ
1 , . . . , vσ

|σ|, respectively vτ
1 , . . . , vτ

|τ |,
and let f be a linear (1± ε/48)-embedding for P = {vσ

1 , . . . , vσ
|σ|, vτ

1 , . . . , vτ
|τ |} ∪ P ′, where P ′

is a set of points determined by σ and τ with |P ′| ∈ O(|σ| · |τ |). Let σ′ and τ ′ be polygonal
curves with vertices f(vσ

1 ), . . . , f(vσ
|σ|), respectively f(vτ

1 ), . . . , f(vτ
|τ |). It holds that

dwF(σ′, τ ′) ≥ (1− ε) dwF(σ, τ) and
dF(σ′, τ ′) ≥ (1− ε) dF(σ, τ).

Proof. For the first claim, let r = dwF(σ, τ), for the second claim let r = dF(σ, τ). In both
cases, let r′ = (1− ε)r.

In the following, we prove that for any (monotone) valid sequence F and any δ > 0 we have
that (P1)σ′,τ ′,r′−δ ∧ (P2)σ′,τ ′,r′−δ ∧Ψσ′,τ ′,r′−δ

w (F), respectively (P1)σ′,τ ′,r′−δ ∧ (P2)σ′,τ ′,r′−δ ∧
Ψσ′,τ ′,r′−δ(F), is false and therefore dwF(σ′, τ ′) > r′ − δ, respectively dF(σ′, τ ′) > r′ − δ by
Theorem 8, respectively Theorem 9.

Now, let F be an arbitrary (monotone) valid sequence. By definition of r and Theorem 8,
respectively Theorem 9, we know that for any δ > 0 it holds that (P1)σ,τ,r−δ ∧ (P2)σ,τ,r−δ ∧
Ψσ,τ,r−δ

w (F), respectively (P1)σ,τ,r−δ ∧ (P2)σ,τ,r−δ ∧ Ψσ,τ,r−δ(F), is false. If (P1)σ,τ,r−δ or
(P2)σ,τ,r−δ is false then clearly (P1)σ′,τ ′,r′−δ or (P2)σ′,τ ′,r′−δ is also false by Definitions 5
and 7. In the following, we assume that Ψσ,τ,r−δ

w (F), respectively Ψσ,τ,r−δ(F) is false.
Since the arguments for predicates of type P3 and P4 are analogous, we focus on the

former type. Assume that Ψσ,τ,r−δ
w (F) is false because a predicate (P3)σ,τ,r−δ

(i,j) is false. This
means that there does not exist a point p ∈ vσ

i vσ
i+1 with ∥p − vτ

j ∥ ≤ r − δ. At this point,
recall that since f is linear, any points lp (pq, t1) , . . . , lp (pq, tn), where p, q ∈ Rd, are still
collinear when f is applied and the relative order on the directed lines supporting pq is
preserved, which is immediate since f(lp (pq, ti)) = lp

(
f(p)f(q), ti

)
. By Lemma 13 for any

t ∈ R and the determined point p = lp
(
vσ

i vσ
i+1, t

)
on the line supporting vσ

i vσ
i+1 it holds that

∥f(vτ
j )−f(p)∥ ≥ (1− ε)∥p−vτ

j ∥. Thus, for any f(p) ∈ f(vσ
i )f(vσ

i+1) we have p ∈ vσ
i vσ

i+1 and
∥f(vτ

j )−f(p)∥ ≥ (1−ε)∥p−vτ
j ∥, which in conclusion is larger than r′−δ, hence (P3)σ′,τ ′,r′−δ

(i,j)

is false and therefore Ψσ′,τ ′,r′−δ
w (F) is false. The first claim follows by Theorem 8.

Now, since again the arguments for predicates of type P5 and P6 are also analogous, we
focus on the former. Assume that Ψσ,τ,r−δ(F) is false, because a predicate (P5)σ,τ,r−δ

(i,j,k) is
false. This means that for any two t1, t2 ∈ R with t1 ≤ t2, the points p1 = lp

(
vσ

j vσ
j+1, t1

)
and

p2 = lp
(
vσ

j vσ
j+1, t2

)
do not satisfy ∥vτ

i −p1∥ ≤ r−δ or ∥vτ
k −p2∥ ≤ r−δ. Since by Lemma 13

we have ∥f(vτ
i )− f(p1)∥ ≥ (1− ε)∥vτ

i − p1∥ and ∥f(vτ
k)− f(p2)∥ ≥ (1− ε)∥vτ

k − p2∥, one of
these distances must be larger than r′− δ and it follows that (P5)σ′,τ ′,r′−δ

(i,j,k) is false. Therefore,
Ψσ′,τ ′,r′−δ(F) is false and the second claim follows by Theorem 9.

SoCG 2023
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Finally, for the above statements to hold, the set P ′ contains 0, both directions u,−u ∈
Sd−1 determined by an edge of σ or τ and all points x− (t + ⟨x, u⟩ · u), where x is a vertex
of a curve σ or τ , and t, u determine a line supporting an edge of τ or σ. ◀

3.2 Main Result
We now prove our main result which combines the upper and lower bounds on the distortion
and Lemma 10.
▶ Theorem 15. Let T = {τ1, . . . , τn} be a set of polygonal curves in Rd, each of complexity
at most m. There exists a probability distribution over linear maps f : Rd → Rd′ , where
d′ ∈ O(ε−2 log(nm)), such that with high probability over the choice of f , the following is
true for all σ, τ ∈ T :
|dwF(σ, τ)− dwF(F (σ), F (τ))| ≤ ε · dwF(σ, τ) and
|dF(σ, τ)− dF(F (σ), F (τ))| ≤ ε · dF(σ, τ),

where for any τ ∈ T with vertices vτ
1 , . . . , vτ

|τ | we let F (τ) be the curve with vertices
f(vτ

1 ), . . . , f(vτ
|τ |).

Proof. We apply Theorem 1 on the set P of O(n2m3) points determined by an application
of Lemmas 10 and 14 on all pairs of curves in T . ◀

4 Application to Clustering

In this section, we study the effect of randomized (1±ε)-embeddings on the cost of k-clustering
of polygonal curves. In particular, we show that a constant factor approximation of the cost
of the optimal k-center solution can be computed with an algorithm, which, except for the
time needed to embed the input curves, runs in time independent of the input dimensionality.
Moreover, we show that the optimal cost of the k-median problem is preserved within a
constant factor in the target space. This means that running any algorithm for the k-median
problem in the target space, yields an algorithm for estimating the cost in the original space.

This effectively reduces the computational effort required for approximating the clustering
cost, and it directly assists analytical tasks like estimating the optimal number of clusters –
where cost estimations for multiple values of k are typically performed.

4.1 Clustering under the Fréchet Distance
In 2016, Driemel et al. [18] introduced clustering under the Fréchet distance, for the
purpose of clustering (one-dimensional) time series. The objectives, named (k, ℓ)-center
and (k, ℓ)-median, are derived from the well-known k-center and k-median objectives in
Euclidean k-clustering. Both are NP-hard [18, 10, 11], even if k = 1 and d = 1, and the
(k, ℓ)-center problem is even NP-hard to approximate within a factor of (2.25− ε) in general
dimensions [10]. One particularity of these clustering approaches is that the obtained center
curves should be of low complexity. In detail, while the given curves have complexity at most
m each, the centers should be of complexity at most ℓ each, where ℓ≪ m is a constant. The
idea behind is that due to the linear interpolation, a compact summary of the cluster members
through an aggregate center curve is enabled. A nice side effect is that overfitting, which
may occur without the complexity restriction, is suppressed. For further details see [18].

We now present a modification of the constant factor approximation algorithm for (k, ℓ)-
center clustering from [10]. We note that due to its appealing complexity, this algorithm is
used vastly in practice (c.f. [12]) and therefore constitutes a prime candidate to be combined
with dimensionality reduction.
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4.2 (k, ℓ)-Center Clustering
We formally define the (k, ℓ)-center clustering objective.

▶ Definition 16. The (k, ℓ)-center clustering problem is to compute a set C of k polygonal
curves in Rd, of complexity at most ℓ each, which minimizes the cost maxτ∈T minc∈C dF(τ, c),
where T = {τ1, . . . , τn} is a given set of polygonal curves in Rd of complexity at most m each,
and k ∈ N, ℓ ∈ N≥2 are constant parameters of the problem.

The following algorithm largely makes use of simplifications of input curves. We formally
define this concept.

▶ Definition 17. An α-approximate minimum-error ℓ-simplification of a curve τ in Rd is
a curve σ = simpl(τ) in Rd with at most ℓ vertices, where ℓ ∈ N≥2 and α ≥ 1 are given
parameters, such that dF(τ, σ) ≤ α · dF(τ, σ′) for all other curves σ′ with ℓ vertices.

A simplification σ = simpl(τ) is vertex-restricted if the sequence of its vertices is a
subsequence of the sequence of τs vertices. Crucial in our modification of the algorithm by
Buchin et al. [10] is that we want to compute simplifications in the dimensionality-reduced
ambient space to spare running time. In the following, we give a thorough analysis of the
effect of dimensionality reduction before simplification. The proof can be found in the full
paper [35].

▶ Theorem 18. Let F be the embedding of Theorem 15 with parameter ε ∈ (0, 1/2], for a
given set T of n polygonal curves in Rd of complexity at most m each, all segments vτ

i vτ
j ,

all subcurves τ [i, j] as well as all vertex-restricted ℓ-simplifications of all τ ∈ T (where
vτ

1 , . . . , vτ
|τ | are the vertices of τ and i, j ∈ [|τ |] with i < j). For each τ ∈ T , a 4-approximate

minimum-error ℓ-simplification simpl(F (τ)) of F (τ) can be computed in time O(d′ · |τ |3 log|τ |)
and for all σ ∈ T it holds that

(1− ε) dF(σ, simpl(τ)) ≤ dF(F (σ), simpl(F (τ)) ≤ (1 + ε) dF(σ, simpl(τ)),

where simpl(τ) denotes a (4 + 16ε)-approximate minimum-error ℓ-simplification of τ .

We now present our modification of the algorithm. Let F denote the embedding from
Theorem 15 for T ∪ T ′ ∪ C∗, where T ′ is the set of all segments vτ

i vτ
j , all subcurves τ [i, j] as

well as all vertex-restricted ℓ-simplifications of all τ ∈ T (where vτ
1 , . . . , vτ

|τ | are the vertices
of τ and i, j ∈ [|τ |] with i < j), and C∗ is an optimal set of k centers for T .

The algorithm first sets C = {simpl(F (τ))} for an arbitrary τ ∈ T . Then, until |C| = k it
computes a curve τ ∈ T that maximizes minc∈C dF(F (τ), c) and sets C = C ∪{simpl(F (τ))}.
Finally, it returns C.

We now prove the approximation guarantee and analyse the running time of this algorithm,
thereby we adapt parts of the analysis in [10]. The proof can be found in the full paper [35].

▶ Theorem 19. Given a set T of n polygonal curves in Rd of complexity at most m each,
and a parameter ε ∈ (0, 1/2], the above algorithm returns a solution C to the (k, ℓ)-center
clustering problem, consisting of k curves in RO(ε−2ℓ log(knm)) of complexity at most ℓ each,
such that

(1− 3ε)r∗ ≤ max
τ∈T

min
c∈C

dF(F (τ), c) ≤ (6 + 38ε)r∗,

where r∗ denotes the cost of an optimal solution. The algorithm has running time

O(ε−2kℓ log(nm + k)m3 log m + ε−2ℓ log(nm + k)k2nm log m).

SoCG 2023
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4.3 (k, ℓ)-Median Clustering
In this section, we show that the cost of the optimal (k, ℓ)-median solution is preserved
within a constant factor, when projecting the input curves as described in Section 3. We
first define the (k, ℓ)-median clustering problem.

▶ Definition 20. The (k, ℓ)-median clustering problem is to compute a set C of k polygonal
curves in Rd of complexity at most ℓ each, which minimizes the cost

∑
τ∈T minc∈C dF(τ, c),

where T = {τ1, . . . , τn} is a given set of polygonal curves in Rd of complexity at most m each,
and k ∈ N, ℓ ∈ N≥2 are constant parameters of the problem.

In Section 4.3.1, we focus on the case ℓ ≥ m, and we bound the distortion of the optimal
cost by a factor of 2 + O(ε). In Section 4.3.2, we discuss case ℓ < m, and we bound the
distortion of the optimal cost by a factor of 6 + O(ε).

4.3.1 Unrestricted Medians
In this section, we present our results on the (k, ℓ)-median clustering problem, when ℓ ≥ m.
Computing medians of complexity ℓ = m is a widely accepted scenario following, for example,
from the wide acceptance of local search methods for clustering, which explore candidate
solutions from the set of input curves. The proof follows a similar reasoning as in Section 4.3.2
and is diverted to the full paper [35]. Comparing to Section 4.3.2, we obtain an improved
bound on the approximation factor. This is mainly because simplifications are no longer
needed in order to obtain a meaningful bound.

▶ Theorem 21. Let T = {τ1, . . . , τn} be a set of polygonal curves in Rd of complexity at most
m each and let ℓ ≥ m. There exists a probability distribution over linear maps f : Rd → Rd′ ,
where d′ ∈ O(ε−2 log(nℓ)), such that with high probability over the choice of f , the following
is true. For any polygonal curve τ with vertices vτ

1 , . . . , vτ
|τ |, we define F (τ) to be the curve

with vertices f(vτ
1 ), . . . , f(vτ

|τ |). Then,

1− ε

2 · r∗ ≤ r∗
f ≤ (1 + ε) · r∗,

where r∗ is the cost of an optimal solution to the (k, ℓ)-median problem on T , and r∗
f is the

cost of an optimal solution to the (k, ℓ)-median problem on F (T ).

4.3.2 Restricted Medians
To bound the cost of the optimal (k, ℓ)-median in the projected space, we use the notion
of simplifications which was introduced in Section 4.2. By an averaging argument, for each
cluster, there exists an input curve σi which is within distance 1

|Ti| ·
∑

τ∈Ti
dF(F (τ), cf

i ) from
the optimal median cf

i , where Ti is the input curves associated with the ith cluster in the
projected space. To lower bound the optimal cost in the projected space, we repeatedly
apply the triangle inequality on distances involving a vertex-restricted ℓ-simplification of
σi and a vertex-restricted ℓ-simplification of F (σi). The upper bound simply follows by
the non-contraction guarantee of JL transforms, on distances between input curves and the
optimal medians in the original space. The proof can be found in the full paper [35].

▶ Theorem 22. Let T = {τ1, . . . , τn} be a set of polygonal curves in Rd of complexity at most
m each and let ℓ < m. There exists a probability distribution over linear maps f : Rd → Rd′ ,
where d′ ∈ O(ε−2ℓ log(nm)), such that with high probability over the choice of f , the following
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is true. For any polygonal curve τ with vertices vτ
1 , . . . , vτ

|τ |, we define F (τ) to be the curve
with vertices f(vτ

1 ), . . . , f(vτ
|τ |). Then,

1− ε

6 · (1 + ε) · r
∗ ≤ r∗

f ≤ (1 + ε) · r∗,

where r∗ is the cost of an optimal solution to the (k, ℓ)-median problem on T , and r∗
f is the

cost of an optimal solution to the (k, ℓ)-median problem on F (T ).

5 Conclusion

Our results are in line with the results by Magen [29, 30] in the sense that by increasing the
constant hidden in the O-notation specifying the number of dimensions of the dimensionality-
reduced space, JL transforms become more powerful and do not only preserve pairwise
Euclidean distances but also affine distances, angles and volumes, and as we have proven,
Fréchet distances.

Concerning JL transforms we have improved the work by Meintrup et al. [32] by proving
that no additive error is involved in the resulting Fréchet distances. To facilitate this result,
we had to incorporate the linearity of these transforms, which is not done in [32]. Interestingly,
this shows that when one uses a terminal embedding instead (see e.g. [33]) – for example to
handle a dynamic setting involving queries – this may induce an additive error to the Fréchet
distance, as the results by Meintrup et al. [32] can still be applied but ours can not since
terminal embeddings are non-linear. Consequently, in contrast to Euclidean distances where
a terminal embedding constitutes a proper extension of a JL embedding, this may not be
the case when it comes to Fréchet distances.

One open question of practical importance is whether one can improve our result for
polygonal curves that satisfy some realistic structural assumption, e.g., c-packness [16].
Moreover, it is possible that our implications on clustering can be improved. One question
there is whether one can reduce (or eliminate) the dependence on n from the target dimension,
in the same spirit as with the analogous results for the Euclidean distance [31].
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Abstract
We analyze the touring regions problem: find a (1 + ϵ)-approximate Euclidean shortest path in
d-dimensional space that starts at a given starting point, ends at a given ending point, and visits
given regions R1, R2, R3, . . . , Rn in that order.

Our main result is an O
(
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ϵ

log 1
ϵ

+ 1
ϵ

)
-time algorithm for touring disjoint disks. We also give

an O
(
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√

ϵ

))
-time algorithm for touring disjoint two-dimensional convex fat bodies. Both

of these results naturally generalize to larger dimensions; we obtain O
(

n
ϵd−1 log2 1

ϵ
+ 1

ϵ2d−2

)
and

O
(

n
ϵ2d−2

)
-time algorithms for touring disjoint d-dimensional balls and convex fat bodies, respectively.
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1 Introduction

We analyze the touring regions problem: find a (1 + ϵ)-approximate Euclidean shortest path
in d-dimensional space that starts at a given starting point, ends at a given ending point,
and visits given regions R1, R2, R3, . . . , Rn in that order. We primarily present algorithms
for the cases where the regions Ri are constrained to be convex fat bodies or balls.1 To the
best of our knowledge, we are the first to consider the cases where regions are disjoint convex
fat bodies or balls in arbitrary dimensions. Consequently, our algorithms use techniques not
previously considered in the touring regions literature (Section 1.4). Our algorithms work
under the assumption that a closest point oracle is provided; closest point projection has
been extensively used and studied in convex optimization and mathematics [5, 16].

Most prior work focuses on d = 2 or significantly restricts the convex bodies. The special
case where d = 2 and all regions are constrained to be polygons is known as the touring
polygons problem. Dror et al. [9] solved the case where every region is a convex polygon
exactly, presenting an O

(
|V |n log |V |

n

)
-time algorithm when the regions are disjoint as well

as an O
(
|V |n2 log |V |

)
-time algorithm when the regions are possibly non-disjoint and the

1 The full version also contains results for the case where the regions Ri are unions of general convex
bodies.
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subpath between every two consecutive polygons in the tour is constrained to lie within
a simply connected region called a fence. Here, |V | is the total number of vertices over
all polygons. Tan and Jiang [19] improved these bounds to O (|V |n) and O

(
|V |n2)-time,

respectively, without considering subpath constraints.
For touring nonconvex polygons, Ahadi et al. [3] proved that finding an optimal path is

NP-hard even when polygons are disjoint and constrained to be two line segments each. Dror
et al. [9] showed that approximately touring nonconvex polygons with constraining fences is
a special case of 3D shortest path with obstacle polyhedra, which can be solved in Õ

(
e4

ϵ2

)
time by applying results of Asano et al. [4], where e is the total number of edges over all
polyhedra. Mozafari and Zarei [13] improved the bound for the case of nonconvex polygons
with constraining fences to Õ

(
|V |2n2

ϵ2

)
time. Ahadi et al. [3] also solve the touring objects

problem exactly in polynomial time, in which the Ri are disjoint, nonconvex polygons and
the objective is to visit the border of every region without entering the interior of any region.

For touring disjoint disks, a heuristic algorithm with experimental results was demon-
strated by Chou [7]. Touring disjoint unit disks was given in a programming contest and
was a source of inspiration for this paper; an O

(
n
ϵ2

)
-time algorithm was given [1]. The main

result that we show for disks is superior to both of these algorithms.
Polishchuk and Mitchell [17] showed the case where regions are constrained to be inter-

sections of balls or halfspaces in d dimensions to be a special instance of a second-order cone
program (SOCP), which runs in O

(
d3c1.5n2 log 1

ϵ

)
time using SOCP time bounds as a black

box. Here, c is the number of halfspace or ball constraints.

1.1 Formal problem description
▶ Definition 1 (Approximate touring regions problem). Given n sets of points (regions)
R1, R2, . . . , Rn each a subset of Rd, a starting point p0, and an ending point pn+1,2 define
the function D : (Rd)n → R as D(p1, p2, . . . , pn) ≜

∑n
i=0 ∥pi − pi+1∥2.

Let A ≜ {(p1, p2, . . . , pn) | ∀i, pi ∈ Ri} ⊆ (Rd)n. Find a tuple of points (tour)
(p′

1, p′
2, . . . , p′

n) ∈ A such that D(p′
1, p′

2, . . . , p′
n) ≤ (1 + ϵ) minx∈A D(x).

We primarily consider two types of regions: convex fat bodies with constant bounded
fatness and balls. Fat objects have been previously considered in a variety of computational
geometry settings [12, 10, 15, 14].

▶ Definition 2 (Bounded fatness). We say that a convex region R ⊂ Rd is fat if there exist
balls h, H with radii 0 < rh ≤ rH , respectively, that satisfy h ⊆ R ⊆ H ⊂ Rd and rH

rh
= O (1).

One element of the problem that has not yet been determined is how we represent the
sets of points R1, R2, . . . , Rn; this depends on what we restrict the regions to be:

Convex fat bodies: We have access to each of the convex bodies Ri via a closest
point oracle. This oracle allows us to call the function closesti(p) on some point p, which
returns the point p′ ∈ Ri such that ∥p − p′∥ is minimized in O (1) time (note that p′ is
unique due to convexity). Additionally, for each region, we are given the radius rh of the
inscribed ball (as described in Definition 2), and a constant upper bound on the quantity
rH

rh
over all regions.

Balls: For each ball in the input we are given its center c ∈ Rd and its radius r ∈ R>0.

2 For convenience, some of our results define the degenerate regions R0 ≜ {p0} and Rn+1 ≜ {pn+1}.
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We consider the 2-dimensional and general d-dimensional cases separately. In the d-
dimensional case, we assume d is a constant (for example, we say 2d = O (1)). We also
consider the possibly non-disjoint versus disjoint cases separately, where the latter is defined
by the restriction Ri ∩ Rj = ∅ for all 0 ≤ i < j ≤ n + 1.

Motivation for our model

When considering general convex bodies, it is natural to augment the model of computation
with oracle access to the bodies, including membership, separation, and optimization oracles
[11]. In fact, when solving the touring regions problem for general convex bodies, a closest
point oracle is necessary even for the case of a single region, where the starting point is the
same as the ending point and the optimal solution must visit the closest point in the region
to the starting point. Closest point oracles can be constructed trivially when the bodies are
constant sized polytopes or balls. Closest point oracles have been used in the field of convex
optimization [8, 5].

Our representations for convex fat bodies and balls have the nice structure that the
former “contains” the latter: a ball is a specific type of convex fat body, and we can trivially
construct a closest point oracle for balls. We justify considering convex fat bodies as they
are in some sense “between” balls and general convex bodies: they obey some of the packing
constraints of balls.

1.2 Summary of results

Our results and relevant previous results are summarized in Tables 1 and 2. We obtain a
O
(

n
ϵ2d−2

)
time algorithm for touring disjoint convex fat bodies. Notice that this bound is

linear in n; in fact, we show that any FPTAS for touring convex fat bodies can be transformed
into one that is linear in n (Lemma 14). If the regions are further restricted to be balls,
we can apply our new technique of placing points nonuniformly, and the time complexity
improves to O

(
n

ϵd−1 log2 1
ϵ + 1

ϵ2d−2

)
, which roughly halves the exponent of 1

ϵ compared to
the convex fat bodies algorithm while retaining an additive 1

ϵ2d−2 term.
Our 2D-specific optimizations allow us to obtain superior time bounds compared to if we

substituted d = 2 into our general dimension algorithms. For convex fat bodies, we obtain
an algorithm with linear time dependence on both n and 1

ϵ . For our main result of touring
disjoint disks, we combine our optimizations for convex fat bodies and balls with 2D-specific
optimizations.

▶ Theorem 18. There is an O
(

n√
ϵ

log 1
ϵ + 1

ϵ

)
-time algorithm for touring disjoint disks.

With a new polygonal approximation technique, we use the result of [19] for touring
polygons as a black box to obtain algorithms with a square root dependence on 1

ϵ , most
notably an O

(
n3.5
√

ϵ

)
-time algorithm for touring 2D convex bodies and an O

(
n2
√

ϵ

)
-time

algorithm for touring 2D disjoint convex fat bodies.
The O

(
c1.5n2 log 1

ϵ

)
-time result for touring d dimensional convex bodies given by [17],

where each body is an intersection of balls and half spaces (with a total of c constraints) can
be applied specifically to balls to yield an O

(
n3.5 log 1

ϵ

)
-time algorithm. Our algorithms for

touring disjoint disks and balls all take time linear in n and are thus superior when ϵ is not
too small.

SoCG 2023
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Representation Runtime Intersecting? Source

Convex Polygons (Exact) O (|V |n), O
(
|V |n2) No, Yes Touring Polygons

[9], [19]

Convex (Oracle Access) O
(

n2.5
√

ϵ

)
, O
(

n3.5
√

ϵ

)
No, Yes Theorem 10

Convex Fat (Oracle Access) O
(

n
ϵ

)
, O
(

n2
√

ϵ

)
No Theorems 16, 17

Disks O
(

n√
ϵ

log 1
ϵ

+ 1
ϵ

)
No Theorem 18

Table 1 Previous and new bounds on touring n regions in two dimensions up to multiplicative
error 1 + ϵ, where ϵ ≤ O (1). For polygons, |V | is the total number of vertices over all polygons.

Representation Runtime Intersecting? Source

Convex Bodies, each an inter-
section of balls or halfspaces

O
(
c1.5n2 log 1

ϵ

)
Yes SOCP [17]

Convex Fat (Oracle Access) O
(

n
ϵ2d−2

)
No Theorem 15

Balls O
(

n
ϵd−1 log2 1

ϵ
+ 1

ϵ2d−2

)
No Theorem 19

Table 2 Previous and new bounds on touring n regions in d ≥ 2 dimensions up to multiplicative
error 1 + ϵ, where ϵ ≤ O (1). Note that d is treated as a constant. For polyhedra, c is the total
number of constraints.

1.3 Organization of the paper
We start in Section 2 by introducing the general techniques used by all of our algorithms,
including the closest point projection and 2D-specific optimizations. We then use the ideas
of packing and grouping to obtain algorithms for convex fat bodies in Section 3. Finally, we
optimize specifically for balls in Section 4 by placing points non-uniformly.

1.4 Summary of techniques
Here, we introduce the techniques mentioned in the previous subsection.

Placing points uniformly (Section 2)

A general idea that we use in our approximation algorithms is to approximate a convex
body well using a set of points on its boundary. For previous results involving polygons or
polyhedra [4, 13], this step of the process was trivial, as points were equally spaced along
edges. In order to generalize to convex bodies in arbitrary dimensions, we equally space
points on boundaries using the closest point projection oracle with a bounding hypercube
(Lemma 4). After discretizing each body into a set of points, we can solve the problem in
polynomial time using dynamic programming (DP): for each point, we find and store the
optimal path ending at it by considering transitions from all points on the previous region.

2D-specific optimizations (Section 2)

When the input shapes are convex and disjoint, we use properties of Monge matrices to
optimize dynamic programming transitions from quadratic to expected linear time (Lemma 5).
Previous approximation algorithms for related problems discretize the boundary of each
convex region using O

( 1
ϵ

)
points. We present a new approach to approximate each boundary
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using a convex polygon with O
(

1√
ϵ

)
vertices (Lemma 9). This allows us to use previous

exact algorithms for touring convex polygons as black boxes.

Packing and grouping (Section 3)

The key ideas behind our improvements for disjoint convex fat bodies are packing and
grouping. We use a simple packing argument to show that the path length for visiting n

disjoint convex fat bodies with radius r must have length at least Ω(r · n) for sufficiently
large n (Lemma 11). This was used by [1] for the case of unit disks. However, it is not
immediately clear how to use this observation to obtain improved time bounds when convex
fat regions are not all restricted to be the same size. The idea of grouping is to split the
sequence of regions into smaller contiguous subsequences of regions (groups). In each group,
we find the minimum-sized region, called a representative region, which allows us to break
up the global path into smaller subpaths between consecutive representatives. The earlier
packing argument now becomes relevant here, as we can show a lower bound on the total
length of the optimal path in terms of the sizes of the representatives.

Placing points non-uniformly (Section 4)

Previous approximation methods rely on discretizing the surfaces of bodies into evenly spaced
points. For balls, we use the intuition that the portion of the optimal path from one ball to
the next is “long” if the optimal path does not visit the parts of the surfaces that are closest
together. This allows us to place points at a lower density on most of the surface area of each
ball, leading to improved time bounds. We use this technique in conjunction with packing
and grouping. For disks, we additionally apply the aforementioned 2D-specific optimizations.

2 General Techniques

First, we describe the general techniques used by all of our algorithms. We split the discussion
into the general d-dimensional case and the 2-dimensional case.

2.1 General dimensions
The first main ingredient is the closest point projection, which allows us to equally space
points on each convex body.

▶ Lemma 3. For a convex region C, define closestC(p) ≜ argminc∈C ∥c − p∥. For any two
points p1 and p2, ∥closestC(p1) − closestC(p2)∥ ≤ ∥p1 − p2∥.

For any closed set X, let ∂X denote the boundary of X.

▶ Lemma 4 (Equal spacing via closest point projection). Given a convex body C for which
we have a closest point oracle and a hypercube H with side length r, we can construct a
set S ⊂ C of O

( 1
ϵd−1

)
points such that for all p ∈ (∂C) ∩ H, there exists p′ ∈ S such that

∥p − p′∥ ≤ rϵ.

Proof Sketch. First, we prove the statement for C = H. For this case, it suffices to equally
space points on each face of an axis-aligned hypercube defined by [0, r]d. For example, for the
face defined by xd = 0, we place points in a lattice at all coordinates (x1, x2, . . . , xd−1, xd)
that satisfy xd = 0 and xi = ki · rϵ for all integers ki ∈

[
0, 1

ϵ

]
. For C ̸= H, equally space

points on H as we stated to create a set SH. Then define S ≜ {closestC(s) | s ∈ SH}. ◀

SoCG 2023
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The proof of Lemma 3 and the remainder of the proof of Lemma 4 are deferred to the
full version of this paper.

2.2 Two dimensions
When the convex bodies are constrained to lie in 2D, there are two main avenues for further
improvements: first, by speeding up the dynamic programming (DP) transitions when all
regions have been discretized into point sets, and second, by approximating convex bodies
by convex polygons instead of sets of points.

2.2.1 Dynamic programming speedup
▶ Lemma 5. Given are the vertices of two disjoint convex polygons B = [b1, . . . , bm] and
A = [a1, a2, . . . , an] in counterclockwise order and real weights [w1, . . . , wn], one for each
vertex of A. Define d(i, j) ≜ wj + ∥aj − bi∥. Then min1≤j≤n d(i, j) may be computed for all
i ∈ [1, m] in O (m + n) expected time.

Proof. We first discuss the case where all wi = 0. Aggarwal and Klawe
[2] showed how to reduce the computation of min1≤j≤n,aj visible from bi d(i, j) and
min1≤j≤n,aj not visible from bi

d(i, j) for all i ∈ [1, m] to computing the row minima of sev-
eral Monge partial matrices with dimensions m1 × n1, m2 × n2, . . . , mk × nk such that∑

(mi + ni) ≤ O(m + n) in O(m + n) time. Here, aj is said to be visible from bi if the
segment ajbi intersects neither the interiors of polygons A nor B. The definition of Monge
partial matrix can be found in [6]. Chan [6] recently introduced an O (m + n) expected time
randomized algorithm for computing the row minima of an m × n Monge partial matrix.3
Thus, the case of wi = 0 can be solved in O (m + n) expected time.

The key claim that Aggarwal and Klawe [2] use to show that all the matrices they
construct are Monge partial is as follows:

▷ Claim 6 (Lemma 2.1 of [2], adapted). Assume all wj = 0. Suppose j ≠ j′ and i ̸= i′. If
ajaj′bi′bi form a convex quadrilateral in that order then d(i, j) + d(i′, j′) ≤ d(i, j′) + d(i′, j).

The claim above holds by the triangle inequality, and it is easy to check that it still
holds without the assumption wj = 0. Thus the algorithm from [2] generalizes to the case of
nonzero wj with minor modifications. ◀

▶ Corollary 7. The Touring Regions Problem in 2D, where all Ri are sets of finitely many
points Si that each form a convex polygon in counterclockwise order and the convex hulls of
all Si are disjoint, can be solved exactly in O (

∑n
i=1 |Si|) expected time.

Using the above techniques, the following result is proven in the full version and is used
multiple times in Section 3.

▶ Theorem 8. There is an O
(
n2 (log log n + 1

ϵ

))
-time algorithm for touring disjoint convex

bodies in two dimensions. When the bodies are possibly non-disjoint, the bound is
O
(

n3
(

log log n + 1
ϵ + log 1/ϵ

nϵ

))
time.

3 The Monge partial matrix does not have to be given explicitly; it suffices to provide an oracle that
returns the value of any entry of the matrix in O(1) time.
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2.2.2 Polygonal approximation algorithms
Up until now, we have approximated the perimeter of a convex region using points. We can
alternatively approximate the perimeter using a convex polygon with fewer vertices. The
proof is deferred to the full version.

▶ Lemma 9 (Polygonal approximation). Given a closest point oracle for a convex region C

and a unit square U , we may select O
(
ϵ−1/2) points in C such that every point within C ∩ U

is within distance ϵ of the convex hull of the selected points.

The polygonal approximation allows us to immediately obtain the following result.

▶ Theorem 10. There is a O
(

n2.5
√

ϵ

)
-time algorithm for touring 2D disjoint convex bodies.

When the convex bodies are possibly non-disjoint, the bound is O
(

n3.5
√

ϵ

)
time.

Proof Sketch. After using Theorem 8 to find a constant approximation of the optimal path
length, we draw a square of this side length around the starting point, and we know the
optimal path must lie within the square. Then, we apply Lemma 9 to approximate each
region with a convex polygon and use previous exact algorithms for touring polygons [19] to
finish. ◀

3 Disjoint convex fat bodies

In this section, we present packing and grouping techniques for touring disjoint convex fat
bodies and show how they can be applied to obtain O

(
min

(
n
ϵ , n2

√
ϵ

))
-time algorithms for

touring 2D disjoint convex fat bodies.

3.1 Techniques
3.1.1 Packing
A packing argument shows that the length of the optimal path length is at least linear in the
number of bodies and the minimum rh (that is, the minimum radius of any inscribed ball).
Intuitively, if we place n disjoint objects of radius at least 1 that are close to being disks on
the plane, the length of the optimal tour that visits all of them should be at least linear in n

for sufficiently large n. The proof is deferred to the full version.

▶ Lemma 11 (Packing Lemma). Assume a fixed upper bound on rH

rh
. Then there exists

n0 = O (1) such that the optimal path length OPT for touring any n ≥ n0 disjoint convex
fat objects is Ω(n · min rh). For balls, n0 = 3.

The packing lemma allows us to obtain a strong lower bound on the length of the optimal
tour in terms of the size of the regions, which will be crucial in proving that our algorithms
have low relative error.

▶ Corollary 12. Let ri denote the ith largest rh. For all i ≥ n0, ri ≤ O
(

OP T
i

)
.

Proof. Consider dropping all regions except those with the i largest inner radii and let OPTi

be the optimal length of a tour that visits the remaining disks in the original order. By
Lemma 11, for i ≥ n0, OPT ≥ OPTi ≥ Ω(i · ri) =⇒ ri ≤ O

(
OP T

i

)
. ◀

▶ Lemma 13. The optimal path length for touring n disjoint convex fat bodies is
Ω
(∑

i≥n0
ri/ log n

)
, and there exists a construction for which this bound is tight.

SoCG 2023
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Proof Sketch. Using Corollary 12,∑
i≥n0

ri

log n
≤
∑
i≥n0

O
(

OP T
i

)
log n

≤ O

(
OPT

log n

n∑
i=n0

1
i

)
≤ O (OPT ) .

We display the construction in Figure 1; we defer the full description to the full version. The
idea is to place disjoint disks of radii 1/1, 1/2, 1/3, . . . such that they are all tangent to a
segment of the x-axis of length O (1). ◀

x = 0 x = 6

Figure 1 Construction from Lemma 13: placement of the first 30 disks.

3.1.2 Grouping
We now show that we can split up the optimal path into smaller subpaths by splitting the
sequence of bodies into groups of consecutive bodies, finding the minimum-sized body in each
group, and considering the subpaths between these small bodies. By the packing lemma, the
sum of the radii of the representatives is small compared to the total path length.

In particular, using groups of size 1
ϵ , we can compress the smallest sized region into a

single point, meaning that we can consider touring regions between these points independently
from each other. This allows us to turn any polynomial time approximation scheme for
touring disjoint convex fat bodies into one that is linear in n.

▶ Lemma 14 (Grouping Lemma). Given an algorithm for touring disjoint convex fat bodies
in d dimensions that runs in f(n, ϵ) time, where f is a polynomial, we can construct an
algorithm that runs in O (nϵ + 1) · f

( 1
ϵ , ϵ
)

time (for ϵ ≤ O(1)).

Proof. We describe an algorithm achieving a (1 + O(ϵ))-approximation. To achieve a
(1 + ϵ)-approximation, scale down ϵ by the appropriate factor.

Define s ≜
⌈ 1

ϵ

⌉
and let n0 be the constant defined in the statement of Lemma 11. We will

prove the statement for all ϵ satisfying 1
ϵ ≥ n0. First, we divide the n+2 regions (including R0

and Rn+1) into k = max
(⌈

n+2
s

⌉
, 2
)

≤ O (nϵ + 1) consecutive subsequences, each with exactly
s regions (except the starting and ending subsequences, which are allowed to have fewer). Let
Mi be the region with minimum inscribed radius rh in the ith subsequence; note that M1 = R0
and Mk = Rn+1. For each i ∈ [1, k], pick an arbitrary point pi ∈ Mi. Let OPT ′ be the
length of the shortest tour of R0, . . . , Rn+1 that passes through all of the pi. The p1, . . . , pk

form k − 1 subproblems, each with at most 2s regions. Therefore, we can (1 + ϵ)-approximate
OPT ′ by (1 + ϵ)-approximating each subproblem in (k − 1) · f(2s, ϵ) ≤ O (nϵ + 1) · f

( 1
ϵ , ϵ
)

time.
It remains to show that OPT ′ is a (1+O(ϵ))-approximation for OPT . Let ri be shorthand

for the radius rh of Mi (r1 = rk = 0). By the definition of fatness, the distance between any
two points in Mi is at most O (ri). By following through OPT and detouring to each point
pi, we get a path through points pi with length at most OPT + O (

∑
ri), and OPT ′ is at

most this amount.
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The last remaining step is to show
∑

ri ≤ O (ϵ · OPT ). We apply Lemma 11 to each
subsequence, and obtain that ris ≤ O (OPTi), where OPTi is the optimal distance to tour
regions in subsequence i. Note that although the starting and ending subsequences can have
sizes less than s, they satisfy ri = 0, so this bound holds for all subsequences. Therefore,∑

ri ≤ O (ϵ ·
∑

OPTi) ≤ O (ϵ · OPT ). ◀

3.2 Algorithms for convex fat bodies
Using a similar grouping argument, but using constant sized instead of 1

ϵ sized groups, along
with earlier methods of using estimates of the path length to place points on the boundaries
of the convex fat bodies yields the following results.

▶ Theorem 15. There is an O
(

n
ϵ2d−2

)
-time algorithm for touring disjoint convex fat bodies

in d dimensions.

Proof. We proceed in a similar fashion as Lemma 14, except we define s ≜ n0, i.e., using
constant sized groups instead of ⌈ 1

ϵ ⌉ sized groups. Let the Mi be defined as in the proof of
Lemma 14, and define mi to be the outer radius of Mi.

For each pair of regions Mi, Mi+1, pick arbitrary points a ∈ Mi, b ∈ Mi+1, and use the
d-dimensional analog of Theorem 84 to obtain a 4-approximation Dapprox of the length of the
shortest path from a to b in O (1) time. Suppose that the optimal path uses p ∈ Mi, q ∈ Mi+1
and the shortest path from a to b has distance OPTa,b; by the triangle inequality, we must
have

1
4Dapprox ≤ OPTa,b ≤ OPTi + 2mi + 2mi+1.

Now, consider the path where we start at p and then travel along the line segment from p to
a, the approximate path of length Dapprox from a to b (visiting the regions in between Mi and
Mi+1), and the line segment from b to q. This path has length at most Dapprox +2mi +2mi+1,
and upper bounds the length of the optimal path between p and q. So, the entire path
between p and q lies within a ball of radius Dapprox + 4mi + 2mi+1 centered at a; call this
ball L. Note that L has radius l = Dapprox + 4mi + 2mi+1 ≤ O (OPTi + mi + mi+1).

For each region Rj between Mi and Mi+1 inclusive, we apply Lemma 4 with the region
and a hypercube containing L, which has side length 2l. Note that points are placed twice
on each Mi; this is fine. Lemma 4 guarantees the existence of a point in Rj that is 2lϵ close
to the point OPT uses by placing O

( 1
ϵd−1

)
points on each region.

We now bound the difference between the optimal and the shortest paths using only the
points we placed. The difference is at most

k∑
i=1

(2liϵ · n0) = ϵ · O

(
k∑

i=1
li

)
= ϵ · O

(
OPT +

k∑
i=1

mi

)
= O (ϵ · OPT ) ,

where the last step is due to Corollary 12 applied on each subsequence: in particular, the
optimal path length visiting all the regions in subsequence i has length at least Ω(mi), so
summing this inequality over all subsequences, we have

∑k
i=1 mi ≤ O (OPT ).

We have now reduced the problem to the case where each region has only finitely many
points. We finish with dynamic programming. Since we have O

( 1
ϵd−1

)
points on each of the

n regions, the runtime is O
(

n
ϵ2d−2

)
, as desired. ◀

4 This theorem may be found in Table 2 of the full version.
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▶ Theorem 16. There is an O
(

n
ϵ

)
-time algorithm for touring 2D disjoint convex fat bodies.

Proof. This is almost the same as Theorem 15, where O
( 1

ϵd−1

)
= O

( 1
ϵ

)
points are placed

on each body, except that we use Corollary 7 to more efficiently solve the case where each
region is a finite point set. ◀

▶ Theorem 17. There is an O
(

n2
√

ϵ

)
-time algorithm for touring 2D disjoint convex fat bodies.

Proof. Theorem 16 through the construction of Theorem 15 places O
( 1

ϵ

)
points on an arc

of length R on each convex fat body to guarantee additive error ≤ ϵR. We can achieve the
same additive error using a convex polygon with O

(
ϵ−1/2) vertices using Lemma 9. Then,

recall that [19] gives an O (|V |n)-time exact algorithm for touring convex polygons, so we
can recover a solution in O (|V |n) = O

(
(n · ϵ−1/2) · n

)
time. ◀

4 Balls

We can improve the results in previous sections by discretizing the surfaces non-uniformly,
placing fewer points on areas of each hypersphere that are farther away from the previous
and next ball in the sequence. This reduces the dependence on ϵ by a square root compared
to Theorem 15 and Theorem 16. We first state the results:

▶ Theorem 18. There is an O
(

n√
ϵ

log 1
ϵ + 1

ϵ

)
-time algorithm for touring disjoint disks.

▶ Theorem 19. There is an O
(

n
ϵd−1 log2 1

ϵ + 1
ϵ2d−2

)
-time algorithm for touring disjoint balls

in d dimensions.

The crucial lemma we use for these results follows. We defer its proof to the full version.

▶ Lemma 20. A tour of disjoint balls is globally optimal if and only if for each intermediate
ball, the tour either passes straight through the ball or perfectly reflects off its border (see
Figure 2 for an example).

p0

p2 p3c1

c2

Figure 2 Lemma 20: An optimal tour of two unit disks. The tour starts at p0, passes through c1,
reflects off c2 at p2, and ends at p3.

We start with the special case of unit disks and then generalize to non-unit disks
(Theorem 18). First, we provide intuition through a simple example where n = 1 and R1 is a
line.

▶ Example 21. Given start and endpoints p0 = (−1, 1) and p2 = (1, 1), select p1 from the
x-axis such that OPT = ∥p0 − p1∥ + ∥p1 − p2∥ is minimized.

Solution. To solve this exactly, choose p1 = (0, 0) such that the path perfectly reflects off
the x-axis. This gives OPT = 2

√
2.
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Now suppose that we are only interested in an approximate solution. Tile the x-axis with
points at regular intervals such that every two consecutive points are separated by distance
d, and round p1 to the closest such point p′

1. Since ∥p1 − p′
1∥ ≤ d,

OPT ′ ≜ ∥p0 − p′
1∥ + ∥p′

1 − p2∥

≤
√

1 + (1 − d)2 +
√

1 + (1 + d)2 ≤
√

2 − 2d + d2 +
√

2 + 2d + d2

≤
√

2(1 − d/2 + 1 + d/2 + O
(
d2)) ≤ 2

√
2(1 + O

(
d2)).

So, to attain OPT ′ ≤ (1 + ϵ)OPT , it suffices to take d = Θ(
√

ϵ) rather than d = Θ(ϵ)
because p′

1 − p1 is parallel to the x-axis. We can apply a similar idea to replace the middle
region with a point set when R1 is a circle rather than a line since circles are locally linear.
However, this doesn’t quite work when either ∥p0 − p1∥ or ∥p1 − p2∥ is small. For example,
if p0 was very close to the x-axis (say, p0 = (−d, d)) then rounding p1 to the nearest p′

1 could
cause OPT ′ to increase by Θ(d) ≫ d2. So when we replace each circle with a point set, we
need to be careful about how we handle two circles that are close to touching; the solution is
to space points more densely near where they touch. ◀

▶ Theorem 22. There is an O
(

n√
ϵ

log 1
ϵ

)
-time algorithm for touring disjoint unit disks.

Proof. We describe how to place a set of O
(

1√
ϵ

log 1
ϵ

)
points Si on each unit circle ci so

that the length of an optimal path increases by at most O (nϵ) after rounding each pi to
the nearest p′

i ∈ Si. Define unit(x) = x
∥x∥ . Let oi ≜ p′

i − pi for all i ∈ [0, n + 1] (note that
o0 = on+1 = 0), where o stands for offset. Also, define vectors

di ≜ p′
i+1 − p′

i = pi+1 + oi+1 − pi − oi

and scalars

ai ≜ di · unit(pi+1 − pi) = ∥pi+1 − pi∥ + (oi+1 − oi) · unit(pi+1 − pi),

where ai is the component of di along the direction of pi+1 − pi. Then the total path length
after rounding each pi to p′

i is:
n∑

i=0
∥di∥ =

n∑
i=0

√
[di · unit(pi+1 − pi)]2 + [di · unit(pi+1 − pi)⊥]2

=
n∑

i=0

√
a2

i + [(oi+1 − oi) · unit(pi+1 − pi)⊥]2

=
n∑

i=0

[
ai +

(√
a2

i + [(oi+1 − oi) · unit(pi+1 − pi)⊥]2 − ai

)]

= OPT +
n∑

i=1

extra1(i)︷ ︸︸ ︷
oi · (unit(pi − pi−1) − unit(pi+1 − pi))

+
n∑

i=0

extra2(i)︷ ︸︸ ︷(√
a2

i + [(oi+1 − oi) · unit(pi+1 − pi)⊥]2 − ai

)

= OPT +
n∑

i=1
extra1(i) +

n∑
i=0

extra2(i).

We defer the construction of the sets Si so that both extra terms are small to Lemma 23.
Then we can finish with dynamic programming (Corollary 7). ◀
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▶ Lemma 23. It is possible to choose Si in the proof of Theorem 22 such that |Si| ≤
O
(

1√
ϵ

log 1
ϵ

)
, extra1(i) ≤ O (ϵ), and extra2(i) ≤ O (ϵ) for all i.

Proof. First, we present the construction. For every pair of adjacent disks i and i + 1 we
describe a procedure to generate points on their borders. Then we set Si to be the union of
the generated points on the border of disk i when running the procedure on disks (i, i + 1)
and on disks (i − 1, i). Finally, we show that extra1(i) and extra2(i) are sufficiently small for
all i for our choice of Si.

Procedure. Reorient the plane that ci = (0, y) and ci+1 = (0, −y) for some y > 1. Let
spacing : R≥0 → R>0 be a function that is nonincreasing in |ϕ| that we will define later.
Given spacing, we use the following process to add points to Si (and symmetrically for Si+1):

1. Set ϕ = 0.
2. While ϕ ≤ π:

Add (sin ϕ, y − cos ϕ) to Si.
ϕ += spacing(ϕ).

3. Repeat steps 1-2 but for ϕ from 0 to −π.

This procedure has the property that for any ϕ ∈ [−π, π], the point (sin ϕ, y − cos ϕ) is
within distance spacing(|ϕ|) of some point in Si. In particular, if the optimal path has
pi = (sin ϕi, y − cos ϕi) then it is guaranteed that ∥oi∥ ≤ spacing(ϕi). To compute |Si|, note
that as long as spacing(ϕ) is sufficiently smooth that spacing(ϕ)

spacing(ϕ+spacing(ϕ)) = Θ(1) for all ϕ,
the number of points added to Si will be at most a constant factor larger than the value of
the definite integral

∫ π

−π
1

spacing(ϕ) dϕ.

Next, we construct spacing so that |Si| = O
(

1√
ϵ

log 1
ϵ

)
. Intuitively, by Example 21, we

should have spacing(ϕ) = Θ(ϵ) closer to circle i + 1 (when ϕ ≈ 0) and spacing(ϕ) = Θ(
√

ϵ)
farther from circle i + 1 (when ϕ = Θ(1)). Thus, we set spacing(ϕ) = max(ϵ,

√
ϵϕ). The total

number of added points is on the order of:∫ π

0

1
spacing(ϕ) dϕ = 1√

ϵ

(∫ √
ϵ

0

1√
ϵ

dϕ +
∫ π

√
ϵ

1
ϕ

dϕ

)

= 1√
ϵ

(
1 + log

(
π√
ϵ

))
≤ O

(
1√
ϵ

log 1
ϵ

)
.

Finally, we show that both extra terms are small for our choice of Si.

Part 1: extra1(i). We note that unit(pi − pi−1) − unit(pi+1 − pi) must be parallel to pi − ci

for an optimal solution p. To verify this, it suffices to check the two cases from Lemma 20:
1. The points pi−1, pi, pi+1 are collinear, in which case unit(pi − pi−1) − unit(pi+1 − pi) = 0.
2. The path reflects perfectly off circle i, in which case unit(pi − pi−1) − unit(pi+1 − pi) is

parallel to pi − ci.

If we ensure that spacing(ϕ) ≤
√

ϵ for all ϕ, then |oi · unit(pi − ci)| ≤ ϵ because oi is
always nearly tangent to the circle centered at ci at point pi. The conclusion follows because
extra1(i) ≤ 2|oi · unit(pi − ci)| ≤ 2ϵ.
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Part 2: extra2(i). We upper bound extra2(i) by the sum of two summands, the first
associated only with oi and the second associated only with oi+1.

▷ Claim 24. Letting ycoord(·) denote the y-coordinate of a point,

extra2(i) ≤ 2 ·

(
min

(
∥oi∥ ,

4 ∥oi∥2

ycoord(pi)

)
+ min

(
∥oi+1∥ ,

4 ∥oi+1∥2

−ycoord(pi+1)

))
.

Proof. We do casework based on which term is smaller on each of the mins.
1. ∥oi∥ ≥ ycoord(pi)

4 , ∥oi+1∥ ≥ −ycoord(pi+1)
4

The result, extra2(i) ≤ 2(∥oi∥+∥oi+1∥), follows by summing the following two inequalities:

√
a2

i + [(oi+1 − oi) · unit(pi+1 − pi)⊥]2 − ∥pi+1 − pi∥

= ∥pi+1 − pi + oi+1 − oi∥ − ∥pi+1 − pi∥ ≤ ∥oi∥ + ∥oi+1∥

and ∥pi+1 − pi∥ − ai ≤ ∥oi∥ + ∥oi+1∥.
2. ∥oi∥ ≤ ycoord(pi)

4 , ∥oi+1∥ ≤ −ycoord(pi+1)
4

Then ∥oi∥ , ∥oi+1∥ ≤ ∥pi+1−pi∥
4 so ai ≥ ∥pi+1−pi∥

2 , and

extra2(i) ≤ ∥oi+1 − oi∥2

2ai
≤ 2(∥oi+1∥2 + ∥oi∥2)

2ai

≤ 2 · ∥oi+1∥2 + ∥oi∥2

∥pi − pi+1∥
≤ 2 ·

(
∥oi∥2

ycoord(pi)
+ ∥oi+1∥2

−ycoord(pi+1)

)
.

3. ∥oi∥ ≤ ycoord(pi)
4 , ∥oi+1∥ ≥ −ycoord(pi+1)

4
Define extra′(i) to be the same as extra2(i) with oi+1 set to 0. Then

extra′(i) ≜ ∥pi+1 − pi − oi∥ − (∥pi+1 − pi∥ − oi · unit(pi+1 − pi))

=
√

(∥pi+1 − pi∥ − oi · unit(pi+1 − pi))2 + [oi · unit(pi+1 − pi)⊥]2

− (∥pi+1 − pi∥ − oi · unit(pi+1 − pi))

≤ ∥oi∥2

2 · 3
4 ∥pi − pi+1∥

≤ ∥oi∥2

2 · 3
4 · ycoord(pi)

and by similar reasoning as case 1, extra2(i) − extra′(i) ≤ 2 ∥oi+1∥.
4. ∥oi∥ ≥ ycoord(pi)

4 , ∥oi+1∥ ≤ −ycoord(pi+1)
4

Similar to case 3. ◀

Now that we have a claim showing an upper bound on extra2(i), it remains to show
that min

(
∥oi∥ , ∥oi∥2

ycoord(pi)

)
≤ O (ϵ) for our choice of spacing. Indeed, when ϕ ≤

√
ϵ we have

∥oi∥ ≤ spacing(ϕ) ≤ ϵ, while for ϕ >
√

ϵ we have ∥oi∥2

ycoord(pi) ≤ O
(

spacing(ϕ)
ϕ2

)
≤ O (ϵ). ◀

With small modifications to the proof of Lemma 23, we have the following corollary:

▶ Corollary 25. Consider the case of non-unit disks. If the ith disk has radius ri, then we
can place O

(
1√
ϵi

log 1
ϵi

)
points on its border such that the additive error associated with ci

—specifically, extra1(i) plus the components of extra2(i − 1) and extra2(i) associated with ∥oi∥
—is O (riϵi). Consequently, OPT +

∑n
i=1 extra1(i) +

∑n
i=0 extra2(i) ≤ OPT +

∑n
i=1 riϵi.
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Now, we finally prove Theorems 18 and 19.

Proof of Theorem 18 (Non-Unit Disks). We first present a slightly weaker result, and then
show how to improve it. Recall that by Corollary 12, the ith largest disk has radius O

(
OP T

i

)
for i ≥ 3. So if we set ϵi = ϵ′ = ϵ

log n for each of the ith largest disks for i ≥ 3, the total
additive error contributed by these disks becomes

O

(
n∑

i=3

OPT

i
· ϵi

)
≤ O

(
OPT · ϵ′ ·

n∑
i=3

1
i

)
≤ O (ϵOPT )

by Corollary 25. For the two largest disks, we use the previous naive discretization (placing
O
( 1

ϵ

)
points uniformly on the intersection of the circles with a square of side length

O (OPT ) centered about the starting point). We may assume we have already computed a
constant approximation to OPT in O (n) time by applying Theorem 16 with ϵ = 1. After
selecting the point sets, we can finish with Corollary 7. The overall time complexity is

O
(

n√
ϵ′ log 1

ϵ′ + 1
ϵ

)
≤ O

(
n
√

log n√
ϵ

log
(

log n
ϵ

)
+ 1

ϵ

)
.

We can remove the factors of log n by selecting the ϵi to be an increasing sequence. Set
ϵi = Θ

(
ϵi2/3

n2/3

)
for each i ∈ [3, n] such that more points are placed on larger disks. Then the

total added error remains

O

(
OPT ·

(
ϵ +

n∑
i=3

ϵi

i

))
= O

(
OPT ·

(
ϵ +

n∑
i=3

1
i

· ϵi2/3

n2/3

))

= O

(
OPTϵ ·

(
1 + n−2/3 ·

n∑
i=3

i−1/3

))
≤ O (OPTϵ) ,

and the factors involving log n drop out from the time complexity:

O

(
n∑

i=3

1√
ϵi

log
(

1
ϵi

)
+ 1

ϵ

)
≤ O

(∫ n

i=3

1√
ϵ
n1/3i−1/3 log

(
n2/3

i2/3ϵ

)
di + 1

ϵ

)
≤ O

(
3n1/3

2
√

ϵ
i2/3

(
log n2/3

i2/3ϵ
+ 1
) ∣∣∣∣n

3
+ 1

ϵ

)
≤ O

(
n√
ϵ

log
(

1
ϵ

)
+ 1

ϵ

)
. ◀

To extend to multiple dimensions, we generalize the construction from Lemma 23.

Proof of Theorem 19 (Balls). As in Lemma 23, set spacing(ϕ) = max(ϵ,
√

ϵϕ) for a point
pi satisfying m∠picici+1 = ϕ, meaning that there must exist p′

i ∈ Si satisfying ∥pi − p′
i∥ ≤

ri · spacing(ϕ). The total number of points |Si| placed on the surface of a d-dimensional
sphere is proportional to∫ π

0

sind−2(ϕ)
spacing(ϕ)d−1 dϕ ≤ 1

(
√

ϵ)d−1

∫ π

0

ϕd−2

max(
√

ϵ, ϕ)d−1 dϕ

= 1
ϵ(d−1)/2

(∫ √
ϵ

0

ϕd−2

(
√

ϵ)d−1 dϕ +
∫ √

ϵ

0

1
ϕ

dϕ

)
≤ O

(
1

ϵ(d−1)/2 log 1
ϵ

)
,

where the derivation of the integration factor sind−2(ϕ) can be found in [18].
It remains to describe how to space points so that they satisfy the given spacing function.

For each spacing s = ϵ, 2ϵ, 4ϵ, . . . ,
√

ϵ, we can find a d-dimensional hypercube of side length
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O(s/
√

ϵ) that encloses all points on the hypersphere with required spacing at most 2s. Evenly
space points with spacing s across the surface of this hypercube according to Lemma 4, and
project each of these points onto the hypersphere. There are a total of O

(
log 1

ϵ

)
values of s,

and each s results in O
( 1

ϵ(d−1)/2

)
points being projected onto the hypersphere, for a total of

O
( 1

ϵ(d−1)/2 log 1
ϵ

)
points. ◀
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Abstract
Regression depth, introduced by Rousseeuw and Hubert in 1999, is a notion that measures how
good of a regression hyperplane a given query hyperplane is with respect to a set of data points.
Under projective duality, this can be interpreted as a depth measure for query points with respect to
an arrangement of data hyperplanes. The study of depth measures for query points with respect to
a set of data points has a long history, and many such depth measures have natural counterparts in
the setting of hyperplane arrangements. For example, regression depth is the counterpart of Tukey
depth. Motivated by this, we study general families of depth measures for hyperplane arrangements
and show that all of them must have a deep point. Along the way we prove a Tverberg-type theorem
for hyperplane arrangements, giving a positive answer to a conjecture by Rousseeuw and Hubert
from 1999. We also get three new proofs of the centerpoint theorem for regression depth, all of
which are either stronger or more general than the original proof by Amenta, Bern, Eppstein, and
Teng. Finally, we prove a version of the center transversal theorem for regression depth.
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1 Introduction

A central topic in combinatorial geometry and computational geometry is the study of
structural properties of finite families of points in Euclidean spaces. Studying which sets
can be separated from others by hyperplanes is a natural question, which leads us to study
combinatorial properties of convex sets. Classic results, such as Tverberg’s theorem [26] and
Rado’s centerpoint theorem [17] follow from this line of thought.

In some cases, instead of being provided our data as a finite set of points in Rd, we might
receive it as a set of hyperplanes. Understanding which results for families of points transfer
to families of hyperplanes is a natural question.

Given a hyperplane arrangement A in Rd and a point q, we first consider the depth of q

with respect to A as follows.

▶ Definition 1. The regression depth of a query point q with respect to hyperplane arrangement
A, denoted by RD(A,q), is the minimum number of hyperplanes in A intersected by or parallel
to any ray emanating from q.

Note that if q lies on a hyperplane H, then any ray emanating from q intersects H.
Regression depth has been widely studied [1, 7, 21, 22, 28]. In this manuscript we provide
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new structural results for regression depth, related to Tverberg’s theorem and enclosing depth.
In particular, given a finite arrangement A of hyperplanes in Rd, we might measure the depth
of a point q in A in several different ways, so we study general properties of depth measures
with respect to arrangements of hyperplanes. This follows a similar approach recently taken
for depth measures with respect to finite families of points [23].

Given an arrangement A of n hyperplanes, the existence of points with regression depth
at least n/(d + 1) has been established by Amenta, Bern, Eppstein, and Teng [1], and later
by Mizera [15] as well as Karasev [11]. This can be considered a hyperplane version of Rado’s
centerpoint theorem [17]. We give three new proofs of the existence of points with large
regression depth. First, we prove a Tverberg-type theorem for hyperplanes, confirming a
conjecture of Rousseeuw and Hubert [21].

▶ Theorem 2. Let r, d be positive integers and A be an arrangement of at least (r−1)(d+1)+1
hyperplanes in Rd. Then, there exists a point q in Rd and a partition of A into r parts such
that q has positive regression depth with respect to each of the r parts.

This was previously known when d = 2 [21] or when r is a prime power [12, 13]. The
version for prime powers by Karasev holds with a slightly more restrictive version of regression
depth. Based on this result, we define the hyperplane Tverberg depth of a point.

▶ Definition 3. The hyperplane Tverberg depth of a query point q with respect to hyperplane
arrangement A, denoted by HTvD(A,q), is the maximum r such that there is a partition of
A into r parts such that q has positive regression depth with respect to each part.

Our other two proofs are topological, and each also has stronger consequences. One proof
based on a topological version of Helly’s theorem shows the existence of points of high open
regression depth, which is a slightly weaker measure of depth introduced in Section 5. The
last proof, based on properties of vector bundles, works for regression depth in families of
weighted arrangements.

Another way to measure the depth of a point with respect to a hyperplane arrangement
is via k-enclosures. We say that an arrangement A k-encloses a query point q if A can be
partitioned into d + 1 pairwise disjoint subsets A1, . . . , Ad+1, each of size k, such that for
every choice h1 ∈ A1, . . . , hd+1 ∈ Ad+1 we have that RD({h1, . . . , hd+1}, q) ≥ 1.

▶ Definition 4. The hyperplane enclosing depth of a query point q with respect to a hyperplane
arrangement A, denoted by HED(A,q), is the maximum k such that there is a sub-arrangement
of A which k-encloses q.

Given a finite hyperplane arrangement A, we prove the existence of points with high
hyperplane enclosing depth with respect to A. In particular, our lower bound is linear in |A|.
The existence of points with large enclosing depth for families of points has been established
by Pach [16] and by Fabila-Monroy and Huemer [6] (see [23] for improved constants).

One striking generalization of Rado’s centerpoint theorem is the central transversal
theorem, proven independently by Dolnikov and by Živaljević and Vrećica [5, 29]. In Section
7 we prove an analogue for hyperplane arrangements. Given a hyperplane arrangement A in
Rd and a linear subspace L in Rd, we denote by A ∩ L the restriction of A to L. In Theorem
28, we show that given d − k + 1 different arrangements of hyperplanes in Rd, there exists a
k-dimensional linear subspace L such that the restrictions of each arrangement to L share a
point with high regression depth.

In particular, just as the central transversal theorem generalizes the ham sandwich
theorem, Theorem 28 has the following corollary.
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▶ Corollary 5. Let A1, . . . , Ad be d hyperplane arrangements in Rd. There exists a line ℓ

through the origin in Rd and a point q ∈ ℓ such that each of the two rays in ℓ starting from q

intersects at least |Ai|/2 hyperplanes of Ai, for each i = 1, . . . , d.

The corollary above is similar to mass partition results for families of hyperplanes with
segments [3, 18], and to projective versions of the central transversal theorem [13].

2 Correspondence to depth measures for point sets

For an arrangement A and a query point q, we define the dual of A at q, denoted by A∗
q , as

follows. For each hyperplane h ∈ A, let p(h) be the unique point on h that is closest to q.
We define A∗

q as the set formed by all these points, that is, A∗
q := {p(h) | h ∈ A}. Note that

if q lies on k hyperplanes, then those k dual points coincide with q in A∗
q .

Using this duality, for every depth measure ρ on point sets we can define a corresponding
depth measure ρ∗ on hyperplane arrangements and vice versa, by setting ρ∗(A, q) = ρ(A∗

q , q).
We have the following observation.

▶ Observation 6. 1. a ray r emanating from q intersects a hyperplane h if and only if the
half-space r⊥ defined by the hyperplane thorugh q orthogonal to r, oriented such that it
contains r, contains p(h);

2. the point q has positive regression depth with respect to h1, . . . , hn if and only if it is in
the convex hull of p(h1), . . . , p(hn).

3. the point q lies in the simplex defined by h1 . . . , hd+1 if and only if it is in the interior of
the convex hull of p(h1), . . . , p(hd+1).

The three depth measures for hyperplane arrangements defined in Section 1 all have
natural corresponding depth measures for point sets that follow immediately from Observation
6. For regression depth, the corresponding depth measure is Tukey depth (TD), which is
defined as the minimum number of data points contained in any closed half-space containing
the query point q [25]. For hyperplane Tverberg depth we get Tverberg depth (TvD), which is
defined as the maximum r for which there exists an r-partition of the data points containing
the query point q in their intersection. Finally, for hyperplane enclosing depth, we get
enclosing depth (ED), which is defined as the maximum k for which there exists a subset of
the data points that k-encloses the query point q [23].

▶ Corollary 7. Let A be an arrangement of hyperplanes in general position in Rd and let q

be a query point. Then
1. RD(A, q) = TD(A∗

q , q);
2. HTvD(A, q) = TvD(A∗

q , q);
3. HED(A, q) = ED(A∗

q , q).

3 Axioms for hyperplane depth

Let ARd denote the family of all finite arrangements of hyperplanes in Rd. A depth measure
for hyperplanes is a function ρ : (ARd

,Rd) → R≥0 which assigns to each pair (A, q) consisting
of a hyperplane arrangement A and a query point q a value, which describes how deep the
query point q lies within the arrangement A. A depth measure is called combinatorial if it
is the same for all points in a face of A. Similar to [23], we introduce some axioms, that
reasonable depth measures for hyperplane arrangements should satisfy.

We say that a combinatorial depth measure for hyperplanes is super-additive if it satisfies
the following four conditions.

SoCG 2023
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q

Figure 1 Hyperplane enclosing depth does not satisfy condition (iv): the point q has hyperplane
enclosing depth 1 with respect to both the blue and the red lines, but its hyperplane enclosing depth
with respect to the union of the two sets is still 1.

(i) for all A ∈ ARd and q ∈ Rd and any hyperplane h we have |ρ(A, q) − ρ(A ∪ {h}, q)| ≤ 1,
(ii) for all A ∈ ARd we have ρ(A, q) = 0 if q is in an unbounded cell of A,
(iii) for all A ∈ ARd we have ρ(A, q) ≥ 1 if q is in a bounded cell or if q lies on a hyperplane

of A,
(iv) for any disjoint subsets A1, A2 ⊆ A and q ∈ Rd we have ρ(A, q) ≥ ρ(A1, q) + ρ(A2, q).

▶ Observation 8. Regression depth and hyperplane Tverberg depth are super-additive, but
hyperplane enclosing depth is not.

For hyperplane enclosing depth, an example with HED(A1, q) = HED(A2, q) =
HED(A, q) = 1 can be found in Figure 1.

▶ Lemma 9. Let ρ be any combinatorial depth measure that satisfies conditions (i) and (ii).
Then for all A ∈ ARd and q ∈ Rd we have ρ(A, q) ≤ RD(A, q).

Proof. Let RD(A, q) = k. This means that there is a ray r which intersects or is parallel
to some k hyperplanes of A. Removing these k hyperplanes, we get a new arrangement A′

and we have RD(A′, q) = 0. In particular, q is in an unbounded cell of A′ and thus also
ρ(A′, q) = 0 by condition (ii). By condition (i) we have ρ(A, q) ≤ ρ(A′, q) + k = k. ◀

▶ Lemma 10. Let ρ be any combinatorial depth measure that satisfies conditions (iii) and
(iv). Then for all A ∈ ARd and q ∈ Rd we have ρ(A, q) ≥ HTvD(A, q).

Proof. Let HTvD(A, q) = k. This means that there is a k-partition A1, . . . , Ak such that q

has regression depth ≥ 1 with respect to each part. By condition (iii) we have ρ(Ai, q) ≥ 1
for each Ai. By condition (iv) we get ρ(A, q) ≥ ρ(A1, q) + . . . + ρ(Ak, q) ≥ k. ◀

▶ Lemma 11. For all A ∈ ARd and q ∈ Rd we have HTvD(A, q) ≥ 1
d RD(A, q).

Proof. By Corollary 7 we have HTvD(A, q) = TvD(A∗
q , q) and RD(A, q) = TD(A∗

q , q). It
is well known that for any point set S in Rd and any query point q we have TvD(S, q) ≥
1
d TD(S, q), see e.g. [1, 8, 19]. ◀

Combining all of the above, we get
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▶ Theorem 12. Let ρ be a super-additive depth measure for hyperplanes. Then for all
A ∈ ARd and q ∈ Rd we have RD(A, q) ≥ ρ(A, q) ≥ HTvD(A, q) ≥ 1

d RD(A, q).

As we have seen above, not all depth measures are super-additive: hyperplane enclosing
depth is an example of a measure that is not. To include more general depth measures, we
define a second family of measures, defined by a weaker set of axioms. We call a combinatorial
depth measure for hyperplanes enclosable if it satisfies the following conditions.

(i) for all A ∈ ARd and q ∈ Rd and any hyperplane h we have |ρ(A, q) − ρ(A ∪ {h}, q)| ≤ 1,
(ii) for all A ∈ ARd we have ρ(A, q) = 0 if q is in an unbounded cell of A,

(iii’) for all A ∈ ARd we have ρ(A, q) ≥ k if A k-encloses q,
(iv’) for all A ∈ ARd and q ∈ Rd and any hyperplane h we have ρ(A ∪ {h}, q) ≥ ρ(A, q).

▶ Observation 13. Regression depth, hyperplane Tverberg depth and hyperplane enclosing
depth are all enclosable.

By Lemma 9, any enclosable depth measure is bounded from above by regression depth.
On the other hand, it follows immediately from conditions (iii’) and (iv’) that any enclosable
depth measure is bounded from below by hyperplane enclosing depth. We finish this section
by showing a lower bound for hyperplane enclosing depth. In Theorem 17 in [23] it was
shown that there is a constant c(d) such that for any point set S in Rd and any query point
q we have ED(S, q) ≥ c · TD(S, q). Let now q be a point of largest regression depth for a
hyperplane arrangement A. We will see in Theorem 24 that q has regression depth at least
|A|
d+1 . By Observation 6, this means TD(A∗

q , q) ≥ |A|
d+1 . By Theorem 17 in in [23], it follows

that ED(A∗
q , q) ≥ c|A|

d+1 . Using Observation 6 again, we deduce the following:

▶ Theorem 14. Let A be an arrangement of hyperplanes in Rd. There is a constant c = c(d)
such that there is a query point q with hyperplane enclosing depth HED(A, q) ≥ c|A|

d+1 .

Combining all of the above, we get an analogue to Theorem 12.

▶ Theorem 15. Let ρ be an enclosable depth measure for hyperplanes. Then for all A ∈ ARd

and q ∈ Rd we have RD(A, q) ≥ ρ(A, q) ≥ HED(A, q) ≥ c · RD(A, q).

In particular, all combinatorial depth measures for hyperplanes that we consider in this
paper are constant factor approximations of regression depth. In the next three sections, we
give three lower bounds for the depth of a deepest point. In Section 4 we give a lower bound
for hyperplane Tverberg depth, in Section 5 a slightly stronger bound for regression depth,
and in Section 6 we give a lower bound for super-additive depth measures with contractible
depth regions in the more general setting of weighted arrangements.

4 A first lower bound: Hyperplane Tverberg Depth

In this section we prove an analogue of Tverberg’s theorem for hyperplane arrangements,
resolving a conjecture by Rousseeuw and Hubert from 1999 [21]. Our proof is inspired by
the proof of Tverberg’s theorem by Roudneff [20], see also [2].

▶ Theorem 2. Let r, d be positive integers and A be an arrangement of at least (r−1)(d+1)+1
hyperplanes in Rd. Then, there exists a point q in Rd and a partition of A into r parts such
that q has positive regression depth with respect to each of the r parts.

SoCG 2023
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Proof. Let π be a partition of A into r parts, each of size at most d + 1. Note that π can
have at most d parts of size ≤ d. Define the following function fπ : Rd → R≥0: for each
point q ∈ Rd, consider the point set A∗

q . The partition π induces a partition of this point set
into parts X1(q), . . . , Xr(q). Let B(q) be the smallest ball centered at q which for every part
intersects the convex hull, and define fπ(q) as the radius of this ball. As the map which for
a hyperplane h assigns to a point in Rd the closest point on h is continuous as a function of
q, the function fπ is also continuous. Further, the function goes to infinity along any ray, so
it attains a minimum. Denote by C(q) the set of parts whose convex hulls B(q) is tangent
to. By general position, we may assume that |C(q)| ≤ d + 1.

Let now π be a partition which minimizes min fπ and let p be a point where fπ attains
its minimum. If fπ(p) = 0, then by Observation 6, p is the desired point. So, assume that
fπ(p) > 0. For each Xj(q) let yj(q) denote the unique point in convXj(q) that minimizes
the distance to q, i.e., d(q, convXj) = ||q − yj(q)||, and define Yj(q) ⊂ Xj(q) as the unique
subset for which yj(q) lies in the relative interior of conv(Yj(q)). In particular we can write
fπ(q) = 1

|C(q)|
∑

Xj∈C(q) ||q −yj(q)||, and its gradient as ∇fπ(q) = 1
|C(q)|

∑
Xj∈C(q)(q −yj(q)).

As fπ is minimized at p, we have ∇fπ(p) = 0.
We claim that C(p) consists of exactly d + 1 parts and that no d of the corresponding

vectors (p − yj(p)) lie in a common hyperplane with p. Assume for the sake of contradiction
that the latter is not the case, that is, that there is a hyperplane h containing all except
possibly one of the vectors (p−yj(p)). Let ℓ be a line through p that is orthogonal to h. Note
that all except possibly one of the affine hulls affYj(p) for Xj(p) ∈ C(p) are parallel to ℓ. If
there is a single vector not in h, then this vector induces a direction on ℓ. Move p a distance
ε in the opposite direction. If all vectors are in h, then move p along ℓ in any direction.
Call the resulting point p′. We can choose ε small enough that C(p′) = C(p). Let h′ be the
hyperplane through p′ that is parallel to h and let h+ be its side containing p. Consider now
the point yj(p′) for some Xj(p) ∈ C(p). This point is in the relative interior of the points
in Yj(p′). Let a(p′) ∈ Yj(p′) and let a(p) be the corresponding point in Yj(p). If a(p) is on
the same side of h as p′, then d(a(p′), p′) < d(a(p), p) and if a(p) is on the other side then
d(a(p′), p′) > d(a(p), p), see Figure 2. In particular, The affine subspace Yj(p′) is not parallel
to ℓ and the vector (p′ − yj(p′)) points into h+. As this holds for any Xj ∈ C(p), then also
the gradient ∇fπ(p′) = 1

|C(p)|
∑

Xj∈C(p)(p′ − yj(p′)) points into h+, and as this is the side
that contains p, this means that p cannot be a local minimum, which is a contradiction to
the choice of p. It follows that any d of the vectors (p − yj(p)) are linearly independent, and
thus we need at least d + 1 of them to have ∇fπ(p) = 0.

Thus, the ball B(p) is tangent to exactly d + 1 convex hulls, and the d + 1 tangent
hyperplanes form a simplex containing p in its interior. As there are at most d parts of size
≤ d, there must be a point v in some Xj such that B(p) still intersects the convex hull of
Xj \ {v}. This point must lie on the same side as p of some other tangent hyperplane, say
of Xi. Then adding v to Xi gives a new partition π′ in which B(p) intersects the interior
of the convex hull of Xi. In particular, due to the arguments above, p is not a minimum
of fπ′ , and thus min fπ′ < min fπ. This is a contradiction to the choice of π, showing that
min fπ = 0. ◀

From Theorem 2, for any super-additive depth measure the existence of a point with
depth at least |A|

d+1 follows using Theorem 12.
The existence of a Tverberg theorem for regression depth naturally leads us to ask about

a colorful version of such a result.

▶ Conjecture 16. Let r, d be positive integers and A1, . . . , Ad+1 be sets of r hyperplanes each
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p p′

`

Figure 2 Moving p to p′ the affine hulls of Yj are not parallel to ℓ anymore.

in Rd. There is a partition of their union into r sets B1, . . . Br such that |Ai ∩ Bj | = 1 for
every i ∈ [d + 1], j ∈ [r] and a point q such that q has positive regression depth for each Bj.

In the plane, Karasev conjectured, provided the hyperplanes are in general position, such
a partition could be found so that q was in the simplex determined by each Bj , since his
Tverberg-type results for hyperplanes hold in that setting [11]. However, his conjecture and
its natural extensions to Rd have been disproved [4, 14]. Yet, those counterexamples do not
disprove the regression depth version, in which the q can be in the simplex determined by
each Bj or the union of the hyperplanes making Bj .

5 A second lower bound: topological Helly theorem

In this section, we give a proof for the centerpoint theorem for regression depth based on
one of the first topological versions of Helly’s theorem, which states that given a finite family
F of subsets of Rd with the property that for any d + 1 or fewer of them their intersection is
non-empty and contractible, there is a point in the intersection of all families [9]. In fact,
this method proves a stronger statement: we will show that for an arrangement A in general
position, there is always as point in a cell of A of regression depth ⌈ |A|−d

d+1 ⌉. As we will see,
this implies that there is always a point of regression depth ⌊ |A|

d+1 ⌋ + 1.
The basic idea is the following: given an arrangement A of hyperplanes, consider some

direction ℓ, and for every point q in Rd compute how many hyperplanes of A the open ray
with direction ℓ emanating from q intersects. Denote this number by ℓ(q). Define RA(k, ℓ)
as the set of points where ℓ(q) ≥ k. As A is finite, there are only finitely many different
such regions. If we can show that for k = ⌈ |A|−d

d+1 ⌉ the intersection of any d + 1 or fewer
such regions is contractible, then the existence of a deep point as claimed above follows from
the topological Helly theorem. In fact, our arguments will show that any non-empty depth
region is contractible.

There is however one technical issue: the depth regions of regression depth are in general
not contractible. Consider three lines in the plane that form a triangle. The regression depth
is 1 on any line or in the interior of the triangle, but it is 2 on the three corners, where two

SoCG 2023
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of the lines intersect. So, the region of depth 2 consists of three isolated points and is thus
not contractible.

If we however look only at the 2-dimensional cells of a planar line arrangement, then it is
easy to show that the closure of the union of cells of depth at least k is contractible: no cell
can be completely surrounded by cells of larger depth, as any ray witnessing depth k, that is,
intersecting exactly k lines, also witnesses that the other cells it intersects all have depth
smaller than k.

To overcome this issue, we define a new measure, which we call open regression depth,
denoted by RD’ as follows: let A be an arrangement of hyperplanes in Rd. We first slightly
perturb A to get an arrangement A′ in general position. In particular, in any k-dimensional
affine subspace at most d − k of the hyperplanes intersect. Reversing this perturbation
induces a surjective map π of the faces of A′ to the faces of A. For any face F of A, we call
π−1(A) the faces perturbed from F . Note that if A was already in general position, then π is
a bijection.

Consider now the perturbed arrangement A′. For any point q ∈ Rd, define the open
regression depth with respect to the perturbed arrangement as the minimum number of
hyperplanes of A that any ray emanating from q crosses or is parallel to, where a ray crosses a
hyperplane if there is a point in the relative interior of the ray that is also on the hyperplane.
In other words, the open regression depth for perturbed arrangement is just the regression
depth, where we do not count the hyperplanes that q lies on. The depth regions of open
regression depth in a perturbed arrangement are the unions of cells with large enough depth,
with lower-dimensional faces added whenever they are incident to only deep enough cells.

In order to extend the definition to the original arrangement, we define the open re-
gression depth of a query point q in some face Fq of the arrangement A as RD’(A, q) :=
maxq′∈F ∈Fq

{RD’(A′, q)}, that is, as the maximum open regression depth of any point in one
of the faces perturbed from Fq. Note that we can perturb the arrangement in a deterministic
way, ensuring that the open regression depth is well defined. The following lemma follows
immediately from the definition:

▶ Lemma 17. For any arrangement of hyperplanes A and any query point q, we have
RD’(A, q) ≤ RD(A, q).

In particular, proving the existence of deep points for open regression depth implies the
existence of deep points for regression depth. Note, however, that open regression depth is
not super-additive: it does not satisfy condition (iii). We will now prove the existence of
deep points for open regression depth using the approach sketched above. We show that
we have the necessary ingredients to apply the topological Helly theorem, starting with
the contractability of the relevant regions. Recall that we defined the regions RA(k, ℓ) as
the set of points where ℓ(q) ≥ k for a hyperplane arrangement A and a direction ℓ, where
we considered the relevant ray to be open, that is, not containing q. Also recall that as
A is finite, is is sufficient to restrict our attention to finitely many directions, and we may
assume that these directions are d-wise linearly independent, that is, any d of them span a
d-dimensional cone.

Our proof of contractability requires some algebraic topology and is independent of the
rest of the manuscript, so we defer its proof to the full version [24]. For our purposes, a
homology cell is the same as a contractible space.

▶ Lemma 18. Let A1, . . . , Am be open subsets of Rd. Assume that each set is a homology
cell and that the union of any d of them is a homology cell. Then

⋂
A :=

⋂m
i=1 Ai is either

empty or a homology cell.
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We can apply this result to our setting.

▶ Lemma 19. Let ℓ1, . . . , ℓm be directions in d-wise general position in Rd, let A be a
hyperplane arrangement and let R(k) :=

⋂m
i=i RA(k, ℓ). If R(k) ̸= ∅ then R(k) is contractible.

In particular, the depth regions, that is, the intersections of RA(k, ℓ) over all considered
directions ℓ is contractible.

Proof. As in our setting homology cells are contractible, by Lemma 18 it suffices to show
that the union of any d regions RA(k, ℓ1), . . . , RA(k, ℓd) is contractible. Denote this union
by U(k) and let n = |A|. Let C ⊊ Rd be the cone spanned by the d directions and let ℓ0 be
a direction in −C. In particular, moving from any point in U(k) in direction ℓ0 we never
leave U(k). Thus, U(k) is contractible. ◀

The final property that we need in order to apply the topological Helly theorem is that
the intersection of any d + 1 or fewer regions is non-empty.

▶ Lemma 20. Let ℓ1, . . . , ℓm be directions in Rd, m ≤ d+1, let A be a hyperplane arrangement
and let R :=

⋂m
i=i RA(k, ℓ) for k ≤ ⌈ |A|−d

d+1 ⌉. Then R ̸= ∅.

Proof. For every direction ℓi let hi be a hyperplane orthogonal to ℓi which bounds a half-
space h+

i that contains RA(k, ℓi). In paticular, for any point p in h+
i , moving p in direction

ℓi, we eventually enter RA(k, ℓi) and never leave it again. Thus, if all these half-spaces have
a common intersection, then this intersection can be translated to lie in R, showing R ̸= ∅.
So, assume that these half-spaces have an empty intersection. As we assumed that any d of
our directions are linearly independent, this can only happen for m = d + 1. In this case,
we find a point q ∈ Rd such that the d + 1 (closed) rays emanating from q with directions
−ℓi all intersect strictly more than |A| − k hyperplanes of A. Each hyperplane that does not
contain q can intersect at most d of the rays, and by the general position assumption, at
most d hyperplanes contain q. Thus, if x denotes the number of intersections between rays
and hyperplanes, we have

(|A| − k)(d + 1) < x ≤ (|A| − d)d + d(d + 1) = (|A| + 1)d.

Rearranging this and using that all numbers are integers gives k > ⌈ |A|−d
d+1 ⌉, which is a

contradiction to the assumption, showing that R ̸= ∅. ◀

Now we have all the ingredients that are necessary for the topological Helly theorem, and
we deduce the following

▶ Corollary 21. For every hyperplane arrangement A in Rd there is a point q ∈ Rd for which
the open regression depth is RD’(A, q) ≥ ⌈ |A|−d

d+1 ⌉.

In particular, by the definition of open regression depth, if the arrangement A is in general
position, such a point can be chosen in a cell of A. It remains to show that we can get even
deeper points for regression depth.

▶ Lemma 22. For every hyperplane arrangement A in Rd there is a point q ∈ Rd for which
the regression depth is RD(A, q) ≥ ⌊ |A|

d+1 ⌋ + 1.

Proof. Consider a point q in a cell C of maximum open regression depth k, and let ∂C be
the boundary of the cell C. If there is a point on ∂C with open regression depth k, then this
point has regression depth k + 1, and the claim follows. So assume that the open regression
depth is strictly smaller everywhere on ∂C. Then we again find d + 1 directions such that
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the rays emanating from q with these directions intersect exactly k hyperplanes. Looking
at the opposite directions, the rays thus intersect exactly |A| − k hyperplanes, and as q

lies in the interior of a cell every hyperplane intersects at most d rays. Analogous to the
proof of Lemma 20 we thus get k > ⌈ |A|

d+1 ⌉. This proves the claim for all cases where d + 1
does not divide |A|. If d + 1 divides |A|, note that as soon as one of the hyperplanes only
intersects d − 1 of the considered rays, then we get k > ⌈ |A|+1

d+1 ⌉, and the claim follows again.
So, assume that each hyperplane intersects exactly d rays. This gives a partition of the set
of hyperplanes into d + 1 parts, each of size |A|

d+1 defined by the ray they do not intersects.
The boundary ∂C inherits this partition, and each of the parts is contractible. In particular,
∂C contains a vertex q that is the intersection of d hyperplanes of d different parts. Now
every ray emanating from q must intersect all hyperplanes of some part, but also lies on at
least d − 1 other hyperplanes, showing that the regression depth of q is at least k + d − 1,
which is a contradiction to the assumption that the open regression depth is strictly smaller
everywhere on ∂C. ◀

Using the above insights, we can also conclude the contractability of many regions of
regression depth.

▶ Lemma 23. Let k ≤ ⌈ |A|
d+1 ⌉. Then the region R of points p whose regression depth is

RD(A, q) ≥ k is contractible.

Proof. If there is a point with open regression depth k, then R is just the closure of the
region of points with open regression depth at least k, which is contractible by Lemma
19. Otherwise, by the proof of Lemma 22, R is the union of faces incident only to cells of
maximum open regression depth. As no cell is completely surrounded by deeper faces there
is a contraction from a cell of maximum open regression depth to the deeper faces incident
to it. Thus, as the region of maximum open regression depth is contractible, so is R. ◀

6 A third lower bound: weighted arrangements

In this section we give yet another proof for the existence of points with large regression
depth. The proof we give here works for (and actually requires) the more general case of
weighted arrangements of hyperplanes. A weighted arrangement of hyperplanes is a tuple
(A, w) consisting of a finite arrangement A of hyperplanes and a weight function w : A → R≥0
which assigns to each hyperplane a weight. By a slight abuse of notation we will often just
write A for a weighted arrangement. For a subarrangement A′ ⊆ A we have w′(h) ≤ w(h),
where w′ is the weight function on A′, and we write w′(A′) :=

∑
h∈A′ w′(h). We say that

A′ ⊊ A is a strict subset of A if the underlying hyperplane arrangement of A′ is a strict
subset of that of A. The definition of regression depth extends to weighted arrangements:
for any ray r emanating from a query point q, let A(r) be the hyperplanes intersected by
r. Then, the regression depth RD(A, q) of q is the minimum of w(A(r)) taken over all rays
emanating from q. This definition is similar to, but more restrictive than a measure-theoretic
generalization of regression depth considered by Mizera [15].

Our proof also works for more general families of depth measures on weighted hyperplane
arrangements. We extend the definition of super-additive depth measures above to weighted
hyperplane arrangements as follows:

(i) for all A ∈ ARd and q ∈ Rd and any hyperplane h we have |ρ(A, q)−ρ(A∪{h}, q)| ≤ w(h),
(ii) for all A ∈ ARd we have ρ(A, q) = 0 if q is in an unbounded cell of A,
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(iii) for all A ∈ ARd we have ρ(A, q) ≥ min{w(h) | h ∈ A} if q is in a bounded cell or if q lies
on a hyperplane of A,

(iv) for any disjoint subsets A1, A2 ⊆ A and q ∈ Rd we have ρ(A, q) ≥ ρ(A1, q) + ρ(A2, q).

Note that any hyperplane arrangement can be considered as a weighted hyperplane
arrangement by assigning weight 1 to each hyperplane. On the other hand, each depth
measure for hyperplane arrangement can be extended to a depth measure on weighted
hyperplanes: using the fact that Q is dense in R, we can place multiple hyperplanes in the
same position and the normalize to get a weighted arrangement.

For a weighted arrangement of hyperplanes A and a depth measure ρ denote by RA
ρ (α) :=

{q ∈ Rd | ρ(A, q) ≥ α} the α-depth region. The median region, which is the deepest non-empty
depth region, is denoted by MA

ρ .

▶ Theorem 24. Let A be a weighted arrangement of hyperplanes in Rd and let ρ be a
super-additive depth measure on weighted hyperplanes whose depth regions are compact and
contractible. Then there exists a point q ∈ Rd for which ρ(A, q) ≥ w(A)

d+1 .

Before we prove Theorem 24, we give some lemmata that we will need in the proof. The
first lemma concerns a generalization of a section in a vector bundle. Let π : E → B be a
real vector bundle over a compact manifold B. Following [29] we say that ϕ : B → E is
a multisection if for every x ∈ B we have that ϕ(x) ⊆ Fx := π−1(x). We further say that
ϕ is contractible if it is contractible in each fiber, that is, for every x ∈ B the set ϕ(x) is
contractible. Finally, we say that ϕ is compact if Γ(ϕ) := {(x, v) | v ∈ ϕ(x)} ⊆ B × E is
compact. For any multisection ϕ, denote by Z(ϕ) its intersection with the zero section. In
the full version [24] we show the following

▶ Lemma 25. Let π : E → B be a real vector bundle over a compact manifold B. Let ϕ be a
compact contractible multisection. Then there is a section s with Z(s) = Z(ϕ). In particular,
if π has no nowhere zero section, then ϕ must intersect the zero section.

The second lemma is about partitions of hyperplane arrangements.

▶ Lemma 26. Let ρ be a depth measure for weighted hyperplanes whose depth regions
are compact and contractible and let A be a weighted hyperplane arrangement in Rd with
|A| ≥ d + 2. Then there exists a partition of A into strict subarrangements A1 and A2 whose
median regions intersect.

The proof is analogous to the proof of Lemma 9 in [23], replacing Proposition 1 from [29]
with our Lemma 25. For a full proof we refer to the full version [24].

Proof of Theorem 24. Let A be a weighted arrangement of hyperplanes in Rd. We prove
the statement by induction on the number of hyperplanes in A. If A consists of at most d + 1
hyperplanes, it follows from condition (iii) that ρ(A, q) ≥ w(A)

d+1 for some q ∈ Rd: just take
q as any point on a hyperplane of maximum weight. So assume that A consists of at least
d + 2 hyperplanes. By assumption the depth regions are compact and contractible. Thus,
by Lemma 26, we can partition A into strict subarrangements A1 and A2 whose median
regions intersect. As both A1 and A2 are strict subarrangements, by the induction hypothesis
for any point q in the intersection of their median regions we have ρ(A1, q) ≥ w1(A1)

d+1 and
ρ(A2, q) ≥ w2(A2)

d+1 . As ρ satisfies condition (iv), for any such point we thus have

ρ(A, q) ≥ ρ(A1, q) + ρ(A2, q) ≥ w1(A1) + w2(A2)
d + 1 = w(A)

d + 1 .

◀
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At this point, it is not clear how we can use Theorem 24 to prove the existence of
centerpoints for regression depth. If we look at the depth regions of regression depth, we
have seen in Section 5 that they are in general not contractible. To overcome this issue, we
have introduced open regression depth and argued that the depth regions of open regression
depth are contractible, and these arguments go through even if the arrangement is weighted.
However, for a hyperplane arrangement in general position, these regions are by definition
open, and thus not compact. Further, open regression depth is not a super-additive depth
measure, as it does not satisfy condition (iii). In particular, if A consists of a single hyperplane,
then the open regression depth is 0 everywhere, and so the base case of the proof of Theorem
24 fails. However, as we have seen in Lemma 23, if k ≤ ⌈ |A|

d+1 ⌉ the region of regression depth
at least k is contractible. Again, the involved arguments go through if the arrangement
is weighted, implying that if k ≤ w(A)

d+1 , then the region of regression depth at least k is
contractible. Thus, defining a new measure truncated regression depth by

TRD(A, q) := min
(

w(A)
d + 1 , RD(A, q)

)
,

we get a measure whose depth regions are closed and contractible. Clearly, the only unbounded
regions are the ones containing an unbounded face of the arrangement, and we can make
those compact by intersecting with a sufficiently large ball. Finally, as regression depth
is super-additive, so is truncated regression depth, and by definition, truncated regression
depth is bounded from above by regression depth. We thus have the following:

▶ Lemma 27. Truncated regression depth is a super-additive depth measure for hyperplane ar-
rangements which has compact and contractible depth regions. Further, for every arrangement
A and every point q we have TRD(A, q) ≤ RD(A, q).

It now follows from Theorem 24 that there is always a point of truncated regression depth
TRD(A, q) ≥ w(A)

d+1 and such a point also has regression depth RD(A, q) ≥ w(A)
d+1 .

7 A regression depth version of the center transversal theorem

Let A be an arrangement of hyperplanes in Rd. Assume that the origin is not contained
in any hyperplane in A. Let L be a k-dimensional linear subspace of Rd. Then A ∩ L is a
hyperplane arrangement in L. In particular, we can again study the depth of points q ∈ L

within the Euclidean space L with respect to the arrangement A ∩ L. Note however that
A ∩ L might have smaller cardinality than A, as some hyperplanes of A might be parallel to
L. In fact, if all of them are parallel to L, then A ∩ L is empty. We define the regression
depth of q ∈ L with respect to A ∩ L as the minimum number of hyperplanes in A intersected
by or parallel to any ray in L emanating from q, and denote it by RD(A, q, L). In particular,
if all hyperplanes in A are parallel to L, then RD(A, q, L) = |A| for all q ∈ L. This definition
extends to open regression depth and truncated regression depth, where we truncate at |Ai|

k+1 .

▶ Theorem 28. Let 1 ≤ k ≤ d be integers and A1, . . . , Ad−k+1 be d−k+1 finite arrangements
of hyperplanes in Rd. Then there exists a k-dimensional linear subspace L and a point q ∈ L

such that q has regression depth RD(Ai, q, L) ≥ |Ai|
k+1 in L for every i ∈ {1, . . . , d − k + 1}.

Proof. We will prove the statement for truncated regression depth, which will imply the
theorem as regression depth is bounded from below by truncated regression depth. Consider
the Grassmann manifold Grk(Rd) of all k-dimensional subspaces of Rd. Let γd

k be the
canonical bundle over Grk(Rd), which has total space E := {(L, v) | v ∈ L} and whose
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projection π : E → Grk(Rd) is given by π((L, v)) = L. For an arrangement Ai, let Ri(L) be
the set of points in L that have large depth, that is, Ri(L) := {v ∈ L | TRD(Ai, v, L) ≥ |Ai|

k+1 }.
By Lemma 27, each Ri(L) is compact and contractible. Further, when a hyperplane h ∈ Ai

becomes parallel to L, the depth of any point can only increase, thus Ri(L′) ⊆ Ri(L) for any
L′ in a small neighborhood of L. Thus, Ri is a compact contractible multisection. Define
the negative multisection −Ri by reflecting Ri(L) at the origin for each L, and for each
i ∈ {1, . . . , d − k} consider Qi := Rd−k+1 − Ri, defined by taking the Minkowski sum of
Rd−k+1(L) and −Ri(L) on each L. As Minkowski sums of compact and contractible sets
are again compact and contractible, Qi is again a compact contractible multisection. In
particular, by Lemma 25, there are sections si whose zeroes coincide with the zeroes of
Qi. It was shown in [29], Prop. 2 (see also [5], Lem. 1), that any d − k sections on γd

k

must have a common zero, that is, there is a subspace L such that s1(L) = . . . sd−k(L) = 0.
By the definition of the sections si, this implies that there is a point q ∈ L such that
q ∈ Ri(L) for all i ∈ {1, . . . , d − k + 1}. In particular, TRD(Ai, q, L) ≥ |Ai|

k+1 in L for every
i ∈ {1, . . . , d − k + 1}. ◀

Since there is a regression depth version of the center transversal theorem and of Tverberg’s
theorem, a natural question is if there is a generalization of both. This is still open in the
case of finite families of points, since it was conjectured by Tverberg and Vrećica in 1993 [27].

▶ Conjecture 29. Let 1 ≤ k ≤ d be integers and A1, . . . , Ad−k+1 be d − k + 1 finite
arrangements of hyperplanes in Rd. Assume that |Ai| = (k + 1)(ri − 1) + 1 for some positive
integer ri, for each i = 1, . . . , d−k+1. Then, there exists a k-dimensional subspace L, a point
q ∈ L, and a partition of each Ai into ri parts A

(1)
i , . . . , A

(ri)
i such that RD(A(j)

i , q, L) ≥ 1
for each i = 1, . . . , d − k + 1, j = 1, . . . , ri.

The classic conjecture for families of points, which has similar parameters, has only been
confirmed when all ri are powers of the same prime p and pk is even [10].
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Datasets with non-trivial large scale topology can be hard to embed in low-dimensional Euclidean
space with existing dimensionality reduction algorithms. We propose to model topologically complex
datasets using vector bundles, in such a way that the base space accounts for the large scale topology,
while the fibers account for the local geometry. This allows one to reduce the dimensionality of
the fibers, while preserving the large scale topology. We formalize this point of view and, as an
application, we describe a dimensionality reduction algorithm based on topological inference for
vector bundles. The algorithm takes as input a dataset together with an initial representation in
Euclidean space, assumed to recover part of its large scale topology, and outputs a new representation
that integrates local representations obtained through local linear dimensionality reduction. We
demonstrate this algorithm on examples coming from dynamical systems and chemistry. In these
examples, our algorithm is able to learn topologically faithful embeddings of the data in lower target
dimension than various well known metric-based dimensionality reduction algorithms.
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1 Introduction

Motivation. We take the manifold hypothesis at face value and consider data consisting of
a finite sample of a Riemannian manifold. We take the goal of dimensionality reduction to
be that of learning an embedding of the input data in low dimension, in such a way that
the differentiable structure of the underlying manifold is preserved. This is different from
charting, whose objective we take to be that of producing local parametrizations of the data
that, together, cover the entire manifold.

We refer to dimensionality reduction algorithms which aim to preserve metric relationships
and do not explicitly incorporate large scale topology in their objective function as metric-
based. Metric-based algorithms work best when the Riemannian manifold underlying the
data can be isometrically embedded in the target dimension. For example, algorithms such as
Isomap [53], Local Tangent Space Alignment (LTSA) [59], and Hessian Eigenmaps (HLLE)
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56:2 Fiberwise Dimensionality Reduction

Figure 1 Left: A sample from a cylinder with height equal to 0.15 times its radius, colored by
height. The cylinder is developable, since it is diffeomorphic to an annulus in R2, and is also flat,
but it is not isometric to the annulus, which also has a flat, yet distinct, Riemannian metric. Center
three: Well known dimensionality reduction algorithms run on the cylinder data. The outputs are
representative of other parameter choices and of Laplacian Eigenmaps (LE) [8], Diffusion Maps (DM)
[13], LLE [42], HLLE, t-SNE [55], and UMAP [28]. Some algorithms only capture the circularity,
others only the local 2D structure, while others capture both, but they are not able to consistently
align the local 2D structure. Right: The output of fiberwise dimensionality reduction.

[15] assume that the manifold X underlying the data is isometrically developable, in the
sense that X is a d-dimensional Riemannian manifold for which there exists an embedded d-
dimensional manifold X ′ ⊆ Rd and a diffeomorphism X ′ → X which is a Riemannian isometry.
An isometrically developable manifold X is necessarily flat (i.e., locally isometric to Euclidean
space) and developable (i.e., diffeomorphic to an embedded d-dimensional manifold X ′ ⊆ Rd).
But a manifold can be flat and developable without it being isometrically developable: a
simple example is that of a straight cyilinder in R3 (Figure 1). As observed in [24], and
shown in Figure 1, already in the setting of a flat and developable d-dimensional manifold,
metric-based dimensionality reduction algorithms can fail to find an embedding of the data
in Rd. On the mathematical side, while Whitney’s embedding theorem [57] guarantees that
any closed d-dimensional manifold admits a smooth (C∞) embedding in 2d dimensions, a
smooth, Riemannian isometric embedding of a closed d-dimensional Riemannian manifold
can require in the order of d2 dimensions [11]. Thus, the preservation of distances requires
more complicated embeddings than the preservation of topology.

If we remove a small portion of the cylinder of Figure 1, in order to make it a curved
rectangle, most metric-based dimensionality reduction algorithms have no problem finding
an embedding in R2. It is thus the non-trivial topology of the cylinder – its circularity –
that causes difficulties. This suggests that embeddings of topologically non-trivial manifolds
can be built by gluing local representations along a representation of the global topological
structure: in the case of the cylinder, one would try to glue 2D patches around a circle in a
globally consistent manner. This leads to the following problem, formalized as the vector
bundle embedding problem (Problem 1):

Given a dataset X and an initial map X → RD capturing the large scale topology of X,
find a new representation X → RD that captures the large scale topology as well as the local
geometry.

We call our approach to the above problem fiberwise dimensionality reduction (FibeRed).
In the examples of Section 4, we focus on manifolds with an essential loop, and, as initial
map, we use circular coordinates based on persistent cohomology [14, 37], a technique from
Topological Data Analysis [32, 18]. Nevertheless, the approach is not restricted to the case
of a circular initial embedding and one could use as initial map one constructed by, e.g.,
other cohomological coordinates [35, 38, 43], standard non-linear dimensionality reduction
methods [23, 13], or lens functions as in [50, Section 4].
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Contributions. We show that the theory of vector bundles is useful in abstracting (Sec-
tion 2.1), devising solutions to (Section 3), and computing obstructions to solving (Section 2.3)
the problem of extending an initial coarse representation of data to a new, more descriptive
representation. We demonstrate with computational examples (Section 4) that topological
inference for vector bundles can be carried out in practice. In particular, we show that
efficient embeddings and chartings of topologically non-trivial data can be learned with this
approach and give examples supporting the claim that metric-based dimensionality reduction
algorithms are often not able to find such representations. We implement our main algorithm
in [44].

Related work. Various dimensionality reduction schemes [52, 41, 10] learn a global alignment
of local linear models from the local interactions of the models, which can be challenging in
the presence of non-trivial topology. In contrast, our approach assumes a global topological
representation is given and builds and aligns the local linear models along this representation.

There has been recent interest in designing topology-preserving dimensionality reduction
schemes [26, 58, 31, 56]. Our approach is different from previous approaches we are aware
of, as it builds a new representation around an initial topological representation, instead of
using topology to regularize an essentially metric objective.

Our cut-unfold technique of [45, Appendix C.1] has a similar goal to that of [24, 58],
which propose to tear a data manifold in order to find efficient representations of it. A main
difference is that our technique allows the user to select a specific hole to cut and to use
topological persistence to guide this choice.

2 The vector bundle embedding problem

For background, please refer to [45, Appendix A.1]. In Section 2.1 we describe the Vector
Bundle Embedding problem; in Section 2.2, we recall the notion of discrete vector bundle
that we use to estimate vector bundles from finite samples; and in Section 2.3 we explain how
characteristic classes of vector bundles give computable obstructions to solving the vector
bundle embedding problem and can thus be used for parameter selection.

2.1 Main problem
Let B be a closed differentiable manifold and let π : X → B be a rank r Euclidean vector
bundle with zero-section s0 : B → X , where by Euclidean we mean that π is endowed with
a scalar product on each fiber π−1(b) ⊆ X , which varies smoothly with b ∈ B. The main
problem we seek to solve is that of extending an embedding B → RD to a fiberwise isometric
embedding of X , as follows:

▶ Problem 1. Given an embedding ι : B → RD, find a fiberwise isometric embedding
ι : X → RD that extends ι in the sense that ι ◦ s0 = ι, and that is orthogonal to B, in the
sense that ι(π−1(b))⊥ ι(TbB) for all b ∈ B.

By fiberwise isometric embedding X → RD we mean a map that is a linear isometry when
restricted to each fiber π−1(b) ⊆ X , where b ∈ B.

Let ν : N → B be the normal bundle of the embedding ι : B → RD and endow ν with the
Euclidean structure inherited from RD. The following result reduces Problem 1 to a problem
only involving vector bundles.

▶ Lemma 2. Problem 1 admits a solution if and only if there exists a morphism X → N of
vector bundles over B that is an isometry in each fiber.
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In order to do this, we trivialize the bundles X and N over a common cover of the base B
and construct the embedding X → N by restricting to each element of the cover. Formally,
we proceed as follows.

Let e be the dimension of B, so that the rank of ν is D− e. Let U = {Ui} be a cover of B
such that both π and ν can be trivialized over U and let Xi := π−1(Ui). Recall that V(n, m)
denotes the Stiefel manifold, which consist of m-by-n matrices with orthonormal columns and
that O(n) = V(n, n) denotes the orthogonal group. Let α = {αi : Ui → V(D−e, D)} be local
bases for N , and let Θ = {Θij : Ui ∩Uj → O(D− e)} be defined by Θij(b) = αi(b)αj(b)T for
all b ∈ Ui∩Uj , so that Θ is a cocycle with associated vector bundle ν. Finally, let {(π|Xi

, fi) :
Xi → Ui ×Rr} be a metric trivialization of X over U and let Ω = {Ωij : Ui ∩Uj → O(r)} be
defined as the unique set of maps satisfying

Ωij(π(x)) fj(x) = fi(x), for all x ∈ Xi ∩ Xj , (1)

so that Ω is a cocycle with associated vector bundle π. We refer to the maps {fi : Xi → Rr}
as the fiber coordinates. With these definitions, one can use Lemma 2 to prove the following.

▶ Proposition 3. There exists a fiberwise isometric embedding X → N if and only if there
exist maps Φ = {Φi : Ui → V(r, D − e)} such that

Φi(b)Ωij(b) = Θij(b)Φj(b), for all i and j and b ∈ Ui ∩ Uj . (2)

Given the maps Φ = {Φi : Ui → V(r, D − e)} of Proposition 3, one obtains the fiberwise
isometric embedding ι : X → RD by ι(x) = αi(b) Φi(b) fi(x) + ι(b), where b = π(x).

In general, the fiberwise isometric embedding ι : X → RD is not an embedding of X
as a manifold, since different fibers may intersect. Nonetheless, if τ > 0 is the reach [1,
Definition 2.1] of ι(B) ⊆ RD, i.e., the largest possible radius of a uniform tubular neighborhood
around ι(B), one can find an embedding of a full-dimensional compact subset of X by scaling
the fibers by a fraction of τ , as follows. Let disk(π) ⊆ X be the unit disk of the bundle π,
namely, the subspace of points x ∈ X such that ∥x− s0(π(x))∥ ≤ 1, where ∥ − ∥ denotes the
norm of the fiber π−1(π(x)) induced by the Euclidean structure of π. Then, the following
formula gives an embedding disk(π)→ RD:

x 7→ c τ · αi(π(x)) Φi(π(x)) fi(x) + ι(π(x)), for π(x) ∈ Ui, (3)

where 0 < c < 1 is any fixed constant.

2.2 Vector bundles from finite samples
In practice, continuous maps to a Stiefel manifold or orthogonal group – such as the maps
{αi : Ui → V(D − e, D)} or the cocycle {Ωij : Ui ∩ Uj → O(r)} of Section 2.1 – are hard
to work with, as they are potentially determined by an infinite amount of data. One of
the main takeaways of [46] is that one can work with Euclidean vector bundles in practice
by considering only constant maps into Stiefel manifolds or orthogonal groups. In order to
accomplish this, one relaxes the notion of Euclidean vector bundle as follows.

Given a simplicial complex S, a rank r discrete approximate cocycle on S ([46, Defini-
tion 5.1]) consists of a family of matrices {Ωij ∈ O(r)} indexed by the oriented 1-simplices of
S, which satisfies Ωij = ΩT

ji. There is a similar way of discretizing maps into a Stiefel manifold
([46, Definition 5.4]). These discretizations can be used to represent usual vector bundles [46,
Theorem A] and any vector bundle can be represented in this way [46, Proposition 5.7].

This justifies the fact that, in Section 3, we discretize the base B by considering the
simplicial complex given by the nerve of a cover U = {Ui} and we consider constant maps
from Ui into a Stiefel manifold and from Ui ∩ Uj into an orthogonal group.
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2.3 Computable obstructions to vector bundle embedding

The theory of vector bundles provides us with algebraic obstructions to solving Problem 1,
namely, characteristic classes. We now give a few details about the subject; we refer the
reader to [30] for a detailed account of the theory of characteristic classes.

To a vector bundle π : X → B and number i ∈ N, one can associate an element
wi(π) ∈ Hi(B;Z/2) of the ith cohomology group of B with coefficients in the group Z/2,
called the ith Stiefel–Whitney class of π. This procedure is such that, if π and π′ are
isomorphic vector bundles over the same base B, then wi(π) = wi(π′).

If Problem 1 admits a solution, then there exists a complement of π in ν, that is there
exists a vector bundle κ over B such that π ⊕ κ ∼= ν, where ⊕ denotes the direct sum of
vector bundles. It follows from the Whitney product formula [30, Section 4, Axiom 3] that
w(π) ⌣ w(κ) = w(ν), where ⌣ denotes the cup-product in cohomology [21, Section 3.2]. In
particular, when Problem 1 admits a solution, we have the following:

If D = r + e, then w1(π) = w1(ν) ∈ H1(B;Z/2).

If D = r + e + 1, then w2(π)− w1(π)2 + w1(π) ⌣ w1(ν) = w2(ν) ∈ H2(B;Z/2).

Thus, if any of these equalities is not satisfied, then Problem 1 does not admit a solution.
These obstructions can be computed from finite samples using [46, Theorem C].

3 The fiberwise dimensionality reduction scheme

We describe the FibeRed algorithm in Sections 3.1–3.4. In Section 3.5 we justify a main
subroutine of the algorithm. In Section 3.6, we explain how we choose parameters. We
represent vector bundles using discrete approximate cocycles as in [46] (see Section 2.2).

To facilitate the interpretation of the different steps of the algorithm, the notation is
kept as in Section 2.1, except for the spaces X and B, which we denote here by X and B

to emphasize the fact that we are working with finite samples X ⊆ X and B ⊆ B. See also
Figure 2 for a schematic representation of some of the main steps (4,5,6) of the algorithm.

Precise assumptions about the input of the algorithm are in [45, Appendix B.1]. Our
algorithm can be efficiently implemented; we give more details in [45, Appendix B.2].

3.1 Main routine

Inputs. A dataset represented by a finite set X together with a distance matrix ∂ : X×X →
R; and a function π : X → RD. We let B := π(X) ⊆ RD.
Parameters. A number k ∈ N, the number of sets we use to construct a cover of B; a
number n_iter ∈ N used in the AlignFibers subroutine; an estimate e ∈ N of the intrinsic
dimension of B; an estimate d ∈ N of the intrinsic dimension of X ; a fiber scale 0 < c < 1.
Output. A map X → RD.

The pseudocode is in Algorithm 1. With this notation, the map ι of Section 2.1 corresponds
to the inclusion B = π(X) ⊆ RD and the rescaling of ι of Equation (3) corresponds to the
output of the algorithm.
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Figure 2 Schematic representation of the main constructions in the FibeRed pipeline.

Algorithm 1 FibeRed(X, π, k, e, d, c, n_iter).
1: U , ρ← CoverAndPartitionUnity(k, B)
2: N ← Nerve(B,U)
3: for 1 ≤ i ≤ k do
4: ℓi ← LocalLinearRepresentation(X,U , d, i)
5: Ψi, αi ← EstTangAndNormBun(B,U , e, i)
6: f i ← EstNormFiberCoordinates(B, Ψi, ℓi)
7: end for
8: τ ← EstReach(B,U , Ψ)
9: for (ij) ∈ N do

10: Ωij , Θij ← EstCocycles(f i, f j , αi, αj)
11: end for
12: Φ← AlignFibers(N , Ω, Θ, n_iter)
13: return Assemble(ρ, τ, c, α, Φ, f , π)



L. Scoccola and J. A. Perea 56:7

3.2 Subroutines

Compute cover and partition of unity (CoverAndPartitionUnity). We compute a
cover U = {Ui ⊆ B}1≤i≤k of B as follows. We first run on B an approximate algorithm for
the k-center problem. We use a simple, greedy approach, but more sophisticated options
are available (see, e.g., [17] for a survey). This results in k points {b1, . . . , bk} ⊆ B and in
a radius c > 0 such that any point of B is at distance at most c from some bi. We then
let Ui = {b ∈ B : ∥b − bi∥ < 3c}. The factor of 3 is arbitrary; we choose it to ensure that
elements of the cover have sufficiently large intersections.

We compute a partition of unity ρ = {ρi : Ui → R} subordinate to U by first defining
pi(x) = exp

(
−1/(1− (∥x− bi∥/(3c))2)

)
for x ∈ Ui and pi(x) = 0 for x ̸∈ Ui, and then

normalizing as follows ρi(x) = pi(x)/
∑

j pj(x).

Compute nerve of cover (Nerve). We let N be the undirected graph with vertices
1 ≤ i ≤ k and an edge (ij) with weight sij = |Ui ∩ Uj | when Ui ∩ Uj ̸= ∅.

Compute local linear representation (LocalLinearRepresentation). Given 1 ≤ i ≤ k,
we let Xi := π−1(Ui) and apply a linear dimensionality reduction algorithm to each Xi,
resulting in a function ℓ′

i : Xi → Rd. In our implementation, we use classical multidimensional
scaling (see, e.g., [9]). We then mean-center ℓ′

i to get a function ℓi : Xi → Rd.

Estimate local trivialization of tangent and normal bundle (EstTangAndNormBun).
Given 1 ≤ i ≤ k, we compute an orthonormal frame Ψi ∈ V(e, D) by applying PCA with
target dimension e to Ui ⊆ RD. We then compute an orthonormal frame αi ∈ V(D − e, D)
such that αi ⊥ Ψi.

Estimate normalized fiber coordinates (EstNormFiberCoordinates). Given 1 ≤ i ≤ k,
we define t : Xi → Re by t(x) = ΨT

i (π(x)−bi). We find a linear transformation mi : Rd → Re,
which has minimal Frobenius norm and minimizes∑

x∈Xi

∥t(x)−mi(ℓi(x))∥2, (4)

and compute an orthonormal frame ηi ∈ V(r, d) with image in the kernel of mi. We let
fi := ηT

i ◦ ℓi : Xi → Rr, and obtain a normalized fiber coordinate f i : Xi → Rr with image
contained in the unit ball by normalizing fi. We justify these choices in Section 3.5.

Estimate reach (EstReach). If {b1, . . . , bk} ⊆ B are the centers of the k balls used to
construct the cover U in CoverAndPartitionUnity, we compute an estimate of the reach
of B by

τ = inf
i̸=j

∥bj − bi∥2

2
√
∥bj − bi∥2 − ∥ΨT

i (bj − bi)∥2
.

This formula is equivalent to [1, Equation 6.1], where it is proven that, under suitable
assumption, it yields a consistent estimator of the reach.
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Estimate cocycles for ν and π (EstCocycles). Based on Equation (1), given (ij) ∈ N ,
we compute an orthogonal matrix Ωij ∈ O(r) which minimizes∑

x∈Xi∩Xj

∥Ωijfj(x)− fi(x)∥2.

We also compute an orthogonal matrix Θij ∈ O(D − e) which minimizes ∥Θij − αT
i αj∥F ,

where ∥−∥F denotes the Frobenius norm. Both minimizations are instances of the orthogonal
Procrustes problem, which can be solved using SVD (see, e.g., [22, Section 7.4]).

Align fibers (AlignFibers). Based on Equation (2), we compute orthonormal frames
{Φi ∈ V(r, D − e)} minimizing the following expression; we describe the minimization
procedure in Section 3.3:∑

(ij)∈N

sij ∥ΦiΩij −ΘijΦj∥F . (5)

Compute final representation (Assemble). Based on Eq. 3, we represent x ∈ X by∑
1≤i≤k

ρi(x)
(
cτ · αi Φi f i(x) + π(x)

)
.

3.3 Minimizing Equation (5)

The minimization problem in AlignFibers is non-convex, so a possible solution is to do
gradient descent in a product Stiefel manifold. This is the approach we take, except that
we avoid explicitly computing a gradient, and take a sampling based approach, as done in,
e.g., LargeVis [51]. Before describing the approach, we note that, in the case D = r + e, the
Stiefel manifold V(r, r) is equal to the orthogonal group O(r), which is disconnected. Thus,
in this case, any local optimization approach to minimizing Equation (5), such a gradient
descent, is bound to fail. In Section 3.4 we describe a procedure based on the notion of
synchronization (see, e.g., [48]) that reduces the problem from having to align using matrices
in O(r) to using matrices in SO(r), which is connected.

Iterative procedure. We start by initializing {Φi ∈ V(r, D−e)} at random and setting a = 1.
For 1 ≤ n ≤ n_iter, we proceed as follows. We sample an edge (ij) ∈ N with probability
proportional to its weight sij , let M be an orthonormal frame minimizing ∥MΩij −ΘijΦj∥F ,
and replace Φi with a closest orthonormal frame to the convex combination (1− a)Φi + aM .
Finally, we replace a with 1− n/n_iter.

3.4 Preprocessing in the case D = r + e

In this case, the matrices Φ, Ω, and Θ are in O(r). The preprocessing consists of replacing
the matrices {Θij} by matrices that induce an equivalent problem to the one of minimizing
Equation (5), but for which the matrices {Φi} we look for can be taken to be in the special
orthogonal group SO(r), which is connected.

Note that, if we want ΦiΩij and ΘijΦj to belong to the same connected component
of O(r), then we must have det(Ωij) det(Θij) = det(Φi) det(Φj) ∈ O(1) = {−1, +1}. This
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suggests that we can let ωij = det(Ωij) det(Θij) ∈ O(1) and consider first the problem of
finding {λi ∈ O(1)} such that λiλj = ωij , which leads to minimizing the objective function∑

(ij)∈N

sij |ωij − λiλj |2.

This is a well known synchronization problem, for which an approximate solution can be
found effectively and efficiently with spectral methods [49, 4]. Here, we use [4, Algorithm 2.3],
with d = 1, which yields an approximate solution {λi ∈ O(1)}.

Given λ ∈ O(1) = {−1, +1} let M(λ) ∈ O(r) be the diagonal matrix with all diagonal
entries equal to 1, except for the first one, which is equal to λ. With this in mind, we can
replace Θij by M(λi)ΘijM(λj). Having done this, we can now restrict the matrices {Φi} to
belong to the connected component of O(r) of orthogonal matrices with +1 as determinant.
More specifically, we now can carry out the optimization procedure described above, but
restring the matrices {Φi} to be in SO(r) ⊆ O(r) = V(r, r).

3.5 Justification of estimate of fiber coordinates
Let xi := s0(bi) ∈ X . We interpret the local model ℓi : Xi → Rd as a projection ℓi : Xi →
TxX ∼= Rd of Xi onto the tangent space at the origin of the fiber π−1(bi). In the idealized
case ([45, Appendix B.1]), the fiber coordinate fi : Xi → Rr is given by any map fitting into
a fiberwise isometric diffeomorphism (π|Xi

, fi) : Xi → Ui × Rr. When dealing with finite
samples, we use the following composite as a proxy for fi:

Xi
ℓi−→ Txi

X
(dfi)xi−−−−→ Tfi(xi)Rr ∼= Rr.

Note that, by assumption, (dfi)xi is the second component of an isometric isomorphism of
Euclidean vector spaces d(π, fi)xi

: Txi
X → Tbi

B ⊕ Rr, in which the two direct summands
are orthogonal. It is thus sufficient to estimate the first component dπxi : TxiX → TbiB and
to then compose ℓi with the orthogonal projection onto the orthogonal complement of dπxi

.
We do have an estimate for the composite

Xi
ℓi−→ Txi

X
dπxi−−−→ Tbi

B ∼= Re,

namely t = ΨT
i ◦π|Xi

: Xi → Re, but, since the embedding B ⊆ RD is not required to preserve
the Riemannian structure of B inherited from that of X , the map t is an approximation
of dπxi ◦ ℓi up to a linear map mi : Rd → Re. This justifies finding mi by minimizing
Equation (4), and getting the approximate fiber coordinate fi by composing ℓi with the
orthogonal projection onto the kernel of mi.

3.6 Choosing input and parameters
We discuss some guiding principles to choose parameters for our pipeline. We focus mostly
on parameter selection for the examples of Section 4.

Parameters. An estimate of the dimensions e of B and d of X can be obtained by analyzing
the explained variance of PCA applied to each of the sets Ui and Xi with a range of target
dimensions, but more sophisticated algorithms are available; see, e.g., [25]. The parameter k

is chosen to be large enough so that the cover U captures the topology of the base space B,
and such that each open ball of the cover is sufficiently small so that it can be approximated
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reasonable well by a linear space. Admittedly, this is in general a difficult choice and
producing good covers of data is an interesting problem in its own right. In our case, when
the base space is the circle, we use k = 16; see also [45, Appendix C.5] for a parameter
sensitivity analysis. The algorithm is robust to the choice of parameter n_iter, which we
choose to be 1000 in all of our examples.

Choosing base map and D. We construct the initial map π : X → RD in two ways.
The first way is to use the persistent cohomology of the initial data X to construct circular

coordinates X → S1 and then embed the circle S1 as the unit circle in the plane spanned
by the first two coordinates of RD, D ≥ 2, which gives us the initial map X → RD. In
order to choose the embedding dimension D, we compute the Stiefel–Whitney obstructions,
as in Section 2.3. Since the base space is the circle, which is 1-dimensional, only the first
Stiefel–Whitney class provides an obstruction. The Stiefel–Whitney class of the normal
bundle of the embedding S1 ⊆ RD is trivial. Thus, if the first Stiefel–Whitney class of the
estimated cocycle Ω is trivial, we set D = r + 1, and if it is non-trivial, we set D = r + 2.

The second way is to use the cut-unfold technique, explained in [45, Appendix C.1], with
the circular coordinates and map X → RD by embedding the interval [0, 1) as the unit
interval of the line spanned by the first coordinate of RD. In this case, since the interval
is topologically trivial (contractible), the Stiefel–Whitney classes give no obstructions, and
thus we set D = r + 1.

4 Examples

We apply FibeRed to three examples. We reproduce a dynamical system simulation from [12]
and reconstruct an attractor – a torus. We reconstruct the conformation space – a Möbius
band – and energy landscape of the pentane molecule from a simulation using RDKit [39];
this is inspired by an analysis in [29]. Finally, we reconstruct the conformation space of the
cyclooctane molecule – a Klein bottle glued to a 2-sphere – using the data of [27].

We compare FibeRed to various well known dimensionality reduction algorithms (see
[45, Appendix C.4] for more results). Given that we consider topologically non-trivial data,
we follow [40, 33] and evaluate the output of algorithms using persistent homology and
persistence diagrams (PDs) to quantify the preservation of large scale topology (see [45,
Appendix A.1] for background and references). When we do not clarify the field of coefficients
used to compute a PD, the PD is independent of this choice. See Table 1 for a summary.

For the initial map π : X → B we use the implementation of circular coordinates in [54].
The parameters for FibeRed are chosen as in Section 3.6 and the computed Stiefel–Whitney
obstructions are in Figure 3. For persistent homology computations, we use ripser [5] on
geodesic distance, estimated as shortest path distance in a 15-nearest neighbor graph. For
other dimensionality reduction algorithms, we use their scikit-learn implementation [34].

An implementation and Jupyter notebooks to reproduce the examples is in [44].

Torus from attractor of double-gyre dynamical system. Dynamical systems can be
analyzed by studying the topology of their attractors [2, 36]. Given a real-valued time series
coming from measurements of a given particle on which a dynamical system acts, one can
obtain a pointcloud by constructing a delay embedding of the time series, which, under
certain conditions, is concentrated around a diffeomorphic copy of the attractor the particle
is converging to [36]. Using the delay embedding method with target dimension 4, it was
shown in [12, Section 4.1] that a certain attractor of the double-gyre dynamical system [47]
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Figure 3 We proceed as in [45, Appendix C.3]. The persistence diagram of {Nr}r∈[0,1] for each
of the three examples, with the span of Ω shaded in grey, and the classes summing to w1(Ω) circled
in red. Recall that in the three examples, the nerve N is a circle and thus the persistence diagram
consists of just one prominent 1-dimensional cohomology class. In the case of the torus, the first
Stiefel–Whitney class is zero and thus there is no obstruction to choosing D = 1 + 2 (1 being the
dimension of the circle and 2 the rank of the vector bundle). In the case of the Möbius band, the first
Stiefel–Whitney class coincides with the only point in the persistence diagram and is thus non-trivial,
which gives an obstruction to selecting D = 1 + 1, which reflects the fact that the Möbius band
cannot be embedded in the plane. Similarly, in the case of the Klein bottle, the Stiefel–Whitney
computation gives an obstruction to selecting D = 1 + 2, which reflects the fact that the Klein bottle
cannot be embedded in R3.

Optimal Isomap t-SNE LE/DM LLE HLLE LTSA UMAP FibeRed
Cyl. 2 3 3 3 3 3 3 3 2

Torus 3 4 4 4 4 4 4 4 3
Möb. 3 4 4 3∗ N/A N/A N/A 3∗ 3
Klein 4 5 5 7 7 5 5 4 4

Table 1 The minimal target dimension that can be chosen for each of the algorithms considered in
this section, so that there exist parameters that return a topologically faithful embedding of the data.
“Optimal” refers to the theoretical minimal embedding dimension. “Cylinder” refers to the dataset
of Figure 1. “Torus”, “Möbius band”, and “Klein bottle” refer to the three datasets considered in
this section. Since the Möbius band data is not Euclidean, some algorithms cannot be run on these
data; we denote this with “N/A”. Asteriscs indicate that the data had to be preprocessed with MDS
and target dimension 20 in order to get a topologically faithful embedding with the corresponding
algorithm and dimension.

is orientable and has the homology of a torus. Here, we reproduce the simulation of [12]
using the code from [16] and apply dimensionality reduction to this 4D pointcloud, with the
goal of embedding the attractor and its dynamics in R3.

In Figure 4, we show the results of FibeRed and t-SNE. In order to highlight self-
intersections in low-dimensional representations, we use the following function: given a
dataset X and a representation of it f : X → Y let κ : X → R be defined by κ(x) =
miny∈X dY (f(x), f(y))/dX(x, y). The output of t-SNE in Figure 4 is representative of the
output with other parameter choices and other dimensionality reduction algorithms we have
tried on this data (LE, DM, LLE, HLLE, Isomap, UMAP): if the target dimension is 3, there
are always self-intersections or tears. The difficulty faced by metric-based algorithms in this
example is that the input torus in 4D has an approximately flat metric and thus it does not
admit a smooth isometric embedding in R3.

Möbius band from conformation space of pentane. Any fixed molecule admits different
realizations, or conformations, in three-dimensional space. In, e.g., molecular dynamics [19],

SoCG 2023



56:12 Fiberwise Dimensionality Reduction

Figure 4 The PD of the original pointcloud (two prominent 1-dimensional classes, and one
prominent 2-dimensional class); the output of FibeRed with the reconstructed dynamics and side
view, and the PD of the output (which matches the PD of the original pointcloud well); the output
of t-SNE on the same data and side view, colored by κ (red is smaller), there seem to be two
self-intersections, and the PD of the output of t-SNE, which has one prominent 1-dimensional hole
and two 2-dimensional voids, confirming that the red regions have been pinched.

Figure 5 The PD of the original pointcloud, which has one prominent 1-dimensional class; the
output of FibeRed and its PD; the output of Isomap and its PD (regardless of the parameter
for Isomap, the algorithm is unable to capture the circularity of the data, and thus its PD has
no prominent features); the output of t-SNE and its PD (regardless of the parameters for t-SNE,
the algorithm is unable to capture the circularity and non-orientability of the data without tears,
which cause the output to have two holes). Outputs are colored by the (aligned) fiber coordinates
estimated by FibeRed.

one is interested in understanding all possible conformations of a molecule. The collection of
conformations up to rotations and translations is known as the conformation space of the
molecule. Each conformation has an associated energy and the conformation space together
with the energy function is known as the energy landscape of the molecule.

We reconstruct the conformation space and energy landscape of the pentane molecule from
a simulation (see [45, Appendix C.2] for details). The pentane molecule has two rotational
degrees of freedom (modelled as a torus S1×S1) but also has a symmetry which interchanges
the two angles of rotation. For this reason, the (unlabeled) conformation space consists of
a quotient of the torus, which can be seen to be a Möbius band. In Figure 5, we embed
the conformation space of pentane in R3 and compare the output of FibeRed to that of
Isomap and t-SNE. LE and DM are able to recover a Möbius band in R3; since UMAP uses
LE as initialization, it is also able to recover the Möbius band in R3. In Figure 6, we use the
cut-unfold technique to find a fundamental domain of the conformation space and estimate
the energy landscape.

The difficulty faced by some of the metric-based dimensionality reduction algorithms in
this example is that, with respect to the intrinsic metric, the ratio between the height of
the Möbius band and its circumference is approximately 2/3 and thus there is no isometric
embedding in R3 [20, Theorem 15.1].
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Figure 6 Left: the 2D representation of the conformation space of pentane using FibeRed with
the cut-unfold technique, colored by energy. Arrows indicate how the data must be glued in order to
recover its global topology; this information can be extracted from the cocycle Ω of EstCocycles.
Right: a 2D representation of the energy landscape of pentane, where the energy is estimated using
the representation on the left and Gaussian smoothing. We see that there are four local minima of
the energy function. By going back to the molecule simulation, we confirm that these four minima
correspond to the four well known conformations of pentane [3].

Figure 7 The PD of the original data with Z/2 (two prominent 1-dimensional and one 2-
dimensional classes) and Z/3 coefficients (one prominent 1-dimensional class), which suggests the
data is a Klein bottle; the PD of the representation obtained using FibeRed, which matches the
original topology well; the PD of a representation using Isomap; the PD of a representation using
t-SNE. For Isomap and t-SNE, the PD is the same regardless of the field of coefficients.

Klein bottle from conformation space of cyclooctane. In this example, we reconstruct
the conformation space and energy landscape of the cyclooctane molecule using the dataset
of [27]. In [27], it is shown that the conformation space of cyclooctane consists of a 2-sphere
glued to a Klein bottle along two disjoint circles and a parametrization of the dataset is
given using Isomap and knowledge about how the data was generated.

By estimating the local dimension of the data, we first separate the Klein bottle part of
the dataset from the 2-sphere. In Figure 7, we embed the Klein bottle part of the data in
4D. We were not able to recover the right topology in R4 using any of LE, DM, LLE, HLLE,
LTSA, Isomap, or t-SNE. Meanwhile, UMAP is able to recover the right topology in R4. In
order to evaluate the 4D embeddings, we use the following distinguishing feature of the Klein
bottle K: with Z/2 coefficients we have dim(H1(K;Z/2)) = 2 and dim(H2(K;Z/2)) = 1,
while with Z/3 coefficients we have dim(H1(K;Z/3)) = 1 and dim(H2(K;Z/3)) = 0. In
Figure 8, we produce an efficient 2D parametrization of the conformation space of cyclooctane
without using a priori knowledge of how the data was generated.

The difficulty faced by metric-based algorithms in this example is that the Klein bottle
in high dimensional space has aspect ratio close to 1 (i.e., an isometric representation by a
fundamental domain such as the one Figure 8 (left) has commensurable height and width),
and thus it does not admit a simple isometric embedding in R4.
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Figure 8 Left: The output of FibeRed with the cut-unfold technique on the portion of the
conformation space belonging to the Klein bottle. Colored in red and green are the two circles that
glue the Klein bottle to the 2-sphere. Using this representation – a cylinder – we compute a new
circular coordinate, which we combine with the initial circular coordinate to get a fundamental
domain for the Klein bottle. Right: A 2D model of the conformation space of cyclooctane. The two
circles are two hemispheres of the 2D sphere and were obtained using Isomap. Points not colored in
grey indicate the gluings that have to be performed to recover the conformation space.

5 Discussion

We have presented a procedure to learn vector bundles from data and demonstrated that
it can be used to decouple the global topology from the local geometry in topologically
complex data. We showed with examples that this can be helpful for embedding topologically
complex data in low dimension, as well as for charting such data. We have also developed a
mathematical foundation for this point of view.

Limitations. The theory and methods presented in this paper assume that the data lives in
the total space of a vector bundle. There are two main ways in which real data can deviate
from these assumptions: (1) There are singularities in the data manifold and thus the base
map is not a vector bundle since fibers may have different dimensions; (2) the data contains
outliers and only a core subset of the data satisfies the assumptions. Two other important
caveats are that (3) the procedure assumes that a base map is given and that (4) success
depends on the first step of the procedure finding a good cover of the data. We comment on
these remarks below.

Future work. With respect to (1), the situation in which the fibers of the base map can
have different dimensions can be abstracted using the theory of stratified vector bundles [7, 6].
We believe that the main algorithm of Section 3 can be adjusted to account for different
local dimensions by allowing the cocycle Ω between patches with different dimension to be
a matrix in a Stiefel manifold instead of an orthogonal matrix. With respect to (2), our
procedures are robust with respect to limited amount of noise and the problem of devising
extensions robust to outliers is left as future work.

With respect to (3), there are several ways to obtain non-linear initial representations.
First, other cohomological coordinates besides circular coordinates have been developed
[35, 38]. Second, one could use standard non-linear representations, such as the ones learned
by Diffusion Maps [23, 13]. Third, one could use any of the lens functions [50, Section 4]
Mapper uses. Another interesting avenue for constructing coarse topological representations
is to build a graph on the data, simplify it while preserving part of its large scale topology,
and use a graph layout algorithm. Regarding (4), finding good covers of noisy data is an
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interesting problem in itself; we believe the approach presented in this paper can be made
more robust by developing a more nuanced subroutine for computing a cover.

Our approach depends on several constructions, some of which are known to be consistent
estimators. Addressing the consistency of the entire pipeline is left for future work.

Finally, FibeRed can be interpreted as principal component analysis relative to an initial
representation, as it works by linearly embedding the local coordinates of X that are not
already accounted by the initial map, in a way that is globally consistent and orthogonal to
the coordinates already accounted by the initial map. This suggests considering versions of
other popular dimensionality reduction algorithms relative to an initial representation.
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1 Introduction

Motivation and problem statement. Given a point cloud X ⊆ Rn concentrated around a
k-dimensional linear subspace, linear dimensionality reduction algorithms such as Principal
Component Analysis are effective at finding a low-dimensional representation X −→ Rk

of the data that preserves the linear structure. The problem of finding low-dimensional
representations of non-linear data is more involved; one reason being that it is often hard
to make principled assumptions about which particular non-linear shape the data may
have. Topological Data Analysis provides tools allowing for the extraction of qualitative
and quantitative topological information from discrete data. These tools include persistent
cohomology, which can be used, in particular, to identify circular features.

Given a dataset X and a class α in the first integral persistent cohomology group of
X, the circular coordinates algorithm of [4, 3] constructs a circle-valued representation
ccα : X −→ S1, which preserves the cohomology class α in a precise sense [21, Theorem 3.2].
The circular coordinates algorithm is thus a principled non-linear dimensionality reduction
algorithm, and has found various applications [16, 28], particularly in neuroscience [11, 7, 23].

As observed in [3, Section 3.9], and reproduced in Figure 2, when several cohomology
classes α1, . . . , αk are used to produce a single torus-valued representation (ccα1 , . . . , ccαk

) :
X −→ S1 ×· · ·×S1 = Tk, this representation is often not the most natural. Indeed, even when
the cohomology classes αi are linearly independent (l.i.), the maps ccαi can be “geometrically
correlated.” Certain integer linear combinations of the cohomology classes, however, can yield
decorrelated representations. The problems of defining an appropriate notion of geometric
correlation between circle-valued maps, and of using this notion to systematically decorrelate
sets of circle-valued maps are left open in [3]. In this paper, we address these two problems.

Contributions. Given a Riemannian manifold M, we propose to measure the geometric
correlation between smooth maps f, g : M −→ S1 using the Dirichlet form D(f, g) ∈ R. We
show that, given smooth maps f, g : M −→ S1 obtained by integrating cocycles θ and η

defined on the nerve N(U) of an open cover U of M, there exists an inner product ⟨- , -⟩D at
the level of cocycles inducing an isometry ⟨θ, η⟩D = D(f, g) (Theorem 15). This motivates
our Toroidal Coordinates Algorithm (Algorithm 2), which works at the level of cocycles
on a simplicial complex and produces low energy torus-valued representations of data. We
prove that the energy minimization subroutine of the Toroidal Coordinates Algorithm is
correct (Theorem 3) and give a geometric interpretation (Proposition 12). We introduce the
Sparse Toroidal Coordinates Algorithm (Algorithm 8) – a more scalable version of our main
algorithm – implemented in [24], and showcase it on four datasets (Section 6).

Structure of the paper. Section 2 contains background and can be referred to as needed.
The next two sections, 3 and 4, can be read in any order: Section 3 contains a computational
description of the Toroidal Coordinates Algorithm, while Section 4 describes an analogous
procedure for Riemannian manifolds and serves as motivation. Section 5 describes the Sparse
Toroidal Coordinates Algorithm, then demonstrated in the examples of Section 6.
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Figure 1 An illustration of how we use colors to display circular coordinates on data. We first
color the circle S1 with a smooth transition between yellow and violet, repeated four times; then,
given a function into the circle, we color its domain by pulling back the coloring. Depicted are the
colorings induced on a genus two surface by the map that “goes around a longitude” (Left) and by
the map that “goes around a meridian” (Right).

Circular coordinates Toroidal coordinates( 1 0 0 0
−1 1 0 0
0 1 −1 1
0 1 0 1

)

Figure 2 We represent circular coordinates as explained in Figure 1. Left: Four circle-valued
maps obtained by running the (Sparse) Circular Coordinates Algorithm on four generators of the
first cohomology of a genus two surface. The generators were obtained using persistent cohomology.
Although the cohomology classes are linearly independent, they do not give a particularly efficient
representation of the 1-dimensional holes in the data: for instance, the first two maps both vary as
one goes around the bottom outer hole. Right: Four circle-valued maps obtained by running the
(Sparse) Toroidal Coordinates Algorithm, with input the same four cohomology classes used on the
left. Middle: The change of basis matrix applied to the cohomology classes in order to geometrically
decorrelate them. See Section 6.1 for details about this example.

Figure 3 The lattice generated by the two left-most circle-valued maps in Figure 2, using our
notion of discrete geometric correlation (Definition 4). These two circle-valued maps are represented
as the horizontal vector and the dashed vector. Note that, although these two vectors form a basis
of the lattice, there exists a basis of smaller total squared length: the one formed by the two solid
vectors. The two solid vectors correspond to two circle-valued returned by the (Sparse) Toroidal
Coordinates Algorithm, as shown in Figure 2.
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Discussion. In the examples in Section 6, running the Sparse Toroidal Coordinates Algorithm
on a set of cohomology classes gives results that are qualitatively and quantitatively better
than the results obtained by running the Sparse Circular Coordinates Algorithm separately
on each class. This suggests that the Dirichlet form is indeed a useful notion of geometric
correlation that can be leveraged for producing geometrically efficient and topologically
faithful low-dimensional representations of data. We believe our methods can be extended to
representations valued in non-trivial spaces other than tori, such as other Lie groups.

Various interesting problems remain open: Is our lattice reduction problem (Problem 6)
provably a hard computational problem? Why is it that the de Silva–Morozov–Vejdemo-
Johansson inner product and the inner product estimated in Construction 16 give such
similar results (Remark 17)? Are our heuristics for estimating the Dirichlet form from finite
samples (Construction 16 and [25, Construction 20]) consistent? Here, consistency refers to
convergence in probability to the Dirichlet form as the number of samples goes to infinity.

2 Background

For details about the basics of algebraic topology and Riemannian geometry, we refer the
reader to [18] and [10], respectively.

Cohomology. Let K be a finite abstract simplicial complex and let A be either of the
rings Z or R. Let K0 denote the set of vertices of K and let K1 = {(i, j) ∈ K0 × K0 :
{i, j} is a 1-simplex of K}. For a function θ : K1 −→ A, we denote the evaluation of θ on
a pair (i, j) by θij . The group of 0-cochains C0(K; A) is the Abelian group of functions
K0 −→ A, and the group of 1-cocycles is the Abelian group

Z1(K; A) =
{

θ : K1 −→ A

∣∣∣∣ θij = −θji for all (i, j) ∈ K1,

θij + θjk = θik for every 2-simplex {i, j, k} of K

}
,

The first cohomology group of K with coefficients in A is H1(K; A) := Z1(K; A)/Im(δ), where
δ denotes the group morphism C0(K; A) −→ Z1(K; A) defined by δ(τ)ij = τ(j) − τ(i). Given
θ ∈ Z1(K; A) we denote its image in H1(K; A) as [θ] ∈ H1(K; A).

For any topological space B, we let ι denote the homomorphism ι : H1(B;Z) −→ H1(B;R)
induced by the inclusion of coefficients Z ↪→ R.

The Frobenius inner product. Let W and Z be real, finite dimensional inner product
spaces. For a linear map A : Z −→ W , let A∗ : Z −→ W denotes the adjoint of A with
respect to the inner products on W and Z. The Frobenius inner product between two linear
maps A, B : W −→ Z is defined as ⟨A, B⟩F := Tr(A∗B). In particular, the space of linear
maps W −→ Z can be endowed with the Frobenius norm, given by ∥A∥F :=

√
Tr(A∗A).

Circle and tori. We define the circle as the quotient of topological Abelian groups S1 = R/Z,
with the induced quotient map R q−→ S1 given by mapping r to r mod Z. We endow S1 with
the unique Riemannian metric that makes q a local Riemannian isometry. Given k ∈ N, let
Tk =

(
S1)k denote the k-dimensional torus with the product Riemannian metric.

Circle-valued maps. Let B be a topological space. Given f, g : B −→ S1, define f + g :
B −→ S1 by (f + g)(p) = f(p) + g(p) for all p ∈ B. This endows the set of maps B −→ S1

with the structure of an Abelian group. We say f : B −→ S1 and g : B −→ S1 are rotationally
equivalent if f −g is constant on each connected component of B. Analogously, for a simplicial



L. Scoccola, H. Gakhar, J. Bush, N. Schonsheck, T. Rask, L. Zhou, and J. A. Perea 57:5

complex K, we say that maps on vertices f : K0 −→ S1 and g : K0 −→ S1 are rotationally
equivalent if f − g : K0 −→ S1 is constant on each connected component of K.

Differential of circle-valued maps. There is a canonical isomorphism TS1 ∼= S1 × R of
Riemannian vector bundles over S1. Here, S1 × R −→ S1 is the trivial Riemannian vector
bundle over S1 and the isomorphism is given by the linear isometries d(· − q)q : TqS1 −→
T0S1 ∼= R, where · − q : S1 −→ S1 denotes subtracting q, and the isomorphism T0S1 ∼= R is
chosen once and for all. Using the isomorphism TS1 ∼= S1 × R, we can unambiguously treat
the differential of a map f : M −→ S1 at a point p ∈ M as a linear function dfp : TpM −→ R.
In particular, any smooth map f : M −→ S1 induces a 1-form df ∈ Ω1(M) on M.

Dirichlet energy and Dirichlet form. Given a closed Riemannian manifold M, we let µ

denote its Riemannian measure. The Dirichlet energy of a smooth map f : M −→ N between
Riemannian manifolds is

E[f ] := 1
2

∫
p∈M

∥dfp∥2
F dµ(p),

where dfp : TpM −→ Tf(p)N is the differential of f , a map between inner product spaces.
Recall that the inner product on the space of 1-forms Ω1(M) is given, for θ, η ∈ Ω1(M),

by ⟨θ, η⟩Ω1 :=
∫

p∈M⟨θp, ηp⟩F dµ(p). One can thus extend the Dirichlet energy of circle-valued
maps to a bilinear form, as follows. Given f, g : M −→ S1, define their Dirichlet form as

D(f, g) := 1
2 ⟨df, dg⟩Ω1 = 1

2

∫
p∈M

⟨dfp, dgp⟩F dµ(p).

We remark that, as defined, the Dirichlet form makes sense only for circle-valued maps.
We conclude by noticing that the Dirichlet form and the Dirichlet energy determine each
other. On one hand, we have E[f ] = D(f, f). On the other hand, we have D(f, g) =
1
4 (E(f + g) − E(f − g)), by the polarization identity for the inner product space Ω1(M).

3 The Toroidal Coordinates Algorithm

3.1 From circular coordinates to toroidal coordinates
We recall the circular coordinates algorithm of [4, 3] and use its main minimization subroutine
to motivate the Toroidal Coordinates Algorithm. The most relevant portion of the full
pipeline1 is given as Algorithm 1, which we refer to as the Circular Coordinates Algorithm.

As can be easily checked, the minimization subroutine (Algorithm 3) of the Circular
Coordinates Algorithm returns a solution to the following problem:

▶ Problem 1. Given 0 ̸= α ∈ H1(K;Z) and an inner product ⟨- , -⟩ on Z1(K;R), find
θ ∈ Z1(K;R) of minimum norm such that [θ] = ι(α) ∈ H1(K;R).

We propose the following extension of Problem 1 to the case in which more than one
cohomology class is selected.

▶ Problem 2. Given linearly independent α1, . . . , αk ∈ H1(K;Z) and inner product ⟨- , -⟩
on Z1(K;R), find θ1, . . . , θk ∈ Z1(K;R) minimizing

∑k
j=1 ∥θj∥2, with the property that the

sets {[θj ]}1≤j≤k and {ι(αj)}1≤j≤k generate the same Abelian subgroup of H1(K;R).

1 We refer the reader to [3, Sections 2.2–2.4] for details about the rest of the pipeline.
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Simple examples, such as the one depicted in Figure 3, show that Problem 2 does not
reduce to solving Problem 1 for each individual cohomology class. Indeed, as explained
in Section 3.3, we believe that Problem 2 is significantly harder to solve exactly than
Problem 1. Nevertheless, we also show that one can use the Lenstra–Lenstra–Lovász lattice
basis reduction algorithm to find an approximate solution to Problem 2. This approximation
is the content of the following result, which is proven in [25, Appendix A.1].

▶ Theorem 3. The output of Algorithm 4 consists of cocycles θ1, . . . , θk such that
∑k

j=1 ∥θj∥2

is at most 2k−1 times the optimal solution of Problem 2.

Algorithm 4 constitutes the main minimization subroutine of the Toroidal Coordinates
Algorithm, which is given as Algorithm 2.

3.2 On the choice of inner product
Algorithms 1 and 2 depend on a user-given choice of inner product on Z1(K;R). In [4, 3],
the inner product used is given by

⟨θ, η⟩dSMV :=
∑

{i,j}∈K1

θijηij . (1)

The motivation for this choice is given in [3, Proposition 2], which implies that the map
K0 −→ S1 returned by Algorithm 1 has the property that it can be extended to a continuous
function |K| −→ S1 which maps each edge {i, j} of K to a curve of length |θij |. Thus, with
this choice of inner product, the circle-valued representation returned by Algorithm 1 is one
that stretches the edges of the simplicial complex as little as possible.

There are other natural choices of inner product. In particular, we show in Theorem 15 that
there exists an inner product between cocycles that recovers the Dirichlet form between circle-
valued maps obtained by integrating these cocycles. Since, as explained in the contributions
section, we propose to measure the geometric correlation between maps f, g : M −→ S1 on a
Riemannian manifold using their Dirichlet form, this motivates the following definition.

▶ Definition 4. Let K be a simplicial complex and let ⟨- , -⟩ be an inner product on Z1(K;R).
Given cocycles θ, η ∈ Z1(K;R) with [θ], [η] ∈ Im(ι : H1(K;Z) −→ H1(K;R)), define the
discrete geometric correlation between integrateθ, integrateη : K0 −→ S1 as ⟨θ, η⟩. Here
integrate is as defined in Algorithm 5.

In Section 4, we give a geometric interpretation of the Toroidal Coordinates Algorithm
and provide more details as to why the above notion of discrete geometric correlation is a
discrete analogue of the Dirichlet form (Remark 13).

We conclude this section with a remark explaining why an exact or approximate solution
to Problem 2 promotes low discrete geometric correlation.
▶ Remark 5. Let θ1, . . . , θk ∈ Z1(K;R). For any linear map A : W −→ Z between finite
dimensional inner product spaces, we have ∥A∗A∥F ≤ ∥A∥2

F . Thus, if A : Rk −→ Z1(K;R)
is given by mapping the jth standard basis vector to θj , we get

∑
1≤i,j≤k

⟨θi, θj⟩2 = ∥A∗A∥F ≤ ∥A∥2
F =

k∑
j=1

∥θj∥2.

This implies that a set of cocycles solving Problem 2 exactly or approximately (right-hand
side) induces, by integration (Algorithm 5), a set of cicle-valued maps with low pairwise
squared discrete geometric correlation (left-hand side).
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Algorithm 1 The Circular Coordinates Algorithm.

Input: a non-trivial cohomology class α ∈ H1(K;Z) and an inner product ⟨- , -⟩ on Z1(K;R)
Output: a function ccα : K0 −→ S1

1: Let θ := harmonicRepresentative(α, ⟨- , -⟩)
2: Let ccα := integrateθ

Algorithm 2 The Toroidal Coordinates Algorithm.

Input: l.i. cohomology classes α1, . . . , αk ∈ H1(K;Z) and inner product ⟨- , -⟩ on Z1(K;R)
Output: a function tcα : K0 −→ Tk

1: Let θ1, . . . , θk := lowEnergyRepresentatives(α1, . . . , αk, ⟨- , -⟩)
2: Let tcα := (integrateθ1

, . . . , integrateθk
)

Algorithm 3 Harmonic representative.

Input: a non-trivial cohomology class α ∈ H1(K;Z) and an inner product ⟨- , -⟩ on Z1(K;R)
Output: a cocycle harmonicRepresentative(α, ⟨- , -⟩) ∈ Z1(K;R)

1: Let η ∈ Z1(K;Z) be such that [η] = α ∈ H1(K;Z)
2: Use least squares, w.r.t. ⟨- , -⟩, to solve τ = argmin{ ∥ι(η) − δ(τ)∥ | τ : K0 −→ R }
3: Let harmonicRepresentative(α, ⟨- , -⟩) := ι(η) − δ(τ)

Algorithm 4 Low energy representatives.

Input: l.i. cohomology classes α1, . . . , αk ∈ H1(K;Z) and inner product ⟨- , -⟩ on Z1(K;R)
Output: list of k cocycles lowEnergyRepresentatives(α1, . . . , αk, ⟨- , -⟩) ⊆ Z1(K;R)

1: Let ηj := harmonicRepresentative(αj , ⟨- , -⟩) for 1 ≤ j ≤ k

2: Compute the Cholesky decomposition G = CC∗ of G ∈ Rk×k with Gij = ⟨ηi, ηj⟩
3: Let b1, . . . , bk := LLL(C1, . . . , Ck), with Cj the jth row of C and LLL as in Section 3.3
4: Let M ∈ Zk×k be the change of basis matrix such that MC = (b1, . . . , bk)T

5: Let lowEnergyRepresentatives(α1, . . . , αk, ⟨- , -⟩) := M (η1, . . . , ηk)T

Algorithm 5 Cocycle integration.

Input: a cocycle θ ∈ Z1(K;R) such that [θ] ∈ Im(ι : H1(K;Z) −→ H1(K;R))
Output: a function integrateθ : K0 −→ S1

1: Assume K is connected, otherwise do the following in each connected component
2: Choose x ∈ K0 arbitrarily
3: for y ∈ K0 do
4: Choose a path x = y0, y1, . . . , yℓ−1, yℓ = y from x to y, arbitrarily
5: Let integrateθ(y) := (θy0y1 + θy1y2 + · · · + θyℓ−2yℓ−1 + θyℓ−1yℓ) mod Z
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3.3 Minimizing the objective function with lattice reduction
We start by describing the specific lattice reduction problem we are interested in. Fix k ∈ N
and a k-dimensional real vector space R with an inner product. A full-dimensional lattice L

in R is a discrete subgroup L ⊆ R which generates R as a real vector space. An ordered basis
of a lattice L ⊆ R consists of an ordered list B = {b1, . . . , bk} ⊆ L of linearly independent
vectors that generate L as an Abelian group. We are interested in the following problem.

▶ Problem 6. Let L ⊆ R be a lattice. Find a basis B of L minimizing ∥B∥2
F =

∑k
i=1 ∥bi∥2.

We suspect that Problem 6 is in general hard to solve exactly or approximately up to
a small multiplicative constant. Formally establishing that this problem is hard is beyond
the scope of this work since hardness results for these kinds of problems – like [1] for the
shortest vector problem – are usually quite involved; we refer the reader to [12, 22] for surveys.
We note that minimizations like the one in Problem 6 have already been considered in the
computational number theory literature, see, e.g., [2, Equation 38].

We content ourselves with the following result, which shows the Lenstra–Lenstra–Lovász
lattice basis reduction algorithm (LLL-algorithm), a polynomial-time algorithm introduced
in [15], provides an approximate solution to Problem 6. For our purposes, the LLL-algorithm
takes as input linearly independent vectors {b1, . . . , bk} in Rk and returns a reduced basis,
which we denote by LLL(b1, . . . , bk). We shall not recall the definition of reduced basis here,
since all we need to know about them is the following.

▶ Lemma 7. Let L ⊆ Rn and let V be a solution to Problem 6 for L ⊆ Rn. If B is an
reduced basis, then ∥B∥2

F ≤ 2k−1 ∥V ∥2
F .

We prove Lemma 7 in [25, Appendix A.1], where we use it to prove Theorem 3. We
conclude this section with a practical remark about the LLL-algorithm.
▶ Remark 8. Although the LLL-algorithm can be run with any input {b1, . . . , bn} ⊆ L ⊆ Rn,
it is guaranteed to terminate only if one uses infinite precision arithmetic. In [15], this is
dealt with by assuming that the given lattice has rational coordinates, i.e., L ⊆ Qn ⊆ Rn;
see [15, Remark 1.38]. This is a reasonable assumption in our case, since we expect to be
given the input cocycles and inner product with some finite precision.

In our implementation of the LLL-algorithm, we use floating-point arithmetic, for simpli-
city, and this did not present any problems to us. We note that floating-point algorithms
with polynomial guarantees do exist in the case L ⊆ Zn ⊆ Rn, see, e.g., [19].

4 Geometric Interpretation of the Toroidal Coordinates Algorithm

Let M be a closed Riemannian manifold. We propose the following problem as a suitable
objective for finding an efficient representation of M which captures any chosen set of
1-dimensional holes of M.

▶ Problem 9. Given linearly independent cohomology classes α1, . . . , αk ∈ H1(M;Z), find a
smooth map f : M −→ Tk of minimum Dirichlet energy, with the property that the induced
morphism f∗ : H1(Tk;Z) −→ H1(M;Z) restricts to an isomorphism between H1(Tk;Z) ∼= Zk

and the subgroup of H1(M;Z) generated by α1, . . . , αk.

In this section, we show that the above problem can be solved by an analogue of our
Toroidal Coordinates Algorithm, thus providing a geometric interpretation of our algorithm.
In Remark 13, at the end of this section, we explain how this interpretation motivates the
notion of discrete geometric correlation of Definition 4.

First, we give the analogue of cocycle integration (Algorithm 5) for 1-forms.
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▶ Construction 10. Given a closed 1-form θ ∈ Ω1(M) such that [θ] ∈ Im(H1(M;Z) −→
H1(M;R)), consider the following procedure, which returns a function f : M −→ S1.

1. Assume M is connected, otherwise do the following in each connected component.

2. Choose x ∈ M arbitrarily.

3. For each y ∈ M, let p : [0, 1] −→ M be any smooth path from x to y.

4. For each y ∈ M, define f(y) =
(∫ 1

0 θp(t)(p′(t))dt
)

mod Z.

It is worth remarking that, although Construction 10 depends on arbitrary choices, all
choices yield rotationally equivalent outputs.

The following procedure is the analogue of the Toroidal Coordinates Algorithm.

▶ Construction 11. Given linearly independent cohomology classes α1, . . . , αk ∈ H1(M;Z),
consider the following procedure, which returns a function f : M −→ Tk.

1. Find closed θ1, . . . , θk ∈ Ω1(M) minimizing
∑k

j=1 ∥θj∥2, with the property that the sets
{[θj ]}1≤j≤k and {ι(αj)}1≤j≤k generate the same Abelian subgroup of H1(M;R).

2. Return (f1, . . . , fk) : M −→ Tk, where fj is obtained by integrating θj (Construction 10).

▶ Proposition 12. Construction 11 returns a solution to Problem 9.

A proof of Proposition 12 is in [25, Appendix A.2]. We conclude with a remark relating
the Dirichlet form to our notion of discrete geometric correlation.

▶ Remark 13. Recall from the contributions section that we propose to measure geometric
correlation between maps f, g : M −→ S1 using the Dirichlet form D(f, g). On one hand, if
f and g are obtained using Construction 10 with input 1-forms θ and η, respectively, then
D(f, g) = 1

2 ⟨θ, η⟩Ω1 , by [25, Lemma 19]. On the other hand, given a simplicial complex K

with inner product ⟨- , -⟩ on Z1(K;R), and maps f ′, g′ : K0 −→ S1 obtained using Algorithm 5
with inputs cocycles θ′ and η′, respectively, we defined the discrete geometric correlation
between f ′ and g′ as ⟨θ′, η′⟩. In this sense, our notion of discrete geometric correlation is a
discrete analogue of the Dirichlet form. Theorem 15 makes this analogy precise: when using
Algorithm 6, there exists an inner product that exactly recovers the Dirichlet form.

5 The Sparse Toroidal Coordinates Algorithm

Although effective, the Circular Coordinates Algorithm has two practical drawbacks. First, the
simplicial complex K is usually taken to be a Vietoris–Rips complex, and thus the cohomology
computations scale with the number of data points. Second, the circle-valued representation
returned by the algorithm is defined only on the input data and no representation is provided
for out-of-sample data points. The sparse circular coordinates algorithm of [21] addresses
these shortcomings. We now describe a version of the sparse circular coordinates algorithm2

and recall the steps not included here when describing Pipeline 18 in the examples.

2 We refer the reader to [21] for the full pipeline.
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Algorithm 6 Sparse cocycle integration.

Input: a finite open cover U = {Ux}x∈I of a topological space B, a partition of unity Φ =
{φx}x∈I subordinate to U , a simplicial complex K ⊇ N(U), and a cocycle θ ∈ Z1(K;R)
such that [θ] ∈ Im(ι : H1(K;Z) −→ H1(K;R))

Output: a function sparseIntegrateΦ
θ : B −→ S1

1: Assume K is connected, otherwise do the following in each connected component
2: Choose x ∈ K0 arbitrarily
3: for y ∈ K0 do
4: Choose a path x = y0, y1, . . . , yℓ−1, yℓ = y from x to y, arbitrarily
5: Let τy := θy0y1 + θy1y2 + · · · + θyℓ−2yℓ−1 + θyℓ−1yℓ

6: Let sparseIntegrateΦ
θ (b) :=

(
τy +

∑
z∈I φz(b) θyz

)
mod Z, where b ∈ Uy

Algorithm 7 The Sparse Circular Coordinates Algorithm.

Input: a finite open cover U = {Ux}x∈I of a topological space B, a partition of unity
Φ = {φx}x∈I subordinate to U , a simplicial complex K ⊇ N(U), a non-trivial cohomology
class α ∈ H1(K;Z), and an inner product ⟨- , -⟩ on Z1(K;R)

Output: a function sccα : B −→ S1

1: Let θ := harmonicRepresentative(α, ⟨- , -⟩)
2: Let ccα := sparseIntegrateΦ

θ

Algorithm 8 The Sparse Toroidal Coordinates Algorithm.

Input: a finite open cover U = {Ux}x∈I of a topological space B, a partition of unity
Φ = {φx}x∈I subordinate to U , a simplicial complex K ⊇ N(U), l.i. cohomology classes
α1, . . . , αk ∈ H1(K;Z), and inner product ⟨- , -⟩ on Z1(K;R)

Output: a function stcα : B −→ Tk

1: Let θ1, . . . , θk := lowEnergyRepresentatives(α1, . . . , αk, ⟨- , -⟩)
2: Let stcα := (sparseIntegrateΦ

θ1
, . . . , sparseIntegrateΦ

θk
)

As in previous cases, we remark that, although the sparse cocycle integration subroutine
(Algorithm 6) depends on arbitrary choices, all choices yield rotationally equivalent outputs.

We now show that, when B is a closed Riemannian manifold, there is a choice of inner
product on cocycles that coincides with the Dirichlet form between the corresponding
circle-valued maps, making the analogy in Remark 13 formal.

▶ Definition 14. Let U = {Ux}x∈I be a finite open cover of a closed Riemannian manifold
M and let Φ = {φx}x∈I be a smooth partition of unity subordinate to U . Define the inner
product ⟨- , -⟩D on Z1(N(U);R) by

⟨θ, η⟩D := 1
2

∑
w,y,z∈I

Dwyz θwy ηwz, where Dwyz :=
∫

b∈M
⟨d(φy)b, d(φz)b⟩F φw(b) dµ(b).

Note that the quantities Dwyz do not depend on the cocycles.
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▶ Theorem 15. Let U = {Ux}x∈I be a finite open cover of a closed Riemannian manifold
M, let K ⊇ N(U), and let Φ = {φx}x∈I be a smooth partition of unity subordinate to U .
Assume θ, η ∈ Z1(K;R) are such that [θ], [η] ∈ H1(K;R) are in the image of ι : H1(K;Z) −→
H1(K;R). Let f = sparseIntegrateΦ

θ : M −→ S1 and g = sparseIntegrateΦ
η . Then, f

and g are smooth and D(f, g) = ⟨θ, η⟩D.

We prove Theorem 15 in [25, Appendix A.3]. We conclude by giving a heuristic for computing
an estimate ⟨- , -⟩

D̂
of ⟨- , -⟩D. Addressing the consistency of this heuristic is left for future

work.

▶ Construction 16. Let X ⊆ M ⊆ Rn be a finite sample of a smoothly embedded closed
manifold. Assume given a subsample I ⊆ X as well as ε > 0 such that M ⊆

⋃
x∈I B(x, ε).

For w, y, z ∈ I, we seek to estimate Dwyz, where the open cover is taken to be U =
{B(x, ε) ∩ M}x∈I and Φ = {φx}x∈I is a smooth partition of unity subordinate to U .
1. Form a neighborhood graph G on Xw := X ∩ B(w, ε). For instance, this can be done by

selecting k ∈ N and using an undirected k-nearest neighbor graph.
2. Compute weights h(a, b) ≥ 0 for the edges (a, b) ∈ G. For instance, this can be done by

selecting a radius δ > 0 and letting h(a, b) = exp(−∥a − b∥2/δ2).
3. For a ∈ Xw, let N(a) = {b ∈ G | (a, b) ∈ G}, and define

D̂wyz =
∑
a∈G

 1
N(a)

∑
b∈N(a)

h(a, b) (φy(b) − φy(a)) (φz(b) − φz(a))

φw(a).

▶ Remark 17. We have implemented the estimated inner product ⟨- , -⟩
D̂

in [24]. In all
examples we have considered, running the algorithms in this paper with inner product
⟨- , -⟩

D̂
on one hand, and with the de Silva, Morozov, and Vejdemo-Johansson inner product

⟨- , -⟩dSMV (Equation (1)) on the other, gives results that are essentially indistinguishable.
For this reason, and for concreteness, in Section 6 we use ⟨- , -⟩dSMV. We leave the question
of when and why the two inner products give such similar results for future work.

6 Examples

We compare the output of the Sparse Circular Coordinates Algorithm [21] run independently
on several cohomology classes with that of the Sparse Toroidal Coordinates Algorithm. We
use the DREiMac [27] implementation of the Sparse Circular Coordinates Algorithm and
our extension implementing the Sparse Toroidal Coordinates Algorithm. The code together
with Jupyter notebooks replicating the examples here can be found at [24].

The examples include a synthetic genus two surface (Sec. 6.1), a dataset from [14] of two
figurines rotating at different speeds (Sec. 6.2), a solution set of the Kuramoto–Sivashinsky
equation obtained with Mathematica [29] (Sec. 6.3), and a synthetic dataset modeling neurons
tuned to head movement of bats (Sec. 6.4). We use the following pipeline.

▶ Pipeline 18. Assume we are given a point cloud X ⊆ Rn.
1. Compute a subsample I ⊆ X using maxmin sampling (see [5, 8, 21]).
2. Fix a large prime p; we take p = 41.
3. Compute Vietoris–Rips persistent cohomology of I in degree 1 with coefficients in Z/pZ.
4. Looking at the persistence diagram, identify a filtration step ε > 0 at which cohomology

classes β1, . . . , βk ∈ H1(VRε(I),Z/pZ) of interest to the user are alive. Do this in such a
way that X ⊆ ∪x∈IB(x, ε/2).

5. Note that U = {B(x, ε/2)}x∈I covers X and define K := VRε(I) ⊇ N(U).
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6. Lift β1, . . . , βk ∈ H1(K,Z/pZ) to classes α1, . . . , αk ∈ H1(K,Z) (see [3, Section 2.4]).
7. Choose a partition of unity subordinate to U (see [21, Section 4]). We use the inner

product ⟨- , -⟩dSMV on cocycles (as explained in Remark 17).
8. On one hand, run the Sparse Circular Coordinates Algorithm (Algorithm 7) on each class

αj separately, and get k circle-valued maps X −→ S1.
9. On the other hand, run the Sparse Toroidal Coordinates Algorithm (Algorithm 8) on all

classes α1, . . . , αk simultaneously, to again get k circle-valued maps X −→ S1.

In order to show that the Sparse Toroidal Coordinates Algorithm returns coordinates with
lower correlation and energy, we quantify the performance of the two algorithms using the
estimated Dirichlet correlation matrix (see [25, Appendix B]) of the circle-valued functions
obtained from them. When the functions are obtained from the Sparse Circular Coordinates
Algorithm (resp. Sparse Toroidal Coordinates Algorithm), we denote the correlation matrix by
DSCC (resp. DST C). Note that diagonal correlation matrices reflect complete independence
of coordinates. Hence, we interpret correlations matrices that are close to being diagonal as
indicating low correlation and high independence of recovered coordinates.

The correlation computations depend on two parameters (a k for a k-nearest neighbor
graph and a choice of edge weights). We use k = 15 and weights related to the scale of the
data, but note that the results are robust with the respect to these choices.

We also display the change of basis matrix M (as in Algorithm 4) that relates the
torus-valued maps output by the two algorithms.

6.1 Genus two surface

We apply Pipeline 18 on a densely sampled surface of genus two (Figure 1), as in [3,
Section 3.9]. As expected, persistent cohomology returns four high persistence features.
The resulting circular coordinates obtained by applying the Sparse Toroidal Coordinates
Algorithm are shown in Figure 2 (Right). For comparison, we show the circular coordinates
obtained by applying the Sparse Circular Coordinates Algorithm to each cohomology class
separately Figure 2 (Left). The Dirichlet correlation matrices are as follows:

DSCC =


3 2.4 0 −2.4

2.4 4.8 0 −4.8
0 0 22.6 11.2

−2.4 −4.8 11.2 19.5

 , DST C =


3 −0.6 0 0

−0.6 3 0 0
0 0 14.9 3.5
0 0 3.5 14.8

 .

6.2 Lederman–Talmon dataset

We run Pipeline 18 on a dataset collected and studied by Lederman and Talmon in [14]. In
this example, two figurines Yoda (the green figure on the left) and Dog (the bulldog figure
on the right) are situated on rotating platforms; see Figure 4.

Since each image is characterized by a rotation (φ1, φ2) of the two figurines, we interpret
the time series of images as an observation of a dynamical system on a two-torus. Because
the frequencies of rotation of both figurines have a large least-common-multiple, we expect
the set of toroidal angles (φ1, φ2) to comprise a dense sample of the torus, and verify this
by treating the temporal sequence of images as a vector-valued time series and compute
its sliding window persistence with window length d = 4 and time delay τ = 1 (see [25,
Appendix C.1]).
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Figure 4 Left: A sample of different images in the dataset. Right: The sliding window persistence
diagram of the data, showing two prominent 1-dimensional cohomology classes. Yoda’s platform
rotates clockwise completing about 310 cycles during the experiment, while in the same time Dog’s
platform completes about 450 cycles rotating counterclockwise. The data we consider are a collection
of images of these rotating platforms captured from a fixed viewpoint.

In Figures 5 and 6, we display the result of applying the Sparse Circular Coordinates
Algorithm and the Sparse Toroidal Coordinates Algorithm to the sliding window point cloud
of the dataset, respectively. Here, we show a sample of images as parameterized by the
toroidal coordinates obtained from both algorithms. The Dirichlet correlation matrices and
change of basis matrix are as follows:

DSCC =
(

3.07 −3.08
−3.08 10.48

)
, DST C =

(
3.07 0

0 7.39

)
, M =

(
1 0
1 1

)
.

Figure 5 The vertical coordinate parameterizes Dog’s rotation, while the horizontal coordinate
parameterizes the rotation of both figurines.
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Figure 6 Vertical coordinate parameterizes Dog’s rotation; horizontal parameterizes Yoda’s.

6.3 Kuramoto–Sivashinsky Dynamical Systems

An example of a one-dimensional Kuramoto–Sivashinsky (KS) equation is the following
fourth order partial differential equation:

∂u(x, t)
∂t

+ 4 ∂4u(x, t)
∂x4 + 53.3 ∂2u(x, t)

∂x2 + 53.3 u(x, t) ∂u(x, t)
∂x

= 0

with periodic boundary conditions u(x, 0) = sin(x) and u(0, t) = u(2π, t). The general family
of KS equations [9] have gained popularity from their simple appearance and their ability
to produce chaotic spatiotemporal dynamics. They have been shown to model pattern
formations in several physical contexts; for instance [13, 17, 26].

The underlying dynamical system is toroidal. Indeed, it is controlled by two frequencies:
one comes from oscillation in time, the other is dictated by the speed of the traveling wave
along the periodic domain. However, the dynamic is not periodic and the trajectory of any
initial state eventually densely fills out the torus. We represent the solution u(x, t) to this
equation as a heatmap in Figure 7 (Left). The horizontal axis refers to time t, the vertical
axis refers to the spatial variable x. At each time, u(x, t) is periodic and a slice of it can be
seen in Figure 7 (Middle). We treat u(x, t) as a vector valued time series f(t) := u(−, t) and
compute the sliding window persistence ([25, Appendix C.1]) of f with parameters d = 5
and τ = 4; see Figure 7 (Right) for the resulting persistence diagram.



L. Scoccola, H. Gakhar, J. Bush, N. Schonsheck, T. Rask, L. Zhou, and J. A. Perea 57:15

Figure 7 (Left) The solution to the KS equation as a heatmap; (Middle) A slice of u(x, t) at a
fixed t0; (Right) The sliding window persistence digaram.

In Figures 8 and 9, we display the result of applying the Sparse Circular Coordinates
Algorithm and the Sparse Toroidal Coordinates Algorithm to the sliding window embedding
of the dataset, respectively. As in Example 6.2, we show sample data points (in this case
waves) as parameterized by the toroidal coordinates obtained from both algorithms.

To verify that the vertical and horizontal components of Figure 9 are indeed parameterizing
oscillation and traveling, respectively, we partition the dataset in 50 bins, according to the
vertical coordinate, and in each bin we compute all pairwise rotationally invariant L2

distances between the waves. We show the histogram of distances in Figure 10. The Dirichlet
correlation matrices and change of basis are as follows:

DSCC =
(

1.1 6.1
6.1 112.3

)
, DST C =

(
1.1 1
1 76.6

)
, M =

(
1 0

−5 1

)
.

Figure 8 Oscillatory behavior vertically and combination of traveling and oscillatory horizontally.
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Figure 9 Traveling waves parameterized horizontally and oscillations parameterized vertically.

Figure 10 Density of pairwise distances using the parameterization of the Toroidal Coordinates
Algorithm is in blue, while density of pairwise distances using the parameterization given by the
Circular Coordinates Algorithm is in red. This suggests that, indeed, the horizontal coordinate of
Figure 9 parameterizes rotation only while the one of Figure 8 does not.
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6.4 Synthetic Neuroscience Example

We show that our methods are a viable way of constructing informative circle-valued
representations of neuroscientific data. Place cells in the mammalian hippocampus have
spatially localized receptive fields that encode position by firing rapidly at specific locations
as one navigates an environment [20]. It is shown in [6] that head direction of bats is encoded
in a similar way: certain neurons are tuned to pitch, others to azimuth, and others to roll,
each using a circular coordinate system to do so.

We consider a synthetic dataset inspired by these types of neuronal responses to stimuli.
Suppose three populations of neurons P1, P2, and P3 are tuned to elevation, azimuth, and
roll, respectively. This means, for instance, that if neuron n ∈ P1 is tuned to a head elevation
of 45 degrees, then n fires most rapidly when the head is at an elevation of 45 degrees, fires
less rapidly if the head is at an elevation of, say 35 or 55 degrees, and maintains low activity
near an elevation of 0 or 90 degrees. Now, suppose we record the firing rates of neurons in
populations P1, P2, and P3 for a duration of T time steps while an animal moves its head
freely. Letting N denote the total number of recorded neurons, we can record this data as
an N × T matrix M , where Mi,j corresponds to the firing rate of neuron i at time step j.

We interpret M as a collection of T points in Rn and consider the problem of recovering
three circular coordinates M −→ S1 (one each for elevation, azimuth, and roll) that map
a point of M , thought of as a time step, to the correct head orientation at that time. We
construct a synthetic dataset simulating the situation above (see [25, Appendix C.2]) and
run it through Pipeline 18. Figure 11 shows the resulting persistence barcode, which contains
three prominent 1-dimensional cohomology classes.

We then use the Sparse Circular Coordinates Algorithm to recover a circle-valued map from
each of the three most prominent 1-dimensional cohomology classes. To determine whether
we successfully recover all three orientations, we use a scatter plot as in [3, Section 3.2], and
display the three recovered maps M −→ S1 against the ground truth. The Sparse Circular
Coordinates Algorithm run independently on each cohomology class fails to recover the
three head orientations (Figure 12, left) in many of our runs, while the Toroidal Coordinates
Algorithm always recovers the three coordinates (Figure 12, right). The Dirichlet correlation
matrices and the change of basis are as follows:

DSCC =

51.6 −0.9 2.7
−0.9 50.2 −99.7
2.7 −99.7 249.8

 , DST C =

51.6 −0.9 0.8
−0.9 50.2 0.5
0.8 0.5 51.1

 , M =

1 0 0
0 1 0
0 2 1

 .

Figure 11 Persistence barcode of exhibiting three prominent 1-dimensional cohomology classes.
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Sparse Circular Coordinates Sparse Toroidal Coordinates

Figure 12 Recovered versus known circular coordinates using the Sparse Circular Coordinates
Algorithm and the Toroidal Coordinates Algorithm.
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Abstract
We prove that any compact semi-algebraic set is homeomorphic to the solution space of some art
gallery problem. Previous works have established similar universality theorems, but holding only up
to homotopy equivalence, rather than homeomorphism, and prior to this work, the existence of art
galleries even for simple spaces such as the Möbius strip or the three-holed torus were unknown.
Our construction relies on an elegant and versatile gadget to copy guard positions with minimal
overhead. It is simpler than previous constructions, consisting of a single rectangular room with
convex slits cut out from the edges. We show that both the orientable and non-orientable surfaces
of genus n admit galleries with only O(n) vertices.
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1 Introduction

An instance of the art gallery problem consists of a polygon P (which we refer to as the art
gallery), and the objective is to find a finite set of points G ⊆ P (the guards) of minimal
cardinality such that every point in P is visible to some guard, meaning that the line segment
between the point and the guard is contained within P . This problem was first introduced by
Viktor Klee in 1973 and has a long history. In 1986, Lee and Lin [8] showed that the decision
problem of determining whether there exists a configuration with at most k guards is NP-hard,
but the problem is not known to be in NP since there is no obvious succinct way to represent
the guards’ coordinates in a solution (they might have to be irrational, even if all polygon
vertex coordinates are rational [10]). In 2018, Abrahamsen, Adamaszek, and Miltzow [1]
showed that the problem is ∃R-complete, mostly settling the question of complexity (modulo
the longstanding conjectures that NP ⊊ ∃R ⊊ PSPACE). Approximation algorithms and
lower bounds have also been studied; see Bonnet and Miltzow [4] for a recent overview.

Aside from complexity aspects, a parallel line of inquiry concerns the topology of the
space of solutions. Supposing that gallery P requires exactly k guards at minimum, we let

V (P ) := {G ⊆ P | |G| = k and every p ∈ P is visible to some g ∈ G}.

The set V (P ) consists of unordered sets of points of cardinality k, which can be turned into
a metric space using the Hausdorff distance

dH(G0, G1) := max
i∈{0,1}

max
g∈Gi

min
g′∈G1−i

d(g, g′),
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where d denotes the Euclidean distance on R2. Thus, for any art gallery P , V (P ) is a
topological space, so a natural question is, what kinds of topological spaces can occur?

More than a mere mathematical curiosity, this question is relevant to complexity theory
due to the connections between ∃R-hardness and topological universality. The most famous
example is Mnëv’s theorem [11, 12] that any semi-algebraic set is stably-equivalent to the
space of point configurations of some order type, inspiring an eventual proof that order type
realizability is ∃R-complete [13]. A semi-algebraic set is a finite union

⋃m
i=1 Si, where each Si

is defined to be the set of points (x1,x2, . . . ,xn) ∈ Rn satisfying a finite number of constraints
of the form P (x1,x2, . . . ,xn) ≥ 0 or P (x1,x2, . . . ,xn) > 0, where P is a polynomial. The
canonical complete problem for ∃R is called ETR (Existential Theory of the Reals), which
asks whether a given semi-algebraic set is nonempty. As a consequence of their reduction
from ETR to the art gallery problem, Abrahamsen et al. [1] show, for any compact semi-
algebraic set S, how to construct an art gallery P such that V (P ) surjects continuously
onto S. However, they do not show that the mapping is injective, so this fails to establish
universality.

In a recent paper, Bertschinger, El Maalouly, Miltzow, Schnider, and Weber [2] show
that any compact semi-algebraic set S is homotopy-equivalent to V (P ) for some polygon
P . They leave as an open question whether P can be constructed so that V (P ) is not just
homotopy-equivalent, but homeomorphic to S. Only the following list of spaces are shown to
be captured up to homeomorphism:

k-clover (obtained by joining k circles at a single point)
k-chain (obtained by connecting k circles in a path with k − 1 disjoint line segments)
4k-necklace (obtained by connecting 4k circles in a cycle with 4k disjoint line segments)
k-sphere
The torus
The 2-holed torus

The constructions for these spaces are all based on simple galleries with solution spaces
homeomorphic to a circle or an interval, which are combined to give Cartesian products
and then given simple additional constraints. However, using these methods it is difficult to
obtain more general spaces because the geometry significantly limits the types of constraints
that can be used. Thus, prior to this work, homeomorphism universality was unknown even
for closed surfaces. Galleries for the real projective plane, Klein bottle, and Möbius strip
were explicitly left as open questions.

In this work, we settle the question of homeomorphism universality in the affirmative:

▶ Theorem 1. For every compact semi-algebraic set S ̸= ∅, there exists a polygon P such
that S is homeomorphic to V (P ).

In addition to yielding a strictly stronger result than that of Bertschinger et al. [2], our
construction is structurally simpler: the art gallery always consists of a single rectangular
room with two types of convex slits repeatedly cut out of the edges. As an example, we
explicitly draw an art gallery for the Möbius strip (to the best resolution that can reasonably
fit on a page) in Figure 6.

The key ingredient in our approach is a novel form of copying gadget which enforces a
constraint of the form xi = xj , thereby requiring multiple guards to represent the same
underlying variable. Gadgets with similar functions can also be found in Abrahamsen et
al. [1]. Our gadget takes a geometrically different form, and is an improvement for the
following reasons:
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It is more versatile. In particular the polygon P does not need to intersect the convex
hull of the segments being copied. This makes it possible for the gallery to only have a
single “room.”
It works in more general contexts. The previous gadget uses constraints created by the
need for guards to see every point on the interior of the polygon P . Our gadget works in
the variant of the problem where guards only need to see the boundary of the polygon.
Stade [14] uses this gadget in a forthcoming paper proving that this variant is also
∃R-hard.

Our general construction, which we present in Section 2, does not yield an obvious bound
on the size of P (number of vertices) as a function of the complexity of the space S. In
Section 3, we refine our construction to show that both the orientable and non-orientable
surfaces of genus n can be captured by art galleries with only O(n) vertices.

2 General construction

As in Bertschinger et al. [2], the starting point for our reduction is a theorem by Hironaka
[6] that any compact semi-algebraic set can be triangulated as a cubical complex. We begin
by reviewing this result. Next, we introduce our variable/copying gadgets and establish its
key properties. Finally, we show how to combine the gadgets to construct the art gallery.
We illustrate our construction using the Möbius strip as a running example.

2.1 Hironaka’s theorem

An abstract cubical complex is a subset K of the set

In =
{

{x ∈ [0, 1]n | xi1 = c1, . . . xik
= ck} | 1 ≤ i1 < · · · < ik ≤ n, (c1, . . . , ck) ∈ {0, 1}k

}
of faces of an n dimensional hypercube [0, 1]n such that if a ∈ K and b ⊆ a, then b ∈ K. We
write |K| :=

⋃
K ⊆ [0, 1]n for the union of faces, called the geometric realization of K.

▶ Theorem 2 (Bertschinger et al. [2], Lemma 3). Any compact semi-algebraic set is homeomorphic
to the geometric realization of an abstract cubical complex.

Proof sketch. This fact is well-known so we do not give a complete proof here. Using
Hironaka’s theorem [6], it is possible to show that any compact semi-algebraic set is
homeomorphic to the geometric realization of an abstract simplicial complex (see Hoffman
[7]). Additionally, it can be shown that any abstract simplicial complex has an abstract
cubic complex with a homeomorphic geometric realization (see Blass and Wlodzimierz [3,
Theorem 1.1]). ◀

For example, the circle S1 can be represented as the abstract cubical complex

{{x ∈ [0, 1]2 | x1 = 0}, {x ∈ [0, 1]2 | x1 = 1}, {x ∈ [0, 1]2 | x2 = 0}, {x ∈ [0, 1]2 | x2 = 1}},

in which case its geometric realization is the boundary of the unit square in R2. The Möbius
strip can be realized as a subset of the 4-dimensional hypercube as in Figure 1.
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Figure 1 A 4-dimensional geometric realization of a cubical complex homeomorphic to a Möbius
strip.

2.2 Variable gadgets
The art gallery we construct will be an axis-aligned rectangle with several slits removed
from around the border. We refer to certain slits and combinations of slits as gadgets. Our
construction involves three kinds of gadgets: variable gadgets, copying gadgets, and clause
gadgets.

We begin by establishing the key properties of the variable gadgets, which also appear in
Bertschinger et al. [2]. A variable gadget consists of one slit in the left wall and two in the
right wall, as depicted in Figure 2.

Figure 2 A variable gadget enforcing that a guard must be placed on the dashed gold line segment
GH. The boundary of this section of the art gallery consists of the entire outer profile (continuing
above and below the dashed lines at the top and bottom), involving line segments of all colors. No
other gadgets may intersect the shaded rectangular region Wi.

▶ Lemma 3. If slits are drawn as in Figure 2, with no other slits in the region Wi, then at
least one guard must be placed within Wi. If there is only one guard in that region, it must
be placed on line segment GH. Furthermore, the slits can be drawn so that the height of Wi

is arbitrarily small.

Proof. To see point F , we must have at least one guard placed within the triangle FIK

(which also requires there to be some guard in Wi). To see point I, we must have at least
one guard placed within the triangle EIF , so if there only one guard in Wi, it must be on
the line segment FI. Since it must also see the point J , this further restricts the guard to
the segment GH. The entire figure can be scaled in the y direction to give Wi arbitrarily
small height without changing the dimensions of the segment GH. ◀
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We refer to the line segments GH from Lemma 3 as guard segments, which we will number
1, 2, . . . , n, and we refer to Wi as the guard region of guard segment i. Since guard regions
can be made arbitrarily small, we may arrange these guard segments any way we wish within
the rectangular gallery so long as no two guard segments share the same y-coordinate.

2.3 Copying gadgets
We next introduce our copying gadgets, which are based on the following geometric observation.

▶ Lemma 4. Let L1 and L2 be two distinct parallel lines in the plane, and let Z be a point
strictly between L1 and L2. Let f : L1 → L2 be the map defined via inversion through Z, i.e.,
for p ∈ L1, f(p) is the intersection of the line pZ with L2. Then f is linear (meaning it
preserves ratios of distances between points on L1 and the corresponding points on L2).

Figure 3 Illustration of the geometry underlying the copying gadget.

Proof. Assume L1 and L2 are drawn aligned with the x-axis as in Figure 3. Let A, B,
and C be three arbitrary distinct points on L1, and let F , E, and D be their respective
images under f . It is easy to see that (AZB, FZE) and (AZC, FZD) are pairs of similar
triangles. This means that the ratios of lengths of AB to FE and AC to FD are equal, that
is Bx−Ax

Fx−Ex
= Cx−Ax

Fx−Dx
. Rearranging, we have Bx−Ax

Cx−Ax
= Fx−Ex

Fx−Dx
. ◀

We now discuss the key properties of the copying gadgets, which are depicted in Figure 4.

▶ Lemma 5. Suppose guard segments GH and NO are horizontally aligned and parallel as
in Figure 4, with disjoint slits CBAD and SUV T lying outside of the guard regions such
that AB, UV , GH and NO are all parallel. Furthermore, suppose CBAD is chosen so
the triples (A, C, H), (B, C, G), (A, D, O) and (B, D, N) are each colinear, and SUV T is
chosen similarly, as in the figure. Then any valid configuration of guards with one guard in
each guard region must have two guards sharing an x-coordinate, one on GH and one on
NO. Furthermore, if the left wall is moved sufficiently far to the left, CBAD can be placed
anywhere above Wi not in a guard region, SUV T can be placed anywhere below Wj not in a
guard region, and both of these slits can be made arbitrarily small.

Proof. Let α be the location of the guard on GH , and let β be the location of guard on NO;
our objective is to show that, in any valid configuration, αx = βx. We define the following
four additional points:
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α := the intersection of line segment AB with line αC

α := the intersection of line segment UV with line αS

β := the intersection of line segment AB with line βD

β := the intersection of line segment UV with line βT

Figure 4 A copying gadget (and two variable gadgets). As in Figure 2, the boundary consists of
the entire outer profile. The copying gadgets force the pair of guards on segments GH and NO to
have the same x-coordinate. Additional variable and copying gadgets may be placed between Wi

and Wj , which would be easier to draw if Wi and Wj were made narrower; they are drawn very
large in this figure for the purpose of illustration.

Due to the obstructions by points C and D, the guard at α can only see AB to the left
of α, and the guard at β can only see AB to the right of β. If αx < βx, the line segment αβ

will therefore not be seen by any guard, so we must have that αx ≥ βx. Similarly, the guard
at α can only see UV to the right of α, and the guard at β can only see UV to the left of β,
so we must have that αx ≤ β

x
. Thus, in any valid configuration of the two guards,

αx − Gx

Hx − Gx
= Bx − αx

Bx − Ax
(by Lemma 4 with Z := C)

≤ Bx − βx

Bx − Ax

= βx − Nx

Ox − Nx
(by Lemma 4 with Z := D)

=
Vx − β

x

Vx − Ux
(by Lemma 4 with Z := T )

≤ Vx − αx

Vx − Ux

= αx − Gx

Hx − Gx
(by Lemma 4 with Z := S).

Multiplying through by (Hx − Gx) and using the fact that Nx = Gx and Ox = Hx, we have

αx − Gx ≤ βx − Gx ≤ αx − Gx.
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Thus, αx = βx in any valid configuration (and it is obvious that such a configuration is
indeed valid).

For the final claim, observe that we can fully define the position of the top slit CBAD as
follows. Place AB anywhere outside the art gallery, not in any guard region. Then move
the left wall (including all slits) sufficiently to the left so that the y-coordinates of points C

and D are sufficiently close to A and B so that they do not lie in any guard region either.
Existing slits will have to get stretched in this process, which is fine because this only makes
them smaller. Thus, it is possible to make the top slit CBAD arbitrarily small and place
it anywhere, so long as it is above Wi and not in any other guard region. We can apply a
symmetric procedure for SUV T . ◀

2.4 Constructing the art gallery

We are now ready to prove homeomorphism universality. Throughout the proof, as an
example, we implement the various steps the construction for the Möbius strip.

Proof of Theorem 1. By Theorem 2, we may assume without loss of generality that S is the
geometric realization of a nonempty cubical complex. This means that S can be described
as a subset of [0, 1]n whose coordinates x1,x2, . . . ,xn satisfy some disjunctive normal form
(DNF) formula

ϕS ≡
m′∨

j=1
C ′

j ,

where each C ′
i is a conjunction of constraints that certain xi variables take values 0 and 1.

The formula will always be in DNF: each C ′
i corresponds to a face of the cubical complex, so

ϕS describes the set of points lying in at least one such face. For example, the formula for the
Möbius strip M depicted in Figure 1 has six clauses, one for each of the six 2-dimensional faces.
To write an explicit formula ϕM , we choose a coordinate system where x4 = 0 corresponds
to the points on the outer shell and enumerate the faces as clauses by traversing the strip
starting from the left-most depicted face and proceeding next toward the back face:

ϕM ≡(x2 = 0 ∧ x4 = 0) ∨ (x1 = 0 ∧ x4 = 0) ∨ (x1 = 0 ∧ x3 = 1)
∨(x3 = 1 ∧ x4 = 1) ∨ (x2 = 0 ∧ x4 = 1) ∨ (x2 = 0 ∧ x3 = 0)

We next rewrite ϕS in conjunctive normal form (CNF),

ϕS ≡
m∧

j=1
Ci,

where each Ci is a disjunction of constraints, i.e.,

Ci ≡ (xij,1 = cj,1) ∨ (xij,2 = cj,2) ∨ · · · ∨ (xij,ℓ
= cj,ℓ),

with each ij,k ∈ {1, 2, . . . n} and cj,k ∈ {0, 1}. The transformation from DNF to CNF is
standard, and can be accomplished by enumerating all tuples of constraints that take one
constraint from each clause. For example, since ϕM has 6 clauses in DNF, each of size 2,
the translation to CNF produces 26 = 64 clauses, each of size 6. However, after eliminating
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redundancies, we can simplify ϕM to

ϕM ≡(x1 = 0 ∨ x2 = 0 ∨ x3 = 1)
∧(x2 = 0 ∨ x3 = 1 ∨ x4 = 0)
∧(x1 = 0 ∨ x2 = 0 ∨ x4 = 1) (1)
∧(x3 = 0 ∨ x3 = 1 ∨ x4 = 0 ∨ x4 = 1)
∧(x1 = 0 ∨ x3 = 0 ∨ x4 = 0 ∨ x4 = 1).

Figure 5 Illustration of the first step of the general construction (making clause gadgets), starting
from a CNF formula with n variables and m clauses. The full art gallery is shown in more detail for
the Möbius strip in Figure 6.

Starting from a rectangular art gallery, we make a narrow diagonal slit for each clause
j in the top-right corner such that the regions Rj of the gallery that can see to the end of
each slit extend downward to the left and do not overlap, as shown in Figure 5. For each
i ∈ {1, 2, 3, . . . , n} we define Xi to be a tall, skinny, axis-aligned rectangular region such that
the convex hulls of the sets Xi ∩ (R1 ∪ R2 ∪ · · · ∪ Rm) do not overlap in y-coordinates (in
terms of Figure 5, the pink dashed lines must not overlap in y-coordinates). It is always
possible to guarantee this non-overlapping property by making the gallery sufficiently tall
and/or making the clauses sufficiently close together.

In every clause j, for every constraint xij,k
= cj,k, we add a variable gadget in the left

and right sides of the rectangle enforcing the constraint that there is a guard on a guard
segment spanning the width of Xij,k

whose endpoint lies within Rj . If cj,k = 0, this will
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be the left endpoint, and if cj,k = 1, this will be the right endpoint. We then add copying
gadgets to enforce that all guard segments placed in Xi for the same i must have the same
x-coordinate. By Lemmas 3 and 5, this is possible by shrinking the variable and copying
gadgets and moving the left wall sufficiently far away.

Figure 6 An art gallery whose solution space is homeomorphic to a Möbius strip, using the
formula ϕM from (1). The horizontal gold dashes above each variable are the line segments on which
guards must walk, as in Figure 4. The pink diagonal lines depict the regions Rj that can see to the
end of each clause gadget slit; each of these regions must contain at least one guard. The left wall
must be placed sufficiently far to the left to ensure that none of the variable/copy gadgets interfere
with each other. As drawn, this particular art gallery has 183 vertices.

Letting P0 be the polygon P without the clause gadget slits, we have that V (P0) consists
of all solutions with one guard on each guard segment, with guards within the same Xi placed
at the same x-coordinate. There is thus a natural homeomorphism h : V (P0) → [0, 1]n, and
from the way the clause gadgets were constructed, it clearly follows that V (P ) consists of all
solutions in which ϕS is satisfied under h. Thus, V (P ) is homeomorphic to S. ◀

3 Efficient construction for closed surfaces

We have argued that our universality construction is qualitatively simpler than its predecessors.
In this section, we show how our technique can be used to produce quantitatively simple
galleries, in terms of the number of vertices of the polygon. This is not apparent a priori: even
if a space can be triangulated as a cubical complex with relatively few faces, the conversion
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from DNF to CNF can exponentially blow up the number of clauses, and thus the size of the
art gallery. Here we prove that an important class of topological spaces, namely the closed
surfaces, can occur as solutions to art galleries with linearly many vertices.

▶ Theorem 6. There are polygons Pg, Qg with O(g) vertices such that V (Pg) is homeomorphic
to the closed orientable surface of genus g and V (Qg) is homeomorphic to the closed non-
orientable surface of genus g.

Proof. We know by Theorem 1 that such polygons exist for the finite number of cases where
g ∈ {0, 1}, so it is sufficient to construct these polygons only for g ≥ 2.

It is well known that, for g ≥ 2, the orientable surface of genus g can be obtained as
the connected sum of g copies of a torus, T 2#T 2# . . . #T 2, while the non-orientable surface
of genus g can be obtained as the connected sum of g copies of the real projective plane
RP2#RP2# . . . #RP2 (see, e.g., the textbook by Massey [9]). The connected sum R#R is
ordinarily defined as removing an open disk from two copies of R and gluing their boundaries
together. For 2-dimensional surfaces, this is equivalent to gluing the disk boundaries to
opposite ends of a cylindrical tube, which is the formulation we use in this construction.
Thus, let R be either T 2 or RP2. By Theorem 2, we know there is some j such that R is
homeomorphic to |C|, the geometric realization of a cubical complex C with j variables. Let
x1,x2, . . . ,xj be these variables and write x = (x1,x2, . . . ,xj).

Clearly C has at least two 2-dimensional faces. Let C1 be a cubical complex obtained by
removing a face f1 of dimension 2 from C, and C2 obtained by removing a different face f2.
For i ∈ {1, 2}, define Bi to be the cubical complex in x consisting of fi and its boundary, so
that |Ci| ∩ |Bi| is the boundary of the removed disc (see Figure 7).

Figure 7 Visualisation of |C1|, |C2|, |B1| and |B2|. In reality, C should be a complex for T 2 or
RP2, rather than S1 as shown. The figure is just meant to convey the construction at a schematic
level.

Define a new variable x0 and fix constants k0 = 0 < k1 < · · · < kg−2 < 1 = kg−1. Then
the following formulas express the property that a point x is contained in R#R# . . . #R

(see Figure 8 for a visualization). For g even we have

(x ∈ |C2| ∨ x0 = 0) ∧ (x ∈ |C1| ∨ x0 = 1)∧
(x ∈ |B1| ∨ 0 ≤ x0 ≤ k1 ∨ k2 ≤ x0 ≤ k3 ∨ · · · ∨ kg−3 ≤ x0 ≤ kg−2 ∨ x0 = 1)∧
(x ∈ |B2| ∨ k1 ≤ x0 ≤ k2 ∨ k3 ≤ x0 ≤ k4 ∨ · · · ∨ kg−2 ≤ x0 ≤ 1),
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and for g odd we have

(x ∈ |C2| ∨ x0 = 0 ∨ x0 = 1) ∧ x ∈ |C1|∧
(x ∈ |B1| ∨ 0 ≤ x0 ≤ k1 ∨ k2 ≤ x0 ≤ k3 ∨ · · · ∨ kg−2 ≤ x0 ≤ 1)∧
(x ∈ |B2| ∨ k1 ≤ x0 ≤ k2 ∨ k3 ≤ x0 ≤ k4 ∨ · · · ∨ kg−3 ≤ x0 ≤ kg−2 ∨ x0 = 1).

Note that such a space is typically not the geometric realization of a cubical complex in
x0, x1,x2, . . . ,xj because of the constraints on x0; nevertheless, we will construct an art
gallery for it.

Figure 8 A schematic visualization for our constructions of R#R# . . . #R for even g (left) and
odd g (right). For all values of x0, we require x ∈ |C1| and x ∈ |C2|, except for x0 = 0 or x0 = 1
where one of these constraints is dropped to cap the hole at the end. For ki < x0 < ki+1, x must be
in either |B1| ∩ |C1| or |B2| ∩ |C2| depending on the parity of i. This creates tubes connecting the
copies of R.

We can write these expressions in CNF with terms of form xi = 0, xi = 1, or ki ≤ x0 ≤
ki+1. We write the constraint x ∈ |B1| in CNF as

ϕB1 :=
p∧

ℓ=1

qℓ∨
m=1

tℓ,m,

where each tℓ,m is an atomic constraint of the form e.g. xi = c. We may thus rewrite

x ∈ |B1| ∨ 0 ≤ x0 ≤ k1 ∨ k2 ≤ x0 ≤ k3 ∨ · · · ∨ kg−2 ≤ x0 ≤ 1

≡
p∧

ℓ=1

((
qℓ∨

m=1
tℓ,m

)
∨ 0 ≤ x0 ≤ k1 ∨ k2 ≤ x0 ≤ k3 ∨ · · · ∨ kg−2 ≤ x0 ≤ 1

)
.

To add the constraints on x0 to each clause involving x0, we must make a small modification
to the construction from Section 2. Instead of having the clause gadgets along the top wall,
we extend the top wall upward and put these gadgets along the right wall. It is easy to
see that this does not affect our ability to create the constraints on x. We then add the
constraints on x0 to each clause as in Figure 9; if all clause gadgets are vertically translated
copies of each other, then all guard segments for x0 across the different clauses can be placed
at the same x-coordinates.
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Figure 9 Guard segments for x0. We place the first guard segment so that the lower line in the
wedge intersects it a 0, and the upper line intersects it at some point k1. We can then place another
segment which intersects the lower line at k1, and the intersection of this segment with the upper
line gives the value of k2. We can repeat until we have g − 1 segments. Each clause depending on x0

will have a copy of this setup but with some of the segments removed depending on which terms
ki ≤ x0 ≤ ki+1 it contains.

Using a similar expansion for the other terms, we obtain a CNF expression that cuts out
the space we want. Since p and each qℓ are constants, the total number of clauses does not
depend on g, and each clause has at most O(g) terms. Thus, when we add the constraints
involving x0 to the constant-sized formula ϕB1 , the number of vertices increases linearly in g.

We may similarly add x0 constraints to the formula for B2 with linear blowup. The result
is a gallery with O(g) vertices whose solution space is homeomorphic to R#R# . . . #R. ◀

We have shown that such Pg, Qg exist having O(g) vertices. In case it is of interest, we
leave it to the reader to verify that the positions of the vertices can additionally be chosen
to be rational numbers that require only O(g) bits to describe.1

4 Conclusion

In this work we have settled the open question of Bertschinger et al. [2] by showing that
solution spaces to the art gallery problem can capture the topology of any semi-algebraic
set up to homeomorphism. In doing so, we have introduced a new form of copying gadget
that enables simpler arguments about the structure of valid solutions to art gallery problem
instances.

Beyond the art gallery problem, our main result raises intriguing possibilities for the
broader theory of ∃R-hardness. To the best of our knowledge, this is the first paper showing
that the topological structure of semi-algebraic sets can be carried into a different problem

1 In general, if we fix the length of the guard segments for x0 then the wedge parameters that would give
kg−1 = 1 are not rational numbers. Instead, we fix a sufficiently thin slit and choose the length of the
guard segments for x0 appropriately.
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domain even up to the fine-grain notion of homeomorphism.2 Perhaps this holds for other
∃R-hard problems as well.
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Abstract
A finite point set in Rd is in general position if no d + 1 points lie on a common hyperplane. Let
αd(N) be the largest integer such that any set of N points in Rd with no d+2 members on a common
hyperplane, contains a subset of size αd(N) in general position. Using the method of hypergraph
containers, Balogh and Solymosi showed that α2(N) < N5/6+o(1). In this paper, we also use the
container method to obtain new upper bounds for αd(N) when d ≥ 3. More precisely, we show that
if d is odd, then αd(N) < N

1
2 + 1

2d
+o(1), and if d is even, we have αd(N) < N

1
2 + 1

d−1 +o(1).
We also study the classical problem of determining the maximum number a(d, k, n) of points

selected from the grid [n]d such that no k + 2 members lie on a k-flat. For fixed d and k, we show
that

a(d, k, n) ≤ O
(

n
d

2⌊(k+2)/4⌋ (1− 1
2⌊(k+2)/4⌋d+1 )

)
,

which improves the previously best known bound of O
(

n
d

⌊(k+2)/2⌋

)
due to Lefmann when k + 2 is

congruent to 0 or 1 mod 4.
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1 Introduction

A finite point set in Rd is said to be in general position if no d + 1 members lie on a common
hyperplane. Let αd(N) be the largest integer such that any set of N points in Rd with no
d + 2 members on a hyperplane, contains αd(N) points in general position.

In 1986, Erdős [8] proposed the problem of determining α2(N) and observed that a simple
greedy algorithm shows α2(N) ≥ Ω(

√
N). A few years later, Füredi [10] showed that

Ω(
√

N log N) < α2(N) < o(N),

where the lower bound uses a result of Phelps and Rödl [20] on partial Steiner systems, and the
upper bound relies on the density Hales-Jewett theorem [11, 12]. In 2018, a breakthrough was
made by Balogh and Solymosi [3], who showed that α2(N) < N5/6+o(1). Their proof was based
on the method of hypergraph containers, a powerful technique introduced independently by
Balogh, Morris, and Samotij [1] and by Saxton and Thomason [24], that reveals an underlying
structure of the independent sets in a hypergraph. We refer interested readers to [2] for a
survey of results based on this method.
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In higher dimensions, the best lower bound for αd(N) is due to Cardinal, Tóth, and Wood
[5], who showed that αd(N) ≥ Ω((N log N)1/d), for every fixed d ≥ 2. For upper bounds,
Milićević [18] used the density Hales-Jewett theorem to show that αd(N) = o(N) for every
fixed d ≥ 2. However, these upper bounds in [18], just like that in [10], are still almost linear
in N . Our main result is the following.

▶ Theorem 1. Let d ≥ 3 be a fixed integer. If d is odd, then αd(N) < N
1
2 + 1

2d +o(1). If d is
even, then αd(N) < N

1
2 + 1

d−1 +o(1).

Our proof of Theorem 1 is also based on the hypergraph container method. A key ingredient
in the proof is a new supersaturation lemma for (k + 2)-tuples of the grid [n]d that lie on a
k-flat, which we shall discuss in the next section. Here, by a k-flat we mean a k-dimensional
affine subspace of Rd.

We also study the classical problem of determining the maximum number of points
selected from the grid [n]d such that no k + 2 members lie on a k-flat. The key ingredient
of Theorem 1 mentioned above can be seen as a supersaturation version of this Turán-type
problem. When k = 1, this is the famous no-three-in-line problem raised by Dudeney [7] in
1917: Is it true that one can select 2n points in [n]2 such that no three are collinear? Clearly,
2n is an upper bound as any vertical line must contain at most 2 points. For small values of
n, many authors have published solutions to this problem obtaining the bound of 2n (e.g.
see [9]), but for large n, the best known general construction is due to Hall et al. [13] with
slightly fewer than 3n/2 points.

More generally, we let a(d, k, r, n) denote the maximum number of points from [n]d such
that no r points lie on a k-flat. Since [n]d can be covered by nd−k many k-flats, we have
the trivial upper bound a(d, k, r, n) ≤ (r − 1)nd−k. For certain values d, k, and r fixed and
n tends to infinity, this bound is known to be asymptotically best possible: Many authors
[22, 4, 17] noticed that a(d, d − 1, d + 1, n) = Θ(n) by looking at the modular moment curve
over a finite field Zp; In [21], Pór and Wood proved that a(3, 1, 3, n) = Θ(n2); Very recently,
Sudakov and Tomon [25] showed that a(d, k, r, n) = Θ(nd−k) when r > dk.

We shall focus on the case when r = k + 2 and write a(d, k, n) := a(d, k, k + 2, n).
Surprisingly, Lefmann [17] (see also [16]) showed that a(d, k, n) behaves much differently
than Θ(nd−k). In particular, he showed that

a(d, k, n) ≤ O
(

n
d

⌊(k+2)/2⌋

)
.

Our next result improves this upper bound when k + 2 is congruent to 0 or 1 mod 4.

▶ Theorem 2. For fixed d and k, as n → ∞, we have

a(d, k, n) ≤ O
(

n
d

2⌊(k+2)/4⌋ (1− 1
2⌊(k+2)/4⌋d+1 )

)
.

For example, we have a(4, 2, n) ≤ O(n 16
9 ) while Lefmann’s bound in [17] gives us a(4, 2, n) ≤

O(n2), which coincides with the trivial upper bound. In particular, Theorem 2 tells us that,
if 4 divides k + 2, then a(d, k, n) only behaves like Θ(nd−k) when d = k + 1. This is quite
interesting compared to the fact that a(3, 1, n) = Θ(n2) proved in [21]. Lastly, let us note
that the current best lower bound for a(d, k, n) is also due to Lefmann [17], who showed that
a(d, k, n) ≥ Ω

(
n

d
k+1 −k− k

k+1

)
.

For integer n > 0, we let [n] = {1, . . . , n}, and Zn = {0, 1, . . . , n − 1}. We systemically
omit floors and ceilings whenever they are not crucial for the sake of clarity in our presentation.
All logarithms are in base two.
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2 (k + 2)-tuples of [n]d on a k-flat

In this section, we establish two lemmas that will be used in the proof of Theorem 1.
Given a set T of k + 2 points in Rd that lie on a k-flat, we say that T is degenerate if there

is a subset S ⊂ T of size j, where 3 ≤ j ≤ k + 1, such that S lies on a (j − 2)-flat. Otherwise,
we say that T is non-degenerate. We establish a supersaturation lemma for non-degenerate
(k + 2)-tuples of [n]d.

▶ Lemma 3. For real number γ > 0 and fixed positive integers d, k, such that k is even and
d − 2γ > (k − 1)(k + 2), any subset V ⊂ [n]d of size nd−γ spans at least Ω(n(k+1)d−(k+2)γ)
non-degenerate (k + 2)-tuples that lie on a k-flat.

Proof. Let V ⊂ [n]d such that |V | = nd−γ . Set r = k
2 + 1 and Er =

(
V
r

)
to be the collection

of r-tuples of V . Notice that the sum of a r-tuple from V belongs to [rn]d. For each v ∈ [rn]d,
we define

Er(v) = {{v1, . . . , vr} ∈ Er : v1 + · · · + vr = v}.

Then for T1, T2 ∈ Er(v), where T1 = {v1, . . . , vr} and T2 = {u1, . . . , ur}, we have

v1 + · · · + vr = v = u1 + · · · + ur,

which implies that T1 ∪ T2 lies on a common k-flat. Let

E2r =
⋃

v∈[rn]d

⋃
T1,T2∈Er(v)

{T1, T2}.

Hence, for each {T1, T2} ∈ E2r, T1 ∪ T2 lies on a k-flat. Moreover, by Jensen’s inequality, we
have

|E2r| =
∑

v∈[rn]d

(
|Er(v)|

2

)
≥ (rn)d

(∑
v

|Er(v)|
(rn)d

2

)
= (rn)d

(
|Er|/(rn)d

2

)
≥ |Er|2

4(rn)d
.

Since k and d are fixed and r = k
2 + 1 and |V | = nd−γ ,

|Er|2 =
(

|V |
r

)2
=
(

|V |
(k/2) + 1

)2
≥ Ω(n(k+2)(d−γ)).

Combining the two inequalities above gives

|E2r| ≥ Ω(n(k+1)d−(k+2)γ).

We say that {T1, T2} ∈ E2r is good if T1 ∩ T2 = ∅, and the (k + 2)-tuple (T1 ∪ T2) is
non-degenerate. Otherwise, we say that {T1, T2} is bad. In what follows, we will show that at
least half of the pairs (i.e. elements) in E2r are good. To this end, we will need the following
claim.

▷ Claim 4. If {T1, T2} ∈ E2r is bad, then T1 ∪ T2 lies on a (k − 1)-flat.

Proof. Write T1 = {v1, . . . , vr} and T2 = {u1, . . . , ur}. Let us consider the following cases.

Case 1. Suppose T1 ∩ T2 ̸= ∅. Then, without loss of generality, there is an integer j < r such
that

v1 + · · · + vj = u1 + · · · + uj ,

SoCG 2023
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where v1, . . . , vj , u1, . . . , uj are all distinct elements, and vt = ut for t > j. Thus |T1 ∪ T2| =
2j + (r − j). The 2j elements above lie on a (2j − 2)-flat. Adding the remaining r − j points
implies that T1 ∪ T2 lies on a (j − 2 + r)-flat. Since r = k

2 + 1 and j ≤ k
2 , T1 ∪ T2 lies on a

(k − 1)-flat.

Case 2. Suppose T1 ∩ T2 = ∅. Then T1 ∪ T2 must be degenerate, which means there is a
subset S ⊂ T1 ∪ T2 of j elements such that S lies on a (j − 2)-flat, for some 3 ≤ j ≤ k + 1.
Without loss of generality, we can assume that v1 ̸∈ S. Hence, (T1 ∪ T2) \ {v1} lies on a
(k − 1)-flat. On the other hand, we have

v1 = u1 + · · · + ur − v2 − · · · − vr.

Hence, v1 is in the affine hull of (T1 ∪ T2) \ {v1} which implies that T1 ∪ T2 lies on a
(k − 1)-flat. ◀

We are now ready to prove the following claim.

▷ Claim 5. At least half of the pairs in E2r are good.

Proof. For the sake of contradiction, suppose at least half of the pairs in E2r are bad. Let
H be the collection of all the j-flats spanned by subsets of V for all j ≤ k − 1. Notice that if
S ⊂ V spans a j-flat h, then h is also spanned by only j + 1 elements from S. So we have

|H| ≤
k−1∑
j=0

|V |j+1 ≤ knk(d−γ).

For each bad pair {T1, T2} ∈ E2r, T1 ∪ T2 lies on a j-flat from H by Claim 4. By the
pigeonhole principle, there is a j-flat h with j ≤ k − 1 such that at least

|E2r|/2
|H|

≥ Ω(n(k+1)d−(k+2)γ)
2knk(d−γ) = Ω(nd−2γ)

bad pairs from E2r have the property that their union lies in h. On the other hand, since
h contains at most nk−1 points from [n]d, h can correspond to at most O(n(k−1)(k+2)) bad
pairs from E2r. Since we assumed d − 2γ > (k − 1)(k + 2), we have a contradiction for n

sufficiently large. ◀

Each good pair {T1, T2} ∈ E2r gives rise to a non-degenerate (k + 2)-tuple T1 ∪ T2 that
lies on a k-flat. On the other hand, any such (k + 2)-tuple in V will correspond to at most(

k+2
r

)
good pairs in E2r. Hence, by Claim 5, there are at least

|E2r|
2

/(
k + 2

r

)
= Ω(n(k+1)d−(k+2)γ)

non-degenerate (k + 2)-tuples that lie on a k-flat, concluding the proof. ◀

In the other direction, we will use the following upper bound.

▶ Lemma 6. For real number γ > 0 and fixed positive integers d, k, ℓ, such that ℓ < k + 2,
suppose U, V ⊂ [n]d satisfy |U | = ℓ and |V | = nd−γ , then V contains at most n(k+1−ℓ)(d−γ)+k

non-degenerate (k + 2)-tuples that lie on a k-flat and contain U .
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Proof. If U spans a j-flat for some j < ℓ − 1, then by definition no non-degenerate (k + 2)-
tuple contains U . Hence we can assume U spans a (ℓ−1)-flat. Observe that a non-degenerate
(k + 2)-tuple T , which lies on a k-flat and contains U , must contain a (k + 1)-tuple T ′ ⊂ T

such that T ′ spans a k-flat and U ⊂ T ′. Then there are at most n(k+1−ℓ)(d−γ) ways to add
k + 1 − ℓ points to U from V to obtain such T ′. After T ′ is determined, there are at most
nk ways to add a final point from the affine hull of T ′ to obtain T . So we conclude the proof
by multiplication. ◀

3 The container method: Proof of Theorem 1

In this section, we use the hypergraph container method to prove Theorem 1. We follow the
method outlined in [3]. Let H = (V (H), E(H)) denote a (k + 2)-uniform hypergraph. For
any U ⊂ V (H), its degree δ(U) is the number of edges containing U . For each ℓ ∈ [k + 2],
we use ∆ℓ(H) to denote the maximum δ(U) among all U of size ℓ. For parameter τ > 0, we
define the following quantity

∆(H, τ) = 2(k+2
2 )−1|V (H)|

(k + 2)|E(H)|

k+2∑
ℓ=2

∆ℓ(H)
τ ℓ−12(ℓ−1

2 ) .

Then we have the following hypergraph container lemma from [3], which is a restatement
of Corollary 3.6 in [24].

▶ Lemma 7. Let H be a (k + 2)-uniform hypergraph and 0 < ϵ, τ < 1/2. Suppose that
τ < 1/(200 · (k + 2) · (k + 2)!) and ∆(H, τ) ≤ ϵ/(12 · (k + 2)!). Then there exists a collection
C of subsets (containers) of V (H) such that
1. Every independent set in H is a subset of some C ∈ C;
2. log |C| ≤ 1000 · (k + 2) · ((k + 2)!)3 · |V (H)| · τ · log(1/ϵ) · log(1/τ);
3. For every C ∈ C, the induced subgraph H[C] has at most ϵ|E(H)| many edges.

The main result in this section is the following theorem.

▶ Theorem 8. Let k, r be fixed integers such that r ≥ k ≥ 2 and k is even. Then for any
0 < α < 1, there are constants c = c(α, k, r) and d = d(α, k, r) such that the following
holds. For infinitely many values of N , there is a set V of N points in Rd such that no
r + 3 members of V lie on an r-flat, and every subset of V of size cN

r+2
2(k+1) +α contains k + 2

members on a k-flat.

Before we prove Theorem 8, let us show that it implies Theorem 1. In dimensions d0 ≥ 3
where d0 is odd, we apply Theorem 8 with k = r = d0 − 1 to obtain a point set V in Rd with
the property that no d0 +2 members lie on a (d0 −1)-flat, and every subset of size cN

1
2 + 1

2d0
+α

contains d0 + 1 members on a (d0 − 1)-flat. By projecting V to a generic d0-dimensional
subspace of Rd, we obtain N points in Rd0 with no d0 + 2 members on a common hyperplane,
and no cN

1
2 + 1

2d0
+α members in general position.

In dimensions d0 ≥ 4 where d0 is even, we apply Theorem 8 with k = d0 −2 and r = d0 −1
to obtain a point set V in Rd with the property that no d0 + 2 members on a (d0 − 1)-flat,
and every subset of size cN

1
2 + 1

d0−1 +α contains d0 members on a (d0 − 2)-flat. By adding
another point from this subset, we obtain d0 + 1 members on a (d0 − 1)-flat. Hence, by
projecting to V a generic d0-dimensional subspace of Rd, we obtain N points in Rd0 with no
d0 + 2 members on a common hyperplane, and no cN

1
2 + 1

d0−1 +α members in general position.
This completes the proof of Theorem 1.

SoCG 2023
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Proof of Theorem 8. We set d = d(α, k, r) to be a sufficiently large integer depending on α,
k, and r. Let H be the hypergraph with V (H) = [n]d and E(H) consists of non-degenerate
(k + 2)-tuples T such that T lies on a k-flat. Let C0 = [n]d, C0 = {C0}, and H0 = H. In
what follows, we will apply the hypergraph container lemma to H0 to obtain a family of
containers C1. For each C1

j ∈ C1, we consider the induced hypergraph H1
j = H[C1

j ], and we
apply the hypergraph container lemma to it. The collection of containers obtained from all
H1

j will form another collection of containers C2. We iterate this process until each container
in Ci is sufficiently small, and moreover, we will only produce a small number of containers.
As a final step, we apply the probabilistic method to show the existence of the desired point
set. We now flesh out the details of this process.

We start by setting C0 = [n]d, C0 = {C0}, and set H0 = H[C0] = H. Having obtained
a collection of containers Ci, for each container Ci

j ∈ Ci with |Ci
j | ≥ n

k
k+1 d+k, we set

Hi
j = H[Ci

j ]. Let γ = γ(i, j) be defined by |V (Hi
j)| = nd−γ . So, γ ≤ d

k+1 − k. We set
τ = τ(i, j) = n− k

k+1 d+γ+α and ϵ = ϵ(i, j) = c1n−α, where c1 = c1(d, k) is a sufficiently large
constant depending on d and k. Then we can verify the following condition.

▷ Claim 9. ∆(Hi
j , τ) ≤ ϵ/(12 · (k + 2)!).

Proof. Since |V (Hi
j)| = nd−γ , γ ≤ d

k+1 − k, and d is sufficiently large, Lemma 3 implies that
|E(Hi

j)| ≥ c2n(k+1)d−(k+2)γ for some constant c2 = c2(d, k). Hence, we have

|V (Hi
j)|

|E(Hi
j)|

≤ nd−γ

c2n(k+1)d−(k+2)γ
= 1

c2nkd−(k+1)γ
.

On the other hand, by Lemma 6, we have

∆ℓ(Hi
j) ≤ n(d−γ)(k+1−ℓ)+k for ℓ < k + 2,

and obviously ∆k+2(Hi
j) ≤ 1.

Applying these inequalities together with the definition of ∆, we obtain

∆(Hi
j , τ) =

2(k+2
2 )−1|V (Hi

j)|
(k + 2)|E(Hi

j)|

k+2∑
ℓ=2

∆ℓ(Hi
j)

τ ℓ−12(ℓ−1
2 )

≤ c3

nkd−(k+1)γ

(
k+1∑
ℓ=2

n(k+1−ℓ)(d−γ)+k

τ ℓ−1 + 1
τk+1

)

=
k+1∑
ℓ=2

c3

τ ℓ−1n(ℓ−1)d−k−ℓγ
+ c3

τk+1nkd−(k+1)γ
,

for some constant c3 = c3(d, k). Let us remark that the summation above is where we
determined our τ and γ. In order to make the last term small, we choose τ = n− k

k+1 d+γ+α.
Having determined τ , in order for the first term in the summation to be small, we choose
γ ≤ d

k+1 − k.
By setting ϵ = c1n−α with c1 = c1(d, k) sufficiently large, we have

∆(Hi
j , τ) ≤ c3

(
k+1∑
ℓ=2

n− ℓ−1
k+1 d+γ+k−(ℓ−1)α + n−(k+1)α

)
≤ c3kn−α + c3n−(k+1)α

<
ϵ

12(k + 2)! .

This verifies the claimed condition. ◀
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Given the condition above, we can apply Lemma 7 to Hi
j with chosen parameters τ and

ϵ. Hence we obtain a family of containers Ci+1
j such that

|Ci+1
j | ≤ 2103(k+2)((k+2)!)3|V (Hj

i
)|τ log(1/ϵ) log(1/τ)

≤ 2c4n
d

k+1 +α log2 n,

for some constant c4 = c4(d, k). In the other case where |Ci
j | < n

k
k+1 d+k, we just define

Ci+1
j = {Ci

j}. Then, for each container C ∈ Ci+1
j , we have either |C| < n

k
k+1 d+k or

|E(H[C])| ≤ ϵ|E(Hi
j)| ≤ ϵi|E(H)|. After applying this procedure for each container in Ci,

we obtain a new family of containers Ci+1 =
⋃

Ci
j such that

|Ci+1| ≤ |Ci|2c4n
d

k+1 +α log2 n ≤ 2(i+1)c4n
d

k+1 +α log2 n.

Notice that the number of edges in Hi
j shrinks by a factor of c1n−α whenever i increases

by one, while on the other hand, Lemma 3 tells us that every large subset C ⊂ [n]d induces
many edges in H. Hence, after at most t ≤ c5/α iterations, for some constant c5 = c5(d, k),
we obtain a collection of containers C = Ct such that: each container C ∈ C satisfies
|C| < n

k
k+1 d+k; every independent set of H is a subset of some C ∈ C; and

|C| ≤ 2(c5/α)c4n
d

k+1 +α log2 n.

Before we construct the desired point set, we make the following crude estimate.

▷ Claim 10. The grid [n]d contains at most O(n(r+1)d+2r) many (r + 3)-tuples that lie on a
r-flat.

Proof. Let T be an arbitrary (r + 3)-tuple that spans a j-flat. There are at most n(j+1)d

ways to choose a subset T ′ ⊂ T of size j + 1 that spans the affine hull of T . After this T ′ is
determined, there are at most n(r+2−j)j ways to add the remaining r + 2 − j points from the
j-flat spanned by T ′. Then the total number of (r + 3)-tuples that lie on a r-flat is at most

r∑
j=1

n(j+1)d+(r+2−j)j ≤
r∑

j=1
n(j+1)d+(r+2−j)r ≤ rn(r+1)d+2r,

since we can assume d > r. ◀

Now, we randomly select a subset of [n]d by keeping each point independently with
probability p. Let S be the set of selected elements. Then for each (r + 3)-tuple T in S

that lies on an r-flat, we delete one point from T . We denote the resulting set of points by
S′. By the claim above, the number of (r + 3)-tuples in [n]d that lie on a r-flat is at most
c6n(r+1)d+2r for some constant c6 = c6(r). Therefore,

E[|S′|] ≥ pnd − c6pr+3n(r+1)d+2r.

By setting p = (2c6)− 1
r+2 n− r

r+2 (d+2), we have

E[|S′|] ≥ pnd

2 = Ω(n
2(d−r)

r+2 ).

Finally, we set m = (c7/α)n
d

k+1 +2α for some sufficiently large constant c7 = c7(d, k, r).
Let X denote the number of independent sets of size m in S′. Using the family of containers
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C, we have

E[X] ≤ |C| ·
(

n
k

k+1 d+k

m

)
pm

≤
(

2(c5/α)c4n
d

k+1 +α log2 n

)(
en

k
k+1 d+kp

m

)m

≤
(

2(c5/α)c4n
d

k+1 +α log2 n

)(
c8α

n
k

k+1 d+k · n− r
r+2 (d+2)

n
d

k+1 +2α

)m

≤
(

2(c5/α)c4n
d

k+1 +α log2 n

)(
c8αn

2(k−r−1)d
(k+1)(r+2) +k− 2r

r+2 −2α
)(c7/α)n

d
k+1 +2α

,

for some constant c8 = c8(d, k, r). Since r ≥ k, 0 < α < 1, and d is large, for n sufficiently
large, we have

c8αn
2(k−r−1)d
(k+1)(r+2) +k− 2r

r+2 −2α < 1/2.

Hence, we have E[X] ≤ o(1) as n tends to infinity. Notice that |S′| is exponentially
concentrated around its mean by Chernoff’s inequality. Therefore, some realization of S′

satisfies: |S′| = N = Ω(n2(d−r)/(r+2)); S′ contains no (r + 3)-tuples on a r-flat; and H[S′]
does not contain an independent set of size

m = (c7/α)n
d

k+1 +2α ≤ cN
r+2

2(k+1) + (r+2)r
2(k+1)(d−r) + r+2

d 2α ≤ cN
r+2

2(k+1) +α,

for some constant c = c(α, d, k, r). Here we assume d is sufficiently large so that

(r + 2)r
2(k + 1)(d − r) + r + 2

d
2α ≤ α.

This completes the proof. ◀

4 Avoiding non-trivial solutions: Proof of Theorem 2

In this section, we will give a proof of Theorem 2. Let V ⊂ [n]d such that there are no k + 2
points that lie on a k-flat. In [17], Lefmann showed that |V | ≤ O

(
n

d
⌊(k+2)/2⌋

)
. To see this,

assume that k is even and consider all elements of the form v1 + · · · + v k
2 +1, where vi ̸= vj

and vi ∈ V . All of these elements are distinct, since otherwise we would have k + 2 points on
a k-flat. In other words, the equation(

x1 + · · · + x k
2 +1

)
−
(

x k
2 +2 + · · · + xk+2

)
= 0,

does not have a solution with {x1, . . . , x k
2 +1} and {x k

2 +2, . . . , xk+2} being two different
( k

2 + 1)-tuples of V . Therefore, we have
( |V |

k
2 +1

)
≤ (kn)d, and this implies Lefmann’s bound.

More generally, let us consider the equation

c1x1 + c2x2 + · · · + crxr = 0, (1)

with constant coefficients ci ∈ Z and
∑

i ci = 0. Here, the variables xi takes value in Zj . A
solution (x1, . . . , xr) to equation (1) is called trivial if there is a partition P : [r] = I1 ∪· · ·∪It,
such that xj = xℓ if and only if j, ℓ ∈ Ii, and

∑
j∈Ii

cj = 0 for all i ∈ [t]. In other words,
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being trivial means that, after combining like terms, the coefficient of each xi becomes zero.
Otherwise, we say that the solution (x1, . . . , xr) is non-trivial. A natural extremal problem
is to determine the maximum size of a set A ⊂ [n]d with only trivial solutions to (1). When
d = 1, this is a classical problem in additive number theory, and we refer the interested
reader to [23, 19, 15, 6].

By combining the arguments of Cilleruelo and Timmons [6] and Jia [14], we establish the
following theorem.

▶ Theorem 11. Let d, r be fixed positive integers. Suppose V ⊂ [n]d has only trivial solutions
to each equation of the form

c1 ((x1 + · · · + xr) − (xr+1 + · · · + x2r)) = c2 ((x2r+1 + · · · + x3r) − (x3r+1 + · · · + x4r)) ,

(2)

for integers c1, c2 such that 1 ≤ c1, c2 ≤ n
d

2rd+1 . Then we have

|V | ≤ O
(

n
d

2r (1− 1
2rd+1 )

)
.

Notice that Theorem 2 follows from Theorem 11. Indeed, when k + 2 is divisible by 4,
we set r = (k + 2)/4. If V ⊂ [n]d contains k + 2 points {v1, . . . , vk+2} that is a non-trivial
solution to (2) with xi = vi, then {v1, . . . , vk+2} must lie on a k-flat. Hence, when k + 2 is
divisible by 4, we have

a(d, k, n) ≤ O

(
n

d
(k+2)/2

(
1− 1

(k+2)d/2+1

))
.

Since we have a(d, k, n) < a(d, k − 1, n), this implies that for all k ≥ 2, we have

a(d, k, n) ≤ O

(
n

d
2⌊(k+2)/4⌋

(
1− 1

2⌊(k+2)/4⌋d+1

))
.

In the proof of Theorem 11, we need the following well-known lemma (see e.g. [6]Lemma 2.1
and [23]Theorem 4.1). For U, T ⊂ Zd and x ∈ Zd, we define

ΦU−T (x) = {(u, t) : u − t = x, u ∈ U, t ∈ T}.

▶ Lemma 12. For finite sets U, T ⊂ Zd, we have

(|U ||T |)2

|U + T |
≤
∑

x∈Zd

|ΦU−U (x)| · |ΦT −T (x)|.

Proof of Theorem 11. Let d, r, and V be as given in the hypothesis. Let m ≥ 1 be an
integer that will be determined later. We define

Sr = {v1 + · · · + vr : vi ∈ V, vi ̸= vj},

and a function

σ :
(

V

r

)
→ Sr, {v1, . . . , vr} 7→ v1 + · · · + vr.

Notice that σ is a bijection. Indeed, suppose on the contrary that

v1 + · · · + vr = v′
1 + · · · + v′

r

SoCG 2023
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for two different r-tuples in V . Then by setting (x1, . . . , xr) = (v1, . . . , vr), (xr+1, . . . , x2r) =
(v′

1, . . . , v′
r), (x2r+1, . . . , x3r) = (x3r+1, . . . , x4r) arbitrarily, and c1 = c2 = 1, we obtain a

non-trivial solution to (2), which is a contradiction. In particular, we have |Sr| =
(|V |

r

)
.

For j ∈ [m] and w ∈ Zd
j , we let

Uj,w = {u ∈ Zd : ju + w ∈ Sr}.

Notice that for fixed j ∈ [m], we have∑
w∈Zd

j

|Uj,w| =
∑

w∈Zd
j

|{v ∈ Sr : v ≡ w mod j}| = |Sr|.

Applying Jensen’s inequality to above, we have∑
w∈Zd

j

|Uj,w|2 ≥ |Sr|2/jd. (3)

For i ≥ 0, we define

Φi
Uj,w−Uj,w

(x) = {(u1, u2) ∈ ΦUj,w−Uj,w (x) : |σ−1(ju1 + w) ∩ σ−1(ju2 + w)| = i}.

It’s obvious that these sets form a partition of ΦUj,w−Uj,w
(x). We also make the following

claims.

▷ Claim 13. For a fixed x ∈ Zd, we have∑
j∈[m]

∑
w∈Zd

j

|Φ0
Uj,w−Uj,w

(x)| ≤ 1,

Proof. For the sake of contradiction, suppose the summation above is at least two, then
we have (u1, u2) ∈ Φ0

Uj,w−Uj,w
(x) and (u3, u4) ∈ Φ0

Uj′,w′ −Uj′,w′ (x) such that either (u1, u2) ̸=
(u3, u4) or (j, w) ̸= (j′, w′).

Let s1, s2, s3, s4 ∈ Sr such that s1 = ju1 +w, s2 = ju2 +w, s3 = j′u3 +w′, s4 = j′u4 +w′

and write σ−1(si) = {vi,1, . . . , vi,r}. Notice that u1 − u2 = x = u3 − u4. Putting these
equations together gives us

j′((v1,1 + · · · + v1,r) − (v2,1 + · · · + v2,r)) = j((v3,1 + · · · + v3,r) − (v4,1 + · · · + v4,r)). (4)

It suffices to show that (4) can be seem as a non-trivial solution to (2). The proof now falls
into the following cases.

Case 1. Suppose j ̸= j′. Without loss of generality we can assume j′ > j. Notice that
(u1, u2) ∈ Φ0

Uj,w−Uj,w
(x) implies

{v1,1, . . . , v1,r} ∩ {v2,1, . . . , v2,r} = ∅.

Then after combining like terms in (4), the coefficient of v1
1 is at least j′ − j, which means

this is indeed a non-trivial solution to (2).

Case 2. Suppose j = j′, then we must have s1 ̸= s3. Indeed, if s1 = s3, we must have w = w′

(as s1 modulo j equals s3 modulo j′) and s2 = s4 (as j′(s1 − s2) = j(s3 − s4)). This is a
contradiction to either (u1, u2) ̸= (u3, u4) or (j, w) ̸= (j′, w′).

Given s1 ̸= s3, we can assume, without loss of generality, v1,1 ̸∈ {v3,1, . . . , v3,r}. Again,
we have {v1,1, . . . , v1,r} ∩ {v2,1, . . . , v2,r} = ∅. Hence, after combining like terms in (4), the
coefficient of v1

1 is positive and we have a non-trivial solution to (2). ◀



A. Suk and J. Zeng 59:11

▷ Claim 14. For a finite set T ⊂ Zd, and fixed integers i, j ≥ 1, we have

∑
w∈Zd

j

∑
x∈Zd

|Φi
Uj,w−Uj,w

(x)| · |ΦT −T (x)| ≤ |V |2r−i|T |.

Proof. The summation on the left-hand side counts all (ordered) quadruples (u1, u2, t1, t2)
such that (u1, u2) ∈ Φi

Uj,w−Uj,w
(t1 − t2). For each such a quadruple, let s1, s2 ∈ Sr such that

s1 = ju1 + w and s2 = ju2 + w.

There are at most |V |2r−i ways to choose a pair (s1, s2) satisfying |σ−1(s1) ∩ σ−1(s2)| = i.
Such a pair (s1, s2) determines (u1, u2) uniquely. Moreover, (s1, s2) also determines the
quantity

t1 − t2 = u1 − u2 = s1 − w

j
− s2 − w

j
= 1

j
(s1 − s2).

After such a pair (s1, s2) is chosen, there are at most |T | ways to choose t1 and this will also
determine t2. So we conclude the claim by multiplication. ◀

Now, we set T = Zd
ℓ for some integer ℓ to be determined later. Notice that Uj,w + T ⊂

{0, 1, . . . , ⌊rn/j⌋ + ℓ − 1}d, which implies

|Uj,w + T | ≤ (rn/j + ℓ)d. (5)

By Lemma 12, we have

|Uj,w|2||T |2

|Uj,w + T |
≤
∑

x∈Zd

|ΦUj,w−Uj,w
(x)| · |ΦT −T (x)|.

Summing over all j ∈ [m] and w ∈ Zd
j , and using Claims 13 and 14, we can compute

∑
j∈[m]

∑
w∈Zd

j

|Uj,w|2||T |2

|Uj,w + T |
≤
∑

j∈[m]

∑
w∈Zd

j

∑
x∈Zd

|ΦUj,w−Uj,w
(x)| · |ΦT −T (x)|

=
∑

x∈Zd

∑
j∈[m]

∑
w∈Zd

j

(
|Φ0

Uj,w−Uj,w
(x)| +

r∑
i=1

|Φi
Uj,w−Uj,w

(x)|
)

|ΦT −T (x)|

≤
∑

x∈Zd

|ΦT −T (x)|
∑

j∈[m]

∑
w∈Zd

j

|Φ0
Uj,w−Uj,w

(x)| +
∑

j∈[m]

r∑
i=1

|V |2r−iℓd

≤
∑

x∈Zd

ΦT −T (x) +
∑

j∈[m]

r−1∑
i=1

|V |2r−iℓd

≤ ℓ2d + rm|V |2r−1ℓd,
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On the other hand, using (3) and (5), we can compute∑
j∈[m]

∑
w∈Zd

j

|Uj,w|2||T |2

|Uj,w + T |
≥
∑

j∈[m]

∑
w∈Zd

j

|Uj,w|2ℓ2d

(rn/j + ℓ)d

≥
∑

j∈[m]

|Sr|2ℓ2d

jd(rn/j + ℓ)d

=
∑

j∈[m]

|Sr|2ℓ2d

(rn + jℓ)d

≥ m|Sr|2ℓ2d

(rn + mℓ)d
,

Combining the two inequalities above gives us
m|Sr|2ℓ2d

(rn + mℓ)d
≤ ℓ2d + rm|V |2r−1ℓd

=⇒ |Sr|2 ≤ (rn + mℓ)d

m
+ r|V |2r−1 (rn + mℓ)d

ℓd
.

By setting m = n
d

2rd+1 and ℓ = n1− d
2rd+1 , we get(

|V |
r

)2
= |Sr|2 ≤ cnd− d

2rd+1 + c|V |2r−1n
d2

2rd+1 ,

for some constant c depending only on d and r. We can solve from this inequality that

|V | = O
(

n
d

2r (1− 1
2rd+1 )

)
,

completing the proof. ◀

5 Concluding remarks

1. One can consider a generalization of the quantity αd(N). We let αd,s(N) be the largest
integer such that any set of N points in Rd with no d + s members on a hyperplane, contains
αd,s(N) points in general position. Hence, αd(N) = αd,2(N). Following the arguments in
our proof of Theorem 1 with a slight modification, we show the following.

▶ Theorem 15. Let d, s ≥ 3 be fixed integers. If d is odd and 2d+s−2
2d+2s−2 < d−1

d , then
αd,s(N) ≤ N

1
2 +o(1). If d is even and 2d+s−2

2d+2s−2 < d−2
d−1 , then αd,s(N) ≤ N

1
2 +o(1).

For example, when we fix d = 3 and s ≥ 5, we have αd,s(N) ≤ N
1
2 +o(1). In the other

direction, it is easy to show that αd,s(N) ≥ Ω(N1/d) for any fixed d, s ≥ 2 (see [8]).

▶ Problem 16. Are there fixed integers d, s ≥ 3 such that αd,s(N) ≤ o(N 1
2 )?

2. We call a subset V ⊂ [n]d an m-fold Bg-set if V only contains trivial solutions to the
equations

c1x1 + c2x2 + · · · + cgxg = c1x′
1 + c2x′

2 + · · · + cgx′
g,

with constant coefficients ci ∈ [m]. We call 1-fold Bg-sets simply Bg-sets. By counting
distinct sums, we have an upper bound |V | ≤ O(n

d
g ) for any Bg-set V ⊂ [n]d.

Our Theorem 11 can be interpreted as the following phenomenon: by letting m grow as
some proper polynomial in n, we have an upper bound for m-fold Bg-sets, where g is even,
which gives a polynomial-saving improvement from the trivial O(n

d
g ) bound. We believe this

phenomenon should also hold without the parity condition on g.
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Slice, Simplify and Stitch: Topology-Preserving
Simplification Scheme for Massive Voxel Data
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Abstract
We focus on efficient computations of topological descriptors for voxel data. This type of data
includes 2D greyscale images, 3D medical scans, but also higher-dimensional scalar fields arising
from physical simulations. In recent years we have seen an increase in applications of topological
methods for such data. However, computational issues remain an obstacle.

We therefore propose a streaming scheme which simplifies large 3-dimensional voxel data – while
provably retaining its persistent homology. We combine this scheme with an efficient boundary
matrix reduction implementation, obtaining an end-to-end tool for persistent homology of large
data. Computational experiments show its state-of-the-art performance. In particular, we are now
able to robustly handle complex datasets with several billions voxels on a regular laptop.

A software implementation called Cubicle is available as open-source: https://bitbucket.org/
hubwag/cubicle.

2012 ACM Subject Classification Theory of computation → Computational geometry; Mathematics
of computing → Combinatorial algorithms

Keywords and phrases Computational topology, topological data analysis, topological image analysis,
persistent homology, persistence diagram, discrete Morse theory, algorithm engineering, implementa-
tion, voxel data, volume data, image data

Digital Object Identifier 10.4230/LIPIcs.SoCG.2023.60

Supplementary Material Software: https://bitbucket.org/hubwag/cubicle
archived at swh:1:dir:5f25601ea576ea1a004c37d94e2e2f5b94b9c00d

Funding Supported by the 2022 Google Research Scholar Award in Algorithms and Optimization.

Acknowledgements I would like to thank Herbert Edelsbrunner, Teresa Heiss, Kevin Knudson,
Marian Mrozek, Georg Osang and Vanessa Robins for their helpful comments.

1 Introduction

Persistent homology is one of the most popular tools offered by the field of Topological
Data Analysis (TDA). It provides a rich geometric-topological descriptor of data called the
persistence diagram. Point cloud data is a natural choice and a significant portion of theory,
and algorithms and software focuses on this setting.

However, persistent homology is also becoming increasingly useful for other types of data
– especially when used in conjunction with modern machine learning tools [23, 24, 37]. In
this paper, we turn our interest to scalar voxel data in dimension 2 and 3. This type of data
includes 2D gray-scale images, 3D medical scans, but also scalar fields coming from physical
simulations. Intermediate results of convolutional neural networks (i.e. feature maps) are
another interesting case. In all these settings, voxel data encodes potentially useful – and
often intricate – geometry and topology.

One key challenge is that such datasets are often large – counted in billions of voxels or
more. Currently, for such data we can compute topological descriptors such as connected
components [29], merge trees [32], contour trees [17] and the Euler characteristic curve [21, 38].
While these are useful tools, there is a compromise: the first three discard higher-order
topological information, and the last one forfeits information about the persistence of
topological features.
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Our goal is therefore to provide a method for exact computation of persistent homology
of large 3D voxel data. We propose an efficient streaming computation scheme, prove its
correctness and benchmark its implementation1. In particular, we experimentally show that
for large data it is the fastest method available. Our method also uses significantly less
memory, which is crucial because memory usage is the main bottleneck of existing methods.
With these improvements we were able to apply our method to several practical datasets
with up to 20483 voxels on a regular laptop. Existing software was limited to 2563 or 5123.

On a technical side, the efficiency of our approach is achieved by (1) streaming the input
slice by slice, (2) efficient parallel implementation and (3) realizing selected parts of the
pipeline as external-memory algorithms. This allows us to save memory, while ensuring that
topological features spanning multiple slices are correctly captured.

Focus of the paper. We focus on: (1) conveying the main ideas behind our computation
scheme; (2) contrasting it with existing approaches; (3) experimentally comparing our
implementation with existing ones using practical datasets. We also discuss the most
important algorithmic and implementational decisions.

Method preview. Input is a 3-dimensional array of scalar values. It is often called a volume
and is composed of 3-dimensional voxels. Output is the persistence diagram of the input
volume, based on an simplified intermediate representation.

Our scheme cuts the input volume into slices. A small number of slices is streamed
from disk and processed in parallel. Each slice is simplified independently using
discrete Morse theory, and boundary information of this smaller representation is
output to disk. Carefully handling the border between adjacent slices allows us to
stitch this local information back together. In practice, we do this by constructing a
global boundary matrix using the partial information coming from each slice. Despite
containing extra stitching information, the resulting boundary matrix is much smaller
than the boundary matrix of the input. Finally, we retrieve the persistence diagram
by running a specialized version of Gaussian elimination on the resulting matrix.

2 Standard background

In this section we cover the usual theoretical background relevant for topology of voxel data.
This includes cubical complexes, discrete Morse theory and persistent homology. Whenever
possible we choose simple definitions that help map concepts to computations. In the next
section we cover some additional definitions specific to our approach.

Cubical cells and complexes. Following [26] we define a degenerate interval [k, k] ⊂ R, and
a regular interval [k, k + 1] ⊂ R for a natural number k. Taking a product of D intervals, p of
which are regular, gives us a p-dimensional cubical cell in embedding dimension D. We call
them cubical p-cells, or simply cells; dim(σ) gives the dimension of cell σ. For p = 0, 1, 2, 3,
we talk about vertices, edges, squares and cubes. Cell σ is a face (coface) of another cell τ

whenever σ ⊂ τ (τ ⊂ σ); it is a proper face or coface if additionally their dimensions differ
by one. A D-dimensional cell is called the top-dimensional cell which we identify with a
voxel. A cubical complex, K, of dimension D is a finite collection of cells of dimension at

1 Software is available as open source: https://bitbucket.org/hubwag/cubicle/

https://bitbucket.org/hubwag/cubicle/


H. Wagner 60:3

most D that is closed under taking faces. Namely, σ ⊂ τ implies σ ∈ K. Given a cubical
complex with n cells indexed from 1 to n, its boundary matrix is an n × n binary matrix
M ; M [i, j] = 1 if and only if the j-th cell is a face of the i-th cell in the complex. The
columns of M encode the boundary of each cell.

Filtered cubical complexes. We assume a common convention in which the values assigned
to input voxels are interpreted as the values of the top-dimensional cells of a cubical complex.
These values are then extended to the lower dimensional faces: each cell inherits the minimum
value of its top-dimensional cofaces: val(σ) = min{val(τ) : σ ⊂ τ and dim(τ) = D}. For
us a filtered cubical complex is simply a cubical complex with cell values assigned as
above. With this we talk about the sublevel complex at a value threshold t. Denoted K≤t,
it contains all cells in K with value not exceeding t. Clearly K≤s ⊆ K≤t whenever s ≤ t,
which lets us define a filtration of cubical complexes: ∅ = K0 ⊂ K1 · · · ⊂ Kn = K.

Cubical homology and persistent homology. Chains of cubical cells, as well as chain, cycle,
boundary, homology and persistent homology groups can be defined [33] in complete analogy
to the standard simplicial case [13]. We will work with homology and persistent homology
with Z2 coefficients, which is standard in applications.

Instead of defining these concepts formally, we offer a brief intuitive overview, which may
be more useful. Intuitively, for 3-dimensional cubical complexes, homology groups capture
the connected components, 1-dimensional closed loops, and voids made of cells. We call them
homological features of dimension 0, 1, 2 respectively, as shown in Figure 1.
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Figure 1 (a) Input volume. (b)–(d) three subcomplexes of the corresponding filtered cubical
complex subdivided into blocks. At value 14 a 1-dimensional cycle is formed and it is filled in at
value 18, forming a persistence pair (14,18) with persistence 4.

Persistent homology works with filtered complexes and assumes a dynamic view of
data: we add voxels one by one ordered by non-decreasing values. Each voxel introduces
all its faces – unless they were already present. Now, theory tells us that each p-cell can
either create a p-dimensional homological feature, or destroy a (p − 1)-dimensional one [13].
We keep track of the values of birth and death of each feature. Each such pair is called
a persistence pair, and persistence itself is the lifetime of each feature. A multiset of
persistence pairs forms a persistence diagram also called a persistence barcode. It turns
out to be a powerful topological descriptor, largely due to its stability properties [14].

SoCG 2023
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A filtered boundary matrix is the boundary matrix of a filtered cubical complex such
that the rows and columns are sorted by the value of the corresponding cells. Persistent
homology can be efficiently computed using Gaussian elimination of this matrix [13, 4]. The
main shortcoming of this approach is the large size of this boundary matrix arising from the
original input, even if stored in sparse format.

Discrete Morse theory. Since cubical complexes can be viewed as CW-complexes, Forman’s
discrete Morse theory [15] – DMT for short – can be used in this setting. We emphasize that
restricting the setting to cubical complexes is crucial for computational efficiency reasons. In
short, we use DMT to simplify the input while retaining crucial topological information.

DMT relies on a discrete Morse matching which pairs cells in a certain way; it is
often called a discrete Morse vector field or discrete Morse gradient. We represent it by a
directed graph, which we call the matching graph. Its nodes correspond to cells in the
cubical complex and initially each directed edge corresponds to proper face relation between
two cells. Pairing two cells corresponds to flipping an edge in this graph. A matching is
a valid discrete Morse matching if: (1) each node in the corresponding matching graph is
incident to at most one flipped edge, and (2) the corresponding matching graph is acyclic. A
cell is called critical if it is not paired with any other cell. We define an alternating path
between a p-cell σ and (p − 1)-cell τ as any path in the modified graph that starts at σ ends
at τ and alternates between cells in dimension p and p − 1. They are also called V -paths,
discrete Morse flow lines and gradient paths.

A discrete Morse complex arising from a matching is generated by its critical cells;
the boundary relation between elements σ and τ is 1 if and only if there is an odd number
of alternating paths between them, and 0 otherwise. As before, we encode this information
in a boundary matrix. We remark that the parity criterion comes from using homology
with Z2 coefficients – in more general setups this is slightly more complicated [31]. The key
consequence of DMT is that the discrete Morse complex of a given complex yields homology
groups which are isomorphic to the homology groups of the original complex.

In the context of filtrations, we restrict ourselves to pairing cells with the same filtration
value. This process yields filtered discrete Morse complexes in which the filtration
values are inherited from the critical cubical cells. As before, we encode it as a filtered
boundary matrix. We also view it as a filtration of discrete Morse complexes: M(K0) ⊂
M(K1) ⊂ · · · ⊂ M(Kn) = M(K).

3 Setup: blocks, slices and borders

In this section we define a number of non-standard definitions which are crucial for our
approach. First, we define the extended value of a voxel as the pair (input value, index
of the voxel in the input volume). These pairs are compared lexicographically. This is a
technicality which breaks ties between voxels of equal value. The block of a voxel is the
subset of its faces which share its extended value. It is useful to imagine that voxels appear
one by one starting with the lowest value. Each voxel introduces all its faces which were not
yet present in the complex – namely the block. We remark that an individual block is not
a cubical complex – just a subset of cubes. However, the blocks of all voxels in a cubical
complex disjointly decompose this complex. See Figure 1 for an illustration.

We cut the input volume – and its cubical complex – in the following way. We imagine
a horizontal hyperplane at integer height h intersecting the cubical complex. The cells
contained in this plane form the border which is also the intersection of the two resulting
slices. This border forms a cubical complex with the dimension of the highest dimensional
cell equal to D − 1. If we cut k times, we generally get k + 1 slices separated by k borders.
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We define the interior of each slice as the slice itself minus its borders. By a stratum
we mean either the interior or a border of a slice. The complex disjointly decomposes into
strata. Later we will compute discrete Morse matchings separately for each stratum, noting
that internal strata are not cubical complexes, but all border strata are.

We remark that in actual computations we will cut the input volume into overlapping
slices. More precisely, with each slice we load an extra layer of voxels belonging to each
adjacent slice. Each extra layer has height one and is called an overlap. It will allow us to
assign values to cells belonging to the border strata consistently across adjacent slices.

4 Related work

In this section we overview of existing literature in the topic. We focus on work related to
persistent homology and discrete Morse complexes in the context of voxel data. In particular,
we emphasize existing techniques which we use in our current approach.

To the best of our knowledge, applying algebraic topology in the context of voxel data
were pioneered in the form of shape functions by Verri, Uras, Frosini and Ferri [35]. Using
higher-degree homological tools go back to the work of Kaczyński, Mischaikow and Mrozek
in the context of dynamical systems [30], with extensions to other application domains [26].

The early 2010s saw an increased interest in computing topological descriptors for
voxel data. Bendich, Edelsbrunner and Kerber proposed an efficient approximation scheme
for persistent homology of 3D voxel data [6]. In contrast, our approach aims at exact
computations. An efficient approach for exact computation of persistence of voxel data of
arbitrary dimension is due to Wagner, Chen and Vucini [36]. It relies on efficient generation
of the boundary matrix of the entire complex. We reuse some of the techniques used in
this paper, in particular the data-structure for compact storage of information for each
cell. An efficient implementation of this approach is provided in Gudhi [12] and DIPHA [3].
One downside of this scheme is the large size of the boundary matrix – which prompted
development of simplification methods, like the one below.

Work by Robins, Wood, Sheppard [33] marks a breakthrough in computing topological
descriptors for voxel data. We refer to this work as RWS and describe it in more detail in
Section 5. In short, it preprocesses the input using discrete Morse theory typically resulting
in a much smaller boundary matrix encoding the same topology. In [19], certain algorithmic
aspects were improved and a memory-efficient storage of the matching was proposed. This
allowed for handling large data – but significantly complicated the implementation. Since
our new approach needs to store only a single slice of data at a time, we use a simpler but
equally efficient implementation without affecting memory usage.

Work by Mischaikow and Nanda [31] generalizes the theory and algorithms presented in
RWS beyond cubical complexes. A related software package, Perseus, has been a popular
tool capable of computing persistence for a variety of input types. One lesson learned from
this work was the trade-off between flexibility and efficiency. For voxel data the preprocessing
step turned out to be more costly than computing persistence directly [4]. With that in
mind, our approach specializes in voxel data. This paper also reports the first approach for
streaming preprocessing – each levelset was stored separately, simplified and merged together
later. In contrast, we use a spatial decomposition of the volume.

Discrete Morse theory was also used to perform more aggressive simplification. This
proved to be useful in data visualization. One particularly impressive approach is due to
Gyulassy, Bremer, Hamann and Pascucci [20]. Already in 2008 it handled a volume with a
billion voxels on commodity hardware in a day. However, the simplified complex computed
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in this approach cannot be used to compute persistent homology of the original data [9].
Still, our approach is inspired by the data subdivision scheme used in this approach. Despite
certain similarities, the details of our subdivision scheme, subsequent computations and final
goal are all different. Our method can be viewed in terms of discrete stratified Morse theory
of Knudson and Wang [28].

Concurrently to the development of DMT-based methods, matrix reduction algorithms
were significantly improved [7, 2, 4, 22, 3]. In Section 7 we describe how we adapted certain
techniques from the PHAT library [4] at the preprocessing level.

Bauer’s Ripser [1] was originally devised for the Vietoris–Rips construction arising from
point cloud data. Recently Ripser was adapted to voxel data with CubicalRipser [27].

Finally, we remark that the proposed scheme was first conceived in 2015 and preliminary
results were informally presented at two international meetings at 2017. Software development
began in 2015, and the first stable version of the software was published in 2018.

5 Persistence-aware simplification scheme

In this section, we overview an existing approach by by Robins, Wood and Sheppard [33],
(RWS), for simplifying cubical complexes stored in memory.

The goal is to compute a smaller representation of data that encodes the same persistent
homology as the input volume. More precisely output persistence diagrams are allowed to
differ only by ephemeral persistence pairs – each corresponding to a feature that is born
and dies at the same filtration value. Such pairs are discarded in practice anyway. The
crucial observation by Robins and collaborators is that ephemeral features abound in cubical
filtrations, allowing them to propose an efficient simplification scheme.

This method computes a valid discrete Morse matchings separately for each block. It
then computes the boundary matrix of a filtered discrete Morse complex which encodes the
same persistent homology. This step is done by computing the parity of the numbers of
alternating paths between pairs of critical cells. See Figure 2 for illustration. We discuss
correctness of this approach for filtered cubical complexes.

Validity of the matching. We show that if the matching graph within each block is acyclic,
then the global one is acyclic as well. We observe that the extended value is generally non-
increasing along cells in an alternating path. However leaving a block necessarily decreases
the extended value. Since forming a cycle would require leaving a block and returning, cycles
cannot form since the extended values along paths cannot increase.

Topologial correctness of simplification. Applying DMT on each block yields a complex
that encodes the same persistent homology – up to ephemeral pairs. Indeed, this block-
wise construction yields the filtration: M(K0) ⊂ M(K1) ⊂ . . .M(Kn) = M(K). Now,
Forman’s theory tells us that H∗(M(Ki)) = H∗(Ki). Applying the Persistence Equivalence
Theorem [13] yields the desired result.

Hardness of matchings. Generally, finding discrete Morse matchings minimizing the number
of critical cells is a computationally hard problem [25]. However, RWS showed a simple
Θ(b log b) time algorithm for optimal matching for a block of a 3-dimensional cubical complex
with b cells.



H. Wagner 60:7

1 2 3

14 15 4

13 16 5

12 17 6

11 18 7

10 9 8

1 2 3

14 15 4

13 16 5

12 17 6

11 18 7

10 9 8

a b c

Figure 2 (a) Input volume; (b) Filtered cubical complex (c) Depiction of the RWS method.
Black arrows show the matching graph. The yellow paths mark the alternating paths whose parity
determine the boundary relations between the red critical cells. There is one nonzero relation:
between the critical 2-cell with value 18 and the critical 1-cell with value 14, which itself has empty
boundary. In this simple case the resulting boundary matrix is already reduced, so the persistence
pairs are readily available. Typically the matrix has to be reduced first.

6 Streaming simplification scheme

In this section we describe our algorithmic scheme, which is an efficient streaming version of
the RWS scheme. It yields a reduced representation encoding the same persistent homology
as the input volume. More precisely, we output – to disk – information about the boundary
matrix of the corresponding filtered discrete Morse complex. This boundary matrix is then
reconstructed on disk and the persistent homology is computed using an existing matrix
reduction algorithm. We focus on a high-level overview, noting that the actual implementation
is intricate and contains 2500 lines of terse C++ code (not counting external libraries).

Algorithm 1 outlines the streaming simplification scheme. In overview, we independently
simplify each stratum using the method outlined in the previous section and put global
information back together. We now outline the algorithm and prove its correctness.

Correctness. We need a few new concepts. A border-crossing path is an alternating
path which contains cells belonging to two or more internal strata. A global matching is
the union of discrete Morse matchings computed separately on each stratum of a filtered
cubical complex. A global Discrete Morse complex is the filtered discrete Morse complex
arising from the global matching.

We propose a lemma and its three corollaries. Together they show that the information
extracted from all slices is sufficient to reconstruct the boundary matrix of a global discrete
Morse complex that captures the correct persistent homology of the entire original dataset.

▶ Lemma 1 (Border Blocking Lemma). Suppose an acyclic discrete Morse matching is
computed for each block of each stratum of a filtered cubical complex. Consider a directed path
p = (p1, p2, . . . , pi, . . . , pn) in the matching graph G corresponding to the global matching. If
any pi belongs to a border stratum B, then the suffix (pi, pi+1, . . . , pn) is contained in B.
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Algorithm 1 Streaming simplification.

Require: V : volume on disk; (w1, w2, . . . , wD): size of V ; h: maximum height of slice
Ensure: Boundary matrix on disk with the same persistent homology as V

1: for index i in 1 . . . ⌈w1/h⌉ do
2: n = h

∏D
d=2 wi

3: D = read next n voxels of V from disk (less for last slice)
4: C = filtered cubical complex of D representing the slice
5: O = load 1-voxel tall overlap for each border of C

6: update the values of border cells in C using extra information in O

7: S = decompose C into an internal stratum and up to 2 border strata
8: for stratum s of S do
9: for block b in s do

10: compute acyclic Morse matching within b

11: mark critical cells in S

12: for critical cell σ in C do
13: if σ does not belong to the bottom border stratum of C then
14: write value and dimension information: (ind(σ), val(σ), dim(σ)) to disk
15: p = dim(σ)
16: T = critical (p − 1)-cells reachable from σ by odd number of paths
17: for critical (p − 1)-cell τ in T do
18: write boundary information: (ind(σ), ind(τ)) to disk
19: unload all data from memory
20: sort the indices by corresponding value and dimension (on disk)
21: map these sorted indices to a contiguous range of indices (on disk)
22: save the filtered boundary matrix in appropriate sparse format (on disk)

Proof. We proceed by induction, with pi ∈ B by assumption. To show that pk ∈ B implies
pk+1 ∈ B for i ≤ k < n, we consider two cases. Namely, there are two potential outgoing
edges from pk in G: to a proper face of pk, which belongs to the border stratum B because
each border stratum is a cubical complex; or to a matched (paired) proper coface of pk, which
belongs to the border stratum B because the corresponding matching is restricted to B by
construction. In any case, pk+1 lies in B and by induction so does each pj for i ≤ j ≤ n. ◀

We recall that the internal strata are generally not cubical complexes. This means that
paths can lead from an internal cell to a border cell. Still, the following corollary reassures
us that no cycles can be formed.

▶ Corollary 1 (Global Acyclicity). The global discrete Morse matching is acyclic.

Proof. First, there are no cycles within each stratum by construction. To form a directed
cycle spanning multiple strata, a path would have to go back and forth between internal and
border strata. This is however impossible, since paths entering a border stratum remain
inside this stratum, as shown in Lemma 1. ◀

With the above, it is easy to see that we preserve information about persistent homology.

▶ Corollary 2 (Global Correctness). The global discrete Morse complex encodes the same
persistent homology.
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Figure 3 (a,b) Input split into two overlapping parts; (c,d) Simplification applied on each slice.
The slices agree on the values and matching on the shared border. The path that crossed the border
in Figure 2 is now split into three paths. One can construct the filtered boundary matrix with 8
columns and 13 nonzero entries to verify that, in particular, the 1-dimensional feature created in
one slice and destroyed in another is correctly captured; also that the extra critical cells result only
in features of zero persistence.

Proof. By Corollary 1, the global matching is a valid – if suboptimal – matching on the entire
input filtered cubical complex. This reduces the proof to the case of the RWS approach
we covered in the previous section. Therefore, the simplified complex encodes the same
persistent homology (up to ephemeral pairs) as the original cubical filtration. ◀

Or scheme introduces extra critical cells, even if all the voxel values are unique. These
extra cells allow us to stitch together discrete Morse complexes coming from different slices.
More specifically, these extra cells split each border-crossing path into multiple non-crossing
paths as shown in Figure 3. Instead of performing costly pruning at this stage [20, 10], we
welcome these cells into the the final boundary matrix, reduce it, and simply discard the
resulting ephemeral pairs from the resulting diagram.

Finally, we show that the information available in each slice is sufficient.

▶ Corollary 3 (Slice Locality). The boundary matrix of the global discrete Morse complex can
be computed from information contained within each slice.

Proof. Lemma 1 implies that there are no border-crossing paths. This means that all the
boundary information contained in the resulting boundary matrix can be computed locally
within in each slice. Additionally, the dimension and value of each critical cell is available
within each slice. ◀

One subtlety: in a practical implementation the values and matching assigned to each
border stratum must be consistent between the adjacent slices. To ensure this, we load the
overlap, namely the extra layers of voxels, in line 5 of Algorithm 1.
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Computational complexity. Computations are dominated by tracking the parity of altern-
ating paths [33], which is done in line 16. Overall, a single slice is handled in Θ(v3) worst
case time [33], where v is the number of voxels in a slice. In our case, a dataset with v

voxels divided into s slices, the worst-case complexity is Θ(s( v
s )3) = Θ( v3

s2 ). However, this
worst-case behaviour is theoretical, and the experiments we report in Section 7 show roughly
linear scaling for all practical datasets.

7 Technicalities

In this section we mention several technicalities which make our implementation efficient in
practice. Balancing speed and memory usage was the key challenge in our streaming setup.

Encoding the information about cells. All auxiliary information about cells are stored
in a cube-map format [36], which simply arranges cells as an array of size 2w1 + 1, 2w2 +
1, . . . , 2wD + 1 for input of size w1, w2, . . . , wD. We use an efficient implementation of
multidimensional arrays provided by the blitz++ library.

Global indexing of cells. Each slice needs to assign a globally unique index to each of its
critical cells. Since additionally the indices of border cells must be consistent across slices, we
simply use the global index of cells in the entire complex. To compute this, each slice must
know its offset and the dimensions of the volume (except w1). These indices are compactified
in line 13 of Algorithm 1.

Computing and storing the matching. Focusing on D ≤ 3 allows us to adapt the Pro-
cessLowerStar procedure of RWS. Since each block can have at most 27 cells, these
computations are unlikely to be the performance bottleneck.

However, storing the matching could dominate memory usage, which was alleviated in
[19] by using a succinct bit-level encoding of the matching graph. Our sliced setting allows
for more relaxed memory management, so such techniques are not necessary. Instead we used
a simpler encoding, exploiting the fact that each edge can only point at at most 6 directions.

Computing the parity of alternating paths. This is hidden in line 16 and is crucial for
performance of the simplification part. In D ≥ 3, the alternating paths can both split and
merge, which complicates the algorithms compared to lower dimensions. One consequence is
that the number of alternating paths between 3-cells and 2-cells can grow exponentially in
input size – which actually occurs in practical datasets [19]. This makes simple enumeration
prohibitive. However, the matching graph is an acyclic directed graph, allowing us to use a
basic dynamic programming algorithm for counting the parity of alternating paths.

One important addition compared to existing implementations is the usage of the bit-tree
data-structure developed for the PHAT library. We re-purpose it for compact storage and
manipulation of indices of cells maintained during path-counting. This removes the main
memory bottleneck present in [19], which used a red-black tree. It required significantly more
storage in the worst case and is also generally slower.

Reconstructing boundary matrix and persistence pairs. During simplification we output
partial boundary and filtration information on disk in lines 14 and 18. In lines 20–22, we
reconstruct the full filtered boundary matrix using a simple external-memory (on disk)
algorithm. We do this to avoid storing both the partial information and the full matrix at
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the same time. In line 20 of Algorithm 1, we sort the indices of cells by their values, since we
need a filtered boundary matrix. In line 20, we map global indices of cells into contiguous
indices, as required by most matrix reduction packages. Already in line 13 we made sure
that the information for each border cell is output from exactly one of the two slices. In
line 22 we rearrange the data in the format required by matrix reduction software; usually
each column is represented by the dimension of the cell, the size of the column followed
by its nonzero indices. Additionally, after the matrix reduction, we transform the reduced
matrix into the final persistence diagram in a similar way. All these simple computations are
implemented using the STXXL [11] external algorithms library.

Lock-free parallelization scheme. Each slice is handled by one thread. More precisely, we
maintain a thread-pool of a fixed size k, which allows k slices to be handled in parallel. Each
thread loads its slice, processes it, and outputs partial results to one of k output buffers on
disk and unloads the slice. This allows for simple, lock-free parallelism, circumventing the
usual synchronization problems. We use the CTL thread-pool library.

Experiments We present experiments which compare the end-to-end performance of the
proposed approach with existing solutions.

Datasets. We use datasets provided at the free Open Scientific Visualization Datasets
(OSVD) repository. This repository contains several 3D voxel datasets, mostly coming
from real-world applications. The sizes range from 413 to 40963, with one 900GB file of size
10240x7680x1536 voxels. For comparison we used the 15 smallest datasets in the repository,
with up to 150 millions voxels. We also test our method on images up to 8 billion voxels.

Benchmarked software. A recent paper [18] includes a comprehensive benchmark with
a multitude of software packages. We restrict our benchmark to three fastest end-to-end
alternative approaches: CubicalRipser, DIPHA and DiscreteMorseSandwich. CubicalRipser
is a modern method [27] based on implicit boundary matrix representation. It is a single-
threaded implementation. We used a newer version than in the original benchmark [18],
and got significantly better results. DIPHA [3] implements [36] and explicitly stores and
reduces the full boundary matrix. DiscreteMorseSandwich [18] is part of TTK [34] and
implements the RWS scheme. It works both in cubical and triangulated setting.

Result consistency. Our approach uses the data interpretation described earlier in the
paper, sometimes called the T interpretation [16]. We verified that the produced persistence
diagrams are consistent with the results of CubicalRipser with appropriate options. DIPHA
uses the dual V interpretation, which however encodes equivalent information [16]. As
already noted in [27], DiscreteMorseSandwich returns different diagrams presumably due to
an alternative data interpretation.

Hardware. We use a commodity laptop with an i7-1165G7@2.80GHz CPU with 5MB L2
cache, 8 logical cores, 32GB of RAM and Toshiba XG6 M.2 NVMe SSD. All software is
compiled and run on Ubuntu 20.04.5 using g++ 10.3.0. All parallel implementation are run
on 8 threads.
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Performance comparison on smaller data. We now discuss results of the experiments. We
start with a comparison with other software on smaller datasets. Then we turn to much
larger data to understand performance characteristics and limits of our approach.

Figures 4 and 5 depict the speed and memory efficiency of the proposed method and
existing implementations. Our goal was to provide an efficient method for massive voxel
data running on commodity hardware. For small datasets the overhead related to streaming
and external memory operations dominates the computations – which is a trade-off we made
by focusing on massive data. In this case, the new version of CubicalRipser is the dominant
solution. For all datasets larger than 2563 ≈ 106 voxels, our approach is both faster and
more memory efficient.

Speed. For large enough data, our approach achieves speed between 0.25 and 2 million
voxels per second and is usually an order of magnitude faster than the fastest alternative.
The computations scale linearly with size, and also depend on the complexity of the data,
which we investigate in a moment.
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Figure 4 Speed comparison in millions of processed voxels per second. Methods are marked
with different symbols. Random colors help distinguish between datasets. For datasets exceeding 1
million voxels, the proposed method offers the highest execution speed. In some cases competing
software failed to finish in reasonable time, which explains why some points are missing.

Memory. For large enough data, the proposed approach achieves much smaller memory
footprint. For the tested datasets the peak memory usage was kept below 3.5GB, whereas
alternative approaches required > 24GB of memory. Since memory consumption was the
obstacle preventing analysis of large volumes, the low memory usage is the main selling point
of the new approach.
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Figure 5 Peak memory usage comparison. For datasets exceeding 1 million voxels the proposed
method offers significantly lower memory usage. Memory usage is negligible for smaller datasets.

Performance on large data. We turn to much larger datasets counted in billions of voxels
– beyond the scope of the other approaches, at least on our test hardware. Results are
summarized in Table 1.

The technicalities described in Section 7 aimed to balance memory usage and speed. In
particular, storing boundary matrix information in memory would significantly increase the
memory footprint. On the other hand, a slow on-disk implementation could impact the
overall performance. On a more fundamental level, one big unknown was the number of
extra critical cells our method will generate. They could easily overwhelm the computations
or lead to huge boundary matrices. These experiments show that we found a reasonable
balance and that memory usage was significantly decreased slowing things down.

We mention two data-points not collected in the benchmark. First, the final matrix
reduction accounts only for a small portion of the execution time. Second, storage of
the boundary matrix often dominates the memory usage. Therefore, further research into
memory-efficient matrix reduction algorithms would benefit our implementation. The work
reported in [5] is a step in this direction. We also mention that for some of the examples the
memory usage could be further reduced by setting the slice size parameter to a smaller value.

Richtmyer–Meshkov instability. The last dataset in Table 1 is a snapshot of a 3D simulation
of the Richtmyer–Meshkov instability [8]. It describes impulsive mixing of two different
density fluids – and often leads to multi-scale behaviour exhibiting topological patterns. This
particular file has size 2048 × 2048 × 1920, roughly 8 billion voxels and 64 billion cells. Its
full boundary matrix takes ≈ 1.5TB, and reducing it would require at least 3TB of RAM.
Our method requires 150 times less allowing it to work on a regular laptop.
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Table 1 Columns represent file: original input filename; t[s]: total time in seconds; Mvox/s:
speed in millions of input voxels per second; sim: percentage of time spent in the simplification
step; B[M]: millions of nonzero elements in the resulting boundary matrix; c[M]: millions of critical
cells; p[M]: millions of persistence pairs; m[GB]: peak memory usage in GB.

file t[s] sim Mvox/s B[M] c[M] p[M] m[GB]
vertebra_512x512x512 107 74% 1.2 20 7.6 2.8 1.3
zeiss_680x680x680 190 87% 1.7 17 7.7 0.4 2.2
prone_512x512x463 231 54% 0.5 73 29.5 12.9 3.1
neocortical_..._1464x1033x76 266 59% 0.4 81 32.1 11.9 3.1
present_492x492x442 290 53% 0.4 100 37.8 15.5 4.2
stent_512x512x174 291 92% 0.2 16 5.6 2.5 0.8
christmas_tree_512x499x512 333 42% 0.4 132 53.1 20.7 5.3
marmoset_..._1024x1024x314 662 40% 0.5 273 111.4 34.5 10.4
kingsnake_1024x1024x795 1345 62% 0.6 337 140.8 51.6 13.8
pawpawsaurus_958x646x1088 1809 30% 0.4 573 232.0 109.5 21.3
chameleon_1024x1024x1080 2152 48% 0.5 619 261.4 122.3 21.8
richtmyer_..._2048x2048x1920 11477 86% 0.7 828 292.5 88.4 22.3

8 Outlook

The main contribution of this work is a streaming preprocessing scheme which reduces the
representation of voxel data without affecting its topology. In particular, it provably preserves
persistent homology of the data. We combined our scheme with an existing boundary matrix
reduction algorithm, yielding an end-to-end solution for persistent homology computations.
Our experiments show that for large data our solution is the most efficient option.

Our method achieves speed between 0.2 and 2Mvox/s depending on input complexity.
It handles complex data with 20483 voxels on a laptop.

We offer three interesting future directions the proposed scheme opens up:
We can now handle multi-scale datasets of several billion voxels. Data coming from
physical simulations, astrophysics and nanotechnology often exhibit multi-scale structure
– and using persistent homology on such data is an exciting prospect.
With little extra technical effort, we can stream huge data from a network location. This
is important since raw voxel volumes of up to 900GB are readily available but copying
and storing them can be a nuisance.
Further progress in matrix reduction algorithms will benefit our approach. In particular,
an external-memory matrix reduction algorithm would complement our scheme well.
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Let P be a convex polyhedron and Q be a convex polygon with n vertices in total in three-dimensional
space. We present a deterministic algorithm that finds a translation vector v ∈ R3 maximizing the
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1 Introduction

Shape matching is an important topic in computational geometry, with useful applications
in areas such as computer graphics. In a typical problem of shape matching, we are supplied
two or more shapes, and we want to determine how much the shapes resemble each other.
More precisely, given a similarity measure and a set of allowed transformations, we want to
transform the shapes to maximize their similarity measure.

There are many candidates for the similarity measure, such as the Hausdorff distance
and the Fréchet distance between the boundaries of the shapes. We can also consider the
area/volume of overlap or of symmetric difference. The advantage to these is that they are
more robust against noise on the boundary of the shapes [6].

The maximum overlap problem of convex polytopes has been studied by many. In
dimension 2, de Berg et al. [6] give an O(n log n) time algorithm for finding a translation
maximizing the area of intersection of two convex polygons (where n denotes the total number
of vertices of the polygons). In dimension 3, Ahn et al. [1] give an O(n3 log4 n) expected
time algorithm finding the maximum overlap of two convex polyhedra under translation.
For the same problem, Ahn et al. [3] present an algorithm that runs in O(n log3.5 n) time
with probability 1− n−O(1) and an additive error. For d > 3, given two convex polytopes of
dimension d with n facets in total, Ahn et al. [3] give an algorithm that finds the maximum
overlap under translation in O(n⌊d/2⌋+1 logd n) time with probability 1−nO(1) and an additive
error.
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In the plane, when all rigid motions are allowed, Ahn et al. [4] give an approximate
algorithm that finds a rigid motion realizing at least 1 − ϵ times the maximal overlap in
O((1/ϵ) log n + (1/ϵ2) log(1/ϵ)) time. In dimension 3, Ahn et al. [2] present an approximate
algorithm that finds a rigid motion realizing at least 1 − ϵ times the maximal overlap in
O(ϵ−3n log3.5 n) with probability 1− n−O(1).

When considering the maximum overlap as a similarity measure, we obviously can only
allow area/volume-preserving transformations. However, we may want to allow scaling as a
transformation – two similar triangles are supposed to be very “similar,” though they may
have different sizes. In this case, the area of symmetric difference is a better measure of
similarity. Yon et al. [14] give an algorithm minimizing the symmetric difference of two
convex polygons under translation and scaling in O(n log3 n) expected time.

Our results
While many have studied the matching problem for two convex polytopes of the same
dimension, to our knowledge no one has examined the problem for polytopes of different
dimensions or matching more than two polytopes.

The main result in this paper is a deterministic algorithm for the problem of matching a
convex polyhedron and a convex polygon under translation in three-dimensional space.

▶ Theorem 1. Let P be a convex polyhedron and Q a convex polygon with n vertices in total.
We can find a vector v ∈ R3 that maximizes the overlap area |P ∩ (Q + v)| in O(n log2 n)
time.

We also present two applications of our algorithm to other problems in computational
geometry. First, we give a deterministic algorithm for maximizing the overlap of three convex
polygons under translations.

▶ Theorem 2. Let P , Q, R be three convex polygons with n vertices in total in the plane.
We can find a pair of translations (vQ, vR) ∈ R4 that maximizes the overlap area |P ∩ (Q +
vQ) ∩ (R + vR)| in O(n log3 n) time.

We also give a deterministic O(n log2 n) time algorithm for minimizing the symmetric
difference of two convex polygons under a homothety (a translation and a scaling), which is
an improvement to Yon et al.’s randomized algorithm [14].

▶ Theorem 3. Let P and Q be convex polygons with n vertices in total. Then we can find
a homothety φ that minimizes the area of symmetric difference |P \ φ(Q)|+ |φ(Q) \ P | in
O(n log2 n) time.

The main ingredient in the proof of Theorem 1 is a new technique we introduce which
generalizes Megiddo’s prune-and-search [13]. This allows us to efficiently prune among n

groups of m parallel lines.
Let S =

⋃n
i=1 Si be a union of n sets of O(m) parallel lines in the plane, none of which

are parallel to the x-axis, and suppose the lines in each Si are indexed from left to right.

▶ Lemma 4. In O(n) time, R2 can be partitioned into six regions R1, . . . , R6 by three lines,
and we can find six subsets SR1 , . . . , SR6 ⊂ S such that for each i ≤ 6, SRi contains all lines
intersecting the interior of Ri and |SRi | ≤ 17

18 |S|.

With this lemma, we can employ divide-and-conquer to obtain the following.



H. Zhu and H. J. Kweon 61:3

▶ Theorem 5. Suppose there is an unknown point p∗ ∈ R2 and we are given an oracle that
decides in time T the relative position of p∗ to any line in the plane. Then we can find the
relative position of p∗ to every line in S in O((T + n) log(mn)) time.

The omitted proofs can be found in the full version of this paper [12].

2 Preliminaries

Let P ⊂ R3 be a convex polyhedron and Q ⊂ R2 be a convex polygon with n vertices in
total. Throughout the paper, we assume that Q is in the xy-plane, and that the point
in P with minimal z coordinate is on the xy-plane. We want to find a translation vector
v = (x, y, z) ∈ R3 that maximizes the overlap area f(v) = |P ∩ (Q + v)|.

It is easy to observe that f(v) is continuous and piecewise quadratic on the interior of its
support. As noted in [6, 1, 3], f is smooth on a region R if P ∩ (Q + v) is combinatorially
equivalent for all v ∈ R, that is, if we have the same set of face-edge incidences between P

and Q. Following the convention of [1], we call the polygons that form the boundaries of
these regions the event polygons, and as in [6], we call the space of translations of Q the
configuration space. The arrangement of the event polygons partition the configuration space
into cells with disjoint interiors. The overlap function f(v) is quadratic on each cell. Thus,
to locate a translation maximizing f , we need to characterize the event polygons.

For two sets A, B ⊂ Rd, we write the Minkowski sum of A and B as

A + B := {a + b|a ∈ A, b ∈ B}.

We will make no distinction between the translation A + v and the Minkowski sum A + {v}
for a vector v. We also write A − B for the Minkowski sum of A with −B = {−b|b ∈ B}.
We categorize the event polygons into three types and describe them in terms of Minkowski
sums:

(I) When Q + v contains a vertex of P . For each vertex u of P , we have an event polygon
u−Q. There are O(n) event polygons of this type.

(II) When a vertex of Q + v is contained in a face of P . For each face F of P and each
vertex v of Q, we have an event polygon F − v. There are O(n2) event polygons of
this type.

(III) When an edge of Q + v intersects an edge of P . For each edge e of P and each edge e′

of Q, we have an event polygon e− e′. There are O(n2) event polygons of this type.

The reason that convexity is fundamental is due to the following standard fact, as noted
and proved in [6, 14].

▶ Proposition 6. Let P be a d′-dimensional convex polytope and let Q be a d-dimensional
convex polytope. Suppose d′ ≥ d. Let f(v) = Vol(P ∩ (Q + v)) be the volume of the overlap
function. Then, f(v)1/d is concave on its support supp(f) = {v|f(v) > 0}.

As in [5], we say a function f : R→ R is unimodal if it increases to a maximum value, possibly
stays there for some interval, and then decreases. It is strictly unimodal if it strictly increases
to the maximum and then strictly decreases. Furthermore, we say a function f : Rd → R is
(strictly) unimodal if its restriction to any line is (strictly) unimodal.

The following corollary of Proposition 6 allows us to employ a divide-and-conquer strategy
in our algorithm.

▶ Corollary 7 ([5]). For any line l parameterized by l = p + vt in Rd′ for v ≠ 0, the function
fl(t) = f(p + vt) is strictly unimodal.
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We also use the following two techniques in our algorithm.

▶ Lemma 8 ([11]). Let M be an m × n matrix of real numbers, where m ≤ n. If every
row and every column of M is in increasing order, then we say M is a sorted matrix. For
any positive integer k smaller or equal to mn, the k-th smallest entry of M can be found in
O(m log(2n/m)) time, assuming an entry of M can be accessed in O(1) time.

For our purposes, we will use this result in the weaker form of O(m + n).

▶ Lemma 9 ([8]). Given n hyperplanes in Rd and a region R ⊂ Rd, a (1/r)-cutting is
a collection of simplices with disjoint interiors, which together cover R and such that the
interior of each simplex intersects at most n/r hyperplanes. A (1/r)-cutting of size O(rd)
can be computed deterministically in O(nrd−1) time. In addition, the set of hyperplanes
intersecting each simplex of the cutting is reported in the same time.

3 Generalized two-dimensional prune-and-search

In this section, we prove Theorem 5, our generalization of Megiddo’s prune-and-search
technique [13]. This technique is of independent interest and can likely be applied to other
problems.

In [13], Megiddo proves the following:

▶ Theorem 10 ([13]). Suppose there exists a point p∗ ∈ R2 not known to us. Suppose further
that we have an oracle that can tell us for any line l ⊂ R2 whether p∗ ∈ l, and if p∗ /∈ l, the
side of l that p∗ belongs to. Let T be the running time of the oracle. Then given n lines in
the plane, we can find the position of p∗ relative to each of the n lines in O(n + T log n) time.

We are interested in a generalized version of Megiddo’s problem. Suppose, instead of
n lines, we are given n sets of parallel lines S1, S2, . . . , Sn, each of size O(m). In addition,
suppose the lines in each Si are indexed from left to right (assuming none of the lines are
parallel to the x-axis). Again, we want to know the position of p∗ relative to every line in
S =

⋃n
i=1 Si. Megiddo’s algorithm solves this problem in O(mn + T log(mn)) time, but we

want a faster algorithm for large m by exploiting the structure of S.
Without loss of generality, suppose that there are no lines parallel to the y-axis. For each

i between 1 and n, let Si = {l1
i , l2

i , . . . } where lj
i lies strictly to the left of lj+1

i for all vaild j.
Suppose that p∗ = (x∗, y∗) ∈ R2. To report our final answer, we need to provide, for each Si,
the two consecutive indices a and a + 1 such that p∗ lies strictly between la

i and la+1
i or the

single index a such that p∗ ∈ la
i .

In our algorithm, we keep track of a feasible region R containing P ∗, which is either the
interior of a (possibly unbounded) triangle or an open line segment if we find a line l that p∗

lies on. Together with R, we keep track of the 2n indices lower(i) and upper(i) such that
SR =

⋃n
i=1 SR

i = {lj
i |j ∈ (lower(i), upper(i)]} contains the set of lines intersecting R. In

the beginning, R = R2. Each step, we find O(1) lines to run the oracle on to find a new
feasible region R′ ⊂ R such that |SR′ | ≤ 17

18 |S
R| and recurse on R′. An outline is given in

Algorithm 3.1.
We will use the following well-known result:

▶ Lemma 11 ([10]). Suppose we are given n distinct real numbers with positive weights that
sum to 1. Then we can find the weighted median of these numbers in O(n) time.

Given SR and R, we want to find R′ ⊂ R to recurse on, as well as efficiently update SR′ .
Note that SR′ need not be exactly the set of lines intersecting the interior of R′; we only
need it to contain those lines and have size a constant fraction smaller than SR.
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Algorithm 3.1 Pseudocode for Theorem 5.

input : A set S =
⋃n

i=1 Si = {lj
i } of O(mn) lines

output : A list of indices that indicate the position of p∗ to each Si

1 R←− R2

2 SR ←− S

3 while |SR| ≥ 18 do
4 Find O(1) lines to run the oracle on
5 Compute the piece R′ ⊂ R containing p∗

/* We guarantee that R′ intersects at most 17/18 of the lines that
intersect R */

6 Triangulate R′ with O(1) lines to run the oracle on
7 Update SR ←− SR′

8 end
9 Compute relative position of p∗ to the remaining lines in |SR| by brute force

Proof of Lemma 4. We write SR = S =
⋃n

i=1 Si = {lj
i }. We first find the weighted median

of the slopes of the lines in S, where the slope of the lines of Si is weighted by |Si|/|S|. This
can be done in O(n) time by Lemma 11.

If this slope is equal to the slope of some line in Si and |Si| ≥ 1
9 |S|, then we can simply

divide the plane using the median line of Si and the x-axis and the interior of each quadrant
will avoid at least 1/18 of the lines of S. The subsets SRi can be formed by removing either
half of the lines of Si.

Otherwise, at least 4/9 of the lines have slopes strictly greater than/less than the median
slope. Without loss of generality, we assume at least 4/9 of the lines have positive slope and
at least 4/9 of the lines have negative slope. Now let S+ =

⋃k
i=1 Si and S− =

⋃n
i=k+1 Si

denote the set of lines with positive/negative slope, respectively. We remove lines from the
larger of the two sets until they have the same size.

S1 S2 S3 S4

Figure 1 P1, P2 are P3 are represented by colors.

We partition S+ ∪ S− into O(n) subsets Pi each containing the same number of lines
from S+ and S− in the following way: going in lexicographical order by the indices of
the lines, we put a line from S1 and a line from Sk+1 into P1 until we exhaust one of
the sets (say it is Sk+1). Then, we move on to put a line from the remaining S1 and a
line from Sk+2 into P2 until we exhaust one of them, and so on. Each Pi is then of the
form {lb(i)

a(i), . . . , l
b(i)+|Pi|/2−1
a(i) , l

d(i)
c(i) , . . . , l

d(i)+|Pi|/2−1
c(i) }, and can be represented by the indices

(a(i), b(i)) and (c(i), d(i)) (see Figure 1). We can compute this partition in O(n) time. For
each Pi, we compute the intersection pi = (xi, yi) of the median line in Pi with positive slope
and the median line with negative slope, and assign pi a weight wi = |Pi|/(2|S+|). Then,
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the weights of the pi sum to 1. The significance of this is that the interior of each of the four
quadrants of the plane defined by x = xi and y = yi is avoided by at least 1/4 of the lines in
Pi, which is at least 2

9 wi of all the lines in |S|.

ℓ0

ℓ1

ℓ2

R1

R2

R3

R4

R5

R6

Figure 2 Dividing the plane into six regions.

We find the median point q0 = (xq, yq) of the pi’s by weight in x-coordinate in O(n)
time by Lemma 11. We have the line ℓ0 : x = xq0 . We then find the median point of
the pi’s to the left of ℓ0 and the median point of those to the right of ℓ0 by weight in
y-coordinates, respectively. Suppose these are q1 = (xq1 , yq1) and q2 = (xq2 , yq2). Then let
ℓ1 : y = yq1 and ℓ2 : y = yq2 . The three lines ℓ0, ℓ1, and ℓ2 partition the plane into six closed
regions R1, . . . , R6 as in Figure 2. By our construction, the weights of points in each of
R1, R2 ∪R3, R4 ∪R5, R6 sum to at least 1/4. Thus, the interiors of R5 ∪R6, R4, R3, R1 ∪R2
each avoids at least 2

9 ·
1
4 = 1

18 of all the lines in S. In particular, the interior of each Ri

intersects no more than 17/18 of the lines in S.
We show how to compute |SR1 |, and the others follow similarly. If pi ∈ R6, then the lines

in Pi with positive slope and to the right of pi avoid R1 ∪R2. We can remove these lines by
updating the indices of the associated set Sj or parallel lines. This updating takes O(1) time
for each pi and O(n) time in total. ◀

Applying Lemma 4 on SR, we obtain three lines on which we can run the oracle to get a
new feasible region Ri and a subset SRi . We then triangulate it with O(1) more oracle calls
to get R′ and set SR′ = SRi , in O(T + n) time total.

Proof of Theorem 5. After O(log mn) recursive iterations of Lemma 4, we arrive at a feasible
region whose interior intersects less than 18 lines in S, and we can finish by brute force.
Therefore, our algorithm runs in O((T + n) log(mn)) time. ◀

▶ Remark 12. A simpler and probably more practical algorithm for Lemma 4 is simply
choosing a random line from S+ and S− to intersect and run the oracle on the horizontal and
vertical line through the intersection. This method gives the same run time in expectation.
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4 Maximum overlap of convex polyhedron and convex polygon

In this section, we give the algorithm that finds a translation v ∈ R3 maximizing the area of
overlap function f . Following the convention in [6], we call such a translation a goal placement.
In the algorithm, we keep track of a closed target region R which we know contains a goal
placement and decrease its size until for each event polygon F , either F ∩ interior(R) = ∅ or
F ⊃ R. Then, f is quadratic on R and we can find the maximum of f on R using standard
calculus. Thus, the goal of our algorithm is to efficiently trim R to eliminate event polygons
that intersect it.

In the beginning of the algorithm, the target region is the interior of the Minkowski sum
P −Q, where the overlap function is positive. By the unimodality of the overlap function,
the set of goal placements is convex. Thus, for a plane in the configuration space, either
it contains a goal placement, or all goal placements lie on one of the two open half spaces
separated by the plane. If we have a way of knowing which case it is for any plane, we
can decrease the size of our target region by cutting it with planes and finding the piece
to recurse. More precisely, we need a subroutine PlaneDecision that decides the relative
position of the set of goal placements to a plane S.

Whenever PlaneDecision reports that a goal placement is found on a plane, we can let
the algorithm terminate. Thus, we can assume it always reports a half-space containing a
goal placement.

As in Algorithm 4.1, we break down our algorithm into three stages.

Algorithm 4.1 Pseudocode for Theorem 1.
input : A convex polyhedron P ∈ R3 and a convex polygon Q ∈ R3 with n vertices

in total
output : A translation v ∈ R3 maximizing the area |P ∩ (Q + v)|

1 Locate a horizontal slice containing a goal placement that does not contain any
vertices of P and replace P by this slice of P

2 Find a “tube” D + ly whose interior contains a goal placement and intersects O(n)
event polygons, where D is a triangle in the xz-plane and ly is the y-axis

3 Recursively construct a (1/2)-cutting of the target region D + ly to find a simplex
containing a goal placement that does not intersect any event polygon

4.1 Stage 1
In the first stage of our algorithm, we make use of [6] to simplify our problem so that P can
be taken as a convex polyhedron with all of its vertices on two horizontal planes.

We sort the vertices of P by z-coordinate in increasing order and sort the vertices of Q

in counterclockwise order. Next, we trim the target region with horizontal planes (planes
parallel to the xy-plane) to get to a slice that does not contain any vertices of P .

▶ Lemma 13. In O(n log2 n) time, we can locate a strip R = {(x, y, z)|z ∈ [z0, z1]} whose
interior contains a goal placement and P has no vertices with z ∈ [z0, z1].

Proof. Starting with the median z-coordinate of the vertices of P , we perform a binary search
on the levels containing a vertex of P . For a horizontal plane S, [6, Theorem 3.8] allows us
to compute the maximum overlap of P ∩ S and Q under translation in O(n log n)-time. The
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Figure 3 The slice of P with z ∈ [z0, z1].

two planes S1 and S2 with the largest maximum values will be the bounding planes for the
slice containing a goal placement by the unimodality of f . Thus, by a binary search, we can
locate this slice in O(n log2 n) time. ◀

By Chazelle’s algorithm [7], the convex polyhedron P ′ = {(x, y, z) ∈ P |z ∈ [z0, z1]} can be
computed in O(n) time. From now on, we replace P with P ′ (see Figure 3). Without loss of
generality, assume z0 = 0 and z1 = 1.

The region in the configuration space where |P ∩ (Q+v)| > 0 is the Minkowski sum P −Q.
Since P only has two levels P0 = {(x, y, z) ∈ P |z = 0} and P1 = {(x, y, z) ∈ P |z = 1} that
contain vertices, the Minkowski sum P −Q is simply the convex hull of (P0 −Q)∪ (P1 −Q),
which has O(n) vertices. We can compute P0 −Q and P1 −Q in O(n) time and compute
their convex hull in O(n log n) time by Chazelle’s algorithm [9].

4.2 PlaneDecision
With the simplification of the problem in Stage 1, we now show that the subroutine PlaneDe-
cision can be performed in O(n log n) time. Let S be a fixed plane in the configuration
space. We call a translation v that achieves maxv∈S f(v) a good placement. First, we can
compute the intersection of S with P −Q in O(n) time by Chazelle’s algorithm [7]. If the
intersection is empty, we just report the side of S containing P −Q. From now on assume
this is not the case.

The following lemma shows that PlaneDecision runs in the same time bound as the
algorithm that just finds the maximum of f on a plane.

▶ Lemma 14. Suppose we can compute maxv∈S f(v) for any plane S ⊂ R3 in time T , then
we can perform PlaneDecision for any plane in time O(T ).

Proof. The idea is to compute maxv∈S′ f(v) for certain S′ that are perturbed slightly from
S to see in which direction relative to S does f increase.

We compute over an extension of the reals R[ω]/(ω3), where ω > 0 is smaller than any
real number. Let A > 0 be the maximum of f over a plane S. Let S+ and S− be the two
planes parallel to S that have distance ω from S. We compute A+ = maxv∈S+ f(v) and
A− = maxv∈S− f(v) in O(T ) time. Since f is piecewise quadratic, A+ and A− as symbolic
expression will only involve quadratic terms in ω. Since f is strictly unimodal on P − Q,
there are three possibilities:
1. If A+ > A, then halfspace on the side of S+ contains the set of goal placements.
2. If A− > A, then halfspace on the side of S− contains the set of goal placements.
3. If A ≥ A+ and A ≥ A−, then A is the global maximum of f .
Thus, in O(T ) time, we can finish PlaneDecision. ◀
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Finding a good placement on S is similar to finding a goal placement on the whole
configuration space. S is partitioned into cells by the intersections of event polygons with S.
We need to find a region on S containing a good placement that does not intersect any event
polygons.

We present a subroutine LineDecision that finds, for a line l ⊂ S, the relative position
of the set of good placements on S to l.

▶ Proposition 15. For a line l ⊂ S, we can perform LineDecision in O(n) time.

P Q + l

Figure 4 The convex polyhedron I is formed by interesecting P and (Q + l).

Proof. First, we compute maxv∈l f(v) and a vector achieving the maximum. We parameterize
the line l by p + vt where t is the parameter and p, v ∈ R3. The horizontal cross-section
of I = P ∩ (Q + l) at height t has area f(p + vt). Since I is the intersection of two convex
polytopes with O(n) vertices (see Figure 4), Chazelle’s algorithm [7] computes I in O(n)
time. Then, [5, Theorem 3.2] computes the maximum cross-section in O(n) time.

Now, by the same argument and method as in the proof of Lemma 14, we can finish
LineDecision in O(n) time. In the case where maxv∈l f(v) = 0, we report the side of l

containing S ∩ (P −Q). ◀

Whenever our subroutine LineDecision reports a good placement is found on a line, we
can let the algorithm terminate. Thus, we can assume it always reports a half-plane of S

containing a good placement.
We now present PlaneDecision. If S is horizontal, then we only need to find the

maximum overlap of the convex polygons P ∩ S and Q using De Berg et al.’s algorithm [6],
which takes O(n log n) time. Thus, we assume S is non-horizontal.

Algorithm 4.2 Pseudocode for PlaneDecision.
input : A plane S ⊂ R3

output : A translation v ∈ S maximizing the area |P ∩ (Q + v)|
1 Compute S ∩ (P −Q) and set it to be our initial target region
2 Locate a strip on S containing a good placement whose interior intersects O(n) event

polygons
3 Recursively construct a (1/2)-cutting of the strip to find a triangle containing a good

placement that does not intersect any event polygon

As in Algorithm 4.2, we break down PlaneDecision into three steps. We have already
explained Step 1, where we compute S ∩ (P −Q), so we begin with Step 2.
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4.2.1 PlaneDecision: Step 2
We want to find a strip on S strictly between z = 0 and z = 1 that intersects O(n) event
polygons. Since there are no vertices of P with z-coordinate in the interval (0, 1), there are
no event polygons of type I in this range, and we will only need to consider event polygons
of type II and type III.

We look at the intersection points of S with the edges of the event polygons. These
edges come from the set {ei − vj |ei non-horizontal edge of P, vj vertex of Q}. Without loss
of generality, assume that S is parallel to the y-axis. We are interested in the z-coordinates
of the intersections, so we project everything into the xz-plane. Then, S becomes a line,
which we denote by lS , and each edge ei − vj becomes a segment whose endpoints lie on
z = 0 and z = 1. Suppose each edge ei projects to a segment si, and each vj projects to a
point xj on the x-axis. Then, we get O(n2) segments si − xj with endpoints on z = 0 and
z = 1, and the line lS that intersect them in some places.
▶ Lemma 16. In O(n log n) time, we can locate a strip R = {(x, y, z) ∈ S|z ∈ [z0, z1]} whose
interior contains a good placement and intersects none of the edges of the event polygons.

Figure 5 Projecting the configuration space onto the xz-plane. The projection of S is the magenta
line segment, and the projection of the strip R obtained form Lemma 16 is the cyan line segment.

Our current target region, the strip R we obtained from Lemma 16 (see Figure 5),
intersects few event polygons and we can compute them efficiently.
▶ Lemma 17. The interior of the region R intersects O(n) event polygons, and we can
compute them in O(n log n) time.

4.2.2 PlaneDecision: Step 3
Now we have a target region R as well as the O(n) intersections it makes with the event
polygons.
▶ Lemma 18. In O(n log n) time, we can find a region R′ ⊂ R containing a good placement
that does not intersect any of the O(n) event polygons.
Proof. We recursively construct a (1/2)-cutting of the target region. By Lemma 9, a (1/2)-
cutting of constant size can be computed in O(n) time. We perform LineDecision on the
lines of the cutting to decide on which triangle to recurse. After O(log n) iterations, we
have a target region R′ that intersects no event polygons. This procedure runs in O(n log n)
time. ◀

Finally, since the overlap function is quadratic on our final region R′, we can solve for
the maximum using standard calculus. After finding maxv∈S f(v) and a vector achieving
it O(n log n) time, by Lemma 14, we can perform PlaneDecision on S in the same time
bound.
▶ Proposition 19. For a plane S, we can perform PlaneDecision in O(n log n) time.
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4.3 Stage 2
With the general PlaneDecision at our disposal, we now move on to Stage 2, the main
component of our algorithm. We project the entire configuration space and the event polygons
onto the xz-plane in order to find a target region D whose preimage D + ly intersects few
event polygons, where ly is the y-axis (see Figure 6).

(a) Projection of P (b) Projection of Q

(c) Projection of the configuration space, and the target region D

Figure 6 Projecting onto the xz-plane.

The non-horizontal edges of the event polygons project to segments on the strip 0 < z < 1
on the xz-plane. We characterize our desired region D in the following lemma.

▶ Lemma 20. For a region D that does not intersect any of the segments that are the
projections of the non-horizontal edges of the event polygons, the preimage D + ly intersects
O(n) event polygons.

Now it remains to efficiently find such a region D with D + ly containing a goal placement
and compute the O(n) event polygons that intersect its interior.

▶ Lemma 21. In O(n log2 n) time, we can find a triangle D in the xz-plane such that the
interior of D + ly contains a goal placement and intersects O(n) event polygons. We can
compute these O(n) event polygons in the same time bound.

Proof. The computation of D is a direct application of Theorem 5, where m = O(n). Calling
the oracle on a line l in the xz-plane is running the PlaneDecision algorithm on the plane
parallel to the y-axis that projects to l. We compute a triangle for each of the four groups
of segments, take their intersection, and triangulate the intersection using O(1) calls to
PlaneDecision. Thus, we can compute the desired triangle D in O(n log2 n) time.

To compute the event polygons intersecting the interior of D + ly is simple, since we
have shown in the proof of Lemma 20 that D intersects at most one projection of an event
polygon of each type in each of the four groups for a fixed vertex xj (for type II) or segment
si (for type III). Once we have D, we can compute these polygons by binary search on each
of the O(n) groups of O(n) non-intersecting segments to find the two between which R lies.
Also, the event polygons all have constant complexity so computing all of them takes linear
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time. We can recover the event polygons from their projections and compute the planes that
contain them in linear time. Thus, this entire process can be done in O(n log n) time. ◀

4.4 Stage 3
Now, we have a target region R = D + ly whose interior contains a goal placement, and we
have the O(n) event polygons that intersect it.

▶ Lemma 22. In O(n log2 n) time, we can find a region R′ ⊂ R containing a goal placement
that does not intersect any of the O(n) event polygons.

Proof. We recursively construct a (1/2)-cutting of the target region. By Lemma 9, a (1/2)-
cutting of constant size can be computed in O(n) time. We perform PlaneDecision on the
planes of the cutting to decide on which simplex to recurse. After O(log n) iterations, we
have a target region R′ that intersects no event polygons. This procedure runs in O(n log2 n)
time. ◀

Finally, since the overlap function is quadratic on our final region R′, we can solve for
the maximum using standard calculus. This concludes the proof of Theorem 1.

5 Maximum overlap of three convex polygons

Let P , Q, R be three convex polygons with n vertices in total in the plane. We want
to find a pair of translations (vQ, vR) ∈ R4 that maximizes the overlap area g(vQ, vR) =
|P ∩ (Q + vQ) ∩ (R + vR)|.

In this problem, the configuration space is four-dimensional. An easy extension of
Proposition 6 and Corollary 7 shows that the function of overlap area is again unimodal.
This time, we have four-dimensional event polyhedra instead of event polygons that divide
the configuration space into four-dimensional cells on which g(vQ, vR) is quadratic. We call
a hyperplane containing an event polyhedron an event hyperplane, and they are defined by
two types of events:

(I) When one vertex of P , Q + vQ or R + vR lies on an edge of another polygon. There
are O(n) groups of O(n) parallel event hyperplanes of this type.

(II) When an edge from each of the three polygons intersect at one point. There are O(n3)
event hyperplanes of this type.

To overcome the difficulty of dealing with the O(n3) event hyperplanes of type II, we
first prune the configuration space to a region intersecting no event hyperplanes of type I.
We then show that the resulting region only intersects O(n) event hyperplanes of type II.

Similar to Theorem 1, we want an algorithm HyperplaneDecision that computes, for a
hyperplane H ⊂ R4, the maximum max(vQ,vR)∈H g(vQ, vR) and the relative location of the
goal placement to H. In fact, we will only need to perform HyperplaneDecision on some
hyperplanes.

▶ Proposition 23. Suppose H is a hyperplane that satisfies one of the following three
conditions:
(1) H is orthogonal to a vector (x1, y1, 0, 0) for some x1, y1 ∈ R.
(2) H is orthogonal to a vector (0, 0, x2, y2) for some x2, y2 ∈ R.
(3) H is orthogonal to a vector (x1, y1,−x1,−y1) for some x1, y1 ∈ R.
Then, we can perform HyperplaneDecision on H in O(n log2 n) time.
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Using Proposition 23, we can prune the configuration space to a region that intersects no
event hyperplanes of type I and O(n) event hyperplanes of type II.

▶ Proposition 24. We can compute a 4-polytope TP QR of complexity O(1) in O(n log3 n)
time such that
(1) the goal placement lies on TP QR,
(2) no hyperplane of type I intersects the interior of TP QR, and
(3) only O(n) event polyhedrons of type II passes through TP QR.
The hyperplanes of type II intersecting the interior of TP QR are obtained in the same time
bound. Furthermore, the 3-tuples of edges of P , Q and R defining the hyperplanes are also
obtained in the same time bound.

In the rest of the section, we fix TP QR as in Proposition 24. Moreover, let

f(vP , vQ) =
{
|P ∩ (Q + vQ) ∩ (R + vR)| if (vQ, vR) ∈ TP QR

0 otherwise.

▶ Proposition 25. Let S be any m-flat in the configuration space. In O(n) time, we can
find a point in S ∩ supp f , or report that S ∩ supp f is empty.

Proof. Notice that supp f is a convex 4-polytope whose face are hyperplanes of type I or
type II. Let H be a hyperplane of type II intersecting the interior of TP QR. Then H contains
a face of supp f if and only if a polygon P ∩Q is tangent to R in H ∩ TP QR. This can be
tested in constant time, so we can find all faces of supp f in O(n) time. Our problem become
a feasibility test of a linear programming of size O(n), which can be solved in O(n) time by
Megiddo’s algorithm [13]. ◀

Proof of Theorem 2. Take TP QR as in Proposition 24. Let

f(vP , vQ) =
{
|P ∩ (Q + vQ) ∩ (R + vR)| if (vQ, vR) ∈ TP QR

0 otherwise.

Then f is unimodal and the maximum of f is the goal placement. Given an m-flat S, we want
to compute the maximum of f on S in O(n logm−1) time by induction on m ∈ {1, 2, 3, 4}.

If m = 1, this can be done in O(n) time by Proposition 15. Assume that m > 1.
Then S ∩ TP QR can be computed in O(1) time. Given an (m − 1)-flat l ⊂ S, we can use
Proposition 25 and the perturbation method as in Lemma 14 to report the relative position
of the maximum over S. There are O(n) event hyperplane intersecting S ∩ TP QR. Thus, by
Lemma 9, we can recursively construct (1/2)-cuttings to give an O(n logm−1) time algorithm
to find the maximum of f on S. ◀

6 Minimum symmetric difference of two convex polygons under
homothety

A homothety φ : R2 → R2 is a composition of a scaling and a translation. Let λ > 0 be the
scaling factor and v be the translation vector of φ. Then

φ(A) = λA + v = {λp + v | p ∈ A}.

Define the symmetric difference of sets A, B ⊂ R2 to be

A△B :=(A ∪B) \ (A ∩B)
=(A \B) ∪ (B \A).
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Let P and Q be convex polygons with n vertices in total. We want to find a homothety
φ of Q that minimizes the area of symmetric difference

h(φ) = h(x, y, λ) = |P△φ(Q)|,

where φ(Q) = λQ + (x, y).
Yon et al. [14] consider a slightly more general problem, where they minimize the function

h(φ) = (2− 2κ)|P \ φ(Q)|+ 2κ|φ(Q) \ P |,

where κ ∈ (0, 1) is some constant. When κ = 1/2, this is the area of symmetric difference
function. They give a randomized algorithm that solves this problem in O(n log3 n) expected
time. We present a faster determinisitc algorithm by relating this problem to the polyhedron-
polygon matching problem and then applying a modified version of Theorem 1.

As in [14], we rewrite the objective function h(φ):

h(φ) = 2(1− κ)|P |+ 2κ|φ(Q)| − 2|P ∩ φ(Q)|
= 2(1− κ)|P |+ 2κ|Q|λ2 − 2|P ∩ φ(Q)|.

Thus, minimizing h(φ) is the same as maximizing f(φ) = |P ∩ φ(Q)| − cλ2, where c = κ|Q|.

Q C

Figure 7 Formation of the cone C.

Consider the cone C = {(x, y, λ)|λ ∈ [0, M ], (x, y) ∈ λQ}, where M =
√
|P |/c (see Figure 7).

Then f is negative for λ > M so it is never maximized. We also put P into R3 by
P = {(x, y, 0)|(x, y) ∈ P}. Since f(x, y, λ) = |C ∩ (P + (−x,−y, λ))| − cλ2, the problem
reduces to maximizing the overlap area of the cone C and P under translation subtracted
by a quadratic function. To show that we can still use a divide-and-conquer strategy, we
identify a region where f is strictly unimodal.

▶ Lemma 26 ([14]). The closure D of the set {φ ∈ R3|f(φ) > 0} is convex. Furthermore,
f(x, y, λ) is strictly unimodal on D.

Proof. This follows from [14, Lemma 2.2] and [14, Lemma 2.7]. ◀

Although it is difficult to directly compute D, note that −P ⊂ D. With this observation, we
show that we can still find the relative position of the set of goal placements to certain planes
S in O(n log n) time with some modifications to LineDecision and PlaneDecision.

▶ Lemma 27. For any l ⊂ R3, we can compute maxφ∈l f(φ) or report it is a negative number
in O(n) time.

▶ Proposition 28. Let S ⊂ R3 be a plane. If S is horizontal or if S intersects the polygon
−P ⊂ D, then we can perform PlaneDecision on S in O(n log n) time.
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▶ Theorem 29. Let P and Q be convex polygons with n vertices in total. Suppose κ ∈ (0, 1)
is a constant. We can find a homothety φ that minimizes

h(φ) = 2(1− κ)|P \ φ(Q)|+ 2κ|φ(Q) \ P |

in O(n log2 n) time.

Proof. We want to maximize f(x, y, λ) = |C ∩ (P + (−x,−y, λ))| − cλ2 over R3, where
c = κ|Q|. In order to apply our algorithm for Theorem 1, we need to show that we only run
PlaneDecision on horizontal planes and planes that intersect −P .

In the first stage (as outlined in Algorithm 4.1), we only run PlaneDecision on horizontal
planes.

In the second stage, we apply Theorem 5 to the O(n) groups of O(n) lines that are
the projections of the lines containing edges of event polygons on the xz-plane. Observe
that these lines all intersect the projection of −P on the xz-plane. In each recursive step
of our algorithm, we query a horizontal (parallel to the x-axis) line and a line that goes
“between” two lines in the O(n2) lines. The planes they represent both satisfy the condition
for Proposition 28. Then we run PlaneDecision O(1) more times to triangulate our feasible
region. Here, we make a small modification: instead of maintaining a triangular feasible
region, we maintain a trapezoidal one by making O(1) horizontal cuts to make the region a
trapezoid.

In the third stage, we have a “tube” and O(n) event polygons that intersect it. As
usual, we recursively construct a (1/2)-cutting by Lemma 9. Chazelle’s algorithm [8] picks
O(1) planes intersecting the target region as the cutting, along with O(1) extra planes to
triangulate each piece. All the planes containing the event polygons intersect −P , so we can
run PlaneDecision on them. Instead of triangulating our target region, it suffices to reduce
it to constant complexity. We do this by cutting it with O(1) horizontal planes such that
the remaining region only has vertices on two levels. Then, let e be any non-horizontal edge.
With O(1) planes through e, we can cut the target region into prisms and pyramids with
triangular bases. These planes all intersect −P since they are between the two faces of the
target region containing e, and the planes containing them intersect −P .

Therefore, with slight modifications to Theorem 1, we obtain a deterministic O(n log2 n)
algorithm for minimizing h(φ). ◀

Theorem 3 follows as a direct corollary of Theorem 29.
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Abstract
We provide a skit and an applet to illustrate fractional cascading in the context of half-plane range
search for points in the Euclidean plane, which takes O(log N + h) output-sensitive time. In the
video, a group of news anchors struggles to find the correct data structure to efficiently send out
an early warning to the residents of Philadelphia who will be overtaken by a marching line of
Godzillas. After exploring several options, the group eventually settles on onions and fractional
cascading, only to discover that they themselves are in the line of fire! In the applet, we show step
by step details of preprocessing to build the onions with fractional cascading and the subsequent
query of the “Godzilla line” against the onion layers. Our video skit and applet can be found at
https://ctralie.github.io/GodzillaOnions/
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1 Background

Given N points X in the Euclidean plane and a query line ℓ, a naive algorithm to determine
the points in X above ℓ would be to check each xi ∈ X in turn. However, this approach
takes O(N) time.

Alternatively, one can obtain an output-sensitive algorithm if one preprocesses X into
an “onions” data structure with a nested sequence of convex hulls from the outside to the
inside [2]. For NL onion layers, refer to the ith layer as Li, where i indexes the layers in
the order in which they are constructed, so L0 is the outermost layer. If there are h points
above the line, each onion layer Li can be queried with binary search in O(log N) time to
find the line segment with the closest slope to that of ℓ, and this line segment contains the
furthest point in that layer from ℓ. If this point is above the line in layer Li, one can walk to
the left and to the right to gather all points above the line in this layer. Overall, this takes
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Figure 1 A screenshot from our Javascript d3 interface showing how each point in M0 has a
pointer to a point in L0 (the outer layer, duplicated on the right) and M1 (the second from the
outer cascaded layer, duplicated on the right) with the closest slope. Preprocessing and storing such
pointers allows quick traversal through the structure. Note also: the thickest line segment on the
left shows the particular line segment whose pointers the app is highlighting. The middle thick line
segments on the left show L0 and M1 in the context of the whole onion.

O(Nl log N + h) time. However, as we note in our video, there may be too many layers; in
particular, NL is Θ(N2/3) for points distributed uniformly and independently at random
within any bounded 2D region that contains a disc [3]. The ensuing O(N2/3 log N + h)
algorithm is still marginally better than the brute force O(N) approach, but one can do
better.

A superior output-sensitive algorithm relies on a more involved onion-based preprocessed
data structure that uses fractional cascading [4]. In addition to storing the layers Li, one
constructs parallel layers Mi. The last layer MNL

= LNL
. From there, one iteratively

constructs Mi as the union of Li and every other element of Mi+1, sorted by slope. Each
element in Mi also stores a pointer to the points in Li and Mi+1 with the nearest slope.
After preprocessing, one starts querying the fractionally cascaded onions by first searching
for the point in the outer M layer M0 with the slope closest to ℓ using binary search. Since
Mi only takes every other point in Mi+1, the number of points in ∪iMi is O(N), so the
binary search query on M0 takes O(log N) time. From there, one follows the pointer to L0
to extract all points at that layer that are above ℓ. Then, one follows the pointer to M1
and continues the process until getting to a layer with no points above ℓ. The preprocessed
pointers allow one to walk from layer to points above the line in the subsequent layer in
constant time, so the overall process takes only O(log N + h) time.

2 Applet Details

One of our major contributions is an applet to incrementally construct this rather intricate
data structure. To that end, we create an interactive applet using d3 in Javascript [1] to
construct and query and onions data structure on top of user selected points. We first show
the process of constructing the Li layers, which we color code. Then, we show how each Mi
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is created by merging by slope Li and every other element of Mi+1. Once that is finished, we
show a few examples of pointers from M0 to L0 and M1 (Figure 1). Finally, the user queries
a “Godzilla line” ℓ, and the applet shows how to incrementally walk through the layers and
follow the pointers to obtain all of the points above ℓ.
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Abstract
We present an educational web app for interactively drawing and editing 2D periodic graphs. The
user defines the unit cell and the finite set of vertex and edge representatives, from which a sufficiently
large fragment of the periodic graph is created for the visualization. The periodic graph can also be
modified by applying several transformations, including isometries and relaxations of the unit cell. A
finite representation of the infinite periodic graph can be saved in an external file as a quotient graph
with Z2-marked edges. Its geometry is recorded using fractional (crystallographic) coordinates. The
facial structure of non-crossing periodic graphs can be revealed by the user interactively selecting
face representatives. An accompanying video demonstrates the functionality of the web application.
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1 Introduction

Motivated by applications in crystallography and materials science [4], periodic graphs have
been studied intensely in recent years in the context of rigidity of bar-and-joint frameworks
[1, 2, 3, 5]. They also appear in computational topology as the universal cover of geodesic
toroidal drawings [6, 7]. We present an educational web app to create, edit, visualize and
generate finite descriptions of 2D geometric periodic graphs (Fig. 1).

Figure 1 The drawing canvas (left) and transformation canvas (right) display a fragment of
the same (infinite) crystal up to isometries and relaxation of periodicity. Translation, rotation
and relaxation transformations have been applied on the left graph to obtain the one on the right.
Vertices or edges of the same color belong to the same orbit. The shaded parallelogram represents
the unit cell, shown together with its origin and generating vectors.

Informally, a periodic graph is an infinite graph with a translationally-repeating finite
pattern of vertices and edges. In 2D, periodic graphs can be generated from two independent
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translation vectors that induce a unit cell and a finite number of vertices and edges, called
representatives. The infinite periodic graph is partitioned into a finite set of vertex and
edge orbits, which receive distinct colors. We describe an interactive web app, available at
http://linkage.cs.umass.edu/pergraph/, which can facilitate the study and visualization
of various properties of periodic graphs.

The web application has two canvases, one for drawing and one for applying transforma-
tions. There are three hidden menus (left, right, and bottom) that can be opened by hovering
over them. Fig. 1 shows all three of them. An accompanying video, accessed through the Video
option in the bottom menu or directly at http://linkage.cs.umass.edu/pergraph/about/,
briefly demonstrates the functionality of the app and includes additional information and
features not discussed in this abstract.

2 Crystals and their representations

Figure 2 (Left) A 2D crystal. (Middle and right) Two of its possible periodic graphs. The
highlighted unit cells represent the periodicity groups, and vertices or edges in the same orbit get
identical colors.

Crystals and Periodic Graphs. A 2D crystal (Fig. 2, left) is an infinite graph which (a) is
locally finite (each vertex is incident to finitely many edges) and (b) is subject to the action
of some periodicity group. Condition (b) actually implies the existence of infinitely many
periodicity groups acting on the same crystal: if we fix the group action, we obtain a specific
periodic graph [1]. Fig. 2 (middle and right) shows two distinct periodic graphs obtained
from the same crystal. We specify a periodicity group by its generators (two vectors, the red
x-axis and the green y-axis inducing the gray unit cell) and use colors to indicate the group
action: similarly colored vertices (resp. edges) belong to the same orbit.

Figure 3 An undirected span-graph (left) and the (directed) shift-span-graph (right) of the
periodic graph from Fig. 2 (middle). The pair of integers on a directed edge representative indicates
the shift of the head-vertex; the tail of the edge representative is always chosen to be in the unit cell.

http://linkage.cs.umass.edu/pergraph/
http://linkage.cs.umass.edu/pergraph/about/
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Quotient and shift-quotient graphs. To each periodic graph we associate a quotient-graph,
whose vertices V (resp. edges E) correspond to orbits (colors) of vertices (resp. edges) in the
original periodic graph. It is, in general, a multi-graph. The information in the quotient graph
(V, E) is insufficient for reconstructing the periodic graph [1, 2] and must be supplemented
by Z2-markings (called shifts) on directed versions of the quotient graph edges. This type of
marked directed multi-graph associated to a periodic graph is called a shift-quotient-graph.
The shift is a pair (i, j) ∈ Z2 of integers. A shift-edge is a pair of an edge (u, v) ∈ V in
the quotient graph and a shift (i, j). It stands for an edge representative whose tail is the
representative of vertex orbit u and whose head is a translation (that goes i-times in the
direction of the x-axis and j-times in the direction of the y-axis) of the vertex representative
v. The x and y-axes are the generators of the periodicity lattice. The shift-quotient-graph
is a complete finite description of a periodic graph and is used in the .sqf file format for
exporting the graphs produced by our web app.

Span and shift-span graphs. For visualization purposes we use a geometric version of
(shift)-quotient-graphs called (shift)-span-graphs. A span-graph (Fig. 3 (left)) is a subgraph
of the geometric periodic graph. It contains all the edge-representatives selected as follows.
We first choose vertex representatives to be in the unit cell. An edge representative for an
orbit of edges is chosen so that one of its endpoints (the tail) is in the unit cell; the second
endpoint (the head) may be either inside or outside of the unit cell. In a span-graph each
edge representative appears exactly once (each with its unique edge color). However, several
geometric points with the same color (representing vertices from the same vertex orbit) may
be present among the edge representative endpoints. The span-graph is thus a simple (no
multi-edges) colored geometric graph. A shift-span-graph (Fig. 3 (right)) orients the edges of
the span graph and marks them with shifts such that the tail is always inside the unit cell.
In short: the (shift)-quotient graph is obtained by identifying vertices of the same color in the
(shift)-span-graph.

Fractional coordinates. The geometry of the crystal vertices can be expressed using
fractional coordinates of the vertex representatives relative to the unit cell axes. We use
them in the geometric version of the shift-quotient-graphs recorded in the external (file)
representation of the graphs produced by our web app.

Crystal fragment. Given the two generators of the unit cell (x- and y-axes), a shift-quotient
graph and fractional coordinates for the vertices, we can reconstruct a fragment of the infinite
periodic graph. We need a position for the origin to build the unit cell from the two axes.
From this information we compute the Cartesian coordinates of the vertex representatives
from the fractional ones. Finally, we use two integer-intervals (windows) indicating the range
of translations of the unit cell in the x and y-directions necessary to build a fragment. The
windows can be selected by the user so that the fragment covers the canvas.

Finite descriptions of crystals. Periodicity groups already provide infinitely many ways to
describe the same geometric crystal. Furthermore, each periodicity group may be described
in infinitely many ways by different choices of generators (unit cells). Two choices of unit
cells lead to the same quotient graph as long as they have the same index. If the unit cell is
relaxed, then the number of vertices and edges in the quotient graph is scaled by an integer
factor. In Fig. 2, the graph on the right is a relaxation of index 2 of the periodic graph in
the middle and thus the number of vertices and edges of its quotient-graph are doubled.
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Transformations of crystals and periodic graphs. Geometric crystals can be translated or
rotated, or be represented by different periodicity groups. Each periodicity group can be
represented by different unit cells, resulting in the same number of vertices in the unit cell.
All these different representations may result in different fractional coordinates of the vertex
representatives. Finally, we may choose different orientations for the edge representatives
and obtain different shifts. Our web app software captures this multitude of different ways of
obtaining finite periodic graph representations of the same infinite crystal.
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Abstract
We illustrate the computation of a greedy permutation using finite Voronoi diagrams. We describe
the neighbor graph, which is a sparse graph data structure that facilitates efficient point location to
insert a new Voronoi cell. This data structure is not dependent on a Euclidean metric space. The
greedy permutation is computed in O(n log ∆) time for low-dimensional data using this method [4, 6].
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1 Introduction

Given a finite metric space X, and a subset P , there is a natural decomposition of X into
Voronoi cells defined for each p ∈ P as

V(p) := {x ∈ X | d(x, p) = d(x, P )}

This is a discrete analog of the Voronoi diagrams studied in geometry.
The most glaring difference between finite Voronoi diagrams and, say, Euclidean Voronoi

diagrams is that there is no natural dual (i.e., no Delaunay triangulation) that connects
neighboring cells. To store some local structure, a finite Voronoi diagram is endowed with a
neighbor graph G. The requirement is that if there are two cells V(a) and V(b) such that
inserting a new point a′ ∈ V(a) will cause some points to move from V(b) to the newly formed
V(a′), then ab is an edge of G. In other words, G stores sufficient information to perform an
incremental insertion of a new cell. The movement of points into a new cell is called point
location. The neighbor graph also stores all the information needed to update itself efficiently
after an insertion.

Greedy permutations, also known as farthest point traversals) are a standard way to
provide a sequence of good samples of a metric space at different scales. The points are
ordered so that each point is the farthest among the remaining points. We describe a simple,
deterministic algorithm to compute greedy permutations.

© Oliver A. Chubet, Paul Macnichol, Parth Parikh, Donald R. Sheehy, and
Siddharth S. Sheth;
licensed under Creative Commons License CC-BY 4.0

39th International Symposium on Computational Geometry (SoCG 2023).
Editors: Erin W. Chambers and Joachim Gudmundsson; Article No. 64; pp. 64:1–64:5

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:oachubet@ncsu.edu
https://orcid.org/0000-0002-4771-9894
mailto:Pemacnic@ncsu.edu
mailto:pmparikh@ncsu.edu
mailto:don.r.sheehy@gmail.com
https://donsheehy.net/
https://orcid.org/0000-0002-9177-2713
mailto:ssheth4@ncsu.edu
https://doi.org/10.4230/LIPIcs.SoCG.2023.64
https://youtu.be/zMlpHV6Y1SM
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


64:2 Greedy Permutations and Finite Voronoi Diagrams

Figure 1 The geometric Voronoi cells cover the points in the cells of the finite Voronoi diagram.

2 Greedy Permutations

The greedy permutation, or the farthest first traversal, is a powerful heuristic used to
approximate many hard problems since 1977 from TSP [5] to k-center clustering [3, 2]. Let
P = (p0, . . . , pn−1) be a finite sequence of points in a metric space with distance d. The
ith-prefix is the set Pi = {p0, . . . , pi−1} containing the first i points of P . The sequence P is
a greedy permutation if for all i,

d(pi, Pi) = max
p∈P

d(p, Pi).

The point p0 ∈ P is the seed of the greedy permutation and may be chosen arbitrarily. A
greedy permutation can be computed in O(n log ∆) time for low-dimensional data [4, 6]. An
O(n log n)-time randomized approximation algorithm exists [4], but, to our knowledge, it
has never been implemented.

3 Finite Voronoi Diagram

A finite Voronoi diagram consists of the cells V(p) and a neighbor graph G. It can be
constructed incrementally as follows. It starts with a single cell containing all the points.
We insert a point p′ ∈ V(p) by constructing V(p′) as a subset of the points V(q) where q is a
neighbor of p. We then update the neighbor graph by selecting neighbors of V(p′) among
the neighbors of neighbors of p. There is a final step in which we prune excess edges that
are clearly no longer needed in the neighbor graph. This maintains sparsity of the neighbor
graph, resulting in efficient point location.

4 Point Location

An obvious disadvantage of finite Voronoi diagrams as compared to their geometric cousins
is that the points of the cell must be explicitly enumerated and moved when there is an
insertion. The analysis of Clarkson’s algorithm by Har-Peled and Mendel [4] counts the
number of times that each point is considered for moving. They show that by a standard
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Figure 2 We depict the finite Voronoi cells by drawing the convex hull of the points it contains.

packing argument, only a constant number (i.e., 2O(d)) of points can touch a given point
before the maximum distance of the farthest point from the center of a cell goes down by at
least half. It follows immediately that each point is touched at most 2O(d) log ∆ times.

5 Incremental Construction of Finite Voronoi Diagrams

An incremental construction inserts the points one at a time, updating the cells and a
neighbor graph. Let (X, d) be a metric space and a let P ⊆ X be a finite subset. The points
of X are partitioned into cells V(p), where p ∈ P . The cells of a finite Voronoi diagram
satisfy the following invariant.

The Cell Invariant: For all p ∈ P and all p′ ∈ V(q), d(p, p′) = minq∈P d(p′, q).

The cell invariant says that if a′ ∈ V(a), then a is a nearest neighbor of a′ among the
points of P . If we insert a′ into the finite Voronoi diagram, then we add a′ to P . The point
a is called the parent of a′. To recover the cell invariant after an insertion, points from
other cells are moved into the new cell in a process called point location. For a cell V(q), its
out-radius is Rq := maxa∈V(q) d(q, a).

In addition to the cells, we also maintain the neighbor graph on P that allows point
location to be performed locally. That is, there is an edge from a to b if inserting a new point
into P from V(a) would require a point from V(b) to be moved (or vice versa). Formally, the
neighbor graph maintains the following invariant.

The Neighbor Invariant: For all cells V(a) and V(b), if there exist points a′ ∈ V(a)
and b′ ∈ V(b) such that d(a′, b′) < d(b′, b), then there is an edge from a to b.

Suppose we are inserting a′ with parent a. The neighbor invariant directly implies that
every point b′ that must move into a new cell centered at a point a′ is contained in a cell
V(b), where b is a neighbor of a. Thus, point location only requires iterating over the cells of
the neighbors of a to find all the points that will move into the newly constructed V(a′).

To avoid excess distance computations, the stored neighbor graph contains some edges
that are not strictly required by the neighbor invariant. After inserting a′, the neighbors
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Figure 3 The neighbor graph during the finite Voronoi diagram construction.

Figure 4 From left two right, we see two two iterations of the incremental finite Voronoi diagram
construction.

are selected from point a, the neighbors of a, and the neighbors of the neighbors of a. One
can simply add edges from a′ to each of these points. Any graph that satisfies the neighbor
invariant will continue to satisfy the neighbor invariant after this “neighbors of neighbors”
update to support insertions.

As Clarkson observed [1], it is possible to use the triangle inequality to identify edges
that are too long. Specifically, if the out-radii of two cells V(a) and V(b) are Ra and Rb

respectively, then if the neighbor invariant requires an edge from a to b, then d(a, b) ≤
Ra + Rb + max{Ra, Rb}. Edges longer than this length can be pruned from the neighbor
graph.

So, inserting a new point a′ with parent a into a finite Voronoi diagram has three steps:

1. Compute V(a′) by moving points from cells of neighbors of a.

2. Compute the neighbors of a′ by iterating over neighbors of neighbors of a.

3. Prune the edges incident to any point whose cell or neighbors changed.

By the analysis of Har-Peled and Mendel [4], the total point location cost is at most
2O(d)n log ∆. Storing points in a cell as a max-heap keyed by distance from the center gives
ready access to the cell’s out-radius. Heaps are updated for all cells which are modified in an
iteration. If centers are added in a greedy fashion, it follows from a packing argument that
the degree of a vertex in the neighbor graph is 2O(d). So, the heap operations per iteration
cost 2O(d) log n. Updating the neighbor graph also takes 2O(d) time per iteration. Therefore,
a finite Voronoi diagram can be computed in 2O(d)n log ∆ time.
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Abstract
We give several ways to derive and express classic summation problems in terms of polycubes. We
visualize them with 3D printed models. The video is here: http://go.ncsu.edu/sum_of_squares.
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1 Introduction

In 1960, Martin Gardner popularized a generalization of dominoes called polyominoes [3].
These shapes, made from squares glued together along edges, led to many computational
problems associated with their enumeration including higher-dimensional variants called
polycubes [6, 2]. In his book on polyominoes, Solomon Golomb describes many puzzle
problems based on the idea of reconfiguring a set polyominoes into different shapes [4]. In
this video, we show how polycube reconfiguration problems lead to closed form solutions to
classic summation problems.

2 A Closed Form for the Sum of Squares

In his work On Spirals[1], Archimedes used tangents of a spiral to solve the hardest compu-
tational problems of his day, trisecting an angle and squaring the circle. This treatise also
includes a formula for the sum of squares. In modern notation, the identity said

3
n∑

k=1
k2 = n2(n + 1) +

n∑
k=1

k (1)

Equivalently,
n∑

k=1
k2 = 1

3n(n + 1)(n + 1/2). (2)

In Chapter 2 of their book Concrete Mathematics [5], Graham, Knuth, and Patashnik
give seven different ways to derive this formula for the sum of squares analytically. Below,
we show four more ways one could derive this sum from manipulating polycubes.

3 A Proof Without Words

In 1984, in Mathematics Magazine, Man-Keung Siu published a proof without words of the
sum of squares formula by representing the sum of squares as a pyramid [8]. Each layer is a
square. Let pyr(n) denote the sum of squares.

pyr(n) =
n∑

k=1
k2.
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Figure 1 The sum of squares can be viewed as a collection of polycubes.

Figure 2 The photo shows a 3D printed version of Siu’s proof without words.

Three pyramids can be put together to make a cube, and the leftover pieces give the
low-order terms.

Specifically, there is one extra n × n square and a (discrete) triangle. Let tri(n) denote
the size of the triangle, i.e.,

tri(n) =
n∑

k=1
k =

(
n + 1

2

)
.

So, if one believes the picture, the result is

3pyr(n) = cube(n) + square(n) + tri(n) = n3 + n2 +
(

n + 1
2

)
.

More recently, Siu’s picture was posted to Math Stack Exchange1 and by far, the most
upvoted comment was one that said they didn’t think the picture was convincing on it own,
but maybe would be more believable with a physical model. The concern is that it depends
on believing that there are no holes in the interior of the cube and that everything indeed,
fits perfectly together. This comment was the motivation for 3D printing physical models.

4 Pyramids and Tetrahedra

A different way to derive a sum of squares formula is to observe that a pyramid is the sum of
two tetrahedra. A discrete tetrahedron is a sum of triangles:

tet(n) =
n∑

k=1

(
k + 1

2

)
=

(
k + 2

3

)
.

1 http://math.stackexchange.com/a/48152/301977

http://math.stackexchange.com/a/48152/301977
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The closed form can be checked by applying induction and Pascal’s identity. It can also be
understood as counting the number of ways to choose integers a, b, c, d such that a+b+c+d =
n − 1. These sums correspond to the barycentric coordinates of the integer points of a
tetrahedron embedded in R4 with vertices at n − 1 times the standard basis vectors. The
same intuition explains why tri(n) =

(
n+1

2
)

and implies that the discrete d-simplex has size

sd(n) :=
n∑

k=1
sd−1(k) =

(
n + d − 1

d

)
.

Splitting the pyramid into two tetrahedra as in Figure 4, we get that

pyr(n) = tet(n) + tet(n − 1).

Equivalently,
n∑

k=1
k2 =

(
n + 2

3

)
+

(
n + 1

3

)
,

which is another way to express the closed forms in (1) and (2).
Breaking the pyramid into two tetrahedra allows them to be rearranged into another

shape with the same volume. This new shape can be stacked with two other pyramids to
form a (discrete) triangular prism with base tri(n) and height 2n + 1.

Thus, we get another equivalent construction as shown in Figure 5.

3pyr(n) = tri(n)(2n + 1) =
(

n + 1
2

)
(2n + 1).

5 Four Pyramids

If we put four pyramids together, they make a new pyramid shape that is not as steep. Each
layer is a square, but we only get even squares. Separating this pyramid into two tetrahedra
results in a sum of odd triangles plus a sum of even triangles. Rearranging the triangles
results in a regular tetrahedron that is twice as tall.

That is,

4pyr(n) = tet(2n),

Figure 3 The three pyramids are equal to a cube, a square, and a triangle.
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Figure 4 The pyramid can be divided into two tetrahedra.

and thus,

n∑
k=1

k2 = 1
4

(
2n + 2

3

)
.

This is yet another way to express the same closed form.

6 A Sum of Cubes

Writing a sum of squares as a sum of two tetrahedra follows from the fact that each square is
a sum of two triangles. To extend this idea to a sum of squares, we might decompose a cube
into six (discrete) tetrahedra. In this case, we would use the following construction of a cube.

cube(n) = tet(n) + 4tet(n − 1) + tet(n − 2).

It follows that
n∑

k=1
k3 =

n∑
k=1

(tet(k) + 4tet(k − 1) + tet(k − 2))

=
n∑

k=1

((
k + 2

3

)
+ 4

(
k + 1

3

)
+

(
k

3

))
=

(
n + 3

4

)
+ 4

(
n + 2

4

)
+

(
n + 1

4

)
.

However, this is not the most popular way to express the sum of cubes, because it can be
written more simply as

n∑
k=1

k3 =
(

n + 1
2

)2
.

In other words, it is the product of two triangles in R4. Perhaps the reader will find a way
to visualize this 4-dimensional object as polycubes. An open source library is available to
generate the models printed for this project[7]. It is based on the OpenSCAD software, which
uses the CGAL library [9] to perform solid geometry constructions.
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Figure 5 A triangular prism is constructed from three pyramids.
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Figure 6 Four pyramids come together to make a pyramid of even squares.
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Abstract
This work describes the winning implementation of the CG:SHOP 2023 Challenge. The topic of the
Challenge was the convex cover problem: given a polygon P (with holes), find a minimum-cardinality
set of convex polygons whose union equals P . We use a three-step approach: (1) Create a suitable
partition of P . (2) Compute a visibility graph of the pieces of the partition. (3) Solve a vertex clique
cover problem on the visibility graph, from which we then derive the convex cover. This way we
capture the geometric difficulty in the first step and the combinatorial difficulty in the third step.
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1 Introduction

Covering a polygon with the minimum number of convex pieces is a fundamental problem in
computational geometry and the problem chosen for the CG:SHOP 2023 Challenge. In this
problem we are given a polygon P (potentially with holes) and we have to find a smallest
possible set of convex polygons whose union equals P . This problem is NP-hard [3] and
was later shown to be even ∃R-complete [1]. Note that in the Challenge, all coordinates of
the solutions had to be rational, and then the decision problem is not even known to be
decidable. Thus, it is not expected that there exists any fast algorithm that always finds
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the optimal solution. Likewise, we are aware of no previously described algorithm which is
fast in practice. In this 5th CG:SHOP Challenge, there were a total of 22 teams who signed
up, out of which 18 submitted solutions. Our team – named DIKU (AMW) – obtained the
highest total score, despite finding fewer smallest solutions than the runner-up [4], as we
achieved significantly smaller solutions on many of the largest Challenge instances. See [5]
for a survey about the Challenge.

Our algorithm consists of three steps. In the first step (see Section 2.1), the aim is to
capture the geometry of the problem. We do this by partitioning the input polygon P into
triangles. Note that the corners of these triangles do not have to be corners of P but can be
Steiner points. In the second step (see Section 2.2), we move from the geometric structure to
a combinatorial structure. We do this by computing a visibility graph G of the partition,
with each triangle corresponding to a vertex and an edge is inserted for two vertices only
if the convex hull of the corresponding triangles lies within P (i.e., the convex hull would
be a valid piece of the convex cover). Finally, in the third step (see Section 2.3), we solve
a combinatorial problem: we find a vertex clique cover (VCC) of G with small cardinality.
Recall that a vertex clique cover is a set of cliques in G, for which each vertex in G appears
in one of the cliques. When possible, we use the convex hull H of the triangles of a clique C

as a piece of our convex cover. However, H may intersect holes of P , which makes H an
invalid piece. This happens rarely for the Challenge instances, but in that case we split C

into smaller cliques. For us, the main insights and highlights of our approach are:
1. Assembling the pieces and the cover at the same time (instead of first deciding on the

pieces and then assembling the cover) allows for great flexibility and adaptivity.
2. Reduction to a fundamental graph problem allows for usage of a powerful set of already

existing tools.
3. As we can arbitrarily choose a partition in the first step of the algorithm, our approach is

very adaptive with respect to input structure and instance size (simpler partitions can be
chosen for larger instances).

2 Algorithm

In this section we describe our algorithmic approach to solve the convex cover problem.

2.1 Partition
First, we partition the polygon. While our approach in principle works with any kind of
partition, for simplicity we only used partitions consisting of triangles. Recall that the goal
of the partition is to obtain triangles from which we can later assemble good pieces for a
convex cover and that the corners of these triangles are not restricted to lie on the corners of
P . In fact, to obtain good solutions one often needs Steiner points.

The simplest partition that we use is a Delaunay triangulation. We prefer a Delaunay
triangulation over an arbitrary triangulation because it leads to fat triangles, which we
intuitively assume to create better pieces for the convex cover. The main issues of using a
Delaunay triangulation of P as partition are that its vertices are restricted to the corners of
P and that the pieces can be too coarse to merge into convex pieces. See Figure 6 for an
example for which this leads to a suboptimal cover. Thus, the question is: which Steiner
points should we introduce to obtain better solutions?

Consider a directed edge e of P and suppose that the interior of P is to the left of e. We
define the extension of e to be the maximal directed segment s such that e ⊆ s ⊆ P ; see
Figure 1 (middle). Note that a piece Q of a convex cover can contain an interior point of
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Figure 1 Left: Polygon P (left), extensions of P (middle), and extension partition of P (right).

Figure 2 For the set of green triangles (left), every pairwise convex hull is contained in P (middle),
but the convex hull of all the green triangles is not (right).

e only if Q does not contain a point to the right of s. Thus, intuitively it make sense to
include pieces of the cover that are bounded by s. This intuition is captured by the extension
partition, which is the constrained Delaunay triangulation of the extensions of all edges of P ;
see Figure 1 (right).

2.2 Visibility Graph
In order to create a convex cover, we first want to understand which triangles we can
potentially combine to form pieces for the cover. Given a partition P of the polygon P and
two triangles p, q ∈ P, we say that q is fully visible from p if every point in p sees all of q

and partially visible if every point in p sees some point in q. We define the visibility graph
G = (P, E), which contains an edge pq if the convex hull of p ∪ q is contained in P . We can
compute G naively by checking for each pair p, q ∈ P whether its convex hull is contained
in P . However, the running time Ω(|P|2) renders this impractical. A simple observation
comes in handy here: For any triangles q ∈ P fully visible from p ∈ P, there exists a path
from p to q in the dual graph1 of P using only vertices that correspond to triangles that are
partially visible from p. Thus, instead of checking all pairwise visibilities, we can simply
perform a BFS on the dual graph, only using partially visible triangles and stop exploring on
triangles that are not partially visible. While this significantly reduces the running time in
practice, it can still be too expensive. For further speedup, we resort to building a subgraph
of G by only exploring fully visible triangles in the BFS. To speed up the visibility graph
construction, we engineered fast visibility checks that we do not further describe here.

2.3 Compute Cover
We employ the following three steps to compute a convex cover using the visibility graph.

1 The dual graph of a partition is defined as follows: the vertex set consists of the triangles of the partition
and there is an edge between two vertices iff the two corresponding triangles touch.
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h
H

H1

H2

H1

H2

h′

H2,1

H2,2

Figure 3 Fixing an invalid clique: All visible triangles form the initial piece H that we then split
into pieces H1 and H2 using the half-plane h (left). As H2 still contains a hole, we again split it into
pieces H2,1 and H2,2 using half-plane h′ (right). The result is the valid pieces H1, H2,1, and H2,2.

Figure 4 Extension partition with suboptimal clique cover (left), the corresponding convex cover
(middle), and a convex cover without the unnecessary green polygon (right).

Compute Vertex Clique Cover: We first compute a vertex clique cover (VCC) on the visi-
bility graph. The problem of finding a minimum VCC is one of Karp’s classical NP-hard
problems, and there exists no n1−ε-approximation algorithm for any ε > 0 unless P = NP.
However, there exist implementations that compute small solutions on practical instances.
Namely, Chalupa [2] presented a randomized clique-growing approach that was subse-
quently used as a subroutine by Strash and Thompson [8] in their state-of-the-art solver
ReduVCC that uses sophisticated reduction rules with a branch-and-reduce approach.

Fix Cover: Recall that a clique C corresponds to a set of triangles that are pairwise fully
visible. We would like to use the convex hull H of the triangles as a piece in our convex
cover, but H may not be contained in P ; see Figure 2 for a simple example. While
this rarely happens on the Challenge instances (see Section 3.3), we nonetheless have to
post-process such pieces to obtain a feasible convex cover.
First, note that the only way a piece H can be invalid is by containing a hole of P ; in
particular, it is not possible that H intersects the unbounded region of the complement of
P . We fix an invalid piece H as follows: Pick any hole h that invalidates H and consider
an arbitrary half-plane whose boundary intersects h. Now partition the triangles of C

according to whether they intersect the half-plane or not. This creates two new pieces,
which both do not intersect the hole h and which partition the remaining holes in H . We
apply this procedure recursively to the new pieces (always reducing the number of holes
intersected by these pieces by at least one) until all newly created pieces are valid; see
Figure 3. We omit the proof of correctness of this procedure due to space constraints.

Make Cover Minimal: At this point, we may end up with a non-minimal cover, i.e., there
may exist redundant pieces; see Figure 4. To make the solution minimal, we iterate over
the pieces and remove them from the cover if their removal does not invalidate it.
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Figure 5 The smallest instances of some of the Challenge instance types. From left to right and
top to bottom, these are: cheese, maze, octa, iso, fpg, srpg_mc.
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Figure 6 The Delaunay triangulation (top left) and the resulting cover of size 27 (top right). The
extension partition (bottom left) and the resulting cover of size 23 (bottom right).

3 Evaluation

3.1 Implementation and Data
The competition code is written in C++ and compiled using GCC 11.3 with -O3 optimization
turned on. We use CGAL [9] for all geometric primitives with a Kernel that uses a number
type that saves numbers as fractions and performs exact computations. For the partitioning
and to construct the visibility graph, we use the triangulation, visibility, and convex hull
packages of CGAL [6, 7, 10]. To compute the vertex cover, we use ReduVCC [8]. We show
different types of instances of the problem set in Figure 5.

3.2 Examples
An important part of our approach is the choice of the partition. In particular, while the
Delaunay triangulation is fast to compute, the extension partition creates partitions with
significantly more pieces and thus slows down our approach. To justify this kind of partition,
it must lead to significantly better solutions. Figure 6 shows a cover of the same instance using
the Delaunay partition and the extension partition – one can clearly see that the extension
partition better adapts to the geometry of the input polygon. Unfortunately, extension
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Figure 7 Part of a polygon with multiple long concave chains. While the cover using a Delaunay
triangulation almost exclusively creates pieces adjacent to only two concave chains (left), local
triangulation allows for creation of pieces that contain parts of all three concave chains (right).

partitions can lead to a blow-up of the partition size that makes the approach practically
infeasible for some instances. This blow-up happens when many extensions intersect. We
circumvent this issue by computing restricted extension partitions in two different ways.
1. We want to preserve extensions locally. Thus, we only choose a subset of the extensions

favoring short extensions. We either only insert extensions below a certain length, or we
randomly sample extensions inversely proportional to their length.

2. Some Challenge instances have long concave chains on the boundary of P . Note that the
midpoint of each edge of such a chain has to be part of a distinct piece in the convex
cover. To allow for creation of pieces that combine segments from multiple concave chains,
we locally triangulate long concave chains instead of creating extensions; see Figure 7.

3.3 Experiments
For this section, we selected a subset of the instances for more thorough experiments and
subsequently only refer to these. See the sizes and types in the plots of Figure 8. Recall that
we compute an intermediate, potentially infeasible solution via a vertex clique cover that is
subsequently fixed. We argue above that we expect that only few cliques have to be fixed on
practical instances. Indeed, on all except the cheese instances, the solution size increased
by at most 6 pieces when fixing cliques, while most small instances did not have any invalid
clique. However, the largest increase in solution size was for the largest cheese instances with
an increase of 110 pieces. Our algorithm may create redundant cliques that are removed in a
post-processing step, so it is interesting to consider how much this post-processing reduces
the size of the solution. This decrease in pieces is very much dependent on the instance:
While for octa the maximal decrease was 2 pieces, it was 83 pieces for cheese instances and
all larger cheese instances saw significant improvements.

For the competition and our experiments we used a server with two Intel Xeon E5-2690 v4
CPUs with 14 cores (28 threads) each, and a total of 504GB RAM. All reported running
times are single-threaded. The bottleneck of our approach is the visibility graph computation
discussed in Section 2.2. To better understand the trade-off between running time, memory
usage, and solution quality with respect to the choice of partition, we conduct experiments
comparing Delaunay triangulation and extension partition; see Figure 8. The extension
partition introduces a large overhead in running time and memory consumption compared to
the Delaunay triangulation, but it reduces the solution size by a significant fraction. While
for the extension partition the visibility graph computation clearly dominates the running
time, for the Delaunay triangulation it only makes up 32.8% of the running time on average.
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Figure 8 Experiments with the Delaunay triangulation (left bars) and the extension partition
(right bars) as underlying partitions for a selected set of instances. We measure the running time
(top left; thin bars showing the running time of the visibility graph computation), memory usage
(top right), solution size (bottom left), and number of edges in the visibility graph (bottom right).
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Abstract
We describe the heuristics used by the Shadoks team in the CG:SHOP 2023 Challenge. The Challenge
consists of 206 instances, each being a polygon with holes. The goal is to cover each instance polygon
with a small number of convex polygons. Our general strategy is the following. We find a big
collection of large (often maximal) convex polygons inside the instance polygon and then solve
several set cover problems to find a small subset of the collection that covers the whole polygon.
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1 Introduction

CG:SHOP Challenge is an annual geometric optimization challenge. The fifth edition in
2023 considers the problem of covering a polygon with holes P using a small set of convex
polygons S that lie inside P . In total, 206 polygons have been given as instances, ranging
from 24 to 109,360 vertices. The instances are of several different types, including orthogonal

Figure 1 Solutions to maze_79_50_5_5, fpg-poly_400_h2, and cheese163 instances. The
instances have 64, 462, and 163 vertices and the solutions have 23, 172, and 68 polygons, respectively.

© Guilherme D. da Fonseca;
licensed under Creative Commons License CC-BY 4.0

39th International Symposium on Computational Geometry (SoCG 2023).
Editors: Erin W. Chambers and Joachim Gudmundsson; Article No. 67; pp. 67:1–67:9

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:guilherme.fonseca@lis-lab.fr
https://orcid.org/0000-0002-9807-028X
https://doi.org/10.4230/LIPIcs.SoCG.2023.67
https://arxiv.org/abs/2303.07696
https://github.com/gfonsecabr/shadoks-CGSHOP2023
https://archive.softwareheritage.org/swh:1:dir:1ebe4fb460d0533472d052a52e3d4476ce15393e;origin=https://github.com/gfonsecabr/shadoks-CGSHOP2023;visit=swh:1:snp:00cc559187d2ea1aff02374cc32a600b383f3185;anchor=swh:1:rev:3175b3d696dfd1d1c21af66abc9d05739bf1aca6
https://pageperso.lis-lab.fr/guilherme.fonseca/cgshop23view/
https://pageperso.lis-lab.fr/guilherme.fonseca/cgshop23view/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


67:2 Shadoks Approach to Convex Covering

polygons and polygons with many small holes. The team Shadoks won second place with
the best solution (among the 22 participating teams) to 128 instances. More details about
the Challenge and this year’s problem are available in the organizers’ survey paper [5].

Our general strategy consists of two distinct phases. First, we produce a large collection
C of large convex polygons inside P . Second, we find a small subset S ⊆ C that covers P ,
which is returned as the solution. Figure 1 shows three small solutions and we can observe
that most convex polygons are maximal and often much larger than necessary. Our approach
is different from that of the winning team DIKU (AMW), that uses clique cover [1].

To construct the collection C in phase 1, we used either a modified version of the
Bron-Kerbosch algorithm or a randomized bloating procedure starting from a constrained
Delaunay triangulation (Section 2). To solve the set cover problem in phase 2, we used
integer programming and simulated annealing. The key element for the efficiency of phase 2
is to iteratively generate constraints as detailed in Section 3. Generally speaking, the initial
constraints ensure that all input vertices are covered and supplementary constraints ensure
that a point in each uncovered area is covered in the following iteration. In fact, to obtain
our best solutions, we repeat phase 2 using the union of the solutions from independent runs
of the first two phases as the collection C. Our results are discussed in Section 4.

2 Collections

We now describe phase 1 of our strategy: building a collection. Throughout, the instance is a
polygon with holes P with vertex set V . Formally speaking, a collection C is defined exactly
as a solution S: a finite set of convex polygons whose union is P . However, while we want a
solution S to have as few elements as possible, the most important aspect of a collection C is
that it contains a solution S ⊆ C with few elements. Ideally, |C| is also not too big so the
second phase solver is not overloaded, but the size of C is of secondary importance.

Given a set of points S, a convex polygon C ⊆ P is S-maximal if the vertices of C are in
S and there exists no point s ∈ S with conv(C ∪ {s}) ⊆ P . Next, we show how to build a
collection with all S-maximal convex polygons.

Bron-Kerbosch. The Bron-Kerbosch algorithm [2] is a classic algorithm to enumerate
all maximal cliques in a graph (in our case the visibility graph) with good practical
performance [6]. The algorithm recursively keeps the follwing three sets. R: Vertices
in the current maximal clique. S: Vertices that may be added to the current maximal clique.
X: Vertices that may not be added to the current maximal clique because otherwise the same
clique would be reported multiple times. Initially, R = X = ∅ and S = S.

If the polygon P has no holes and S, then there is a bijection between the maximal
cliques in the visibility graph of S on P and the S-maximal convex polygons. While this
is no longer true in the version with holes, we can adapt the Bron-Kerbosch algorithm to
enumerate all S-maximal convex polygons as shown in Listing 1. Figure 3 shows how the
number of V -maximal convex polygons grows for different instances and that we can compute
all V -maximal convex polygons quickly for instances with around 10 thousand vertices.

Let S1 be the set of the endpoints of the largest segments inside P that contain each
edge of P (Figure 2). It is easy to see that |S1| ≤ 2|V |. However, as shown in Figure 4, we
are only able to compute all (V ∪ S1)-maximal convex polygons for instances with less than
one thousand vertices. It is possible that a modified version of the Bron-Kerbosch algorithm
gives better results, either by using a pivot or choosing a particular order for the points, but
we have not succeeded in obtaining significant improvements. Another natural set of points
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V V ∪ S1 V ∪ S2

Figure 2 Definitions of V , S1, and S2.

is the set S2 ⊇ S1 defined as the intersection points (inside P ) of the lines containing the
edges of P (Figure 2). The set S2 may however have size roughly |V |2. Hence, computing all
(V ∪ S2)-maximal convex polygons is only feasible for very small instances.

Random Bloating. As a V -maximal convex polygon C is generally not P -maximal, we
also grow C with an operation we call bloating. Given a convex polygon C and a set of
points S, we construct an S-bloated convex polygon C ′ by iteratively trying to add a random
point from S to C and taking the convex hull, verifying at each step that C ′ lies inside the
instance polygon P . There are two sets of points that may compose S. First, S1(C) is the
set of endpoints of the largest segment in P that contains each edge of C. Second, S2(C) is
the union of S1(C) and the intersection points of the lines containing the edges of C, if the
points are inside P . Notice that |S1(C)| = O(|C|), but |S2(C)| = O(|C|2).

To start the bloating operation, we need a convex polygon C. One approach is to use
the V -maximal convex polygons produced by Bron-Kerbosch. A much faster approach for
large instances is to use a constrained Delaunay triangulation of the instance polygon. In
this case, we start by V -bloating the triangles into a convex polygon C, and then possibly
S1(C)-bloating or S2(C)-bloating the polygon C. Since the procedure is randomized, we can
replicate the triangles multiple times to obtain larger collections of large convex polygons.

3 Set Cover

Given a collection C of convex polygons that covers P , our covering problem consists of
finding a small subset of C that still covers P . In contrast to the classic set cover problem,
in our case P is an infinite set of points. Nevertheless, it is easy to create a finite set of
witnesses W , that satisfy that W is covered by a subset S of C if and only if P is. To do that,
we place a point inside each region (excluding holes) of the arrangement of line segments
defining the boundaries of the polygons in C and P (Figure 5(a)). The size of such set W is
however very large in practice and potentially quadratic in the number of segments of C.

Producing small sets of witnesses has been studied in the context of art gallery problems [3].
However, we do not know if small sets of witnesses exist for our problem. Hence, we use a
loose definition of witness as any finite set of points W ⊂ P . In practice, we want W to be
such that if W is covered, then most of P is covered. Next, we show how to build such set of
witnesses and afterwards we describe how we solved the finite set cover problem.

Witnesses. A set of witnesses W that gave very good results, which we call vertex witnesses,
consists of one witness inside each cell of the arrangement that contains a vertex of the
instance polygon P , as shown in Figure 5(b). This set guarantees that if W is covered,
then all points that are arbitrarily close to the vertices of P are covered. However, trivially
computing W requires building the arrangement of the collection C, which is too slow and
memory consuming for large C.
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Listing 1 Modified Bron-Kerbosch algorithm.
BronKerbosch (R, S, X):

if S and X are both empty: report conv(R) and return
if X ∩ conv(R) ̸= {}: return // Only for improved performance

for each vertex v in S:
S’ ← X’ ← {}
for each vertex u in S:

if v ̸= u and conv(R ∪ {u,v}) ⊆ P: S’ ← S’ ∪ {u}

for each vertex u in X:
if v ̸= u and conv(R ∪ {u,v}) ⊆ P: X’ ← X’ ∪ {u}

BronKerbosch (R ∪ {v}, S’, X ’)
S ← S \ {v}, X ← X ∪ {v}

 0.01

 0.1

 1

 10

 100

 1000

 100  1000  10000

Th
ou

sa
nd

s 
of

 m
ax

im
al

 c
on

ve
x 

se
ts

Number of input vertices

cheese
maze

srpg_iso
fpg

 0.01

 0.1

 1

 10

 100

 1000

 100  1000  10000

En
um

er
at

io
n 

tim
e 

in
 s

ec
on

ds

Number of input vertices

cheese
maze

srpg_iso
fpg

Figure 3 Number of V -maximal convex polygons and the time to enumerate them.
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(a) (b)

Figure 5 All the 82 V -maximal convex polygons for the socg_fixed60 instance with (a) the 1009
arrangement witnesses and (b) the 200 vertex witnesses.

(a) (b)

Figure 6 (a) A solution that covers all vertex witnesses of the socg_fixed60 instance but not
the whole polygon. Uncovered regions are marked in striped red. (b) The optimal solution obtained
from the previous one by merging the uncovered regions.

A set of witnesses W that also gives excellent results and is much faster to compute is
called quick vertex witnesses. For each vertex v of P , we consider all edges in C and also P

that are adjacent to v. We order these edges around v starting and ending with the edges
of P . For each pair of consecutive edges, we add a point w to W that is between the two
consecutive edges and infinitely close to v. Notice that the number of vertex witnesses is
linear in the number of edges of C and it can also be built in near linear time, avoiding
the construction of the whole arrangement of C. If P has not colinear points, then the
quick vertex witnesses give the same vertex coverage guarantee as the vertex witnesses. We
represent points that are arbitrarily close to v implicitly as a point and a direction.

Given a set S ′ of convex polygons that cover W , there are two natural options to produce
a valid solution S. The first option is to make S = S ′ ∪ R for a set R built as follows. The
uncovered region P \ ∪C∈S′C consists of a set U of disjoint polygons, possibly with holes
(Figure 6(a)). However, most of the time the polygons in U are in fact convex. For each
polygon U ∈ U , if U is convex, then we add U to R. Otherwise, we triangulate U and add
the triangles to R. Furthermore, we can greedily merge convex polygons in R to reduce their
number, as long as the convex hull of the union remains inside P , which works very well for
the SoCG logo solution shown in Figure 6(b).

SoCG 2023
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A second option is normally preferable and is based on the constraint generation technique,
widely used in integer programming. We build the set R as before, but for each convex
polygon R ∈ R we add to W a point inside R. Then, we run the solver again and repeat
until a valid solution is found (or one with a very few uncovered regions). It is perhaps
surprising how few iterations are normally needed, as shown in Figure 7.
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Figure 7 Number of iterations to find a valid solution starting from quick vertex witnesses using
IP as the solver, setting C as (a) all V -maximal convex polygons and (b) 2 times triangulation
(V ∪ S2(C))-bloated convex polygons.

Set Cover Solver. A simple and often efficient way to solve a set cover problem (W, C) is to
model the problem as integer programming (IP) and then use the CPLEX solver [4]. Each set
in C becomes a binary variable and each witness point w ∈ W becomes a constraint forcing
the sum of the sets that contain w to be at least 1. As discussed in the next section, this
approach can optimally solve fairly large problems in seconds and give good approximation
guarantees to some extremely large problems. However, for some large problems the solution
found is extremely bad (sometimes worse than a greedy algorithm). Another solver we used
is based on simulated annealing, which is described in the full version.

4 Results

We now discuss the quality of the solutions obtained for each technique. Our C++ code
uses CGAL [8] and CPLEX [4] and is run on Fedora Linux on a Dell Precision 7560 laptop
with an Intel Core i7-11850H and 128GB of RAM. All times refer to a single core execution
with scheduling coordinated by GNU Parallel [7]. Our plots for a solution S use the relative
solution size, defined as |S∗|/|S|, where S∗ is the best solution submitted among all teams.
This corresponds to the square root of the Challenge score of S.

Figure 8 compares the different techniques to obtain V -maximal convex polygons before
bloating them. As the figure shows, using 4 replications of each constrained Delaunay triangle
gives solutions that are almost as good as Bron-Kerbosch, but works on all instance sizes.
Hence, we use this setting for Figures 9 and 10. Figure 9 shows the relative solution sizes
using different bloating approaches and comparing the simulated annealing and the IP solvers.
You can see that the simulated annealing solver is only slightly worse than IP for small
instances, but better for large cheese instances. We limited the running time of IP to 10
minutes per iteration. The total running times of the solvers are compared in Figure 10.
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Figure 8 Solution sizes relative to the best Challenge solution. Data is based on a triangulation
replicated 1, 2, or 4 times and randomly bloated using V . Alternatively, we use Bron-Kerbosch (BK)
to obtain all V -maximal polygons, when the running time is not too long. Afterwards, all collections
have bloated again using V ∪ S2(C) and solved using IP.
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Figure 9 Solution sizes relative to the best Challenge solution. A solid line is used for the IP
solver and a dashed line for simulated annealing. Data is based on a triangulation randomly bloated
using V (red) and then bloated again using V ∪ S1(C) (green), or V ∪ S2(C) (blue).

A much better collection is obtained by using the union of several high quality solutions
as a collection. To produce the previous plots, we performed 3 independent runs for each
settings (showing the best result found). Figures 11 and 12 shows the solution sizes and
times obtained by using the best k solutions from these runs as the collection.
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Figure 10 Running times in seconds of the set cover solvers used to find the solutions of Figure 9.
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