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Abstract
Chan, Har-Peled, and Jones [SICOMP 2020] developed locality-sensitive orderings (LSO) for
Euclidean space. A (τ, ρ)-LSO is a collection Σ of orderings such that for every x, y ∈ Rd there is an
ordering σ ∈ Σ, where all the points between x and y w.r.t. σ are in the ρ-neighborhood of either x

or y. In essence, LSO allow one to reduce problems to the 1-dimensional line. Later, Filtser and Le
[STOC 2022] developed LSO’s for doubling metrics, general metric spaces, and minor free graphs.

For Euclidean and doubling spaces, the number of orderings in the LSO is exponential in the
dimension, which made them mainly useful for the low dimensional regime. In this paper, we develop
new LSO’s for Euclidean, ℓp, and doubling spaces that allow us to trade larger stretch for a much
smaller number of orderings. We then use our new LSO’s (as well as the previous ones) to construct
path reporting low hop spanners, fault tolerant spanners, reliable spanners, and light spanners for
different metric spaces.

While many nearest neighbor search (NNS) data structures were constructed for metric spaces
with implicit distance representations (where the distance between two metric points can be computed
using their names, e.g. Euclidean space), for other spaces almost nothing is known. In this paper
we initiate the study of the labeled NNS problem, where one is allowed to artificially assign labels
(short names) to metric points. We use LSO’s to construct efficient labeled NNS data structures in
this model.

2012 ACM Subject Classification Theory of computation → Computational geometry; Theory of
computation → Sparsification and spanners

Keywords and phrases Locality sensitive ordering, nearest neighbor search, high dimensional
Euclidean space, doubling dimension, planar and minor free graphs, path reporting low hop spanner,
fault tolerant spanner, reliable spanner, light spanner

Digital Object Identifier 10.4230/LIPIcs.SoCG.2023.33

Related Version Full Version: https://arxiv.org/abs/2211.11846 [46]

Funding This research was supported by the Israel Science Foundation (grant No. 1042/22).

1 Introduction

1.1 Locality Sensitive Ordering
Chan, Har-Peled, and Jones [30] recently introduce a new and powerful tool into the
algorithmist’s toolkit, called locality sensitive ordering (abbreviated LSO). LSO provides an
order over the points of a metric space (X, dX), this order being very useful, as it helps to
store, sort, and search the data (among other manipulations).

▶ Definition 1 ((τ, ρ)-LSO). Given a metric space (X, dX), we say that a collection Σ of
orderings is a (τ, ρ)-LSO if |Σ| ≤ τ , and for every x, y ∈ X, there is a linear ordering σ ∈ Σ
such that (w.l.o.g.1) x ⪯σ y and the points between x and y w.r.t. σ could be partitioned into
two consecutive intervals Ix, Iy where Ix ⊆ BX(x, ρ · dX(x, y)) and Iy ⊆ BX(y, ρ · dX(x, y)).
ρ is called the stretch parameter.

1 That is either x ⪯σ y or y ⪯σ x, and the guarantee holds w.r.t. all the points between x and y in the
order σ.
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Figure 1 Illustration of different types of LSO.

Morally speaking, given a problem, LSO can reduce it from a general and complicated space
to a much simpler space: 1-dimensional line. Chan et al. [30] constructed

(
Od(ϵ−d) · log 1

ϵ , ϵ
)
-

LSO for the d-dimensional Euclidean space. They used their LSO to design simple dynamic
algorithms for approximate nearest neighbor search, bichromatic closest pair, MST, spanners,
and fault-tolerant spanners. Later, Buchin, Har-Peled, and Oláh [27, 28] constructed
reliable spanners using LSO, obtaining considerably superior results compared with previous
techniques.

Filtser and Le [49] generalized Chan et al. [30] result to doubling spaces,2 showing that
every metric space with doubling dimension d admits a

(
ϵ−O(d), ϵ

)
-LSO. Furthermore, they

generalized the concept of LSO to other metric spaces, defining the two related notions
of triangle-LSO (which turn to be useful for general metric spaces), and left-sided LSO
(which turn to be useful for topologically restricted graphs). Here, instead of presenting the
left-sided LSO’s of [49], we introduce the closely related notion of rooted-LSO, which has
some additional structure. All the results and constructions for left-sided LSO in [49] hold
for rooted LSO as well. We refer to [49] for a comparison between the different notions, and
to Figure 1 for an illustration.

▶ Definition 2 ((τ, ρ)-Triangle-LSO). Given a metric space (X, dX), we say that a collection
Σ of orderings is a (τ, ρ)-triangle-LSO if |Σ| ≤ τ , and for every x, y ∈ X, there is an ordering
σ ∈ Σ such that (w.l.o.g.1) x ≺σ y, and for every a, b ∈ X such that x ⪯σ a ⪯σ b ⪯σ y it
holds that dX(a, b) ≤ ρ · dX(x, y).

▶ Definition 3 ((τ, ρ)-rooted-LSO). Given a metric space (X, dX), we say that a collection
Σ of orderings over subsets of X is a (τ, ρ)-rooted-LSO if the following hold:

Each point x ∈ X belongs to at most τ orderings in Σ.
Each ordering σ ∈ Σ is associated with a point xσ ∈ X, which is the first in the order, and
such that the ordering is w.r.t. distances from xσ (i.e. y ≺σ z ⇒ dX(xσ, y) ≤ dX(xσ, z)).
For every pair of points u, v, there is some σ ∈ Σ containing both x, y, and such that
dG(u, xσ) + dG(xσ, v) ≤ ρ · dG(u, v).

2 A metric (X, d) has doubling dimension d if any ball of radius 2r can be covered by 2d balls of radius r.
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Filtser and Le [49] constructed triangle LSO for general metrics, and rooted LSO for the
shortest path metrics of trees, treewidth graphs, planar graphs, and graph excluding a fixed
minor. They used their LSO’s to construct oblivious reliable spanners for the respective
metric spaces, considerably improving previous constructions (that used different techniques).
All the known results on LSO’s are summarized in Table 1.

Table 1 Summary of all known results, on all the different types of locality sensitive orderings
(LSO). k ∈ N, t > 1, ϵ ∈ (0, 1) is an arbitrarily small parameter. (∗) Od hides an arbitrary function
of d, the number of orderings in [30] LSO is Od(ϵ−d) · log 1

ϵ
= 2O(d) · d

3
2 d · ϵ−d · log 1

ϵ
.

LSO type Metric Space # of orderings (τ) Stretch (ρ) Ref

(Classic) LSO Euclidean space Rd Od(ϵ−d) · log 1
ϵ

(∗) ϵ [30]
Doubling dimension d ϵ−O(d) ϵ [49]

Triangle-LSO

General metric O(n 1
k · log n · k2

ϵ · log k
ϵ ) 2k + ϵ [49]

Euclidean space Rd e
d

2t2 ·(1+ 2
t2 ) · Õ( d1.5

ϵ·t ) (1 + ϵ)t Thm. 4
ℓd

p for p ∈ [1, 2] eO(d/tp) · Õ(d) t Thm. 5
ℓd

p for p ∈ [2, ∞] Õ(d) d1− 1
p FullV[46]

Doubling dimension d 2O(d/t) · d · log2 t t Thm. 6

Rooted LSO
Tree log n 1 [49]
Treewidth k k · log n 1 [49]
Planar / fixed minor free O( 1

ϵ · log2 n) 1 + ϵ [49]

Previously constructed LSO for the Euclidean space [30], as well as for metric spaces with
doubling dimension d [49], have exponential dependency on the dimension in their cardinality,
a phenomena often referred to as “the curse of dimensionality”. When the dimension is high, it
can be a major obstacle. Indeed, the distances induced by n point in an O(log n)-dimensional
Euclidean space induce a metric space which is much more structured than a general metric
space. Therefore one might expect them to admit better LSO. However, using [30] one can
only construct (n, ϵ)-LSO (note that every metric admits (⌈ n

2 ⌉, 0)-LSO 3).
Every n point metric space has doubling dimension at most log n. Consider the case

where the doubling dimension is somewhat large (e.g.
√

log n) but not maximal. It is much
more structured than general metric, however the only construction we have [49] gives us
ϵ−O(d) orderings, which might be too large. In the small number of orderings regime, could
we take advantage of the doubling structure to construct better LSO then for general metrics?

Our Contribution. In this paper we construct new triangle-LSO for high dimensional spaces.
We then present many applications for the newly constructed LSO’s, as well as for the
previously constructed LSO’s. Old and new LSO construction are summarized in Table 1.

▶ Theorem 4. For every t ∈ [4, 2
√

d], δ ∈ (0, 1], and d ≥ 1, the d-dimensional Euclidean
space Rd admits

(
O

(
d1.5

δ·t · log( 2
√

d
t ) · log d

δ · e
d

2t2 ·(1+ 2
t2 )

)
, (1 + δ)t

)
-triangle LSO.

For t = 2
3
√

d and δ = 1
2 , we obtain

(
O(d log d),

√
d
)

-triangle LSO. In particular, for every
set of n points in ℓ2, using the Johnson Lindenstrauss dimension reduction [61], for every
fixed t > 1, we can construct

(
n

1
t2 · Õ( log1.5 n

t ), O(t)
)

-triangle LSO, or
(
Õ(log n), O(

√
log n)

)
-

triangle LSO, a quadratic improvement compared with general n-point metric spaces!

3 This follows from a theorem by Walecki [7] who showed that the edges of the Kn clique graph can be
partitioned into ⌈ n

2 ⌉ Hamiltonian paths.
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Interestingly, we show that the
(

O(d log d),
√

d
)

-triangle LSO Σ for ℓ2, is in the same time

also a
(

O(d log d), d
1
p

)
-triangle LSO for ℓp where p ∈ [1, 2], and

(
O(d log d), d1− 1

p

)
-triangle

LSO for ℓp where p ∈ [2, ∞]. For p ∈ [1, 2], we generalize Theorem 4 to ℓp spaces to get the
entire #ordering-stretch trade-off. Finally, we generalize Theorem 4 to general metric spaces
with doubling dimension d.

▶ Theorem 5. For every p ∈ [1, 2], t ∈ [5, d
1
p ] and d ≥ 1, the d-dimensional ℓp space admits(

eO( d
tp ) · Õ(d), t

)
-triangle LSO.

▶ Theorem 6. Given a metric space (X, dX) with doubling dimension d, and parameter
t ∈ [Ω(1), d], X admits

(
2O(d/t) · d · log2 t, t

)
-triangle LSO.

For t = d, we get (Õ(d), d)-triangle LSO, again much better then general metric spaces!

1.2 Labeled Nearest Neighbor Search
Nearest neighbor search (abbreviated NNS) is a classical and fundamental task used in
numerous domains including machine learning, clustering, document retrieval, databases,
statistics, data compression, database queries, computational biology, data mining, pattern
recognition, and many others. In the NNS problem we are given a set P of points in a
metric space (X, dX). The goal is to construct a succinct data structure that given a query
point q ∈ X, quickly returns a point p ∈ P closest to q (i.e. arg minp∈P dX(p, q)). In order
to keep the size of the data structure, and the query time small, usually approximation
is allowed. In the t-approximate nearest neighbor problem (abbreviated t-NNS) the goal
is to return a point p at distance at most t · minp∈P dX(p, q) from q. The problem was
extensively studied in ℓp spaces (see the survey [11]), and also in various norm spaces over
Rd (see e.g. [12, 13]). NNS data structures were also constructed beyond normed spaces.
Some examples are Earth-Mover distance [60], Edit Distance [79, 11], and Fréchet distance
[59, 41, 43, 47]. We observe that a crucial property shared by these examples, is that they
have an “implicit distance representation”. That is, it is possible to compute the distance
between two points using only their names (e.g. the coordinates values in Rd used as names:
dRd ((x1, . . . , xd), (y1, . . . , yd)) = ∥(x1, . . . , xd) − (y1, . . . , yd)∥2).

For general metric spaces, Krauthgamer and Lee [66] introduced the black box model.
Here one is given access to an exact distance oracle 4 DO that answer distance queries in tDO
time. They showed that one can construct an efficient (1 + ϵ)-NNS (that is with polynomial
space, and polylogarithmic query time), if and only if the doubling dimension of X is at
most O(log log n).

Indeed, for metric spaces with large doubling dimension, distance queries provide very
limited information. Consider for example the case where the input metric is the star graph
(inducing uniform metric on the leaves, see illustration below), and the query point attached
to one of the leaves with an edge of infinitesimal weight, one must query all the points before
finding any finite approximation to the nearest neighbor.

ε
q

p

4 An exact distance oracle D is a data structure that given two points x, y, returns est(x, y) = dX(x, y).
A distance oracle of stretch t returns a value est(x, y) in [dX(x, y), t · dX(x, y)].
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An interesting case studied by Abraham, Chechik, Krauthgamer, and Wieder [3] is that
of planar graphs. Here we are given a huge weighted planar graph G = (V, E, w) with N

vertices, and a subset of n vertices X ⊆ V . The goal is to solve the (1 + ϵ)-NNS problem
w.r.t. the shortest path metric dG, input set X and queries from V . Assuming access
to an exact distance oracle4 DO that answer distance queries in tDO time, and given a
planar graph G of maximum degree ∆, Abraham et al. [3] constructed a (1 + ϵ)-NNS
data structure for planar graph of size n · O(ϵ−1 · log log N + ∆ · log2 n) and query time
O((ϵ−1 · log log n + tDO) · log log N + log n · ∆ · tDO).

Linear dependence on the degree is a very limiting requirement, as planar graphs have
apriori unbounded degree. Moreover, exact distance computations (even in planar graphs)
are time consuming, and if the graph is big enough could be infeasible. Exact distance
oracle is a highly non-trivial assumption, it is an expensive data structure, 5 better to be
avoided. One might hope to relax either the max degree assumption, or to use the much
more reasonable and efficient data structure of approximate distance oracle [84, 64, 70].
Unfortunately, Abraham et al. [3] showed both assumptions to be necessary. Specifically,
the dependence on the degree is necessary, as every NNS data structure with space at most
O( N

∆ log∆ n ) must probe the distance oracle at least Ω(∆ log∆ n) times. Furthermore, they
show that if one is only given access to a (1 + ϵ)-distance oracle, then there is a planar graph
(in fact a tree) with maximum degree O(log n), aspect ratio O( log n

ϵ ), N ≤ n2, and the NNS
data structure is forced to make Ω(n) queries to the distance oracle.

To conclude this discussion, exact distance oracle (assumed both by the black box
model [66] and [3]) is an expensive data structure, which enables us to construct efficient
NNS only under very limiting assumptions (small doubling dimension / constant maximum
degree in planar graphs). On the other hand in many metric spaces with “implicit distance
representation” efficient NNS were constructed. The crux is that the information stored in
the name (e.g. coordinate values) used to preform various manipulations on the data, in
addition to distance computation. What if in planar graphs, or even in completely general
metric spaces, we could choose the names of the metric points, or alternatively assigning
each point a short label, would it be possible to construct efficient NNS data structures?

To answer this question, we introduce the labeled t-NNS problem.

▶ Definition 7 (Labeled t-NNS). Consider an N -point metric space (X, dX), where one can
assign to each point x ∈ X an arbitrary short label lx. Given a subset P ⊆ X of size n

(unknown in advance) together with their labels {lx}x∈P (but without access to (X, dX) or
any additional information) the goal is to construct a NNS search data structure as follows:
given a query q ∈ X together with its assigned label ℓq, the data structure will return a
t-approximate nearest neighbor p ∈ P : dX(p, q) ≤ t · minx∈P dX(x, q). The parameters of
study are: label size, data structure size, query time, and approximation factor t.

We also consider the scenario where the set P is changing dynamically: points are
added and removed from P . Here we are required to maintain a data structure for P , while
minimizing the update time (as well as all the other parameters).6

In the labeled NNS model we get to assign a short label (alternatively choose a name)
for each point in a big metric space (X, dX). These labels try to imitate the natural hint
provided by the name of the points themselves in metric spaces with implicit distance

5 After a long line of work, the state of the art (by Long and Pettie [73]) requires either super-linear space
N1+o(1), or very large query time No(1), both quite undesirable.

6 For example, consider a NNS data structure for a set P . Dynamic NNS, should be able to efficiently
update the data structure to work w.r.t. a slightly updated set P ′ = P ∪ {x} \ {y} instead of P .

SoCG 2023
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representation. The main object of study here is the trade-off between label size, and the
approximation of the resulting NNS. A trivial choice of label for each point x will be simply
to store distances to all other points. However the label size Ω(N) is infeasible. A more
sophisticated solution is the following: fix constants k, t ∈ N, and embed all the points in
(X, dX) into d = Õ(N 1

k )-dimensional ℓ∞ [75, 1]. That is we assign each point x a vector
vx ∈ Rd such that ∀x, y ∈ X, dX(x, y) ≤ ∥vx −vy∥∞ ≤ (2k −1) ·dX(x, y), and use the vectors
as labels. Given an n point subset P ⊆ X with its respective labels (vectors), use Indyk’s
NNS [58] over {vx}x∈P to construct a NNS data structure DInd with approximation factor
O(log1+ 1

t
log d) = O(t · log log N) w.r.t. the ℓ∞ vectors, space Õ(d · n1+ 1

t ) = Õ(N 1
k · n1+ 1

t )
and query time Õ(n1+ 1

k ). Given a query q, we will simply query DInd on the vector vq, and
on answer vp will return p. Note that the query time and space are the same as above, while
the approximation factor will be O(k · t · log log N).

Our Contribution. Our results for the labeled t-NNS are summarized in Table 2. We begin
by proving meta theorem showing that (τ, ρ)-rooted LSO implies a labeled ρ-NNS with label
size O(τ), space O(n · τ), query time O(τ), and update time O(τ · log log N). As a result we
conclude efficient labeled (1+ϵ)-NNS data structures for fixed minor free graphs (and planar),
and exact labeled NNS for treewidth graphs. Another interesting corollary is an efficient
labeled NNS for metrics with small correlation dimension (a generalization of doubling, see
[29]).

Table 2 Labeled NNS data structures for different families. The ∗ sign is replacing O(log log N).
The second to last line is a lower bound. Space is measured in machine words. The label size and
query time always equal. The space in all the cases above equals n times the label size.

Family stretch label query time update time Ref
Minor free 1 + ϵ O( 1

ϵ log2 N) O( 1
ϵ log2 N) 1

ϵ · Õ(log2 N) FullV[46]
Treewidth k 1 O(k log N) O(k log N) k · Õ(log N) FullV[46]
Correlation k 1 + ϵ Õk,ϵ(

√
N) Õk,ϵ(

√
N) Õk,ϵ(

√
N) FullV[46]

Ultrametric 1 O(log N) ∗ ∗ FullV[46]

General Metric 8(1 + ϵ)k O( k
ϵ N

1
k · log N) O( 1

ϵ · ∗) O( k
ϵ N

1
k · ∗) FullV[46]

t < 2k + 1 Ω̃(N 1
k ) arbitrary arbitrary FullV[46]

Doubling d t 2O(d/t) · Õ(d) · log N 2O(d/t) · Õ(d) · ∗ 2O(d/t) · Õ(d) · ∗ FullV[46]

Next, we prove a meta theorem, showing that (τ, ρ)-triangle LSO implies a labeled 2ρ-NNS
with label size O(τ · log N), space O(n · τ · log N), and query and update time O(τ · log log N).
We conclude an efficient labeled NNS for graphs with large doubling dimension. For the
high-dimensional Euclidean space, approximate nearest neighbor search was extensively
studied (see the survey [11], and additional discussion in the full version [46]). However, for
the case of doubling metrics, NNS never went beyond 1 + ϵ approximation. In particular, in
all existing solutions the query time and space have exponential dependence on the dimension
(see references in the full version [46]). Thus ours are the first results in this regime, removing
“the curse of dimensionality”.

As an additional corollary of the triangle LSO to labeled NNS meta theorem one can
derive a NNS of for general metric spaces which considerably improved upon the labeled
NNS based on [75]+[58] discussed above. However, the query time turns out to be somewhat
large. We provide direct constructions for labeled NNS for general metrics, getting label size
Õ(ϵ−1 · N

1
k ), stretch 8(1 + ϵ)k and very small query time: O(ϵ−1 · log log N). We show that

the standard information theoretic bound applies for the labeled NNS as well, specifically, for
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stretch t < 2k + 1, the label size must be Ω̃(n 1
k ) (regardless of query time). Finally, we put

special focus on the regime where the stretch is O(log N). We obtain labeled NNS scheme
with very short label and small query time. Most notably, assuming polynomial aspect ratio,
and allowing the bound on the label to be only in expectation, we can obtain O(1) label size,
and O(log log N) query time.

1.3 Spanners
Given a metric space (X, dX), a metric spanner is a graph H over X points, such that that
the shortest path metric dH in H, closely resembles the metric dX . Formally, a t-spanner
for X is a weighted graph H(X, E, w) that has w(u, v) = dX(u, v) for every edge (u, v) ∈ E

and dH(x, y) ≤ t · dX(x, y) for every pair of points x, y ∈ X. 7 The classic parameter of
study is the trade-off between stretch and sparsity (number of edges). Althöfer et al. [8]
showed that every n point metric space admits a 2k − 1 spanner with O(n1+ 1

k ) edges, while
every set of n points in Rd, or more generally metric space of doubling dimension d, admits
a (1 + ϵ)-spanner with n · ϵ−O(d) edges [38, 52]. We refer to the book [77], and the survey [4]
for an overview.

Path Reporting Low Hop Spanners. Recently, Kahalon, Le, Milenkovic, and Solomon [62]
studied path reporting low-hop spanners. While a t-spanner guarantees that a “short” path
exists between every two points, such a path might be very long, and finding it is a time
consuming operation. A path reporting t-spanner, is a spanner accompanied with a data
structure that given a query pair {x, y}, efficiently retrieves a path between x and y (of
total weight ≤ t · dX(x, y)). A path P with h edges is called an h-hop path. H is an h-hop
t-spanner of X if for every x, y ∈ X, there is an h-hop path P from x to y in H, such that
w(P ) ≤ t · dX(x, y). Clearly, the time required to report a path is at least as large as the
number of edges along the path, thus we wish to minimize the number of hops.

Low number of hops is a highly desirable property in network design, as each transmission
causes delays, which are non-negligible when the number of transmissions is large [5, 23].
Low hop networks are also known to be more reliable [23, 87, 82], and used in electricity and
telecommunications [23], and many other (practical) network design problems [71, 16, 55, 54,
81]. Hop-constrained network approximation is often used in parallel computing [36, 14], as
the number of hops governs the number of required parallel rounds (e.g. in Dijkstra).

Kahalon et al. [62] constructed path reporting low-hop spanners for many spaces, such
as path reporting 2-hop O(k)-spanners with O(n1+ 1

k · k · log n) edges, and O(1) query time
for general metrics, and path reporting 2-hop (1 + ϵ)-spanners with O( n

ϵ2 · log3 n) edges
and O(ϵ−2 · log2 n) query time for planar graphs. They showed a plethora of applications
for their spanners: compact routing schemes, fault tolerant routing, spanner sparsification,
approximate shortest path trees, minimum weight trees (MST), and online MST verification.

Our Contribution. Kahalon et al. [62] first constructed path reporting low hop spanners for
trees, and then reduced each type of metric to the case of trees. We observe that it is actually
enough to reduce to the even simpler case of paths, and obtain a host of such spanners using
LSO’s. We then manually improve some of the resulting spanners, most notably we create

7 Frequently the literature is concerned with graph spanners, where given a graph G = (V, E, w) the
goal is to find a subgraph H preserving distances. Here we study metric spanners, where there is no
underlying graph.

SoCG 2023
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Table 3 Summary of old and new results on path reporting low hop spanners. The spanners are
for n point metrics, and all report paths with hop bound 2. Here ϵ ∈ (0, 1), k, d ≥ 1 are integers.
The space required for the path reporting data structure is asymptotically equal to the sparsity of
the spanner in all the cases other than Euclidean space, where there is an additional additive factor
of Od(ϵ−2d) log 1

ϵ
.

Metric family stretch sparsity query time Ref

O(k) O
(

n1+ 1
k · k · log n

)
O(1) [62]

General Metric 2k − 1 O(n1+ 1
k · k) O(k) FullV[46], [85]

(1 + ϵ)(4k − 2) O(n1+ 1
k · ϵ−1 · k · log Φ) O(ϵ−1 · log 2k) FullV[46]

Doubling 1 + ϵ ϵ−O(d) · n · log n ϵ−O(d) [62]
Dimension t 2−O(d/t) · Õ(n) 2−O(d/t) · d · log2 t FullV[46]
Euclidean 1 + ϵ Od(ϵ−d) · log 1

ϵ · n · log n Od(1) FullV[46]
Rd (1 + ϵ)t Õ( d1.5

ϵ·t ) · e
2d
t2 ·(1+ 8

t2 ) · n log n Õ( d1.5

ϵ·t ) · e
2d
t2 ·(1+ 8

t2 ) FullV[46]
ℓd

p, p ∈ [1, 2] t Õ(d) · eO( d
tp ) · n log n Õ(d) · eO( d

tp ) FullV[46]
ℓd

p, p ∈ [2, ∞] 2 · d1− 1
p Õ(d) · n log n Õ(d) FullV[46]

Tree 1 O (n · log n) O(1) [62]
Fixed 1 + ϵ O

(
n · ϵ−2 · log3 n

)
O(ϵ−2 · log2 n) [62]

Minor Free 1 + ϵ O(n · ϵ−1 · log2 n) O(ϵ−1 · log n) FullV[46]
Planar 1 + ϵ O(n · ϵ−1 · log2 n) O(ϵ−1) FullV[46]

Treewidth k 1 O(n · k · log n) O(k) FullV[46]

path reporting 2-hop (1 + ϵ)-spanner for planar graph with O( n
ϵ log2 n) edges and O( 1

ϵ )-query
time, and a path reporting 2-hop (1 + ϵ)-spanner for points in d-dimensional Euclidean space
with Od(ϵ−d) · log 1

ϵ · n log n edges and Od(1)-query time. See Table 3 for a summary of old
and new results.

Fault tolerant spanners. Levcopoulos, Narasimhan, and Smid [72] introduced the notion of
a fault-tolerant spanner. A graph H = (X, EH , w) is an f -vertex-fault-tolerant t-spanner of
a metric space (X, dX), if for every set F ⊂ X of at most f vertices, it holds that ∀u, v /∈ F ,
dH\F (u, v) ≤ t · dX(u, v). For general metrics, after a long line of work [34, 39, 20, 22, 40,
21, 80], it was shown that every n-vertex graph admits an efficiently constructible f -vertex-
fault-tolerant (2k − 1)-spanner with O(f1−1/k · n1+1/k) edges, which is optimal assuming
the Erdös’ Girth Conjecture [44]. For n-points in d dimensional Euclidean space, or more
generally in a space of doubling dimension d, f -vertex fault tolerant (1 + ϵ)-spanner were
constructed with ϵ−O(d) · f · n edges [72, 74, 83].

Kahalon et al. [62] initiated the study of low-hop fault tolerant spanners (previous
constructions had Ω(log n) hops). An h-hop f -fault tolerant t-spanner H of a metric (X, dx)
is a graph over X such that for every set F ⊆ X of at most f vertices, for every x, y /∈ F ,
the spanner without F : H[X \ F ] contains an h-hop path between x to y of weight at most
t · dX(x, y). The advantages of such a spanner are straightforward, we refer to [62] for a
discussion. Kahalon et al. constructed a 2-hop f -fault tolerant spanner for doubling spaces
with n · f2 · ϵ−O(d) · log n edges. Note that a linear dependence on f is necessary (as if a point
has degree ≤ f in H, we can delete all it’s neighbors and get distortion ∞). It is natural to
ask whether it is possible to construct such a spanner with only a linear dependence, and
not quadratic as in [62].

Our Contribution. One can easily construct f -fault tolerant 1-spanner for the path graph
with O(nf) edges. We observe that using O(nf log n) edges, it is possible to obtain f -fault
tolerant 2-hop 1-spanner for the path graph (note that O(n log n) edges are necessary for
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Table 4 Summary of old and new results on 2-hop f -fault tolerant spanners. The spanners are
for n point metrics, and all report paths with hop bound 2. Here ϵ ∈ (0, 1), k, d ≥ 1 are integers.

Family Stretch Edges Ref
Doubling 1 + ϵ ϵ−O(d) · f2 · n · log n [62]
dimension d 1 + ϵ ϵ−O(d) · f · n · log n FullV[46]

t 2−O(d/t) · f · Õ(n) FullV[46]
General Metric 4k + ϵ Õ(n1+ 1

k · f · ϵ−1) FullV[46]
Euclidean 1 + ϵ Od(ϵ−d) log 1

ϵ · f · n · log n FullV[46]
Rd (1 + ϵ)k e

2d
k2 ·(1+ 8

k2 ) · Õ( d1.5

ϵ·k ) · f · n · log n FullV[46]
ℓd

p, p ∈ [1, 2] k eO( d
kp ) · Õ(d) · f · n · log n FullV[46]

ℓd
p, p ∈ [2, ∞] 2 · d1− 1

p Õ(d) · f · n · log n FullV[46]
Treewidth k 2 O(n · k · f · log n) FullV[46]
Fixed Minor Free 2 + ϵ O( n

ϵ · f · log2 n) FullV[46]

every 2-hop spanner [6, 68]). Using the various old and new LSO’s, we obtain a host of f -fault
tolerant 2-hop spanners for various metric spaces. Most notably, for metrics with doubling
dimension d, we obtain an f -fault tolerant 2-hop (1 + ϵ)-spanner with ϵ−O(d) · f · n · log n

edges, getting the desired linear dependence on f . See Table 4 for a summary of results.

Reliable spanners. A major limitation of fault tolerant spanners is that the number of
failures must be determined in advance. In particular, such spanners cannot withstand
a massive failure. One can imagine a scenario where a significant portion (even 90%) of
a network fails and ceases to function (due to, e.g., close-down during a pandemic), it is
important that the remaining parts of the network (or at least most of it) will remain highly
connected and functioning. To this end, Bose et al. [26] introduced the notion of a reliable
spanner. A ν-reliable spanner is a graph such that for every failure set B ⊆ X, the residual
spanner H \ B is a t-spanner for X \ B+, where B+ ⊇ B is a superset of cardinality at most
(1 + ν) · |B|. An oblivious ν-reliable t-spanner is a distribution D over spanners, such that
for every failure set B, H \ B is a t-spanner for X \ B+

H , where the superset B+
H depends on

both B and the sampled spanner H. The guarantee is that the cardinality of B+
H is bounded

by (1 + ν) · |B| in expectation.
ν-Reliable spanners were constructed for d dimensional Euclidean and doubling spaces

with n · ϵ−O(d) · Õ(log n) edges [27, 28, 49] by a reduction from (classic) LSO’s. Oblivious
reliable spanners were constructed also for planar, minor free, treewidth graphs, and general
metrics [49] by reductions from triangle, and rooted LSO’s (as well as from sparse covers
[57]).

Our Contribution. Our newly constructed triangle LSO’s for high dimensional Euclidean, ℓp

spaces, and doubling spaces, directly imply reliable spanners for these spaces, obtaining the
first results without exponential dependence on the dimension. See Table 5 for a summary.

Light spanners. An extensively studied parameter is the lightness of a spanner, defined as
the ratio w(H)/w(MST (X)), where w(H) resp. w(MST (X)) is the total weight of edges in
H resp. a minimum spanning tree (MST) of X. Obtaining spanners with small lightness (and
thus total weight) is motivated by applications where edge weights denote e.g. establishing
cost. The best possible total weight that can be achieved in order to ensure finite stretch is
the weight of an MST, thus making the definition of lightness very natural.
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Table 5 Summary of previous and new constructions of ν-reliable spanners.

Family stretch guarantee size ref
Euclidean 1 + ϵ Deterministic n · Õd(ϵ−7d)ν−6 · Õ(log n) [27]
(Rd, ∥ · ∥2) 1 + ϵ Oblivious n · Õd(ϵ−2d) · Õ(ν−1(log log n)2) [28]

(1 + ϵ)t Oblivious ν−1 · e
4d
t2 ·(1+ 8

t2 ) · Õ(n · d3

ϵ2·t2 ) FullV[46]
ℓd

p for p ∈ [1, 2] t Oblivious ν−1 · eO( d
tp ) · Õ(n · d2) FullV[46]

ℓd
p for p ∈ [2, ∞] 2 · d1− 1

p Oblivious ν−1 · Õ
(
n · d2)

FullV[46]
Doubling 1 + ϵ Deterministic n · ϵ−O(d)ν−6 · Õ(log n) [49]

dimension d 1 + ϵ Oblivious n · ϵ−O(d)ν−1 log ν−1 · Õ(log log n)2 [49]
t Oblivious Õ(n) · ν−1 · 2O(d/t) FullV[46]

General metric 8t + ϵ Oblivious Õ(n1+1/t · ϵ−2) · ν−1 [49]
Tree 2 Oblivious n · O(ν−1 log3 n) [49]

Treewidth k 2 Oblivious n · O(ν−1k2 log3 n) [49]
Planar/Minor-free 2 + ϵ Oblivious n · O(ν−1ϵ−2 log5 n) [49]

Table 6 Summary of previews and new results of light spanners for high dimensional metric
spaces. Interestingly, for p ∈ [1, 2] [49] obtain lightness O( t1+p

log2 t
· nO( log2 t

tp ) · log n) regardless of
dimension, which is superior to ours for d ≫ log n.

Metric space Stretch Lightness Ref
O(t) O(n

1
t2 · log n · t) [69]

Euclidean space O(t) O(e
d

t2 · log2 n · t) [50]
(1 + ϵ)2t e

d
2t2 ·(1+ 2

t2 ) · Õ( d1.5

ϵ2 ) · log n FullV[46]
(1 + ϵ)4t e

d
2t2 ·(1+ 2

t2 ) · Õ( d1.5

ϵ2 ) · log∗ n FullV[46]
O(t) O(2 d

t · t · log2 n) [50]
Doubling dimension d O(t) 2O(d/t) · d · log2 t · log∗ n FullV[46]

d O(d · log2 n) [50]
d O(d · log2 d · log∗ n) FullV[46]

ℓd
p for p ∈ [1, 2] t O( t1+p

log2 t
· nO( log2 t

tp ) · log n) [50]
t eO( d

tp ) · Õ(d · t) · log∗ n FullV[46]
ℓd

p for p ∈ [2, ∞] 4 · d1− 1
p Õ(d2− 1

p ) · log∗ n FullV[46]

Obtaining light spanners for general graphs has been the subject of an active line of
work [8, 31, 42, 18, 35, 51], where the state of the are by Le and Solomon [69] who obtained
(1+ϵ)(2k−1) spanner with lightness O(ϵ−1 ·n 1

k ). Light spanners were also studied extensively
in Euclidean spaces (see the book [77]), doubling spaces [53, 51, 25], planar and minor free
graphs [63, 65, 24, 67, 37], and high dimensional Euclidean and doubling spaces [56, 50, 69].

Our Contribution. Recently Le and Solomon [69] obtain a general framework for construct-
ing light spanners from spanner oracles. We construct new spanner oracles using LSO’s. As
a result we derive new light spanners, that improve the state of the art for high dimensional
spaces (and match the state of the art for low dimensional doubling spaces). See Table 6 for
a summary of results.
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1.4 Technical ideas
Triangle LSO for high dimensional Euclidean space. Our construction is very natural:
partition the space randomly in every distance scale ξi (for some large ξ) into clusters of
diameter ξi, such that close-by points are likely to be clustered together. In the created
ordering σ, points in each cluster will be ordered consecutively and recursively. In particular,
the ordering σ will correspond to a laminar partition obtained by the clustering in all possible
scales. For a pair of points x, y ∈ Rd to be satisfied in the resulting ordering σ, they have to
be clustered together in all the distance scales ξi ≥ t · ∥x − y∥2.

Our space partition in each scale is done using ball carving (ala [10]): pick a uniformly
random series of centers z1, z2, . . . ,. Each points is assigned to the cluster of the first
center at distance at most R = 1

2 · ξi. We show that a finite random seed of size dO(d) is
enough to sample such a clustering (in all possible distance scales, simultaneously). The
probability that two points x, y are clustered together is then equal to the ratio between the
volumes of intersection and union of balls: Pr[x, y clustered together] = Vold(B(x,R)∩B(y,R))

Vold(B(x,R)∪B(y,R)) ≥

Ω( 1√
d
) ·

(
1 − ( ∥x−y∥2

R )2
)d/2

. We bound this ratio for the case ∥x − y∥2 ≤ R√
d

using a lemma
from [33]. For the general case, we prove that the ratio between these volumes is at least
Ω( R√

d·∥p−q∥2
) · (1 − ( ∥p−q∥2

R )2) d
2 , slightly improving a similar fact from [9], by a R

∥p−q∥2
factor.

This ratio eventually governs our success probability (when replacing R/∥p−q∥2 by twice the
stretch 2t). The improved analysis of the volumes ratio is significant for the O(

√
d)-stretch

regime, improving the number of orderings to Õ(d) (compered with Õ(d1.5) orderings if we
were using [9]).

To generalize this construction to ℓp spaces, we use the exact same construction, replacing
ℓ2 balls with ℓp balls. The volume ratio lemma from [32] for close-by points is replaced by a
crude observation without any significant consequences to the resulting number of orderings.
For the general case, we directly analyze the ratio of volumes for ℓp-balls (our computation
is similar to [78]). The rest of the analysis is the same.

Triangle LSO for doubling spaces. Ultrametrics are trees with additional structure, where
each ultrametric admits a (1, 1)-triangle LSO. (τ, ρ)-ultrametric cover of a metric space
(X, dX) is a collection U of τ ultrametrics such that every pair x, y ∈ X is well approximated
by the ultrametrics: dX(x, y) ≤ minU∈U dU (x, y) ≤ ρ · dX(x, y). Filtser and Le [49] showed
that (τ, ρ)-ultrametric cover implies (τ, ρ)-triangle LSO. We construct

(
2O(d/t) · d · log2 t, t

)
-

ultrametric cover for spaces with doubling dimension d, implying Theorem 6.
Our starting point for constructing the ultrametric cover is Filtser’s [45] padded partition

cover, which is a collection of ≈ 2O(d/t) space partitions where all clusters are of diameter
at most ∆, and every ball of radius ∆

t is fully contained in a single cluster in one of the
partitions. We take a single partition from each distance scales, where the gap between the
distance scales is somewhat large: O( t

ϵ ). Initially these partitions are unrelated, and we
“force” them to be laminar, while keeping the padding property. Each such laminar partition
induces an ultrametric, and their union is the desired ultrametric cover.

Labeled NNS. Morally, given a (τ, ρ) LSO (or triangle LSO), the NNS label of every point
is simply its position in each ordering. Given a query q, we simply find its successor and
predecessor in each one of the orderings, one of them is guaranteed to be an approximate
nearest neighbor (abbreviated ANN). We can find the successor and predecessor in each
ordering in O(log log N) time using Y-fast trie [86], it only remains to choose one of the 2τ

candidates to be the ANN. To solve this problem we again deploy the LSO structure, and
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construct a 2-hop 1-spanner for the implicit path graph induced by each ordering. Specifically,
each point will be associated with O(log N) edges (the name and weight of which will be
added to the NNS label), where given two points x ≺σ y, in O(1) time we will be able to
find a point z such that x ⪯σ z ⪯σ y and x and y stored {x, z}, {y, z} respectively. Then
dX(x, z) + dX(z, y) will provide us the desired estimate of dX(x, y), which will be used to
choose the ANN.

The case of rooted LSO is simpler- the label of each point z will consist of its position in
all the orderings σ it belongs to, and the distance to the first point xσ (w.r.t. dX). Given a
query q, for each ordering σ containing q, the leftmost point yσ ∈ P in the ordering will be a
candidate ANN. We will estimate the distance from q to yσ by dX(q, xσ) + dX(xσ, yσ), and
return the point with minimum estimation.

For general metrics, the number of orderings is polynomial, N
1
k which results in similar

NNS label size, and query time (following the approach above). While the NNS label
essentially cannot be improved, we can significantly reduce the query time. Our solution is
to use Ramsey trees [19, 76, 17, 2], which are a collection of embeddings into ultrametrics
U such that each point x has a single home ultrametric Ux ∈ U which well approximate all
the distances to x. We thus reduce the labeled NNS problem to ultrametrics, where it can
be efficiently solved. For the case of approximation factor O(log N) the required number of
ultrametrics is O(log N), which leads us to label size O(log2 N). To reduce it even farther, we
use the novel clan embedding [48], where instead of embedding the space X into a collection
of ultrametrics, we embed it into a single ultrametric (but where each point might have
several copies). This allows us to reduce the label size to O(log N) (in expectation), and with
one additional easing assumption (either polynomial aspect ratio or small failure probability)
to even O(1) label size.

Path reporting low hop spanners. A (τ, ρ)-tree cover is similar to ultrametric cover discussed
above, where the ultrametrics are replaced by trees. Kahalon et al. [62] first constructed
path reporting low hop spanner for a tree metric, and then for each metric space of interest,
they considered it’s tree cover, and constructed a path reporting low hop spanner for each
tree in the cover. The spanner for the global metric is obtained by taking the union of all
these spanners constructed for the trees in the cover. To report a queried distance, they
simply computed the paths in all the trees, and returned the shortest observed path.

Thus Kahalon et al. idea is to reduce the problem to the fairly simple case of tree metrics.
We reduce each metric space into the even simpler case of paths using LSO. Given an LSO
(or triangle LSO) we simply construct a path reporting 2-hop path for each path associated
with an ordering, and similarly to [62], check all the path spanners and return the shortest
observed path. The resulting query time has linear dependence on the number of orderings.
The case of rooted LSO is simpler, where it is enough to add a single edge per ordering, to
the leftmost point in the ordering.

Next we present some improvements to the query. First, for the case of Euclidean space
(low dimensional), we observe that given two points x, y, the ordering satisfying them could
be computed in Od(1) time, implying that we don’t need to check all the orderings, and
return a 2 hop path in Od(1) time. Next, for the case of planar graphs, using the structure of
cycle separators (which are used to construct the rooted LSO), in O(1) time one can narrow
the number of potential orderings to O(ϵ−1), implying O(ϵ−1) query time. For general graphs
we observe that the celebrated Thorup Zwick distance oracle [85] can be used to produce a
path reporting 2-hop (2k − 1)-spanner with O(n1+ 1

k · k) edges and O(k) query time. Finally,
we use sparse covers [15] to obtain an exponential improvement in the query time, while
incurring a factor 2 increase in the stretch.
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Fault tolerant spanners. The 2-hop f -fault tolerant spanner for doubling metrics by
Kahalon et al. [62] is based on a quite sophisticated tool of robust tree cover. We have a
superior, and an extremely simple construction. First we observe that the path graph has
a 2-hop f -fault tolerant 1-spanner with O(nf log n) edges. Indeed, add edges from all the
vertices to the middle f + 1 vertices, delete the middle vertices and recurse on each side. We
then apply this construction on each of the path graphs induced by the LSO (or triangle
LSO) to obtain our results. The case of rooted LSO is even simpler: for every path it is
enough to add all the edges to the first f + 1 points.
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