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Abstract
We strengthen the usual stability theorem for Vietoris-Rips (VR) persistent homology of finite
metric spaces by building upon constructions due to Usher and Zhang in the context of filtered
chain complexes. The information present at the level of filtered chain complexes includes ephemeral
points, i.e. points with zero persistence, which provide additional information to that present at
homology level. The resulting invariant, called verbose barcode, which has a stronger discriminating
power than the usual barcode, is proved to be stable under certain metrics which are sensitive to
these ephemeral points. In some situations, we provide ways to compute such metrics between
verbose barcodes. We also exhibit several examples of finite metric spaces with identical (standard)
VR barcodes yet with different verbose VR barcodes thus confirming that these ephemeral points
strengthen the discriminating power of the standard VR barcode.
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1 Introduction

In topological data analysis, persistent homology is one of the main tools used for extracting
and analyzing multiscale geometric and topological information from metric spaces.

Typically, the persistent homology pipeline (as induced by the Vietoris-Rips filtration) is
explained via the diagram:

Metric Spaces → Simplicial Filtrations → Persistence Modules

where, from left to right, the second map is homology with field coefficients. Throughout the
paper, we fix a base field F.

Pairs of birth and death times of topological features (such as connected components,
loops, voids and so on) give rise to the barcode, or also called the persistence diagram, of
a given metric space [13, 4]. The so-called bottleneck distance dB between the persistent
homology barcodes arising from the Vietoris-Rips filtration of metric spaces provides a
polynomial time computable lower bound for the Gromov-Hausdorff distance dGH between
the underlying metric spaces [8, 10]. However, this bound is not tight, in general (cf. [17,
Example 6.6]). A restricted version of this theorem states:
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▶ Theorem 1 (Stability Theorem for dB). Let X and Y be two finite metric spaces. Let
Bk(X) (resp. Bk(Y )) denote the barcode of the persistence module Hk (VR•(X)) (resp.
Hk (VR•(Y ))). Then, we have

sup
k∈Z≥0

dB(Bk(X), Bk(Y )) ≤ 2 · dGH(X, Y ).

In this paper, with the goal of refining the standard stability result alluded to above,
we concentrate on the usually implicit but conceptually important intermediate step which
assigns a filtered chain complex (FCC) to a given simplicial filtration:

Metric spaces → Simplicial Filtrations → FCCs → Persistence Modules.

Related work on FCCs

An FCC is an ascending sequence of chain complexes connected by monomorphisms. For
instance, an FCC induced by a simplicial filtration {Xt}t∈R can be represented by the
following commutative diagram: for any t ≤ t′,

C∗(Xt) : · · · Ck+1(Xt) Ck(Xt) · · ·

C∗(Xt′) : · · · Ck+1(Xt′) Ck(Xt′) · · ·

∂k+2 ∂k+1 ∂k

∂k+2 ∂k+1 ∂k

,

where each Xt is a simplical complex and C∗(Xt) denotes the simplical chain complex of Xt.

Studies of the decomposition of FCCs in several different settings can be found in
[18, 12, 15, 5, 6]. We follow the convention of Usher and Zhang [18], where they study a
notion of Floer-type complexes as a generalization of FCCs and prove a stability result for
the usual bottleneck distance of concise barcodes of Floer-type complexes. In particular,
they studied FCCs in detail and considered the notion of verbose barcode BVer,k of FCCs,
which consists of the standard barcode (which the authors call concise barcode and denote as
BCon,k := Bk) together with additional ephemeral bars, i.e. bars of length 0.

They also proved that every FCC decomposes into the direct sum of indecomposables
E(a, a + L, k), which they called elementary FCCs, of the following form (see [18, Definition
7.2]): if L ∈ [0, ∞) and a ∈ R, then E(a, a + L, k) is given by

t < a : · · · → 0 0 0 0 → · · ·

t ∈ [a, a + L) : · · · → 0 0 Fx 0 → · · ·

t ∈ [a + L, ∞) : · · · → 0 Fy Fx 0 → · · ·

∂k+2=0 ∂k+1=0

=

∂k=0

∂k+2=0 ∂k+1=0 ∂k=0

=
∂k+2=0 ∂k+1: y 7→ x ∂k−1

If L = ∞, then E(a, ∞, k) (with the convention that a + ∞ = ∞) is given by

t < a : · · · → 0 0 0 0 → · · ·

t ∈ [a, ∞) : · · · → 0 0 Fx 0 → · · ·

∂k+2=0 ∂k+1=0

=

∂k=0

∂k+2=0 ∂k+1=0 ∂k=0

The degree-l verbose barcode of the elementary FCC E(a, a + L, k) is {(a, a + L)} for l = k

and is empty for l ̸= k.
The concise barcode of an FCC is defined as the collection of non-ephemeral bars, i.e. bars

corresponding to elementary FCCs with L ̸= 0 in its decomposition, which agrees with the
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standard barcode. Indeed, the k-th persistent homology of the elementary FCC E(a, a + L, k)
is the interval persistence module associated to the interval [a, a + L), for L ∈ [0, ∞]. In
particular, Hk(E(a, a, k)) is the trivial persistence module.

In real calculations, barcodes are often computed for simplexwise filtrations first (i.e.,
simplices are assumed to enter the filtration one at a time), in which case all elementary FCCs
corresponds to intervals with positive length. This implies that, although not outputted,
verbose barcodes are computed in many persistence algorithms. For VR FCCs, we made a
small modification of the software Ripser introduced by Bauer (see [1]) to extract verbose
barcodes of finite metric spaces.

In this paper, we focus on the ephemeral bars in the barcode, or equivalently, on the
diagonal points in the persistence diagram.

Overview of our results

One drawback of the bottleneck stability result described in Theorem 1 is that one asks for
optimal matchings between the concise (i.e. standard) barcodes BCon,k(X) and BCon,k(Y )
for each individual degree k independently.

With the goal of finding a coherent or simultaneous matching of barcodes across all
degrees at once, we study the interleaving distance dI between FCCs and establish an
isometry theorem between dI and the matching distance dM between the verbose barcodes
(see Definition 18):

▶ Theorem 2 (Isometry theorem). For any two FCCs (C∗, ∂C , ℓC) and (D∗, ∂D, ℓD), let BC
Ver,k

and BD
Ver,k denote their degree-k verbose barcodes, respectively, and let dM

(
BC

Ver, BD
Ver
)

:=
supk∈Z≥0

dM

(
BC

Ver,k, BD
Ver,k

)
. Then,

dM
(
BC

Ver, BD
Ver
)

= dI ((C∗, ∂C , ℓC) , (D∗, ∂D, ℓD)) .

To prove that dM ≤ dI (see §3.3.1), we adapted ideas implicit in [18, Proposition 9.3]
which the authors used to establish the stability of Floer-type complexes (on the same
underlying chain complex). For the other direction, dM ≥ dI (see §3.3.2), we use an idea
similar to the one used for proving that the bottleneck distance dB between concise barcodes
is upper bounded by dI between persistent modules, cf. [14, Theorem 3.4].

Unlike dB between concise barcodes, dM between verbose barcodes of VR RCCs is not
stable under the Gromov-Hausdorff distance between metric spaces. Indeed, dM is only finite
if the two underlying metric spaces have the same cardinality. We remedy this issue in §4.2
by incorporating the notion of tripods as in [16].

For a surjection ϕX : Z ↠ X, we equip Z with the pullback ϕ∗
XdX of the distance

function dX and call the pair (Z, ϕ∗
XdX) the pullback (pseudo) metric space (induced by ϕX).

We call the degree-k verbose barcode of (Z, ϕ∗
XdX) a degree-k pullback barcode of X. We

define the pullback bottleneck distance between verbose barcodes of two finite metric spaces
X and Y to be the infimum of the matching distance between the verbose barcodes of the
VR FCCs induced by the respective pullbacks (Z, ϕ∗

XdX) and (Z, ϕ∗
Y dY ), where the infimum

is taken over tripods R : X
ϕX

↞−−−− Z
ϕY−−−−↠ Y . We denote the result by d̂B; see Definition

24. Similarly, we define the pullback interleaving distance between two VR FCCs, and denote
it by d̂I (see Definition 23).
▶ Remark 3 (Terminology). We point out the following regarding the use of the term “distance”
when referring to d̂B and d̂I:

SoCG 2023
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(1) d̂B between degree-0 verbose barcodes satisfies the triangle inequality [17, Corollary 6.7].
(2) The question whether d̂B between positive-degree verbose barcodes satisfies the triangle

inequality is still open.
(3) d̂I does not satisfy the triangle inequality; see [17, Remark 6.8] for details.
Due to Items (2) and (3), the term “distance” is being abused through the use of the
terminology “pullback bottleneck distance” and “pullback interleaving distance”. We do so
for consistency with Item (1) and due to the fact that in [17, Remark 6.8] we provide a
way to modify d̂I and d̂B so that they do satisfy the triangle inequality (while still being
Gromov-Hausdorff stable).

It is important to note that in general, the pullback bottleneck distance d̂B (or the
pullback interleaving distance d̂I) depends on the underlying metric spaces, rather than
solely on the verbose barcodes (or FCCs). Nonetheless, we use the current terminology to
emphasize the roles of verbose barcodes and FCCs in our discussion.

It follows from Theorem 2 and the definitions of d̂B and d̂I that we have the following:

▶ Corollary 4. Let (X, dX) and (Y, dY ) be two finite metric spaces. Then,

sup
k∈Z≥0

d̂B (BVer,k(X), BVer,k(Y )) ≤ d̂I
((

C∗(VR(X)), ∂X , ℓX
)

,
(
C∗(VR(Y )), ∂Y , ℓY

))
.

In the theorem below, we show that the pullback bottleneck distance d̂B is stable under
the Gromov-Hausdorff distance dGH, and that the bottleneck distance dB between concise
barcodes is not larger than d̂B between verbose barcodes. We show in several examples below
and in §4.3 that d̂B between verbose barcodes can be strictly larger than dB between concise
barcodes. Thus, the stability of d̂B improves the stability of the standard bottleneck distance
dB (cf. Theorem 1). See §4.2 for the proof of Theorem 5.

▶ Theorem 5 (Pullback stability theorem). Let (X, dX) and (Y, dY ) be two finite metric
spaces. Then, for any k ∈ Z≥0,

dB (BCon,k(X), BCon,k(Y )) ≤ d̂B (BVer,k(X), BVer,k(Y )) ≤ 2 · dGH(X, Y ). (1)

See Figure 1 for a pair of 3-point metric spaces which dB between concise barcodes fails
to distinguish, but the d̂B between verbose barcodes succeeds at telling apart.

a b

c1

X1

a b

c2

X2

BVer,0 (0, a), (0, b), (0, ∞) (0, a), (0, b), (0, ∞)

BVer,1 (c1, c1) (c2, c2)

dB (BCon(X1), BCon(X2)) d̂B (BVer(X1), BVer(X2)) 2 · dGH(X1, X2)

0 |c1 − c2| |c1 − c2|

Figure 1 First table: three-point metric spaces X1 and X2 together with their verbose barcodes.
Here a ≤ b ≤ ci for i = 1, 2. Second table: the bottleneck distance between concise barcodes, the
pullback bottleneck distance between verbose barcodes and twice of the Gromov-Hausdorff distance
between X1 and X2. See Example 28.
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In order to have a more concrete understanding of the pullback bottleneck distance and
in order to explore the possibility of computing it, we study the relation between the verbose
barcode of a pullback metric space (Z, ϕ∗

XdX) with the verbose barcode of the original space
X. We conclude that the verbose barcodes of Z and X only differ on some distinguished
diagonal points; see Proposition 6 below.

We now set up some notation about multisets1. For a non-negative integer m, by {x}m

we will denote the multiset containing exactly m copies of x. For any multiset A and any
l ≥ 1, we let Pl(A) be the multiset consisting of sub-multisets of A each with cardinality l.

▶ Proposition 6 (Pullback barcodes). Let k ≥ 0, m ≥ 1 and Z = X ⊔ {xj1 , . . . , xjm
} for

some j1 ≤ · · · ≤ jm. Then, for k ≥ 0,

BVer,k(Z) = BVer,k(X)⊔
m−1⊔
i=0

{
diam([xji+1 , βi]) · (1, 1) : βi ∈ Pk

(
(X \ {xji+1 }) ⊔ {xj1 , . . . , xji }

)}
.

(2)

In particular, BVer,0(Z) = BVer,0(X) ⊔ {(0, 0)}m.

Because concise barcodes can be obtained from verbose barcodes by excluding all diagonal
points, the above proposition interestingly implies that BCon,k(Z) = BCon,k(X) for any k.

To better understand Equation (2) in the case when k ≥ 1, we give a graphical explanation
in Figure 2. Let (X, dX) be a finite metric space with X = {x1, . . . , xn}. Each finite
pullback metric space (Z, ϕ∗

XdX) of X can be written as a multiset Z = X ⊔ {xj1 , . . . , xjm
}

equipped with the pullback pseudo-metric ϕ∗
XdX induced from dX , for some m ≥ 0 and

1 ≤ j1 ≤ · · · ≤ jm ≤ n. In other words, the extra points in Z are “repeats” of the points in
X. We will call each point in X the parent of its repeated copies: to be more precise, for
each z ∈ Z, the point ϕX(z) ∈ X will be called the parent of z. Write

Z = X ⊔
{

x1, . . . , x1︸ ︷︷ ︸
m1

, . . . , xn, . . . , xn︸ ︷︷ ︸
mn

}
,

where each mj ≥ 0 is the multiplicity of the extra copies of xj in Z and m1 + · · · + mn = m.

i = 0 :

=X︷ ︸︸ ︷
x1, x2, . . . , xn,

m1︷ ︸︸ ︷
x1, x1, . . . , x1,

m2︷ ︸︸ ︷
x2, x2, . . . , x2, . . . ,

mn︷ ︸︸ ︷
xn, xn, . . . , xn

i = m1 − 1 : x1, x2, . . . , xn, x1, x1, . . . , x1, x2, x2, . . . , x2, . . . , xn, xn, . . . , xn

i = m1 : x1, x2, . . . , xn, x1, x1, . . . , x1, x2, x2, . . . , x2, . . . , xn, xn, . . . , xn

i = m1 + · · · + mn−1 : x1, x2, . . . , xn, x1, x1, . . . , x1, x2, x2, . . . , x2, . . . , xn, xn, . . . , xn

Figure 2 With the same notation as in Equation (2), for each i (i.e. for each row), the point xji+1

is colored in blue. For each i the multiset βi in Equation (2) ranges over all k element sub-multisets
of the red-colored multiset. Notice that each red-colored multiset consists of every point before xji+1

(from left to right) excluding the parent of xji+1 .

We examine the relationship between d̂B and dB, and obtain an interpretation of d̂B in
terms of matchings of points in the barcodes. To compute dB, one looks for an optimal
matching where points from a barcode can be matched to any points on the diagonal. However,

1 We use the notation {·} for multisets as well when its meaning is clear from the content.

SoCG 2023
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aX1 : X2 :

BVer,0 = BCon,0 {(0, a), (0, ∞)} {(0, ∞)}

(0, a)

(0, ∞)

dB = a
2

birth

death

(0, a)

(0, ∞)

d̂B = a

birth

death

Figure 3 Top: X1 a two-point space, X2 the one-point space, and their 0-th verbose (or concise)
barcode. Bottom: visualization of dB and d̂B, where in both figures the point (0, ∞) is matched
with (0, ∞) and the ℓ∞-metric is used to compute the distances.

in the computation of d̂B, points are only allowed to be matched to verbose barcodes and
a particular sub-multiset of the diagonal points, where the choice of these diagonal points
depends on the metric structure of the two underlying metric spaces.

For degree-0, since the verbose barcode of any pullback (pseudo-)metric space Z of X

only differs from the verbose barcode of X in multiple copies of the point (0, 0), the distance
d̂B is indeed computing an optimal matching between concise barcodes which only allows
bars to be matched to other bars or to the origin (0, 0) (see Figure 3). Combined with
the fact that degree-0 bars are all born at 0, we obtain the following explicit formula for
computing the distance d̂B for degree-0 (see [17, §6.2.1] for the proof):

▶ Proposition 7 (Pullback bottleneck distance in degree 0). Let X and Y be two finite metric
spaces such that card(X) = n ≤ n′ = card(Y ). Suppose the death time of finite-length
degree-0 bars of X and Y are given by the sequences a1 ≥ · · · ≥ an−1 and b1 ≥ · · · ≥ bn′−1,
respectively. Then

d̂B(BVer,0(X), BVer,0(Y )) = max
{

max
1≤i≤n−1

|ai − bi|, max
n≤i≤n′−1

bi

}
.

For higher degrees, the situation becomes more complicated because in addition to the
point (0, 0), other choices of diagonal points need to be considered, as evidenced by the
formula for pullback barcodes in Proposition 6. We leave this as our future work.

2 Filtered chain complexes (FCCs)

We recall the notion of FCCs and provide some properties and examples for VR FCCs.
Usher and Zhang express FCCs as the triples (C∗, ∂C , ℓC), where (C∗, ∂C) denotes a chain

complex and ℓC : C∗ → R ⊔ {−∞} is a filtration function such that (1) ℓC ◦ ∂C ≤ ℓC , and (2)
ℓC(x) = −∞ iff x = 0, ℓC(λx) = ℓC(x) for λ ≠ 0, and ℓC(x+y) ≤ max{ℓC(x), ℓC(y)}, ∀x, y ∈
C. A morphism of FCCs from (C∗, ∂C , ℓC) to (D∗, ∂D, ℓD) is a chain map Φ∗ : C∗ → D∗
that is filtration preserving, i.e. ℓD ◦ Φ∗ ≤ ℓC . Let FCC denote the category of FCCs. We
refer readers to [18] or [17, §3] for more details about general FCCs.
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VR FCCs. A pseudo-metric dX on X is a function dX : X × X → [0, +∞) satisfying the
axioms for a metric, except that different points are allowed to have distance 0.

Given a finite pseudo-metric space (X, dX) and ϵ ≥ 0, the ϵ-Vietoris–Rips complex
VRϵ(X) is the simplicial complex with vertex set X, where

a finite subset σ ⊂ X is a simplex of VRϵ(X) ⇐⇒ diam(σ) ≤ ϵ.

Let diam(X) be the diameter of X. Let VR(X) := VRdiam(X)(X), which is the full complex
on X. For each k ∈ Z≥0, we denote by Ck(VR (X)) the free F-vector space generated by
k-simplices in VR(X), and let C∗(VR(X)) be the free simplicial chain complex induced by
VR(X) over coefficients in F, with the standard simplicial boundary operator ∂X . Notice that
up to homotopy equivalence the simplicial complex VR(X) only depends on the cardinality
of X, so does the chain complex (C∗(VR(X)), ∂X).

Define the filtration function ℓX : C∗(VR(X)) → R ⊔ {−∞} by

ℓX

(
r∑

i=1
λiσi

)
:= max

λi ̸=0
{diam(σi)} ,

where the σi are simplices, and ℓX(0) := −∞. Then
(
C∗(VR(X)), ∂X , ℓX

)
is an FCC.

2.1 Verbose and concise barcodes
For a vector space equipped with a filtration function ℓ, a finite collection (x1, . . . , xr) of
elements C is said to be (ℓ-)orthogonal if, for all λ1, . . . , λr ∈ F,

ℓ

(
r∑

i=1
λixi

)
= max

λ ̸=0
ℓ(xi).

Let A : C → D be a linear map with rank r. A (unsorted) singular value decomposition of A

is a choice of orthogonal ordered bases (y1, . . . , yn) for C and (x1, . . . , xm) for D such that
(see [18, Definition 3.1]):

(yr+1, . . . , yn) is an orthogonal ordered basis for Ker A;
(x1, . . . , xr) is an orthogonal ordered basis for Im A;
Ayi = xi for i = 1, . . . , r.

The existence of a singular value decomposition for linear maps between finite-dimensional
orthogonalizable F-spaces is guaranteed by [18, Theorem 3.4].

▶ Definition 8 (Verbose barcode and concise barcode, [18, Definition 6.3] ). Let (C∗, ∂C , ℓC)
be an FCC over F and for each k ∈ Z write ∂k = ∂C |Ck

. Given any k ∈ Z choose a singular
value decomposition ((y1, . . . , yn), (x1, . . . , xm)) for the F-linear map ∂k+1 : Ck+1 → Ker ∂k

and let r denote the rank of ∂k+1. Then the degree-k verbose barcode of (C∗, ∂C , ℓC) is the
multiset B(C∗,∂C ,ℓC)

Ver,k (or BC
Ver,k for simplicity) of elements of R × [0, ∞] consisting of

a pair (ℓ(xi), ℓ(yi)) for each i = 1, . . . , r = rank(∂k+1); and
a pair (ℓ(xi), ∞) for each i = r + 1, . . . , m = dim(Ker ∂k).

The concise barcode of (C∗, ∂C , ℓC) is the submultiset of the verbose barcode consisting of
those elements where ℓ(yi) − ℓ(xi) ̸= 0.

▶ Remark 9. Let X be a finite metric space. The degree-0 verbose barcode BVer,0 and the
degree-0 concise barcode BCon,0 of the VR FCC

(
C∗(VR(X)), ∂X , ℓX

)
are the same. Notice

that this is not necessarily true for pseudo-metric spaces, in which case verbose barcode may
contain several copies of (0, 0).

SoCG 2023
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▶ Example 10 (Verbose barcodes of VR FCCs). Let n := card(X). The number of k-verbose
barcodes (with multiplicity) of the VR FCC of a finite pseudo-metric space X is

card(BVer,k(X)) = dim(Ker(∂k)) =


n, k = 0,(

n−1
k+1
)
, for 1 ≤ k ≤ n − 2,

0, for k ≥ n − 1.

2.2 Decomposition of FCCs

We recall from [18] that the collection of verbose barcodes is a complete invariant of FCCs,
because every FCC decomposes uniquely up to isomorphism into the following form:

(C∗, ∂C , ℓC) ∼=
⊕
k∈Z

⊕
(a,a+L)∈BVer,k

E(a, a + L, k).

Also, the collection of concise barcodes is an invariant up to the so-called filtered homotopy
equivalence. In addition, for the case of VR FCCs, we show that isometry implies filtered
chain isomorphism while the inverse is not true.

For the purpose of this paper, we use the theorem below as definitions of filtered chain
isomorphism (f.c.i.) and filtered homotopy equivalence (f.h.e.) between FCCs, and refer
readers to [18] for the original definitions of these two concepts.

▶ Theorem 11 (Theorem A & B, [18]). Two FCCs (C∗, ∂C , ℓC) and (D∗, ∂D, ℓD) are
1. filtered chain isomorphic iff they have identical verbose barcodes in all degrees;
2. filtered homotopy equivalent iff they have identical concise barcodes in all degrees.

▶ Example 12 (f.h.e. but not f.c.i.). Let X and Y be (ultra-)metric spaces of 4 points
given in Figure 4. The FCCs

(
C∗(VR(X)), ∂X , ℓX

)
and

(
C∗(VR(Y )), ∂Y , ℓY

)
arising from

Vietoris-Rips complexes have the same concise barcodes but different verbose barcodes.

x3

x1x0

x2

22
2

1

1 1

y3

y0 y1

y2

2
2 2

2

1

1

Figure 4 Four-point metric spaces X (left) and Y (right).

We compute from Definition 8 that the verbose barcodes of X and Y are

BVer,k(X) =


{(0, 1), (0, 1), (0, 2), (0, ∞)} , k = 0
{(1, 1), (2, 2), (2, 2)} , k = 1
{(2, 2)} , k = 2
∅, otherwise.
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and

BVer,k(Y ) =


{(0, 1), (0, 1), (0, 2), (0, ∞)} , k = 0
{(2, 2), (2, 2), (2, 2)} , k = 1
{(2, 2)} , k = 2
∅, otherwise,

respectively. The concise barcodes of X and Y are

BCon,k(X) = BCon,k(Y ) =
{

{(0, 1), (0, 1), (0, 2), (0, ∞)} , k = 0
∅, otherwise.

Let (X, dX) and (Y, dY ) be two finite pseudo-metric spaces with |X| = |Y |. Then, any
bijection f : X → Y induces a chain isomorphism f∗ : C∗(VR(X))

∼=−→ C∗(VR(Y )). It is not
difficult to check that the respective VR FCCs of two isometric pseudo-metric spaces are
filtered chain isomorphic.

▶ Proposition 13 (Isometry implies f.c.i.). Let (X, dX) and (Y, dY ) be two finite pseudo-
metric spaces. If (X, dX) and (Y, dY ) are isometric, then the FCCs

(
C∗(VR(X)), ∂X , ℓX

)
and

(
C∗(VR(Y )), ∂Y , ℓY

)
are filtered chain isomorphic.

However, the converse of Proposition 13 is not true.

▶ Example 14 (f.c.i. but not isometric). Let X and Y be (ultra-)metric spaces of 5 points
given in Figure 5. The distance matrices for X and Y are, respectively:


0 0.5 2 2 2

0.5 0 2 2 2
2 2 0 1 1
2 2 1 0 1
2 2 1 1 0

 and


0 0.5 1 2 2

0.5 0 1 2 2
1 1 0 2 2
2 2 2 0 1
2 2 2 1 0

 .

Notice that X and Y are not isometric. Indeed, in Y every vertex belongs to an edge of
length 1, but the top point in X only belongs to edges of length 0.5 and 2.

22
2

1
1 1

0.5

22
2

2
2

2
2

1

1

0.5
1

2 2

Figure 5 Five-point metric spaces X (left) and Y (right).
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However, the VR FCCs of X and Y have the same verbose barcodes:

BVer,k(X) = BVer,k(Y ) =



{(0, 0.5), (0, 1), (0, 1), (0, 2), (0, ∞)} , k = 0
{(1, 1), (2, 2), (2, 2), (2, 2), (2, 2), (2, 2)} , k = 1
{(2, 2), (2, 2), (2, 2), (2, 2)} , k = 2
{(2, 2)} , k = 3
∅, otherwise.

3 Isometry theorem (dI = dM)

In TDA, it is well-known that, under mild conditions (e.g. q-tameness, see [9]), an isometry
theorem holds: the interleaving distance between persistence modules is equal to the bottle-
neck distance between their concise barcodes (cf. [11, 7, 11]). In our notation, this means
that for any degree k and any two FCCs (C∗, ∂C , ℓC) and (D∗, ∂D, ℓD),

dB
(
BC

Con,k, BD
Con,k

)
= dI (Hk ◦ (C∗, ∂C , ℓC) , Hk ◦ (D∗, ∂D, ℓD)) .

We prove an analogous isometry theorem for the verbose barcode, i.e., Theorem 2.

3.1 Interleaving distance dI between FCCs
For detailed proofs of results in this subsection, see [17, §4.1]. Let dI be the categorical
interleaving distance in the category of filtered chain complexes given by [2, Definition 3.2].

▶ Proposition 15. Let (C∗, ∂C , ℓC) and (D∗, ∂D, ℓD) be two FCCs. Then

dI ((C∗, ∂C , ℓC), (D∗, ∂D, ℓD)) < ∞ ⇐⇒ (C∗, ∂C) ∼= (D∗, ∂D).

Because of Proposition 15, the interleaving distance between FCCs is only interesting
when we consider the case when two FCCs have the same underlying chain complexes. Let
(C∗, ∂C) be a finite-dimensional non-zero chain complex over F, and let Iso((C∗, ∂C)) be the
set of chain isomorphisms on (C∗, ∂C).

▶ Theorem 16. Let (C∗, ∂C) be a non-zero chain complex and let ℓ1, ℓ2 : C∗ → R ⊔ {−∞}
be two filtration functions such that both (C∗, ∂C , ℓ1) and (C∗, ∂C , ℓ2) are FCCs. Then

dI ((C∗, ∂C , ℓ1), (C∗, ∂C , ℓ2)) = inf
Φ∗∈Iso(C∗,∂C)

∥ℓ1 − ℓ2 ◦ Φ∗∥∞.

Here we follow the convention (−∞) − (−∞) = 0 when computing ∥ℓ1 − ℓ2∥∞. When ℓ1 is
the trivial filtration function, we have dI ((C∗, ∂C , ℓ1), (C∗, ∂C , ℓ2)) = ∥ℓ2∥∞.

▶ Example 17 (dI between Elementary FCCs). For La, Lb < ∞, the interleaving distance
between elementary FCCs E(a, a + La, k) and E(b, b + Lb, l) is finite iff k = l. And

dI (E(a, a + La, k), E(b, b + Lb, k)) = max{|a − b|, |(a + La) − (b + Lb)|}.

3.2 Matching distance dM between verbose barcodes
Let H := {(p, q) : 0 ≤ p < q ≤ ∞}, and let ∆ := {(r, r) : r ∈ R≥0 ⊔ {+∞}}. We denote
H := H ⊔ ∆ the extended real upper plane. Let d∞ be the metric on H inherited from the
l∞-metric, where for p, q, p′, q′ ∈ R≥0 ⊔ {∞},

d∞((p, q), (p′, q′)) =


max {|p − p′|, |q − q′|} , q, q′ < ∞,
|p − p′|, q = q′ = ∞,
∞, otherwise.
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Denote by ∆∞ (or H∞ and H∞, respectively) the multiset consisting of each point on ∆
(or H and H, respectively), taken with (countably) infinite multiplicity. Let H∞ be equipped
with the metric d∞ inherited from H.

▶ Definition 18 (The Matching Distance dM). Let A and B be two non-empty sub-multisets
of H∞. The matching distance between A and B is

dM(A, B) := min
{

max
a∈A

d(a, ϕ(a)) : A
ϕ−→ B a bijection

}
,

where dM(A, B) = ∞ if card(A) ̸= card(B).

▶ Definition 19 (The Bottleneck Distance dB). Let A and B be two finite non-empty sub-
multisets of H∞. The bottleneck distance between A and B is

dB(A, B) := dM(A ⊔ ∆∞, B ⊔ ∆∞).

Unlike the bottleneck distance dB, the diagonal points that can be matched in dM between
verbose barcodes are limited (see also [17, Proposition 4.11]). Thus,

▶ Proposition 20. Given two FCCs (C∗, ∂C , ℓC) and (D∗, ∂D, ℓD) and any degree k, we have

dB
(
BC

Con,k, BD
Con,k

)
≤ dM

(
BC

Ver,k, BD
Ver,k

)
.

Given (C∗, ∂C , ℓC) and a chain isomorphism Φ∗ on (C∗, ∂C), because (C∗, ∂C , ℓ) and
(C∗, ∂C , ℓ ◦ Φ∗) are filtered chain isomorphic, they have the same verbose barcode (see [17,
Proposition 4.14]). By checking that Φ∗ maps a singular value decomposition of (C∗, ∂C , ℓ)
to a singular value decomposition of (C∗, ∂C , ℓ ◦ Φ∗), we see that chain isomorphisms induce
permutations of verbose barcodes. For more details, see [17, §4.2].

3.3 Proof of the isometry theorem
We now prove Theorem 2. If two FCCs have non-isomorphic underlying chain complexes,
then dI between the two FCCs is ∞, and so is dM between their verbose barcodes. Thus,
it remains to consider the case when two FCCs have the same (or isomorphic) underlying
chain complexes.

3.3.1 The inequality dM ≤ dI

Although [18, Proposition 9.3] states a weaker result than the lemma below, their proof
indeed implies the following (see [17, §4.3.1] for more details):

▶ Lemma 21. Let (C∗, ∂C) be a finite-dimensional non-zero chain complex over F and let
ℓ1, ℓ2 : C∗ → R ⊔ {−∞} be two filtration functions. Denote by B1

Ver and B2
Ver the verbose

barcodes of (C∗, ∂C , ℓ1) and (C∗, ∂C , ℓ2), respectively. Then, we have

dM
(
B1

Ver, B2
Ver
)

= sup
k∈Z≥0

dM
(
B1

Ver,k, B2
Ver,k

)
≤ ∥ℓ1 − ℓ2∥∞.

▶ Proposition 22. With the same notation as in Lemma 21, we have

dM
(
B1

Ver, B2
Ver
)

≤ dI ((C∗, ∂C , ℓ1) , (C∗, ∂C , ℓ2)) .
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Proof. Given any Φ∗ ∈ Iso(C∗, ∂C), [17, Proposition 4.14] implies that B2
Ver = B(C∗,∂C ,ℓ2◦Φ∗)

Ver
agrees with the verbose barcodes of (C∗, ∂C , ℓ2 ◦ Φ∗). Combined with Lemma 21, we have

dM
(
B1

Ver, B2
Ver
)

= dM

(
B1

Ver, B(C∗,∂C ,ℓ2◦Φ∗)
Ver

)
≤ ∥ℓ1 − ℓ2 ◦ Φ∗∥∞,

for any Φ∗ ∈ Iso(C∗, ∂C). Therefore,

dM
(
B1

Ver, B2
Ver
)

≤ min
Φ∗∈Iso(C∗,∂C)

∥ℓ1 − ℓ2 ◦ Φ∗∥∞ = dI ((C∗, ∂C , ℓ1) , (C∗, ∂C , ℓ2)) ,

where the equality follows from Theorem 16. ◀

3.3.2 The inequality dM ≥ dI

We prove dM ≥ dI via an idea similar to the one used for proving that dB of concise barcodes
is no larger than dI between persistent modules, cf. [14, Theorem 3.4].

Proof of Theorem 2 “dM ≥ dI”. The proof is trivial if (C∗, ∂C , ℓC) and (D∗, ∂D, ℓD) have
non-isomorphic underlying chain complexes. We now consider the case when the chain
complexes (C∗, ∂C) and (D∗, ∂D) are isomorphic, and we assume without loss of generality
that (D∗, ∂D) = (C∗, ∂C) and write ℓ1 := ℓC , ℓ2 := ℓD.

Take any number δ ≥ dM
(
B1

Ver, B2
Ver
)
. Then for any k ∈ Z≥0, there is a bijection

fk : B1
Ver,k → B2

Ver,k such that

max
a∈B1

Ver,k

d∞(a, fk(a)) ≤ δ. (3)

For a ∈ B1
Ver,k ⊂ H∞, assume that a = (a1, a2). Also, write b = fk(a) and assume that

b = (b1, b2). Next we construct an isomorphism between the following elementary FCCs:

hk : E(a1, a2, k) → E(b1, b2, k).

Notice that a2 and b2 are either both finite or both infinite, otherwise the left hand side of
Equation (3) is equal to ∞, which contradicts with δ < ∞.

Case (1): a2 = b2 = ∞, so E(a1, a2, k) and E(b1, b2, k) have the same underlying chain
complex:

. . . 0 Fxk 0 . . . ,
∂k=0

and the filtration functions are given by ℓ1(xk) = a1 and ℓ2(xk) = b1, respectively. We define
the chain isomorphism to be

hk : E(a1, ∞, k) → E(b1, ∞, k) with xk 7→ xk.

Case (2): a2, b2 < ∞, so E(a1, a2, k) and E(b1, b2, k) have the same underlying chain
complex:

. . . 0 Fyk+1 Fxk 0 . . . ,
∂k+1:yk+1 7→xk ∂k=0

and the filtration functions are given by ℓ1(xk) = a1, ℓ1(yk+1) = a2 and ℓ2(xk) = b1,
ℓ2(yk+1) = b2, respectively. We define the chain isomorphism to be

hk : E(a1, a2, k) → E(b1, b2, k) with xk 7→ xk, yk+1 7→ yk+1.
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In either case, it is straightforward to check that hk satisfies the following condition

∥ℓ1 − ℓ2 ◦ hk∥∞ ≤ max {|a1 − a2, b1 − b2|} = d∞(a, f(a)) ≤ δ.

We write hk,a whenever it is needed to emphasize that hk depends on a.
By [18, Proposition 7.4] we have the following decomposition of FCCs

(C∗, ∂C , ℓ1) ∼=
⊕

k∈Z≥0

⊕
a∈B1

Ver,k

E(a1, a2, k) and (C∗, ∂C , ℓ2) ∼=
⊕

k∈Z≥0

⊕
b∈B2

Ver,k

E(b1, b2, k).

Let h :=
⊕

k∈Z≥0

⊕
a∈B1

Ver,k
hk,a : (C∗, ∂C , ℓ1) → (C∗, ∂C , ℓ2), which is then a chain isomor-

phism such that

∥ℓ1 − ℓ2 ◦ h∥∞ = max
k∈Z≥0

max
a∈B1

Ver,k

∥ℓ1 − ℓ2 ◦ hk,a∥∞ ≤ δ.

It then follows from Theorem 16 that

dI ((C∗, ∂C , ℓ1) , (C∗, ∂C , ℓ2)) = min
Φ∗∈Iso(C∗,∂C )

∥ℓ1 − ℓ2 ◦ Φ∗∥∞ ≤ ∥ℓ1 − ℓ2 ◦ h∥∞ ≤ δ.

Letting δ ↘ dM
(
B1

Ver, B2
Ver
)
, we obtain the desired inequality dI ≤ dM. ◀

4 Improved stability result for VR FCCs

In this section, we overcome the problem that the matching distance between verbose barcodes
are not stable under the Gromov-Hausdorff distance, by incorporating the notion of tripods
(see [16]). A tripod between two sets X and Y is a pair of surjections from another set Z to
X and Y respectively, cf. [16]. We will express this by the diagram

R : X
ϕX

↞−−−− Z
ϕY−−−−↠ Y.

Define dis(R) := supz,z′∈Z |dX(ϕX(z), ϕX(z′)) − dY (ϕY (z), ϕY (z′))| .

In §4.1, we define the pullback bottleneck distance between verbose barcodes of VR FCCs
of two finite metric spaces X and Y and the pullback interleaving distance between VR FCCs.
We prove the pullback stability theorem (Theorem 5) in §4.2, and provide examples in §4.3
to show that verbose barcodes improve the stability of concise barcodes in many cases.

For notational simplicity, we will omit the differential map ∂X for VR FCC of X.

4.1 Pullback interleaving distance and pullback bottleneck distance
Using the notion of tripod, we construct a new distance between filtered chain complexes:

▶ Definition 23 (Pullback interleaving distance). For two finite metric spaces X and Y , we
define the pullback interleaving distance between the VR FCCs of X and Y to be

d̂I
((

C∗(VR(X)), ℓX
)

,
(
C∗(VR(Y )), ℓY

))
:=

inf
{

dI
((

C∗(VR (Z)) , ℓZX
)

,
(
C∗(VR (Z)) , ℓZY

))
| X

ϕX

↞−−−− Z
ϕY−−−−↠ Y a tripod

}
,

where ZX := (Z, ϕ∗
XdX) and ZY := (Z, ϕ∗

Y dY ).

With a similar idea and again using tripods, we refine the standard bottleneck distance
and introduce a new notion of distance between verbose barcodes:
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▶ Definition 24 (Pullback bottleneck distance). Let k ∈ Z≥0. For two finite metric spaces X

and Y , the pullback bottleneck distance between BVer,k(X) and BVer,k(Y ) is defined to be

d̂B ((BVer,k(X), BVer,k(Y ))) :=

inf
{

dM (BVer,k(ZX), BVer,k(ZY )) | X
ϕX

↞−−−− Z
ϕY−−−−↠ Y a tripod

}
,

where ZX := (Z, ϕ∗
XdX) and ZY := (Z, ϕ∗

Y dY ). In addition, we define

d̂B (BVer(X), BVer(Y )) := sup
k∈Z≥0

d̂B (BVer,k(X), BVer,k(Y )) .

We refer readers to Remark 3 for clarification regarding the usage of terminology, especially
the term “distance”, when referring to d̂B and d̂I.

▶ Remark 25. For two finite metric spaces X and Y with the same cardinality, we have

d̂B(BVer(X), BVer(Y )) ≤ dM(BVer(X), BVer(Y )).

The above inequality can be strict. For instance, consider the four-point metric spaces X

and Y given in Example 12, for which we have (see [17, Remark 5.4])

d̂B(BVer(X), BVer(Y )) = 0 < 1 = dM(BVer(X), BVer(Y )).

4.2 Pullback stability theorem
In this section, we prove that the pullback interleaving distance d̂I and the pullback bottleneck
distance d̂B are stable under the Gromov-Hausdorff distance dGH (cf. Theorem 5) and see
that it improves that stability of the standard bottleneck distance dB (cf. Theorem 1).

We first show that d̂I is stable.

▶ Proposition 26 (Stability of Pullback Interleaving Distance). Let (X, dX) and (Y, dY ) be
two finite metric spaces. Then,

d̂I
((

C∗(VR(X)), ℓX
)

,
(
C∗(VR(Y )), ℓY

))
≤ 2 · dGH(X, Y ).

Corollary 4 and Proposition 26 together yield the stability of d̂B. In addition, we prove
that d̂B is an improvement of dB , as lower bounds of dGH between metric spaces:

Proof of Theorem 5. It remains to prove dB (BCon,k(X), BCon,k(Y )) ≤

d̂B (BVer,k(X), BVer,k(Y )). For any tripod X
ϕX

↞−−−− Z
ϕY−−−−↠ Y , let ZX := (Z, ϕ∗

XdX) and
ZY := (Z, ϕ∗

Y dY ). By Proposition 6 and the fact that concise barcode is the corresponding
verbose barcode excluding the diagonal points, we have that BCon,k(X) = BCon,k(ZX) and
BCon,k(Y ) = BCon,k(ZY ). Combined with Proposition 20, we have

dB (BCon,k(X), BCon,k(Y )) = dB (BCon,k(ZX), BCon,k(ZY )) ≤ dM (BVer,k(ZX), BVer,k(ZY )) .

◀

To prove Proposition 26, we first establish the stability of the interleaving distance
between VR FCCs by showing that it is stable under the ℓ∞ metric between two metrics
over the same underlying set.
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▶ Proposition 27. Let X be a finite set. Let d1 and d2 be two distance functions on X, and
let ℓ1 and ℓ2 be the filtration functions induced by d1 and d2 respectively. Then,

|∥d1∥∞ − ∥d2∥∞| ≤ dI
(
(C∗(VR(X)), ℓ1), (C∗(VR(X)), ℓ2)

)
≤ ∥d1 − d2∥∞.

Proof of Proposition 26. Suppose R : X
ϕX

↞−−−− Z
ϕY−−−−↠ Y is a tripod between X and Y

with distortion dis(R) ≤ δ. By Proposition 27, we obtain

dI
((

C∗(VR (Z)) , ℓZX
)

,
(
C∗(VR (Z)) , ℓZY

))
≤ ∥ϕ∗

XdX − ϕ∗
Y dY ∥∞ = dis(R).

We finish the proof, by taking infimum over all tripods R on the above inequality and using
the fact that 2 · dGH(X, Y ) = infR dis(R) (see [3, §7.3.3]). ◀

See [17, §5.3] for the remaining proofs and examples for results in this subsection.

4.3 Tightness and strictness of the pullback stability theorem
We show through examples that both inequalities in Theorem 5 are tight and can be strict.

▶ Example 28. Recall the 3-point metric spaces X1 and X2 from Figure 1, assuming
a ≤ b ≤ ci for i = 1, 2. Computing each of the distance given in Theorem 5, we obtain:

dB (BCon(X1), BCon(X2)) d̂B (BVer(X1), BVer(X2)) 2 · dGH(X1, X2)

0 |c1 − c2| |c1 − c2|

The first and third column in the above table are straightforward calculations. For the second
column, notice that for any tripod X1

ϕ1
↞−−−− Z

ϕ2−−−−↠ X2, we have

BVer,card(Z)−2(Z1) = {(c1, c1)} and BVer,card(Z)−2(Z2) = {(c2, c2)},

where Z1 := (Z, ϕ∗
1dX1) and Z2 := (Z, ϕ∗

2dX2). Thus,

d̂B (BVer(X1), BVer(X2)) ≥ dM
(
BVer,card(Z)−2(Z1), BVer,card(Z)−2(Z2)

)
= |c1 − c2|.

This example shows that d̂B between verbose barcodes gives a better bound for the
Gromov-Hausdorff distance dGH, compared with dB between concise barcodes.

▶ Example 29. Let X and Y be metric spaces of 4 points given in Figure 4. Let Z be the
complete graph on 4 vertices with edge length 1, and W be the cycle graph on 4 vertices with
edge length 1. See Figure 6 for the illustration of all 4 spaces and their verbose barcodes.

From Figure 7, we notice that the pair of metric spaces (X, Y ) is such that

dB(BCon(X), BCon(Y )) = d̂B(BVer(X), BVer(Y )) = 0 < 1 = 2 · dGH(X, Y ),

which tells us the fact that d̂B between distinct verbose barcodes can be zero. To see
d̂B(BVer,1(X), BVer,1(Y )) = 0, consider that pullback metric space ZX that repeats the top
point in X and ZY that repeats any one point in Y , and see that BVer,1(ZX) = BVer,1(ZY ) =
{(1, 1), (2, 2)5}. The pair (X, Y ) shows the tightness of dB ≤ d̂B.

The pair (Z, W ) is such that

dB(BCon(Z), BCon(W )) = 1
2 < 1 = d̂B(BVer(Z), BVer(W )) = 2 · dGH(Z, W ),

which is another example of d̂B and d̂I providing better bounds of dGH compared to the
standard bottleneck distance dB, as well as an example for the tightness of d̂B ≤ 2 · dGH.
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22
2

1

1 1

X

2
2 2

2

1

1

Y

1 1 1
1

1

1

Z

1

1

1

1

W

BVer,0 (0, 1)2, (0, 2), (0, ∞) (0, 1)2, (0, 2), (0, ∞) (0, 1)3, (0, ∞) (0, 1)3, (0, ∞)

BVer,1 (1, 1), (2, 2)2 (2, 2)3 (1, 1)3 (1, 2), (2, 2)2

BVer,2 (2, 2) (2, 2) (1, 1) (2, 2)

Figure 6 The 4-point metric spaces X, Y, Z and W ; and their verbose barcodes.

One more example that the stability of d̂B improves that of dB (see [17, Example 5.11]):

▶ Proposition 30. Let X be the one-point space, and Y be any finite metric space. Then,

dB (BCon(X), BCon(Y )) = diam(Y )
2 < diam(Y ) = d̂B (BVer(X), BVer(Y )) = 2 · dGH(X, Y ).

5 About computing the pullback bottleneck distance

To have a more concrete understanding of the pullback bottleneck distance, we study verbose
barcodes under pullbacks.

Let (X, dX) be a finite metric space with X = {x1, . . . , xn}. For any surjection ϕ : Z ↠ X,
the pullback (pseudo) metric space (induced by ϕ) is defined as the pair (Z, ϕ∗dX), where
ϕ∗dX is the pullback of the distance function dX . In other words, for any z1, z2 ∈ Z,

(ϕ∗dX)(z1, z2) := dX (ϕX(z1), ϕX(z2)) .

For each z ∈ Z, the point ϕX(z) ∈ X is called the parent of z.

▶ Proposition 31. Assume X = {x1, . . . , xn} is a pseudo-metric space and Z = X ⊔ {z}.
Suppose ϕ : Z → X is such that z 7→ xj for some j = 1, . . . , n. Then

BVer,0(Z) = BVer,0(X) ⊔ {(0, 0)},

and for k ≥ 1,

BVer,k(Z) = BVer,k(X) ⊔ {diam([xj , xj , xi1 , . . . , xik ]) · (1, 1) : xil ∈ X − {xj} , ∀l = 1, . . . , k}
= BVer,k(X) ⊔ {diam([xj , xj , β]) · (1, 1) : β ∈ Pk(X \ {xj})} .

Each finite pullback metric space Z of X can be written as a multiset Z = X ⊔
{xj1 , . . . , xjm

} equipped with the inherited metric from X for some m ≥ 0 and j1 ≤ · · · ≤ jm.
We apply the Proposition 31 to prove Proposition 6.

Proof of Proposition 6. We prove by induction on m. When m = 1, the statement follows
immediately from Proposition 31. Suppose m ≥ 2 and that the statement holds for Z ′ :=
X ⊔

{
xj1 , . . . , xjm−1

}
. Recall that Pk(A) denotes the multiset consisting of sub-multisets of

A each with cardinality k. By Proposition 31 and the induction hypothesis, we obtain:
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dB(BCon,0(·), BCon,0(·)) X Y Z W

X 0 0 1 1
Y 0 1 1
Z 0 0
W 0

d̂B(BVer,0(·), BVer,0(·)) X Y Z W

X 0 0 1 1
Y 0 1 1
Z 0 0
W 0

dB(BCon,1(·), BCon,1(·)) X Y Z W

X 0 0 0 1
2

Y 0 0 1
2

Z 0 1
2

W 0

d̂B(BVer,1(·), BVer,1(·)) X Y Z W

X 0 0 1 1
Y 0 1 1
Z 0 1
W 0

2 · dGH(·, ·) X Y Z W

X 0 1 1 1
Y 0 1 1
Z 0 1
W 0

Figure 7 The bottleneck distance dB between concise barcodes, the pullback bottleneck distance
d̂B between verbose barcodes, and the Gromov-Hausdorff distance between spaces.

BVer,k(Z) = BVer,k(Z′) ⊔
{

diam([xjm , β]) · (1, 1) : β ∈ Pk

(
(X \ {xjm }) ⊔

{
xj1 , . . . , xjm−1

})}
= BVer,k(X) ⊔

m−2⊔
i=0

{
diam([xji+1 , βi]) · (1, 1) : βi ∈ Pk

(
(X \ {xji+1 }) ⊔ {xj1 , . . . , xji }

)}
⊔
{

diam([xjm , βm−1]) · (1, 1) : βm−1 ∈ Pk

(
(X \ {xjm }) ⊔

{
xj1 , . . . , xjm−1

})}
= BVer,k(X) ⊔

m−1⊔
i=0

{
diam([xji+1 , βi]) · (1, 1) : βi ∈ Pk

(
(X \ {xji+1 }) ⊔ {xj1 , . . . , xji }

)}
.

◀

When considering degree 0, Proposition 6 implies Proposition 7, which imposes the
strategy of matching bars in concise barcodes only to other bars or to the origin (0, 0) unlike
in the case of dB when bars are allowed to be matched to any point on the diagonal.

See [17, §6] for proofs and further details of this section.
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