
Slice, Simplify and Stitch: Topology-Preserving
Simplification Scheme for Massive Voxel Data
Hubert Wagner #Ñ

University of Florida, Gainesville, Fl, USA

Abstract
We focus on efficient computations of topological descriptors for voxel data. This type of data
includes 2D greyscale images, 3D medical scans, but also higher-dimensional scalar fields arising
from physical simulations. In recent years we have seen an increase in applications of topological
methods for such data. However, computational issues remain an obstacle.

We therefore propose a streaming scheme which simplifies large 3-dimensional voxel data – while
provably retaining its persistent homology. We combine this scheme with an efficient boundary
matrix reduction implementation, obtaining an end-to-end tool for persistent homology of large
data. Computational experiments show its state-of-the-art performance. In particular, we are now
able to robustly handle complex datasets with several billions voxels on a regular laptop.

A software implementation called Cubicle is available as open-source: https://bitbucket.org/
hubwag/cubicle.

2012 ACM Subject Classification Theory of computation → Computational geometry; Mathematics
of computing → Combinatorial algorithms

Keywords and phrases Computational topology, topological data analysis, topological image analysis,
persistent homology, persistence diagram, discrete Morse theory, algorithm engineering, implementa-
tion, voxel data, volume data, image data

Digital Object Identifier 10.4230/LIPIcs.SoCG.2023.60

Supplementary Material Software: https://bitbucket.org/hubwag/cubicle
archived at swh:1:dir:5f25601ea576ea1a004c37d94e2e2f5b94b9c00d

Funding Supported by the 2022 Google Research Scholar Award in Algorithms and Optimization.

Acknowledgements I would like to thank Herbert Edelsbrunner, Teresa Heiss, Kevin Knudson,
Marian Mrozek, Georg Osang and Vanessa Robins for their helpful comments.

1 Introduction

Persistent homology is one of the most popular tools offered by the field of Topological
Data Analysis (TDA). It provides a rich geometric-topological descriptor of data called the
persistence diagram. Point cloud data is a natural choice and a significant portion of theory,
and algorithms and software focuses on this setting.

However, persistent homology is also becoming increasingly useful for other types of data
– especially when used in conjunction with modern machine learning tools [23, 24, 37]. In
this paper, we turn our interest to scalar voxel data in dimension 2 and 3. This type of data
includes 2D gray-scale images, 3D medical scans, but also scalar fields coming from physical
simulations. Intermediate results of convolutional neural networks (i.e. feature maps) are
another interesting case. In all these settings, voxel data encodes potentially useful – and
often intricate – geometry and topology.

One key challenge is that such datasets are often large – counted in billions of voxels or
more. Currently, for such data we can compute topological descriptors such as connected
components [29], merge trees [32], contour trees [17] and the Euler characteristic curve [21, 38].
While these are useful tools, there is a compromise: the first three discard higher-order
topological information, and the last one forfeits information about the persistence of
topological features.

© Hubert Wagner;
licensed under Creative Commons License CC-BY 4.0

39th International Symposium on Computational Geometry (SoCG 2023).
Editors: Erin W. Chambers and Joachim Gudmundsson; Article No. 60; pp. 60:1–60:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:hwagner@ufl.edu
https://people.clas.ufl.edu/hwagner/
https://bitbucket.org/hubwag/cubicle
https://bitbucket.org/hubwag/cubicle
https://doi.org/10.4230/LIPIcs.SoCG.2023.60
https://bitbucket.org/hubwag/cubicle
https://archive.softwareheritage.org/swh:1:dir:5f25601ea576ea1a004c37d94e2e2f5b94b9c00d;origin=https://bitbucket.org/hubwag/cubicle;visit=swh:1:snp:21e2a7f23b05fb21ce33c870f0a641415a6ef39f;anchor=swh:1:rev:aaa5e9bc69e4311b9938149c57eddf88d970a5bf
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

60:2 Slice, Simplify and Stitch

Our goal is therefore to provide a method for exact computation of persistent homology
of large 3D voxel data. We propose an efficient streaming computation scheme, prove its
correctness and benchmark its implementation1. In particular, we experimentally show that
for large data it is the fastest method available. Our method also uses significantly less
memory, which is crucial because memory usage is the main bottleneck of existing methods.
With these improvements we were able to apply our method to several practical datasets
with up to 20483 voxels on a regular laptop. Existing software was limited to 2563 or 5123.

On a technical side, the efficiency of our approach is achieved by (1) streaming the input
slice by slice, (2) efficient parallel implementation and (3) realizing selected parts of the
pipeline as external-memory algorithms. This allows us to save memory, while ensuring that
topological features spanning multiple slices are correctly captured.

Focus of the paper. We focus on: (1) conveying the main ideas behind our computation
scheme; (2) contrasting it with existing approaches; (3) experimentally comparing our
implementation with existing ones using practical datasets. We also discuss the most
important algorithmic and implementational decisions.

Method preview. Input is a 3-dimensional array of scalar values. It is often called a volume
and is composed of 3-dimensional voxels. Output is the persistence diagram of the input
volume, based on an simplified intermediate representation.

Our scheme cuts the input volume into slices. A small number of slices is streamed
from disk and processed in parallel. Each slice is simplified independently using
discrete Morse theory, and boundary information of this smaller representation is
output to disk. Carefully handling the border between adjacent slices allows us to
stitch this local information back together. In practice, we do this by constructing a
global boundary matrix using the partial information coming from each slice. Despite
containing extra stitching information, the resulting boundary matrix is much smaller
than the boundary matrix of the input. Finally, we retrieve the persistence diagram
by running a specialized version of Gaussian elimination on the resulting matrix.

2 Standard background

In this section we cover the usual theoretical background relevant for topology of voxel data.
This includes cubical complexes, discrete Morse theory and persistent homology. Whenever
possible we choose simple definitions that help map concepts to computations. In the next
section we cover some additional definitions specific to our approach.

Cubical cells and complexes. Following [26] we define a degenerate interval [k, k] ⊂ R, and
a regular interval [k, k + 1] ⊂ R for a natural number k. Taking a product of D intervals, p of
which are regular, gives us a p-dimensional cubical cell in embedding dimension D. We call
them cubical p-cells, or simply cells; dim(σ) gives the dimension of cell σ. For p = 0, 1, 2, 3,
we talk about vertices, edges, squares and cubes. Cell σ is a face (coface) of another cell τ

whenever σ ⊂ τ (τ ⊂ σ); it is a proper face or coface if additionally their dimensions differ
by one. A D-dimensional cell is called the top-dimensional cell which we identify with a
voxel. A cubical complex, K, of dimension D is a finite collection of cells of dimension at

1 Software is available as open source: https://bitbucket.org/hubwag/cubicle/

https://bitbucket.org/hubwag/cubicle/

H. Wagner 60:3

most D that is closed under taking faces. Namely, σ ⊂ τ implies σ ∈ K. Given a cubical
complex with n cells indexed from 1 to n, its boundary matrix is an n × n binary matrix
M ; M [i, j] = 1 if and only if the j-th cell is a face of the i-th cell in the complex. The
columns of M encode the boundary of each cell.

Filtered cubical complexes. We assume a common convention in which the values assigned
to input voxels are interpreted as the values of the top-dimensional cells of a cubical complex.
These values are then extended to the lower dimensional faces: each cell inherits the minimum
value of its top-dimensional cofaces: val(σ) = min{val(τ) : σ ⊂ τ and dim(τ) = D}. For
us a filtered cubical complex is simply a cubical complex with cell values assigned as
above. With this we talk about the sublevel complex at a value threshold t. Denoted K≤t,
it contains all cells in K with value not exceeding t. Clearly K≤s ⊆ K≤t whenever s ≤ t,
which lets us define a filtration of cubical complexes: ∅ = K0 ⊂ K1 · · · ⊂ Kn = K.

Cubical homology and persistent homology. Chains of cubical cells, as well as chain, cycle,
boundary, homology and persistent homology groups can be defined [33] in complete analogy
to the standard simplicial case [13]. We will work with homology and persistent homology
with Z2 coefficients, which is standard in applications.

Instead of defining these concepts formally, we offer a brief intuitive overview, which may
be more useful. Intuitively, for 3-dimensional cubical complexes, homology groups capture
the connected components, 1-dimensional closed loops, and voids made of cells. We call them
homological features of dimension 0, 1, 2 respectively, as shown in Figure 1.

1 2 3

14 15 4

13 16 5

12 17 6

11 18 7

10 9 8

1 2 3

14 4

13 5

12 6

11 7

10 9 8

1 2 3

14 15 4

13 16 5

12 17 6

11 18 7

10 9 8

a b c

1 2 3

14 4

13 5

12 6

11 7

10 9 8

d

Figure 1 (a) Input volume. (b)–(d) three subcomplexes of the corresponding filtered cubical
complex subdivided into blocks. At value 14 a 1-dimensional cycle is formed and it is filled in at
value 18, forming a persistence pair (14,18) with persistence 4.

Persistent homology works with filtered complexes and assumes a dynamic view of
data: we add voxels one by one ordered by non-decreasing values. Each voxel introduces
all its faces – unless they were already present. Now, theory tells us that each p-cell can
either create a p-dimensional homological feature, or destroy a (p − 1)-dimensional one [13].
We keep track of the values of birth and death of each feature. Each such pair is called
a persistence pair, and persistence itself is the lifetime of each feature. A multiset of
persistence pairs forms a persistence diagram also called a persistence barcode. It turns
out to be a powerful topological descriptor, largely due to its stability properties [14].

SoCG 2023

60:4 Slice, Simplify and Stitch

A filtered boundary matrix is the boundary matrix of a filtered cubical complex such
that the rows and columns are sorted by the value of the corresponding cells. Persistent
homology can be efficiently computed using Gaussian elimination of this matrix [13, 4]. The
main shortcoming of this approach is the large size of this boundary matrix arising from the
original input, even if stored in sparse format.

Discrete Morse theory. Since cubical complexes can be viewed as CW-complexes, Forman’s
discrete Morse theory [15] – DMT for short – can be used in this setting. We emphasize that
restricting the setting to cubical complexes is crucial for computational efficiency reasons. In
short, we use DMT to simplify the input while retaining crucial topological information.

DMT relies on a discrete Morse matching which pairs cells in a certain way; it is
often called a discrete Morse vector field or discrete Morse gradient. We represent it by a
directed graph, which we call the matching graph. Its nodes correspond to cells in the
cubical complex and initially each directed edge corresponds to proper face relation between
two cells. Pairing two cells corresponds to flipping an edge in this graph. A matching is
a valid discrete Morse matching if: (1) each node in the corresponding matching graph is
incident to at most one flipped edge, and (2) the corresponding matching graph is acyclic. A
cell is called critical if it is not paired with any other cell. We define an alternating path
between a p-cell σ and (p − 1)-cell τ as any path in the modified graph that starts at σ ends
at τ and alternates between cells in dimension p and p − 1. They are also called V -paths,
discrete Morse flow lines and gradient paths.

A discrete Morse complex arising from a matching is generated by its critical cells;
the boundary relation between elements σ and τ is 1 if and only if there is an odd number
of alternating paths between them, and 0 otherwise. As before, we encode this information
in a boundary matrix. We remark that the parity criterion comes from using homology
with Z2 coefficients – in more general setups this is slightly more complicated [31]. The key
consequence of DMT is that the discrete Morse complex of a given complex yields homology
groups which are isomorphic to the homology groups of the original complex.

In the context of filtrations, we restrict ourselves to pairing cells with the same filtration
value. This process yields filtered discrete Morse complexes in which the filtration
values are inherited from the critical cubical cells. As before, we encode it as a filtered
boundary matrix. We also view it as a filtration of discrete Morse complexes: M(K0) ⊂
M(K1) ⊂ · · · ⊂ M(Kn) = M(K).

3 Setup: blocks, slices and borders

In this section we define a number of non-standard definitions which are crucial for our
approach. First, we define the extended value of a voxel as the pair (input value, index
of the voxel in the input volume). These pairs are compared lexicographically. This is a
technicality which breaks ties between voxels of equal value. The block of a voxel is the
subset of its faces which share its extended value. It is useful to imagine that voxels appear
one by one starting with the lowest value. Each voxel introduces all its faces which were not
yet present in the complex – namely the block. We remark that an individual block is not
a cubical complex – just a subset of cubes. However, the blocks of all voxels in a cubical
complex disjointly decompose this complex. See Figure 1 for an illustration.

We cut the input volume – and its cubical complex – in the following way. We imagine
a horizontal hyperplane at integer height h intersecting the cubical complex. The cells
contained in this plane form the border which is also the intersection of the two resulting
slices. This border forms a cubical complex with the dimension of the highest dimensional
cell equal to D − 1. If we cut k times, we generally get k + 1 slices separated by k borders.

H. Wagner 60:5

We define the interior of each slice as the slice itself minus its borders. By a stratum
we mean either the interior or a border of a slice. The complex disjointly decomposes into
strata. Later we will compute discrete Morse matchings separately for each stratum, noting
that internal strata are not cubical complexes, but all border strata are.

We remark that in actual computations we will cut the input volume into overlapping
slices. More precisely, with each slice we load an extra layer of voxels belonging to each
adjacent slice. Each extra layer has height one and is called an overlap. It will allow us to
assign values to cells belonging to the border strata consistently across adjacent slices.

4 Related work

In this section we overview of existing literature in the topic. We focus on work related to
persistent homology and discrete Morse complexes in the context of voxel data. In particular,
we emphasize existing techniques which we use in our current approach.

To the best of our knowledge, applying algebraic topology in the context of voxel data
were pioneered in the form of shape functions by Verri, Uras, Frosini and Ferri [35]. Using
higher-degree homological tools go back to the work of Kaczyński, Mischaikow and Mrozek
in the context of dynamical systems [30], with extensions to other application domains [26].

The early 2010s saw an increased interest in computing topological descriptors for
voxel data. Bendich, Edelsbrunner and Kerber proposed an efficient approximation scheme
for persistent homology of 3D voxel data [6]. In contrast, our approach aims at exact
computations. An efficient approach for exact computation of persistence of voxel data of
arbitrary dimension is due to Wagner, Chen and Vucini [36]. It relies on efficient generation
of the boundary matrix of the entire complex. We reuse some of the techniques used in
this paper, in particular the data-structure for compact storage of information for each
cell. An efficient implementation of this approach is provided in Gudhi [12] and DIPHA [3].
One downside of this scheme is the large size of the boundary matrix – which prompted
development of simplification methods, like the one below.

Work by Robins, Wood, Sheppard [33] marks a breakthrough in computing topological
descriptors for voxel data. We refer to this work as RWS and describe it in more detail in
Section 5. In short, it preprocesses the input using discrete Morse theory typically resulting
in a much smaller boundary matrix encoding the same topology. In [19], certain algorithmic
aspects were improved and a memory-efficient storage of the matching was proposed. This
allowed for handling large data – but significantly complicated the implementation. Since
our new approach needs to store only a single slice of data at a time, we use a simpler but
equally efficient implementation without affecting memory usage.

Work by Mischaikow and Nanda [31] generalizes the theory and algorithms presented in
RWS beyond cubical complexes. A related software package, Perseus, has been a popular
tool capable of computing persistence for a variety of input types. One lesson learned from
this work was the trade-off between flexibility and efficiency. For voxel data the preprocessing
step turned out to be more costly than computing persistence directly [4]. With that in
mind, our approach specializes in voxel data. This paper also reports the first approach for
streaming preprocessing – each levelset was stored separately, simplified and merged together
later. In contrast, we use a spatial decomposition of the volume.

Discrete Morse theory was also used to perform more aggressive simplification. This
proved to be useful in data visualization. One particularly impressive approach is due to
Gyulassy, Bremer, Hamann and Pascucci [20]. Already in 2008 it handled a volume with a
billion voxels on commodity hardware in a day. However, the simplified complex computed

SoCG 2023

60:6 Slice, Simplify and Stitch

in this approach cannot be used to compute persistent homology of the original data [9].
Still, our approach is inspired by the data subdivision scheme used in this approach. Despite
certain similarities, the details of our subdivision scheme, subsequent computations and final
goal are all different. Our method can be viewed in terms of discrete stratified Morse theory
of Knudson and Wang [28].

Concurrently to the development of DMT-based methods, matrix reduction algorithms
were significantly improved [7, 2, 4, 22, 3]. In Section 7 we describe how we adapted certain
techniques from the PHAT library [4] at the preprocessing level.

Bauer’s Ripser [1] was originally devised for the Vietoris–Rips construction arising from
point cloud data. Recently Ripser was adapted to voxel data with CubicalRipser [27].

Finally, we remark that the proposed scheme was first conceived in 2015 and preliminary
results were informally presented at two international meetings at 2017. Software development
began in 2015, and the first stable version of the software was published in 2018.

5 Persistence-aware simplification scheme

In this section, we overview an existing approach by by Robins, Wood and Sheppard [33],
(RWS), for simplifying cubical complexes stored in memory.

The goal is to compute a smaller representation of data that encodes the same persistent
homology as the input volume. More precisely output persistence diagrams are allowed to
differ only by ephemeral persistence pairs – each corresponding to a feature that is born
and dies at the same filtration value. Such pairs are discarded in practice anyway. The
crucial observation by Robins and collaborators is that ephemeral features abound in cubical
filtrations, allowing them to propose an efficient simplification scheme.

This method computes a valid discrete Morse matchings separately for each block. It
then computes the boundary matrix of a filtered discrete Morse complex which encodes the
same persistent homology. This step is done by computing the parity of the numbers of
alternating paths between pairs of critical cells. See Figure 2 for illustration. We discuss
correctness of this approach for filtered cubical complexes.

Validity of the matching. We show that if the matching graph within each block is acyclic,
then the global one is acyclic as well. We observe that the extended value is generally non-
increasing along cells in an alternating path. However leaving a block necessarily decreases
the extended value. Since forming a cycle would require leaving a block and returning, cycles
cannot form since the extended values along paths cannot increase.

Topologial correctness of simplification. Applying DMT on each block yields a complex
that encodes the same persistent homology – up to ephemeral pairs. Indeed, this block-
wise construction yields the filtration: M(K0) ⊂ M(K1) ⊂ . . .M(Kn) = M(K). Now,
Forman’s theory tells us that H∗(M(Ki)) = H∗(Ki). Applying the Persistence Equivalence
Theorem [13] yields the desired result.

Hardness of matchings. Generally, finding discrete Morse matchings minimizing the number
of critical cells is a computationally hard problem [25]. However, RWS showed a simple
Θ(b log b) time algorithm for optimal matching for a block of a 3-dimensional cubical complex
with b cells.

H. Wagner 60:7

1 2 3

14 15 4

13 16 5

12 17 6

11 18 7

10 9 8

1 2 3

14 15 4

13 16 5

12 17 6

11 18 7

10 9 8

a b c

Figure 2 (a) Input volume; (b) Filtered cubical complex (c) Depiction of the RWS method.
Black arrows show the matching graph. The yellow paths mark the alternating paths whose parity
determine the boundary relations between the red critical cells. There is one nonzero relation:
between the critical 2-cell with value 18 and the critical 1-cell with value 14, which itself has empty
boundary. In this simple case the resulting boundary matrix is already reduced, so the persistence
pairs are readily available. Typically the matrix has to be reduced first.

6 Streaming simplification scheme

In this section we describe our algorithmic scheme, which is an efficient streaming version of
the RWS scheme. It yields a reduced representation encoding the same persistent homology
as the input volume. More precisely, we output – to disk – information about the boundary
matrix of the corresponding filtered discrete Morse complex. This boundary matrix is then
reconstructed on disk and the persistent homology is computed using an existing matrix
reduction algorithm. We focus on a high-level overview, noting that the actual implementation
is intricate and contains 2500 lines of terse C++ code (not counting external libraries).

Algorithm 1 outlines the streaming simplification scheme. In overview, we independently
simplify each stratum using the method outlined in the previous section and put global
information back together. We now outline the algorithm and prove its correctness.

Correctness. We need a few new concepts. A border-crossing path is an alternating
path which contains cells belonging to two or more internal strata. A global matching is
the union of discrete Morse matchings computed separately on each stratum of a filtered
cubical complex. A global Discrete Morse complex is the filtered discrete Morse complex
arising from the global matching.

We propose a lemma and its three corollaries. Together they show that the information
extracted from all slices is sufficient to reconstruct the boundary matrix of a global discrete
Morse complex that captures the correct persistent homology of the entire original dataset.

▶ Lemma 1 (Border Blocking Lemma). Suppose an acyclic discrete Morse matching is
computed for each block of each stratum of a filtered cubical complex. Consider a directed path
p = (p1, p2, . . . , pi, . . . , pn) in the matching graph G corresponding to the global matching. If
any pi belongs to a border stratum B, then the suffix (pi, pi+1, . . . , pn) is contained in B.

SoCG 2023

60:8 Slice, Simplify and Stitch

Algorithm 1 Streaming simplification.

Require: V : volume on disk; (w1, w2, . . . , wD): size of V ; h: maximum height of slice
Ensure: Boundary matrix on disk with the same persistent homology as V

1: for index i in 1 . . . ⌈w1/h⌉ do
2: n = h

∏D
d=2 wi

3: D = read next n voxels of V from disk (less for last slice)
4: C = filtered cubical complex of D representing the slice
5: O = load 1-voxel tall overlap for each border of C

6: update the values of border cells in C using extra information in O

7: S = decompose C into an internal stratum and up to 2 border strata
8: for stratum s of S do
9: for block b in s do

10: compute acyclic Morse matching within b

11: mark critical cells in S

12: for critical cell σ in C do
13: if σ does not belong to the bottom border stratum of C then
14: write value and dimension information: (ind(σ), val(σ), dim(σ)) to disk
15: p = dim(σ)
16: T = critical (p − 1)-cells reachable from σ by odd number of paths
17: for critical (p − 1)-cell τ in T do
18: write boundary information: (ind(σ), ind(τ)) to disk
19: unload all data from memory
20: sort the indices by corresponding value and dimension (on disk)
21: map these sorted indices to a contiguous range of indices (on disk)
22: save the filtered boundary matrix in appropriate sparse format (on disk)

Proof. We proceed by induction, with pi ∈ B by assumption. To show that pk ∈ B implies
pk+1 ∈ B for i ≤ k < n, we consider two cases. Namely, there are two potential outgoing
edges from pk in G: to a proper face of pk, which belongs to the border stratum B because
each border stratum is a cubical complex; or to a matched (paired) proper coface of pk, which
belongs to the border stratum B because the corresponding matching is restricted to B by
construction. In any case, pk+1 lies in B and by induction so does each pj for i ≤ j ≤ n. ◀

We recall that the internal strata are generally not cubical complexes. This means that
paths can lead from an internal cell to a border cell. Still, the following corollary reassures
us that no cycles can be formed.

▶ Corollary 1 (Global Acyclicity). The global discrete Morse matching is acyclic.

Proof. First, there are no cycles within each stratum by construction. To form a directed
cycle spanning multiple strata, a path would have to go back and forth between internal and
border strata. This is however impossible, since paths entering a border stratum remain
inside this stratum, as shown in Lemma 1. ◀

With the above, it is easy to see that we preserve information about persistent homology.

▶ Corollary 2 (Global Correctness). The global discrete Morse complex encodes the same
persistent homology.

H. Wagner 60:9

13 16 5

12 17 6

11 18 7

10 9 8

1 2 3

14 15 4

13 16 5

12 17 6

a

b

c

d

Figure 3 (a,b) Input split into two overlapping parts; (c,d) Simplification applied on each slice.
The slices agree on the values and matching on the shared border. The path that crossed the border
in Figure 2 is now split into three paths. One can construct the filtered boundary matrix with 8
columns and 13 nonzero entries to verify that, in particular, the 1-dimensional feature created in
one slice and destroyed in another is correctly captured; also that the extra critical cells result only
in features of zero persistence.

Proof. By Corollary 1, the global matching is a valid – if suboptimal – matching on the entire
input filtered cubical complex. This reduces the proof to the case of the RWS approach
we covered in the previous section. Therefore, the simplified complex encodes the same
persistent homology (up to ephemeral pairs) as the original cubical filtration. ◀

Or scheme introduces extra critical cells, even if all the voxel values are unique. These
extra cells allow us to stitch together discrete Morse complexes coming from different slices.
More specifically, these extra cells split each border-crossing path into multiple non-crossing
paths as shown in Figure 3. Instead of performing costly pruning at this stage [20, 10], we
welcome these cells into the the final boundary matrix, reduce it, and simply discard the
resulting ephemeral pairs from the resulting diagram.

Finally, we show that the information available in each slice is sufficient.

▶ Corollary 3 (Slice Locality). The boundary matrix of the global discrete Morse complex can
be computed from information contained within each slice.

Proof. Lemma 1 implies that there are no border-crossing paths. This means that all the
boundary information contained in the resulting boundary matrix can be computed locally
within in each slice. Additionally, the dimension and value of each critical cell is available
within each slice. ◀

One subtlety: in a practical implementation the values and matching assigned to each
border stratum must be consistent between the adjacent slices. To ensure this, we load the
overlap, namely the extra layers of voxels, in line 5 of Algorithm 1.

SoCG 2023

60:10 Slice, Simplify and Stitch

Computational complexity. Computations are dominated by tracking the parity of altern-
ating paths [33], which is done in line 16. Overall, a single slice is handled in Θ(v3) worst
case time [33], where v is the number of voxels in a slice. In our case, a dataset with v

voxels divided into s slices, the worst-case complexity is Θ(s(v
s)3) = Θ(v3

s2). However, this
worst-case behaviour is theoretical, and the experiments we report in Section 7 show roughly
linear scaling for all practical datasets.

7 Technicalities

In this section we mention several technicalities which make our implementation efficient in
practice. Balancing speed and memory usage was the key challenge in our streaming setup.

Encoding the information about cells. All auxiliary information about cells are stored
in a cube-map format [36], which simply arranges cells as an array of size 2w1 + 1, 2w2 +
1, . . . , 2wD + 1 for input of size w1, w2, . . . , wD. We use an efficient implementation of
multidimensional arrays provided by the blitz++ library.

Global indexing of cells. Each slice needs to assign a globally unique index to each of its
critical cells. Since additionally the indices of border cells must be consistent across slices, we
simply use the global index of cells in the entire complex. To compute this, each slice must
know its offset and the dimensions of the volume (except w1). These indices are compactified
in line 13 of Algorithm 1.

Computing and storing the matching. Focusing on D ≤ 3 allows us to adapt the Pro-
cessLowerStar procedure of RWS. Since each block can have at most 27 cells, these
computations are unlikely to be the performance bottleneck.

However, storing the matching could dominate memory usage, which was alleviated in
[19] by using a succinct bit-level encoding of the matching graph. Our sliced setting allows
for more relaxed memory management, so such techniques are not necessary. Instead we used
a simpler encoding, exploiting the fact that each edge can only point at at most 6 directions.

Computing the parity of alternating paths. This is hidden in line 16 and is crucial for
performance of the simplification part. In D ≥ 3, the alternating paths can both split and
merge, which complicates the algorithms compared to lower dimensions. One consequence is
that the number of alternating paths between 3-cells and 2-cells can grow exponentially in
input size – which actually occurs in practical datasets [19]. This makes simple enumeration
prohibitive. However, the matching graph is an acyclic directed graph, allowing us to use a
basic dynamic programming algorithm for counting the parity of alternating paths.

One important addition compared to existing implementations is the usage of the bit-tree
data-structure developed for the PHAT library. We re-purpose it for compact storage and
manipulation of indices of cells maintained during path-counting. This removes the main
memory bottleneck present in [19], which used a red-black tree. It required significantly more
storage in the worst case and is also generally slower.

Reconstructing boundary matrix and persistence pairs. During simplification we output
partial boundary and filtration information on disk in lines 14 and 18. In lines 20–22, we
reconstruct the full filtered boundary matrix using a simple external-memory (on disk)
algorithm. We do this to avoid storing both the partial information and the full matrix at

H. Wagner 60:11

the same time. In line 20 of Algorithm 1, we sort the indices of cells by their values, since we
need a filtered boundary matrix. In line 20, we map global indices of cells into contiguous
indices, as required by most matrix reduction packages. Already in line 13 we made sure
that the information for each border cell is output from exactly one of the two slices. In
line 22 we rearrange the data in the format required by matrix reduction software; usually
each column is represented by the dimension of the cell, the size of the column followed
by its nonzero indices. Additionally, after the matrix reduction, we transform the reduced
matrix into the final persistence diagram in a similar way. All these simple computations are
implemented using the STXXL [11] external algorithms library.

Lock-free parallelization scheme. Each slice is handled by one thread. More precisely, we
maintain a thread-pool of a fixed size k, which allows k slices to be handled in parallel. Each
thread loads its slice, processes it, and outputs partial results to one of k output buffers on
disk and unloads the slice. This allows for simple, lock-free parallelism, circumventing the
usual synchronization problems. We use the CTL thread-pool library.

Experiments We present experiments which compare the end-to-end performance of the
proposed approach with existing solutions.

Datasets. We use datasets provided at the free Open Scientific Visualization Datasets
(OSVD) repository. This repository contains several 3D voxel datasets, mostly coming
from real-world applications. The sizes range from 413 to 40963, with one 900GB file of size
10240x7680x1536 voxels. For comparison we used the 15 smallest datasets in the repository,
with up to 150 millions voxels. We also test our method on images up to 8 billion voxels.

Benchmarked software. A recent paper [18] includes a comprehensive benchmark with
a multitude of software packages. We restrict our benchmark to three fastest end-to-end
alternative approaches: CubicalRipser, DIPHA and DiscreteMorseSandwich. CubicalRipser
is a modern method [27] based on implicit boundary matrix representation. It is a single-
threaded implementation. We used a newer version than in the original benchmark [18],
and got significantly better results. DIPHA [3] implements [36] and explicitly stores and
reduces the full boundary matrix. DiscreteMorseSandwich [18] is part of TTK [34] and
implements the RWS scheme. It works both in cubical and triangulated setting.

Result consistency. Our approach uses the data interpretation described earlier in the
paper, sometimes called the T interpretation [16]. We verified that the produced persistence
diagrams are consistent with the results of CubicalRipser with appropriate options. DIPHA
uses the dual V interpretation, which however encodes equivalent information [16]. As
already noted in [27], DiscreteMorseSandwich returns different diagrams presumably due to
an alternative data interpretation.

Hardware. We use a commodity laptop with an i7-1165G7@2.80GHz CPU with 5MB L2
cache, 8 logical cores, 32GB of RAM and Toshiba XG6 M.2 NVMe SSD. All software is
compiled and run on Ubuntu 20.04.5 using g++ 10.3.0. All parallel implementation are run
on 8 threads.

SoCG 2023

60:12 Slice, Simplify and Stitch

Performance comparison on smaller data. We now discuss results of the experiments. We
start with a comparison with other software on smaller datasets. Then we turn to much
larger data to understand performance characteristics and limits of our approach.

Figures 4 and 5 depict the speed and memory efficiency of the proposed method and
existing implementations. Our goal was to provide an efficient method for massive voxel
data running on commodity hardware. For small datasets the overhead related to streaming
and external memory operations dominates the computations – which is a trade-off we made
by focusing on massive data. In this case, the new version of CubicalRipser is the dominant
solution. For all datasets larger than 2563 ≈ 106 voxels, our approach is both faster and
more memory efficient.

Speed. For large enough data, our approach achieves speed between 0.25 and 2 million
voxels per second and is usually an order of magnitude faster than the fastest alternative.
The computations scale linearly with size, and also depend on the complexity of the data,
which we investigate in a moment.

105 106 107 108

Input size in voxels

0.0

0.5

1.0

1.5

2.0

Co
m

pu
ta

tio
n

sp
ee

d
[m

illi
on

s v
ox

el
s/

se
c]

Computation speed (higher is better)
Proposed method
CubicalRipser
Dipha
DiscreteMorseSandwich

Figure 4 Speed comparison in millions of processed voxels per second. Methods are marked
with different symbols. Random colors help distinguish between datasets. For datasets exceeding 1
million voxels, the proposed method offers the highest execution speed. In some cases competing
software failed to finish in reasonable time, which explains why some points are missing.

Memory. For large enough data, the proposed approach achieves much smaller memory
footprint. For the tested datasets the peak memory usage was kept below 3.5GB, whereas
alternative approaches required > 24GB of memory. Since memory consumption was the
obstacle preventing analysis of large volumes, the low memory usage is the main selling point
of the new approach.

H. Wagner 60:13

105 106 107 108

Input size in voxels

0

5

10

15

20

25

30

35

Pe
ak

 m
em

or
y

us
ag

e
[G

B]
Memory usage (lower is better)

Proposed method
CubicalRipser
Dipha
DiscreteMorseSandwich

Figure 5 Peak memory usage comparison. For datasets exceeding 1 million voxels the proposed
method offers significantly lower memory usage. Memory usage is negligible for smaller datasets.

Performance on large data. We turn to much larger datasets counted in billions of voxels
– beyond the scope of the other approaches, at least on our test hardware. Results are
summarized in Table 1.

The technicalities described in Section 7 aimed to balance memory usage and speed. In
particular, storing boundary matrix information in memory would significantly increase the
memory footprint. On the other hand, a slow on-disk implementation could impact the
overall performance. On a more fundamental level, one big unknown was the number of
extra critical cells our method will generate. They could easily overwhelm the computations
or lead to huge boundary matrices. These experiments show that we found a reasonable
balance and that memory usage was significantly decreased slowing things down.

We mention two data-points not collected in the benchmark. First, the final matrix
reduction accounts only for a small portion of the execution time. Second, storage of
the boundary matrix often dominates the memory usage. Therefore, further research into
memory-efficient matrix reduction algorithms would benefit our implementation. The work
reported in [5] is a step in this direction. We also mention that for some of the examples the
memory usage could be further reduced by setting the slice size parameter to a smaller value.

Richtmyer–Meshkov instability. The last dataset in Table 1 is a snapshot of a 3D simulation
of the Richtmyer–Meshkov instability [8]. It describes impulsive mixing of two different
density fluids – and often leads to multi-scale behaviour exhibiting topological patterns. This
particular file has size 2048 × 2048 × 1920, roughly 8 billion voxels and 64 billion cells. Its
full boundary matrix takes ≈ 1.5TB, and reducing it would require at least 3TB of RAM.
Our method requires 150 times less allowing it to work on a regular laptop.

SoCG 2023

60:14 Slice, Simplify and Stitch

Table 1 Columns represent file: original input filename; t[s]: total time in seconds; Mvox/s:
speed in millions of input voxels per second; sim: percentage of time spent in the simplification
step; B[M]: millions of nonzero elements in the resulting boundary matrix; c[M]: millions of critical
cells; p[M]: millions of persistence pairs; m[GB]: peak memory usage in GB.

file t[s] sim Mvox/s B[M] c[M] p[M] m[GB]
vertebra_512x512x512 107 74% 1.2 20 7.6 2.8 1.3
zeiss_680x680x680 190 87% 1.7 17 7.7 0.4 2.2
prone_512x512x463 231 54% 0.5 73 29.5 12.9 3.1
neocortical_..._1464x1033x76 266 59% 0.4 81 32.1 11.9 3.1
present_492x492x442 290 53% 0.4 100 37.8 15.5 4.2
stent_512x512x174 291 92% 0.2 16 5.6 2.5 0.8
christmas_tree_512x499x512 333 42% 0.4 132 53.1 20.7 5.3
marmoset_..._1024x1024x314 662 40% 0.5 273 111.4 34.5 10.4
kingsnake_1024x1024x795 1345 62% 0.6 337 140.8 51.6 13.8
pawpawsaurus_958x646x1088 1809 30% 0.4 573 232.0 109.5 21.3
chameleon_1024x1024x1080 2152 48% 0.5 619 261.4 122.3 21.8
richtmyer_..._2048x2048x1920 11477 86% 0.7 828 292.5 88.4 22.3

8 Outlook

The main contribution of this work is a streaming preprocessing scheme which reduces the
representation of voxel data without affecting its topology. In particular, it provably preserves
persistent homology of the data. We combined our scheme with an existing boundary matrix
reduction algorithm, yielding an end-to-end solution for persistent homology computations.
Our experiments show that for large data our solution is the most efficient option.

Our method achieves speed between 0.2 and 2Mvox/s depending on input complexity.
It handles complex data with 20483 voxels on a laptop.

We offer three interesting future directions the proposed scheme opens up:
We can now handle multi-scale datasets of several billion voxels. Data coming from
physical simulations, astrophysics and nanotechnology often exhibit multi-scale structure
– and using persistent homology on such data is an exciting prospect.
With little extra technical effort, we can stream huge data from a network location. This
is important since raw voxel volumes of up to 900GB are readily available but copying
and storing them can be a nuisance.
Further progress in matrix reduction algorithms will benefit our approach. In particular,
an external-memory matrix reduction algorithm would complement our scheme well.

References
1 Ulrich Bauer. Ripser: efficient computation of vietoris–rips persistence barcodes. Journal of

Applied and Computational Topology, 5(3):391–423, 2021.
2 Ulrich Bauer, Michael Kerber, and Jan Reininghaus. Clear and compress: Computing persistent

homology in chunks. In Topological Methods in Data Analysis and Visualization, 2014.
3 Ulrich Bauer, Michael Kerber, and Jan Reininghaus. Distributed computation of persistent

homology. In 2014 proceedings of the sixteenth workshop on algorithm engineering and
experiments (ALENEX), pages 31–38. SIAM, 2014.

4 Ulrich Bauer, Michael Kerber, Jan Reininghaus, and Hubert Wagner. Phat: Persistent
homology algorithms toolbox. Journal of Symbolic Computation, 78:76–90, 2017. Algorithms
and Software for Computational Topology. doi:10.1016/j.jsc.2016.03.008.

https://doi.org/10.1016/j.jsc.2016.03.008

H. Wagner 60:15

5 Ulrich Bauer, Talha Bin Masood, Barbara Giunti, Guillaume Houry, Michael Kerber, and
Abhishek Rathod. Keeping it sparse: Computing persistent homology revised. arXiv preprint
arXiv:2211.09075, 2022.

6 Paul Bendich, Herbert Edelsbrunner, and Michael Kerber. Computing robustness and persist-
ence for images. IEEE transactions on visualization and computer graphics, 16(6):1251–1260,
2010.

7 Chao Chen and Michael Kerber. Persistent homology computation with a twist. In Proceedings
27th European workshop on computational geometry, volume 11, pages 197–200, 2011.

8 Ronald H Cohen, William P Dannevik, Andris M Dimits, Donald E Eliason, Arthur A Mirin,
Ye Zhou, David H Porter, and Paul R Woodward. Three-dimensional simulation of a richtmyer–
meshkov instability with a two-scale initial perturbation. Physics of Fluids, 14(10):3692–3709,
2002.

9 Olaf Delgado-Friedrichs, Vanessa Robins, and Adrian Sheppard. Skeletonization and partition-
ing of digital images using discrete morse theory. IEEE transactions on pattern analysis and
machine intelligence, 37(3):654–666, 2014.

10 Olaf Delgado-Friedrichs, Vanessa Robins, and Adrian Sheppard. Skeletonization and partition-
ing of digital images using discrete morse theory. IEEE transactions on pattern analysis and
machine intelligence, 37(3):654–666, 2015.

11 Roman Dementiev, Lutz Kettner, and Peter Sanders. Stxxl: standard template library for xxl
data sets. Software: Practice and Experience, 38(6):589–637, 2008.

12 Pawel Dlotko. Cubical complex. In GUDHI User and Reference Manual. GUDHI Ed-
itorial Board, 2015. URL: http://gudhi.gforge.inria.fr/doc/latest/group__cubical_
_complex.html.

13 Herbert Edelsbrunner and John Harer. Computational topology: an introduction. American
Mathematical Soc., 2010.

14 Herbert Edelsbrunner, David Letscher, and Afra Zomorodian. Topological persistence and
simplification. In Proceedings 41st annual symposium on foundations of computer science,
pages 454–463. IEEE, 2000.

15 Robin Forman. A user’s guide to discrete morse theory. Séminaire Lotharingien de Combinatoire
[electronic only], 48:B48c–35, 2002.

16 Adélie Garin, Teresa Heiss, Kelly Maggs, Bea Bleile, and Vanessa Robins. Duality in persistent
homology of images. arXiv preprint arXiv:2005.04597, 2020.

17 Charles Gueunet, Pierre Fortin, Julien Jomier, and Julien Tierny. Contour forests: Fast multi-
threaded augmented contour trees. In 2016 IEEE 6th Symposium on Large Data Analysis and
Visualization (LDAV), pages 85–92. IEEE, 2016.

18 Pierre Guillou, Jules Vidal, and Julien Tierny. Discrete morse sandwich: Fast computation
of persistence diagrams for scalar data–an algorithm and a benchmark. arXiv preprint
arXiv:2206.13932, 2022.

19 David Günther, Jan Reininghaus, Hubert Wagner, and Ingrid Hotz. Efficient computation of
3D morse–smale complexes and persistent homology using discrete morse theory. The Visual
Computer, pages 1–11, 2012.

20 Attila Gyulassy, Peer-Timo Bremer, Bernd Hamann, and Valerio Pascucci. A practical
approach to morse-smale complex computation: Scalability and generality. IEEE Transactions
on Visualization and Computer Graphics, 14(6), 2008.

21 Teresa Heiss and Hubert Wagner. Streaming algorithm for Euler characteristic curves of
multidimensional images. In Michael Felsberg, Anders Heyden, and Norbert Krüger, editors,
Computer Analysis of Images and Patterns - 17th International Conference, CAIP, volume
10424 of Lecture Notes in Computer Science, pages 397–409. Springer, 2017. doi:10.1007/
978-3-319-64689-3_32.

22 G. Henselman and R. Ghrist. Matroid Filtrations and Computational Persistent Homology.
ArXiv e-prints, June 2016. arXiv:1606.00199.

SoCG 2023

http://gudhi.gforge.inria.fr/doc/latest/group__cubical__complex.html
http://gudhi.gforge.inria.fr/doc/latest/group__cubical__complex.html
https://doi.org/10.1007/978-3-319-64689-3_32
https://doi.org/10.1007/978-3-319-64689-3_32
https://arxiv.org/abs/1606.00199

60:16 Slice, Simplify and Stitch

23 Xiaoling Hu, Fuxin Li, Dimitris Samaras, and Chao Chen. Topology-preserving deep image
segmentation. In Advances in Neural Information Processing Systems, volume 32. Curran
Associates, Inc., 2019.

24 Xiaoling Hu, Yusu Wang, Li Fuxin, Dimitris Samaras, and Chao Chen. Topology-aware
segmentation using discrete morse theory. arXiv preprint arXiv:2103.09992, 2021.

25 Michael Joswig and Marc E Pfetsch. Computing optimal morse matchings. SIAM Journal on
Discrete Mathematics, 20(1):11–25, 2006.

26 Tomasz Kaczynski, Konstantin Mischaikow, and Marian Mrozek. Computational Homology.
Springer-Verlag, New York, 2004.

27 Shizuo Kaji, Takeki Sudo, and Kazushi Ahara. Cubical ripser: Software for computing
persistent homology of image and volume data. arXiv preprint arXiv:2005.12692, 2020.

28 Kevin Knudson and Bei Wang. Discrete stratified morse theory: Algorithms and a user’s
guide. arXiv preprint arXiv:1801.03183, 2018.

29 Jonathan Shewchuk Martin Isenburg. Streaming connected component computation for trillion
voxel images. In Workshop on Massive Data Algorithmics, 2009.

30 Konstantin Mischaikow and Marian Mrozek. Chaos in the lorenz equations: a computer-assisted
proof. Bulletin of the American Mathematical Society, 32(1):66–72, 1995.

31 Konstantin Mischaikow and Vidit Nanda. Morse theory for filtrations and efficient computation
of persistent homology. Discrete & Computational Geometry, 50(2):330–353, 2013.

32 Arnur Nigmetov and Dmitriy Morozov. Local-global merge tree computation with local
exchanges. In Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis, pages 1–13, 2019.

33 Vanessa Robins, Peter John Wood, and Adrian P Sheppard. Theory and algorithms for
constructing discrete morse complexes from grayscale digital images. IEEE Transactions on
pattern analysis and machine intelligence, 33(8):1646–1658, 2011.

34 Julien Tierny, Guillaume Favelier, Joshua A Levine, Charles Gueunet, and Michael Michaux.
The topology toolkit. IEEE transactions on visualization and computer graphics, 24(1):832–842,
2017.

35 Alessandro Verri, Claudio Uras, Patrizio Frosini, and Massimo Ferri. On the use of size
functions for shape analysis. Biological cybernetics, 70(2):99–107, 1993.

36 Hubert Wagner, Chao Chen, and Erald Vuçini. Efficient computation of persistent homology
for cubical data. In Workshop on Topology-based Methods in Data Analysis and Visualization,
2011.

37 Fan Wang, Saarthak Kapse, Steven Liu, Prateek Prasanna, and Chao Chen. Topotxr: A
topological biomarker for predicting treatment response in breast cancer. In International
Conference on Information Processing in Medical Imaging, pages 386–397. Springer, 2021.

38 Fan Wang, Hubert Wagner, and Chao Chen. Gpu computation of the euler characteristic
curve for imaging data. In 38th International Symposium on Computational Geometry (SoCG
2022). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2022.

	1 Introduction
	2 Standard background
	3 Setup: blocks, slices and borders
	4 Related work
	5 Persistence-aware simplification scheme
	6 Streaming simplification scheme
	7 Technicalities
	8 Outlook

