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Abstract
Dwork, Hardt, Pitassi, Reingold, & Zemel [6] introduced two notions of fairness, each of which is
meant to formalize the notion of similar treatment for similarly qualified individuals. The first of
these notions, which we call additive metric fairness, has received much attention in subsequent work
studying the fairness of a system composed of classifiers which are fair when considered in isolation
[3, 4, 7, 8, 12] and in work studying the relationship between fair treatment of individuals and fair
treatment of groups [6, 7, 13]. Here, we extend these lines of research to the second, less-studied
notion, which we call multiplicative metric fairness. In particular, we exactly characterize the fairness
of conjunctions and disjunctions of multiplicative metric fair classifiers, and the extent to which a
classifier which satisfies multiplicative metric fairness also treats groups fairly. This characterization
reveals that whereas additive metric fairness becomes easier to satisfy when probabilities of acceptance
are small, leading to unfairness under functional and group compositions, multiplicative metric
fairness is better-behaved, due to its scale-invariance.
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1 Introduction

We study the fairness of a decision-maker, modeled as a classifier C, which takes as input an
individual and outputs a label 1 or 0, each with some probability. For example, C could take
as input an individual applying for a loan and output 1 if it decides that they will receive the
loan and 0 if not, and C could have high likelihood of approving application of individuals
with high credit scores and a low likelihood of approving applications of individuals with low
credit scores.

One plausible constraint on a fair decision-maker requires that it treat similarly qualified
individuals similarly. Dwork, Hardt, Pitassi, Reingold, & Zemel [6] introduced two notions of
fairness, each meant to formalize this constraint. The first of these, additive metric fairness,
has received much attention in subsequent work [3, 4, 7, 8, 12, 13]:

▶ Definition 1 (Additive metric fairness). Let U denote a set of individuals. A classifier C is
additive metric fair with respect to a metric d : U × U → [0, 1] if for all u, v ∈ U ,

| Pr[C(u) = 1] − Pr[C(v) = 1]| ≤ d(u, v).

The difference in two individuals’ treatment is modeled as the additive difference in their
likelihoods of acceptance by the classifier, and the difference in their qualifications is given by
a metric. Additive metric fairness thus requires that two individuals’ difference in treatment
not exceed their difference in qualifications. For example, where Pr[C(u) = 1] is the likelihood
that the loan application of u is approved, d(u, v) could be the normalized difference between
the credit scores of u and v.

Additive metric fairness becomes easy to satisfy when the probabilities Pr[C(u) = 1] are
small:
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4:2 Multiplicative Metric Fairness Under Composition

▶ Example 2 (An unfair lottery). Suppose that every pair of individuals u, v differs in
qualifications by at least some amount δ. Then provided that for all individuals u, the
likelihood Pr[C(u) = 1] is at most some sufficiently small value ϵ, the classifier C will be
additive metric fair:

| Pr[C(u) = 1] − Pr[C(v) = 1]| ≤ max(Pr[C(u) = 1], Pr[C(v) = 1])
≤ ϵ ≤ δ ≤ d(u, v).

For example, C could be a highly selective university, so that C(u) = 1 means that u is
accepted; an investment with a low likelihood of return, so that C(u) = 1 means that u

received a return on the investment; or a lottery, so that C(u) = 1 means that u had a
winning lottery ticket.

As a result, additive metric fairness is compatible with the following kinds of unfairness:

▶ Example 3 (Unfairness for groups). Suppose that there are two groups A and B of investors.
If those in group B invested a cent more than those in group A, we may set d(u, v) = .01 for
u ∈ A and v ∈ B. A classifier C can satisfy additive metric fairness by giving those in group
A no chance of receiving a return on their sizable investment while giving those in group
B some sufficiently small chance ϵ of receiving a return on their similarly-sized investment.
However, this is manifestly unfair to those in group A.

▶ Example 4 (Unfairness under functional composition). Suppose u and v each apply to several
universities C1, ..., Ck, such that at each university Ci, the likelihood that u is accepted is 0
while Pr[Ci(v) = 1] = ϵ. Then the likelihood that v is accepted by at least one university may
approach 1, while u has no chance of acceptance at any university. Even if the universities
satisfy additive metric fairness when considered in isolation, because the likelihoods of
acceptance are sufficiently small, they compose to create system which fails to treat similarly
qualified applicants similarly.

Thus additive metric fairness is easier to satisfy when probabilities of acceptance are
small, and this can lead to unfairness for groups and under functional composition. In this
paper we find that the second, scale-invariant notion of fairness introduced by Dwork, Hardt,
Pitassi, Reingold, & Zemel, multiplicative metric fairness, is better-behaved in its treatment
of groups and under functional composition:

▶ Definition 5 (Multiplicative metric fairness). A classifier C is multiplicative metric fair
with respect to a metric d : U × U → R≥0 if for all u, v ∈ U ,

Pr[C(u) = 1] ≤ Pr[C(v) = 1] · exp(d(u, v)).

Multiplicative metric fairness models the difference in treatment between two individuals not
as an additive difference, but as a ratio; it does not become easy to satisfy when probabilities
are small. In order to state our results, we now introduce the relevant notions of group
fairness and of fairness under functional composition.

Group fairness

We propose the following notion of group fairness:

▶ Definition 6 (Geometric Metric Fairness). Fix a collection of protected attributes A ⊆ 2U

(e.g. races, ages, genders, etc.). A classifier C satisfies geometric metric fairness with respect
to a metric d : A × A → R≥0 when for all A, B ∈ A,

pΠ(A) ≤ pΠ(B) · exp (d(A, B)),

where pΠ(A) =
∏

u∈A Pr[C(u) = 1]1/|A| is the geometric mean likelihood of acceptance.
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In the above definition, a metric quantifies differences in qualifications between groups, just
as in Definitions 1 and 5, a metric quantifies differences in qualifications between individuals.
For example, suppose that every job applicant u ∈ A can be paired with some unique
applicant v ∈ B who is equally qualified, and vice versa. Then even if individual applicants
within each group differ in their qualifications, there is no difference in qualifications between
the groups: d(A, B) = 0. In this case, geometric metric fairness amounts to the constraint
that

pΠ(A) = pΠ(B).

This contrasts with a well-studied notion of group fairness:

▶ Definition 7 (Conditional Parity). Fix Q ⊆ 2U and a collection of protected attributes
A ⊆ 2U (e.g. races, ages, genders, etc.). A classifier C satisfies conditional parity if for all
Q ∈ Q, A, B ∈ A,

pΣ(A ∩ Q) = pΣ(B ∩ Q)

where pΣ = 1
|A∩Q|

∑
u∈A∩Q Pr[C(u) = 1] is the arithmetic mean likelihood of acceptance.

Conditional parity was introduced by Ritov, Sun, & Zhao [14] and plays a central role in
Dwork & Ilvento’s study of fairness under composition [7]. Conditional parity generalizes
other group notions of fairness. For example, one recovers parity by setting Q = {U}; one
recovers equalized odds by setting Q = {{u : Y (u) = y} : y ∈ {0, 1}}, where Y (u) denotes the
true label of u; and one recovers equal opportunity by setting Q = {{u : Y (u) = 1}} [11, 15].
In general, we think of Q as a collection of sets of individuals who are similarly qualified for
the purposes of classification.

Plausibly, one should not be able to “make up for” mistreatment of some individuals
within a group by treating other individuals within the group better; a radical departure
from the mean treatment for any sub-group should register as unfair. However, because
conditional parity only constrains the arithmetic mean probability of acceptance across
members of a group, it allows for large variance in treatment of individuals within a group.
In 2010, this feature of the arithmetic mean led the United Nations to change its way of
calculating the Human Development Index (HDI):

In 2010, the geometric mean was introduced to compute the HDI [which was previously
computed with the arithemtic mean]. Poor performance in any dimension is directly
reflected in the geometric mean. In other words, a low achievement in one dimension
is not linearly compensated for by a higher achievement in another dimension. The
geometric mean reduces the level of substitutability between dimensions and at the
same time ensures that a 1 percent decline in the index of, say, life expectancy has
the same impact on the HDI as a 1 percent decline in the education or income index.
Thus, as a basis for comparisons of achievements, this method is also more respectful
of the intrinsic differences across the dimensions than a simple average.

Just as the geometric mean index value is thought to better respect differences and
non-substitutability across the dimensions of the HDI, the geometric mean likelihood of
acceptance across a group might be thought to also better respect differences and non-
substituability across individuals within a group; this motivates the constraint of geometric
metric fairness.1

1 When any factor of the geometric mean is 0, of course the geometric mean is itself 0, and it becomes
trivial to ensure geometric metric fairness; one merely has to assign Pr[C(u) = 1] = Pr[C(v) = 1] = 0 for
one person u ∈ A and another person v ∈ B. For this reason, the geometric mean (and the associated
definition of fairness) is most meaningful when probabilities are nonzero.
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4:4 Multiplicative Metric Fairness Under Composition

Fairness under functional composition

We focus on the two kinds of functional composition introduced (with the following examples)
by Dwork & Ilvento [7]:

AND. Suppose that, considered in isolation from one another, a university’s admissions
and financial aid committees treat every pair of similarly qualified prospective students
similarly. To what degree do similarly qualified students have similar likelihoods of
receiving admission and financial aid offers?
OR. Suppose that, considered in isolation from one another, several universities’ admissions
committees treat every pair of similarly qualified prospective students similarly. To what
degree do two similarly qualified individuals have very different overall likelihoods of
being accepted by at least one university?

More formally, we can define the AND and OR compositions of several classifiers:

▶ Definition 8. Fix classifiers C1, ..., Ck. Where u is an individual to be classified, define
the classifiers

CAND(u) =
∧

i∈[k]

Ci(u)

COR(u) =
∨

i∈[k]

Ci(u).

In other words, CAND accepts individual u if and only if each of C1, ..., Ck accepts u, and
COR accepts u if and only if at least one of the classifiers C1, ..., Ck accepts u.
Supposing Ci is (additive or multiplicative) metric fair with respect to di(u, v) for i ∈ [k], in
fairness under functional composition, we ask: With respect to what metric are CAND and
COR (additive or multiplicative) metric fair?

Our results

Having introduced the relevant definitions, we can state the paper’s results:

▶ Theorem 9 (Groups). If C is multiplicative metric fair with respect to d, then it is
geometric metric fair with respect to EMDd(A, B), the earth-mover distance between uniform
distributions on A and B, with d(u, v) giving the cost of moving a unit of probability from
u to v. Further, this is tight: for any metric d on U , there exists a classifier C which is
multiplicative metric fair with respect to d and for which

pΠ(A) = pΠ(B) · exp (EMDd(A, B)).

▶ Theorem 10 (Functions). If Ci is multiplicative metric fair with respect to di(u, v) for
i ∈ [k], then:

CAND is multiplicative metric fair with respect to dΣ(u, v) =
∑

i di(u, v).
COR is multiplicative metric fair with respect to dmax(u, v) = maxi di(u, v).

Further, these results are tight: for each of the above forms of composition and for any choices
of di for i ∈ [k], there exist classifiers Ci for i ∈ [k] which are multiplicative metric fair with
respect to di and whose composition is multiplicative metric fair with respect to no metric
smaller than the one stated above.

The rest of the paper is organized as follows. §1.1 discusses related work. §1.2 summarizes
the notation used in the paper. §2 discusses the relationship between notions of metric
fairness and the above notions of group fairness, proving the paper’s first main result. §3
discusses how notions of metric fairness behave under functional composition, proving the
paper’s second main result.
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1.1 Related work
Several recent works in algorithmic fairness studies how the fairness of classifiers locally
relates to that of the classifiers’ global behavior composed over many decisions, or to
that of a classifier that in some way composes the decisions of the individual classifiers
[6, 2, 7, 9, 10, 8, 12, 3, 4].

The need for work in this area is underscored by the fact that in practice, classifiers are
often trained separately and without communication, so that any guarantees on their global
behavior must rest solely on the decisions the designers of the classifiers are able to make
in isolation. In a recent survey of work on fairness in machine learning, Chouldechova and
Roth make exactly this point, calling for work exploring fairness under composition [5]:2

Experience from differential privacy suggests that graceful degradation under com-
position is key to designing complicated algorithms satisfying desirable statistical
properties, because it allows algorithm design and analysis to be modular. Thus, it
seems important to find satisfying fairness definitions and richer frameworks that
behave well under composition.

Much recent work on fairness under composition focuses in particular on the behavior
of additive metric fairness under various kinds of composition [7, 8, 12, 3]. There are two
papers which relate especially closely to this one. The first, written by Dwork, Hardt, Pitassi,
Reingold, & Zemel [6], introduced the notion of additive metric fairness and characterized
its relation to conditional parity. The second, written by Dwork & Ilvento [7], introduced
the kinds of functional composition (AND and OR) studied in this paper and made progress
in showing that additive metric fairness is not always well-behaved under these kinds of
composition; we summarize some of this work in §3.1. Our results are meant to complement
this line of research, by showing that multiplicative metric fairness is better-behaved in
treatment of groups and under functional composition.

1.2 Notation
A classifier C : U × {0, 1}∗ → {0, 1} is a (possibly randomized) Boolean-valued map, defined
on a universe U of individuals u ∈ U . We denote by 1 − C the classifier C ′ which accepts
precisely the individuals rejected by C: C ′(u) := ¬C(u). We say that a classifier accepts an
individual when it assigns them a label of 1 and rejects an individual when it assigns them a
label of 0. Throughout, d is a metric on U . For classifiers C1, ..., Ck, we use d1, ..., dk to denote
their corresponding metrics. We define dΣ(u, v) =

∑
i di(u, v) and dmax(u, v) = maxi di(u, v).

Subsets A, B ⊆ U denote protected groups. For a classifier C, we denote by pΠ(A) the
geometric mean likelihood of acceptance and by pΣ(A) the arithmetic mean likelihood of
acceptance. When there are multiple classifiers C1, ..., Ck, we assume the randomness of the
classifiers Ci to be mutually independent, and we use pi(u) to denote Pr[Ci(u) = 1]. We
define pAND(u) = Pr[CAND(u) = 1] and pOR(u) = Pr[COR(u) = 1], where CAND is the
AND composition and COR the OR composition of some classifiers C1, ..., Ck.

2 Dwork & Ilvento [7] point out an important difference between differential privacy and fairness under
composition: “Comparing functional composition to differential privacy, it is important to understand
that each component satisfying individual fairness separately (and for different metrics) is not analogous
to the composition properties of differential privacy. With differential privacy, we assume a single
privacy loss random variable which evolves gracefully with each release of information, increasing in
expectation over time. However, with fairness, we may see that fairness loss increases or decreases
(depending on the number and type of compositions) in idiosyncratic ways. Moreover, we may need to
simultaneously satisfy many different task-specific ‘fairness budgets,’ and a bounded increase in distance
based on one task may be catastrophically large for another.”

FORC 2023
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2 Treatment of groups

The relation of (conditional) parity to additive metric fairness has garnered recent interest
[1, 6].3 Dwork, Hardt, Pitassi, Reingold, & Zemel [6] give a tight characterization of
the relationship between additive metric fairness and parity, using the following notion of
earth-mover’s distance:

▶ Definition 11 (Earth-Mover’s Distance). Fix sets A, B ⊆ U and a collection of associated
costs d(u, v) ≥ 0 for each u ∈ A, v ∈ B. The earth-mover’s distance EMDd(A, B) is the
minimum amount of work required to transform a uniform distribution on A into one on
B, where the amount of work required to move a unit of probability from individual u to
individual v is given by d(u, v). Formally,

EMDd(A, B) =
∑

u∈A,v∈B

fu,v · d(u, v),

where the variables fu,v give an optimal solution to the following linear program (LP):

min
∑

u∈A,v∈B

fu,v · d(u, v)

fu,v ≥ 0
fu,v = 0 if u ̸∈ A or v ̸∈ B∑
v∈B

fu,v = 1
|A|

,
∑
u∈A

fu,v = 1
|B|

,
∑

u∈A,v∈B

fu,v = 1

Dwork, Hardt, Pitassi, Reingold, & Zemel [6] prove the following by LP duality, applied
to the LP in Definition 11:

▶ Theorem 12. If C is additive metric fair with respect to d, then for all A, B ⊆ U ,

|pΣ(A) − pΣ(B)| ≤ EMDd(A, B).

Further, this is tight: for all metrics d and choices of A, B, there exists a classifier C that is
additive metric fair with respect to d, such that the above inequality is an equality.

The above result says that if C is additive metric fair, then the earth-mover distance
gives a tight characterization of the extent to which C satisfies conditional parity. The same
authors observe that an identical upper bound holds if we instead assume that C and 1 − C

are multiplicative metric fair:

▶ Corollary 13. If C and 1 − C are multiplicative metric fair with respect to d, then for all
A, B ⊆ U ,

|pΣ(A) − pΣ(B)| ≤ EMDd(A, B).

3 We observe that there is no deep difference been parity (i.e. conditional parity where Q = U) and
conditional parity. It is clear that conditional parity is a generalization of parity. Conversely, conditional
parity is a version of parity where we stipulate that A and B are equally qualified.
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Thus the relationship between additive metric fairness and parity is well-understood, and it is
known already that multiplicative metric fairness performs “at least as well” as additive metric
fairness, in the sense that one can only get closer to satisfying parity in the multiplicative
case.

However, because Theorem 12 only provides a bound on the difference between arithmetic
mean conditional probabilities of acceptance, the guarantee can still hold when sub-groups
are treated very differently, so long as advantages and disadvantages of different sub-groups
are traded off in a way that maintains conditional parity. We now show Theorem 9, according
to which multiplicative metric fairness, in contrast to additive metric fairness, provides a
bound on the ratio of the geometric mean probabilities of acceptance:

Proof. We first show the upper bound and next show the lower bound. Fix a classifier C

which is multiplicative metric fair with respect to d, and fix any flow {fu,v}u∈A,v∈B solving
the earth-mover LP. Using the multiplicative metric fairness constraint, note that for all
u ∈ A, v ∈ B, we have

Pr[C(u) = 1]fu,v ≤ ed(u,v)·fu,v · Pr[C(v) = 1]fu,v .

Taking the product on both sides over all u ∈ A, v ∈ B gives∏
u∈A

Pr[C(u) = 1]
∑

v∈B
fu,v ≤

∏
u∈A,v∈B

ed(u,v)·fu,v ·
∏
v∈B

Pr[C(v) = 1]
∑

u∈A
fu,v .

Note that for u ∈ A, we have
∑

v∈B fu,v = 1/|A|, while for v ∈ B, we have
∑

u∈A fu,v = 1/|B|.
Thus

pΠ(A) ≤ exp{EMDd(A, B)} · pΠ(B)

Now, we show the lower bound. Fix any metric d. Let c be a constant with 1 ≤ c such
that d(u, v) ≤ c for all u, v ∈ U . Define the metric d′(u, v) = d(u, v)/c, so that d′(u, v) ∈ [0, 1]
for all u, v ∈ U . By Theorem 12, there exists a classifier C ′ which is additive metric fair with
respect to d′ and for which

|p′
Σ(A) − p′

Σ(B)| = EMDd′(A, B). (1)

Define C by

Pr[C(u) = 1] = exp{− Pr[C ′(u) = 1] · c}.

Because C ′ is additive metric fair with respect to d′, it follows that C is multiplicative metric
fair with respect to d:

ln
[

Pr[C(u) = 1]
Pr[C(v) = 1]

]
= − Pr[C ′(u) = 1] · c + Pr[C ′(v) = 1] · c ≤ d′(u, v) · c = d(u, v).

Suppose without loss of generality that p′
Σ(B) ≥ p′

Σ(A). Let us restate Equation 1 using the
definition of C:

1
c

·
∑
u∈B

− ln Pr[C(u) = 1]
|B|

− 1
c

·
∑
v∈A

− ln Pr[C(v) = 1]
|A|

= EMDd′(A, B)

= EMDd(A, B)
c

.

Eliminating the factor 1/c and making both sides the exponent of e, we obtain∏
u∈B Pr[C(u) = 1]−1/|B|∏
u∈A Pr[C(u) = 1]−1/|A| = pΠ(A)

pΠ(B) = exp{EMDd(A, B)},

as desired. ◀

FORC 2023
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3 Functional composition

We first overview known results for additive metric fairness under functional composition;
this will serve to illustrate the contrast with multiplicative metric fairness.

3.1 Additive metric fairness under functional composition
Here, we rehearse known limitations and positive results for additive metric fairness of AND
and OR compositions, with an eye to explaining some of the difficulties that arise.

We start with AND fairness. Given the following result, it is tempting to conjecture that
CAND is additive metric fair with respect to the maximum of the individual metrics:

▶ Proposition 14 (Dwork & Ilvento [7]). Fix nontrivial metrics d1, d2 and let d be any metric.
If there exist u, v ∈ U such that

d(u, v) ≤ d1(u, v), d2(u, v), and
d1(u, v), d2(u, v) > 0,

there exist C1, C2, fair with respect to d1, d2, such that CAND is unfair with respect to d.

dxBut in fact even picking dmax does not guarantee additive metric fairness:

▶ Example 15. Let C1 and C2 be copies of the same classifier: pi(u) = 1, pi(v) = 1/2, and
di(u, v) = 1/2 for i = 1, 2. Then the classifiers Ci are individually additive metric fair with
respect to di(u, v), but their composition is not fair with respect to dmax(u, v) = maxi di(u, v).

In a sense, when probabilities are small, the choice of metric for the AND composition in the
additive case does not matter: as long as for each u, there exists some i with pi(u) ≤ d(u, v),
a fortiori pAND(u) ≤ d(u, v). Since without loss of generality pAND(u) ≥ pAND(v), we
have |pAND(u) − pAND(v)| ≤ d(u, v), giving fairness with respect to the arbitrary metric
d. In other words, if probabilities are small enough, additive metric fairness for the AND
composition trivializes.

We turn now to OR fairness. Dwork & Ilvento [7] observe that in the case of OR fairness,
it is natural to suppose that the metrics are identical; returning to an earlier example, if
the individual classifiers are admissions committees for different universities, it is natural to
suppose that the admissions committees compare candidates using similar metrics. In this
case the problem just discussed of picking a metric against which to compare the composition
is more tractable: one can pick the composition metric to be the same as the metrics of the
individual classifiers. Dwork & Ilvento’s results imply the following:

▶ Proposition 16 (Dwork & Ilvento [7]). Fix classifiers C1, ..., Ck that are additive metric
fair with respect to d. Consider two cases. If for all u, we have

Pr[COR(u) = 1] ≥ 1
2 ,

then for any classifier Ck+1 with Pr[Ck+1(u) ≥ 1/2] for all u ∈ U , the OR composition of
C1, ..., Ck+1 is additive metric fair with respect to d. If instead the above condition fails for
some u, v with nontrivial distance (d(u, v) > 0), then there exist two classifiers Ck+1, Ck+2,
additive metric fair with respect to d, such that the OR composition of C1, ..., Ck+2 is not
additive metric fair with respect to d.

In other words, the first, positive part of the above result says that if an initial collection
of classifiers is more likely than not to accept every individual, adding a classifier that shares
this property makes the entire collection’s OR composition fair. The second, negative part



M. Mossé 4:9

of the result says that if there are even two (nontrivially different) individuals the initial
collection is more likely to reject than accept, one can add two fair classifiers that make
the OR composition of the entire collection unfair. We earlier found that when when the
probabilities pi(u) are small enough, additive fairness for the AND composition trivializes;
we now find that when the probabilities are small, we have no positive result for the additive
metric fairness of the OR composition.

3.2 Multiplicative metric fairness under functional composition
We now show Theorem 10, which provides substantive fairness guarantees even when prob-
abilities of acceptance are small:4

Proof. For u, v ∈ U

pAND(u) =
∏

i

pi(u) ≤
∏

i

pi(v) · edi(u,v) = pAND(v) · e
∑

i
di(u,v).

This shows that CAND is multiplicative metric fair with respect to dΣ. To see that the
result is tight, one simply picks classifiers such that pi(u) = edi(u,v) · pi(v), so that indeed
pAND(u) = edΣ(u,v)pAND(v).

We next show that COR is multiplicative metric fair with respect to dmax and show that
this is tight. We only consider the case where k = 2, since iterating the argument then
gives the result for general k. Suppose without loss of generality that pOR(u) ≥ pOR(v). By
assumption C1, C2 are multiplicative metric fair with respect to dmax, so it suffices to show
the first inequality:

pOR(u)
pOR(v) ≤ max

[
p1(u)
p1(v) ,

p2(u)
p2(v)

]
≤ edmax(u,v).

To show the first inequality, we suppose pOR(u)/pOR(v) > p1(u)/p1(v) and show that it
follows that

pOR(u)
pOR(v) <

p2(u)
p2(v) .

Noting that pOR(u) = p1(u) + p2(u) − p1(u)p2(u), let us rephrase pOR(u)
pOR(v) > p1(u)/p1(v) after

clearing denominators:

p1(v)[p1(u) + p2(u) − p1(u)p2(u)] > p1(u)[p1(v) + p2(v) − p1(v)p2(v)].

After removing p1(v)p1(u) from both sides and factoring, the above says that

p2(u)p1(v)(1 − p1(u)) > p2(v)p1(u)(1 − p1(v)).

In other words,

p2(u)
p2(v) >

p1(u)
p1(v) · 1 − p1(v)

1 − p1(u) .

4 Dwork, Hardt, Pitassi, Reingold & Zemel [6] introduce the constraint equivalent to multiplicative
metric fairness for C and 1 − C. Theorem 10 illustrates why this paper has separated their definition
into two components: multiplicative metric fairness of 1 − Ci for i ∈ [k] does not yield multiplicative
metric fairness for 1 − CAND, where CAND is the AND composition of C1, ..., Ck, but instead yields
multiplicative metric fairness for the AND composition of 1 − C1, ..., 1 − Ck.

FORC 2023
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We will later show that 1−p1(v)
1−p1(u) ≥ 1−p2(u)

1−p2(v) , but let us finish the proof on this assumption.
Combining this with the above inequality gives

p2(u)
p2(v) >

p1(u)
p1(v) · 1 − p2(u)

1 − p2(v) .

Clearing denominators, the above says that

p2(u)[p1(v) − p1(v)p2(v)] > p2(v)[p1(u) − p1(u)p2(u)]

Add p2(u)p2(v) to both sides. Then the above says that

p2(u)[p1(v) + p2(v) − p1(v)p2(v)] > p2(v)[p1(u) + p2(u) − p1(u)p2(u)],

or in other words, p2(u)/p2(v) > pOR(u)/pOR(v), as desired.
It remains for us to show that

1 − p1(v)
1 − p1(u) ≥ 1 − p2(u)

1 − p2(v) .

Since by assumption pOR(u) ≥ pOR(v), of course 1 − pOR(v) ≥ 1 − pOR(u). Noting that
pOR(v) = 1 − (1 − p1(v))(1 − p2(v)), we can rephrase 1 − pOR(v) ≥ 1 − pOR(u) as

(1 − p1(v))(1 − p2(v)) ≥ (1 − p1(u))(1 − p2(u)) ⇐⇒ 1 − p1(v)
1 − p1(u) ≥ 1 − p2(u)

1 − p2(v) .

We now show that the result for OR is tight. It again suffices to consider the case for
k = 2. Fix any metric d1(u, v) and put d2(u, v) = d1(u, v) − α for an arbitrarily small α > 0.
We claim there exist classifiers C1, C2 such that:

The classifiers C1, C2 are (respectively) multiplicative metric fair with respect to d1, d2.
COR is not multiplicative metric fair with respect to d2(u, v).

Let β1 ∈ (0, e−d1(u,v)], β2 ∈ (0, e−d2(u,v)] be parameters to be chosen later and define

p1(u) = β1 · exp[d1(u, v)]
p1(v) = β1

p2(u) = β2 · exp[d2(u, v)]
p2(v) = β2.

Then the classifiers C1, C2 defined by the above probabilities are multiplicative metric fair
with respect to d1, d2 (respectively). We claim that for β2 < β1·α

exp[d2(u,v)]·(1−β1) , we have

pOR(u) ≥ p1(u) > exp[d2(u, v)] · pOR(v),

so that COR is indeed not multiplicative metric fair with respect to d2. It suffices to show
the inequality on the right, which says that

p1(u) > exp[d2(u, v)][β1 + β2 − β1β2] = exp[d2(u, v)] · β1 + β2 · exp[d2(u, v)] · (1 − β1).

Subtracting exp[d2(u, v)] · β1 from both sides, this says that

β1 · α = p1(u) − exp[d2(u, v)] · β1 > β2 · exp[d2(u, v)] · (1 − β1),

which holds by our choice of β2. ◀
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