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Preface

This volume contains the papers that were presented at the 2nd Symposium on Algorithmic
Foundations of Dynamic Networks, held in Pisa, Italy, June 19–21, 2023.

The Symposium on Algorithmic Foundations of Dynamic Networks (SAND) is a new
conference whose objective is to become the primary venue for original research on funda-
mental aspects of computing in dynamic networks and computational dynamics, bringing
together researchers from computer science and related areas. SAND is seeking important
contributions from all viewpoints, including theory and practice, characterized by a marked
algorithmic aspect and addressing or being motivated by the role of dynamics in computing.
It welcomes both conceptual and technical contributions, as well as novel ideas and new
problems that will inspire the community and facilitate the further growth of the area.

The program committee of SAND 2022 consisted of
David Doty (University of California, Davis, USA, co-chair),
Paul Spirakis (University of Liverpool, UK, co-chair),
Mostefaoui Achour (Université de Nantes, France),
Hagit Attiya (Technion, Israel),
Petra Berenbrink (Universität Hamburg, Germany),
Silvia Bonomi (Sapienza Università di Roma, Italy),
Janna Burman (Université Paris-Saclay, France),
Arnaud Casteigts (University of Bordeaux, France),
Ho-Lin Chen (National Taiwan University),
Giuseppe Di Luna (Sapienza Università di Roma, Italy),
Mahsa Eftekhari (Microsoft, USA),
Jessica Enright (University of Glasgow, UK),
Javier Esparza (Technische Universität München, Germany),
Pierre Fraigniaud (CNRS, France),
Leszek Gasieniec (University of Liverpool, UK),
Chryssis Georgiou (University of Cyprus),
Peter Kling (Universität Hamburg, Germany),
Dariusz Kowalski (Augusta University, USA),
Marios Mavronicolas (University of Cyprus),
George Mertzios (Durham University, UK),
Othon Michail (University of Liverpool, UK),
Slobodan Mitrović (University of California, Davis, USA),
Sotiris Nikoletseas (Patras University, Greece),
Thomas Nowak (Université Paris-Saclay, France),
Giuseppe Prencipe (University of Pisa, Italy),
Andrea Richa (Arizona State University, USA),
Elad Schiller (Chalmers University of Technology, Sweden),
Stefan Schmid (Technische Universität Berlin, Germany),
George Skretas (Hasso Plattner Institute, Germany),
Yuichi Sudo (Hosei University, Japan),
Przemysław Uznański (University of Wrocław, Poland),
Hirozumi Yamaguchi (Osaka University, Japan),
Yukiko Yamauchi (Kyushu University, Japan).
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0:viii Preface

SAND 2023 received 20 submissions. The review process was double-blind and each paper
was assigned to at least three members of the program committee with relevant expertise
and eventually reviewed by them and/or by additional reviewers whenever needed. The
program committee accepted 14 papers that cover a wide range of topics in the broad area of
algorithmic foundations of dynamic networks and computational dynamics, including DNA
self-assembly, dynamic networks and distributed algorithms, mobile computing and robotics,
and temporal and dynamic graph algorithms. Keynote talks were given by distinguished
researchers, to whom we are grateful: Fabian Kuhn (Albert-Ludwigs-Universit at), Kitty
Meeks (University of Glasgow), and Nicola Santoro (Carleton University).

The program committee selected the paper “When Should You Wait Before Updating?
– Toward a Robustness Refinement” by Swan Dubois, Laurent Feuilloley, Franck Petit and
Mika el Rabie, for the Best Paper Award and the paper “Snapshot Disjointness in Temporal
Graphs” by Allen Ibiapina and Ana Silva, for the Best Student Paper Award. We wish to
thank the members of the various committees of SAND as well as its advisory board, for all
the hard work that they have put and which has made it possible to set up a new conference.
All have been supportive throughout. We are grateful to the program committee members
and to the additional reviewers for devoting time and effort in order to come up with a strong
conference program. A special thanks goes to the general chair of the organizing committee,
Giuseppe Prencipe, and organizing committee members Silvia Filogna and Samuele Bonini.
We are also indebted to the chair of the SAND steering committee, Paola Flocchini, for
all her support, to Giuseppe Prencipe for handling all the financial aspects, and to George
Skretas for helping on publicity matters.

Above all, we thank the authors for submitting their work to SAND 2023. We can assure
the reader that in this volume they will find well-presented ideas and results that make
substantial contributions to our knowledge on the role of dynamics in computing. We do
believe that this volume will inspire further work and will contribute to the further growth
of this exciting research area.

June, 2023 David Doty and Paul Spirakis
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Snapshot Disjointness in Temporal Graphs
Allen Ibiapina #

ParGO Group, Departament of Mathematics, Federal University of Ceará, Fortaleza, Brazil

Ana Silva1 # Ñ

ParGO Group, Departament of Mathematics, Federal University of Ceará, Fortaleza, Brazil

Abstract
In the study of temporal graphs, only paths respecting the flow of time are relevant. In this context,
many concepts of walks disjointness have been proposed over the years, and the validity of Menger’s
Theorem, as well as the complexity of related problems, has been investigated. Menger’s Theorem
states that the maximum number of disjoint paths between two vertices is equal to the minimum
number of vertices required to disconnect them. In this paper, we introduce and investigate a type
of disjointness that is only time dependent. Two walks are said to be snapshot disjoint if they are
not active in a same snapshot (also called timestep). The related paths and cut problems are then
defined and proved to be W[1]-hard and XP-time solvable when parameterized by the size of the
solution. Additionally, in the light of the definition of Mengerian graphs given by Kempe, Kleinberg
and Kumar in their seminal paper (STOC’2000), we define a Mengerian graph for time as a graph
G for which there is no time labeling for its edges where Menger’s Theorem does not hold in the
context of snapshot disjointness. We then give a characterization of Mengerian graphs in terms of
forbidden structures and provide a polynomial-time recognition algorithm. Finally, we also prove
that, given a temporal graph (G, λ) and a pair of vertices s, z ∈ V (G), deciding whether at most
h multiedges can separate s from z is NP-complete, where one multiedge uv is the set of all edges
with endpoints u and v.

2012 ACM Subject Classification Mathematics of computing → Combinatorics; Mathematics of
computing → Paths and connectivity problems

Keywords and phrases Temporal graphs, Menger’s Theorem, Snapshot disjointness

Digital Object Identifier 10.4230/LIPIcs.SAND.2023.1

Funding This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível
Superior – Brasil (CAPES) – Finance Code 001, CNPq grants 303803/2020-7, and FUNCAP/CNPq
PNE-0112-00061.01.00/16 and MLC-0191-00056.01.00/22.

1 Introduction

A temporal graph can be described as a graph that varies in time. Such objects can be
modeled in different ways, usually according to the application being considered, and have
appeared in the literature under many names as for instance dynamic networks [19], temporal
networks [9], time-varying graphs [4], etc. For surveys we refer the reader to [9, 14]. In
this paper, we consider a temporal graph to be a pair (G, λ), where G is a multigraph
(henceforward called just graph) and λ is a function, called timefunction, that relates each
edge to a discrete label telling when such edge is active. The value maxe∈E(G) λ(e) is called
lifetime and is denoted by τ . Also, graph G is called the base graph. See Figure 1a for an
example.

Many practical problems are modeled as temporal graphs (see [9] for a nice collection of
practical examples), and among the most common ones are those related to temporal walks
and connectivity. A temporal walk is a walk that respects the flow of time; for simplicity, we

1 This work was partially developed during this author’s stay as visiting professor at the University of
Florence.
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1:2 Snapshot Disjointness in Temporal Graphs

(a) Temporal graph with lifetime 4.
(b) Pair s, z whose cut must be bigger than
the number of snapshot disjoint paths.

Figure 1 Examples used throughout the text to clarify some concepts.

represent temporal walks as sequences of vertices and timesteps. For instance, in Figure 1a,
the sequence (w, 2, z, 2, v, 3, z, 4, u) is a temporal walk between w and u (also called temporal
w, u-walk). A temporal path is then defined as a temporal walk whose vertices are not
repeated. Hence, the previously mentioned temporal w, u-walk is not a path, while the walk
(w, 2, z, 4, u) is a temporal path. Additionally, some authors deal only with walks and paths
whose edges are active in strictly increasing times; in such case, (s, 1, w, 2, z, 3, v) is a valid
temporal s, v-path, while (s, 2, u, 3, z, 3, v) is not. To distinguish from these, we say that a
walk/path is strict if the edges are active in strictly increasing times, and that it is non-strict
if they are active in non-decreasing times.

In contrast with classic graph theory, when dealing with walks and paths in temporal
graphs, sometimes the connectivity problems defined on walks differ from those defined on
paths. See for instance [1, 5, 7, 10]. This is not the case for the problems investigated here,
and this is why we interchangeably use the terms walks and paths.

Connectivity problems concern the robustness of a network, which translates into knowing
how many independent (or disjoint) ways there are to go from one vertex to another, and how
easy it is to break such connections. In this paper, we introduce a new robustness concept
that relies on the time aspect of a network. To better understand these concepts, consider
the following scenario. Suppose a temporal graph (G, λ) models a communication network.
Such network might be prone to interruptions of all communications at a given timestep
due to attacks, blackouts, maintenance, etc. A good measure of robustness of such networks
could then be the minimum number of timesteps in which the communications must get
interrupted in order to break all possible connections between a pair of vertices. A network
with higher measure means that it is less susceptible to failing under such interruptions and
hence is considered more robust. In Figure 1a, for instance, if there is an interruption on
timesteps 2 and 3, then vertex s cannot relay a message to z anymore, while it still can relay
messages to v through the path (z, 1, w, 1, v).

To model such scenario, we say that two temporal s, z-paths P and Q are snapshot
disjoint if, at any given timestep, at most one between P and Q is traversing any edges.
For example, in Figure 1a, paths (s, 1, w, 1, v, 2, z) and (s, 3, w, 3, u, 3, z) are two snapshot
disjoint temporal s, z-paths. We also say that a set S of timesteps is a snapshot s, z-cut if
every temporal s, z-path uses an edge active in timestep i for some i ∈ S. For example, in
Figure 1a, S = {2, 3} is a snapshot s, z-cut. The following problems are then defined.

≤ h-snapshot s, z-cut
Input. A temporal graph (G, λ), vertices s, z ∈ V (G), and an integer h.
Question. Is there a snapshot s, z-cut in (G, λ) of size at most h?
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≥ k-snapshot disjoint temporal s, z-paths
Input. A temporal graph (G, λ), a pair of vertices s, z ∈ V (G), and a positive integer k.
Question. Is there a set of snapshot disjoint temporal s, z-paths in (G, λ) of size at least k?

We prove that, when parameterized by h and k respectively, both problems are W[1]-hard,
and that this is best possible, i.e., that they are also XP. While the XP algorithm for
snapshot s, z-cut follows easily from the definition and the fact that we can test all possible
cuts in XP time (namely, O(τh) time), the algorithm for snapshot disjoint temporal
s, z-paths is much more involved and uses a technique similar to the one applied to find
k vertex disjoint paths between k given pairs of vertices (also known as the k-linkage
problem) in a DAG [17]. As we will see in the related works, this is the first result of
this kind, with all previously defined disjointness either having the related paths problem
polynomial-time solvable or para-NP-complete (i.e., NP-complete for fixed values of k).

A celebrated result in classic graph theory tells us that, in a graph G and for every
pair s, z ∈ V (G), the maximum number of internally vertex disjoint s, z-paths is equal to
the minimum size of an s, z-cut (vertices whose removal breaks all s, z-paths). This is the
well known Menger’s Theorem, and it holds on both undirected and directed graphs, as
well as for edge-disjoint paths and edge cuts. When translating these concepts to temporal
graphs, it is natural to ask whether a version of Menger’s Theorem holds. The answer in our
context is no, as can be witnessed by the example in Figure 1b. Note that any two temporal
s, z-paths intersect in some timestep, while there is no snapshot s, z-cut of size 1. Indeed,
(s, 1, a, 1, b, 2, z) does not use edges active in timestep 3, (s, 2, a, 3, b, 3, z) does not use 1, and
(s, 1, a, 1, b, 3, z) does not use 2.

In their seminal paper, Kempe, Kleinberg and Kumar [13], in the context of vertex disjoint
temporal paths, defined a Mengerian graph as being a graph where Menger’s Theorem would
hold for every choice of timefunction. They then characterize these graphs when constrained
to simple graphs (every multiedge has multiplicity 1), and more recently their result was
generalized to allow for multigraphs [11]. Here, we say that G is Mengerian for time if,
for every timefunction λ and every s, z ∈ V (G), the maximum number of snapshot disjoint
temporal s, z-paths in (G, λ) is equal to the minimum size of a snapshot s, z-cut. In other
words, the snapshot disjoint version of Menger’s Theorem always holds on temporal graphs
whose base graph is G. We then give the following characterization, which will be proved
in Section 5. The formal definition of an m-topological minor is given in Section 2, but for
now it suffices to say that it is a generalization of topological minors that preserves the
multiplicity of the multiedges.

▶ Theorem 1. Let G be a graph. Then G is Mengerian for time if and only if G does
not have any of the graphs in Figure 2 as m-topological minor. Moreover, we can recognize
whether G is Mengerian for time in polynomial time.

Finally, in order to fill an open entry related to multiedge disjoint temporal paths
(the definition is presented shortly), we prove in Section 6 that the related cut problem is
NP-complete even if the temporal graph has lifetime equal to 2.

Related problems

As snapshot disjointness is a newly introduced concept, no previous results exist. We
then refer the reader to the many results about Menger’s related concepts in temporal
graphs. In this context, the vertex disjoint version of Menger’s Theorem was proved not
to hold by Berman [3]. Since then a number of papers have investigated the complexity of
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1:4 Snapshot Disjointness in Temporal Graphs

Figure 2 Graphs in the set M.

related problems [13, 20], as well as new structural concepts like the definition of Mengerian
graphs [13, 11], and adaptations to temporal vertex disjoint versions [16, 10]. Because our
problem is more closely related to edge connectivity, we refrain from commenting in detail the
results on vertex connectivity, but refer the reader to [10] for an overview of such results. In
what follows, we present the edge-related concepts and existing results. These are summarized
in Table 1.

Table 1 On the leftmost column, we specify the type of disjointness. Above, τ denotes the lifetime
of the temporal graph, k denotes the number of paths, h denotes the size of the cut, NPc stands for
NP-completness, and W[1] or XP stands for W[1]-hardness or XP results when parameterizing by
the size of the solution. Gray cells are proved in this paper.

Non-strict Strict
≥ k-Walks ≤ h-Cut ≥ k-Walks ≤ h-Cut

Multiedge NPc [3], if G dir., NPc for τ = 2 NPc for τ = 5 [12] NPc for τ = 4 [2]
even for k = τ = 2 (Theorem 13) and k = 2 [15] and W[1] for h [8]

Edge Polynomial [3] Polynomial [16]
Snapshot W[1] for k (Th. 6) W[1] for h (Th. 7) Open

XP for k (Th. 5) XP for h (Th. 4)
Node dep. Open Polynomial [16]

A set of temporal s, z-walks are edge disjoint if they share no edges, and are multiedge
disjoint if they share no multiedges, i.e, if no two walks in the set use consecutively a same
pair of vertices. For example, in Figure 1a, the paths (s, 1, w, 2, z) and (s, 3, w, 3, u, 3, z) are
edge disjoint, but are not multiedge disjoint, since they share the multiedge with endpoints
sw. A set of (multi)edges is a temporal (multi)edge s, z-cut if they intersect every temporal
s, z-walk. For example, in Figure 1a, sw and su form a multiedge s, z-cut, but if we want
an edge s, z-cut, we have to pick both edges whose endpoints are sw. Some works define a
temporal graph with lifetime τ as a pair (G, λ) where λ : E(G) → 2[τ ]. Observe that there is
equivalence with our model.

In [3], Berman showed that the edge problems for non-strict temporal paths are polynomial-
time solvable, and that deciding the existence of at least k multiedge disjoint temporal paths
is NP-complete, G directed or undirected, and if G is directed, then the same holds even if
k = τ = 2. Up to our knowledge, no result concerning the cut problem related to multiedges
is known. By a simple modification of a proof in [20], we present in Section 6 a proof of
NP-completeness of the multiedge cut problem. Our proof also works for the case where G is
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a directed multigraph. Concerning strict paths, the complexities of these problems follow
directly from results about problems on bounded length paths [2, 8]. Additionally, the strict
problems related to edge disjoint paths was shown to be polynomial-time solvable in [16]. We
mention that, among all the problems appearing in Table 1, Menger’s Theorem holds only
for edge disjoint paths in both the strict and non-strict contexts [3, 16], and node departure
disjoint strict paths, defined below.

Another related concept is that of node departure disjoint, introduced in [16]. Given a
temporal graph (G, λ) with lifetime τ , a set of strict temporal s, z-walks is node departure
disjoint if no two of these paths leave a vertex in the same timestep. For example, in
Figure 1a, (s, 1, w, 2, z) and (s, 3, w, 3, u, 3, z) are node departure disjoint. Additionally, a
set S ⊆ V (G) × [τ ] is a node departure s, z-cut if each strict temporal s, z-walks contains
an edge departing from u in time t, for some (u, t) ∈ S. For example, in Figure 1a, the set
S = {(s, 1), (s, 2), (s, 3)} is a node departure s, z-cut. In [16], the authors prove that the
maximum number of node departure disjoint s, z-walks is equal to the minimum size of a
node departure s, z-cut. Even though the authors do not comment on the complexity of the
related problems, their proof leads to a polynomial time algorithm as it consists of building
a flow network and proving that the searched values are equivalent to applying the famous
Maxflow-Mincut Theorem. Up to our knowledge, their results have not been investigated for
the non-strict context.

The text is organized as follows. In Section 2, we present definitions, terminology and
some basic results. In Section 3, we present our XP algorithms. In Section 4, we prove that
≤ h-snapshot s, z-cut and ≥ k-snapshot disjoint temporal s, z-paths are W[1]-hard
when parameterized by h and k, respectively. In Section 5, we characterize Mengerian graphs.
Finally, in Section 6, we prove that ≤ h-Multiedge cut is NP-complete, and in Section 7 we
present our concluding remarks.

2 Definitions and Terminology

Given positive integers i, j ∈ N such that j ≥ i, we denote by [i, j] the set {i, i + 1, . . . , j}
and by [j] the set {1, . . . , j}.

A graph is a triple (V, E, f) where V and E are finite sets that we call vertex set and
edge set respectively, and f is a function that, for each e ∈ E associates a pair xy of elements
in V , where x ̸= y. We say that edge e is incident to x and y, that x, y are the endpoints
of e, and that e connects x and y. We omit f in the rest of the paper and refer simply to
the endpoints of e instead. We also call the pair xy a multiedge, and the number of edges
with endpoints xy is the multiplicity of the multiedge xy. If the multiplicity of each edge
is 1, we say that G is a simple graph. We denote by U(G) the simple graph obtained from G

by decreasing the multiplicity of all multiedges to 1. See [18] for further basic definitions of
graph theory.

Given a graph G and a set of vertices Z ⊆ V (G), the identification of Z is the graph
obtained from G − Z by adding a new vertex z and, for every edge e with endpoints z′u

where z′ ∈ Z and u /∈ Z, add an edge e′ with endpoints zu. The graph G′ obtained from G

by a subdivision of an edge e with endpoints uv is the graph having V (G) ∪ {ze} as vertex
set, and E(G − e) ∪ {e′, e′′} as edge set, where e′ has endpoints uze and e′′ has endpoints
zev. Finally, the graph obtained from G by an m-subidivision of a multiedge xy is the graph
obtained by subdividing all the edges with endpoints xy and then identifying the new vertices.
Observe Figure 3 for an illustration of these definitions. The definition of m-subdivision has
been introduced in [11]. Given a graph H, if G has a subgraph that can be obtained from
m-subdivisions of H, then we say that H is an m-topological minor of G.
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1:6 Snapshot Disjointness in Temporal Graphs

Figure 3 From left to right: the multiedge xy, the subdivision of an edge with endpoints xy, and
the m-subdivision of xy.

A temporal graph is a pair (G, λ) where G is a graph and λ : E(G) → N \ {0}. We
refer to the elements of N \ {0} as timesteps. If an edge e is such that λ(e) = α we say
that e is active or appears at timestep α. A temporal x1, xq-walk in (G, λ) is a sequence
P that alternates vertices and edges (x0, e1, x1, . . . , eq, xq) such that for every i ∈ [q], ei

is an edge between xi and xi−1 and λ(e1) ≤ · · · ≤ λ(eq). If xi ̸= xj for every i, j ∈ [q]
with i ̸= j, we say that such temporal walk is a temporal path. Moreover, we define
V (P ) = {x1, . . . , xq} and E(P ) = {e1, . . . , eq}. For our purposes, we can assume that the
subgraph active at a given timestep is simple, i.e., that if e and e′ have both endpoints xy,
then λ(e) ̸= λ(e′). Such assumption allows us to define a path as a sequence of vertices
and timesteps (x0, t1, x1, . . . , tq−1, xq) such that, for each i ∈ [q], there is an edge connecting
xixi−1 active at timestep ti. The lifetime of (G, λ) is denoted by τ(λ) and is the maximum
integer such that there is an edge of G active at such timestep. For each timestep i ∈ N \ {0},
the i-th snapshot of (G, λ) is the subgraph of G defined as H = (V (G), λ−1(i)).

Let (G, λ) be a temporal graph with lifetime τ . Also, let s, z ∈ V (G) be vertices in G and
Q, J temporal s, z-paths. We say that Q and J are snapshot disjoint if λ(E(Q))∩λ(E(J)) = ∅.
A subset S ⊆ [τ ] is a snapshot s, z-cut if every temporal s, z-path uses an edge active at some
timestep in S. We denote by spG,λ(s, z) the maximum number of snapshot disjoint temporal
s, z-paths and by scG,λ(s, z) the minimum size of a snapshot s, z-cut. Observe that if the
above definitions are made in terms of temporal paths, then these parameters would not
change. A graph G is Mengerian (for time) if, for every timefunction λ on E(G), and every
s, z ∈ V (G), s ̸= z, we have that spG,λ(s, z) =scG,λ(s, z). The following will be useful later.

▶ Proposition 2. If G is non-Mengerian, then an m-subdivision of G is also non-Mengerian.

Proof. Let G be a non-Mengerian graph and consider λ ∈ E(G) → N \ {0} and s, z ∈ V (G)
to be such that spG,λ(s, z) < scG,λ(s, z). Also, suppose that H is obtained from G by
m-subdividing a multiedge, say xy. We construct a function λ′ from λ that proves that H is
also non-Mengerian.

Let D ⊆ E(G) be the set of edges of G with endpoints xy, and denote by vxy the vertex
of H created by the m-subdivision of xy. Moreover, denote by Dx and Dy the sets of edges of
H with endpoints xvxy and vxyy, respectively. Finally, define λ′ to be such that λ′(e) = λ(e),
for every e ∈ E(G)\D, and λ′(Dx) = λ′(Dy) = λ(D). We show that spG,λ(s, z) =spH,λ′(s, z)
and scG,λ(s, z) =scH,λ′(s, z), which finishes our proof.

Given a set of snapshot disjoint temporal s, t-paths in (G, λ), if some of these paths, say P ,
uses the edge xy, then in (H, λ′) we can substitute such edge by an edge in Dx and another
in Dy active at the same time to obtain a temporal path P ′ such that V (P ′) = V (P ) ∪ {vxy}.
This gives us a set of snapshot disjoint temporal s, t-paths in (H, λ′). In the other direction,
if it is given a set of snapshot disjoint temporal s, t-paths in (H, λ′), if some of them uses the
vertex vxy, let fj be the edge used in Dj for j ∈ {x, y}. Suppose without loss of generality that
λ(fx) ≥ λ(fy). Then we substitute both edges incident to vxy by an edge in D appearing at
time λ(fx). This implies that spG,λ(s, z) =spG,λ′(s, z). To see that scG,λ(s, z) =scH,λ′(s, z)
one can need to recall that λ′(Dx) = λ′(Dy) = λ(D). ◀
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▶ Proposition 3. G is Mengerian if and only if H is Mengerian, for every subgraph H of G.

Proof. To prove necessity, suppose that H ⊆ G is non-Mengerian, and let s, z, λ be such
that spH,λ(s, z) < scH,λ(s, z). Consider the timefunction λ′ in E(G) defined as follows.

λ′(e) =


λ(e) + 1 , for every e ∈ E(H),
1 , for every e ∈ E(G) \ E(H) with endpoints yt, and
max λ(E(H)) + 2 , otherwise.

Because H ⊆ G and λ ⊆ λ′, note that we get spH,λ(s, z) ≤spG,λ′(s, z) and scH,λ(s, z)
≤ scG,λ′(s, z). Therefore it suffices to prove spG,λ′(s, z) ≤ spH,λ(s, z) and scG,λ′(s, z)
≤scH,λ(s, z). Indeed, these hold because the timefunction λ′ does not allow for the ex-
istence of a temporal s, t-path not contained in H. ◀

3 Positive Results

In this section, we give XP algorithms for both snapshot s, z-cut and snapshot disjoint
temporal s, z-paths. Given the results of Section 4, unless FPT = W[1]-hard, XP algorithms
are best possible from the point of view of parameterized complexity. The first algorithm is
quite simple and consists of the usual approach of testing all possible cuts.

▶ Theorem 4. Given a temporal graph (G, λ) of lifetime τ , a positive integer h and s, z ∈
V (G), we can solve ≤ h-snapshot s, z-cut in O(τh · (|V (G)| + |E(G)|)).

Proof. Let (G, λ), s, z, h as in the hypothesis of the theorem. For each subset S ⊆ [τ ] of size
h, define GS such that V (GS) = V (G) and E(GS) = {e ∈ E(G) | λ(e) /∈ S}. Define also
λS(e) = λ(e) for all e ∈ E(GS). Now, by the definition of GS , any temporal s, z-path in
(GS , λS) is a temporal s, z-path in (G, λ) that does not use edges active at timesteps in S.
Reciprocally, every temporal s, z-path in G that does not use edges active at timesteps in S

is a temporal s, z-path in (GS , λS). As testing if there is a temporal s, z-path in (GS , λS)
can be done in polynomial time [19] and (GS , λS) can be constructed in O(n + m) time, it
suffices to apply this test to (GS , λS) for every S ⊆ [τ ] of size h. Since there are at most τh

such sets, the theorem follows. ◀

The next algorithm is much more involved, and uses a technique similar to the one used
to find disjoint paths between given pairs of vertices in a DAG [17].

▶ Theorem 5. Given a temporal graph (G, λ), vertices s, z ∈ V (G) and a positive integer
k, we can solve ≥ k-snapshot disjoint temporal s, z-paths in time O(mk), where
m = |E(G)|.

Proof. We construct a digraph D with vertices s∗ and z∗ such that |V (D)| = O(mk) and
there is an s∗, z∗-path in D if and only if there are k snapshot disjoint temporal s, z-paths in
(G, λ).

The vertex set of digraph D is equal to the k-tuples formed by edges of G, together
with vertices s and z; formally V (D) ⊆ F k, where F = E(G) ∪ {s, z}. Vertex s∗ is set to
be equal to (s, . . . , s), while vertex z∗ is set to be equal to (z, . . . , z). Each dimension of
V (D) represents one of the desired k disjoint paths, and a set of snapshot disjoint temporal
s, z-paths P1, . . . , Pk will be represented by an s∗, z∗-path P in G, as previously said. So s∗

represents the starting point, and z∗ represents the finish point of every temporal s, z-path.
Then, when an edge of D is traversed by P , we want that at least one of the k paths traverses
an edge. Because we want to allow that only one of the paths gets closer to z with each step
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of P , there will be an edge from α ∈ V (D) to β ∈ V (D) only if exactly one position of α

and β differ. Not only this, but we want that, at each step of P , the path Pi that gets closer
to z is the one whose last traversed edge occurs the earliest among all the Pi’s. In the next
paragraph, we formally construct digraph D.

As previously said, let F = E(G) ∪ {s, z}. Throughout the construction, we will be
referring to Figures 4 and 5. Because we want to avoid simultaneous traversal of paths that
intersect in a snapshot, we only consider elements of F k whose each pair of coordinates are
active in different snapshots. Indeed, if k = 2 and we allow for instance the existence of
vertex (e, e′) such that t = λ(e) = λ(e′), then this would mean that the constructed paths P1
and P2 intersect in timestep t. Therefore, we define V as formalized below. Observe that
this implies, in Figure 5, that vertices {(e, e) | e ∈ E(G)} ∪ {(az2, sb), (sb, az2)} do not exist
in V (D), where az2 denotes the edge with endpoints az active in timestep 2.

V = {(u1, . . . , uk) ∈ F k | ∀i, j ∈ [k] with i ̸= j, we have λ(ui) ̸= λ(uj) or ui = uj ∈ {s, z}}

(a) Example of temporal graph (G, λ). (b) Auxiliary graph M on the set F =
E(G) ∪ {s, z}.

Figure 4 Example of construction in Theorem 5.

Now, we define the edge set of D. For this, we first construct an auxiliary graph M

whose vertex set is equal to F ; observe Figure 4b to follow the construction. First of all, we
want that a traversal of an edge in D translates into a valid traversal in (G, λ). Therefore,
for every pair e, f ∈ F , add to D an edge from e to f only if e can be followed by f in a
temporal s, z-path in (G, λ). Formally, add ef in the following cases:

For every e ∈ E(G), and every f ∈ E(G) adjacent to e such that λ(e) ≤ λ(f);
For e = s and every f ∈ E(G) incident to s; and
For every e ∈ E(G) incident to z and f = z.

Finally, as previously said, we want that at each edge traversal of an s∗, z∗-path in D,
the path in (G, λ) that is getting closer to z is that one whose last used edge is the earliest
(one with the smallest value of λ) among all the other paths. To help with this, we also
define λ(s) to be equal to 0, and λ(z) to be equal to τ + 1, where τ is equal to the lifetime
of (G, λ). This means intuitively that we give always priority to leave s, and that, once
we reach z in any dimension, then we cannot depart from z anymore. So, given a vertex
α = (u1, . . . , uk) ∈ V (D), we add an edge from α to β ∈ V (D) if and only if:

β differ from α in exactly one position, i;
i is such that λ(ui) ≤ minj∈[k] λ(uj); and
By letting u′

i be the value in the i-th position of β, we have that uiu
′
i is a valid move, i.e.,

that uiu
′
i ∈ E(M).
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Observe Figure 5. Another way of seeing this construction is by starting with copies of
M on each row and column of D, then removing the vertices that do not belong to D, and
finally removing from row/column e any edge leaving f with λ(f) > λ(e).

Figure 5 Digraph D related to the temporal graph in Figure 4a; value k = 2 is being used, which
means that V (D) ⊆ F 2. Each row and column is labeled with an element e of F , together with the
value λ(e); this will help in the construction. A vertex (e, f) of D is represented in the intersection of
row e and column f . Red dots in the figure represent the fact that the related pair (row, column) is
not a vertex in D. The snapshot disjoint temporal s, z-paths P1 = (s, 1, a, 3, z) and P2 = (s, 2, b, 4, z)
can be obtained either through the red or the green s∗, z∗-path.

Now, we prove that there are k snapshot disjoint temporal s, z-paths in (G, λ) if and
only if there is an s∗, z∗-path in D. In what follows, given a vertex α ∈ V (D), we denote by
(a1, . . . , ak) the tuple related to α. Recall that s∗ = (s, . . . , s) and z∗ = (z, . . . , z). Suppose
P1, . . . , Pk is a set of snapshot disjoint temporal s, z-paths in (G, λ). For each i ∈ [k], let
e1

i , . . . , epi

i be the sequence of edges used in Pi in order of traversal and define e0
i = s and

epi+1
i = z. By induction, we define a sequence of vertices of D, (s∗ = α1, . . . , αq = α), that

forms an s∗, α-path for some α with the following property:
(P) For each dimension i ∈ [k] and each ℓ ∈ [q], the sequence of edges traversed in dimension

i is a subpath of Pi. Formally, by removing s and repetitions of edges from the sequence
(a1

i , . . . , aq
i ), we obtain a subsequence of e1

i , . . . , epi

i .

First, we define α1 = s∗; clearly property (P) holds as all paths start in s. Now suppose
that sequence α1, . . . , αq satisfying Property (P) is obtained, q ≥ 1. Let i ∈ [k] be such that
λ(aq

i ) = minj∈[k] λ(aq
j). By Property (P), observe that either aq

i = s, or aq
i is an edge of P , or

aq
i = z. If the latter occurs, then we have that P is an s∗, z∗-path in D, since λ(z) > λ(e) for

every e ∈ F \ {z}, i.e., the only way λ(z) is minimum is if all other positions are also equal
to z. So suppose one of the other cases occurs. Note that it means that there is some edge
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following aq
i in P , say eℓ

i . By definition of temporal path, λ(eℓ
i) ≥ λ(aq

i ); hence aq
i eℓ

i ∈ E(M).
Define αq+1 to be equal to αq except that in position i we have eℓ

i instead of aq
i , and note

that (α1, . . . , αq+1) is a path in D that satisfies Property (P).
Now suppose the existence of an s∗, z∗-path in D, (α1, . . . , αq). We construct a set of k

snapshot disjoint temporal s, z-paths in (G, λ). For this, for each i ∈ [k], let Pi be a sequence
of edges obtained from dimension i, i.e., from (a1

i , . . . , aq
i ) by removing occurrences of s and

z, and repetitions of edges. Because each transition respects M , we trivially get that Pi

defines a temporal s, z-path in (G, λ). It remains to show that such paths are snapshot
disjoint. Suppose otherwise, and let i, j be such that there are edges ei in Pi and ej in Pj

such that λ(ei) = λ(ej) = ℓ. Let ℓi be the smallest index such that aℓi
i = ei, and ℓj be the

smallest index such that a
ℓj

j = ej . By the definition of V (D), we have that ℓi ≠ ℓj . Indeed
no vertex of D can contain two elements of F with same value of λ, and recall that i ≠ j

as Pi, Pj are distinct paths. So, we can suppose, without loss of generality, that ℓi < ℓj .
Observe that this means that αℓi−1 differ from αℓi in exactly position i; additionally, it
means that λ(ei) ≤ minh∈[k] λ(aℓi−1

h ). In particular, we have that ℓ = λ(ei) ≤ λ(aℓi−1
j ). But

observe that, in a fixed dimension, the values of λ can only increase, i.e., since ℓi < ℓj , we get
λ(aℓi−1

j ) ≤ λ(aℓj

j ) = λ(ej) = ℓ. We get a contradiction as in this case vertex αℓi−1 should
not be defined as it contains two elements with the same value of λ, namely aℓi−1

j and ei.
To finish the proof just recall that |V (D)| ≤ (m + 2)k, where m = |E(G)|, and that

deciding if there is a path between two vertices in D can be made in time O(|V (D)|2). So,
deciding if there are k snapshot disjoint temporal s, z-paths in (G, λ) can be done in time
O(mk). ◀

4 Negative Results

In this section, we prove that the algorithms presented in Section 3 are best possible, i.e., that
≥ k-snapshot disjoint temporal s, z-paths and ≤ h-snapshot s, z-cut are W[1]-hard
when parameterized by k and h, respectively.

▶ Theorem 6. ≥ k-snapshot disjoint temporal s, z-paths is W[1]-hard when paramet-
erized by k.

Proof. We make a parameterized reduction from ≥ k-Independent set when parameterized
by k. Such problem has as input a simple graph G and an integer k, and the question is
whether G has an independent set of size at least k. This is known to be W[1]-hard (see
e.g. [6]).

Consider an instance G, k of ≥ k-Independent Set and let |V (G)| = n. Observe
Figure 6 to follow the construction. First, add to G′ vertices s and z. Then, for each
u ∈ V (G), add to G′ an s, z-path on d(u) edges; denote such path by Qu. Now, consider
any ordering e1, . . . , em of E(G), and denote the edges incident to a vertex u ∈ V (G) by
δ(u). We can define λ : E(G′) → N \ {0} in a way that each Qu is a temporal s, z-path using
the orders of the edges in δ(u). Formally, for each u ∈ V (G), let δ(u) = {ei1 , . . . , eiq

} with
i1 < . . . < iq, and define λ(E(Qu)) to be equal to {i1, . . . , iq} in a way that Qu is a temporal
path.

We show that (G′, λ) has k snapshot disjoint temporal s, z-paths if and only if G has
an independent set of size at least k. By the definition of G′, all temporal s, z-paths are
of type Qu for some u ∈ V (G). Therefore, it suffices to show that a subset S ⊆ V (G) is
an independent set of G if and only if {Qu | u ∈ S} is a set of snapshot disjoint temporal
s, z-paths in (G′, λ). Suppose first that S is an independent set, and suppose by contradiction
that u1, u2 ∈ S are such that Qu1 and Qu2 are not snapshot disjoint. Then there exists
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Figure 6 To the left, graph G, and to the right, the constructed temporal graph (G′, λ). In G′,
paths Pa, Pb, Pc, Pd, Pe are depicted from top to bottom, in this order.

e1 ∈ E(Q1) and e2 ∈ E(Q2) such that λ(e1) = λ(e2). By construction, this means that
e1 = e2, and since u1 ̸= u2, we get that actually this edge has endpoints u1u2, a contradiction
as S is an independent set. Thus, {Qu | u ∈ S} is a set of snapshot disjoint temporal
s, z-paths. Finally, observe that if ei = vw ∈ E(G), then λ(Qv)∩λ(Qw) = {i}, which directly
implies that if {Qu | u ∈ S} is a set of snapshot disjoint temporal s, z-paths, then S cannot
contain any pair of adjacent vertices. ◀

Now, we prove the analogous result for the cut problem.

▶ Theorem 7. ≤ h-snapshot s, z-cut is W[1]-hard when parameterized by h.

Proof. We make a reduction from Multicolored k-Clique, when parameterized by k,
known to be W[1]-hard [6]. Such problem has as input a simple graph G, an integer k,
and a partition of V (G) into k independent sets (alternatively, a proper k-coloring), and
the question is whether G has a (multicolored) clique of size k. So let G be a graph and
{X1, . . . , Xk} be a proper k-coloring of G. By adding artificial vertices and edges if necessary,
we can suppose that the number of edges between Xi and Xj is equal to a value m, for every
pair i, j ∈ [k]. So, for i, j ∈ [k], i ≠ j, denote the set of such edges by Ei,j = {ei,j

1 , . . . , ei,j
m }.

We make this assumption in order to make presentation simpler.
Now, for each i, j ∈ [k], i ̸= j, we construct a gadget denoted by Fi,j . Observe Figure 7

to follow the construction. First add to Fi,j the set of vertices Vi,j = {vi,j
0 , . . . , vi,j

2m}, making
the first m + 1 of them form a path of multiplicity m, and the latter m + 1 form a path of
multiplicity 1. Formally, for each ℓ ∈ {0, . . . , m − 1}, add m edges with endpoints vi,j

ℓ vi,j
ℓ+1.

Also, for each ℓ ∈ {m, . . . , 2m−1}, add 1 edge with endpoints vi,j
ℓ vi,j

ℓ+1. Now, for each ℓ ∈ [m],
add vertex wi,j

ℓ and join such vertex with vi,j
ℓ by a path with m − 1 edges and denote such

path by P i,j
ℓ . We say that vertex wi,j

ℓ of our gadget is associated with edge ei,j
ℓ of Ei,j . The

timefunction is defined only later.
Now, we finish the construction of our temporal graph. For this, take the union of

all graphs Fi,j and identify all vertices vi,j
0 , calling the obtained vertex s, and identify all

vertices vi,j
2m, calling the obtained vertex z. Also, for each i, j ∈ [k], i ̸= j, and ℓ ∈ [m], we

add two edges between wi,j
ℓ and z. Denote by G′ the obtained graph, and by W the set

{wi,j
ℓ | i, j ∈ [k], i ̸= j, ℓ ∈ [m]}. Observe that G′ contains O(k2 · m) vertices and edges.
Now we define λ. The idea is that each Fi,j will be active during its own dedicated time

window. Formally, define ∆i,j = [fi,j + 1, fi,j + m], for each pair i, j ∈ [k], i ̸= j, in a way
that ∆i,j ∩ ∆i′,j′ = ∅ whenever {i, j} ≠ {i′, j′}. Now, consider i, j ∈ [k] with i ̸= j. For each
ℓ ∈ {0, . . . , m − 1}, we define λ in a way that every value in ∆i,j appears in some edge with
endpoints vi,j

ℓ vi,j
ℓ+1. Also, for each ℓ ∈ [m], we let λ(vi,j

m−1+ℓv
i,j
m+ℓ) = {fi + ℓ}, and we define
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Figure 7 A representation of Fi,j with labels of λ where m = 3 and ∆i,j = {1, 2, 3}.

λ(E(P i,j
ℓ )) to be equal to ∆i,j \ {fi,j + ℓ} and in a way that P i,j

ℓ is a temporal vi,j
ℓ , wi,j

ℓ -path.
Finally, the only edges that remain unlabelled are the edges between z and vertices of type w.
For such edges, we reserve a time window of size n = |V (G)|, that we denote by ∆V , where
any timestep in such set is greater that any timestep we used to define λ so far. Moreover,
we associate each vertex v ∈ V (G) with a timestep tv ∈ ∆V . Let wi,j

ℓ ∈ W and recall that
such vertex is associated with ei,j

ℓ ∈ E(G). Suppose ei,j
ℓ have endpoints xy, and let the two

edges of G′ with endpoints wi,j
ℓ z be active in timesteps {tx, ty}.

Now, we prove that G has a clique of size k if and only if (G′, λ) has a snapshot s, z-cut
of size at most

(
k
2
)

+ k. Consider first a clique C of G of size k, and let {ei1,j1
ℓ1

, . . . , eia,ja

ℓa
} be

the set of edges of G between vertices of C. Notice that, because C has a vertex from each
part, we get that a =

(
k
2
)
. Define S = {fib,jb

+ ℓb | b ∈ {1, . . . , a}} ∪ {tv | v ∈ C}. We prove
that S is a snapshot s, z-cut. By contradiction, suppose that P is a temporal s, z-path not
passing by S, i.e., such that λ(E(P )) ∩ S = ∅. Since a =

(
k
2
)

and all edges incident to s are
active in timesteps

⋃
i,j∈[k],i̸=j ∆i,j , we can define b ∈ [a] to be the index related to the first

edge in P , i.e., P starts in an edge of Fib,jb
, say the one active in timestep fib,jb

+ ℓb. Observe
that the value fib,jb

+ ℓb is within the temporal s, z-path contained in Fib,jb
, and that it

also separates s and wib,jb

ℓ for every ℓ ∈ [m] \ {ℓb}. Hence, P must start with the temporal
s, wib,jb

ℓb
-path contained in Fib,jb

. However, as eib,jb

ℓb
is incident to vertices of the clique, say x

and y, then we have that P uses timestep tx or ty, a contradiction as {tx, ty} ⊆ S.
Now, suppose that S is a minimum snapshot s, z-cut in (G′, λ) and that it has size at

most
(

k
2
)

+ k. Let VS = {x ∈ V (G) | tx ∈ S}. We prove that VS is a clique of G of size
k. Denote by O the set of pairs {(i, j) | i, j ∈ [k], i < j}. We say that (i, j) ∈ O is open if
∆i,j ∩ S = {fi,j + ℓ} for some ℓ ∈ [m], and we say that ei,j

ℓ is the open edge of (i, j). The
following simple facts will be useful:
1. For every i, j ∈ [k], i ̸= j, we have ∆i,j ∩ S ̸= ∅: this is due to the fact that there is a

temporal s, z-path using only timesteps in ∆i,j ;
2. If ℓ ∈ [m] is such that ∆i,j ∩ S = {fi,j + ℓ}, then {x, y} ⊆ VS , where xy are the endpoints

of ei,j
ℓ : this is because there exists a temporal s, wi,j

ℓ -path not using any timestep in S,
and hence such path can be extended to a temporal s, z-path by using an edge with
endpoints wi,j

ℓ either in timestep tx or in timestep ty;
3. For every i, j ∈ [k], i ̸= j, we have |∆i,j ∩ S| ≤ 2: it suffices to see that any two timesteps

in ∆i,j intersects all temporal paths between s and any vertex in {wi,j
ℓ | ℓ ∈ [m]} ∪ {z};

4. If x ∈ VS , then x is incident to some open edge: indeed, if x is not incident to any open
edge, then wi,j

ℓ is separated from s by S \ {tx} for every edge ei,j
ℓ incident in x, and since

timestep tx contains only edges incident to some such wi,j
ℓ , it follows that S \ {tx} is also

a snapshot s, z-cut, contradicting the minimality of S.
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By Fact 3, if (i, j) is not open, then ∆i,j ∩ S = {fi,j + ℓ1, fi,j + ℓ2} for some pair of values
ℓ1, ℓ2 ∈ [m]. In such case, we say that edges ei,j

ℓ1
and ei,j

ℓ2
are chosen for (i, j). We show how

to modify S in order to decrease the number of chosen edges.

▷ Claim 8. If (i, j) is not open, then we can suppose that VS ∩ (Xi ∪ Xj) = ∅.

Proof of Claim 8. Let ei,j
ℓ1

and ei,j
ℓ2

be the chosen edges for (i, j). Denote by x1y1 and x2y2 the
endpoints of ei,j

ℓ1
and ei,j

ℓ2
, respectively. Suppose without loss of generality that {x1, x2} ⊆ Xi

and {y1, y2} ⊆ Xj . Now suppose that there exists x ∈ Xi ∩ S. If x ∈ {x1, x2}, say x = x1,
then replace fi,j + ℓ2 in S by y1, obtaining S′. Observe that in this case ei,j

ℓ1
becomes an

open edge, but such that {tx1 , ty1} ⊆ S′. Hence S′ is still a snapshot s, z-cut containing
fewer chosen edges. And if x /∈ {x1, x2}, then let xy be any edge incident in x such that
y ∈ Xj . We can suppose that such edge exists as otherwise x cannot be in any multicolored
k-clique and then we can remove it from G. Let ℓ ∈ [m] be such that ei,j

ℓ has endpoints
xy. Observe that Fact 3 also tells us that S′ = (S \ {fi,j + ℓ2}) ∪ {fi,j + ℓ} is a snapshot
s, z-cut. We can then apply the previous argument to replace fi,j + ℓ1 by ty to again obtain
a snapshot s, z-cut with fewer chosen edges. ◁

▷ Claim 9. We can suppose that every pair is open.

Proof of Claim 9. We can clearly suppose that G is connected, as otherwise the answer to
Multicolored k-Clique is trivially “no”. Now, let I1 be the set of indices {i ∈ [k] |
VS ∩ Xi = ∅} and I2 = S \ I1. Suppose first that I1 ̸= ∅ and I2 ̸= ∅, and consider i1 ∈ I1
and i2 ∈ I2. By Claim 8 and because i2 ∈ I2, we know that (i1, i2) is open. So let ei1,i2

ℓ be
the open edge for (i1, i2), and let xy be its endpoints, with x ∈ Xi1 and y ∈ Xi2 . By Fact 2,
we get that {tx, ty} ⊆ S, i.e., {x, y} ⊆ VS , contradicting Claim 8 as x ∈ Xi1 and i1 ∈ I1.

So either I1 = ∅ or I2 = ∅. Observe that if I1 = ∅, then VS ∩ Xi ̸= ∅, for every i ∈ [k],
and the claim follows from Claim 8. And if I2 = ∅, then by Fact 3 we get that S contains two
edges for every pair i, j, totalling |S| = 2

(
k
2
)
. Since |S| ≤

(
k
2
)

+ 2, we get that this happens
only if k ≤ 3, in which case Multicolored k-Clique is polynomial-time solvable. ◁

Finally, observe that the set of open edges, E∗, contains exactly
(

k
2
)

edges, by definition
of open edge and by Claim 9. We then get that |S| = |E∗| + |VS | =

(
k
2
)

+ |VS |. It follows that
|VS | ≤ k. Additionally, by Fact 2 we know that E∗ forms a subgraph of G with vertex set
VS . Because G is a simple graph, E∗ contains

(
k
2
)

edges, and VS contains at most k vertices,
the only way this can be possible is if VS contains exactly k pairwise adjacent vertices, i.e.,
VS is a clique of size k, as we wanted to prove. ◀

5 Characterization and recognition of Mengerian graphs

For a temporal graph (G, λ) and pair of vertices s, z, let P be a set of snapshot disjoint
temporal s, z-paths and S a snapshot s, z-cut. By definition, for each path P ∈ P , there is an
edge in P active at a timestep t, for some t ∈ S; choose α(P ) to be one such timestep. As the
paths in P are snapshot disjoint , we have that α(P ) ̸= α(Q) for every Q ∈ P different from
P . Therefore |P| ≤ |S| and the inequality spG,λ(s, z) ≤ scG,λ(s, z) follows. In Proposition 10
we show that there are temporal graphs for which spG,λ(s, z) < scG,λ(s, z), and after this
we prove Theorem 1. In our characterization, we have 5 graphs as forbidden structures,
M1, M2, M3, M4, M5, that are represented in Figure 2. Let M be the set of such graphs.

In Figure 8, we present timefunctions for the graphs in M that turn the inequality
spG,λ(s, z) ≤ scG,λ(s, z) strict. This is formally stated in the next proposition.
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Figure 8 Graphs in the set M with timefunctions such that spGλ(s, z) < scG,λ(s, z).

▶ Proposition 10. Let (G, λ) be one of the temporal graphs depicted in Figure 8. Then
spG,λ(s, z) < scG,λ(s, z).

Proof. To observe that scG,λ(s, z) > 1, one just needs do verify that for each timestep, there
is a temporal s, z-path not using this timestep. Now, for the cases G ∈ {M1, M2, M3, M4},
suppose spG,λ(s, z) =scG,λ(s, z) and let Q, J be snapshot disjoint temporal s, z-paths. In
each of those cases, there are only two edges incident to s, one active at timestep 1 and other
at timestep 2. Hence, one of these paths, say Q, starts at timestep 2. Observe that in this
case, Q can only finish through edges active at timestep 3. Therefore, J cannot use timestep 2
nor 3, however, all edges incident to z are active at timesteps 2 or 3, a contradiction as there
is no temporal s, z-path contained in the first snapshot. Finally, suppose G = M5; we will
apply a similar argument. So, let Q, J be snapshot disjoint temporal s, z-paths. Note that
one of them, say Q, must use the edge incident to s active at timestep 3 and, therefore,
finishes using the edge incident to z active at timestep 4. It follows that J is not allowed
to use timestep 3 nor 4, a contradiction as all edges incident to z are only active at such
timesteps. ◀

We now prove that the equality between the parameters always holds if each timestep
contains at most one active edge, i.e., λ is injective.

▶ Proposition 11. Let (G, λ) be a temporal graph such that λ is injective. Then spG,λ(s, z)
= scG,λ(s, z) for every s, z ∈ V (G). Moreover, we can compute such value in polynomial
time.

Proof. If P and Q are snapshot disjoint temporal s, z-paths, then, for e ∈ E(P ) and
f ∈ E(Q), we have that λ(e) ̸= λ(f), therefore e ̸= f . On other hand, if P and Q are such
that E(P ) ∩ E(Q) = ∅, then we have that λ(E(P )) ∩ λ(E(Q)) = ∅. Thus, P and Q are
snapshot disjoint if and only if they are edge disjoint. Therefore, the maximum size of edge
disjoint temporal s, z-paths is equal spG,λ(s, z). Moreover notice that S ⊆ E(G) is a set such
that every temporal s, z-path uses an edge of S, then every temporal s, z-path uses an edge
active at timestep {λ(e) | e ∈ S}. If ST ⊆ [τ ] is such that every temporal s, z-path uses an
edge active at timestep α ∈ ST , then it uses the only edge in λ−1(α). Therefore, the size of
a minimum set of edges such that every temporal s, z-path intersects such set is equal to
scG,λ(s, z). Using a result proved in [3] we conclude that spG,λ(s, z) =scG,λ(s, z), and that
both parameters can be found in polynomial time. ◀
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Proof of Theorem 1. We first prove that if G has M as a m-topological minor, for some
M ∈ M, then G is not Mengerian. In Proposition 10, we already get that each M ∈ M is
not Mengerian. To finish necessity, we need to prove that adding vertices, adding edges and
m-subdividing edges in H does not lead to a Mengerian graph. Propositions 2 and 3 do this
work.

Now, suppose by contradiction that G does not contain any M in M as m-topological
minor and that G is non-Mengerian. Hence, there exists λ : E(G) → N \ {0} and s, z ∈ V (G)
such that spG,λ(s, z) < scG,λ(s, z). Suppose, without loss of generality, that among all such
graphs and timefunctions we choose those that minimize |V (G)| + |E(G)| + τ(λ). We first
show that there are no edges connecting s and z. Suppose otherwise, that there is an edge e

with endpoints and let λ(e) = α. Let G′ be the graph obtained from removing all edges in
λ−1(α) and λ′, the restriction of λ to E(G) \ λ−1(α). Because (s, e, z) is a temporal s, z-path,
observe that spG′,λ′(s, z) =spG,λ(s, z) −1 and scG′,λ′(s, z) =scG,λ(s, z) −1. This contradicts
the fact that (G, λ) minimizes |V (G)| + |E(G)| + τ(λ). Now, suppose that there is a cycle
C containing s and z. As sz /∈ E(G), we have that such cycle has size at least 4. As G

has no M5 as m-topological minor, there are no paths between the vertices of C that are
not contained in C. Also, as G has no M4 as m-topological minor, all the multiedges of C

have multiplicity 1. In other words, the 2-connected component containing C is formed just
by C itself, with each multiedge of C having multiplicity 1. In particular, there are only
two paths connecting s and z. If these two paths are snapshot disjoint temporal s, z-paths,
we take the timesteps of the two edges incident to z to obtain a snapshot s, z-cut as it
kills the only two temporal s, z-paths. This is a contradiction as we then get spG,λ(s, z) =
scG,λ(s, z). So, if both paths between s and z are temporal paths, they must intersect at a
timestep α. But in this case, the set {α} would be a snapshot s, z-cut, again a contradiction.
Therefore, we can suppose that there is no cycle containing s and z. This means that, if
we consider the decomposition of G in bi-connected components B1, . . . , Bk, then we have
that s and z are in different components. Moreover, as we are supposing (G, λ), s, z that
minimize |V (G)| + |E(G)| + τ(λ), the graph induced by the decomposition is a path and
we can suppose that s ∈ V (B1) and z ∈ V (Bk). Suppose that there is i ∈ [k], such that
Bi contains at least 3 vertices. Let v ∈ V (Bi) ∩ V (Bj) for some j ∈ {i − 1, i + 1} and C1
be a cycle of Bi containing v. If Bj has at least 3 vertices, then we can find another cycle
C2 contained in Bj such that V (C1) ∩ V (C2) = {v}, this contradicts the fact that G has
no M3 as m-topological minor. So, we can suppose that |V (Bj)| = 2. If the multiedge
contained in Bj has multiplicity 1, then let α be the timestep of such edge. We have that
{α} is a snapshot s, z-cut, and then spG,λ(s, z) = scG,λ(s, z) a contradiction. Therefore we
can assume that the multiedge of Bj has multiplicity at least 2; however the graph induced
by such multiedge and C1 is an m-subdivision of the graph M2, again a contradiction. Thus,
we can assume that bi-connected component Bi contains a cycle, for every i ∈ {1, . . . , k}. In
other words, U(G) is an s, z-path. If some of the multiedges of G has multiplicity 1, then
scG,λ(s, z) ≤ 1 and we have the equality, a contradiction. We can say also that |U(G)| = 3,
as otherwise G would have M1 as m-topological minor. Now, we show that in such case G

must be Mengerian, thus finishing the proof.

We show that, for a graph H such that U(H) is a path of size 3 between s and z and any
timefunction λ in H, we have that spG,λ(s, z) = scG,λ(s, z). Let V (H) = {s, w, z}, which
means that the multiedges of H are sw and wz. We use induction on the number of edges
of H. The base of induction is when sw and wz both have multiplicity 1. Then, either
λ(sw) ≤ λ(wz), in which case spH,λ(s, z) = scH,λ(s, z) = 1, or λ(sw) > λ(wz), in which
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case spH,λ(s, z) = scH,λ(s, z) = 0. Now, suppose valid when |E(H ′)| ≤ m and consider
|E(H)| = m + 1. By Proposition 11, we can suppose that there are two edges appearing at
same timestep α, say f and g. As each snapshot is a simple graph, we get that f, g form a
temporal s, z-path. Let H ′ = H − {f, g}. By induction hypothesis, we have that spH′,λ(s, z)
= scH′,λ(s, z). Now let P be a set of snapshot disjoint temporal s, z-paths and S be a
snapshot s, z-cut in (H ′, λ). Then, P ∪ {(s, f, w, g, z)} is a set of snapshot disjoint temporal
s, z-paths in (H, λ) and S ∪ {α} is a snapshot s, z-cut in (H, λ). Therefore, scH,λ(s, z) =
scH′,λ(s, z) + 1= spH′,λ(s, z) + 1 = spH,λ(s, z). ◀

Now we turn our attention to the recognition of Mengerian graphs, showing that it can
be done in polynomial time. We observe that the proof of characterization of Mengerian
graphs helps us to construct an algorithm of recognition of Mengerian graphs. We make the
proper adaptation and prove the next theorem.

▶ Theorem 12. One can decide in polynomial time whether a graph G has a graph in M as
m-topological minor.

Proof. First, we find a decomposition of G in 2-connected components, B1, . . . , Bk. This
can be done in O(m + n) (see e.g. [18]).

We consider the set of all components Bi such that |V (Bi)| = 2 and the multiedge
contained in Bi has multiplicity at least 2, let D be such set. Then, we test if some
component Bi in D has vertex in common if a component Bi of size at least 3. This takes
O(k2) times. If the answer is positive, then we would have that G has M2 as m-topological
minor. Then we can suppose the following:

2. No component in D share a vertex with other component that has at least 3 vertices.

Now, we separate all components that have at least three vertices and test if two of them
share a vertex, this step takes O(k2) times. If the answer is true for some two components,
then G has M3 as m-topological minor. Therefore, we can suppose:

3. Components Bi and Bj of size at least 3 do not share vertex.

Now, we look to the components Bi such that |V (Bi)| ≥ 4. As Bi is two connected, it
has a cycle C that we can find in O(n2). Then we check if there is an edge e ∈ E(Bi) \ E(C).
If the answer is positive, then as Bi is 2-connected, there is a chord in C containing e. This
implies that G has M5 as m-topological minor. So, we have the following property.

4. Each component Bi of size at least 4 is such that U(Bi) is a cycle.

With such observation, we now can test if the components Bi of size at least 4 contains
some multiedge with multiplicity at least 2. If the answer is positive we are done as it would
lead to Bi having M4 as m-topological minor. So, we can suppose otherwise:

5. Each component Bi of size at least 4 contains no multiedges of multiplicity at least 2.

Now we show that the properties 2-5 implies that G has no graphs in M as m-topological
minors. One just need to observe that every cycle is contained in a 2-connected component.
So the properties 2-5, assure us that G has no M2,M3,M4 or M5 as m-topological minors.

Now, we only need to test if G has M1 as m-topological minor. We can consider the
graph G′ obtained from G but excluding the multiedges with multiplicity 1. Then, we test
if G′ has a path with at least 4 vertices. The answer is positive if and only if G has M1 as
m-topological minor. This finishes the recognition. ◀
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6 Multiedge Cut

Finally, in this section we study another version of the cut problem. Recall that two temporal
s, z-paths are multiedge disjoint if they do not share any multiedge, and that a multiedge
temporal s, z-cut is a set S of multiedges of G intersecting every temporal s, z-path. In this
section, we investigate the following problem.

≤ h-Multiedge Temporal s,z-cut
Input. A temporal graph (G, λ), vertices s, z ∈ V (G), and an integer h.
Question. Is there a multiedge temporal s, z-cut in (G, λ) of size at most h?

▶ Theorem 13. ≤ h-Multiedge Temporal s,z-cut is NP-complete, even if τ = 2.

Proof. We make a reduction from Vertex Cover, which consists of, given a simple graph G

and a positive integer k, deciding whether there exists a subset S ⊆ V (G) such that |S| ≤ k

and every e ∈ E(G) is incident to some u ∈ S; such a set is called a vertex cover (of size
at most k). So, consider I = (G, k) an instance of Vertex Cover. We construct a graph G′

with vertex set V (G′) = {s, z} ∪ {x1
v, x2

v, x3
v, x4

v : v ∈ V (G)} ∪ {fvw | vw ∈ E(G)}. One can
use Figure 9 to follow the construction. Then, we add edges from s to x1

v and x2
v, and from

x3
v and x4

v to z, for every v ∈ V (G). Also, let (x1
v, x2

v, x3
v, x4

v) form a path, and add, for each
edge vw ∈ E(G), edges x1

vfvw and fvwx4
w. More formally, we have:

E(G′) = {sx1
v, sx2

v, x3
vz, x4

vz | v ∈ V (G)}
∪{xi

vxi+1
v | i ∈ {1, 2, 3}, v ∈ V (G)}

∪{x1
vfvw, fvwx4

w | vw ∈ E(G)}
.

Finally, add a second edge with endpoints x2
vx3

v, for each v ∈ V (G). Since these are the
only edges with multiplicity greater than 1, we will generally denote an edge by its endpoints,
with the exception of these, which we denote by e1

v, e2
v. Now for each i ∈ {1, . . . , 4} define

Xi = {xi
v : v ∈ V }, let F = {fvw | vw ∈ E(G)} and consider a timefunction λ such that:

λ(e) =


1 , if e ∈ ({s}) × X1) ∪ (X1 × X2) ∪ (X3 × {z}) ∪ (X1 × F )
2 , if e ∈ ({s} × X2) ∪ (X3 × X4) ∪ (X4 × {z}) ∪ (F × X4), and
i , if e = ei

v for some v ∈ V (G).

We prove that G has a vertex cover of size at most k if and only if (G′, λ) has a multiedge
temporal s, z-cut of size at most n + k. Given a solution S of Vertex Cover, we can define
S′ = {sx1

v, x4
vz : v ∈ S} ∪ {x2

vx3
v : v /∈ S}. It remains to argue that S′ separates s from z, or

more formally, that there is no temporal s, z-path in (G′ − S∗, λ), where S∗ contains every
e ∈ E(G′) such that the endpoints of e are in S′. Notice that if a temporal s, z-path does not
use edges between X1 and F , then it contains one of the following paths: (s, x1

v, x2
v, x3

v, x4
v, z),

(s, x2
v, x3

v, x4
v, z), or (s, x1

v, x2
v, x3

v, z). In any case such path intersects S′. Now suppose that
a temporal s, z-path, P , uses an edge x1

vfvw, which implies that it also uses fvwx4
w and

therefore it arrives in z at timestep 2. Note that the only edges active at timeste 2 incident
to x4

w are incident either to F , or to x3
w, or to z. In the former case, we hit a dead end

because fuw has only one edge incident to it in timestep 2, for every u ∈ N(w). This also
happens in the second case, since from x3

w one can only go to x2
w, hitting again a dead end.

We then get that if P contains x1
vfvw, then it must also contain x4

wz. By a similar argument
one can also show that it must contain sx1

v too. As vw ∈ E(G), at least one of v and w are
in S, and by construction we get that P uses some multiedge of S′, as we wanted to show.

Now let S′ be a multiedge temporal s, z-cut of size at most n + k. For each v ∈ V (G), let
the set of multiedges {sx1

v, x1
vx2

v, x2
vx3

v, x3
vx4

v, x4
vz} be denoted by Av, and let S′

v = S′ ∩ Av.
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Figure 9 A representation of temporal graph (G′, λ). The dotted lines represent all the edges
between the corresponding set of vertices.

Because Av forms a temporal s, z-path, we know that S′
v ̸= ∅. One can notice that every

temporal s, z-path using x1
vx2

v also uses sx1
v, and in the same way every temporal s, z-path

using x3
vx4

v uses x4
vt. Then by changing S′ if necessary, we can suppose that S′

v is a non-empty
subset of {sx1

v, x2
vx3

v, x4
vz}. Now we show that we can actually suppose that S′ ∩ Av is either

{sx1
v, x4

vt} or {x2
vx3

v}. We do it by analysing the cases where this does not happen.

S′
v = {sx1

v} or S′
v = {x4

vz}. We just solve the first subcase as the second is similar. Notice
that (s, x2

v, x3
v, x4

v, z) is a temporal s, z-path, and that the only edge in this path that
can be in S′ is sx2

v because of the case being analyzed. So, removing sx2
v and adding x4

v

to S′ maintains the property of being a multiedge temporal s, z-cut and turns S′
v into

{sx1
v, x4

vz}.
S′

v = {sx1
v, x2

vx3
v} or S′

v = {x2
vx3

v, x4
vz}. In both subcases we can remove x2

vx3
v and add

either x4z (in the first case) or sx1
v (in the second one).

Now we can define S = {v ∈ V : Sv = {sx1
v, x4

vt}}. The desired property |S| ≤ k follows
from the fact that 1 ≤ |S′

v| ≤ 2 for every v ∈ V (G), and that |S′| ≤ n + k. Finally, suppose
that vw ∈ E(G) is such that S ∩ {v, w} = ∅. Then (s, x1

v, x4
w, z) is a temporal s, z-path not

passing through the edges in S′, a contradiction. ◀

7 Conclusion

We have introduced the concept of snapshot disjointness and proved that the related paths
and cut problems, when parameterized by the size of the solution, are both W[1]-hard
and XP-time solvable. We then adapted to our context the definition of Mengerian graph
introduced by Kempe, Kleinberg and Kumar [13], giving also a characterization in the lines
of the ones given in [13] and [11], as well as a polynomial-time recognition algorithm. Since
all our results concern only non-strict temporal paths, one can ask whether they also hold
for strict paths.

Further open problems can be extracted from Table 1. In particular, we ask whether the
results for node departure disjoint paths and cuts presented in [16] for strict paths also hold
for non-strict paths.
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Finally, while Menger’s Theorem is known to hold for edge disjoint paths [3, 16], it is also
known not to hold for multiedge disjoint paths [11]. We reinforce the question posed in [11]
about the characterization of Mengerian graphs in the context of multiedge disjoint paths.
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Abstract

In this paper, we consider the partial gathering problem of mobile agents in synchronous dynamic tori.
The partial gathering problem is a generalization of the (well-investigated) total gathering problem,
which requires that all k agents distributed in the network terminate at a non-predetermined single
node. The partial gathering problem requires, for a given positive integer g (< k), that agents
terminate in a configuration such that either at least g agents or no agent exists at each node.
So far, in almost cases, the partial gathering problem has been considered in static graphs. As
only one exception, it is considered in a kind of dynamic rings called 1-interval connected rings,
that is, one of the links in the ring may be missing at each time step. In this paper, we consider
partial gathering in another dynamic topology. Concretely, we consider it in n × n dynamic tori
such that each of row rings and column rings is represented as a 1-interval connected ring. In such
networks, when k = O(gn), focusing on the relationship between the values of k, n, and g, we aim to
characterize the solvability of the partial gathering problem and analyze the move complexity of
the proposed algorithms when the problem can be solved. First, we show that agents cannot solve
the problem when k = o(gn), which means that Ω(gn) agents are necessary to solve the problem.
Second, we show that the problem can be solved with the total number of O(gn3) moves when
2gn + 2n − 1 ≤ k ≤ 2gn + 6n + 16g − 12. Finally, we show that the problem can be solved with
the total number of O(gn2) moves when k ≥ 2gn + 6n + 16g − 11. From these results, we show
that our algorithms can solve the partial gathering problem in dynamic tori with the asymptotically
optimal number Θ(gn) of agents. In addition, we show that agents require a total number of
Ω(gn2) moves to solve the partial gathering problem in dynamic tori when k = Θ(gn). Thus, when
k ≥ 2gn + 6n + 16g − 11, our algorithm can solve the problem with asymptotically optimal number
O(gn2) of agent moves.
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1 Introduction

1.1 Background and Related Work
A distributed system comprises a set of computing entities (nodes) connected by communi-
cation links. As a promising design paradigm of distributed systems, (mobile) agents have
attracted much attention [7]. The agents can traverse the system, carrying information
collected at visited nodes, and execute an action at each node using the information to
achieve a task. In other words, agents can encapsulate the process code and data, which
simplifies the design of distributed systems [10].

The total gathering problem (or the rendezvous problem) is a fundamental problem for
agents’ coordination. When a set of k agents are arbitrarily placed at nodes, this problem
requires that all the k agents terminate at a non-predetermined single node. By meeting
at a single node, all agents can share information or synchronize their behaviors. The total
gathering problem has been considered in various kinds of networks such as rings [9, 13],
trees [5, 1], tori [8], and arbitrary networks [3, 4].

Recently, a variant of the total gathering problem, called the g-partial gathering prob-
lem [14], has been considered. This problem does not require all agents to meet at a single
node, but allows agents to meet at several nodes separately. Concretely, for a given positive
integer g (< k), this problem requires that agents terminate in a configuration such that
either at least g agents or no agent exists at each node. Notice that the g-partial gathering
problem is equivalent to the total gathering problem when k < 2g. From a practical point of
view, the g-partial gathering problem is still useful especially in large-scale networks. That
is, when g-partial gathering is achieved, agents are partitioned into groups each of which has
at least g agents, each agent can share information and tasks with agents in the same group,
and each group can partition the network and then patrol its area that it should monitor
efficiently.

As related work, Shibata et al. considered the g-partial gathering problem in rings
[14, 15, 20], trees [17], and arbitrary networks [16]. In [14, 15], they considered it in
unidirectional ring networks with whiteboards (or memory spaces that agents can read and
write) at nodes. They mainly showed that, if agents have distinct IDs and the algorithm is
deterministic, or if agents do not have distinct IDs and the algorithm is randomized, agents
can achieve g-partial gathering with the total number of O(gn) moves (in expectation), where
n is the number of nodes. In [20], they considered g-partial gathering for another mobile
entity called mobile robots that have no memory but can observe all nodes and robots in the
network. In the case of using mobile robots, they also showed that g-partial gathering can be
achieved with the total number of O(gn) moves. In addition, the g-partial (resp., the total)
gathering problem in ring networks requires a total number of Ω(gn) (resp., Ω(kn)) moves in
both agent and robot models. Thus, the above results are asymptotically optimal in terms
of the total number of moves, and the number O(gn) is strictly smaller than that for the
total gathering problem when g = o(k). In tree and arbitrary networks, they also proposed
algorithms to solve the g-partial gathering problem with strictly smaller total number of
moves compared to the total gathering problem for some settings.

While all the above work on the total gathering problem and the g-partial gathering
problem are considered in static graphs where a network topology does not change during an
execution, recently many problems involving agents have been studied in dynamic graphs,
where a topology changes during an execution. For example, the total gathering problem [12],
the exploration problem [11, 6], the compacting and grouping problem [2], and the uniform
deployment problem [18] are considered in dynamic graphs. Also, in [19], the g-partial
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: node : agent : missing link

Figure 1 An example of the g-partial gathering problem in a 4 × 4 dynamic torus (g = 3).

gathering problem is considered in a kind of dynamic rings called 1-interval connected
rings [12, 11, 18], that is, one of the links in the ring may be missing at each time step. In
such networks, focusing on the relationship between the values of k and g, they clarified
the solvability of the g-partial gathering problem and analyzed the move complexity of the
proposed algorithms when the problem can be solved. As a result, they showed that (i) when
k ≤ 2g, the g-partial gathering problem cannot be solved, (ii) when 2g + 1 ≤ k ≤ 3g − 2, the
problem can be solved with the total number of O(gn log g) moves, and (iii) when k ≥ 3g − 1,
the problem can be solved with the asymptotically optimal total number O(gn) of agent
moves.

1.2 Our Contribution

In this paper, we consider the g-partial gathering problem of mobile agents in another
dynamic topology. Concretely, we consider the problem in n × n dynamic tori such that each
of row rings and column rings is represented as a 1-interval connected ring. An example is
given in Fig. 1. An edge with a cross means that it is missing. In this paper, we assume that
each node has a whiteboard. In addition, we assume that agents have distinct IDs, common
sense of direction, knowledge of k and n, and behave fully synchronously. In such settings,
when k = O(gn), focusing on the relationship between the values of k, n, and g, we aim to
characterize the solvability of the g-partial gathering problem and analyze the time and move
complexities of the proposed algorithms when the problem can be solved.

We summarize our results in Table 1. First, we show that agents cannot solve the g-partial
gathering problem when k = o(gn), which means that Ω(gn) agents are necessary to solve
the problem. Second, we show that the problem can be solved with O(n2) rounds and the
total number of O(gn3) moves when 2gn + 2n − 1 ≤ k ≤ 2gn + 6n + 16g − 12. Finally, we
show that the problem can be solved with O(n2) rounds and the total number of O(gn2)
moves when k ≥ 2gn + 6n + 16g − 11. From these results, we show that our algorithms
can solve the g-partial gathering problem in dynamic tori with the asymptotically optimal
number Θ(gn) of agents. In addition, we show that agents require a total number of Ω(gn2)
moves to solve the g-partial gathering problem in n × n dynamic tori when k = Θ(gn). Thus,
when k ≥ 2gn + 6n + 16g − 11, our algorithm can solve the problem with asymptotically
optimal number O(gn2) of agent moves.

Due to the page limitation, we omit to describe several pseudocodes and several proofs of
theorems and lemmas.
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Table 1 Results of g-partial gathering for agents with distinct IDs in dynamic tori when k = O(gn)
(n: #nodes, k: #agents).

Result 1 (Sec. 3) Result 2 (Sec. 5) Result 3 (Sec. 6)

Relation between k and g k = o(gn) k ≥ 2gn + 2n − 1 and
k ≤ 2gn + 6n + 16g − 12 k ≥ 2gn + 6n + 16g − 11

Solvable/Unsolvable Unsolvable Solvable Solvable
Time complexity - O(n2) O(n2)

Total number of agent moves - O(gn3) Θ(gn2)

2 Preliminaries

2.1 System Model

We basically follow the model defined in [6]. An n × n dynamic torus T is defined as
2-tuple T = (V, E), where V is a set of nodes {vi,j | 0 ≤ i, j ≤ n − 1} and E is a set of
links {(vi,j , v(i+1) mod n,j), (vi,j , vi,(j+1) mod n) | 0 ≤ i, j ≤ n − 1}. For simplicity, we denote
v(i+i′) mod n,(j+j′) mod n by vi+i′,j+j′ for any integers i, i′, j, and j′. The distance between
nodes vi,j and vp,q is defined as min{i − p, p − i} + min{j − q, q − j}. Notice that this
definition of the distance is correct when no corresponding link that connects vi,j and vp,q is
missing. We call the direction from vi,j to vi,j+1 (resp., to vi+1,j , to vi,j−1, and to vi−1,j)
the right (resp., down, left, and up) direction. Intuitively, torus T comprises n row rings
and n column rings. A row ring Ri (resp., a column ring Cj) is a subgraph of T induced by
{vi,j | 0 ≤ j ≤ n − 1} (resp., {vi,j | 0 ≤ i ≤ n − 1}) (see Fig. 2). We assume that each of row
rings and column rings is 1-interval connected, that is, one of the links in the ring may be
missing at each time step, and which link is missing is controlled by an adversarial scheduler.
Then, since each of the row and column rings is 1-interval connected, the dynamic torus T is
always connected. In addition, we assume that nodes are anonymous, i.e., they do not have
IDs (and thus the indices of nodes are used just for notation purposes). Every node vi,j ∈ V

has a whiteboard that agents at node vi,j can read from and write on.
Let A = {a0, a1, . . . , ak−1} be a set of k (≤ n) agents. Agents can move through links,

that is, they can move from vi,j to vi,j+1 (move right), from vi,j to vi+1,j (move down), from
vi,j to vi,j−1 (move left), or from vi,j to vi−1,j (move up), for any i and j. Agents have
distinct IDs and knowledge of k and n. Agents have the common sense of directions, that is,
they agree on the directions of right, down, left, and up in the torus. In addition, agents
cannot detect whether other agents exist at the current node or not. An agent ah is defined as
a deterministic finite automaton (S, W , δ, sinitial, sfinal, winitial, w′

initial). The first element
S is the set of all states of an agent, including two special states, initial state sinitial and
final state sfinal. The second element W is the set of all states (contents) of a whiteboard,
including two special initial states winitial and w′

initial. We explain winitial and w′
initial in the

next paragraph. The third element δ : S × W 7→ S × W × M is the state transition function
that decides, from the current state of ah and the current node’s whiteboard, the next states
of ah and the whiteboard, and whether ah moves to its neighboring node or not. The last
element M ={null, right, down, left, up} in δ represents which direction ah tries to move
in the next movement. The value “null” means staying at the current node. We assume
that δ (sfinal, wij) = (sfinal, wij, null) holds for any state wij ∈ W , which means that ah never
changes its state, updates the contents of the current node vi,j’s whiteboard, or leaves vi,j

once it reaches state sfinal. We say that an agent terminates when its state changes to sfinal.
Notice that S, δ, sinitial, and sfinal can be dependent on the agent’s ID.
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Figure 2 An example of a torus graph (n = 4).

In an agent system, (global) configuration c is defined as a product of the states of all
agents, the states (whiteboards’ contents) of all nodes, and the locations (i.e., the current
nodes) of all agents. We define C as a set of all configurations. In an initial configuration
c0 ∈ C, we assume that agents are deployed arbitrarily at mutually distinct nodes (or no
two agents start at the same node), and the state of each whiteboard is winitial or w′

initial
depending on the existence of an agent. That is, when an agent exists at node vi,j in the
initial configuration, the initial state of v′

i,js whiteboard is winitial. Otherwise, the state is
w′

initial.
During an execution of the algorithm, we assume that agents move instantaneously, that

is, agents always exist at nodes (do not exist on links). Each agent executes the following
four operations in an atomic action: 1) reads the contents of its current node’s whiteboard,
2) executes local computation (or changes its state), 3) updates the contents of the current
node’s whiteboard, and 4) moves to its neighboring node or stays at the current node. If
several agents exist at the same node, they take atomic actions interleavingly in an arbitrary
order. In addition, when an agent tries to move to its neighboring node (e.g., from node vi,j

to vi,j+1) but the corresponding link is missing, we say that the agent is blocked, and it still
exists at vi,j at the beginning of the next atomic action.

In this paper, we consider a synchronous execution, that is, in each time step called
round, all agents perform atomic actions. Then, an execution starting from c0 is defined as
E = c0, c1, . . . where each ci (i ≥ 1) is the configuration reached from ci−1 by atomic actions
of all agents. An execution is infinite, or ends in a final configuration where the state of
every agent is sfinal.

2.2 The Partial Gathering Problem
The requirement for the partial gathering problem is that, for a given integer g, agents
terminate in a configuration such that either at least g agents or no agent exists at each
node. Formally, we define the g-partial gathering problem as follows.

▶ Definition 1. An algorithm solves the g-partial gathering problem in dynamic tori when
the following conditions hold:

Execution E is finite (i.e., all agents terminate in state sfinal).
In the final configuration, at least g agents exist at any node where an agent exists.
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In this paper, we evaluate the proposed algorithms by the time complexity (the number
of rounds required for agents to solve the problem) and the total number of agent moves.

3 The case of k = o(gn)

When k = o(gn), the following impossibility result holds. Intuitively, this is because (i) when
there exists an agent at each of nodes v0,0, v1,1, . . . , vn−1,n−1 in the initial configuration, the
adversary can make the n agents never leave their starting nodes, and thus (ii) to achieve
g-partial gathering, it is necessary that there exist at least g agents at each of the n nodes,
which requires at least gn agents in total.

▶ Theorem 2. When k = o(gn) holds, the g-partial gathering problem cannot be solved in
dynamic tori.

4 Lower bound on the total number of agent moves when k = Θ(gn)

By Theorem 3, since at least Ω(gn) agents are necessary to solve the problem, in the following,
we assume that there exist Θ(gn) agents in the torus. Then, we have the following theorem
on the lower bound of the total number of agent moves. Intuitively, this is because when
there exists an agent at each of nodes v0,0, v1,1, . . . , vn−1,n−1 and each of the other agents is
placed at a node with distance Ω(n) from vi,i (0 ≤ i ≤ n − 1) in the initial configuration,
and when the adversary makes agents at vi,i never leave their starting node, it is necessary
that at least gn − n agents need to stay at either v0,0, v1,1, . . . , or vn−1,n−1, which requires
the total number of Ω(gn2) moves in total.

▶ Theorem 3. A lower bound on the total number of agent moves to solve the g-partial
gathering problem in dynamic tori when k = Θ(gn) is Ω(gn2).

5 The case of 2gn + 2n − 1 ≤ k ≤ 2gn + 6n + 16g − 12

In this section, when 2gn + 2n − 1 ≤ k ≤ 2gn + 6n + 16g − 12, we propose an algorithm to
solve the g-partial gathering problem with O(n2) rounds and the total number of O(gn3)
moves. In the algorithm, agents aim to make a configuration such that there exist at least
2g + 1 agents in each of row rings. Then, agents achieve g-partial gathering by applying the
existing method [19] for g-partial gathering in 1-interval connected rings to each row ring
independently. To this end, agents repeat the following two phases n times: the counting
phase and the adjusting phase. In the counting phase, each agent in row ring Ri tries to move
horizontally to count the number of agents existing in Ri at the beginning of the counting
phase. In the adjusting phase, several agents in row rings with a lot of agents try to move
vertically to a row ring with less agents at the beginning of the adjusting phase.

The overall pseudocode is given in Algorithm 1 (the pseudocodes of the counting phase
and the adjusting phase are given as procedures Counting() and Adjusting(), respectively).
Global variables used in the algorithm are given in Table 2. In the following subsections, we
explain the details of each phase.

5.1 Counting phase
The aim of this phase is that each agent ah in row ring Ri calculates the total number of
agents existing in Ri at the beginning of this counting phase by making either of the following
two configurations: (i) Each agent ah travels once around the row ring Ri and gets IDs of
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Table 2 Global variables used in proposed algorithms.

Variables for agent ah.
Type Name Meaning Initial value
int ah.phase phase number stored by ah 0 or 1
int ah.rounds number of rounds from some round 1
int ah.nVisited number of nodes that ai has visited from some round 0
int ah.nAgentsRowRing number of agents existing in the current row ring 0

int ah.rank ordinal number of how its ID is small
among IDs of agents at the same node 0

int ah.dir direction to which ah tries to move
(1: right or down, -1: left or up ) 0

array ah.IDs[p] list of IDs that ah has observed in the phase p ⊥
Variables for node vi,j.
Type Name Meaning Initial value
int vij.phase phase number stored by vi,j 1
int vij.nAgentsCurrent number of agents staying at the current node vi,j 0
array vij.IDs[p] list of IDs stored by vi,j in phase p ⊥

array vij.nAgentsAdjust[p]
number of agents existing in the current row ring
at the beginning of the current adjusting phase
with phase number p

⊥

Algorithm 1 The behavior of agent ah for the proposed algorithm when 2gn + 2n − 1 ≤
k ≤ 2gn + 6n + 16g − 12.

Main Routine of Agent ah:
1 ah.phase := 1
2 while ah.phase ≤ n do
3 Counting()
4 Adjusting()
5 ah.phase++
6 Apply the existing method [19] to the currently staying row ring
7 Terminate the algorithm execution

all the agents existing in Ri, or (ii) it detects that all the agents existing in Ri are at the
same node. To this end, we use an idea similar to [12] which considers total gathering in
1-interval connected rings. First, each agent ah writes its ID ah.id and the current phase
number ah.phase to the variables vij.IDs[ah.phase] and vij.phase, respectively, on the current
node vi,j ’s whiteboard and then tries to move right for 3n rounds. During the movement, ah

memorizes values of observed IDs that are written in the current counting phase to array
ah.IDs[ah.phase]. After the 3n rounds, the number ah.nVisited of nodes that ah has visited
from the beginning of this counting phase is (a) at least n or (b) less than n due to missing
links. In case (a), ah must have completed traveling once around the row ring Ri. Hence, ah

can calculate the number ah.nAgentsRowRing of agents existing in Ri through the number
of observed IDs (i.e., |ah.IDs[ah.phase]|). Thus, it reaches configuration (i). In case (b) (i.e.,
ah has visited less than n nodes during the 3n rounds), we show in Lemma 4 that all the
agents existing in Ri stay at the same node (they reach configuration (ii)). Thus, through
the value vij.nAgentsCurrent of the current node v′

i,js whiteboard representing the number
of agents currently staying at vi,j, ah can calculate ah.nAgentsRowRing.
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Algorithm 2 Procedure Counting() (vi,j is the current node of ah).
Main Routine of Agent ah:

1 vij.phase := ah.phase, vij.IDs[vij.phase] := vij.IDs[vij.phase] ∪ ah.id, vij.nAgentsCurrent++
2 ah.nVisited := 1, ah.rounds := 1, ah.IDs[ah.phase] := vij.IDs[vij .phase]
3 while ah.rounds ≤ 3n do
4 vij.nAgentsCurrent--
5 Try to move from the current node vi,j to the right neighboring node vi,j+1

6 if ah reached vi,j+1 (that becomes new vi,j) then
7 ah.nVisited++
8 if (vij.phase = ah.phase) ∧ (ah.nVisited ≤ n) then
9 ah.IDs[ah.phase] := ah.IDs[ah.phase] ∪ vij.IDs[vij.phase]

10 vij.nAgentsCurrent++, ah.rounds++
11 if ah.nVisited < n then ah.nAgentsRowRing := vij.nAgentsCurrent // all the agents in row

ring Ri stay at the current node
12 if ah.nVisited ≥ n then ah.nAgentsRowRing := |ah.IDs[ah.phase]| // ah traveled once

around the row ring
13 Terminate the counting phase and enter the adjusting phase

The pseudocode of the counting phase is described in Algorithm 2. Note that, during the
counting phase, an agent ah may visit more than n nodes and then the number of observed
IDs is more than the number of agents in the row ring when it is blocked less than 2n times.
In this case, ah stops measuring IDs when it has visited more than n nodes (line 8).

Concerning the counting phase, we have the following lemma.

▶ Lemma 4. Let nai be the number of agents existing in row ring Ri at the beginning of the
current counting phase with phase number p. Then, at the end of the counting phase, each
agent ah existing in Ri in phase p stores the correct value of nai to ah.nAgentsRowRing.

5.2 Adjusting phase
In this phase, several agents in a row ring with a lot of agents try to move vertically to a row
ring with few agents to reduce the gap of the number of agents between row rings. Concretely,
several agents in each row ring Ri first move horizontally in Ri and write the number of
agents existing in Ri at the beginning of this adjusting phase (i.e., ah.nAgentsRowRing for
agent ah), to each node’s whiteboard of Ri. Then, several agents belonging to a row ring
with at least 2g + 3 agents try to move in the torus vertically and stay at a node of a row
ring with less than 2g + 1 agents at the beginning of this adjusting phase. By repeating this
behavior and the counting phase explained before, agents eventually reach a configuration
such that there exist at least 2g + 1 agents in each row ring (and then g-partial is achieved
by applying the existing method [19] to each row ring independently).

First, we explain how to write the number nai of agents in Ri at the beginning of this
adjusting phase (or at the end of the counting phase just before) to each node’s whiteboard
of Ri. By Lemma 4, at the end of the counting phase just before, each agent ah in row ring
Ri knows the number nai (= ah.nAgentsRowRing) of agents currently existing in Ri. In
addition, by Algorithm 2, ah can get the list of agent IDs existing in Ri. Among the agents,
let ai

1 (resp., ai
2) be the agent with the smallest (resp., the second smallest) ID. Then, for n

rounds, ai
1 (resp., ai

2) tries to move right (resp., left) and then ai
1 (resp., ai

2) tries to move left
(resp., right) for the next n rounds. During the movement, ai

1 and ai
2 write values of nai for

the current phase p to variable vij.nAgentsAdjust[p] of each node vi,j ’s whiteboard. By this
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behavior, we show in Lemma 5 that every node in Ri is visited by ai
1 or ai

2 and the value of
nai is stored when there exist at least two agents in Ri. Notice that it is possible that there
exists only one agent a in Ri at the beginning of some adjusting phase and a cannot visit all
nodes in Ri and write necessary information to nodes’ whiteboards in Ri. In this case, when
some agents in a row ring other than Ri try to move vertically and visit some node in Ri

(this method is explained in the next paragraphs), they can recognize that no information is
written to the node of Ri and there exist less than 2g + 1 (actually one) agents in Ri.

Next, we explain how agents in a row ring with many agents move vertically to a node of a
row ring with less agents. First, when nai ≥ 2g +3, for 3n rounds, each agent ah in Ri tries to
move right until reaching the node vi

min where the smallest ID is written in the counting phase
just before. Then, by the similar discussion of agents’ behaviors and the proof for Lemma 4,
all the agents in Ri that does not reach vi

min stay at the same node v′
i. From such a situation,

nai − (2g + 1) agents in total try to move vertically to visit a node in a row ring with less
than 2g + 1 agents (or node vi′,j with vi’j.nAgentsAdjust[p] < 2g + 1). Intuitively, among the
nai − (2g + 1) agents, around half agents try to move up and another half agents try to move
down. Concretely, let ah.rank be the ordinal number of how small its ID is among agents at the
same node vi,j (1 ≤ ah.rank ≤ vij.nAgentsCurrent). Then, when all the nai agents in Ri stay
at the same node vi

min (or v′
i), each agent ah with 1 ≤ ah.rank ≤ ⌊(nai − (2g + 1))/2⌋ (resp.,

⌊(nai−(2g+1))/2⌋+1 ≤ ah.rank ≤ nai−(2g+1)) belongs to the up group (resp., down group),
like Fig. 3(a). On the other hand, when there exist two nodes vi

min and v′
i where an agent exists,

let vi
more (resp., vi

less) be the node where at least ⌈nai/2⌉ (resp., at most ⌊nai/2⌋) agents exist
and let nai

more (resp., nai
less) be the number of agents staying at vi

more (resp., vi
less). Then,

when nai
more ≥ 2g+1, each agent ah at vi

more with 1 ≤ ah.rank ≤ ⌊(nai
more−(2g+1))/2⌋ (resp.,

⌊(nai
more−(2g+1))/2⌋+1 ≤ ah.rank ≤ nai

more−(2g+1)) and each agent ah′ at node vi
less with

1 ≤ ah′ .rank ≤ ⌊nai
less/2⌋ (resp., ⌊nai

less/2⌋ + 1 ≤ ah′ .rank ≤ nai
less) belong to the up group

(resp., the down group), like Fig. 3(b). When nai
more < 2g + 1, each agent ah at vi

more with
1 ≤ ah.rank ≤ ⌊(nai − (2g + 1))/2⌋ (resp., ⌊(nai − (2g + 1))/2⌋+ 1 ≤ ah.rank ≤ nai − (2g + 1))
belongs to the up group (reps., the down group), and agents at vi

less do not try to move in
this classification, like Fig. 3(c).

Thereafter, for n rounds, each agent in the up (resp., down) group tries to move up (resp.,
down) until it reaches a node in some row ring Ri′ with nai′ < 2g + 1 (or no value of nai′ is
written). By this behavior, since each column ring is represented as a 1-interval connected
ring, either an up group or a down group can visit a node in a row ring with less than 2g + 1
agents. By repeating such an adjusting phase and the previous counting phase n times in
total, we show that agents eventually reach a configuration such that there exist at least
2g + 1 agents in each of row rings (Lemma 5). Thus, they achieve g-partial gathering by
applying the existing method [19] to each row ring independently.

The pseudocode of the adjusting phase is described in Algorithm 3. In Algorithm 3, each
agent uses procedure DecideDirection() to determine the vertical direction it should move (or
it should keep staying at the current node), whose pseudocode is described in Algorithm 4.
For simplicity, we omit how to calculate ah.rank in Algorithm 4.

Concerning the adjusting phase, we have the following lemma.

▶ Lemma 5. After executing the adjusting phase n times in total, agents reach a configuration
such that there exist at least 2g + 1 agents in each of row rings.

Proof. First, we simply show that, when there exist at least two agents in Ri at the beginning
of the p-th adjusting phase, after ai

1 and ai
2 move right and left for 2n rounds (lines 1 to

15 of Procedure Adjusting()), the correct number nai of agents existing in a row ring Ri is
stored to variable vij.nAgentsAdjust[p] of each node vi,j’s whiteboard in Ri. By Procedure
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Figure 3 Examples of forming up groups and down groups (g = 3).

Adjusting(), agent ai
1 (resp., ai

2) first tries to move right (resp., left) for n rounds. When ai
1

and ai
2 start their behaviors at the same node, since at most one link is missing in each of

row rings at each round, every node is visited within this n rounds and the value of nai is
stored to each node’s whiteboard in Ri. When ai

1 and ai
2 start their behaviors at different

nodes and there exists at least one unvisited node during the n rounds, it means that ai
1

and ai
2 are blocked by the same link. In this case, for the next n rounds, they switch their

directions and ai
1 (resp., ai

2) tries to move left (resp., right). Then, by the similar discussion
of the case when they start their movements at the same node, every node is visited wihtin
this n rounds and the value of nai is stored to each node’s whiteboard in Ri. Thus, when
there exist at least two agents in Ri at the beginning of the p-th adjusting phase, the correct
value of nai is stored to vij.nAgentsAdjust[p] of each node vi,j’s whiteboard in Ri.

In the following, we discuss the number of agents in each row ring after executing the
adjusting phase n times. In the proof, we assume that k = 2gn + 2n − 1 holds (we can
show the lemma in the case of k > 2gn + 2n − 1 similarly). At the beginning of some
adjusting phase, we call a row ring Ri enough if there exist at least 2g + 1 agents in Ri.
Otherwise, we call the row ring lacking. In addition, we define the number diffi

enough (resp.,
diffi

lack) of how more (resp., less) agents exist in row ring Ri compared to 2g + 1, and it is
calculated as nai − (2g + 1) (resp., (2g + 1) − nai). Notice that diffi

enough and diffi
lack are

always non-negative numbers. Moreover, we define SumDiffenough =
∑

i|Ri is enough diffi
enough

(resp., SumDifflack =
∑

i|Ri is lacking diffi
lack). Then, we first show the following claim.
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Algorithm 3 Procedure Adjusting() (vi,j is the current node of ah).
Main Routine of Agent ah:

1 ah.rounds := 1
2 if ah.nAgentsRowRing ≥ 2g + 3 then
3 if ah.id is smallest among ah.IDs[ah.phase] then ah.dir := 1
4 if ah.id is the second smallest among ah.IDs[ah.phase] then ah.dir := −1
5 while ah.rounds ≤ n do
6 vij.nAgentsCurrent--
7 Try to move from the current node vi,j to the neighboring node vi,j+ah.dir

8 if ah reached vi,j+ah.dir (that becomes new vi,j) then
vij.nAgentsAdjust[ah.phase] := ah.nAgentsRowRing

9 vij.nAgentsCurrent++, ah.rounds++
10 ah.dir := ah.dir × (−1)
11 while ah.rounds ≤ 2n do
12 vij.nAgentsCurrent--
13 Try to move from the current node vi,j to the neighboring node vi,j+ah.dir

14 if ah reached vi,j+ah.dir (that becomes new vi,j) then
vij.nAgentsAdjust[ah.phase] := ah.nAgentsRowRing

15 vij.nAgentsCurrent++, ah.rounds++
16 ah.dir := 1
17 while ah.rounds ≤ 5n do
18 if vi,j is not the node where min{ah.IDs[ah.phase]} is not written in

vij.IDs[vij.phase] then
19 vij.nAgentsCurrent--
20 Try to move from the current node vi,j to the right neighboring node vi,j+1

21 vij.nAgentsCurrent++
22 ah.rounds++
23 ah.dir := DecideDirection()
24 while ah.rounds ≤ 6n do
25 if vij .nAgentsAdjust[ah.phase] ≥ 2g + 1 then
26 vij.nAgentsCurrent--
27 Try to move from the current node vi,j to the right neighboring node vi+ah.dir,j

28 vij.nAgentsCurrent++
29 ah.rounds++

30 else
31 While ah.rounds ≤ 6n do ah.rounds++
32 Terminate the adjusting phase
33 // ah increments its phase number and starts the next counting phase

▷ Claim 6. At the end of each adjusting phase, compared to the beginning of the adjusting
phase, either of the following two properties holds: (i) The value of SumDifflack at least
halves, or (ii) The number of lacking rings decreases by at least one.

Proof. First, we briefly show that SumDiffenough = SumDifflack + n − 1 always holds. Let
nrenough (resp., nrlack) be the number of enough (resp., lacking) row rings. Notice that
nrenough = n − nrlack holds. Then, there exist nrlack × (2g + 1) − SumDifflack agents in total
in lacking row rings and hence there exist 2gn + 2n − 1 − (nrlack × (2g + 1) − SumDifflack)
agents in total in enough row rings. Since the total number of agents in enough row rings can
be also represented as nrenough × (2g + 1) + SumDiffenough, 2gn + 2n − 1 − (nrlack × (2g + 1) −
SumDifflack) = nrenough × (2g + 1) + SumDiffenough holds. Thus, since nrenough = n − nrlack
holds, the following equanality holds.
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Algorithm 4 Procedure DecideDirection() (vi,j is the current node of ah).
Main Routine of Agent ah:

1 ah.dir := 0
2 if vij.nAgentsCurrent = ah.nAgentsRowRing then
3 // All the agents in the current row ring stay at the same node
4 Calculate ah.rank among the agents at the same node
5 if 1 ≤ ah.rank ≤ ⌊(vij.nAgentsCurrent − (2g + 1))/2⌋ then ah.dir := −1
6 else if

⌊(vij.nAgentsCurrent − (2g + 1))/2⌋ + 1 ≤ ah.rank ≤ vij.nAgentsCurrent − (2g + 1)
then ah.dir := 1

7 else
8 // There exist two nodes where an agent exists in the current row ring
9 Calculate ah.rank among the agents at the same node

10 if vij.nAgentsCurrent ≥ ⌈ah.nAgentsRowRing/2⌉ then
11 if vij.nAgentsCurrent ≥ 2g + 1 then
12 if 1 ≤ ah.rank ≤ ⌊(vij.nAgentsCurrent − (2g + 1))/2⌋ then ah.dir := −1
13 else if

⌊(vij.nAgentsCurrent−(2g+1))/2⌋+1 ≤ ah.rank ≤ vij.nAgentsCurrent−(2g+1)
then ah.dir := 1

14 else
15 if 1 ≤ ah.rank ≤ ⌊(ah.nAgentsRowRing − (2g + 1))/2⌋ then ah.dir := −1
16 else if ⌊(ah.nAgentsRowRing − (2g + 1))/2⌋ + 1 ≤ ah.rank ≤

ah.nAgentsRowRing − (2g + 1) then ah.dir := 1

17 else
18 if ah.nAgentsRowRing − vij.nAgentsCurrent ≥ 2g + 1 then
19 if 1 ≤ ah.rank ≤ ⌊(vij.nAgentsCurrent)/2⌋ then ah.dir := −1
20 else ah.dir := 1

21 return ah.dir

SumDiffenough = 2gn + 2n − 1 − (nrlack × (2g + 1) − SumDifflack) − nrenough × (2g + 1)
= 2gn + 2n − 1 − (nrlack × (2g + 1) − SumDifflack) − (n − nrlack) × (2g + 1)
= SumDifflack + n − 1.

Then, by line 2 of Algorithm 3, since several agents in a row ring with at least 2g+3 (resp.,
less than 2g + 3) agents try to (resp., do not try to) move vertically, the situation where the
number of agents trying to move vertically from an enough row ring to a node in lacking row
rings is the minimum, is that, among nrenough enough row rings, there exist 2g + 2 agents in
each of nrenough −1 enough row rings, and there exist the remaining 2g +1+SumDiffenough −
(nrenough − 1) agents in the other enough row ring. Then, by Algorithm 3 and the fact of
nrenough ≤ n and SumDiffenough = SumDifflack + n − 1, the number of agents trying to move
vertically is at least 2g + 1 + SumDiffenough − (nrenough − 1) − (2g + 1) = SumDiffenough −
(nrenough − 1) ≥ SumDiffenough − (n − 1) = SumDifflack + n − 1 − (n − 1) = SumDifflack. In
addition, since at most one link is missing in each of column rings, ⌊SumDifflack/2⌋ agents
can visit a node in a lacking row ring Rj

lack. If ⌊SumDifflack/2⌋ ≤ diffj
lack, SumDifflack halves

(property (i) holds). Otherwise, Rj
lack becomes an enough row ring from the next adjusting

phase (property (ii) holds). Therefore, the claim follows. ◁
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Thus, by Claim 6 and the fact that the value of SumDifflack is at most = (2g+1)×(n−1) =
O(gn), after executing the adjusting phase n times in total, SumDifflack becomes 0, which
means there exist at least 2g+1 agents in each of row rings. Therefore, the lemma follows. ◀

We have the following theorem for the proposed algorithm.

▶ Theorem 7. When 2gn + 2n − 1 ≤ k ≤ 2gn + 6n + 16g − 12, the proposed algorithm solves
the g-partial gathering problem in dynamic tori with O(n2) rounds and the total number of
O(gn3) moves.

6 The case of k ≥ 2gn + 6n + 16g − 11

In this section, when k ≥ 2gn + 6n + 16g − 11, we propose an algorithm to solve the problem
with O(n2) rounds and the total number of O(gn2) (i.e., optimal) moves. In the algorithm,
agents aim to make a configuration such that there exist at least (n + 8)g agents in some
row ring Ri. Then, several agents that gathered in Ri are partitioned into several groups
each having at least g agents and they try to visit all the nodes in the torus in total. During
the movement, if some agent group starting from Ri visits a node with less than g agents,
the less than g agents join the group’s movement. Thus, after all nodes are visited, agents
achieve g-partial gathering.

Concretely, the algorithm comprises the following three phases: the observing phase, the
semi-gathering phase, and the achievement phase. In the observing phase, each agent moves
horizontally in the current row ring Ri and recognizes the minimum agent ID among agents
in Ri (the actual behavior is almost the same as that of the counting phase in Section 5.1).
In the semi-gathering phase, several agents in row ring Ri move in the torus, observe the
minimum ID written in each of row rings, and share the information with agents in Ri.
Thereafter, each agent tries to move vertically to visit a node in the row ring Rmin where
there exists an agent with the minimum ID among all agents in the initial configuration.
However, there may exist agents that cannot reach a node in Rmin due to link-missings.
Hence, in the achievement phase, agents in Rmin visit all the nodes in the torus in total to
achieve g-partial gathering.

6.1 Observing phase
The behavior of agents in this phase is almost the same as that of the counting phase in
Section 5.1. Concretely, each agent ah first writes its ID on the current node vi,j ’s whiteboard.
Thereafter, for 3n rounds, ah tries to move right in its row ring Ri and stores the observed IDs
during the movement. By this behavior, by the similar discussion of the proof for Lemma 4,
(i) each agent ah in row ring Ri travels once around the row ring, or (ii) all the agents in
Ri stay at the same node. Then, in either case, each agent ah can get the list of IDs for all
agents in Ri. Among the IDs, ah stores the minimum ID to variable ah.minIDrow, and it
selects the semi-gathering node vsGather as the node where the minimum ID is written in the
row ring (the information of the semi-gathering node is used in the next subsection).

The pseudocode in the observing phase is described in Algorithm 5. Variables newly used
from this section are given in Table 3. Notice that several variables are used in the following
phases. Concerning the observing phase, by the same proof idea as that in Lemma 4, we
have the following lemma.

▶ Lemma 8. After finishing the observing phase, each agent ah in row ring Ri stores the
minimum agent ID among agents existing in Ri in the initial configuration to variable
ah.minIDrow.
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Table 3 Global variables newly used in Section 6.

Variables for agent ah.
Type Name Meaning Initial value

int ah.minIDrow the minimum agent ID among agents
existing in the same row ring as ah in c0

⊥

int ah.minIDall the minimum agent ID among all the agents in Arow7 ⊥
Variables for node vi,j.
Type Name Meaning Initial value
int vij.ID ID stored at vi,j ⊥

int vij.minIDrow the minimum agent ID among agents
existing in the row ring Ri in c0

⊥

int vij.minIDall the minimum agent ID among all the agents in Arow7 ⊥

Algorithm 5 The behavior of agent ah in the observing phase (vi,j is the current node of
ah).

Main Routine of Agent ah:
1 vij.ID := ah.id, vij.nAgentsCurrent++
2 ah.nVisited := 1, ah.rounds := 1, ah.IDs[ah.nAgentsRowRing] := ah.id

ah.nAgentsRowRing++
3 while ah.rounds ≤ 3n do
4 vij.nAgentsCurrent--
5 Try to move from the current node vi,j to the right neighboring node vi,j+1

6 if ah reached vi,j+1 (that becomes new vi,j) then
7 ah.nVisited++
8 if (vij.ID ̸=⊥) ∧ (ah.nVisited ≤ n) then
9 ah.IDs[ah.nAgentsRowRing] := vid.ID

10 ah.nAgentsRowRing++

11 vij.nAgentsCurrent++, ah.rounds++
12 if ah.nVisited ≥ n then
13 // ah traveled once around the row ring
14 Let min be the minimum ID among ah.IDs[ ]
15 ah.minIDrow := min
16 Select the semi-gathering node vsGather as a node where min (or ah.minIDrow) is written
17 if ah.nVisited < n then
18 // all the agents in row ring Ri stay at the current node
19 Let min be the ID of agent ah′ with ah′ .rank = 1
20 ah.minIDrow := min
21 Select the current node as the semi-gathering node vsGather

22 Terminate the counting phase and enter the semi-gathering phase

6.2 Semi-gathering phase
In this phase, agents try to move vertically to visit a node in the row ring R so that there exist
at least (n + 8)g agents in R. To this end, the semi-gathering phase comprises the following
two sub-phases: the recognizing sub-phase and the moving sub-phase. In the recognizing
sub-phase, several agents in each row ring Ri move horizontally to write the value of the
minimum agent ID among agents in Ri, move vertically to collect information of minimum
IDs written in each row ring, and share the information of the row ring Rmin where, in the
initial configuration, there exists the agent with the minimum ID among all agents that try
to move in the torus in this sub-phase, with other agents in Ri. In the moving sub-phase,
each agent moves vertically to visit a node in Rmin.
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6.2.1 Recognizing sub-phase

By Lemma 8, at the beginning of the recognizing sub-phase, each agent ah in row ring Ri

knows the list of IDs of all agents in Ri. When the number of IDs is less than 7 (i.e., there
exist less than 7 agents in Ri in the initial configuration), agents in Ri do nothing in this
sub-phase (and the next moving sub-phase) and wait for other agents’ instructions, which is
described in Section 6.3. Hence, in the following, we describe the behavior of agents in a row
ring in which there exist at least 7 agents in the initial configuration. Notice that there exists
at least one such a row ring with at least 7 agents because we assume k ≥ 2gn + 6n + 16g − 11
in this section and thus it never happens that there exist at most 6 agents in each row ring.
We denote Rrow7 by the set of such row rings and Arow7 by the set of agents existing in
Rrow7 at the beginning of the recognizing sub-phase. Let ai

1 (resp., ai
2) be the agent with

the smallest (resp., the second smallest) ID among agents in Ri. Then, similar to the first
behavior of the adjusting phase in Section 5.2 (Algorithm 3), ai

1 (resp., ai
2) tries to move

right (resp., left) for n rounds and then tries to move left (resp., right) for n rounds. During
the movement, ai

1 and ai
2 write the value of ID of ai

1 (= ai
1.minIDrow or ai

2.minIDrow) to
variable vij.minIDrow of each node vi,j ’s whiteboard. By this behavior, by the same proof
idea of Lemma 5, the value of ai

1’s ID is stored to each node’s whiteboard in row ring Ri.
Thereafter, for 3n rounds, each agent ah tries to move right until visiting vsGather (where

ai
1 exists in the initial configuration). After the movement, by the similar discussion of the

proof of Lemma 4, all the agents in Ri that do not reach vsGather stay at the same node v′
i.

Between vsGather and v′
i, we call the node with more (resp., less) agents vi

more (resp., vi
less)

(tie is broken using agent IDs), and let nai
more be the number of agents at vi

more. Then, since
there exist at least 7 agents in Ri, nai

more ≥ 4 holds and the four agents at vi
more try to move

vertically to collect the information of minimum IDs written in each row ring. We use the
procedure called Splitting(), introduced in [18]. Concretely, let aiMore

1 (resp., aiMore
2 , aiMore

3 ,
and aiMore

4 ) be the agent with the smallest (resp., the second, third, and fourth smallest)
ID at vi

more. We call aiMore
1 and aiMore

2 (resp., aiMore
3 and aiMore

4 ) the up group (resp., the
down group). Then, each agent aiMore

h (1 ≤ h ≤ 4) tries to move up or down for 12n rounds.
Concretely, for the first 3n rounds, aiMore

h tries to move up regardless of whether it belongs
to the up group or the down group. Next, for the second 3n rounds, agents in the up (resp.,
down) group try to move up (resp., down). Thereafter, for the third 3n rounds, each agent
aiMore

h tries to move up. Finally, for the last (or fourth) 3n rounds, agents in the up (resp.,
down) group try to move up (resp., down). During the movement, aiMore

h memorizes the value
of the minimum ID that has ever observed to variable aiMore

h .minIDall. By this behavior, we
can show by [18] that either the up group or the down group travels ounce around the current
column ring, which means the group can know the value of the minimum agent ID among
Arow7. Without loss of generality, we assume that the up group (aiMore

1 and aiMore
2 ) traveled

once around the column ring. Then, after Splitting(), for n rounds, aiMore
1 and aiMore

3 (resp.,
aiMore

2 and aiMore
4 ) try to move up (resp., down) to visit a from where they started these

movements (i.e., vi
more). Since at most one link is missing in each of column rings, either

aiMore
1 or aiMore

2 can visit vi
more and either aiMore

3 or aiMore
4 can also visit vi

more. Hence, after
the movement, there exist at least two agents at vi

more, and they can know the minimum
agent ID among Arow7. Among the two agents, let aiMore

1′ (resp., aiMore
2′ ) be the agent with

a smaller (resp., larger) ID. Then, for n rounds, aiMore
1′ (resp., aiMore

2′ ) tries to move right
(resp., left) and writes the value of aiMore

h .minIDall (h = 1′, 2′) to the variable vij.minIDall
for each node vi,j ’s whiteboard in Ri. Then, since aiMore

1′ and aiMore
2′ can visit all the n nodes

in Ri in total, through vij.minIDall, each agent ah in Ri can store the correct value of the
minimum agent ID among Arow7 to ah.minIDall.
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The pseudocode of the recognizing sub-phase is described in Algorithm 6. In Algorithm 6,
agents use Procedure Splitting(), whose pseudocode is described in Algorithm 7. For simplicity,
in Splitting(), we omit the description of from which node vsGather or v′ agents try to move
vertically using IDs in the case that there exist the same number of agents at both vsGather
and v′. In addition, for simplicity, we omit the detailed description of whether the up group
traveled once around the column ring or the down group did so.

Concerning the recognizing sub-phase, we have the following lemma.

▶ Lemma 9. Let Arow7 be the set of agents such that there exist at least 7 agents in their
initially belonging row ring in the initial configuration, and let Rrow7 be the set of row rings
having agents in Arow7 in the initial configuration. Then, after finishing the recognizing
sub-phase, each agent in Rrow7 recognizes the minimum agent ID among Arow7.

6.2.2 Moving sub-phase

In this sub-phase, agents try to visit a node in the row ring Rmin where there exists the
agent with the minimum ID among Arow7 in the initial configuration. First, for 3n rounds,
each agent ah in row ring Ri tries to move right until visiting a node vi

sGather where there
exists an agent with the minimum ID among all the agents in the current row ring Ri in the
initial configuration. Then, by a similar discussion of the proof of Lemma 4, agents that do
not reach vi

sGather stay at the same node v′
i. Next, ah calculates its rank among agents at

the same node. If its rank is at most (resp., more than) the half of the number of agents
at the current node, ah belongs to an up (resp., a down) group. Then, for n rounds, until
visiting a node in Rmin, ah tries to move up (resp., down) if it is in an up (resp., a down)
group. Since at most one link is missing in each column ring, either the up group or down
group can visit a node in Rmin after the movement. By this behavior, we show in Lemma 10
that there exist at least (n + 8)g agents in Rmin after finishing the moving sub-phase.

The pseudocode of the moving sub-phase is described in Algorithm 8. Notice that, in the
previous recognizing sub-phase, agents that belonged to an up group or a down group may
stay at a node not in Rrow7 at the beginning of the moving sub-phase due to link-missings.
In this case, such agents do nothing in this sub-phase and wait for other agents’ instructions
in the next phase (lines 2 and 3).

Concerning the moving sub-phase, we have the following lemma.

▶ Lemma 10. After finishing the moving sub-phase, there exist at least (n + 8)g agents in
some row ring.

Proof. By the behavior for the moving sub-phase (Algorithm 8), all agents existing in Rrow7
try to visit a node in Rmin and at least the half of such agents can visit there. Then, the
initial configuration such that the number of agents that try to visit a node in Rmin is the
minimum is that (1) there exist 7 agents in Rmin, (2) there exist 6 agents in each of n − 2
row rings, and (3) there exist the remaining agents in one row ring Ri. In this case, each
agent in the n − 2 row rings does not move in this sub-phase. In addition, it is possible that
two agents that, existed in Rmin in the initial configuration and belonged to an up or a down
group in the previous recognizing sub-phase, do not stay at a node in Rmin or Ri after the
movement. The same thing holds for agents in Ri. Thus, at the beginning of the moving
sub-phase, since there exist at least 5 agents in Rmin and they do not move in this sub-phase,
and since there exist at least k − 7 − 6(n − 2) − 2 = k − 6n + 3 agents in Ri, the number of
agents in Rmin at the end of the moving sub-phase is at least
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Algorithm 6 The behavior of agent ah in the recognizing sub-phase (vi,j is the current
node of ah).

Main Routine of Agent ah:
1 ah.rounds := 1, ah.dir := 0
2 if ah.nAgentsRowRing < 7 then
3 while ah.rounds < 23n do ah.rounds++
4 Terminate the semi-gathering phase and enter the achievement phase
5 else
6 if ah.id is smallest among ah.IDs[] then ah.dir := 1
7 if ah.id is the second smallest among ah.IDs[] then ah.dir := −1
8 while ah.rounds ≤ n do
9 vij.nAgentsCurrent--

10 Try to move from the current node vi,j to the neighboring node vi,j+ah.dir

11 if ah reached vi,j+ah.dir (that becomes new vi,j) then vij.minIDrow := ah.minIDrow
12 vij.nAgentsCurrent++, ah.rounds++
13 ah.dir := ah.dir × (−1)
14 while ah.rounds ≤ 2n do
15 vij.nAgentsCurrent--
16 Try to move from the current node vi,j to the neighboring node vi,j+ah.dir

17 if ah reached vi,j+ah.dir (that becomes new vi,j) then vij.minIDrow := ah.minIDrow
18 vij.nAgentsCurrent++, ah.rounds++
19 while ah.rounds ≤ 5n do
20 if vij.ID ̸= vij.minIDrow then
21 vij.nAgentsCurrent--
22 Try to move from the current node vi,j to the right neighboring node vi,j+1

23 vij.nAgentsCurrent++
24 ah.rounds++
25 ah.minIDall := ah.minIDrow
26 Splitting()
27 ah.rounds := 1
28 while ah.rounds ≤ n do
29 if vij.minIDrow ̸= ah.minIDrow then
30 vij.nAgentsCurrent--
31 Try to move from the current node vi,j to the neighboring node vi+ah.dir,j

32 vij.nAgentsCurrent++
33 ah.rounds++
34 if vij.minIDrow = ah.minIDrow then
35 if ah visited all the nodes in the current column ring during Splitting() then

vij.minIDall := ah.minIDall
36 ah.minIDall := vij.minIDall
37 if ah.rank = 1 then ah.dir := 1
38 else if ah.rank = 2 then ah.dir := −1
39 while ah.rounds ≤ 2n do
40 vij.nAgentsCurrent--
41 Try to move from the current node vi,j to the neighboring node vi,j+ah.dir

42 vij.minIDall := ah.minIDall, vij.nAgentsCurrent++, ah.rounds++

43 Terminate the recognizing sub-phase and enter the moving sub-phase
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Algorithm 7 Procedure Splitting() (vi,j is the current node of ah.)
Main Routine of Agent ah:

1 ah.rounds := 1, ah.dir := 0
2 if (vij.nAgentsCurrent ≥ ⌈ah.nAgentsRowRing/2⌉) ∧ (vij.nAgentsCurrent ≥ 4) then
3 if 1 ≤ ah.rank ≤ 2 then ah.dir := −1
4 else if 3 ≤ ah.rank ≤ 4 then ah.dir := 1
5 while ah.rounds ≤ 3n do
6 vij.nAgentsCurrent--
7 Try to move from the current node vi,j to the up neighboring node vi−1,j

8 vij.nAgentsCurrent++
9 If vij.minIDrow < ah.minIDall then ah.minIDall := vij.minIDrow

10 ah.rounds++
11 while ah.rounds ≤ 6n do
12 vij.nAgentsCurrent--
13 Try to move from the current node vi,j to the neighboring node vi+ah.dir,j

14 vij.nAgentsCurrent++
15 If vij.minIDrow < ah.minIDall then ah.minIDall := vij.minIDrow
16 ah.rounds++
17 while ah.rounds ≤ 9n do
18 vij.nAgentsCurrent--
19 Try to move from the current node vi,j to the up neighboring node vi−1,j

20 vij.nAgentsCurrent++
21 If vij.minIDrow < ah.minIDall then ah.minIDall := vij.minIDrow
22 ah.rounds++
23 while ah.rounds ≤ 12n do
24 vij.nAgentsCurrent--
25 Try to move from the current node vi,j to the neighboring node vi+ah.dir,j

26 vij.nAgentsCurrent++
27 If vij.minIDrow < ah.minIDall then ah.minIDall := vij.minIDrow
28 ah.rounds++
29 if (ah.rank = 1) ∨ (ah.rank = 3) then ah.dir := −1
30 else ah.dir := 1

(7 − 2) + ⌊(k − 6n + 3)/2⌋ ≥ 5 + (k − 6n + 3)/2 − 1
≥ 4 + (2gn + 16g − 8)/2
= 4 + gn + 8g − 4
= (n + 8)g

The second inequality comes from the assumption of k ≥ 2gn + 6n + 16g − 11. Therefore,
the lemma follows. ◀

6.3 Achievement phase
In this phase, agents in Rmin move in the torus to achieve g-partial gathering. Intuitively,
from Rmin, some 2g agents visit a node in a row ring. Thereafter, the 2g agents visit all the
nodes in the row ring in a way such that an agent group Ar with some g agents tries to move
right and another agent group Al with the other g agents tries to move left. In addition,
during the movement, when Ar or Al visits a node with less than g agents, the less than g

agents join the group’s movement. By executing such a behavior in each of the n row rings,
agents can achieve g-partial gathering.
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Algorithm 8 The behavior of agent ah in the moving sub-phase (vi,j is the current node
of ah.)

Main Routine of Agent ah:
1 ah.rounds := 1, ah.dir := 0
2 if vij.minIDall =⊥ then
3 while ah.rounds ≤ 4n do ah.rounds++
4 else
5 while ah.rounds ≤ 3n do
6 if vij.ID ̸= vij.minIDrow then
7 vij.nAgentsCurrent--
8 Try to move from the current node vi,j to the right neighboring node vi,j+1

9 vij.nAgentsCurrent++,
10 ah.rounds++
11 if ah.rank ≤ ⌈vij.nAgentsCurrent/2⌉ then ah.dir := −1
12 else ah.dir := 1
13 while ah.rounds ≤ 4n do
14 if vij.minIDrow ̸= ah.minIDall then
15 vij.nAgentsCurrent--
16 Try to move from the current node vi,j to the neighboring node vi+ah.dir,j

17 vij.nAgentsCurrent++,
18 ah.rounds++

19 Terminate the moving sub-phase and enter the achievement phase

To this end, each agent ah in Rmin first executes procedure Counting() in Section 5.1 for
3n rounds. Then, ah can count the number of agents currently existing in Rmin. Thereafter,
for 3n rounds, ah tries to move right until visiting the node vmin

i,j with vmin
ij .ID = ah.minIDall.

Then, similarly to the previous discussion, all the agents in Rmin that do not reach vmin
i,j stay

at the same node v′
min. Between the two nodes, we call the node with more (resp., less) agents

vmore
min (resp., vless

min) (tie is broken using agent IDs). In addition, let Rℓ
fromMin (0 ≤ ℓ ≤ n − 1)

be the ℓ-th up row ring from Rmin. Here, we say a row ring Ri is ℓ-th up from row ring
Ri′ when i′ − i = ℓ holds. Notice that R0

fromMin is Rmin itself. Then, agents execute the
following sub-phases n times: in the ℓ-th sub-phase, 4g agents from vmore

min or vless
min try to move

vertically so that at least 2g agents visit a node in Rℓ
nomMin, and then at least 2g agents try

to move horizontally to visit all the nodes in Rℓ
fromMin.

First, as a special case, we explain the behaviors of the 0-th sub-phase (i.e., movements
in row ring R0

fromMin or Rmin). Let namore
min (resp., naless

min) be the number of agents staying
at vmore

min . When naless
min ≥ g, agents in Rmin do nothing for 2n rounds. Otherwise, several

agents at vmore
min move horizontally to visit vless

min. Concretely, each agent ah at vmore
min with

1 ≤ ah.rank ≤ g (resp., g+1 ≤ ah.rank ≤ 2g) belongs to a right-left group Arl (resp., left-right
group Alr). Then, for n rounds, each agent in Arl (resp., Alr) tries to move right (resp.,
left). By this behavior, Arl and Alr can visit all the n nodes in Rmin in total. During the
movement, if Arl or Alr visits vless

min, the agents that stayed at vless
min join the group’s movement.

Thereafter, for n rounds, each agent in Arl (resp., Alr) tries to move left (resp., right) until
visiting vmore

min . By this behavior, Arl or Alr can return to vmore
min , there exist at most two nodes

vmore
min and vless

min with an agent, and both vmore
min and vless

min have at least g agents. Notice that
the position of vless

min may change by these movements, but it does not affect the following
explanations. In the following, we explain the behavior of each i-th sub-phase (i ≥ 1) with
the updated numbers of namore

min and naless
min.
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In the 1-st sub-phase, for n rounds, each agent ah at vmore
min with 1 ≤ ah.rank ≤ 2g (resp.,

2g + 1 ≤ ah.rank ≤ 4g) belongs to an up (resp., a down) group and tries to move up (resp.,
down) until visiting a node v1

fromMin in R1
fromMin. Since at most one link is missing in each

column ring at each round, the up group or the down group can reach v1
fromMin. Without

loss of generality, we assume that the up group reached there. Thereafter, among agents
in the up group, each agent ah with 1 ≤ ah.rank ≤ g (resp., g + 1 ≤ ah.rank ≤ 2g) belongs
to a right-left group Arl (resp., left-right group Alr). Then, for n rounds, each agent in
Arl (resp., Alr) tries to move right (resp., left). By this behavior, Arl and Alr can visit all
the n nodes in R1

fromMin in total. During the movement, when Arl or Alr visits a node with
less than g agents, the less than g agents join the group’s movement. However, if the number
nanew of agents in the updated group is at least 2g, using IDs, only g agents continue their
movements and the remaining nanew − g (≥ g) agents stay at the current node to reduce
the total number of agent moves. Thereafter, for n rounds, each agent in Arl (resp., Ale)
tries to move left (resp., right) until returning to v1

fromMin. By this behavior, Arl or Alr can
reach v1

fromMin.
Next, at the beginning of the 2-nd sub-phase, letting Cmore

min be the column ring including
vmore

min , there exist at least g agents at v1
fromMin (i.e., Arl or Alr), 2g agents at some node in

Cmore
min (i.e., the down group that may not have reached v1

fromMin in the 1-st sub-phase), and
namore

min − 4g agents at vmore
min . From this situation, for n rounds, until visiting a node v2

fromMin
in R2

fromMin, the 2g agents that may not have reached v1
fromMin in the 1-st sub-phase (the

down group in this explanation) try to move down, the g agents at v1
fromMin try to move up,

and the g agents at vmore
min whose ID is either of the 1-st, 2nd, . . ., or g-th smallest newly try

to move up. By this behavior, at least 2g agents can reach v2
fromMin by the similar discussion

of the 1-st sub-phase. Thereafter, the 2g agents try to move right or left and visit all the
n nodes in R2

fromMin, and some less than g agents at a node in R2
fromMin join a group’s

movement. Agents repeat such sub-phases until the number of agents at vmore
min becomes less

than 2g at the end of some sub-phase ℓ′.
In the (ℓ′ + 1)-th sub-phase, agents at vless

min execute the exact same behavior as that of
agents at vmore

min in the 1-st sub-phase. Thereafter, agents that existed at vless
min complete the

remaining sub-phases (i.e., until agents that existed in Rmin execute the sub-phases n times
in total). Then, agents achieve g-partial gathering. Notice that it is possible no agent at
vless

min moves in these sub-phases when there exist a large number of agents at vmore
min at the

beginning of the 1-st sub-phase. Agents at vless
min can determine whether or not they need

to move in the torus and when they should start moving if they need to move, by using
the information of naless

min and the total number of agents existing in Rmin calculated at the
beginning of this achievement phase.

Concerning the achievement phase, we have the following lemma.

▶ Lemma 11. After finishing the achievement phase, agents solve the g-partial gathering
problem.

Proof. First, in the 0-th sub-phase, when naless
min < g, by the behavior for the achievement

phase, 2g agents at vmore
min are partitioned into a right-left group Arl with at least g agents

and a left-right group Arl with at least g agents, and Arl (resp., Arl) tries to move right
(resp., left) for n rounds and then tries to move left (resp., right) for n rounds until returning
to vmore

min . In addition, during the movement, when Arl or Alr visits node vless
min with less than

g agents, the less than g agents join the group’s movement. Hence, by this behavior, at
least g agents or no agent exists at each node in Rmin. Thereafter, in the ℓ-th sub-phase
(1 ≤ ℓ ≤ n − 1), since at least 2g agents try to move up and another at least 2g agents try to
move down to visit the vℓ in the ℓ-th up ring Rℓ

fromMin from Rmin, at least 2g agents can
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reach vℓ. Then, by the same discussion in the case of the 0-th sub-phase, a right-left group
Arl and a left-right group Arl visit all the nodes in Rℓ

fromMin in total, at least g agents or
no agent exists at each node in Rℓ

fromMin, and Arl or Alr returns to vℓ. Hence, by executing
such a behavior in each row ring one by one, agents can achieve g-partial gathering.

In the following, we show that there exist the sufficient number of agents in Rmin to solve
the problem at the beginning of the achievement phase. To execute the above behaviors in
r consecutive row rings, at least (r + 3)g agents are required (4g agents are required when
agents from vmore

min or vless
min start their vertical movements for the first time, and additional g

agents are required otherwise). In addition, since agents start the above behavior from at
most two nodes vmore

min and vless
min, the situation where the required number of agents staying

in Rmin (i.e., agents staying at vmore
min or vless

min) is the maximum when agents starting from
vmore

min visit r′ (⌈n/2⌉ ≤ r′ ≤ n − 1) consecutive row rings in total is such that there exist
(r′ + 3)g + (g − 1) agents at vmore

min and there exist (n − r′ + 3)g + (g − 1) agents at vless
min. Thus,

(r′ + 3)g + (g − 1) + (n − r′ + 3)g + (g − 1) < (n + 8)g agents are required in Rmin at the
beginning of the achievement phase to solve the problem. In Lemma 10, we already showed
that such agents exist.

Therefore, the lemma follows. ◀

We have the following theorem for the proposed algorithm.

▶ Theorem 12. When k = O(gn) and k ≥ 2gn + 6n + gn − 11, the proposed algorithm solves
the g-partial gathering problem with O(n2) rounds and the total number of O(gn2) moves.

7 Conclusion

In this paper, we considered the g-partial gathering problem of mobile agents in n × n

dynamic tori and considered the solvability of the problem and the time and move complexity,
focusing on the relationship between values of k, n, and g. First, we showed that agents
cannot solve the problem when k = o(gn), and showed that agents require a total number
of Ω(gn2) moves to solve the problem when k = Θ(gn). Second, we showed that the
problem can be solved with O(n2) rounds and the total number of O(gn3) moves when
2gn + 2n − 1 ≤ k ≤ 2gn + 6n + 16g − 12. Finally, we showed that the problem can be
solved with O(n2) rounds and the total number of O(gn2) moves when k = O(gn) and
k ≥ 2gn + 6n + 16g − 11. From these results, our algorithms can solve the partial gathering
problem in dynamic tori with the asymptotically optimal number Θ(gn) of agents and the
second algorithm is also asymptotically optimal in terms of the total number of agent moves.

Future works are as follows. First, we consider the lower bound on the time complexity
to solve the problem. Next, we consider whether or not agents can solve the problem with
the asymptotically optimal total number of agent moves when k = Ω(gn) but it is not in the
range considered in Section 6. Finally, we will consider the solvability of the problem for
agents with weaker capabilities. In this paper, as a first step to propose algorithms for solving
the problem, we assumed that agents have distinct IDs, knowledge of k and n, common sense
of direction, and they behave fully synchronously. In addition, we assumed that each node
has a whiteboard. However, at this stage, we do not know whether or not agents with weaker
capability can also solve the problem (e.g., agents without distinct IDs, without the common
sense of direction, or agents that behave semi-synchronously or asynchronously). Hence, we
plan to consider algorithms using agents with such weak capabilities. We conjecture that, in
any of the above cases, agents cannot solve the problem or require more total number of
moves than the proposed algorithms.
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3:2 Bond Percolation in Small-World Graphs with Power-Law Distribution

1 Introduction

Given a graph G = (V, E) and a probability p(e) associated to each edge e ∈ E, the full-bond
percolation process1 on G is the construction of a random subgraph Gp = (V, Ep) of G, called
the percolation graph, obtained by selecting each edge e ∈ E to belong to Ep with probability
p(e), independently of the other edges. Often, the focus is on the homogeneous case in which
all probabilities p(e) are equal to the same parameter p. The main questions of interest in
this case are, depending on the choice of G and p, what is the typical size of the connected
components of Gp and the typical distances between reachable vertices.

The study of the percolation process originates from mathematical physics [14, 20, 23]
and it has several applications in parallel and distributed computing and network science [1,
9, 13, 10, 12, 17]. For example, the study of network reliability in the presence of random
link failures is equivalent to the study of the connectivity properties of the percolation graph
of the network of links [12, 16].

The independent cascade is a process that models the spread of information and the
influence of individual choices on others in social networks, and it is equivalent to a percolation
process in a way that we explain next. In the independent cascade, we have a network
G = (V, E), an influence probability p(e) associated to each edge, and a set I0 ⊆ V of network
nodes that initially have a certain opinion2. The process evolves over time according to the
following natural local rule: if a node u acquired the opinion at time t, the node v does not
have the opinion, and the edge (u, v) exists in G, then node u will attempt to convince node
v of the opinion, and it will succeed with probability p(u, v). All nodes that were successfully
convinced by at least one of their neighbors at time t will acquire the opinion, and will
attempt to convince their neighbors at time t + 1 and so on. The independent cascade is
studied in [13], where the problem of interest is to find the most “influential” initial set
I0. The resulting epidemic process is shown in [13] to be equivalent to percolation in the
following sense: the distribution of nodes influenced by I0 in the independent cascade process
has the same distribution as the set of nodes reachable from I0 in the percolation graph of G

derived using the probabilities p(e).
The Reed-Frost process is one of the simplest and cleanest models of Susceptible-Infectious-

Recovered (SIR) epidemic spreading on networks [22, 24]. This process is identical to
independent cascade with a fixed probability p(e) = p for all edges e. We can interpret
nodes that acquired the opinion in the previous step as Infectious nodes that can spread
the disease/opinion, nodes that do not have the disease/opinion as nodes Susceptible to
the infection, and nodes that acquired the disease/opinion two or more steps in the past
as Recovered nodes that do not spread the disease any more and are immune to it. The
probability p corresponds to the probability that a contact between an infectious person and
a susceptible one causes a transmission of the disease from the former to the latter. The set I0
is the initial set of infectious people at time 0. This process, being equivalent to independent
cascade, is also equivalent to percolation [13]: the distribution of nodes that are infected
and eventually recover in the Reed-Frost process is the same as the distribution of the set
of nodes reachable from I0 in the percolation graph of G derived using the probabilities
p(e). Furthermore, the distribution of nodes that are infectious at time t is precisely the
distribution of nodes at distance t from I0 in the percolation graph (see [8]).

1 We simply write bond percolation when no confusion arises.
2 Or hold a certain piece of information, or perform a certain action, these are all equivalent views that

lead to the same distributed process.
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We are interested in studying full-bond percolation (and hence reliability under random
link failure, independent cascade, and Reed-Frost epidemic spreading) in one-dimensional
small-world graphs with power-law distribution of edges. Small-world graphs are a collection of
generative models of graphs, designed to capture properties of real-life social networks [10, 22]
and communication networks [11]. In the model introduced by Watts and Strogatz [25], the
network is obtained as a one-dimensional or two-dimensional lattice in which certain edges
are re-routed to random destinations. In a refined model introduced by Kleinberg [7, 10],
a possible edge between two nodes at distance L in the lattice exists with probability
proportional to L−α, where the exponent α is a parameter of the model.

We study full bond percolation on the variant of Kleinberg’s model defined below. This
model has already been adopted in several previous papers [4, 5, 7, 10, 15, 22] to study bond
percolation and epidemic processes, and to discover structural properties determining the
performances of diffusion and navigations problems in real networks [26],

▶ Definition 1 (1-D power-law small-world graphs). For every n ⩾ 3 and α > 0, an (undirected)
random graph G = (V, E) with V = {0, . . . , n − 1} is sampled according to the distribution
SW(n, α) if E = E1 ∪ E2, where: (V, E1) is a cycle and its edges are called ring-edges,
and, for each pair of non-adjacent vertices u, v ∈ V , the bridge {u, v} is included in E2
independently, with probability

Pr ({u, v} ∈ E2) = 1
d(u, v)α

· 1
C(α, n) ,

where d(·, ·) is the shortest-path distance in the ring and C(α, n) is the normalizing constant3

C(α, n) = 2
∑n/2

x=2 x−α .

The process of long-range percolation in the one-dimensional case is the variant of the
percolation process applied to the generative model described above in which ring edges are
preserved with probability one. The resulting percolation graphs are always connected, and
the main question of interest is their diameter. Long-range percolation is well understood,
and the one-dimensional case is studied in [4, 15, 25]. In particular, [4] provides bounds on
the diameter and on the expansion of such graphs as a function of the power-law exponent α.
Such results have been then sharpened and generalized to multi-dimensional boxes in [6]. The
long-range percolation process, however, is not a realistic generative model for epidemiological
processes, because even the most contagious diseases, including Ebola, do not have 100%
probability of spreading through close contacts (see [18, 21, 22] for a discussion of this point).

Full-bond percolation in power-law small-world graphs has been studied in the case of
infinite lattices, including the one-dimensional case that is the infinite analog of the model
that we study in this paper. In the infinite case, the main questions of interest, which are
studied in [5], are whether the percolation graph has an infinite connected component and,
given two vertices, what is their typical distance in the percolation conditioned on them both
being in the infinite component, as a function of their distance in the lattice. Although there
are similarities, techniques developed to study infinite percolation graphs do not immediately
apply to the finite case.

3 Note that C(n, α) is not, strictly speaking, a constant, but rather a normalizing factor that depends on
both α and n. It is always upper bounded by an absolute constant across the entire range of α, while it
falls within an interval bounded by two constants when α > 1. For the sake of conciseness, abusing
terminology we write “constant” instead of normalizing factor.
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1.1 Roadmap

In this paper, we study full-bond percolation in power-law small-world graphs. The rest of
this paper is organized as follows. Section 2 provides an overview of our results and their
main consequences. Section 3 introduces notation and some key preliminary notions, while
Sections 4–6 provide the full analysis of full-bond percolation in one-dimensional power-law,
small-world graphs. Each of Sections 4–6 includes a preliminary, informal description of
the main techniques we adopt for that particular regime and a comparison with previous
approaches.

Due to lack of space, the proofs of some technical results and a more extensive review of
previous work is given in the full version of this paper [2].

2 Our Contribution

We analyze the bond percolation process over the small-world graph G sampled according
to the distribution SW(n, α). Consistently with previous results in long-range percolation
models [4], our analysis shows that the process exhibits three different behaviors determined
by different values of α. We formally state such results in the next three theorems.

▶ Theorem 2 (Case α ∈ (2, +∞)). Let α > 2 be a constant and p < 1 a percolation probability.
Sample a graph G = (V, E) from the SW(n, α) distribution and let Gp be the percolation
graph of G with percolation probability p. The following holds:
1. W.h.p., the connected components of Gp have size at most O(log n);
2. For each node v ∈ V and for any sufficiently large ℓ, with probability 1 − Ω(ℓ−(α−2)/2),

every node connected to v in Gp is at ring-distance no larger than O(ℓ2) from v.

From an epidemiological point of view, this first regime is thus characterized by a negligible
chance to observe an outbreak according to the Reed-Frost process, even in the presence
of a large number (say some small root of n) of initially infected nodes (i.e. sources). In
particular, the second claim of the theorem above strongly bounds the possible infected area
of the ring graph.

The following case, determined by the range 1 < α < 2, shows the most interesting
behavior.

▶ Theorem 3 (Case α ∈ (1, 2)). Let α ∈ (1, 2) be a constant and p a percolation probability.
Sample a graph G = (V, E) from the SW(n, α) distribution and let Gp be the percolation
graph of G with percolation probability p. Then, constants p, p ∈ (0, 1) (with p ⩽ p) exist
such that the following holds:
1. If p > p, w.h.p., there exists a set of Ω(n) nodes that induces a connected sub-component

in Gp with diameter O(polylog(n));
2. If p < p, w.h.p. all the connected components of Gp have size O(log n).

The first claim above implies that, if p is sufficiently large (but still a constant smaller
than 1), then, there is a good chance that few source nodes are able to infect a large (i.e.
Ω(n)) number of nodes and, importantly, this outbreak takes place at an almost exponential
speed.

Finally, when α < 1, we show the emergence of a behavior similar to that generated
by one-dimensional small-world models with bridges selected according to the Erdős-Rényi
distribution [3, 19].
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▶ Theorem 4 (Case α ∈ (0, 1)). Let α ∈ (0, 1) and p a percolation probability. Sample a
graph G = (V, E) from the SW(n, α) distribution and let Gp be the percolation graph of G

with percolation probability p. Then, constants p, p ∈ (0, 1) (with p ⩽ p) exist, such that the
following holds:
1. If p > p, w.h.p., there exists a set of Ω(n) nodes that induces a connected sub-component

in Gp with diameter O(log n). Moreover, for a sufficiently large β > 0, for any subset
S ⊆ V of size |S| ⩾ β log n, the subset of nodes within distance O(log n) in Gp from S

has size Ω(n), w.h.p.
2. If p < p, w.h.p. all the connected components of Gp have size O(log n).

In this last case, the presence of a sparse subset of relatively-long random bridges implies,
above the probability threshold, that a few (i.e. Ω(log n)) sources w.h.p. generate a large
outbreak at exponential speed.

We conclude this section by observing that three phases above are characterized by
sharply different distributions of the typical length (measured according to the ring metric) of
the bridges. To gauge the difference, consider the expectation, for a fixed vertex, of the sum
of the lengths (in ring metric) of the bridges incident on the vertex, and call this expectation
BLα,n.

When α < 1, we have that BLα,n is linear in n. When 1 < α < 2, then BLα,n is of the
form O(n2−α), going to infinity with n, but sublinearly in n. Finally, when α > 2, BLα,n is
a constant that depends only on α and is independent of n. Nodes have, in expectation, only
one bridge, so BLα,n is an indication of how much we can advance on the ring by following
one bridge.

When α < 1, the bridges are basically as good as random edges, and we would expect
a giant component to emerge even after full-bond percolation, if p is large enough. When
α > 2, the bridges behave like a constant number of ring-edges, and we would not expect a
large component when p < 1.

The case 1 < α < 2 is the one for which it is hardest to build intuition, and the fact
that the bridges typically have length of the form n1−Ω(1) might suggest that it would
take nΩ(1) steps to reach antipodal nodes. Previous work on long-range percolation had
established a polylogarithmic diameter bound in the model in which ring-edges are not
subject to percolation. In that model, all pairs of nodes are reachable in a polylogarithmic
number of steps even though the typical bridge has length n1−Ω(1), and this suggests that the
shortest path structure is such that a small number of long bridges is used by several shortest
paths. One thus would expect such a structure to be sensitive to full-bond percolation, and
indeed the proof of [4] relies on the deterministic presence of the ring-edges. Instead, we
prove that, when 1 < α < 2, w.h.p, most pairs of nodes are reachable from one another in a
polylogarithmic number of hops after the full-bond percolation process.

3 Model and Preliminaries

In this paper, we study bond percolation of graphs sampled from SW(n, α), as formalized
in Definition 1. In this section, we define notation, key notions and tools that will be used
throughout the rest of this paper. Further notation used in the proofs of specific results is
introduced wherever it is used.

For the sake of completeness, we begin with the formal definition of bond percolation.

▶ Definition 5 (Bond percolation). Given a graph G = (V, E) and a real p ∈ [0, 1], its bond
percolation graph Gp is the random subgraph obtained from G by removing each edge e ∈ E

independently, with probability 1 − p.
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Considered any graph G = (V, E) and v ∈ V , we denote by NG(v) the neighborhood of v

in G, while degG(v) = |NG(v)| denotes the degree of v in G. We omit the subscript when G

is clear from context.
If G = (V, E1 ∪ E2) is sampled from SW(n, α) as in Definition 1, we say that a bridge

{u, v} ∈ E2 has length d(u, v) (where d(·, ·) is as in Definition 1). We also say that u is at
ring-distance d(u, v) from v (and viceversa). Considered a bridge {u, v}, we say that {u, v}
is on the clockwise (respectively, counter-clockwise) side of u if d(u, v) corresponds to moving
clockwise (respectively, counter-clockwise) along the cycle (V, E1) from u to v.

Given a graph G = (V, E) and s ∈ V , we denote by ΓG(s) the connected component
containing s in G. We may omit G when clear from context, while with a slight abuse of
notation, we simply write Γp(s) for ΓGp(s) when we refer to the percolation Gp of some
graph G, which will always be understood from context. Given G = (V, E) and S ⊆ V ,
diamG(S) is equal to the diameter of the subgraph of G induced by S if this is connected,
otherwise diamG(S) = ∞. With a slight abuse of notation, we write diamp(S) when G is
the percolation graph Gp. Given G = (V, E) sampled from SW(n, α) and any subgraph
H = (V, E′) such that E′ ⊆ E (e.g., Gp), we associate a ring-metric to H, so that the
ring-distance between u, v is simply d(u, v) defined above on G.

In the sections that follow, unless stated otherwise, probabilities are always taken over
both the randomness in the sampling of G from SW(n, α) and over the randomness of
the percolation. We further remark that our choice of the normalizing constant C(α, n)
in Definition 1 entails E [deg(v)] = 3, while the following, preliminary fact follows from a
straightforward application of Chernoff bound:

▷ Claim 6. Sample a graph G = (V, E) from SW(n, α). Then,

Pr
(

max
v

deg(v) ⩽ 4 log n + 2
)
⩾ 1 − 1

n
. (1)

3.1 Galton-Watson Branching Processes
Our analysis of the percolation process in part relies on a reduction to the analysis of
appropriately defined branching processes.

▶ Definition 7 (Galton-Watson Branching Process). Let W be a non-negative integer random
variable, and let {Wt,i}t⩾1,i⩾1 be an infinite sequence of independent identically distributed
copies of W . The Galton-Watson branching process generated by the random variable W is
the process {Xt}t⩾0 defined by X0 = 1 and by the recursion

Xt =
Xt−1∑
i=1

Wt,i .

All properties of the process {Xt}t⩾0 (in particular, population size and extinction probability)
are captured by the equivalent process {Bt}t⩾0, recursively defined as follows:

Bt =


1, t = 0;
Bt−1 + Wt − 1, t > 0 and Bt−1 > 0;
0, t > 0 and Bt−1 = 0 ,

where W1, W2, . . . are an infinite sequence of independent and identically distributed copies
of W .

In the remainder, when we refer to the Galton-Watson process generated by W , we always
mean the process {Bt}t⩾0. In particular, we define σ = min{t > 0 : Bt = 0} (we set σ = +∞
if no such t exists). Note that, for any T < σ, we have BT =

∑T
t=1 Wt − T .
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4 The case α > 2

We recall that Gp is the percolation graph of G, sampled from the SW(n, α) distribution.
When α > 2, we show that each component of the percolation graph Gp has w.h.p. at most
O(log n) nodes. To prove this fact, we need to cope with the complex “connectivity” of Gp

yielded by the percolation of both ring-edges and the random bridges. To better analyze this
structure, we introduce the notion of ℓ-graph G

(ℓ)
p of Gp, where ℓ is any fixed integer ℓ > 0.

This new graph G
(ℓ)
p is in turn a one-dimensional small-world graph of n/ℓ “supernodes”.

It is defined by any fixed partition of V of disjoint ring intervals, each of them formed by
ℓ nodes: such n/ℓ intervals are the nodes, called super-nodes, of G

(ℓ)
p . The set of edges of

G
(ℓ)
p is formed by two types of random links: the super-edges that connect two adjacent

super-nodes and the super-bridges connecting two non adjacent super-nodes of the n/ℓ-size
ring (for the formal definition of G

(ℓ)
p see Definition 10). We then prove that, for any α > 2

and any p < 1, each super-node of this graph has:
1. Constant probability to have no neighbors (for every value of ℓ);
2. Probability O(1/ℓα−2) to be incident to a super-bridge.

We then design an appropriate BFS visit of G
(ℓ)
p (see Algorithm 1) that keeps the role

of super-edges and super-bridges well-separated. In more detail, starting from a single
super-node s, we show that the number of super-nodes explored at each iteration of the visit
turns out to be dominated by a branching process having two distinct additive contributions:
one generated by the new, visited percolated super-edges and the other generated by the
new, visited percolated super-bridges. Special care is required to avoid too-rough redundancy
in counting possible overlapping contributions from such two experiments. Then, thanks
to Claims 1 and 2 above, we can prove that, for ℓ = O(1) sufficiently large, w.h.p. this
branching process ends after O(log n) steps, and this proves that the connected component
of s in G

(ℓ)
p has O(log n) super-nodes. We also remark that our approach above also implies

the following interesting result: with probability 1 − O(1/ℓα−2), all super-nodes connected
to v are at ring distance at most ℓ from v. This implies that, for each node s, the nodes in
the connected component of s in Gp are within ring distance O(ℓ2) from s, with the same
probability.

We now proceed formally with the proof of Theorem 2, which is a consequence of the two
lemmas below.

▶ Lemma 8. Let α < 2 be a constant and p < 1 a percolation probability. Sample a
graph G = (V, E) from the SW(n, α) distribution and let Gp its percolation graph. For
every s ∈ V = {0, . . . , n − 1}, the connected component Γp(s) contains O(log n) nodes with
probability at least 1 − 1/n2.

▶ Lemma 9. Under the same hypotheses of Lemma 8, for every s ∈ V = {0, . . . , n − 1} and
for any sufficiently large ℓ,

Pr
(
∀u ∈ Γp(s) : d(s, u) ⩽ 2ℓ2) ⩾ 1 − 8

(α − 2)ℓ(α−2)/2 . (2)

We remark that (2) implies that, for any increasing distance function ℓ = ℓ(n) = ω(1),
every node in Γp(s) has ring-distance from s not exceeding 2ℓ2 with probability 1 − o(1).

The proof of Lemma 8 is given in Section 4.2, while the proof of Lemma 9 in Section 4.3.
To prove these lemmas, we rely on the notion of ℓ-graph, defined in the following paragraph,
together with supplementary notation that will be used in the remainder of this section.
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(a) (b)

Figure 1 (a) A graph G = (V, E) with a ring-metric. (b) The 3-graph of G.

4.1 ℓ-graphs
In what follows, we define a new graph on the vertex set V = {0, . . . , n − 1}, starting from
any one-dimensional small-world graph G = (V, E1 ∪ E2), where (V, E1) is a cycle, which
defines a ring-metric, and E2 is an arbitrary subset of bridges. In the remainder, we always
assume n ⩾ 3.

▶ Definition 10 (ℓ-graph). Let H = (V, EH) be a subgraph of a one-dimensional small-world
graph G, where EH ⊆ E1∪E2. For ℓ ⩾ 1, consider an arbitrary partition of V into n/ℓ disjoint
intervals of length ℓ, {I(1), . . . , I(n/ℓ)} with respect to the ring metric induced by (V, E1). The
ℓ-graph associated to H is the graph H(ℓ) = (V (ℓ), E

(ℓ)
H ), where V (ℓ) = {I(1), . . . , I(n/ℓ)}, and

E
(ℓ)
H =

{
{I(h), I(k)} : ∃u ∈ I(h), v ∈ I(k) s.t. {u, v} ∈ EH

}
.

A generic element in V (ℓ) thus corresponds to ℓ consecutive nodes in the ring (V, E1), it
is called super-node, and, depending on the context, is denoted by v or by its corresponding
interval Iv in the partition {I(1), . . . , I(n/ℓ)} of V . Fixed a partition, we denote with E

(ℓ)
1

the set of links connecting two adjacent super-nodes in V (ℓ) (that is, two adjacent intervals
in (V, E1)): notice that (V (ℓ), E

(ℓ)
1 ) is a ring of n/ℓ super-nodes, called ℓ-ring. Then, given a

subgraph H = (V, EH) as in the definition above, the elements in E
(ℓ)
H can be partitioned

into two subsets: the elements in E
(ℓ)
H ∩ E

(ℓ)
1 are called super-edges, while all the remaining

elements in E
(ℓ)
H are called super-bridges. H(ℓ) can thus be seen as a subgraph of a one-

dimensional small-world graph G(ℓ) with n/ℓ super-nodes, formed by a ring (V (ℓ), E
(ℓ)
1 ), and

an additional set of super-bridges. The example in Figure 1 summarizes the above definitions.
Let H = (V, EH) as in Definition 10 and assume u, v ∈ V , with u ∈ I(h) and v ∈ I(k). Clearly,
if (u, v) ∈ EH then (I(h), I(k)) ∈ E

(ℓ)
H . Moreover, the following fact straightforwardly holds:

▷ Claim 11. Let H = (V, EH) as in Definition 10 and let s ∈ I(k) for some k ∈ {1, . . . , n/ℓ}.
Then,

|ΓH(s)| ⩽ ℓ|ΓH(ℓ)(I(k))|.

The following, preliminary lemma is used in the proofs of Lemma 8 and Lemma 9.

▶ Lemma 12. Assume the hypotheses of Lemma 8 (and Lemma 9), and let Gp
(ℓ) =

(V (ℓ), Ep
(ℓ)) be the ℓ-graph of Gp generated by any fixed interval partition of V . Then,

for each v ∈ V (ℓ), we have:

Pr
(

degGp
(ℓ)(v) = 0

)
⩾ (1 − p)2e−2/(α−2), (3)

Pr
(

v is incident to a super-bridge in Gp
(ℓ)
)
⩽

2
(α − 2)ℓα−2 . (4)
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Proof. Consider any super-node v ∈ V (ℓ) and, for the rest of this proof, denote by w1 and
w2 the two boundary nodes of Iv. Without loss of generality, we assume Iv includes the
ring-edges that we traverse if we move on the cycle (V, E1) from w1 to w2 counter-clockwise.

We first prove (3). The super-node v has no out-edges in Gp
(ℓ) if and only if i) each node

in Iv has no bridge to a node in V \ Iv and ii) w1 and w2 share no-ring edges with nodes in
V \ Iv in Gp. Condition i) above is equivalent to the following: for every x = 1, . . . , ℓ, the
node u ∈ Iv at distance d(w1, u) = x from w1 has no bridge of length exceeding x on the
clockwise side and of length exceeding ℓ − x on the counter-clockwise side. We have

Pr (v has a bridge with length > x in one side) ⩽
n/2∑

y=x+1

1
C(α, n)yα

⩽
∫ +∞

x+1

1
C(α, n)(y − 1)α

dy ⩽
1

(α − 1)C(α, n)xα−1 ⩽
1

xα−1 ,

where the last inequality follows from the fact that C(α, n) ⩾ 1/2α−1. From the inequality
above, we have

Pr
(

degGp
(ℓ)(v) = 0

)
⩾

[
(1 − p) ·

ℓ∏
x=1

(
1 − 1

2xα−1

)]2

⩾ (1 − p)2 · e−2
∑ℓ

x=1
1

xα−1 ⩾ (1 − p)2e−2/(α−2) .

We next prove (4). Let vi a node in V \ Iv at ring-distance i + ℓ from Iv, i.e., such that
min{d(w1, vi), d(w2, vi)} = i + ℓ. We have:

Pr (vi is not a neighbor of any node in Iv in Gp)

⩾
ℓ∏

x=1

(
1 − 1

C(α, n)(x + ℓ + i)α

)
⩾ e−

∑ℓ

x=1
1

(x+ℓ+i)α ⩾ e
− 1

(i+ℓ)α−1 .

Then, let (Ep)2
(ℓ) denote the set of super-bridges in Gp

(ℓ), we use the above inequality to
bound the expected number of super-bridges that are incident in v:

E
[
|NGp

(ℓ)(v) ∩ (Ep)2
(ℓ)|
]

= 2
n/2−ℓ∑

i=1
Pr (vi has a neighbor in Iv)

⩽ 2
+∞∑
i=1

1 − e
− 1

(i+ℓ)α−1 ⩽ 2
+∞∑
i=1

2
(i + ℓ)α−1 ⩽

2
(α − 2)ℓα−2 .

Finally, the proof follows from

Pr
(

v has a super-bridge in Gp
(ℓ)
)
⩽ E

[
|NGp

(ℓ)(v) ∩ (Ep)2
(ℓ)|
]

. ◀

4.2 Proof of Lemma 8
To prove Lemma 8, we consider Algorithm 1 below that performs a BFS visit of the ℓ-graph
of the percolation graph Gp. Then, in Lemma 14, we prove that this algorithm terminates
after visiting (only) O(log n) super-nodes, w.h.p., for a sufficiently large ℓ = O(1). Together
with Claim 11, this proves Lemma 8.
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Algorithm 1 BFS visit of Gp
(ℓ).

1: Input: The ℓ-graph Gp
(ℓ) = (V (ℓ), Ep

(ℓ)) of Gp; an initiator (super-node) s ⊆ V (ℓ)

2: Q = {s}
3: while Q ̸= ∅ do
4: w = dequeue(Q)
5: visited(w) = True
6: for each x s.t. {x, w} is a super-edge of Ep

(ℓ) and visited(x) = False do
7: enqueue(x, Q)
8: for each y s.t. {y, w} is a super-bridge of Ep

(ℓ) and visited(y) = False do
9: enqueue(y, Q)

10: yleft = the super-node at distance 1 from y on the ring at its left
11: if visited(yleft) = False and {yleft, y} ∈ Ep

(ℓ) then
12: enqueue(yleft, Q)

▶ Remark 13. Note that, each time we add a super-node y to queue Q, we also also add the
super-node yleft to its left on the ℓ-ring if yleft is connected y in G

(ℓ)
p . So, in each while loop

at line 3, for each super-node w ∈ Q, at most one non-visited neighbor of w on the ℓ-ring
will be added at line 7 since one of them has been already added to Q at the same while
loop in which w has been added to Q (see line 10).

▶ Lemma 14. Assume the hypotheses of Lemma 8 and fix any node s ∈ V . For any fixed
interval partition4 of the vertex set V , consider the ℓ-graph Gp

(ℓ) and the super-node s ∈ V (ℓ)

such that s ∈ Is. Then, a sufficiently large ℓ = O(1) exists, depending only on p and α,
such that Algorithm 1 terminates within O(log n) iterations of the while loop in line 3, with
probability at least 1 − 1/n2.

Proof. For t = 1, 2, . . . , let Qt be the content of Q at the end of the t-th iteration of the
while loop of Algorithm 1, and let Wt denote the subset of super-nodes that were added to
Q during the t-th iteration. We have |Q0| = 1 and

|Qt| =
{

0 if |Qt−1| = 0
|Qt−1| + |Wt| − 1 otherwise,

Let Xt and Yt denote the sets of super-nodes that were added to Q in the t-th iteration of
the while loop, respectively at line 7 and at line 9. For t ⩾ 2, whenever a super-node is added
to the queue, the queue also contains a super-node at distance 1 from it on the ℓ-ring, if the
corresponding super-bridge is in E

(ℓ)
p . We thus have the following formula |Wt| = |Xt| + 2|Yt|,

where |Xt| ⩽ 1 for t ⩾ 2 and |X1| ⩽ 2 . Let δ = 1 − p, ϵ = 2 − α and note that, from (3)
and (4),

Pr (|Xt| = 1) ⩽ 1 − δ2e−2/ϵ and E [|Yt|] ⩽
2

ϵℓϵ
. (5)

Moreover, note that for every t, |Qt| = 0, whenever
∑t

i=1 |Wi| ⩽ t. Then, we can write

t∑
i=1

|Wi| − t =
t∑

i=1
|Xi| + 2

t∑
i=1

|Yi| − t ,

4 According to Definition 10.
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where |Xi| are {0, 1} random variables and, if w is the node extracted from Q in the i-th
iteration of the while loop, |Yi| is the number of super-bridge neighbors of w, so that it can
also be written as the sum of random variables in {0, 1}. Note that {Xt}t and {Yt}t are not
independent random variables, because of the conditions that appear in lines 6, 8 and 11 of
Algorithm 1. Still, it is easy to show that Xt’s and Yt’s are dominated by independent copies
of two random variables X and Y , such that Pr (|X| = 1) = 1−δ2e−2/ϵ and E [|Y |] ⩽ 1/(ϵℓϵ).
Hence, Chernoff bound and (5) imply that, for a certain t = O(log n) depending on δ and ϵ,

Pr
(

t∑
i=1

|Xi| ⩾
(

1 − δ2

2 e−2/ϵ

)
t

)
⩽

1
2n2 , and Pr

(
t∑

i=1
|Yi| ⩾

2t

ϵℓϵ

)
⩽

1
2n2 .

As a result, with probability at least 1 − 1/n2, we have:
t∑

i=1
|Xi| + 2

t∑
i=1

|Yi| − t ⩽ t

(
4

ϵℓϵ
− δ2

2 e−2/ϵ

)
.

Hence, we can choose ℓ = O(1) (depending only on ϵ and δ) large enough, so that with
probability at least 1 − 1/n2,

∑t
i=1 |Wi| < t, so that |Qt| = 0 for t = O(log n). ◀

4.3 Proof of Lemma 9
Lemma 9 follows from Claim 11 and Lemma 15 below.

▶ Lemma 15. Assume the hypotheses of Lemma 9. For sufficiently large ℓ depending only
on p and α, consider the ℓ-graph Gp

(ℓ) and the super-node s ∈ V (ℓ) such that s ∈ Is. Then,
with probability at least

1 − 8
(α−2) · ℓ−(α−2)/2 ,

all nodes in ΓGp
(ℓ)(s) are within ring-distance ℓ from s in the ring (V (ℓ), E1

(ℓ)).

Proof. Without loss of generality, we assume s = 0 and let V (ℓ) = {0, . . . , n/ℓ} . Next, we
consider nodes on the ring at increasing distance from s = 0 moving counter-clockwise,
proving that nodes at distance exceeding ℓ(2−α)/2 are not part of ΓGp

(ℓ)(s), the connected
component of s. To this purpose, denote by K be the random variable indicating the
ring-distance of the super-node v closest to s, such that v has no incident super-edges in
Gp

(ℓ). From (3), and setting ϵ = 2 − α and δ = 1 − p, we have

Pr
(

v has no super-edges in Gp
(ℓ)
)
⩾ δ2e−2/ϵ,

So, for k = ℓϵ/2 and for ℓ large enough

Pr (K > k) ⩽ (1 − δ2e−2/ϵ)k ⩽
1

ℓϵ/2 .

Moreover, denote by Bk be the event Bk = {the k nodes nearest to s have no super-bridges}.

From (4), from the independence of the edge percolation events and using a union bound,
we have for the complementary event BC

k that Pr
(
BC

k

)
⩽ k · 2(ϵℓϵ)−1 . Iterating the same

argument for nodes on the clockwise side of s, if k = ℓϵ/2 we have

Pr
(

there is a node at distance ⩽ k from s in Γ(ℓ)
p (s)

)
⩽ 2Pr

(
{K > k} ∪ BC

k

)
⩽

4
ℓϵ/2 + 4

ϵℓϵ/2 ,

which completes the proof. ◀
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5 The case 1 < α < 2

The aim of this section is to prove Theorem 3.
When 1 < α < 2, we make an analysis, based on a suitable inductive interval partitioning

of the initial ring. In this case, our technique is inspired by the partitioning method used
in [20] and [4]. However, though the high-level idea is similar, our analysis needs to address
technical challenges that require major adjustments. In particular, the analysis of [20] only
addresses and relies upon properties of infinite one-dimensional lattices with additional
long-range links, applying Kolmogorov 0-1 law to the tail event of percolation. On the
other hand, [4] borrows from and partly extends [20] to the finite case, proving a result
similar to ours for finite one-dimensional lattices, but with important differences both in
the underlying percolation model and in the nature of the results they obtain. As for the
first point, in their model, ring-edges are deterministically present, while only long-range
edges (what we call bridges in this paper) are affected by percolation. In contrast, in our
model, all edges are percolated to obtain a realization of Gp. Consequently, the graph is
deterministically connected in [4], while connectivity is something that only occurs with
some probability in our setting. In particular, we face a subtler challenge, since we need to
show the existence of a connected component that both spans a constant fraction of the node
and has polylogarithmic diameter5. Moreover, their result for the diameter of the percolated
graph only holds with probability tending to 1 in the limit, as the number of nodes grows to
infinity, while we are able to show high probability.

We next provide a technical overview of our approach, highlighting the main points of the
proof in which our percolation model requires a major departure from the approach of [4].

Similarly to [4], we consider a diverging sequence {Nk}k and for each k we consider in
Gp an interval of length Nk consisting of adjacent nodes on the ring. Departing from [4], we
then prove that each interval of size Nk contains a constant fraction (1 − εk)Nk of nodes,
that induces a connected component of diameter Dk, with probability 1 − δk, considering
only edges internal to the interval and where εk and δk are suitable constants that only
depend on k, p and α. To prove this fact, for each k, we consider an arbitrary interval Ik of
size Nk and we proceed inductively as follows:
1. We divide Ik in Nk/Nk−1 smaller intervals of size Nk−1;
2. We assume inductively that, with probability 1 − δk−1, each of these intervals contains

(1 − εk−1)Nk−1 nodes that induces a connected component of diameter Dk−1;
3. With concentration arguments, we prove that a constant fraction of the intervals in which

we divide Ik have the above property, with probability that increases with k (we call
these intervals good);

4. We consider all good intervals of the previous point, and we prove that all these intervals
are connected to each other with probability increasing in k.

The above reasoning therefore implies, for some εk, the existence of a fraction (1 − εk)Nk

of nodes in Ik, that with increasing probability in k, induces a connected component of
diameter Dk = 2Dk + 1. More details about the sequences Nk, εk and δk can be found in
the full proof. As mentioned earlier, our proof needs to specifically address percolation of
both ring-edges and bridges. This in particular, means tackling points (2) - (4) above, which
is a major challenge not present in [4] and is taken care of in the technical Lemma 18 and in

5 As an example, we might have a connected component including a constant fraction of the nodes and
linear diameter, containing a smaller connected component, still spanning a constant fraction of the
nodes, but of polylogarithmic diameter.
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Ik+1︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸
I
(1)
k I

(2)
k I

(3)
k I

(4)
k I

(5)
k I

(6)
k

Figure 2 Visualization of the proof of Lemma 16. Red dotted boxes identify “good” intervals in
Hk+1 (intervals for which the event Ak holds); for each good box, the included blue box contains the
subset of nodes that induce a connected subgraph of size at least (1 − εk)Nk nodes and diameter
Dk. In the lemma, we have to prove the existence of at least a certain number of red boxes, and
that blue boxes are all mutually connected (i.e. the existence of the red edges in the picture).

the proof of the main Lemma 16 itself. In particular, considering only edges internal to the
interval is very important, since, in this way, the events denoting the connection of disjoint
intervals are independent. The recurrence of the diameter derives from the fact that the
path connecting two nodes u and v in Ik consists of the following three sub-paths:
1. The first part has length at most Dk, and it is a path in the aforementioned “good”

interval of size (1 − εk−1)Nk−1 containing u;
2. The second part consists of a single edge, connecting the good interval containing u with

the good interval of v;
3. The third has length at most Dk, and is a path of the good interval of size (1 −εk−1)Nk−1

containing v.
Finally (Lemma 16), we consider k such that Nk = Ω(n). For such k, we prove that

δk = O(1/nε), εk ≪ 1, Dk = polylog(n),

so this implies the existence in Gp of Ω(n) nodes inducing a connected component with
diameter polylog(n), w.h.p.

We now proceed with the formal analysis which requires the two lemmas below.

▶ Lemma 16. Under the hypotheses of Theorem 3, assume G = (V, E) is sampled from
SW(n, α) and let Gp be its percolation graph. Then two constants p < 1 and η > 1 exist
such that, if p > p, w.h.p. there is a set of Ω(n) nodes in Gp that induces a connected
sub-component with diameter O(logη n).

▶ Lemma 17. Under the hypotheses of Theorem 3, assume G = (V, E) is sampled from
SW(n, α) and let Gp its percolation graph. Then, a constant p > 0 exists (in particular,
p = 1/3) such that, if p < p, w.h.p. each connected component of Gp has size at most
O(log n).

The proof of Lemma 16 is given in Section 5.1, while the proof of Lemma 17 follows an
approach, based on Galton-Watson processes, similar to that of Lemma 8, and it is given in
Section 5.2.

5.1 Proof of Lemma 16
The lemma that follows is our new key ingredient to apply an inductive approach similar to
the one in [4] in the case of full-bond percolation.
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▶ Lemma 18. Assume the hypotheses of Lemma 16, let β = 1
2 α(3 − α) and

Nk = eβk

and Ck = eβk−1(β−1).

Let Ik be an arbitrary interval of Nk adjacent nodes in the cycle (V, E1), Dk any finite integer.
Define the event Ak = {∃S ⊆ Ik : |S| ⩾ (1 − εk)Nk ∧ diamp(S) ⩽ Dk}. Assume further that,
for suitable, real constants εk, δk and pk in (0, 1),

Pr (Ak) ⩾ 1 − δk, if p ⩾ pk.

Then, if we consider an interval Ik+1 of Nk+1 adjacent nodes, it holds:

Pr (Ak+1) ⩾ 1 − δk+1, if p ⩾ pk+1,

where

δk+1 = 2C−0.2
k+1 , εk+1 = εk + δk + C−0.2

k+1 ,

Dk+1 = 2Dk + 1, pk+1 = 0.9(α − 1)(2 − α)
(1 − εk)2(4.2 − 2α)C(n, α).

Proof. In words, Ak is the event that there exists a subset of the nodes in Ik that induces a
connected component of Gp of size ⩾ (1 − εk)Nk nodes and diameter ⩽ Dk. Consider the
interval Ik+1 and divide it into Ck+1 disjoint intervals of size Nk (note that Nk+1 = Nk ·Ck+1).
Denote by Hk+1 the set of sub-intervals of Ik+1 of size Nk for which event Ak holds. In
particular, for every i = 1, 2, . . . , Ck+1, we use the indicator variable A

(i)
k to specify whether

or not Ak holds for the i-th sub-interval, so that

|Hk+1| =
Ck+1∑
i=1

A
(i)
k .

where independence of the A
(i)
k ’s follows from disjointness of the sub-intervals of Ik+1. For

the sake of brevity, let Bk+1 denote the event {|Hk+1| ⩾ (1 − δk)Ck+1 − C0.8
k+1}. Application

of Chernoff’s bound then implies

Pr (Bk+1) ⩾ 1 − e−2C0.6
k+1 ⩾ 1 − C−0.2

k+1 .

Note that by definition, each sub-intervals in Hk+1 contains at least one subset (of the
nodes) that induces a connected component in Gp with at least (1−εk)Nk nodes and diameter
at most Dk. Our goal is to show that, with some probability, these intervals are all connected
to each other: this in turn implies the existence of a set of nodes that induces a larger
connected component, with diameter at most 2Dk+1 and containing at least |Hk+1|(1−εk)Nk

nodes, see see Figure 2 for a visual intuition of the proof. In the remainder of this proof, we
denote by Fk+1 the event that all connected components associated to intervals in Hk+1 are
mutually connected. In particular, we prove that Pr (Fk+1 | Bk+1) ⩾ 1 − C−0.2

k+1 , so that

Pr (Ak+1) = Pr (Fk+1 ∩ Bk+1) = Pr (Bk+1) Pr (Fk+1 | Bk+1) ⩾ 1 − 2C−0.2
k+1 ,

which implies that Ak+1 holds with probability at least 1 − δk+1, whenever we set

δk+1 = 2C−0.2
k+1 εk+1 = εk + δk + C−0.2

k+1 and Dk+1 = 2Dk + 1.

Now, we estimate the probability that, given Bk+1, Fk+1 holds. Two nodes in Ik+1 have
distance at most Nk+1 on the cycle. Moreover, if we consider two sub-intervals of Ik+1 both
belonging to Hk+1, the corresponding connected components contain at least (1 − εk)Nk
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nodes each, accounting for at least (1 − εk)2N2
k pairs {u, v}, with u belonging to the first

and v to second connected component. So, two given sub-intervals in Hk+1, they are not
connected with probability at most(

1 − p

cNα
k+1

)(1−εk)2N2
k

⩽ exp
(

−p

c
(1 − εk)2 e2βk

eαβk+1

)
= exp

(
−p

c
(1 − εk)2eβk(2−αβ)

)
,

where in the remainder of this proof, we write c for C(α, n), for the sake of readability. If we
consider all pairs of intervals in Hk+1, a simple union bound allows us to conclude that the
probability that the intervals in Hk+1 are not all mutually connected is at most

C2
k+1 exp

(
−p

c
(1 − εk)2eβk(2−αβ)

)
⩽ exp

(
βk
(

2(β − 1) − p

c
(1 − εk)2(2(2 − α) + 0.2)

))
,

where the last inequality follows from the definition of β. Finally, the quantity above can be
upper bounded as follows

exp
(
−βk0.1(α − 1)(2 − α)

)
= exp(−0.2βk(β − 1)) = C−0.2

k+1 ,

whenever p satisfies p ⩾ c(2−α)(α−1)0.9
(1−εk)2(2(2−α)+0.2) . ◀

Now we are ready to prove Lemma 16.

Proof of Lemma 16. Let Ck and Nk defined as in the claim of Lemma 18. First, we consider
the series

∑
k C−0.2

k and, since Ck = eβk−1(β−1) with β > 1, we notice that the series is
convergent, i.e.

∑∞
k=1 C−0.2

k < +∞.6 This means that the tail of the series converges to zero,
and this implies that there exists a constant h such that

+∞∑
k=h

C−0.2
k ⩽

1
100 . (6)

The constant h depends only on α. In particular, it increases as α → 2− and α → 1+.
Now we consider Ih, an arbitrary interval of size Nh = eβh . Next, we let

δh = 1 − peβh

, εh = 0, Dh = eβh

, ph = p,

and we consider the event Ah, defined as in the statement of Lemma 18. If no ring edge
belonging to Ih is percolated, Ah is trivially true: this implies that, for every p ⩾ ph,
Pr (Ah) ⩾ 1 − δh, where probability is over the edges with endpoints in Ih. If Ah+1 and
Nh+1 are defined like in its statement, Lemma 18 then implies that, for an arbitrary interval
Ih+1 of size Nh+1, we have

Pr (Ah+1) ⩾ 1 − δh+1,

if p ⩾ ph+1 and whenever we take

δh+1 = 2C−0.2
h+1 , εh+1 = 1 − peβh

+ C−0.2
h+1 ,

Dh+1 = 2eβh

+ 1, ph+1 = 0.9c(α − 1)(2 − α)
(4.2 − 2α) ,

where the probability is taken over the randomness of the edges with endpoints in Ih+1.7

6 We did not try to optimize constants and the choice 0.2 for the exponent is not necessarily optimal.
7 Recall that c = C(α, n) in the remainder of this proof.
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If we iteratively apply Lemma 18, we thus have for each k ⩾ 1 such that Nk ⩽ n,

Pr (Ak) ⩾ 1 − δk,

where δk = 2C−0.2
k , pk = 0.9c(α−1)(2−α)

(1−εk−1)2(4.2−2α) , and εk and Dk are defined by the recurrencies:

{
εk = εk−1 + δk−1 + C−0.2

k , if k > h

εh = 1 − peβh and
{

Dk = 2Dk−1 + 1, if k > h

Dh = eβh

.

Now, we solve the recurrence for εk, obtaining εk = 1−peβh

+3
∑k

i=h C−0.2
i , where, leveraging

(6), we take p > σ, with σ > 0 such that 1 − σeβh

= 1/50. With this choice, for each k ⩾ 1
we obtain

εk ⩽ 1 − peβh

+ 3
100 ⩽

1
20 .

Moreover, for each i ⩽ k, we have that Dk ⩽ 2k−h+1eβh . If we take m = logβ(log n), then
Nm = eβm = n and Cm = n(β−1)/β . We also have:

Dm ⩽
eβh

2h−1 2logβ(log(n)) = eβh

2h−1 (log n)logβ 2.

Setting η = logβ 2, we have η > 1, since β < 2. We thus have Dm = O((logη n)). Moreover,
if p ⩾ σ

δm ⩽ 2n−0.2(β−1)/β , εm ⩽
1
20 , pm ⩾

0.9c(α − 1)(2 − α)
(19/20)2(4.2 − 2α) .

Finally, if

p ⩾ max
{

σ,
0.9c(α − 1)(2 − α)
(19/20)2(4.2 − 2α)

}
:= p

then,

Pr (A) ⩾ 1 − δm ⩾ 1 − 2n−0.2(β−1)/β ,

where

A =
{

∃S ⊆ V : |S| >
19
20n ∧ diamp(S) = O(logη(n))

}
,

i.e., w.h.p. Gp contains an induced subgraph of size at least (19/20)n nodes and diameter
O(logη(n)). ◀

5.2 Proof of Lemma 17

Let p = 1/3 and consider an arbitrary node s ∈ V . We consider an execution of the BFS
in Algorithm 2 with input the percolation subgraph Gp = (V, Ep) of G = (V, E) and the
source s.
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Algorithm 2 BFS visit of Gp.

1: Input: the subgraph Gp = (V, Ep), a source s ∈ V

2: Q = {s}
3: R = ∅
4: while Q ̸= ∅ do
5: w = dequeue(Q)
6: R = R ∪ {w}
7: for each neighbor x of w in Gp such that x ̸∈ R do
8: enqueue(x, Q)

We consider the generic t-th iteration of the while loop at line 4 and we denote by Wt

the number of nodes added to the queue Q at line 8. Moreover, Bt is the set of nodes that
are in R in the t-th iteration. By its definition, Bt is a branching process described by the
following recursion:

Bt = Bt−1 + Wt − 1 if Bt−1 ̸= 0
Bt = 0 if Bt−1 = 0
B0 = 1.

(7)

Note that, from Definition 1, each node w ∈ V has expected degree E [deg(w)] = 3. So, since
each edge in G is also in Gp with probability p, we have E [W1] = 3p and E [Wt] ⩽ 3p for
t > 1.8 Since p < p, there is a constant δ such that p = (1 − δ)/3 and, for each t ⩾ 0

E [Wt] = 1 − δ.

We consider the T -th iteration of the while loop, where T = γ log n. Note that the random
variables W1, . . . , WT are not independent as noted earlier but, as remarked in the proof
of Lemma 14, it is easy to show that they are stochastically dominated by T independent
random variables distributed as W1. For the sake of simplicity, we abuse notation, by using
W1, . . . , WT to denote the T independent copies of W1 in the remainder of this proof. Now, if

T∑
i=1

Wi − T < 0,

then BT = 0. We notice that each Wi can be written as a sum of n + 2 independent Bernoulli
random variables.9 Hence, applying Chernoff’s bound to W =

∑T
i=1 Wi we obtain:

Pr (W > (1 + δ)E [W ]) ⩽ e− δ2
2 E[W ].

Next, since E [W ] < (1 − δ)T ,

Pr
(
W > (1 − δ2)T

)
⩽ e− δ2(1−δ)

2 T ⩽
1
n2 ,

where the last inequality follows if we take γ ⩾ 4/(δ2(1 − δ)). This allows us to conclude that

Pr (BT = 0) ⩾ 1 − 1
n2 ,

8 We have not strict equality for t > 1, which follows since the Wt’s are not independent in general, since
line 8 is only executed if x ̸∈ R.

9 Assume node v is visited in the t-iteration. Then we have 2 indicator variables for the 2 ring edges
incident in v, plus n indicator variables, corresponding to n bridges potentially incident in v.
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3:18 Bond Percolation in Small-World Graphs with Power-Law Distribution

for some T = O(log n), which in turn implies that with the above probability, the connected
component of which v is part contains at most O(log n) nodes. Finally, a union bound over
all nodes in V concludes the proof.

6 The case α < 1

In this section, we prove Theorem 4. When α < 1, we first notice that every bridge-edges
(u, v) is in Gp with probability at least pc/n, for some constant c. This reduces our problem
to the analysis of the percolation graph Hp of a graph H, where H is the union of a ring
and an Erdős-Rényi graph Gn,q. [3] contains a detailed analysis of this case, and we use their
results to prove that Gp, for any sufficiently large p, contains a connected component with
diameter O(log n).

We finally remark that, for every value α, when p < 1/3 the connected components of Gp

have at most O(log n) nodes. This fact easy follows from concentration techniques, and the
fact that every node in Gp has expected degree at most 3.

The formal proof of Theorem 4 requires the two lemmas below.

▶ Lemma 19. Under the hypotheses of Theorem 4, sample a G = (V, E) from the SW(n, α)
distribution and let Gp be its percolation subgraph. Then, a constant p < 1 exists such that,
if p > p then, w.h.p., there is a set of Ω(n) nodes in Gp that induce a connected subgraph of
diameter O(log n).

▶ Lemma 20. Under the hypothesis of Theorem 4, sample a G = (V, E) from the SW(n, α)
distribution and let Gp be the percolation subgraph of G. Then, a constant p > 0 exists such
that, if p < p then, w.h.p., each connected component of Gp has size at most O(log n).

A key observation to prove Lemma 19 is that, when α < 1, the percolation graph of a
graph sampled from SW(n, α) stochastically dominates a cycle with additional Erdős-Rényi
random edges. To prove Lemma 19 we thus use a previous result in [3] for this class of random
graphs. In particular, we first give an equivalent formulation of Lemma 5.1 in [3], stating
that, with constant probability the sequential BFS visit (Algorithm 2) reaches Ω(log n) nodes
within O(log n) rounds. We then consider a parallel BFS visit (see Algorithm 4 in Section 6.1)
and show an equivalent formulation of Lemma 5.2 in [3], stating that, w.h.p., the parallel
BFS visit starting with Ω(log n) nodes reaches a constant fraction of nodes within O(log n)
rounds.

The full proof of Lemma 19 is given in Section 6.1, while the proof of Lemma 20 is
omitted, since it proceeds along the very same lines as the proof of Lemma 17, which does
not depends on the value of α.

6.1 Proof of Lemma 19
We first prove the following fact.

▷ Claim 21. Under the hypotheses of Lemma 19, a constant c ∈ (0, 1) (depending only on
α) exists such that, for any u, v ∈ V ,

Pr ((u, v) ∈ Ep) ⩾ pc

n
.

Proof. The normalizing constant C(α, n) (see Definition 1) can be upper bounded as follows

C(α, n) = 2
n/2∑
x=2

1
xα

⩽
2

2α
+
∫ n/2

2

2
xα

dx ⩽ 21−α + 2
1 − α

(n

2

)1−α

.
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Hence, a constant c ∈ (0, 1) (depending only on α) exists such that

Pr ((u, v) ∈ Ep) = p

C(α, n)d(u, v)α
⩾

p

C(α, n)(n/2)α

⩾
p

21−α(n/2)α + n/(1 − α) ⩾
p · c

n
. ◁

The above fact proves that, when α < 1, the percolation subgraph Gp of a graph sampled
from SW(n, α) stochastically dominates a cycle with additional Erdős-Rényi random edges.
To prove Lemma 19 we thus use a previous result in [3] on such class of random graphs. In
particular, we first give an equivalent formulation of Lemma 5.1 in [3], that states that, with
constant probability the sequential BFS visit (Algorithm 3) reaches Ω(log n) nodes within
O(log n) rounds. We then consider a parallel-BFS visit (Algorithm 4) and give an equivalent
formulation of Lemma 5.2 in [3], that states that, w.h.p., the parallel-BFS visit starting with
Ω(log n) nodes reaches a constant fraction of nodes within O(log n) rounds.

We also introduce a slightly different version of the BFS visit of Algorithm 4, where we
have also a set R0 of removed nodes in input.

Algorithm 3 BFS visit of Gp.

1: Input: the subgraph Gp = (V, Ep), an initiator s ⊆ V , a set of removed nodes R0 ⊆ V .
2: Q = {s}
3: R = R0

4: while Q ̸= ∅ do
5: w = dequeue(Q)
6: R = R ∪ {w}
7: for each neighbor x of w in Gp such that x ̸∈ R do
8: enqueue(x, Q)

▶ Lemma 22. Under the hypothesis of Lemma 19, let v ∈ V be a node and c ∈ (0, 1)
be a constant as in Claim 21. For every β > 0, ε > 0, and percolation probability p >√

c2+6c+1−c−1
2c + ε, there are positive parameters k and γ (depending only on ε, c and p) such

that the following holds: the BFS visit (Algorithm 3) with input Gp, v, and a set R0 with
|R0| ⩽ log4 n, with probability γ, a time τ1 = O(log n) exists such that

|(R \ R0) ∪ Q| ⩾ n/k OR |Q| ⩾ β log n .

Algorithm 4 Parallel BFS visit of Gp.
Input: the subgraph Gp = (V, Ep), a set of initiators I0 ⊆ V , a set of removed nodes R0 ⊆ V

1: Q = I0

2: R = R0

3: while Q ̸= ∅ do
4: A = R ∪ Q

5: X = neighbors(Q)
6: Q′ = Q

7: Q = ∅
8: while Q′ ̸= ∅ do
9: w = dequeue(Q′)

10: R = R ∪ {w}
11: for each x ∈ X do
12: enqueue(x, Q)
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3:20 Bond Percolation in Small-World Graphs with Power-Law Distribution

▶ Lemma 23. Under the hypothesis of Lemma 19, let c ∈ (0, 1) be a constant as in Claim 21.
For every ε > 0 and percolation probability p >

√
c2+6c+1−c−1

2c +ε, there are positive parameters
k, β (depending only on c, p and ε) such that the following holds: For any pair of sets
I0, R0 ⊆ V , with |I0| ⩾ β log n and |R0| ⩽ log4 n, in the parallel BFS-visit (Algorithm 4)
with input Gp, I0, and R0, with probability at least 1 − 1/n, a time τ2 = O(log n) exists such
that

|(R \ R0) ∪ Q| ⩾ n/k.

Now we are ready to prove Lemma 19.

Proof of Lemma 19. Let c be as in Claim 21 and p =
√

c2+6c+1−c−1
2c . Let p > p + ε, for

an arbitrarily-small constant ε > 0, and let β > 0 be the constant in Lemma 23 and k be
the constant in Lemmas 22 and 23. We consider the following process, where we initialize
R0 = ∅ and τ1 = O(log n) is as in Lemma 22.

1. Consider a node v ∈ V \ R0.
2. From v, perform a sequential-BFS visit (Algorithm 2), with input Gp, v, and R0, for τ1

while loops and add to R0 the sets Q and R as they are at the end of the τ1-th iteration
of the while loop (R0 = R0 ∪ R ∪ Q).

3. If |Q| ⩾ β log n or |Q ∪ R| ⩾ n/k, interrupt the process.
4. Restart from 1.

Let γ > 0 be the constant in Lemma 22. We prove that the process above terminates
within σ = log1−γ(n) iterations, w.h.p.

First we notice that, at each iteration of the process, the set R0 grows, w.h.p., at most
of size O(log2 n), since each node in Gp has degree at most O(log n), w.h.p. (Claim 6) and
so, in τ1 iteration of the parallel-BFS, at most O(log2 n) nodes will be reached by v. This
implies that, at each iteration i ⩽ σ of the process |R0| = O(log3 n), w.h.p.

From Lemma 22 it follows that,a sequential-BFS with in input Gp, v and R0 with
|R0| = O(log3 n) is such that, at the end of τ1-th iteration

Pr (|Q| ⩾ β log n or |R ∪ Q| ⩾ n/k) ⩾ γ > 0 .

Therefore, the probability that the process exceeds σ iterations is at most (1 − γ)σ ⩽ 1/n.
So, w.h.p., a node v exists such that the sequential-BFS starting from v, after O(log n)

steps, satisfies at least one of the two conditions: i) |Q| ⩾ β log n or ii) |Q ∪ R| ⩾ n/k.
If ii) holds, the lemma is proven. Indeed, w.h.p. we have the existence of a node v such

that there is a set of Ω(n) nodes at distance at most O(log n) from v.
If i) holds, it suffices to perform a sequential-BFS (Algorithm 2) with in input Gp, I0 = Q

and R0 and apply Lemma 23 to claim that such BFS reaches at least Ω(n) nodes in O(log n)
steps. ◀
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Abstract
This paper proposes a simple algorithm for computing single-source reachability in a temporal
graph under waiting-time constraints, that is when waiting at each node is bounded by some time
constraints. Given a space-time representation of a temporal graph, and a source node, the algorithm
computes in linear-time which nodes and temporal edges are reachable through a constrained
temporal walk from the source.
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1 Introduction

Reachability, that is connectivity through a path, is a fundamental notion in graphs. There
exist simple and elegant algorithms that determine efficiently which nodes or edges can be
reached from a given source node, and finding optimal paths realizing such reachability.
On the other hand, temporal graphs, where edges evolve over time, offer a richer variety
of temporal connectivity, especially when considering waiting constraints as we discuss
below. By focusing on reachability without concern for any optimization criterion, we aim at
designing a simple algorithm under waiting constraints.

Temporal graphs

Temporal graphs arose with the need to better model contexts where the appearance of inter-
actions or connections depends on time, such as epidemic propagation or transport networks.
Starting with the work on time-dependent networks [8] and the telephone problem [5], the dis-
crete time version of temporal graphs we consider here was already investigated in [2, 16, 18]
and introduced later in various contexts ranging from social interactions to mobile networks
and distributed computing (see e.g. [6, 14, 13]). This classical point-availability model of
temporal graph is the following. The availability of an edge (u, v) at time τ is modeled by a
temporal edge e = (u, v, τ, λ). It represents the possibility to traverse the edge from u at
time exactly τ with arrival in v at time τ + λ. We refer to τ and τ + λ as the departure
time and arrival time of e respectively, while λ > 0 is called the travel time of e. Notice
that we consider travel time to be strictly positive, which is a natural assumption when
it comes down to application like, for example, transport networks. A temporal walk can
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Figure 1 A temporal graph with waiting constraints. Each temporal edge in the picture is labeled
with its departure time and has travel time one, each node has minimum waiting-time α = 0 and
maximum waiting-time β = 1. The only temporal edge entering d and reachable from s is (a, d, 7, 1)
through the temporal walk (s, a, 1, 1), (a, b, 2, 1), (b, c, 4, 1), (c, a, 5, 1), (a, d, 7, 1). Indeed, following
any of the two other edges (b, d, 5, 1) and (c, d, 4, 1) would require to wait 2 > β units of time either
at b (after edge (a, b, 2, 1)) or c (after edge (s, c, 1, 1)).

then be defined as a sequence of temporal edges such that each temporal edge arrives at the
departing node of the next one, and the arrival time of each temporal edge is less or equal to
the departure time of the next one. The inequality means that it is possible to wait at the
node in-between two consecutive temporal edges. In particular, the time elapsed between
the arrival time of an edge and the departure of the next one represents the amount of time
spent waiting at the node. We distinguish such a walk from a temporal path, which is a
temporal walk visiting at most once any node.

Without waiting constraints, that is when waiting at a node is unrestricted, numerous
works have investigated single-source temporal path computation with a primary focus on
earliest arrival. After several works inspired by Dijkstra algorithm (see e.g. [2, 3, 16, 18]), a
simple and elegant linear-time algorithm for earliest arrival time was first claimed in [20] with
a similar algorithm as [10] through a single scan of temporal edges ordered by non-decreasing
departure time. Assuming strictly positive travel times is important here as it ensures that
the temporal edges of any temporal path appear in order during this scan. These algorithms
indeed focus their target on temporal paths rather than walks, since unrestricted waiting
allows to transform any walk into a path by waiting at nodes instead of performing any loops.
In this setting they allow to determine which nodes or edges are reachable. However, we
consider the following more general model.

Waiting constraints

We consider temporal graphs subject to waiting constraints. In such graphs, during a temporal
walk, it is not possible to wait at a node less than α time or more than β time, before moving
to another node. Such constraints can be used to model, for example, preferences of a user
in a public transport network, or to take into account incubation time and recovery time of
a disease in a temporal network of contacts.

We focus on the following rechability problem. We say that a temporal edge e = (u, v, τ, λ)
is reachable from a node s if there exists a temporal walk from s ending with e and respecting
waiting constraints. The reachability problem consists in identifying all the temporal edges
that are reachable from a given source node s (see Figure 1 for an example). Note that we can
easily compute which nodes are reachable from this. Moreover, this problem generalizes the



F. Brunelli and L. Viennot 4:3

single-source earliest arrival time problem: indeed, given the set of the s-reachable edges, a
linear scan allows to identify for each node v the s-reachable edge with head v that has lowest
arrival time, and which corresponds to the earliest arrival time at v. Computing the number
of nodes reachable from a given source can be interesting when measuring connectivity
properties of a temporal network [9]. Reachability of edges additionally provides information
about all times at which it is possible to reach such nodes. This is related to the profile
problem [11], which consists in computing a function that for each possible departure time
from the source return the earliest arrival time towards the destinations.

Waiting constraints significantly modify temporal connectivity. Most strikingly, it has
been proved that the computation of temporal paths in this setting becomes NP-hard [7].
While unrestricted waiting makes reachability through temporal paths or walks equivalent,
this result moves the interest to the sole case of temporal walks when dealing with bounded
waiting. It is thus necessary to design algorithms following a different approach.

In a recent break-through, [1] proposes an algorithm computing single-source optimal
temporal walks under waiting-time constraints in O(M log M) time, where M is the total
number of temporal edges in the graph. It computes walks that optimize a linear combination
of the most classical criteria, and can thus solve the reachability problem as well. The
algorithm is quite involved. It relies on first transforming the temporal graph so as to zero
all travel times and then performing a Dijkstra computation for each time instant when a
temporal edge departs or arrives. More precisely, it first builds an equivalent temporal graph
where all edges have zero travel time. This is done by adding a dummy node with appropriate
waiting restrictions for each temporal edge. Note that this can considerably increase the
number of nodes. Then, it scans time instants when temporal edges occur in increasing order.
For each time instant t, a static directed graph is constructed and a Dijkstra computation
allows to update the reachability of nodes with temporal edges up to time t. It feels natural
to investigate whether in the context of bounded waiting it is possible to develop an easier
and more efficient method to solve the simpler reachability problem.

Contribution

We develop an algorithm to solve the reachability problem in temporal graphs subject to
waiting constraints. The main strength of the algorithm is its simplicity, which comes with
no downplay in efficiency, since it runs in linear time. It thus improves by a factor log M

the state of the art in the setting of positive travel times. The algorithm performs a linear
scan of the list of temporal edges, in a spirit similar to [10]. In this case, however, the
algorithm requires in input not one, but two, sorted lists, one containing the temporal edges
sorted by departure time and the other by arrival time. Exploiting these two lists is a new
technique for handling waiting constraints that could be useful for computing optimum
temporal walks or other temporal connectivity problems. Interestingly, this representation of
the temporal graph through two lists is closely related to the more classical “space-time” (or
“time-expanded”) graph [17, 18, 19, 15, 14] where each node is split into node events, one for
each time where a temporal edge arrives to it or departs from it, and each temporal edge is
turned into an arc between two node events. If the input is given as a list of temporal edges,
the two appropriate lists can be obtained in O(M log M) time. However, our algorithm runs
in linear time when given a space-time representation as input since two appropriate lists
can easily be obtained from a topological ordering of the corresponding static directed graph.
The positive travel time assumption can be loosened to a more general acyclic setting as
described in a follow-up paper [4].
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4:4 Temporal Reachability Under Waiting-Time Constraints in Linear Time

The paper is organized as follows. In Section 2 we define the main notions. In Section 3
we present our main algorithmic result. Finally, in Section 4 we show how to adapt our
algorithm in order to take as input a space-time representation of a temporal graph.

2 Preliminary definitions

A temporal graph is a tuple G = (V, E, α, β), where V is the set of nodes, E is the set of
temporal edges and α, β ∈ [0, +∞]V are minimum and maximum waiting-times at each node.
A temporal edge e is a quadruple (u, v, τ, λ), where u ∈ V is the tail of e, v ∈ V is the head
of e, τ ∈ R is the departure time of e, and λ ∈ R>0 is the travel time of e. We also define the
arrival time of e as τ + λ, and we let dep(e) = τ and arr(e) = τ + λ denote the departure
time and arrival time of e respectively. For the sake of brevity, we often say edge instead
of temporal edge. We let n = |V | and M = |E| denote the number of nodes and edges
respectively.

Given a temporal graph G = (V, E, α, β) a walk Q from u to v, or a uv-walk for short, is
a sequence of temporal edges ⟨e1 = (u1, v1, τ1, λ1), . . . , ek = (uk, vk, τk, λk)⟩ ⊆ Ek such that
u = u1, vk = v, and, for each i with 1 < i ≤ k, ui = vi−1 and ai−1 + αui ≤ τi ≤ ai−1 + βui

where ai−1 = τi−1 + λi−1 is the arrival time of ei−1. Note that the waiting time τi − ai−1 at
node ui is constrained to be in the interval [αui , βui ]. Note that since travel times are positive,
such a walk is strict in the sense that τi−1 < τi for 1 < i ≤ k as the constraint ai−1 +αui

≤ τi

implies τi ≥ ai−1 = τi−1 + λi−1 > τi−1 for λi−1 > 0. The departing time dep(Q) of Q is
defined as τ1, while the arrival time arr(Q) of Q is defined as τk +λk. We say that a temporal
edge e = (x, y, τ, λ) extends Q when x = vk and arr(Q) + αx ≤ τ ≤ arr(Q) + βx. When e

extends Q, we can indeed define the walk Q.e = ⟨e1, . . . , ek, e⟩ from u to y. Moreover, we
also say that e extends ek as it indeed extends any walk Q having ek as last edge. We also
say that an edge e is an s-reachable edge whenever there exists an sv-walk ending with edge
e. Let us now introduce some orderings of temporal edges with respect to certain temporal
criteria. Given an ordering of the temporal edges Eord we use e <Eord f to denote that e

appears before f in Eord. We say that an ordering Eord of all the temporal edges is departure
sorted if the edges are ordered by non-decreasing departure time in Eord, that is we have
e <Eord f whenever e, f ∈ E satisfy dep(e) < dep(f). Similarly, we say that an ordering
Eord of all the temporal edges is arrival sorted if the edges are ordered by non-decreasing
arrival time in Eord, that is we have e <Eord f whenever e, f ∈ E satisfy arr(e) < arr(f).

Finally, we define the doubly-sorted representation of a temporal graph (V, E, α, β) as
a data-structure with two lists (Edep, Earr), containing |E| quadruples each, representing
all temporal edges in E, where Edep is a list sorted by non-decreasing departure time and
Earr is a list sorted by non-decreasing arrival time. Moreover, we assume that we have
implicit pointers between the two lists, that link each quadruple of one list to the quadruple
representing the same temporal edge in the other list.

Without loss of generality, we can restrict our attention to nodes appearing as head or
tail of at least one temporal edge and we thus assume |V | = O(|E|). An algorithm is said
to be linear in time and space when it runs in O(|E|) time and uses O(|E|) space. Given a
doubly sorted representation (Edep, Earr), we also assume that we are given for each node v

the list Edep
v of pointers to temporal edges with tail v ordered by non-decreasing departure

time, as it can be computed in linear time and space from Edep through bucket sorting. We
assume that each list Earr, Edep, or Edep

v is stored in an array T such that each element T [i]
can be accessed directly through its index i ∈ [1, |T |] in constant time. Given two indexes
i ≤ j, we also let T [i : j] denote the sub-array of elements of T with index in [i, j].
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3 A linear-time Algorithm to compute reachability

In this section we will provide our main result: an algorithm that solves in linear time and
space the reachability problem, which is defined as follows.

Singles-Source Reachability Problem. Given a temporal graph with waiting
constraints G = (V, E, α, β) and a source node s, compute the set of all temporal
edges that are s-reachable.

In the following we will assume to be given a doubly-sorted representation (Edep, Earr)
of the temporal graph. We design an algorithm which mainly consists in scanning linearly
edges in Earr while updating the set Av of s-reachable edges terminating sv-walks in the
temporal graph resulting from the edges read so far. To help identifying edges that will
appear in such walks in next iterations, we also mark edges that extend these walks.

We now describe more precisely how edges are scanned and marked as formalized in
Algorithm 1. We first build the lists Edep

v of temporal edges with tail v by bucket sorting
Edep at Line 1. We then identify the s-reachable edges as follows. We linearly scan Earr. In
the temporal graph resulting from the temporal edges read up to edge e = (u, v, τ, λ) ∈ Earr,
the only walks from s that have not been considered yet must contain e, and must have it as
last edge as Earr is sorted by non-decreasing arrival time. If its tail u is s, or if e is marked,
then we know that there exists a walk from s to its head v. In that case, we add edge e to Av

at Line 9, and we then mark edges that extend e, that is edges in Edep
v with departure time

in [a + αv, a + βv], since the arrival time of e is a = τ + λ. These edges appear consecutively
in Edep

v which is processed linearly as walks from s to v are identified. This process is done
in Lines 10-14 in Algorithm 1, starting from the index pv of the last processed edge in Edep

v ,
and such edges f that extend e are marked at Line 13 before updating pv. Moreover, we use
classical parent pointers to be able to compute an sv-walk for each s-reachable edge with
head v. Each parent pointer P [f ] of an edge f is initially set to a null value ⊥ at Line 6.
Whenever we mark edge f , that extend the currently scanned edge e, we set the parent
pointer of f to e. If f is an s-reachable edge at v, we can then get an sv-walk by following
the parent pointer P [f ], P [P [f ]], . . . .

▶ Theorem 1. Given a doubly-sorted representation of a temporal graph with waiting
constraints G = (V, E, α, β) and a source node s ∈ V , Algorithm 1 computes all s-reachable
temporal edges in linear time and space.

Proof.
Correctness. Let us denote by Gk = (V, Earr[1 : k], α, β) the temporal graph induced by
the first k temporal edges in Earr. We will prove, by induction on k, the following two
invariants:

(I1
k) For every node v, Av contains all s-reachable edges with head v in Gk.

(I2
k) The marked edges are all the edges in E that extend a walk from s in Gk.

The correctness of the algorithm will follow from invariant (I1
k) for k = |E|. The invariants

are satisfied for k = 0 since there are no edges in G0 while the sets (Av)v∈V of s-reachable
edges are initially empty and no edge is initially marked.

Now suppose that the two invariants hold for k − 1, with k ≥ 1, and let us prove that
they still hold for k after scanning the kth edge ek = (u, v, τ, λ) in Earr. To prove (I1

k) and
(I2

k), we first show that the condition of the if statement at Line 8 is met when ek is an
s-reachable edge in Gk. It is obviously the case when u = s as ⟨ek⟩ is in Gk, or when ek was
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4:6 Temporal Reachability Under Waiting-Time Constraints in Linear Time

Algorithm 1 Computing, for each node v, the set Av of all s-reachable edges with
head v.

Input: A doubly-sorted representation (Earr, Edep) of a temporal graph G with
waiting constraints (α, β), and a source node s ∈ V .

Output: The sets (Av)v∈V of s-reachable edges at each node v sorted by
non-decreasing arrival time.

1 For each node v, generate the list Edep
v by bucket sorting Edep.

2 For each node v do
3 Set Av := ∅. /* Set of s-reachable edges (as a sorted list). */
4 Set pv := 0. /* Index of the last processed edge in Edep

v . */

5 Set all the edges in Earr as unmarked.
6 Set P [e] :=⊥ for each edge e ∈ Earr./* Parent of e, initially null. */
7 For each edge e = (u, v, τ, λ) in Earr do
8 If u = s or e is marked then

/* e is s-reachable. */
9 Av := Av ∪ {e}

10 Let a = τ + λ be the arrival time of e.
/* Process further edges from v with dep. time ≤ a + βv: */

11 Let l > pv be the first index of an edge (v, w, τ ′, λ′) ∈ Edep
v such that

τ ′ ≥ a + αv (set l := |Edep
v | + 1 if no such index exists).

12 Let r ≥ l be the last index of an edge (v, w, τ ′, λ′) ∈ Edep
v such that

τ ′ ≤ a + βv (set r := l − 1 if no such index exists).
/* Mark unmarked edges with dep. time in [a + αv, a + βv]: */

13 If l ≤ r then mark each edge f ∈ Edep
v [l : r] and set P [f ] := e.

14 Set pv := r.

15 Return the sets (Av)v∈V .

previously marked, as Invariant (I2
k−1) then implies that it extends a walk Q from s in Gk−1

and that Q.ek is a walk in Gk. The converse also holds: if ek is an edge of a walk Q from s

in Gk, then either it is the first edge and we have u = s or the sequence Q′ of edges before
ek in Q is a walk in Gk−1 and (I2

k−1) implies that it is marked.
Note that when ek appears in a walk Q of Gk, it must be the last edge of Q as Earr is

sorted by non-decreasing arrival time and edges have positive travel time. This allows to
prove (I1

k): as we assume (I1
k−1), we just have to consider walks from s that are in Gk but

not in Gk−1, that is those containing ek. Since all these walks have ek as last edge, and ek is
the only edge added to Av when such walks exist, we can conclude that (I1

k) holds.
Similarly, to prove (I2

k) when (I2
k−1) holds, we just have to consider the edges extending

a walk Q from s which is in Gk but not in Gk−1. As discussed above, when such a walk
Q exists, ek is its last edge and the condition of the if statement Line 8 holds. Edges
extending such a walk Q are thus those extending ek, that is all edges f ∈ Edep

v such that
a + αv ≤ dep(f) ≤ a + βv. Note that the ordering of Edep

v implies that these edges are
consecutive in Edep

v . If no such edges exist, let l′ and r′ designate the first and last indexes
respectively where they are placed in Edep

v . To prove (I2
k), it thus suffices to prove that all

edges in Edep
v [l′ : r′] are marked after scanning ek and that only edges in Edep

v [l′ : r′] are
marked during the iteration for ek (if no such edges exist we prove that we mark no edges).
Consider the values l and r computed at Lines 11 and 12 respectively. If no edge f extends
ek, then we get r = l − 1 and no edge is marked. Now, we assume that such edges exist and
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that l′ and r′ are well defined. First assume l ≤ r and thus that l was not set to |Edep
v | + 1.

The choice of l, r then imply a + αv ≤ dep(Edep
v [l]) and dep(Edep

v [r]) ≤ a + βv. We thus
have l′ ≤ l ≤ r ≤ r′ and all marked edges at Line 13 are in Edep

v [l′ : r′]. Moreover, the
choice of r indeed then implies r = r′. We still need to prove that edges in Edep

v [l′ : l − 1]
have already been marked. Otherwise, when r = l − 1, no edge is marked. This occurs
when pv ≥ r′ and we then have l = pv + 1. In both cases, it remains to prove that all edges
f ∈ Edep

v [l′ : min{l − 1, r′}] have already been marked. This interval is non empty when
l′ ≤ l − 1 and thus pv = l − 1 by the choice of l. We thus have pv ≥ min{l − 1, r′}. Let i be
the index of f in Edep

v and consider the iteration j < k when pv was updated from a value
smaller than i to a value r′′ ≥ i where l′′ and r′′ denote the indexes computed for variables l

and r respectively during the j-th iteration for edge ej ∈ Earr.
Since Earr is sorted by non-decreasing arrival time, the arrival time a′ of ej satisfies

a′ ≤ a and we thus have dep(f) ≥ a + αv ≥ a′ + αv. The choice of index l at Line 11 in that
iteration thus guarantees that the index l′′ must satisfy l′′ ≤ i. We thus have l′′ ≤ i ≤ r′′

and f was marked at Line 13 during the jth iteration. This completes the proof of (I2
k).

We finally prove that the parent pointers allow us to compute for each s-reachable edge
f = (u, v, τ, λ) with head v an sv-walk ending with f . If f ∈ Av and it is not marked, then
P [f ] =⊥, and we must have u = s as f was added to Av. In this case, ⟨f⟩ is an sv-walk itself.
Now consider the case f ∈ Av and f is marked. Consider the iteration k where f was marked.
By (I2

k−1) and (I2
k), f extends a walk from s ending with ek, where ek is the edge scanned

at iteration k, and P [f ] was then set to ek. This guarantees by a simple induction that,
if P [f ] ̸=⊥, by following the parent pointers in classical manner, namely P [f ], P [P [f ]], . . . ,
until ⊥ is found, it is possible to obtain a walk terminating with edge f .

Complexity analysis. The preprocessing of Edep and the initialization from Line 1 to Line 6
clearly take linear time. The main for loop scans each temporal edge e = (u, v, τ, λ) in Earr

exactly once. For each iteration there are three operations that may require non-constant
time: the computation of l and r at Lines 11 and 12, and marking edges in Edep

v [l, r] at
Line 13. They all take O(r − pv) time as l and r can be found by scanning edges in Edep

v

from pv + 1. Thanks to the update of the index pv to r, each edge in Edep
v is processed at

most once for a total amortized cost of O(|Edep
v |). Overall, this leads to a time complexity of

O(|E| +
∑

v∈V |Edep
v |) = O(|E|). Algorithm 1 thus runs in linear time. Finally, let us notice

that for all nodes v, the set Av has size bounded by the number of temporal edges with head
v. We thus have

∑
v∈V |Av| ≤ |E|, and the space complexity of Algorithm 1 is linear. ◀

4 Taking a space-time representation as input

Let us first recall the definition of the “space-time” representation [17]. It consists in a
transformation of a temporal graph into a static graph by introducing a copy of each node
for each possible time instant. Each temporal edge is then turned into a static edge from the
two corresponding copies of its tail and head. We consider here a variant where we introduce
copies of a node only for time instants corresponding to a departure time of an edge from
that node, or an arrival time of an edge to that node, following the approach of [19].

Formally, given a temporal graph G = (V, E), its space-time representation is a directed
graph D = (W, F c ∪ F w), where:

The nodes in W are labeled nodes vτ , where v ∈ V refers to a node of G and τ is a time
label. More precisely, vτ ∈ W if and only if there exists a temporal edge in E with tail v

and departure time τ or a temporal edge with head v and arrival time τ . We will also
refer to such nodes as copies of v. Let us denote with Predw(vτ ) the copy of v in W with
maximum time label less than τ , if it exists.
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Figure 2 Space-time representation of the temporal graph of Figure 1. Plain arcs cor-
respond to temporal edges while dotted arcs correspond to waiting at a node. The tem-
poral walk (s, a, 1, 1), (a, b, 2, 1), (b, c, 4, 1), (c, a, 5, 1), (a, d, 7, 1) corresponds to the directed path
s1, a2, b3, b4, c5, a6, a7, d8. Note that the directed path s1, a2, b3, b4, b5, d6 does not corresponds to a
valid temporal walk, since waiting at node b from time 3 to time 5 violates the constraint β = 1.

We distinguish two types of arcs F c and F w called connection arcs and waiting arcs
respectively. The set F c contains an arc (uτ , vτ+λ) for each temporal edge e = (u, v, τ, λ) ∈
E. These arcs represent a temporal connection between nodes in V and are called
connection arcs. Note that each arc (vτ , wν) in F c satisfies τ < ν, since travel times are
positive. The set F w is defined to contain an arc (Predw(vτ ), vτ ) for each v ∈ V and for
each copy vτ of v such that Predw(vτ ) is defined. These arcs represent the possibility to
wait at a node in v ∈ V during a walk in G and are called waiting arcs. Note that each
arc (vτ , vν) in F w satisfies τ < ν.

The main property of this representation is that any temporal walk Q corresponds to a
directed path in the representation using arcs in F c corresponding to temporal edges of Q plus
waiting arcs in F w each time the walk waits at a node (see Figure 2 for an example). Note
that the converse is also true in the unrestricted waiting setting but not with waiting-time
constraints.

We will now show that Algorithm 1 runs correctly when Earr and Edep satisfy weaker
requirements and how to compute such lists from a space-time representation.

Let us introduce some orderings of temporal edges with respect to certain temporal
criteria. We say that an ordering Eord of the edges of a temporal graph G is walk-respecting
when the edges of any walk Q in G appear in order in Eord. Equivalently, Eord is walk-
respecting when for any pair e, f ∈ E of edges such that f extends e, then e <Eord f , where
e <Eord f means that e appears before f in Eord. Moreover, we say that an ordering Eord

of all the temporal edges is node-departure sorted if all edges departing from the same node
are ordered by non-decreasing departure time in Eord, that is we have e <Eord f whenever
e, f ∈ E have same tail and satisfy dep(e) < dep(f). Similarly, we say that an ordering Eord
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of all the temporal edges is node-arrival sorted if all edges arriving to the same node are
ordered by non-decreasing arrival time in Eord, that is we have e <Eord f whenever e, f ∈ E

have same head and satisfy arr(e) < arr(f).
Let us consider a temporal graph G and its temporal edges E. Let (Edep, Earr) be two

lists representing all temporal edges in E, where Edep is node-departure sorted, and Earr

is walk-respecting and node-arrival sorted. Notice that these hypothesis are weaker than
the doubly-sorted representation we defined and used earlier. Indeed, if Earr is sorted by
non-decreasing arrival time, then it is trivially node-arrival sorted. It is also walk-respecting
since we are assuming positive travel time of the temporal edges, thus the edges of a temporal
walk Q have strictly increasing arrival times. On the other side, a simple example can prove
that the opposite does not hold. Let e = (s, u, τ1, λ1) and f = (s, v, τ2, λ2) be two temporal
edges such that arr(e) < arr(f). Then {f, e} is a node-arrival and walk-respecting sorted
list, but it is not sorted by non-decreasing arrival time. We can now state the following.

▷ Claim 2. Given two lists (Edep, Earr), where Edep is node-departure sorted, and Earr

is walk-respecting and node-arrival sorted, that represent a temporal graph with waiting
constraints G = (V, E, α, β), and a source node s ∈ V , Algorithm 1 computes all s-reachable
temporal edges in linear time and space.

We sketch a proof of Claim 2 by going through the key points that exploited the order of
the lists of the proof of correctness in Theorem 1:

In the preprocessing, it is still possible to compute in linear time, for each node v, the
list Edep

v by bucket sorting Edep.
Let ek be the edge scanned during the k-th iteration. Then, if ek appears in a walk Q in
Gk it is still its last edge. The reason is that if it appears in a previous position in Q,
then Q would contradict the walk-respecting hypothesis of Earr.
When proving that the algorithm correctly marks edges in Edep

v [l′ : r′], we used the
non-decreasing arrival time property of Earr to leverage that the edges entering v are
scanned in Earr by non-decreasing arrival time. This property actually coincides with
the node-arrival definition.

We now show that an appropriate pair of lists (Edep, Earr) can easily be computed from
a space-time representation.

▷ Claim 3. Given the space-time representation D = (W, F c ∪ F w) of a temporal graph
G = (V, E), it is possible to compute in linear time ans space two lists (Edep, Earr), where
Edep is node-departure sorted, and Earr is walk-respecting and node-arrival sorted.

In order to prove Claim 3 we provide a simple algorithm based on Kahn’s algorithm [12].
Indeed, because of the positive travel assumption, D is a directed acyclic graph. It is then
possible to use Kahn’s algorithm to compute a topological ordering of D in linear time that
is an ordering W ord of W such that uτ <W ord vν for all arcs (uτ , vν) ∈ F c ∪ F w.

Let us see how to compute a list of temporal edges Earr that is node-arrival and walk-
respecting sorted from such a topological ordering W ord of D (see Figure 3 for an example).
We start with an empty list Earr. Then, for each node vν ∈ W ord, from the first one to
the last one, we consider its incoming arcs (uτ , vν) in F c. For each of such arc (uτ , vν), we
append to Earr the temporal edge (u, v, τ, ν − τ). The list we obtain this way is:

Walk-respecting sorted: A temporal walk Q in G corresponds to a path P in D. Moreover,
the time labels of the nodes in P are strictly increasing. Thus the topological order
guarantees that we consider the arcs in P ∩ F c in the same order as the corresponding
temporal edges appear in Q.
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s1 c2 c4 d5 a2 b3 b4 c5 b5 a6 a7 d6 d8

Figure 3 The topological order s1, c2, c4, d5, a2, b3, b4, c5, b5, a6, a7, d6, d8 of the space-time repre-
sentation of Figure 2 leads to the node-arrival sorted and walk-respecting ordering Earr = (s, c, 1, 1),
(c, d, 4, 1), (s, a, 1, 1), (a, b, 2, 1), (b, c, 4, 1), (c, a, 5, 1), (b, d, 5, 1), (a, d, 7, 1). It also results in the node-
departure sorted and walk-respecting ordering Edep = (s, a, 1, 1), (s, c, 1, 1), (c, d, 4, 1), (a, b, 2, 1),
(b, c, 4, 1), (c, a, 5, 1), (b, d, 5, 1), (a, d, 7, 1).

Node-arrival sorted: Since there is a path connecting the copies of each node v ∈ V

through increasing time labels, we are guaranteed to extract each copy by increasing
time label. Thus the edges entering v will be considered and appended to Earr by
non-decreasing arrival time.

A list Edep of temporal edges which is node-departure sorted (and walk respecting) can
be similarly obtained in linear time by scanning out-arcs of each node in the topological
ordering instead of in-arcs. As a consequence of Theorem 1, Claim 2 and Claim 3, we thus
obtain:

▶ Theorem 4. Given a doubly-sorted representation, or a space-time representation, of
a temporal graph with waiting constraints G = (V, E, α, β) and a source node s ∈ V , it is
possible to compute all s-reachable temporal edges in linear time and space.

5 Conclusion

We provided an algorithm that, given in input a space-time representation of a temporal
graph with waiting constraints, computes in linear time and space all the reachable edges
from a given source. In particular, this also solves the single-source earliest arrival time
problem. We are working on extending this technique for computing single-source optimal
temporal walks optimizing classical criteria such as shortest duration or number of edges [4].

A future line of work consists in considering a more flexible model in the context of
applications to public transport networks, for example by also allowing footpaths arcs that
are available at any point in time.
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Abstract
We extend the motion-planning-through-gadgets framework to several new scenarios involving
various numbers of robots/agents, and analyze the complexity of the resulting motion-planning
problems. While past work considers just one robot or one robot per player, most of our models
allow for one or more locations to spawn new robots in each time step, leading to arbitrarily
many robots. In the 0-player context, where all motion is deterministically forced, we prove that
deciding whether any robot ever reaches a specified location is undecidable, by representing a
counter machine. In the 1-player context, where the player can choose how to move the robots,
we prove equivalence to Petri nets, EXPSPACE-completeness for reaching a specified location,
PSPACE-completeness for reconfiguration, and ACKERMANN-completeness for reconfiguration
when robots can be destroyed in addition to spawned. Finally, we consider a variation on the
standard 2-player context where, instead of one robot per player, we have one robot shared by the
players, along with a ko rule to prevent immediately undoing the previous move. We prove this
impartial 2-player game EXPTIME-complete.
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1 Introduction

Intuitively, motion planning is harder with more agents/robots. This paper formalizes this
intuition by studying the effects of varying the number of robots in a recent combinatorial
model for combinatorial motion planning and the resulting computational complexity.

Specifically, the motion-planning-through-gadgets framework was introduced in
2018 [10] and has had significant study since [12, 3, 6, 5, 11, 4, 17, 14]. In the original one-
player setting, the framework considers a single agent/robot traversing a dynamic network
of “gadgets”, where each gadget has finite state and a finite set of traversals that the robot
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can make depending on the state, and each traversal potentially changes the state (and
thus which future traversals are possible). The goal is for the robot to traverse from one
specified location to another (reachability), or for the system of gadgets to reach a desired
state (reconfiguration) [5]. Existing results characterize in many settings which gadgets
(in many cases, one extremely simple gadget) result in NP-complete or PSPACE-complete
motion-planning problems, and which gadgets are simple enough to admit polynomial-time
motion planning. This framework has already proved useful for analyzing the computational
complexity of motion-planning problems involving modular robots [1], swarm robots [7, 8],
and chemical reaction networks [2]. These applications all involve naturally multi-agent
systems, so it is natural to consider how the complexity of the gadgets framework changes
with more than one robot.

1-player with arbitrarily many robots. In Section 4, we consider a generalization of this
1-player gadget model to an arbitrary number of robots, and the player can move any one
robot at a time. By itself, this extension does not lead to additional computational complexity:
such motion planning remains in PSPACE, or in NP if each gadget can be traversed a limited
number of times. To see the true effect of an arbitrary number of robots, we add one or
two additional features: a spawner gadget that can create new robots, and optionally a
destroyer gadget that can remove robots. For reachability, only the spawning ability matters
– it is equivalent to having one “source” location with infinitely many robots – and we show
that the complexity of motion planning grows to EXPTIME-complete with a simple single
gadget called the symmetric self-closing door (previously shown PSPACE-complete
without spawners [3]). For reconfiguration, we show that motion planning with a spawner
and symmetric self-closing door is just PSPACE-complete (just like without a spawner), but
when we add a destroyer, the complexity jumps to ACKERMANN-complete (in particular,
the running time is not elementary). These results follow from a general equivalence to Petri
nets – a much older and well-studied model of dynamic systems – whose complexity has
very recently been characterized [15, 9].

0-player with arbitrarily many robots. In Section 3, we consider the same concepts in
a 0-player setting, where every robot has a forced traversal during its turn, and spawners
and robots take turns in a round-robin schedule. 0-player motion planning in the gadget
framework with one robot was considered previously [6, 11], with the complexity naturally
maxing out at PSPACE-completeness. With spawners and a handful of simple gadgets,
we prove that the computational complexity of motion planning increases all the way to
RE-completeness. In particular, the reachability problem becomes undecidable. This is a
surprising contrast to the 1-player setting described above, where the problem is decidable.

Impartial 2-player with a shared robot. In Section 5, we consider changing the number
of robots in the downward direction. Past study of 2-player motion planning in the gadget
framework [12] considers one robot per player, with each player controlling their own robot.
What happens if there is instead only one robot, shared by the two players? This variant
results in an impartial game where the possible moves in a given state are the same no
matter which player moves next. To prevent one player from always undoing the other
player’s moves, we introduce a ko rule, which makes it illegal to perform two consecutive
transitions in the same gadget. In this model, we show that 2-player motion planning is
EXPTIME-complete for a broad family of gadgets called “reversible deterministic interacting
k-tunnel gadget”, matching a previous result for 2-player motion planning with one robot
per player [12]. In other words, reducing the number of robots in this way does not affect
the complexity of the problem (at least for the gadgets understood so far).
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2 Standard Gadget Model

We now define the gadget model of motion planning, introduced in [10].
In general, a gadget consists of a finite number of locations (entrances/exits) and a

finite number of states. Each state S of the gadget defines a labeled directed graph on
the locations, where a directed edge (a, b) with label S′ means that a robot can enter the
gadget at location a and exit at location b, changing the state of the gadget from S to S′.
Equivalently, a gadget is specified by its transition graph, a directed graph whose vertices
are state/location pairs, where a directed edge from (S, a) to (S′, b) represents that the robot
can traverse the gadget from a to b if it is in state S, and that such traversal will change the
gadget’s state to S′. Gadgets are local in the sense that traversing a gadget does not change
the state of any other gadgets.

A system of gadgets consists of gadgets, their initial states, and a connection graph
on the gadgets’ locations. If two locations a and b of two gadgets (possibly the same gadget)
are connected by a path in the connection graph, then a robot can traverse freely between
a and b (outside the gadgets). (Equivalently, we can think of locations a and b as being
identified, effectively contracting connected components of the connection graph.) These are
all the ways that the robot can move: exterior to gadgets using the connection graph, and
traversing gadgets according to their current states.

Previous work has focused on the robot reachability1 problem [10, 12]:

▶ Definition 2.1. For a gadget G, robot reachability for G is the following decision
problem. Given a system of gadgets consisting of copies of G, the starting location(s), and a
win location, is there a path a robot can take from the starting location to the win location?

Gadget reconfiguration, which had target states for the gadgets to be in, was considered in
[5] and [14]. We additionally investigate a problem where we have target states and multiple
locations which require specific numbers of robots.

▶ Definition 2.2. For a gadget G, the multi-robot targeted reconfiguration problem
for G is the following decision problem. Given a system of gadgets consisting of copies of G,
the starting location(s), and a target configuration of gadgets and robots, is there a sequence
of moves the robots can take to reach the target configuration?

[12] also defines 2-player and team analogues of this problem. In this case, each player has
their own starting and win locations, and the players take turns making a single transition
across a gadget (and any movement in the connection graph). The winner is the player who
reaches their win location first. The decision problem is whether a particular player or team
can force a win. When there are multiple robots, we are asking whether any of them can
reach the win location.

We will consider several specific classes of gadgets.

▶ Definition 2.3. A k-tunnel gadget has 2k locations, which are partitioned into k pairs
called tunnels, such that every transition is between two locations in the same tunnel.

Most of the gadgets we consider are k-tunnel.

1 In [10, 12], “reachability” refers to whether an agent/robot can reach a target location. Here we refer to
it as robot reachability since for models such as Petri-nets the Reachability problem refers to whether a
full configuration is reachable.
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▶ Definition 2.4. The state-transition graph of a gadget is the directed graph which has
a vertex for each state, and an edge S → S′ for each transition from state S to S′. A DAG
gadget is a gadget whose state-transition graph is acyclic.

DAG gadgets naturally lead to bounded problems, since they can be traversed a bounded
number of times. The complexity of the reachability problem for DAG k-tunnel gadgets, as
well as the 2-player and team games, is characterized in [12].

▶ Definition 2.5. A gadget is deterministic if every traversal can put it in only one state
and every location has at most 1 traversal from it. More precisely, its transition graph has
maximum out-degree 1.

▶ Definition 2.6. A gadget is reversible if every transition can be reversed. More precisely,
its transition graph is undirected.

Reversible deterministic gadgets are gadgets whose transition graphs are partial matchings,
and they naturally lead to unbounded problems. [12] characterizes the complexity of
reachability for reversible deterministic k-tunnel gadgets and partially characterizes the
complexity of the 2-player and team games.

We define the decision problems we consider in their corresponding sections.

3 0-Player Motion Planning with Spawners

In this section, we describe a model of 0-player motion planning, introduce the spawner
gadget, and show that 0-player motion planning with spawners is RE-complete, implying
undecidability. RE-completeness is defined in terms of arbitrary computable many-one
reductions; in particular, they don’t have to run in polynomial time. We will use the fact
that the halting problem for 3-counter machines is RE-complete [18].

3.1 Model
In 0-player directed-edge motion planning (with one robot), we modify 1-player motion
planning by removing the player’s ability to control the robot, and specifying directions on
the connections between gadget locations. More precisely, the connection graph is now a
directed graph such that each gadget location has only incoming edges (meaning that the
robot enters the gadget from that location), or only outgoing edges and at most one such
edge (meaning that the robot exits the gadget from that location); and all gadgets must be
deterministic.2 Thus the robot moves on its own, moving in the direction of the edge it is on
and traversing any gadgets it encounters. The reachability question asks whether the robot
reaches a specified target location in finite time.

Because the state of this system can be encoded in a polynomial number of bits (the
state for each gadget and the location of the robot), this reachability problem is in PSPACE
as in other 0-player models of the gadget framework [6, 11].

Our extension is to define the spawner gadget: a 1-location gadget that spawns a new
robot in each round, appearing at its only location. We now define 0-player directed-edge
motion planning to take into account multiple robots and spawners. 0-player directed-edge

2 There was no need to apply directions to the connection graph in [6] because each location acted
exclusively as either the start of transitions or the end of transitions. In [11] the connections were
undirected and it was assumed the robot proceeded away from the gadget where it just traversed.
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motion planning with spawners is divided into rounds. In each round, each robot takes a
turn in spawn order, and then each spawner spawns a robot (in a predefined spawning order).
A robot’s turn consists of it moving along the directed edge it is on until it either traverses a
gadget or it gets stuck (i.e., reaches a point where all edges are directed to its position). The
reachability question asks whether any robot reaches a specified target location in finite time.

▶ Lemma 3.1. Deciding robot reachability in 0-player directed-edge motion planning with
spawners with any set of gadgets is in RE.

Proof. After each step of the game, there will still be a finite, if increasing, number of robots.
Thus to confirm if at least 1 robot can reach the win location in finite time we can simply
simulate the game for the needed finite number of steps. ◀

3.2 RE-hardness
We show that deciding robot reachability in 0-player directed-edge motion planning with
spawners is RE-hard by reduction from the halting problem by simulating a 3-counter
machine. First we introduce the gadgets that we show RE-hard.

Increment gadget. The increment gadget is a 4-state 10-location gadget containing a
3-path lock branch and a 3-path path selector (Figure 1). When a robot traverses a path
in the path selector, it enables a single path in the lock branch and locks the path selector.
When a robot traverses a path in the lock branch, the gadget reverts to the original state.

1

=

Increment

2 3 4

1 1

1

2

3

4

Lock Branch

Path selector

Figure 1 The increment gadget, shown with state transitions.

Register gadget. The register gadget is a 3-state 10-location gadget containing a path
selector , a processing branch, and a response branch (Figure 2). When a robot traverses
the top path selector path, the path selector is locked and a path in the processing branch is
enabled. When a robot traverses the bottom path selector path, the path selector is locked
and the other processing branch path and a path in the response branch are enabled. If a
robot traverses any non-path-selector path, the gadget reverts to the original state.

UPDSDS gadget. For the following theorem, we will also use the UPDSDS gadget. This
gadget has two states “up” and “down”, a tunnel which sets the state to “up”, and two set-up
switches which each have one input and two outputs, where the output taken depends on
the state and traversing the switch sets the state to “down”’.

▶ Theorem 3.2. Deciding robot reachability for 0-player directed-edge motion planning with
spawners is RE-hard with the spawner, increment, register, and UPDSDS gadgets combined.
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1
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Path selector

Figure 2 The register gadget, shown with state transitions.

Proof. We reduce from the halting problem of the 3-counter machine with INC(r), DEC(r),
and JZ(r, z) instructions, which is undecidable ([18]). We will need to implement the INC(r)
(increment register r by 1), DEC(r) (decrement r by 1), and JZ(r, z) (jump to instruction z

if r is 0) instructions of a counter machine. We will not worry about decrementing a register
that is already 0, because all DEC instructions can be preceded by JZ to guard against that.
We will also implement the HALT instruction, which should result in a win.

First we implement a register , which will store a nonnegative integer, just like a register
in a counter machine. This, of course, uses the register gadget, and the implementation is
shown in Figure 3. In this implementation, the value of a register gadget is the number of
robots stuck at the entrance of the processing branch. If a robot b crosses the decrement
in path, a single robot can cross the gadget to the sink, where it is stuck forever, and all
other robots stuck at the entrance stay stuck. Robot b goes through the out path on its next
turn. This decrements the value of the gadget by 1, thus implementing DEC, taking 1 round
to process. If a robot b crosses the jump-zero in path, then if the gadget’s value is nonzero, a
single robot b′ crosses the top path of the processing branch, reverting the gadget’s state, and
forcing b to traverse the top path of the response branch on its next turn, which leads to the
out path. b′ gets stuck back at the entrance on its next turn. However, if the gadget’s value
is 0, then no robot will traverse the processing branch, which lets b traverse the bottom path
of the response branch on its next turn. This does not change the value of the gadget, and
changes the path of b iff the value is 0, thus implementing JZ, taking 2 rounds to process.

To implement INC, we need a place that robots can come from. For this, we have the
setup shown in Figure 4. This setup contains a spawner gadget. Spawned robots go through
the US gadget (a set-up switch, simulated by using one switch of the UPDSDS gadget and
flipping it) to the entrance of the lock branch of the increment gadget and get stuck. It takes
2 turns for this to happen. The first robot b to get spawned instead takes the bottom path
of the US gadget and executes the program. So during the 4th and later rounds, an extra
robot gets stuck at the increment gadget. When robot b goes through the increment ri in
path, a single robot b′ at the increment gadget traverses the lock branch, goes to the income
entrance of ri, and gets stuck at that register gadget’s processing branch on its next turn,
incrementing said register gadget’s value. In the process, the increment gadget reverts to its
original state. This implements INC, taking 2 rounds to process, and we only need to make
sure that b does not traverse the path selector of the increment gadget before the 4th round
to ensure that there will be a robot b′ that goes to a register.
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Income

Decrement in

Jump-Zero in

Jump-Zero success

Out

Sink
Value (number of robots stuck here)

Figure 3 Implementation of the register of a counter machine.

++

Execute Out

Increment r1 in

Increment r2 in

Increment r3 in

r1 income

r2 income

r3 income

Spawner

Figure 4 The context of the increment gadget, along with the spawner and a US gadget.

We also need to implement the program, and we use UPDSDS gadgets for that, as
shown in Figure 5. A UPDSDS-gadget instruction contains an execute in entrance, a pass in
entrance, a jump in entrance, a jump destination entrance, an execute out exit, an execute
next exit, a pass next exit, a jump next exit, and a jump out exit. Only the executor robot is
allowed to traverse this gadget.

The execute out exit leads to the proper location of the increment or register gadgets.
For an INC(r) instruction, it leads to the increment r in entrance of the increment gadget.
For a DEC(r) instruction, it leads to the decrement in entrance of the register gadget for
register r. For a JZ(r, z) instruction, it leads to the jump-zero in entrance of the register
gadget for register r. For a HALT instruction, it leads directly to the win location.

The execute next exit leads to the execute in entrance of the next instruction. The pass
next exit leads to the pass in entrance of the next instruction. The jump out exit leads
to the jump destination entrance of instruction z for a JZ(r, z) gadget, and doesn’t exist
otherwise. The jump next exit leads to the jump in entrance of the next instruction.

This reduction can be done in polynomial time with respect to the number of instructions,
because each instruction is simulated with 1 UPDSDS gadget, and there are a constant
number of constant-size gadgets other than these.
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zi zi+1

Execute in 

Pass in 
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Execute next 

Pass next 

Jump next 

Jump out Jump out 
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Figure 5 Two instructions implemented using UPDSDS gadgets.

We now describe the behavior of the entire simulation, with an example shown in Figure 6.
A robot spawns from the spawner.
The robot that spawned takes the bottom path of the US gadget, setting it to the up
state permanently. This robot is the executor robot. Another robot spawns from the
spawner.
The executor robot takes the top path of the UPDSDS gadget representing the first
instruction. The newly spawned robot crosses the US gadget. Another robot spawns
from the spawner.
If the executor robot is executing an INC instruction, it traverses the path selector of
the increment gadget. This is the 4th (or later) round, so there will be a robot ready to
traverse the lock branch of the increment gadget.
When the executor robot finishes executing an instruction that doesn’t lead to a jump, it
travels along the upper set-down switches of the UPDSDS gadgets until it finds the one
representing the instruction it was executing. It resets that gadget and executes the next
instruction, flipping the state of the next UPDSDS gadget.
If the instruction led to a jump instead, the executor robot travels along the lower set-
down switches of the UPDSDS gadgets until it finds the one representing the instruction
it was executing. It resets that gadget and takes the jump next path to the destination
UPDSDS gadget of the jump, then executes the corresponding instruction.
If the executor robot reaches the top path of the UPDSDS gadget representing the HALT
instruction, it goes to the win location.

So this simulates a 3-counter machine. So if the 3-counter machine halts, then a robot
will reach the win location in finite time, and vice versa. ◀

4 1-Player Motion Planning with Spawners and/or Destroyers

In this section, we investigate 1-player motion planning with multiple robots, where a single
player controls a set of robots, with the ability to separately command each, moving any one
robot at a time. There is no limit to the number of robots that can be at a given location.
We include a spawner gadget (as in Section 3) which the player can use to produce a new
robot at a specific location, providing an unlimited source of robots at that location. We
optionally also include a destroyer gadget, which deletes any robot that reaches a specified
sink location; such removal plays a role when we consider the targeted reconfiguration
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++ r0 r1

INC(r0) DEC(r0) JZ(r1, z1) HALT

Figure 6 A 2-counter machine constructed with the gadgets. 2 counters are shown instead of 3
to save space.

problem where the goal is to achieve an exact pattern of robots at the locations. If a system
of gadgets only has a single spawner gadget we call that gadget the source and if the system
only has a single destroyer gadget we call that the sink.

We show an equivalence between this 1-player motion planning problem and corresponding
problems on Petri nets. Through these connections, we establish EXPSPACE-completeness for
reachability; PSPACE-completeness for reconfiguration with a spawner; and ACKERMANN-
completeness for reconfiguration with a spawner and a destroyer.

4.1 Petri Nets
Petri nets are used to model distributed systems using tokens divided into dishes, and
rules which define possible interactions between dishes. This is a natural model since many
equivalent models have been defined such as Vector Addition Systems and Chemical Reaction
Networks.

▶ Definition 4.1. A Petri net {D, R} consists of a set of dishes D and rules R. A
configuration t is a vector over the elements of D which represents the number of tokens
in each dish. Each rule (u, v) ∈ R is a pair of vectors over D. A rule can be applied to
a configuration d0 if d0 − u contains no negative integers to change the configuration to
d1 = d0 − u + v. The volume of a configuration denoted |d| is the sum of all its elements.

▶ Definition 4.2. A reachable set for a Petri-net configuration, denoted REACHP ({D, R}, t),
is the set of configurations of a Petri net reachable starting in configuration t and applying
rules from R.

We can view a system of gadgets with multiple robots as a set of gadget states Γ and a
vector l indicating the counts of robots at each location. We can define the set of reachable
targeted configurations as REACH(Γ, l) similarity to Petri nets.
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A

B

C

Figure 7 General Petri-net rule (u, v), where u’s nonzero dishes are shown on the left side and
v’s nonzero dishes are shown on the right side.

4.2 Equivalence between Petri Nets and Gadgets

We present transformations that turn Petri nets into gadgets, and gadgets into Petri nets.
We use these simulations to prove the complexity of robot reachability and reconfiguration
with arbitrarily many robots.

Gadgets to Petri Nets. We can transform a set of gadgets into a Petri net where each
location, besides the source and sink, is represented as a robot dish. Each gadget besides
the spawner and destroyer is given a number of state dishes equal to its states, and each
transition of the gadget is represented by a rule. The set of dishes D is DST AT E ∪ DLOCT ,
the union of state and robot dish sets, respectively.

A configuration of robots and gadgets is represented by a Petri-net configuration t

satisfying the following:
Each k-state gadget is simulated by k unique dishes in DST AT E , one per state. The state
of the gadget is represented by a single token which is contained in the corresponding
dish, and the other k − 1 dishes are empty.
Each location in the system of gadgets is simulated by a unique dish in DLOCT . The
number of tokens in that dish is equal to the number of robots at that location.

A Petri net {D, R} simulates a system of gadgets G if for any configuration {Γ, l} of G

represented by Petri-net configuration t, each configuration in REACHG(Γ, I) is represented
by a configuration REACHP ({D, R}, t) and each configuration in REACHP ({D, R}, t)
represents a configuration in REACHG(Γ, I).

A B

1 2

C D

1 2

A B

1 2

C D

1 2

2

2

1

A B

C D

A B

C D

2
1

1

Figure 8 Petri-net rules which simulate a 2-tunnel toggle gadget.
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▶ Lemma 4.3. For any set of deterministic gadgets S, any system of multiple copies of
gadgets in S with a spawner (and optionally, a destroyer) can be simulated by a Petri net.

Proof. We first explain how to create the rules for gadgets that are not connected to the
source or sink locations. Each gadget transition will be represented by a unique rule. For
example the 2-tunnel toggle gadget is shown in Figure 8 and has four transitions. It can be
traversed:

from A to B in state 1,
from C to D in state 1,
from B to A in state 2, and
from D to C in state 2.

The four corresponding rules for the gadget are drawn in Figure 8 as well. Each rule
takes in one token from a robot dish and one from a state dish, and places one token in a
robot dish and one in a state dish. The token being moved between robot dishes models
moving one robot across a gadget, and the token being moved between state dishes models
the state change of the gadget.

If a gadget is connected to the source, any transition from the source is represented by a
rule that only takes in a state token, producing two tokens. One token is output to a location
dish and one to a state dish. If a transition is connected to the sink then the rule takes in
two tokens and outputs only a state token. These special cases are shown in Figure 9. Note
that we do not have an actual dish for the source so the player may spawn multiple robots
at the source but they do not appear in the simulation until they traverse a gadget.

B

1 2

A

1 2

A B

C D

A B

C D

-+

Figure 9 Left: Rule we include when a gadget can be traversed from the source. Right: Rule we
include when a traversal leads to the sink.

For each configuration of a system of gadgets, there exists a configuration of the Petri
net with dishes that represent the gadgets and locations. Each rule of the Petri net acts
as a traversal of a robot changing the state of a gadget. The rules need the gadgets state
token to be in the correct dish, and a robot token in the location dish representing the start
traversal. ◀

Petri Nets to Gadgets. We simulate a Petri net with symmetric self-closing doors using a
location for each dish, where each rule is represented by multiple gadgets. We also have a
single control robot which starts in a location we call the control room. The other robots
are token robots which represent the tokens in each dish. At a high level, our simulation
works by “consuming” the input tokens to a rule to open a series of tunnels for the control
robot to traverse. The control robot then opens a gadget for each output to allow token
robots to traverse into their new dishes. We use the source and sink to increase and decrease
rules as needed. Figure 11 gives an overview.
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2

1

A B

C D 1

2

A B

C D

Figure 10 Symmetric self-closing door.

Symmetric self-closing door. The symmetric self-closing door is a 2-state 2-tunnel
gadget shown in Figure 10. The states are {1, 2} and the traversals are

in state 1 from A to B changing state to 2, and
in state 2 from C to D changing state to 1.

Control Room Control Room

A C

B D

E

A

B

D

C

E

Control Room

-

+

Control Room

A C

B

A

B

C

Figure 11 How to simulate a rule which decreases volume (Left) and a rule which increases
volume (Right).

Using this simulation we prove two problems in Petri-nets are polynomial time reducible
to the gadgets problems we are interested in. [13] lists many problems including the ones we
describe here3. First is production, this problem asks given a Petri-net configuration and a
target dish, does there exist a reachable configuration which contains at least one token in
the target dish. Configuration reachability asks given an initial and target configuration, is
the target reachable from the initial configuration.

▶ Lemma 4.4. Production in Petri nets is polynomial time reducible to robot reachability
with the symmetric self-closing door and a spawner. Configuration reachability in Petri
nets is polynomial-time reducible to multi-robot targeted reconfiguration with the symmetric
self-closing door and a spawner.

Proof. For a rule (a, b) we include |a| + |b| copies of the gadgets. There is a gadget for each
input to the rule; these gadgets can be traversed from the location representing an input dish
to an intermediate location, opening another tunnel for the control robot to traverse. The
control robot must traverse all the input gadgets the goes through the tunnels of the output
gadgets. The control robot opens the doors of these gadgets allowing the robots moving
from an intermediate wire to traverse to a location representing the output dishes.

If a rule would increase the volume, the surplus output gadgets will allow traversal from
the spawn location instead of an input gadget. If a rule decreases the volume, then the
surplus input gadgets send robots to a “sink” location instead of an output gadget. We do

3 Problems names may differ.
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not require a true sink in this case because we can add an extra location which robots can be
held instead of being deleted. If we do not connect this location to any other gadget, then
the robots can never leave and can be thought of as having left the system.

Production reduces to robot reachability since a robot can reach a location if and only if
a token can reach the corresponding dish. If token is placed in a dish, it must have moved
through a rule gadget. The robot can only move through a rule gadget if the number of
robots in the dishes are at least the number of tokens of the left hand side of the rules to
open the tunnels for the control robot to move through.

Configuration reachability in Petri nets reduces to multi-robot targeted reconfiguration.
The target and initial states of the gadgets are the same. The only difference between the
initial configuration and the target is the number of robots at each location, equal to the
counts in the instance of Configuration reachability for Petri nets. The number of robots at
each location is equal to the number of tokens in each dish. The targets for each intermediate
wire is 0 and in the control room 1. Thus, it is never beneficial to partially traverse a rule
gadget. ◀

4.3 Complexity of Reachability

The reachability problem for a single robot is very similar to the well-studied problem in
Petri nets called coverage. The input to the coverage problem is a Petri net and a vector of
required token amounts in each dish, and the output is yes if and only if there exists a rule
application sequence to reach a configuration with at least the required number of tokens in
each dish.

▶ Definition 4.5 (Coverage Problem). Input: A Petri net {D, R}, and vectors d0 and dc.
Output: Does there exist a reachable configuration d ∈ REACH({D, R}, d0) such that

d[k] ≥ dc[k] for all 0 ≤ k < |D|.

▶ Theorem 4.6. Robot reachability is EXPSPACE-complete with symmetric self-closing
doors, a spawner, and optionally a destroyer.

Proof. We can solve robot reachability by converting the system of gadgets to a Petri net
which simulates it as in Lemma 4.3. In this simulation, a token can be placed in a location
dish if and only if a robot can reach that location represented by that dish. Determining if
a single token can be placed in a target dish, the production problem, is a special case of
coverage problem where the target dish is labeled with 1 and all others labeled with 0. We
can use the exponential-space algorithm for Petri-net coverage shown in [19] to solve robot
reachability. When simulating the sink we require rules that decrease the volume of a Petri
net. This algorithm works for general Petri nets so it implies membership with a sink.

For hardness, we first reduce Petri-net coverage to Petri-net production by adding a
target dish T starting with 0 tokens and a new rule. This rule takes as input the number of
tokens equal to the goal of the coverage problem and produces one token to the t dish. This
token can only produced if the reach a configuration that has at least the target number of
each species. We then use Lemma 4.4 to reduce production to robot reachability with the
self-closing symmetric door and a spawner. It is relevant to note the first reduction does not
work when exactly the target numbers are required. The reduction works even when not
allowing the sink as described in Lemma 4.4. ◀
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4.4 Complexity of Reconfiguration

The reconfiguration problem has been studied in the single-robot case as the problem of
moving the robot through the system of gadgets so that each gadget is in a desired final
state. Targeted reconfiguration not only asked about the final states of the gadgets, but the
location of the robot as well. Here, we study multi-robot targeted reconfiguration which
requires both that all gadgets are in specified final states and that each location contains a
target number of robots.

▶ Definition 4.7. For a gadget G, the multi-robot targeted reconfiguration problem
for G is the following decision problem. Given a system of gadgets consisting of copies of G

and the starting location(s) a target configuration of gadgets and robots, is there a sequence
of moves the robots can take to reach the target configuration?

The complexity of multi-robot targeted reconfiguration depends on whether we allow a
destroyer. If we do not allow for a destroyer, the complexity is bounded by polynomial space
since we can never have more robots than the total target size. If we allow for the ability to
destroy robots, then the reconfiguration problem is the same as the configuration reachability
problem in Petri nets from our relations between the models above. This is a fundamental
problem about Petri nets and was only recently shown to be ACKERMANN-complete [15, 9].

▶ Theorem 4.8. Multi-robot targeted reconfiguration is ACKERMANN-complete with sym-
metric self-closing doors, a spawner, and a destroyer.

Proof. For membership we can solve multi-robot target reconfiguration by converting the
gadgets to the Petri net using Lemma 4.3. The target configuration is a state token for each
gadget in the dish of its target state, and a number of tokens in each location dish as the
number of robots in the target configuration. We can then call the ACKERMANN algorithm
for configuration reachability in Petri nets shown in [16].

For hardness we can reduce from configuration reachability. It was shown in [9] that
configuration reachability is ACKERMANN-hard. ◀

The reduction presented in [9] vitally uses the ability of Petri nets to delete tokens, so
we must use a sink in our simulation. Without a sink, we have PSPACE-completeness for
multi-robot targeted reconfiguration.

▶ Theorem 4.9. Multi-robot targeted reconfiguration for symmetric self-closing doors and a
spawner is PSPACE-complete.

Proof. Consider the input to the reconfiguration problem: two configurations of a system of
gadgets. Namely, the start and end state of all the gadgets, and a start and end integer for
each location. Since we can never destroy a robot once it is spawned, it always exists, so the
player cannot spawn more robots than the total number of robots in the target configuration.
We can then solve this problem in NPSPACE by nondeterministically selecting a robot to
move, either from the source or another location. If we ever increase the total number of
robots above the target we may reject. If we ever reach the configuration with the correct
gadget states and robots at each location accept. Since PSPACE = NPSPACE we get
membership.

We inherit hardness from the 1-player single-robot case by not including the source or
connecting it to an unreachable location. ◀
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5 Impartial Unbounded 2-Player Motion Planning

In this section, we describe the 2-player impartial motion planning game and show that it is
EXPTIME-complete for any reversible deterministic gadget.

5.1 Model
In the 2-player impartial motion planning game, two players control the same robot
in a system of gadgets. Player 1 moves first, then Player 2 moves, then play repeats. On a
given player’s turn, they move the robot arbitrarily along the connection graph and through
exactly one transition of a gadget. There is also a ko rule: The robot cannot traverse the
same gadget on a player’s turn as it traversed on their opponent’s previous turn. If a player
cannot make the robot traverse a gadget without breaking the ko rule, that player loses and
the other player wins.

▶ Lemma 5.1. Deciding whether Player 1 has a deterministic winning strategy in the 2-player
impartial motion planning game is in EXPTIME for any set of gadgets.

Proof. An alternating Turing machine can solve the problem by using existential states to
guess Player 1’s moves and universal states to guess Player 2’s moves, accepting when Player
1 wins and rejecting when Player 2 wins. This takes only polynomial space because the
configuration of the game can be described in polynomial space. The machine can reject after
a number of turns at least the number of configurations, which is at most exponential and thus
can be counted to in polynomial space. Hence the problem is in APSPACE = EXPTIME. ◀

5.2 Hardness
We introduce the locking 2-toggle, introduced in [12] and shown in Figure 12. States 1 and
3 are leaf states and state 2 is the nonleaf state. If a robot crosses a tunnel in state 2,
the tunnel flips direction and the other tunnel locks. Crossing a tunnel again will reverse
this effect.

2
3

1 2 3

1
2

Figure 12 The locking 2-toggle.

▶ Theorem 5.2. Deciding whether Player 1 has a deterministic winning strategy in the
2-player impartial motion planning game is EXPTIME-hard for the locking 2-toggle.

Proof. We reduce from G4 as defined in [20]. G4 is a 2-player game involving Boolean
variables where the players flip a variable on their turn and try to be the one to satisfy a
common DNF Boolean formula with 13 variables per clause (a 13-DNF). Players have their
own variables and can’t flip their opponent’s variables, and a player may flip 1 variable on
their turn or pass their turn. There is no ko rule.

We start the robot next to a 1-toggle (a single tunnel of a locking 2-toggle) as shown in
Figure 13. This 1-toggle is called the alternator . On each side of the alternator is a variable
system for each player, which consists of variable branching and variable setting loops. The
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variable branching, as shown in Figure 14, has 2 locking 2-toggles before each branch.
These start in the nonleaf state. At the end of each path is a variable flipping loop, which
is shown in 15. The variable flipping loop for variable v contains 2 locking 2-toggles per
instance of v or ¬v in the 13-DNF formula of the G4 instance, as well as an path to the
13-DNF checker with 2 1-toggles on it. The locking 2-toggles representing v start in the
nonleaf state iff v starts True in G4, and the locking 2-toggles representing ¬x start in the
leaf state iff x starts True in G4. One path of the variable branch, on the other hand, leads
to a pass loop, which is a variable flipping loop with 2 1-toggles in the loop instead of the
locking 2-toggles. The 13-DNF checker contains a path for each clause in the 13-DNF, and
each path contains a locking 2-toggle representing v, the same as one of the locking 2-toggles
representing v in the variable flipping loop of v, followed by a 1-toggle, for each variable v in
the corresponding clause. The paths all lead to a final 1-toggle called the finish line. This
reduction can be done in polynomial time, as each variable and clause in G4 is converted to
a polynomial number of constant-size gadgets.

Start
To P1 variables

To P1 variablesTo P2 variables

To P2 variables

Figure 13 The robot’s starting position, and the 1-toggle that’s called the alternator.

To P1 variable x

To P1 variable y

To P1 variable z

To P1 pass loop

To alternator

Figure 14 The variable branching for Player 1. Player 2’s variable branching is on the other side
of the alternator. In this example, player 1 has 3 variables: x, y, and z.

x x ¬x ¬x

To P1 variable branch

To 13DNF checker

Paths in the 13DNF checker

Figure 15 The variable flipping loop for variable x. This example represents the case where the
13-DNF has 1 instance of x and 1 instance of ¬x. Currently, x is True.
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To variable flipping loops and pass loops

y

z

x ¬x ¬x

w

z¬w

¬w

Figure 16 A 13-DNF checker, except that it represents a 3-DNF. This example represents
(y ∨ z ∨ x) ∧ (¬w ∨ ¬w ∨ ¬x) ∧ (z ∨ w ∨ ¬x). The dotted paths are part of variable setting loops.

During intended play:

Player 1 moves the robot through variable branching to select a variable to set. Because
the locking 2-toggles are doubled, and because of the ko rule, Player 2 has no choice but
to second Player 1’s choices. Player 1 could also move the robot to the pass loop.
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Player 1 moves the robot around a variable selection loop, a variable by flipping whether
each locking 2-toggle is locked or not. If they’re in the pass loop, they just go around the
loop. Again, Player 2 has no choice since the number of gadgets in the path is even.
Player 1 either moves the robot to the 13-DNF checker or back through the variable
branching to the alternator.
If Player 1 moves it back, they make it cross the alternator, and Player 2 goes through
the same steps, but on the other side of the alternator.
If a player moves the robot to the 13-DNF checker, they pick a path. If that path’s
corresponding clause in the 13-DNF is currently satisfied, they cross the finish line and
win, since their opponent then has no legal moves. Otherwise, they get blocked by the
first variable set to False, making their opponent win.

So Player 1 has the initiative and takes a G4 turn on one side of the alternator, and Player 2
has the initiative and takes a G4 turn on the other side. It is correct for a player to move
the robot to the 13-DNF checker iff the 13-DNF is currently satisfied.

We will now look at ways that the players can try to break the simulation of G4:
Player 1 can make the robot cross the alternator as their first move. However, this lets
Player 2 flip a variable or pass first. If Player 1 can win this way, they can also win by
passing (moving the robot around the pass loop) first and then giving the initiative to
Player 2. So not crossing the alternator first is always a correct move.
A player can move the robot to a variable flipping loop and cut to the 13-DNF checker.
However, if the player can win this way, they can win by passing and moving the robot
to the 13-DNF checker.
A player can try to turn around and flip another variable on the way back to the alternator.
However, the ko rule prevents this.
A player can try to move the robot to some other variable flipping loop from the start of
the 13-DNF checker. However, 1-toggles will block the way.

Thus, the players are effectively forced to play G4 in this game. Therefore, if Player 1 has a
deterministic winning strategy in the G4 instance, then they have one in this game, and if
Player 1 has a deterministic winning strategy in this game, then they have one in the G4
instance as well. ◀

▶ Theorem 5.3. Deciding whether Player 1 has a deterministic winning strategy in the
2-player impartial motion planning game is EXPTIME-hard for any interacting k-tunnel
reversible deterministic gadget.

Proof. Figure 17 shows two tunnels that any interacting k-tunnel reversible deterministic
gadget must have, as proved in [12, Section 2.1], which further shows that these tunnels can
be used to simulate a locking 2-toggle. For 2-player impartial motion planning, however, we
must be careful of the simulation. To preserve parity, each traversal in the locking 2-toggle
must correspond to an odd number of traversals in the simulation. In addition, if a traversal
is not allowed, it must be blocked after an even number of traversals so the player who
started moving the robot along that path loses. And to simulate the gadget ko rule, the
gadgets at the ends of the simulation must be in the way of both paths. If all the constraints
are met, then if a player makes the robot start a traversal along the simulation, the players
must follow through, and in the end, it will be said player’s opponent’s turn. The opponent
would have to make the robot traverse a gadget not in the simulation. Players would be
disincentivized to start a traversal along a closed path, because they will be the one stuck
with no legal moves. So the simulation would act exactly like a locking 2-toggle in the
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above reduction, giving us a straightforward reduction 2-player impartial motion planning
with locking 2-toggles to 2-player impartial motion planning with any interacting k-tunnel
reversible deterministic gadget.

2

3

1 2
1 ?

?

?

?

Figure 17 Two tunnels that an interacting k-tunnel reversible deterministic gadget must have.
Solid arrows indicate open traversals, hollow arrows with ‘?’ indicate optionally open traversals, and
absent arrows indicate closed traversals. State 3 could be any state, including 1 and 2.

First we simulate a 1-tunnel reversible deterministic gadget with a directed tunnel, as
shown in Figure 18. The robot cannot cross from right to left. If it crosses from left to right,
it may cross back (after traversing some other gadget, of course), and the path from left to
right may optionally still be open, this time leading to whatever state. Note that it takes
two traversals to cross the simulation, and that a closed path in state 1 of the gadget used in
the simulation blocks the robot after 0 traversals.

?
2

?
2

1
?

2
1=

Figure 18 Simulation of a 1-tunnel reversible deterministic gadget with a directed tunnel. We
draw double bars crossing the 1-tunnel gadget as a reminder that it takes two traversals to cross.

Now we simulate the locking 2-toggle, as shown in Figure 19. The simulation currently
simulates the locking 2-toggle in the nonleaf state. The robot can traverse from top right to
top left or from bottom left to bottom right. The robot will get blocked after two traversals
in an attempt to traverse from top left to top right or from bottom right to bottom left. If
the robot traverses from top right to top left, the robot will be able to traverse from top left
to top right (after traversing a different gadget). But an attempt to traverse from bottom
left to bottom right gets the robot blocked after 0 traversals, thanks to the tunnel interaction
in the left gadget, and an attempt to traverse from bottom right to bottom left or from top
right to top left gets blocked after two traversals. So this would simulate a leaf state of the
locking 2-toggle. The center gadget never becomes relevant for blocking, so we can argue by
symmetry that traversing from bottom left to bottom right results in the other leaf state.
Note that each path takes nine traversals to cross, so we have successfully simulated the
locking 2-toggle meeting the constraints. This completes the proof. ◀
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Figure 19 Simulation of the locking 2-toggle, under the constraints.
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By Lemma 5.1 and Theorem 5.3, it is EXPTIME-complete to determine whether Player
1 has a deterministic winning strategy in the 2-player impartial motion planning game with
any interacting k-tunnel reversible deterministic gadget.

6 Open Problems

For 0-player motion planning, we leave as an open problem whether the finite-time reachability
problem is undecidable for a smaller set of gadgets. In particular, we used gadgets that can
separate one robot from the rest when they are all stuck at the same spot. Is the problem
undecidable for gadgets without this ability? What about classes of gadgets that have already
been studied such as self-closing doors or reversible, deterministic gadgets?

In the 0-player model with spawners we investigated a synchronous model for the robots
where they all took turns making their moves. One could imagine asking about various
asynchronous models of robot motion through the gadgets.

For 1-player multi-agent motion planning, we investigated robot reachability and multi-
agent targeted reconfiguration. The hardness for both these problems relies on simulating
Petri nets with a symmetric self-closing door. Do there exist reversible gadgets for which the
problem is the same complexity? How does this relate to reversible Petri nets?

We also did not investigate spawners in the 2-player setting. It seems likely that this
problems is Undecideable for many gadget; however, the 0-player and 1-player constructions
do not obviously adapt to give this result.

Finally, in the 2-player impartial case, does the complexity change for other gadgets? Are
there any gadgets for which finding a winning strategy is provably easier? What about cases
where the impartial game is harder than the regular 2-player game?
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We develop a framework for self-induced phase changes in programmable matter in which a collection
of agents with limited computational and communication capabilities can collectively perform
appropriate global tasks in response to local stimuli that dynamically appear and disappear. Agents
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are present and an Unaware state when the stimuli disappear. We present an Adaptive Stimuli
Algorithm that is robust to competing waves of messages as multiple stimuli change, possibly
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change and switch to a search phase in which they distribute themselves randomly throughout the
lattice region to search for food. Unlike previous approaches to foraging, this process is indefinitely
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a physical phase change, microscopic changes such as the deletion or addition of a single food
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6:2 Adaptive Collective Responses to Local Stimuli in Anonymous Dynamic Networks

1 Introduction

Self-organizing collective behavior of interacting agents is a fundamental, nearly ubiquitous
phenomenon across fields, reliably producing rich and complex coordination. In nature,
examples at the micro- and nano-scales include coordinating cells, including our own immune
system or self-repairing tissue (e.g., [1]), and bacterial colonies (e.g., [26, 31]); at the
macro-scale it can represent flocks of birds [7], shoals of fish aggregating to intimidate
predators [27], fire ants forming rafts to survive floods [29], and human societal dynamics
such as segregation [34]. Common characteristic of these disparate systems is that they are
all self-actuated and respond to simple, local environmental stimuli to collectively change
the ensemble’s behavior.

In 1991, Toffoli and Margolus coined programmable matter to realize a physical computing
medium composed of simple, homogeneous entities that can dynamically alter its physical
properties in a programmable fashion, controlled either by user input or its own autonomous
sensing of its environment [36]. There are formidable challenges to realizing such collective
tasks and many researchers in distributed computing and swarm and modular robotics have
investigated how such small, simply programmed entities can coordinate to solve complex
tasks and exhibit useful emergent collective behavior (e.g., [32]). A more ambitious goal,
suggested by self-organizing collective systems in nature, is to design programmable matter
systems of self-actuated individuals that autonomously respond to continuous, local changes
in their environment.

The Dynamic Stimuli Problem. As a distributed framework for agents collectively self-
organizing in response to changing stimuli, we consider the dynamic stimuli problem in
which we have a large number of agents that collectively respond to local signals or stimuli.
These agents have limited computational capabilities and each only communicates with a
small set of immediate neighbors. We represent these agents via a dynamic graph G on n

vertices, where the agents reside at the vertices and edges represent pairs that can perceive
and interact with each other. At arbitrary points of time, that may be adversarially chosen,
stimuli dynamically appear and disappear at the vertices of G – these can be a threat, such
as an unexpected predator, or an opportunity, such as new food or energy resources.

An agent present at the same vertex as a stimulus acts as a witness and alerts other
agents. If any agent continues to witness some stimulus over an extended period of time,
we want all agents to eventually be alerted, switching to the Aware state; on the other
hand, once witnesses stop sensing a stimulus for long enough, all agents should return to
the Unaware state. Such collective state changes may repeat indefinitely as stimuli appear
and disappear over time. Converging to these two global states enables agents to carry
out differing behaviors in the presence or absence of stimuli, as observed by the respective
witnesses. As a notable and challenging example, in the foraging problem, “food” may appear
or disappear at arbitrary locations in the graph over time and we would like the collective
to gather around food (also known as dynamic free aggregation) or disperse in search of
new sources, depending on the whether or not an active food source has been identified.
Cannon et al. [5] showed how computationally limited agents can be made to gather or
disperse; however there the desired goal, aggregation or dispersion, is fixed in advance and
the algorithm cannot easily be adapted to move between these according to changing needs.

In addition to the stimuli dynamics, we assume that the agents may reconfigure the
connections (edges) of the graph G over time, but in a controlled way that still allows the
agents to successfully manage the waves of state changes. In a nutshell, G is reconfigurable
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over time if it maintains recurring local connectivity of the Aware agents (i.e., if it makes
sure that the 1-hop neighborhood sets of Aware agents stay connected over time), as its
edge set changes. The edge dynamics may be fully in the control of an adversary, or may be
controlled by the agents themselves, depending on the context (e.g., in the foraging problem
presented in Section 5, the agents control the edge dynamics).

In this framework, we assume that at all times there are at most a constant number w

of stimuli present at the vertices of G. Agents are anonymous and each acts as a finite
automaton with constant-size memory, constant degree, and no access to global information
other than w and a constant upper bound ∆ on the maximum degree. Individual agents
are activated according to their own Poisson clocks and perform instantaneous actions upon
activation, a standard way to allow sites to update independently and asynchronously (since
the probability two Poisson clocks tick at the exact same instant in time is negligible). For
ease of discussion, we may assume the Poisson clocks have the same rate, so this model is
equivalent to a random sequential scheduler that chooses an agent uniformly at random to
be activated at discrete iterations t ∈ {1, 2, 3, . . .}. We denote by Gt the configuration of
the reconfigurable graph at iteration t. When activated at iteration t, an agent perceives
its own state and the states of its current neighbors in Gt, performs a bounded amount of
computation, and can change its own and its neighbors states, including any “tokens” (i.e.,
constant size messages received or sent).1 At each iteration t ∈ {1, 2, 3, . . .}, we denote by
Wt ⊆ V the set of witnesses. The sets Wt can change arbitrarily (adversarially) over time,
but |Wt| is always bounded by the constant w, for all t, since w is an upper on the number
of concurrent stimuli.

Overview of Results. Our contributions are two-fold. First, we present an efficient, robust
algorithm for the dynamic stimuli problem for a class of reconfigurable graphs. (The precise
details of what constitutes a valid reconfigurable graph will be given in Section 4.) Whenever
an agent encounters a new stimulus, the entire collective efficiently transforms to the Aware
state, so the agents can implement an appropriate collective response. After a stimulus
vanishes, they all return to the Unaware state, recovering their neutral collective behavior.

We show that the system will always converge to the appropriate state (i.e., Aware or
Unaware) once the stimuli stabilize for a sufficient period of time. Specifically, if there are
no witnesses in the system for a sufficient period of time, then all agents in the Adaptive
Stimuli Algorithm will reach and remain in the Unaware state in O(n2) expected time
(Theorem 14). Likewise, if the set of witnesses (and stimuli) remains unchanged for a sufficient
period of time, all agents will reach and remain in the Aware state in expected time that is
a polynomial in n and the “recurring rate” of G, which captures how frequently disconnected
vertices come back in contact with each other (Theorem 15). In particular, if G is static or if
Gt is connected, for all t, the expected convergence time until all agents transition to the
Aware state is O(n5) (Theorem 4) and O(n6 log n) (Corollary 16), respectively. Moreover,
the system can recover if the witness set changes before the system converges to the Aware
or Unaware states.

While the arguments are simpler for sequences of connected graphs generated by, say,
an oblivious adversary, the extension to the broader class of reconfigurable graphs includes
graphs possibly given by non-oblivious adversaries that may occasionally disconnect. This

1 Since we assume a sequential scheduler, such an action is justified; in the presence of a stronger
adversarial scheduler, e.g., the asynchronous scheduler, one would need a more detailed message passing
mechanism to ensure the transfer of tokens between agents, and resulting changes in their states.
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generalization provides more flexibility for agents in the Aware and Unaware states to
implement more complex behaviors, as was used for applying the Adaptive Stimuli Algorithm
to foraging, which we describe next.

Our second main contribution is the first efficient algorithm for the foraging problem,
where food dynamically appears and disappears over time at arbitrary sites on a finite√

N ×
√

N region of the triangular lattice. Agents want to gather around any discovered
food source (also known as dynamic free aggregation) or disperse in search of food. The
algorithm of Cannon et al. [5, 25] uses insights from the high and low temperature phases
of the ferromagnetic Ising model from statistical physics to provably achieve either desired
collective response: there is a preset global parameter λ related to inverse temperature,
and the algorithm provably achieves aggregation when λ is sufficiently high and dispersion
when sufficiently low. We show here that by applying the Adaptive Stimuli Algorithm, the
phase change (or bifurcation) for aggregation and dispersion can be self-modulated based on
local environmental cues that are communicated through the collective to induce desirable
system-wide behaviors in polynomial time in n and N , as stated in Theorems 23 and 24.

Collectively transitioning between Aware and Unaware states enables agents to correctly
self-regulate system-wide adjustments in their bias parameters when one or more agents
notice the presence or depletion of food to induce the appropriate global coordination to
provably transition the collective between macro-modes when required. We believe other
collective behaviors exhibiting emergent bifurcations, including separation/integration [4]
and alignment/nonalignment [22], can be similarly self-modulated.

The distinction between polynomial and super-polynomial running times is significant
here because our algorithms necessarily make use of competing broadcast waves to propagate
commands to change states. A naive implementation of such a broadcast system may put us
in situations where neither type of wave gets to complete its propagation cycle. This may
continue for an unknown amount of time, so the agents may fail to reach an agreement on
their state. The carefully engineered token passing mechanism ensures that when a stimulus
has been removed, the rate at which the agents “reset” to the Unaware state outpaces the
rate at which the cluster of Aware agents may continue to grow, ensuring that the newer
broadcast wave always supersedes previous ones and completes in expected polynomial time.
Moreover, while a stimulus is present, there is a continuous probabilistic generation of tokens
that move according to a dmax-random walk among Aware agents until they find a new
agent to become Aware, thus ensuring the successful convergence to the Aware state in
expected polynomial time.

Related work. Dynamic networks have been of growing interest recently and have spawned
several model variants (see, e.g., the surveys in [6] and [24]). There is also a vast literature on
broadcasting, or information dissemination, in both static and dynamic networks (e.g., [23,
20, 8, 15, 14]), where one would like to disseminate k messages to all nodes of a graph G,
usually with unique token ids and k ≤ n, polylog memory at the nodes (which may also have
unique ids), and often nodes’ knowledge of k and possibly also of n. Note that any of these
assumptions violates our agents’ memory or computational capabilities. Moreover, since our
collective state-changing process runs indefinitely, any naive adaptations of these algorithms
would need that k → ∞ to ensure that with any sequence of broadcast waves, the latest
always wins.

Broadcast algorithms that do not explicitly keep any information on k (number of tokens
or broadcast waves) or n would be more amenable to our agents. Amnesiac flooding is one
such broadcast algorithm that works on a network of anonymous nodes without keeping any
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Figure 1 Illustration of how the presence of
a witness (circled in red) gradually converts all
agents to the Aware state through the distribu-
tion of alert tokens. The agent with the “×” is
the agent activated in that step.

1.

A{W }

A∅

A∅

A∅

2.

U

× A{C}

A∅

A{C}

3.

U

U

×

A{C}

A{C}

4.

U

U

U

×

A{C}

5.

U

U

U

U

×

Figure 2 Illustration of how all-clear tokens
are broadcast from an agent with the witness
flag set that is no longer a witness (the leftmost
agent). The agent with the “×” is the agent
activated in that step.

state or other information as the broadcast progresses. In [21], Hussak and Trehan show
that amnesiac flooding will always terminate in a static network under synchronous message
passing, but may fail on a dynamic network or with non-synchronous executions.

Many studies in self-actuated systems take inspiration from emergent behavior in social
insects, but either lack rigorous mathematical foundations explaining the generality and
limitations as sizes scale (see, e.g., [19, 18, 9, 38]), often approaching the thermodynamic
limits of computing [37] and power [10], or rely on long-range signaling, such as microphones
or line-of-sight sensors [35, 16, 17, 30]. Some recent work on stochastic approaches modeled
after systems from particle physics has been made rigorous, but only when a single, static
goal is desired [5, 4, 25, 2, 33, 22].

2 The Adaptive Stimuli Algorithm

The Adaptive Stimuli Algorithm is designed to efficiently respond to dynamic local stimuli
that indefinitely appear and disappear at the vertices of G. Recall the goal of this algorithm
is to allow the collective to converge to the Aware state whenever a stimulus is witnessed
for long enough and to the Unaware state if no stimulus has been detected recently. The
algorithm converges in expected polynomial time in both scenarios under a reconfigurable
dynamic setting, as we show in Sections 3-4, even as the process repeats indefinitely.

All agents know two parameters of the system: ∆ ≥ 1, an upper bound on the maximum
degree of the graph, and w ≥ 1, an upper bound on the size of the witness sets Wt at all
times t (which is needed to determine the probability p < 1/w for some agents to change
states or generate certain tokens). Our algorithm defines a carefully balanced token passing
mechanism, where a token is a constant-size piece of information: Upon activation, an Aware
witness u continuously generates alert tokens one at a time, with probability p, which will
each move through a random walk over Aware agents until they come in contact with a
neighboring Unaware agent u: The token is then consumed and u changes its state to
Aware (Figure 1). On the other hand, if a witness notices that its co-located stimulus has
disappeared, it will initiate an all-clear token broadcast wave which will proceed through
agents in the Aware state, switching those to Unaware (Figure 2).
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6:6 Adaptive Collective Responses to Local Stimuli in Anonymous Dynamic Networks

Algorithm 1 Adaptive Stimuli Algorithm.

1: procedure The Adaptive-Stimuli-Algorithm(u)
2: Let p < 1/w ∈ (0, 1)
3: u.isWitness←True if u is a witness, else u.isWitness←False
4: if u.isWitness and u.state ̸∈ {A{W },A{A,W }} then
5: With probability p, u.state← A{W } ▷ u becomes Aware witness with prob. p

6: else if ¬u.isWitness and u.state ∈ {A{W },A{A,W }} then ▷ stimulus no longer at u

7: for each v ∈ NA(u) do ▷ NA(u) = current Aware neighbors of u

8: v.state← A{C} ▷ all-clear token broadcast to Aware neighbors of u

9: u.state← U
10: else
11: switch u.state do
12: case U :
13: if ∃v ∈ NA(u), v.state = AS ∈ {A{A},A{A,W }} then ▷ v has alert token
14: v.state← AS\{A} ▷ v consumes alert token
15: u.state← A∅ ▷ u becomes aware
16: case A{A} or A{A,W }:
17: x← random value in [0, 1]
18: if x ≤ dG(u)/∆ then ▷ dmax-random walk
19: v ← random neighbor of u

20: if v.state = AS′ ∈ {A∅,A{W }} then ▷ Aware state, no alert token
21: Let u.state = AS ; u.state← AS\{A} ▷ u sends alert token to v

22: v.state← AS′∪{A} ▷ v receives alert token
23: case A{W }:
24: With probability p, u.state← A{A,W } ▷ generate alert token with prob. p

25: case A{C}:
26: for each v ∈ NA(u) do
27: v.state← A{C} ▷ u broadcasts all-clear token to all aware neighbors
28: u.state← U

The differences between these two carefully crafted token passing mechanisms allow us to
ensure that whenever there has been no stimulus in the network for long enough, the rate at
which the agents deterministically learn this (through broadcasts of all-clear tokens) and
become Unaware always outpaces the probabilistic rate at which the cluster of Aware
agents may still continue to grow. Thus, the Unaware broadcast wave will always outpace
any residual Aware waves in the system and will allow the collective to correctly converge to
the desired Unaware state. On the other hand, if the witness set is non-empty and remains
stable for a long enough period of time, all agents will eventually switch to the Aware state
since, after some time, there will be no all-clear tokens in G, as Unaware agents do not
ever generate or broadcast tokens.
To define the Adaptive Stimuli Algorithm, we utilize the following flags and states:

Alert token flag (A): used to indicate that an agent has an alert token.
All-clear token flag (C): used to indicate that the agent has an all-clear token.
Witness flag (W ): used to indicate that the agent is a witness.
States: The Unaware state is denoted by U , while {A∅, A{A}, A{W }, A{A,W }, A{C}}
denote the Aware states. In the Aware states, the subscript denotes the subset of flags
that are currently set. Note that the all-clear token flag is only set when the other two
are not, giving us six distinct states in total.
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Algorithm 1 formalizes the actions executed by each agent u when activated. Agent u’s
actions depend on the current state it is in and whether it senses a stimulus. We describe
the behavior for each of the possible cases below:

Non-matching witness flag: This is a special case that occurs if u is currently a
witness to some stimuli but its witness flag has not been set yet, or if u has its witness
flag set but is no longer a witness. This case takes priority over all the other possible
cases, since u cannot take any action before its witness status and its state match. If u

is a witness but does not have the witness flag set, then with probability p, switch u to
state A{W }. On the other hand, if u is not a witness but has the witness flag set, switch
u to Unaware (by setting u.state = U) and broadcast an all-clear token to all of u’s
Aware neighbors (this token overrides any other tokens the neighbors may have).
Unaware state (U): If u has an Aware neighbor v with an alert token (i.e., v.state ∈
{A{A},A{A,W }}), then u consumes the alert token from v (by setting v’s alert token flag
to False) and switches to the state A∅.
Aware state with alert token (A{A}, A{A,W }): Pick a random neighbor of u such
that each neighbor is picked with probability 1

∆ , with a probability 1− dG(u)
∆ of staying

at u (this executes a dmax-random walk [13]). If an Aware neighbor v is picked and v

does not have an alert nor an all-clear token (that is, v.state ∈ {A∅,A{W }}), move the
alert token to v by toggling the alert token flags on both u and v.
Aware state with witness flag but without an alert token (A{W }): With proba-
bility p, u generates a new alert token by switching to state A{A,W }.
Aware state with all-clear token (A{C}): Switch u to the Unaware state U and
broadcast the all-clear token to all of its Aware state neighbors.

The use of a dmax-random walk instead of regular random walk (Line 18 of Algorithm 1)
normalizes the probabilities of transitioning along an edge by the maximum degree of the
nodes (or a constant upper bound on that), so that these transition probabilities cannot
change during the evolution of the graph. A dmax-random walk has polynomial hitting time
on any connected dynamic network (while a regular random walk might not) [3].

3 Static graph topologies

For simplicity, we will first state and prove our results for static connected graph topologies
(Theorems 3 and 4), where the edge set never changes and the dynamics are only due to
the placement of stimuli. In Section 4, we show that the same proofs apply with little
modification to the reconfigurable case as well.

In order to define our main theorems, we must first define the state invariant, that we
know holds from an initial configuration where every agent is initialized in the Unaware
state, as we show Lemma 2. In the remainder of this paper, a component will refer to a
connected component of the subgraph induced in G by the set of Aware agents.

▶ Definition 1 (State Invariant). We say a component satisfies the state invariant if it contains
at least one agent in the states A{W }, A{A,W } or A{C}. A configuration satisfies the state
invariant if every component (if any) of the configuration satisfies the state invariant.

▶ Lemma 2. If the current configuration satisfies the state invariant, then all subsequent
configurations reachable by Algorithm 1 also satisfy the state invariant.

Proof. Starting from configuration where the state invariant currently holds, let u be the
next agent to be activated. If u is a witness but u.state ̸∈ {A{W },A{A,W }}, switching u

to state A{W } does not affect the state invariant. Conversely, if u is not a witness, but
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u.state ∈ {A{W },A{A,W }} switching u to state U can potentially split the component it is
in into multiple components. However, as all neighbors of u will also be set to state A{C},
each of these new components will contain an agent in state A{C}.

Otherwise, if u.state = U , it only switches to the Aware state if it neighbors another
Aware agent. As the component u joins must contain an agent in states A{W }, A{A,W } or
A{C}, the new configuration will continue to satisfy the state invariant. If u.state = A{C},
similar to the earlier case where u is not a witness but u.state ∈ {A{W },A{A,W }}, activating
u may split the component it is in. As before, all neighbors of u will be set to state A{C}, so
each of these newly created components satisfy the state invariant. The remaining possible
cases only toggle the alert token flag, which does not affect the state invariant. ◀

This allows us to state our main results in the static graph setting. We let T ∈ N represent
the time when the stimuli stabilize long enough to converge (where T is unknown to the
agents) and show that we will have efficient convergence. Without loss of generality, for the
sake of our proofs, we will assume that Wt =WT , for all t ≥ T , although this is really just
representing a phase where the stimuli are stable.

▶ Theorem 3. Starting from any configuration satisfying the state invariant over a static
connected graph topology G, if |WT | = 0, then all agents will reach and remain in the
Unaware state in O(n2) expected iterations, after time T .

▶ Theorem 4. Starting from any configuration satisfying the state invariant over a static
connected graph topology G, if |WT | > 0, then all agents will reach and stay in the Aware
state in O(n5) expected iterations, after time T .

The proof of these theorems relies on carefully eliminating residual aware agents from
previous broadcasts. These agents have yet to receive an all-clear token and thus will take
some time before they can return to the Unaware state.

A∅

A∅

A{W }

U

U

A{W }

A∅

A{C}

Figure 3 A configuration with two residual components. The component on the left is a residual
component despite having a witness in it because it contains an agent with the all-clear flag; the
component on the right is a residual component since it contains an agent in state A{C}.

▶ Definition 5 (Residuals). A residual component is a component that satisfies at least one
of the following two criteria:
1. It contains an agent in state A{C}.
2. It contains an agent in state A{W } or A{A,W } that is not a witness.

We call agents belonging to residual components residuals.

When starting from arbitrary configurations, there is likely to be a large number of
residual components that need to be cleared out. Residuals are problematic as they do no
stay in the aware state in the long term. This means they do not actually contribute to the
main cluster of Aware state agents, and the presence of residuals causes even more residuals
to form. Furthermore, later on when we allow the graph to reconfigure itself, residuals may
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obstruct Unaware state agents from coming into contact with non-residual components,
which may prevent alert tokens from reaching them. Our main tool to show that all residuals
eventually vanish is a potential function that decreases more quickly than it increases.

▶ Definition 6 (Potential). For a configuration σ, we define its potential Φ(σ) as

Φ(σ) := ΦA(σ) + ΦAT (σ)

where ΦA(σ) and ΦAT (σ) represent total the number of Aware agents and the number of
Aware agents with an alert token respectively.

We use the following lemma to guarantee, in Lemma 8, that the expected number of steps
before all residuals are removed is polynomial.

▶ Lemma 7. Assume n ≥ 2, and let 0 < η < 1. Consider two random sequences of
probabilities (pt)t∈N≥0 and (qt)t∈N≥0 , with the properties that 1

n ≤ pt ≤ 1 and 0 ≤ qt ≤ η
n ,

and pt + qt ≤ 1. Now consider a sequence (Xt)t∈N≥0 , where

Xt+1


≤ Xt − 1 with probability pt

= Xt + 1 with probability qt

= Xt with probability 1− pt − qt.

.

Then E [min{t ≥ 0 | Xt = 0}] ≤ nX0
1−η .

Proof. For each k ∈ N≥0, we define a random sequence (Y (k)
t )t∈N≥0 such that Y

(k)
0 = k and

Y
(k)

t+1


= Y

(k)
t − 1 with probability 1

n

= Y
(k)

t + 1 with probability η
n

= Y
(k)

t otherwise.

For each such k, let Sk := E
[
min{t ≥ 0 | Y (k)

t = 0}
]
. Let T

(k)
k+1 = 0 and for i ∈ {k, k −

1, . . . , 1}, let T
(k)
i = min{t ≥ 0 | X(k)

t ≤ i}−T
(k)
i+1 denote the number of time steps after T

(k)
i+1

before the first time step t where Y
(k)

t ≤ i. We observe that each T
(k)
i is identically distributed,

with ET
(k)
i = ET

(k)
1 = S1. Also, we observe that Sk = E[

∑k
i=1 T

(k)
i ], so Sk = k · S1 for all k.

We can thus compute S1 by conditioning on the first step:

S1 = 1
n

(1) + η

n
(S2 + 1) +

(
1− 1 + η

n

)
(S1 + 1) = 1 + η

n
· 2S1 +

(
1− 1 + η

n

)
S1

This implies S1 = n
1−η and thus E

[
min{t ≥ 0 | Y (k)

t = 0}
]

= Sk = kn
1−η .

We can then couple (Xt)t∈N≥0 and (Y (X0)
t )t∈N≥0 in a way such that Y

(X0)
t+1 = Y

(X0)
t + 1

whenever Xt+1 > Xt, and Y
(X0)

t+1 = Y
(X0)

t −1 whenever Xt+1 < Xt. We thus have Y
(X0)

t ≥ Xt

always, and so E [min{t ≥ 0 | Xt = 0}] ≤ E
[
min{t ≥ 0 | Y (X0)

t = 0}
]
≤ kX0

(1−η) . ◀

We show in Lemma 8 that after a polynomial number of steps in expectation, we will
reach a configuration with no residual components.

▶ Lemma 8. We start from a configuration satisfying the state invariant over a static
connected graph G with no more than w witnesses at any point. Then the expected number of
steps before we reach a configuration with no residual components is at most 2n2/(1− wp).
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Proof. We apply Lemma 7 to the sequence of potentials (Φ(σt))t∈N≥0 where σt is the
configuration after iteration t. As long as there exists a residual component, there will be at
least one agent will switch to the Unaware state on activation. This gives a probability of
at least 1/n in any iteration of decreasing the current potential by at least 1.

There are only two ways for the potential to increase. The first is when a new alert
token is generated by a witness, and the second is when an Unaware witness switches to an
Aware state. The activation of a witness thus increases the current potential by exactly
1, with probability p. As there are at most w witnesses, this happens with probability at
most wp/n < 1/n. Note that the consumption of an alert token to add a new Aware state
agent to a residual component does not change the current potential. Neither does switching
agents to the all-clear token state affect the potential.

By Lemma 7, as Φ(σ0) ≤ 2n, within 2n2/(1− wp) steps in expectation, we will either
reach a configuration σ with Φ(σ) = 0, or a configuration with no residual components,
whichever comes first. Note that if Φ(σ) = 0, then σ cannot have any residual components,
completing the proof. ◀

We now show that as long as no agent is removed from the witness set, after all residual
components are eliminated, no new ones will be generated:

▶ Lemma 9. We start from a configuration satisfying the state invariant over a static
connected graph G, and assume that no agent will be removed from the witness set from the
current point on. If there are currently no residuals, then a residual cannot be generated.

Proof. With no residual components in the current iteration, there will be no agents in state
A{C}, and all agents in state A{W } or A{A,W } will be witnesses. This means that no agent
on activation will switch another agent to the A{C} state. All agents in states A{W } or
A{A,W } will continue to be witnesses by assumption of the lemma, and agents will only
switch to states A{W } or A{A,W } if they are witnesses. Thus no component will be residual
in the next iteration. ◀

When |WT | = 0 and no witnesses exist in the long term, if the state invariant holds, then
all agents will be in the Unaware state, giving us Theorem 3. On the other hand, in order
to show Theorem 4,if a witness persists in the long term , we need to show that all agents
eventually switch to the Aware state. Lemma 10 establishes this as without residuals, no
Aware state agent can revert to the Unaware state.

▶ Lemma 10. We start from a configuration satisfying the state invariant over a static
connected graph G, and assume that there are no residual agents, the witness set is nonempty
and no agent will be removed from the witness set from the current point on. Then the
expected number of iterations before the next agent switches from the Unaware to the Aware
state is at most O(n4).

Proof. In the case where there is no Aware agent, there must be an Unaware witness,
which on activation switches to the Aware state with probability p. The expected time
before this happens is no more than O( n

p ). Thus for the rest of the proof, we may assume
every witness is already in the Aware state with the witness flag set.

If we have a bound on the expected time before we reach a configuration where every
Aware agent holds an alert token, all it takes following that is for any Unaware agent to be
activated while holding an alert token. As the graph G is connected with least one Unaware
and one Aware agent, there will be some Unaware agents neighboring an Aware agent, so
the expected number of iterations before this occurs will is O(n).
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G:

u1

G′:

u1

H:

u2

H ′:

u2

Figure 4 Two locally connected reconfigurations of the vertices u1 (from G to G′) and u2 (from H

to H ′) respectively, where only the Aware neighbors of the reconfigured vertex are shown. Vertices
with dashed outlines are newly introduced neighbors.

We now bound the amount of time it takes for all Aware state agents to hold alert
tokens. As an agent can only hold one alert token at a time, a new alert token can only be
generated when a witness does not hold an alert token. Assume that there is at least one
Aware state agent that does not have an alert token. Mark one such agent. Suppose that u

is the marked agent and that the next agent v to be activated is a neighbor of u. If v has an
alert token and v randomly chooses u as its outgoing neighbor (per the algorithm), then v

transfers its alert token to u and receives the mark from u. Otherwise, for the sake of our
analysis, we still have v pick an outgoing neighbor at random and receive the mark if the
chosen neighbor is u.

The mark moving in this manner is equivalent to following a dmax-random walk over
the subgraph induced by the Aware agents, which is static as long as no new agents are
switching to the Aware state. As the configuration satisfies the state invariant and there
are no residuals, the component of Aware agents the mark is in must contain at least one
witness. The worst case hitting time of the dmax-random walk over this subgraph is O(n2),
and thus the expected number of iterations before the mark lands on a witness is O(n3),
allowing a new alert token to be generated (this new alert token is generated with a constant
probability p ∈ (0, 1)). As there are at most n Aware agents, all Aware agents will be
holding an alert token after O(n4) iterations in expectation, which translates to an expected
time bound of O(n4) before a new Aware agent is added. Note that this is a loose bound -
the bound has not been optimized for clarity of explanation. ◀

4 Reconfigurable topologies

We show that the same results hold if we allow some degree of reconfigurability of the edge
set and relax the requirement that the graph must be connected. This gives us enough
flexibility to implement a wider range of behaviors, like free aggregation or compression and
dispersion in Section 5. When needed, we may refer to this as the reconfigurable dynamic
stimuli problem, in order to clearly differentiate from the dynamic stimuli problem on static
graphs that we considered in Section 3.

Instead of a static graph G, as we considered in Section 3, we now allow the edge set of
the graph to be locally modified over time. These reconfigurations can be initiated by the
agents themselves or controlled by an adversary, and they can be randomized or deterministic,
but we require some restrictions on what reconfigurations are allowed, and what information
an algorithm carrying out these reconfigurations may have access to. This will result in a
restricted class of dynamic graphs, but will be general enough to be applied to the problem
of foraging that we describe in Section 5.
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The basic primitive for (local) reconfiguration of our graph by an agent u is replacing the
edges incident to vertex u with new edges. We call this a reconfiguration of vertex u and
define local connectivity to formalize which reconfigurations are allowed.

▶ Definition 11 (Locally Connected Reconfigurations). For any graph G = (V, E), let G′ be
a the graph resulting from a reconfiguration of vertex u ∈ V and let NA(u) be the Aware
neighbors of u in G. We say that this reconfiguration is locally connected if u has at least
one Aware neighbor in G′ and if for every pair of vertices v1, v2 in NA(u) with a path
from v1 to v2 in the induced subgraph G[NA(u) ∪ {u}], there is also a path from v1 to v2 in
G′[NA(u) ∪ {u}].

Examples of locally connected reconfigurations are given in Figure 4.
In the reconfigurable dynamic stimuli problem, we want to be able to define reconfiguration

behaviors for agents in the Aware (without all-clear token) and Unaware states. To define
what reconfigurations of an agent u are valid, we group our set of agent states into three
subsets which we refer to as behavior groups. The three behavior groups are Û := {U},
M̂ := {A∅,A{A}} and Î := {A{W },A{A,W },A{C}}, which we call Unaware, Mobile and
Immobile respectively (the latter two referring to Aware state agents which are and are
not allowed to change their neighboring edges respectively). We say that a locally connected
reconfiguration of an agent u is valid if it is not allowed to reconfigure in the Immobile
behavior group, and if u is in the Mobile behavior group, the reconfiguration of u must be
locally connected (Definition 11). We show the following lemma:

▶ Lemma 12. Let G = (V, E) be a graph and let G′ = (V, E′) be the graph resulting from
a valid locally connnected reconfiguration of a vertex u ∈ V . If a configuration satisfies the
state invariant on G, then the same state assignments satisfy the state invariant on G′.

Proof. As locally connected reconfigurations of Unaware agents do not affect the invariant
and Immobile agents cannot be reconfigured, it suffices to show that locally connected
reconfigurations of Mobile agents maintain the state invariant.

To show that the state invariant holds on G′, we show that any Mobile agent has a path
to an Immobile agent in G′. Consider any such Mobile agent v ̸= u. As the state invariant
is satisfied on G, there exists a path in G over Aware vertices from v to an Immobile agent
w. If this path does not contain the agent u, v has a path to w in G′. On the other hand, if
this path contains the agent u, consider the vertices u1 and u2 before and after u respectively
in this path. By local connectivity, there must still be a path from u1 to u2 in the induced
subgraph G′[NA(u) ∪ {u}], and so a path exists from v to w over G′. It remains to check
that u also has a path to an Immobile agent in G′. Once again by local connectivity, u must
have an Aware neighbor in G′, which must have a path to an Immobile agent over G′. ◀

In the reconfigurable version of the dynamic stimuli problem, we have a random sequence
of graphs (G0, G1, G2, . . .) where Gt for t ≥ 1 denotes the graph used in iteration t. These
graphs share a common vertex set V , the set of agents, but the edges may change from
iteration to iteration. We do not consider fully arbitrary sequence of graphs, but instead one
that is generated by what we call a (valid) reconfiguration adversary X . Let the random
sequence (X0, X1, X2, . . .) denote the information available to the reconfiguration adversary
on each iteration, and for each t ≥ 1 we let the vector σ̂t : V → {Û ,M̂, Î} denote the behavior
groups of the agents at the end of iteration t (i.e., after the activated agent performed any
computation/change of states of its neighborhood at iteration t). At iteration t, before an
agent is activated in the stimuli algorithm, the new graph Gt and the next value Xt of the
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sequence are drawn as a pair from the distribution X (Xt−1, σ̂t−1), which assigns non-zero
probabilities only to graphs that can be obtained through some sequence of valid locally
connected reconfigurations of the vertices of Gt−1.

We note that the reconfiguration adversary can be deterministic or randomized (it can
even be in control of the agents themselves), and is specifically defined to act based on
the behavior group vectors σ̂t : V → {Û ,M̂, Î} and not on the state vector of the agents.
We explicitly do not give the reconfiguration adversary access to full state information, as
convergence time bounds require that the reconfiguration adversary of the graph be oblivious
to the movements of alert tokens. As a special case, our results hold for any sequence of
graphs (G0, G1, G2, . . .) pre-determined by an oblivious adversary. An example of a valid
reconfiguration adversary that takes full advantage of the generality of our definition can be
seen in the Adaptive α-Compression Algorithm, an algorithm that we will later introduce to
solve the problem of foraging.

In the static version of the problem, the graph is required to be connected to ensure that
agents will always be able to communicate with each other. Without this requirement, we
can imagine simple examples of graphs or graph sequences where no algorithm will work.
In particular, if a set of agents that contains a witness never forms an edge to an agent
outside of the set, there would be no way to transmit information about the existence of
the witnesses to the nodes outside the set. However, as the foraging problem will require
disconnections to some extent, we relax this requirement that each graph Gt is connected,
and instead quantify how frequently Unaware state agents come into contact with Aware
state agents.

We say an Unaware agent is active if it is adjacent to an Aware agent. One way to
quantify how frequently agents become active is to divide the iterations into “batches” of
bounded expected duration, with at least some amount of active agents in each batch. The
random variables (D1, D2, D3 . . .) denote the durations (in iterations) of these batches, and
the random variables (C1, C2, C3, . . .) denote the number of active agents in the respective
batches. Definition 13 formalizes this notion.

▶ Definition 13 (Recurring Sequences). Let X be a fixed valid reconfiguration adversary. We
say that this X is (UD, UC)-recurring (for UD ≥ 1 and UC ∈ (0, 1)) if for each possible starting
iteration t and fixed behavior group σ̂ with at least one Unaware and one Immobile agent,
we have the following property: There exists sequences of random variables (D1, D2, D3 . . .)
and (C1, C2, C3 . . .) where for each k ∈ {1, 2, 3, . . .},
1. Ck denotes the number of active agents under the behavior group σ̂ between iterations

t +
∑k−1

i=1 Di and t +
(∑k

i=1 Di

)
− 1.

2. E [Dk | D1, D2, . . . Dk−1, C1, C2 . . . Ck−1] ≤ UD.
3. E

[(
1− 1

n

)Ck | D1, D2, . . . Dk−1, C1, C2 . . . Ck−1

]
≤ UC .

We can then define a (valid) reconfigurable graph (or sequence) as one that is generated by
a valid reconfiguration adversary X and is (UD, UC)-recurring for some UD ≥ 1, UC ∈ (0, 1).
This allows us to state our main results for reconfigurable graphs as Theorems 14 and 15.
The theorems we have shown for the static version of the problem (Theorems 3 and 4) are
special cases of these two theorems.

▶ Theorem 14. Starting from any configuration satisfying the state invariant over a recon-
figurable graph, if |WT | = 0, then all agents will reach and remain in the Unaware state in
O(n2) expected iterations, after time T .
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▶ Theorem 15. Starting from any configuration satisfying the state invariant over a recon-
figurable graph, if |WT | > 0 and the reconfiguration adversary is (UD, UC)-recurring, then all
agents will reach and stay in the Aware state in O

(
n6 log n + nUD

1−UC

)
expected iterations,

after time T .

In particular, if every graph Gt is connected, then the reconfiguration adversary is(
1,
(
1− 1

n

))
-recurring by setting Dk = Ck = 1 (as constant random variables) for all k, and

we have the following corollary:

▶ Corollary 16. Starting from any configuration satisfying the state invariant over a recon-
figurable graph, if |WT | > 0 and every Gt is connected, then all agents will reach and stay in
the Aware state in O(n6 log n) expected iterations, after time T .

Obviously, if G is a static connected graph, it falls as a special case of the corollary; a tighter
analysis allowed us to prove the O(n5) expected convergence bound in Theorem 4.

The following two lemmas, which are analogous to Lemmas 8 and 9 but for reconfigurable
graphs, are sufficient to show Theorem 14 (the case for |WT | = 0). The proof of Lemma 17
is identical to the proof of Lemma 8, so we only show Lemma 18.

▶ Lemma 17. We start from a configuration satisfying the state invariant over a reconfigurable
graph with no more than w witnesses at any point. Then the expected number of steps before
we reach a configuration with no residual components is at most 2n2/(1− wp).

▶ Lemma 18. We start from a configuration satisfying the state invariant over a reconfigurable
graph, and assume that no agent will be removed from the witness set from the current point
on. If there are currently no residuals, then a residual cannot be generated.

Proof. From the proof of Lemma 9, we know that state changes of agents do not generate a
new residual. Valid reconfigurations of agents also cannot generate a new residual, as from
Lemma 12, the state invariant always holds, so all components will always have an agent in
state A{C}, A{W } or A{A,W }. Reconfigurations cannot change the fact that there will be no
agent of state A{C}, and that all agents in states A{W } or A{A,W } will be witnesses. ◀

The key result we will show is Lemma 19, a loose polynomial-time upper bound for the
amount of time before the next agent switches to the Aware state. This gives a polynomial
time bound for all agents switching to the Aware state when |WT | > 0, implying Theorem 15.

▶ Lemma 19. We start from a configuration satisfying the state invariant over a (UD, UC)-
recurring reconfigurable graph, and assume that there are no residuals, the witness set is
nonempty, and no agent will be removed from the witness set from the current point on.
Then the expected number of iterations before the next agent switches from the Unaware to
the Aware state is at most O

(
n5 log n + UD

1−UC

)
.

Proof Sketch. This proof largely follows the proof of Lemma 10, with some modifications to
allow for reconfigurability. In the interest of space however, we will provide only a summary
of the key ideas and calculations that go into the proof (which is available in the full version
of the paper). Assuming that every witness is already in the Aware state with the witness
flag set, we upper bound the expected time it takes for all Aware agents to obtain an alert
token, followed by the time it takes for an agent to be activated while adjacent to an alert
token and switch to the Aware state.
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To bound the expected time for all Aware agents to obtain an alert token, we apply
the same strategy, marking an agent without an alert token and passing around the mark
until it lands on a witness. We make use of the result of [3, 13], which states that the
expected hitting time of the dmax-random walk on a connected evolving graph controlled
by an oblivious adversary is O(n3 log n) [13]. This corresponds to O(n4 log n) iterations
in expectation to generate a new alert token, which gives an upper bound of O(n5 log n)
iterations in expectation before all agents carry alert tokens.

Two complications arise however when applying this result - the requirement for the
adversary controlling the dynamic graph to be oblivious and the requirement that the
dynamic graph remains connected. The first issue is dealt with with an observation that
with no change in the behavior group vector (as long as no new agent switches to the Aware
state), the sequence of graphs generated by agent movement is independent of the movement
of alert tokens. The second issue is resolved with the observation that even though each
graph Gt[A] induced by the set of Aware agents is not connected, the state invariant and
the lack of residuals ensure that each of its connect components contains a witness. The
witnesses are linked with imaginary edges to connect the graph, which we can do as we only
care about the amount of time before the mark lands on any witness.

A new Aware agent is added when an active Unaware agent is activated. The probability
of adding a new Aware agent on a given iteration with k active agents is thus k

n , as each of
the n agents are activated with equal probability. Thus, if we denote by the random sequence
K1, K2, K3, . . . the number of active agents on each iteration following Tfull (including Tfull),
we get the following expression for the expected value of X, which we use to denote the
number of iterations following Tfull before a new Aware agent is added:

E[X|K1, K2, K3, . . .] =
∞∑

x=0
Pr (X > x|K1, K2, K3, . . .)

= 1 +
∞∑

x=1

x∏
i=1

(
1− Ki

n

)
≤ 1 +

∞∑
x=1

y
∑x

i=1
Ki where y :=

(
1− 1

n

)
∈ (0, 1)

= 1 + yK1 + yK1+K2 + . . . + y
∑D1

i=1
Ki︸ ︷︷ ︸

D1 terms

+ yC1+KD1+1 + . . . + y
C1+
∑D1+D2

i=D1+1
Ki︸ ︷︷ ︸

D2 terms

+ . . .

≤ D1 + D2 · yC1 + D3 · yC1+C2 + . . . (as
D1+D2+...+Dx∑

i=1
Ki = Cx+1 for all x).

Thus, via the law of total expectation, we have

E[X] ≤
∞∑

i=1
E[Diy

∑i−1
j=1

Cj ] ≤
∞∑

i=1
E
[
y

∑i−1
j=1

CjE[Di|C1, C2, . . . , Ci−1]
]

≤
∞∑

i=1
UDE

[
y

∑i−2
j=1

CjE[yCi−1 |C1, C2, . . . , Ci−2]
]

≤ . . . ≤
∞∑

i=1
UD(UC)i−1 = UD

1− UC
.

This gives us an expected time bound of O
(

n5 log n + UD

1−UC

)
to add a new Aware agent. ◀
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5 Foraging via self-induced phase changes

Recall that in the foraging problem, we have “ants” (agents) that may initially be searching
for “food” (stimuli, which can be any resource in the environment, like an energy source);
once a food source is found, the ants that have learned about the food source start informing
other ants, allowing them to switch their behaviors from the search mode to the gather mode,
that leads them to start to gather around the food source to consume the food. Once the
source is depleted, the ants closer to the depleted source start a broadcast wave, gradually
informing other ants that they should restart the search phase again by individually switching
their states. The foraging problem is very general and has several fundamental application
domains, including search-and-rescue operations in swarms of nano- or micro-robots; health
applications (e.g., a collective of nano-sensors that could search for, identify, and gather
around a foreign body to isolate or consume it, then resume searching, etc.); and finding and
consuming/deactivating hazards in a nuclear reactor or a minefield.

Our model for foraging is based on the geometric Amoebot model for programmable matter
[11, 12]. We have n anonymous agents occupying distinct sites on a

√
N ×

√
N piece of

the triangular lattice with periodic boundary conditions. These agents have constant-size
memory, and have no global orientation or any other global information beyond a common
chirality. Agents are activated with individual Poisson clocks, upon which they may move
to adjacent unoccupied sites or change states, operating under similar constraints to the
dynamic stimuli problem. An agent may only communicate with agents occupying adjacent
sites of the lattice. Food sources may be placed on any site of the lattice, removed, or shifted
around at arbitrary times, possibly adversarially, and an agent can only observe the presence
of the food source while occupying the lattice site containing it. This model can be viewed as
a high level abstraction of the (canonical) Amoebot model [11, 12] under a random sequential
scheduler, where at most one agent would be active at any point in time. One should be able
to port the model and algorithms presented in this paper to the Amoebot model; however a
formal description on how this should be done is beyond the scope of this paper.

At any point of time, there are two main states an agent can be in, which, at the macro-
level, are to induce the collective to enter the search or gather modes respectively. When
in search mode, agents move around in a process akin to a simple exclusion process, where
they perform a random walk while avoiding two agents occupying the same site. Agents
enter the gather mode when food is found and this information is propagated in the system,
consequently resulting in the system compressing around the food (Figure 5).

food food

Figure 5 In the diagram on the left, a food source is placed on a lattice site. The diagram
on the right illustrates a desired configuration, where all agents have gathered in a low perimeter
configuration around the food source. If the food source is later removed, the agents should once
again disperse, returning to a configuration like the figure on the left.

In the nonadaptive setting, Cannon et al. [5] designed a rigorous compression/expansion
algorithm for agents that remain simply connected throughout execution, where a single
parameter λ determines a system-wide phase: A small λ, namely λ < 2.17, provably
corresponds to the search mode, which is desirable to search for food, while large λ, namely
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λ > 2 +
√

2, corresponds to the gather mode, desirable when food has been discovered.
Likewise, Li et al. [25] show a very similar bifurcation based on a bias parameter λ in
the setting when the agents are allowed to disconnect and disperse throughout the lattice.
Our goal here is to perform a system-wide adjustment in the bias parameters when one
or more agents notice the presence or depletion of food to induce the appropriate global
coordination to provably transition the collective between macro-modes when required.
Informally, one can imagine individual agents adjusting their λ parameter to be high when
they are fed, encouraging compression around the food, and making λ small when they are
hungry, promoting the search for more food. A configuration is called α-compressed if the
perimeter (measured by the length of the closed walk around its boundary edges) is at most
α pmin(n), for some constant α > 1, where pmin(n) denotes the minimum possible perimeter
of a connected system with n agents, which is the desired outcome of the gather mode.

Adaptive α-compression. We present the first rigorous local distributed algorithm for
the foraging problem: The Adaptive α-Compression algorithm is based on the stochastic
compression algorithm of [5], addressing a geometric application of the dynamic stimuli
problem, where the Aware state represents the “gather” mode, and the Unaware state
represents the “search” mode. A witness is an agent that occupies the same lattice site as
the food source. The underlying dynamic graph used by the Adaptive Stimuli Algorithm
is given by the adjacency graph of the agents - two agents share an edge on the graph if
they occupy adjacent sites of the lattice. As agents move around to implement behaviors
like gathering and searching, their neighbor sets will change. The movement of agents thus
reconfigures and oftentimes even disconnects our graph.

In this algorithm, agents in the Unaware (search) behavior group execute movements
akin to a simple exclusion process (Execute-Search) while agents in the Mobile (gather)
behavior group execute moves of the compression algorithm (Execute-Gather) in [5]. We
focus on the compression algorithm run by the Aware agents. In a simple exclusion process,
a selected agent picks a direction at random, and moves in that direction if and only if the
immediate neighboring site in that direction is unoccupied. In the compression algorithm [5]
on the other hand, a selected Aware agent first picks a direction at random to move in, and
if this move is a valid compression move (according to Definition 20), the agent moves to
the chosen position with the probability given in Definition 21. With a (far-from-trivial)
modification of the analysis in [5] to account for the stationary witness agent, we show that
in the case of a single food source, the “gather” movements allow the agents to form a low
perimeter cluster around the food. We present the following definitions, adapted from [5] to
the set of Aware agents running the compression algorithm:

▶ Definition 20 (Valid Compression Moves [5]). Denote by NA(ℓ) and NA(ℓ′) the sets of
Aware neighbors of ℓ and ℓ′ respectively and NA(ℓ∪ ℓ′) := NA(ℓ)∪NA(ℓ′)\{ℓ, ℓ′}. Consider
the following two properties:
Property 1: |NA(ℓ) ∩NA(ℓ′)| ≥ 1 and every agent in NA(ℓ ∪ ℓ′) is connected to an agent in
NA(ℓ) ∩NA(ℓ′) through NA(ℓ ∪ ℓ′).
Property 2: |NA(ℓ) ∩ NA(ℓ′)| = 0, ℓ and ℓ′ each have at least one neighbor, all agents in
NA(ℓ)\{ℓ′} are connected by paths within the set, and all agents in NA(ℓ′)\{ℓ} are connected
by paths within the set.

We say the move from ℓ to ℓ′ is a valid compression move if it satisfies both properties,
and NA(ℓ) contains fewer than five aware state agents.
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Algorithm 2 Adaptive α-Compression.

1: procedure Adaptive-Alpha-Compression(u)
2: q ← Random number in [0, 1]
3: u.isWitness←True if u observes the food source, else u.isWitness←False
4: if q ≤ 1

2 then ▷ With probability 1
2 , make a state update

5: Adaptive-Stimuli-Algorithm(u)
6: else ▷ With probability 1

2 , make a move
7: if u.isWitness or u.state ∈ {A{W },A{A,W },A{C}} then ▷ Immobile agent
8: Do nothing
9: else if u.state ∈ {A∅,A{A}} then ▷ Mobile agent

10: Execute-Gather(u)
11: else if u.state = U then ▷ Unaware agent
12: Execute-Search(u)

1: procedure Execute-Gather(u)
2: d← Random direction in {0, 1, 2, 3, 4, 5}
3: ℓ← Current position of u

4: ℓ′ ← Neighboring lattice site of u in direction d

5: if Moving u from ℓ to ℓ′ is a valid compression move (Definition 20) then
6: p← Random number in [0, 1]
7: d(u)← number of neighboring agents of u if u were at position ℓ

8: d′(u)← number of neighboring agents of u if u were at position ℓ′

9: if p ≤ λd′(u)−d(u) then
10: Move u to position ℓ′ ▷ Movements reconfigure the adjacency graph
1: procedure Execute-Search(u)
2: d← Random direction in {0, 1, 2, 3, 4, 5}
3: ℓ′ ← Neighboring lattice site of u in direction d

4: if Moving ℓ′ is an unoccupied lattice site then
5: Move u to position ℓ′ ▷ Movements reconfigure the adjacency graph

▶ Definition 21 (Transition probabilities [5]). Fix λ > 2 +
√

2, as sufficient for α-compression.
An agent u transitions through a valid movement with Metropolis-Hastings [28] acceptance
probability min{1, λe(σ′)−e(σ)}, where σ and σ′ are the configurations before and after the
movement, and e(·) represents the number of edges between Aware state agents in the
configuration.

Note that even though e(·) is a global property, the difference e(σ′)− e(σ) can be computed
locally (within two hops in the lattice, or through expansions in the Amoebot model [11, 12]),
as it is just the change in the number of Aware neighbors of u before and after its movement.

The condition for valid compression moves is notable as it keeps a component of aware
agents containing the witness agent simply connected (connected and hole-free), which is
crucial to the proof in [5] that a low perimeter configuration, in our case around the food
source, will be obtained in the long term. We also show that these valid compression moves
are locally connected (as per Definition 11), a sufficient condition for the reconfigurable
dynamic stimuli problem to apply.

We first prove that the Markov chain representing the compression moves (Execute-
Gather) is connected. The proof builds upon the ergodicity argument in [5]; however, the
addition of a single stationary agent, the witness, in our context makes this proof significantly
more complex, and we defer it to the full version of the paper.
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▶ Lemma 22. Consider connected configurations of agents on a triangular lattice with a
single agent v that cannot move. There exists a sequence of valid compression moves that
transforms any connected configuration of agents into any simply connected configuration of
the agents while keeping v stationary.

We may now state our main results, which verify the correctness of Adaptive α-
Compression.

▶ Theorem 23. If no food source has been identified for sufficiently long, then within an
expected O(n2) steps, all agents will reach and remain in the Unaware state and will converge
to the uniform distribution of nonoverlapping lattice positions.

▶ Theorem 24. If at least one food source exists and remains in place for long enough, then
within O(n6 log n + N2n) steps in expectation, all agents will reach and remain in the Aware
state, and each component of Aware agents will contain a food source. In addition, if there
is only one food source, the agents will converge to a configuration with a single α-compressed
component around the food, for any constant α > 1, with all but an exponentially small
probability, for a large enough lattice region.

The Adaptive α-Compression Algorithm fits the requirements of the reconfigurable
dynamic stimuli model. In particular, the information Xt available to the reconfiguration
adversary corresponds to the configuration of the lattice, and the graph Gt represents
the adjacency of agents on the lattice at that time t. To show that a sequence of valid
Aware agent movements in the Adaptive α-Compression Algorithm, which determine the
configurations of G1, G2, . . ., can be modeled via a valid reconfiguration adversary X , we
need to show that the reconfigurations resulting from the Execute-Gather procedure must
be locally connected.

▶ Lemma 25. The movement behavior of Adaptive α-Compression is locally connected.

Proof. We only need to show that the Execute-Gather procedure maintains local connec-
tivity (Definition 11). This is true as when reconfiguring an Aware agent u with Aware
neighbor set NA(u), we only allow valid compression moves (Definition 20) to be made. In
the case of Property 1, all agents in NA(u) will still have paths to u in G′ through S. In the
case of Property 2, all agents in NA(u) will still have paths to each other within G′[NA(u)],
despite no longer having local paths to u. The agent u will have at least one Aware state
neighbor after the move as this is a requirement of Property 2. ◀

As this is an instance of the reconfigurable dynamic stimuli problem, Theorem 23 follows
immediately from Theorem 14. To show Theorem 24 however, we need to show polynomial
recurring rates by arguing that the Unaware state agents following a simple exclusion
process will regularly come into contact with the clusters of Aware state agents around the
food sources.

▶ Lemma 26. The movement behavior defined in the Adaptive α-Compression Algorithm is
(UD, UC)-recurring with UD = 2N2 + 2

n + 1 and UC = 2
3 .

Proof Sketch. In the interest of space, we give only a brief summary of the proof (which is
available in the full version of the paper). We define the random sequences (D1, D2, D3, . . .)
and (C1, C2, C3, . . .) by dividing the time steps after the starting iteration t into batches,
where the kth batch would take Dk iterations and would see Ck active agents over its duration.
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A batch ends (and the next batch starts) when the agent movement places an Unaware
agent u next to an Aware agent v, then attempts a movement of u or v after that. The
duration Dk of the kth batch can be computed with the hitting time of a simple exclusion
process over the triangular lattice, plus a geometric random variable representing the number
of iterations taken to select u or v after that. This gives us a uniform upper bound of
2N2n + 2

n + 1 for E[Dk|D1, D2, . . . Dk−1, C1, C2 . . . Ck−1] for each batch k ∈ {1, 2, . . .}.
The number of active agents Ck within batch k is at least the number of iterations

between the first time within the batch that an Unaware agent moves next to an Aware
agent and the end of the batch. This is shown to stochastically dominate a geometric random
variable Y with success probability pY , which we show in the full paper to be:

pY =
∞∑

i=0

1
2 ·
(

1
2

)i
(

1−
(

1− 2
n

)i
)

= 1− 1
2

∞∑
i=0

(
1− 2/n

2

)i

= 2
n

(
1

1 + 2/n

)
As Ck stochastically dominates Y and (1− 1

n )x is a decreasing function of x, we have:

E

[(
1− 1

n

)Ck

|D1, D2, . . . Dk−1, C1, C2 . . . Ck−1

]
≤ E

[(
1− p

n

)Y
]

=
∞∑

y=0

(
1− 1

n

)y

pY (1− pY )y

= pY
1

1− (1− 1/n)(1− pY ) = 2
3 . ◀

To show the first half of Theorem 24, we start from the first iteration beyond which no
additional changes in the positions (or existence) of the food sources occur. We first show
that if there is at least one food source, it will be found. As long as no food source has
been found, there will be no witnesses, so every agent will return to the Unaware state by
Theorem 14. Agents in the Unaware state move randomly following a simple exclusion
process. Using the hitting time of a simple random walk on a regular graph (the triangular
lattice) of N sites, we have a simple upper bound of O(N2n) iterations in expectation before
some agent finds a food source and becomes a witness.

From then on, there will be at least one witness, and the witness set can only be augmented,
not reduced, as the other agents potentially find additional food sources, and since the agents
already sitting on food sources are no longer allowed to move. As agent movement behaviors
are recurring with polynomial bounds (Lemma 26), the reconfigurable Adaptive Stimuli
Algorithm applies, yielding a polynomial bound on the expected number of iterations before
all agents have switched to the Aware state with no residuals. Additionally, due to the
maintenance of the state invariant and as there are no residuals, every component of Aware
agents will contain at least one witness, meaning that every cluster of agents will be around
some food source. This gives us the first part of Theorem 24.

The second half of Theorem 24 states that a low perimeter (α-compressed) configuration
is achievable in the case of a single food source. As the Markov chain representing the
compression moves is irreducible (Lemma 22), the results of [5] guarantee that for any α > 1,
there exists a sufficiently large constant λ such that at stationarity, the perimeter of the
cluster is at most α times its minimum possible perimeter with high probability.

6 Simulations of the Adaptive α-Compression Algorithm

We demonstrate a simulation of the Adaptive α-Compression algorithm with 5625 agents
in a 150× 150 triangular lattice with periodic boundary conditions. Multiple food sources
(stimuli) are placed and moved around to illustrate the gather and search phases. This
simulation is shown as a sequence of 12 images in chronological order in Figure 6.
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(a) All agents initially unaware. Five food sources added, all agents eventually switch to the Aware state.

(b) One food source removed, two new added. A cluster disperses and agents rejoin other clusters.

(c) Three food sources removed, clusters disperse and gather around the remaining food sources.

(d) All food sources removed, agents disperse and converge to a uniform distribution over the lattice.

Figure 6 Simulation of Adaptive α-Compression with multiple food sources. The images are in
chronological order. Unaware agents are yellow, Aware agents are red (darker red if they have an
alert token), agents with the all-clear token are purple, and food sources are green.
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Abstract
Consider a dynamic network and a given distributed problem. At any point in time, there might
exist several solutions that are equally good with respect to the problem specification, but that are
different from an algorithmic perspective, because some could be easier to update than others when
the network changes. In other words, one would prefer to have a solution that is more robust to
topological changes in the network; and in this direction the best scenario would be that the solution
remains correct despite the dynamic of the network.

In [6], the authors introduced a very strong robustness criterion: they required that for any
removal of edges that maintain the network connected, the solution remains valid. They focus on
the maximal independent set problem, and their approach consists in characterizing the graphs in
which there exists a robust solution (the existential problem), or even stronger, where any solution
is robust (the universal problem). As the robustness criteria is very demanding, few graphs have a
robust solution, and even fewer are such that all of their solutions are robust. In this paper, we
ask the following question: Can we have robustness for a larger class of networks, if we bound the
number k of edge removals allowed?

To answer this question, we consider three classic problems: maximal independent set, minimal
dominating set and maximal matching. For the universal problem, the answers for the three cases
are surprisingly different. For minimal dominating set, the class does not depend on the number of
edges removed. For maximal matching, removing only one edge defines a robust class related to
perfect matchings, but for all other bounds k, the class is the same as for an arbitrary number of
edge removals. Finally, for maximal independent set, there is a strict hierarchy of classes: the class
for the bound k is strictly larger than the class for bound k + 1.

For the robustness notion of [6], no characterization of the class for the existential problem is
known, only a polynomial-time recognition algorithm. We show that the situation is even worse
for bounded k: even for k = 1, it is NP-hard to decide whether a graph has a robust maximal
independent set.
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7:2 When Should You Wait Before Updating? – Toward a Robustness Refinement

1 Introduction

In the field of computer networks, the phrase “dynamic networks” refers to many different
realities, ranging from static wired networks in which links can be unstable, up to wireless ad
hoc networks in which entities directly communicate with each other by radio. In the latter
case, entities may join, leave, or even move inside the network at any time in completely
unpredictable ways. A common feature of all these networks is that communication links
keep changing over time. Because of this aspect, algorithmic engineering is far more difficult
than in fixed static networks. Indeed, solutions must be able to adapt to incessant topological
changes. This becomes particularly challenging when it comes to maintaining a single
leader [3] or a (supposed to be) “static” covering data structure, for instance, a spanning
tree, a node coloring, a Maximal Independant Set (MIS), a Minimal Dominating Set (MDS),
or a Maximal Matching (MM). Most of the time, to overcome such topological changes,
algorithms compute and recompute their solution to try to be as close as possible to a correct
solution in all circumstances.

Of course, when the network dynamics is high, meaning that topological changes are
extremely frequent, it sometimes becomes impossible to obtain an acceptable solution. In
practice, the correctness requirements of the algorithm are most often relaxed in order to
approach the desired behavior, while amortizing the recomputation cost. Actually, this
sometimes leads to reconsider the very nature of the problems, for example: looking for a
“moving leader”, a leader or a spanning tree per connected component, a temporal dominated
set, an evolving MIS, a best-effort broadcast, etc. – we refer to [3, 4] for more examples.

In this paper, we address the problem of network dynamics under an approach similar
to the one introduced in [1, 6]: To what extent of network dynamics can a computation be
performed without relaxing its specification? Before going any further into our motivation,
let us review related work on which our study relies.

Numerous models for dynamic networks have been proposed during the last decades–refer
to [3] for a comprehensive list of models– some of them aiming at unifying previous modeling
approaches, mainly [4, 11]. As is often the case, in this work, the network is modeled as a
graph, where the set of vertices (also called nodes) is fixed, while the communication links
are represented by a set of edges appearing and disappearing unexpectedly over the time.
Without extra assumptions, this modeling includes all possibilities that can occur over the
time, for example, the network topology may include no edges at some instant, or it may also
happen that some edge present at some time disappears definitively after that. According to
different assumptions on the appearance and disappearance (frequency, synchrony, duration,
etc.), the dynamics of temporal networks can be classified in many classes [4].

One of these classes, Class T CR, is particularly important. In this class, a temporal path
between any two vertices appears infinitely often. This class is arguably the most natural
and versatile generalization of the notion of connectivity from static networks to dynamic
networks: every vertex is able to send (not necessarily directly) a message to any other vertex
at any time.

For a dynamic network of the class T CR on a vertex set V , one can partition V × V into
three sets: the edges that are present infinitely often over the time –called recurrent edges–,
the edges that are present only a finite number of times –called eventually absent edges–, and
the edges that are never present. The union of the first two sets defines a graph called the
footprint of the network [4], while its restriction to the edges that are infinitely often present
is called the eventual footprint [2]. In [2], the authors prove that Class T CR is actually the
set of dynamic networks whose eventual footprint is connected.
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In conclusion, from a distributed computing point of view, it is more than reasonable to
consider only dynamic networks such that some of their edges are recurrent and their union
does form a connected spanning subgraph of their footprint.

Unfortunately, it is impossible for a node to distinguish between a recurrent and an
eventually absent edge. Therefore, the best the nodes can do is to compute a solution relative
to the footprint, hoping that this solution still makes sense in the eventual footprint, whatever
it is. In [6], the authors introduce the concept of robustness to capture this intuition, defined
as follows:

▶ Definition 1 (Robustness). A property P is robust over a graph G if and only if P is
satisfied in every connected spanning subgraph of G (including G itself).

Another way to phrase this definition is to say that a property P is robust if it is still
satisfied when we remove any number of edges, as long as the graph stays connected.

In [6], the authors focus on the problem of maximal independent set (MIS). That is, they
study the cases where a set of vertices can keep being an MIS even if we remove edges. They
structure their results around two questions:

Universal question: For which networks are all the solutions robust against any edge removals
that do not disconnect the graph?

Existential question: For which networks does there exist a solution that is robust against
any edge removals that do not disconnect the graph?

The authors in [6] establish a characterization of the networks that answer the first
questions for the MIS problem. Still for the same problem, they provide a polynomial-time
algorithm to decide whether a network answers the second question.

Note that the study of robustness was also very recently addressed for the case of metric
properties in [5]. In that paper, the authors show that deciding whether the distance between
two given vertices is robust can be done in linear time. However, they also show that deciding
whether the diameter is robust or not is coNP-complete.

1.1 Our approach
Our goal is to go beyond [6], and to get both a more fine-grained and a broader understanding
of the notion of robustness.

Let us start with the fine-grain dimension. In [6], a solution had to be robust against any
number of edge removals as long as the graph remains connected. In this paper, we want to
understand what are the structures that are robust against k edge removals while keeping
the connectivity constraint, for any specific k, adding granularity to the notion. We call this
concept k-robustness (see formal definition below) and we focus on the universal and the
existential question of [6] for this fined-grain version of the robustness.

Now for the broader dimension, let us discuss the problems studied. In [6], the problem
studied is MIS, which is a good choice in the sense that it leads to an interesting landscape.
Indeed, robustness being a very demanding property, one has to find problems to which it
can apply without leading to trivial answers. In this direction, one wants to look at local
problems, because a modification will only have consequences in some neighborhood and not
on the whole graph, which leaves the hope that it actually does not affect the correctness at
all. Among the classic local problems, as studied in the LOCAL model (see [9] for the original
definition and [8] for a recent book), there are mainly coloring problems and packing/covering
problems. The coloring problems (with a fixed number of colors) are not meaningful in

SAND 2023



7:4 When Should You Wait Before Updating? – Toward a Robustness Refinement

our context: an edge removal can only help. But the packing/covering problems are all
interesting, thus we widen the scope to cover three classic problems in this paper: maximal
independent set (MIS) as before, but also maximal matching (MM) and minimal dominating
set (MDS).

To help the reader grasp some intuition on our approach, let us illustrate the 1-robustness
for the maximal matching, i.e. a set of edges that do not share vertices and that is maximal
in the sense that no edge can be added. To be 1-robust, a matching must still be maximal
after the removal of one arbitrary edge that does not disconnect the graph. Let us go over
various configurations illustrated in Figure 1 (the matched edges are bold ones).

(a) (b) (c)

Figure 1 Three examples of MMs in various graphs.

For the two graphs in Figure 1a, that are cycles of 6 vertices, we can observe that two
instances of maximal matching can have different behaviors. Indeed, in the top one, if we
remove one matched edge, we are left with a matching that is not maximal in the new graph:
the two edges adjacent to the removed one could be added. By contrast, in the bottom
graph, any edge removal leaves a graph that is still a maximal matching. Now, in the graph
of Figure 1b, a complete balanced bipartite graph, all the maximal matchings are identical
up to isomorphism. After one arbitrary edge removal, we are left with a graph where no
new edge can be matched. Therefore in this graph, any matching is robust to one edge
removal. Note that this is not true for any number of edge removals, illustrating the fact
that k-robustness and robustness are not equivalent. Finally, in Figure 1c, all the maximal
matchings consists of only one edge, and they are not robust to an edge removal. Indeed,
after the matched edge is removed, one can choose any of the two remaining ones.

To summarize, Figure 1 illustrates the effect of 1-robustness in three different cases: one
where some matchings are 1-robust, one where all matchings are 1-robust, and one where no
matching is 1-robust.

1.2 Our results
Our first contribution is to introduce the fine-grained version of robustness in Section 2.
After that, every technical section of this paper is devoted to provide some answer to the
fine-grained version of one of the two questions highlighted above (existential vs. universal)
for one of the problems we study. Our focus is actually in understanding how do the different
settings compare, in terms of both problems and number of removable edges.

Let us start with the universal question. Here, we prove that the three problems have
three different behaviors.

For minimal dominating set, the class of the graphs for which any solution is k-robust is
exactly the same for every k (a class that already appeared in [6] under the name of sputnik
graphs) as proved in Section 3.
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For maximal matching, the case of k = 1, which we used previously as an example, is
special and draws an interesting connection with perfect matchings, but then the class is
identical for every k ≥ 2. These results are presented in Section 4.

Finally, for maximal independent set, we show in Section 5 that there is a strict hierarchy:
the class for k edge removals is strictly smaller than the one for k − 1. For this case, we do
not pinpoint the exact characterization, but give some additional structural results on the
classes.

The existential question is much more challenging. Section 6 presents some preliminary
results on the study of this question. For maximal independent set, we show that for any k,
deciding whether a graph has a maximal independent set that is robust to k edge removals
is NP-hard. This is the first NP-hardness result for this type of question.

2 Model, definitions, and basic properties

In the paper, except when stated otherwise, the graph is named G, the vertex set V and the
edge set E.

2.1 Robustness and graph problems
The key notion of this paper is the one of k-robustness.

▶ Definition 2. Given a graph problem and a graph, a solution is k-robust if after the
removal of at most k edges, either the graph is disconnected, or the solution is still valid.

Note that k-robustness is about removing at most k edges, not exactly k edges.
We will abuse notation and write ∞-robust when mentioning the notion of robustness

from [6], with an unbounded number of removals. Hence k is a parameter in N ∪ ∞.

▶ Notation 3. We define Uk
P and Ek

P the following way:
Let Uk

P be the class of graphs such that any solution to the problem P is k-robust.
Let Ek

P be the class of graphs such that there exists a solution to the problem P that is
k-robust

Note that to easily incorporate the parameter k, we decided to not follow the exact same
notations as in [6].

Graph problems

We consider three graph problems:
1. Minimal dominating set (MDS): Select a minimal set of vertices such that every vertex of

the graph is either in the set or has a neighbor in the set.
2. Maximal matching (MM): Select a maximal set of edges such that no two selected edges

share endpoint.
3. Maximal independent set (MIS): Select a maximal set of vertices such that no two selected

vertices share an edge.

A perfect matching is a matching where every vertex is matched. We will also use the
notion of k-dominating set, which is a set of selected vertices such that every vertex is either
selected or is adjacent to two selected vertices. Note that k-dominating set sometimes refer to
another notion related to the distance to the selected vertices, but this is not our definition.
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The case of robust maximal matching

For maximal matching, the definition of robustness may vary. The definition we take is the
following. A maximal matching M of a graph G is k-robust if after removing any set of
at most k edges such that the graph G is still connected, what remains of M is a maximal
matching of what remains of G.

2.2 Graph notions
We list a few graph theory definitions that we will need.

▶ Definition 4. The neighborhood of a node v, denoted N(v), is the set of nodes that are
adjacent to v. The closed neighborhood of a node v, denoted N [v], is the neighborhood of v,
plus v itself.

▶ Definition 5. A graph is t-(edge)-connected if, after the removal of any set of (t − 1)
edges, the graph is still connected. A t-(edge)-connected component is a subgraph that is
t-(edge)-connected.

In the following we are only interested in edge connectivity thus we will simply write
t-connectivity to refer to t-edge-connectivity. In our proofs, we will use the following easy
observation multiple times : in a 2-connected graph every vertex belongs to a cycle.

▶ Definition 6. In a connected graph, a bridge is an edge whose removal disconnects the
graph.

▶ Definition 7. Given two graphs G and H, the join of these two graphs, join(G, H), is the
graph made by taking the union of G and H, and adding all the possible edges (u, v), with
u ∈ G and v ∈ H. See Figure 2a.

▶ Definition 8. A sputnik graph ([6]) is a graph where every node that is part of a cycle has
an antenna, that is a neighbor with degree 1. See Figure 2b.

(a) The join of two graphs: the black edges are
the original edges, the doted edges are the one
added by the join operation.

(b) A sputnik graph. The white vertices are part
a cycles, the grey vertices are their antennas,
and the black vertices do not belong to any cycle,
nor are antennas.

Figure 2 Illustration of the definitions of Subsection 2.2.

2.3 Basic properties
The following properties follow from the definitions.

▶ Property 9. For any problem P , for any k, Uk+1
P ⊆ Uk

P and Ek+1
P ⊆ Ek

P .

In particular, U∞
P ⊆ Uk

P ⊆ U1
P and E∞

P ⊆ Ek
P ⊆ E1

P , for all k.

▶ Property 10. If a graph is (k + 1)-connected then a solution is k-robust if and only if
after the removal of any set of k edges the solution is still correct.
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3 Minimal dominating set

▶ Theorem 11. For all k in N ∪ ∞, Uk
MDS is the set of sputnik graphs.

Proof. We know from [6] that the theorem holds for k = ∞. Hence, thanks to Property 9,
it is sufficient to prove that the theorem is true for k = 1. For the sake of contradiction,
consider a graph G in U1

MDS that is not a sputnik graph. Then there is a node u that belongs
to a cycle, and that has no antenna. Let S be the closed neighborhood of u, S = N [u]. We
say that a node of S, different from u, is an inside node if it is only connected to nodes
in S. We now consider two cases depending on whether there is an inside node or not. See
Figure 3.

1. Suppose there exists an inside node v. Note that v has at least one neighbor different from
u because otherwise it would be an antenna. Let the set W be the closed neighborhood of
v, except u. The set D = V \ W is a dominating set of the graph, because all the nodes
either belong to D or are neighbors of u (which belongs to D). Now, we transform D

into a minimal dominating set greedily: we remove nodes from D in an arbitrary order,
until no more nodes can be removed without making D non-dominating. We claim that
this minimal dominating set is not 1-robust. Indeed, if we remove the edge (u, v), v is
not covered any more (none of its current neighbors belongs to D), and the graph is still
connected (because v has a neighbor different from u).

2. Suppose there is no inside vertex. Let a be a neighbor of u in the cycle. Let W be the set
S \ a. Again we claim that V \ W is a dominating set. Indeed, because there is no inside
node, every node in S different from u is covered by node outside W , and u is covered
by a, which belongs to V \ W . As before we can make this set an MDS by removing
nodes greedily, and again we claim it is not 1-robust. Indeed, if we remove the edge
(u, a), we do not disconnect the graph (because of the cycle containing u), and u is left
uncovered. ◀

u

v

W
u W

a

Figure 3 The two cases of the proof of Theorem 11: with an inside node, on the left, and without
an inside node on the right. The cycle is represented by the dashed line, and the dotted lines
represent outgoing edges of non-inside nodes.

4 Maximal matching

We now turn our attention to the problem of maximal matching, and get the following
theorem.

▶ Theorem 12. The class U1
MM is composed of the set of trees, of balanced complete bipartite

graphs, and of cliques with an even number of nodes. For any k ≥ 2, the class Uk
MM is

composed of the cycle on four nodes and of the set of trees.
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The core of this part is the study of the case where only one edge is removed. At the end
of the section we consider the more general technically less interesting case of multiple edges
removal.

4.1 One edge removal
In this subsection we characterize the class of graphs where every maximal matching is
1-robust.

▶ Lemma 13. U1
MM is composed of the set of trees, of balanced complete bipartite graphs,

and of cliques with an even number of nodes.

The rest of this subsection is devoted to the proof of Lemma 13.

A result about perfect matchings

The core of the proof is to show a connection to perfect matchings. Once this is done, we
can use the following theorem from [10].

▶ Theorem 14 ([10]). The class of graphs such that any maximal matching is perfect is the
union of the balanced complete bipartite graphs and of the cliques of even size.

First inclusion

We start with the easy direction of the theorem, which is to prove that the graphs we
mentioned are in U1

MM . In trees, any property is robust, since no edge can be removed
without disconnecting the graph. For the two other types, we will use the following claim.

▷ Claim 15. Perfect matchings are 1-robust maximal matchings.

Proof. Consider a perfect matching in a graph, and remove an arbitrary edge (that does not
disconnect the graph). If this edge was not in the matching, and then we still have a perfect
matching, thus a maximal matching. If this edge was in the matching, then there are only
two non-matched nodes in the graph (the ones that were adjacent to the edge), and all their
neighbours are matched, thus the matching is still maximal. This proves the claim. ◁

In balanced complete bipartite graphs and cliques of even size, any maximal matching is
perfect (Theorem 14), and since perfect matchings are 1-robust maximal matchings, we get
the first direction of Lemma 13.

Second inclusion: three useful claims

We now tackle the other direction. The following lemma establishes a local condition that
1-robust matchings must satisfy. See Figure 4 for an illustration.

▷ Claim 16. In a 1-robust maximal matching M , if a node u is not matched, then all the
nodes of N(u) are matched, and their matched edges are bridges of the graph.

Proof. The fact that all the nodes in N(u) are matched follows from M being a maximal
matching. Now, suppose that there exists (v, w) ∈ M , such that v ∈ N(u) and (v, w) is not
a bridge. In other words, the removal of (v, w) does not disconnect the graph. After this
removal, both u and v are unmatched, and since (u, v) is an edge of the graph, the matching
in the new graph cannot be maximal. This contradicts the 1-robustness of M , and proves
the lemma. ◁



S. Dubois, L. Feuilloley, F. Petit, and M. Rabie 7:9

u

v1

v2

w2
w1

z

Figure 4 Illustration of Claim 16. Here we have a maximal matching, and in particular all the
neighbors of u are matched, but it is not a 1-robust matching. Indeed, removing (v1, w1) gives
the possibility of adding (u, v1) and (w1, z). Also, having a triangle with a matched edge and
an unmatched node, like (u, v2, w2) is impossible (Claim 17), since removing (v2, w2) gives the
possibility of adding either (u, v2) or (u, w2) to the matching, contradicting the maximality. Hence
we need the bridge condition.

The following claim follows directly from Claim 16.

▷ Claim 17. In a 1-robust maximal matching M , if there is an unmatched node u, two
nodes a, b ∈ N(u) with (a, b) ∈ E, then (a, b) /∈ M .

We now study the shape of 1-robust maximal matchings in cycles.

▷ Claim 18. In every maximal matching of a graph in U1
MM , if a node belongs to a cycle,

then it is matched.

Proof. Our proof of Claim 18 consists in proving that if a maximal matching does not satisfy
the condition, then either it is not 1-robust, or we can use it to build another maximal
matching that is not 1-robust. In both cases this means the graph was not in U1

MM .
Consider a node u in a cycle. Let a and b be its direct neighbors in the cycle, and let its

other neighbors be (ci)i. There can be several configurations, with a adjacent to b or not,
etc. The proof is generic to all these cases, but Figure 5 illustrates different cases. Consider
a 1-robust maximal matching M where u is unmatched. Because of Claim 16, we know that
there exists nodes a′, b′, and c′

i for all i, such that respectively (a, a′), (b, b′) and (ci, c′
i) (for

all i) are bridges of the graph. Because of the bridge condition, these nodes a′, b′ and c′
i (for

all i) are all different, and are different from a, b, u and the ci’s. Let us also denote d the
neighbor of a in the cycle that is not u. Note that d can be a ci or b, but no other named
node. (See Figure 5 for an illustration.) Now we create a new matching M ′ from M in the
following way. First remove all the edge of the matching that are not adjacent to one of the
nodes above. Then, remove (a, a′) and any edge matching d (if it exists). Note that this last
edge matching d could be a (cj , c′

j) or (b, b′). Add (a, d) to the matching (note that both
nodes are unmatched before this operation). In this matching, all the neighbors of u are
matched. We complete this matching into a maximal matching M ′. The edge (a, d) is in M ′

and u is unmatched, which is a contradiction with Claim 16, thus M ′ cannot be 1-robust,
and this proves the claim. ◁

Second inclusion: putting pieces together

▷ Claim 19. A graph in the class U1
MM is either a tree or is 2-connected.

Proof. Consider a graph that is neither a tree nor a 2-connected graph. There necessarily
exists a bridge (u, v) such that u belongs to a cycle. We distinguish two cases.
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u

a

d

b

c1 c′
1

c2 c′
2

b′

a′

u

a b

c1 c′
1

c2 c′
2

b′

a′
u

a b

c2
c′

2

b′a′

Figure 5 Illustration of the proof of Claim 19, in three cases: d is not b nor a ci, d is one of the
ci, d is b. The dashed lines represent paths with at least one edge. The dotted lines represent the
change we operate: the edges that are crossed out are removed from the matching, the edges that
are have a dotted double are added to the matching.

1. Node v is linked only to u, that is, v is a pendant node. Then we build a maximal
matching M by first forcing u to be matched to a node that is not v, and then completing
it greedily. Now, if we remove the edge that matches u, we do not disconnect the graph
since u was part of a cycle, but neither u nor v is matched, thus the matching is not
maximal ((u, v) could be added). Thus the matching M was not 1-robustness.

2. Node v is linked to another node w. Let consider (vi)i the set of nodes such that vi ≠ v

and (u, vi) is a bridge. By the previous point, we know that there exists some wi ≠ u

in N(vi). Moreover, those (wi) must be distinct pairwise and from all the other named
nodes, otherwise (u, vi) would not have been a bridge. The node w and the nodes (wi)i

cannot be part of the 2-connected component of u, otherwise (u, v) and (u, vi) would not
be a bridge. We build a maximal matching M by first forcing (u, v) and (vi, wi) for all
i, and then completing it greedily. As observed earlier, in the 2-connected component
of u every node must belong to a cycle, thus by Claim 18, we get that every node of
this component must be matched. We now build a second matching M ′. We start from
M and remove from the matching (u, v) and every edge that is in v’s side of the bridge.
Then we force (v, w) in the matching, and complete it greedily. The matching M ′ is
maximal and u is unmatched, since all of its neighbors are matched, hence by Claim 18 it
is not 1-robust, since it belongs to a 2-connected components thus to a cycle.

This concludes the proof of the claim. ◁

To conclude a graph in the class is either a tree, or is 2-connected, and in this last
case because of Claim 18, every node must be matched in every maximal matching. Then
Lemma 13 follows from Theorem 14.

4.2 More than one edge removal
▶ Lemma 20. For any k ≥ 2, Uk

MM is composed of the cycle on four nodes and of the set of
trees.

Proof. We first prove the reverse inclusion. As before, trees are in Uk
MM for any k because

any edge removal disconnects the graph. Then for C4, note that it belongs to U1
MM , and

that the removal of more than one edge disconnects the graph.
For the other direction, we can restrict to U2

MM , and by definition it is included in U1
MM .

Thus we can simply study the case of the balanced complete bipartite graphs and of the
cliques on an even number of nodes. Consider first a complete bipartite graph Bk,k with
k > 2 (that is any Bk,k larger than C4), and a maximal matching M . Take two arbitrary
edges (a1, b1) and (a2, b2) from the matching and remove them from the graph. The graph
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is still connected. Now the nodes a1 and b2 are unmatched and there is an edge between
them, thus the resulting matching is not maximal and M is not 2-robust. Thus the only
Bk,k left in the class U2

MM is C4. For the cliques on an even number of nodes, consider one
that has strictly more than two vertices. A maximal matching M contains at least two edges
(u1, v1) and (u2, v2). When we remove these edges from the graph, we still have a connected
graph, u1 and u2 are unmatched, but (u1, u2) still exists, thus the resulting matching is not
maximal and M was not 2-robust. ◀

5 Maximal independent set

Maximal independent set illustrates yet another behavior for the classes (Uk
MIS)k: they form

an infinite strict hierarchy.

5.1 An infinite hierarchy
▶ Theorem 21. For every k ≥ 1, Uk+1

MIS is strictly included in Uk
MIS.

Proof. Let k ≥ 1. We will define a graph Gk, and prove that it belongs to Uk
MIS but not to

Uk+1
MIS .

To build Gk, consider a bipartite graph with k + 2 nodes on each of the sides A and B,
and add a pendant neighbor v to a node u on the side A. See Figure 6. This graph has
only three MIS: A, v ∪ B, and v ∪ (A \ u). Indeed: (1) if the MIS contains u, then it cannot
contain vertices outside of A, and to be maximal it contains all of A, (2) if it contains a
vertex of B, it cannot contain a vertex of A, and by maximality it contains all of B and v,
and (3) if it contains v, and no vertex of B, then by maximality it is v ∪ (A \ u).

A B

v u b

Figure 6 . Illustration of the graph Gk in the proof of Theorem 21.

We claim that these three MIS are k-robust, therefore Gk is in Uk
MIS . Suppose an MIS

is not k-robust. Then there exists a vertex w that is not part of the MIS, such that after
at most k edge removals, it has no neighbor in the MIS anymore. Let us make a quick
case analysis depending on who is this vertex w. It cannot be v, since removing the edge
(u, v) would disconnect the graph. It cannot be a vertex of A, nor of B, because in all MIS
mentioned, all non selected nodes (except v) have at least k + 1 selected neighbors.

Now we claim that v ∪ (A \ u) is not (k + 1)-robust, thus Gk does not belong to Uk+1
MIS .

We choose a vertex b on the B side, and remove all the edges (a, b) for a ∈ A \ u. This is a
set of k + 1 edges whose removal does not disconnect the graph, but leaves b without selected
neighbors. This v ∪ (A \ u) is not (k + 1)-robust. ◀

5.2 A structure theorem for Uk
MIS

The construction used in the proof of Theorem 21 is very specific and does not really inform
about the nature of the graphs in Uk

MIS . It can be generalized, with antennas on both sides
and arbitrarily large (unbalanced) bipartite graphs with arbitrary number of antennas per
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nodes, but it is still specific. Moreover these construction heavily rely on pendant nodes,
that are in some sense abusing the fact that we do not worry about the correctness of the
solution if the graph gets disconnected.

In order to better understand these classes, and to give a more flexible way to build such
graphs, we prove a theorem about how the class behaves with respect to the join operation
(Definition 7).

We denote by Gp the class of graphs where every maximal independent set has size at
least p. We say that a graph class is stable by an operation if, by applying this operation to
any (set of) graph(s) from the class, the resulting graph is also in the class.

▶ Theorem 22. For all k, the class Uk
MIS ∩ Gk+1 is stable by join operation. Also, if either

G or H is not in Uk+1
MIS, then join(G, H) is not in Uk+1

MIS either.

Proof. Let us start with the first statement of the theorem. Consider two graphs G and H

in Uk
MIS ∩ Gk+1. We prove that J = join(G, H) is also in Uk

MIS ∩ Gk+1.

▷ Claim 23. Any MIS of J is either completely contained in the vertex set of G, and is an
MIS of G, or contained in the vertex set of H, and is an MIS of H.

Proof. Consider an independent set in J . If it has a node u in G, then it has no node in H,
as by construction, all nodes of H are linked to u. The analogue holds if the independent set
has a node in H . Thus any independent set is either completely contained in G or completely
contained in H. Now, a set is maximal independent in G (resp. H) alone if and only if it is
maximal independent in G (resp. H) inside J . Indeed the only edges that we have added
are between nodes of G and nodes of H. This proves the claim. ◁

Therefore, the resulting graph is in Gk+1. Now for the k-robustness, consider without loss
of generality an MIS of J that is in part G, and suppose it is not k-robust. In this case there
must exists a non-selected vertex v, that has no more selected neighbors after the removal of
k edges (while the graph stays connected). This node cannot be in the part G, otherwise
the same independent set in the graph G would not be k-robust. And it cannot be in the
part H , since every node of H is linked to all the vertices of the MIS, and this set has size at
least k + 1 since G ∈ Gk+1.

Now, let us move on to the second statement of the theorem. Let’s assume that G has
an MIS S and k + 1 edges such that their removal makes that S is not longer maximal (i.e.
there exists some u that can be added to the set). Then, S is also an MIS of join(G, H),
and the removal of the same edges will allow to add u to the set, as the only new neighbors
of u are from H that does not contain any node of the chosen MIS ◀

6 The existence of a robust MIS is NP-hard

Remember that we have defined two types of graph classes related to robustness. For a given
problem, and a parameter k, the universal class is the class where every solution is k-robust.
This is the version we have explored so far. For this version, recognizing the graphs of the
class is easy since these have simple explicit characterization. The second type of class is the
existential type, where we want that there exists a solution that is k-robust. And here the
landscape is much more complex. Indeed, in [6] in the simpler case of robustness without
parameter, there is no explicit characterization of the existential class, only a rather involved
algorithm. In this section we show that, when we add the parameter k the situation becomes
even more challenging: the algorithm of [6] runs in polynomial time, and here we show that
the recognition of E1

MIS is NP-hard.
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▶ Theorem 24. For every odd integer k, it is NP-hard to decide whether a graph belongs
to Ek

MIS.

The rest of this section is devoted to the proof of this theorem. It is based on the
NP-completeness of the following problem.

Perfect stable
Input: A graph G = (V, E).
Question: Does there exists a subset of vertices S ⊂ V that is independent 2-dominating?

Remember that a set is independent 2-dominating if no two neighbors can be selected,
and every non-selected vertex should have at least two selected neighbors. Just to get
some intuition about why we are interested in this problem, note that with independent
2-dominating after removing an edge between a selected and a non-selected vertex, the
non-selected vertex is still dominated. It was proved in [7] that Perfect stable is NP-hard
in general. We will need the following strengthening of this hardness result.

▶ Lemma 25. Deciding whether a 2-connected graph has an independent 2-dominating set is
NP-complete.

Note that this lemma does not follow directly from [7] because the reduction there does
use some non-2-connected graphs.

Proof. Let G be an arbitrary connected graph with at least one edge. Consider G′ to be the
same as G but with a universal vertex, that is, G with an additional vertex u that is adjacent
to all the vertices of G. This graph is 2-edge connected. Indeed, since G is connected and
has at least two vertices, removing any edge (u, v) with v ∈ V (G) cannot disconnect the
graph, and removing an edge from G does not disconnect the graph because all nodes are
linked through v.

We claim that G′ has an independent 2-dominating set if and only if G has one. First,
suppose that G has such a set S. Note that the set S has at least two selected vertices.
Indeed, G has at least one edge, which implies that at least one vertex is not selected (by
independence), and such a vertex should be dominated by at least two selected vertices. Now
we claim that S is also a solution for G′. Indeed, the addition of u to the graph does not
impact the independence of S, nor the 2-domination of the nodes of G, and v is covered at
least twice, since there are at least two selected vertices in G. Second, if G′ has independent
2-dominating set S′, it cannot contain v. Indeed, because of the independence condition, if v

is selected, then no other node can be selected, and then the 2-domination condition is not
satisfied. Then S′ is contained in G and is an independent 2-dominating set of G. ◀

Now, let us formalise the connection between robustness and independent 2-domination.

▶ Lemma 26. In a 2-connected graph, the 1-robust maximal independent sets are exactly the
independent 2-dominating sets.

Proof. As a consequence of Property 10, in a 2-connected graph, a 1-robust MIS is an MIS
that is robust against the removal of any edge (that is, we can forget about the preserved
connectivity in the robustness definition). This means that every node not in the MIS is
covered twice, otherwise one could break the maximality by removing the edge between the
node covered only once and the node that covers it. In other words, the independent set must
be 2-dominating. For the other direction it suffices to note that any independent dominating
set is a maximal independent set. ◀
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At that point, plugging Lemma 25 and Lemma 26 we get that deciding whether there
exists a 1-robust MIS in a graph is NP-hard, even if we assume 2-connectivity. This last
lemma is the final step to prove Theorem 24.

▶ Lemma 27. For any 2-connected graph G and any integer k > 1, we can build in polynomial-
time a graph G′, such that: G has a 1-robust MIS if and only if G′ has a 2k − 1-robust
MIS.

Proof. We build G′ in the following way. Take k copies of G, denoted G1, ..., Gk, with the
notation that ux is the copy of vertex u in the x-th copy. For every edge (u, v) of G, we add
the edge (ux, vy) for any pair x, y ∈ 1, ..., k.

Let us first establish the following claim. An MIS in the graph G′ necessarily has the
following form: it is the union of the exact same set repeated on each copy. Indeed, let ui be
in the MIS. For any j ̸= i, all the neighbors of uj in the copy Gj are a neighbor of ui, which
implies that they are not in the MIS. Hence, no neighbor of u in any copy can be in the MIS.
As those nodes are the only neighbors of uj , it implies that uj is also in the MIS.

Now suppose that G has a 1-robust MIS. We can select the clones of this MIS in each
copy, and build an MIS for G′ (the independence and maximality are easy to check). In this
MIS of G′, every non-selected vertex has at least 2k selected neighbors, therefore this MIS is
2k − 1 robust.

Finally, suppose that G′ has a 2k − 1 robust MIS. Thanks to the claim above, we know
that this MIS is the same set of vertices repeated on each copy. We claim that when
restricted to a given copy, this MIS is 1-robust. Indeed, if it were not, then there would be
one non-selected vertex with at most one selected neighbor, and this would mean that in G′

this vertex would have only k selected neighbors, which contradicts the 2k − 1 robust (given
the connectivity). ◀

7 Conclusions

In this paper we have developed the theory of robustness in several ways: adding granularity
and studying new natural problems to explore its diversity. The next step is to fill in
the gaps in our set of results: characterizing exactly the classes Uk

MIS , and understanding
the complexity of answering the existential question for maximal matching and minimum
dominating set. We believe that a polynomial-time algorithm can be designed to answer the
existential question in the case of maximal matching with k = 1, with an approach similar
to the one of [6] for MDS (that is, via a careful dynamic programming work on a tree-like
decomposition of the graphs). A more long-term goal is to reuse the insights gathered by
studying robustness to help the design of dynamic algorithms.
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Abstract
In this work, we investigate the analysis of generators for dynamic graphs, which are defined as
graphs whose topology changes over time. We focus on generated graphs whose orders are neither
growing nor constant along time. We introduce a novel concept, called “sustainability,” to qualify the
long-term evolution of dynamic graphs. A dynamic graph is considered sustainable if its evolution
does not result in a static, empty, or periodic graph. To measure the dynamics of the sets of
vertices and edges, we propose a metric, named “Nervousness,” which is derived from the Jaccard
distance. As an illustration of how the analysis can be conducted, we design a parametrized generator,
named D3G3 (Degree-Driven Dynamic Geometric Graphs Generator), that generates dynamic graph
instances from an initial geometric graph. The evolution of these instances is driven by two rules that
operate on the vertices based on their degree. By varying the parameters of the generator, different
properties of the dynamic graphs can be produced. Our results show that in order to ascertain the
sustainability of the generated dynamic graphs, it is necessary to study both the evolution of the
order and the Nervousness for a given set of parameters.
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1 Introduction

Nature and human societies offer many examples of systems composed of entities that interact,
communicate or are just connected with each other. The Internet, a transportation network,
a swarm of robots, an ant colony, a social network, a urban network, or a crowd are some
examples [2].

Graphs are certainly one of the best formalism for modeling them. Every vertex in the
graph models one entity. A link is added between two vertices when a particular condition
about the corresponding entities is verified. For instance: two people are talking to each
other, a predator catches a prey, two playing cards are in the same hand, a virus passes from
one individual to another, two actors perform in the same play, etc. The semantic of the
interaction, communication or connection is proper to the system.

During the last two decades, many works have been dedicated to the study of networks
modeling these systems. It has been shown that, unlike classical, regular or random graphs,
graphs modeling complex real systems present specific statistical properties, leading re-
searchers to introduce the term of complex networks for naming them. Among the main
characteristics that were highlighted are the small-world and the scale-free properties. The
small-world property was discovered many years ago, in the 60s, when Stanley Milgram
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imagined and conducted the “small-world problem” in order to measure, through postal mail,
the number of intermediaries between any two persons in the USA [15, 20]. The scale-free
property was also observed quite a long time ago for some datasets.

Researchers working on networks are motivated by one key question: “How can we
explain the existence of certain properties in these networks?” To answer this, they aim
to design generative processes that can produce networks with these properties. In 1998,
Watts and Strogatz proposed a rewiring process to generate small-world networks from a
regular lattice [21]. In 1999, Barabàsi and Albert introduced the preferential attachment
mechanism to create networks with both small-world and scale-free properties [1]. Other
works have also used preferential attachment to generate networks with other features, such
as soft community structures [9] and navigability [3]. For example, Papadopoulos et al.
introduced self-similarity [17] as a mechanism that can create soft communities. This new
concept aims at connecting entities not because one is popular, but because they share
similarities. This work has been possible using hyperbolic geometry which helps embedding
both popularity (the preferential attachment) and similarity [19, 13]. Other models using
such a geometry have then been investigated creating networks with more properties, such
as the Geometric Preferential Attachment [22] and the nonuniform Popularity-similarity
Optimization model [16]. One relevant point to highlight is that such processes generate
growing networks: at each time step a new vertex is added to the graph and is more likely
linked to high degree vertices. Other mechanisms exist where the amount of vertices does
not change over time. For instance, this is the case of edge-markovian processes where only
edges are changed over time [6]. Other models such as Erdos-Renyi evolution model [7] or
the configuration model [4] can also be seen as such a model.

However many real-world systems are composed of a varying number of entities (increasing
and decreasing). For instance, living being populations may see the number of individuals
increase during some periods and decrease for some other periods [14]. And, to our knowledge,
generative models with such a characteristic have not been deeply studied. The work developed
in this paper aims at addressing this more general case where the set of vertices, between
two consecutive time steps, may either increase or decrease or may change while keeping the
same cardinality. To provide an example of the latter case, consider the interaction between
players during a game of rugby. The total number of players on the field remains constant
at 30 (assuming no exclusions); therefore, the order of the players is fixed. Nevertheless,
substitutions occur throughout the game.

Given a generative process, questions asked are: “how the dynamics of generated graphs
can be characterized?”; “what metrics might be used for that purpose, and how to compute
them?”; “from the point of view of dynamics, is it possible to classify or gather generators
into classes or families?”. In this ongoing work, not all questions are addressed. But we
hope it will be a milestone for carrying out analysis of dynamic graphs generators. For
this, in Section 2 a generic model of generators is presented and discussed. It is followed
by the definition of a novel notion based on a specific metric, both targeting the dynamics
of the graphs. Finally, the Degree-Driven Dynamic Geometric Graph Generator (D3G3)
is presented. D3G3 is a parameterized generator and according to the parameters, it can
produce a wide variety of dynamics. It will be used as a case study. A first global analysis of
the generated graph families is performed in Section 3. Section 4 focuses on specific values
of the parameters and present a rigorous analysis of the evolution of the dynamics of the
graph and of the likelihood of its sustainability. A conclusion, drawing some perspectives
and future investigations, closes temporarily this work.
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2 Definitions and Generative Model and Definitions

2.1 Notations
Consider two sets A and B:

△ operator: A△B is defined as A ∪ B − A ∩ B. For instance if A = {1, 2, 3, 4, 5} and
B = {4, 5, 6, 7, 8} then A△B = {1, 2, 3, 6, 7, 8}
Consider G a dynamic graph, Gt = (Vt, Et) denotes the state of the graph at time t,
where Vt is the set of vertices and Et is the set of edges.
|Vt| (resp. |Et|) corresponds to the number of vertices (resp. edges) of graph Gt.
For simplifying notations in the document, |Vt| is often denoted by nt

G = (V, E) is said to be a null graph if both V = ∅ and E = ∅. In the report such a null
graph can also be called an empty graph.
Let a and b to real numbers such that a < b. Then [a, b] refers to as a closed interval of
real number. Both end points belong to the interval. The open interval (a, b) represents
the same object, but end points are not included. A half-open interval [a, b) is an interval
including the endpoint a but not b. The (a, b] one includes b but not a.
The set N refers to as the set of non-negative integers ({0, 1, . . . }). The set of positive
integers is referred to as N∗ ({1, 2, . . . }).

2.2 Position of the work with respect to Temporal Networks
Current definitions of temporal networks (TN) include time-varying graphs [18], temporal
networks [12], evolving graphs [8], etc. They all define structures described by sequence of
static graphs, ordered by a timestamp (e.g., G = (Gi = (Vi, Ei))i⩾0) where i refers to the
time step). It is worth mentioning that TN definitions do not include information about the
generative process. Thus, the way the graph at time t + 1 is obtained from the graph at
time t is not described. In this report, the emphasis is precisely on the study of generative
processes. This work is therefore positioned upstream of TN. In the sequel graphs produced
by generators are called dynamic graphs or simply graphs.

2.3 Generalities
From a general point of view, a dynamic graph generator can be defined as a process with
input data, that produces at each time step t+1 a new static graph Gt+1. It is produced from
already generated static graphs {G1, . . . , Gt} and possibly additional information. Thus, the
output of a dynamic graph generator is a flow of static graphs identified by time stamps. The
time stamps may also corresponds to events, and in such a case, the time interval between
two time stamps may be different. However, in this report, for sake of clarity, we consider
integer time stamps. If the flow stops, for whatever reason (e.g. clock has been stopped,
evolution process is finished) at step T , the set of generated static graphs {G1, G2, . . . , GT }
corresponds to a temporal network (TN).

2.4 Sustainability
The goal of this section is to introduce a novel notion for qualifying the dynamics of a graph.
Only measurement of the order (or of the density) of the graph is not enough for qualifying
its dynamics. For instance, if a dynamic graph becomes static, all vertices remain the same
and the graph order does not change. Conversely, if between two consecutive time steps
all vertices are replaced by new ones, the order also remains the same, but the dynamics
is different. Sustainability qualifies a dynamic graph that never becomes null or periodic
(which includes static). A graph owing the sustainability property is said sustainable.
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▶ Definition 1 (Graph sustainability). A dynamic graph G is said sustainable if both Condi-
tion 1 and Condition 2 are not verified.

Condition 1: ∃T ∈ N, ∀t ⩾ T, Gt = (∅, ∅)
Condition 2: ∃T ∈ N and ∃k ∈ N∗, ∀t ⩾ T, Gt = Gt+k

Some well-known graph generators produce sustainable dynamic graphs. For instance
generators of growing networks. Indeed, for all t ∈ N, |Vt| > |Vt−1|, and Gt ̸= (∅, ∅). For
these generators, graph sustainability is obvious and does not require any analysis.

Unlike these cases, some generators are based on mechanisms making the evolution of
the vertices (and edges) more difficult to predict, and the dynamics is worth studying. For
that purpose, we propose to consider a metric enabling a quantification of the dynamics.

2.5 Nervousness
This metric provides a way of measuring the dynamics of a graph. Note that this metric
is derived from the Jaccard distance, which can be defined as one minus the coefficient
of community as outlined in [11]. However, in the context of dynamic graphs it seems to
us more meaningful to call it nervousness. This metrics is defined at the level of vertices,
edges and at the level of the graph. In this work, only vertices nervousness is defined. It is
different from the burstiness which is defined at the node/edge level during the lifetime of
the graph [10] and aims at representing the frequency of events occurring on each node/edge.
Nervousness metric aim is to capture the dynamics of creation and deletion of nodes and
edges between two time steps at graph level.

▶ Definition 2 (Vertices Nervousness). Given a dynamic graph G, such that at time t

Gt = (Vt, Et). We call vertices nervousness at time t and denoted by N V (t), the ratio:

N V (t) = |Vt+1△Vt|
|Vt+1 ∪ Vt|

= |Vt+1 ∪ Vt − Vt ∩ Vt+1|
|Vt+1 ∪ Vt|

This metric is complementary with the graph order measure. Indeed, graph order can
remain constant between two consecutive time steps although some vertices change. If all
vertices are replaced, nervousness equals 1. If all vertices are kept, nervousness is 0. Similarly
we define the edges nervousness as N E(t) = |Et△Et+1|

|Et∪Et+1| . Accordingly, Graph Nervousness is
defined as N G(t) = (N V (t), N E(t)).

For illustrating this definition, consider the following cases for a dynamic graph, from t

to t + 1. We denote |Vt| = nt. We also assume that between t and t + 1 the order remains
the same, thus |Vt+1| = nt+1 = nt = n.

if all vertices are replaced:

N V (t) = |Vt△Vt+1|
|Vt ∪ Vt+1|

= 2n

2n
= 1

if half of the vertices are replaced: N V (t) = 3n/2−n/2
3n/2 = n

3n/2 = 2
3

if the vertices remain the same, the union of the sets is equal to their intersection thus:
N V (t) = 0

When the order changes, for instance if all vertices are duplicated, thus |Vt+1| = 2nt = 2n:
N V (t) = 2n−n

2n = 1
2
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2.6 Sustainability vs Nervousness
Sustainability and nervousness are closely related. Sustainability describes a dynamic graph
property while nervousness enables the measure of the evolution of vertices and edges sets
between two consecutive time steps. When nervousness is null for both sets, the graph is
static and thus does not have the sustainability property. Consider a dynamic graph G, if
for all t ∈ N, N V (t) ̸= 0 or N E(t) ̸= 0, then G holds the sustainability property, except if G

is periodic.

2.7 D3G3: definition
In this section we define a parameterized model generating families of dynamic graphs. An
instance of the generative model is defined by a set of parameters. For studying the model,
we analyze, according to the parameters set, the dynamic graphs families produced and rely
on both the sustainability and the nervousness for that purpose.

The generator has two types of inputs: a set of parameters, Sp, and an initial graph,
called seed graph and denoted G0. At each time step t + 1 it produces, from the previous
graph Gt, a new graph Gt+1 as illustrated on the figure.

Evolution
Process Gt

seed graph G0

Sp = {parameters}

Clock

t + 1

Gt+1

G
t+1

Graphs produced by D3G3 are geometric graphs. A geometric graph is defined by an
euclidean space and a threshold d. For this study, without loss of generality we consider a
2D-unit-torus (i.e., a square [0; 1)2 where the two opposite sides are connected). Each vertex
is characterized by a set of coordinates, such that given two vertices u and v it is possible to
compute their euclidean distance: dist(u, v). Given V the set of vertices, the set of edges E

is defined in the following way: E = {(u, v) ∈ V 2 | dist(u, v) ⩽ d}. It is important to notice
that borders of the square modeling the torus are connected. Therefore considering one node
on the torus, the value of d for which the surface of the disk of radius d centered on this
node reaches its maximum for d =

√
2/2. It represents the half diagonal of the square.

Graphs generated by D3G3 are produced thanks to an evolution process. This mechanism
is parameterized by an initial graph (the seed graph) and by two transition rules driving the
evolution of the graph between two consecutive time steps. Apart from a random generator,
no external decision or additional information is used by this mechanism. Rules are based
on node degrees only and rely on a random generator for positioning new nodes in the 2D
euclidean space. This leads to the name of the generator: Degree-Driven Dynamic Geometric
Graphs Generator or D3G3.

From now, graphs we are studying are referred to as sequences of static graphs (Gt =
(Vt, Et))t⩾0, where t ⩾ 0 is the time step. The initial graph, G0 (t = 0) is called the seed
graph.
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8:6 Dynamic Graphs Generators Analysis: An Illustrative Case Study

▶ Definition 3 (Degree Driven Dynamic Geometric Graph Generator). An instance of D3G3 is
defined by an initial graph, a set of parameters and two rules:

G0 ̸= (∅, ∅) the seed graph,
parameters:

d ∈ (0,
√

2
2 ) (distance threshold for connection),

SS a set of non-negative integers
SC a set of non-negative integers

rules applied on Gt leading to Gt+1:
if v ∈ Vt, then v ∈ Vt+1 if and only if deg(v) ∈ SS (conservation rule)
if v ∈ Vt and if deg(v) ∈ SC then add a new vertex to Vt+1 with a random position in
the unit-torus (creation rule)

At a given time step, two nodes are connected if and only if their euclidean distance is
lower than d. Graph evolution between two consecutive time steps t and t + 1, is driven by
two rules applied to each vertex v ∈ Vt simultaneously. The first rule determines for a vertex
v ∈ Vt whether it is kept at step t + 1 while the second rule concerns the possibility for a
vertex v ∈ Vt to create a new vertex in Vt+1 according to its degree.
▶ Remark. For generating new vertices by the second rule we had two possibilities. Either
we choose, for each new vertex w stemmed from a vertex u, a random position in a finite
space, or, we choose a random position close to the position of u with no constraint on space
limits. We opted for the first option (the space is a unit 2D-torus), and we plan to analyze
the differences with the second option.

▶ Definition 4 (Conserved/Create/Removed/Duplicated nodes). Let t ⩾ 0 and G = (Gt) a
D3G. Let u ∈ Vt and v ∈ Vt+1, then

u is said to be a conserved node iff u ∈ Vt ∩ Vt+1.
u is said to be removed iff u ∈ Vt − Vt+1.
u is said to be a creator/creating node iff deg(u) ∈ SC .
v is said to be a created node iff v ∈ Vt+1 − Vt.
u is said to duplicate iff it is both a conserved and a creator node.

Once created, a node never change its position. Positions of created nodes do not depend
on the creating nodes positions. The position of a created node is chosen randomly and
uniformly over the unit-torus.

3 Theoretical Analysis

While the model is very simple, it presents a wide variety of dynamics and long-term
evolution. According to SS and SC composition, several classes of dynamic behaviors have
been identified. These classes have been defined by computing two measures: the evolution
of the order of the graph, and the evolution of the Graph Nervousness N G. Results are
reported in Table 1. A detailed analysis of each limit case is available in the report [5].

3.1 General Cases
General cases correspond to all cases for which both SC and SS are non empty sets and none
of both sets are equal to N. We classify all possible cases according to the tree represented
on Figure 1.

The case SC = SS composed of consecutive integers will be considered in Section 4. In
the present section we consider the cases for which SC ̸= SS .
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Table 1 Order, Nervousness evolution and sustainability property for the different cases. nt

denotes the order of graph Gt, N V (t) its vertices nervousness and N G(t) the graph nervousness.

SS

SC N Finite set ∅

N

∀t, nt = 2tn0 ∀t, nt+1 ⩾ nt ∀t, Gt = G0

∀t, N V (t) = 0.5 ∀t, 0 ≤ N V (t) ≤ 0.5 ∀t, N G(t) = (0, 0)
limnt→∞ P (nt+1 > nt) = 0

Sustainable Asymptotically non sustainable Non sustainable

Finite set

∀t, nt+1 ⩾ nt ∀t, nt+1 ⩽ nt

∀t, 0.5 ≤ N V (t) ≤ 1 General cases limt→∞ n = constant
limnt→∞ P (nt+1 > nt) = 0 (see Section 3.1) limt→∞ N G(t) = (0, 0)

Sustainable Sustainable

∅
∀t, nt+1 = nt ∀t, nt+1 ⩽ nt

∀G0, G1 = (∅, ∅)∀t, N G(t) = (1, 1) ∀t, Vt ̸= ∅ =⇒ N G(t) = (1, 1)
Sustainable Depends on parameters Non sustainable

SS , SC /∈ {∅,N}

SS and SC are segments SS and/or SC are/is not a segment

SS = SC = S SS ∩ SC ̸= ∅SS ∩ SC = ∅ SS ∩ SC = ∅ SS ∩ SC ̸= ∅

SS ∪ SC = N SS ∪ SC ⊂ N SS ∪ SC = N SS ∪ SC ̸= N

Figure 1 Leaves of the tree represent the general cases. Rounded corners green boxes corresponds
to cases for which results are presented in this section and in Section 4. Dashed boxes are cases not
covered within this report.

if SC ∩ SS = ∅ and SC ∪ SS ⊂ N then the order of the graph is non-increasing.
if SC ∩ SS ̸= ∅ and SC ∪ SS = N then the order of the graph is non-decreasing.
If SC ∩ SS = ∅ and SS ∪ SC = N, then |Vt| = |V0|, the order of the graph is constant.

On the second time they are assumed to cover the whole set of natural integer numbers.

▶ Theorem 5 (Disjoint sets). Let t ⩾ 0 and Gt = (Vt, Et) a graph and SS and SC two sets
of positive integers. If SS ∩ SC = ∅, then the series (|Vt|)t⩾0 is decreasing.

Proof. Let consider (Gt)t⩾0 a generated graph. Let t ⩾ 0 and u be a vertex in Vt. Then, as
SS ∩ SC = ∅, the degree of node u can’t belong to both sets. It follows that vertex u can’t
be both conserved and a creator. As this holds for every vertex in Vt, the order of generated
snapshot graph is not increasing between two consecutive steps. ◀

▶ Theorem 6 (Union set). Let SS and SC subsets of N. If SS ∪ SC = N, then the series
(|Vt|)t⩾0 is increasing.

Proof. The main argument here is the same used in the proof of theorem 5, except that the
degree of every node in Vt belongs to at least one of the two sets SS and SC . Therefore, the
order of generated snapshot graphs is not decreasing between two consecutive steps. ◀

SAND 2023
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3.1.1 Partition sets
In this section, SS and SC are considered to be a partition of N. This means SS ∩ SC = ∅
and SS ∪ SC = N. From theorems 5 and 6, one can say that for every graph Gt = (Vt, Et),
the series (|Vt|)t⩾0 remains steady. Two cases rises from that situations:

SS = N and SC = ∅: in that case the graph is constant (∀t, Gt = G0).
SS = ∅ and SC = N: the series of static graphs (Gt)t⩾0 is a series of independent random
geometric graph with a constant number of nodes (∀t, nt = n0).

4 Segments

This section focuses on the case SC = SS = S where S is a segment (i.e., an interval of
consecutive integers).

4.1 Model and conjecture
In this section parameters SS and SC are limited to equal sets of consecutive integers. Both
sets are such that SS = SC = [m, M ] (called segments), where m, M ∈ N2 and referred to as
S in the following. The evolution of graph order for different values of parameters m and M

is investigated. Some statements and properties are theoretically and experimentally proved
for the special case S = {0}. A relationship between graph order at a step t + 1 and at step
t and an upper bound for nt (t > 0) are given. Then, a theoretical analysis of the general
case is provided, and a new concept named sustainable interval is introduced. In the last
part of this section, vertices nervousness of graphs is studied through experimentation. It is
shown to be equal in average to 2

3 . The reason behind this particular value will be explained
in this last part.

4.2 S = {0}
The case SS = SC = S = {0} is considered in this section. The seed graph, G0, is supposed
to be a random geometric graph whose order is arbitrarily chosen. The main result about
this case is an estimation of the mean value of graph order. An approximation for small
values of the distance threshold d is provided.

▶ Theorem 7 (Expected value of graph order). Let S = {0}, d > 0 and G0 = (V0, E0) such
that there exists at least one node u ∈ V0 being isolated (i.e., deg(u) = 0), then either the
graph becomes empty, or the average number of conserved nodes is l(d) = 1 − log (

√
1+4α−1

2 )
log α

with α = 1
1−p and p = p(d).

Proof. Let t ⩾ 1. Two cases are to be discussed: the case of conserved vertices from step
t − 1 to step t (Vt ∩ Vt−1) and the case of created nodes at step t (Vt − Vt−1). As the
number of created nodes is the same as the number of conserved nodes from t − 1 to t, we
set ct = |Vt ∩ Vt−1| = |Vt − Vt−1|.

First let’s study the number of conserved vertices from step t to step t + 1 among those
conserved from step t − 1 to step t. cconserved

t+1 denotes this number. Let u ∈ Vt ∩ Vt−1. The
probability for u to be conserved is the probability that its degree to created nodes remains
equal to 0.

deg(u) =
∑

v∈Vt−Vt−1

X(u, v)
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Let v ∈ Vt − Vt−1. As in the previous section, X(u, v) ∼ B(p) and deg(u) ∼ B(ct, p) as a
sum of independent Bernoulli variables of same parameter p. Yt(u) denotes the event “u is
conserved at step t + 1”. The probability that u survives is P (Yt(u) = 1) = P (deg(u) = 0) =
(1 − p)ct , thus: Yt(u) ∼ B((1 − p)ct). Therefore, the number of conserved vertices at step
t + 1 among those conserved at step t is:

cconserved
t+1 =

∑
u∈Vt∩Vt−1

Yt(u)

As the position of created nodes are independent from themselves and from conserved vertices,
Yt(u) are independent for all u ∈ Vt ∩ Vt−1, cconserved

t+1 ∼ B(ct, (1 − p)ct).
Let’s study the number of conserved vertices among created nodes. ccreated

t+1 denotes this
number. Let u ∈ Vt − Vt−1. To study the degree of u, two cases must be studied. The first
one is the number of connections between u and all other created nodes (denoted as degC(u)).
The second one is the number of connections to already present nodes (denoted as degS(u)).
degC(u) and degS(u) can be obtained using the following formulas:

degC(u) =
∑

v∈Vt−Vt−1,u ̸=v

X(u, v)

degS(u) =
∑

v∈Vt∩Vt−1

X(u, v)

As the position of created points on the torus are independent one from the others,
degC(u) is a sum of independent Bernoulli variables and therefore, degC(u) ∼ B(ct − 1, p).
For degS(u), connections between a created node and an already present node are not
independent from each other: knowing u is connected to an already present node means it is
close to it and as other conserved nodes are farther than d, it implies that degS(u) is not a
sum of independent Bernoulli variables. However, as a first approximation, this quantity will
be considered as a sum of independent Bernoulli variables.

Thus, the computation of the expectation of ct+1 = cconserved
t+1 + ccreated

t+1 gives:

ct+1 = ct(1 − p)ct + ct(1 − p)2ct−1

By looking for a limit to this series gives l ⩾ 0 satisfying:

l = l(1 − p)l + l(1 − p)2l−1

Solving this equation gives l = 0 or :

l = 1 −
log
(√

1+4α−1
2

)
log α

with α = 1
1 − p

◀

Experiments have been run to see if this relationship holds.

▶ Corollary 8. Let d > 0 and l(d) as defined in the Theorem 7. Then for small values of d:

l(d) ∼ −
log
(√

5−1
2

)
πd2 = log ϕ

πd2

where ϕ is the golden ratio
(

1+
√

5
2

)
.
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Proof. Let d > 0 be small. Thus, applying Taylor expansion gives 1
1−πd2 ∼ 1 + πd2

and log
(

1
1−πd2

)
∼ πd2. The numerator comes from 4 · 1

1−πd2 ≃ 4. The golden ratio is

obtained using operations on log and by noticing that 2√
5−1 = 2(

√
5+1)
4 = ϕ, the golden ratio.

Combining these results leads to the statement of the corollary. ◀

It is therefore possible to state that, in the case where S = {0}, it is possible to theoretically
get an expectation of graph order as well as to get an upper bound for graph order depending
on parameter d.

Experiments have been performed to see whether the expected value graph order holds.
These experiments has been performed for different values of threshold d. A linear regression
shows that the relationship holds with a R2 of more than 0.99.

4.3 The general case
Now the focus is on S = [m, M ] for every m and M integers. The goal is to provide a
tool aiming at stating, for given parameters m, M and d, whether the graph is likely to be
sustainable or not. This part mainly focuses on a simpler model. This model is studied as it
helps understanding the evolution of graph order.

4.3.1 Study of graph evolution
In this Section we aim at estimating the evolution of the graph order during graph dynamics.
However, in the D3G3 model, between two time steps, non-conserved nodes are removed from
the graph and conserved nodes are located at the same position, which entails a remanent
graph. This remanent graph induces a structure influencing the computation of graph order.
More precisely, nodes that are about to be removed connected to conserved ones interfere in
the probability that conserved nodes at time t are still conserved at time t + 1. This is linked
to computing the degree of the neighbors of a node u knowing the degree of node u. To
our knowledge, this is a difficult question. For that purpose, a relaxed version of the D3G3
model is considered enabling analytical study of this evolution. In this model, conserved
nodes are moved (i.e., their position are changed) such that obtained graph is a new random
geometric graph at each step. We call this model “the redistributed model”. This will help
us proving the following theorem:

▶ Theorem 9. Let G = (Gt) be a dynamic graph obtained with the redistributed model, then
at every step t, nt+1

2 ∼ B(nt, p(S, d, nt)), where p(S, d, nt) is the probability that a node is
conserved between step t and t + 1:

p(S, d, nt) =
M∑

k=m

(
nt − 1

k

)
pk(1 − p)nt−1−k

Here, p(d) refers to the probability for two different nodes to be connected (i.e., the probability
that the distance between them is lower than or equal to d), which is, for d ⩽ 1

2 , πd2.

Proof. In the redistributed model, at time step t a RGG (Gt) is built. If the graph order
at time t is equal to nt, the graph order at t + 1 is equal to twice the number of surviving
nodes at time t. As every node has an independent position in the torus, this probability is
the same for all nodes. Let’s denote it p(S, d, nt). Let u ∈ Vt. Then:

p(S, d, nt) = P (deg(u) ∈ S) =
M∑

k=m

P (deg(u) = k) =
M∑

k=m

(
nt − 1

k

)
pk(1 − p)nt−1−k (1)
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Assuming one node is a conserved node, it does not affect the probability of conservation
for other nodes. The number of conserved nodes can be computed summing independent
Bernoulli’s events of parameter p(S, d, nt). This gives nt+1

2 follows a binomial distribution of
parameter nt and p(S, d, nt). ◀

Computing expectation for a binomial distribution leads to an expectation for nt+1
knowing nt. Indeed, this expectation is 2ntp(S, d, nt). For a fixed set S, this provides a
relationship between nt and nt+1:

▶ Definition 10 (Expectation of graph order). Let m, M and d be parameters for the
redistributed model. Let G = (Gt) be an obtained graph with such parameters. Then, the
expectation of graph order at step t + 1 (nt+1) knowing graph order at step t (nt) is fS,d(nt)
and satisfies nt+1 = fS,d(nt) = 2ntp(S, d, nt), and then:

∀n ∈ N, fS,d(n) = 2np(S, d, n) (2)

This quantity is referred to as the relationship in the sequel. Studying the relation for
every value of m, M and d turns out to be a difficult problem. However some results may be
conjectured. A first conjecture concerns the variations of the relationship:

▶ Conjecture 11. Let m, M and d be parameters of the model. Let S = [m, M ] and fS,d the
relationship as defined above. Then there exists n∗ ∈ N such that fS,d is increasing on [0, n∗]
and decreasing on [n∗ + 1, +∞[.

This conjecture is difficult to prove due to the sum involved in the computation of fS,d.
However, it is not necessary to study the relationship for all integers. It is possible to perform
the study on a limited interval. This is the purpose of theorem 13 (below). But before
proving this theorem, it is necessary to provide another formulae computing variations of
fS,d:

▶ Lemma 12. Let m, M and d be parameters of the model. Let ∆fS,d defined as the variation
of fS,d: for n ∈ N, ∆fS,d(n) = fS,d(n + 1) − fS,d(n). Then:

∀n ∈ N, ∆fS,d(n) = 2
M∑

k=m

(k + 1)
(

n

k

)
pk(1 − p)n−1−k

(
1 − n + 1

k + 1 p

)
Proof. Let m, M and d be parameters of the model. Let n a be non-negative integer. This
proof only focuses on the terms of the sum of ∆fS,d:

∆fS,d(n) = 2
(

M∑
k=m

(n + 1)
(

n

k

)
pk(1 − p)n−k − n

(
n − 1

k

)
pk(1 − p)n−1−k

)

= 2
M∑

k=m

pk(1 − p)n−1−k

(
(n + 1)

(
n

k

)
(1 − p) −

(
n − 1

k

))
Let k ∈ N such that m ⩽ k ⩽ M . Every term of the sum of ∆fS,d can be expressed as follow
only using results on binomial coefficients:

∆fS,d(n) = 2
M∑

k=m

(k + 1)
(

n

k

)
pk(1 − p)n−1−k

(
1 − n + 1

k + 1 p

)
◀

It is now possible to state the following theorem about variations of fS,d:
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▶ Theorem 13. Let m, M and d be the parameters of the model. Let S = [m, M ] and fS,d

the relationship as defined above. Let p = p(d) be the probability for two different nodes to be
connected. Then, fS,d is increasing between 0 and m+1

p − 1 and decreasing from M+1
p − 1 to

infinity.

Proof. The goal is to prove that ∆fS,d(n) is positive for n < m+1
p − 1 and negative for

n > M+1
p − 1. To understand this, ∆fS,d(n) can be rewritten as shown in lemma 12. It is

sufficient to notice that, for all k ∈ S, the sign of every single term of the sum is the sign of(
1 − n+1

k+1 p
)

. For fixed k, the term is positive if and only if n is lower than k+1
p − 1. As this

last term is an increasing function of k, all terms of the sum are therefore positive if n is
lower than m+1

p − 1 and negative if n is greater than M+1
p − 1. Hence, the relationship is

increasing from 0 to m+1
p − 1 and decreasing from M+1

p − 1 to infinity. ◀

Thanks to theorem 13, conjecture 11 is proved for intervals [0, xm] and [xM , ∞[ for xm =
m+1

p − 1 and xM = M+1
p − 1. At this stage, quantifying more precisely the evolution of the

graph order is not achievable. However, a study of the fixed points of fS,d enables to draw
some conclusion about generated graphs sustainability.

4.3.2 Graph evolution and sustainability
First note that knowing the variations of fS,d is not enough to deal with graphs sustainability.
Indeed, as claimed by the following theorem, big graphs are not sustainable.

▶ Theorem 14 (Non-sustainability of big graphs). Let m, M and d be parameters of the model.
Let fS,d be the relationship. Then, there exists N > 0 such that for all n > N, fS,d(n) < 1.

Proof. For this proof, it is sufficient to prove that fS,d(n) → 0 when n → +∞. To do so,
fS,d(n) can be rewritten as follow:

fS,d(n) = 2n

(
M∑

k=m

(
n − 1

k

)
pk(1 − p)n−k−1

)

From theorem 24, the sum tends toward 0 as the product of a polynomial and an exponential,
therefore, fS,d(n) is also tending toward 0. ◀

This theorem says that there always exists a graph order limit such that graphs whose order
are greater than this limit are likely to become empty. Therefore, it is not possible to obtain
sustainable graphs with a large amount of nodes.

A new mathematical concept is now introduced aiming at classifying parameters into
three classes. This concept is referred to fixed point and is defined as follow:

▶ Definition 15 (Fixed Point). Let m, M and d be parameters of the model. A fixed point
for the relationship fS,d is an non-negative integer n such that:{

fS,d(n) ⩽ n and fS,d(n + 1) > n + 1
or fS,d(n) ⩾ n and fS,d(n + 1) < n + 1

Such fixed points characterize variation of graph order. Indeed, graph of order n for n

taken between two consecutive fixed points is either always decreasing or increasing. From
experiment performed on the redistributed model as well as on D3G3, three different cases
appear and are conjectured as follow:
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▶ Conjecture 16. For all m, M and d being parameters of the model, the relationship fS,d

has either one, two or three fixed points.

This conjecture is the main tool aiming at studying sustainability in the segment case. Indeed,
in the three different cases, it is possible to answer whether a given set of parameters is
sustainable or not. However, their is no characterisation about parameters value that may
help founding which case parameters lead to. The only one claim that can be made is that d

does have an influence on this case.
The conjecture 16 is assumed in this subsection. This section aims at stating about

sustainability in the three different cases. This is illustrated by a description of the behavior
of the relationship fS,d in every case.

4.3.2.1 One fixed point

First let’s consider the case where the relationship has only one fixed point. When it has only
one fixed point, this point is 0. This comes from fS,d(0) = 0. Moreover, for all n, fS,d(n) < n.
As for a snapshot graph of order nt at step t, fS,d(nt) gives the expectation value of nt+1 at
step t + 1. Graph orders of generated graphs are decreasing in average. Graphs obtained in
this case are therefore not sustainable.

One fixed point. Two fixed points. Three fixed points.

4.3.2.2 Two fixed points

For the two fixed points case, 0 is also a fixed point. The argument is also because fS,d(0) = 0.
The other one is greater than zero. The case where fS,d has two fixed points is assumed to
happen if and only if 0 ∈ S and is stated in the following conjecture.

▶ Conjecture 17 (Characterisation of the two fixed points). The relationship fS,d has two
fixed points if and only if m = 0.

An argument is that a snapshot graph with one vertex becomes empty if and only if 0 /∈ S,
that is m = 0. Moreover, for n = 0, the first term of the sum defining fS,d is equal to 1 so
fS,d(0) = 2. Graphs generated in such configurations are therefore sustainable as long as
their graph order does not exceed a limit. This limit is a consequence of theorem 14. In this
case, graphs whose order exceeds the limit are likely to become empty.

4.3.2.3 Three fixed points

For the last case, the goal is to show that graph order is likely to remain bounded. Deeply
looking at this case raises the question of values of graph order for which the size is not too
large and not too small so that it does not collapse. For that purpose we define an interval,
called sustainable interval, such that, if the graph order remains within that interval, this
ensures the persistence of the graph. This sustainable interval is considered as a tool to
study graph sustainability. It concerns expectation of graph order evolution through time. It
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says that if the image of the function fS,d for all integers within the interval does not exceed
the upper bound, then the graph is likely not to collapse. Let’s define more precisely this
concept:

▶ Definition 18 (sustainable interval). Let m, M and d be parameters of the model. Let
consider fS,d set such that it has three fixed points. Let Nm be the first positive fixed point and
N ′

m the smallest integer greater than Nm such that fS,d(N ′
m) ⩾ Nm and fS,d(N ′

m + 1) < Nm.
The sustainable interval associated to m, M and d is defined as the interval [Nm, N ′

m].

Such an interval satisfies a property about the values fS,d takes when it is restricted to it:

▶ Theorem 19 (Sustainability in the sustainable interval). Let m, M and d be parameters of
the model. Let assume the relationship fS,d has three fixed points and that [Nm, N ′

m] is its
associated sustainable interval. If the relationship does not exceed N ′

m, then the relationship
satisfies:

∀n ∈ [Nm, N ′
m], fS,d(n) ∈ [Nm, N ′

m]

Proof. The lower bound of the interval comes comes from definition of the sustainable
interval. The upper bound is a hypothesis of the theorem. ◀

Main interpretation of that theorem is graphs are sustainable in probability in the sustainable
interval if and only if there are no values of fS,d that exceed the upper bound of the sustainable
interval.

The following paragraphs provide arguments aiming at obtaining the sustainable interval.
They also provide arguments to check whether the relationship exceeds the upper bound of
the interval. The theorem 13 clearly gives bounds to find out the maximum of the relationship
fS,d. Three algorithms are sufficient to answer both questions: an algorithm to compute
the argument of the maximum of the relationship fS,d, an algorithm to find its fixed point
between 0 and the argument of the maximum and an algorithm to solve fS,d(n) = y for n

greater than the argument of the maximum and y > 0 lower than or equal to the maximum.
In the following, these algorithms are first implemented. It is then explained how to use
them to answer questions about the sustainable interval.

The argument maximum: To compute the argument maximum of the relationship, it is
sufficient to study fS,d on the interval [xm, xM ] for xm and xM as defined above. This is
a consequence of theorem 13. Let’s denote it N∗.

The first positive fixed point: To find the fixed point of fS,d mentioned in the definition
of the sustainable interval, it is sufficient to compute the argument maximum of it.
The previous algorithm answers this question. Then, as the relationship is increasing
from 0 to N∗, it is sufficient to iterate and find an integer n such that fS,d(n) ⩽ n and
fS,d(n + 1) > n + 1.

The solution of the equation: For the last algorithm, the goal is to find an integer n such
that n is greater than N∗ of fS,d, fS,d(n) ⩾ y and fS,d(n) < y, for a fixed y which is
assumed to be positive and lower than the maximum of fS,d.

From these algorithms it is possible to implement algorithms stating the existence of the
sustainable interval and its bounds. For the existence or not of the sustainable interval, it is
sufficient to check whether the maximum of the relationship is greater than its argument. This
comes from that sustainable interval exists if and only if there are values of the relationship
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that exceed their argument. As the relationship is increasing from 0 to fS,d(N∗), then
sustainable interval exists if and only if fS,d(N∗) > N∗. For computing the sustainable
interval boundaries, it is sufficient to know the value of the first fixed point Nm (as it provides
the lower bound) and to solve the equation fS,d(x) = Nm as finding the corresponding
x to this equation provides the upper bound (N ′

m). The existence of N ′
m is ensured by

theorem 14.

4.4 Vertex nervousness
The goal is to highlight a characterization aspect of the segment family using the vertex
nervousness metric. As edge nervousness will not be studied for that case, vertex nervousness
will be referred to as nervousness in this section. As in this particular configuration, survivors
are the same as created nodes, it is possible to state particular results about the value of
nervousness:

▶ Theorem 20. Let S be a segment set of non-negative integer and d ∈ (0,
√

2
2 ). Let G be a

generated graph of order nt at step t and number of survivor from step t to step t + 1 referred
to as st. Then:

N v
t = nt

nt + st

Proof. To prove this result, it is sufficient to notice that nt+1 = 2st, as SS = SC , which
means the number of survivors is the same as the number of created nodes. Thus, applying
some basic result about set sizes and noticing that st = |Vt ∩ Vt+1|, leads to:

|Vt ∪ Vt+1| = nt + nt+1 − st = nt + st

|Vt△Vt+1| = nt + nt+1 − 2|Vt ∩ Vt+1| = nt

It follows that vertex nervousness is well equal to nt

nt+st
. ◀

Result about the nervousness observed in generated graphs parameterized with a segment
set S is stated in the following conjecture:

▶ Conjecture 21. Let m, M ∈ N. Let S = [m, M ] and d > 0 be parameters of the generator
and let G = (Gt)t⩽0 be a generated graph. Then the vertex nervousness is in average equal
to 2

3 .

Although this conjecture has not been proved theoretically, experimentation have been
performed. They all highlight this conjecture telling that the average nervousness of generated
graphs is roughly equal to 2

3 . Results of this experimentation are gathered on picture 2. A
possible interpretation of this conjecture and performed experimentation relies on the result
stated in theorem 20 and on results from last part. Indeed, if vertex nervousness is close
to 2

3 , it means st ≃ nt

2 . Then, as nt+1 = 2st, it comes nt+1 ≃ nt, which means that graph
order is close to a fixed point of the relationship fS,d mentioned in the previous section.

5 Conclusion

This paper shows our first investigations in the study of dynamic graph generators. This
work concerns a simple generator. As a reminder, the model is parameterized through three
variables: a connection threshold d aiming at connecting all points closer than a distance d

and two sets SS and SC containing non-negative integers. The first one aims at deciding
whether a node is kept between two consecutive steps and the second one whether a node is
at the origin of a new node at the very next step. Several non-trivial properties are shown
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Figure 2 Mean value of nervousness got from experimentation. Points represent the average
over 20 runs and 30000 time steps for a single m and M . The yellow surface is the plan of equation
z = 2

3 . For all these parameters, d is set to 0.05. Red points represent nervousness of value greater
than 2

3 . Blue points represent nervousness of value lower than 2
3 .

about the model. All these properties concern products of the generator. The generator, for
a single configuration, produces a family of graphs and not a single graph. Properties are
therefore about the whole family of graphs the generator provides for a single configuration.
All these properties shown try to answer a single question. This question concerns graph
sustainability. It is defined as the property, for a given graph obtained with a given seed
graph and evolving rules, that the graph becomes neither empty after a finite number of
steps nor periodic. Defining this concept for this model is not simple since the evolving
rules are not deterministic. It involves probabilistic computations and therefore questions
about a possible threshold for which the graph is said to be sustained if the probability of
the emptiness of the graph is greater than this threshold. Here the focus has been made on
two different metrics, graph order evolution and vertex nervousness, the second one being
a renaming of the Jaccard distance metric. Different values of the parameters have been
studied, but it has not been possible to try them all as the amount of possible cases is far
too big. Cases for which properties have been shown are limit cases, the general case and
a very specific case referred to as “segments”. Limit cases have led to a first classification
when at least one of the two parameter sets is either empty or contains all non-negative
integers. General cases highlights some properties for specific values of the two sets. Finally,
the case where both sets are equal and contains consecutive non-negative integers has been
studied. These sets are called segments. It has revealed theoretical difficulties, especially
when computing graph order between consecutive steps. This has led to the creation of a
new tool named the “sustainable interval”. This tool aims at estimating bounds that frames
graph order even though it is not always reliable as probabilities are involved. This last
study is only about equal sets. For further studies, the case where both sets are segments
but not equal seems relevant as it does not change too much from the segment case.
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A Appendices

A.1 Binomial coefficient and Binomial distribution
This section aims at providing results about binomial coefficient and binomial distribution.
From now the objective of the two following theorems is to provide asymptotic equivalent of
expressions involving a binomial coefficient. The first theorem gives an asymptotic equivalent
of
(

n
k

)
:

▶ Theorem 22 (Asymptotic analysis of binomial coefficient). Let k and n be non-negative
integers such that k ⩽ n and k does not depend on n. Then as n tends to infinity, the
following holds(

n

k

)
∼ nk

k!
Proof. Let k and n as in the above statement. Then, it is sufficient to rewrite the binomial
coefficient as follow:(

n

k

)
= n!

k!(n − k)! = 1
k!

k−1∏
i=0

(n − i) ∼ nk

k! (Asymptotic equivalent of a polynomial) ◀

The following theorem provides an equivalent of the mass function of a binomial distribution:

▶ Theorem 23 (Asymptotic analysis of binomial distribution). Let k and n be non-negative
integers such that k does not depend on n. Let x ∈ (0, 1). Then the following limit holds:

lim
n→+∞

(
n

k

)
xk(1 − x)n−k = 0

Moreover the following equivalent can be expressed:(
n

k

)
xk(1 − x)n−k ∼ 1

k!

(
x

1 − x

)k

nk(1 − p)n

Proof. Let k, n and x as defined in the above statement. As stated in theorem 22, an
asymptotic equivalent of

(
n
k

)
is 1

k! × nk. Therefore, the following holds:(
n

k

)
xk(1 − p)n−k =

(
x

1 − x

)k (
n

k

)
xn ∼ 1

k!

(
x

1 − x

)k

nkxn

To conclude it is sufficient to notice that nkxn tends toward 0 as n tends to infinity (due to
x ∈ (0, 1)). ◀

▶ Theorem 24. Let A ⊂ N be a finite set of non-negative integers. Let n be a non-negative
integer and x ∈ (0, 1). Then the following holds

lim
n→+∞

(∑
k∈A

(
n

k

)
xk(1 − x)n−k

)
= 0

https://doi.org/10.1038/30918
https://doi.org/10.1038/srep09421
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Proof. As set A is finite, the sum in the statement has a finite number of terms. Let denote
a = |A| and M = max A. For values of n such that n ⩾ 2M , the following inequality holds:

∀k ⩽ M,

(
n

k

)
⩽

(
n

M

)
Moreover, as 1−x < 1, y 7−→ (1−x)n−y is increasing. Therefore, for all k ⩽ M , (1−x)n−k ⩽
(1 − x)n−M . It is thus possible to get the following inequality for all k ⩽ M :

0 ⩽

(
n

k

)
(1 − x)n−kxk ⩽

(
n

M

)
(1 − p)n−M xk ⩽

(
n

M

)
(1 − p)n−M

Noticing the sum is composed of a elements, it can be bounded as follow

0 ⩽
∑
k∈A

(
n

k

)
xk(1 − x)n−k ⩽ a

(
n

M

)
(1 − x)n−M

As M is fixed an equivalent to right term of the previous inequality as n grows to infinity is:

a

(
n

M

)
(1 − x)n−M ∼ a

(1 − x)M

nM

M !eM
(1 − x)n

As nM xn tends toward 0, the right term of the equivalent tends toward 0 too. Moreover, the
sum is composed of positive elements. Applying the squeeze theorem leads to the wanted
limit. ◀

▶ Theorem 25. Let k and n be two non-negative integers. Let x ∈ (0, 1). Then, the following
holds:

(n + 1)
(

n

k

)
(1 − p) − n

(
n − 1

k

)
= (k + 1)

(
n

k

)(
1 − p

n + 1
k + 1

)
Proof. The above statement can be proved with the following equations:

(n + 1)
(

n

k

)
(1 − p) − n

(
n − 1

k

)
= (k + 1)

(
n + 1
k + 1

)
(1 − p) − (k + 1)

(
n

k + 1

)
= (k + 1)

((
n + 1
k + 1

)
− p

(
n + 1
k + 1

)
−
(

n

k + 1

))
= (k + 1)

((
n

k

)
− p

(
n + 1
k + 1

))
= (k + 1)

((
n

k

)
− p

n + 1
k + 1

(
n

k

))
= (k + 1)

(
n

k

)(
1 − p

n + 1
k + 1

)
◀
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Abstract
In the shortest path interdiction problem, an interdictor aims to remove arcs of total cost at most a
given budget from a directed graph with given arc costs and traversal times such that the length of
a shortest s-t-path is maximized. For static graphs, this problem is known to be strongly N P-hard,
and it has received considerable attention in the literature.

While the shortest path problem is one of the most fundamental and well-studied problems also
for temporal graphs, the shortest path interdiction problem has not yet been formally studied on
temporal graphs, where common definitions of a “shortest path” include: latest start path (path
with maximum start time), earliest arrival path (path with minimum arrival time), shortest duration
path (path with minimum traveling time including waiting times at nodes), and shortest traversal
path (path with minimum traveling time not including waiting times at nodes).

In this paper, we analyze the complexity of the shortest path interdiction problem on temporal
graphs with respect to all four definitions of a shortest path mentioned above. Even though the
shortest path interdiction problem on static graphs is known to be strongly N P-hard, we show
that the latest start and the earliest arrival path interdiction problems on temporal graphs are
polynomial-time solvable. For the shortest duration and shortest traversal path interdiction problems,
however, we show strong N P-hardness, but we obtain polynomial-time algorithms for these problems
on extension-parallel temporal graphs.
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1 Introduction

Not least because of its great applicability to a wide range of real-world problems, the shortest
s-t-path problem is undeniably one of the most central and well-studied problems in graph
theory and network optimization. On static graphs, where the graph is not subject to change
over time, efficient algorithms to solve the shortest path problem are known. The assumption
of a graph not changing over time, however, is often too restrictive when modeling real-world
problems such as the spread of the virus during the COVID-19 pandemic. In such settings,
the concept of temporal graphs, where arcs are only available at certain times, allows for
more realistic models (see, e.g., [4, 17]) and has recently attracted the interest of researchers
in algorithmic network optimization (see, e.g., [1, 26, 27]).
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Another topic that has become increasingly important in times of uncertainty are in-
terdiction problems, where an interdictor aims to remove arcs of total cost at most a given
budget from a (directed or undirected) graph or network such that the optimal objective
value of an optimization problem on the resulting graph or network is maximized (in case of
a minimization problem) or minimized (in case of a maximization problem). An important
example of a highly relevant interdiction problem is the shortest path interdiction problem,
where arcs are to be removed from a graph subject to a given budget such that the length of a
shortest s-t-path for two given nodes s and t is maximized. Another example of a well-studied
interdiction problem is the network flow interdiction problem, where arcs are to be removed
from a network subject to a given budget such that the value of a maximum s-t-flow between
two given nodes s and t is minimized [33, 37]. This problem is known to be strongly N P-hard
and several results about its approximability have been obtained [8, 11, 15].

In this paper, we investigate the temporal shortest path interdiction problem, where the
aim is to remove arcs from a directed temporal graph such that the length of a shortest
path from a node s to another node t is maximized. As the length of a path in a temporal
graph can be interpreted in various different ways, we investigate four common versions of
the temporal shortest path interdiction problem. We show that two of these versions are
polynomial-time solvable, while the other two are strongly N P-hard.

1.1 Previous Work
The following paragraphs summarize the state-of-the-art concerning shortest path problems
on temporal graphs, the (static) shortest path interdiction problem, and related interdiction
problems on temporal graphs.

We start with an overview of the literature about shortest path problems on temporal
graphs. The model of a temporal graph used in this paper (and, e.g., in [10, 38]) is sometimes
also referred to as a scheduled network [7] or a point-availability time-dependent network [9].
Here, each temporal arc r can only be entered at a given start time τ(r) and it takes λ(r)
units of time to traverse the arc, which leads to an arrival time of τ(r) + λ(r) at the end
node of the arc. In this model, four different definitions of a “shortest path” between two
nodes s and t are considered (see [38]):

reverse-foremost or latest start path, which is an s-t-path with maximum start time of
the first arc in the path,
foremost or earliest arrival path, which is an s-t-path with minimum arrival time of the
last arc in the path,
shortest duration path, which is an s-t-path with minimum total traveling time including
waiting times at the nodes,
shortest traversal path, which is an s-t-path with minimum total traveling time not
including waiting times at the nodes.

For each of the four definitions, the corresponding temporal shortest path problem can be
solved efficiently, i.e., a shortest path can be computed in polynomial time [5, 10, 38].

A different definition of temporal graphs is considered, e.g, in [27], where a wide range
of well-studied graph problems is investigated on temporal graphs. This definition can be
interpreted as the special case of the previous definition obtained when all traversal times are
zero.1 Biobjective versions of temporal shortest path problems are considered in [9, 30, 31].

1 This implies that all polynomial-time solvability results presented here can immediately be transferred
to the definition used in [27]. For our hardness results, we point out explicitly whether they can be
transferred to this definition of temporal graphs.
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A definition that allows for continuous availability of arcs in a temporal graph as well as
a time dependency of an arc’s traversal time is provided in [13]. This definition can be seen
as a generalization of the definition from [10, 38] used here. However, due to the definition’s
large generality, it does not allow for a finite encoding of temporal graphs without imposing
further assumptions, so classical techniques of complexity analysis cannot be applied for the
most general form of this definition. A natural finite encoding is possible, e.g., if each arc is
restricted to be present over a time interval, i.e., it can be entered at any time between two
specified points in time. Even for this special case of the definition in [13], it is shown in
Section 4.1 that deciding whether two nodes s and t can be separated by removing no more
than B arcs from the graph is already strongly N P-hard.

Next, the literature about the shortest path interdiction problem on static graphs is
summarized. To explicitly distinguish between the problem on static graphs and the problem
on temporal graphs, we refer to the shortest path interdiction problem on static graphs as
the static shortest path interdiction problem (S-SP-IP) in the following. This problem is
also referred to as the most vital arcs problem in the literature [2]. S-SP-IP is one of the
most-studied network interdiction problems and a vast amount of literature exists on the
problem. A detailed overview is provided in [35]. Concerning the complexity of S-SP-IP, the
first proof of weak N P-hardness is provided in [2]. This result is extended in [3], where it is
shown that S-SP-IP is strongly N P-hard even on acyclic graphs and for the special case of
unit arc lengths and removal costs. This result is further extended in [24], where it is shown
that it is N P-hard to approximate S-SP-IP within any factor α < 2. Indeed, it is still an open
question whether any non-trivial approximation algorithms exist for S-SP-IP. Variations of
S-SP-IP considering online settings, randomized interdiction strategies, or multiple objectives
have recently been studied, e.g., in [12, 21, 34].

While, to the best of our knowledge, the complexity of the shortest path interdiction
problem has not been formally investigated on temporal graphs, a polynomial-time algorithm
that decides whether there exist k arc-disjoint temporal s-t-paths is presented in [7]. They
further show that it can be decided in polynomial time whether there exists a temporal
s-t-path arriving before a given arrival time even if up to k arcs are removed, which implicitly
solves the temporal earliest arrival path interdiction problem for unit removal costs. However,
it is not clear whether the algorithm can be extended to the case in which arcs can have
different removal costs.

Further, related reachability interdiction problems on temporal graphs are studied in [16,
17, 18, 29]. Here, the goal is to minimize (or maximize in some cases) the number of nodes
reachable from a single node or a set of nodes in a temporal graph by either removing
arcs, delaying start times, or changing the order of start times. While the vast majority of
studied problems turn out to be N P-hard even under severe restrictions, only a few special
cases are shown to be polynomial-time solvable. Moreover, the problem of separating two
given nodes by removing nodes from a temporal graph is considered for various settings
in [20, 22, 23, 25, 28, 39]. Again, most of the problems are N P-hard, while some polynomial-
time solvability results – mostly for specific classes of graphs – are shown.

1.2 Our Contribution
We analyze the complexity of the shortest path interdiction problem on temporal graphs
with respect to all four definitions of a shortest path considered in [38]. Even though S-SP-IP
is known to be strongly N P-hard, it is found that polynomial-time algorithms for the latest
start and the earliest arrival path interdiction problem on temporal graphs exist. These
algorithms exploit the fact that, for these versions of the problem, the objective value of a
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path only depends on either the first or on the last arc in the path (but not on both). For the
shortest duration and shortest traversal path interdiction problem, where both the first and
the last arc in a path (and the amount of time spend waiting at nodes in the former case)
are relevant for its length, however, we show strong N P-hardness. Our reduction further
implies that, unless P = N P , there exist no polynomial-time approximation algorithms with
approximation ratio smaller than 3/2 for these problems.

On extension-parallel temporal graphs, however, we obtain polynomial-time algorithms for
the shortest duration path interdiction problem and the shortest traversal path interdiction
problem. This result can be transferred to the static shortest path interdiction problem,
where it also represents a new result.

2 Problem Definition

A directed (discrete-time) temporal graph G consists of a nonempty, finite set V of nodes and
a finite set R of temporal arcs. As usual, we denote the number of nodes and the number
of (temporal) arcs in the graph by n and m, respectively. A temporal arc r ∈ R has four
attributes, namely its start node α(r) ∈ V , its end node ω(r) ∈ V , its start time τ(r) ∈ Q,
and its traversal time λ(r) ∈ Q≥0. When traversing a temporal arc r ∈ R, the arrival time
of r is τ(r) + λ(r). A temporal path P = (r1, . . . , rk) is a sequence of temporal arcs such that,
for each i ∈ {1, . . . , k − 1}, it holds that ω(ri) = α(ri+1) and τ(ri) + λ(ri) ≤ τ(ri+1), i.e.,
the end node of each arc is the start node of the next arc in the path and the arrival time
of each arc is less than or equal to the start time of the next arc.2 For two nodes s, t ∈ V ,
a temporal path P = (r1, . . . , rk) is called a (temporal) s-t-path if α(r1) = s and ω(rk) = t.
Given a temporal graph G = (V, R), the underlying static graph Gstat = (V stat, Rstat) is the
(directed) static graph with the same nodes and arcs obtained by disregarding the start times
and traversal times of the arcs. A temporal graph is called acyclic if its underlying static
graph is acyclic, i.e., its underlying static graph does not contain any directed cycle.

While the notion of a “shortest” s-t-path is straightforward in static graphs, temporal
graphs allow for various interpretations of the term “shortest”. In this paper, we study the
four quality measures for s-t-paths that are used in [38].

▶ Definition 1. Let G be a temporal graph, s ̸= t two nodes in G, and P = (r1, . . . , rk) a
temporal s-t-path.

The start time of P is defined as start(P ) := τ(r1).
The arrival time of P is defined as arriv(P ) := τ(rk) + λ(rk).
The duration of P is defined as dura(P ) := arriv(P ) − start(P ).
The traversal time of P is defined as trav(P ) :=

∑k
i=1 λ(ri).

▶ Definition 2. Let G be a temporal graph and s ̸= t two nodes in G.
A latest start path is an s-t-path with maximum start time. The latest start time in G,
denoted by LS(G), is defined as the start time of a latest start path in G.
An earliest arrival path is an s-t-path with minimum arrival time. The earliest arrival
time in G, denoted by EA(G), is defined as the arrival time of an earliest arrival path
in G.

2 Note that this definition allows a path to visit the same node (or even traverse the same arc) several
times. Except for some results obtained in the setting with waiting time constraints considered in
Section 4.2, however, all our results also hold when restricting to simple paths that do not visit any
node more than once.
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A shortest duration path is an s-t-path with minimum duration. The shortest duration
in G, denoted by SD(G), is defined as the duration of a shortest duration path in G.
A shortest traversal path is an s-t-path with minimum traversal time. The shortest
traversal time in G, denoted by ST(G), is defined as the traversal time of a shortest
traversal path in G.

If no s-t-path exists in G, LS(G) is set to −∞, whereas EA(G), SD(G), and ST(G) are set
to +∞.

Note that earliest arrival paths are called foremost paths and latest start paths are
called reverse-foremost paths in [38]. Next, the four versions of the temporal shortest path
interdiction problem are defined.

▶ Definition 3. For an objective OBJ ∈ {LS, EA, SD, ST}, the temporal OBJ path interdiction
problem (T-OBJP-IP) is defined as follows.

INSTANCE: A temporal graph G = (V, R), two nodes s ̸= t in G, a budget B ∈ Q>0, and
removal costs c : R → Q≥0

TASK: Find a subset S ⊆ R of arcs with
∑

r∈S
c(r) ≤ B such that OBJ(GS) is maximized

(minimized in the case that OBJ = LS), where GS := (V, R \ S).

A solution S ⊆ R of T-OBJP-IP with
∑

r∈S c(r) ≤ B is called an interdiction strategy and
the arcs in S are called interdicted. Further, if no temporal path from a node u to another
node v exists after the arcs in S have been removed, we say that the interdiction strategy S

separates u from v or that the pair (u, v) is separated by S.

3 Polynomial-Time Algorithms and Complexity Results

In this section, we analyze the complexity of each of the four introduced versions of temporal
shortest path interdiction. It is shown that two versions can be solved in polynomial time
and the other two versions are strongly N P-hard. On extension-parallel temporal graphs,
however, the two hard versions are shown to be solvable in polynomial time.

3.1 Temporal Latest Start Path Interdiction

In this section, we present a polynomial-time algorithm to solve T-LSP-IP. This is a surprising
result as the static shortest path interdiction problem is known to be strongly N P-hard [3].
The main reason for the polynomial-time solvability of T-LSP-IP is that the obtained objective
value only depends on the first arc that is used by a latest start path in the interdicted
graph GS .

In this section, we let τ1 < τ2 < · · · < τl denote the distinct start times of outgoing
arcs of s in G sorted in increasing order. Further, for k ∈ {1, . . . , l}, we define GLS,k as
the temporal graph that results from G by removing all outgoing arcs of s with start time
at most τk. For completeness, we also define GLS,0 := G. Our algorithm is based on the
following proposition.

▶ Proposition 4. Let k ∈ {1, . . . , l}. There exists an interdiction strategy Sk that separates s

from t in GLS,k if and only if there exists an interdiction strategy S in G with objective value
at most τk.
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Proof. Let Sk be an interdiction strategy that separates s from t in GLS,k. Then, after
interdicting the same set S := Sk of arcs in G, no s-t-path in GS can start with an arc with
start time strictly larger than τk (otherwise, the path would also be an s-t-path in GLS,k

Sk ).
Hence, all s-t-paths in GS have start time at most τk, i.e., S has objective value at most τk.

Conversely, let S be an interdiction strategy in G with objective value at most τk. Then,
no s-t-path in GS can have start time strictly larger than τk, so the interdiction strategy
Sk := S ∩ RLS,k, where RLS,k is the arc set of GLS,k, separates s from t in GLS,k. ◀

The idea of the algorithm is to use binary search in order to find k⋆ ∈ {1, . . . , l} such
that s can be separated from t in GLS,k⋆ , but s cannot be separated from t in GLS,k⋆−1. Such
a k⋆ exists whenever s cannot already be separated from t in the whole graph G = GLS,0,
i.e., whenever the optimal objective value is not equal to −∞. Consequently, in order to
obtain a polynomial-time algorithm for T-LSP-IP, it only remains to show that deciding
whether a node s can be separated from another node t with a given interdiction budget in
an arbitrary temporal graph is possible in polynomial time.

In a static graph, this question can be answered easily by computing a minimum s-t-cut
and comparing its cost to the given interdiction budget B. Hence, we now describe how
the question in an arbitrary temporal graph H = (V, R) can be reduced to the static case.
To this end, we use a graph construction that is similar to [38] and to the construction of
time-expanded networks in the context of dynamic flows [32]. The constructed graph is
therefore called the time-expanded graph of H and denoted by Hte = (V te, Rte). We start
by defining the set of crucial times by T := ∪r∈R{τ(r), τ(r) + λ(r)}. For easier notation,
we write T = {ϕ1, . . . , ϕj}, where the crucial times are indexed in increasing order. For
each v ∈ V and ϕ ∈ T , there exists a node (v, ϕ) in V te. For each i ∈ {1, . . . , j − 1} and
for each v ∈ V , there exists an arc from (v, ϕi) to (v, ϕi+1) with removal cost B + 1 (i.e., it
cannot be interdicted). This arc represents waiting at node v of the temporal graph until the
next crucial time. Further, for each arc r ∈ R, there exists an arc in Rte from (α(r), τ(r))
to (ω(r), τ(r)+λ(r)) with removal cost c(r), which represents traversing arc r in the temporal
graph. We define ste := (s, ϕ1) and tte := (t, ϕj). If the temporal graph H has n nodes and m

arcs, its time-expanded graph has n · |T | ∈ O(n · m) nodes and n · (|T | − 1) + m ∈ O(n · m)
arcs. Hence, the size of the time-expanded graph is polynomial in the size of the temporal
graph (in contrast to time-expanded networks used in the context of dynamic flows).
The following observation follows directly from the construction of Hte.

▶ Observation 5. There exists an interdiction strategy separating s from t in H if and only
if there exists an interdiction strategy separating ste from tte in Hte.

Applying the previously described algorithm together with Proposition 4 and Observation 5
yields the main theorem of this section.

▶ Theorem 6. There exists a polynomial-time algorithm for T-LSP-IP with running time in
O(log(l) · TMC(n · m, n · m)), where l ≤ m is the number of distinct start times of outgoing
arcs of s and TMC(n · m, n · m) is the time required to compute a minimum s-t-cut in a static
graph with n · m nodes and n · m arcs.

3.2 Temporal Earliest Arrival Path Interdiction
In this section, we present a polynomial-time algorithm to solve T-EAP-IP. Similar to T-LSP-
IP, the reason for the problem’s polynomial-time solvability is that the obtained objective
value only depends on the last arc that is used by an earliest arrival path in the interdicted
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graph GS . Indeed, an instance of T-EAP-IP can be transformed into an equivalent instance
of T-LSP-IP by inverting the direction of all arcs and adjusting the start times and traversal
times appropriately. This is described in the following.

Let G = (V, R) be the temporal graph in an instance of T-EAP-IP. We construct a graph
GLS = (V, RLS) for an instance of T-LSP-IP. The maximum arrival time in G is defined
as Φ := maxr∈R τ(r) + λ(r). For each r ∈ R, an arc r′ is added to RLS with α(r′) := ω(r),
ω(r′) := α(r), τ(r′) := Φ − τ(r) − λ(r), and λ(r′) := λ(r). The arcs r and r′ are called
associated. Further, an interdiction strategy S in G and the interdiction strategy S′ in GLS

consisting of the arcs in GLS that are associated with those in S are also called associated.
Defining sLS := t and tLS := s, BLS := B, and cLS(r′) := c(r) for each pair of associated
arcs r and r′, it is then easy to see that mapping an interdiction strategy S in G to its
associated interdiction strategy S′ in GLS defines a bijection between the sets of interdiction
strategies in the two graphs. In the following, the instance of T-EAP-IP is denoted by
(G, s, t) and the constructed instance of T-LSP-IP by (GLS, sLS, tLS). We can then show the
following one-to-one correspondence between temporal paths in G and GLS.

▶ Proposition 7. Let ri and r′
i be associated arcs for each i ∈ {1, . . . , k}, and let S and S′

be associated interdiction strategies in G and GLS, respectively. Then P ′ = (r′
1, . . . , r′

k) is a
temporal sLS-tLS-path in GLS

S′ if and only if P = (rk, . . . , r1) is a temporal s-t-path in GS.

Proof. If P ′ = (r′
1, . . . , r′

k) is a temporal sLS-tLS-path in GLS
S′ , then r′

i /∈ S′ for i = 1, . . . , k.
Hence, since S′ and S are associated, we obtain that ri /∈ S for i = 1, . . . , k. Moreover,
t = sLS = α(r′

1) = ω(r1), s = tLS = ω(r′
k) = α(rk), and for each i ∈ {1, . . . , k − 1}, we have

α(ri) = ω(r′
i) = α(r′

i+1) = ω(ri+1) and

τ(ri+1) + λ(ri+1) = Φ − τ(r′
i+1) ≤ Φ − τ(r′

i) − λ(r′
i) = Φ − τ(r′

i) − λ(ri) = τ(ri).

Thus, P = (rk, . . . , r1) is a temporal s-t-path in GS as claimed. The inverse direction can be
shown along the same lines. ◀

We call paths P and P ′ as in Proposition 7 associated in the following. Proposition 7 allows
us to show the following relationship between the objective values of associated interdiction
strategies for (G, s, t) and (GLS, sLS, tLS).

▶ Corollary 8. An interdiction strategy S for (G, s, t) has objective value v if and only if the
associated interdiction strategy S′ for (GLS, sLS, tLS) has objective value Φ − v.

Proof. Given an interdiction strategy S with objective value v and its associated interdiction
strategy S′, let P be an earliest arrival path in GS . Then, P has arrival time v and by
Proposition 7, the associated path P ′ is a temporal path in GLS

S′ , whose start time is Φ − v.
For the sake of a contradiction, suppose that there exists a path P̄ ′ in GLS

S′ with start time
Φ − v̄ > Φ − v. Then, by Proposition 7, the path P̄ that is associated to P̄ ′ is a temporal
path in GS and its arrival time is v̄ < v, which is a contradiction to P being an earliest
arrival path in GS . Hence, the interdiction strategy S′ for (GLS, sLS, tLS) has objective value
Φ − v. The inverse direction can be shown along the same lines. ◀

Corollary 8 immediately yields the following result.

▶ Corollary 9. An interdiction strategy S is optimal for (G, s, t) if and only if its associated
interdiction strategy S′ is optimal for (GLS, sLS, tLS).

Corollary 9 and the algorithm presented in Section 3.1 yield the main result of this section.
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▶ Theorem 10. There exists a polynomial-time algorithm for T-EAP-IP with running time
in O(log(l) · TMC(n · m, n · m)), where l ≤ m is the number of distinct arrival times of
incoming arcs of t and TMC(n · m, n · m) is the time required to compute a minimum s-t-cut
in a static graph with n · m nodes and n · m arcs.

3.3 Temporal Shortest Duration Path Interdiction and Temporal
Shortest Traversal Path Interdiction

In this section, we show that T-SDP-IP and T-STP-IP are strongly N P-hard, even for unit
removal costs and if the underlying static graph is acyclic. Moreover, the reduction implies
an inapproximability result. We also show, however, that both problems are solvable in
polynomial time if the graph is extension-parallel. This result is also shown for the static
problem S-SP-IP.

The proof of strong N P-hardness is similar to the proof in [6], where it is shown that
finding a multicut in directed acyclic graphs is APX -hard. The reduction is performed from
the strongly N P-hard MAX2SAT problem, which is defined as follows.

INSTANCE: A set X = {x1, . . . , xζ} of boolean variables, a set C = {c1, . . . , cµ} of clauses
each containing two literals, and a positive integer δ < µ

QUESTION: Is there a truth assignment for the variables that satisfies at least δ clauses?

Given an instance of MAX2SAT, we construct a temporal graph with removal costs and
a corresponding budget. This graph has the property that no s-t-path waits in any node
except for s and t, which means that, for each feasible interdiction strategy, the objective
values in T-SDP-IP and T-STP-IP are identical. Hence, the resulting instances of T-SDP-
IP and T-STP-IP are equivalent in this case. Thus, we present the construction and the
corresponding proofs only for T-SDP-IP in the following. An example for the construction is
provided in Figure 1.

Unless explicitly stated otherwise, all arcs within this construction have start time 0,
traversal time 0, and removal cost B + 1 (i.e., they cannot be interdicted). We show later
that only a slight modification of the construction is necessary in the case of unit removal
costs. For each variable xi ∈ X, there is a variable gadget consisting of a directed path with
trace (ui,1, ui,2, ui,3, ui,4) where only the arcs from ui,1 to ui,2 and from ui,3 to ui,4 can be
interdicted at a removal cost of N := µ + 1. Interdicting the arc from ui,1 to ui,2 is later
identified with setting xi to true and interdicting the arc from ui,3 to ui,4 is identified with
setting xi to false. For each clause cj ∈ C, there is a clause gadget consisting of a directed
path with trace (vj,1, vj,2, vj,3, vj,4) where only the arcs from vj,1 to vj,2 and from vj,3 to vj,4
can be interdicted at a removal cost of one.

We next describe the arcs that connect the variable gadgets to the clause gadgets. For a
clause cj = x̂i ∨ x̂k, where x̂i ∈ {xi, xi} and x̂k ∈ {xk, xk}, we call x̂i the first literal and x̂k

the second literal of clause cj . For each clause, arcs are then added as follows depending
on its first and second literal: If the first literal of clause cj is xi (xi), there exists an arc
from ui,2 to vj,1 (from ui,4 to vj,1). If the second literal of clause cj is xk (xk), there exists
an arc from uk,2 to vj,3 (from uk,4 to vj,3).

The construction is continued by adding another six nodes s1, s2, s3, t1, t2, and t3 to the
graph. For each i ∈ {1, . . . , ζ}, there exists an arc from s1 to ui,1 and an arc from ui,4 to t1.
For each i ∈ {1, . . . , ζ}, there exists an arc from s2 to ui,1 and another arc from s2 to ui,3.
Further, for each j ∈ {1, . . . , µ}, there exist arcs from vj,2 to t2 and from vj,4 to t2. Finally,
for each j ∈ {1, . . . , µ}, there exists an arc from s3 to vj,1 and an arc from vj,4 to t3.
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s

t

s1 s2 s3

t2 t3t1

Figure 1 The constructed graph for X = {x1, x2, x3} and C = {x1 ∨ x2, x1 ∨ x3}. The three
variable gadgets for x1, x2, and x3 from left to right are shown on the left and the clause gadgets
for c1 and c2 from left to right are shown on the right. Only the dashed arcs can be interdicted.

We finish the construction by adding the nodes s and t to the graph. For each k ∈ {1, 2, 3},
there exists an arc from s to sk with start time 1 − k and traversal time k − 1, and an arc
from tk to t with traversal time 3 − k (but start time 0).

The budget is chosen to be B := N · ζ + 2 · µ − δ, which completes the construction of
the problem instance.

We show strong N P-hardness by proving that there exists a truth assignment for the
variables that satisfies at least δ clauses in the instance of MAX2SAT if and only if there
exists a solution for the constructed instance with objective value at least 3. To this end, the
following auxiliary result is required.

▶ Lemma 11. Let S be a solution of the constructed instance. The objective value of S is
larger than or equal to 3 if and only if the pairs (s1, t1), (s2, t2), and (s3, t3) are separated
by S.

Proof. If one of the pairs (s1, t1), (s2, t2), or (s3, t3) is not separated by S, it follows immedi-
ately that, after interdiction, there exists an s-t-path with duration 2. Hence, the solution S

has objective value at most 2. To show the other direction, assume that the objective value
of the solution is strictly less than 3 and let PSD be a shortest duration path in GS . If PSD
visits both sk and tk for some k ∈ {1, 2, 3}, we are done. If this is not the case, there are
three possible pairs of nodes, one of which must be visited by PSD since its duration is strictly
less than 3 and every temporal s-t-path in GS must visit one of the sk and one of the tk.
Case 1: PSD visits s1 and t2

This means there exists a subpath P of PSD from s1 to t2. The first arc in P leads into
one of the nodes ui,1 for some i ∈ {1, . . . , ζ}. By replacing the first arc in P with the arc
starting in s2 and ending in ui,1, we obtain a path from s2 to t2.

Case 2: PSD visits s2 and t3

This means there exists a subpath P of PSD from s2 to t3. The last arc in P starts from
one of the nodes vj,4 for some j ∈ {1, . . . , µ}. By replacing the last arc in P with the arc
starting in vj,4 and ending in t2, we again obtain a path from s2 to t2.
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Case 3: PSD visits s1 and t3

The first and the last arc in the subpath of PSD from s1 to t3 can be replaced as in the
previous two cases, which again yields a path from s2 to t2. ◀

Lemma 11 allows proving strong N P-hardness of T-SDP-IP and T-STP-IP.

▶ Theorem 12. T-SDP-IP and T-STP-IP are strongly N P-hard even on acyclic graphs.

Proof. We show that there exists a truth assignment for the variables that satisfies at least δ

clauses in the instance of MAX2SAT if and only if there exists a solution for the constructed
T-SDP-IP instance with objective value at least 3.

First, let x be a truth assignment that satisfies at least δ clauses. We construct an
interdiction strategy for the instance of T-SDP-IP with objective value at least 3 as follows.
For each i ∈ {1, . . . , ζ}, we interdict the arc from ui,1 to ui,2 if xi is true and the arc from ui,3
to ui,4 if xi is false. For each j ∈ {1, . . . , µ}, we interdict the arc from vj,1 to vj,2 if the
second literal in clause cj is fulfilled, the arc from vj,3 to vj,4 if the second literal of cj is not
fulfilled, but the first is, and both of these arcs if none of the literals are fulfilled. This yields
an interdiction strategy S that interdicts ζ arcs of cost N and at most 2 · µ − δ arcs of cost 1
and, hence, does not exceed the budget.

Due to Lemma 11, it remains to show that the pair (sk, tk) is separated by S for
each k ∈ {1, 2, 3}. Any path from s1 to t1 has trace (s1, ui,1, ui,2, ui,3, ui,4, t1) for some
i ∈ {1, . . . , ζ}. As either the arc from ui,1 to ui,2 or the arc from ui,3 to ui,4 is interdicted,
the pair (s1, t1) is separated by S. Moreover, the analogous argument applied to the clause
gadgets shows that the pair (s3, t3) is separated by S.

To show that the pair (s2, t2) is separated by S, note that each path from s2 to t2
contains a subpath with trace (ui,a, ui,a+1, vj,b, vj,b+1) where i ∈ {1, . . . , ζ}, j ∈ {1, . . . , µ},

and a, b ∈ {1, 3}. We interdict either the arc from ui,a to ui,a+1 if the (b+1/2)-th literal
of clause cj is fulfilled or the arc from vj,b to vj,b+1 if it is not. Hence, the pair (s2, t2) is
separated by S and the objective value of S is at least 3 due to Lemma 11.

For the inverse direction, let S ⊆ R be a removal strategy with c(S) ≤ B = N ·ζ +2 ·µ−δ

and objective value at least 3. In particular, this means that, for each k ∈ {1, 2, 3}, the pair
(sk, tk) is separated by S due to Lemma 11.

In order to separate the pair (s1, t1), one arc has to be removed per variable gadget. If
more than one arc is removed in any variable gadget, the total removal cost of interdicted
arcs in the variable gadgets is at least N · ζ + N = N · ζ + µ + 1, which leaves only a budget
of µ − δ − 1 < µ for interdicting arcs in the clause gadgets. Hence, there must exist at
least one clause gadget in which none of the arcs are interdicted. This implies that the pair
(s3, t3) is not separated by S, which is a contradiction. Overall, this means that, for each
i ∈ {1, . . . , ζ}, either the arc from ui,1 to ui,2 is interdicted, in which case we set xi to true,
or the arc from ui,3 to ui,4 is interdicted, in which case we set xi to false.

It remains to show that the resulting truth assignment fulfills at least δ clauses. As
interdicting one arc per variable gadget already costs N · ζ, there is a budget of 2 · µ − δ left
for interdicting arcs in the clause gadgets. In order to separate the pair (s3, t3), at least one
of the two removable arcs must be removed in each clause gadget. Hence, there are at least δ

clause gadgets in which only one of the arcs is removed. We finish the proof by showing
that x fulfills all the corresponding clauses cj .

To this end, we first assume that the arc from vj,3 to vj,4 is interdicted. If the first literal
in cj is xi, then there exists a path in G with trace (s2, ui,1, ui,2, vj,1, vj,2, t2). As the arc
from vj,1 to vj,2 is not interdicted and the pair (s2, t2) must be separated by S, this means
that the arc from ui,1 to ui,2 must be interdicted and, hence, that xi is set to true, which
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shows that x fulfills cj . If the first literal in cj is xi, then the same arguments hold for the
path in G with trace (s2, ui,3, ui,4, vj,1, vj,2, t2). The proof for the case when the arc from vj,1
to vj,2 is interdicted is along the same lines. Hence, at least δ clauses are fulfilled by x, which
completes the proof. ◀

Since any solution of the constructed T-SDP-IP instance that does not have objective value
at least 3 has objective value at most 2, the proof of Theorem 12 further implies the following
inapproximability result.

▶ Corollary 13. Unless P = N P, there exists no polynomial-time approximation algorithm
with approximation ratio smaller than 3/2 for T-SDP-IP or T-STP-IP, even on acyclic graphs.

In the case of T-SDP-IP, the constructed instance in the reduction can easily be adjusted
such that all traversal times are zero. To do so, all traversal times of the outgoing arcs of s

are set to 0 and, for each incoming arc of t, the start time is increased by its traversal time
and the traversal time is then set to 0. Hence, the results on T-SDP-IP from Theorem 12
and Corollary 13 are also valid for the definition of temporal graphs used in [27].

In the case of T-STP-IP, however, using nonzero traversal times within the reduction is
necessary. Indeed, the results on T-STP-IP from Theorem 12 and Corollary 13 do not hold
for the definition in [27] (unless P = N P) since T-STP-IP is solvable in polynomial time if
all traversal times are zero as it then reduces to the question whether s can be separated
from t by an interdiction strategy. It is, however, questionable, whether T-STP-IP has a
meaningful interpretation in this case.

We continue by showing that the results of Theorem 12 and Corollary 13 (with a slight
modification of the approximation ratio) also hold for instances with unit removal costs and
strictly positive traversal times.

The restriction to unit removal costs can be achieved by replacing each arc r in the
constructed graph by c(r) identical copies with unit removal cost. Any interdiction strategy
can then be assumed to either remove all of these identical copies or none of them. Moreover,
since all removal costs have been polynomial in the numbers of variables and clauses of
the given MAX2SAT instance, the constructed instance with unit removal costs is still of
polynomial size, so the arguments in the proof carry over to this instance.

For the restriction to strictly positive traversal times, note that the constructed graph G

is acyclic. In particular, the graph G − {s, t} is acyclic. Let σ : V → {1, . . . , n − 2} be a
topological sorting of the nodes in G−{s, t}, i.e., for each arc r, it holds that σ(α(r)) < σ(ω(r)).
This topological sorting is used to slightly modify the start and traversal times of the arcs in
G − {s, t}. Formally, a function σ̄ : V → {1, . . . , n − 2} is constructed from the topological
sorting by setting σ̄(v) := σ(v) if v /∈ {s1, s2, s3, t1, t2, t3}, and σ̄(si) := 1 and σ̄(ti) := n − 2
for each i ∈ {1, 2, 3}. We then redefine the start and traversal times in G. To this end,
let ε ∈ (0, 1). For each arc r that is not incident to s or t, we set the start time to
−ε/2·(n−3) · (n − 2 − σ̄(α(r))) and the traversal time to ε/2·(n−3) · (σ̄(ω(r)) − σ̄(α(r))), which
means that it arrives in ω(r) at time −ε/2·(n−3) · (n − 2 − σ̄(ω(r))). We further set the start
time of the arc from s to s1 to −ε and its traversal time to ε/2, and we decrease the traversal
times of the other two outgoing arcs of s by ε/2. Hence, all outgoing arcs of s have arrival
time −ε/2. Moreover, we set the traversal time of the arc from t3 to t to ε.

The proof of Theorem 12 for this new instance is along the same lines as before and the
statement of Corollary 13 must be slightly changed (see Corollary 14). Note that the graph
with the updated start and traversal times does not admit waiting in any node except for s

and t as, for any node v ∈ V \ {s, t}, all incoming arcs arrive and all outgoing arcs start at
time −ε/2·(n−3) · (n − 2 − σ̄(v)). The result, hence, holds for both problems T-SDP-IP and
T-STP-IP.
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Hence, when strictly positive traversal times on all arcs are additionally assumed, The-
orem 12 still holds, but Corollary 13 has to be adapted as follows:

▶ Corollary 14. Unless P = N P, there exists no polynomial-time approximation algorithm
with approximation ratio smaller than (3/2+ε) for T-SDP-IP and T-STP-IP on acyclic graphs
with positive traversal times for any ε > 0.

3.3.1 Polynomial-Time Solvability on Extension-Parallel Graphs
In this section, we show that T-SDP-IP, T-STP-IP, and the static version S-SP-IP are
polynomial-time solvable on extension-parallel (temporal) graphs.

A temporal graph consisting of two nodes s and t, and a single temporal arc from s to t

is called a temporal one-arc graph. A temporal graph with two distinguished vertices s (the
source) and t (the sink) is series-parallel if it is obtained from a set of temporal one-arc
graphs by a finite sequence of series compositions (identifying the sink of the first graph
with the source of the second graph) and parallel compositions (identifying the sources of
the two graphs and identifying the sinks of the two graphs). If, further, for every series
composition, one of the two composed graphs is a temporal one-arc graph, the graph is called
extension-parallel. The definitions of series- and extension-parallel static graphs is completely
analogous and can be found, e.g., in [19].

The decomposition tree TG of a series-parallel (temporal) graph G is a binary tree, where
the leaves represent the arcs in the graph and the inner nodes labeled by S (series composition)
or P (parallel composition) represent the types of compositions used to construct the graph.
The decomposition tree can be computed in linear time [36] and it can easily be seen that a
series-parallel (temporal) graph is extension-parallel if and only if every inner node of TG

that is labeled by S has one child that is a leaf of TG.
The following property of extension-parallel static graphs is used in our algorithm.

▶ Lemma 15. Let G = (V, R) be an extension-parallel static graph. Then there exists a
subset R̄ ⊆ R of arcs such that
1. each s-t-path in G contains exactly one arc from R̄, and
2. each arc r ∈ R̄ is contained in exactly one s-t-path Pr in G.

Proof. We present an algorithm that constructs R̄ and a corresponding s-t-path Pr for
each r ∈ R̄. Note that, since the graph is acyclic, the path Pr is uniquely determined by
the set of arcs it traverses. Hence, we slightly abuse notation and identify each path Pr

with the corresponding set of arcs. The idea of the algorithm is to process the nodes in
the decomposition tree starting at the leaves by iteratively joining two already processed
components of the graph until we reach the root node and obtain the final set R̄.

Initially, we set R̄ := R and Pr := {r} for each r ∈ R and mark all leaf nodes in the
decomposition tree as processed. While not all nodes in the decomposition tree are marked
as processed, we take an unprocessed (inner) node v in the decomposition tree whose two
children have both been processed. If v is labeled by P, we simply mark v as processed while
changing neither the set R̄ nor the paths Pr, r ∈ R̄. If v is labeled by S, at least one of its
children must be a leaf corresponding to an arc r. If only one of the children is a leaf node,
then we remove r from R̄ and delete Pr. Further, we add r to all paths Pr′ for which the leaf
node that corresponds to r′ is a successor of the non-leaf child of v in the decomposition tree.
If both children of v are leaves, then the arc that corresponds to its right child is removed
from R̄ and added to the path Pr′ , where r′ is the arc that corresponds to the left child of v.
We then mark v as processed and proceed.
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To show the correctness of the algorithm, note that each node v in the decomposition
tree can be associated with the subgraph Gv of G whose arc set consists of those arcs that
correspond to leaf nodes in the decomposition tree that are successors of v.

We claim that, after each iteration, for each processed node v that either has no parent
(i.e, v is the root node) or whose parent is still unprocessed, it holds that R̄ restricted to the
arc set of Gv fulfills the properties from the lemma for Gv.

This is clearly the case when only the leaves have been processed since every subgraph Gv

is then a one-arc graph. Now assume that the claim holds at the beginning of an iteration
and let v be the node in the decomposition tree that is processed in the iteration. If v is
labeled by P, each s-t-path in Gv is either completely contained in the graph associated
with the left child of v in the decomposition tree or in the graph associated with the right
child. Hence, since R̄ and the paths Pr, r ∈ R̄, are left unchanged, the claim also holds
after processing v. If the processed node v is labeled by S and both its children are leaves,
the claim clearly remains true. If the processed node v is labeled by S and only one of its
children is a leaf, then this series composition corresponds to prepending or appending an
additional arc to the graph Gw, where w denotes the non-leaf child of v. Hence, after the
series composition, each path in Gw is extended by the arc r that corresponds to the leaf
child of v, which is precisely what the algorithm does. Moreover, r is removed from R̄ and Pr

is deleted, which ensures that uniqueness is preserved in both properties from the lemma.
Hence, the claim also holds after the iteration, which completes the proof. ◀

Note that the proof of Lemma 15 is constructive and the set R̄ together with the paths Pr

for r ∈ R̄ can be obtained in O(m2) time. In the following, given an extension-parallel
temporal graph, we let R̄ denote a subset of arcs that satisfies the properties of Lemma 15
in the underlying static graph. For each arc r ∈ R̄, we remove r from the graph and from R̄

if the corresponding s-t-path Pr in the underlying static graph is not a (temporal) s-t-path
in the temporal graph. Note that this does not destroy any temporal s-t-paths.

The idea of the polynomial-time algorithm to solve T-SDP-IP, T-STP-IP, and the static
version S-SP-IP is similar to the idea of the algorithm for T-LSP-IP from Section 3.1. For
ease of notation, the following exposition is restricted to T-SDP-IP. It is discussed later how
the arguments can be modified for the other two problems.

Let dura1 < dura2 < · · · < dural denote the distinct durations of s-t-paths in G sorted
in increasing order. Further, for k ∈ {1, . . . , l}, we define GSD,k as the temporal graph that
results from G by removing each arc r ∈ R̄ for which Pr has duration at least durak. For
completeness, we also define GSD,l+1 := G. The following proposition and its proof are
similar to Proposition 4 and the corresponding proof.

▶ Proposition 16. Let k ∈ {1, . . . , l}. There exists an interdiction strategy Sk that separates s

from t in GSD,k if and only if there exists an interdiction strategy S in G with objective value
at least durak.

Proof. Let Sk be an interdiction strategy that separates s from t in GSD,k. Then, after
interdicting the same set S := Sk of arcs in G, no s-t-path P in GS can have duration
less than durak (otherwise, P would also be an s-t-path in GSD,k

Sk as (1) no arc in P is
in S = Sk, and (2) the unique arc r in P contained in R̄ satisfies Pr = P and, thus,
dura(Pr) = dura(P ) < durak). Hence, all s-t-paths in GS have duration at least durak, i.e.,
S has objective value at least durak.

Conversely, let S be an interdiction strategy in G with objective value at least durak.
Then, no s-t-path in GS can have duration less than durak, so the interdiction strategy
Sk := S \ {r ∈ R̄ | dura(Pr) ≥ durak} separates s from t in GSD,k. ◀
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As in the algorithm presented in Section 3.1, the idea of the algorithm is to use binary
search in order to find k⋆ ∈ {1, . . . , l} such that s can be separated from t in GSD,k⋆ , but s

cannot be separated from t in GSD,k⋆+1. Such a k⋆ exists whenever s cannot already be
separated from t in the whole graph G = GSD,l+1, i.e., whenever the optimal objective value
is not equal to +∞.

As shown in Section 3.1, deciding whether a node s and can be separated from another
node t with a given interdiction budget in an arbitrary temporal graph is possible in
polynomial time. Further, Lemma 15 implies that the total number of s-t-paths is bounded
by the number of arcs in the graph. Consequently, the number l of distinct durations
of s-t-paths is polynomial in the input size. Altogether, the proposed algorithm runs in
polynomial time.

To extend the result to the problems T-STP-IP and S-SP-IP, one observes the distinct
traversal times or lengths of s-t-paths, respectively, to construct the subgraphs used in the
algorithm. All arguments then work along the same lines.
The following theorem summarizes the main results of this section.

▶ Theorem 17. There exist polynomial-time algorithms for T-SDP-IP, T-STP-IP, and S-
SP-IP on extension-parallel (temporal) graphs with running time in O(m2 + log(m) · TMC(n ·
m, n · m)) for the temporal versions and running time in O(m2 + log(m) · TMC(n, m)) for
the static version, where TMC(n̄, m̄) is the time required to compute a minimum s-t-cut in a
static graph with n̄ nodes and m̄ arcs.

4 Extensions

In this section, we study two extensions of the temporal shortest path interdiction problem.
The first extension is motivated by [13] and allows for continuous-time availability of arcs. It
is shown that even a slight generalization makes it hard to decide whether the nodes s and t

can be separated by an interdiction strategy in a temporal graph. The second extension,
motivated by [14], imposes an additional constraint on the maximum waiting time in a node.
It is shown that the additional constraint does not change the results from Section 3.

4.1 Continuous Time Availability of Arcs
In this section, a slightly more general model of temporal graphs is investigated, where the
start time τ(r) of a temporal arc r is not given by one fixed point in time, but rather by
a closed interval [τ l(r), τu(r)] =: τ(r). The arc can then be entered at any time τ ∈ τ(r),
leading to an arrival time of τ + λ(r) at ω(r). In the following, we therefore no longer speak
of a start time, but of an availability interval. The resulting temporal graphs where arcs are
available during availability intervals are called continuous-time temporal graphs. Note that
the class of continuous-time temporal graphs comprises the class of discrete-time temporal
graphs, which correspond to continuous-time temporal graphs in which each availability
interval only consists of a single point.

While a temporal path in a discrete-time temporal graph is given by a sequence of temporal
arcs, the definition has to be slightly adapted in the continuous-time case. A (continuous-time)
temporal path in a continuous-time temporal graph is a sequence P = ((r1, τ1), . . . , (rk, τk)) of
pairs of an arc and a start time with τi ∈ τ(ri) for each i ∈ {1, . . . , k} such that ω(ri) = α(ri+1)
and τi + λ(ri) ≤ τi+1 for each i ∈ {1, . . . , k − 1}.

We show that, given a continuous-time temporal graph G and a positive integer B, it
is strongly N P-hard to decide whether a pair (s, t) of nodes can be separated by removing
at most B arcs from G. This immediately implies that all variants of temporal shortest
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Figure 2 The gadgets in G for two nodes i and j that are adjacent in G′ (where i < j). Only the
dashed arcs can be interdicted.

path interdiction problems studied in this paper are strongly N P-hard on continuous-time
temporal graphs, and that they do not not even admit polynomial-time approximation
algorithms with a bounded approximation ratio (unless P = N P).

The reduction, which is similar to the one presented in [3], is from the well-known
(strongly) N P-hard node cover problem, which is defined as follows:

INSTANCE: An undirected (static) graph G′ = (V ′, E) and a positive integer B′ ≤ |V ′|
QUESTION: Is there a subset V̄ ⊆ V ′ of nodes with |V̄ | ≤ B′ such that each edge in E is

incident to at least one node in V̄ ?

Given an instance of node cover, a continuous-time temporal graph G and a budget B

are constructed as follows. The budget is chosen as B := B′. For the construction of
the continuous-time temporal graph G, it is assumed without loss of generality that V ′ =
{1, . . . , n′}. For each node i ∈ {1, . . . , n′}, a gadget consisting of two parallel paths of length
five is constructed. These paths are referred to as the upper and lower path of the gadget.
The start node of the two paths is referred to as si and the end node of the two paths as ti.
Further, the start and end node of the third arc in the lower path are referred to as xi and yi,
respectively. All arcs in a gadget, except for the third arc in the lower path, have removal
cost B + 1 and availability interval [0, 5n′]. The third arc in the lower path has removal cost 1
and availability interval [5i − 4, 5i − 3], and we identify removing this arc with including
node i in the node cover. All arcs in the gadget have traversal time 1.

The gadgets are connected by identifying ti with si+1 for all i ∈ {1, . . . , n′ − 1}. Further,
for an edge e ∈ E that is incident to the nodes i and j with i < j, there exists an arc
from yi to xj with availability interval [5i − 2, 5i − 2], traversal time 5(j − i) − 2, and removal
cost B + 1. This arc is called the shortcut from i to j.

The node s for the instance of temporal shortest path interdiction is s1. The node t

is added and, for each i ∈ {1, . . . , n′}, there exists an arc from yi to t with availability
interval [5i − 3, 5i − 3], traversal time 0, and removal cost B + 1. An illustration of the
construction is provided in Figure 2.

To achieve unit removal costs, we can simply replace each arc r by c(r) many identical
copies with unit removal cost (as for the proof of Theorem 12 and Corollary 13 for unit
removal costs). Note that this conserves the polynomial size of the constructed instance.
Using this construction, we prove the following theorem.

▶ Theorem 18. Deciding whether a pair (s, t) of nodes can be separated by removing at
most B arcs from a continuous-time temporal graph is strongly N P-complete.

Proof. The problem is clearly in N P since it can be easily checked in polynomial time
whether a given set of at most B arcs separates s from t. To show N P-completeness, let S

be an interdiction strategy for the constructed instance. Observe that each s-t-path in GS
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traverses at least one shortcut from i to j for some i, j ∈ {1, . . . , n′}. This is possible if and
only if none of the removable arcs in gadgets i and j are removed by the interdiction strategy.
By identifying the interdiction of an interdictable arc in a gadget i with the inclusion of
node i in the node cover, it follows that there exists a node cover of size B′ (= B) if and
only if there exists an interdiction strategy in G that removes at most B arcs. ◀

4.2 Waiting Time Constraints
The definition of an s-t-path provided in Section 2 allows to wait at nodes for any length
of time. However, arbitrarily long waiting times are often undesired in real-world problems
such as, e.g., packet routing in communication networks. To this end, the problem of finding
a ∆-restless temporal s-t-path that cannot wait longer than a given amount of time ∆ in
any node except s and t has been defined (see [14]). As shown in [14], deciding whether
a simple ∆-restless s-t-path (i.e., a ∆-restless s-t-path that does not visit any node more
than once) exists is strongly N P-hard for any ∆ ≥ 0.3 However, in the setting considered
here where paths are not required to be simple, this problem is polynomial-time solvable. A
Dijkstra-like polynomial-time algorithm for computing not necessarily simple restless paths
in temporal graphs is presented in [5].

In this section, we show how the time-expanded graph introduced in Section 3.1 can
be modified to account for additional waiting time constraints. Further, we show that the
complexity of the four versions of temporal shortest path interdiction does not change under
additional waiting time constraints.

Within this section, we assume that s has no incoming arcs and t has no outgoing arcs.
This assumption does not impose a loss of generality since a shortest s-t-path (with respect
to any of the definitions of “shortest”) that uses such an arc could be transformed into one
that does not.

For the construction of the time-expanded graph Hte = (V te, Rte) under waiting time
constraints, recall the set T = {ϕ1, . . . , ϕj} of crucial times, which are indexed in increasing
order. Similar to the construction of the time-expanded graph in Section 3.1, we introduce a
node (v, ϕi) for every v ∈ V and i ∈ {1, . . . , j}. For v ∈ {s, t} and i ∈ {1, . . . , j − 1}, there
exists an arc from (v, ϕi) to (v, ϕi+1), which represents waiting at s before the start of the
path or waiting at t after having arrived. For each arc r ∈ R, an additional node ur is
introduced. Further, there exists an arc in Rte from (α(r), τ(r)) to ur and an arc from ur to
any node (ω(r), ϕ) with ϕ ∈ [τ(r)+λ(r), τ(r)+λ(r)+∆]. Traversing the arc from (α(r), τ(r))
to ur and then the arc from ur to some node (ω(r), ϕ) represents traversing r in the temporal
graph and entering the next arc in the path (if ω(r) ̸= t) exactly at time ϕ. This completes
the construction of Hte.

To show a one to one correspondence between s-t-paths in G and (s, ϕ1)-(t, ϕj)-paths
in Hte, note that there are no parallel arcs in Hte, which implies that any path in Hte is
uniquely given by its trace.

▶ Observation 19. There exists a ∆-restless s-t-path in G if and only if there exists a
(s, ϕ1)-(t, ϕj)-path in Hte.

3 It is worth noting that the definition of temporal graphs in [14] is slightly different. They state that
the problem is strongly N P-hard for any ∆ ≥ 1, but, indeed, the same proof of hardness with a slight
modification holds true for the definition of temporal graphs used here for any ∆ ≥ 0.
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Proof. Let P = (r1, . . . , rk) be a ∆-restless s-t-path in G. Then we claim that the unique
path with trace

((s, ϕ1), . . . , (s, τ(r1)), ur1 , (ω(r1), τ(r2)), ur2 , (ω(r2), τ(r3)), . . . , (t, τ(rk) + λ(rk)), . . . , (t, ϕj))

is a (s, ϕ1)-(t, ϕj) path in Hte. Since, for v ∈ {s, t} and i ∈ {1, . . . , j − 1}, there exists an arc
from (v, ϕi) to (v, ϕi+1), the arcs from (s, ϕ1) to (s, τ (r1)) and the arcs from (t, τ(rk) + λ(rk))
to (t, ϕj) are in Hte. Moreover, the arc from (α(ri), τ(ri)) to uri is in Hte for i ∈ {1, . . . , k},
and the arc from uri

to (ω(ri), τ(ri+1)) is in Hte for i ∈ {1, . . . , k − 1} since P is ∆-restless.
Conversely let P ′ be an (s, ϕ1)-(t, ϕj)-path in Hte. From the construction, it immediately

follows that the trace of P ′ must be of the above form and, by the same arguments as above,
it follows that (r1, . . . , rk) is a ∆-restless s-t-path in G. ◀

To show that T-LSP-IP and T-EAP-IP remain polynomial-time solvable, we assign
removal costs to Hte = (V te, Rte). For each arc r ∈ R, the (unique) incoming arc of ur has
removal cost c(r). All other arcs have removal cost B + 1. With this construction, we observe
the following.

▶ Observation 20. There exists an interdiction strategy S such that there does not exist a
∆-restless path in GS if and only if there exists an interdiction strategy S′ separating ste

from tte in Hte.

Using the algorithm proposed in Sections 3.1 and 3.2 together with the time-expanded
graph Hte = (V te, Rte) under waiting time constraints constructed in this section, it follows
that the problems remain polynomial-time solvable under waiting time constraints.

▶ Theorem 21. There exists a polynomial-time algorithm for solving T-LSP-IP and T-EAP-
IP under waiting time constraints for each ∆ ≥ 0.

We proceed with assessing the complexity of T-SDP-IP and T-STP-IP under waiting time
constraints. When taking a closer look at the reduction provided in Section 3.3, every s-t-path
in the constructed instance is 0-restless. This immediately implies that T-SDP-IP under
waiting time constraints is strongly N P-hard for every ∆ ≥ 0. Further, on instances where
waiting in any node except s and t is impossible, the problems T-SDP-IP and T-STP-IP are
equivalent. This yields the following theorem.

▶ Theorem 22. The problems T-SDP-IP and T-STP-IP are strongly N P-hard under waiting
time constraints for each ∆ ≥ 0.

To close this chapter, we argue that T-SDP-IP and T-STP-IP are still polynomial-time
solvable on extension-parallel temporal graphs under waiting time constraints. To this
end, when removing each arc r whose corresponding s-t-path Pr is not a temporal path
from the graph and from the set R̄ as in Lemma 15, we additionally check whether Pr is
∆-restless and remove r if this is not the case. Afterwards, the graph contains exactly the
∆-restless temporal s-t-paths and the algorithm presented in Section 3.3.1 can be used to
solve T-SDP-IP and T-STP-IP on extension-parallel temporal graphs under waiting time
constraints, which yields the following theorem.

▶ Theorem 23. There exists a polynomial-time algorithm for T-SDP-IP and T-STP-IP on
extension-parallel (temporal) graphs under waiting time constraints for each ∆ ≥ 0.

It is worth noting that all results presented in this section can easily be adapted to the
general case where waiting times are constrained node-wise instead of globally. The only
difference to the global case is in the construction of the time-expanded graph, where the
node-wise constriction is enforced by the outgoing arcs of the nodes ur for r ∈ R.
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5 Conclusion

In this paper, the complexity of four different versions of temporal shortest path interdiction
is analyzed. While the latest start and the earliest arrival path interdiction problems are
shown to be solvable in polynomial time, the shortest duration and the shortest traversal path
interdiction problems are strongly N P-hard. It is particularly interesting that, even though
temporal shortest path interdiction seems more complex than its static counterpart, which is
known to be strongly N P-hard, there are versions of temporal shortest path interdiction
problems that are polynomially solvable. We further provide polynomial-time algorithms for
the two hard problems on extension-parallel temporal graphs, which can also be transferred
to the static shortest path interdiction problem.

An interesting direction for future work could be to study temporal shortest path
interdiction problems for other types of modifications than arc removal. For example, one
could consider the problem of worsening (or improving) the latest start time, the earliest
arrival time, the shortest duration, or the shortest traversal time as much as possible by
changing a given number of start times of arcs in a temporal graph.
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The paper resolves a long-standing open question in network dynamics. Averaging-based consensus
has long been known to exhibit an exponential gap in relaxation time between the connected and
disconnected cases, but a satisfactory explanation has remained elusive. We provide one by deriving
nearly tight bounds on the s-energy of disconnected systems. This in turn allows us to relate the
convergence rate of consensus dynamics to the number of connected components. We apply our
results to opinion formation in social networks and provide a theoretical validation of the concept of
an Overton window as an attracting manifold of “viable” opinions.
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1 Introduction

Consensus dynamics based on local averaging has been the object of considerable attention [5,
8, 9, 10, 11, 21, 26, 31, 32, 33, 34, 36, 37, 39, 40, 41, 42, 45, 48, 47, 50, 54]. This owes largely
to the ubiquity of these systems, from flocking and swarming to synchronization, social
epistemology, and opinion dynamics [7, 12, 18, 21, 22, 26, 32, 34, 37, 55]. Agents interact
across a network by averaging their state variables with those of their neighbors. Under mild
conditions, such systems are known to converge to a fixed-point attractor.

When the network is fixed, the dynamics is dual to a Markov chain, which puts a
wealth of analytical tools at our disposal. It is well known that convergence within ε is
reached in time C log(1/ε), for some parameter C depending only on the graph’s size and
topology. This bound still holds for time-varying graphs as long as they remain connected
at all times. When connectivity is not guaranteed, however, the convergence time shoots
up to C log(1/ε)n−1. This exponential jump has been a puzzling mystery in the field of
time-varying network dynamics [13, 26, 34, 50, 51]. Recent works on oblivious message
adversaries also exhibit exponential gaps in the time complexity of certain broadcast and
consensus problems [17, 23, 24, 25, 57]. The gap is also behind the emergence of hyper-torpid
mixing in Markov influence systems and the slow-clock phenomenon [14].

This paper explains the exponential jump in consensus dynamics by relating it to the
number of connected components in the system. The convergence rate is shown to be of
the form C(log 1/ε)m, where m < n is the maximum number of connected components at
any time. We derive quasi-optimal bounds on the parameter C. In addition, we look at
three important special cases – reversible, expanding, random – and we discuss applications
to opinion formation in social networks. The results in this work rely on new s-energy
bounds of independent interest. The s-energy is a generating function designed specifically
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for the analysis of networked averaging systems [12, 13]. Its main purpose is to overcome the
technical difficulties one encounters when systems become disconnected and one does not
have apriori bounds on how long they might stay so. The difficulty is fundamental: With
changing topologies, networked systems cease to have coherent eigenmodes and spectral
techniques break down. In other words, when linear algebra fails, the s-energy gives us a
way out.

Averaging dynamics

Let (Gt)∞
t=1 be an infinite sequence of graphs over the vertex set [n]. Each graph has a

self-loop. Let Pt be the stochastic matrix of a random walk over Gt. By construction, a
matrix entry is positive if and only if it corresponds to an edge of Gt. Each row sums up to
1 and the diagonal is positive. We assume that the nonzero entries in Pt are at least some
fixed ρ ∈ (0, 1/2].1 Let P≤t denote the product Pt · · ·P1. The set of orbits (P≤tx)t>0, over
all x ∈ Rn, forms an averaging system, often called consensus dynamics in the literature [26].
When all the matrices Pt = P are identical, the map x 7→ Px is the dual map of the Markov
chain (y 7→ yP ) and its convergence time is the chain’s mixing time. The case of a fixed
matrix has been studied exhaustively, so the novelty of the paper comes from the dynamic
nature of the networks.

A general averaging system (genS ) assumes only that the graphs Gt are undirected.
A reversible averaging system (revS ) is a genS whose individual Markov chains Pt are
reversible and share the same stationary distribution. This means that Pt = diag(q)−1Mt,
where Mt is symmetric with nonzero entries at least 1 and q = Mt1 ⪯ 1/ρ.
An expanding averaging system (expS ) is a revS where q = d1 and the connected
components of each Gt are d-regular expanders. Recall that a d-regular expander is
a graph of degree d such that, for any set X of at most half of the vertices, we have
|∂X| ≥ h|X|, where ∂X is the set of edges with exactly one vertex in X; the factor h is
called the Cheeger constant.
A random averaging system (ranS ) assumes that the graphs Gt are d-regular and random.

Our results

Given x ∈ [0, 1]n, each point of the orbit (P≤t x)t>0 corresponds to an embedding of the
graph Gt over the reals. Let Tε be the number of timesteps t at which Gt has an embedded
edge of length at least ε > 0. We denote by Tm,ε the maximum value of Tε over all graph
sequences (Gt)t>0 such that no graph has more than m connected components.2 We use
superscripts to distinguish among the general, reversible, expanding, and random cases:
T gen, T rev, T exp and T ran respectively.

For simplicity, T rev, T exp and T ran do not assume that the initial diameter is bounded by
1 but, rather, that the initial variance is. Here we define the (scaled) variance as ∥x− x̂ ∥2

q,
where x is shorthand for x(1) and (i) x̂ is the mean initial position ∥q∥−1

1 ⟨x, 1⟩q1; (ii)
∥x∥2

q := ⟨x, x⟩q; and (iii) ⟨x, y⟩q :=
∑

i qixiyi.

1 If ρ > 1/2, the only edges of Gt have to be self-loops, which is of no interest.
2 Since the systems always converge to a fixed-point attractor, the reader might wonder why we do not

define Tε as the time past which no edge length exceeds ε. This would not work because an adversary
could always insert the identity matrix repeatedly to delay convergence at will and push Tε to infinity.
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Note that unit diameter implies a variance of at most n/ρ and, conversely, unit variance
implies a diameter bounded by 2. Thus, the following bounds can be easily scaled to
accommodate either assumption about initial conditions.

▶ Theorem 1. For some constant c > 0 and any positive ε small enough,

T gen
m,ε ≤ c(1/ρ)n−1 (mn log 1

ε

)m

T rev
m,ε ≤ c

(
n2

ρ log 1
ε

)m

[15]

T exp
m,ε ≤ c

(
d3mn

h2 log 1
ε

)m

& T exp
1,ε ≤ cd3

h2 log 1
ε

ET ran
1,ε ≤ c log 1

ε .

Proof. The upper bound on T rev
m,ε was proven in [15] and is mentioned here for completeness.

Note that the case m = 1 of genS and revS recover the classic mixing times for Markov
chains (Pt = P ), in particular the polynomial vs. exponential gap between general and
reversible chains. We also rediscover the logarithmic bound for expanders (m = 1). Previous
work addressed only the cases m = 1 or m = n− 1. What made any connectivity-sensitive
extension challenging is that the proof techniques for the s-energy do not seem to generalize.
It is often possible to set up recurrence relations but these are too coarse to deliver good
upper bounds. Intricate multiscale amortization arguments were used to overcome these
limitations. In a surprising turn, we show how to rescue the divide-and-conquer approach
via a new linearization technique. Before we turn to the s-energy Em,s, we need to mention
its relevance: Theorem 1, indeed, follows from combining the corresponding s-energy bounds
with the inequality

Tm,ε ≤ inf
0<s≤1

ε−sEm,s. (1)

The idea is to provide upper bounds on Em,s for each of the four cases: general, reversible,
expanding, and random. Proving Theorem 1 is then a matter of choosing s to minimize the
right-hand side in (1). This step is straightforward calculus and, hence, omitted. ◀

The bounds in Theorem 1 are very general and can be applied to countless instances
of real-world dynamics (swarming, flocking, polarization, power grid sync, firefly flashing,
etc. [12]). We conclude this work in Section 3 with an application of our ideas to opinion
formation in social networks. We extend the model to include directed edges so as to capture
both evolving and fixed sources of information. We show that, while all opinions might keep
changing forever, they will inevitably land in the convex hull of the fixed sources. Furthermore,
we bound the time at which this must happen. Our result is a quantitative validation of the
Overton window as an attracting manifold of “viable” opinions [4, 6, 19, 27, 46].

2 New Bounds on the s-Energy

Let (Gt)∞
t=1 be an infinite sequence of graphs over the vertex set [n]. A vertex is also called

an agent. Each graph is embedded in R and we denote by xi(t) the position of agent i. The
union of the embedded edges of Gt forms disjoint intervals, called blocks. Let l1, . . . , lk be
the lengths of these blocks and put Es,t =

∑k
i=1 ls

i , with s ∈ (0, 1].3 We define the s-energy
Es =

∑
t≥1 Es,t and we denote by Em,s the supremum of Es , over all initial agent positions

x ∈ [0, 1]n, under the constraint that Gt should have at most m connected components.

3 For example, if Gt consists of three edges embedded as [0.1, 0.3], [0.2, 0.4] and [0.7, 0.8], then there are
two blocks [0.1, 0.4], [0.7, 0.8] and Es,t = (0.3)s + (0.1)s.

SAND 2023
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2.1 General averaging systems
We begin by stating our bounds on the s-energy of any genS with at most m connected
components. As stated above, we assume that the initial diameter ∆ of the vertex positions
is 1. If it is not, it suffices to multiply the bounds by a factor of ∆s.

▶ Theorem 2. Egen
m,s ≤ (c/s)m(1/ρ)n−1, for any s ∈ (0, 1], where c = O(mn). For s = 1, the

bound can be improved to Egen
m,1 ≤ 3en(1/ρ)⌊n/2⌋.

Twist systems

A genS is a special case of a twist system [13]. The latter is easier to analyze so we turn our
attention to it. Relabel the agents so their positions x1 ≤ · · · ≤ xn appear in sorted order at
time t. A twist system moves them to positions y1 ≤ · · · ≤ yn at time t + 1 in such a way
that

(1− ρ)xu + ρxmin{i+1,v} ≤ yi ≤ ρxmax{i−1,u} + (1− ρ)xv, (2)

for any i in [u, v] and yi = xi otherwise. We repeat this step indefinitely. Twist systems are
highly nondeterministic. At each step, a new interval [u, v] ⊆ [n], called a block, is picked
and the agents’ motion is only constrained by (2) and the need to maintain their ranks (ie,
agents never cross).

For the purposes of this work, we extend the concept to m-twist systems by stipulating,
at each time t, a partition of [n] into up to mt blocks [ut,l, vt,l] (1 ≤ l ≤ mt ≤ m). Each
agent is now subject to (2) within its own enclosing block. We define the s-energy Etw

s of
a twist system as we did with a genS by adding together the s-th powers of all the block
lengths. We use the same notation with the addition of the superscript tw.

▶ Lemma 3. A genS with at most m connected components at any time can be interpreted
as an m-twist system with the same s-energy.

Proof. Fix a genS and let (xi)n
i=1 and (yi)n

i=1 be the positions of the agents at times t and
t + 1, given in nondecreasing order. We denote by x′

i the position of agent i at time t + 1.
Let [xu, xv] be a block of the genS at time t. Pick k < v and write z = ρxk + (1 − ρ)xv.
All the diagonal elements of Pt are at least ρ; hence x′

i ≤ z, for all i ≤ k, and yk ≤ z. In
fact, the inequality even holds for i = k + 1: Indeed, the embedded edges of Gt cover all of
[xu, xv], so at least one of them, call it (l, r), must join [u, k] to [k + 1, v]; hence x′

r ≤ z. Our
claim follows. This proves that, for all i ∈ (u, v], yi ≤ ρxmax{i−1,u} + (1− ρ)xv. We omit the
case i = u and the mirror-image inequality, which repeat the same argument. Summing up
all the powers (xv − xu)s shows the equivalence between the two s-energies. ◀

Proof of Theorem 2. We may assume that the agents stay within [0, 1]. We begin with
showing the bound Egen

m,1 ≤ Etw
m,1 ≤ 3en(1/ρ)⌊n/2⌋.

Case s = 1

We prove a stronger result by bounding Kt(z) :=
∑n

k=1
(
xv(k) − xk

)
zk, where v(k) = vt,l

for l such that k ∈ [ut,l, vt,l]. As usual, 0 ≤ x1 ≤ · · · ≤ xn ≤ 1 denotes the sorted positions of
the agents at time t; we omit t for convenience but it is understood throughout. We define
the weighted 1-energy K(z) =

∑
t>0 Kt(z) and, finally, K(z) = sup K(z). As long as z ≥ 1,

the 1-energy is obviously dominated by its weighted version. We improve this crude bound
via a symmetry argument:
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▶ Lemma 4. For any z ≥ 1, Etw
m,1 ≤ 2z−ν K(z), where ν = ⌈n/2⌉.

Proof. We define the mirror image of Kt as K̄t(z) =
∑n

k=1
(
xk − xu(k)

)
zn−k+1, where u(k)

is the left counterpart of v(k). We have

Etw
1,t ≤

∑
k≤ν

(
xk − xu(k)

)
+
∑
k≥ν

(
xv(k) − xk

)
≤ z−ν

∑
k≤ν

(
xk − xu(k)

)
zn−k+1 + z−ν

∑
k≥ν

(
xv(k) − xk

)
zk

≤ z−ν
(
K̄t(z) + Kt(z)

)
.

Because K(z) = sup K(z), the lemma then follows by summing up all t > 0. ◀

We define the polynomial Pt(z) =
∑n

k=1 xkzk for z > 1/ρ and exploit two simple but
surprising facts: Pt(z) cannot increase over time;4 and, at each step, the drop from Pt(z) to
Pt+1(z) is at least proportional to Kt(z). Thus, we develop a discrete version of the inference:
dPt/dt ≤ −cKt implies∫

t≥1
cKt ≤ −

∫
t≥1

dPt

dt
≤ P1 .

▶ Lemma 5. For any z > 1/ρ, Pt(z)− Pt+1(z) ≥ (ρz − 1)Kt(z).

Proof. The inequality is additive in the number of blocks so we can assume there is a single
one [u, v] at time t. Using the notation of (2), we have yk ≤ ρxmax{k−1,u} + (1− ρ)xv; hence

Pt(z)− Pt+1(z) =
v∑

k=u

(xk − yk)zk ≥
v∑

k=u

(
xk − ρxmax{k−1,u} − (1− ρ)xv

)
zk

≥ (ρ− 1)(xv − xu)zu +
v∑

k=u+1
ρ(xv − xk−1)zk −

v∑
k=u+1

(xv − xk)zk

≥ (ρ− 1)(xv − xu)zu +
v−1∑
k=u

ρz(xv − xk)zk −
v∑

k=u+1
(xv − xk)zk

≥ (ρ− 1)(xv − xu)zu +
v∑

k=u

(ρz − 1)(xv − xk)zk + (xv − xu)zu

≥ (ρz − 1)Kt(z) + ρ(xv − xu)zu. ◀

The lemma implies that

(ρz − 1)K(z) =
∑
t>0

(ρz − 1)Kt(z) ≤ P1(z) ≤
n∑

k=1
zk = zn+1 − z

z − 1 . (3)

4 Recall that xk depends on t. Note also that, among the n agents, rightward motion within [0, 1] might
greatly outweigh the leftward kind. Thus, if most of the xi’s keep growing, how can Pt(z) not follow
suit? The point is that Pt(z) puts weights exponentially growing on the right, so their leftward motion,
outweighed as it might be, will always dominate with respect to Pt(z). This balancing act between left
and right motion is the core principle of twist systems.

SAND 2023
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With z = (1 + ε)/ρ, ε = 1/(n− ν + 1), and n > 2, we find that

z−νK(z) ≤ zn − 1
(z − 1)(ρz − 1)zν−1 ≤ 2ρν−ne(n−ν+1)ε/ε ≤ 2e(n− ν + 1)ρν−n ≤ 3en

2 ρν−n.

The case s = 1 of Theorem 2 follows immediately from Lemma 4. Finally, for n = 2, we
verify that Etw

m,1 =
∑

k≥0(1− 2ρ)k = 1/2ρ.

Case s < 1

The previous argument relied crucially on the linearity of the 1-energy. If s < 1, the
s-energy gives more relative weight to small lengths, so we need a different strategy to keep
the scales separated. We omit the superscript tw below but it is understood. We use a
threshold δ which, though set to 1/3, is best kept as δ in the notation.

A recurrence relation. Let Tδ be the number of steps at which the diameter remains above
1 − δ; note that these steps are consecutive and Tδ might be infinite. By scaling, we find
that Es ≤ Fs + (1− δ)sEs, where Fs =

∑
t≤Tδ

Es,t. Since (1− δ)s ≤ 1− δs, for δ, s ∈ [0, 1],
we have

Es ≤ (δs)−1Fs. (4)

If m = 1, then (1− δ)Fs ≤ (1− δ)Tδ ≤ F1 ≤ E1,1. Thus, by (4) and the previous section,

E1,s ≤
3en

δ(1− δ) (1/s)(1/ρ)⌊n/2⌋. (5)

The case m > 1. Fix t ≤ Tδ; if mt > 1, let j maximize xj+1(t)− xj(t) over all j = vi and
i < mt (break ties by taking the smallest j). This corresponds to the maximum distance
between consecutive blocks. For this reason, we call (j, j + 1) the max-gap at time t. We say
that t is ungapped if mt = 1 or xj+1(t)−xj(t) ≤ δ/m; it is gapped otherwise. Assuming that t

is gapped, let (j, j +1) be its max-gap and write ζt = mink

{
t < k ≤ Tδ | ∃ l : uk,l ≤ j < vk,l

}
:

If the set is empty, we set ζt = Tδ; else l is unique and we denote it by lt. We call the interval
[t, ζt] a span and the block lt, if it exists, its cap. We note that xj+1(k) − xj(k) cannot
decrease during the times k = t, . . . , ζt. This shows that a cap covers a length greater than
δ/m.

We begin with a few words of intuition. The energetic contribution of an ungapped time
t is easy to account for: It is at most m. On the other hand, the 1-energy is at least the
diameter minus the added length of the gaps between blocks, which amounts to at least
1 − 2δ ≥ 1/3; in other words, Es,t ≤ 3mE1,t. Summing up over all ungapped times and
plugging in our bound for s = 1 gives us the desired result. Accounting for gapped times is
more difficult, as it requires dealing with small scales. If we had only one span, we could
simply split the system into two decoupled subsystems and set up a recurrence relation. The
problem is that the presence of k capped spans would force us to repeat the recursion k − 1
times. With no apriori bound on k, this approach is not too promising. Instead, we make a
bold move: We argue that, because a cap is longer than δ/m, its own 1-energy contribution
(ie, its length) is large enough to “pay” for the s-energy of its entire span. This is not quite
right, of course, but one can fix the argument by using the weighted 1-energy of the cap and
upscaling it suitably. Once again, this reduces the problem to the case s = 1, so our method
is, in effect, a linearization. Here is the proof.
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Proof. We partition the times between 1 and Tδ into two subsets G and U := [1, Tδ]\G, each
one supplied with its own energetic accounting scheme. We form G by greedily extracting a
maximal set of nonoverlapping spans and taking their union.

1. G← ∅ and t′ ← 1;
2. if t← min

{
gapped i | t′ ≤ i ≤ Tδ

}
exists

3. then G← G ∪
{

i | t ≤ i ≤ ζt

}
;

4. if ζt < Tδ then t′ = ζt + 1; go to 2;

We postulate that, for any 0 < s ≤ 1, and any number of agents j ≤ n,

Em,s ≤ cm(1/s)m(1/ρ)j−1 , (6)

and we derive a recurrence relation for cm (for given n).

Accounting for G: In line 3, let k = ζt and (j, j + 1) be the corresponding max-gap.
Suppose that the span [t, k] is capped. The absence of an interval including j and j + 1
during [t, k−1] implies that

∑
t≤l≤k Es,l ≤ L+R+m, where L and R denote the s-energy

of systems with at most m− 1 connected components. For reasons we address below, we
may assume that L is dominant; hence R ≤ L ≤ Em−1,s.5 It follows that

k∑
l=t

Es,l ≤ 2Em−1,s + m ≤ 3cm−1(1/s)m−1(1/ρ)j−1. (7)

Note that we (safely) assume cm−1 ≥ m. Using the shorthand v for vk,lt
, we have

xv(k)−xj(k) ≥ xj+1(k)−xj(k) ≥ xj+1(t)−xj(t) > δ/m. We add the artificial multiplier
xv(k) − xj(k) to (7) to make the right-hand side resemble K(z). Recall that δ = 1/3;
assuming that z > 1/ρ from now on, we have

k∑
l=t

Es,l ≤ B
(
xv(k)− xj(k)

)
zj , with B = 9cm−1mρ(1/s)m−1 (8)

The set G is a union of spans. If ζt = Tδ, the last span might not be capped. If so,
remove it from G and call the resulting set G′. Summing up, we find that

∑
t∈G′ Es,t ≤

B
∑

t∈G′ Kt(z). If the last span is uncapped then ζt = Tδ and no block contains both
j and j + 1 in the span [t, Tδ]. The s-energy expended in that span is thus of the form
L + R ≤ 2Em−1,s.
Accounting for U : Only ungapped times belong to U , so the 1-energy at time t ∈ U is at
least 1− δ − (mt − 1)δ/m ≥ 1/3. On the other hand, Es,t ≤ m ≤ 3mE1,t ≤ 3mρKt(z) ≤
BKt(z).

Set z = (1 + ε)/ρ, for ε > 0. Putting all of our bounds together, we have

Fs =
∑
t≤Tδ

Es,t ≤ B
∑
t∈G′

Kt(z) + 2Em−1,s + B
∑
t∈U

Kt(z)

≤ 2cm−1 (1/s)m−1(1/ρ)n−1 + BK(z).

5 The inequality relies on the (easy) fact that the maximum s-energy grows monotonically with the
number of agents. This is not even needed, however, if we redefine Em,s as the maximum s-energy over
all systems with at most n agents and then reason with the value n′ ≤ n that achieves the maximum.
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Actually, the exponent to 1/ρ can be reduced to n− 2, but this is immaterial. By (3),

BK(z) ≤ 18cm−1(1/s)m−1(1/ρ)n−1e(n+1)ε(m/ε).

Setting ε = 1/(n + 1) gives us, for some constant d > 0,

Fs ≤ cm−1(dmn)(1/s)m−1(1/ρ)n−1.

We tie up the loose ends by arguing that it was legitimate to assume that L ≥ R. The
point is that individual values of L and R do not matter: only their sums do. Thus, if the Rs
outweigh the Ls, we restore the dominance of the Ls by flipping the system around. Finally,
by (4), Es ≤ (3/s)Fs; and so, by (5), Theorem 2 follows from the recurrence: c1 = O(n) and
cm ≤ 3dmncm−1, for m > 1. ◀

◀

Lower bounds for twist systems

We begin with the case m = 1. Assume that n = 2k + 1. At time t = 1, we have
xk = −x−k = 1/2 and xi = −x−i = 1

2 (1− ρi), for 0 ≤ i < k and ρ small enough. For t > 1,
we set xi(t) = (1 − ρk)xi(t − 1). The agents are labeled −k, . . . , k from left to right. It
is easily verified that this constitutes a twist system for the block [−k, k] with initial unit
diameter. The s-energy E is

(
1− ρk

)s
E + 1 so, for constant c > 0,

E ≥ (c/s)(1/ρ)⌊n/2⌋. (9)

If n = 2k, we set xk = −x−k = 1/2 and xi = −x−i = 1
2 (1− 2ρi), for 1 ≤ i < k. For t > 1,

we set xi(t) = (1− 2ρk)xi(t− 1) and rederive (9).
For the general case, we describe the evolution of an m-block twist system with n agents,

and denote its s-energy by F (n, m): It is assumed that n − 1 agents are positioned at 0
at time 1 and the last one is at position 1. If m = 1, we apply the previous construction
after shifting the initial interval from [−0.5, 0.5] to [0, 1]. The initial positions still do not
match, but we note that, in a single step, we can move the agents anywhere we want in
the interval [ρ, 1 − ρ] while respecting the constraints of a twist system. This gives us
F (n, 1) = 1 + (1 − 2ρ)sE. By adjusting the constant c in (9), the same lower bound still
holds.

For m > 1, at time 1, we move the agents n−1 and n to positions ρ and 1−ρ, respectively,
and we leave the others (if any) at position 0. We then use an (m− 1)-block twist system
recursively for the agents 1, . . . , n−1. This brings these agents to a common position6 in [0, ρ].
This gives us the recurrence relation: F (n, m) ≥ 1 + ρsF (n− 1, m− 1) + (1− 2ρ)sF (n, m);
hence, by induction, for constant c > 0,

F (n, m) ≥ (c/s)mρ(m−1)s(1/ρ)⌊(n+m−1)/2⌋. (10)

The s-energy is often used for small s, so we state the case of s = O
(
1/m log 1

ρ

)
, which

matches the bound of Theorem 2 for m = n− 1.

▶ Theorem 6. Etw
m,s ≥ (c/s)m(1/ρ)⌊(n+m−1)/2⌋, for constant c > 0, small enough ρ and

s = O
(
1/m log 1

ρ

)
.

6 To keep the time finite, we can always force completion in a single step once the agents are sufficiently
close to each other.
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2.2 Expanding averaging systems
In a revS, the stochastic matrices Pt are of the form Pt = diag(q)−1Mt, where Mt is
symmetric with nonzero entries at least 1 and q = Mt1 ⪯ 1/ρ. We verify that q is the
common (dominant) left-eigenvector. We revisit the definition of Em,s to include only the
reversible averaging systems of unit variance ∥x− x̂ ∥2

q = 1, where x̂ = q⟨x, 1⟩. We denote
the s-energy by E rev

m,s . The following result is already known. (Note that, if the variance is
not one, it suffices to multiply the upper bound by ∥x− x̂ ∥s

q.)

▶ Theorem 7 ([15]). Erev
m,s ≤ (cn2/ρs)m, for any s ∈ (0, 1] and constant c > 0.

A d-regular expander with Cheeger constant h is a graph of degree d such that, for any
set X of at most half the vertices, we have |∂X| ≥ h|X|, where ∂X is the set of edges
with exactly one vertex in X. We say that G = (V, E) is a d-regular m-expander if it has
at most m connected components. Recall that an expanding averaging system (expS ) is
a revS consisting of d-regular m-expanders. Each nonzero entry in Mt is equal to 1 and
q = d1. We redefine the s-energy to include only expS of unit variance with at most m

connected components and denote it by Eexp
m,s. Adding the expanding assumptions cancels

the dependency on n in the case m = 1. More generally, we prove the following:

▶ Theorem 8. E exp
m,s ≤ (c/s)m, for any s ∈ (0, 1], where c = O(d3/h2) for m = 1 and

c = O(d3mn/h2) for m > 1.

We begin the proof with a lower bound on the Dirichlet form that exploits the expansion
of a d-regular expander with Cheeger constant h. This is known as Cheeger’s inequality. We
include the proof below for completeness.

▶ Lemma 9. If G = (V, E) is connected, then
∑

(i,j)∈E (xi − xj)2 ≥ b(h/d)2 ∥x − x̂∥2
q ≥

b(h∆)2/2d, for constant b > 0, where ∆ is the diameter of the agent positions x1, . . . , xn.

Proof. All of the ideas in this proof come from [3, 52]. The inequality is invariant under
shifting and scaling, so we may assume that x̂ = 0 and ∥x∥2 = 1. Relabel the coordinates of
x so they appear in nonincreasing order, and define y ∈ Rn such that yi = max{xi, 0}. Let
α = argmaxk(yk > 0) and β = min{α, ⌊n/2⌋}. By switching x into −x if necessary,7 we can
always assume that ∥y∥2

2 > c := 1/6 if α = β, and ∥y∥2
2 ≥ 1− c if α > β. By Cauchy-Schwarz,

(yi + yj)2 ≤ 2(y2
i + y2

j ); hence,

∑
(i,j)∈E

∣∣ y2
i − y2

j

∣∣ =
∑

(i,j)∈E

(yi + yj)|yi − yj | ≤
√ ∑

(i,j)∈E

(yi + yj)2
∑

(i,j)∈E

(yi − yj)2

≤
√∑

i

2dy2
i

∑
(i,j)∈E

(yi − yj)2 ≤
√ ∑

(i,j)∈E

2d(yi − yj)2 ≤
√ ∑

(i,j)∈E

2d(xi − xj)2.

(11)

By the expansion property of G, summation by parts yields

∑
(i,j)∈E

∣∣ y2
i −y2

j

∣∣ ≥
⌊n/2⌋∑
k=1

hk
(
y2

k −y2
k+1
)

+
n−1∑

k=⌊n/2⌋+1

h(n−k)
(
y2

k+1 −y2
k

)
= h

(
∥y∥2

2 −ny2
⌊n/2⌋+1

)
. (12)

7 Intuitively, by changing all signs if necessary, we force the minority sign among the coordinates of x to
be positive unless their contribution to the norm of x is too small.
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Suppose that α > β = ⌊n/2⌋. It follows from
∑n

i=1 xi = 0 that
∑n

i=α+1 |xi| = ∥y∥1 ≥
(β + 1)yβ+1. By Cauchy-Schwarz, this yields ny2

β+1/4 ≤
∑n

i=α+1 x2
i = 1− ∥y∥2

2, and by (12),∑
(i,j)∈E

∣∣ y2
i − y2

j

∣∣ ≥ (1− 5c)h = ch. If α = β, then y⌊n/2⌋+1 = 0 and
∑

(i,j)∈E

∣∣ y2
i − y2

j

∣∣ ≥
h∥y∥2

2 > ch. Applying (11) shows that
∑

(i,j)∈E(xi−xj)2 ≥ (ch)2/2d, which gives us the first
inequality of the lemma. The second one follows from the fact that the interval [a, b] enclosing
the vertex positions contains 0. By Cauchy-Schwarz, 1 = ∥x∥2

2 ≥ a2 +b2 ≥ 1
2 (b+ |a|)2 = ∆2/2,

and the proof is complete. ◀

Let G≤t be the graph obtained by adding all the edges from G1, . . . , Gt. Let mt ≤ m

be the number of connected components in Gt, and let ∆t,i denote the diameter of the
i-th component of Gt (labeled in any order). Let t1, . . . , tc be the times t > 1 at which
the addition of Gt reduces the number of components in G≤t−1. If no such times exist, set
c = tc = 1.

▶ Lemma 10. If G≤tc
is connected, then

∑
t≤tc

∑mt

i=1 ∆2
t,i ≥ 1

2dmn∥x− x̂ ∥2
q .

Proof. At any time tk > 1, the drop dk in the number of components can be achieved by dk

(or fewer) components in Gtk
. We collect the intervals spanned by these components into a

set F , to which we add the intervals for the components of G1; thus |F | < 2m. A simple
convexity argument (omitted) shows that the union of the intervals in F coincides with the
interval [a, b] enclosing the n vertices at time 1; so the lengths l1, . . . , l|F | of the intervals in F

sum up to at least b−a. By Cauchy-Schwarz,
∑

t≤tc

∑mt

i=1 ∆2
t,i ≥

∑|F |
i=1 l2

i ≥ (b−a)2/(2m−1).
The lemma follows from ∥x− x̂ ∥2

q ≤ ∥q∥1(b− a)2 ≤ dn(b− a)2.
If we define the variant of the Dirichlet form, Dt =

∑
i maxj: (i,j)∈Et

(
xi(t)− xj(t)

)2, we
know from [15] that, for any x = x(1) ∈ Rn,

∥Pt x∥2
q ≤ ∥x∥2

q −
Dt

2 .

It follows that ∥x∥2
q − ∥x(tc + 1)∥2

q ≥ 1
2
∑

t≤tc
Dt ≥ 1

d

∑
t≤tc

∑
(i,j)∈Et

(
xi(t) − xj(t)

)2.
Assuming that G≤tc is connected, Lemmas 9 and 10 imply that

∥x∥2
q − ∥x(tc + 1)∥2

q ≥
bh2

2d2

∑
t≤tc

mt∑
i=1

∆2
t,i ≥

bh2

4d3mn
∥x− x̂ ∥2

q . (13)

Let A(n, m) be the maximum s-energy of an expS with at most n vertices and m connected
components at any time, subject to the initial condition ∥x− x̂ ∥2

q ≤ 1 and, without loss of
generality, x̂ = 0. By (13), ∥x(t)∥2

q shrinks by at least a factor of α := 1− bh2/(4d3mn) by
time tc + 1. By scaling, we see that the s-energy expanded after tc is at most αs/2A(n, m).
While t < tc (or if G≤tc

is not connected), the system can be decoupled into two expS
with fewer than m components. Since ∥x∥q = 1, the diameter of the system is at most
2 maxi |xi| ≤ 2/

√
d; therefore A(n, m) ≤ αs/2A(n, m) + 2A(n, m−1) + m

(
2/
√

d
)s. It follows

that

A(n, m) ≤ 2
1− αs/2

(
A(n, m− 1) + m

)
. (14)

If m = 1 then tc = 1, so we can bypass Lemma 10 and its reliance on the diameter. Instead,
we use the connectedness of the graphs to derive from Lemma 9:

∥x∥2
q − ∥x(2)∥2

q ≥
1
d

∑
(i,j)∈E1

(xi − xj)2 ≥ bh2

d3 ∥x− x̂∥2
q .

Setting α = 1− bh2/d3 proves the first part of Theorem 8. The second part follows from (14)
and the boundary case m = 1 we just derived. ◀
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2.3 Random averaging systems

It is assumed here that each graph Gt is picked independently, uniformly from the set of
simple (d − 1)-regular graphs with n vertices, with d > 3 [58]. (We use d − 1 because d

must account for the self-loops.) The system is a special case of a revS, so we use the same
notation. The stochastic matrix Pt for Gt is 1

d Mt, where Mt is a random symmetric 0/1
matrix with a positive diagonal and all row sums equal to d; we have q = d1. We define the
s-energy Eran

s for systems with unit variance ∥x− x̂ ∥2
q = 1, where x̂ = 1

d ⟨x, 1⟩.

▶ Theorem 11. E E ran
s ≤ c/s, for any s ∈ (0, 1], where c is an absolute constant.

The term absolute refers to the fact that c is independent of the problem’s size and
parameters; we assume that d is fixed. Let xi, yi be the positions of agent i at step t and
t + 1 respectively. As usual, we may place the center of gravity x̂ at the origin at time 1,
where it will remain forever; that is,

∑n
i=1 xi = 0.

▶ Lemma 12. E
∑n

i=1 y2
i = (1− b)

∑n
i=1 x2

i , where b = (d−1)n
d(n−1) .

Proof. Write δij = xi − xj and Mt = (mij). With all sums extending from 1 to n, we have

∑
i

x2
i −
∑

i

y2
i =

∑
i

x2
i −
∑

i

(
xi − 1

d

∑
j

mijδij

)2

= 2
d

∑
i,j

mijxiδij − 1
d2

∑
i,j,k

mijmikδijδik

= 1
d

∑
i,j

mijδ2
ij − 1

2d2

∑
i,j,k

mijmik(δ2
ij + δ2

ik − δ2
jk) = 1

2d2

∑
i,j,k:i̸=j

mikmjkδ2
ij ,

(15)

with the last equality following from
∑n

k=1 mik = d and δii = 0. By symmetry, Pr [mij =
1] = (d− 1)/(n− 1) and Pr [mijmik = 1] =

(
d−1

2
)
/
(

n−1
2
)
, for any pairwise distinct i, j, k. For

any i ̸= j, we have
∑

k mikmjk = 2mij +
∑

k:k ̸=i,k ̸=j mikmjk; hence

∑
k

E [mikmjk] = 2E [mij ] +
∑

k:k ̸=i,k ̸=j

E [mikmjk] = d(d− 1)
n− 1 .

Since
∑

i xi = 0, we have
∑

i,j:i̸=j δ2
ij = 2n

∑
i x2

i . By (15), it follows that

E
n∑

i=1
y2

i =
∑

i

x2
i −

1
2d2

∑
i,j,k:i̸=j

δ2
ij E [mikmjk] =

∑
i

x2
i −

d− 1
2d(n− 1)

∑
i,j:i̸=j

δ2
ij .

Markov’s inequality tells us that
∑

i y2
i ≥ (1− b/3)

∑
i x2

i holds with probability at most
E
[∑

i y2
i

] / [
(1 − b/3)

∑
i x2

i

]
≤ 1 − b/2. Since ∥x∥q = 1, the diameter of the system is at

most 2/
√

d; by the usual scaling law, it follows that

E E ran
s ≤ 2s EK + b

2
(
1− b/3

)s/2 E E ran
s +

(
1− b/2

)
E E ran

s ,

where K is the number of connected components in G1. It is known [58] that, for d > 3, the
probability that the graph is not connected is O(n3−d); hence EK = O(1). Since b ≥ 1/2,
we conclude that E E ran

s = O
(
1/
(
1− (5/6)s/2)) = O(1/s); hence Theorem 11. ◀
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3 The Overton Window Attractor

Following in a long line of opinion dynamics models [9, 20, 21, 28, 31], we consider a
collection of n agents, each one holding an opinion vector xi(t) ∈ [0, 1]d at time t; we
denote by x(t) the n-by-d matrix whose i-th row corresponds to xi(t). Given a stochastic
matrix Pt, the agents update their opinion vectors at time t > 0 according to the evolution
equation x(t + 1) = Pt x(t). We assume that the last k agents n − k + 1, . . . , n are fixed
in the sense that xi(t) remains constant at all times t > 0. Algebraically, the square
block of Pt corresponding to the k fixed agents is set to the identity matrix Ik. The fixed
agents can influence the mobile ones, but not the other way around. The presence of fixed
agents (also called “stubborn,” “forceful” or “zealots” in the literature) has been extensively
studied [2, 1, 30, 43, 44, 53, 60, 59].

In the context of social networks, the fixed sources may consist of venues with low user
influence, such as news outlets, wiki pages, influencers, TV channels, political campaign
sites, etc. [16, 29, 35, 38, 49, 56, 61]. We how how the mobile agents migrate to the convex
hull of the fixed agents; crucially, we bound the rate of attraction. This provides both a
quantitative illustration of the famous Overton window phenomenon as well as a theoretical
explanation for why the window acts as an attracting manifold [4, 6, 19, 27, 46]. Interestingly,
the emergence of a global attractor does not imply convergence (ie, fixed-point attraction).
The mobile agents might still fluctuate widely in perpetuity. The point is that they will
always do so within the confines of the global attractor.

To reflect the stochasticity inherent in the choice of sources visited by a user on a given day,
we adopt a classic “planted” model: Fix a connected n-vertex graph G and two parameters
p ∈ (0, 1] and ρ ∈ (0, 1/2]. At each time t > 0, Gt is defined by picking every edge of G with
probability at least p. (No independence is required and n self-loops are included.) We define
an n-by-n stochastic matrix Pt by setting every entry to 0 and updating it as follows:
1. For i > n− k, (Pt)ii = 1.
2. For i ≤ n− k, set (Pt)ij ≥ ρ for any j such that (i, j) is an edge of Gt.
Note that the update is highly nondeterministic. The only two conditions required are that
(i) nonzero entries be at least ρ and (ii) each row sum up to 1.

▶ Theorem 13. For any δ, ε > 0, with probability at least 1− δ, all of the agents fall within
distance ε of the convex hull of the fixed agents after a number of steps at most

1
pδ

(
c

ρ
log dn

ε

)2(n−1)

for constant c > 0.

Proof. Let Qt be the h-by-h upper-left submatrix of Pt, where h = n − k. Note that
Q≤t := Qt · · ·Q1 coincides with the h-by-h upper-left submatrix P≤t. Thus, to show that
the mobile agents are attracted to the convex hull of the fixed ones, it suffices to prove that
Q≤t tends to 0h×h. To do that, we create an agreement system consisting of h + 1 agents
embedded in [0, 1] and evolving as y(t + 1) = At y(t), where: y(t) ∈ Rh+1; yh+1(1) = 0;
v = (Ih −Qt)1h; and

At =
(

Qt v

0T
h 1

)
.

The system lacks the requisite zero-symmetry to qualify as a genS, so we use symmetriza-
tion [12] by duplicating the h mobile agents and initializing the embedding of the two copies
as mirror-image reflections about the origin. The new evolution matrix is now ν-by-ν, where
ν = 2h + 1:
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Bt =

 Qt v 0h×h

u 1− 2∥u∥1 u

0h×h v Qt

 .

We define the row vector u ∈ Rh by setting its i-th coordinate to ρ if vi > 0 and 0 otherwise.
We require that 1 − 2∥u∥1 ≥ ρ; hence ρ ≤ 1/(2dt + 1), where dt is the number of mobile
agents (among the h of them) adjacent in Gt to at least one fixed agent. This condition is
easily satisfied by setting ρ ≤ 1/2n. The evolution follows the update: z(t + 1) = Bt z(t),
where z(t) ∈ [−1, 1]ν and zh+1(1) = 0.

Let G∗ be the augmented ν-vertex graph formed from G and let G∗
t be its subgraph

selected at time t. Note that, via z(t), these graphs are embedded in [−1, 1]ν . If ∆t denotes
the length of the longest edge of G∗ at time t and Tα is the last time at which the diameter of
the system is at least α, then ∆t ≥ α/ν for all t ≤ Tα because G∗ is connected. The longest
edge in G∗ (with ties broken alphabetically) appears in G∗

t with probability at least p. Fix
s ∈ (0, 1] and define the random variable χt to be ∆s

t if the longest edge of G at time t is in
Gt and 0 otherwise. By [13], the maximum s-energy satisfies Es ≤ 2s(3/ρs)ν−1; hence

ETα ≤
( ν

α

)s

E
∑
t≥0

∆s
t ≤

1
p

( ν

α

)s

E
∑
t≥0

χt ≤
1
p

( ν

α

)s

Es ≤
2
p

( ν

α

)s
(

3
ρs

)ν−1
.

Minimizing the right-hand side over all s ∈ (0, 1] yields

ETα ≤
4
p

(
3
ρ

log 2n− 1
α

)2(n−1)
.

By Markov’s inequality, Pr
[

Tα ≥ tδ

]
≤ δ, where

tδ := 4
pδ

(
3
ρ

log 2n− 1
α

)2(n−1)
. (16)

This implies that ∥Q≤t 1h∥∞ ≤ α, for all t > tδ, with probability at least 1 − δ. In other
words, for any such t, it holds that, for i ≤ h,

q :=
h∑

j=1
(P≤t)ij =

h∑
j=1

(Q≤t)ij ≤ α.

Trivially, xi(t + 1) = qu + (1− q)v, where

u = 1
q

h∑
j=1

(P≤t)ijxj(1) and v = 1
1− q

n∑
j=h+1

(P≤t)ijxj(1).

Observing that v lies in the convex hull of the fixed agents, we form the difference xi(t+1)−v =
q(u−v) and note that the distance from xi(t + 1) to the hull is bounded by q∥u−v∥2 ≤ α

√
d.

Setting α = ε/
√

d completes the proof. ◀

We can extend this result so as to relate convergence to connectivity. We now produce
the random graph Gt from fixed connected G as we did above, but if this results in a graph
with more than m connected components, we add random edges picked uniformly from G

until the number of components drops to m. Using Theorem 2 in the proof above leads to a
more refined bound:
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▶ Theorem 14. For any δ, ε > 0, with probability at least 1− δ, all of the agents fall within
distance ε of the convex hull of the fixed agents in time bounded by

1
pδ

(
1
ρ

)2(n−1)(
cmn log dn

ε

)2m−1
,

for constant c > 0. This assumes that no graph used in the process has more than m connected
components.

Proof. By Theorem 2, we know that Egen
m,s ≤ (b/s)m(1/ρ)n−1, for any s ∈ (0, 1], where

b = O(mn). The previous proof leads us to update (16) into:

tδ := 1
pδ

(
1
ρ

)2(n−1) (
cmn log n

α

)2m−1
,

for constant c > 0, from which the theorem follows. ◀
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Abstract
Self-stabilizing algorithms are a way to deal with network dynamicity, as it will update itself after a
network change (addition or removal of nodes or edges), as long as changes are not frequent. We
propose an automatic transformation of synchronous distributed algorithms that solve locally greedy
and mendable problems into self-stabilizing algorithms in anonymous networks.

Mendable problems are a generalization of greedy problems where any partial solution may be
transformed -instead of completed- into a global solution: every time we extend the partial solution,
we are allowed to change the previous partial solution up to a given distance. Locally here means
that to extend a solution for a node, we need to look at a constant distance from it.

In order to do this, we propose the first explicit self-stabilizing algorithm computing a (k, k − 1)-
ruling set (i.e. a “maximal independent set at distance k”). By combining this technique multiple
times, we compute a distance-K coloring of the graph. With this coloring we can finally simulate
Local model algorithms running in a constant number of rounds, using the colors as unique
identifiers.

Our algorithms work under the Gouda daemon, similar to the probabilistic daemon: if an event
should eventually happen, it will occur.

2012 ACM Subject Classification Theory of computation → Distributed algorithms

Keywords and phrases Greedy Problem, Ruling Set, Distance-K Coloring, Self-Stabilizing Algorithm

Digital Object Identifier 10.4230/LIPIcs.SAND.2023.11
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1 Introduction

The greedy approach is often considered to solve a problem: Is it possible to build up a
solution step by step by completing a partial solution? For example, in graph theory, one
can consider the Maximal Independent Set (MIS) problem that consists in selecting a set of
nodes such that no two chosen nodes are adjacent and any unselected node is a neighbor of
a selected one. To produce a MIS, a simple algorithm selects a node, rejects all its neighbors,
and then repeats this operation until no node is left. Another classical greedy algorithm is the
one that produces a (∆+1)-coloring of a graph, where ∆ is the maximum degree in the graph.
Each time a node is considered, as it has at most ∆ different colors in its neighborhood, one
can always choose a different color to extend the current partial solution. Observe that most
graphs admit a ∆-coloring, which cannot be found with this heuristic. We can also notice
that the size of a MIS can be arbitrarily smaller than the size of a maximum independent set.
More generally, greedy algorithm are simple algorithm that build not necessarily optimal
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11:2 Making Self-Stabilizing Algorithms for Any Locally Greedy Problem

solutions. Greedy problems are problems that can be solved using a greedy algorithm. We
say that a problem is Locally greedy if you only need to have information at some constant
distance from a node to complete a partial solution on that node. For example ∆-coloring
and MIS problems are Locally greedy problems while the spanning tree problem is not.

Sometimes, it is not possible to complete a partial solution, and it might be necessary to
change some of the outputs to reach a feasible solution. The idea of fixing, or mending a
solution, in distributed computing, has been studied a lot, for example in [29, 30]. A formal
definition of Mendable problems has recently been introduced in [8]. In a graph, we compute
the output of each node one after another. For each chosen node, it is possible to change the
output of its neighborhood, but only up to some distance. The set of mendable problems
is larger than the set of greedy ones. For instance, the 4-coloring of the grid is a mendable
problem, but it cannot be solved greedily, as its maximal degree ∆ is equal to 4.

A more generalized way to consider MIS are ruling sets. Given a graph G = (V, E), a
(a, b)-ruling set is a subset S ⊂ V such that the distance between any two nodes in S is at
least a, and any node in V is at distance at most b from some node in S.

In particular, a (2, 1)-ruling set is a MIS of G. A (k, k − 1)-ruling set S is a maximal
independent set at distance k (also called maximal distance-k independent set): all the
elements of S are at distance at least k from each other, every other node is at distance at
most k − 1 from S, and thus cannot be added. Note that it is a MIS of Gk−1 (the graph
with the same vertices as G, and with edges between two vertices if there are at distance
k − 1 or less from each other in G), and this problem can be greedily solved.

A distance-K coloring of a graph G = (V, E) is a mapping C : V → N such that for any
pair of nodes u v at distance at most K from each other, we have C(u) ̸= C(v). A way to
produce a distance-K coloring is to partition V into sets of nodes at distance at least k > K

from each other, i.e. distance-k independent sets, each one representing a color. One can
construct such a partition sequentially by constructing a partition into X ≥ ∆k distance-k
independent sets {S(i)}i≤X , where S(i) is a distance-k independent set of G maximal under
the constraint that every node of the independent set must be in V \

⋃
j<i S(j). These

distance-k independent sets can be computed similarly to (k, k − 1)-ruling sets.
The Local model [36] is a synchronous model with unlimited bound on memory where

each node starts with a unique identifier. In particular, after k communication rounds, each
node knows everything about its neighborhood at distance k. A distance-2K coloring allows
to simulate Local algorithms running in at most K rounds, as no node can see twice the
same identifier in its neighborhood at distance K (see for example [8, 12]).

An algorithm is Self-stabilizing if, from any configuration (system state), the system will
eventually reach a configuration with a good output/solution (see [3, 17]). In particular,
such an algorithm permits one to get back to a good configuration if some faults occur (for
example, a node accidentally switches its state). In such situations, being able to locally
mend around the fault is key, as it minimises the information and time needed to fix the
issue. Self-stabilizing algorithms using mending techniques have been extensively studied, for
example in [1, 22, 38]. Self-stabilization can manage the updates in a dynamic network when
they occur not too often as adding or removing nodes or links can be viewed as transient
faults.

1.1 Our Contribution
This paper aims to adapt the idea of Local mending from [8] to produce a self-stabilizing
algorithm working in anonymous networks for any constant-radius mendable problem. It
uses f(∆) = ∆∆O(1) states (in particular, it becomes constant for bounded degree graphs).
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In Section 2, we provide a self-stabilizing algorithm that computes a (k, k − 1)-ruling
set in an anonymous network under the Gouda daemon. This algorithm will be used as a
sub-routine for our construction. The algorithm detects when a leader can be added (i.e.
there is a ball of radius k without leader) or two leaders are too close (i.e. at distance less
than k from each other). To that end, each node computes its distance from the leaders.
If a node and its neighbors are at distance at least k − 1 from the leaders, that node can
try to add itself to the ruling set. If two leaders are too close, thanks to a clock system
consisting of a mosaic of local synchronizers beta of Awerbuch [4], a node in the middle of the
path will eventually detect the problem and initiate the removal of the leaders from the set.
Thanks to the Gouda daemon, we ensure that only a few nodes will try to add themselves
simultaneously and that the clock system will eventually detect collisions. Section 3 contains
the proof that a stable configuration can always be reached, and the Gouda daemon ensures
that it ultimately happens.

In Section 4, by combining this algorithm ∆k times, we partition the graph into distance-k
independent sets, which corresponds to a distance-K coloring for any K < k. This coloring
allows us to consider nodes of each set sequentially to compute a solution to some greedy
problem. In Section 5, we present a solution allowing us to solve any T -mendable problem
in anonymous networks, where T is a constant corresponding to the radius up to which
we are permitted to change the output of a node. To that end, we use the fact that a
Local algorithm runs in r rounds for some constant r, when a distance-2T + 1 coloring is
given. To do that, we compute a distance-2T + 1 and a distance-2r + 1 coloring. That way,
each node can access their neighborhood at the proper distance and compute the output the
Local algorithm would have given in that situation.

1.2 Related Work
The notion of checking locally was introduced by Afek et al. [2] and its relationship with
the idea of solving locally by Naor and Stockmeyer [31]. This work, along with Cole and
Vishkin’s algorithm that efficiently computes a 3-coloring of a ring [14], leads to the notion
of Locally Checkable Labelling problems (Lcl) and the Local model. Locally checkable
problems are problems such that when the output is locally correct for each node, the global
output is guaranteed to be correct too. Coloring and MIS belong to that field. Ruling Sets
are also Lcl problems: to check locally that the solution is correct, the distance to the set
must be given in the output. The Local model (see [36] for a survey) is a synchronous
model that requires unique identifiers but does not impose any restriction on communication
bandwidth or computation complexity. The goal is to find sublinear time algorithms. An
adaptation of the Local model, the Slocal model [21] considers algorithms executed on
nodes one after another, only one time each, but are allowed to see the state of every node
up to some distance when they do. In particular, this model solves locally greedy problems
with a constant distance of sight.

Bitton et al. [11] designed a self-stabilizing transformer for Local problems. Their
probabilistic transformer converts a given fault-free synchronous algorithm for Lcl problems
into a self-stabilizing synchronous algorithm for the same problem in anonymous networks.
The overheads of this transformation in terms of message complexity and average time
complexity are upper bounded: the produced algorithms stabilize in time proportional to
log(α + ∆) in expectation, where α is the number of faulty nodes. Afek and Dolev [1]
designed a self-stabilizing transformer. It converts any distributed algorithm that works in
a network with identifiers and diameter less than D under the synchronous daemon into
a self-stabilizing one adding additional costs in time (additional O(D)), memory (O(nD)
multiplier), and communication (O(nD) multiplier).
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Awerbuch et al. [5] introduced the ruling set as a tool for decomposing the graph into
small-diameter connected components. As for the seminal work, the ruling set problems
have been used as a sub-routine function to solve some other distributed problems (network
decompositions [5, 10], colorings [32], shortest paths [27]).

The MIS problem has been extensively studied in the Local model, [19, 34, 13] for instance
and in the Congest model [33] (synchronous model where messages are O(log n) bits long).
In the Local model, Barenboim et al. [9] focused on systems with unique identifiers and gave a
self-stabilizing algorithm producing an MIS within O(∆+log∗ n) rounds. Balliu et al. [6] prove
that the previous algorithm [9] is optimal for a wide range of parameters in the Local model.
In the Congest model, Ghaffari et al. [20] prove that there exists a randomized distributed
algorithm that computes a maximal independent set in O(log ∆ · log log n + log6 log n) rounds
with high probability. Considering the problem (α, β)-ruling set in a more general way, Balliu
et al. [7] give some lower bound for computing a (2, β)- ruling set in the Local model: any
deterministic algorithm requires Ω

(
min

{
log ∆

β log log ∆ , log n
})

rounds.
Up to our knowledge, no self-stabilizing algorithm has been designed for only computing

(k, k − 1)-ruling sets where k > 2 under the Gouda daemon. Self-stabilizing algorithms for
maximal independent set have been designed in various models (anonymous network [35, 40,
39] or not [23, 28, 37]). Shukla et al. [35] present the first self-stabilization algorithm for finding
a MIS for anonymous networks. Turau [37] gives the best-known result with O(n) moves under
the distributed daemon. Recently, some works improved the results in the synchronous model.
For non-anonymous networks, Hedetniemi [26] designed a self-stabilization algorithm that
stabilizes in O(n) synchronous rounds. Moreover, for anonymous networks, Turau [39] designs
some randomized self-stabilizing algorithms for maximal independent set that stabilizes in
O(log n) rounds w.h.p. See the survey [25] for more details on MIS self-stabilizing algorithms.

Our algorithm uses a clock system close to information propagation with feedback (or
PIF) mechanism, however more than these classical solutions are needed. Indeed, while
we assume multiple leaders, in classical PIF algorithms, only one leader is usually assumed
under identified system [15] or anonymous one [16]. Their mechanism relies on waves of
information from a source to the network, layer by layer.

1.3 Model

A distributed system consists of a set of processes where two adjacent processes can com-
municate. The communication relation is represented by a graph G = (V, E) where V is
the set of the processes (we call node any element of V from now on) and E represents the
neighborhood relation between them, i.e., uv ∈ E when u and v are adjacent nodes. The
set of neighbors of a node u is denoted by N(u). We assume the system to be anonymous,
meaning that a node has no identifier. Moreover, we consider undirected networks (i.e.
uv ∈ E ⇐⇒ vu ∈ E). We denote by ∆ the maximum degree in the graph.

We denote by dist(u, v) the distance between the two nodes u and v in the graph. When
S is a subset of V , dist(u, S) is the smallest distance from u to an element in S. In what
follows, the concept of ball will play an important role. Formally, the ball of radius i and
center s, B(s, i), is the set of nodes that are at distance at most i from s. Observe that a
ball of radius a − 1 centered in a node of the ruling set S contains only one node in S.

For communication, we consider the shared memory model : the local state of each node
corresponds to a set of local variables. A node can read its local variables and its neighbors’
but can only rewrite its local variables. A configuration is the value of the local states of
all nodes in the system. When u is a node and x is a local variable, the x-value of u is the
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value xu. Each node executes the same algorithm that consists of a set of rules. Each rule
is of the form “if ⟨guard⟩ then ⟨command⟩" and is parameterized by the node where it
would be applied. Each rule also has a priority number. The guard is a predicate over the
variables of the current node and its neighbors. The command is a sequence of actions that
may change the values of the node’s variables (but not those of its neighbors). A rule is
activable in a configuration C if its guard in C is true. A process is eligible for the rule R in
a configuration C if its rule R is activable and no rule of lower priority number is activable
for that node in C. We say in that case that the process is activable in C. An execution
is an alternate sequence of configurations and actions σ = C0, A0, . . . , Ci, Ai, . . ., such that
∀i ∈ N∗, configuration Ci+1 is obtained by executing the command of at least one rule that
is activable in configuration Ci. More precisely, the set of actions Ai is the non-empty set of
activable processes in Ci such that their activable rules have been executed to reach Ci+1.

The goal of a self-stabilizing algorithm is to be robust to perturbations. An initial
configuration cannot follow any restriction, and failures can occur, changing the state of
some of the nodes. A self-stabilizing algorithm must be able to recover and reach a correct
general output from any configuration.

In a distributed system, multiple nodes can be active simultaneously, meaning they are in
a state where they can make a computation. The definition of a self-stabilizing algorithm is
centred around the notion of daemon. A daemon captures which set of activable rules some
scheduler choose during the execution. See [18] for a taxonomy. Our algorithm cannot work
on a fully synchronous deterministic anonymous network, as it relies on using asynchronous
clocks from different leaders. To that end, we use the Gouda daemon to break symmetries,
as it ensures asynchronous activation of the nodes. We aim to create algorithms for any
mendable problems to solve the computability question. Hence, we do not focus on the
complexity time, which could be captured by a probabilistic daemon. The Gouda daemon
captures the same computable problems as the probabilistic daemon. If something happens
with probability 1 with the probabilistic daemon (where each rule has a probability < 1 to
be activated), it eventually happens with the Gouda daemon.

▶ Definition 1 ([18, 24]). We say that an execution σ = C0 → C1 → C2 . . . is under the
Gouda daemon if: for any configurations C and C ′ such that C → C ′ can be executed, if C

appears infinitely often in σ, then C ′ also appears infinitely often in σ.

An algorithm is self-stabilizing for a given specification (i.e. a set of restrictions over the
configurations) under some daemon if there exists a subset L of the set of all configurations,
called the legitimate configurations, such that: (i) any configuration in L verifies the specifica-
tion, and any execution under the said daemon starting in L stays in L (correctness). and (ii)
any execution under the said daemon eventually reaches a configuration in L (convergence).
The set L is called the set of legitimate configurations.

2 Self-Stabilizing Algorithm for Computing a (k, k − 1)-Ruling Set

2.1 General Overview
As we want to compute a (k, k − 1)-ruling set, a node needs to detect when it is currently
“too far” from the nodes pretending to be in the ruling set. When k = 2, a (2, 1)-ruling set is
an MIS, and some self-stabilization algorithms are designed for finding an MIS [35, 40, 39].
For the remaining of the document, we assume k > 2.

To this aim, the local variable d represents the distance at which the node thinks it is
from the ruling set. In particular, a d-value of 0 indicates that a node is (or thinks it is)
in the ruling set, and we denote by S(C) the set of those nodes in a given configuration C.
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Algorithm 1 Algorithm for the (k, k − 1)-Ruling Set.

————– Attributes of the nodes
du ∈ J0, k − 1K
erru ∈ {0, 1}
For every i ∈ J1, ⌊ k

2 ⌋ − 1K : ci,u ∈ Z/4Z and bi,u ∈ {↑, ↓}
————– Predicates
well_defined(u) ≡ erru = 0 ∧ ∀v ∈ N(u), |du − dv| ≤ 1 ∧ (du > 0 ⇒ (∃v ∈ N(u), dv = du − 1))
leader_down(u) ≡ du = 0 ⇒ ∀i ∈ J1, ⌊ k

2 ⌋ − 1K, bi,u =↓
branch_coherence_up(u, i) ≡

∀v ∈ N(u), dv = du − 1 ⇒ (bi,u, bi,v, ci,v) ∈ {(↑, ↑, ci,u), (↑, ↓, ci,u), (↑, ↓, ci,u + 1), (↓, ↓, ci,u)}
branch_coherence_down(u, i) ≡

∀v ∈ N(u), dv = du + 1 ⇒ (bi,u, bi,v, ci,v) ∈ {(↑, ↑, ci,u), (↓, ↑, ci,u), (↓, ↑, ci,u − 1), (↓, ↓, ci,u)}
branch_coherence(u) ≡ du ≥ ⌊ k

2 ⌋ ∨
(
branch_coherence_up(u, du) ∧

∀i ∈ Jdu + 1, ⌊ k
2 ⌋ − 1K, branch_coherence_up(u, i) ∧ branch_coherence_down(u, i)

)
————– Rules
Incr Leader:: (priority 2)

if well_defined(u) ∧ (du = 0) ∧ (∃i ∈ J1, ⌊ k
2 ⌋ − 1K, ∀v ∈ N(u), dv = 1 ∧ ci,u − ci,v = 0)

then For all such i, ci,u := ci,u + 1

Sync 1 down:: (priority 2)
if well_defined(u) ∧ ∃!v ∈ N(u), ∃i ∈ J1, ⌊ k

2 ⌋ − 1K, du = 1 ∧ dv = 0 ∧ ci,u = ci,v − 1 ∧ bi,u =↑)
then For all such i, ci,u := ci,v ; bi,u :=↓

Sync 2+ down:: (priority 2)
if well_defined(u) ∧ 1 < du < ⌊ k

2 ⌋
∧(∃i ∈ Jdu, ⌊ k

2 ⌋ − 1K, bi,u =↑ ∧∀v ∈ N(u), dv = du − 1 ⇒ (ci,u = ci,v − 1 ∧ bi,v =↓))
then For all such i, ci,u := ci,v ; bi,u :=↓

Sync 1+ up:: (priority 2)
if well_defined(u) ∧ 0 < du < ⌊ k

2 ⌋
∧(∃i ∈ Jdu + 1, ⌊ k

2 ⌋ − 1K, bi,u =↓ ∧∀v ∈ N(u), dv = du + 1 ⇒ (ci,u = ci,v ∧ bi,v =↑))
then For all such i, bi,u :=↑

Sync end-of-chain:: (priority 2)
if well_defined(u) ∧ 0 < du < ⌊ k

2 ⌋ ∧ ∀v ∈ N(u), dv = du − 1 ⇒ (cdu,u = cdu,v − 1 ∧ bi,v =↓))
then bdu,u :=↑ ; cdu,u := ci,v

Update distance :: (priority 0)
if (du ̸= 0) ∧ du ̸= min(min {dv|v ∈ N(u)} + 1, k − 1)
then du := min(min {dv|v ∈ N(u)} + 1, k − 1)

If du < ⌊ k
2 ⌋ : Let v := choose({w ∈ N(u)|dw = du − 1})

For each i ∈ Jdu, ⌊ k
2 ⌋ − 1K, ci,u := ci,v ; bi,u := bi,v

Become Leader :: (priority 2)
if erru = 0 ∧ (du = k − 1) ∧ ∀v ∈ N(u), dv = k − 1
then du := 0, For each i ∈ J1, ⌊ k

2 ⌋ − 1K, ci,u := 0, bi,u :=↓

Leader down :: (priority 1)
if well_defined(u) ∧ du = 0 ∧ ∃i ∈ J1, ⌊ k

2 ⌋ − 1K, bi,u =↑ then For each i ∈ J1, ⌊ k
2 ⌋ − 1K, bi,u :=↓

Two Heads:: (priority 1)
if erru = 0 ∧ ∃v, v′ ∈ (N(u) ∪ {u})2, v ̸= v′ ∧ dv = dv′ = 0) then erru := 1

Branch incoherence:: (priority 1)
if erru = 0 ∧ ¬branch_coherence(u) then erru := 1

Error Spread :: (priority 2)
if erru = 0 ∧ (du ≤ ⌊ k

2 ⌋ − 1) ∧ (∃v ∈ N(u), errv = 1 ∧ du < dv) then erru := 1

Reset Error :: (priority 2)
if (erru = 1) ∧ ([du > ⌊ k

2 ⌋] ∨ [∀v ∈ N(u), dv ≥ du ∨ errv = 1])
then erru := 0, If du = 0, du := 1, For each i, ci,u := 0, bi,u :=↑
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Any other value of du represents the distance to S(C) (the minimum between k − 1 and the
said distance). The rule Update distance has the highest priority. Its goal is to ensure
that each node eventually gets its distance to S(C) accurately. When a node u has its local
variable du equal to k − 1 and is surrounded by nodes of d-value k − 1, it “knows” that it is
far enough from S(C) to be added to it. Node u can then execute rule Become Leader
to do so. Update of d-values will then spread from the new member of S(C) through the
execution of rule Update distance.

The way to insert new nodes into S(C) cannot avoid the fact that two new members of
S(C) may be too close. A way to detect those problems is needed to guarantee that we will
not let those nodes in S(C).

If they are close enough (distance 2 or less), it can be directly detected by a node (either
a common neighbor if they are at distance 2 or one of them if they are at distance 1). The
rule Two Heads is here to detect this.

No node can detect this problem when problematic nodes are too far away. To remedy
this, each node maintains a synchronized clock system around each node of S(C) by executing
the stationary rules. For this reason, we split the set of rules into two groups:

The stationary rules are the rules Incr Leader, Sync 1 down, Sync 2+ down, Sync
1+ up, and Sync end-of-chain;
The convergence rules are the rules Remote Collision, Two Heads, Branch Inco-
herence, Update Distance, Become Leader, Error Spread, Reset Error, and
Leader down.

We say that a node in S(C) is the leader of the nodes under its influence, corresponding
to the nodes in its ball at distance ⌊ k

2 ⌋. Assuming d-value has already been spread, the clock
of index i of nodes that gave the same leader will always be either equal or out-of-sync by 1.
Thus, a node detects that two nodes in S(C) are too close when it sees in its neighbourhood
two nodes with clocks out-of-sync by 2. It will raise an error when activated by executing
rule Remote Collision. The error is then propagated toward the problematic members of
S(C) by rule Error Spread.

In both previous cases, the problematic nodes of S(C) end up having err-value 1, which
makes them leave S(C) by executing rule Reset Error. Afterwards, rule Update distance
will, over time, update the d-values of the nodes at distance up to k to that node.

The goal of our algorithm is to ensure that we reach locally a configuration from which,
when a node is inserted in S(C), and no node gets added at distance at most k − 1 away, it
remains in S(C) forever. Note that when it is executed, rule Update distance setup the
clock values and arrows (variables c and b) so that the newly updated node is synchronized
to its “parent” (the node it takes as a reference to update its d-value).

The target configuration is not a stable configuration, and from it, all the nodes can only
execute stationary rules. In this configuration, S(C) is guaranteed to be a (k, k − 1)-ruling
set of the underlying graph. Note that the predicate well_defined appears in the guard
of every stationary rule. The predicate guarantees that the considered node neither is in
error-detection mode nor has some incorrect d-values in its neighbourhood before executing
any clock-related rule.

2.2 The Clock System
Now, we describe the clock system that detects two leader nodes in S(C) at a distance less
than k. The leaders are the nodes that update the clock value ci and propagate it to its
“children” and so on. For a given clock index i, when every neighbour of a leader s has the
same clock ci and their corresponding arrow bi pointed up, node s increments its clock value
by 1 by executing rule Incr Leader.
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After that, the clock value is propagated downward (toward nodes of greater d-value)
using rules Sync 1 down and Sync 2+ down. Note that it is performed locally by layers:
one node of a given d-value cannot update its clock value and arrow before every neighbour
with a smaller d-value does so. This is necessary to guarantee the global synchronization of
the clock.

There are two ways for the propagation of (ci, bi) to reach the limit of the area it should
spread in: either it has reached nodes with d-value i, or there is no node having a greater
d-value to spread the clock further.

In the first case, rule Sync end-of-chain flips the arrow bi.
In the second case, the nodes execute rule Sync 1+ up to flip bi.

In both cases, it allows rule Sync 1+ up to propagate upward (toward smaller d-values)
with the bi-value switching to ↑ from the nodes to their parents. Note that it is done locally
by layers: one node of a given d-value may not update its clock value and arrow before every
neighbour with a greater d-value has done so.

When the propagation reaches the neighbors of s, node s “detects” that its current clock
value has been successfully propagated, and it will execute rule Incr Leader to increase it.

The point of this clock system is that two nodes under the same leader cannot have clock
values out-of-sync by 2, but two nodes that have different leaders may. It allows them to
detect a “collision” (i.e. two nodes of S(C) too close from each other) when the d-values
of two such nodes are smaller than ⌊ k

2 ⌋. Observe that the clock of index i is only reliable
for detecting collision between nodes of S(C) at distance 2i or 2i + 1 from each other. For
smaller distances, this clock may be forcefully synchronized between two nodes of S(C) by
layer-by-layer updating, and for greater distances, no node may detect an out-of-sync from it.
This process differs from the PIF mechanism [15]: we need to run one clock for each layer, as
a clock of higher layer will be synchronized for the two conflicting leaders because of further
nodes. Thus, we have ⌊ k

2 ⌋ − 1 parallel clock systems to capture every possible distance of
collision.

The Gouda daemon ensures that if two nodes of S(C) are too close, this will only be the
case for a while. The clock system will eventually detect it and propagate an error.

2.3 Handling Initial and Perturbed Configurations

Rules Leader Down and Branch Incoherence are only executed to solve problems
coming from the initial configuration or after a perturbation has occurred. Rule Leader
Down is executed when a leader has some of its arrows bi in the wrong direction. Rule
Branch Incoherence is executed when some “impossible” patterns are produced in the
clock systems due to wrong clock values and arrows in the initial state. Standard patterns are
shown in Figure 1. Any other pattern will make an activated node to execute rule Branch
Incoherence.

3 Proof of the Algorithm

3.1 Stability of Legitimate Configurations

The ruling set algorithm presented in this section uses the state model. It constructs
the set of vertices whose d-value is 0. We will prove that this set is a ruling set in legit-
imate configurations. Formally, we require the following specification for the legitimate
configurations:
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ci, ↓ ℓ − 1

c, ↓ ℓ

c-1, ↑ c, ↓ c, ↑ ℓ + 1

c, ↓ c, ↑ c+1, ↓ ℓ − 1

c, ↑ ℓ

c, ↑ ℓ + 1

Figure 1 Branch coherence condition. The couples (c, ↓) or (c, ↑) represent the local variables
(ci, bi) of the nodes. The value on the right of the node represents its distance to the leader node
(i.e. its d-value). The central node in both figures is the reference, and the other nodes represent the
possible couples for its neighbors with different d-value.

s

c, ↓

ds = 0

s1

c, ↓

sa

c, ↓

sa+1

c′, ↑

sdu−1

c′, ↑

u

du

Figure 2 Node s propagates its clock value along a shortest path from s to u where c′ ∈ {c, c−1}.

▶ Definition 2. Let S(C) be the set of nodes s such that ds = 0 in a given configuration C.
Configuration C is said to be legitimate if:
1. for any u we have well_defined(u), leader_down(u) and branch_coherence(u) hold;
2. for any two distinct nodes u and v of S(C), we have dist(u, v) ≥ k.

▶ Theorem 3. The set of legitimate configurations is closed. Moreover, all the d-values do
not change from a legitimate configuration C.

Thanks to Theorem 3, we know that, from a legitimate configuration, we keep the same
set of leaders S(C), which forms a (k, k − 1)-ruling set. Hence, under the Gouda daemon,
the set of leaders will eventually be a stable (k, k − 1)-ruling set.

The goal of the following lemmas will be to prove Theorem 3. Lemma 4 ensures that
S(C) forms a ruling set when the values of all the local variables are correct.

▶ Lemma 4. Let C be a legitimate configuration. For any node u, du = dist(u, S(C)), and
S(C) is a (k, k − 1)-ruling set of the underlying graph.

Now we focus on the clock system. We prove the following property on the ruling set to
run the clock system.

▶ Lemma 5. Let C be a legitimate configuration and s be a node in S(C). For every node u,
dist(u, s) ≤ ⌊ k

2 ⌋ implies that du = dist(u, s).

This property allows us to deduce that a node u such that dist(u, s) ≤ ⌊ k
2 ⌋ has only one

node s of S(C) in its ball at distance ⌊ k
2 ⌋. Thus, all the nodes in B(s, ⌊ k

2 ⌋ − 1) must be
synchronized with s. We explain how the values representing the clock of the local variable
of nodes with d-value smaller than ⌊ k

2 ⌋ are spread from their leader. Figure 2 illustrates how
the pairs (ci, bi) go from nodes in S(C).

▶ Lemma 6. Let C be a legitimate configuration and s a node in S(C). For every node u

such that dist(u, s) ≤ ⌊ k
2 ⌋ − 1, every shortest path (s0, s1, · · · , sdu

) from s to u satisfies the
following property in C:
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For every clock index i ∈ Jdu + 1, ⌊ k
2 ⌋ − 1K, there exists some integer a ∈ J0, duK such that:

1. ∀ℓ ∈ J0, aK, (bi,sℓ
, ci,sℓ

) = (↓, ci,s);
2. ∃c′ ∈ {ci,s − 1, ci,s}, ∀ℓ ∈ Ja + 1, duK, (bi,sℓ

, ci,sℓ
) = (↑, c′).

Lemma 7 proves that only rules to update clocks are executed from legitimate configurations:

▶ Lemma 7. Let C be a legitimate configuration. Let u be a node. Node u only executes
stationary rules from C.

Once the execution reaches a legitimate configuration C, we have proved that only
stationary rules can be executed. The goal is to use that result and the previous lemmas to
prove that only legitimate configurations can be reached from C. This result will lead to the
proof of Theorem 3.

3.2 Reaching a Legitimate Configuration
The goal of the following lemmas is to prove that, from any configuration C, we can reach a
configuration C ′ that is legitimate. The Gouda daemon’s property concludes that a legitimate
configuration will always eventually be reached. Indeed, let C be a configuration that is
infinitely often reached during an execution. Under the Gouda daemon, as a legitimate
configuration C ′ is reachable from configuration C, C ′ will also be reached infinitely often.

To that end, we introduce the notion of locally legitimate node for leaders satisfying
conditions close to the legitimate ones in their ball of radius k − 1. We prove that if a node s

is locally legitimate, then it will remain so forever (Lemma 11).
We explain how to make locally legitimate a node with no leader at a distance smaller

than k to it in Lemmas 13 and 16. We explain how, when some leaders are too close to each
other, we can reach a configuration where none of the remaining ones are at distance smaller
than k from another (Lemma 16).

From here, we can conclude with the proof of the following theorem:

▶ Theorem 8. Under the Gouda daemon, any execution eventually reaches a legitimate
configuration.

We first introduce the notion we will use in this section for nodes in S(C):

▶ Definition 9. Let C be a configuration. A node s in S(C) is locally legitimate if
1. all the nodes u in B(s, ⌊ k

2 ⌋) are such that well_defined(u), leader_down(u) and
branch_coherence(u) hold and du = dist(u, s);

2. all the nodes u in B(s, k − 1) \ B(s, ⌊ k
2 ⌋) are such that k − dist(u, s) ≤ du ≤ dist(u, s).

We denote LL(C) the set of those nodes in C.

Let s be a locally legitimate node. The first property means that in its neighbourhood
at distance at most ⌊ k

2 ⌋, nodes behave like in a legitimate configuration. Therefore, they
cannot detect errors. The second property implies that all nodes in B(s, k − 1) have coherent
d-values according to s and to potential leaders at distance at least k from s. A direct
observation is the following:

▶ Lemma 10. Let s ∈ LL(C). We have B(s, k − 1) ∩ S(C) = {s}.

Combining Lemma 10 and the first property of the legitimated node, we can deduce that
once a node is legitimate, it remains legitimate during the rest of the execution.

▶ Lemma 11. Let C, C ′ be two configurations such that C → C ′. We have LL(C) ⊂ LL(C ′).
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We focus now on how to create locally legitimate nodes. First of all, we can make sure
that the d-values of all the nodes are coherent with regards to their distance to S(C):

▶ Lemma 12. For any configuration C, we can reach a configuration C ′ such that S(C) =
S(C ′), and du = min(dist(u, S(C ′)), k − 1) for every node u, and there is no node with
err-value 1 among nodes with d-value greater than ⌊ k

2 ⌋.

Let s be a node at distance at least k from S(C). We explain how to make that node
locally legitimate:

▶ Lemma 13. Let C be a configuration where there exists a node s such that dist(s, S(C)) ≥ k.
A configuration C ′ can be reached from C such that s ∈ LL(C ′).

Now, we need to deal with leaders that are too close from each other. To do this, we
introduce the function that measures the number of nodes in this situation in a configuration,
and Lemma 15 shows how to decrease it.

▶ Definition 14. Let C be a configuration. We define ϕ(C) as the set of leaders in C

having a conflict with another one due to being at distance less than k to each other, i.e.
ϕ(C) = {u ∈ S(C) | ∃v ∈ S(C) \ {u} , dist(u, v) < k}.

▶ Lemma 15. Let C be a configuration such that ϕ(C) ̸= ∅. There exists a node u in ϕ(C)
and a configuration C ′ such that we can reach C ′ from C with S(C ′) = S(C) \ {u}.

Thanks to this result, we prove that we can reach a configuration C such that the set of
conflicting nodes is empty:

▶ Lemma 16. From any configuration C, we can reach a configuration C ′ such that ϕ(C ′) = 0.

Now we focus on how to make leaders locally legitimate if they do not have any other
leaders at distance smaller than k from them.

▶ Lemma 17. Let C and s be a configuration and a node such that B(s, k − 1) ∩ S(C) = {s}.
We can reach a configuration C ′ such that s ∈ LL(C ′).

Now, we can prove that the number of legitimate nodes increases during the execution up
until we converge to a legitimate configuration:

▶ Lemma 18. Let C be a configuration. From C, we can reach a configuration C ′ such that
either LL(C) ⊊ LL(C ′) or C ′ is legitimate.

This last lemma allows us to conclude with the proof of Theorem 8.

4 From Ruling Sets to Distance-K Colorings

In this section, we focus on the distance-K coloring problem. A distance-K coloring is a
coloring such that any pair of nodes cannot share a color unless they are at distance greater
than K. If the nodes having the same color form a (K + 1, K)-ruling set, then those nodes
respect the coloring constraint.

Let choose k > K for our (k, k − 1)-ruling sets. We partition the set of nodes into
two-by-two disjoint sets S(i) such that each set corresponds to nodes of the same color. We
build these sets one after another. Each of these sets is a distance-k independent set of the
graph, which is maximal among the nodes of V \

⋃
j<i S(j)(C). These sets will be built by

composing an adaptation of our (k, k − 1)-ruling set algorithm. Since the maximum degree
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of the graph is ∆, any ball of radius k − 1 contains at most ∆k−1 + 1 nodes. Hence we
can partition the nodes into ∆k ruling sets (we use this majoration in order to simplify the
reading of the following proofs).

For this reason, the distance K-coloring algorithm is composed of ∆k parallel algorithms,
each one of them computing an adapted (k, k−1)-ruling set. For Algorithm i and configuration
C, we note S(i)(C) (or S(i) if there is no ambiguity) the corresponding set S(C). Each time
a node u is active, it applies a rule (if it can) for each ruling set algorithm.

It is necessary to ensure that a node belongs to exactly one ruling set. To perform this,
we number the ruling set algorithms: we denote by d

(j)
u the local variable du of u of the j-th

algorithm. By convention, we assume that u belongs to the j-th ruling set (or it has color j)
if j = min{1 ≤ p ≤ ∆k | d

(p)
u = 0}. To form a partition with the sets, we need to reach a

configuration where for each node u, |{i ≤ ∆k | d
(i)
u = 0}| = 1. To achieve this, we modify

rule Become Leader and add a rule to detect if a node is a leader in different layers (for
Algorithm j).

Become Leader(j) :: (priority 1)
if err

(j)
u = 0 ∧ (d(j)

u = k − 1) ∧ ∀v ∈ N(u), d
(j)
v = k − 1 ∧ ∀p < j : d

(p)
u > 0

then d
(j)
u := 0
∀i ∈ J1, ⌊ k

2 ⌋ − 1K, c
(j)
i,u := 0, b

(j)
i,u :=↓

Belong To Two ruling sets(j) :: (priority 0)
if d

(j)
u = 0 ∧ ∃p < j : d

(p)
u = 0

then d
(j)
u := 1

We also modify the predicate well_defined (for Algorithm j) as follows, which impacts
the definition of legitimate configuration. In particular, now, a node u such that d

(j)
u = k − 1

does not need to have a neighbor closer to a leader if d
(i)
u = 0 for some i < j.

well_defined(j)(u) ≡ err
(j)
u = 0 ∧ ∀v ∈ N(u), |d(j)

u − d
(j)
v | ≤ 1∧

((∀p ≤ j, d
(p)
u > 0) ∨ d

(j)
u < k − 1 ⇒ (∃v ∈ N(u), d

(j)
v = d

(j)
u − 1)) ∧ (d(j)

u = 0 ⇒ ∀p < j, d
(p)
u > 0)

We give a new definition of legitimate configuration:

▶ Definition 19. Let j ≤ ∆k. A configuration C is said to be legitimate for Algorithm j if,
for all i ≤ j:
1. for any u we have well_defined(i)(u), leader_down(i)(u) and branch_coherence(i)(u)

hold;
2. for any u ̸= v in S(i)(C)2, we have dist(i)(u, v) ≥ k.

From this, we get the following adaptation of Lemma 4. The proof remains slightly the
same, with the exception that in the case of d

(j)
u = k − 1, only nodes that have not a variable

d
(i)
u = 0 for some i < j are considered.

▶ Lemma 20. Let C be a legitimate configuration for Algorithm j.
For any node u, if for all i < j, d

(i)
u > 0, we have d

(j)
u = dist(u, S(j)(C));

For any node u, if d
(i)
u = 0, for all j > i, we have d

(j)
u = min(dist(u, S(j)(C)), k − 1);

S(j)(C) is a (k, k − 1)-ruling set of V \
⋃

i<j S(i)(C).

With these modifications, we have the following adaptation of Theorem 3:

▶ Theorem 21. For all j ≤ ∆k, the set of legitimate configurations for Algorithm j is closed.
Moreover, from a legitimate configuration C for Algorithm j, all the d(j)-value do not change.
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The proof to reach a legitimate configuration for Algorithm ∆k works in the same way as
the proof of Theorem 8. We need to do it one algorithm after another, from 1 to ∆k. The
main difference is that we only consider nodes that are not a leader in a smaller algorithm
when we increase the set of locally legitimate nodes. This leads to the result:

▶ Theorem 22. Under the Gouda daemon, any execution eventually reaches a legitimate
configuration in Algorithm ∆k.

These two theorems lead to the main result of distance-K coloring:

▶ Theorem 23. Let k and K be two integers such that k > K. Under the Gouda daemon,
any execution eventually reaches a configuration C such that

S(i)(C) = {u : d
(i)
u = 0} forms a distance-k MIS of V \

⋃
j<i S(j)(C) in G

The sets S(1)(C), . . . S(∆k)(C) form a distance-K coloring.
Every configuration in any execution starting in C verifies the two above properties with
the same sets as C.

5 Solving Mendable Problems

In this section, we want to solve a generalisation of Greedy Problems: O(1)-Mendable Problems,
introduced in [8]. Greedy problems, such as ∆ + 1-coloring and Maximal Independent Set,
have the property that if some of the nodes have chosen an output that is locally valid (no
pair of neighbors sharing a color, no adjacent nodes selected in the set), then any single node
can choose an output that will keep the global solution locally valid. In a distributed setting,
we cannot do this process sequentially from one node to another, but we can do it in parallel:
if a set of nodes that are far enough from each other choose their output at each step, the
solution can be completed. The global solution is valid if we repeat this process until all
nodes have chosen an output. To that end, we first introduce some definitions.

5.1 Definitions
We call a Locally Checkable Problem (Lcl) Π a problem where each node can check locally
that its output is compatible with its neighbours. Let O be the set of outputs. The output
Γ : V → O is good if and only if, for all u ∈ V , Γ(u) is compatible with the multiset
{Γ(v) | v ∈ N(u)}. For example, in the case of Maximal Independent Set, with O = {0, 1}, 1
is compatible with {0k | k ≤ ∆}, and 0 is compatible with {11x0y | x + y < ∆}. Note that
we can consider radius-r neighbourhood for the compatibility in the general case, which we
will not do here out of simplicity. Our results can be adapted to the general version.

Let O be the set of outputs, and Γ∗ : V → O ∪ {⊥}. We say that Γ∗ is a partial solution
if, for any u ∈ V such that Γ∗(u) ̸= ⊥, we can complete the labels of the neighbors v of u (i.e.
give an output to the nodes v such that Γ∗(v) = ⊥) to make u compatible with it neighbors.

A problem is T -mendable if, from any partial solution Γ∗ and any v ∈ V such that
Γ∗(v) = ⊥, there exists a partial solution Γ′ such that Γ′(v) ̸= ⊥, ∀u ̸= v, and Γ′(u) = ⊥ ⇔
Γ∗(u) = ⊥, and ∀u ∈ V , dist(u, v) > T ⇒ Γ′(u) = Γ∗(u). Intuitively, we can change the
output of nodes at distance at most T from a node v when we select the output of v.

The Local model is a synchronous model where each node is given a unique identifier.
As there is no limit on the size of the messages for communication, after r rounds, each node
knows the topology of their neighborhood at distance r.

▶ Theorem 24 (Restated Theorem 6.2 from [8]). Let Π be a T -mendable Lcl problem. Π can
be solved in O(T ∆2T ) rounds in the Local model if we are given a distance-2T + 1 coloring.
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One can observe that unicity of identifiers provided by the Local model is not necessary
to solve an Lcl problem as long as nodes do not see twice the same identifier in the run.
If we know that an algorithm runs on a graph of size at most n in r(n) = o(log n) rounds,
then we can have it run on any graph of size at least n with a distance-r(n) coloring, using
those colors as the new identifiers. The algorithm will not notice that the identifiers are not
unique, producing a correct output. This technique has been used, for example, in [8, 12].

Hence, for a constant T , we can produce a distance-r(T ) coloring to then use the algorithm
of Theorem 24.

5.2 Solving Greedy and Mendable Problems
The goal now is to use distance-k colorings to solve other problems. Let us say we want
to solve K-mendable problem Π for which we already have a Local algorithm A from
Theorem 24 (the output of node u will be denoted outu). To that end, we first build A′, a
self-stabilizing version of A that solves Π assuming unique identifiers at distance r. Then we
compose A′ with our distance k-coloring algorithm (for k big enough) - described in Section 4
- and obtain then a self-stabilizing anonymous algorithm solving Π. To simulate r rounds in
the Local model, we need to compute the graph’s topology at distance r for each node. To
compute the output of node u, A′ will compute the exact mapping of the ball of radius r

centered on u. From it, A′ will provide the output A would produce on this ball if the colors
were identifiers.

In the following, we describe how each node will compute its ball. If we have beforehand
a distance-2r + 1 coloring, each node will have at most one node of some given color in its
neighborhood at distance r. Hence, each node can compute a mapping of its neighborhood at
distance r. At the beginning, each node knows its mapping at distance 0. If all the neighbors
of a node u know their mapping at distance i, u can deduce its topology up to distance i + 1.
Note that we consider only cases where r does not depend on the size of the graph.

▶ Lemma 25. Let C be a configuration where each node u has a color cu corresponding
to a distance-2r + 1 coloring and outputs outu = ⊥. From this configuration, under the
Gouda daemon, we will reach a configuration C ′ where each node outputs a mapping of their
neighborhood at distance r.

With this lemma and Theorem 24, we can conclude to the end result of this section:

▶ Theorem 26. Let Π be an Lcl problem with mending radius k, that can be solved in
r = O(k∆2k) rounds in the Local model. Let C be a configuration where each node u

has a color cu corresponding to a distance-2k + 1 coloring, a color c′
u corresponding to a

distance-2r + 1 coloring, and outputs outu = ⊥. From this configuration, under the Gouda
daemon, we will reach a configuration C ′ where each node outputs a solution to Π.

Note that in a ball of radius 2r + 1 in a graph of maximal degree ∆, there are at most
∆2r+1 nodes. Hence, we need ∆2r+1 colors. For graphs where ∆ is constant, we get a
constant number of colors. As we also consider constant radius r for the mendability, there
are a finite number of possible mappings of balls at distance r using those colors. Hence, in
that case, our algorithms use a finite memory that does not depend on the size of the graph.

6 Conclusion

This work provides a self-stabilizing algorithm under the Gouda daemon for any locally
mendable problem by first introducing an explicit algorithm to compute a (k, k − 1)-ruling
set. This construction generalises well to probabilistic daemons if stationary rules and rule
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Become Leader have some probability smaller than 1 to be activated. This algorithm
permits building up distance-k colorings, which helps solve greedy and mendable problems by
simulating the LOCAL model. In the case of constant bounded degree ∆, our algorithm uses
a constant memory. We did not consider complexity questions. Considering a probabilistic
daemon, an open question would be what complexities can be aimed, as our algorithm did
not optimize this question at all.

The presented algorithm for the ruling set should adapt well in the Byzantine case, as
the influence of a Byzantine node is naturally confined by the algorithm. In such context,
Distance-K identifiers computed in Section 4 would be unique at distance K for nodes far
enough from Byzantine nodes. It should be of interest to investigate this point.
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Abstract
There have been many advances in molecular computation that offer benefits such as targeted drug
delivery, nanoscale mapping, and improved classification of nanoscale organisms. This power led to
recent work exploring privacy in the computation, specifically, covert computation in self-assembling
circuits. Here, we prove several important results related to the concept of a hidden computation in
the most well-known model of self-assembly, the Abstract Tile-Assembly Model (aTAM). We show
that in 2D, surprisingly, the model is capable of covert computation, but only with an exponential-
sized assembly. We also show that the model is capable of covert computation with polynomial-sized
assemblies with only one step in the third dimension (just-barely 3D). Finally, we investigate types
of functions that can be covertly computed as members of P/Poly.
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1 Introduction

With the ability to manufacture nanoscale structures and to use DNA as building blocks for
structures [28] or for data storage [10], there has been a great increase in the need to process
and compute information at the same level. Thus, the study of self-assembling computation
has been an important and active area of research over the last two decades.

Designing self-assembling systems that compute functions is an active and well-studied
area of computational geometry and biology [4,19]. This ability to craft monomers capable of
placing themselves – especially when doing precision construction and computation at scales
where conventional tools are incapable of operating, e.g., the nanoscale – has tremendous
power. One of the few downsides to self-assembly computation is that the entire history of
the computation is visible. In certain cases, this may be undesirable for privacy or security
reasons, which we motivate below. Thus, we build on recent work [6,7,9] to explore covert
computation, where we build Tile Assembly Computers (TACs) designed with the goal of
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12:2 Covert Computation in the Abstract Tile-Assembly Model

obtaining the output of computation while obscuring the inputs and computational history.
We do this by proving that covert computation is possible even in one of the simplest standard
models of self-assembly: the Abstract Tile-Assembly Model (aTAM) [29].

Motivation. The development of covert computation as a model and method of designing
self-assembling systems was driven by several areas of concern in cryptography, biomedical
engineering, privacy, and might even help protect intellectual property in systems that use
“products of nature,” such as DNA, as they cannot be patented in the United States as of
2013 [14]. Covert computation has also emerged as a powerful complexity tool, being used to
show the coNP-completeness of the Unique Assembly Verification problem in the negative
glue aTAM [9], and the PSPACE-completeness of the Unique Assembly Verification problem
in the Staged Assembly Model [6]. As this paper focuses on systems without detachment,
there might also be important applications in implantable systems where even the possibility
of displacement from free-floating DNA could cause unknown side effects or destabilization
of the assembly [23].

1.1 Previous Work

The Abstract Tile-Assembly Model (aTAM) was first introduced in [29] and inherited the
ability to perform Turing computation from Wang tiles. Since then, investigation into the
model has led in many directions, such as Intrinsic Universality [18, 22], efficient assembly of
shapes [25], and parallel computation [5, 24]. Many generalizations have also appeared, such
as allowing for RNA tiles that can be deleted [1,15], multiple stages of growth [6,12,16], and
even negative glues [9, 17]. The aTAM is powerful because not only can the tile set store
information, but work has also gone into using the seed [3], or even the temperature [11, 26],
for making systems more complex.

Tile Assembly Computers were defined in [5, 24], and Covert Computation, as defined in
the field of self-assembly, was first introduced in 2019 [9] for negative growth-only aTAM. In
negative variations of tile self-assembly models, tiles are capable of not only attachment to
but also detachment from an assembly if the remaining assembly is still stable. In negative
growth-only aTAM, tiles are never allowed to detach even though there may be glues providing
a repellent force, and the system must be designed so that detachment does not occur. This
paper introduced the covert construction framework to answer an open complexity problem
for Unique Assembly Verification (UAV) with negative growth-only glues in the aTAM model,
showing it to be coNP-complete. Notably, without negative glues, the UAV problem is
solvable in polynomial time [2].

Covert computation has been explored in two other models of self-assembly as well:
Staged Self-Assembly [6] and Tile Automata [7]. The staged self-assembly model, one of the
most powerful passive tile self-assembly models, abstracts the process of scientists mixing test
tubes together by allowing multiple self-assembly processes occurring in separate “bins” that
may be combined in subsequent “stages”. The authors show that 3-stages suffice for covert
computation and used the techniques to show that the UAV problem directly relates the
number of stages to a specific level of the polynomial hierarchy. Thus, with no restrictions on
the number of stages, UAV in the staged model is PSPACE-complete. Covert Computation
in the active self-assembly model of Tile Automata was shown to be rather simple as tiles
in the model are capable of changing states (instead of having static glues), easily erasing
computational history.



R. M. Alaniz et al. 12:3

Table 1 Known Covert Circuits for n-bit function f(x). Let MCS be the minimum circuit size
that computes f(x). Input Size is the size of the input assembly. Output Size is the size of the
output template, where we use k to describe the number of output bits. ∗ currently only works for
binary functions.

Class Model Size Of Ref
Input Tile Set Output Assembly

Bool. Circuits NegGO O(n) O(MCS) O(k) O(MCS) [9]
Bool. Circuits 3D O(n) O(MCS) O(k) O(MCS) Thm. 1
Rev. Circuits∗ 2D O(n + MSC) O(MCS) O(1) O(2n) Thm. 2

1.2 Our Contributions
In this work, we further explore the problem of designing covert tile assembly computers
(TACs) in the aTAM, focusing on TACs that have a polynomial size description. We provide
two new covert computers in the aTAM with only positive glue strengths of {1, 2} in Sections
3 and 4. The 3D construction uses a similar technique to the circuits in [9] by implementing
a NAND gate using dual rail logic and backfilling. We refer to this covert TAC as having
a strict polynomial size since the systems defined by the TAC all produce assemblies of
polynomial size. This only uses a single-step into the third dimension, which is occasionally
referred to as just-barely 3D [20,21].

The covert TAC in Section 4 is in the standard 2D aTAM. The TAC is of polynomial size,
but produces an exponential-size terminal assembly. This works by computing the function
non-covertly using Toffoli gates, getting the output, reversing the computation to recover
the input, then building the next and previous circuit assemblies until all possible circuits
are built. We utilize the Toffoli gates’ reversibility property to have a symmetrical circuit
assembly that displays its input on both sides that we can increment or decrement (the input
used) to start the next computation.

In Section 5 we explore the classes of decision problems solvable by polynomial size covert
TACs. Table 1 gives an overview of known covert circuits for functions based on the input
size. Since covert has been defined as a non-uniform model, meaning different input sizes
have different tile sets, we look at non-uniform complexity classes as well. Namely, the class
P/poly, the class of problems solvable by polynomial size circuits. We prove that if a problem
is solvable by a 3D covert TAC, then it is in P/poly. This, taken with the result in Section 3,
shows an equivalence between these two models of computation.

2 Definitions

We begin with an overview of the Abstract Tile-Assembly Model, then follow with a definition
of Tile Assembly Computers and covert computation.

2.1 Abstract Tile Assembly Model
At a high level, the Abstract Tile-Assembly Model (aTAM) uses a set of tiles capable of
sticking together to construct shapes. These tiles are typically squares (2D) or cubes (3D)
with glues on each side where they may attach to one another. A glue is labeled to indicate
its type, governing what other tiles it may bond with and the strength of the bond. A tile
with all of its labels is a tile type. A tile set contains all the tile types of the system. A single
tile may attach at a location if the combined strength of the matching glues is greater than
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or equal to the temperature τ . An assembly is a shape made up of one or more combined
tiles. Construction is started around a designated seed assembly S. Any assembly capable
of being made from the seed is called a producible assembly. An assembly is terminal if no
more tiles can attach. A terminal assembly is said to be uniquely produced if it is the only
terminal assembly that can be made by a tile system. A tile system is formally represented
as an ordered triplet Γ = (T, s, τ ) of the tile set, seed assembly, and temperature parameter,
respectively.

2.1.1 aTAM Formal Definitions
Tiles. Let Π be an alphabet of symbols called the glue types. A tile is a finite edge polygon
with some finite subset of border points, each assigned a glue type from Π. Each glue type
g ∈ Π also has some integer strength str(g). Here, we consider unit square tiles of the same
orientation with at most one glue type per face, and the location to be the center of the tile
located at integer coordinates.

Assemblies. An assembly A is a finite set of tiles whose interiors do not overlap. If each
tile in A is a translation of some tile in a set of tiles T , we say that A is an assembly over tile
set T . For a given assembly A, define the bond graph GA to be the weighted graph in which
each element of A is a vertex, and the weight of an edge between two tiles is the strength of
the overlapping matching glue points between the two tiles. Only overlapping glues of the
same type contribute a non-zero weight, whereas overlapping, non-equal glues contribute
zero weight to the bond graph. The property that only equal glue types interact with each
other is referred to as the diagonal glue function property, and is perhaps more feasible than
more general glue functions for experimental implementation (see [13] for the theoretical
impact of relaxing this constraint). An assembly A is said to be τ -stable for an integer τ if
the min-cut of GA has weight at least τ .

Tile Attachment. Given a tile t, an integer τ , and an assembly A, we say that t may attach
to A at temperature τ to form A′ if there exists a translation t′ of t such that A′ = A ∪ {t′},
and the sum of newly bonded glues between t′ and A meets or exceeds τ . For a tile set T , we
use notation A →T,τ A′ to denote there exists some t ∈ T that may attach to A to form A′

at temperature τ . When T and τ are implied, we simply say A → A′. Further, we say that
A →∗ A′ if either A = A′, or there exists a finite sequence of assemblies ⟨A1 . . . Ak⟩ such
that A → A1 → . . . → Ak → A′.

Tile Systems. A tile system Γ = (T, S, τ ) is an ordered triplet consisting of a set of tiles T

called the system’s tile set, a τ -stable assembly S called the system’s seed assembly, and a
positive integer τ referred to as the system’s temperature. A tile system Γ = (T, S, τ) has
an associated set of producible assemblies, PRODΓ, which define what assemblies can grow
from the initial seed S by any sequence of temperature τ tile attachments from T . Formally,
S ∈ PRODΓ is a base case producible assembly. Further, for every A ∈ PRODΓ, if A →T,τ A′,
then A′ ∈ PRODΓ. That is, assembly S is producible, and for every producible assembly A, if
A can grow into A′, then A′ is also producible.

We further denote a producible assembly A to be terminal if A has no attachable tile
from T at temperature τ . We say a system Γ = (T, S, τ ) uniquely produces an assembly A if
all producible assemblies can grow into A through some sequence of tile attachments. More
formally, Γ uniquely produces an assembly A ∈ PRODΓ if for every A′ ∈ PRODΓ it is the case
that A′ →∗ A. Systems that uniquely produce one assembly are said to be deterministic.
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2.2 Covert Computation
Here, we provide formal definitions for computing a function with a tile system and the
further requirements for the covert computation of a function. Our formulation of computing
functions is that used in [9], which is a modified version of the definition provided in [24] to
allow for each bit to be represented by a subassembly potentially larger than a single tile.

Tile Assembly Computers (TAC). Informally, a Tile Assembly Computer (TAC) for a
function f consists of a set of tiles, along with a format for both input and output. The
input format is a specification for how to build an input seed to the system that encodes the
desired input bit-string for function f . We require that each bit of the input be mapped to
one of two assemblies for the respective bit position: a sub-assembly representing “0” or a
sub-assembly representing “1”. The input seed for the entire string is the union of all these
sub-assemblies. This seed, along with the tile set of the TAC, forms a tile system. The
output of the computation is the final terminal assembly this system builds. To interpret
what bit-string is represented by the output, a second output format specifies a pair of
sub-assemblies for each bit. The bit-string represented by the union of these subassemblies
within the constructed assembly is the output of the system.

For a TAC to covertly compute f , the TAC must compute f and produce a unique
assembly for each possible output of f . We note that our formulation for providing input and
interpreting output is quite rigid and may prohibit more exotic forms of computation. Further,
we caution that any formulation must take care to prevent “cheating” that could allow the
output of a function to be partially or completely encoded within the input. To prevent
this, a type of uniformity constraint, akin to what is considered in circuit complexity [27],
should be enforced. We now provide the formal definitions of function computing and covert
computation.

Input/Output Templates. An n-bit input/output template over tile set T is a sequence
of ordered pairs of assemblies over T : A = (A0,0, A0,1), . . . , (An−1,0, An−1,1). For a given
n-bit string b = b0, . . . , bn−1 and n-bit input/output template A, the representation of b with
respect to A is the assembly A(b) =

⋃
i Ai,bi

. A template is valid for a temperature τ if
this union never contains overlaps for any choice of b and is always τ -stable. An assembly
B ⊇ A(b), which contains A(b) as a subassembly, is said to represent b as long as A(d) ⊈ B

for any d ̸= b. We refer to the size of a template as the size of the largest assembly defined
by the template.

Function Computing Problem. A tile assembly computer (TAC) is an ordered quadruple
ℑ = (T, I, O, τ) where T is a tile set, I is an n-bit input template, and O is a k-bit output
template. A TAC is said to compute function f : Zn

2 → Zk
2 if for any b ∈ Zn

2 and c ∈ Zk
2 such

that f(b) = c, then the tile system Γℑ,b = (T, I(b), τ) uniquely assembles a set of assemblies
which all represent c with respect to template O.

Covert Computation. A TAC covertly computes a function f(b) = c if 1) it computes f ,
and 2) for each c, there exists a unique assembly Ac such that for all b, where f(b) = c, the
system Γℑ,b = (T, I(b), τ) uniquely produces Ac. In other words, Ac is determined by c, and
every b where f(b) = c has the exact same final assembly.

Polynomial-Sized Tile Assembly Computers. We say a TAC is polynomial size if the input
template, tile set, and output template are all polynomial in n. However, this requirement
still allows the producible assemblies to be exponentially larger. We say a TAC is strictly
polynomial size if the produced assemblies are also polynomial in size.
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0

(a) Bit Assembly
Template 0.

1

(b) Bit Assembly
Template 1.

1

0

(c) Bit Assembly
Output Template.

1
0

(d) Bit Assembly Output
Template (isometric view).

Figure 1 Input assemblies and their respective input templates. The blue squares represent the
bit set to zero, and the orange squares represent a bit set to one. Grey glues are strength-1, black
glues are strength-2.

3 3-Dimensional Covert Circuits

In this section, we show how to perform covert computation in the aTAM using 3 dimensions.
The computation behaves similarly to the covert circuit construction in [9] by building NAND
gates and FANOUTs using dual rail logic. We start with showing a NOT that switches which
wire is “on”, then extending to a NAND by utilizing cooperative binding.

The main difference between the two constructions is when backfilling occurs, which is
the process of filling in the unused dual rail line once that line is no longer needed. Here, we
do not backfill as we go, rather, we fill in the assembly once the computation is complete.

3.1 Input Assemblies

Our input assembly consists of n 1 × 6 columns with two of four tiles attached on the right
(Figures 1a and 1b). The top two tiles will be included when the input is 1, and the bottom
two tiles if the input is 0. These tiles have enough attachment strength to be stable when
both are present, however, since the tiles only have strength 1 bonds, they may not attach
alone. This initially prevents the growth of the other bit, which is not placed until the
computation is complete, further elaboration of this process is described in section 3.5.

3.2 Wires and NOT Gates

Bit information is represented and transferred using a wire. A wire is constructed using two
rows of tiles (Figure 2a), each representing a binary value of 0 or 1. This dual rail system
initially grows only one of the rows from the input assembly based off the input and then
builds into the gates. Before the circuit finishes growing, only one row of each wire will be
constructed, and at the end, the other wire row will be built.

Gates such as the NOT grow off the wires. An example of a NOT gate can be seen in
Figure 2b, notice how we utilize the third dimension to cross the wires over each other. This
gate swaps the position of the rows of tiles; a row that represents a 0 will now be in the upper
row and represent a 1. At the end of each gate is a diode gadget that was used in previous
work [9]. The gadget is a 2 × 2 subassembly that grows only in one direction. If the first tile
is placed, the whole thing will be first. If the last tile is placed, nothing else grows since it
connects using two strength 1 glues. This prevents errors caused by “backward” growth.
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0

1

(a) Dual Rail Logic.

0

1

(b) NOT Gate.

Figure 2 (a) We use dual rail gates. The input glue of 1 grows the orange tiles and 0 grows the
blue. (b) A NOT gate is implemented by crossing the wires over each other.

0

1

0

1

0

1

Figure 3 Full NAND Gate construction in the full circuit. The tiles in orange represent tiles that
will be built from an input of 1 input, while the blue tiles come from an input of 0.

3.3 NAND Gates
We construct a NAND gate using the NOT gate and cooperative binding. The full NAND
gate can be seen in Figure 3. If either input to a NAND gate is 0, the output is always 1.
This can be seen in Figures 4a, 4b, and 4c. If any blue tile is placed, the 1 output of the
gate will be built. If both inputs are 1, the 0 output can be constructed using cooperative
binding.

One thing to note in the case of one output being 0 and the other being 1 is that the
blue tiles will be placed along the other wire. However, this will not cause any issues since it
can only build back up to the output of the previous gate due to the diode gadget.

3.4 Fan Out and Crossover
Two other gadgets that assist in creating circuits are the fan out and crossover gadgets. The
fan out (Figure 5a) splits a wire in order to copy the value to two gates. It does this by
having each tile path split, and then use the third dimension to swap the positions.

The crossover gadget (Figure 5c) allows for the creation of non-planar circuits. Using the
third dimension, a wire can go over another wire in order to reach its input. While such 3D
crossovers simplify constructions greatly, we note that such crossovers are not necessarily
needed, as planar circuits can simulate such crossovers using XOR gates [9].

3.5 Backfilling and Target Assemblies
In order to perform covert computation, there must exist a unique assembly for each output.
The gray tile at the end of the circuit in Figure 6a is one of two flag tiles that denotes the
output of the circuit. Once this tile is placed, a row of tiles is built back towards the input

SAND 2023



12:8 Covert Computation in the Abstract Tile-Assembly Model
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(a) Input 00.

0

1

1

(b) Input 01.

1

0

1

(c) Input 10.

1

1

0

(d) Input 11.

Figure 4 Growth of possible inputs to a NAND gate. The gate will stay like this after computing,
before the history is hidden.
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(a) Fan Out Gadget.

1
0

1
0

1
0

(b) Fan Out Gadget (Isometric).

0

1

0

1

0

1

0

1

(c) Crossover Gadget.

1
0

1
0

1

1
0

0

(d) Crossover Gadget (Isometric).

Figure 5 (a) A fan out gadget. (b) Isometric view of the fan out gadget. (c) While a crossover is
not required for universal computation, we can easily implement one by using the 3rd dimension.
(d) Isometric view of the crossover gadget.

(Figure 6b). Once the input assembly is reached, the tiles above the input are placed, thus
allowing for the input assemblies to be filled in. This causes the entire circuit to be filled out,
which hides the original input and computation history.

▶ Theorem 1. For any n-bit function f that is computable by a Boolean circuit, there exists
a Tile Assembly Computer ℑ which covertly computes f in the 3D aTAM with only positive
glues. Further, ℑ is strictly polynomial in n.

Proof. We can construct the tile set Tc from the circuit c that computes f . Arrange the
gates and wires on the square grid using O(n2) space, and scale up each gate and wire by a
constant factor. Wires are scaled up by a factor of 2 to account for the dual rail logic wires.
The gates are scaled up by a factor depending on which gate it is, however, all the gates we
present are only a constant size. This creates assembly Ac,F ull.

We now show that ℑ computes f . Consider an n-bit input x to f , using the input
template create seed assembly Ax. Each gate will grow from Ax, computing the circuit on
each input. Since backfilling does not occur until the circuit finishes computing, we guarantee
only the correct outputs grow from the final gate. The circuit is computed covertly since the
output then grows back to the start of the circuit and places the unused inputs. ◀
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(a) Computed Circuit. (b) Output Assembly.

Figure 6 Example structures of the computation circuit of an XOR using NOTs and NANDs.
The circuit before backfilling is on the left, and the final output is shown on the right side. (a) A
circuit once the output is computed. (b) Once the output grows backward, the other input bits are
placed.

The 3rd dimension is vital in this construction to allow signals to cross over for the NOT
gate. Notice the part of the NAND gadget that is computing the AND gate and how the
diode uses cooperative binding. Additionally, it would not be possible to build the full input
gadget to allow the circuit to backfill. The positions that must be filled will be blocked
on one side by the input assembly and on the other by wire. The backfilling here is used
differently than in [8] since there each gate would backfill its input wires. There the negative
glues were used to allow the tiles to cross over signals to build a NOT gate.

4 Exponential Assembly Covert Computer in 2D

In this section, we show that covert computation is possible in 2D in the standard aTAM,
where the input can be described in polynomial size, yet the final terminal assembly is
exponential in size. Thus, while we are able to achieve strictly polynomial-sized covert
computation in 3D, we achieve (non-strict) polynomial-sized covert computation in 2D.

This construction is possible by first computing the function using reversible Toffoli gates,
and then replicating and computing the circuit for all possible inputs. Once the output
of the original input is placed, the Toffoli gate reverses its computation to build a mirror
of the circuit with the input replicated on both the right and left. The output builds an
assembly arm used to place tiles on either side of the assembly to increment and decrement
the mirrored inputs based on the binary value of the original input, thus seeding a new input
for exponential growth in each direction. Thus, for a 4-bit input, it builds the circuit for all
24 possible inputs after it builds the output template.

4.1 Toffoli Gate

The Toffoli gate is a 3-bit reversible universal logic gate (Figure 7a), we denote the inputs
A, B, C, and the outputs A′, B′, C ′. The first two input and output bits map to each other:
A = A′ and B = B′. The third output flips the C bit if both A and B are 1. Logically
expressed, this is C ⊗ (A ∧ B) = C ′.

We can express an n-bit d-depth reversible circuit as a n×d grid where each row represents
a wire, and each column is a layer of gates and wires. Each gate can be represented by tiles
computing the elementary 2-bit AND and XOR and implementing a fan out, as shown in
Figure 7b.
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(a)

1
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1

1

1
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B

C

AND

A'

B'

C'

XOR

(b)

Figure 7 (a) Logical representation of Toffoli gate. (b) A Toffoli gate on a grid can be represented
by the three vertical “cells” of elementary logic gates.
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1

1
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Figure 8 All possible computations of a single Toffoli gate. 1 (orange), 0 (blue). 111 → 110, 110 →
111, 101 → 101, 100 → 100, Row 2: 000 → 000, 001 → 001, 010 → 010, and 011 → 011.

4.2 Covert Circuit
The input template is a specific tile for each bit. Given an n-bit string, we create a n × 1 bit
assembly with stability-granting left and bottom circuit construction scaffolds, as shown in
Figure 9c.

The circuit assembly is a n × (d + 2) rectangle. Each Toffoli gate is a 3 × 1 subassembly.
Three possible computations of a single Toffoli gate are shown in Figure 8. Typically, these
gates must be reversible, meaning the circuit may grow from the east or west but produce
the same assembly We note that the gate itself is not covert, and the “covertness” comes
from the full construction.

An example Toffoli circuit is shown in Figure 9a along with the logical representation in
Figure 9b. A constructed circuit assembly in one direction can be seen in Figure 9d.

4.3 Increment/Decrement Input to Next Circuit Logic
After completion of a circuit, three columns of tiles are built: mark for increment (left),
copy or flip (center), and mark for decrement (right). The order of growth of these columns
depends on the starting direction. Growing from the left to increment input to the next
circuit or from the right to decrement it. Cooperatively with those columns, below the output
arm begins its extension to transmit the outcome, accept or reject, of the original circuit.
This arm extension continues to the center circuit output outcome tile location. From here,
the circuit construction scaffold, previously provided in the input template, may loop back to
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(a) Toffoli Circuit.

(b) AND/XOR Diagram.
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(c) Toffoli Input Assembly.
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Figure 9 (a) Example 5-bit Toffoli Circuit. (b) The Toffoli circuit represented with AND and
XOR gates. (c) Example Input Assembly. For each bit (1 or 0), we place the scaffold (grey or
white) and input bit tile (orange or blue). The bottom is a row of circuit construction scaffold
tiles (maroon). (d) The Toffoli Circuit Assembly built in one direction. The (green) tile below the
output/junk column represents the (positive) output and will allow the output control row to place.

the edge of the circuit so the new input scaffold and bits may place as illustrated in Figure 11.
The circuit growth continues normally from that point forward, with the exception of the
output tile placement.

4.4 Output Assembly
Once the output is built, the rows below have d tiles attached in the east and west directions
that encode the output. Through cooperative attachment, tiles are placed to allow the strings
to increment/decrement, as described above. The final terminal assembly contains every
possible computation.

▶ Theorem 2. For all functions f(x) that are computable by a n-bit reversible circuit R,
there exists a polynomial tile assembly computer ℑ = (T, I, O, 2) that covertly computes f(x)
and has an output assembly of size O(2n).

Proof. If there exists a n-bit reversible circuit R that computes f(x), we construct tile
assembly computer ℑ = (T, I, O, 2) as follows. From the circuit R that computes f , we
design a circuit R′ to compute f with Toffoli gates as described in section 4.2. Using R′ and
the developed input increment/decrement logic for circuit replication, we construct a tile
set Tc.
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Figure 10 An example of a symmetrical circuit that has built both sides and is placing begin
decrement and increment logic tiles.

Increment/Decrement Input
Circuit  Transition Logic

1(
0,

4)

x4

R1

1(
0,

3)

x3

x2

R1

1(
0,

1)

x2

x1

R1

Input
Right

R1

R1

R1

R1

R0

Scaffold
Right

1(
0,

0)

x1

R1

0(
0,

2)

x4

R0

x3

1 1'

+

1 1'

+

1 1
^

1 1
^

0 0''

^

1 1

0'0

0'0

-

1''1

-

1 11 1

''10''  ⇄

1' '0 ⇄

1' '0 ⇄

1 1
^

L0
New Circuit Begins to Build

Figure 11 An example of a new circuit created by incrementing the output from a previously
built assembly.

We create the input assembly I by converting the n-bit input string x to tiles Li in
scaffold left (figure 9c) and associated input, and a bottom row of tiles called the left circuit
construction scaffold.

From here, the left assembly will grow into figure 9d, once the output is determined to be
“accept” or “reject”, the output indicator tile is placed, and the original output indicator arms
grow to allow the Right Assembly the ability to grow as well as place begin decrement and
increment logic tiles on the bottom left and right sides of the completed assembly respectively,
as seen in figure 10.

All n-bit computations of f(y) for y less than original input x will be computed to the left
of the original assembly, and all xn > x after being decremented and incremented using the
reversible and symmetric logic in yellow from figure 11. Growth is halted by the INC/DEC
logic at overflow in either direction.

The ability to grow further left/right circuit construction scaffolds is dependent on the
output arms from the original output indicator arms growing to the center of the circuit about
to begin construction where the output accept/reject indicator tile would place, preserving
the output status for every circuit built in the TAC.
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PCT2D

P/poly = SPCT3D

SPCT2D

Figure 12 Diagram showing important classes defined in this section and their relation to P/poly.
Note that none of these containments are known to be proper.

As there are only two possible assemblies that can be built, accept all or reject all, the
Tile Assembly Computer is polynomial size in description and exponential in output size. ◀

We have shown that if the output assembly is allowed to be exponential in size, that
covert computation is possible in the aTAM, even in two dimensions. However, in practice,
this is not usually a plausible solution. Given that Unique Assembly Verification is in P [2],
it is unlikely that covert computation is possible with a strictly polynomial-size TAC.

▶ Conjecture 3. There does not exist a strictly polynomial-size Tile Assembly Computer in
the 2D Abstract Tile-Assembly Model.

5 Polynomial-Sized Covert Circuits

In this section, we define and investigate complexity classes based on decision problems
computable by polynomial-sized covert computers. We start by introducing the class P/poly
and defining three classes of covertly computable problems: the class of problems covertly
computable by a strictly polynomial 3D system (SPCT3D), the class of problems computable
by a strictly polynomial 2D system (SPCT2D), and the class of problems computable by
a (non-strict) polynomial 2D system (PCT2D). We show how these classes relate to each
other, including the result that P/poly is equal to SPCT3D. Our results in this section are
summarized in Figure 12.

5.1 Complexity Classes
The class P/poly is a well-studied complexity class defined as the class of problems solvable
by a polynomial-sized circuit. One note about this class is it puts no requirement on the
circuit other than that it exists. This has an equivalent definition as the problems solvable
by a polynomial-time Turing machine with a polynomial advice string. We can think of this
as the Turing machine being given a description of the circuit and evaluating it. Here, the
advice string or circuit must be identical for all inputs of length n. 1

▶ Definition 4 (P/poly). The class of problems solvable by a polynomial-sized Boolean
circuit. Alternatively, defined as the problems solvable by a polynomial-time Turing machine
M < x, a|x| >, where x is the input and a|x| is an advice string that is based only on the
length of x. That is, if two inputs x, y have the same size |x| = |y|, then they must use the
same advice string.

1 Under this definition, every unary language is in this class, including UHALT.

SAND 2023
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We define the following three complexity classes to categorize the functions that are
computable by polynomial-size covert TACs.

▶ Definition 5 (SPCT3D). The class of problems solvable by a strict polynomial sized covert
tile assembly computer in the 3D Abstract Tile-Assembly Model.

Formally, a language L is in SPCT3D if there exists a sequence of covert TACs C =
{C1, C2, ...} such that the ith TAC, Ci, is strictly polynomial in i and if it correctly computes
all x ∈ L where |x| = i.

▶ Definition 6 (SPCT2D). The class of problems solvable by a strict polynomial sized covert
tile assembly computer in the 2D Abstract Tile-Assembly Model.

▶ Definition 7 (PCT2D). The class of problems solvable by a polynomial sized covert tile
assembly computer in the 2D Abstract Tile-Assembly Model.

5.2 Strict Polynomial Size Equivalence
To show equivalence between P/poly and SPCT3D, we first define the 2-Promise Unique
Assembly Verification problem, a modified version of Unique Assembly Verification where we
are given two assemblies, a and b, rather than a single target. The problem asks to separate
two cases: accept if an assembly containing a as a subassembly is produced, and reject if an
assembly containing b is produced. We assume it is promised that one of these cases is true.
This problem is solvable in polynomial time since you only need to attach tiles until one of
the two assemblies is produced (Lemma 9).

▶ Definition 8 (2-Promise Unique Assembly Verification problem). Input: Assemblies a, b and
an aTAM system (T, s, τ ) which is promised to uniquely produce one of two assemblies, A or
B, such that a ⊆ A and b ⊂ B. Output: “Yes”, if Γ uniquely assembles A, and “No”, if Γ
uniquely assembles B.

▶ Lemma 9. The 2-Promise Unique Assembly Verification problem is solvable in polynomial
time in the 3D aTAM.

Proof. Call greedy grow (from [2]) to get maximal producible assembly C. If Γ uniquely
assembles C and a ⊆ C, return “yes”. Otherwise, return “no”. ◀

Equipped with the algorithm for the 2-promise problem, and taking the description of a
covert computer as an advice string, it follows that we can compute the seed assembly from
the input template, and the two possible output assemblies from the output template, and
then run the algorithm for the 2-Promise UAV problem (Lemma 10). This puts any problem
solvable by a polynomial-sized covert circuit in the class P/poly. The other direction of
equivalence is given by the 3D covert computer constructions.

▶ Lemma 10. If a language L is computable by a strict polynomial-sized covert tile assembly
computer in the 3D aTAM, then L is in P/poly.

Proof. Let ℑn(T, I, O, τ) be the covert computer for the strings in language L of size n.
Since ℑn is of strict polynomial size, we can encode the tile set, input/output templates,
and temperature in poly(n) bits. Thus, ℑn will be our advice string for membership in
P/poly. Further, we are only considering decision problems. Thus, there are only two output
templates which we denote as aa and br for accept and reject, respectively.

Consider a Turing machine given the string x and covert circuit ℑ|x| = (T, I, (aa, br), τ)
that does the following:
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Convert x to an assembly I(x) using the input template.
Call the algorithm for 2-Promise UAV on input ((T, I(x), τ), aa, br).
If the algorithm accepts then x ∈ L, else x /∈ L

This Turing machine essentially runs the covert computer on x and then checks the
output by seeing which template is included in the final assembly. ◀

▶ Theorem 11. The classes SPCT3D and P/poly are equivalent.

Proof. By Lemma 10, if a language is in P/poly there is a Boolean circuit of polynomial size
which computes it, giving us P/poly ⊆ PCT3D. In Theorem 1 we show that if there exists a
Boolean circuit, there exists a strictly polynomial sized covert computer that computes the
circuit. ◀

5.3 Polynomial Sized 2D Covert Circuits
Here, we use previous constructions to show that the class of polynomial sized 2D covert
circuits is at least as strong as strict polynomial covert circuits. That is every language in
SPCT3D is in PCT2D.

▶ Theorem 12. If a language L is in P/poly then L is in PCT2D

Proof. In Lemma 10 we show that if a language is in P/poly there is a Boolean circuit of
polynomial size which computes it. Any Boolean circuit can be turned into a reversible
circuit, thus by Theorem 2, if there exists a reversible circuit, there exists a polynomial tile
assembly computer that computes it in 2D. ◀

6 Conclusion and Future Work

Previous work in the aTAM required negative glues in order to build covert Tile Assembly
Computers. We have provided two new covert computers in the aTAM with only positive glue
strengths, one in (just-barely) 3D and one in 2D with an exponential-sized output assembly.
These covert TACs add new tools to the field that may find use in future complexity results,
or in future applications related to privacy, cryptography, or biological computation. We
have further initiated the study of covert computers in the context of known complexity
classes, showing connections to the well-studied class P/poly. These results motivate future
work to find functions that can be covertly computed in the 2D aTAM with strict polynomial
size, such as (perhaps) Branching Programs.

Some additional specific directions for future work are as follows. We show the containment
of the class of strict polynomial computers to be in P/poly. Can this be improved? Could
we possibly use the P/poly log space analogue L/poly? What about in smaller classes, such
as covert computers with non-cooperative binding or at temperature-1?
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Abstract
A temporal graph is a sequence of graphs, indexed by discrete time steps, with a fixed vertex set
but with an edge set that is able to change over time. In the temporal graph exploration problem,
an agent wants to visit all the vertices of a given temporal graph. In the classical model, at each
time step the agent can either stay where they are, or move along one edge. In this work we add a
constraint called restlessness that forces the agent to move along one edge at each time step. We
mainly focus on (infinite) periodical temporal graphs. We show that if the period is 2 one can decide
in polynomial time whether exploring the whole graph is possible or not, while this problem turns
out to be NP-hard for any period p ≥ 3. We also show some time bounds on the explorations of
such graphs when the exploration is possible.
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1 Introduction

A temporal graph is a sequence of graphs G = (G1, G2, . . . , Gk, . . . ), where Gt = (V, Et) is
called the snapshot at time step t. Vertices remain but edges are susceptible to be removed
or added at each time step. When the sequence is finite, the number of steps is called the
lifetime of the temporal graph. The study of algorithmic aspects of temporal graphs was
promoted lately due to the emergence of dynamic networks with change of links over time
(e.g., social-, wireless mobile-, transportation networks). Among the several problems that
have been studied, the temporal exploration problem (TEXP) has received a lot of attention
in the last decade. In this problem, an agent aims at visiting all vertices of V , in minimal
time if visiting all vertices is possible. In the classical model, called the strict variant, the
agent can travel on at most one edge at each time step, while in the non-strict variant the
agent can use as many edges as they want at each time step [7].

In the strict model, while determining whether it is possible or not to explore the graph
(i.e., visit all vertices) is NP-hard [10], it is not hard to see that this is always possible when
(1) the graph is connected at each time step and (2) the lifetime is at least n2, where n = |V |.
A substantial amount of works have been devoted to study the problem on some specific
graph classes, both on the computational complexity and on possible improvements of this
O(n2) bound on the lifetime of the graph (which is in fact tight - lifetime Ω(n2) might be
necessary - for general graphs), see for instance [3, 5, 6, 7, 9]. As a notable example, if each
snapshot is connected and of bounded degree, then O(n1.75) steps are sufficient to explore
the graph [6]. Interestingly, the same upper bound holds in general (connected) graphs in
a slightly different model, where the agent is allowed to make at most two moves per step,
instead of at most one.
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However, the results obtained in previous works do not apply anymore under the constraint
called restlessness. A ∆-restless temporal path is a path where the agent walking in the
graph is not allowed to wait for ∆ steps of time at a vertex before making their next move.
For example, this can be used to model non delay tolerant network where a packet can
only be stored for a limited amount of time in the nodes, because of memory limitation [4].
Another recent application is the study of paths in virus infection, where a virus can only
spread if it infects somebody new before the infected person recovers [8].

We also would like to point out that restless walks in temporal graphs also offer a powerful
generalization of properly-colored walks in edge-colored graphs. If the edges of a graph
are colored, a walk is said to be properly-colored iff it does not use two edges of the same
color consecutively. These graphs themselves offer an interesting generalization of directed
graphs (even undirected edge-colored graphs) and there is a rich literature around problems
of properly-colored spanning paths or trails (see Chapter 11 of [1]). Given a k-edge colored
graph, one can build a periodic temporal graph, with infinite lifetime, where the edges
available at timeframe i mod k are exactly the edges colored i. If walks have to be k-restless,
an agent at a vertex v can use edges of any color for their next move, except the one they
used to get to v, which will take too long to appear again.

In this article, we consider the 1-restless variant of TEXP, i.e. the variant where waiting
at a vertex is not possible and the agent therefore has to make exactly one move per step.
We denote it by 1-RTEXP. As it is the most restless case, we believe that it is a strong
starting point to study the impact of restlessness on the explorability of a graph.

It is easy to see that exploring a temporal graph restlessly can be much more difficult
than when we may wait. As a matter of fact, this may not be possible even in a temporal
graph with connected snapshots and infinite lifetime, as shown in the simple Example 1.

▶ Example 1. For i > 0, Gi is the graph on the left of Figure 1 if i is odd, it is the graph on
the right of Figure 1 if i is even. Hence, the graph has infinite lifetime, and it is 2-periodical.
If the starting vertex (at t = 1) is one vertex among {D, E, F }, then the agent, being forced
to move, will be in {A, B, C} at time 2, back in {D, E, F } at time 3, and so on. It will never
be able to visit node H.

C D

B E

A F

H

i odd

C D

B E

A F

H

i even

Figure 1 Snapshots at odd and even timesteps. We use colors to highlight the difference.

Note that the same example works with replacing the subgraph induced by {A, B, C, D,

E, F } with any (connected) bipartite graph. Following this, a natural question is to find
either sufficient conditions for a temporal graph to be explorable restlessly, or tractable cases
where 1-RTEXP can be determined in polynomial time. As exploration is not guaranteed
even if the lifetime is infinite (and the snapshots are connected), we focus in this work on
periodic graphs of infinite lifetime, which are one of the most natural classes of graph of
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infinite lifetime that we can encode in finite space (an essential condition for complexity to
even make sense). Our main result is to provide a sharp separation between tractability
and NP-hardness of 1-RTEXP, based on the period of the graph, summarized in the two
following theorems.

▶ Theorem 2. In 2-periodical temporal graphs, 1-RTEXP is polynomially solvable.

▶ Theorem 3. For any p ≥ 3, 1-RTEXP is NP-hard in p-periodical temporal graphs, even if
each snapshot is connected.

We complement these results by showing some sharp bounds in the number of iterations
needed to explore such graphs (whenever exploration is possible).

The article is organized as follows. We give a formal definition of the problem in Section 2.
Theorems 2 and 3 are shown respectively in Sections 3 and 4. Exploration time bounds are
given in Section 5.

2 Preliminaries

▶ Definition 4. A temporal graph is a sequence G = (G1, G2, . . . ) of graphs Gt = (V, Et). If
the sequence is finite, the length of the sequence is called the lifetime of the graph (otherwise
the lifetime is infinite). Gt is called the snapshot of G at time t. A (infinite) temporal graph
is p-periodical if Gi+p = Gi for every i ≥ 1.

Note that a p-periodical temporal graph is fully described by giving the first p snapshots
G1, . . . , Gp, thus with a description of (finite) size O(pn2).

▶ Definition 5. In a temporal graph, a temporal walk or journey is a sequence of vertices
(vi, vi+1, . . . , vj) such that for all k, vk = vk+1 or (vk, vk+1) ∈ Ek. The vertices vi and vj

are called respectively the start vertex and the end vertex and i and j respectively the starting
time and ending time. A 1-restless journey, which we simply call a restless journey in this
paper, is a journey where vk ̸= vk+1, for all k = i, . . . , j − 1.

▶ Definition 6 (1-RTEXP). Given a temporal graph G and a start vertex s ∈ V , 1-RTEXP
asks whether there is a restless journey starting at s at time 1 that contains all vertices of
the graph.

If so, we say that the (temporal) graph is fully explorable, when starting at s.
Dealing with periodical temporal graphs, the case of period 1 is trivial, as when p = 1 we

have Gi+1 = Gi, so the graph is somehow static. Hence, it is fully explorable if and only if it
is connected.

Before starting our results, let us mention a result on reachability in p-periodical temporal
graphs, which easily follows from classical BFS in graphs.

▶ Lemma 7 (Reachability). Given a p-periodical temporal graph, two vertices u and w, and
two indices i, j ∈ {1, . . . , p}, we can determine in linear time if there exists a restless journey
starting at u at some time t ≡ i mod p and ending at w at some time t′ ≡ j mod p. Moreover,
if such a journey exists, there exists one with length (number of edges) at most np − 1.

Proof. We build a graph G′ on np vertices (v, k) for v ∈ V and k ∈ {1, . . . , p}. In G′ we put
an arc from (v, k) to (v′, k + 1) (or to (v′, 1) if k = p) if there is an edge (v, v′) in snapshot
Gk. Then, a restless journey in G, starting at u at some time t ≡ i mod p and ending at
w at some time t′ ≡ j mod p, corresponds to a walk in G′ starting at (u, i) and ending at
(w, j). The existence of such a walk can be determined using a BFS on G′.

SAND 2023



13:4 Restless Exploration of Periodic Temporal Graphs

As G′ has linear size (with respect to the input), this can be checked in linear time.
Moreover, if such a path exists, there exists a simple one, thus with length at most np−1. ◀

If this is the case, we will say that (v, j) is accessible, or reachable, from (u, i).

3 2-periodical temporal graphs

This section is dedicated to the proof of Theorem 2 which states that 1-RTEXP is polynomially
solvable in 2-periodical temporal graphs.

To prove this, we reduce the problem to 2-Sat (restriction of Sat on clauses of size at
most 2), which is well known to be polynomial time solvable. The rough idea is to consider
two variables per vertex, one saying that we will visit the vertex at an odd time step, the
other one saying that we will visit the vertex at an even time step (so at least one of them
should be true). We also introduce some variables that represent the order in which we will
visit the vertices - more precisely the order of the first visit of vertex v at odd and/or even
time steps. Corresponding constraints are built thanks to the reachability lemma (Lemma 7).
Additional constraints ensure the global feasibility and the fact that the journey starts at s.

Let us now formally define the 2-Sat formula. We are given a 2-periodical temporal graph
G (i.e., its 2 snapshots G1 and G2), and one start vertex s ∈ V . We construct the following
2-Sat formula F (G, s) :

Variables:
For each vertex u in V we create two variables u1 and u2. As explained above, the
variable ui, i ∈ {1, 2}, will be true if we visit u at time parity i in our exploration. Let
I be the set of variables.
For each pair ui, vj (for u, v ∈ V , i, j ∈ {1, 2}, possibly u = v and/or i = j) we create
a variable ui ⇝ vj . In our construction this variable is true if (1) we visit u at time
parity i, and (2) either we do not visit v at time parity j, or the first visit of u at time
parity i is before the first visit of v at time parity j.

Clauses:
(VISIT) For each vertex v in G we construct a clause (v1 ∨ v2), meaning that we have
to visit v at time parity 1 or 2 in order to visit the whole graph.
(REACH) For each pair (ui, vj), if there is no restless journey from u at time parity i

to v at time parity j, we create a clause ((vj ⇝ ui) ∨ (vj)) meaning that we either visit
v at time parity j before u at time parity i or do not visit v at time parity j at all.
(ORDER) For each pair ui, vj in I we create the clause (ui ⇝ vj ∨ vj ⇝ ui) ensuring
that we do not claim to visit v at time parity j before we visit u at time parity i and
at the same time to visit u at time parity i before v at time parity j.
(START) We create a clause (s1) for the start vertex s at time parity 1 meaning that
we have to go through this state.
(FIRST) For other uj in I we create the clause (s1 ⇝ uj) meaning that we visit s at
time 1 before any other vertex, i.e. that we start our exploration on s at time odd.

Note that the formula has 2n + 4n2 variables and O(n2) clauses.
We now show in Lemmas 8 and 11 that the temporal graph is fully explorable from s (at

time 1) if and only if F (G, s) is satisfiable. This shows Theorem 2. We note that when the
graph is fully explorable from s, a corresponding restless journey can easily be built from a
truth assignment satisfying F (G, s).

▶ Lemma 8. If the graph G can be fully explored starting from s at time 1 then F (G, s) is
satisfiable.
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Proof. We set the value of each variable according to a restless journey exploring the whole
graph starting from s at time 1, as explained in the description of the variables in the formula.

Clauses (VISIT) are satisfied as the journey visits all vertices, either at time odd or even.
If we cannot visit v at time parity j after u at time parity i in G, either we do not visit
v at time parity j (vj is true), or we visit v at time parity j but not u at time parity i

(vj ⇝ ui is true), or we visit both and then necessarily v at time parity j before u at
time parity i (vj ⇝ ui is true). Then, clauses (REACH) are satisfied.
Clauses (ORDER) are verified since following the journey gives a strict order of first
visits (note that if u is not visited at time parity i then ui ⇝ vj is false).
Clauses (START) and (VISIT) are verified since we start our journey from s at time 1. ◀

Assume now that the formula F (G, s) is satisfiable and consider a satisfying truth
assignment S of it. Let us define a graph G0 as follows:

Vertices: For each variable ui set to true in S the graph contains vertex ui

Edges: For any two vertices ui, vj in the graph, we put the arc (ui, vj) if the variable
ui ⇝ vj is true in S.

▶ Lemma 9. If there is an arc (ui, vj) in G0 then (v, j) is accessible from (u, i).

Proof. Assume by contradiction that it is impossible. Then there is by definition in F (G, s)
a clause ((vj ⇝ ui) ∨ (vj)). From vj ∈ G0 we deduce vj is true. Thus, to verify the clause,
(vj ⇝ ui) must be true. Since we have the above mentioned edge in G0, we also have that
(ui ⇝ vj) is true. Consequently, the clause (ui ⇝ vj ∨ vj ⇝ ui) of F (G, s) is not satisfied, a
contradiction. ◀

Note that by an easy recurrence Lemma 9 shows that when there is a path from ui to vj in
G0 then (v, j) is accessible from (u, i) in the temporal graph.

▶ Lemma 10. If there is no arc between two vertices ui and vj of G0 (neither (ui, vj) nor
(vj , ui)), then (v, j) is accessible from (u, i) and vice-versa.

Proof. Assume by contradiction and without loss of generality that (v, j) is not accessible
from (u, i). Then there is by definition a clause ((vj ⇝ ui) ∨ vj) in F (G, s). Since vj ∈ G0,
vj is true, thus to verify the clause we have that (vj ⇝ ui) is true. By construction, we do
have an arc from ui to vj , a contradiction. ◀

▶ Lemma 11. If F (G, s) is satisfiable then the temporal graph G can be fully explored starting
from vertex s at time 1.

Proof. Consider some satisfying assignment S of F (G, s), and the associated graph G0.
Take a topological order of the strongly connected components (SCC) of G0.
This gives us a suitable exploration order of the graph. Indeed, Lemma 9 ensures that

if (ui, vj) are in the same SCC, then (v, j) is accessible from (u, i) in G. If ui and vj are in
two consecutive SCC in the topological order, then again (v, j) is accessible from (u, i) in G:
indeed, this follows from Lemma 9 when there is an arc from the SCC of ui to the one of vj ,
and from Lemma 10 when there is no arc between the two SCC.

Thus, if we consider an order of vertices of G0 that follow the topological order of SCC,
then we can build a journey in the temporal graph that visit all the corresponding vertices.
As G0 contains either u1 or u2 for any vertex u of the temporal graph, the journey does
explore all the vertices of the temporal graph.
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To finish the proof, we shall argue that we can choose a journey that starts at (s, 1). First
note that as s1 is true (thanks to the clause (START)) there is a vertex s1 in G0. Moreover,
from the clauses (FIRST) we know that there is an arc (s, ui) for any vertex ui in G0. Hence,
s1 is necessarily in the first SCC in the topological order, and the journey can be chosen to
start at s at time 1. ◀

4 p-periodical temporal graph with p ≥ 3

We show in this section Theorem 3, i.e., that 1-RTEXP is NP-hard for p-periodical graphs,
even with connected snapshots, for any p ≥ 3. We first deal with the case p = 3, and then
show how the proof can be adapted to the cases p ≥ 4.

4.1 Case p = 3
Given a 3-periodical temporal graph G and a start vertex s, we study whether the agent can
visit all the vertices V .

In order to show that the problem is NP-hard, we build a reduction from 3-Sat-(2,2),
a restriction of 3-Sat where each variable appears exactly 2 times positively and 2 times
negatively. This problem is known to be NP-complete [2].

Given a 3-Sat-(2,2) formula, we build a graph that contains a clause-gadget (described in
Section 4.1.1) for every clause, a variable-gadget for every variable (described in Section 4.1.2)
and a trap-gadget (described in Section 4.1.3) which makes the snapshots connected, while
forcing the agent to explore the graph in some specific order.

4.1.1 The clause-gadget
For every clause Ci with literals ℓ1

i , ℓ2
i , ℓ3

i , we construct the gadget depicted in Figure 2. We
create 8 vertices, ℓ1

i , ℓ2
i , ℓ3

i , v1
i , v2

i , v3
i , v4

i , v5
i , and 12 edges as follows:

3 edges (v1
i , ℓj

i ), j ∈ {1, 2, 3}, present on times k ≡ 1 mod 3;
3 edges (ℓ1

i , ℓ2
i ), (ℓ2

i , ℓ3
i ), (ℓ3

i , ℓ1
i ) present on times k ≡ 2 mod 3;

3 edges (ℓj
i , v2

i ), j ∈ {1, 2, 3}, present on times k ≡ 3 mod 3;
1 edge (v2

i , v3
i ) present on times k ≡ 1 mod 3;

1 edge (v3
i , v4

i ) present on times k ≡ 2 mod 3;
1 edge (v4

i , v5
i ) present on times k ≡ 3 mod 3.

This construction is illustrated in Figure 2.
Suppose that an agent is at v1

i at time k ≡ 1 mod 3 and then moves inside this gadget.
The agent will be at one vertex from {ℓ1

i , ℓ2
i , ℓ3

i } at time k + 1, then on a second vertex from
{ℓ1

i , ℓ2
i , ℓ3

i } at time k + 2 and then joining v2
i at time k + 3. The agent will eventually go

through v3
i , v4

i and v5
i in this order as it is the only possible journey. To sum up, the agent

will have visited every vertex of the gadget besides one from {ℓ1
i , ℓ2

i , ℓ3
i }, and will be in v5

i at
k′ ≡ 1 mod 3.
▶ Remark 12. The vertices ℓ1

i , ℓ2
i , ℓ3

i corresponding to literals will be linked to the variable-
gadgets. The unvisited vertex will correspond to the literal that will be set to true in the
clause in order to verify the formula.

The graph contains one gadget for each clause. More precisely, the gadgets are chained
together, where the vertex v5

i from the gadget of clause Ci is merged with the first vertex
v1

i+1 of clause Ci+1. This way, if an agent starts at v1
1 at time k ≡ 1 mod 3 and moves inside

the clause-gadgets, it can traverse all the gadgets and will arrive at v5
m (where m is the

number of clauses) at time k′ ≡ 1 mod 3 and will have visited every vertex except exactly
one among {ℓ1

i , ℓ2
i , ℓ3

i } for each i = 1, . . . , m.
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Figure 2 The gadget associated to the clause i. Red edges are present on times k ≡ 1 mod 3,
blue edges on times k ≡ 2 mod 3 and green edges on times k ≡ 3 mod 3. For black-and-white
readability, the edges present on times 1, 2 and 3 mod 3 are also respectively denoted by simple,
double and triple edges.

4.1.2 The variable gadget
Every variable yi appears in 4 clauses, 2 times positively and 2 times negatively. Hence,
there are in the clause-gadgets 2 vertices corresponding to yi, and 2 vertices corresponding
to yi. Then, for every variable yi we build the gadget depicted in Figure 3: it contains 10
(new) vertices wj

i , j = 1, . . . , 10, and is linked to the clause-gadgets through the 4 vertices
corresponding to yi and yi (called y1

i , y2
i , −y1

i and −y2
i in the figure). Besides the 10 vertices,

the gadget contains the following 18 edges:

Edges (w3
i , y1

i ), (w5
i , −y1

i ), (w4
i , w8

i ), (w6
i , w8

i ), (w10
i , y2

i ), (w10
i , −y2

i ) and (w7
i , w10

i ) present
on times k ≡ 1 mod 3;
Edges (w1

i , w2
i ), (w3

i , w4
i ), (w5

i , w6
i ) and (w9

i , w10
i ) present on times k ≡ 2 mod 3;

Edges (w2
i , y1

i ), (w2
i , −y1

i ), (w4
i , y2

i ), (w6
i , −y2

i ), (w3
i , w7

i ), (w5
i , w7

i ) and (w8
i , w9

i ) present
on times k ≡ 3 mod 3;

This construction is illustrated in Figure 3.
Suppose that an agent is in w1 at some time k ≡ 2 mod 3 and move inside the variable-

gadget (on vertices wj
i , y1

i , y2
i , −y1

i , −y2
i ). Then they must go to w2

i , and then can go either
to y1

i or to −y1
i . If they go to y1

i , then they have to go to w3
i as we consider here the case

where they stay inside the gadget (we will show later that they cannot respect the restlessness
condition if they leave the gadget). At this point they must go to w4

i , then y2
i and w10

i . They
may then visit w9

i , w8
i , w6

i , w5
i , w7

i and then go back to w10
i . Then, either they do the same

(now useless) cycle on these vertices, or leave the gadget.
In other words, they can either take P1 = (w1

i , w2
i , y1

i , w3
i , w4

i , y2
i , w10

i , w9
i , w8

i , w6
i , w5

i , w7
i ,

w10
i ) (thus visiting the 10 vertices wj

i , and y1
i and y2

i ), or the symmetrical path P2 =
(w1

i , w2
i , −y1

i , w5
i , w6

i , −y2
i , w10

i , w9
i , w8

i , w4
i , w3

i , w7
i , w10

i ) .
Note that in both cases, they are in a vertex in {y1

i , y2
i , −y1

i , −y2
i } only at some time

k′ ≡ 1 mod 3.
The variable-gadgets are chained, by merging the vertex w10

i of the gadget of variable yi

to the vertex w1
i+1 of the gadget of the variable yi+1.

Also, the last vertex v5
m of the clause-gadgets is linked to the vertex w1

1 of the first
variable-gadget by an edge present at time 1 mod 3.
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Figure 3 Unitary variable-gadget (framed). The four adjacent clause-gadgets are depicted too.
The meaning of the color is the same as in Figure 2.

4.1.3 The trap
With the variable- and clause-gadgets, the snapshots are not connected. We make them
connected by adding a gadget, called trap, from which it is impossible to go out. Hence, the
trap must be explored last.

The trap, depicted in Figure 4, has 3 vertices A, B and C and works as follows. On times
k ≡ 1 mod 3 (resp. k ≡ 2 mod 3, k ≡ 0 mod 3), all vertices from the rest of the graphs are
adjacent to A (resp. B, C). If an agent enters the trap, it will alternate between vertices A,
B and C and cannot go out.

4.1.4 Validity of the reduction
We are now ready to prove that the formula is satisfiable if and only if the graph can be
fully explored, starting at the vertex v1

1 (gadget of the first clause).

▶ Lemma 13. If the formula is satisfiable then the agent can explore the whole graph.

Proof. Consider a truth assignment σ satisfying the formula. We consider the following
exploration of the graph. The agent visits first the clause-gadgets, from the first to the
last one. As explained earlier, they can do this while exploring all but one vertex among
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Figure 4 The three different snapshots of the trap-gadget.

{ℓ1
i , ℓ2

i , ℓ3
i } in each clause-gadget. The vertex we choose not to visit is one that corresponds

to a satisfied literal in σ.
We are at v5

m at some time t ≡ 1 mod 3. We then enter the first variable-gadget at
t + 1 ≡ 2 mod 3. Then we visit all the variable-gadgets using path P1 if yi is set to true,
using path P2 if yi is set to false. After visiting all the variable-gadgets, we go to the trap
and visit A, B and C.

As in the clause-gadget the vertex which was not visited during the exploration of the
gadget is set to true, it is visited during the exploration of the corresponding variable-gadget.
Thus, all the vertices of the graph are visited. ◀

▶ Lemma 14. If the agent can explore the whole graph then the formula is satisfiable.

Proof. The agent starts at v1
1 at time 1. As noted previously, the trap must be visited at

the end of the exploration.
We look at the first vertex w1

1 of the first variable-gadget. The agent is necessarily here
at some time t ≡ 2 mod 3 (from the edge (v5

m, w1
1), as the agent cannot be at w2

1 at time
≡ 2 mod 3, so the edge (w2

1, w1
1) cannot be used to reach w1

1). Then, as mentioned earlier,
in this variable-gadget they are in yj

1 or −yj
1 only at time ≡ 1 mod 3. Suppose that they

leave the variable-gadget and enters a clause gadget. Then they must take an edge leading
to a first vertex v1

i of the clause gadget, and the agent is stuck there (i.e., they must go to
the trap and cannot finish the exploration). So, the agent must follow either path P1 or
path P2. They are in w10

1 , i.e. in the first vertex of the second variable-gadget at some time
≡ 2 mod 3. More generally, this means that when the agent reaches the first vertex w1

i of a
variable-gadget, then they must stay inside the variable-gadgets, and visit all the subsequent
such gadgets, using P1 or P2, till the last vertex w10

n of the last gadget. Then, they must go
to the trap.

The exploration starts from vertex v1
1 . Suppose now that the exploration leaves some

clause-gadget (before v5
m). This must be at some ℓj

i , where they are either at time 2 or 3
mod 3 (coming from v1

i or some ℓj′

i ). There is no edge present at time 2 mod 3 incident at
some yi-vertex in the variable-gadget.

If ℓj
i is a vertex y1

i or −y1
i , then, to leave the clause-gadget, the agent must reach w2

i at
time 1 mod 3, and is stuck there.
If ℓj

i is a vertex y2
i (resp. −y2

i ), then, to leave the clause-gadget, the agent must reach w4
i

(resp. w6
i ), then w8

i at time 2 mod 3, and is stuck here.
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In summary, the agent must first visit the clause-gadgets without leaving them. So, they
arrive at v5

m while having visited all the corresponding vertices but one in each clause-gadget.
Then, they must follow one path among P1 and P2 in each variable-gadget, and the visit the
trap.

We set variable yi to true (resp. to false) if the agent took path P1 (resp. P2) when
visiting the corresponding variable-gadget. As all the vertices have been explored, every ℓj

i

left unexplored in the visit of the clause-gadgets corresponds to a literal set to true in the
truth assignment, which concludes the proof.

◀

4.2 Case p ≥ 4
We now show Theorem 3 for p ≥ 4. The proof is based on a similar reduction from 3-Sat-
(2,2). We first extend the clause-gadget and the trap in Section 4.2.1. We then build the
variable-gadget in Section 4.2.2. We prove the validity of the reduction in Section 4.2.3.

4.2.1 Extending the clause-gadget and the trap
In order to extend the clause-gadget to a larger period, one has to extend its tail. More
precisely, we start with the same gadget as for period 3 (up to the fact that edges are
present on time modulo p instead of modulo 3). We add p − 3 vertices v6

i , . . . , vp+2
i . For

j = 6, . . . , p + 2, vertex vj−1
i is linked to vj

i with an edge present on times k ≡ j − 2 mod p.
Now, vertex vp+2

i of the gadget of clause Ci is merged with vertex v1
i+1 of the gadget of

clause Ci+1.
It is easy to see that the gadget works the same as in the case of period 3: if the agent is

at v1
1 at time 1 modulo p and stays inside the clause-gadgets, then they will be at vp+2

m at
time 1 modulo p, and will have visited every vertex but one ℓj

i for every i.

The trap is generalized in a natural way: it has p vertices, say f1, . . . , fp. At time i

modulo p, fi is linked to all other vertices of the graph (including the other vertices of the
trap). Then, if an agent enters the trap at time i modulo p (in fi), at i + 1 they must go to
fi+1, and so on. They can visit all the vertices of the trap but never get out of it.

4.2.2 Variable-gadget
The variable-gadget is simpler for p ≥ 4. As previously, to each variable yi are already
associated 4 vertices in the clause-gadgets, two associated to the literal yi (denoted y1

i and y2
i

here) and two associated to the literal yi (denoted −y1
i and −y2

i here). The gadget contains
p − 1 vertices w1

i , . . . , wp−1
i , and the following edges:

One edge (w1
i , w2

i ) present on times k ≡ 2 mod p;
Two edges (w2

i , y1
i ) and (w2

i , −y1
i ) present on times k ≡ 3 mod p;

Two edges (y1
i , y2

i ) and (−y1
i , −y2

i ) present on times k ≡ 4 mod p;
Two edges (y2

i , w3
i ) and (−y2

i , w3
i ) present on times k ≡ 5 mod p;

If p ≥ 5, for each j = 3, . . . , p − 2, an edge (wj
i , wj+1

i ) present on times k ≡ j + 3.

This construction is illustrated in Figure 5.
Let us call P1 the path (w1

i , w2
i , y1

i , y2
i , w3

i , . . . , wp−1
i ) and P2 the path (w1

i , w2
i , −y1

i , −y2
i ,

w3
i , . . . , wp−1

i ). Note that if an agent is at w1
i at time 2 mod p, then they can follow either

P1 or P2, and be at wp−1
i at time 2 mod p. If they stay inside the gadget, then these are the

only 2 paths that they may follow.
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Figure 5 The variable-gadget. The number above each edge denotes the timeframes where it
appears.

To complete the construction, the last vertex wp−1
i of a variable-gadget is merged with

the first vertex w1
i+1 of the next variable-gadget. Also, there is an edge, present at times 1

mod p, between the last vertex vp+2
m of the last clause-gadget and the first vertex w1

1 of the
first variable-gadget.

4.2.3 Validity of the reduction

We consider the exploration problem starting at vertex v1
i .

▶ Lemma 15. An agent can explore the whole graph if and only if the formula is satisfiable.

Proof. If the formula is satisfiable, let us consider a satisfying assignment σ. As in the
case of period 3, an agent can first visit the clause-gadgets, visiting all vertices but one
per clause-gadget which corresponds to a true literal in σ. They arrive in vp+2

m at time 1
modulo p. Then they go to the first vertex of the first variable-gadget, and visit all the
variable-gadgets, choosing path P1 if the variable is true in σ, and P2 otherwise. Finally,
they go to the trap and visits it. With the very same argument as previously, we see that
they have visited all the vertices of the graph.

Conversely, suppose that an agent can explore all the vertices. Suppose first that they
leave a clause-gadget, at some vertex in {y1

i , y2
i , −y1

i , −y2
i }. They must be in this vertex at

time 2 or 3 modulo p.
If it is y1

i or −y1
i , they are stuck if they are there at time 2. If they are there at time 3,

they can go to w2
i , but then they are stuck there.

If it is y2
i or −y2

i , they are immediately stuck.
So, the agent must go through all the clause-gadget first, till vp+2

m . Similarly, it is easy to see
that an agent cannot leave a variable-gadget:

they are at vertices y1
i or −y1

i at time 4 modulo p, and cannot use an edge of the
clause-gadget then,
they are at vertices y2

i or −y2
i at time 5 modulo p. If p ≥ 5 they are stuck there, and if

p = 4, they can go to the first vertex v1
i of some clause-gadget but then are stuck there.

To conclude, they have to visit first all the clause-gadgets, then all the variable-gadgets,
then the trap. We set variable yi to true (resp. false) if they used path P1 (resp. P2) in the
corresponding variable-gadget. As in the case of period 3, from the fact that the agent visits
all the vertices of the clause-gadgets, we conclude that every clause has a true literal in the
built assignment. ◀
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5 Exploration time bounds

In this section we focus on the time required to explore the temporal graph (whenever
possible). Recall that in the model where the agent is not forced to move, time O(n2) is
sufficient to explore a temporal graph with connected snapshots, and that this bound is tight
(Ω(n2) steps are necessary for some family of temporal graphs).

We prove here similar results for p-periodical temporal graphs under the restlessness
1-constraint.

▶ Theorem 16. Any (restlessly) fully explorable p-periodical temporal graph can be explored in
at most pn2 steps. Moreover, for every p ≥ 2 there are families of fully explorable p-periodical
temporal graphs that require Ω(pn2) steps to be fully explored.

We note that the lower bound Ω(pn2) is still valid under the condition that the snapshots
are connected (using a trap-structure as in the NP-hardness proof, we can easily make them
connected without changing significantly the exploration time bound).

The first part of the theorem, restated in the following lemma, easily follows from
Lemma 7.

▶ Lemma 17. Any explorable p-periodical temporal graph can be explored restlessly in at
most pn2 steps.

Proof. If the graph is explorable, let us consider a journey that visits all vertices. By
Lemma 7, we can go from one vertex to the next one in the walk with a walk of at most
pn − 1 edges. The result follows. ◀

Let us now show the second part of the theorem, restated in the following lemma.

▶ Lemma 18. For every p ≥ 2 there are families of explorable p-periodical temporal graphs
that require Ω(pn2) steps to be explored.

Proof. We first consider the case where p is even. We build the following graph: first, we
consider two even cycles C1 = (s, v2, . . . , v2k, s) and C2 = (s, z2, . . . , z2k, s) of the same size
2k, sharing a vertex s. We choose k (larger than p) such that 2k ≡ 2 mod p. In C1, (s, v2)
and every (v2i−1, v2i) are present at odd times, and the other edges (including (v2k, s)) are
present at even times. In C2, starting from s through z2, z3,. . . , the ith edge is present at
times ≡ i mod p.

To complete the construction, we split vertex z2 into 2k + 1 identical copies (so each copy
is linked to s and to z3). The initial vertex is s. Note that the graph has 6k − 1 vertices.

This consutrction is illustrated in Figure 6
Let us suppose that at some time t ≡ 1 mod p, the agent is in s and enters C2. Then

they must follow the whole cycle, visiting one copy of z2, then z3, . . . , z2k, being back in
s at t′ = t + 2k ≡ 3 mod p. Then, if p ̸= 2 they must follow C1 (visiting v2, v3,. . . ), being
back in s at t′′ = t′ + 2k ≡ 5 mod p. In order to be able to go back in C2 again, they must
make p/2 − 1 tours of C1, so that they are in s at some time ≡ 1 mod p (note that this is
also true for p = 2 as p/2 − 1 = 0).

Then, starting at s at time 1, as the agent must go 2k + 1 times through C2 in order to
visit all copies of z2, they must make (at least) 2k (complete) tours of C2 and 2k(p/2 − 1)
(complete) tours of C1, so in total at least kp tours of cycles of length 2k, leading to an
exploration time at least 2k2p ≥ n2p/18 = Ω(n2p).

It is easy to see that the graph is indeed explorable with the previous strategy.
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Figure 6 The graph our construction provides. C1 is on the left, C2 on the right.

If the period is odd, it is no longer possible for an edge to only appear at odd or at even
timeframes and our construction requires a little adaptation. We modify C1 as follows:

Edges (s, v2) and (v2i−1, v2i) are present at times equivalent to 1, 3, . . . , p − 2 mod p, let
us call them odd edges;
Edges (v2i, v2i+1) and (v2k, s) are present at times equivalent to 2, 4, . . . , p − 1 mod p, let
us call them even edges;
For each even edge, we add a vertex wi, with an edge (v2i, wi) present at p − 1 mod p,
and an edge (wi, v2i+1) (or (wi, s)) present at 0 mod p.

For example, Figure 7 illustrates the changes we make to the graph of Figure 6 if p is odd.
This way, if the agent is in C1, they will alternate between odd and even edges, up to

time p − 1 mod p, where they are at an “odd” vertex v2i, has to use the extra vertex wi,
leaving wi at 0 mod p, reaching v2i+1 (or s if i = k) at time 1 mod p. Then, in p units of
times they travel from vi to vi+p−1. We set the length of the cycle C1 (on s and the vertices
vi) to be 2k ≡ 2 mod (p − 1).

Then in this configuration, if the agent starts visiting the tour C1 at s ≡ 3 mod p, it ends
the tour (visiting some vertices w during the travel) at s at time t′ ≡ 5 mod p, and so on.
After (p − 3)/2 such tours, it will be at s at t ≡ 0 mod p, will start a new tour of C1, will be
at v2k at time t′ ≡ 0 mod p, and then can use the edge (v2k, s) to be back on s at time ≡ 1
mod p.

So, to visit all copies of z2, the agent must make at least 2k (complete) tours of C2, and
2k(̇p − 1)/2 tours of C1. As tours have (at least) 2k vertices, we get again a lower bound of
2k2p = Ω(pn2) to explore the whole graph restlessly.

Here again, the previous strategy shows that the graph is fully explorable. ◀

6 Conclusion and perspective

In the previous section, we proved that the maximum amount of time required for the
exploration of an explorable p-periodic graph of n vertices is in Θ(pn2). However, we only
proved that this value is somewhere between pn2

18 and pn2 and we leave its exact value as an
open question.
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Figure 7 We add an extra vertex wi for every odd edge. Note that here, even edges are present
on timeframes 2, 4, ..., p − 1 and odd edges on timeframes 1, 3, 5, ..., p − 2 but not p, which is dealt
with separately.

Another natural extensions of our work could be to investigate the complexity of ∆-restless
exploration with ∆ > 1 or cases where the agent walking in the graph is allowed to move
by more than one edge at each time step but we do not know if those cases would be more
interesting than the case ∆ = 1.

A problem that we believe would be of great interest is the study of the tractability of
the NP-complete cases of the problem for some fixed relevant parameters. This could include
structural parameters of the underlying graph (the timeless graph that contains all the edges
that appear at any given time) or parameters related to the temporality. In particular, our
gadgets were inspired by our previous works on edge-colored graphs and most edges are
present in only one snapshot, which makes the graph change drastically from a timeframe to
the next. We believe it could be of great interest to study the complexity of cases where the
graph cannot change too much in one timeframe.
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Abstract
A multistage graph problem is a generalization of a traditional graph problem where, instead of a
single input graph, we consider a sequence of graphs. We ask for a sequence of solutions, one for each
input graph, such that consecutive solutions are as similar as possible. There are several theoretical
results on different multistage problems and their complexities, as well as FPT and approximation
algorithms. However, there is a severe lack of experimental validation and resulting feedback. Not
only are there no algorithmic experiments in literature, we do not even know of any strong set of
multistage benchmark instances.

In this paper we want to improve on this situation. We consider the natural problem of multistage
shortest path (MSP). First, we propose a rich benchmark set, ranging from synthetic to real-world
data, and discuss relevant aspects to ensure non-trivial instances, which is a surprisingly delicate
task. Secondly, we present an explorative study on heuristic, approximate, and exact algorithms
for the MSP problem from a practical point of view. Our practical findings also inform theoretical
research in arguing sensible further directions. For example, based on our study we propose to focus
on algorithms for multistage instances that do not rely on 2-stage oracles.
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1 Introduction

In multistage problems, as introduced in their current form by [13,18], we are interested in
solving some problem not on a single instance, but on a sequence of instances (the stages)
which correspond to different points in time. Such problems arise, e.g., when a certain task
has to be performed multiple times at discrete points in time, but the underlying instance
(in our case a graph) has received several modifications between two such time points. Thus,
one typically expects two succeeding stages to be somewhat similar overall, but certainly
more significantly different than being attained from a single graph operation like adding or
deleting an edge. Most importantly, additionally to the original problem’s objective per stage
(the stage-wise objective), we also aim to maximize the similarity between the individual
stage’s solutions – the transition quality.

Having two distinct optimization goals at hand, one typically considers a weighted sum
of both measures to allow trade-offs between the quality of the individual solutions and the
similarity of those solutions [1–4, 15–17, 19]. Sometimes it is desired to guarantee optimal
solutions in each stage, as first motivated in [8]; then the goal is to maximize the transition
qualities by picking a suitable optimal solution (out of the set of possible optimal solutions)
per stage. In either case, one may not want to yield the largest possible transition quality
between two stages if this incurred an exorbitant quality decrease in other stage transitions.
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Also note that our problem notion is different from many other scenarios on dynamic graphs,
where the goal is to – possibly after each graph modification – update a solution as fast as
possible, not (directly) caring about the specific amount of changes to the solution.

Interestingly, most polynomial-time solvable graph problems (such as shortest paths,
matchings, minimum cuts, etc.) yield NP-complete problems in a multistage setting: this
often already occurs when only two stages are considered, and independent on whether
one restricts themselves to optimal solutions per stage or not [7, 19]. There is already
some theoretical research on several variants of this problem framework; however, there is
significant lack of practical evaluation. In fact, it seems that there have been no practical
evaluations on any multistage graph problem so far. In this paper, we want to improve on
this situation.

To this end, we consider the Multistage Shortest Path (MSP) problem, which seems
to probably be the most practically relevant multistage problem. MSP was first proposed
in [18] and introduced with a trade-off objective in [17]. We discuss it here in the setting
where we only allow optimal solutions per stage: Given an ordered set of edge-weighted
graphs (the stages) and a node pair (s, t), find a shortest s-t-path in each stage such that
the subsequent paths are as similar as possible (see Section 2 for a formal definition). For
example in a transportation scenario, it might be necessary but expensive to prepare each
road segment before using it. Thus, we want a collection of shortest paths that allows us to
reuse as many segments as possible. In a communication scenario, we prefer to use recently
established channels, but not at the cost of sacrificing transfer speed. If the optimality
requirement per stage appears too restricting, we point out that one can easily relax it in
practice by altering the notion of what a shortest path is, e.g., by rounding edge weights so
that all paths of reasonably similar length are considered optimal.

While the usual shortest s-t-path problem is long known to be efficiently solvable using
Dijkstra’s algorithm [11], MSP was shown to be NP-hard even for unweighted instances via a
reduction from 3Sat [17]. Although not stated explicitly, the proof can easily be adapted to an
approximation-preserving reduction from Max-2Sat which shows that, unless P = NP, MSP
does not admit a PTAS nor a constant-factor approximation with factor better than 21/22 [20],
even when restricted to only two stages. In [17], several similarity and dissimilarity measures
were considered, and several results w.r.t. the parameterized complexity of MSP could be
established. The specific formulation above, with only truly shortest paths per stage, is
motivated by [8] and explicitly considered in [7] in the context of approximation algorithms.

Contribution. In this paper we improve on the state-of-the-art regarding practical algorith-
mics in the following two ways: First (Section 3), we propose the first rich benchmark sets
for a multistage graph problem. We take special care to avoid ad-hoc generation schemes and
parameterizations which, in case of MSP, would typically only yield rather trivial instances.
Instead, we devise several explicit measures of reasons for triviality and actively seek schemes
and parameterizations to avoid them. Secondly, we implemented and tested a set of heuristic,
approximate, and exact algorithms to tackle MSP in practice (Section 4), and we report on
our explorative study (Section 5). A focus of this study is to test the consistency between
theoretical results and their practical realization and use it as a source for identifying new
research questions.

Theoretical research suggests to improve on algorithms for the (formally already hard)
2-stage problem variant MSP|2, as we only know a single approximation algorithm (with
non-constant approximation ratio). The multistage variants with more than two stages can
reuse any 2-stage algorithm while weakening its approximation ratio only by the constant
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ratio of 1/2. Interestingly, we find that in practice MSP|2 problems are all rather simple to
solve, but neither the known approximation nor other heuristics yield satisfactory results
for general MSP. Thus, we propose that a promising step for theoretical research would
be to further investigate the intricacies of the true multistage setting instead of relying on
algorithms for a small constant number of stages.

The implementations will be part of the next release of the open-source (GPL) Open Graph
algorithms and Data structures Framework [6] (www.ogdf.net); all benchmark instances and
experimental data are available at https://tcs.uos.de/research/msp.

2 Definitions and Preliminaries

Given a graph G with positive edge weights w : E(G)→ R+, we encode a path P ⊆ E(G) as
an edge set and denote its path length by ℓ(P ) :=

∑
e∈P w(e). Given a query (s, t) ∈ V (G)2, a

shortest s-t-path is an s-t-path with minimum path length. In contrast, we may also consider
the number of hops (edges) |P | of a path P . The hop-distance h(s, t) is the smallest number
of hops over all s-t-paths.

Let [k] := {1, 2, ..., k}. We define a multistage graph1 Gτ = ⟨Gi, wi⟩i∈[τ ] as an ordered
sequence of graphs with positive edge weights over a common node set V , i.e., Gi = (V, Ei)
and wi : Ei → R+ for all i ∈ [τ ]. Each tuple (Gi, wi) is a stage, and Gτ has τ stages. Observe
that the weights of common edges may differ between stages.

▶ Definition 1 (Multistage Shortest Path (MSP)). Given a multistage graph Gτ and a
query (s, t) ∈ V 2, find a sequence P := ⟨Pi⟩i∈[τ ] of paths such that each Pi is a shortest
s-t-path in Gi and the transition quality Q(P) :=

∑
i∈[τ−1]|Pi ∩ Pi+1| is maximized.

If there is an upper bound T on the number of stages τ , MSP may be denoted by MSP|T .
As the problem is NP-hard, we may be interested in approximate solutions. The only

known approximation algorithms for MSP|2 and general MSP arise as special cases of a
general approximation framework [7], which in turn is a generalization of the approximation
for multistage matching [8]. We will briefly summarize the algorithms later in Sections 4.2
and 4.3. For now, we may only mention that the approximation ratio is dependent on
the intertwinement µ := maxi∈[τ−1] |Ei ∩ Ei+1| of the multistage graph, i.e., the maximum
commonality between the edge sets of two succeeding stages. For MSP|2 and MSP the
algorithms yield approximation ratios of (2µ)−1/2 and (8µ)−1/2, respectively. While [7]
guarantees these ratios, their tightness cannot be deduced for arbitrary subgraph problems.
However, following the construction ideas of [8], it is simple to show the tightness of the ratio
(up to a small constant) for MSP and MSP|2.

Preprocessing. For a given query (s, t) ∈ V 2 and looking at any stage individually, we may
remove all its non-essential edges (i.e., edges that are not in any shortest s-t-path in that
stage) without altering the set of feasible solutions. We may also discard (arising) degree-0
nodes. This can be done efficiently, as given in Algorithm 1. Thus, we assume in the following
that this preprocessing is always performed before running the actual algorithms. A stage Gi

that has been preprocessed w.r.t. a query (s, t) has the following useful properties:
(i) Gi is a DAG with unique root s and unique sink t, and
(ii) for each node v ∈ V (Gi), all paths from s to v have the same length. The same holds

for all paths from v to t.

1 This term is also sometimes used for leveled graphs, whose nodes are partitioned into levels, and edges
join consecutive levels, see, e.g., [10]. That definition and results thereon are unrelated to our scenario.
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Algorithm 1 Preprocessing non-essential elements in an edge-weighted graph G=(V, E).

1 compute shortest path distances d(v) from s to each v ∈ V using Dijkstra’s algorithm
2 remove all edges {(u, v) ∈ E | d(u) + w(u, v) ̸= d(v)}
3 compute all nodes U with a path to t (via BFS from t with reversed edges)
4 remove all nodes V \ U

After the stage-wise preprocessing, both properties in particular also hold for the graph
induced by the intersection Ei ∩ Ei+1, for each i ∈ [τ − 1].

3 Benchmark Instances

Multistage problems have mostly been viewed from a theoretical perspective up to now, and
there are thus no established sets of stage-wise temporal instances available. Furthermore,
it turns out that acquiring and even generating reasonable instances is no easy feat: In
our investigations, we learned that most ad-hoc generation schemes typically lead to rather
trivial multistage instances. If there are only very few different (or even just one unique)
shortest paths per stage, there is not much room for transition optimization; if there are
several shortest paths but on very similar stages, chances are that a single solution path can
be chosen throughout all stages; if the stages become too dissimilar, such that they have
only few edges in common between shortest paths, it again becomes rather simple to select
shortest paths that agree in terms of these edges between subsequent stages.

An adversary may argue that such issues would go away if one switches to a trade-off
based objective function where the paths’ lengths are allowed to deviate from the optimum
in order to allow better transitions. But we disagree: Generating instances with only a
trade-off based objective function in mind would easily hide the fact that such instances may
become trivial for different balancing ratios between the two considered objective functions.
If, however, the instances are well-designed for our scenario with truly optimal shortest paths,
we expect them to be also interesting for trade-off based optimization. Thus, it is important
to discuss our benchmark generating procedure in more detail than is often done otherwise.
While we cannot guarantee that our instances are especially sensible for problems beyond
MSP, we hope that the underlying generation methods and considerations may be useful for
devising new instances for experimental studies on other multistage problems as well.

We consider four different types of benchmark instances, each with slightly different
focus and motivation (see Section 3.1), and ranging from highly synthetic to real-world
origins. After discussing schemes of obtaining MSP instances from underlying graphs in
Section 3.2, we discuss the complexities of identifying good parameters to obtain non-trivial
MSP instances in Section 3.3. Then, Section 3.4 presents the final technical parameterizations
of our benchmark sets and resulting instance properties.

3.1 Rationale for the Benchmark Scenarios
As discussed in Section 2, the query-specific preprocessing of MSP instances may yield vastly
smaller stages, and the preprocessed stages have a very specific structure. In particular, their
size is not necessarily related to the original instance size anymore. To obtain interesting
instances, a main goal is thus to generate instances with a reasonable number of shortest
paths with a reasonable number of hops each, so that the preprocessing does not already
essentially solve the instance.
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To this end, we start with generating a highly synthetic benchmark set grid, which consists
of long grid graphs (i.e., two-dimensional grids where one dimension is significantly smaller
than the other). For a query (s, t) where s (t) is the lower left (upper right, respectively)
corner of the grid, these graphs (assuming unit edge weights) already resemble preprocessed
MSP instances. Further, in contrast to more quadratically-shaped grid graphs, even relatively
small modifications to the graphs are likely to yield non-trivial instances.

The benchmark set geom contains nearest-neighbor graphs [14], generated by a random
point set in the Euclidean plane. Such random graphs allow for multiple shortest paths of
reasonable lengths. In contrast, other well-established randomized generation paradigms like
Erdős-Renyi graphs or Barabási-Albert graphs would only yield very small diameters [5, 9].
Further, our geometric graphs have the additional benefit of (i) naturally occurring edge
weights, and (ii) if one stage is generated from the previous stage by adding some random
displacement to each node, they also provide a natural temporal relationship between
consecutive stages.

The probably most natural application for shortest path queries is navigation in road
networks. However, readily available data sets do not include temporal data suitable for MSP.
Our benchmark set hybr thus uses real-world road networks as the underlying graph data,
for which we artificially generate temporal differences between the stages. Our modification
methods (see Section 3.2) are mainly motivated by this scenario, but we use the same
modification methods for the previous two benchmark sets as well.

Finally, there exist real-world data sets from other applications that include time-stamped
edges. Under those, we are mainly interested in email communication networks (“who wrote
to whom, and when?”) or human contact networks (“who was near whom, and when?”), as
we can interpret these data in the context of the MSP problem: We want to quickly pass
some information from source to target, while preferring interpersonal relations that have
been used recently. We collect such instances in our benchmark set real.

3.2 Multistage Instance Generation
Modification variants. Necessarily, the stages of a multistage graph need to differ to
compose a non-trivial instance. The real instances already have differing stages; for grid,
geom, and hybr base instances we can use either of the following three modification schemes
(applied to each stage independently) to obtain multiple differing stages. Additionally, we
can also obtain differing stages for the geom instances by perturbing the node coordinates
between stages to simulate random walks of the nodes (see Section 3.4). Keep in mind that
these modifications are performed on the original graph, prior any query knowledge and thus
prior to any preprocessing.
Edge deletion: Regardless of the interpretation of the instance, there is a plethora of

different reasons to motivate the absence of edges in some stages. As simple examples,
road closures in road networks or link failures in computer networks can lead to their
temporary unavailability. Given a modification ratio λE ∈ [0, 1), we remove ⌊λE · |Ei|⌋
many edges from the respective stage, chosen uniformly at random.

Node deletion: Removing arbitrarily chosen edges might (i) not alter the set of shortest
paths too much and (ii) not describe all real-world scenarios too well, as the reason for
an edge absence can have some local impact on surrounding edges as well. A simple
method to generate local events of slightly larger impact is to remove nodes together
with all incident edges – this occurs, e.g., if some road intersection is blocked, or if some
server goes offline in a communication network. As above, we use a modification ratio
λV ∈ [0, 1) and remove ⌊λV · |V |⌋ many nodes from the respective stage, chosen uniformly
at random.
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Weight scaling: Some incidents (e.g., construction sites) do not render the respective node
or edge completely unusable but rather increase the cost for their usage. This is typically
no isolated effect but also affects the neighborhood of said graph element – the closer the
proximity, the larger the effect. We model this by selecting a random node v and sorting
Ei by hop-distance from v; the closer an edge is to v, the more we scale up its weight.
The following precise parameters were selected subject to the discussion in Section 3.3:
the weights of the ⌊|Ei|/8⌋ closest edges are multiplied by a factor of 4; the next ⌊|Ei|/4⌋
edges are multiplied by a factor of 2. Observe that if edges have exponential weights
(base 2, see below) they retain this property after the scaling.

Query selection. While the grid instances are constructed with specific extremal queries
in mind, we need to choose queries for the other three benchmark sets. To find multiple
queries, each with relatively long shortest paths, we use the following randomized process.
Consider some stage Gi with the least number of edges. Let h′(v, w) := h(v, w) denote the
hop-distance from v to w in Gi if they are in a common component, and h′(v, w) := −1
otherwise. Let h∗(v) := maxu∈V h′(v, u) and H(v) := {w ∈ V | h′(v, w) ≥ 3/4 · h∗(v)} denote
a set of distant nodes from v. Starting from a random node c ∈ V in the largest connected
component of Gi, we choose the source s uniformly at random from H(c). The target t is in
turn chosen uniformly at random from H(s). If the query is not feasible for all stages, it is
rejected.

3.3 Quality Criteria and Triviality Considerations
To differentiate interesting from trivial instances, multiple aspects have to align. These are
specifically derived from our view on the MSP-problem but might also be generalized to
classify instances for other multistage problems.

Triviality in a stage. Simple kinds of trivialities can be pinpointed to a specific stage.
Few paths: Let N denote the number of shortest s-t-paths in a single stage Gi. If N = 0,

node t is not reachable from s and the instance could be split into two independent
sub-instances before and after the i-th stage. Alternatively, if a practical application
would rather incentivize similarity to the last feasible solution, we could simply remove
the infeasible stage. Similarly, if N = 1, the shortest s-t-path is unique in stage i, and we
can split the instance at this stage. The case N ≤ 1 is trivial to check after preprocessing,
since then Ei is either empty or a single path. We may discard instances with such
a stage for experimental purposes. For N ≥ 2, we consider the ratio |Ei|/hi(s, t) as a
measure to estimate the non-triviality of stage Gi. Here, hi is the hop-distance in Gi,
easily computable during preprocessing.

Short paths: We may disregard instances with too small hi, as defined above.

Triviality in a transition. Trivialities arising in transitions between stages may be harder
to spot. Furthermore, even after understanding how to generate instances with reasonable
stage-wise non-triviality, finding generation parameters that yield transition-wise non-trivial
instances turned out to be much more fiddly and required more computational effort. E.g.,
to compute (or estimate) the measures below, we require optimal (or heuristic) solutions.
Section 4.1 discusses a method to (in practice) acquire an optimal solution ⟨Pi⟩i∈[τ ] in
reasonable enough time by the use of an ILP.
Small intersection: If, after preprocessing, the intersection E′ := Ei∩Ei+1 between two con-

secutive stages is too small or poorly structured (e.g., if E′ consists of mostly disconnected
edges), all of E′ might be in an optimal solution simultaneously, i.e., Ei∩Ei+1 ⊆ Pi∩Pi+1.
In this case, already the simplest greedy algorithm (see Section 4.2) would always find an
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Figure 1 Triviality measures for 2-stage geom instances.

optimal solution. We introduce the triviality measure tS := |Pi∩Pi+1|
|Ei∩Ei+1| which compares the

optimal transition quality to the intersection size. If tS = 1, the transition is trivial; if tS
is close to 0, this triviality aspect plays no important role.

Large intersection: If, on the other hand, Ei ∩ Ei+1 is too large, each solution edge may
always also be an intersection edge, i.e., Pi = Pi ∩ Ei+1 for any shortest path Pi in Gi

(and similarly for Pi+1). We introduce the triviality measure tL := 2·|Pi∩Pi+1|
|Pi|+|Pi+1| , comparing

the optimal transition quality with the mean number of hops of the respective shortest
paths. If tL = 1, the transition is trivial; if tL is close to 0, this aspect is not important.

Small transition quality: Both triviality measures tS and tL are not very expressive if the
optimal transition quality |Pi ∩ Pi+1| is low.

Identifying non-trivial instances. The selection of the underlying graphs (and/or their
generation methods) allows us to control the non-triviality within single stages in a reasonable
and predictable manner. However, controlling the transition-based triviality (mainly tS and tL)
turns out to be much more challenging. This is furthered by the fact that for a nice set
of benchmarks, we would like to have similar parameterizations over all instance classes.
To this end, we required multiple rounds of generating many instances starting with vastly
diverse parameter selections until honing in with fine-grained parameter differences. While
this may seem straight-forward on first sight, there are sometimes only very small ranges of
suitable parameter values, and they may vastly drift or even disappear by slight changes to
other parameters due to the interdependencies of the parameters.

We exemplarily discuss the effects on tS and tL by varying the modification parameters
for geom. See Figure 1 for a visualization, where instances (points in the figure) that are
trivial due to a too small (large) intersection tend to the horizontal (vertical, respectively)
axis. Consider neighborhood size k = 10. For small λE , the intersection is mostly too large,
causing low 1− tL; for larger λE , the point set moves down and to the right, rendering more
instances to have low 1− tS. This plausible effect is evident for all instance sets, albeit with
large discrepancy for sensible values of λE depending on, for example, k: while λE = 0.4 is
a sensible choice for k = 10, k = 50 would benefit from a higher λE value. Even more so,
for some instance parameterizations (e.g., k = 5 and λV = 0.4), both tS and tL are likely to
trigger. Thus, the selected parameters are a compromise between comparability of parameter
values and non-triviality w.r.t. all of the above triviality considerations.

3.4 Final Parameterization and Generation Details
After multiple rounds of investigations to identify reasonable and consistent parameterizations
that yield non-trivial instances, we finally arrive at the following generation settings. Table 1
shows key figures of the generated multistage instances, given as averages over the indicated in-
stance classes. See the appendix for more detailed tables. The full set of benchmark instances,
as well as all experimental results, can be found at https://tcs.uos.de/research/msp.
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Table 1 Instance characteristics, grouped by relevant parameters. Here, n and m (n′ and m′)
are the mean number of nodes and edge before (after, respectively) preprocessing, always understood
as the union over all stages. The ratios n′/n and m′/m thus measure the effectiveness of the
preprocessing strategy. h denotes the mean hop-count of a shortest path per stage; larger numbers
typically indicate higher problem difficulty. Value µ gives the mean intertwinement of the considered
instances after preprocessing, which is a measure relevant to the problem’s approximability (see
Section 2).

grid y = 100 y = 200 y = 500 y = 1000
n′

n
µ n′

n
µ n′

n
µ n′

n
µ

x m′

m
h m′

m
h m′

m
h m′

m
h

5 97.7% 362.8 98.0% 626.1 99.2% 1396.5 99.4% 2605.9
97.1% 105.0 97.3% 208.6 98.6% 519.6 98.9% 1037.4

10 89.6% 676.5 87.8% 962.3 90.7% 1892.5 93.9% 3476.2
88.0% 110.2 85.5% 214.8 87.7% 530.6 90.8% 1069.0

25 86.9% 2356.1 77.8% 3540.0 68.2% 4347.4 72.0% 6834.9
86.0% 123.5 76.1% 227.0 64.8% 538.6 67.0% 1069.2

50 91.1% 5506.0 80.8% 9321.3 64.8% 14414.3 55.4% 13940.5
90.7% 148.0 80.1% 249.0 63.0% 566.4 52.1% 1106.7

geom n = 1000 n = 2000 n = 5000
n′

n
µ n′

n
µ n′

n
µ

k m′

m
h m′

m
h m′

m
h

5 21.6% 53.6 17.1% 79.0 13.7% 141.4
10.5% 30.8 8.4% 47.2 6.9% 74.1

10 20.5% 60.7 18.1% 100.6 15.0% 213.3
7.7% 20.7 6.6% 30.9 5.7% 54.3

25 18.1% 120.6 17.2% 228.1 15.5% 505.0
4.7% 12.4 4.5% 18.5 4.0% 35.7

50 13.1% 165.5 15.1% 335.2 15.6% 988.0
2.3% 7.3 3.0% 13.3 3.2% 20.3

hybr n m n′

n
m′

m
µ h

CA 2.0M 2.8M 0.11% 0.09% 571.3 747.7
PA 1.1M 1.5M 0.19% 0.15% 551.4 653.6
TX 1.4M 1.9M 0.19% 0.15% 654.0 860.0

real n m n′

n
m′

m
µ h

dnc.24 401.8 1.2K 6.9% 5.8% 11.5 6.3
dnc.48 536.4 1.7K 5.5% 5.1% 15.0 5.4
enron.168 5.3K 12.4K 1.0% 0.8% 11.1 7.7
enron.744 8.9K 25.2K 0.5% 0.4% 12.4 7.4

grid: Long Grid Graphs. The underlying grids have |V | = x · y for (x, y) ∈ {5, 10, 25, 50}×
{100, 200, 500, 1000} and unit edge weights. For each of the three modification variants we
generate MSP instances with 16 stages; each stage is derived from the original underlying
graph. We consider the modification ratios λE ∈ {1/5, 1/10, 1/20} (for x = 5, λE = 1/5 is
omitted due to generating mostly infeasible instances) and λV = 1/20. Overall, we generate
36 instances for each parameter combination, so we obtain 2736 grid instances.

geom: Random Nearest Neighbor Graphs. We use several parameters to generate MSP
instances with 16 stages. The nodes in G1 are n ∈ {1000, 2000, 5000} randomly chosen
real-valued points uniformly distributed over the unit square [0, 1]2. We obtain the node
position for each Gi+1 from Gi by moving each node independently in a random direction
chosen uniformly from [− ϱ

n , ϱ
n ]2 with ϱ ∈ {0, 1, 5}. In every stage, for each node we add an

edge to its k ∈ {5, 10, 25, 50} nearest neighbors (according to Euclidean distances). To allow
for multiple shortest paths per stage, we consider two different weight functions: unit weights
and exponential weights. The latter are generated by 2⌈log2 100d⌉, where d is the Euclidean
distance. This mapping partitions the otherwise very diverse edge weights into buckets of
(exponentially) similar weights. Due to the factor 100 (and that we have a nearest neighbor
graph) we mostly observe weights in {1, 2, 4, 8, 16}.

We consider these graphs with the edge deletion (with λE ∈ {1/2, 1/20}, omitting λE = 1/2

for k = 5 and λE = 1/20 for (k, n) = (50, 5000) due to triviality) and the weight scaling
modifications. We do not use node deletion here, as these modifications (even for small
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non-trivial values of λV ) resulted in mostly trivial instances (especially many infeasible ones).
However, unless ϱ = 0, we also consider the instances without any further modifications since
the random walks of the nodes already establish differences between the stages.

Overall, we generate 4 instances for each of the 240 parameter combinations with a
unique query selected according to the scheme described in Section 3.2. We obtain 960 geom
instances overall.

hybr: Road Networks. We use the undirected variants of the popular real-world roadNet
data set [25], namely the road networks of California (CA), Pennsylvania (PA), and Texas (TX)
as three distinct underlying graphs. As the original data set does not contain any temporal
information, we use the three modification variants to obtain multistage instances, with
λE ∈ {1/10, 1/20, 1/100} and λV ∈ {1/20, 1/100}. In contrast to the artificial graphs, we observe
that preprocessing the underlying graph w.r.t. a query yields dramatically smaller graphs
(see Table 1). Thus, we performed the stage-wise modifications after preprocessing (i.e., we
first choose a random query as described in Section 3.2, then preprocess, modify and check
feasibility), in order to guarantee that the modifications are significant within the stages.
The benchmark set hybr consists of overall 360 multistage instances with 4 stages and a
unique query each.

real: Communication Networks. Many real-world graph data sets with timestamped
edges are email data sets [22, 23], where nodes represent people and an edge indicates a
message exchange at the indicated times. We use the data sets as provided by the Konect
graph collection [23], but consider edges to be undirected. Here, timestamps are given with
a relatively high resolution ranging between 1 and 100 seconds, meaning that only very few
events happen exactly at the same time. To generate stages with a non-trivial number of
edges, we have to decrease the temporal resolution, i.e., we generate stages by accumulating
all events that occur during some time window. If we choose too large time windows, the
stages become too dense and yield only very short shortest paths. On the other hand, if
we have too many stages, there are typically no feasible non-trivial queries possible. We
thus pick time window sizes that yield interesting graphs, but restrict ourselves to 2 or 8
consecutive stages. The queries are selected as described in Section 3.2.

enron [22,23]: Email communication between employees of the energy corporation Enron.
We use time window sizes of 168 hours (a week) and 744 hours (a month). To avoid too
sparse (or obviously mislabeled) data, we only consider timestamps between May 27,
1998 and Feb 04, 2004 (a span of 297 weeks).
dnc-email [23]: Email communication between members of the US Democratic National
Committee. We use time window sizes of 24 and 48 hours. Here, we consider timestamps
between Sep 16 2013 and May 25 2016 (a span of 140 weeks).

The benchmark set real consists of 80 2-stage (66× enron, 14× dnc-email) and 20 8-stage
instances (14× enron, 6× dnc-email) that are selected as those instances with the lowest
triviality score, which is the sum over the values 10 · 1[tS = 1 ∨ tL = 1] + tS · tL for the
considered transitions.

We also conducted the same process on human contact data sets [12, 21], where a
timestamped edge indicates a measurement of physical proximity at the given point in time.
However, the resulting graphs had either a very low diameter (3 or even lower, rendering
MSP essentially trivial) if the time windows were too wide, or were highly disconnected if the
time windows were too narrow. There was no sweet spot between these effects and thus these
instances are not included. We also note that research tells us that autonomous systems and
similar networks typically experience shrinking diameters over time [24], and are thus not
well-suited to yield non-trivial MSP instances.
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4 Algorithms

4.1 Exact Solutions
To compute exact MSP solutions, we propose a straight-forward integer linear programming
(ILP) formulation. The preprocessing routine gives us the length Li of any shortest s-t-path
in Gi, for each i ∈ [τ ]. Furthermore, it lets us define δ+

i (v) ⊆ Ei (δ−
i (v) ⊆ Ei) as the edges

that enter (leave) node v when used in a shortest s-t-path. This allows us to use a directed
flow formulation for assuring the path property.

For each stage i ∈ [τ ], the binary variable xi(e) indicates whether edge e ∈ Ei is in Pi.
Constraints (1) ensure that each Pi is an s-t-path, constraint (2) forces Pi to be of shortest
length. For each transition (Gi, Gi+1) the (de facto binary) variable zi(e) indicates – due
to constraints (3) and (4) and the objective function – whether edge e ∈ Ei ∩ Ei+1 is in
Pi ∩ Pi+1. Thus, the objective function maximizes the transition quality.

max
∑

i∈[τ−1]
∑

e∈Ei
zi(e)

s.t.
∑

e∈δ−(v)xi(e)−
∑

e∈δ+(v)xi(e) = 1[v = s]− 1[v = t] ∀ i ∈ [τ ], ∀ v ∈ V (1)∑
e∈Ei

wi(e) · xi(e) = Li ∀ i ∈ [τ ] (2)
zi(e) ≤ xi(e) ∀ i ∈ [τ − 1], ∀ e ∈ Ei ∩ Ei+1 (3)
zi(e) ≤ xi+1(e) ∀ i ∈ [τ − 1], ∀ e ∈ Ei ∩ Ei+1 (4)
xi(e) ∈ {0, 1} ∀ i ∈ [τ ], ∀ e ∈ Ei (5)

4.2 Two-Stage Algorithms
In the following, we make extensive use of the auxiliary algorithm prefPath(i, F). It finds,
among all shortest s-t-paths in Gi, a shortest s-t-path with the maximum number of edges
from F . It does so by computing Dijkstra’s algorithm w.r.t. the edge weights of Ei where
the weight of the edges in F ∩ Ei is reduced by some small ε. See [7] for details, where it is
presented as the preficiency algorithm for MSP.

We first present some algorithms for the 2-stage problem MSP|2, as these are later used
as black-box algorithms for general MSP.
Greedy (G): Computes a shortest s-t-path P1 ← prefPath(1, E2) in G1 and, favoring this

path, a shortest s-t-path P2 ← prefPath(2, P1) in G2.
Double Greedy (Gd): Calls G twice independently: once as described above, then with the

roles of the stages interchanged. The output is the solution with larger transition quality.
Iterated Greedy (Gi): Computes (P1, P2) with G and then alternatingly reoptimizes Pi ←

prefPath(i, P3−i) for i = 1, 2 until the transition quality does not improve anymore.
Approximation (A): This (2µ)−1/2-approximation algorithm from [7] iteratively computes

candidate solutions (pairs of paths) and finally outputs the pair with largest transition
quality. Let Y := E1 ∩E2 be the initial set of edges to be preferred. In each iteration j, a
pair of paths P

(j)
1 ← prefPath(1, Y ) and P

(j)
2 ← prefPath(2, P

(j)
1 ) is computed as a new

candidate solution, and we update the set of preferred edges to Y ← Y \ P
(j)
1 . According

to [7], the algorithm continues until eventually Y = ∅ (which is guaranteed to happen
due to our preprocessing). Our implementation can furthermore correctly halt earlier if
the current best transition quality matches the upper bound |E1 ∩ prefPath(2, E1)|.

Double Approximation (Ad): Similarly to how Gd doubles G, this variant calls A twice, the
second time with the roles of the two stages interchanged. It outputs the solution with
larger transition quality.

Bounded Approximation (A5): A variation of A that halts after the first 5 candidate solutions
(or earlier if A halts earlier).
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4.3 Multistage Algorithms
We consider two different polynomial-time approaches to find solutions if τ > 2.
Multistage Greedy (M-G): After initializing P1 ← prefPath(1, E2), subsequent paths Pi ←

prefPath(i, Pi−1) are computed iteratively for i = 2, ..., τ . Proceeding in the reversed
direction, for each i = τ − 1, ..., 1 the solution Pi is updated to prefPath(i, Pi+1). This
process is repeated alternatingly front to back and back to front as long as the transition
quality increases. Note that M-G for τ = 2 coincides with Gi.

Multistage with black-box (B-*): This algorithm from [7] uses any MSP|2-algorithm * as a
black-box. The latter is executed on each consecutive pair of stages. Using a linear-time
dynamic programming approach, it computes a collection of non-adjacent transitions
whose transition qualities sum to the largest number. If the individual (2-stage) transitions
are computed using some α-approximation, this routine yields an α

2 -approximation; in
the case of B-A we thus obtain an (8µ)−1/2-approximation.
Improving over the description in [7] in practice, our implementation does not use
arbitrary solutions for a stage that is neither optimized to the previous nor to the next
stage. Instead, considering such a stage Gi, we set Pi to either prefPath(i, Pi−1) or
prefPath(i, Pi+1), depending on which path yields the better transition qualities in
conjunction with the solution paths of its neighboring stages (both of which are naturally
fixed by the dynamic programming). We evaluate the algorithm’s performance using each
of the 2-stage algorithms described above as a black-box.

5 Experiments

The different algorithmic variants differ mainly in their approach for solving two-stage sub-
instances. Therefore it is natural to first investigate their performance on MSP|2 instances
separately. Thereafter, we consider the multistage instances with τ > 2.

Given some instance and some algorithm X, the gap is the ratio (opt− heu)/opt where
heu is the objective value computed by X and opt the optimal objective value.

Hard- and Software. All computations were run on an Intel Xeon Gold 6134 with 3.2 GHz
and 256 GB RAM running Debian 9. We limit each run to a single thread with a 10 minute
time limit. Our C++ (gcc 8.3.0) code uses OGDF Dogwood [6] as a graph algorithms library;
the code will become part of the next OGDF release. We use CPLEX 20.1 as our ILP solver.

5.1 MSP|2

To obtain MSP|2 instances, we simply use the first two stages of every instance of grid, geom
and hybr, as well as the two-stage instances from real (which, by construction, are selected
to have better non-triviality than a random stage pair in the 8-stage real instances). See
Table 2 for some average key figures on the two-stage experiments.

Nearly all two-stage algorithms are able to find solutions for all MSP|2 instances within the
time limit, except for ILP, which hits the time limit on 1.1% of the instances. In particular,
due to the high success rate of ILP (whose few fails are restricted to very large grid instances),
allows us to understand how often the heuristics and approximation algorithms yield optimal
solutions as well. For grid and geom instances, the running times behave as one would
expect on average: The greedy variants are fastest, followed by the A versions. The exact
ILP is slower than the greedy approaches by up to 3 orders of magnitude (and still up to 2
orders of magnitude compared to A and Ad); only for hybr it is only roughly 10-fold slower
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Table 2 Results for MSP|2 experiments: The instances successfully solved by ILP yield a
subset of each benchmark set for which we now know the optimal solutions. The “solved optimally”
columns for ILP give the mean size of the respective subsets relative to the overall size of the
benchmark sets. For the other algorithms, the values in the “solved optimally” columns, as well as
the various “gap” columns, are then always given w.r.t. to these subsets. The columns “avg. gap”
and “avg. gap (¬opt)” give the mean observed gaps to the optima, where the latter is restricted to
the instances not solved to optimality by the considered algorithm. We suppress the “gap” columns
for real, since all algorithms solved all these instances to optimality.

time [ms] solved optimally avg. gap avg. gap (¬opt) max. gap

gr
id

ge
om

hy
br

re
al

gr
id

ge
om

hy
br

re
al

gr
id

ge
om

hy
br

gr
id

ge
om

hy
br

gr
id

ge
om

hy
br

ILP 46787 897 2947 148 98.9% 100% 100% 100% — — — — — — — — —
G 20 3 185 1 48.3% 95.0% 91.4% 100% 3.0% 0.8% 0.1% 5.9% 15.4% 0.9% 43.6% 37.5% 7.4%
Gd 41 5 316 1 56.2% 98.5% 99.2% 100% 1.5% 0.2% 0.0% 3.4% 11.2% 0.3% 23.7% 22.2% 0.4%
Gi 31 4 256 1 70.4% 96.9% 98.6% 100% 1.0% 0.5% 0.0% 3.2% 15.3% 0.7% 28.5% 33.3% 1.9%
A 972 17 361 1 48.9% 96.5% 91.4% 100% 2.6% 0.5% 0.1% 5.1% 13.0% 0.9% 27.4% 23.1% 6.0%
Ad 1913 34 660 2 56.6% 99.0% 99.2% 100% 1.4% 0.1% 0.0% 3.2% 9.5% 0.3% 19.5% 16.7% 0.4%
A5 46 4 346 1 48.9% 96.2% 91.4% 100% 2.6% 0.5% 0.1% 5.2% 13.1% 0.9% 27.4% 25.0% 6.0%

than the non-exact approaches. Naturally, Gd and Ad take about double the time of their
basic counterparts. While Gi is slower than G, it is still faster than Gd on average: G and Gd
require 2 and 4 calls to prefPath, respectively, but Gi typically terminates after the 3rd call,
realizing that it cannot improve on the solution after the first two calls (i.e., the solution
is identical to the one of G). Interestingly, A5’s running time is roughly comparable to that
of Gd: it requires 2.64 iterations on average (and thus roughly 5 calls to prefPath on average,
with a median of 2 calls), and does not suffer from outliers with a vast number of iterations
as A does (see below). On the hybr benchmark set, A requires drastically fewer iterations
than on grid and geom, and its running time becomes comparable to A5 and thus not too
far off from the greedy approaches. The running times on the real instances are negligibly
small for all algorithms, so we refrain from analyzing them in detail.

However, as depicted in Figure 2a, the average running times do not tell the whole story.
While most algorithms expose a rather predictable running time, the high variance in the
running time of A is stunning: for many grid and geom instances, A spends a lot of time on
later iterations that only yield candidate solutions with trivially small transition quality, but
is unable to deduce that further iterations are futile.

For the following quality comparisons of the non-exact algorithms, we only consider
instances with known optimal objective value (i.e. those that ILP could solve to proven
optimality). The 2-stage real instances can all be solved to optimality by all algorithms.
We conclude that they are, despite our best effort, still too trivial. Also the hybr and
geom instances can typically be solved to optimality by most algorithms, with success
rates of (clearly) above 90%. In contrast to this, the grid instances yield comparably
hard instances for the heuristics (seemingly independent of the precise parameter choices).
Note that this is also the only set where ILP sometimes fails to prove optimal solutions
(for (x, y) ∈ {50} × {500, 1000}). Interestingly, Gi finds the maximum number of optimal
solutions (79.7%) overall.

Considering the average gaps, however, the difference in hardness between grid and geom
seems to flip: even though many grid instances are not solved optimally, the observed gaps
are relatively low, within one-digit percentages. In contrast to this, non-optimally solved
geom instances typically yield gaps in the range of 10%–15% for all non-exact algorithms.

The two greedy variants Gd and Gi beat G w.r.t. the objective value on 20.7% and 32.5%
of the instances, respectively. The average improvement over the initial greedy objective
value in these cases is 30.2% and 21.6%, respectively.
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Figure 2 Visualizations for the MSP|2 experiments. (a) The boxes show the median and
quartiles; the whiskers extend to the farthest data point within 1.5 times the interquartile range.
(b)–(d) We show the average gaps on all instances with known optimum; a gap g is equivalent to
an observed approximation ratio of 1 − g; the y-axes are arranged such that vertically higher data
points represent solutions closer to the optimum.

For A, the average number of iterations (each iteration requiring two calls to prefPath)
is 35.3. However, the actual output solution is already found after 1.2 iterations on average,
generating an average computational overhead of 60.7% per instance for futile subsequent
iterations. In fact, for 95.6% of the instances A already finds the optimal solution with
the initial candidate solution (which is the same solution G finds). For nearly all instances
(99.2%), A finds its output solution within the first 5 iterations, i.e., here A5 outputs the
same solution as A. Inversely, even if A5 terminates earlier than A, this yields worse solutions
only in 2.1% of those instances. Using Ad improves the objective value compared to A on
19.9% of the instances; the average improvement is 31.2% (coming at the cost of doubling
the running time).

Algorithm A has an approximation ratio of (2µ)−1/2. As Figure 2c shows, A not only
performs much better than the worst-case analysis suggests, but the correlation between the
observed approximation ratio (which is 1− g for gap g) and the intertwinement µ is just not
very pronounced on our instances (as shown more clearly in Figure 2d). Clearly, the quite
intricate instance structures necessary to yield weak approximations do typical not appear in
practice (at least not in our benchmark sets).

Figure 2b shows the trade-off between solution quality (in terms of average gap over the
instances solved by ILP) and required running time for all considered algorithms. We can
conclude that the ILP should be preferred if running time is not an issue, and one of the
two greedy approaches Gi or Gd in all other cases. The slightly better running time of G is
typically not worth it due to the drop in quality. One could also make a case for Ad which,
despite requiring much more time, sometimes finds slightly better solutions than the greedy
variants.

SAND 2023
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Table 3 Results for MSP (τ > 2) experiments: Columns are interpreted as in Table 2.
Recall that the grid, geom, hybr, and real instances have 16, 16, 4, and 8 stages, respectively.

time [ms] solved optimally avg. gap (¬opt) max. gap
gr

id

ge
om

hy
br

re
al

gr
id

ge
om

hy
br

re
al

gr
id

ge
om

hy
br

re
al

gr
id

ge
om

hy
br

re
al

ILP 165242 6453 4202 666 84.4% 100% 100% 100% — — — — — — — —
B-G 206 48 627 13 0.0% 1.6% 10.8% 35.0% 15.6% 13.8% 3.2% 10.4% 37.6% 45.2% 14.9% 20.8%
B-Gd 397 71 1023 19 0.0% 1.7% 11.4% 35.0% 14.7% 13.4% 3.2% 10.4% 37.6% 45.2% 14.5% 20.8%
B-Gi 338 58 839 16 0.0% 1.6% 11.1% 35.0% 14.1% 13.6% 3.2% 10.4% 37.6% 45.2% 14.5% 20.8%
B-A 13922 130 1185 13 0.0% 1.5% 10.8% 35.0% 15.5% 13.6% 3.2% 10.4% 37.6% 45.2% 14.9% 20.8%
B-Ad 19096 245 2107 22 0.0% 1.6% 11.4% 35.0% 14.6% 13.4% 3.2% 10.4% 37.6% 45.2% 14.5% 20.8%
B-A5 572 68 1121 16 0.0% 1.5% 10.8% 35.0% 15.5% 13.7% 3.2% 10.4% 37.6% 45.2% 14.9% 20.8%
M-G 257 31 692 8 0.1% 2.1% 15.3% 0.0% 16.8% 23.5% 3.2% 23.0% 45.1% 68.8% 23.7% 42.9%

5.2 MSP

Considering the true multistage instances, i.e., τ > 2, we compare M-G and the various
variants B-{G,Gd,Gi,A,Ad,A5}. Some key figures are presented in Table 3.

The ILP’s running times increase compared to the 2-stage scenarios, but not by as much
as one might expect: compared to their 2-stage counterparts, the 16-stage grid, 16-stage
geom, 4-stage hybr, and 8-stage real instances require roughly 3.5x, 7.2x, 1.4x, and 4.5x
more time, respectively. Thus, while ILP is certainly a time-wise expensive algorithm, we
still can solve nearly all multistage instances to proven optimality within the time limit: it
only fails on roughly 1/6 of the grid instances. This still allows us to investigate the ability
of the non-exact algorithms to find optimal solutions.

First we may consider their running times. Observe that all B-* variants first run their
internal MSP|2 algorithm for τ − 1 transitions. The subsequent dynamic programming over a
sequence of only τ−1 integers requires negligible time compared to the various prefPath-calls.
Hence, the running times of these algorithms are essentially the running times observed for
their internal MSP|2 algorithms, scaled by the number of stage transitions. B-Ad is the only
non-exact algorithm that (on 1.3% of the grid instances) runs into the time limit. The
running time of M-G is very competitive and roughly comparable with the fastest B-* variant,
namely B-G.

The most interesting finding is how seldom the heuristics and the approximation approach
find optimal solutions. While they all do so in most of the cases for MSP|2, the situation
changes drastically for τ > 2: We may start with discussing the B-* variants, as they all
yield essentially the same success rates: not a single multistage grid instance is solved to
optimality (and only mediocre 19% and 11% of geom and hybr, respectively). Even for the
previously too trivial real instances, the algorithms find optimal solutions only for roughly a
third of the 8-stage instances. The reason for this consistent picture amongst all B-* variants
is easy to see: generally, the solution quality for the individual 2-stage sub-problems is very
similar. Their common ingredient, i.e., the selection of “good” non-adjacent transitions, is to
blame for the weak performance. While it is theoretically sound to simply essentially “ignore”
every second transition (while still retaining an approximation guarantee), this turns out
to be abysmal in practice. In fact, we can see that this worst-case scenario is even (nearly)
happening for some geom instances: despite the fact that half of the individual transitions
are essentially optimal, we observe instances with an overall gap of 45.2% – very close to the
worst case of 50%. Generally, this effect overshadows the influence of the precise selection
of the black-box algorithm. Even when considering the gaps yielded by the non-optimal
solutions, we only see slight deviations between the variants. Interestingly, the hybr instances
allow generally lower gaps than the other benchmark sets.
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Now, one may hope that the straight-forward but reasonable sounding heuristic M-G may
fare better, but this is also hardly the case: it finds (only) two optimal solutions on grid
instances and is slightly more successful than B-* on geom and hybr. For the real instances,
however, is fails to find any optimal solution at all. Generally over all benchmark sets, its
obtained gaps are weaker than those of B-*. In fact, on the grid instances its gaps can
become close to 50% and for geom it even achieves a solution quality only 31.2% of the
optimum (a gap of 68.8%).

Overall, we can see that no non-exact algorithm comes close to the optimal solution
quality obtained by ILP, which is thus the probably best algorithmic choice – if time is not an
issue. Otherwise, we would have to recommend the use of B-G or M-G, which are comparable
in quality and running time. The other more expensive MSP|2 algorithms are not worth it
when used within the B-* context on these instances.

6 Conclusion

In theory, the only known approximations for MSP|2 and general MSP (A and B-A) guarantee
ratios of (2µ)−1/2 and (8µ)−1/2 = 1/2 · (2µ)−1/2, respectively, where B-A uses A internally and
only causes an additional constant ratio of 1/2. Thus, in the hunt for better (in particular
constant) approximation ratios, it seems natural to focus on stronger approximations for
MSP|2. However, our study shows that this is precisely not the interesting question when we
want to obtain practically strong algorithms: MSP|2 is rather simple to solve in practice, the
worst-case ratios of A are never met, and even simple greedy heuristics find close-to-optimal
solutions. In contrast, the lifting from 2 to τ > 2 stages is a central weak point which
undermines the algorithms’ success. Also, straight-forward alternative greedy strategies (M-G)
do not work well. We therefore propose to focus on finding true multistage approximation
routines, instead of relying on simple liftings from algorithms for few stages.

In [7], a more general version of A is presented that is applicable to all subgraph problems
that are preficient, which roughly speaking means that they allow a routine along the lines of
prefPath. Thus, all G variants (as well as M-G) can also be used there, and we wonder if they
perform similarly strong for such other problems as they do for MSP|2 (MSP, respectively).
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Table 6 Instance characteristics of geom graphs. We use the same notation as in Table 4.
Weights are given either as unit weights (denoted as 1x) or exponential weights (2x).

geom k = 5 k = 10 k = 25 k = 50
n′

n
m′

m
µ h n′

n
m′

m
µ h n′

n
m′

m
µ h n′

n
m′

m
µ h

n = 1000, 1x, ϱ = 1, λE = 0 19.5% 10.3% 142.0 26.8 13.6% 6.2% 258.5 16.7 13.9% 4.5% 444.2 9.2 8.5% 1.8% 444.2 6.0
n = 1000, 2x, ϱ = 1, λE = 0 10.1% 4.9% 55.8 33.2 7.3% 2.2% 66.8 22.1 5.4% 0.7% 34.2 13.6 4.4% 0.3% 46.5 8.1
n = 1000, 1x, ϱ = 5, λE = 0 24.2% 12.0% 70.8 26.7 22.8% 10.2% 144.8 16.8 22.5% 8.7% 394.0 9.3 12.3% 2.5% 307.8 6.0
n = 1000, 2x, ϱ = 5, λE = 0 16.1% 7.3% 33.2 29.2 13.9% 4.6% 37.0 22.0 10.3% 1.9% 34.0 14.4 8.0% 0.8% 38.0 7.7
n = 1000, 1x, ϱ = 0, λE = 0.2 19.5% 11.1% 43.8 29.1 16.0% 7.0% 84.8 17.9 16.0% 4.9% 193.2 10.1 11.2% 2.3% 316.2 6.0
n = 1000, 2x, ϱ = 0, λE = 0.2 13.8% 7.4% 30.2 33.0 9.8% 3.1% 29.0 22.0 9.3% 1.6% 49.2 15.4 5.5% 0.5% 23.2 8.0
n = 1000, 1x, ϱ = 1, λE = 0.2 21.0% 11.9% 41.0 29.3 18.6% 8.4% 76.0 17.0 16.2% 5.3% 210.2 9.6 12.2% 2.4% 271.8 6.0
n = 1000, 2x, ϱ = 1, λE = 0.2 15.4% 8.1% 28.2 31.7 12.4% 4.0% 28.2 22.3 8.3% 1.3% 30.8 14.2 5.7% 0.5% 33.5 7.9
n = 1000, 1x, ϱ = 5, λE = 0.2 24.4% 11.6% 29.2 28.5 22.9% 9.8% 74.0 16.9 19.7% 6.3% 161.8 9.9 16.2% 4.2% 337.8 6.1
n = 1000, 2x, ϱ = 5, λE = 0.2 20.8% 9.1% 22.2 32.0 15.7% 4.9% 18.2 21.5 12.4% 2.1% 18.0 14.8 6.7% 0.5% 15.8 7.6
n = 1000, 1x, ϱ = 0, λE = 0.5 — — — — 22.2% 10.0% 19.8 20.8 26.1% 8.1% 55.0 11.1 16.8% 4.5% 124.5 6.6
n = 1000, 2x, ϱ = 0, λE = 0.5 — — — — 15.8% 5.5% 11.2 24.7 10.9% 1.9% 9.8 13.8 8.0% 0.8% 10.5 8.6
n = 1000, 1x, ϱ = 1, λE = 0.5 — — — — 26.8% 10.6% 17.8 20.7 20.6% 5.6% 51.0 10.6 21.5% 4.6% 92.0 6.4
n = 1000, 2x, ϱ = 1, λE = 0.5 — — — — 16.2% 5.4% 9.8 23.8 10.6% 2.0% 12.8 13.5 8.5% 0.9% 11.5 8.4
n = 1000, 1x, ϱ = 5, λE = 0.5 — — — — 24.2% 9.3% 23.5 18.9 24.0% 6.9% 47.2 10.2 20.0% 4.6% 104.8 6.3
n = 1000, 2x, ϱ = 5, λE = 0.5 — — — — 19.0% 5.7% 10.2 23.8 11.9% 2.2% 9.5 13.6 8.9% 0.7% 8.8 8.0
n = 1000, 1x, ϱ = 0, scaling 23.8% 12.1% 105.2 30.0 29.4% 11.9% 142.8 19.6 26.8% 8.1% 233.8 10.8 20.2% 4.2% 444.5 6.5
n = 1000, 2x, ϱ = 0, scaling 19.0% 8.6% 48.8 34.7 20.1% 5.9% 46.2 23.0 20.4% 2.8% 30.5 16.1 9.2% 0.7% 44.5 9.2
n = 1000, 1x, ϱ = 1, scaling 28.3% 14.4% 83.8 28.5 34.9% 14.2% 102.2 18.7 32.5% 10.0% 356.8 10.3 25.6% 6.2% 703.8 6.7
n = 1000, 2x, ϱ = 1, scaling 28.9% 12.7% 48.8 35.8 23.2% 6.4% 42.2 25.6 20.2% 2.8% 26.2 16.5 12.3% 1.0% 47.2 8.8
n = 1000, 1x, ϱ = 5, scaling 31.9% 14.2% 50.5 28.9 41.6% 15.6% 66.0 18.0 37.0% 12.2% 230.2 10.1 30.5% 6.2% 191.0 6.5
n = 1000, 2x, ϱ = 5, scaling 28.1% 10.8% 24.5 34.8 24.9% 6.7% 25.8 23.5 23.7% 3.2% 20.0 15.7 15.0% 1.2% 23.2 9.3
n = 2000, 1x, ϱ = 1, λE = 0 7.9% 4.0% 126.5 38.0 12.1% 4.9% 366.5 24.4 11.6% 3.9% 921.8 13.9 11.3% 2.9% 1411.0 8.9
n = 2000, 2x, ϱ = 1, λE = 0 8.3% 4.1% 90.2 52.4 5.2% 1.5% 86.5 33.6 5.5% 0.8% 111.2 21.3 4.9% 0.4% 124.8 16.9
n = 2000, 1x, ϱ = 5, λE = 0 17.0% 9.0% 117.0 39.4 17.4% 7.7% 251.0 24.9 22.8% 8.3% 983.8 14.7 10.0% 2.0% 559.5 9.0
n = 2000, 2x, ϱ = 5, λE = 0 13.6% 6.4% 60.5 50.2 12.9% 4.2% 64.0 34.4 10.8% 2.1% 67.5 21.2 8.9% 1.0% 92.0 17.7
n = 2000, 1x, ϱ = 0, λE = 0.2 11.8% 6.8% 45.0 39.8 18.6% 8.2% 232.5 26.4 12.3% 4.3% 270.8 14.5 14.1% 3.9% 968.2 9.5
n = 2000, 2x, ϱ = 0, λE = 0.2 13.9% 7.5% 60.5 56.1 10.8% 3.4% 64.2 35.0 7.2% 1.1% 60.8 21.0 7.1% 0.6% 55.5 17.2
n = 2000, 1x, ϱ = 1, λE = 0.2 16.2% 9.1% 53.8 41.3 16.4% 7.6% 126.2 26.2 19.7% 6.9% 365.5 14.9 17.6% 4.6% 337.8 9.5
n = 2000, 2x, ϱ = 1, λE = 0.2 12.8% 7.1% 47.5 50.2 10.7% 3.6% 59.5 36.2 7.8% 1.3% 45.8 20.8 6.1% 0.6% 35.0 16.6
n = 2000, 1x, ϱ = 5, λE = 0.2 20.2% 9.9% 42.0 40.9 19.9% 8.3% 89.2 26.4 21.0% 7.2% 371.5 14.9 17.0% 4.4% 750.5 9.0
n = 2000, 2x, ϱ = 5, λE = 0.2 15.4% 7.1% 35.8 51.3 14.1% 4.8% 32.2 35.0 10.6% 1.8% 34.5 19.7 9.1% 0.9% 40.5 15.8
n = 2000, 1x, ϱ = 0, λE = 0.5 — — — — 19.6% 7.9% 26.5 28.7 21.3% 6.7% 73.5 15.9 22.6% 6.3% 204.0 9.9
n = 2000, 2x, ϱ = 0, λE = 0.5 — — — — 14.7% 4.8% 13.2 33.5 11.0% 1.7% 14.0 21.0 7.8% 0.7% 16.0 16.2
n = 2000, 1x, ϱ = 1, λE = 0.5 — — — — 20.4% 8.4% 31.2 27.8 18.6% 5.7% 72.0 15.0 21.8% 5.7% 245.5 10.2
n = 2000, 2x, ϱ = 1, λE = 0.5 — — — — 12.6% 4.4% 17.0 33.2 10.9% 1.8% 15.5 21.8 8.0% 0.7% 16.2 16.0
n = 2000, 1x, ϱ = 5, λE = 0.5 — — — — 20.0% 7.1% 28.0 27.1 20.6% 6.6% 85.8 15.0 17.8% 4.6% 210.5 9.6
n = 2000, 2x, ϱ = 5, λE = 0.5 — — — — 15.1% 4.7% 13.5 32.6 11.2% 1.8% 12.8 21.3 9.1% 0.9% 11.5 14.5
n = 2000, 1x, ϱ = 0, scaling 19.4% 10.0% 129.2 43.3 27.7% 11.0% 188.8 28.9 33.0% 9.9% 351.8 16.2 31.3% 8.2% 753.0 10.2
n = 2000, 2x, ϱ = 0, scaling 20.5% 9.2% 85.8 55.6 19.8% 5.5% 77.5 37.1 17.6% 2.3% 159.2 24.8 13.8% 1.0% 42.8 17.6
n = 2000, 1x, ϱ = 1, scaling 19.4% 9.9% 154.8 43.5 24.6% 9.4% 208.8 27.7 29.2% 8.9% 596.2 16.4 26.9% 6.1% 1041.5 10.8
n = 2000, 2x, ϱ = 1, scaling 18.8% 8.9% 80.8 57.1 23.8% 6.6% 76.5 36.8 20.4% 2.8% 71.2 23.3 15.7% 1.1% 70.5 18.1
n = 2000, 1x, ϱ = 5, scaling 30.4% 13.0% 88.0 41.9 36.2% 12.8% 119.0 28.6 35.6% 9.7% 299.8 16.2 34.3% 7.6% 355.2 10.8
n = 2000, 2x, ϱ = 5, scaling 28.5% 11.0% 46.5 53.9 26.6% 7.0% 40.2 36.0 19.7% 2.8% 33.8 22.2 16.6% 1.4% 33.2 17.3
n = 5000, 1x, ϱ = 1, λE = 0 5.9% 3.0% 206.5 63.7 7.7% 3.3% 455.0 39.7 13.2% 4.5% 2153.2 25.1 9.5% 2.4% 2729.5 16.3
n = 5000, 2x, ϱ = 1, λE = 0 5.9% 3.0% 214.0 80.2 7.2% 2.6% 393.2 66.1 6.0% 1.1% 401.8 53.8 4.3% 0.4% 283.5 24.3
n = 5000, 1x, ϱ = 5, λE = 0 10.2% 5.3% 188.2 64.0 14.5% 6.2% 392.5 41.3 17.1% 6.2% 1263.8 24.2 14.6% 4.0% 2787.8 16.7
n = 5000, 2x, ϱ = 5, λE = 0 9.6% 4.9% 160.0 75.8 12.3% 4.9% 263.0 67.1 8.6% 1.9% 294.0 46.3 8.5% 1.1% 284.8 22.7
n = 5000, 1x, ϱ = 0, λE = 0.2 14.1% 7.8% 94.5 69.7 13.0% 5.6% 229.0 44.0 14.2% 4.9% 621.0 24.2 — — — —
n = 5000, 2x, ϱ = 0, λE = 0.2 10.8% 6.2% 98.8 80.5 8.0% 3.2% 138.5 62.0 7.2% 1.4% 193.2 45.9 — — — —
n = 5000, 1x, ϱ = 1, λE = 0.2 11.7% 6.3% 70.8 64.0 12.6% 5.5% 194.0 41.9 13.4% 4.6% 575.8 24.4 — — — —
n = 5000, 2x, ϱ = 1, λE = 0.2 11.7% 6.4% 82.0 81.6 11.5% 4.4% 160.0 62.5 9.6% 2.0% 190.0 45.2 — — — —
n = 5000, 1x, ϱ = 5, λE = 0.2 12.8% 6.5% 56.8 65.9 14.7% 6.2% 164.2 41.8 16.2% 5.9% 549.5 24.0 — — — —
n = 5000, 2x, ϱ = 5, λE = 0.2 12.9% 6.4% 69.2 79.1 13.1% 4.9% 121.2 63.4 11.5% 2.4% 133.0 46.2 — — — —
n = 5000, 1x, ϱ = 0, λE = 0.5 — — — — 14.1% 5.7% 48.2 45.6 17.9% 5.2% 146.8 25.3 18.7% 5.0% 509.8 17.3
n = 5000, 2x, ϱ = 0, λE = 0.5 — — — — 12.5% 4.6% 30.8 60.4 10.1% 2.0% 43.8 40.1 8.2% 1.0% 36.8 21.3
n = 5000, 1x, ϱ = 1, λE = 0.5 — — — — 14.9% 5.8% 47.8 46.9 19.1% 5.5% 154.5 26.6 17.8% 4.2% 436.0 17.0
n = 5000, 2x, ϱ = 1, λE = 0.5 — — — — 12.4% 4.4% 25.8 62.2 11.2% 2.2% 38.2 40.5 9.0% 1.0% 45.2 22.1
n = 5000, 1x, ϱ = 5, λE = 0.5 — — — — 17.4% 6.1% 34.5 47.5 18.2% 5.2% 108.0 25.8 18.2% 3.9% 253.5 17.8
n = 5000, 2x, ϱ = 5, λE = 0.5 — — — — 12.9% 4.4% 29.2 61.8 12.5% 2.5% 47.5 40.5 9.2% 1.0% 34.8 21.6
n = 5000, 1x, ϱ = 0, scaling 14.1% 7.0% 219.2 69.8 19.6% 7.5% 417.0 46.1 21.1% 5.9% 1878.2 26.1 25.8% 6.2% 2086.5 18.0
n = 5000, 2x, ϱ = 0, scaling 16.4% 8.2% 152.5 83.1 20.5% 6.8% 224.5 69.5 17.8% 2.9% 274.8 48.4 14.0% 1.3% 207.8 24.5
n = 5000, 1x, ϱ = 1, scaling 20.2% 10.3% 210.5 69.8 22.3% 9.2% 606.8 44.3 26.0% 7.5% 595.5 26.3 25.3% 7.3% 4169.2 17.9
n = 5000, 2x, ϱ = 1, scaling 17.8% 8.8% 186.8 86.6 19.1% 6.3% 272.5 67.1 18.9% 3.2% 328.5 48.9 16.3% 1.5% 72.2 24.5
n = 5000, 1x, ϱ = 5, scaling 20.9% 9.3% 137.2 67.3 25.5% 9.6% 273.5 46.3 25.9% 7.2% 869.2 26.5 32.4% 8.8% 1726.5 18.3
n = 5000, 2x, ϱ = 5, scaling 23.6% 10.6% 115.8 84.9 24.2% 7.7% 171.5 67.5 24.9% 4.4% 249.2 50.8 18.3% 1.8% 144.2 24.2
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