
Complexity of the Temporal Shortest Path
Interdiction Problem
Jan Boeckmann #

TUM Campus Straubing for Biotechnology and Sustainability,
Hochschule Weihenstephan-Triesdorf, Germany

Clemens Thielen # Ñ

TUM Campus Straubing for Biotechnology and Sustainability,
Hochschule Weihenstephan-Triesdorf, Germany
Department of Mathematics, School of Computation, Information and Technology,
Technische Universität München, Germany

Alina Wittmann #

Department of Mathematics, School of Computation, Information and Technology,
Technische Universität München, Germany

Abstract
In the shortest path interdiction problem, an interdictor aims to remove arcs of total cost at most a
given budget from a directed graph with given arc costs and traversal times such that the length of
a shortest s-t-path is maximized. For static graphs, this problem is known to be strongly N P-hard,
and it has received considerable attention in the literature.

While the shortest path problem is one of the most fundamental and well-studied problems also
for temporal graphs, the shortest path interdiction problem has not yet been formally studied on
temporal graphs, where common definitions of a “shortest path” include: latest start path (path
with maximum start time), earliest arrival path (path with minimum arrival time), shortest duration
path (path with minimum traveling time including waiting times at nodes), and shortest traversal
path (path with minimum traveling time not including waiting times at nodes).

In this paper, we analyze the complexity of the shortest path interdiction problem on temporal
graphs with respect to all four definitions of a shortest path mentioned above. Even though the
shortest path interdiction problem on static graphs is known to be strongly N P-hard, we show
that the latest start and the earliest arrival path interdiction problems on temporal graphs are
polynomial-time solvable. For the shortest duration and shortest traversal path interdiction problems,
however, we show strong N P-hardness, but we obtain polynomial-time algorithms for these problems
on extension-parallel temporal graphs.

2012 ACM Subject Classification Theory of computation → Shortest paths; Theory of computation
→ Dynamic graph algorithms; Mathematics of computing → Paths and connectivity problems

Keywords and phrases Temporal Graphs, Interdiction Problems, Complexity, Shortest Paths, Most
Vital Arcs

Digital Object Identifier 10.4230/LIPIcs.SAND.2023.9

1 Introduction

Not least because of its great applicability to a wide range of real-world problems, the shortest
s-t-path problem is undeniably one of the most central and well-studied problems in graph
theory and network optimization. On static graphs, where the graph is not subject to change
over time, efficient algorithms to solve the shortest path problem are known. The assumption
of a graph not changing over time, however, is often too restrictive when modeling real-world
problems such as the spread of the virus during the COVID-19 pandemic. In such settings,
the concept of temporal graphs, where arcs are only available at certain times, allows for
more realistic models (see, e.g., [4, 17]) and has recently attracted the interest of researchers
in algorithmic network optimization (see, e.g., [1, 26, 27]).

© Jan Boeckmann, Clemens Thielen, and Alina Wittmann;
licensed under Creative Commons License CC-BY 4.0

2nd Symposium on Algorithmic Foundations of Dynamic Networks (SAND 2023).
Editors: David Doty and Paul Spirakis; Article No. 9; pp. 9:1–9:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:jan.boeckmann@tum.de
https://orcid.org/0000-0001-5909-8354
mailto:clemens.thielen@tum.de
https://cnw.cs.tum.de/
https://orcid.org/0000-0003-0897-3571
mailto:alina.wittmann@tum.de
https://doi.org/10.4230/LIPIcs.SAND.2023.9
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

9:2 Complexity of the Temporal Shortest Path Interdiction Problem

Another topic that has become increasingly important in times of uncertainty are in-
terdiction problems, where an interdictor aims to remove arcs of total cost at most a given
budget from a (directed or undirected) graph or network such that the optimal objective
value of an optimization problem on the resulting graph or network is maximized (in case of
a minimization problem) or minimized (in case of a maximization problem). An important
example of a highly relevant interdiction problem is the shortest path interdiction problem,
where arcs are to be removed from a graph subject to a given budget such that the length of a
shortest s-t-path for two given nodes s and t is maximized. Another example of a well-studied
interdiction problem is the network flow interdiction problem, where arcs are to be removed
from a network subject to a given budget such that the value of a maximum s-t-flow between
two given nodes s and t is minimized [33, 37]. This problem is known to be strongly N P-hard
and several results about its approximability have been obtained [8, 11, 15].

In this paper, we investigate the temporal shortest path interdiction problem, where the
aim is to remove arcs from a directed temporal graph such that the length of a shortest
path from a node s to another node t is maximized. As the length of a path in a temporal
graph can be interpreted in various different ways, we investigate four common versions of
the temporal shortest path interdiction problem. We show that two of these versions are
polynomial-time solvable, while the other two are strongly N P-hard.

1.1 Previous Work
The following paragraphs summarize the state-of-the-art concerning shortest path problems
on temporal graphs, the (static) shortest path interdiction problem, and related interdiction
problems on temporal graphs.

We start with an overview of the literature about shortest path problems on temporal
graphs. The model of a temporal graph used in this paper (and, e.g., in [10, 38]) is sometimes
also referred to as a scheduled network [7] or a point-availability time-dependent network [9].
Here, each temporal arc r can only be entered at a given start time τ(r) and it takes λ(r)
units of time to traverse the arc, which leads to an arrival time of τ(r) + λ(r) at the end
node of the arc. In this model, four different definitions of a “shortest path” between two
nodes s and t are considered (see [38]):

reverse-foremost or latest start path, which is an s-t-path with maximum start time of
the first arc in the path,
foremost or earliest arrival path, which is an s-t-path with minimum arrival time of the
last arc in the path,
shortest duration path, which is an s-t-path with minimum total traveling time including
waiting times at the nodes,
shortest traversal path, which is an s-t-path with minimum total traveling time not
including waiting times at the nodes.

For each of the four definitions, the corresponding temporal shortest path problem can be
solved efficiently, i.e., a shortest path can be computed in polynomial time [5, 10, 38].

A different definition of temporal graphs is considered, e.g, in [27], where a wide range
of well-studied graph problems is investigated on temporal graphs. This definition can be
interpreted as the special case of the previous definition obtained when all traversal times are
zero.1 Biobjective versions of temporal shortest path problems are considered in [9, 30, 31].

1 This implies that all polynomial-time solvability results presented here can immediately be transferred
to the definition used in [27]. For our hardness results, we point out explicitly whether they can be
transferred to this definition of temporal graphs.

J. Boeckmann, C. Thielen, and A. Wittmann 9:3

A definition that allows for continuous availability of arcs in a temporal graph as well as
a time dependency of an arc’s traversal time is provided in [13]. This definition can be seen
as a generalization of the definition from [10, 38] used here. However, due to the definition’s
large generality, it does not allow for a finite encoding of temporal graphs without imposing
further assumptions, so classical techniques of complexity analysis cannot be applied for the
most general form of this definition. A natural finite encoding is possible, e.g., if each arc is
restricted to be present over a time interval, i.e., it can be entered at any time between two
specified points in time. Even for this special case of the definition in [13], it is shown in
Section 4.1 that deciding whether two nodes s and t can be separated by removing no more
than B arcs from the graph is already strongly N P-hard.

Next, the literature about the shortest path interdiction problem on static graphs is
summarized. To explicitly distinguish between the problem on static graphs and the problem
on temporal graphs, we refer to the shortest path interdiction problem on static graphs as
the static shortest path interdiction problem (S-SP-IP) in the following. This problem is
also referred to as the most vital arcs problem in the literature [2]. S-SP-IP is one of the
most-studied network interdiction problems and a vast amount of literature exists on the
problem. A detailed overview is provided in [35]. Concerning the complexity of S-SP-IP, the
first proof of weak N P-hardness is provided in [2]. This result is extended in [3], where it is
shown that S-SP-IP is strongly N P-hard even on acyclic graphs and for the special case of
unit arc lengths and removal costs. This result is further extended in [24], where it is shown
that it is N P-hard to approximate S-SP-IP within any factor α < 2. Indeed, it is still an open
question whether any non-trivial approximation algorithms exist for S-SP-IP. Variations of
S-SP-IP considering online settings, randomized interdiction strategies, or multiple objectives
have recently been studied, e.g., in [12, 21, 34].

While, to the best of our knowledge, the complexity of the shortest path interdiction
problem has not been formally investigated on temporal graphs, a polynomial-time algorithm
that decides whether there exist k arc-disjoint temporal s-t-paths is presented in [7]. They
further show that it can be decided in polynomial time whether there exists a temporal
s-t-path arriving before a given arrival time even if up to k arcs are removed, which implicitly
solves the temporal earliest arrival path interdiction problem for unit removal costs. However,
it is not clear whether the algorithm can be extended to the case in which arcs can have
different removal costs.

Further, related reachability interdiction problems on temporal graphs are studied in [16,
17, 18, 29]. Here, the goal is to minimize (or maximize in some cases) the number of nodes
reachable from a single node or a set of nodes in a temporal graph by either removing
arcs, delaying start times, or changing the order of start times. While the vast majority of
studied problems turn out to be N P-hard even under severe restrictions, only a few special
cases are shown to be polynomial-time solvable. Moreover, the problem of separating two
given nodes by removing nodes from a temporal graph is considered for various settings
in [20, 22, 23, 25, 28, 39]. Again, most of the problems are N P-hard, while some polynomial-
time solvability results – mostly for specific classes of graphs – are shown.

1.2 Our Contribution
We analyze the complexity of the shortest path interdiction problem on temporal graphs
with respect to all four definitions of a shortest path considered in [38]. Even though S-SP-IP
is known to be strongly N P-hard, it is found that polynomial-time algorithms for the latest
start and the earliest arrival path interdiction problem on temporal graphs exist. These
algorithms exploit the fact that, for these versions of the problem, the objective value of a

SAND 2023

9:4 Complexity of the Temporal Shortest Path Interdiction Problem

path only depends on either the first or on the last arc in the path (but not on both). For the
shortest duration and shortest traversal path interdiction problem, where both the first and
the last arc in a path (and the amount of time spend waiting at nodes in the former case)
are relevant for its length, however, we show strong N P-hardness. Our reduction further
implies that, unless P = N P , there exist no polynomial-time approximation algorithms with
approximation ratio smaller than 3/2 for these problems.

On extension-parallel temporal graphs, however, we obtain polynomial-time algorithms for
the shortest duration path interdiction problem and the shortest traversal path interdiction
problem. This result can be transferred to the static shortest path interdiction problem,
where it also represents a new result.

2 Problem Definition

A directed (discrete-time) temporal graph G consists of a nonempty, finite set V of nodes and
a finite set R of temporal arcs. As usual, we denote the number of nodes and the number
of (temporal) arcs in the graph by n and m, respectively. A temporal arc r ∈ R has four
attributes, namely its start node α(r) ∈ V , its end node ω(r) ∈ V , its start time τ(r) ∈ Q,
and its traversal time λ(r) ∈ Q≥0. When traversing a temporal arc r ∈ R, the arrival time
of r is τ(r) + λ(r). A temporal path P = (r1, . . . , rk) is a sequence of temporal arcs such that,
for each i ∈ {1, . . . , k − 1}, it holds that ω(ri) = α(ri+1) and τ(ri) + λ(ri) ≤ τ(ri+1), i.e.,
the end node of each arc is the start node of the next arc in the path and the arrival time
of each arc is less than or equal to the start time of the next arc.2 For two nodes s, t ∈ V ,
a temporal path P = (r1, . . . , rk) is called a (temporal) s-t-path if α(r1) = s and ω(rk) = t.
Given a temporal graph G = (V, R), the underlying static graph Gstat = (V stat, Rstat) is the
(directed) static graph with the same nodes and arcs obtained by disregarding the start times
and traversal times of the arcs. A temporal graph is called acyclic if its underlying static
graph is acyclic, i.e., its underlying static graph does not contain any directed cycle.

While the notion of a “shortest” s-t-path is straightforward in static graphs, temporal
graphs allow for various interpretations of the term “shortest”. In this paper, we study the
four quality measures for s-t-paths that are used in [38].

▶ Definition 1. Let G be a temporal graph, s ̸= t two nodes in G, and P = (r1, . . . , rk) a
temporal s-t-path.

The start time of P is defined as start(P) := τ(r1).
The arrival time of P is defined as arriv(P) := τ(rk) + λ(rk).
The duration of P is defined as dura(P) := arriv(P) − start(P).
The traversal time of P is defined as trav(P) :=

∑k
i=1 λ(ri).

▶ Definition 2. Let G be a temporal graph and s ̸= t two nodes in G.
A latest start path is an s-t-path with maximum start time. The latest start time in G,
denoted by LS(G), is defined as the start time of a latest start path in G.
An earliest arrival path is an s-t-path with minimum arrival time. The earliest arrival
time in G, denoted by EA(G), is defined as the arrival time of an earliest arrival path
in G.

2 Note that this definition allows a path to visit the same node (or even traverse the same arc) several
times. Except for some results obtained in the setting with waiting time constraints considered in
Section 4.2, however, all our results also hold when restricting to simple paths that do not visit any
node more than once.

J. Boeckmann, C. Thielen, and A. Wittmann 9:5

A shortest duration path is an s-t-path with minimum duration. The shortest duration
in G, denoted by SD(G), is defined as the duration of a shortest duration path in G.
A shortest traversal path is an s-t-path with minimum traversal time. The shortest
traversal time in G, denoted by ST(G), is defined as the traversal time of a shortest
traversal path in G.

If no s-t-path exists in G, LS(G) is set to −∞, whereas EA(G), SD(G), and ST(G) are set
to +∞.

Note that earliest arrival paths are called foremost paths and latest start paths are
called reverse-foremost paths in [38]. Next, the four versions of the temporal shortest path
interdiction problem are defined.

▶ Definition 3. For an objective OBJ ∈ {LS, EA, SD, ST}, the temporal OBJ path interdiction
problem (T-OBJP-IP) is defined as follows.

INSTANCE: A temporal graph G = (V, R), two nodes s ̸= t in G, a budget B ∈ Q>0, and
removal costs c : R → Q≥0

TASK: Find a subset S ⊆ R of arcs with
∑

r∈S
c(r) ≤ B such that OBJ(GS) is maximized

(minimized in the case that OBJ = LS), where GS := (V, R \ S).

A solution S ⊆ R of T-OBJP-IP with
∑

r∈S c(r) ≤ B is called an interdiction strategy and
the arcs in S are called interdicted. Further, if no temporal path from a node u to another
node v exists after the arcs in S have been removed, we say that the interdiction strategy S

separates u from v or that the pair (u, v) is separated by S.

3 Polynomial-Time Algorithms and Complexity Results

In this section, we analyze the complexity of each of the four introduced versions of temporal
shortest path interdiction. It is shown that two versions can be solved in polynomial time
and the other two versions are strongly N P-hard. On extension-parallel temporal graphs,
however, the two hard versions are shown to be solvable in polynomial time.

3.1 Temporal Latest Start Path Interdiction

In this section, we present a polynomial-time algorithm to solve T-LSP-IP. This is a surprising
result as the static shortest path interdiction problem is known to be strongly N P-hard [3].
The main reason for the polynomial-time solvability of T-LSP-IP is that the obtained objective
value only depends on the first arc that is used by a latest start path in the interdicted
graph GS .

In this section, we let τ1 < τ2 < · · · < τl denote the distinct start times of outgoing
arcs of s in G sorted in increasing order. Further, for k ∈ {1, . . . , l}, we define GLS,k as
the temporal graph that results from G by removing all outgoing arcs of s with start time
at most τk. For completeness, we also define GLS,0 := G. Our algorithm is based on the
following proposition.

▶ Proposition 4. Let k ∈ {1, . . . , l}. There exists an interdiction strategy Sk that separates s

from t in GLS,k if and only if there exists an interdiction strategy S in G with objective value
at most τk.

SAND 2023

9:6 Complexity of the Temporal Shortest Path Interdiction Problem

Proof. Let Sk be an interdiction strategy that separates s from t in GLS,k. Then, after
interdicting the same set S := Sk of arcs in G, no s-t-path in GS can start with an arc with
start time strictly larger than τk (otherwise, the path would also be an s-t-path in GLS,k

Sk).
Hence, all s-t-paths in GS have start time at most τk, i.e., S has objective value at most τk.

Conversely, let S be an interdiction strategy in G with objective value at most τk. Then,
no s-t-path in GS can have start time strictly larger than τk, so the interdiction strategy
Sk := S ∩ RLS,k, where RLS,k is the arc set of GLS,k, separates s from t in GLS,k. ◀

The idea of the algorithm is to use binary search in order to find k⋆ ∈ {1, . . . , l} such
that s can be separated from t in GLS,k⋆ , but s cannot be separated from t in GLS,k⋆−1. Such
a k⋆ exists whenever s cannot already be separated from t in the whole graph G = GLS,0,
i.e., whenever the optimal objective value is not equal to −∞. Consequently, in order to
obtain a polynomial-time algorithm for T-LSP-IP, it only remains to show that deciding
whether a node s can be separated from another node t with a given interdiction budget in
an arbitrary temporal graph is possible in polynomial time.

In a static graph, this question can be answered easily by computing a minimum s-t-cut
and comparing its cost to the given interdiction budget B. Hence, we now describe how
the question in an arbitrary temporal graph H = (V, R) can be reduced to the static case.
To this end, we use a graph construction that is similar to [38] and to the construction of
time-expanded networks in the context of dynamic flows [32]. The constructed graph is
therefore called the time-expanded graph of H and denoted by Hte = (V te, Rte). We start
by defining the set of crucial times by T := ∪r∈R{τ(r), τ(r) + λ(r)}. For easier notation,
we write T = {ϕ1, . . . , ϕj}, where the crucial times are indexed in increasing order. For
each v ∈ V and ϕ ∈ T , there exists a node (v, ϕ) in V te. For each i ∈ {1, . . . , j − 1} and
for each v ∈ V , there exists an arc from (v, ϕi) to (v, ϕi+1) with removal cost B + 1 (i.e., it
cannot be interdicted). This arc represents waiting at node v of the temporal graph until the
next crucial time. Further, for each arc r ∈ R, there exists an arc in Rte from (α(r), τ(r))
to (ω(r), τ(r)+λ(r)) with removal cost c(r), which represents traversing arc r in the temporal
graph. We define ste := (s, ϕ1) and tte := (t, ϕj). If the temporal graph H has n nodes and m

arcs, its time-expanded graph has n · |T | ∈ O(n · m) nodes and n · (|T | − 1) + m ∈ O(n · m)
arcs. Hence, the size of the time-expanded graph is polynomial in the size of the temporal
graph (in contrast to time-expanded networks used in the context of dynamic flows).
The following observation follows directly from the construction of Hte.

▶ Observation 5. There exists an interdiction strategy separating s from t in H if and only
if there exists an interdiction strategy separating ste from tte in Hte.

Applying the previously described algorithm together with Proposition 4 and Observation 5
yields the main theorem of this section.

▶ Theorem 6. There exists a polynomial-time algorithm for T-LSP-IP with running time in
O(log(l) · TMC(n · m, n · m)), where l ≤ m is the number of distinct start times of outgoing
arcs of s and TMC(n · m, n · m) is the time required to compute a minimum s-t-cut in a static
graph with n · m nodes and n · m arcs.

3.2 Temporal Earliest Arrival Path Interdiction
In this section, we present a polynomial-time algorithm to solve T-EAP-IP. Similar to T-LSP-
IP, the reason for the problem’s polynomial-time solvability is that the obtained objective
value only depends on the last arc that is used by an earliest arrival path in the interdicted

J. Boeckmann, C. Thielen, and A. Wittmann 9:7

graph GS . Indeed, an instance of T-EAP-IP can be transformed into an equivalent instance
of T-LSP-IP by inverting the direction of all arcs and adjusting the start times and traversal
times appropriately. This is described in the following.

Let G = (V, R) be the temporal graph in an instance of T-EAP-IP. We construct a graph
GLS = (V, RLS) for an instance of T-LSP-IP. The maximum arrival time in G is defined
as Φ := maxr∈R τ(r) + λ(r). For each r ∈ R, an arc r′ is added to RLS with α(r′) := ω(r),
ω(r′) := α(r), τ(r′) := Φ − τ(r) − λ(r), and λ(r′) := λ(r). The arcs r and r′ are called
associated. Further, an interdiction strategy S in G and the interdiction strategy S′ in GLS

consisting of the arcs in GLS that are associated with those in S are also called associated.
Defining sLS := t and tLS := s, BLS := B, and cLS(r′) := c(r) for each pair of associated
arcs r and r′, it is then easy to see that mapping an interdiction strategy S in G to its
associated interdiction strategy S′ in GLS defines a bijection between the sets of interdiction
strategies in the two graphs. In the following, the instance of T-EAP-IP is denoted by
(G, s, t) and the constructed instance of T-LSP-IP by (GLS, sLS, tLS). We can then show the
following one-to-one correspondence between temporal paths in G and GLS.

▶ Proposition 7. Let ri and r′
i be associated arcs for each i ∈ {1, . . . , k}, and let S and S′

be associated interdiction strategies in G and GLS, respectively. Then P ′ = (r′
1, . . . , r′

k) is a
temporal sLS-tLS-path in GLS

S′ if and only if P = (rk, . . . , r1) is a temporal s-t-path in GS.

Proof. If P ′ = (r′
1, . . . , r′

k) is a temporal sLS-tLS-path in GLS
S′ , then r′

i /∈ S′ for i = 1, . . . , k.
Hence, since S′ and S are associated, we obtain that ri /∈ S for i = 1, . . . , k. Moreover,
t = sLS = α(r′

1) = ω(r1), s = tLS = ω(r′
k) = α(rk), and for each i ∈ {1, . . . , k − 1}, we have

α(ri) = ω(r′
i) = α(r′

i+1) = ω(ri+1) and

τ(ri+1) + λ(ri+1) = Φ − τ(r′
i+1) ≤ Φ − τ(r′

i) − λ(r′
i) = Φ − τ(r′

i) − λ(ri) = τ(ri).

Thus, P = (rk, . . . , r1) is a temporal s-t-path in GS as claimed. The inverse direction can be
shown along the same lines. ◀

We call paths P and P ′ as in Proposition 7 associated in the following. Proposition 7 allows
us to show the following relationship between the objective values of associated interdiction
strategies for (G, s, t) and (GLS, sLS, tLS).

▶ Corollary 8. An interdiction strategy S for (G, s, t) has objective value v if and only if the
associated interdiction strategy S′ for (GLS, sLS, tLS) has objective value Φ − v.

Proof. Given an interdiction strategy S with objective value v and its associated interdiction
strategy S′, let P be an earliest arrival path in GS . Then, P has arrival time v and by
Proposition 7, the associated path P ′ is a temporal path in GLS

S′ , whose start time is Φ − v.
For the sake of a contradiction, suppose that there exists a path P̄ ′ in GLS

S′ with start time
Φ − v̄ > Φ − v. Then, by Proposition 7, the path P̄ that is associated to P̄ ′ is a temporal
path in GS and its arrival time is v̄ < v, which is a contradiction to P being an earliest
arrival path in GS . Hence, the interdiction strategy S′ for (GLS, sLS, tLS) has objective value
Φ − v. The inverse direction can be shown along the same lines. ◀

Corollary 8 immediately yields the following result.

▶ Corollary 9. An interdiction strategy S is optimal for (G, s, t) if and only if its associated
interdiction strategy S′ is optimal for (GLS, sLS, tLS).

Corollary 9 and the algorithm presented in Section 3.1 yield the main result of this section.

SAND 2023

9:8 Complexity of the Temporal Shortest Path Interdiction Problem

▶ Theorem 10. There exists a polynomial-time algorithm for T-EAP-IP with running time
in O(log(l) · TMC(n · m, n · m)), where l ≤ m is the number of distinct arrival times of
incoming arcs of t and TMC(n · m, n · m) is the time required to compute a minimum s-t-cut
in a static graph with n · m nodes and n · m arcs.

3.3 Temporal Shortest Duration Path Interdiction and Temporal
Shortest Traversal Path Interdiction

In this section, we show that T-SDP-IP and T-STP-IP are strongly N P-hard, even for unit
removal costs and if the underlying static graph is acyclic. Moreover, the reduction implies
an inapproximability result. We also show, however, that both problems are solvable in
polynomial time if the graph is extension-parallel. This result is also shown for the static
problem S-SP-IP.

The proof of strong N P-hardness is similar to the proof in [6], where it is shown that
finding a multicut in directed acyclic graphs is APX -hard. The reduction is performed from
the strongly N P-hard MAX2SAT problem, which is defined as follows.

INSTANCE: A set X = {x1, . . . , xζ} of boolean variables, a set C = {c1, . . . , cµ} of clauses
each containing two literals, and a positive integer δ < µ

QUESTION: Is there a truth assignment for the variables that satisfies at least δ clauses?

Given an instance of MAX2SAT, we construct a temporal graph with removal costs and
a corresponding budget. This graph has the property that no s-t-path waits in any node
except for s and t, which means that, for each feasible interdiction strategy, the objective
values in T-SDP-IP and T-STP-IP are identical. Hence, the resulting instances of T-SDP-
IP and T-STP-IP are equivalent in this case. Thus, we present the construction and the
corresponding proofs only for T-SDP-IP in the following. An example for the construction is
provided in Figure 1.

Unless explicitly stated otherwise, all arcs within this construction have start time 0,
traversal time 0, and removal cost B + 1 (i.e., they cannot be interdicted). We show later
that only a slight modification of the construction is necessary in the case of unit removal
costs. For each variable xi ∈ X, there is a variable gadget consisting of a directed path with
trace (ui,1, ui,2, ui,3, ui,4) where only the arcs from ui,1 to ui,2 and from ui,3 to ui,4 can be
interdicted at a removal cost of N := µ + 1. Interdicting the arc from ui,1 to ui,2 is later
identified with setting xi to true and interdicting the arc from ui,3 to ui,4 is identified with
setting xi to false. For each clause cj ∈ C, there is a clause gadget consisting of a directed
path with trace (vj,1, vj,2, vj,3, vj,4) where only the arcs from vj,1 to vj,2 and from vj,3 to vj,4
can be interdicted at a removal cost of one.

We next describe the arcs that connect the variable gadgets to the clause gadgets. For a
clause cj = x̂i ∨ x̂k, where x̂i ∈ {xi, xi} and x̂k ∈ {xk, xk}, we call x̂i the first literal and x̂k

the second literal of clause cj . For each clause, arcs are then added as follows depending
on its first and second literal: If the first literal of clause cj is xi (xi), there exists an arc
from ui,2 to vj,1 (from ui,4 to vj,1). If the second literal of clause cj is xk (xk), there exists
an arc from uk,2 to vj,3 (from uk,4 to vj,3).

The construction is continued by adding another six nodes s1, s2, s3, t1, t2, and t3 to the
graph. For each i ∈ {1, . . . , ζ}, there exists an arc from s1 to ui,1 and an arc from ui,4 to t1.
For each i ∈ {1, . . . , ζ}, there exists an arc from s2 to ui,1 and another arc from s2 to ui,3.
Further, for each j ∈ {1, . . . , µ}, there exist arcs from vj,2 to t2 and from vj,4 to t2. Finally,
for each j ∈ {1, . . . , µ}, there exists an arc from s3 to vj,1 and an arc from vj,4 to t3.

J. Boeckmann, C. Thielen, and A. Wittmann 9:9

s

t

s1 s2 s3

t2 t3t1

Figure 1 The constructed graph for X = {x1, x2, x3} and C = {x1 ∨ x2, x1 ∨ x3}. The three
variable gadgets for x1, x2, and x3 from left to right are shown on the left and the clause gadgets
for c1 and c2 from left to right are shown on the right. Only the dashed arcs can be interdicted.

We finish the construction by adding the nodes s and t to the graph. For each k ∈ {1, 2, 3},
there exists an arc from s to sk with start time 1 − k and traversal time k − 1, and an arc
from tk to t with traversal time 3 − k (but start time 0).

The budget is chosen to be B := N · ζ + 2 · µ − δ, which completes the construction of
the problem instance.

We show strong N P-hardness by proving that there exists a truth assignment for the
variables that satisfies at least δ clauses in the instance of MAX2SAT if and only if there
exists a solution for the constructed instance with objective value at least 3. To this end, the
following auxiliary result is required.

▶ Lemma 11. Let S be a solution of the constructed instance. The objective value of S is
larger than or equal to 3 if and only if the pairs (s1, t1), (s2, t2), and (s3, t3) are separated
by S.

Proof. If one of the pairs (s1, t1), (s2, t2), or (s3, t3) is not separated by S, it follows immedi-
ately that, after interdiction, there exists an s-t-path with duration 2. Hence, the solution S

has objective value at most 2. To show the other direction, assume that the objective value
of the solution is strictly less than 3 and let PSD be a shortest duration path in GS . If PSD
visits both sk and tk for some k ∈ {1, 2, 3}, we are done. If this is not the case, there are
three possible pairs of nodes, one of which must be visited by PSD since its duration is strictly
less than 3 and every temporal s-t-path in GS must visit one of the sk and one of the tk.
Case 1: PSD visits s1 and t2

This means there exists a subpath P of PSD from s1 to t2. The first arc in P leads into
one of the nodes ui,1 for some i ∈ {1, . . . , ζ}. By replacing the first arc in P with the arc
starting in s2 and ending in ui,1, we obtain a path from s2 to t2.

Case 2: PSD visits s2 and t3

This means there exists a subpath P of PSD from s2 to t3. The last arc in P starts from
one of the nodes vj,4 for some j ∈ {1, . . . , µ}. By replacing the last arc in P with the arc
starting in vj,4 and ending in t2, we again obtain a path from s2 to t2.

SAND 2023

9:10 Complexity of the Temporal Shortest Path Interdiction Problem

Case 3: PSD visits s1 and t3

The first and the last arc in the subpath of PSD from s1 to t3 can be replaced as in the
previous two cases, which again yields a path from s2 to t2. ◀

Lemma 11 allows proving strong N P-hardness of T-SDP-IP and T-STP-IP.

▶ Theorem 12. T-SDP-IP and T-STP-IP are strongly N P-hard even on acyclic graphs.

Proof. We show that there exists a truth assignment for the variables that satisfies at least δ

clauses in the instance of MAX2SAT if and only if there exists a solution for the constructed
T-SDP-IP instance with objective value at least 3.

First, let x be a truth assignment that satisfies at least δ clauses. We construct an
interdiction strategy for the instance of T-SDP-IP with objective value at least 3 as follows.
For each i ∈ {1, . . . , ζ}, we interdict the arc from ui,1 to ui,2 if xi is true and the arc from ui,3
to ui,4 if xi is false. For each j ∈ {1, . . . , µ}, we interdict the arc from vj,1 to vj,2 if the
second literal in clause cj is fulfilled, the arc from vj,3 to vj,4 if the second literal of cj is not
fulfilled, but the first is, and both of these arcs if none of the literals are fulfilled. This yields
an interdiction strategy S that interdicts ζ arcs of cost N and at most 2 · µ − δ arcs of cost 1
and, hence, does not exceed the budget.

Due to Lemma 11, it remains to show that the pair (sk, tk) is separated by S for
each k ∈ {1, 2, 3}. Any path from s1 to t1 has trace (s1, ui,1, ui,2, ui,3, ui,4, t1) for some
i ∈ {1, . . . , ζ}. As either the arc from ui,1 to ui,2 or the arc from ui,3 to ui,4 is interdicted,
the pair (s1, t1) is separated by S. Moreover, the analogous argument applied to the clause
gadgets shows that the pair (s3, t3) is separated by S.

To show that the pair (s2, t2) is separated by S, note that each path from s2 to t2
contains a subpath with trace (ui,a, ui,a+1, vj,b, vj,b+1) where i ∈ {1, . . . , ζ}, j ∈ {1, . . . , µ},

and a, b ∈ {1, 3}. We interdict either the arc from ui,a to ui,a+1 if the (b+1/2)-th literal
of clause cj is fulfilled or the arc from vj,b to vj,b+1 if it is not. Hence, the pair (s2, t2) is
separated by S and the objective value of S is at least 3 due to Lemma 11.

For the inverse direction, let S ⊆ R be a removal strategy with c(S) ≤ B = N ·ζ +2 ·µ−δ

and objective value at least 3. In particular, this means that, for each k ∈ {1, 2, 3}, the pair
(sk, tk) is separated by S due to Lemma 11.

In order to separate the pair (s1, t1), one arc has to be removed per variable gadget. If
more than one arc is removed in any variable gadget, the total removal cost of interdicted
arcs in the variable gadgets is at least N · ζ + N = N · ζ + µ + 1, which leaves only a budget
of µ − δ − 1 < µ for interdicting arcs in the clause gadgets. Hence, there must exist at
least one clause gadget in which none of the arcs are interdicted. This implies that the pair
(s3, t3) is not separated by S, which is a contradiction. Overall, this means that, for each
i ∈ {1, . . . , ζ}, either the arc from ui,1 to ui,2 is interdicted, in which case we set xi to true,
or the arc from ui,3 to ui,4 is interdicted, in which case we set xi to false.

It remains to show that the resulting truth assignment fulfills at least δ clauses. As
interdicting one arc per variable gadget already costs N · ζ, there is a budget of 2 · µ − δ left
for interdicting arcs in the clause gadgets. In order to separate the pair (s3, t3), at least one
of the two removable arcs must be removed in each clause gadget. Hence, there are at least δ

clause gadgets in which only one of the arcs is removed. We finish the proof by showing
that x fulfills all the corresponding clauses cj .

To this end, we first assume that the arc from vj,3 to vj,4 is interdicted. If the first literal
in cj is xi, then there exists a path in G with trace (s2, ui,1, ui,2, vj,1, vj,2, t2). As the arc
from vj,1 to vj,2 is not interdicted and the pair (s2, t2) must be separated by S, this means
that the arc from ui,1 to ui,2 must be interdicted and, hence, that xi is set to true, which

J. Boeckmann, C. Thielen, and A. Wittmann 9:11

shows that x fulfills cj . If the first literal in cj is xi, then the same arguments hold for the
path in G with trace (s2, ui,3, ui,4, vj,1, vj,2, t2). The proof for the case when the arc from vj,1
to vj,2 is interdicted is along the same lines. Hence, at least δ clauses are fulfilled by x, which
completes the proof. ◀

Since any solution of the constructed T-SDP-IP instance that does not have objective value
at least 3 has objective value at most 2, the proof of Theorem 12 further implies the following
inapproximability result.

▶ Corollary 13. Unless P = N P, there exists no polynomial-time approximation algorithm
with approximation ratio smaller than 3/2 for T-SDP-IP or T-STP-IP, even on acyclic graphs.

In the case of T-SDP-IP, the constructed instance in the reduction can easily be adjusted
such that all traversal times are zero. To do so, all traversal times of the outgoing arcs of s

are set to 0 and, for each incoming arc of t, the start time is increased by its traversal time
and the traversal time is then set to 0. Hence, the results on T-SDP-IP from Theorem 12
and Corollary 13 are also valid for the definition of temporal graphs used in [27].

In the case of T-STP-IP, however, using nonzero traversal times within the reduction is
necessary. Indeed, the results on T-STP-IP from Theorem 12 and Corollary 13 do not hold
for the definition in [27] (unless P = N P) since T-STP-IP is solvable in polynomial time if
all traversal times are zero as it then reduces to the question whether s can be separated
from t by an interdiction strategy. It is, however, questionable, whether T-STP-IP has a
meaningful interpretation in this case.

We continue by showing that the results of Theorem 12 and Corollary 13 (with a slight
modification of the approximation ratio) also hold for instances with unit removal costs and
strictly positive traversal times.

The restriction to unit removal costs can be achieved by replacing each arc r in the
constructed graph by c(r) identical copies with unit removal cost. Any interdiction strategy
can then be assumed to either remove all of these identical copies or none of them. Moreover,
since all removal costs have been polynomial in the numbers of variables and clauses of
the given MAX2SAT instance, the constructed instance with unit removal costs is still of
polynomial size, so the arguments in the proof carry over to this instance.

For the restriction to strictly positive traversal times, note that the constructed graph G

is acyclic. In particular, the graph G − {s, t} is acyclic. Let σ : V → {1, . . . , n − 2} be a
topological sorting of the nodes in G−{s, t}, i.e., for each arc r, it holds that σ(α(r)) < σ(ω(r)).
This topological sorting is used to slightly modify the start and traversal times of the arcs in
G − {s, t}. Formally, a function σ̄ : V → {1, . . . , n − 2} is constructed from the topological
sorting by setting σ̄(v) := σ(v) if v /∈ {s1, s2, s3, t1, t2, t3}, and σ̄(si) := 1 and σ̄(ti) := n − 2
for each i ∈ {1, 2, 3}. We then redefine the start and traversal times in G. To this end,
let ε ∈ (0, 1). For each arc r that is not incident to s or t, we set the start time to
−ε/2·(n−3) · (n − 2 − σ̄(α(r))) and the traversal time to ε/2·(n−3) · (σ̄(ω(r)) − σ̄(α(r))), which
means that it arrives in ω(r) at time −ε/2·(n−3) · (n − 2 − σ̄(ω(r))). We further set the start
time of the arc from s to s1 to −ε and its traversal time to ε/2, and we decrease the traversal
times of the other two outgoing arcs of s by ε/2. Hence, all outgoing arcs of s have arrival
time −ε/2. Moreover, we set the traversal time of the arc from t3 to t to ε.

The proof of Theorem 12 for this new instance is along the same lines as before and the
statement of Corollary 13 must be slightly changed (see Corollary 14). Note that the graph
with the updated start and traversal times does not admit waiting in any node except for s

and t as, for any node v ∈ V \ {s, t}, all incoming arcs arrive and all outgoing arcs start at
time −ε/2·(n−3) · (n − 2 − σ̄(v)). The result, hence, holds for both problems T-SDP-IP and
T-STP-IP.

SAND 2023

9:12 Complexity of the Temporal Shortest Path Interdiction Problem

Hence, when strictly positive traversal times on all arcs are additionally assumed, The-
orem 12 still holds, but Corollary 13 has to be adapted as follows:

▶ Corollary 14. Unless P = N P, there exists no polynomial-time approximation algorithm
with approximation ratio smaller than (3/2+ε) for T-SDP-IP and T-STP-IP on acyclic graphs
with positive traversal times for any ε > 0.

3.3.1 Polynomial-Time Solvability on Extension-Parallel Graphs
In this section, we show that T-SDP-IP, T-STP-IP, and the static version S-SP-IP are
polynomial-time solvable on extension-parallel (temporal) graphs.

A temporal graph consisting of two nodes s and t, and a single temporal arc from s to t

is called a temporal one-arc graph. A temporal graph with two distinguished vertices s (the
source) and t (the sink) is series-parallel if it is obtained from a set of temporal one-arc
graphs by a finite sequence of series compositions (identifying the sink of the first graph
with the source of the second graph) and parallel compositions (identifying the sources of
the two graphs and identifying the sinks of the two graphs). If, further, for every series
composition, one of the two composed graphs is a temporal one-arc graph, the graph is called
extension-parallel. The definitions of series- and extension-parallel static graphs is completely
analogous and can be found, e.g., in [19].

The decomposition tree TG of a series-parallel (temporal) graph G is a binary tree, where
the leaves represent the arcs in the graph and the inner nodes labeled by S (series composition)
or P (parallel composition) represent the types of compositions used to construct the graph.
The decomposition tree can be computed in linear time [36] and it can easily be seen that a
series-parallel (temporal) graph is extension-parallel if and only if every inner node of TG

that is labeled by S has one child that is a leaf of TG.
The following property of extension-parallel static graphs is used in our algorithm.

▶ Lemma 15. Let G = (V, R) be an extension-parallel static graph. Then there exists a
subset R̄ ⊆ R of arcs such that
1. each s-t-path in G contains exactly one arc from R̄, and
2. each arc r ∈ R̄ is contained in exactly one s-t-path Pr in G.

Proof. We present an algorithm that constructs R̄ and a corresponding s-t-path Pr for
each r ∈ R̄. Note that, since the graph is acyclic, the path Pr is uniquely determined by
the set of arcs it traverses. Hence, we slightly abuse notation and identify each path Pr

with the corresponding set of arcs. The idea of the algorithm is to process the nodes in
the decomposition tree starting at the leaves by iteratively joining two already processed
components of the graph until we reach the root node and obtain the final set R̄.

Initially, we set R̄ := R and Pr := {r} for each r ∈ R and mark all leaf nodes in the
decomposition tree as processed. While not all nodes in the decomposition tree are marked
as processed, we take an unprocessed (inner) node v in the decomposition tree whose two
children have both been processed. If v is labeled by P, we simply mark v as processed while
changing neither the set R̄ nor the paths Pr, r ∈ R̄. If v is labeled by S, at least one of its
children must be a leaf corresponding to an arc r. If only one of the children is a leaf node,
then we remove r from R̄ and delete Pr. Further, we add r to all paths Pr′ for which the leaf
node that corresponds to r′ is a successor of the non-leaf child of v in the decomposition tree.
If both children of v are leaves, then the arc that corresponds to its right child is removed
from R̄ and added to the path Pr′ , where r′ is the arc that corresponds to the left child of v.
We then mark v as processed and proceed.

J. Boeckmann, C. Thielen, and A. Wittmann 9:13

To show the correctness of the algorithm, note that each node v in the decomposition
tree can be associated with the subgraph Gv of G whose arc set consists of those arcs that
correspond to leaf nodes in the decomposition tree that are successors of v.

We claim that, after each iteration, for each processed node v that either has no parent
(i.e, v is the root node) or whose parent is still unprocessed, it holds that R̄ restricted to the
arc set of Gv fulfills the properties from the lemma for Gv.

This is clearly the case when only the leaves have been processed since every subgraph Gv

is then a one-arc graph. Now assume that the claim holds at the beginning of an iteration
and let v be the node in the decomposition tree that is processed in the iteration. If v is
labeled by P, each s-t-path in Gv is either completely contained in the graph associated
with the left child of v in the decomposition tree or in the graph associated with the right
child. Hence, since R̄ and the paths Pr, r ∈ R̄, are left unchanged, the claim also holds
after processing v. If the processed node v is labeled by S and both its children are leaves,
the claim clearly remains true. If the processed node v is labeled by S and only one of its
children is a leaf, then this series composition corresponds to prepending or appending an
additional arc to the graph Gw, where w denotes the non-leaf child of v. Hence, after the
series composition, each path in Gw is extended by the arc r that corresponds to the leaf
child of v, which is precisely what the algorithm does. Moreover, r is removed from R̄ and Pr

is deleted, which ensures that uniqueness is preserved in both properties from the lemma.
Hence, the claim also holds after the iteration, which completes the proof. ◀

Note that the proof of Lemma 15 is constructive and the set R̄ together with the paths Pr

for r ∈ R̄ can be obtained in O(m2) time. In the following, given an extension-parallel
temporal graph, we let R̄ denote a subset of arcs that satisfies the properties of Lemma 15
in the underlying static graph. For each arc r ∈ R̄, we remove r from the graph and from R̄

if the corresponding s-t-path Pr in the underlying static graph is not a (temporal) s-t-path
in the temporal graph. Note that this does not destroy any temporal s-t-paths.

The idea of the polynomial-time algorithm to solve T-SDP-IP, T-STP-IP, and the static
version S-SP-IP is similar to the idea of the algorithm for T-LSP-IP from Section 3.1. For
ease of notation, the following exposition is restricted to T-SDP-IP. It is discussed later how
the arguments can be modified for the other two problems.

Let dura1 < dura2 < · · · < dural denote the distinct durations of s-t-paths in G sorted
in increasing order. Further, for k ∈ {1, . . . , l}, we define GSD,k as the temporal graph that
results from G by removing each arc r ∈ R̄ for which Pr has duration at least durak. For
completeness, we also define GSD,l+1 := G. The following proposition and its proof are
similar to Proposition 4 and the corresponding proof.

▶ Proposition 16. Let k ∈ {1, . . . , l}. There exists an interdiction strategy Sk that separates s

from t in GSD,k if and only if there exists an interdiction strategy S in G with objective value
at least durak.

Proof. Let Sk be an interdiction strategy that separates s from t in GSD,k. Then, after
interdicting the same set S := Sk of arcs in G, no s-t-path P in GS can have duration
less than durak (otherwise, P would also be an s-t-path in GSD,k

Sk as (1) no arc in P is
in S = Sk, and (2) the unique arc r in P contained in R̄ satisfies Pr = P and, thus,
dura(Pr) = dura(P) < durak). Hence, all s-t-paths in GS have duration at least durak, i.e.,
S has objective value at least durak.

Conversely, let S be an interdiction strategy in G with objective value at least durak.
Then, no s-t-path in GS can have duration less than durak, so the interdiction strategy
Sk := S \ {r ∈ R̄ | dura(Pr) ≥ durak} separates s from t in GSD,k. ◀

SAND 2023

9:14 Complexity of the Temporal Shortest Path Interdiction Problem

As in the algorithm presented in Section 3.1, the idea of the algorithm is to use binary
search in order to find k⋆ ∈ {1, . . . , l} such that s can be separated from t in GSD,k⋆ , but s

cannot be separated from t in GSD,k⋆+1. Such a k⋆ exists whenever s cannot already be
separated from t in the whole graph G = GSD,l+1, i.e., whenever the optimal objective value
is not equal to +∞.

As shown in Section 3.1, deciding whether a node s and can be separated from another
node t with a given interdiction budget in an arbitrary temporal graph is possible in
polynomial time. Further, Lemma 15 implies that the total number of s-t-paths is bounded
by the number of arcs in the graph. Consequently, the number l of distinct durations
of s-t-paths is polynomial in the input size. Altogether, the proposed algorithm runs in
polynomial time.

To extend the result to the problems T-STP-IP and S-SP-IP, one observes the distinct
traversal times or lengths of s-t-paths, respectively, to construct the subgraphs used in the
algorithm. All arguments then work along the same lines.
The following theorem summarizes the main results of this section.

▶ Theorem 17. There exist polynomial-time algorithms for T-SDP-IP, T-STP-IP, and S-
SP-IP on extension-parallel (temporal) graphs with running time in O(m2 + log(m) · TMC(n ·
m, n · m)) for the temporal versions and running time in O(m2 + log(m) · TMC(n, m)) for
the static version, where TMC(n̄, m̄) is the time required to compute a minimum s-t-cut in a
static graph with n̄ nodes and m̄ arcs.

4 Extensions

In this section, we study two extensions of the temporal shortest path interdiction problem.
The first extension is motivated by [13] and allows for continuous-time availability of arcs. It
is shown that even a slight generalization makes it hard to decide whether the nodes s and t

can be separated by an interdiction strategy in a temporal graph. The second extension,
motivated by [14], imposes an additional constraint on the maximum waiting time in a node.
It is shown that the additional constraint does not change the results from Section 3.

4.1 Continuous Time Availability of Arcs
In this section, a slightly more general model of temporal graphs is investigated, where the
start time τ(r) of a temporal arc r is not given by one fixed point in time, but rather by
a closed interval [τ l(r), τu(r)] =: τ(r). The arc can then be entered at any time τ ∈ τ(r),
leading to an arrival time of τ + λ(r) at ω(r). In the following, we therefore no longer speak
of a start time, but of an availability interval. The resulting temporal graphs where arcs are
available during availability intervals are called continuous-time temporal graphs. Note that
the class of continuous-time temporal graphs comprises the class of discrete-time temporal
graphs, which correspond to continuous-time temporal graphs in which each availability
interval only consists of a single point.

While a temporal path in a discrete-time temporal graph is given by a sequence of temporal
arcs, the definition has to be slightly adapted in the continuous-time case. A (continuous-time)
temporal path in a continuous-time temporal graph is a sequence P = ((r1, τ1), . . . , (rk, τk)) of
pairs of an arc and a start time with τi ∈ τ(ri) for each i ∈ {1, . . . , k} such that ω(ri) = α(ri+1)
and τi + λ(ri) ≤ τi+1 for each i ∈ {1, . . . , k − 1}.

We show that, given a continuous-time temporal graph G and a positive integer B, it
is strongly N P-hard to decide whether a pair (s, t) of nodes can be separated by removing
at most B arcs from G. This immediately implies that all variants of temporal shortest

J. Boeckmann, C. Thielen, and A. Wittmann 9:15

. . . si

xi yi

ti . . . sj

xj yj

tj . . .

t

Figure 2 The gadgets in G for two nodes i and j that are adjacent in G′ (where i < j). Only the
dashed arcs can be interdicted.

path interdiction problems studied in this paper are strongly N P-hard on continuous-time
temporal graphs, and that they do not not even admit polynomial-time approximation
algorithms with a bounded approximation ratio (unless P = N P).

The reduction, which is similar to the one presented in [3], is from the well-known
(strongly) N P-hard node cover problem, which is defined as follows:

INSTANCE: An undirected (static) graph G′ = (V ′, E) and a positive integer B′ ≤ |V ′|
QUESTION: Is there a subset V̄ ⊆ V ′ of nodes with |V̄ | ≤ B′ such that each edge in E is

incident to at least one node in V̄ ?

Given an instance of node cover, a continuous-time temporal graph G and a budget B

are constructed as follows. The budget is chosen as B := B′. For the construction of
the continuous-time temporal graph G, it is assumed without loss of generality that V ′ =
{1, . . . , n′}. For each node i ∈ {1, . . . , n′}, a gadget consisting of two parallel paths of length
five is constructed. These paths are referred to as the upper and lower path of the gadget.
The start node of the two paths is referred to as si and the end node of the two paths as ti.
Further, the start and end node of the third arc in the lower path are referred to as xi and yi,
respectively. All arcs in a gadget, except for the third arc in the lower path, have removal
cost B + 1 and availability interval [0, 5n′]. The third arc in the lower path has removal cost 1
and availability interval [5i − 4, 5i − 3], and we identify removing this arc with including
node i in the node cover. All arcs in the gadget have traversal time 1.

The gadgets are connected by identifying ti with si+1 for all i ∈ {1, . . . , n′ − 1}. Further,
for an edge e ∈ E that is incident to the nodes i and j with i < j, there exists an arc
from yi to xj with availability interval [5i − 2, 5i − 2], traversal time 5(j − i) − 2, and removal
cost B + 1. This arc is called the shortcut from i to j.

The node s for the instance of temporal shortest path interdiction is s1. The node t

is added and, for each i ∈ {1, . . . , n′}, there exists an arc from yi to t with availability
interval [5i − 3, 5i − 3], traversal time 0, and removal cost B + 1. An illustration of the
construction is provided in Figure 2.

To achieve unit removal costs, we can simply replace each arc r by c(r) many identical
copies with unit removal cost (as for the proof of Theorem 12 and Corollary 13 for unit
removal costs). Note that this conserves the polynomial size of the constructed instance.
Using this construction, we prove the following theorem.

▶ Theorem 18. Deciding whether a pair (s, t) of nodes can be separated by removing at
most B arcs from a continuous-time temporal graph is strongly N P-complete.

Proof. The problem is clearly in N P since it can be easily checked in polynomial time
whether a given set of at most B arcs separates s from t. To show N P-completeness, let S

be an interdiction strategy for the constructed instance. Observe that each s-t-path in GS

SAND 2023

9:16 Complexity of the Temporal Shortest Path Interdiction Problem

traverses at least one shortcut from i to j for some i, j ∈ {1, . . . , n′}. This is possible if and
only if none of the removable arcs in gadgets i and j are removed by the interdiction strategy.
By identifying the interdiction of an interdictable arc in a gadget i with the inclusion of
node i in the node cover, it follows that there exists a node cover of size B′ (= B) if and
only if there exists an interdiction strategy in G that removes at most B arcs. ◀

4.2 Waiting Time Constraints
The definition of an s-t-path provided in Section 2 allows to wait at nodes for any length
of time. However, arbitrarily long waiting times are often undesired in real-world problems
such as, e.g., packet routing in communication networks. To this end, the problem of finding
a ∆-restless temporal s-t-path that cannot wait longer than a given amount of time ∆ in
any node except s and t has been defined (see [14]). As shown in [14], deciding whether
a simple ∆-restless s-t-path (i.e., a ∆-restless s-t-path that does not visit any node more
than once) exists is strongly N P-hard for any ∆ ≥ 0.3 However, in the setting considered
here where paths are not required to be simple, this problem is polynomial-time solvable. A
Dijkstra-like polynomial-time algorithm for computing not necessarily simple restless paths
in temporal graphs is presented in [5].

In this section, we show how the time-expanded graph introduced in Section 3.1 can
be modified to account for additional waiting time constraints. Further, we show that the
complexity of the four versions of temporal shortest path interdiction does not change under
additional waiting time constraints.

Within this section, we assume that s has no incoming arcs and t has no outgoing arcs.
This assumption does not impose a loss of generality since a shortest s-t-path (with respect
to any of the definitions of “shortest”) that uses such an arc could be transformed into one
that does not.

For the construction of the time-expanded graph Hte = (V te, Rte) under waiting time
constraints, recall the set T = {ϕ1, . . . , ϕj} of crucial times, which are indexed in increasing
order. Similar to the construction of the time-expanded graph in Section 3.1, we introduce a
node (v, ϕi) for every v ∈ V and i ∈ {1, . . . , j}. For v ∈ {s, t} and i ∈ {1, . . . , j − 1}, there
exists an arc from (v, ϕi) to (v, ϕi+1), which represents waiting at s before the start of the
path or waiting at t after having arrived. For each arc r ∈ R, an additional node ur is
introduced. Further, there exists an arc in Rte from (α(r), τ(r)) to ur and an arc from ur to
any node (ω(r), ϕ) with ϕ ∈ [τ(r)+λ(r), τ(r)+λ(r)+∆]. Traversing the arc from (α(r), τ(r))
to ur and then the arc from ur to some node (ω(r), ϕ) represents traversing r in the temporal
graph and entering the next arc in the path (if ω(r) ̸= t) exactly at time ϕ. This completes
the construction of Hte.

To show a one to one correspondence between s-t-paths in G and (s, ϕ1)-(t, ϕj)-paths
in Hte, note that there are no parallel arcs in Hte, which implies that any path in Hte is
uniquely given by its trace.

▶ Observation 19. There exists a ∆-restless s-t-path in G if and only if there exists a
(s, ϕ1)-(t, ϕj)-path in Hte.

3 It is worth noting that the definition of temporal graphs in [14] is slightly different. They state that
the problem is strongly N P-hard for any ∆ ≥ 1, but, indeed, the same proof of hardness with a slight
modification holds true for the definition of temporal graphs used here for any ∆ ≥ 0.

J. Boeckmann, C. Thielen, and A. Wittmann 9:17

Proof. Let P = (r1, . . . , rk) be a ∆-restless s-t-path in G. Then we claim that the unique
path with trace

((s, ϕ1), . . . , (s, τ(r1)), ur1 , (ω(r1), τ(r2)), ur2 , (ω(r2), τ(r3)), . . . , (t, τ(rk) + λ(rk)), . . . , (t, ϕj))

is a (s, ϕ1)-(t, ϕj) path in Hte. Since, for v ∈ {s, t} and i ∈ {1, . . . , j − 1}, there exists an arc
from (v, ϕi) to (v, ϕi+1), the arcs from (s, ϕ1) to (s, τ(r1)) and the arcs from (t, τ(rk) + λ(rk))
to (t, ϕj) are in Hte. Moreover, the arc from (α(ri), τ(ri)) to uri is in Hte for i ∈ {1, . . . , k},
and the arc from uri

to (ω(ri), τ(ri+1)) is in Hte for i ∈ {1, . . . , k − 1} since P is ∆-restless.
Conversely let P ′ be an (s, ϕ1)-(t, ϕj)-path in Hte. From the construction, it immediately

follows that the trace of P ′ must be of the above form and, by the same arguments as above,
it follows that (r1, . . . , rk) is a ∆-restless s-t-path in G. ◀

To show that T-LSP-IP and T-EAP-IP remain polynomial-time solvable, we assign
removal costs to Hte = (V te, Rte). For each arc r ∈ R, the (unique) incoming arc of ur has
removal cost c(r). All other arcs have removal cost B + 1. With this construction, we observe
the following.

▶ Observation 20. There exists an interdiction strategy S such that there does not exist a
∆-restless path in GS if and only if there exists an interdiction strategy S′ separating ste

from tte in Hte.

Using the algorithm proposed in Sections 3.1 and 3.2 together with the time-expanded
graph Hte = (V te, Rte) under waiting time constraints constructed in this section, it follows
that the problems remain polynomial-time solvable under waiting time constraints.

▶ Theorem 21. There exists a polynomial-time algorithm for solving T-LSP-IP and T-EAP-
IP under waiting time constraints for each ∆ ≥ 0.

We proceed with assessing the complexity of T-SDP-IP and T-STP-IP under waiting time
constraints. When taking a closer look at the reduction provided in Section 3.3, every s-t-path
in the constructed instance is 0-restless. This immediately implies that T-SDP-IP under
waiting time constraints is strongly N P-hard for every ∆ ≥ 0. Further, on instances where
waiting in any node except s and t is impossible, the problems T-SDP-IP and T-STP-IP are
equivalent. This yields the following theorem.

▶ Theorem 22. The problems T-SDP-IP and T-STP-IP are strongly N P-hard under waiting
time constraints for each ∆ ≥ 0.

To close this chapter, we argue that T-SDP-IP and T-STP-IP are still polynomial-time
solvable on extension-parallel temporal graphs under waiting time constraints. To this
end, when removing each arc r whose corresponding s-t-path Pr is not a temporal path
from the graph and from the set R̄ as in Lemma 15, we additionally check whether Pr is
∆-restless and remove r if this is not the case. Afterwards, the graph contains exactly the
∆-restless temporal s-t-paths and the algorithm presented in Section 3.3.1 can be used to
solve T-SDP-IP and T-STP-IP on extension-parallel temporal graphs under waiting time
constraints, which yields the following theorem.

▶ Theorem 23. There exists a polynomial-time algorithm for T-SDP-IP and T-STP-IP on
extension-parallel (temporal) graphs under waiting time constraints for each ∆ ≥ 0.

It is worth noting that all results presented in this section can easily be adapted to the
general case where waiting times are constrained node-wise instead of globally. The only
difference to the global case is in the construction of the time-expanded graph, where the
node-wise constriction is enforced by the outgoing arcs of the nodes ur for r ∈ R.

SAND 2023

9:18 Complexity of the Temporal Shortest Path Interdiction Problem

5 Conclusion

In this paper, the complexity of four different versions of temporal shortest path interdiction
is analyzed. While the latest start and the earliest arrival path interdiction problems are
shown to be solvable in polynomial time, the shortest duration and the shortest traversal path
interdiction problems are strongly N P-hard. It is particularly interesting that, even though
temporal shortest path interdiction seems more complex than its static counterpart, which is
known to be strongly N P-hard, there are versions of temporal shortest path interdiction
problems that are polynomially solvable. We further provide polynomial-time algorithms for
the two hard problems on extension-parallel temporal graphs, which can also be transferred
to the static shortest path interdiction problem.

An interesting direction for future work could be to study temporal shortest path
interdiction problems for other types of modifications than arc removal. For example, one
could consider the problem of worsening (or improving) the latest start time, the earliest
arrival time, the shortest duration, or the shortest traversal time as much as possible by
changing a given number of start times of arcs in a temporal graph.

References
1 E. C. Akrida, G. B. Mertzios, P. G. Spirakis, and V. Zamaraev. Temporal vertex cover

with a sliding time window. Journal of Computer and System Sciences, 107:108–123, 2020.
doi:10.1016/j.jcss.2019.08.002.

2 M. O. Ball, B. L. Golden, and R. V. Vohra. Finding the most vital arcs in a network. Operations
Research Letters, 8(2):73–76, 1989. doi:10.1016/0167-6377(89)90003-5.

3 A. Bar-Noy, S. Khuller, and B. Schieber. The complexity of finding most vital arcs and nodes.
Technical Report CS-TR-3539, University of Maryland, 1995.

4 B. M. Behring, A. Rizzo, and M. Porfiri. How adherence to public health measures shapes
epidemic spreading: A temporal network model. Chaos: An Interdisciplinary Journal of
Nonlinear Science, 31(4):043115, 2021. doi:10.1063/5.0041993.

5 M. Bentert, A.-S. Himmel, A. Nichterlein, and R. Niedermeier. Efficient computation of
optimal temporal walks under waiting-time constraints. Applied Network Science, 5(1):73,
2020. doi:10.1007/s41109-020-00311-0.

6 C. Bentz. On the hardness of finding near-optimal multicuts in directed acyclic graphs.
Theoretical Computer Science, 412(39):5325–5332, 2011. doi:10.1016/j.tcs.2011.06.003.

7 K. A. Berman. Vulnerability of scheduled networks and a generalization of Menger’s The-
orem. Networks, 28(3):125–134, 1996. doi:10.1002/(SICI)1097-0037(199610)28:3<125::
AID-NET1>3.0.CO;2-P.

8 J. Boeckmann and C. Thielen. A (B + 1)-approximation for network flow interdiction with
unit costs. Discrete Applied Mathematics (online first), pages 1–14, 2021. doi:10.1016/j.
dam.2021.07.008.

9 F. Brunelli, P. Crescenzi, and L. Viennot. On computing Pareto optimal paths in weighted
time-dependent networks. Information Processing Letters, 168:106086, 2021. doi:10.1016/j.
ipl.2020.106086.

10 B. Bui-Xuan, A. Ferreira, and A. Jarry. Computing shortest, fastest, and foremost journeys in
dynamic networks. International Journal of Foundations of Computer Science, 14(2):267–285,
2003. doi:10.1142/S0129054103001728.

11 C. Burch, R. Carr, S. Krumke, M. Marathe, C. Phillips, and E. Sundberg. A decomposition-
based pseudoapproximation algorithm for network flow inhibition. In D. L. Woodruff, editor,
Network Interdiction and Stochastic Integer Programming, chapter 1, pages 51–68. Kluwer
Academic Press, 2003. doi:10.1007/0-306-48109-X_3.

https://doi.org/10.1016/j.jcss.2019.08.002
https://doi.org/10.1016/0167-6377(89)90003-5
https://doi.org/10.1063/5.0041993
https://doi.org/10.1007/s41109-020-00311-0
https://doi.org/10.1016/j.tcs.2011.06.003
https://doi.org/10.1002/(SICI)1097-0037(199610)28:3<125::AID-NET1>3.0.CO;2-P
https://doi.org/10.1002/(SICI)1097-0037(199610)28:3<125::AID-NET1>3.0.CO;2-P
https://doi.org/10.1016/j.dam.2021.07.008
https://doi.org/10.1016/j.dam.2021.07.008
https://doi.org/10.1016/j.ipl.2020.106086
https://doi.org/10.1016/j.ipl.2020.106086
https://doi.org/10.1142/S0129054103001728
https://doi.org/10.1007/0-306-48109-X_3

J. Boeckmann, C. Thielen, and A. Wittmann 9:19

12 S. Busam, L. E. Schäfer, and S. Ruzika. The two player shortest path network interdiction
problem, 2020. arXiv:2004.08338.

13 A. Casteigts, P. Flocchini, W. Quattrociocchi, and N. Santoro. Time-varying graphs and
dynamic networks. International Journal of Parallel, Emergent and Distributed Systems,
27(5):387–408, 2012. doi:10.1080/17445760.2012.668546.

14 A. Casteigts, A.-S. Himmel, H. Molter, and P. Zschoche. Finding temporal paths under waiting
time constraints. Algorithmica, 83(9):2754–2802, 2021. doi:10.1007/s00453-021-00831-w.

15 S. R. Chestnut and R. Zenklusen. Hardness and approximation for network flow interdiction.
Networks, 69(4):378–387, 2017. doi:10.1002/net.21739.

16 A. Deligkas and I. Potapov. Optimizing reachability sets in temporal graphs by delaying.
Information and Computation, 285:104890, 2022. doi:10.1016/j.ic.2022.104890.

17 J. Enright, K. Meeks, G. B. Mertzios, and V. Zamaraev. Deleting edges to restrict the size
of an epidemic in temporal networks. Journal of Computer and System Sciences, 119:60–77,
2021. doi:10.1016/j.jcss.2021.01.007.

18 J. Enright, K. Meeks, and F. Skerman. Assigning times to minimise reachability in temporal
graphs. Journal of Computer and System Sciences, 115:169–186, 2021. doi:10.1016/j.jcss.
2020.08.001.

19 A. Epstein, M. Feldman, and Y. Mansour. Strong equilibrium in cost sharing connection
games. In Proceedings of the 8th ACM Conference on Electronic Commerce (EC), pages 84–92,
2007. doi:10.1145/1250910.1250924.

20 T. Fluschnik, H. Molter, R. Niedermeier, M. Renken, and P. Zschoche. Temporal graph
classes: A view through temporal separators. Theoretical Computer Science, 806:197–218,
2020. doi:10.1016/j.tcs.2019.03.031.

21 T. Holzmann and J.C. Smith. The shortest path interdiction problem with randomized
interdiction strategies: Complexity and algorithms. Operations Research, 69(1):82–99, 2021.
doi:10.1287/opre.2020.2023.

22 A. Ibiapina, R. Lopes, A. Marino, and A. Silva. Menger’s Theorem for temporal paths (not
walks), 2022. arXiv:2206.15251.

23 D. Kempke, J. Kleinberg, and A. Kumar. Connectivity and inference problems for temporal
networks. In Proceedings of the 32nd ACM Symposium on the Theory of Computing (STOC),
pages 504–513, 2000.

24 L. Khachiyan, E. Boros, K. Borys, K. Elbassioni, V. Gurvich, G. Rudolf, and J. Zhao. On short
paths interdiction problems: Total and node-wise limited interdiction. Theory of Computing
Systems, 43(2):204–233, 2008. doi:10.1007/s00224-007-9025-6.

25 N. Maack, H. Molter, R. Niedermeier, and M. Renken. On finding separators in temporal
split and permutation graphs. Journal of Computer and System Sciences, 135:1–14, 2023.
doi:10.1016/j.jcss.2023.01.004.

26 O. Michail and P.G. Spirakis. Traveling salesman problems in temporal graphs. Theoretical
Computer Science, 634:1–23, 2016. doi:10.1016/j.tcs.2016.04.006.

27 H. Molter. Classic Graph Problems Made Temporal – A Parameterized Complexity Analysis.
PhD thesis, Technische Universität Berlin, 2020.

28 H. Molter. The complexity of finding temporal separators under waiting time constraints.
Information Processing Letters, 175:106229, 2022. doi:10.1016/j.ipl.2021.106229.

29 H. Molter, M. Renken, and P. Zschoche. Temporal reachability minimization: Delaying vs.
deleting, 2021. arXiv:2102.10814.

30 P. Mutzel and L. Oettershagen. On the enumeration of bicriteria temporal paths. In Proceedings
of the 15th Annual Conference on Theory and Applications of Models of Computation (TAMC),
volume 11436 of Lecture Notes in Computer Science, pages 518–535, 2019. doi:10.1007/
978-3-030-14812-6_32.

31 L. Oettershagen. Temporal Graph Algorithms. PhD thesis, Rheinische Friedrich-Wilhelms-
Universität Bonn, 2022.

SAND 2023

https://arxiv.org/abs/2004.08338
https://doi.org/10.1080/17445760.2012.668546
https://doi.org/10.1007/s00453-021-00831-w
https://doi.org/10.1002/net.21739
https://doi.org/10.1016/j.ic.2022.104890
https://doi.org/10.1016/j.jcss.2021.01.007
https://doi.org/10.1016/j.jcss.2020.08.001
https://doi.org/10.1016/j.jcss.2020.08.001
https://doi.org/10.1145/1250910.1250924
https://doi.org/10.1016/j.tcs.2019.03.031
https://doi.org/10.1287/opre.2020.2023
https://arxiv.org/abs/2206.15251
https://doi.org/10.1007/s00224-007-9025-6
https://doi.org/10.1016/j.jcss.2023.01.004
https://doi.org/10.1016/j.tcs.2016.04.006
https://doi.org/10.1016/j.ipl.2021.106229
https://arxiv.org/abs/2102.10814
https://doi.org/10.1007/978-3-030-14812-6_32
https://doi.org/10.1007/978-3-030-14812-6_32

9:20 Complexity of the Temporal Shortest Path Interdiction Problem

32 J. B. Orlin. Minimum convex cost dynamic network flows. Mathematics of Operations Research,
9(2):190–207, 1984. doi:10.1287/moor.9.2.190.

33 C. Phillips. The network inhibition problem. In Proceedings of the 25th ACM Symposium on
the Theory of Computing (STOC), pages 776–785, 1993.

34 J. A. Sefair and J. C. Smith. Dynamic shortest-path interdiction. Networks, 68(4):315–330,
2016. doi:10.1002/net.21712.

35 J.C. Smith and Y. Song. A survey of network interdiction models and algorithms. European
Journal of Operational Research, 283(3):797–811, 2020. doi:10.1016/j.ejor.2019.06.024.

36 J. Valdes, R. E. Tarjan, and E. L. Lawler. The recognition of series parallel digraphs. SIAM
Journal on Computing, 11(2):298–313, 1982. doi:10.1145/800135.804393.

37 R. D. Wollmer. Removing arcs from a network. Operations Research, 12(6):934–940, 1964.
doi:10.1287/opre.12.6.934.

38 H. Wu, J. Cheng, Y. Ke, S. Huang, Y. Huang, and H. Wu. Efficient algorithms for temporal
path computation. IEEE Transactions on Knowledge and Data Engineering, 28(11):2927–2942,
2016. doi:10.1109/TKDE.2016.2594065.

39 P. Zschoche, T. Fluschnik, H. Molter, and R. Niedermeier. The complexity of finding small
separators in temporal graphs. Journal of Computer and System Sciences, 107:72–92, 2020.
doi:10.1016/j.jcss.2019.07.006.

https://doi.org/10.1287/moor.9.2.190
https://doi.org/10.1002/net.21712
https://doi.org/10.1016/j.ejor.2019.06.024
https://doi.org/10.1145/800135.804393
https://doi.org/10.1287/opre.12.6.934
https://doi.org/10.1109/TKDE.2016.2594065
https://doi.org/10.1016/j.jcss.2019.07.006

	1 Introduction
	1.1 Previous Work
	1.2 Our Contribution

	2 Problem Definition
	3 Polynomial-Time Algorithms and Complexity Results
	3.1 Temporal Latest Start Path Interdiction
	3.2 Temporal Earliest Arrival Path Interdiction
	3.3 Temporal Shortest Duration Path Interdiction and Temporal Shortest Traversal Path Interdiction
	3.3.1 Polynomial-Time Solvability on Extension-Parallel Graphs

	4 Extensions
	4.1 Continuous Time Availability of Arcs
	4.2 Waiting Time Constraints

	5 Conclusion

