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Preface

The Annual Symposium on Combinatorial Pattern Matching (CPM) has by now over 30 years
of tradition and is considered to be the leading conference for the community working on
Stringology. The objective of the annual CPM meetings is to provide an international forum
for research in combinatorial pattern matching and related applications such as computational
biology, data compression and data mining, coding, information retrieval, natural language
processing, and pattern recognition.

This volume contains the papers presented at the 34th Annual Symposium on Combinat-
orial Pattern Matching (CPM 2023) held on June 26–28, 2023 in Marne-la-Vallée, France.
The conference program includes 26 contributed papers and three invited talks, by

Olgica Milenkovic (University of Illinois Urbana-Champaign, USA),
Tatiana Starikovskaya (École Normale Supérieure, France), and
Virginia Vassilevska Williams (Massachusetts Institute of Technology, USA).

For the fifth time, CPM includes the “Highlights of CPM” special session, for presenting
the highlights of recent developments in combinatorial pattern matching. In this fifth edition
we selected as highlight papers “Separating words and trace reconstruction”, by Zachary
Chase, presented at STOC 2021, and “Approximating Dynamic Time Warping Distance
Between Run-Length Encoded Strings”, by Zoe Xi and William Kuszmaul, presented at ESA
2022. The conference was preceded by a one-day student summer school taught by Karel
Břinda (Inria/IRISA Rennes) and Panagiotis Charalampopoulos (Birkbeck, University of
London), and organized at the École Normale Supérieure in Paris by Gabriel Bathie, Paweł
Gawrychowski, Garance Gourdel and Tatiana Starikovskaya.

The contributed papers were selected out of 44 submissions, corresponding to an accept-
ance ratio of 59%. Each submission received at least three reviews. We thank the members
of the Program Committee and all the additional external subreviewers, who are listed below,
for their hard, invaluable, and collaborative effort that resulted in an excellent scientific
program.

The Annual Symposium on Combinatorial Pattern Matching started in 1990, and has
since then taken place every year. Previous CPM meetings were held in Paris, London
(UK), Tucson, Padova, Asilomar, Helsinki, Laguna Beach, Aarhus, Piscataway, Warwick,
Montreal, Jerusalem, Fukuoka, Morelia, Istanbul, Jeju Island, Barcelona, London (Ontario,
Canada), Pisa, Lille, New York, Palermo, Helsinki, Bad Herrenalb, Moscow, Ischia, Tel Aviv,
Warsaw, Qingdao, Pisa, Copenhagen (on-line), Wrocław and Prague. From 1992 to the 2015
meeting, all proceedings were published in the LNCS (Lecture Notes in Computer Science)
series. Since 2016, the CPM proceedings have appeared in the LIPIcs (Leibniz International
Proceedings in Informatics) series, as volume 54 (CPM 2016), 78 (CPM 2017), 105 (CPM
2018), 128 (CPM 2019), 161 (CPM 2020), 191 (CPM 2021) and 223 (CPM 2022). The entire
submission and review process was carried out using the EasyChair conference system.

We thank the CPM Steering Committee for their support and advice.

Laurent Bulteau and Zsuzsanna Lipták
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Trie-Compressed Adaptive Set Intersection
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Abstract
We introduce space- and time-efficient algorithms and data structures for the offline set intersection
problem. We show that a sorted integer set S ⊆ [0..u) of n elements can be represented using
compressed space while supporting k-way intersections in adaptive O(kδ lg(u/δ)) time, δ being
the alternation measure introduced by Barbay and Kenyon. Our experimental results suggest
that our approaches are competitive in practice, outperforming the most efficient alternatives
(Partitioned Elias-Fano indexes, Roaring Bitmaps, and Recursive Universe Partitioning (RUP)) in
several scenarios, offering in general relevant space-time trade-offs.

2012 ACM Subject Classification Theory of computation → Data compression; Theory of computa-
tion → Design and analysis of algorithms; Theory of computation → Data structures and algorithms
for data management; Information systems → Information retrieval query processing

Keywords and phrases Set intersection problem, Adaptive Algorithms, Compressed and compact
data structures

Digital Object Identifier 10.4230/LIPIcs.CPM.2023.1

Supplementary Material Software: https://github.com/jpcastillog/compressed-binary-tries
archived at swh:1:dir:4ec1b85ad1d97fa10c648a3ad1ad2366c0cafb5c
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1 Introduction

Sets are one of the most fundamental mathematical concepts related to the storage of data.
Operations such as set intersections, unions, and differences are key for querying them. E.g.,
the use of logical AND and OR operators in web search engines translate into intersections
and unions, respectively. Representing sets to support their basic operations efficiently has
been a major concern since many decades ago [4]. In several applications, such as query
processing in information retrieval (IR) [15] and database management systems (DBMS) [23],
sets are known in advance to queries, hence data structures can be built to speed up query
processing. With this motivation, in this paper we focus on the following problem.

The Offline Set Intersection Problem, OSIP

Input: A family S = {S1, . . . , SN} of N sorted integer sets over universe [0..u), with |Si| = ni.

Task : To preprocess family S to efficiently support query instances of the form Q =
{i1, . . . , ik} ⊆ [1..N ], which ask to compute I(Q) =

⋂
i∈Q Si.
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1:2 Trie-Compressed Adaptive Set Intersection

We assume u = 2k in this paper, for k ≥ 0. Unless explicitly otherwise stated, we also
assume lg x = ⌈lg2 x⌉ and lg 0 = 0. Typical applications of this problem include the efficient
support of join operations in DBMS [23, 51], query processing using inverted indexes in IR
[15, 52], and computational biology [33], among others. Building a data structure to speed
up intersections, however, increases the space usage. Today, data-intensive applications
encourage not only time- but also space-efficient solutions [7]. Being able to process big
datasets entirely in main memory is the main motivation. Compact, succinct, and compressed
data structures are important to achieve this [41]. We study here compressed data structures
to efficiently support the OSIP. We assume the word RAM model of computation with word
size w = Θ(lg u). Arithmetic, logic, and bitwise operations, as well as accesses to w-bit
memory cells, take O(1) time.

The literature on this problem is vast. For the online version of the problem, where sets to
be intersected are given at query time – so there is no time to preprocess them – algorithms
like the ones by Baeza-Yates [9], Demaine et al. [20], and Barbay and Kenyon [12] are among
the most efficient and well-known approaches. In particular, the two latter algorithms are
adaptive, meaning that they are able to perform faster on “easier” query instances. The
algorithm by Barbay and Kenyon runs in optimal O(δ

∑
i∈Q lg(ni/δ)) time, where δ is the

so-called alternation measure that quantifies the query difficulty [12]. The algorithm by
Demaine et al. [20] has running time O(kδ lg(n/δ)), for n =

∑
i∈Q ni, which is optimal

when maxi∈Q {lg ni} = O(mini∈Q {lg ni}) [11]. These algorithms require sets to be stored
in plain form, e.g. using a sorted array or a B-tree [20], requiring Θ(mw) bits of space, for
m =

∑N
i=1 ni. This can be excessive when dealing with large databases.

For the OSIP, we have the extensive literature on inverted indexes [52, 55, 15, 46],
whose main focus is on practical space-efficient set representations supporting intersections.
Approaches like Optimized PForDelta [53], Roaring Bitmaps [36], SIMD-BP128 [35], and
Recursive Universe Partitioning [45] shine in practical scenarios, yet without appealing
theoretical guarantees of space usage and intersection computation time. Another relevant
approach on these lines is Partitioned Elias-Fano (PEF) [43], able to exploit the distribution
and clustering of set elements to improve space usage. Barbay and Kenyon’s algorithm can
be implemented on PEF, taking O(δ

∑
i∈Q lg (u/ni)) time. Regarding space usage, there

is no known bound (although it performs well in practice). On a more theoretical track,
Bille et al. [14] introduce a data structure that uses O(mw) bits of space and supports
intersections in O(n lg2 (w)/w + k|I(Q)|) time. Cohen and Porat [18] data structure also
uses O(mw) bits of space and allows one to compute the intersection between any two
sets in S in O(

√
N |I(Q)| + I(Q)|) time. Besides using linear space, this approach only

works for pair-wise intersections (and is hard to efficiently extend to multiway intersections).
Finally, Ding and Konig [21] introduce a data structure able to compute intersections in
O(n/

√
w + k|I(Q)|) expected time, and uses linear O(m) space. The space can be improved

in practice to use about 1.88 times the space of an Elias γ/δ compressed inverted index [21],
yet with no theoretical guarantees. Later, Gagie et al. [26] showed that wavelet trees [28] can
support intersections in O(kδ lg (u/δ)) time, using uncompressed mw(1 + o(1)) bits of space.

In this paper we show that O(kδ lg (u/δ)) intersection time using compressed space
is possible. In particular, (1) in Section 3 we revisit a classic (and neglected) algorithm
by Trabb-Pardo [50] (former Knuth’s student) to prove that its running time is actually
O(kδ lg (u/δ)) – so it is likely the first adaptive intersection algorithm that ever existed; (2)
in Section 4 we show that Trabb-Pardo’s algorithm can be implemented in compressed space,
yielding an adaptive and compressed set intersection algorithm; (3) in Section 5 we show
how to exploit the presence of runs of successive elements, typical in some applications [8],
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to formally improve both space usage of input sets and the intersection computation time
by introducing an intersection algorithm that runs in time O(kξ lg (u/ξ)), where ξ ≤ δ is an
adaptability measure we introduce; and (4) in Sections 6 and 7 we implement our proposals
and show preliminary experimental results that indicate that our approaches are appealing
not only in theory, but also in practice, outperforming the most competitive state-of-the-art
approaches in some practical inverted-index datasets we use in our tests. Overall, we conclude
that both theoretical guarantees and practicality can be achieved with a single approach,
which is a step forward in bridging the gap between theory and practice in this important
line of research.

2 Preliminaries and Related Work

2.1 Operations rank and select
The following operations on a sorted integer set S are of interest:

rank(S, x): for x ∈ [0..u), yields |{y ∈ S, y ≤ x}|.
select(S, j): for 1 ≤ j ≤ |S|, yields x ∈ S s.t. rank(S, x) = j.

A set S can be alternatively described using its characteristic bit vector (cbv, for short)
CS [0..u), such that CS [x] = 1 if x ∈ S, CS [x] = 0 otherwise. On a cbv CS we define:

CS .rank1(x): for x ∈ [0..u), yields the number of 1s in CS [0..x].
CS .select1(k): for 1 ≤ j ≤ |S|, yields the smallest position 0 ≤ x < u s.t. CS .rank1(x) = j.
Notice that rank(S, x) ≡ CS .rank1(x) and select(S, j) ≡ CS .select1(j).

2.2 Set Compression Measures
A compression measure quantifies the amount of bits needed to encode data using a particular
compression model. For an integer universe U = [0..u), let C(n) ⊆ 2U , n ∈ U , denote the class
of all sets S ⊆ U such that |S| = n. We assume S = {x1, . . . , xn}, for 0 ≤ x1 ≤ · · · ≤ xn < u.
As |C(n)| =

(
u
n

)
, in the worst case one needs at least B(n, u) = ⌈lg

(
u
n

)
⌉ bits to encode a set

S ∈ C(n). If n≪ u, B(n, u) = n lg (u/n) + n lg e−O(lg u) bits (using Stirling for n!). Notice
B(n, u) is a worst-case lower bound: some sets in C(n) can be encoded using less bits, as we
shall see.

2.2.1 The gap(S) Compression Measure
Let us denote g1 = x1 and, for i = 2, . . . , n, gi = xi − xi−1 − 1. Thus, in the gap model we
have CS [0..u) = 0g110g21 · · ·0gn1 (assuming wlog that CS ends with 1). Then, we define
gap(S) =

∑n
i=1 (⌊lg gi⌋+ 1), as the amount of bits required to represent S provided we

encode the sequence of gaps G = ⟨g1, . . . , gn⟩, using ⌊lg gi⌋+ 1 bits per gap. Although this
measure is not achievable, it exploits the variation in the gaps between consecutive set
elements: the closer the elements, the smallest this measure is. It holds that gap(S) ≤ n lg u

n ,
with equality only when gi = u

n (for i = 1, . . . , n). This is a measure traditionally used in
applications like inverted-index compression in information retrieval [15] and databases [52].

2.2.2 The rle(S) Compression Measure
When set elements tend to be clustered into runs of successive elements, a (usually)
better way to model its cbv is CS [0..u) = 0z11ℓ10z21ℓ2 · · ·0zr 1ℓr , where the sequences
Z = ⟨z1, . . . , zr⟩ and O = ⟨ℓ1, . . . , ℓr⟩ are the lengths of the alternating 0/1-runs in CS (as-
sume wlog that CS begins with 0 and ends with 1). Then, rle(S) =

∑r
i=1 (⌊lg (zi − 1)⌋+ 1)+∑r

i=1 (⌊lg (ℓi − 1)⌋+ 1). Unfortunately, gap(S) and rle(S) are not comparable measures. If
n < u/2, it holds that rle(S) < B(n, u) + n + O(1) [24].
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1:4 Trie-Compressed Adaptive Set Intersection

2.2.3 The trie(S) Compression Measure
Let us consider now representing a set S ∈ C(n) using a binary trie denoted bintrie(S),
where the ℓ = ⌈lg u⌉-bit binary encoding of every element is added. Each internal node
in bintrie(S) has two children, the left one corresponding to bit 0 and the right one to bit
1. The external nodes of bintrie(S) have no children, as usual. In our case, we distinguish
two kinds of external nodes. A void external node is one whose depth is either d < ℓ, or
alternatively d = ℓ yet it represents no element in S. A valid external node (or, simply,
external node, or alternatively a leaf ), on the other hand, is one whose depth is exactly ℓ and
corresponds to an element in S. Thus, bintrie(S) has |S| valid external nodes, all at depth
ℓ. For a leaf v corresponding to element xi ∈ S, the root-to-v path is hence labeled with
the binary encoding of xi. This approach has been used for representing sets since at least
the late 70s by Trabb-Pardo [50]. Consider the example sets S1 = {1, 3, 7, 8, 9, 11, 12}, and
S2 = {2, 5, 7, 12, 15} over universe [0..16), that we shall use as running examples. Figure
1 shows the corresponding tries bintrie(S1) and bintrie(S2), with external nodes shown as
squares and void external nodes with dotted lines. Interestingly, the following compression
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Figure 1 Binary tries bintrie(S1) and bintrie(S2) encoding sets S1 = {1, 3, 7, 8, 9, 10, 11, 12} and
S2 = {2, 5, 7, 12, 15}. Square nodes at depth 4 in the tries correspond to set elements, whereas
dotted lines indicate void external nodes.

measure can be derived from this representation [29]. Given two bit strings x and y of
ℓ bits each, let x ⊖ y denote the bit string obtained after removing the longest common
prefix among x and y from x. For instance, for x = 0110100 and y = 0111011, we have
x⊖ y = 0100. The prefix omission method by Klein and Shapira [31] represents a sorted set
S as a binary sequence T = ⟨x1; x2 ⊖ x1; . . . ; xn ⊖ xn−1⟩. If we denote |xi ⊖ xi−1| the length
of bit string xi ⊖ xi−1, then the whole sequence uses

trie(S) = |x1|+
n∑

i=2
|xi ⊖ xi−1|.

It turns out that trie(S) is the number of edges in bintrie(S) [29]. Notice that trie(S)
decreases as longer trie paths are shared among set elements: consider two integers x and
y, the trie represents their longest common prefix just once (then saving space), and then
represents both x ⊖ y and y ⊖ x. Extreme cases are as follows: (1) All set elements form
a single run of consecutive elements, which maximizes the number of trie edges shared
among set elements, hence minimizing the space usage; and (2) The n elements are uniformly
distributed within [0..u) (i.e., the gap between successive elements is gi = u/n), which
minimizes the number of trie edges shared among elements, and hence maximizes space
usage. Notice this is similar to the case that maximizes the gap(S) measure.

▶ Definition 1. We say that a node v in bintrie(S) covers all leaves that descend from it. In
such a case, we call v a cover node of the corresponding leaves.
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The following lemma summarizes several results that shall be important for our work:

▶ Lemma 2 ([26], Lemmas 1–5). For bintrie(S), the following results hold:
1. Any contiguous range of L leaves in bintrie(S) is covered by O(lg L) nodes.
2. Any set of r nodes in bintrie(S) has O(r lg u

r ) ancestors.
3. Any set of r nodes in bintrie(S) minimally covering a contiguous range of leaves in the

trie has O(r + lg u) ancestors.
4. Any set of r nodes in bintrie(S) minimally covering L contiguous leaves has O(lg u+r lg L

r )
ancestors.

▶ Definition 3. Given a set S = {x1, . . . , xn} ⊆ [0..u), let S + a, for a ∈ [0..u), denote a
shifted version of S: S + a = {(x1 + a) mod u, (x2 + a) mod u, . . . , (xn + a) mod u}.

The following result is relevant for our proposal:

▶ Lemma 4 ([29], Section 2). Given a set S ⊆ [0..u) of n elements, it holds that:
1. trie(S) ≤ min {2gap(S), n lg (u/n) + 2n− 2}.
2. ∃a ∈ [0..u), such that trie(S + a) ≤ gap(S) + 2n− 2.
3. trie(S + a) ≤ gap(S) + 2n− 2 on average over all values of a ∈ [0..u).

2.3 Adaptive Set Intersection Algorithms
An adaptive algorithm is one whose running time is a function not only of the instance size
(as usual), but also of a difficulty measure of the instance. In this way, “easy” instances are
solved faster than “difficult” ones, allowing for a more refined analysis than typical worst-case
approaches. For the set intersection problem, algorithms by Demaine, López-Ortiz, and
Munro [20] and by Barbay and Kenyon [12] are the most important adaptive approaches. To
analyze adaptive intersection algorithms, Demaine et al. and Barbay and Kenyon agree in
that any algorithm that computes I(Q) must show a certificate [12] or proof [20] to prove
that the intersection is correct. That is, that any element in I(Q) belongs to the k sets
Si1 , . . . , Sik

, and no element in the intersection has been left out of the result. Then, the
analysis determines the size of a certificate (or proof) and the time it takes to compute them.
In particular, Barbay and Kenyon [12] partition certificates are defined as follows.

▶ Definition 5. Given a query Q = {i1, . . . , ik} ⊆ [1..N ], a partition certificate is a partition
of the universe [0..u) into a set of intervals PBK(Q) = {I1, I2, . . . , Ip}, such that:
1. ∀x ∈ I(Q), [x..x] ∈ PBK(Q);
2. ∀x ̸∈ I(Q), ∃Ij ∈ PBK(Q), x ∈ Ij ∧ ∃q ∈ Q, Sq ∩ Ij = ∅.

For a given query Q, several valid partition certificates could be given. However, we are
interested in the smallest partition certificate of Q, as it takes the least time to be computed.

▶ Definition 6. For a given query instance Q = {i1, . . . , ik} ⊆ [1..N ], let δ denote the size
of the smallest partition certificate of Q.

Measure δ is known as the alternation of the query instance [12], measuring its difficulty.
Notice |I(Q)| ≤ δ holds. Figure 2 shows the smallest partition certificate (of size δ = 8) for
sets S1 and S2 of our running example. Barbay and Kenyon [11, 12] proved a lower bound
of Ω(δ

∑
i∈Q lg(ni/δ)) comparisons for the set intersection problem. They also gave and

optimal intersection algorithm running in O(δ
∑

i∈Q lg(ni/δ)) time.
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S1 : 1 3 7 8 9 10 11 12
S2 : 2 5 7 12 15

Figure 2 Vertical lines show the smallest partition certificate P = {[0..1], [2..2], [3..4], [5..6],
[7..7], [8..11], [12..12], [13..15]} of size δ = 8 of the universe [0..16) for the intersection of sets
S1 = {1, 3, 7, 8, 9, 10, 11, 12} and S2 = {2, 5, 7, 12, 15}.

3 Trie Intersection Certificates: A Revisit to Trabb-Pardo Algorithm

In this section we revisit an old divide-and-conquer intersection algorithm by Trabb-Pardo [50],
not only to review it but also to prove an adaptive bound on its running time. Algorithm 1
shows the pseudocode. Given a query instance Q = {i1, . . . , ik} ⊆ [1..N ], the algorithm must

Algorithm 1 TP-Intersection(sets S1, . . . , Sk; universe [L..R)).
Result: The set intersection S1 ∩ · · · ∩ Sk

1 begin
// Base cases

2 for i← 1 to k do
3 if Si = ∅ then
4 return ∅

5 if L = R then
6 return {L} // Universe of size 1, all sets are the same singleton
7 else

// Divide
8 M ← ⌊(R + L)/2⌋
9 for i← 1 to k do

10 Si,l ← {x ∈ Si | x ∈ [L..M)}
11 Si,r ← {x ∈ Si | x ∈ [M..R)}

// Conquer
12 R1 ← TP-Intersection(S1,l, . . . , Sk,l, [L..M))
13 R2 ← TP-Intersection(S1,r, . . . , Sk,r, [M..R))

// Combine
14 return R1 ∪R2 // Disjoint set union

be invoked as TP-Intersection(Si1 , . . . , Sik
, [0..u)). The main idea is to divide the universe

into two halves, to then split each set according to this universe division. This differs from,
e.g., Baeza-Yates’s algorithm [9, 10], which splits according to the median of one of the sets.
The Divide steps (lines 10 and 11) can be implemented using binary search. At the first level
of recursion, the most-significant bit of every element in sets Si,l is 0, as they belong to the
left half of the universe. Similarly, for Si,r the most-significant bit is 1 as all elements belong
to the right half. At each node of the recursion tree, the current universe is divided into two
halves, to then recurse on the sets split accordingly.

As sets are known in advance to queries and set splits carried out by Algorithm 1 depend
just on the universe, the Divide step of Algorithm 1 can be implemented efficiently by using
a suitable set representation that not only stores the set values, but also precomputes the
set splits carried out recursively by the algorithm. Trabb-Pardo proposes to represent each
Si ∈ S using bintrie(Si), mimicking the way set Si is recursively split by Algorithm 1. The
left child of the root represents all elements whose most-significant bit is 0, i.e., elements in
set Si,l of Algorithm 1 (line 10) in the first level of recursion; similarly for Si,r, containing
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all elements in Si whose most-significant bit is 1. To simulate the recursive execution of
Algorithm 1 on the binary tries, one must carry out a DFS traversal in synchronization on
all tries involved in the query, following the same path in all of them and stopping (and
backtracking if needed) as soon as we reach a dead end in one of the tries (which correspond
to dotted lines in Figure 1), or we reach a leaf node in all the tries (in which case we have
found an element belonging to the intersection). In this way, (1) we stop as soon as we detect
a universe interval that does not have any element in the intersection, and (2) we find the
relevant elements when we arrive at the leaves.

To analyze Algorithm 1, we introduce the concept of trie intersection certificates, denoted
cert(Q), as an alternative to existing certificates [20, 12]. Figure 3 shows a possible cert(Q)
for the intersection of S1 and S2 from Figure 1. Let path(v) denote the binary string labelling
the root-to-v path, and depth(v) = |path(v)|. For a query Q, a binary trie cert(Q) is a

×

× ×

×

× 7

×

12 ×

×

0

0

0

01

1

1

1 1

1

Figure 3 Trie certificate for the intersection {1, 3, 7, 8, 9, 10, 11, 12} ∩ {2, 5, 7, 12, 15}. This trie
shows the nodes that must be checked to determine that the result is, in this case, {7, 12}. This
corresponds to the intersection of the binary tries representing these sets.

trie partition certificate if: (1) for any internal node v of cert(Q) such that path(v) = b,
there exists an internal node vi with path(vi) = b in every bintrie(Si), i ∈ Q; (2) for any
void external node v with depth(v) = d ≤ ℓ = ⌈lg u⌉ and path(v) = b, there exists at least
a set Si (i ∈ Q) such that there is no node vi with path(vi) = b in bintrie(Si). So, the
universe interval [dec(b · 0ℓ−d)..dec(b · 1ℓ−d)] has no element in the intersection, where dec(x)
denotes the decimal representation of a binary string x. We call them fail nodes, shown
as “×” in Figure 3; and (3) for any valid external node v with depth(v) = ℓ corresponding
to path(v) = b, there exists a valid external node vi with path(vi) = b in every bintrie(Si),
i ∈ Q. We call them success nodes as they correspond to elements in I(Q).

Notice that cert(Q) is the trie obtained by intersecting bintrie(Si), for all i ∈ Q, and that
it is the smallest trie that allows us to prove the correctness of the intersection. For instance,
Figure 3 shows cert(Q) for a given query. Interestingly, the recursion tree of Algorithm 1 is
exactly cert(Q), as the algorithm stops as soon as one arrives at a fail node. The external
nodes of cert(Q) cover the universe [0..u) with intervals, similar to Barbay and Kenyon
partition certificates, as stated by the following definition.

▶ Definition 7. Given a query Q = {i1, . . . , ik} ⊆ [1..N ], its trie partition certificate is
a partition of the universe [0..u) into a set of intervals, we say that cert(Q) induces the
following partition of [0..u) into a set of intervals that we call trie partition certificate:

PAC(Q) =
⋃

l∈E(cert(Q))

{
[dec(path(l) · 0ℓ−depth(l))..dec(path(l) · 1ℓ−depth(l))]

}
,

where E(cert(Q)) denotes the set of external nodes of cert(Q).

For instance, the trie certificate of Figure 3 induces the following trie partition certificate of
the universe [0..16): {[0..1], [2..2], [3..3], [4..5], [6..6], [7..7], [8..11], [12..12], [13..13], [14..15]}.
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Since cert(Q) is the recursion tree of Algorithm 1, its running time is O(k|cert(Q)|). As
in the worst-case one must traverse completely all tries bintrie(Si), i ∈ Q, we have:

k|cert(Q)| ≤
∑
i∈Q

trie(Si) ≤
∑
i∈Q

ni lg u

ni
+ 2ni − 2,

where the last bound is from Lemma 4 (1). Next we prove an adaptive bound for k|cert(Q)|.

▶ Theorem 8. Given a query instance Q = {i1, . . . , ik} ⊆ [1..N ] with alternation measure δ

and over sets with universe [0..u), algorithm TP-Intersection computes I(Q) = ∩i∈QSi in
time O(kδ lg(u/δ)).

Proof. Consider a smallest partition certificate PBK(Q) = {I1, . . . , Iδ} of universe [0..u), such
that |Ii| = Li for i = 1, . . . , δ. Let us think now of the worst-case smallest cert(Q) we could
have, by covering the δ intervals in PBK(Q) with as many external nodes of cert(Q) as possible.
For any Ij ∈ PBK(Q) formed by elements not in I(Q), there exists a set of external fail nodes
in cert(Q) that cover Ij . This is because when traversing the tries bintrie(Si) in coordination,
i ∈ Q, the algorithm stops as long as one gets into one of the cover nodes of Ij , since it does
not belong to at least one of the tries. According to Lemma 2 (1), a contiguous range of L

leaves (corresponding to the values in Ij) can be covered with up to O(lg L) nodes. Thus,
in the worst-case, cert(Q) has O(

∑δ
i=1 lg Li) external nodes that overall cover [0..u). Now,

recall that the external nodes of cert(Q) cover the contiguous range of leaves corresponding
to [0..u). Hence, according to Lemma 2 (3), these external nodes have O(

∑δ
i=1 lg Li + lg u)

ancestors, so overall cert(Q) has O(
∑δ

i=1 lg Li + lg u) nodes. The sum is maximized when
Li = u/δ, for all 1 ≤ i ≤ δ, hence cert(Q) has O(δ lg (u/δ)) nodes. The result follows from
the fact that for each node in cert(Q) the algorithm runs in time O(k). ◀

4 Compressed Intersectable Sets

We devise next a space-efficient representation of bintrie(S), for a set S = {x1, . . . , xn} ⊆ [0..u)
of n elements such that 0 ≤ x1 < · · · < xn < u. This representation will also allow for
efficient intersections, supporting Trabb-Pardo’s [50] algorithm.

We represent bintrie(S) level-wise [30]. Let B1[1..2l1], . . . , Bℓ[1..2lℓ] be bit vectors such
that Bi represents the li nodes at level i of bintrie(S) (1 ≤ i ≤ ℓ), from left to right. Each
node is encoded using 2 bits, indicating the presence (using bit 1) or absence (bit 0) of the
left and right children, respectively. In this way, the feasible codewords for trie nodes are 01,
10, and 11, whereas 00 is not a valid codeword. The codewords of all nodes at level i ≥ 1 in
the trie are concatenated from left to right to form Bi. The j-th node at level i (from left to
right) is stored at positions 2j − 1 and 2j. We say that 2j − 1 is the position of such node
in Bi.

Let p be the position in Bi corresponding to a node v at level i of bintrie(S). As the
nodes are stored level-wise and from left to right, the number of 1s before position p in
Bi equals the number of nodes in level i + 1 that are before the child(ren) of node v. So,
2Bi.rank1(p− 1) + 1 yields the position of Bi+i where the first child of node v is. Figure 4
illustrates our representation.

The total number of 1s in the bit vectors of our representation equals the number of
edges in the trie. That is, there are trie(S) 1s. Besides, the trie has trie(S) + 1 internal
nodes and leaves: n of them are leaves, so trie(S)−n + 1 are internal. In our representation
we only need to represent the internal trie nodes. As we encode each node using 2 bits, the
total space usage for B1, . . . , Bℓ is 2(trie(S)− n + 1) bits. On top of them we use Clark’s
data structure [16] to support rank in O(1) time, adding o(trie(S)) extra bits overall.
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11B1 :

11 11B2 :

11 01 11 10B3 :

01 01 01 11 11 10B4 :

Figure 4 Level-wise bit vector representation of bintrie(S) for S = {1, 3, 7, 8, 9, 10, 11, 12}. Dotted
lines are implicit, as they are computed using operation rank1 on the bit vectors.

Given a query Q = {i1, . . . , ik} ⊆ [1..N ], we traverse bintrie(Si1), . . . , bintrie(Sik
) using a

recursive DFS traversal as in Algorithm 1. Besides the query itself, our algorithm receives: (1)
an integer value, level, indicating the current recursion level, and (2) integer values r1, . . . , rk,
indicating the current nodes in each trie, represented as the positions of these nodes within
Blevel. Algorithm 2 shows the pseudo-code of our adaptive and compressed algorithm to
compute the compact representation for bintrie(I(Q)) (denoted TI in the pseudocode). The
algorithm uses a binary variable s, initialized with 11, which stores the bitwise-and of all
current node codewords (line 4). So, s = 00 means that recursion must stop, s = 10 indicates
to go down only to the left, s = 01 just to the right, and s = 11 to both children.

Lines 9–13 carry out the needed computation to go down to the left child. In particular,
we compute the positions of the left-subtrie roots using rank1 operation. Then, in line 13
we recursively go down to the left. The result of that recursion in stored in variable lChild,
indicating with a 1 that the left recursion yielded a non-empty intersection, 0 otherwise.
A similar procedure is carried out for the right child in lines 14–21. Line 17 determines
whether we have already computed the rank1s corresponding to the left child. If that is not
the case, we compute them in line 18. In this way, we compute only one rank1 operation
per traversed node in the tries, which is important in practice. Just as for the left child,
we store the result of the right-child recursion in variable rChild in line 21. Finally, in line
22 we determine whether the left and right recursions yielded an empty intersection or not.
If both lChild = rChild = 0, the intersection was empty on both children, so we return
0. Otherwise, we append lChild and rChild to TI .Blevel, as that is the codeword of the
corresponding node in TI . Note how we actually generate the output trie TI in postorder,
after we visited both children of the current nodes, despite the input is traversed in preorder.
Thus, we write the output in time proportional to its size. Although the total running time
is still proportional to |cert(Q)|, this can save important time in practice.

Besides computing I(Q), a distinctive feature of our algorithm is that it also allows one to
obtain the sequence ⟨rank(Si1 , x), . . . , rank(Sik

, x)⟩, for all x ∈ I(Q), for free (in asymptotic
terms). The idea is to compute ⟨bintrie(Si1).Bℓ.rank1(r1), . . . , bintrie(Sik

).Bℓ.rank1(rk)⟩ every
time the recursion reaches level ℓ (i.e., just before the return of line 7 in Algorithm 2).
Outputting this information is important for several applications, such as cases where set
elements have satellite data associated to them. For an element xj ∈ Si, the associated
data dj is stored in an auxiliary array Di[1..ni] such that D[rank(Si, xj)] = dj . Typical
applications are inverted indexes in IR (where ranking information, such as frequencies, is
associated to inverted list elements), and the Leapfrog Triejoin algorithm [51] (where at each
step we must compute the intersection of sets, and for each element in the intersection we
must go down following a pointer associated to it).
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Algorithm 2 AC-Intersection(query Q; roots r1, . . . , rk; level).

Result: The binary trie TI representing I(Q) = ∩i∈QSi

1 begin
2 s← 11 // binary encoding
3 for i ∈ Q do
4 s← s & (bintrie(Si).Blevel [ri] · bintrie(Si).Blevel [ri + 1])
5 if level = ℓ then
6 append s to TI .Bℓ

7 return 1
8 lChild← 0; rChild← 0

// Go down to the left in the tries
9 if s is 10 or 11 then

10 lRoots← ∅
11 for i ∈ Q do
12 lRoots← lRoots ∪ {2× bintrie(Si).Blevel.rank1(ri − 1) + 1}
13 lChild← AC-Intersection(Q, lRoots, level + 1)

// Go down to the right in the tries
14 if s is 01 or 11 then
15 rRoots← ∅
16 for i ∈ Q do
17 if s = 01 then
18 rRoots← rRoots ∪ {2× bintrie(Si).Blevel.rank1(ri − 1) + 2}
19 else
20 rRoots← rRoots ∪ {lRootsi + 2}

21 rChild← AC-Intersection(Q, rRoots, level + 1)
// Output written in postorder

22 if lChild ̸= 0 or rChild ̸= 0 then
23 append lChild · rChild to TI .Blevel

24 return 1
25 else
26 return 0

We have proved the following theorem:

▶ Theorem 9. Let S = {S1, . . . , SN} be a family of N integer sets, each of size |Si| =
ni and universe [0..u). There exists a data structure able to represent each set Si using
2(trie(Si)− ni + 1) + o(trie(Si)) bits, such that given a query Q = {i1, . . . , ik} ⊆ [1..N ],
the intersection I(Q) = ∩i∈QSi can be computed in O(kδ lg (u/δ)) time, where δ is the
alternation measure of Q. Besides, for every x ∈ I(Q), the data structure also allows one to
obtain the sequence ⟨rank(Si1 , x), . . . , rank(Sik

, x)⟩ asymptotically for free.

5 Compressing Runs of Elements

Next, we exploit the presence of runs of successive elements in the input sets to reduce both
the space usage of the binary trie representation, as well as intersection time. Runs tend
to be captured by full subtrees in the corresponding binary tries. See, e.g., the full subtree
whose leaves correspond to elements 8, 9, 10, 11 in the binary trie of Figure 5. Let v be a
bintrie(S) node whose subtree is full. Let depth(v) = d. If b = path(v), the 2ℓ−d leaves
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covered by v correspond to the integer interval [dec(b · 0ℓ−d)..dec(b · 1ℓ−d)]. So, the subtree
of v can be removed, keeping just v, saving space and still being able to recover the removed
elements.

1 3 7 8 9 10 11 12

0

0

0

0

0

0

0

0

01 1

1

1

1

1

1 1

1

1

1 11B1 :

11 11B2 :

11 01 00 10B3 :

01 01 01 10B4 :

Figure 5 Left side, the binary trie representing set {1, 3, 7, 8, 9, 10, 11, 12}. Notice that the
subtree whose leaves correspond to elements 8, 9, 10, 11 is a full subtree. Right side, our compact
representation removing full subtrees and encoding their roots with 00.

▶ Definition 10. Let S ⊆ [0..u) be a set of n elements. We define rTrie(S) as the number
of edges in bintrie(S) after removing the maximal full subtrees.

This immediately implies rTrie(S) ≤ trie(S) ≤ 2gap(S), yet we can prove tighter bounds.
Assume a set S with r runs of ℓ1, . . . , ℓr successive elements each, respectively. The ℓi

elements of a given run correspond to ℓi contiguous leaves in bintrie(S) which, according
to Lemma 2 (item 1), are covered by at most 2⌊lg (ℓi/2)⌋ nodes. This is a pessimistic
case that removes the least edges, so we analyze it. Among the cover nodes, there are
2 whose subtrees have 0 edges, 2 whose subtrees have 2 edges, 2 whose subtrees have 6
edges, and so on. In general, for each i = 1, . . . , ⌊lg (ℓi/2)⌋, there are 2 cover nodes whose
subtrees have 2i − 2 edges. If we remove them all, the total number of edges removed is
2

∑⌊lg (ℓi/2)⌋
i=i (2i − 2) ≤ 2ℓi − 4 lg ℓi. This removes the least edges belonging to full subtrees,

so we can bound

rTrie(S) ≤ trie(S)−
r∑

i=1
(2ℓi − 4 lg ℓi). (1)

We can also prove the following bounds.

▶ Lemma 11. Given a set S ⊆ [0..u) of n elements, it holds that

1. rTrie(S) ≤ 2 ·min {rle(S) +
∑r

i=1 lg ℓi, gap(S)}.

2. ∃a ∈ [0..u), such that rTrie(S + a) ≤ min {rle(S)−
∑r

i=1 ℓi + 3
∑r

i=1 lg ℓi, gap(S)}+
2n− 2.

3. rTrie(S + a) ≤ min {rle(S)−
∑r

i=1 ℓi + 3
∑r

i=1 lg ℓi, gap(S)} + 2n − 2 on average,
assuming a ∈ [0..u) is chosen uniformly at random.

Proof. Since S has r runs of ℓ1, . . . , ℓr elements, we can rewrite gap(S) =
∑r

i=1(⌊lg (zi − 1)⌋
+ 1) +

∑r
i=1 (ℓi − 1). As rTrie(S) ≤ trie(S) ≤ 2gap(S), and rTrie(S) ≤ trie(S) −∑r

i=1 (2ℓi − 4 lg ℓi) (Equation 1), it holds that
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rTrie(S) ≤ trie(S)−
r∑

i=1
(2ℓi − 4 lg ℓi)

≤ 2(
r∑

i=1
(⌊lg (zi − 1)⌋+ 1) +

r∑
i=1

(ℓi − 1))−
r∑

i=1
(2ℓi − 4 lg ℓi)

= 2
r∑

i=1
(⌊lg (zi − 1)⌋+ 1) + 4

r∑
i=1

lg ℓi = 2(rle(S) +
r∑

i=1
lg ℓi),

proving item 1. Items 2 and 3 can be proved similarly from items 2 and 3 of Lemma 4. ◀

In our compact representation, we encode a full-subtree cover node using 00. Recall that
00 is an invalid codeword, so we use it as a special mark. See Figure 5 for an illustration.

Given a query Q = {i1, . . . , ik} ⊆ [1..N ], the procedure to compute I(Q) is similar to
that of Algorithm 2. The only difference is that if in a given trie bintrie(Si) we arrive at a
node encoded 00, every possible set element in the subtrie of the node belongs to Si. In other
words, the intersection within the current subtries is independent of Si, so we can safely
temporarily exclude bintrie(Si) from the intersection and continue intersecting the remaining
tries. To implement this idea, we keep boolean flags f1, . . . , fk such that fj corresponds to
bintrie(Sij

). The idea is that at each point during the synchronized DFS traversal, only tries
whose flag is true participate in the intersection. Initially, we set fi ← true, for 1 ≤ i ≤ k.
If, during the intersection process, we arrive at a node encoded 00 in bintrie(Si), we set
fi ← false. When the recursion at a node encoded 00 in bintrie(Si) finishes, we set fi ← true
again. If, at a given point, all tries have been temporarily excluded but one, let us say
bintrie(Sj), we only need to traverse the current subtree in Sj , copying it verbatim to the
output. If this subtree contains nodes encoded 00, they will appear in the output. This way,
the maximal runs of successive elements in the output will be covered by nodes encoded 00.
This fact is key for the adaptive running time of our algorithm, as we shall see below.

We analyze our algorithm introducing the following variant of partition certificates.

▶ Definition 12. Given a query instance Q = {i1, . . . , ik} ⊆ [1..N ], a run-partition certificate
for it is a partition of the universe [0..u) into a set of intervals Pr

AC(Q) = {I1, I2, . . . , Ip},
such that the following conditions hold:
1. ∀x ∈ I(Q), ∃Ij ∈ Pr

AC(Q), such that x ∈ Ij ∧ I(Q) ∩ Ij = Ij;
2. ∀x ̸∈ I(Q), ∃Ij ∈ Pr

AC(Q), such that x ∈ Ij ∧ ∃q ∈ Q, Sq ∩ Ij = ∅.
Let ξ denote the size of the smallest run-partition certificate Pr

AC(Q) of Q. We call ξ the run
alternation measure.

Item 2 is the same as for Barbay and Kenyon’s partition certificates, corresponding to
intervals of elements not in I(Q). Item 1, on the other hand, corresponds to elements in
I(Q) which, unlike Barbay and Kenyon certificates, are not necessarily covered by singletons:
our definition allows one to cover a run of successive elements in I(Q) using a single interval.
Clearly, ξ ≤ δ holds. Besides, although |I(Q)| ≤ δ holds, in our case there can be query
instances such that ξ < |I(Q)|. Figure 6 illustrates our definition for an intersection of 4
sets on the universe [0..15). Notice that ξ = 5, whereas |I(Q)| = 6 and δ = 9.

We must also introduce a fourth type of node to our trie certificate definition of Section 3.
If for an internal node v of cert(Q) with path(v) = b, it holds that there is a node vi with
path(vi) = b in every bintrie(Si), i ∈ Q, and the subtries of all vis is full, then v is called
an internal success node. It is important to note that every interval Ij from item 1 of
Definition 12 is covered only by internal success nodes. Also, internal success nodes only
cover intervals from item 1 of Definition 12.
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Si1 : 7 8 9 10 11 12 13 14 15
Si2 : 5 6 7 8 9 10 11 12 13 14
Si3 : 4 5 6 7 8 9 11 12 13 14
Si4 : 8 9 10 11 12 13 14 15

Figure 6 A query instance Q = {Si1 , Si2 , Si3 , Si4} and its smallest run-partition certificate
Pr

AC(Q) = {[0..7], [8..9], [10..10], [11..14], [15..15]} of size ξ = 5.

Our main result is stated in the following theorem:

▶ Theorem 13. Let S = {S1, . . . , SN} be a family of N integer sets, each of size |Si| =
ni and universe [0..u). There exists a data structure able to represent each set Si using
2rTrie(Si)(1 + o(rTrie(Si))) bits, such that given a query Q = {i1, . . . , ik} ⊆ [1..N ], the
intersection I(Q) = ∩i∈QSi can be computed in O(kξ lg (u/ξ)) time, where ξ is the run
alternation measure of Q.

Proof. Consider the smallest run-partition certificate Pr
AC(Q) = {I1, . . . , Iξ} of universe

[0..u), such that |Ii| = Li for i = 1, . . . , ξ. Let us cover these ξ intervals with as many
nodes of the smallest cert(Q) as possible. As we already saw in the proof of Theorem 8, all
intervals Ii such that Ii ∩ I(Q) = ∅ are covered by at most O(lg Li) nodes in cert(Q). We
now prove the same for intervals Ij ⊆ I(Q), which are covered by internal success nodes of
cert(Q). The only thing to note is that our algorithm stops as soon as it arrives to an internal
success node. As there can be O(lg Lj) such cover nodes, universe [0..u) can be covered by
O(lg u +

∑ξ
i=1 lg Li) = O(lg u +

∑ξ
i=1 lg(u/ξ)) nodes, hence cert(Q) has O(ξ lg(u/ξ)) nodes

overall. The result follows from the fact that at each node the algorithm runs in time
O(k). ◀

6 Implementation

We implemented bit vectors B1, . . . , Bℓ in plain form using class bit_vector<> from the sdsl
library [27]. We support rank1 on them using different data structures to obtain the following
schemes. (trie v, rTrie v): the variants defined in Section 4 and 5, respectively, using
rank_support_v for rank1. It uses ∼25% extra space on top of the bit vector, supporting
rank1 in O(1) time. (trie v5, rTrie v5): use rank_support_v5, requiring ∼6.25% extra
space on top of the bit vectors, supporting rank1 in O(1) time. This alternative is smaller,
yet slower in practice. (trie IL, rTrie IL): use rank_support_il, aiming at reducing the
number of cache misses to compute rank1. We use block size 512, requiring ∼12.5% extra
space on top of the bit vectors, while supporting rank1 in O(1) time.

Most state-of-the-art alternatives we compare with do not support operation rank(S, x).
So, to be fair, we do not store any rank1 data structure for the last-level bit vector Bℓ. Recall
that rank(S, x) is equivalent to a rank1 on the corresponding position of Bℓ. We implemented
Algorithm 2 on our compact trie data structures, following the descriptions from Sections 4
and 5 very closely. We implemented, however, two alternatives for representing the output:
(1) the binary trie representation, and (2) the plain array representation. In our experiments
we will use the latter, to be fair: all testes alternatives produce their outputs in plain form.

We also implemented a simple multithreaded version of our algorithm. Let t denote
the number of available threads. Then, we define c = ⌊lg t⌋. Our algorithm proceeds as
in Algorithm 2, generating a binary trie of height c (that we will call top trie), with at
most t leaves. Then, we execute Algorithm 2 again, this time in parallel, with each thread
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starting from a different leaf of the top trie. Each thread generates its own output in parallel,
using our compact trie representation. Once all threads finish, we concatenate these tries to
generate the final output. We just need to count, in parallel, how many nodes there are in
each level of the trie. Then, we allocate a bit vector of the appropriate size for each level,
where each thread will write its own part of the output in parallel. This simple approach does
not guarantees load balancing among threads, however it works relatively well in practice.

Our source code and instructions to replicate our experiments are available at https:
//github.com/jpcastillog/compressed-binary-tries.

7 Experimental Results

We experimentally evaluate our approaches on a server with an i7 10700k CPU, 8 cores
and 16 threads at 4.70 GHz, 32 GB of RAM (DDR4-3.6GHz) running in dual channel, and
Ubuntu 20.04 LTS OS. Our implementation is developed in C++, compiled with g++ 9.3.0
and optimization flags -O3 and -march=native.

In our tests, we used families of sets corresponding to inverted indexes of three standard
document collections: Gov2 [17], ClueWeb09 [1], and CC-News [38]. For Gov2 and ClueWeb09
collections, we used the freely-available inverted indexes and query logs by Daniel Lemire
(see [34] for details), corresponding to the URL-sorted document enumeration [48] (which
tends to yield runs of successive elements in the sets). The query log contains 20,000 random
queries from the TREC million-query track (1MQ). Each query has at least 2 query terms.
Also, each term is in the top-1M most frequently queried terms. For CC-News we use
the freely-available inverted index by Mackenzie et al. [38] in Common Index File Format
(CIFF) [37], as well as their query log of 9,666 queries. Table 1 shows a summary of statistics
of the collections. In all cases, we only keep sets with at least 4,096 elements.

Table 1 Dataset summary and average space usage (in bits per integer, bpi) for different
compression measures and baseline representations.

Gov2 ClueWeb09 CC-News

# Lists 57,225 131,567 79,831
# Integers 5,509,206,378 14,895,136.282 18,415,151,585
u 25,205,179 50,220,423 43,495,426
⌈lg u⌉ 25 26 26

gap(S) 2.25 3.25 3,70
rle(S) 1.99 3.33 4,23
trie(S) 3.48 4.56 5,18
rTrie(S) 2.51 4.00 5,12

Elias γ 3.71 5.74 6.81
Elias δ 3.64 5.40 6.69
Fibonacci 3.90 5.35 6.09
Elias γ 128 4.07 6.10 7.05
Elias δ 128 4.00 5.77 7.17
Fibonacci 128 4.26 5.71 6.45
rrr_vector<> 11.82 19.94 11.29
sd_vector<> 8.45 8.52 7.17

https://github.com/jpcastillog/compressed-binary-tries
https://github.com/jpcastillog/compressed-binary-tries


D. Arroyuelo and J. P. Castillo 1:15

As baseline, Table 1 also shows the average bit per integer (bpi) for different compression
measures on our tested set collections. We also show the average bpi for different integer
compression approaches, namely Elias γ and δ [22], Fibonacci [25], rrr_vector<> [47], and
sd_vector<> [42], all of them from the sdsl library [27]. In particular, Elias γ, δ, and
Fibonacci codes are known for yielding highly space-efficient set representations in IR indexing
[15], hence they are a strong baselines for comparison. We show a plain version of them, as well
as variants with blocks of 128 integers. The latter are needed to speed up decoding. However,
these approaches are relatively slow to be decoded [15, See Table 6.9], and hence yield higher
intersection times. On the other hand, sd_vector<> uses n lg (u/n) + 2n + o(n) bits to
encode a set of n elements and universe [0..u). Finally, rrr_vector<> uses B(n, u) + o(u)
bits of space. As it can be seen, the o(u)-bit term yields a higher space usage.

Next, we compare our approaches with state-of-the-art set compression alternatives
available at the project Performant Indexes and Search for Academia 1 (PISA) [39]:

IPC: the Binary Interpolative Coding approach by Moffat et al. [40]. This is a highly
space-efficient approach, with a relatively slow processing performance [15, 40].
PEF Opt: the highly competitive approach by Ottaviano and Venturini [43].
OptPFD: The Optimized PForDelta approach by Yan et al. [53].
SIMD-BP128: The highly efficient approach by Lemire and Boytsov [35], aimed at decoding
billions of integers per second using vectorization capabilities of modern processors.
Simple16: The approach by Zhang at al. [54], a variant of the Simple9 approach [5] that
combines a relatively good space usage and an efficient intersection time.
VarintGB: The approach used in Google and presented by Dean [19].
Varint-G8IU: by Stepanov et al. [49], using SIMD instructions to speed-up set processing.

We also compared with the following approaches, available from their authors:
Roaring: the compressed bitmap approach by Lemire et al. [36], widely used as indexing
tool on several systems and platforms [3]. Roaring bitmaps are highly competitive,
leveraging modern CPU hardware architectures. We use the code from the authors [2].
RUP: The recent recursive universe partitioning approach by Pibiri [45], using also SIMD
instructions to speed up processing. We use the code from the author [44].

Table 2 shows the average experimental intersection time (in milliseconds per query) and
space usage (in bits per integer) for all the alternatives tested. Figure 7 (in the Appendix)
shows the same results, using space vs. time plots. Our approaches introduce competitive
trade-offs, as follows:
Results for Gov2: rTrie uses 1.166–1.329 times the space of PEF, the former being 1.549–

2.442 times faster. rTrie uses 0.481–0.548 times the space of Roaring, the former being
up to 1.415 times faster. Finally, rTrie uses 0.837–0.954 times the space of RUP, the
former being up to 1.428 times faster.

Results for ClueWeb09: rTrie uses 1.188–1.361 times the space of PEF, the former being
2.117–3.316 times faster. Also, rTrie uses 0.551–0.631 times the space of Roaring, the
former being 1.221–1.913 times faster. Finally, rTrie uses 0.823–0.943 times the space of
RUP, the former being 1.391–2.178 times faster.

Results for CC-News: for this dataset, the resulting inverted lists have considerably less
runs, hence the space usage of trie and rTrie are about the same. However, trie is
faster than rTrie, as the code to handle runs introduces an overhead that does not pay

1 https://github.com/pisa-engine/pisa
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Table 2 Average intersection time (milliseconds per query) and space usage (in bits per integer)
for all alternatives tested.

Gov2 ClueWeb09 CC-News
Data Structure Space Time Space Time Space Time

IPC 3.34 8.66 5.15 30.18 5.87 68.98
Simple16 4.65 2.44 6.72 8.66 6.88 19.74
OptPFD 4.07 2.15 6.28 7.79 6.50 11.80
PEF Opt 3.62 1.88 5.85 6.50 5.80 17.33
VarintGB 10.80 1.43 11.40 7.34 11.04 12.38
Varint-G8IU 9.97 1.38 10.55 5.25 10.24 12.09
SIMD-BP128 6.07 1.29 8.98 4.47 7.36 15.90
Roaring 8.77 1.09 12.62 3.75 9.86 5.56
RUP 5.04 1.10 8.44 4.27 8.41 5.44

trie (v5) 5.18 1.21 7.46 2.81 8.77 8.72
trie (IL) 5.41 1.06 7.83 2.42 9.30 7.46
trie (v) 5.85 0.77 8.50 1.64 9.99 5.21

rTrie (v5) 4.22 1.22 6.95 3.07 8.73 9.74
rTrie (IL) 4.42 1.10 7.31 2.62 9.16 8.13
rTrie (v) 4.81 0.77 7.96 1.96 9.95 6.09

off in this case. So, we will use trie to compare here. It uses 1.512–1.722 times the space
of PEF, the former being 1.987–3.326 times faster. trie uses 0.889–1.013 times the space
of Roaring, the former being up to 1.067 times faster. Finally, trie uses 1.043–1.188
times the space of RUP, the former being up to 1.044 times faster.

We can conclude that in all tested datasets, at least one of our trade-offs is the fastest
and competitive in space usage, outperforming the highly-engineered ultra-efficient set
compression techniques we tested.

8 Conclusions

Trie partition certificates, the main concept we introduced as an alternative to existing
certificates by Demaine et al. [20] and Barbay and Kenyon [12], allowed us to introduce our
main contributions. In particular, we were able to prove that Trabb-Pardo’s intersection
algorithm [50] works in O(kδ lg (u/δ)) time, where δ is the alternation measure of the query
instance [12]. Thus, Trabb-Pardo’s intersection algorithm was likely the first adaptive
intersection algorithm that ever existed, appearing about 22 years before Demaine et al.’s
adaptive approach. The lack of analysis on this algorithm (the original author only analyzed
his algorithm in the average case) might explain the lack of consideration regarding this
algorithm, in particular in practice. Motivated by this result, we introduced compressed
representations of integer sets preserving the running time of Trabb-Pardo’s algorithm,
and even improving it. Summarizing, our proposals: (1) use compressed space usage, (2)
have adaptive intersection computation time, and (3) have highly competitive practical
performance.

Multiple avenues for future research are open now. For instance, novel data structures
supporting operation rank1 have emerged recently [32]. These offer interesting trade-offs,
using less space than then ones we used, with competitive operation times. Another interesting



D. Arroyuelo and J. P. Castillo 1:17

line is that of alternative binary trie compact representations. E.g., a DFS representation [13]
(rather than BFS, as the one used in this paper), which would potentially reduce the number
of cache misses when traversing the tries. Finally, our representation would support dynamic
sets (where insertion and deletion of elements are allowed) if we use dynamic binary tries [6].
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Abstract
We study the approximability of the Longest Run Subsequence problem (LRS for short). For a
string S = s1 · · · sn over an alphabet Σ, a run of a symbol σ ∈ Σ in S is a maximal substring of
consecutive occurrences of σ. A run subsequence S′ of S is a sequence in which every symbol σ ∈ Σ
occurs in at most one run. Given a string S, the goal of LRS is to find a longest run subsequence S∗

of S such that the length |S∗| is maximized over all the run subsequences of S. It is known that
LRS is APX-hard even if each symbol has at most two occurrences in the input string, and that LRS
admits a polynomial-time k-approximation algorithm if the number of occurrences of every symbol
in the input string is bounded by k. In this paper, we design a polynomial-time k+1

2 -approximation
algorithm for LRS under the k-occurrence constraint on input strings. For the case k = 2, we further
improve the approximation ratio from 3

2 to 4
3 .

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases Longest run subsequence problem, bounded occurrence, approximation
algorithm

Digital Object Identifier 10.4230/LIPIcs.CPM.2023.2

Funding This work is partially supported by NSERC Canada, and JSPS KAKENHI Grant Numbers
JP17K00024, JP20H05967, JP21K11755, JP21K19765, JP22H00513, JP22H03550, and JP22K11915.

Acknowledgements The authors would like to thank the anonymous reviewers for their suggestions
and detailed comments that helped to improve the presentation of the paper.

1 Introduction

The main goal of genome analysis is to study and compare genetic content among organisms,
and thus genome sequencing to determine the complete sequence of a genome is one of its
most important stages. Since the first whole genome was obtained [10], genome sequencing
technologies have significantly improved. Almost all the current DNA sequencing technologies
are based on the following process: First, tens or hundreds of millions of fragments from
random positions on the DNA sequence are read via shotgun sequencing. Second, these
randomly extracted fragments, called reads, are merged to form a set of contiguous sequences,
called contigs, by using an assembly algorithm. Then, the contigs are ordered correctly in a
phase called scaffolding. One commonly used approach for scaffolding is to rearrange contigs
by comparing two or more incomplete assemblies of related samples (see, for example, [8]).
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In the context of the scaffolding phase of genome assembly, the One-Sided Scaffold
Filling problem [9], Two-Sided Scaffold Filling problem [7], One-Side-Filled
Longest Common Subsequence problem [3], and Two-Side-Filled Longest Common
Subsequence problem [4] were formulated as combinatorial optimization problems on
two strings. For those problems, their computational complexities were proved, and then
fixed-parameter tractable algorithms, approximation algorithms, and exponential-time exact
algorithms were proposed in [2, 3, 4, 7]. Very recently, as a different formulation of the
scaffolding phase, Schrinner et al. [11, 12] introduced the Longest Run Subsequence
problem (LRS for short), defined as follows: For a string S = s1 · · · sn over an alphabet Σ,
a run of a symbol σ ∈ Σ in S is a maximal substring of consecutive occurrences of σ. A run
subsequence S′ of S is a sequence in which every symbol σ ∈ Σ occurs in at most one run.
Given a string S, the goal of LRS is to find a longest run subsequence S∗ of S such that the
length |S∗| is maximized over all the run subsequences of S.

▶ Example 1. Consider the string S = abacacbbab over the alphabet Σ = {a, b, c}. It
contains (i) four runs of symbol a, i.e., a in the first position, a in the third position, a in the
fifth position, and a in the ninth position, (ii) three runs of symbol b, i.e., b in the second
position, bb in the seventh and eighth positions, and b in the tenth position, and (iii) two
runs of c, i.e., c in the fourth position, and c in the sixth position in S. The numbers of
occurrences of a, b, and c are four, four, and two, respectively.

An optimal solution to LRS on input S is S∗ = aaccbbb. For example, the leftmost run aa

of length two in S∗ is obtained from the leftmost substring aba in S by deleting the second
character b. One sees that S∗ is a run subsequence, i.e., S∗ contains (at most) one run for
every symbol. The length of S∗ is seven. Note that S′ = aaacbbb is another optimal solution
since |S′| is also seven. ⌟

Schrinner et al. [12] showed that LRS is NP-hard. Subsequently, Dondi and Sikora [5]
showed that LRS is APX-hard even if each symbol has at most two occurrences in the input
string, and that LRS admits a polynomial-time min{|Σ|, k}-approximation algorithm if the
number of occurrences of every symbol in the input string is bounded by k.

In this paper, we propose the following improved approximation algorithms for LRS:
We first design a polynomial-time k+1

2 -approximation algorithm for LRS, when the number
of occurrences of every symbol is at most k.
For the case k = 2, we further improve the approximation ratio from 3

2 to 4
3 .

Related work. The fixed-parameter tractability and the parameterized complexity of LRS
have been previously investigated [5, 12]: Schrinner et al. [12] showed that there is an
O(|Σ| · |S| ·2|Σ|)-time algorithm, given a string S over an alphabet Σ as input of LRS, i.e., LRS
is fixed-parameter tractable when parameterized by the size |Σ| of the alphabet on which the
input string is defined. Dondi and Sikora [5] showed that LRS can be solved by a randomized
algorithm in O(2r · r · |S|3) time and polynomial space, where r is the number of different
runs in a solution, and thus r ≤ |S|. They also proved that LRS admits a polynomial kernel
when parameterized by the length of the solution, but that it does not admit a polynomial
kernel when parameterized by the size |Σ| of the alphabet or by the number r of runs.

2 Preliminaries

Let Σ be a finite alphabet of symbols. A string S = s1 · · · sn is a sequence of n characters,
each of which is a symbol in Σ. Two or more characters in S can be the same symbol in Σ.
For a string S = s1 · · · sn, |S| denotes the length of S, i.e., |S| = n. A subsequence of S is a
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sequence si1 · · · sim , such that 1 ≤ i1 < i2 < · · · < im ≤ |S|. Let S[i] denote the character of
S in the ith position for 1 ≤ i ≤ |S|, and S[i, j] denote the substring of S that starts from
the ith position and ends at the jth position. For a symbol σ, we denote by σk a string that
is the concatenation of k occurrences of symbol σ for some integer k ≥ 1. A run in S is a
substring S[i, j] such that: (1) S[i] = S[i + 1] = · · · = S[j]; (2) S[i − 1] ̸= S[i] if i > 1; and
(3) S[j + 1] ̸= S[j] if j < |S|. For any σ ∈ Σ, a run in S of the form σk is called a length-k
σ-run in S. Observe that if S[i, j] is a σ-run, then it has length j − i + 1. Given a string
S on alphabet Σ, a run subsequence S′ of S is a subsequence in which every symbol σ ∈ Σ
occurs in at most one run.

Let occ(σ) be the number of occurrences of σ in the input string S. Let occmax(S) =
maxσ∈S occ(σ). For example, consider a string S = abacaabbab. Then, S includes four a-runs,
a, a, a2, and a, three b-runs, b, b2, and b, and one length-1 c-run. The number occ(a) of
occurrences of a is five. Also, occ(b) = 4 and occ(c) = 1. Therefore, occmax(S) = 5.

Our problem LRS can be formulated as follows:

▶ Problem 2 (Longest Run Subsequence problem, LRS). Given an alphabet Σ and a
string S = s1 · · · sn with si ∈ Σ, the goal of LRS is to find a longest run subsequence S∗ of S,
i.e., every σ ∈ Σ occurs in at most one run in S∗ and the length |S∗| is maximized over all
the run subsequences of S.

Schrinner et al. [12] show that LRS is NP-hard by giving a polynomial-time reduction
from the Linear Ordering problem, which is shown to be NP-hard in [6]. In this paper
we consider the following restricted LRS:

▶ Problem 3 (k-Longest Run Subsequence problem, k-LRS). If the maximum number
occmax(S) of occurrences of symbols in the input S is bounded by k, then the problem is
called the k-Longest Run Subsequence problem, k-LRS.

One sees that 1-LRS is trivial since the length of all the runs in the input string S is one,
and thus the input S itself is the optimal run subsequence. Dondi and Sikora [5] show that
2-LRS remains hard even from the approximation point of view; they give an L-reduction
from the Minimum Independent Set on Cubic Graph problem, which is shown to be
APX-hard in [1]:

▶ Proposition 4 ([5]). 2-LRS is APX-hard.

Suppose that an input string of k-LRS is S over an alphabet Σ. Also, without loss of
generality, we assume here that every symbol in Σ appears at least once, and the maximum
number occmax(S) of occurrences of symbols in S is k. Note that the length of an optimal run
subsequence is bounded by k|Σ|. Consider the following two simple algorithms, (i) and (ii):

(i) Arbitrarily select one run of every symbol σ ∈ Σ in S, and construct a run subsequence
S′ by concatenating all the selected runs.

One sees that |S′| is at least |Σ|. Therefore, we can conclude that k-LRS is k-approximable.

(ii) Find a symbol, say, σ of the maximum occurrences k, and construct another run
subsequence S′′ = σk.

Then, we can conclude that k-LRS is |Σ|-approximable. By using those two algorithms,
we obtain the following proposition:

▶ Proposition 5 ([5]). There is a min(|Σ|, k)-approximation algorithm for k-LRS.

Since min(|Σ|, k) ≤
√

|S|, the above proposition implies the following:

▶ Corollary 6 ([5]). The general LRS problem admits a
√

|S|-approximation algorithm.

CPM 2023
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3 A polynomial-time k+1
2 -approximation algorithm for k-LRS

In this section, we improve the approximation ratio for k-LRS from k to k+1
2 . Our approxim-

ation algorithm ALG uses a very natural idea:

Algorithm ALG. Given an input string S over an alphabet Σ, ALG selects a longest σ-run in
S for each σ ∈ Σ, and outputs the concatenation of all the selected longest runs.

▶ Example 7. Consider the input string S = abacaabbab (for 5-LRS). The longest a-run,
b-run, c-run are aa in the fifth and sixth positions, bb in the seventh and eighth positions,
and c in the fourth position. Therefore, the output of ALG is ALG = caabb. ⌟

We now prove that the above simple algorithm achieves the claimed approximability
bound:

▶ Theorem 8. ALG is a polynomial-time k+1
2 -approximation algorithm for k-LRS.

Proof. Clearly, ALG returns a valid solution since one run is selected for every symbol in
S, and runs in polynomial time. We bound its approximation ratio in the following. Let S

be an input string of k-LRS. We assume that S consists of m symbols, i.e., |Σ| = m, and
occmax(S) = k. Then, suppose that OPT and ALG are solutions obtained by an optimal
algorithm and our algorithm ALG, respectively, for the input S. We consider the following
two cases: (Case 1) The length of every run in S is one, and (Case 2) the length of some
run in S is at least two.

(Case 1). Suppose that the length of every run in S is one. Let mℓ be the number of
symbols in OPT such that the length of the run of those symbols is exactly ℓ (≤ k).

First, the following two equalities hold:

|OPT | =
k∑

i=1
i · mi; and (1)

|ALG| = m. (2)

Let D be the number of characters deleted from S by the optimal algorithm. Since

|Σ| =
k∑

i=0
mi = m and occmax(S) = k, the following is satisfied:

|OPT | = |S| − D ≤ km − D. (3)

We now derive a lower bound on D. Suppose that a symbol σ2 in S appears exactly
twice in the optimal solution OPT , i.e., OPT contains the length-2 σ2-run σ2σ2. Recall
that the length of all the runs in the input string S is one. Namely, there is at least one
different character, say, σ′ between two σ2’s in S. That is, σ′ must be deleted from S in
order to obtain the length-2 σ2-run. Since OPT contains m2 symbols such that the length
of the runs of those symbols is exactly two, the total number of deleted characters from S to
obtain the length-2 runs is at least m2. It is important to note that the character-deletion to
obtain each run is independently carried out, and therefore the number of deleted characters
is not doubly counted. Similarly, the total number of deleted characters from S to obtain the
length-ℓ runs is at least (ℓ − 1)mℓ for each 3 ≤ ℓ ≤ k. As a result, we obtain the following
lower bound on D:

D ≥ m2 + 2m3 + · · · + (k − 1)mk =
k∑

i=2
(i − 1)mi =

k∑
i=1

(i − 1)mi. (4)
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From Eq.(3) and Eq.(4), the following inequality holds:

|OPT | ≤ km −
k∑

i=1
(i − 1)mi.

From Eq.(1), this can be rewritten as:

|OPT | ≤ (k + 1)m − |OPT |,

and then rearranged to give:

|OPT | ≤ (k + 1)m
2 .

From Eq.(2), we obtain the following approximation ratio:

|OPT |
|ALG|

≤ k + 1
2 .

(Case 2). Suppose that the length of a σ-run in S is at least two and S consists of symbols
in Σ. For every such symbol σ ∈ Σ, we consider a different symbol σ, called a dummy symbol.
Then, we insert σ between every consecutive two symbols σσ in S so that the two σ’s are
not consecutive. Hence we obtain a longer sequence Sd such that the length of all the runs
in Sd is one. For example, consider a string

S = abacaabbbab.

Then, we insert a dummy a between the fifth and the sixth positions, a dummy b between
the seventh and the eighth positions, and the other dummy b between the eighth and the
ninth positions as follows:

Sd = abacaaabbbbbab.

Note that the number of occurrences of each dummy σ is at most k − 1 since the maximum
number occmax(S) of occurrences of (original) symbols in S is bounded by k. Suppose that
OPTd and ALGd are solutions obtained by an optimal algorithm and our algorithm ALG,
respectively, for the input Sd. One sees that the maximum number occmax(Sd) of occurrences
of symbols in Sd is also bounded by k. Therefore, from the arguments in (Case 1), the
following inequality is satisfied:

|OPTd|
|ALGd|

≤ k + 1
2 . (5)

The original input S is a subsequence of Sd. Hence, the following clearly holds:

|OPT | ≤ |OPTd|. (6)

Now consider ALG and ALGd. (i) For each symbol σ such that the length of all the
σ-runs is one, its dummy σ is not inserted into Sd. Hence, ALG and ALGd contain one σ,
but, of course, neither contains any σ. (ii) If the maximum length of a σ-run in S is (at
least) two for some symbol σ, then ALG contains (at least) two σ’s. On the other hand,
ALGd contains one σ and one dummy σ instead. From (i) and (ii), we have:

|ALG| ≥ |ALGd|. (7)

CPM 2023
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From the three inequalities (5), (6), and (7), the following approximation ratio is obtained
again:

|OPT |
|ALG|

≤ |OPTd|
|ALGd|

≤ k + 1
2 .

For both cases (Case 1) and (Case 2), the approximation ratio of ALG is bounded above
by k+1

2 . ◀

▶ Remark 9. To see that the approximation analysis above is tight, consider the following
string S, where |S| = n = 2kℓ, and σi ̸= σj for i ̸= j.

S =
2k︷ ︸︸ ︷

σ1σ2σ1σ2 · · · σ1σ2

2k︷ ︸︸ ︷
σ3σ4σ3σ4 · · · σ3σ4 · · ·

2k︷ ︸︸ ︷
σ2ℓ−1σ2ℓσ2ℓ−1σ2ℓ · · · σ2ℓ−1σ2ℓ .

Namely, the length-2k prefix string contains k σ1’s and k σ2’s alternatively. The next string
of length 2k contains k σ3’s and k σ4’s alternatively, and so on. Then, we can obtain the
following run subsequence S′ by deleting k − 1 σ2’s from the first length-2k prefix string,
k − 1 σ4’s from the next string of length 2k, and so on:

S′ = σk
1 σ2σk

3 σ4 · · · σk
2ℓ−1σ2ℓ.

Hence, the length of OPT is at least |S′| = (k + 1)ℓ. On the other hand, the solution ALG

of our algorithm ALG for S contains one of the k σi’s for each 1 ≤ i ≤ 2ℓ:

ALG = σ1σ2 · · · σ2ℓ.

The length of ALG is 2ℓ. As a result,

|OPT |
|ALG|

≥ k + 1
2 .

This shows that the analysis of the approximation ratio in the proof of Theorem 8 is tight. ⌟

Recall that we can always return a run subsequence of length k as shown in the previous
section, and k-LRS is |Σ|-approximable. Therefore, we obtain the following corollary:

▶ Corollary 10. There is a polynomial-time min{|Σ|, k+1
2 }-approximation algorithm for

k-LRS.

4 A polynomial-time 4
3-approximation algorithm for 2-LRS

For 2-LRS, ALG achieves the approximation ratio of 3
2 . In this section we improve the

approximation ratio to 4
3 .

As shown in Remark 9, the following string S is a bad example for ALG.

S = ababcdcdefef.

One sees that from the leftmost substring S[1, 4] = abab of length four (resp. S[5, 8] = cdcd

and S[9, 12] = efef), we can only obtain a run subsequence of length at most three, i.e.,
the length of any optimal solution is at most nine. Therefore, one of the possible optimal
solution OPT for S is:

OPT = aabccdeef.
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The solution ALG of ALG for S is:

ALG = abcdef.

Namely, OPT has two a’s (resp. two c’s and two e’s), but ALG has only one a (resp. one
c and one e). This observation suggests to us that if there is only one character, say, σ′

between two occurrences of a symbol σ, then we should delete σ′ and obtain a run σσ of
length two. This is a basic strategy of our new algorithm ALG2.

Before describing details of ALG2, we give some definitions which are used in the following.
Let S be an input string. Assume that all the symbols in Σ appear in S. We define several
subsets of Σ in the following.

Let Σ1 = {σ | occ(σ) = 1, σ ∈ Σ} be a set of symbols that appear exactly once in the
input string S.
Let Σ2 = {σ | occ(σ) = 2, σ ∈ Σ} be a set of symbols that appear exactly twice in the
input string S.

Note that Σ = Σ1 ∪ Σ2 in 2-LRS. Now, we consider a symbol σ ∈ Σ2 and define several
disjoint subsets of Σ2. In the following, by distance we mean the number of characters
between the two occurrences of a symbol.

If two σ’s consecutively appear in S, then we call σ a distance-0 symbol. Let Σ2,0 be a
subset of all the distance-0 symbols in Σ2.
If there is one character between two σ’s, then we call σ a distance-1 symbol. Let Σ2,1 be
a subset of all the distance-1 symbols in Σ2.
We define Σ2,≥2 = Σ2 \ (Σ2,0 ∪ Σ2,1), i.e., for each σ ∈ Σ2,≥2, σ appears twice in S and
there are at least two characters between the two σ’s.

Next, consider a symbol γ ∈ Σ1. As a special case, the left and the right symbols of γ

can be the same symbol γ′ ∈ Σ2,1, i.e., the input string S possibly contains a substring γ′γγ′

of length 3, called a special triple.
Let Γ1 be a set of center symbols of special triples. Note that Γ1 ⊆ Σ1.
Let Γ2,1 be a set of left and right symbols of special triples. Note that Γ2,1 ⊆ Σ2,1.

One sees that |Γ1| = |Γ2,1|.
Finally, consider two symbols σ and σ′ in Σ2,1 \ Γ2,1 in the input string S such that

the substring(s) containing σ and σ′ can be represented by (i) S = · · · σσ′σσ′ · · · , or
(ii) S = · · · σλσ · · · σ′λ′σ′ · · · , where both λ and λ′ are in Σ2,≥2. (i) If S contains σσ′σσ′ as
a substring, then we say that a pair of σ and σ′ is called a Ψ-pair. Then, σ and σ′ belong to
a set Ψ2,1. (ii) If λ = λ′, then we say that a pair of σ and σ′ is a Λ-pair related to λ. Then,
σ and σ′ belong to a set Λ2,1 and λ belongs to Λ2,≥2. Note that |Λ2,1| = 2|Λ2,≥2|.

Algorithm. The following is a description of our algorithm ALG2. During execution of ALG2,
we determine which characters are included into the run subsequence ALG2 or not, step
by step. Finally, ALG2 outputs the concatenation of the characters (or the subsequences)
included into ALG2 in each step.

Algorithm ALG2.

Input An input string S over an alphabet Σ such that every symbol in Σ appears at
most twice.

Output A run subsequence.
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Step 1. Count the number of occurrences of every symbol in Σ, and divide Σ to two
subsets Σ1 and Σ2. Then, examine the distance of every symbol in Σ2, and obtain
Σ2,0, Σ2,1, and Σ2,≥2.

Step 2. Find all the special triples, all the Ψ-pairs, and all the Λ-pairs.
Step 3. For every σ ∈ Σ2,0, the length-2 σ-run σ2 is included into ALG2.
Step 4. For every σ ∈ Σ2,1, execute the following:

(i) For every special triple γ′γγ′, the first two characters γ′ ∈ Γ2,1 and γ ∈ Γ1 are
included into ALG2. That is, the third character γ′ of that special triple is not
included into ALG2.

(ii) For every Ψ-pair of σ and σ′, i.e., for each string σσ′σσ′, its subsequence
σσ′σ′ is included into ALG2. That is, the third character σ of that string is not
included into ALG2.

(iii) For every Λ-pair related to λ of σ and σ′, i.e., for two strings σλσ and σ′λσ′,
two subsequences σλ, and σ′2 are included into ALG2. That is, the third
character σ of the former string and the second character λ of the latter string
are not included into ALG2.

(iv) For every σ ∈ Σ2,1 \ (Γ2,1 ∪ Ψ2,1 ∪ Λ2,1), σ2 is included into ALG2. That is,
the character between the two σ’s is not included into ALG2.

Step 5. For every σ ∈ Σ2,≥2 \ Λ2,≥2, only the first occurrence of σ is included into
ALG2. That is, if neither of the two occurrences of σ is determined whether or not
to be included into ALG2, then the first occurrence is included into ALG2 and the
other not into ALG2

1. If only one occurrence remains undetermined, then it is
included into ALG2.

Step 6. Every σ ∈ Σ1 \ Γ1 is included into ALG2.
Step 7. Output the concatenation of the characters and the subsequences included

into ALG2 in Step 3 through Step 6 as a run subsequence, and then halt.

▶ Remark 11. Importantly, the output run subsequence of ALG2 includes at least one
occurrence of every symbol in Σ. ⌟

▶ Example 12. To clarify the behavior of ALG2, we take a look at the following input string
of length 20:

S = abacdbdecefgfhhijkjk.

One sees that Σ1 = {g, i}, Σ2,0 = {h}, Σ2,1 = {a, d, e, f, j, k}, and Σ2,≥2 = {b, c}.
(Step 3) S[14, 15] = hh is included into ALG2. (Step 4-(i)) Since f ∈ Σ2,1 and g ∈ Σ1,
S[10, 12] = fgf is a special triple. Therefore, we select fg from fgf . (Step 4-(ii)) Since there
is a substring S[17, 20] = jkjk, the pair of j and k is a Ψ-pair, Ψ2,1 = {j, k}. Then, jkk is
included into ALG2. (Step 4-(iii)) S contains S[1, 3] = aba and S[5, 7] = dbd and thus the
pair of a and d is a Λ-pair related to b; Λ2,1 = {a, d} and Λ2,≥2 = {b}. Hence, ab and dd are
included into ALG2. (Step 4-(iv)) From S[8, 10] = ece, we obtain a run e2 of length two, and
S[9] = c is not included into ALG2. (Step 5) The fourth character c is included into ALG2
since c ∈ Σ2,≥2 \ Γ2,≥2 and S[9] = c is not included into ALG2 in Step 4-(iv). (Step 6) The

1 Alternatively, we can choose any one of the two occurrences of each symbol, to obtain the same
approximation ratio.
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16th character i is included into ALG2 since i ∈ Σ1 \ Γ1. (Step 7) Finally, the following
concatenation of the characters and the subsequences obtained in Step 3 through Step 6 is
output as the run subsequence ALG2 of length 15:

ALG2 = abcddeefghhijkk.

⌟

▶ Theorem 13. ALG2 is a polynomial-time 4
3 -approximation algorithm for 2-LRS.

Proof. Clearly, ALG2 returns a valid solution and runs in polynomial time. We bound its
approximation ratio in the following. Suppose that OPT and ALG2 are run subsequences
obtained by an optimal algorithm and our algorithm ALG2, respectively, for the input string S.

We assume that the optimal run subsequence OPT consists of the following symbols
(OPT1 through OPT4) or characters in special triples (OPT5):
(OPT1) Consider symbols in Σ2,≥2. Suppose that there are m2,≥2,2 symbols such that two

occurrences of each of them are included into OPT by deleting all the characters between
two occurrences. Also, suppose that there are m2,≥2,1 (resp. m2,≥2,0) symbols such that
one occurrence (resp. no occurrence) of each of them is included into OPT .

(OPT2) Consider symbols in Σ2,1 \ Γ2,1. Suppose that there are m2,1,2 symbols such that
two occurrences of each of them are included into OPT by deleting one character between
two occurrences. Also, suppose that there are m2,1,1 (resp. m2,1,0) symbols such that
one occurrence (resp. no occurrence) of each of them is included into OPT .

(OPT3) Consider symbols in Σ2,0. Suppose that there are m2,0,2 (resp. m2,0,0) symbols
such that two occurrences (resp. no occurrence) of each of them are included into OPT .
Remark that since the goal is to maximize the length of the run subsequence, we can
assume that two occurrences (one run of length two) of the symbol in Σ2,0 are completely
included into OPT , or completely deleted.

(OPT4) Consider symbols in Σ1 \ Γ1. Suppose that there are m1,1 (resp. m1,0) symbols
such that one occurrence (resp. no occurrence) of each of them is included into OPT .

(OPT5) Consider special triples. For example, take a look at γ′γγ′ where γ ∈ Γ1 and
γ′ ∈ Γ2,1. One sees that we cannot select all the three characters into any solution
subsequence since it can contain at most one run for every symbol. Therefore, OPT

includes at most two characters of the special triple, γ′2, γ′γ, or γγ′. Since the goal is to
maximize the length of the run subsequence, we can assume that OPT includes one of
the two characters of the special triple, or does not include any character from the special
triple. Suppose that there are mγ,2 (resp. mγ,0) special triples such that two characters
(resp. no character) of each of them are included into OPT .

Then, the length of OPT is calculated as follows:

|OPT | =
OPT1︷ ︸︸ ︷

2m2,≥2,2 + m2,≥2,1 +
OPT2︷ ︸︸ ︷

2m2,1,2 + m2,1,1 +
OPT3︷ ︸︸ ︷

2m2,0,2 +
OPT4︷︸︸︷
m1,1 +

OPT5︷ ︸︸ ︷
2mγ,2 . (8)

Now, let D be the number of deleted symbols from S by the optimal algorithm. Then, D

is counted by the above assumption:

D =
OPT1︷ ︸︸ ︷

m2,≥2,1 + 2m2,≥2,0 +
OPT2︷ ︸︸ ︷

m2,1,1 + 2m2,1,0 +
OPT3︷ ︸︸ ︷

2m2,0,0 +
OPT4︷︸︸︷
m1,0 +

OPT5︷ ︸︸ ︷
mγ,2 + 3mγ,0 . (9)

Next, we consider a lower bound on D. As for symbols in Σ2,≥2, we assumed in (OPT1)
that there are m2,≥2,2 symbols such that two occurrences of each of them are included into
OPT , i.e., at least two characters between the two occurrences must be deleted. Also, as
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for symbols in Σ2,1 \ Γ2,1, we assumed in (OPT2) that there are m2,1,2 symbols such that
two occurrences of each of them are included into OPT , i.e., one character between the two
occurrences must be deleted. As a result, the following inequality holds:

D ≥ 2m2,≥2,2 + m2,1,2. (10)

Now, we estimate the length of the output run subsequence of ALG2.
(ALG1) Consider symbols in Σ2,0. In Step 3, two occurrences of every symbol in Σ2,0 are

included into ALG2, i.e., 2m2,0,2 + 2m2,0,0 characters are included into ALG2.
(ALG2) Consider symbols in Γ2,1. In Step 4-(i), one occurrence of every symbol in Γ2,1 is

included into ALG2, i.e., mγ,2 + mγ,0 characters are totally included in ALG2.
(ALG3) Consider symbols in Σ1. In Step 4-(i), every symbol in Γ1 (⊆ Σ1) is included into

ALG2. In Step 6, every symbol in Σ1 \ Γ1 is included into ALG2. That is, all the symbols
in Σ1 are included into ALG2. In total, m1,1 +m1,0 +mγ,2 +mγ,0 characters are included
into ALG2.

(ALG4) Consider symbols in Σ2,≥2. In Step 4-(iii), one occurrence of every symbol in Λ2,≥2
(⊆ Σ2,≥2) is included into ALG2. Also, in Step 5, one occurrence of every symbol in
Σ2,≥2 \ Λ2,≥2 is included into ALG2. In total, m2,≥2,2 + m2,≥2,1 + m2,≥2,0 characters are
included into ALG2.

(ALG5) Consider symbols in Σ2,1 \ Γ2,1. Recall that |Σ2,1 \ Γ2,1| = m2,1,2 + m2,1,1 + m2,1,0.
Consider a Ψ-pair of σ and σ′, i.e., a substring σσ′σσ′ of length four in S. In Step 4-(ii),
three characters σ, σ′, and σ′ are selected from the Ψ-pair of σ and σ′. Namely, we can
see that three characters per two symbols are included into ALG2. Also, in Step 4-(iii),
three characters σ, σ′, and σ′ are selected from every Λ-pair of σ and σ′. Again, three
characters per two symbols are included into ALG2. In Step 4-(iv), two occurrences of
every symbol in (Σ2,1 \ Γ2,1) \ (Ψ2,1 ∪ Λ2,1) are included into ALG2. As a result, at least
3
2 (m2,1,2 + m2,1,1 + m2,1,0) characters are included into ALG2.

Then, the following inequality on the length of ALG2 holds:

|ALG2| ≥
ALG4︷ ︸︸ ︷

m2,≥2,2 + m2,≥2,1 + m2,≥2,0 +

ALG5︷ ︸︸ ︷
3
2(m2,1,2 + m2,1,1 + m2,1,0)

+
ALG1︷ ︸︸ ︷

2m2,0,2 + 2m2,0,0 +
ALG2 and ALG3︷ ︸︸ ︷

m1,1 + m1,0 + 2mγ,2 + 2mγ,0 . (11)

From Eq.(9) and Eq.(10), we obtain the following inequality:

1
3(m2,≥2,1 + 2m2,≥2,0 − m2,1,2 + m2,1,1 + 2m2,1,0 + 2m2,0,0 + m1,0 + mγ,2 + 3mγ,0)

≥ 2
3m2,≥2,2. (12)

Therefore, from Eq.(8) and Eq.(12), |OPT | is bounded as follows:

|OPT | =
(

4
3m2,≥2,2 + 2

3m2,≥2,2

)
+ m2,≥2,1 + 2m2,1,2 + m2,1,1

+ 2m2,0,2 + m1,1 + 2mγ,2

≤ 4
3m2,≥2,2 + 4

3m2,≥2,1 + 2
3m2,≥2,0 + 5

3m2,1,2 + 4
3m2,1,1 + 2

3m2,1,0

+ 2m2,0,2 + 2
3m2,0,0 + m1,1 + 1

3m1,0 + 7
3mγ,2 + mγ,0 (13)
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One can verify that the following is satisfied from Eq.(11) and Eq.(13):

|OPT |
|ALG2|

≤ 4
3 . ◀

▶ Remark 14. Again, we can show the tightness for the approximation ratio 4
3 of ALG2.

Consider the following string S, where |S| = n = 6ℓ.

S = σ1σ2σ3σ1σ2σ3σ4σ5σ6σ4σ5σ6 · · · σ3ℓ−2σ3ℓ−1σ3ℓσ3ℓ−2σ3ℓ−1σ3ℓ.

Then, we can find the following run subsequence S′:

S′ = σ2
1σ2σ3σ2

4σ5σ6 · · · σ2
3ℓ−2σ3ℓ−1σ3ℓ

Therefore, the length of OPT is at least |S′| = 4ℓ. On the other hand, the solution of our
algorithm ALG2 for S contains only one of the two σi’s for each 1 ≤ i ≤ 3ℓ since every symbol
is in Σ2,≥2:

ALG2 = σ1σ2 · · · σ3ℓ.

The length of ALG2 is 3ℓ. As a result,

|OPT |
|ALG2|

≥ 4
3 .

This shows that the above approximation analysis is tight. ⌟

5 Conclusion

We have presented a polynomial-time k+1
2 -approximation algorithm for k-LRS, where the

number of occurrences of every symbol in the input string is at most k. Then, for the
case k = 2, we have reduced the approximation ratio to 4

3 . The current approximation
algorithm for 2-LRS is a little bit complicated, and thus might be simplified to obtain the
same approximation ratio. Future work is to further improve the approximation ratio of
4
3 for 2-LRS, and to design an even better approximation algorithm for general k-LRS. It
would also be useful to derive tight bounds on the polynomial-time approximation hardness
of k-LRS in terms of k.
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3:2 Optimal LZ-End Parsing Is Hard

1 Introduction

In the context of lossless data compression, various repetitiveness measures – especially those
based on dictionary compression algorithms – and relations between them have recently
received much attention (see the excellent survey by Navarro [12, 13]). One of the most
fundamental and well-known measures is the LZ77 parsing [15], in which a string is parsed
into z phrases such that each phrase is a single symbol, or the longest substring which has a
previous occurrence. LZ-End [9, 10] is a variant of LZ77 parsing with the added constraint
that a previous occurrence of the phrase must end at the end of a previous phrase. More
formally, the LZ-End parsing is a factorization q1, . . . , qze

of a given string that can be
greedily obtained from left to right: each phrase qi is either (1) a symbol that is the leftmost
occurrence of the symbol or (2) the longest prefix of the remaining suffix qi · · · qze

that is a
suffix of q1 · · · qj for some j < i. It is known that LZ-End parsing can be computed in linear
time [6], and there exists a space-efficient algorithm [5].

While there is no known data structure of O(z) size that provides efficient random access
to arbitrary positions in the string, it was recently shown that Õ(1) time access could
be achieved with O(ze) space [8]. Furthermore, concerning the difference between z and
ze, an upper bound of ze = O(z log2(n/z)) was shown [8], where n is the length of the
(uncompressed) string. On the other hand, there is an obvious bound of ze = Ω(z log n) for
the unary string, since a previous occurrence of an LZ-End phrase cannot be self-referencing,
i.e., overlap with itself, while an LZ77 phrase can. Notice that z ≤ zno ≤ ze holds for
any string, where zno is the number of phrases in the LZ77 parsing that does not allow
self-referencing. A family of strings such that the ratio ze/zno asymptotically approaches 2
(for large alphabet [10], for binary alphabet [4]) is known, and it is conjectured that ze ≤ 2zno

holds for any strings [10].
While the phrases in the parsings described above are chosen greedily (i.e., longest), we

can consider variants which do not impose such constraint, e.g., in an LZ-End-like parsing,
each phrase qi is either (1) a symbol that is the leftmost occurrence of the symbol or (2) a (not
necessary longest) prefix of the remaining suffix which is a suffix of q1 · · · qj for some j < i. We
refer to an LZ-End-like parsing with the smallest number zend of phrases, an optimal LZ-End
parsing [12], and call the original, the greedy LZ-End parsing.1 Thus z ≤ zno ≤ zend ≤ ze

holds.
Interestingly, zend ≤ g holds, where g is the size of the smallest context free grammar

that derives (only) the string, while a similar relation between ze and g does not seem to be
known [12].

This brings us to two natural and important questions about the measure zend:
How efficiently can we compute zend?
How much smaller can zend be compared to ze?

In this work, we answer a part of the above questions. Namely:
1. We prove the NP-hardness of computing zend.
2. We present an algorithm for exact computation by MAX-SAT.
3. We give a lower bound of the maximum value of the ratio ze/zend.

In Section 3, we give the hardness result. Our reduction is from the vertex cover problem:
finding a minimum set U of vertices such that every edge in a graph is incident to some
vertex in U . In Section 4, we show a MAX-SAT formulation for computing the optimal

1 Notice that we do not need the distinction for LZ77, since the greedy LZ77 parsing is also an optimal
LZ77-like parsing.
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LZ-End parsing that follows an approach by Bannai et al. that allows computing NP-hard
repetitiveness measures using MAX-SAT solvers [1]. In Section 5, we consider the ratio
ze/zend. We give a family of binary strings such that the ratio asymptotically approaches 2.
Note that we can easily modify this result to a larger alphabet. Since (ze/zend) ≤ (ze/zno),
the bound is tight, assuming that the conjecture by Kreft and Navarro [10] holds.

Related work
The LZ77 and LZ78 are original members of the LZ family [15, 16]. It is well-known that the
(greedy) LZ77 parsing produces the optimal version of the parsing [11]. The LZ78 parsing
satisfies that each phrase can be represented as a concatenation of a previous phrase and
a symbol. The NP-hardness of computing the optimal version of the LZ78 variant was
shown [2]. This hardness result is also given by a reduction from the vertex cover problem.
However, our construction of the reduction for the LZ-End differs from that for the LZ78
since these parsings have very different structures. The smallest string attractor [7] is one
of the most fundamental repetitiveness measures. It is also known that computing the
smallest string attractor of a given string is NP-hard [7]. The hardness result was proven by
a reduction from the set-cover problem.

2 Preliminaries

2.1 Strings
Let Σ be an alphabet. An element of Σ∗ is called a string. The length of a string w is denoted
by |w|. The empty string ε is the string of length 0. Let Σ+ be the set of non-empty strings,
i.e., Σ+ = Σ∗ \ {ε}. For any strings x and y, x · y denotes the concatenation of two strings.
We will sometimes abbreviate “·” (i.e., x · y = xy). For a string w = xyz, x, y and z are
called a prefix, substring, and suffix of w, respectively. They are called a proper prefix, a
proper substring, and a proper suffix of w if x ̸= w, y ̸= w, and z ̸= w, respectively. The i-th
symbol of a string w is denoted by w[i], where 1 ≤ i ≤ |w|. For a string w and two integers
1 ≤ i ≤ j ≤ |w|, let w[i..j] denote the substring of w that begins at position i and ends at
position j. For convenience, let w[i..j] = ε when i > j. We will sometimes use w[i..j) to
denote w[i..j − 1]. For any string w, let w1 = w and let wk = wwk−1 for any integer k ≥ 2,
i.e., wk is the k-times repetition of w.

2.2 LZ-End parsing
We give a definition of the LZ-End parsing, which is a variant of the Lempel-Ziv family.

▶ Definition 1 ((Greedy) LZ-End parsing). The LZ-End parsing of a string w is the parsing
LZEnd(w) = q1, . . . , qze

of w such that qi is either a symbol that is the leftmost occurrence of
the symbol or the longest prefix of qi · · · qze that occurs as a suffix of q1 · · · qj for some j < i,
which we call a source of the phrase.

We refer to each qi as a phrase. This definition, used in [8], is slightly different from the
original version [9, 10] where a symbol is added to each phrase. The results in this paper
hold for the original version as well (which we will show in the full version of the paper), but
here we use this definition for simplicity. In this paper, we consider a more general version
of the LZ-End parsing: a parsing q1, . . . , qzend of a string w such that qi is a (not necessary
longest) suffix of q1 · · · qj for some j < i. We call such a parsing with a minimum number
zend of phrases an optimal LZ-End parsing of w. We give an example of the greedy LZ-End
parsing and the optimal LZ-End parsing in Figure 1.

CPM 2023
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

w = a a c b b b b a a b a b b a b b b a
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

w = a a c b b b b a a b a b b a b b b a

greedy

optimal

Figure 1 Let w = aacbbbbaababbabbba. The greedy LZ-End parsing LZEnd(w) of w is illustrated
in the upper part of the figure. For the phrase at position 10, a longer substring w[10..11] = ba
has another previous occurrence at position 7, but there is no phrase that ends at position 8, and
any longer substring does not have a previous occurrence Therefore, the phrase staring at position
10 is b. The lower part of the figure shows an optimal LZ-End parsing (which is smaller than the
greedy one) on the same string. Each phrase has a previous occurrence that ends at the end of some
LZ-End phrase. The size of the greedy parsing is 12 and the size of the optimal parsing is 11.

2.3 Graphs
Let G = (V, E) be a graph with the set of vertices V and the set of edges E. An edge
e = {u, v} is called an incident edge of u. We denote the set of incident edges of v as ΓG(v)
and drop the subscript whenever it is clear from context. For an edge e = {u, v}, vertices
u and v are the end points of e. For a subset of vertices U ⊆ V , U is a vertex cover if for
any e ∈ E, at least one end point of e is contained in U . Let τG be the size of the minimum
vertex cover of G (i.e., τG denotes the vertex cover number of G). Notice that computing τG

is NP-complete [3].

2.4 Maximum Satisfiability (MAX-SAT) problem
Let {x1, . . . , xn} be a set of literals and C be a conjunctive normal form (CNF) formula.
Each variable in C is assigned a Boolean value (i.e., true or false). The goal of the Satis-
fiability (SAT) problem is to compute an assignment of variables that satisfies all clauses
of C. The Maximum Satisfiability (MAX-SAT) problem is a variant of SAT, in which there
are two types of clauses: hard clauses and soft clauses. A solution for MAX-SAT is a truth
assignment of the variables such that all hard clauses are satisfied, and the number of soft
clauses that are satisfied is maximized.

3 NP-hardness of computing the optimal LZ-End parsing

In this section, we consider the problem of computing the optimal LZ-End parsing of a given
string. A decision version of the problem is given as follows.

▶ Problem 2 (Decision version of computing the optimal LZ-End parsing (OptLE)). Given a
string w and an integer k, decide whether there exists an LZ-End parsing of size k or less.

We show the NP-completeness of OptLE in the following and present an algorithm for exact
computation in the next section.

▶ Theorem 3. OptLE is NP-complete.

Proof. We give a reduction from the vertex cover problem to OptLE. Let G = (V, E) be a
graph with a set of vertices V = {v1, . . . , vn} and a set of edges E = {e1, . . . , em}. Suppose
that an input graph G of the vertex cover problem is connected and |Γ(v)| ≥ 2 for any
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v1 v1 v1 # v1 v1 $ # v1 $ $ # v1 $ e1 # v1 $ e3 # e1 e1 v1 # e3 e3 v1 #
v2 v2 v2 # v2 v2 $ # v2 $ $ # v2 $ e1 # v2 $ e2 # e1 e1 v2 # e2 e2 v2 #
v3 v3 v3 # v3 v3 $ # v3 $ $ # v3 $ e2 # v3 $ e3 # e2 e2 v3 # e3 e3 v3 #

e1 e1 e1 # e2 e2 e2 # e3 e3 e3 #

v1 v1 v1 v1 $ e1 e1 e1 v1 v1 $ e3 e3 e3 v1 v1 $ $ #
v2 v2 v2 v2 $ e1 e1 e1 v2 v2 $ e2 e2 e2 v2 v2 $ $ #
v3 v3 v3 v3 $ e2 e2 e2 v3 v3 $ e3 e3 e3 v3 v3 $ $ #

v1 v1 v1 v1 $ e1 e1 e1 v1 v1 $ e3 e3 e3 v1 v1 $ $ #
v2 v2 v2 v2 $ e1 e1 e1 v2 v2 $ e2 e2 e2 v2 v2 $ $ #
v3 v3 v3 v3 $ e2 e2 e2 v3 v3 $ e3 e3 e3 v3 v3 $ $ #

$ e1 e1 e1 # $ e2 e2 e2 # $ e3 e3 e3 #

$ e1 e1 e1 # $ e2 e2 e2 # $ e3 e3 e3 #

greedy

optimal

<latexit sha1_base64="pGhtcidXX7XZu9GWnPiBt0TXBKs="></latexit>

P

<latexit sha1_base64="wUz0my4Ry93u6U8HOdoU7AFDKjk="></latexit>

Q

<latexit sha1_base64="2Iv9nuEk0RfsJ1YD5UwU9rAnLe8="></latexit>

R

<latexit sha1_base64="19gugTxPp7/mpU6HeHP9EaXqUgQ="></latexit>

S

<latexit sha1_base64="2Iv9nuEk0RfsJ1YD5UwU9rAnLe8="></latexit>

R

<latexit sha1_base64="19gugTxPp7/mpU6HeHP9EaXqUgQ="></latexit>

S

Figure 2 Let G = (V, E) be the complete graph of three vertices v1, v2, v3 and e1 = {v1, v2}, e2 =
{v2, v3}, e3 = {v1, v3}. WG and the greedy parsing and an optimal parsing are illustrated in the
figure. The first two parts (P and Q) share the same parsing. The last two parts (R and S) are
different. The upper part in the figure shows the greedy parsing and the lower part shows an
optimal parsing. For instance, in the optimal parsing, we can choose $e3

1 and $e3
3 as phrases by

using non-greedy parsing in R1. In other words, we can reduce two phrases in S-part by adding
one phrase in R1. In this example, the optimal parsing represents a vertex cover {v1, v3} ⊂ V of G

(since R2 selects the greedy parsing and the others are not).

v ∈ V . We identify each vertex vi as a symbol vi and each edge ei as a symbol ei. We also
introduce the symbol $, and a set of symbols that occur uniquely in the string. The latter is
represented, for simplicity, by the special symbol #, i.e., # represents a different symbol each
time it occurs in our description. We consider the string WG defined by graph G as follows.

WG =
∏n

i=1 Pi ·
∏m

j=1 Qj ·
∏n

i=1 Ri ·
∏m

j=1 Sj

Pi = v3
i #v2

i $#vi$2# · Xi · Yi

Qj = e3
j#

Ri = v4
i $

∏
ej∈Γ(vi)(e3

jv2
i $)$#

Sj = $e3
j#

Xi =
∏

ej∈Γ(vi)(vi$ej#)
Yi =

∏
ej∈Γ(vi)(e2

jvi#)
An example of this string is illustrated in Figure 2. Note that we use i for representing
indices of vertices and j for indices of edges.

Before we show the detail of the reduction, we start with an intuitive description of our
reduction. The string WG consists of four parts (which are represented by P , Q, R, and S).
(1) The first two parts are non-functional parts. They can only be parsed in a single sensible
way. These parts play a role as sources of the third part (R-part). (2) In the third part, Ri

corresponds to the vertex vi. Roughly speaking, Ri can be parsed in two sensible ways such
that the parsing represents whether the vertex vi is in the vertex cover or not. If a vertex vi

is in the vertex cover, then the parsing of Ri needs one more phrase. (3) In the last part, Si

corresponds to the edge ej . Sj will be parsed into two phrases iff one of the incident vertex
of the edge ej is in the vertex cover. Otherwise, Sj has three phrases. Overall, minimizing
the number of vertices for the vertex cover of a graph G corresponds to minimizing the total
penalties in the R-part such that every Sj will be parsed into two phrases.

CPM 2023
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We show that the number of phrases of the optimal parsing of WG is less than 13n+22m+k

if and only if the vertex cover number τG is less than k.
First, we observe an optimal LZ-End parsing of WG. Let us consider a parsing of

∏n
i=1 Pi.

In this part, the greedy parsing gives 10n + 13m phrases. In the greedy parsing of
∏n

i=1 Pi,
phrases v2

i in v2
i $#, vi$ in vi$2#, vi$ej#, and the second occurrence of e2

j have length 2,
and the other phrases have length 1. It is easy to see that this parsing is a smallest possible
parsing of

∏n
i=1 Pi. Moreover, other parsings of the same size do not affect the parsing of

the rest of the string; candidates for a source cannot be increased by selecting any other
parsings since the phrases of length 2 are preceded by unique symbols #. Hence, we can
choose this greedy parsing as a part of an optimal parsing.

In the second part
∏m

j=1 Qj , the greedy parsing also gives an optimal parsing which has
3m phrases (i.e., each Qj is parsed into three phrases since e2

j occurs in Pi for some i and e3
j

is unique in
∏n

i=1 Pi ·
∏m

j=1 Qj). This parsing is also a smallest possible parsing and does
not affect any parsings of the rest of the string.

The remaining suffix
∏n

i=1 Ri ·
∏m

j=1 Sj is a key of the reduction. The key idea is that Sj

represents whether the edge ej is an incident edge of some vertex in a subset of vertices or
not. $e3

j in Sj has exactly two previous occurrences in the R-part (since each edge is incident
to exactly two vertices). Hence Sj can be parsed into two phrases (i.e., $e3

j , #) if and only if
$e3

j has an occurrence which ends with an LZ-End phrase in the R-part. Now we consider
the greedy parsing of the Ri-part (let Γ(vi) = {e(i,1), . . . , e(i,|Γ(vi)|)}), which is as follows:

v3
i , vi$e(i,1), e2

(i,1)vi, . . . , vi$e(i,|Γ(vi)|), e2
(i,|Γ(vi)|)vi, vi$2, #.

The parsing has 2|Γ(vi)| + 3 phrases. We claim that this parsing is the smallest possible
parsing: If the length of every phrase is at most 3, then 2|Γ(vi)| + 3 is the minimum size
since the length of Ri is 6|Γ(vi)| + 7. On the other hand, we can see that substrings of
length at least 4 which contain a symbol vi are unique in the whole string WG by the
definition. Namely, $e3

j is the only substring of length at least 4 which is not unique. Let
us consider a parsing of Ri such that the parsing has α length-4 phrases. In other words,
we choose α incident edges out of |Γ(vi)| edges. Let (i1, . . . , iα) be the sequence of indexes
of selected edges. We observe that the length of substrings that are covered by length at
most 3 phrases. The length of the prefix of Ri that is succeeded by the first length-4 phrase
$e3

(i,i1) is 6(i1 − 1) + 4. This implies that there are at least 2(i1 − 1) + 2 phrases. The length
of substring between $e3

(i,id−1) and $e3
(i,id) is 6(id − id−1 − 1) + 2. Thus there are at least

2(id − id−1 − 1) + 1 phrases in each middle part. The length of the suffix that is preceded
by the last length-4 phrase $e3

(i,iα) is 6(|Γ(vi)| − iα) + 5. Since the last symbol is a unique
symbol #, there are at least 2(|Γ(vi)| − iα) + 3 phrases in the last part. Hence, there are at
least

α + 2(i1 − 1) + 2 +
α∑

d=2
(2(id − id−1 − 1) + 1) + 2(|Γ(vi)| − iα) + 3 = 2|Γ(vi)| + 4

phrases. Thus the minimum number of phrases of Ri is 2|Γ(vi)| + 3 and the above greedy
parsing is the only candidate which is the minimum size. Notice that phrases of this parsing
do not end with $e3

j . Let us consider the other possible parsing of Ri-part as follows:

v2
i , v2

i $, e3
(i,1), . . . , v2

i $, e3
(i,|Γ(vi)|), v2

i $, $, #.

This parsing has 2|Γ(vi)|+4 phrases. Notice that this parsing has phrases which end with $e3
j .

Thus Sj can be parsed into two phrases if we choose a non-greedy parsing such that there
exists a phrase that ends at one of these positions. In other words, if we choose such a parsing
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in the Ri-part, we can reduce at most |Γ(vi)| phrases in the S-part. These observations
imply that Ri is parsed into 2|Γ(vi)| + 3 or 2|Γ(vi)| + 4 phrases in any optimal parsing of
WG.

Let us consider an optimal LZ-End parsing. Let r be the number of substrings Ri which
contain 2|Γ(vi)| + 4 phrases, and s be the number of substrings Sj which contain exactly two
phrases. Then the size of the parsing is

(10n + 13m) + (3m) + (2
n∑

i=1
|Γ(vi)| + 3n + r) + (3m − s) = 13n + 23m + r − s.

We consider a subset V ′ of vertices such that vi ∈ V ′ if and only if Ri is parsed into
2|Γ(vi)| + 4 phrases (i.e., |V ′| = r), and a subset E′ of edges such that ej ∈ E′ if and only if
Sj is parsed into three phrases (i.e., |E′| = m − s). If E′ = ∅ (i.e., s = m), V ′ is a vertex
cover of G. Otherwise, V ′ is not a vertex cover of G. However we can obtain the vertex cover
number by using the parsing. Since the parsing is an optimal parsing, we can observe that
there is no vertex vi in V \ V ′ which has two or more incident edges in E′ (we can reduce
two or more phrases in S-part by adding one phrase in Ri, a contradiction). This implies
that we can obtain a vertex cover by choosing one vertex in V \ V ′ for each edge in E \ E′.
Then there exists an optimal LZ-End parsing of the same size which can directly represent a
vertex cover. In other words, the vertex cover number is r + m − s if there exists an optimal
LZ-End parsing of 13n + 22m + (r + m − s) phrases. It is clear from the above constructions
that there exists an optimal LZ-End parsing of 13n + 22m + k phrases iff the vertex cover
number is k.

Since we can check a parsing is an LZ-End parsing in linear time, OptLE is clearly in
class NP. ◀

4 MAX-SAT Formulation

An approach for exact computation of various NP-hard repetitiveness measures was shown
in [1], where they formulated them as MAX-SAT instances so that very efficient solvers could
be taken advantage of. Here, we show that this approach can be adapted to computing the
optimal LZ-End parsing as well.

Let the input string be T [1..n], and for any i ∈ [2, n], let Mi = {j | 1 ≤ j < i, T [j] = T [i]}.
Below, we use 1 to denote true, and 0 to denote false. We introduce the following Boolean
variables:

pi for all i ∈ [1, n]: pi = 1 if and only if position i is a starting position of an LZ-End
phrase. Note that p1 = 1.
ci for all i ∈ [1, n]: ci = 1 if and only if position i is the left-most occurrence of symbol
T [i].
ri→j for all i ∈ [2, n] and j ∈ Mi: ri→j = 1 if and only if position i references position j

via an LZ-End factor.

Notice that the truth values of ci are all fixed for a given string and are easy to determine.
Furthermore, the left-most occurrence must be beginning of a phrase, so, some values of pi

can also be fixed. For all i ∈ [1, n]:

ci = pi = 1 if i is left-most occurrence of T [i], (1)
ci = 0 otherwise. (2)

CPM 2023



3:8 Optimal LZ-End Parsing Is Hard

The truth values of pi define the factors, so in order to minimize the number of factors,
we define the soft clauses as ¬pi for all i ∈ [1, n]. Below, we give other constraints between
the variables that must be satisfied, i.e., hard clauses.

The symbol at any position must either be a left-most occurrence, or it must reference
some position to its left. That is, for any i ∈ [1, n]:

ci +
∑

j∈Mi

ri→j = 1. (3)

In order to ensure that references in the same LZ-End phrase are consistent, we have the
following two constraints. The first ensures that if i references j and the symbols at positions
i − 1 and j − 1 are different or do not exist (i.e., j = 1), positions i and i − 1 cannot be in
the same LZ-End phrase. For all i ∈ [2, n] and j ∈ Mi s.t. j = 1 or T [j − 1] ̸= T [i − 1]:

ri→j =⇒ pi, (4)

The second ensures that if position i references position j and i is not a start of an LZ-End
phrase, then, position i − 1 must reference position j − 1. For all i ∈ [2, n] and j ∈ Mi \ {1}
s.t. T [j − 1] = T [i − 1]:

ri→j ∧ ¬pi =⇒ ri−1→j−1. (5)

Finally, the following constraints ensure that the reference of each LZ-End phrase must
end at an end of a previous LZ-End phrase. For all i ∈ [1, n] and j ∈ Mi:{

ri→j ∧ pi+1 =⇒ pj+1 if i ∈ [1, n)
ri→j =⇒ pj+1 if i = n.

(6)

It is easy to see that the truth assignments that are derived from any LZ-End parsing
will satisfy the above constraints.

We now show that any truth assignment that satisfies the above constraints will represent
a valid LZ-End parsing. The truth values for pi implies a parsing where each phrase starts at
a position i if and only if pi = 1. Constraint (1),(2),(3) ensure that each position is either a
left-most occurrence or references a unique previous position. Thus, it remains to show that
the referencing of each position of a given factor is consistent (adjacent positions reference
adjacent positions) and ends at a previous phrase end.

For any position i such that ci = 0, let j ∈ Mi be the unique value such that ri→j = 1.
We can see that any such position i that is not at the beginning of a phrase (i.e., pi = 0) will
reference a position consistent with the reference of position i−1: If j = 1 or T [j−1] ̸= T [i−1],
then Constraint (4) would imply ri→j = 0. Thus, we have j > 1 and T [j − 1] = T [i − 1], and
from Constraint (5), we have that ri−1→j−1, and the referencing inside a factor is consistent.
Finally, from Constraint (6), the last reference in a phrase always points to an end of a
previous LZ-End phrase.

The MAX-SAT instance contains O(n2) variables, and the total size of the CNF is O(n2):
O(n) clauses of O(n) size (Constraint (3) using linear size encodings of cardinality constraints,
e.g. [14]), and O(n2) clauses of size O(1) (the soft clauses, and Constraints (4), (5), (6)).

We note that it is not difficult to obtain a MAX-SAT formulation for the original definition
of LZ-End by minor modifications.
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5 Approximation ratio of greedy parsing to optimal parsing

In this section, we consider an approximation ratio of the size ze of the greedy LZ-End
parsing to the size zend of the optimal LZ-End parsing. Here, we give a lower bound of the
ratio.

▶ Theorem 4. There exists a family of binary strings such that the ratio ze/zend asymptot-
ically approaches 2.

Proof. Let K =
∑k

i=1 2i(= 2k+1 − 2) for any positive integer k ≥ 1. The following binary
string wk over an alphabet {a, b} gives the lower bound:

wk = aa ·
k∏

i=1
(a2i

) · b4 ·
K∏

i=1
(aib3).

It is easy to see that K is the length of the substring
∏k

i=1(a2i). First, we show the greedy
parsing of wk. Let W0 = aa ·

∏k
i=1(a2i) · b4 (i.e., a prefix of wk) and Wj = Wj−1 · ajb3 for

any 1 ≤ j ≤ K. Notice that WK = wk. We show that

LZEnd(Wj) = LZEnd(Wj−1), ajb2, b (7)

by induction on j. Initially, we consider the greedy parsing of W0. The greedy parsing of the
first run (i.e., maximal substring with a unique symbol) is a, a, a2, . . . , a2k of size k + 2. The
second run is parsed into three phrases b, b, b2. Thus

LZEnd(W0) = a, a, a2, . . . , a2k

, b, b, b2.

Moreover, we can see that the greedy parsing of W1 is

LZEnd(W1) = a, a, a2, . . . , a2k

, b, b, b2, ab2, b.

Hence Equation 7 holds for j = 1. Suppose that Equation 7 holds for any j ≤ p for some
integer p ≥ 1. We show that Equation 7 holds for j = p + 1. Assume that there exists a
phrase x of LZEnd(Wp+1) which begins in Wp and ends in a new suffix ap+1b3 of Wp+1. By
the induction hypothesis, phrases of LZEnd(Wp) which end with a are only in the first a’s
run. This implies that x cannot end with a and x can be written as x = x′bap+1bℓ for some
prefix x′ of x and some positive integer ℓ. However, ap+1 only occurs in the first a’s run.
Thus LZEnd(Wp+1) cannot have such a phrase x, namely LZEnd(Wp+1) = LZEnd(Wp), S

for some factorization S of the remaining suffix ap+1b3. It is easy to see that the remaining
suffix ap+1b3 of Wp+1 is parsed into ap+1b2, b. Hence Equation 7 holds for j = p + 1, and it
also holds for any j. Notice that |LZEnd(wk)| = 2K + k + 5 holds.

Finally, we give a smaller parsing of wk. We consider the same parsing for the first run
and a different parsing for the second run as b, b, b, b. In the greedy parsing, ajb3 cannot be
a phrase since the only previous occurrence does not have an LZ-End phrase. We can use
a substring ajb3 as a new phrase of Wj (see also Figure 3). Thus there exists an LZ-End
parsing

a, a, a2, . . . , a2k

, b, b, b, b, a1b3, . . . , aKb3.

The size of the parsing is K + k + 6.
Therefore the ratio ze/zend asymptotically approaches 2 for this family of strings. ◀

Note that this family of strings also gives a lower bound of the ratio ze/zno since
(ze/zend) ≤ (ze/zno) holds.

CPM 2023
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wk = a a a a ... a2k b b b b a b b b ... aj b b b ... aK b b b

wk = a a a a ... a2k b b b b a b b b ... aj b b b ... aK b b b

k + 2 phrases 2K phrases

K phrases

greedy

optimal

Figure 3 Illustration for two variants of LZ-End parsings of a string wk (Theorem 4). In the
optimal parsing, we can choose ajb3 (dotted lines) as a phrase for each j (1 ≤ j ≤ K) by adding a
single letter phrase b.

6 Conclusions

In this paper, we first studied the optimal version of the LZ-End variant. We showed the
NP-completeness of the decision version of computing the optimal LZ-End parsing and
presented an approach for exact computation of the optimal LZ-End by formulating as
MAX-SAT instances. We also gave a lower bound of the possible gap (as the ratio) between
the greedy LZ-End and the optimal LZ-End. Finally, we note possible future work in the
following.

Our reduction from the vertex cover problem uses a polynomially large alphabet. How
can we construct a reduction with a small alphabet?
The most interesting remaining problem is an upper bound of the ratio discussed in
Section 5. We conjecture that there exists a constant upper bound (i.e., ze/zend ≤ c

for any strings where c is a constant). This implies that the greedy parsing gives a
constant-approximation of the optimal parsing. On the other hand, if there exists a
family of strings which gives c > 2 or non-constant ratio, then the conjecture ze ≤ 2zno

does not stand.
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Abstract

Given a string S over an alphabet Σ, the string indexing problem is to preprocess S to subsequently
support efficient pattern matching queries, that is, given a pattern string P report all the occurrences
of P in S. In this paper we study the streaming sliding window string indexing problem. Here
the string S arrives as a stream, one character at a time, and the goal is to maintain an index
of the last w characters, called the window, for a specified parameter w. At any point in time a
pattern matching query for a pattern P may arrive, also streamed one character at a time, and all
occurrences of P within the current window must be returned. The streaming sliding window string
indexing problem naturally captures scenarios where we want to index the most recent data (i.e.
the window) of a stream while supporting efficient pattern matching.

Our main result is a simple O(w) space data structure that uses O(log w) time with high
probability to process each character from both the input string S and any pattern string P .
Reporting each occurrence of P uses additional constant time per reported occurrence. Compared
to previous work in similar scenarios this result is the first to achieve an efficient worst-case time per
character from the input stream with high probability. We also consider a delayed variant of the
problem, where a query may be answered at any point within the next δ characters that arrive from
either stream. We present an O(w + δ) space data structure for this problem that improves the
above time bounds to O(log(w/δ)). In particular, for a delay of δ = ϵw we obtain an O(w) space
data structure with constant time processing per character. The key idea to achieve our result is a
novel and simple hierarchical structure of suffix trees of independent interest, inspired by the classic
log-structured merge trees.
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4:2 Sliding Window String Indexing in Streams

1 Introduction

The string indexing problem is to preprocess a string S into a compact data structure that
supports efficient subsequent pattern matching queries, that is, given a pattern string P ,
report all occurrences of P within S. In this paper, we introduce a basic variant of string
indexing called the streaming sliding window string indexing (SSWSI) problem. Here, the
string S arrives as a stream one character at a time, and the goal is to maintain an index of a
window of the last w characters, for a specified parameter w. At any point in time a pattern
matching query for a pattern P may arrive, also streamed one character at a time, and we
need to report the occurrences of P within the current window. The goal is to compactly
maintain the index while processing the characters arriving in either stream efficiently. We
consider two variants of the problem: a timely variant where each query must be answered
immediately, and a delayed variant where it may be answered at any point within the next
δ characters arriving from either stream, for a specified parameter δ. See Section 1.1 for
precise definitions.

The SSWSI problem naturally captures scenarios where we want to index the most recent
data (i.e. the window) of a stream while supporting efficient pattern matching. For instance,
monitoring a high-rate data stream system where we cannot feasibly index the entire stream
but still want to support efficient queries. Depending on the specific system we may require
immediate answers to queries, or we may be able to afford a delay that allows for more
efficient queries and updates.

The SSWSI problem has not been explicitly studied before in our precise formulation,
but for the timely variant several closely related problem are well-studied. In particular, the
sliding window suffix tree problem [8,13,24,25,28] is to maintain the suffix tree of the current
window (i.e., the compact trie of the suffixes of the window) as each character arrives. With
appropriate augmentation the suffix tree can be used to process pattern matching queries
efficiently, leading to a solution to the timely SSWSI problem. For constant-sized alphabets,
the best of these solutions [8] maintains the sliding window suffix tree in constant amortized
time per character while supporting efficient pattern matching queries. The worst-case time
for updates is Ω(w). The other solutions achieve similar amortized time bounds. This
amortization cannot be avoided since explicitly maintaining the suffix tree after the arrival
of a new character may incur Ω(w) changes.

Another closely related problem is the online string indexing problem [3,4,5,7,14,21,22,23].
Here the goal is to process S one character at a time (in either left-to-right or right-to-
left order), while incrementally building an index of the string read so far. The best of
these solutions update the index in either constant time per character for constant-sized
alphabets [23] or O(log log n + log log |Σ|) time for any alphabet where each character fits
in a constant number of machine words [21]. These solutions all heavily rely on processing
the string in right-to-left order to avoid the inherent linear time suffix tree updates due
to appending, as mentioned above. Therefore they cannot be applied in our left-to-right
streaming setting. Alternatively, we can instead apply these solutions on the reverse of the
string S, but then each pattern must be processed in reverse order, which also cannot be
done in our setting. Also, note that these solutions index the entire string read so far. It is
not clear if they can be adapted to efficiently index a sliding window.

Another line of work shows how to maintain a fully dynamic suffix array under insertions
and deletions [1, 2, 19, 27]. These can also be used to solve SSWSI but are more general and
lead to polylogarithmically slower bounds than our results while being more complicated.
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Our main result is an efficient and simple solution to the SSWSI problem in both the
timely and delayed variant. Let w denote the size of the window. For the timely variant, we
present a string index that uses O(w) space and processes a character from the stream S

in O(log w) time. Each pattern matching query P is also supported in O(log w) time per
character with additional O(occ) time incurred after receiving the last character of P , where
occ is the number of occurrences of P in the current window. The index is randomized
and both time bounds hold with high probability. Compared to previous suffix tree based
approaches for indexing a sliding window, we improve the worst-case time bounds per
character in the stream from Ω(w) to O(log w) with high probability. This is particularly
important in the above mentioned applications, such as high-rate data stream systems. Our
solution generalizes to the delayed variant of the problem. If we allow a delay of δ before
answering each query we achieve O(w + δ) space while improving the above time bounds to
O(log(w/δ)). In particular, if we allow a delay of δ = ϵw for any constant ϵ > 0, we achieve
linear space and optimal constant time (reporting the occurrences still takes O(occ) time,
and we do not count the reporting time towards the delay). Note that δ ≤ w is sufficient
delay for optimal time bounds and we can assume O(w + δ) = O(w). The results hold on
a word RAM and for any alphabet size, assuming that each character fits into a constant
number of machine words.

The key idea to achieve our result is a novel and simple hierarchical structure of suffix
trees inspired by log-structured merge trees [26]. Instead of maintaining a single suffix tree on
the window we maintain a collection of suffix trees of exponentially increasing sizes that cover
the current window. We show how to efficiently maintain the structure as new characters
from the stream arrive by incrementally “merging” suffix trees, while supporting efficient
pattern matching queries within the window.

Our solution uses randomization to construct suffix trees in linear time with high probabil-
ity. Plugging in a deterministic construction algorithm such as the one by Ukkonen [30], we
obtain a solution using O(log w log |Σ|) time for both queries and updates. With more recent
deterministic suffix tree solutions [6, 10,14] we can improve this to obtain O(log w log log n)
time per character for both queries and updates. Note that the O(log log |Σ|) in the time
bounds of [14] has been replaced by O(log log n) here due to an additional sorting step
using [17].

1.1 Setup and Results
We formally define the problem as follows. Let S be a stream over any alphabet Σ where each
character fits in a constant number of machine words. For given integer parameters w ≥ 1
and δ ≥ 0, the δ-delayed streaming sliding window string indexing ((w, δ)-SSWSI) problem
is to maintain a data structure that, after receiving the first i characters of S, supports

Report(P ): report all the occurrences of P in S[i − w + 1, i] before an additional δ

characters have arrived from either stream.
Update(): process the next character in the stream S.

In the Report(P ) query the pattern string P is also streamed. When P is streamed it
interrupts the stream S, arrives one character at a time, and all characters of P arrive before
the streaming of S resumes. Furthermore, we do not assume that we know the length of P

before the arrival of its last character. Although P is streamed we assume random access to
its characters after they arrive, as any pattern that fits in the window is at most w characters
long and we can afford to store it. The delay is counted from after the last character of P

arrives. Characters from S and from new patterns count towards the delay, while reported
occurrences do not (otherwise it would be impossible to answer the query in time if there are
more than δ occurrences).
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We define the timely streaming sliding window string indexing (w-SSWSI) problem to
be (w, 0)-SSWSI, that is, queries must be answered immediately as the last character of the
pattern arrives.

We show the following general main result.

▶ Theorem 1. Let S be a stream and let w ≥ 1 and δ ≥ 0 be integers. We can solve the
(w, δ)-SSWSI problem on S with an O(w + δ) space data structure that supports Update and
Report in O(log w

δ+1 ) time per character with high probability. Furthermore, Report uses
additional worst-case constant time per reported occurrence.

Here, with high probability means with probability at least 1 − 1
wd for any constant d.

Theorem 1 provides a trade-off in the delay parameter δ. In particular, plugging in δ = 0
in Theorem 1 we obtain a solution to the timely SSWSI problem that uses O(w) space and
O(log w) time per character for both Update and Report. Compared to the previous work on
sliding window stream indexing [8, 13,18,24,25,28,29] this improves the worst-case bounds
on the Update operation from Ω(w) to O(log w) with high probability and also removes the
restriction on the alphabet. At the other extreme, plugging in δ = ϵw for constant ϵ > 0
in Theorem 1 we obtain a solution to the delayed SSWSI problem that uses O(w) space
and optimal constant time per character with high probability. All our results hold on a
word RAM where each machine word has at least log w bits, and where each character of the
alphabet fits into a constant number of machine words.

1.2 Techniques
We obtain our result for the timely variant, but without high probability guarantees, as
follows. At all times we maintain at most log w suffix trees that do not overlap and together
cover the window. The trees are organized by the log-structured merge technique [26], where
the rightmost tree is the smallest and their sizes increase exponentially towards the left.
For each new character that arrives we append its suffix tree to the right side of our data
structure. Whenever there are two trees of the same size next to each other we “merge” them
by constructing a new suffix tree covering them both. Each character from S is involved
in at most log w merges and each merge takes expected linear time, so we spend expected
amortized O(log w) time per character in S. We deamortize the updates by temporarily
keeping both trees while merging them in the background. Note that for each adjacent pair
of suffix trees we also store a suffix tree approximately covering them both, referred to as
boundary trees (see details below).

We find the occurrences of a pattern P in the window by querying each of these trees,
which takes O(log w) time per character in P . For adjacent pairs of trees larger than |P | we
find the occurrences of P crossing from one into the other using the boundary trees. The
remaining trees cover a suffix of the window of length O(|P |), and we grow a suffix tree to
answer queries in this suffix at query time. Our data structure has some “overhang” on the
left side of the window, and we use range maximum queries to report only the occurrences
that start inside the window.

This solution is generalized to incorporate a delay of δ as follows. We store the O(log(w/δ))
largest trees from the timely solution and leave a suffix of size Θ(δ) of the window uncovered
by suffix trees. We answer queries as follows. If |P | > δ/4 we say that P is long, and
otherwise it is short. For long patterns we do as in the timely case; the suffix tree we grow
at query time now must also contain the uncovered suffix, but it still has size O(|P |) since
the uncovered part of the window has length O(δ) = O(|P |). We show how to do this in
O(log(w/δ)) time per character in P . For short patterns we utilize that they are smaller
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than the delay to temporarily buffer the queries and later batch process them. We buffer up
to O(δ log(w/δ)) work and deamortize it over Θ(δ) characters, obtaining the same bound as
for long patterns. Updates run in the same bound since each character from S is involved in
at most O(log(w/δ)) merges before it leaves the window.

Finally, we improve the time bounds by proving that for any substring S′ of our window,
we can construct the suffix tree over S′ in O(|S′|) time with probability 1 − w−d for any
constant d > 1. We do so by reducing the alphabet Σ′ = {c ∈ S′} of S′ to rank-space
{1, 2, . . . , |Σ′|} from which the algorithm by Farach-Colton et al. [12] can construct the
suffix tree in worst-case linear time. For large strings (|S′| > w1/5) we pick a hash function
from Σ → [0, wc] that with high probability is injective on S′, and then we use radix sort
to reduce to rank-space in linear time. For small strings (|S′| ≤ w1/5) we pick a hash
function from Σ → [0, w/ log w] that is injective with (almost) high probability, and use this
to manually construct a mapping into rank space in O(S′) time. This mapping algorithm
uses additional O(w/ log w) space, but we construct at most O(log w) suffix trees at any time
so the total space is linear.

1.3 Outline
In Section 2 we cover the preliminaries, including some useful facts about suffix trees. In
Section 3 we give a solution to the timely SSWSI problem that supports each operation in
expected logarithmic time per character. In Section 4 we show how to generalize this to
incorporate delay, and in Section 5 we show how to get good probability guarantees, proving
Theorem 1.

2 Preliminaries

Given a string X of length n over an alphabet Σ, the ith character is denoted X[i] and the
substring starting at X[i] and ending at X[j] is denoted X[i, j]. The substrings of the form
X[i, n] are the suffixes of X.

A segment of X is an interval [i, j] = {i, i+1, . . . , j} for 1 ≤ i ≤ j ≤ n. We will sometimes
refer to segments as strings, i.e., the segment [i, j] refers to the string X[i, j]. The definition
differs from “substring” by being specific about position; even if X[1, 2] = X[3, 4] we have
[1, 2] ̸= [3, 4]. A segmentation of X is a decomposition of X into disjoint segments that cover
it. For instance, x1 = [1, i] and x2 = [i + 1, n] is a segmentation of X into two parts. The
two segments x1 and x2 are adjacent since x2 starts immediately after x1 ends, and for a
pair of adjacent segments we define the boundary (x1, x2) to be the implicit position between
i and i + 1.

The suffix tree [31] T over X is the compact trie of all suffixes of X$, where $ ̸∈ Σ is
lexicographically smaller than any letter in the alphabet. Each leaf corresponds to a suffix
of X, and the leaves are ordered from left to right in lexicographically increasing order.
The suffix tree uses O(n) space by implicitly representing the string associated with each
edge using two indices into X. Farach-Colton et al. [12] show that the optimal construction
time for T is sort(n, |Σ|), i.e., the time it takes to sort n elements from the universe Σ. For
alphabets of the form Σ = {0, . . . , nc} for constant c ≥ 1 this implies that T can be built in
worst-case O(n) time using radix sort. For larger alphabets we can reduce to the polynomial
case in expected linear time using hashing, building T in expected linear time (see Section 5
for details).

The suffix array L of X is the array where L[i] is the starting position of the ith
lexicographically smallest suffix of X. Note that L[i] corresponds to the ith leaf of T in
left-to-right order. Furthermore, let v be an internal node in T and let sv be the string
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spelled out by the root-to-v path. The descendant leaves of v exactly correspond to the
suffixes of X that start with sv, and these leaves correspond to a consecutive range [α, β]v
in L.

We augment the suffix tree to support efficient pattern matching queries as follows. First,
we use the well-known FKS perfect hashing scheme [15] to store the edges of the suffix tree,
so we can for any node determine if there is an outgoing edge matching a character a ∈ Σ in
worst-case constant time. Note that this construction takes expected linear time. Furthermore,
we also build a range maximum query data structure over L. This data structure supports
range maximum queries, i.e., given a range [α, β] return the j ∈ [α, β] maximizing L[j]. It
also supports range minimum queries, defined analogously. The data structure can be built in
linear time and supports queries in constant time [16]. Finally, we preprocess the suffix tree
in linear time such that each internal node v stores the range [α, β]v into L corresponding to
the occurrences of sv.

We can use this structure to efficiently find all the occurrences of P in O(|P | + occ)
time, where occ is the number of occurrences, or the leftmost and rightmost occurrence
of P in O(|P |) time. The locus of a string P is the minimum depth node v such that P is
a prefix of sv. First we find the locus by walking downwards in the suffix tree, matching
each character in P in worst-case constant time using the dictionary. Once we have found
v we can report all the occurrences in [α, β]v in O(occ) time. Alternatively, we can find
the rightmost occurrence of P in constant time by doing a range maximum query on the
range [α, β]v in L, which returns the j ∈ [α, β]v maximizing the string position L[j]. We can
also find the leftmost occurrence by doing a range minimum query.

Finally, note that it is possible to deamortize algorithms with expected running time using
the standard technique of distributing the work evenly. Specifically, if an algorithm runs in
expected λn time we can do λ work for n − 1 steps; by linearity of expectation only expected
λ work remains for the last step.

3 The Timely SSWSI Problem

Here we present a solution for the timely variant that matches the bounds in Theorem 1 in
expectation. Section 5 shows how to get the bounds with high probability. Throughout this
section we assume without loss of generality that w is a power of two. Section 3.3 briefly
mentions how to generalize to arbitrary w.

The main idea is as follows. We maintain a suffix of S of length at least w. This suffix is
segmented into at most log w segments whose sizes are distinct powers of two, in increasing
order from right to left. The length of the suffix we store is at most 20 + . . . + 2log w = 2w − 1.
When a new character arrives, we append a new size-one segment to our data structure and
merge equally-sized segments until they all have distinct sizes again. We also discard the
largest segment when it no longer intersects the window. For each segment we store a suffix
tree, and for every pair of adjacent segments we store a boundary tree approximately covering
them both (see below). To support queries we query the suffix tree for each individual
segment, and also each boundary tree. For the segments larger than the pattern, the boundary
trees are sufficient to find the occurrences crossing the respective boundary. The remaining
trees cover a suffix of S that is O(|P |) long, and we grow a suffix tree at query time to find
the remaining occurrences in this suffix.
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Figure 1 Example of updating the data structure with a window size of w = 8. Here we illustrate
the segments by the suffix trees built over them. Characters outside of the window are gray. As the
character s arrives we construct a new suffix tree of size one, which is then immediately merged
with the existing size-one suffix tree over e into a size-two suffix tree over es, which is then merged
to into the final size-four suffix tree over rees. After receiving a we again have a size-one suffix tree.
Note that after three more updates the suffix tree of size eight will no longer overlap the window
and will be discarded.

3.1 Data Structure
At any point, the data structure contains a suffix s of S of length w ≤ |s| ≤ 2w − 1 and
a segmentation of s into at most log w segments. Specifically, if |s| = 2b1 + . . . + 2bk for
integers b1 < . . . < bk then we have the segmentation s1, . . . , sk where |si| = 2bi , and s is the
concatenation of the strings sk, sk−1, . . . , s1, in that order. The set {b1, . . . , bk} is unique
and corresponds to the 1-bits in the binary encoding of |s|. Three different configurations
can be seen in Figure 1.

For each segment si we store the suffix tree Ti over si, along with a range maximum query
data structure over the suffix array of si. For each boundary (si+1, si) we store the boundary
tree Bi, which is the suffix tree over the substring centered at the boundary and extending |si|
characters in both directions. We augment Bi with an additional data structure that we will
use for reporting occurrences across the boundary. Let BLi be the suffix array corresponding
to Bi. We define the modified suffix array BL′

i as

BL′
i[j] =

{
BLi[j] if BLi[j] corresponds to a suffix starting in si+1

−∞ if BLi[j] corresponds to a suffix starting in in si

We store a range maximum query data structure over BL′
i. Each of the data structures use

O(si) space, so the whole data structures uses O(s) = O(w) space.
We note a few properties of the data structure. Let S[n] be the most recent character

to arrive and let Wn = S[n − w + 1, n] be the current window. Then Wn is a suffix of s

since |s| ≥ w. The largest, and leftmost, segment sk always has size 2log w = w; it is not larger
since log w bits are sufficient to represent |s| ≤ 2w − 1, and it is always there since |s| ≥ w

cannot be represented with log w − 1 bits. For the same reason, sk always intersects at least
partially with Wn, and each of s1, . . . , sk−1 are fully contained in Wn.

3.2 Queries
The idea is as follows, as exemplified in Figure 2. Any occurrence of a pattern P that is
fully contained in a segment is found using the suffix tree over that segment. Similarly,
any occurrence that only crosses a single boundary far enough away from the end of the
window is found in the respective boundary tree. Note that in the leftmost segment we must
be careful to not report any occurrences that start before the left window boundary. The
remaining occurrences are not contained in any of the trees in the data structure (either
because they cross multiple boundaries or because they cross a single boundary (si+1, si)
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T

a b c d
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Figure 2 Illustration of how we answer queries for a pattern P of length m. The lines denoted
a, b, c, and d indicate occurrences of P . The segmentation is illustrated by the trees over the
segments. The leftmost window boundary is marked with a vertical dashed line. Note that the
leftmost segment intersects only partially with the window. The tree T marks the smallest segment
of size at least m. The segments to the right of T are all smaller than m, so they cover at most
m + m/2 + . . . + 1 = O(m) characters. To answer the query we match P in the tree over each
segment and in each boundary tree, and we also build a suffix tree over the segments smaller than m

at query time. We find b because the respective boundary tree is sufficiently large. We find c because
it is fully contained in a segment. We find d in the suffix tree that we build at query time. Note
that a is not contained in the window; we avoid reporting it by recursively using range maximum
queries to find the rightmost occurrence of P in the leftmost segment.

but start more than |si| characters to the left of the boundary). However, these occurrences
are all located within a substring of size O(m) ending at position S[n], so we build, at query
time, a suffix tree to find these occurrences.

Let P be the length-m pattern being queried, S[n] be the most recent character to arrive,
and let Wn, the suffix s, the segmentation s1, . . . , sk, and the indices b1 < . . . < bk be defined
as above. As mentioned, any occurrence of P in Wn must either be fully contained within
one of the segments, or it must cross the boundary between two adjacent segments. We will
show how to handle each of these cases separately.

Fully Contained in a Segment

Fix a specific segment si. As each character of P arrives we match it in Ti. When the
last character arrives we have a (possibly empty) range [α, β] into the suffix array of si

corresponding to the occurrences of P . If si is not the leftmost segment then it is fully
contained in Wn and we report all the occurrences. Otherwise, si = sk is the leftmost
segment, which might overlap only partially with Wn, and it may contain occurrences of P

that are not contained in the window. However, note that the intersection between Wn and
sk is a suffix of sk. Therefore, if an occurrence of P in sk starts inside Wn it also ends inside
Wn. We find all such occurrences as follows. Let Lk be the suffix array of sk. As described
in Section 2 we find the index j of the rightmost occurrence of P by doing a range maximum
query on the range [α, β] in Lk. If Lk[j] is not inside Wn then none of the occurrences are,
and we are done. Otherwise we recurse on [α, j − 1] and [β, j − 1]. Matching P in the trees of
all the segments takes O(log w) overall time per character of P . Reporting each occurrence
takes constant time since range maximum queries run in constant time.

Crossing a Boundary

We now show how to report the occurrences of P that span a boundary. The main idea
is as follows, as illustrated in Figure 3. Let si be the smallest segment where |si| ≥ m.
Consider any boundary (sj+1, sj) to the left of si, i.e., where j ≥ i. Since both of these
segments have size at least |si| ≥ m, the boundary tree Bj extends at least m characters
in both directions from the boundary. Therefore, all the occurrences of P crossing the
boundary are contained in Bj , and none of them can cross another boundary as well. Now
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consider the suffix R of s containing the m − 1 last characters of si and extending to the
end of s. This substring contains all the other boundary-crossing occurrences. Furthermore,
all the occurrences in R cross at least one boundary since the longest consecutive part of
a single segment in R is the m − 1 characters in si. Note that the length of R is at most
m − 1 + |si−1| + |si−1|/2 + . . . + 1 < m − 1 + 2|si−1| < 3m since |si−1| < m. Thus, the
number of boundary-crossing occurrences of P equals the number of occurrences in R plus
the number of occurrences crossing the boundaries (sk, sk−1), (sk−1, sk−2), . . . (si+1, si).

The algorithm for finding the occurrences in the sufficiently large boundary trees is as
follows. Fix a boundary (sx+1, sx). We match each character of P in Bx as it arrives. When
the last character arrives we know if |sx| ≥ m, and also the range [α, β] corresponding to the
occurrences of P in the boundary tree. If |sx| ≥ m (hence x ≥ i) we report the occurrences
as follows. As above we do a range maximum query to find the j maximizing BL′

x[j]. If
BL′

x[j] = −∞ then all occurrences of P start in sx, and there are no occurrences crossing
the boundary. Otherwise, BL′

x[j] corresponds to the starting position of the rightmost
occurrence of P in sx+1. Since all of P has arrived and we now know m, we know that this
occurrence crosses the boundary if and only if BL′

x[j] ≥ |sx| − m + 2 (recall that Bx extends
|sx| characters in both directions from the boundary). If it does not cross the boundary, then
none of the other occurrences do either. Otherwise we report BL′

x[j] and recurse on [α, j − 1]
and [j + 1, β] to find the remaining occurrences. Matching P in all boundary trees takes
O(log w) overall time per character, and reporting each occurrence with range maximum
queries takes constant time.

We now show how to find the occurrences of P in R with the same bounds. Assume
that we know that 2ℓ ≤ m < 2ℓ+1 for some integer ℓ. We build the suffix tree over the last
3 · 2ℓ+1 characters of s, deamortized over receiving the first 2ℓ−1 characters of P . Over the
next 2ℓ−1 characters we match P in the tree, at a rate of two characters per new character
from P . Then, when the 2ℓth character arrives, we have caught up to the stream P , and we
match the remaining m − 2ℓ characters as they arrive. When the last character arrives we
have matched P in a tree of size at least 3m, and we can start reporting occurrences. Note
that we are overestimating the size of the tree, and it potentially includes some occurrences
of P that are contained in si. To avoid reporting these, we also build a range maximum
query data structure over the suffix array such that we can use recursive range maximum
queries. When deamortized, we construct the tree in expected constant time per character
of P . Matching P also takes constant time per character. We know that m ≤ w, so we run
this algorithm simultaneously for each of the log w different choices for ℓ, using expected
O(log w) time per character in P . Note that the trees use O(w) space in total since the sum
of the space is a geometric sum where the largest term is O(w).

3.3 Amortized Updates
We show how to support updates in amortized O(log w) time. Let S[n] be the last character
to arrive and as in the description of the data structure let b1 < b2 < . . . < bk be the
positions of the 1-indices in the binary encoding of |s|. When the new character c = S[n + 1]
arrives, we update s and the segmentation s1 . . . sk to create the new suffix s′ with the new
segmentation s′

1, . . . s′
k′ . See Figure 1 for an example.

If |s| < 2w − 1 then we set s′ = sc. The segmentation of s′ corresponds to the unique
binary encoding of |s′| = |s| + 1, so we update the segmentation analogously to a “binary
increment”. One way to do so is as follows. We create a new segment of size one over c.
If there was not already a segment of size one, then we add the new segment and we are
done. Otherwise we merge (see below) the two size-one segments to create a segment of size
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si+1 si si−1

m− 1 ≤ 2m

Bi

m m

R

Figure 3 The segment si is the smallest segment where |si| ≥ m. For each boundary (sj+1, sj)
where j ≥ i, the tree Bj is large enough to find all occurrences of P across the boundary. All other
occurrences of P that cross a boundary must be in R, the string covering the m − 1 rightmost
characters of si and extending to the end of the window. The length of R is no more than
m − 1 + |si−1| + |si−1|/2 + . . . + 1 < 3m.

two. The process cascades until we reach a size 2b that does not exist in the segmentation
of s (i.e., the smallest index b ̸∈ {b1, . . . , bk}). At this point we replace all of the segments
sb−1, . . . , s1 with s′

1 covering the last 2b characters of s′. The remaining segments for s′ are
the same as the segments sb+1, . . . , sk. If |s| = 2w − 1 then there is a segment of each size
20, 21, . . . , 2log w. Since the segments have decreasing size from left to right, the log w − 1
rightmost segments cover the last 20 + . . . + 2log w−1 = w − 1 characters of s. Thus, after c

arrives, the leftmost segment of size 2log w = w no longer intersects the window. We remove
it by setting s′ = s[w + 1, |s|]c, and update the segmentation as above.

Let sa, sb and sc be three adjacent segments, in that order. To merge sb and sc we
combine them into a new segment sd that spans them both, construct the suffix tree over sd,
and construct a range maximum query data structure on the suffix array of sd. Furthermore,
since sa and sd are now adjacent we also construct the boundary-spanning suffix tree for the
boundary (sa, sd) that extends |sd| characters in each direction. The construction of all of
these data structures takes expected O(|sd|) time (see Section 2). Thus, it takes expected
constant time per character every time it moves into a new, larger segment. Each character
is contained in at most log w segments before it leaves the window, so the amortized update
time is expected O(log w) per character.

Note that all but the last merge are unnecessary to actually compute s′
1; in the amortized

setting we can simply determine where the cascade will end and immediately construct the
suffix tree over the corresponding segment. However, the cascading merges will come into
play in the deamortized variant.

Also note that if w is not a power of two we can use a similar scheme where we allow
either two simultaneous trees of size 2⌊log w⌋, or one tree of size 2⌈log w⌉. In both cases, there
are some straightforward edge cases for when to remove the leftmost segment.

3.4 Deamortized Updates
We now show how to deamortize the updates. Unfortunately the previous construction
cannot be directly deamortized since the suffix tree construction algorithm by Farach-Colton
et al. [12] requires access to the whole string. Therefore, if a new character c causes a cascade
of merges resulting in a new segment of size 2i we have to build the suffix tree over that
segment when c arrives.

Instead, we modify the structure slightly. When two segments of size 2i become adjacent
we temporarily keep both while deamortizing the cost of merging them over the next 2i

characters of S, doing expected constant work per character. Note that queries are unaffected,



P. Bille, J. Fischer, I. L. Gørtz, M. R. Pedersen, and T. J. Stordalen 4:11

with one exception for reporting occurrences across the boundaries; there might now be two
adjacent segments si+1 and si of the same size that are both the smallest segment at least
as large as |P |. In this case the suffix R extends only m − 1 characters into the rightmost
segment si. The boundary tree for (si+1, si) is large enough to report all occurrence crossing
that boundary since both segments have size at least |P |. Furthermore, R potentially becomes
twice as long, so we adjust the constants of the trees that we grow at query time.

To bound the time for updates we show that we are constructing at most log w suffix
trees at any point, from which it follows that the update time is expected O(log w). To do
so we show the following lemma.

▶ Lemma 2. When the construction of a segment of size 2i finishes there is exactly one
segment of each size 2i−1, . . . , 20.

Proof. The proof is by induction on i. For i = 1, when two size-one segments become
adjacent we merge them when the next character c from S arrives. This results in a segment
of size two, as well as a size-one segment containing c, proving the base case.

Inductively, consider the first time two segments of size 2i become adjacent. By the
induction hypothesis, there is one segment of each size 20, 21, . . . , 2i−1 to the right of these
two segments. For another segment of size 2i to be constructed, we must first receive one
more character, which triggers a merge that eventually cascades through all i − 1 of these
segments. For this to happen, 1 + (20 + 21 + . . . + 2i−1) = 2i more characters from S must
arrive, where the 1 is for the next character to arrive, and 2j is the amount of characters
the jth merge is deamortized over. However, at this point the merge of the two segments of
size 2i is complete, so we constructed two new segments, one of size 2i+1 and one of size 2i.
By the induction hypothesis, there is also one segment of each size 20, . . . , 2i−1, concluding
the proof. ◀

Lemma 2 implies that there are never more than two segments of the same size adjacent to
each other, and therefore at most one merging process for each segment size 20, 21, . . . , 2log w.
To see this, consider the first time two segments a and b of size 2i are adjacent. At this
point, there are 20 + 21 + . . . + 2i−1 = 2i − 1 characters to the right of b. When the next
segment c of size 2i arrives there are 2i − 1 characters to the right of that, too. But then
there are |c| + 2i − 1 = 2i + 2i − 1 characters to the right of b. Thus 2i new characters must
have arrived in the meanwhile, and the merging of a and b is done.

We obtain the following theorem.

▶ Theorem 3. Let S be a stream and let w ≥ 1 be an integer. We can solve the w-SSWSI
problem on S with an O(w) space data structure that supports Update and Report in expected
O(log w) time per character. Furthermore, Report uses additional worst-case constant time
per reported occurrence.

4 The Delayed SSWSI Problem

In this section we show how to improve the result from Section 3 if we are allowed a delay of δ.
The main idea is as follows. As before, we maintain suffix trees of exponentially increasing
sizes, although only the O(log(w/δ)) largest of them. As a result there are fewer trees to
query, but also an uncovered suffix of size Θ(δ) of the window for which we do not have any
suffix trees. As in Section 3 we denote the part of S covered by suffix trees by s and we
denote the uncovered suffix by t. As above, s is segmented into s1, . . . , sk.

We will first explain how to solve the problem when all patterns are long, that is, |P | > δ/4,
and then when all patterns are short, that is, |P | ≤ δ/4. Finally we show how to combine
these solutions. When all the patterns are long we can afford to construct, at query time,
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a suffix tree covering t. On the other hand, when all the patterns are short we can do
both updates and queries in an offline fashion; we buffer queries and updates until we have
approximately δ/2 operations to do, at which point we can afford to construct a suffix tree
over t in a deamortized manner. See Figure 4 for an example.

Throughout this section we assume without loss of generality that δ is a power of two.
Otherwise we instead use a more restrictive delay of δ′ = 2⌊log δ⌋ and achieve the same
asymptotic bounds.

4.1 Long Patterns
We first show how to support queries if all patterns have a length m > δ/4. We modify the
data structure from Section 3 slightly. The smallest tree now has size δ/2 as opposed to 1, so
there are Θ(log w − log(δ/2)) = O(log(w/δ)) segments and boundary trees. The uncovered
suffix t has length at most δ.

We answer queries the same way as in Section 3.2, with only small modifications. Let P

be a pattern of length m > δ/4. As before, let si be the smallest and rightmost segment
with |si| ≥ m. We find any occurrence within a segment or crossing a single boundary by
using the suffix trees over each segment and the boundary trees to the left of si, as before.
The remaining occurrences we again find by growing suffix trees of exponentially increasing
sizes from the right window boundary. The only change is that we now grow the trees faster,
as we must also cover t, and we can afford to let the smallest tree have size δ since we have
m > δ/4 characters in the pattern to deamortize the work over. As above, let R be the
string covering the m − 1 last characters of si and extending to the right window boundary,
which now also includes t. As |t| < δ the length of R is |R| < 3m + δ < 7m. Assuming
2ℓ ≤ m < 2ℓ+1, we build the suffix tree of size 7 · 2ℓ+1 and match P in it, amortized over
the characters of P . As we have m > δ/4 characters to deamortize the work over, we only
do this for each choice of ℓ where 2ℓ+1 ≥ δ, which results in O(log w − log δ) = O(log(w/δ))
work per character in P . As in Section 3.2 we use recursive range maximum queries to avoid
double reporting any occurrences of P that are also in s. As there are also only O(log(w/δ))
segments and boundary trees we spend O(log(w/δ)) time per character in P . Note that we
answer these queries without delay.

Updates are performed as follows. For each segment of δ/2 characters that arrives we
construct the suffix tree over it, deamortized over the next δ/2 characters of S. We merge
suffix trees as before, also deamortized over new characters of S. The induction proof from
Section 3.4 still works by modifying the base case; the merging of two trees of size δ/2 takes
δ/2 characters, at which point another tree of size δ/2 is constructed. The inductive step
follows from the fact that δ is a power of two. Thus, we spend expected O(log(w/δ)) time
per update.

4.2 Short Patterns
We now show how to support queries if all patterns have a length m ≤ δ/4. We extend
the data structure with a buffer of size δ. This buffer will contain queries that we have
not yet answered and characters for S that we have not yet processed. The total space is
still O(w + δ) = O(w).

Whenever a character from S arrives we append it to both t and to the buffer. When
a pattern arrives we append the full pattern to the buffer, and along with it we store the
current position of the right window boundary. Once the buffer has more than δ/2 characters
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si si−1 si−2 t

m− 1 < 2m < δ

R

si t

< 2δ
2(m− 1)

Figure 4 Left: Example of a query with a long pattern. Here si is the smallest and rightmost
segment with |si| ≥ m. Note that the non-indexed suffix t is less than δ < 4m characters long. Right:
Example of a query with a short pattern. Note that for short patterns, si is always the rightmost
segment. Any occurrence in s cross at most a single boundary and is found using the constructed
trees. Any occurrence in t is found by the suffix tree over t that we construct when we flush the
buffer. Any occurrence that cross the boundary (s, t) is found by the KMP automaton we build over
the substring the extends m − 1 characters in both directions from the boundary, which is hatched
in the figure.

(patterns and text combined) we immediately allocate a new buffer of size δ and flush the
old buffer as follows. Note that at this point there are strictly less 3

4 δ characters in the buffer
since each pattern is short.

When we flush the buffer, we first answer all the buffered queries, and then we process
all the buffered updates. We deamortize this work over the next δ/4 characters that arrive
from either stream. To answer the buffered queries we do as follows. Let P1, . . . , Pℓ be the
patterns in the buffer, let mi = |Pi|, and let M =

∑
1≤i≤ℓ mi. We have M < δ. We start

by building a suffix tree over t, along with a range maximum query data structure over the
suffix array of t. This takes expected O(δ) time. An occurrence of Pi is either contained in s,
or it crosses the boundary (s, t), or it is contained in t. Since Pi is smaller than each segment
sj we can find all the occurrences within s using the suffix trees over the segments and the
boundary trees in O(mi log(w/δ)) time. To find the occurrences crossing the boundary we
build the KMP matching automaton [20] for Pi. In it we match the string that is centered at
the boundary (s, t) and extends mi − 1 characters in each direction. This takes O(mi) time.
To find the occurrences in t we match Pi in the suffix tree over t in O(mi) time. In total,
this takes O(M log(w/δ)) = O(δ log(w/δ)) time for all the patterns, or expected O(log(w/δ))
time per character when deamortized. Note however, that after Pi arrived more characters
from S could have arrived and been appended to t. We must therefore take care not to
report any occurrences of Pi that extend past what was the right window boundary when Pi

arrived. The KMP automaton finds the occurrences in left-to-right order, and in t we avoid
reporting too far right using recursive range minimum queries.

Finally, we process each update in the buffer in the order they arrived, using the same
procedure as for long patterns. This takes O(log(w/δ)) time per update and O(δ log(w/δ))
time in total. Thus flushing the buffer takes expected O(log(w/δ)) time per character since
we deamortize the expected O(δ log(w/δ)) work over δ/4 characters. Since we allocate a new
buffer immediately when we begin flushing, we will complete the flush before the next flush
begins.

4.3 Both Long and Short Patterns
We now show how to combine the solutions for short and long patterns, to obtain a solution
that handles patterns of any length. The data structure is the same as for small patterns
above. As above, we append each new character to the buffer. However, whenever we start

CPM 2023



4:14 Sliding Window String Indexing in Streams

streaming a pattern we also proceed as if P were long. If P turns out to fit in the buffer
without triggering a flush (which might also happen if P is long), we simply discard the work
we did for the long-pattern case. However, if adding P to the buffer results in more than 3

4 δ

characters being in the buffer, then P must be long. We immediately start flushing the buffer
(ignoring the characters related to P ) and also continue processing P as a long pattern. Note
that since we are potentially streaming a long pattern while batch processing the updates
in the buffer, the data structure might change while we are matching in it. However, it
only changes when a merge finishes, replacing a pair of suffix trees by a larger tree. If this
happens we keep the old trees in memory until we are done processing the pattern, at which
point we discard them.

We obtain the following theorem.

▶ Theorem 4. Let S be a stream and let w ≥ 1 and δ ≥ 1 be integers. We can solve the
(w, δ)-SSWSI problem on S with an O(w) space data structure that supports Update and
Report in expected O(log(w/δ)) time per character. Furthermore, Report uses additional
worst-case constant time per reported occurrence.

5 Obtaining High Probability

In this section we show how to improve the time bounds to O(log(w/δ)) with probability
1 − w−d for any constant d ≥ 1.

The expectation in the time bounds in Section 4 comes from the construction of suffix
trees (recall that we also build suffix trees at query time). Below, in Lemma 5, we prove that
given a string K of length k = O(w) we can construct the suffix tree over K in O(k) time
with probability 1 − 1/w1+ϵ, using additional O(w/ log w) space. We use this algorithm to
construct suffix trees during updates and queries, deamortizing them as before and doing
O(log(w/δ)) work per character that arrives. When a new character arrives from S or P , at
most O(log(w/δ)) = O(log w) suffix tree constructions will finish. At this point, we finish
constructing those trees that did not finish in time, that is, used more more time than what
was allotted to them. By the union bound, the probability that any of them fail to finish
in time (and thus incurring extra construction cost) is no more than c log w/w1+ϵ for some
constant c which is no more than 1/w for large w. Thus, for each character from S or P

we spend O(log(w/δ)) time with high probability in w. We obtain the 1 − 1/wd probability
bound by probability boosting, running d = O(1) independent copies of the construction
algorithm simultaneously. The algorithm from Lemma 5 uses additional O(w/ log w) space,
but we are never constructing more than O(log w) suffix trees, so the space usage is O(w) in
total.

Furthermore, as mentioned in Section 2, we previously used an FKS dictionary [15] to
store the edges to support reporting queries in worst-case constant time per character in
the pattern. The construction time of this dictionary is expected linear, so it can no longer
be used. Instead we use a dictionary by Dietzfelbinger and Meyer auf der Heide [11]. If
there are n elements in the dictionary it supports searches in worst-case constant time and
any sequence of 1

2 n updates takes constant time per update with probability 1 − 1/nd′ for
any constant d′ ≥ 1. We store all the edges of all the suffix trees in one such dictionary.
At all times, we keep Θ(w) dummy-elements in the dictionary to ensure that we get good
probability bounds in terms of w, and we choose d′ large enough that any sequence of O(w)
operations (e.g., the construction of any one of our suffix trees) runs in O(w) time with
probability 1 − 1/wd+ϵ.
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Universal Hashing

Before we prove Lemma 5 we restate some basic facts about universal hashing, introduced by
Carter and Wegman [9]. Let M, m > 0 be integers, H be a set of functions [0, M ] → [0, m], and
h ∈ H be selected uniformly at random. Then H is universal if P [h(x) = h(y) | x ̸= y] ≤ 1/m.
Let R ⊆ [0, M ] and |R| = r. It follows from the union bound that h has a collision on R

with probability at most

P [h(x) = h(y) for some x ̸= y] ≤
∑

x ̸=y∈R

P [h(x) = h(y)] = r(r − 1)
2 · 1

m
<

r2

m
. (1)

In particular, if m = rc for constant c ≥ 1 then h is injective (i.e., has no collisions) on R

with probability at least 1 − 1/rc−2. Carter and Wegman gave several classes of universal
hash functions from which we can sample a function uniformly at random in constant time.

Fast Suffix Tree Construction

We now prove Lemma 5, showing how to construct our suffix trees in linear time with high
probability.

▶ Lemma 5. Given a string K of length k ≤ 2w there is an algorithm that uses O(k+w/ log w)
space and constructs the suffix tree over K in O(k) time with probability 1 − 1/w1+ϵ for some
ϵ > 0.

Proof. Let σ = {K[i] | i ∈ [1, k]} ⊆ Σ be the alphabet of K. We show how to, in O(k)
time, find a function h : Σ → [1, kO(1)] such that h is injective on σ with probability at least
1−1/w1+ϵ. If h is injective on σ, we can construct the suffix tree over K′ where K′[i] = h(K[i])
in time O(sort(k, kO(1))) = O(k) using radix sort. After the tree is constructed we can
substitute for the original alphabet in linear time. Therefore, the construction algorithm
finishes in O(k) time with probability at least 1 − 1/w1+ϵ (otherwise we make no guarantee
on the construction time and we can build the suffix tree in any way).

For some m to be determined later, let f : Σ → [1, m] be chosen uniformly at random
from a class of universal hash functions. By Equation 1, the probability that f has a collision
on σ is

P [f has collisions on σ] <
|σ|2

m
≤ k2

m
.

We divide into the cases of large trees (k ≥ w1/5) and small trees (k < w1/5). If k is large
then w1/5 ≤ k ≤ 2w, and we set m = w4 so the probability that f has a collision is at most

k2

m
≤ (2w)2

w4 = 4
w2 ≤ 1

w1+ϵ

for some ϵ > 0. We check whether f is injective by sorting the set {(x, f(x)) | x ∈ σ} with
respect to the f(·)-values and checking if two consecutive elements (x, f(x)) and (y, f(y))
have x ̸= y and f(x) = f(y). This takes time O(sort(k, w4)) = O(k) using radix sort since
k ≥ w1/5. If f is injective we set h = f , concluding the proof of the large case.

If k is small then we allocate an array A of length w/ log w in constant time. For simplicity
we assume that A is initialized such that A[i] = 0 for all i. This can be avoided using standard
constant-time initialization schemes; assume each entry in A contains an arbitrary value
initially. We maintain two other arrays B and C such that if we have written a value to A[i]
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4:16 Sliding Window String Indexing in Streams

at least once then A[i] is a pointer to some B[j], B[j] is a pointer to A[i], and C[j] stores the
value most recently written to A[i]. From this we can determine if A[i] has been initialized
(check if the pointers match), and if it has not we can initialize it in constant time.

Then we set m = w/ log w such that the probability that f has a collision is no more than

k2

m
<

w2/5

w/ log w
= log w

w3/5 = log w

w1/2 · 1
w1/10 ≤ 1

w1/10

for w ≥ 16. We check if f is injective on σ by for each character x in K setting A[f(x)] = x

and seeing if two distinct characters hash to the same index. If f is injective we then
arbitrarily assign the values 1, . . . , |σ| to the now non-zero indices of A and let h(x) = A[f(x)]
(at this point we know σ since it is equal to the number of entries in A that we modified). To
boost the probability of success we run this algorithm up to eleven times with independent
choices for f . The probability that all of them fail is at most 1/w11/10 ≤ 1/w1+ϵ concluding
the proof for the small case. ◀

In conjunction with Theorems 3 and 4, this proves Theorem 1.

6 Conclusion and Future Work

We have studied two variants of the streaming sliding window string indexing problem; the
timely variant, where queries must be answered immediately, and the delayed variant where
a query may be answered at any point within the next δ characters received, for a specified
parameter δ. For a sliding window of size w we have given an O(w) space data structure
that, in the timely variant, supports updates in O(log w) time with high probability and
queries in O(log w) time with high probability per character in the pattern; each occurrence
is reported in additional constant time. For the delayed variant we improved these bounds
to O(log(w/δ)), where each occurrence is still reported in constant time.

One open problem is whether these bounds can be improved. Another is to find efficient
solutions when queries may be interleaved with new updates to the stream. That is, while
you are streaming a pattern, new characters of S might arrive that move the current window.
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Abstract
Hairpin completion is an operation on formal languages that has been inspired by hairpin formation
in DNA biochemistry and has many applications especially in DNA computing. Consider s to be a
string over the alphabet {A, C, G, T } such that a prefix/suffix of it matches the reversed complement
of a substring of s. Then, in a hairpin completion operation the reversed complement of this
prefix/suffix is added to the start/end of s forming a new string.

In this paper we study two problems related to the hairpin completion. The first problem asks
the minimum number of hairpin operations necessary to transform one string into another, number
that is called the hairpin completion distance. For this problem we show an algorithm of running
time O(n2), where n is the maximum length of the two strings. Our algorithm improves on the
algorithm of Manea (TCS 2010), that has running time O(n2 log n).

In the minimum distance common hairpin completion ancestor problem we want to find, for two
input strings x and y, a string w that minimizes the sum of the hairpin completion distances to
x and y. Similarly, we present an algorithm with running time O(n2) that improves by a O(log n)
factor the algorithm of Manea (TCS 2010).
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1 Introduction

1.1 Motivation and informal problem definition
Hairpin completion is an operation on formal languages that has been inspired by hairpin
formation in DNA biochemistry and has many applications especially in DNA computing
[11, 12, 14, 15]. This operation has been inspired by three biological principles: Watson-Crick
complementarity, DNA annealing and DNA lengthening through polymerases. The DNA
chain is a molecule consisting of two intertwined strands, each strand being composed by
nucleotides: A(Adenine), C(cytosine), G(guanine) and T(thymine). The two strands which
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form the DNA molecule are kept together by the hydrogen bond between the bases: A
bonds with T and C with G. This paradigm is usually referred to as the Watson-Crick
complementarity [25].

Another important bio-chemical principle is annealing, the process of fusing two single
stranded molecules by complementary base. DNA lengthening through polymerases is a
phenomenon that produces a complete double stranded DNA molecule as follows: one starts
with two single strands such that one (called primer) is bonded to a part of the other (called
template) through Watson-Crick complementarity and a polymerization buffer with many
copies of the four nucleotides. The polymerases will then concatenate to the primer by
complementing the template [22].

We now begin to informally explain the hairpin completion operation and how it can be
related to the biological concepts presented above. Consider s to be a string over the alphabet
{A, C, G, T} such that a prefix/suffix of it matches to the reversed complement of a substring
of s. Then, the reversed complement of this prefix/suffix is added to the beginning/ending of
s forming a new string as can be visualized in Figure 1. The mathematical expression of this
hypothetical situation defines the hairpin completion operation. Starting with a single string,
one can generate a set of strings using this formal operation: via hairpin completion, a new
string can be created for each possible pairing between a prefix or suffix and a complementary
substring. In addition, one could be interested in knowing how many iterations of hairpin
completion are required to transform one string into another. In this way, the hairpin
completion distance between two strings was defined as the minimum number of times we
must iterate the hairpin completion operation, starting from one of the two string, in order
to obtain the other. Further, one can also be interested in finding for two strings, a common
ancestor that minimizes the sum of the hairpin completion distances to those strings. This
ancestor is called minimum distance common hairpin completion ancestor.

Figure 1 An illustration of the left and right hairpin completion operations.

1.2 Previous and related work
The hairpin completion operation has been introduced by Cheptea, Martin-Vide and
Mitrana [4]. In several papers, the hairpin completion and other familiar operations have
been studied [3, 5, 6, 7, 8, 9, 13, 17, 19, 20, 21, 22, 23, 24].

Hairpin reduction [3, 22, 23] was introduced as an inverse operation for hairpin completion.
The hairpin reduction of a string x consists of all strings y such that x can be obtained from
y by hairpin completion. Further, two variants of hairpin completion were considered, as
they seem more appropriate for practical implementation: hairpin lengthening and bounded
hairpin completion [9, 19, 21]. The first variant consist of adding a prefix or a suffix of γ.
The second variant assumes that the length of the added prefix or suffix is bounded by a
constant. Besides the algorithmic aspects, hairpin completion operation has been studied
from the language theory point of view in several papers [5, 6, 8, 13, 17].

Manea and Mitrana introduced the minimum distance common k-hairpin completion
ancestor of two strings in [22] where they presented a cubic time algorithm to compute
the ancestor. Afterwards, Manea, Martin-Vide, and Mitrana [20] suggested a cubic time
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algorithm to tackle the k-hairpin completion distance problem. In addition, in [18] improved
the time complexity to O(n2 log n) to both problems, where n is the length of the longest
string.

1.3 Our results
The focus of this paper is on two algorithmic problems related to iterated hairpin completion:
k-hairpin completion distance and minimum distance common k-hairpin completion ancestor.
Our main results are improving the upper bound on both problems with a log n factor,
from O(n2 log n) to O(n2). For the k-hairpin completion distance, our speedup is based on
using incremental tree, a data structure proposed by Kaplan and Shafrir [10] which can
support in constant time the following operations in a weighted tree: return the edge with
minimum weight on a path and add a leaf to the tree. Our algorithm for finding a minimum
distance k-hairpin completion ancestor of two strings (x, y) is based on dynamic programming
technique presented in [18]. As in [18], we are interested in constructing the table DPx, where
DPx[i][j] represents the minimum number of k-hairpin completion operations to transform
x[i . . . j] into x. Similarly, we would like to compute a table DPy. Our speedup relies in an
O(n2) time algorithm for computing these tables by rephrasing the problem of computing
DPx in terms of shortest distances in a graph and replacing the segment tree used in [18]
with doubly linked list and changing the order we process the cells in the matrix.

2 Preliminaries

We start with basic notations related to strings. An alphabet Σ is a finite, non-empty set of
symbols. Throughout this paper, we mostly discuss strings over the alphabet Σ = {A, C, G, T}.
For a letter x ∈ Σ, we denote as x the letter in Σ that is complementary to x. For the
previously mentioned alphabet, we have A = T and C = G. The set of all strings over an
alphabet Σ is denoted by Σ∗. The empty string is denoted as λ, and Σ+ = Σ∗ \ {λ}. Given
a string w ∈ Σ∗, we denote by |w| its length. If w = xy, x, y ∈ Σ∗ then x is called prefix
and y a suffix. For a string w, w[i . . . j] denotes the substring of w starting at position i and
ending at position j, 1 ≤ i ≤ j ≤ |w|. Given a string s ∈ Σ+, we denote by s = s1 s2 . . . s|s|
the complement of the string s and sR the reversed string of s, i.e. sR = s|s|s|s|−1 . . . s1.

Incremental tree is a data structure introduced by Kaplan and Shafrir [10] based on a
similar structure of Alstrup and Holm [1] for the level ancestor problem, to maintain a rooted
tree T , with an integer weight on each edge, such that the following operations are supported
in O(1) amortized time:

add-leafT(v, w, c): Add a new leaf v with parent w to T . The weight of the edge (v, w)
is c.
add-rootT(v, c): Add a new root v to T . The old root (r) becomes a child of v and the
weight of edge (r, v) is c.
min-edgeT(v, w): Returns the edge with minimum weight on the path from v to w.
change-weightT(v, c): v is a leaf or v’s parent is the root of T . Changes the weight of
the edge between v and its parent to c.

From this data structure we will use just add-leafT and min-edgeT operations.

2.1 Hairpin Operations
For a string x ∈ Σ+ and a positive integer k ∈ N, k-hairpin completion is a family of
transformations that can be applied to x. When applying a left k-hairpin completion, we
select a non-empty suffix γ of x such that x can be partitioned into x = αβαRγ with
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α, β, γ ∈ Σ+ and |α| = k. We execute the left hairpin operation by appending γR to the
beginning of s. Formally, the set of strings that can be obtained from x by applying a single
left k-hairpin operation is denoted as

HCLk(x) = {γRx|x = αβαRγ, |α| = k, α, β, γ ∈ Σ+}

A right k-hairpin completion is defined in a symmetrical manner and the set of strings
that can be obtained from s by applying a single right k-hairpin completion operation is
denoted as

HCRk(x) = {xγR|x = γαβαR, |α| = k, α, β, γ ∈ Σ+}

▶ Example 1. The string s = GAATCT can be partitioned into α = GA, β = A, αR = TC

and γ = T . Applying the left hairpin completion operation on s with this partitioning yields
the string AGAATCT . Also, s can be partitioned into γ = GA, α = A, β = TC, αR = T

and by applying right hairpin completion operation we obtain GAATCTTC.

Collectively, the set of strings that can be obtained from x either by applying a right or a
left k-hairpin completion operation is denoted as

HCk(x) = HCLk(x) ∪HCRk(x)

The hairpin completion is the variant of the k-hairpin completion where we do not place
a bound on the length of prefix. The hairpin completion of x is defined by:

HC(x) =
⋃
k≥1

HCk(x)

We extend the notation of hairpin completion to sets of strings in the following way, for a
set L ⊆ Σ∗ and a positive integer k,

HCk(L) =
⋃

x∈L

HCk(x) HC(L) =
⋃

x∈L

HC(x)

For every non negative integers k, i and string x ∈ Σ+, we denote as HCi
k(x) the set of

strings that can be obtained from x using exactly i k-hairpin completion operations and
HC∗

k(x) as the set of strings that are obtainable from x using any number of k-hairpin
completion operations. Similarly, we denote as HCi(x) and HC∗(x) the sets of strings
obtainable from x by applying i (resp. any number) of hairpin operations, respectively.
Formally,

HC0
k(x) = {x} HCi+1

k (x) = HCk(HCi
k(x)) HC∗

k(x) =
⋃
i≥0

HCi
k(x)

HC0(x) = {x} HCi+1(x) = HC(HCi(x)) HC∗(x) =
⋃
i≥0

HCi(x)

HC∗
k(L) =

⋃
x∈L

HC∗
k(x) HC∗(L) =

⋃
x∈L

HC∗(x)

▶ Definition 2 (k-Hairpin Completion Common Ancestor). A string w is a common k-hairpin
completion ancestor of two strings x and y if {x, y} ⊆ HC∗

k(w). We denote the set of common
k-hairpin ancestors of x and y as HCAk(x, y).
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▶ Definition 3 (k-Hairpin Completion Distance). Given two strings x and y such that |x| ≤ |y|,
the k-hairpin completion distance between x and y is the minimal number of k-hairpin
operations required to obtain y from x. Formally

HCDk(x, y) =
{

min{p|x ∈ HCp
k(y)}

∞, x /∈ HC∗
k(y)

▶ Definition 4 (Minimum Distance k-hairpin Completion Ancestor). For two strings x, y ∈ Σ∗, a
k-hairpin completion ancestor w ∈ HCAk(x, y) is a minimum distance k-hairpin completion
ancestor of x and y if ∀w′ ∈ HCAk(x, y) it holds that HCDk(w, x) + HCDk(w, y) ≤
HCDk(w′, x)+HCDk(w′, y), i.e. w minimizes the sum of the k-hairpin completion distances
from x and from y.

▶ Definition 5 (Border). Given a string s[1 . . . n] ∈ Σ+, Border(s) is the length of the
longest prefix of the string s which is also a complemented reversed suffix of this string.
Formally, Border(s) = max({t|s[1 . . . 1 + t− 1] = s[n− t + 1 . . . n]R} ∪ {0}). This definition
can be easily extended for any substring s[i . . . j] in the following way: Border(s[i . . . j]) =
max({t|s[i . . . i + t− 1] = s[j − t + 1 . . . j]R} ∪ {0})

▶ Remark 6. Note that the above definition for border is different than the common definition,
which is usually the largest prefix of x which is also a suffix of x.

Since in the k-hairpin completion operation we have to make sure that |α| = k, we
introduce the definition of k-Border.

▶ Definition 7 (k-Border). Given a string s ∈ Σ+, k-Border(s) = max(Border(s)− k, 0).

Hairpin reduction is the inverse operation of hairpin completion. The hairpin reduction of
a string x consists of all strings y such that x can be obtained from y by hairpin completion.
For a string x ∈ Σ+ and a positive integer k ∈ N, k-hairpin reduction is a family of
transformations that can be applied to x. When applying a left hairpin reduction, we select
a non-empty prefix γ of x such that x can be partitioned into γαβαRγR with α, β, γ ∈ Σ+

and |α| = k. We execute the left hairpin reduction operation by deleting γ. Formally, the set
of strings that can be obtained from x by applying a single left k-hairpin reduction operation
is denoted as

HRLk(x) = {αβαRγR|x = γαβαRγR, |α| = k, α, β, γ ∈ Σ+}

A right k-hairpin reduction operation is defined in a symmetrical manner and the set of
strings that can be obtained from x by applying a single right k-hairpin reduction operation
is denoted as

HRRk(x) = {γαβαR|x = γαβαRγR, |α| = k, α, β, γ ∈ Σ+}

The set of strings that can be obtained from x either by applying a left or a right k-hairpin
reduction operation is denoted as

HRk(x) = HRLk(x) ∪HRRk(x)

The hairpin reduction is the variant of the k-hairpin reduction where we do not place a
bound on the length of prefix. The hairpin reduction of x is defined by:

HR(x) =
⋃
k≥1

HRk(x)

We make the following observation.
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▶ Observation 8. Let x[1 . . . n] be a string with k-Border l.

HRLk(x) =
⋃

j∈[1...l]

{x[j + 1 . . . n]} HRRk(x) =
⋃

j∈[1...l]

{x[1 . . . n− j]}

HRk(x) =
⋃

j∈[1...l]

{x[j + 1 . . . n], x[1 . . . n− j]}

Now we are ready to introduce the problems that we study in this paper.

▶ Problem 1 (Hairpin completion distance). Let Σ be the alphabet and x, y ∈ Σ+. Compute
HCDk(x, y).

▶ Problem 2 (Minimum distance common hairpin completion ancestor). Let Σ be the alphabet
and x, y ∈ Σ+. Compute a minimum-distance common k-hairpin completion ancestor of x, y.

2.2 Suffix Tree and Extension queries
The suffix tree [26] is a useful string data structure.

▶ Definition 9. Let S1, . . . , Sk be strings over alphabet Σ and let $ ̸∈ Σ.
A trie of strings S1, . . . , Sk is an edge-labeled tree with k leaves. Every path from the root

to a leaf corresponds to a string Si with a $ symbol appended to its end. The edges on this
path are labeled by the symbols of Si. Strings with a common prefix start at the root and
follow the same path of the prefix, the paths split where the strings differ.

A compacted trie is a trie with every chain of edges connected by degree-2 nodes contracted
to a single edge whose label is the concatenation of the symbols on the edges of the chain.

Let S = S[1], . . . , S[n] be a string over alphabet Σ. Let {S1, . . . , Sn} be the set of suffixes
of S, where Si = S[i . . . n], i = 1, . . . , n. A suffix tree of S is the compacted trie of the
suffixes S1, . . . , Sn.

For every node u, we call the concatenation of the labels on the path from the root to u

the locus of u denoted as L(u). For an edge e in the compact trie, we use the same notation
L(e) to denote the label (or the locus) of e. Finally, for a downwards path P in the compact
trie, the locus L(P ) is the concatenation of the loci of the edges in P . In a compact trie, an
edge e can have label s.t. |L(e)| > 1. We refer to the symbol L(e)[1] as the symbol of e.

▶ Theorem 10 (Weiner [26]). For finite alphabet Σ, the suffix tree of a length-n string can
be constructed in time O(n). For general alphabets it can be constructed in time O(n log σ),
where σ = min(|Σ|, n).

For two strings S[1 . . . n] and T [1 . . . m], a string P [1 . . . p] is a common prefix of S and T

if S[1 . . . p] = T [1 . . . p] = P . We say that P is the longest common prefix (LCP) of S and
T if P is a common prefix and m = p or n = p or S[p + 1] ̸= T [p + 1]. Similarly, a string
A[1 . . . a] is a common suffix of S and T if S[n− a + 1 . . . n] = T [m− a + 1 . . . m] = A. A is
the longest common suffix (LCS) if n = a or m = a or S[n− a] ̸= T [m− a]. Collectively, we
refer to LCP and LCS as longest common extensions (LCE).

By preprocessing the suffix tree of a string S for level ancestor queries [2], we can obtain
the following.

▶ Lemma 11 (Longest Common Extension Data Structure). A string S can be preprocessed in
O(n) time to support the following queries in O(1) time.
1. LCP (i, j) - return the length of the longest common prefix of S[i . . . n] and S[j . . . n]
2. LCS(i, j) - return the length of the longest common suffix of S[1 . . . i] and S[1 . . . j]
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By constructing the above data structure for the string x$xR with $ /∈ Σ, we obtain the
following.

▶ Corollary 12. We can process a string S[1 . . . n] in linear time to construct a data structure
for answering the following query in O(1) time.

k-Border(S[i . . . j])− Return the length of the k-Border of S[i . . . j].

3 Hairpin completion distance

In this section we study Problem 1.
Our algorithm is based on the dynamic programming technique presented in [18]. For the

sake of clarity, we briefly describe this technique. Without loss of generality, we assume that
|x| ≤ |y| and n = |y|, m = |x|. We are interested in computing a dynamic programming table
DP [n][n] with dimensions n× n. For every two indices 1 ≤ i ≤ j ≤ n, we define DP [i][j] to
be the minimum number of k-hairpin completion operations to transform x into y[i . . . j].
Formally, DP [i][j] = HCDk(x, y[i . . . j]).

▶ Definition 13. Given two non-negative integers i, j (1 ≤ i ≤ j ≤ n), Lj represents the DP

values of all strings that can generate the substring y[i . . . j] through a single left k-hairpin
completion operation (elements of the set HRLk(y[i . . . j])).

▷ Claim 14. Lj = {DP [i + 1][j], . . . , DP [i + l][j]} where l is the k-Border of y[i . . . j].

▶ Definition 15. Given two non-negative integers i, j (1 ≤ i ≤ j ≤ n), Ri represents the DP

values of all strings that can generate the substring y[i . . . j] through a single right k-hairpin
completion operation (elements of the set HRRk(y[i . . . j])).

▷ Claim 16. Ri = {DP [i][j − l], . . . , DP [i][j − 1]} where l is the k-Border of y[i . . . j].

Correctness of Claim 14 and Claim 16 is based on Observation 8.

▶ Lemma 17. Given two non-negative integers i, j (1 ≤ i ≤ j ≤ n), we have that DP [i][j] =
min(min Lj , min Ri) + 1.

For the proof of Lemma 17 we refer to [18].
All positions in DP are initialized with ∞. We start by considering the base cases. These

are represented by all subsequences y[i . . . j] = x. To determine them, we use any pattern
matching algorithm which runs in linear time, for example KMP [16] and set DP [i][j] = 0.
Analyzing the elements of the sets Lj and Ri, it can be seen that they actually represent
continuous blocks from line i or column j. Thus, determining the minimum values from each
of those sets is a range minimum query.

▶ Definition 18. Given two non-negative integers i, j (1 ≤ i ≤ j ≤ n), DSLj represents the
data structure that keeps the DP values of column j and DSRi represents the data structure
that keeps the DP values of row i. (Note that we don’t have to keep the values below the
main diagonal)

Naively, DSLj and DSRi could be arrays, which leads to constant update time, but linear
query time. The overall complexity of the algorithm with this naive implementation is O(n3).
In [18], the algorithm is implemented using segment trees, which leads to a logarithmic time
for queries and for updates.
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Figure 2 We compute the DP matrix in increasing order of difference j − i (parallel with the
main diagonal). Red line represents DSLj and the green line DSRi.

Considering that the update operations are append-like, i.e. they are only done after the
first/last index of DSLj and DSRi, we propose using an incremental tree. The advantages of
this approach consist in the fact that this structure can perform query and update operations
in constant time. Practically, we keep an incremental tree for each row and column. A row
or a column in the matrix represents a particular case of a tree, more precisely a chain. For
the range minimum query needed in the computation of DP [i][j] we use incremental tree’s
min-edgeT operation. After we compute the DP [i][j] value, we have to add to DSRi and
DSLj . This can be done by using the add-leafT operation.

Algorithm 1 An O(n2) algorithm for Problem 1.

Input: x, y ∈ Σ+

Output: HCDk(x, y)
1: DP [i][j] =∞, ∀ 1 ≤ i ≤ j ≤ n

2: Find all pairs (i, j) such that x = y[i . . . j] and set DP [i][j] = 0.
3: for len← m + 1 to n do
4: for i← 1 to n− len + 1 do
5: j ← i + len− 1
6: if DP [i][j] =∞ then
7: x← min-edgeDSRi

(j − k-Border(s[i . . . j]), j − 1)
8: y ← min-edgeDSLj (i + 1, i + k-Border(s[i . . . j]))
9: DP [i][j] = min(x, y) + 1

10: end if
11: add-leafDSRi

(j, j − 1, DP [i][j])
12: add-leafDSLj

(i, i + 1, DP [i][j])
13: end for
14: end for
15: return DP [1][n]

▶ Theorem 19. Algorithm 1 solves Problem 1 in O(n2).
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Proof.
Correctness. We prove the correctness of the algorithm by induction over the algorithm
execution. The base cases correspond to the substrings y[i . . . j] = x. In these cases,
DP [i][j] = 0 because no operation is needed to convert x to y[i . . . j]. Suppose we want to
calculate the value of DP [i][j]. We remind that DP [i][j] = min(min Lj , min Ri) + 1. We can
rewrite the elements of the set Ri in the following form DP [i][p] with j −Border(i, j) + k ≤
p < j and the elements of the set Lj in the form DP [s][j] with i < s ≤ i + Border(i, j)− k.
Taking into account the iteration order (increasing according to the difference j− i) and j > i,
we obtain the following inequalities: j − i > j − s and j − i > p− i. Thus, it is guaranteed
that when we want to calculate DP [i][j] all the necessary values are already calculated.

Complexity. Line 1 runs in O(n2) and Line 2 in O(n + m). For each cell above the main
diagonal we have two queries and two updates both done in O(1) amortized time. The overall
time complexity is therefore O(n2). ◀

4 Minimum distance common hairpin completion ancestor

In this section we study Problem 2.
Our algorithm is based on the dynamic programming technique described in [18], but

we replace the segment tree with a linked list and change the order of processing the cells
in the matrix. Without loss of generality, we assume that |x| ≥ |y| and n = |x|, m = |y|.
As in [18], we are interested in constructing the table DPx[1 . . . n][1 . . . n] with DPx[i][j] =
HCDk(x[i . . . j], x). Similarly, we would like to compute a table DPy[1 . . . m][1 . . . m] with
DPy[i][j] = HCDk(y[i . . . j], y). Our speedup relies on an O(n2) time algorithm for computing
DPx and DPy.

We are interested in rephrasing the problem of computing DPx in terms of shortest
distances in a graph. We present the following definition.

▶ Definition 20 (Hairpin Deletion Graph). For a string x[1 . . . n], we define the Hairpin
Deletion Graph Gh(x) = (V, E) of x as follows.

V = {x[i . . . j]|1 ≤ i ≤ j ≤ n} is the set of substrings of x.
E = {(x[i . . . j], x[a . . . b])|x[i . . . j] ∈ HRk(x[a . . . b])} I.e. there is a directed edge from
substring A to the substring B if A can be obtained from B by applying a single hairpin
completion operation.

It is easy to see that HCDk(x[i . . . j], x) is exactly the length of the shortest path from
x[1 . . . n] to x[i . . . j] in Gh(x). Following Observation 8, we present the following character-
ization of the edges in Gh(x).

▶ Corollary 21. Let x[1 . . . n] be a string and let A = x[i . . . j] be a substring of x with
k-Border length l. The set of edges emerging from A in Gh(x) is

EA =
⋃

p∈[1...l]

{(A, x[i + p . . . j]), (A, x[i . . . j − p])}

We call edges from A = x[i . . . j] to a suffix [i + p . . . j] a downward edge and an edge from
A to a prefix x[i . . . j−p] a leftward edge. When a path in Gh(x) uses a downward (resp. left)
edge, we say that it takes a step down (resp. leftward). For example, if P = (v1, v2 . . . vz) is
a path in Gh(x), and the edge (vz−1, vz) is a downward (resp. leftward) edge, we say that P

ends with a step left (resp. down).
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Figure 3 A demonstration of a restricted path to the red square. The grey squares resemble cells
that precede the cell (i, j).

Then, the algorithm computes the cells of DPx row by row from top to bottom, iterating
a row in decreasing order of the columns. Formally, when iterating the cell DPx[i][j], the
algorithm have already computed the cells DPx[a][b] with a < i and the cells DPx[i][b] with
b > j. The order of the iteration implies a total order on the pairs i, j ∈ [n]× [n].

▶ Definition 22 (Iteration Order). For two pairs of integers (i1, j1), (i2, j2) ∈ [n]× [n], we say
that (i1, j1) precedes (i2, j2) (denoted as (i1, j1) < (i2, j2)) if the cell DPx[i1][j1] is iterated
before DPx[i2][j2] by our algorithm. Similarly, we say (i2, j2) proceeds (i1, j1)

We proceed to introduce a useful concept used by the algorithm.

▶ Definition 23 (Restricted Path). For a string x[1 . . . n] and integers i, j ∈ [n], a path
P = (x, v1, v2 . . . , vz, A) from x to A in Gh(x) is (i, j)-restricted if for every r ∈ [z] we have
vr = x[ar . . . br] such that (ar, br) precedes (i, j). For (i, j) = (0, 0), we say that there is no
(0, 0)-restricted path.

For integer pairs (i, j), (a, b) ∈ [n][n] such that (i, j) < (a, b), we denote as ResL(i,j)[(a, b)]
the length of the shortest (i, j)-restricted path from x to x[a . . . b] in Gh(x) that ends with a
step left. Similarly, we denote as ResD(i,j)[(a, b)] the length of the shortest (i, j)-restricted
path from x to x[a . . . b] in Gh(x) that ends with a step down.

We make the following observations regarding the structure of ResL(i,j)[(a, b)] and
ResD(i,j)[(a, b)].

▶ Lemma 24. For every i, j ∈ [n] and a, b ∈ [n]× [n−1] such that (i, j) < (a, b) it is satisfied
that ResL(i,j)[(a, b + 1)] ≤ ResL(i,j)[(a, b)].

Proof. If there is no (i, j)-restricted path that ends with a step leftwards from (0, 0) to (a, b),
the claim is vacuously true. Otherwise, let P = (1, n), (x1, y1), (x2, y2) . . . (xd, yd), (a, b) be
the shortest (i, j)-restricted path from (1, n) to (a, b) that ends with a step to the left. Since
P ends with a step leftwards, we have xd = a and there is an edge from (a, yd) to (a, b).
According to Corollary 21, there is also an edge from (a, yd) to (a, b + 1). Therefore, we can
replace (a, b) with (a, b + 1) in P to obtain an (i, j)-restricted path P ′ with length |P | from
(1, n) to (a, b + 1). ◀

The following symmetric statement can be proven in a similar manner.
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Figure 4 The list Rowa above the a’th row of DPx. Every pair (δ, β) appears above the cell
(a, β). The content of Rowa implies ResL(i, j) for the cells in the a’th row. Every cell in the
green region has the boundary predecessor (3, 10) in Rowk. So for every b in the green region,
ResL(i,j)[(a, b)] = 3.

▶ Lemma 25. For every i, j ∈ [n] and a, b ∈ [n−1]× [n] such that (i, j) < (a, b) it is satisfied
that ResD(i,j)[(a, b)] ≤ ResD(i,j)[(a + 1, b)].

Lemma 24 and Lemma 25 suggest that the values of ResL(i,j) (resp. ResD(i,j)) in every
row (resp. column) are monotonic.

For every row k ∈ [n] of DPx, the algorithm maintains a corresponding double-sided
linked list Rowk. Similarly, for every column k ∈ [n] the algorithm maintains a list Colk.
Conceptually, Rowk (resp. Colk) compactly represents the values ResL(i,j)[(a, b)] (resp.
ResD(i,j)(a, b)) for all the cells (a, b) in row k (resp. in column k). Every list stores a
sequence of pairs of integers (δ, β). The first value δ is called the distance and the second
value β is called the boundary. We call such pairs boundary pairs. The pairs are stored in
increasing order of distances. For an integer x, we call the pair (δ, β) in a list the boundary
predecessor (resp. boundary successor) of x in Rowk if β is the minimal (resp. maximal)
boundary in the list that is at least (resp. at most) x.

When processing DPx[i][j], we are interested in maintaining the following invariant
regarding the pairs stored in Rowa (for every a ∈ [n]):

Let b ∈ [n] be an integer such that (i, j) < (a, b) and let (δ, β) be the boundary predecessor
of b in Rowa. It holds that ResL(i,j)[(a, b)] = δ. Equivalently: Let (δ1, β1), (δ2, β2) . . . (δz, βz)
be the pairs in Rowa. Note that due to Lemma 24, the pairs in Rowk are naturally stored in
decreasing order of their boundaries. If an integer b satisfies b ∈ [βr . . . βr−1 − 1] for some
r ∈ [z], then ResL(i,j)[(a, b)] = δr. For a visualization, see Figure 4.

Essentially, the list Rowa stores an implicit representation of the shortest (i, j)-restricted
paths that end with a left step to the cells in row a.

Similarly, the list Colb stores an implicit representation of ResD(i,j)[(a, b)] for vertices in
column b as follows. For every a ∈ [n] such that (i, j) < (a, b) with boundary successor (δ, β)
in Colb, it holds that ResD(i,j)[(a, b)] = δ.

Throughout the iterations, we maintain the pair r = (δr, βr) such that when we iterate
DPx[i][j], the pair r is the boundary predecessor j in Rowi. We also store n pairs c1, c2 . . . cn

such that when iterating DPx[i][j], the pair cj = (δj
c , βj

c) is the boundary successor of i in
Colj . We initialize every list Rowk with a single pair (∞, 1) and every list Colk with a single
pair (∞, n). For the sake of consistency, we treat the initialization of the algorithm as a
phase in the iteration in which a dummy cell (0, 0) is the currently iterated cell. Note that
the initialization for the lists suggests that for every vertex, there is no (0, 0)-restricted path
that ends with a step to downwards or leftwards.
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Processing a cell. When processing DPx[i][j], we first obtain the distance to DPx[i][j]
using r and cj . The shortest path to (i, j) must end with a step to the left from a vertex in
row i or with a step downwards from a vertex in column j. Note that all the cells to the
right of (i, j) and above it have already been processed. It follows that the shortest path to
(i, j) is an (i′, j′)-restricted path with (i′, j′) being the cell processed in the previous iteration.
Let r = (δr, βr) and cj = (δj

c , βj
c ). r is the boundary predecessor of i in Rowi, so according

to the invariant we have ResL(i′,j′) = δr. Similarly, ResD(i′,j′) = δj
c . We can therefore set

DPx[i][j] = min(δr, δj
c).

The remaining task is to update the lists and the pointers in a manner that preserves our
invariants. We make the following claims.

▷ Claim 26. For (i, j) ∈ [n] × [n] and (a, b) ∈ [n] × [n] such that (i, j) < (a, b), if an
(i, j)-restricted path to (a, b) visits the vertex (i, j) - (i, j) must be the second to last vertex
in the path (i.e. the next vertex is (a, b).

Proof. According to Corollary 21, every edge emerging from (i, j) enter a vertex (i′j′) such
that (i, j) < (i′, j′). The only vertex in an (i, j)-restricted path that is allowed to proceed
(i, j) is the destination vertex. ◁

Claim 26 suggests the following.

▶ Corollary 27. Let (i′, j′) ∈ [n] × [n] and let (i, j) ∈ [n] × [n] be the vertex immediately
following (i′, j′) in the iteration order. Let (a, b) ∈ [n] × [n] such that (i, j) < (a, b).
If there is no edge from (i, j) to (a, b) we have ResL(i,j)[(a, b)] = ResL(i′,j′)[(a, b)] and
ResD(i,j)[(a, b)] = ResD(i′,j′)[(a, b)]

Furthermore, by Corollary 27 and Corollary 21 together, we obtain the following.

▶ Corollary 28. For k ̸= i (resp. k ≠ j), the list Rowk (resp. Colk) does not need to be
updated after the cell (i, j) is processed in order to satisfy the invariant.

It follows from Corollary 28 that we only need to update the lists Rowi and Colj to
represent shortest (i, j)-restricted paths instead of representing shortest (i′, j′)-restricted
paths. In other words, we need to update Rowi and Colj to consider paths that use the
vertex (i, j). Specifically, paths that use (i, j) as a second to last vertex (Claim 26)

We update the lists as follows. Let l be the k-Border of x[i . . . j] and let d be the recently
calculated d = DPx[i][j] = min(δr, δj

c). According to Corollary 21, there is an edge from (i, j)
to (i, j− z) with z ∈ [1 . . . l], and only to those vertices in the i’th row. We call these vertices
the contested vertices. For every contested vertex, there is an (i, j)-restricted path that ends
with a step to the left via the vertex (i, j). This path has length d + 1. Our task is to
update Rowi such that every contested vertex (a, b) in the list with ResLi′,j′ [(a, b)] > d + 1 is
updated to have ResL(i,j)[(a, b)] = d + 1. Every (a, b) ∈ Rowi with ResL(i′,j′)[(a, b)] ≤ d + 1
needs to keep its current distance. The distances to uncontested vertices in the i’th row do
not require an update (Corollary 27).

Assume w.l.o.g that d = δr (the case in which d = δj
c is treated symmetrically). We

may need to add the boundary pair (d + 1, j − l) to Rowi to represent the newly available
(i, j)-restricted paths. First, observe that r = (d, βr) should not be removed from Rowi.
This is due to the cost of the newly available paths via (i, j) being d + 1 - longer than the
paths already represented by Rowi for the vertices (i, b) with b ∈ [βr . . . j]. We follow the list
pointer from r to obtain its boundary predecessor r′ = (δ1, β1) in Rowi with β1 < βr and
δ1 > d. We consider the following cases.
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Case 1.a: δ1 = d + 1 and j − l ≥ β1. In this case, Rowi already represents the shortest
restricted paths with cost d + 1 to the vertices (i, k) with k ∈ [j − l . . . βr − 1]. Therefore, no
update is required for Rowi.

Case 1.b: δ1 > d + 1 and j − l ≥ β1. In this case, we need to add the boundary
pair (d + 1, j − l) after the boundary border r in Rowi. The following pairs in Rowi have
boundaries smaller than j − l and therefore represent the shortest paths uncontested vertices
and do not need to be changed. If j− l = β1, we also remove r′ from Rowi, as it is redundant.

Case 2 : j − l < β1. In this case, adding the pair (d + 1, j − l) after the pair r to Rowi

may be insufficient. We also need to remove every pair (δ, β) in Rowi with β ∈ [j − l . . . β1].
All of those pairs are now redundant in Rowi - as they represent paths with a length at
least d + 1 to contested vertices. We execute the deletion of these pairs in a straightforward
manner by following the links from r′ until we reach a pair r∗ = (δ, β) with β < j − l. When
r∗ is finally met, we insert (d + 1, j − l) to Rowi between the r and r∗.

We proceed to treat Colj . If δj
c = d, the treatment of Colj is completely symmetric to

the treatment of Rowi. Otherwise, δj
c . As in the treatment of Rowi, our task is to add a

representation of the paths with length d + 1 to vertices (a, j) with a ∈ [i . . . i + l].
Namely, every pair (δ, β) in Colj with δ < i + l should be removed (including cj), as it

represents a path with length at least d + 1 to one of the vertices (a, j) with a ∈ [i, i + l]. We
execute the required deletion in a straightforward manner. Starting from cj , we proceed to
the next pair in the list until a pair (δ, β) with β > j + l is found. We then remove the pairs
iterated in this process from Colj and append (d + 1, i + l) to the beginning of the list. This
concludes the updates to Rowi and to Colj . We note that if r of cj is removed from Rowi or
from Colj , respectively, the new pair (d + 1, j − l) (or respectively, (d + 1, i + l)) is becoming
the new boundary predecessor (resp. boundary successor) of j in Rowi (resp. of i in Colj).

Finally, we need to update r and cj to be the boundary predecessor and successors
required for the next iterated cell. If i < n, the i value will remain the same on the next
iteration. In this case, if βr = j, we update r to be the next element in Rowi. If βr < j, we
do not need to update r is it is also the boundary predecessor of j − 1 in Rowi.

If i = n, the next iteration is the first step in row i + 1. It follows that Rowi+1 is still in
its initialized state, and we set the only pair in (∞, 1) ∈ Rowi+1 to be r.

As for the cj pointers, we need to update all of them every time a new row is met. When
moving from row i to row i + 1, every cj needs to be updated from the predecessor of i in
Colj to the predecessor of i + 1 in Colj . This is done in a symmetric manner to the update
of r.

▶ Lemma 29. The time complexity of the algorithm is O(n2).

Proof. When a cell (i, j) is processed, the value in DPx[i][j] is decided in constant time. In
the process of maintaining the lists invariant, at most one pair is added to the list Rowi

and to the list Colj . Several pairs may be removed from these lists, but since every element
can be removed at most once throughout the algorithm - the overall time complexity for
treating the lists is O(n2). The pointer r is updated in constant time during the processing
of DPx[i][j]. The pointers c1, c2 . . . cn are all updated in O(n) when a table row is visited for
the first time, which happens n times throughout the algorithm. ◀

After we compute the tables DPx and DPy we have to find a common substring z of
x, y such that HCDk(z, x) + HCDk(z, y) is minimum among all common substrings of x, y.
We use the algorithm Compute_MDCA presented in [18] which can return the answer in

CPM 2023
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Figure 5 Case 2: The shortest path to the purple vertex is discovered to be 2. The k-Border of
the substring corresponding to this vertex is 11 (denoted as the purple left arrow), thus creating
new restricted paths to the vertices covered by the purple arrow (recall that in Gh(x), there is a
directed edge from the purple vertex to every one of the vertices covered by the purple arrow). The
appropriate update to the list is removing the pairs (3, 10) and (4, 6) as the vertices in the green
area and in the blue area are now accessible via a shorter path with length 2 via the purple vertex.
This new paths are represented by the newly added pair (2, 5).

Figure 6 Case 1.a: The distance to the purple vertex is discovered to be 3, enabling new paths
with length 4 to the vertices touched by the purple arrow (representing the length of the k-Border
of the substring corresponding to the purple vertex). These new paths does not improve upon the
restricted paths already represented in the list, so the pair (4, 8) representing these new paths is
simply not added to the list.

O(n2). To be clear, we provide a brief explanation of the algorithm. In the first stage, the
algorithm builds a trie with all the suffixes of the string x. Then, it will traverse the trie for
every suffix of y and at every match it will compute the sum of DP values. In short, this
algorithm determines in quadratic time all the common substrings of x and y and keeps the
one with the minimum sum of distances. We add the pseudocode for the algorithm described
in this section in the appendix.
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Figure 7 Case 2: The distance to the purple vertex is discovered to be 3. This creates new
restricted paths with length 4 to the vertices touched by the purple arrow (representing the k-Border
of the string corresponding to the purple vertex). For the vertices in the green area, this is not an
improvement, as we already have a representation to a path with length 3 to those vertices. The
distances to the vertices in the blue area and to the vertex in the red area touched by the purple
arrow are longer or equal to 4. To represent this, we add the boundary pair (4, 5) and remove the
boundary pair (4, 6) (as the k-Border (4, 6) represented the distances to the vertices in the blue
interval, which are now represented by (4, 5).

5 Conclusions and future work

In this paper we study two problems related to the hairpin completion operation. We propose
a quadratic time algorithm for solving these two problems, thus improving the runtime
over previous work by Manea [18]. Notice that both our algorithms compute the dynamic
programming table of the respective problem explicitly.

A question that arises from our work is can one find an algorithm that solves one of these
problems by computing a small subset of cells in the dynamic programming table, which
implies a runtime of o(n2). An interesting and challenging open problem is to provide an
o(n2) algorithm for any of the two problems studied in this paper (not necessary with uses
of the dynamic programming’s formula), or present a lower bound matching with known
problems.

For other variants of hairpin problems (see, e.g., [9, 20, 21]), we believe our techniques can
help understand them better and help with designing efficient algorithms for these problems.
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A Appendix

Algorithm 2 An O(n2) algorithm for Problem 2.

Input: x, y ∈ Σ+

Output: a string z such that HCDk(z, x) + HCDk(z, y) is minimum
1: DPx = ComputeDP (x)
2: DPy = ComputeDP (y)
3: return Compute_MDCA(x, y, DPx, DPy)

Algorithm 3 Updates the list Rowi.

1: procedure updateRow(i, j, r)
2: while r is not NULL and βr > j − k-Border(s[i . . . j]) and δr > DPx[i][j] do
3: delete r from Rowi

4: r = r → next

5: end while
6: add (j − k-Border(s[i . . . j]), DPx[i][j] + 1) to Rowi

7: end procedure

Algorithm 4 Updates the list Colj .

1: procedure updateCol(i, j, cj)
2: while c is not NULL and βj

c < i + k-Border(s[i . . . j]) and δj
c > DPx[i][j] do

3: delete cj from Colj
4: cj = cj → next

5: end while
6: add (i + k-Border(s[i . . . j]), DPx[i][j] + 1) to Colj
7: end procedure
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Algorithm 5 ComputeDP .

Input: x ∈ Σ+

Output: DPx

1: DP [i][j] =∞, ∀ 1 ≤ i ≤ j ≤ n ▷ n is the length of the input string
2: DPx[1][n] = 0 ▷ Base case
3: add (n− k-Border(s[1 . . . n]), 1) to Row1
4: for i← n− 1 to 1 do ▷ Compute the first line of DPx

5: if i ≤ βr then
6: DPx[1][i] = δr

7: if j − k-Border(s[1 . . . i]) < βr then
8: updateRow(1, i, r)
9: end if

10: end if
11: end for
12: for i← 2 to n do
13: for j ← n to 1 do
14: if δr < δj

c then
15: if j ≥ βr then
16: DPx[i][j] = δr

17: if j − k-Border(s[i . . . j]) < βr then
18: updateRow(i, j, r)
19: updateCol(i, j, cj)
20: end if
21: end if
22: else
23: if i ≤ βj

c then
24: DPx[i][j] = δj

c

25: if i + k-Border(s[i . . . j]) > βj
c then

26: updateCol(i, j, cj)
27: updateRow(i, j, r)
28: end if
29: end if
30: end if
31: end for
32: end for
33: return DPx
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Abstract
The edit distance between parameterized words is a generalization of the classical edit distance where
it is allowed to map particular letters of the first word, called parameters, to parameters of the second
word before computing the distance. This problem has been introduced in particular for detection
of code duplication, and the notion of words with parameters has also been used with different
semantics in other fields. The complexity of several variants of edit distances between parameterized
words has been studied, however, the complexity of the most natural one, the Levenshtein distance,
remained open.

In this paper, we solve this open question and close the exhaustive analysis of all cases of
parameterized word matching and function matching, showing that these problems are np-complete.
To this aim, we also provide a comparison of the different problems, exhibiting several equivalences
between them. We also provide and implement a MaxSAT encoding of the problem, as well as a
simple FPT algorithm in the alphabet size, and study their efficiency on real data in the context of
theater play structure comparison.
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1 Introduction

Measuring the similarity between text strings is a fundamental problem in computer
science, and has applications in bioinformatics [23], databases [1, 16] and natural language
processing [27]. Among the measures of similarities between strings, the Levenshtein
distance [28] is the most commonly used, both for its practicality and its ease of computation.
This distance quantifies the minimum number of operations of insertion, deletion, and
substitution needed to transform a string into another one. It has a wide range of applications,
ranging from biological sequence alignment [33] to dialect pronunciation differences [25] or
signature authentication [34]. Computing the edit distance between two strings of length
n and m can be achieved in time O(nm), by computing the distance between all their
prefixes, and storing the results in a dynamic programming fashion [37]. The success of the
Levenshtein distance generated many extensions and generalization on more complex models,
such as trees [38] or automata [32].

However, a limitation of the Levenshtein distance is that it only captures proximity
between strings (or objects) written on the same alphabet. Evaluating the proximity of
strings written on different alphabets is a problem that arises in various applications, such as
bioinformatics [35], image processing [17] and code duplication [6, 7]. In all those contexts,

© Pierre Bourhis, Aaron Boussidan, and Philippe Gambette;
licensed under Creative Commons License CC-BY 4.0

34th Annual Symposium on Combinatorial Pattern Matching (CPM 2023).
Editors: Laurent Bulteau and Zsuzsanna Lipták; Article No. 6; pp. 6:1–6:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:pierre.bourhis@cnrs.fr
https://orcid.org/0000-0001-5699-0320
mailto:aaronboussidan@univ-eiffel.fr
mailto:philippe.gambette@univ-eiffel.fr
https://orcid.org/0000-0001-7062-0262
https://doi.org/10.4230/LIPIcs.CPM.2023.6
https://github.com/AaronFive/paramatch
https://archive.softwareheritage.org/swh:1:dir:3a72b0d85a4a2be9126900473b8f3e6d03c12a52;origin=https://github.com/AaronFive/paramatch;visit=swh:1:snp:1a60100151a642c323fa86677bce2527116c7f12;anchor=swh:1:rev:10d4a500cc97e3f6f4ed07a8d437ecaa6cfbf9ad
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


6:2 On Distances Between Words with Parameters

the technique used is the one of parameterized matching [6, 7]. Instead of using classical
strings, parameterized matching uses “parameterized words” written using both constant
parts, which are expensive to rename, and parameters, which are meant to be renamed freely.
Formally, two equal-length strings u and v over an alphabet Π are said to be parameterized
matching if there exists a 1-to-1 function f : Π → Π such that f(u) = v, where f(u) is
defined as f(u1) . . . f(u|u|).

Words with parameters also occur in other frameworks, and are often used in slightly
different ways. The first of those frameworks was initially introduced in the context of
Ramsey theory in the 80s [36], and is called “parameter words”. In this context, parameters
are labelled according to their order of first occurrence. Parameter words are also equipped
with a composition operation, where parameters of the first word can be instantiated by
characters or parameters of the second word. Parameter words can also be seen as equivalence
classes of parameterized words, which are the main focus of this article.

A second framework using parameters is the one of parameterized regular expressions
introduced in [10], where parameters can only be instantiated by constants, and not by other
parameters. The focus in this context is therefore made on the set of all possible valuations
of the parameters. Then, when defining algorithmic problems on such objects, two distinct
semantics can be studied: either the “certainty semantics”, where all valuations need to
have some property, or the “possibility semantics”, where at least one valuation needs to
have this property. To make a difference with the parameterized word framework mentioned
below, we choose to call these words “instantiable words”. Finally, this notion of words with
parameters can also be seen as a refined version of partial words (words containing a wildcard
character) [15]. The notion of partial words is also important in the context of databases
where paths of incomplete graphs can be interpreted as instantiable words [9].

This article aims at studying similarity by using edit distances in the framework of words
with parameters. In this framework, the pattern matching problem, which consists in looking
for the first string as a subword of the second string, has been extensively studied, either
looking for exact occurrences, with efficient algorithms [4, 19, 30] or approximate ones, which
is often NP-hard [21, 22]. In the case where we compare the two input strings in their
entirety, various exact parameterized matching problems have been studied for parameterized
pattern matching, namely string parameterized matching [7], single pattern parameterized
matching [7, 3], multiple pattern parameterized matching, or 2-dimensional parameterized
matching, many of those works being compiled in [29] and [31]. Different approximate variants
of parameterized matching using edit distance have already been studied, but the problem
has not been completely solved: the first work on the topic is [8], in which Baker introduces
a form of approximate parameterized pattern matching in which the replacement of any
substring by another one that is in parameterized matching with it is considered as a base
edit operation. Parameterized matching under the Hamming distance, i.e., with a distance
allowing only substitutions, has been covered in [24], where the authors prove that the string
matching problem with at most k mismatches can be solved in time O(m + k1.5). The LCPS
(Longest Common Parameterized Subsequence) problem, equivalent to the parameterized
pattern matching problem with insertions and deletions, is shown to be np-hard in [26],
which also provides an approximation algorithm. Those two different complexity classes for
these problems raise the question of the complexity of the problem under the Levenshtein
distance. This problem was left as an open question in the conclusion of [24].

Our paper establishes that this problem is np-complete. Moreover, the result also extends
to any possible edit distances obtained from deletion, insertion, and substitution as soon
as substitution is not the only operation allowed, as summarized in Figure 1. Our main



P. Bourhis, A. Boussidan, and P. Gambette 6:3

d ∅ D I DI
∅ P [8] np-complete (Th. 12) np-complete (Cor. 14) np-complete [26]
S P [24] np-complete (Cor. 14) np-complete (Cor. 14) np-complete (Th. 13)

Figure 1 Complexity of the variants of parameterized matching P Md, depending on the kind of
operations (D: deletion, I: insertion, S: substitution) allowed in the edit distance d.

proof also implies the main theorem of [26] with a different np-completeness reduction.
This contrasts with the problems of exact parameterized pattern matching which are all
polynomial-time solvable, as well as all variants of the string matching problem with deletions,
insertions or substitutions.

We also extend these results to function matching, which is the problem obtained by
relaxing the 1-to-1 restriction in parameterized matching, as defined in [2]. This generalization,
by breaking the symmetry of parameterized matching, actually gives rise to two close but
different problems, depending of the order of operations that are considered. We study the
links between all these problems and their computational complexity, and study two practical
ways to solve them, parameterized complexity and the use of maxSAT solvers.

We also make a direct connection with the framework of instantiable words, more precisely
with a natural problem of distance between languages. We show how instantiable word
problems can be reduced to parameterized matching ones, under the right assumptions. This
allows us to open new perspectives on the complexity of several language repair problems.

In Section 2, we give basic definitions and notations, and recall the existing formalism
of parameterized matching and instantiable words. In Section 3 we discuss approximate
parameterized matching and its various generalizations. We also link it to instantiable
words. In Section 4, we first prove a collection of technical results that build up to the
np-completeness proofs for parameterized matching and function matching problems defined
above. In Section 5, we study two approaches to solve one of the variants of parameterized
matching in practice, a simple FPT algorithm parameterized by the alphabet size and a
MaxSAT encoding. We show in Section 6 that these implementations can solve real instances
of the problem, motivated by structure comparison of theater plays.

Finally, in Section 7, we conclude the paper and give a few perspectives on the notion of
distance between parameterized languages.

2 Notations and Definitions

2.1 Basic Notations on Words and Editions
Words
An alphabet is a set of letters. A word on an alphabet A is a finite sequence of letters from
A, indexed starting from 1. Let u be a word on A. Unless defined differently, we note ui the
i-th letter of u, and |u| is the length of u. If i /∈ [1, |u|], ui is defined as the empty word ε. If x

is a letter from A, |u|x is the number of times x appears in u. Similarly, if X is a set of letters,
|u|X =

∑
x∈X

|u|x is the number of occurrences of letters of X in u. If f is a function defined

on an alphabet A, we extend it to A∗ in the usual way, so that f(u) = f(u1) . . . f(u|u|).
If f is a function, we denote by D(f) the domain of f . Two functions f and g are said
to be compatible if f |D(g)∩D(f) = g|D(g)∩D(f). The identity function on D is defined as
IdD(x) = x for all x in D.

CPM 2023



6:4 On Distances Between Words with Parameters

Edit Operations
In this paper, we consider the three classical edit operations which are deletion, substitution
and insertion. Let u = u1 . . . un be a word of size n. Let i be an integer between 0 and n and
x be a letter of the alphabet, the insertion at position i is the operation that transforms u

to u1 . . . uixui+1 . . . un Let j be an integer between 1 and n, the deletion at position j is
the operation that transforms u into u1 . . . uj−1uj+1 . . . un. Let y be a letter of the alphabet
and y ̸= uj , the substitution to y at position j is the operation that transforms u into
u1 . . . uj−1yuj+1 . . . un. A sequence of operations or rewriting sequence ρ is a sequence
of edit operations. We denote by ρ(u) the word obtained by applying the edit operations of
ρ one after another, in the order defined by ρ, to u.

Distances
Given a set of edit operations E and two words u and v, the edit distance between u and
v is defined as the length of a shortest sequence of operations of E changing u into v. We
denote by D the distance obtained on words by allowing only deletion operations: that is to
say D(u, v) = k iff v can be obtained by deleting k letters from u. Similarly, we note I and S

the distances obtained by allowing only insertions and substitutions respectively (note that
S is the Hamming distance). We also combine these notations to define DI as the distance
with insertions and deletions, and so on. We also denote the Levenshtein distance DIS by L.
Note that some of these edit distances are not metrics, because they are not symmetrical.
We emphasize this by calling symmetric edit distances the distances DI, S, and L.

2.2 Comparing Words with Parameters
Conceptually, a word with parameters is a word in which some letters are not yet determined.
In order to distinguish the parameters from the constants, we split the alphabet into Σ,
the alphabet of the constants and Π, the alphabet of the parameters. By definition, these
alphabets are finite. A word with parameters can either be seen as representing a “word
template” (i.e., a word with variable parts), or a set of words (determined by all possible
affectations of its parameters). Depending on the definition chosen, comparing two words
w1 and w2 is done in two different ways. In the first setting [6, 7, 8, 31, 2, 5, 24, 29, 26, 17],
parameters of w1 are renamed through a function f that maps the set of parameters to itself,
and acts as identity on the set of constants. It is then possible to compare f(w1) and w2,
which are written on the same alphabet. In the second setting, constants are seen as the
concrete values parameters can take [11]. Parameters are instantiated through two functions
f1 and f2 that map constants to themselves, but also map parameters to constants. The
words f1(w1) and f2(w2) are then made only of constants, and can be compared. Formally,
this gives rise to the two following different definitions:

On the one hand, a parameterized word is a word on an alphabet Σ ∪Π. In all that
follows, Σ and Π are two disjoint alphabets, respectively called the alphabet of constants
and the alphabet of parameters. Alphabets Σ and Π are considered to be finite, unless
specified otherwise.

Two parameterized words u and v are said to be in function matching if there exist
fΠ : Π → Π and f : Π ∪ Σ → Π ∪ Σ such that f |Π = fΠ, f |Σ = IdΣ, and f(u) = v. In
the classical setting [6], f is also constrained to be 1-to-1, and this relationship is called
parameterized matching. Note that parameterized matching is an equivalence relation on
parameterized words. Testing if two words are parameterized matching can be achieved in
linear time [7].
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P MDIS F MDIS
1 F MDIS

2

u = aabba u = aabba u = aabbay L : (u1 → b, u2 → b)
y L : (u1 → b, u2 → b)

y f : [a → a, b → a]

u′ = bbbba u′ = bbbba v′ = aaaaay f : [b → a, a → b]
y f : [b → a, a → b]

x L : (v5 → a)

v = aaaab v = aaaab v = aaaab

Figure 2 Side-by-side comparison of P MDIS , F MDIS
1 and F MDIS

2 .

On the other hand, an instantiable word is a word on the alphabet Σ ∪ Π. Given
f : Π→ Σ, we extend it to constants by setting f(x) = x for all x ∈ Σ, and we then define
the language of an instantiable word u to be L(u) = {w ∈ Σ∗ | ∃f : Π→ Σ, f(u) = w}.
This definition is akin to the L⋄ semantic of a parameterized regular expression defined
in [11], but restricted here to a single instantiable word. Two instantiable words w1 and w2
describe the same elements if their languages are equal, i.e. L(w1) = L(w2).

3 Different Definitions for Different Semantics and Problems

In this section, we introduce various new approximate variants of parameterized matching,
and compare them, highlighting their differences on examples.

3.1 Variants of Parameterized Matching
In parameterized matching, the function f renaming parameters is generally considered to
be 1-to-1. In this paper, we also consider the function matching problem, which is the
case where f is not constrained to be injective anymore, as defined in [2]. We also introduce
multiple approximate variants of the parameterized matching problems, depending on several
edit distances obtained by combining insertion, deletion and substitution operations.

3.1.1 Edit distances for parameterized matching between two strings:
P Md

▶ Definition 1. If d is an edit distance, we denote by PMd the parameterized matchingproblem
under d, which is the following:

Input: two parameterized words u, v, a parameter alphabet Π , an alphabet Σ of constants,
and a natural number k.
Problem: Does there exist u′ such that d(u, u′) ≤ k and u′ and v are parameterized
matching, i.e. there exists a 1-to-1 function f : Π ∪ Σ → Π ∪ Σ such that f |Σ = IdΣ,
f(Π) = Π, and f(u′) = v ?

In that case, we say that u′ and f realize the matching between u and v. We sometimes
write that only f or u′ realize the matching if the other one is not relevant to a proof.

In cases where Σ and Π are already defined, we omit them and simply call PMd(u, v, k)
the result of the decision problem. Furthermore, PMd(u, v) denotes the minimum integer k

(potentially infinite) such that PMd(u, v, k) is true.
We can note that this problem can be solved in polynomial time adapting the classical

dynamic programming algorithm [33, 37] when the alphabet sizes are fixed.
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3.1.2 Edit distances for function matching between 2 strings: F Md
i

To denote function matching problems, we use FM instead of PM : FMD denotes the
function matching problems with deletions.

Furthermore, if P is one of the problems defined above, we note P1 the problem where
edit operations are only applied to the first argument, and P2 the one where they are only
applied to the second argument.

▶ Definition 2. The FMd
1 and FMd

2 problems are defined as follows. For both problems,
the input is the following:

Input: two parameterized words u, v, a parameter alphabet Π, a constant alphabet Σ, and
a natural number k.

The problems are then:
Problem F Md

1 : ∃u′ such that d(u, u′) ≤ k and u′ and v are function matching?
Problem F Md

2 : ∃v′ such that d(v, v′) ≤ k and u and v′ are in function matching?

Note that the renaming function f is always applied to one input only. These definitions are
illustrated on an example in Figure 2.

3.2 Comparing Variants of P M

In this subsection, we compare the different variants of our problem.
Regarding the one-to-one parameterized matching PM , note that the definition we

give above is designed to be easily extended to the different variants when we drop the
one-to-one restriction. In [24], the authors consider that the “correct way for defining the
edit distance problem” is “to allow the operations and then apply the edit distance”. By
extending the definition of FMd

1 and FMd
2 to define PMd

1 and PMd
2 in the case of one-to-one

matching, we see that it is actually possible to switch the order of operations, and to reverse
them (deletions then become insertions and vice versa, and the renaming function f−1 is
well-defined), in this case. This makes our definition consistent with the quote from [24]
above. Formally, this gives the following equalities, for all parameterized words u and v:
PM I

1 (u, v) = PMD
1 (v, u) = PMD

2 (u, v) = PM I
2 (v, u).

More generally, it holds that for every edit distance d, PMd
1 (u, v) = PMd−1

1 (v, u) =
PMd−1

2 (u, v) = PMd
2 (v, u), where d−1 denotes the converse distance of d, i.e. d−1 contains

deletions if d contains insertions, insertions if d contains deletions, and substitutions if d

contains substitutions.
However, for function matching, we only have the following equalities: FM I

1 (u, v) =
FMD

2 (u, v) and FMD
1 (u, v) = FM I

2 (u, v).
By taking u = ab and v = cc, we can notice that FM I

1 (u, v) = 0 and FMD
1 (v, u) =∞,

so the equality FM I
1 (u, v) = FMD

1 (v, u) does not hold.
Finally, note the following inequalities:

▶ Proposition 3. Let u and v be parameterized words over Σ ∪Π. Then:
1. FMd

1 (u, v) ≤ PMd(u, v);
2. If d is a symmetric edit distance, FMd

2 (u, v) ≤ FMd
1 (u, v).

Proof. The first point comes from the fact that any solution to PMd is also a solution to
FMd

1 . For the second point, let k = FMd
1 (u, v), and let u′ and f realize FMd

1 (u, v). We
construct a word v′, obtained by applying to v the same operations applied to u to obtain
u′, but “mirrored”. That is to say, for every operation used in u, we apply an operation in v,
in the following way:
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If a letter a is inserted in u, there exists a position i in u′ such that u′
i = a, and f(u′

i) = vi.
Hence, we delete vi in v.
Similarly, if a letter is substituted for another letter a′ in u, there exists i such that
u′

i = a, and we substitute vi to f(a).
If a letter a is deleted in u at position i, we insert f(a) in v at position i instead.

It then holds that f(u) = v′, and hence PMd
2 (u, v) ≤ k. ◀

Note that the above proof does not work to prove the converse inequality between FMd
1

and FMd
2 , as it would require to consider an element of f−1(a), which might be empty. This

is illustrated in the following example, on the alphabet Π = {a, b}:

▶ Example 4. Let N ∈ N and consider u = aN bN b and v = aN aN b. u and v are not in
parameterized matching, hence FMDIS

1 (u, v) > 0 and FMDIS
2 (u, v) > 0. By substituting

the last b in v for a a, and picking a function f such that f(a) = f(b) = a, we get
FMDIS

2 (u, v) = 1 (see Figure 2 for an example with N = 2). For FMDIS
1 , since b appears

in v, it holds that for any function f realizing FMDIS
1 , f(a) = b or f(b) = b. Hence, at least

N occurrences of b appear in f(u). Since there is only one occurrence of b in v, it is clear
that FMDIS

1 (u, v) ≥ N − 1.

The difference between FMd
1 and FMd

2 comes from the fact that Π is fixed in the input.
In the case where Π could be extended, both problems can be shown equivalent (for example
if we allow a new letter c in the example of Figure 2, we also get FMDIS

1 (u, v) = 1 by setting
u5 → c and f : [a→ a, b→ a, c→ b]), by using the same proof as Proposition 3.

3.3 Instantiable Words versus Parameterized Words
The parameterized word formalism and the instantiable word formalism give rise to two
different definitions of distances between words. Given an edit distance d on words, there are
two ways to extend it to words with parameters. Let w1 and w2 be two words over Σ ∪Π.
The two possible extensions are the following:

The distance between w1 and w2 is defined as d(w1, w2) = PMd(w1, w2). Alternatively,
the function distance between w1 and w2 is defined as FMd

1 (w1, w2).
The distance between w1 and w2 is the distance between their respective languages
seen as sets, that is to say d(w1, w2) = d(L(w1), L(w2)) = supu∈L(w1) infv∈L(w2) d(u, v).
Equivalently, d(w1, w2) ≤ k if and only if for all f1 : Π→ Σ, there exists f2 : Π→ Σ such
that d(f1(w1), f2(w2)) ≤ k.

This second definition stems from the definition of distance between languages, as defined
and studied in [12, 13, 14].

▶ Example 5. Consider the words u = axyb and v = xbby, on the alphabets Σ = {a, b}
and Π = {x, y}, and consider the distance S. On the one hand, FMS

1 (u, v) = 4, because
regardless of the matching chosen, every letter of f(u) has to be substituted. On the other
hand, for any function f1 : Π→ Σ, choosing f2 such that f2(x) = a and f2(y) = b yields a
distance d(f1(u), f2(v)) of at most 2, by substituting the 2 middle letters.

Given a big enough alphabet, those two definitions can in fact be shown equivalent:

▶ Proposition 6. Let w1 and w2 be words over Σ∪Π, and let d be a symmetric edit distance
on Σ ∪ Π. Suppose |Σ| ≥ |w1| + |w2|, and let k be an integer. Then, the following are
equivalent:
1. FMd

1 (w2, w1) ≤ k

2. d(L(w1), L(w2)) ≤ k
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6:8 On Distances Between Words with Parameters

Notice how w1 and w2 change position between the two distances. This is not benign, as
FMd

1 is not symmetric.

Proof. Suppose FMd
1 (w2, w1) ≤ k. There exists f : Π→ Π such that d(f(w2), w1) ≤ k. For

this proof, we will use the characterization of the distance betweeen languages with f1 and f2.
Let f1 : Π→ Σ. Define f2 = f1◦f . Since d(w1, f(w2)) ≤ k, we have d(f1(w1), f1◦f(w2)) ≤ k,
by following the same edit operations. Hence d(f1(w1), f2(w2)) ≤ k.

Suppose now d(L(w1), L(w2)) ≤ k. Let f1 : Π → Σ be a 1-to-1 function such that for
all parameters x in w1, f(x) does not appear in w1 or w2. This is possible since Σ is large
enough. There exists f2 : Π→ Σ such that d(f1(w1), f2(w2)) ≤ k. Let h : Σ→ Π∪Σ be such
that if x ∈ Π, h(f1(x)) = x, and if x /∈ f1(Π), h(x) = x. We then have h ◦ f1 = Id. What
is more, since h is injective, d(f1(w1), f2(w2)) = d(h(f1(w1)), h(f2(w2)) = d(h(f2(w2)), w1).
Hence, FMd

1 (w2, w1) ≤ k. ◀

4 Hardness Results for Approximate Parameterized Matching

In this section, we study the complexity of the various parameterized matching problems.
We show the np-completeness of the simplest problems using only deletions, which will be
sufficient to show the np-completeness of all the other problems. We start by proving some
practical lemmas, and then proceed to the reductions.

4.1 “Block by block” Lemmas
In this section, we regroup a few useful technical lemmas. We start of by stating two simple
results on distance and words, for which the proofs can be found in Appendix A. We then
turn to block lemmas, which will later be useful in the proofs of Theorems 12,17 and 15, to
combine the various gadgets defined during the reduction.

This lemma simply states a commutativity result between the application of a matching
f and the rewriting steps.

▶ Lemma 7. Let d be a distance, k an integer and u, v two parameterized words such that
PMd(u, v) ≤ k, and let f realize this parameterized match. Then: d(f(u), v) ≤ k. The same
result holds for FMd

1 (u, v).

Proof Idea. The proof is done by induction on k. We discuss whether the (k+1)-th operation
is an insertion, a deletion, or a substitution, and show that a corresponding operation can be
used in f(u). ◀

▶ Lemma 8. Let z, u and v be (parameterized) words, and let d be a distance. Then
d(zu, zv) = d(u, v).

Proof Idea. We show that we can consider every rewriting operation to be applied in u only:
if z is modified during an optimal rewriting sequence, the words have some redundancy, and
the same operations could have been carried in u instead. We proceed again by induction, and
focus on the base case by studying the 3 possible cases, one for each type of operation. ◀

Next, we turn to prove “block by block” matching lemmas. Those results state that it is
possible to encode multiple parameterized matching instances into a single one. They hold
for every type of problems considered here, but their proofs vary slightly; we present them
in order of increasing complexity. Note that all the constructions given can be achieved in
polynomial time.
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▶ Lemma 9. Let u1, . . . un and v1, . . . vn be parameterized words over Σ ∪Π such that for
1 ≤ i ≤ n, ki = |ui| − |vi| ≥ 0, and k =

n∑
i=1

ki. There exist u and v two parameterized words

over {#} ∪ Σ ∪Π, where # is a fresh variable, such that the following are equivalent:
1. PMD(u, v) = k

2. For all 1 ≤ i ≤ n, PMD(ui, vi) = ki and the applications fi realizing those matchings are
all compatible.

Proof. The idea behind this proof and all the following ones is that we can introduce a
separator # to concatenate all the words, and that this separator will never be touched by
any deletions or applications of f .

Let # be a fresh constant. We define u = u1#u2# . . . #un, and v = v1#v2# . . . #vn.
2. =⇒ 1.: For every 1 ≤ i ≤ n, take u′

i and fi to realize the matchings. We can obtain
u′ = u′

1#u′
2 . . . #u′

n from u by applying the same deletions. Taking f to be the smallest
function extending all the fi, we get PMD(u, v) ≤ k.

1. =⇒ 2.: Assume PMD(u, v) ≤ k. Let u′ and f realize this parameterized match.
Since the # symbols are constants, we have f(#) = #. Since u′ is obtained from u by
deletions, we have |u′|# ≤ |u|#. Since f is injective and f(#) = #, |f(u′)|# ≤ |f(u)|#.
Hence, it holds that |v|# = |f(u′)|# ≤ |f(u)|# = |u|#. Since |u|# = |v|#, this is an equality,
and |f(u′)|# = |f(u)|#. Hence |u′|# = |u|#, and no # character is deleted. The word u′

is then of the form u′
1#u′

2# . . . #u′
n, where |u′

i|# = 0 and D(ui, u′
i) = ki for all i. Thus,

f(u′) = f(u′
1)#f(u′

2)# . . . #f(u′
n) = v1#v2# . . .# vn. Since no other # letter appear in any

f(u′
i) and vi, we can deduce that f(u′

i) = vi for all i. Finally, this yields PMD(ui, vi) = k,
and taking all the fi = f gives all compatible functions, which concludes the proof. ◀

In this proof, we used a constant #. However, it can also be conducted without using
a constant alphabet; indeed, constants can be encoded with parameters, as shown in
Appendix B.

Lemma 9 is still valid if PMD is replaced by FMD
2 . This time, we conduct this proof

without resorting to the use of constants. This result will be used twice: once for the proof
of theorem 17, and again to show that we can once more encode constants into Π using
Lemma 25 in Appendix B.

▶ Lemma 10. Let u1, . . . un and v1, . . . vn be parameterized words over Π such that ki =
|vi| − |ui| ≥ 0, and k =

n∑
i=1

ki. Then there exist u and v, two parameterized words over

Π ∪ {#}, where # is a fresh variable, such that the following are equivalent:
1. FMD

2 (u, v) ≤ k

2. For all 1 ≤ i ≤ n, FMD
2 (ui, vi) ≤ ki, and the applications fi realizing those matchings

are all compatible.

Proof Idea. The same technique as Lemma 9 is used but u and v are defined as u =
#k+1u1#u2# . . . #un and v = #k+1v1#v2# . . . #vn where #k+1 denotes k + 1 repetitions
of the character #. The full proof can be found in Appendix A. ◀

Finally, the same block result holds for FMD
1 , and will be used in the proof of theorem 15.

▶ Lemma 11. Let u1, . . . un and v1, . . . vn be parameterized words over Π such that for every
1 ≤ i ≤ n, ki = |ui| − |vi| ≥ 0, and k =

n∑
i=1

ki. Then there exist u and v two parameterized

words over Π ∪ {#}, where # is a fresh variable, such that the following are equivalent:
1. FMD

1 (u, v) ≤ k

2. For all 1 ≤ i ≤ n, FMD
1 (ui, vi) ≤ ki, and the applications fi realizing those matchings

are all compatible.
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6:10 On Distances Between Words with Parameters

Proof Idea. The difference with Lemma 10 is that some # symbols might be deleted, while
some base letters could be mapped to #. To ensure this does not happen, we define
u = #N u1#N u2 . . . #N un#N and v = #N v1#N v2 . . . #N vn#N . The full proof can be found
in Appendix A. ◀

The technique of block-by-block matching will be used in all the reductions, to encode
multiple constraints in a single PM or FM instance.

4.2 1-to-1 Parameterized Matching P M

We now focus on the complexity of the PMd problems. These problems, as well as function
matching problems, are all clearly in np: given the list of deletion, insertion or substitution
operations to do and the matching to apply, it is easy to check that the solution is correct.

For the reductions in this paper, we always assume that words are written without
constants, that is to say Σ = ∅, since this is sufficient for np-completeness results. This
choice is also motivated by the results of Appendix B, which show that Σ can in most cases
be coded into Π.

▶ Theorem 12. The 1-to-1 Parameterized Matching with deletions PMD is np-complete.

The proof is a reduction from the np-complete problem 3-coloring[20]. Given an instance
G of 3-coloring, we will construct two words u and v. The word v will represent the list of
vertices and edges of G, while the word u will list the color of each vertex, and the possible
coloring of each pair of vertices joined by an edge. By deleting characters from u, we make a
choice for the coloring of each vertex, and thus each edge. The function f answering the
parameterized matching problem will assign a choice of color to each vertex. The instance
that we define should be positive iff G is 3-colorable. More formally:

Proof. The 3-Coloring problem is defined as follows:
Input: G = (V, E) a graph with vertices V and edges E

Output: A coloring c : V → {c1, c2, c3} such that for all {u, v} ∈ E, c(u) ̸= c(v)
Let G = (V, E) be an instance of 3-Coloring, and let V = {x1, . . . , xn} be the set of its
n vertices, and E = {e1, . . . , em} be the set of its edges. The parameter alphabet Π, of
polynomial size in O(|G|) will contain:

x1, . . . xn, corresponding to the vertices of G;
n copies of the parameters corresponding to the colors c1, c2 and c3: ci

1, ci
2, ci

3 for 1 ≤ i ≤ n;
for every edge e, the delimiters Y e and □e

1, . . .□e
6;

2n bottom symbols, ⊥i
1, ⊥i

2 for 1 ≤ i ≤ n, which will be used to fix the image of some
parameters.

First, we define words that will encode the constraint that each vertex is colored, and
we make sure that the unused color variables cannot be assigned elsewhere. For 1 ≤ i ≤ n,
ui

1 = ui
⊥ = ci

1ci
2ci

3, vi
1 = xi and vi

⊥ = ⊥i
1⊥i

2. We then define words that include all
possible colorings of each edge, and we make sure to use enough brackets. For every edge
e = {xi, xj}, we define ue

2 = □e
1ci

1cj
2□

e
1 □e

2ci
1cj

3□
e
2 □e

3ci
2cj

1□
e
3 □e

4ci
2cj

3□
e
4 □e

5ci
3cj

1□
e
5 □e

6ci
3cj

2□
e
6

and ve
2 = Y exixjY e.

Applying Lemma 9 to u1
1, . . . un

1 , u1
⊥, . . . un

⊥, ue1
2 , . . . uem

2 and v1
1 . . . vn

1 , v1
⊥, . . . vn

⊥,

ve1
2 , . . . vem

2 , we obtain u and v. Let k = |u| − |v| = 3n + 20m. We now show that G

is 3-colorable ⇔ PMD(u, v) ≤ k.
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⇒: Suppose G is 3-colorable. Let c : V → {c1, c2, c3} be a 3-coloring of G. We define f

in the following way, for 1 ≤ y ≤ 3:

f(ci
y) =


xi if c(xi) = cy,

⊥i
1 if y is the smallest integer in {1, 2, 3} such that c(xi) ̸= cy,

⊥i
2 otherwise.

For every edge e = {xi, xj} ∈ E, since c is a valid coloring, and since every
allowed arrangements of the colors is in ue

2, there exists a unique factor of the form
□e

yf−1(xi)f−1(xj)□e
y in ue

2, for some 1 ≤ y ≤ n. Hence, we define f(□e
y) = Y e. The

function f can then be extended in any way to be 1-to-1 (the remaining characters whose
image under f are not yet defined will all be deleted in what follows, so their image doesn’t
matter).

By using f defined in this way:
For 1 ≤ i ≤ n, PMD(ui

1, vi
1) ≤ 2, by deleting the 2 colors not matching the color of xi;

For 1 ≤ i ≤ n, PMD(ui
⊥, vi

⊥) ≤ 1;
For every edge e ∈ E, PMD(ue

2, ve
2) ≤ 20, by keeping only the factor delimited by the

□e
y symbols defined above.

Thus Lemma 9 yields PMD(u, v) ≤ k.
⇐: We now suppose u and v are a parameterized match with k deletions. The following

can then be derived about f :
1. Since the ui

1 and vi
1 are matching for 1 ≤ i ≤ n, there exists an element c ∈ {ci

1, ci
2, ci

3}
such that f(c) = xi. Each of these matchings is done with exactly 2 deletions, for a total
of 2n.

2. Since the ui
⊥ and vi

⊥ are in matching, the two other colors that are not sent to xi are sent
to ⊥i

1 and ⊥i
2. Each of these matchings is done with exactly one deletion, for a total of n.

3. For every edge e ∈ E, ue
2 and ve

2 are in matching. Let ue′
2 realize this matching. For every

1 ≤ i ≤ n and 1 ≤ i′ ≤ 3 the colors ci
i′ have images that are different from Y e, so there

necessarily exists 1 ≤ y ≤ 6 such that f(□e
y) = Y e. Furthermore, since f is injective,

|ve
2|Y e = |ue′

2 |□e
y
. Since |ve

2|Y e = |ue
2|□e

y
= 2, no □e

y is deleted from u. Since there are two
characters between the Y e in ve

2 and none outside, ue′
2 has the same structure, and all

other □e
y′ for y′ ̸= y and all other colors are deleted from ue

2.
Finally, ue′

2 is of the form □e
yctct′□e

y, where t ̸= t′ are elements of {1, 2, 3}. Each of these
matchings is done with exactly 20 deletions, for a total of 20m.

The function f then implies a coloring of G. Formally, we define col(ci
y) = cy for 1 ≤ i ≤ n

and 1 ≤ y ≤ 3. We can then define c : V → {c1, c2, c3} such that c(xi) = col(f−1(xi)).
Point 1 above ensures that this function definition is correct. Furthermore, for every edge
e = {xi, xj}, point 3 ensures that c(xi) ̸= c(xj), and thus c is a valid coloring of G. ◀

This first np-completeness results yields a few immediate corollary results, and in
particular, the np-completeness of the problem under the Levenshtein distance:

▶ Theorem 13. The problem PMDIS of parameterized matching under the Levenshtein
distance is np-complete.

Proof. We do a simple reduction from PMD. Let u, v, k be an instance of PMD. If the
instance is trivially false (that is to say, k ̸= |u| − |v|), answer negatively. Else, consider
u, v, k as an instance of PMDIS . If this is a negative instance for PMDIS , it is also negative
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for PMD. Furthermore, if it is a positive instance for PMDIS , exactly k deletions should be
applied, and so no substitution or insertion are used in that solution. Hence, that solution is
also a solution to PMD, and the reduction holds. ◀

The same result in fact holds for all other distances, and in particular the longest common
sub-word distance ID. This proves once again the result shown in [26]:

▶ Corollary 14. The problems PM I , PMDI , PM IS, PMDS are all np-complete.

Proof. From Section 3.2, PM I and PMD are equivalent in the 1-to-1 case. For the other
problem, we do an immediate reduction from PM I or PMD analog to the proof of Theorem 13.

◀

We now turn to proofs of np-completeness without the restriction asking f to be injective.

4.3 Function Matching F Md
1

The problem considered in this section is the one where both deletions and f are applied to
the first word. A reduction very similar to the one given for PMD is used.

▶ Theorem 15. FMD
1 is np-complete.

Proof Idea. The reduction follows the same idea as in Theorem 12. Since the function f

realizing the matchings is not injective in this version, it will be used to send every vertex to
its color. Moreover, we add more “sink” ⊥ letters to force the image of every unused letter.
The full proof can be found in Appendix A. ◀

This again ensures the np-completeness of the problem for all edit distances, using the
same proof as for Theorem 13.

▶ Corollary 16. The problem FMDIS
1 of function matching under the Levenshtein distance

is np-complete. The problems FM I
1 , FM ID

1 , FM IS
1 , FMDS

1 are all np-complete too.

We can notice that the problem FMS
1 , where substitution is the only operation allowed,

is polynomial-time solvable. Intuitively, for each parameter, consider the possible parameters
that it could be mapped to, and their respective number of occurrences. Then, choose the
letter with the highest number of occurrences for the mapping. The remaining letters are
then substituted.

4.4 Function Matching F Md
2

The problem considered in this section is the one where deletions are applied to the second
word, while f is applied to the first word.

▶ Theorem 17. FMD
2 is np-complete.

Proof Idea. The proof is very similar to the previous case, but the bracketing has to be
adapted. Separators Y e are duplicated enough times to ensure that no vertex variable is
mapped to them. The full proof can be found in Appendix A. ◀

▶ Corollary 18. FM I
1 , FMDI

2 , and FML
2 are all np-complete.

Proof. FM I
1 is equivalent to FMD

2 . For the two other problems, we use a reduction from
FMD

2 exactly like in Corollary 14. ◀
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This last result completes the picture of np-completeness proofs, and indicates that
computing the distances between parameterized words defined in Section 3.3 is in general an
np-complete problem.

Similarly to FMS
1 , FMS

2 is also polynomial-time solvable.

5 Approaches to Solve Parameterized Matching

In this section, we discuss two ways to get around the difficulty of the parameterized matching
problems. The first one is to design an FPT algorithm in the alphabet size, and the second
one is to translate the problem into a SAT formalism, with the intent of using a SAT-solver.

5.1 An FPT Algorithm in the Alphabet Size
The fact that Σ and Π are part of the input is what makes the various parameterized matching
problems NP-hard. When the alphabet size is considered fixed, a simple polynomial algorithm
can be used, which generalizes the “naïve” brute force algorithm of Theorem 1 of [26]:

Algorithm 1 Simple FPT algorithm for F Md.

m← 0
for all functions f : Π→ Π do

dist← d(f(u), v)
if dist ≤ m then

m← dist

end if
end for

▶ Theorem 19. Let d be a distance. Algorithm 1 computes FMd(u, v) in time O(|Π||Π||u||v|)

Proof. Algorithm 1 uses an exhaustive search and finds min
f :Π→Π

d(f(u), v), which is the

definition of FMd(u, v). Furthermore, there are |Π||Π| functions from Π to Π, and
computing d(f(u), v) is done in time O(|f(u)||v|) = O(|u||v|), hence a total running time in
O(|Π||Π||u||v|). ◀

Note that this also leads to a similar algorithm for PMd by iterating over injective
functions rather than all functions from Π to Π.

5.2 A MaxSat Formulation of Parameterized Matching
In this section, we encode PMd problems into SAT problems, with the intent of solving them
with a SAT solver. More precisely, we will use the weighted max-SAT variant of SAT, which
is defined in the following way:

Input: a set V of literals, a formula φ =
n∧

i=1
φi on V in conjunctive normal form (CNF),

a weight function w : J1, nK→ N.
Output: a valuation ν : V → {0, 1} such that

∑
ν⊨φi

w(i) is maximal.

Moreover, we will sometimes use a partially weighted variant of Max-SAT, which is
defined in the following way:
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Input: a set V of literals, a satisfiable formula φc on V in CNF, a formula φw =
n∧

i=1
φi

on V in CNF and a weight function w : J1, nK→ N.
Output: a valuation ν : V → {0, 1} such that ν ⊨ φc and

∑
ν⊨φi

w(i) is maximal.

In that case, clauses of φc are called “hard” clauses while clauses of φw are called “soft
clauses”. We give a proof of the equivalence in Proposition 26 of Appendix C.

We will define an encoding of an instance (u, v) of PMd such that an assignment of the
variables of V will define an alignment between u and v. First, we make a link between the
ID edit distance and the length of the optimal alignment between two strings.

▶ Definition 20. Let u and v be two words on Π, such that p = |u| and p′ = |v|. A set
A ⊂ J1, |u|K× J1, |v|K is an alignment between u and v iff the following are true:
1. Each position of u appears at most once: For all 1 ≤ i ≤ p and 1 ≤ j, j′ ≤ p′, if (i, j) ∈ A

and (i, j′) ∈ A, then j = j′.
2. Each position of v appears at most once: For all 1 ≤ j ≤ p′ and 1 ≤ i, i′ ≤ p, if (i, j) ∈ A

and (i′, j) ∈ A, then i = i′.
3. There are no crossings: if (i, j) ∈ A, (i′, j′) ∈ A, and i′ > i, then j′ > j.
4. Aligned positions match in u and v: if (i, j) ∈ A, then ui = vj

An alignment relates to the insertion/deletion distance ID in the following way:

▶ Theorem 21. Let u, v be words on Π and k ≤ |u|+ |v| be an integer. The following are
equivalent:
1. There exists an alignment A such that 2|A| = |u|+ |v| − k

2. ID(u, v) ≤ k.

Proof. The proof, which works by induction, can be found in Appendix C. ◀

We now turn to the max-SAT encoding of our problem.

▶ Theorem 22. Let u and v be two words over Π. There exists a formula φu,v = φc ∧ φw

and a weight function w, instance of the partially weighted Max-SAT problem such that the
following are equivalent:

ν is a solution to this partially weighted Max-SAT instance and satisfies k clauses of φw

There exists a function f : Π→ Π and an alignment between f(u) and v of size k.

The formula φ uses |m||p|+ |Π|2 variables and is of size O(m2p2) , where m = |u| and
p = |v|. Moreover, there exists φinj of size O(|Π|3) such that the above result is true for f

injective by replacing φc with φ′
c = φc ∧ φinj.

In particular, finding the valuation maximizing k gives a maximal alignment between u

and v, and with Theorem 21, the distance ID(u, v).

Proof. For this proof, we fix an ordering on the alphabet Π = {a1, . . . , an}.
We define the set of literals V as V = {xi,j | 1 ≤ i ≤ |u|, 1 ≤ j ≤ |v|} ∪ {ya,b | a ∈ Π, b ∈ Π}.
Intuitively, xi,j represents a match between position i and j in the alignment, and ya,b will
represent the fact that f(a) = b. We define the following sets of formulas, where all indices i

are taken between 1 and m and all j between 1 and p, and a and b are taken in Π:
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∀i ∀j′ ̸= j, φA1
i,j,j′ ≡ xi,j =⇒ ¬xi,j′ (NoDouble i)

∀j ∀i′ ̸= i, φA2
i,i′,j ≡ xi,j =⇒ ¬xi′,j (NoDouble j)

∀i′ > i ∀j′ < j, φC
i′,i,j,j′ ≡ xi,j =⇒ ¬xi′,j′ (NoCrossing)

∀a∀b ̸= b′, φf
a,b,b′ ≡ ya,b =⇒ ¬ya,b′ (Function)

∀a ̸= a′∀ ̸= b, φinj
a,a′,b ≡ ya,b =⇒ ¬ya′,b (Injectivity)

∀i∀j, φM
i,j ≡ xi,j =⇒ yui,vj (Match)

∀i, φ∃
i ≡

∨
1≤j≤p

xi,j (ExistsMatch)

We then define φc as the conjunction of all the formulas (NoDouble i), (NoDouble j),
(NoCrossing), (Function), and (Match). Furthermore, we define φinj as the conjunction of
all the (Injectivity) formulas. Lastly, we define φw =

∧
1≤i≤m

φ∃
i , and set w(C) = 1 for every

clause C of φw.
There are m

(
p
2
)

(NoDouble i) formulas, p
(

m
2
)

(NoDouble j),
(

m
2
)(

p
2
)

(NoCrossing), n
(

n
2
)

(Function) and (Injectivity) formulas, pm (Match) formulas and n (ExistsMatch) formulas.
We now prove both implications of the theorem. Suppose ν is a valuation satisfying φc

and k clauses of φw. We define, for all a, b ∈ Pi, f(a) = b if and only if ν(ya,b) = ⊤. Since ν

satisfies all the (Function) formulas, this is a correct definition of a (partial) function. We
define A = {(i, j) | ν(xi,j)=⊤}. A is an alignment between f(u) and v. Indeed: (NoDouble i)
and (NoDouble j) ensures point 1. and 2. of Definition 20, (NoCrossing) ensures point 3.,
and Match ensures point 4. The size of A is the number of xi,j instantiated to ⊤, which is
exactly the number of clauses of φc satisfied, i.e., k.
Suppose now that there exists a function Π → Π and an alignment A between f(u) and
v. Similarly, we define ν(ya,b) = ⊤ if and only if f(a) = b, and ν(xi,j) = ⊤ if and only if
(i, j) ∈ A. Since A is an alignment, ν satisfies (NoDouble i),(NoDouble j), and (NoCrossing).
Since f is a function, (Function) is satisfied. Finally, if ν(xi,j) = ⊤, then (i, j) ∈ A, and
since A is a matching, f(u)i = f(ui) = vj and ν(yui,vj ) = ⊤.

The proof for φb is the same, and (Injectivity) ensures the injectivity of f . ◀

What is more, this proof can be adapted to change the ID distance to the Levenshtein
distance, simply by choosing to consider all the (Match) formulas as soft clauses.

6 Experiments

The two approaches presented in Section 5 were implemented in Python to solve PM ID.
They are available under the GPL license at https://github.com/AaronFive/paramatch.
The FPT algorithm of Section 5.1 is implemented in the function parameterizedAlignment
of file fpt_alphabet_size.py. The MaxSAT-reduction of Section 5.2 is implemented in the
function make_sat_instance of file sat_instance.py. The MaxHS solver [18] available at
http://www.maxhs.org is used by our script to solve the MaxSAT instances derived from
the PM ID instances.

Our initial motivation to introduce parameterized matching under various distances
is theater play comparison. To represent the structure of a theater play, we represent
each character by a letter of the alphabet, and create the parameterized word obtained by
considering the succession of all consecutive speakers. To check their adequacy with real data,
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we use a corpus of theater plays in which each character is represented by one letter of the
alphabet, and each act of the play is represented by a string corresponding to the sequence of
speaking characters. A letter may be duplicated in this string if the corresponding characters
has lines in the end of a scene and in the beginning of the next one. Therefore, the edit
distance between two parameter words representing acts will be small if both acts have a
similar structure in terms of succession of speaking characters. We selected a corpus of 10
pairs of plays where one inspired the other, and performed 47 comparisons between pairs
of acts. Among those comparisons, 26 were solved by the maxSAT algorithm and all by
the FPT algorithm (detailed results are presented in the supplementary material available
at https://github.com/AaronFive/paramatch/tree/main/corpus10pairs), with a 800
second timeout. The computation times are obtained on a XMG laptop running on Windows,
with a 2.60 Ghz processor and 16 Gb RAM. Only the running time of MaxHS is provided,
the encoding into a MaxSAT formula usually runs in approximately 1 second. Note that
all instances are solved faster by the FPT algorithm than by the MaxSAT approach. The
analysis of running times depending on the product of the lengths of the input strings (see
supplementary material) shows that the MaxSAT approach may be relevant for strings with
more than 10 distinct characters, but where the product of the length of input strings may
not exceed 2000.

7 Conclusion

In this paper, we studied the complexity of several variants of the edit distance problem
between parameterized words. We proved the np-completeness of all previously unsolved cases,
including the Levenshtein distance left open in [24], and provided practical approaches to
solve real instances of those problems. We also studied similar problems for various definitions
of words with parameters, namely parameter words and parameterized expressions, proving
some relationships with parameterized word problems.

As future work, we will study the restrictions introduced in [21, 22] for a pattern matching
problem with patterns in the parameter, in order to obtain polynomial time algorithms for
the edit distance between parameterized words. Moreover, we will explore the question of
distance between sets of words, in particular when they are defined through generalizations of
automata. These problems are variants of the notion of distance between regular languages
as defined in [12]. In this context, we can notice that different notions of automata can be
considered: either automata generating parameterized words, or automata using parameters
to define languages over classical words, with two different semantics as defined in [11].
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f(u′) = v. Hence PMd(u′′, v) ≤ k, and by induction hypothesis d(f(u′′), v) ≤ k. Moreover,
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since d(u, u′′) = 1, we get u′′ from u by applying only one operation. We prove that regardless
of this operation, d(f(u), f(u′′)) = 1, and thus d(f(u), v) ≤ d(f(u), f(u′′))+d(f(u′′), v) ≤ k+1
which will conclude the proof. There are 3 cases to consider:

If the operation is a deletion, u = v1xv2 and u′′ = v1v2 for some words v1 and v2 and
some letter x. Then f(u) = f(v1)f(x)f(v2) and we can obtain f(v1)f(v2) = f(u′′) by
deleting f(x).
If it is an insertion, u = v1v2 and u′′ = v1xv2, and we can similarly go from f(u) to f(u′′)
by inserting f(x).
If it is a substitution, u = v1xv2 and u′′ = v1yv2, and we can go from f(u) to f(u′′) by
replacing f(x) with f(y).

Hence d(f(u), f(u′′)) = 1, which concludes the proof for PMd.
Since this proof does not use the fact that f is 1-to-1, it also stands for FMd

1 . ◀

Proof of Lemma 8. It is obvious that d(zu, zv) ≤ d(u, v), so we only prove d(u, v) ≤
d(zu, zv). We prove that any rewriting sequence from zu to zv can be modified such that no
edit operation is applied in z. This will be enough to prove the result, as the edit sequence
obtained can be seen as an edit sequence between u and v. We proceed by induction on
the size of z. Suppose |z| = 1. Then z = a ∈ Σ ∪Π. We can consider that no character is
modified twice in an edit sequence (i.e. no character is inserted and then deleted, or inserted
and then substituted etc.), as that is always sub-optimal. Suppose z is modified. There are 3
possible cases:
1. There is an insertion in z, hence a word w ends up being inserted before a. Since zv = av

starts with a, w must start with an a, hence w = aw′. We insert w′a to the right of z

instead with the same operations. If z should be deleted or substituted, we apply the
same operation to the new a instead. These operations yield the same result, and do not
modify z.

2. There is a deletion in z, and hence a is deleted. Since this an optimal rewriting sequence,
no a is created at that position through insertion or substitution afterwards. Since av

starts with an a, u must be of the form u = sau′, where all the characters in s are deleted,
and a isn’t. Deleting sa instead of as yields the same result, and doesn’t modify z.

3. There is a substitution in z, hence a is modified into a character b ̸= a, that will not be
further modified. Since av starts with a, an a has to be inserted in z, which is handled in
case 1.

Hence, we can consider that every edit operations is done in u, and d(au, av) = d(u, v).
Suppose now that the result is proven for |z| = k, and let z = az′, with |z′| = k. Using the
base case and the case for |z| = k, we have d(zu, zv) = d(azu, azv) = d(zu, zv) = d(u, v),
which concludes the proof. ◀

Proof of Lemma 10. Let # be a fresh parameterized letter. Let then u = #k+1u1#u2# . . .

#un and v = #k+1v1#v2# . . . #vn, where #k+1 denotes k + 1 repetitions of the character #.
The proof of the reverse direction is the same as in Lemma 9, so we only prove the other one.

Assume FMD
2 (u, v) ≤ k. Let v′ and f realize this parameterized match.

We prove that f(#) = #, and that no other character is sent to # by f . Indeed,
v starts with k + 1 symbols #, which ensure that v′ starts with the letter #. Since u

starts with # and f(u) = v′, f(#) = #. Furthermore, this implies that since |u|# = k + n,
|f(u)|# = |v′|# ≥ k+n. Since v′ is obtained from v by deletions, we have |v′|# ≤ |v|# = k+n.
Hence |v′|# = k + n and all those inequalities are equalities, which is only the case when no
# symbols is deleted from v, and that for all x ̸= #, f(x) ̸= #.
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Since all the # symbols are left untouched, the rest of the proof is the same as in Lemma 9,
and all of the factors ui and vi are parameterized matching. ◀

Proof of Lemma 11. Let # be a fresh parameterized letter, and N = k + 2.
Let then u = #N u1#N u2 . . . #N un#N and v = #N v1#N v2 . . . #N vn#N . Once again,

we only prove the non-trivial implication.
Suppose FMD

1 (u, v) ≤ k, and let f and u′ realize this matching. Since u starts with k + 1
copies of #, u′ starts with #. Since v starts with # too, f(#) = #.
We now prove that we can consider that for all x ̸= #, f(x) ̸= #. This will also imply that
no # symbol is deleted from u. Let S = {a ∈ Π | f(a) = #} be the set of symbols (different
from #) sent to #. Since |u|# = |v|#, the number of deleted # symbols from u is exactly
|u|S , hence |u|S ≤ k. Let us now consider the leftmost occurrence of an element of S in u′,
that we denote by a. The letter a appears in u in a factor of the form #N w1aw2#N . Since
all # in v appear in blocks of size N , a must contribute to such a block, after deletions and
application of f . We distinguish two cases:
1. The entirety of the word w1 is deleted. In this case, at least one symbol # from the

left #N block is deleted; otherwise f(#N )f(a) = #N+1 would be a factor of v, which is
impossible. Thus, choosing not to delete # and to delete a instead yields the same result.

2. w1 is not deleted. Since no character from S appears to the left of a, f(a) is the start of
a #N block. Furthermore, since |u|S ≤ k, it is not possible to form #N with only a and
w2, and characters from the right #N contribute to it. Hence, at least one # symbol
from this right block is deleted. Like before, the same result can be obtained by not
deleting it, and deleting a instead.

Either way, we can repeat this process to eliminate all occurrences of characters of S and of
deletions of #, which proves that we can consider that for all x ≠ #, f(x) ̸= #. Once again,
we are taken back to the conditions of Lemma 9, and the rest of the proof follows. ◀

Proof of Theorem 15. We define Π like in Theorem 12, and we add the letters ⊥1,⊥2,⊥3,⊥4
and ⊥5. Similarly, we define ui

1, vi
1, ui

⊥, vi
⊥, ue

2, and ve
2 just like in Theorem 12. Additionally,

we define for every edge e,

ue
⊥ = □e

1□
e
2□

e
3□

e
4□

e
5□

e
6 and ve

⊥ = ⊥1⊥2⊥3⊥4⊥5.

We then apply Lemma 11 with

u1
1, . . . un

1 , u1
⊥, . . . un

⊥, ue1
2 . . . uem

2 , ue1
⊥ , . . . uem

⊥

and

v1
1 , . . . vn

1 , u1
⊥, . . . vn

⊥, ve1
2 . . . vem

2 , ve1
⊥ , . . . vem

⊥

to obtain u, v, and k. We show that G is 3-colorable ⇔ FMD
1 (u, v) ≤ k.

⇒ Suppose G is 3 colorable. Define f like in Theorem 12 on the ci
y and □e

y. Let e be an
edge and ke ∈ [1, 6] be the integer such that f(□e

ke
) is defined. We map every remaining □e

y

in the following way:

f(□e
i ) =


⊥i if i < ke,
Y e if i = ke,
⊥i−1 if i > ke.

(1)

It is then easy to check that d(f(u), v) = k, and thus FMD
1 (u, v) ≤ k.
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⇐ Suppose FMD
1 (u, v) ≤ k, and let f and u′ realize it. We define a coloring of G based

on f . We note, for 1 ≤ i ≤ n and 1 ≤ t ≤ 3, col(ci
t) = ct. If xi is a vertex of G, define c(xi)

to be col(ci
k), where ci

k is the only element such that f(ci
k) = xi. We show in what follows

that (1) this function definition is correct and (2) it is a valid coloring, i.e. if e = {xi, xj} is
an edge, c(xi) ̸= c(xj).

(1): The same points 1. and 2. from the proof of Theorem 12 apply, hence for every
1 ≤ i ≤ n, exactly one element from {ci

1, ci
2, ci

3} is sent to xi, while the two others are sent to
⊥i

1 and ⊥i
2, hence the result.

(2): Let e be an edge. The words ue
⊥ and ve

⊥ are in matching, which is done with exactly
one deletion. Hence, there exists ke such that

f(□e
i ) =

{
⊥i if i < ke,
⊥i−1 if i > ke.

(2)

Moreover, ue
2 and ve

2 are in matching. Since Y e appears in ve
2 and all the characters in ue

2
apart from □e

ke
have an image different from Y e, f(□e

ke
) = Y e. Hence, the only characters

that are not suppressed from ue
2 are the two characters between the □e

ke
. Denoting them by

c and c′, the construction of the word ensures that col(c) ̸= col(c′). Hence, if e = {xi, xj},
we have proven c(xi) ̸= c(xj), which is (2).

The coloring c is therefore valid, which concludes the proof. ◀

Proof of Theorem 17. Let G = (V, E), with V = {x1, . . . , xn} and {e1, . . . , em}. Like in
the 1-to-1 case, we construct factors ui and vi to encode vertex coloring. The parameter
alphabet contains:

x1, . . . xn, corresponding to V ,
the colors c1, c2, c3,
for every e ∈ E, the delimiters Y e,
for every e ∈ E and every 1 ≤ i, j ≤ 3, i ̸= j, the delimiters Y e

i,j .
We define for 1 ≤ i ≤ n, ui

1 = xi and vi
1 = c1c2c3. If e is an edge and

ci and cj are two colors, we denote we(ci, cj) = Y e
i,jY e

i,jY e
i,j cicj Y e

i,jY e
i,jY e

i,j For
every edge e = {xi, xj}, we now define ue

2 = Y eY eY e xixj Y eY eY e and ve
2 =

we(c1, c2)we(c1, c3)we(c2, c1)we(c2, c3)we(c3, c1)we(c3, c2).
We now apply Lemma 10 with u1

1, . . . un
1 , ue1

2 . . . uem
2 , v1

1 , . . . vn
1 , ve1

2 . . . vem
2 , to obtain u and v.

⇒ Suppose G is 3-colorable, and let c : V → {c1, c2, c3} be a valid coloring. Define
f |V = c. For every edge e = {xi, xj}, let s and t be such that c(xi) = cs and c(xj) = ct.
We then define f(Y e) = Y e

s,t. It is easy to check now that d(f(u), v) = k, and hence
FMD

2 (u, v) ≤ k.
⇐ Suppose now that FMD

2 (u, v) ≤ k. We will show that f |V defines a 3-coloring of G,
by showing that (1) for all x ∈ V , f(x) ∈ {c1, c2, c3} and (2) If {x, y} ∈ E, then f(x) ̸= f(y).

Lemma 10 ensures that the words ui and vi are in matching, which proves (1).
Lemma 10 also ensures that the words ue and ve are in matching. Let e ∈ E, with
e = xs, xt. We have |ue

2|Y e = 6, hence |f(ue
2)|f(Y e) ≥ 6. Since c1, c2 and c3 each occur

exactly 4 times in ve
2, they cannot occur 6 times after deletions, and f(Ye) /∈ {c1, c2, c3}.

Hence, there exist i ̸= j with 1 ≤ i, j ≤ 3 such that f(Y e) = Y e
i,j . This implies that all

but one of the we factors from ve
2 are suppressed, and that the remaining one is we(ci, cj).

Hence f(xs) = ci and f(xt) = cj , which proves (2). ◀
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B Encoding Constant Alphabet Σ in Π

We show why it is always possible to consider that Σ = ∅ for certain problems. These results
use the lemmas proved in Section 4.1.

▶ Lemma 23. Let d be a distance, k an integer and u and v be two parameterized words
over the alphabet of constants Σ and the alphabet of parameters Π. There exist words ũ and
ṽ over the alphabet of constants ∅ and the alphabet of parameters Π′ = Π ⊎ Σ such that the
following are equivalent:

PMd(u, v, k) is realized by f ;
PMd(ũ, ṽ, k) is realized by f .

In particular, this implies that if PMd(ũ, ṽ) ≤ k, all functions f realizing this matching
verify that for all x ∈ Σ, f(x) = x, and for all x ∈ Π, f(x) ∈ Π.

Proof. Let N = k + 1. If Σ = {a1, . . . , an}, we define z to be aN
1 aN

2 . . . aN
n u and ũ = zu,

ṽ = zv. It is clear that if PMd(u, v) ≤ k then PMd(ũ, ṽ) ≤ k, by following the same
operations, and applying the same renaming function.

Suppose now that PMd(ũ, ṽ) ≤ k, and let f and u′ realize it. Let i ∈ [1, n]. All the letters
of u between position Ni and N(i + 1) are ai. At most k of these positions can be modified
with an edit operation. Since N > k, at least one of these positions is not modified, and thus
there exists j ∈ [Ni, N(i + 1)] such that u′

j = ai. Since all letters in v between position Ni

and N(i + 1) are ai, in particular vj = ai, and hence f(ai) = ai. This proves that for all
x ∈ Σ, f(x) = x, and thus f(z) = z. Since f is 1-to-1, this entails f(Π) ⊆ Π. By Lemma 7,
d(f(ũ), ṽ) ≤ k. Hence d(f(zu), zv) = d(zf(u), zv) ≤ k and by Lemma 8, d(f(u), v) ≤ k.
Hence PMd(u, v) ≤ k. ◀

▶ Remark 24. Note that the words ũ and ṽ have a size increased by NΣ. If less operations
are considered, it is possible to reduce this overhead. For example, in the case of PMD, we
can take z to be of the form a1 . . . anzN , to reduce the overhead to N + Σ.

Similarly, constants can be encoded in Π in some FM problems. We prove this result for
FMD

2 , with the help of the block decomposition allowed by Lemma 10.

▶ Lemma 25. Let u and v be two parameterized words over the alphabet of constants Σ and
the alphabet of parameters Π. There exist words ũ and ṽ over the alphabet of constants ∅
and the alphabet of parameters Π′ = Π ⊎ Σ such that the following are equivalent:

FMD
2 (u, v, |v| − |u|) is realized by f ;

FMD
2 (ũ, ṽ, |ṽ| − |ũ|) is realized by f .

Proof. We write Σ = {a1, . . . an} and Π = {b1, . . . , bm}. We define zΣ = a1 . . . an, and zΠ =
b1 . . . bm. Let ũ and ṽ be the words obtained by applying Lemma 10 to zΣ, b1, b2, . . . , bm, u and
zΣ, zΠ, zΠ, . . . , zΠ, v. If FMD

2 (u, v, k) is realized by a function f , it realizes FMD
2 (ũ, ṽ, |ṽ|−|ũ|)

too. Indeed, it is enough to apply the same operations in v, and to delete all the characters
but f(bi) in the i-th copy of zΠ.

Suppose now that FMD
2 (ũ, ṽ) ≤ k, and let f realize it. Then, by Lemma 10, we have:

D(z, f(z)) = 0, and hence f(z) = z, which implies that for all x ∈ Σ, f(x) = x.
For every 1 ≤ i ≤ m, D(zΠ, f(bi)) = |Π| − 1. Hence f(bi) is a character of zΠ, which is
some character bj ∈ Π.
D(v, f(u)) ≤ k.

Hence f verifies D(f(v), u) ≤ k and respects the conditions on Π and Σ, which implies that
is also realizes FMD

2 (u, v, k). ◀
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The overhead to pay for this transformation is O(|Σ|+ |Π|2 + k), where the term in k

comes from the proof of Lemma 10.
Transposing the technique used for Lemma 25 is not sufficient to get a similar result for

FMD
1 . The question thus remains open in this context.

C Proofs Regarding the Max-SAT Encoding

Proof of theorem 21. We proceed by induction on |u|+ |v|. If |u|+ |v| = 0, both u and v

are the empty string, and the equivalence is trivial. Fix n ∈ N and suppose now that the
result holds up for all words u, v such that |u|+ |v| ≤ n− 1. Let u and v be two words such
that |u|+ |v| ≤ n. Without loss of generality, consider |u| ≥ |v|.
Suppose ID(u, v) ≤ k. Let ρ be a rewriting sequence between u and v of length k. If there
is no deletion in u in ρ, there are only insertions in v, and v is a sub-word of u, and there
exists another rewriting sequence ρ′ only deleting letters from u. Hence, we can consider
that there is at least a deletion in u in ρ. Let p be a position at which such a deletion occur,
and let a = up. The word u can be written as u = u′au′′ for some words u′ and u′′. Define
w = u′u′′. It holds that d(w, v) ≤ k − 1 and |w| = |u| − 1. By induction, there exists an
alignment A between w and v such that 2|A| = |w|+ |v| − (k − 1) = |u|+ |v| − k. We define

r(i) =
{

i if i < p

i− 1 if i > p
, and B = {(r(i), j) | (i, j) ∈ A}. Since A is an alignment, so is B: it

satisfies conditions 1 to 3 of Definition 20, and since wr(i) = ui, it also satisfies condition 4.
Finally, |B| = |A|, hence 2|B| = |u|+ |v| − k, hence the result.

Suppose now that there exists an alignment A such that 2|A| = |u|+ |v| − k. Similarly,
consider p, a position in u such that there does not exist a j with (p, j) ∈ A. If no such position
exist, since |u| ≥ |v|, u = v and the result is proven. Consider w the word obtained by deleting
up from u. It then holds that |w| = |u| − 1 and that 2|A| = |u|+ |v| − k = |w|+ |v| − (k− 1).
Defining B in the same way as above yields an alignment between w and v of the same size,
and thus by induction, d(w, v) ≤ k − 1, and since d(u, w) = 1, d(u, v) ≤ k. ◀

▶ Proposition 26. Weighted Max-SAT and partial weighted Max-SAT are equivalent.

Proof. Encoding a weighted Max-SAT instance as a partially weighted Max-SAT instance is
straightforward, as we just have to choose φc to be empty.
Conversely, given a satisfiable CNF formula φc, a CNF formula φw, and a weight function w

on the clauses of φw, we can define a weighted Max-Sat instance in the following way:
We define φ = φc ∧ φw

We set W = 1 +
∑

Ciclause ofφc

w(Ci), and extend w to clauses of φc such that w(Cj) = W

for all clauses Cj of φc

If ν is a valuation, we denote by w(ν) the sum of the weights of all clauses it satisfies
∑

ν⊨Ci

w(Ci).

Since φc is satisfiable, there exists a valuation νc such that νc ⊨ φc, and w(νc) ≥ |φc|W . Let
now ν be a valuation no satisfying a clause of φc. Then w(νc) ≤ (|φc|−1)W +(W−1) < w(νc),
hence nuc is not maximal and cannot be a solution to the weighted Max-SAT instance. ◀
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Parameterized Algorithms for String Matching to
DAGs: Funnels and Beyond
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Abstract
The problem of String Matching to Labeled Graphs (SMLG) asks to find all the paths in a labeled
graph G = (V, E) whose spellings match that of an input string S ∈ Σm. SMLG can be solved in
quadratic O(m|E|) time [Amir et al., JALG 2000], which was proven to be optimal by a recent lower
bound conditioned on SETH [Equi et al., ICALP 2019]. The lower bound states that no strongly
subquadratic time algorithm exists, even if restricted to directed acyclic graphs (DAGs).

In this work we present the first parameterized algorithms for SMLG on DAGs. Our parameters
capture the topological structure of G. All our results are derived from a generalization of the
Knuth-Morris-Pratt algorithm [Park and Kim, CPM 1995] optimized to work in time proportional
to the number of prefix-incomparable matches.

To obtain the parameterization in the topological structure of G, we first study a special class of
DAGs called funnels [Millani et al., JCO 2020] and generalize them to k-funnels and the class ST k.
We present several novel characterizations and algorithmic contributions on both funnels and their
generalizations.
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1 Introduction

Given a labeled graph G = (V, E)1 and a string S of length m over an alphabet Σ of size σ,
the problem of String Matching to Labeled Graph (SMLG) asks to find all paths in G spelling
S in their characters; such paths are known as occurrences or matches of S in G. This problem
is a generalization of the classical string matching (SM) to a text T of length n, which can
be encoded as an SMLG instance with a path labeled with T . Labeled graphs are present in
many areas such as information retrieval [28, 73, 14], graph databases [11, 10, 75, 16] and
bioinformatics [27], and SMLG is a primitive operation to locate information on them.

It is a textbook result [2, 29, 81] that the classical SM can be solved in linear O(n + m)
time. For example, the well-known Knuth-Morris-Pratt algorithm (KMP) [60] preprocesses
S and then scans T while maintaining the longest matching prefix of S. However, for SMLG
a recent result [12, 34] shows that there is no strongly subquadratic O(m1−ϵ|E|), O(m|E|1−ϵ)
time algorithm unless the strong exponential time hypothesis (SETH) fails, and the most

1 We consider the case where each vertex is labeled with a single character from Σ.
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efficient current solutions [8, 72, 77, 52] match this bound, thus being optimal in this sense.
Moreover, these algorithms solve the approximate version of SMLG (errors in S only) showing
that both problems are equally hard under SETH, which is not the case for SM [13].

The history of (exact) SMLG. SMLG can be traced back to the publications of Manber
and Wu [67] and Dubiner et al. [33] where the problem is defined for the first time, and
solved in linear time on directed trees by using an extension of KMP. Later Akutsu [4] used
a sampling on V and a suffix tree of S to solve the problem on (undirected) trees in linear
time and Park and Kim [74] obtained an O(N + m|E|)2 time algorithm for directed acyclic
graphs (DAGs) by extending KMP on a topological ordering of G (we call this the DAG
algorithm). Finally, Amir et al. [8] showed an algorithm with the same running time for
general graphs with a simple and elegant idea that was later used to solve the approximate
version [77, 52], and that has been recently generalized as the labeled product [78]. The
lower bound of Equi et al. [34] shows that the problem remains quadratic (under SETH)
even if the problem is restricted to deterministic DAGs with vertices of two kinds: indegree
at most 1 and outdegree 2, and indegree 2 and outdegree at most 1 [34, Theorem 1], or if
restricted to undirected graphs with degree at most 2 [34, Theorem 2]. Furthermore, they
show how to solve the remaining cases (in/out-trees whose roots can be connected by a cycle)
in linear time by an extension of KMP. Later they showed [35, 36] that the quadratic lower
bound holds even when allowing polynomial indexing time.

An (important) special case. Gagie et al. [42] introduced Wheeler graphs as a generalization
of prefix sortable techniques [38, 45, 37, 22, 83] applied to labeled graphs. On Wheeler graphs,
SMLG can be solved in time O(m log |E|) [42] after indexing, however, it was shown that the
languages recognized by Wheeler graphs (intuitively the set of strings they encode) are very
restrictive [5, 6]. Later, Cotumaccio and Prezza [31] generalized Wheeler graphs to p-sortable
graphs, capturing every labeled graph by using the parameter p: the minimum width of a
colex relation over the vertices of the graph. On p-sortable graphs, SMLG can be solved in
time O(mp2 log (pσ)) after indexing, however, the problems of deciding if a labeled graph is
Wheeler or p-sortable are NP-hard [44]. In a recent work, Cotumaccio [30] defined q-sortable
graphs as a relaxation of p-sortable (q < p), which can be indexed in O(|E|2 + |V |5/2) time
but still solve SMLG in time O(mq2 log (qσ)).

1.1 Our results
We present parameterized algorithms for SMLG on DAGs. Our parameters capture the
topological structure of G. These results are related to the line of research “FPT inside
P” [43, 26, 40, 61, 1, 23, 25, 24, 66, 64] of finding parameterizations for polynomially-solvable
problems.

All our results are derived from a new version of the DAG algorithm [74], which we
present in Section 3. Our algorithm is optimized to only carry prefix-incomparable matches
(Definition 3) and process them in time proportional to their size (Lemma 5 further optimized
in Lemma 6 and Theorem 7). Prefix-incomparable sets suffice to capture all prefix matches

2 N is the total length of the labels in G in a more general version of the problem where vertices are
labeled with strings.
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of S ending in a vertex v (Definition 4). By noting that the size of prefix-incomparable sets is
upper-bounded by the structure of S (Lemma 27 in Appendix A), we obtain a parameterized
algorithm (Theorem 28 in Appendix A) that beats the DAG algorithm on periodic strings.

To obtain the parameterization on the topological structure of the graph we first study
and generalize a special class of DAGs called funnels in Section 4.

Funnels. Funnels are DAGs whose source-to-sink paths contain a private edge that is
not used by any other source-to-sink-path. Although more complex that in/out-forests,
their simplicity has allowed to efficiently solve problems that remain hard even when the
input is restricted to DAGs, including: DAG partitioning [70], k-linkage [70], minimum flow
decomposition [57, 56], a variation of network inhibition [62] and SMLG (this work). Millani
et al. [70] showed that funnels can also be characterized by a partition into an in-forest plus
an out-forest (the vertex partition characterization), or by the absence of certain forbidden
paths (the forbidden path characterization), and propose how to find a minimal forbidden
path in quadratic O(|V |(|V | + |E|)) time and a recognition algorithm running in O(|V | + |E|)
time. They used the latter to develop branching algorithms for the NP-hard problems of
vertex and edge deletion distance to a funnel, obtaining a fix-parameter quadratic solution.
Analogous to the minimum feedback set problem [54], the vertex (edge) deletion distance
to a funnel problem asks to find the minimum number of vertices (edges) that need to be
removed from a graph so that the resulting graph is a funnel.

We propose three (new) linear time recognition algorithms of funnels (Section 4.1), each
based on a different characterization, improving the running time of the branching algorithm
to parameterized linear time (see Appendix B). We generalize funnels to k-funnels by allowing
private edges to be shared by at most k source-to-sink paths (Definitions 14 and 15). We
show how to recognize them in linear time (Lemma 16) and find the minimum k for which a
DAG is a k-funnel (Corollary 17 and Lemma 18). We then further generalize k-funnels to
the class of DAGs ST k (Definition 20 and Lemma 21), which (unlike k-funnels for k > 1, see
Figure 2) can be characterized (and efficiently recognized, see Lemma 22) by a partition into
a graph of the class Sk (generalization of out-forest, see Definition 19) and a graph of the
class Tk (generalization of in-forest, see Definition 19).

We obtain our parameterized results in Section 5 by noting that, analogous to the fact
that in KMP we only need the longest prefix match, in the DAG algorithm we can bound
the size of the prefix-incomparable sets by the number of paths from a source or the number
of paths to a sink, µs(v) and µt(v), respectively (Lemma 23).

▶ Theorem 1. Let G = (V, E) be a DAG, Σ a finite alphabet (σ = |Σ|), ℓ : V → Σ a labeling
function and S ∈ Σm a string. We can decide whether S has a match in (G, ℓ) in time
O((|V | + |E|)k + σm), where k = min(maxv∈V µs(v), maxv∈V µt(v)).

In particular, this implies linear time algorithms for out-forests and in-forests, and for
every DAG in Sk or Tk for constant k. Finally, we solve the problem on DAGs in ST k (thus
also in k-funnels), by using the vertex partition characterization of ST k (Lemma 22), solving
the matches in each part separately with Theorem 1, and resolve the matches crossing from
one part to the other with a precomputed data structure (Lemma 26).

▶ Theorem 2. Let G = (V, E) be a DAG, ℓ : V → Σ a labeling function and S ∈ Σm a
string. We can decide whether S has a match in (G, ℓ) in time O((|V | + |E|)k2 + m2), where
k = maxv∈V (min(µs(v), µt(v))).
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2 Preliminaries

We work with a (directed) graph G = (V, E), a function ℓ : V → Σ labeling the vertices of G

with characters from a finite alphabet Σ of size σ, and a sequence S[1..m] ∈ Σm.

Graphs. A graph H = (VH , EH) is said to be a subgraph of G if VH ⊆ V and EH ⊆ E.
If V ′ ⊆ V , then G[V ′] is the subgraph induced by V ′, defined as G[V ′] = (V ′, {(u, v) ∈
E : u, v ∈ V ′}). We denote Gr = (V, Er) to be the reverse of G (Er = {(v, u) | (u, v) ∈ E}).
For a vertex v ∈ V we denote by N−

v (N+
v ) the set of in(out)-neighbors of v, and by d−

v = |N−
v |

(d+
v = |N+

v |) its in(out)degree. A source (sink) is a vertex with zero in(out)degree. The
edge contraction of (u, v) ∈ E is the graph operation that removes (u, v) and merges u and
v. A path P is a sequence v1, . . . , v|P | of different vertices of V such that (vi, vi+1) ∈ E

for every i ∈ {1, . . . , |P | − 1}. We say that P is proper if |P | ≥ 2, a cycle if (v|P |, v1) ∈ E,
and source-to-sink if v1 is a source and v|P | is a sink. We say that u ∈ V reaches v ∈ V

if there is a path from u to v. If G does not have cycles it is called directed acyclic graph
(DAG). A topological ordering of a DAG is a total order v1, . . . , v|V | of V such that for every
(vi, vj) ∈ E, i < j. It is known [53, 84] how to compute a topological ordering in O(|V | + |E|)
time, and we assume one (v1, . . . , v|V |) is already computed if G is a DAG3. An out(in)-forest
is a DAG such that every vertex has in(out)degree at most one, if it has a unique source
(sink) it is called an out(in)-tree. The label of a path P = v1, . . . , v|P | is the sequence of the
labels of its vertices, ℓ(P ) = ℓ(v1) . . . ℓ(v|P |).

Strings. We say that S has a match in (G, ℓ) if there is a path whose label is equal to S,
every such path is an occurrence of S in (G, ℓ). We denote S[i..j] (also S[i] if i = j, and the
empty string if j < i) to be the substring of S between position i and j (both inclusive),
we say that it is proper if i > 1 or j < m, a prefix if i = 1 and a suffix if j = m. We
denote Sr to be the reverse of S (Sr[i] = S[m − i + 1] for i ∈ {1, . . . , m}). A substring
of S is called a border if it is a proper prefix and a proper suffix at the same time. The
failure function of S, fS : {1, . . . , m} → {0, . . . , m} (just f if S is clear from the context), is
such that fS(i) is the length of the longest border of S[1..i]. We also use fS to denote the
in-tree ({0, . . . , m}, {(i, fS(i)) | i ∈ {1, . . . , m}}), also known as the failure tree [46] of S. By
definition, the lengths of all borders of S[1..i] in decreasing order are fS(i), f2

S(i), . . . , 0. The
matching automaton of S, AS : {0, . . . , m} × Σ → {0, . . . , m}, is such that AS(i, a) is the
length of the longest border of S[1..i] · a. It is known how to compute fS in time O(m) [60]
and AS in time O(σm) [2, 29, 81], and we assume they are already computed4.

3 The DAG algorithm on prefix-incomparable matches

A key idea in our linear time parameterized algorithm is that of prefix-incomparable sets of
the string S. We will show that one prefix-incomparable set per vertex suffices to capture all
the matching information. See Figure 1 for an example of these concepts.

▶ Definition 3 (Prefix-incomparable). Let S ∈ Σm be a string. We say that i, j ∈
{0, . . . , m}, i < j are prefix-incomparable (for S) if S[1..i] is not a border of S[1..j]. We
say that B ⊆ {0, . . . , m} is prefix-incomparable (for S) if for every i < j ∈ B, i and j are
prefix-incomparable (for S).

3 Our algorithms run in Ω(|V | + |E|) time.
4 Our algorithms run in Ω(σm) time.
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Figure 1 A string S = abaababaaba and its failure tree fS , with w = |{i ∈ {0, . . . , 11} |̸ ∃j, fS(j) =
i}| = |{7, 8, 9, 10, 11}| = 5. On the string it is shown in segmented (blue) and solid (red) lines that
prefix S[1..3] = aba is a border of prefix S[1..8] = abaababa, which can also be seen in the tree
since 3 is an ancestor (parent in this case) of 8. In the tree two sets are shown B1 = {1, 8} in
segmented (blue) circles, which is prefix-comparable, and B2 = {2, 3} in solid (red) circles, which is
prefix-incomparable. If B1 ∪ B2 ∪ {0} is Bv for some v ∈ V , then P Iv = {2, 8}.

In our algorithm we will compute for each vertex v a prefix-incomparable set representing
all the prefixes of S that match with a path ending in v. More precisely, if Bv is the set of
all the prefixes of S that match with a path ending in v, then the algorithm will compute
PIv ⊆ Bv such that PIv is prefix-incomparable and for every i ∈ Bv there is a j ∈ PIv such
that i is ancestor of j. Note that such a set always exists and it is unique, it corresponds
to the leaves of fS [Bv]. To obtain a linear time parameterized algorithm we show how to
compute PIv from the sets PIu, u ∈ N−

v , in time parameterized by the size of these sets.

▶ Definition 4 (Bv, P Iv). Let G = (V, E) be a DAG, ℓ : V → Σ a labeling function, and
S ∈ Σm a string. For every v ∈ V we define the sets:

Bv = {i ∈ {0, . . . , m} | ∃P path of G ending in v and ℓ(P ) = S[1..i]}5

PIv ⊆ Bv as the unique prefix-incomparable set such that for every i ∈ Bv there is a
j ∈ PIv such that i = j or S[1..i] is a border of S[1..j]

▶ Lemma 5. Let G = (V, E) be a DAG, v ∈ V , S ∈ Σm a string, fS its failure tree and
AS its matching automaton. We can compute PIv from PIu for every u ∈ N−

v in time

O
(
w2 · d−

v

)
or in time O

((
kv :=

∑
u∈N−

v
|PIu|

)2
)

, after O(m) preprocessing time, where

w = |{i ∈ {0, . . . , m} |̸ ∃j, fS(j) = i}|.

Proof. We precompute constant time lowest common ancestor (LCA)6 queries [3] of fS in
O(m) time [41, 79, 20, 17, 18, 7, 39]. Note that with this structure we can check whether
i < j are prefix-incomparable in constant time (LCA(i, j) < i).

If v is a source we have that either Bv = PIv = {0} if ℓ(v) ̸= S[1] or PIv = {1} if
ℓ(v) = S[1], otherwise we proceed as follows. To obtain the O

(
k2

v

)
time, we first append

all the elements of every PIu for u ∈ N−
v into a list L (of size kv), then we replace every

i ∈ L by AS(i, ℓ(v)), and finally we check (at most) every pair i < j of elements of L and
test (in constant time) if they are prefix-incomparable, if they are not we remove i from the
list. After these O(|L|2) = O(k2

v) tests L = PIv.
To obtain the O

(
w2 · d−

v

)
time, we process the in-neighbors of v one by one and maintain a

prefix-incomparable set representing the prefix matches incoming from the already processed
in-neighbors. That is, we maintain a prefix-incomparable set PI ′, and when we process the
next in-neighbor u ∈ N−

v we append all elements of PI ′ and {AS(i, ℓ(v)) | i ∈ PIu} into a

5 Here we consider that the empty path always exists and its label is the empty string, thus 0 ∈ Bv.
6 LCA(i, j) returns the lowest node in the tree fS that is ancestor of both i and j.
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list L′ of size O(w) (by Lemma 27), then we use the same quadratic procedure applied on L
in time O(w2) to obtain the new PI ′. After processing all in-neighbors in time O(d−

v · w2),
we have PI ′ = PIv. Next, we show the correctness of both procedures.

Let PI ′
v be the result after applying one of the procedures explained before (that is the

final state of PI ′ or L), by construction PI ′
v is prefix-incomparable. Now, consider i ∈ Bv

and a path P ending in v with ℓ(P ) = S[1..i]. If P is of length zero (only one vertex), then
i = 1 and ℓ(P ) = ℓ(v) = S[1]. Consider any u ∈ N−

v , and any j ∈ PIu (there is at least one
since 0 ∈ Bu), this value is mapped to AS(j, ℓ(v)) = AS(j, S[1]) = j′. By definition of the
matching automaton, j′ is the longest border of S[1..j] · S[1], thus S[1] is a border of S[1..j′]
or j′ = 1, in both procedures j′ can only be removed from PI ′

v if a longer prefix contains
S[1..j′] as a border and also S[1]. If P is a proper path and i > 1, consider the second to
last vertex u of P . Note that i − 1 ∈ Bu, and thus there is j ∈ PIu, such that S[1..i − 1] is a
border of S[1..j], this value is mapped to j′ = AS(j, ℓ(v)) = AS(j, S[i]), which is the length
of the longest border of S[1..j] · S[i], but since S[1..i] is also a border of S[1..j] · S[i], then
S[1..i] is also a border of S[1..j′] or j′ = i. Again, in both procedures j′ can only be removed
from PI ′

v if a longer prefix contains S[1..j′] as a border and also S[1..i]. Finally, we note
that PI ′

v ⊆ Bv since every i ∈ PI ′
v corresponds to a match of S[1..i] by construction. ◀

We improve the dependency on w and kv by replacing the quadratic comparison by
sorting plus a linear time algorithm on the balanced parenthesis representation [51, 71] of fS .

▶ Lemma 6. We can obtain Lemma 5 in time O(sort(w, m) · d−
v ) or in time O(sort(kv, m)),

where sort(n, p) is the time spent by an algorithm sorting n integers in the range {0, . . . , p}.

Proof. We compute the balanced parenthesis (BP) [51, 71] representation of the topology of
fS , that is, we traverse fS from the root in preorder, appending an open parenthesis when
we first arrive at a vertex, and a closing one when we leave its subtree. As a result we obtain
a balanced parenthesis sequence of length 2(m + 1), where every vertex i ∈ fS is mapped
to its open parenthesis position open[i] and to its close parenthesis position close[i], which
can be computed and stored at preprocessing time. Note that in this representation, i is
ancestor of j (and thus prefix-comparable) if and only if open[i] ≤ open[j] ≤ close[i]. As
such, if we have a list of O(kv) (or O(w)) (L and L′ from Lemma 5) values, we can compute
the corresponding prefix-incomparable sets as follows.

First, we sort the list by increasing open value, this can be done in O(sort(kv, m)) (or
O(sort(w, m)), since this sorting is equivalent to sort by increasing open/2 ∈ {0, . . . , m}
value. Then, we process the list in the sorted order, if two consecutive values i and j in the
order are prefix-comparable (that is, if open[j] ≤ close[i]) then we remove i and continue to
the next value j. At the end of this O(kv) (or O(w)) time processing we obtain the desired
prefix-incomparable set. ◀

If we use techniques for integer sorting [87, 90, 59] we can get O(kv log log m) (or
O(w log log m)) time for sorting, however introducing m into the running time. We can solve
this issue by using more advanced techniques [48, 9, 47] obtaining an O(kv log log kv) (or
O(w log log w)) time for sorting. However, we show that by using the suffix-tree [89, 68, 85]
of Sr we can obtain a linear dependency on w and kv.

▶ Theorem 7. We can obtain the result of Lemma 5 in time O(w · d−
v ) or in time O(kv).

Proof. We reuse the procedure of Lemma 6 but this time on the BP representation of the
topology of the suffix-tree Tr of Sr, which has O(m) vertices and can be built in O(m)
time [89, 68, 85]. Note that every suffix represented in Tr corresponds to a prefix of S (spelled
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in the reverse direction). Moreover, i ≤ j are prefix-comparable if and only if the vertex
representing i in Tr (Tr[i]) is a ancestor of Tr[j], the same property as in fS . Furthermore,
if B is prefix-incomparable and A(j, a) = j + 1 for every j ∈ B, then the positions of the
vertices in A(B, a) in Tr follow the same order as the ones in B, since the suffix-tree is
lexicographically sorted.

Now, we show how to obtain the prefix-incomparable set representing A(PIu, ℓ(v)) in
|PIu| time assuming that PIu is sorted by increasing (open) position in Tr.

We first separate PIu into the elements i ∈ M with S[i + 1] = ℓ(v) and i ∈ E with
S[i + 1] ̸= ℓ(v) (in the same relative order as in PIu, which is supposed to be in increasing
order). Since M is prefix-incomparable the positions of the vertices in A(M, ℓ(v)) in Tr follow
the same order as the ones in M . We then obtain the list Eu by applying Tr[A(i, ℓ(v)) − 1]
for every i ∈ E (if A(i, ℓ(v)) = 0 we do not process i), and then for any pair of consecutive
elements x before y in Eu such that y ≤ x we remove y from Eu, and repeat this until no
further such inversion remains, thus obtaining an increasing list in Eu representing vertices
in Tr. Next, since Eu is sorted we can obtain the list PIE of prefix-incomparable elements
representing Eu, and finally apply A(PIE , ℓ(v)) (which also follows an increasing order in
Tr), merge it with A(M, ℓ(v)), and compute the prefix-comparable elements of this merge.

The correctness of the previous procedure follows by the fact that if there is an inversion
y < x in Eu, then the prefix A(j, ℓ(v)) − 1 represented by y in Tr is a border of the prefix
A(i, ℓ(v)) − 1 represented by x (and thus is safe to remove y). For this, first note that i

appears before j in E, then S[i..1] <lex S[j..1], and since i is prefix-incomparable with j

there is a k ≥ 1 such that S[i..i + k − 1] = S[j..j + k − 1] and S[i + k] <lex S[j + k]. Then,
since y appears before x in Eu, then S[A(j, ℓ(v)) − 1..1] <lex S[A(i, ℓ(v)) − 1..1], but since
A(i, ℓ(v)) − 1 is a border of i and A(j, ℓ(v)) − 1 is a border of j, S[A(j, ℓ(v)) − 1..1] must be
a prefix of S[A(i, ℓ(v)) − 1..1], and thus S[1..A(j, ℓ(v)) − 1] is a border of S[1..A(j, ℓ(v)) − 1].

The corollary is obtained by maintaining the PIv sets sorted by position in Tr, and noting
that the previous procedure runs in linear O(|Pu|) time. ◀

In Appendix A we show how to use Theorem 7 to derive a parameterized algorithm using
parameter w = |{i ∈ {0, . . . , m} |̸ ∃j, fS(j) = i}|, improving on the classical DAG algorithm
when S is a periodic string. Next, we will present our results on recognizing funnels and their
generalization (Section 4), and how to use these classes of graphs and Theorem 7 to obtain
parameterized algorithms using parameters related to the topology of the DAG (Section 5).

4 Funnels and beyond

Recall that funnels are DAGs whose source-to-sink paths have at least one private edge7,
that is, an edge used by only one source-to-sink path. More formally,

▶ Definition 8 (Private edge). Let G = (V, E) be a DAG and P the set of source-to-sink
paths of G. We say that e ∈ E is private if µ(e) := |{P ∈ P | e ∈ P}| = 1. If µ(e) > 1, we
say that e is shared.

▶ Definition 9 (Funnel). Let G = (V, E) be a DAG and P the set of source-to-sink paths of
G. We say that G is a funnel if for every P ∈ P there exists e ∈ P such that e is private.

Millani et al. [70] showed two other characterizations of funnels.

7 For the sake of simplicity, we assume that there are no isolated vertices, thus any source-to-sink path
has at least one edge.
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▶ Theorem 10 ([70]). Let G = (V, E) be a DAG. The following are equivalent:
1. G is a funnel
2. There exists a partition V = V1∪̇V2 such that G[V1] is an out-forest, G[V2] is an in-forest

and there are no edges from V2 to V1
3. There is no path P such that its first vertex has more than one in-neighbor (a merging

vertex) and its last vertex more than one out-neighbor (a forking vertex). Such a path is
called forbidden

They also gave an O(|V | + |E|) time algorithm to recognize whether a DAG G is a funnel,
and an O(|V |(|V | + |E|)) time algorithm to find a minimal forbidden path in a general graph,
that is, a forbidden path that is not contained in another forbidden path.

4.1 Three (new) linear time recognition algorithms
We first show how to find a minimal forbidden path in time O(|V | + |E|) in general graphs,
improving on the quadratic algorithm of Millani et al. [70].

▶ Lemma 11. Let G = (V, E) be a graph. In O(|V | + |E|) time, we can decide if G contains
a forbidden path, and if one exists we report a minimal forbidden path.

Proof. In the bioinformatics community minimal forbidden paths are a subset of unitigs and
it is well known how to compute them in O(|V | + |E|) time (see e.g. [55, 50, 58, 69]), here we
include a simple algorithm for completeness. We first compute the indegree and outdegree
of each vertex and check whether there exists a forbidden path of length zero or one, all in
O(|V | + |E|) time, in the process we also mark all vertices except the ones with unit indegree
and outdegree. If no path is found we iterate over the vertices one last time. If the current
vertex is not marked we extend it back and forth to the closest marked vertices and mark
the vertices in these extensions, finally we check whether the first vertex is merging and the
last forking. This last step takes O(|V |) time in total. ◀

Lemma 11 provides our first linear time recognition algorithm and, as opposed to the
algorithm of Millani et al. [70], it also reports a minimal forbidden path given a general graph.
Moreover, in Appendix B, we show that Lemma 11 provides a linear time parameterized
algorithm for the NP-hard (and inapproximable) problem of deletion distance of a general
graph to a funnel [63, 70]. Millani et al. [70] solved this problem in (parameterized) quadratic
time and in (parameterized) linear time only if the input graph is a DAG.

Next, we show another linear time recognition algorithm, which additionally finds the
partition V = V1∪̇V2 from Theorem 10. Finding such a partition will be essential for our
solution to SMLG. From now we will assume that the input graph is a DAG since this
condition can be checked in linear time [53, 84].

▶ Lemma 12. Let G = (V, E) be a DAG. We can decide in O(|V | + |E|) time whether G is
a funnel. Additionally, if G is a funnel, the algorithm reports a partition V = V1∪̇V2 such
that G[V1] is an out-forest, G[V2] is an in-forest and there are no edges from V2 to V1.

Proof. We start a special BFS traversal from all the source vertices of G. The traversal
only adds vertices to the BFS queue if they have not been previously visited (as a typical
BFS traversal) and if its indegree is at most one. After the search we define the partition V1
as the set of vertices visited during the traversal and V2 = V \ V1. Finally, we report the
previous partition if there are no edges from V2 to V1, and if every vertex of V2 has outdegree
at most one. All these steps run in time O(|V | + |E|).
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Note that if the algorithm reports a partition, then this satisfies the required conditions
to be a funnel (G[V1] is an out-forest since every vertex visited in the traversal has indegree
at most one). Moreover, if G is a funnel, we prove that V2 is an in-forest and that there are
no edges from V2 to V1. For the first, suppose by contradiction that there is a vertex v ∈ V2
with d+

v > 1, since every vertex is reached by some source in a DAG then there is a u ∈ V2
with d−

u > 1 (a vertex that was not added to the BFS queue) that reaches v, implying the
existence of a forbidden path in G, a contradiction. Finally, there cannot be edges from
V2 to V1 since the indegree (in G) of vertices of V1 is at most one and its unique (if any)
in-neighbor is also in V1 by construction. ◀

Next, we present another characterization of funnels based on the structure of
private/shared edges of the graph, which can be easily obtained by manipulating the
original Definition 9.

▶ Definition 13 (Funnel). Let G = (V, E) be a DAG. We say that G is a funnel if there is
no source-to-sink path using only shared edges.

As such, another approach to decide whether a DAG G is a funnel is to compute µ(e)
for every e ∈ E and then perform a traversal that only uses shared edges. Computing the
number of source-to-sink paths containing e, that is µ(e), can be done by multiplying the
number of source-to-e paths, µs(e), by the number of e-to-sink paths, µt(e), each of which can
be computed in O(|V | + |E|) time for all edges. The solution consists of a dynamic program
on a topological order (and reverse topological order) of G with the following recurrences.

µs(u) = 1d−
u =0 +

∑
u′∈N−

u

µs(u′)

µt(v) = 1d+
v =0 +

∑
v′∈N+

v

µt(v′)

µ((u, v)) = µs(u) · µt(v)

(1)

Where 1A is the characteristic function evaluating to 1 if A is true and to 0 otherwise. It is
simple to observe that the previous dynamic programs can be computed in time O(|V | + |E|)
each and that for every e = (u, v) ∈ E, µs(e) = µs(u) and µt(e) = µt(v). By simplicity, in the
following we will use µs(e) and µs(u) (also µt(e) and µt(v)) interchangeably. The previous
algorithm assumes constant time arithmetic operations on numbers up to maxe∈E µ(e), which
can be O(2|V |). To avoid this issue, we note that it is not necessary to compute µ(e), but only
to verify that µ(e) > 1. As such, we can recognize shared edges as soon as we identify that
µ(e) > 1, that is whenever µs(e) or µt(e) is greater than one in their respective computation.
A formal description of this algorithm can be found in Lemma 16.

4.2 Generalizations of funnels
To generalize funnels we will allow source-to-sink paths to use only shared edges, but require
to have at least one edge shared by at most k different source-to-sink paths.

▶ Definition 14 (k-private edge). Let G = (V, E) be a DAG. We say that e ∈ E is k-private
if µ(e) ≤ k. If µ(e) > k we say that e is k-shared.

▶ Definition 15 (k-funnel). Let G = (V, E) be a DAG. We say that G is a k-funnel if there
is no source-to-sink path using only k-shared edges.
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The next algorithm is a generalization of the last algorithm in Section 4.1 to decide if a
DAG is a k-funnel. It assumes constant time arithmetic operations on numbers up to k.

▶ Lemma 16. We can decide if a DAG G = (V, E) is a k-funnel in O(|V | + |E|) time,
assuming constant time arithmetic operations on numbers up to Θ(k).

Proof. We process the vertices in a topological ordering and use Equation (1) to compute
µs(e) in one pass, µt(e) in another pass and µ(e) in a final pass. To avoid arithmetic
operations with numbers greater than k, we mark the edges having µs and µt greater than
k as k-shared during the computations of µs, µt. Note that if µs(e) > k or µt(e) > k then
µ(e) > k. As such, before computing µs(e) (µt(e)) we check if some of the edges from
(to) the in(out)-neighbors is marked as k-shared. If that is the case we do not compute
µs(e) (µt(e)) and instead mark e as k-shared, otherwise we compute the respective sum of
Equation (1), and if at some point the cumulative sum exceeds k we stop the computation
and mark e as k-shared. Finally, we find all k-shared edges as the marked plus the unmarked
with µ(e) = µs(e) · µt(e) > k, perform a traversal only using k-shared edges, and report
that G is not a k-funnel if there is a source-to-sink path using only k-shared edges in time
O(|V | + |E|). ◀

We can use the previous result and exponential search [19, 15] to find the minimum k

such that a DAG is a k-funnel.

▶ Corollary 17. Let G = (V, E) be a DAG. We can find the minimum k such that G is
a k-funnel in O((|V | + |E|) log k) time, assuming constant time arithmetic operations on
numbers up to Θ(k).

Assuming constant time arithmetic operations on numbers up to maxe∈E µ(e) the problem
is solvable in linear time by noting that the answer is equal to the weight of a widest path.

▶ Lemma 18. Let G = (V, E) be a DAG. We can find the minimum k such that G is a
k-funnel in O(|V | + |E|) time, assuming constant time arithmetic operations on numbers up
to Θ(maxe∈E µ(e)).

Proof. We compute µ(e) for every e ∈ E by using the dynamic programming algorithm
specified by Equation (1) on a topological ordering of G. Since constant time arithmetic
operations are assumed for numbers up to maxe∈E µ(e), the previous computation takes
linear time. Then, we compute the weight of a source-to-sink path P maximizing mine∈P µ(e),
and report this value. This problem is known as the widest path problem [76, 82, 65, 86, 80]
and it can be solved in linear time on DAGs [88, 49] by a dynamic program on a topological
order of the graph. By completeness, we show a dynamic programming recurrence to compute
W [e], the weight of a source-to-e path P maximizing mine′∈P µ(e′).

W [e = (u, v)] = µ(e) · 1d−
u =0 +

∑
u′∈N−

u

min(W [(u′, u)], µ((u′, u)))

Finally, note that if we denote w to the weight of a widest path, then there is a source-to-sink
path using only w − 1-shared edges, G is not w − 1-funnel. Moreover, there cannot be a
source-to-sink path using only w-shared edges, since such a path would contradict w being
the weight of a widest path. As such, w is the minimum k such that G is k-funnel. ◀

We now define three classes of DAGs closely related to k-funnels.

▶ Definition 19. We say that a DAG G = (V, E) belongs to the class Sk (Tk) if for every
v ∈ V , µs(v) (µt(v)) ≤ k.
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Figure 2 A DAG in ST k that is not a k-funnel, for every k > 1. The central edge is a forbidden
path whose first vertex has indegree k and outdegree 2, and last vertex has indegree 2 and outdegree
k, the rest of the edges have either a source tail or a sink head. The blue label next to each vertex v

corresponds to min(µs(v), µt(v)), since the maximum of these labels is k the graph belongs to ST k.
The red label next to each edge e corresponds to µ(e), since there is a source-to-sink path with no
k-private edge the graph is not a k-funnel.

▶ Definition 20. We say that a DAG G = (V, E) belongs to the class ST k if for every v ∈ V ,
µs(v) ≤ k or µt(v) ≤ k.

▶ Lemma 21. Sk, Tk ⊆ k-funnels ⊆ ST k.

Proof. We first prove that Sk, Tk ⊆ k-funnels. Consider G ∈ Sk (G ∈ Tk), and take any
source-to-sink path P of G. Let (u, v) be the last (first) edge of P , then by Equation (1)
µ((u, v)) = µs(u)·µt(v), but since µt(v) = 1 (v is a sink) and µs(u) ≤ k (G ∈ Sk) (analogously,
µs(u) = 1 and µt(v) ≤ k), then µ((u, v)) ≤ k, and thus (u, v) is a k-private edge. To prove
that k-funnels ⊆ ST k, suppose that G is a k-funnel, and by contradiction that there exists
v ∈ V with µs(v), µt(v) > k. Consider any source-to-sink path P using v. Now, let (u, w)
be any edge in P before (after) v, then µt(w) ≥ µt(v) > k (µs(u) ≥ µs(v) > k), and thus
µ((u, w)) = µs(u) ·µt(w) > k. As such, P does not have a k-private edge, a contradiction. ◀

For k = 1, S1 describes out-forests and T1 in-forests, thus being more restrictive than
funnels. Moreover, we note that the in(out)-star of k + 2 vertices, that is k + 1 vertices
pointing to a sink (pointed from a source), ̸∈ Sk (Tk), but this graph is a funnel. On the
other hand, from the vertex partition characterization of funnels (Theorem 10 [70]) we have
that ST 1 = (1-)funnels. However, for k > 1, the containment k-funnels ⊆ ST k is strict
(Figure 2).

By noting that the minimum k such that a DAG is in Sk, Tk and ST k is maxv∈V µs(v),
maxv∈V µt(v) and maxv∈V min(µs(v), µt(v)), respectively, we obtain the same results as in
Lemmas 16 and 18 and Corollary 17 (with analogous assumptions on the cost of arithmetic
operations) for recognition of Sk, Tk and ST k.

Next, we prove that although the vertex partition characterization of funnels does not
generalize to k-funnels, it does for the class ST k and it can be found efficiently.

▶ Lemma 22. Let G = (V, E) ∈ ST k and k given as inputs. We can find, in O(|V | + |E|)
time, a partition V = V1∪̇V2 such that G[V1] ∈ Sk, G[V2] ∈ Tk and there are no edges from
V2 to V1. Moreover, if such a partition of a DAG G exists, then G ∈ ST k.

Proof. We set V1 = {v ∈ V | µs(v) ≤ k} and V2 = V \ V1. Note that finding V1 takes linear
time, since we can apply the algorithm described in Lemma 16 to compute the µs values
(or decide that they are more than k)8. By construction we know that every v ∈ V1 has

8 Recall that this procedure assumes constant time arithmetic operations of numbers up to Θ(k).
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µs(v) ≤ k, and since G ∈ ST k also every v ∈ V2 has µt(v) ≤ k, thus G[V1] ∈ Sk, G[V2] ∈ Tk.
Suppose by contradiction that there exists e = (u, v) ∈ E ∩ (V2 × V1). As such, µs(u) > k,
but since µs(u) ≤ µs(v), then µs(v) > k, a contradiction. Finally, if such a partition exists
then µs(v) ≤ k for every v ∈ V1 and µt(v) ≤ k for every v ∈ V2, and thus G ∈ ST k. ◀

5 Parameterized algorithms: The DAG

The main idea to get the parameterized algorithms in this section is to bound the size of the
PIv sets by a topological graph parameter and use Lemma 5 and Theorem 7 to obtain a
parameterized solution. As in the KMP algorithm [60] only one prefix-incomparable value
suffices (the longest prefix match until that point), we show that µs(v) prefix-incomparable
values suffice to capture the prefix matches up to v.

▶ Lemma 23. Let G = (V, E) be a DAG, v ∈ V , Psv the set of source-to-v paths, ℓ : V → Σ
a labeling function, S ∈ Σm a string, and PIv as in Definition 4. Then, |PIv| ≤ µs(v).

Proof. Since any path ending in v is the suffix of a source-to-v path we can write Bv as:

Bv =
⋃

Psv∈Psv

BPsv
:= {i ∈ {0, . . . , m} | ∃P suffix of Psv, ℓ(P ) = S[1..i]}

However, for every pair of values i < j ∈ BPsv
, S[1..i] is a border of S[1..j] (it is a suffix

since they are both suffixes of ℓ(Psv)). As such, at most one value of BPsv
appears in PIv,

and then |PIv| ≤ |Psv| = µs(v). ◀

This result directly implies a parameterized string matching algorithm to DAGs in Sk.

▶ Lemma 24. Let G = (V, E) ∈ Sk, ℓ : V → Σ a labeling function and S ∈ Σm a string. We
can decide whether S has a match in (G, ℓ) in time O(|V |k + |E| + σm).

Proof. We compute the matching automaton AS in O(σm) time. Then, we process the
vertices in topological order, and for each vertex v we compute PIv, the unique prefix-
incomparable set representing Bv (all prefix matches of S with paths ending in v). We
proceed according to Lemma 5 and Theorem 7 in O(m) preprocessing time plus O(kv)
time per vertex. There is a match of S in (G, ℓ) if and only if any PIv contains m. The
claimed running time follows since kv =

∑
u∈N−

v
|PIu| ≤

∑
u∈N−

v
µs(u) ≤ µs(v) ≤ k,

by Lemma 23, Equation (1) and since G ∈ Sk. ◀

A simple but interesting property about string matching to graphs is that we obtain the
same problem by reversing the input (both the graph and the string), that is, S has a match
in (G, ℓ) if and only if Sr has a match in Gr, ℓ. This fact, plus noting that G ∈ Sk if and
only if Gr ∈ Tk gives the following corollary of Lemma 24.

▶ Corollary 25. Let G = (V, E) ∈ Tk, ℓ : V → Σ a labeling function and S ∈ Σm a string.
We can decide whether S has a match in (G, ℓ) in time O(|V |k + |E| + σm).

With these two results and the fact that we can compute the minimum k such that a
DAG is in Sk, Tk in time O((|V | + |E|) log k) (see Corollary 17) we obtain our first algorithm
parameterized by the topology of the DAG.

▶ Theorem 1. Let G = (V, E) be a DAG, Σ a finite alphabet (σ = |Σ|), ℓ : V → Σ a labeling
function and S ∈ Σm a string. We can decide whether S has a match in (G, ℓ) in time
O((|V | + |E|)k + σm), where k = min(maxv∈V µs(v), maxv∈V µt(v)).
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Our final result is a parameterized algorithm for DAGs in ST k (in particular for k-funnels).
We note that the algorithm of Corollary 25 computes PIv for Sr for every vertex in Gr.
Recall that PIv represents all the prefix matches of Sr with paths ending in v in Gr. In
other words, it represents all suffix matches of S with paths starting in v in G. For clarity,
let us call this set SIv. The main idea of the algorithm for ST k is to use Lemma 22 to
find a partitioning V = V1∪̇V2 into Sk and Tk, use Lemma 24 and Corollary 25 to search
for matches within each part and also to compute PIv for every v ∈ V1 and SIv for every
v ∈ V2, and finally, to find matches using the edges from V1 to V2. The last ingredient of our
algorithm consists of preprocessing the answers to the last type of matches.

▶ Lemma 26. Let G = (V, E) a DAG, (u, v) ∈ E, ℓ : V → Σ a labeling function, S ∈ Σm a
string and PIu and SIv as in Definition 4. We can decide if there is a match of S in (G, ℓ)
using (u, v) in O(|PIu| · |SIv|) time, after O(m2) preprocessing time.

Proof. We precompute a boolean table PS of m × m entries, such that PS[i, j] is true
if there is a length i′ of a (non-empty) border of S[1..i] (or i′ = i) and a length j′ of a
(non-empty) border of S[m − j + 1..m] (or j′ = j) such that i′ + j′ = m, and false otherwise.
This table can be computed by dynamic programming in O(m2) time as follows.

PS[i, j] =
{

false if i + j < m ∨ i = 0 ∨ j = 0
i + j = m ∨ PS[i, fSr (j)] ∨ PS[fS(i), j] otherwise

We then use this table to test every PS[i, j] with i ∈ PIu, j ∈ SIv and report a match if any
of these table entries is true, in total O(|PIu| · |SIv|) time.

Since every match of S using (u, v) must match a prefix S[1..i] with a path ending in u

and a suffix S[i + 1..m] with a path starting in v, the previous procedure finds it (if any). ◀

▶ Theorem 2. Let G = (V, E) be a DAG, ℓ : V → Σ a labeling function and S ∈ Σm a
string. We can decide whether S has a match in (G, ℓ) in time O((|V | + |E|)k2 + m2), where
k = maxv∈V (min(µs(v), µt(v))).

Proof. We first compute the minimum k such that the input DAG is in ST k in time
O((|V | + |E|) log k) (see Corollary 17). Then, we obtain the partition of G into G[V1] ∈
Sk, G[V2] ∈ Tk and no edges from V2 to V1. We then search matches within G[V1] and G[V2]
in time O(|V |k + |E| + σm) (Lemma 24 and Corollary 25) and we also keep PIu for every
u ∈ V1 and SIv for every v ∈ V2. Finally, we process the matches using the edges (u, v) with
u ∈ V1, v ∈ V2 in total O(|E|k2 + m2) time (Lemma 26) since O(|PIu| · |SIv|) = O(k2). ◀

6 Conclusions

In this paper we introduced the first parameterized algorithms for matching a string to a
labeled DAG, a problem known (under SETH) to be quadratic even for a very special type
of DAGs. Our parameters depend on the structure of the input DAG.

We derived our results from a generalization of KMP to DAGs using prefix-incomparable
matches, which allowed us to bound the running time to parameterized linear. Further
improvements on the running time of our algorithms remain open: is it possible to get rid of
the automaton? or to combine prefix-incomparable and suffix-incomparable matches in better
than quadratic (either in the size of the sets or the string)? (e.g. with a different tradeoff
between query and construction time of the data structure answering these queries) and is
there a (conditional) lower bound to combine these incomparable sets? (see e.g. [21]). Another
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7:14 Parameterized Algorithms for String Matching to DAGs

interesting question with practical importance is whether our parameterized approach can
be extended to string labeled graphs with (unparameterized) linear time in the total length
of the strings or extended to counting and reporting algorithms in linear time in the number
of occurrences.

We also presented novel algorithmic results on funnels as well as generalizations of them.
These include linear time recognition algorithms for their different characterizations, which
we showed useful for the string matching problem but hope that can also help in other graph
problems. We also showed how to find the minimum k for which a DAG is a k-funnel or
∈ ST k (assuming constant time arithmetic operations on numbers up to O(k)) using an
exponential search, but it remains open whether there exists a linear time solution.
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A A parameterized algorithm: The String

A simple property about prefix-incomparable sets is that their sizes are bounded by the
number of prefixes that are not a border of other prefixes of the string, equivalently, the
number of leaves in the failure function of the string.

▶ Lemma 27. Let S ∈ Σm be a string, fS its failure function/tree, and B ⊆ {0, . . . , m} prefix-
incomparable for S. Then, |B| ≤ w such that w is the number of leaves of fS, equivalently
w := |{i ∈ {0, . . . , m} |̸ ∃j, fS(j) = i}|.

Proof. First note that i < j are prefix-incomparable if and only if i is not ancestor of j in fS .
Suppose by contradiction that |B| > w, and consider the w leaf-to-root paths of fS . Note
that these w leaf-to-root paths cover all the vertices of fS . By pigeonhole principle, there
must be i < j ∈ B in the same leaf-to-root path, that is i is ancestor of j, a contradiction. ◀
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▶ Theorem 28. Let G = (V, E) be a DAG, Σ a finite alphabet (σ = |Σ|), ℓ : V → Σ a
labeling function, S ∈ Σm a string and fS its failure function. We can decide whether S has a
match in (G, ℓ) in time O((|V | + |E|)w + σm), where w = |{i ∈ {0, . . . , m} |̸ ∃j, fS(j) = i}|.

Proof. We compute the matching automaton AS in O(σm) time. Then, we process the
vertices in topological order, and for each vertex v we compute PIv, the unique prefix-
incomparable set representing Bv (all prefix matches of S with paths ending in v). We
proceed according to Lemma 5 and Theorem 7 in O(m) preprocessing time plus O(w · d−

v )
time per vertex, adding up to O(w(|V | + |E|)) time in total. There is a match of S in (G, ℓ)
if and only if any PIv contains m. ◀

We note that w ≤ m, thus our algorithm is asymptotically as fast as the DAG algorithm,
which runs in time Ω((|V | + |E|)m). However, we note that for w to be o(m), a (very) long
prefix of S must be a (highly) periodic string. To see this, consider the longest prefix S[1..i]
of S, such that there exists j > i with i = fS(j). By definition, S[1..i] is a border of S[1..j],
thus S[k] = S[k + j − i] for k ∈ {1, . . . , i}, that is S[1..j] is a periodic string with period j − i.
Finally, note that if w = o(m), then m − i ∈ o(m), and thus the period j − i ∈ o(m).

B A linear time parameterized algorithm for the distance problems

Millani et al. [70] gave an O(|V |(|V | + |E|)) time algorithm to find a minimal forbidden path
in a general graph. They used this algorithm to design branching algorithms (see e.g. [32])
for the problems of finding maximum sized sets V ′ ⊆ V, dv := |V ′| and E′ ⊆ E, de := |E′|,
such that G[V ′] and (V, E′) are funnels, known as vertex and edge distance to a funnel. It
is know that (unless P = NP) there is an ϵ > 0 such that there is no polynomial time |V |ϵ
approximation [63] for the vertex version nor (1 + ϵ) approximation [70] for the edge version.
The authors [70] noted that if we consider a minimal forbidden path P of G of length |P | > 1,
then the edges of P can be contracted until |P | = 1 without affecting the size of the solution.
Moreover, they noted that if we consider such a P , two in-neighbors of the first vertex and
two out-neighbors of the last9, then V ′ must contain at least one of those 6 vertices and E′

one of those 5 edges, deriving O(6dv |V |(|V | + |E|)) and O(5de |V |(|V | + |E|)) time branching
algorithms for each problem10 [70, Corollary 1]. The authors also developed a more involved
branching algorithm, only for the edge distance problem on DAG inputs, running in time
O(3de(|V | + |E|)) [70, Theorem 4].

By noting that minimal forbidden paths can be further contracted to length zero (one
vertex) in the vertex distance problem, and that a minimal forbidden path can be found in
time O(|V | + |E|) (Lemma 11) we obtain the following result.

▶ Theorem 29. Let G = (V, E) be a graph. We can compute the vertex (edge) deletion
distance to a funnel in time O(5d(|V | + |E|)), where d is the deletion distance.

Proof. We follow the branching approach as in [70, Corollary 1], but in the case of vertex
distance we further contract the forbidden paths to length 0, the correctness of this step
follows by noting that any solution containing two different vertices in a forbidden path is
not minimum, since we still get a funnel by removing one of them (from the solution). As
such, the number of recursive calls is ≤ 5 for both problems. Moreover, by Lemma 11, we
can find a minimal forbidden path in time O(|V | + |E|). ◀

9 This structure is known as a butterfly.
10 After removing forbidden paths all cycles are vertex-disjoint thus the rest of the problem can be solved

by removing one vertex (edge) per cycle in one O(|V | + |E|) time traversal.
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Abstract
We revisit the Heaviest Induced Ancestors (HIA) problem that was introduced by Gagie,
Gawrychowski, and Nekrich [CCCG 2013] and has a number of applications in string algorithms.
Let T1 and T2 be two rooted trees whose nodes have weights that are increasing in all root-to-leaf
paths, and labels on the leaves, such that no two leaves of a tree have the same label. A pair of
nodes (u, v) ∈ T1 × T2 is induced if and only if there is a label shared by leaf-descendants of u and v.
In an HIA query, given nodes x ∈ T1 and y ∈ T2, the goal is to find an induced pair of nodes (u, v)
of the maximum total weight such that u is an ancestor of x and v is an ancestor of y.

Let n be the upper bound on the sizes of the two trees. It is known that no data structure of
size Õ(n) can answer HIA queries in o(log n/ log log n) time [Charalampopoulos, Gawrychowski,
Pokorski; ICALP 2020].1 This (unconditional) lower bound is a polyloglog n factor away from the
query time of the fastest Õ(n)-size data structure known to date for the HIA problem [Abedin,
Hooshmand, Ganguly, Thankachan; Algorithmica 2022]. In this work, we resolve the query-time
complexity of the HIA problem for the near-linear space regime by presenting a data structure that
can be built in Õ(n) time and answers HIA queries in O(log n/ log log n) time. As a direct corollary,
we obtain an Õ(n)-size data structure that maintains the LCS of a static string and a dynamic
string, both of length at most n, in time optimal for this space regime.

The main ingredients of our approach are fractional cascading and the utilization of an
O(log n/ log log n)-depth tree decomposition. The latter allows us to break through the Ω(log n)
barrier faced by previous works, due to the depth of the considered heavy-path decompositions.
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1 Introduction

The solutions to algorithmic problems on texts frequently involve the construction of text
indexes that can be built efficiently and offer a broad functionality, without significantly
increasing space usage. A prime example of such an index is the suffix tree, which is
ubiquitous in stringology. The work of Weiner [22] that introduced it, showed that it can be
used to efficiently solve a number of fundamental open problems such as the computation
of occurrences of patterns (given in an online manner) in a text or the computation of
the longest common substring of two strings. However, it is usually the case that a suffix
tree needs to first be augmented with other data structures before it can efficiently answer

1 The Õ(·) notation hides factors polylogarithmic in n.
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more sophisticated queries, e.g., returning the longest common prefix of two substrings or
the longest palindrome centered at some position; an augmentation with a lowest common
ancestors data structure suffices for these examples [16,17].

Crucially, a text index, such as the suffix tree, is built once and can then be queried an
arbitrary number of times. This is increasingly relevant: in many real-world scenarios, large
pieces of information are stored on servers and are constantly queried by a large number of
remote clients. From this perspective, it makes sense to devote some time to preprocess the
data stored on the server in order to be able to provide quick responses to remote users later.

The Heaviest Induced Ancestors problem, which was introduced by Gagie et al. [14] and
is defined next, has been proved to be useful in solving several variants of the problem of
computing a longest common substring of two strings [1, 4, 5, 8, 14].

We say that a tree is weighted if there is a weight associated with each node u of the tree,
such that weights along root-to-leaf paths are increasing, i.e., for any node u other than the
root the weight of u is larger than the weight of u’s parent. Further, we say that a tree is
labelled if each of its leaves is given a distinct label from [n], where n is the number of leaves.
As an example of a rooted, weighted, and labelled tree, consider the suffix tree of a string
S$, where $ does not occur in S, with the label of each leaf being the starting position of the
corresponding suffix and the weight of each node being the length of the string it represents.

▶ Definition 1. For two rooted and weighted trees T1 and T2 on n leaves, we say that two
nodes u ∈ T1 and v ∈ T2, are induced (by label ℓ) if and only if there are leaves x and y

labelled with ℓ, such that x and y are weak descendants of u and v, respectively.

Heaviest Induced Ancestors (HIA)
Input: Two rooted, weighted, and labelled trees T1 and T2 on n leaves.
Query: Given a pair of nodes u ∈ T1 and v ∈ T2, return a pair of induced nodes (u′, v′)
with the largest total weight, such that u′ is an ancestor of u and v′ is an ancestor of v.

Previous results and our contribution. Table 1 shows the state-of-the-art size vs. query-time
tradeoffs for the HIA problem prior to our work and our result. Gagie et al. [14] presented
several tradeoffs which have been since improved. We stress that the O(n log2 n)-size data
structure with query-time O(log n) included in Table 1 was only sketched in [14]. We briefly
discuss this sketch in Appendix A, as some of the ideas involved are similar to the ones we
use. The remaining Õ(n)-size known data structures found in Table 1 are due to Abedin et
al. [1]. Charalampopoulos et al. [8] showed an unconditional lower bound for near-linear size
data structures and a data structure with query-time O(1) and size O(n1+ϵ) for any constant
ϵ > 0. We now formally state our main result, which matches the lower bound of [8].

▶ Theorem 2. For any ϵ > 0, there is an O(n log2+2ϵ n)-size data structure for the HIA
problem that can be constructed in Õ(n) time and answers queries in O(log n/ log log n) time.

Applications of HIA. Before discussing some concrete applications of the HIA problem
in string algorithms and the consequences of our results for them, we give a high-level
description of how the HIA problem comes up in variants of computing an LCS.

Consider a string S and a chosen subset A of its positions, that we call anchors. Further,
consider the following two tries: a trie T ← for the strings in {S[1 . . k−1]R : k ∈ A}, where UR

denotes the reversal of U , and a trie T → for the strings in {S[k . . |S|] : k ∈ A}. In other
words, for every anchor k ∈ A, we have a path in the first trie for every prefix of S[1 . . k−1]R
and a path in the second trie for every prefix of S[k . . |S|]. We label each leaf of the two tries
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Table 1 Size vs. query-time tradeoffs for the HIA problem; the size is measured in machine words.

Size Query time Paper

Õ(n) Ω(log n/ log log n) [8]

O(n) O(log2 n/ log log n) [1]

O(n log n) O(log n log log n) [1]

O(n log2 n) O(log n) sketched in [14], see Appendix A

O(n log2+ϵ n) O(log n/ log log n) this work

O(n1+ϵ) O(1) [8]

with the anchor it corresponds to. Now, observe that a substring S[i . . j] that crosses an
anchor k, i.e., i < k ≤ j, corresponds to an induced pair of nodes in the tries. Indeed, there
is a path representing S[i . . k − 1]R in the first trie and a path representing S[k . . j] in the
second trie. An illustration of this idea is provided in Figure 1. The set of anchors and the
HIA queries performed in an application of this technique depends on the specific problem it
is used for. For some of the usages, one may consider using a compressed form of tries [18].

As a first application, consider the maintenance of an LCS of a static string T and a
dynamic string S. By plugging our HIA data structure into the approach of [8], we obtain
the following result, improving the state-of-the-art by polyloglog n factors, and matching the
lower bound for the update-time when nearly-linear space is available [8, Theorem 1].

▶ Corollary 3. We can maintain an LCS of a dynamic string S and a static string T , each
of length at most n, in O(log n/ log log n) time per substitution operation using Õ(n) space,
after an Õ(n)-time preprocessing.

Further, the authors of [14] (implicitly) reduced to the HIA problem, the problem of
preprocessing a text given in LZ77 compressed form so that one can compute its LCS with
uncompressed patterns given online. Our HIA data structure yields the following result.

▶ Corollary 4. Let S be a string of length N whose LZ77 parse consists of n phrases. We can
store S in O(n log N + n polylog n) space such that, given a pattern P of length m, we can
compute the LCS of S and P in O(m log n/ log log n) time. For each pattern P , the returned
result may be (consistently) incorrect with probability inverse polynomial in n.2

2 Randomization is only used in the construction; all queries for the same pattern give identical results.

T ← T →

u

v

k

k

Figure 1 An illustration of the anchoring technique for LCS computation, with the constructed
tries T ← and T → drawn so that their roots are attached (in the middle). Any substring anchored
at k, can be obtained by reading in a left-to-right manner the edge-labels from some node u ∈ T ←
to some node v ∈ T →, that both have a leaf-descendant labelled with k.
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Other applications of the HIA problem in string algorithms can be found in [1].

Tree Decompositions. One of the obvious divide-and-conquer techniques for efficiently
solving algorithmic problems on trees is that of decomposing the tree(s) into smaller pieces
and treating each of them separately. The most important attributes of a tree decomposition
are usually its depth, i.e., the maximum number of pieces that one path can intersect, and
the structure of each individual piece (e.g., pieces being paths may offer an advantage). We
next describe some tree decompositions for a tree T with n nodes. For a node v, denote by
s(v) the number of nodes in v’s subtree.

Arguably, the most well-known tree decomposition is the heavy-path decomposition [17].
Abstractly, this decomposition is a partition of the edges into light and heavy, such that:

all connected components after deleting the light edges are paths, called heavy paths;
each root-to-leaf path consists of O(log n) prefixes of heavy paths and O(log n) light
edges, i.e., the depth of the decomposition is O(log n).

A heavy-path decomposition can be realized in several ways; two of which are as follows:
HP1: Each non-leaf node u of the tree chooses a child v with maximum s(v) and the
edge from u to v is designated as heavy. The remaining edges outgoing from u are light.
HP2: An edge (u, v) is designated as heavy if and only if ⌊log s(u)⌋ = ⌊log s(v)⌋.3

Intuitively, using a heavy-path decomposition, one may often lift an algorithm that only works
for paths and/or balanced trees to work for arbitrary trees – usually with some overhead.

All previous works on the HIA problem used heavy-path decompositions, which, as
discussed, are of depth Ω(log n). This adversely affects their query times as one may have
to traverse the decomposition along a root-to-leaf path at query time. Thus, in order to
achieve sublogarithmic query time, we considered tree decompositions of smaller depths.
There are a couple of generalizations of heavy-path decompositions that have the sought
depth, i.e., O(log n/ log log n). We next discuss two such decompositions that are also based
on partitioning the edges into light and heavy. The caveat is that, for each of them, the
connected components after the removal of the light edges are trees, which we call heavy
trees, instead of paths and hence some extra work is required.4

The heavy α-tree decomposition, introduced by Bille et al. [6], is of depth O(logα n) and
is defined analogously to HP1: each non-leaf node u chooses its (at most) α heaviest (with
respect to subtree-sizes) children; the edge from u to each of these children is designated
as heavy, while all remaining edges outgoing from u are designated as light. By setting
α = ⌊log n⌋ one gets the sought depth.

An alternative is the so-called ART decomposition due to Alstrup et al. [2], which, for an
input integer parameter b, has depth O(logb n). For ease of presentation, we consider b to be
equal to ⌊log n⌋ so that the depth of the decomposition is O(log n/ log log n). A partition of
the edges yields such an ART decomposition if and only if each heavy tree contains O(log n)
nodes that have more than one child (in the heavy tree). Alstrup et al. [2] showed how to
compute an ART decomposition by computing a set of leafmost light edges (in the spirit of

3 In some works this has been called a centroid decomposition [10]. It should not be confused with the
hierarchical decomposition of the tree obtained by recursively deleting a centroid node, that is, a node
whose removal splits the tree into three roughly equal components [7, 15].

4 Heavy trees are sometimes called micro trees, while the tree obtained from T by contracting each micro
tree is called a macro tree. We avoid this notation to not confuse with the so-called micro-macro
decomposition [3], which, for a positive integer k ≤ n, is a partition of the vertices of T into O(n/k)
sets, such that each set S is of size O(k) it induces a subtree of T and has at most two vertices that
have neighbours that are not in S.
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HP2 with the base of the logarithm changed from 2 to ⌊log n⌋), removing them along with
their descendants from the tree, and recursing. Here, for convenience, we compute an ART
decomposition similar to the HP2-realization of a heavy-path decomposition: an edge (u, v)
is heavy if and only if both s(u) and s(v) are in (n/⌊log n⌋k+1

, n/⌊log n⌋k]. For each heavy
tree, we call branches its maximal down-the-tree paths in which all nodes except the deepest
one have exactly one child (in the heavy tree); each heavy tree has O(log n) branches.

Our techniques. In order to answer an HIA query for nodes u and v, we consider
O(log n/ log log n) pairs of heavy trees that consist of a heavy tree in the root-to-u path and
a heavy tree in the root-to-v path. For each such pair, we compute an induced pair (x, y) of
nodes in these heavy trees that are ancestors of u and v, respectively, and have maximum
total weight. Similarly to previous work, we observe that not every pair of heavy trees needs
to be considered. Instead, it suffices to consider a number of pairs of heavy trees linear to
the depth of the tree decompositions by a procedure analogous to the natural algorithm for
checking whether there are two elements of a sorted list that sum to a target t: start with
two pointers, one at the beginning of the list and one at the end and move each of them in
only one direction (either to the right or left). For each pair of heavy trees, we construct
data structures that can efficiently handle each of the cases of how the locations of the lowest
ancestors of u and v in the heavy trees relate to the locations of the lowest ancestors (in the
heavy trees) of same-label leaves. Each data structure considers similar cases as previous
work, however now we are working with two trees instead of two paths, and hence need
to be more careful. This way, we reduce an HIA query to O(log n/ log log n) predecessor
queries. By answering each of these predecessor queries independently, we obtain a data
structure that answers HIA queries in O(log n) time. Indeed, in our case, each predecessor
query requires Ω(log log n) time to be answered independently.

However, crucially, we show how to design the data structures so that all predecessor
queries need only two values: the preorder number of u or the preorder number of v. This
is achieved by reordering the trees so that heavy edges come last. Then, larger preorder
numbers correspond to a larger depth of the lowest ancestor on a branch. This means that
the combination of our techniques with fractional cascading would yield a faster algorithm
for answering all the predecessor queries; the first one for each queried value would take
O(log log n) time, while all subsequent ones would take O(1) time each. The final technical
hurdle is that fractional cascading requires the so-called underlying catalog graph to have
polylogarithmic degree [21]. The construction of such a graph is straightforward if T1 and T2
are of polylogarithmic degree: roughly speaking, it suffices to consider the Cartesian product
of two trees whose nodes represent branches and heavy trees of each of T1 and T2. We
overcome this difficulty in the general case by reducing the maximum degree of these trees
prior to taking their Cartesian product while maintaining all of their desirable properties.

2 Preliminaries

We use [n] to denote the set {1, 2, . . . , n}. Throughout the paper, we perform the same
operations on T1 and T2 and define objects in these trees, so we are going to use T⋆ to denote
any of the trees. Similarly, we are going to use v⋆ to denote a node v1 ∈ T1 or a node v2
in T2 etc. as an abbreviation of writing that some property holds for vi for both i ∈ {1, 2}.

Lowest Common Ancestor. LCA queries can be answered in constant time after an
O(n)-time preprocessing [17].
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LowestCommonAncestor (LCA)
Input: A rooted tree T .
Query: What is the node of largest depth that is an ancestor of both u and v?

Predecessor query. For a static set S, a combination of x-fast tries [23] and deterministic
dictionaries [20] yields an O(n)-size data structure that can be built in O(n) time and answers
predecessor queries in O(log log U) time deterministically (cf., [12, Proposition 2]); this is
optimal [19].

PredecessorQuery
Input: A set S of n integers from [U ].
Query: For a given integer y, what is the largest x ∈ S such that x ≤ y?

Range Minimum Query. RMQs can be answered in constant time after an O(n)-time
preprocessing [11, 13]. By setting, for each i, S[i] := |U | − S[i], we get a structure for the
symmetric RangeMaximumQuery problem.

RangeMinimumQuery (RMQ)
Input: A sequence S of n integers from [U ].
Query: For given positions i and j, with 1 ≤ i ≤ j ≤ n, what is (the position of) the
minimum among S[i], S[i + 1], . . . , S[j]?

Deterministic Static Dictionary. A dictionary is a structure that stores a set of keys (often
with associated values) and allows answering membership queries (or getting the value of
a given key). There are multiple randomized solutions, but there is even a deterministic
solution with O(n) space, Õ(n)-time preprocessing, and constant-time queries [20].

Fractional cascading. Consider a directed graph C, called the catalog graph, which has a
sorted list (also called a catalog) in each of its nodes. Let the total size of the lists be n.
Now, suppose that we want to answer queries of the following type: for a connected subgraph
G of C and a query value v, find the predecessor of v in each of the lists stored in the nodes
of G.

A naive way of solving this problem would be to ignore any preprocessing and run a
separate binary search in the sorted list of each of the nodes of G, for a total of O(|G| log n)
time. Fractional cascading is a general optimization technique that allows the speed-up of
multiple binary searches for the same value over multiple related sorted sequences of objects.

If the degree of each node of the catalog graph is bounded by a constant, the original
solution of Chazelle and Guibas [9] answers a query in O(log n + |G|) time after a linear-time
preprocessing in the comparison model. To be precise, it is sufficient for the catalog graph
to have locally bounded degree (as per Definition 1 of [9]). Unfortunately, in our case, this
is not useful. A subsequent work of Shi and JáJá [21] achieved the same complexities for
graphs of polylogarithmic maximum degree in the word RAM model of computation (in the
original description, the graph is a tree, however, there is no difficulty in extending this to
the general setting considered by Chazelle and Guibas [9]). Crucially, these data structures
can also handle the case where the nodes of G are given one by one in an online manner;
the only requirement is that each node (other than the first) must be a neighbour of some
previous one. Note that the O(log n) term in the complexities comes from performing a
binary search in the first of the considered lists. Then, the predecessor of the query value v

in each of the subsequently considered lists is obtained by following a constant number of
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pointers, which can be retrieved in O(1) time. (During the preprocessing phase, the catalogs
are augmented in an appropriate manner and said pointers are constructed.) In the word
RAM model of computation, the first query can be solved faster using other data structures,
e.g., in O(log log U) time with the structure discussed above for the PredecessorQuery
problem.

3 An Õ(n)-size Data Structure with Optimal Query Time

Let b > 1 be a parameter to be chosen later. Consider a rooted, weighted, and labelled
tree T . The weight of a node u is denoted by weight(u). For a node v, we denote by s(v)
the number of nodes in v’s subtree, including v. For an integer k, a node v is on layer k if
and only if n/bk+1 < s(v) ≤ n/bk. An edge that connects nodes of the same layer is called
heavy and the other edges are light. Each maximal subtree that does not contain any light
edges is called a heavy tree. We stress that a heavy tree might be a singleton.

We decompose each heavy tree into branches, that is, maximal down-the-tree paths of
nodes, where every node apart from the deepest one has one child (in the heavy tree). The
last node is either a leaf of the heavy tree or has at least two children. Note that there can
be branches consisting of a single node. We call a node implicit if it is an internal (non-leaf)
node of the heavy tree with one child; otherwise, we call it explicit. For a heavy tree, we
obtain a compacted version of it, called compacted heavy tree, by eliminating all the implicit
nodes through the contraction of either of their incident edges. See an example in Figure 2.
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Figure 2 An example tree with n = 26 is shown. Each node is labelled with its subtree size,
while b = 3. On the left, the heavy edges are thick, while the light edges are thin. On the right,
the tree is decomposed into heavy trees (marked with ellipses). The compaction of heavy trees is
illustrated as follows: empty circles denote implicit nodes, while full circles denote explicit nodes.

Observe that in a compacted tree, every non-leaf node has at least two children. Hence,
there are fewer internal nodes than there are leaves of the tree. As every leaf in a heavy tree
has a sufficiently big subtree underneath it, we obtain a bound on the total number of nodes
inside a single compacted heavy tree; this shows that we obtain an ART decomposition [2].

▶ Lemma 5. There are at most O(log n/ log b) layers in a tree T on n leaves and each heavy
tree has O(b) branches.

Proof. Consider a heavy tree H of T and its compacted form HC . Let r be the root of H.
For every leaf ℓ of H , we have that s(ℓ) > s(r)/b as ℓ and r are nodes of the same heavy tree,
and hence they are in the same layer of T . As the subtrees of T rooted at the leaves of H are
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disjoint and their total size is at most s(r), H contains at most b leaves. Further, as there
are no internal nodes with one child in HC , there are at most b− 1 non-leaf nodes in HC ,
and hence HC has O(b) nodes. All branches in H are disjoint, so there are O(b) of them.

Consider the k-th layer of the tree T and a node u in this layer. As the subtree of u has
at least one node, we have 1 ≤ s(u) ≤ n/bk, so k ≤ logb n = log n/ log b. ◀

For an HIA query (v1, v2), the paths from v1 and v2 to the roots of their respective trees
are called query paths. The result of an HIA query is a pair of nodes (u1, u2), that are on
the query paths from v1 and v2, respectively. To answer a query (v1, v2), we identify the
sequences of heavy trees B1 and B2 that contain nodes on the query paths from v1 and v2,
respectively, and perform restricted HIA queries for some pairs of those heavy trees. More
precisely, in each step of the algorithm, having chosen two heavy trees B1[i] and B2[j], we try
to find the pair of induced ancestors (u1, u2) ∈ B1[i]×B2[j] of (v1, v2) with the maximum
combined weight or determine that there is no such pair. A pseudocode for this procedure is
given as Algorithm 1.

Algorithm 1 Algorithm for answering HIA queries.

1 function hia(T1, T2, v1, v2)
2 (r1, r2)← null
3 (B1, B2)← sequences of heavy trees on paths from v1 and v2 down-the-tree
4 i← 0
5 j ← |B2| − 1
6 repeat
7 x1 ← lowest ancestor of v1 in B1[i]
8 x2 ← lowest ancestor of v2 in B2[j]
9 (u1, u2)← restricted-hia(v1, v2, B1[i], B2[j], x1, x2)

10 if (r1, r2) = null or weight(u1) + weight(u2) > weight(r1) + weight(r2)
then

11 (r1, r2)← (u1, u2)
12 if (i = |B1| − 1) and (j = 0) then
13 return (r1, r2)
14

15 if i + 1 < |B1| and roots of B1[i + 1] and B2[j] are induced then
16 i← i + 1
17 else
18 j ← j − 1
19 until false

To make the description more modular, we provide x1 and x2 to the restricted HIA query,
where x⋆ is the lowest ancestor of v⋆ in the considered heavy tree. Note that x1 is either
the parent of the root of B1[i + 1] if i + 1 < |B1| or x1 equals to v1 otherwise, and similarly
for x2. We note that in Algorithm 1, we ask restricted HIA queries about the same pair
(v1, v2) for various pairs (B1[i], B2[j]) of heavy trees and it may be that v1 ̸∈ B1[i] and/or
v2 ̸∈ B2[j], whereas we also provide nodes x⋆, in which v⋆ connects to the respective heavy
subtree in B⋆

▶ Lemma 6. Algorithm 1 performs O(log n/ log b) restricted HIA queries to find the heaviest
induced ancestors of nodes u and v.
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Proof. The paths from v⋆ to the roots pass heavy trees with monotonically decreasing indices
of layers, so the sequences B1 and B2 contain at most O(log n/ log b) elements. After every
restricted HIA query, we either increase i or decrease j by 1, so the total number of restricted
HIA queries that we perform is at most |B1|+ |B2| = O(log n/ log b).

The correctness follows from the monotonicity of being induced. For an induced pair of
nodes, any pair of their (weak) ancestors is also induced. Conversely, if a pair is not induced,
any pair of their (weak) descendants is also not induced.

This implies that if the roots of B1[i] and B2[j] are induced then there is no need to
query for any pair (B1[i′], B2[j′]) with (i′ < i)∧ (j′ < j), as such a query would return a pair
of (strict) ancestors of the pair returned by the restricted HIA query for (B1[i], B2[j]). We
call a pair of trees (B1[i′], B2[j′]) dominated, if there exist i > i′ and j > j′ such that the
roots of B1[i] and B2[j] are induced. We show that the algorithm performs restricted HIA
queries at Line 9 exactly for those pairs of heavy trees that (i) are not dominated and (ii) for
which the result of the restricted HIA query is not null.

The algorithm maintains the invariant that each of the restricted HIA queries is called
for the pairs of trees for which their roots are induced and that the pair (B1[i], B2[j]) is
not dominated. This is true for the first iteration, where the pair (B1[0], B2[|B2| − 1]) is
considered, because B2[|B2| − 1] has a leaf and the root of B1[0] is the root of T1. Now we
show that the invariant is maintained later. We start with the assumption that the result of
restricted-hia(v1, v2, B1[i], B2[j], x1, x2) is not null and this pair is non-dominated. Now,
we have to distinguish between two cases.
Case 1: We next consider pair (B1[i + 1], B2[j]). It means that the check in Line 15

confirmed that the roots of the the trees are induced, so the the result of calling
restricted-hia(v1, v2, B1[i + 1], B2[j], x1, x2) is not null. Further, this pair of heavy
paths is not dominated since (B1[i], B2[j]) is not dominated.

Case 2: We next consider pair (B1[i], B2[j − 1]). This can only happen if i = |B1| − 1 or the
roots of B1[i + 1] and B2[j] are not induced; in either of these cases, (B1[i], B2[j − 1]) is
not dominated. Further, as the answer to the HIA query for pair (B1[i], B2[j]) is not null,
the answer for (B1[i], B2[j − 1]) cannot be null either.

Thus, the invariant is maintained in both cases.
Clearly, the heaviest induced pair of ancestors of v1, v2 belongs to a pair of heavy trees

that satisfy conditions (i) and (ii). We claim that we process all such pairs. Observe that
for a fixed j there are two indices 0 ≤ i1 < i2 ≤ |B1| such that the pair B1[i], B2[j] is
dominated for 0 ≤ i < i1, non-dominated for i1 ≤ i < i2, and corresponds to a null answer for
i2 ≤ i < |B1|. By the invariant, just after any decrease of j in Line 18 it holds that i ≥ i1, as
B1[i], B2[j] is non-dominated. Actually i = i1, because the pair B1[i− 1], B2[j] is dominated
as in the previous step we considered the pair B1[i], B2[j + 1] for which the answer was not
null. As in the next steps we process all i up to (but excluding) i2, the claim follows. ◀

3.1 Restricted HIA Queries
In this subsection, we present a data structure that efficiently answers restricted HIA queries.

▶ Theorem 7. For every two trees T1, T2 on n leaves and an integer parameter b ∈ [n],
there exists an O(nb2 log2 n/ log2 b)-size data structure that can be computed in Õ(nb2/ log2 b)
time and answers (i) queries about whether the roots of two given heavy trees are induced
in constant time, (ii) any restricted HIA query restricted-hia(v1, v2, H1, H2, x1, x2) in
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constant time plus the time required to answer a predecessor query about pre(v1) and one
about pre(v2); these predecessor queries are performed on two out of O(b2) (preprocessed)
lists stored for the pair of heavy trees (H1, H2).

We divide the proof into three parts: we first describe the preprocessing phase, then
discuss the properties of the created data structure, and, finally, present the query procedure.

Preprocessing. First, we compute the partition of the edges of each of T1, T2 into heavy
and light, and the implied heavy trees. For each node, we store its assignment to the heavy
tree and to the branch to which it belongs. Further, for each T⋆, we build a linear-size data
structure for answering LCA queries in O(1) time [17]. For each node in T⋆, we fix the order
of its children such that the children that are in the same heavy tree are last. (The order
of children that are connected to the parent with the same type of edge, heavy or light, is
arbitrary.) Next, we compute preorder traversals of T⋆, for each node u, we denote by pre(u)
the preorder number of u and by T⋆[p] the node of T⋆ whose preorder number is p; we have
T⋆[pre(u)] = u. Additionally, for each label, we identify the leaves of T1 and T2 with that
label (recall the labels in a single tree are pairwise distinct).

Next, for each pair (ℓ1, ℓ2) of leaves with the same label, we iterate over all pairs
(Bℓ1

1 [i1], Bℓ2
2 [i2]) of heavy trees on their query paths and insert a point to the data structure

for each pair of branches in Bℓ1
1 [i1]×Bℓ2

2 [i2]. This procedure is formalized as Algorithm 2.

Algorithm 2 Preprocessing for a pair of leaves (ℓ1, ℓ2) with the same label.

1 procedure add label(T1, T2, ℓ1, ℓ2)
2 (Bℓ1

1 , Bℓ2
2 )← sequence of heavy trees on query paths from ℓ1 and ℓ2

3 for i1 ← 0, 1, . . . , |Bℓ1
1 | − 1 do

4 for i2 ← 0, 1, . . . , |Bℓ2
2 | − 1 do

5 for e1 ← branch of Bℓ1
1 [i1] do

6 for e2 ← branch of Bℓ2
2 [i2] do

7 w1 ← LCA(ℓ1, lowest node on e1)
8 w2 ← LCA(ℓ2, lowest node on e2)
9 insert point (pre(w1), pre(w2)) to DB

ℓ1
1 [i1],Bℓ2

2 [i2][e1, e2]

We call pairs (B1, B2) of heavy trees that are processed by Algorithm 2 relevant. We first
run this algorithm once just to record all relevant pairs of heavy trees, without inserting any
points to any structures. We then sort the relevant pairs, remove duplicates, and construct
a deterministic dictionary over them [20]. This allows us to check in constant time if the
roots of two trees are induced because this is equivalent to checking if the pair of trees is
relevant. For each relevant pair of heavy trees, we initialize an array DB1,B2 indexed by pairs
of branches (e1, e2), where e1 is a branch in B1 and e2 is a branch in B2. In each entry of the
array, we create (store a pointer to) a data structure for the corresponding pair of branches.
We then re-run Algorithm 2, inserting the points to the structures as needed, with the help
of the deterministic dictionary built for relevant pairs of heavy trees. As each branch e⋆

belongs to a unique heavy tree, we often drop the superscript and write D[e1, e2] instead of
DB1,B2 [e1, e2]. We call a pair (e1, e2) of branches relevant if and only if pair of their assigned
heavy trees is relevant. By Lemma 5, every query path is decomposed into O(log n/ log b)
parts on different layers and each heavy tree has O(b) branches. Hence, for every pair (ℓ1, ℓ2)
of leaves with the same label, we insert a point to O(b2 log2 n/ log2 b) structures.
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Finally, for each relevant pair of branches (e1, e2), we perform the following postprocessing
of structure D[e1, e2]:

Remove all points (x, y) for which there exists another point (x′, y′) such that x ≤ x′, y ≤ y′

and (x, y) ̸= (x′, y′). This can be done in Õ(|D[e1, e2]|) time by sorting the points and
processing them in the left-to-right order.
Let Dx[e1, e2] and Dy[e1, e2] be the sets of x- and y-coordinates of the remaining points,
respectively. We build a data structure for the PredecessorQuery problem for each of
Dx[e1, e2] and Dy[e1, e2] separately.
We build a data structure for the RangeMaximumQuery problem for the points
remaining in D[e1, e2] sorted by x-coordinate, where the weight of a point (x, y) is
weight(T1[x]) + weight(T2[y]).

We call the above stage the postprocessing of D[e1, e2].
To summarize the whole preprocessing stage for trees T⋆, for each of the n labels we

add O(b2 log2 n/ log2 b) points to structures D[·, ·], for a total number of O(nb2 log2 n/ log2 b)
points. The postprocessing of all the structures D[·, ·] takes nearly linear time in their size and
hence the total running time is Õ(nb2/ log2 b). The structures for the PredecessorQuery
and RangeMaximumQuery problems have size linear in the number of elements they are
built over and hence the total space is O(nb2 log2 n/ log2 b).

Properties of structures D[e1, e2]. In this paragraph, we show some properties of the
structures D[e1, e2] that are useful for answering restricted HIA queries efficiently.

▶ Property 8. For every pair (w1, w2) added to DB
ℓ1
1 [i1],Bℓ2

2 [i2][e1, e2], w⋆ is either on e⋆ or
on the path from the highest node of e⋆ to the root of Bℓ⋆

⋆ [i⋆].

Proof. Recall that w⋆ is the lowest common ancestor of ℓ⋆ and the lowest node q on e⋆.
Observe that as Bℓ⋆

⋆ [i⋆] is on the query path from ℓ⋆, the root r of Bℓ⋆
⋆ [i⋆] is an ancestor of

both ℓ⋆ and q. Hence, w⋆ lies on the r-to-q path, which directly yields the statement. ◀

Note that after the first step of postprocessing, D[e1, e2] satisfies the following property:

▶ Property 9. After the postprocessing, for every pair (e1, e2) of branches, after sorting
the points of D[e1, e2] increasingly by x-coordinate, the sequence of points is also sorted
decreasingly by y-coordinate.

Informally, we can now consider a one-dimensional problem, with points forming a sequence
that can be efficiently navigated both in x- and y-coordinates via predecessor queries.

We next show how the computed data structures D[e1, e2] enable us to answer restricted
HIA queries efficiently.

Answering a restricted HIA query. We are now ready to present how to answer a restricted
HIA query for a pair (v1, v2) of nodes and heavy trees B1 and B2 on the query paths from v1
and v2. Let (r1, r2) = restricted-hia(v1, v2, B1, B2, x1, x2) be a pair of ancestors of v1 and
v2 within the trees B1 and B2 that are induced and have the maximum total weight. Recall
that x⋆ is the lowest weak ancestor of v⋆ that is in B⋆ and let e⋆ be the branch containing x⋆.
Further, let ℓ be the label inducing (r1, r2) and let leaves ℓ⋆ share this label.

First, we show that we can find an induced pair of ancestors of v1 and v2 with the
maximum combined weight using the structure D[e1, e2] before postprocessing. Then, we
show that after the postprocessing stage, we can still retrieve the correct answer but more
efficiently, by performing predecessor queries for pre(x1) and pre(x2). Finally, we show that
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we can call predecessor queries for pre(v1) and pre(v2) instead of pre(x1) and pre(x2). The
last step is not important for the correctness or efficiency of a single restricted HIA query
but improves the complexity of Algorithm 1. Indeed, as all predecessor queries are for one
of pre(v1) or pre(v2), we can use fractional cascading. We explain this final component in
detail in Section 3.2.

Recall that in Algorithm 2, we insert point (pre(w1), pre(w2)) to D[e1, e2], where w⋆ =
LCA(ℓ⋆, lowest node on e⋆). In the proof of Property 8, we mention that w⋆ always belongs
to B⋆ as the root of B⋆ is an ancestor of both ℓ⋆ and the lowest node on e⋆. There are two
possible relative locations of w⋆ and x⋆ within a heavy tree:

ℓ is below x⋆ when w⋆ is a (not necessarily proper) descendant of x⋆;
ℓ is attached above x⋆ when w⋆ is a proper ancestor of x⋆.

There are four cases for the relative locations of ℓ with respect to x1 and x2:
Case 1: ℓ is attached above x1 and x2,
Case 2: ℓ is attached above x1 and ℓ is below x2,
Case 3: ℓ is attached above x2 and ℓ is below x1,
Case 4: ℓ is below x1 and x2.

We next treat each of these cases. For each of them, we retrieve the pair of induced
ancestors of x1 and x2 with the largest total weight among all pairs of ancestors induced by
a label ℓ appropriately located with respect to x1 and x2. Each of these variants gives us
a candidate pair for the restricted heaviest induced ancestors of x1 and x2. In the end, we
return the candidate with the largest total weight. Similar case analysis was performed in
previous solutions for the HIA problem, e.g., in [14].

▶ Lemma 10. The answer to restricted-hia (v1, v2, B1, B2, x1, x2) can be retrieved from
the information stored in D[e1, e2] before the postprocessing.

Proof. By Property 8, for every two points (pre(w1), pre(w2)) and (pre(w′1), pre(w′2)) added
to D[e1, e2], we have that w1 is either a weak ancestor or a descendant of w′1, and similarly
for w2 and w′2. Hence, the preorder numbers of the nodes correspond to their depths and we
can check the ancestry relation by comparing them: for nodes u, u′ on a path, u is a weak
ancestor of u′ if and only if pre(u) ≤ pre(u′).

Using this property, we show how to reduce each of the four cases listed above to finding a
specific point in a particular rectangular subset of points. For now, we ignore the efficiency of
the queries (a trivial implementation takes linear time) and focus on showing that the correct
answer to the restricted HIA query can be retrieved from D[e1, e2] before the postprocessing.
Case 1: Every leaf ℓ that is attached above x1 and x2 in nodes w1 and w2 makes the pair

(w1, w2) a candidate result of the restricted HIA query. Hence we need to find a point
(x, y) in D[e1, e2] such that x < pre(x1), y < pre(x2), and weight(T1[x]) + weight(T2[y])
is maximum. Then, (T1[x], T2[y]) is a restricted HIA candidate pair for (v1, v2).

Case 2: We need to find a point (x, y) ∈ D[e1, e2] such that x < pre(x1), y ≥ pre(x2) and
weight(T1[x]) is maximized. Then, (T1[x], x2) is a restricted HIA candidate pair for
(v1, v2).

Case 3: This case is symmetric to Case 2. We need to find a point (x, y) ∈ D[e1, e2] such
that x ≥ pre(x1), y < pre(x2) and weight(T2[y]) is maximized. Then, (x1, T2[y]) is a
restricted HIA candidate pair for (v1, v2).

Case 4: We need to check if there exists a point (x, y) such that x ≥ pre(x1) and y ≥ pre(x2).
If so, the pair (x1, x2) is a restricted HIA candidate pair for (v1, v2).
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In each of the cases, we return a pair, if one exists, of induced ancestors of (x1, x2) and
hence also of (v1, v2). The label ℓ of leaves ℓ1 and ℓ2 that induces the pair (r1, r2) of heaviest
induced ancestors of (v1, v2) in B1 × B2 inserted the point to D[e1, e2], since B1 and B2
are on the query paths from ℓ1 and ℓ2, respectively. Hence, the pair (r1, r2) is found while
considering one of the four cases. ◀

Now, we show that it suffices to run the above algorithm only for the points in D[e1, e2] after
the postprocessing stage.

▶ Lemma 11. The answer to restricted-hia (v1, v2, B1, B2, x1, x2) can be retrieved from
the information stored in D[e1, e2] after the postprocessing.

Proof. As discussed in the proof of Lemma 10, for any two points (pre(w1), pre(w2)) and
(pre(w′1), pre(w′2)) added to D[e1, e2], wi and w′i lie on a single root-to-leaf path, so their
preorder numbers are in the same order as their depths in the tree. Recall that the trees are
monotonically weighted, that is, the weights along each root-to-leaf path are increasing, so
we have that pre(wi) ≤ pre(w′i) implies weight(wi) ≤ weight(w′i).

Let w = (pre(w1), pre(w2)) be the point corresponding to the answer found by the
algorithm presented in Lemma 10. Note that the returned induced pair of ancestors is
not necessarily (w1, w2), e.g., it can be (w1, x2). Suppose that w was removed during the
postprocessing phase. If so, it happened because there exists a point w′ = (pre(w′1), pre(w′2))
where pre(w⋆) ≤ pre(w′⋆) and w ̸= w′. If w′ is processed in a different case than w, then
the pair of ancestors corresponding to w′ has a larger total weight than the one returned,
yielding a contradiction. If w′ is processed in the same case as w, then the pair of ancestors
corresponding to w′ gives a pair of ancestors whose total weight is not smaller than that of
the returned pair. Hence, the reduction presented in the proof of Lemma 10 still holds for
the set D[e1, e2] after the postprocessing. ◀

Next, we present how to implement each of the four cases in Lemma 10 efficiently using the
fact that the points in D[e1, e2] have been postprocessed.

▶ Lemma 12. The answer to restricted-hia (v1, v2, B1, B2, x1, x2) can be retrieved from
the information stored in D[e1, e2] after the postprocessing, with two predecessor queries: one
for pre(x1) and one for pre(x2).

Proof. By computing the predecessor of pre(x1) in Dx[e1, e2], we obtain intervals Ix<pre(x1)
x

and Ix≥pre(x1)
x of Dx[e1, e2]. Similarly, intervals Iy<pre(x2)

y and Iy≥pre(x2)
y of Dy[e1, e2] are

obtained by computing the predecessor of pre(x2) in Dy[e1, e2]. Note that by Property 9,
points from Iy≥pre(x2)

y (resp. Iy<pre(x2)
y ) of Dy[e1, e2] correspond to points from the interval

of Dx[e1, e2] that we denote Iy≥pre(x2)
x (Iy<pre(x2)

x ). Hence, we can translate each of the
conditions on points in the cases of Lemma 10 to an intersection ICase i

x of two intervals on
Dx[e1, e2]. This reduces each of the four cases to:
Case 1: Find the point with maximum weight weight(T1[x]) + weight(T2[y]) in ICase 1

x

using an RMQ.
Case 2: By the monotonicity of weights with respect to x-coordinates, the point with

maximum weight weight(T1[x]) in ICase 2
x is the rightmost element of ICase 2

x .
Case 3: By the monotonicity of weights with respect to y-coordinates and Property 9, the

point with maximum weight weight(T2[y]) in ICase 3
x is the leftmost element of ICase 3

x .
Case 4: It suffices to check if ICase 4

x is non-empty. ◀
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▶ Lemma 13. The answer to restricted-hia (v1, v2, B1, B2, x1, x2) can be retrieved from
the information stored in D[e1, e2] after the postprocessing, with two predecessor queries: one
for pre(v1) and one for pre(v2).

Proof. Recall that in the approach presented in Lemma 12 we compute the predecessor of
pre(x1) in Dx[e1, e2] in order to divide Dx[e1, e2] into Ix<pre(x1)

x and Ix≥pre(x1)
x and that all

elements in Dx[e1, e2] are of the form pre(w1) for a node w1 on the path from the lowest
node on e1 to the root of B1.

We consider only v1 and x1 as the analysis for v2 and x2 is symmetric. We can focus on the
case where v1 ̸= x1, as the other case is immediate. We clearly have that pre(v1) ≥ pre(x1)
as v1 is a descendant of x1. Recall that in the preprocessing stage, we reordered children of
every node in such a way that children connected by a light edge are before those connected
by a heavy edge, so if there is a child x′1 of x1 on e1 we have pre(x1) ≤ pre(v1) < pre(x′1), as
v1 is a descendant of a light child of x1 (by the definition of x1). Hence, the predecessor of
pre(v1) is the same as the predecessor of pre(x1) in Dx[e1, e2]. ◀

This concludes the proof of Theorem 7.
Finally, by setting the value of b to ⌊logϵ n⌋ for any constant ϵ > 0, we obtain a data

structure using O(n log2+2ϵ n/(log logϵ n)2) = O(1/ϵ2 ·n log2+2ϵ n/(log log n)2) space capable
of answering restricted HIA queries in constant time plus the time required for answering two
predecessor queries: one for pre(v1) and one for pre(v2). Algorithm 1 performs O(log n/ log b)
restricted HIA queries in order to answer an HIA query, so the total time required is
O(1/ϵ · log n). However, as all the predecessor queries ask about one of two values in different
lists that are related to each other, we can make use of fractional cascading.

We omit the 1/ϵ factor in further sections and use the Oϵ(·) notation instead to indicate
a dependency on ϵ.

3.2 Fractional Cascading
For most of the cases described in the previous subsection, our structures are issuing
predecessor queries. This is the only reason why the time complexity of an HIA query with
our approach is not yet Oϵ(log n/ log log n). We will exploit the fact that all these queries
look for the same target value (pre(v1) for structures built for T1 and pre(v2) for structures
for T2) but for different pairs of branches, which enables us to use fractional cascading.

We can think of creating two catalog graphs from T1 × T2 with nodes representing pairs
(e1, e2) of branches, storing the contents of Dx[e1, e2] in one catalog graph and those of
Dy[e1, e2] in the other one. The execution of Algorithm 1 can be then seen as the traversal
of a path in such a graph where, for a pair (B1[i], B2[j]) of heavy trees for which a restricted
HIA query is performed by the algorithm, we query the catalogs of the nodes representing the
pair of branches (e1, e2) that contain the lowest weak ancestors of (v1, v2) that are in B1[i]
and B2[j], respectively. The problem with this direct approach is that it is not guaranteed
that the degree of all vertices in each catalog graph is polylogarithmic: we might need to
move from the node corresponding to two branches (e1, e2) to any node corresponding to
two branches (e′1, e′2), where the heavy tree containing e′1 is attached to e1, and there could
be even Ω(n) such branches e′1.

We need to create catalog graphs in which the length of the considered path for each HIA
query is Oϵ(log n/ log log n), while the degree of each node is O(polylog n) in order to be
able to apply the result of Shi and JáJá [21]. This would ensure that all predecessor queries
in Dx[·, ·] and Dy[·, ·] take constant time, apart from the first ones, which take O(log log n)
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time using an x-fast trie. We describe how to build the appropriate catalog graphs below. As
the shape of the graph for Dx[·, ·] and Dy[·, ·] is the same and only the contents of catalogs
differ, we will only describe how to build one of them.

We preprocess T1 and T2 separately, first to compute trees B(T⋆) and then to build catalog
graphs C(T⋆). From this, we build the catalog graph C that can be seen as a Cartesian
product of C(T1) and C(T2). More precisely, each node in C is a pair (v, w) for v ∈ C(T1)
and w ∈ C(T2). For an edge between nodes v1 and v2 in C(T1), in the final catalog graph,
we create edges between nodes (v1, w) and (v2, w) for each w ∈ C(T2). Analogically, for an
edge between nodes w1 and w2 in C(T2), in the final catalog graph we create edges between
nodes (v, w1) and (v, w2) for each v ∈ C(T1). This way, if the degrees of C(T1) and C(T2)
are polylogarithmic, so is the degree of C.

We now explain how to build tree B(T⋆) from T⋆. B(T⋆) contains nodes representing
heavy trees (called heavy tree nodes) and nodes representing branches (called branch nodes):

for each heavy tree H , we connect all branch nodes representing branches in H as children
of the heavy tree node representing H,
for each heavy tree H, except the tree containing the root of T⋆, we connect the heavy
tree node representing H as child of the branch node representing the branch containing
the parent of the root of H.

▶ Proposition 14. The depth of B(T⋆) is Oϵ(log n/ log log n) and each heavy tree node has
O(logϵ n) children.

Recall that every heavy tree has O(b) = O(logϵ n) branches, so every heavy tree node
has O(logϵ n) children. Any root-to-leaf path in B(T⋆) alternates between heavy tree nodes
and branch nodes. For any root-to-v path p in T⋆, there is a corresponding path p′ in B(T⋆)
that visits the heavy tree nodes that correspond to the heavy trees that intersect p and the
branch nodes for which Algorithm 1 (when called for a pair of nodes containing v) could call
predecessor queries for Dx[·, ·] and Dy[·, ·]. For any p, p′ is of length Oϵ(log n/ log log n) and
can be found in O(|p′|) time by following the path from the heavy tree containing v to the
root of B(T⋆).

We now describe how to create a catalog graph C(T⋆) from B(T⋆). The construction
is recursive and follows from the proof of Lemma 15 applied with d = Oϵ(log n/ log log n)
and b = ⌊logϵ n⌋. The idea is to replace the structure of children of branch nodes having
too many children with appropriate gadgets that roughly preserve the structure of the tree,
do not increase the depth of the tree asymptotically and reduce the degree of each node to
O(polylog n). Due to Proposition 14, we do not need to alter the structure of children for
heavy tree nodes.

▶ Lemma 15. For any depth-d tree B(T⋆) with O(n) nodes and parameter b, there is a tree
C(T⋆) satisfying all the following conditions:

C(T⋆) has O(n) nodes,
all nodes of C(T⋆) have degree O(b),
C(T⋆) has depth d +O(log n/ log b),
for each simple path p in B(T⋆), we can compute in O(|p′|) time a simple path p′ in
C(T⋆), such that p is a subsequence of p′ and |p′| ≤ d +O(log n/ log b).

Proof. Consider a (branch) node e of B(T⋆) whose children, read left-to-right, are heavy
tree nodes h1, h2, . . . , hk for k > b. We replace this subgraph that contains k + 1 nodes with
a gadget graph whose root is e and whose set of nodes is a superset of {e} ∪ {hi : i ∈ [k]}.
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For each node u, let s(u) be the number of nodes in the subtree of u in the considered
tree. Let s0 = 0 and, for i ≥ 1, let si be the prefix sum s(h1) + s(h2) + . . . + s(hi). If there
is an integer ℓ such that si−1 < ℓ · s(e)/b and si ≥ ℓ · s(e)/b, we mark hi. We call each set of
consecutive unmarked nodes an interval. As ℓ ≤ b, there are O(b) marked nodes and O(b)
intervals.

We create a gadget for e (and, recursively, for some other nodes created in the construction,
as described later) as follows:

We attach as a child of e every node that is either marked or is the only element of its
interval.
For each interval of more than one node, we create a new node ij , called an interval node,
attach it as a child of e, and attach all the nodes of the interval as children of ij .

We recursively apply the same construction for any of the newly created interval nodes
i1, i2, . . . , im whose degree is larger than b. See Figure 3 in Appendix B for an illustration.

From the construction, it follows that the degree of each node of C(T⋆) is O(b) and that
the size of C(T⋆) is O(n), as all new nodes are of out-degree at least 2.

Let u be a node in T⋆. We now show that the depth for a node eu ∈ C(T⋆) representing
a branch containing u is at most d + O(log n/ log b) by considering the edges above eu in
C(T⋆). The edges can be of two types:

Edges that are incident to at least one node that is not an interval node. By the depth of
B(T⋆), we have at most d such edges.
Edges between interval nodes. For each such edge (v, z), we have s(v) ≥ s(z) · b. Thus,
similarly to the proof of Lemma 5, there are O(log n/ log b) such edges on the path from
the root of C(T⋆) to eu.

This concludes the proof of the bound on the depth of C(T⋆).
Each simple path p in B(T⋆) naturally corresponds to a simple path p′ in C(T⋆). In

particular, for each edge (v, w) in B(T⋆), one can explicitly store a path C(T⋆) to which
(v, w) corresponds. The concatenation of all such paths for edges on p yields a simple path p′

in O(|p′|) time. As the depth of C(T⋆) is d +O(log n/ log b), the bound on |p′| follows. ◀

From C(T1) and C(T2) constructed as in Lemma 15, we create the catalog graph C as
described earlier. Only nodes that represent pairs of branches contain non-empty original
catalogs. After the original catalogs are filled, we run the preprocessing of fractional cascading
and appropriate augmented catalogs are created for all nodes in C as described in [9, 21].
The Oϵ(log n/ log log n) predecessor queries coming from restricted HIA queries performed in
Algorithm 1 are naturally reduced to a constant number of queries to the x-fast tries and the
traversal of a path of length Oϵ(log n/ log log n) in C. This takes Oϵ(log n/ log log n) time in
total and concludes the description of our data structure and the proof of Theorem 2.
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20 Milan Ružić. Constructing efficient dictionaries in close to sorting time. In Automata,
Languages and Programming, 35th International Colloquium, ICALP 2008, pages 84–95, 2008.
doi:10.1007/978-3-540-70575-8_8.
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A Description of the O(log n)-Query-Time Data Structure of [14]

As mentioned in the introduction, Gagie et al. [14] sketched an O(n log2 n)-size data structure
that answers HIA queries in O(log n) time, in the last paragraph of Subsection 2.1 of their
work. They construct a data structure for each pair of heavy trees of T1 and T2 and reduce an
HIA query for nodes u and v to a predecessor query in the data structure of each of O(log n)
pairs of heavy trees. The idea for improving the (fully-described) O(log n log log n)-time
procedure for answering queries with a more efficient one is similar to ours and involves
fractional cascading. They would need to build a catalog graph with nodes being pairs of
heavy paths, reduce its degree, and make sure that the predecessor queries have the same
target (by asking for the preorder numbers of u and v). This is similar to what we describe
in Section 3.2 for a different tree decomposition.

B Omitted Figure from Section 3.2
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. . .

h1
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Figure 3 On the left there is a branch e of T⋆, with outgoing edges to h1, h2, . . . , hk in B(T⋆).
On the right, there is a catalog graph gadget created for e, which is part of C(T⋆). Circles denote
interval nodes and rectangles heavy tree nodes. Some of the intervals are recursively replaced with
the gadget to decrease their degree. Heavy tree nodes have degree O(b). In C(T⋆), e’s parent is the
heavy tree to which it belongs, while the children of each hi are the branches in hi.
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1 Introduction

Exact string matching problem is to decide if a pattern string P appears as a substring
of a text string T . In the classical models of computation, this problem can be solved in
O(|P | + |T |) time [10]. Different quantum algorithms for this basic problem have been
developed [13,14,16], resulting into different solutions, the best of which finds a match in
O(
√
|T |(log2 |T |+ log |P |)) time [13] with high probability. These assume the pattern and

text are stored in quantum registers, requiring thus O(|P |+ |T |) qubits to function. Moreover,
these approaches may rely on applying a linear number of quantum gates in parallel on
different qubits. For example, Niroula and Nam [13] perform O(log(|T |)) rounds of parallel
swaps, executing O(|T |) swaps in parallel per round.
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9:2 From Bit-Parallelism to Quantum String Matching for Labelled Graphs

In the classical models of computation, an analogy for these assumptions is to assume
that the text has been preprocessed for subsequent queries. For example, one can build a
Burrows-Wheeler transform -based index structure for the text in time O(|T |) [4], assuming
T ∈ {1, 2, . . . , σ}∗, where σ ≤ |T |. Then, one can query the pattern from the index in
O(|P | log log σ) time [4, Theorem 6.2]. In this light, quantum models can offer only limited
benefit over the classical models for exact string matching.

Motivated by this difficulty in improving linear-time solvable problems using quantum
approaches, let us consider problems known to be solved in quadratic time. For example,
approximate string matching problem is such a problem: decide if a pattern string P is within
edit distance k from a substring of a text string T , where edit distance is the number of single
symbol insertions, deletions, and substitution needed to convert a string to another. This
problem can be solved using bit-parallelism in O(⌈|P |/w⌉|T |) time [11], under the Random
Access Memory (RAM) model with computer word size w. A reasonable assumption is that
w = Θ(log |T |), so that this model reflects the capacity of classical computers. Thus, when
|P | = |T | = n, this bit-parallel algorithm for approximate string matching takes time at least
Ω(n2−ϵ) for all ϵ > 0, as log n = o(nϵ) for all ϵ > 0. It is believed that this quadratic bound
cannot be significantly improved, as there is a matching conditional lower bound saying that
if approximate pattern matching could be solved in time O(n2−ϵ) with some ϵ > 0, then the
Orthogonal Vector Hypothesis (OVH) and thus the Strong Exponential Time Hypothesis
(SETH) would not hold [2]. As these hypotheses are about classical models of computation,
it is natural to ask if the quadratic barrier could be broken with quantum computation.

In this quest for breaking the quadratic barrier, we study another problem with a bit-
parallel solution and a conditional lower bound. Consider exact pattern matching on a
graph, that is, consider deciding if a pattern string P ∈ Σ∗ equals a labeled path in a graph
G = (V,E), where V is the set of nodes and E is the set of edges. Here we assume the nodes v
of the graph are labeled by ℓ(v) ∈ Σ and a path v1 → v2 → · · · vt, (vi, vi+1) ∈ E for 1 ≤ i < t,
spells string ℓ(v1)ℓ(v2) · · · ℓ(vt). There is an OVH lower bound conditionally refuting an
O(|P ||E|1−ϵ) or O(|P |1−ϵ|E|) time solution [7]. This conditional lower bound holds even if
graph G is a level DAG: for every two nodes u and v, holds the property that every path
from u to v has the same length. On DAGs, this string matching on labeled graphs (SMLG)
problem can be solved in O(⌈|P |/w⌉|E|) time [15] in the bit-parallel model, so the status
of this problem is identical to that of approximate pattern matching on strings. However,
the simplicity of the bit-parallel solution for SMLG on level DAGs enables a connection to
quantum computation. We consider a specific model of quantum computation, the Quantum
Random Access Memory (QRAM) model [8], in which we have access to “quantum arrays”,
and we assume that integer values like |P |, |V | or |E| fit into a (quantum) memory word.
Under this model, we turn the bit-parallel solution into a quantum algorithm that solves
SMLG on level DAGs with high probability in O(|E|

√
|P |) time, breaking through the

classical quadratic conditional lower bound.
Classical conditional lower bounds are not new to be broken by quantum computing. For

example, the quadratic Orthogonal Vectors problem itself can be solved in subquadratic
time (linear using QRAM) using quantum computing. This is not the only problem to have
a better-than-quadratic solution in the quantum realm [17]. Nevertheless, to the best of
our knowledge, we are the first to propose a subquadratic time algorithm for SMLG, even if
restricted to a specific class of graphs. Moreover, the translation of a bit-parallel strategy
to a quantum-parallel one is an original technique, and we are not aware of any other work
utilising it.
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An earlier work [6] provided a quantum algorithm solving SMLG in time O(
√
|V ||E||P |).

When the graph is non-sparse, that is |V | = O(
√
|E|), the time complexity becomes

O(|E| 34 |P |), which is an improvement over classical algorithms. We offer a different kind of
trade-off, limiting ourselves to a special class of graphs, but obtaining a better time complexity.
We also note that, even if no subquadratic classical algorithm exists for non-sparse graphs,
the existing classical reduction from OV [7] produces a sparse level DAG, for which our
quantum algorithm runs in subquadratic time.

As mentioned above, in some previous works [13,14,16](and references in [16]) algorithms
have been proposed to solve string matching in plain text in the QRAM model, under the
assumption that a large number of quantum gates, possibly linear, can be applied in parallel
when acting on different qubits. We find this assumption to be too restrictive, as even
the classical RAM model does not adopt it, since in such a model of computation many
operations would become trivial. Instead, our algorithm works without the need for such an
assumption.

The paper is structured as follows. We revisit exact pattern matching and derive a simple
quantum algorithm for it, in order to introduce the quantum machinery. Then we give a
brute-force quantum algorithm for SMLG, which we later improve on level DAGs. This
improvement is based on extending the Shift-And algorithm [3], whose quantum version we
extend for level DAGs.

In what follows, we assume the reader is familiar with the basic notions in quantum
computing as covered in textbooks [12].

2 Preliminaries

An alphabet Σ is a set of characters. Throughout the paper we assume Σ is ordered, i.e., for
each a, b ∈ Σ we can decide if a < b. A sequence P ∈ Σn is called a string and its length is
denoted n = |P |. We denote integers i, i+ 1, . . . , j as interval [i..j] and represent a string P
as an array P [0..n− 1], where P [i] ∈ Σ for 0 ≤ i ≤ n− 1, as in this work all indexes start
from 0. String P [i..j] is called a substring and string P [0..i] a prefix of P . With bit-vectors
discussed next, we use 0-based indexing.

Let B be a w-bit integer interpreted as string B[0..w − 1] from alphabet {0, 1} such that
B =

∑w−1
i=0 B[i] · 2i. We call B a bit-vector. Given two bit-vectors B and C, we define the

following Boolean operations A = B ∧ C, O = B ∨ C, and N = ¬B as follows: A[i] = 1 iff
B[i] = C[i] = 1, O[i] = 1 iff B[i] = 1 or C[i] = 1, and N [i] = 1 iff B[i] = 0. When bit-vector
content is visualized, we list the most significant bit first, i.e., B[w−1]B[w−2] · · ·B[0]. With
this in mind, we define the left-shifts L = B ≪ k and right-shifts R = B ≫ k as follows:
L[i + k] = B[i] and R[i] = B[i + k]. Here values out of the domain of the bit-vectors are
assumed to be 0. Logarithms are assumed to be in base two: log n = log2 n.

In directed labelled graph (DAG) G = (V,E, ℓ), V is the set of nodes, E is the sets of
vertices, and ℓ : V → Σ is a labelling function that assigns a character of the alphabet
to each node. We assume the nodes to be indexed as v0, v1, . . . vn−1 in topological order,
where n = |V |. For vi ∈ V , ℓ(vi) is its label. Set of nodes in(vi) = {j | (vj , vi) ∈ E}
contains the indexes of the in-neighbours of vi, and Di = |in(vi)| is the in-degree of vi.
If, for 0 ≤ d ≤ Di − 1, vk is the d-th in-neighbour of vi according to the topological
indexing that we defined above, we express this fact using notation k = ini(d), where
ini : [0, Di − 1]→ [0, n− 1].

CPM 2023
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In this work, we study the problem of string matching in labelled graphs, that consists
in finding a match for a pattern string P [0..m− 1] in a labelled graphs G over alphabet Σ,
where P has a match in G if there is a path v1, . . . , vk such that P = ℓ(v1) · · · ℓ(vk) (we also
say that P occurs in G, and that v1, . . . , vk is an occurrence of P ). Notice that if |P | = 1, a
classic visit of the graph solves the problem in linear time, thus we always assume |P | ≥ 2.

▶ Problem 1 (String Matching in Labeled Graphs (SMLG)).
input: A labeled graph G = (V,E,L) and a pattern string P , both over an alphabet Σ.
output: True if and only if there is at least one occurrence of P in G.

3 Quantum Notation and Preliminaries

In quantum computing, data is represented in quantum bits (qubits), the quantum analogue
to classical bits. A qubit can be in two states, denoted as |0⟩ = ( 1

0 ) and |1⟩ = ( 0
1 ) but, unlike

a classical bit, it can also be a linear combination of the two states, a superposition: |ψ⟩ =
α |0⟩+β |1⟩. The complex values α and β are called the amplitudes of |ψ⟩. Measuring a qubit
in superposition will result in either |0⟩ or |1⟩ with probabilities |α|2 and |β|2, respectively.
Note that this notation can easily be generalised to integer states |n⟩ using the tensor product
between the quantum states of the binary representation on n: |n⟩ =

⊗
i∈binary(n) |i⟩, and

in this case we use the term quantum register. Throughout the paper, we will use notation
|q⟩Q to denote that qubit Q is in state |q⟩. We use lower case letters for quantum states and
capital letters for qubits.

In this work, we mainly use the NOT gate X, the controlled NOT CX, and the Toffoli
gate CCX. We also apply an OR gate, that computes a logical or between two qubits and
stores the results in a third quibit. This can easily be obtained with a simple combination of
X gates with a Toffoli gate.

Furthermore, to define some quantum states, we use Kronecker’s delta function δx,y, which
is δx,y = 1 if x = y and δx,y = 0 otherwise. Given superposition |ψ⟩ =

∑n−1
i=0 αi |i⟩I |δc,i⟩Q,

the delta function specifies that qubit Q is in state |1⟩ iff i = c, as in the following example

3∑
i=0

αi |i⟩I |δ0,i⟩Q = α0 |0⟩I |1⟩Q + α1 |1⟩I |0⟩Q + α2 |2⟩I |0⟩Q + α3 |3⟩I |0⟩Q

where I is a quantum register of at least two qubits.
We assume to have a quantum random access memory (QRAM) able to use a quantum

register as an index to access classical data. Let m0,m1, . . . ,mn−1 be the data stored in
QRAM M . Given quantum register I, the operation that reads data from M into quantum
register Q initialized to |0⟩ using I as index is defined as follows [8]:

n−1∑
i=0

αi |i⟩I |0⟩Q
QRAM read−−−−−−−−→

n∑
i=1

αi |i⟩I |0⊕mi⟩Q =
n∑

i=1
αi |i⟩I |mi⟩Q .

Notice that this is a unitary operation, and thus reading the same data into the same register
twice will reset such a register to the value it had before performing the reading operation. In
terms of time complexity, the execution of the read operation is proportional to the number
of qubits in quantum register I. Under the Word-QRAM model with memory-word size
O(log n) for inputs of size n, we can assume to be able to perform a QRAM read operation
in O(1), because O(log n) qubits are enough for register I to index an input of size n. Indeed,
this reflect the same assumption of the classical Word-RAM model, where operations on
memory words are assumed to be constant.
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4 String Matching in Plain Text

A quantum computer, with access to QRAM, can solve the problem of finding an exact match
for a pattern string P into a text string T in time O(|P |

√
|T |), with high probability. We

explain a simple solution to this problem. Let |T | = n and |P | = m, then T = t0t1 · · · tn−1
and P = p0p1 · · · pm−1 are two strings defined over a binary alphabet, that is ti, pj ∈ {0, 1}
for 0 ≤ i ≤ n− 1 and 0 ≤ j ≤ m− 1. We use qubits CT and CP initialized to |0⟩ to track
the current characters of T and P , and we assume to have the text and the pattern stored in
qubits in the following way:

|0⟩CT
|0⟩CP

|t0⟩T0
|t1⟩T1

· · · |tn−1⟩Tn−1
|p0⟩P0

|p1⟩P1
· · · |pm−1⟩Pm−1

.

We also use auxiliary qubits A−1, A0, A1 · · ·Am−1, and quantum registers I, J , and Q, all
three of log n qubits. We initialize A−1 and Q to |1⟩, while A0, A1 · · ·Am−1, I and J are
all initialized to |0⟩. We prepare quantum register I in an equally balanced superposition
spanning all the text positions, that is |0⟩I → 1/

√
n
∑n−1

i=0 |i⟩I , assuming n to be a power
of 2, without loss of generality. If this is not the case, we generate a superposition as large as
the first power of two greater than n, then standard techniques can be applied to handle the
additional substates, as explained in Appendix A.

Each individual state |i⟩ in the superposition represents a computation starting at position
i in the text. In each of these computations, we scan T [i..i+m− 1] and try to match each
character with P [0..m− 1], storing the intermediate results of such comparisons in registers
A0, A1, · · · , Am−1. More precisely, at iteration j, 0 ≤ j ≤ m− 1, we compute a logical xor
between ti+j and pj storing the result in CP via a CX gate with control CT and target
CP . Then, we apply a X gate to CP , which now stores |¬(ti+j ⊕ pj)⟩CP

= |ti+j = pj⟩CP
.

At this point, we apply a Toffoli gate with controls CP and Aj−1, storing the value in target
qubit Aj . We now reset CT and CP to |0⟩ by applying to them the same gates again, but
in reverse order. As last step in iteration j, we increase both I and J by 1 by performing
transformation 1/

√
n
∑n−1

i=0 |1⟩Q |i⟩I |j⟩J → 1/
√
n
∑n−1

i=0 |1⟩Q |i+ 1⟩I |j + 1⟩J (this of course
requires two separate addition operations), where the addition is intended to be modulo 2n.
This allows us to read the next character of the pattern at the next iteration.

After the last iteration, we can run Grover’s operator [9] where the marked items are
represented by |am−1,i⟩Am−1

= |1⟩, and then measure register |I⟩ to locate the ending position
of a match. Of course, we do not know the exact number of marked items, and we address
this issue by guessing the number of items and rerunning the whole algorithm a constant
number of times. We illustrate the entire procedure in Algorithm 1.

The algorithm is correct because, after each iteration of the for loop, we correctly keep
track of the positions of the text that are active matches for the current prefix of the pattern.

▶ Lemma 1. After iteration j of the for loop of Algorithm 1, let qubits I and Aj be in
superposition 1/

√
n
∑n−1

i=0 |i⟩I |aj,i⟩Aj
. Then, |aj,i⟩Aj

= |1⟩ if and only if T [i..i+ j] = P [0..j],
where 0 ≤ j ≤ m− 1 and 0 ≤ i ≤ n− 1.

Proof. At iteration 0, after applying gates CX and X, CP stores |¬(T [i]⊕ P [0])⟩CP
and

A−1 stores |1⟩A−1
, thus the Toffoli gate simply copies value ¬(T [i]⊕ P [0]) to A0. Because

we are working with a binary alphabet, ¬(T [i]⊕P [0]) equals T [i] = P [0], and thus we obtain
superposition 1/

√
n
∑n−1

i=0 |i⟩I |T [i] = P [0]⟩A0
.

CPM 2023
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I CT CP A0 A1
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Figure 1 An example of the evolution of the superposition after one iteration of Algorithm 1. The
first arrow represents the application of a CX gate with control T1 and target P1, and the application
of a X gate on P1. The second arrow represents the application of a Toffoli gate with controls P1

and A0, and target A1. Intuitively, in the first step we are checking that T [i + j] = P [j]; in the
second step we combine the result of this check with the contribution of the previous iteration(s).
Characters A and B are to be considered binary values.

At iteration j, we assume by induction that register Aj−1 stores |aj−1,i⟩Aj−1
= |1⟩ if

and only if T [i . . . i+ j − 1] = P [0 . . . j − 1]. Gates CX and X compute ¬(T [i+ j]⊕ P [j])
storing it in CP . We then apply the Toffoli gate with controls CP and Aj−1, and target
Aj , obtaining superposition 1/

√
n
∑n−1

i=0 |i⟩I |aj−1,i ∧ T [i+ j] = P [j]⟩Aj
. Thus, |aj,i⟩Aj

=
|aj−1,i ∧ T [i+ j] = P [j]⟩Aj

is |1⟩ if and only if T [i..i+ j] = P [0..j]. ◀

As mentioned above, we have to be careful in running Grover’s search algorithm at the
end of Algorithm 1. We defer these details to the full proof of Theorem 5 given in Appendix C.
For now, we assume that we are able to retrieve with arbitrarily high probability 1− (7/8)c a
marked substate representing a match. Combining this with Lemma 1, we obtain the claimed
result.

▶ Theorem 2. Given a text string T , pattern string P and integer c > 0, Algorithm 1 finds
a match for P in T in time O(c(|P |

√
|T |)). If there is no match, the algorithm returns a

negative answer with probability p = 1. If there is at least one match, the algorithm returns
the index of the last position of a match with probability p > 1− (7/8)c.

Proof. For the correctness, consider Lemma 1 where j = m = |P |, which is the number of
times we run the for loop. In this case, |a|P |,i⟩A|P |

= |1⟩ if and only if T [i..i + |P | − 1] =
P [0..|P | − 1]. Thus, measuring these substates yields a correct solutions. The details of how
to perform such a measurement respecting the time complexity and probability of success
are deferred to the full proof of Theorem 5 in Appendix C. ◀

5 String Matching in Labeled Graphs

5.1 Quantum Brute-force Algorithm for SMLG
In SMLG we are given pattern string P with characters in alphabet Σ and a node-labeled
graph G = (V,E), with labelling function ℓ : V → Σ. We are asked to find a path (or,
actually, a walk) π = v1, v2, . . . , v|P | in G such that ℓ(v1) ◦ ℓ(v2) ◦ . . . ◦ ℓ(v|P |) = P , where ◦
denotes string concatenation.

One could try to obtain a quantum algorithm for SMLG by generalizing the idea we
presented for plain text. The idea would be to list all possible paths of length |P | in the graph,
and then mark those ones that are actual matches for P . Unfortunately, the superposition
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Algorithm 1 An algorithm for solving exact string matching in plain text that, using
QRAM, achieves O(|P |

√
|T |) time complexity. The details of how to handle Grover’s search

at the end are given in Theorem 5, whose full proof is deferred to Appendix C.

Input: Text T stored as |t0⟩T0
|t1⟩T1

· · · |tn−1⟩Tn−1
, pattern string P stored as

|p0⟩P0
|p1⟩P1

· · · |pm−1⟩Pm−1
, integer c

Output: A position of T where a match for P ends, if any
1 for c times do
2 Initialize quantum registers I, J,A0, A1 · · ·Am−1 as |0⟩I |0⟩J |0⟩A0

|0⟩A1
|0⟩Am−1

;
3 Initialize quantum register A−1 and Q as |1⟩A−1

and |1⟩Q;

// Apply H⊗ log n to register I

4 |0⟩I →
1√
n

∑n−1
i=0 |i⟩I ;

5 for m times do
// Read T [i] in CT and P [j] in CP using registers I and J as

indexes
6 1√

n

∑n−1
i=0 |i⟩I |j⟩J |0⟩CT

|0⟩CP
→ 1√

n

∑n−1
i=0 |i⟩I |j⟩J |ti⟩CT

|pj⟩CP
;

// Apply CX with control CT and target CP

7 1√
n

∑n−1
i=0 |ti⟩CT

|pj⟩CP
→ 1√

n

∑n−1
i=0 |ti⟩CT

|ti ⊕ pj⟩CP
;

// Apply X to CP

8 1√
n

∑n−1
i=0 |ti ⊕ pj⟩CP

→ 1√
n

∑n−1
i=0 |¬(ti ⊕ pj)⟩CP

= 1√
n

∑n−1
i=0 |ti = pj⟩CP

;

// Apply Toffoli with controls CP and Aj−1, and target Aj

9 1√
n

∑n−1
i=0 |ti = pj⟩CP

|aj−1⟩Aj−1
|0⟩Aj

→
1√
n

∑n−1
i=0 |ti = pj⟩CP

|aj−1⟩Aj−1
|(ti = pj) ∧ aj−1⟩Aj

;

// Reset CT and CP to |0⟩ via uncomputation
10 1√

n

∑n−1
i=0 |¬(ti ⊕ pj)⟩CP

→ 1√
n

∑n−1
i=0 |ti ⊕ pj⟩CP

;
11 1√

n

∑n−1
i=0 |ti⟩CT

|ti ⊕ pj⟩CP
→ 1√

n

∑n−1
i=0 |ti⟩CT

|pj⟩CP
;

12 1√
n

∑n−1
i=0 |i⟩I |j⟩J |ti⟩CT

|pj⟩CP
→

1√
n

∑n−1
i=0 |i⟩I |j⟩J |ti ⊕ ti⟩CT

|pj ⊕ pj⟩CP
= 1√

n

∑n−1
i=0 |i⟩I |j⟩J |0⟩CT

|0⟩CP
;

// Increment indexes I and J

13 1√
n

∑n−1
i=0 |1⟩Q |i⟩I |j⟩J →

1√
n

∑n−1
i=0 |1⟩Q |i⊕ 1⟩I |j + 1⟩J ;

14 Apply gate Z to qubit Rn−1, so that the sign of the amplitude is flipped if
|rn−1,j⟩Rn−1

= |1⟩;

15 Choose K ∈ [0, |P |] uniformly at random;
16 Run Grover’s iterate operator the optimal number of times assuming to have K

solutions, with the oracle function being lines 5–14 of this algorithm;
17 Measure Rn−1 into classical register Rcl;
18 if Rcl = 1 then
19 Measure I into classical register Icl and return Icl

20 return no
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would be as large as there are paths of length |P |, and thus the overall time complexity would
be O(|P |

√
|V ||P |). Moreover, an adjacency matrix would be needed to check the existence

of edges between nodes in constant time, yielding a space complexity of O(|V |2) qubits. We
conclude that more involved techniques are needed.

5.2 The Classical Shift-And Algorithm

We first introduce the classical shift-and algorithm [3] for matching a pattern against a text
and generalize it to work on graphs. Then, we show how the bit-vector data structure of
that algorithm can be represented as a superposition of a logaritmic number of qubits. This
approach allows us to achieve better performances than the brute force algorithm.

In the shift-and algorithm, we use bit vector B of the same length of pattern P to represent
which of its prefixes are matching the text during the computation. Assuming integer-alphabet
Σ, we also initialize bidimensional array M of size |P | × |Σ| so that M [j][c] = 1 if and only
if P [j] = c, and M [j][c] = 0 otherwise. The algorithm starts by initializing vector B to
zero and array M as specified above. Then, we scan whole text T performing the next four
operations for each T [i], i ∈ [0, n− 1], where M [∗][c] represents the c-th column of M :
1. B ← B + 1;
2. B ← B ∧M [∗][T [i]];
3. if B[m− 1] = 1, return yes;
4. B ← B << 1.
Operation 1 sets the least significant bit of B to 1, which is needed to test P [0] against
T [i]. Operation 2 computes a bit-wise and between B and the column of M corresponding
to character T [i]. Remember that M [j][T [i]] = 1 means P [j] = T [i], thus this operation
leaves each bit B[j] set to 1 if and only if it was already set to 1 before this step and the the
j-th character of the pattern matches the current character of the text. At this point, if bit
B[m− 1] is set to 1 we have found a match for P , and Operation 3 will return yes. For the
other positions, if bit B[j] is set to 1, then we know that prefix P [0..j] matches T [i− j+ 1..i],
and Operation 4 shifts the bits in B by one position, so that in the next iteration we will
check whether P [j + 1] matches T [i+ 1].

In labeled DAG G = (V,E), each node vi ∈ V has a single-character label ℓ(vi). We
generalize the shift-and algorithm to labeled DAGs by computing a bit-vector Bi for each
node v ∈ V , initializing them to zero. Consider a BFS visit of DAG G. When visiting
node vi, each bit-vector Bk of its in-neighbour vk ∈ in(vi) represents a set of prefixes of P
matching a path in the graph ending at vk. Thus, we merge all of this information together
by taking the bit-wise or of all of the in-neighbours of vi, that is we replace Operation 1
with Bi ← 1 +

∨
vk∈in(vi) Bk. Operations 2, 3 and 4 are performed as before. An example of

the state of the data structures after the execution of the algorithm is shown in Figure 2,
and the body of the iteration now is:
1. Bi ← 1 +

∨
vk∈in(v) Bk;

2. Bi ← Bi ∧M [∗][T [i]];
3. if Bi[m− 1] = 1, return yes;
4. Bi ← Bi << 1.
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Figure 2 The adaptation of the classical algorithm for matching pattern P in level DAG G. Each
bit-vector Dv represent the result after the merging of the bit-vectors of the in-neighbours of v and
before the shifting.

5.3 Quantum Bit-Parallel Algorithm for Level DAGs
We make the classic techniques work in a quantum setting for a special class of DAGs, which
we call level DAGs. A level DAG is a DAG such that, for every two nodes v and w, every
path from v to w has the same length, as for the DAG in Figure 2. We also note that
degenerate strings [1] can be represented as level DAGs. We use a function representing
in-neighbours:

ini(d) = index of the d-th in-neighbour of vi

Our approach aims to represent each bit vector Bi with a single qubit Vi set up in a
proper superposition, and translate the bit-wise operations to parallel operations across such
superposition. In the algorithm, we use the following qubits and quantum registers. Quantum
registers I and J store the index of a node and the position in the pattern, respectively.
Qubit Vi represents, in superposition, the bit-vector of the node vi, and qubit Ei,d stores
the contribution of edge (vini(d), vi) ∈ E in the update of qubit Vi, for, 0 ≤ i ≤ n − 1,
0 ≤ d ≤ Di − 1 and Di = indeg(vi). Quantum register C stores label ℓ(vi) of the node in
the current iteration, and is used to fetch the content of the corresponding matrix column,
which we will store in qubit M . Occurrences of the pattern encountered during the execution
of the algorithm are stored in qubit Ri. Qubits V ′

i and R′
i are auxiliary qubits used to store

intermidiate results, and we also use auxiliary qubits A and B and auxiliary quantum register
Q to implement necessary operations. Moreover, we assume to have access to QRAM.

5.3.1 The algorithm
Assume all the quantum registers and qubits to be initialized to |0⟩, except Q initialized
to |1⟩. The algorithm starts by setting quantum register J in a balanced superposition,
by applying the Hadamard gate on each one of its qubits. Then, we initialize qubits A so
that |aj⟩A = |1⟩ for j = 0, and |aj⟩A = |0⟩ otherwise. We do the same with qubit B, with
the difference that |bj⟩A = |1⟩ for j = m − 1, and |bj⟩A = |0⟩ otherwise. We can do these
operations with two applications of a generalized Toffoli gate, using register J as control and
qubits A and then B as targets. In the case of qubit A, we first apply an X gate to every
qubit of register J , we then apply the Toffoli gate, and finally we undo the applications of
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the X gate. The generalised Toffoli has a cost proportional to the number of qubits in J ,
that is logarithmic in the size of the input, and because this is an operation between a single
quantum register and a qubit, we can assume it to be constant in the Word-QRAM model.
We then initialize the qubits representing the bit-vectors of the nodes at level 0. This is done
with the same operations described below for the main loop, the only difference being that
these nodes do not have in-neighbours and thus we can simplify some operations. Specifically,
we load each entry of the character matrix in superposition and we use it and qubit A as
controls of a Toffoli gate which thus flips to |1⟩ sub-state |vi,j⟩Vi

if P [0] matches ℓ(vi).
The rest of the algorithm maintains almost the same overall structure, with the exception

of one necessary adaptation. In a DAG of L levels where Ll is the set of nodes at level l, for
0 ≤ l ≤ L− 1, we iterate over them one at the time, and for each level we process its nodes
one after the other. As we will better explain later, we wait before applying the quantum
equivalent of the shift operation once we scanned the whole level, not after processing every
node. The overall idea is to translate the classical bit-parallel operations into analogous
quantum operations that work across the superposition. This translation of bit-parallelism
to superposition parallelism is the core of our technique, and we now describe how to apply
it to each operation. The pseudocode of the entire procedure is given in Algorithm 1, where
all the arithmetic operations are to be considere modulo 2|P |. We only omit the pseudocode
for procedures SourceNodesInit(), IncreaseI() and IncreaseJ(), which is to be found
in Appendix B. We also assume |P | to be a power of two. If this is not the case, we generate
a superposition as large as the first power of two greater than |P |, then standard techniques
can be used to handle the additional substates, as explained in Appendix A.

Operation 1 (line 10) can be broken down into two simpler operations: computing
the bit-wise or and adding 1. In our translation to quantum computing, each sub-state
of superposition

∑m−1
j=0 |j⟩J |vi,j⟩Vi

represents an entry of the classical bit-vector used in
the Shift-And algorithm. Thus, what was a bit-wise or is now easily translated into the
application of few quantum gates. Notice that, to compute the logical or between two generic
qubits P and Q and store the result in qubit R, we can follow De Morgan’s rules and apply
an X gate to both P and Q, apply a Toffoli gate with controls P and Q and target R, apply
an X gate to R, and finally apply an X gate to P and Q again to restore their initial values.
In our case, at iteration i, we use qubit Ei,d to store the or computed among the first d+ 1
in-neighbours vini(0), . . . , vini(d) of node vi, and we compute it in the following way. Let

1√
m

m−1∑
j=0
|j⟩J |vini(0),j⟩Vini(0)

|vini(1),j⟩Vini(1)
· · · |vini(d−1),j⟩Vini(d−1)

|ei,d−1,j⟩Ei,d−1

be such that

ei,d−1,j = vini(0),j ∨ vini(1),j · · · ∨ vini(d−1),j .

We compute the value of Ei,d from Ei,d−1 and Vini(d) as

1√
m

m−1∑
j=0
|j⟩J |vini(d),j⟩Vini(d)

|ei,d−1,j⟩Ei,d−1
|0⟩Ei,d

→

1√
m

m−1∑
j=0
|j⟩J |vini(d),j⟩Vini(d)

|ei,d−1,j⟩Ei,d−1
|vini(d),j ∨ ei,d−1,j⟩Ei,d

.

Once we processed the last in-neighbour, Ei,Di−1 stores the or computed among all in-
neighbours, where Di is the number of in-neighbours of node vi.
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We implement the classic operation of adding 1 by computing an or with qubit A and
storing the result in V ′

i . Since |aj⟩A = |δ0,j⟩, we obtain |0⟩V ′
i
→ |v′

i,j⟩V ′
i

where |v′
i,j⟩V ′

i

= |1⟩
for j = 0, while |v′

i,j⟩V ′
i

= |ei,Di−1,j⟩ for 1 ≤ j ≤ m− 1.
Operation 2 (line 11) is implemented as a Toffoli-gate application with qubits M and

V ′
i as control and Vi as target.

1√
m

m−1∑
j=0
|mj,ℓ(vi)⟩M |v

′
i,j⟩V ′

i

|0⟩Vi
→ 1√

m

m−1∑
j=0
|mj,ℓ(vi)⟩M |v

′
i,j⟩V ′

i

|mj,ℓ(vi) ∧ v′
i,j⟩Vi

Operation 3 (line 12) is replaced by storing in register Ri the presence of a match
ending at node vi. This requires an intermediate step in which we use qubit B to filter
the content of Vi. In fact, qubit Vi now is in state |vi,j⟩Vi

= |1⟩ for those values of j such
that P [0..j] has a match ending at vi in the graph, and |vi,j⟩Vi

= |0⟩ otherwise. Since we
only care about potential full matches represented by |vi,m−1⟩Vi

, we use B, which is in state
|δm−1,j⟩B , as control qubit of a Toffoli gate, the other control qubit being Vi and the target
qubit being R′

i.

1√
m

m−1∑
j=0
|vi,j⟩Vi

|δm−1,j⟩B |0⟩R′
i
→ 1√

m

m−1∑
j=0
|vi,j⟩Vi

|δm−1,j⟩B |vi,j ∧ δm−1,j⟩R′
i

Then, using the same technique as in Operation 1, we compute an or between R′
i and Ri−1,

storing the result in Ri.

1√
m

m−1∑
j=0
|vi,j ∧ δm−1,j⟩R′

i
|ri−1,j⟩Ri−1

|0⟩Ri
→

1√
m

m−1∑
j=0
|vi,j ∧ δm−1,j⟩R′

i
|ri−1,j⟩Ri−1

|(vi,j ∧ δm−1,j) ∨ ri−1,j⟩Ri

After this operation, |ri,m−1⟩Ri
is turned to |1⟩ if there is a full match of P ending at vi,

otherwise |ri,m−1⟩Ri
is left unaltered.

Operation 4 (line 14) consists in shifting all bits of the classical bit-vector by one
position. In the quantum setting, we can perform this operation by adding 1 to index register
J and then reorganising the sum: |1⟩C1

|j⟩J → |1⟩C1
|j + 1⟩J . Notice that this changes value

|j⟩J in every term of the superposition to |j + 1⟩j . This can be interpreted as “shifting”
value kj of generic register K from |j⟩J |kj⟩K to |j + 1⟩J |kj⟩K . Because this operation acts
on every quantum register and qubit in this way, we have to reset qubits A and B to |0⟩
before performing this operation and reinitialize their values afterwards, so that we prevent
their values to be shifted. For the same reason, we also have to wait until having processed
the whole level, otherwise we would shift the values of all the nodes at the previous level and
compromise the computation.

As last step of the algorithm, we run Grover’s search that uses as oracle function the whole
procedure described up to this point, and then applies a Z gate on qubit R. Thus, the marked
sub-states are those such that |ri,j⟩Ri

= |1⟩, which get mapped to − |ri,j⟩Ri
. Sub-states such

that |ri,j⟩Ri
= |0⟩ remain unaltered. As for the case of string matching in plain text, we

rerun the whole algorithm a constant number of times to boost the probability of success, as
explained in Theorem 5 and Appendix C. Algorithm 1 shows the entire procedure.

To prove the correctness of Algorithm 1, we formalise the key properties in the following
lemmas. We start by ensuring that the shift operation provides the desired result. Let l
and y be the total number of times that we started the execution of the middle for-loop
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Algorithm 2 Algorithm for testing whether pattern string P has a match in level DAG
G, running in O(|E|

√
|P |).

1 time.
Input: Graph G, pattern P , and constant c.
Output: Returns yes if P occurs in G, otherwise no.

2 for c times do
3 Initialize quantum register Q to |1⟩;
4 Initialize quantum registers I, J,A,B,C,M, Vi, V

′
i , Ri, R

′
i, Ei,d to |0⟩ where

i ∈ [0, n− 1] and d ∈ [0, Di − 1];
// Apply Hadamard to J

5 |0⟩J →
1√
m

m−1∑
j=0
|j⟩J ;

6 SourceNodesInit(I, J,A,C, V0, . . . , Vn−1, V
′

0 , . . . , V
′

n−1);
7 IncreaseJ(J,A,B);

// L is the number of levels
8 for l ∈ [1, L− 1] do // scan every level
9 for |Ll| times do // scan every node in the level

10 OperationOne(l, I, C,M,Ei,0, . . . , Ei,Di−1, V
′

i );
11 OperationTwo(M,V ′

i , Vi);
// Invariant 1 holds here

12 OperationThree(B, Vi, R
′
i, Ri);

13 IncreaseI(I,M,C);
14 OperationFour(J,A,B);

// Invariant 2 holds here

15 Apply gate Z to qubit Rn−1, so that the sign of the amplitude is flipped if
|rn−1,j⟩Rn−1

= |1⟩;
16 Choose K ∈ [0, |P |] uniformly at random;
17 Run Grover’s iterate operator the optimal number of times assuming to have K

solutions, with the oracle function being lines 6–15 of this algorithm;
18 Measure Rn−1 into classical register Rcl;
19 if Rcl = 1 then
20 return yes

21 return no
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1 Function OperationOne(l, I, C,M,Ei,0, . . . , Ei,Di−1, V
′

i ):
2 for |Ll| times do // scan every node in the level

// scan every node in in(vi)

3 1√
m

m−1∑
j=0
|j⟩J |i⟩I |0⟩C →

1√
m

m−1∑
j=0
|j⟩J |i⟩I |ℓ(vi)⟩C ;

4 1√
m

m−1∑
j=0
|j⟩J |ℓ(vi)⟩C |0⟩M →

1√
m

m−1∑
j=0
|j⟩J |ℓ(vi)⟩C |mℓ(vi),j⟩M ;

5 k ← ini(0); // Classical operation

6 1√
m

m−1∑
j=0
|vk,j⟩Vk

|0⟩Ei,0
→ 1√

m

m−1∑
j=0
|vk,j⟩Vk

|vk,j⟩Ei,0
;

7 for d ∈ [1, Di − 1] do // scan every node in in(vi)
8 k ← ini(d); // Classical operation

// Add the contribution of the current in-neighbour

9 1√
m

m−1∑
j=0
|vk,j⟩Vk

|ei,d−1,j⟩Ei,d−1
|0⟩Ei,d

→

1√
m

m−1∑
j=0
|vk,j⟩Vk

|ei,d−1,j⟩Ei,d−1
|ei,d−1,j ∨ vk,j⟩Ei,d

;

// Turn to |1⟩ the substate corresponding to j = 0

10 1√
m

m−1∑
j=0
|δ0,j⟩A |ei,Di−1,j ∨ vk,j⟩Ei,Di−1

|0⟩V ′
i
→

1√
m

m−1∑
j=0
|δ0,j⟩A |ei,Di−1,j ∨ vk,j⟩Ei,Di−1

|ei,Di−1,j ∨ vk,j ∨ δ0,j⟩V ′
i
;

11 Function OperationTwo(M,V ′
i , Vi):

// Compute the and with the column of the matrix

12 1√
m

m−1∑
j=0
|mℓ(vi),j⟩M |v

′
i,j⟩V ′

i

|0⟩Vi
→ 1√

m

m−1∑
j=0
|mℓ(vi),j⟩M |v

′
i,j⟩V ′

i

|mℓ(vi),j ∧ v′
i,j⟩Vi

;

13 Function OperationThree(B, Vi, R
′
i, Ri):

// Set |ri,m−1⟩Ri
= |1⟩ if there is a match ending at vi

// Apply Toffoli on Vi, B and R′
i

14 1√
m

m−1∑
j=0
|vi,j⟩Vi

|δm−1,j⟩B |0⟩R′
i
→ 1√

m

m−1∑
j=0
|vi,j⟩Vi

|δm−1,j⟩B |vi,j ∧ δm−1,j⟩R′
i
;

// Apply logic or on R′
i, Ri−1 and Ri

15 1√
m

m−1∑
j=0
|vi,j ∧ δm−1,j⟩R′

i
|ri−1,j⟩Ri−1

|0⟩Ri
→

1√
m

m−1∑
j=0
|vi,j ∧ δm−1,j⟩R′

i
|ri−1,j⟩Ri−1

|(vi,j ∧ δm−1,j) ∨ ri−1,j⟩Ri
;

16 Function OperationFour(J,A,B):
17 IncreaseJ(J,A,B);
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(lines 9–13) and of the outer for-loop (lines 8–14), respectively. That is, y = x+
∑l−1

λ=1 |Lλ|
for l ≥ 2, where x ∈ [0, |Ll|] is the number of times that we started the execution of the
middle for-loop during the l-th iteration of the outer for-loop. Notice that y = 0 when l = 0,
and y = x when l = 1.

▶ Lemma 3 (Invariant 1). During the l-th execution of the outer for-loop (lines 8–14) and
the y-th execution of the middle for-loop (lines 9–13) of Algorithm 1, but before the y-th
execution of OperationThree() (line 14), Invariant 1 holds: for every qubit Vi such that
i ∈ Ll and i ≤ t, we have substate |vi,j⟩Vi

= |1⟩ if and only if there exists a path in G ending
at vi and matching P [0, j], where t = |L0|+x− 1 is the index of the last node vt Algorithm 1
visited so far.

Proof. We proceed by strong induction on y, defined as above.

Base case, y = 0. In this case, we executed the initialization but we have not run yet neither
the outer nor the middle for-loop. Thus, l = 0, t = |L0| − 1, and qubits Vi such that i ∈ L0
and i ≤ t are those with in-degree zero, which are initialized by function SourceNodesInit().
For each such i, given that J is in state

∑m−1
j=0 |j⟩J , function SourceNodesInit() first loads

character ℓ(vi) in register C and matrix entry mℓ(vi),j in register M , in superposition. Then,
with regard to t, it performs transformation

m−1∑
j=0
|mℓ(vi),j⟩M |δ0,j⟩A |0⟩Vi

→
m−1∑
j=0
|mℓ(vi),j⟩M |δ0,j⟩A |mℓ(vi),j ∧ δ0,j⟩Vi

,

where, by definition, vt,j = mℓ(vi),j ∧ δ0,j . Thus, |vt,j⟩ = |0⟩ for every j ̸= 0 because of δ0,j ,
and |vt,j⟩Vi

= |mℓ(vi),j⟩Vi
for j = 0, which in turn means that |vt,0⟩Vi

= |1⟩ if and only if
P [0, 0] = ℓ(vi).

Inductive case, y ≥ 1. We further divide our analysis in two sub-cases.

First sub-case, x = |Ll|. In this case, y is the last iteration of the inner for-loop during
the l-th iteration of the outer for-loop. We assume the inductive hypothesis to hold after
the execution of OperationTwo(). We execute OperationThree() and IncreaseI(), which
do not change the state of any Vz, for any z ∈ [0, |V | − 1]. Now, we have to perform
OperationFour() (line 14) before starting iteration y + 1 of the middle for-loop, which
will start iteration l + 1 of the outer for-loop. Assuming the inductive hypothesis, the
application of OperationFour() makes every Vz with z ∈ Ll such that |j′⟩J |vz,j⟩Vz

= |j′⟩ |1⟩,
where j′ = j + 1, if and only if there is a match for P [0, j] in G ending at vz, otherwise
|j′⟩J |vz,j⟩Vz

= |j′⟩ |0⟩. Then, we start iteration y + 1 (l + 1). Notice that we update Vi

if and only if i ∈ Ll+1 and, in any previous iteration of the middle for-loop, this could
have never been the case, thus every |vi,j⟩Vi

, i ∈ Ll+1, is currently set to |0⟩. The same
holds for every V ′

i . The for-loop inside OperationOne() computes a logic or between all
the qubits representing all the in-neighbours of vi. Indeed, before running this for-loop,
we have |j′⟩J |vini(0),j⟩Ei,0

. After one iteration, we have |j′⟩ |vini(0),j ∨ vini(1),j⟩Ei,1
. After

two iteration, we have |j′⟩ |vini(0),j ∨ vini(1),j ∨ vini(2),j⟩Ei,2
. After Di− 1 iterations, we have

|j′⟩ |ei,Di−1,j′⟩Ei,Di−1
, where

ei,Di−1,j′ =
Di−1∨
d=0

vini(d),j .
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We store an intermediate result in V ′
i , |v′

i,j′⟩
V ′

i

, where v′
i,j′ = ei,Di−1,j′ except for j′ = 0,

because we make sure that |v′
i,0⟩V ′

i

= |1⟩ thanks to the or operation with qubit A, which
stores |δ0,j′⟩A. Now we compute the logical and with the entry of the matrix, as in the base
case, obtaining |vi,j′⟩Vi

, where

vi,j′ = mℓ(vi),j′ ∧ (δ0,j′ ∨
Di−1∨
d=0

vini(d),j).

Applying the inductive hypothesis, this translates to

vi,j+1 = (P [j + 1] = ℓ(vi)) ∧
(

(j + 1 = 0) ∨
Di−1∨
d=0

P [0..j] has a match ending at vini(d)

)
= P [0..j + 1] has a match ending at vi

Thus, the statement of the lemma holds for y + 1.

Second sub-case, x < |Ll|. The reasoning is analogous to the previous case, the only
difference being that j does not increase and thus we have to look back by x+ 1 iterations,
when j was increased the last time. This requires to assume that the inductive hypothesis
was holding for iteration y − x, that is correct because, by strong induction, we assume the
inductive hypothesis to hold for every y′ ≤ y while proving the statement for y + 1. ◀

▶ Lemma 4 (Invariant 2). After line 14 of Algorithm 1, Invariant 2 holds: if there exists at
least one match for P in G ending at some vi such that i ≤ t, then there exists at least one
j, 0 ≤ j ≤ m− 1, such that |rt,j⟩Ri

= |1⟩, where vt is the last node we visited in Algorithm 1
before line 14.

Proof. We proceed by induction on the number l of times that we run the for-loop at
lines 8–14.

Base case, l = 0. In this case, nodes vt such that t ∈ Ll′ , l′ ≤ 0 are those with in-degree
zero, while the for-loop at lines 8–14 has never run. Since we are visiting only single-node
paths and we are assuming that pattern P has length at least two, there can be no match
for P ending at these nodes. Correctly, |ri,j⟩Ri

= |0⟩ for every 0 ≤ j ≤ m− 1.

Inductive case, 1 ≤ l ≤ L − 1. By inductive hypothesis, we assume the statement of the
lemma to be true right after running iteration l of the for-loop at lines 8–14, and thus right
before executing IncreaseJ() at line 14. After the execution of IncreaseJ(), the new state
is
∑m−1

j=0 |j′⟩J |ri,j⟩Ri
, where j′ = j + 1 and vi is the last node visited so far. Then, we start

iteration l+ 1, processing i′ ∈ Ll+1, i′ = t+ 1. We execute OperationOne() OperationTwo(),
which do not affect register Ri′ . Then we run the operations at lines 12–12, obtaining
|ri′,j′⟩Ri

where ri′,j′ = (vi′,j′ ∧ δm−1,j′) ∨ rt,j . Let us consider the first time we run the
middle for-loop during iteration l+ 1 of the outer for-loop. If P has a match ending at some
vz, z < i′, the inductive hypothesis guarantees rt,j = 1 for some j. Otherwise, if P does not
have any such match, then rt,j = 0 for all j. In this second case, if P has a match ending at
vi′ , we know by Lemma 3 that vi′,m−1 = 1. This, combined with the fact that δm−1,m−1 = 1,
correctly implies that ri′,m−1 = 1, proving the statement for this specific i′ and j′ = m− 1.
If P has no match ending at vi′ , then vi′,m−1 = 0, and ri′,j′ = 0 for all j′, which must be
the case when no match has been found yet. To conclude the proof, notice that the same
reasoning applies for the subsequent iterations of the middle for-loop by using every time the
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previous instance of this reasoning in place of the inductive hypothesis. That is, we use ri′,j′

when proving the statement for ri′+1,j′ and so on, until we prove the statement for rt′,j′ ,
where vt′ is the last node with index in Ll+1. At this point, we exit the middle for-loop and
the statement of the lemma is proven for l + 1. ◀

The correctness of the algorithm follows from the previous lemma combined with few
additional observations.

▶ Theorem 5. Given pattern string P of length at least 2 and level DAG G, Algorithm 1
returns the right answer for the SMLG problem on P and G with probability p > 1− (7/8)c,
for any given integer c.

Proof. After running the outer for-loop of Algorithm 1 L− 1 times, we exit such a loop, and
we know we have visited all the nodes (nodes in L0 where visited during the initialization).
If we consider Lemma 4 applied in the case of t = n− 1, we are considering all the nodes,
which means that if P has no match ending in G, then no substate of register Rn−1 is such
that |rn−1,j⟩Rn−1

= |1⟩, for any j. Instead, if P has a match in G, then at least one substate
of Rn−1 is such that |rn−1,j⟩Rn−1

= |1⟩, for some j. We use standard techniques that consist
in rerunning the algorithm a constant number of times to boost the probability of measuring
such a state, and achieve the desired one. Appendix C provides a more detailed analysis. ◀

Finally, the time complexity of our algorithm is subquadratic in the size of the graph.

▶ Theorem 6. The time complexity of Algorithm 1 is O(|E|
√
|P |) in the QRAM model, and

the space complexity is O(|E|+ |V |).

Proof. The algorithm uses |V | qubits Vi, and the same amount of qubits V ′
i , Ri, R′

i; qubits
Ei,d are a total of |E| qubits, and the rest are a constant number of qubits and registers.
Thus, the space complexity is O(|E|+ |V |).

With the for-loop in function SourceNodesInit(), the algorithm visits the nodes in L0,
which are at most O(|V |). The iteration conditions at lines 8 and 9 make the algorithm visit
every node. For each such iteration, we perform a constant number of operations except
for the for-loop in OperationOne(). This for-loop visits all the in-neighbours of a node,
each time performing a constant number of operations, and

∑|V |−1
i=0 |in(i)| = |E|. All of the

aforementioned operations can be implemented with a constant number of quantum-gate
applications, each affecting a constant number of qubits (3 at most), or by performing a load
operation from the QRAM, assumed to require constant time. At the end of the algorithm,
we run Grover’s search procedure on a superposition of 2|P | states, using the entire algorithm
as the oracle function.

Summing everything up, we spend O(|V |) time for the initialization, O(|V |+ |E|) time in
the for-loops, and O(|E|

√
|P |) time for Grover’s search procedure. The total time complexity

is thus dominated by O(|E|
√
|P |). ◀
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is always initialized to |1⟩, because this is the neutral value in a logical and, an thus in the
application of the Toffoli gate. Therefore, in these substates, a qubit Ri can and will be set
to value |1⟩Ri

if and only if a previous “shift” carried |1⟩Ri−1
.

Alternatively, if |P | is not a power of two, we can classically reduce the problem to this
case. We add new symbol $ to the alphabet. Then, we pad P with as many $ at the end
as needed to reach the next power of two. For each level in the DAG, we add a new node
with label $, and we place an edge for every node in that level to the new node. We connect
all this new nodes in a chain, and we also add a chain of |P | such nodes after the last level
(they create new levels consisting only of one node). The pattern now can overflow in these
nodes after finding a proper match in the DAG. Finally, we apply the same binary encoding
as in the plain text case, now replacing every node with a chain of two nodes, sending all the
incoming edges to the first node and making all the outgoing edges leave from the second
node. Overall, we add one new node per level, and one new edge per node, plus |P | additional
nodes and edges after the last level. This takes time O(|E|+ |P |).

B Additional pseudo-code

1 Function SourceNodesInit(I, J, A, C, V0, . . . , Vn−1, V ′
0 , . . . , V ′

n−1):
// Initialize |aj⟩A so that aj = 1 if j = 0, aj = 0 otherwise

2 1√
m

m−1∑
j=0

|j⟩J |0⟩A → 1√
m

m−1∑
j=0

|j⟩J |δ0,j⟩A;

// Initialize |bj⟩B so that bj = 1 if j = m − 1, bj = 0 otherwise

3 1√
m

m−1∑
j=0

|j⟩J |0⟩B → 1√
m

m−1∑
j=0

|j⟩J |δm−1,j⟩B ;

// L0 is the set of nodes in level 0.
4 for |L0| times do

// Read node label ℓ(vi) in C

5 1√
m

m−1∑
j=0

|j⟩J |i⟩I |0⟩C → 1√
m

m−1∑
j=0

|j⟩J |i⟩I |ℓ(vi)⟩C ;

// Read the matrix entries for character ℓ(vi) in M

6 1√
m

m−1∑
j=0

|j⟩J |ℓ(vi)⟩C |0⟩M → 1√
m

m−1∑
j=0

|j⟩J |ℓ(vi)⟩C |mℓ(vi),j⟩
M

;

// Apply Toffoli to qubits M, A and Vi

7 1√
m

m−1∑
j=0

|mℓ(vi),j⟩
M

|δ0,j⟩A |0⟩Vi
→ 1√

m

m−1∑
j=0

|mℓ(vi),j⟩
M

|δ0,j⟩A |mℓ(vi),j ∧ δ0,j⟩
Vi

;

// Reset M and C

8 1√
m

m−1∑
j=0

|j⟩J |ℓ(vi)⟩C |mℓ(vi),j⟩
M

→ 1√
m

m−1∑
j=0

|j⟩J |ℓ(vi)⟩C |mℓ(vi),j ⊕ mℓ(vi),j⟩
M

=

1√
m

m−1∑
j=0

|j⟩J |ℓ(vi)⟩Ci
|0⟩M ;

9 1√
m

m−1∑
j=0

|j⟩J |i⟩I |ℓ(vi)⟩C → 1√
m

m−1∑
j=0

|j⟩J |i⟩I |ℓ(vi) ⊕ ℓ(vi)⟩C = 1√
m

m−1∑
j=0

|j⟩J |i⟩I |0⟩C ;

// Increase I by one to visit the next node

10 1√
m

m−1∑
j=0

|1⟩Q |i⟩I → 1√
m

m−1∑
j=0

|1⟩Q |i + 1⟩I ;
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1 Function IncreaseI(I, M, C):
// Reset M and C

2 1√
m

m−1∑
j=0

|j⟩J |ℓ(vi)⟩C |mℓ(vi),j⟩
M

→ 1√
m

m−1∑
j=0

|j⟩J |ℓ(vi)⟩C |mℓ(vi),j ⊕ mℓ(vi),j⟩
M

→

1√
m

m−1∑
j=0

|j⟩J |ℓ(vi)⟩Ci
|0⟩M ;

3 1√
m

m−1∑
j=0

|j⟩J |i⟩I |ℓ(vi)⟩C → 1√
m

m−1∑
j=0

|j⟩J |i⟩I |ℓ(vi) ⊕ ℓ(vi)⟩C = 1√
m

m−1∑
j=0

|j⟩J |i⟩I |0⟩C ;

// Increase I

4 1√
m

m−1∑
j=0

|j⟩J |1⟩Q |i⟩I → 1√
m

m−1∑
j=0

|j⟩J |1⟩Q |i + 1⟩I ;

1 Function IncreaseJ(J, A, B):
// Reset A and B

2 1√
m

m−1∑
j=0

|j⟩J |δ0,j⟩A → 1√
m

m−1∑
j=0

|j⟩J |0⟩A;

3 1√
m

m−1∑
j=0

|j⟩J |δm−1,j⟩B → 1√
m

m−1∑
j=0

|j⟩J |0⟩B ;

// Increase J

4 1√
m

m−1∑
j=0

|1⟩Q |j⟩J → 1√
m

m−1∑
j=0

|1⟩Q |j + 1⟩J ;

// Reinitialize A and B

5 1√
m

m−1∑
j=0

|j⟩J |0⟩A → 1√
m

m−1∑
j=0

|j⟩J |δ0,j⟩A;

6 1√
m

m−1∑
j=0

|j⟩J |0⟩B → 1√
m

m−1∑
j=0

|j⟩J |δm−1,j⟩B ;

C Full proof of Theorem 5

Proof. After running the outer for-loop of Algorithm 1 L− 1 times, we exit such a loop, and
we know we have visited all the nodes (nodes in L0 where visited during the initialization).
If we consider Lemma 4 applied in the case of t = n− 1, we are considering all the nodes,
which means that if P has no match ending in G, then no substate of register Rn−1 is such
that |rn−1,j⟩Rn−1

= |1⟩, for any j. Instead, if P has a match in G, then at least one substate
of Rn−1 is such that |rn−1,j⟩Rn−1

= |1⟩, for some j.
The for loop that we run at the end of the algorithm ensures to achieve high probability

of success. The probability of success p in Grover’s search algorithm is the sinusoidal function
p(K) = sin2((2K+ 1)θ) [5], where θ = sin−1

(√
M
N

)
, N is the search space, M is the number

of good solutions and K is the number of iterations of the Grover’s operator. This function
has period λM ≈ π

2

√
N
M − 1. Consider the case M = 1. If we choose a random number of

iterations K between 1 and λ1, we have p(K) ≥ 1/2 with probability 1/2. This is because
half of the material of the function is above the horizontal line of 1/2. When p(K) ≥ 1/2, the
probability of measuring a wrong result is ptop ≤ 1/2. When p(K) ≥ 1/2, the probability of
measuring a wrong result is greater than 1/2, but anyway pbottom ≤ 1. If we run the process
c times, the overall probability of failure (measuring a wrong result) pf is then
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pf =
(
ptop

1
2 + pbottom

1
2

)c

≤
(

1
2

1
2 + 1 · 1

2

)c

=
(

3
4

)c

Thus, the probability of success (measuring a correct result) is ps = 1− (3/4)c.
In the general case 1 < M ≤ N , the period λM of function p(K) is smaller than period

λ1 of the case M = 1. We can still use the same random number of iterations K between
1 and λ1, as nearly half of the material of the function p(K) is above the horizontal line
of 1/2: the worst case is when λM is little over half of λ1. In this case we know that p(K)
will be sampled uniformly over half of the range of period λ1, but the other half may have
biased sampling. Namely, the other half of the function might have more material below 1/2
than above. To have a safe estimate, we assume that the probability of returning the wrong
result in the biased case is pbiased = 1. That is, if we run the process c times, the overall
probability of failure (measuring a wrong result) pf is then

pf =
(
pbiased

1
2 + (ptop

1
2 + pbottom

1
2)1

2

)c

≤
(

1 · 1
2 + (1

2
1
2 + 1 · 1

2)1
2

)c

=
(

7
8

)c

Thus, the probability of success (measuring a correct result) is ps = 1− (7/8)c. ◀
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1 Introduction

The Burrows–Wheeler transform (BWT) is a reversible permutation of words, introduced
in the Data compression field [5]. Such a transformation allows one to boost the effect
of the run-length encoding with respect to the original word in input [27]. Due to its
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myriad virtues, some of the well-known compressed text-indexes for pattern matching [11, 13]
and the most used alignment tools in Bioinformatics [23, 21] are based on the BWT. The
performance of the BWT is related to the repetitions of factors in the word, which is why
the number of equal-letter runs of the BWT, denoted by rbwt, is considered as a measure of
repetitiveness [29]. Much attention has recently paid to the measure rbwt both for its crucial
role in designing compressed indexing data structures for highly repetitive texts [13, 16, 30]
and for its combinatorial properties [25, 14].

In Combinatorics on words, morphisms are a fundamental tool for generating repetitive
sequences, with multiple applications. For instance, injective morphisms, known as codes,
are widely used in the fields of Information theory, Data compression, and Cryptography [2].
Recently, morphisms have been used in conjunction with copy-paste mechanisms to define
novel compressors and repetitiveness measures, called NU-systems [32]. Informally speaking,
a morphism is a mechanism that transforms each letter in a given input word into a
corresponding image word, thus producing an output that is likely to contain longer repeated
factors. The relationship between morphisms and the measure rbwt has been studied in the
context of a subclass of infinite words generated by morphisms, i.e., the purely morphic
words [4, 12].

Here, we focus the impact of morphism application on the number of BWT equal-letter
runs of finite words.

In Section 3, we prove that a binary morphism is cyclic (i.e., the images of both letters
are powers of the same word) if and only if the image of every word under this morphism
has the same number of BWT equal-letter runs, regardless of the input word. We also prove
other results relating morphisms and words sharing the same Parikh vector (i.e., having the
same number of occurrences of each letter), which can be of independent interest.

Then, in Section 4 we find a novel characterization of Sturmian morphisms [3, 28] in
terms of BWT equal-letter runs: they are exactly the binary morphisms that preserve
the number of BWT equal-letter runs of every binary word containing both letters of the
alphabet. This characterization is interesting from a combinatorial point of view, because
Sturmian morphisms are a widely studied subject [3, 28]. It also builds another bridge
between Combinatorics on words and Data compression.

Further, in Section 5 we show a wide class of morphisms, which we call Thue–Morse-like
morphisms, that increase the number of BWT equal-letter runs by 2 on every binary word
containing both letters of the alphabet. Moreover, for each even number 2k, we can find
a wide class of binary morphisms, obtained by composing Sturmian and Thue–Morse-like
morphisms, that increase the BWT equal-letter runs of every binary words by exactly 2k.
Note that this is exhaustive for the binary alphabet. In fact, unless considering powers of a
single letter, every binary word has an even number of BWT equal-letter runs. In addition,
we can use the aforementioned morphisms to construct arbitrarily large families of binary
words having all the same number of BWT equal-letter runs, for every fixed (even) number,
and converging to an infinite aperiodic word.

At the other end of the spectrum, in Section 6 we show that there are binary morphisms
(in particular, the so-called period-doubling morphism) that can highly increase the number
of BWT equal-letter runs of binary words. We show that the increase in the number of BWT
equal-letter runs can be Ω(

√
n), where n is the length of the original word. In Section 7,

we show that this degree of increase cannot occur in other relevant reachable repetitiveness
measures, like the size of the Lempel–Ziv parsing [9, 22], or the size g of the smallest
deterministic context-free grammar generating the word [18].

We conclude in Section 8 with some final remarks, and some open questions and
conjectures.
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2 Preliminaries

Basic terminology

Let Σ = {a1, a2, . . . , aσ} be a finite sorted set of letters a1 < a2 < · · · < aσ, which we call an
alphabet. A finite word w = w[1]w[2] · · ·w[|w|] is any finite sequence of letters where w[i] ∈ Σ,
for i ∈ [1, |w|], and |w| is the length of the word. We denote by alph(w) the set of the letters
of Σ appearing in w. The empty word, denoted by ε, is the unique word of length 0. The set
of all finite words (resp. all finite words of positive length) over the alphabet Σ is denoted
by Σ∗ (resp. Σ+). If u = u[1] · · ·u[n] and v = v[1] · · · v[m] are words, the concatenation
uv of u and v is uv = u[1] · · ·u[n]v[1] · · · v[m]. We use the notation w[i, j] to denote the
word w[i]w[i + 1] · · ·w[j], which we call a factor of w. If i > j, then we assume w[i, j] = ε.
A factor of w is proper if it is different from w itself. The factor w[i, j] is called a prefix
when i = 1, and a suffix when j = n. We denote by Πk

i=1wi the concatenation of the words
w1, w2, . . . , wk in that order. We denote by wk the concatenation of the word w with itself k

times. A rotation of the word w = w[1]w[2] · · ·w[n] is a word of the form w[i + 1, n]w[1, i],
for some 1 ≤ i ≤ n, obtained by shifting i letters cyclically. We denote by R(w) the multiset
of all the |w| rotations of w. A factor of any word in R(w) is called a circular factor of w. A
word is primitive if w = uk implies k = 1, or equivalently, if it cannot be written as uv for
some non-empty words u and v such that uv = vu. A primitive word of length n has exactly
n distinct rotations. If w is a binary word over the alphabet {a, b}, the complement of w, i.e.,
the word obtained by replacing all the a’s of w by b’s and all the b’s by a’s, is denoted by w.
If w = w[1] · · ·w[n], the reverse of w is the word wR = w[n] · · ·w[1]. Given a word w ∈ Σ∗

and a ∈ Σ, we denote by |w|a the number of occurrences of a in w. The run-length encoding
of a word w, denoted by rle(w), is a sequence of pairs (ci, li) with ci ∈ Σ and li > 0, such
that w = cl1

1 cl2
2 · · · clr

r and ci ̸= ci+1. The length |rle(w)| is the number of equal-letter runs
in w. The Parikh vector of w, denoted as P (w), is the σ-tuple (|w|a1 , . . . , |w|aσ ). Given two
words u and v having the same length, the Hamming distance between u and v, denoted
as dH(u, v), is the number of positions at which the corresponding letters in u and v are
different. An infinite word x = x[1]x[2]x[3] · · · is a non-ending sequence of elements of the
alphabet Σ. An infinite word x is ultimately periodic if there exist u ∈ Σ∗ and v ∈ Σ+ such
that x = uvvv · · · ; it is called periodic when u = ε; aperiodic if it is not ultimately periodic.
If there is no ambiguity, finite words are simply called words.

Morphisms

Let Σ and Γ be two alphabets. A morphism is a map µ from Σ∗ to Γ∗ such that µ(uv) =
µ(u)µ(v) for all words u, v ∈ Σ∗. Therefore, a morphism µ can be defined by specifying its
action on the letters of Σ and can be denoted as µ ≡ (µ(a1), . . . , µ(aσ)). When Σ = Γ = {a, b},
µ is called a binary morphism. A morphism µ is called prolongable on a letter a ∈ Σ if
µ(a) = au for some u ∈ Σ+. If for all a ∈ Σ it holds that µ(a) ̸= ε, then the morphism
µ is called non-erasing. From now on, we will consider non-erasing morphisms, unless
stated explicitly otherwise. If there exists k such that |µ(a)| = k for every a ∈ Σ, then the
morphism is called k-uniform. A 1-uniform morphism is called a coding. Given a morphism
µ prolongable on some letter a ∈ Σ, the family of words {a, µ(a), . . . , µi(a), . . .} are prefixes
of a unique infinite word µ∞(a) = limi→∞ µi(a), that is a fixed point of µ. Such an infinite
word is then called purely morphic. An infinite word is morphic if it is obtained by applying
a coding to a purely morphic word. A morphism µ is cyclic if there exists z ∈ Γ∗ such that
µ(a) ∈ z∗, for each a ∈ Σ. Otherwise, it is called acyclic. Note that the fixed point of a
cyclic morphism is periodic. In the case of a binary morphism, it is known that µ is cyclic if
and only if µ(ab) = µ(ba).
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Sturmian words and Sturmian morphisms

Let Σ = {a, b}. A word w ∈ Σ∗ is called balanced if the difference of the number of a’s (or,
equivalently, b’s) in every two factors of the same length of w is at most 1. An infinite word
x is balanced if every finite factor of x is balanced. A finite word w is circularly balanced if
each word in R(w) is balanced.

An infinite word over Σ = {a, b} is a Sturmian word if it has exactly n + 1 distinct factors
of length n for every n ≥ 0. The theory of Sturmian words is very well studied (see [24] for a
reference). For example, the following characterization is well known.

▶ Theorem 1. An infinite word over Σ = {a, b} is Sturmian if and only if it is balanced and
aperiodic.

A class of Sturmian words, called characteristic Sturmian words, can be constructed by
using finite words, called standard Sturmian words, defined recursively as follows. Given
an infinite sequence of integers (d0, d1, d2, . . .), with d0 ≥ 0, di > 0 for all i > 0, called
directive sequence, the associated standard Sturmian words are defined by s0 = b, s1 = a,
and si+1 = s

di−1
i si−1, for i ≥ 1. A characteristic Sturmian word is the limit of an infinite

sequence of standard Sturmian words, i.e., s = limi→∞ si. Note that standard Sturmian
words are finite words also appearing as extremal case for several algorithms and data
structures [19, 7, 26, 37].

A Sturmian morphism is a morphism that maps infinite Sturmian words to infinite
Sturmian words. Some combinatorial characterizations of Sturmian morphisms have been
proved in [3]. In particular, a binary morphism µ is Sturmian if and only if it is acyclic
and balanced (i.e., it maps balanced words to balanced words). Berstel and Séébold [3] also
proved the following characterization:

▶ Theorem 2. An acyclic morphism µ is Sturmian if and only if it is locally Sturmian, that
is, there exists a Sturmian word s such that µ(s) is Sturmian.

Let us denote the following morphisms:

E :
{

a 7→ b

b 7→ a
φ :

{
a 7→ ab

b 7→ a
φ̃ :

{
a 7→ ba

b 7→ a

The morphism φ is called the Fibonacci morphism, since its fixed point is the Fibonacci
word abaababaabaababaab · · · . The monoid {E, φ, φ̃}∗ generated by E, φ, and φ̃, by using
the composition operator ◦, is known as the Sturm monoid. The following theorem, proved
in [28], shows the combinatorial structure of Sturmian morphisms.

▶ Theorem 3. A morphism is Sturmian if and only if it belongs to {E, φ, φ̃}∗.

Burrows–Wheeler transform

The Burrows–Wheeler transform (BWT) of a word w, denoted by bwt(w), is a permutation
of w obtained by sorting all its rotations in lexicographical order and then concatenating the
last symbol of each rotation. The original word can be recovered if one stores the position
where it appears in the list of sorted rotations. If a word is highly repetitive, the number of
equal-letter runs of the BWT tends to be small. In fact, Kempa and Kociumaka have shown
that rbwt is never too far from the size of the Lempel-Ziv parsing, a widely used repetitiveness
measure [16]. Hence applying run-length encoding to the BWT is very effective. Because
of this, the value rbwt(w) = |rle(bwt(w))| that counts the number of BWT-runs of w, i.e.,
equal-letter runs of bwt(w), is used as a measure for capturing the repetitiveness of the word
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w. To understand the particularities of the BWT of a word w, sometimes it is useful to think
about the BWT-matrix of the sorted rotations of w. It is not difficult to see that, when w is
a word such that alph(w) = {a, b}, then rbwt(w) is an even number.

The Burrows–Wheeler transform is strictly related to the notions of balance, Sturmian
word and morphism, as shown in the following proposition.

▶ Proposition 4. Let w be a word such that alph(w) = {a, b}. Then the following are
equivalent:
1. w is circularly balanced;
2. w ∈ R(sℓ), for some standard Sturmian word s and for some ℓ > 0;
3. rbwt(w) = 2;
4. w = (µ(a))ℓ for a Sturmian morphism µ and for some ℓ > 0.

Proof. The equivalence of 1, 2 and 3 is in [26, 35]. The equivalence with 4 is in [8] (see also
Proposition 10 in [34]). ◀

3 Morphisms and sorted rotations of words

We start by introducing some definitions regarding the rotations of morphic images of words.

▶ Definition 5. Let µ : Σ∗ 7→ Γ∗ be a morphism. Then, we define the multisets

Iµ(w) = {µ(w′) |w′ ∈ R(w)}
Sµ(w) = {vµ(w′)u |u, v ∈ Γ+, uv = µ(a) for some a ∈ Σ, and aw′ ∈ R(w)}.

The multiset Iµ(w) corresponds to the rotations of µ(w) obtained by applying µ to the
rotations of w. The multiset Sµ(w) corresponds to all the remaining rotations of µ(w). We
refer to the multiset Iµ(w) as the I-rotations of µ(w), and to the multiset Sµ(w) as the
S-rotations of µ(w). These two multisets could have elements that end up being equal, as we
show in the following example.

▶ Example 6. Let µ ≡ (a, bab), which is an acyclic binary morphism. Then, ab is primitive
but µ(ab) = abab is not. Moreover, Iµ(w) = {abab, baba} = Sµ(w).

We now prove some combinatorial properties of words having the same Parikh vector. By
using such properties, we prove that, in the case of the binary alphabet, the lexicographic
order among the rotations of a given word is either preserved or reversed, after a morphism
is applied. This is a key point to show that the number of BWT-runs cannot decrease after
the application of a binary morphism. This is no longer true for larger alphabets.

The following lemma shows that distinct words having the same Parikh vector must have
Hamming distance of at least 2.

▶ Lemma 7. Let w1, w2 ∈ Σ∗ be such that w1 ̸= w2 and P (w1) = P (w2). Then,
dH(w1, w2) ≥ 2.

Proof. By definition of dH , we have that dH(w1, w2) = 0 if and only if w1 = w2. So, let us
suppose by contradiction that dH(w1, w2) = 1. Then, there exist two finite words u, v ∈ Σ∗

and two distinct indices i < j ∈ [1, σ] such that w1 = uaiv and w2 = uajv. It follows that
the Parikh vectors of w1 and w2 are respectively

P (w1) = (|u|a1 + |v|a1 , . . . , |u|ai
+ |v|ai

+ 1, . . . , |u|aj
+ |v|aj

, . . . , |u|aσ
+ |u|aσ

)

and

P (w2) = (|u|a1 + |v|a1 , . . . , |u|ai + |v|ai , . . . , |u|aj + |v|aj + 1, . . . , |u|aσ + |u|aσ ).

Thus, we obtain that the P (w1) ̸= P (w2), a contradiction. ◀

CPM 2023
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Since all the words in the same conjugacy class share the same Parikh vector, we can
derive the following

▶ Corollary 8. Let w ∈ Σ∗ be a word. Then, for every word w′ ∈ R(w) such that w′ ̸= w,
one has dH(w, w′) ≥ 2.

Here, we introduce and study new properties of some classes of morphisms, which are
related to the number of BWT-runs.

▶ Definition 9. A morphism µ is abelian order-preserving if for every pair of distinct words
x and y having the same Parikh vector, it holds that x < y ⇐⇒ µ(x) < µ(y).

A morphism µ is abelian order-reversing if for every pair of distinct words x and y having
the same Parikh vector, it holds that x < y ⇐⇒ µ(x) > µ(y).

In general, a morphism can be neither abelian order-preserving nor abelian order-reversing:

▶ Example 10. A cyclic morphism is trivially not abelian order-preserving nor abelian
order-reversing. The acyclic morphism µ ≡ (b, a, c) is also neither of them. This can be
verified on the rotations of the word abc.

However, all acyclic morphisms with a binary domain are either abelian order-preserving
or abelian order-reversing, as we show in the following lemma.

▶ Lemma 11. Let µ : {a, b}∗ 7→ Σ∗ be an acyclic morphism. Then, µ is either abelian
order-preserving or abelian order-reversing.

Proof. Let µ ≡ (α, β) be an acyclic morphism (i.e., αβ ̸= βα). For the proof, we assume
that |α| ≤ |β|, and the other case is treated symmetrically. Factorize µ as (α, β) = (α, αkv),
where k ≥ 0 is as big as possible. This factorization is unique, and α is not a prefix of v,
otherwise, k is not as big as possible. Also, v ̸= ε and v ̸= α because the morphism µ is
acyclic. Let x = uaz1 and y = ubz2 be two distinct binary words with the same Parikh vector.
Note that a b has to appear in z1, since otherwise x has fewer b’s than y. Let z1 = atbz′

1
for some t ≥ 0 and z′

1 ∈ {a, b}∗. We can write x = uaatbz′
1. Then, µ(x) = µ(u)αkααtvµ(z′

1)
and µ(y) = µ(u)αkvµ(z2). We proceed by case analysis.

If v is not a prefix of α, then the order between µ(x) and µ(y) depends only on the order
between α and v. The reason is that µ(x) and µ(y) share a common prefix µ(u)αk, followed
by α and v respectively, which differ at some position from left to right. Hence, if α < v, we
obtain x < y ⇐⇒ µ(x) < µ(y); if v < α, then we obtain x < y ⇐⇒ µ(x) > µ(y).

If v is a proper prefix of α and k > 0, rewrite µ(y) = µ(u)αkvαz′
2. We can do this

because y has to have at least one letter after ub and both images α and β start with α

(in the case of β because k > 0). We note that the common prefix µ(u)αk is followed by
αv in µ(x) (αv is a prefix of αα), and by vα in the case of µ(y). The order between µ(x)
and µ(y) is then completely determined by the order between αv and vα. This happens
because αv and vα are words of the same length which must be distinct, as implied by the
inequality αβ = ααkv ̸= βα = αkvα. Hence, if αv < vα, we obtain x < y ⇐⇒ µ(x) < µ(y);
if vα < αv, then we obtain x < y ⇐⇒ µ(x) > µ(y).

No other case is possible. By construction, α is not a prefix of v. Also, α ̸= v, so if v is a
prefix of α, it has to be a proper prefix. If this is the case, as |α| ≤ |αkv| and |v| < |α|, k has
to be at least 1. ◀

Using Lemma 11 we can easily derive the following corollary.
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▶ Corollary 12. Let w be a binary word and let µ be an acyclic morphism. Then, for all pairs
of rotations u, v of w, either u < v ⇐⇒ µ(u) < µ(v) (when µ is abelian order-preserving),
or u < v ⇐⇒ µ(u) > µ(v) (when µ is abelian order-reversing).

We introduce new measures to study how the action of a morphism affects the BWT-runs.

▶ Definition 13. Let µ be a morphism and w a word. We define

∆+
µ (w) = rbwt(µ(w))− rbwt(w)

and

∆×
µ (w) = rbwt(µ(w))

rbwt(w) .

Acyclic binary morphisms cannot decrease the number of BWT-runs of any word.

▶ Theorem 14. Let µ : {a, b}∗ 7→ Σ∗ be an acyclic morphism. Then ∆+
µ (w) ≥ 0 for every

w ∈ {a, b}∗.

Proof. Let µ ≡ (α, β). Since rbwt(w) = rbwt(wm) for every w ∈ Σ∗ and m > 1, let us
assume that w is primitive. For the proof, we assume that |α| ≥ |β|, and the other case
is treated symmetrically. First, let us consider the case where β is not a suffix of α. Let
moreover x ∈ Σ∗ be the longest common suffix between α and β. It follows that there exist
α′, β′ ∈ Σ+ such that α = α′x and β = β′x, and that the last symbol of α′ is different
from the last of β′ (otherwise x would be longer). Let Rx(µ(w)) denote the multiset of
rotations of µ(w) with x as a prefix. Note that if x = ε, then Rx(µ(w)) = Iµ(w). Since x

appears in both α and β, it follows that |Rx(µ(w))| ≥ |w|. Specifically, for each i ∈ [1, |w|],
there exists ti ∈ Rx(µ(w)) such that ti = xµ(w[i + 1, |w|] · w[1, i − 1])v, where v is either
α′ or β′, depending on whether w[i] is a or b respectively. The lexicographical order of
these |w| rotations of µ(w) with the same prefix correspond to the lexicographical order of
the rotations in Iµ(w), since by Corollary 8 the words

⋃|w|
i=1{µ(w[i + 1, |w|] · w[1, i − 1])}

must differ in at least one position. By Corollary 12 this is either in the same or in the
reverse order with respect to the sorting of the rotations of w. Thus, there exists an injective
coding λ : {a, b}∗ 7→ Σ′∗ ⊆ Σ such that either λ(bwt(w)) or λ(bwt(w)R) is a subsequence of
bwt(µ(w)), and therefore rbwt(µ(w)) ≥ rbwt(w).

Let us now consider the case where β is suffix of α. Then, there exists a primitive word
u ∈ Σ+ and two integers p ≥ q ≥ 1 such that β = uq, and α = α′up, with α′ ∈ Σ+ that does
not have u as suffix. Note that α′ ̸= ε, otherwise we would have αβ = upuq = uqup = βα,
i.e. µ would not be acyclic. Let x be the longest common suffix between α′ and u. If x ̸= α′,
from analogous arguments to the case where β is not a suffix of α, we have at least rbwt(w)
equal-letter runs in Rxup(µ(w)). Otherwise, if x = α′, let us consider the word y ∈ Σ+ such
that u = yx. We can then consider the longest common suffix x′ between xy and yx, which
must be a proper suffix (otherwise u would not be primitive), and apply the same reasoning
over the set Rx′xup(µ(w)) and the thesis follows. ◀

The following example shows that Theorem 14 does not hold in the case of larger
alphabets.

▶ Example 15. Consider the acyclic morphism µ ≡ (b, a, c). Then, bwt(bcba) = bcab and
bwt(µ(bcba)) = bwt(acab) = cbaa.

An immediate consequence of Theorem 14 is the following.
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▶ Corollary 16. Let µ : {a, b}∗ 7→ Σ∗ be an acyclic morphism. Then, ∆×
µ (w) ≥ 1, for every

w ∈ {a, b}∗.

The following theorem provides a characterization of cyclic morphisms in terms of the
number of BWT-runs.

▶ Theorem 17. A morphism µ : {a, b}∗ 7→ Σ∗ is cyclic if and only if there exists k > 0 such
that rbwt(µ(w)) = k for all w ∈ {a, b}∗.

Proof. If µ ≡ (α, β) is cyclic then there exists a primitive word u ∈ Σ∗ such that α = up

and β = uq, for some p, q ≥ 0. Therefore, for each word w ∈ {a, b}∗, we have rbwt(µ(w)) =
rbwt(up·|w|a+q·|w|b) = rbwt(u). The other implication is a consequence of Theorem 14. In fact,
by contraposition for each k > 0 we can find a word w such that rbwt(w) > k (for instance, the
i-th Thue–Morse finite word such that i > k

2 [4]), which leads to rbwt(µ(w)) ≥ rbwt(w) > k

as well. ◀

4 Binary morphisms preserving rbwt

This section is devoted to characterizing binary morphisms such that the number of BWT
equal-letter runs is preserved after the action of the morphism on any binary word. First, we
show with an example that this property is not trivial.

▶ Example 18. Let θ ≡ (ab, aa) be the period-doubling morphism. It can be verified that
∆+

θ (ab) = 0, ∆+
θ (aab) = 2, and ∆+

θ (aaabbaabab) = 4.

Next, we show that every Sturmian morphism fixes the number of BWT-runs. From the
definition of E, φ, and φ̃, and by Lemma 11, we derive the following.

▶ Lemma 19. Let w ∈ {a, b}∗ be a binary word. Then, for all pairs of rotations u and v of
w, and for each χ ∈ {E, φ, φ̃}, it holds that u < v if and only if χ(u) > χ(v).

We prove that the number of BWT-runs is preserved by the morphisms that are the
generators of the Sturmian morphisms. Note that from the following lemma a method can
be derived to construct bwt(µ(w)) starting from bwt(w), for every Sturmian morphism µ and
every binary word w.

▶ Lemma 20. Let w ∈ {a, b}∗ be a binary word with |alph(w)| = 2. Then, for all χ ∈
{E, φ, φ̃}, one has rbwt(w) = rbwt(χ(w)). More in detail, one has bwt(E(w)) = bwt(w)R

and bwt(φ(w)) = bwt(φ̃(w)) = bwt(w)R · a|w|a .

Proof. Since for each word w and each integer k > 0 we have rbwt(w) = rbwt(wk), let us
assume that w is a primitive word. From Lemma 19, the case χ = E is trivial: in fact, from
it follows that bwt(E(w)) = bwt(w)R, and therefore rbwt(w) = rbwt(E(w)).

For the case χ = φ one can observe that every b that occurs in φ(w) is obtained from
φ(a), and therefore it is always preceded by an a. Thus, the rotations of φ(w) left to cover
are all those starting with an a, which therefore must also start with either φ(a) or φ(b). By
Lemma 19, and by observing that φ(a) ends with a b and φ(b) ends with an a, we have that
bwt(φ(w)) = bwt(w)R · a|w|a . Thus, we need to check if the run of a’s at the end merges
with the last symbol of bwt(w)R. This is equivalent to checking that the first symbol of
bwt(w) is a b, and by contradiction if the first rotation in lexicographical order is ua for
some u ∈ {a, b}n−1, then au is a conjugate of w and au < ua for each binary word w, a
contradiction.
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For the case χ = φ̃, one can see for any binary word w = w1w2 · · ·wn we have that
φ(w) = φ(w1w2 · · ·wn) = av1av2 · · · avn, where for each i ∈ [1, n] we have vi = b if wi = a, or
vi = ε if wi = b. On the other hand, for the same word w we have φ̃(w) = φ̃(w1w2 · · ·wn) =
v1av2 · · · avna, where analogously to the previous case vi = b if wi = a, or vi = ε if wi = b.
One can notice that φ(w) and φ̃(w) are conjugate, and the thesis follows. ◀

A graphical interpretation of Lemma 20 is shown in Figure 1.

M(w)

aabba b

abaab b

abbab a

baabb a

babaa b

bbaba a

M(φ(w))

a.a.ab.a.ab.a b.
a.ab.a.ab.ab. a.
a.ab.ab.a.a.a b.
ab.a.a.ab.a.a b.
ab.a.ab.ab.a. a.
ab.ab.a.a.ab. a.
b.a.a.ab.a.ab. a

b.a.ab.ab.a.a. a

b.ab.a.a.ab.a. a

M(φ̃(w))

a. a.a.ba.a.ba. b

a. a.ba.a.ba.b a.
a. a.ba.ba.a.a. b

a. ba.a.a.ba.a. b

a. ba.a.ba.ba. a.
a. ba.ba.a.a.b a.
b a.a.a.ba.a.b a.
b a.a.ba.ba.a. a.
b a.ba.a.a.ba. a.

Figure 1 From left to right, the BWT-matrix for the words w = abbaba, φ(w), and φ̃(w)
respectively. For M(φ(w)) and M(φ̃(w)), we separate with dots the images of symbols from w. The
rotations in bold of M(φ(w)) and M(φ̃(w)) correspond to the words in Iφ(w) and Iφ̃(w) respectively.
The block of rotations in gray at the end of both M(φ(w)) and M(φ̃(w)) are in correspondence
of the equal-letter run of a’s of length |w|a, which occurs for every w ∈ {a, b}∗. One can see that
bwt(φ(w)) = bwt(φ̃(w)) = bwt(w)R · a|w|a .

The following theorem shows a new characterization of Sturmian morphisms.

▶ Theorem 21. Let µ be a binary morphism. Then, the following are equivalent:
1. ∆+

µ (w) = 0 for every word w with |alph(w)| = 2;
2. µ is a Sturmian morphism.

Proof. By Theorem 3 and Lemma 20, all Sturmian morphisms preserve the number of
BWT-runs. Conversely, suppose that µ preserves the number of BWT-runs. By Theorem 17,
such a morphism must be acyclic. Let s = lim si be a characteristic Sturmian word. For
every i, the word µ(si) has 2 runs in its BWT, hence it is circularly balanced (Proposition 4).
Let us consider the word µ(s) = lim µ(si). It is balanced and aperiodic, since it is obtained
by applying an acyclic morphism to a Sturmian word [6]. Then, µ(s) is Sturmian by using
Theorem 1, whence µ is a Sturmian morphism by applying Theorem 2. ◀

5 Binary morphisms increasing rbwt by a constant

The next step after characterizing Sturmian morphisms as those fixing BWT equal-letter runs
on binary words, is to find other binary morphisms that increase the number of BWT-runs
always by the same fixed constant. Remind that if such a constant exists, it has to be an
even integer because the BWT of any binary word starts with b and ends with a.

We show that for every k > 0, we can find a morphism increasing the BWT-runs of any
binary word by exactly 2k. We do so by showing a family of binary morphisms that increase
the BWT-runs always by 2, which then we can compose as we want. This family is formed by
binary morphisms that are similar to the famous Thue–Morse morphism τ ≡ (ab, ba). The
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10:10 On the Impact of Morphisms on BWT-Runs

structure of the BWT of Thue–Morse words has been studied before and it is well understood
[4, 10]. We generalize such results by showing how to derive bwt(µ(w)) from bwt(w) for every
Thue–Morse-like morphism µ and every binary word w.

▶ Definition 22. A binary morphism is Thue–Morse-like if it has the form τp,q ≡ (abp, baq)
for some p, q > 0.

We prove the following proposition, which is crucial to obtain the main result of this
section. Figure 2 highlights the key aspects of the proof.

▶ Proposition 23. For every binary word w such that alph(w) = {a, b}, the I-rotations of
τp,q(w) are contiguous in the BWT-matrix of τp,q(w), and their last letters spell bwt(w).

Proof. Let w be a binary word of length n such that alph(w) = {a, b}. Observe that
τp,q ≡ (abp, baq) is abelian order-preserving, so the I-rotations of τp,q(w) maintain their
relative order. Because τp,q(a) ends with b and τp,q(b) ends with a, if we consider only the
I-rotations of τp,q(w) and take the last letter of each, we obtain bwt(w), which starts with a

and ends with b. It remains to show that all the I-rotations of τp,q(w) are contiguous in its
BWT-matrix.

If p > 1, each S-rotation starting with a, has to start either with aib for some 2 ≤ i ≤ q+1,
or with abaq, and both of these prefixes are smaller than abp. If p = 1, an S-rotation starting
with a is smaller than the word a(baq)n−1baq−1, which is smaller than a rotation having
(ab)iba as a prefix for some 0 < i < n. The I-rotations that start with a have prefixes of
such type. In both cases, we obtain that the S-rotations starting with a are smaller than the
I-rotations starting with a. A symmetric argument shows that S-rotations starting with b

are greater than the I-rotations starting with b. Thus, the I-rotations are contiguous and the
thesis holds. ◀

Now we are ready to show that Thue–Morse-like morphisms increase the number of
BWT-runs of binary words always by 2.

▶ Lemma 24. For every binary word w such that alph(w) = {a, b}, it holds that

bwt(τp,q(w)) = b|w|ba(q−1)|w|b · bwt(w) · b(p−1)|w|aa|w|a ,

and that rbwt(τp,q(w)) = rbwt(w) + 2.

Proof. We show that the block of bwt(τp,q(w)) that corresponds to the S-rotations starting
with the letter a is equal to b|w|ba(q−1)|w|b . If q = 1, all the S-rotations starting with a end
with the letter b. If q > 1, the only S-rotations that start with a and end with b have as
a prefix either aq+1b or aqbaq. The smallest S-rotation starting with a and ending with a

starts with aqbpab or aqbpba. Hence, S-rotations starting with a and ending with b appear
before those ending with a.

It follows that the block of bwt(τp,q(w)) defined by the S-rotations starting with a spells
b|w|ba(q−1)|w|b , because of their order, and because each of these rotations is in correspondence
with some specific a inside τp,q(b) for some specific b of w. Only one of these a’s per image
produces a rotation ending with b, and the other q − 1 a’s yield rotations ending with a.

Showing that the block of bwt(τp,q(w)) corresponding to the S-rotations starting with
the letter b equals b(p−1)|w|aa|w|a is handled symmetrically.

By using Proposition 23, we obtain

bwt(τp,q(w)) = b|w|ba(q−1)|w|b · bwt(w) · b(p−1)|w|aa|w|a .

As bwt(w) starts with a and ends with b, we have that rbwt(τp,q(w)) = rbwt(w) + 2, and the
thesis holds. ◀
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a . . . b

... BWT-matrix(w) x

b . . . a

τp,q≡(abp,baq)
==========⇒

p,q>1

aq+1bp . . . b
... Block 1

...
aqbaq . . . b

aqbp . . . a
... Block 2

...
abaq . . . a

abp . . . a

... Block 3 x

baq . . . b

babp . . . b
... Block 4

...
bpaq . . . b

bpabp . . . a
... Block 5

...
bp+1aq . . . a

Figure 2 Scheme showing the action of a Thue–Morse-like morphism τp,q ≡ (abp, baq) with
p, q > 1 on a binary word w with alph(w) = {a, b}. At the left is the BWT-matrix of w. At the right
is the BWT-matrix of τp,q(w). The cases where p = 1 or q = 1 are similar with Block 2 or Block 4
omitted.

As a consequence of Theorem 21 and Lemma 24, we obtain the following corollary.

▶ Corollary 25. Given a non-negative even integer 2t, there exists a binary morphism µ such
that ∆+

µ (w) = 2t and ∆×
µ (w) ≤ t + 1, for every word w with |alph(w)| = 2.

Proof. We can construct the morphism µ ∈ ({E, φ, φ̃}∪{(abp, baq) | p, q > 0})∗ such that µ is
obtained by composing, in any order, exactly t morphisms taken in the set {(abp, baq) | p, q >

0} and an arbitrary number of Sturmian morphisms. By Theorem 21 and Lemma 24, it holds
that ∆+

µ (w) = 2t. The value of the function ∆×
µ (w) = (rbwt(w)+2t)/rbwt(w) = 1+2t/rbwt(w)

is maximized when rbwt(w) = 2. This maximum is ∆×
µ (w) = t + 1. ◀

We conclude this section by showing a simple algorithm that allows us to construct an
arbitrarily large family of words w1, w2, . . . with exactly 2t BWT-runs each. In Algorithm 1,
a morphism µ such that ∆+

µ (w) = 2(t − 1) for every binary word is required. Note that
Corollary 25 assures that such a morphism exists.

Moreover, each word wi is a prefix of the next word wi+1, so that the infinite word
w = limi→∞ wi is well defined, and it is aperiodic. This is given because it holds for the
(implicit) standard Sturmian words si for i ∈ [1, k] being used, which are circularly balanced
(i.e., rbwt(w) = 2 on them, as reported in Proposition 4), and their limit is a characteristic
Sturmian word, which is aperiodic.
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Algorithm 1 Algorithm for constructing words with 2t BWT-runs.

Require: A morphism µ with ∆+
µ (w) = 2(t− 1). A sequence of positive integers d1, . . . , dk.

Ensure: A sequence of words w1, w2, . . . , wk where rbwt(wi) = 2t for any 1 ≤ i ≤ k.
w−1 ←− µ(b)
w0 ←− µ(a)
for i ∈ [1, k] do

wi ←− wdi
i−1wi−2

end for
return w1, . . . , wk

6 Morphisms with an unbounded increase on rbwt

There exist morphisms that do not behave as well as Sturmian and Thue–Morse-like
morphisms with respect to rbwt. If we consider an alphabet of size greater than 2, we
can always find a morphism µ such that the values ∆+

µ (w) and ∆×
µ (w) are arbitrarily large.

▶ Lemma 26. Let Σ = {c1, . . . , ck, a, b} with k ≥ 1. Let φ ≡ (ab, a) be the Fibonacci
morphism. Then, rbwt(w) = k + 3 if w belongs to {φ2i(a)c1c2 · · · ck | i ≥ 1}.

Proof. We prove the result by induction on k ≥ 1. Observe that the words φ2i(a) for i ≥ 1
are Fibonacci words ending with the letter a. It is known that in these words, if we append
the letter c1 smaller than a at the end, then the number of runs becomes 4 [31, Theorem 11].
For the inductive step, suppose that rbwt(φ2i(a)c1 . . . ck−1) = k + 2. When appending ck at
the end, the rotations that do not start with ck keep their relative order, and the rotation
that originally ended with ck−1 now ends with ck. Hence, they define the same number of
runs as before. The rotation starting with ck can be found after the rotation starting with
ck−1, which does not end with b, and before the first rotation starting with a, which ends
with b. Hence, the number of runs increases by 1. Thus, rbwt(φ2i(a)c1 . . . ck) = k + 3. ◀

▶ Lemma 27. Let Σ = {c1, . . . , ck, a, b} with k ≥ 1. Let φ ≡ (ab, a) be the Fibonacci
morphism, and µ ≡ (c1, c2, . . . , ck, ab, a) be a morphism on the alphabet Σ. Then, rbwt(w) =
Ω(log n) for every w ∈ {µ(φ2i(a)c1c2 · · · ck) | i ≥ 1}.

Proof. The morphism µ maps a Fibonacci word ending with a having c1 . . . ck appended at
the end, to the next Fibonacci word, which ends with b, having c1 . . . ck appended at the
end. For k = 1, it is known that the number of runs in this family is Ω(log n) [15]. In a
similar way to Lemma 26, it is possible to prove by induction that appending ck at the end
of µ(φ2i(a)c1c2ck−1) adds 2 runs when k = 2 and exactly 1 new run when k > 2. ◀

▶ Proposition 28. For each alphabet Σ with size greater than 2 there exist a morphism µ,
satisfying that for every k, there is a word w ∈ Σ∗ such that ∆+

µ (w) ≥ k and ∆×
µ (w) ≥ k.

Proof. This is immediate from Lemma 26 together with Lemma 27. ◀

Finding examples like the previous ones for binary morphisms is trickier, but at least in
the case of ∆+

µ , it is possible. An example of a binary morphism for which the value ∆+
µ (w)

can be arbitrarily large is the period-doubling morphism denoted by θ and defined by the
rules θ(a) = ab and θ(b) = aa.

▶ Lemma 29. Let θ be the period-doubling morphism. For any positive integer k there exist
a word w such that ∆+

θ (w) > k.
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Proof. W.l.o.g assume that k > 2. For i ∈ [2, k] define the words

si = abia · ui and ei = abia · uR
i , where ui = a2k−ibai−2.

We say that si is a starting factor, and ei is an ending factor. Observe that si (resp. ui) is
always smaller than ei (resp. uR

i ). Moreover, it holds that if i < j, then ui < uj < uR
j < uR

i .
We define the word wk = (Πk

i=2siei)ak and show that ∆+
θ (wk) = 2k. Figure 3 shows the

structure of both BWTs and highlights the increase in the number of runs.

a . . . . . . b
...

...
... x

a bkauR
k . . . a

ba a2kb . . . a
...

...
... y

ba bb . . . a

b2a u2 . . . a

b2a u3 . . . ab
...

...
...

...
b2a uk . . . abk−2

b2a uR
k . . . abk−2

...
...

...
...

b2a uR
3 . . . ab

b2a uR
2 . . . a

...
...

...
...

bka uk . . . a

bka uR
k . . . a

θ≡(ab,aa)========⇒
reverse order

b . . . . . . a

ab . . . . . . aa
...

...
... x

ab θ(bkauR
k ) . . . ab

(aa)b . . . . . . a

(aa)ab θ(a2kb) . . . ab
...

...
... y

(aa)ab θ(bb) . . . ab

(aa)2b . . . . . . a

(aa)2ab θ(u2) . . . ab

(aa)2ab θ(u3) . . . aa
...

...
...

...
(aa)2ab θ(uk) . . . aa

(aa)2ab θ(uR
k ) . . . aa

...
...

...
...

(aa)2ab θ(uR
3 ) . . . aa

(aa)2ab θ(uR
2 ) . . . ab

(aa)3b . . . . . . a
...

...
...

...
(aa)kb . . . . . . a

(aa)kab θ(uk) . . . ab

(aa)kab θ(uR
k ) . . . ab

Figure 3 To the left is the BWT-matrix of wk. To the right is the BWT-matrix of θ(wk), here
displayed in reverse order. Each gray row represents a block of rotations from Sθ(wk) starting with
the same prefix, highlighted in the first column. Each one of these block except the first one yields 2
extra runs on bwt(θ(wk)). The words x and y correspond to the concatenation of the last letters of
blocks of the BWT-matrix of wk whose form is unknown, but do not play a role in the increase on
rbwt(θ(wk)).

Consider the rotations of wk starting with bia with 1 < i ≤ k. The left shift of the
unique rotation starting with the i-th starting factor, and the left shift of the unique rotation
starting with the i-th ending factor, are the smallest and greater, respectively. Both of them
end with the letter a. The remaining rotations starting with bia (if any) have to end with b

because in them the prefix bia corresponds to a suffix of a longer run of b’s followed by an a.
In the case of the rotations of wk starting with ba, the one starting in the last b of ek, has

bakak as a prefix, so it is the smallest of them. Also, this rotation is preceded by the factor
abkaak−2, which ends in a. The greatest rotation starting with ba is the one starting with
the b preceding e2, which is followed by abb and preceded also by an a. In the case of the
rotations of wk starting with a, the smallest of them ends with the letter b as in any binary
word. The greatest is the rotation starting with abkauR

k which is preceded by the letter a.
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10:14 On the Impact of Morphisms on BWT-Runs

With the general structure of the BWT of wk in mind, now we analyse the BWT of
θ(wk). The morphism θ is order-reversing and all the I-rotations of θ(wk) start with the
letter a. S-rotations of θ(wk) starting with the letter b are always preceded by an a, and
it is easy to see that this run of a’s merges with the last a in the greatest I-rotation. The
S-rotations starting with an a have an even number of a’s before the first b appears, and also
end with the letter a. This implies that they appear grouped after all the I-rotations of the
form (aa)iab for some 1 ≤ i ≤ k, and before all the I-rotations starting with (aa)i−1ab. As
the smallest and greatest rotations of each of these blocks of I-rotations end with b (because
of the action of θ), it follows that the group of S-rotations starting with (aa)ib increases the
number of runs of the BWT of θ(wk) by 2 with respect to the BWT of wk. This happens for
1 ≤ i ≤ k, so the overall increase in rbwt after applying the morphism θ is exactly 2k. ◀

From the lemma above we can deduce that there are binary morphisms that can greatly
increase the number of BWT-runs of some words. We define the sensitivity of BWT-runs
to morphism application in a similar way to how Akagi et al. define the sensitivity of
repetitiveness measures to edit operations [1].

▶ Definition 30. The BWT additive sensitivity and BWT multiplicative sensitivity for a
morphism µ are respectively, the functions

ASµ(n) = max
w∈Σn

(∆+
µ (w)) and MSµ(n) = max

w∈Σn
(∆×

µ (w))

▶ Proposition 31. Let θ be the period-doubling morphism. It holds that ASθ(n) = Ω(
√

n).

Proof. The length of the words wk in Lemma 29 is n = Θ(k2). We showed that ∆+
θ (wk) =

2k = Θ(
√

n) on these words. For values of n in between |wk| and |wk+1|, it is easy to see
that for the word wkaj for 0 < j < |wk+1| − |wk|, it still holds that ∆+

θ (wkaj) = 2k, as none
of the key aspects of the proof of Lemma 29 changes. Thus, the claim is true. ◀

7 On the impact of morphisms on other repetitiveness measures

Morphisms behave very differently when other repetitiveness measures are considered. For a
general survey on repetitiveness measures see [29]. For instance, any morphism µ increases
the size of the Lempel-Ziv parsing [22] of any word by at most an additive constant depending
only on µ. This holds for any alphabet size, as shown by Constantinescu and Ilie [9, Lemma 8].

▶ Lemma 32. Let µ : Σ∗ → Γ∗ be any morphism. For every word w, it holds that
z(µ(w)) ≤ z(w) + k where k is a constant depending only on µ.

The result of Constantinescu and Ilie can easily be extended to the LZ parsing without
overlaps [22], the optimal (not the greedy) LZ-end parsing [20], and bidirectional macro-
schemes [38]. We can show a similar result for the measure g(w) defined as the size of the
smallest deterministic context-free grammar generating only w [18]. This can be further
generalized to the size of the smallest run-length context-free grammar [33], and also to the
size of the smallest collage system [17].

▶ Lemma 33. Let µ : Σ∗ → Γ∗ be any (possible erasing) morphism. For every word w, it
holds that g(µ(w)) ≤ g(w) + k where k is a constant depending only on µ.

Proof. Given a deterministic context-free grammar G of size |G| generating w, we construct
a grammar generating µ(w). For each occurrence of a terminal symbol a in any rule of the
grammar, replace it with a new non-terminal Aa. For each terminal symbol add the rule
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Aa → µ(a). The size of the resulting grammar is g′ ≤ |G|+ k where k =
∑

a∈Σ |µ(a)|. Let G

be the smallest grammar generating w, and then the thesis holds. If the resulting grammar
has erasing rules, we can delete them, and replace the occurrences of those erasing variables
in other variables by ε. We repeat this recursively. The size of the resulting grammar can
only decrease, so the thesis still holds. ◀

If for some fixed measure and morphism, this morphism increases the value of the measure
always by at most a fixed constant, then we can derive an easy upper bound for the family
of words obtained by iterating that morphism.

▶ Proposition 34. Let ρ be a repetitiveness measure and µ be a morphism. Suppose that for
every word w it holds that ρ(µ(w)) ≤ ρ(w) + k for a constant k depending only on ρ and µ.
Then, ρ = O(i) in the family {µi(w) | i ≥ 0}.

Proof. Let k′ = ρ(µ(w)). We show by induction that ρ(µi(w)) ≤ ki + k′ for any i ≥ 1. For
i = 1, clearly ρ(µ(w)) ≤ k + k′. Let i > 1 and suppose the claim is true for i − 1. Then,
ρ(µi(w)) ≤ ρ(µi−1(w)) + k ≤ (k(i− 1) + k′) + k ≤ ki + k′. ◀

The families on the proposition above are known as D0L-sequences [36]. As a direct
consequence of Lemma 33 and Proposition 34, it holds that all repetitiveness measures
upper-bounded by g are O(i) on the family of words belonging to a fixed D0L-sequence. In
fact, the result we obtain is even more general because we can apply any morphism to words
obtained from a D0L-sequence increasing the size of the grammar only by a fixed constant.

▶ Proposition 35. For every (possibly erasing) morphisms µ and λ, and every word w, it
holds that g = O(i) in the family {λ ◦ µi(w) | i ≥ 0}.

Proof. By Lemma 33 and Proposition 34, it holds that g(µi(w)) = O(i) for every (possibly
erasing) morphism µ. By Lemma 33, one has g(λ ◦ µi(w)) ≤ g(µi(w)) + k for every (possibly
erasing) morphism λ, and a constant k depending on λ. Thus, g(λ ◦ µi(w)) = O(i). ◀

It is unknown if an analogous result is true for rbwt. In fact, even for the restricted case
of purely morphic words, this is known to hold only for the binary case [12].

8 Conclusions and further work

In this work, we have studied the impact of morphism application on the number of BWT
equal-letter runs of finite words.

Firstly, we characterized Sturmian morphisms as the binary morphisms preserving the
number of BWT-runs for all words w such that |alph(w)| = 2. Besides being interesting on
its own, when this characterization is in conjunction with the rest of our results, it allows
us to construct binary words with any possible number of BWT-runs, and morphisms with
known behavior. This can have practical applications, for instance, in experimentation. In
fact, we showed an infinite family of binary morphisms called Thue–Morse-like morphisms,
which increase the number of BWT-runs of binary words by 2. As a consequence, we have
extended the results of Brlek et al. [4] on the number of BWT-runs of words generated by
iterating the composition of the Fibonacci morphism with the Thue–Morse morphism to
any composition of Sturmian morphisms and Thue–Morse-like morphisms. Also, we are
able to construct infinite sequences of words of increasing length, having all exactly 2k

BWT-runs, and converging to an aperiodic infinite word at their limit. While the result on
Sturmian morphisms is a complete characterization, it is unknown if the compositions of
Thue–Morse-like and Sturmian morphisms are the only binary morphisms increasing the
number of BWT-runs exactly by 2. The following question is left open.
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▶ Question 36. What is a sufficient and necessary condition for a binary morphism µ, to
have ∆+

µ (w) ≤ 2k (where k > 0) for every binary word w?

We showed that when the alphabet size of the domain is σ > 2, the values ∆+
µ (w) and

∆×
µ (w) can be arbitrarily large for some morphisms. In the case of the binary alphabet, we

went further and showed that there exists morphisms where ASµ(w) = Ω(
√

n). We plan to
extend such a result by studying morphisms where all the images of letters are primitive
words. On the other hand, it is unknown if the value ∆×

µ (w) can be unbounded for some
morphism µ with binary domain. We conjecture that this is not the case.

▶ Conjecture 37. For every morphism µ : {a, b}∗ 7→ Σ∗, we can find a constant k such that
∆×

µ (w) ≤ k, for every word w ∈ {a, b}∗.

If Conjecture 37 were true, the following conjecture on images of standard Sturmian
words would also be true.

▶ Conjecture 38. For every morphism µ : {a, b}∗ 7→ Σ∗ and every sequence of standard
Sturmian words (si)i∈N, it holds that rbwt(µ(si)) = Θ(1).

Finally, we showed that the impact of morphism application on BWT-runs, is quite
different from the impact of morphisms on other repetitiveness measures based on popular
compression schemes, like context-free grammars and LZ factorizations. In these measures,
the additive increase after morphism application is bounded by a constant depending only
on the morphism and the measure. This raises the following question, which is true in the
case of smallest grammars and (some) variants of the LZ parsing, but unknown in the case
of BWT equal-letter runs.

▶ Question 39. Does it hold that rbwt(w) = O(i) when w ∈ {λ ◦µi(a) | i ≥ 0}, for every pair
of morphisms µ : {a, b}∗ 7→ {a, b}∗ and λ : {a, b}∗ → Σ∗?

We are working on proving or refuting these questions and conjectures. In the future,
we plan to study how to extend the results on morphism fixing BWT-runs, and morphisms
increasing BWT-runs by a fixed natural number, to alphabets of size greater than 2.
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Abstract
An elastic-degenerate (ED) string T is a sequence of n sets T [1], . . . , T [n] containing m strings in
total whose cumulative length is N . We call n, m, and N the length, the cardinality and the size of
T , respectively. The language of T is defined as L(T ) = {S1 · · · Sn : Si ∈ T [i] for all i ∈ [1, n]}. ED
strings have been introduced to represent a set of closely-related DNA sequences, also known as a
pangenome. The basic question we investigate here is: Given two ED strings, how fast can we check
whether the two languages they represent have a nonempty intersection? We call the underlying
problem the ED String Intersection (EDSI) problem. For two ED strings T1 and T2 of lengths
n1 and n2, cardinalities m1 and m2, and sizes N1 and N2, respectively, we show the following:

There is no O((N1N2)1−ϵ)-time algorithm, thus no O
(
(N1m2 + N2m1)1−ϵ

)
-time algorithm and

no O
(
(N1n2 + N2n1)1−ϵ

)
-time algorithm, for any constant ϵ > 0, for EDSI even when T1 and

T2 are over a binary alphabet, unless the Strong Exponential-Time Hypothesis is false.
There is no combinatorial O((N1 +N2)1.2−ϵf(n1, n2))-time algorithm, for any constant ϵ > 0 and
any function f , for EDSI even when T1 and T2 are over a binary alphabet, unless the Boolean
Matrix Multiplication conjecture is false.
An O(N1 log N1 log n1 + N2 log N2 log n2)-time algorithm for outputting a compact (RLE) rep-
resentation of the intersection language of two unary ED strings. In the case when T1 and T2

are given in a compact representation, we show that the problem is NP-complete.
An O(N1m2 + N2m1)-time algorithm for EDSI.
An Õ(Nω−1

1 n2 + Nω−1
2 n1)-time algorithm for EDSI, where ω is the exponent of matrix multi-

plication; the Õ notation suppresses factors that are polylogarithmic in the input size.

We also show that the techniques we develop have applications outside of ED string comparison.
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1 Introduction

Sequence (or string) comparison is a fundamental task in computer science, with numerous
applications in computational biology [24], signal processing [16], information retrieval [7],
file comparison [25], pattern recognition [4], security [36], and elsewhere [37]. Given two or
more sequences and a distance function, the task is to compare the sequences in order to
infer or visualize their (dis)similarities [15].

Many sequence representations have been introduced over the years to account for unknown
or uncertain letters, a phenomenon that often occurs in data that comes from experiments [8].
In the context of computational biology, for example, the IUPAC notation [27] is used to
represent locations of a DNA sequence for which several alternative nucleotides are possible.
This gives rise to the notion of degenerate string (or indeterminate string): a sequence of finite
sets of letters [2]. When all sets are of size 1, we are in the special case of a standard string (or
deterministic string). Degenerate strings can encode the consensus of a population of DNA
sequences [17] in a gapless multiple sequence alignment (MSA). Iliopoulos et al. generalized
this notion to also encode insertions and deletions (gaps) occurring in MSAs by introducing
the notion of elastic-degenerate string: a sequence of finite sets of strings [26].

The main motivation to consider elastic-degenerate (ED) strings is that they can be used
to represent a pangenome: a collection of closely-related genomic sequences that are meant to
be analyzed together [42]. Several other, more powerful, pangenome representations have been
proposed in the literature, mostly graph-based ones; see the comprehensive survey by Carletti
et al. [12] or by Baaijens et al. [5]. Compared to these more powerful representations, ED
strings have at least two algorithmic advantages, as they support: (i) fast and simple on-line
string matching [23, 13]; and (ii) (deterministic) subquadratic string matching [3, 9, 10].

Our main goal here is to give the first algorithms and lower bounds for comparing two
pangenomes represented by two ED strings.1 We consider the most basic notion of matching,
namely, to decide whether two ED strings, each encoding a language, have a nonempty
intersection. Like with standard strings, algorithms for pairwise ED string comparison can
serve as computational primitives for many analysis tasks (e.g., phylogeny reconstruction);
lower bounds for pairwise ED string comparison can serve as meaningful lower bounds for
more powerful pangenome representations such as, for instance, variation graphs [12].

Let us start with some basic definitions and notation. An alphabet Σ is a finite nonempty
set of elements called letters. By Σ∗ we denote the set of all strings over Σ including the
empty string ε of length 0. For a string S = S[1] · · ·S[n] over Σ, we call n = |S| its length.
The fragment S[i . . j] of S is an occurrence of the underlying substring P = S[i] · · ·S[j]. We
also say that P occurs at position i in S. A prefix of S is a fragment of S of the form S[1 . . j]
and a suffix of S is a fragment of S of the form S[i . . n]. An elastic-degenerate string (ED
string, in short) T is a sequence T = T [1] · · ·T [n] of n finite sets, where T [i] is a subset
of Σ∗. The total size of T is defined as N = Nε +

∑n
i=1

∑
S∈T [i] |S|, where Nε is the total

number of empty strings in T . By m we denote the total number of strings in all T [i], i.e.,
m =

∑n
i=1 |T [i]|. We say that T has length n = |T |, cardinality m and size N = ||T ||. An

ED string T can be treated as a compacted nondeterministic finite automaton (NFA) with
n + 1 states, numbered 1, . . . , n + 1, and m transitions labeled by strings in Σ∗. State 1 is
starting and state n + 1 is accepting. For each index i ∈ [1, n] and string S ∈ T [i], there is a

1 Pangenome comparison is one of the central goals of two large EU funded projects on computational
pangenomics: PANGAIA (https://www.pangenome.eu/) and ALPACA (https://alpaca-itn.eu/).

https://www.pangenome.eu/
https://alpaca-itn.eu/
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transition from state i to state i + 1 with label S; inspect also Figure 1 for an example. The
language L(T ) generated by the ED string T is the language accepted by this compacted
NFA. That is, L(T ) = {S1 · · ·Sn : Si ∈ T [i] for all i ∈ [1, n]}.

GTTCAGTTTAC--AA

GTTCAGTTTACACAA

GTTGAGATT----AA

GTT
C

G

AG
T

A

TT
AC

ACAC

AAε

starting accepting

{
GTT

}
·

{ }
·

{
AG

}
·

{ }
·

{
TT

}
·

{ }
·

{
AA

}
C

G

T

A

AC
ACAC
ε

MSA ED string

NFA

Figure 1 An example of an MSA and its corresponding (non-unique) ED string T of length n = 7,
cardinality m = 11 and size N = 20, and the compacted NFA for T . The compacted NFA can be
seen as a special case of an edge-labeled directed acyclic graph.

We next define the main problem in scope; inspect also Figure 2 for an example.

ED String Intersection (EDSI)
Input: Two ED strings, T1 of length n1, cardinality m1 and size N1, and T2 of length
n2, cardinality m2 and size N2.
Output: YES if L(T1) and L(T2) have a nonempty intersection, NO otherwise.

{
a

}
·

{ }
·

{ }
·

{ }
ε

b

ε

c
bcd

de

cde

{
a

}
·

{ }
·

{ }
d e

bcd
cc de

T1 =

T2 =

ED strings Parameters

n1 = 4

m1 = 8

N1 = 13

n2 = 3

m2 = 6

N2 = 10

L(T1) ∩ L(T2)

abcde

accde

ade

abcdde

Figure 2 An example of two ED strings T1 and T2 with their parameters and the intersection of
their languages. In this instance, we see that L(T1) and L(T2) have a nonempty intersection.

Our Results. We assume that the ED strings are over an integer alphabet [1, (N1 +N2)O(1)].
We make the following specific contributions:

1. In Section 2.1, we give several conditional lower bounds. In particular, we show that there
is no O((N1N2)1−ϵ)-time algorithm, thus no O

(
(N1m2 + N2m1)1−ϵ

)
-time algorithm and

no O
(
(N1n2 + N2n1)1−ϵ

)
-time algorithm, for any constant ϵ > 0, for EDSI even when

T1 and T2 are over a binary alphabet, unless the Strong Exponential-Time Hypothesis
(SETH) [11] is false.

2. In Section 2.2, we present other conditional lower bounds. In particular, we show that
there is no combinatorial O((N1 + N2)1.2−ϵf(n1, n2))-time algorithm, for any constant
ϵ > 0 and any function f , for EDSI even when T1 and T2 are over a binary alphabet,
unless the Boolean Matrix Multiplication (BMM) conjecture [1] is false.

CPM 2023
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3. In Section 3, we show an O(N1 log N1 log n1 + N2 log N2 log n2)-time algorithm for out-
putting a compact (RLE) representation of the intersection language of two unary ED
strings. In the case when T1 and T2 are given in a compact representation, we show that
the problem is NP-complete.

4. In Section 4.1, we show an O(N1m2 + N2m1)-time algorithm for EDSI.
5. In Section 4.2, we show an Õ(Nω−1

1 n2 + Nω−1
2 n1)-time algorithm for EDSI, where ω is

the matrix multiplication exponent.

Interestingly, we show that the techniques we develop here have applications outside of
ED string comparison. Given a sequence P = P1, . . . , Pn of n standard strings, we define an
acronym of P as a string A = A1 · · ·An, where Ai is a possibly empty prefix of Pi, for all
i ∈ [1, n]. In the Acronym Generation (AG) problem, we are given a set D of k strings of
total length K and a sequence P of n strings of total length N , and we are asked to say YES
if and only if some acronym of P belongs to D. In Section 5, we show how our techniques
for EDSI can be modified to solve AG in O(nK + N) time.

Related Work. Apart from its applications to pangenome comparison, EDSI is interesting
theoretically on its own as a special case of regular expression (regex) matching. Regex is a
basic notion in formal languages and automata theory. Regular expressions are commonly
used in practical applications to define search patterns. Regex matching and membership
testing are widely used as computational primitives in programming languages and text
processing utilities (e.g., the widely-used agrep). The classic algorithm for solving these
problems constructs and simulates an NFA corresponding to the regex, which gives an
O(MN) running time, where M is the length of the pattern and N is the length of the text.
Unfortunately, significantly faster solutions are unknown and unlikely [6]. However, much
faster algorithms exist for many special cases of the problem: dictionary matching; wildcard
matching; subset matching; and the word break problem; see [6] and references therein.

Special cases of EDSI have also been studied. First, let us consider the case when both
T1 and T2 are degenerate strings. In this case, the problem is trivial: EDSI has a positive
answer if and only if for every i, T1[i] ∩ T2[i] is nonempty. Alzamel et al. [2] studied the
case when T1 and T2 are generalized degenerate strings: for any i ∈ [1, n1] and j ∈ [1, n2]
all strings in T1[i] have the same length ℓ1,i and all strings in T2[j] have the same length
ℓ2,j . In the case of generalized degenerate strings, they showed that deciding if L(T1) and
L(T2) have a nonempty intersection can be done in O(N1 + N2) time. If T2 is a standard
string, i.e., an ED string with m2 = n2 = 1, then we can resort to the results of Bernardini et
al. [10] for ED string matching. In particular: there is no combinatorial algorithm2 for EDSI
working in O(n1N1.5−ϵ

2 + N1) time unless the BMM conjecture is false; and we can solve
EDSI in Õ(n1Nω−1

2 + N1) time. Moreover, Gawrychowski et al. [21] provided a systematic
study of the complexity of degenerate string comparison under different notions of matching:
Cartesian tree matching; order-preserving matching; and parameterized matching.

Similar to ED strings (and to generalized degenerate strings) is the representation of
pangenomes via founder graphs. The idea behind founder graphs is that a multiple alignment
of few founder sequences can be used to approximate the input MSA, with the feature that
each row of the MSA is a recombination of the founders. Like founder graphs, ED strings
support the recombination of different rows of the MSA between consecutive columns. Unlike

2 The notion of “combinatorial algorithm” is informal but widely used in the literature. Typically, we call
an algorithm “combinatorial” if it does not not call an oracle for ring matrix multiplication.
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ED strings, for which no efficient index is probable [22] (and indeed their value is to enable
fast on-line string matching), some subclasses of founder graphs are indexable, and a recent
research line is devoted to constructing and indexing such structures [18, 35, 38, 39].

2 Conditional Lower Bounds

In this section, we show several conditional lower bounds for the EDSI problem. Bounds
in the first group (see Section 2.1) are based on the popular Strong Exponential-Time
Hypothesis (SETH) [11]; the second group of bounds (see Section 2.2) is based on another
popular conjecture, the Boolean Matrix Multiplication (BMM) conjecture [1].

2.1 Lower Bounds Based on SETH
We are going to reduce the Orthogonal Vectors (OV, in short) problem to the EDSI
problem. In the OV problem we are given a set V = {v1, . . . , vk} of k binary vectors, each
of length d, and we are asked to decide whether or not there are any two vectors in V which
are orthogonal; i.e., the dot product of the two vectors is zero. The OV conjecture, implied
by SETH (see [44]), is the following.

▶ Conjecture 1 (OV conjecture [44]). The OV problem for k binary vectors, each of length
d = Θ(log k), cannot be solved in O(k2−ϵ) time, for any constant ϵ > 0.

We show the following reduction.

▶ Theorem 2. Given any set V = {v1, . . . , vk} of k binary vectors of length d, we can
construct in linear time two ED strings T1 and T2 over a binary alphabet such that:

T1 has length, cardinality, and size Θ(kd);
T2 has length Θ(log k), cardinality Θ(k) and size Θ(kd); and
V contains two orthogonal vectors if and only if T1 and T2 have a nonempty intersection.

Proof. Let ui = 1d − vi for all i ∈ [1, k]. For a length-d vector v and j ∈ {1, . . . , d}, by vj

we denote the jth component of v. We construct T1 and T2 as follows (see Example 3):3

T1 =
k∏

i=1

d∏
j=1

{
0, ui

j

}
, T2 =

⌊log2 k⌋∏
i=0

{
0d·2i

, ε
}
· V ·

⌊log2 k⌋∏
i=0

{
0d·2i

, ε
}

.

We now show that L(T1) and L(T2) have a nonempty intersection if and only if there
exists a pair of orthogonal vectors in V .

Suppose va and vb are orthogonal. Then for all j ∈ [1, d], vb
j ∈

{
0, ua

j

}
and hence

vb ∈
∏

j

{
0, ua

j

}
. It follows that

0(a−1)dvb0(k−a)d ∈ 0(a−1)d
∏

j

{
0, ua

j

}
0(k−a)d ⊆ L(T1).

By decomposing a− 1 =
∑

i∈Sa−1
2i and k− a =

∑
i∈Sk−a

2i, where for any integer p, the
set Sp contains the positions with a 1 in the binary representation of p, we find that

0(a−1)dvb0(k−a)d ∈
∏

i∈Sa−1

0d·2i

· V ·
∏

i∈Sk−a

0d·2i

⊆ L(T2).

We conclude that 0(a−1)dvb0(k−a)d ∈ L(T1) ∩ L(T2).

3 By the
∏

notation we denote a sequence of concatenations of segments in an ED string.
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Conversely, suppose that L(T1) and L(T2) have a nonempty intersection and consider
a string S ∈ L(T1) ∩ L(T2). Let vb be the vector from V which is chosen in T2 when
constructing S. The strings in the sets of T2 all have length divisible by d. Thus vb

starts at an index (a− 1)d + 1 of string S for some integer a. Since S ∈ L(T1), we have
vb ∈

∏d
j=1

{
0, ua

j

}
. This implies that va and vb are orthogonal.

Therefore, solving the orthogonal vectors problem for V is equivalent to checking whether
L(T1) and L(T2) have a nonempty intersection. ◀

▶ Example 3. Let k = 3, d = 2 and V = {v1 = (1, 0), v2 = (0, 1), v3 = (1, 1)}.

We have that T1 =
{

0
}
·
{

0
1

}
·
{

0
1

}
·
{

0
}
·
{

0
}
·
{

0
}

and T2 =
{

00
ε

}
·
{

0000
ε

}
·


10
01
11

 ·
{

00
ε

}
·
{

0000
ε

}
.

One can observe that each string from L(T1) ∩ L(T2) corresponds to a pair of orthogonal
vectors from V . For example, the string 010000 is in L(T2) because v2 = (0, 1) ∈ V . Since
the vector v1 = (1, 0) ∈ V is orthogonal to v2, one also has 010000 ∈ L(T1). This is because
the two first segments of T1 are constructed to encode any vector which is orthogonal to v1.

Note that when d = Θ(log k), the length n1, the cardinality m1 and the size N1 of
T1 are O(k log k), whereas T2 has length n2 = O(log k), cardinality m2 = O(k) and size
N2 = O(k log k). Moreover, both ED strings are over a binary alphabet Σ = {0, 1}. This
implies various hardness results for EDSI. For example, we can see that, for any constant
ϵ > 0, and an alphabet Σ of size at least 2 the problem cannot be solved in

O
(
(N1 + N2 + n1 + n2)2−ϵ · poly(n2)

)
time, conditional on the OV conjecture. By using the fact that n1 ≤ m1 ≤ N1 and
n2 ≤ m2 ≤ N2, we obtain the following bounds.

▶ Corollary 4. For any constant ϵ > 0, there exists no
O((N1N2)1−ϵ)-time
O

(
(N1m2 + N2m1)1−ϵ

)
-time

O
(
(N1n2 + N2n1)1−ϵ

)
-time

algorithm for the EDSI problem, unless the OV conjecture is false.

2.2 Combinatorial Lower Bounds Based on BMM Conjecture
In the Triangle Detection (TD, in short) problem we are given three D ×D Boolean
matrices A, B, C and are to check if there are three indices i, j, k ∈ [0, D) such that
A[i, j] = B[j, k] = C[k, i] = 1. It is known that Boolean Matrix Multiplication (BMM) and
TD either both have truly subcubic combinatorial algorithms or none of them do [45]. The
BMM conjecture is stated as follows.

▶ Conjecture 5 (BMM conjecture [1]). Given two D × D Boolean matrices, there is no
combinatorial algorithm for BMM working in O(D3−ϵ) time, for any constant ϵ > 0.

Our construction is based on the construction of Bernardini et al. from [10] for ED string
matching.

▶ Theorem 6. If EDSI over a binary alphabet can be solved in O((N1 + N2)1.2−ϵf(n1, n2))
time, for any constant ϵ > 0 and any function f , then there exists a truly subcubic combinat-
orial algorithm for TD.
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Proof. Let D be a positive integer and let A, B, and C be three D ×D Boolean matrices.
Further let s ≤ D be a positive integer to be set later. In the rest of the proof, we can assume
that s divides D, up to adding α rows and columns containing only 0’s to all three matrices,
where α is the smallest non-negative representative of the equivalence class −D mod s.

Let us first construct an ED string T1 = X1X2X3 over a large alphabet with n1 = 3,
where each Xp, p ∈ [1, n1], contains a string for each occurrence of value 1 in A, B and C,
respectively. Below i iterates over [0, D), j and k over [0, D

s ), and x and y iterate over [0, s).
Moreover, x, y ∈ [0, s), vi for i ∈ [0, D), and a, $ are all letters.

If A[i, x · D
s + j] = 1, then X1 contains the string vixaj ;

If B[x · D
s + j, y · D

s + k] = 1, then X2 contains the string a
D
s −jx$$ya

D
s −k;

If C[y · D
s + k, i] = 1, then X3 contains the string akyvi;

The length of each string in each Xp is O(D/s) and the total number m1 of strings is up to
3D2. Overall, N1 = O(D3/s).

We construct an ED string T2 with n2 = 1 containing the following strings:

P (i, x, y) = vixa
D
s x$$ya

D
s yvi for every x, y ∈ [0, s) and i ∈ [0, D).

Each string has length O(D/s) and there are m2 = Ds2 strings, so N2 = O(D2s).
We use the following fact.

▶ Fact 7 ([10]). P (i, x, y) ∈ L(T1) if and only if the following holds for some j, k ∈ [0, D/s):

A[i, x · D
s + j] = B[x · D

s + j, y · D
s + k] = C[y · D

s + k, i] = 1.

We choose s = ⌊
√

D⌋; then N1, N2 = O(D2.5) and n1, n2 = O(1). Then indeed an O((N1+
N2)1.2−ϵf(n1, n2))-time algorithm for EDSI would yield an O(D3−2.5ϵ)-time algorithm for
the TD problem.

Note also that even though the size of the alphabet used above is Θ(s + D) = Θ(D), we
can encode all letters by equal-length binary strings blowing N1 and N2 up only by a factor
of Θ(log D) and, hence, obtain the same lower bound for a binary alphabet. ◀

Both m1 and m2 in the reduction are O(D2), thus an O((m1 + m2)1.5−ϵf(n1, n2))-time
algorithm would yield an O(D3−2ϵ)-time algorithm for TD; hence we obtain the following.

▶ Corollary 8. If EDSI over a binary alphabet can be solved in O((N1.2
1 + N1.2

2 + m1.5
1 +

m1.5
2 )1−ϵf(n1, n2)) time, for any constant ϵ > 0 and any function f , then there exists a truly

subcubic combinatorial algorithm for TD.

3 EDSI: The Unary Case

An ED string is called unary if it is over an alphabet of size 1. In this special case, if both
T1 and T2 are over the same alphabet Σ = {a}, EDSI boils down to checking whether there
exists any b ≥ 0 such that ab belongs to both L(T1) and L(T2).

Let T be a unary ED string of length n over alphabet Σ = {a}. We define the compact
representation R(T ) of T as the following sequence of sets of integers:

∀i ∈ [1, n] R(T )[i] = {bi,1, bi,2, . . . , bi,mi
} ⇐⇒ T [i] = {abi,1 , abi,2 , . . . , abi,mi },

where bi,j ≥ 0 for all i ∈ [1, n] and j ∈ [1, mi], the cardinality of T is m =
∑n

i=1 mi, and its
size is N = Nε +

∑n
i=1

∑mi

j=1 bi,j , where Nε is the total number of empty strings in T .

CPM 2023
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▶ Theorem 9. If T1 and T2 are unary ED strings and each is given in a compact represent-
ation, the problem of deciding whether L(T1) ∩ L(T2) is nonempty is NP-complete.

Proof. The problem is clearly in NP, as it is enough to guess a single element for each set
in both T1 and T2, and then simply check if the sums match in linear time. We show the
NP-hardness through a reduction from the Subset Sum problem, which takes n integers
b1, b2, . . . , bn and an integer c, and asks whether there exist xi ∈ {0, 1}, for all i ∈ [1, n],
such that

∑n
i=1 xibi = c. Subset Sum is NP-complete [30] also for non-negative integers.

For any instance of Subset Sum, we set R(T1)[i] = {bi, 0} for all i ∈ [1, n], n2 = 1 and
R(T2)[1] = {c}. Then the answer to the Subset Sum instance is YES if and only if
L(T1) ∩ L(T2) is nonempty. ◀

In what follows, we provide an algorithm which runs in polynomial time in the size of the
two unary ED strings when the latter are given uncompacted.

The set L(T ) can be represented as a set L(T ) ⊂ N such that L(T ) = {aℓ : ℓ ∈ L(T )}.
The set L(T ) will be stored as a list (without repetitions). We will show how to efficiently
compute L(T1) and L(T2). Then one can compute L(T1)∩L(T2) in O(N1 + N2) time, which
allows, in particular, to check if L(T1)∩L(T2) = ∅ (which is equivalent to L(T1)∩L(T2) = ∅).

We show the computation for L(T1). The workhorse is an algorithm from the following
Lemma 10 that allows to compute the set L(X1X2) of concatenation of two ED strings based
on their sets L(X1), L(X2).

▶ Lemma 10. Let X1 and X2 be ED strings. Given L(X1) and L(X2) such that t1 =
max L(X1) and t2 = max L(X2), we can compute L(X1X2) in O((t1 + t2) log(t1 + t2)) time.

Proof. For two sets A, B ⊂ N, by A + B we denote the set {a + b : a ∈ A, b ∈ B}. We then
have L(X1X2) = L(X1) + L(X2). Fast Fourier Transform (FFT) [14] can be used directly to
compute L(X1) + L(X2) in O((t1 + t2) log(t1 + t2)) time. ◀

▶ Lemma 11. L(T1) can be computed in O(N1 log N1 log n1) time.

Proof. We apply the recursive algorithm described in Algorithm 1 to T1.

Algorithm 1 Compute-L(T [1] · · · T [k]).
if k = 1 then

Compute L(T [1]) naïvely
i← ⌊k/2⌋
L1 ←Compute-L(T [1] · · ·T [i])
L2 ←Compute-L(T [i + 1] · · ·T [k])
return L1 + L2

Let N1,i =
∑

x∈L(T1)[i] x and t1,i = max L(T1[i]) for i ∈ [1, n1]. Obviously, t1,i ≤ N1,i.
We analyze the complexity of the recursion by levels. For the bottom level, L(T1[i]) can

be computed in O(N1,i) time for each i ∈ [1, n1], which sums up to O(N1). For the remaining
levels, we notice that max L(T1[i] · · ·T1[j]) = t1,i + · · ·+ t1,j . On each level, the fragments
of T1 that are considered are disjoint. Thus, the complexity on each level via Lemma 10 is
O((

∑n1
i=1 t1,i) log(

∑n1
i=1 t1,i)) = O(N1 log N1). The number of levels of recursion is O(log n1);

the complexity follows. ◀
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▶ Theorem 12. If T1 and T2 are unary ED strings, then L(T1) ∩ L(T2) can be computed in
O(N1 log N1 log n1 + N2 log N2 log n2) time.

Proof. We use Lemma 11 to compute L(T1) and L(T2) in the required complexity. Then
L(T1) ∩ L(T2) can be computed via bucket sort. ◀

4 EDSI: General Case

Assuming that the two ED strings, T1 and T2, of total size N1 + N2 are over an integer
alphabet [1, (N1 + N2)O(1)], we can sort the suffixes of all strings in T1[i], for all i ∈ [1, n1],
and the suffixes of all strings in T2[j], for all j ∈ [1, n2], in O(N1 + N2) time [19].

By LCP(X, Y ) let us denote the length of the longest common prefix of two strings X

and Y . Given a string S over an integer alphabet, we can construct a data structure over
S in O(|S|) time, so that when i, j ∈ [1, |S|] are given to us on-line, we can determine
LCP(S[i . . |S|], S[j . . |S|]) in O(1) time [15].

4.1 Compacted NFA Intersection
In this section we show an algorithm for computing a representation of the intersection of the
languages of two ED strings using techniques from formal languages and automata theory.

▶ Definition 13 (NFA). A nondeterministic finite automaton (NFA) is a 5-tuple
(Q, Σ, δ, q0, F ), where Q is a finite set of states; Σ is an alphabet; δ : Q× (Σ ∪ {ε})→ P(Q)
is a transition function, where P(Q) is the power set of Q; q0 ∈ Q is the starting state; and
F ⊆ Q is the set of accepting states.

Using the folklore product automaton construction, one can check whether two NFA
have a nonempty intersection in O(N1 ·N2) time, where N1 and N2 are the sizes of the two
NFA [33]. We use a different, compacted representation of automata, which in some special
cases allows a more efficient algorithm for computing and representing the intersection.

▶ Definition 14 (Compacted NFA). An extended transition is a transition function of the
form δext : Q× Σ∗ → P(Q), where Q is a finite set of states, Σ∗ is the set of strings over
alphabet Σ, and P(Q) is the power set of Q. A compacted NFA is an NFA in which we allow
extended transitions. Such an NFA can also be represented by a standard (uncompacted)
NFA, where each extended transition is subdivided into standard one-letter transitions (and
ε-transitions), δ : Q × (Σ ∪ {ε}) → P(Q). The states of the compacted NFA are called
explicit, while the states obtained due to these subdivisions are called implicit.

Given a compacted NFA A with V explicit states and E extended transitions, we denote
by V u and Eu the number of states and transitions, respectively, of its uncompacted version
Au. Henceforth we assume that in the given NFA every state is reachable, and hence we
have V u = O(Eu) and V = O(E).

▶ Lemma 15. Given two compacted NFA A1 and A2, with V1 and V2 explicit states and E1
and E2 extended transitions, respectively, a compacted NFA representing the intersection of
A1 and A2 with O(V u

1 V2 + V1V u
2 ) explicit states and O(Eu

1 E2 + E1Eu
2 ) extended transitions

can be computed in O(Eu
1 E2 + E1Eu

2 ) time.

Proof. We start by constructing an LCP data structure over the concatenation of all the
labels of extended transitions of both NFA of total size O(Eu

1 + Eu
2 ). It requires O(Eu

1 + Eu
2 )-

time preprocessing and allows answering LCP queries on any two substrings of such labels in
O(1) time.
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Figure 3 On the left: an ED string; on the right: the corresponding path-automaton.

We construct B a compacted NFA representing the intersection of A1 and A2.
Every state of B is composed of a pair: an explicit state of one automaton and any

explicit or implicit state of the other automaton (or equivalently a state of the uncompacted
version of the automaton). Thus the total number of explicit states of B is O(V u

1 V2 + V1V u
2 ).

We need to compute the extended transitions of B. For a state (u, v) we check every
string pair (P, Q), where P iterates over all extended transitions going out of u and Q iterates
over all extended transitions going out of v (a transition going out of an implicit state is
represented by a suffix of the transition it belongs to). For every pair (P, Q) we ask an
LCP(P, Q) query. If LCP(P, Q) is equal to one of |P |, |Q| (possibly both), we create an
extended transition between (u, v) and the pair of states reachable through those transitions
(if one of the transitions is strictly longer, we prune it to the right length, ending it at an
implicit state of its input NFA). Otherwise such a transition does not lead to any explicit
state of B and thus cannot be used to reach the accepting state; hence we ignore it.

Finally, the starting (resp. accepting) state of B corresponds to a pair of starting
(resp. accepting) states of A1 and A2.

Since any pair representing an explicit state of B contains an explicit state of A1 or
A2, the number of such transition pair checks (and hence also the number of the extended
transitions of B) is O(Eu

1 E2 +E1Eu
2 ). Since each such check takes O(1) time, the construction

complexity follows. Note that NFA B may contain unreachable states; such states can be
removed afterwards in linear time. The algorithms’ correctness follows from the observation
that Bu is in fact the standard intersection automaton of Au

1 and Au
2 with some states, that

do not belong to any path between the starting and the accepting states, removed. ◀

We next define the path-automaton of an ED string (inspect Figure 3 for an example).

▶ Definition 16 (Path-automaton). Let T be an ED string of length n, cardinality m, and
size N . The path-automaton of T is the compacted NFA consisting of:

V = n + 1 explicit states, numbered from 1 through n + 1. State 1 is the starting state and
state n + 1 is the accepting state. State i ∈ [2, n] is the state in-between T [i− 1] and T [i].
mi extended transitions from state i to state i + 1 labeled with the strings in T [i], for all
i ∈ [1, n], where E = m =

∑
i mi.

The path-automaton of T accepts exactly L(T ). The uncompacted version of this path-
automaton has V u = O(N) states and Eu = N transitions.

Lemma 15 thus implies the following result.

▶ Corollary 17. The compacted NFA representing the intersection of two path-automata with
O(N1n2 +N2n1) explicit states and O(N1m2 +N2m1) extended transitions can be constructed
in O(N1m2 + N2m1) time.
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▶ Theorem 18. EDSI can be solved in O(N1m2 + N2m1) time. If the answer is YES, a
witness can be reported within the same time complexity.

Proof. The path-automaton of an ED string of size N can be constructed in O(N) time.
Given two ED strings, we can construct their path-automata in linear time and apply
Corollary 17. By finding any path from the starting to the accepting state in linear time (if
it exists), we obtain the result. ◀

Notice that the path-automata representing ED strings, as well as their intersection, are
always acyclic, but may contain ε-transitions. In the following we are only interested in the
graph underlying the path-automaton, that is the directed acyclic graph (DAG), where every
node represents an explicit state and every labeled directed edge represents an extended
transition of the path-automaton (inspect also Figure 1).

4.2 An Õ(Nω−1
1 n2 + Nω−1

2 n1)-time Algorithm for EDSI
In this section, we start by showing a construction of the intersection graph computed by
means of Lemma 15 in the case when the input is a pair of path-automata that allows an
easier and more efficient implementation. The construction is then adapted to obtain an
Õ(Nω−1

1 n2 + Nω−1
2 n1)-time algorithm for solving the EDSI problem.

For x ∈ {1, 2} by Ax we denote the compacted NFA (henceforth, graph Ax) representing
the ED string Tx. By Ix[i] we denote the set of implicit states (henceforth, implicit nodes)
appearing on the extended transitions (henceforth, edges) between explicit states (henceforth,
explicit nodes) i and i + 1. For convenience, the implicit nodes in the sets Ix[1], . . . , Ix[nx]
can be numbered consecutively starting from nx + 2.

Let Ui,j = {(i, k) : k ∈ {j}∪I2[j]} and U ′
i,j = {(k, j) : k ∈ {i}∪I1[i]}, for all i ∈ [1, n1 +1]

and j ∈ [1, n2 + 1]. As in the construction of Lemma 15, the union of all Ui,j and U ′
i,j is

the set of explicit nodes of the intersection graph that we construct; this can be represented
graphically by a grid, where the horizontal and vertical lines correspond to Ui,j and U ′

i,j ,
respectively (inspect Figure 4a). In particular, we would like to compute the edges between
these explicit nodes (inspect Figure 4b) in O(N1m2 + N2m1) time.

Consider an explicit node of the intersection graph; this node is represented by a pair of
nodes: one from A1 and one from A2. We need to consider two cases: explicit vs explicit
node; or explicit vs implicit node. Without loss of generality, we consider the first node to
be explicit. Let us denote this pair by (i, k) ∈ Ui,j , where i is an explicit node of A1 and k is
a node of A2. Let us further denote by ℓ1 the label of one of the edges going from node i to
node i + 1. For k, we have two cases. If k is explicit (i.e., k = j) then we denote by ℓ2 the
label of one of the edges going from k to k + 1. Otherwise (k is implicit), we denote by ℓ2
the path label (concatenation of labels) from node k to node j + 1.

As noted in the proof of Lemma 15, an edge is constructed only if LCP(ℓ1, ℓ2) =
min(|ℓ1|, |ℓ2|). If LCP(ℓ1, ℓ2) = |ℓ2| < |ℓ1| (a prefix of a string in T1[i] is equal to the suffix
of a string in T2[j] starting at the position corresponding to node k ∈ {j} ∪ I2[j]), the edge
ends in a node from U ′

i,j+1 (Figure 4c). If LCP(ℓ1, ℓ2) = |ℓ1| < |ℓ2| (a whole string from T1[i]
occurs in a string from T2[j] starting at the position corresponding to node k ∈ {j} ∪ I2[j]),
the edge ends in a node from Ui+1,j (Figure 4d). Otherwise (LCP(ℓ1, ℓ2) = |ℓ1| = |ℓ2|;
the two strings are equal) the edge ends in (i + 1, j + 1). Symmetrically (i.e., the second
node is explicit), the edge going out of a node from U ′

i,j ends at a node from the same set
U ′

i,j+1 ∪ Ui+1,j ∪ {(i + 1, j + 1)} (inspect Figure 4b).
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LCP(`1, `2) = |`2|

(c) The green edge denotes a prefix-suffix match.
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3 4k

`2
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k′′

(d) The blue edge denotes a full match.

Figure 4 An overview of the edges computed by the algorithm.

We next show how to construct the intersection graph by computing all such edges going
out of Ui,j or U ′

i,j in a single batch using suffix trees (inspect Figure 5 in Appendix A for an
example). This construction allows an easier and more efficient implementation in comparison
to the LCP data structure used in the general NFA intersection construction. Let us recall
that ||T || denotes the size of the ED string T .

▶ Lemma 19. For any i ∈ [1, n1 +1] and j ∈ [1, n2 +1], we can construct all Ki,j edges going
out of nodes in Ui,j in O(N1,i + N2,j + Ki,j) time, where N1,i = ||T1[i]|| and N2,j = ||T2[j]||,
using the generalized suffix tree of the strings in T2[j].

Proof. We first construct the generalized suffix tree of the strings in T2[j] in O(N2,j) time [19].
We also mark each node corresponding to a suffix of a string in T2[j] with a T2-label. Each
such node is also decorated with one or multiple starting positions, respectively, from one or
multiple elements of T2[j] sharing the same suffix. For each branching node of the suffix tree,
we construct a hash table, to ensure that any outgoing edge can be retrieved in constant
time based on the first letter (the key) of its label. This can be done in O(N2,j) time with
perfect hashing [20]. We next spell each string from T1[i] from the root of the suffix tree
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making implicit nodes explicit or adding new ones if necessary to create the compacted trie
of all those strings; and, finally, we mark the reached nodes of the suffix tree with a T1-label.
Spelling all strings from T1[i] takes O(N1,i) time.

Every pair of different labels marking two nodes in an ancestor-descendant relationship
corresponds to exactly one outgoing edge of the nodes in Ui,j : (i) if a node marked with a
T2-label is an ancestor of a node marked with a T1-label, then the suffix of a string from
T2[j] matches a prefix of a string from T1[i] forming an edge ending in U ′

i,j+1; (ii) if a node
marked with a T1-label is an ancestor of a node marked with a T2-label, then a string from
T1[i] occurs in a string from T2[j] extending its prefix and forming an edge ending in Ui+1,j ;
(iii) if a node is marked with a T1-label and with a T2-label, then the suffix of a string from
T2[j] matches a string from T1[i] forming an edge ending in (i + 1, j + 1). After constructing
the generalized suffix tree of T2[j] and spelling the strings from T1[i], it suffices to make a
DFS traversal on the annotated tree to output all Ki,j such pairs of nodes. ◀

▶ Theorem 20. We can construct the intersection graph of T1 and T2 in O(N1m2 + N2m1)
time using the suffix tree data structure and tree search traversals.4

Proof. We apply Lemma 19 for Ui,j and U ′
i,j , for all i ∈ [1, n1 + 1] and j ∈ [1, n2 + 1]. We

have that the total number of nodes is
∑

i,j O(N1,i + N2,j) = O(N1n2 + N2n1), and then
the sum of all output edges is bounded by O(N1m2 + N2m1) by Corollary 17. ◀

Note that if we are interested only in checking whether the intersection is nonempty, and
not in the computation of its graph representation, it suffices to check which of the nodes are
reachable from the starting node, which may be more efficient as there are O(N1n2 + N2n1)
explicit nodes in this graph.

Let X be the set of nodes of Ui,j that are reachable from the starting node. From this
set of nodes we need to compute two types of edges (inspect Figure 4b). The first type of
edges, namely, the ones from X to U ′

i,j+1 ∪ {(i + 1, j + 1)} (green edges in Figure 4b) are
computed by means of Lemma 21, which is similar to Lemma 19. For the second type of
edges, namely, the ones from X to Ui+1,j ∪ {(i + 1, j + 1)} (blue edges in Figure 4b), we use
a reduction to the so-called active prefixes extension problem [10] (Lemma 23).

▶ Lemma 21. For any given X ⊆ Ui,j , we can compute the subset of U ′
i,j+1 ∪{(i + 1, j + 1)}

containing all and only the nodes that are reachable from the nodes of X in O(N1,i + N2,j)
time.

Proof. In Lemma 19, the edges from nodes of Ui,j to nodes of U ′
i,j+1 come from a pair of

nodes in the generalized suffix tree of T2[j]: one marked with a T1-label and its ancestor
marked with a T2-label. Notice that the T2-labels are in a correspondence with the elements
of Ui,j (the labels on a proper suffix of a string in T2 are in a one-to-one correspondence
with Ui,j\{(i, j)}, and (i, j) corresponds to whole strings in T2[j]), and hence we can trivially
remove the T2-labels that do not correspond to the elements of X. Furthermore, we are not
interested in the set of starting positions decorating a node with a T2-label; we are interested
only in whether a node is T2-labeled or not (i.e., we do not care from which node of X

the edge originates). Since the nodes marked with a T1-label have in total N1,i ancestors
(including duplicates), we can compute the result of this case in O(N1,i + N2,j) time in total.
Finally, the node (i + 1, j + 1) is reachable when a single node is marked with both a T1-label
and a T2-label. This can be checked within the same time complexity. ◀

4 Our implementation of this algorithm can be found at https://github.com/urbanslug/junctions.
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The remaining edges (blue edges in Figure 4b) are dealt with via a reduction to the
following problem:

Active Prefixes Extension (APE)
Input: A string P of length m, a bit vector W of size m, and a set S of strings of total
length N .
Output: A bit vector V of size m with V [p] = 1 if and only if there exists P ′ ∈ S and
p′ ∈ [1, m], such that P [1 . . p′ − 1] · P ′ = P [1 . . p− 1] and W [p′] = 1.

Bernardini et al. have shown the following result in [10].

▶ Lemma 22 ([10]). The APE problem can be solved in Õ(mω−1) +O(N) time, where ω is
the matrix multiplication exponent.

▶ Lemma 23. For any given X ⊆ Ui,j , we can compute the subset of Ui+1,j ∪{(i + 1, j + 1)}
containing all and only the nodes that are reachable from the nodes of X in Õ(N1,i + Nω−1

2,j )
time.

Proof. The problems of computing the subset of Ui+1,j reachable from X and the APE
problem can be reduced to one another in linear time.

For the forward reduction, let us set S = T1[i] and P =
∏

S∈T2[j] $S, where $ is a letter
outside of the alphabet of T1. This means that we order the strings in T2[j], in an arbitrary
but fixed way. For a single string $S (where S ∈ T2[j]), the positions from S[1 . . |S| − 1]
correspond to the implicit nodes (along the path spelling S) of I2[j], while the position with
$ corresponds to the explicit node j of A2 and the one with S[|S|] to the explicit node j + 1
of A2. Through this correspondence, we can construct two bit vectors W and V , each of
them of size |P |, and whose positions are in correspondence with {j} ∪ I2[j] ∪ {j + 1} (note
that this correspondence is not a bijection, as the explicit nodes j and j + 1 have several
preimages when |T2[j]| ≥ 2). As Ui,j ∪ {(i, j + 1)} and Ui+1,j ∪ {(i + 1, j + 1)} are copies of
{j} ∪ I2[j] ∪ {j + 1}, we use the same correspondence to match positions between W and
Ui,j ∪ {(i, j + 1)} and between V and Ui+1,j ∪ {(i + 1, j + 1)}. Finally, we set W [k] = 1 if
and only if the corresponding node of Ui,j belongs to X (for k corresponding to (i, j + 1),
we set W [k] = 0 as such a node cannot belong to X). After solving APE, we have V [k] = 1
for some5 k corresponding to a node of Ui+1,j ∪ {(i + 1, j + 1)} if and only if this node is
reachable from X.

In more detail, observe that since $ does not belong to the alphabet of T1, a string S

from T1[i] has to match a fragment of a string from T2[j] to set V [k] to 1. This happens
only if additionally W [k − |S|] = 1; both things happen at the same time exactly when: (i)
there exists a node (i, ℓ) ∈ X; (ii) there exists an edge from (i, ℓ) to (i + 1, ℓ′); and (iii) the
positions k − |S| and k in P correspond to ℓ, ℓ′, respectively.

In the above reduction we have |P | =
∑

S∈T2[j] |S|+ 1 = O(N2,j), and ||S|| = N1,j , hence
the lemma statement follows by Lemma 22.

For the reverse reduction, given an instance of APE, we encode it by setting T1[i] =
S, T2[j] = {P} (N1,i = ||S||, N2,j = |P |) and X containing the nodes corresponding to
positions k where W [k] = 1 (the last element of such X is potentially (i + 1, j), but we do
not care about this corner case of extending the prefix which is already the full string P ).

This reduction shows that a more efficient solution to the problem of finding the endpoints
of edges originating in X would result in a more efficient solution to the APE problem. ◀

5 Here, note that if the node is (i + 1, j) or (i + 1, j + 1), then a corresponding k is not unique, but at
least one of them satisfy V [k] = 1.
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▶ Theorem 24. We can solve EDSI in Õ(Nω−1
1 n2 + Nω−1

2 n1) time, where ω is the matrix
multiplication exponent. If the answer is YES, we can output a witness within the same time
complexity.

Proof. It suffices to set the starting node (1, 1) as reachable, apply Lemmas 21 and 23,
and their symmetric versions for U ′

i,j , for each value of (i, j) ∈ [1, n1 + 1] × [1, n2 + 1] in
lexicographical order, with X equal to the set of reachable nodes of Ui,j (respectively of
U ′

i,j); and, finally, check whether node (n1 + 1, n2 + 1) is set as reachable. We bound the
total time complexity of the algorithm by:∑

i,j

Õ(Nω−1
1,i + Nω−1

2,j ) = Õ(n2
∑

i

Nω−1
1,i + n1

∑
j

Nω−1
2,j ) ≤ Õ(Nω−1

1 n2 + Nω−1
2 n1).

If L(T1) ∩L(T2) is nonempty, that is, if the node (n1 + 1, n2 + 1) is set as reachable from
node (1, 1), then we can additionally output a witness of the intersection – a single string
from L(T1) ∩ L(T2) – within the same time complexity. To do that we mimic the algorithm
on the graph with reversed edges. This time, however, we do not mark all of the reachable
nodes; we rather choose a single one that was also reachable from (1, 1) in the forward
direction. This way, the marked nodes form a single path from (1, 1) to (n1 + 1, n2 + 1). The
witness is obtained by reading the labels on the edges of this path. ◀

5 Acronym Generation

In this section we study a problem on standard strings. Given a sequence P = P1, . . . , Pn

of n strings we define an acronym of P as a string A = A1 · · ·An, where Ai is a (possibly
empty) prefix of Pi, i ∈ [1, n]. We next formalize the Acronym Generation problem.

Acronym Generation (AG)
Input: A set D of k strings of total length K and a sequence P = P1, . . . , Pn of n strings
of total length N .
Output: YES if some acronym of P is an element of D, NO otherwise.

The AG problem is underlying real-world information systems (e.g., see https://
acronymify.com/ or https://acronym-generator.com/) and existing approaches rely on
brute-force algorithms or heuristics to address different variants of the problem [41, 40, 32,
34, 28, 43, 29, 31]. These algorithms usually accept a sequence P of n ≤ nmax strings, for
some small integer nmax, which highlights the lack of efficient exact algorithms for generating
acronyms. Here we show an exact polynomial-time algorithm to solve AG for any n.

We can encode AG by means of EDSI and modify the developed methods. Let T1[i],
i ∈ [1, n], be the set of all prefixes of Pi and further let T2[1] = D. By using Theorem 18 or
Corollary 17 we obtain an O(

∑
i |Pi|2k + KN) = O(N2k + KN)-time algorithm, while using

Theorem 24 we obtain an Õ(N2ω−2 + Kω−1n)-time algorithm, for solving the AG problem.
Since, however, all elements of set T1[i] are prefixes of a single string (Pi), we can obtain

a more efficient graph representation of T1 by joining nodes i and i + 1 with a single path
labeled with Pi, with an additional ε edge between every (implicit) node of the path and node
i + 1. As the size of the graph for T1 is smaller (O(N) nodes and edges), by using Lemma 15
we obtain an O(Nk + KN) = O(NK)-time algorithm for solving the AG problem.

The considered ED strings have additional strong properties however. T1[i]’s are not just
sets of prefixes of single strings, but sets of all their prefixes, while the length n2 of T2 is
equal to 1. By employing these two properties we obtain the following improved result.
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▶ Theorem 25. AG can be solved in O(nK + N) time.

Proof. The algorithm of Theorem 24 is based on finding out which elements of sets Ui,j , U ′
i,j

are reachable; however, since n2 = 1, the sets U ′
i,j are trivialized: by definition, a node from

the middle of T1[i] cannot correspond to the starting or accepting node of the graph of T2
(reading a letter in the first graph means also moving out of the starting node in the second
one), hence the only possible reachable node of U ′

i,j is the explicit node (i, j), which is also
an element of Ui,j . More formally, a reachable node (k, 1) ∈ U ′

i,1 must be equal to (i, 1) as
other such nodes can only be reached using some edge with a nonempty label. By symmetry,
nodes from U ′

i,2 other than (i, 2) are not backwards reachable from the accepting node.
In Lemma 23, to compute the reachable nodes of Ui+1,j knowing the reachable nodes of

Ui,j , fast matrix multiplication is employed (Lemma 22), but in this special case a simpler
method will be more effective. Let Wk be the string read between nodes k and 2 in the
path-graph of T2. The crucial observation is: the edges going out of node (i, k) ∈ Ui,1∪{(i, 2)}
for k ̸= 1 end in nodes (i + 1, k′) for k′ ∈ [k, k + l], where l = LCP(Pi, Wk) as the strings
from T1[i] matching the prefix of Wk are exactly all the prefixes of Pi of length at most l.

Hence to compute the reachable subset of Ui+1,1 ∪ {(i + 1, 2)}, we can handle the edges
going out of (i, 1) separately in O(K + |Pi|) time by letter comparisons, then compute the
LCP(Pi, Wk) for all the reachable nodes (i, k) either using the LCP data structure, or with
the use of the generalized suffix tree of T2[1] = D in O(K + |Pi|) total time, and finally,
using a sweep line approach, compute the union of the obtained intervals in O(K) time. We
answer YES if and only if node (n + 1, 2) is reachable.

Over all i values this gives an algorithm running in
∑

iO(K + |Pi|) = O(nK + N) total
time. Furthermore one is allowed to choose, for each i ∈ [1, n], the minimal length xi of
the prefix of Pi (including length xi = 0 if one wants to allow empty prefixes) used in the
acronym (some strings should not be completely excluded from the acronym). The only
modification to the algorithm in such a generalized case is replacing intervals [k, k + l] by
[k + xi, k + l], which does not influence the claimed complexity. ◀

▶ Corollary 26. If the answer to the instance of the AG problem is YES, we can output all
strings in D which are acronyms of P within O(nK + N) time.

Proof. In the algorithm employed by Theorem 25 the reachable nodes of Ui,1 ∪ {(i, 2)} are
found. When the node (i + 1, 2) is the endpoint of an edge starting in node (i, k) for k ̸= 1,
then the path of the path-graph of T2 containing node k is an acronym of P . If node (i + 1, 2)
is reached directly from reachable node (i, 1), then the whole prefix of Pi used to do that is
in D, and hence is a standalone acronym of P . If for a path neither of the two cases qualifies,
then it cannot be used to reach node (n + 1, 2), and hence is not an acronym of P .

If the generalization with minimal lengths of prefixes is applied, then the values of i used
here are restricted to [i′, n], where i′ is the largest value of i with a restriction xi > 0: node
(i′ − 1, 2) cannot have an edge to node (i′, 2), and hence does not lie on a path from (1, 1) to
(n + 1, 2). ◀

Let us remark that although the main focus of real-world acronym generation systems is
on the natural language parsing and interpretation of acronyms, our new algorithmic solution
may inspire practical improvements in such systems or further algorithmic work.
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A Omitted Figure

Figure 5 illustrates an example of the algorithm underlying Lemma 19.
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Figure 5 The annotated compacted trie constructed for T1[i] =
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in Lemma 19. The node corresponding to b has two T2 labels and is an ancestor of the node
corresponding to bb with a T1 label; hence two corresponding edges to U ′

i,j+1 are constructed. The
node corresponding to aaa has a T1 label and is an ancestor of the node corresponding to aaab with
a T2 label; hence a corresponding edge to Ui+1,j is constructed. The node corresponding to a has
both a T1 and a T2 label; hence a corresponding edge to (i + 1, j + 1) is constructed.
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The fundamental question considered in algorithms on strings is that of indexing, that is, preprocessing
a given string for specific queries. By now we have a number of efficient solutions for this problem
when the queries ask for an exact occurrence of a given pattern P . However, practical applications
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1 Introduction

In the indexing problem, the goal is to preprocess a string for locating occurrences of a
given pattern. For a string of length N , structures such as the suffix tree [36] or the suffix
array [31], use space linear in N and allow for answering such queries in time linear in the
length of the pattern m. By now, we have multiple space- and time-efficient solutions for
this problem (both in theory and in practice). We refer the reader to the excellent survey
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However, from the point of view of possible applications, it is desirable to allow for more
general queries than just locating an exact match of a given pattern in the preprocessed text,
while keeping the time sublinear in the length of the preprocessed string. A very general
query is locating a substring matching a regular expression. Very recently, Gibney and
Thankachan [19] showed that if the Online Matrix-Vector multiplication conjecture holds,
even with a polynomial preprocessing time we cannot answer regular expression query in
sublinear time. A more reasonable and yet interesting query could concern occurrences of
two given patterns that are closest to each other, or just close enough.

Preprocessing a string for queries concerning two patterns has been first studied in the
context of document retrieval, where the goal is to preprocess a collection of strings. There, in
the two patterns document retrieval problem the query consists of two patterns P1 and P2, and
we must report all documents containing both of them [32]. In the forbidden pattern query
problem we must report all documents containing P1 but not P2 [15]. For both problems, the
asymptotically fastest linear-space solutions need as much as Ω(

√
N) time to answer a query,

where N is the total length of all strings [23, 22]. That is, the complexity heavily depends
on the length of the strings. Larsen et al. [28] established a connection between Boolean
matrix multiplication and the two problems, thus providing a conditional explanation for
the high Ω(

√
N) query complexity. Later, Kopelowitz et al. [27] provided an even stronger

argument using a connection to the 3SUM problem. Even more relevant to this paper is the
question considered by Kopelowitz and Krauthgamer [26], who asked for preprocessing a
string for computing, given two patterns P1 and P2, their occurrences that are closest to
each other. The main result of their paper is a structure constructible in O(N1.5 logϵ N)
time that answers such queries in O(|P1| + |P2| +

√
N logϵ N), for a string of length N , for

any ϵ > 0. They also established a connection between Boolean matrix multiplication and
this problem, highlighting a difficulty in removing the O(

√
N) from both the preprocessing

and query time at the same time.
The focus of this paper is the recently introduced variant of the indexing problem, called

gapped indexing for consecutive occurrences, in which a query consists of two patterns P1
and P2 and a range [a, b], and one must find the pairs of consecutive occurrences of P1, P2
separated by a distance in the range [a, b]. Navarro and Thankanchan [33] showed that
for P1 = P2 there is a O(n log n)-space index with optimal query time O(m + occ), where
m = |P1| = |P2| and occ is the number of pairs to report, but in conclusion they noticed that
extending their solution to the general case of two patterns might not be possible. Bille et
al. [4] provided an evidence of hardness of the general case and established a (conditional)
lower bound for gapped indexing for consecutive occurrences, by connecting its complexity
to that of set intersection. This lower bound suggests that, at least for indexes of size Õ(N),
achieving query time better than Õ(|P1| + |P2| +

√
N) would contradict the Set Disjointness

conjecture, even if a = 0 is fixed. In particular, obtaining query time depending mostly on
the lengths of the patterns (perhaps with some additional logarithms), arguably the whole
point of string indexing, is unlikely in this case.

Motivated by the (conditional) lower bound for gapped indexing for consecutive occur-
rences, we consider the compressed version of this problem for query intervals [0, b]. For
exact pattern matching, there is a long line of research devoted to designing the so-called
compressed indexes, that is, indexing structures with the size being a function of the length
of the compressed representation of the text, see e.g. the entry in the Encyclopedia of
Algorithms [30] or the Encyclopedia of Database Systems [13]. This suggests the following
research direction: can we design an efficient compressed gapped index for consecutive
occurrences?



P. Gawrychowski, G. Gourdel, T. Starikovskaya, and T. A. Steiner 12:3

The answer of course depends on the chosen compression method. With a goal to
design an index that uses very little space, we focus on the most challenging setting when
the compression is capable of describing a string of exponential length (in the size of its
representation). An elegant formalism for such a compression method is that of straight-line
programs (SLP), which are context-free grammars describing exactly one string. SLPs
are known to capture the popular Lempel–Ziv compression method up to a logarithmic
factor [7, 35], and at the same time provide a more convenient interface, and in particular,
allow for random access in O(log N) time [5].

By now it is known that pattern matching admits efficient indexing in SLP-compressed
space. Assuming a string S of length N described by an SLP with g productions, Claude
and Navarro [9] designed an O(g)-space index for S that allows retrieving all occurrences of a
pattern of length m in time O(m2 log log N+occ log g). Recently, several results have improved
the query time bound while still using a comparable O(g log N) amount of space: Claude,
Navarro and Pacheco [10] showed an index with query time O((m2 + occ) log g); Christiansen
et al. [8] used strings attractors to further improve the time bound to O(m + occ logϵ N);
and Díaz-Domínguez et al. [12] achieved O((m log m + occ) log g) query time.

However it is not always the case that a highly compressible string is easier to preprocess.
On the negative side, Abboud et al. [1] showed that, for some problems on compressed
strings, such as computing the LCS, one cannot completely avoid a high dependency on the
length of the uncompressed string and that for other problems on compressed strings, such
as context-free grammar parsing or RNA folding, one essentially cannot hope for anything
better than just decompressing the string and working with the uncompressed representation!
This is also the case for some problems related to linear algebra [2]. Hence, it was not clear
to us if one can avoid a high dependency on the length of the uncompressed string in the
gapped indexing for consecutive occurrences problem.

In this work, we address the lower bound of Bille et al. [4] and show that, despite the
negative results by Abboud et al. [1], one can circumvent it assuming that the text is very
compressible:

▶ Theorem 1. For an SLP of size g representing a string S of length N , there is an
O(g5 log5 N)-space data structure that maintains the following queries: given two patterns
P1, P2 both of length O(m), and a range [0, b], report all occ consecutive occurrences of P1 and
P2 separated by a distance d ∈ [0, b]. The query time is O(m log N +(1+occ)·log4 N log log N).

While achieving O(g) space and O(m + occ) query time would contradict the Set Dis-
jointness conjecture by the reduction of Bille et al. [4], one might wonder if the space can be
improved without increasing the query time and what is the true complexity of the problem
when a is not fixed (recall that [a, b] is the range limiting the distance between co-occurrences
to report). While we leave improvement on space and the general case as an interesting
open question, we show that in the simpler case a = 0, b = N (i.e. when there is no bound
on the distance between the starting positions of P1 and P2), our techniques do allow for
O(g2 log4 N) space complexity, see Corollary 111.

Throughout the paper we assume a unit-cost RAM model of computation with word size
Θ(log N). All space complexities refer to the number of words used by a data structure.

1 Note that the conditional lower bound of Bille et al. [4] does not hold for this simpler case.
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2 Preliminaries

A string S of length |S| = N is a sequence S[0]S[1] . . . S[N − 1] of characters from an
alphabet Σ. We denote the reverse S[N − 1]S[N − 2] . . . S[0] of S by rev(S). We define
S[i . . . j] to be equal to S[i] . . . S[j] which we call a substring of S if i ≤ j and to the empty
string otherwise. We also use notations S[i . . . j) and S(i . . . j] which naturally stand for
S[i] . . . S[j − 1] and S[i + 1] . . . S[j], respectively. We call a substring S[0 . . . i] a prefix of S

and use a simplified notation S[. . . i], and a substring S[i . . . N − 1] a suffix of S denoted by
S[i . . . ]. We say that X is a substring of S if X = S[i . . . j] for some 0 ≤ i ≤ j ≤ N − 1. The
index i is called an occurrence of X in S.

An occurrence q1 of P1 and an occurrence q2 of P2 form a consecutive occurrence (co-
occurrence) of strings P1, P2 in a string S if there are no occurrences of P1, P2 between q1
and q2, formally, there should be no occurrences of P1 in (q1, q2] and no occurrences of P2 in
[q1, q2). For brevity, we say that a co-occurrence is b-close if q2 − q1 ≤ b.

An integer π is a period of a string S of length N , if S[i] = S[i+π] for all i = 0, . . . , N−1−π.
The smallest period of a string S is called the period of S. We say that S is periodic if the
period of S is at most N/2. We exploit the well-known corollary of the Fine and Wilf’s
periodicity lemma [14]:

▶ Corollary 2. If there are at least three occurrences of a string Y in a string X, where
|X| ≤ 2|Y |, then the occurrences of Y in X form an arithmetic progression with a difference
equal to the period of Y .

2.1 Grammars
▶ Definition 3 (Straight-line program [25]). A straight-line program (SLP) G is a context-free
grammar (CFG) consisting of a set of non-terminals, a set of terminals, an initial symbol,
and a set of productions, satisfying the following properties:

A production consists of a left-hand side and a right-hand side, where the left-hand side
is a non-terminal A and the right-hand side is either a sequence BC, where B, C are
non-terminals, or a terminal;
Every non-terminal is on the left-hand side of exactly one production;
There exists a linear order < on the non-terminals such that A < B whenever B occurs
on the right-hand side of the production associated with A.

A run-length straight-line program (RLSLP) [34] additionally allows productions of form
A → Bk for positive integers k, which correspond to concatenating k copies of B. If A

is associated with a production A → a, where a is a terminal, we denote head(A) = a,
tail(A) = ε (the empty string); if A is associated with a production A → BC, we denote
head(A) = B, tail(A) = C; and finally if A is associated with a production A → Bk, then
head(A) = B, tail(A) = Bk−1.

The expansion S of a sequence of terminals and non-terminals S is the string that is
obtained by iteratively replacing non-terminals by the right-hand sides in the respective
productions, until only terminals remain. We say that G represents the expansion of its
initial symbol.

▶ Definition 4 (Parse tree). The parse tree of a SLP (RLSLP) is a rooted tree defined as
follows:
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The root is labeled by the initial symbol;
Each internal node is labeled by a non-terminal;
If S is the expansion of the initial symbol, then the ith leaf of the parse tree is labeled by
a terminal S[i];
A node labeled with a non-terminal A that is associated with a production A → BC, where
B, C are non-terminals, has 2 children labeled by B and C, respectively. If A is associated
with a production A → a, where a is a terminal, then the node has one child labeled by a.
(RLSLP only) A node labeled with non-terminal A that is associated with a production
A → Bk, where B is a non-terminal, has k children, each labeled by B.

The size of a grammar is its number of productions. The height of a grammar is the
height of the parse tree. We say that a non-terminal A is an ancestor of a non-terminal B if
there are nodes u, v of the parse tree labeled with A, B respectively, and u is an ancestor of
v. For a node u of the parse tree, denote by off(u) the number of leaves to the left of the
subtree rooted at u.

▶ Definition 5 (Relevant occurrences). Let A be a non-terminal associated with a production
A → head(A)tail(A). We say that an occurrence q of a string P in A is relevant with a
split s if q = |head(A)| − s ≤ |head(A)| ≤ q + |P | − 1.

For example, in Fig. 1 the occurrence q = 3 of P = cab is a relevant occurrence in C with
a split s = 1 but A contains no relevant occurrences of P .

▷ Claim 6. Let q be an occurrence of a string P in a string S. Consider the parse tree of an
RLSLP representing S, and let w be the lowest node containing leaves S[q], S[q +1], . . . , S[q +
|P | − 1] in its subtree, then either
1. The label A of w is associated with a production A → BC, and q − off(w) is a relevant

occurrence in A; or
2. The label A of w is associated with a production A → Br and q − off(w) = q′ + r′|B| for

some 0 ≤ r′ ≤ r, where q′ is a relevant occurrence of P in A.

Proof. Assume first that A is associated with a production A → BC. We then have that the
subtree rooted at the left child of w (that corresponds to B) does not contain S[q + |P | − 1]
and the subtree rooted at the right child of w (that corresponds to C) does not contain S[q].
As a consequence, q − off(w) is a relevant occurrence in A.

Consider now the case where A is associated with a production A → Br. The leaves
labeled by S[q] and S[q + |P | − 1] belong to the subtrees rooted at different children of A. If
S[q] belongs to the subtree rooted at the (r′ + 1)-th child of A, then q′ = q − off(w) − |B| · r′

is a relevant occurrence of P in A. ◁

▶ Definition 7 (Splits). Consider a non-terminal A of an RLSLP G. If it is associated with
a production A → BC, define

Splits(A, P ) = Splitsrev(A, P ) = {s : q is a relevant occurrence of P in A with a split s}.

If A is associated with a rule A → Bk, define

Splits(A, P ) = {s : q is a relevant occurrence of P in A with a split s};
Splitsrev(A, P ) = {|P | − s : q is a relevant occurrence of rev(P ) in rev(A) with split s}.

Define Splits(G, P ) (Splitsrev(G, P )) to be the union of Splits(A, P ) (Splitsrev(A, P )) over
all non-terminals A in G, and Splits′(G, P ) = Splits(G, P ) ∪ Splitsrev(G, P ).

CPM 2023
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We need the following lemma, which can be derived from Gawrychowski et al. [18]:

▶ Lemma 8. Let G be an SLP of size g representing a string S of length N , where g ≤ N .
There exists a Las Vegas algorithm that builds a RLSLP G′ of size g′ = O(g log N) of height
h = O(log N) representing S in time O(g log N) with high probability. This RLSLP has
the following additional property: For a pattern P of length m, we can in O(m log N) time
provide a certificate that P does not occur in S, or compute the set Splits′(G′, P ). In the
latter case, |Splits′(G′, P )| = O(log N).

2.2 Compact Tries
We assume the reader to be familiar with the definition of a compact trie (see e.g. [21]).
Informally, a trie is a tree that represents a lexicographically ordered set of strings. The
edges of a trie are labeled with strings. We define the label λ(u) of a node u to be the
concatenation of labels on the path from the root to u and an interval I(u) to be the interval
of the set of strings starting with λ(u). From the implementation point of view, we assume
that a node u is specified by the interval I(u). The locus of a string P is the minimum depth
node u such that P is a prefix of λ(u).

The standard tree-based implementation of a trie for a generic set of strings S =
{S1, . . . , Sk} takes Θ

(∑k
i=1 |Si|

)
space. Given a pattern P of length m and τ > 0 suffixes

Q1, . . . , Qτ of P , the trie allows retrieving the ranges of strings in (the lexicographically-
sorted) S prefixed by Q1, . . . , Qτ in O(m2) time. However, in this work, we build the tries
for very special sets of strings only, which allows for a much more efficient implementation
based on the techniques of Christiansen et al. [8], the proof is given in Appendix A:

▶ Lemma 9. Given an RLSLP G of size g and height h. Assume that every string in a
set S is either a prefix or a suffix of the expansion of a non-terminal of G or its reverse.
The trie for S can be implemented in space O(|S|) to maintain the following queries in
O(m + τ · (h + log m)) time: Given a pattern P of length m and suffixes Qi of P , 1 ≤ i ≤ τ ,
find, for each i, the interval of strings in the (lexicographically sorted) S prefixed by Qi.

3 Relevant, extremal, and predecessor occurrences in a non-terminal

In this section, we present a data structure that allows various efficient queries, which we
will need to prove Theorem 1. We also show how it can be leveraged for an index in the
simpler case of consecutive occurrences (a = 0, b = N). Recall that the text S is a string of
length N represented by an SLP G of size g. By applying Lemma 8, we transform G into
an RLSLP G′ of size g′ = O(g log N) and depth h = O(log N) representing S, which we fix
from now on. We start by showing that G′ can be processed in small space to allow multiple
efficient queries:

▶ Theorem 10. There is a O(g2 log4 N)-space data structure for G′ that given a pattern P

of length m can preprocess it in O(m log N + log2 N) time to support the following queries
for a given non-terminal A of G′:
1. Report the sorted set of relevant occurrences of P in A in O(log N) time;
2. Decide whether there is an occurrence of P in A in O(log N log log N) time;
3. Report the leftmost and the rightmost occurrences of P in A, head(A), and tail(A) in

O(log2 N log log N) time;
4. Given a position p, find the rightmost (leftmost) occurrence q ≤ p (q ≥ p) of P in A in

O(log3 N log log N) time (predecessor/successor).



P. Gawrychowski, G. Gourdel, T. Starikovskaya, and T. A. Steiner 12:7

Before we proceed to the proof, let us derive a data structure to report all consecutive
occurrences (co-occurrences) of a given pair of patterns.

▶ Corollary 11. For an SLP of size g representing a string S of length N , there is an
O(g2 log4 N)-space data structure that supports the following queries: given two patterns
P1, P2 both of length O(m), report all occ co-occurrences of P1 and P2 in S. The query time
is O(m log N + (1 + occ) · log3 N log log N).

Proof. We exploit the data structure of Theorem 10 for G′. To report all co-occurrences of
P1, P2 in S, we preprocess P1, P2 in O(m log N + log2 N) time and then proceed as follows.
Suppose that we want to find the leftmost co-occurrence of P1 and P2 in the string S[i . . . ],
where at the beginning i = 0. We find the leftmost occurrence q′

1 of P1 with q′
1 ≥ i (if it exists)

by a successor query on the initial symbol of G′ (the expansion of which is the entire string S).
Then we find the leftmost occurrence q2 of P2 with q2 ≥ q′

1 (if it exists) by a successor query
and the rightmost occurrence q1 of P1 with q1 ≤ q2 by a predecessor query. If either q′

1
or q2 do not exist, then there are no more co-occurrences in S[i . . . ]. Otherwise, clearly,
(q1, q2) is a co-occurrence, and there can be no other co-occurrences starting in S[i . . . q2]. In
this case, we return (q1, q2) and set i = q2 + 1. The running time of the retrieval phase is
O(log3 N log log N · (occ + 1)), since we use at most three successor/predecessor queries to
either output a new co-occurrence or decide that there are no more co-occurrences. ◀

3.1 Proof of Theorem 10
The data structure consists of two compact tries Tpre and Tsuf defined as follows. For each
non-terminal A, we store rev(head(A)) in Tpre and tail(A) in Tsuf . We augment Tpre and
Tsuf by computing their heavy path decomposition:

▶ Definition 12. The heavy path of a trie T is the path that starts at the root of T and at
each node v on the path branches to the child with the largest number of leaves in its subtree
(heavy child), with ties broken arbitrarily. The heavy path decomposition is a set of disjoint
paths defined recursively, namely it is defined to be a union of the singleton set containing
the heavy path of T and the heavy path decompositions of the subtrees of T that hang off the
heavy path.

For each non-terminal A of G′, a heavy path hpre in Tpre, and a heavy path hsuf in
Tsuf , we construct a multiset of points P(A, hpre, hsuf ). For every non-terminal A′ and
nodes u ∈ hpre, v ∈ hsuf the multiset contains a point (|λ(u)|, |λ(v)|) iff A′, u, v satisfy the
following properties:
1. A is an ancestor of A′;
2. I(u) contains rev(head(A′)) and I(v) contains tail(A′).
3. u, v are the lowest nodes in hpre, hsuf , respectively, satisfying Property 2.
(See Fig. 1.) The set P (A, hpre, hsuf ) is stored in a two-sided 2D orthogonal range emptiness
data structure [29, 6] which occupies O(|P(A, hpre, hsuf )|) space. Given a 2D range of the
form [α, ∞]× [β, ∞], it allows to decide whether the range contains a point in P(A, hpre, hsuf )
in O(log log N) time.

▷ Claim 13. The data structure occupies O(g2 log4 N) space.
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12:8 Compressed Indexing for Consecutive Occurrences

(a) Parse tree of G′. (b) Searching for cab with a split s = 1.

Figure 1 A string S = aababacacabc is generated by an SLP G′. Nodes u and v are the loci of c
and ab in Tpre and Tsuf respectively. The heavy paths hpre in Tpre and hsuf in Tsuf are shown in
blue. We have (2, 2) ∈ P(A, hpre, hsuf ) corresponding to C, u, v.

Proof. Each non-terminal A′ has at most g′ distinct ancestors and each root-to-leaf path in
Tpre or Tsuf crosses O(log g′) heavy paths (as each time we switch heavy paths, the number
of leaves in the subtree of the current node decreases by at least a factor of two). As a
corollary, each non-terminal creates O(g′ log2 g′) = O(g log3 N) points across all orthogonal
range emptiness data structures. ◁

When we receive a pattern P , we compute Splits′(G′, P ) via Lemma 8 in O(m log N) time
or provide a certificate that P does not occur in S, in which case there are no occurrences
of P in the expansions of the non-terminals of G′. Recall that |Splits′(G′, P )| ∈ O(log N).
We then sort Splits′(G′, P ) in O(log2 N) time (a technicality which will allow us reporting
relevant occurrences sorted without time overhead). Finally, we compute, for each s ∈
Splits′(G′, P ), the interval of strings in Tpre prefixed by rev(P [. . . s]) (which is the interval
I(u) for the locus u of rev(P [. . . s]) in Tpre) and the interval of strings in Tsuf prefixed by
P (s . . . ] (which is the interval I(u) for the locus u of P (s . . . ] in Tsuf ). By Lemma 9, with
τ = |Splits′(G′, P )| = O(log N) and h = O(log N), this step takes O(m + log2 N) time.

Reporting relevant occurrences is easy: by definition, each relevant occurrence q of P

in A is equal to |head(A)| − s for some s ∈ Splits′(G′, P ) such that rev(P [. . . s]) is a prefix
of rev(head(A)) and P (s . . . ] is a prefix of tail(A). As we already know the intervals of the
strings in Tsuf and Tpre starting with rev(P [. . . s]) and P (s . . . ], respectively, both conditions
can be checked in constant time per split, or in O(|Splits′(G′, P )|) = O(log N) time overall.
Note that since Splits′(G′, P ) are sorted, the relevant occurrences are reported sorted as well.

We now explain how to answer emptiness queries on a non-terminal:

▷ Claim 14. Let A be a non-terminal labeling a node in the parse tree of G′. We can decide
whether A contains an occurrence of P in O(log N log log N) time.

Proof. Below we show that P occurs in A iff there exists a split s ∈ Splits′(G′, P ) such that
for u being the locus of rev(P [. . . s]) in Tpre and v the locus of P (s . . . ] in Tsuf , for hpre the
heavy path containing u in Tpreand hsuf the heavy path containing v in Tsuf , the rectangle
[|λ(u)|, +∞] × [|λ(v)|, +∞] contains a point from P(A, hpre, hsuf ). Before we proceed to the
proof, observe that by the bound on |Splits′(G′, P )| this allows us to decide whether P occurs
in A in O(log N) range emptiness queries, which results in O(log N log log N) query time.

Assume that [|λ(u)|, +∞] × [|λ(v)|, +∞] contains a point (x, y) ∈ P(A, hpre, hsuf ) cor-
responding to a non-terminal A′. By construction, A is an ancestor of A′, the subtree
of u contains a leaf corresponding to rev(head(A′)) and the subtree of v contains a leaf
corresponding to tail(A′). Consequently, A′ contains an occurrence of P , which implies
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that A contains an occurrence of P . To show the reverse direction, let ℓ = off(u) + 1 and
r = off(u) + |A|, i.e. S[ℓ . . . r] = A. The string A contains an occurrence A[q . . . q + |P |) of P

iff S[ℓ + q . . . ℓ + q + |P |) is an occurrence of P in S. From Claim 6 it follows that if w is the
lowest node in the parse tree of G′ that contains leaves S[ℓ + q], . . . , S[ℓ + q + |P | − 1] in its
subtree and A′ is its label, then there exists a split s ∈ Splits′(G′, P ) such that rev(P [. . . s])
is a prefix of rev(head(A′)) and P (s . . . ] of tail(A′). By definition of u and v, the leaf of
Tpre labeled with rev(head(A′)) belongs to I(u) and the leaf of Tsuf labeled with tail(A′)
belongs to I(v). Let hpre (hsuf ) be the heavy path in Tpre(Tsuf ) containing u (v) and (x, y)
be the point in P(A, hpre, hsuf ) created for A′. As |λ(u)| ≤ x and |λ(v)| ≤ y, the rectangle
[|λ(u)|, +∞] × [|λ(v)|, +∞] is not empty. ◁

It remains to explain how to retrieve the leftmost/rightmost occurrences in a non-terminal,
as well as to answer predecessor/successor queries. The main idea for all four types of queries
is to start at any node of the parse tree of G′ labeled by A and recurse down via emptiness
queries and case inspection. Since the length of the expansion decreases each time we recurse
from a non-terminal to its child and the height of G′ is h = O(log N), this allows to achieve
the desired query time. We provide full details in Appendix B.

4 Compressed Indexing for Close Co-occurrences

In this section, we show our main result, Theorem 1. Recall that S is a string of length N

represented by an SLP G of size g. We start by applying Lemma 8 to transform G into an
RLSLP G′ of size g′ = O(g log N) and height h = O(log N) representing S.

The query algorithm uses the following strategy: first, it identifies all non-terminals of
G′ such that their expansion contains a b-close relevant co-occurrence, where a relevant
co-occurrence is defined similarly to a relevant occurrence:

▶ Definition 15 (Relevant co-occurrence). Let A be a non-terminal of G′. We say that a
co-occurrence (q1, q2) of P1, P2 in A is relevant if q1 ≤ |head(A)| ≤ q2 + |P2| − 1.

Second, it retrieves all b-close relevant co-occurrences in each of those non-terminals, and
finally, reports all b-close co-occurrences by traversing the (pruned) parse tree of G′, which is
possible due to the following claim:

▷ Claim 16. Assume that P2 is not a substring of P1, and let (q1, q2) be a co-occurrence of
P1, P2 in a string S. In the parse tree of G′, there exists a unique node u such that either
1. Its label A is associated with a production A → BC, and (q1 − off(u), q2 − off(u)) is a

relevant co-occurrence of P1, P2 in A;
2. Its label A is associated with a production A → Bk, q1 −off(u) = q′

1 +k′|B|, q2 −off(u) =
q′

2 + k′|B| for some 0 ≤ k′ ≤ k, where (q′
1, q′

2) is a relevant co-occurrence of P1, P2 in A.

Proof. Let A be the label of the lowest node u in the parse tree that contains leaves
S[q1], S[q1 + 1], . . . , S[q2 + |P2| − 1] in its subtree. Because P2 is not a substring of P1, A

cannot be associated with a production A → a. By definition, S[off(u) + 1] is the leftmost
leaf in the subtree of this node.

Assume first that A is associated with a production A → BC. We then have that the
subtree rooted at the left child of u (labeled by B) does not contain S[q2 + |P2| − 1] and the
subtree rooted at the right child of u (labeled by C) does not contain S[q1]. As a consequence,
(q1 − off(u), q2 − off(u)) is a relevant co-occurrence of P1, P2 in A.
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Consider now the case where A is associated with a production A → Bk. The leaves
labeled by S[q1] and S[q2 + |P2| − 1] belong to the subtrees rooted at different children of A.
If S[q1] belongs to the subtree rooted at the k′-th child of A, then (q1 − off(u) − |B| · (k′ −
1), q2 − off(u) − |B| · (k′ − 1)) is a relevant co-occurrence of P1, P2 in A. ◁

4.1 Combinatorial observations
Informally, we define a set of O(g2) strings and show that for any patterns P1, P2 there
are two strings S1, S2 in the set with the following property: whenever the expansion of a
non-terminal A in G′ contains a pair of occurrences P1, P2 forming a relevant co-occurrence,
there are occurrences of S1, S2 in the proximity. This will allow us to preprocess the non-
terminals of G′ for occurrences of the strings in the set and use them to detect b-close relevant
co-occurrences of P1, P2.

Consider two tries, Tpre and Tsuf : For each production of G′ of the form A → BC, we
store C in Tsuf and rev(B) in Tpre. For each production of the form A → Bk, we store B,
B2, Bk−2, and Bk−1 in Tsuf and the reverses of those strings in Tpre. For j ∈ {1, 2} and
s ∈ Splits′(G′, Pj) define Sj(s) = rev(U)V , where U is the label of the locus of rev(Pj [. . . s])
in Tpre and V is the label of the locus of Pj(s . . . ] in Tsuf . Let lj(s) = |rev(U)| and
∆j(s) = lj(s) − s.

Consider a non-terminal A such that its expansion A contains a relevant co-occurrence
(q1, q2) of P1, P2.

▷ Claim 17. There exists s ∈ Splits′(G′, P2) such that p2 = q2 − ∆2(s) is an occurrence of
S2(s) in A and [p2, p2 + |S2(s)|) ⊇ [q2, q2 + |P2|).

Proof. Below we show that there exists a descendant A′ of A and a split s ∈ Splits′(G′, P2)
such that either rev(P2[. . . s]) is a prefix of rev(head(A′)) and P2(s . . . ] is a prefix of tail(A′),
or A′ is associated with a rule A′ → (B′)k, rev(P2[. . . s]) is a prefix of rev((B′)2) and P2(s . . . ]
is a prefix of (B′)k−2. The claim follows by the definition of Tpre, Tsuf , and S2(s).

If q2 is relevant in A, there exists a split s ∈ Splits′(G′, P2) such that rev(P2[. . . s]) is a
prefix of rev(head(A)) and P2(s . . . ] is a prefix of tail(A) by definition. If q2 is not relevant,
then q2 ≥ |head(A)| by the definition of a co-occurrence. By Claim 6, there is a descendant
A′ of A corresponding to a substring A[ℓ . . . r] for which either (q2 − ℓ) is relevant (and
then we can repeat the argument above), or A′ is associated with a rule A′ → (B′)k and
(q2 − ℓ) − k′ · |B′| is relevant, for some 0 ≤ k′ ≤ k. Consider the latter case. If A′ = A, then
k′ = 1, as otherwise q1 < q′

2 = q2 − |B′| < q2 is an occurrence of P2 in A contradicting the
definition of a co-occurrence (recall that (q1, q2) is a relevant co-occurrence and hence by
definition q1 < |head(A)|), and therefore s = |(B′)2|−q2 +ℓ ∈ Splits′(G′, P2), rev(P2[. . . s]) is
a prefix of rev((B′)2) and P2(s . . . ] is a prefix of (B′)k−2. If A′ ̸= A, then we can analogously
conclude that k′ = 0, which implies s = |B′| − q2 + ℓ ∈ Splits′(G′, P2), rev(P2[. . . s]) is a
prefix of rev(B′) and P2(s . . . ] is a prefix of (B′)k−1. ◁

As the definition of a co-occurrence is not symmetric, q1 does not enjoy the same property.
However, a similar claim can be shown:

▶ Lemma 18. There exists s ∈ Splits′(G′, P1) and an occurrence p1 of S1(s) in A such that
[p1, p1 + |S1(s)|) ⊇ [q1, q1 + |P1|) and at least one of the following holds:
1. q1 − ∆1(s) is an occurrence of S1(s);
2. q2 is a relevant occurrence of P2 in A, the period of S1(s) equals the period π1 of P1,

and there exists an integer k such that p1 = q1 − ∆1(s) − π1 · k and q2 + π1 − 1 ≤
p1 + |S1(s)| − 1 ≤ q2 + |P2| − 1.
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Proof. If q1 is a relevant occurrence of P1 in A with a split s ∈ Splits′(G′, P1), then
rev(P1[. . . s]) is a prefix of rev(head(A)) and P1(s . . . ] is a prefix of tail(A) and therefore the
first case holds by the definition of Tpre and Tsuf .

Otherwise, by Claim 6, there is a descendant A′ of head(A) corresponding to a substring
A[ℓ . . . r] for which either (q1 − ℓ) is relevant (and then we can repeat the argument above),
or A′ is associated with a rule A′ → (B′)k and (q1 − ℓ) − k′ · |B′|, for some 0 ≤ k′ ≤ k, is a
relevant occurrence of P1 in A′ with a split s ∈ Splits′(G′, P1). Consider the latter case. We
must have (1) q1 + |P1| − 1 + |B′| ≥ r or (2) q1 + |B′| − 1 ≥ q2, because if both inequalities
do not hold, then q1 < q1 + |B′| ≤ q2 is an occurrence of P1 in A, which contradicts the
definition of a co-occurrence. Additionally, if (1) holds, then by definition there exists a split
s′ ∈ Splits′(G′, P1) (which might be different from the split s above) such that rev(P1[. . . s′])
is a prefix of rev((B′)r−1) and P1(s′ . . . ] is a prefix of B′ and we fall into the first case of the
lemma.

From now on, assume that (2) holds and (1) does not. Since q1 + |B′| ≤ r ≤ |head(A)|
and (q1, q2) is a relevant co-occurrence, q2 must be a relevant occurrence of P2 in A. If
|P1| − s ≤ |(B′)2|, then rev(P1[. . . s]) is a prefix of rev(B′) and P1(s . . . ] is a prefix of (B′)2

and therefore q1 − ∆1(s) is an occurrence of S1(s). Otherwise, by Fine and Wilf’s periodicity
lemma [14], the periods of A′, P1, and S1(s) are equal, since P1 and hence S1(s) span at least
two periods of A′. By periodicity, S1(s) occurs at positions q1 −∆1(s)−|B′| ·k of A. Let p1 be
the leftmost of these positions which satisfies p1 + |S1(s)| − 1 ≥ q1 + |P1| − 1. This position is
well-defined as (1) does not hold, and furthermore [q1, q1+|P1|) ⊆ [p1, p1+|S1(s)|) as s ≤ l1(s)
and |S1(s)|−l1(s) ≥ |P1|−s. We have p1 = q1 −∆1(s)−π1 ·k′′ for some integer k′′ (as |B′| is a
multiple of π1), and q2+π1−1 ≤ q1+2|B′|−1 ≤ q1+|P1|−1 ≤ p1+|S1(s)|−1 ≤ r < q2+|P2|−1,
where the last inequality holds as q2 is a relevant occurrence in A. The claim of the lemma
follows. ◀

We summarize Claim 17 and Lemma 18:

▶ Corollary 19. Let (q1, q2) be a co-occurrence of P1, P2 in the expansion of a non-terminal A.
There exist splits s1 ∈ Splits′(G′, P1), s2 ∈ Splits′(G′, P2) and occurrences p1 of S1(s1) and
p2 of S2(s), where [p1, p1 + |S1(s1)|) ⊇ [q1, q1 + |P1|) and [p2, p2 + |S2(s2)|) ⊇ [q2, q2 + |P2|),
such that at least one of the following holds:
1. The occurrence p1 is either relevant or p1 + |S1(s1)|−1 ≤ |head(A)|. The occurrence p2 is

either relevant or p2 > |head(A)|. Additionally, p1 = q1 − ∆1(s1) and p2 = q2 − ∆2(s2).
2. The occurrence p2 is relevant and p1 ≤ |head(A)|. Additionally, p2 = q2 − ∆2(s2),

the period of S1(s) equals the period π1 of P1, and there exists an integer k such that
p1 = q1 − ∆1(s1) − π1 · k and p2 + π1 − 1 ≤ p1 + |S1(s1)| − 1 ≤ p2 + |S2(s2)| − 1.

The reverse observation holds as well:

▶ Observation 20. If pj is an occurrence of Sj(s) in A, j = 1, 2, then qj = pj + ∆j(s)
is an occurrence of Pj. Furthermore, if S1(s) is periodic with period π1, then q1 + π1 · k,
0 ≤ k ≤ ⌊(|S1(s)| − q1 − |P1|)/π1⌋, are occurrences of P1 in A.

Finally, the following trivial observation will be important for upper bounding the time
complexity of our query algorithm:

▶ Observation 21. If a string contains a pair of occurrences (q1, q2) of P1 and P2 such that
0 ≤ q2 − q1 ≤ b, then it contains a b-close co-occurrence of P1 and P2.
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head(A) tail(A)
ℓ

B′ B′ B′ B′ B′ B′ B′

r

A′

P2

q2

P1

q1 + |B′| q1 + |B′| + |P1| − 1

P1

q1

(a) If neither (1) nor (2), then (q1, q2) is not consecutive.

head(A) tail(A)
ℓ

B′ B′ B′ B′ B′ B′ B′

r

A′

P2

q2

P1

q1 q1 + |P1| − 1

(b) (1) holds and (2) does not.

head(A) tail(A)
ℓ

B′ B′ B′ B′ B′ B′ B′

r

A′

P2

q2

π1 . . .
S1

q1 − ∆1 − |B′|

S1

q1 − ∆1 − 2|B′|
P1

q1

(c) (2) holds, (1) does not, and |P1| − s ≥ (B′)2.

Figure 2 Subcases of Lemma 18.

4.2 Index
The first part of the index is the data structure of Theorem 10 and the index of Christiansen
et al. [8]:

▶ Fact 22 ([8, Introduction and Theorem 6.12]). There is a O(g log2 N)-space data structure
that can find the occ occurrences of any pattern P [1 . . . m] in S in time O(m + occ).

The second part of the index are the tries Tpre and Tsuf , augmented as explained below.
Consider a quadruple (u1, u2, v1, v2), where u1 and u2 are nodes of Tpre and v1 and v2
are nodes of Tsuf . Let U1, U2, V1, V2 be the labels of u1, u2, v1, v2, respectively. Define
S1 = rev(U1)V1 and S2 = rev(U2)V2, and let l1 = |rev(U1)| and l2 = |rev(U2)|.

First, we store a binary search tree T1(u1, u2, v1, v2) that for each non-terminal A contains
at most six integers d = p2 − p1, where p1, p2 are occurrences of S1, S2 in A, satisfying at
least one of the below:
1. p1 is the rightmost occurrence of S1 such that p1 + |S1| − 1 < |head(A)| and p2 is the

leftmost occurrence of S2 such that p2 ≥ |head(A)|;
2. p1 is a relevant occurrence of S1 with a split l1 and p2 is the leftmost occurrence of S2

such that p2 ≥ |head(A)|;
3. p1 is a relevant occurrence of S1 with a split l1, p2 is a relevant occurrence of S2 with a

split l2;
4. p2 is a relevant occurrence of S2 with a split l2 and p1 is the rightmost occurrence of S1

such that p1 + |S1| − 1 < p2;
5. p2 is a relevant occurrence of S2 with a split l2 and p1 is the leftmost or second leftmost

occurrence of S1 in head(A) such that p1 < p2 ≤ p1 + |S1| − 1 < p2 + |S2| − 1.
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Second, we store a list of non-terminals L(u2, v2) such that their expansion contains a
relevant occurrence of S2 with a split l2. Additionally, for every k ∈ [0, log N ], we store, if
defined:
1. The rightmost occurrence p1 of S1 in S2 such that p1 + (|S1| − 1) ≤ l2 − 2k;
2. The leftmost occurrence p′

1 of S1 in S2 such that p′
1 ≤ l2 − 2k ≤ p′

1 + |S1| − 1;
3. The rightmost occurrence p′′

1 of S1 in S2 such that p′′
1 ≤ l2 − 2k ≤ p′′

1 + |S1| − 1.

Finally, we compute and memorize the period π1 of S1. If the period is well-defined (i.e.,
S1 is periodic), we build a binary search tree T2(u1, u2, v1, v2). Consider a non-terminal A

containing a relevant occurrence p2 of S2 with a split l2. Let p1 be the leftmost occurrence of
S1 such that p1 ≤ p2 ≤ p1 + |S1| − 1 ≤ p2 + |S2| − 1 and p′

1 the rightmost. If p1 and p′
1 exist

(p1 might be equal to p′
1) and p′

1 + |S1| − 1 ≥ p2 + π1 − 1, we add an integer (p′
1 − p1)/π1 to

the tree and associate it with A. We also memorize a number ov(S1, S2) = p2 − p′
1, which

does not depend on A by Corollary 2 and therefore is well-defined (it corresponds to the
longest prefix of S2 periodic with period π1).

▷ Claim 23. The data structure occupies O(g5 log5 N) space.

Proof. The data structure of Theorem 10 occupies O(g2 log4 N) space. The index of Chris-
tiansen et al. occupies O(g log2 N) space. The tries, by Lemma 9, use O(g′) = O(g log N)
space. There are O((g′)4) quadruples (u1, u2, v1, v2) and for each of them the trees take O(g′)
space. The arrays of occurrences of S1 in S2 use O(log N) space. Therefore, overall the data
structure uses O(g5 log5 N) space. ◁

4.3 Query
Recall that a query consists of two strings P1, P2 of length at most m each and an integer b,
and we must find all b-close co-occurrences of P1, P2 in S, let occ be their number.

We start by checking whether P2 occurs in P1 using a linear-time and constant-space
pattern matching algorithm such as [11]. If it is, let q2 be the position of the first occurrence.
If q2 > b, then there are no b-close co-occurrences of P1, P2 in S. Otherwise, to find all b-close
co-occurrences of P1, P2 in S (that always consist of an occurrence of P1 in S and the first
occurrence of P2 in P1), it suffices to find all occurrences of P1 in S, which we do using the
index of Christiansen et al. [8] in time O(|P1| + occ) = O(m + occ).

From now on, assume that P2 is not a substring of P1. Let N be the set of all non-
terminals in G′ such that their expansion contains a relevant b-close co-occurrence of P1, P2.
By Claim 16, |N | ≤ occ.

▶ Lemma 24. Assume that P2 is not a substring of P1. One can retrieve in O(m + (1 +
occ) log3 N) time a set N ′ ⊃ N , |N ′| = O(occ log N).

Proof. We start by computing Splits′(G′, P1) and Splits′(G′, P2) via Lemma 8 in O((|P1| +
|P2|) log N) = O(m log N) time (or providing a certificate that either P1 or P2 does not occur
in S, in which case there are no co-occurrences of P1, P2 in S and we are done). Recall that
|Splits′(G′, P1)|, |Splits′(G′, P2)| ∈ O(log N). For each fixed pair of splits s1 ∈ Splits′(G′, P1),
s2 ∈ Splits′(G′, P2) and j ∈ {1, 2}, we compute the interval of strings in Tpre prefixed by
rev(Pj [. . . sj ]), which corresponds to the locus uj of rev(Pj [. . . sj ]) in Tpre and the interval
of strings in Tsuf prefixed by Pj(sj . . . ], which corresponds to the locus vj of Pj(sj . . . ] in
Tsuf . Computing the intervals takes O(m + log2 N) time for all the splits by Lemma 9.
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Consider the strings S1 = rev(U1)V1 and S2 = rev(U2)V2, where U1, U2, V1, V2 are the labels
of u1, v1, u2, v2, respectively. Let l1 = |rev(U1)|, ∆1 = l1 − s1, l2 = |rev(U2)|, ∆2 = l2 − s2,
and ∆ = ∆1 − ∆2.

Consider a relevant co-occurrence (q1, q2) of P1, P2 in the expansion of a non-terminal A.
By Corollary 19, q1, q2 imply existence of occurrences p1, p2 of S1, S2 such that [p1, p1+|S1|) ⊇
[q1, q1 + |P1|) and [p2, p2 + |S2|) ⊇ [q2, q2 + |P2|). Our index must treat both cases of
Corollary 19. We consider eight subcases defined in Fig. 3, which describe all possible
locations of p1 and p2.

head(A) tail(A)

S2 P2

q2p2

S1 P1

q1p1

rightmost leftmost

(1.1)

head(A) tail(A)

S2 P2

q2p2

S1 P1

q1p1

leftmost

(1.2)

head(A) tail(A)

S2 P2

q2p2

S1 P1

q1p1

(1.3)

head(A) tail(A)

S2 P2

q2p2

S1 P1

q1p1

rightmost

(1.4)

head(A) tail(A)

S2 P2

q2p2

S1 P1

q1p1

(1.5)

head(A) tail(A)

S2 P2

q2p2

S1 P1

q1p1

(1.6)

head(A) tail(A)

S2 P2

q2p2

S1 P1

q1p1

(2.1)

head(A) tail(A)

S2 P2

q2p2

S1 P1

q1p1

(2.2)

Figure 3 Assume that S1 does not contain S2. The figure shows all possible locations of
occurrences p1, p2 of S1, S2 in A. In Case 1 of Corollary 19, there are six subcases: (1.1)
p1 + |S1| − 1 ≤ |head(A)|, p2 > |head(A)|; (1.2) p1 is a relevant occurrence of S1, p2 > |head(A)|;
(1.3) p1, p2 are relevant; (1.4) p2 is relevant, p1 + |S1| − 1 ≤ p2; (1.5) p2 is relevant, p2 < p1 ≤
p1 + |S1| − 1 ≤ p2 + |S2| − 1; (1.6) p2 is relevant, p1 < p2 < p1 + |S1| − 1 ≤ p2 + |S2| − 1. By the
definition of a co-occurrence and by Observation 20, in Subcases (1.1) and (1.4) p1 must be as far to
the right as possible, and in Subcases (1.1) and (1.2) p2 must be as far to the left as possible. In
Case 2, there are two subcases: (2.1) p2 is relevant and p2 ≤ p1 ≤ p1 + |S1| − 1 ≤ p2 + |S2| − 1;
(2.2) p2 is relevant and p1 < p2 < p2 + π1 − 1 ≤ p1 + |S1| − 1, where π1 is the period of S1. In
all subcases, q2 = p2 + ∆2. In Subcases (1.1)-(1.6) q1 = p1 + ∆1 and in Subcases (2.1) and (2.2)
q1 = p1 + ∆1 + k · π1 for some integer k.

Subcases (1.1)–(1.4). To retrieve the non-terminals, we query T1(u1, u2, v1, v2) to find
all integers that belong to the range [∆, ∆ + b] (and the corresponding non-terminals).
Recall that, for each non-terminal A, the tree stores an integer d = p2 − p1, where p1 is
the starting position of an occurrence of S1 in A and p2 of S2. By Observation 20, p1 + ∆1
is an occurrence of P1 and p2 + ∆2 is an occurrence of P2. The distance between them
is in [0, b] iff d ∈ [∆, ∆ + b]. By Observation 21, each retrieved non-terminal contains a
close co-occurrence of (q1, q2). On other other hand, if A contains a co-occurrence (q1, q2)
corresponding to one Subcases (1.1)-(1.4), then by Corollary 19, p1 = q1 −∆1 is an occurrence
of S1 and p2 = q2 − ∆2 is an occurrence of S2 and by construction T1(u1, u2, v1, v2) stores
an integer d = p2 − p1. Therefore, the query retrieves all non-terminals corresponding to
Subcases (1.1)-(1.4).
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Subcases (1.5) and (2.1). We must decide whether an occurrence of P1 in S2 forms a
b-close co-occurrence with the occurrence ∆2 of P2 in S2, and if so, report all non-terminals
such that their expansion contains a relevant co-occurrence of S2 with a split l2, which are
exactly the non-terminals stored in the list L(u2, v2). Let k = ⌈log(s2)⌉. Recall that the
index stores the following information for k:
1. p1, the rightmost occurrence of S1 in S2 such that p1 + (|S1| − 1) ≤ l2 − 2k;
2. p′

1, the leftmost occurrence of S1 in S2 such that p′
1 ≤ l2 − 2k ≤ p1 + (|S1| − 1);

3. p′′
1 , the rightmost occurrence of S1 in S2 such that p′′

1 ≤ l2 − 2k ≤ p′′
1 + (|S1| − 1).

(See Fig. 4). By Observation 20, the occurrence p1 of S1 induces an occurrence q1 = p1 +∆1 of
P1. Furthermore, if S1 is periodic with period π1, then q1+π1·k, 0 ≤ k ≤ ⌊(|S1|−q1−|P1|)/π1⌋,
are also occurrences of P1. One can decide whether the distance from any of these occurrences
to q2 is in [0, b] in constant time, and if yes, then there S2 contains a b-close co-occurrence
of P1, P2 by Observation 21. Second, by Corollary 2, if S1 is not periodic, then there are
no occurrences of S1 between p′

1 and p′′
1 and p′

1, p′′
1 by Observation 20 induce occurrences

p′
1 +∆1, p′′

1 +∆1 of P1. Otherwise, there are occurrences of P1 in every position p′
1 +∆1 +k ·π1,

0 ≤ k ≤ ⌊(|S1| + p′′
1 − |P1| − p′

1)/π1⌋. Similarly, we can decide whether the distance from
any of them to the occurrence ∆2 of P2 in S2 is in [0, b] in constant time. Finally, let
q1 be the rightmost occurrence of P1 in S2 in the interval [l2 − 2k + 1, ∆2]. We extract
S2(l2 − 2k, ∆2 + |P2|) via Fact 28 and search for q1 using a linear-time pattern matching
algorithm for P1, which takes O(|P1| + |P2|) = O(m) time. If 0 ≤ ∆2 − q1 ≤ b, then there is a
b-close co-occurrence of P1, P2 in S2. Correctness follows from Corollary 19, Observation 20
and Observation 21.

head(A) tail(A)
p2 q2

∆2 s2

2k

S2 P2

extract and search for P1

p′′
1

S1 P1

S1 P1

p′
1

S1 P1

p1

S1 P1

Figure 4 Query algorithm for Subcases (1.5) and (2.1).

Subcase (2.2). Let π1 be the period of S1. We retrieve the non-terminals associated
with the integers q ∈ T2(u1, u2, v1, v2) such that the intersection of an interval I = [a, b]
and [ℓ, q] is non-empty, where a = ⌈(∆ − ov(S1, S2))/π1⌉, b = ⌊(∆ − ov(S1, S2) + b)/π1⌋ and
ℓ = −⌊(|S1| − |P1| − ∆1)/π1⌋ (See the description of the index for the definition of ov(S1, S2)).
As ℓ is fixed, we can implement the query via at most one binary tree search: If b ≤ ℓ, the
output is empty, if a ≤ ℓ ≤ b, we must output all integers, and if ℓ ≤ a, we must output all
q ≥ b. Let us now explain why the algorithm is correct. Consider a non-terminal A for which
T2(u1, u2, v1, v2) stores an integer q. By construction, A contains a relevant occurrence of S2
with a split l2. A position p1 = |head(A)| − l2 − ov(S1, S2) − q · π1 is the leftmost occurrence
of S1 in A such that p1 ≤ p2 ≤ p1 + |S1| − 1 and p2 = |head(A)| − l2 − ov(S1, S2) the
rightmost. Consequently, there is an occurrence q1 = |head(A)| − l2 − ov(S1, S2) − q′ · π1 + ∆1
of P1 for each −⌊(|S1| − |P1| − ∆1)/π1⌋ ≤ q′ ≤ q. The occurrence of S2 implies that
q2 = |head(A)| − s2 is an occurrence of P2. We have 0 ≤ q2 − q1 = q′ · π1 + ov(S1, S2) − ∆ ≤ b

iff ∆ − ov(S1, S2) ≤ q′ · π1 ≤ ∆ − ov(S1, S2) + b, which is equivalent to [ℓ, q] ∩ I ̸= ∅. It
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follows that we retrieve every non-terminal corresponding to Subcase (2.2). On the other
hand, by Observation 21, the expansion of each retrieved non-terminal contains a b-close
co-occurrence of P1, P2.

Subcase (1.6). We argue that we have already reported all non-terminals corresponding
to this subcase and there is nothing left to do. Consider a non-terminal A such that its
expansion contains a relevant occurrence p2 of S2. If there are at most two occurrences
p1 of S1 such that p1 ≤ p2 ≤ p1 + |S1| − 1 ≤ p2 + |S2| − 1, we will treat them when we
query T1(u1, u2, v1, v2) (Subcases (1.1)-(1.4)). Otherwise, by Corollary 2, S1 is periodic and
there is an occurrence p′

1 of S1 such that p′
1 ≤ p2 < p2 + π1 ≤ p1 + |S1| − 1 < p2 + |S2| − 1.

The non-terminals corresponding to this case are reported when we query T2(u1, u2, v1, v2)
(Subcase (2.2)).

Time complexity. As shown above, the algorithm reports a set N ′ ⊃ N of non-terminals
and each non-terminal in N ′ contains a b-close co-occurrence. By Claim 16 and since
the height of G′ is h = O(log N), we have |N ′| = O(occ log N). Furthermore, for a fixed
pair of splits of P1, P2, each non-terminal in N ′ can be reported a constant number of
times. Since |Splits′(G′, P1)| · |Splits′(G′, P2)| = O(log2 N), the total size of the output is
|N ′| ·O(log2 N) = O(occ · log3 N). We therefore obtain that the running time of the algorithm
is O(m + log3 N + occ log3 N) = O(m + (1 + occ) log3 N) as desired. ◀

Once we have retrieved the set N ′, we find all b-close relevant co-occurrences for each
of the non-terminals in N ′ using Theorem 10. In fact, our algorithm acts naively and
computes all relevant co-occurrences for a non-terminal in N ′, and then selects those that
are b-close. By case inspection, one can show that a relevant co-occurrence for a non-terminal
A always consists of an occurrence of P2 that is either relevant or the leftmost in tail(A), and
a preceding occurrence of P1. Intuitively, this allows to compute all relevant co-occurrences
efficiently and guarantees that their number is small. Formally, we show the following claim:

▶ Lemma 25. Assume that P2 is not a substring of P1. After O(m log N + log2 N)-time
preprocessing, the data structure of Theorem 10 allows to compute all b-close relevant co-
occurrences of P1, P2 in the expansion of a given non-terminal A in time O(log3 N log log N).

A part of the index of Christiansen et al. [8] is a pruned copy of the parse tree of G′.
They showed how to traverse the tree to report all occurrences of a pattern, given its relevant
occurrences in the non-terminals. By using essentially the same algorithm, we can report all
b-close co-occurrences in amortized constant time per co-occurrence, which concludes the
proof of Theorem 1. (See Appendix C, Lemma 33.)
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A Proofs omitted from Section 2

▶ Lemma 9. Given an RLSLP G of size g and height h. Assume that every string in a
set S is either a prefix or a suffix of the expansion of a non-terminal of G or its reverse.
The trie for S can be implemented in space O(|S|) to maintain the following queries in
O(m + τ · (h + log m)) time: Given a pattern P of length m and suffixes Qi of P , 1 ≤ i ≤ τ ,
find, for each i, the interval of strings in the (lexicographically sorted) S prefixed by Qi.

Proof. Let us first recall the definition of the Karp–Rabin fingerprint.

▶ Definition 26 (Karp–Rabin fingerprint). For a prime p and an r ∈ F∗
p, the Karp–Rabin

fingerprint [24] of a string X is defined as a tuple (r|X|−1 mod p, r−|X|+1 mod p, φp,r(X)),
where φp,r(X) =

∑|X|−1
k=0 S[k]rk mod p.

We use the following result of Christiansen et al. [8], which builds on Belazzougui et al. [3]
and Gagie et al. [16, 17].

▶ Fact 27 ([8, Lemma 6.5]). Let S be a set of strings and assume we have a data structure
supporting extraction of any length-l prefix of strings in S in time fe(l) and computing the
Karp–Rabin fingerprint φ of any length-l prefix of a string in S in time fh(l). We can
then build a data structure that uses O(|S|) space and supports the following queries in
O(m + fe(m) + τ(fh(m) + log m)) time: Given a pattern P of length m and τ > 0 suffixes
Q1, . . . , Qτ of P , find the intervals of strings in (the lexicographically-sorted) S prefixed by
Q1, . . . , Qτ .

It should be noted that despite using a hash function, the query algorithm is deterministic:
the proof shows that p and r can be chosen during the construction time to ensure that there
are no collisions on the substrings of the strings in S.

To bound fe, we use [8, Lemma 6.6] which builds on Gąsieniec et al. [20] and Claude and
Navarro [9].

▶ Fact 28 ([8, Lemma 6.6]). Given an RLSLP of size O(g), there exists a data structure of
size O(g) such that any length-l prefix or suffix of A can be obtained from any non-terminal
A in time fe(l) = O(l).
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To bound fh(l), we introduce a simple construction based on the following well-known
fact:

▶ Fact 29. Consider strings X, Y, Z where XY = Z. Given the Karp–Rabin fingerprints of
two of the three strings, one can compute the fingerprint of the third string in constant time.

▷ Claim 30. Given a RLSLP G of size g and height h, there exists a data structure of
size O(g) that given a non-terminal A and an integer l allows to retrieve the Karp-Rabin
fingerprints of the length-l prefix and suffix of Ar and rev(Ar) in time fh(l) = O(h + log l).

Proof. The claim for rev(Ar) follows for the claim for Ar by considering the grammar Grev,
where the order of the non-terminals in each production is reversed. Below we focus on
extracting the fingerprints for Ar, and we further restrict our attention to prefixes of Ar, the
algorithm for suffixes being analogous.

The data structure consists of two sets. The first set contains the lengths of the expansions
of all non-terminals in the grammar, and the second one their fingerprints.

By Fact 29 and doubling, it suffices to show an algorithm for computing the fingerprint of
the length-l prefix of A. Assume that A associated with a rule A → BC. If the length of A is
smaller than l, we return error. Otherwise, to compute the fingerprint of the length-l prefix
of A, we consider two cases. If l ≤ |B|, we recurse on B to retrieve the fingerprint of the
l-length prefix of B. Otherwise, we recurse on C to retrieve the fingerprint of C[. . . l − |B|)
and then compute the fingerprint of the l-length prefix of A from the fingerprints of B and
C[. . . l − |B|) in constant time by Fact 29.

For a non-terminal A associated with a rule A → Br, we compute the fingerprint
analogously. If the length of A is smaller than l, we return error. Otherwise, let q be such
that q · |B| ≤ l < (q + 1) · |B|. We compute the fingerprint of B

q from the fingerprint of B

by applying Fact 29 O(1 + log q) times, and the fingerprint of B[. . . l − q · |B|) recursively.
We can then apply Fact 29 to compute the fingerprint of the length-l prefix of A in constant
time. Note that in this case, the length of the prefix decreases by a factor at least q.

If we are in a terminal A, the calculation takes O(1) time (the prefix must be equal to A

itself).
In total, we spend O(h + log l) time as we recurse O(h) times, and whenever we spend

more than constant time in a symbol, we charge it on the decrease in the length. The
fingerprints of length-l suffixes are computed analogously. ◁

By substituting the bounds for fe(l) (Fact 29) and fh(l) (Claim 28) into Fact 27, we
obtain the claim of the lemma. ◀

B Proofs omitted from Section 3

▷ Claim 31. Given a non-terminal A of G′, we can find the leftmost and the rightmost
occurrences of P in A and as a corollary in head(A) and tail(A) in O(log2 N log log N) time.

Proof. We explain how to find the leftmost occurrence of P in A, the rightmost one can be
found analogously. We first check whether A contains an occurrence of P via Claim 14 in
O(log N log log N) time. If it does not, we can stop immediately. Below we assume that
there is an occurrence of P in A. Next, we check whether head(A) contains an occurrence
of P via Claim 14 in O(log N log log N) time. If it does, the leftmost occurrence of P in A

is the leftmost occurrence of P in head(A) and we can find it by recursing on head(A). If
head(A) does not contain an occurrence of P , but A contains relevant occurrences of P , then
the leftmost occurrence of P in A is the leftmost relevant occurrence of P in A and we can
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find it in O(|Splits′(G′, P )|) = O(log N) time. Finally, if P neither occurs in head(A) nor has
relevant occurrences in A, then the leftmost occurrence of P in A is the leftmost occurrence
of P in tail(A). If tail(A) is a non-terminal C, we recurse on C to find it. If tail(A) = Br−1

for a non-terminal B, tail(A) cannot contain an occurrence of P because B does not contain
P and there are no relevant occurrences in A. We recurse down at most h = O(log N) levels,
and spend O(log N log log N) time per level. The claim follows. ◁

▶ Lemma 32. Let A be a non-terminal of G′. For any position p, we can find the rightmost
occurrence q ≤ p of P in A and the leftmost occurrence q′ ≥ p of P in A in O(log3 N log log N)
time.

Proof. First we describe how to locate q. Consider a node u of the parse tree of G′ labeled
by A. The algorithm starts at u and recurses down. Let A′ be the label of the current node.
It computes the leftmost and rightmost occurrences in A′, head(A′) and tail(A′) as well as
all relevant occurrences via Claim 31. If the leftmost occurrence of P in A′ is larger than p,
the search result is empty. Otherwise, consider two cases.
1. A′ is associated with a rule A′ → B′C ′, i.e. head(A′) = B′, tail(A′) = C ′.

a. If p ≤ |B′|, recurse on B′.
b. Assume now that p > |B′|. If the leftmost occurrence of P in C ′ is smaller than p,

recurse on C ′. Otherwise, return the rightmost relevant occurrence of P in A′ if it
exists else the rightmost occurrence of P in B′.

2. A′ is associated with a rule A → (B′)r, i.e. head(A′) = B′, tail(A′) = (B′)r−1. Let an
integer k be such that (k − 1) · |B′| + 1 ≤ p ≤ k · |B′|. The desired occurrence of P is the
rightmost one of the following ones:
a. The rightmost occurrence q ≤ p of P which crosses the border between two copies of

B′. To compute q, we compute all relevant occurrences of P in A′ and then shift each
of them by the maximal possible shift r′ · |B′|, where r′ is an integer, which guarantees
that it starts before p and ends before |A′| and take the rightmost of the computed
occurrences to obtain q.

b. The rightmost occurrence q of P such that for some integer k′, we have (k′ − 1) · |B′| ≤
q ≤ q + |P | − 1 ≤ k′ · |B′| (i.e. the occurrence fully belongs to some copy of B′). In
this case, q is either the rightmost occurrence of P in the (k − 1)-th copy of B′, or the
rightmost occurrence of P in the k-th copy of B′ that is smaller than p. In the second
case, we compute q by recursing on B′.

We recurse down at most h levels. On each level we spend O(log2 N log log N) time to compute
the leftmost, the rightmost, and relevant occurrences and respective shifts for a constant
number of non-terminals via Claim 31. Therefore, in total we spend O(h · log2 N log log N) =
O(log3 N log log N) time.

Locating q′ is very similar and differs only in small technicalities. The algorithm starts
at the node u and recurses down. Let A′ be the label of the current node. We compute
the leftmost and rightmost occurrences in A′, head(A′) and tail(A′) as well as all relevant
occurrences via Claim 31. If the rightmost occurrence of P in A′ is smaller than p, the search
result is empty. Otherwise, consider two cases.
1. A′ is associated with a rule A′ → B′C ′, i.e. head(A′) = B′, tail(A′) = C ′.

a. If p > |B′|, recurse on C ′.
b. Assume now that p ≤ |B′|. If the rightmost occurrence of P in B′ is larger than p,

recurse on B′. Otherwise, return the leftmost relevant occurrence q satisfying q ≥ p, if
it exists, and otherwise the leftmost occurrence of P in C ′.
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2. A′ is associated with a rule A → (B′)r, i.e. head(A′) = B′, tail(A′) = (B′)r−1. Let an
integer k be such that (k − 1) · |B′| + 1 ≤ p ≤ k · |B′|. The desired occurrence of P is the
leftmost one of the following ones:
a. The leftmost occurrence q′ ≥ p of P which crosses the border between two copies of

B′. To compute q′, we compute all relevant occurrences of P in A′ and then shift each
of them by the minimal possible shift r′ · |B′|, where r′ is an integer, which guarantees
that it starts after p and ends before |A′| (if it exists) and take the leftmost of the
computed occurrences to obtain q.

b. The leftmost occurrence q′ of P such that for some integer k′, we have (k′ − 1) · |B′| ≤
q′ ≤ q′ + |P | − 1 ≤ k′ · |B′| (i.e. the occurrence fully belongs to some copy of B′). In
this case, q′ is either the leftmost occurrence of P in the (k + 1)-st copy of B′, or the
leftmost occurrence of P in the k-th copy of B′ that is larger than p. In the second
case, we compute q′ by recursing on B′.

The time complexities are the same as for computing q. ◀

C Proofs omitted from Section 4

▶ Lemma 25. Assume that P2 is not a substring of P1. After O(m log N + log2 N)-time
preprocessing, the data structure of Theorem 10 allows to compute all b-close relevant co-
occurrences of P1, P2 in the expansion of a given non-terminal A in time O(log3 N log log N).

Proof. We preprocess P1, P2 in O(m log N + log2 N) time as explained in Theorem 10. Upon
receiving a non-terminal A, we compute the leftmost and the rightmost occurrences of P1, P2
in head(A) and tail(A), as well as a set Π1 of all relevant occurrences of P1 in A and a
set Π2 of all relevant occurrences of P2 in A via Claim 31. We will compute all relevant
co-occurrences in A, selecting those of them that are b-close is then trivial. As q1 ≤ q2 by
definition, each relevant co-occurrence (q1, q2) of P1, P2 in A falls under one of the following
categories:
1. q1 is a relevant occurrence of P1 in A and q2 is a relevant occurrence of P2 in A (i.e.

q1 ∈ Π1, q2 ∈ Π2). To check whether a pair q1 ∈ Π1, q2 ∈ Π2 forms a co-occurrence of
P1, P2 in A, we must check whether there is an occurrence q of either P1 or P2 between
q1 and q2. The occurrence q can only be the rightmost occurrence rq of P2 in head(A),
the leftmost occurrence lq of P1 in tail(A), or an occurrence in Π1 ∪ Π2. Consequently,
we can find all co-occurrences in this category by merging two (sorted) sets: Π1 ∪ {lq}
and {rq} ∪ Π2, which can be done in O(2 + |Π1 ∪ Π2|) time.

2. 1 ≤ q1 ≤ q1 + |P1| − 1 ≤ |head(A)| and |head(A)| < q2 ≤ q2 + |P2| − 1. In this case, q1
must be the rightmost occurrence of P1 in head(A) and q2 the leftmost occurrence in
tail(A), q1 ≤ q2, and there must be no occurrence q ∈ Π1 ∪ Π2 such that q1 ≤ q ≤ q2.
Therefore, if there is a co-occurrence in this category, we can retrieve it in O(|Π1 ∪ Π2|)
time.

3. q1 is a relevant occurrence of P1 in A (i.e. q1 ∈ Π1) and |head(A)| < q2 ≤ q2 + |P2| − 1.
In this case, q1 must be the rightmost occurrence in Π1 and q2 the leftmost occurrence of
P2 in tail(A), and there should be no occurrence from Π2 between q1 and q2. Therefore,
if there is a co-occurrence in this category, we can find it in O(|Π1 ∪ Π2|) time.

4. q1 ≤ q1 + |P1| − 1 ≤ |head(A)| and q2 is a relevant occurrence of P2 in A (i.e. q2 ∈ Π2).
First, consider the leftmost occurrence in q2 ∈ Π2. We find the rightmost occurrence
q1 ≤ q2 of P1 in A via a predecessor query. The pair (q1, q2) is a co-occurrence iff the
rightmost occurrence of P2 in head(A) is smaller than q1, which can be checked in constant
time. Second, we consider the remaining occurrences in Π2. Let q′

2 be the leftmost one.
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We begin by computing the preceding occurrence q′
1 of P1 via a predecessor query and if

q2 ≤ q′
1, output the resulting co-occurrence. If Π2 = {q2, q′

2}, we are done. Otherwise, by
Corollary 2, the occurrences in Π2 \ {q2} form an arithmetic progression with difference
equal to the period of P2 (as all of them contain the position |head(A)|). Furthermore, as
P1 does not contain P2, the occurrence of P1 preceding q′

2 belongs to the periodic region
formed by the relevant occurrences of P2. Therefore, all the remaining co-occurrences
can be obtained from the co-occurrence for q′

2 by shifting them by the period. In total,
this step takes O(|Π2| + log3 N log log N) time. ◀

▶ Lemma 33. Assume that P2 is not a substring of P1. One can compute all b-close
co-occurrences of P1, P2 in S in time O(m + (1 + occ) · log4 N log log N).

Proof. During the preprocessing, we prune the parse tree: First, for each non-terminal B,
all but the first node labeled by B in the preorder is converted into a leaf and its subtree is
pruned. For each node v labeled by a non-terminal B, we store anc(v), the nearest ancestor
u of v labeled by A such that u is the root or A labels more than one node in the pruned
tree. Second, for every node labeled by a non-terminal A associated with a rule A → Bk, we
replace its k − 1 rightmost children with a leaf labeled by Bk−1. We call the resulting tree
the pruned parse tree and for each node v labeled by a non-terminal B store next(v), the
next node labeled by B in preorder, if there is one. As every non-terminal labels at most one
internal node of the pruned parse tree and every node has at most two children, it occupies
O(g′) space.

When the algorithm of Lemma 24 outputs A ∈ N ′, we compute all relevant co-occurrences
(q1, q2) in A in time O(log3 N log log N) using Lemma 25 and select those which satisfy
q2 − q1 ≤ b.

Fix a b-close relevant co-occurrence (q1, q2) in A. If A is associated with a rule A → BC,
construct a set occ(A) := {(q1, q2)}, and otherwise if A is associated with a rule A → Bk,

occ(A) := {(q1 + i · |B|, q2 + i · |B|) : 0 ≤ i ≤ ⌊(|A| − q2 − |P2| + 1)/|B|⌋}

Suppose that A labels nodes v1, v2, . . . , vk of the unpruned parse tree of G′ (by construction
v1 is not pruned and we assimilate it to the corresponding node in the pruned parse tree). If
W is a set of co-occurrences, denote for brevity W + δ = {(q1 + δ, q2 + δ) : (q1, q2) ∈ W}.
Below we show an algorithm that generates a set S = ∪iocc(A) + off(vi) that contains all
secondary b-close co-occurrences due to (q1, q2).

We traverse the pruned parse tree, while maintaining a priority queue. The queue is
initialized to contain the first node in the preorder labeled by A together with occ(A). Until
the priority queue is empty, pop a node v and a set W of co-occurrences of P1, P2 in the
expansion of its label, and perform the following steps:

Reporting step: If v is the root, report W ;
Next node step: If next(v) is defined, push (next(v), W + off(next(v)) − off(v));
Sibling step: If v is labeled by a non-terminal B and its sibling by Bk, for some integer
k, then W := ∪0≤i≤kW + i · |B|
Ancestor step: Push to the queue (anc(v), W + off(anc(v)) − off(v)).

By construction and as every node is connected with the root by a path of anc links,
the algorithm generates each co-occurrence in S exactly once. The time complexity follows:
The algorithm of Lemma 24 takes O(m + (1 + occ) · log3 N) time; applying Lemma 25 to
every non-terminal in N ′ takes O(occ · log4 N log log N) time; and maintaining the queue
and reporting the co-occurrences takes O(occ) time as at every step we can charge the time
needed to update the queue on newly created co-occurrences. ◀
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1 Introduction

A natural definition of repetitions in strings is that of squares, which are fragments of the
form uu, where u is a string. The study of repetitions in strings goes back at least to the
work of Thue from 1906 [28], who constructed an infinite square-free word over the ternary
alphabet. Since then, multiple definitions of repetitions have been proposed and studied, with
the basic question being focused on analyzing how many such repetitions a string of length
n can contain. Of course, any even-length fragment of the string an is a square, therefore
we would like to count distinct squares. Using a combinatorial result of Crochemore and
Rytter [5], Fraenkel and Simpson [10] proved that a string of length n contains at most 2n

distinct squares (also see a simpler proof by Ilie [17]). They also provided an infinite family
of strings of length n with n− o(n) distinct squares. For many years, it was conjectured that
the right upper bound is actually n. Interestingly, a proof of the conjecture for the binary
alphabet would imply it for any alphabet [24]. Very recently, after a series of improvements
on the upper bound [7,18,23,27], the conjecture has been finally resolved by Brlek and Li [1],
who showed an upper bound of n− σ + 1, where σ is the size of the alphabet.

For many of the applications, it seems more appropriate to work with different definitions
of equality, giving us different notions of squares. Three interesting examples are (1) Abelian
squares [6, 8, 9, 16, 19–21,26] (also called Jumbled squares) are of interest in natural language
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processing applications and in other domains where the classifications strongly depend on
feature sets distribution, as opposed to feature sequences distributions. (2) Parameterized
squares [20] are considered in applications for finding identical sections of code. (3) Order-
preserving squares [4,13,20] could be used in applications of stock price analysis and musical
melody matching.

The combinatorial properties of the three types of squares were studied by Kociumaka
et al. [20]. Given a string of length n over an alphabet of size σ, first the authors bounded
the number of abelian squares that are distinct as words by Θ(n2). Second, bounded the
number of parameterized squares that are distinct as words by O((σ!)2n) and bounded the
number of nonequivalent parameterized squares (see definition within) by O(σ!n). Third, the
authors provided O(σ2n) bound for the number of order-preserving squares that are distinct
as words.

From an algorithmic perspective, various algorithms were proposed for computing abelian
squares and order-preserving squares in a string of length n. Cummings and Smyth [6]
proposed an Θ(n2) time algorithm for computing all substrings that consist of a concatenation
of two or more abelian-equivalent substrings. Kociumaka et al. [21] proposed an algorithm for
computing the longest, the shortest, and the number of all abelian squares in O(n2/ log2 n)
time using linear space. Gourdel et al. [13] proved that all nonshiftable order-preserving
squares (see definition within) can be computed in O(n log n) time. Additionally, Crochemore
et al. [4] proposed the incomplete order-preserving suffix tree (see details within), denoted
by T , that enables order-preserving pattern matching queries in time proportional to the
pattern length. The suffix tree T can be constructed in O(n log log n) expected time and
O(n log2 log n/ log log log n) worst-case time. Moreover, the authors proved that using T , all
occurrences of order-preserving squares can be computed in O(n log n + occ) time, where
occ is the total number of occurrences of order-preserving squares. Note that, the number
of all occurrences of order-preserving squares might be unreasonably high. In particular,
every regular square is considered to be an order-preserving square, hence an contains Θ(n2)
occurrences of order-preserving squares. Henceforth, a more natural approach is to generate
only order-preserving squares that are distinct as words.

Our results. In this paper, we focus on order-preserving squares. Same-length strings u and
v over an ordered alphabet are order-isomorphic, denoted u ≈ v, when the order between the
characters at the corresponding positions is the same in u and v. For example, the strings
u = acb and v = azd are order-isomorphic, assuming a < b < c < d < z. In this paper,
order-preserving squares are strings of the form uv, where u ≈ v and additionally u ̸= v.

The main result of our paper is that the number of order-preserving squares in a string
of length n over an alphabet of size σ is O(σn). This improves the bound of O(σ2n) by
Kociumaka et al. [20]. We stress that in our definition of an order-preserving square, we
require that u ̸= v, while Kociumaka et al. [20] counted fragments of the form uv, where
u ≈ v, that are distinct as words. We believe that our definition is more natural in the
context of this paper. At the same time, by the result of Brlek and Li [1] a string of length
n contains less than n fragments of the form uu that are distinct as words, thus our result
implies that the number of fragments uv such that u ≈ v that are distinct as words is also
O(σn). We complement our upper bound by designing, for each σ, an infinite family of
strings of length n over an alphabet of size σ containing Θ(σn) such fragments. We begin
with describing the lower bound in Section 3, and then present the upper bound in Section 4.

▶ Theorem 1. The number of order-preserving squares in a string of length n over an
alphabet of size σ is O(σn), and this bound is asymptotically tight even if we only consider
order-preserving squares that are distinct as words.



P. Gawrychowski, S. Ghazawi, and G. M. Landau 13:3

Next, we design an algorithm for reporting all order-preserving squares in a given string of
length n over an alphabet of size σ inO(σn) time, which (by our lower bound) is asymptotically
optimal in the worst case. We again stress that in our definition of an order-preserving
square, we require that u ̸= v. However, all fragments of the form uu that are distinct as
words can be reported in O(σn) time using the algorithm of Gusfield and Stoye [14]1. Thus,
for σ = o(log n), this resolves one of the open questions by Crochemore et al. [4], who asked
if there is an o(n log n) time algorithm for finding the longest order-preserving square. This
is described in Section 5.

▶ Theorem 2. All order-preserving squares in a string of length n over an alphabet of size σ

can be found in O(σn) time.

High-level description of our techniques. For the lower bound, first, we consider the
increasing string w = 123 . . . n where σ = n. Clearly, any even-length fragment is an
order-preserving square thus producing the maximum number, i.e. Ω(n2) = Ω(σn), of
order-preserving squares in a string of length n. To decrease the size of the alphabet σ, we
replace w with a non-decreasing string w = 11 . . . 122 . . . 2 . . . σσ . . . σ, where each character
is repeated the same number of times. We exhibit Ω(σn) order-preserving squares in w that
are distinct as words. See Section 3 for more details.

For the upper bound, we build on the insight by Kociumaka et al. [20], where the high-level
strategy is to consider each suffix of w separately. For each suffix and an alphabet character,
they considered the leftmost occurrence of this character within the suffix. Thus, there are
at most σ leftmost occurrences in each suffix. For a fixed suffix, they considered all of its
prefixes as possible order-preserving squares uv. Next, they showed that, because u ̸= v, the
order-preserving square uv is defined by a pair (or pairs) of leftmost occurrences such that
one occurrence belongs to u, and the other one belongs to v at the same relative position,
where the length of uv is twice the difference between the leftmost occurrences. For example,
let acbadxyz be the suffix, then the pair of positions 2 and 5 are leftmost occurrences defining
the order-preserving square acbadx of length 6 that is a prefix of the given suffix. Note
that, also 3 and 6 are leftmost occurrences defining the same order-preserving square acbadx.
Thus, as a result, they upper bounded the number of order-preserving squares being a prefix
of the considered suffix by

(
σ
2
)
, so

(
σ
2
)
n in total.

In this paper, we adopt a similar approach, by separately upper bound the number of
order-preserving squares that are prefixes of a suffix of the input string w. However, our goal
is to show that there are only O(σ) such prefixes, so O(σn) in total. To this end, we first
partition the order-preserving squares into groups. Let Ok the set of all order-preserving
squares uv such that 2k ≤ |uv| < 2k+1. Similarly, we partition the leftmost occurrences into
groups. Let Lk the set of all leftmost occurrences i such that 2k ≤ i < 2k+1. Now, our
strategy is to show that if |Ok| is larger than some fixed constant then |Ok| = O(|Lk−2|). The
structure of the argument is as follows. We first observe that two order-preserving squares
uv and u′v′ imply that |u| −∆, where ∆ = |u′| − |u|, is a so-called order-preserving border
of u. We write u = b1b2 . . . bf bf+1, where |b1| = |b2| = . . . |bf | = ∆ and |bf+1| < ∆, and by
carefully choosing uv and u′v′ from Ok conclude that b2 contains a leftmost occurrence and
f is proportional to |Ok|. Then, we argue that b2 containing a leftmost occurrence implies

1 They only claim O(n) time for fixed alphabets, however a closer look at the algorithm reveals that there
are 3 phases: the first phase takes O(n) time (Theorem 6 and Lemma 7), the second phase also takes
O(n) time (Section 4), and the third phase takes O(σn) time (Lemma 11). Additionally, the algorithm
assumes that the suffix tree is constructed in O(n) time, for larger alphabets this increases to O(σn).
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that, in fact, every bj contains a leftmost occurrence, and thus |Ok| = O(|Lk−2|). Summing
this over all k, and separately considering all k such that |Ok| is less than the fixed constant,
we are able to conclude that

∑
k |Ok| =

∑
kO(|Lk|) < O(σ). See Section 4 for more details.

To obtain an efficient algorithm for reporting all order-preserving squares, we apply the
order-preserving suffix tree as defined by Crochemore et al. [4]. This structure allows us to
check if w[i..i + 2ℓ− 1] is an order-preserving square by checking if the LCA of two leaves is
at string depth at least ℓ. First, we need to show how to construct the order-preserving tree
in O(σn) time. Second, we extend the above reasoning to efficiently generate only O(σn)
fragments that are then tested for being an order-preserving square in constant time each.
While the underlying argument is essentially the same as when bounding the number of
order-preserving squares, it needs to be executed differently for the purpose of an efficient
implementation. See Section 5 for more details.

2 Preliminaries

Let Σ = {1, . . . , σ} be a fixed finite alphabet of size σ. Let |s| denote the length of a
string s. For a string s, the character at position i of s is denoted by s[i], and s[i..j] is the
fragment of s starting at position i and ending at position j. We call two strings u and v

order-isomorphic, denoted by u ≈ v, when |u| = |v| and, for each i, j, we have u[i] ≤ u[j] if
and only if v[i] ≤ v[j]. The concatenation of two strings u and v is denoted by uv. A string
of the form uv is called an order-preserving square, or op-square, when u ≠ v and u ≈ v. We
call u its left arm and v its right arm. We stress that a regular square, that is, a string of
the form xx, is not an op-square. Two op-squares uv and u′v′ are distinct as words if and
only if uv ̸= u′v′.

A trie is a rooted tree, with every edge labeled with a single character and edges outgoing
from the same node having distinct labels. A node u of a trie represents the string obtained
by reading the labels on the path from the root to u. A compacted trie is obtained from a
trie by replacing maximal paths consisting of nodes with exactly one child with single edges
labeled by the concatenation of the labels of the edges on the path. A suffix tree T of a
string w is a compacted trie whose leaves correspond to the suffixes of w$. The string depth
of a node u of T is the length of the string that it corresponds to. An explicit node of T is
simply a node of T . An implicit node of T is a node of the non-compacted trie corresponding
to T , or in other words a location on an edge of T .

Next, we need some definitions specific to order-isomorphism. Following Kubica et
al. [22], we call b an op-border of a string s[1..n] when s[1..b] ≈ s[n − b + 1..n]. Following
Gourdel et al. [13] (and Matsuoka et al. [25]), we call p an (initial) op-period of s[1..n]
when s = b1b2 . . . bf bf+1 with |b1| = |b2| = . . . = |bf | = p and |bf+1| < p (so f = ⌊n/p⌋),
b1 ≈ b2 ≈ . . . ≈ bf and b1[1..|bf+1|] ≈ b2[1..|bf+1|] ≈ . . . ≈ bf [1..|bf+1|] ≈ bf+1. b1, b2, . . . , bf

are called the blocks defined by p in s, while bf+1 (possibly empty) is called the incomplete
block. While in the classical setting p is a period of s[1..n] if and only if n− p is a border of
s[1..n], in the order-preserving setting, we only have an implication in one direction. For
example, the string aficdgbeh has an op-period 3 while 6 is not its op-border.

▶ Proposition 3. If b is an op-border of s[1..n] then n− b is an initial op-period of s[1..n].

Proof. Let p = n − b and f = ⌊n/p⌋. We represent s[1..n] as s = b1b2 . . . bf bf+1 with
|b1| = |b2| = . . . = |bf | = p and |bf+1| < p. By b being an op-border of s[1..n], we
have s[1..b] ≈ s[n − b + 1..n], so s[1..n − p] ≈ s[p + 1..n]. We observe that s[1..n − p] =
b1b2 . . . bf−1bf [1..|bf+1|] and s[p + 1..n] = b2b3 . . . bf bf+1. Then, b1b2 . . . bf−1bf [1..|bf+1|] ≈
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b2b3 . . . bf bf+1 implies bi ≈ bi+1, for every i = 1, 2, . . . , f−1, and bi[1..|bf+1|] ≈ bi+1[1..|bf+1|],
for every i = 1, 2, . . . , f . Hence, we obtain b1 ≈ b2 ≈ b3 ≈ . . . ≈ bf−1 ≈ bf and b1[1..|bf+1|] ≈
b2[1..|bf+1|] ≈ . . . ≈ bf [1..|bf+1|] ≈ bf+1, so p = n − b is indeed an initial op-period of
s[1..n]. ◀

Due to Proposition 3, if b is an op-border of s[1..n] then s[1..n] = b1b2 . . . bf bf+1, where
b1b2 . . . bf [1..|bf+1|] ≈ b2b3 . . . bf bf+1, |b1| = |b2| = . . . = |bf | = n− b and |bf+1| < p (so f =
⌊n/(n− b)⌋), b1 ≈ b2 ≈ . . . ≈ bf and b1[1..|bf+1|] ≈ b2[1..|bf+1|] ≈ . . . ≈ bf [1..|bf+1|] ≈ bf+1.
We will say that these blocks are defined by b.

3 Lower Bound

Recall that Σ = {1, . . . , σ}. We define a string w = 11 . . . 122 . . . 2 . . . σσ . . . σ, that is, a
concatenation of σ blocks, each consisting of k repetitions of the same character. We note
that |w| = σk. For i = 1, 2, . . . , ⌊σ/2⌋, we consider all fragments of w of length 2ik starting
at positions j = 1, 2, . . . , |w| − 2ik + 1. For j = 1 mod k, the fragment is a concatenation of
2i blocks, each block consisting of k repetitions of the same character. For j ̸= 1 mod k, the
fragment starts with r ∈ [1, k − 1] repetitions of the same character, then 2i− 1 blocks, each
block consisting of k repetitions of the same character, and finally ℓ = k − r repetitions of
the same character. See Figure 1.

11111222223333344444555556666677777

Figure 1 The red box corresponds to an op-square of length 10 containing 3 different characters.
The blue box corresponds to an op-square of length 20 containing 5 different characters.

Each such fragment is an op-square. For j = 1 mod k, both the left and the right arm consist
of i blocks consisting of k repetitions of character c, c + 1, . . . , c + i − 1. For j ̸= 1 mod k,
both the left and the right arm consist of first r repetitions of character c, then i− 1 blocks
consisting of k repetitions of characters c + 1, c + 2, . . . , c + i−2, and then finally ℓ repetitions
of character c + i− 1. Thus, the left and the right arm are always order-isomorphic. Further,
for every choice of i and the starting position we obtain a different word, as two such
fragments of the same length either start with different characters or differ in the length of
the first block of the same character.

Now, we analyze the number of such op-squares in w. By considering every 1 ≤ i ≤ ⌊σ/2⌋
and starting position 1, 2, . . . , |w| − 2ik + 1, we obtain that the number of op-squares in w is
at least:

⌊σ/2⌋∑
i=1

(|w| − 2ik + 1) =
⌊σ/2⌋∑
i=1

(σk − 2ik + 1) = ⌊σ/2⌋ · (σk − k(⌊σ/2⌋+ 1) + 1)

≥ ⌊σ/2⌋ · (k(⌈σ/2⌉ − 1) + 1).

For σ ≥ 3, this is at least σ2k/12 = σn/12 for any k. For σ = 1, 2, we additionally assume
k ≥ 2 and count op-squares of the form 12i, there are ⌊k/2⌋ ≥ n/6 ≥ σn/12 of them. Thus,
in either case for every k ≥ 2 we obtain a string of length n = kσ over Σ containing σn/12
op-squares that are distinct as words.

▶ Theorem 4. For any alphabet Σ = {1, 2, . . . , σ}, there exists an infinite family of strings
of length n = kσ over Σ containing Ω(σn) op-squares distinct as words.
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4 Upper bound

Our goal in this section is to upper bound the number of op-squares in a given string w of
length n over the alphabet Σ = {1, . . . , σ}. Recall that uv is an op-square when u ̸= v and
u ≈ v. We will show that this number is O(σn). As explained in the introduction, by the
result of Brlek and Li [1], the number of regular squares, that is, fragments of the form uu

that are distinct as words, is less than n. Thus, our result in fact allows us to upper bound
the number of fragments of the form uv, where u ≈ v, that are distinct as words by O(σn).

We consider each suffix of w separately. For each suffix w[i..n], we will upper bound the
number of prefixes of w[i..n] that are op-squares by O(σ). Therefore, to avoid cumbersome
notation in the remaining part of this section we will assume that we have a string s of length
m over the alphabet Σ = {1, . . . , σ}, and we want to upper bound the number of op-squares
uv that are prefixes of s by O(σ). See Figure 2.

⋮

𝑠 = 𝑎1𝑎2𝑎3⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯𝑎𝑚

Figure 2 Green prefixes of s are op-squares.

Kociumaka et al. [20] observed that every op-square uv that is a prefix of s can be obtained
as follows (recall that in our definition u ̸= v). We call position i a leftmost occurrence and
s[i] a leftmost character when s[j] ̸= s[i] for every j < i. Then, there exists i and j such that
both i and j are leftmost occurrences, where i belongs to u and j belongs to v, and further
|u| = j − i. More formally:

▶ Proposition 5 ([20, Lemma 4.2 and Corollary 4.3]). We can construct an injective function g

mapping op-squares that are prefixes of s to 2-element subsets of the alphabet as follows. We
choose the smallest i belonging to v such that s[i] = a does not occur in u, and let s[i−|u|] = b

be its counterpart in u, then set g(uv) = {a, b}. Both i and i− |u| are leftmost occurrences.

We split all op-squares that are prefixes of s into groups. Let Ok denote the group of
op-squares that are prefixes of s having length at least 2k and at most 2k+1 − 1:

▶ Definition 6. Ok = {uv |u ̸= v and u ≈ v and 2k ≤ |uv| < 2k+1} for 0 ≤ k ≤ log m.

In other words, we split s into consecutive ranges of exponentially increasing lengths, such
that the k-th range is of length 2k−1, starts at position 2k and ends at position 2k+1 − 1 in s

(where 0 ≤ k ≤ log m and the final range may not be complete when m < 2k+1 − 1). Then,
the set Ok consists of op-squares that end in the k-th range. See Figure 3.

The number of op-squares uv that are prefixes of s is
∑log m

k=0 |Ok|. In order to upper
bound the sum, we will separately upper bound the size of each group. We first need some
propositions.

▶ Proposition 7. For any {uv, u′v′} ∈ Ok such that |u| < |u′| and ∆ = |u′| − |u|, |u| −∆ is
an op-border of both u and v.
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⋮

[2𝑘 , 2𝑘+1)[2,4)

𝑠 = 𝑎1𝑎2𝑎3⋯𝑎2𝑘−1 ⋯⋯𝑎2𝑘⋯⋯⋯⋯⋯⋯𝑎2𝑘+1⋯𝑎𝑚

[2𝑘+1, 𝑚]

Figure 3 Green prefixes of s are op-squares ending in the k-th range. The red line illustrates the
ranges.

Proof. Because u ≈ v it is enough to show that |u| − ∆ is an op-border of u. By the
assumption that both uv and u′v′ are op-squares we have:

u[1..|u| −∆] = u′[1..|u| −∆] ≈ v′[1..|u| −∆] = v[∆ + 1..|u|] ≈ u[∆ + 1..|u|].

See Figure 4. ◀

𝑢𝑣

𝑢′𝑣′
∆

Figure 4 The green lines correspond to uv and u′v′. The blue line corresponds to u[1..|u| − ∆].
The orange line corresponds to u[∆ + 1..|u|]. The purple line corresponds to v[∆ + 1..|u|].

In the remaining part of this section, we will often consider {uv, u′v′} ∈ Ok such that
|u| < |u′| and ∆ = |u′| − |u|. Then, by Proposition 7, we know that |u| −∆ is an op-border
of u, and thus by Proposition 3 ∆ is an initial op-period of u. Hence, u can be represented
as a concatenation of f = ⌊|u|/∆⌋ blocks b1, b2, . . . , bf and one incomplete block bf+1, where
|b1| = |b2| = . . . = |bf | = ∆ and |bf+1| < ∆, such that b1b2 . . . bf [1..|bf+1|] ≈ b2b3 . . . bf bf+1,
b1 ≈ b2 ≈ . . . ≈ bf and b1[1..|bf+1|] ≈ b2[1..|bf+1|] ≈ . . . ≈ bf [1..|bf+1|] ≈ bf+1. See Figure 5.
For brevity, in the remaining part of the paper we will describe this situation by saying that
{uv, u′v′} ∈ Ok define blocks b1, b2, . . . , bf , bf+1.

𝑢𝑣

𝑢′𝑣′
∆

𝑏𝑓+1𝑏1 𝑏𝑓⋯

Figure 5 Blocks defined by {uv, u′v′} in u.

▶ Proposition 8. If |Ok| ≥ 3 then there exist {uv, u′v′, u′′v′′} ∈ Ok such that 0 < |u′| −
|u|, |u′′| − |u′| < 2k/(|Ok| − 2).

Proof. The length of every op-square in Ok belongs to [2k, 2k+1), thus the length of its left arm
falls within [2k−1, 2k). Let Ok = {u1v1, u2v2, . . . , uℓvℓ} with |u1| < |u2| < . . . < |uℓ|. Then,
for some i ∈ {1, 2, . . . , ⌊(ℓ−1)/2⌋} we must have |u2i+1| < |u2i−1|+2k−1/⌊(ℓ−1)/2⌋ (as other-
wise we would have uℓ ≥ u1 +2k−1). The sought op-squares are u2i−1v2i−1, u2iv2i, u2i+1v2i+1
because:
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13:8 Order-Preserving Squares in Strings

|u2i| − |u2i−1|, |u2i+1| − |u2i| < |u2i+1| − |u2i−1| < 2k−1/⌊(ℓ− 1)/2⌋
≤ 2k−1/(ℓ/2− 1) = 2k/(|Ok| − 2). ◀

With all the propositions in hand, we are now ready for the technical lemmas. Our goal
is to upper bound

∑
k |Ok| by the number of leftmost occurrences. To this end, we need to

show that, if some Ok is large then there are many leftmost occurrences in some range. This
will be done by applying the following reasoning to the three op-squares chosen by applying
Proposition 8. In the following, whenever we refer to a leftmost occurrence in block b we
mean a leftmost occurrence falling within the positions in block b.

▶ Lemma 9. If |Ok| ≥ 3 then for any {uv, u′v′, u′′v′′} ∈ Ok where |u| < |u′| < |u′′| such that
{uv, u′v′} defines b1, . . . , bf , bf+1 and {u′v′, u′′v′′} defines b′

1, . . . , b′
f , b′

f+1 there is a leftmost
occurrence in block bj such that j ̸= 1 or there is a leftmost occurrence in block b′

j′ such that
j′ ̸= 1.

Proof. Let ∆ = |u′| − |u| be the length of every block bj and ∆′ = |u′′| − |u′| be the length
of every block b′

j . By Proposition 5, we know that there must be a leftmost occurrence i

that falls within u′ and its corresponding leftmost occurrence i + |u′| that falls within v′. If
s[i] belongs to a block b′

j with j ≠ 1 then we are done. Thus, we assume that i belongs to b′
1.

We claim that the leftmost occurrence i + |u′| falls within v. To verify this, we calculate:

i + |u′| ≤ ∆′ + |u′| = |u′′| − |u′|+ |u′| = |u′′| < 2k ≤ |uv|.

We have established that i+ |u′| is a leftmost occurrence and falls within v. Thus, s[i′] ̸= s[i+
|u′|] for every i′ ∈ [1, i+ |u′|). Because u ≈ v, this then implies that s[i′−|u|] ̸= s[i+ |u′|−|u|]
for every i′ ∈ [|u|+ 1, i + |u′|). Thus, i + |u′| − |u| is also a leftmost occurrence. We claim
that s[i + |u′| − |u|] cannot belong to b1. To verify this, we calculate:

i + |u′| − |u| ≥ 1 + |u′| − |u| = 1 + ∆.

Thus, we have found a leftmost occurrence i + |u′| − |u| that falls within u and belongs to a
block bj with j ̸= 1. See Figure 6. ◀

𝑢𝑣

𝑢′𝑣′

𝑏1

𝑏1
′

𝑢′′𝑣′′
𝑠[𝑖] 𝑠[𝑖 + |𝑢′|]

𝑠[𝑖 + |𝑢′|]𝑠[𝑖 + 𝑢′ − |𝑢|]

𝑏2

Figure 6 The red points correspond to the leftmost occurrences considered in the proof of
Lemma 9.

Next, we show that if {uv, u′v′} ∈ Ok define blocks b1, b2, . . . , bf , bf+1 such that there is
a leftmost occurrence in block bj for some j ̸= 1 then, in fact, there is a leftmost occurrence
in every block bj . This reasoning is done in two steps.

▶ Lemma 10. Let b be an op-border of u = s[1..|u|] that defines blocks b1, b2, . . . , bf , bf+1,
and assume that there is a leftmost occurrence in block bj , for some j ∈ [1, f + 1]. Then there
is a leftmost occurrence in every block b1, b2, . . . , bj.
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Proof. Let ∆ = |b1| = |b2| = . . . = |bf | and |bf+1| < ∆. By induction, it is enough to
show that if there is a leftmost occurrence in block bj for some j ≥ 2 then there is a
leftmost occurrence in block bj−1. Let i be a leftmost occurrence that belongs to bj . Then
u[i′] ̸= u[i] for every i′ ∈ [1, i). Because b1b2 . . . bf−1bf [1..|bf+1|] ≈ b2b3 . . . bf bf+1, this
implies u[i′ − ∆] ̸= u[i − ∆] for every i′ ∈ [∆ + 1, i). But then i − ∆ is also a leftmost
occurrence, and it belongs to bj−1 as required. See Figure 7. ◀

𝑏1 𝑏𝑗

∆

𝑏𝑓+1

𝑢[𝑖]∆ ∆

𝑢 ⋯

Figure 7 Each red point corresponds to a leftmost character at the same relative position in
every block b1, b2, . . . , bj .

▶ Lemma 11. Let b be an op-border of u = s[1..|u|] that defines blocks b1, b2, . . . , bf , bf+1,
and assume that there is a leftmost character in block b2. Then there is a leftmost occurrence
in every block b1, b2, . . . , bf .

Proof. Let ∆ = |b1| = |b2| = . . . |bf | and |bf+1| < ∆. By assumption, there is a leftmost
character s[i] in block b2, where i ∈ [∆ + 1, 2∆]. Our goal is to show that there is a leftmost
occurrence in every block b1, b2, . . . , bf .

Because b1b2 . . . bf [1..|bf+1|] ≈ b2b3 . . . bf bf+1, each position x ∈ [1..∆] satisfies exactly
one of the following possibilities:
1. s[x + p ·∆] is the same, for all integers p ∈ [0, f),
2. s[x + p ·∆] < s[x + (p + 1) ·∆] for all integers p ∈ [0, f − 1),
3. s[x + p ·∆] > s[x + (p + 1) ·∆] for all integers p ∈ [0, f − 1).
Note that i0 = i−∆ satisfies (2) or (3), because s[i] is different than s[1], s[2], . . . , s[i− 1], so
in particular s[i−∆] ̸= s[i]. By reversing the order of the alphabet, it is enough to establish
the lemma assuming that i0 satisfies (2). To this end, we choose some positions i1, i2, . . . , iℓ

in b1 as follows. Let C be the set of characters that appear in b1. The position i1 ∈ [1, ∆]
is chosen so that s[i1] is the strict successor of s[i0] in C, then i2 ∈ [1, ∆] is chosen so that
s[i2] is the strict successor of s[i1] in C, and so on. If there are multiple choices for the next
ij ∈ [1, ∆] then we take the smallest. We stop when one of the following two possibilities
holds:
(a) s[iℓ+1] is not defined, i.e. s[iℓ] is the largest character in b1.
(b) iℓ+1 satisfies (1) or (3).
Notice that, by definition, the positions i0, i1, . . . , iℓ all satisfy (2). Further, s[i0] is a leftmost
character because s[i] is a leftmost character, so s[i′] ̸= s[i] for every i′ ∈ [1, i), and b1 ≈ b2
so s[i′ − ∆] ̸= s[i − ∆] for every i′ ∈ [∆ + 1, i). Next, we note that s[i1], . . . , s[iℓ] are all
leftmost characters because we are always choosing the smallest ij such that s[ij ] is equal to
a specific character, for j = 1, 2, . . . , ℓ.

We summarize the situation so far. For every integer p ∈ [0, f), the fragment s[iℓ + p ·∆]
belongs to block bp+1, and we want to show that it is a leftmost character. We know that
s[iℓ] is a leftmost character, thus by b1 ≈ bp+1 we obtain that s[iℓ + p ·∆] does not occur
earlier in bp+1. We need to establish that it also does not occur earlier in b1, b2, . . . , bp. We
separately consider the two possible cases (a) and (b).
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13:10 Order-Preserving Squares in Strings

(a) s[iℓ+1] is not defined, i.e. s[iℓ] is the largest character in b1. We know that iℓ satisfies (2),
so s[iℓ] < s[iℓ + ∆] < . . . < s[iℓ + (p− 1) ·∆] < s[iℓ + p ·∆]. For all integers q ∈ [0, p), by
b1 ≈ bq+1 we obtain that s[iℓ +q ·∆] is the largest character in bq+1. So in fact s[iℓ +p ·∆]
is larger than all characters in the whole block bq+1, for every integer q ∈ [0, p), making
iℓ + p ·∆ a leftmost occurrence.

(b) iℓ+1 is defined and satisfies (1) or (3), so s[iℓ+1] ≥ s[iℓ+1+∆] ≥ . . . ≥ s[iℓ+1+(p−1)·∆] ≥
s[iℓ+1 + p ·∆]. See Figure 8. We know that iℓ satisfies (2), so s[iℓ] < s[iℓ + ∆] < . . . <

s[iℓ + (p − 1) · ∆] < s[iℓ + p · ∆]. Recall that s[iℓ+1] is a strict successor of s[iℓ]
in b1. Thus, for every i′ ∈ [1, ∆] we have that s[i′] does not belong to the interval
(s[iℓ], s[iℓ+1]). Because we have b1 ≈ bq+1, for every integer q ∈ [0, p), this implies
s[i′ + q ·∆] does not belong to the interval (s[iℓ + q ·∆], s[iℓ+1 + q ·∆]). As observed
earlier, s[iℓ + q ·∆] < s[iℓ + p ·∆] and s[iℓ+1 + q ·∆] ≥ s[iℓ+1 + p ·∆]. We conclude
that, for every i′ ∈ [1, ∆], we have that s[i′ + q · ∆] does not belong to the interval
[s[iℓ + p ·∆], s[iℓ+1 + p ·∆]) (the interval is non-empty, as both positions belong to the
same block bq, and by bq+1 ≈ b1 we have that s[iℓ+1 + q · ∆] is a strict successor of
s[iℓ + q ·∆] in bq). In particular, s[i′ + q ·∆] ̸= s[iℓ + p ·∆], so s[iℓ + p ·∆] does not occur
in bq+1, making it a leftmost character.

Hence, for every integer p ∈ [0, f), position iℓ + p ·∆ is a leftmost occurrence. ◀

𝑏1 𝑏2 𝑏𝑓+1
𝑠

⋯𝑏3

𝑠[𝑖ℓ+1]
𝑠[𝑖ℓ+1 + 𝑝 ∙ ∆]

𝑠[𝑖ℓ]

𝑠[𝑖ℓ + 𝑝 ∙ ∆]

Figure 8 The red points correspond to s[iℓ+1], ..., s[iℓ+1 + p · ∆]. The blue points correspond to
s[iℓ], ..., s[iℓ + p · ∆]. The black arrow illustrates the character’s axis.

By combining the above lemmas we obtain the following conclusion.

▶ Lemma 12. If |Ok| ≥ 3 then for any {uv, u′v′, u′′v′′} ∈ Ok where |u| < |u′| < |u′′|
such that {uv, u′v′} defines b1, . . . , bf , bf+1 and {u′v′, u′′v′′} defines b′

1, . . . , b′
f , b′

f+1 there is
a leftmost occurrence in every block b1, b2, . . . , bf or there is a leftmost occurrence in every
block b′

1, b′
2, . . . , b′

f ′ .

Proof. Recall that by Proposition 7, |u′|− |u| is an op-border of u = s[1..|u|] while |u′′|− |u′|
is an op-border of u′ = s[1..|u′|]. By Lemma 10 there is a leftmost occurrence in block b2 or
in block b′

2. Then, by Lemma 11 applied either to the blocks b1, b2, . . . , bf , bf+1 defined by
the op-border |u′| − |u| or the blocks b′

1, b′
2, . . . , b′

f ′ , b′
f ′+1 defined by the op-border |u′′| − |u′|,

there is a leftmost occurrence in every block b1, b2, . . . , bf or in every block b′
1, b′

2, . . . , b′
f ′ . ◀

We are now ready to upper bound
∑

k |Ok| by the number of leftmost characters. We
will show that, if some Ok is large then there are many leftmost characters in some range.
To this end, we define groups of leftmost occurrences. Let Lk be the set of the leftmost
occurrences i such that i ∈ [2k, 2k+1):

▶ Definition 13. Lk = {i | i ∈ [2k, 2k+1) ∧ ∀j∈[1,i)s[i] ̸= s[j]} for 0 ≤ k ≤ log m.
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Note that the groups are disjoint, i.e. Lk ∩ Lk′ = ∅ for any k and k′. Thus
∑log m

k=0 |Lk| ≤ σ.
With this definition in hand, we are ready to show the main technical lemma.

▶ Lemma 14. The number of op-squares that are prefixes of s is O(σ).

Proof. To establish the lemma we want to connect |Ok| with |Lk|, and then sum over all
possible values of k. k = 0, 1 will be considered separately, and for larger k we apply different
arguments for |Ok| ≥ 11 and |Ok| ≤ 10.

We first consider k ≥ 2 such that |Ok| ≥ 11. In particular, when |Ok| ≥ 3, so by
Proposition 8, there exist {uv, u′v′, u′′v′′} ∈ Ok such that 0 < |u′| − |u|, |u′′| − |u′| <

2k/(|Ok| − 2). By Lemma 12, for any {uv, u′v′, u′′v′′} ∈ Ok where |u| < |u′| < |u′′| such
that {uv, u′v′} defines b1, . . . , bf , bf+1 in u and {u′v′, u′′v′′} defines b′

1, . . . , b′
f ′ , b′

f ′+1 in u′

either there is a leftmost occurrence in every block b1, b2, . . . , bf or there is a leftmost
occurrence in every block b′

1, b′
2, . . . , b′

f ′ In either case, we have found {uv, u′v′} ∈ Ok with
0 < ∆ < 2k/(|Ok| − 2), where ∆ = |u′| − |u|, such that {uv, u′v′} defines b1, . . . , bf , bf+1
with f = ⌊|u|/∆⌋ and there is a leftmost occurrence in every block b1, b2, . . . , bf . We want
to establish a lower bound on the number of leftmost occurrences in Lk−2. To this end, it is
enough to show a lower bound on the number of blocks bi that are fully contained in the
range [2k−2, 2k−1). Recall that |u| ∈ [2k−1, 2k), and u = b1b2 . . . bf bf+1. Thus, the fragment
u[2k−2..2k−1 − 1] consists of a suffix (possibly empty) of some bj , then bj+1, bj+2, . . . , bj+ℓ,
and then a prefix of bj+ℓ+1 (where bj+ℓ+1 might be the incomplete block bf+1 that should
not be counted in the lower bound). Thus, the number of blocks bi that are fully contained
in the range [2k−2, 2k−1) is at least ⌊2k−2/∆⌋ − 1. See Figure 9. Combining this with the
upper bound on ∆, we obtain the following inequality:

|Lk−2| ≥
⌊

2k−2

∆

⌋
− 1 ≥ 2k−2

∆ − 2 >
|Ok| − 2

4 − 2 = |Ok| − 10
4 .

Using the assumption |Ok| ≥ 11, we conclude that |Lk−2| > |Ok|/44. Hence:∑
k≥2:|Ok|≥11

|Ok| <
∑
k≥2

44 · |Lk−2| ≤ 44
∑

k

|Lk| ≤ 44 · σ.

[2𝑘−1, 2𝑘)

𝑏1 𝑏𝑓+1

∆

𝑢

[2𝑘−2, 2𝑘−1)

𝑏𝑗+1

⋯

⋯
𝑏𝑗+ℓ+1⋯ ⋯ ⋯

Figure 9 The orange line corresponds to the suffix of bj . The blue line corresponds to the prefix
of bj+ℓ+1. The red line illustrates the ranges.

Next, we consider k ≥ 2 such that |Ok| ≤ 10. Of course, we have the trivial upper bound∑
k:|Ok|≤10 |Ok| ≤

∑log m
k=0 10 = O(log m). As in the previous case, we want to use the leftmost

occurrences to improve the bound. Recall that, by Proposition 5, every op-square uv ∈ Ok

is defined by a pair of leftmost occurrences i and j, where i belongs to u and j belongs to
v. Because |uv| ∈ [2k, 2k+1), we conclude that j falls within the range [2k−1 + 1, 2k+1), so
must belong to Lk−1 ∪ Lk. Hence, the set Ok can be non-empty only when Lk−1 or Lk is
non-empty. Hence:
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∑
k≥2:|Ok|≤10

|Ok| ≤
∑

k≥2:|Ok|>0

10 ≤
∑

k≥2:|Lk−1|>0

10 +
∑

k≥2:|Lk|>0

10

≤ 10
∑
k≥2
|Lk−1| + 10

∑
k≥2
|Lk| ≤ 20σ.

To upper bound
∑

k |Ok|, we split the sum into three parts. For k = 0, 1, we have |O0| ≤ 1
and |O1| ≤ 2. Then, for k ≥ 2 we separately consider all k with |Ok| ≥ 11 and |Ok| ≤ 10
and plug in the above upper bounds. Overall, we obtain:∑

k

|Ok| ≤ 1 + 2 + 44 · σ + 20 · σ = O(σ).

Thus, the number of op-squares that are prefixes of s is O(σ). ◀

We conclude the section with the main theorem.

▶ Theorem 15. The number of op-squares in a string w of length n over an alphabet of size
σ is O(σn).

Proof. We consider each suffix of w separately. For each suffix w[i..n], we apply Lemma 14
to conclude that the number of op-squares that are prefixes of w[i..n] is upper bounded by
O(σ). Thus, summing over all i we obtain that the number of op-squares in w is O(σn). ◀

5 Algorithm

In this section, we describe the algorithm that reports all occurrences of op-squares in a
string w[1..n] over an alphabet of size σ in O(σn) time.

The high-level idea of the algorithm is to generate O(σn) candidates for op-squares and
then test each of them in constant time, see the pseudocode in Algorithm 1. To this end, we
first describe a mechanism for checking if w[i..i + ℓ− 1] ≈ w[i + ℓ..i + 2ℓ− 1] in constant time.
This can be implemented with an LCA query on the order-preserving suffix tree of w, as
explained in [3]. However, we need to explain how to construct this structure in O(σn) time.

Order-preserving suffix tree. Following [3], for a string w[1..n] we define code(w) as
(ϕ(w, 1), ϕ(w, 2), . . . , ϕ(w, n)), where ϕ(w, i) = (prev<(w, i), prev=(w, i)) and prev<(w, i) =
|{k < i : w[k] < w[i]}|, prev=(w, i) = |{k < i : w[k] = w[i]}|. We observe that code(w) =
code(w′) if and only if w ≈ w′. Then, the order-preserving suffix tree of w[1..n] is the
compacted trie of all strings of the form code(w[i..n])$, for i = 1, 2, . . . , n. It is easy to see
that w[i..i+ ℓ−1] ≈ w[i+ ℓ..i+2ℓ−1] if and only if the lowest common ancestor of the leaves
corresponding to code(w[i..n])$ and code(w[i + ℓ..n])$ is at string depth at least ℓ. Therefore,
assuming that we have already built the order-preserving suffix tree of w[1..n], such a test
can be implemented in constant time after O(n) preprocessing for LCA queries [15]. It
remains to explain how to construct the order-preserving suffix tree. We stress that while
[3] does provide an efficient O(n log n/ log log n) time construction algorithm (in fact, the
full version [4] further improves the time complexity to O(n

√
log n)), such complexity is

incompatible with our goal. Due to the lack of space, the proof is moved to the appendix.

▶ Lemma 16. Given a string w[1..n] over an alphabet of size σ, we can construct its
order-preserving suffix tree in O(σn) time and space.

The main part of the algorithm is efficiently generating O(σn) candidates for op-squares.
Then, each of them is tested in constant time as explained above, assuming the preprocessing
from Lemma 16.
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Algorithm 1 Report all occurrences of op-squares in a string w[1..n] over an alphabet of
size σ in O(σn) time.

1 Preprocess w[1..n] for retrieving the characters of any code(w[i..n])$
2 Construct the order-preserving suffix tree T

3 Preprocess T for LCA queries
4 i← n

5 while i > 0 do
6 s← w[i..n]
7 Retrieve the leftmost occurrences x1, x2, ...xt in s

8 foreach xj that is the smallest or the largest of its group Lk do
9 s′ ← s[1..2k−1]

10 foreach fragment s[y..y + 2k−1 − 1] ≈ s′ such that xj ∈ [y, y + 2k−1 − 1] do
11 Store s[1..2(y − 1)] as a candidate in R[xj ][k][i]
12 end
13 end
14 foreach candidate s[1..2(y − 1)] in R[xj ][k][i] do
15 v1 ← the leaf corresponding to code(w[i..n])$ in T

16 v2 ← the leaf corresponding to code(w[i + (y − 1)..n])$ in T

17 if the string depth of LCAT (v1, v2) is at least y − 1 then
18 Report s[1..2(y − 1)− 1] as an op-square
19 end
20 end
21 i← i− 1
22 end

Leftmost occurrences. As in the proof of the O(σn) upper bound on the number of op-
squares, we will consider the suffixes of the input string w[1..n] one-by-one. For i = n, n−
1, . . . , 1 in this order, let s = w[i..n] be the currently considered suffix, and x1 < x2 < . . . < xt

be the leftmost occurrences in s. By spending O(σ) time per each suffix, we can assume that
the positions x1, x2, . . . , xt are known, as after moving from w[i..n] to w[i − 1..n] we only
have to insert the new leftmost occurrence i− 1 and possibly remove the previous leftmost
occurrence i′ such that w[i− 1] = w[i′] (unless w[i− 1] has not been seen before), which can
be done in O(t) = O(σ) time. By Proposition 5, every prefix of s that is an op-square can be
obtained by choosing two leftmost characters at positions xq and xj , where q < j, and setting
the length of the possible square to be 2(xj −xq). This gives us O(σ2) candidates for prefixes
that could be op-squares. However, our goal is to generate only O(σ) such candidates. To
achieve this goal, we first provide some combinatorial properties in Lemma 17, Lemma 18,
and Proposition 19.

Recall that all leftmost occurrences are partitioned into groups L0, L1, . . .. Next, we show
that it is enough to consider xj that is the smallest or the largest element in its group.

▶ Lemma 17. Consider an op-square s[1..2ℓ]. Then there exists q < j such that the leftmost
occurrences xq and xj satisfy xj − xq = ℓ, xj ∈ [ℓ + 1, 2ℓ] and xj is either the smallest or the
largest element of its group.

The proof is described in the appendix. Figure 10 illustrates the scenario of the lemma.
To generate the candidates, we iterate over all j such that xj is the smallest or largest

element of its group Lk. Consider q < j such that xj − xq = ℓ and xj ∈ [ℓ + 1, 2ℓ] for an op-
square s[1..2ℓ]. Then, because xj ∈ [2k, 2k+1), ℓ ≥ 2k−1. To avoid clutter, let s′ = s[1..2k−1].
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[2𝑘+1, 2𝑘+2)

𝑠

[2𝑘 , 2𝑘+1)
⋯
⋯

𝑠[𝑥j]

𝑠[1. . 2ℓ]
𝑠[ℓ + 1. . 2ℓ]

𝑠[𝑥j]

Figure 10 The op-square s[1..2ℓ] is colored in green. The red points are the two possibilities for
s[xj ]. s[ℓ + 1..2ℓ] is colored in blue. The red line illustrates the ranges.

Because s[1..2ℓ] is assumed to be an op-square, we have s[ℓ..ℓ + 2k−1− 1] ≈ s′. This suggests
the following natural strategy to generate the candidates: we iterate over all fragments
s[y..y + 2k−1 − 1] such that xj ∈ [y, y + 2k−1 − 1] and s′ ≈ s[y..y + 2k−1 − 1], and output
s[1..2(y − 1)] as a possible op-square (as explained earlier, each such candidate is then
tested in constant time). See Figure 11. We first bound the number of such fragments by
O(1 + |Lk−2|), and then explain how to generate them in the same time complexity.

[2𝑘 , 2𝑘+1)

𝑠

[2𝑘−1, 2𝑘)
⋯
⋯

𝑠[𝑥j]

𝑠[1. . 2ℓ]
𝑠[𝒴. . 𝒴 + 2𝑘−1 − 1]

𝑠[𝒴]𝑠′

Figure 11 The op-square s[1..2ℓ], the fragment s[y..y + 2k−1 − 1], and s are colored in green,
blue, and black, respectively. s′ is colored in orange. The red line illustrates the ranges.

▶ Lemma 18. The number of fragments s[y..y + 2k−1 − 1] such that xj ∈ [y, y + 2k−1 − 1]
and s′ ≈ s[y..y + 2k−1 − 1] is upper bounded by O(1 + |Lk−2|).

The proof of the lemma relies on showing that ℓ′ is an op-border of s′ and thus we can define
blocks of length ∆ = 2k−1 − ℓ′ in s′ and then apply Lemma 10 and Lemma 11 to achieve the
desired bound. The full proof is described in the appendix. Hence, for every k such that Lk is
non-empty, we generate O(1+|Lk−2|) candidates. The overall number of candidates generated
by following the above strategy is

∑
k:Lk ̸=∅O(1 + |Lk−2|) = O(σ +

∑
k |Lk−2|) = O(σ) as

promised. It remains to show how to access all fragments s[y..y + 2k−1 − 1] such that
xj ∈ [y, y + 2k−1 − 1] and s′ ≈ s[y..y + 2k−1 − 1] in time proportional to their number.

Accessing candidates. We will solve a more general problem, and show how to ensure that,
when considering s = w[i..n], for every leftmost occurrence xj in s we have access to a list of all
fragments s[y..y+2k−1−1] such that xj ∈ [y, y+2k−1−1] and s[1..2k−1−1] ≈ s[y..y+2k−1−1],
where 2k ≤ xj < 2k+1. We call this list the result for i and xj .

Recall that s = w[i..n], and we consider i = n, n − 1, . . . , 1 in this order. When we
consider s = w[i..n], position i becomes a leftmost occurrence and remains to be so until we
reach s = w[previ..n] such that w[i] = w[previ] (possibly, it is a leftmost occurrence till the
very end of the scan). We can calculate previ for every i in O(σn) time by maintaining a list
of leftmost occurrences as described earlier. We say that a position i is k-active at position
i′ when i′ ∈ [previ, i] and 2k ≤ i − i′ + 1 < 2k+1. We observe that, as we consider longer
and longer suffixes of w, position i is first 0-active, then 1-active, and so on until it becomes



P. Gawrychowski, S. Ghazawi, and G. M. Landau 13:15

ki-active, and then it is never active again. Further, indices i′ such that i is k-active at i′

form a contiguous range [begini,k, endi,k] (the length of each such range is 2k, except possibly
for k = ki when it is shorter). The total length of these ranges is small as shown below.

▶ Proposition 19.
∑

i,k:k≤ki
2k = O(σn)

Proof. For k ≥ 1 we can upper bound 2k by 2·|[begini,k−1, endi,k−1]|. Then the sum becomes:∑
i,k:k≤ki

2k = n + 2 ·
∑

i,k:1≤k≤ki

|[begini,k−1, endi,k−1]| ≤ n + 2 ·
∑

i,k:k≤ki

|[begini,k, endi,k]|.

We observe that every position i′ ∈ [begini,k, endi,k] in the suffix w[i..n] corresponds to the
relative position i− i′ + 1 being a leftmost occurrence in the suffix w[i′..n]. Because there
are at most σ leftmost characters in any suffix w[i′..n], this allows us to upper bound the
sum by O(σn). ◀

Storing candidates. This allows us to physically store the results as follows. For every
leftmost occurrence x, we have an array indexed by k ≤ ki, denoted R[x]. Each entry of this
array is an array indexed by i′ ∈ [begini,k, endi,k], denoted R[x][k]. Finally, each entry of
that array, denoted R[x][k][i′], is a pointer to a list of ys such that x ∈ [y, y + 2k−1 − 1] and
w[i′..i′ + 2k−1− 1] ≈ w[y..y + 2k−1− 1] (note that it is a pointer to a list and not its physical
copy). The arrays allow us to access the result for every xj , k ≤ kxj

and i′ in constant time,
by retrieving the pointer R[xj ][k][i′] (where we first verify that i′ ∈ [begini,k, endi,k]). The
total length of all arrays R[x] is only O(σn) by Proposition 19. Further, the total length of
all lists of occurrences that we need to prepare (assuming that we store every R[x][k][i] as a
pointer to such a list and not their physical copies) is also O(σn) by the following argument.
Consider i and k ≤ ki. Then, we need a list of positions y such that i ∈ [y, y + 2k−1 − 1]
and w[y..y + 2k−1 − 1] is order-isomorphic to a specific string s′. Thus, we can partition all
positions y such that i ∈ [y, y + 2k−1 − 1] into groups corresponding to order-isomorphic
fragments w[y..y + 2k−1 − 1], and then store a pointer to the appropriate list (possibly
null, if there is no y). The total number of positions y, over all i and k ≤ ki, is O(σn) by
Proposition 19, which bounds the total length of all the lists.

Generating candidates. It remains to describe how to efficiently calculate the results. This
requires partitioning all fragments w[y..y +2k−1−1] such that i ∈ [y, y +2k−1−1] and k ≤ ki

into order-isomorphic groups, and finding for every i, k ≤ ki, i′ ∈ [begini,k, endi,k] a pointer
to the list of fragments w[y..y + 2k−1− 1] with i ∈ [y, y + 2k−1− 1] that are order-isomorphic
to w[i′..i′ + 2k−1 − 1]. Both steps can be implemented with the order-preserving suffix tree
that is preprocessed in O(n) time and space for computing a (deterministic) fingerprint
of any code(w[x..x + 2ℓ − 1]) in constant time. Here, a fingerprint is meant as an integer
consisting of O(log n) bits, denoted fingerprintℓ(x), such that fingerprintℓ(x) = fingerprintℓ(x′)
iff code(w[x..x + 2ℓ − 1]) = code(w[x′..x′ + 2ℓ − 1]) (or equivalently w[x..x + 2ℓ − 1] ≈
w[x′..x′ + 2ℓ − 1]). We first describe such a mechanism and then provide a more detailed
description of how to apply it. The proof of the following lemma directly follows from prior
work [11,12] and is described in the appendix.

▶ Lemma 20. A compacted trie on n leaves can be preprocessed in O(n) time, so that for
any leaf u and integer k we can query in constant time for a O(log n)-bit fingerprint of the
ancestor of u at string depth 2k.
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We apply Lemma 20 on the order-preserving suffix tree. This allows us to calculate
any fingerprintℓ(x) with the required properties in constant time. Now consider any i and
k ≤ ki. We first compute fingerprintk−1(y) for every y such that i ∈ [y, y + 2k−1 − 1]. This
takes O(2k) time. Next, we compute fingerprintk−1(i′) for every i′ ∈ [begini,k, endi,k], also in
O(2k) time because |[begini,k, endi,k]| ≤ 2k−1. We sort all fingerprints and partition them
into groups corresponding to order-isomorphic fragments. We need to implement this step in
O(2k) time as well. To this end, we observe that we need to sort O(2k) integers consisting of
O(log n) bits, which can be done with radix sort in O(2k + n) time. To avoid paying O(n)
for each i and k ≤ ki, we observe that this is an offline problem, and all sets corresponding
to different i and k ≤ ki can be sorted together. In more detail, we sort tuples of the form
(i, ki, fingerprintℓ(y), y) and (i, ki, fingerprintℓ(i′), i′). The total number of all tuples is O(σn)
by Lemma 19 and, as each of them can be treated as an integer consisting of O(log n) bits,
they can be sorted in O(σn + n) = O(σn) time. Then, we extract the results for each
i and k ≤ ki from the output. For each i and k ≤ ki, we consider every group of equal
fingerprints. From each group, we first create a list containing all positions y corresponding
to fingerprintk−1(y) belonging to the group. Then, for every fingerprintk−1(i′) belonging to
the group we store a pointer to this list. Overall, this takes O(σn) time and allows us to
compute all the results in the same time complexity.

6 Open Problems

An interesting follow-up to our results is first bounding the number of order-preserving
squares that are not order-isomorphic, and then designing an algorithm that reports all
such squares. In addition, investigating the bounds for parameterized squares is of interest.
Moreover, we are not aware of an algorithm reporting parameterized squares in a string,
hence, designing such an algorithm is desired.
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A Missing Proofs

▶ Lemma 16. Given a string w[1..n] over an alphabet of size σ, we can construct its
order-preserving suffix tree in O(σn) time and space.

Proof. As explained in [3], the order-preserving suffix tree of w[1..n] can be constructed
using the general framework of Cole and Hariharan [2] for constructing a suffix tree for a
quasi-suffix collection of strings w1, w2, . . . , wn. The running time of their algorithm is O(n)
with almost inverse exponential failure probability, assuming that one can access the j-th
character of any wi in constant time. The mechanism for accessing the j-th character of wi

is called the character oracle. In this particular application, the string wi = ϕ(w[i..n])$. We
will first describe how to implement a constant-time character oracle for such strings, and
then explain why randomization is not needed in our setting.
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We need to implement a new character oracle that returns ϕ(w[i..n], j), for any i, j,
in constant time after O(σn) time and space preprocessing. This requires being able to
calculate prev<(w[i..n], j) and prev=(w[i..n], j) in constant time. To this end, we define a
two-dimensional array cnt[i, x] = |{k : k < i, w[k] < x}|, for i = 0, 1, . . . , n and x = 0, 1, . . . , σ.
All entries in this array can be computed in O(σn) total time and space. Then, we can
calculate any prev<(w[i..n], j) and prev=(w[i..n], j) as follows:

prev<(w[i..n], j) = cnt[i + j − 2, w[i + j − 1]]− cnt[i− 1, w[i + j − 1]]
prev=(w[i..n], j) =(cnt[i + j − 2, w[i + j − 1]]− cnt[i + j − 2, w[i + j − 1]− 1])

− (cnt[i− 1, w[i + j − 1]]− cnt[i− 1, w[i + j − 1]− 1]).

To remove randomization, we observe that its only source in the algorithm of Cole and
Hariharan is the need to maintain, for each explicit node of the current tree, a dictionary
indexed by the next character on an outgoing edge. If we could show that there are at most
O(σ) such edges, then the dictionary could be implemented as a simple list, increasing the
construction time to O(σn), which is within our claimed bound.

Consider a non-leaf node v of the current tree. It corresponds to a proper prefix of
some code(w[i..n])$, which by the definition of code(.) is equal to code(w[i..j]), for some
j. Let c1 < c2 < . . . < ck be the distinct characters of w[i..j], and denote by occx the
number of occurrences of cx in w[i..j]. Now consider an edge outgoing from v, and let
code(w[i′..j′ + 1]) correspond to the first node (implicit or explicit) after v there. We know
that code(w[i′..j′]) = code(w[i..j]), so the distinct characters of w[i′..j′] are c′

1 < c′
2 < . . . < c′

k

with occx being the number of occurrences of c′
x in w[i′..j′]. Then, we analyze the possible

values of (prev<(w[i′..j′ + 1], j′ − i′ + 2), prev=(w[i′..j′ + 1], j′ − i′ + 2)), that is, the first
character on the considered edge. The first number is always equal to

∑x−1
y=1 cy, for some

x ∈ [1, k + 1]. Then, the second number is either 0 or occx. Thus, overall we have only
2k ≤ 2σ possible first characters, which bounds the degree of any v by O(σ). ◀

▶ Lemma 17. Consider an op-square s[1..2ℓ]. Then there exists q < j such that the leftmost
occurrences xq and xj satisfy xj − xq = ℓ, xj ∈ [ℓ + 1, 2ℓ] and xj is either the smallest or the
largest element of its group.

Proof. By Proposition 5, we know that there is a leftmost character in s[ℓ + 1..2ℓ]. Choose
the largest k such that 2k ≤ ℓ (so 2k+1 > ℓ). Consider two ranges [2k, 2k+1) and [2k+1, 2k+2)
corresponding to groups Lk and Lk+1, respectively. Because 2k ≤ ℓ and 2k+1 > ℓ, we have
2k < ℓ + 1, 2k+1 ∈ [ℓ + 1, 2ℓ] and 2ℓ < 2k+2. Consequently, the fragment s[ℓ + 1..2ℓ] can
be represented as the concatenation of a suffix of s[2k..2k+1) and a prefix of s[2k+1..2k+2).
The leftmost occurrence that falls within s[ℓ + 1..2ℓ] belongs to the suffix or the prefix. See
Figure 10. If it falls within the suffix, the largest element of Lk belongs to [ℓ + 1, 2ℓ]. If it
falls within the prefix, the smallest element of Lk+1 belongs to [ℓ + 1, 2ℓ]. Let xj ∈ [ℓ + 1, 2ℓ]
be the corresponding leftmost occurrence. To complete the proof we need to establish
that there exists q < j such that xj − xq = ℓ. The character s[xj ] is distinct from all
s[1], s[2], . . . , s[xj − 1], and by s[1..ℓ] ≈ s[ℓ + 1..2ℓ] we obtain that s[xj − ℓ] is distinct from
all s[1], s[2], . . . , s[xj − ℓ − 1]. Thus, the position xj − ℓ is a leftmost occurrence, hence
xj − ℓ = xq for some q < j as required. ◀

▶ Lemma 18. The number of fragments s[y..y + 2k−1 − 1] such that xj ∈ [y, y + 2k−1 − 1]
and s′ ≈ s[y..y + 2k−1 − 1] is upper bounded by O(1 + |Lk−2|).
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Proof. Consider all such fragments s[y1..y1 + 2k−1 − 1], s[y2..y2 + 2k−1 − 1], . . . , s[yt..yt +
2k−1 − 1]. Because xj ∈ [yz, yz + 2k−1 − 1] for every z = 1, 2, . . . , t, either t = 1 or by the
pigeonhole principle there exists z such that yz+1 − yz < 2k−1/(t− 1). If t = 1 then we are
done. Otherwise, let ℓ′ = |s[yz+1..yz + 2k−1 − 1]|. By assumption, s′ ≈ s[yz..yz + 2k−1 − 1]
and s′ ≈ s[yz+1..yz+1 + 2k−1 − 1], so by the transitivity of ≈ also s[yz..yz + 2k−1 − 1] ≈
s[yz+1..yz+1 + 2k−1 − 1]. We conclude that s′[1..ℓ′] ≈ s′[yz+1 − yz + 1..2k−1], or in other
words ℓ′ is an op-border of s′. Let b1, b2, . . . , bf , bf+1 be the blocks defined by ℓ′ in s′ =
s[1..|s′|] = w[i..i + |s′| − 1], where each block is of length ∆ = 2k−1 − ℓ′. See Figure 12.
Recall that xj is a leftmost occurrence in s = w[i..n], and by the definition of yz and yz+1
we have xj ∈ [yz+1, yz + 2k−1− 1]. Then, by s′[1..ℓ′] ≈ s′[yz+1− yz + 1..2k−1] we obtain that
xj − yz + 1 ∈ [yz+1− yz + 1, 2k−1] is also a leftmost occurrence in s = w[i..n]. Hence, we have
a leftmost occurrence in block bj , for some j ≥ 2. This allows us to apply Lemma 10 and
then Lemma 11 to conclude that there is a leftmost occurrence in every block b1, b2, . . . , bf .
We calculate a lower bound on how many of these leftmost occurrences fall within the range
[2k−2, 2k−1):⌊

2k−2

∆

⌋
− 1 >

2k−2

2k−1 − ℓ′ − 2

= 2k−2

2k−1 − (yz + 2k−1 − yz+1) − 2 = 2k−2

yz+1 − yz
− 2

>
2k−2

2k−1/(t− 1) − 2 = (t− 5)/2.

For t < 6, we are done as the number of fragments is O(1). Otherwise, we obtain that
|Lk−2| ≥ (t− 5)/2 ≥ t/12, thus t = O(1 + |Lk−2|) always holds as claimed. ◀

[2𝑘 , 2𝑘+1)

𝑠

[2𝑘−1, 2𝑘)
⋯
⋯

𝑠[𝒴z+1]

𝑠[𝒴𝑧. . 𝒴𝑧 + 2𝑘−1 − 1]

𝑠[𝒴𝑧] 𝑠[𝑥j]

𝑠[𝒴𝑧+1. . 𝒴𝑧+1 + 2𝑘−1 − 1]

ℓ′
𝑠′

∆

𝑏1 𝑏𝑓

Figure 12 s, s′, s[yz..yz + 2k−1 − 1], and s[yz+1..yz+1 + 2k−1 − 1] are colored in black, orange,
blue, and green, respectively. The red line illustrates the ranges.

▶ Lemma 20. A compacted trie on n leaves can be preprocessed in O(n) time, so that for
any leaf u and integer k we can query in constant time for a O(log n)-bit fingerprint of the
ancestor of u at string depth 2k.

Proof. This follows by applying the method used to solve the substring fingerprint problem
mentioned in [11, Lemma 14]. Following the description in the full version [12, Lemma 12],
a compacted trie on n leaves can be preprocessed in O(n) time so that we can locate the
(implicit or explicit) node corresponding to the ancestor at string depth 2k of a given leaf in
constant time. If the sought node is implicit (and does not explicitly exist in the compacted
trie) we retrieve the edge that contains it. Next, if the node is explicit then we return its
identifier. If the node is implicit then we return the identifier of the edge that contains it.
Thus, the required range of identifiers is [2n]. ◀
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Abstract
A multi-labelled tree (or MUL-tree) is a rooted tree leaf-labelled by a set of labels, where each label
may appear more than once in the tree. We consider the MUL-tree Set Pruning for Consistency
problem (MULSETPC), which takes as input a set of MUL-trees and asks whether there exists a
perfect pruning of each MUL-tree that results in a consistent set of single-labelled trees. MULSETPC
was proven to be NP-complete by Gascon et al. when the MUL-trees are binary, each leaf label is used
at most three times, and the number of MUL-trees is unbounded. To determine the computational
complexity of the problem when the number of MUL-trees is constant was left as an open problem.

Here, we resolve this question by proving a much stronger result, namely that MULSETPC is
NP-complete even when there are only two MUL-trees, every leaf label is used at most twice, and
every MUL-tree is either binary or has constant height. Furthermore, we introduce an extension of
MULSETPC that we call MULSETPComp, which replaces the notion of consistency with compatibility,
and prove that MULSETPComp is NP-complete even when there are only two MUL-trees, every
leaf label is used at most thrice, and every MUL-tree has constant height. Finally, we present a
polynomial-time algorithm for instances of MULSETPC with a constant number of binary MUL-trees,
in the special case where every leaf label occurs exactly once in at least one MUL-tree.
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1 Introduction

In evolutionary biology, leaf-labelled (phylogenetic) trees are commonly employed to describe
the evolution of species using leaf labels to represent different species [11]. Comparisons of
these structures are used particularly in phylogenetic inferences – similarities may indicate
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evolutionary patterns, whereas differences may highlight genetic mutations. The measure of
similarity between phylogenetic trees has been defined by multiple alternate metrics, such
as the Robinson-Foulds distance [29], subtree pruning and regraft (SPR) distances [5, 34],
and maximum agreement subtrees [2, 7, 12]. Other problems related to phylogenetic trees
include constructing supertrees [1, 3, 4, 33] or consensus trees [6, 11, 21] which can determine
relations or interactions between smaller phylogenetic trees.

Phylogenetic trees are classically described as single-labelled trees, where no label appears
on the leaves of the tree more than once. Typically, construction or comparison algorithms
of such phylogenetic trees make use of this property to reduce computational costs. Multi-
labelled trees (or MUL-trees) are a generalisation of single-labelled trees in which multiple
leaves may be labelled by the same label. MUL-trees can be useful to depict genome
duplication, lineage sorting, or lateral gene transfer [23]. Other applications include the
construction of phylogenetic networks by folding operations [17, 18, 19], biogeography
[13, 24, 25], the study of host-parasite cospeciation [26], and gene evolution studies [23, 27, 30].

MUL-trees have been far less investigated than their single-labelled counterparts and
many computational problems become NP-hard when extended to MUL-trees. For example,
the majority rule consensus tree for a set of k single-labelled trees with n leaf labels each
can be computed in O(nk) time [21], but is NP-hard to compute for MUL-trees [8]. Other
approaches convert MUL-trees into single-labelled trees which can be input to existing
algorithms [20, 30]. A few polynomial-time algorithms do exist for MUL-trees – Cui et al.[8]
presented a O(n2k + nk2)-time algorithm for building a majority rule consensus MUL-tree
in which each leaf label occurs at most twice, based on a reduction to the Perfect Phylogeny
Haplotyping problem [10]. Furthermore, the maximum agreement subtree (MAST) distance
between two MUL-trees can be computed in quadratic time, though it also becomes NP-
complete when generalised to more than two MUL-trees [13, 22].

This paper investigates MUL-trees by considering the MUL-tree Set Pruning for Consist-
ency problem (MULSETPC), which takes as input a set of MUL-trees, and outputs whether
or not there exists a pruning of the MUL-trees which gives a consistent set of single-labelled
trees (see Section 2 for formal definitions). Gascon et al. showed that, in general, MULSETPC
is NP-complete via a polynomial reduction from 3-SAT [15, 16]. However, their reduction
from an instance of 3-SAT with m variables and z clauses gives an instance of MULSETPC
containing m+ z + 1 MUL-trees; moreover these MUL-trees may have labels occurring three
times. Here we prove that MULSETPC is still NP-complete, even when restricted to instances
involving only two MUL-trees, or in which every leaf label appears at most twice within a
MUL-tree. This totally resolves the open question of Gascon et al. [15, 16] regarding the
parameterised complexity of MULSETPC when the parameter is the number of input trees.
Also, we identify tractable fragments of MULSETPC which can be solved in polynomial time,
in short, instances in which each label appears exactly once in at least one MUL-tree.

We also present a generalisation of MULSETPC called MULSETPComp, which asks for a
compatible set of trees instead of a consistent set of trees. Tree compatibility is a generalisation
of tree consistency where we allow the supertree displaying the set to instead display a
refinement of each tree rather than the tree itself–again, a more rigorous definition is given
later. Tree compatibility is relevant when determining the existence of a supertree for a
given set of phylogenetic trees [1, 31]. This is because experimental data often contains
uncertainty, which can be expressed by non-binary nodes in the tree; this necessitates
the use of compatibility. Compatibility is also relevant to other questions such as the
incomplete directed perfect phylogeny problem [28]. Our interest in tree compatibility was
partially motivated by recent improvements in compatibility testing [9]. Here, we prove
that MULSETPComp is NP-complete, even when restricted to instances involving only two
MUL-trees, or in which every leaf label appears at most thrice within a MUL-tree.
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The rest of the paper is organized as follows. In Section 2, we introduce the preliminary
notation and definitions. In Section 3 we present the improved NP-completeness proof
for MULSETPC by reduction from the Boolean 3-SAT problem. In Section 4 we give
a NP-completeness proof for MULSETPComp by reduction from the Exact 3-cover with
Multiplicity 3 problem. Section 5 contains our polynomial time results for tractable instances
of MULSETPC. Finally, in Section 6 we present our conclusions and a few open problems.

2 Preliminaries

We shall use the following standard definitions on trees.

▶ Definition 1 (Basic tree definitions). All trees we consider are rooted and unordered. If
x, y are nodes in a tree T , then y is an ancestor of x (and x a descendant of y) if y lies on
the unique path from x to the root of T . We denote this by x ≤ y. Additionally, if y ≠ x

then y is a proper ancestor of x, which we denote by x < y. If x < y and y is adjacent to x
then y is the parent of x and x a child of y. If x and x′ are both children of y then x and x′

are siblings. The lowest common ancestor of nodes x and y, denoted lcaT (x, y), is the node
z such that x ≤ z, y ≤ z, and no proper descendant of z also satisfies these properties. The
empty tree, denoted by T∅, is the unique tree which contains no nodes.

We use the following definition of leaf-labelled trees, which takes the definitions of
Gascon et. al. [15] and generalises them to the case where the tree may not be binary.

▶ Definition 2 (Leaf-labelled trees). A leaf-labelled tree (T,X ) is a (rooted, unordered) tree
T where no node has exactly one child and where each leaf has been assigned a label from a
set of labels X . (We will sometimes refer to T as a leaf-labelled tree on X , and omit X if it
is clear from context.) A leaf-labelled tree is a single-labelled tree if every label in X is used
at most once. Alternatively, a multi-labelled tree or MUL-tree is a leaf-labelled tree where
we allow each label in X to label multiple leaves. We say a MUL-tree has multiplicity k if
each leaf label appears at most k times. Let L(T ) ⊆ X denote the set of leaf labels appearing
in T and let D(T ) ⊆ L(T ) denote the set of leaf labels appearing only once in T .

Note that in a single-labelled tree we sometimes abuse notation and identify the leaf and
the leaf label. We do the same in a MUL-tree only if the context is clear and there is no
possibility of confusion.

If u is a node of T then Tu denotes the subtree rooted at u containing u and all
its descendants, maintaining the same leaf-labelling as T on the remaining leaves. Let
Du := D(Tu).

▶ Definition 3 (Pruning and Perfect Pruning). Given a leaf-labelled tree T , let y denote a
leaf node of T and x the parent of y. We prune the leaf y in the following manner:

Delete the leaf y.
If x still has at least two children, do nothing else.
Alternatively, if x now has only one child and is not the root, suppress the vertex x.
Finally, if x has only one child z and is the root, delete x and make z the new root.

A perfect pruning of T is a single-labelled tree T ′ such that L(T ′) = L(T ), created by (possibly
repeated) prunings of T . That is, for every label that appears more than once in T , we
prune away all but exactly one copy of the label to obtain a single-labelled tree. If T is a
single-labelled tree, then its only perfect pruning is itself.
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Given a leaf-labelled tree T and a set of leaf labels L′ ⊆ L(T ), let T ↾L′ denote the
leaf-labelled tree constructed by pruning from T every leaf labelled by a label from L(T ) −L′.
(That is, only leaves labelled by L′ remain.) Two leaf-labelled trees T1 and T2 are leaf-label
isomorphic if there is an isomorphism between T1 and T2 which preserves the labelling of the
leaves. We say that a leaf-labelled tree T on L displays a single-labelled tree T ′ on L′ ⊆ L if
there exists a perfect pruning T ∗ of T such that T ∗↾L′ is leaf-label isomorphic to T ′.

▶ Definition 4 (Refinement). Given single-labelled trees T and T ∗, we say T ∗ is a refinement
of T if T can be obtained from T ∗ by (possibly repeated) contractions of non-leaf edges, where
we treat a contraction as merging the child node into the parent node. We write T ≤ T ∗.

What follows is the definition of a consistent set, and the very similar definition of a
compatible set.

▶ Definition 5 (Consistent Set). Consider a set of single-labelled trees T1, . . . , Tk with
corresponding label sets L1, . . . , Lk. We say this set is consistent if there exists a single-
labelled tree T on label set L =

⋃k
i=1 Li such that for every i = 1, . . . , k, T displays Ti.

Note in the above definition that if L1 = · · · = Lk then L = L1 and so the set T1, . . . , Tk
is consistent if and only if the trees are pairwise leaf-label isomorphic.

▶ Definition 6 (Compatible Set). Consider a set of single-labelled trees T1, . . . , Tk with
corresponding label sets L1, . . . , Lk. We say this set is compatible if there exists a single-
labelled tree T on label set L =

⋃k
i=1 Li such that for every i = 1, . . . , k, T ↾Li

is a refinement
of Ti.

x y

z

z w

(a) T1.

y w

z

y

(b) T2.

x y z w

(c) T ∗.

Figure 1 Let T1, T2, and T ∗ be the three trees with X = {x, y, z, w} shown above. If we prune
away the non-underlined labels in T1 and T2 then T ∗↾L(Ti) is a refinement of the pruned Ti for
i ∈ {1, 2}, which shows that there exists a perfect pruning of {T1, T2} giving a compatible set of trees.
In contrast, there is no perfect pruning of {T1, T2} giving a consistent set of trees because neither of
the two single-labelled subtrees with leaf labels y, z, and w displayed by T1 is also displayed by T2.
Note, however, that if the label w in T1 is changed to x then {T1, T2} becomes consistent since this
label can be pruned along with one leaf labelled by z to obtain a perfect pruning of T1 which is
displayed by T ∗.

Note that every consistent set of trees is also a compatible set, but the converse does not
hold in general.

The MUL-set pruning for consistency problem can then be defined as follows:

MUL-tree Set Pruning for Consistency (MULSETPC) Problem:
Input: (M,X ) where M is a set of MUL-trees on X .
Output: ∃? a perfect pruning of each tree of M resulting in a consistent set of trees.
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We introduce the following problem, which substitutes compatible for consistent sets:

MUL-tree Set Pruning for Compatibility (MULSETPComp) Problem:
Input: (M,X ) where M is a set of MUL-trees on X .
Output: ∃? a perfect pruning of each tree of M resulting in a compatible set of trees.

See Figure 1 for an example that illustrates the difference between MULSETPC and
MULSETPComp.

3 NP-completeness for MULSETPC instances with two MUL-trees
and multiplicity 2

In this section we consider the MULSETPC problem, and show that it is NP-complete even
when considering a heavily restricted set of instances. Specifically, we consider instances with
at most two MUL-trees, where the multiplicity is 2, and where the MUL-trees are binary.
The core of our proof will be a reduction from 3-SAT [14].

3-satisfiability (3-SAT) Problem:
Input: A Boolean set of clauses C = (C1 ∧ C2 ∧ . . . ∧ Cz) on a finite set of literals
{l1, l2, . . . , lm} where each clause is in conjunctive normal and contains 3 literals.
Output: ∃? a satisfying valuation V of C.

Our first goal is to construct, given an instance of 3-SAT, two MUL-trees T1 and T2 which
we will use in our corresponding instance of MULSETPC. Our set of leaf labels X consists of
the following:

{li, l̄i | i = 1, . . . ,m}, the set of literals,

{Fi, Vi | i = 1, . . . ,m}, a pair of “dummy” labels for each variable and

P := {C1
j , C

2
j , C

3
j | j = 1, . . . , z}, a triple of “position” labels representing the three places

of each clause of C.

Define h := P → {li, l̄i | i = 1, . . . ,m} as the function which maps a position label Cxj to the
literal found in that position. For example, if C1 = (l1 ∨ l4 ∨ l̄6) then h(C1

1 ) = l1, h(C2
1 ) = l4

and h(C3
1 ) = l̄6. We treat P as being ordered first by the index of the clause and then by

the position. Let H(li) := {Cxj | h(Cxj ) = li}, and define H(l̄i) similarly.

Our trees T1, T2 will be constructed from four types of subtrees T1,L,j , T2,L,j , T
∗
1,R,i and

T ∗
2,R,i, where i = 1, . . . ,m and j = 1, . . . , z. See Figure 2 for the subtrees T1,L,j , T2,L,j , T1,R,i

and T2,R,i; we now explain how to construct T ∗
1,R,i and T ∗

2,R,i from T1,R,i and T2,R,i.

Let vi denote the leaf labelled Vi in T1,R,i and let ui denote the parent of vi. Let u+
i and

u−
i denote the parents of leaves labelled li and l̄i respectively in T2,R,i. Let v+

i denote the
child of u+

i labelled by Vi, and v−
i denote the child of u−

i labelled by Vi.
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T1,L,j

Cc
j Cb

j

Ca
j

(a) T1,L,j .

T2,L,j

Ca
j Cb

j

Cc
j

(b) T2,L,j .
T1,R,i

li l̄i

Vi

Fi li l̄i

(c) T1,R,i.

T2,R,i

li Vi

Fi Fi

Vi l̄i

(d) T2,R,i.

Figure 2 Subtrees T1,L,j , T2,L,j , T1,R,i, T2,R,i for MULSETPC.

Initialise T ∗
1,R,i as a copy of T1,R,i, then do the following:

If H(li) ∪H(l̄i) = ∅, make no further changes.
Otherwise, subdivide the edge uivi |H(li) ∪H(l̄i)| times, and add to each new node an
adjacent leaf. Label these leaves with H(li) ∪H(l̄i), respecting the ordering such that
the first label is closest to ui.

Initialise T ∗
2,R,i as a copy of T2,R,i, and then:

If H(li) ̸= ∅, then subdivide u+
i v

+
i |H(li)| times and add an leaf adjacent to each new

node. Label these leaves with H(li), respecting the ordering so that the first label is
closest to u+

i .
If H(l̄i) ̸= ∅, repeat the previous step, substituting H(l̄i) for H(li) and u−

i v
−
i for u+

i v
+
i .

Construct T1,L by taking a complete binary tree on z leaves (recall z is the number of
clauses), suppressing any nodes with exactly one child, and then identifying the root of each
T1,L,j (ordered by j) with exactly one of the leaves (ordered left-to-right). Construct T2,L in
the same fashion, substituting T2,L,j for T1,L,j . Construct T1,R by taking a complete binary
tree on m leaves, suppressing any nodes with exactly one child, and then identifying the root
of each T ∗

1,R,i (ordered by i) with exactly one of the leaves (ordered left-to-right). Again,
construct T2,R in the same fashion, substituting T ∗

2,R,i for T ∗
1,R,i. Finally, construct T1 by

taking a root node r(T1) and adding an edge to the roots of T1,L and T1,R; construct T2 in
the obvious equivalent fashion.

Given an instance C of 3-SAT, we create our instance of MULSETPC, ({T1, T2},X ). Note
that T1 and T2 have multiplicity 2; each leaf label Cxj ∈ P appears once in T1,L,j and T2,L,j
and once in T ∗

1,R,i and T ∗
2,R,i for the single value of i such that Cxj ∈ H(li) ∪ H(l̄i). By

inspection, the labels of X − P also appear at most twice. Hence the instance ({T1, T2},X )
contains two binary MUL-trees with multiplicity 2. It suffices to now show the reduction, in
two parts.

▶ Lemma 7. If C is a satisfied instance of 3-SAT then the corresponding instance ({T1, T2},X )
of MULSETPC admits a perfect pruning giving a consistent set of trees.
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Proof. Suppose that C is satisfiable. Then there exists a valuation of every variable which
satisfies every clause of C; fix one such valuation and label it V. For each clause Cj , mark
one of the position labels Cxj for x ∈ {1, 2, 3} such that h(Cxj ) is valued true by V. Since V
satisfies every clause, we will always be able to choose a label to mark; if there are multiple
legitimate choices choose arbitrarily. Refer to any label Cxj we have not marked as unmarked.

By our construction of T1 and T2, if we show that after pruning each T1,L,j and T ∗
1,R,i is

leaf-label isomorphic to T2,L,j and T ∗
2,R,i respectively, then T1 is leaf-label isomorphic to T2.

Consider first the labels of P. Prune from each T1,L,j and T2,L,j the one marked label
Cxj , and leave the two unmarked labels Cxj . We must keep the other copy of the marked Cxj
and prune away the other copies of the unmarked Cxj in whichever T ∗

1,R,i and T ∗
2,R,i they

appear. Consider the sets H(li) and H(l̄i). If Cxj is marked, then h(Cxj ) is true, and so at
most one of H(li), H(l̄i) contains a marked label. Keeping this information in mind, we can
now simply look at the subtrees themselves.

After this pruning each T1,L,j will be leaf-label isomorphic to the corresponding T2,L,j ,
by inspection.
Consider T ∗

1,R,i and T ∗
2,R,i. We have already pruned away unmarked labels of P. If li

is true, prune the copy of li in T ∗
1,R,i closest to the root of T ∗

1,R,i and the copy of l̄i
furthest from the root; if l̄i is true do the opposite. In T ∗

2,R,i prune the copies of Fi, Vi
closer to the literal li or l̄i which evaluates as false. Hence we have pruned away the
extra copies of each leaf label. It is clear, mostly by inspection, that T ∗

1,R,i is leaf-label
isomorphic to T ∗

2,R,i; the most important point is that since at most one of H(li) and
H(l̄i) contains a marked label, at least one of these sets has been pruned away entirely in
T ∗

2,R,i (specifically the set closer to the false literal).
Hence, after pruning, T1 and T2 are leaf-label isomorphic, and thus {T1, T2} is consistent. ◀

See Figure 3 for an illustration of the reduction in Lemma 7.

▶ Lemma 8. If C is not a satisfied instance of 3-SAT then the corresponding instance
({T1, T2},X ) of MULSETPC do not admit perfect prunings giving a consistent set of trees.

We omit the proof of Lemma 8 for reasons of space. We now prove our main result.

▶ Theorem 9. The MULSETPC problem is NP-complete, even restricted to instances con-
taining at most two binary MUL-trees with multiplicity 2.

Proof. Note first that MULSETPC is in NP, since given a set of pruned leaves, a perfect
pruning can be constructed in polynomial time, and the consistency of the set of trees
determined in polynomial time using the BUILD algorithm [1, 15].

The result then follows directly from Lemma 7 and Lemma 8. ◀

It is also possible to swap our requirement that the MUL-trees are binary for an alternative
requirement that the MUL-trees have height at most 5. Proving this result is very similar to
the binary case, but we omit it here on grounds of space; the proof will appear in the journal
version of this article. Thus we get the following result.

▶ Theorem 10. The MULSETPC problem is NP-complete, even restricted to instances
containing at most two MUL-trees with multiplicity 2 and height at most 5.
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T2

F1

Ca
3V1

l̄1

F1

Ca
1 V1

l1

F2

V2 l̄2

F2

Cb
1

Ca
2

Cb
3
V2

l2

F3

Cc
1V3

l̄3

F3

Cb
2
V3

l3

F4

Cc
3V4

l̄4

F4

Cc
2 V4

l4

Cc
1

Cb
1
Ca

1
Cc

2

Cb
2
Ca

2

Cc
3

Cb
3
Ca

3

(b) The MUL-tree T2.
T
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(c) Tree T displays the two MUL-trees T1 and T2 after they have been perfectly pruned.

Figure 3 Illustrating the reduction from 3-SAT in Lemma 7. The two MUL-trees T1 and T2 are
constructed from C = (C1∧C2∧C3) where C1 = (l1∨l2∨l3), C2 = (l2∨l3∨l4), and C3 = (l1∨l2∨l4).
Figure 3c shows the corresponding tree T which displays the pruned T1 and T2 corresponding to a
satisfiable assignment l1 = l2 = l3 = l4 = true with marked labels Cc

1 , C
c
2 and Ca

3 .
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4 NP-completeness for MULSETPComp

In this section, we extend our previous results regarding the problem MULSETPC to the
similar problem MULSETPComp. We present the following two theorems.

▶ Theorem 11. MULSETPComp is NP-complete, even when restricted to instances containing
at most two MUL-trees with multiplicity at most 3 and where the MUL-trees have height at
most 4.

▶ Theorem 12. MULSETPComp is NP-complete, even when restricted to instances containing
at most two MUL-trees with height at most 3 and where one MUL-tree is a single-labelled
tree containing all leaf labels.

As was the case in Section 3, these two results have very similar proofs. We shall prove
Theorem 11, but omit the proof of Theorem 12 for space reasons. Here, we reduce from
X3C3, also known to be NP-complete [14].

Exact 3-cover with multiplicity 3 (X3C3) Problem:
Input: A set X = {x1, . . . , x3q} and a collection C = {S1, . . . , Sk} of 3-element subsets
of X, such that any element of X appears in at most three sets in C.
Output: ∃? an exact cover for X.

As before, our first goal is to construct, given an instance (X,C) of X3C3, a set of two
MUL-trees we shall use to construct our corresponding instance of MULSETPComp.

Recall that |X| = 3q and that k := |C|. Let m := k − q, the number of sets of C not
chosen to be part of our exact 3 cover. Define A := {aij |i = 1, . . . ,m, j = 1, . . . , k} and
B = {bij |i = 1, . . . ,m, j = 1, . . . , k}. Let Ai = {aij |j = 1 . . . , k} and Aj = {aij |i = 1, . . . ,m},
and define Bi, Bj similarly. The labels in A∪B are another set of “dummy” labels we use for
technical reasons. Let Y = X ∪A∪B. We may assume that q ≥ 3. We may also assume that
k is even; if not, add to X three additional elements {x3q+1, x3q+2, x3q+3} (which increases
q by 1) and add to C a additional set S′ = {x3q+1, x3q+2, x3q+3} (which increases k = |C|
by 1). It is clear this modified instance contains an exact 3-cover if and only if the original
instance did.

We denote our two trees T1 and T2. Our corresponding instance of MULSETPComp for
Theorem 11 will be ({T1, T2}, Y ).

…

…

…

…

…

S1 SkA1

B1

Ak

Bk

… …

µ

µℓ µr

π1 πk

π′1 π′k

α1 αm β1 βm

Figure 4 The tree T1 for MULSETPComp.
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… … … …

……

X

A1 B1 Am Bm

… …

γ

γℓ γr

ρ1 ρm

ᾱ1 ᾱm β̄1 β̄m

Figure 5 The tree T2 for MULSETPComp.
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Figure 6 The subtree of T1 rooted by αi.
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Figure 7 The subtree of T2 rooted by ᾱi.

See Figures 4 and 6 for the construction of T1, and Figures 5 and 7 for the construction
of T2. Note that a node labelled αi in Figure 4 is the root of the appropriate subtree from
Figure 6, not a leaf labelled by αi. An equivalent statement holds for ᾱi, βi and β̄i, where
the subtree rooted at βi is found by taking the subtree of Figure 6 and replacing each aij
with bij . (An equivalent statement holds for β̄i and Figure 7). Note the following other useful
facts about our construction:

Trees T1 and T2 have the same set of leaf labels. Hence a perfect pruning of T1 and T2 is
a compatible set of trees if and only if there exists a tree T ∗ on the same leaf label set
which is a refinement of both perfect prunings.
In T1 any label of X may appear at most three times, since any xi may appear in at most
three sets of C. Every label of A and B appears once in Tµℓ

1 and once in Tµr

1 . Hence T1
has multiplicity 3. In T2 any label of X appears only once, and the labels of A and B

appear at most thrice, once in T γℓ

2 and once or twice in T γr

2 . Hence T2 has multiplicity 3.
The heights of both MUL-trees can be determined by inspection.

We will need the following two technical lemmas – as the proofs are straightforward we
omit them.

▶ Lemma 13. Consider a set of elements X = {x1, . . . xk} together with a subset X ′ ⊂ X

such that |X ′| = k − 1 and a collection of sets X = {xi, xi+i}i∈[k−1]. Then it is possible to
construct a set equal to X ′ by choosing one element from each set in X .
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▶ Lemma 14. Let T, T ∗ be single-labelled trees such that T ≤ T ∗, and let u, x, y be leaf nodes
in T (and hence also in T ∗). If lcaT (u, x) < lcaT (u, y) then lcaT∗(u, x) < lcaT∗(u, y).

The following two lemmas form the core of our main result.

▶ Lemma 15. If (X,C) is an instance of X3C3 that allows an exact 3-cover C ′ then the
corresponding instance ({T1, T2}, Y ) of MULSETPComp admits a perfect pruning giving a
compatible set of trees.

Proof. Let I ⊂ [k] denote the set of m indices i of those Si we did not choose as part of our
exact 3-cover, that is the sets Si ∈ C − C ′. Let ψ : I → [m] be an arbitrary isomorphism.
Prune the tree T1 as follows:

For each Si (or equivalently, each subtree rooted at πi):
If Si ∈ C ′ then keep the labels of Si as the children of π′

i but prune away all other
leaf labels in the subtree Tπi

1 . After pruning there are three leaves (with labels
corresponding to the elements of Si) as children of π′

i, which is itself a child of µℓ.
If Si ̸∈ C ′ then prune away all leaf labels in Tπi

1 except aψ(i)
i and bψ(i)

i . After pruning,
the remaining leaves will be children of πi.

In each Tαj

1 , prune away aji if the leaf label appears in Tµℓ

1 . Since m sets of C are not in
C ′, there are m leaf labels of the form aji appearing in Tµℓ

1 , specifically aψ(i)
i for the m

values of i for which ψ(i) is defined, or equivalently for all ψ(i) = 1, . . . ,m. Hence we
must prune away one leaf label in each Tα

j

1 .
Repeat the previous step for each T β

j

1 – the argument is identical.

Denote the pruned version of T1 by T ′
1. Every leaf label of X appears once; this follows

directly from C ′ being an exact 3 cover. All other leaf labels appear only once by inspection;
hence this is a perfect pruning.

We now prune T2 as follows:
For each T ρ

j

2 , prune away all leaf labels except ajψ−1(j) and bjψ−1(j); after pruning ρj has
two children, both leaves.
For each T ᾱj

2 , we wish to prune this subtree to create a (k− 1) leaf star with all labels aji
for our fixed j except ajψ−1(j). This is possible due to Lemma 13; from each pair of leaf
labels rooted by a child of ᾱj we pick one leaf to keep and one to prune away such that
we keep one copy of everything except ajψ−1(j).

Repeat the previous step for each T β̄
j

2 – as before the argument is identical.
There is one copy of each leaf label of X in T2, which we do not prune. We prune the leaf
labels of A ∪B in T2 so that the leaf labels of A ∪B in T γr

2 are exactly those that do not
appear in T γℓ

2 . Hence this is a perfect pruning, which we denote T ′
2.

We now show that T ′
2 can be constructed from T ′

1 by repeated non-leaf edge contractions,
which will show {T ′

1, T
′
2} form a compatible set (with T ∗ := T ′

1).
In T ′

1 contract every remaining π′
i (one for each of the q sets Si ∈ C ′) into its parent µℓ.

Furthermore in each Tα
i

1 and T β
i

1 , contract every non-leaf edge to create a star rooted at αi
or βi. By inspection, we can see T ′

2 ≤ T ′
1, giving our required compatible set of trees. ◀

See Figures 8, 9, 10, and 11 for an example of a pruning as in Lemma 15.
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…
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Figure 8 As an illustrated example, a possible perfect pruning T ′
1 as in Lemma 15. In this

example, S1, Sk ∈ C′, but S2 ̸∈ C′.
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Figure 9 A subtree of T ′
1 in the pruning from Figure 8. In this example, ψ(1 + k

2 ) = i.

……

X

… …

γ
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ᾱ1 ᾱm β̄1 β̄m
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Figure 10 A possible perfect pruning T ′
2, corresponding to the perfect pruning of Figure 8.
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Figure 11 A subtree of T ′
2 in the pruning from Figure 10. Again, here ψ−1(i) = k

2 + 1.

▶ Lemma 16. If (X,C) is an instance of X3C3 that does not allow an exact 3-cover C ′ then
the corresponding instance ({T1, T2}, Y ) of MULSETPComp does not admit a perfect pruning
giving a compatible set of trees.

We omit the proof of Lemma 16 due to space concerns. We now prove Theorem 11.
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Proof of Theorem 11. Note first that MULSETPComp is in NP, since given a set of pruned
leaves, a perfect pruning can be constructed in polynomial time. The compatibility of this
set of trees can be determined in polynomial time using the BUILDST algorithm [9]. The
result then follows directly from Lemma 15 and Lemma 16. ◀

We close this section with the following related result.

▶ Remark 17. MULSETPComp is NP-complete when restricted to instances with at most
two MUL-trees with multiplicity 2, as long as all trees are binary.

Recall that in general any consistent set of trees is also a compatible set; in the case where
all trees are binary the inverse also holds, as a binary tree cannot be refined further. This
proves Remark 17.

5 An algorithm for MULSETPC instances with k binary MUL-trees
where every label is unique in at least one tree

In this section, we consider the instances of MULSETPC in which we are given k binary
MUL-trees T1, . . . , Tk such that every label appears uniquely in at least one tree, that is,⋃k
i=1 D(Ti) = X , where X =

⋃k
i=1 X (Ti).

We adapt a technique using dynamic programming over k-tuples of nodes previously used
for the MAST problem [13, 22, 32]. For all k-tuples of nodes (a1, . . . , ak) ∈

∏k
i=1 V (Ti), let

S(a1, . . . , ak) =
⋃k
i=1 D(T ai

i ) denote the set of unique leaf labels that occur in the subtrees
T a1

1 , . . . , T ak

k , rooted at a1, . . . , ak, respectively.
We aim to find a binary tree T that is leaf-labelled by S(a1, . . . , ak) such that each of

T ai
i for i = 1, . . . , k displays T ↾X (Ti). Lemma 18, below, shows that the necessary condition

of the existence of such a tree is that S(a1, . . . , ak) ∩ X (Ti) ⊆ X (T ai
i ) for i = 1, . . . , k.

▶ Lemma 18. Let T be a binary tree leaf-labelled by S(a1, . . . , ak). If S(a1, . . . , ak)∩X (Ti) ̸⊆
X (T ai

i ) for some i, T ai
i does not display T ↾X (Ti).

Proof. Suppose that S(a1, . . . , ak) ∩ X (Ti) ̸⊆ X (T ai
i ), then there exists x ∈ S(a1, . . . , ak)

such that x ̸∈ X (T ai
i ). Since x ∈ T ↾X (Ti), we have that T ai

i cannot display T ↾X (Ti). ◀

Next, for each ai ∈ V (Ti), let P (ai) = {ϵ, ai, ali, ari }, for each i = 1, . . . , k, where aℓi and
ari denotes the two (unordered) children of vertex ai, and with ali = ϵ and ari = ai in the case
that ai ∈ L is a leaf vertex w.l.o.g. Let ci : P (ai) → P (xi) be the involution given by

ci(ϵ) = ai, ci(ai) = ϵ, ci(ari ) = aℓi , and ci(aℓi) = ari ,

associating each x ∈ P (ai) with a complement. Let Π(a1, . . . , ak) =
∏k
i=1 P (ai) −

{(ϵ, . . . , ϵ), (a1, . . . , ak)}, and note that |Π(a1, . . . , ak)| ≤ 4k, for all ai ∈ V (Ti), for
i = 1, . . . , k.
We define a function W :

∏k
i=1 V (Ti) → {true, false} recursively, as follows:

If |S(a1, . . . , ak)| ≤ 1, W (a1, . . . , ak) = true.
If S(a1, . . . , ak) ∩ X (Ti) ̸⊆ X (T ai

i ) for some i, W (a1, . . . , ak) = false.
Otherwise,

W (⃗a) =
∨

x⃗∈Π(a⃗)

(
W (x⃗) ∧W (c⃗(x⃗)) ∧Q(⃗a, x⃗) ∧Q(⃗a, c⃗(x⃗))

)
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where x⃗ = (x1, . . . , xk), c⃗(x⃗) = (c1(xi), . . . , ck(xk)) and

Q(⃗a, x⃗) =
∧
i̸=j

(
xi = ai ∧ xj = ϵ → L(ai) ∩ L(aℓj) = ∅ ∨ L(ai) ∩ L(arj) = ∅

)
∧

∧
i̸=j

(
xi = ai ∧ xj = aℓj ; → L(ai) ∩ L(arj) = ∅

)
∧

∧
i̸=j

(
xi = ai ∧ xj = arj ; → L(ai) ∩ L(aℓj) = ∅

)
.

We may define a partial ordering ◁ on
∏k
i=1(V (Ti) ∪ {ϵ}) by taking

(a1, . . . , ak) ◁ (a′
1, . . . , a

′
k) ⇐⇒ ai = ϵ or ai ≺i a

′
i, for all i = 1, . . . , k

where ≺i is the successor relation in Ti, with the unique ◁-minimum element (ϵ, . . . , ϵ). An
example computation of the function W is described in Figure 12.

1

a a b
T1

2 = 1l
3 = 1r

4 5

6

a b
T2

7 8

Figure 12 Given the trees T1 and T2, W (1, 6) = true since W (2, 7) ∧W (3, 8) ← W (2, 7) ∧
W (4, ϵ)∧W (5, 8) = true. Note that W (1, 6) would also compute W (2, 8)∧W (3, 7), W (2, 6)∧W (3, ϵ),
W (2, ϵ) ∧W (3, 6), W (1, 7) ∧W (ϵ, 8), and W (1, 8) ∧W (ϵ, 7).

▶ Lemma 19. Let T1, T2, . . . , Tk be a collection of k binary MUL-trees such that
⋃
i X (Ti) =⋃

iD(Ti). Then W (a1, . . . , ak) = true if and only if there exists a single-labelled tree T

leaf-labelled by S(a1, . . . , ak) such that T ai
i displays T ↾X (Ti), under a mapping that maps

ri(T ) 7→ xi, for all i = 1, . . . , k.

Proof. We prove this by induction on k. For the base case, suppose that each of (a1, . . . ak) =
(ϵ, . . . , ϵ) is the ≺-minimum, so that T ai

i = T ϵi = T∅ is the empty tree, for i = 1, . . . , k. In
which case S(ϵ, . . . , ϵ) = ∅, and hence W (a1, . . . ak) = true by definition, while (trivially)
the empty tree T = T∅ is such that T ai

i = T∅ displays T∅↾X (Ti) = T∅. Next, suppose that the
result holds for all (u1, . . . , uk) ◁ (a1, . . . , ak) for some tuple (a1, . . . , ak). We claim that the
result holds too for (a1, . . . , ak).
(⇐) Suppose that T is as described. Then for each i = 1, . . . , k there is some subtree

Si ⊆ T ai and some label-preserving isomorphism fi : V (Si) → V (T ↾X (Ti)).
Let T ℓ and T r denote the left and right subtrees attached at r(T ). As T is a single-labelled
tree, it follows that L(T ℓ) ∩ L(T r) = ∅, as each label occurs exactly once.
We can partition each V (Si) into three parts Li = {v ∈ V (Si) : fi(v) ∈ T ℓ} and
Ri = {v ∈ V (Si) : fi(v) ∈ T r} and Ci = {v ∈ V (Si) : fi(v) = r(T )}. Note that, since fi
is an isomorphism, if u ∈ X and u <i v then v ∈ X, for X ∈ {Li, Ri}.
We have three cases depending on which of these three sets lies the root node ai of the
subtree T ai

i :
If ai ∈ Ci then it follows that either aℓi ∈ Li and ari ∈ Ri or ari ∈ Li and aℓi ∈ Ri.

If aℓi ∈ Li and ari ∈ Ri then T
aℓ

i
i displays T ℓ↾X (ai) and T

ar
i

i displays T r↾X (ai).
If ari ∈ Li and aℓi ∈ Ri then T

ar
i

i displays T ℓ↾X (ai) and T
aℓ

i
i displays T r↾X (ai).
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In each case, there is some xi ∈ {aℓi , ari } such that T xi
i displays T ℓ↾X (ai) and T

ci(xi)
i

displays T ℓ↾X (ai).
If ai ∈ Li then it follows that Li = V (Si) and Ci = Ri = ∅. Hence we have that T ai

i

displays T ℓ↾X (ai), while T ϵi = T∅ (trivially) displays the empty tree T r↾X (ai) = T∅.
Symmetrically, if ai ∈ Ri then T ai

i displays T r↾X (ai) and T ϵi displays T ℓ↾X (ai).

In all cases there is some xi ∈ P (ai) such that T xi
i displays T ℓ↾X (ai) and T ci(xi)

i displays
T ℓ↾X (ai), for all i = 1, . . . , k. Since both (x1, . . . , xk), (c1(x1), . . . , ck(xk)) ◁ (a1, . . . , ak),
it follows from the induction hypothesis that W (x⃗) ∧W (c⃗(x⃗)) = true.
For all i ̸= j, if xi = ai and xj = ϵ then by definition ai ∈ Li ⊆ L(T ℓ) while aj ∈ Cj .
If aℓj ∈ Ri then L(ai) ∩ L(aℓj) = ∅, otherwise arj ∈ Ri and so L(ai) ∩ L(arj) = ∅, since
Ri ⊆ L(T r) and L(T ℓ) ∩ L(T r) = ∅. If xi = ai and xj = alj then ai ∈ Li ⊆ L(T l) while
aℓj ∈ Lj and arj ∈ Rj ⊆ L(T r). From which it follows that L(ai) ∩ L(arj) = ∅.
Similarly, if xi = ai and xj = arj then it follows L(ai) ∩ L(alj) = ∅. This is to say that
Q(⃗a, x⃗) = true, and by the same argument, so too that Q(⃗a, c⃗(x⃗)) = true.
Hence, by definition, W (a1, . . . , ak) = true, as required.

(⇒) Suppose that W (a1, . . . , ak) = true, then there are two possible cases:
(i) |S(ai, . . . , ak)| ≤ 1; (ii) there is some (x1, . . . , xk) ∈ Π(a1, . . . , ak) such that
W (x⃗) ∧W (c⃗(x⃗)) ∧Q(x⃗) = true:

(i) If S(a1, . . . , ak) = ∅ then we may take T ai
i to display T = T∅ as the empty tree for all

i = 1, . . . , k. Otherwise, if S(a1, . . . , ak) = {x} is a singleton then we may take T to
be the tree with a single leaf-labelled by x, where it is straightforward to check that
T ai
i can display T ↾X (ai) for all i = 1, . . . , k.

(ii) It follows from the induction hypothesis that there exist single-labelled trees Tx and
Ty, leaf-labelled by S(x1, . . . xk) and S(y1, . . . yk), respectively, such that T xi

i displays
Tx↾X (Ti) and T yi

i under a mapping that maps ri(Tx) 7→ xi, and displays Tyy↾X (Ti)
under a mapping that maps ri(Ty) 7→ yi, for all i = 1, . . . , k, where yi = c(xi). If
L(Tx) ∩ L(Ty) = ∅ then we construct a new tree T by connecting the roots r(Tx) and
r(Ty) of Tx and Ty to a common (new) root node r.
Otherwise since Q(⃗a, x⃗) ∧Q(⃗a, c⃗(x⃗)) = true, it follows that either L(Tx) ∩ L(T ry ) = ∅
or L(Tx) ∩ L(T ℓy ) = ∅. In the first case we can construct a new tree T by merging Tx
with the left sub-tree of Ty, while in the latter case we can construct T by merging Tx
with the left sub-tree of Ty.
In all cases, we have that T is a single-labelled tree, as required, as it remains to show
that T ai

i displays T ↾X (Ti), for each i = 1, . . . , k:
If xi = ari then T ai

i displays T ↾X (Ti), mapping r(T x) 7→ ari , r(T y) 7→ aℓi , and r 7→ ai.
If xi = aℓi then T ai

i displays T ↾X (Ti), mapping r(T x) 7→ aℓi , r(T y) 7→ ari , and r 7→ ai.
If xi = ai then T ai

i displays T ↾X (Ti) under the mapping that maps r(T x) 7→ ai.
If xi = ϵ then T ai

i displays T ↾X (Ti) under the mapping that maps r(T y) 7→ ai.

Hence, it follows from induction that W (a1, . . . , ak) = true if and only if there is some
tree T leaf-labelled by S(a1, . . . , ak) such that T ai

i displays T ↾X (Ti) under a mapping that
maps ri(T ) 7→ xi, for each i = 1, . . . , k, as required. ◀

Lemma 19 provides us with a criterion for deciding the MULSETPC problem for a given
collection of binary MUL-trees, that can be computed in polynomial-time in the size of the
trees, for any fixed number of trees, and scales exponentially with the number of trees.
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▶ Theorem 20. Let T1, T2, . . . , Tk be a collection of k binary MUL-trees such that
⋃
i X (Ti) =⋃

iD(Ti). Then MULSETPC for this instance can be solved in O(k2 · 4k
∏k
i=1(|Ti| + 1)) =

O(4k
∏k
i=1 |Ti|) time.

Proof. Based on Lemma 19, it is sufficient to compute W (r(T1), . . . , r(Tk)), since T r(Ti)
i = Ti,

by definition. We can compute W via dynamic programming as outlined in Algorithm 1,
which will return true if T1, . . . , Tk display a single labelled tree.

Algorithm 1 Recursive dynamic programming algorithm for W (a1, . . . , ak).

1: let S = S(a1, . . . , ak)
2: if |S| ≤ 1 then return true
3: else if S ∩ X (Ti) ̸⊆ X (T ai

i ) for some i = 1, . . . , k then return false
4: else
5: for (x1, . . . , xk) ∈ Π(a1, . . . , ak) do
6: if W (x⃗) ∧W (c⃗(x⃗)) ∧Q(⃗a, x⃗) ∧Q(⃗a, c⃗(x⃗)) then return true

7: return false

For the time complexity, we can use memoization to store the values of W in a table with
at most O(

∏k
i=1 |V (Ti) ∪ {ϵ}|) = O(

∏k
i=1(|Ti| + 1)) entries. Furthermore, we require at most

O(k2 · 4k) time to compute the value of each entry W (a1, . . . , ak), since |Π(a1, . . . , ak)| =
|P (ai)| × · · · × |P (ak)| ≤ 4k, while Q(⃗a, x⃗) and Q(⃗a, c⃗(x⃗)) can each be computed in quadratic
time. Hence, the running time is O(k2 · 4k

∏k
i=1(|Ti| + 1)) = O(4k

∏k
i=1 |Ti|), as required. ◀

6 Conclusions

The above results resolve an open problem posed in [15, 16] as to whether the MULSETPC
problem remains NP-complete when the number of MUL-trees is constant. According to
Theorems 9 and 10, two MUL-trees are sufficient for NP-completeness, even with each label
appearing at most twice in any tree and either the height or the degree constant. Theorems 11
and 12 extend this result and show that the more general MULSETPComp problem also
remains NP-complete even when the number of MUL-trees is constant. Theorem 9 is tight
in the sense that, if we restrict our attention to MUL-trees in which each label appears
uniquely in at least one tree, we obtain a polynomial-upper bound for a fixed number of
trees (Theorem 20). However, Theorem 12 suggests the algorithm presented in Theorem 20
for MULSETPC cannot be directly generalised to solve equivalent MULSETPComp instances
in polynomial time, unless P = NP .

The above results also suggest two new open problems. Firstly, is it possible to improve
Theorem 11 to show that MULSETPComp is still NP-complete when restricted to MUL-trees
with multiplicity 2? Secondly, what can be said about the complexity of MULSETPC and
MULSETPComp for instances in which the multiplicity is not restricted but the number of
leaf labels that may appear more than once is restricted? That is, for each MUL-tree, k leaf
labels may appear an unbounded number of times in the tree, whereas all other labels appear
at most once. For which values of k are these subproblems NP-complete? This question is
interesting because of its connection to the instances investigated in Section 5.
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Abstract
Cyclic versions of covers and roots of a string are considered in this paper. A prefix V of a string S

is a cyclic root of S if S is a concatenation of cyclic rotations of V . A prefix V of S is a cyclic cover
of S if the occurrences of the cyclic rotations of V cover all positions of S. We present O(n)-time
algorithms computing all cyclic roots (using number-theoretic tools) and all cyclic covers (using
tools related to seeds) of a length-n string over an integer alphabet. Our results improve upon
O(n log log n) and O(n log n) time complexities of recent algorithms of Grossi et al. (WALCOM
2023) for the respective problems and provide novel approaches to the problems. As a by-product,
we obtain an optimal data structure for Internal Circular Pattern Matching queries that generalize
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1 Introduction

Cyclic strings have many real-world applications, such as in bioinformatics [2, 3, 17, 19] and
image processing [1, 27, 28, 29]. In particular, they are used for detecting DNA viruses with
circular structures [30, 31]. In particular, cyclic strings were studied in the context of circular
pattern matching [10, 14, 23, 24].

In this paper, we investigate the complexity of two problems related to cyclic strings.
The first one is a cyclic variant of the problem of computing the roots of a string S, i.e.,
strings U such that S = Uk for some integer k. The second one is a cyclic variant of the
problem of computing the covers of a string S, i.e., strings C whose occurrences cover the
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whole string S. The standard roots of a string can be easily computed in linear time using a
folklore algorithm. Moore and Smyth [25, 26] gave a linear-time algorithm computing all
standard covers of a string. However, the cyclic versions of these problems are more difficult.

We say that a string V is a (cyclic) rotation of a string U if there exist strings X and
Y such that U = XY and V = Y X. A string U has a circular occurrence in a string T at
position i if a rotation of U has a (standard) occurrence in T at position i.1 By CircOcc(U, T )
we denote the set of circular occurrences of U in T . Moreover, we denote

Covered(U, T ) =
⋃

i∈CircOcc(U,T )

[i . . i + |U |).

▶ Definition 1. A string U is a cyclic cover of a string S if Covered(U, S) = [0 . . |S|).
A string U is a cyclic root of a string S if S = U1 · · · Uk, where each Ui is a cyclic shift of U .

Note that if U is a cyclic root (cyclic cover) of S, then the prefix S[0 . . |U |) is also a cyclic
root (cyclic cover, respectively) of S.

▶ Example 2. The lengths of the cyclic roots of the Thue–Morse word abbabaabbaababba
are 2, 4, 8, 16.

a b a a b a b a a a a b a b a a
a b a a b

a a b a b
b a b a a

a a b a b
b a b a a

Figure 1 The string abaab is a cyclic cover of the string abaababaaaababaa.

▶ Example 3. The string ab is a cyclic cover of each Fibonacci string of length at least 2,
e.g., of the string Fib5 = abaababa. (See [13] for a definition of Fibonacci strings and their
properties.) However, it is not a cyclic root of any Fibonacci string longer than 2. Another
example of a cyclic cover of a string is illustrated in Figure 1.

We consider the following problems.

CyclicRoots
Input: A string S of length n.
Output: The lengths of all cyclic roots of S.

CyclicCovers
Input: A string S of length n.
Output: The lengths of all cyclic covers of S.

Our results

We show linear-time algorithms for both problems. We assume the word-RAM model of
computation and that the string S is over an integer alphabet {0, . . . , nO(1)}.

1 We assume that the positions of a string T are numbered 0 through |T | − 1, where |T | is the length of T .
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Previous results

Recently, Grossi et al. [16] presented an O(n log log n)-time algorithm for CyclicRoots
(named cyclic factorization there) and an O(n log n)-time algorithm for CyclicCovers.
▶ Remark 4. A completely different problem of covering a cyclic string with a standard string
cover was considered in [11, 12]. Another different problem also known under the name
“cyclic covers”, related to the shortest superstring problem, was considered in [4, 5, 6].

Our approach

In the case of cyclic covers, we use a recursive algorithm whose general structure partially
resembles the structure of the linear-time algorithm for computing seeds from [21]. For this,
we need to explore combinatorics of circular occurrences, which is different from that of
standard occurrences. The “working horse” of the algorithm (non-recursive parts) is the
computation of long cyclic covers, which is based on an efficient implementation of internal
circular pattern matching queries. Such queries require to find all circular occurrences of one
substring of a text in another substring; the set of occurrences can be represented compactly
if the ratio of lengths of the two strings is constant. An auxiliary contribution of our paper is
an optimal implementation of these queries (constant-time after linear-time preprocessing).

Also in the case of cyclic roots we use internal queries on strings. Our algorithm is based
on number-theoretic tools and fast internal queries for cyclic equivalence, which ask if two
substrings of a given string are rotations of each other [20, 22].

Notations

For a string S, by S[0], . . . , S[|S| − 1] we denote its respective letters. By S[i . . j) we denote
a substring S[i] · · · S[j − 1]; similarly, we define substrings S[i . . j], S(i . . j] and S(i . . j). We
say that p is a period of a string S if S[i] = S[i + p] holds for all i ∈ [0 . . |S| − p). By
per(S), we denote the smallest period of S, called the period of S. For a string S and integer
x ∈ [0 . . |S|), by rotx(S) we denote the rotation S[x . . |S|) · S[0 . . x) of S obtained from S by
moving the prefix of S of length x to the end.

A length-m string P has an occurrence in a string T at position i if T [i . . i + m) = P . By
Occ(P, T ) we denote the set of starting positions of occurrences of P in T .

2 Internal Circular Pattern Matching and CyclicCovers in O(n log n)
Time

We introduce the following generalization of Internal Pattern Matching queries from [22].

Simple Internal Circular Pattern Matching Queries (Simple InternalCPM)
Input: A string S of length n.
Queries: Given two substrings P and T of S such that |T | ≤ 2|P |, report the leftmost
and the rightmost circular occurrence of P in T .

▶ Remark 5. If we know how to compute the leftmost circular occurrence, then the rightmost
circular occurrence can be computed analogously (it suffices to reverse the strings).

The theorem below can be obtained using the methods from [7, 8]. We give its proof in
Section 6.

▶ Theorem 6. The Simple InternalCPM queries can be answered in O(1) time after
O(n)-time preprocessing.

CPM 2023
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▶ Remark 7. In Section 6, we obtain a version of the queries in which a constant-sized
representation of all circular occurrences is computed in constant time (still if |T | ≤ 2|P |).

Below, we apply Simple InternalCPM queries to a version of the CyclicCovers
problem that is used in our O(n)-time algorithm for CyclicCovers. The following lemma
generalizes [16, Lemma 13]; in this section, it will be applied in a simpler setting.

▶ Lemma 8. After O(n)-time preprocessing of a string S of length n, for any substrings C

and W of S, we can test if C is a cyclic cover of W in O(|W |/|C|) time.

Proof. Let p = |C| and m = |W |. Consider substrings Vi equal to W [ip . . (i + 2)p) for
i ∈ [0 . . ⌊m/p⌋−1) and W [ip . . m) for i = ⌊m/p⌋−1. For each substring Vi, we use a Simple
InternalCPM query to compute the leftmost and the rightmost circular occurrence of C.
Then, we check whether these occurrences, interpreted as occurrences in W , collectively cover
all positions in W . The time complexity is O(m/p) after the preprocessing of Theorem 6. ◀

Lemma 8 implies a simple O(n log n)-time algorithm for the CyclicCovers problem.

▶ Corollary 9. The CyclicCovers problem can be solved in O(n log n) time.

Proof. We apply Lemma 8 for W = S iterating with C over all non-empty prefixes of S.
The total time complexity is O(n +

∑n
i=1

n
i ) = O(n log n). ◀

3 Quasi-Covers

We reduce our problem to the computation of the substrings called quasi-covers; see Figure 2.

▶ Definition 10. A string V is a quasi-cover of a substring W of the string S if V is a prefix
of S and a cyclic cover of a substring Y = W [i . . j) such that i < |V | and j > |W | − |V |.

S : a a b b c b c b a a b a b a b a a a c b a b

Y

W

Figure 2 Example of a quasi-cover aab of the substring W of S. By definition, V is a prefix of
the whole string S. Observe that aab is not a cyclic cover of W .

Henceforth, we fix the string S and consider quasi-covers of its substrings. Let W be a
substring and I be an interval, I ⊆ [1 . . |W |]. We denote by Q-CoversI(W ) the set of all
lengths of quasi-covers of substring W with lengths in I. Furthermore, for k ∈ [1 . . |W |] we
denote

Q-Covers(W ) = Q-Covers[1. .|W |](W ), Q-Covers≤k(W ) = Q-Covers[1. .k](W ),

Q-Covers>k(W ) = Q-Covers(k. .|W |](W ), Q-Coversk(W ) = Q-Covers[k. .k](W ).

A prefix of S is its cyclic cover if and only if it is a quasi-cover of S and a rotation of a
suffix of S. We use the following queries (generalized by Simple InternalCPM queries):
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Cyclic Equivalence Queries (CycEq)
Input: A string S of length n.
Queries: Given two substrings U and V of S, check if V is a rotation of U .

▶ Theorem 11 ([20, 22]). The CycEq queries can be answered in O(1) time after O(n)-time
preprocessing.

Using CycEq queries, we can compute in O(n) time all prefixes which are rotations of
the corresponding suffixes of the string. This yields the following observation.

▶ Observation 12. The CyclicCovers problem for a string S reduces in linear time to the
computation of Q-Covers(S).

We will later show how the set Q-Covers(S) can be computed based on recursive calls
to Q-Covers(W ) for substrings W of S.

3.1 Quasi-Covers and Substring Complexity
The substring complexity of a length-m string W is a function that maps each length
k ∈ [1 . . m] to the number |SUBk(W )| of distinct length-k substrings of W . We further define
βk(W ) = |SUBk(W )| + k − 1. The term k − 1 is added because the sequence (|SUBk(W )|)m

k=1
does not need to be monotone in general; the resulting sequence (βk(W ))m

k=1 is now non-
decreasing and its monotonicity will be useful later. For a string family S, let us denote by
∥S∥ the sum of lengths of strings in S.

▶ Observation 13. Let V be a quasi-cover of a substring W of S. If a substring W ′ of W

satisfies |W ′| ≥ 2|V | − 1, then V is a quasi-cover of W ′.

▶ Lemma 14. Given a length-m substring W and an integer k ∈ [1 . . m], we can compute in
O(m) time a family Gk(W ) of substrings of W such that ∥Gk(W )∥ ≤ βk(W ) and

Q-Covers≤⌈k/4⌉(W ) =
⋂

W ′∈Gk(W )

Q-Covers≤⌈k/4⌉(W ′).

Proof. It was shown in [21] that one can construct in linear time a string family, denoted
in [21] as COMPRt, such that ∥COMPRt∥ ≤ β2t−1(W ) and the strings in COMPRt contain
all length-t substrings of W . First, we reformulate the corresponding fact from [21] taking
Gk(W ) = COMPR⌈k/2⌉.

▷ Claim 15 ([21, Lemma 5.4, proof of Lemma 5.3 and proof of Theorem 9 (“Computing S”)]).
Given k ∈ [1 . . m], we can compute in O(m) time a string family Gk(W ) such that

∥Gk(W )∥ ≤ βk(W ) and SUB⌈k/2⌉(W ) =
⋃

W ′∈Gk(W )

SUB⌈k/2⌉(W ′).

The next claim turns out to be similar to [21, Lemma 2.2].

▷ Claim 16. If t ∈ [1 . . m], then

Q-Covers≤⌈t/2⌉(W ) =
⋂

W ′∈SUBt(W )

Q-Covers≤⌈t/2⌉(W ′).

CPM 2023
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Proof. We prove two inclusions separately.

(⊆) If V is a quasi-cover of W of length at most ⌈t/2⌉ and W ′ ∈ SUBt(W ), then Observation 13
implies that V is a quasi-cover of W ′.

(⊇) Assume that V is a quasi-cover of all W ′ ∈ SUBt(W ) and |V | = ℓ ≤ ⌈t/2⌉. Consider a
position i ∈ [ℓ−1 . . m−ℓ] and a substring W ′ = W (i−ℓ . . i+ℓ). Note that V is a quasi-cover
of W ′ (this follows from Observation 13 because W ′ is a substring of some length-t substring
of W ). Thus, there is a circular occurrence of V in W that covers the middle position of W ′.
Interpreted as a circular occurrence of V in W , it covers position i of W . ◁

The thesis follows directly from the two claims above, taking t = ⌈k/2⌉ in the second
claim. ◀

▶ Lemma 17. If a string W has a quasi-cover V of length |V | ≥ 2k, then

|SUBk+1(W )| ≤ 1
2 |W | + 3

2 |V |.

Proof. First, we show the following claim (cf. Figure 3).

▷ Claim 18. If a string Y has a cyclic cover V of length |V | ≥ 2k, then |SUBk+1(Y )| ≤
1
2 (|Y | + |V |).

Proof. We denote by CSUBk+1(V ) the set of distinct length-(k + 1) substrings of all rotations
of V ; note that |CSUBk+1(V )| ≤ |V |.

For each i ∈ CircOcc(V, Y ), let us mark positions j ∈ [i . . i + |V | − k); observe that if a
position j is marked, then Y [j . . j + k] ∈ CSUBk+1(V ).

Y

I1 I2

length-(k + 1) substrings

rotations of V

Figure 3 A string V is a cyclic cover of a string Y and |V | ≥ 2k. Each length-(k + 1) substring
starting in I1 belongs to CSUBk+1(V ), but length-(k + 1) substrings starting in I2 do not need to
belong to CSUBk+1(V ). The interval I1 of marked positions is of size at least k, whereas the interval
|I2| of unmarked positions is of size at most k.

Let Y ′ be the prefix of Y of length |Y |− |V |. We partition Y ′ into inclusion-wise maximal
intervals of marked positions and inclusion-wise maximal intervals of unmarked positions.
Each interval I2 of unmarked positions is preceded by an interval I1 of marked positions,
where |I1| ≥ |V | − k ≥ k ≥ |I2| (otherwise, V would not be a cyclic cover of Y ).

Hence, at most half of positions of Y ′ are unmarked, which is (|Y | − |V |)/2. Each length-
(k +1) substring starting at marked position belongs to CSUBk+1(V ). Hence, |SUBk+1(Y )| ≤
(|Y | − |V |)/2 + |CSUBk+1(V )| ≤ (|Y | + |V |)/2. ◁

If V is a quasi-cover of W then V is a cyclic cover of Y = W [i . . j) with i < |V | and
j > m − |V |. We have, due to inequality 1

2 (|W | − |Y |) < |V |,

|SUBk+1(W )| ≤ |SUBk+1(Y )| + |W | − |Y | < |SUBk+1(Y )| + 1
2 (|W | − |Y |) + |V |.

Now, Claim 18 implies |SUBk+1(Y )| ≤ 1
2 (|Y |+|V |) and thus |SUBk+1(W )| ≤ 1

2 |W |+ 3
2 |V |. ◀
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▶ Example 19. Let {a1, a2, . . . , a2k−1}, {b1, b2, . . . , b2k}, {c1, c2, . . . , c2k−1} be disjoint sets,
and

X = a1a2 · · · a2k−1, V1 = b1b2 · · · bk, V2 = bk+1bk+2 · · · b2k, Y = c1c2 · · · c2k−1.

Then V = V1V2 is a quasi-cover of W = X V1 V2 V2 V1 Y , with |V | = 2k and |W | = 8k − 2.
All length-(k + 1) substrings of W are different. Hence:

|SUBk+1(W )| = |W | − k = 1
2 |W | + 3

2 |V | − o(|W |).

We use the following crucial property of quasi-covers.

▶ Lemma 20 (Work-Reduction Lemma). For a length-m substring W and k ∈ [0 . . m), if
βk+1(W ) > 5

6 m, then

Q-Covers[2k. .⌊m/6⌋](W ) = ∅.

Proof. The proof is by contradiction. Suppose that V ∈ Q-Covers[2k. .⌊m/6⌋](W ) and V

is a cyclic cover of Y = W [i . . j) with i < |V | and j > m − |V |. Due to Lemma 17 and
inequality k ≤ |V |/2,

|SUBk+1(W )| + k ≤ 1
2 |W | + 3

2 |V | + 1
2 |V | = 1

2 |W | + 2|V | ≤ 1
2 m + 2 · m

6 = 5
6 m.

This contradicts our assumption that βk+1(W ) = |SUBk+1(W )| + k > 5
6 m. ◀

4 Solution to CyclicCovers Problem

Our algorithm is recursive; its non-recursive parts correspond to (simple) fast computation
of length-limited cyclic covers. We say that an interval I = [a . . b] of positive integers is
balanced if b = O(a).

▶ Lemma 21. After O(n)-time preprocessing, for a balanced interval I = [a . . b] and a
length-m substring W , the set Q-CoversI(W ) can be computed in O(m) time.

Proof. We consider each length ℓ ∈ I separately. Let C = S[0 . . ℓ). We use two Simple
InternalCPM queries to check if C has a circular occurrence starting within the first ℓ

positions of W and a circular occurrence ending within the last ℓ positions of W . If any
of these two conditions does not hold, C is not a quasi-cover of W . Otherwise, we use
Lemma 8 to check if C is a cyclic cover of the substring of W spanned by the first and the
last circular occurrence of C in W that were discovered in the previous step. The total
time complexity is O(

∑
i∈I

m
i ) = O(

∑
i∈I

m
a ) = O(m · |I|/a) = O(m · b/a) = O(m), after

O(n)-time preprocessing in Theorem 6 and Lemma 8. ◀

Our solution is based on Lemmas 14, 20, and 21. We use a recursive approach that was
initially developed for seeds computation; see [21].

▶ Theorem 22. The CyclicCovers problem can be solved in O(n) time.

Proof. We run the recursive function ComputeQuasiCovers (Algorithm 1) initially for W = S.

Correctness. In the base case, where β1(W ) > 5
6 m, there are more than 5

6 m different letters
in W , and then Lemma 20 implies Q-Covers≤⌊m/6⌋(W ) = ∅.

In the recursive step, we reduce the computation of quasi-covers to the ones with lengths
in two balanced intervals, J1 = (⌈k/4⌉ . . 2k) and J2 = (⌊m/6⌋ . . m], and the ones (the set Q)
with sufficiently small lengths (at most ⌈k/4⌉). By Lemmas 14 and 20, the algorithm returns
precisely the set Q-Covers(W ).
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Algorithm 1 ComputeQuasiCovers(W ).

Input: A substring W of length m.
Output: The set Q-Covers(W ) of lengths of quasi-covers of W .
Compute βℓ(W ) for all ℓ ∈ [1 . . m]
if β1(W ) > 5

6 m then ▶ see Lemma 20
return Q-Covers(⌊m/6⌋. .m](W ) ▶ (⌊m/6⌋ . . m] is a balanced interval

k := max
{

ℓ ∈ [1 . . m] : βℓ(W ) ≤ 5
6 m

}
Let Gk(W ) be the set of fragments as in Lemma 14
foreach string W ′ ∈ Gk(W ) do

QW ′ := ComputeQuasiCovers(W ′) ▶ Recursive call
Q :=

⋂
W ′∈Gk(W ) QW ′ ∩ [1 . . ⌈k/4⌉] ▶ Q = Q-Covers≤⌈k/4⌉(W ) (Lemma 14)

J1 := (⌈ k
4 ⌉ . . 2k), J2 := (

⌊
m
6

⌋
. . m] ▶ J1, J2 are balanced intervals

return Q ∪ Q-CoversJ1(W ) ∪ Q-CoversJ2(W ) ▶ Q-Covers[2k. .⌊m/6⌋](W ) = ∅

Complexity. To bound the running time, denote by T (m) the maximum number of op-
erations performed by the algorithm for a substring W of length m. The sequence βi(W )
for a length-m substring W of S can be computed in O(m) time [21, Lemma 5.1]. Due to
Lemmas 14 and 21,

T (m) = O(m) +
∑

i

T (mi), where
∑

i

mi ≤ 5
6 m.

This recurrence yields T (m) = O(m).
Due to Observation 12, the CyclicCovers problem can be reduced in linear time to the

computation of all quasi-covers. Finally, Lemma 21 requires O(n)-time preprocessing of S.
This completes the proof. ◀

5 Solution to CyclicRoots Problem

We denote by σ0(n) =
∑

p|n 1 the number of divisors of n and by σ1(n) =
∑

p|n p the sum of
divisors of n. We use the following known estimations: σ0(n) = 2O(log n/ log log n) [18, §18.1]
and σ1(n) = O(n log log n) [18, §22.9]. They directly imply the following fact.

▶ Fact 23.
σ0(n) = o(

√
n/ log n) and log σ0(n) = O(log n/ log log n)

σ1(n) =
∑

p|n
n
p = O(n log log n)

Using CycEq queries (Theorem 11), we derive the following subroutine:

▶ Observation 24. After linear-time preprocessing of a string S, we can test if S[0 . . p) is a
cyclic root of a substring W of S in O(|W |/p) time.

In particular, in [16] the CyclicRoots problem was solved in O(σ1(n)) = O(n log log n)
time (cf. Fact 23) by using n

p CycEq queries for each divisor p of n.
Let us now develop an O(n)-time solution. We reduce testing if S[0 . . p) is a cyclic root of

the whole text to testing if S[0 . . p) is a cyclic root of each substring F in a suitably chosen
family F of substrings.
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The intuition behind this improvement is as follows. It turns out that the asymptotic
upper bound on σ1(n) significantly depends on a few largest divisors. In the O(n log log n)-
time algorithm, this corresponds to the smallest lengths p of the candidate cyclic root. Hence,
for small p, we will adopt a different approach.

The factorization of S into length-q substrings, for q | n, will be called the q-factorization.

▶ Observation 25. If S has a cyclic root of length p, then its (k · p)-factorization F contains
at most pk distinct substrings, consequently the number of distinct factors in F is at most
min

(
pk, n

k·p

)
.

Thus, if the number of different factors in the (k · p)-factorization is greater than pk, then
we know that S does not have a cyclic root of length p.

Otherwise, if k is small enough, the number of different substrings in the (k·p)-factorization
will be smaller than n/(k · p), and we can check each of them using CycEq queries in O(k)
time. On the other hand, if k is large enough, then the O(n/(k · p)) work spent on computing
the factorization will be much less than O(n/p).

Algorithm 2 CyclicRoot(S, p): Does S have a cyclic root of length p | n?

k := max(⌊ 1
2 logp n⌋, 1)

Let S = S1S2, where |S2| = n mod (k · p)
F := all distinct factors in the (k · p)-factorization of S1 ▶ O(n/(k · p)) time [15]
if |F| > pk then return NO ▶ Observation 25
if |S2| > 0 then F := F ∪ {S2} ▶ |F| = O

(
min

(
pk, n

k·p

))
foreach F ∈ F do ▶ O(k · |F|) = O(

√
n log n) time

if S[0 . . p) is not a cyclic root of F then return NO ▶ Observation 24

return YES

▶ Theorem 26. The CyclicRoots problem can be solved in O(n) time.

Proof. We use Algorithm 2. After O(n)-time preprocessing, all different substrings in F can
be found in O(n/(k · p)) time using deterministic substring hashing [15]. By Observation 24,
after O(n)-time preprocessing, we can test in O(k) time for each F ∈ F if S[0 . . p) is its
cyclic root; this sums up to O(k · min( n

k·p , pk)) time. For k = max(⌊ 1
2 logp n⌋, 1), we have

n
k·p = O

(
n log p
p log n

)
and k·min

(
pk, n

k·p

)
= O

(
p

1
2 logp n · logp n + min

(
p, n

p

))
= O(

√
n log n).

Thus, after O(n)-time preprocessing, all calls to the algorithm CyclicRoot(S, p) for all divisors
p of n work in total time

O(A(n) + B(n)), where A(n) =
∑
p|n

n log p
p log n and B(n) =

∑
p|n

√
n · log n.

Estimating B(n). By Fact 23, we have

B(n) =
√

n log n ·
∑
p|n

1 =
√

n log n · σ0(n) = o(n).
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Estimating A(n). We partition the underlying sum into elements that do not exceed σ0(n)
and the remaining elements. The former is bounded from above, due to Fact 23, as:∑

p|n
p≤σ0(n)

n log p

p log n
≤

∑
p|n

n log σ0(n)
p log n

= log σ0(n)
log n

∑
p|n

n

p
= O

(
1

log log n
· σ1(n)

)
= O(n).

The latter sum is bounded from above by:∑
p|n

p>σ0(n)

n log p

p log n
≤

∑
p|n

n

σ0(n) = n

σ0(n)
∑
p|n

1 = n

σ0(n) · σ0(n) = n.

This concludes the complexity analysis of the algorithm. ◀

6 InternalCPM via PILLAR Model

6.1 PILLAR Model
We use the so-called PILLAR model that was introduced in [9]. In this model, we assume that
the following primitive queries can be performed efficiently, where the argument strings are
represented as substrings of strings in a given collection X :

Extract(U, ℓ, r): Retrieve the substring U [ℓ . . r).
LCP(U, V ), LCPR(U, V ): Find the length of the longest common prefix/suffix of U and V .
IPM(U, V ): Assuming that |V | < 2|U |, compute the starting positions of all exact
occurrences of U in V , expressed as an arithmetic sequence. If the sequence has at least
three terms, its difference equals per(U).
Access(U, i): Retrieve the letter U [i].
Length(U): Compute the length |U | of the string U .

The runtime of algorithms in this model can be expressed in terms of the number of
primitive PILLAR operations. The following result combines several known techniques to
obtain constant-time implementations of all PILLAR operations in the standard setting.
Efficient implementations of the PILLAR operations in other settings, including a dynamic
and a compressed setting, are also known; cf. [9].

▶ Theorem 27 ([9, Theorem 7.2]). After an O(n)-time preprocessing of a collection of strings
of total length n over an integer alphabet, each PILLAR operation can be performed in O(1)
time.

6.2 Interval Chains and PairMatch problem
For an integer set A and an integer r, let A ⊕ r = {a + r : a ∈ A}. An interval chain is a
set of the form I ∪ (I ⊕ q) ∪ (I ⊕ 2q) ∪ · · · ∪ (I ⊕ aq) for an interval I and non-negative
integers a and q. In particular, a single interval is an interval chain (with a = 0).

First, we introduce an auxiliary operation PairMatch. Denote by PairMatch(T, P, i, j)
the set of all circular occurrences of P in T such that position i in T is aligned with position
j in P (see also Figure 4):

PairMatch(T, P, i, j) = {p ∈ (i−m . . i] : T [p . . p+m) = rotx(P ), i−p = (j−x) mod m}.

In particular PairMatch(T, P, i, 0) is the set of circular occurrences of P such that the
leftmost position of P is aligned with position i in T .
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

7 8 9 10 11 12 0 1 2 3 4 5 6
j

p i

Figure 4 Let us put original numbers in positions of the pattern P ; they are moved after rotation
of P . Assume that p = 9 is a position of a circular occurrence of P in T such that p ∈ Occ(rot7(P ), T ).
Then, in particular, p ∈ PairMatch(T, P, 17, 2). In this case, x = 7 and i − p = 8 = (j − x) mod 13.
We also have p ∈ PairMatch(T, P, 15, 0).

The following lemma is a consequence of [7, Lemma 10], where the PILLAR model was
not used explicitly. A similar fact was shown in [16, Lemmas 5 and 6]. We include its proof
for completeness.

▶ Lemma 28. For any given i, j, the set PairMatch(T, P, i, j), represented as a union of
at most two intervals, can be computed in O(1) time in the PILLAR model.

Proof. First we explain how to compute PairMatch(T, P, i, 0). Let p(i) = LCP(T [i . .], P )
and s(i) = LCPR(T [. . i), P ). If p(i)+s(i) ≥ m, an interval [i−s(i) . . i+p(i)−m] of starting
positions of circular occurrences of P in T is reported; otherwise the answer is an empty set.

In general PairMatch(T, P, i, j) can be computed using (at most) two queries of the
type PairMatch(T, P, i′, 0), for i′ = i − j and i′ = i − j + m. A respective query is asked
only if i′ ∈ [0 . . n − m). The resulting intervals need to be intersected with (i − m . . i] to
ensure that the circular occurrence contains position i. ◀

6.3 Internal CPM

The circular pattern matching problem is formally defined as follows.

Circular Pattern Matching (CPM)
Input: A text T of length n and a pattern P of length m.
Output: All positions in T where circular occurrences of P start.

We will show an efficient solution in the PILLAR model of CPM in the case when the
lengths of the pattern and of the texts are similar. The algorithm below applies the results
of [7, 8]. These results considered the approximate CPM problem with k ≥ 1 mismatches
or edits. In the proof of the following theorem, we show that they can be adapted to the
case of the exact CPM problem, obtaining an even simpler algorithm. The main idea of the
algorithm is illustrated in Figure 7.

▶ Theorem 29. If n ≤ 2m, the answer to the CPM problem, represented as a union of O(1)
interval chains, can be computed in O(1) time in the PILLAR model.

Proof. Let P = P1P2, where |P1| = ⌊m/2⌋. Each circular occurrence of P in T implies a
standard occurrence of at least one of P1 and P2 in T . Henceforth, we assume that it implies
an occurrence of P1; the remaining case can be treated symmetrically.

Let A = Occ(P1, T ). As |T | ≤ 4|P1| + 3, a representation of A consisting of O(1)
arithmetic sequences can be computed using O(1) IPM queries by the so-called standard trick.
We consider each of the arithmetic sequences B separately.
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Nonperiodic case. If an arithmetic sequence B contains at most two occurrences, then we
ask a query PairMatch(T, P, i, 0) for each i ∈ B. The resulting intervals contain positions
of all circular occurrences of P in T that imply an occurrence of P1 in T at a position i ∈ B,
and possibly some other circular occurrences of P in T (that imply an occurrence of P2).

Periodic case. Assume now that an arithmetic sequence B contains at least three elements.
As already mentioned, its difference is q := per(P1).

Let i be any element of B. We compute the largest index iL < i and the smallest index
iR > i such that

T [iL] ̸= T [iL + q] (or iL = −1), T [iR] ̸= T [iR − q] (or iR = |T |).

Let Q = P2P1P2 and j = |P2|. Similarly (see Figure 5), we compute the largest index jL < j

and the smallest index jR > j such that

Q[jL] ̸= Q[jL + q] (or jL = −1), Q[jR] ̸= Q[jR − q] (or jR = |Q|).

The indices iL, iR, jL, jR, which can be called misperiods, can be computed using a constant
number of LCP and LCPR queries on T and P .

P2 P1 P2
∗

jL jR

∗
iL

∗
iR

P1

P1

P1

P1
T

Figure 5 Misperiods iL, iR, jL; in this case, there is no misperiod jR.

We consider two cases:

Case (1). The cyclic occurrence is an occurrence of a rotation of P that is a length-m
substring of Q(jL . . jR); the occurrence is contained within a substring T (iL . . iR) in the
text. Both strings in scope are periodic with period q; it only matters if the periods are
synchronized. Let

X = (jL . . jR − m] and Z = (iL . . iR − m].

The set X consists of the positions in Q where a rotation of P contained in Q(jL . . jR) starts.
The set Z ′ := {z ∈ Z : ∃x∈X z ≡ x (mod q)} consists of the starting positions of circular
occurrences of P contained in T (iL . . iR). By the following claim, the set Z ′ can be computed
in O(1) time.

▷ Claim 30 ([7, Lemma 7]). Let X and Z be intervals and q be a positive integer. The
set Z ′ := {z ∈ Z : ∃x∈X z ≡ x (mod q)}, represented as a disjoint union of at most three
interval chains, can be computed in O(1) time.

Case (2). In this case, two misperiods, one in T and one in P , need to be synchronized. It
suffices to take the union of results of a PairMatch(T, P, iL, |P1| + jL) query if neither of
iL, jL equals −1 and of a PairMatch(T, P, iR, jR − |P2|) query if iR ̸= |T | and jR ̸= |P |.

Overall, the result is a union of O(1) intervals and interval chains and can be computed
in O(1) time in the PILLAR model using Lemma 28 and Claim 30. ◀
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a b a a a a b a a a a a a b a a a a b a a a a b a a a a b a a a a

P2 P1 P2

*

Figure 6 The interval X (shaded box) represents the starting positions of the rotations of
P = (aabaa)4aa contained in Q(jL . . jR) = Q(8 . . 33). Five copies of X (two of them partial)
constitute the output set Z′ (the shaded boxes in Figure 7).

q q

T b
*

b
*

0 5 10 15 20 25 30 35 40

a a b a a a a b a a a a b a a a a b a a a a b a a a a b a a a a b a a a a b a a a a b a a

Figure 7 The starting positions of the circular occurrences of the pattern P = (aabaa)4aa in
the text T form two intervals ([1 . . 1] and [19 . . 20]) and one interval chain I, I ⊕ q, I ⊕ 2q, where
I = [4 . . 6] and q = 5.

We introduce the following generalization of IPM queries.

Internal Circular Pattern Matching Queries (InternalCPM)
Input: A string S of length n.
Queries: Given two substrings P and T of S such that |T | ≤ 2|P |, report all the
starting positions of all circular occurrences of P in T .

Combining Theorems 27 and 29, we obtain the following result, which generalizes Theorem 6.

▶ Theorem 31. The answer to an InternalCPM query, represented as a union of O(1)
interval chains, can be computed in O(1) time after O(n)-time preprocessing.

7 Final Remarks

We took a recursive approach proposed in the computation of seeds and adjusted it to the
case of cyclic covers. Despite the similarity, several major changes were necessary due to
circularity. We hope that such a recursive approach can be used in other problems on strings.

We also demonstrated the importance of a new tool in computations on cyclic strings:
internal circular pattern matching queries. Hopefully, they could be used for other problems
related to cyclic substrings.
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Abstract

Sorting is a fundamental algorithmic pre-processing technique which often allows to represent data
more compactly and, at the same time, speeds up search queries on it. In this paper, we focus
on the well-studied problem of sorting and indexing string sets. Since the introduction of suffix
trees in 1973, dozens of suffix sorting algorithms have been described in the literature. In 2017,
these techniques were extended to sets of strings described by means of finite automata: the theory
of Wheeler graphs [Gagie et al., TCS’17] introduced automata whose states can be totally-sorted
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the automaton. More recently, in [Cotumaccio, Prezza, SODA’21] it was shown how to extend these
ideas to arbitrary automata by means of partial co-lex orders. This work showed that a co-lex order
of minimum width (thus optimizing search query times) on deterministic finite automata (DFAs)
can be computed in O(m2 + n5/2) time, m being the number of transitions and n the number of
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DFAs and exploit them to design faster prefix sorting algorithms. In particular, we describe two
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sorting acyclic DFAs in O(m log n) time. Within these running times, all algorithms compute
also a smallest chain partition of the partial order (required to index the DFA). We present an
experiment result to show that an optimized implementation of the O(n2 log n)-time algorithm
exhibits a nearly-linear behaviour on large deterministic pan-genomic graphs and is thus also of
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1 Introduction

In this paper, we study the problem of indexing string sets for pattern matching queries:
pre-process a set L ⊆ Σ∗ of strings from a finite alphabet Σ so that later we can efficiently
answer queries of the form “is a given query pattern P ∈ Σ∗ substring of some string in L?”.

Clearly, an algorithmic solution to this problem requires the set L to be representable in
finite space (even though L itself could contain an infinite number of strings); in this paper,
we focus on string sets described by finite state automata, that is, on regular languages.
Our results build on a successful line of previous research based on the following idea: after
sorting all prefixes Pref(L) of the strings in L in colexicograpic (co-lex for brevity) order1,
pattern matching queries translate to finding the strings in Pref(L) that are suffixed by
pattern string P . Being Pref(L) co-lex sorted, those strings form a range in co-lex order;
notice that, if the sorted Pref(L) is explicitly stored, such a range can be easily found by
binary search. Recall, however, that (due to limited available working space) we work with
a particular representation of L: a finite state automaton A. This requires re-formulating
the pattern matching problem on A. It is easy to see that pattern matching queries on L
translate to finding paths of A whose labels, when concatenated, form P . When using A to
index L, the main question becomes therefore “how does the total co-lex order on Pref(L)
map onto the states of A?”. In particular cases, such a mapping yields a total order among
A’s states. This happens, for example, when A is a path (i.e. a string; corresponding data
structures include the suffix tree [22], the suffix array [18, 13], and the FM-index [10]), a
finite set of disjoint paths (eBWT [19]), or a labeled arborescence (XBWT [9]). A total
order on the states of A is obtained even in particular cases where A may accept an infinite
language: this is the case, for example, of de Bruijn graphs (BOSS [2]) and Wheeler graphs
[11] (the latter generalize all the above classes of totally-sortable labeled graphs).

More recently, in [6, 5] it was shown that in the general case (arbitrary NFAs) the total
co-lex order on Pref(L) maps very naturally onto a family of partial co-lex orders among
the states of A. Such a family contains only one order for any given DFA, while NFAs may
admit multiple admissible co-lex orders. Letting p be the width of a smallest-width partial
order <A, it was shown that pattern matching queries on L can be solved in time Õ(p2) per
query character2. Note that this generalizes the total order case p = 1, where indeed queries
take Õ(1) time using the aforementioned solutions (e.g. indexes on strings and labeled trees).
Building the index of [6, 5] requires the computation of a smallest chain partition for the
co-lex order <A, i.e. a minimum-size partition C1, . . . , Cp of A’s states such that (Ci, <A)
is a total order for each i = 1, . . . , p (note that the index does not require the order <A
itself, just a chain partition). Letting n and m be the number of states and transitions of A,
respectively, [6] showed how to build such a chain partition in O(n5/2 + m2) time in the case
where A is a deterministic finite automaton (DFA). The work [5] presented a solution running
in Õ(m2) time w.h.p. In the general nondeterministic (NFA) case, the problem is known
to be NP-complete3, even though polynomial algorithms do exist for co-lex pre-orders [4]
(which still allow indexing and whose width is never larger than that of co-lex orders).

1 Historically, the lexicographic order of suffixes was used first; however, with finite state automata the
symmetric co-lex order of P ref(L) turns out to be more natural.

2 The notation Õ hides factors polylogarithmic in the size of A.
3 Hardness follows from hardness of the p = 1 case [12], while membership in NP follows from the fact

that the properties defining a co-lex order can be checked in polynomial time, given a candidate order.
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1.1 Our results
In this work, we focus on the problem of computing the smallest-width partial co-lex order
<A when the input is a DFA. On DFAs, <A has a very intuitive definition: letting u, v be
states of A, we have u <A v if and only if α < β for every α ∈ Iu and β ∈ Iv, where < denotes
the co-lex order among strings and Iu denotes the set of strings (in fact, a regular language)
labeling all paths from the source of A to u. We first observe that <A is completely specified
by pairs (inf Iu, sup Iu) over the co-lex sorted Pref(L): in fact, we prove that u <A v holds
if and only if sup Iu ≤ inf Iv. This allows finding a smallest chain decomposition of <A in
O(n) time through a solution of the interval partitioning problem, given that the co-lex ranks
of strings inf Iu and sup Iu are known for each state u. Observing that these strings can be
easily encoded with two pruned versions of the DFA A, this leaves the problem of computing
and sorting them – ideally, in Õ(m) time. We give three different solutions for this problem,
which could be of independent interest. The first two solutions work on arbitrary DFAs and
run in time O(mn) and O(n2 log n), respectively. The latter of these two solutions is based
on suffix doubling, the technique at the core of the first suffix array construction algorithm
[18], and is close to optimal on dense graphs. We show that an optimized implementation of
this algorithm exhibits a sub-quadratic behaviour on large deterministic pan-genomic graphs
(in fact, we experimentally observe a linearithmic running time). The third solution works on
acyclic DFAs, runs in O(m log n) time, and generalizes a well-known algorithm for building
the Burrows-Wheeler transform in an online fashion; in our case, we process the automaton’s
states in any topological order and, for each processed state u, compute inf Iu and sup Iu

using the results computed on the already-processed states.

2 Preliminaries

Notation [i, j], where i, j ∈ N, denotes the integer set {i, i + 1, . . . , j} (if i > j, then [i, j] = ∅).
Let Σ be a finite alphabet. A finite string α ∈ Σ∗ (or string of finite length) is a finite
concatenation of characters from Σ. The notation |α| indicates the length of the string α.
The symbol ϵ denotes the empty string. The notation α[i] denotes the i-th character from
the beginning of α; indices start from 1, so α[1] is the first character of α. Letting α, β ∈ Σ∗,
α · β (or simply αβ) denotes the concatenation of strings. The notation α[i..j] denotes
α[i] ·α[i+ 1] · . . . ·α[j]; if i > j, then α[i..j] is the empty string ϵ. The notation α ⊑ β, where
α, β ∈ Σ∗, indicates that α is a prefix of β, i.e. α = β[1..i] for some i ≤ |β|. An ω-string
β ∈ Σω (or infinite string / string of infinite length) is an infinite numerable concatenation of
characters from Σ. In this paper, we work with left-infinite ω-strings, meaning that β ∈ Σω

is constructed from the empty string ϵ by prepending an infinite number of characters to
it. In particular, the operation of appending a character a ∈ Σ at the end of a ω-string
α ∈ Σω is well-defined and yields the ω-string αa. The notation αω, where α ∈ Σ∗, denotes
the concatenation of an infinite (numerable) number of copies of string α.

▶ Definition 1. A Deterministic Finite-State Automaton (DFA) is a quintuple A =
(Q, Σ, δ, s, F ) where Q is the finite set of states, Σ is a finite alphabet, δ : Q × Σ → Q

is the transition function, s ∈ Q is the initial state, and F ⊆ Q is the set of final states.

As is customary, we extend the transition function to words α ∈ Σ∗ as follows: for a ∈ Σ,
α ∈ Σ∗, and q ∈ Q: δ(q, a ·α) = δ(δ(q, a), α) and δ(q, ϵ) = q. By δ−1(u), we denote the set of
states from which there exists a transition to u: i.e. δ−1(u) = {v ∈ Q : (∃a ∈ Σ)(δ(v, a) = u)}.

In the rest of the paper, n = |Q| denotes the number of states and m = |δ| = |{(u, v, a) ∈
Q×Q× Σ : δ(u, a) = v}| the number of transitions of the DFA under consideration.

CPM 2023
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Following [1], we use the following notation for the set of words reaching a given state:

▶ Definition 2. Let A = (Q, Σ, δ, s, F ) be a DFA. If q ∈ Q, let Iq be the set of words reaching
q from the initial state:

Iq = {α ∈ Σ∗ : q = δ(s, α)};

Iq is also called the regular language recognized by q.

The language L(A) recognized by A is defined as L(A) = ∪q∈F Iq.
The co-lexicographic (or co-lex) order of two strings α, β ∈ Σ∗ ∪ Σω is defined as follows.

(i) ϵ < α for every α ∈ Σ+ ∪ Σω, and (ii) if α = α′a and β = β′b (with a, b ∈ Σ and
α′, β′ ∈ Σ∗ ∪ Σω), α < β holds if and only if (a < b) ∨ (a = b ∧ α′ < β′). In this paper, the
symbols < and ≤ will be used to denote the total order between the alphabet’s characters,
the co-lexicographic order between strings/ω-strings, and the co-lex partial order among the
states of an automaton (Definition 3). The meaning of symbols < and ≤ will always be clear
from the context. In all cases, the symbol ≤ has the following meaning: x ≤ y if and only if
x < y or x = y (i.e. x < y or x and y are the same state, the same character, or the same
string, depending on the context).

Let A = (Q, Σ, δ, s, F ) be a DFA. We assume that s has no incoming edges; any automaton
can always be transformed into an equivalent automaton with this property. We also assume
that every state is reachable from the source: for every v ∈ Q, there exists α ∈ Σ∗ such that
δ(s, α) = v. Moreover, we assume input consistency: for every u, v, v′ ∈ Q and c, c′ ∈ Σ, if
δ(v, c) = δ(v′, c′) = u, then c = c′. We denote with λ(v) such a uniquely-defined character
and take λ(s) = # for the source s, where # /∈ Σ is such that # < c for every c ∈ Σ.
Note that input consistency is equivalent to working with state-labeled automata. Also this
assumption is not too restrictive, since any automaton can be converted into an equivalent
input-consistent automaton by just multiplying its size by a factor of |Σ|.

The following concepts can be defined more in general for NFAs (see [6]), but for the
purposes of this article it will be sufficient to introduce them just on DFAs:

▶ Definition 3. Let A = (Q, Σ, δ, s, F ) be a DFA. A co-lex order on A is a partial order ≤
on Q that satisfies the following two axioms:
1. (Axiom 1) For every u, v ∈ Q, if u < v, then λ(u) ≤ λ(v);
2. (Axiom 2) For every a ∈ Σ and u, v, u′, v′ ∈ Q, if u = δ(u′, a), v = δ(v′, a) and u < v,

then u′ ≤ v′.

The width of a partial order is the size of its largest antichain or, equivalently by Dilworth’s
theorem [7], the size of a smallest chain partition of the order.

▶ Definition 4. The co-lex width of a DFA A is the minimum width of a co-lex order on A:

width(A) = min{width(≤) : ≤ is a co-lex order on A}

On DFAs, the following co-lex order is of particular interest:

▶ Definition 5. Let A be a DFA. The relation <A over Q is defined by:

u <A v if and only if (∀α ∈ Iu)(∀β ∈ Iv) (α < β).

In fact, by [5, Lem. 1] the following holds:

▶ Lemma 6. If A is a DFA, then <A is a co-lex order on A and width(<A) = width(A).
The order <A is called the maximum co-lex order on A.
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Computing the smallest-width co-lex order is of interest because, as shown in [5, 6],
there exists a linear-space index over any DFA A answering subpath queries (find all the
states of A reached by a path labeled with a given query string P ) in time proportional
to width(A)2 time per query character. In fact, the index is even compressed and uses
log(width(A)) + log |Σ| + O(1) bits per transition of A. Building such an index requires
computing a smallest-size chain partition of <A. State-of-the art algorithms for this problem
run in time O(m2 + n5/2) [6] and Õ(m2) w.h.p. [5]. The goal of our paper is to improve
these bounds by exploiting a new characterization for <A, introduced in the next section.

3 A new characterization of the maximum co-lex order of a DFA

In this section, we give a new interval-based characterization of the maximum co-lex order
<A of a DFA. We show that this yields an O(n)-space representation for <A (observe that,
in general, a partial order requires O(n2) space to be represented) and that, given this
representation, one can compute a smallest chain partition of <A in linear O(n) time.

3.1 Infimum and supremum strings
Let u be a state of a DFA A = (Q, Σ, δ, s, F ). For the set Iu of strings recognized by u ∈ Q,
consider a (possibly infinite) string β such that β is a lower bound of Iu; i.e. β ≤ α for every
α ∈ Iu. Consider the co-lex largest string γ among such lower bounds of Iu. We call such a
string the infimum string of u, and denote it by inf Iu. Similarly, we define the supremum
string sup Iu of u as the least upper bound of Iu; see Figure 1 for an example.

▶ Definition 7 (Infimum and supremum strings). Let u ∈ Q be a state of a DFA A =
(Q, Σ, δ, s, F ). The infimum string inf Iu and the supremum string sup Iu are defined as:

inf Iu = γ ∈ Σ∗ ∪ Σω s.t. (∀β ∈ Σ∗ ∪ Σω s.t. (∀α ∈ Iu β ≤ α) β ≤ γ)
sup Iu = γ ∈ Σ∗ ∪ Σω s.t. (∀β ∈ Σ∗ ∪ Σω s.t. (∀α ∈ Iu α ≤ β) γ ≤ β)

a

b

a

a b
a

1 2 3 4 5

6 7 8 9

b

a

10

a

a
b a

b

b

i inf Ivi sup Ivi i inf Ivi sup Ivi

1 ϵ ϵ 6 b ab
2 a a 7 bb abb
3 aa abbaa 8 aaa abba
4 aab bω 9 aaab abbab
5 aaba bωa 10 aabaa abbaba

Figure 1 Example DFA with its infimum/supremum strings.

As a warm up, we make several observations on Iu, infimum, and supremum strings.

▶ Observation 8. Let A = (Q, Σ, δ, s, F ) be a DFA. For any u ∈ Q, the following hold:
1. For every α ∈ Iu, α is finite.
2. For any v( ̸= u) ∈ Q, Iu ∩ Iv is the empty set.
3. For any finite suffix α ∈ Σ∗ of inf Iu (or sup Iu), there exists β ∈ Σ∗ such that βα ∈ Iu.
4. inf Iu ∈ Iu if and only if inf Iu is a finite string; similar for sup Iu.
5. Iu is a singleton if and only if inf Iu = sup Iu. In such a case, Iu = {inf Iu(= sup Iu)}

and inf Iu = sup Iu ∈ Iu is a finite string.
6. For v( ̸= u) ∈ Q, if inf Iu = inf Iv or inf Iu = sup Iv then inf Iu has infinite length; similar

for sup Iu.
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Proof.
1. By definition of Iu.
2. By definition of DFA, for any string α, there exists only one state u such that δ(s, α) = u.
3. Let α be any finite suffix of inf Iu; the sup Iu case is analogous. We claim that there must

exist v ∈ Q such that δ(v, α) = u. This will prove our main claim, since for any string
β ∈ Iv, δ(s, β · α) = δ(δ(s, β), α)) = δ(v, α) = u by definition, so β · α ∈ Iu.
To prove the claim, assume by contradiction that there is no such v ∈ Q. Let α′ ∈ Σ∗

be the longest suffix of α such that there exists v′ ∈ Q such that δ(v′, α′) = u. Let
α′′ ∈ Σ∗ ∪ Σω and a ∈ Σ be a string and a symbol such that inf Iu = α′′ · a · α′. Let
b ∈ Σ be the smallest alphabet symbol that is greater than a. Note that such b must
exist; if not, every v′ must have an incoming transition labeled by a symbol a′(∈ Σ) ≤ a;
since a′ ≠ a (otherwise α′ would be longer), there exists a string in Iu suffixed by a′α′

which is co-lex smaller than inf Iu, which causes a contradiction. Then, for every such
v′ and every v′′ ∈ Q and c ∈ Σ such that δ(v′′, c) = v′, we have a < b ≤ c. Note that
inf Iu < b · α′ ≤ γ for every γ ∈ Iu, so inf Iu is not the greatest lower bound of Iu. This
is a contradiction with the definition of inf Iu.

4. (⇒) By definition of Iu.
(⇐) Let inf Iu be finite. Let us assume, by contradiction, that inf Iu /∈ Iu. Let α = a·inf Iu

where a ∈ Σ is the smallest symbol of the alphabet. We claim that (inf Iu <)α ≤ β for
every β ∈ Iu, which contradicts the definition of inf Iu. Consider a β ∈ Iu. Let k be the
length of the longest common suffix of β and inf Iu. If k < | inf Iu|, then obviously α < β

because prepending a symbol to inf Iu does not affect the relative co-lex order of inf Iu

and β. If k = | inf Iu|, then inf Iu is a suffix of β and | inf Iu|+ 1 ≤ |β| because inf Iu /∈ Iu.
Therefore after prepending the smallest symbol a to inf Iu, we still have a · inf Iu ≤ β.
To prove the other case for sup Iu, let sup Iu be finite and let us assume for a contradiction
that sup Iu /∈ Iu. From (3), there exists β ∈ Σ∗ such that βα ∈ Iu where α = sup Iu;
note that a string is a suffix of itself. Because δ(s, α) ̸= u, it holds β ̸= ϵ. However, then
we have sup Iu = α < βα ∈ Iu, which contradicts with the definition of sup Iu being an
upper bound of Iu.

5. (⇒) if Iu = {α}, then clearly inf Iu = α and sup Iu = α, so inf Iu = sup Iu.
(⇐) If inf Iu = sup Iu, then they are the same finite string. To see this, assume by
contradiction that inf Iu = sup Iu have infinite length. Then, for every α ∈ Iu, inf Iu <

α < sup Iu. Since inf Iu = sup Iu, no such α can exist thus Iu = ∅. This is a contradiction,
because it must hold Iu ̸= ∅ by the assumption that there always exists α ∈ Σ∗ such
that δ(s, α) = u (and, for the source s, Is = {ϵ}). Since inf Iu(= sup Iu) is a finite string,
inf Iu ∈ Iu by (4). In addition, inf Iu is the unique string in Iu because for every α ∈ Iu,
inf Iu ≤ α ≤ sup Iu and inf Iu = sup Iu, therefore inf Iu = α = sup Iu.

6. Immediate from Observations (2) and (4). ◀

To conclude the section, we prove a lemma showing that infimum and supremum strings
can always be expressed as a (possibly, infinite) concatenation of a constant number of
distinct strings whose length does not exceed the number of states. This lemma will be useful
later to bound the sorting depth of our algorithms computing <A.

▶ Lemma 9. For a DFA A = (Q, Σ, δ, s, F ) and a state u ∈ Q, let γ ∈ {inf Iu, sup Iu} be
either the infimum or the supremum string of Iu. Then,
1. If γ is finite, then |γ| < |Q|.
2. If γ has infinite length, then γ = βωα for some α, β ∈ Σ∗ such that |α|+ |β| < |Q|.
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Proof. Suppose |γ| ≥ |Q|. Let γ = γ′γ′′, where γ′′ is the length-|Q| suffix of γ. Consider
a sequence of states v1, v2, · · · , v|Q|+1 such that v|Q|+1 = u and δ(vk, γ′′[k]) = vk+1 for
1 ≤ k ≤ |Q|. Note that vi ̸= s for every 2 ≤ i ≤ |Q|+ 1 because the start state s does not
have an incoming transition. Then, there are at most |Q| − 1 distinct states among the |Q|
states v2, · · · , v|Q|+1 so by the pigeonhole principle there must be 2 ≤ i < j ≤ |Q|+ 1 such
that vi = vj . Let β′ = γ′γ′′[1..i− 1], β = γ′′[i..j − 1], and α = γ′′[j..|Q|]. Note that βα is a
proper suffix of γ′′ (proper because i ≥ 2), therefore |α|+ |β| = |βα| < |γ′′| = |Q|. Note also
that (by definition of β′, β, and α) γ = β′βα.

Let us assume γ = inf Iu; the other case γ = sup Iu is analogous. Note that γ = β′βα ≤
β′βkα for every k ≥ 0. To see this, observe that if γ is a finite string, then γ = β′βα ∈ Iu by
Observation 8.4. Since δ(s, β′) = vi, δ(vi, β) = vj = vi, and δ(vj(= vi), α) = v|Q|+1 = u, we
have β′βkα ∈ Iu for every k ≥ 0. By definition of inf Iu, γ = inf Iu ≤ β′βkα for every k ≥ 0.
On the other hand, if γ has infinite length, assume for a contradiction that there exists
k′ ≥ 0 such that β′βkα < β′βα = γ. Consider the length-(l + 1) suffix β′′α of β′βkα where l

is the length of the longest common suffix between β′βkα and γ; clearly, such a l is finite
and l ≥ |α| since α suffixes both strings. Then by Observation 8.3, there exists β′′′ ∈ Σ∗

such that β′′′β′′α ∈ Iu. However we have β′′′β′′α < β′βα = γ = inf Iu, which contradicts
the definition of inf Iu.

By plugging k = 0 into the inequality β′βα ≤ β′βkα above, we obtain β′βα ≤ β′α.
Equivalently (by removing the common suffix α) it holds β′β ≤ β′; but then, we can plug
again a common suffix βkα for any k ≥ 0 and obtain that β′βk+1α ≤ β′βkα for any k ≥ 0.
In particular, this implies that β′βkα ≤ β′βα = γ for any k ≥ 1.

Since in the previous two paragraphs we proved that γ ≤ β′βkα and β′βkα ≤ γ for any
k ≥ 1, we conclude that γ = β′βkα for any k ≥ 1, i.e. γ must be an ω-string of the form
γ = βωα. This proves claim (2). Claim (1) also follows since the assumption that γ is finite
and |γ| ≥ |Q| leads to γ = βωα (a contradiction to the finiteness of γ), hence its negation
(i.e. claim 1) must hold. ◀

3.2 O(n)-space representation of <A

Let K(A) = {inf Iu : u ∈ Q} ∪ {sup Iu : u ∈ Q} ⊆ Σ∗ ∪ Σω be the set of all infimum and
supremum strings of A. Let rank(α), for α ∈ K(A), denote the position of α in the total
order (K(A), <) (e.g. rank(α) = 1 for the co-lex smallest string α ∈ K(A), and so on).

Our new representation of <A is the set of n integer pairs {(rank(inf Iu), rank(sup Iu)) :
u ∈ Q} ⊆ [1, 2n] × [1, 2n] (note that |K(A)| ≤ 2n). With the next theorem, we show that
this set is indeed sufficient to reconstruct <A.

▶ Theorem 10. Let A = (Q, Σ, δ, s, F ) be a DFA. Then, for any u, v( ̸= u) ∈ Q, u <A v if
and only if sup Iu ≤ inf Iv.

Proof. (⇒) To prove u <A v ⇒ sup Iu ≤ inf Iv for all u, v ∈ Q, assume by contradiction that
there exist u, v ∈ Q such that u <A v and inf Iv < sup Iu. We claim that, in this case, there
must exist α ∈ Iu, β ∈ Iv such that β < α. By Definition 5, this contradicts u <A v. First,
note that there must exist α ∈ Iu such that inf Iv < α, otherwise it would be sup Iu ≤ inf Iv.
We divide the proof by contradiction in the two cases (i) inf Iv is a finite string and (ii) inf Iv

has infinite length.
(i) If inf Iv is finite, then inf Iv ∈ Iv by Observation 8.4. Choosing β = inf Iv, we have

β = inf Iv(∈ Iv) < α. This contradicts u <A v.
(ii) If inf Iv has infinite length, then by Lemma 9 we can write it as inf Iv = γω

2 γ1 for
some strings γ1, γ2 ∈ Σ∗. Note that, for every k ≥ 0, there exists a string γ3 ∈ Σ∗
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such that γ3γk
2 γ1 ∈ Iv (by Observation 8.3 because γk

2 γ1 is a suffix of inf Iu). Choose
any integer k′ such that |γk′

2 γ1| > |α| (such an integer exists since α is finite). Since
inf Iv = γω

2 γ1 < α, we also have γ3γk′

2 γ1(= β ∈ Iv) < α. Again, this contradicts
u <A v.

(⇐) Let sup Iu ≤ inf Iv, and choose any α ∈ Iu and β ∈ Iv. We need to prove that α <A β.
By definition of sup Iu and inf Iv, we have α ≤ sup Iu ≤ inf Iv ≤ β. If sup Iu < inf Iv, then
α < β. If, on the other hand, sup Iu = inf Iv then both sup Iu and inf Iv must be infinite
strings by Observation 8.6. Since α and β are both finite, it must be the case that α ̸= sup Iu

and β ̸= inf Iv, therefore α < sup Iu = inf Iv < β. Since this holds for any α ∈ Iu and β ∈ Iv,
by definition of <A it holds α <A β. ◀

Equivalently, Theorem 10 shows that <A can be interpreted as a set of intervals on
the co-lex sorted Pref(L(A)). This characterization of <A will allow us to compute this
order faster than the state-of-the-art by (i) co-lex sorting the infimum and supremum strings
(Section 4), and (ii) computing a smallest chain partition for <A in linear time (Section 3.3).

3.3 Linear-time chain partitioning algorithm
In general, a partial order over n elements requires O(n2) space to be represented. Moreover,
the fastest general-purpose algorithms for computing the smallest chain partition of a
partial order run either in worst-case time O(n5/2) (see, for example, [6, Lem. 6.1]) or in
Õ(n2) time w.h.p. [16]. In this section we show that given the O(n)-space representation
S = {(rank(inf Iu), rank(sup Iu)) : u ∈ Q} of <A, from which the order can be represented
using intervals, we can compute a smallest chain partition of this order in optimal O(n) time.
It is known that the optimal solution of a smallest chain partition of interval orders can be
computed with a greedy method (see [14, Sec. 6.8]). Moreover, given the sorted intervals,
one can compute it in linear time [3]; for completeness here we give the details.

Based on Theorem 10, we now show a simple linear-time reduction from the smallest
chain partition problem (where the input order is represented as described in Section 3.2) to
the following problem:

▶ Definition 11 (Interval partitioning problem, cf. [15, Sec. 4.1]). Let {[s1, f1], . . . , [sn, fn]}
be a set of n activities that must be served (each) by a device. One device can handle at most
one activity at the same time. [si, fi] is an interval, where si and fi are the starting and
finishing time of activity i, respectively. Determine the minimum number of devices to serve
all the activities.

Let S = {a1 = (s1, f1), . . . , an = (sn, fn)} be an instance of the smallest chain partition
problem for <A (that is, a particular instance of <A). Our reduction from this instance to
an instance of the interval partitioning problem works as follows:
1. For each pair ai = (si, fi), with i ∈ [1..n], let s′

i = 2si + 1 and f ′
i = 2fi.

2. Return the set of intervals S′′ = {a′′
i }n

i=1, where a′′
i = [s′′

i = min (s′
i, f ′

i), f ′′
i = max (s′

i, f ′
i)]

The following Lemma shows that our reduction is correct:

▶ Lemma 12. Let (si, fi), (sj , fj) be two input pairs, with si ≤ sj without loss of generality.
Let moreover [s′′

i , f ′′
i ], [s′′

j , f ′′
j ] be the intervals into which the two pairs get transformed by

the above reduction. Then, fi ≤ sj if and only if f ′′
i < s′′

j (i.e. [s′′
i , f ′′

i ] and [s′′
j , f ′′

j ] do not
overlap).

Proof. We divide the proof into two cases: (Case 1) at least one of si = fi or sj = fj holds,
and (Case 2) both si < fi and sj < fj hold.
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(Case 1). First, we show that fi ̸= sj . Assume that si = fi (the other case sj = fj is
analogous). Let u be the state associated with the pair (si, fi), and v be the state associated
with the pair (sj , fj). By Observation 8.5, si = fi implies that inf Iu = sup Iu is a finite
string, and inf Iu = sup Iu ∈ Iu. If inf Iv is an infinite string, then clearly sup Iu ̸= inf Iv

(being sup Iu a finite string), i.e. fi ≠ sj . If, on the other hand, inf Iv is a finite string, then
by Observation 8.4 we have inf Iv ∈ Iv; since by Observation 8.2, we have Iu ∩ Iv = ∅, also
in this case we derive that sup Iu ̸= inf Iv, i.e. fi ̸= sj .

Knowing fi ̸= sj , we obtain that fi ≤ sj ⇔ fi < sj ⇔ fi + 1 ≤ sj . Note that, since
s′′

j = 2sj + 1 > 2sj (if sj ̸= fj) or s′′
j = 2fj = 2sj (if sj = fj), we have 2sj ≤ s′′

j . Similarly,
f ′′

i ≤ 2fi + 1. Hence 2si ≤ s′′
i < f ′′

i ≤ 2fi + 1 (note that s′′
i < f ′′

i always holds for any interval
in our reduction). Therefore, we have fi ≤ sj ⇒ fi + 1 ≤ sj ⇒ f ′′

i ≤ 2fi + 1 < 2(fi + 1) ≤
2sj ≤ s′′

j . For the other direction, note that 2fi ≤ f ′′
i and s′′

j ≤ 2sj + 1. Then, using these
inequalities we obtain: f ′′

i < s′′
j ⇒ 2fi ≤ f ′′

i < s′′
j ≤ 2sj + 1⇒ 2fi < 2sj + 1⇒ fi ≤ sj .

(Case 2). In this case, we have fi ≤ sj ⇒ f ′′
i = 2fi < 2sj + 1 = s′′

j ⇒ f ′′
i < s′′

j . For the
other direction, note that f ′′

i < s′′
j ⇒ 2fi = f ′′

i < s′′
j = 2sj + 1⇒ fi ≤ sj . ◀

By Lemma 12, we can now solve smallest chain partition problem for the particular order
<A by reducing it to an instance of the interval partitioning problem. Moreover, it is easy to
see that the reduction works in linear time so the linearity of our strategy relies on the cost of
the algorithm we use to solve the latter problem. We can use a greedy method (cf. [3, 8]) to
optimally solve the interval partitioning problem (namely, using the smallest possible number
of devices). The algorithm processes the intervals in non-decreasing order of starting times,
breaking ties arbitrarily. For each interval, we choose any idle device among the available
ones. We can keep track of the list of the available devices if the starting and finishing times
of the intervals are already sorted. If all devices are busy, we add a new device.

The above-sketched algorithm spends amortized constant time on every activity, plus the
time required to sort the input set of intervals. As said earlier, the elements of our input
pairs (i.e. before the reduction) are integer values in the range [1, 2n]. After the reduction,
this range gets expanded to [2, 4n + 1]. This allows us to radix-sort the intervals in O(n) time.
As a result, in our scenario we can solve the interval partition problem in O(n) time and, in
particular, find the smallest chain partition of <A given its ranked-pair representation in
linear time.

4 Co-lex sorting infimum/supremum strings

In this section, we present three algorithms to compute and sort the set containing all
infimum and supremum strings of a DFA. The first two algorithms sort the strings in such
a way that for every iteration the strings are co-lex sorted with respect to a longer suffix;
we present one simple solution that increases the suffix length by 1 at each iteration, and
one that doubles the suffix length at each iteration. The third algorithm is a generalization
of online BWT construction and is based on the online algorithm for sorting Wheeler DFA
presented in [1, Sec. 3.2]. This algorithm works only on acyclic DFAs but has a lower time
complexity than the former two solutions.

For ease of explanation, we consider only infimum strings since the supremum string case
is analogous. Indeed, one can easily compute and sort both infimum and supremum strings
at the same time by creating two copies of the input DFA and then running our algorithms
on the union of the two DFAs, extracting the infimum strings on one DFA and the supremum
strings on the other DFA while at the same time sorting the union of these two string sets.
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4.1 Simple O(mn)-time algorithm
Let us establish some notations before describing the algorithm. For a (possibly infinite)
string α and an integer k ≥ 0, we denote by sufk(α) the length-k suffix of α. When |α| < k,
we pad sufk(α) by prepending k − |α| copies of a special symbol # /∈ Σ, with # < c for all
c ∈ Σ; in this way, we guarantee that sufk(α) is always a string of length k and we do not
affect the co-lex order of such suffixes (which remains the same before and after the padding).

For state u ∈ Q and integer k ≥ 0, we denote by rankk(u) ∈ N the intermediate rank at
iteration k of u in the total order we are computing; this integer indicates the co-lex rank of
sufk(inf Iu) among {sufk(inf Iv) : v ∈ Q}. More formally, for u ∈ Q and k ≥ 0,

rank0(u) = 1
rankk(u) = |{sufk(inf Iv) : v ∈ Q ∧ sufk(inf Iv) ≤ sufk(inf Iu)}| for k > 0

Observe that two states are assigned the same rank if their corresponding length-k suffixes
are equal. The algorithm works by pruning transitions of the input automaton, i.e. by
removing, for every state u, transitions coming from a state with a non-minimum rank among
the predecessors of u. We denote by δk the (pruned) transition function at iteration k.

The algorithm works as follows. At iteration k ≥ 0, we perform the following operations:

1. Compute rankk+1. Sort the states {u ∈ Q} by their label λ(u) with ties broken by
rankk(v) for any v ∈ δ−1

k (u) (the step below will guarantee that all predecessors v of u

have the same rankk(v)).
2. Compute δk+1. For each u ∈ Q, keep only the transitions from the min-rank predecessors:

for v ∈ δ−1
k (u), v ∈ δ−1

k+1(u) iff rankk+1(v) = min{rankk+1(u′) : u′ ∈ δ−1
k (u)}.

As far as the running time of each iteration is concerned, computing rankk+1 can be
done in O(n) time by 2-pass radix sorting (that is, by incoming label and breaking ties by
any predecessor’s rank rankk). Computing δk+1 takes O(|δk|) = O(|δ|) = O(m) time. Hence,
each iteration takes O(m) time.

Since ∀k ≥ 0, ∀u ∈ Q, and ∀v ∈ δ−1
k (u) we have sufk+1(inf Iu) = sufk(inf Iv) · λ(u), it

is easy to see that the following invariant always holds at the beginning of iteration k: the
infimum strings are sorted with respect to the co-lex order of their length-k suffixes. This
invariant shows that the number of iterations we have to perform is exactly the length of
the suffixes that need to be sorted to obtain the correct co-lex order of the infimum strings.
We are left to find an upper bound to this length; observe that this is not a trivial problem,
since infimum strings may have infinite length.

Consider any two infimum strings α, β ∈ {inf Iu : u ∈ Q}. The upper bound above can be
computed by upper-bounding the length of the longest common suffix between α and β. If
any of the two strings is finite, then by Lemma 9 their longest common suffix does not exceed
length n. If both strings are infinite, then by Lemma 9 we can write them as α = αω

2 α1 and
β = βω

2 β1 and we can use the following:

▶ Lemma 13 (cf. [19]). For two infinite strings α = αω
2 α1 and β = βω

2 β1, where α1, β1 ∈ Σ∗

and α2, β2 ∈ Σ+, let α′ and β′ be their suffixes of length k = |α2|+ |β2|+ max{|α1|, |β1|}.
Then, α′ < β′ if and only if α < β.

Proof. Without loss of generality, let us assume |α1| ≤ |β1|. Moreover, note that without
loss of generality we can also assume that |α2| + |α1| > |β1|; if this does not hold, then
re-write α1 ← αk

2α1 for the only integer k > 0 such that |α1| ≤ |β1| < |α2|+ |α1| holds; after
the transformation, α can still be written as α = αω

2 α1.
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If α1 is not a suffix of β1, then clearly the longest common suffix between α and β is at
most |α1|, so the claim holds. Let us assume therefore that α1 is a suffix of β1, i.e. β1 = β′

1α1
for some β′

1 ∈ Σ∗. Since by assumption |α2|+ |α1| > |β1|, note that |α2| > |β′
1|. Similarly as

above, if β′
1 does not suffix α2 (i.e. β1 = β′

1α1 does not suffix α = αω
2 α1) then the longest

common suffix between α and β is at most |β1| and the claim holds, so let us assume that
β′

1 is a suffix of α2, i.e. α2 = α′
2β′

1 for some α′
2 ∈ Σ∗. Since αω

2 = (α′
2β′

1)ω = (β′
1α′

2)ωβ′
1, we

conclude that comparing co-lexicographically α = (β′
1α′

2)ωβ′
1α1 and β = βω

2 β′
1α1 reduces to

comparing (β′
1α′

2)ω and βω
2 . According to [19, Proposition 5], given any γ1, γ2 ∈ Σ+ it is

sufficient to compare the length-k′ suffixes of γω
1 and γω

2 to determine their co-lex order, where
k′ = |γ1|+ |γ2| − gcd(|γ1|, |γ2|). Our claim easily follows since |β′

1α′
2| = |α′

2β′
1| = |α2|. ◀

▶ Corollary 14. The co-lex order of the infimum and supremum strings of a DFA is the
same as the co-lex order of their length-(2n) suffixes.

Proof. By Lemma 9, we can represent two infimum/supremum strings α, β as α = αω
2 α1

and β = βω
2 β1. By the same lemma, each of |α1|, |α2|, |β1| and |β2|, as well as |α1|+ |α2|

and |β1|+ |β2|, are bounded by n. From Lemma 13, it is sufficient to compare the suffixes of
length at most |α2|+ |β2|+ max{|α1|, |β1|} = max{(|α1|+ |α2|) + |β2|, |α2|+ (|β1|+ |β2|)})
of α and β in order to discover their co-lex order. Therefore, 2n is a sufficient suffix length
for sorting all the infimum strings correctly. ◀

Putting everything together, we conclude:

▶ Lemma 15. The infimum and supremum strings of an input-consistent DFA A =
(Q, Σ, δ, s, F ) can be computed and sorted in O(mn) time, where n = |Q| is the number
of states and m = |δ| is the number of transitions.

Equivalently, the above lemma shows that the representation of <A of Section 3.2 can be
computed in O(mn) time. Plugging the linear-time chain partition algorithm of Section 3.3,
we obtain:

▶ Theorem 16. Given an input-consistent DFA A = (Q, Σ, δ, s, F ), we can compute a
minimum-size chain partition of <A in O(mn) time, where n = |Q| is the number of states
and m = |δ| is the number of transitions.

4.2 O(n2 log n)-time suffix doubling algorithm
Instead of increasing the length of the sorted suffixes only by 1 at every iteration, we can
double it via a generalization of the prefix doubling algorithm [18], the first suffix array
construction algorithm that appeared in the literature. Again, for simplicity we describe the
algorithm just for infimum strings; it is easy to modify it so that it computes and sorts the
union of all infimum and supremum strings.

Algorithm 1 describes our sorting procedure, which we explain in detail in the rest of
the section. At every iteration k ≥ 0, Algorithm 1 keeps the infimum strings sorted by
their length-2k suffixes. Suppose we already sorted the infimum strings with respect to their
length-2k suffixes. To enable the doubling procedure, we need to show how to compute the
length-2k+1 suffix of each inf Iu given as input the length-2k suffixes of each inf Iu, for all
u ∈ Q. Given that the infimum strings are sorted by their length-2k suffixes, for each u ∈ Q

we can achieve this goal by finding a state v ∈ Q such that

suf2k+1(inf Iu) = suf2k (inf Iv) · suf2k (inf Iu).

CPM 2023
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Algorithm 1 Suffix doubling algorithm for sorting the infimum strings of a DFA.

Input: An input-consistent DFA A = (Q, Σ, δ, s, F )
Output: rank2k (u) for each u ∈ Q, with 2n ≤ 2k < 4n.

1 k ← 0;
2 for u ∈ Q do
3 rank2k (u)← λ(u);
4 Pk(u)← {v ∈ δ−1(u) :

(
∀v′ ∈ δ−1(u)

)(
λ(v) ≤ λ(v′)

)
};

5 while 2k < 2n do
6 for u ∈ Q do
7 au ← rank2k (u);
8 if Pk(u) = ∅ then
9 bu ← −∞;

10 else
11 Pick any v ∈ Pk(u);
12 bu ← rank2k (v);

13 Compute rank2k+1(·) by radix-sorting pairs (au, bu);
14 for u ∈ Q do
15 P̂k+1(u)←

⋃
v∈Pk(u) Pk(v);

16 Pk+1(u)← {v ∈ P̂k+1(u) :
(
∀v′ ∈ P̂k+1(u)

)(
rank2k+1(v) ≤ rank2k+1(v′)

)
};

17 k ← k + 1;
18 return rank2k (·)

We call such v an extender of u (at distance 2k). More formally, the set Pk(u) of all extenders
of u at distance 2k is defined as:

P0(u) = {v ∈ δ−1(u) : (∀v′ ∈ δ−1(u))(λ(v) ≤ λ(v′))}
Pk(u) = {v ∈ Q : δ(v, suf2k (inf Iu)) = u ∧ suf2k (inf Iv) ⊑ suf2k+1(inf Iu)} for k > 0

For u ∈ Q, let rank2k (u) be the co-lex rank of suf2k (inf Iu), as defined in the previous section.
Observe that, by definition, for every u ∈ Q and v1, v2 ∈ Pk(u), rank2k (v1) = rank2k (v2).

We implement a suffix doubling step as follows. Assume Pk(u) and rank2k (u) have been
computed for all u ∈ Q. We associate with u the pair (au, bu) where au = rank2k (u) and bu

is chosen as follows. If Pk(u) ̸= ∅, bu = rank2k (v) with any v ∈ Pk(u); otherwise, bu = −∞
is chosen4. Finally, we compute rank2k+1(·) by radix-sorting pairs (au, bu) in O(n) time.

After computing rank2k+1(·), we need to compute Pk+1(·) for the next doubling step.
For a state u ∈ Q, let P̂k+1(u) =

⋃
u′∈Pk(u) Pk(u′) be the union of the extender sets of u’s

extenders at distance 2k. Then, we claim that we can compute Pk+1(u) by removing all
non-minimum-rank states (i.e. non-minimum rank2k+1(·)) from P̂k+1(u). The correctness
of this procedure follows from the fact that Pk+1(u) can also be defined as the largest
subset of P̂k+1(u) such that, for every v ∈ Pk+1(u) and v̂ ∈ P̂k+1(u), rank2k+1(v) ≤
rank2k+1(v̂). To see this, first observe that Pk+1(u) ⊆ P̂k+1(u) because (i) v ∈ P̂k+1(u)

4 In this case, there are no more characters to be prepended to inf Iu (i.e. | inf Iu| < 2k). Since we
radix-sort pairs (au, bu), this choice is consistent with the fact that suf2k (inf Iu) is left-padded with
copies of symbol # in order to reach length 2k, with # < c for all c ∈ Σ (see definition of suf2k in the
previous section).
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Figure 2 The DFA that has a quadratic number of extenders: the σ = Θ(n) states in the
rightmost column (indicated with A) have σ = Θ(n) extenders each (indicated with B) at distance
2k, where k = 1.

if and only if δ(v, suf2k+1(inf Iu)) = u, and (ii) v ∈ Pk+1(u) ⇒ δ(v, suf2k+1(inf Iu)) = u.
Also, by the definition of Pk+1, suf2k+1(inf Iv) for v ∈ Pk+1(u) must not be greater than
suf2k+1(inf Iv̂) for any v̂ ∈ P̂k+1(u), which is equivalent to rank2k+1(v) ≤ rank2k+1(v̂);
otherwise, suf2k+1(inf Iv̂)·suf2k+1(inf Iu) < suf2k+1(inf Iv)·suf2k+1(inf Iu) = suf2k+2(inf Iu),
which contradicts the definition of inf Iu.

Since rank2k+1(v) has already been computed for all v ∈ Q and can thus be evaluated
in constant time, from the above characterization of Pk+1(u) we obtain that the time
required to compute this set is proportional to the time we spend to compute the union
P̂k+1(u) =

⋃
u′∈Pk(u) Pk(u′). Observe that, if there were repeated states among the sets

Pk(u′), for u′ ∈ Pk(u), then computing such a union could take time O(n2) (for every u ∈ Q),
leading to a cubic algorithm. Luckily, with the next lemma we show that this is not the case:
being the input automaton deterministic, those sets are pairwise disjoint and their union can
thus be computed by just concatenating them.

▶ Lemma 17. Let u ∈ Q be a state of a DFA, and let v1, v2( ̸= v1) ∈ Pk(u) be extenders of u

at distance 2k. Then Pk(v1) ∩ Pk(v2) = ∅.

Proof. Let v1, v2( ̸= v1) ∈ Pk(u) be extenders of the same state u ∈ Q at distance 2k. Let
α1 = suf2k (inf Iv1) and α2 = suf2k (inf Iv2). Assume, for a contradiction, that there exists
v′ ∈ Pk(v1)∩Pk(v2). By definition of Pk, since v′ ∈ Pk(v1), it holds δ(v′, α1) = v1. Similarly,
it also holds δ(v′, α2) = v2. Since v1, v2 ∈ Pk(u) are extenders of the same state u ∈ Q at
distance 2k, both α1 and α2 are equal to the length-2k prefix of suf2k+1(inf Iu), therefore
α1 = α2. Consequently, we have v1 = δ(v′, α1) = δ(v′, α2) = v2, i.e. reading a string α1 = α2
from a state v′ we reach two distinct states v1 ≠ v2. This is a contradiction with the fact
that the automaton is deterministic, so the claim Pk(v1) ∩ Pk(v2) = ∅ must be true. ◀

From Lemma 17, we can compute P̂k+1(u) in time proportional to its cardinality
|P̂k+1(u)| ≤ n. Since finding the minimum-rank states can be done in linear O(|P̂k+1(u)|)
time as well, the computation of Pk+1(u) takes time O(n) for each u ∈ Q. We conclude that
each iteration of the suffix doubling algorithm takes O(n2) time.

It is worth noting that, since we keep track of each set Pk(u), the running time of an
iteration is lower-bounded by the total number of extenders therein. In the worst case,
however, the total number of extenders at a single iteration could be truly quadratic even on
acyclic DFAs: see Figure 2; in this example, there are n = 4σ+2 states and σ2+2σ+1 = Θ(n2)
extenders at distance 2k for k = 1.

Putting all together, we have the following result for the suffix doubling algorithm
described in this section.
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▶ Lemma 18. The infimum and supremum strings of an input-consistent DFA A =
(Q, Σ, δ, s, F ) can be computed and sorted in O(n2 log n) time, where n = |Q| is the number
of states.

Equivalently, the above lemma shows that the representation of <A of Section 3.2 can be
computed in O(n2 log n) time. Plugging the linear-time chain partition algorithm of Section
3.3, we obtain:

▶ Theorem 19. Given an input-consistent DFA A = (Q, Σ, δ, s, F ), we can compute a
minimum-size chain partition of <A in O(n2 log n) time, where n = |Q| is the number of
states.

The suffix doubling algorithm in practice. Although every iteration of the suffix doubling
algorithm needs to keep track of O(n2) extenders per iteration in the worst case, we conjecture
that it is not likely to have a quadratic number of extenders on realistic datasets. To
demonstrate this, we conducted a brief experiment using a pan-genomic graph, which is
considered to be one of the most important real-world applications of our problem. We
downloaded the Chromosome 22 sequence of the GRCh38 human reference genome and
its variation data from 1000 Genome project [17]. This variation dataset contains a set of
substitutions, insertions and deletions appearing on the reference human genome sequence
collected from 2,548 samples. Using this dataset, we constructed a pan-genomic graph
using VG [21], then converted it into a DFA using the classical powerset construction
algorithm [20]. We ran an implementation of our suffix doubling algorithm to sort the
infimum and supremum strings and measured the number of extenders at each iteration.
The largest P̂k(u) and Pk(u) (extenders at distance 2k before/after filtering non-minimum-
rank states) during the procedure had cardinality 60 and 37, respectively, which might be
considered not negligible but quite small when compared to the DFA’s size (n=51,904,782,
m =53,049,316). In addition, the sum

∑
u∈Q |P̂k(u)| of the number of extender candidates

(the union of extenders before filtering non-minimum-rank states) at any fixed distance
2k was at most two times the number of edges, suggesting that in practice our algorithm
exhibits a linearithmic complexity on pan-genomic graphs. C++ source code is avaliable at:
https://github.com/regindex/DFA-suffix-doubling.

4.3 O(m log n)-time algorithm for acyclic DFAs
If the input DFA is acyclic, then we can sort the infimum strings more efficiently using the
algorithm described in [1, Sec. 3.2]. This algorithm processes the states of any acyclic Wheeler
DFA A (that is, width(A) = 1) and their incoming edges in any topological order u1, . . . , un

while updating <A in an online fashion; more precisely, as soon as step 1 ≤ i ≤ n has finished,
the algorithm has computed the total order <A of the set {u1, . . . , ui}. The basic idea is
to process the states in any topological order while maintaining a dynamic data structure
that stores the relative co-lex order of the states according to any representative of Iu (in
fact, [1] proves that on Wheeler DFAs, any string in Iu can be chosen as a representative of
the whole Iu to sort the automaton’s states). This is possible because, when ui ∈ Q is being
processed, the structure is able to check if rank(v) ≤ rank(uj) for any v ∈ δ−1(ui) and j < i,
where rank(v) denotes the position of v in the total order <A of the already-processed states
u1, . . . , ui−1 (and, by definition of topological order, rank(v) and rank(uj) have already
been computed in the previous steps). This information is sufficient to compute rank(ui)
among the sorted u1, . . . , ui.

https://github.com/regindex/DFA-suffix-doubling
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In our case (arbitrary acyclic DFAs), we use the above data structure as follows: after
topologically sorting A (in linear time) we process states in this order. When processing
state ui, assume that states u1, . . . , ui−1 have already been co-lex sorted according to their
strings inf Iu1 , . . . , inf Iui−1 using the data structure of [1, Section 3.2]. By scanning the
predecessors of ui, we find the min-rank state v∗ = arg minv∈δ−1(ui) rank(v) among them. At
this point, we insert state ui, as well as transition (labeled edge) (v∗, ui, λ(ui)), in the data
structure. Note that, since only (v∗, ui, λ(ui)) is inserted, the data structure of [1, Section
3.2] maintains a spanning tree of A rooted at the start state s. By construction, it is easy to
see that the unique path connecting s to ui in this spanning tree is labeled with string inf Iui

:
the spanning tree encodes the infimum strings. As a result, our sorting problem is equivalent
to sorting this spanning tree. It is known that a labeled tree is a special case of Wheeler
graphs (see [11]), so the computed co-lex node order of this spanning tree is precisely the
co-lex order of all infimum strings.

Since it is immediate to extend the idea to the union of all infimum and supremum strings,
taking into account the cost of each update of the data structure [1, Sec. 3.2], we obtain:

▶ Lemma 20. The infimum and supremum strings of an input-consistent acyclic DFA
A = (Q, Σ, δ, s, F ) can be computed and sorted in O(m log n) time where n = |Q| is the
number of states and m = |δ| is the number of transitions.

Proof. First of all, the data structure [1, Sec. 3.2] supports the following two operations
in O(log n) time5: (i) computing the relative rank of a state among those that are already
processed, and (ii) inserting a new edge (a state is inserted into the structure after all its
incoming edges have been inserted). As a result, finding v∗ = arg minv∈δ−1(ui) rank(v) takes
time O(|δ−1(ui)| · log n). After v∗ has been found, inserting the labeled edge (v∗, ui, λ(ui)),
as well as state ui, into the structure takes time O(log n). Overall, after all states have been
processed the cost of the above operations amounts to O(m log n) time. Since a topological
order of A can be computed in O(m) time, the total running time is O(m log n). ◀

Equivalently, the above lemma shows that the representation of <A of Section 3.2 can be
computed in O(m log n) time when A is acyclic. Plugging the linear-time chain partition
algorithm of Section 3.3, we obtain:

▶ Theorem 21. Given an input-consistent acyclic DFA A = (Q, Σ, δ, s, F ), we can compute
a minimum-size chain partition of <A in O(m log n) time, where n = |Q| is the number of
states and m = |δ| is the number of transitions.
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Abstract
Despite the simple, one-dimensional nature of strings, several computationally hard problems on
strings are known. Tackling hard problems beyond sizes of toy instances with straight-forward
solutions is infeasible. To solve these problems on datasets of even small sizes, effort has to be
put into the conception of algorithms leveraging profound characteristics of the input. Finding
these characteristics can be eased by rapidly creating and evaluating prototypes of new concepts
in how to tackle hard problems. Such a rapid-prototyping method for hard problems is answer set
programming (ASP). In this light, we study the application of ASP on five NP-hard optimization
problems in the field of strings. We provide MAX-SAT and ASP encodings, and empirically reason
about the merits and flaws when working with ASP solvers.
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1 Introduction

Despite the fact that most string problems found in literature are solvable in polynomial
time or even close to linear time or beyond, there are several problems that are known to
be NP-hard. Among those, we focus on five problems that are well-perceived regarding
the number of publications studying these problems: Closest String (csp)1, Closest
Substring (css), Longest Common Subsequence (lcs), Minimum Common String
Partition (mcsp), and Shortest Common Superstring (scs). These problems have
been studied under various viewpoints. With respect to fixed-parameter tractability (FPT),
Bulteau et al. [9] gave a comprehensive survey on various NP-hard problems related to
strings; this survey comprises the problems studied in this paper. Also, Basavaraju et al. [2]
studied the kernelization of a majority of our problems. We address other related work in
the individual sections of each problem, but omit references to approximation algorithms
due to their amount, and because we put focus on the exact solution of the aforementioned
problems formulated as optimization problems.

1 We stick to the commonly used abbreviation csp in literature despite that cs would fit better with the
abbreviations of the other problems.
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A major problem in tackling these problems in practice is that naive solutions quickly
become impractical with respect to the time complexity. Tailored algorithms2 are hard
to implement, and thus a burden on the algorithm engineering side. Our contribution is
to advertise answer set programming (ASP) as a rapid-prototype programming tool for
solving NP-hard string problems on small instances. ASP is a declarative programming
language geared towards solving hard problems [40, 12]. ASP has been successfully applied
in robotics [3], or for computing the n-queens and the knight’s tour problem [18]. There is
also a competition on ASP solvers on various classic problems addressing mainly problems
on graphs [28]. See [19, 20] and the references therein for an overview of other use cases.

Although well-devised algorithms can outperform ASP-based approaches, the program-
ming effort for writing in an expressive, declarative programming language such as ASP is
considerably small. In this paper, we devise MAX-SAT encodings for the above addressed
problems, and subsequently translate these encodings into the ASP language. With respect
to tackling hard string problems via MAX-SAT encodings we are aware of the work of Bannai
et al. [1] who studied MAX-SAT encodings for repetitiveness measures that are also known
to be NP-hard.

2 Preliminaries

Common to all problems treated in this paper is the input of a set of m strings S =
{S1, . . . , Sm}. For simplicity, we assume that all strings have the same length n, and that
all characters are drawn from an alphabet Σ of size σ = |Σ|. Hence, |Sx| = n denotes the
length of each input string and Sx[i] ∈ Σ for all i ∈ [1..n] and x ∈ [1..m]. Except for mcsp,
the output is a string T that is object to an optimization argument with respect to the input
strings (and, additionally for css, with respect to an integer parameter specifying the length
of T ).

Encoding Annotations. Beginning with the next section, we state rules and constraints
with numbered equations, and add to each equation, in square brackets, the number of
generated clauses and the size of each such clause. For instance, the equation

[O(n), O(1)] ∀i ∈ [1..n] : pi =⇒ pi+1 (1)

defines n clauses, each of the form (¬pi ∨ pi+1), so its complexity is [O(n), O(1)].

Experiments. We implemented our MAX-SAT-formulations in the ASP language, and
used the solver clingo [26, 27]3 for evaluation. We compare the results with brute-force
approaches written in the python language on randomly generated data. Our filenames
are formatted like s03m04n005i1 to denote that the alphabet size is σ = 3, the number of
strings is m = 4, the length of each string is n = 5, and this file is the i = 1-st sample of
a batch of files with the same characteristics (σ, m and n). For mcsp, we have file formats
like 2s02n008i2.txt where the prefix 2 denotes that m = 2 is fixed. For the mcsp files, we
assume that the two strings given have the same Parikh vector. Our implementations and
datasets are available at https://github.com/koeppl/aspstring. For the evaluation, all
experiments ran single-threaded on a machine with Intel Core i3–9100 CPU and Debian 11.

2 Meaning that such algorithms usually are based on theoretical results that can be put hardly into
practice.

3 https://github.com/potassco/clingo

https://github.com/koeppl/aspstring
https://github.com/potassco/clingo
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T = s l e e p l e s s n e s s

Figure 1 Example for csp (Sect. 3) with n = 13. The input set S = {S1, . . . , S5} is shown on
the left figure. The right figure shows that the solution T = sleeplessness has three mismatches
with each of the input strings in the Hamming distance. Mismatching characters are highlighted by
surrounding boxes.

3 Closest String Problem (CSP)

The Closest String Problem (csp)4 asks for a string T such that
maxx∈[1..m] distham(Sx, T ) is minimal, where the Hamming distance distham is given
by distham(Sx, T ) := |{i ∈ [1..n] : Sx[i] ̸= T [i]}|. An example is shown in Fig. 1. Here, and
in the following examples we stick to the alphabet Σ := {e, l, p, n, s} with size σ = 5.

Related Work. Frances and Litman [24] and Lanctôt et al. [39] proved that csp and its
generalization, the Closest Substring Problem (css), are NP-hard for any alphabet
with σ ≥ 2 in n and m. The parameterized complexities have been surveyed in [48, Section
5.1] and [57], with focus also on css. For the decision problem with a Hamming distance of d,
Gramm et al. [32] showed that csp can be solved in O(mn + dd) time or 22O(m log m) O(log n)
time. Regarding integer linear programming (ILP), Chimani et al. [13] gave ILP formulations,
also for css. There is a line of research on further practical ILP formulations [16, 43, 54].
Finally, Knop et al. [38] gave also an ILP formulation and an exact algorithm running in
mO(m2) O(log n) time.

With respect to different kinds of optimization approaches, Kelsey and Kotthoff [37]
studied csp as a constraint satisfaction problem, Huan et al. [35] provided an ant colony
optimization algorithm, and Vilca and de Freitas [55] gave a specialized algorithm for fixed
m = 3.

3.1 MAX-SAT encoding
We use the known fact that we have to select, for the i-th character of the output T , a
character appearing at the i-th position of one of the input strings.

▶ Lemma 1 ([37, Lemma 2]). For each i ∈ [1..n], T [i] = Sx[i] for an x ∈ [1..m].

Let us define Σi := {S1[i], . . . , Sm[i]} to be the set of characters appearing at text
position i of all input strings. Then σi := |Σi| ≤ min(m, σ), and σi can be much less than
m or σ if the number of distinct characters is small. We can express the alphabets per
position Σi by a Boolean matrix M [1..n][1..σ] with M [i][c] = 1 if c ∈ Σi.

4 Alternative names are, among others, Minimum Radius, Center String or Consensus String
problem.
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Further, we define the variables Ti,c = 1 to encode that T [i] = c, for i ∈ [1..n], c ∈
{S1[i], . . . , Sm[i]}. To state that T [i] = Sx[i], we want that, for a fixed position i ∈ [1..n],
only one Ti,c is set:

[O(n), O(min(m, σ))] ∀i ∈ [1..n] :
∑
c∈Σi

Ti,c = 1 (CSP1)

Next, we define the cost variables Ci,x for all i ∈ [1..n] and x ∈ [1..m] with Ci,x being set if
T [i] ̸= Sx[i]. Thus the Hamming distance between T and Sx is distham(T, Sx) =

∑
i∈[1..n] Ci,x.

Therefore:

[O(nmσ), O(1)] ∀i ∈ [1..n], c ∈ Σi, x ∈ [1..m] : Ti,c ∧ Sx[i] ̸= c =⇒ Ci,x (CSP2)

A statement for setting Ci,x to false is not needed as the optimizer will try to do so if it
does not violate (CSP2). This is achieved by the following objective:

[O(1), O(mn)] minimize max
x∈[1..m]

∑
i∈[1..n]

Ci,x (CSP3)

Complexities. We have O(nσ) selectable variables (Ti,c), O(nm) helper variables (Ci,x),
O(nmσ) clauses (CSP2). The largest clause contains O(mn) variables (CSP3).

Implementation. Our implementation in ASP is given in Listing 1. In all listings, the
percent sign % introduces a comment until the end of the line, which we use to refer to the
MAX-SAT equation that is represented by the respective line of code. Red curly arrows
symbolize line breaks. If not otherwise stated, in all code listings onwards, we assume that
the input is of the form s(X, I, C), denoting that SX[I] = C ∈ Σ. We use the helper variables
mat(X,I) to denote the existence of SX[I]. For encoding (CSP3) in ASP, we additionally
define the helper variables cost and mcost encoding

∑
i∈[1..n] Ci,X and maxx∈[1..m] cost(x),

respectively. The #show directives at the end define the variables the solver has to output.
The evaluation for our implementation is deferred until we have introduced the css problem,
which we conjointly evaluate in Sect. 4.2.

Listing 1 ASP for csp (Sect. 3).

mat(X,I) :- s(X,I,_).
1 {t(I,C) : s(_,I,C)} 1 :- mat(_,I). %(CSP1)
c(X,I) :- t(I,C), s(X,I,A), C != A. %(CSP2)
cost(X,C) :- C = #sum {1,I : c(X,I)}, mat(X,_). %(CSP3)
mcost(M) :- M = #max {C : cost(_,C)}.
#minimize {M : mcost(M)}.
#show t/2. #show mcost/1. #show cost/2.

4 Closest Substring (CSS)

For the css problem, we additionally require a parameter λ as input to specify the length of
the output string T . css asks for the string T with |T | = λ such that maxx∈[1..m] distλ(Sx, T )
is minimal, where distλ(Sx, T ) := mini∈[1..n−λ+1] distham(Sx[i..i + λ − 1], T ) is the number
of mismatches we need to be able to detect T via approximate pattern matching in Sx with
distλ(Sx, T ) mismatches. An example is shown in Fig. 2.
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Figure 2 Example for css (Sect. 4) with n = 13 and query length λ = 4. The input is shown on
the left figure. We can observe in the right figure that T = snes is the css having one mismatch
with each of the input strings in the Hamming distance by horizontally shifting the input strings.

Related Work. The decision problem for δ mismatches is also called δ-Mismatch prob-
lem. Gramm et al. [32, Theorem 2] solved the decision problem in O(mλ + (n −
λ)mδδ+1) time. Marx [46] showed that css can be solved in O(σδ(lg δ+2(nm)O(lg δ)) or
O((σδ)O(mδ)(nm)O(log log m)) time. A survey on further results can be found in [31]. With
respect to other optimization approaches, we are aware of a genetic algorithm [47].

4.1 MAX-SAT encoding
Following [32, Section 3.3], we reduce css to csp by selecting shifts dx ∈ [0..n − λ] of each
input string Sx such that the csp of {S1[1 + d1..λ + d1], . . . , Sm[1 + dm..λ + dm]} is a solution
of css if we take the minimum distance over all shifts dx.

In what follows, we represent the shifts by a matrix of selectable Boolean variables of
size O(m(n − λ)). We redefine the alphabet for the i-th character to be Σi := {S1[i +
d1], . . . , Sm[i + dm]}. We define the variables Ti,c and Ci,x as before. We copy (CSP1) as it
is since it only states from which string Sx we select the i-th character of T , except that we
have O(λ) instead of O(n) clauses since |T | = λ. The major difference is that for checking
equality, we must add the offsets and obtain the following modification of (CSP2):

[O(λnmσ), O(1)] ∀i ∈ [1..λ], c ∈ Σi, x ∈ [1..m] : Ti,c ∧ Sx[i + dx] ̸= c =⇒ Ci,x (CSS2)

The additional n-term in the complexity stems from the fact that the offsets dx are represented
as a two-dimensional binary array. The other equations as well as the objective are kept in
the same way.

Complexities. We have O(λσ + m(n − λ)) selectable variables (Ti,c and dx), O(λm) helper
variables (Ci,x), O(λmnσ) clauses. The largest clause has size O(λm). Our implementation
in ASP is given in Listing 2, where we expect an additional input of the form #const
lambda=λ. for the requested substring length λ.

Listing 2 ASP for css (Sect. 4).

mat(X,I) :- s(X,I,_).
1 {d(X,D) : D = 0..n-lambda} 1 :- mat(X,0).
sigma(I,C) :- s(X,J,C), d(X,D), J-D >= 0, I = J-D.
1 {t(I,C) : sigma(I,C)} 1 :- mat(_,I), I < lambda. %(CSP1)
c(X,I) :- t(I,C), s(X,J,A), d(X,D), I+D == J, I < lambda, A != C. %(CSS2)
cost(X,C) :- C = #sum {1,I : c(X,I)}, mat(X,_). %(CSP3)
mcost(M) :- M = #max {C : cost(_,C)}.
#minimize {M : mcost(M)}.
#show t/2. #show mcost/1. #show cost/2.
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Table 1 Evaluation for the Closest String Problem (csp) for λ = 0 and Closest Substring
Problem (css) for λ > 0. The column dist shows the maximum Hamming distance of the reported
string to all input strings. The column rules is the number of created SAT rules, vars is the number
of variables, and choices is the number of choices or configurations the solver or brute-force algorithm
tries. Reported times are in seconds ([s]).

ASP brute-force
file λ dist rules vars choices time [s] choices time [s]
s05m09n009i0 0 6 1288 321 725 0.01 640 000 5.47
s05m09n009i0 7 4 1932 1122 1663 0.02 78 125 1.96
s05m09n009i0 8 5 1764 969 3666 0.05 390 625 7.29
s05m09n009i0 9 6 1427 330 676 0.01 1 953 125 21.59
s06m07n009i1 0 7 1078 268 1767 0.02 768 000 5.12
s06m07n009i1 7 4 1765 1069 3235 0.04 279 936 5.49
s06m07n009i1 8 5 1550 868 1314 0.02 1 679 616 24.45
s06m07n009i1 9 7 1194 275 2058 0.02 10 077 696 87.80
s06m08n009i0 0 6 1191 295 1074 0.01 750 000 5.67
s06m08n009i0 7 5 1907 1147 4266 0.05 279 936 6.23
s06m08n009i0 8 6 1698 954 4021 0.05 1 679 616 27.90
s06m08n009i0 9 6 1319 303 1273 0.01 10 077 696 100.23
s06m08n009i1 0 7 1248 299 2378 0.02 1 800 000 13.63
s06m08n009i1 7 5 1971 1203 4834 0.07 279 936 6.27
s06m08n009i1 8 6 1770 1012 5093 0.08 1 679 616 27.77
s06m08n009i1 9 7 1380 307 2163 0.02 10 077 696 99.98
s06m08n009i2 0 7 1248 299 2128 0.02 1 800 000 13.61
s06m08n009i2 7 5 1907 1147 5556 0.07 279 936 6.28
s06m08n009i2 8 6 1698 955 5552 0.08 1 679 616 27.91
s06m08n009i2 9 7 1380 307 2210 0.02 10 077 696 99.84
s06m09n009i0 0 7 1303 322 1837 0.02 800 000 6.81
s06m09n009i0 7 4 2142 1301 4331 0.05 279 936 7.02
s06m09n009i0 8 5 1920 1093 5334 0.08 1 679 616 31.38
s06m09n009i0 9 7 1443 331 1962 0.02 10 077 696 111.16
s06m09n009i1 0 7 1396 328 1849 0.02 2 700 000 22.97
s06m09n009i1 7 5 2177 1334 5341 0.07 279 936 7.04
s06m09n009i1 8 6 1920 1100 5693 0.10 1 679 616 31.20
s06m09n009i1 9 7 1542 337 1746 0.02 10 077 696 110.05
s06m09n009i2 0 6 1336 324 1874 0.02 1 080 000 9.07
s06m09n009i2 7 4 2177 1333 3706 0.05 279 936 6.92
s06m09n009i2 8 5 1946 1114 4565 0.06 1 679 616 30.52
s06m09n009i2 9 6 1478 333 1920 0.02 10 077 696 107.62

4.2 Evaluation of csp and css
Although there are efficient heuristics like choosing a majority string [8], we compared
our ASP encoding for csp to a basic brute-force algorithm that enumerates all possible
assignments for the characters of the closest substring. The number of possible configurations
for T is cS :=

∏n
i=1 σi ∈ O(min(σn), mn) dependent on the shape of the strings in S. A

brute-force algorithm trying each configuration spends O(cSnm) time on computing the
Hamming distances of the resulting string T with all strings of S.

This algorithm can be easily adopted for css. For that, we consider all possible offsets
of the input strings like in the ASP encoding. Hence, the number of configurations is the
number of configurations for the csp instance, multiplied by (n − λ)m for each possible
offset value. If λ is small, then it suffices to compute all configurations of T , which are σλ

many, and compute the Hamming distances in O(λm) time for each such configuration. We
implemented the former brute-force approach, whose time complexity grows exponentially
with all parameters σ, n, and m, for randomly generated strings. We can observe this case
in Table 1, where the ASP implementation outperforms the brute-force approach.
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Table 2 Evaluation of the Closest String problem (scp) on datasets provided by Torres and
Hoshino [54]. The column distance is the maximal Hamming distance of the output to any of the
input strings.

file distance rules vars choices time [s]
rand-4-150-150-5-2 2 31 329 12 942 19 0.06
rand-4-50-50-5-2 2 10 529 4342 21 0.015
rand-4-100-100-5-2 2 20 929 8642 24 0.031
rand0-2-10-10-20-5 4 4286 842 43 0.011
rand0-2-10-10-20-4 4 4286 842 60 0.011
rand0-4-10-10-20-5 4 4887 1179 65 0.012
rand0-2-10-10-20-3 5 4474 848 72 0.012
rand-20-50-50-5-2 2 17 323 4549 78 0.018
rand-20-150-150-5-2 2 55 819 13 197 100 0.082
rand0-20-10-10-20-5 4 5573 1359 121 0.013
rand-20-100-100-5-2 2 37 213 8894 129 0.041
rand-4-150-150-5-1 5 31 329 12 942 189 0.117
rand-4-50-50-5-1 5 10 529 4342 199 0.021
rand0-2-10-10-20-2 6 4474 922 202 0.014
rand-4-100-100-5-1 5 20 929 8642 248 0.056
rand0-2-10-10-20-1 7 4474 922 265 0.015
rand-4-50-50-10-2 5 12 279 3082 494 0.035
rand-20-100-100-5-1 5 37 213 8894 501 0.068
rand-20-150-150-5-1 5 55 819 13 197 525 0.131
rand-20-50-50-5-1 5 18 595 4585 548 0.029
rand0-4-10-10-20-4 5 5008 1264 555 0.018
rand0-4-10-10-20-3 5 4869 1241 627 0.019
rand0-20-10-10-20-4 5 5800 1384 998 0.027
rand-20-50-50-10-2 5 26 397 3511 1057 0.053
rand0-20-10-10-20-3 6 6520 1477 2369 0.058
rand-20-50-50-15-2 7 40 426 5288 3512 0.235
rand-4-50-50-15-2 7 18 454 4622 4192 0.251
rand-4-50-50-10-1 8 12 279 3082 7320 0.343
rand0-4-10-10-20-2 8 5255 1334 18 095 0.373
rand-20-50-50-10-1 9 28 623 3574 23 622 1.255
rand0-20-10-10-20-2 9 6964 1540 48 538 1.265
rand-4-50-50-20-2 10 24 654 6162 98 610 12.379
rand-4-50-50-15-1 11 18 454 4622 119 367 8.76
rand-20-50-50-20-2 10 53 844 7047 168 793 28.348
rand0-4-10-10-20-1 11 5404 1360 770 565 19.168
rand-20-50-50-15-1 12 42 864 5357 2 716 507 358.345
rand-4-50-50-20-1 15 24 654 6162 39 265 111 7009.909

In Table 2, we depict the results of a larger evaluation on the datasets provided in [54]5,
which are also used in [16, 43]. We kept their file naming, which is the format rand-σ- m

2 - m
2 -n-i,

where i is an iteration counter to have multiple files with the same characteristics (m, n,
and σ). The prefix rand can be followed by a zero. We observe that larger distances correlate
with the number of choices, affecting the overall running time. Even for large inputs with
short distances like the dataset rand-4-150-150-5-1, the running time is short.

5 https://github.com/jeanpttorres/dssp
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T = s l e e p l e s s

Figure 3 Example for lcs (Sect. 5) with n = 13. The input is shown on the left figure. In the
right figure, we highlighted the subsequences matching T = sleepless by surrounding the respective
characters with boxes in each input string. Here, T = sleepless is the lcs of all input strings.

5 Longest Common Subsequence (LCS)

The lcs problem asks for the longest string T such that T is a subsequence of Sx for every
x ∈ [1..m]. See Fig. 3 for an example.

Existence. A solution exists if all strings share at least one common character in the
alphabet.

Related Work. Maier [45] showed that lcs is NP-hard for σ ≥ 2, and the same holds for
scs with σ ≥ 5. Later, Blin et al. [5] gave a proof that lcs stays NP-hard even if the input
strings are well-compressible with the run-length encoding. For exact algorithms, we can
extend the classic dynamic programming (DP) algorithm of Wagner and Fischer [56] to m

strings, which then takes O(nm) time. Irving and Fraser [36] gave two algorithms running in
O(mn(n− ℓ)m−1) or O(mℓ(n− ℓ)m−1 + mσn) time, where ℓ is the length of the output. This
result implies that lcs is FPT in m and n − ℓ. Bulteau et al. [10] improved the result of [36]
with an algorithm running in O((n − ℓ + 1)n−ℓ+1mn) time, which is an FPT in the number
of deletions n − ℓ. Finally, there is a genetic algorithm [34] and an ant colony optimization
algorithm [50].

5.1 MAX-SAT encoding

Our idea is to select a subsequence Tx for each input string Sx and maximize the length of
Tx under the constraint that all Tx’s have to be equal. The subsequence Tx of Sx is given by
a sequence of indices i1 < . . . < i|Tx| such that Sx[i1] · · · Sx[i|Tx|] = Tx. We can encode the
subsequences Tx by the selectable variables Cx,ℓ,i encoding whether Tx[ℓ] = Sx[i], for each
x ∈ [1..m], ℓ ∈ [1..n]. We make use of Cx,ℓ,i as follows. First, for each Tx[ℓ], we define the
range for the selectable variables Cx,ℓ,i.6

[O(nm), O(n)] ∀x ∈ [1..m], ℓ ∈ [1..n] :
∑

i∈[ℓ..n]

Cx,ℓ,i ≥ 0 (LCS1)

6 Logically, we would expect in (LCS1) a “≤ 1” instead of a “≥ 0”. However, the former suffices together
with the following constraints and is cheaper than “≤ 1”.



D. Köppl 17:9

If we have selected Tx[ℓ] to be Sx[i], then Tx[ℓ−1] must be a character chosen in Sx[1..i−1]:

[O(n2m), O(n)] ∀x ∈ [1..m], ℓ ∈ [2..n], i ∈ [ℓ..n] :

Cx,ℓ,i =⇒
∑

j∈[1..i−1]

Cx,ℓ−1,j = 1 (LCS2)

Next, we define the helper variables Vx,ℓ encoding whether Tx has a length of at least ℓ,
for each x ∈ [1..m], ℓ ∈ [1..n]. If we have selected a character for Tx[ℓ] via Cx,ℓ,i, then we set
Vx,ℓ to true to specify that Tx has a length of at least ℓ.

[O(nm), O(n)] ∀x ∈ [1..m], ℓ ∈ [1..n] :
∨

i∈[1..n]

Cx,ℓ,i =⇒ Vx,ℓ (LCS3)

We now restrict all Tx’s to be of equal length, which we do in a Round-Robin encoding:

[O(nm), O(1)] ∀x ∈ [1..m], ℓ ∈ [1..n] : Vx,ℓ =⇒ V(x+1) mod n,ℓ (LCS4)

Here, mod n : {1, 2, . . .} → [1..n] is the modulo operation with n mod n = n and (n +
1) mod n = 1. To achieve that all Tx store the same characters, we use the following
constraint.

[O(n3m), O(1)] ∀x ∈ [1..m], ℓ ∈ [1..n], i, j ∈ [1..n] :
Cx,ℓ,i ∧ C(x+1) mod m,ℓ,j =⇒ Sx[i] = S(x+1) mod m[j] (LCS5)

Finally, we enforce that we need to select a position for Tx[ℓ] if Vx,ℓ is set:

[O(nm), O(n)] ∀x ∈ [1..m], ℓ ∈ [1..n] : Vx,ℓ =⇒
∨

i∈[ℓ..n]

Cx,ℓ,i (LCS6)

Alternatively to (LCS5) and (LCS6), we can state that the next subsequence must select
one of the text positions j for Tx+1[ℓ] with Sx+1[j] = Sx[i].

[O(n2m), O(n)] ∀x ∈ [1..m], ℓ ∈ [1..n], i ∈ [1..n] :

Cx,ℓ,i =⇒
∑

j:Sx[i]=S(x+1) mod n[j]

C(x+1) mod m,ℓ,j = 1 (LCS5’)

Finally, we formulate our optimization problem as

[O(1), O(n)] maximize
∑

ℓ∈[1..n]

V1,ℓ (LCS7)

Complexities. Our implementation in ASP is given in Listing 3. We have O(mn2) selectable
variables (Cx,ℓ,i), O(mn) helper variables (Vx,ℓ), and O(n2m) clauses (LCS5’). The largest
clause has O(n) variables. An improvement for short lcs solutions could be to encode
the existence problem for a fixed length λ in ASP such that we have O(mλ) selectable
variables for encoding Tx, and call this encoding while varying λ to find the largest value for
λ admitting a solution.
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Table 3 Evaluation of the Longest Common Subsequence problem (lcs).

ASP brute-force

file length rules vars choices time [s] choices time [s]
s02m11n023i1 10 166 538 21 494 23 617 1.00 8 388 608 47.29
s02m10n023i2 10 151 627 19 540 34 146 1.02 8 388 608 43.35
s02m09n023i1 11 137 112 17 586 10 964 0.61 8 388 608 39.73
s03m08n023i1 8 138 002 15 632 4831 0.40 8 388 608 39.20
s04m09n023i1 6 162 617 17 586 3927 0.39 8 388 608 39.07
s03m11n023i2 8 188 366 21 494 20 672 1.18 8 388 608 38.99
s03m08n023i2 7 136 795 15 632 11 046 0.63 8 388 608 38.54
s03m07n023i2 9 119 551 13 678 5945 0.40 8 388 608 37.59
s04m11n023i1 6 197 886 21 494 5767 0.58 8 388 608 37.06
s03m08n023i0 8 136 968 15 632 6301 0.45 8 388 608 37.05
s03m08n022i0 8 120 880 14 256 5467 0.37 4 194 304 17.87
s03m08n022i1 7 120 416 14 256 3970 0.32 4 194 304 17.69
s02m11n022i1 11 146 880 19 602 11 779 0.53 4 194 304 17.61
s03m07n022i2 9 105 785 12 474 2763 0.24 4 194 304 17.34
s03m11n022i2 7 165 908 19 602 7974 0.63 4 194 304 17.31
s04m11n022i1 6 175 570 19 602 8045 0.58 4 194 304 17.02
s02m09n022i1 12 121 186 16 038 6522 0.27 4 194 304 16.85
s03m08n022i2 8 120 313 14 256 4442 0.34 4 194 304 16.80
s04m09n022i1 6 143 324 16 038 5791 0.45 4 194 304 16.72
s02m10n022i2 10 135 128 17 820 9640 0.47 4 194 304 15.94

Listing 3 ASP for lcs (Sect. 5).

mat(X,I) :- s(X,I,_).
0 {c(X,L,I) : mat(X,I), I >= L} :- mat(X,L). %(LCS1)
1 {c(X,L,J) : J < I, mat(X,J)} 1 :- c(X,L+1,I), mat(X,L), mat(X,L+1). %(

↪→ LCS2)
v(X,L) :- c(X,L,I), mat(X,I), mat(X,L). %(LCS3)
v(X+1,L) :- v(X,L), mat(X,L), mat(X+1,L). %(LCS4)
v(0,L) :- v(m-1,L).
:- c(X+1,L,J), c(X,L,I), s(X,I,D), not s(X+1,J,D). %(LCS5)
:- c(0,L,J), c(m-1,L,I), s(m-1,I,D), not s(0,J,D).
1 {c(X,L,I) : mat(X,I), I >= L} :- v(X,L). %(LCS6)
#maximize {1,L : v(0,L)}. %(LCS7)
#show c/3.

5.2 Evaluation
A DP approach would need O(nm) time (cf. [15, Chapter IV, Section 15.4] for a textbook
reference). Here, we stick to a trivial approach that tries all distinct subsequences of the
first string S1, and for each such subsequence we check whether it is a subsequence of all
other input strings. The number of these subsequences is at most 2n − 1. If we select these
subsequences with respect to their lengths, starting with the longest possible one, we can
terminate whenever the selected subsequence is found in all other strings. In the worst
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ref9,9
ref10,1
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Figure 4 Example for mcsp (Sect. 6) with n = 13. We can factorize S1 = F1F2F3 into three
factors, with F1 = G3, F2 = G2 and F3 = G1 such that S2 = G1G2G3. Hence, the solution for this
example is a partition of length three. On the right is a partial assignment of the variable ref based
on this partition, where ref induces a factor starting at position 10 in S1.

case, the time complexity of this approach grows exponentially in n, but only linearly in m,
independent of the alphabet size. We therefore restrict our evaluation in Table 3 to scaling n

while keeping the other parameters unchanged. Like in Sect. 4.2, the ASP implementation
outperforms the brute-force approach. However, a DP implementation might outperform the
ASP implementation by re-using memoized results.

6 Minimum Common String Partition (MCSP)

For the special case of m = 2 input strings S1 and S2, the mcsp problem, introduced by
Goldstein et al. [29] and Swenson et al. [52], asks, for a given z ∈ [1..n], a factorization
of S1 into Sx = F1 · · · Fz and a permutation π of [1..z] such that Fπ(1) · · · Fπ(z) = S2. The
optimization problem is to find the smallest z for which a solution exists. We give an example
in Fig. 4.

Existence. A sufficient condition for whether a solution for any z ∈ [1..n] exists is to check
that the Parikh vectors of S1 and S2 are the same, such that at least a permutation on [1..n]
exist to rearrange the characters of S1 to form S2.

Related Work. While introducing mcsp, Goldstein et al. [29] also showed that it is NP-
hard. Bulteau and Komusiewicz [11] showed that mcsp is FPT in z. For constant alphabets
(σ = O(1)), Cygan et al. [17] presented an exact algorithm running in 2O(n lg lg n/ lg n) time.
Recently, Chromý and Sinnl [14] studied a DP algorithm. It is known that mcsp can
be tackled by probabilistic tree searches [7], ILP formulations [6, 23], and an ant colony
optimization algorithm [22].

6.1 MAX-SAT encoding

We adapt the MAX-SAT encoding of Bannai et al. [1] for the shortest bidirectional macro
scheme problem [51]. To this end, we define the sets Mi := {j ∈ [1..n] | S1[i] = S2[j]} ⊂ [1..n]
specifying the positions in S2 that match with S1[i]. In what follows, we make use of the
following selectable Boolean variables:

pi or qi encode if S1[i] or S2[i] is the start of a factor, respectively, for i ∈ [1..n].
ref i→j encodes whether position i of S1 references position j of S2, and vice versa, for
i ∈ [1..n] and j ∈ Mi.

CPM 2023
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We have O(n2) Boolean variables, which we use as follows. On the one hand, each position
in S1 has exactly one reference:

[O(n), O(n)] ∀i ∈ [1..n] :
∑

j∈Mi

ref i→j = 1 (MCSP1)

On the other hand, each position in S2 has exactly one reference:

[O(n), O(n)] ∀j ∈ [1..n] :
∑

i∈[1..n]

ref i→j = 1 (MCSP2)

In what follows, we add implications for the factor starting positions that are due to how
we set the references. First, a factor starts always at the first text position, so p1 and q1 are
always true. If S1[i] references S2[i] and i is a factor starting position of S1, so is j for S2.

[O(n2), O(1)] ∀i ∈ [1..n], j ∈ Mi : pi ∧ ref i→j =⇒ qj (MCSP3)

Next, if S1[i] references S2[i] and j is a factor starting position of S2, so is i for S1. We only
have to check that condition for q1 since all other constraints set pi and constraint (MCSP3)
then implies that qj has to be set.

[O(n), O(1)] ∀i ∈ [1..n] : q1 ∧ ref i→1 =⇒ pi (MCSP4)

Another condition is that if the previous text positions have mismatching characters, we
cannot extend the factor to the left.

[O(n2), O(1)] ∀i ∈ [1..n], j ∈ Mi with S1[i − 1] ̸= S2[j − 1] : ref i→j =⇒ pi (MCSP5)

Even if the previous characters match, when the reference of the previous text positions
is different, we need to make a factor starting position:

[O(n2), O(1)] ∀i ∈ [2..n], ∀j ∈ Mi such that j > 1 and S2[i − 1] = S2[j − 1] :
¬ref i−1→j−1 ∧ ref i→j =⇒ pi (MCSP6)

[O(1), O(n)] Finally, we minimize
∑

i∈[1..n]

pi (MCSP7)

Complexities. We have O(n2) selectable variables, and O(n2) clauses (MCSP3). The largest
clause has O(n) variables (MCSP2). Our implementation in ASP is given in Listing 4. Note
that we start counting at zero, so p(0). is equivalent to setting p1 to true. Instead of mat we
use the helper variables spos and tpos denoting the existence of S1[i] and S2[i], respectively.

Listing 4 ASP for mcsp (Sect. 6).

spos(I) :- s(0,I,_).
tpos(J) :- s(1,J,_).
p(0). q(0).
arc(I,J) :- s(0,I,C), s(1,J,C).
1 {ref(I,J) : arc(I,J)} 1 :- spos(I). %(MCSP1)
1 {ref(I,J) : arc(I,J)} 1 :- tpos(J). %(MCSP2)
q(J) :- p(I), ref(I,J). %(MCSP3)
p(I) :- q(1), ref(I,1). %(MCSP4)
p(I) :- ref(I,J), s(0,I-1,C), s(1,J-1,D), C != D. %(MCSP5)
p(I) :- not ref(I-1,J-1), ref(I,J). %(MCSP6)
#minimize {1,X : p(X)}. %(MCSP7)
#show ref/2. #show p/1. #show q/1.
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Table 4 Evaluation of the Minimum Common String Partition problem (mcsp). Note that
the time for the ASP solution is in milliseconds. The column z denotes the number of factors of the
returned partition.

ASP brute-force

file z rules vars choices time [ms] choices time [s]
2s03n009i2 4 443 124 25 1.0 986 409 6.24
2s02n009i0 4 586 165 61 2.0 986 409 6.31
2s02n009i1 4 586 165 59 2.0 986 409 6.43
2s03n009i0 6 426 124 52 1.0 986 409 6.44
2s03n009i1 2 367 116 30 1.0 986 409 6.49
2s02n009i2 6 521 149 39 1.0 986 409 6.95
2s03n010i1 4 604 162 67 2.0 9 864 100 68.81
2s02n010i0 4 510 213 108 2.0 9 864 100 70.92
2s03n010i0 6 484 147 37 1.0 9 864 100 71.04
2s03n010i2 4 584 164 47 2.0 9 864 100 71.38
2s02n010i2 4 637 189 77 2.0 9 864 100 73.78
2s02n010i1 3 639 187 103 2.0 9 864 100 74.28

Table 5 Evaluation of the Minimum Common String Partition problem (mcsp) on prefixes of
the SARS-CoV-2 dataset.

length z rules vars choices time [s]
10 4 447 146 34 0.001
20 12 1273 445 269 0.003
30 14 2282 911 1951 0.017
40 16 3720 1685 4683 0.047
50 21 5468 2442 2 050 092 18.609
60 24 7451 3422 6 866 999 80.256

6.2 Evaluation

Without leveraging the actual contents of the characters like in our SAT formulation, a
naive way is to factorize both strings S1 and S2 with factors of the same lengths, and check
whether there exists a permutation such that we can match factors of S1 with factors of S2.
To this end, we iterate over the size z of the partition from 1 to n. For each z ∈ [1..n], we
partition S1 into z factors S1 = F1 · · · Fz. There are

(
n
z

)
such ways to partition S1. For each

permutation πz on [1..z], we define the factorization G1 · · · Gz = S2 with |Gx| = |Fπ(x)| for
all x ∈ [1..z]. If Gx = Fπ(x) for all x ∈ [1..z], then we have found a solution, and terminate.
The number of configurations is

∑n
z=1

(
n
z

)
z! , and each check takes O(n) time. Like the

brute-force approach for lcs (Sect. 5.2), this approach has an exponential dependency on
the text length n. In Table 4, we observe that specifying the choices for the references for
each position individually (as we do in our ASP encoding) reduces the number of choices
significantly when compared to the choices the brute-force algorithm processes.

Since our ASP encoding for mcsp seems quite efficient, we subsequently performed a
benchmark on real data. In detail, we conducted an experiment by scaling the prefix length
of a given input sequence, and report results in Table 5. For that, we used the SARS-CoV-2
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1 2 3 4 5
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T = s l e e p l e s s n e s s

Figure 5 Example for scs (Sect. 7) with n = 5. The input is shown on the left figure. By the right
figure, the scs is T = sleeplessness, where we shifted the input strings to match their occurrences
in T .

reference in FASTA format introduced in the analysis of Farkas et al. [21] 7, after removing
the header line and the newline characters. For each extracted prefix of this FASTA file,
we created an instance for mcsp, where the second string is a random permutation of the
original prefix. We can observe in Table 5 that the output size z exponentially correlates
with the number of choices and the running time.

7 Shortest Common Superstring (SCS)

The scs problem asks for the shortest string T such that Sx is a substring of T , for all
x ∈ [1..m]. Figure 5 shows an example.

Existence. A trivial common superstring is the concatenation S1 · · · Sm. Permuting the
strings and removing overlapping parts lead to the solution [25].

Related Work. Gallant et al. [25] showed that scs is NP-hard for n ≥ 3 with respect to the
number of strings m and unbounded alphabet size, but can be solved in linear time if n ≤ 2.
For binary alphabet σ = 2, they showed that the problem is still NP-hard for n = Ω(log(nm)).
It is known that scs can be solved with neural networks [44] and genetic algorithms [30].
Most research on scs is devoted to the analysis and improvement of the approximation
algorithm presented by Tarhio and Ukkonen [53, Theorem 2.3]. This algorithm builds the
so-called overlap graph of S. The authors observed that a Hamiltonian path on the overlap
graph [49] maximizing the weights of the selected edges solves scs.

7.1 Reduction to Hamiltonian Path
We follow the idea of Tarhio and Ukkonen [53] by reducing scs to the search of the Hamiltonian
path maximizing the weights of the selected edges. The ASP encoding of finding a Hamiltonian
cycle in an unweighted graph has already been studied in [42, 41]. We build on one of their
approaches and extend it by maximizing the weights while omitting the weight of one
edge to turn the cycle into a Hamiltonian path8. An overlap graph (S, A, w) is a weighted

7 https://github.com/cfarkas/SARS-CoV-2-freebayes
8 We make a distinction between Hamiltonian path and Hamiltonian cycle in the sense that the cycle

visits exactly one node twice.

https://github.com/cfarkas/SARS-CoV-2-freebayes
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directed graph, having the input strings S as nodes and the arcs A := {(Sx, Sy) : x ̸= y}.
The weights are defined by a weight function w : A → [0..n] with w(Sx, Sy) := max{|U | :
U is suffix of Sx and prefix of Sy}. Hence, w(Sx, Sy) is the number of overlapping characters,
which we can omit if we want to build the superstring of Sx and Sy that starts with Sx.
With respect to the overlap graph, a path is a sequence of strings, and a Hamiltonian path in
the overlap graph is a path that visits each node exactly once, i.e., a permutation π of the
list [S1, . . . , Sm]. Our goal is to find a permutation that maximizes

∑m−1
x=1 w(Sπ(x), Sπ(x+1)),

i.e., to find the Hamiltonian path whose arcs have maximal weights in sum.

7.2 MAX-SAT encoding
We define the following O(m2) Boolean variables:

cyclex,y encoding whether we have the arc (Sx, Sy) in our Hamiltonian cycle, for x, y ∈
[1..m];
reachx,y encoding whether we can reach Sy from Sx by following the transitive closure of
cycle, for x, y ∈ [1..m];
startx encoding whether our superstring starts with Sx, for x ∈ [1..m].

First, we select arcs from the overlap graph for cyclex,y. To this end, for each string Sx,
we select exactly one out-going arc and one in-coming arc:

[O(m), O(m)] ∀x ∈ [1..m] :
m∑

y=1
cyclex,y = 1 and ∀y ∈ [1..m] :

m∑
x=1

cyclex,y = 1 (SCS1)

The transitive closure of cycle can be encoded as follows. First we initialize reach by the
direct connections due to cycle.

[O(m2), O(1)] ∀x, y ∈ [1..m], x ̸= y : cyclex,y =⇒ reachx,y (SCS2)

Next, if we can reach y from x, and there is an arc (y, z), then we can reach z from x:

[O(m3), O(1)] ∀x, y, z ∈ [1..m], x ̸= y ̸= z : reachx,y ∧ cycley,z =⇒ reachx,z (SCS3)

To make the path selected by cyclex,y an Hamiltonian path, we want that all strings are
connected via reach:

[O(m2), O(1)] ∀x, y ∈ [1..m], x ̸= y : reachx,y = 1 (SCS4)

For the Hamiltonian path it is left to select a designated start string9.

[O(1), O(m)]
m∑

y=1
starty = 1 (SCS5)

Finally, our objective is to maximize the weights on the path starting from startx of
length m:

[O(1), O(m2)] maximize
∑

x,y∈[1..m]: cyclex,y∧¬starty

w(x, y) (SCS6)

9 It actually suffices to check in (SCS4) that all strings can be reached from this start string, but doing so
had a negative impact on the overall running time in the experiments.
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Table 6 Evaluation of the Shortest Common Superstring problem (scs). |T | is the length of
the SCS.

ASP brute-force

file |T | rules vars choices time [s] choices time [s]
s02m10n008i0 42 2090 1416 198 756 3.58 10 240 0.02
s02m10n008i1 33 2206 1465 1 854 941 40.73 10 240 0.02
s02m10n008i2 39 2200 1464 1 401 686 29.49 10 240 0.02
s02m11n008i0 49 2639 1825 2 150 681 44.96 22 528 0.03
s02m11n008i1 35 2699 1861 6 652 411 154.48 22 528 0.03
s02m11n008i2 50 2611 1817 6 980 725 136.00 22 528 0.02

Complexities. We have O(m2) selectable variables and O(m3) clauses (SCS3). The largest
clause has O(m2) variables (SCS6). Our implementation in ASP is given in Listing 5. We
expect an input of the form w(X,Y,C) encoding the weight w(X, Y) = C. The helper variables
node and gain define the nodes of the overlap graph and the value of the optimization
argument in (SCS6), respectively.

Listing 5 ASP for scs (Sect. 7).

node(X) :- w(X,_,_).
1 {cycle(X,Y) : w(X,Y,_)} 1 :- node(X). %(SCS1)
1 {cycle(X,Y) : w(X,Y,_)} 1 :- node(Y).
reach(X,Y) :- cycle(X,Y). %(SCS2)
reach(X,Z) :- reach(X,Y), cycle(Y,Z). %(SCS3)
:- not reach(X,Y), node(X), node(Y). %(SCS4)
1 {start(X) : node(X)} 1. %(SCS5)
gain(D) :- D = #sum {C,X : cycle(X,Y), w(X,Y,C), not start(Y)}. %(SCS6)
#maximize {D : gain(D)}.
#show cycle/2. #show start/1.

7.3 Evaluation

The overlap graph can be computed in O(nm + m2) time [33]. Given the overlap graph, the
easiest approach is to enumerate all m! permutations, and compute the sum of the selected
weights in Θ(m) time. The time bound can be improved by using a DP approach taking
O(m22m) time10. In the experiments of Table 6, we use this DP approach as our brute-force
solution. We observe that it outperforms our ASP implementation on all instances. That is
due to the fact that (a) our ASP encoding does not make use of more information than the
DP approach, and that (b) the number of choices in our encoding for the Hamiltonian path
is prohibitively large. As a matter of fact, efficient SAT and ASP encodings for Hamiltonian
cycles are actively studied, cf. [58] for SAT and [4] for ASP.

10 https://leetcode.com/problems/find-the-shortest-superstring/solutions/194891/
official-solution/

https://leetcode.com/problems/find-the-shortest-superstring/solutions/194891/official-solution/
https://leetcode.com/problems/find-the-shortest-superstring/solutions/194891/official-solution/
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Table 7 Encoding complexities of the studied problems. Columns prob., #sel. vars, #h.vars,
#clauses and max. cl. denote the problem name, the number of defined selectable variables, the
number of helper variables, the number of clauses, and the maximum size a clause can have.

prob. #sel.vars #h.vars #clauses max cl.
csp O(nσ) O(nm) O(nmσ) O(mn)
css O(λσ+(n−λ)m) O(λm) O(nmσλ) O(λm)
lcs O(n2m) O(mn) O(n2m) O(n)
mcsp O(n2) O(1) O(n2) O(n)
scs O(m2) O(1) O(m3) O(m2)

8 Conclusion

We provided encodings in ASP for five prominent examples of NP-hard problems in the field
of stringology. We summarized the complexities of the encodings in Table 7. We observed
that, on the one hand, by leveraging characteristics of the input data such as for mcsp, our
solution is far superior than simple brute-force approaches that omit those characteristics. On
the other hand, for scs, we observed that if the problem can be easily reduced to instances
of problems like finding a Hamiltonian path, DP approaches are already efficient enough
to find the answer faster than an ASP solver. It therefore depends on the nature of the
problem we study for whether an application of an ASP solver makes sense. Nevertheless,
the programming in ASP is highly expressive as can be seen by the short program codes
in Listings 1–5, and therefore can be understood as a tool for rapid prototyping. Other
advantages of ASP solvers like clingo are that they can work in parallel, report approximate
solutions when reaching a given timeout, and enumerate all solutions, provided that the
specified constraints do not exclude one of them. An evaluation of those features is left as
future work since it would go beyond the scope of this paper.
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Table 8 Used Entities.

entity meaning

Σ alphabet
σ alphabet size, σ = |Σ|
S set of input strings {S1, . . . , Sm}
m size of S, i.e., m = |S|
n length of an input string
Sx input string
T string to output
ℓ length for a subsequence
δ distance of the output to all Sx

i, j indices for text positions in an input string
x, y indices for an input string
c character in Σ

The objective function becomes

[O(1), O(mn2)] minimize max
x∈[1..m]

min
o∈[1..n−λ]

∑
i∈[1..n]

Ci,x,o (CSS3’)
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Abstract
Maximum Parsimony is the problem of computing a most parsimonious phylogenetic tree for a
taxa set X from character data for X. A common strategy to attack this notoriously hard problem
is to perform a local search over the phylogenetic tree space. Here, one is given a phylogenetic tree T

and wants to find a more parsimonious tree in the neighborhood of T . We study the complexity of
this problem when the neighborhood contains all trees within distance k for several classic distance
functions. For the nearest neighbor interchange (NNI), subtree prune and regraft (SPR), tree
bisection and reconnection (TBR), and edge contraction and refinement (ECR) distances, we show
that, under the exponential time hypothesis, there are no algorithms with running time |I|o(k)

where |I| is the total input size. Hence, brute-force algorithms with running time |X|O(k) · |I| are
essentially optimal.

In contrast to the above distances, we observe that for the sECR-distance, where the contracted
edges are constrained to form a subtree, a better solution within distance k can be found in kO(k) ·
|I|O(1) time.
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1 Introduction

Maximum Parsimony is one of the most popular methods for inferring phylogenetic
(evolutionary) trees from sequences of morphological or molecular characters. Given sequences
of characters for n taxa, this method reconstructs a phylogenetic tree T whose n leaves are
labeled bijectively by the n taxa and that has the minimum parsimony score over all such
trees. The parsimony score is the number of character state changes along the tree edges
that are necessary when extending the sequences for the leaves of T to all internal vertices
of T . Note that for each character, this score is at least s − 1, where s denotes the number
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of different character states. A phylogenetic tree is called perfect if it achieves score s − 1 for
every character. Such a perfect phylogeny does not always exists. For a more comprehensive
introduction to Maximum Parsimony, we refer the interested reader to [9].

From an algorithmic point of view, the Maximum Parsimony problem is notoriously
hard: It is NP-complete even for binary characters [12]. Moreover, the current best running
time is Ω((2n − 3)!!), where (2n − 3)!! = 1 · 3 · . . . · (2n − 5) · (2n − 3) [4]. The associated
algorithm generates all possible binary phylogenetic trees on n leaves in a bottom-up fashion.
Hence, the best known algorithm is essentially a brute-force-method. This running time
bound is impractical when n > 15. Better running times are possible when the instance
has a near-perfect phylogeny and the number of different character states s is small. Here,
the running time is measured also in terms of the excess q over the score of a perfect
phylogeny. In the general case, Maximum Parsimony can be solved in nmO(q)2O(q2s2)

time [10], where m is the length of the character sequences. In 2007, the running time was
improved to O(21q + 8qnm2) for the special case of binary characters and the practical
usefulness of the improved algorithm was demonstrated for q ≤ 10 [30]. In the worst case,
however, q can be essentially as large as m. Moreover, Maximum Parsimony is NP-hard
even for q = 0 when the number of different character states is unbounded [3].

Given the hardness of Maximum Parsimony, solving this problem exactly is impractical
for many real-world datasets due to prohibitive running times. Consequently, heuristic
approaches, in particular local search, play an important role in computing good, but not
necessarily optimal, solutions [2, 13, 14, 16, 17, 18, 19, 25, 26]. These approaches search
the space of all possible phylogenetic trees on n taxa. In the course of such a search, the
parsimony score of a subset of the phylogenetic trees in the space is computed. For any
given tree, this step takes polynomial time using Fitch’s or Sankoff’s algorithm [11, 28]. A
search through tree space starts by first computing a starting tree T before computing the
parsimony score of all neighbors of T . If there is a neighboring tree T ′ whose parsimony
score is smaller than that of T , then the search is continued by computing the parsimony
score of all neighbors of T ′ and so on until a local optimum is found. In each iteration of
the search, the neighboring trees are those that can be obtained from the current best tree
by one or more rearrangement operations. The most well-known rearrangement operations
on trees that are also considered in local search approaches for Maximum Parsimony, are
nearest neighbor interchange (NNI), subtree prune and regraft (SPR), and tree bisection
and reconnection (TBR) [1]. Each of these operations deletes an edge of a tree and then
reconnects the resulting two subtrees. Depending on the operation, the reconnection is more
or less restrictive, with SPR being a generalization of NNI and TBR being a generalization
of SPR. The set of all trees that can be obtained by one operation is called the NNI, SPR, or
TBR neighborhood, respectively. More general, we say that a tree T ′ is in the k-neighborhood
with respect to NNI, SPR, or TBR of another tree T , if T ′ can be obtained from T by at
most k NNI, SPR, or TBR operations, respectively.

In addition to NNI, SPR, and TBR, the k-ECR operation has also been considered in
the literature (see for example the works by Ganapathy et al. [13, 14]). This latter operation
first contracts up to k edges and then refines the resulting tree arbitrarily. Here, the k-ECR
neighborhood contains all trees that can be obtained from a starting tree by applying one
k-ECR operation. The 1-ECR neighborhood is exactly the NNI neighborhood, but the 2-ECR
neighborhood strictly contains the set of trees reachable by two NNI moves [14]. The k-ECR
neighborhood appeared earlier implicitly under the term sectorial search [19]. The k-sECR
neighborhood, a restricted version of the k-ECR neighborhood where the contracted edges
must form a subtree was considered by Sankoff et al. [29]. They found that for larger
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values of k, the k-sECR neighborhood gives better results than the 1-ECR neighborhood
or, equivalently, the NNI neighborhood. Guo et al. [20] found that exploring the k-ECR
neighborhood is too costly and thus proposed a restriction of this neighborhood which
already leads to very good local optima. Their approach contracts k edges and then refines
the resulting tree by using neighbor joining, a fast distance-based method to reconstruct
phylogenetic trees. To summarize, local search is an important paradigm for designing
heuristics for Maximum Parsimony, and it has been noted that larger neighborhoods such
as the k-ECR neighborhood give better results at the cost of higher running times. So far,
there is however no study of how hard exploring larger neighborhoods actually is.

To analyze the computational complexity of exploring neighborhoods under NNI, SPR,
TBR, k-ECR, and k-sECR, we use the framework of parameterized local search [8, 15, 23, 24].
Here, one studies local search problems with a neighborhood whose size can be adjusted by
a parameter k. In the canonical parameterized local search problem, one is then given some
solution for an optimization problem and the question is whether there is a better solution
in the k-neighborhood. Local search for any of the aforementioned neighborhoods that are
associated with distances between two trees fits exactly into this framework: we are given
a phylogenetic tree and want to know whether there is one with a better parsimony score
in the k-neighborhood. Typically, the k-neighborhood has a size of O(|I|f(k)), where |I|
is the input size. In our case, the input size |I| is in O(n2 · m). Thus, using a brute-force
algorithm, one can find a better solution in the neighborhood if it exists in |I|f(k) time. The
algorithmic question is now whether this can be done much faster. In particular, a running
time of f(k) · |I|O(1) would be desirable since the explosion in the running time would then
depend only on k and not on |I|. Parameterized algorithmics provides toolkits to design
such algorithms or to show that such algorithms are unlikely. The latter can be done by
showing W[1]-hardness with respect to k [6, 7] or by giving tight running time bounds based
on the exponential time hypothesis (ETH) [21].

Our results are as follows. We show that even when all characters are binary, searching
the k-ECR neighborhood is W[1]-hard with respect to k. The reduction that we use to
establish this result also shows that, under the ETH, a running time of |I|Ω(k) is necessary.
Moreover, the reduction implies hardness for searching the k-neighborhood with respect to
NNI, SPR, and TBR. In a nutshell, our results show that one cannot gain a substantial
speed-up over the brute-force algorithm when trying to search these large neighborhoods.
We then establish that nO(k) · m time is sufficient to search the k-neighborhoods with respect
to any of NNI, SPR, TBR, and k-ECR, giving tight upper and lower bounds for the running
time dependence on k. Finally, we observe that the k-sECR neighborhood of Sankoff [29]
can be searched in kO(k) · |I|O(1) time, making it possible to consider much larger values
of k than for the other neighborhoods. Let us remark that, while we formally study the
decision problem that asks for the existence of a better tree in the k-neighborhood, our
hardness results and algorithms also apply to the problem of finding an optimal tree in
the k-neighborhood.

Proofs of statements marked with (*) are deferred to a full version of the article.

2 Preliminaries

For details about relevant definitions of parameterized complexity such as fixed-parameter
tractability, W[1]-hardness, parameterized reductions and ETH, refer to the standard mono-
graphs [6, 7].
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Graph notation. For a graph G = (V, E) and a vertex set K ⊆ V , let E(K) denote the
set of edges of G where both endpoints are from K. The subdivision of an edge e ∈ E in G

results in the graph G′ obtained by removing e from G and adding a new vertex which is
adjacent to both endpoints of e. Let v be a vertex of degree 2 in G. The suppression of v

in G results in the graph G′ obtained by removing v from G and joining both neighbors of v

by an edge.

Phylogenetic trees. Throughout this paper, X denotes a non-empty finite set of taxa.
An unrooted phylogenetic X-tree (for short, X-tree) T is a tree with leaf-set X and where

no vertex has degree 2. If all non-leaf vertices of T have degree three, then T is called binary.
Furthermore, if an edge e is incident with a leaf of T , then e is called a pendant edge and,
otherwise, an internal edge. For two disjoint sets of taxa A and B, we say that A|B is a split
of an X-tree T if there is an edge e in T such that the deletion of e results in two subtrees
where one has leaf set A and the other has leaf set B. The set of all splits of T is denoted
by Σ(T ). Furthermore, we say that an X-tree T ′ is a refinement of T if Σ(T ) ⊆ Σ(T ′).
Additionally, if T ′ is binary, then T ′ is a binary refinement of T . We say that two X-trees T

and T ′ are isomorphic if Σ(T ) = Σ(T ′). Equivalently, two X-trees T and T ′ are isomorphic
if there is a bijection φ between the vertices of T and the vertices of T ′ such that φ(x) = x

for all x ∈ X, and for all distinct vertices u and v of T , {u, v} is an edge of T if and only if
{φ(u), φ(v)} is an edge of T ′.

Now, let T be an X-tree and let V ′ be a subset of the vertices of T . Then T (V ′) denotes
the minimal subtree of T containing all vertices in V ′. Let A be a non-empty and proper
subset of X and let T be a binary X-tree. If A|(X \ A) is a split of T , then the subtree T (A)
is a pendant A-tree. Moreover, the pseudo-root of T (A) is the unique vertex of degree 2
in T (A) if |A| > 1 and the unique vertex of T (A), otherwise.

Maximum parsimony. A character1 c on X is a function c : X → C. If |C| = 2, then c

is called a binary character. Intuitively, C can be thought of as the underlying alphabet
and each element in the alphabet is a character state. Let T be an X-tree with vertex set
V , and let c be a character on X whose set of character states is C. An extension c∗ of c

to V is a function c∗ : V → C such that c∗(x) = c(x) for each taxon x ∈ X. Let c∗ be an
extension of c. A mutation edge of c∗ in T is an edge {u, v} in T such that c∗(u) ̸= c∗(v)
and we let scorec∗(T ) denote the number of mutation edges of c∗ in T . Then the parsimony
score of c on T , denoted by scorec(T ), is obtained by minimizing scorec∗(T ) over all possible
extensions c∗ of c. An extension c∗ that minimizes scorec∗(T ) is called an optimal extension
of c in T . Moreover the maximum parsimony score of c, denoted by MP(c), is the parsimony
score of c minimized over all binary X-trees.

Now let S = (c1, c2, . . . , cm) be a sequence of characters on X. Then the parsimony score
of S on an X-tree T is defined as scoreS(T ) =

∑m
i=1 scoreci(T ) and, similarly, the maximum

parsimony score of S, denoted by MP(S), is the parsimony score of S minimized over all
binary X-trees.

We may abuse notation by writing c ∈ S if the character c is contained in the sequence S.

SPR and TBR. Let T be a binary X-tree. Let e = {u, v} be an edge of T , and let T1
and T2 be the two trees obtained from T by deleting e and suppressing u if its degree is 2.
Without loss of generality, we may assume that T2 contains v. If T1 contains at least one

1 Characters as defined here are not elements of some alphabet but functions that assign an element of
some alphabet to each taxon.
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edge, subdivide an edge of T1 with a new vertex u′; otherwise, set u′ to be the single isolated
vertex of T1. Finally, obtain a binary X-tree T ′ by adding the new edge {u′, v}. We say
that T ′ has been obtained from T by a single subtree prune and regraft (SPR) operation.
We next define a generalization of the SPR operation. Again, let e be an edge of T , and
let T1 and T2 be the two trees obtained from T by deleting e and suppressing any resulting
degree-2 vertices. For each i ∈ {1, 2}, if Ti has at least one edge, subdivide an edge in Ti

with a new vertex vi and, otherwise, set vi to be the single vertex of Ti. Obtain a binary
X-tree T ′ by adding the new edge {v1, v2}. We say that T ′ has been obtained from T by a
single tree bisection and reconnection (TBR) operation.

NNI, k-ECR, and k-sECR. Let T be a binary X-tree. Let e = {u, v} be an edge of T and
let e′ = {v, w} be an internal edge of T that is adjacent to e. Let T ′ be a binary X-tree
obtained from T by deleting e, suppressing v, subdividing an edge that is incident with w

with a new vertex v′, and joining u and v′ via a new edge. We say that T ′ has been obtained
from T by a single nearest neighbor interchange (NNI) operation. Equivalently, if T ′ is a
binary refinement of the tree obtained from T by contracting e′ and T ′ is non-isomorphic
to T , then T ′ is obtained from T by a single NNI operation.

Now let T be a binary X-tree, and let k be a positive integer. Let T ′ be a binary
refinement of a tree obtained from T by contracting k (distinct) internal edges E′. If T ′

and T are non-isomorphic, then we say that T ′ is a single k-edge contract and refine (k-ECR)
operation [13] apart from T and that E′ is a contraction set for T and T ′. Note that an NNI
operation is a 1-ECR operation and vice versa. We denote the restricted version of a k-ECR
operation that requires the k contracted edges to form a subtree of T as k-sECR [29].

Distance measures. Let T and T ′ be binary X-trees. For each Θ ∈ {NNI, SPR, TBR},
the distance dΘ(T, T ′) is defined as the minimum number of Θ operations to transform
T into T ′ [1]. The distance dECR(T, T ′) is defined as the smallest number k such that T

and T ′ are one k-ECR operation apart. Analogously, the distance dsECR(T, T ′) is defined as
the smallest number k such that T and T ′ are one k-sECR operation apart.

Considered problems. In this work, we consider the parameterized complexity of the
following problem for each distance measure d ∈ {dNNI, dSPR, dTBR, dECR, dsECR}.

d-LS Maximum Parsimony
Input: A set of taxa X, a binary X-tree T , a sequence of characters S, and an
integer k.
Question: Is there a binary X-tree T ′ with d(T, T ′) ≤ k and scoreS(T ′) < scoreS(T )?

3 Properties of the Considered Distance Measures

In this section, we analyze the relation of the different distance measures.

▶ Observation 3.1 ([1, 27]). The distance measures dNNI, dSPR, and dTBR are metrics.

▶ Lemma 3.2 (*). The distance measure dECR is a metric.

▶ Observation 3.3. Let T and T ′ be distinct binary X-trees and let k > 0 be an inte-
ger. If dECR(T, T ′) = k, then there is a binary X-tree T̃ with dsECR(T̃ , T ′) > 0 such
that dECR(T, T ′) = dECR(T, T̃ ) + dsECR(T̃ , T ′).

CPM 2023



18:6 Parameterized Local Search for Maximum Parsimony

The idea behind Observation 3.3 is to consider the connected components of T induced by
the contraction set S between T and T ′. If S forms a subtree of T , then S is connected
and dsECR(T, T ′) = dECR(T, T ′). Hence, the statement holds for T̃ = T ′. Otherwise, let S̃

be an inclusion-maximal subset of S, such that S̃ forms a subtree of T . Since S̃ is inclusion-
maximal, we can obtain T ′ from T in two steps: First, we can obtain an intermediate X-tree T̃

from T by an sECR operation with contraction set S̃. Second, we can obtain T ′ from T̃ by
an ECR operation with contraction set S \ S̃.

▶ Lemma 3.4 (*). Let T and T ′ be binary X-trees. Then, dNNI(T, T ′) ≥ dECR(T, T ′).

▶ Lemma 3.5. Let T and T ′ be binary X-trees. Then, dsECR(T, T ′) ≥ dSPR(T, T ′).

Proof. Let k = dsECR(T, T ′). Hence, there is a set S of k internal edges in T such that T ′

can be obtained by an sECR operation with contraction set S. Let V ′ be the vertices of T

incident with some edge of S and let V ∗ be the neighbors of V ′ in T that are not incident
with any edge of S. Recall that by definition of sECR operations, the edges of S induce
a subtree of T . Hence, T (V ∗) is a binary V ∗-tree having the set S as internal edges. For
each vertex v of V ∗, let Tv denote the pendant subtree of T with pseudo-root v obtained by
removing the edge between v and the unique neighbor of v in V ′. Since T ′ can be obtained
by an sECR operation with contraction set S, T ′ contains a subtree T ′

v isomorphic to Tv for
each vertex v of V ∗. Hence, dSPR(T, T ′) = dSPR(TS , T ′

S), where TS is obtained from T by
replacing Tv by the auxiliary taxa v for each vertex v of V ∗ and where T ′

S is obtained from T ′

by replacing T ′
v by the auxiliary taxa v for each vertex v of V ∗ [1]. Note that TS = T (V ∗).

Hence, it remains to show that dSPR(TS , T ′
S) ≤ k. Since T is binary and the edges of S

induce a subtree of T , |V ∗| = |S| + 3. Moreover, since for each set of taxa X ′ and each two
binary X ′-trees T̃ and T̂ , dSPR(T̃ , T̂ ) ≤ |X ′| − 3 [1], we conclude dSPR(TS , T ′

S) ≤ |V ∗| − 3 =
|S| = k. Consequently, dSPR(T, T ′) ≤ k = dsECR(T, T ′). ◀

▶ Lemma 3.6 (*). Let T and T ′ be binary X-trees. Then, dECR(T, T ′) ≥ dSPR(T, T ′).

4 Hardness of d-LS Maximum Parsimony

In this section, we establish our main theorem.

▶ Theorem 4.1. For each distance measure d ∈ {dNNI, dECR, dSPR, dTBR} and even if each
character is binary, d-LS Maximum Parsimony

is NP-complete, W[1]-hard when parameterized by k, and
cannot be solved in f(k) · |I|o(k) time for any computable function f , unless the ETH fails.

We reduce from Clique which is NP-hard [22], W[1]-hard when parameterized by k [7],
and cannot be solved in f(k) · |I|o(k) time for any computable function f , unless the ETH
fails [5, 6].

Clique
Input: An undirected graph G = (V, E) and an integer k.
Question: Is there a clique of size k in G, that is, a set of vertices K of size k, such
that |E(K)| =

(
k
2
)
?

Let I = (G = (V, E), k) be an instance of Clique and let d ∈ {dNNI, dECR, dSPR, dTBR}
be a distance measure. We describe how to construct an equivalent instance I ′ = (X, T =
(V ′, E′), S, k′) of d-LS Maximum Parsimony in polynomial time where k′ := k if d ∈
{dSPR, dTBR} and k′ := 2k if d ∈ {dNNI, dECR}.
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(a) For a vertex v ∈ V , the pendant Xv-tree Tv . The bold
edges are the only edges of Tv that are not in R.
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x∗

TV (1) TV (2)

TV (3)

TV (|V |)

(b) The subtree of T connecting the pen-
dant trees Tv for each vertex v ∈ V .

Figure 1 The construction of the X-tree T .

Definition of X and T . We start with an empty taxa set X and add for each vertex v ∈ V ,
a set Xv consisting of the eight taxa

in0
v, in1

v, in0
v, in1

v, out0
v, out1

v, out0
v, and out1

v

to X. Additionally, we add a taxon x∗ to X. This completes the definition of X.
Next, we define the binary X-tree T = (V ′, E′). Since X contains 8 · |V |+1 taxa and each

internal vertex of T has three neighbors, T ′ has 16 · |V | vertices and 2 · |X| − 3 = 16 · |V | − 1
edges. By definition, V ′ is a superset of X. Additionally, for each vertex v ∈ V , the set V ′

contains the seven vertices

inv, inv, outv, outv, rin
v , rmid

v , and rout
v .

The subtree Tv := T (Xv) is depicted in Figure 1a.
Moreover, V ′ contains |V | − 1 additional vertices qi with i ∈ [2, |V |]. Fix some arbitrary

ordering of the vertices of V and let V (i) denote the ith vertex of V according to that
ordering. The vertex q2 is adjacent to rout

V (1), rout
V (2), and q3. For each i ∈ [3, |V | − 1], the

vertex qi is adjacent to qi−1, qi+1, and rout
V (i). Finally, q|V | is adjacent to q|V |−1, rout

V (|V |),
and x∗. See Figure 1b for an illustration. This completes the definition of T .

Intuition. The idea of the reduction is as follows: Some of the characters that we define in
the following will ensure that each binary X-tree T ′ that improves over T contains a pendant
subtree T ′(Xv) for each vertex v ∈ V . Further characters will ensure that there are only two
non-isomorphic trees for T ′(Xv) which are depicted in Figure 1a and Figure 2. Intuitively,
these two choices then function as a selection gadget for selecting vertex v as a vertex of the
sought clique K. The budget k′ bounds how many such vertices can be selected. Finally,
further characters will ensure that T ′ improves over T only if E(K) contains at least

(
k
2
)

edges.

Definition of the characters of S. Next, we define the characters of S which are all binary
characters whose character states are 0 and 1. We obtain S by concatenating two sequences
of characters, SG and SR, which we describe in the following.

First, we describe the characters of SG. An overview of the characters is given in Table 1.
We initialize SG as the empty sequence.
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For each edge e ∈ E, we add a character ce to SG. Let e be an edge of E. We set ce(x∗) := 1.
Let v be a vertex of V . If v is an endpoint of e, we set ce(x) := 1 for each taxon x ∈
{in0

v, in1
v, in0

v, in1
v} and we set ce(x) := 0 for each taxon x ∈ {out0

v, out1
v, out0

v, out1
v}. Other-

wise, if v is not an endpoint of e, we set ce(x) := 1 for each taxon x ∈ {in1
v, in1

v, out1
v, out1

v}
and we set ce(x) := 0 for each taxon x ∈ {in0

v, in0
v, out0

v, out0
v}. Let SE denote the sequence

of characters ce for each edge e ∈ E.
Next, we define a character cmal. We set cmal(x∗) := 1. For each vertex v ∈ V , we

set cmal(out0
v) = cmal(out1

v) := 1 and we set cmal(x) := 0 for each taxon x ∈ Xv \{out0
v, out1

v}.
We add a sequence Smal of

(
k
2
)

− 1 copies of cmal to SG. Intuitively, in a binary X-tree T ′, if
both endpoints of an edge e ∈ E are in the selected set K, then the parsimony score of ce

in T ′ is exactly the parsimony score of ce in T minus one. Moreover, if T ′ is non-isomorphic
to T , then the parsimony score of Smal in T ′ is exactly the parsimony score of Smal in T

plus |Smal|. Hence, the characters of Smal act as a hurdle to ensure that E(K) contains at
least |Smal| + 1 =

(
k
2
)

edges.
Finally, for each vertex v ∈ V , we define four characters cv,in, cv,out, cv,ri, and cv,ro. For

each taxon x of X \ Xv, we set cv,in(x) := cv,out(x) := cv,ri(x) := cv,ro(x) := 1. Now, let x

be a taxon of Xv.
If x is in {in0

v, in1
v}, we set cv,in(x) := 1, cv,out(x) := 0, cv,ri(x) := 1, and cv,ro(x) := 0.

If x is in {in0
v, in1

v}, we set cv,in(x) := 1, cv,out(x) := 0, cv,ri(x) := 0, and cv,ro(x) := 0.
If x is in {out0

v, out1
v}, we set cv,in(x) := 0, cv,out(x) := 1, cv,ri(x) := 0, and cv,ro(x) := 0.

If x is in {out0
v, out1

v}, we set cv,in(x) := 0, cv,out(x) := 1, cv,ri(x) := 0, and cv,ro(x) := 1.
Let α := 2|X| · (|E| +

(
k
2
)
). Note that α is larger than scoreSE

(T ′) + scoreSmal(T ′) of any
binary X-tree T ′, since such a tree T ′ contains less than 2|X| edges and |SE | + |Smal| =
|E| +

(
k
2
)

− 1. For each vertex v ∈ V , we extend SG by
a sequence Sv,in of α copies of cv,in,
a sequence Sv,out of α copies of cv,out,
a sequence Sv,ri of 2α copies of cv,ri, and
a sequence Sv,ro of 2α copies of cv,ro.

Let Sv denote the combined sequences of Sv,in, Sv,out, Sv,ri, and Sv,ro. Intuitively, for
each binary X-tree T ′ that improves over T and contains T ′(Xv) as a pendant subtree,
the characters of Sv ensure that T ′(Xv) is isomorphic to either the pendant tree depicted
in Figure 1a or the pendant tree depicted in Figure 2. These two choices then function as a
selection gadget for the vertices of the sought clique in G. This completes the construction
of SG. Note that |SG| = |E| +

(
k
2
)

− 1 + 6α · |V |.
Next, we describe the sequence of characters SR. Let β := 2|X| · |SG|. Note that β is

larger than scoreSG
(T̃ ) of any binary X-tree T̃ , since such a tree T̃ contains less than 2|X|

edges. Let R := E′ \ {{rin
v , rmid

v }, {rmid
v , rout

v } | v ∈ V }. For each edge e of R, we define a
character ce

R. Let A|B be the split of T induced by e. For each taxon x ∈ A, we set ce
R(x) := 0

and for each taxon x ∈ B, we set ce
R(x) := 1. We add as sequence Se

R of β copies of ce
R to SR.

Intuitively, the characters of SR ensure that each binary X-tree T ′ that improves over T ,
shares the split that is induced by e in T for each edge e of R. This implies that T ′(Xv) is a
pendant subtree of T ′ for each vertex v ∈ V .

Properties of binary X-trees. Before we show the correctness of the reduction, we first
make some observations about binary X-trees with the characters of the construction.

Note that for each binary X-tree T ′ and each edge e of R, scorece
R

(T ′) ≥ 1.
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Table 1 An overview of the characters of SG.

ce ∈ SE ce ∈ SE cmal cv,in cv,out cv,ri cv,ro c ∈ Sw

v ∈ e v /∈ e w ̸= v

x∗ 1 1 1 1 1 1 1 1
in0

v 1 0 0 1 0 1 0 1
in1

v 1 1 0 1 0 1 0 1
in0

v 1 0 0 1 0 0 0 1
in1

v 1 1 0 1 0 0 0 1
out0

v 0 0 0 0 1 0 0 1
out1

v 0 1 0 0 1 0 0 1
out0

v 0 0 1 0 1 0 1 1
out1

v 0 1 1 0 1 0 1 1

▶ Definition 4.2. Let T ′ be a binary X-tree. We say that T ′ is split-consistent for T and R

if for each edge e of R, the split of T induced by e is also a split of T ′.

In preparation for the next observation, note that if a binary X-tree T ′ is not split-
consistent for T and R, then there is some edge e of R such that scorece

R
(T ′) ≥ 2 and

thus scoreSe
R

(T ′) ≥ 2 · β. Hence, scoreS(T ′) ≥ scoreSR
(T ′) ≥ β · (|R| + 1). Since β >

scoreSG
(T ), this implies scoreS(T ′) > scoreS(T ). Hence, we conclude the following.

▶ Observation 4.3. Let T ′ be a binary X-tree. a) If scoreS(T ′) ≤ scoreS(T ), then T ′ is split-
consistent for T and R. b) If T ′ is split-consistent for T and R, then scoreSR

(T ′) = β · |R|.

To determine whether I ′ is a yes-instance of d-LS Maximum Parsimony, we analyze
the structure of binary X-trees T ′ with scoreS(T ′) ≤ scoreS(T ). Due to Observation 4.3, we
only need to consider binary X-trees that are split-consistent for T and R in the following.

Let v be a vertex of V and let T ′ be a binary X-tree which is split-consistent for T and R.
Since there is an edge ev in T such that ev induces the split Xv|(X \ Xv) in T and ev is
contained in R, Xv|(X \ Xv) is a split in T ′. Hence, T ′(Xv) is a pendant tree. Moreover,
since all edges incident with inv are in R, we can assume that inv is the common neighbor
of in0

v and in1
v in T ′. Similarly, we may assume that inv is the common neighbor of in0

v

and in1
v in T ′, outv is the common neighbor of out0

v and out1
v in T ′, and outv is the common

neighbor of out0
v and out1

v in T ′.

▶ Definition 4.4. Let T ′ be a binary X-tree which is split-consistent for T and R, let v be a
vertex of V , and let r be the pseudo-root of the pendant tree T ′(Xv). We say that T ′(Xv) is
an in-rooting of Tv if inv is adjacent to r, inv has distance 2 to r, and both outv and outv

have distance 3 to r. Similarly, we say that T ′(Xv) is an out-rooting of Tv if outv is adjacent
to r, outv has distance 2 to r, and both inv and inv have distance 3 to r.

Figure 1a shows an out-rooting of Tv and Figure 2 shows an in-rooting of Tv.
Note that for each vertex v of V , there is a unique in-rooting of Tv with respect to

isomorphism. Similarly, there is a unique out-rooting of Tv with respect to isomorphism.
Note that for each vertex v ∈ V , Tv is an out-rooting of Tv. We call a binary X-tree T ′ well-
rooted if T ′ is split-consistent for T and R and if for each vertex v ∈ V , T ′(Xv) is either an
in-rooting or an out-rooting of Tv. Note that T is well-rooted.

▶ Lemma 4.5 (*). Let T ′ be a binary X-tree which is split-consistent for T and R and let v be
a vertex of V . If T ′(Xv) is an in-rooting of Tv or an out-rooting of Tv, then scoreSv (T ′) = 9α.
Otherwise, scoreSv

(T ′) ≥ 10α.
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Figure 2 An in-rooting of Tv.

Next, we describe for a given well-rooted binary X-tree T ′ the maximum parsimony
scores of T ′ with respect to the characters of SE and Smal. The idea is that in a well-rooted
binary X-tree T ′, for each edge e = {u, v} ∈ E where T ′(Xu) is an in-rooting of Tu and
where T ′(Xv) is an in-rooting of Tv, the parsimony score of the character ce in T ′ is exactly
the parsimony score of the character ce in T minus one. Moreover, if T ′(Xv) is an in-rooting
of Tv for at least one vertex v ∈ V , then the parsimony score of the characters of Smal in T ′

is exactly the parsimony score of the characters of Smal in T plus
(

k
2
)

− 1.

▶ Lemma 4.6. Let T ′ be a well-rooted binary X-tree. Let e = {u, v} be an edge of E.
a) If T ′(Xu) is an in-rooting of Tu and T ′(Xv) is an in-rooting of Tv, then scorece

(T ′) =
4(|V | − 2) + 2. Otherwise, scorece

(T ′) = 4(|V | − 2) + 3.
b) If there is a vertex w ∈ V such that T ′(Xw) is an in-rooting of Tw, then scorecmal(T ′) =

|V | + 1. Otherwise, that is, if T ′ is isomorphic to T , scorecmal(T ′) = |V |.

Proof. For each vertex w of V , let T ′
w := T ′(Xw). Let Vin be those vertices w of V , where T ′

w

is an in-rooting of Tw and let Vout = V \ Vin be those vertices w of V , where T ′
w is an

out-rooting of Tw. For each vertex w ∈ Vin, let rin
w be the name of the pseudo-root of T ′

w,
let rmid

w and inw be the neighbors of rin
w , and let rout

w and inw be the neighbors of rmid
w .

Analogously, for each vertex w ∈ Vout, let rout
w be the name of the pseudo-root of T ′

w, let rmid
w

and outw be the neighbors of rout
w , and let rin

w and outw be the neighbors of rmid
w . Recall that

since T ′ is well-rooted, for each vertex w ∈ V , inw is adjacent to both in0
w and in1

w, inw is
adjacent to both in0

w and in1
w, outw is adjacent to both out0

w and out1
w, and outw is adjacent

to both out0
w and out1

w.
First, we show statement a). Let ce be a character for some edge e = {u, v} of E. For

each vertex w ∈ V \ {u, v},
let Pinw

be the unique path between in0
w and in1

w in T ′,
let Pinw

be the unique path between in0
w and in1

w in T ′,
let Poutw

be the unique path between out0
w and out1

w in T ′, and
let Poutw

be the unique path between out0
w and out1

w in T ′.
Note that each of these four paths only contains two edges and that these four paths
are pairwise edge-disjoint. Let Pw := {Pinw

, Pinw
, Poutw

, Poutw
}. Let P ′ be a path in Pw

and let w0 and w1 be the terminals of P ′. Since by definition ce(w0) ̸= ce(w1), for each
extension c∗

e of ce in T ′ at least one edge of P ′ is a mutation edge of c∗
e. Note that each

path in Pw is edge-disjoint with each path in Pw′ for distinct vertices w and w′ of V \ {u, v}.
Moreover, let Pu be the path between in0

u and out0
u in T ′ and let Pv be the path between in0

v

and out0
v in T ′. Note that Pu and Pv are edge-disjoint and that both are edge-disjoint with

each path Pw ∈ Pw for each vertex w ∈ V \ {u, v}. Since ce(in0
u) = 0 and ce(out0

u) = 1, for
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each extension c∗
e of ce in T ′, at least one edge of Pu is a mutation edge of c∗

e. Similarly,
since ce(in0

v) = 0 and ce(out0
v) = 1, for each extension c∗

e of ce in T ′, at least one edge of Pv

is a mutation edge of c∗
e. Hence, scorece

(T ′) ≥ 4(|V | − 2) + 2.

Case 1: T ′
u is an in-rooting of Tu and T ′

v is an in-rooting of Tv. We define an extension c∗
e

of ce in T ′, such that scorec∗
e
(T ′) = 4(|V |−2)+2. We set c∗

e(outu) := c∗
e(outu) := c∗

e(rout
u ) := 0

and c∗
e(outv) := c∗

e(outv) := c∗
e(rout

v ) := 0. For each remaining internal vertex v′ of T ′, we
set c∗

e(v′) := 1. Hence, the edge set

{{rout
u , rmid

u }, {rout
v , rmid

v }}

∪ {{in0
w, inw}, {in0

w, inw}, {out0
w, outw}, {out0

w, outw} | w ∈ V \ {u, v}}

contains the mutation edges of c∗
e in T ′. Consequently, scorec∗

e
(T ′) = 4(|V | − 2) + 2 which

implies scorece(T ′) = 4(|V | − 2) + 2.

Case 2: T ′
u is an out-rooting of Tu or T ′

v is an out-rooting of Tv. Assume without loss of
generality that T ′

v is an out-rooting of Tv. Let P ∗
x be the unique path between out0

v and x∗

in T ′. Since ce(out0
v) = 0 and ce(x∗) = 1, for each extension c∗

e of ce in T ′, at least one edge
of P ∗

x is a mutation edge of c∗
e. Note that P ∗

x is edge-disjoint with Pu and edge-disjoint with
each path Pw ∈ Pw for each vertex w ∈ V \ {u, v}. Moreover, since T ′

v is an out-rooting
of Tv, P ∗

x is also edge-disjoint with Pv. Hence, scorece
(T ′) ≥ 4(|V | − 2) + 3. We define an

extension c∗
e of ce in T ′, such that scorec∗

e
(T ′) = 4(|V | − 2) + 3. To this end, we distinguish

whether T ′
u is an in-rooting of Tu or an out-rooting of Tu.

Case 2.1: T ′
u is an in-rooting of Tu. We set c∗

e(outu) := c∗
e(outu) := c∗

e(rout
u ) := 0

and c∗
e(outv) := c∗

e(outv) := 0. For each remaining internal vertex v′ of T ′, we set c∗
e(v′) := 1.

Hence, the edge set

{{rout
u , rmid

u }, {rmid
v , outv}, {rout

v , outv}}

∪ {{in0
w, inw}, {in0

w, inw}, {out0
w, outw}, {out0

w, outw} | w ∈ V \ {u, v}}

contains the mutation edges of c∗
e in T ′.

Case 2.2: T ′
u is an out-rooting of Tu. We set c∗

e(inu) := c∗
e(inu) := c∗

e(rin
u ) := 1

and c∗
e(inv) := c∗

e(inv) := c∗
e(rin

v ) := 1. For each remaining internal vertex v′ of T ′, we
set c∗

e(v′) := 0. Hence, the edge set

{{rin
u , rmid

u }, {rin
v , rmid

v }, {x∗, qn}}

∪ {{in1
w, inw}, {in1

w, inw}, {out1
w, outw}, {out1

w, outw} | w ∈ V \ {u, v}}

contains the mutation edges of c∗
e in T ′.

Consequently, in both cases scorec∗
e
(T ′) = 4(|V | − 2) + 3 which implies scorece(T ′) =

4(|V | − 2) + 3.
Next, we show statement b). Consider the character cmal. For each vertex v ∈ V , let Pv

be the unique path between out0
v and out0

v in T ′. Since cmal(out0
v) = 0 and cmal(out0

v) = 1,
for each extension c∗

mal of cmal in T ′ at least one edge of Pv is a mutation edge of c∗
mal.

Note that the paths Pv and Pw are edge-disjoint for distinct vertices v and w of V .
Hence, scorecmal(T ′) ≥ |V |.
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Case 1: There is some vertex v ∈ V such that T ′
v is an in-rooting of Tv. Let P ∗

x be
the unique path between in0

v and x∗ in T ′. Since cmal(in0
v) = 0 and cmal(x∗) = 1, for each

extension c∗
mal of cmal in T ′, at least one edge of P ∗

x is a mutation edge of c∗
mal. Note that P ∗

x

is edge-disjoint with Pw for each vertex w ∈ V distinct from v. Moreover, since T ′
v is an

in-rooting of Tv, P ∗
x is also edge-disjoint with Pv. Hence, scorecmal(T ′) ≥ |V | + 1. We define

an extension c∗
mal of cmal in T ′, such that scorec∗

mal
(T ′) = |V | + 1. We set c∗

mal(outw) := 1,
for each vertex w ∈ V . For each remaining internal vertex v′ of T ′, we set c∗

mal(v′) := 0.
Hence, the edge set {{qn, x∗}} ∪ {{outv, rout

v } | v ∈ V } contains the mutation edges of c∗
mal

in T ′. Consequently, scorec∗
mal

(T ′) = |V | + 1 which implies scorecmal(T ′) = |V | + 1.

Case 2: For each vertex v ∈ V , T ′
v is an out-rooting of Tv. Hence, T ′ is isomorphic to T .

We define an extension c∗
mal of cmal in T ′, such that scorec∗

mal
(T ′) = |V |. We set c∗

mal(inv) :=
c∗

mal(inv) := c∗
mal(outv) := c∗

mal(rin
v ) := c∗

mal(rmid
v ) := 0, for each vertex v ∈ V . For each

remaining internal vertex v′ of T ′, we set c∗
mal(v′) = 1. Hence, the edge set {{rmid

v , rout
v } |

v ∈ V } contains the mutation edges of c∗
mal in T ′. Consequently, scorec∗

mal
(T ′) = |V | which

implies that scorecmal(T ′) = |V |. ◀

The score of improving X-trees with respect to S. Since T is well-rooted, and for each
vertex v ∈ V , Tv is an out-rooting of Tv, Observation 4.3, Lemma 4.5, and Lemma 4.6 imply
the following.

▶ Corollary 4.7. scoreS(T ) = |E| · (4(|V | − 2) + 3) + (
(

k
2
)

− 1) · |V | + |V | · 9α + |R| · β.

Note that by definition, α = 2(8|V |+1) · (|E|+
(

k
2
)
) > |E| · (4(|V |−2)+3)+(

(
k
2
)

−1) · |V |.
Hence, scoreS(T ) < α · (9|V | + 1) + |R| · β.

▶ Corollary 4.8. Let T ′ be a binary X-tree with scoreS(T ′) < scoreS(T ). Then, T ′ is
well-rooted.

Proof. Due to Observation 4.3, T ′ is split-consistent for T and R and scoreSR
(T ′) = |R| · β.

Assume towards a contradiction that there is a vertex v ∈ V such that T ′(Xv) is neither
an in-rooting of Tv nor an out-rooting of Tv. Hence, Lemma 4.5 implies scoreSv (T ′) ≥ 10α

and scoreSw
(T ′) ≥ 9α for each vertex w ∈ V \ {v}. Consequently, scoreS(T ′) ≥ 10α + (|V | −

1) · 9α + |R| · β = α · (9|V | + 1) + |R| · β > scoreS(T ), a contradiction. ◀

Distances between well-rooted binary X-trees. Next, we describe for each distance
measure d ∈ {dNNI, dECR, dSPR, dTBR} the distance between T and any other well-rooted
binary X-tree T ′.

▶ Lemma 4.9. Let T ′ be a binary and well-rooted X-tree. Moreover, let K be the set of
vertices of V such that T ′(Xv) is an in-rooting of Tv for each vertex v ∈ K and T ′(Xw) is
an out-rooting of Tw for each vertex w ∈ V \ K. Then, dNNI(T, T ′) = dECR(T, T ′) = 2 · |K|
and dSPR(T, T ′) = dTBR(T, T ′) = |K|.

Proof. First, we show that dNNI(T, T ′) = dECR(T, T ′) = 2 · |K|. To this end, we show
that dNNI(T, T ′) ≤ 2 · |K| and that dECR(T, T ′) ≥ 2 · |K|. Since dNNI(T, T ′) ≥ dECR(T, T ′)
due to Lemma 3.4, this then implies dNNI(T, T ′) = dECR(T, T ′) = 2 · |K|.

To show that dNNI(T, T ′) ≤ 2·|K|, we prove the following: Let T̃ be a well-rooted binary X-
tree and let v be a vertex such that T̃ (Xv) is an out-rooting of Tv. Then, dNNI(T̃ , T̂ ) ≤ 2,
where T̂ is a well-rooted binary X-tree with T̃ (X \ Xv) = T̂ (X \ Xv) and where T̂ (Xv)



C. Komusiewicz, S. Linz, N. Morawietz, and J. Schestag 18:13

inv inv outv outv inv inv outv outv inv inv outv outv

Figure 3 The two consecutive NNI operation transforming an out-rooting into an in-rooting.

inv inv outv outv

q

inv inv outv outv

q

inv inv outv outv

q

Figure 4 Transforming an out-rooting into an in-rooting by an SPR operation. First, the bold
edge is removed and the triangular vertex is suppressed. Second, the unique internal edge incident
with inv is subdivided by the rectangular vertex. Finally, the rectangular vertex is joined with q by
a new edge.

is an in-rooting of Tv. To show the claim, we describe two consecutive NNI operations
transforming T̃ into T̂ . See Figure 3 for an illustration of these NNI operations. Let rout

v be
name of the pseudo-root of the pendant tree T̃ (Xv), let rout

v be the name of the common
neighbor of rmid

v and outv in T̃ , and let rmid
v be the name of the common neighbor of rin

v

and outv in T̃ . Moreover, let q be the unique neighbor of rout
v outside of T̃ (Xv) in T̃ . We

obtain the well-rooted binary X-tree T̂ from T̃ by
firstly removing the edges {q, rout

v } and {outv, rmid
v } and adding the edges {outv, rout

v }
and {q, rmid

v }, and
secondly removing the edges {q, rmid

v } and {inv, rin
v } and adding the edges {inv, rmid

v }
and {q, rin

v }.
Since this can be done by two consecutive NNI operations and T̃ (X \ Xv) = T̂ (X \ Xv), we
conclude dNNI(T̃ , T̂ ) ≤ 2. Since dNNI is a metric one can then show via induction over any
arbitrary ordering of the vertices of K, that dNNI(T, T ′) ≤ 2 · |K|.

It remains to show that dECR(T, T ′) ≥ 2 · |K|. Let Ẽ be a subset of the internal edges
of T , such that T ′ can be obtained from T by an ECR operation with contraction set Ẽ.
We show that |Ẽ| ≥ 2 · |K|. Let v be a vertex of K. Recall that Tv is an out-rooting of Tv

and that T ′
v is an in-rooting of Tv. Hence, the edge {rout

v , rmid
v } induces the split A|B in T

with A := {in0
v, in1

v, in0
v, in1

v, out0
v, out1

v} and B := X \ A. Since A|B is not a split of T ′, the
edge {rout

v , rmid
v } is contained in Ẽ. Similar, since the edge {rmid

v , rin
v } induces the split A|B

in T with A := {in0
v, in1

v, in0
v, in1

v} and B := X \ A. Since A|B is not a split of T ′, the
edge {rmid

v , rin
v } is contained in Ẽ. Hence, for each vertex v of V , Ẽ contains at least two

edges of T (Xv). Consequently, |Ẽ| ≥ 2 · |K| which implies dECR(T, T ′) ≥ 2 · |K|.
Second, we show that dSPR(T, T ′) = dTBR(T, T ′) = |K|. Similar to the first part of the

proof, we show that dSPR(T, T ′) ≤ |K| and that dTBR(T, T ′) ≥ |K|. Since dSPR(T, T ′) ≥
dTBR(T, T ′) this then implies dSPR(T, T ′) = dTBR(T, T ′) = |K|.

To show that dSPR(T, T ′) ≤ |K|, we prove the following: Let T̃ be a well-rooted binary X-
tree and let v be a vertex such that T̃ (Xv) is an out-rooting of Tv. Then, dSPR(T̃ , T̂ ) ≤ 1,
where T̂ is a well-rooted binary X-tree with T̃ (X \ Xv) = T̂ (X \ Xv) and where T̂ (Xv) is an
in-rooting of Tv.
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To show this claim, we describe an SPR operation transforming T̃ into T̂ . See Figure 4 for
an illustration of this SPR operation. Let rout

v be the name of the pseudo-root of the pendant
tree T̃ (Xv) and let q be the name of the unique neighbor of rout

v outside of T̃ (Xv) in T̃ .
Moreover, let rin

v be the name of the common neighbor of inv and inv in T̃ . We obtain the well-
rooted binary X-tree T̂ from T̃ by: removing the edge {rout

v , q}, suppressing the vertex rout
v ,

subdividing the edge {inv, rin
v } by a vertex q′, and adding the edge {q, q′}. Since this can be

done by a single SPR operation and T̃ (X \ Xv) = T̂ (X \ Xv), we conclude dSPR(T̃ , T̂ ) ≤ 1.
Since dSPR is a metric, one can then show via induction over any arbitrary ordering of the
vertices of K, that dSPR(T, T ′) ≤ |K|.

It remains to show that dTBR(T, T ′) ≥ |K|. This proof is deferred to a full version of the
article. ◀

Correctness. Finally, we are able to show that I is a yes-instance of Clique if and only
if I ′ is a yes-instance of d-LS Maximum Parsimony with appropriate distance bounds.

▶ Lemma 4.10. The following statements are equivalent:
1. There is a clique of size k in G.
2. There is a binary X-tree T ′ with scoreS(T ′) < scoreS(T ) and dSPR(T, T ′) ≤ k.
3. There is a binary X-tree T ′ with scoreS(T ′) < scoreS(T ) and dTBR(T, T ′) ≤ k.
4. There is a binary X-tree T ′ with scoreS(T ′) < scoreS(T ) and dNNI(T, T ′) ≤ 2k.
5. There is a binary X-tree T ′ with scoreS(T ′) < scoreS(T ) and dECR(T, T ′) ≤ 2k.

Proof. First, we show that Item 1 implies each of Item 2–5. Let K ⊆ V be a clique
of size k in G. Further, let T ′ be a well-rooted binary X-tree such that for each ver-
tex v ∈ K, T ′(Xv) is an in-rooting of Tv, and for each vertex v ∈ V \ K, T ′(Xv) is an
out-rooting of Tv. Due to Lemma 4.9, dSPR(T, T ′) = dTBR(T, T ′) = k and dNNI(T, T ′) =
dECR(T, T ′) = 2k. It remains to show that scoreS(T ′) < scoreS(T ). Since T ′ is well-
rooted, due to Observation 4.3, scoreSR

(T ′) = |R| · β and due to Lemma 4.5, for each
vertex v ∈ V , scoreSv

(T ′) = 9α. Moreover, since K is non-empty, we obtain by Lemma 4.6,
that scoreSmal(T ′) = (

(
k
2
)

− 1) · (|V | + 1). Since K is a clique in G, |E(K)| =
(

k
2
)
. Finally,

by Lemma 4.6, for each edge e of E(K), scorece
(T ′) = 4(|V | − 2) + 2, and for each edge e

of E \ E(K), scorece
(T ′) = 4(|V | − 2) + 3. We conclude

scoreS(T ′) = |E| · (4(|V | − 2) + 3) −
(

k

2

)
+

((
k

2

)
− 1

)
· (|V | + 1) + |V | · 9α + |R| · β

= |E| · (4(|V | − 2) + 3) +
((

k

2

)
− 1

)
· |V | + |V | · 9α + |R| · β − 1 = scoreS(T ) − 1,

due to Corollary 4.7. Hence, T ′ is a binary X-tree with scoreS(T ′) < scoreS(T ), dSPR(T, T ′) =
dTBR(T, T ′) = k, and dNNI(T, T ′) = dECR(T, T ′) = 2k.

Second, we show that each of Item 2–5 implies Item 1. Let T ′ be a binary X-tree with
a) scoreS(T ′) < scoreS(T ) and b) dSPR(T, T ′) ≤ k, dTBR(T, T ′) ≤ k, dNNI(T, T ′) ≤ 2k,
or dECR(T, T ′) ≤ 2k. Since scoreS(T ′) < scoreS(T ), due to Corollary 4.8, T ′ is well-rooted,
that is, for each vertex v ∈ V , T ′

v := T ′(Xv) is either an in-rooting of Tv or an out-
rooting of Tv. Let K ⊆ V be the set of all vertices v of V where T ′

v is an in-rooting
of Tv. We show that K is a clique of size k in G. Since dSPR(T, T ′) ≤ k, dTBR(T, T ′) ≤
k, dNNI(T, T ′) ≤ 2k, or dECR(T, T ′) ≤ 2k, Lemma 4.9 implies that K has size at most k.
Moreover, since scoreS(T ′) < scoreS(T ), T ′ is not isomorphic to T , which implies that K

is nonempty. Hence due to Lemma 4.6, scoreSmal(T ′) = (
(

k
2
)

− 1) · (|V | + 1). Moreover,
since T ′ is well-rooted, due to Observation 4.3, scoreSR

(T ′) = |R| · β and due to Lemma 4.5,
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for each vertex v ∈ V , scoreSv (T ′) = 9α. Finally, by Lemma 4.6, for each edge e ∈
E\E(K), scorece

(T ′) = 4(|V |−2)+3, and for each edge e ∈ E(K), scorece
(T ′) = 4(|V |−2)+2.

Consequently, scoreS(T ) − scoreS(T ′) = |E(K)| − (
(

k
2
)

− 1).
Since scoreS(T ′) < scoreS(T ), we have |E(K)| ≥

(
k
2
)
. Hence, K is a size-k clique in G. ◀

Since k′ = k if d ∈ {dSPR, dTBR} and k′ = 2k if d ∈ {dNNI, dECR}, Lemma 4.10 implies
that I is a yes-instance of Clique if and only if I ′ is a yes-instance of d-LS Maximum
Parsimony. This completes the proof of Theorem 4.1.

5 Essentially Tight Brute-Force Algorithms

We now show that simple brute-force algorithms for d-LS Maximum Parsimony for each
distance measure d ∈ {dNNI, dECR, dSPR, dTBR} essentially match the lower bounds shown
in Theorem 4.1. First, consider a distance measure d ∈ {dNNI, dSPR, dTBR}.

▶ Observation 5.1. Let T be a binary X-tree, let d ∈ {dNNI, dSPR, dTBR} be a distance
measure, and let k be an integer. One can enumerate all binary X-trees T ′ with d(T, T ′) ≤ k

in |X|O(k) time.

Observation 5.1 can be seen as follows: there are |X|O(1) many binary X-trees T ′ such
that d(T, T ′) = 1, all these trees can be enumerated in |X|O(1) time, and for each binary X-
tree T ′ with d(T, T ′) > 0, there is a binary X-tree T̂ with d(T̂ , T ′) = 1 and d(T, T ′) =
d(T, T̂ ) + 1.

Furthermore, we may enumerate all binary X-trees T ′ with dsECR(T, T ′) ≤ k as follows:
First, we enumerate all subtrees of T with at most k edges. Second, for each connected
subtree Ts of T with at most k edges, we enumerate all binary refinements of T after
contracting all edges of Ts. In Lemma 5.2, we show that the first step can be done in
O(4k · k−0.5 · |X|) time. In Lemma 5.3, we show that both steps can be performed in
O((2k + 1)!! · 4k · k

√
k · |X|2) time where (2k + 1)!! := 1 · 3 · . . . · (2k + 1).

▶ Lemma 5.2 (*). For every binary X-tree T and every integer k, all connected subtrees
of T with at most k edges can be enumerated in O(4k · k−0.5 · |X|) time.

▶ Lemma 5.3 (*). For a given binary X-tree T and an integer k, there are O((2k + 1)!! ·
4k · k−0.5 · |X|) binary X-trees T ′ with dsECR(T, T ′) ≤ k. Moreover, all these binary X-tree
can be enumerated in O((2k + 1)!! · 4k · k

√
k · |X|2) time.

Hence, we obtain the following due to the fact that the parsimony score of a given X-tree
can be computed in O(|X| · |S|) time [11].

▶ Theorem 5.4. dsECR-LS Maximum Parsimony can be solved in O((2k + 1)!! · 4k · k
√

k ·
|X|2 · |S|) = 2O(k·log k) · |X|2 · |S| time.

Finally, we describe how to enumerate all binary X-trees T ′ with dECR(T, T ′) ≤ k.

▶ Lemma 5.5. Let T be a binary X-tree and let k be an integer. One can enumerate all
binary X-trees T ′ with dECR(T, T ′) ≤ k in |X|O(k) time.

Proof. We show this statement by induction over k.

Base case. Consider k = 0. Hence, T is the only binary X-tree T ′ with dECR(T, T ′) = 0
and can be enumerated in |X|O(1) time.
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Inductive step. For the inductive step, suppose that for each binary X-tree T̃ and
for each k′ < k, one can compute all binary X-trees T ′ with dECR(T̃ , T ′) ≤ k′ in
|X|O(k′) time. Note that this implies that for each k′ < k there are |X|O(k′) binary X-
trees T ′ with dECR(T̃ , T ′) = k′. For each i < k, let Ti be the collection of all bi-
nary X-trees T̃ with dECR(T, T̃ ) = i and let T<k be the collection of all binary X-trees T̃

with dECR(T, T̃ ) < k, that is, T<k = ∪k−1
i=0 Ti. Moreover, let TsECR be the collection of all

binary X-trees T̃ with dsECR(T, T̃ ) = k. Note that T<k can be computed in |X|O(k−1) time
and due to Lemma 5.3, TsECR can be computed in kO(k) · |X|O(1) time. Let

T ′
k := TsECR ∪

k−1⋃
i=1

⋃
T̃ ∈Ti

{T ′ | dECR(T̃ , T ′) ≤ k − i}.

Recall that by the induction hypothesis, for each i < k, Ti has size |X|O(i) and for each
binary X-tree T̃ ∈ Ti the collection {T ′ | dECR(T̃ , T ′) ≤ k − i} can be computed in
|X|O(k−i) time. Hence, T ′

k can be computed in |X|O(k) time. We set T := T ′
k ∪ T<k and

show that T contains exactly the binary X-trees T ′ with dECR(T, T ′) ≤ k.
Assume towards a contradiction that this is not the case.

Case 1: There is a binary X-tree T ′ with dECR(T, T ′) ≤ k such that T ′ is not
in T . By definition, T<k contains all binary X-trees T̃ with dECR(T, T̃ ) < k. Conse-
quently, dECR(T, T ′) = k. Hence, due to Observation 3.3, there is a binary X-tree T̃

with dsECR(T̃ , T ′) > 0 such that dECR(T, T ′) = dECR(T, T̃ ) + dsECR(T̃ , T ′). Let i :=
dECR(T, T̃ ).

Note that i ≤ k − 1. If i = 0, then T is isomorphic to T̃ and thus dsECR(T, T ′) =
dsECR(T̃ , T ′) = k. Hence, T ′ is contained in TsECR, a contradiction. Otherwise, if i > 0,
then T̃ is contained in Ti. Moreover, since dsECR(T̃ , T ′) = dECR(T, T ′) − dECR(T, T̃ ) = k − i

and dsECR(T̃ , T ′) ≥ dECR(T̃ , T ′), we have dECR(T̃ , T ′) ≤ k − i which implies that T ′ is
contained in T , a contradiction.

Case 2: There is a binary X-tree T ′ with dECR(T, T ′) > k such that T ′ is contained
in T . Hence, T ′ is contained in T ′

k \ TsECR. That is, there is some i with 1 ≤ i ≤ k and
a binary X-tree T̃ in Ti such that dECR(T̃ , T ′) ≤ k − i. Since dECR is a metric, due to the
triangle inequality, dECR(T, T ′) ≤ dECR(T, T̃ ) + dECR(T̃ , T ′) ≤ k, a contradiction.

Since T can be computed in |X|O(k) time, the statement holds. ◀

We conclude the following.

▶ Theorem 5.6 (*). For each distance measure d ∈ {dNNI, dECR, dSPR, dTBR}, d-LS Maxi-
mum Parsimony can be solved in |X|O(k) · |S| time.

6 Conclusion

A clear goal for future research would be to improve the running time of the algorithm
for the k-sECR neighborhood. This seems promising since the current bottleneck is the
enumeration of the binary refinements of the tree obtained after contracting k edges. However,
an algorithm for dsECR-LS Maximum Parsimony running in 2o(k·log k) · |I|O(1) time would
imply an algorithm for Maximum Parsimony running in 2o(|X|·log |X|) · |I|O(1) time: when
applying the dsECR-LS Maximum Parsimony algorithm with k := |X| − 3, locally optimal
solution are also globally optimal. Hence, a more immediate question is whether Maximum
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Parsimony can be solved in 2o(|X|·log |X|) · |I|O(1) time. A further goal would be to find other
neighborhoods for which d-LS Maximum Parsimony can be solved in time f(k) · |I|O(1).
Finally, it is open whether better running times are possible when searching the neighborhood
not for a better tree but for a perfect phylogeny, that is, for a tree where for each character,
the parsimony score is equal to the number of character states minus one.
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Abstract
A factorization of a string S is a partition of w into substrings u1, . . . , uk such that S = u1u2 · · · uk.
Such a partition is called equality-free if no two factors are equal: ui ̸= uj , ∀i, j with i ̸= j. The
maximum equality-free factorization problem is to find for a given string S, the largest integer k for
which S admits an equality-free factorization with k factors.

Equality-free factorizations have lately received attention because of their applications in DNA
self-assembly. The best approximation algorithm known for the problem is the natural greedy
algorithm, that chooses iteratively from left to right the shortest factor that does not appear before.
This algorithm has a

√
n approximation ratio (SOFSEM 2020) and it is an open problem whether

there is a better solution.
Our main result is to show that the natural greedy algorithm is a Θ(n1/4) approximation

algorithm for the maximum equality-free factorization problem. Thus, we disprove one of the
conjectures of Mincu and Popa (SOFSEM 2020) according to which the greedy algorithm is a Θ(

√
n)

approximation.
The most challenging part of the proof is to show that the greedy algorithm is an O(n1/4)

approximation. We obtain this algorithm via prefix free factor families, i.e. a set of non-overlapping
factors of the string which are pairwise non-prefixes of each other. In the paper we show the
relation between prefix free factor families and the maximum equality-free factorization. Moreover,
as a byproduct we present another approximation algorithm that achieves an approximation ratio
of O(n1/4) that we believe is of independent interest and may lead to improved algorithms. We
then show that the natural greedy algorithm has an approximation ratio that is Ω(n1/4) via a
clever analysis which shows that the greedy algorithm is Θ(n1/4) for the maximum equality-free
factorization problem.
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1 Introduction

A factorization of a string S is a partition of S into substrings u1, u2, . . . , uk such that
S = u1u2 · · ·uk. Factorizations are central objects of study in stringology, a famous example
being the Lempel-Ziv algorithm [14]. String factorizations have many other applications
as we show next. For instance, finding an occurrence of a string v in a text T can be
formulated as T admitting a factorization T = uvw. Then, a string v is a prefix of another
string T if T = vw and it is a suffix of T if T = uv. Moreover, many string problems can
be seen as string factorization problems [9] such as: Shortest Common Superstring,
Longest Common Subsequence and Shortest Common Supersequence, to name a
few. Another example of a string factorization problem is the Minimum Common String
Partition [6, 7], a problem concerned with identifying factorizations for two strings such
that the sequence of factors for one string is the permutation of the other’s.

In this paper we focus on the equality-free factorization, a special case of string fac-
torization in which all factors are distinct. The equality-free factorization is a restricted
variant of a more famous problem, termed generalized function matching which has a long
history starting from 1979 (see, e.g., [12] and the references therein for more details). In
the generalized function matching the input consists of a text t over an alphabet Σ1 and
a pattern p = p1p2 . . . pm over an alphabet Σ2. The goal is to find an injective function
from f : Σ2 → Σ+

1 such that t = f(p1)f(p2) . . . f(pm). Thus, the maximum equality free
factorization problem is a particular case of the generalized function matching in which all
the characters of the pattern p are distinct. In turn, generalized function matching is a
particular case of string equations, which is a notoriously difficult problem (see, e.g., the
JACM paper [13]). In fact, even the version which restricts character-to-character function
matching is extremely difficult, see [1], as opposed to the more restricted parameterized
matching [2, 3, 10] which is simpler. Thus, maximum equality free factorization is part of
family of fundamental problems in stringology.

The maximum equality free factorization problem is also motivated by applications in
DNA synthesis [4]. More specifically, it is possible to produce short DNA fragments that
will self-assemble into the wanted DNA structure. However, to obtain the desired structure,
it is required that no two fragments are identical. Since the fragments must be short, one
approach is to split the target DNA sequence into as many distinct pieces as possible.

Previous work

The equality-free factorization problem was first introduced by Condon, Maňuch and
Thachuk [4] where it was presented as the string partitioning problem. The string par-
titioning problem asks for a factorization into distinct factors such that each factor is at most
of a certain length. The problem was studied in a more general setting where the measure of
collision between two factors is either equality or one is a prefix/suffix of the other. Condon
et al. showed that these variants are NP-complete. More recently, Fernau, Manea, Mercaş
and Schmid [5] presented a similar problem that imposes a lower bound on the number of
factors instead of an upper bound on factor length. Fernau et al. showed that this variant is
also NP-complete. Afterwards, Schmid [9] studied the Fixed-Parameter Tractability of the
two problems.

The decision version of the problem, that is, given a string S and an integer k, decide if
there exists an equality free factorization of S with at least k factors, is termed MAXEFF-s
(this is the notation of Schmid [9] and we decide to use it for the sake of consistency).
The optimization version, in which we are given S and the goal is to find an equality free
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factorization with as many factors as possible, is termed OPTEFF-s. The acronyms for the
two problems were introduced in the previous papers [5, 9, 11] and we will use them in our
paper for consistency (OPT stands for optimization).

Mincu and Popa [11] study OPTEFF-s and another variant named Maximum Gapped
Equality Free Factorization (OPTGEFF-s). In the latter it is not required that all the
characters of the input strings are part of the factorization. That is, the goal is to find
an equality free factorization using a maximum number of factors of a substring of the
input string. More formally, a gapped factorization of string S over alphabet Σ is a tuple
(u1, u2, . . . , uk) such that S = α0u1α1u2α2 · · ·αk−1ukαk, where ui ∈ Σ+ are the factors and
αi ∈ Σ∗ are the gaps. OPTGEFF-s asks, for a given string S, to find the largest integer k

such that S admits a gapped equality-free factorization of size k. In [11] a 2-approximation
for the OPTGEFF-s and a

√
n-approximation (where n is the size of the input string) for the

OPTEFF-s were shown. Moreover, it was conjectured [11] that the greedy approximation
ratio is Ω(

√
n). Grüttemeier et al. [8] show a randomized algorithm for solving the MAXEFF-s

with running time 2k · kO(1) + O(n).

Our results

As mentioned, the best-known approximation algorithm, the greedy algorithm, for the
OPTEFF-s has an approximation ratio of

√
n and it was conjectured that the greedy algorithm

has an approximation ratio of Θ(
√

n). In this paper, we show a better approximation
algorithm for OPTEFF-s with ratio O(n1/4). We then use this algorithm to show that the
greedy algorithm has the same approximation ratio of O(n1/4). Hence, this disproves the
conjecture from [11] saying that the approximation ratio of the greedy algorithm is Ω(

√
n).

The challenge is to show that the greedy algorithm has an approximation ratio of O(n1/4).
To get our approximation ratio we start with an (approximate) prefix free solution for the
version with gaps. Then, we use the prefix free property to map the factors of a solution
returned by the greedy algorithm to the aforementioned prefix free solution. Moreover,
besides the greedy algorithm, we introduce another approximation algorithm for OPTEFF-s
with an approximation ratio of O(n1/4), that uses some interesting techniques and is of
independent interest. We claim that our techniques give some key insights and perhaps open
the path for better approximation algorithms for the problem.

Finally, we use a clever analysis to also show that the greedy algorithm cannot have an
approximation ratio better than O(n1/4) and, hence, the approximation ratio of the greedy
algorithm is Θ(n1/4) for the maximum equality-free factorization problem.

2 The prefix-free property

For the OPTGEFF-s problem (the version of factorization with gaps), a 2-approximation
algorithm via a reduction from a scheduling problem was shown in [11]. A natural direction
for proving an approximation algorithm for OPTEFF-s is to transform a factorization with
gaps, obtained from the approximation algorithm of OPTGEFF-s, into a solution without
gaps. However, it is difficult to transform a given factorization with gaps into a factorization
without gaps with roughly the same number of factors.

In this section we show that it is possible to transform a special case of a factorization
with gaps into a factorization without gaps. We introduce the notion of a prefix-free gapped
factorization, which has an important role in our algorithm and might be of independent
interest.

CPM 2023
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▶ Definition 1. Let n, k ∈ N, let S be a string of length n and let Fk = {S1, S2, . . . , Sk}
be a set of non-overlapping factors of S (possibly with gaps). F is a prefix-free gapped
factorization of S if for all i ̸= j, Si is not a prefix of Sj.

Given a prefix-free gapped factorization F such that |F | = k, we prove that there is a
transformation of F into a factorization without gaps with the same number of factors k,
since each factor Si can be extended until the next factor Si+1 without colliding with another
factor Sj .

▶ Lemma 2. Let n, k ∈ N and let S be a string of length n with a prefix-free gapped
factorization F with |F | = k. Then, there is an equality free factorization for S without gaps
with at least k factors.

Proof. Denote S = T0S1T1S2T2S2 . . . Tk−1SkTk. Denote with Ri = SiTi. Note that for
each i ≠ j, Ri and Rj are not prefixes of each other because their prefixes are Si and Sj ,
respectively, which are not prefixes of each other.

Now, consider S = T0R1R2 . . . Rk. If, for all i, T0 ̸= Ri, then we have an equality free
(k + 1)-factorization. Otherwise, there exists an i such that T0 = Ri. We distinguish two
cases.

In the first case, if i < k, then we set Qi = RiRi+1. Thus, Qi and all other factors
Rj are still not prefixes of each other. T0, which equals Ri, is not a prefix of any other
Rj (because it equaled Ri) and is shorter than Qi. Hence S has a k-factorization S =
RiR1R2 . . . Ri−1QiRi+2 . . . Rk.

In the second case, if i = k, then we set Qk = Rk−1Rk and using a similar argument as
above we obtain a k-factorization S = RkR1R2 . . . Rk−2Qk. ◀

3 An O(n1/4)-approximation algorithm

In this section we show an algorithm that has an O(n1/4)-approximation to OPTEFF-s.
Our algorithm (see Algorithm 1) is composed of two algorithms: a greedy algorithm,

called Greedy1 (see Algorithm 3), which always yields an
√

n-approximation, and a new
algorithm (Algorithm 2) which is described next. Algorithm 1 simply selects the better of
the two algorithms and returns it.

Algorithm 1 An O(n1/4)-approximation algorithm for OPTEFF-s.

Input: String S.
1 F ← Algorithm 2(S);
2 G← Algorithm 3(S);
3 if |G| > |F | then
4 return G

5 return F

The basic idea behind Algorithm 2 is to find, for every fixed integer 1 ≤ i ≤ 2
√

n, a greedy
equality free gapped factorization of the input string in which every factor has length exactly i.
The algorithm chooses from these gapped fixed length factorizations, the factorization with
the most factors. Then, due to Lemma 2, we append to each of these factors the following
adjacent (possibly empty) gap and we obtain an equality free factorization. See Algorithm 2
for more details.
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Algorithm 2 Fixed length greedy factorization.

Input: String S.
1 F ← ∅;
2 for i← 1 to 2

√
n do

3 j ← 1,G← ∅;
4 while j ≤ n− i do
5 if S[j..j + i− 1] /∈ G then
6 G← G ∪ {S[j..j + i− 1]};
7 j ← j + i− 1;
8 j ← j + 1;
9 if |G| > |F | then

10 F ← G;
11 Extend each factor wi ∈ F until factor wi+1 (for the last factor, extend it until the

end of S);
12 return F

▶ Lemma 3. Algorithm 2 yields an equality-free factorization without gaps.

Proof. First, in the for loop, at each step, Algorithm 2 adds to G only distinct substrings of S.
Then, notice that for every two factors w1, w2 ∈ G, it holds that w1 is not a prefix of w2, since
both w1 and w2 have the same length. Therefore, G is a prefix-free gapped factorization, and
due to Lemma 2, the factors are extended as in line 11 to have an equality-free factorization
without gaps. ◀

Analysis

Here we prove that when the optimal solution, denoted OPT, has “many” factors, Algorithm 2
returns a good approximation of OPT.

Formally, let F be the factorization returned by Algorithm 2. Let α be n/|OPT |. Notice
that |OPT | = n/α. We claim that |F | = Ω(n/α2).

We first give an overview of the proof. First, we prove in Lemma 5 that there are at least
n/2α short factors (of length at most 2α) in OPT. Then we prove in Lemma 6 that there are
at least Ω(n/α2) factors of the exact same length in OPT. Next, we prove in Lemma 9 that
the factorization F returned in Algorithm 2 is a 2-approximation of optimal fixed length
factorization (see Definition 7). Finally, we prove in Lemma 10 that |F | = Ω(n/α2).

▶ Definition 4. An x-short factor of S is a factor of length ≤ x. An x-long factor of S is a
factor of length > x. When x is clear we will simply call them short factors and long factors.

▶ Lemma 5. There exist at least n/2α factors in OPT that are 2α-short.

Proof. Let LF denote the set of 2α-long factors in OPT and SF denote set of the 2α-short
factors in OPT. We will use an argument on n, the length of S. Each long factor must be, by
definition, of length ≥ 2α + 1. Hence, by length arguments, |LF | · (2α + 1) + |SF | · 1 ≤ n and,
hence, |LF | ≤ n/(2α+1)−|SF |/(2α+1). On the other hand, since |OPT | = n/α, we have that
|SF | = n/α− |LF |. Putting these two equations together yields that |SF | = n/α− |LF | ≥
n/α − n/(2α + 1) + |SF |/(2α + 1) and hence, |SF | − |SF |/(2α + 1) ≥ n/α − n/(2α + 1)
which in turn yields 2α|SF |/(2α + 1) ≥ (nα + n)/α(2α + 1). Hence, 2α2|SF | ≥ nα + n and
|SF | ≥ n/2α + n/2α2 ≥ n/2α. ◀
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Next, we show that among the short factors, Ω(1/α) fraction of them actually have
exactly the same length.

▶ Lemma 6. There exists an integer ℓ ≤ 2α such that there are at least n/4α2 short factors
in OPT of length exactly ℓ.

Proof. By Lemma 5, there are at least n/2α short factors in OPT. The average number of
factors of each short length, is at least n/2α

2α = n/4α2. By the pigeonhole principle, there
exists an integer ℓ ≤ 2α such that there are at least n/4α2 short factors in OPT of length
exactly ℓ. ◀

Next we prove that Algorithm 2 is a constant approximation algorithm to the problem of
gapped factorization with fixed lengths.

▶ Definition 7. The Fixed-Length Maximum Gapped Equality-Free Factorization Size
(FLOptGEFF-s) problem is defined as follows. For a given string S and an integer r,
find the largest integer m, such that S admits a gapped equality-free factorization of size m

where all factors are of length r.

In [11], the problem of OPTGEFF-s is reduced to the Job Interval Selection Problem
with k intervals (JISPk, see Theorem 8), which has a 2-approximation algorithm.

▶ Theorem 8 (restated from [11]). Given n jobs containing k time intervals each, find the
maximum number of intervals that can be selected such that (i) no two intervals intersect
and (ii) at most one time interval is selected per job.

Analogously to [11], FLOptGEFF-s is reducible as well to JISPk, and here we briefly
show the reduction.

▶ Lemma 9. Algorithm 2 is a 2-approximation for FLOptGEFF-s.

Sketch Proof. We construct an instance of JISPk with O(n) jobs from a string S with n

characters. For each distinct substring of S with length r, we create a job. For each substring
s we add [a, b) as a time interval of s for all occurrences s = S[a, b] in S.

Since JISPk has a 2-approximation algorithm, we have that FLOptGEFF-s has a 2-
approximation algorithm as well. Moreover, the algorithm that approximates FLOptGEFF-
s(S, r) for some string S and integer r is in fact the inner loop of Algorithm 2, on the iteration
where i = r. ◀

We are ready to prove a lower bound on the number of factors returned by Algorithm 2.

▶ Lemma 10. Let F be the factorization returned by Algorithm 2. Then, |F | = Ω(n/α2).

Proof. By Lemma 6, there exists ℓ such that there are at least n/4α2 short factors in OPT
of length ℓ.

Let Sℓ
ALG be the number of factors of length ℓ produced by Algorithm 2, let Sℓ

GEF F be
FLOptGEFF-s(S, ℓ), and let Sℓ

OP T be the number of factors of length ℓ in OPT .
By Lemma 9, there is a polynomial algorithm that is a 2-approximation of the number

of occurrences of a factor of length ℓ in OPT . Moreover, the algorithm behind Lemma 9
is in fact the inner loop of Algorithm 2. Notice that ℓ ≤ 2α ≤ 2n/|OPT | ≤ 2

√
n, since

|OPT | ≥
√

n and therefore there is an iteration where i = ℓ. Then,

Sℓ
OP T /2 ≤ Sℓ

GEF F /2 ≤ Sℓ
ALG

where the first inequality is due to the definition of FLOptGEFF-s and the second inequality
is due to Lemma 9.
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Hence, combining Lemma 6 and Lemma 9, for the iteration where i = ℓ on line 9,
|G| = Sℓ

ALG ≥ (n/4α2)/2. Since the number of factors returned by the algorithm is at least
|G| (i.e. |F | ≥ Sℓ

ALG), we have that |F | = Ω(n/α2). ◀

As stated before, Algorithm 1 is composed by two algorithms, Algorithm 2 and Algorithm 3.
Algorithm 3 was introduced in [11] as Greedy1 algorithm. In a nutshell, consider starting
“at the left” of the string and adding the next shortest substring (distinct from the already
selected factors) to the incumbent factorization at each step of the algorithm. See [11] for
details.

Algorithm 3 Greedy1 .

Input: String S.
1 j ← 1,F ← ∅;
2 for i← 1 to n do
3 if S[j..i] /∈ F then
4 F ← F ∪ S[j..i];
5 j ← i + 1;
6 Extend the last factor of F until the end of S;
7 return F

It was proven in [11] that Greedy1 yields an equality-free factorization. Moreover, they
prove that Greedy1 produces at least Ω(

√
n) factors.

▶ Theorem 11. Algorithm 1 is an O(n1/4)-approximation polynomial time algorithm for the
OPTEFF-s problem.

Proof. Combining Greedy1 with Algorithm 2, we have an algorithm that pro-
duces at least Ω(max((n/α2),

√
n)) factors. This gives an approximation ratio of

O(min( n/α
n/α2 , (n/α)/

√
n)) = O(min(α,

√
n/α)), which is maximized at α =

√
n/α, i.e. at

α = n1/4.
Finally, notice that the both Greedy1 and Algorithm 2 run in polynomial time of at most

O(n1.5 log n). ◀

4 The natural greedy algorithm is a Θ(n1/4)-approximation

In this section we prove that Greedy1 itself achieves an approximation ratio of O(n1/4).

▶ Lemma 12. Greedy1 is a 2-approximation of Algorithm 2.

Proof. Let S be a string, and let ℓ be a positive integer. Let Fℓ be a fixed ℓ length gapped
factorization on S such that |Fℓ| =FLOptGEFF-s(S, ℓ). Let FG be the factorization that is
the output of the Greedy1 algorithm. We show that |FG| ≥ |Fℓ|/2.

We map each factor of Fℓ to a factor of FG as follows. Let f ∈ Fℓ be a factor in Fℓ and
let i ≤ j be two indices such that f = S[i, j]. In FG, denote the factors that cover S[i] and
S[j] as gi and gj , respectively. If gi ≠ gj , map f to gj . If f is a suffix of gj , then also map f

to gj . Otherwise, f is fully contained in a factor of FG and f is not a suffix of gj . Then, it
must be the case that there is a factor gs in FG such that the suffix of gs is exactly f , as
otherwise Greedy1 would have cut the factor gj right after index j, but f is not a suffix of gj .
Therefore, map f to gs (if there are more than one factors with f as a suffix in FG, map to
one of them arbitrarily).
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Now, let g be a factor in FG, and let î ≤ ĵ be two indices such that g = S [̂i, ĵ]. We claim
that there are at most two factors in Fℓ that are mapped to g. There is at most one factor
in Fℓ that overlaps S [̂i], and therefore mapped to g because of overlapping two factors in FG.
Moreover, since all the factors in Fℓ have the same size, there is at most one factor in Fℓ

such that the suffix of g is equal to the factor. Therefore, there are at most 2 factors in Fℓ

that are mapped to g. To conclude, there are at most 2 · |FG| factors in Fℓ, for every ℓ.
Let FA be the factorization returned by Algorithm 2. There is an ℓ such that |Fℓ| ≥ |FA|.

Since we proved that |FG| ≥ |Fℓ|/2 for every ℓ, we also have that |FG| ≥ |FA|/2. ◀

Combining the above lemma with the Theorem 11, we conclude the following theorem.

▶ Theorem 13. The approximation ratio of Greedy1 is O(n1/4).

Proof. By Lemma 12, Greedy1 is a constant approximation of Algorithm 2 and therefore
Greedy1 is also a constant approximation of Algorithm 1 (that simply uses Algorithm 2 and
Greedy1 and returns the maximum between them). Since by Theorem 11 Algorithm 1 is an
O(n1/4)-approximation for OPTEFF-s we have that Greedy1 is also an O(n1/4)-approximation.

◀

5 Tightness of Algorithm 1

In this section we prove that our analysis of Algorithm 1 is actually tight. We show that
there is a case where both Greedy1 and Algorithm 2 have an approximation ratio that is at
least Ω(n1/4).

Similar to [11], we define a string S as follows. Let n be a square of an even number, i.e.
there is an integer k such that n = (2k)2. Let Σ = {x1, x2, . . . , x√

n} be an alphabet. We
define variables X1, X2, . . . , X√

n such that for each variable Xi, define Xi = x1x2..xi. The
string S is defined as S = X1X2..X√

n. Note that |S| = Θ(n).

▶ Lemma 14. There exists a factorization of S with Ω(n3/4) factors.

Proof. We first factorize S into Ω(n3/4) factors with gaps, and afterwards we get rid of the
gaps. We factorize the variables X1..X√

n/2−1 using only one factor. Then, the variable
X√

n/2 is factorized into x1; x2; ..; x√
n/2, for a total of

√
n/2 factors. At least

√
n/2 − 1

factors are produced by the variables X√
n/2+1X√

n/2+2 as follows. The variable X√
n/2+1 is

factorized into x1x2; x3x4; . . . , for a total of
⌊
|X√

n/2+1|/2
⌋

factors. The variable X√
n/2+2 is

factorized into x2x3; x4x5; . . . , also for a total of at least
⌊
(|X√

n/2+1|)/2
⌋

factors.
In general, at each iteration i, the algorithm produces factors of length i using i variables

and i offsets. Each variable is of length at least
√

n/2, therefore at least i · ⌊(
√

n/2)/i⌋ ≥√
n/2 − i factors are produced by i variables. For each iteration i, the rth variable Xj of

iteration i produces factors of length i starting at index r with respect to the beginning of
Xj . This procedure produces an equality free factorization with gaps.

There is a constant c > 0 such that there are c
√√

n/2 = cn1/4 iterations to the process.
Therefore, at least

cn1/4∑
i=1

√
n/2− i ≥ cn3/4/2− c2√n = Ω(n3/4)

factors are produced in this process.
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We are left with handling the gaps. Notice that there are two reasons for a gap to occur.
First, (1) on iteration i and variable Xj , we produce ⌊|Xj |/i⌋ factors, and |Xj |−i ⌊|Xj |/i⌋ > 0,
so we have a gap at the end of Xj . Second, (2) on iteration i and the rth variable of the
iteration Xj , when Xj is not the first variable of iteration i (r ̸= 1), the factorization of Xj

does not start from x1 but from xr.
For gaps of type 1, let Xj be a variable that has a gap at the end of Xj . Then, if j ̸=

√
n,

we extend the first factor of Xj+1 backwards to close the gap. This extended factor is unique
since there is only one instance of xjx1 in S. If j =

√
n and we are in the last variable, we

extend the last factor of Xj . This extended factor is unique since there is only one instance
of this length in S.

For gaps of type 2, let Xj be a variable that has a gap at the beginning of Xj . Then, we
extend the last factor of Xj−1 forward to close the gap. This extended factor is unique since
there is only one instance of xj−1x1 in S.

For gaps with both types 1 and 2, we just handle them as gaps with type 1. ◀

On string S, Greedy1 produces Θ(
√

n) factors. Hence, and by Lemma 14, we have the
following corollary.

▶ Corollary 15. The approximation ratio of Greedy1 is Ω(n1/4).

On the string S described above, Algorithm 2 produces O(
√

n) factors. To see this, let
l be some length that is being observed in line 2 of Algorithm 2. There are (at most)

√
n

x1’s in string S. Therefore there are at most
√

n factors containing x1. On the other hand,
every factor that does not contain x1, must start in a unique character (since before the
extension, every factor is of length exactly l). There are (at most)

√
n unique characters

in S. Therefore, there are at most
√

n factors not containing x1.
Hence, and by Lemma 14, we have the following corollary.

▶ Corollary 16. The approximation ratio of Algorithm 2 is Ω(n1/4).

Finally, since both lower bounds were based on the same case of string S, we have the
following corollary.

▶ Corollary 17. The approximation ratio of Algorithm 1 is Ω(n1/4).

6 Conclusions and future work

In this paper we disproved one of the conjectures of Mincu and Popa [11] and show that the
natural greedy algorithm for the OPTEFF-s problem has a Θ(n1/4)-approximation factor.
It is, of course, a natural open question to improve the approximation ratio for OPTEFF-s
using a different algorithm than the greedy. We believe that the key in succeeding to obtain
such an algorithm is finding a better approximation algorithm for the case when the number
of factors in an optimal solution is relatively small. Thus, the ideas introduced in Section 3,
where we present an alternative O(n1/4) approximation algorithm, represent a promising
direction.

References
1 Amihood Amir, Yonatan Aumann, Moshe Lewenstein, and Ely Porat. Function matching.

SIAM Journal on Computing, 35(5):1007–1022, 2006.
2 Brenda S. Baker. Parameterized pattern matching: Algorithms and applications. Journal of

Computer and System Sciences, 52(1):28–42, 1996.

CPM 2023



19:10 String Factorization via Prefix Free Families

3 Richard Cole, Carmit Hazay, Moshe Lewenstein, and Dekel Tsur. Two-dimensional parameter-
ized matching. ACM Transactions on Algorithms, 11(2):12:1–12:30, 2014.

4 Anne Condon, Ján Maňuch, and Chris Thachuk. The complexity of string partitioning. Journal
of Discrete Algorithms, 32:24–43, 2015.

5 Henning Fernau, Florin Manea, Robert Mercas, and Markus L. Schmid. Pattern matching
with variables: Fast algorithms and new hardness results. In 32nd International Symposium
on Theoretical Aspects of Computer Science, 2015, March 4-7, 2015, Garching, Germany,
pages 302–315, 2015.

6 Avraham Goldstein, Petr Kolman, and Jie Zheng. Minimum common string partition problem:
Hardness and approximations. The Electronic Journal of Combinatorics, 12, 2005.

7 Isaac Goldstein and Moshe Lewenstein. Quick greedy computation for minimum common
string partition. Theoretical Computer Science, 542:98–107, 2014.

8 Niels Grüttemeier, Christian Komusiewicz, Nils Morawietz, and Frank Sommer. String
factorizations under various collision constraints. In 31st Annual Symposium on Combinatorial
Pattern Matching (CPM 2020). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2020.

9 Markus L. Schmid. Computing equality-free and repetitive string factorisations. Theoretical
Computer Science, 618:42–51, 2016.

10 Moshe Lewenstein. Parameterized pattern matching. In Encyclopedia of Algorithms, pages
1525–1530. Springer, 2016.

11 Radu Stefan Mincu and Alexandru Popa. The maximum equality-free string factorization
problem: Gaps vs. no gaps. In International Conference on Current Trends in Theory and
Practice of Informatics, pages 531–543. Springer, 2020.

12 Sebastian Ordyniak and Alexandru Popa. A parameterized study of maximum generalized
pattern matching problems. Algorithmica, 75(1):1–26, 2016.

13 Wojciech Plandowski. Satisfiability of word equations with constants is in PSPACE. Journal
of the ACM (JACM), 51(3):483–496, 2004.

14 Jacob Ziv and Abraham Lempel. Compression of individual sequences via variable-rate coding.
IEEE Transactions on Information Theory, 24:530–536, 1978.



Improving the Sensitivity of MinHash Through
Hash-Value Analysis
Gregory Kucherov # Ñ

LIGM, CNRS/Université Gustave Eiffel, Marne-la-Vallée, France

Steven Skiena # Ñ

Dept. of Computer Science, Stony Brook University, Stony Brook, NY, USA

Abstract
MinHash sketching is an important algorithm for efficient document retrieval and bioinformatics. We
show that the value of the matching MinHash codes convey additional information about the Jaccard
similarity of S and T over and above the fact that the MinHash codes agree. This observation
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1 Introduction

MinHash sketching is an important algorithm for efficient document retrieval. It reduces
a set S of size n to a smaller representation of size m ≪ n by applying m distinct hash
functions h1, . . . hm to each of the n elements of S, and identifies the smallest hash code for
each hi. This vector of minimum hash codes serves a sketch for the larger set S. A classical
result [2, 3] shows that the probability that smallest hash codes of two sets S and T are equal
is identical to J(S, T ), the Jaccard similarity of S and T . Thus the fraction of matching
MinHash codes represents an unbiased estimator of J(S, T ).

Hash code values, by definition, are not supposed to mean anything. They represent
mappings of an item x to a pseudorandom integer h(x) for purpose of fast identity matching
and retrieval. The relative values of h(x) and h(y) for items x and y have no special properties
beyond that of h(x) = h(y) likely implies that x = y for the conventional hash functions as
employed in algorithms such as MinHash.

But in this paper, we report a curious observation associated with MinHash. Suppose
the MinHash values for sets S = {s1, . . . , sn} and T = {t1, . . . , tn} equal both a particular
value, namely:

a =
n

min
j=1

hi(sj) =
n

min
j=1

hi(tj)

We shall show that the value of this matching MinHash value a conveys additional information
about the Jaccard similarity of S and T over and above the fact that the MinHash values
agree.
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This observation holds the potential to increase the sensitivity of minhash-based retrieval
systems. Our main results in this paper are:

We explain why observing a larger matching MinHash value a increases the expectation of
high similarity between S and T . Specifically, the expected value of a common MinHash
value a for two n-element sets with intersection size i is N/(2n − i + 1), presuming the
underlying hash function selects an integer from [0...N ] uniformly at random.
We analyze the expected Jaccard similarity of two sets as a function of observing a
matching MinHash value a under a reasonable prior distribution on intersection set sizes,
specifically the case where pairs of n-element sets have equal probability of intersection
size i for 1 ≤ i ≤ n. Experimental results confirm a modest increase in the sensitivity
of our hash-code weighted variant of MinHash over the original, over a range of set
similarities and number of hash codes.
We present a practical approach to using MinHash values to improve the sensitivity of
traditional Jaccard similarity estimation, based on the Kolmogorov-Smirnov statistical test
for sample distributions. Our techniques provide a supplemental signal suggesting whether
the fraction of matching MinHashes is more likely to over-estimate or underestimate the
true Jaccard similarity between two sets. Experiments over a wide range of hash counts
(k) and set similarities show a small but consistent improvement over chance, specifically
an average accuracy of 61% over the range of experiments.

We believe that this orthogonal view of measuring Jaccard similarity through the value
of matching MinHash codes is novel, and will inspire further interest. Although the practical
improvement we have demonstrated is not large, we believe that better interpretations of the
underlying statistics may yield better results.

This paper is organized as follows. We begin with a survey of the literature of MinHash
and related techniques in Section 2. We provide intuition as to why the value of the matching
MinHash value matters through a thought experiment in Section 3. We present our analysis
of the expected intersection size as a function of MinHash value for an appropriate prior
distribution in Section 4, and ways to combine this information into an estimate of Jaccard
similarity in Section 5. An alternate approach to interpret the values of MinHash codes using
the Kolmogorov-Smirnoff statistical test is presented in Section 6. Finally, we conclude with
some open problems raised by our work.

2 Prior Work

Broder [2, 3] developed MinHash as a solution to identifying similar documents (represented
as sets of shingles or substrings) within a large text corpus while avoiding the quadratic-time
costs of explicitly comparing each pair of documents. A function h(x) is applied to each set
element, mapping each element x to a pseudo-random integer. Each set S is represented by
the minimum hash value among all its elements.

The Jaccard similarity J(S, T ) of two sets S and T is defined as

J(S, T ) = |S ∪ T |
|S ∩ T |

.

For identical sets, J(S, T ) = 1 while for disjoint sets, J(S, T ) = 0. Broder [2, 3] observed that
the probability that two sets S and T generate the same MinHash value exactly equals the
Jaccard similarity of the two sets, J(S, T ). The fraction of matching minimum hashes over
k independent hash functions provides an unbiased estimator of J(S, T ), with the variance
of this estimate equal to J(S, T )(1 − J(S, T ))/k [4]. Surveys of MinHash sketching include
Cohen [9].
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MinHash is one of the most important algorithms for web search and duplicate detection
[12, 15, 17], social networks [8], and machine learning [7, 19]. More recently, it has been
successfully applied to bioinformatics for sketching large DNA sequence datasets, starting from
the seminal Mash software [21] and followed by related tools [5, 28, 1, 20]. Such applications
motivate our efforts in this paper to increase the sensitivity of minimum hashing-based
similarity measures.

Locality Sensitive Hashing (LSH) techniques seek to map similar data objects to the
same hash codes with a higher probability than the dissimilar ones by adopting a family of
randomized hash functions. Indyk et al. [16, 14, 10] introduced the notion of locality-sensitive
hashing in the context of nearest-neighbor search and string similarity. MinHash can be
viewed an instance of locality sensitive hashing. An extended survey of locality-sensitive
hashing can be found in [24].

SimHash [6] is a LSH-based method which provides an unbiased estimator of the similarity
between two vectors. Specifically, the probability that two vectors u and v generate the same
SimHash value equals the Cosine similarity of u and v. Henzinger [15] performed a large-scale
comparison of MinHash and SimHash on detecting similar web pages, finding that a hybrid
of the two approaches yielded the best results. Srivastava and Li [22] present analysis and
experiments to suggests that MinHash is more sensitive than SimHash in regions of high
similarity.

Each subset element is granted equal weight in traditional MinHash schemes, but this
can be generalized in weighted MinHash, perhaps to reflect the TD-IDF values of each word.
Weighted MinHash algorithms are surveyed in [25].

Finally, we mention another related sketching scheme named HyperLogLog [13] primarily
designed for the task of estimating the number of distinct items in a stream, but also
capable of estimating the cardinality of the union of two sets and therefore their Jaccard
similarity. Several works proposed unifying combinations of the two sketches [11, 27]. Note
that HyperLogLog has some relationship with our work, as it employs the idea of estimating
the cardinality of a random set from its minimum value. However, a direct application of
this idea to MinHash has not been made, to our knowledge.

3 Thought Experiment: Why MinHash Values Matter

We present the following thought experiment to illustrate how the actual value of matching
MinHash codes provides information about Jaccard similarity. For a set S, let Mh(S) denote
its MinHash value under a given hash function h, i.e. Mh(S) = mins∈S{h(s)}. We use the
notation M(S) when h is irrelevant (but assumed fixed across sets).

Now consider following two “extreme” situations involving pairs of sets S and T , each
with n elements:
1. S and T are identical. Hence by definition, the minimum hash values must match, so

a1 = Mh(S) = Mh(T ),
2. S and T intersect in only one element x, which happens to be the minimum value of both

under h, so a2 = h(x) = Mh(S) = Mh(S).

Now, given just the two unlabeled values for a1 and a2, can we correctly assign these
codes to the appropriate case above with probability greater than 1/2?

Assume hash function h selects an integer from the range [0 . . . N ] uniformly at random.
Now suppose that two n-element sets with intersection size i share a common MinHash value
m. Then m is the smallest of the 2n − i values in the union. Since the expected minimum of
ℓ numbers drawn uniformly at random from [0..N ] is N/(ℓ + 1), the expected value of m is
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Figure 1 Probability distributions that two sets of size 100 share a common MinHash value, as
a function of the size of their intersection (respectively 20, 50, and 100). The probability of small
matching MinHash values are increase for relatively dissimilar sets.

N/(2n − i + 1). In the first case above, i = n, so E[a] = N/(n + 1), while for the second case
i = 1 and E[b] = N/(2n). Thus it is more likely that min(a1, a2) corresponds to case (1) and
max(a1, a2) to case (2).

The situation is illustrated in Figure 1, which shows the probability of observing a given
MinHash value a for three different intersection sizes. The probability of observing a MinHash
value of 0 with a possible range [0 . . . 1000] is almost twice as high for two 100-element sets
with a 20-element intersection than when the sets are identical. More similar pairs of sets,
with larger intersection sizes, have greater probability of large matching MinHash values.

4 Expected Intersection Size as a Function of MinHash Value

In this section, we analyze the expected intersection size of two sets based on observing a
particular matching MinHash value. For two n-element sets S and T where |S ∩ T | = i,
J(S, T ) = i/(2n − i). Thus analyzing the intersection size of S and T provides a result
which can be alternately interpreted in the context of the Jaccard similarity of S and T for
n-element sets.

Let S and T be two sets each of size n. We limit our attention to the case where S and T

are non-disjoint, which is necessary for MinHash values to legitimately collide, so S ∩ T ̸= ∅.
Further, we assume that range of h from [0 . . . N ] is sufficiently large relative to n that we
can discount the possibility of spurious collisions, namely that there does not exist s ∈ S

and t ∈ T where h(s) = h(t) despite s ̸= t.

4.1 Prior Distribution

Determining the expected intersection size as a function of matching hash values requires
knowledge of a prior distribution on the value of the intersection size. In the analysis below,
we base our analysis on a uniform prior distribution, that all intersection sizes between S

and T are equally likely. Thus for every i ∈ [1..n], P[|S ∩ T | = i] = 1/n.
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The uniform distribution appears most natural to us as a general prior, which is why
we analyze this case below. That said, the true prior distribution differs with application,
particularly as to whether pairs of randomly selected sets are likely to have large or small
intersection sizes. The analysis below can be repeated for any particular well specified prior
distribution in an analogous fashion.

4.2 Analysis
The probability of two sets sharing the MinHash value equals the Jaccard similarity index,
that is

P[M(S) = M(T ) | i = |S ∩ T |] = i

2n − i
. (1)

Because all intersections are equiprobable under our prior distribution, we have

P[|S ∩ T | = i | M(S) = M(T )] =
i

2n−i∑n
j=1

j
2n−j

(2)

Note that given ℓ random numbers x1, . . . , xℓ uniformly drawn from [1..N ], for a ∈ [1..N ],
we have

P[min{x1, . . . , xℓ} ≤ a] = 1 − P[x1 > a & . . . & xℓ > a] = 1 −
(

1 − a

N

)ℓ

. (3)

Then, the probability the MinHash is exactly a is given by

P[min{x1, . . . , xℓ} = a] =
(

1 − a − 1
N

)ℓ

−
(

1 − a

N

)ℓ

. (4)

We now estimate the conditional probability P[|S ∩ T | = i | M(S) = M(T ) = a]. We have

P[|S ∩ T | = i | M(S) = M(T ) = a] = P[(|S ∩ T | = i) ∧ (M(S) = M(T )) ∧ (a = M(S ∪ T ))]
P[(M(S) = M(T )) ∧ (a = M(S ∪ T ))]

= P[|S ∩ T |= i] · P[a=M(S ∪ T ) | |S ∩ T |= i] · P[M(S)=M(T ) | (|S ∩ T |= i) ∧ (a=M(S ∪ T )]∑n

i=1 (P[(M(S) = M(T )) ∧ (a = M(S ∪ T )) | |S ∩ T | = i] · P[|S ∩ T | = i])

= P[(a = M(S ∪ T )) | (|S ∩ T | = i)] · P[(M(S) = M(T )) | (|S ∩ T | = i) ∧ (a = M(S ∪ T ))]∑n

i=1 P[(M(S) = M(T )) ∧ (a = M(S ∪ T )) | |S ∩ T | = i]
(5)

The last rewrite follows because P[|S ∩ T | = i] = 1/n is the same for all i. To further simplify
Eqn. 5, observe that

P[M(S) = M(T ) | (|S ∩ T | = i) ∧ (a = M(S ∪ T ))] = P[M(S) = M(T ) | |S ∩ T | = i]

because the event of sharing common MinHash (M(S) = M(T )) is independent of its value
(a) for a fixed intersection size. For the same reason, in the denominator,

P[(M(S) = M(T )) ∧ (a = M(S ∪ T )) | |S ∩ T | = i] =
P[M(S) = M(T ) | |S ∩ T | = i] · P[a = M(S ∪ T ) | |S ∩ T | = i]

Eqn. 5 then rewrites to

P[a = M(S ∪ T ) | |S ∩ T | = i] · P[M(S) = M(T ) | |S ∩ T | = i]∑n
i=1 (P[M(S) = M(T ) | |S ∩ T | = i] · P[a = M(S ∪ T ) | |S ∩ T | = i])

. (6)
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Figure 2 The probability of intersection size of two sets of size 100 sharing a common MinHash
value. The red curve shows the probability of having a given intersection size (formula (2)). The
other curves show the same probability conditioned on the value a of common MinHash (formula
(7)), where the hash space is [1..1000]. Larger values of a favor larger intersection sizes.

Using (4), (1), we obtain

P[|S ∩ T | = i | M(S) = M(T ) = a] =
i

2n−i

((
1 − a−1

N

)2n−i −
(
1 − a

N

)2n−i
)

∑n
j=1

j
2n−j

((
1 − a−1

N

)2n−j −
(
1 − a

N

)2n−j
) (7)

Using (7), we can compute the expected intersection size as a function of the shared
MinHash value:

E[|S ∩ T | | M(S) = M(T ) = a] =
n∑

i=1
i · P[|S ∩ T | = i | M(S) = M(T ) = a] (8)

As an illustration, Figure 2 shows probability distributions of intersection sizes without
taking into account the common MinHash value (formula (2)) and knowing the common
MinHash value (formula (7)). The figure demonstrates that larger common MinHash values
provide an evidence for larger intersection sizes.

5 Hash Scoring for Sketch Similarity

In the classical MinHash scheme, the probability that two sets have matching MinHash is
equal to the Jaccard similarity between the two sets. Thus, the fraction of matches taken over
a number of trials provides an unbiased estimator of the Jaccard similarity. We have shown
that the values of these matching MinHashes provides an orthogonal measure of similarity.
The question is what the best way to combine these measures is.

We propose the following initial strategy. Traditional MinHash can be interpreted as
averaging the values of 0/1 indicator variables, where a match of hash codes is represented
by 1 and a mismatch by 0. We will replace the value associated with matching hashes by
real values that over/underweight based on the value of shared MinHash. More specifically,
a shared MinHash value will contribute with weight

E[|S ∩ T | | M(S) = M(T ) = a]
E[|S ∩ T |] , (9)
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Table 1 Improvement (in terms of the average reduction of absolute error) in estimating set
intersection size by summing hash-weighted counts vs. equal weighting to estimate Jaccard similarity
for different numbers of hash functions (rows) and set intersection sizes (columns). Bolded entries
represent improvement over traditional MinHash estimation, representing 116/140 = 82.9% of the
non-trivial cells in the table.

k / int 1 2 3 5 10 15 19 20
1 .0068 .0140 .0205 .0375 .0837 .1150 .1550 -.1650
2 .0067 .0138 .0269 .0395 .0583 .0626 .1020 -.1120
3 .0092 .0250 .0258 .0466 -.0914 .0369 .0824 -.0833
4 .0128 .0250 .0308 .0496 .0042 .0093 .0648 -.0615
5 .0161 .0240 .0312 .0493 .0280 -.0799 .0684 -.0532
6 .0163 .0251 .0377 .0537 -.0471 .0012 .0550 -.0489
7 .0116 .0301 .0368 -.0277 -.0008 .0071 .0636 -.0384
8 .0143 .0257 .0356 .0119 .0282 -.0072 .0615 -.0347
9 .0159 .0201 .0350 .0200 -.0377 .0018 .0298 -.0325
10 .0139 .0283 .0416 .0233 .0029 -.0411 -.0146 -.0290
11 .0155 .0266 .0476 .0266 .0156 .0028 -.0166 -.0244
12 .0147 .0262 .0218 .0350 -.0172 -.0023 -.0004 -.0231
13 .0165 .0353 .0016 .0403 .0133 -.0044 .0035 -.0213
14 .0176 .0283 .0157 -.0133 .0162 -.0035 .0070 -.0193
15 .0168 .0280 .0125 .0077 -.0207 -.0226 .0148 -.0172
16 .0164 .0291 .0142 .0173 .0081 -.0003 .0059 -.0155
17 .0189 .0328 .0196 .0115 .0113 -.0045 .0084 -.0144
18 .0163 .0293 .0193 .0207 -.0157 .0071 .0058 -.0144
19 .0152 -.0060 .0208 .0304 .0043 .0036 .0092 -.0118
20 .0146 .0094 .0213 .0289 .0059 -.0193 -.0122 -.0115

where the numerator is defined by Eqn 8, and

E[|S ∩ T |] =
n∑

i=1
P(|S ∩ T | = i | M(S) = M(T )) (10)

is the expected intersection size independent of MinHash value, i.e. implied by the prior
distribution of intersection sizes.

5.1 Experimental Results
We performed a modest experiment to evaluate the performance of this technique, with
the results reported in Table 1. We limited the experiment to small sets (n = 20), but
consider a broad range of hash function counts (1 ≤ k ≤ 20 = n) and set similarities defined
by intersection sizes from 1 ≤ i ≤ 20 = n. Each cell represents the average difference in
absolute error in estimating intersection size between MinHash with over/underweighting
and traditional 0/1 counts, where each cell is averaged over 1,000 independent random trials.

We note that the rightmost column in Table 1 (intersection size 20 out of a possible 20)
corresponds to identical sets, where the traditional Jaccard (and intersection size) estimate
is always correct, leaving our proposed method with no room for possible improvement. But
116/140 = 82.9% of the non-trivial cells show improvement over the traditional MinHash
baseline.
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Figure 3 The Kolmogorov-Smirnov test quantifies the difference between two probability
distributions by the maximum y-distance gap between the two cumulative distribution functions.
On the left, two samples from the same normal distribution. On the right, comparison of samples
from uniform and normal distributions drawn over the same x-range..

6 Sketch Evaluation using the Kolmogorov-Smirnov Test

We now propose an alternate approach to improve the Jaccard similarity estimate offered by
the classical MinHash approach, namely the fraction of matching MinHash values in k trials.
We seek to improve this estimate by analyzing the distribution of the values of the matching
hashes from these trials to decide whether it is more likely to be over or under estimating
the actual similarity. A key advantage of this approach over of that of Section 4 is that does
not require a prior distribution on the actual intersection sizes.

Our approach is based on the Kolmogorov-Smirnov (KS) statistical test [18, 23], which
compares empirical cumulative distribution functions (CDFs) to assess whether two samples
are drawn from the same underlying distribution. We will use it to compare the observed
distribution of matching MinHash values against the theoretical distribution for the classical
Jaccard estimate. The direction of the largest deviation suggests whether it is more likely an
over or under estimate.

6.1 The Kolmogorov-Smirnov Test

In the KS-test, the empirical cumulative distribution function (CDFs) of the two different
samples are plotted on the same chart. If the two samples are drawn from the same
distribution, the ranges of x values should largely overlap. An empirical CDF F̂ (x) of a
sample is defined as the fraction of the sample ≤ x.

We seek to identify the value of x for which the associated values of the two CDFs differ
by as much as possible. The distance D(F̂ , Ĝ) between two empirical CDFs F̂ and Ĝ is the
difference of the y values at this critical x, formally stated as

D(F̂ , Ĝ) = max
x

|F̂ (x) − Ĝ(x)|

The more substantially that two samples differ in this fashion, the more likely it is that
they were drawn from different distributions. Figure 3 (left) shows two independent samples
from the same normal distribution. In contrast, Figure 3 (right) compares a sample drawn
from a normal distribution against one drawn from the uniform distribution. The big gaps
near the tails provide evidence that the two samples are drawn from different distributions.
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The KS-test compares the value of D(F̂ , Ĝ) against a particular target, declaring that
two distributions differ at the significance level of α when:

D(F̂ , Ĝ) > c(α)
√

n1 + n2

n1n2

where c(α) is a distribution-independent constant to look up in a table. In this paper, we
use the ideas behind the KS-test for qualitative evaluation instead of precisely measuring
statistical significance, and so will be interested in the direction of the deviation without this
associated constant.

6.2 Application to MinHash Analysis
As explained above, the distribution of matching MinHash values differs as a function of the
intersection size or (equivalently) Jaccard similarity between two sets of size n. Recall that
for ℓ random numbers x1, . . . , xℓ uniformly drawn from [1..N ], for a ∈ [1..N ], we have

Fℓ(x) = P[min{x1, . . . , xℓ} ≤ x] = 1−P[x1 > x & . . . & xℓ > x] = 1−
(

1 − x

N

)ℓ

≈ 1−e−xℓ/N . (11)

This defines the CDF on matching MinHash values. Comparing two sets A and B, both
of cardinality n with an intersection of size i, any common MinHash value represents the
smallest of ℓ = 2n − i random values. Thus the distribution of matching MinHash values is
defined by Eqn. 11, given an estimate for the union size ℓ. An important observation for
us is that CDFs Fℓ are majorating one another, that is if ℓ1 > ℓ2, then Fℓ1(x) > Fℓ2(x) for
any x.

Estimates for the union size ℓ and intersection size i follow from classical MinHash analysis.
If m matching MinHash values are observed in k trials, m/k is an unbiased estimator of the
Jaccard index i

ℓ = i
2n−i = 2n−ℓ

ℓ . Therefore, i and ℓ are estimated respectively by

î = 2nm

k + m
, ℓ̂ = 2nk

k + m
.

We can now employ the idea underlying the KS-test to evaluate how well the m observed
MinHash values match the estimated distribution Fℓ̂(x). In doing that, we analyze the sign
of the critical deviation

D(Fℓ̂, F̂ ) = Fℓ̂(x̃) − F̂ (x̃) for x̃ = argmax |Fℓ̂(x) − F̂ (x)|,

where F̂ is the empirical CDF obtained from the sample of matching MinHash values. When
D is positive, this suggests that the regular MinHash estimate ℓ̂ is an overestimate and
therefore î is an underestimate for the true intersection size. Conversely, a negative D

provides an evidence that î is an overestimate for the true intersection size. This reasoning
is supported by the above-mentioned majorating property of CDFs, as it guarantees that
the sign of D correctly defines whether the estimate ℓ̂ should be increased or decreased for
the KS-test statistic to be reduced and therefore for the estimated CDF to fit better the
observed MinHash values. We thus propose the sign of D as a secondary signal to improve
the accuracy of î as an estimator for intersection size.

The running time of this test is O(m log m) because we must sort the observed matching
hash values to compute the CDF. It is only necessary to compare the distributions at the m

sample points to identify the extremal points, with each comparison efficiently done using the
exponential form of Eqn. 11. The magnitude of the deviation directly maps to a confidence
value in the direction of change, with p-values obtainable using tables of c(α) values from
the standard KS-test. However, in the experiments below we propose to estimate correction
direction from the sign of D independent of its magnitude.
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Table 2 Performance (in terms of the fraction of correct direction predictions) of the KS-test-
based over/under correction, as a function of the number of hash functions k (shown in left column),
and the true Jaccard similarity/intersection size (shown in first/second row). Generally speaking,
the improvement is greatest at extreme values of similarity (either high or low), and with smaller
numbers of hash functions.

Jaccard .961 .869 .786 .739 .667 .538 .429 .333 .258 .176 .111 .081
intersect 980 930 880 850 800 700 600 500 410 300 200 150 Avg

1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2 .816 .696 .596 .534 .457 .339 .988 .994 .996 .998 .999 .998 .784
3 .764 .618 .485 .419 .275 .552 .445 .340 .983 .992 .994 .998 .655
4 .711 .556 .440 .651 .561 .388 .570 .475 .361 .982 .989 .993 .640
5 .683 .519 .632 .572 .478 .551 .394 .551 .450 .974 .985 .993 .649
10 .591 .577 .590 .537 .566 .505 .474 .452 .483 .561 .399 .966 .558
20 .502 .540 .565 .573 .545 .564 .535 .528 .456 .460 .395 .514 .515
50 .506 .550 .539 .567 .550 .560 .549 .544 .541 .520 .474 .396 .525
75 .518 .535 .562 .552 .508 .553 .550 .492 .515 .506 .487 .431 .517
100 .512 .552 .556 .561 .553 .578 .552 .552 .542 .525 .468 .454 .534
200 .525 .549 .550 .557 .563 .568 .555 .557 .543 .527 .505 .491 .541
300 .522 .551 .558 .556 .535 .561 .550 .530 .543 .536 .515 .506 .539
500 .529 .550 .550 .559 .556 .574 .558 .553 .543 .534 .521 .511 .545
1000 .520 .552 .556 .567 .561 .565 .557 .548 .550 .540 .512 .512 .545

Average .621 .596 .584 .586 .550 .561 .591 .580 .608 .690 .660 .697 .610

6.3 Experimental Results

Table 2 summarizes the performance of our KS-based correction strategy over a wide range
of hash counts (from k = 1 to k = 1000) and true Jaccard similarity (from 0.081 to 0.961).
For each Jaccard similarity level, we constructed 10,000 pairs of 1000-element sets, each
pair constructed to the appropriate level of similarity. We then constructed k independent
hash functions of these sets, and determined the number of matching MinHashes for these
trials. We then performed the KS-test on the matching values to propose whether the actual
Jaccard estimate should be higher or lower than the observed fraction of matches. We chose
parameters of our tests (intersection size) so that to avoid the situation when the MinHash
estimate exactly equals the true Jaccard similarity, making each case a fair binary trial.

Of the 14×12 = 172 entries in Table 2, 144 of them (83.7%) are greater than 0.5, meaning
the adjustment breaks in the correct direction more often than not. The average accuracy
ratio taken over all trials is 61.0%, substantially better than the baseline of 50%.

When employing large numbers of hash functions k ≥ 100, our technique improves the
estimate on average in 57 of 60 (95%) entries, and proves most beneficial in the middle regions
where the Jaccard similarity is ≈ 0.5. This is curious, because larger k provides greater
resolution on the fraction of matching hash values, thus reducing the quantization error of
classical MinHash. But the KS-analysis also improves with more samples as k increases, and
continues to refine the similarity estimate even as k = 1000. Presumably in the limit as k

grows, the improvement over baseline will disappear, but it seems durable over the range of
k that appear in general applications.

That our best (and worst) performance occurs for very small k reflects issues of
quantization: for an intersection size of n/2 and k = 5, the best possible estimate must be
wrong by at least 10%. As a statistical significance test, the KS-test was designed to be
used with a meaningful number of samples per observed distribution. There are likely other
statistical tests to do better with small (and maybe even large) values of k.
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7 Conclusions

We have demonstrated that the value of matching MinHash values provides additional
information on the degree of similarity between pairs of sets. Our wins are small, but they
are real. We believe that there exist better methods of integration to synthesize the mix of
the number of matching hashes and their values into a more accurate measure of similarity
and believe that this is a research direction worth pursuing. We note that even careful
analysis of the values of the matching hash codes will be substantially less computationally
expensive than that of obtaining the MinHash codes themselves, so these improvements will
come at a little computational cost.

The MinHash values that do not match also contain some degree of signal concerning the
similarity of two sets. Suppose the smallest hash values of two sets do not match, but are both
unusually large, say a substantial fraction of the total range N . These large MinHash values
signify that both sets exclude the same large fraction of possible elements from the universe,
implying they must both be constructed from just a relatively small set of non-excluded
elements. This conditioning increases the expected Jaccard similarity, despite the fact that
the hash values do not match. We believe this signal to be very weak except in extreme
cases, but its analysis may be part of a complete solution.

The theoretical success of MinHash depends strongly upon the elements of the sets being
distinct. If multiplicity of elements should be taken into account, one should resort to the
weighted variant of MinHash [26]. Extending our ideas to Weighted MinHash is another
interesting direction of study for the future.
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Abstract
In the all-pairs suffix-prefix (APSP) problem, we are given a dictionary R of k strings, S1, . . . , Sk, of
total length n, and we are asked to find the length SPLi,j of the longest string that is both a suffix
of Si and a prefix of Sj , for all i, j ∈ [1, k]. APSP is a classic problem in string algorithms with many
applications in bioinformatics. When all strings of the dictionary are over an integer alphabet of
size σ ≤ nO(1), APSP can be solved in the optimal O(n + k2) time with the use of the generalized
suffix tree of the dictionary [Gusfield et al., Inf. Process. Lett. 1992].

In many bioinformatics applications, such as in sequence assembly, the size k of dictionary R

is very large. In particular, k2 usually dominates n, and thus the k2 factor is the bottleneck both
in the time and in the space complexity of such applications. We thus initiate a holistic study on
several data structure variants of APSP. In particular, we consider the following types of queries:

One-to-One(i, j): output SPLi,j .
One-to-All(i): output SPLi,j for every j ∈ [1, k].
Report(i, ℓ): output all distinct j ∈ [1, k] such that SPLi,j ≥ ℓ, where ℓ ≥ 0 is an integer.
Count(i, ℓ): output the number of distinct j ∈ [1, k] such that SPLi,j ≥ ℓ, where ℓ ≥ 0 is an
integer.
Top(i, K): output K distinct j ∈ [1, k] with the highest values of SPLi,j breaking ties arbitrarily.

We assume the standard word RAM model of computation with word size w = Ω(log n) and an
integer alphabet of size σ ≤ nO(1). We show the following upper bounds:

Query Space (words) Query time Note
One-to-One(i, j) O(n) O(log log k) Theorem 11
One-to-All(i) O(n) O(k) Theorem 14
Report(i, ℓ) O(n) O(log n/ log log n + output) Theorem 19(i)
Count(i, ℓ) O(n) O(log n/ log log n) Theorem 19(ii)
Top(i, K) O(n) O(log2 n/ log log n + K) Theorem 22

We also present efficient algorithms for constructing these data structures.
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21:2 Suffix-Prefix Queries on a Dictionary

1 Introduction

The all-pairs suffix-prefix problem (APSP, in short) is a classic problem in string algorithms.
APSP finds numerous applications in bioinformatics because it is the first step in sequence
assembly [26, 37, 46, 8, 11]. Given a dictionary R of k strings, S1, . . . , Sk, of total length n,
the APSP problem asks us to find, for each string Si, i ∈ [1, k], its longest suffix that is a
prefix of string Sj , for all j ≠ i, j ∈ [1, k]. Gusfield et al. [27] presented an algorithm running
in the optimal O(n + k2) time for solving APSP, assuming all strings in R are over an integer
alphabet of size σ ≤ nO(1). The algorithm is based on the generalized suffix tree [53] of R.
Ohlebusch and Gog [39] gave another optimal algorithm which is based on the generalized
suffix array [36] of R. Tustumi et al. [49] gave yet another optimal algorithm based on
the generalized suffix array of R. Thus the common denominator of all existing optimal
algorithms for APSP is that they rely on sorting the suffixes of all strings in R, and therefore
they require space Ω(n) in any case and for any alphabet. In a very recent work, Loukides
and Pissis [34] presented a different optimal algorithm, which is based on the Aho-Corasick
automaton of R [1], and it thus requires space linear in the size of the automaton.

Due to the practical relevance of APSP, there also exists a large body of works devoted
to implementing algorithms for APSP that are suboptimal but practically fast on real-
world datasets; see [25, 42, 33] and references therein for some of the state-of-the-art
implementations. For a parallel implementation of the algorithm by Tustumi et al. see [35].
For approximate variants of APSP, under the Hamming or edit distance, see [44, 52, 32, 5, 47].

In many bioinformatics applications, such as in sequence assembly, the size k of dictionary
R is very large. In particular, k2 usually dominates n, and thus the k2 factor is the bottleneck
both in the time and the space complexity of such applications. For instance, in typical
benchmark datasets1 for genome assembly using short DNA reads (fragments), k is in the
order of 106 to 108 and n is in the order of 108 to 1010. Hence k2 dominates n significantly.

We thus initiate a holistic study on several data structure variants of APSP. Let SPLi,j

(short for suffix-prefix length), for any i, j ∈ [1, k], denote the length of the longest string,
that is both a suffix of Si and a prefix of Sj . We consider the following types of queries:

One-to-One(i, j): output SPLi,j .
One-to-All(i): output SPLi,j for every j ∈ [1, k].
Report(i, ℓ): output all distinct j ∈ [1, k] such that SPLi,j ≥ ℓ, where ℓ ≥ 0 is an integer.
Count(i, ℓ): output the number of distinct j ∈ [1, k] such that SPLi,j ≥ ℓ, where ℓ ≥ 0 is
an integer.
Top(i, K): output K distinct j ∈ [1, k] with the highest values of SPLi,j breaking ties
arbitrarily.

By being able to answer different types of such queries efficiently, one may be able to
design alternative algorithms, depending on the application in scope, which avoid the k2

factor in their time or space complexity. Indeed, we stress that most works studying APSP
from a practical perspective (e.g., [25, 42, 33]), in fact considered the ℓ-APSP problem in
their experimental part; namely, the problem in which we are asked to output only the SPLi,j

values with SPLi,j ≥ ℓ, for some integer ℓ ≥ 0, which, however, is given a priori and is fixed
for all pairs Si, Sj . This inflexibility would be surpassed should one have space-efficient (e.g.,
linear-space) data structures for answering these different types of queries fast.

1 For example, see http://gage.cbcb.umd.edu/data/index.html.

http://gage.cbcb.umd.edu/data/index.html
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Our Results. We assume the standard word RAM model of computation with word size
w = Ω(log n) and an integer alphabet of size σ ≤ nO(1). We show the following upper
bounds:

Query Space (words) Query time Note
One-to-One(i, j) O(n) O(log log k) Theorem 11
One-to-All(i) O(n) O(k) Theorem 14
Report(i, ℓ) O(n) O(log n/ log log n + output) Theorem 19(i)
Count(i, ℓ) O(n) O(log n/ log log n) Theorem 19(ii)
Top(i, K) O(n) O(log2 n/ log log n + K) Theorem 22

We also provide efficient construction algorithms for Theorems 11 and 14: Theorem 11
can be implemented in O(n log log k) time and Theorem 14 can be implemented in O(n)
time. For Theorems 19 and 22, no guaranteed construction time is provided: the query
times for Report, Count, and Top rely on the construction of a 2D rectangle stabbing data
structure for reporting [45] and counting [28], but unfortunately the construction times for
these data structures are not mentioned in [45] or [28]. However, by constructing the classic
data structure for 2D rectangle stabbing [15], we obtain O(n log n) construction time, O(n)
words of space, O(log n + output) query time for Report, O(log n) query time for Count, and
O(log2 n + K) query time for Top. We also make the following straightforward observation.

▶ Observation 1. The symmetric versions of One-to-All, Report, Count and Top, where we
are given string Sj as the query and we are asked to output information about SPLi,j, for
all i ∈ [1, k], can be addressed by constructing the corresponding data structures for the
dictionary Rr of k strings Sr

1 , . . . , Sr
k, where Sr = S[|S|] · · · S[2]S[1] denotes the reverse of

string S = S[1]S[2] · · · S[|S|]. Hence, the same space/query-time trade-offs can be achieved.

Related Work. In addition to the data structure variants of APSP that are studied here,
two other versions of APSP have been studied in the literature. The first version consists in
enumerating all pairwise suffix-prefix matches (not necessarily the longest ones) in decreasing
order of their lengths. This version of the problem was solved by Ukkonen [50], who used
this solution as the crux of his classic linear-time implementation of the greedy algorithm for
constructing approximate shortest common superstrings. The second APSP version studied
consists in enumerating the set of longest suffix-prefix matches (not however their association
with the corresponding pairs of strings) [12]. Since any suffix-prefix match in this set is a
prefix of some input string, the size of this set is O(n). This version of the problem was
solved in the optimal O(n) time, independently, by Park et al. [40] and by Khan [29].

Although our work is inspired by real-world applications, the underlying data structure
problems are also appealing from a theoretical perspective: (i) they are analogous to distance
oracles for networks [48, 41, 17, 16, 13]; and (ii) they are special types of internal pattern
matching (IPM) data structures [31, 30, 3, 14, 4]. For instance, an existing, more general,
IPM data structure [30, 31] can be employed to answer One-to-One queries in O(log n) time
using O(n) words of space; see Section 2.3 for more details. By designing a specialized data
structure for One-to-One, we obtain O(log log k) query time using O(n) words of space.

Paper Organization. In Section 2, we provide basic definitions and notation on strings. We
also describe basic data structures for representing a dictionary, some more advanced data
structures that are necessary to obtain our upper bounds, and a few previous solutions to
APSP (variants). In Section 3, we provide the solution to One-to-One queries. In Section 4,
we provide the solution to One-to-All queries. In Section 5, we provide the solutions to Report
and Count queries. Finally, in Section 6, we provide the solution to Top queries.

CPM 2023
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2 Preliminaries

An alphabet Σ is a finite nonempty set of σ = |Σ| elements called letters. By Σ∗ we denote
the set of all strings over Σ including the empty string ε of length 0. A string S over Σ is a
sequence of letters of Σ. For a string S = S[1] · · · S[n] over Σ, by n = |S| we denote its length.
The fragment S[i . . j] of S is an occurrence of the underlying substring P = S[i] · · · S[j]. We
also say that P occurs at (starting) position i in S. A prefix of S is a fragment of S of the
form S[1 . . j] and a suffix of S is a fragment of S of the form S[i . . n].

Let M be a finite nonempty set of strings over Σ of total length m. We call M a
dictionary. We define the trie of M , denoted by TR(M), as a deterministic finite automaton
that recognizes M . Its set of states (nodes) is the set of prefixes of the elements of M ; the
initial state (root node) is ε; the set of terminal states is M ; and transitions (edges) are of the
form δ(u, α) = uα, where u and uα are nodes and α ∈ Σ. The size of TR(M) is thus O(m).
The compacted trie of M , denoted by CT(M), contains the root, the branching nodes, and
the terminal nodes of TR(M). The term compacted refers to the fact that CT(M) reduces
the number of nodes by replacing each maximal branchless path segment with a single edge,
and that it uses a fragment of a string from M to represent the label of this edge in O(1)
words of space. The nodes of TR(M) that are included in CT(M) are called explicit; all other
nodes are called implicit. The size of CT(M) is thus O(|M |). The most well-known form of
compacted trie is the suffix tree described next.

2.1 Suffix Tree and Aho-Corasick Automaton
We are given a dictionary R of k strings, S1, S2, . . . , Sk, whose total length is n = |S1|+ |S2|+
· · · + |Sk|. Every string in R is over an integer alphabet Σ whose size σ is polynomial in n,
i.e., Σ = {1, 2, . . . , nO(1)} and thus σ ≤ nO(1). For constructing specialized data structures
and answering internal pattern matching queries, non-trivial representations of R (different
than a simple set of strings) are usually more efficient.

Let us set TR := S1$1S2$2 · · · Sk$k, where $1 < $2 < · · · < $k are letters that are strictly
lexicographically smaller than any letter from Σ (and as such they do not belong to Σ).

Let ST(S) denote the suffix tree of string S, that is the compacted trie of all the suffixes
of S. For any node v of ST(S), by str(v) we denote the concatenation of the edge labels on
the path from the root to v, and by d(v) = |str(v)| we denote the string depth of v. The suffix
array SA(S) of S is the lexicographically sorted array of the set of suffixes of S, represented
by their starting positions; see Figure 1 for an example.

▶ Lemma 2 ([53, 22]). For any string S of length m over an integer alphabet of size
σ ≤ mO(1), the suffix tree and the suffix array of S can be constructed in O(m) time.

We also denote STi = ST(Si$i) and STR = ST(S1$1, . . . , Sk$k); that is STR is the
generalized suffix tree [51] of the k strings from R. The generalized suffix tree can be built
in linear time; here, however, this more complicated construction is not needed since this
compacted trie is equivalent to ST(TR) as the letters $i occur uniquely in this string (and
hence a compacted edge containing any label $i must end at a leaf node).

Another useful representation of R is given by its Aho-Corasick (AC) automaton [1]; the
set of states of the AC automaton of R, denoted by AC(R), corresponds to the set of the
prefixes of the strings in R. Let node(S) denote the node corresponding to string S. After
reading an input string the automaton must be in a state corresponding to a suffix of this
string (the longest one that is also a prefix of some string in R and has a corresponding state);
such a state always exists as ε is always represented (recall ε is the string of length 0). As such,
the automaton AC(R) is often represented by the trie TR(R) with transitions δ(node(S), α) =
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i SA(S)[i] Suffix

1 7 $
2 6 A$
3 4 AGA$
4 2 AGAGA$
5 1 CAGAGA$
6 5 GA$
7 3 GAGA$

$
GA

A$

$

GA$

GA

CAGAGA$

$

GA$

1

2

4

6

7

3

5

u

Figure 1 Suffix array SA(S) and suffix tree ST(S) of string S = CAGAGA$, where $ is a terminal
letter, which is the lexicographically smallest letter occurring in S. For node u in ST(S), str(u) = AGA
and d(u) = 3.

{node(Sα)} if Sα is a prefix of a string in R, and δ(node(S), ε) = {node(S′)}, where S′ is
the longest suffix of S which is also a prefix of a string in R. The ε-transitions are called
failure transitions. The existence of ε-transitions makes the automaton nondeterministic,
and even though this nondeterminism can be avoided, we are going to actually employ those
ε-transitions to construct the data structure for One-to-All queries.

▶ Lemma 3 ([1, 20]). For any dictionary R of k strings of total length n over an integer
alphabet of size σ ≤ nO(1), AC(R) can be constructed in O(n) time.

By FT(R) we denote the so-called Failure Transition tree (FTtree) of R, introduced by
Loukides and Pissis in [34] for solving the APSP problem: the FTtree nodes correspond to the
states of the AC automaton (that is, to prefixes of strings in R), and the edges correspond to
its ε-transitions with reversed direction. Notice that, since every state of AC(R) has exactly
one outgoing failure transition, FT(R) is indeed a tree rooted at node(ε). We additionally
decorate every node u of FT(R) by a labeled interval Iu = [i, j]d: Si, Si+1, . . . , Sj have as
a common prefix the string of length d represented by node u; see [34]. We will generally
assume that R is given lexicographically sorted at construction time; otherwise, the sorted
version of R can be produced in linear time using, for example, Lemma 3 or Lemma 2.

▶ Example 4. Let R = {S1, S2, S3, S4} = {ACAA, ACAG, ACGC, CACA} be a dictionary of k = 4
strings. The AC automaton and the FTtree of R is shown in Figure 2. Consider the path
from the root to leaf node S4 (shown in red) in the FTtree of R, where the non-root nodes
have the following labeled intervals [i, j]d: [1, 3]1, [4, 4]2, [1, 2]3, [4, 4]4. By recording the
largest string depth d of an interval containing j, for every j ∈ [1, k], along this path, we
compute all SPL4,j : SPL4,1 = 3, SPL4,2 = 3, SPL4,3 = 1, and SPL4,4 = 4. Loukides and
Pissis [34] showed how to compute this information, for all i, in O(n + k2) total time, thus
solving the APSP problem optimally using only the FTtree of R.

2.2 Advanced Data Structures
Let T be a rooted tree. A lowest common ancestor (LCA) query on T for two given nodes
u and v, denoted by w = LCAT (u, v), returns the last (i.e., the lowest) common node w on
their paths from the root.

▶ Lemma 5 ([9]). For any rooted tree T with m nodes, after O(m)-time preprocessing, we
can answer LCAT queries in O(1) time per query.

CPM 2023
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A

A

C
A

A

A

G

G

C
C

C

s1

s4

s3

s2

(A,C)

start
node

s1

s4

s3

s2
start
node

[1,3]1 [1,3]2

[1,2]3

[3,3]3

[4,4]1 [4,4]2 [4,4]3 [4,4]4

[1,1]4

[2,2]4

[3,3]4

Figure 2 The AC automaton AC(R) (on the left) and FTtree FT(R) (on the right) of the dictionary
of strings R = {S1, S2, S3, S4} = {ACAA, ACAG, ACGC, CACA}. In AC(R), solid arrows correspond to
transitions and dashed arrows to failure transitions. To avoid cluttering the figure, failure transitions
to the start node in AC(R) have been omitted.

A rank and select data structure (also known as succinct indexable dictionary [43]) is a
classic data structure, constructed over an array A of length m over alphabet [1, σ], which
supports two types of queries:

rankA(i, x) = |{ℓ ∈ [1, x] : A[ℓ] = i}|, for i ∈ [1, σ] and x ∈ [1, m];
selectA(i, x) = min{ℓ ∈ [1, m] : rankA(i, ℓ) = x}, for i ∈ [1, σ] and x ∈ [1, m].

In other words, rankA(i, x) returns the number of elements with value equal to i occurring at
positions in [1, x] of S, while selectA(i, x) returns the position of the xth element of A with
value equal to i.

▶ Lemma 6 ([7, 38, 18]). For any array A = A[1 . . m] over [1, σ], σ ≤ m, after O(m log log σ)-
time preprocessing, we can construct a data structure of O(m) words of space that supports
O(log log σ)-time rank and select queries on A.

Let T be a rooted tree of m nodes with integer weights on nodes. Further assume that
the weight of every node of T satisfies the min-heap property: the weight of each node is
greater than or equal to the value of its parent (the smallest weight is hence at the root).
A weighted ancestor (WA) query for a given node u of T and an integer d, denoted by
w = WAT (u, d), returns its deepest ancestor w whose weight is at most d [23]. This problem
is the generalization of the classic predecessor search problem on rooted trees. In the special
case when T is a suffix tree and the nodes are weighted by string depth, the problem admits
an optimal solution due to the recent result of Belazzougui et al. [6] (see also [24]).

▶ Lemma 7 ([6]). For any suffix tree T with m nodes weighted by string depth, after
O(m)-time preprocessing, we can answer WAT queries in O(1) time per query.

In this special case, the ancestor at string depth exactly d may be an implicit node of T ,
in which case the query outputs its closest explicit ancestor.

2.3 Previous Solutions
O(n + k2)-time Algorithm for APSP. We describe the optimal solution to APSP given by
Gusfield et al. in [27]. We set TR := S1$1S2$2 · · · Sk$k, where $1 < $2 < · · · < $k are letters
that are strictly lexicographically smaller than any letter from Σ. We start by constructing
the suffix tree STR = ST(TR). Using a DFS traversal on STR, we construct lists L(v) for
all nodes v of STR: L(v) stores all i such that the suffix of length d(v) of string Si is str(v).
Consider a string Sj from R and focus on the path Pj from the root of STR to the leaf node
representing the longest suffix of Sj , i.e., the entire string Sj . Let v be a node on Pj . A
suffix of string Si of length d(v) is a prefix of string Sj of the same length if and only if i is
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in L(v). However, for each index i, we want to record the deepest node v on Pj such that i is
in L(v). It then follows that d(v) = SPLi,j . In order to achieve a linear-time complexity, we
perform another DFS maintaining k stacks (one for each Si). Upon visiting v, we push it on
stack i for every i ∈ L(v). When the leaf node representing the entire string Sj is reached,
we scan the k stacks and record, for each index i, the current top of the ith stack. When v is
reached in a backward edge traversal, we pop the top of any stack whose index is in L(v).
We obtain the following result.

▶ Lemma 8 ([27]). For any dictionary of k strings of total length n over an integer alphabet
of size σ ≤ nO(1), APSP can be solved in the optimal O(n + k2) time.

In what follows, we assume that k ≥
√

n; otherwise, when k <
√

n, Lemma 8 implies an
optimal solution to our data structure problems (linear preprocessing time, linear size and
time-optimal queries), which precomputes and stores all answers.

Internal Prefix-Suffix Queries for One-to-One. Kociumaka considered the following data
structure problem in [30]: Given two fragments x and y of a string T and a positive integer
d, report all suffixes of y of length between d and 2d − 1 that also occur as prefixes of x

(represented as an arithmetic progression of their lengths). This is the Internal Prefix-Suffix
Queries problem. Kociumaka showed the following result (see also [31]).

▶ Lemma 9 (Theorem 1.1.3 in [30]). For any string T of length m over an integer alphabet of
size σ ≤ mO(1), after O(m)-time preprocessing, we can answer Internal Prefix-Suffix Queries
in O(1) time per query.

By employing Lemma 9 on TR, after an O(n)-time preprocessing, we can answer
One-to-One queries in O(log(min(|Si|, |Sj |))) = O(log n) time. In particular, we query
for x = Sj , y = Si, and d = 2ℓ, for all integers 0 ≤ ℓ ≤ log min(|Si|, |Sj |), to compute a
representation of all the suffixes of Si that are also prefixes of Sj and then return the length
of the longest one as SPLi,j . We obtain the following result, which we improve in Section 3.

▶ Corollary 10. For any dictionary of k strings of total length n over an integer alphabet
of size σ ≤ nO(1), we can construct a data structure of O(n) words of space answering
One-to-One queries in O(log n) time.

3 Answering One-to-One Queries

Main Idea. Say we want to find the longest suffix of Si that is a prefix of Sj . We first
find the maximal longest common prefix between Sj and any suffix of Si. Say this suffix
is Si[q . . |Si|] and we have that Si[q . . q + r − 1] = Sj [1 . . r] is this longest common prefix.
If this prefix is the whole Si[q . . |Si|], i.e., |Si| = q + r − 1, then r is clearly the answer. If
this longest common prefix is not a suffix of Si, i.e., |Si| > q + r − 1, then the answer is the
longest prefix of Si[q . . q + r − 1], that is also a suffix of Si.

Recall that STi = ST(Si$i) and STR = ST(TR). Consider the path in STR obtained by
reading Sj$j from its root (this path ends in a leaf node). When spelling any suffix of Si

that is also a prefix of Sj in STR we use exactly the same path and end by going out of it
when reading $i. This means, that SPLi,j is represented by the lowest node on this path that
has an outgoing edge with label $i.

In the following we focus on enhancing STR and STi, for all i ∈ [1, k], to obtain a data
structure that allows finding the string depth of such a node (equal to SPLi,j) efficiently. We
will prove the following result.

CPM 2023
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▶ Theorem 11. For any dictionary of k strings of total length n over an integer alphabet of size
σ ≤ nO(1), we can construct a data structure of O(n) words of space answering One-to-One
queries in O(log log k) time. The data structure can be constructed in O(n log log k) time.

Let us start with a straightforward auxiliary lemma.

▶ Lemma 12. For any dictionary of k strings S1, . . . , Sk of total length n over an integer
alphabet of size σ ≤ nO(1), in O(n) time we can construct a data structure of O(k) words of
space that answers queries of the type “Is Sj a suffix of Si?” in O(1) time.

Proof. Let Xr denote the reverse of string X, i.e., Xr = X[|X|] · · · X[1]. We first sort
Sr

1 , . . . , Sr
k lexicographically, and store for each j ∈ [1, k] a value rlex[j] ∈ [1, k] equal to the

rank of Sr
j in this sorted list. Sj is a suffix of Si if and only if Sr

j is a prefix of Sr
i . The

crucial property of this ordering is that all the strings such that Sr
j is their prefix form an

interval from the position rlex[j] to a position rlex[j] + l[j] − 1, where l[j] is the total number
of strings Sr

1 , . . . , Sr
k starting with Sr

j ; that is, rlex[j] + l[j] is the position of the first string
having a longest common prefix with Sr

j shorter than |Sr
j |. The values rlex[j] and l[j], for all

j ∈ [1, k], can be computed in O(n) time [19].
As for the querying, for any i, j, we have that Sj is a suffix of Si if and only if rlex[j] ≤

rlex[i] < rlex[j] + l[j], which is checked in O(1) time. The total size of arrays l and rlex is
Θ(k). ◀

Construction. We start the construction of the data structure by constructing the data
structure underlying Lemma 12. We also construct STR and STi, for all i ∈ [1, k], us-
ing Lemma 2. We enhance STR with the data structure for LCA queries underlying Lemma 5,
and link the leaf nodes originating from suffixes of Si$i with the corresponding leaf nodes of
STi, for all i ∈ [1, k]. We construct an array A = A[1 . . |TR|] over [1, k] such that A[ℓ] = i if
the ℓth leaf node (from the left) of STR originates from a suffix of Si$i; since the leaf nodes
are ordered according to the lexicographic order of the suffixes they originate from, array A

can be easily extracted from SA(TR) constructed by means of Lemma 2. We enhance array
A with the rank and select data structure underlying Lemma 6. We link the leaf nodes of
STR with the corresponding elements of A. For each STi, we construct the data structure
for WA queries underlying Lemma 7. For every node w of STi, we store the string depth of
its closest ancestor (including w itself) that has an outgoing edge with label $i and hence
corresponds to a suffix of Si; since the root always has such an edge, this assignment is always
well-defined. In order to efficiently compute and store all those values, we simply process the
information through the tree in a top-down manner. This completes the construction.

The part of the data structure that relies on Lemmas 2, 5, 7, and 12 is implemented in
O(n) time and it occupies O(n) words of space. By Lemma 6, array A occupies O(n) words
of space, and it can be implemented in O(n log log k) time as it stores k distinct values.

Querying. Consider a One-to-One(i, j) query; that is, we want to compute SPLi,j , the
length of the longest suffix of Si that is a prefix of Sj . Let x be the position in array A that
corresponds to the leaf node lj of STR reached after conceptually reading Sj$j . We first
check if the entire Sj is a suffix of Si by means of Lemma 12. If this is the case then we return
SPLi,j = |Sj |. If this is not the case (inspect Figure 3), we perform the following sequence
of queries, selectA(i, rankA(i, x)), which finds the position y in array A that corresponds to
the leaf node ri; this corresponds to the suffix of Si$i that is closest to the left of lj . We
then compute the lowest common ancestor of ri and lj : vi,j = LCASTR

(ri, lj). If node vi,j

has an outgoing edge labeled with $i, which ends at ri, then we return SPLi,j = d(vi,j) (this
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Figure 3 An illustration of the One-to-One(i, j) query algorithm. The node vi,j , which is explicit
in STR but implicit in STi, has an outgoing edge labeled with $i and hence the string depth d(vi,j)
of node vi,j is the answer to the query.
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Figure 4 An illustration of the One-to-One(i, j) query algorithm. The closest ancestor of node
vi,j , which is explicit in STR but implicit in STi, with an outgoing edge labeled with $i is node u

and hence the string depth d(u) of node u is the answer to the query.

is the case in Figure 3). We check this by checking whether d(ri) = d(vi,j) + 1. If vi,j does
not have such an outgoing edge (this is the case in Figure 4), we locate the explicit node
corresponding to vi,j in STi (or its closest explicit ancestor if it is implicit) by asking a WA
query: w = WASTi

(ri, d(vi,j)). Finally, we return the string depth of the closest ancestor
of w with an outgoing edge labeled $i as SPLi,j ; recall that every node of STi stores this
information.

The time complexity of the query is O(log log k); the bottleneck is the complexity of the
rank and select queries on A – all other operations take constant time. Let us now explain
why the faster O(1)-time select and O(1 + log log k

log w )-time rank queries presented in [7], where
w is the machine word, cannot improve our query time further. The size of the problem
is Θ(n), hence the size of the machine word in the word-RAM model is Θ(log n), thus the
query time equals O(1 + log log k

log log n ). However, we have assumed that k ≥
√

n (otherwise
the structure of Lemma 8 implies an optimal solution – linear size and constant time queries
– for the One-to-One queries), hence this is equal to O(1 + log log k) = O(log log k) as stated.

Correctness. Recall that the answer to One-to-One(i, j) equals to the string depth of the
closest ancestor of lj in STR that has an outgoing edge labeled with $i. By construction,
this ancestor ends on the right of lj only if the entire Sj is a suffix of Si, which we check
separately. Otherwise, this ancestor is also an ancestor of ri (which is on the left of li) as $i
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21:10 Suffix-Prefix Queries on a Dictionary

goes out of the path from the root to lj to the left (by construction, it is lexicographically
smaller than the next letter on this path), and hence this edge labeled with $i must end
either in ri or further to the left (by the definition of ri). As an ancestor of lj and ri, it is also
the closest ancestor of vi,j with such an outgoing edge; the latter actually exists (possibly as
an implicit node) in STi (unlike lj). The final steps of the query algorithm find the string
depth of the node corresponding to the searched ancestor in STi (string depth is a shared
property of the corresponding nodes).

We have arrived at Theorem 11. Note that the construction time for our data structure
is O(n log log k). The bottleneck for the construction time is the construction time for the
rank and select data structure (Lemma 6).

4 Answering One-to-All Queries

The spine of the data structure described in this section is FT(R), the FTtree of R (see Sec-
tion 2). Recall that for each node in FT(R) (representing each prefix of a string Si), we store
information about which strings from R it is a prefix of (see Figure 2).

Main Idea. The Aho-Corasick lemma [1] states that for any two nodes, node(U) and
node(V ), in AC(R), we have a failure transition from node(U) to node(V ) if and only if V is
the longest suffix of U that is also a prefix of some string in R. As a consequence, in FT(R),
node(S) is an ancestor of node(S′) if and only if S is a suffix of S′ (and both are prefixes of
some strings from R as nodes of FT(R)). Thus the path from node(ε) (the root) to node(Si)
in FT(R) contains exactly the nodes node(S) such that S is a suffix of Si and a prefix of
some string in R. Those nodes are ordered according to the string length, hence the nodes
closer to node(Si) on this path will correspond to longer suffix-prefix matches.

A One-to-All(i) query can thus be answered by simply reading the path from the root to
node(Si) recording, for each j ∈ [1, k], the last node on the path corresponding to a prefix of
Sj . The space occupied by FT(R) is in O(n); and such a query algorithm can take Θ(|Si|),
that is even Θ(n) time. Hence, by such an algorithm, we would not really gain anything from
constructing FT(R) in the preprocessing. On the other extreme, by running this algorithm
not for a single path, but for the whole FT(R) using a DFS traversal, we can precompute the
answers for all the values of i ∈ [1, k] in O(n + k2) total time (and space), and then answer a
query in O(k) time by simply outputting the k stored values; this would not be faster than
using the algorithm by Gusfield et al. [27] or the one by Loukides and Pissis [34]. We will
augment FT(R) to obtain a more efficient solution combining the space efficiency of the first
approach with the low query time of the second one.

A τ -micro-macro decomposition, introduced for rooted binary trees in [2], and then
generalized for rooted general trees in [10] (after an appropriate mapping), is a partition of a
rooted tree T of N nodes into O(N/τ) connected subtrees, called micro trees. In the case of
binary trees each micro tree is of size at most τ and at most two of its nodes are adjacent to
nodes in other micro trees. These nodes are referred to as top and bottom boundary nodes
of the micro tree. The top boundary node is chosen as the root of the micro tree. The
macro tree is a rooted tree of size O(N/τ) whose nodes correspond to micro trees as follows
(inspect Figure 5): The top boundary node t(C) of a micro tree C is connected to a boundary
node parent(C) in the parent micro tree (apart from the root). The boundary node t(C)
might also be connected to a top boundary node of a child micro tree, which we denote by
child(C). Such a τ -micro-macro decomposition can be computed in O(N) time for binary [2]
and general [10] rooted trees. We summarize the above discussion in the lemma below.
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Figure 5 The structure of a micro-macro decomposition of a rooted binary tree.

▶ Lemma 13 ([2, 10]). For any rooted tree T with N nodes and for any integer τ ∈ [1, N ],
the τ -micro-macro decomposition of T can be computed in O(N) time.

We will prove the following result.

▶ Theorem 14. For any dictionary of k strings of total length n over an integer alphabet
of size σ ≤ nO(1), we can construct a data structure of O(n) words of space answering
One-to-All(i) queries in O(k) time. The data structure can be constructed in O(n) time.

Construction. We start the construction of the data structure by constructing FT(R) from
AC(R) using Lemma 3. We compute the τ -micro-macro decomposition of FT(R), for a
parameter τ defined later, using Lemma 13. For each node u of the FT(R), corresponding to
a prefix S of some string Si in R, we store the labeled interval Iu. For each boundary node
in the τ -micro-macro decomposition of FT(R), we store an array of k integers, which for each
i ∈ [1, k], stores the string depth of its lowest ancestor node(S) such that S is a prefix of Si.
The additional size for storing this information in all the boundary nodes is O(k · n/τ). We
compute these arrays by performing a DFS over FT(R) with a set of k stacks, one for every
string in R, storing the string depths of ancestors of the visited node of each type (which Si

they originate from). As there are only 2n updates of the stacks (each prefix of a string Si is
stored and removed once from the ith stack) and the information is stored by simply reading
the top values of the k stacks, the total computation time is bounded by O(n + k · n/τ).

Querying. Let us start with the following observation from [34] (inspect also Figure 2).

▶ Observation 15 ([34]). Let u and v be two non-root nodes of FT(R) with labeled intervals
Iu = [iu, ju]d(u) and Iv = [iv, jv]d(v), respectively, and such that u is an ancestor of v. Then
d(u) < d(v) and either [iu, ju] contains [iv, jv] or [iu, ju] and [iv, jv] do not intersect.

Consider a One-to-All(i) query; that is, we want to compute an array of length k, which
stores SPLi,j , for all j ∈ [1, k]. We start by finding the closest boundary node on the path
from the root to node(Si); that is, the top boundary node of the micro tree containing
node(Si). On the path between this top boundary node and node(Si), there are at most τ

nodes. We compute the information coming from just those nodes in O(k + τ) time with a
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sweep line approach: there are O(τ) (labeled) intervals from [1, k], the intervals are labeled
by different values (string depth), but, by Observation 15, two intervals are either disjoint
or the one with the larger string depth is contained in the one with the smaller one. Thus,
it is enough to hold the active intervals on a stack to keep track of the longest possible
suffix-prefix match: the interval on the top of the stack has the highest value and will end
the soonest. The solution is then obtained as the position-wise maximum of the computed
array and the array stored in the top boundary node, which we compute in O(k) time.

Correctness. The correctness of the algorithm follows by the Aho-Corasick lemma (see also
the discussion of the “main idea” paragraph above).

The data structure occupies O(n+k ·n/τ) words of space and supports One-to-All queries
in O(k + τ) time. By setting τ to k (or to ck, for some positive constant c that balances the
operation costs more efficiently) we obtain the complexities claimed in Theorem 14. Note
that the data structure is constructed in O(n + k · n/τ) time, which is O(n) for τ = Θ(k).
Thus the presented data structure for One-to-All queries is optimal.

5 Answering Report and Count Queries

In this section we are going to use STR again. This time, however, instead of augmenting
STR with an LCA data structure and linking its nodes with the rank and select array, we
are going to link the nodes with rectangles and employ classic results from computational
geometry for reporting (see Lemma 16) and counting (see Lemma 17).

Let [x1, x2] × [y1, y2] denote a rectangle in a 2D space with edges parallel to the axes,
where the intervals [x1, x2] and [y1, y2] are the projections of this rectangle to the x-axis and
y-axis, respectively. In the reporting version of the 2D rectangle stabbing problem [15], we are
given a set S of n rectangles to preprocess, so that when we are given a query point q = (x, y),
we report the subset Q ⊆ S of rectangles [x1, x2] × [y1, y2] that contain q: x1 ≤ x ≤ x2 and
y1 ≤ y ≤ y2. In the counting version of 2D rectangle stabbing, we are asked to return |Q|.

▶ Lemma 16 ([45]). For any set S of n rectangles, we can construct a data structure of O(n)
words of space answering 2D rectangle stabbing reporting queries in O(log n/ log log n + f)
time, where f is the output size |Q|.

2D rectangle stabbing counting is known to be reducible to 2D orthogonal range count-
ing [21], and such a data structure for 2D orthogonal range counting can be found in [28].

▶ Lemma 17 ([21, 28]). For any set S of n rectangles, we can construct a data structure of
O(n) words of space answering 2D rectangle stabbing counting queries in O(log n/ log log n)
time.

Main Idea. For every suffix S of a string in R that is represented by a node in STR, we
define a rectangle in 2D space: the x dimension corresponds to the lexicographically sorted
list of all suffixes of strings in R whose prefix is S; and the y dimension corresponds to
interval [0, |S|]. A Report (resp. a Count) query is defined by two parameters, which form a
point in the 2D space: i corresponds to string Si in the same sorted list (x dimension) and ℓ

corresponds to the smallest length of interest (y dimension). By reporting (resp. counting)
all rectangles enclosing this point (Lemmas 16 and 17), we locate all suffix-prefix matches.
Extra care, however, needs to be taken in order to avoid double reporting (resp. counting).
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Construction. We start the construction of the data structure by constructing STR us-
ing Lemma 2. Let u be an explicit or implicit node of STR that is the parent of a leaf node
reached with $i: the labels of the path from root to u form a suffix of Si. For every such node
u and every i, we create a tuple (L(u), R(u), d(u), i), where L(u) and R(u) are the (pre-order
rank of) the leftmost and the rightmost leaf node under u, respectively.2 Note that such a
node may correspond to multiple tuples for different i values – this occurs when distinct
elements of R share the same suffix. There are exactly n such tuples (one for every suffix)
coming from STR and we can compute them in O(n) total time using a DFS traversal.

Recall that if we spell Sj$j in STR and the obtained leaf node v has an ancestor of string
depth ℓ which has an outgoing edge with label $i, then SPLi,j ≥ ℓ. The same property
(SPLi,j ≥ ℓ) can be expressed by L(v) ∈ [L(u), R(u)] (namely, u is an ancestor of v), and
ℓ ∈ [0, d(u)] (namely, the string depth of u is at least ℓ) for a tuple (L(u), R(u), d(u), i).
Now note that (L(u), R(u), d(u), i) forms a rectangle, whose identifier is i. In particular,
(L(u), R(u), d(u), i) can be viewed as rectangle [L(u), R(u)] × [0, d(u)] with satellite data i.

Now consider constructing the 2D rectangle stabbing data structure for reporting
(resp. counting) for these n rectangles, and then ask the query for a point (L(v), ℓ), where v

is the leaf node reached from the root by conceptually reading Sj$j . The data structure will
report (resp. count) all of the suffixes of Si, for i ∈ [1, k], of length at least ℓ that are also
prefixes of Sj . Unfortunately, such a solution differs from the expected results of Report(i, ℓ)
and Count(i, ℓ) in the following two ways:
1. Instead of finding all j ∈ [1, k] such that SPLi,j ≥ ℓ for a given i, we find all such i ∈ [1, k]

for a given j. This issue is addressed by Observation 1, which states that Report(i, ℓ)
and Count(i, ℓ) reduce trivially to the problems considered here, denoted by Reportr(i, ℓ)
and Countr(i, ℓ), respectively (recall that the r superscript refers to reversing the input
strings);

2. If there are multiple prefixes of Sj of length at least ℓ that are also suffixes of Si, then
we will report (resp. count) each of them leading to double reporting (resp. counting).
Although one may actually be interested in reporting or counting those multiple suffix-
prefixes, in this paper, we are only interested in the longest ones. We address this issue
by modifying the rectangles before the construction.

As mentioned earlier the first issue is resolved by Observation 1. To solve the second
issue, we have to make the set of rectangles, for a single i ∈ [1, k], pairwise disjoint while
leaving their union unchanged. Notice that two such non-disjoint rectangles must come from
a pair of nodes u and w in an ancestor-descendant relationship. An easy solution is to take,
for every node w which has an outgoing edge with label $i, its closest ancestor u which
also has an outgoing edge with label $i, and change the [L(w), R(w)] × [0, d(w)] rectangle
into [L(w), R(w)] × [d(u) + 1, d(w)]; inspect Figure 6. Since the part [L(w), R(w)] × [0, d(u)]
is already contained in [L(u), R(u)] × [0, d(u)] the union remains unchanged, and since
u is the closest such ancestor, the other rectangles (for this i) cannot have a nonempty
intersection with the newly obtained one (the intersection with the ones coming from the
descendants of w is empty after the modification of those rectangles). We can perform these
modifications with a single DFS traversal with k stacks of nodes on the path from the root
to the currently processed node, which has an outgoing edge with label $i, i ∈ [1, k]. A more
complicated solution is obtained by replacing the two rectangles [L(u), R(u)] × [0, d(u)] and
[L(w), R(w)] × [0, d(w)] with three rectangles: [L(u), L(w) − 1] × [0, d(u)], [L(w), R(w)] ×

2 [L(u), R(u)] is also known as the suffix array interval of node u.
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Figure 6 On the bottom left part, the rectangles obtained from two nodes u and w of STR (top
left), both having an outgoing edge with label $i, forming a suffix-prefix match of Si and Sj for
node v reached by reading Sj$j from the root. The rectangles have a nonempty intersection. To
avoid double reporting (or double counting), we make the rectangles disjoint while leaving their
union unchanged. We can do this (by taking the intersection once) in two ways (on the right): a
simple one (top) or a more complicated one (bottom), which allows us to efficiently output SPLi,j .

[0, d(w)] and [R(w)+1, R(u)]× [0, d(u)]; inspect Figure 6. Unlike the previous construction, a
single rectangle can be spliced into smaller ones many times (a node can be a direct ancestor
of many other nodes); at the same time a single rectangle can splice only its direct ancestor,
hence the number of rectangles obtained this way is bounded from above by 2n. This set of
modified intervals can be obtained similarly: in a DFS traversal, when a node which has
an outgoing edge with label $i is reached, we access its closest ancestor, which also has an
outgoing edge with label $i, and splice its rectangle. As such descendants of a node are
visited from left to right, we always know which part of the rectangle will be spliced next,
hence each such splice takes O(1) time leading to computing O(n) such modified rectangles
in O(n) total time.

In order to finalize the construction of our data structure, we compute the set of modified
rectangles of one of the two types described above, and construct for them the 2D rectangle
stabbing data structures for reporting (Lemma 16) and counting (Lemma 17).

Querying. To answer a Reportr(j, ℓ) or a Countr(j, ℓ) query, we simply ask the corresponding
2D rectangle stabbing data structure for the point (L(v), ℓ) = (R(v), ℓ), where v is the node
reached in STR from the root by conceptually reading Sj$j . In case of a reporting query,
the data structure returns a set of rectangles [x, y] × [ℓ1, ℓ2] labeled with distinct values
i ∈ [1, k]. We can simply report the set of these i values. In case of a counting query, the
result is simply an integer which we output. The two constructions of modified rectangles
have additional nice properties however – each value i is associated with a value ℓ2. In case
of the first construction, this ℓ2 is the length of the shortest suffix of Si which is also a prefix
of Sj of length at least ℓ; in case of the second construction, ℓ2 is the length of the longest
such suffix, that is ℓ2 = SPLi,j .
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Correctness. The correctness of the algorithm follows by the fact that point (L(v), ℓ) =
(R(v), ℓ) is enclosed by a rectangle [L(u), R(u)] × [0, d(u)] if and only if Sj$j has a prefix
of length at least ℓ that is also a suffix of Si; and by the fact that the set of rectangles
originating from a single i are made pairwise disjoint while their union remains unchanged.

We have thus arrived at the following lemma.

▶ Lemma 18. For any dictionary of k strings of total length n over an integer alphabet of
size σ ≤ nO(1), we can construct a data structure of O(n) words of space answering: (i)
Reportr(j, ℓ) queries in O(log n/log log n + f) time, where f is the size of the output; and
(ii) Countr(j, ℓ) queries in O(log n/log log n) time.

By combining Lemma 18 with Observation 1 we obtain the main result of this section.

▶ Theorem 19. For any dictionary of k strings of total length n over an integer alphabet
of size σ ≤ nO(1), we can construct a data structure of O(n) words of space answering:
(i) Report(i, ℓ) queries in O(log n/log log n + f) time, where f is the output size; and (ii)
Count(i, ℓ) queries in O(log n/log log n) time.

Let us remark that the construction time for our data structures, excluding the imple-
mentation of the data structures underlying Lemmas 16 and 17, is O(n). Unfortunately,
the construction time of the latter data structures (Lemmas 16 and 17) is not mentioned
in [28, 45]. However, by using the construction from [15], we obtain O(n log n) construction
time, O(n) words of space, O(log n + f) time for reporting, and O(log n) time for counting.

▶ Theorem 20. For any dictionary of k strings of total length n over an integer alphabet
of size σ ≤ nO(1), we can construct a data structure of O(n) words of space answering: (i)
Report(i, ℓ) queries in O(log n + f) time, where f is the output size; and (ii) Count(i, ℓ)
queries in O(log n) time. The data structure construction time is O(n log n).

Let us also remark that Report(i, 0) (with the second construction of disjoint rectangles)
actually answers any One-to-All(i) query within the same asymptotic time: O(log n + f) =
O(log n + k) = O(k) as k ≥

√
n. While the data structure for answering Report queries

occupies O(n) words of space, like the data structure for One-to-All queries, the construction
time for the former is more expensive – and it is likely much slower in practice.

6 Answering Top Queries

Recall that a Top(i, K) query returns exactly K elements j for which SPLi,j is the largest,
breaking ties arbitrarily. In case we are given an additional bound K ′ ≤ k such that K ≤ K ′

(e.g., we are only interested in finding O(1) many such top elements), the obvious data
structure would be to store, for each i ∈ [1, k], the sorted list of size K ′ of the best answers.
Such a data structure allows answering Top(i, K) queries, for K ≤ K ′, in the optimal O(K)
time, but it requires O(kK ′) space, which for small K ′ may be O(n), but in general (i.e.,
when K ′ = k) leads back to the O(n + k2)-time APSP algorithm. We show how to use our
results from Section 5 to answer Top(i, K) queries using O(n) space without this K ′ bound.

Clearly, we can assume that K < k. We start by making the following crucial observation.

▶ Observation 21. For any Top(i, K) query, with K < k, there exists an integer ℓ ∈ [0, n−1]
such that Count(i, ℓ + 1) ≤ K < Count(i, ℓ).

Using the results from Section 5, we can find such an ℓ in O(log2 n/ log log n) time using
binary search on ℓ ∈ [0, n − 1] and the data structure for Count queries. Next we can simply
compute Report(i, ℓ + 1) to be left with only choosing the remaining (K − Count(i, ℓ + 1))
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elements out of all j ∈ [1, k] such that SPLi,j = ℓ. Unfortunately, there can be many such
elements (even k), and we do not want this to influence the query time. We have to report
the remaining elements out of the ones such that SPLi,j = ℓ without computing or explicitly
accessing all of them. Recall that, in STR, a list of elements i such that Si has a suffix of
length exactly ℓ which is also a prefix of Sj can be accessed in O(1) time after O(n)-time
preprocessing by finding the ancestor of the node reached by conceptually reading Sj$j at
string depth ℓ (using a WA query) and reading the first letters of its outgoing edges from left
to right; since $1 < · · · < $k are smaller than any element of Σ those values form a sorted
list. Analogously, to access the list of elements j such that Si has a suffix of length exactly ℓ

which is also a prefix of Sj , we simply use the symmetric data structure by Observation 1.
Unfortunately, this list may contain elements j such that SPLi,j > ℓ, and we do not

want to report them again. This, however, can be fixed by maintaining a bitvector of size k

as an integral part of our data structure; for each element j ∈ Report(i, ℓ + 1), we set the
jth element of the bitvector to 1 in O(Count(i, ℓ + 1)) = O(K) time. When accessing the
elements of the sorted list one-by-one, we simply check if the element was already outputted
using the bitvector in O(1) time. In total, we can check up to K such elements, hence the
total time of merging those two parts of the output is O(K) (including the bitvector reset).
We summarize the solution in Theorem 22, which is the main result of this section.

▶ Theorem 22. For any dictionary of k strings of total length n over an integer alphabet of
size σ ≤ nO(1), we can construct a data structure of O(n) words of space answering Top(i, K)
queries in O(log2 n/ log log n + K) time.

Proof. We start the construction of the data structure by constructing the data structures
for Report(i, ℓ) and Count(i, ℓ) using Theorem 19. We also construct a data structure to
find the list of elements j such that Si has a suffix-prefix match of length ℓ with Sj in O(1)
time using Lemmas 2 and 7 and Observation 1. Finally, we also maintain a bitvector of size
k = O(n). The space required by our data structure is O(n) words.

Consider a Top(i, K) query. We ask O(log n) Count queries and a single Report query in
O(log2 n/ log log n + K) total time, as the output is bounded by K. We index the Report
result in the bitvector. We find the list (without reading its content) of elements j such that
Si has a suffix of length exactly ℓ which is also a prefix of Sj in O(1) time. Finally, we access
and check at most K elements from the list in O(K) total time.

The correctness of the algorithm follows by Observation 21 and Theorem 19. ◀

Similar to Section 5, the construction time for our data structure, excluding the imple-
mentation of Theorem 19, is O(n). If instead of Theorem 19, we employ Theorem 20, we
obtain O(n log n) construction time, O(n) words of space, and O(log2 n + K) query time.

▶ Theorem 23. For any dictionary of k strings of total length n over an integer alphabet of
size σ ≤ nO(1), we can construct a data structure of O(n) words of space answering Top(i, K)
queries in O(log2 n + K) time. The data structure construction time is O(n log n).
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Abstract
Merging T sorted, non-redundant lists containing M elements into a single sorted, non-redundant
result of size N ≥ M/T is a classic problem typically solved practically in O(M log T ) time with a
priority-queue data structure the most basic of which is the simple heap. We revisit this problem
in the situation where the list elements are strings and the lists contain many identical or nearly
identical elements. By keeping simple auxiliary information with each heap node, we devise an
O(M log T + S) worst-case method that performs no more character comparisons than the sum of
the lengths of all the strings S, and another O(M log(T/ē) + S) method that becomes progressively
more efficient as a function of the fraction of equal elements ē = M/N between input lists, reaching
linear time when the lists are all identical. The methods perform favorably in practice versus an
alternate formulation based on a trie.
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1 Introduction & Summary

Producing a sorted list, possibly with duplicate elements removed, from a collection of T

sorted input lists is a classic problem [4]. Moreover, with today’s massive data sets, where an
in-memory sort would require an excessively large memory, this problem gains in importance
as a component of an external, disk-based sort. Our motivating example is modern DNA
sequencing projects that involve anywhere from 100 billion to 5 trillion DNA bases of data
in the form of sequencing reads that are conceptually strings over the 4-letter alphabet A, C,
G, T [8]. In particular, the problem of producing a sorted table of all the k-mers (substrings
of length exactly k) and their counts has been the focus of much study and is used in many
analysis methods for these data sets [5, 6, 7].

Priority queue implementations such as a heap, take O(log T ) to extract the next minimum
and insert its replacement, giving an O(M log T ) merge time where M is the sum of the
lengths of the input lists [2]. However when the domain of the merge is strings, as opposed to
say integers, then one must consider the time taken for each of the O(log T ) string comparisons,
which is not O(1) but conceptually the average length of the longest common prefix (lcp)
between all the compared strings. For example, this is O(logΣ M) in the “Uniform Scenario”
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22:2 Merging String Lists

where the characters of the strings are chosen with equal probability over an alphabet of size
Σ. But it can be much worse, for example, when merging lists of say 21-mers each obtained
from a portion of a 40X coverage DNA sequencing data set, where many strings are identical.

In the worst case, one can only assert that the time to merge the list of strings is
O(S log T ) where S is the total number of characters in the input lists, e.g. Mk for lists of
k-mers. Assuming the Uniform Scenario, one can more accurately characterize the efficiency
as O(M log T log M) expected time. In this paper we present a method that is guaranteed
to take O(M log T + S) time by modifying the heap data structure so that the amortized
time spent on comparing the characters of any string while it is in the heap is never more
than its length. Moreover, in the Uniform Scenario, the efficiency is O(M(log T + log M))
expected time. We call such a modified heap a string heap. Interestingly, a binary search
tree augmented by a generalized list structure that also leverages lcp’s was developed by
Amir et al. [1] and also achieves the bounds above, albeit with a different logic/design.

It is further true in the case of DNA sequencing data sets, that often the number of
elements N in the merged list is much smaller than M when duplicate elements are removed.
Specifically, N can be as small as M/T assuming the input lists themselves do not contain
equal elements. With another modification to a heap, not specific to strings per se, we will
achieve here an algorithm that takes O(M log(T/ē)) time where ē = M/N is the average
number of distinct input lists a given element is in. So when all the input elements are
unique the time is as usual O(M log T ) but as ē increases less time is taken, reaching O(M)
when all the input lists are identical, that is, ē = T . We call such a modified heap a collision
heap. We show it can easily be combined with a string heap to give an O(M log(T/ē) + S)
algorithm for string merging.

While the focus of this paper is on modifying a heap to support string elements, an
orthogonal approach to realizing a priority queue (PQ) of strings appeared in a comprehensive
paper by Thorup ([9]) that is primarily focused on integer PQs, but which in Section 6
uses a trie [3] to merge strings of, potentially large, integers in O(M log log T + S) time. In
bioinformatics, strings are generally over alphabets of small size Σ, e.g. 4 for DNA, so taking
Thorup’s algorithm, but replacing the general integer priority queue with van Emde Boas
small integer PQs [10] over domain Σ, one obtains an O(M log log Σ+S) time algorithm. The
implementation of either of these methods encounters rather larger overheads compared to
simply realizing the basic approach of Thorup’s algorithm with a compact trie with Σ-element
arrays for the out-edges. Moreover, because adding to the trie then becomes linear, the
complexity of this simplified approach is O(NΣ + S). Given limited values of Σ, e.g. say up
to 20 for protein sequences, the trie approach is very competitive, especially for the cases
where N is significantly smaller than M .

We implemented programs to merge files of sorted strings using a regular heap, a
string heap, a collision heap, a combination of the string and collision heap, and a simple
compact trie and performed timing experiments on both simulated and real DNA se-
quencing k-mer data to determine their relative performance. The codes are available
at github.com/thegenemyers/HEAPS. Amongst the heap-based algorithms, the string heap
proves superior as the average lcp between consecutive output strings increases, and the
collision heap proves superior as the collision ratio ē increases. Also, the combination heap
tracked the behavior of whichever of the string or collision heap proves superior, but at an
overhead of roughly 5%. Against the trie approach, the string heap is faster in the uniform
scenario until T becomes quite large, e.g. 256 in our experiments. In scenarios where N ≪ M

due to a uniform collision rate the trie proved fastest save for small values of T . For real
data sets, where the collision rate is highly variable, the collision and combination heaps gave
the best times. In short, the new heap methods are of both theoretical and practical interest.
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2 Preliminaries: Definitions and a Short Recap of Heaps

Consider T sorted lists of strings St = st
1, st

2, . . . st
Nt

of lengths Nt. We assume that the
elements are distinct, i.e. st

j < st
j+1, and let st

j = ajt

0 ajt

1 . . . ajt

nt
j
−1. Note carefully, that

the first character of a string is at index 0. The problem is to produce a single sorted list
R = r1, r2, . . . rN of length N with any duplicates between the lists removed. That is, while
each input list has unique strings, the same string, can occur in up to T different lists. Let
ei ∈ [1, T ] be the number of different queues the string ri occurs in. Letting M =

∑T
t=1 Nt

be the sum of the lengths of the input lists, note that N is in the range [M/T, M ].
A T element heap is a complete binary tree of T nodes containing or referring to domain

values to be prioritized. A heap further has the heap property when for every node, the
domain values of its children are not less than its domain value. A heap can be very simply
implemented as an array H[1..T ] where H[i] is the datum for node i, its left child is 2i, and
its right child is 2i + 1 (if they exist, i.e. are ≤ T ).

In the case of merging T input lists, we will let each heap node contain the index t ∈ [1, T ]
of an input list and another array, V [0..T ] will contain the current value for that list in V [t]
(the role of V [0] is discussed in the next paragraph). If all the nodes greater than i have the
heap property, then recall that the simple routine Heapify(i,x,t) in Figure 1 below will add
the value x from list t to the heap guaranteeing that H has the heap property for all nodes
greater than i−1. The routine takes time proportional to at most the height of i in the heap
which is O(log T ) for all i.

Let S[t] denote the tth sorted input list and assume it operates as a one-sided queue
where one can Pop the next element from the list and ask if the queue is Empty. We will also
assume that INFINITY is an infinitely large string value greater than all those encountered
as input and when a list is exhausted place this value at V [0] so that H[1] becomes 0 when
all the lists are exhausted. Finally, for simplicity we assume each list has at least one element,
i.e. Nt > 0 for all t. Then a complete pseudo-code for the basic priority queue approach to
merging T sorted lists while removing duplicate values is shown at right in Figure 1.

int T domain_list S[1..T]
int H[1..T]
domain V[0..T] 1. for t = T downto 1 do

2. Heapify(t,Pop(S[t]),t)
Heapify(i,x,t)
{ c = i 3. last = INFINITY

while (u=2c) <= T do 4. while (t = H[1]) > 0 do
{ if u < T and V[H[u+1]] < V[H[u]] then 5. { x = V[t]

u = u+1 6. if x != last then
if x <= V[H[u]] then 7. output (last=x)

break 8. if Empty(S[t]) then
H[c] = H[u] 9. Heapify(1,INFINITY,0)
c = u 10. else

} 11. Heapify(1,Pop(S[t]),t)
(H[c],V[t]) = (t,x) }

}

Figure 1 The Heapify routine (left) and the overall merge algorithm (right).

In lines 1 and 2, the first element of each list is Pop’d and placed in the heap in reverse
order of the nodes so that the entire heap has the heap property upon completion. The
total time taken for this setup is O(T ) as the sum of the heights of the nodes in a complete
binary tree is of this order. Then in the while-loop of line 4, the list t with the next smallest
element is H[1] and if this value is not zero (indicating the exhaustion of all the queues),
then the element x = V [t] is processed in the loop body. If the value x is not a duplicate of
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the last element output then it is output (lines 5 - 7). If list t is not empty then its next
element replaces the element just output and the heap property is restored at node 1 (lines 8
& 11). Otherwise the element is replaced with the largest possible value INFINITY (line 9)
in “queue” 0 so that when all T lists are exhausted the extraction of 0 as the queue index
marks the end of the merge.

Given that Heapify takes O(log T ) time and an input element is processed with each
iteration of the loop, the algorithm clearly operates in O(M log T ) time assuming domain
comparisons are O(1). As discussed in the introduction this assumption is not necessarily
true when the values are strings and we address this in the next section.

3 The String Heap

The idea for a string heap is very simple, namely, for each node also record and keep current
the length of the longest common prefix between the string at the node and the string at
its parent (except for the root). Let lcp(u, v) be the longest common prefix between strings
u and v. Then more formally, a string heap also maintains a third array P [1..T ] such that
P [i] = lcp(V [H [i]], V [H [⌊i/2⌋]]) for i > 1. The interesting and complex part of this extension
is maintaining this property during the induction of Heapify and using it to accelerate the
comparison of string values by limiting the number of character comparisons involved.

Intuitively, Heapify(i,x,t) traverses the maximal left most path starting at i, all of whose
elements are less than x and not more than their siblings until a node c⋆ is reached that
is either a leaf or for which all its children are not less than x. The values along this path
are shifted up to the node above during each iteration until x is placed at node c⋆ at the
last. To help argue the induction to follow, it conceptually simplifies matters to think of x as
being explicitly placed at the node indexed by the variable c (i.e. H[c] = t) as the algorithm
descends from node i to the final placement of x. From this viewpoint, at the start of each
iteration of the loop of Heapify, the heap satisfies the heap property at every node in the
subtree rooted at i except c where x conceptually currently resides. For the array P realizing
a string heap, the loop invariant is that P is correct except possibly at nodes 2c and 2c + 1 as
x has just been placed at their parent node c. Our goal is to maintain this invariant through
the next iteration of the loop where either x is found to be not greater than the children of c

and the loop exits, or the algorithm descends to one of the children of c swapping x with the
child’s value.

To facilitate a simpler logic around the comparison of strings, we will assume that every
string ends with a special terminating character $ that is less than any ordinary character
(e.g. 0 for C-strings). With this convention, finding the lcp of two strings x and y is simply
a matter of finding the first index ρ for which the strings have unequal characters or both
are $. Moreover note that x < y iff x[ρ] < y[ρ].

For all but the first iteration of the loop of Heapify, note that the value that was at the
current node c is now at ⌊c/2⌋ having been exchanged with x as it has a smaller value. In
what follows, we will let o = V [H[⌊c/2⌋]] < x be this value and also let vl = V [H[2c]] and
vr = V [H [2c + 1]] be the strings currently at the left and right children of c. Observe that it
must be that P [2c] = lcp(o, vl) and P [2c + 1] = lcp(o, vr) as these values are unchanged since
the previous iteration when o was at node c. Let pl and pr denote these values, respectively,
and further let p = P [c] = lcp(o, x) in the proof/analysis that follows.

▶ Theorem 1. Given that insertions are monotone, i.e. the next value inserted is not less
than the value just extracted, the Heapify routine of Figure 2 is correct once initialized. To
start, it suffices to set, H[i] = 0 for all i and V[0] = $ and then perform Lines 1 and 2 of the
merge given in Figure 1. After calling Heapify, P [1] is the lcp of the the last value extracted
and the value at the root.
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Proof. First consider the situation when the heap has been correctly initialized and one is
now inserting a new element x as in Line 11 of the merge algorithm in Figure 1. So upon
entry to Heapify, c = i = 1 and observe that it will be the case that P [2] and P [3] will have
the value lcp(o, H[V [2]]) and lcp(o, H[V [3]]) where o is the value that was just extracted
from the root of the heap and which x is now about to replace. So in order to get started we
need to set p to lcp(o, x) where o < x by the monotonicity condition. Given that nothing has
been placed at V [H[1]], it still has o as its value, and so in Figure 2, Heapify starts correctly
by setting p to LCP 2(V [H[1]], x, 0) before initiating its loop. Indeed one could imagine that
o is at the virtual father of the root 1.

(The reader should observe that if o > x, i.e. the context is not monotone, then getting
the induction started also requires readjusting P [2] and P [3] downward to p if they happen
to be larger than p. In this case, we can no longer place a bound on the total number
of character comparison made during the operation of the heap, but it will still operate
correctly.)

In the case that the heap is being initialized, i.e. i > 1 in Line 2 of the merge algorithm,
it suffices to let o be the empty string, ϵ, so that P [i] = P [2i] = P [2i + 1] = 0. The conditions
of the theorem correctly guarantee then that LCP 2(V [H[1]], x, 0) = LCP2($, x, 0) = 0.

We now proceed to analyze the numerous cases that arise to maintain the induction
during the iterations of Heapify’s loop in terms of the relationships between the quantities
p, pl, and pr. To further simplify matters observe that the treatment of the left and right
children of c is symmetric, so we only consider the left case, pr ≤ pl, in the enumeration
below knowing that the right case, pl < pr, is handled simply by exchanging the roles of
left and right. Furthermore, we repeatedly use the logic that if lcp(x, s) < lcp(s, y) then
lcp(x, y) = lcp(x, s) and x < s iff x < y.
Case 1: pr < pl and p < pl. By the case condition lcp(x, o) = p < pl = lcp(o, vl) and since

we know x > o we can conclude that x > vl and lcp(x, vl) = lcp(x, o) = p. Similarly
lcp(vr, o) = pr < pl = lcp(o, vl) and we know vr ≥ o allowing us to conclude that vr > vl

and lcp(vr, vl) = lcp(vr, o) = pr. So vl is the smallest of x, vl, and vr implying that the
loop should descend to 2c with vl being placed at c. Moreover, P [c] should be set to pl,
while p and P [2c + 1] can remain unchanged having already the correct values for the
next iteration.

Case 2: pr ≤ pl and p > pl. By the case condition lcp(vl, o) = pl < p = lcp(o, x) and
since we know vl ≥ o we can conclude that x < vl and lcp(vl, x) = lcp(vl, o). Similarly
lcp(vr, o) = pr ≤ pl < p = lcp(o, x) and we know vr ≥ o allowing us to conclude that
x < vr and lcp(vr, x) = lcp(vr, o). So the loop can terminate with x being placed at node
c. Moreover, P [2c] and P [2c + 1] remain unchanged having yet the correct values.

Case 3: pr < pl and p = pl. First compute px = p + lcp(vl + p, x + p) where s + j is the
suffix of string s beginning at position j. Clearly px = lcp(vl, x) and if vl[px] < x[px] then
vl < x, otherwise vl ≥ x. We have two subcases:
Subcase 3a: vl[px] < x[px]. The condition pr < pl implies lcp(vr, o) < lcp(o, vl) and

we know vr ≥ o allowing us to conclude that vr > vl and lcp(vr, vl) = lcp(vr, o). Thus
vl is smaller than both x and vr. So the loop should descend to 2c with vl being placed
at c. Therefore, P [c] should be set to pl and p to px, while P [2c + 1] has the correct
value.

Subcase 3b: vl[px] ≥ x[px]. By the case conditions we know pr < p implying
lcp(vr, o) < lcp(o, x) and we know vr ≥ o allowing us to conclude that vr > x

and lcp(vr, x) = lcp(vr, o). Thus x is not less than both vl and vr. So the loop can
terminate with x being placed at node c. While P [2c + 1] remains correct, P [2c] needs
to be updated to px.
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Case 4: pr = pl and p < pl. Compute px = pl + lcp(vl + pl, vr + pl) which is clearly
lcp(vl, vr). If vr[px] < vl[px] then vr < vl, otherwise vr ≥ vl. WLOG let’s assume
vl ≤ vr, as the case vr < vl is symmetric. As in cases before p < pl and x > o allow us
to surmise that x > vl and lcp(x, vl) = lcp(x, o). Therefore vl is smaller than x and not
larger than vr, implying that the loop should descend to 2c with vl being placed at c.
Therefore, P [c] should be set to pl, P [2c + 1] to px, while p continues to have the correct
value.

Case 5: pr = pl = p. First compute px = p + lcp3(vl + p, vr + p, x + p) where lcp3 is the
3-way common prefix, and this by the case conditions is clearly equal to lcp3(vl, vr, x).
There now arise numerous subcases based on the relationships between x[px], vl[px], and
vr[px] in direct analogy to the subcases based on the relationships between p, pl, and pr,
so we will number these 5.1, 5.2, and so on:

Subcase 5.1: vr[px] > vl[px] and x[px] > vl[px]. The case conditions imply x > vl

and vr > vl and lcp(vl, x) = lcp(vl, vr) = px. So vl is the smallest of x, vl, and vr

implying that the loop should descend to 2c with vl being placed at c. So P [c] should
be set to pl, while p and P [2c + 1] are now clearly px.

Subcase 5.2: vr[px] ≥ vl[px] and x[px] ≤ vl[px]. In this subcase, clearly x is not
more than both vl and vr and lcp(vl, x) = lcp(vr, x) = px. So the loop should
terminate and both P [2c] and P [2c + 1] should be updated to px.

Subcase 5.3: vr[px] > vl[px] and x[px] = vl[px]. First compute py = px + lcp(vl +
px, x + px) which is clearly lcp(vl, x) note that the conditions to this point imply
lcp(vl, vr) = lcp(x, vr) = px.

Subcase 5.3a: vl[py] < x[py]. So vl is the smaller than x and vr implying the loop
should descend to 2c with vl being placed at c. So P [c] should be set to pl and the
correct new values for p and P [2c + 1] are py and px, respectively.

Subcase 5.3b: vl[py] ≥ x[py]. So x is not smaller than vl and vr implying the loop
can terminate at c,

Subcase 5.4: vr[px] = vl[px] and x[px] > vl[px]. Compute py = px + lcp(vl +px, vr +
px) which is clearly lcp(vl, vr). If vr[py] < vl[py] then vr < vl, otherwise vr ≥ vl.
WLOG let’s assume vl ≤ vr, as the case vr < vl is symmetric. By the case conditions
x > vl and lcp(x, vl) = px. Therefore vl is smaller than x and not larger than vr,
implying that the loop should descend to 2c with vl being placed at c. Therefore, P [c]
should be set to pl, P [2c + 1] to py, and p to px. ◀

Figure 2 presents the complete algorithm for the string version of Heapify embodying
the case analysis above so that the P -array values are correctly maintained. Note carefully,
that the lcp information in the P -array is used both to determine the relative values of the
heap elements and hence direct the path that Heapify takes to insert a new element x, but
further also saves time on the number of character comparisons performed by only computing
new lcp’s in terms of an initial lcp-offset that is common to all of the arguments to LCP2 or
LCP3. So as regards complexity, the algorithm for Heapify takes O(log T ) time plus the time
spent in LCP2 or LCP3 for character comparisons. Note carefully the code assumes that we
are merging sorted string lists, so the value of x is not less than the value of the previous
element o = V [H[1]] on the same queue H[1], i.e. the computation is monotone. We make
an amortization argument to bound the total number of character comparisons as follows:
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Heapify(int i, string x, int t) int LCP2(string x, string y, int n)

{ c = i { while true do

p = LCP2(V[H[i]],x,0) { (a,b) = (x[n],y[n])

while (l = 2c) <= T do if a != b or a == $ then

{ (hl,pl) = (H[l],P[l]) return n

if l < T then n += 1

(hr,pr) = (H[l+1],P[l+1]) }

else }

pr = -1

if pr < pl then

{ if p < pl then # Case 1L int LCP3(string x, string y, string z, int n)

(H[c],P[c],c) = (hl,pl,l) { while true do

else if p > pl then # Case 2L { (a,b,c) = (x[n],y[n],z[n])

break if a != b or a != c or a == $ then

else return n

{ vl = V[hl] n += 1

px = LCP2(vl,x,pl) }

if vl[px] < x[px] then # Case 3La }

(H[c],P[c],p,c) = (hl,pl,px,l)

else # Case 3Lb

{ P[l] = px

break

}

}

}

else if pr > pl then

{ # Case 1R, 2R, 3Ra, 3Rb

...

}

else if p > pl then # Case 2

break

else

{ (vl,vr) = (V[hl],V[hr])

if p < pl then # Case 4

{ px = LCP2(vr,vl,pl)

if (vl[px] <= vr[px])

(H[c],P[c],P[l+1],c) = (hl,pl,px,l)

else

(H[c],P[c],P[l],c) = (hr,pr,px,l+1)

}

else # Case 5

{ px = LCP3(vl,vr,x,p)

if vr[px] > vl[px] then

{ if x[px] > vl[px] then # Case 5.1L

(H[c],P[c],P[l+1],p,c) = (hl,pl,px,px,l)

else if x[px] < vl[px] then # Case 5.2L

{ P[l] = P[l+1] = px

break

}

else

{ py = LCP2(vl,x,px)

if vl[py] < x[py] then # Case 5.3La

(H[c],P[c],P[l+1],p,c) = (hl,pl,px,py,l)

else # Case 5.3Lb

{ (P[l],P[l+1]) = (py,px)

break

}

}

}

else if vr[px] < vl[px] then

{ # Case 5.1R, 5.2R, 5.3Ra, 5.3Rb

...

}

else if x[px] <= vl[py] then # Case 5.2

{ P[l] = P[l+1] = px

break

}

else # Case 5.4

{ py = LCP2(vl,vr,px)

if vl[py] < vr[py] then

(H[c],P[c],P[l+1],p,c) = (hl,pl,py,px,l)

else

(H[c],P[c],P[l],p,c) = (hr,pr,py,px,l+1)

}

}

}

}

(H[c],V[t],P[c]) = (t,x,p)

}

Figure 2 The Heapify algorithm for a string heap.
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▶ Theorem 2. The merge algorithm of Figure 1 when using the string heap of Figure 2 1

takes O(M log T + X) time where X = |s1| +
∑M

i=2 lcp(si−1, si) and R+ = s1, s2, . . . sM is
the sequence of M strings extracted from the heap over the course of the list merge, i.e. the
output list if duplicates were not removed. Thus it takes O(M log T + S) worst-case time and
O(M(log T + log M)) expected time in the Uniform Scenario.

Proof. First, observe that every string value has an lcp-value associated with it, namely, for
the string V [H[i]] it is P [i] and it represents the number of character comparisons “charged”
to its string. Examination of the case conditions reveals that when LCP2 or LCP3 is called, all
the string arguments have the same lcp-value at the time of the call. Afterwords, all but one
of the arguments will have its lcp-value increased to the returned value, effectively charging
the comparisons of the lcp call to those arguments (NB: for LCP3 two comparisons per lcp
increment are made). The total time taken then over the course of the merge is the sum of
the maximum lcp-value of every string that passes through the heap. Since the lcp-value of
each string is never more than the length of the string, we have our O(S) bound on the total
number of character comparisons.

We can more accurately characterize the number of comparisons with the observation
that the maximum lcp-value that each string reaches when it is extracted from the root of
the heap is its lcp with the string value extracted just before it. To see this simply review
WLOG the logic involved in a value moving from node 2 to node 1 where, in all relevant cases,
P [1] is assigned to pl = lcp(o, vl) where o is the last value extracted as explained previously.
Further note that the comparisons for the first element extracted equals its length as its
conceptual predecessor is the empty string. So the total number of character comparisons is
|s1| +

∑M
i=2 lcp(si−1, si) over the M string in R+. This expression clearly reveals that the

time spent comparing strings in a string heap is a function of the consecutive similarity of
the strings in the final list, and immediately proves the expected time complexity claim for
the Uniform Scenario as the average lcp value is O(logΣ M) in this scenario. ◀

4 The Collision Heap

One might think that when merging sorted string lists that themselves have no duplicates,
that there would be in expectation very few duplicates between the lists. This would be
correct for the Uniform Scenario. But this is not true, for instance, when the problem is to
merge lists of k-mers generated from a shotgun data set. To wit, in a coverage c, say 40X,
data set, every part of the underlying target sequence/genome has been sampled on average
40 times and so we expect non-erroneous k-mers from unique parts of the target to occur on
average 40 times, and a multiple thereof if from repetitive regions. So if one were to partition
the data into T equal sized parts, sort the k-mers in each part, and then merge those lists,
one quite often sees the same k-mer in different lists. More precisely, the chance that a given
k-mer that occurs c times in the data set is not in a given input queue is (1 − 1/T )c, so we
expect the k-mer to be in ē = T (1 − (1 − 1/T )c) ≈ T (1 − e−c/T ) of the input lists. So if T

is say 10, then a non-erroneous, unique k-mer will be found in ē = 6.5, 8.8, 9.6, or 9.85 of
the lists if c = 10, 20, 30, or 40, respectively. It was this specific use-case, that we call the
“Shotgun Scenario”, that motivated the development of a collision heap.

1 The test x != last is simply replaced by P[1] < |x| as P [1] is the lcp of x and the previous extracted
element per Theorem 1.
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The idea behind a collision heap is also very simple, namely, for each node one also records
whether the value at that node is equal to its left child and its right child with a pair of
boolean flags in auxiliary (bit) arrays L[1..T ] and R[1..T ]. Formally, L[i] has the value of the
predicate V [H[i]] = V [H[2i]] and R[i] has the value of the predicate V [H[i]] = V [H[2i + 1]].
Again the interesting and somewhat complex part of this extension is maintaining these
values during the induction of Heapify and using them to accelerate the handling of duplicate
entries.

▶ Theorem 3. The Heapify routine of Figure 3 correctly maintains the L and R arrays.

Proof. The inductive invariant for the loop of Heapify is basically that all values are correct
or will be correct once the algorithm is complete, save for H[c], L[c] and R[c] which need
to be determined depending on the relative values of x, conceptually at c, and those of its
current children. Let vl = H[V [2c]] and vr = H [V [2c + 1]] be the strings currently at the left
and right children of c. There are 9 cases depending on the relative magnitudes of x, vl, and
vr, where the three that entail the condition vl > vr are treated by symmetry:
Case 1: vl < vr and x > vl. By the conditions, vl will move to node c and the path followed

descends to 2c. vl < vr implies that R[c] should be false. However, vl < x does not
imply the same for the new value of L[c] as vl could be equal to the element at 2(2c) or
2(2c) + 1 or both and if so, then those elements are also less than x implying one or the
other will replace x at 2c. Therefore L[c] should be true as it will be correct and remain
correct after the next loop iteration. So to recapitulate, if L[2c] or R[2c] are true then
L[c] should be set to true otherwise it should be false.

Case 2: vl < vr and x = vl. By the conditions, the loop will terminate with x finally
resting at node c. By the case conditions it is then clear that L[c] is true and R[c] is false.

Case 3: vl ≤ vr and x < vl. Again a very simple case where the loop stops and clearly
L[c] = R[c] = false.

Case 4: vl = vr and x > vl. In this case, vl moves up to occupy c and x moves down to
node 2c. Clearly R[c] should then be true as vl = vr. As argued in Case 1, if vl equals
either of its children then the value of L[c] needs to be true as one of these children is
smaller than x. Otherwise L[c] should be false.

Case 5: vl = vr and x = vl. Then the loop terminates and both L[c] and R[c] are true. ◀

Figure 3 presents the complete algorithm for the collision version of Heapify embodying
the case analysis above so that the L and R array values are correctly maintained when a
heap update occurs. The code is further obviously O(log T ).

The value of the additional L and R flags is that when the top element, say x, is about
to be extracted as the current minimum in the heap, one can find all the additional elements
equal to x by recursively visiting the children that are marked as equal according to the
relevant L and R flags. In Figure 3, the routine PopHeap calls the recursive routine cohort
that makes a post order traversal of the subtree of the heap of all elements equal to x, and
places the indices of these nodes in post order in an array G, returning how many of them
there are. Thus after calling PopHeap the array G[1..PopHeap()] contains the next group of
equal elements. The routine clearly takes time proportional to the number of equal elements
found. The interesting part is how to replace the cohort in the heap and the time taken to
do so, which we treat in the following:

▶ Theorem 4. The merge algorithm of Figure 3 correctly merges the lists, outputting a
unique element in each iteration and takes O(M log(T/ē)) worst-case time where ē = M/N .
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int H{1..T] int G[1..T]

value V[1..T]

boolean L[1..T] int cohort(int c, int len)

boolean R[1..T] { if (R[c])

len = cohort(2c+1,len)

static void Heapify(int i, value x, int t) if (L[c])

{ V[t] = x len = cohort(2c,len)

c = i len += 1

while ((l = (2c)) <= T) G[len] = c

{ hl = H[l] return len

vl = V[hl] }

if (l >= T)

vr = INFINITY

else

{ hr = H[l+1]

vr = V[hr]

}

if (vr > vl)

{ if (x > vl) # Case 1L

{ H[c] = hl

L[c] = L[l] or R[l]

R[c] = false

c = l

}

else if (x == vl) # Case 2L

{ H[c] = t

L[c] = true

R[c] = false

return

}

else # Case 3L

break

}

else if (vr < vl)

{ # Cases 1R, 2R, 3R

. . .

}

else

{ if (x > vl) # Case 4

{ H[c] = hl

L[c] = L[l] or R[l] domain_list S[1..T]

R[c] = true

c = l 1. for t = T downto 1 do

} 2. Heapify(t,Pop(S[t]),t)

else if (x < vl) # Case 3

break 3. while (t = H[1]) > 0 do

else # Case 5 4. { output V[t]

{ H[c] = t 5. len = cohort(1,0)

L[c] = R[c] = true 6. for k = 1 to len do

return 7. { i = G[k]

} 8. t = H[i]

} 9. if Empty(S[t]) then

} 10. Heapify(i,INFINITY,0)

H[c] = t 11. else

L[c] = R[c] = false 12. Heapify(i,Pop(S[t]),t)

return }

} }

Figure 3 The Heapify (left) and cohort (upper right) and top-level merge (lower right) algorithms
for a collision heap. In the main algorithm cohort(1,0) identifies all of the equal next elements to be
output in Line 5, and then Lines 6-12 carefully replace each of these with its list successor.
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Proof. While the flags allow us to easily identify the next cohort of equal elements to extract
from the heap, there remains the somewhat more subtle problem of replacing all of them with
their list successors. Lines 6-12 of the psuedo-code for the top-level merge at the bottom right
of Figure 3 details how this is done. Because the nodes in the cohort G are in post-order,
calling Heapify on each listed node in that order guarantees a proper heap after all the
elements have been replaced. In terms of complexity suppose e nodes are in the cohort for a
given iteration of the loop. While the time taken in Lines 6-12 is certainly O(e log T ) we can
bound this more tightly by observing that the most time is taken when the e nodes form
a complete binary subtree of the heap, that is, every node has the highest height possible.
In this case the lowest nodes are at height log T − log e and the sum over all e nodes is
dominated by this as the sum telescopes (e.g. as for the time analysis for establishing the
heap in Lines 1 and 2). Thus the time taken is more accurately O(e log(T/e)). Observe that
when e = T the time is O(e) and when e = 1 the time taken is O(log T ).

Looking at the overall time to produce the final list R where ri occurrs in ei of the
lists, the total time is O(

∑N
i=1 ei(log T − log ei)). By the convexity of the log-function∑

i ei log2 ei ≥ Nē log2 ē where ē =
∑

i ei/N is the average value of ei. It thus follows that
the total time is O(

∑
i ei log T − Nē log ē) = O(M log(T/ē)). So when ē = 1, i.e. every input

element is unique, then the time is O(M log T ) as usual. But this gradually decreases as ē

approaches T where upon the time is O(M). ◀

5 The String Collision Heap

Observing that the idea of a string heap and a collision heap are independent, one can combine
the ideas obtaining an O(M log(T/ē) + S) time algorithm. Further observe that the L- and
R-arrays are not necessarily needed as L[c] is the same as the predicate V [H[x]][P [x]] = $
where x = 2c and R[c] is similarly V [H[x]][P [x]] = $ where x = 2c + 1. In words, the string
of a child equals the string of its’ parent iff the character at its’ lcp-value is the end of its’
string. If one has the length Len[t] of the current string from the tth input list, then the test
is simply, P [x] = Len[H[x]] where x is either 2c or 2c + 1.

6 A Trie-Based Priority Queue for Strings

We briefly review trie-based implementations of a string priority queue in order to explain
which approach we chose to compare against the modified heap algorithms of this paper.
Given a basic Fredkin trie, adding a new string is a matter of following the path from the
root of the trie spelling the common prefix with the new string, until its remaining suffix
diverges at some node x. A new out edge labelled with the first character of the remaining
suffix is added to node x and trie nodes for the suffix are linked in. Finding the minimum
string in a trie is simply a matter of following the out edge with the smallest character from
each node. To delete this minimum, one finds the last node along the minimum path that
has out degree greater than one, and then removes the minimum out edge from this divergent
node and the suffix that follows.

If the out edges of each node are realized with a van Emde Boas priority queue for which
add and delete are O(log log Σ) and finding the minimum is O(1) then adding and deleting
from the queue are both O(log log Σ + s) where s is the length of the string being added or
deleted. Finding the minimum element is O(s). This gives the O(M log log Σ + S) bound for
the entire merge. If one further realizes a compact trie, wherein all nodes with out degree 1
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are collapsed into their successor so that nodes are now labeled with string fragments, the
trie is guaranteed to have O(T ) nodes and thus the space requirement for the trie is O(TΣ)
(excluding the space for the strings themselves).

Empirically we found that for typical values of Σ it is actually more efficient to simply
realize the out edge PQ with a Σ element array that is directly indexed with a character. In
addition, one keeps the current out-degree of the node and the current minimum out-edge.
With this information finding the minimum and adding a new string is just O(s). Deletion
however does require traversing the out-edge array at the divergent node looking for the
new minimum out-edge and so is O(Σ + s). Offsetting this is the fact that the number of
strings deleted/extracted from the trie is N and not M , so the total complexity for this
simple implementation is O(NΣ + S) and as will be seen this empirically gives very good
performance for the Shotgun Scenario.

Table 1 Performance for the Uniform Scenario.

Time Time Time Time Time
(in sec.) (in sec.) (in sec.) (in sec.) (in sec.)

Heap String Collision Combo’ Trie
M, Σ, ¯lcp, ē T Heap Heap Heap

10M, 4, 10.8, 1.000 4 .654 .506 .597 .542 .984
8 .848 .633 .851 .673 1.022

16 1.057 .776 1.130 .810 1.060
32 1.268 .907 1.407 .950 1.097
64 1.479 1.053 1.658 1.090 1.144

128 1.650 1.183 1.914 1.230 1.249
256 1.897 1.323 2.201 1.373 1.331

100M, 4, 12.5, 1.000 4 7.04 5.21 6.29 5.54 9.99
8 8.99 6.47 8.96 6.85 10.81

16 11.18 7.88 11.84 8.12 11.10
32 13.57 9.15 14.75 9.60 11.50
64 16.16 10.58 17.86 10.90 12.01

128 18.69 12.05 21.18 12.34 13.09
256 21.63 13.64 24.53 14.00 13.77

1000M, 4, 14.1, 1.000 4 72.9 52.5 66.0 55.7 99.7
8 94.7 65.5 95.2 68.9 107.9

16 115.9 77.7 121.9 81.0 111.6
32 140.2 91.1 154.6 95.6 116.2
64 168.5 106.6 187.4 111.2 123.4

128 195.5 121.1 221.8 125.7 132.2
256 229.5 139.2 265.3 142.9 143.2

1000M, 8, 9.3, 1.000 4 61.4 51.0 57.2 53.8 89.7
8 77.7 64.3 81.1 67.3 93.6

16 94.2 76.7 103.0 80.0 95.7
32 108.5 90.5 126.6 94.1 98.3
64 126.4 105.4 149.3 110.2 102.4

128 145.9 118.9 174.1 123.9 110.2
256 168.5 133.5 202.4 137.8 113.9

1000M, 16, 6.8, 1.000 4 56.1 50.0 53.4 50.8 85.2
8 69.2 60.2 71.1 63.9 85.0

16 81.4 74.1 92.0 75.2 87.7
32 95.1 88.1 110.5 89.2 88.5
64 109.6 99.7 132.7 103.9 91.3

128 126.7 113.6 157.0 119.1 100.2
256 150.0 129.3 181.0 134.6 101.7

7 Empirical Performance

We implemented string list merging programs using a regular heap, Heap, a string heap,
Sheap, a collision heap, Cheap, a string-collision heap, SCheap, and a simple, compact trie,
Trie, and measured their performance on a 2019 Mac Pro with a 2.3 GHz Intel Core i9
processor, 64GB of memory, and 8TB of SSD disk. All the codes are available at GitHub at
the url github.com/thegenemyers/STRING.HEAP.
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In the first set of timing experiments over synthetic data, for a given setting of parameters
M , T , and Σ we generated T input files, each with M 20-mers where every 20-mer over a
Σ character ASCI alphabet occurs with equally likelihood, that is, the Uniform Scenario
introduced in the introduction. We chose 20 as the k-mer size as it is greater than the lcp
seen in any of the experiments. For such data we expect the lcp between successive elements
in the output list to be on average logΣ M and ē to be 1 given that the average lcp is less
than 20 for all trials considered. In Table 1, we present timings where Σ was set to 4, T was
set from 4 to 256 in steps of 2x, and M was set to 10x for x = 7, 8, and 9. In addition, for
M = 109, we also generated data sets where Σ was also set to 8 and 16 to see the dependence
of the programs, especially Trie, on Σ.

Table 2 Performance for the Shotgun Scenario.

–

Time Time Time Time Time
(in sec.) (in sec.) (in sec.) (in sec.) (in sec.)

Heap String Collision Combo’ Trie
T c ¯lcp ē Heap Heap Heap

4 0 14.1 1.0 70.6 54.2 65.8 58.0 98.4
1 15.7 1.4 73.7 53.6 59.8 56.3 84.6
2 16.8 2.0 69.7 50.1 49.9 50.7 66.5
4 17.7 2.8 63.2 42.6 38.6 43.3 48.0
6 18.0 3.3 60.2 38.4 34.0 38.7 41.0
8 18.1 3.6 58.5 35.8 31.7 35.1 36.5

12 18.2 3.9 57.0 34.0 29.8 32.8 33.9
8 0 14.1 1.0 95.0 66.4 96.7 70.1 113.5

2 17.0 2.1 93.6 64.7 79.1 65.8 79.8
4 18.1 3.5 88.4 57.8 60.9 56.0 61.1
8 18.7 5.3 82.5 48.1 45.9 46.9 45.9

12 18.9 6.4 79.1 42.5 38.8 40.6 39.6
16 19.0 7.1 77.9 39.3 34.9 37.0 35.9
24 19.0 7.7 76.9 35.4 31.7 33.2 33.5

16 0 14.1 1.0 117.9 79.3 124.6 82.8 113.7
4 18.2 3.9 109.8 73.0 85.6 70.7 63.0
8 18.9 6.6 101.3 63.1 65.1 59.3 50.3

16 19.3 10.4 97.3 54.3 48.8 47.5 40.1
24 19.4 12.6 94.9 48.1 41.7 40.9 34.9
32 19.4 14.0 93.8 44.0 37.9 36.8 33.2
48 19.5 15.3 91.8 39.1 34.1 33.5 30.6

The timings confirm that all algorithms are linear in M and that the heap algorithms
are linear in log T . As M becomes larger or Σ becomes smaller the average lcp between
consecutive strings increases and so as expected the string heap becomes progressively faster
than a regular heap. The combination heap tracks the performance of the string heap but
lags by about 5% for all parameter values due to the additional overhead of maintaining
information about collisions, which in these experiments basically do not occur. The trie’s
behavior is basically constant, edging up slightly with T due to an increase in the branching
layers in the prefix of the trie. Counter intuitively, the trie becomes faster with larger Σ as
this reduces the expected number of branching layers in the trie which dominates the minor
cost of searching for the smallest out-edge of a single node when deleting an entry. Thus,
ultimately as T increases the trie becomes the fastest, at 256 for Σ = 4, 64 for Σ = 8, and 32
for Σ = 16.

In the second set of timing experiments, we produced synthetic data sets of k-mers where
they followed the Shotgun Scenario. We fixed M at 109, k at 20, and then for each of T = 4,
8, and 16, we varied the coverage c such that c/T = .25, .5, 1.0, 1.5, 2.0, and 3.0.
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As the number of collisions increases, the collision heap overtakes the string heap, with
again the combination heap tracking the better of the two with an overhead of 5% or so.
But our trie implementation does becomes faster for larger values of T due to its O(NΣ + S)
complexity. The collision heap, in terms of N , has complexity O(Nē log(T/ē)) which explains
the behavior. Basically, the number of elements in the trie decreases rapidly from T toward
1 as collisions occur greatly accelerating its operation. Nonetheless, the table reveals that for
smaller values of T the heap algorithms are generally superior.

The final set of experiments were for k-mers from a real shotgun sequencing data set, the
motivating example for this work. For high-accuracy read data sets k, is typically chosen at
40 or more, as k-mers of that size are well conserved. The other difference with the synthetic
Shotgun Scenario is that the k-mers occur with a complex frequency profile wherein some
k-mers occur with frequency about C, but for example, 80% of the k-mers contain errors
and occur once, others from a haplotype region occur roughly C/2 times, and so on. So in
Table 3 below one will see that ē is significantly less than for the synthetic examples, yet
still substantially elevated. Interestingly in these cases the collision heap or combined heap
perform best because they respond continuously to the collisions, beating out the string heap,
and the lcp is very near k, thus beating out the trie.

Table 3 Performance on real sequencing data with k = 40.

–

Time Time Time Time Time
(in sec.) (in sec.) (in sec.) (in sec.) (in sec.)

Heap String Collision Combo’ Trie
M T c ¯lcp ē Heap Heap Heap

333M 4 4 28.3 2.1 33.2 23.1 22.4 24.8 29.1
666M 8 8 32.9 3.4 85.7 56.1 55.0 55.0 60.5

1333M 16 16 35.4 4.9 210.2 123.3 118.5 114.7 121.8
484M 4 8 30.3 2.5 50.7 32.5 29.9 33.7 38.3
968M 8 16 33.6 3.6 127.4 74.9 71.3 73.6 84.0

1936M 16 32 35.4 4.6 314.9 175.0 164.7 159.2 183.4
566M 4 12 30.4 2.4 59.6 37.6 35.2 39.2 44.0

1232M 8 24 33.3 3.3 149.9 87.1 84.3 86.3 98.5
2464M 16 48 34.8 4.0 382.2 212.0 205.3 194.7 230.4

In summary, the string heap performs best when the average lcp value increases, and the
collision ratio is low. The collision heap always performs better than the string heap when
collisions become high. The combination heap tracks the better of the two combined methods,
lagging by about 5%. The trie data structure is generally the best for large T or pure collision
scenarios, but on real high-fidelity shotgun data sets the collision and combination heaps
proved superior.
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Abstract
The palindrome pattern matching (pal-matching) is a kind of generalized pattern matching, in
which two strings x and y of same length are considered to match (pal-match) if they have the
same palindromic structures, i.e., for any possible 1 ≤ i < j ≤ |x| = |y|, x[i..j] is a palindrome
if and only if y[i..j] is a palindrome. The pal-matching problem is the problem of searching for,
in a text, the occurrences of the substrings that pal-match with a pattern. Given a text T of
length n over an alphabet of size σ, an index for pal-matching is to support, given a pattern P of
length m, the counting queries that compute the number occ of occurrences of P and the locating
queries that compute the occurrences of P . The authors in [I et al., Theor. Comput. Sci., 2013]
proposed an O(n lg n)-bit data structure to support the counting queries in O(m lg σ) time and the
locating queries in O(m lg σ + occ) time. In this paper, we propose an FM-index type index for the
pal-matching problem, which we call the PalFM-index, that occupies 2n lg min(σ, lg n) + 2n + o(n)
bits of space and supports the counting queries in O(m) time. The PalFM-indexes can support
the locating queries in O(m + ∆occ) time by adding n

∆ lg n + n + o(n) bits of space, where ∆ is a
parameter chosen from {1, 2, . . . , n} in the preprocessing phase.
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1 Introduction

A palindrome is a string that can be read same backward as forward. Palindromic structures
in a string are one of the most fundamental structures in the string and have been extensively
studied. For example, it is known that any string w contains at most |w| + 1 distinct
palindromic substrings [6], and the strings reaching the maximum values have some intriguing
properties [15, 28]. Another concept regarding palindromic structures is the palindrome
complexity [1, 4, 2], which is the number of distinct palindromic substrings of a given length
in a string.

Instead of thinking about distinct palindromic substrings, one might be interested in
occurrences of palindromic substrings. The palindromic structures in such a sense are
captured by the maximal palindromes from all possible “centers” in a string. Manacher’s
algorithm [26], originally proposed for computing a prefix-palindrome, can be extended to
compute all the maximal palindromes in O(|w|) time for a string w. The authors in [18]
considered the problem of inferring strings from a given set of maximal palindromes and
showed that the problem can be solved in O(|w|) time.
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In [19], a new concept called palindrome pattern matching was introduced as a generalized
pattern matching. Two strings x and y of the same length are said to palindrome pattern
match (pal-match in short) iff they have the same palindromic structures, i.e., the following
condition holds: for any possible 1 ≤ i < j ≤ |x| = |y|, x[i..j] is a palindrome iff y[i..j] is
a palindrome. We remark that x and y themselves are not necessarily palindromes. The
palindrome pattern matching has potential applications to genomic analysis, in which some
palindromic structures play an important role to estimate RNA secondary structures [21].

The pal-matching problem is to search for, in a text, the occurrences of the substrings
that pal-match with a pattern. Given a text T of length n and a pattern P of length m, a
Morris-Pratt type algorithm for solving the pal-matching problem in O(n) time was proposed
in [19]. The method in [19] is based on the lpal-encoding of a string w, denoted as lpalw,
that is the integer array of length |w| such that lpalw[i] is the length of the longest suffix
palindrome of w[1..i]. The lpal-encoding is helpful because two strings x and y pal-match iff
lpalx = lpaly. When T is large and static, and patterns come online later, one might think
of preprocessing T to construct an index for pal-matching. An index for pal-matching is
to support the counting queries that compute the number occ of occurrences of P and the
locating queries that compute the occurrences of P . For this purpose, I et al. [19] proposed
the palindrome suffix tree of T , which is a compacted tree of the lpal-encoded suffixes of T .
The palindrome suffix tree takes O(n lg n) bits of space and supports the counting queries in
O(m lg σ) time and the locating queries in O(m lg σ + occ) time, where σ is the size of the
alphabet from which characters in T are taken and occ is the number of occurrences.

In this paper, we present a new index, named the PalFM-index, by applying the technique
of the FM-index [7] to the pal-matching problem. In so doing we introduce a new encoding,
named the ssp-encoding, that is based on the non-trivial shortest suffix-palindrome of each
prefix. In contrast to the lpal-encoding, the ssp-encoding has a good property to design
the PalFM-index. The PalFM-index occupies 2n lg min(σ, lg n) + 2n + o(n) bits of space
and supports the counting queries in O(m) time. The locating queries can be supported in
O(m + ∆occ) time by adding n

∆ lg n + n + o(n) bits of space, where ∆ is a parameter chosen
from {1, 2, . . . , n} in the preprocessing phase.

1.1 Related work
One of the well-studied algorithmic problems related to palindromes is factorizing a string
into non-empty palindromes, or in other words, recognizing a string that is obtained by
concatenating a certain number of non-empty palindromes [26, 24, 12, 9, 20, 25, 3, 29]. The
combinatorial properties discovered during tackling this factorization problem are useful to
work on palindromes-related problems.

Developing techniques of designing space-efficient indexes for generalized pattern matching
is of great interest. Our PalFM-index was inspired by that of Kim and Cho [23], which
is a simplified version of the FM-index for parameterized pattern matching [13]. Indexes
based on the FM-index for other generalized pattern matching problems were considered
in [14, 11, 22].

2 Preliminaries

2.1 Notations
An integer interval {i, i + 1, . . . , j} is denoted by [i..j], where [i..j] represents the empty
interval if i > j.
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1 2 3 4 5 6 7 8

a b c b a a c a

b c a c b b d b

Figure 1 Illustration of the palindromic structures for pal-matching strings abcbaaca and
bcacbbdb. Check that the radii of their maximal palindromes for all possible centers, which are
illustrated by two-headed arrows, coincide.

Let Σ be a finite alphabet, a set of characters. An element of Σ∗ is called a string. The
length of a string w is denoted by |w|. The empty string ε is a string of length 0, that is,
|ε| = 0. The concatenated string of two strings x and y are denoted as x ·y or simply xy. The
i-th character of a string w is denoted by w[i] for 1 ≤ i ≤ |w|, and the substring of a string w

that begins at position i and ends at position j is denoted by w[i..j] for 1 ≤ i ≤ j ≤ |w|, i.e.
w[i..j] = w[i]w[i+1] . . . w[j]. For convenience, let w[i..j] = ε if i > j. A substring of the form
w[1..j] (resp. w[i..|w|]) is called a prefix (resp. suffix) of w and denoted as w[..j] (resp. w[i..])
in shorthand. Note that ε is a substring/prefix/suffix of any string w. A substring of w is
called proper if it is not w itself. When needed we use parentheses to indicate positions in a
concatenated string, for example, (xy)[i] refers to the i-th character of the string xy. Hence,
(xy)[i] should be distinguished from xy[i], which can be interpreted as the concatenated
string of x and y[i].

Let ≺ denote the total order over an alphabet we consider. In particular, we will consider
strings over a set consisting of integers and ∞, in which natural total order based on their
values is employed. We extend ≺ to denote the lexicographic order of strings over the
alphabet. For any strings x and y that do not match, we say that x is lexicographically
smaller than y and denote it by x ≺ y iff x[i + 1] ≺ y[i + 1] for largest integer i with
x[..i] = y[..i], where we assume that x[i + 1] or y[i + 1] refers to the lexicographically smallest
character $ if it points to out of bounds.

For any string w, let wR denote the reversed string of w, that is, wR = w[|w|] · · · w[2]w[1].
A string w is called a palindrome if w = wR. The radius of a palindrome w is |w|

2 . The
center of a palindromic substring w[i..j] of a string w is i+j

2 . A palindromic substring w[i..j]
is called the maximal palindrome at the center i+j

2 if no other palindromes at the center i+j
2

have a larger radius than w[i..j], i.e., if w[i − 1] ̸= w[j + 1], i = 1, or j = |w|.
Two strings x and y of same length are said to palindrome pattern match (pal-match in

short) iff they have the same palindromic structures, i.e., the following condition holds: for
any possible 1 ≤ i < j ≤ |x| = |y|, x[i..j] is a palindrome iff y[i..j] is a palindrome. For
example, abcbaaca and bcacbbdb pal-match since their palindromic structures coincide (see
Figure 1). Note that pal-matching induces a substring consistent equivalent relation [27], i.e.,
if x and y pal-match then x[i..j] and y[i..j] pal-match for any possible 1 ≤ i < j ≤ |x| = |y|.

The pal-matching problem is to search for, in a text string T , the occurrences of the
substrings that pal-match with a pattern P . In the pal-matching problem, an occurrence of
P refers to a position i such that T [i..i + |P | − 1] and P pal-match. Throughout this paper
we consider indexing a text T of length n over an alphabet Σ of size σ.
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2.2 Toolbox

As a component of our PalFM-index, we use a data structure for a string w over an integer
alphabet U supporting the following queries.

rankw(i, c): return the number of occurrences of character c ∈ U in w[..i].
selectw(i, c): return the i-th smallest position of the occurrences of character c ∈ U in w.
rangeCountw(i, j, c, d): return the number of the occurrences of any character in [c..d] ⊆ U

in w[i..j].

The Wavelet tree [17] supports these queries in O(lg |Σ|) time using |w|H0(w) + o(|w| lg |U |)
bits of space, where H0(w) = O(lg |U |) is the 0-th order empirical entropy of w. The
subsequent studies [8, 16] improved the complexities, resulting in the following theorem.

▶ Theorem 1 ([16]). For a string w over an integer alphabet U , there is a data structure in
|w|H0(w) + o(|w|) bits of space that supports rank, select and rangeCount in O(1 + lg |U |

lg lg |w| )
time.

We also use a data structure for the Range Maximum Queries (RMQs) over an integer
array V . Given an interval [i..j] over V , a query RMQV (i, j) returns a position in [i..j] that
has the maximum value in V [i..j], that is, RMQV (i, j) = arg maxk∈[i..j] V [k]. We use the
following result.

▶ Theorem 2 ([10]). For an integer array V of length n, there is a data structure with
2n + o(n) bits of space that supports the RMQs in O(1) time.

2.3 FM-index

The suffix array SA of T is the integer array of length n + 1 such that SA[i] is the starting
position of the lexicographically i-th suffix of T .1 We define the string L (a.k.a. the Burrows-
Wheeler Transform (BWT) [5] of T ) of length n + 1 as follows:

L[i] =
{

$ (SA[i] = 1),
T [SA[i] − 1] (SA[i] > 1).

We define the string F of length n + 1 as F = T [SA[1]]T [SA[2]] · · · T [SA[n + 1]]. The so-
called LF-mapping LF is the function defined to map a position i to j such that SA[j] =
SA[i] − 1 (with the corner case LF(i) = 1 for SA[i] = 1). A crucial point is that LF-
mapping can be efficiently implemented by rank queries on L and select queries on F with
LF(i) = selectF(rankL(i, L[i]), L[i]). 2 The occurrences of pattern P in T can be answered by
finding the maximal interval [Pb..Pe] in the SA array such that T [SA[i]..] is prefixed by P iff
i ∈ [Pb..Pe], and computing the SA-values in the interval. For a string w and character c,
the so-called backward search computes the maximal interval in the SA prefixed by cw from
that of w using a similar mechanism of the LF-mapping (see [7] for more details).

1 Against convention, we include the empty string that starts with the position n + 1 to SA. In particular,
SA[1] = n + 1 holds as the empty string is always the smallest suffix.

2 In the plain LF-mapping, select queries on F can be implemented by a simple table that counts, for
each character c, the number of occurrences of characters smaller than c in T , but it is not the case in
our generalized LF-mapping for pal-matching.
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Table 1 A comparison between lpal and ssp for w = abbbabb and w′ = bw = babbbabb. The
values that change when prepending b to w are underlined.

w = a b b b a b b
lpalw = 1 1 2 3 5 3 5
sspw = ∞ ∞ 2 2 5 3 2

w′ = b a b b b a b b
lpalw′ = 1 1 3 2 3 5 7 5
sspw′ = ∞ ∞ 3 2 2 5 3 2

3 Encodings for pal-matching

The pal-matching algorithms in [19] are based on the lpal-encoding of a string w, denoted as
lpalw. lpalw is the integer array of length |w| such that, for any position 1 ≤ i ≤ |w|, lpalw[i]
is the length of the longest suffix-palindrome of w[1..i]. See Table 1 for example.

▶ Lemma 3 (Lemma 2 in [19]). For any strings x and y, x and y pal-match iff lpalx = lpaly.

Although Lemma 3 is sufficient to design suffix-tree type indexes, it seems that the
lpal-encoding is not suitable to design FM-index type indexes. For example, more than one
position could change when a character is prepended (see Table 1) and this unstable property
make messes up lexicographic order of lpal-encoded suffixes, which prevents us to implement
LF-mapping space efficiently.

In this paper, we introduce a new encoding suitable to design FM-index type indexes for
pal-matching. Our new encoding is based on the shortest suffix-palindrome for each prefix,
where the shortest suffix is chosen excluding the trivial palindromes of length ≤ 1. We call
the encoding the shortest suffix-palindrome encoding (the ssp-encoding in short). For any
string w, the ssp-encoding sspw of w is the integer array of length |w| such that, for any
position 1 ≤ i ≤ |w|, sspw[i] is the length of the non-trivial shortest suffix-palindrome of
w[..i] if such exists, and otherwise ∞. See Table 1 for example.

▶ Lemma 4. Two strings x and y pal-match iff sspx = sspy.

Proof. Since the ssp-encoding relies only on palindromic structures, the direction from left
to right is clear.

In what follows, we focus on the opposite direction; x and y pal-match if sspx = sspy.
Assume for contrary that x and y does not pal-match. Without loss of generality, we can
assume that there are positions i and j such that x[i..j] is a palindrome but y[i..j] is not,
with smallest j if there are many. Note that the smallest assumption on j implies that
y[i + 1..j − 1] is a palindrome: If y[i + 1..j − 1] is not a palindrome (clearly |y[i + 1..j − 1]| > 1
in such a case), j − 1 must be a smaller position that satisfies the above condition because
x[i + 1..j − 1] is a palindrome. Let k = sspx[j] = sspy[j]. Since x[i..j] is a palindrome, it
holds that 1 < k ≤ |x[i..j]|. Moreover, k ̸= |y[i..j]| as y[i..j] is not a palindrome. Since the
palindrome x[i..j] has a suffix-palindrome of length k, the prefix x[i..i + k − 1] of length
k is a palindrome, too. On the other hand, since y[i..j] is not a palindrome that has a
suffix-palindrome of length k, the prefix y[i..i + k − 1] of length k cannot be a palindrome.
This contradicts the smallest assumption on j because i + k − 1 is a smaller position such
that x[i..i + k − 1] and y[i..i + k − 1] disagree on their palindromic structures. ◀

In contrast to the lpal-encoding, the ssp-encoding has a stable property when prepending
a character.
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▶ Lemma 5. For any string w and character c, there is at most one position i (1 ≤ i ≤ |w|)
such that sspw[i] ̸= sspcw[i + 1]. Moreover, if such a position i exists, sspw[i] = ∞ and
sspcw[i + 1] = i + 1.

Proof. By definition it is obvious that sspw[i] = sspcw[i + 1] if sspw[i] ̸= ∞. In what follows,
we assume for contrary that there exist two positions i and i′ with 1 ≤ i < i′ ≤ |w| such that
sspw[i] = ∞ > sspcw[i + 1] and sspw[i′] = ∞ > sspcw[i′ + 1]. Note that sspcw[i + 1] = i + 1
and sspcw[i′ + 1] = i′ + 1 by definition, and (cw)[..i + 1] and (cw)[..i′ + 1] are palindromes.
Since (cw)[..i + 1] is a prefix-palindrome of (cw)[..i′ + 1], it is also a suffix-palindrome of
(cw)[..i′ + 1]. It contradicts that (cw)[..i′ + 1] is the non-trivial shortest suffix-palindrome of
(cw)[..i′ + 1]. ◀

We consider yet another encoding based on the shortest suffix of w[..i−1] that is extended
outwards when appending a character w[i]. The concept is closely related to the ssp-encoding
because the extended palindrome is the non-trivial shortest suffix-palindrome of w[..i]. An
advantage of this new encoding is that we can reduce the number of distinct integers to be
used to O(min(σ, lg |w|)), which will be used (in a symmetric way) to define Lpal and obtain
a space-efficient FM-index specialized for pal-matching.

For any string w we partition the suffix-palindromes (including the empty suffix) by the
characters they have immediately to their left and call each group a suffix-pal-group for w.
We utilize the following lemma.

▶ Lemma 6. For any string w, the number of suffix-pal-groups for w is O(min(σ, lg |w|)).

Proof. It is obvious that the number of suffix-pal-groups is at most σ because each character
is associated to at most one suffix-pal-group. Also it is known that the lengths of the suffix-
palindromes can be represented by O(lg |w|) arithmetic progressions and each arithmetic
progression induces a period in the involved suffix (e.g., see [20]). Then we can see that every
suffix-palindrome represented by an arithmetic progression is in the same group. Hence there
are O(lg |w|) groups. ◀

The next lemma shows that pal-matching strings share the same structure of suffix-pal-
groups.

▶ Lemma 7. Let x and y be strings that pal-match and let i and j be integers with 1 ≤ i <

j ≤ |x| = |y|. If x[i + 1..] and x[j + 1..] are palindromes with x[i] = x[j], then y[i + 1..] and
y[j + 1..] are palindromes with y[i] = y[j].

Proof. Since the palindrome x[i + 1..] has a suffix-palindrome of length k = |x[j + 1..]|,
it also has a prefix-palindrome of length k, that is, x[i + 1..i + k] is a palindrome. Also,
x[i + k + 1] = x[j] holds. Since x[i] = x[j] = x[i + k + 1], x[i..i + k + 1] is a palindrome.

Since x and y pal-match, y[i + 1..], y[j + 1..] and y[i..i + k + 1] are palindromes. By
transition of equivalence induced by the palindromes y[i..i + k + 1] and y[i + 1..], we can see
that y[i] = y[i + k + 1] = y[j]. Thus the claim holds. ◀

Let the shortest palindrome in a suffix-pal-group be the representative of the group. We
assign consecutive integer identifiers starting from 1 to the suffix-pal-groups in increasing
order of their representative’s lengths. See Figure 2 for example.

For any string w, we define the shortest suffix-pal-group encoding sspgw of w as the integer
array of length |w| such that, for any position 1 ≤ i ≤ |w|, sspgw[i] is the identifier assigned
to the suffix-pal-group of the suffix-palindrome in w[..i − 1] that is extended outwards by
appending w[i], if such exists, and otherwise ∞. See Table 2 and Figure 3 for example. Since



S. Nagashita and T. I 23:7

Figure 2 An example of suffix-pal-groups for bababababacababacababacababa. The number
enclosed in a circle denotes the pal-group-id. The suffix-palindromes in the suffix-pal-group with
identifier 1 (resp. 2 and 3) have a (resp. b and c) immediately to their left. The identifiers are given
in increasing order of their representative’s lengths, that is, |ε| = 0, |a| = 1 and |ababa| = 5.

the non-trivial shortest suffix of w[..i] is extended outwards from the representative of the
suffix-pal-group for w[1..i − 1] that has w[i] immediately to the left, sspgw[i] has essentially
equivalent information to sspw[i]. Formally the next lemma holds.

▶ Lemma 8. For any string x of length k, suppose we have the set of lengths of the
representatives of suffix-pal-gropus of x[..k − 1]. Given sspgx[k] we can identify sspx[k], and
vice versa.

Proof. It is clear that sspx[k] = ∞ iff sspgx[k] = ∞. Given sspgx[k] ̸= ∞ we can identify
sspx[k] from the representative of the suffix-pal-group with identifier sspgx[k]. Given sspx[k] ̸=
∞ we can identify sspgx[k] from the representative that has length sspx[k] − 2. ◀

The next lemma shows that the sspg-encoding is another encoding for pal-matching, and
induces the same lexicographic order with the ssp-encoding.

▶ Lemma 9. Let x and y be strings of length k such that sspx[..k − 1] = sspy[..k − 1]. Then,
sspx[k] = sspy[k] iff sspgx[k] = sspgy[k]. Also, sspx[k] < sspy[k] iff sspgx[k] < sspgy[k].

Proof. It follows from Lemma 7 that x[..k − 1] and y[..k − 1] have the same structure of
suffix-pal-groups. By Lemma 8, sspx[k] = sspy[k] if sspgx[k] = sspgy[k], and vice versa.
Since the identifiers of suffix-pal-groups are given in increasing order of their representative’s
lengths, it holds that sspx[k] < sspy[k] if and only if sspgx[k] < sspgy[k]. ◀

For any string w, let π(w) = sspgwR [|w|]. Intuitively, π(w) holds the information from
which prefix-palindrome of w[2..] the non-trivial shortest prefix-palindrome of w is extended,
and the information is encoded with the identifier defined in the completely symmetric way
as the case of the suffix-pal-groups. The function π(·) will be applied to the suffixes of
T to define Fpal and Lpal, and the next lemma is a key to implement LF-mapping for our
PalFM-index.
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Table 2 A comparison between sspw and sspgw for w = babbbabb. sspw[6] = 5 because the
non-trivial shortest suffix-palindrome of w[1..6] = babbba is abbba, which is of length 5. On the
other hand, sspgw[6] = 2 because the shortest suffix-palindrome abbba ending at 6 is extended from
bbb and the suffix-pal-group to which bbb belongs for w[1..5] = babbb has the identifier 2.

w = b a b b b a b b
sspw = ∞ ∞ 3 2 2 5 3 2

sspgw = ∞ ∞ 2 1 1 2 2 2

babbbw = bba.

1

2

sspgw[6] = 2

Figure 3 Illustration to show sspgw[6] = 2 for w = babbbabb.

▶ Lemma 10. Let x and y be strings of length ≥ 1 such that π(x) = π(y). Then, sspx ≺ sspy

iff sspx[2..] ≺ sspy[2..].

Proof. Let i be the largest integer such that x[2..i] and y[2..i] pal-match. Since π(x) = π(y),
using Lemma 9 in a symmetric way, it holds that x[..i] and y[..i] pal-match. Recall Lemma 5
that at most one ∞ in sspx[2..] (resp. sspy[2..]) turns into the largest possible integer at the
changed position when prepending x[1] (resp. y[1]). We analyze the cases focusing on the
changed positions:
1. The claim clearly holds if neither sspx nor sspy has the changed position less than or

equal to i + 1.
2. If both of sspx and sspy have the changed position at j ≤ i + 1, it holds that sspx[j] =

sspy[j] = j and sspx[2..][j − 1] = sspy[2..][j − 1] = ∞, which also indicates that j < i + 1.
Since this change does not affect the lexicographic order, the claim holds. See the left
part of Figure 4 for an illustration of this case.

3. Assume sspy has the changed position at j ≤ i+1, but sspx does not. Since x[..i] and y[..i]
pal-match, j cannot be less than i + 1, and hence, j = i + 1 and sspx[i + 1] = sspx[2..][i] ≺
i + 1 = sspy[i + 1] ≺ ∞ = sspy[2..][i]. Note that the lexicographic order between sspx and
sspy (resp. sspx[2..] and sspy[2..]) is determined by that between sspx[i + 1] and sspy[i + 1]
(resp. sspx[2..][i] and sspy[2..][i]). Since the lexicographic order between sspx[i + 1] and
sspy[i + 1] is the same as that between sspx[2..][i] and sspy[2..][i], the claim holds. See the
right part of Figure 4 for an illustration of this case.

Thus, we conclude that the lemma holds. ◀
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i
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∞

∞

∞
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Figure 4 The left (resp. right) figure illustrates the second (resp. third) case in the proof of
Lemma 10.

4 Computational results for new encodings

In this section, we show that the ssp- and sspg-encodings can be computed in linear time for
a given string.

We use the following known results.

▶ Lemma 11 ([26]). For any string w, we can compute all the maximal palindromes in
O(|w|) time.

▶ Lemma 12 (Lemma 3 in [19]). For any string w, we can compute lpalw in O(|w|) time.

Using Lemmas 11 and 12, we obtain:

▶ Lemma 13. For any string w, we can compute sspw in O(|w|) time.

Proof. Manacher’s algorithm [26] can compute the radius of the maximal palindrome in
increasing order of centers in linear time. It can be extended to compute the length lpalw[i]
of the longest palindrome ending at each position i because the maximal palindrome with
the smallest center that ends at position ≥ i gives us the longest suffix-palindrome ending at
i by truncating the palindrome at i (e.g., see Lemma 3 of [19]). In a similar way, we can
compute the length lpal′w[i] of the second longest palindrome ending at i.

Using lpalw and lpal′w, we can compute sspw[i] in increasing order as follows:
1. If lpalw[i] = 1, then sspw[i] = ∞.
2. If lpalw[i] > 1 and lpal′w[i] = 1, then sspw[i] = lpalw[i].
3. If lpalw[i] > 1 and lpal′w[i] > 1, then sspw[i] = sspw[i − lpalw[i] + lpal′w[i]].

In the third case, we use the fact that the non-trivial shortest suffix-palindrome ending at i

has length ≤ lpal′w[i] and it ends at i − lpalw[i] + lpal′w[i], too.
Clearly all can be done in O(|w|) time. ◀

For any string w, let Gw denote the array of length |w| such that Gw[i] stores the number
of suffix-pal-groups for w[..i].

▶ Lemma 14. For any string w, we can compute Gw in O(|w|) time.
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c’

c’

i–1

c’

j+1
c

c’

c

c

j+1
c

sppw[i–1]

w w

Figure 5 The left figure illustrates the case with lpalw[j + 1] > 1, in which we see that there is a
suffix-pal-group for w[..j] that has w[j + 1] = c immediately to their left. The right figure illustrates
the case with sppw[i − 1] ≤ |w[i − 1..j]|, in which we see that the maximal palindrome w[i..j] is not
the representative because there is a shorter palindrome that ends at j and has the same character
c′ immediately to the left.

Proof. Let sppw be the array defined in a symmetric way of sspw such that sppw[i] stores the
length of the non-trivial shortest prefix-palindrome starting at i (or ∞ if such a palindrome
does not exist). Using Lemma 13 in a symmetric way, we can compute sppw in O(|w|) time.

Let us focus on the palindromes involved in Gw[j]. First, there is a suffix-pal-group for
w[..j] that has w[j + 1] immediately to their left iff lpalw[j + 1] > 1. Next observe that the
palindromes in other suffix-pal-groups for w[..j], which do not have w[j + 1] immediately to
their left, are the maximal palindromes ending at j. Also, a maximal palindrome w[i..j] is the
representative (i.e., the shortest palindrome) in a suffix-pal-group to which it belongs. if and
only if sppw[i − 1] > |w[i − 1..j]| or i = 1. See Figure 5 for illustrations of these observations.

Based on the above observations, we compute Gw as follows: First, we compute the
maximal palindromes and lpalw in O(|w|) time by Lemmas 11 and 12. Next we check every
maximal palindrome and assign it to its ending position if it is a representative, which can
be done in O(|w|) time in total. We also check if lpalw[j + 1] > 1 for all positions j in O(|w|)
time to count a suffix-pal-group that has w[j + 1] immediately to their left. To sum up, Gw

can be computed in O(|w|) time. ◀

Generalizing the algorithm presented in the proof of Lemma 14, we obtain:

▶ Lemma 15. For any string w, we can compute sspgw in O(|w|) time.

Proof. We modify the algorithm presented in the proof of Lemma 14 slightly. Now the
task is to count, for every position j + 1, the number of suffix-pal-groups for w[..j] whose
representative is shorter than ssp[j + 1] − 1 because the number is exactly sspgw[j + 1] by
definition. We check every maximal palindrome w[i..j] and assign it to its ending position j if
sppw[i − 1] > |w[i − 1..j]| and ssp[j + 1] − 1 > j − i + 1. Finally the number of representatives
assigned to j plus one is sspgw[j + 1]. Similarly to the proof of Lemma 14, all can be done in
O(|w|) time. ◀

5 PalFM-index

The PalFM-index of T conceptually sort the suffixes of T in lexicographic order of their
ssp-encodings (or equivalently sspg-encodings). Let SApal be the integer array of length n + 1
such that SApal[i] is the starting position of the i-th suffix of T in ssp-encoded order. We
define the strings Fpal and Lpal of length n + 1 based on π function applied to the sorted
suffixes. Formally, for any position i (1 ≤ i ≤ n + 1) we define:



S. Nagashita and T. I 23:11

i T [i..] sspT [i..] sspT [SApal[i]..] SApal[i] Fpal[i] Lpal[i] LFpal(i)
1 abbabbcbc ∞∞2432∞33 ε 10 $ ∞ 2
2 bbabbcbc ∞2∞32∞33 ∞ 9 ∞ ∞ 5
3 babbcbc ∞∞32∞33 ∞2∞32∞33 2 1 2 6
4 abbcbc ∞∞2∞33 ∞2∞33 5 1 ∞ 7
5 bbcbc ∞2∞33 ∞∞ 8 ∞ 2 8
6 bcbc ∞∞33 ∞∞2432∞33 1 2 $ 1
7 cbc ∞∞3 ∞∞2∞33 4 ∞ 2 9
8 bc ∞∞ ∞∞3 7 2 2 10
9 c ∞ ∞∞32∞33 3 2 1 3
10 ε ε ∞∞33 6 2 1 4

Figure 6 An example of SApal[i], Fpal[i] and Lpal[i] for T = abbabbcbc.

Fpal[i] =
{

$ if i = 1,
π(T [SApal[i]..]) otherwise.

Lpal[i] =
{

$ if SApal[i] = 1,
π(T [SApal[i] − 1..]) otherwise.

See Figure 6 for example.
As in the case of LF, we define a function LFpal : i 7→ j so that SApal[j] = SApal[i] − 1

(with the corner case LFpal(i) = 1 for SApal[i] = 1). Thanks to Lemma 10, for any value
c, the suffixes used to obtain i-th k in Lpal and in Fpal are the same, which enables us to
implement the LFpal function by LFpal(i) = selectFpal(rankLpal(i, Lpal[i]), Lpal[i]). See Figure 7
for an illustration.

For any string w, let w-interval refer to the maximal interval [b..e] such that sspT [SApal[i]..]
is prefixed by sspw, where w-interval is empty if there is no substring of T that pal-matches
with w. Notice that the substring of T of length |w| starting at SApal[i] pal-matches with w

iff i ∈ [b..e]. A single step of backward search computes cw-interval from w-interval for some
character c.

The following theorems are the main contributions of this paper.

▶ Theorem 16. Let T be a string of length n over an alphabet of size σ. There is a data
structure of 2n lg min(σ, lg n) + 2n + o(n) bits of space to support the counting queries for the
pal-matching problem in O(m) time, where m is the length of a given pattern P .

Proof. We use the data structures of Theorem 1 for Lpal and Fpal, and the RMQ data
structure of Theorem 2 for the integer array V with V [i] = LFpal(i). Since the number of
distinct symbols in Lpal and Fpal are O(min(σ, lg n)) by Lemma 6, the data structures occupy
2n lg min(σ, lg n) + 2n + o(n) bits of space in total and all queries (rank, select, rangeCount
and RMQ) can be supported in O(1) time.

The number of occurrences of P can be answered by computing the width of P -interval.
Thus we focus on a single step of backward search. In a general setting, for any string w

and a character c, we show how to compute cw-interval [b′..e′] in O(1) time from w-interval
[b..e], π(cw) and the number g of prefix-pal-groups of w. The procedure differs depending on
π(cw) = ∞ or not.

CPM 2023
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Figure 7 An illustration for Fpal[i], Lpal[i] and LFpal(i). Except the corner cases that have $, Fpal[i]
and Lpal[i] are defined by π(T [SApal[i]..]) and π(T [SApal[i] − 1..]), respectively. Since π(w) encodes
the information about the non-trivial shortest prefix of w, in each row the non-trivial shortest prefix
is shown in grayed background. For example, π(abbabbcbc) = 2 because its non-trivial shortest
prefix-palindrome abba is extended from the prefix-palindrome bb of bbabbcbc and bb belongs to
the prefix-pal-group with the identifier 2. Observe that Fpal is a permutation of Lpal since both Fpal

and Lpal use every suffix w of T exactly once to obtain π(w). Roughly speaking, LFpal(·) is meant to
map a row having a suffix w in the T [SApal[i] − 1..]) column to the row having the same suffix w in
the T [SApal[i]..] column. Thanks to Lemma 10, for any value k, the suffixes used to obtain i-th k in
Lpal and in Fpal are the same, and hence, one can observe visually that the arrows starting from the
same Lpal-value are not crossed.

1. When π(cw) = k ̸= ∞. Using Lemma 9 in a symmetric way, [b′..e′] is obtained by
mapping the positions of π(cw) in Lpal[b..e] by the LFpal function. More specifically,
b′ = selectFpal(rankLpal(b − 1, k) + 1, k) and e′ = selectFpal(rankLpal(e, k), k), which can be
computed in O(1) time.

2. When π(cw) = ∞. We note that [b′..e′] is the maximal interval such that T [SApal[i]..] does
not have non-trivial prefix-palindrome (i.e. π(T [SApal[i]..]) = ∞) or T [SApal[i]..] has the
non-trivial shortest prefix-palindrome of length longer than |cw| (i.e. π(T [SApal[i]..]) > g).
Thus, e′−b′+1 is equivalent to the number of occurrences of values larger than g in Lpal[b..e],
which can be computed in rangeCountLpal

(b, e, g, ∞) in O(1) time. Moreover, it holds that
e′ = LFpal(RMQV (b, e)) because ssp(T [SApal[i] − 1..]) with π(T [SApal[i] − 1..]) = Lpal[i] > g

is always lexicographically larger than ssp(T [SApal[j] − 1..]) with π(T [SApal[j] − 1..]) =
Lpal[j] ≤ g. Thus, we can compute [b′..e′] in O(1) time.

Backward search for P requires π(P [i..]) and the number g of prefix-pal-groups of P [i..]
for all 1 ≤ i ≤ m, which can be computed by sspgP R and GP R in O(m) time using Lemmas 15
and 14.

Putting all together, we get the theorem. ◀

▶ Theorem 17. Let T be a string of length n over an alphabet of size σ and ∆ be an integer
in [1..n]. There is a data structure of 2n lg min(σ, lg n) + n

∆ lg n + 3n + o(n) bits of space to
support the locating queries for the pal-matching problem in O(m + ∆occ) time, where m is
the length of a given pattern P and occ is the number of occurrences to report.



S. Nagashita and T. I 23:13

Proof. We use the data structure and the algorithm of Theorem 16 to compute P -interval in
2n(1+ lg min(σ, lg n))+o(n) bits of space and O(m) time. The occurrences of P (in the sense
of pal-matching) can be answered by the SApal-values in P -interval. We employ exactly the
same sampling technique used in the FM-index to retrieve SA-values (e.g., see [7]): We make
a bit vector B of length n + 1 marking the positions i in SApal such that SApal[i] = ∆k + 1
for some integer k, and the sparse suffix array S holding only the marked SApal-values in the
order. B is equipped with a data structure to support the rank queries and the additional
space to Theorem 16 is n

∆ lg n + n + o(n) bits in total.
If position i is marked, SApal[i] is retrieved by S[rankB(i, 1)] in O(1) time. If position i is

not marked, we apply LF-mapping k times from i until we reach a marked position j and
retrieve SApal[i] by S[rankB(j, 1)] + k. Since text positions are marked every ∆ positions,
the number k of LF-mapping steps is at most ∆, and hence, SApal[i] can be retrieved in
O(∆) time. Therefore we can report each occurrence of P in O(∆) time, and the theorem
follows. ◀

6 Conclusions and future work

In this paper, we developed new encoding schemes for pal-matching and proposed the
PalFM-index, a space-efficient index for pal-matching based on the FM-index. Future work
includes to present an efficient construction algorithm of the PalFM-index, and to reduce
the space requirement (e.g. by incorporating with the idea of [13]). Another interesting
research direction would be to develop a general framework to design FM-index type indexes
in generalized pattern matching. We believe that switching encoding from lpal to ssp to
design the PalFM-indexes gives a good hint to pursue this direction, and conjecture that any
generalized pattern matching under a substring consistent equivalent relation [27] admits
such shortest positional encodings to design FM-index type indexes.
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Computing MEMs on Repetitive Text Collections
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Abstract
We consider the problem of computing the Maximal Exact Matches (MEMs) of a given pattern
P [1 . . m] on a large repetitive text collection T [1 . . n], which is represented as a (hopefully much
smaller) run-length context-free grammar of size grl. We show that the problem can be solved
in time O(m2 logϵ n), for any constant ϵ > 0, on a data structure of size O(grl). Further, on a
locally consistent grammar of size O(δ log n

δ
), the time decreases to O(m log m(log m + logϵ n)). The

value δ is a function of the substring complexity of T and Ω(δ log n
δ

) is a tight lower bound on the
compressibility of repetitive texts T , so our structure has optimal size in terms of n and δ.
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1 Introduction and Related Work

Mutations and experimental sequencing errors make exact pattern matching seldom used in
Bioinformatic applications, except possibly for very short patterns and some niche applications
[19, 37, 28]. A much more interesting problem is that of finding the Maximal Exact Matches
(MEMs) of a given pattern P [1 . . m] in a text T [1 . . n]. A MEM is a maximal substring
P [i . . j] that appears in T (i.e., P [i− 1 . . j] and P [i . . j + 1] are out of bounds or do not occur
in T ). This is useful, for example, to find long conserved areas of a gene or to best align a
read (where m is typically in the hundreds or thousands) on a reference genome (where n

can be in the billions), and even to find similarities between two genomes. In this paper we
are interested in the case where T is known in advance and can be indexed.

Finding MEMs is a classic problem in stringology and can be solved in optimal O(m)
time using a suffix tree of T [41, 31] (see, e.g., the similar problem of computing matching
statistics [19, Sec. 7.8]). Suffix trees, even if using linear space, are too large to maintain in
main memory for current text collection sizes, however. The suffix tree of a single human
genome, for example, with n ≈ 3 · 109, may take 60GB with a decent implementation.
This makes suffix trees hard to use directly on current bioinformatic collections. Even if
lower-space alternatives can replace suffix trees for most tasks [28, MEMs in Sec. 11.1.3], this
space reduction is still insufficient to face current projects for sequencing millions of human
genomes (see https://b1mg-project.eu).

A fortunate situation is that many of the fastest growing text collections are highly
repetitive [33]. For example, collections of genomes of the same species feature a small
percentage of differences between any pair of genomes. Several text indices exploiting
repetitiveness to reduce space have appeared [34]. Those indices may take orders of magnitude
less space than the raw data, and even more orders less space than a suffix tree on the data.

Those compressed indices support exact pattern matching, that is, they can list all the
positions where P occurs in T . While useful, this is less than the full suffix tree functionality,
and insufficient to efficiently implement the classic O(m)-time MEM finding algorithm.
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Compressed suffix trees for highly repetitive text collections do exist, but do not compress
that much. Gagie et al. [17] show how to simulate a suffix tree within space O(r log n

r ), where
r is the number of equal-letter runs in the BWT [7] of T . It could find the MEMs in time
O(m log n

r ) if we run the algorithm backwards on P , using operations parent and Weiner
link instead of child and suffix link. The problem is the space: while r is an accepted measure
of repetitiveness [21], it is a weak one [33, 21], and multiplying it by log n

r makes it grow by
an order of magnitude. Current implementations of compressed suffix trees for repetitive
texts achieve remarkable space, but still use at least 2–4 bits per symbol [39, 15, 8, 5].

Another trend has been to expand the functionality of a more basic compressed text index
for repetitive texts so as to support specific operations, MEMs in our case. Bannai et al. [1]
show how to compute matching statistics (from where MEMs are easily extracted in O(m)
time) by extending the RLBWT-index [29], in O(m(s + log log n)) time and O(r) space, with
the help of a data structure that provides access to a symbol of T in time O(s). This can
be, for example, the samples of the RLBWT-index, which add O(n/s) space to the index,
or a context-free grammar of T , which provides access in time s = O(log n) [4]. Various
implementations of this idea [38, 6, 40] showed its practicality on large genome collections,
with indices that are an order of magnitude smaller than the text.

All those results have been obtained on the so-called suffix-based compressed indices for
repetitive collections [34]. This is natural because those emulate variants of suffix trees or
arrays [30], which simplifies the problem of simulating the suffix tree traversal of the classic
MEM-finding algorithm. Even the naive algorithm of searching for all the O(m2) substrings
of P can be run in O(m2 log log n) time on those O(r)-sized indices.

The problem is much harder on the so-called parsing-based indices [34]. Those are
potentially smaller than the suffix-based indices because they build on stronger measures of
repetitiveness. For example, the size g of the smallest context-free grammar that generates
T is usually considerably smaller than r [33]. Because these indices cut T into phrases,
even exact pattern matching is complicated because the occurrences of P can appear in
many different forms, and many possible cuts of P must be tried out (m− 1 in the general
case) [12]. This makes the problem of finding MEMs considerably harder. We are only aware
of the results of Gao [18], who computes matching statistics in time O(m2 logϵ γ + m log n)
using O(δ log n

δ ) space (for any constant ϵ > 0), or O(m2 + m log γ log log γ + m log n) using
O(δ log n

δ + γ log γ) space. Here δ ≤ γ are lower-bounding measures of repetitiveness [22, 11].
The size O(δ log n

δ ) matches a tight lower bound on the size of compressed representations of
T [25], so a structure of this size uses asymptotically optimal space for every n and δ.

Let grl be the size of any run-length context-free grammar generating T (those include
and extend classic context-free grammars). The smallest such grammar is of size grl =
O(δ log n

δ ) [25]. We first show that, on an index of size O(grl), one can compute the MEMs
in time O(m2 logϵ grl), for any constant ϵ > 0. This is done by sliding the window P [i . . j] of
the classic algorithm while we simulate the process of searching for that window with the
grammar. The simulation is carefully crafted to avoid expensive operations, so the time stays
proportional to the number of cuts tried out on a single search for P . The space O(grl) is
the least known to support direct access to T with logarithmic time guarantees [33]. The
result essentially matches the first one of Gao, which could also run within O(grl) space.

We further show that, on a particular grammar featuring local consistency properties [24],
we can reduce the time to O(m log m(log m + logϵ n)) by exploiting the fact that only
O(log(j − i + 1)) cuts need to be tried out for P [i . . j], and using much more sophisticated
techniques to amortize the costs. This grammar is of size O(δ log n

δ ), optimal for every n

and δ, and within this space we sharply break the quadratic time of previous solutions.
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2 Maximal Exact Matches (MEMs) and How to Find Them

We assume the usual notation on strings S[1 . . n] and that the reader is familiar with the
concepts related to suffix trees [41, 31, 13]. We start by defining MEMs.

▶ Definition 1. A Maximal Exact Match (MEM) of a pattern P [1 . . m] in a string T is a
substring P [i . . j] that occurs in T , but in addition

i = 1 or P [i− 1 . . j] does not occur in T , and
j = m or P [i . . j + 1] does not occur in T .

▶ Definition 2. Given a text T [1 . . n] that can be preprocessed, the MEM-finding problem is
that of, given a pattern P [1 . . m], return the range (i, j) of each of its MEMs P [i . . j] in T , in
increasing order of i (or j). A position where each MEM occurs in T must also be returned.

The MEM finding problem can be solved in O(m) time with a suffix tree. Algorithm 1
shows how, abstracting away some complications of implementing it on the long edges of
suffix trees. The next problem is strongly related to the MEM finding problem.

▶ Definition 3. Given a text T [1 . . n] that can be preprocessed, the matching statistics
problem is that of, given a pattern P [1 . . m], return the length M [k] of the longest prefix of
P [k . .] that occurs in T , for every 1 ≤ k ≤ m. A position where each such longest prefix
occurs must be given for each k.

Given a solution to the MEM finding problem, (i1, j1), . . . , (is, js), we compute the
matching statistics as follows. Set all M [k] to zero and then traverse the tuples (ir, jr) in
order. Set M [k] = jr − k + 1 for all ir ≤ k ≤ min(jr, ir+1 − 1), assuming is+1 = m + 1. The
occurrence of each M [k] > 0 is that of its (ir, jr) shifted by k − ir. Conversely, given the
matching statistics M [k] for 1 ≤ k ≤ m, we obtain the MEMs by reporting, for increasing i,
every pair (i, i + M [i]− 1) such that i = 1 or M [i] ≥M [i− 1], and M [i] > 0. Therefore, both
problems are interchangeable as one can convert one output to the other in optimal O(m)
time. Gusfield [19, Sec. 7.8] shows how to compute matching statistics with the suffix tree.

Algorithm 1 Finding the MEMs of P [1 . . m] in T using the suffix tree of T .

1 i← 1; j ← 0;
2 v ← suffix tree root;
3 while j < m do
4 if v has no child labeled P [j + 1] then
5 i← i + 1; j ← j + 1;
6 end
7 else
8 while j < m and v has a child labeled P [j + 1] do
9 j ← j + 1; v ← the child of v by P [j + 1];

10 end
11 report (i, j) with some occurrence of v;
12 while i ≤ j < m and v has no child labeled P [j + 1] do
13 i← i + 1; v ← the suffix link of v;
14 end
15 end
16 end

CPM 2023
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3 Grammar based Indices

Let T [1 . . n] be a text. Grammar-based compression of T consists in replacing it by a
context-free grammar (CFG) that generates only T [23]. The compression ratio is then the
size of the grammar divided by the text size.

We consider a slightly more powerful type of grammar called run-length context-free
grammar (RLCFG), which includes run-length rules of constant size. To simplify, we disallow
rules of the form A→ ε, which are easily removed without increasing the grammar size.

▶ Definition 4. A Run-Length Context-Free Grammar (RLCFG) for T is a context-free
grammar that generates (only) T , having exactly one rule per nonterminal A. The rules are
of the form A→ B1 · · ·Bk for k > 0 and terminals or nonterminals Bi (this rule is said to
be of size k), and of the form A→ Bk for k > 1 and a terminal or nonterminal B, which
is identical to A → B · · ·B with k copies of B, but is said to be of size 2. The size of the
RLCFG is the sum of the sizes of all of its rules. A Context-Free Grammar (CFG) for T is
a RLCFG for T that does not use rules of the form A→ Bk.

Clearly, the size grl of the smallest RLCFG for T is always less than or equal to the
size g of the smallest CFG for T . Grammar-based compression (with or without run-length
rules) has proved to be particularly effective on highly repetitive texts [34]. While finding
the smallest grammar is NP-hard [10], heuristics like RePair obtain very good results [27].

Note that our RLCFGs have a unique parse tree, defined as follows [11, Sec. 4].

▶ Definition 5. The parse tree of a RLCFG for T has a root labeled with the initial symbol.
If a node is labeled A and its rule is A → B1 · · ·Bk, then the node has k children labeled
B1, . . . , Bk left to right. If its rule is A → Bk, then the node has k children labeled B. It
follows that the ith left-to-right leaf of the parse tree is labeled T [i].

While the parse tree has size Θ(n), a convenient representation of a RLCFG is the
so-called grammar tree, which is of size O(grl) [11, Sec. 6].

▶ Definition 6. The grammar tree of a RLCFG is obtained by pruning its parse tree,
preserving the leftmost internal node labeled A for each nonterminal A, and converting the
others to leaves. Further, for the remaining internal nodes labeled A with rules A→ Bk we
preserve their first child only, replacing the other k − 1 children (which are leaves) with a
single special leaf labeled B[k−1]. If the RLCFG size is grl, its grammar tree has grl + 1 nodes.

We will sometimes identify a nonterminal with its (only) internal node in the grammar
tree. We call exp(A) the string of terminals to which symbol A expands, and exp(a) = a for
terminals a. The grammar tree defines a parse of T , as follows.

▶ Definition 7. The grammar tree, with leaves v1, . . . , vk, induces the parse T = exp(v1) ·
exp(v2) · · · exp(vk) into phrases exp(vi).

A classic grammar-based index [12] divides the occurrences of a pattern P [1 . . m] into
primary and secondary, depending on whether they cross a phrase boundary or lie within a
phrase, respectively (if m = 1, its occurrences ending a phrase boundary are taken as primary).
It uses the fact that every occurrence has primary occurrences and that all the secondary
ones can be found inside pruned leaves of nonterminals that contain other occurrences. In
this paper we will be interested in the mechanism to find the primary occurrences. This is
based on the parsing, but defined in a particular way to avoid reporting multiple times the
primary occurrences that cross several phrase boundaries. The mechanism was extended to
RLCFGs [11, Sec. 6 and App. A].
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▶ Definition 8. Let X and Y be multisets of strings defined as follows. For each rule
A→ B1 · · ·Bt, for each 1 < s ≤ t, the string exp(Bs−1)rev (i.e., exp(Bs−1) read backwards)
is inserted in X and the string exp(Bs) · · · exp(Bt) is inserted in Y; we say those two are
corresponding strings. Similarly, for each rule A → Bt, exp(B)rev is inserted in X and
exp(B)t−1 (i.e., t− 1 concatenations of exp(B)) is inserted in Y. A grid G has one row per
string in Y and one column per string in X . After lexicographically sorting X and Y, a point
(x, y) is set in G if the xth string of X corresponds to the yth string of Y.

The grammar-based index includes a Patricia tree PX storing the strings of X and
another Patricia tree PY storing the strings of Y [32]. Let us add some data to nodes for our
convenience. Each Patricia tree node v stores its range [v1, v2] of the left-to-right ranks of
the leaves descending from v. The edges of the Patricia tree nodes can represent strings, so
prefixes that end in the middle of an edge that leads to a node v correspond to virtual nodes
u; the range [u1, u2] is the same [v1, v2]. The nodes v also store their string depth |v|, which
is also easily computed for virtual nodes as we descend or ascend in the Patricia tree.

Each primary occurrence consists of a suffix of some string X ∈ X matching P [1 . . i]
corresponding to some string Y ∈ Y whose prefix matches P [i + 1 . . m], for some 1 ≤ i < m

(if m = 1, it is just a suffix of X matching P ) [11, Sec. A.4]. Therefore, to find the primary
occurrences of P , the index tries out every cutting point i, and searches PX for P [1 . . i]rev

and PY for P [i + 1 . . m]. If both nodes x ∈ PX and y ∈ PY exist, then the points in the
orthogonal range [x1, x2]× [y1, y2] of G represent the primary occurrences of P cut at position
i, and are efficiently found with a geometric data structure on G. By storing the position t

of T where exp(Bs−1) ends for such point, we know that P occurs in T [t− i + 1 . . t− i + m]
(the actual index stores pointers to the grammar tree, but this suffices for us).

Both the Patricia trees and the grid take O(grl) space. The index also needs to verify
the matches of the Patricia trees. It uses an O(grl)-space data structure A that can read,
in O(ℓ) time, any length-ℓ prefix or suffix of exp(A), for any nonterminal A [11, Lem 6.6].
If x is a node of PX , its corresponding string is the |x|-length reversed suffix of any string
between the x1th and the x2th in X . Let X = exp(Bs−1)rev be one such string, then we store
⟨v⟩ = Bs−1 associated with v. Similarly, a node v ∈ PY that prefixes exp(Bs) · · · exp(Bt)
stores ⟨v⟩ = Bs (from where we can obtain the subsequent siblings). We can then obtain the
string represented by any v using A on ⟨v⟩.

4 A Quadratic-Time Solution

We now present a quadratic-time solution that works with any RLCFG of size grl for T ; we
use the O(grl)-space data structures described in the previous section. Since any CFG is a
particular case of RLCFG, our algorithm also runs with any CFG.

The generic idea follows that of Algorithm 1, sliding a window P [i . . j] along the pattern.
We maintain a set of so-called active positions r ∈ [i . . j].

▶ Definition 9. A position r ∈ [i . . j] is active if P [r + 1 . . j] prefixes some string in PY .

Note that, since we slide the window P [i . . j] forwards, once a position r becomes inactive,
it will not become active again.

4.1 Algorithm
The algorithm maintains the invariant that, when the window is P [i . . j], (i, j) is the last
MEM of P [1 . . j] (if i ≤ j) and all the MEMs ending before j have already been reported. It
maintains the set R ⊆ [i . . j] of active positions, and for each such active position r ∈ R:
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The node yr ∈ PY corresponding to P [r + 1 . . j]; this node can be virtual. Note that
[y1

r , y2
r ] is the same range of rows in G of the strings of Y that start with P [r + 1 . . j].

The length ℓr of the maximum prefix of P [r + 1 . .] that prefixes a string in PY ; note that
r is active iff r + ℓr ≥ j.

The node xr ∈ PX corresponding to the longest prefix of P [i . . r]rev that exists in PX ,
and such that there are points in G in the range [x1

r, x2
r]× [y1

r , y2
r ]. Note again that xr

can be virtual and that [x1
r, x2

r] is the same range of columns in G of the strings of X that
start with P [r − |xr|+ 1 . . r]rev.

Our algorithm, depicted in Algorithm 2, iterates over j, from 0 to m− 1, and at each
cycle it extends the current window to end in j + 1. When i = j + 1 (including when we
start with i = 1 and j = 0), the window is empty and there are no active positions. Line
3 first sees, in this case, if we can descend from the root of PX by P [j + 1], to start a new
nonempty substring P [j + 1, j + 1]. If this is not possible, it just increases i and goes for the
next value of j. Otherwise, there will be active positions for the window ending at j + 1 and
we enter into the main process.

Lines 5–7 first create the new active position r = j + 1, with corresponding yr set at the
root of PY . To compute ℓr, we descend in PY as much as possible by P [r + 1 . .]. To compute
xr, we also descend in PX as much as possible by P [i . . r]rev. Those are classic Patricia tree
searches, first reaching a candidate node v by comparing only the branching characters in the
trie, and then verifying which ancestor of v is the correct answer. The verification proceeds
by extracting the needed prefix from ⟨v⟩ in PY (at most ℓr + 1 characters) or the needed
suffix in PX (at most |xr|+ 1 characters).

Lines 8–16 then remove the active positions that do not reach j + 1 and updates the
variables for the surviving ones. Line 10 first removes the active positions r where r + ℓr = j.
On the remaining ones, each yr moves to its child by P [j +1] in PY in line 12 (this shrinks the
range [y1

r , y2
r ]). Note that, once we know that we can descend from yr by P [j + 1] (because

r + ℓr ≥ j + 1), we can compute the child node on the Patricia tree without accessing the
text, both for explicit and virtual nodes yr. Thus, by computing ℓr once when the active
position r is created, in time O(ℓr), we save all the accesses to T that would have been
needed to descend from virtual nodes yr ∈ PY : when yr is not the root, its text position is
not phrase-aligned, so we cannot access its first symbols in constant time using A.

Line 13 updates the nodes xr of the surviving active positions, because some ranges
[x1

r, x2
r]× [y1

r , y2
r ] could be empty after we reduce [y1

r , y2
r ]. For every active position r, as long

as there are no points in [x1
r, x2

r] × [y1
r , y2

r ], we move xr to its parent in PX . This process
eventually terminates because, when xr is the root and [x1

r, x2
r] is the whole range of columns,

we know that there are points in the band [y1
r , y2

r ] because it corresponds to the node yr.
Lines 8, 14, and 17 recompute the value p = min{r − |xr| + 1, r is active}. This is

necessary to make i grow as needed so that P [i . . j + 1] occurs in T , then reestablishing the
invariant that P [i . . j + 1] is the last MEM of P [. . j + 1]. If p = i, then P [i . . j + 1] occurs in
T (as it has a primary occurrence in some [x1

r, x2
r]× [y1

r , y2
r ]), so we can retain the current

value of i; line 18 collects some text position t to be reported in case (i, j + 1) turns out to be
a MEM of the whole P . If, on the other hand, p > i, this means P [i . . j + 1] does not occur
in T and thus (i, j) was a MEM. Lines 20–21 then report MEM (i, j) with its text position t

(collected in the previous cycle of j) and increase i to p, since only P [p . . j + 1] occurs in T .
This could make i exceed j + 1 when the window becomes empty; otherwise line 23 finally
inserts j + 1 as an active position. Line 26 reports the final MEM when j reaches m.
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Algorithm 2 Finding the MEMs of P [1 . . m] in T using a grammar-based index.

1 i← 1; R← ∅;
2 for j ← 0, . . . , m− 1 do
3 if i = j + 1 and the root of PX has no child labeled P [j + 1] then i← i + 1 ;
4 else
5 yj+1 ← root of PY ;
6 v ← descend in PY as much as possible with P [j + 2 . .]; ℓj+1 ← |v|;
7 xj+1 ← descend in PX as much as possible with P [i . . j + 1]rev;
8 rmin ← j + 1;
9 for r ∈ R do

10 if r + ℓr = j then R← R \ {r} ;
11 else
12 yr ← child of yr by P [j + 1];
13 while the range [x1

r, x2
r]× [y1

r , y2
r ] is empty do xr ← parent of xr ;

14 if r − |xr| < rmin − |xrmin | then rmin ← r ;
15 end
16 end
17 p← rmin − |xrmin |+ 1;
18 if p = i then t← text position of some point in [x1

rmin
, x2

rmin
]× [y1

rmin
, y2

rmin
] ;

19 else
20 report (i, j) with position T [t− j + i . . t];
21 i← p

22 end
23 if i ≤ j + 1 then R← R ∪ {j + 1} ;
24 end
25 end
26 if i ≤ m then report (i, m) with position T [t−m + i . . t];

4.2 Analysis

For each value of j, we spend O(1) time per active position. Since there are O(m) active
positions at any time, this amounts to O(m2) time.

The costs of lines 6, 7, and 13, are better charged to each active position r, from its
creation to its inactivation. When r is created, we spend O(m) time to compute ℓr ≤ m

and xr (since |xr| ≤ m). Later, we can decrease |xr| several times, performing one range
emptiness query in [x1

r, x2
r]× [y1

r , y2
r ] per decrement of |xr| (in fact we can go directly to the

lowest phyisical ancestor of xr rather than to its possibly virtual parent node, since otherwise
the range [x1

r, x2
r] will not change). Thus, we perform overall O(m2) emptiness queries, up to

m per position r along its life. Maintaining the variables associated with active positions
allows us amortizing these costs along the process.

Emptiness queries on G can be solved in O(logϵ grl) time and O(grl) space for any constant
ϵ > 0 [9]; a recent construction takes O(g

√
log g) time [2]. The same complexity holds for

returning one point in nonempty ranges. The O(m2) cost charged to positions r is then
multiplied by this factor. The rest of the construction time is inherited from the CFG-based
index [12]; extending it to RLCFGs does not increase it.
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▶ Theorem 10. Let grl be the size of a RLCFG generating only T [1 . . n]. Then, for any
constant ϵ > 0, we can build in O(grl log2 n) time a data structure of size O(grl) that finds
the MEMs of any given pattern P [1 . . m] in time O(m2 logϵ grl) ⊆ O(m2(logϵ δ + log log n)),
with an occurrence of each. The query process uses O(m) additional space.

As mentioned, any CFG can also be used in the theorem. By using an emptiness structure
of size O(grl log log grl) [9], we find the MEMs in time O(m2 log log grl).

5 Indexing Locally Consistent Grammars

Before entering into the details of our more sophisticated solution, we must introduce some
new concepts. A locally consistent grammar is a kind of RLCFG that guarantees that
equal substrings of T are covered by similar subtrees of the parse tree, differing in O(1)
nonterminals at each level of both subtrees. This has been used to produce grammar-based
indices that find all the primary occurrences with only a logarithmic number of cuts in P ,
thereby obtaining exact pattern searches in time that grows only linearly with m [11, 25, 24].
In this paper we make use of the latest result [24]. We present a lighter informal description;
see the original paper for full details.

5.1 The Grammar
We first define the grammar [24, Sec. 3], which is produced level by level, for O(log n) levels.
Let Sk be the sequence of terminals and nonterminals forming level k of the grammar. Let
ℓk = (4/3)⌈k/2⌉−1, and let Ak be the set of symbols A such that |exp(A)| ≤ ℓk. Those are
the symbols that can be grouped to form new nonterminals in level k.

Our string at level 0 is S0 = T . To form the string S1, we detect the maximal runs of (at
least 2) equal consecutive symbols in S0 that are in A1 = Σ (Σ is the alphabet of T and also
the set of terminals of the RLCFG). For each such run, say of t symbols a ∈ A1, we create
the rule A→ at and replace the run by the nonterminal A. The resulting sequence after all
the runs have been replaced is S1 = rleA1(S0), which contains terminals and nonterminals.
To form level 2, we define a function π2 that reorders at random the distinct symbols of S1,
and use it to define blocks in S1. Each position 0 < i < |S1| such that

π2(S1[i− 1]) > π2(S1[i]) < π2(S1[i + 1])

is the end of a block. We also set ends of blocks at |S1| and before and after every symbol
not in A2 (which is still Σ per the formula of ℓk, so the runs introduced in S1 cannot yet
be grouped). For each distinct resulting block S1[i . . j] we create a new rule A→ S1[i . . j]
and replace every occurrence of the same block in S1 by A. The resulting string is called
S2 = bcπ2,A2(S1). The process continues in the same way for odd and even levels:

Sk = rleAk
(Sk−1) if k is odd,

Sk = bcπk,Ak
(Sk−1) if k is even,

until we reach |Sk| = 1 for some k = O(log n). The algorithm is Las Vegas type, trying out
functions πk to obtain some desired grammar size, but otherwise any functions πk yield a
correct index. They [24] prove that, in O(n) expected time, a RLCFG of size O(δ log n

δ ) is
obtained, where δ is a lower bound measure based on the substring complexity of T [11]: let Tℓ

be the number of distinct length-ℓ substrings in T , then δ = max{Tℓ/ℓ, ℓ > 0}. Interestingly,
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for every n and δ, there exists a string family that requires Ω(δ log n
δ ) space (i.e., log(n)-bit

words) to be represented [25]; therefore using space O(δ log n
δ ) for a grammar (and for an

index) is asymptotically optimal for any specific n and δ.
A key property of this grammar is local consistency. Let Bk be the set of all the ends of

level-k blocks:

Bk = {|exp(Sk[. . j])|, 1 ≤ j ≤ |Sk|},

where we are extending exp(·) homomorphically to strings. The cuts of level k that fall inside
the substring at T [i . . j] have the following positions inside T [i . . j]:

Bk(i, j) = {p− i + 1, p ∈ Bk ∩ [i . . j − 1]}.

Local consistency makes the sets Bk(i, j) and Bk(i′, j′) similar if T [i . . j] = T [i′ . . j′], except
at the extremes. Concretely, let αk = ⌈8ℓk⌉, then Bk(i + 2αk, j −αk) = Bk(i′ + 2αk, j′ −αk).

An additional property of the resulting grammar is that it is locally balanced: the subtree
of the parse tree rooted at nonterminal A is of height O(log |exp(A)|). This is a consequence
of the fact that in Sk there are fewer than 1 + 4(j − i + 1)/ℓk+1 blocks ending inside T [i . . j],
and the height of A is never more than the level k of the string Sk where it was created.

5.2 Pattern Searching
Let us now define which cuts of P we need to try out in order to capture all the primary
occurrences with this grammar [24, Sec. 4]. Since ends of blocks in Bk(i, j) correspond to
the phrase endings where a primary occurrence T [i . . j] = P can be cut, our set of cutting
positions must suffice to capture those possible block endings for all k and for every possible
T [i . . j] that matches P . We define

Mk(i, j) = Bk(i, j) \ [2αk+1 + 1 . . j − i− αk+1]
∪ {min(Bk(i, j) ∩ [2αk+1 + 1 . . j − i− αk+1])},

that is, all the cutting points in the extremes, where the different occurrences of T [i . . j] may
differ, and just the first one in the part that is guaranteed to be equal. Over all the levels,

M(i, j) =
⋃
k≥0

Mk(i, j).

The key point [24] is that M(i, j) depends only on the content of T [i . . j] (not on its position
in T ), so we can define M(P ) = M(i, j) if P = T [i . . j], and this is the same set for every
possible occurrence of P in T . Further, |M(P )| = O(log m). In operational terms, this
means that, at query time, we parse P in O(m) time using the same rules we defined for T ,
producing a parse tree of height O(log m) and finding the O(log m) cutting points M(P ).

6 A Faster Solution using Locally Consistent Grammars

The idea to use the index of the preceding section is to exploit the fact that O(log(j − i + 1))
cutting points suffice to find all the primary occurrences of any window P [i . . j]. We will then
maintain the parse tree of P [i . . j], and the set M(P [i . . j]), as we slide it through P , and
use it to maintain the number |R| of active positions within O(log m). We also need more
sophisticated mechanisms to avoid the quadratic costs in lines 6, 7, and 13 of Algorithm 2.
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6.1 Parsing the Pattern
In this section we show how we maintain the parse tree of P [i . . j], or more precisely, the
corresponding strings S0, S1, . . ., as well as M(P [i . . j]) and R, as we slide P [i . . j] along P .
Recall that the height of the parse tree of P is O(log m) in our locally-balanced grammar.

Maintaining the parse

Assume the parse tree is built for P [i . . j] and now we have to increment j. At level k = 0,
we simply extend S0 by the symbol e0 = P [j + 1]. This propagates upwards as follows, where
lk is the last symbol of Sk and ek−1 has just been added at the end of Sk−1.
1. If k is odd (a run-formation level), lk = lk−1 or lk → lt

k−1, |exp(ek−1)| ≤ ℓk, and
lk−1 = ek−1, we find or create a rule ek → lt+1

k−1 (t = 1 if lk = lk−1) and replace lk by ek.
2. If k is even (a block-formation level), lk = lk−1 or lk → βlk−1, |exp(ek−1)| ≤ ℓk, and

πk(lk−1) > πk(ek−1), we find or create a rule ek → βlk−1ek−1 (β = ε if lk = lk−1) and
replace lk by ek.

3. In any other case, we just append ek = ek−1 at the end of Sk.
We see that insertions at the end of Sk−1 propagate as new insertions or replacements at the
end of Sk. We process those replacements as the deletion of lk followed by the insertion of
ek at the end. The following are the rules to propagate to Sk the deletion of lk−1.
1. If lk = lk−1, we delete lk.
2. If lk → lt

k−1 is a run, we find or create the rule ek → lt−1
k−1 (just ek = lk−1 if t − 1 = 1)

and replace lk by ek.
3. If lk → β lk−1 is a block, we find or create the rule ek → β (just ek = β if |β| = 1) and

replace lk by ek.
Each of those updates can be carried out in constant time by just maintaining linked lists
with the sequence of symbols in each string Sk, perfect hash tables with the existing right-
hand sides of the run-formation rules lk → lt

k−1, and tries with the right-hand sides of the
block-formation rules lk → β lk−1. In particular, each block-formation nonterminal lk points
to the node in the trie that represents its string β lk−1, and the trie node representing β lk−1
stores lk. With parent pointers in the trie, we have constant-time access to the node of β

from the node of β lk−1, and with child pointers we move from β lk−1 to β lk−1 ek−1. The
children of trie nodes are stored in perfect hash tables to enable downward traversals in
constant time. All this can be precomputed in expected time linear in the grammar size.

The case when i increases is symmetric. We start by deleting the first symbol of S0, and
propagate the update upwards acting on the first symbols fk at each level k. To handle
those operations we need the lists for Sk be doubly-linked, and also to store tries for all the
right-hand sides read as fk → fk−1β′.

The number of updatess are actually bounded to O(1) updates per level, and thus to
O(log m) per increase of j or of i. Consider the string P [i . . j] · $, where $ is a special symbol
for which we assume πk($) = +∞ for all k. The parse tree of P [i . . j] · $ is then identical
to that of P [i . . j], just adding $ at the end of every Sk. The strings Sk formed for P [i . . j]
followed by $ are the same formed for P [i . . j] followed by P [j + 1], except for the first 2αk

and the last αk positions of P [i . . j] [24, Lem. 3.7]. Therefore, the addition of P [j + 1] can
only alter the last 1 + αk positions of P [i . . j + 1] in each Sk. Analogously, removing P [i] can
only alter the first 2αk−1 positions of P [i + 1 . . j] in its strings Sk. On the other hand, those
O(αk) positions correspond to only O(1) symbols in Sk [24, Lem. 3.8]. The total amount of
work is proportional to the number of updated symbols if we perform them levelwise, on S0,
then on S1, and so on. All the changes then add up to O(m log m) along the processing of P .
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Dealing with unknown symbols

We analyzed the parsing process as if we would always find a known nonterminal for the
right-hand sides we modify, but it could be that we have to create new nonterminals that
were never formed during the parsing of T .

To handle those cases, we create fresh nonterminals and continue the process normally,
removing them when they are no longer needed. An easy way to handle this would be to
make the hash tables and tries of right-hand sides dynamic, so we can add and remove
elements in the tables and nodes; we will soon sharpen this solution.

We must assign values πk(ek) to the fresh symbols ek we create in Sk. We can assign
arbitrary values (different from the other πk values) without affecting correctness: the index
works correctly for arbitrary functions πk, as explained. No matter how we choose the values
πk(ek), we can add O(m log m) fresh symbols along the whole process, but we can do better.

New symbols ek may appear in the parsing of P [i . . j] even if P [i . . j] appears in T ,
because the parsing of P [i . . j] can be different from that of its occurrences in T . However,
this can happen only in the first 2αk and the last αk positions, in Sk. Once the end of ek

falls before position j − αk, and it is after the position 2αk, then ek should have appeared in
the parsing of every occurrence of P [i . . j] in T [24, Lem 3.7]. Therefore, when we completely
incorporate P [j + 1] and as a result the end of a fresh symbol ek of Sk falls behind position
j + 1− αk of P [i . . j + 1], we know P [i . . j + 1] cannot appear in T until the position falls
behind i + 2αk. At this point, then, we can suspend the search (very much as Algorithm 2
does in line 3) and increase i until ek ends within the leftmost 2αk symbols of P [i . . j + 1].

This has as a consequence that we can have only O(1) fresh symbols per level, just as
Mi,j(P ), and O(log m) in total. Instead of making the tries and hash tables dynamic, we
can have one extra atomic heap per hash table (the one for the run-length symbols and the
one in each trie node) where we can insert/delete the necessary fresh symbols, and they will
be processed in constant time. We then retain the O(m log m) total processing cost.

Maintaining M(P ) and R

After we finish updating the parse tree, we collect the first 2αk+1 positions, the position of the
following end of block, and the last αk+1 positions, in each list Sk, to form the sets Mk(P ).
Those are then merged into M(P ) and sorted by increasing value. Since |M(P )| = O(log m),
and its values are integers in [1 . . m], M(P ) can be sorted in O(log m) time with atomic
heaps. We then traverse M(P ) and the current set R in synchronization, so as to (1) remove
the positions of R that are not anymore in M(P ), and (2) insert in R the positions that are
now in M(P ), as long as the position had not been in R before and had been inactivated
(this is easily marked in an array of size m). At the end of this process, it always holds that
R ⊆ M(P [i . . j]), and thus |R| = O(log m). Due to the parsing, an active position r may
enter and leave R several times along the process, but this time that will not be an issue.

Overall, we maintain the parsing, M(P [i . . j]), and R in time O(m log m). Since all the
lines in Algorithm 2 other than 6, 7, and 13, take O(1) time per element in R, the total time
spent in those lines adds up to O(m log m).

6.2 Patricia Tree Searches
Lines 6 and 7 of Algorithm 2 perform Θ(m)-time searches in PX and PY . Since each of the
m positions becomes active when j + 1 reaches it, this amortizes to no less than Θ(m2),
which is now too high for us. We then resort to a different technique.
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Instead of computing ℓj+1 and xj+1 inside the main cycle, we will compute them all
beforehand, in batch form. We make use of the following result, which was key to obtain
subquadratic times in grammar-based indexing.

▶ Lemma 11 ([11, Lem 6.5]). Let S be a set of strings and assume we have a data structure
supporting extraction of any length-ℓ prefix of strings in S in time fe(ℓ) and computation of
a given Karp–Rabin signature κ of any length-ℓ prefix of strings in S in time fh(ℓ). We can
then build a data structure of O(|S|) words such that, later, given a pattern P [1 . . m] and τ

suffixes Q1, . . . , Qτ of P , we find the ranges of strings in (the lexicographically-sorted) set S
prefixed by each Qi, in O(m + τ(fh(m) + log m) + fe(m)) total time.

When S = X or S = Y, our access data structure A provides the required prefix/suffix
extraction in time fe(ℓ) = O(ℓ). As for Karp-Rabin signatures [20], a result of independent
interest is that we can obtain fh(ℓ) = O(log ℓ) time on our grammar, as proved next. We
consider the more complicated case of Y ∈ Y ; the case of X ∈ X is analogous. Recall we can
compute in O(1) time one of κ(S · S′), κ(S), and κ(S′), from the other two [11, Sec. A.3].

▶ Lemma 12. The Karp-Rabin signature κ(Y [. . ℓ]) of any Y ∈ Y can be computed in time
O(log ℓ) with our grammar.

Proof. We build on the same structure A used for extraction from the root of PY . The
strings in Y are concatenations Y = exp(Bs) · · · exp(Bt) of siblings in rules A→ B1 · · ·Bt

in the grammar tree. The node v ∈ PY of Y stores ⟨v⟩ = Bs. Let us first assume that
|exp(Bs)| ≥ ℓ, so the signature can be computed on exp(Bs)[. . ℓ].

Structure A is a set of tries on the grammar symbols. The terminals Σ form the trie
roots. If A → B1 · · ·Bt, then B1 is the parent of A. If A → Bt, then B is the parent of
A. Any ancestor C of Bs in the tries is a node that descends from Bs by the leftmost
path in the parse tree. The structure A can jump from Bs to any such C in constant time
in the tries. Our grammar is locally balanced: there can be only one block ending inside
exp(Bs[. . ℓ]) at level k = 1 + 2 log4/3(4ℓ) [24, Lem. 3.8], and thus the lowest C such that
|exp(C)| ≥ ℓ has level at most k + 1; its height is d ≤ k + 1 = O(log ℓ). It can then be
found in O(log log ℓ) time with exponential search on the ancestors of Bs. We then have that
exp(Bs)[. . ℓ] = exp(C)[. . ℓ] and can compute the signature on C instead.

The basic algorithm to compute signatures takes time O(log2 ℓ) [11, Lem 6.7]. It moves
from C towards the leaf L of the parse tree that corresponds to exp(C)[ℓ]. Let C → C1 · · ·Ct,
then it stores every wi(C) = |exp(C1 · · ·Ci)| and every κi(C) = κ(exp(C1 · · ·Ci)). The
algorithm finds, in O(log i) ⊆ O(log ℓ) time, using exponential search, the Ci that is in the
path to L (i.e., wi−1 < ℓ ≤ wi), sets ℓ← ℓ− wi−1, collects κi−1(C), and continues by Ci. It
composes all those κ values towards L to obtain κ(Y [. . ℓ]). In rules C → Ct

1 it obtains i in
constant time but spends O(log i) time to compute κi−1(C) from the stored κ(exp(C1)).

Instead, an O(log n) time algorithm [11, Thm. A.3] replaces the exponential searches by
a more sophisticated scheme, whose cost is the telescoping sum

∑p
h=1 log(th/th−1) ≤ log tp,

where th is the number of children (counting C → Ct
1 as having t children) of the ancestor at

distance h of leaf L. In their case, they start from the root, which could have tp = n, but if
we start it from a node C, its time is log tp ≤ log |exp(C)|. Another component of the cost is
the number of times one leaves from heavy paths; this is again O(log n) in general but just
O(d) = O(log ℓ) if we start from the position of C in its heavy path.

It could be, however, that exp(C) is as long as n. Because it was formed in Sk, however,
the children Ci of C belonged to Ak (only those nonterminals are allowed to form rules in
Sk), and thus by definition |exp(Ci)| ≤ ℓk and log |exp(Ci)| = O(k) = O(log ℓ). We can then
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find i and compute κi−1(C) in time O(log i) ⊆ O(log ℓ) with the basic method [11, Lem 6.7]
and then continue from Ci, where the more sophisticated technique [11, Thm. A.3] completes
the computation in another O(log |exp(Ci)|) ⊆ O(log ℓ) time.

In case |exp(Bs)| < ℓ, we find the first s < i ≤ t such that wi(A) ≥ ℓ, and compute instead
the signature of exp(Bi)[. . ℓ−wi−1(A)], to then compose it with the stored values κs−1(A) and
κi−1(A) to obtain the final signature κ(Y [. . ℓ]) = κ(exp(A)[ws−1(A) + 1 . . ws−1(A) + ℓ]). ◀

Batched searches

The m searches for all the values ℓr, 1 ≤ r ≤ m, correspond to searching PY for every
suffix P [r + 1 . .]. Note that Lemma 11 does not yield the node v of line 6, but rather its
corresponding range [v1, v2]. By performing a lowest common ancestor (LCA) query on PY
from the v1th and v2th leaves, we obtain v = lca(v1, v2) (identifying leaves with their ranks).
The answer is indeed v if |v| = m− r; if m− r < |v| the answer is the virtual node of string
length m− r on the edge of PY that leads to v. Linear-space LCA data structures that are
built in linear time and answer lca in O(1) time are well known [3].

The problem is that Lemma 11 works only if P [r + 1 . .] actually prefixes some string
in Y . Otherwise, unlike classical trie searching, it does not even yield the maximum prefix of
P [r + 1 . .] that prefixes some string in Y . We will resort to, essentially, binary searching for
those longest prefixes using Lemma 11 as an internal tool.

Assume m is a power of 2 for simplicity; the general case is easily deduced. We define
sets Qa,b of positions, containing those values r such that P [r + 1 . . a] is known to be a prefix
in Y and P [r + 1 . . b + 1] is known not to be a prefix in Y (the first condition is assumed
to hold if r + 1 > a). We start with the set Q1,m = {1, . . . , m}. To process a set Qa,b, we
search for all the τ = |Qa,b| suffixes {P [r + 1 . . c], r ∈ Qa,b} of P [. . c] using Lemma 11, with
c = (a + b + 1)/2. The values r where P [r + 1 . . c] is found are moved to Qc,b, and the others
to Qa,c−1 (if r + 1 > c, then P [r + 1 . . c] = ε, so we can directly move r to Qc,b without
searching for it). We will associate the node vr,c ∈ PY to those values r for which P [r + 1 . . c]
is found in Y ; those not found retain their previous node vr,∗ (in the beginning all such nodes
are vr,r and equal to the root of PY).

Note that the values b− a + 1 halve as the elements in Qa,b are separated into two sets.
Any value r is then moved O(log m) times until it ends up in a set of the form Qc,c; at this
point we know that the longest prefix of P [r + 1 . .] that is also a prefix in Y is P [r + 1 . . c],
and also know its node vr,c.

The cost of using Lemma 11 has two parts. The cost fh(m) + log m = O(log m) can
be charged to each of the τ suffixes sought, and there is an additional global cost of
m + fe(m) = O(m). Since every suffix P [r + 1 . .] participates O(log m) times in the lemma,
the first cost adds up to O(m log2 m) over all the m positions r. The second part is potentially
very large, however: the suffixes in Qa,b may start well ahead of a, thus the pattern is P [. . c],
not P [a . . c]; a simple application of the lemma would lead to a quadratic cost again.

Smarter substring extractions

To reduce this time, we consider where the O(m) cost in Lemma 11 comes from. A first part
refers to the time needed to compute the Karp-Rabin signatures for all the suffixes in Qa,b.
This cost is easily maintained within O(m) overall because we can compute the signatures
κ(P [r + 1 . .]), for all 1 ≤ r ≤ m, in a single pass over P , and then any κ(P [r + 1 . . j]) is
obtained in constant time from κ(P [r + 1 . .]) and κ(P [j + 1 . .]).
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The second part of the O(m) cost corresponds to the time fe(m) to verify the longest
suffix among those that passed some previous filters; the rest of the verification is built on
that extracted suffix. Let P [r + 1 . . c] be the longest candidate suffix. If r + 1 > a, we extract
the actual suffix P ′[. . c− r] regularly in time fe(c− r) = O(b− a) with A, because P ′ starts
at the root of PY and thus it belongs to Y.

Otherwise, r + 1 ≤ a and thus P [r + 1 . . a] had been successfully matched before and we
have its node vr,a ∈ PY . As mentioned, the process of Lemma 11 performs several checks
before performing the final extraction of the longest suffix surviving the checks. We will
add a new check to those, which can only speed up the process: the candidate node v for
P [r + 1 . . c] must now descend from vr,a in order to be further considered. The descendance
check is performed in constant time by comparing the leaf range [v1, v2] of v with that of
vr,a. If v passes the test, we know that P ′[. . c − r] does start with P [r + 1 . . a], and then
only need to extract P ′[a− r + 1 . . c− r] from the text, which is of length O(b− a).

This time, however, the string to extract does not start at the root of PY , and thus
it requires a random access to T .1 Recall, as in Lemma 12, that the strings in Y are
concatenations Y = exp(Bs) · · · exp(Bt) of consecutive siblings in rules A→ B1 · · ·Bt in the
grammar tree (if A→ Bt, then the node stores ⟨v⟩ = B[t−1] and we have Bs = B). Let us
first assume that |exp(Bs)| ≥ c, so the substring to extract is within exp(Bs)[. . c]. We use
again the structure A, now to extract the string in time O(b− a + log c).

Once again, we can search in O(log log c) time for the lowest descendant C of Bs such
that |exp(C)| ≥ c; its height is d = O(log c) because the grammar is locally balanced. Since
exp(Bs)[. . c] = exp(C)[. . c], we descend from C to the leaf L in the parse tree representing
exp(C)[a− r + 1]. Using the same techniques as in Lemma 12, the time is O(d) = O(log c).
From L, exp(C)[a−r+1 . . c−r] = P ′[a−r+1 . . c−r] is extracted in time O(c−a) = O(b−a).

In case |exp(Bs)| < c, the node C is not a descendant of Bs but we use C = A instead.
Given the limitation on |exp(Bs)|, the height of Bs is O(log c), and so is the height of A.

The O(log c) = O(log m) cost can be charged to the suffix sought, which adds up to
O(m log2 m) over the O(log m) times each suffix may use the lemma. The O(b− a) terms
add up to O(m) per level of sets Qa,b (a level corresponding to a difference b− a + 1). Since
all the ranges (a, b) of a level are disjoint (level ℓ partitions (1, m) into 2ℓ ranges of size
m/2ℓ), the b− a values add up to O(m) per level. Since there are O(log m) levels, that part
of the cost adds up to O(m log m).

We similarly compute the nodes xr for every P [. . r]rev on PX . While in line 7 of
Algorithm 2 we search only for P [i . . r]rev because we are not interested in positions before
i, this time we precompute all the values in advance for the smallest i = 1. Later, when i

increases, we will move to the required ancestors of xr in line 13.
Overall, the Patricia trie searches execute lines 6 and 7 in O(m log2 m) total time.

6.3 Emptiness Queries
In line 13, we perform one range emptiness query every time we decrement |xr| for some r;
this amounts to O(m2) emptiness queries, which we cannot afford now. We will instead use
a faster method based on orthogonal range successor queries: given a range [x1

r, x2
r]× [y1

r , y2
r ],

1 It is tempting to say that, since we had already matched P [r + 1 . . a] from the root of PY , we could
somehow save the state of that extraction so as to continue without paying the overhead of the random
access. However, we might have never extracted the text of the node vr,a explicitly; its verification may
have been carried out as a subproduct of reading longer suffix, starting before r + 1.



G. Navarro 24:15

we can find the largest value x< ≤ x1
r such that [x<, x2

r] × [y1
r , y2

r ] contains a point, and
the smallest value x> ≥ x2

r such that [x1
r, x>]× [y1

r , y2
r ] contains a point. Those queries can

run in O(logϵ g) time on a grid with g points, using an O(g)-space data structure, for any
constant ϵ > 0 defined at construction [35]; construction time can be made O(g

√
log g) [2].

The lowest ancestor x of xr containing some point in [x1, x2]× [y1
r , y2

r ] must then hold
x1 ≤ x< or x2 ≥ x>. In the first case, it is v1 = lca(x<, x2); in the second, it is v2 =
lca(x1, x>). Both v1 and v2 are ancestors of xr, and thus of each other. The correct node x

is then the lowest of v1 and v2, which is known from the leaf ranges stored at the nodes.
With this query, line 17 of Algorithm 2 does not cycle; it just performs one O(logϵ g)-time

step. It can then be counted as one of the O(|R|) operations performed in each cycle j. Since
there are O(m log m) such operations, this one adds O(m log m logϵ g) to the total cost.

6.4 The Final Result
Our time complexities then add up to O(m log m(log m+logϵ g)) for a grammar of size g. Since
in our case g = O(δ log n

δ ), we can write the time as O(m log m(log m + logϵ δ + log log n)).
The construction time of all the data structures we use is dominated by the O(n log n)
expected time needed to build the Karp-Rabin hashes of Lemma 11 [11, Sec. 6.6] (the
grammar is built in O(n) expected time, see [24, Cor. 3.15]).

▶ Theorem 13. Let T [1 . . n] have substring complexity δ. Then, for any constant ϵ > 0, we
can build in O(n log n) expected time a data structure of size O(δ log n

δ ) that finds the MEMs of
any given pattern P [1 . . m] in time O(m log m(log m+logϵ δ+log log n)) ⊆ O(m log m(log m+
logϵ n)), with an occurrence of each. The query process uses O(m) additional space.

We have assumed m ≤ n, but it could be the other way in some applications. Since in
this case no substring longer than n will be matched inside P , we can run O(m/n) iterations
finding the MEMs of P [1 . . 2n], P [n . . 3n], P [2n . . 4n], and so on, avoiding repeated MEMs
in the output. The total cost would then be O(m log2 n) and the query space would be O(n).

7 Conclusions

We have obtained improved results, including the first subquadratic algorithm, to find MEMs
on parsing-based indices, which are the most promising in terms of space for highly repetitive
text collections. While suffix-based indices can preprocess T [1 . . n] to find the MEMs of
P [1 . . m] in T in time O(m log log n), their space is Ω(r), where r (the number of runs in the
BWT of T ) is not such a strong measure of repetitiveness [34]. Our first result is a data
structure of size O(grl), where grl is the size of the smallest RLCFG that generates T . This
is currently the best possible space for any structure able to access T with relevant time
guarantees [34]. Our structure finds the MEMs in O(m2 logϵ n) time for any constant ϵ > 0.
This is very similar to the time of previous work [18], which could also run in O(grl) space.
Within O(δ log n

δ ) space, we obtain the first subquadratic time, O(m log m(log m + logϵ n)),
on a particular RLCFG that has local consistency properties. This space is optimal for every
n and δ, though grl is always O(δ log n

δ ) and can be o(δ log n
δ ) in some text families [25].

A challenge for future work is to extend our results to finding k-MEMs, which are the
maximal substrings of P that appear at least k times in T , for k given at query time. The
basic Algorithm 1 is easily modified to find the k-MEMs in O(m) time, but running in
compressed space is more costly. In the extended version we will show how find k-MEMs,
changing the logϵ n terms to log2+ϵ n, by building on grammar-based indices that can count
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the number of occurrences associated with a set of primary occurrences [11]. The space also
increases: the O(grl) space becomes O(g) (g ≥ grl being size of the smallest CFG) and the
O(δ log n

δ ) space becomes O(γ log n
γ ) (γ ≥ δ being the size of a string attractor of T [22]).

Our techniques are presented on a particular locally consistent grammar [24] that yields
the best complexities, but they would work on others too. We plan to implement them on
practical constructions of CFGs [12] built with RePair [27] or of locally consistent grammars
based on induced suffix sorting [14, 36]. Further, even without having theoretical guarantees,
the algorithm for arbitrary RLCFGs will probably be competitive if implemented on Lempel-
Ziv based indices [26, 16], which are considerably smaller than those based on grammars.
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mechanisms for the same fixed string family, which makes the size ν of the smallest NU-system the
unique smallest reachable repetitiveness measure to date. We conclude that in order to achieve
better compression, we should combine morphism substitution with copy-paste mechanisms.
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1 Introduction

In areas like Bioinformatics, it is often necessary to handle big collections of highly repetitive
data. For example, two human genomes share 99.9% of their content [23]. In another
scenario, for sequencing a genome, one extracts so-called reads (short substrings) from it,
with a “coverage” of up to 100X, which means that each position appears on average in 100
reads.1 There is a need in science and industry to maintain those huge string collections in
compressed form. Traditional compressors based exclusively on Shannon’s entropy are not
good for handling repetitive data, as they only exploit symbol frequencies when compressing.
Finding good measures of repetitiveness and also compressors exploiting this repetitiveness
has then become a relevant research problem.

1 https://www.illumina.com/science/technology/next-generation-sequencing/
plan-experiments/coverage.html
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A strong theoretical measure of string repetitiveness introduced by Kociumaka et al. [12]
is δ, based on the substring complexity function. This measure has several nice properties: it
is computable in linear time, monotone, resistant to string edits, insensitive to simple string
transformations, and it lower-bounds almost every other theoretical or ad-hoc repetitiveness
measure considered in the literature. Further, although O(δ) space is unreachable, there exist
O(δ log(n/δ))-space representations supporting efficient pattern matching queries [12, 11],
and this space is tight: no o(δ log(n/δ))-space representation can exist [12].

The idea that δ is a sound lower bound for repetitiveness is reinforced by the fact that it
is always O(b), where b is the size of the smallest bidirectional macro scheme generating a
string [26]. Those macro schemes arguably capture every possible way of exploiting copy-paste
regularities in the sequences. Some very recent works [19], however, explore other sources of
repetitiveness, in particular self-similarity, and are shown to break the lower bound of δ.

The simplest of those schemes, which reuse the name L-system for simplicity [19], builds
upon Lindenmayer systems [15, 16], in particular on the variant called CPD0L-systems. A
CPD0L-system describes the language of the images, under a coding τ , of the powers of
a non-erasing morphism φ starting from an string s (called the axiom), that is, the set
{τ(φi(s)) | i ≥ 0}. The L-systems extend CPD0L-systems with two parameters d and n,
so as to unambiguously determine the string w = τ(φd(s))[1 : n]. The size of the shortest
description of an L-system generating w in this fashion is called ℓ. Intuitively, ℓ works as
a repetitiveness measure because any occurrence of the symbol a at level i expands to the
same string at level i + j for every j.

Since ℓ is a reachable measure of repetitiveness (because the L-system is a representation
of w of size O(ℓ)), there are string families where δ = o(ℓ). Intriguingly, it has been shown [19]
that there are other string families where ℓ = o(δ), so (1) both measures are not comparable
and (2) the lower bound δ does not capture this kind of repetitiveness. On the other hand, it
is shown that ℓ = O(g), where g is the size of the smallest deterministic context-free grammar
generating only w. This comparison is relevant because L-systems are similar to grammars,
differing in that they have no terminal symbols, so their expansion must be explicitly stopped
at level d and then possibly converted to terminals with τ .

Grammars provide an upper bound to repetitiveness that is associated with well-known
compressors, so this upper bound makes ℓ a good measure of repetitiveness.

A more complex scheme that was also introduced [19] are NU-systems, which combine
the power of L-systems with bidirectional macro schemes. The measure ν, defined as the size
of the smallest NU-system generating w, naturally lower bounds both ℓ and b. The authors
could not, however, find string families where ν is asymptotically better than both ℓ and b,
so it was unclear if NU-systems are actually better than just the union of both underlying
schemes.

In this paper we deepen the study of the relations between these new intriguing measures
and more established ones like δ and g. Our results are as follows:
1. We show that ℓ can be much smaller than δ, by up to a

√
n factor, improving a previous

result [19] and refuting their conjecture that ℓ = Ω(δ/ log n).
2. On the other hand, we expose string families where ℓ is larger than the output of several

repetitiveness-aware compressors like the size grl of the smallest run-length context-free
grammar, the size ze of the greedy LZ-End parse [13], and the number of runs r in the
Burrows-Wheeler Transform of the string [2]. We then conclude that ℓ is uncomparable
to almost all measures other than g, which suggests that the source of repetitiveness it
captures is largely orthogonal to the typical cut-and-paste of macro schemes.
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ν

δ γ

min(ℓ, b)

b r

ze

grl g

ℓ

δ

Figure 1 Asymptotic relations between ℓ, ν, and other repetitiveness measures. A double black
arrow from v1 to v2 means that it always holds that v1 = O(v2), and there exists a string family
where v1 = o(v2). A dashed arrow from v1 to v2 means that there exists a family where v1 = o(v2).

3. We introduce a string family where ν is asymptotically strictly smaller than both ℓ and b,
which shows that NU-systems are indeed relevant and positions ν as the unique smallest
reachable repetitiveness measure to date that captures both kinds of repetitiveness in
non-trivial ways.

4. We study various ways of simplifying L-systems and show that, in most cases, we end up
with a weaker repetitiveness measure. We also study some of those weaker variants of ℓ,
which can be of independent interest.

Overall, our results contribute to understanding how to measure repetitiveness and how
to exploit it in order to build better compressors. We summarize the state of ℓ and ν after
this work in Figure 1.

2 Basic concepts

In this section we explain the basic concepts needed to understand the rest of the paper,
from strings and morphisms to relevant repetitiveness measures.

2.1 Strings
An alphabet is a finite set of symbols and is usually denoted by Σ. A (finite) string w is
a finite sequence w[1]w[2] . . . w[n] of symbols where w[i] ∈ Σ for i ∈ [1, n], and its length
is denoted by |w| = n. The empty string, whose length is 0, is denoted by ε. The set of
all possible finite strings over Σ is denoted by Σ∗. If x = x[1] . . . x[n] and y = y[1] . . . y[m],
the concatenation operation x · y (or just xy) yields the string x[1] . . . x[n] y[1] . . . y[m]. Let
w = xyz. Then y (resp. x, z) is a substring (resp. prefix, suffix) of w. It is proper if it is not
equal to w, and non-trivial if it is distinct from ε and w. The notation w[i : j] stands for the
substring w[i] . . . w[j] if i ≤ j, and ε otherwise. We also use the conventions w[i : j] = w[1 : j]
if i < 1, w[i : j] = w[i : n] if j > n, and w[i : j] = ε if i > n or j < 1. Other convenient
notations are w[: i] = w[1 : i] and w[i :] = w[i : |w|] for prefixes and suffixes, respectively.

A (right) infinite string w (we use boldface to emphasize them) over an alphabet Σ
is a mapping from Z+ to Σ, and its length is called ω, which is greater than n for any
n ∈ Z+. It is possible to define the concatenation x · y if x is finite and y infinite. The
concepts of substring, prefix, and suffix carry over to infinite strings, with proper prefixes
always being finite and suffixes always being infinite. The notations w[i], w[i : j], w[: i], and
w[i :] = w[i]w[i + 1] . . . also carry over to infinite strings.

CPM 2023



25:4 L-Systems for Measuring Repetitiveness

2.2 Morphisms
The set Σ∗ together with the (associative) concatenation operator and the (identity) string
ε form a monoid structure (Σ∗, ·, ε). A morphism on strings is a function φ : Σ∗

1 → Σ∗
2

satisfying φ(x · y) = φ(x) · φ(y) for all x, y (i.e., a function preserving the monoid structure),
where Σ1 and Σ2 are alphabets. To define a morphism on strings, it is sufficient to define
how it acts over the symbols in its domain. The pairs (a, φ(a)) for a ∈ Σ1, usually denoted
a → φ(a), are called the rules of the morphism, and there are |Σ1| of them. If Σ1 = Σ2, then
the morphism is called an endomorphism.

Let φ : Σ∗
1 → Σ∗

2 be a morphism on strings. Some useful definitions are width(φ) =
maxa∈Σ1 |φ(a)| and size(φ) =

∑
a∈Σ1

|φ(a)|. A morphism is non-erasing if ∀a ∈ Σ1, |φ(a)| >

0, expanding if ∀a ∈ Σ1, |φ(a)| > 1, k-uniform if ∀a ∈ Σ1, |φ(a)| = k > 1, and it is a coding if
∀a ∈ Σ1, |φ(a)| = 1 (sometimes called a 1-uniform morphism).

Let φ : Σ∗ → Σ∗ be an endomorphism. Then φ is prolongable on a symbol a if φ(a) = ax

for some string x ̸= ε. If this is the case, then for each i, j with 0 ≤ i ≤ j, it holds that
φi(a) is a prefix of φj(a), and x = φω(a) = axφ(x)φ2(x) . . . is the unique infinite fixed-point
of φ starting with the symbol a. An infinite string w = φω(a) that is the fixed-point of a
morphism is called a purely morphic word, its image under a coding x = τ(w) is called a
morphic word, and if the morphism φ is k-uniform, then x is said to be k-automatic.

2.3 Repetitiveness measures
A repetitiveness measure µ is a function that arguably captures the degree of repetitiveness
of strings. Repetitiveness is an intuitive and elemental concept, yet is still subject to debate.
In general, a repetitive string is understood as one containing many copies of the same
substrings. The more repetitive is a string w, the smaller the value µ(w) should be.

If we can represent every string w[1 : n] within space O(µ(w)) (where the asymptotics
refer to n), then we say the measure µ is reachable. Space is usually measured in Θ(log n)-bit
words following the conventions of the transdichotomous RAM model of computation. Hence,
O(µ(w)) space means O(µ(w) log n) bits. We can represent any symbol in the alphabet of
w[1 : n] using a constant number of words as long as |Σ| = O(nd) for some d ≥ 0.

A repetitiveness measure u1 is smaller or lower-bounds another measure u2 if u1(w) =
O(u2(w)) for every w[1 : n] ∈ Σ∗. If, in addition, there is an infinite string family F ⊆ Σ∗

where u1(w) = o(u2(w)) for every w[1 : n] ∈ F , we say that u1 is strictly smaller or strictly
lower-bounds u2. Two repetitiveness measures u1 and u2 are equivalent if each one is smaller
than the other, and uncomparable if none is (i.e., u1 = o(u2) on a string family F1 and
u2 = o(u1) on another string family F2).

In the following, we explain the most relevant repetitiveness measures to be considered in
the rest of the paper. For a more in-depth review, see a recent survey [17].

Grammar-based measures

There exist several compressors, and measures of repetitiveness associated with their size,
that build on context-free grammars.

A straight-line program (SLP) is a deterministic context-free grammar G in Chomsky
Normal Form whose language is a singleton {w}. We denote the string generated by the SLP
as exp(G) = w, and extend this notation to the unique strings generated by the non-terminals
of the grammar. The measure g is defined as the size of the smallest SLP G generating w.
Finding the smallest SLP is an NP-complete problem [3], although there exist algorithms
providing log-approximations [7, 24].
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A measure based on context-free grammars that strictly lower-bounds g is grl, the size of
the smallest run-length SLP (RLSLP) generating w [20]. RLSLPs allow constant-size rules of
the form A → Bn for n > 1, which can make a noticeable difference in some string families
like {an | n ≥ 0}, where g = Θ(log n), but grl = O(1).

A collage system is an RLSLP that, in addition, supports rules of the form A → B[i : j]
for some i, j ∈ [1, |exp(B)|]. These mean that exp(A) = exp(B)[i : j]. The size c of the
smallest collage system [10] strictly lower-bounds grl.

Parsing-based measures

A parsing of size k produces a factorization of a string w into non-empty phrases, i.e.,
w = w1w2 . . . wk where wi ∈ Σ+ for i ∈ [1, k]. Several compressors work by parsing w in a
way that storing summary information about the phrases enables recovering w.

The Lempel-Ziv (LZ) parsing processes a string greedily from left to right, always forming
the longest phrase that has a copy (called a source) starting inside some previous phrase or
forming an explicit phrase of length 1 otherwise [14]. The source can overlap the new phrase.
The LZ-no parsing, instead, does not allow the source overlap the new phrase. The LZ-end
parsing [13] requires, in addition, that the source ends at a previous phrase boundary. All of
these parsings can be constructed in linear time, and their number of phrases are denoted by
z, zno, and ze, respectively. While z and zno are optimal among the parsings satisfying their
respective conditions, this is not always the case for ze. The optimal factorization where
each phrase wi+1 appears as a suffix of w1 . . . wj for some j ≤ i is denoted by zend. Because
of the optimality of z, zno, and zend, it holds that z ≤ zno ≤ zend ≤ ze for every string.

A bidirectional macro scheme (BMS) [26] is any parsing where each phrase of length
greater than 1 has a copy starting at a different position in such a way that the original
string can be recovered following these pointers (assuming that the phrases of length 1 store
their symbol explicitly). The measure b(w) is defined as the size of the smallest BMS for w.
It strictly lower-bounds all the other reachable repetitiveness measures [18], except for the
ones we focus on in this paper, ℓ and ν [19]. On the other hand, b is NP-hard to compute [5].

Another interesting parsing-based measure is the size of the greedy lexicographic parsing of
w, denoted as v(w) [18]. This parsing processes w from left to right, taking as the next phrase
the longest common prefix between the unprocessed part of the string and a lexicographically
smaller suffix of the processed part (a unique symbol $, smaller than the others, is assumed
to exist at the end of w). It forms an explicit phrase of length one if the longest common
prefix is empty or no predecessor exists.

Burrows-Wheeler transform

The Burrows-Wheeler transform (BWT) [2] is a reversible transformation that usually
makes a string more compressible. It is obtained by concatenating the last symbols of the
sorted suffixes of w$, where $ is a symbol smaller than any symbol appearing in w. The
BWT tends to produce long runs of the same symbol when a string is repetitive, and these
(maximal) runs can be compressed into one symbol in the alphabet {(a, k) | a ∈ Σ, k ∈ [1, n]}
using run-length encoding (rle). A repetitiveness measure based on this idea is defined as
r(w) = |rle(BWT (w))|. Although r is not ideal as a repetitiveness measure [6], its size
can be bound in terms of z [8]. It has many practical applications representing repetitive
sequences in Bioinformatics because of its indexing power [4].
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String attractors

Kempa and Prezza [9] introduced the notion of string attractor as a unifying framework and
lower bound for dictionary-based compressors.

Let w be a string of length n. A string attractor for w is a set of positions Γ ⊆ [1, n]
such that for each substring w[i : j] of w, there exist integers i′, j′ ∈ [1, n] and k ∈ Γ, such
that w[i : j] = w[i′ : j′] and i′ ≤ k ≤ j′. That is, every substring of w has a copy covering a
position in Γ. The measure γ(w) is defined as the size of the smallest string attractor for w.

Computing γ is an NP-complete problem. The measure γ is a lower bound to b and is
also strictly smaller than b when considering the infinite family of Thue-Morse words [1]. On
the other hand, it is unknown if γ space or even o(γ log(n/γ)) space is reachable.

Substring complexity

Let Fw(k) be the set of distinct substrings of w of length k. The complexity function of w

is defined as Pw(k) = |Fw(k)|. Kociumaka et al. [12] introduced a repetitiveness measure
based on the complexity function, defined as δ(w) = max{Pw(k)/k | k ∈ [1..|w|]}.

The measure δ has several nice properties: it is computable in linear time, monotone,
insensitive to reversals, resistant to small edits on w, can be used to construct O(δ log(n/δ))-
space representations supporting efficient access and pattern matching queries [12, 11], and is
a lower bound to almost every other theoretical or ad-hoc repetitiveness measure considered
in the literature, including γ. On the other hand, o(δ log(n/δ)) space is unreachable [12].

3 The measure ℓ

The class of CPD0L-systems is a variant of the original L-systems, the parallel grammars
without terminals defined by Aristid Lindenmayer to model cell divisions in the growth of
plants and algae [15, 16].

Formally, a CPD0L-system is a 4-tuple L = (Σ, φ, τ, s), where Σ is the alphabet, φ is
the set of rules (a non-erasing endomorphism on Σ∗), τ is a coding on Σ∗, and s ∈ Σ+

is the axiom. The system generates the sequence (τ(φd(s)))d∈N. The “D0L” stands for
deterministic L-system with 0 interactions. The “P” stands for propagating, which means
that it has no ε-rules. The “C” stands for coding, which means that the system is extended
with a coding. To define a compressor based on CPD0L-system, we extend them to 6-tuples
by fixing d and using another parameter n, so we can uniquely determine a string of the
sequence generated by a system and then extract a prefix from it. For simplicity, in the rest
of this paper, we refer to these extended CPD0L-systems just as L-systems.

▶ Definition 1 (L-systems). An L-system is a 6-tuple L = (Σ, φ, τ, s, d, n) where Σ is the
alphabet, φ is the set of rules (an endomorphism on Σ∗), τ is a coding on Σ∗, s ∈ Σ+

is the axiom, and d and n are two non-negative integers. The string generated by L is
w = τ(φd(s))[1 : n].

We now define the size of an L-system and the measure ℓ.

▶ Definition 2 (Measure ℓ). The size of an L-system L = (Σ, φ, τ, s, d, n) is size(L) =
size(φ) + |s| + |Σ| + 2. The measure ℓ(w) is defined as the size of the smallest L-system
generating w.

The size of an L-system accounts for the lengths of the right-hand sides of its rules, the
length of the axiom, the coding τ , and the values d and n, so we can effectively represent the
system using O(size(L)) space. Hence, the measure ℓ is reachable.
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As a convention, we always assume that d = nO(1) and that Σ = nO(1). Otherwise, we
could need too many words to represent the integer d or the symbols of the alphabet.

A finer-grained analysis about the number of bits needed to represent an L-system of
size ℓ yields O(ℓ log |Σ| + log n) bits, the second term corresponding to d and n; note that Σ
contains the alphabet of w.

An important result about ℓ is that it always holds that ℓ = O(g) [19]. More importantly,
sometimes ℓ = o(δ), which implies that δ is not a lower bound for ℓ, and questions δ as a
definitive measure of repetitiveness.

To understand the particularities of ℓ, we study several classes of L-systems with different
restrictions and define measures based on them. We define the measure ℓe that restricts
the morphism to be expanding. The measure ℓu restricts the morphism to be k-uniform
for some k > 1. The variant ℓm forces the morphism of the system to be a-prolongable for
some symbol a and the axiom to be s = a. The variant ℓd essentially removes the coding by
forcing it to be the identity function. Finally, ℓp refers to the intersection of ℓm and ℓd, and
ℓa refers to the intersection of ℓm and ℓu, which intuitively perform well in prefixes of purely
morphic words and prefixes of automatic sequences, respectively.

▶ Definition 3. An L-system (Σ, φ, τ, s) is a-prolongable if there exists a symbol a such that
s = a and a → ax with x ≠ ε. An L-system is prolongable if it is a-prolongable for some
symbol a.

▶ Definition 4 (ℓ-variants). We define the following ℓ-variants
1. The variant ℓe denotes the size of the smallest L-system generating w, satisfying that all

its rules have a size at least 2.
2. The variant ℓm denotes the size of the smallest prolongable L-system generating w.
3. The variant ℓd denotes the size of the smallest L-system generating w, satisfying that τ is

the identity function.
4. The variant ℓu denotes the size of the smallest L-system generating w, satisfying that all

its rules have the same size, at least 2.
5. The variant ℓp denotes the size of the smallest prolongable L-system generating w,

satisfying that τ is the identity function.
6. The variant ℓa denotes the size of the smallest prolongable L-system generating w,

satisfying that all its rules have the same size, at least 2.

It is known that different classes of L-systems produce different classes of languages [21].
Some of these classes also differ in the factor complexity of the sequences they can generate [22].
It is interesting to understand how these differences in terms of expressive power and factor
complexity translate into compression power.

We defer the study of ℓ-variants to Section 7. We define them early, as some of our
results relating ℓ to better-established measures in Sections 4 and 5 also apply for some of
the ℓ-variants.

4 Breaking the δ-lower-bound for repetitiveness

It is known that the repetitiveness measure δ is a (strict) lower bound to all the other
repetitiveness measures [17]. It is also known that δ is a lower bound to k-th order empirical
entropy, which plays a role in several compressors [17]. This makes δ an asymptotic lower
bound to the size of almost every existing compressor and compressibility measure.
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Certainly, we cannot expect to find a reachable measure upper-bounded by O(δ) because
δ-space is unreachable, as shown by Kociumaka et al. [12]. Still, it could be possible to
design measures capturing repetitiveness and going below δ in some restricted but relevant
scenarios. In this context, we raise the following question:

Can we find a competitive and reachable repetitiveness measure achieving space lower
than δ on some restricted but relevant cases?

It is not difficult to design a trivial measure breaking the δ-lower-bound for some specific
string families. We also require, however, this measure to make sense, be reachable, and be
competitive, the latter meaning that it is at least as good as z, g, or r (i.e., the most popular
reachable measures in practice) in terms of space.

The repetitiveness measure ℓ was designed with the conditions above in mind. As we
already mentioned, ℓ cannot lower-bound δ because ℓ is a reachable measure.

▶ Lemma 5 ([19, Theorem 4]). There exist string families where ℓ = Ω(δ log n).

It was shown that ℓ is a competitive repetitiveness measure: the smallest L-system for a
string is always asymptotically smaller than the smallest grammar (their proof applies to the
variant ℓd as well). This shows that the measure ℓ is always reasonable for repetitive strings:

▶ Lemma 6 ([19, Theorem 6]). It always holds that ℓ = O(g).

On the other hand, they [19] showed a string family satisfying that δ = Ω(ℓ log n),
and conjectured that this gap was the maximum possible, that is, that the lower bound
ℓ = Ω(δ/ log n) holds for any string family. We now disprove this conjecture. We show a
string family where δ is Θ(

√
n) times bigger than the size ℓ of the smallest L-system.

▶ Lemma 7. There exists a string family where δ = Θ(ℓ
√

n).

Proof. Consider a c-prolongable L-system Ld = (Σ, φ, τ, s, d, n), where

Σ = {a, b, c}
φ = {a → a, b → ab, c → cb}
τ = {a → a, b → b, c → c}
s = c

n = 1 + (d − 1)d
2 + d

for any d ≥ 0. By iterating the morphism φ we obtain the words

φ0(c) = c

φ1(c) = cb

φ2(c) = cbab

φ3(c) = cbabaab

φ4(c) = cbabaabaaab

φ5(c) = cbabaabaaabaaaab

and so on, from which we extract as a prefix the whole word (depending on the value of d

chosen). It is easy to check by induction that for each d ≥ 0, the string generated by the
system Ld is sd = cΠd−1

i=0 aib and it has length 1 + (d−1)d
2 + d.
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c b a b a a b

c b a b a a b a a a b a a a a b a a a a a b

s3 =

s6 =

Figure 2 All the substrings of length 6 of the string s6 of Lemma 7 starting inside some position
i ≤ |s3| = 7 are distinct, because the runs of a’s considered have all different and increasing lengths,
and d is big enough. The last of the substrings considered is underlined. Extending these substrings
one position to the left yields |s3| different strings of length 7, so the claim holds for even and odd
values of d ≥ 2.

It holds that ℓ is Θ(1) in this family. The system is essentially the same for every string
in the family. The only changes are the integers d and n, which always fit in constant space.

On the other hand, the first |s⌊d/2⌋| = 1 + (⌊d/2⌋ − 1)(⌊d/2⌋)/2 + ⌊d/2⌋ substrings of
length d of sd (for d ≥ 2) are completely determined by the b’s they cross, and the number
of a’s at their extremes, so they are all distinct. An example can be seen in Figure 2.

This gives the lower bound δ = Ω(d) = Ω(
√

n). The upper bound O(
√

n) holds trivially
for run-length grammars as the strings considered have Θ(

√
n) runs of a’s followed by b’s, so

δ = Θ(
√

n). Thus δ = Θ(ℓ
√

n) in this string family. ◀

This string of Lemma 7 is easy to describe yet hard to represent with copy-paste
mechanisms. Intuitively, the simplicity of the sequence relies on the fact that many substrings
can be described in terms of previous ones, so it is arguably highly repetitive, though not via
copy-paste. The repetitiveness in this family is better captured by an L-system, instead.

5 Uncomparability of ℓ with other repetitiveness measures

As a corollary of Lemmas 5 and 7 (and also mentioned in previous work [19]), we obtain
that ℓ and δ are uncomparable as repetitiveness measures.

▶ Corollary 8. The measures ℓ and δ are uncomparable.

Moreover, this is also true for the variant ℓp because, in Lemma 7, we considered a
prolongable L-system with the identity function as the coding. As we prove later in Section 7,
the variant ℓp is, in general, far from ideal for measuring repetitiveness, so the fact that δ is
uncomparable to this weak variant is even more surprising.

A natural question is then to identify which other measures are also uncomparable to ℓ

(and ℓp). We show in this section that this holds for almost any other repetitiveness measure.
To do so, we first recall the string family defined by Kociumaka et al. [12], satisfying that it
needs Ω(log2 n) bits to be represented with any method. This string family will be crucial in
the following proofs.

▶ Definition 9 ([12]). The string family K is formed by all the infinite strings s over {a, b}
constructed as follows:
1. Let s[1] = b.
2. For any i ≥ 2, choose a position ji in [2 · 4i−2 + 1, 4i−1]. Then, s[ji] = b.
3. If j > 1 and j ̸= ji for any i ≥ 2, then s[j] = a.

The family Kn for n ≥ 0 is formed by all the prefixes of length n of some string in K.

It is easy to see that the strings in the family Kn have Θ(log n) symbol b’s. Also, note
that with the possible exception of the first two positions, there are no consecutive b’s.
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Now we are ready to prove that, in general, it does not hold that ℓ = O(grl), making
L-systems uncomparable to RLSLPs.

▶ Lemma 10. There exists a string family where ℓ = Ω(grl log n/ log log n).

Proof. Consider the string family Kn needing Ω(log2 n) bits (or Ω(log n) space) to be
represented with any method [12]. Strings in Kn have O(log n) runs of a’s separated by b’s,
so it is easy to see that grl = O(log n) in this family. Because of this, and because grl is a
reachable measure, it holds that grl = Θ(log n) in Kn. On the other hand, the minimal L-
system for a string in this family can be represented with O(ℓ log |Σ|+log n) ⊆ O(ℓ log ℓ+log n)
bits, which must be in Ω(log2 n) bits because the L-system is also reachable. It follows that
ℓ = Ω(log2 n/ log log n); otherwise,

ℓ log ℓ = o((log2 n/ log log n) log(log2 n/ log log n))
= o(log2 n),

which contradicts ℓ being reachable. Thus, ℓ = Ω(grl log n/ log log n) in this string family. ◀

The same result holds for LZ-like parsings. Even the greedy LZ-End parsing (the largest
of them) can be asymptotically smaller than ℓ in some string families.

▶ Lemma 11. There exists a string family where ℓ = Ω(ze log n/ log log n).

Proof. Take each string in Kn and prepend an to it. This new family of strings still needs
Ω(log2 n) bits to be represented with any method because the size of the family is the same,
and n just doubled. Just as in Lemma 10, it holds that ℓ = Ω(log2 n/ log log n) in this
family. On the other hand, the LZ-End parsing needs Θ(log n) phrases only to represent
the prefix anb, and then for each run of a’s followed by b, its source is aligned with anb, so
ze = Θ(log n). Thus, ℓ = Ω(ze log n/ log log n). ◀

The same result also holds for the number of equal-letter runs of the Burrows-Wheeler
transform of a string.

▶ Lemma 12. There exists a string family where ℓ = Ω(r log n/ log log n).

Proof. Consider the family Kn again. Clearly r = Ω(log n), because r is reachable. Because
a string in this family has O(log n) b’s, its BWT has also O(log n) runs of a’s separated by b’s
(or the unique $). Thus, r = Θ(log n) and ℓ = Ω(r log n/ log log n) in this string family. ◀

We conclude that the measure ℓ is uncomparable to almost every other repetitiveness
measure. We summarize these results in the following theorem.

▶ Theorem 13. The measure ℓ is uncomparable to the repetitiveness measures δ, γ, b, v, c,
grl, z, zno, zend, ze, and r.

Proof. There exist string families where ℓ = o(δ). In these families, it holds ℓ = o(µ) where
µ is any of the measures considered above, because δ is a lower bound to all of them. On the
other hand, all the measures above are upper-bounded by at least one of ze, grl, or r, which
by Lemmas 10, 11, and 12, respectively, can be asymptotically smaller than ℓ for some string
families. ◀

This shows that ℓ, although reachable and competitive as a repetitiveness measure,
captures the regularities in strings in a form that is largely orthogonal to other repetitiveness
measures. As the underlying regularities captured by ℓ and the other measures are apparently
different, we try to combine them to obtain more powerful measures/compressors.
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6 NU-systems and the measure ν

A NU-system [19] is a tuple N = (V, R, Γ, s, d, n) that generates a unique string in a similar
way to an L-system. The key difference is that on the right-hand side of its rules, a NU-system
is permitted to have special symbols of the form a(k)[i : j], whose meaning is to generate the
k-th level from a, then extract the substring starting at position i and ending at position j,
and finally apply the coding to the resulting substring.

The indices in a NU-system (e.g., levels, intervals) must be less or equal to n to fit in
a Θ(log n)-bits word. Also, the NU-system must not produce any loops when extracting
a prefix from some level, which is decidable to detect. The size of a NU-system is defined
analogously to the size of L-systems, with the extraction symbols a(k)[i : j] being symbols of
length 4. The measure ν is defined as the size of the smallest NU-system generating w.

It holds that ν = O(ℓ) and ν = O(b) [19]. Moreover, there exist families where both
asymptotic bounds are strict. We now show that NU-systems exploit the features of L-
systems and macro schemes in a way that, for some string families, can reach sizes that are
unreachable for both L-systems and macro schemes independently.

▶ Theorem 14. There exists a family of strings where ν = o(min(ℓ, b)).

Proof. Let Km be the family of strings defined by Kociumaka et al. [12], needing Ω(log2 m)
bits to be represented with any method, but over the alphabet {0, 1}. We construct a
new family F = {x · y[: m] | x ∈ Km}, where y is the infinite fixed point generated by the
c-prolongable L-system with the identity function as the coding, utilized in Lemma 7.

Let n = 2m. As shown in Lemma 10, it holds that ℓ = Ω(log2 n/ log log n) in this family.
On the other hand, b = Ω(

√
n), because δ = Ω(

√
n) on prefixes of y, and the alphabets

between the prefix in Km and y[: m] are disjoint.
Let x be a string in Km with k symbols 1. Let ij be the number of 0’s in x between the

(j − 1)-th 1 and the j-th 1, for j ∈ [2, k]. Also, let i1 and ik+1 be the number of 0’s at the
left and right extremes of x. We construct a NU-system N = (V, R, Γ, s, d, n) as follows:

V = {0, 1, a, b, c}
R = {0 → 00, 1 → 1, a → a, b → ab, c → cb}
Γ = {0 → 0, 1 → 1, a → a, b → b, c → c}
s = 0(m)[: i1]10(m)[: i2]1 . . . 0(m)[: ik]10(m)[: ik+1]c(m)[: m]
d = 0
n = 2m

By construction, this NU-system generates the string x · y[: m] of length n, and its axiom
has size 4(k + 2) + k, where k = Θ(log n). Hence, it holds that ν is O(log n) for these strings.
Thus, ν = o(min(ℓ, b)) in the family F we constructed. ◀

NU-systems can then be smaller representations than those produced by any other
compression method exploiting repetitiveness. This shows that combining copy-paste
mechanisms with iterated morphisms is an effective way of improving compression from a
theoretical point of view.

On the other hand, though computable, no efficient decompression scheme has been
devised for NU-systems. In turn, finding the smallest NU-system is very likely an NP-complete
problem, and probably very difficult to even approximate.
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7 ℓ-variants are weaker than ℓ

In this section we show that the features we include in the L-systems used in the definition
of ℓ are necessary to obtain a competitive repetitiveness measure; removing any of them
yields an inherent loss in compression power.

We start by showing that ℓ can be asymptotically strictly smaller than ℓm. That is,
restricting L-systems to be prolongable yields a weaker measure.

▶ Lemma 15. There exists a string family where ℓ = o(ℓm).

Proof. Let F = {an−1b | n ≥ 1}. Clearly, ℓ is constant in this string family: the L-system
Ln = (V, φ, τ, s, d, n) where V = {a, b}, φ = {a → a, b → ab}, τ = {a → a, b → b}, s =
b, and d = n−1 produces each string in F by changing only the value of n and d accordingly.
Note that these L-systems are not prolongable on the axiom.

For the sake of contradiction, suppose that ℓm = O(1) in F . Let Ln = (Σn, φn, τn, c, dn, n)
be the the smallest c-prolongable system generating an−1b. Because ℓm = O(1), there exists
a constant C satisfying that |Σn| < C and width(φn) < C for every n. Observe that it is
only necessary to have one symbol c′ ∈ Σn with τn(c′) = b because there is only one b in
an−1b, so w.l.o.g. assume that b ∈ Σn and τn(b) = b. As the system is c-prolongable, each
level is a prefix of the next one. This implies that the morphism should be iterated until b
appears for the first time, and then we can safely extract the prefix. This must happen in the
first C iterations of the morphism; otherwise, b is not reachable from C (i.e., if an iteration
does not yield a new symbol, then no new symbols will appear since then, and there are less
than C symbols). But in the first C iterations, we cannot produce a string longer than the
constant CC . For sufficiently large n, this implies that the symbol b, if it is reachable, will
appear for the first time before the n-th position, which is a contradiction. ◀

Because we used the identity coding in the proof above, we can obtain the following
corollary.

▶ Corollary 16. There exists a string family where ℓd = o(ℓm).

We can prove a similar result for uniform morphisms.

▶ Proposition 17. There exists a string family where ℓu = o(ℓm).

Proof. It is not difficult to see that ℓu is constant in the family {a2k

b | k ≥ 0}: consider the
axiom s = ab and the rules a → aa, b → bb, the level d = k and the prefix length n = 2k + 1.
A similar argument to the one of Lemma 15 yields that ℓu = o(ℓm) for this other string
family. ◀

Further, we can find a concrete asymptotic gap between ℓ and ℓm in the string family of
the proof of the previous lemma.

▶ Lemma 18. There exists a string family where ℓm = Ω(ℓ log n/ log log n).

Proof. Let F = {an−1b | n ≥ 1}. Recall that ℓ = O(1) in this family. Let k = |Σ| and
t = width(φ) obtained from the morphism of the smallest c-prolongable system generating
an−1b (we assume again that the only symbol mapped to b by the coding is b). In the
first k iterations, b must appear (as in the previous proof) and cannot be deleted in the
following levels, so it cannot appear before position n. Hence, tk ≥ n, which implies
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k ≥ logt n. By definition, ℓm ≥ k ≥ logt n and ℓm ≥ t, so ℓm ≥ max(t, logt n). The solution
to the equation t = logt n is the smallest value that max(t, logt n) can take for t ∈ [2..n].
This value is Ω(log n/W (log n)) where W (x) is the Lambert W function, and it holds that
W (log n) = Θ(log log n). Therefore, ℓm = Ω(ℓ log n/ log log n) in this string family. ◀

As a corollary, we obtain the following result.

▶ Corollary 19. There exists a string family where ℓm = Ω(ℓd log n/ log log n).

We now show that if we remove the coding from prolongable L-systems, which corresponds
to the variant ℓp, we end with a much worse measure. We change the usual alphabet for
clarity of presentation.

▶ Lemma 20. There exists a string family where ℓp = Ω(ℓm
√

n).

Proof. We prove that ℓp = Θ(n) whereas ℓm = O(
√

n) on F = {0n−11 | n ≥ 2}. Any
prolongable morphism with an identity coding generating 0n−11 must have the rule 0 →
0n−11, which implies ℓp = Θ(n). The reason is that if the system is prolongable, but it has
no coding, then the axiom must be 0, and in the prolongable rule 0 → 0w, if |φ(0)| ≤ n,
then the non-empty string w could only contain 0’s and 1’s, otherwise undesired symbols
would appear in the final string because the starting level is a prefix of the final level. If w

does not contain 1’s, then 1 is unreachable from 0. If w contains a 1, then the first of them
should be at position n.

On the other hand, we can construct an a-prolongable morphism, with τ(1) = 1 and
τ(a) = 0 for every other symbol a ̸= 1 as follows: Let n − 1 = k⌊

√
n − 1⌋ + j with

⌊
√

n − 1⌋ > 3, k > 1, 0 ≤ j < ⌊
√

n − 1⌋ (k and j integers). We can assume n is sufficiently
big so the requirements are satisfied. Then, define the following rules

a → ab

b → ck−1d

c → 0⌊
√

n−1⌋−1

d → 0⌊
√

n−1⌋−3+j1.

The first four levels are

φ0(a) = a

φ1(a) = ab

φ2(a) = abck−1d

φ3(a) = abck−1d0(⌊
√

n−1⌋−1)(k−1)0⌊
√

n−1⌋−3+j1,

and it holds that

|φ3(a)| = 3 + (k − 1) + (⌊
√

n − 1⌋ − 1)(k − 1) + (⌊
√

n − 1⌋ − 3 + j) + 1 = n.

Hence, τ(φ3(a)) = 0n−11. The system L = ({a, b, c, d, 0, 1}, φ, τ, a, 3, n}) generates 0n−11 as
required for n bigger than some constant. The size of the system is clearly O(

√
n). Thus,

the claim holds. ◀

By using the same family above, the following corollary holds.

▶ Corollary 21. There exists a string family where ℓp = Ω(ℓdn).
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It is surprising that this weak measure ℓp can be much smaller than δ for some string
families. This can be deduced from Lemma 7. On the other hand, it does not hold that
ℓp = O(g) for any string family, because g = Θ(log n) on {0n−11 | n ≥ 1}.

▶ Corollary 22. The variant ℓp is uncomparable to the measures δ and g.

If we restrict L-systems to be expanding, that is, with all its rules having a length of at
least 2, we also end with a weaker measure. This shows that, in general, it is not possible to
transform L-systems into expanding ones without incurring an increase in size.

▶ Lemma 23. There exists a string family where ℓ = o(ℓe).

Proof. Let F = {akba2k | k ≥ 0}. Clearly ℓ is constant in F : the L-system ({a, b, c}, {a →
aa, b → cb, c → c}, {a → a, b → b, c → a}, ba, d = k, n = 2k + k + 1) produces akba2k and
stays constant-size as k (and d and n) grows.

Suppose that ℓe is also constant in F . Then there is a constant C such that the minimal
expanding L-systems generating the strings in this family have at most C rules, each one of
length at most C. Without loss of generality, assume that for each of these systems, the only
symbol mapped to b by the coding is b. Also, assume that the axiom is a single symbol a0.
Note that because the systems are expanding with rules of size at most C, their level must
be d ≥ logC 2k = k

log2 C .
Let a0, a1, . . . , ad be the sequence of the first symbols of φi(a0) for i ≤ d. By the

pigeonhole principle, for sufficiently big values of k (and consequently big values of d), this
sequence has a period of length q starting from ap, with p + q ≤ C ≤ d. Then there exist
indexes t and j such that t = d − jq and p ≤ t < p + q. By the q-periodicity of the sequence
starting at at, it is clear that φq(at) = atw for some w ̸= ε (because the morphism is
expanding), so φq is prolongable on at. This implies that φiq(at) is a prefix of φjq(at) for
i ≤ j. As before, if b is reachable from at via φq, that must happen in the first C iterations,
so φCq(at) contains a b, and so does φjq(at), which is a prefix of φd(a0). This implies that
φd(a0) contains a b before position CCq, which is bounded by CC2 , a contradiction for
sufficiently long strings in the family. So it has to be that b is not reachable via φq from
at, but this is also a contradiction for sufficiently long strings because φjq(at) is a prefix of
φd(a0) of length at least 2d−t = ω(k), yielding too many symbols not mapped to b before
the first b at level d. Thus, ℓe cannot be O(1) in F . ◀

We summarize the results of this section in Figure 3. Overall, we have shown that imposing
restrictions on the length of the rules of an L-system or forcing them to be prolongable
wildly impacts their compression power. We have not yet found an example where ℓd could
be asymptotically smaller than ℓ, which would prove that the coding contributes to the
measure ℓ in a fundamental way (the purpose of the coding is to make ℓ constant in the case
of prefixes of general morphic words, but it is unknown if it is really needed). We conjecture
that such a family exists and the coding is necessary.

8 Conclusions and open questions

The measure ℓ is arguably a strong reachable repetitiveness measure, which can break the
limits of δ (a measure considered a stable lower bound for repetitiveness) by a wide margin
(a factor of

√
n). On the other hand, however, ℓ can be asymptotically weaker than the space

reached by several compressors based on run-length context-free grammars, many Lempel-Ziv
variants, and the Burrows-Wheeler transform. Only the size of context-free grammars is an
upper bound to ℓ. This suggests that the self-similarity exploited by L-systems is mostly
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ℓ ℓe ℓu ℓa

ℓm ℓp

ℓd g

min(ℓ, b)ν

bδ

Figure 3 Asymptotic relations between ℓ-variants and other relevant measures. A black arrow
from v1 to v2 means that it always holds that v1 = O(v2). A double black arrow from v1 to v2

means that it also exists a string family where v1 = o(v2). A dashed arrow from v1 to v2 means that
there exists a family where v1 = o(v2).

independent of the source of repetitiveness exploited by other compressors and measures,
which build on copy-paste mechanisms. We also show that several attempts to simplify or
restrict L-systems lead to weaker measures.

A relevant question about L-systems is whether they can be useful for building compressed
sequence representations that support direct access. More formally, can we build an O(ℓ)-
space representation of a string w[1 : n] providing random access to any position of the
string in O(polylog n) time? The closest result (as far as we know) is an algorithm designed
by Shallit and Swart [25], which computes φd(a)[i] in time bounded by a polynomial in
|Σ|, width(φ), log d and log i. It uses more space and takes more time than our aim. The
main bottleneck is having to store the incidence matrix of the morphism and compute its
powers. As suggested by Shallit and Swart, this could be solved by finding closed forms
for the growth functions (recurrences) of each symbol. If this approach were taken, these
formulas should be easily described within O(ℓ) space.

In terms of improving compression, on the other hand, the recent measure ν [19] aims to
unify the repetitiveness induced by self-similarity and by explicit copies. This measure is the
smallest size of a NU-system, a natural way to combine L-systems (with minimum size ℓ)
with macro schemes (with minimum size b ≥ δ). In line with our finding that ℓ and δ are
mostly orthogonal, we prove in this paper that ν is strictly more powerful than both ℓ and b,
which makes ν the unique smallest reachable measure of repetitiveness to date.

There are several open questions related to NU-systems and ν. For example, does it
hold that ν = Ω(ℓ log log n/ log n), or ν = Ω(δ/

√
n), for every string family? Is ν = O(γ),

or at least o(γ log(n/γ)), for every string family? (recall that γ and o(γ log(n/γ)) space is
unknown to be reachable [9]). And towards having a practical compressor based on ν, can
we decompress a NU-system efficiently?

In a more general perspective, this paper pushes a little further the discussion of what
we understand by a repetitive string. Intuitively, repetitiveness is about copies, and macro
schemes capture those copies pretty well, but there are other aspects in a text that could be
repeated besides explicit copies, such as general patterns and the relative ordering of symbols.
Macro schemes capture explicit copies, L-systems capture self-similarity, and NU-systems
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capture both. What other regularities could we exploit when compressing strings, keeping
the representation (more or less) simple and the associated repetitiveness measure (hopefully
efficiently) computable?
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Abstract
Suppose we are asked to index a text T [0..n − 1] such that, given a pattern P [0..m − 1], we can
quickly report the maximal substrings of P that each occur in T at least k times. We first show how
we can add O(r log n) bits to Rossi et al.’s recent MONI index, where r is the number of runs in the
Burrows-Wheeler Transform of T , such that it supports such queries in O(km log n) time. We then
show how, if we are given k at construction time, we can reduce the query time to O(m log n).
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1 Introduction

In his foundational text Compact Data Structures: A Practical Approach [9, Section 11.6.1],
Navarro posed the following problem:

“Assume we have the suffix tree of a collection of genomes T [0..n − 1]. We then
receive a short DNA sequence P [0..m − 1] and want to output all the maximal
substrings of P that appear at least k times in T . . . Those substrings of P are likely
to have biological significance.”1

He described how to solve the problem with a suffix tree for T in O(m polylog(n)) time.
Since T is a collection of genomes, it is likely to be highly repetitive and the theoretically
best suffix-tree implementation is likely to be the O(r log(n/r))-space one by Gagie, Navarro
and Prezza [5], where r is the number of runs in the Burrows-Wheeler Transform (BWT)
of T . That full data structure is complicated, however, and has never been implemented.

1 We have changed T to T [0..n− 1] and P [1..m] to P [0..m− 1] for consistency with the rest of this paper,
and omitted a parameter bounding from below the length of the substrings (since we can filter them
afterwards).

© Igor Tatarnikov, Ardavan Shahrabi Farahani, Sana Kashgouli, and Travis Gagie;
licensed under Creative Commons License CC-BY 4.0

34th Annual Symposium on Combinatorial Pattern Matching (CPM 2023).
Editors: Laurent Bulteau and Zsuzsanna Lipták; Article No. 26; pp. 26:1–26:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:igor.tatarnikov@dal.ca
https://orcid.org/0000-0001-5728-7493
mailto:ardavan.shahrabi@dal.ca
mailto:sana.kashgouli@dal.ca
mailto:travis.gagie@dal.ca
https://orcid.org/0000-0003-3689-327X
https://doi.org/10.4230/LIPIcs.CPM.2023.26
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


26:2 MONI Can Find k-MEMs

Very recently, Navarro [10] also gave solutions not based on a suffix tree, with the following
bounds:

O(grl) space and O(km2 logϵ n) query time;
O(δ log(n/δ)) space and O(m log m(log m + k logϵ n)) query time;
O(g) space and O(m2 log2+ϵ n) query time when k = ω(log2 n);
O(γ log(n/γ)) space and O(m log m log2+ϵ n) query time when k = ω(log2 n).

We refer readers to Navarro’s paper and the references therein for definitions of grl , δ, g

and γ.
In this paper we first show how we can add O(r log n) bits to Rossi et al.’s [13] recent

MONI index to obtain a solution with O(km log n) query time. We then show how, if we are
given k at construction time, we can reduce the query time to O(m log n), simultaneously
using less space than Gagie et al.’s compressed suffix tree and less time than Navarro’s
solutions. The rest of the paper is laid out as follows: in Section 2 we review MONI in
enough depth to build on it; in Section 3 we show how we can extend ϕ queries to support
sequential access to the LCP array; in Section 4 we show how to use ϕ and ϕ−1 queries and
LCP access to obtain a solution with O(km log n) query time; in Section 5 we show how, if
we are given k at construction time, we can precompute some answers, reducing the query
time to O(m log n); and we conclude in Section 6. For the sake of brevity we assume readers
are familiar with the concepts in Navarro’s text.

2 MONI

Bannai, Gagie and I [1] designed an index for T that takes O(r log n) bits plus the space
needed to support fast random access to T , and lists all the maximal exact matches (MEMs)
of P with respect to T – that is, all the substrings P [i..j] of P occurring in T such that
i = 0 or P [i − 1..j] does not occur in T , or j = m − 1 or P [i..j + 1] does not occur in T – in
O(m log log n) time plus the time needed for O(m) random accesses to T . MEMs are widely
used in DNA alignment [8] and they are the substrings of P Navarro asks for when k = 1.
Generalizing to arbitrary k, we refer to the substrings he asks for as k-MEMs.

Bannai et al. did not give an efficient construction algorithm or an implementation, but
Rossi et al. later did. They called their implementation MONI, the Finnish word for “multi”,
since it is intended to store a multi-genome reference. Boucher et al. [2] then gave a version of
MONI that processes P online using longest common extension (LCE) queries on T instead
of random access. We can support those LCE queries in O(log n) time with a balanced
straight-line program for T , which in practice takes significantly less space than the rest of
MONI.

We now sketch how Boucher et al.’s version of MONI works, incorporating ideas from
Nishimoto and Tabei [12] and Brown, Gagie and Rossi [4] about replacing rank queries by
table lookup and assuming we have an LCE data structure. Suppose

T = GATTACAT#AGATACAT#GATACAT#GATTAGAT#GATTAGATA$

with $ ≺ # ≺ A ≺ · · · ≺ T, and consider Table 1, in which the permutation FL is just the
inverse of the more familiar permutation LF.

For each of the value j between 0 and r − 1 = 13, we conceptually extract from this table
the starting and ending positions head(j) and tail(j) of run j in the BWT, SA[head(j)],
SA[tail(j)], BWT[head(j)], LF[head(j)] and the rank of the predecessor of LF[head(j)] in
the set

{head[0], . . . , head[r − 1]} .
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Table 1 The full table from which we conceptually start when building MONI for our example
text T = GATTACAT#AGATACAT#GATACAT#GATTAGAT#GATTAGATA$.

i SA[i] LCP[i] lexicographically ith cyclic shift of T BWT[i] LF(i) FL(i)

0 44 0 $GATTACAT#AGATACAT#GATACAT#GATTAGAT#GATTAGATA A 5 29
1 8 0 #AGATACAT#GATACAT#GATTAGAT#GATTAGATA$GATTACAT T 32 11
2 17 1 #GATACAT#GATTAGAT#GATTAGATA$GATTACAT#AGATACAT T 33 28
3 25 4 #GATTAGAT#GATTAGATA$GATTACAT#AGATACAT#GATACAT T 34 30
4 34 9 #GATTAGATA$GATTACAT#AGATACAT#GATACAT#GATTAGAT T 35 31
5 43 0 A$GATTACAT#AGATACAT#GATACAT#GATTAGAT#GATTAGAT T 36 0
6 4 1 ACAT#AGATACAT#GATACAT#GATTAGAT#GATTAGATA$GATT T 37 22
7 13 5 ACAT#GATACAT#GATTAGAT#GATTAGATA$GATTACAT#AGAT T 38 23
8 21 8 ACAT#GATTAGAT#GATTAGATA$GATTACAT#AGATACAT#GAT T 39 24
9 30 1 AGAT#GATTAGATA$GATTACAT#AGATACAT#GATACAT#GATT T 40 25
10 39 4 AGATA$GATTACAT#AGATACAT#GATACAT#GATTAGAT#GATT T 41 26
11 9 5 AGATACAT#GATACAT#GATTAGAT#GATTAGATA$GATTACAT# # 1 27
12 6 1 AT#AGATACAT#GATACAT#GATTAGAT#GATTAGATA$GATTAC C 22 32
13 15 3 AT#GATACAT#GATTAGAT#GATTAGATA$GATTACAT#AGATAC C 23 33
14 23 6 AT#GATTAGAT#GATTAGATA$GATTACAT#AGATACAT#GATAC C 24 34
15 32 11 AT#GATTAGATA$GATTACAT#AGATACAT#GATACAT#GATTAG G 25 35
16 41 2 ATA$GATTACAT#AGATACAT#GATACAT#GATTAGAT#GATTAG G 26 36
17 11 3 ATACAT#GATACAT#GATTAGAT#GATTAGATA$GATTACAT#AG G 27 38
18 19 10 ATACAT#GATTAGAT#GATTAGATA$GATTACAT#AGATACAT#G G 28 39
19 1 2 ATTACAT#AGATACAT#GATACAT#GATTAGAT#GATTAGATA$G G 29 42
20 27 4 ATTAGAT#GATTAGATA$GATTACAT#AGATACAT#GATACAT#G G 30 43
21 36 7 ATTAGATA$GATTACAT#AGATACAT#GATACAT#GATTAGAT#G G 31 44
22 5 0 CAT#AGATACAT#GATACAT#GATTAGAT#GATTAGATA$GATTA A 6 12
23 14 4 CAT#GATACAT#GATTAGAT#GATTAGATA$GATTACAT#AGATA A 7 13
24 22 7 CAT#GATTAGAT#GATTAGATA$GATTACAT#AGATACAT#GATA A 8 14
25 31 0 GAT#GATTAGATA$GATTACAT#AGATACAT#GATACAT#GATTA A 9 15
26 40 3 GATA$GATTACAT#AGATACAT#GATACAT#GATTAGAT#GATTA A 10 16
27 10 4 GATACAT#GATACAT#GATTAGAT#GATTAGATA$GATTACAT#A A 11 17
28 18 11 GATACAT#GATTAGAT#GATTAGATA$GATTACAT#AGATACAT# # 2 18
29 0 3 GATTACAT#AGATACAT#GATACAT#GATTAGAT#GATTAGATA$ $ 0 19
30 26 5 GATTAGAT#GATTAGATA$GATTACAT#AGATACAT#GATACAT# # 3 20
31 35 8 GATTAGATA$GATTACAT#AGATACAT#GATACAT#GATTAGAT# # 4 21
32 7 0 T#AGATACAT#GATACAT#GATTAGAT#GATTAGATA$GATTACA A 12 1
33 16 2 T#GATACAT#GATTAGAT#GATTAGATA$GATTACAT#AGATACA A 13 2
34 24 5 T#GATTAGAT#GATTAGATA$GATTACAT#AGATACAT#GATACA A 14 3
35 33 10 T#GATTAGATA$GATTACAT#AGATACAT#GATACAT#GATTAGA A 15 4
36 42 1 TA$GATTACAT#AGATACAT#GATACAT#GATTAGAT#GATTAGA A 16 5
37 3 2 TACAT#AGATACAT#GATACAT#GATTAGAT#GATTAGATA$GAT T 42 6
38 12 6 TACAT#GATACAT#GATTAGAT#GATTAGATA$GATTACAT#AGA A 17 7
39 20 9 TACAT#GATTAGAT#GATTAGATA$GATTACAT#AGATACAT#GA A 18 8
40 29 2 TAGAT#GATTAGATA$GATTACAT#AGATACAT#GATACAT#GAT T 43 9
41 38 5 TAGATA$GATTACAT#AGATACAT#GATACAT#GATTAGAT#GAT T 44 10
42 2 1 TTACAT#AGATACAT#GATACAT#GATTAGAT#GATTAGATA$GA A 19 37
43 28 3 TTAGAT#GATTAGATA$GATTACAT#AGATACAT#GATACAT#GA A 20 40
44 37 6 TTAGATA$GATTACAT#AGATACAT#GATACAT#GATTAGAT#GA A 21 41
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Table 2 The values we extract from Table 1, with the last two columns sorted.

j head(j) SA[head(j)] tail(j) SA[tail(j)] BWT[head(j)] µ(j) finger(j)

0 0 44 0 44 A 0 0
1 1 8 10 39 T 1 1
2 11 9 11 9 # 2 1
3 12 6 14 23 C 3 1
4 15 32 21 36 G 5 1
5 22 5 27 10 A 6 1
6 28 18 28 18 # 12 3
7 29 0 29 0 $ 17 4
8 30 26 31 35 # 19 4
9 32 7 36 42 A 22 5

10 37 3 37 3 T 25 5
11 38 12 39 20 A 32 9
12 40 29 41 38 T 42 13
13 42 2 44 37 A 43 13

In practice we can compute the values directly without building Table 1, using prefix-free
parsing [3].

We build Table 2 with these values but we sort the last two columns, which we refer to
as µ(j) and finger(j). An equivalent way to define µ(j) and finger(j), illustrated in Table 1,
is to draw boxes corresponding to the runs in the BWT, permute those boxes according to
LF, and write their starting positions in order as the µ(j) values and the numbers of the
runs in the BWT covering their starting positions as the finger(j) values. Storing Table 2
takes about

2r lg(n/r) + 2r lg n + r lg σ + 2r

bits, where σ is the size of the alphabet. (We do not actually need to store tail(j) =
head(j + 1) − 1, of course, but we include it in Table 2 to simplify our explanation.) It is
within a reasonable constant factor of the most space-efficient implementation and simple to
build.

For each suffix P [i..m − 1] of P from shortest to longest, MONI finds the length ℓi of
the longest prefix P [i..i + ℓi − 1] of P [i..m − 1] that occurs in T , the lexicographic rank qi

of a suffix of T starting with P [i..i + ℓi − 1], the starting position SA[qi] of that suffix in T ,
and the row ji of Table 2 such that head(ji) is the predecessor of qi in that column. We
note that the (pos, len) pairs (SA[q0], ℓ0), . . . , (SA[qm−1], ℓm−1) are the matching statistics
MS[0..m − 1] of P with respect to T .

Suppose we know i, ℓi, qi, SA[qi] and ji, and we want to find ℓi−1, qi−1, SA[qi−1]
and ji−1. If BWT[head(ji)] = P [i − 1] then we perform an LF step, as we describe in
a moment. If BWT[head(ji)] ̸= P [i − 1] then we find the last row j′

i above row ji with
BWT[head(j′

i)] = P [i − 1], and the first row j′′
i below row ji with BWT[head(j′′

i )] = P [i − 1],
using rank and select queries on column BWT[head(j)] in Table 2. We use LCE queries to
check whether T [SA[qi]..n − 1] has a longer common suffix with T [SA[tail(j′

i)]..n − 1] or with
T [SA[head(j′′

i )]..n − 1] and, depending on that comparison, either reset

ℓi = LCE(SA[qi], SA[tail(j′
i)])

qi = tail(j′
i)

SA[qi] = SA[tail(j′
i)]

ji = j′
i



I. Tatarnikov, A. Shahrabi Farahani, S. Kashgouli, and T. Gagie 26:5

or reset

ℓi = LCE(SA[qi], SA[head(j′′
i )])

qi = head(j′′
i )

SA[qi] = SA[head(j′′
i )]

ji = j′′
i .

Now BWT[head(ji)] = P [i − 1], so we can proceed with the LF step.
For example, suppose P [0..11] = TAGATTACATTA, i = 2 and we have already found ℓ2 = 8

(because GATTACAT occurs in T but GATTACATT does not), q2 = 29, SA[q2] = 0 and j2 = 7.
Since BWT[head(7)] = $ ̸= P [1] = A, we find j′

2 = 5 and j′′
2 = 9 and compare

LCE(0, SA[tail(5)]) = LCE(0, 10) = 3

against

LCE(0, SA[head(9)]) = LCE(0, 7) = 0 .

Since the former LCE is longer, we set ℓ2 = 3, q2 = 27, SA[q2] = 10 and j2 = 5.
To perform an LF step with Table 2 when we know i, ℓi, qi, SA[qi] and ji, we first set

ℓi−1 = ℓi + 1
qi−1 = µ(π(ji)) + qi − head(ji)

SA[qi−1] = SA[qi] − 1 ,

where π is the permutation on {0, . . . , r − 1} that stably sorts the column BWT[head(j)]. If
we keep BWT[head(j)] in a wavelet tree then we have fast access to π.

For our example, consider i = 2, ℓ2 = 3, q2 = 27, SA[q2] = 10 and j2 = 5. Since
BWT[head(5)] is the second A in the column BWT[head(j)] and there are 4 characters in
the column lexicographically strictly less than A, π(5) = 5 and µ(5) = 6, so we set ℓ1 = 4,
q1 = 6 + 27 − 22 = 11 and SA[11] = 9. Notice π is similar to an LF mapping for the sequence
obtained by sampling one character from each run of the BWT (but in our example π has
a fixed point at 5); in fact, it permutes the coloured boxes in Table 1 according to LF. It
follows that µ(π(ji)) = LF(head(ji)). Since LF maintains the relationship between elements
in the same box,

LF(qi) − LF(head(ji)) = qi − head(ji) ;

substituting and rearranging, we obtain our formula for qi−1.
The last thing left for us to do during an LF step is find ji−1. For this, we use the

finger(j) column. By construction, head(finger(π(ji))) is the predecessor of LF(head(ji)) in
the set

{head[0], . . . , head[r − 1]} .

Therefore, since qi−1 = LF(qi) ≥ LF(head(ji)), we can find the row ji−1 of Table 2 such that
head(ji−1) is the predecessor of qi−1 in that column, by starting an exponential search at
row finger(π(ji)). This takes O(log r) time in the worst case and in practice it takes constant
time. Nishimoto and Tabei showed how to guarantee it takes constant time at the cost of
increasing the size of Table 2 slightly.

For more formal discussions, we refer readers to previous papers on MONI [13] and the
r-index [5, 12, 4, 11].

CPM 2023
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Table 3 The table we use for ϕ queries and access to the LCP.

j SA[head(j)] SA[tail(j)] LCP[head(j)] finger(j)

0 0 18 3 9
1 2 38 1 12
2 3 42 2 12
3 5 36 0 12
4 6 9 1 7
5 7 35 0 12
6 8 44 0 13
7 9 39 5 12
8 12 3 6 2
9 18 10 11 7

10 26 0 5 0
11 29 20 2 9
12 32 23 11 9
13 44 37 0 12

3 LCP access

We can support ϕ queries with table lookup as well: for each run BWT[i..j] in the BWT,
we store SA[i] and SA[(i − 1) mod n] as a row; we sort the rows by their first components;
and we add to each row the number of the row containing the predecessor of the second
component in the first column. Abusing notation slightly, we refer to the columns of the
resulting table as SA[head(j)], SA[tail(j)] and finger(j). Table 3 is for our running example,
augmented with a column LCP[head(j)] that stores the length of the longest common prefix
of T [SA[head(j)]..n − 1] and T [SA[tail(j)]..n − 1]. Since we are storing the row containing
the predecessor of each entry in SA[tail(j)] in the column SA[head(j)], we can encode each
entry in SA[tail(j)] as the difference between it and its predecessor in SA[head(j)].

Analysis shows the table then takes about 3r lg(n/r) + r lg r bits: we essentially gap-code
the interleaving of column SA[head(j)] and the sorted column SA[tail(j)], which consists of 2r

sorted numbers between 0 and n−1 and thus takes about 2r lg(n/r) bits; Kärkkäinen, Kempa
and Piątkowski [6] showed that the entries in LCP[head(j)] sum to O(n log r) so, by Jensen’s
Inequality, we can store them in a total of about r lg O(n log n)

r = r lg(n/r) + r lg lg r + O(r)
bits; and finger(j) takes about r lg r bits.

To see how we use Table 3 to answer ϕ queries, suppose we know that the predecessor of
24 in SA[head(j)] is in row 9. Then we have

ϕ(24) = SA[tail(9)] + 24 − SA[head(9)] = 10 + 24 − 18 = 16 .

We know that the predecessor of 10 in SA[head(j)] is in row finger(9) = 7, but the predecessor
of 16 could be in a later row. Again, we perform an exponential search starting in row
finger(9) = 7 and find the predecessor 12 of 16 in row 8. Then we have

ϕ(16) = SA[tail(8)] + 16 − SA[head(8)] = 3 + 16 − 12 = 7 .

Looking at rows 32 to 34 in Table 1, we see that indeed ϕ(24) = 16 and ϕ(16) = 7. This
works because, similar to the equation for LF, if BWT[j − 1] = BWT[j] then ϕ(SA[j] − 1) =
ϕ(SA[j]) − 1. Again, for more formal discussions, we refer readers to previous papers on the
r-index [5, 12, 4, 11].
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We do not know how to support random access to the LCP array quickly in O(r log n)
bits, but we can use Table 3 to provide a kind of sequential access to it. Specifically, as we
use ϕ to enumerate the values in the SA – without necessarily knowing the positions of the
cells of the SA those values appear in – we can use similar computations to enumerate the
corresponding values in the LCP array. In our example, since the predecessor 18 of 24 in
SA[head(j)] is in row 9, we can compute the LCP value corresponding to the SA value 24 as

LCP[SA−1[24]] = LCP[head(9)] + SA[head(9)] − 24 = 11 + 18 − 24 = 5 .

Checking this, we see that LCP[SA−1[24]] = LCP[34] = 5. Since the predecessor 12 of
ϕ(24) = 16 in SA[head(j)] is in row 8 of Table 3,

LCP[SA−1[16]] = LCP[head(8)] + SA[head(8)] − 16 = 6 + 12 − 16 = 2 .

Checking this, we see that LCP[SA−1[16]] = LCP[33] = 2.
Notice we do not use the SA row numbers 34 and 33 to compute the LCP value, as

the SA value 24 is sufficient. We could avoid using the inverse suffix array SA−1 in our
formula by writing LCP[SA−1[24]] as PLCP[24], for example, where PLCP[0..n − 1] denotes
the permuted LCP array [7] of T . The kind of sequential access we obtain to the LCP is
actually random access to the PLCP array, and it is easier to explain why it works from that
perspective – because if BWT[j − 1] = BWT[j] then PLCP[SA[j] − 1] = PLCP[SA[j]] + 1.2
Nevertheless, we present our results in terms of the LCP and SA−1 because we will use them
later in conjunction with ϕ queries to enumerate the values in LCP intervals.

Symmetric to using Table 3 to support ϕ queries, we can use a table to support ϕ−1

queries. In fact, the (SA[head(j)], SA[tail(j)]) pairs in the table are the same, but sorted
by their second components; now we add to each row the number of the row containing
the predecessor in the second column of the first component. Since we are storing the
row containing the predecessor of each entry in SA[head(j)] in the column SA[tail(j)], we
can encode each entry in SA[head(j)] as the difference between it and its predecessor in
SA[tail(j)]. Analysis then shows the table takes about 2r lg(n/r) + r lg r bits. Table 4 is
for supporting ϕ−1 queries on our running example. For example, if we know that the
predecessor of 7 in SA[tail(j)] is in row 1, then we can compute

ϕ−1(7) = SA[head(1)] + 7 − SA[tail(1)] = 12 + 7 − 3 = 16

and we can find the row containing the predecessor of 16 in SA[tail(j)] with an exponential
search starting at row finger(1) = 3 (and ending in the same row). We can then compute

ϕ−1(16) = SA[head(3)] + 16 − SA[tail(3)] = 18 + 16 − 10 = 24

and we can find the row 6 containing the predecessor of 24 in SA[tail(j)] with an exponential
search starting at row finger(3) = 4.

2 The formula for PLCP has a +1 where the formula for ϕ has a −1,

ϕ(SA[j]− 1) = ϕ(SA[j])− 1
PLCP[SA[j]− 1] = PLCP[SA[j]] + 1 ,

because if BWT[j− 1] = BWT[j] then moving from j to LF (j) decrements the SA entry but increments
the LCP entry.

CPM 2023
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Table 4 The table we use for ϕ−1 queries.

j SA[head(j)] SA[tail(j)] finger(j)

0 26 0 6
1 12 3 3
2 6 9 1
3 18 10 4
4 0 18 0
5 29 20 6
6 32 23 6
7 7 35 11
8 5 36 1
9 44 37 13

10 2 38 0
11 9 39 2
12 3 42 1
13 8 44 1

With these two O(r log n)-bit tables, given k, j and SA[j], we can compute SA[j − k +
1..j + k − 1] and LCP[j − k + 1..j + k − 1] in O(k log r) ⊆ O(k log n) time. (Actually, we can
achieve that bound even without the finger(j) columns in the tables, but Brown et al.’s results
suggest those will provide a significant speedup in practice.) With Nishimoto and Tabei’s
modification, we can reduce that to O(k) time while keeping the tables in O(r log n) bits;
this would slightly improve the time bound we give in the next section to O(m(k + log n)).

▶ Lemma 1. We can store two O(r log n)-bit tables such that, given k, j and SA[j], we can
compute SA[j − k + 1..j + k − 1] and LCP[j − k + 1..j + k − 1] in O(k log n) time.

4 Finding k-MEMs with Lemma 1

We store the tables described in Sections 2 and 3 for T , which add O(r log n) bits to MONI.
Given P and k, we find the MEMs of P with respect to T as before but then, from each
SA[qi], we use Lemma 1 to find LCP[qi − k + 2..qi + k − 1] in O(k log n) time.

For example, suppose that P [0..11] = TAGATTACATTA, as in Section 2, and k = 3. Starting
with q12 = 22, with MONI we compute the values shown in columns qi, SA[qi], ℓi and
BWT[qi] of Table 5. (It is important that we choose qi to be one of the endpoints of a run,
since we store SA entries only at those positions, but this is true also for MONI.) The crossed
out values are the ones we replace because BWT[qi] ̸= P [i]. If we look at the original SA[qi]
and ℓi values, before any replacements, we obtain the matching statistics

MS[0..11] = (38, 5), (9, 4), (0, 8), (1, 7), (2, 6), (20, 5), (21, 4), (22, 3), (1, 4), (2, 3), (3, 2), (4, 1)

of P with respect to T , with (pos, len) pair MS[i] indicating the starting position MS[i].pos
in T of an occurrence of the longest prefix of P [i..m − 1] that occurs in T , and the length
MS[i].len of that prefix.

From the matching statistics, it is easy to compute the MEMs P [0..4] = TAGAT, P [2..9] =
GATTACAT and P [8..11] = ATTA of P with respect to T : a MEM starts at any position i

such that i = 0 or MS[i − 1].len ≤ MS[i].len. For each i, after we compute qi, SA[qi] and
ℓi (and before we replace them, if we do), we use Lemma 1 to compute the sub-interval
LCP[qi − 1..qi + 2] of length 4 = 2k − 2.
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Table 5 With MONI we compute the values shown in columns qi, SA[qi], ℓi and BWT[qi] on the
left side of the table, and from those we can compute the matching statistics and MEMs of P [0..11] =
TAGATTACATTA with respect to T [0..44] = GATTACAT#AGATACAT#GATACAT#GATTAGAT#GATTAGATA$.
After we have computed the values on the left side of the table, we can also compute the values
in columns LCP[qi − k + 2..qi + k − 1], Li and min(ℓi, Li) on the right side of the table, and from
those we can compute the 3-MEMs of P with respect to T .

i P [i] qi SA[qi] ℓi BWT[qi] LCP[qi − 1..qi + 2] Li min(ℓi, Li)
12 22 5 0 A
11 A 6 4 1 T [0, 1, 5, 8] 5 1
10 T 37 3 2 T [1, 2, 6, 9] 6 2
9 T 42 2 3 A [5, 1, 3, 6] 3 3
8 A 14 19 23 1 2 4 C G [10, 2, 4, 7] 4 4
7 C 24 22 3 A [4, 7, 0, 3] 4 3
6 A 8 21 4 T [5, 8, 1, 4] 5 4
5 T 37 39 3 20 5 T A [6, 9, 2, 5] 6 5
4 T 42 2 6 A [5, 1, 3, 6] 3 3
3 A 19 1 7 G [10, 2, 4, 7] 4 4
2 G 27 29 10 0 3 8 A $ [11, 3, 5, 8] 5 5
1 A 10 11 39 9 4 T # [4, 5, 1, 3] 4 4
0 T 41 38 5 T [2, 5, 1, 3] 2 2

We scan each interval LCP[qi − k + 2..qi + k − 1] in O(k) time and find a sub-interval
of length k − 1 such that the minimum LCP value Li in that sub-interval is maximized.
This LCP sub-interval corresponds to a sub-interval of length k in SA[qi − k + 1..qi + k − 1]
containing the starting positions of k suffixes of T – including T [SA[qi]..n − 1] itself – whose
common prefix with T [SA[qi]..n − 1] has the maximum possible length Li.

In our example, we scan each interval in column LCP[qi − 1..qi + 2] of Table 5 and find
the sub-interval of length 2 such that the minimum LCP value Li is maximized. If we check
Table 1, we find that the longest prefix of T [4..44] = ACAT#AGATA . . . that occurs at least 3
times in T indeed has length L11 = 5, the longest prefix of T [3..44] = TACAT#AGATA . . . that
occurs at least 3 times in T indeed has length L10 = 6, and so on.

Since the common prefix of P [i..m − 1] and T [SA[qi]] has the maximum possible length
ℓi, the longest prefix of P [i..m − 1] that occurs at least k times in T has length min(ℓi, Li).
Computing min(ℓi, Li) for each i takes a total of O(km log n) time. The values min(ℓi, Li) are
something like a parameterized version of the lengths in the matching statistics: min(ℓi, Li)
is the length of the longest prefix of P [i..m − 1] that occurs at least k times in T .

We can compute the k-MEMs of P with respect to T from the min(ℓi, Li) values in the
same way we compute MEMs from the lengths in the matching statistics: a k-MEM starts
at any position i such that i = 0 or min(ℓi−1, Li−1) ≤ min(ℓi, Li). In our example,

min(ℓ0, ℓ′
0) ≤ min(ℓ1, ℓ′

1) = 4
min(ℓ1, ℓ′

1) ≤ min(ℓ2, ℓ′
2) = 5

min(ℓ4, ℓ′
4) ≤ min(ℓ5, ℓ′

5) = 5
min(ℓ7, ℓ′

7) ≤ min(ℓ8, ℓ′
8) = 4

and so the k-MEMs are P [0..1] = TA, P [1..4] = AGAT, P [2..6] = GATTA, P [5..9] = TACAT and
P [8..11] = ATTA.

We can compute min(ℓi, Li) as soon as we have computed SA[qi] and ℓi, so we can
compute the k-MEMs of P with respect to T online.
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▶ Theorem 2. Suppose we have MONI for a text T [0..n − 1] whose BWT consists of r runs.
We can add O(r log n) bits to MONI such that, given P [0..m − 1] and k, we can find the
k-MEMs of P with respect to T online in O(k log n) time per character of P .

5 Finding k-MEMs with precomputed values

Suppose the interval of length k that we find in SA for P [i..m − 1], following the procedures
in Section 4, is SA[si..si + k − 1] and BWT[si] = · · · = BWT[si + k − 1] = P [i − 1]. Then
min(ℓi−1, Li−1) = min(ℓi, Li) + 1 and we can find the interval for P [i − 1..m − 1] with an LF
query for si, in O(log n) time. This means we need the results of Section 3 only when at
least one character in BWT[si..si + k − 1] is not equal to P [i − 1].

First, suppose BWT[qi] ̸= P [i − 1]. Following the procedures in Section 2, MONI resets qi

to the endpoint b of a run in the BWT, resets ℓi, and then computes qi−1 = LF(b). Following
the procedures in Section 4, we compute LCP[qi−1 − k + 2..qi−1 + k − 1] and scan it to
compute the interval SA[si−1..si−1 + k − 1] for P [i − 1..m − 1].

If we are given k at construction time, however, then for every endpoint b of a run in the
BWT, we can precompute

the sub-interval of length k − 1 of LCP[LF(b) − k + 2..LF(b) + k − 1] that maximizes the
minimum value L(b) in the sub-interval,
that value L(b).

With this information, we do not need the results of Section 3 for this case either, and
can handle it in O(log n) time as well. Since the sub-interval we store for b starts between
LF(b) − k + 2 and LF(b) + k − 1, we can store it in O(log k) bits as an offset. This means we
store O(r log k) bits on top of at most 2r LCP values, or O(r log n) bits in total.

The remaining case is when BWT[qi] = P [i − 1] but some of the other characters in
BWT[si..si + k − 1] are not equal to P [i − 1]. If BWT[qi] is the end of a run, then we
can proceed as in the previous case in O(log n) time, using our precomputed values for
qi (but without resetting qi and ℓi). Otherwise, we claim we can choose such a character
BWT[b] = P [i − 1] at the end of a run, set

ℓi = min(LCE(SA[qi], SA(b)), ℓi)

and qi = b, and then proceed as in the previous case in O(log n) time, and still be sure of
obtaining the correct k-MEMs of P with respect to T . (Continuing to run MONI with the
new values of qi and ℓi may not give us the correct MEMs, however.) To be able to change
qi and ℓi this way, it is important that we now work online, instead of running MONI on P

and then using the results to find the k-MEMs.
To see why our claim holds, assume our query has worked correctly so far, so

T [SA[qi]..SA[qi] + min(ℓi, Li) − 1] = T [SA[b]..SA[b] + min(ℓi, Li) − 1]

is the longest prefix of P [i..m − 1] that occurs at least k times in T . Therefore, the k-MEMs
starting in P [0..i − 1] are all completely contained in P [0..i + min(ℓi, Li) − 1]. It follows that
resetting

ℓi = min(LCE(SA[qi], SA(b)), ℓi)

and qi = b does not affect the set of k-MEMs we find that start in P [0..i − 1].
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if BWT[si] = · · · = BWT[si + k − 1] = P [i− 1] then
qi−1 ← LF(qi)
ℓi−1 ← ℓi + 1
Li−1 ← Li + 1
si−1 = LF(si)

else
if BWT[qi] ̸= P [i− 1] then

reset qi and ℓi as MONI does
else if BWT[qi] is not at the end of a run

choose b in [si..si + k − 1] with BWT[b] = P [i− 1] at the end of a run
ℓi ← min(LCE(SA[qi], SA[b]), ℓi)
qi ← b

end if
qi−1 ← LF(qi)
ℓi−1 ← ℓi + 1
Li−1 ← L(qi)
si−1 ← LF(qi)− offset(qi)

end if

Figure 1 Pseudo-code for how we find k-MEMs with precomputed values.

Figure 1 shows pseudo-code for how we find k-MEMs with precomputed values. Table 6
shows the offsets and L(b) values for our example, surrounded by coloured boxes on the
right, with each offset indicating how far above LF(b) the sub-interval starts. The coloured
boxes on the left indicate the sub-interval itself and the longest common prefix of the suffixes
starting in the sub-interval of the SA.

For our example, suppose we again start with q12 = 22 and ℓ12 = 0. Since BWT[q12] =
P [11] = A, we set q11 = LF(22) = 6 and ℓ11 = ℓ12 + 1 = 1. The values offset(22) = 0 and
L(22) = 5 in the black rectangle in Table 6 tell us to set s11 = LF(22) − 0 = 6 and L11 = 5.
This means the suffixes of T with starting points in

SA[6..8] = [4, 13, 21]

have a longest common prefix of length 5, which starts with the longest prefix of P [11] that
occurs at least 3 times in T . This longest prefix has length min(ℓ11, L11) = 1 – so it is just
P [11] = A. After this initial setup, we can fill in Table 7 according to the pseudo-code in
Figure 1, with crossed out values again indicating those that are replaced.

▶ Theorem 3. Suppose we have MONI for a text T [0..n − 1] whose BWT consists of r runs.
Given k, we can add O(r log n) bits to MONI such that, given P [0..m − 1], we can find the
k-MEMs of P with respect to T online in O(log n) time per character of P .

6 Conclusion

We have shown, first, how we can add O(r log n) bits to MONI for a text T [0..n − 1], where
r is the number of runs in the BWT of T , such that if we are given k at query time with
P [0..m − 1], then we can find the k-MEMs of P with respect to T online in O(k log n) time
per character of P . We have then shown how, if we are given k at construction time, we can
add O(r log k) bits and at most 2r LCP values – which are O(r log n) bits in total – such
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Table 6 The table showing the precomputed values we use to find 3-MEMs with respect to our
example T = GATTACAT#AGATACAT#GATACAT#GATTAGAT#GATTAGATA$.

i SA[i] LCP[i] lexicographically ith cyclic shift of T BWT[i] LF(i) offset(i) L(i)

0 44 0 $GATTACAT#AGATACAT#GATACAT#GATTAGAT#GATTAGATA A 5 0 1
1 8 0 #AGATACAT#GATACAT#GATTAGAT#GATTAGATA$GATTACAT T 32 0 2
2 17 1 #GATACAT#GATTAGAT#GATTAGATA$GATTACAT#AGATACAT T 33
3 25 4 #GATTAGAT#GATTAGATA$GATTACAT#AGATACAT#GATACAT T 34
4 34 9 #GATTAGATA$GATTACAT#AGATACAT#GATACAT#GATTAGAT T 35
5 43 0 A$GATTACAT#AGATACAT#GATACAT#GATTAGAT#GATTAGAT T 36
6 4 1 ACAT#AGATACAT#GATACAT#GATTAGAT#GATTAGATA$GATT T 37
7 13 5 ACAT#GATACAT#GATTAGAT#GATTAGATA$GATTACAT#AGAT T 38
8 21 8 ACAT#GATTAGAT#GATTAGATA$GATTACAT#AGATACAT#GAT T 39
9 30 1 AGAT#GATTAGATA$GATTACAT#AGATACAT#GATACAT#GATT T 40
10 39 4 AGATA$GATTACAT#AGATACAT#GATACAT#GATTAGAT#GATT T 41 2 2
11 9 5 AGATACAT#GATACAT#GATTAGAT#GATTAGATA$GATTACAT# # 1 0 1
12 6 1 AT#AGATACAT#GATACAT#GATTAGAT#GATTAGATA$GATTAC C 22 0 4
13 15 3 AT#GATACAT#GATTAGAT#GATTAGATA$GATTACAT#AGATAC C 23
14 23 6 AT#GATTAGAT#GATTAGATA$GATTACAT#AGATACAT#GATAC C 24 2 4
15 32 11 AT#GATTAGATA$GATTACAT#AGATACAT#GATACAT#GATTAG G 25 0 3
16 41 2 ATA$GATTACAT#AGATACAT#GATACAT#GATTAGAT#GATTAG G 26
17 11 3 ATACAT#GATACAT#GATTAGAT#GATTAGATA$GATTACAT#AG G 27
18 19 10 ATACAT#GATTAGAT#GATTAGATA$GATTACAT#AGATACAT#G G 28
19 1 2 ATTACAT#AGATACAT#GATACAT#GATTAGAT#GATTAGATA$G G 29
20 27 4 ATTAGAT#GATTAGATA$GATTACAT#AGATACAT#GATACAT#G G 30
21 36 7 ATTAGATA$GATTACAT#AGATACAT#GATACAT#GATTAGAT#G G 31 2 5
22 5 0 CAT#AGATACAT#GATACAT#GATTAGAT#GATTAGATA$GATTA A 6 0 5
23 14 4 CAT#GATACAT#GATTAGAT#GATTAGATA$GATTACAT#AGATA A 7
24 22 7 CAT#GATTAGAT#GATTAGATA$GATTACAT#AGATACAT#GATA A 8
25 31 0 GAT#GATTAGATA$GATTACAT#AGATACAT#GATACAT#GATTA A 9
26 40 3 GATA$GATTACAT#AGATACAT#GATACAT#GATTAGAT#GATTA A 10
27 10 4 GATACAT#GATACAT#GATTAGAT#GATTAGATA$GATTACAT#A A 11 2 4
28 18 11 GATACAT#GATTAGAT#GATTAGATA$GATTACAT#AGATACAT# # 2 0 4
29 0 3 GATTACAT#AGATACAT#GATACAT#GATTAGAT#GATTAGATA$ $ 0 0 0
30 26 5 GATTAGAT#GATTAGATA$GATTACAT#AGATACAT#GATACAT# # 3 1 4
31 35 8 GATTAGATA$GATTACAT#AGATACAT#GATACAT#GATTAGAT# # 4 2 4
32 7 0 T#AGATACAT#GATACAT#GATTAGAT#GATTAGATA$GATTACA A 12 0 3
33 16 2 T#GATACAT#GATTAGAT#GATTAGATA$GATTACAT#AGATACA A 13
34 24 5 T#GATTAGAT#GATTAGATA$GATTACAT#AGATACAT#GATACA A 14
35 33 10 T#GATTAGATA$GATTACAT#AGATACAT#GATACAT#GATTAGA A 15
36 42 1 TA$GATTACAT#AGATACAT#GATACAT#GATTAGAT#GATTAGA A 16 0 3
37 3 2 TACAT#AGATACAT#GATACAT#GATTAGAT#GATTAGATA$GAT T 42 0 3
38 12 6 TACAT#GATACAT#GATTAGAT#GATTAGATA$GATTACAT#AGA A 17 1 3
39 20 9 TACAT#GATTAGAT#GATTAGATA$GATTACAT#AGATACAT#GA A 18 2 3
40 29 2 TAGAT#GATTAGATA$GATTACAT#AGATACAT#GATACAT#GAT T 43 1 3
41 38 5 TAGATA$GATTACAT#AGATACAT#GATACAT#GATTAGAT#GAT T 44 2 3
42 2 1 TTACAT#AGATACAT#GATACAT#GATTAGAT#GATTAGATA$GA A 19 0 4
43 28 3 TTAGAT#GATTAGATA$GATTACAT#AGATACAT#GATACAT#GA A 20
44 37 6 TTAGATA$GATTACAT#AGATACAT#GATACAT#GATTAGAT#GA A 21 2 4
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Table 7 The values we compute (except BWT[si..si + 2], which we include here only for
clarity) while finding the 3-MEMs of P [0..11] = TAGATTACATTA with respect to our example T =
GATTACAT#AGATACAT#GATACAT#GATTAGAT#GATTAGATA$.

i qi ℓi Li min(ℓi, Li) si P [i− 1] BWT[qi] BWT[si..si + 2]
12 22 0 A A
11 6 1 5 1 6 T T TTT
10 37 2 6 2 37 T T TAA
9 42 3 3 3 42 A A AAA
8 14 19 2 4 4 4 19 C C G GGG
7 24 3 4 3 22 A A AAA
6 8 4 5 4 6 T T TTT
5 37 39 5 6 5 37 T T A TAA
4 42 6 3 3 42 A A AAA
3 19 7 4 4 19 G G GGG
2 27 29 3 8 5 5 29 A A $ $##
1 10 11 4 4 4 9 T T # TT#
0 41 5 2 2 39 T ATT

that we can find the k-MEMs of P with respect to T online in O(log n) time per character
of P . Along the way, we have also shown how to extend ϕ queries to support sequential
access to the LCP, which may be of independent interest.

Although we have not discussed construction, we expect it will not be difficult to modify
prefix-free parsing [2] to build our tables for ϕ, LCP and ϕ−1 queries. Once we can support
those queries, we can use them to compute k-MEMs in O(km log n) time, or to build in
O(kr) time the table of precomputed values that we need to compute k-MEMs in O(m log n)
time. In fact, once we have built the tables for ϕ, LCP and ϕ−1 queries – which take O(r)
space but may be significantly larger than our table of precomputed values – then we can
store them in external memory and recover them only when we want to build a table of
precomputed values for a different choice of k.

We believe our approach is a practical extension of MONI and we are currently imple-
menting it. One possible application might be to index two genomic databases (possibly
with two different values of k), one of haplotypes from people with symptoms of a genetic
disease and one of haplotypes from people without; then, as the first step in a bioinformatics
pipeline, we could use those indexes to mine for substrings that are common in one database
and not in the other. We think this application is interesting because, except for a remark
in Bannai et al.’s paper about potentially applying MEM-finding to rare-disease diagnosis,
the r-index and MONI have so far been considered only as tools for pangenomic alignment,
and this is an application to pangenomic analysis. If the disease is recessive or multifactorial
then variations associated with it are likely to be present in both databases, so MEM-finding
is unlikely to detect them; those variations could be more frequent in the first database,
however, so k-MEM-finding may still be useful.
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