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Abstract
Hairpin completion is an operation on formal languages that has been inspired by hairpin formation
in DNA biochemistry and has many applications especially in DNA computing. Consider s to be a
string over the alphabet {A, C, G, T } such that a prefix/suffix of it matches the reversed complement
of a substring of s. Then, in a hairpin completion operation the reversed complement of this
prefix/suffix is added to the start/end of s forming a new string.

In this paper we study two problems related to the hairpin completion. The first problem asks
the minimum number of hairpin operations necessary to transform one string into another, number
that is called the hairpin completion distance. For this problem we show an algorithm of running
time O(n2), where n is the maximum length of the two strings. Our algorithm improves on the
algorithm of Manea (TCS 2010), that has running time O(n2 log n).

In the minimum distance common hairpin completion ancestor problem we want to find, for two
input strings x and y, a string w that minimizes the sum of the hairpin completion distances to
x and y. Similarly, we present an algorithm with running time O(n2) that improves by a O(log n)
factor the algorithm of Manea (TCS 2010).
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1 Introduction

1.1 Motivation and informal problem definition
Hairpin completion is an operation on formal languages that has been inspired by hairpin
formation in DNA biochemistry and has many applications especially in DNA computing
[11, 12, 14, 15]. This operation has been inspired by three biological principles: Watson-Crick
complementarity, DNA annealing and DNA lengthening through polymerases. The DNA
chain is a molecule consisting of two intertwined strands, each strand being composed by
nucleotides: A(Adenine), C(cytosine), G(guanine) and T(thymine). The two strands which
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form the DNA molecule are kept together by the hydrogen bond between the bases: A
bonds with T and C with G. This paradigm is usually referred to as the Watson-Crick
complementarity [25].

Another important bio-chemical principle is annealing, the process of fusing two single
stranded molecules by complementary base. DNA lengthening through polymerases is a
phenomenon that produces a complete double stranded DNA molecule as follows: one starts
with two single strands such that one (called primer) is bonded to a part of the other (called
template) through Watson-Crick complementarity and a polymerization buffer with many
copies of the four nucleotides. The polymerases will then concatenate to the primer by
complementing the template [22].

We now begin to informally explain the hairpin completion operation and how it can be
related to the biological concepts presented above. Consider s to be a string over the alphabet
{A, C, G, T} such that a prefix/suffix of it matches to the reversed complement of a substring
of s. Then, the reversed complement of this prefix/suffix is added to the beginning/ending of
s forming a new string as can be visualized in Figure 1. The mathematical expression of this
hypothetical situation defines the hairpin completion operation. Starting with a single string,
one can generate a set of strings using this formal operation: via hairpin completion, a new
string can be created for each possible pairing between a prefix or suffix and a complementary
substring. In addition, one could be interested in knowing how many iterations of hairpin
completion are required to transform one string into another. In this way, the hairpin
completion distance between two strings was defined as the minimum number of times we
must iterate the hairpin completion operation, starting from one of the two string, in order
to obtain the other. Further, one can also be interested in finding for two strings, a common
ancestor that minimizes the sum of the hairpin completion distances to those strings. This
ancestor is called minimum distance common hairpin completion ancestor.

Figure 1 An illustration of the left and right hairpin completion operations.

1.2 Previous and related work
The hairpin completion operation has been introduced by Cheptea, Martin-Vide and
Mitrana [4]. In several papers, the hairpin completion and other familiar operations have
been studied [3, 5, 6, 7, 8, 9, 13, 17, 19, 20, 21, 22, 23, 24].

Hairpin reduction [3, 22, 23] was introduced as an inverse operation for hairpin completion.
The hairpin reduction of a string x consists of all strings y such that x can be obtained from
y by hairpin completion. Further, two variants of hairpin completion were considered, as
they seem more appropriate for practical implementation: hairpin lengthening and bounded
hairpin completion [9, 19, 21]. The first variant consist of adding a prefix or a suffix of γ.
The second variant assumes that the length of the added prefix or suffix is bounded by a
constant. Besides the algorithmic aspects, hairpin completion operation has been studied
from the language theory point of view in several papers [5, 6, 8, 13, 17].

Manea and Mitrana introduced the minimum distance common k-hairpin completion
ancestor of two strings in [22] where they presented a cubic time algorithm to compute
the ancestor. Afterwards, Manea, Martin-Vide, and Mitrana [20] suggested a cubic time
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algorithm to tackle the k-hairpin completion distance problem. In addition, in [18] improved
the time complexity to O(n2 log n) to both problems, where n is the length of the longest
string.

1.3 Our results
The focus of this paper is on two algorithmic problems related to iterated hairpin completion:
k-hairpin completion distance and minimum distance common k-hairpin completion ancestor.
Our main results are improving the upper bound on both problems with a log n factor,
from O(n2 log n) to O(n2). For the k-hairpin completion distance, our speedup is based on
using incremental tree, a data structure proposed by Kaplan and Shafrir [10] which can
support in constant time the following operations in a weighted tree: return the edge with
minimum weight on a path and add a leaf to the tree. Our algorithm for finding a minimum
distance k-hairpin completion ancestor of two strings (x, y) is based on dynamic programming
technique presented in [18]. As in [18], we are interested in constructing the table DPx, where
DPx[i][j] represents the minimum number of k-hairpin completion operations to transform
x[i . . . j] into x. Similarly, we would like to compute a table DPy. Our speedup relies in an
O(n2) time algorithm for computing these tables by rephrasing the problem of computing
DPx in terms of shortest distances in a graph and replacing the segment tree used in [18]
with doubly linked list and changing the order we process the cells in the matrix.

2 Preliminaries

We start with basic notations related to strings. An alphabet Σ is a finite, non-empty set of
symbols. Throughout this paper, we mostly discuss strings over the alphabet Σ = {A, C, G, T}.
For a letter x ∈ Σ, we denote as x the letter in Σ that is complementary to x. For the
previously mentioned alphabet, we have A = T and C = G. The set of all strings over an
alphabet Σ is denoted by Σ∗. The empty string is denoted as λ, and Σ+ = Σ∗ \ {λ}. Given
a string w ∈ Σ∗, we denote by |w| its length. If w = xy, x, y ∈ Σ∗ then x is called prefix
and y a suffix. For a string w, w[i . . . j] denotes the substring of w starting at position i and
ending at position j, 1 ≤ i ≤ j ≤ |w|. Given a string s ∈ Σ+, we denote by s = s1 s2 . . . s|s|
the complement of the string s and sR the reversed string of s, i.e. sR = s|s|s|s|−1 . . . s1.

Incremental tree is a data structure introduced by Kaplan and Shafrir [10] based on a
similar structure of Alstrup and Holm [1] for the level ancestor problem, to maintain a rooted
tree T , with an integer weight on each edge, such that the following operations are supported
in O(1) amortized time:

add-leafT(v, w, c): Add a new leaf v with parent w to T . The weight of the edge (v, w)
is c.
add-rootT(v, c): Add a new root v to T . The old root (r) becomes a child of v and the
weight of edge (r, v) is c.
min-edgeT(v, w): Returns the edge with minimum weight on the path from v to w.
change-weightT(v, c): v is a leaf or v’s parent is the root of T . Changes the weight of
the edge between v and its parent to c.

From this data structure we will use just add-leafT and min-edgeT operations.

2.1 Hairpin Operations
For a string x ∈ Σ+ and a positive integer k ∈ N, k-hairpin completion is a family of
transformations that can be applied to x. When applying a left k-hairpin completion, we
select a non-empty suffix γ of x such that x can be partitioned into x = αβαRγ with
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α, β, γ ∈ Σ+ and |α| = k. We execute the left hairpin operation by appending γR to the
beginning of s. Formally, the set of strings that can be obtained from x by applying a single
left k-hairpin operation is denoted as

HCLk(x) = {γRx|x = αβαRγ, |α| = k, α, β, γ ∈ Σ+}

A right k-hairpin completion is defined in a symmetrical manner and the set of strings
that can be obtained from s by applying a single right k-hairpin completion operation is
denoted as

HCRk(x) = {xγR|x = γαβαR, |α| = k, α, β, γ ∈ Σ+}

▶ Example 1. The string s = GAATCT can be partitioned into α = GA, β = A, αR = TC

and γ = T . Applying the left hairpin completion operation on s with this partitioning yields
the string AGAATCT . Also, s can be partitioned into γ = GA, α = A, β = TC, αR = T

and by applying right hairpin completion operation we obtain GAATCTTC.

Collectively, the set of strings that can be obtained from x either by applying a right or a
left k-hairpin completion operation is denoted as

HCk(x) = HCLk(x) ∪HCRk(x)

The hairpin completion is the variant of the k-hairpin completion where we do not place
a bound on the length of prefix. The hairpin completion of x is defined by:

HC(x) =
⋃
k≥1

HCk(x)

We extend the notation of hairpin completion to sets of strings in the following way, for a
set L ⊆ Σ∗ and a positive integer k,

HCk(L) =
⋃

x∈L

HCk(x) HC(L) =
⋃

x∈L

HC(x)

For every non negative integers k, i and string x ∈ Σ+, we denote as HCi
k(x) the set of

strings that can be obtained from x using exactly i k-hairpin completion operations and
HC∗

k(x) as the set of strings that are obtainable from x using any number of k-hairpin
completion operations. Similarly, we denote as HCi(x) and HC∗(x) the sets of strings
obtainable from x by applying i (resp. any number) of hairpin operations, respectively.
Formally,

HC0
k(x) = {x} HCi+1

k (x) = HCk(HCi
k(x)) HC∗

k(x) =
⋃
i≥0

HCi
k(x)

HC0(x) = {x} HCi+1(x) = HC(HCi(x)) HC∗(x) =
⋃
i≥0

HCi(x)

HC∗
k(L) =

⋃
x∈L

HC∗
k(x) HC∗(L) =

⋃
x∈L

HC∗(x)

▶ Definition 2 (k-Hairpin Completion Common Ancestor). A string w is a common k-hairpin
completion ancestor of two strings x and y if {x, y} ⊆ HC∗

k(w). We denote the set of common
k-hairpin ancestors of x and y as HCAk(x, y).
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▶ Definition 3 (k-Hairpin Completion Distance). Given two strings x and y such that |x| ≤ |y|,
the k-hairpin completion distance between x and y is the minimal number of k-hairpin
operations required to obtain y from x. Formally

HCDk(x, y) =
{

min{p|x ∈ HCp
k(y)}

∞, x /∈ HC∗
k(y)

▶ Definition 4 (Minimum Distance k-hairpin Completion Ancestor). For two strings x, y ∈ Σ∗, a
k-hairpin completion ancestor w ∈ HCAk(x, y) is a minimum distance k-hairpin completion
ancestor of x and y if ∀w′ ∈ HCAk(x, y) it holds that HCDk(w, x) + HCDk(w, y) ≤
HCDk(w′, x)+HCDk(w′, y), i.e. w minimizes the sum of the k-hairpin completion distances
from x and from y.

▶ Definition 5 (Border). Given a string s[1 . . . n] ∈ Σ+, Border(s) is the length of the
longest prefix of the string s which is also a complemented reversed suffix of this string.
Formally, Border(s) = max({t|s[1 . . . 1 + t− 1] = s[n− t + 1 . . . n]R} ∪ {0}). This definition
can be easily extended for any substring s[i . . . j] in the following way: Border(s[i . . . j]) =
max({t|s[i . . . i + t− 1] = s[j − t + 1 . . . j]R} ∪ {0})

▶ Remark 6. Note that the above definition for border is different than the common definition,
which is usually the largest prefix of x which is also a suffix of x.

Since in the k-hairpin completion operation we have to make sure that |α| = k, we
introduce the definition of k-Border.

▶ Definition 7 (k-Border). Given a string s ∈ Σ+, k-Border(s) = max(Border(s)− k, 0).

Hairpin reduction is the inverse operation of hairpin completion. The hairpin reduction of
a string x consists of all strings y such that x can be obtained from y by hairpin completion.
For a string x ∈ Σ+ and a positive integer k ∈ N, k-hairpin reduction is a family of
transformations that can be applied to x. When applying a left hairpin reduction, we select
a non-empty prefix γ of x such that x can be partitioned into γαβαRγR with α, β, γ ∈ Σ+

and |α| = k. We execute the left hairpin reduction operation by deleting γ. Formally, the set
of strings that can be obtained from x by applying a single left k-hairpin reduction operation
is denoted as

HRLk(x) = {αβαRγR|x = γαβαRγR, |α| = k, α, β, γ ∈ Σ+}

A right k-hairpin reduction operation is defined in a symmetrical manner and the set of
strings that can be obtained from x by applying a single right k-hairpin reduction operation
is denoted as

HRRk(x) = {γαβαR|x = γαβαRγR, |α| = k, α, β, γ ∈ Σ+}

The set of strings that can be obtained from x either by applying a left or a right k-hairpin
reduction operation is denoted as

HRk(x) = HRLk(x) ∪HRRk(x)

The hairpin reduction is the variant of the k-hairpin reduction where we do not place a
bound on the length of prefix. The hairpin reduction of x is defined by:

HR(x) =
⋃
k≥1

HRk(x)

We make the following observation.

CPM 2023



5:6 Faster Algorithms for Computing HCD and MDCHCA

▶ Observation 8. Let x[1 . . . n] be a string with k-Border l.

HRLk(x) =
⋃

j∈[1...l]

{x[j + 1 . . . n]} HRRk(x) =
⋃

j∈[1...l]

{x[1 . . . n− j]}

HRk(x) =
⋃

j∈[1...l]

{x[j + 1 . . . n], x[1 . . . n− j]}

Now we are ready to introduce the problems that we study in this paper.

▶ Problem 1 (Hairpin completion distance). Let Σ be the alphabet and x, y ∈ Σ+. Compute
HCDk(x, y).

▶ Problem 2 (Minimum distance common hairpin completion ancestor). Let Σ be the alphabet
and x, y ∈ Σ+. Compute a minimum-distance common k-hairpin completion ancestor of x, y.

2.2 Suffix Tree and Extension queries
The suffix tree [26] is a useful string data structure.

▶ Definition 9. Let S1, . . . , Sk be strings over alphabet Σ and let $ ̸∈ Σ.
A trie of strings S1, . . . , Sk is an edge-labeled tree with k leaves. Every path from the root

to a leaf corresponds to a string Si with a $ symbol appended to its end. The edges on this
path are labeled by the symbols of Si. Strings with a common prefix start at the root and
follow the same path of the prefix, the paths split where the strings differ.

A compacted trie is a trie with every chain of edges connected by degree-2 nodes contracted
to a single edge whose label is the concatenation of the symbols on the edges of the chain.

Let S = S[1], . . . , S[n] be a string over alphabet Σ. Let {S1, . . . , Sn} be the set of suffixes
of S, where Si = S[i . . . n], i = 1, . . . , n. A suffix tree of S is the compacted trie of the
suffixes S1, . . . , Sn.

For every node u, we call the concatenation of the labels on the path from the root to u

the locus of u denoted as L(u). For an edge e in the compact trie, we use the same notation
L(e) to denote the label (or the locus) of e. Finally, for a downwards path P in the compact
trie, the locus L(P ) is the concatenation of the loci of the edges in P . In a compact trie, an
edge e can have label s.t. |L(e)| > 1. We refer to the symbol L(e)[1] as the symbol of e.

▶ Theorem 10 (Weiner [26]). For finite alphabet Σ, the suffix tree of a length-n string can
be constructed in time O(n). For general alphabets it can be constructed in time O(n log σ),
where σ = min(|Σ|, n).

For two strings S[1 . . . n] and T [1 . . . m], a string P [1 . . . p] is a common prefix of S and T

if S[1 . . . p] = T [1 . . . p] = P . We say that P is the longest common prefix (LCP) of S and
T if P is a common prefix and m = p or n = p or S[p + 1] ̸= T [p + 1]. Similarly, a string
A[1 . . . a] is a common suffix of S and T if S[n− a + 1 . . . n] = T [m− a + 1 . . . m] = A. A is
the longest common suffix (LCS) if n = a or m = a or S[n− a] ̸= T [m− a]. Collectively, we
refer to LCP and LCS as longest common extensions (LCE).

By preprocessing the suffix tree of a string S for level ancestor queries [2], we can obtain
the following.

▶ Lemma 11 (Longest Common Extension Data Structure). A string S can be preprocessed in
O(n) time to support the following queries in O(1) time.
1. LCP (i, j) - return the length of the longest common prefix of S[i . . . n] and S[j . . . n]
2. LCS(i, j) - return the length of the longest common suffix of S[1 . . . i] and S[1 . . . j]
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By constructing the above data structure for the string x$xR with $ /∈ Σ, we obtain the
following.

▶ Corollary 12. We can process a string S[1 . . . n] in linear time to construct a data structure
for answering the following query in O(1) time.

k-Border(S[i . . . j])− Return the length of the k-Border of S[i . . . j].

3 Hairpin completion distance

In this section we study Problem 1.
Our algorithm is based on the dynamic programming technique presented in [18]. For the

sake of clarity, we briefly describe this technique. Without loss of generality, we assume that
|x| ≤ |y| and n = |y|, m = |x|. We are interested in computing a dynamic programming table
DP [n][n] with dimensions n× n. For every two indices 1 ≤ i ≤ j ≤ n, we define DP [i][j] to
be the minimum number of k-hairpin completion operations to transform x into y[i . . . j].
Formally, DP [i][j] = HCDk(x, y[i . . . j]).

▶ Definition 13. Given two non-negative integers i, j (1 ≤ i ≤ j ≤ n), Lj represents the DP

values of all strings that can generate the substring y[i . . . j] through a single left k-hairpin
completion operation (elements of the set HRLk(y[i . . . j])).

▷ Claim 14. Lj = {DP [i + 1][j], . . . , DP [i + l][j]} where l is the k-Border of y[i . . . j].

▶ Definition 15. Given two non-negative integers i, j (1 ≤ i ≤ j ≤ n), Ri represents the DP

values of all strings that can generate the substring y[i . . . j] through a single right k-hairpin
completion operation (elements of the set HRRk(y[i . . . j])).

▷ Claim 16. Ri = {DP [i][j − l], . . . , DP [i][j − 1]} where l is the k-Border of y[i . . . j].

Correctness of Claim 14 and Claim 16 is based on Observation 8.

▶ Lemma 17. Given two non-negative integers i, j (1 ≤ i ≤ j ≤ n), we have that DP [i][j] =
min(min Lj , min Ri) + 1.

For the proof of Lemma 17 we refer to [18].
All positions in DP are initialized with ∞. We start by considering the base cases. These

are represented by all subsequences y[i . . . j] = x. To determine them, we use any pattern
matching algorithm which runs in linear time, for example KMP [16] and set DP [i][j] = 0.
Analyzing the elements of the sets Lj and Ri, it can be seen that they actually represent
continuous blocks from line i or column j. Thus, determining the minimum values from each
of those sets is a range minimum query.

▶ Definition 18. Given two non-negative integers i, j (1 ≤ i ≤ j ≤ n), DSLj represents the
data structure that keeps the DP values of column j and DSRi represents the data structure
that keeps the DP values of row i. (Note that we don’t have to keep the values below the
main diagonal)

Naively, DSLj and DSRi could be arrays, which leads to constant update time, but linear
query time. The overall complexity of the algorithm with this naive implementation is O(n3).
In [18], the algorithm is implemented using segment trees, which leads to a logarithmic time
for queries and for updates.

CPM 2023
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Figure 2 We compute the DP matrix in increasing order of difference j − i (parallel with the
main diagonal). Red line represents DSLj and the green line DSRi.

Considering that the update operations are append-like, i.e. they are only done after the
first/last index of DSLj and DSRi, we propose using an incremental tree. The advantages of
this approach consist in the fact that this structure can perform query and update operations
in constant time. Practically, we keep an incremental tree for each row and column. A row
or a column in the matrix represents a particular case of a tree, more precisely a chain. For
the range minimum query needed in the computation of DP [i][j] we use incremental tree’s
min-edgeT operation. After we compute the DP [i][j] value, we have to add to DSRi and
DSLj . This can be done by using the add-leafT operation.

Algorithm 1 An O(n2) algorithm for Problem 1.

Input: x, y ∈ Σ+

Output: HCDk(x, y)
1: DP [i][j] =∞,∀ 1 ≤ i ≤ j ≤ n

2: Find all pairs (i, j) such that x = y[i . . . j] and set DP [i][j] = 0.
3: for len← m + 1 to n do
4: for i← 1 to n− len + 1 do
5: j ← i + len− 1
6: if DP [i][j] =∞ then
7: x← min-edgeDSRi

(j − k-Border(s[i . . . j]), j − 1)
8: y ← min-edgeDSLj (i + 1, i + k-Border(s[i . . . j]))
9: DP [i][j] = min(x, y) + 1

10: end if
11: add-leafDSRi

(j, j − 1, DP [i][j])
12: add-leafDSLj

(i, i + 1, DP [i][j])
13: end for
14: end for
15: return DP [1][n]

▶ Theorem 19. Algorithm 1 solves Problem 1 in O(n2).
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Proof.
Correctness. We prove the correctness of the algorithm by induction over the algorithm
execution. The base cases correspond to the substrings y[i . . . j] = x. In these cases,
DP [i][j] = 0 because no operation is needed to convert x to y[i . . . j]. Suppose we want to
calculate the value of DP [i][j]. We remind that DP [i][j] = min(min Lj , min Ri) + 1. We can
rewrite the elements of the set Ri in the following form DP [i][p] with j −Border(i, j) + k ≤
p < j and the elements of the set Lj in the form DP [s][j] with i < s ≤ i + Border(i, j)− k.
Taking into account the iteration order (increasing according to the difference j− i) and j > i,
we obtain the following inequalities: j − i > j − s and j − i > p− i. Thus, it is guaranteed
that when we want to calculate DP [i][j] all the necessary values are already calculated.

Complexity. Line 1 runs in O(n2) and Line 2 in O(n + m). For each cell above the main
diagonal we have two queries and two updates both done in O(1) amortized time. The overall
time complexity is therefore O(n2). ◀

4 Minimum distance common hairpin completion ancestor

In this section we study Problem 2.
Our algorithm is based on the dynamic programming technique described in [18], but

we replace the segment tree with a linked list and change the order of processing the cells
in the matrix. Without loss of generality, we assume that |x| ≥ |y| and n = |x|, m = |y|.
As in [18], we are interested in constructing the table DPx[1 . . . n][1 . . . n] with DPx[i][j] =
HCDk(x[i . . . j], x). Similarly, we would like to compute a table DPy[1 . . . m][1 . . . m] with
DPy[i][j] = HCDk(y[i . . . j], y). Our speedup relies on an O(n2) time algorithm for computing
DPx and DPy.

We are interested in rephrasing the problem of computing DPx in terms of shortest
distances in a graph. We present the following definition.

▶ Definition 20 (Hairpin Deletion Graph). For a string x[1 . . . n], we define the Hairpin
Deletion Graph Gh(x) = (V, E) of x as follows.

V = {x[i . . . j]|1 ≤ i ≤ j ≤ n} is the set of substrings of x.
E = {(x[i . . . j], x[a . . . b])|x[i . . . j] ∈ HRk(x[a . . . b])} I.e. there is a directed edge from
substring A to the substring B if A can be obtained from B by applying a single hairpin
completion operation.

It is easy to see that HCDk(x[i . . . j], x) is exactly the length of the shortest path from
x[1 . . . n] to x[i . . . j] in Gh(x). Following Observation 8, we present the following character-
ization of the edges in Gh(x).

▶ Corollary 21. Let x[1 . . . n] be a string and let A = x[i . . . j] be a substring of x with
k-Border length l. The set of edges emerging from A in Gh(x) is

EA =
⋃

p∈[1...l]

{(A, x[i + p . . . j]), (A, x[i . . . j − p])}

We call edges from A = x[i . . . j] to a suffix [i + p . . . j] a downward edge and an edge from
A to a prefix x[i . . . j−p] a leftward edge. When a path in Gh(x) uses a downward (resp. left)
edge, we say that it takes a step down (resp. leftward). For example, if P = (v1, v2 . . . vz) is
a path in Gh(x), and the edge (vz−1, vz) is a downward (resp. leftward) edge, we say that P

ends with a step left (resp. down).
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Figure 3 A demonstration of a restricted path to the red square. The grey squares resemble cells
that precede the cell (i, j).

Then, the algorithm computes the cells of DPx row by row from top to bottom, iterating
a row in decreasing order of the columns. Formally, when iterating the cell DPx[i][j], the
algorithm have already computed the cells DPx[a][b] with a < i and the cells DPx[i][b] with
b > j. The order of the iteration implies a total order on the pairs i, j ∈ [n]× [n].

▶ Definition 22 (Iteration Order). For two pairs of integers (i1, j1), (i2, j2) ∈ [n]× [n], we say
that (i1, j1) precedes (i2, j2) (denoted as (i1, j1) < (i2, j2)) if the cell DPx[i1][j1] is iterated
before DPx[i2][j2] by our algorithm. Similarly, we say (i2, j2) proceeds (i1, j1)

We proceed to introduce a useful concept used by the algorithm.

▶ Definition 23 (Restricted Path). For a string x[1 . . . n] and integers i, j ∈ [n], a path
P = (x, v1, v2 . . . , vz, A) from x to A in Gh(x) is (i, j)-restricted if for every r ∈ [z] we have
vr = x[ar . . . br] such that (ar, br) precedes (i, j). For (i, j) = (0, 0), we say that there is no
(0, 0)-restricted path.

For integer pairs (i, j), (a, b) ∈ [n][n] such that (i, j) < (a, b), we denote as ResL(i,j)[(a, b)]
the length of the shortest (i, j)-restricted path from x to x[a . . . b] in Gh(x) that ends with a
step left. Similarly, we denote as ResD(i,j)[(a, b)] the length of the shortest (i, j)-restricted
path from x to x[a . . . b] in Gh(x) that ends with a step down.

We make the following observations regarding the structure of ResL(i,j)[(a, b)] and
ResD(i,j)[(a, b)].

▶ Lemma 24. For every i, j ∈ [n] and a, b ∈ [n]× [n−1] such that (i, j) < (a, b) it is satisfied
that ResL(i,j)[(a, b + 1)] ≤ ResL(i,j)[(a, b)].

Proof. If there is no (i, j)-restricted path that ends with a step leftwards from (0, 0) to (a, b),
the claim is vacuously true. Otherwise, let P = (1, n), (x1, y1), (x2, y2) . . . (xd, yd), (a, b) be
the shortest (i, j)-restricted path from (1, n) to (a, b) that ends with a step to the left. Since
P ends with a step leftwards, we have xd = a and there is an edge from (a, yd) to (a, b).
According to Corollary 21, there is also an edge from (a, yd) to (a, b + 1). Therefore, we can
replace (a, b) with (a, b + 1) in P to obtain an (i, j)-restricted path P ′ with length |P | from
(1, n) to (a, b + 1). ◀

The following symmetric statement can be proven in a similar manner.
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Figure 4 The list Rowa above the a’th row of DPx. Every pair (δ, β) appears above the cell
(a, β). The content of Rowa implies ResL(i, j) for the cells in the a’th row. Every cell in the
green region has the boundary predecessor (3, 10) in Rowk. So for every b in the green region,
ResL(i,j)[(a, b)] = 3.

▶ Lemma 25. For every i, j ∈ [n] and a, b ∈ [n−1]× [n] such that (i, j) < (a, b) it is satisfied
that ResD(i,j)[(a, b)] ≤ ResD(i,j)[(a + 1, b)].

Lemma 24 and Lemma 25 suggest that the values of ResL(i,j) (resp. ResD(i,j)) in every
row (resp. column) are monotonic.

For every row k ∈ [n] of DPx, the algorithm maintains a corresponding double-sided
linked list Rowk. Similarly, for every column k ∈ [n] the algorithm maintains a list Colk.
Conceptually, Rowk (resp. Colk) compactly represents the values ResL(i,j)[(a, b)] (resp.
ResD(i,j)(a, b)) for all the cells (a, b) in row k (resp. in column k). Every list stores a
sequence of pairs of integers (δ, β). The first value δ is called the distance and the second
value β is called the boundary. We call such pairs boundary pairs. The pairs are stored in
increasing order of distances. For an integer x, we call the pair (δ, β) in a list the boundary
predecessor (resp. boundary successor) of x in Rowk if β is the minimal (resp. maximal)
boundary in the list that is at least (resp. at most) x.

When processing DPx[i][j], we are interested in maintaining the following invariant
regarding the pairs stored in Rowa (for every a ∈ [n]):

Let b ∈ [n] be an integer such that (i, j) < (a, b) and let (δ, β) be the boundary predecessor
of b in Rowa. It holds that ResL(i,j)[(a, b)] = δ. Equivalently: Let (δ1, β1), (δ2, β2) . . . (δz, βz)
be the pairs in Rowa. Note that due to Lemma 24, the pairs in Rowk are naturally stored in
decreasing order of their boundaries. If an integer b satisfies b ∈ [βr . . . βr−1 − 1] for some
r ∈ [z], then ResL(i,j)[(a, b)] = δr. For a visualization, see Figure 4.

Essentially, the list Rowa stores an implicit representation of the shortest (i, j)-restricted
paths that end with a left step to the cells in row a.

Similarly, the list Colb stores an implicit representation of ResD(i,j)[(a, b)] for vertices in
column b as follows. For every a ∈ [n] such that (i, j) < (a, b) with boundary successor (δ, β)
in Colb, it holds that ResD(i,j)[(a, b)] = δ.

Throughout the iterations, we maintain the pair r = (δr, βr) such that when we iterate
DPx[i][j], the pair r is the boundary predecessor j in Rowi. We also store n pairs c1, c2 . . . cn

such that when iterating DPx[i][j], the pair cj = (δj
c , βj

c) is the boundary successor of i in
Colj . We initialize every list Rowk with a single pair (∞, 1) and every list Colk with a single
pair (∞, n). For the sake of consistency, we treat the initialization of the algorithm as a
phase in the iteration in which a dummy cell (0, 0) is the currently iterated cell. Note that
the initialization for the lists suggests that for every vertex, there is no (0, 0)-restricted path
that ends with a step to downwards or leftwards.
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Processing a cell. When processing DPx[i][j], we first obtain the distance to DPx[i][j]
using r and cj . The shortest path to (i, j) must end with a step to the left from a vertex in
row i or with a step downwards from a vertex in column j. Note that all the cells to the
right of (i, j) and above it have already been processed. It follows that the shortest path to
(i, j) is an (i′, j′)-restricted path with (i′, j′) being the cell processed in the previous iteration.
Let r = (δr, βr) and cj = (δj

c , βj
c). r is the boundary predecessor of i in Rowi, so according

to the invariant we have ResL(i′,j′) = δr. Similarly, ResD(i′,j′) = δj
c . We can therefore set

DPx[i][j] = min(δr, δj
c).

The remaining task is to update the lists and the pointers in a manner that preserves our
invariants. We make the following claims.

▷ Claim 26. For (i, j) ∈ [n] × [n] and (a, b) ∈ [n] × [n] such that (i, j) < (a, b), if an
(i, j)-restricted path to (a, b) visits the vertex (i, j) - (i, j) must be the second to last vertex
in the path (i.e. the next vertex is (a, b).

Proof. According to Corollary 21, every edge emerging from (i, j) enter a vertex (i′j′) such
that (i, j) < (i′, j′). The only vertex in an (i, j)-restricted path that is allowed to proceed
(i, j) is the destination vertex. ◁

Claim 26 suggests the following.

▶ Corollary 27. Let (i′, j′) ∈ [n] × [n] and let (i, j) ∈ [n] × [n] be the vertex immediately
following (i′, j′) in the iteration order. Let (a, b) ∈ [n] × [n] such that (i, j) < (a, b).
If there is no edge from (i, j) to (a, b) we have ResL(i,j)[(a, b)] = ResL(i′,j′)[(a, b)] and
ResD(i,j)[(a, b)] = ResD(i′,j′)[(a, b)]

Furthermore, by Corollary 27 and Corollary 21 together, we obtain the following.

▶ Corollary 28. For k ̸= i (resp. k ≠ j), the list Rowk (resp. Colk) does not need to be
updated after the cell (i, j) is processed in order to satisfy the invariant.

It follows from Corollary 28 that we only need to update the lists Rowi and Colj to
represent shortest (i, j)-restricted paths instead of representing shortest (i′, j′)-restricted
paths. In other words, we need to update Rowi and Colj to consider paths that use the
vertex (i, j). Specifically, paths that use (i, j) as a second to last vertex (Claim 26)

We update the lists as follows. Let l be the k-Border of x[i . . . j] and let d be the recently
calculated d = DPx[i][j] = min(δr, δj

c). According to Corollary 21, there is an edge from (i, j)
to (i, j− z) with z ∈ [1 . . . l], and only to those vertices in the i’th row. We call these vertices
the contested vertices. For every contested vertex, there is an (i, j)-restricted path that ends
with a step to the left via the vertex (i, j). This path has length d + 1. Our task is to
update Rowi such that every contested vertex (a, b) in the list with ResLi′,j′ [(a, b)] > d + 1 is
updated to have ResL(i,j)[(a, b)] = d + 1. Every (a, b) ∈ Rowi with ResL(i′,j′)[(a, b)] ≤ d + 1
needs to keep its current distance. The distances to uncontested vertices in the i’th row do
not require an update (Corollary 27).

Assume w.l.o.g that d = δr (the case in which d = δj
c is treated symmetrically). We

may need to add the boundary pair (d + 1, j − l) to Rowi to represent the newly available
(i, j)-restricted paths. First, observe that r = (d, βr) should not be removed from Rowi.
This is due to the cost of the newly available paths via (i, j) being d + 1 - longer than the
paths already represented by Rowi for the vertices (i, b) with b ∈ [βr . . . j]. We follow the list
pointer from r to obtain its boundary predecessor r′ = (δ1, β1) in Rowi with β1 < βr and
δ1 > d. We consider the following cases.
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Case 1.a: δ1 = d + 1 and j − l ≥ β1. In this case, Rowi already represents the shortest
restricted paths with cost d + 1 to the vertices (i, k) with k ∈ [j − l . . . βr − 1]. Therefore, no
update is required for Rowi.

Case 1.b: δ1 > d + 1 and j − l ≥ β1. In this case, we need to add the boundary
pair (d + 1, j − l) after the boundary border r in Rowi. The following pairs in Rowi have
boundaries smaller than j − l and therefore represent the shortest paths uncontested vertices
and do not need to be changed. If j− l = β1, we also remove r′ from Rowi, as it is redundant.

Case 2 : j − l < β1. In this case, adding the pair (d + 1, j − l) after the pair r to Rowi

may be insufficient. We also need to remove every pair (δ, β) in Rowi with β ∈ [j − l . . . β1].
All of those pairs are now redundant in Rowi - as they represent paths with a length at
least d + 1 to contested vertices. We execute the deletion of these pairs in a straightforward
manner by following the links from r′ until we reach a pair r∗ = (δ, β) with β < j − l. When
r∗ is finally met, we insert (d + 1, j − l) to Rowi between the r and r∗.

We proceed to treat Colj . If δj
c = d, the treatment of Colj is completely symmetric to

the treatment of Rowi. Otherwise, δj
c . As in the treatment of Rowi, our task is to add a

representation of the paths with length d + 1 to vertices (a, j) with a ∈ [i . . . i + l].
Namely, every pair (δ, β) in Colj with δ < i + l should be removed (including cj), as it

represents a path with length at least d + 1 to one of the vertices (a, j) with a ∈ [i, i + l]. We
execute the required deletion in a straightforward manner. Starting from cj , we proceed to
the next pair in the list until a pair (δ, β) with β > j + l is found. We then remove the pairs
iterated in this process from Colj and append (d + 1, i + l) to the beginning of the list. This
concludes the updates to Rowi and to Colj . We note that if r of cj is removed from Rowi or
from Colj , respectively, the new pair (d + 1, j − l) (or respectively, (d + 1, i + l)) is becoming
the new boundary predecessor (resp. boundary successor) of j in Rowi (resp. of i in Colj).

Finally, we need to update r and cj to be the boundary predecessor and successors
required for the next iterated cell. If i < n, the i value will remain the same on the next
iteration. In this case, if βr = j, we update r to be the next element in Rowi. If βr < j, we
do not need to update r is it is also the boundary predecessor of j − 1 in Rowi.

If i = n, the next iteration is the first step in row i + 1. It follows that Rowi+1 is still in
its initialized state, and we set the only pair in (∞, 1) ∈ Rowi+1 to be r.

As for the cj pointers, we need to update all of them every time a new row is met. When
moving from row i to row i + 1, every cj needs to be updated from the predecessor of i in
Colj to the predecessor of i + 1 in Colj . This is done in a symmetric manner to the update
of r.

▶ Lemma 29. The time complexity of the algorithm is O(n2).

Proof. When a cell (i, j) is processed, the value in DPx[i][j] is decided in constant time. In
the process of maintaining the lists invariant, at most one pair is added to the list Rowi

and to the list Colj . Several pairs may be removed from these lists, but since every element
can be removed at most once throughout the algorithm - the overall time complexity for
treating the lists is O(n2). The pointer r is updated in constant time during the processing
of DPx[i][j]. The pointers c1, c2 . . . cn are all updated in O(n) when a table row is visited for
the first time, which happens n times throughout the algorithm. ◀

After we compute the tables DPx and DPy we have to find a common substring z of
x, y such that HCDk(z, x) + HCDk(z, y) is minimum among all common substrings of x, y.
We use the algorithm Compute_MDCA presented in [18] which can return the answer in
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Figure 5 Case 2: The shortest path to the purple vertex is discovered to be 2. The k-Border of
the substring corresponding to this vertex is 11 (denoted as the purple left arrow), thus creating
new restricted paths to the vertices covered by the purple arrow (recall that in Gh(x), there is a
directed edge from the purple vertex to every one of the vertices covered by the purple arrow). The
appropriate update to the list is removing the pairs (3, 10) and (4, 6) as the vertices in the green
area and in the blue area are now accessible via a shorter path with length 2 via the purple vertex.
This new paths are represented by the newly added pair (2, 5).

Figure 6 Case 1.a: The distance to the purple vertex is discovered to be 3, enabling new paths
with length 4 to the vertices touched by the purple arrow (representing the length of the k-Border
of the substring corresponding to the purple vertex). These new paths does not improve upon the
restricted paths already represented in the list, so the pair (4, 8) representing these new paths is
simply not added to the list.

O(n2). To be clear, we provide a brief explanation of the algorithm. In the first stage, the
algorithm builds a trie with all the suffixes of the string x. Then, it will traverse the trie for
every suffix of y and at every match it will compute the sum of DP values. In short, this
algorithm determines in quadratic time all the common substrings of x and y and keeps the
one with the minimum sum of distances. We add the pseudocode for the algorithm described
in this section in the appendix.
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Figure 7 Case 2: The distance to the purple vertex is discovered to be 3. This creates new
restricted paths with length 4 to the vertices touched by the purple arrow (representing the k-Border
of the string corresponding to the purple vertex). For the vertices in the green area, this is not an
improvement, as we already have a representation to a path with length 3 to those vertices. The
distances to the vertices in the blue area and to the vertex in the red area touched by the purple
arrow are longer or equal to 4. To represent this, we add the boundary pair (4, 5) and remove the
boundary pair (4, 6) (as the k-Border (4, 6) represented the distances to the vertices in the blue
interval, which are now represented by (4, 5).

5 Conclusions and future work

In this paper we study two problems related to the hairpin completion operation. We propose
a quadratic time algorithm for solving these two problems, thus improving the runtime
over previous work by Manea [18]. Notice that both our algorithms compute the dynamic
programming table of the respective problem explicitly.

A question that arises from our work is can one find an algorithm that solves one of these
problems by computing a small subset of cells in the dynamic programming table, which
implies a runtime of o(n2). An interesting and challenging open problem is to provide an
o(n2) algorithm for any of the two problems studied in this paper (not necessary with uses
of the dynamic programming’s formula), or present a lower bound matching with known
problems.

For other variants of hairpin problems (see, e.g., [9, 20, 21]), we believe our techniques can
help understand them better and help with designing efficient algorithms for these problems.
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A Appendix

Algorithm 2 An O(n2) algorithm for Problem 2.

Input: x, y ∈ Σ+

Output: a string z such that HCDk(z, x) + HCDk(z, y) is minimum
1: DPx = ComputeDP (x)
2: DPy = ComputeDP (y)
3: return Compute_MDCA(x, y, DPx, DPy)

Algorithm 3 Updates the list Rowi.

1: procedure updateRow(i, j, r)
2: while r is not NULL and βr > j − k-Border(s[i . . . j]) and δr > DPx[i][j] do
3: delete r from Rowi

4: r = r → next

5: end while
6: add (j − k-Border(s[i . . . j]), DPx[i][j] + 1) to Rowi

7: end procedure

Algorithm 4 Updates the list Colj .

1: procedure updateCol(i, j, cj)
2: while c is not NULL and βj

c < i + k-Border(s[i . . . j]) and δj
c > DPx[i][j] do

3: delete cj from Colj
4: cj = cj → next

5: end while
6: add (i + k-Border(s[i . . . j]), DPx[i][j] + 1) to Colj
7: end procedure

CPM 2023



5:18 Faster Algorithms for Computing HCD and MDCHCA

Algorithm 5 ComputeDP .

Input: x ∈ Σ+

Output: DPx

1: DP [i][j] =∞,∀ 1 ≤ i ≤ j ≤ n ▷ n is the length of the input string
2: DPx[1][n] = 0 ▷ Base case
3: add (n− k-Border(s[1 . . . n]), 1) to Row1
4: for i← n− 1 to 1 do ▷ Compute the first line of DPx

5: if i ≤ βr then
6: DPx[1][i] = δr

7: if j − k-Border(s[1 . . . i]) < βr then
8: updateRow(1, i, r)
9: end if

10: end if
11: end for
12: for i← 2 to n do
13: for j ← n to 1 do
14: if δr < δj

c then
15: if j ≥ βr then
16: DPx[i][j] = δr

17: if j − k-Border(s[i . . . j]) < βr then
18: updateRow(i, j, r)
19: updateCol(i, j, cj)
20: end if
21: end if
22: else
23: if i ≤ βj

c then
24: DPx[i][j] = δj

c

25: if i + k-Border(s[i . . . j]) > βj
c then

26: updateCol(i, j, cj)
27: updateRow(i, j, r)
28: end if
29: end if
30: end if
31: end for
32: end for
33: return DPx
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