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Abstract
The palindrome pattern matching (pal-matching) is a kind of generalized pattern matching, in
which two strings x and y of same length are considered to match (pal-match) if they have the
same palindromic structures, i.e., for any possible 1 ≤ i < j ≤ |x| = |y|, x[i..j] is a palindrome
if and only if y[i..j] is a palindrome. The pal-matching problem is the problem of searching for,
in a text, the occurrences of the substrings that pal-match with a pattern. Given a text T of
length n over an alphabet of size σ, an index for pal-matching is to support, given a pattern P of
length m, the counting queries that compute the number occ of occurrences of P and the locating
queries that compute the occurrences of P . The authors in [I et al., Theor. Comput. Sci., 2013]
proposed an O(n lg n)-bit data structure to support the counting queries in O(m lg σ) time and the
locating queries in O(m lg σ + occ) time. In this paper, we propose an FM-index type index for the
pal-matching problem, which we call the PalFM-index, that occupies 2n lg min(σ, lg n) + 2n + o(n)
bits of space and supports the counting queries in O(m) time. The PalFM-indexes can support
the locating queries in O(m + ∆occ) time by adding n

∆ lg n + n + o(n) bits of space, where ∆ is a
parameter chosen from {1, 2, . . . , n} in the preprocessing phase.
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1 Introduction

A palindrome is a string that can be read same backward as forward. Palindromic structures
in a string are one of the most fundamental structures in the string and have been extensively
studied. For example, it is known that any string w contains at most |w| + 1 distinct
palindromic substrings [6], and the strings reaching the maximum values have some intriguing
properties [15, 28]. Another concept regarding palindromic structures is the palindrome
complexity [1, 4, 2], which is the number of distinct palindromic substrings of a given length
in a string.

Instead of thinking about distinct palindromic substrings, one might be interested in
occurrences of palindromic substrings. The palindromic structures in such a sense are
captured by the maximal palindromes from all possible “centers” in a string. Manacher’s
algorithm [26], originally proposed for computing a prefix-palindrome, can be extended to
compute all the maximal palindromes in O(|w|) time for a string w. The authors in [18]
considered the problem of inferring strings from a given set of maximal palindromes and
showed that the problem can be solved in O(|w|) time.
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In [19], a new concept called palindrome pattern matching was introduced as a generalized
pattern matching. Two strings x and y of the same length are said to palindrome pattern
match (pal-match in short) iff they have the same palindromic structures, i.e., the following
condition holds: for any possible 1 ≤ i < j ≤ |x| = |y|, x[i..j] is a palindrome iff y[i..j] is
a palindrome. We remark that x and y themselves are not necessarily palindromes. The
palindrome pattern matching has potential applications to genomic analysis, in which some
palindromic structures play an important role to estimate RNA secondary structures [21].

The pal-matching problem is to search for, in a text, the occurrences of the substrings
that pal-match with a pattern. Given a text T of length n and a pattern P of length m, a
Morris-Pratt type algorithm for solving the pal-matching problem in O(n) time was proposed
in [19]. The method in [19] is based on the lpal-encoding of a string w, denoted as lpalw,
that is the integer array of length |w| such that lpalw[i] is the length of the longest suffix
palindrome of w[1..i]. The lpal-encoding is helpful because two strings x and y pal-match iff
lpalx = lpaly. When T is large and static, and patterns come online later, one might think
of preprocessing T to construct an index for pal-matching. An index for pal-matching is
to support the counting queries that compute the number occ of occurrences of P and the
locating queries that compute the occurrences of P . For this purpose, I et al. [19] proposed
the palindrome suffix tree of T , which is a compacted tree of the lpal-encoded suffixes of T .
The palindrome suffix tree takes O(n lg n) bits of space and supports the counting queries in
O(m lg σ) time and the locating queries in O(m lg σ + occ) time, where σ is the size of the
alphabet from which characters in T are taken and occ is the number of occurrences.

In this paper, we present a new index, named the PalFM-index, by applying the technique
of the FM-index [7] to the pal-matching problem. In so doing we introduce a new encoding,
named the ssp-encoding, that is based on the non-trivial shortest suffix-palindrome of each
prefix. In contrast to the lpal-encoding, the ssp-encoding has a good property to design
the PalFM-index. The PalFM-index occupies 2n lg min(σ, lg n) + 2n + o(n) bits of space
and supports the counting queries in O(m) time. The locating queries can be supported in
O(m + ∆occ) time by adding n

∆ lg n + n + o(n) bits of space, where ∆ is a parameter chosen
from {1, 2, . . . , n} in the preprocessing phase.

1.1 Related work
One of the well-studied algorithmic problems related to palindromes is factorizing a string
into non-empty palindromes, or in other words, recognizing a string that is obtained by
concatenating a certain number of non-empty palindromes [26, 24, 12, 9, 20, 25, 3, 29]. The
combinatorial properties discovered during tackling this factorization problem are useful to
work on palindromes-related problems.

Developing techniques of designing space-efficient indexes for generalized pattern matching
is of great interest. Our PalFM-index was inspired by that of Kim and Cho [23], which
is a simplified version of the FM-index for parameterized pattern matching [13]. Indexes
based on the FM-index for other generalized pattern matching problems were considered
in [14, 11, 22].

2 Preliminaries

2.1 Notations
An integer interval {i, i + 1, . . . , j} is denoted by [i..j], where [i..j] represents the empty
interval if i > j.
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Figure 1 Illustration of the palindromic structures for pal-matching strings abcbaaca and
bcacbbdb. Check that the radii of their maximal palindromes for all possible centers, which are
illustrated by two-headed arrows, coincide.

Let Σ be a finite alphabet, a set of characters. An element of Σ∗ is called a string. The
length of a string w is denoted by |w|. The empty string ε is a string of length 0, that is,
|ε| = 0. The concatenated string of two strings x and y are denoted as x ·y or simply xy. The
i-th character of a string w is denoted by w[i] for 1 ≤ i ≤ |w|, and the substring of a string w

that begins at position i and ends at position j is denoted by w[i..j] for 1 ≤ i ≤ j ≤ |w|, i.e.
w[i..j] = w[i]w[i+1] . . . w[j]. For convenience, let w[i..j] = ε if i > j. A substring of the form
w[1..j] (resp. w[i..|w|]) is called a prefix (resp. suffix) of w and denoted as w[..j] (resp. w[i..])
in shorthand. Note that ε is a substring/prefix/suffix of any string w. A substring of w is
called proper if it is not w itself. When needed we use parentheses to indicate positions in a
concatenated string, for example, (xy)[i] refers to the i-th character of the string xy. Hence,
(xy)[i] should be distinguished from xy[i], which can be interpreted as the concatenated
string of x and y[i].

Let ≺ denote the total order over an alphabet we consider. In particular, we will consider
strings over a set consisting of integers and ∞, in which natural total order based on their
values is employed. We extend ≺ to denote the lexicographic order of strings over the
alphabet. For any strings x and y that do not match, we say that x is lexicographically
smaller than y and denote it by x ≺ y iff x[i + 1] ≺ y[i + 1] for largest integer i with
x[..i] = y[..i], where we assume that x[i + 1] or y[i + 1] refers to the lexicographically smallest
character $ if it points to out of bounds.

For any string w, let wR denote the reversed string of w, that is, wR = w[|w|] · · · w[2]w[1].
A string w is called a palindrome if w = wR. The radius of a palindrome w is |w|

2 . The
center of a palindromic substring w[i..j] of a string w is i+j

2 . A palindromic substring w[i..j]
is called the maximal palindrome at the center i+j

2 if no other palindromes at the center i+j
2

have a larger radius than w[i..j], i.e., if w[i − 1] ̸= w[j + 1], i = 1, or j = |w|.
Two strings x and y of same length are said to palindrome pattern match (pal-match in

short) iff they have the same palindromic structures, i.e., the following condition holds: for
any possible 1 ≤ i < j ≤ |x| = |y|, x[i..j] is a palindrome iff y[i..j] is a palindrome. For
example, abcbaaca and bcacbbdb pal-match since their palindromic structures coincide (see
Figure 1). Note that pal-matching induces a substring consistent equivalent relation [27], i.e.,
if x and y pal-match then x[i..j] and y[i..j] pal-match for any possible 1 ≤ i < j ≤ |x| = |y|.

The pal-matching problem is to search for, in a text string T , the occurrences of the
substrings that pal-match with a pattern P . In the pal-matching problem, an occurrence of
P refers to a position i such that T [i..i + |P | − 1] and P pal-match. Throughout this paper
we consider indexing a text T of length n over an alphabet Σ of size σ.

CPM 2023
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2.2 Toolbox

As a component of our PalFM-index, we use a data structure for a string w over an integer
alphabet U supporting the following queries.

rankw(i, c): return the number of occurrences of character c ∈ U in w[..i].
selectw(i, c): return the i-th smallest position of the occurrences of character c ∈ U in w.
rangeCountw(i, j, c, d): return the number of the occurrences of any character in [c..d] ⊆ U

in w[i..j].

The Wavelet tree [17] supports these queries in O(lg |Σ|) time using |w|H0(w) + o(|w| lg |U |)
bits of space, where H0(w) = O(lg |U |) is the 0-th order empirical entropy of w. The
subsequent studies [8, 16] improved the complexities, resulting in the following theorem.

▶ Theorem 1 ([16]). For a string w over an integer alphabet U , there is a data structure in
|w|H0(w) + o(|w|) bits of space that supports rank, select and rangeCount in O(1 + lg |U |

lg lg |w| )
time.

We also use a data structure for the Range Maximum Queries (RMQs) over an integer
array V . Given an interval [i..j] over V , a query RMQV (i, j) returns a position in [i..j] that
has the maximum value in V [i..j], that is, RMQV (i, j) = arg maxk∈[i..j] V [k]. We use the
following result.

▶ Theorem 2 ([10]). For an integer array V of length n, there is a data structure with
2n + o(n) bits of space that supports the RMQs in O(1) time.

2.3 FM-index

The suffix array SA of T is the integer array of length n + 1 such that SA[i] is the starting
position of the lexicographically i-th suffix of T .1 We define the string L (a.k.a. the Burrows-
Wheeler Transform (BWT) [5] of T ) of length n + 1 as follows:

L[i] =
{

$ (SA[i] = 1),
T [SA[i] − 1] (SA[i] > 1).

We define the string F of length n + 1 as F = T [SA[1]]T [SA[2]] · · · T [SA[n + 1]]. The so-
called LF-mapping LF is the function defined to map a position i to j such that SA[j] =
SA[i] − 1 (with the corner case LF(i) = 1 for SA[i] = 1). A crucial point is that LF-
mapping can be efficiently implemented by rank queries on L and select queries on F with
LF(i) = selectF(rankL(i, L[i]), L[i]). 2 The occurrences of pattern P in T can be answered by
finding the maximal interval [Pb..Pe] in the SA array such that T [SA[i]..] is prefixed by P iff
i ∈ [Pb..Pe], and computing the SA-values in the interval. For a string w and character c,
the so-called backward search computes the maximal interval in the SA prefixed by cw from
that of w using a similar mechanism of the LF-mapping (see [7] for more details).

1 Against convention, we include the empty string that starts with the position n + 1 to SA. In particular,
SA[1] = n + 1 holds as the empty string is always the smallest suffix.

2 In the plain LF-mapping, select queries on F can be implemented by a simple table that counts, for
each character c, the number of occurrences of characters smaller than c in T , but it is not the case in
our generalized LF-mapping for pal-matching.
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Table 1 A comparison between lpal and ssp for w = abbbabb and w′ = bw = babbbabb. The
values that change when prepending b to w are underlined.

w = a b b b a b b
lpalw = 1 1 2 3 5 3 5
sspw = ∞ ∞ 2 2 5 3 2

w′ = b a b b b a b b
lpalw′ = 1 1 3 2 3 5 7 5
sspw′ = ∞ ∞ 3 2 2 5 3 2

3 Encodings for pal-matching

The pal-matching algorithms in [19] are based on the lpal-encoding of a string w, denoted as
lpalw. lpalw is the integer array of length |w| such that, for any position 1 ≤ i ≤ |w|, lpalw[i]
is the length of the longest suffix-palindrome of w[1..i]. See Table 1 for example.

▶ Lemma 3 (Lemma 2 in [19]). For any strings x and y, x and y pal-match iff lpalx = lpaly.

Although Lemma 3 is sufficient to design suffix-tree type indexes, it seems that the
lpal-encoding is not suitable to design FM-index type indexes. For example, more than one
position could change when a character is prepended (see Table 1) and this unstable property
make messes up lexicographic order of lpal-encoded suffixes, which prevents us to implement
LF-mapping space efficiently.

In this paper, we introduce a new encoding suitable to design FM-index type indexes for
pal-matching. Our new encoding is based on the shortest suffix-palindrome for each prefix,
where the shortest suffix is chosen excluding the trivial palindromes of length ≤ 1. We call
the encoding the shortest suffix-palindrome encoding (the ssp-encoding in short). For any
string w, the ssp-encoding sspw of w is the integer array of length |w| such that, for any
position 1 ≤ i ≤ |w|, sspw[i] is the length of the non-trivial shortest suffix-palindrome of
w[..i] if such exists, and otherwise ∞. See Table 1 for example.

▶ Lemma 4. Two strings x and y pal-match iff sspx = sspy.

Proof. Since the ssp-encoding relies only on palindromic structures, the direction from left
to right is clear.

In what follows, we focus on the opposite direction; x and y pal-match if sspx = sspy.
Assume for contrary that x and y does not pal-match. Without loss of generality, we can
assume that there are positions i and j such that x[i..j] is a palindrome but y[i..j] is not,
with smallest j if there are many. Note that the smallest assumption on j implies that
y[i + 1..j − 1] is a palindrome: If y[i + 1..j − 1] is not a palindrome (clearly |y[i + 1..j − 1]| > 1
in such a case), j − 1 must be a smaller position that satisfies the above condition because
x[i + 1..j − 1] is a palindrome. Let k = sspx[j] = sspy[j]. Since x[i..j] is a palindrome, it
holds that 1 < k ≤ |x[i..j]|. Moreover, k ̸= |y[i..j]| as y[i..j] is not a palindrome. Since the
palindrome x[i..j] has a suffix-palindrome of length k, the prefix x[i..i + k − 1] of length
k is a palindrome, too. On the other hand, since y[i..j] is not a palindrome that has a
suffix-palindrome of length k, the prefix y[i..i + k − 1] of length k cannot be a palindrome.
This contradicts the smallest assumption on j because i + k − 1 is a smaller position such
that x[i..i + k − 1] and y[i..i + k − 1] disagree on their palindromic structures. ◀

In contrast to the lpal-encoding, the ssp-encoding has a stable property when prepending
a character.

CPM 2023
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▶ Lemma 5. For any string w and character c, there is at most one position i (1 ≤ i ≤ |w|)
such that sspw[i] ̸= sspcw[i + 1]. Moreover, if such a position i exists, sspw[i] = ∞ and
sspcw[i + 1] = i + 1.

Proof. By definition it is obvious that sspw[i] = sspcw[i + 1] if sspw[i] ̸= ∞. In what follows,
we assume for contrary that there exist two positions i and i′ with 1 ≤ i < i′ ≤ |w| such that
sspw[i] = ∞ > sspcw[i + 1] and sspw[i′] = ∞ > sspcw[i′ + 1]. Note that sspcw[i + 1] = i + 1
and sspcw[i′ + 1] = i′ + 1 by definition, and (cw)[..i + 1] and (cw)[..i′ + 1] are palindromes.
Since (cw)[..i + 1] is a prefix-palindrome of (cw)[..i′ + 1], it is also a suffix-palindrome of
(cw)[..i′ + 1]. It contradicts that (cw)[..i′ + 1] is the non-trivial shortest suffix-palindrome of
(cw)[..i′ + 1]. ◀

We consider yet another encoding based on the shortest suffix of w[..i−1] that is extended
outwards when appending a character w[i]. The concept is closely related to the ssp-encoding
because the extended palindrome is the non-trivial shortest suffix-palindrome of w[..i]. An
advantage of this new encoding is that we can reduce the number of distinct integers to be
used to O(min(σ, lg |w|)), which will be used (in a symmetric way) to define Lpal and obtain
a space-efficient FM-index specialized for pal-matching.

For any string w we partition the suffix-palindromes (including the empty suffix) by the
characters they have immediately to their left and call each group a suffix-pal-group for w.
We utilize the following lemma.

▶ Lemma 6. For any string w, the number of suffix-pal-groups for w is O(min(σ, lg |w|)).

Proof. It is obvious that the number of suffix-pal-groups is at most σ because each character
is associated to at most one suffix-pal-group. Also it is known that the lengths of the suffix-
palindromes can be represented by O(lg |w|) arithmetic progressions and each arithmetic
progression induces a period in the involved suffix (e.g., see [20]). Then we can see that every
suffix-palindrome represented by an arithmetic progression is in the same group. Hence there
are O(lg |w|) groups. ◀

The next lemma shows that pal-matching strings share the same structure of suffix-pal-
groups.

▶ Lemma 7. Let x and y be strings that pal-match and let i and j be integers with 1 ≤ i <

j ≤ |x| = |y|. If x[i + 1..] and x[j + 1..] are palindromes with x[i] = x[j], then y[i + 1..] and
y[j + 1..] are palindromes with y[i] = y[j].

Proof. Since the palindrome x[i + 1..] has a suffix-palindrome of length k = |x[j + 1..]|,
it also has a prefix-palindrome of length k, that is, x[i + 1..i + k] is a palindrome. Also,
x[i + k + 1] = x[j] holds. Since x[i] = x[j] = x[i + k + 1], x[i..i + k + 1] is a palindrome.

Since x and y pal-match, y[i + 1..], y[j + 1..] and y[i..i + k + 1] are palindromes. By
transition of equivalence induced by the palindromes y[i..i + k + 1] and y[i + 1..], we can see
that y[i] = y[i + k + 1] = y[j]. Thus the claim holds. ◀

Let the shortest palindrome in a suffix-pal-group be the representative of the group. We
assign consecutive integer identifiers starting from 1 to the suffix-pal-groups in increasing
order of their representative’s lengths. See Figure 2 for example.

For any string w, we define the shortest suffix-pal-group encoding sspgw of w as the integer
array of length |w| such that, for any position 1 ≤ i ≤ |w|, sspgw[i] is the identifier assigned
to the suffix-pal-group of the suffix-palindrome in w[..i − 1] that is extended outwards by
appending w[i], if such exists, and otherwise ∞. See Table 2 and Figure 3 for example. Since
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Figure 2 An example of suffix-pal-groups for bababababacababacababacababa. The number
enclosed in a circle denotes the pal-group-id. The suffix-palindromes in the suffix-pal-group with
identifier 1 (resp. 2 and 3) have a (resp. b and c) immediately to their left. The identifiers are given
in increasing order of their representative’s lengths, that is, |ε| = 0, |a| = 1 and |ababa| = 5.

the non-trivial shortest suffix of w[..i] is extended outwards from the representative of the
suffix-pal-group for w[1..i − 1] that has w[i] immediately to the left, sspgw[i] has essentially
equivalent information to sspw[i]. Formally the next lemma holds.

▶ Lemma 8. For any string x of length k, suppose we have the set of lengths of the
representatives of suffix-pal-gropus of x[..k − 1]. Given sspgx[k] we can identify sspx[k], and
vice versa.

Proof. It is clear that sspx[k] = ∞ iff sspgx[k] = ∞. Given sspgx[k] ̸= ∞ we can identify
sspx[k] from the representative of the suffix-pal-group with identifier sspgx[k]. Given sspx[k] ̸=
∞ we can identify sspgx[k] from the representative that has length sspx[k] − 2. ◀

The next lemma shows that the sspg-encoding is another encoding for pal-matching, and
induces the same lexicographic order with the ssp-encoding.

▶ Lemma 9. Let x and y be strings of length k such that sspx[..k − 1] = sspy[..k − 1]. Then,
sspx[k] = sspy[k] iff sspgx[k] = sspgy[k]. Also, sspx[k] < sspy[k] iff sspgx[k] < sspgy[k].

Proof. It follows from Lemma 7 that x[..k − 1] and y[..k − 1] have the same structure of
suffix-pal-groups. By Lemma 8, sspx[k] = sspy[k] if sspgx[k] = sspgy[k], and vice versa.
Since the identifiers of suffix-pal-groups are given in increasing order of their representative’s
lengths, it holds that sspx[k] < sspy[k] if and only if sspgx[k] < sspgy[k]. ◀

For any string w, let π(w) = sspgwR [|w|]. Intuitively, π(w) holds the information from
which prefix-palindrome of w[2..] the non-trivial shortest prefix-palindrome of w is extended,
and the information is encoded with the identifier defined in the completely symmetric way
as the case of the suffix-pal-groups. The function π(·) will be applied to the suffixes of
T to define Fpal and Lpal, and the next lemma is a key to implement LF-mapping for our
PalFM-index.

CPM 2023
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Table 2 A comparison between sspw and sspgw for w = babbbabb. sspw[6] = 5 because the
non-trivial shortest suffix-palindrome of w[1..6] = babbba is abbba, which is of length 5. On the
other hand, sspgw[6] = 2 because the shortest suffix-palindrome abbba ending at 6 is extended from
bbb and the suffix-pal-group to which bbb belongs for w[1..5] = babbb has the identifier 2.

w = b a b b b a b b
sspw = ∞ ∞ 3 2 2 5 3 2

sspgw = ∞ ∞ 2 1 1 2 2 2

babbbw = bba.

1

2

sspgw[6] = 2

Figure 3 Illustration to show sspgw[6] = 2 for w = babbbabb.

▶ Lemma 10. Let x and y be strings of length ≥ 1 such that π(x) = π(y). Then, sspx ≺ sspy

iff sspx[2..] ≺ sspy[2..].

Proof. Let i be the largest integer such that x[2..i] and y[2..i] pal-match. Since π(x) = π(y),
using Lemma 9 in a symmetric way, it holds that x[..i] and y[..i] pal-match. Recall Lemma 5
that at most one ∞ in sspx[2..] (resp. sspy[2..]) turns into the largest possible integer at the
changed position when prepending x[1] (resp. y[1]). We analyze the cases focusing on the
changed positions:
1. The claim clearly holds if neither sspx nor sspy has the changed position less than or

equal to i + 1.
2. If both of sspx and sspy have the changed position at j ≤ i + 1, it holds that sspx[j] =

sspy[j] = j and sspx[2..][j − 1] = sspy[2..][j − 1] = ∞, which also indicates that j < i + 1.
Since this change does not affect the lexicographic order, the claim holds. See the left
part of Figure 4 for an illustration of this case.

3. Assume sspy has the changed position at j ≤ i+1, but sspx does not. Since x[..i] and y[..i]
pal-match, j cannot be less than i + 1, and hence, j = i + 1 and sspx[i + 1] = sspx[2..][i] ≺
i + 1 = sspy[i + 1] ≺ ∞ = sspy[2..][i]. Note that the lexicographic order between sspx and
sspy (resp. sspx[2..] and sspy[2..]) is determined by that between sspx[i + 1] and sspy[i + 1]
(resp. sspx[2..][i] and sspy[2..][i]). Since the lexicographic order between sspx[i + 1] and
sspy[i + 1] is the same as that between sspx[2..][i] and sspy[2..][i], the claim holds. See the
right part of Figure 4 for an illustration of this case.

Thus, we conclude that the lemma holds. ◀
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Figure 4 The left (resp. right) figure illustrates the second (resp. third) case in the proof of
Lemma 10.

4 Computational results for new encodings

In this section, we show that the ssp- and sspg-encodings can be computed in linear time for
a given string.

We use the following known results.

▶ Lemma 11 ([26]). For any string w, we can compute all the maximal palindromes in
O(|w|) time.

▶ Lemma 12 (Lemma 3 in [19]). For any string w, we can compute lpalw in O(|w|) time.

Using Lemmas 11 and 12, we obtain:

▶ Lemma 13. For any string w, we can compute sspw in O(|w|) time.

Proof. Manacher’s algorithm [26] can compute the radius of the maximal palindrome in
increasing order of centers in linear time. It can be extended to compute the length lpalw[i]
of the longest palindrome ending at each position i because the maximal palindrome with
the smallest center that ends at position ≥ i gives us the longest suffix-palindrome ending at
i by truncating the palindrome at i (e.g., see Lemma 3 of [19]). In a similar way, we can
compute the length lpal′w[i] of the second longest palindrome ending at i.

Using lpalw and lpal′w, we can compute sspw[i] in increasing order as follows:
1. If lpalw[i] = 1, then sspw[i] = ∞.
2. If lpalw[i] > 1 and lpal′w[i] = 1, then sspw[i] = lpalw[i].
3. If lpalw[i] > 1 and lpal′w[i] > 1, then sspw[i] = sspw[i − lpalw[i] + lpal′w[i]].

In the third case, we use the fact that the non-trivial shortest suffix-palindrome ending at i

has length ≤ lpal′w[i] and it ends at i − lpalw[i] + lpal′w[i], too.
Clearly all can be done in O(|w|) time. ◀

For any string w, let Gw denote the array of length |w| such that Gw[i] stores the number
of suffix-pal-groups for w[..i].

▶ Lemma 14. For any string w, we can compute Gw in O(|w|) time.

CPM 2023
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Figure 5 The left figure illustrates the case with lpalw[j + 1] > 1, in which we see that there is a
suffix-pal-group for w[..j] that has w[j + 1] = c immediately to their left. The right figure illustrates
the case with sppw[i − 1] ≤ |w[i − 1..j]|, in which we see that the maximal palindrome w[i..j] is not
the representative because there is a shorter palindrome that ends at j and has the same character
c′ immediately to the left.

Proof. Let sppw be the array defined in a symmetric way of sspw such that sppw[i] stores the
length of the non-trivial shortest prefix-palindrome starting at i (or ∞ if such a palindrome
does not exist). Using Lemma 13 in a symmetric way, we can compute sppw in O(|w|) time.

Let us focus on the palindromes involved in Gw[j]. First, there is a suffix-pal-group for
w[..j] that has w[j + 1] immediately to their left iff lpalw[j + 1] > 1. Next observe that the
palindromes in other suffix-pal-groups for w[..j], which do not have w[j + 1] immediately to
their left, are the maximal palindromes ending at j. Also, a maximal palindrome w[i..j] is the
representative (i.e., the shortest palindrome) in a suffix-pal-group to which it belongs. if and
only if sppw[i − 1] > |w[i − 1..j]| or i = 1. See Figure 5 for illustrations of these observations.

Based on the above observations, we compute Gw as follows: First, we compute the
maximal palindromes and lpalw in O(|w|) time by Lemmas 11 and 12. Next we check every
maximal palindrome and assign it to its ending position if it is a representative, which can
be done in O(|w|) time in total. We also check if lpalw[j + 1] > 1 for all positions j in O(|w|)
time to count a suffix-pal-group that has w[j + 1] immediately to their left. To sum up, Gw

can be computed in O(|w|) time. ◀

Generalizing the algorithm presented in the proof of Lemma 14, we obtain:

▶ Lemma 15. For any string w, we can compute sspgw in O(|w|) time.

Proof. We modify the algorithm presented in the proof of Lemma 14 slightly. Now the
task is to count, for every position j + 1, the number of suffix-pal-groups for w[..j] whose
representative is shorter than ssp[j + 1] − 1 because the number is exactly sspgw[j + 1] by
definition. We check every maximal palindrome w[i..j] and assign it to its ending position j if
sppw[i − 1] > |w[i − 1..j]| and ssp[j + 1] − 1 > j − i + 1. Finally the number of representatives
assigned to j plus one is sspgw[j + 1]. Similarly to the proof of Lemma 14, all can be done in
O(|w|) time. ◀

5 PalFM-index

The PalFM-index of T conceptually sort the suffixes of T in lexicographic order of their
ssp-encodings (or equivalently sspg-encodings). Let SApal be the integer array of length n + 1
such that SApal[i] is the starting position of the i-th suffix of T in ssp-encoded order. We
define the strings Fpal and Lpal of length n + 1 based on π function applied to the sorted
suffixes. Formally, for any position i (1 ≤ i ≤ n + 1) we define:
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i T [i..] sspT [i..] sspT [SApal[i]..] SApal[i] Fpal[i] Lpal[i] LFpal(i)
1 abbabbcbc ∞∞2432∞33 ε 10 $ ∞ 2
2 bbabbcbc ∞2∞32∞33 ∞ 9 ∞ ∞ 5
3 babbcbc ∞∞32∞33 ∞2∞32∞33 2 1 2 6
4 abbcbc ∞∞2∞33 ∞2∞33 5 1 ∞ 7
5 bbcbc ∞2∞33 ∞∞ 8 ∞ 2 8
6 bcbc ∞∞33 ∞∞2432∞33 1 2 $ 1
7 cbc ∞∞3 ∞∞2∞33 4 ∞ 2 9
8 bc ∞∞ ∞∞3 7 2 2 10
9 c ∞ ∞∞32∞33 3 2 1 3
10 ε ε ∞∞33 6 2 1 4

Figure 6 An example of SApal[i], Fpal[i] and Lpal[i] for T = abbabbcbc.

Fpal[i] =
{

$ if i = 1,
π(T [SApal[i]..]) otherwise.

Lpal[i] =
{

$ if SApal[i] = 1,
π(T [SApal[i] − 1..]) otherwise.

See Figure 6 for example.
As in the case of LF, we define a function LFpal : i 7→ j so that SApal[j] = SApal[i] − 1

(with the corner case LFpal(i) = 1 for SApal[i] = 1). Thanks to Lemma 10, for any value
c, the suffixes used to obtain i-th k in Lpal and in Fpal are the same, which enables us to
implement the LFpal function by LFpal(i) = selectFpal(rankLpal(i, Lpal[i]), Lpal[i]). See Figure 7
for an illustration.

For any string w, let w-interval refer to the maximal interval [b..e] such that sspT [SApal[i]..]
is prefixed by sspw, where w-interval is empty if there is no substring of T that pal-matches
with w. Notice that the substring of T of length |w| starting at SApal[i] pal-matches with w

iff i ∈ [b..e]. A single step of backward search computes cw-interval from w-interval for some
character c.

The following theorems are the main contributions of this paper.

▶ Theorem 16. Let T be a string of length n over an alphabet of size σ. There is a data
structure of 2n lg min(σ, lg n) + 2n + o(n) bits of space to support the counting queries for the
pal-matching problem in O(m) time, where m is the length of a given pattern P .

Proof. We use the data structures of Theorem 1 for Lpal and Fpal, and the RMQ data
structure of Theorem 2 for the integer array V with V [i] = LFpal(i). Since the number of
distinct symbols in Lpal and Fpal are O(min(σ, lg n)) by Lemma 6, the data structures occupy
2n lg min(σ, lg n) + 2n + o(n) bits of space in total and all queries (rank, select, rangeCount
and RMQ) can be supported in O(1) time.

The number of occurrences of P can be answered by computing the width of P -interval.
Thus we focus on a single step of backward search. In a general setting, for any string w

and a character c, we show how to compute cw-interval [b′..e′] in O(1) time from w-interval
[b..e], π(cw) and the number g of prefix-pal-groups of w. The procedure differs depending on
π(cw) = ∞ or not.

CPM 2023
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Figure 7 An illustration for Fpal[i], Lpal[i] and LFpal(i). Except the corner cases that have $, Fpal[i]
and Lpal[i] are defined by π(T [SApal[i]..]) and π(T [SApal[i] − 1..]), respectively. Since π(w) encodes
the information about the non-trivial shortest prefix of w, in each row the non-trivial shortest prefix
is shown in grayed background. For example, π(abbabbcbc) = 2 because its non-trivial shortest
prefix-palindrome abba is extended from the prefix-palindrome bb of bbabbcbc and bb belongs to
the prefix-pal-group with the identifier 2. Observe that Fpal is a permutation of Lpal since both Fpal

and Lpal use every suffix w of T exactly once to obtain π(w). Roughly speaking, LFpal(·) is meant to
map a row having a suffix w in the T [SApal[i] − 1..]) column to the row having the same suffix w in
the T [SApal[i]..] column. Thanks to Lemma 10, for any value k, the suffixes used to obtain i-th k in
Lpal and in Fpal are the same, and hence, one can observe visually that the arrows starting from the
same Lpal-value are not crossed.

1. When π(cw) = k ̸= ∞. Using Lemma 9 in a symmetric way, [b′..e′] is obtained by
mapping the positions of π(cw) in Lpal[b..e] by the LFpal function. More specifically,
b′ = selectFpal(rankLpal(b − 1, k) + 1, k) and e′ = selectFpal(rankLpal(e, k), k), which can be
computed in O(1) time.

2. When π(cw) = ∞. We note that [b′..e′] is the maximal interval such that T [SApal[i]..] does
not have non-trivial prefix-palindrome (i.e. π(T [SApal[i]..]) = ∞) or T [SApal[i]..] has the
non-trivial shortest prefix-palindrome of length longer than |cw| (i.e. π(T [SApal[i]..]) > g).
Thus, e′−b′+1 is equivalent to the number of occurrences of values larger than g in Lpal[b..e],
which can be computed in rangeCountLpal

(b, e, g, ∞) in O(1) time. Moreover, it holds that
e′ = LFpal(RMQV (b, e)) because ssp(T [SApal[i] − 1..]) with π(T [SApal[i] − 1..]) = Lpal[i] > g

is always lexicographically larger than ssp(T [SApal[j] − 1..]) with π(T [SApal[j] − 1..]) =
Lpal[j] ≤ g. Thus, we can compute [b′..e′] in O(1) time.

Backward search for P requires π(P [i..]) and the number g of prefix-pal-groups of P [i..]
for all 1 ≤ i ≤ m, which can be computed by sspgP R and GP R in O(m) time using Lemmas 15
and 14.

Putting all together, we get the theorem. ◀

▶ Theorem 17. Let T be a string of length n over an alphabet of size σ and ∆ be an integer
in [1..n]. There is a data structure of 2n lg min(σ, lg n) + n

∆ lg n + 3n + o(n) bits of space to
support the locating queries for the pal-matching problem in O(m + ∆occ) time, where m is
the length of a given pattern P and occ is the number of occurrences to report.
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Proof. We use the data structure and the algorithm of Theorem 16 to compute P -interval in
2n(1+lg min(σ, lg n))+o(n) bits of space and O(m) time. The occurrences of P (in the sense
of pal-matching) can be answered by the SApal-values in P -interval. We employ exactly the
same sampling technique used in the FM-index to retrieve SA-values (e.g., see [7]): We make
a bit vector B of length n + 1 marking the positions i in SApal such that SApal[i] = ∆k + 1
for some integer k, and the sparse suffix array S holding only the marked SApal-values in the
order. B is equipped with a data structure to support the rank queries and the additional
space to Theorem 16 is n

∆ lg n + n + o(n) bits in total.
If position i is marked, SApal[i] is retrieved by S[rankB(i, 1)] in O(1) time. If position i is

not marked, we apply LF-mapping k times from i until we reach a marked position j and
retrieve SApal[i] by S[rankB(j, 1)] + k. Since text positions are marked every ∆ positions,
the number k of LF-mapping steps is at most ∆, and hence, SApal[i] can be retrieved in
O(∆) time. Therefore we can report each occurrence of P in O(∆) time, and the theorem
follows. ◀

6 Conclusions and future work

In this paper, we developed new encoding schemes for pal-matching and proposed the
PalFM-index, a space-efficient index for pal-matching based on the FM-index. Future work
includes to present an efficient construction algorithm of the PalFM-index, and to reduce
the space requirement (e.g. by incorporating with the idea of [13]). Another interesting
research direction would be to develop a general framework to design FM-index type indexes
in generalized pattern matching. We believe that switching encoding from lpal to ssp to
design the PalFM-indexes gives a good hint to pursue this direction, and conjecture that any
generalized pattern matching under a substring consistent equivalent relation [27] admits
such shortest positional encodings to design FM-index type indexes.
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