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Preface

This volume contains the proceedings of the 8th International Conference on Formal Structures
for Computation and Deduction (FSCD 2023), which was held July 3–6, 2023 in Rome, Italy.
FSCD 2023 was co-located with the 29th International Conference on Automated Deduction,
(CADE 2023), which was held July 1–4, 2023 in Rome, Italy.

The conference FSCD (https://fscd-conference.org/) covers all aspects of formal
structures for computation and deduction, from theoretical foundations to applications.
Building on two communities, RTA (Rewriting Techniques and Applications) and TLCA
(Typed Lambda Calculi and Applications), FSCD embraces their core topics and broadens
their scope to include closely related areas in logic and proof theory, new emerging models of
computation, as well as semantics and verification in new and challenging areas.

The FSCD program featured four invited talks, given by Maribel Fernández (King’s
College London, UK), Mateja Jamnik (University of Cambridge, UK), Giulio Manzonetto
(LIPN&CNRS, Université Sorbonne Paris Nord, France), and Akihisa Yamada (Cyber
Physical Security Research Center, National Institute of Advanced Industrial Science and
Technology - AIST, Japan). The invited talks by Maribel Fernández and Mateja Jamnik
were joint with CADE 2023; their contributions are also in the proceedings of CADE 2023.

The Program Committee of FSCD 2023 consisted of 31 members from 18 countries.
FSCD 2023 received 60 submission with contributing authors from 19 countries. Almost
every submitted paper has been reviewed by at least three PC members with the help of in
total 90 external reviewers. The reviewing process, which included a rebuttal phase, took
place over a period of nine weeks. A total of 30 papers were accepted for publication and are
included in these proceedings. The EasyChair conference management system has been a
very useful tool in all phases of the work of the Program Committee.

The Program Committee awarded the FSCD 2023 Best Paper Award by Junior Researchers
to Taichi Uemura from Stockholm University for his paper ‘Homotopy type theory as internal
languages of diagrams of ∞-logoses’.

In addition to the main conference, nine FSCD-associated workshop were held before or
during the conference:

DCM 2023: 13th International Workshop on Developments in Computational Models,

HOR 2023: 11th International Workshop on Higher-Order Rewriting,

IFIP WG 1.6: annual meeting of the IFIP Working Group 1.6 on Rewriting,

LFMTP 2023: International Workshop on Logical Frameworks and Meta-Languages:
Theory and Practice,

LSFA 2023: 18th International Workshop on Logical and Semantic Frameworks, with
Applications,

TLLA 2023: Seventh International Workshop on Trends in Linear Logic and Applications,

UNIF 2023: 37th International Workshop on Unification,

WiL 2023: 7th International Workshop Women in Logic,

WPTE 2023: 10th International Workshop on Rewriting Techniques for Program Trans-
formations and Evaluation.
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This volume of FSCD 2023 is published in the LIPIcs series under a Creative Commons
license: online access is free to all papers and authors retain rights over their contribu-
tions. We thank the Leibniz Center for Informatics at Schloss Dagstuhl, and in particular
Michael Wagner and Michael Didas, for their prompt and helpful replies to our questions
regarding the production of these proceedings, for their flexibility, and for their user-friendly
submission system.

Many people have helped to make FSCD 2023 a successful meeting. On behalf of the
Program Committee, we thank the authors of submitted papers for considering FSCD as
a venue for their work. We are grateful to the Program Committee and to the external
reviewers for their careful and constructive review and evaluation of the submitted papers.
We thank all invited speakers for enriching the program with their talks. In addition, the
associated workshops highly contributed to the lively scientific atmosphere of the meeting.
We thank the organizers of the workshops, the Steering Committee Workshop Chair Cynthia
Kop, and the Conference Workshop Chair Ivano Salvo for their efforts. Warm thanks to
the Conference Chair of FSCD 2023, Daniele Gorla and his colleagues for the excellent
organization of the conference. We thank the co-chairs of CADE 2023, Brigitte Pientka from
McGill University en Cesare Tinelli of the University of Iowa, for the fruitful collaboration in
the organization of our co-located events. We are very grateful to the Steering Committee of
FSCD for their valuable and helpful guidance in setting up the meeting, and for ensuring
that FSCD will have a bright and enduring future. We thank in particular the Steering
Committee chair Herman Geuvers and the Steering Committee Publicity Chair Carsten
Fuhs for their help and advice in smaller and larger matters during the preparation of the
conference. Finally, we thank all participants of the conference for creating a lively and
interesting event.

Marco Gaboardi and Femke van Raamsdonk
Program Committee co-chairs of FSCD 2023
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In this talk we discuss the nominal approach to the specification of languages with binders and some
applications to programming languages and verification.
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1 Overview

The nominal approach to the specification of languages with binding operators, introduced
by Gabbay and Pitts [27, 21, 20], has its roots in nominal set theory [26]. Its user-friendly
syntax and first-order presentation (indeed, nominal logic [25] is defined as a theory in
first-order logic) makes formal reasoning about binding operators similar to conventional
on-paper reasoning.

Nominal logic uses the well-understood concept of permutation groups acting on sets
to provide a rigorous, first-order treatment of common informal practice to do with fresh
and bound names. Nominal matching and nominal unification [34, 35] (which work modulo
α-equivalence) are decidable and efficient algorithms exist [7, 8, 22, 9], which are the basis
for efficient implementations of nominal rewriting [19, 17, 18].

A number of systems (such as Nominal Isabelle [33]) highlighted the benefits of the
nominal approach, which gave rise to elegant formalisations of Gödel’s theorems [24] and
the π-calculus [5] and to advances in programming language semantics [23]. However, there
are still some obstacles to the inclusion of nominal features in programming languages and
verification environments.

In this talk, I will present our current work towards incorporating nominal techniques
into two widely-used rule-based first-order verification environments: the K specification
framework [29] and the Maude programming language [11, 12].

An important component of rule-based programming and verification environments is
the algorithm used to check equivalence of terms and to solve equations (unification). In
practice, unification problems arise in the context of equational axioms (e.g., to take into
account associative and commutative (AC) operators [32, 31, 13, 14, 6]). The first part of the
talk will discuss notions of α-equivalence modulo associativity and commutativity axioms [1],
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extensions of nominal matching and unification to deal with AC operators [2], and the use
of nominal narrowing [3] to deal with equational theories presented by convergent nominal
rewriting rules.

Another important component of these environments is the type system. In the second
part of the talk, I will discuss type systems for nominal languages (including polymorphic
systems [15] and intersection systems [4]). Dependent type theories, the dominant approach
to formalising programming languages, have been extended with nominal features [10, 28, 30].
A lambda-less nominal dependent type system is available [16] and we are currently working
on a type checker for this system.

The talk is structured as follows: we will start with the definition of nominal logic
(including the notions of fresh atoms and alpha-equivalence) followed by a brief introduction
to nominal matching and unification. We will then define nominal rewriting, a generalisation
of first-order rewriting that provides in-built support for alpha-equivalence following the
nominal approach. Finally, we will discuss notions of nominal unification and rewriting
modulo AC operators and briefly overview typed versions of nominal languages.

References
1 Mauricio Ayala-Rincón, Washington de Carvalho Segundo, Maribel Fernández, Daniele Nantes-

Sobrinho, and Ana Oliveira. A formalisation of nominal α-equivalence with A, C, and AC
symbols. Theor. Comput. Sci., 781:3–23, 2019. doi:10.1016/j.tcs.2019.02.020.

2 Mauricio Ayala-Rincón, Washington de Carvalho Segundo, Maribel Fernández, Gabriel Fer-
reira Silva, and Daniele Nantes-Sobrinho. Formalising nominal C-unification general-
ised with protected variables. Math. Struct. Comput. Sci., 31(3):286–311, 2021. doi:
10.1017/S0960129521000050.

3 Mauricio Ayala-Rincón, Maribel Fernández, and Daniele Nantes-Sobrinho. Nominal Narrowing.
In 1st International Conference on Formal Structures for Computation and Deduction, FSCD
2016, page 11. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016.

4 Maurício Ayala-Rincón, Maribel Fernández, Ana Cristina Rocha-Oliveira, and Daniel Lima
Ventura. Nominal essential intersection types. Theoretical Computer Science, 737:62–80, 2018.
doi:10.1016/j.tcs.2018.05.008.

5 Jesper Bengtson and Joachim Parrow. Formalising the pi-calculus using nominal logic. LMCS,
5(2), 2009. URL: http://arxiv.org/abs/0809.3960.

6 Alexandre Boudet, Evelyne Contejean, and Hervé Devie. A New AC Unification Algorithm
with an Algorithm for Solving Systems of Diophantine Equations. In Proceedings of the Fifth
Annual Symposium on Logic in Computer Science (LICS ’90), Philadelphia, Pennsylvania,
USA, June 4-7, 1990, pages 289–299. IEEE Computer Society, 1990.

7 Christophe Calvès and Maribel Fernández. A polynomial nominal unification algorithm. Theor.
Comp. Sci., 403:285–306, August 2008.

8 Christophe Calvès and Maribel Fernández. Matching and alpha-equivalence check for nominal
terms. Journal of Comp. Syst. Sci., 76(5):283–301, 2010.

9 Christophe Calvès and Maribel Fernández. The first-order nominal link. In Logic-Based
Program Synthesis and Transformation - 20th International Symposium, LOPSTR 2010,
Hagenberg, Austria, July 23-25, 2010, Revised Selected Papers, volume 6564 of LNCS, pages
234–248. Springer, 2011.

10 James Cheney. A dependent nominal type theory. Logical Methods in Computer Science, 8(1),
2012.

11 Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln, Narciso Martí-Oliet, José
Meseguer, and Carolyn L. Talcott, editors. All About Maude - A High-Performance Logical
Framework, volume 4350 of LNCS. Springer, 2007. doi:10.1007/978-3-540-71999-1.

https://doi.org/10.1016/j.tcs.2019.02.020
https://doi.org/10.1017/S0960129521000050
https://doi.org/10.1017/S0960129521000050
https://doi.org/10.1016/j.tcs.2018.05.008
http://arxiv.org/abs/0809.3960
https://doi.org/10.1007/978-3-540-71999-1


M. Fernández 1:3

12 Francisco Durán, Steven Eker, Santiago Escobar, Narciso Martí-Oliet, José Meseguer, Rubén
Rubio, and Carolyn L. Talcott. Programming and symbolic computation in Maude. J. Log.
Algebr. Meth. Program., 110, 2020.

13 François Fages. Associative-Commutative Unification. In Robert E. Shostak, editor, 7th
International Conference on Automated Deduction, Napa, California, USA, May 14-16, 1984,
Proceedings, volume 170 of LNCS, pages 194–208. Springer, 1984.

14 François Fages. Associative-Commutative Unification. J. of Sym. Computation, 3(3):257–275,
1987.

15 Elliot Fairweather and Maribel Fernández. Typed nominal rewriting. ACM Transactions on
Computational Logic, 19(1):6:1–6:46, 2018. doi:10.1145/3161558.

16 Elliot Fairweather, Maribel Fernández, Nora Szasz, and Alvaro Tasistro. Dependent types
for nominal terms with atom substitutions. In Typed Lambda Calculus and Applications
(Proceedings of TLCA), pages 180–195, 2015. doi:10.4230/LIPIcs.TLCA.2015.180.

17 Maribel Fernández and Murdoch J. Gabbay. Nominal rewriting. Inf. Comput., 205(6):917–965,
2007.

18 Maribel Fernández and Murdoch J. Gabbay. Closed nominal rewriting and efficiently comput-
able nominal algebra equality. In LFMTP, 2010.

19 Maribel Fernández, Murdoch J. Gabbay, and Ian Mackie. Nominal rewriting systems. In
PPDP, pages 108–119. ACM Press, August 2004.

20 Murdoch J. Gabbay. Foundations of nominal techniques: logic and semantics of variables in
abstract syntax. Bulletin of Symbolic Logic, 2011.

21 Murdoch J. Gabbay and Andrew M. Pitts. A new approach to abstract syntax with variable
binding. Formal Aspects of Computing, 13(3–5):341–363, July 2001.

22 Jordi Levy and Mateu Villaret. An efficient nominal unification algorithm. In Proceedings
of the 21st International Conference on Rewriting Techniques and Applications (RTA 2010),
volume 6 of Leibniz International Proceedings in Informatics (LIPIcs), pages 209–226. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, 2010.

23 Andrzej S. Murawski and Nikos Tzevelekos. Nominal game semantics. FTPL, 2:4:191–269,
2016. doi:10.1561/2500000017.

24 Lawrence C. Paulson. A mechanised proof of Gödel’s incompleteness theorems using Nominal
Isabelle. J. Autom. Reasoning, 55(1):1–37, 2015. doi:10.1007/s10817-015-9322-8.

25 Andrew M. Pitts. Nominal logic: A first order theory of names and binding. In TACS, volume
2215 of LNCS, pages 219–242. Springer, 2001.

26 Andrew M Pitts. Nominal sets: Names and symmetry in computer science. Cambridge UP,
2013.

27 Andrew M. Pitts and Murdoch J. Gabbay. A metalanguage for programming with bound names
modulo renaming. In Proceedings of the 5th international conference on the mathematics of
program construction (MPC 2000), volume 1837 of LNCS, pages 230–255. Springer, December
2000. URL: http://www.gabbay.org.uk/papers.html#metpbn.

28 Andrew M. Pitts, Justus Matthiesen, and Jasper Derikx. A dependent type theory with
abstractable names. Electr. Notes Theor. Comput. Sci., 312:19–50, 2015. doi:10.1016/j.
entcs.2015.04.003.

29 Grigore Rosu and Traian-Florin Serbanuta. An overview of the K semantic framework. J. Log.
Algebr. Program., 79(6):397–434, 2010. doi:10.1016/j.jlap.2010.03.012.

30 Ulrich Schöpp and Ian Stark. A Dependent Type Theory with Names and Binding. In CSL,
pages 235–249, 2004.

31 Mark Stickel. A Unification Algorithm for Associative-Commutative Functions. J. of the
ACM, 28(3):423–434, 1981.

32 Mark E. Stickel. A Complete Unification Algorithm for Associative-Commutative Functions.
In Advance Papers of the Fourth International Joint Conference on Artificial Intelligence,
Tbilisi, Georgia, USSR, September 3-8, 1975, pages 71–76, 1975.

FSCD 2023

https://doi.org/10.1145/3161558
https://doi.org/10.4230/LIPIcs.TLCA.2015.180
https://doi.org/10.1561/2500000017
https://doi.org/10.1007/s10817-015-9322-8
http://www.gabbay.org.uk/papers.html#metpbn
https://doi.org/10.1016/j.entcs.2015.04.003
https://doi.org/10.1016/j.entcs.2015.04.003
https://doi.org/10.1016/j.jlap.2010.03.012


1:4 Nominal Techniques

33 Christian Urban. Nominal techniques in Isabelle/HOL. J. Autom. Reason., 40(4):327–356,
May 2008.

34 Christian Urban, Andrew M. Pitts, and Murdoch J. Gabbay. Nominal unification. In CSL,
volume 2803 of LNCS, pages 513–527. Springer, December 2003. URL: http://www.gabbay.
org.uk/papers.html#nomu, doi:10.1016/j.tcs.2004.06.016.

35 Christian Urban, Andrew M. Pitts, and Murdoch J. Gabbay. Nominal unification. Theor.
Comp. Sci., 323(1–3):473–497, 2004. doi:10.1016/j.tcs.2004.06.016.

http://www.gabbay.org.uk/papers.html#nomu
http://www.gabbay.org.uk/papers.html#nomu
https://doi.org/10.1016/j.tcs.2004.06.016
https://doi.org/10.1016/j.tcs.2004.06.016


How Can We Make Trustworthy AI?
Mateja Jamnik # Ñ

Department of Computer Science and Technology, University of Cambridge, UK

Abstract
Not too long ago most headlines talked about our fear of AI. Today, AI is ubiquitous, and the
conversation has moved on from whether we should use AI to how we can trust the AI systems
that we use in our daily lives. In this talk I look at some key technical ingredients that help us
build confidence and trust in using intelligent technology. I argue that intuitiveness, interaction,
explainability and inclusion of human domain knowledge are essential in building this trust. I present
some of the techniques and methods we are building for making AI systems that think and interact
with humans in more intuitive and personalised ways, enabling humans to better understand the
solutions produced by machines, and enabling machines to incorporate human domain knowledge in
their reasoning and learning processes.

2012 ACM Subject Classification Computing methodologies → Artificial intelligence; Computing
methodologies → Machine learning

Keywords and phrases AI, human-centric computing, knowledge representation, reasoning, machine
learning

Digital Object Identifier 10.4230/LIPIcs.FSCD.2023.2

Category Invited Talk

© Mateja Jamnik;
licensed under Creative Commons License CC-BY 4.0

8th International Conference on Formal Structures for Computation and Deduction (FSCD 2023).
Editors: Marco Gaboardi and Femke van Raamsdonk; Article No. 2; pp. 2:1–2:1

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:mateja.jamnik@cl.cam.ac.uk
https://www.cl.cam.ac.uk/~mj201/
https://orcid.org/0000-0003-2772-2532
https://doi.org/10.4230/LIPIcs.FSCD.2023.2
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de




A Lambda Calculus Satellite
Giulio Manzonetto # Ñ

Université Sorbonne Paris Nord, LIPN, UMR 7030, CNRS, F-93430 Villetaneuse, France

Abstract
We shortly summarize the contents of the book “A Lambda Calculus Satellite”, presented at the 8th
International Conference on Formal Structures for Computation and Deduction (FSCD 2023).
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Introduction

The λ-calculus was introduced by Alonzo Church around 1930 as the kernel of a more general
investigation on the foundations of mathematics and logic [18, 19], and played a prominent
role in theoretical computer science for more than fifty years.1 Under the influence of the
pioneering work of Corrado Böhm, who established his famous separation theorem [11], and
Dana Scott, who constructed the first model of λ-calculus [56], the research on λ-calculus has
flourished in the seventies.2 In that period a wealth of results were established by applying
techniques arising from several areas of computer science and mathematics, namely recursion
theory, algebra, topology and category theory. These approaches revealed that λ-calculus
can be studied from different, although interconnected, perspectives:

The λ-calculus as a rewriting system. The set Λ of λ-terms can be endowed with notions
of reductions, thus it deserves the status of a higher-order term rewriting system:

(λx.M)N →β M [x :=N ], λx.Mx →η M, if x /∈ FV(M).

This approach has its roots in the Church-Rosser Theorem [20] establishing the confluence
of β(η)-reduction, and therefore the unicity of normal forms, and in the Standardization
Theorem [23] from which it follows that the leftmost-outermost reduction strategy is
normalizing. Subsequently, researchers studied the reduction sequences originating from a
λ-term by performing a fine-grained analysis of the creation of redexes and by tracking the
residuals of sets of redexes. This analysis culminated in a proof of the Finite Developments
Theorem, in its various formulations [25, 34, 32].
The analysis of the cost of normalization. The idea of considering the λ-calculus an
actual programming language was taken very seriously by Böhm and Gross, who designed
in the sixties the CUCH machines as an implementational model [13]. Therefore, the

1 We consider here the research on untyped λ-calculus – we could argue that variations of λ-calculus are
still omnipresent in the literature concerning logical systems as well as idealized programming languages.

2 For a more detailed survey of the early history of λ-calculus, we refer the reader to [17].
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problem of determining the computational complexity of normalization via β-reduction
arose naturally. This led Jean-Jacques Lévy to develop in his Thèse de doctorat d’État
an interesting notion of optimal reduction [45].
The λ-calculus as a model of computation. A well-established result shows that any
partial recursive numerical function can be represented by a λ-term operating on Church
numerals. However, observing the behavior of λ-terms exclusively on numerals represents
a very narrow point of view. In general, a λ-term F can be seen as a total function

F : Λ → Λ

and one can study its Range(F ) = {FN | N ∈ Λ} or the set of its fixed points Fix(F ) =
{N | FN =β N} and wonder if they are finite or infinite modulo β-conversion [6, 37].
Moreover, λ-terms can be classified into solvable and unsolvable, depending on their
capability of interaction with the environment: a solvable term can be transformed into the
identity I when plugged in a suitable context C[ ], while unsolvables are unable to interact
with any context. Equivalently, solvable terms must provide at least a stable portion
of their output (their head nf) while unsolvables correspond to looping programs. This
classification led Barendregt to define the Böhm tree BT(M) of a λ-term M , a possibly
infinite tree constructed by coinductively collecting all stable pieces of information coming
out of its computations, and eventually representing the complete evaluation of M [4].
The lattice of λ-theories. The equational theories of λ-calculus are called λ-theories and
become the main subject of study when one is more interested in program equivalence
than in the process of reduction. Some λ-theories are particularly interesting for computer
scientists because they capture operational properties of λ-terms, e.g., extensional theories
equating all extensionally equivalent λ-terms, or sensible theories collapsing all unsolvables,
or theories equating all λ-terms having the same evaluation trees. Morris introduced a class
of observational theories specifying when two λ-terms are observationally equivalent [49].
This means that two λ-terms M and N are considered equivalent whenever one can plug
either M or N into any context C[ ] without noticing any difference in the global behavior.
Observational equivalences thus depend on the kind of behavior one is interested in
observing – a parametricity that can be represented by a set O ⊆ Λ of observables:

TO = {M = N | ∀C[ ] . [ C[M ] ∈ O ⇐⇒ C[N ] ∈ O ]}.

Therefore, even if the set of λ-theories constitutes a complete lattice of cardinality 2ℵ0 ,
researchers have mostly focussed on the following λ-theories that form a kite-shaped
diagram where T1 is depicted above T2 whenever T1 ⊊ T2 holds:

λ

λη H

Hη

Hω Bη

λω B

Bω

? • H+

H∗

λ = {M = N | M =β N}.

λη = {M = N | M =βη N}.

H = {M = N | M, N are unsolvable}.

H+ = TNF, where NF = {M ∈ Λ | M has a β-nf}.

H∗ = TSOL, where SOL = {M ∈ Λ | M is solvable}.

B = {M = N | BT(M) = BT(N)}.

T η = the closure of a λ-theory T under the η-rule.

T ω = the closure of a λ-theory T under the ω-rule, which is
FZ = GZ for all Z ∈ Λo

F = G
ω-rule
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The ω-rule defined above states if two λ-terms F, G are equal whenever they are applied to
the same closed argument Z (i.e. Z ∈ Λo), then they are equal. This form of extensionality
is inspired from set-theoretical definition of “function equality” and encompasses the
η-rule. Proving that the inclusion λη ⊊ λω is strict requires some clever construction [53].
The model theoretic approach. The model theory of λ-calculus has been developed along
three axes. The first one is algebraic and proposes as models (a subclass of) the variety of
combinatory algebras, based on the combinators K, S from Combinatory Logic [23]. The
second one, based on syntactic λ-models, is closely related to the algebraic definition, but
more set-theoretical [31]. The third one is category-theoretic and focuses on the notion
of reflexive object living in Cartesian closed categories [2]. The relationship among these
notions has been explored by Koymans [42]: in general, categorical models correspond to
λ-algebras (describing, e.g., closed term models), that are moreover λ-models when the
underlying category is “well-pointed”.
Concerning the construction of individual models, the most famous ones are Scott’s D∞
whose theory is the observational theory H∗, as proved by Hyland [33] and Wadsworth [67]
(independently), and Plotkin-Scott’s Pω that induces the theory B of Böhm trees [52, 57].

At the end of the seventies, Barendregt decided to collect all these results (and others) in
the monograph “The Lambda Calculus. Its syntax and semantics” [5], presenting the state
of the art of research in λ-calculus at that time. Subsequently translated in Russian and
Chinese, this book is nowadays omnipresent in academic libraries of computer science all
around the world. Several open problems concerning semantical and syntactic aspects of
λ-calculus were proposed in the book, often in the form of conjectures:
1. Do invertible λ-terms correspond to bijective λ-terms, modulo =βη? [5, Exercise 21.4.9].
2. Does the Perpendicular Lines Property hold, modulo β-equality? [5, Chapter 14].
3. The λ-theory H satisfies the range property. [5, Conjecture 20.2.8].
4. The position of H+ in the kite of λ-theories is Bω ⊊ H+ ⊊ H∗. Conjecture by P. Sallé

reported in the proof of [5, Theorem 17.4.16].
5. The λ-theory Hω is Π1

1-complete. [5, Conjecture 17.4.15].

Most of these problems have been solved in the subsequent 35 years, but the results are
scattered throughout the literature and difficult to piece together. Some of these solutions
occupied an entire PhD thesis, e.g. Folkerts [29] (1995), or part of a thesis, e.g. Polonsky [54]
(2011), with the complexity (but not the method) of a proof using priority for results on
the degrees of undecidability. In 2017, Hyland suggested to Barendregt and the present
author that the time had come to write another book, intended as a “satellite” of [5], in
which all these solutions could be presented in a more clear and uniform way, improving and
simplifying the proofs (when possible). We accepted his challenge, and profited from the
occasion to include the solution of problems that weren’t explicitly stated in [5], and other
related research that was conducted in the last decades.

The resulting monograph, entitled “A Lambda Calculus Satellite”, has been published in
2022 by College Publications [9] and is structured in six parts:
1. Preliminaries
2. Reduction
3. Conversion
4. Theories
5. Models
6. Open Problems
In the reminder of the paper, we briefly describe the contents of these parts – each composed
by several chapters – and discuss some pedagogical choices that we made.

FSCD 2023
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1 Preliminaries

In order to make the satellite book [9] as self-contained as possible3, we start with a
preliminary part surveying all the notions and results about λ-calculus4 that are needed in
the rest of the book. This part is divided into three chapters: 1) about syntactic properties;
2) Böhm trees and their variations; 3) models and theories of λ-calculus.

Besides presenting the syntax and operational semantics of λ-calculus in a nutshell,
Chapter 1 contains more developed sections discussing properties of reduction, like finite
developments and standardization, the Reduction under Substitution (RuS) technique by
Diederik van Daalen [65], and its consequences [26]. Chapter 2 is devoted to present three
kinds of coinductively defined trees representing the operational behavior of λ-terms, namely
Böhm trees, Berarducci trees and Lévy-Longo trees. We profit from the occasion to mention
that coinduction is treated in this book using the modern approach suggested in [43]. Since
coinduction has been around for decades, and it is nowadays better understood in the scientific
community, we adopt a more informal style of coinductive reasoning that greatly improves
the readability and benefits the reader. Intuitively, we can do this without compromising
the soundness of our proofs because the definition of Böhm trees is inherently productive.
At the end of the chapter, we introduce two distinct notions of extensional Böhm trees
corresponding to η-Böhm trees and Nakajima trees (respectively). The reason why these
notions are incompatible with Berarducci and Lévy-Longo trees becomes clear later. In
Chapter 3 we recall the main results concerning the lattice of λ-theories [46], and describe the
relationships existing among the different definitions of a model of λ-calculus. In particular,
we revisit Koymans’ construction of a combinatory algebra starting from a categorical model
– giving a λ-model only when the underlying category is well pointed – in favor of the more
general construction described in [16] that works in every Cartesian closed category.

2 Reduction

In this part we consider properties of reductions in several systems: the regular λ-calculus,
its infinitary version, and the S-fragment of Combinatory Logic.

Chapter 4. Leaving a β-reduction plane. Any λ-term M belongs to some β-reduction plane,
which is defined as follows. Given P, Q ∈ Λ, write P ⟲β Q if P →→β Q →→β P . Then,
a β-reduction plane is any ⟲β-equivalence class. Clearly, M belongs to its own plane
[M ]⟲β

. It is possible to leave a plane P at point M ∈ P if there is an N such that
M →β N /∈ P . In 1980, Jan Willem Klop conjectured that if one can leave a plane at one
of its points, then such a plane can be left at any of its points [41]. A few years later, Hans
Mulder [50] and Sekimoto and Hirokawa [58] have refuted this conjecture (independently).
In this chapter, we present Mulder’s counterexample because he constructs a λ-term M

containing a free variable x, but β-reducing to a closed term: M →→β P ∈ Λo. Therefore,
in order to conclude that P /∈ [M ]⟲β

it is sufficient to invoke the fact that a λ-term
cannot create free variables along β-reduction. The counterexample in [58] is a closed
term, whence proving that it actually leaves its plane requires a more subtle reasoning.
Both counterexamples are minimal, in the sense that they contain a minimal amount of
redexes (i.e. 3) and rely on the fact that λ-calculus satisfies the ξ-rule.

3 In our intent, it should be readable without having the previous book at hand.
4 Auxiliary definitions and results about category theory, domain theory and universal algebra are

presented in a technical appendix.
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Chapter 5. Optimal lambda reduction. A consequence of the Standardization Theorem is
that, if a λ-term is normalizing, then its normal form can be reached by repeatedly
contracting the leftmost-outermost redex. However, due to the duplication of redexes, the
leftmost-outermost reduction strategy might not be optimal, in the sense that the normal
form could be reached in a number of steps which is not minimal. In [45], Jean-Jacques
Lévy introduced the notion of redex family to capture an intuitive idea of optimal sharing
between “copies” of the same redex. By studying the causal history of redexes using
a suitable labeled extension of λ-calculus it is possible to define an optimal reduction
method for λ-calculus. Compared to the most recent presentation of this material [1],
our discussion enters deeply into the technical details of the so-called extraction method,
furnishes more examples, and discusses some implementations.

Chapter 6. Infinitary lambda calculus. In λ-calculus there are terms, like Turing’s fixed
point combinator, generating an infinite reduction sequence. Pushing this reduction to
infinity, one generates the infinite term λf.f(f(f( · · · ))), which is an in-line depiction of its
Böhm tree. Inspired by this phenomenon, Kennaway, Klop, Sleep, and de Vries introduced
the infinitary λ-calculus [40], whose terms and reductions can possibly be infinite. The
resulting infinitary term rewriting system is well defined and enjoys the unicity of its normal
forms, but many properties fail like normalization and – most importantly – confluence.
Berarducci showed that collapsing meaningless terms allows to restore confluence, a
property recently proved in Coq by Czajka used coinductive methods [24], and induces
a new model of λ-calculus based on Berarducci trees [10]. By modifying the notion of
meaningless terms, one also retrieves Böhm trees and Lévy-Longo trees as infinitary
normal forms of λ-terms. Adding η-reduction to Berarducci trees or Lévy-Longo trees
breaks confluence again, while this notion of reduction is compatible with Böhm trees.

Chapter 7. Starlings. In this birdwatching chapter our binoculars are focused on the starling
S, living in Smullyan’s enchanted forest of combinatory terms [59] and exhibiting the
following behavior:

Sxyz →w xz(yz)

We consider the S-fragment of Combinatory Logic, namely combinatory terms built
up from application and S exclusively. Many of these have a weak normal form, like
SSSSSSS. Others do not, like S(SS)SSSS and SSS(SSS)(SSS). Many properties that
are undecidable in the context of λ-calculus and Combinatory Logic, become decidable in
this setting. For instance, the question of whether the normalization of S is decidable
was answered positively by Johannes Waldmann in his PhD thesis [68]. We also present
original results by Vincent Padovani on the S-fragment of Combinatory Logic, including:

the fact that termination of head reduction is decidable;
the existence of two non-interconvertible terms having the same Berarducci tree.

Whether the inter-convertibility P =w Q is decidable is still an open problem.

3 Conversion

In this part we consider properties of β(η)-conversion, although the classification here is rather
subjective. Indeed, these properties could equivalently be formulated using the λ-theories
λ, λη, or even the associated term models. In general, given a λ-theory T , it is equivalent
to work with the associated equality =T or in the term model M(T ), while working in the
closed term model Mo(T ) is equivalent to consider closed λ-terms modulo =T .

FSCD 2023
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Chapter 8. Perpendicular Lines Property. In the Cartesian plane R2 the two lines {(x, 2) |
x ∈ R} and {(3, y) | y ∈ R} are perpendicular. Translated to λ-terms, one says that
{(X, I) | X ∈ Λ} and {(K, Y ) | Y ∈ Λ} are “perpendicular”, and similarly in higher
dimensions. The perpendicular lines property (PLP) states that if a λ-definable function
F of k arguments is constant on k perpendicular lines, then F is constant everywhere.
As usual, the validity of this property depends on the notion of equality which is considered,
and on whether one focuses on closed terms, or open terms are also allowed. The validity
of PLP has been shown for M(B) by using Berry’s stability [5], for Mo(B) in the satellite
book by using coinductive methods, and for M(λ) by Endrullis and de Vrijer using
Reduction under Substitution [26]. Statman and Barendregt proved that Mo(λ) ̸|= PLP
using variants of Plotkin terms [64].

Chapter 9. Bijectivity and invertibility in λη. In set theory a function f : X → X is
bijective if and only if it is invertible. More precisely, f is surjective whenever it is
right-invertible, and injective whenever it is left-invertible. Now, given a λ-theory T ,
every closed λ-term F ∈ Λo can be considered as a function F : Mo(T ) → Mo(T ), so it
makes sense to wonder whether this correspondence still holds:

Assuming that F is a bijection, can one conclude that F is T -invertible?

The problem is more difficult because the inverses of F are required to be λ-definable. In
other words, is there a λ-term G ∈ Λo such that F ◦ G =T G ◦ F =T I? For T = λ the
answer is positive because the only β-invertible closed λ-term is the identity I. This was
shown in [12]. The invertibility problem for T = λη was first raised in [5, Exercise 21.4.9].
More than 10 years later, Enno Folkerts showed that this correspondence does hold [29].
As a consequence of this, and of combined results by Dezani and Bergstra-Klop, a closed
λ-term is λη-invertible if and only if it is a finite hereditary permutator.

4 Theories

In this part we study sensible λ-theories, that is, theories that equate all unsolvable λ-terms.
Such terms indeed correspond to “looping” programs deprived of any computational content.

Chapter 10. Sensible theories. In this chapter we discuss two celebrated problems in λ-
calculus, known as the range property and the fixed point property.

The range property for a λ-theory T states that a combinator F , seen as a total function
F : Mo(T ) → Mo(T ) has either an infinite range or a singleton range (in other words,
it is a constant function). For T = λ, this property has been conjectured by Böhm
in [11] and proved by Barendregt in [5, Theorem 17.1.16]. The proof constitutes a
striking example of the power of the hyperconnectedness property enjoyed by the
Visser topology [66]. It is easy to check that the λ-theory B generated by equating
all λ-terms having the same Böhm tree satisfies the range property, and the same
reasoning generalizes to all λ-theories T in the interval B ⊆ T ⊆ H∗. Barendregt
conjectured that H satisfies the range property in [5, Conjecture 20.2.8], and this
problem remained open for 30 years. This conjecture was refuted by Polonsky in his
PhD thesis [54], where a λ-term having range 2 modulo =H is constructed.
The fixed point property for a λ-theory T states that every combinator has either one
or infinitely many pairwise T -distinct closed fixed points. The question whether this
property holds for T = λ was first raised by [37] and appears as Problem 25 in the
TLCA list of open problems [36]. In this chapter, we present a λ-term violating the
fixed point property for every sensible λ-theory, a result first appeared in [47].
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Chapter 11. The kite. As mentioned in the introduction, researchers are mostly interested
in those λ-theories constituting the kite-shape diagram depicted on Page 2. In the
seventies, Patrick Sallé conjectured that the observational theory H+ should be placed in
the diagram between Bω and H∗, that is, Bω ⊊ H+ ⊊ H∗. The second inclusion actually
follows from the work of Lévy [44] and Hyland [33] proving that H+ and H∗ respectively
capture the equalities induced by η-Böhm trees and Nakajima trees. The former inclusion
turned out to be false: in an FSCD article [38], Intrigila et al. proved that Bω = H+,
thus refuting Sallé’s conjecture. We describe the main ingredients used in the proof:
Bω ⊆ H+. This inclusion follows from the fact that H+ satisfies the ω-rule. This
is a consequence of a weak separation theorem, first proved in [14], and satisfied by
H∗-equivalent terms, that are however different in H+.
H+ ⊆ Bω. This inclusion is the difficult one. The proof exploits Lévy’s characterization of
H+ in terms of η-Böhm trees, the property that the “η-supremum” of two λ-terms (if any)
is always λ-definable, the capability of λ-terms to work on the “codes” of other λ-terms
via Gödelization, and the lemma stating that every closed λ-term becomes unsolvable
when fed enough copies of Ω. To understand how these ingredients can be mixed together
to obtain a proof of this theorem, the reader will need to actually study the chapter.

5 Models

In this part we present some advances on the denotational semantics of λ-calculus. Chapter
12 contains some preliminaries that are needed to understand the subsequent chapters.

Chapter 12. Ordered models and theories. In general, a model of λ-calculus only induces
an equational theory (λ-theory) through the kernel of its interpretation function. In
practice, most of the models individually introduced in the literature live in some cpo-
enriched Cartesian closed category, whence they also induce an inequational theory. In
this chapter, we introduce the inequational theories of λ-calculus independently from
denotational considerations, and show that they inherit notions like extensionality and
sensibility from λ-theories. We focus on observational inequational theories:

M ⊑O N ⇐⇒ ∀C[ ] . [ C[M ] ∈ O ⇒ C[N ] ∈ O ],

still depending on a set O of observables. E.g., H+ ⊢ M = N ⇔ M ⊑NF N & N ⊑NF M .
We conclude the chapter by recalling the (in)equational theories of the most known
denotational models, like Scott’s D∞, Engeler’s graph model E , Plotkin’s Pω and the like.

Chapter 13. Filter models. Intersection type assignment systems, introduced by [21], allow
to give a logical description of several operational properties of λ-terms, like solvability
and various forms of normalization. Moreover, thanks to the celebrated Stone’s duality,
they correspond to a class of denotational models of λ-calculus, called filter models. This
nomenclature derives from the fact that the denotation of a λ-term is given by the filter
of its types. We show that classical lattice models, whose construction mimics the one
of Scott’s D∞, can be presented as filter models. Others examples are the original filter
model FBCD defined by Barendregt, Coppo and Dezani [8] and the model FCDZ by
Coppo, Dezani and Zacchi [22]. We mainly focus on the latter since it has been largely
overlooked in the literature, with the notable exception of [55]. Exploiting Girard/Tait’s
reducibility candidates, we show that FCDZ satisfies an Approximation Theorem. Finally,
using Lévy’s extensional approximants, we prove that it is (in)equationally fully abstract
for H+, a result first established in [22].

FSCD 2023
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Chapter 14. Relational models. In the eighties Jean-Yves Girard realized that the category
of sets and relations constitutes a simple quantitative semantics of Linear Logic [30],
where the promotion !A is given by the set of all finite multisets over A. The relational
semantics of λ-calculus, obtained by applying the coKleisli construction, has been largely
studied in the last decades because of its peculiar properties. First, its quantitative
features allow to expose semantically intensional properties of λ-terms, like the amount
of head-reduction steps needed to reach their head normal form. This also allows to
endow fundamental results, like Approximation Theorems, with easy inductive proofs
bypassing the usual techniques based on Tait’s computability. Second, relational models
can be expressed through tensor type5 assignment systems whose inhabitation problem is
decidable. Finally, the fact that it is a non-well-pointed category contributes to justify,
together with categories of games, the interest in non well-pointed categorical models.

Chapter 15. Church algebras for λ-calculus. Combinatory algebras are considered
algebraically pathological because they are never commutative, associative, finite or
recursive. In fact, at first sight, they seem to have little in common with the mathematical
structures that are usually considered in universal algebra. Salibra viewed these topics
from a wider perspective and introduced the variety of Church algebras [48], namely
algebras possessing two distinguished nullary terms representing the truth values, and a
ternary term representing the if-then-else conditional construct, which is ubiquitous in
programming languages. Beyond combinatory algebras, this class includes all Boolean
algebras, Heyting algebras and rings with unity. Manzonetto and Salibra also proved that
combinatory algebras satisfy a Representation Theorem stating that every combinatory
algebra can be decomposed as a direct product of directly indecomposable combinatory
algebras. It is therefore natural to study the indecomposable semantics of λ-calculus,
namely the class of λ-models that are indecomposable in this sense. It turns out that
this class is large enough to include all the main semantics of λ-calculus, but also largely
incomplete: there is a wealth of λ-theories whose models must be decomposable. This
furnishes a uniform algebraic proof of incompleteness for the main semantics.

6 Open Problems

In the last part of the book, we present some open problems in the hope that the next
generation of scientists will solve them (and possibly write a book, forty years from now).
Some are longstanding open problems or conjectures already present in the TLCA or RTA
lists, we simply wish to draw the attention on them. Others arose during our discussions.
We present here a few problems that should be of interest for the FSCD community.

6.1 Are there hyper-recurrent λ-terms?
In the article [63], Statman presents several notions of combinators that are not supposed
to exist in λ-calculus, but whose existence is difficult to disprove. This list includes hyper-
recurrent terms, uniform universal generators, and double fixed point combinators.

A closed λ-term M is called: recurrent if M →→β N entails N →→β M ; hyper-recurrent if,
for every N ∈ Λo, N =β M implies that N is recurrent.

▶ Problem 1 (Statman 1993). Do hyper-recurrent λ-terms exist?

5 Intuitively, relevant intersection type systems where ∧ is a non-idempotent operator, i.e. σ ∧ σ ̸= σ.
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This problem appears as Problem 52 in the RTA list of open problems [62]. Statman proved
that hyper-recurrent combinators do not exist in Combinatory Logic [60], however the two
calculi are known to satisfy different properties as term rewriting systems. For instance, in
Combinatory Logic based on {S, K, I} there are no pure cycles, as shown by [28].

6.2 Is there a double fixed point combinator?
Consider the λ-term δ = λyx.x(yx). It was remarked by Böhm and van der Mey that Y

is a fixed point combinator if and only if δY =β Y holds. It follows that, if Y is a fixed
point combinator, then both δY and Y δ are fixed point generators. A double fixed point
combinator is a λ-term Y satisfying

δY =β Y =β Y δ.

▶ Problem 2 (Statman 1993). Does there exist a double fixed point combinator?

This problem appears as Problem 52 in the RTA list of open problems [61], and it is
marked as “solved” since the appearance of [35]. However, in 2011, Endrullis has discovered
a gap in a crucial case of the argument and the problem should therefore be considered as
open. Klop considers this problem one of the most interesting problems in term rewriting,
and Endrullis et al. [27] have developed a clocked mechanism in the hope of distinguishing
every Y from Y δ, but their attempts were unsuccessful. For more information about this
problem and other suggestions for a proof strategy, we refer to [47].

6.3 Does Combinatory Logic satisfy the Plane Property?
We consider here the Combinatory Logic with the basis of combinators {K, S}.

▶ Problem 3 (Jan Willem Klop 1980). If a combinatory term can leave a plane at one of its
points, can such a plane be left at any of its points?

This problem was first raised in [41], and a positive answer was conjectured. We mentioned
before that the λ-calculus does not satisfy this property, but also that the counterexamples
rely on the fact that λ-calculus satisfies the ξ-rule:

M = N
λx.M = λx.N

(ξ)

Since Combinatory Logic does not satisfy this rule, the constructions in [50, 58] do not
generalize to this setting.

6.4 Is the word problem for S decidable?
The following is another longstanding open problem concerning the S-fragment of Com-
binatory Logic. Recall that the problems of determining whether an S-term is strongly
normalizing or head normalizing are both decidable.

▶ Problem 4 (The word problem for S). Given S-terms P, Q, is the problem of determining
whether P =w Q decidable?

First raised in [3]. Notice that, because of Padovani’s counterexample [9, Theorem 7.49],
the w-conversion =w does not coincide with the equality induced by Berarducci trees.
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6.5 Are there denotational models of other observational theories?
Among the inequational theories defined in Chapter 12, the following have never been
seriously studied in the literature:

M ⊑m1 N ⇐⇒ ∀C[ ] . [ C[M ] has a β-nf ⇒ C[N ] has the same β-nf ]
M ⊑[I]β

N ⇐⇒ ∀C[ ] . [ C[M ] =β I ⇒ C[N ] =β I ]

As a warm-up exercise, consider X = λzx.xzx and Y = λzx.xz(λy.xy) and convince yourself
that the following inequalities hold: XΩ ⊑m1 Y Ω and Y Ω ⊑m1 XΩ.

▶ Problem 5 (Manzonetto 2022). Are there (in)equationally fully abstract denotational
models for ⊑m1 and ⊑[I]β

?

Preliminary investigations made by Manzonetto in collaboration with Barbarossa,
Breuvart and Kerinec suggest that fully abstract models for these theories might exist
in the strongly stable semantics defined by Bucciarelli and Ehrhard [15].

6.6 Is the λ-theory Hω Π1
1-complete?

In [7], Barendregt et al. proved that for any Π1
1-predicate P there exist closed λ-terms Bn

0 , Bn
1

such that

P(n) ⇒ Hω ⊢ Bn
0 = Bn

1 ,

in which the fact that P(n) holds seems to have been properly used (which is not the case
if one takes e.g. Bn

0 = I = Bn
1 ). See also [5, Theorem 17.4.14]. This result motivated the

conjecture that the λ-theory Hω is Π1
1-complete. This conjecture first appeared in [7] and

was subsequently stated in [5, Conjecture 17.4.15]. A confirmation of Barendregt’s conjecture
was proposed by Intrigila and Statman in [39], but their proof contains a few issues that we
explain in detail in [9, §6.3]. The problem should be then considered open.

▶ Problem 6 (Barendregt 1978). Is the λ-theory Hω Π1
1-complete?

This is the last open problem from Barendregt’s book [5] which is still standing.

Conclusions

I want to conclude by sharing some personal impressions about this experience. Writing
a book on my research domain has been an incredibly enriching journey from a scientific
perspective. Not only it gave me the opportunity to pick from Henk’s mathematical wisdom,
but it allowed me to study the state of the art of research in the field from a broader viewpoint.
This brought to my attention many results that I wasn’t aware of, and forced me to enter into
the technicalities of proofs that I previously studied only superficially, eventually becoming
familiar with the associated proof-techniques.

I believe that too often researchers get caught, not by their fault, in a “publish or perish”
situation in which finding the next result is more profitable in terms of their academic
career than studying existing results. I believe it is important, when a research domain
reaches a stable point of maturity, to take the time to organize the material in a clear and
well-structured text, so that the whole community can benefit from the effort.
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Termination of Term Rewriting:
Foundation, Formalization, Implementation, and
Competition
Akihisa Yamada #

National Institute of Advanced Industrial Science and Technology, Tokyo, Japan

Abstract
Automated termination analysis is a central topic in the research of term rewriting. In this talk, I
will first review the theoretical foundation of termination of term rewriting, leading to the recently
established tuple interpretation method. Then I will present an Isabelle/HOL formalization of the
theory. Although the formalization is based on the existing library IsaFoR (Isabelle Formalization of
Rewriting), the present work takes another approach of representing relations (predicates rather
than sets) so that the notation is more human friendly. Then I will present a unified implementation
of the termination analysis techniques via SMT encoding, leading to the termination prover NaTT.
Many tools have been developed for termination analysis and have been competing annually in
termCOMP (Termination Competition) for two decades. At the end of the talk, I will share my
experience in organizing termCOMP in the last five years.
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1 Foundation

Ensuring the termination [10] of term rewrite systems (TRSs) has many important applica-
tions and actively studied for a half century. A foundational way of ensuring termination used
to be reduction orders, in short, overestimating the rewrite step by a term ordering whose
termination (well-foundedness) is known. Later, the dependency pair method [1] generalized
reduction orders to reduction pairs [1, 17, 15], where, in short, one part overestimates the
rewrite step and the other part ensures termination.

The semantic method (interpretation method) [29] for defining reduction orders/pairs
uses universal algebras, mapping terms into a set with a known terminating relation, such
as ⟨N, >⟩. Instances of semantic approaches are polynomial interpretations [27], matrix
interpretations [18, 11], max-polynomial interpretations [12], and arctic interpretations [24].
Tuple interpretations [43, 23] encompass these instances, and the use of derivers [41, 28]
allows to uniformly prove monotonicity (essential for overestimating rewrite steps) [43].

The syntactic approach such as recursive path ordering [9] and lexicographic path
ordering [21] analyzes the term structure purely syntactically, and usually ensure termination
by Kruskal’s tree theorem [26]. The Knuth-Bendix ordering [22] mixes the semantic and
syntactic approaches. The weighted path order (WPO) [45] gives a unified way of capturing
syntactic and semantic methods.
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2 Formalization

There are number of methods for ensuring termination, and they are implemented in
automated termination analysis tools such as AProVE [13], TTT2 [25], matchbox [40],
MU-TERM [16], etc. However, it cannot be taken for granted that the implementations
and the paper proofs are correct. Therefore there have been efforts in formally verifying the
paper proofs and tool outputs using proof assistants such as Coq [4] and Isabelle/HOL [30].

Coccinelle/CiME3 [8] and CoLoR/Rainbow [5] are pairs whose first components are
Coq libraries of proofs for termination methods, and the second components are tools that
translate termination tool’s outputs into Coq theories whose validity are then checked by
Coq. IsaFoR/CeTA [38] is another pair, whose first component is an Isabelle/HOL library of
termination methods (and more), and the second is a tool that checks the tool outputs. The
correctness of the latter is verified by Isabelle; therefore achieves the same level of assurance
as the Coq ones without needing to execute the proof assistants in the run time. In this talk
I will present a recent development based on IsaFoR for sorted term rewriting and algebras,
which formalizes the correctness of the deriver-based tuple interpretation method.

3 Implementation

NaTT started as an OCaml [31] code for experimenting WPO. This implementation follows
the “lazy” approach [47, 32, 48, 7] and delegates “solving” tasks to SMT solvers [3]. The code
was turned into a full termination prover by adding other basic techniques and improving
efficiency by being more lazy in calling SMT solvers [44]: for instance, in the SMT interface of
NaTT, the OCaml code x *^ Delay (fun _ -> hardFormula) represents an SMT formula
for x multiplied by hardFormula, but hardFormula will not be evaluated if x = 0 is known.
NaTT participates in the Termination Competition (since “full run” of 2013) and keeps
winning the second place in the TRS Standard category after the champion, AProVE.
Since then more techniques are implemented into NaTT [19, 46, 2, 35, 43, 42], making the
implementation harder and harder to maintain. In the meantime, the C++ programming
language kept evolving, and hence I fully reimplement NaTT in the modern C++20 [20].
For instance, in the new C++ implementation, the above lazy formula is achieved by
x * []{ return hardFormula; }.

4 Competition

At the International Workshop on Termination (WST) 2003, Albert Rubio organized a
session where termination tool developers demonstrate their tools on problems written on a
blackboard. The community decided to turn this event into the International Termination
Competition (termCOMP) [14]. Benchmarks are collected, using an agreed textual format
called the WST format [6], into the Termination Problem DataBase (TPDB) [39]. Editions
from 2004 to 2007 were run on local servers organized by Claude Marché, and from 2008 to
2013 are by René Thiemann. In 2009, the benchmark format has been changed to an XML
format (see [39]). From 2014 to 2017 are organized by Johannes Waldmann, who migrated
the tool execution platform to the StarExec environment [36], and wrote the web server
code, star-exec-presenter [33], using Haskell and SQL. In 2018 I succeeded the organization
and developed starexec-master [34] web frontend in pure PHP (so that most web servers
and engineers can understand). Since then I have gradually improve visuals and collected
metrics (Figure 1 on page 3), keep past results in a public repository [37], and migrated
TPDB also into GitHub. In the talk I would like to share some lessons learned by organizing
the competition.



A. Yamada 4:3

Figure 1 An excerpt of results of termCOMP 2022. Rows with check mark indicates the certified
configurations. The “news” scores indicate improvements over the virtual best solver of the past,
that is, the number of open problems closed by the solver this year. Those scores were used to award
the special “advancing-the-state-of-the-art” medals.
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We show that certain diagrams of ∞-logoses are reconstructed in internal languages of their oplax
limits via lex, accessible modalities, which enables us to use plain homotopy type theory to reason
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dimensional version of Sterling’s synthetic Tait computability – a type theory for higher dimensional
logical relations.

2012 ACM Subject Classification Theory of computation → Type theory; Theory of computation
→ Denotational semantics; Theory of computation → Categorical semantics

Keywords and phrases Homotopy type theory, ∞-logos, ∞-topos, oplax limit, Artin gluing, modality,
synthetic Tait computability, logical relation

Digital Object Identifier 10.4230/LIPIcs.FSCD.2023.5

Related Version Full Version: https://arxiv.org/abs/2212.02444 [33]

Funding Taichi Uemura: Supported by KAW Grant “Type Theory for Mathematics and Computer
Science” investigated by Thierry Coquand and Peter LeFanu Lumsdaine.

Acknowledgements The author thanks Jonathan Sterling for useful conversations on the current
work. The author also thanks anonymous referees for corrections, comments, and suggestions.

1 Introduction

Homotopy type theory [31] is a type theory where one can do homotopy theory. It extends
Martin-Löf’s type theory [19] by the univalence axiom and higher inductive types. The former
forces types to behave like spaces rather than sets, and the latter allow us to build types
representing spaces such as spheres and tori.

An ∞-logos, also known as an ∞-topos [16, 2]1, is another place to do homotopy theory,
among other aspects of it. An ∞-logos is an (∞, 1)-category that looks like the (∞, 1)-
category of spaces just as an ordinary logos is a category that looks like the category of
sets.

Homotopy type theory and ∞-logoses are closely related. Shulman [26] has shown that
any ∞-logos is presented by a structure that admits an interpretation of homotopy type
theory. In other words, homotopy type theory is an internal language of an ∞-logos. Any
theorem proved in homotopy type theory can be translated in an arbitrary ∞-logos. For
example, the proof of the Blakers-Massey connectivity theorem in homotopy type theory [10]
has led to a new generalized Blakers-Massey theorem that holds in an arbitrary ∞-logos [1].

An ∞-logos, however, does not live alone. ∞-logoses are often connected by functors
which are also connected by natural transformations. Plain homotopy type theory is, at
first sight, not sufficient to reason about a diagram of ∞-logoses, because the actions of

1 The term ∞-logos is Anel and Joyal’s terminology [2] for ∞-topos considered as an algebraic structure
rather than a geometric object. A morphism of ∞-logoses is always considered in the direction of the
inverse image functor. We use this terminology to clarify the direction of morphisms when speaking
about (co)limits of ∞-logoses.
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the functors and natural transformations are not internalized to type theory. Even worse,
it is impossible to naively internalize some diagrams: some internal adjunction leads a
contradiction [14]; there are only trivial internal idempotent comonads [25].

While there is no chance of naive internalization of such interesting but problematic
diagrams to plain homotopy type theory, some other diagrams can be internalized in a clever
way pointed out by Shulman2. A minimal non-trivial example is a diagram consisting of two
∞-logoses and a lex, accessible functor between them in one direction. The two ∞-logoses
are lex, accessible localizations of another ∞-logos obtained by the Artin gluing for the
functor, and the functor is reconstructed by composing the inclusion from one localization
and the reflector to the other. Moreover, this reconstruction is internal to the glued ∞-logos,
because lex, accessible localizations of an ∞-logos correspond to lex, accessible modalities
in its internal language. Hence, plain homotopy type theory as an internal language of the
glued ∞-logos is sufficient to reason about the original diagram.

In this paper, we propose a class of shapes of diagrams of ∞-logoses for which the internal
reconstruction technique explained in the previous paragraph works. We call shapes in the
proposed class mode sketches. Our main result is summarized as follows. Let M be a mode
sketch. M is regarded as a presentation of an (∞, 2)-category. Then:
1. We associate to M certain axioms in type theory, one of which is to postulate some lex,

accessible modalities from which one can construct a diagram of ∞-logoses internally to
type theory (Sections 3.1 and 3.2).

2. For any diagram L indexed over M consisting of ∞-logoses and lex, accessible functors,
the oplax limit of L is an ∞-logos that satisfies the axioms associated to M, and the
diagram obtained in the internal language of the oplax limit corresponds to the original
diagram L. Conversely, any ∞-logos that satisfies the axioms associated to M is obtained
by this oplax limit construction (Theorem 48).

Recall that the oplax limit of a diagram of (∞, 1)-categories is a generalization of the Artin
gluing [35, 24].

1.1 Synthetic Tait computability
This work is closely related to Sterling’s synthetic Tait computability [29, 27]. It is a technique
of constructing logical relations using an internal language for the Artin gluing. A logos
obtained by the Artin gluing is always equipped with a distinguished proposition in its
internal language. The two lex, accessible modalities associated to the glued logos are the
open and closed modalities associated to the proposition. The fracture and gluing theorem
asserts that every type in the internal language is canonically fractured into an open type and
a closed (unary, proof-relevant) relation on it which are glued back together. The internal
language for the Artin gluing is thus a type theory with an indeterminate proposition in which
types are relations and provides a synthetic method of constructing logical relations used in
the study of type theories and programming languages. Applications include normalization
for complex type theories [28, 8].

We relate synthetic Tait computability and mode sketches. The core axiom for synthetic
Tait computability is to postulate some indeterminate propositions. Note that, although
the original synthetic Tait computability is based on extensional type theory, postulating
propositions makes sense also in homotopy type theory. We show that part of the axioms
associated to a mode sketch is equivalent to postulating a lattice of propositions (Theorem 37).

2 https://golem.ph.utexas.edu/category/2011/11/internalizing_the_external_or.html
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Mode sketches thus provide an alternative synthetic method of constructing logical
relations. This is also natural from Shulman’s point of view [24] that interpretations of
type theory in oplax limits are generalized logical relations. Since we work in homotopy
type theory, what we get is actually higher-dimensional logical relations, and our primary
application of mode sketches in upcoming paper(s) [34] will be normalization for ∞-type
theories introduced by Nguyen and Uemura [20] as a higher-dimensional generalization of
type theories.

1.2 Contributions
Our main result is Theorem 48: for every mode sketch M, the models of the axioms associated
to M are precisely the oplax limits of diagrams of ∞-logoses indexed over M. This allows
us to reason about a diagram of ∞-logoses in plain homotopy type theory. We also relate
mode sketches to synthetic Tait computability (Theorem 37). Mode sketches provide a
higher-dimensional version of synthetic Tait computability.

A minor result is an improvement of the fracture and gluing theorem of Rijke, Shulman, and
Spitters [22, Theorem 3.50]. It gives a construction of a canonical join of two strongly disjoint
lex modalities. We show that this construction preserves accessibility as well (Proposition 14).

1.3 Organization
In Section 2, we review the theory of modalities in homotopy type theory [22]. Our focus is
on the poset of lex, accessible modalities and on the open and closed modalities associated
to propositions.

Sections 3 and 4 are the core of the paper. We introduce the notion of a mode sketch
(Definition 25). For every mode sketch, we introduce two equivalent sets of axioms to encode
a certain diagram of universes. One postulates some lex, accessible modalities while the other
postulates a lattice of propositions. The open and closed modalities give a construction of
the former from the latter which we show is an equivalence (Theorem 37). The latter is a
higher dimensional analogue of Sterling’s synthetic Tait computability [27].

In Section 5, we give a sketch of proof of our main result (Theorem 48): for any mode
sketch, the space of∞-logoses satisfying the axioms associated to the mode sketch is equivalent
to the space of diagrams of ∞-logoses and lex, accessible functors indexed over the mode
sketch. For reasons of space, details are not presented in this version. See [33] for full details.

1.4 Preliminaries
We assume that the reader is familiar with homotopy type theory [31]. By homotopy type
theory we mean dependent type theory with (dependent) function types, (dependent) pair
types, a unit type, identity types, univalent universes U : ⇑U : ⇑2 U : . . . , and all higher
inductive types we need. The universe ⇑n U is usually written as Un, but the latter conflicts
with the notation for the subuniverse of modal types. The notation ⇑n U also indicates that
large types are interpreted in universe enlargements of an ∞-logos; see Section 5. We mainly
follow the HoTT Book [31] for terminologies and notations in homotopy type theory.

1.5 Related work
An earlier version of cohesive homotopy type theory [23] uses modalities in plain homotopy type
theory to internalize a series of adjunctions that arises in Lawvere’s axiomatic cohesion [13].
However, because naive internalization of adjunctions do not work well [14, 25], the
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axiomatization is tricky and not ideal to work with. The newer version of cohesive homotopy
type theory [25] instead extends homotopy type theory by another layer of context and
new modal operators. The resulting type theory works well for axiomatic cohesion but is
complicated compared to plain homotopy type theory. It is also too optimized for axiomatic
cohesion.

A more general framework for internal diagrams is multimodal dependent type theory [9]. It
is roughly a family of type theories related to each other via modal operators and interpreted
in a diagram of presheaf categories among a more general notion of model. The shape
of diagram is specified directly by an arbitrary 2-category which is called a mode theory
in this context. Our terminology “mode sketch” is chosen to mean a sketch of a mode
theory. Multimodal dependent type theory is potentially an internal language for diagrams
of ∞-logoses, but for this one would have to rectify not only ∞-logoses but also functors and
natural transformations between them.

Our work brings back the ideas of earlier cohesive homotopy type theory [23]. Although it
might not be the best type theory, it has a lot of advantages: modalities are internal to plain
homotopy type theory, and thus all results are ready to formalize in existing proof assistants;
keeping type theory simple is also important in informal use of type theory in which the
correctness of application of inference rules is not checked by computer; the semantics is
clear, since the ∞-logos semantics of homotopy type theory is well-established [4, 3, 24, 26];
it also opens the door to internalization of more general diagrams in a uniform way, which is
the motivation for the current work.

2 Modalities in homotopy type theory

We review the theory of modalities in homotopy type theory [22]. In this section, we work
in homotopy type theory. A modality is in short a reflective subuniverse closed under pair
types.

▶ Definition 1. A subuniverse m is a a function Inm : U → ⇑U such that Inm(A) is a
proposition for all A : U . A type A satisfying Inm(A) is called m-modal. We define a subtype
Um ⊂ U to be {A : U | Inm(A)}.

▶ Definition 2. A subuniverse m is reflective if it is equipped with functions #m : U → Um
and ηm :

∏
A:U A→ #mA such that that the precomposition λf.f ◦ ηm(A) : (#mA→ B)→

(A→ B) is an equivalence for any B : Um. Note that such a pair (#m, ηm) is unique.

▶ Definition 3. A reflective subuniverse m is a modality if Inm is closed under pair types,
that is, for A : U and B : A→ U , if Inm(A) and

∏
a:A Inm(B(a)), then Inm(

∑
a:A B(a)).

An important class of modalities is accessible modalities which are roughly modalities
“presented by small data”.

▶ Definition 4. For types A,B : U , we define

(A ⊥ B) ≡ IsEquiv(λ(b : B).λ(_ : A).b).

Note that λ(b : B).λ(_ : A).b is a function of type B → (A→ B). For a subuniverse m, we
define subuniverses m⊥ and ⊥m by

Inm⊥(B) ≡
∏

A:Um
A ⊥ B

In⊥m(A) ≡
∏

B:Um
A ⊥ B.



T. Uemura 5:5

▶ Definition 5. A null generator µ consists of Iµ : U and Zµ : Iµ → U . We write NullGen
for the type of null generators. Given a null generator µ, we define a subuniverse Null(µ)
by InNull(µ)(A) ≡

∏
i:Iµ

Zµ(i) ⊥ A. It is shown that Null(µ) is a modality using a higher
inductive type [22, Theorem 2.19]. A modality m is accessible if it is in the image of Null,
that is, ∥

∑
µ:NullGen m = Null(µ)∥.

Another important class of modalities is lex modalities.

▶ Definition 6. For a modality m, a type A : U is m-connected if #mA is contractible. This
is equivalent to In⊥m(A) by [22, Corollary 1.37].

▶ Definition 7. A modality m is lex if for any m-connected type A : U , the identity type
a1 = a2 is m-connected for any a1, a2 : A.

Modalities that are both lex and accessible are of particular importance because they
correspond to subtoposes of an ∞-topos under the interpretation of types as sheaves on the
∞-topos. From now on, we are mostly interested lex, accessible modalities, so we give them
a short name.

▶ Terminology 8. LAM is an acronym for lex, accessible modality.

Fundamental examples of LAMs are open and closed modalities which correspond to
open and closed, respectively, subtoposes.

▶ Construction 9. Let P be a proposition. We define the open modality Op(P ) by #Op(P ) A ≡
(P → A) and ηOp(P )(A, a) ≡ λ_.a. It is lex and accessible by [22, Example 2.24 and Example
3.10]. We also define the closed modality Cl(P ) by InCl(P )(A) ≡ (P → IsContr(A)). It is lex
and accessible by [22, Example 2.25 and Example 3.14]. Note that Cl(P ) = ⊥Op(P ) [22,
Example 1.31].

2.1 The poset of lex, accessible modalities
We have the posets

SU ⊃ RSU ⊃ Mdl ⊃ AccMdl ⊃ LAM

of subuniverses, reflective subuniverses, modalities, accessible modalities, and lex, accessible
modalities, respectively, where all the inclusions are full. We also have the full subposet
Lex ⊂ Mdl of lex modalities. By definition, LAM = Lex ∩ AccMdl. We study the poset LAM
in more detail.

▶ Definition 10 ([22, Theorem 3.25]). Let I : U and m : I → LAM. A canonical meet∧
i:I m(i) is a LAM that is the meet of m(i)’s in SU. A canonical join

∨
i:I m(i) is a LAM

satisfying that a type A : U is (
∨

i:I m(i))-connected if and only if it is m(i)-connected for all
i : I. Note that a canonical join is the join in Mdl.

▶ Example 11. The top modality Top, for which all the types are modal, is the canonical
meet of the empty family. The bottom modality Bot, for which only the contractible types
are modal, is the canonical join of the empty family.

The canonical meet of an arbitrary family of LAMs exists [22, Theorem 3.29 and Remark
3.23]. Canonical joins are less understood than canonical meets. One important case when
canonical joins exist and can be computed is the following.
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▶ Definition 12. Let m and n be LAMs. n is strongly disjoint from m if any m-modal type
is n-connected or equivalently if m ≤ ⊥n in SU.

▶ Proposition 13 (Fracture and gluing theorem). Let m and n be LAMs such that m ≤ ⊥n.
1. The canonical join m ∨ n exists.
2. A type A is (m ∨ n)-modal if and only if the function ηn(A) : A → #nA has m-modal

fibers.
3. Um∨n ≃

∑
A:Um

∑
B:Un

A→ #mB.
In the special case when m = ⊥n, we have m ∨ n = Top.

Proof. All but the accessibility of m ∨ n are proved by Rijke, Shulman, and Spitters [22,
Theorem 3.50]. We will prove the accessibility of m ∨ n in Proposition 14 using an open
modality. ◀

2.2 Accessibility of the canonical join
Let us fill the gap in the proof of Proposition 13. This subsection is devoted to proving the
following.

▶ Proposition 14. Let m and n be LAMs such that m ≤ ⊥n. Then the canonical join m ∨ n

(in Lex) is accessible.

We have to find a null generator for m ∨ n. A natural guess is the following.

▶ Construction 15. Let µ and ν be null generators. We define a null generator µ ⋆ ν by
Iµ⋆ν ≡ Iµ × Iν and Zµ⋆ν(i, j) ≡ Zµ(i) ⋆ Zν(j) ≡ Zµ(i) +Zµ(i)×Zν (j) Zν(j).

▶ Lemma 16. Let m and n be LAMs, and let µ and ν be null generators for m and n,
respectively. Then Zµ⋆ν(i, j) is both m-connected and n-connected for all i : Iµ and j : Iν .

Proof. Recall that a function is m-connected if its fibers are m-connected and that the class
of m-connected functions is the left class of a (stable) orthogonal factorization system [22,
Theorem 1.34]. Then the claim follows by the pushout stability and the right cancellability
of connected functions. ◀

Lemma 16 shows m ∨ n ≤ Null(µ ⋆ ν) for arbitrary accessible modalities m and n and for
arbitrary choices of µ and ν. We know neither if the other direction holds in general for
some choices of µ and ν nor if Null(µ ⋆ ν) is independent of µ and ν. Note that Finster [7]
observed that Null(µ ⋆ ν) is lex whenever Null(µ) and Null(ν) are lex. In the special case
when m ≤ ⊥n, the idea of the proof of m ∨ n = Null(µ ⋆ ν) is to show that n is an open
modality within the subuniverse of Null(µ ⋆ ν)-modal types.

▶ Lemma 17. Let m and n be LAMs such that m ≤ ⊥n. Then n ≤ Op(#m 0).

Proof. This is because #m 0 is n-connected by assumption. ◀

▶ Lemma 18. Let m and n be LAMs such that m ≤ ⊥n. Suppose that µ and ν are null
generators for m and n, respectively, and that µ admits a function f : #m 0→ Iµ such that
0 ≃ Zµ(f(i)) for all i : #m 0. Then #Op(#m 0) A is n-modal for any Null(µ ⋆ ν)-modal type
A. Consequently, the canonical function #Op(#m 0) A→ #nA induced by Lemma 17 is an
equivalence for any Null(µ ⋆ ν)-modal type A.
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Proof. We show that #Op(#m 0) A ≡ (#m 0→ A) is n-modal. Since ν is a null generator for n,
it suffices to show that Zν(j) ⊥ (#m 0→ A) for all j : Iν . This is equivalent to that Zν(j) ⊥ A
under an assumption i : #m 0. This holds since Zν(j) ≃ 0 ⋆ Zν(j) ≃ Zµ(f(i)) ⋆ Zν(j) and
since A is Null(µ ⋆ ν)-modal. ◀

▶ Lemma 19. Let m and n be LAMs such that m ≤ ⊥n. Suppose that µ and ν are null
generators for m and n, respectively, and that ν has an element j : Iν such that Zν(j) ≃ #m 0.
Then, if a type A is Null(µ ⋆ ν)-modal and Op(#m 0)-connected, then it is m-modal.

Proof. We show that Zµ(i) ⊥ A for all i : Iµ. By the definition of ⋆, we have the following
pullback square.

(Zµ(i) ⋆#m 0→ A) (Zµ(i)→ A)

(#m 0→ A) (Zµ(i)→ #m 0→ A)

≃

⌟

≃

Since A is Op(#m 0)-connected, the domain and codomain of the bottom function are
contractible, and thus the bottom function is an equivalence. It then follows that the top
function is also an equivalence. Since A is Null(µ ⋆ ν)-modal and since Zν(j) ≃ #m 0, we
have A ≃ (Zµ(i) ⋆#m 0→ A) ≃ (Zµ(i)→ A), and thus Zµ(i) ⊥ A. ◀

Proof of Proposition 14. Let µ and ν be null generators for m and n, respectively. Note
that adjoining a family of connected types to a null generator does not change the modality
presented by the null generator. Under an assumption i : #m 0, the empty type 0 becomes
m-connected, and thus we may assume that µ includes the type family λ(_ : #m 0).0.
Since #m 0 is n-connected by assumption, we may assume that ν includes the type family
λ(_ : 1).#m 0.

We show that Null(µ ⋆ ν) = m ∨ n. By Lemma 16, m ∨ n ≤ Null(µ ⋆ ν). For the other
direction, suppose that A is a Null(µ ⋆ ν)-modal type. By [22, Theorem 3.50], it suffices to
show that ηn(A) : A→ #nA has m-modal fibers. By Lemma 18, #nA ≃ #Op(#m 0) A. Then
the fibers of ηn(A) are Op(#m 0)-connected. Since both A and #nA are Null(µ ⋆ ν)-modal,
the fibers of ηn(A) are also Null(µ ⋆ ν)-modal. Thus, by Lemma 19, ηn(A) has m-modal
fibers. ◀

As a by-product, we have the following.

▶ Corollary 20. Let m and n be LAMs such that m ≤ ⊥n. If m ∨ n = Top, then m and n are
the closed and open, respectively, modalities associated to the proposition #m 0. ◀

3 Mode sketches

We introduce mode sketches as shapes of diagrams of subuniverses definable internally to
type theory. We work in homotopy type theory through the section.

3.1 Internal diagrams induced by modalities
We consider postulating some LAMs to encode some diagram of subuniverses. The
fundamental observation is that a pair of LAMs induces a canonical functor between them.

▶ Construction 21. Let m and n be LAMs. We define a function #n
m : Un → Um to be the

restriction of #m to Un ⊂ U .
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▶ Remark 22. We can say that #n
m is a functor externally: we can construct a function∏

A,B:Un
(A→ B)→ (#n

mA→ #n
mB) and every instance of the coherence laws. However, it

is not known how to state that #n
m is a functor internally to type theory, because defining

the type of (∞, 1)-categories in plain homotopy type theory is still an open problem.

We have two functors #m
n : Um → Un and #n

m : Un → Um for every pair of LAMs m and n,
but we are often interested in only one direction. It is thus useful to cut off one direction by
postulating that m ≤ ⊥n: by the definition of connectedness, #m

n becomes constant at the
unit type. The other direction #n

m : Un → Um remains non-trivial. Therefore, a pair (m, n) of
LAMs such that m ≤ ⊥n encodes a functor Un → Um. When n ≤ ⊥m is also assumed, Um
and Un are considered unrelated.

Given more than two LAMs, we have canonical natural transformations between the
canonical functors.

▶ Construction 23. Let m0,m1,m2 be LAMs. We define

ηm0;m2
m1

:
∏

A:Um2
#m2

m0
A→ #m1

m0
#m2

m1
A

by ηm0;m2
m1 (A) ≡ #m0 ηm1(A). This family of functions is natural in the sense that for any

A,B : Um2 and f : A→ B, we have a homotopy filling the following square.

#m2
m0
A #m1

m0
#m2

m1
A

#m2
m0
B #m1

m0
#m2

m1
B

η
m0;m2
m1 (A)

#m2
m0 f #m1

m0 #m2
m1 f

η
m0;m2
m1 (B)

Let m0,m1,m2,m3 be LAMs. By naturality, the following diagram commutes.

#m3
m0

#m1
m0

#m3
m1

#m2
m0

#m3
m2

#m1
m0

#m2
m1

#m3
m2

η
m0;m3
m1

η
m0;m3
m2 #m1

m0 η
m1;m3
m2

η
m0;m2
m1 #m3

m2

For more than four LAMs, higher coherence laws are also satisfied. Hence, a tuple (m0, . . . ,mn)
of LAMs such that mi ≤ ⊥mj for all i < j encodes an n-simplex with vertices Umi , edges
#mj

mi : Umj
→ Umi

for i < j, triangles

Umi
Umk

Umj

#mk
mj

#mk
mi

η
mi;mk
mj

#
mj
mi

for i < j < k, and higher homotopies.
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Shapes other than simplices are expressed by postulating invertibility of some of ηmi;mk
mj ’s.

For example, let m0,m1,m2,m3 be LAMs and suppose that mi ≤ ⊥mj for all i < j, that
m2 ≤ ⊥m1, and that ηm0;m3

m1 is invertible. We have a diagram

Um1

Um0 Um3

Um2

#m1
m0 #m3

m1

#m3
m2

#m3
m0

η
m0;m3
m1≃

η
m0;m3
m2#m2

m0

which is equivalent to a diagram of the form

Um1

Um0 Um3 .

Um2

#m1
m0 #m3

m1

#m3
m2#m2

m0

We cannot, however, naively postulate some properties of the functors #n
m’s such as

conservativity, fullness, faithfulness, adjointness, and invertibility. This is because the internal
statements of these conditions are too strong due to stability under substitution, and indeed
some “no-go” theorems on internalizing properties of functors are known [14, Theorem 5.1][25,
Theorem 4.1].

▶ Remark 24. It is possible to postulate arbitrary properties of #mj
mi ’s in the following way.

We first postulate a “base” LAM Base and assume Base ≤ ⊥mi for all i. The universe UBase

is intended to be interpreted as the (∞, 1)-category of spaces, so statements in UBase will
correspond to external statements. Since #Base : U → UBase preserves finite limits, it takes
(∞, 1)-categories to (∞, 1)-categories and functors to functors. We can then postulate any
property on the induced functor #Base Umj

→ #Base Umi
. In fact, cohesive homotopy type

theory [23] was first formulated in a similar fashion where the ♯ modality plays the role of
Base. However, since we only know that #Base Umi

is an (∞, 1)-category externally, this
approach is not so convenient to work with especially for formalization in proof assistants.
For this and some other reasons, the newer version of cohesive homotopy type theory [25]
is a proper extension of homotopy type theory. Nevertheless, this adding-base approach is
attractive since it keeps type theory simple and works for any kind of diagram.

3.2 Mode sketches
We introduce mode sketches as shapes of diagrams definable by the methodology explained
in Section 3.1.

▶ Definition 25. A mode sketch M consists of the following data:
a decidable finite poset IM;
a subset TM of triangles in IM.
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Here, by a decidable poset we mean a poset whose ordering relation ≤ is decidable. A type
is finite if it is merely equivalent to the coproduct of n copies of 1 for some n : N [21,
Definition 16.3.1]. The identity type on a finite type is decidable [21, Remark 16.3.2]. The
strict ordering relation i < j defined as (i ≤ j) ∧ (i ̸= j) is also decidable. By a triangle in
IM we mean an ordered triple (i0 < i1 < i2) of elements of IM. A triangle in TM is called
thin.

▶ Remark 26. The definition of mode sketches also makes sense in the metatheory. Every
mode sketch M in the metatheory can be encoded in type theory since it is finite.

Let M be a mode sketch and m : M → LAM a function. We consider the following
axioms.

▶ Axiom A. m(i) ≤ ⊥m(j) for any j ̸≤ i in M.

▶ Axiom B. For any triangle (i0 < i1 < i2) : TM, the natural transformation η
m(i0);m(i2)
m(i1) :

#m(i2)
m(i0) ⇒ #m(i1)

m(i0) #
m(i2)
m(i1) is invertible.

▶ Axiom C. The top modality is the canonical join
∨

M m.

▶ Remark 27. Assuming Axiom A, if i < j, then m(i) ≤ ⊥m(j).

Axioms A and B are motivated by the observation made in Section 3.1. That is, when
j ̸≤ i, the functor in the direction Um(i) → Um(j) is cut off. Our intended models constructed
in Section 5 additionally satisfy Axiom C. This axiom is not so important in practical use,
since our primary aim is to draw a diagram of ∞-logoses inside homotopy type theory, but
Axiom C does nothing for this purpose. It is even better to work without Axiom C, because
Axioms A and B are stable under restriction along a full inclusion M′ ⊂M while Axiom C
is not. Axiom C is meant to exclude models other than intended models.

▶ Remark 28. A mode sketch M is regarded as a presentation of an (∞, 2)-category. The
strict ordering relation generates 1-cells (i < j) : i→ j, and the triangles (i < j < k) generate
2-cells in the direction

j

i k.

When the triangle is thin, the corresponding 2-cell is made invertible. Longer chains
(i0 < i1 < · · · < in) present coherence. Formally, we regard M as a scaled simplicial set [17],
one of models for (∞, 2)-categories, by taking the nerve and marking thin triangles as thin
2-simplices, and then reverse 2-cells. A function m : M → LAM satisfying Axioms A–C is
then considered as a diagram of subuniverses indexed over Mop(1,2), the (∞, 2)-category
obtained from M by reversing the directions of 1-cells and 2-cells.

▶ Example 29. Every decidable finite poset is a mode sketch where no triangle is thin. The
(∞, 2)-category presented by it is obtained from the left adjoint of the Duskin nerve [6] by
reversing 2-cells.

▶ Example 30. The mode sketch for functors is drawn as

0 1.
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Axiom A asserts m(0) ≤ ⊥m(1). Axiom B is empty since there is no triangle. Thus, we get
the following diagram.

Um(0) Um(1)
#m(1)

m(0)

Axiom C asserts m(0) ∨m(1) = Top.

▶ Example 31. The mode sketch for triangles is drawn as

0 2

1

≃

where “≃” indicates that the triangle is thin. Axiom A asserts m(0) ≤ ⊥m(1), m(0) ≤ ⊥m(2),
and m(1) ≤ ⊥m(2). Axiom B asserts that ηm(0);m(2)

m(1) is invertible. Thus, we have the following
commutative triangle.

Um(0) Um(2)

Um(1)

#m(2)
m(0)

#m(2)
m(1)#m(1)

m(0)

Axiom C asserts m(0) ∨m(1) ∨m(2) = Top. Notice that theorems for the mode sketch for
functors proved without Axiom C also apply to the three edges in the above diagram. To
keep this reusability, we should not assume Axiom C in practical use.

3.3 Intended models, internally
Let M be a mode sketch. We can internally see what kind of an ∞-logos is a model of M.
Here, by a model of M we mean an ∞-logos that admits an interpretation of a postulated
function m : M→ LAM satisfying Axioms A–C.

▶ Example 32. Consider the case when M is the mode sketch for functors (Example 30).
Proposition 13 implies that U ≃ Um(0)∨m(1) is the Artin gluing for the functor #m(1)

m(0) : Um(1) →
Um(0). Therefore, our intended models of M are ∞-logoses obtained by the Artin gluing.

A generalization of the Artin gluing is oplax limits. In the setting of Example 32, U fits

into the following universal oplax cone over the diagram Um(0)
#m(1)

m(0)←−−−− Um(1).

U

Um(0) Um(1)
#m(1)

m(0)

(1)

An oplax cone over a diagram is a kind of cone but every triangle formed by two projections
and a functor in the diagram is only filled by a not necessarily invertible natural transformation
in the direction of Diagram (1). The universal oplax cone or oplax limit is the terminal
object in the (∞, 1)-category of oplax cones.
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▶ Example 33. Consider the case when M is the mode sketch {0→ 1→ 2} with no thin
triangle. Iterating Proposition 13, we see that every type A : U is fractured into A0 : Um(0),
A1 : Um(1), A2 : Um(2), f01 : A0 → #m(1)

m(0) A1, f02 : A0 → #m(2)
m(0) A2, f12 : A1 → #m(2)

m(1) A2, and
p012 : #m(1)

m(0) f12 ◦ f01 = η
m(0);m(2)
m(1) (A2) ◦ f02. Indeed, we have

Um(0)∨m(1)∨m(2)

≃ {Proposition 13 for m(0) and m(1) ∨m(2)}∑
A0:Um(0)

∑
A12:Um(1)∨m(2)

A0 → #m0 A12

≃ {Proposition 13 for m(1) and m(2)}∑
A0:Um(0)

∑
A1:Um(1)

∑
A2:Um(2)

∑
f12:A1→#m(1) A2

A0 → #m(0)(A1 ×#m(1) A2 A2)

where the pullback is taken for f12 : A1 → #m(1) A2 and ηm(1)(A2) : A2 → #m(1) A2. Since
#m(0) preserves pullbacks, the component A0 → #m(0)(A1 ×#m(1) A2 A2) corresponds to the
components f01, f02, and p012. Then U is the oplax limit of the diagram

Um(0) Um(2).

Um(1)

#m(2)
m(0)

#m(2)
m(1)#m(1)

m(0)

η
m(0);m(2)
m(1) (2)

This means that we have projections Ai : U → Um(i) for all i, natural transformations

U

Um(i) Um(j)

Ai Aj

fij

#m(j)
m(i)

for all i < j, and a homotopy

U

Um(0) Um(2)

Um(1)

A0 A2

A1f01 f12

#m(2)
m(1)#m(1)

m(0)

p012=

U

Um(0) Um(2),

Um(1)

A0 A2f02

#m(2)
m(0)

#m(2)
m(1)#m(1)

m(0)

η
m(0);m(2)
m(1)

and these data form a universal oplax cone over Diagram (2).
Let us make the triangle (0 < 1 < 2) thin so that the natural transformation η

m(0);m(2)
m(1)

becomes invertible. In this setting, U is still the oplax limit of Diagram (2), but the
presentation can be simplified since the type of data (f02, p012) is contractible.

For a general mode sketch M, we apply Proposition 13 for a minimal element m(i0)
and the rest

∨
i:M\i0

m(i) and repeat this for M \ i0 to fracture types into modal types.
Examples 32 and 33 suggest that U is the oplax limit of the diagram formed by Um(i)’s
explained in Remark 28. Thus, our intended models of M are oplax limits of ∞-logoses
indexed over the (∞, 2)-category presented by M. The formal account of this is sketched in
Section 5 and fully described in the extended version [33].
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4 Mode sketches and synthetic Tait computability

We give an alternative set of axioms for mode sketches and exhibit a connection between
mode sketches and synthetic Tait computability of Sterling [27]. The core axiom of synthetic
Tait computability is to postulate a proposition. The proposition induces the open and
closed modalities, and then every type is fractured into an open type equipped with a closed
type family and behaves like a logical relation. In this story, the open and closed modalities
seem more essential than the postulated proposition, so we aim to formulate synthetic Tait
computability purely in terms of modalities. We work in homotopy type theory.

4.1 Alternative mode sketch axioms
The∞-logoses obtained by the Artin gluing can be characterized as ∞-logoses equipped with
a subterminal object; see [11, A4.5.6] for the 1-categorical case. We generalize this from the
Artin gluing to oplax limits indexed by mode sketches, internally to type theory: the type of
functions M→ LAM satisfying Axioms A and C is equivalent to the type of morphisms from
the lattice of cosieves on M to the lattice Prop (Theorem 37).

▶ Definition 34. A cosieve on a decidable poset I is an upward-closed decidable subset of it.
Let coSieve(I) denote the poset of cosieves on I ordered by inclusion. Note that cosieves are
closed under finite meets and joins, so coSieve(I) is a lattice.

▶ Notation 35. For i : M, let (i ↓M) denote the cosieve {j : M | i ≤ j} and ∂(i ↓M) the
cosieve (i ↓M) \ {i}.

▶ Construction 36. Let P : coSieve(M) → Prop be a function. We define a function
aP : M→ LAM by aP (i) ≡ Op(P (i ↓M)) ∧ Cl(P (∂(i ↓M))).

▶ Theorem 37. Construction 36 is restricted to an equivalence between the following types:
1. the type of lattice morphisms P : coSieve(M)→ Prop;
2. the type of functions m : M→ LAM satisfying Axioms A and C.

Before giving a proof of Theorem 37, let us relate Theorem 37 to synthetic Tait
computability [29, 27, 30]. The core axiom of synthetic Tait computability is to postulate
some propositions. One can work with those propositions directly but also with the induced
open and closed modalities. Theorem 37 says that synthetic Tait computability can, in fact,
be formulated completely in terms of modalities. The simplest version of synthetic Tait
computability postulates a single proposition. The corresponding mode sketch is {0→ 1} as
follows.

▶ Example 38. Let M be the mode sketch for functors (Example 30). Then coSieve(M) =
{{}, {1}, {0, 1}} is the free lattice generated by the single element {1}. We thus have
{lattice morphisms coSieve(M)→ Prop} ≃ Prop.

The rest of this subsection is devoted to the proof of Theorem 37. Because of space
constraints, technical details are omitted and found in the extended version [33]. Here we
focus on how to give an inverse construction to Construction 36. The key observation is that
canonical joins of m(i)’s exist and are well-behaved under Axiom A.

▶ Proposition 39. If a function m : M→ LAM satisfies Axiom A, then the canonical join∨
S m exists for any decidable subset S ⊂M.
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Proof. By induction on the size of S. If S is empty, then
∨

∅ m is the bottom modality.
Suppose that S is non-empty. Since M is finite, there is an element i0 minimal in S.
Then S \ {i0} admits a canonical join by the induction hypothesis. Since i0 is minimal,
m(i0) ≤ ⊥m(i) for any i : S \ {i0} by Axiom A, and thus m(i0) ≤ ⊥(

∨
S\{i0} m). Then we

have the canonical join
∨

S m ≡ m(i0) ∨ (
∨

(S\{i0}) m) by Proposition 13. ◀

▶ Lemma 40. Let m0, m1, and m2 be LAMs such that mi ≤ ⊥mj for any i < j. Then
m0 ∨m1 ≤ ⊥m2.

Proof. Let A be a (m0 ∨ m1)-modal type. By Proposition 13, ηm1(A) : A → #m1 A has
m0-modal fibers. Then, by assumption, #m1 A and the fibers of ηm1(A) are made contractible
by #m2 . Thus, #m2 A is contractible. ◀

▶ Proposition 41. If a function m : M→ LAM satisfies Axiom A, then
∨

M\S m ≤ ⊥(
∨

S m)
for any cosieve S ⊂M.

Proof. Since S is upward-closed, j ̸≤ i for any i : M \ S and j : S. Thus, by Axiom A,
m(i) ≤ ⊥m(j) for any i : M \ S and j : S. The claim follows from Lemma 40 and the
construction of the canonical join in Proposition 39. ◀

Sketch of proof of Theorem 37. Let m : M → LAM be a function satisfying Axioms A
and C. We define a function φm : coSieve(M)→ Prop by φm(S) ≡ #∨

M\S
m 0 which exists by

Proposition 39. By Corollary 20 and by Proposition 41, φm(S) is the unique proposition such
that Op(φm(S)) =

∨
S m. On the other hand, we have

∨
S aP = Op(P (S)) by construction,

from which one can derive that the constructions P 7→ aP and m 7→ φm are mutually inverses.
We again note that technical details are omitted and found in the extended version [33].
Certain amount of calculation is needed to prove that aP : M → LAM satisfies Axioms A
and C and that φm is a lattice morphism. ◀

4.2 Logical relations as types
We have seen in Section 4.1 that synthetic Tait computability is reformulated in terms of
LAMs. The slogan of synthetic Tait computability is “logical relations as types” [29]. This is
also formulated purely in terms of LAMs.

▶ Fact 42 ([22, Theorem 3.11]). For any LAM m, the universe of m-modal types Um ≡ {A :
U | Inm(A)} is m-modal.

▶ Proposition 43 (Fracture and gluing). Let m and n be LAMs such that m ≤ ⊥n. Then we
have an equivalence

Um∨n ≃
∑

B:Un
B → Um

whose right-to-left function sends a (B,A) to
∑

x:B A(x).

Proof. For any B : Un, we have∑
A:Um

A→ #mB

≃ {equivalence between fibrations and type families}
#mB → Um

≃ {Fact 42}
B → Um.

Then apply Proposition 13. ◀
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Proposition 43 asserts that a type in Um∨n is a n-modal type equipped with a m-modal
unary (proof-relevant) relation on it, so types (in Um∨n) are relations. More generally, for
a mode sketch M and a function m : M → LAM satisfying Axiom A, types in U∨

M
m are

fractured into a sort of generalized relations by iterated applications of Proposition 43.
Intuitively, the ordering on M is understood as “dependency”: every type A : U∨

M
m is

fractured into a family of type families {Am(i)}i:M such that Am(i) depends on Am(j) for all
j > i. One may also regard the underlying finite poset of M as a FOLDS signature [18].

▶ Example 44. When M is the mode sketch {0← 01→ 1}, we have an equivalence

Um(01)∨m(1)∨m(0) ≃
∑

A0:Um(0)

∑
A1:Um(1)

A0 → A1 → Um(01).

▶ Example 45. When M is the mode sketch {0→ 1→ 2}, we have an equivalence

Um(0)∨m(1)∨m(2) ≃
∑

A2:Um(2)

∑
A1:A2→Um(1)

∏
x2
A1(x2)→ Um(0).

The equivalence in Proposition 43 nicely interacts with type constructors, and we derive
the logical relation translation (also called the parametricity translation) of dependent type
theory [5, 24, 32, 12] as a theorem in type theory. Let m and n be LAMs such that m ≤ ⊥n.
Type constructors in Um∨n behave in the same way as the definition of the logical relation
translation of type constructors [12, Section 3] as follows.
Um∨n : ⇑Um∨n corresponds (via Proposition 43) to the pair (Un, λB.B → Um).
1 : Um∨n corresponds to the pair (1, λ_.1).
Suppose that A : Um∨n corresponds to a pair (An, Am). Then (A → Um∨n) : ⇑Um∨n

corresponds to the pair

(An → Un, λB.
∏

x:An
Am(x)→ B(x)→ Um).

Indeed,

A→ Um∨n

≃ {fracture and gluing}
(
∑

x:An
Am(x))→ (

∑
B:Un

B → Um)
≃ {

∏
distributes over

∑
}∑

B:
∏

x:An
Am(x)→ Un

∏
x

∏
y B(x, y)→ Um

≃ {Un ≃ (Am(x)→ Un) since m ≤ ⊥n}∑
B:An→Un

∏
x Am(x)→ B(x)→ Um.

Suppose that A : Um∨n corresponds to a pair (An, Am) and that B : A→ Um∨n corresponds
to a pair (Bn, Bm). Then

∏
x:A B(x) : Um∨n corresponds to the pair

(
∏

xn:An
Bn(xn), λf.

∏
xn

∏
xm:Am(xn) Bm(xn, xm, f(xn)))

by a similar calculation to the previous clause.
∑

x:A B(x) : Um∨n corresponds to the pair

(
∑

xn:An
Bn(xn), λ(an, bn).

∑
xm:Am(an) Bm(an, xm, bn)).

Suppose that A : Um∨n corresponds to a pair (An, Am), that a : A corresponds to a pair
(an, am), and that a′ : A corresponds to a pair (a′

n, a
′
m). Then a = a′ : Um∨n corresponds

to the pair

(an = a′
n, λp.am =Am

p a′
m).

FSCD 2023
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Thus, any type A : Um∨n constructed using these type constructors is fractured into a
type An : Un and a type family Am : An → Um, and Am is equivalent to the logical relation
translation of An. In this sense, types in Um∨n are logical relations. The interaction of the
equivalences in Examples 44 and 45 and type constructors is similarly calculated. We thus
conclude that types in U∨

M
m are generalized logical relations.

5 Semantics of mode sketches

We give an overview of the semantics of mode sketches in diagrams of ∞-logoses. Many
details are omitted and found in the extended version [33].

We assume that we are given Grothendieck universes U ∈ ⇑U ∈ ⇑2 U ∈ . . .. An ∞-logos
(over U) is informally an (∞, 1)-category of U-small sheaves over a “space”. Any ∞-logos L
is embedded into its universe enlargement ⇑n L, the (∞, 1)-category of (⇑n U)-small sheaves.
Homotopy type theory is interpreted in any ∞-logos L: types in ⇑n U are interpreted as
objects in ⇑n L; terms are interpreted as morphisms. Note that, instead of choosing universes
in L, we enlarge L with respect to the fixed Grothendieck universes to interpret large types, so
there is no ambiguity in the interpretation of universes. Coherence issues in this interpretation
are solved by presenting an ∞-logos by a model category [26] and then by the local universe
method [15]. The internal language of L is the type theory obtained from homotopy type
theory by adjoining objects and morphisms in ⇑n L as types and terms, respectively.

Let M be a mode sketch. A model of M is an ∞-logos L equipped with a function
m : M → LAM in its internal language satisfying Axioms A–C. We write |M| for the
(∞, 2)-category presented by M as explained in Remark 28. Let ⇑Cat(2) denote the (∞, 2)-
category of (⇑U)-small (∞, 1)-categories. Let Logos(2)

LexAcc ⊂ ⇑Cat(2) denote the locally full
subcategory whose 0-cells are the ∞-logoses and whose 1-cells are the accessible functors
preserving finite limits. For an (∞, 2)-category C, let Cop(1,2) denote the (∞, 2)-category
obtained from C by reversing the directions of 1-cells and 2-cells.

▶ Construction 46. Let L be an ∞-logos. For a LAM m in the internal language of L, the
externalization of Um is the full subcategory of L spanned by the m-modal types. For a function
m : M→ LAM from a mode sketch M in the internal language of L, the externalizations of
Um(i)’s and the functions #m(j)

m(i) and η
m(i);m(k)
m(j) form a functor |M|op(1,2) → ⇑Cat(2) which

we call the externalization of the diagram {Um(i)}i:M. It turns out that this functor factors
through Logos(2)

LexAcc by verifying that the LAMs in the internal language of L correspond
to the lex, accessible localizations of L [33, Section 8].

▶ Construction 47. Let I be a small (∞, 2)-category and C : Iop(1,2) → ⇑Cat(2) a functor.
The oplax limit of C is the (∞, 1)-category opLaxLimi∈I Ci described as follows. An object
x in opLaxLimi∈I Ci consists of: an object xi ∈ Ci for any object i ∈ I; a morphism
xα : xi → Cα(xj) for any morphism α : i → j in I; some coherence data. A morphism
u : x → y in opLaxLimi∈I Ci consists of: a morphism ui : xi → yi for any object i ∈ I; a
homotopy uα filling the square

xi yi

Cα(xj) Cα(yj)

ui

xα yα

Cα(uj)

for any morphism α : i→ j in I; some coherence data. See [33, Section 9] for more explicit
construction.



T. Uemura 5:17

▶ Theorem 48. For any mode sketch M, we have an equivalence between the following
spaces:

the space of models of M;
the space of functors |M|op(1,2) → Logos(2)

LexAcc.
Moreover, when a model (L,m) of M corresponds to a functor K : |M|op(1,2) → Logos(2)

LexAcc,
the following hold.
1. L ≃ opLaxLimi∈|M|Ki

2. K is the externalization of the diagram {Um(i)}i:M in the internal language of L.

Sketch of proof. Let K : |M|op(1,2) → Logos(2)
LexAcc be a functor. We define L =

opLaxLimi∈|M|Ki. For a cosieve S on M, we define ψK(S) ∈ L by

ψK(S)i =
{

1 if i ∈ S
0 otherwise.

The other components are uniquely determined by the universal properties of initial and
final objects. This determines a lattice morphism ψK : coSieve(M)→ Prop in the internal
language of L. By Theorem 37, this corresponds to a function m : M → LAM satisfying
Axioms A and C. One can show that the induced diagram {Um(i)}i:M is interpreted as the
given diagram K, from which it follows that m also satisfies Axiom B. Thus, L is part of a
model of M. This construction is an equivalence by externalizing the argument of exhibiting
U ≃ U∨

M
m as the oplax limit of the diagram {Um(i)}i:M (Section 3.3). ◀
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Abstract
We develop the formal theory of monads, as established by Street, in univalent foundations. This
allows us to formally reason about various kinds of monads on the right level of abstraction. In
particular, we define the bicategory of monads internal to a bicategory, and prove that it is univalent.
We also define Eilenberg-Moore objects, and we show that both Eilenberg-Moore categories and
Kleisli categories give rise to Eilenberg-Moore objects. Finally, we relate monads and adjunctions in
arbitrary bicategories. Our work is formalized in Coq using the UniMath library.
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1 Introduction

Monads are ubiquitous in both mathematics and computer science, and many different kinds
of monads have been considered in various settings. In functional programming, monads
are used to capture computational effects [22]. Strong monads have been used to provide
semantics of programming languages such as Moggi’s computational λ-calculus [35, 36] and
models of call-by-push-value [30]. Monads are also used in algebra to represent algebraic
theories, and in fact, the class of algebraic theories is equivalent to a class of monads [20].
This result has been adapted to the enriched case as well in order to relate various notions of
computation with enriched monads [16, 39, 40, 42]. Comonads, the dual notion of monads,
found applications in the semantics of linear logic [11, 34].

A general setting in which all these different variations of monads can be studied, has been
developed by Street [47]. This setting, known as the formal theory of monads, uses the fact
that the notion of monad can be defined internal to an arbitrary bicategory [10], including
2-categories (which were used by Street). Each of the aforementioned kinds of monads is
actually an instance of this more general notion. For example, monads in the bicategory
of symmetric monoidal categories are symmetric monoidal monads, and strong monads are
monads in the bicategory of so-called left actegories [13]. Comonads in a bicategory B are
the same as monads in Bco, which is B with the 2-cells reversed. Even several kinds of
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Table 1 Various notions of monads.

Bicategory Notion of monad
Symmetric monoidal categories Symmetric monoidal monad

Actegories [13] Strong monad
Enriched categories [25] Enriched monad
Bicategory of monads Distributive law

distributive laws, including mixed distributive laws [12, 44] and iterated distributive laws [14],
are instances of this notion of monad. An overview of the different kinds of monads internal
to various bicategories can be found in Table 1. As such, the formal theory of monads
provides a general setting to study various kinds of monads.

Foundations. In this paper, we work in univalent foundations [50]. Univalent foundations
is an extension of intensional type theory with the univalence axiom. Roughly speaking, this
axiom says that equivalent types are equal. More precisely, we have a map idtoequiv that
sends identities X = Y to equivalences from X to Y , and the univalence axiom states that
idtoequiv is an equivalence itself. This axiom has numerous effects on the mathematics in
this foundation. One consequence is function extensionality and another is that identity
types must necessarily be proof relevant: since there could be multiple equivalence between
two types, we could have different proofs of their equality.

In addition, the notion of category studied in this setting is that of univalent categor-
ies [2]. In every category C, we have a map idtoisox,y : x = y → x ∼= y, and C is univalent
if idtoisox,y is an equivalence for all x, y : C. From the univalence axiom, one can deduce
that the category of sets is univalent. The reason why this notion is interesting, is because
in the set-theoretical semantics [23], univalent categories correspond to ordinary categories.
Furthermore, every property expressible in type theory about univalent categories is closed
under equivalence.

However, there are some challenges when working with univalent categories. For instance,
the usual definition of the Kleisli category [31] does not give rise to a univalent category, so
this category does not actually define a Kleisli category in univalent foundations. A solution
to this problem has already been given: we need to use its Rezk completion [6]. However, the
necessary theorems about the Kleisli category (e.g., every monad gives rise to an adjunction
via the Kleisli category) have not been proven in that work.

In the present paper, we study and formalize the formal theory of monads by Street [47]
in univalent foundations. More specifically, we formalize the key notions, which are the
bicategory of monads and Eilenberg-Moore objects, and we illustrate them with numerous
examples. We also prove the two main theorems that relate monads to adjunctions: every
adjunction gives rise to a monad and in a bicategory with Eilenberg-Moore objects, every
monad gives rise to an adjunction. In addition, we instantiate the formal theory of monads
to deduce the main theorems about Kleisli categories. The contributions of this paper is the
development of the formal theory of monads in univalent foundations and a proof that in
univalent foundations, every monad gives rise to an adjunction via the Kleisli category.

The abstract setting provided by the formal theory of monads is beneficial for formalization,
which is our main motivation for this work. The main theorems are only proven once in this
setting, and afterwards they are instantiated to the relevant cases of interest without the
need of reproving anything. In addition, we think that this work would be useful to formalize
the categorical semantics of linear logic [34] or the enriched effect calculus [16].
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Formalization. The results in this paper are formalized using the Coq proof assistant [48],
and they are integrated in the UniMath library [53]. UniMath is under constant development,
and the paper refer to the version with git hash 2f79746. The formalization consists of
around 12,000 lines of code. More specifically, the tool coqwc gives the following count:

spec proof comments
4470 7839 182 total

The main difficulty arises from the coherences that have to be proven in this development.
Since we use bicategories rather than 2-categories, every coherence becomes more complicated.
There also are points where univalence helps with obtaining simple and elegant proofs, such
as Propositions 3.7 and 5.5. Displayed bicategories play a fundamental role in Section 3,
where they are used to give a modular proof that the bicategory of monads is univalent.

Definitions, theorems, constructions, and examples in this paper are accompanied with a
link that points to the relevant definition in the formalization. For example, bicat refers to
the definition of a bicategory.

Related work. The formal theory of monads was originally developed by Street [47], and
later extended by Lack and Street [28]. There are two differences between our work and
Street’s work. First of all, Street used strict 2-categories while we use bicategories. As has
already been noticed by Lack [26], this difference is rather minor. The resulting definitions
are similar: the only difference is that associators and unitors have to be put on the right
places. More fundamental is the second difference: we work in univalent foundations and
univalent (bi)categories whereas Street works in set-theoretic foundations. This affects the
development in several ways. While both bicategories and strict 2-categories have been
defined and studied in a univalent setting [1], a coherence theorem [32, 41] has not been
proven in this setting. In addition, since we work in an intensional setting, working with a
strict 2-category is not significantly more convenient than working with a bicategory. The
reason for that, is that equality proofs of associativity and unitality are present in terms to
guarantee that the whole expression is well-typed. As such, a coherence theorem would only
have limited usability in our setting compared to a classical one. Another difference is that
in our framework, the usual definition of the Kleisli category does not give rise to a univalent
category, and we need to work with its Rezk completion instead. An overview of the main
notions in bicategory theory can be found in various sources [10, 21, 27, 29].

Several formalizations have results about bicategory theory. The coherence theorem [29]
is formalized in both Isabelle [37, 46] and Lean [33], but neither of those are based on
univalent foundations. Some notions in bicategory theory have been formalized in Agda [38],
namely in the 1Lab [49] and the Agda-categories library [19]. However, neither of these
cover the formal theory of monads. We use UniMath [53] and its formalization of bicategories
[1, 51]. Formalizations on category theory are more plentiful, and an overview can be found
in [19]. Within the framework of univalent foundations, there is the HoTT library [9, 18],
Agda-UniMath [45], and Cubical Agda [52]. Ahrens, Matthes, and Mörtberg formalized
monads of categories in UniMath [53]. They also defined a notion of signature, that allows
for binding, and they showed that every signature gives rise to a monad [4, 5].

Overview. We start this paper by recalling some preliminary notions in Section 2. Next we
construct in Section 3 the bicategory of monads internal to bicategories and we prove that it
is univalent. We illustrate the material of Section 3 with various examples in Section 4. In
Section 5 we discuss Eilenberg-Moore objects. We follow that up in Section 6 by using Kleisli
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categories to construct Eilenberg-Moore objects in the opposite bicategory. In Sections 7 and 8
we prove some theorems in this setting. We prove in Section 7 that every adjunction gives
rise to a monad and that every monad gives rise to an adjunction under mild assumptions.
In Section 8 we define the notion of monadic adjunctions in an arbitrary bicategory and we
characterize those using monadic adjunctions in categories. We conclude in Section 9.

2 Preliminaries

In this section, we briefly recall some of the basic notions needed in this paper. First of all,
we use the notions of propositions and sets from univalent foundations. Types A for which
we have x = y for all x, y : A, are called propositions, and types A for which every x = y

is a proposition, are called sets. In addition, we assume that our foundation supports the
propositional truncation: the truncation ∥A∥ is A with all its elements identified. More
concretely, we have a map A → ∥A∥ and for all x, y : ∥A∥, we have x = y. Next we discuss
some notions from bicategory theory [1, 10, 29], and we start with bicategories.

▶ Definition 2.1 (bicat). A bicategory B consists of a type B of objects, for every x, y : B
a type x → y of 1-cells, and for every f, g : x → y, a set f ⇒ g. On this data, we have the
following operations:

For every x : B, a 1-cell idx : x → x;
For all 1-cells f : x → y and g : y → z, a 1-cell f · g : x → z;
For every 1-cell f : x → y, a 2-cell idf : f ⇒ f ;
For all 2-cells θ : f ⇒ g and τ : g ⇒ h, a 2-cell θ • τ : f ⇒ h;
For every 1-cell f : x → y, invertible 2-cells λf : idx ·f ⇒ f and ρf : f · idy ⇒ f ;
For all 1-cells f : w → x, g : x → y, and h : y → z, an invertible 2-cell αf,g,h : (f · g) · h ⇒
f · (g · h).

If the relevant 1-cells are clear from the context, we write λ, ρ, and α instead of λf , ρf , and
αf,g,h respectively. We can also whisker 2-cells with 1-cells in two ways. Given 1-cells and
2-cells as depicted in the diagram on the left below, we have a 2-cell f ◁ τ : f · g1 ⇒ f · g2,
and from 1-cells and 2-cells as depicted in the diagram on the right below, we get a 2-cell
τ ▷ g : f1 · g ⇒ f2 · g.

x y z
f

g1

g2

τ x y z
g

f1

f2

τ

The laws that need to be satisfied, can be found in the literature [1, Definition 2.1].

Note that we use diagrammatic order for composition instead of compositional order.
We use the notation B(x, y) for the category whose objects are 1-cells f : x → y and whose
morphisms from f : x → y to g : x → y are 2-cells τ : f ⇒ g. Given a 1-cell f : x → y and an
object w : B, we have a functor (− · f)w : B(w, x) → B(w, y), which sends a 1-cell g : w → x

to g · f and a 2-cell τ : g1 ⇒ g2 to τ ▷ f .
The core example of a bicategory in this paper is UnivCat. Its objects are univalent

categories, the 1-cells are functors, and the 2-cells are natural transformations. We also have
a bicategory Cat whose objects are (not necessarily univalent) categories, 1-cells are functors,
and 2-cells are natural transformations.

In this paper, we also make use of univalent bicategories. To define this property, we
use that between every two objects x, y : B, we have a type x ≃ y of adjoint equivalences
between them. In addition, for all 1-cells f, g : x → y, there is a type f ∼= g of invertible
2-cells between them. For the precise definition of these notions, we refer the reader to the
literature [1, Definitions 2.4 and 2.5].

https://nmvdw.github.io/FormalTheoryOfMonadsUnivalently/UniMath.Bicategories.Core.Bicat.html#bicat
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▶ Definition 2.2. Let B be a bicategory
(is_univalent_2_1) Using path induction, we define a function idtoiso2,1

f,g : f = g → f ∼= g

for all 1-cells f, g : x → y. A bicategory is locally univalent if idtoiso2,1
f,g is an equivalence

for all f and g.
(is_univalent_2_0) Using path induction, we define a function idtoiso2,0

x,y : x = y → x ≃ y

for all objects x and y. We say that B is globally univalent if idtoiso2,0
x,y is an equivalence

for all x and y.
(is_univalent_2) A bicategory is univalent if it is both locally and globally univalent.

The bicategory UnivCat of univalent categories is both locally and globally univalent.
However, Cat, whose objects objects are not required to be univalent, is neither.

If we have a bicategory B, then we define the bicategory Bop by ’reversing the 1-cells’ in
B. More precisely, objects are the same as objects in B, 1-cells from x to y in Bop are 1-cells
y → x in B, while 2-cells from f : y → x to g : y → x are 2-cells f ⇒ g in B. In addition,
from a bicategory B, we obtain Bco by ’reversing the 2-cells’. Objects and 1-cells in Bco are
the same as objects and 1-cells in B respectively, but a 2-cell from f to g in Bco is a 2-cell
g ⇒ f in B. Next we define pseudofunctors.

▶ Definition 2.3 (psfunctor). Let B1 and B2 be bicategories. A pseudofunctor F : B1 →
B2 consists of

A function F : B1 → B2;
For every x, y : B1 a function that maps f : x → y to F f : F x → F y;
For all 1-cell f, g : x → y a function that maps θ : f ⇒ g to F θ : F f ⇒ F g;
For every x : B1, an invertible 2-cell Fi(x) : idF x ⇒ F (idx);
For all f : x → y and g : y → z, an invertible 2-cell Fc(f, g) : F (f) · F (g) ⇒ F (f · g).

The coherences that need to be satisfied, can be found in the literature [1, Definition 2.12].

In applications, we are interested in a wide variety of bicategories beside UnivCat, and
among those are UnivCatTerminal and SymMonUnivCat. These examples have something in
common: their objects are categories equipped with some extra structure, the 1-cells are
structure preserving functors, while the 2-cells are structure preserving natural transforma-
tions. We capture this pattern using displayed bicategories. This notion is an adaptation of
displayed categories to the bicategorical setting [3].

To get an idea of what displayed bicategories are, let us first briefly discuss displayed
categories. A displayed category D over C represents structure and properties to be added to
the objects and morphisms of C. For every object x : C, we have a type of displayed objects
Dx and for every morphism f : x → y and displayed objects x : Dx and y : Dy, we have a set
x

f−→ y of displayed morphisms. For example, if for C we take the category of sets, an example
of a displayed category would be group structures. The displayed objects over a set X are
group structures over X, while the displayed morphisms over f : X → Y between two group
structures are proofs that f preserves the group operations. Every displayed category D
gives rise to the total category

∫
D and a functor πD :

∫
D → C. In the example we mentioned

before,
∫

D would be the category of groups and πD maps a group to its underlying set.
In the bicategorical setting, we use a similar approach, but a displayed bicategory should

not only have displayed objects and 1-cells, but also displayed 2-cells. More precisely, we
define displayed bicategories as follows.
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▶ Definition 2.4 (disp_bicat). A displayed bicategory D over a bicategory B consists of
For every x : B a type Dx of displayed objects;
For all 1-cells f : x → y and displayed objects x : Dx and y : Dy, a type x

f−→ y of
displayed morphisms;
For all 2-cells θ : f ⇒ g and displayed morphisms f : x

f−→ y and g : x
g−→ y a set f

θ=⇒ g

of displayed 2-cells.
In addition, there are displayed versions of every operation of bicategories. For example, for
every x : B and x : Dx, we have the displayed identity idx : x

idx−−→ x, and from two displayed
morphisms f : x

f−→ y and g : y
g−→ z we get a displayed morphism f · g : x

f ·g−−→ z. A list of
the operations and laws can be found in the literature [1, Definition 6.1].

Just like for displayed categories, every displayed bicategory D gives rise to bicategory∫
D and a pseudofunctor

∫
D → B.

▶ Problem 2.5. Given a displayed bicategory D over B, to construct a bicategory
∫

D and a
pseudofunctor πD :

∫
D → B.

▶ Construction 2.6 (for Problem 2.5; total_bicat). The bicategory
∫

D is defined as follows:
Its objects are pairs x : B together with x : Dx;
Its 1-cells from (x, x) to (y, y) are pairs f : x → y together with f : x

f−→ y;
Its 2-cells from (f, f) to (g, g) are pairs τ : f ⇒ g together with τ : f

τ=⇒ g.
The pseudofunctor πD sends objects (x, x) to x, 1-cells (f, f) to f , and 2-cells (θ, θ) to θ. ⌟

Univalent displayed bicategories are defined similarly to univalent bicategories, and the
precise definition can be found elsewhere [1, Definition 7.3]. If we have a displayed bicategory
D over B and if both B and D are univalent, then

∫
D is univalent as well. This gives a

modular way to construct univalent bicategories.
In numerous different examples, we look at displayed bicategories whose displayed 2-cells

are actually trivial, in a certain sense. More precisely, we look at two properties. One of
them expresses that between all displayed 1-cells f : x

f−→ y and g : x
g−→ y, there is at most

one displayed 2-cell. A displayed bicategory satisfying hat property, is called a local preorder :
it expresses that the type f

τ=⇒ g is a proposition. The other property is locally groupoidal,
and it says that every displayed 2-cell over an invertible 2-cell is again invertible.

▶ Definition 2.7 (disp_cell_unit_bicat). Suppose, we have a bicategory B and
For each x : B a type Dx;
For every 1-cell f : x → y and elements x : Dx and y : Dy a type Dx,y,f ;
For every x : B and x : Dx an inhabitant of Dx,x,idx

;
For all f : Dx,y,f and g : Dy,z,g an inhabitant of Dx,z,f ·g.

Then we get a displayed bicategory over B whose 2-cells are inhabitants of the unit type.

Note that every displayed bicategory constructed using Definition 2.7 is both a local
preorder and locally groupoidal. To illustrate the notion of displayed category, let us look at
some examples. These were already considered in previous work [7, 54].

▶ Example 2.8 (univ_cat_with_terminal_obj). Using Definition 2.7, we define a displayed
bicategory dUnivCatTerminal over UnivCat.

Objects over C are terminal objects TC in C;
Displayed 1-cells over F : C1 → C2 are proofs that F preserves terminal objects.

We define UnivCatTerminal to be
∫

dUnivCatTerminal.

https://nmvdw.github.io/FormalTheoryOfMonadsUnivalently/UniMath.Bicategories.DisplayedBicats.DispBicat.html#disp_bicat
https://nmvdw.github.io/FormalTheoryOfMonadsUnivalently/UniMath.Bicategories.DisplayedBicats.DispBicat.html#total_bicat
https://nmvdw.github.io/FormalTheoryOfMonadsUnivalently/UniMath.Bicategories.DisplayedBicats.Examples.DisplayedCatToBicat.html#disp_cell_unit_bicat
https://nmvdw.github.io/FormalTheoryOfMonadsUnivalently/UniMath.Bicategories.Core.Examples.StructuredCategories.html#univ_cat_with_terminal_obj
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▶ Example 2.9 (disp_bicat_univmon). We define a displayed bicategory dMonUnivCat over
UnivCat as follows:

Objects over C are monoidal structures over C;
1-cells over F : C1 → C2 are structures that F is a lax monoidal functor;
2-cells over θ : F ⇒ G are proofs that θ is a monoidal transformation.

We denote its total bicategory by MonUnivCat.

Note that similarly, one can define a displayed bicategory dSymMonUnivCat over UnivCat
whose total bicategory SymMonUnivCat is the bicategory of symmetric monoidal categories.
In the remainder of this paper, we use several operations on displayed bicategories.

▶ Definition 2.10. We have the following operations on displayed bicategories:
1. (disp_dirprod_bicat) Given displayed bicategories D1 and D2 over B, we construct a

displayed bicategory D1 × D2 over B whose objects, 1-cells and 2-cells are pairs of objects,
1-cells, and 2-cells in D1 and D2 respectively.

2. (sigma_bicat) Suppose that we have a displayed bicategory D1 over B and a displayed
bicategory D2 over

∫
D1. We construct a displayed bicategory

∑
(D2) over B by setting

the objects over x to be pairs of (x, x) of objects x : D1x and x : D2(x,x).
3. (disp_fullsubbicat) Let B be a bicategory and let P be a predicate on the objects of

B. We define a displayed bicategory dFullSub(P ) over B by setting the displayed objects
over x to be proofs of P (x) and the 1-cells and 2-cells are inhabitants of the unit type.

The last notion we discuss, is the notion of a section of a displayed bicategory. Intuitively,
a section assigns to every x a displayed object x : Dx in a pseudofunctorial way. As such
every section s of D induces a pseudofunctor Section(s) : B →

∫
D such that every x : B is

definitionally equal to πD(Section(s)(x)).

▶ Definition 2.11 (section_disp_bicat). A section s of D consists of
For every object x : B a displayed object sx : Dx;
For every 1-cell f : x → y a displayed 1-cell sf : sx

f−→ sy;
For every 2-cell θ : f ⇒ g a displayed 2-cell sθ : sf

θ=⇒ sg;

For every x : B an invertible 2-cell si(x) : idsx

ididx===⇒ sidx ;

For every f : x → y and g : y → z an invertible 2-cell sc(f, g) : sf · sg
idf·g===⇒ sf ·g.

We also require several coherences reminiscent of the laws of pseudofunctors, and for a precise
description of those, we refer the reader to the formalization.

▶ Problem 2.12. Given a displayed bicategory D on B and a section s on D, to construct a
pseudofunctor Section(s) : B →

∫
D.

▶ Construction 2.13 (for Problem 2.12; section_to_psfunctor). We define the pseudo-
functor Section(s) as follows: it sends objects x to the pair (x, sx), 1-cells f to (f, sf ), and
2-cells τ : f ⇒ g to (τ, sτ ). ⌟

3 The Bicategory of Monads

Two concepts play a key role in the formal theory of monads: the bicategory of monads
Mnd(B) internal to B and Eilenberg-Moore objects. In this section, we study the first concept,
and we use displayed bicategories to construct the bicategory Mnd(B) given a bicategory B.
We also show that Mnd(B) must be univalent if B is.
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The main idea behind the construction is to split up monads in several independent parts.
We first define dEndo(B) whose displayed objects over x are 1-cells e : x → x. After that, we
define dUnit(B) and dMult(B) whose displayed objects are the unit and multiplication of the
monad respectively. We finally take a full subcategory for the monad laws.

▶ Definition 3.1 (disp_end). Let B be a bicategory. Define a displayed bicategory dEndo(B)
over B as follows:

The displayed objects over x are 1-cells ex : x → x;
The displayed 1-cells over f : x → y from ex : x → x to ey : y → y are 2-cells τf

x x

y yey

ex

ff τf

The displayed 2-cells over τ : f ⇒ g from θf : f · ey ⇒ ex · f to θg : g · ey ⇒ ex · g are
proofs that the following diagram commutes

f · ey ex · f

g · ey ex · g

θf

θg

τ▷ey ex◁τ

We define Endo(B) by
∫

dEndo(B).

Next we define two displayed bicategories over Endo(B). For both, we use Definition 2.7.

▶ Definition 3.2 (disp_add_unit). Given a bicategory B, we define the displayed bicategory
dUnit(B) over Endo(B) as follows

The displayed objects over (x, ex) are 2-cells ηx : idx ⇒ ex;
The displayed 1-cells over (f, θf ) where f : x → y and θf : f ·ey ⇒ ex ·f from ηx : idx ⇒ ex

to ηy : idy ⇒ ey are proofs that the following diagram commutes

f idx ·f

f · idy f · ey ex · f

ρ−1

f◁ηy θf

λ−1

ηx▷f

▶ Definition 3.3 (disp_add_mu). Given a bicategory B, we define the displayed bicategory
dMult(B) over Endo(B) as follows

The displayed objects over (x, ex) are 2-cells µx : ex · ex ⇒ ex;
The displayed 1-cells over (f, θf ) where f : x → y and θf : f · ey ⇒ ex · f from
µx : ex · ex ⇒ ex to µy : ey · ey ⇒ ey are proofs that the following diagram commutes

f · (ey · ey) f · ey ex · f

(f · ey) · ey (ex · f) · ey ex · (f · ey) ex · (ex · f) (ex · ex) · f

α

θf▷ey α−1 ex◁θf
α

µx▷f

θff◁µy

Next we define dMndData(B) to be
∑

(dUnit(B) × dMult(B)) and we denote its total
bicategory by MndData(B). To obtain Mnd(B), we take a full subbicategory.

https://nmvdw.github.io/FormalTheoryOfMonadsUnivalently/UniMath.Bicategories.DisplayedBicats.Examples.EndoMap.html#disp_end
https://nmvdw.github.io/FormalTheoryOfMonadsUnivalently/UniMath.Bicategories.DisplayedBicats.Examples.MonadsLax.html#disp_add_unit
https://nmvdw.github.io/FormalTheoryOfMonadsUnivalently/UniMath.Bicategories.DisplayedBicats.Examples.MonadsLax.html#disp_add_mu
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▶ Definition 3.4 (disp_mnd). For a bicategory B, we define the predicate isMnd over
MndData(B): given (x, (ex, (ηx, µx))), the following diagrams commute

ex ex · idx ex · ex idx ·ex ex

ex

µx

ex◁ηxρ−1

idx

λ−1ηx▷ex

idex

ex · (ex · ex) ex · ex

(ex · ex) · ex ex · ex ex

µx

µxµx▷ex

α

ex◁µx

We define dMnd(B) to be
∑

(dFullSub(isMnd)), and we denote its total bicategory by Mnd(B).

Note that the predicate isMnd contains all monads laws. Alternatively, we could have
defined a displayed bicategory for each monad law. We refrained from doing so, because that
would not further simplify the proof that Mnd(B) is univalent.

Before we continue, let us discuss the objects, 1-cells, and 2-cells of Mnd(B), and fix the
relevant notation for the remainder of this paper. This also explains what the displayed
objects, 1-cells, and 2-cells in dMnd(B) are. The data of a monad m in B consists of

an object obm : B;
a 1-cell morm : obm → obm;
a 2-cell ηm : idobm

⇒ m;
a 2-cell µm : m · m ⇒ m.

If no confusion arises, we write m instead of morm.
The data of a monad morphism f : m1 → m2 between monads m1 and m2 consists of a

1-cell morf : obm1 → obm2 and a 2-cell cellf : f · m2 ⇒ m1 · f . Lastly, the data of monad
2-cell γ : f1 ⇒ f2 between monad morphisms is a 2-cell cellγ : f1 ⇒ f2. We write f instead
of morf and γ instead of cellγ if no confusion arises.

Next we look at the univalence of Mnd(B), and to prove it, we use displayed univalence [1,
Definition 7.3]. This way, it suffices to prove the displayed univalence of dEndo(B), dUnit(B),
and dMult(B). We also need B to be univalent.

▶ Proposition 3.5 (is_univalent_2_mnd). If B is univalent, then so is Mnd(B).

We also characterize invertible 2-cells and adjoint equivalences in Mnd(B).

▶ Proposition 3.6 (is_invertible_mnd_2cell). A 2-cell γ between monad morphisms is
invertible, if the underlying 2-cell cellγ : f1 ⇒ f2 is invertible.

▶ Proposition 3.7 (to_equivalence_mnd). Let B be a univalent bicategory and let f : m1 →
m2 be a 1-cell in Mnd(B). If morf is an adjoint equivalence and cellf is an invertible 2-cell,
then f is an adjoint equivalence.

Note that in Proposition 3.7, we assume that B is univalent. Because of univalence, it
suffices to prove this proposition assuming that morf is the identity 1-cell, which simplifies
the involved coherences. The same idea can be used to show that pointwise pseudonatural
adjoint equivalences are adjoint equivalences in the bicategory of pseudofunctors.
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4 Examples of Monads

Next we look at examples of monads, and we start by characterizing monads internal to
several bicategories. Let us start by observing that monads in the bicategory UnivCat of
categories correspond to monads as how they usually are defined in category theory. However,
since this notion of monad is defined in every bicategory, we can also look at other bicategories,
such as SymMonUnivCat,and UnivCatTerminal.

In a wide variety of applications, one is interested in monads in a bicategory of categories
with some extra structure. For example, symmetric monoidal monads are monads internal
to the bicategory of symmetric monoidal categories. Strong monads are monads in the
bicategory of left actegories. The bicategories in these two examples can be constructed as a
total bicategory of some displayed bicategory over UnivCat. To characterize monads in total
bicategories, we define displayed monads.

▶ Definition 4.1 (disp_mnd). Let B be a bicategory and let D be a displayed bicategory
over B and suppose that D is a local preorder and locally groupoidal. A displayed monad
m over a monad m in B consists of

a displayed object obm : Dobm ;
a displayed 1-cell m : obm

m−→ obm;
a displayed 1-cell ηm : idobm

ηm==⇒ m;

a displayed 1-cell µm : m · m
µm==⇒ m.

Note that we do not require any coherences in Definition 4.1, because the involved
displayed bicategory is assumed to be a local preorder.

▶ Problem 4.2. Given a monad m and a displayed monad m over m, to construct a monad∫
m in

∫
D.

▶ Construction 4.3 (for Problem 4.2; make_mnd_total_bicat). We construct
∫

m as follows
We define the object ob∫

m
to be (obm, obm);

We define the 1-cell
∫

m to be (m, m);
We define the unit η∫

m
to be (ηm, ηm);

We define multiplication µ∫
m

to be (µm, µm). ⌟

▶ Example 4.4 (make_mnd_univ_cat_with_terminal_obj). Every displayed monad in
dUnivCatTerminal over m consists of a terminal object in obm and a proof that m preserves
terminal objects.

Analogously, we can characterize monads in SymMonUnivCat. Next we look at monads
in Bop and Bco.

▶ Example 4.5. We characterize monads in Bop and Bco.
(MonadsInOp1Bicat.v) Monads in Bop are the same as monads in B. However, 1-cells
in Mnd(Bop) are different from 1-cells in Mnd(B). If we have a 1-cell f : m1 → m2 in
Mnd(Bop), then the cell cellf gives rise to a 2-cell m2 · f ⇒ f · m1. Hence, 1-cells in
Mnd(Bop)op are the same as oplax monad morphisms in B.
(MonadsInOp2Bicat.v) Suppose, we have m : Mnd(Bco). Then obm : B and we also have
a 1-cell m : obm → obm in B. However, since the direction of the 2-cells are reversed in
Bco, the 2-cells ηm and µm give rise to a 2-cell m ⇒ idobm and m ⇒ m · m respectively.
As such, monads in Bco are the same as comonads in B.

https://nmvdw.github.io/FormalTheoryOfMonadsUnivalently/UniMath.Bicategories.Monads.Examples.MonadsInTotalBicat.html#disp_mnd
https://nmvdw.github.io/FormalTheoryOfMonadsUnivalently/UniMath.Bicategories.Monads.Examples.MonadsInTotalBicat.html#make_mnd_total_bicat
https://nmvdw.github.io/FormalTheoryOfMonadsUnivalently/UniMath.Bicategories.Monads.Examples.MonadsInStructuredCategories.html#make_mnd_univ_cat_with_terminal_obj
https://nmvdw.github.io/FormalTheoryOfMonadsUnivalently/UniMath.Bicategories.Monads.Examples.MonadsInOp1Bicat.html
https://nmvdw.github.io/FormalTheoryOfMonadsUnivalently/UniMath.Bicategories.Monads.Examples.MonadsInOp2Bicat.html
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▶ Example 4.6 (mnd_mnd_to_distr_law). Objects in m : Mnd(Mnd(B)) are distributive
laws between monads. To see why, observe that the object obm is a monad in B. In addition,
we can construct another monad m′ in B as follows:

The object obm′ is obobm
;

The endomorphism is m, which is a 1-cell from obobm
to obobm

;
The unit and multiplication are the underlying 2-cells of ηm and µm respectively.

The 2-cell cellm is the 2-cell of the distributive law, and the laws are the proofs that ηm and
µm are 2-cells in Mnd(B).

Analogously, we can show that objects in Mnd(Mnd(Bco)co) are mixed distributive laws in
B [12, 44]. We can also look at iterated distributive laws, which are monads in Mndn(B) [14].

Next we give two general constructions of monads. First of all, we consider the identity
monad: on every object x : B, we construct a monad idMnd(x).

▶ Problem 4.7. Given a bicategory B, to construct a section on dMnd(B).

▶ Construction 4.8 (for Problem 4.7; mnd_section_disp_bicat). To construct the desired
section, we define the identity monad idMnd(x) for every x.

The object is x;
The 1-cell is idx : x → x;
The unit is ididx : idx ⇒ idx;
The multiplication is λ : idx · idx ⇒ idx. ⌟

In the remainder, we only use the pseudofunctor arising from Construction 4.8 and
Construction 2.13, and this pseudofunctor is denoted as idMnd : B → Mnd(B). Second, we
notice that every monad m : Mnd(B) gives rise to a monad of categories. This example is
used in Section 5.

▶ Problem 4.9. Given a monad m in a bicategory B and an object x, to construct a monad
HomMndx(m) on B(x, obm).

▶ Construction 4.10 (for Problem 4.9; mnd_to_cat_Monad). The monad HomMndx(m) is
defined as follows:

The endofunctor is (− · m)x : B(x, obm) → B(x, obm).
For every f : x → obm, the unit is defined to be

f f · idobm f · m
ρ−1 f◁ηm

For every f : x → obm, the multiplication is defined to be

(f · m) · m f · (m · m) f · mα−1 f◁µm ⌟

Next we show that pseudofunctors preserve monads.

▶ Problem 4.11. Given bicategories B1 and B2, a pseudofunctor F : B1 → B2, and a monad
m : Mnd(B1), to construct a monad F (m) : Mnd(B2).
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▶ Construction 4.12 (for Problem 4.11; psfunctor_on_mnd). The object of F (m) is F (obm)
while the 1-cell is F (m) : F (obm) → F (obm). The unit and multiplication are constructed
using to the following pasting diagrams respectively

F (obm) F (obm)

idF (obm)

F (m)

F (idobm )

Fi(obm)

F (ηm)

F (obm) F (obm)

F (m)·F (m)

F (m)

F (m·m)

Fc(m,m)

F (µm)

For a proof of the monad laws, we refer the reader to the formalization. ⌟

In fact, if we have a pseudofunctor F : B1 → B2, then we obtain a pseudofunctor
Mnd(F ) : Mnd(B1) → Mnd(B2). Next we show that monads can be composed if we have a
distributive law between them.

▶ Example 4.13 (compose_mnd). Suppose that we have a distributive law τ between monads
m1 and m2 (Example 4.6). Then we define a monad m1 · m2 as follows:

The object is obm1 (which is definitionally equal to obm2);
The 1-cell is m1 · m2;
The unit is constructed as the following composition of 2-cells

idobm1
idobm1

· idobm1
m1 · idobm1

m1 · m2
λ−1 ηm1▷idobm1 m1◁ηm2

The multiplication is the following composition of 2-cells

(m1 · m2) · (m1 · m2) m1 · (m2 · (m1 · m2)) m1 · ((m2 · m1) · m2)

m1 · ((m1 · m2) · m2) m1 · (m1 · (m2 · m2)) (m1 · m1) · (m2 · m2)

m1 · (m2 · m2) m1 · m2

α−1 m1◁α

m1◁(τ▷m2)

m1◁α−1 α

µm1▷(m2·m2)

m1◁µm2

5 Eilenberg-Moore Objects

The second important concept in the formal theory of monads is the notion of Eilenberg-Moore
objects. An important property of monads in category theory is that every monad gives rise
to an adjunction. One can do this in two ways: either via Eilenberg-Moore categories or
via Kleisli categories. In this section, we study Eilenberg-Moore objects, which formulate
Eilenberg-Moore categories in bicategorical terms.

Note that the terminology in this section is slightly differently compared to what was
used by Street [47]. Whereas Street would say that a bicategory admits the construction of
algebras, we follow [24, 28, 43] and we say that a bicategory has Eilenberg-Moore objects.
Our notions are also formulated slightly differently, because we use Eilenberg-Moore cones.

https://nmvdw.github.io/FormalTheoryOfMonadsUnivalently/UniMath.Bicategories.Monads.Examples.PsfunctorOnMonad.html#psfunctor_on_mnd
https://nmvdw.github.io/FormalTheoryOfMonadsUnivalently/UniMath.Bicategories.Monads.Examples.Composition.html#compose_mnd
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▶ Definition 5.1 (em_cone). Let B be a bicategory and let m be a monad in B. An
Eilenberg-Moore cone for m consists of an object e together with a 1-cell idMnd(e) → m.

More concretely, an Eilenberg-Moore cone e for a monad m consists of
An object obe;
A 1-cell more : obe → obm;
A 2-cell celle : more · m ⇒ idx ·more

such that the following diagrams commutes

more more · idobm
more · m

idx ·more

celle

more◁ηmρ−1

λ−1

more · (m · m) more · m

(more · m) · m (idx ·more) · m more · m idx ·more

α

celle▷m λ▷m celle

more◁µm

celle

If no confusion arises, we write e instead of obe.
Next we look at the universal property of Eilenberg-Moore objects. Since Eilenberg-Moore

objects are examples of limits in bicategories [43], there are multiple methods to express their
universal property. A first possibility, which is used by Street, is to use biadjunctions [47],
and a second option is to write out explicit mapping properties. Alternatively, one could
express the universal property as an adjoint equivalence on the hom-categories. We use
the last option. To write out the desired definition precisely, we first define a functor with
domain B(x, e) where e is an Eilenberg-Moore cone and x is any object.

▶ Problem 5.2. Given an Eilenberg-Moore cone e for m and an object x, to construct a
functor EMFunctorx,e : B(x, e) → Mnd(B)(idMnd(x), m).

▶ Construction 5.3 (for Problem 5.2; em_hom_functor). Suppose that we have a 1-cell
f : x → e. We construct the monad morphism EMFunctorx,e(f) as follows:

The underlying morphism is f · more.
For the 2-cell (f · more) · m ⇒ idx ·(f · more), we take

(f · more) · m f · more · m f · ide ·more f · more idx ·(f · more).α−1 f◁celle f◁λ λ−1

Given a 2-cell τ : f ⇒ g, the underlying cell of EMFunctorx,e(τ) : EMFunctorx,e(f) ⇒
EMFunctorx,e(g) is τ ▷ more. ⌟

▶ Definition 5.4 (bicat_has_em). Let B be a bicategory and let m be a monad in B. An
Eilenberg-Moore cone e for m is called universal if for every object x the functor EMFunctorx,e

is an adjoint equivalence of categories. We say that a bicategory has Eilenberg-Moore
objects if for every monad m there is a universal Eilenberg-Moore cone.

▶ Proposition 5.5 (isaprop_is_universal_em_cone). Let B be a locally univalent bicategory
and let e be an Eilenberg-Moore cone for a monad m in B. The type that e is universal, is a
proposition.
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Another way to formulate the universality of an Eilenberg-Moore cone, is by using
Eilenberg-Moore categories. If we have a monad m on a category C, we write EM(m) for
the Eilenberg-Moore category of m. Recall that the objects of EM(m) are pairs (x, f) of an
object x : C and a morphism f : m(x) → x such that ηm(x) ·f = idx and µm(x) ·f = m(f) ·f .
Morphisms from (x, f) to (y, g) are morphisms h : x → y such that f · h = m(h) · g.

▶ Problem 5.6. Given an Eilenberg-Moore cone e for a monad m and an object x : B, to
construct a functor EMFunctor′

x,e : B(x, e) → EM(HomMndx(m)).

▶ Construction 5.7 (for Problem 5.6; is_em_universal_em_cone_functor). First, we say
how EMFunctor′

x,e acts on objects. Suppose that we have f : x → e. To define an ob-
ject of EM(HomMndx(m)), we first need to give a 1-cell h : x → obx. We define h as
x e obm

f more We also need to define a 2-cell τ : h · m ⇒ h for which we take

(f · more) · m f · (more · m) f · (idx ·more) f · more
α f◁celle f◁λ

Next we define the action on morphisms. Suppose that we have f, g : x → e and a 2-cell
θ : f ⇒ g. We need to construct a 2-cell f · more ⇒ g · more, for which we take θ ▷ more. ⌟

▶ Proposition 5.8 (is_universal_em_cone_weq_is_em_universal_em_cone). Let e be an
Eilenberg-Moore cone. Then e is universal if and only if for every x the functor EMFunctor′

x,e

is an adjoint equivalence.

Proof. We only give a brief sketch of the proof. The main idea is that one can construct an
adjoint equivalence from EM(HomMndx(m)) to Mnd(B)(idMnd(x), m). With this equivalence
available, the theorem follows from the 2-out-of-3 property. ◀

Alternatively, universality can be formulated using mapping properties. These properties
are deduced from the fact that every adjoint equivalence is split essentially surjective and
fully faithful. More precisely, an Eilenberg-Moore cone e is universal if and only if

for every Eilenberg-Moore cone q there is a 1-cell EMmor(q) : q → e and an invertible
2-cell EMcom(q) : idMnd(EMmor(q)) · more ⇒ morq in Mnd(B);
for all 1-cells g1, g2 : q → e and 2-cells τ : idMnd(g1) · more ⇒ idMnd(g2) · more in Mnd(B),
there is a unique 2-cell EMcell(τ) such that idMnd(EMcell(τ)) ▷ more = τ .

Let us consider some examples of Eilenberg-Moore objects.

▶ Example 5.9 (has_em_bicat_of_univ_cats). The bicategory UnivCat has Eilenberg-
Moore objects. As suggested by the name, the Eilenberg-Moore object on a monad m is
indeed given by the Eilenberg-Moore category EM(m). Note that if C is a univalent and m

is a monad on C, then EM(m) is univalent as well.

▶ Example 5.10 (has_em_univ_cat_with_terminal_obj). The bicategory UnivCatTerminal
has Eilenberg-Moore objects as well. If we have a monad m : Mnd(UnivCatTerminal), then obm

has a terminal object and m preserves terminal objects. Under these conditions, it follows
that the Eilenberg-Moore category of m has a terminal object. From this, we can conclude
that UnivCatTerminal indeed has Eilenberg-Moore objects.

One can also show that SymMonUnivCatco has Eilenberg-Moore objects. These are given
by Eilenberg-Moore categories of comonads.

https://nmvdw.github.io/FormalTheoryOfMonadsUnivalently/UniMath.Bicategories.Limits.EilenbergMooreObjects.html#is_em_universal_em_cone_functor
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6 Duality and Kleisli Objects

The goal of this section is to construct Eilenberg-Moore objects in UnivCatop. To do so, we
start by characterizing such objects via Kleisli objects.

▶ Definition 6.1 (kleisli_cocone). Let B be a bicategory and let m be a monad in B. A
Kleisli cocone k for m in B consists of an object obk : B, a 1-cell mork : obm → obk, and a
2-cell cellk : m · mork ⇒ mork such that the following diagrams commute

idobm ·mork m · mork

mork

ηm▷mork

cellk
λ

(m · m) · mork m · (m · mork) m · mork

m · mork mork

µm▷mork

α−1 m◁cellk

cellk

cellk

▶ Definition 6.2 (has_kleisli_ump). A Kleisli cocone k is said to be universal if
For every Kleisli cocone q there there is a 1-cell Klmor(q) : obk → obq and an invertible
2-cell Klcom(q) : mork · Klmor(q) ⇒ morq such that the following diagram commutes

m · (mork · Klmor(q)) m · morq

(m · mork) · Klmor(q) mork · Klmor(q) morq

m◁Klcom(q)

α

cellk▷Klmor(q) Klcom(q)

cellq

Suppose that we have an object x : B, two 1-cells g1, g2 : obk → x, and a 2-cell
τ : mork · g1 ⇒ mork · g2 such that the following diagram commutes

m · (mork · g1) (m · mork) · g1 mork · g1

m · (mork · g2) (m · mork) · g2 mork · g2

α cellk▷g1

τm◁τ

α cellk▷g2

Then there is a unique 2-cell Klcell(τ) : g1 ⇒ g2 such that cellk ◁ Klcell(τ) = τ .
A Kleisli object is a universal Kleisli cocone. We say that a bicategory has Kleisli objects
if there is a Kleisli object for every monad m.

▶ Proposition 6.3 (op1_has_em). If B has Kleisli objects, then Bop has Eilenberg-Moore
objects.

As such, to find Eilenberg-Moore objects in UnivCatop, we need to find Kleisli objects
in UnivCat. However, before we look at those, we look at Kleisli objects in Cat. These are
constructed via the usual definition of Kleisli categories.

▶ Problem 6.4. To construct Kleisli objects in Cat.

▶ Construction 6.5 (for Problem 6.4; bicat_of_cats_has_kleisli). Recall that given a
monad m on a category C, the Kleisli category K(m) is usually defined to be the category
whose objects are x : C and whose morphisms from x : C to y : C are morphisms x → m(y).
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Note that we have a functor F : C → K(m): it sends objects x to x and morphisms f : x → y

to x y m(y).f ηm(y) We also have a natural transformation m · F ⇒ F , which is the
identity on ever object x. As such, we have a Kleisli cocone. This cocone is universal, and
for a proof we refer the reader to the formalization. ⌟

Note that even if C is required to be univalent, the Kleisli category K(m) is not necessarily
univalent. As such, to obtain Kleisli objects in UnivCat, we need to use an alternative definition
for the Kleisli category [6]. First, we define a functor FreeAlgm : C → EM(m) which sends
objects x : C to the algebra µm(x) : m(m(x)) → m(x) and morphisms f : x → y to
m(f) : m(x) → m(y). Note that this 1-cell can actually be defined in arbitrary bicategories
(see Section 7). By taking the full image of this functor, we obtain the category Kleisli(m).

Objects of Kleisli(m) are pairs y : C together with a proof of ∥
∑

(x : C), m(x) ∼= y∥.

Morphisms from y1 : Kleisli(m) to y2 : Kleisli(m) are morphisms y1 → y2 in C.
If C is univalent, then EMUnivCat(m) is univalent, and thus Kleisli(m) is so as well.

▶ Problem 6.6. To construct a fully faithful essentially surjective functor inclm : K(m) →
Kleisli(m).

▶ Construction 6.7 (for Problem 6.6; functor_to_kleisli_cat). The functor inclm sends
every object x : K(m) to FreeAlgm(x), which is indeed in the image of FreeAlgm. Morphisms

f : x → m(y) are sent to m(x) m(m(y)) m(y).m(f) µm(y) A proof that this functor is
both essentially surjective and fully faithful can be found in the formalization. ⌟

In univalent foundations, not every functor that is both fully faithful and essentially
surjective is automatically an adjoint equivalence as well. This statement only holds if the
domain is univalent. However, we can still use the functor inclm to deduce the universal
property of Kleisli(m). For that, we use Theorem 8.4 in [2].

▶ Proposition 6.8 (precomp_adjoint_equivalence). Let F : C1 → C2 be a fully faithful
and essentially surjective functor, and suppose that C3 is a univalent category. Then the
functor (F · −)C3 : CC2

3 → CC1
3 , given by precomposition with F , is an adjoint equivalence.

▶ Problem 6.9. To construct Kleisli objects in UnivCat.

▶ Construction 6.10 (for Problem 6.9; bicat_of_univ_cats_has_kleisli). We only show
how to construct the required 1-cells. Suppose that we have a Kleisli cocone q in UnivCat.
Note that q also is a Kleisli cocone in Cat, and as such, we get a functor Klmor(q) : K(m) → obq.
By Proposition 6.8, we now get the desired functor Kleisli(m) → obq. ⌟

7 Monads and Adjunctions

The cornerstone of the theory of monads is the relation between monads and adjunctions.
More specifically, every adjunction gives rise to a monad and vice versa. This was generalized
by Street to 2-categories that have Eilenberg-Moore objects [47]. In this section, we prove
these theorems, and to do so, we start by recalling adjunctions in bicategories.

▶ Definition 7.1 (adjunction). An adjunction l η
ε

r in a bicategory B consists of
objects x and y;
1-cells l : x → y and r : y → x;
2-cells η : idx ⇒ l · r and ε : r · l ⇒ idy

https://nmvdw.github.io/FormalTheoryOfMonadsUnivalently/UniMath.CategoryTheory.categories.KleisliCategory.html#functor_to_kleisli_cat
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such that the following 2-cells are identities

l idx ·l (l · r) · l l · (r · l) l · idy lλ−1 η▷l α−1 l◁ε ρ

r r · idx r · (l · r) (r · l) · r idy ·r r
ρ−1 r◁η α ε▷r λ

Our notation for adjunctions is taken from [15]. The two coherences in Definition 7.1 are
called the triangle equalities. As expected, adjunctions internal to UnivCat correspond to
adjunctions of categories [31]. This is because the unitors and associators in UnivCat are
pointwise the identity, so the triangle equalities in Definition 7.1 reduce to the usual ones.

▶ Example 7.2. We characterize adjunctions in Bop and Bco as follows.
(op1_left_adjoint_to_right_adjoint) Every adjunction l η

ε
r in B gives rise to an

adjunction r η
ε

l in Bop and vice versa.
(op2_left_adjoint_to_right_adjoint) Every adjunction l η

ε
r in B gives rise to an

adjunction r ε
η

l in Bco and vice versa.

Example 7.2 can be strengthened by using the terminology of left adjoints and right
adjoints. Given a 1-cell f : x → y, the type LeftAdjB(f) says that we have r,η, and ε such
that we have an adjunction l η

ε
r. The type RightAdjB(f) is defined analogously. Now we

can reformulate Example 7.2 as follows: we have equivalences LeftAdjBop(f) ≃ RightAdjB(f)
and LeftAdjBco(f) ≃ RightAdjB(f) of types.

Next we look at displayed adjunctions, which we use to obtain adjunctions in total
bicategories [1]. This notion is used to characterize adjunctions in bicategories such as
UnivCatTerminal and SymMonUnivCat.

▶ Definition 7.3 (disp_adjunction). Let B be a bicategory and let D be a displayed
bicategory over B. A displayed adjunction over an adjunction l η

ε
r where l : x → y

consists of
Objects x : Dx and y : Dy;
Displayed morphisms l : x

l−→ y and r : y
r−→ x;

Displayed 2-cells η : idx
η=⇒ l · r and ε : r · l

ε=⇒ idx.
We also require some coherences and those can be found in the formalization. We denote
this data by l

η

ε
r.

▶ Problem 7.4. Given a displayed adjunction l
η

ε
r in a displayed bicategory D over l η

ε
r,

to construct an adjunction
∫

l
η

ε
r in

∫
D.

▶ Construction 7.5 (for Problem 7.4; left_adjoint_data_total_weq). The left adjoint of∫
l

η

ε
r is (l, l), the right adjoint is (r, r), the unit is (η, η), and the counit is (ε, ε). ⌟

▶ Example 7.6 (disp_adj_weq_preserves_terminal). Adjunctions in UnivCatTerminal are
given by an adjunction l η

ε
r in UnivCat such that l preserves terminal objects. Note that r

automatically preserves terminal objects, because r is a right adjoint.

Analogously, we characterize adjunctions in SymMonUnivCat. Now we have developed
enough to state and prove the core theorems of the formal theory of monads [47]. These
theorems relate adjunctions and monads, and we first prove that every adjunction gives rise
to a monad.

▶ Problem 7.7. Given an adjunction l η
ε

r, to construct a monad AdjToMnd(l η
ε

r).
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▶ Construction 7.8 (for Problem 7.7; mnd_from_adjunction). Let an adjunction l η
ε

r be
given where l : x → y. We define the monad AdjToMnd(l η

ε
r) as follows.

Its object is x;
The endomorphism is l · r : x → x;
The unit is η : idx → l · r;
For the multiplication, we use the following composition of 2-cells

(l · r) · (l · r) l · (r · (l · r)) l · ((r · l) · r) l · (idy ·r) l · rα l◁α−1 l◁(ε▷r) l◁λ

The proofs of the necessary equalities can be found in the formalization. ⌟

Since by Example 4.5 and 7.2 adjunctions and monads in Bco correspond to adjunctions
and comonads in B respectively, we get that every adjunction in B induces a comonad by
Construction 7.8. Next we look at the converse: obtaining adjunctions from monads. For
this, we need to work in a bicategory with Eilenberg-Moore objects. We show that every
monad m gives rise to an adjunction and that the monad coming from this adjunction is
equivalent to m.

▶ Problem 7.9. Given a bicategory B with Eilenberg-Moore objects and a monad m in B,
to construct an adjunction MndToAdj(m) and an adjoint equivalence MndEquiv(m) between
AdjToMnd(MndToAdj(m)) and m.

▶ Construction 7.10 (for Problem 7.9; mnd_to_adjunction). The right adjoint is the 1-cell
more : obm → EMB(m). For the left adjoint, we need to define a 1-cell FreeAlgm : EMB(m) →
obm, and we use the universal property of Eilenberg-Moore objects for that. We construct a
cone q as follows:

The object is obm;
The morphism is m;
The 2-cell is m · m m idobm

·m.
µm λ−1

We define FreeAlgm as EMmor(q). The unit of the desired adjunction is defined as follows:

idobm m FreeAlgm · more
ηm EMcom(q)

For the counit we use the universal property of Eilenberg-Moore objects. The details can be
found in the formalization.

To construct MndEquiv(m), we use Proposition 3.7. Hence, it suffices to construct a
monad morphism G : AdjToMnd(MndToAdj(m)) → m whose underlying 1-cell and 2-cell are
an adjoint equivalence and invertible respectively. We define G as follows:

The underlying 1-cell is idobm : obm → obm.
For the underlying 2-cell, we take

idobm ·m m FreeAlgm · more (FreeAlgm · more) · idobm

λ EMcom(q) ρ−1

⌟

Note that we can instantiate Construction 7.10 to several concrete instances.
Since UnivCat has Eilenberg-Moore objects by Example 5.9, we get the usual construction
of adjunctions from monads via Eilenberg-Moore categories.
Since UnivCatop has Eilenberg-Moore objects by Construction 6.10, every monad gives
rise to an adjunction via Kleisli categories.

One can also show that SymMonUnivCatco has Eilenberg-Moore objects, and thus every
comonad of symmetric monoidal categories gives rise to an adjunction.

https://nmvdw.github.io/FormalTheoryOfMonadsUnivalently/UniMath.Bicategories.Monads.Examples.AdjunctionToMonad.html#mnd_from_adjunction
https://nmvdw.github.io/FormalTheoryOfMonadsUnivalently/UniMath.Bicategories.Monads.MonadToAdjunction.html#mnd_to_adjunction
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8 Monadic Adjunctions

By Construction 7.10 we have an equivalence AdjToMnd(MndToAdj(m)) ≃ m for every monad
m. However, such a statement does not hold for adjunctions. Monadic adjunctions are the
adjunctions for which we do have such an equivalence.

▶ Problem 8.1. Given an adjunction l η
ε

r where l : x → y in a bicategory B with Eilenberg-
Moore objects, to construct a 1-cell Comparison(l η

ε
r) : y → EMB(AdjToMnd(l η

ε
r)).

▶ Construction 8.2 (for Problem 8.1; comparison_mor). We use the universal property of
Eilenberg-Moore objects, and we construct a cone q as follows

The object is y;
The 1-cell is r : y → x;
The 2-cell is r · (l · r) (r · l) · r idy ·rα ε▷r

.

Note that the object and 1-cell of AdjToMnd(l η
ε

r) are x and l · r respectively. Now we
define Comparison(l η

ε
r) to be EMmor(q). ⌟

▶ Definition 8.3 (is_monadic). An adjunction l η
ε

r in a bicategory B with Eilenberg-Moore
objects is called monadic if the 1-cell Comparison(l η

ε
r) is an adjoint equivalence.

Next we look at a representable version of this definition. More specifically, we define
monadic 1-cells using monadic functors in UnivCat. To do so, we first show that every
adjunction gives rise to an adjunction on the hom-categories.

▶ Problem 8.4. Given l η
ε

r where l : x → y and an object w, to construct an adjunction
HomAdjw(l η

ε
r) between B(w, x) and B(w, y).

▶ Construction 8.5 (for Problem 8.4; left_adjoint_to_adjunction_cat). The left adjoint
is (− · l)w, while the right adjoint is (− · r)w. For the unit, we need to construct natural
2-cells f ⇒ (f · l) · r, and for which we take

f f · idy f · (l · r) (f · l) · r
ρ−1 f◁η α

For the counit, we construct natural 2-cells (f · r) · l, which are defined as follows

(f · r) · l f · (r · l) f · idy fα−1 f◁ε ρ
⌟

▶ Definition 8.6 (is_monadic_repr). An adjunction l η
ε

r in a locally univalent bicategory
is called representably monadic if for every w ∈ B the adjunction HomAdjw(l η

ε
r) is a

monadic 1-cell in UnivCat.

Note that we require the bicategory in Definition 8.6 to be locally univalent, so that
each hom-category lies in UnivCat. Now we show that these two notions of monadicity are
equivalent. We first prove the following lemma.

▶ Lemma 8.7 (left_adjoint_equivalence_weq_left_adjoint_equivalence_repr). A
1-cell f : x → y is an adjoint equivalence if and only if for all w the functor (− · f)w is an
adjoint equivalence of categories.
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Proof. Suppose, we have a a adjoint equivalence f : x ≃ y and let w : B. By Construction 8.5,
we obtain an adjunction HomAdjw(l η

ε
r) between B(w, x) and B(w, y) whose right adjoint is

(− · f)w. Since the unit and counit of f are invertible, the unit and counit of HomAdjw(l η
ε

r)
are invertible as well, and thus we get the desired adjoint equivalence.

Next suppose that for every w the functor (− · f)w is an adjoint equivalence. For every
w, we denote its right adjoint by Rw : B(w, y) → B(w, x), its unit by ηw : Rw · (− · f)w ⇒ id,
and its counit by εw : id ⇒ (− · f)w · Rw. Now we show that f is an adjoint equivalence

The right adjoint is Ry(idy) : B(y, x).
The unit is ηw(idy) : Ry(idy) · f ⇒ idy.
For the counit, we use the following composition

f · Ry(idy) Rx((f · Ry(idy)) · f) Rx(f · (Ry(idy) · f))

Rx(f · idy) Rx(f) Rx(idx ·f) idx

ηx(f ·Ry(idy)) R(α−1)

R(f◁ηy(idy))

R(ρ) R(λ−1) η−1
x (idx)

Since both the unit and counit are invertible, f is indeed an adjoint equivalence. ◀

▶ Theorem 8.8 (is_monadic_repr_weq_is_monadic). An adjunction is monadic if and
only if it is representably monadic.

Proof. Suppose that we have an adjunction l η
ε

r and that we have w : B. First, we note
that we have a monad on B(w, y), namely m := HomMndw(HomAdjw(l η

ε
r)). We denote

the comparison cell Comparison(HomAdjw(l η
ε

r)) by F .
We also have a functor (− · Comparison(l η

ε
r))w : B(w, y) → B(w, EMB(m′)), which we

denote by G. We write m′ for the monad HomMndw(m), and recall that by Proposition 5.8
we have an adjoint equivalence from B(w, EMB(m′)) to EM(HomMndw(m)). Denote this
equivalence by H . There also is a functor K : EM(m′) → EM(m) and a natural isomorphism
τ : F · (H · K) ∼= G: their precise definition can be found in the formalization.

As such, we have the following diagram for every w : B:

B(w, y) EM(m)

B(w, EMB(m′)) EM(m′)

G

F

H

K
τ

Since both H and K are adjoint equivalences, we deduce that F is an adjoint equivalence if
and only if G is. As such, if l η

ε
r is representably monadic, then F is an adjoint equivalence

and thus G is an adjoint equivalence. From Lemma 8.7 we get that l η
ε

r is monadic. For the
converse, we use the same argument: if l η

ε
r is monadic, then G is an adjoint equivalence.

Hence, F is an adjoint equivalence as well, so l η
ε

r is representably monadic. ◀

9 Conclusion

We developed Street’s formal theory of monads in this paper. We saw that it provides a
good setting to study monads in univalent foundations, because it allows us to prove the
core theorems in arbitrary bicategories instead of only for categories. For that reason, it

https://nmvdw.github.io/FormalTheoryOfMonadsUnivalently/UniMath.Bicategories.Morphisms.Monadic.html#is_monadic_repr_weq_is_monadic
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helps us with concrete problems, such as constructing an adjunction from a monad using the
univalent version of the Kleisli category. This is because one only needs to prove a universal
property instead of reproducing the whole construction of the adjunction.

There are numerous ways to continue this line of research. One result that is missing, is
Theorem 12 from Street’s paper [47]. In addition, the work in this setting provides a framework
in which one can study numerous applications, such as models of linear logic [11, 34], Moggi-
style semantics [36], call-by-push-value [30], and the enriched effect calculus [16]. Formalizing
these applications would be a worthwhile extension. Finally, one could study extensions
of the formal theory to a wider class of monads, such as graded monads [17] or relative
monads [8].
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Abstract
This paper is concerned with automatically proving properties about the input-output relation of
functional programs operating over algebraic data types. Recent results show how to approximate
the image of a functional program using a regular tree language. Though expressive, those techniques
cannot prove properties relating the input and the output of a function, e.g., proving that the output
of a function reversing a list has the same length as the input list. In this paper, we built upon
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two recursive functions, len computing the length of a list and less checking if a natural
number is strictly less than another. We aim at (automatically) proving the logical properties
∀x l. less Z (len Cons(x, l)) and ∀x l. less (len l) (len Cons(x, l)). Here are the program
in Ocaml-like syntax, the logical formulas for properties and their equivalent CHC repres-
entation. Note that n-ary functions (like unary len) are translated into n+ 1-ary relations
(like binary Len). Because of this extra argument, we add a functionality constraint (the
third clause of Len) for ensuring that the relation represents exactly the function. Without
this functionality constraint, we could e.g. have a model where Len(Nil, S(Z)) is true. Arity
of predicates, like the binary less, do not change: Less is binary. In this case, we cannot
use functionality constraint because the result is not reified. Instead, we use bi-implication
to exclude all elements which are not in the relation defined by the OCaml function, e.g.,
exclude Less(S(S(Z)), S(Z)).

type nat = Z | S of nat
type n a t l i s t = Ni l | Cons of nat ∗ n a t l i s t

let rec l en ( l : n a t l i s t ) =
match l with
| N i l −> Z
| Cons (h , t ) −> S ( l en t )

Len(Nil, Z).
Len(l, n) ⇒ Len(Cons(x, l), S(n)).
Len(l, n1) ∧ Len(l, n2) ⇒ n1 = n2.

let rec l e s s (n : nat ) (m : nat ) =
match (n , m) with
| Z , S (_) −> true
| _, Z −> f a l s e
| S ( n1 ) , S (m1) −> l e s s n1 m1

Less(Z, S(m)).
Less(n, Z) ⇒ False.

Less(n, m) ⇐⇒ Less(S(n), S(m)).

∀x l. less Z (len (Cons(x, l)))
∀x l. less (len l) (len Cons(x, l))

Len(Cons(x, l), n) ⇒ Less(Z, n).
Len(l, n) ∧ Len(Cons(x, l), n′) ⇒ Less(n, n′).

Our goal is thus to automatically infer a model of this set of clauses, i.e., solve the satisfiab-
ility problem for Constrained Horn Clauses over the theory of inductive datatypes. Tree
automata [6] are a well-know formalism to represent, approximate, and infer models on
functional programs [17, 11] or even on CHCs [16]. In all those works, the inferred model is
not relational, i.e., it only consists of a regular set of unrelated terms. For instance, in our
example, the first property ∀x l. less Z (len (Cons(x, l))) is not relational and can thus be
proven using regular sets like [16, 11, 17] do. To perform the proof, the solvers only need
to consider two regular languages: Llists containing all lists of natural numbers and LCons+
containing all non-empty lists of natural numbers. Then, the proof is carried out by showing
that if l ∈ Llists then, for any natural number x, the term Cons(x, l) belongs to LCons+.
Finally, since any list l′ ∈ LCons+ have a length strictly greater than 0 then the property is
true.

On the opposite, the second property, ∀x l. less (len l) (len Cons(x, l)), is relational
and, thus, out of the scope of the aforementioned approaches. We still have that if l ∈ Llists

then cons(x, l) ∈ LCons+ but for any l ∈ Llists and any l′ ∈ LCons+ we cannot prove that
less (len l) (len l′). To preserve the relation between the two occurrences of the list l, we
use convoluted automata [6] which can represent regular relations between terms. We build
upon the preliminary results obtained in [12] and propose a sound but incomplete procedure
for inferring an automaton that represents a model of the program and the property. This
procedure is defined as an Implication Counter Example (ICE) procedure [8].
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Contributions

Definition of a sound model-checking procedure for CHCs on convoluted tree automata.
We propose two sound optimisations of this procedure so as to make it efficient in practice;
Definition of an ICE procedure for inferring models of CHCs;
Definition of a specific over-approximation technique enlarging the class of properties
which can be proved using regular models on CHCs programs;
Implementation of the ICE procedure;
On more than 120 examples, we show that our implementation automatically proves and
disproves non-trivial examples.

This paper is organised as follows: In Section 2, we give an overview demonstrating the
verification technique presented in this paper. In Section 3, we introduce the notions and
notations. In Section 4, we briefly present how to encode functional programs into Horn
clauses. In Section 5, we present a transformation from the model-checking procedure for
CHCs into a search for a proof in a proof system representing the model. In Section 6, we
present our use of the proof system for an efficient search. In Section 7, the ICE-procedure
for inferring a model is defined. In Section 8, we present our approximation method. In
Section 9, we discuss implementation-specific details and experiments. In Section 10, we
present related work. Finally, we conclude in Section 11.

2 An overview of the verification procedure on an example

We continue our example of Section 1. We first give more details about the proof of the
non-relational property ∀x l. less Z (len (Cons(x, l))). To represent the set Llists containing
all lists of natural numbers and the set LCons+ containing all non-empty lists of natural
numbers, we use tree automata. Tree automata recognize sets of terms into states using
transitions. E.g., a tree automaton with states {qnat, qNil, qCons+} and transitions {Z() →
qnat, S(qnat) → qnat, Nil() → qNil, Cons(qnat, qNil) → qCons+, Cons(qnat, qCons+) →
qCons+} recognizes Nil into the state qNil and any non-empty list of naturals into the
state qCons+. To recognize a term, transitions are used to rewrite the term into a state,
e.g, Nil → qNil, and Cons(S(Z), Nil) →∗ Cons(S(qnat), qNil) → Cons(qnat, qNil) →
qCons+. Similarly Cons(Z,Cons(S(S(Z)), Nil)) →∗ qCons+. To prove the property
∀x l.less Z (len (Cons(x, l))) using such an automaton, it is enough to show that if l
belongs to Llists (whose terms are recognized by qNil or qCons+), then Cons(x, l) belongs to
LCons+ (whose terms are recognized by qCons+). Using another automaton for Less, it is
possible to show that (len l′), with l′ recognized by qCons+, belongs to the language Lpos of
strictly positive natural numbers, whereas (len Nil) belongs to the language {Z}.

Now, we present a complete overview of our verification procedure for proving the second
property ∀x l. less (len l) (len Cons(x, l)) which is relational and, thus, out of the scope of
solvers like [16, 11, 17]. As shown before, the functions and the property are all translated
into a set of CHCs. In the following, we denote by C this set. Given C, we start the model
inference phase whose objective is to infer a model of this set, named M in the following.
For each relation R defined by the program, M contains an automaton AR recognizing a
language for the relation R. The model inference procedure can either

(i) succeed, i.e. find a model M satisfying C, and the properties are proved, or
(ii) fail, i.e. find a contradiction, and the properties are disproved, or
(iii) never terminates.

FSCD 2023
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This model inference is implemented as an Implication Counter-Example (ICE) procedure [8]
between two entities: a learner and a teacher. The learner’s goal is to infer a correct model
using only feedback from the teacher. The teacher’s goal is to verify if the clauses from C
satisfy M (the model proposed by the learner) and to give feedback in the form of logical
implications which are counter-examples.

Initially, M associates to each relation symbol an empty relation recognized by an empty
automaton, denoted by A∅. The relation recognized by A∅, denoted by R(A∅), is the empty
relation. On our example, the initial value for M is thus M = {Len 7→ A∅,Less 7→ A∅}.

First iteration of the learner-teacher algorithm

The learner proposes the model M = {Len 7→ A∅,Less 7→ A∅}. The teacher checks if M
satisfies each clause of C, i.e., for each φ ∈ C it checks if M |= φ. This is not true for the
clause Len(Nil, Z) which imposes that the pair (Nil, Z) is part of the relation associated
with Len. This is not the case here. Thus, the learner provides the ground clause Len(Nil, Z)
as a counter-example.

Second iteration of the learner-teacher algorithm

Starting from M = {Len 7→ A∅,Less 7→ A∅} and the counter-example Len(Nil, Z), the
learner improves M in order to add the pair (Nil, Z) into the relation associated with Len,
i.e., refines the automaton so as to recognize the pair (Nil, Z). For recognizing a relation,
we need to extend the tree automaton formalism to recognize regular sets of tuples of terms.
A solution proposed in [6] is to use a tree automaton recognizing convolutions of terms. A
convolution transforms a tuple of terms into a term built on tuples of symbols. It does so
by introducing new convoluted symbols which represent tuples of symbols. For example,
to recognize the pair (Nil, Z) we define a new symbol

〈
Nil, Z

〉
and a tree automaton A1

with the state q0 and the unique transition
〈
Nil, Z

〉
() → q0. With such an automaton,

the relation recognized by automaton A1 is R(A1) = {(Nil, Z)}. Finally, we now have
M = {Len 7→ A1,Less 7→ A∅}. Again, this model is given to the teacher which checks
if M |= C. The teacher finds out that M ̸|= Len(l, n) ⇒ Len(Cons(x, l), S(n)).
Indeed, since (Nil, Z) ∈ L(A1) we should have (Cons(i,Nil), S(Z)) ∈ L(A1) for all natural
numbers i. The teacher provides a ground instance of this clause as a counter-example, e.g.,
Len(Nil, Z) ⇒ Len(Cons(Z,Nil), S(Z)).

Third iteration of the learner-teacher algorithm: Learner part

Starting from M = {Len 7→ A1,Less 7→ A∅} and the counter-example obtained from the
previous iteration Len(Nil, Z) ⇒ Len(Cons(Z,Nil), S(Z)), the learner should refine A1
into A2 so that it also recognizes the pair (Cons(Z,Nil), S(Z)). This time, to build the
convolution we have to overlay the terms Cons(Z,Nil) and S(Z). However, because of
the different arities of Cons and S, the trees representing those two terms do not perfectly
overlap. The convolution adds a padding symbol □ to complement trees in order to have a
perfect overlap. Back to our example, with a convolution (known as right-convolution) the
tree for S(Z) becomes

S

□ Z and the convolution of
Cons

Z Nil and
S

□ Z is

〈
Cons, S

〉
〈
Z,□

〉〈
Nil, Z

〉
.

Thus, a refined automaton A2 recognizing both (Nil, Z) and (Cons(Z,Nil), S(Z)) has states
{q0, q1, q2} and transitions {

〈
Nil, Z

〉
() → q0,

〈
Z,□

〉
() → q1,

〈
Cons, S

〉
(q1, q0) → q2}. If we

declare states q0 and q2 as final (meaning that we ignore the languages recognized by non
final states) then R(A2) = {(Nil, Z), (Cons(Z,Nil), S(Z))}.
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A last phase of the ICE learning process is to reduce the number of states of the automaton
and, doing so, possibly enlarge the recognized language. Note that this phase was skipped on
automaton A1 because it has only one state. Reducing the number of states consists in finding
state merging which are coherent w.r.t. the ground clauses sent by the teacher and coherent
w.r.t. types of recognized languages. For instance, on A2, merging q0 with q2 is possible
because both recognize pairs of lists and natural numbers. On the opposite, merging q0 with
q1 is incorrect because q0 recognize pairs of lists and q1 only recognizes a unique natural
number (omitting padding). After renaming q2 to q0, transitions of the automaton A2 become
{
〈
Nil, Z

〉
() → q0,

〈
Z,□

〉
() → q1,

〈
Cons, S

〉
(q1, q0) → q0}. Note that this automaton now

recognizes {(Nil, Z), (Cons(Z,Nil), S(Z)), (Cons(Z,Cons(Z,Nil)), S(S(Z))), . . .}, i.e.,
all pairs (l, n) where l is a list of Z whose length is n.

Conclusion of the learner-teacher algorithm

During following iterations, the learner-teacher proceed similarly to infer an automaton for
Less and to finish inferring that of Len. Finally, during the 6-th iteration, the learner ends up
on the following model M = {Len 7→ ALen,Less 7→ ALess} where ALen has final states {q0}
and the transitions {

〈
□, S

〉
(q1) → q1,

〈
□, Z

〉
() → q1,

〈
Nil, Z

〉
() → q0,

〈
Cons, S

〉
(q1, q0) →

q0}. This automaton is close to automaton A2 except that it recognizes any natural number
in place of Z in the list, i.e., it recognizes all pairs (l, n) where l is a list of natural numbers
whose length is n. The automaton ALess has the final states {q3} and the transitions
{
〈
□, Z

〉
() → q4,

〈
□, S

〉
(q4) → q4,

〈
Z, S

〉
(q4) → q3,

〈
S, S

〉
(q3) → q3}. This model is given

to the teacher which then checks that it satisfies all the clauses of C. This terminates the
verification and proves that ∀x l. less (len l) (len Cons(x, l)).

3 Prerequisites

3.1 Typed alphabet and term
▶ Definition 1 (Typed alphabet). A typed alphabet (Σ, τ,Γ) is a set of symbols Σ, a set of types
Γ, and a typing function τ which assigns to each symbol f a type τ(f) = τ1 × . . .× τn → τ0
with ∀i ∈ J0, nK, τi ∈ Γ and n ∈ N varying for each symbol f . When n = 0, the symbol is a
constant and does not take input. For f ∈ Σ and τ(f) = τ1 × . . .× τn → τ0, we say that f is
of arity n, written |f | = n, and that τ0 is the output type of f , written τout(f) = τ0. When
clear from context, we identify the tuple (Σ, τ,Γ) with Σ.

▶ Definition 2 (Term). A (typed) term t over an alphabet Σ is the data of a symbol f ∈ Σ,
called the root symbol of t and written Root(t), together with a list t1, . . . , t|f | of |f | terms,
called children of t, such that their type is compatible, i.e. τ(f) = τout(Root(t1)) × . . . ×
τout(Root(t|f |)) → τout(f). A term t is also written f(t1, . . . , t|f |). We overload τ with
τ(t) = τout(Root(t)). The set of terms over an alphabet Σ is written T (Σ).

▶ Definition 3 (Substitution). A substitution σ is a finite map between variables and terms
(which may contain variables). The application of a substitution σ to a variable x, written
σ(x), is defined as t if there exists a binding (x, t) ∈ σ and x otherwise. The application
of a substitution is generalized to terms by σ(f(t1, . . . , tn)) = f(σ(t1), . . . , σ(tn)). Even
more generally, a substitution can be applied to any structure containing variables. The
composition of substitution, which first applies σ1 and then σ2, is written σ1;σ2. The domain
of a substitution is the set of variables for which a binding is defined and is written dom(σ).

FSCD 2023



7:6 Automata-Based Verification of Relational Properties of Functions over Trees

A function V ars is used without definition, if unambiguous, to fetch the set of variables
contained in a structure. It can be called, for example, on a term or on a tuple of structures
containing variables.

3.2 Tree automaton
▶ Definition 4 (Tree automaton). A (bottom-up) tree automaton A = (Q,Qf ,∆) over an
alphabet Σ is given by a finite set of states Q, a set of final states Qf ⊆ Q, and a set of
transitions (or rules) ∆ such that transitions are of the form f(q1, . . . , q|f |) → q0, where
f ∈ Σ and ∀i ∈ J0, |f |K, qi ∈ Q.

▶ Definition 5 (Language recognized by an automaton). The set of terms recognized (or
accepted) in a state q of an automaton A is inductively defined as L(A, q) = {f(t1, . . . , tn) |
f(q1, . . . , qn) → q ∈ ∆ ∧

∧
i∈J1,nK ti ∈ L(A, qi)}. The language recognized by an automaton

is L(A) =
⋃

qf ∈Qf
L(A, qf ).

▶ Definition 6 (Typed tree automaton). A typed tree automaton is a tree automaton whose
states are typed by types of the alphabet. We write τ(q) for the type of the state q. Transitions
have to be compatible with the types of the symbols, i.e., for any rule f(q1, . . . , qn) → q0 ∈ ∆,
τ(f) = τ(q1) × . . .× τ(qn) → τ(q0). All final states must be of the same type. The type of
the automaton, written τ(A), is the type of its final states.

We write A for the complement of the automaton A w.r.t its type, i.e., L(A) = {t | τ(t) =
τ(A)∧ t /∈ L(A)}. We also use Q, Qf , and ∆ as accessors, that is, as functions to respectively
extract states, final states, and transitions from an automaton. We usually write t or
f(t1, . . . , tn) for terms, q for a state, and A for an automaton. Tuple of elements (e1, . . . , en)
are also written e⃗ and e⃗[i] means ei.

3.3 Automata recognizing a relation
There exist multiple formalism for representing a relation on terms with an automaton. They
differ in their expressive power, closure properties, and decision procedure complexity. The
most well known are tuple automata, ground tree transducers, and automata on convoluted
terms, all described in [6]. We will pursue an approach based on automata on convoluted
terms, or simply convoluted automata.

Convoluted automata are defined w.r.t an operation called convolution which transforms
an n-tuple of terms into a unique term whose symbols are n-tuple of symbols. Intuitively,
an automaton defined on this alphabet of tuple reads n terms at the same time, thereby
recognizing a relation. The standard convolution operator amounts to overlaying the (syntax
tree of the) terms, starting from the root, and adding a padding symbol □ /∈ Σ (of type τ□)
as there is an arity mismatch between symbols. To this end, we extend any alphabet Σ to
Σ□ = Σ ∪ {□}. We call this standard convolution the left convolution, in order to distinguish
it from other convolutions, e.g. the right convolution, that has been used in section 2 and in
the rest of the paper. We first define left-convolution of a tuple of tuple, and then use it to
define convolution of terms.

▶ Definition 7 (Left-convolution).

⊕L ((e1
1, . . . , e

k1
1 ), . . . , (e1

n, . . . , e
kn
n )) =

(
(e1

1, . . . , e
1
n), . . . , (ek

1 , . . . , e
k
n)

)
with k = max

i∈J1,nK
(ki) and ∀i ∈ J1, nK, ∀j ∈ J1, kK, ej

i = ej
i if j ≤ ki and □ otherwise



T. Losekoot, T. Genet, and T. Jensen 7:7

▶ Definition 8 (Left-convolution of terms). The n-ary left-convolution, written ⊕t
L, takes

n terms (t1, . . . , tn) on an alphabet Σ□ and returns a term ⊕t
L(t1, . . . , tn) on a convoluted

alphabet Σ⊕L
= Σ□

n whose elements are written
〈
f1, . . . , fn

〉
or f⃗ . The left-convolution of n

terms is recursively defined as:

⊕t
L(f1(⃗t1), . . . , fn(⃗tn)) =

〈
f1, . . . , fn

〉
(⊕t

L(t⃗′1), . . . ,⊕t
L(t⃗′k)) with

(
t⃗′1, . . . , t⃗

′
k

)
= ⊕L(⃗t1, . . . , t⃗n)

▶ Example 9 (Left convoluted terms). Let Σex = {Z, S,Nil, Cons}, with τ(Z) = nat,
τ(S) = nat → nat, τ(Nil) = natlist, τ(Cons) = nat× natlist → natlist, be a typed
alphabet for natural numbers and lists of natural numbers. Following are two examples of
left convolution of terms.

⊕t
L( , )S

Z

S

S

S

Z

=
〈
S, S

〉
〈
Z, S

〉
〈
□, S

〉
〈
□, Z

〉

With lex and nex as defined below,

lex = Cons lex =

Z Cons

Z Nil

nex = S nex =

S

Z

⊕t
L(lex, nex)

=〈
Cons, S

〉
〈
Z, S

〉
〈
□, Z

〉
〈
Cons,□

〉
〈
Z,□

〉 〈
Nil,□

〉
Note that, due to type constraints, T (Σ□) = T (Σ) ∪ {□}. The left-convolution ⊕t

L of n
terms is an isomorphism between T (Σ□)n and T (Σ⊕L

). Automata recognizing convoluted
terms thus recognize relations on T (Σ□)n.

▶ Definition 10 (Regular relation). A relation recognized by a tree automaton is said to be
regular. The relation recognized by automaton A is R(A) = ⊕L

−1(L(A)) = {t⃗ | ⊕L(⃗t) ∈
L(A)}. Similarly, the relation recognized by state q of A is R(A, q) = ⊕L

−1(L(A, q)).

We impose that the type of any final state qf is τ□-free, that is, τ(qf ) = (τ1, . . . , τn) with
∀i ∈ Ji, nK, τi ̸= τ□. This ensures that an automaton defines a relation between terms of
T (Σ), i.e. terms without padding.

▶ Example 11 (Convoluted automata). Let A< be the automaton with states {q, qf }, of which
qf is final, and transitions {

〈
□, Z

〉
() → q,

〈
□, S

〉
(q) → q,

〈
Z, S

〉
(q) → qf ,

〈
S, S

〉
(qf ) →

qf }. R(A<) is the < relation on Peano numbers and τ(A<) = nat× nat. For example, the
convolution of S(Z) and S(S(S(Z))) is recognized by this automaton, as shown below.〈

S, S
〉

〈
Z, S

〉
〈
□, S

〉
〈
□, Z

〉

〈
S, S

〉
〈
Z, S

〉
〈
□, S

〉
q

〈
S, S

〉
〈
Z, S

〉
q

〈
S, S

〉
qf

qf〈
□, Z

〉
() → q

−→

〈
□, S

〉
(q) → q

−→

〈
Z, S

〉
(q) → qf

−→

〈
S, S

〉
(qf ) → qf

−→

Convolutions and their expressivity

Which relations are representable by convoluted tree automaton highly depends on the
precise datatypes definition. For example, when using the left-convolution, the Len relation
can only be represented if the Cons constructor had its arguments swapped. This is because
left-convoluting a list l and a natural number n will relate n with the left-most branch of l.
Instead of modifying constructors, we can define other convolutions. The right convolution,
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written ⊕R, is defined similarly to ⊕L but adds padding to the left of terms instead of
to the right. This right convolution is effective for proving properties relating lists and
unary natural numbers. Finally, we define the complete convolution, written ⊕C , which is
more expressive than both the left and the right convolution. This complete convolution
relates every combination of tuple’s element, which results in overlaying every same-depth
constructor when convoluting terms. The complete convolution has the advantage of not
depending on the constructor argument’s order and being able to duplicate terms, but the
drawback of generating big convoluted terms. Both convolution are extended to terms in the
same way ⊕L was.

▶ Example 12. On the left is depicted the right convolution of lex and nex (of example 11),
and on the right their complete convolution. Note how nex’s constructors have been duplicated
in the complete convolution.

⊕t
R(lex, nex)

=〈
Cons, S

〉
〈
Z,□

〉 〈
Cons, S

〉
〈
Z,□

〉 〈
Nil, Z

〉

⊕t
C(lex, nex)

=〈
Cons, S

〉
〈
Z, S

〉
〈
□, Z

〉
〈
Cons, S

〉
〈
Z,Z

〉 〈
Nil, Z

〉
Since definitions of this paper hold for any convolution, we write ⃝ for any of ⊕L, ⊕R, or
⊕C .

4 Functional programs and their logical representation

Regular models of functional programs

We consider first-order monomorphic functional programs. Such programs define a set of
functions of the form f : τ1 → . . . → τn and of the form f : τ1 → . . . → τn → bool, with each
τi being an algebraic datatype. Each of these can be viewed as a relation on τ1 × . . .× τn.
Formally, these relations constitute a (relational) first-order structure on L, with L being the
signature (the set of relation symbols together with their type). In our setting, the structures
are typed, i.e. a relation R of type τ(R) = τ1 × . . .× τn only relates terms t1, . . . , tn satisfying
∀i ∈ J1, nK, τ(ti) = τi.

▶ Definition 13 (Regular model). A regular model is a function M mapping each relation
symbol R ∈ L to an automaton AR. M denotes SM, the L-structure where every R ∈ L is
interpreted as R(AR). We naturally extend first-order semantic judgement to write M |= φ

for SM |= φ.

Regular models are close in essence to automatic structures. Automatic structures [14, 15, 10]
are a kind of recursive structures [13], which are part of the study of finite representation of
structures. Automatic structures have been studied for their decidable first-order theory. We
shall use tree automata to represent first-order structures that model functional programs.
This allows us to use specific and efficient methods for property checking.

We use Constrained Horn Clauses (CHCs) [2] as representation of our programs. CHCs
are first-order Horn clauses with additional constraints from a theory T (see example in the
Introduction). A CHC on a signature L is a closed formula of the form ∀x⃗, ψ(x⃗) ∧R1(x⃗1) ∧
. . . ∧ Rn(x⃗n) ⇒ R0(x⃗0), where ∀i ∈ J0, nK, Ri ∈ L. The formula ψ(x⃗) adds theory-related
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constraints. The semantic judgement S |= φ is standard first-order logic (modulo theory T ).
We usually leave out the universal quantifiers in front of CHCs: every variable in a formula is
implicitly universally quantified. In our setting, we use the theory of inductive datatypes [1]
over an alphabet Σ, which means that the value of variables are within T (Σ) and constraints
are of the form x = f(y⃗), where f ∈ Σ, x is a variable and y⃗ is a tuple of variables. For
simplicity, we sometimes write R(t) for x = t ∧ R(x). A ground CHC is one that has
no variables or, in our context, where every variable’s value is completely determined by
datatypes constraints (for example, x = Nil ⇒ R(x) is considered ground).

Our encoding of functional programs into clauses prevents us from using Horn clauses in
the translation of the if-then-else construct. For example, the simple translation of let f x
= if p x then e else e' yields the two clauses {P(x) ⇒ F(x, e), ¬P(x) ⇒ F(x, e′)}. We

therefore use non-Horn constrained clauses for modeling such functions. In the following,
we handle a negated literal in the body as a positive head, in disjunction with the other
heads. Other work [20] models similar programs with Horn clauses by reifying the truth of
a predicate in the terms as its last argument, allowing to negate it in the body of a clause.
Both ways of treating negation seems viable for our purpose but we have only experimented
with the first one.

5 Model-checking of regular structures

In this section, we present the procedure for checking the truth of a given CHC φ in a model
M, i.e., check if M |= φ. This model-checking fulfills the teacher role of the ICE model
inference procedure (See sections 2 and 7). This procedure is devised as a counter-example
search. A counter-example is a ground instantiation of each variable of φ, written as a ground
substitution σ, that disproves M |= φ. This procedure either returns None if M |= φ, and
otherwise Some(σ), with σ a counter-example. However, this problem is undecidable in
general, as showed in [18]. Therefore the procedure given here is correct but incomplete, that
is, it may diverge.

The model checking problem can be seen as a type checking procedure where typing rules
correspond to rules of automata.

▶ Definition 14 (Type checking instance). A typing obligation ω = [
〈
x1, . . . , xn

〉
: (A, q)]

is the data of a tuple
〈
x1, . . . , xn

〉
, with each xi being a variable or □, and of a target

type (A, q). A typing problem (E,Ω) is a set of typing obligations Ω together with a set
of constraints E, each of the form x = f(y⃗) with f a symbol of Σ. A solution for a typing
problem is a substitution σ : X → T (Σ) that satisfies every typing obligation and constraint:

σ |= (E,Ω) .= σ |= Ω ∧ σ |= E with

σ |= Ω .=
(
∀[x⃗ : (A, q)] ∈ Ω, σ(x⃗) ∈ R(A, q)

)
and

σ |= E
.=

(
∀(x = f(y⃗)) ∈ E, σ(x) = f(σ(y⃗))

)
▶ Definition 15 (Coherence of a constraint set). A set of constraints E is said to be coherent
if it admits a syntactic unifier. The most general unifier (MGU) of a coherent set E is
written σE.

Note that, given a typing problem (E,Ω) with a coherent E, any σ such that σ |= (E,Ω)
is equivalent to a σ′ such that σE ;σ′ |= Ω (by characterisation of the MGU).
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▶ Definition 16 (Model checking as type checking).
Let some CHC formula φ = ψ(x⃗) ∧R1(x⃗1) ∧ . . . ∧Rn(x⃗n) ⇒ R0(x⃗0) and model M.
The set of typing problems associated to φ and M is tp(φ,M) = {(ψ(x⃗),Ω) | Ω ∈ Ωs} with

Ωs =
{

{[x⃗1 : (A1, q1)], . . . , [x⃗n : (An, qn)], [x⃗0 : (A0, q0)]} |

A1 = M(R1) ∧ . . . ∧ An = M(Rn) ∧ A0 = M(R0) ∧ ∀i ∈ J0, nK, qi ∈ Qf (Ai)
}

The set of solutions σ to tp(M, φ) is the same as the set of counter-examples to M |= φ. In-
tuitively, for such a counter-example to exist, it should validate the atoms R1(x⃗1), . . . , Rn(x⃗n)
(i.e. be recognized by M(R1) . . . ,M(Rn)) and invalidate the atom R0(x⃗0) (i.e. be recognized
by M(R0)).

▶ Theorem 17 (Model checking as type checking).
For each model M and CHC property φ, M ̸|= φ ⇐⇒ ∃σ, ∃(E,Ω) ∈ tp(M, φ), σ |=

(E,Ω).

▶ Example 18 (Model checking a property). Let φ be Len(l, n) ⇒ Even(n), a formula stating
that all lists are of even length. Let M = {Len 7→ ALen, Even 7→ AEven} where ALen and
AEven respectively define the length relation on integer lists and the even predicate of integers.
ALen has states {qf , q}, final states {qf }, and rules {(A) :

〈
Z,□

〉
() → q, (B) :

〈
S,□

〉
(q) →

q, (C) :
〈
Cons, S

〉
(q, qf ) → qf , (D) :

〈
Nil, Z

〉
() → qf }. AEven has states {qe, qo}, final

states {qe}, and rules {(1) :
〈
Z

〉
() → qe, (2) :

〈
S

〉
(qo) → qe, (3) :

〈
S

〉
(qe) → qo}.

To check whether M ̸|= φ, we first translate (M, φ) into a typing problem instance. Note
that Even appears in the head of the property φ, therefore we will need to complement
AEven. We write its complement AOdd, which is the same automaton but with final states
{qo}.

tp(M, φ) =
{

(E0,Ω0)
}

with E0 = ∅ and Ω0 =
{

[
〈
l, n

〉
: (ALen, qf )], [

〈
n

〉
: (AOdd, qo)]

}
In this case, tp(M, φ) only contains one element (as each automaton only has one final state),
therefore M ̸|= φ ⇐⇒ ∃σ, σ |= (∅,Ω0).

5.1 Proof system
A proof obligation is the assertion that some typing problem (E,Ω) admits a solution, which
is written as ⊢ (E,Ω). We first define the unfolding of typing obligations and then the proof
system. Any solution for a typing obligation ω = [

〈
x1, . . . , xn

〉
: (A, q)] can be found by

following transitions of the automaton A. A transition
〈
f1, . . . , fn

〉
(q1, . . . , qk) → q of A

(note that q is the same between the typing obligation and the rule’s goal state) can act as
a typing rule whose application generates k new typing obligations (one for each sub-state
qj of the rule) and n new algebraic datatype constraints, the ith stating that variable xi is
of the form fi(x⃗i) with x⃗i some fresh variables. We formally define this step as unfolding a
typing obligation.

▶ Definition 19 (Unfolding a typing obligation).
unfold([

〈
x1, . . . , xn

〉
: (A, q)]) = {

(
Er,Ωr

)
| r ∈ ∆(A) ∧ r =

〈
f1, . . . , fn

〉
(q1, . . . , qk) → q}

with Er = {xi = fi(x⃗i) | i ∈ J1, nK} and Ωr = {[⃝(x⃗1, . . . , x⃗n)[j] : (A, qj)] | j ∈ J1, kK} where
∀i ∈ J1, nK, x⃗i are fresh variables.
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▶ Example 20 (Unfolding). Continuing with Example 18, we set ω1 = [
〈
l, n

〉
: (ALen, qf )]

and ω0 = [
〈
n

〉
: (AOdd, qo)]. Now, ω0 can be unfolded by rules {(3)} and ω1 by {(C), (D)}.

unfold(ω0) = {
(
E(3),Ω(3)

)
} with E(3) = {n = S(m)} and Ω(3) = [

〈
m

〉
: (AOdd, qe)].

unfold(ω1) = {
(
E(D),Ω(D)

)
,

(
E(C),Ω(C)

)
} with

E(D) = {l = Nil, n = Z}, Ω(D) = ∅,
E(C) = {l = Cons(l1, l2), n = S(n1)},
Ω(C) = {[

〈
l1,□

〉
: (ALen, qn)], [

〈
l2, n1

〉
: (ALen, qf )]}.

We define the unfolding of a set of typing obligations as the (combination of) unfolding of
each typing obligation at the same time, that is the application of one rule of the automaton
to each typing obligation.

▶ Definition 21 (Unfolding a typing problem).

unfolds(Ω) = {(
⋃

ω∈Ω
Eω,

⋃
ω∈Ω

Ωω, ) | ∀ω ∈ Ω, (Eω,Ωω) ∈ unfold(ω)}

▶ Example 22. unfolds({ω0, ω1}) =
{

(E(3) ∪E(D), Ω(3) ∪Ω(D)), (E(3) ∪E(C), Ω(3) ∪Ω(C))
}

Finally, the proof system on typing problems consists of two deduction rules. The rule
Conclude concludes a proof when no typing obligation are left and when the algebraic
datatype constraints are consistent. The rule Step applies unfolding of typing problems
using rules of the tree automaton.

▶ Definition 23 (Proof system). Our proof system contains two rules.

Conclude
⊢ (E, ∅)

Step
⊢ (E ∪ E′,Ω′)

⊢ (E,Ω)
if Coherent(E) if Coherent(E ∪ E′) and (E′,Ω′) ∈ unfolds(Ω)

▶ Example 24. Continuing example 20, we build a proof tree of ⊢ (E0, Ω0). Rule Conclude
cannot be immediately applied, so let us consider Step, and thus unfolds(Ω0).

Its element (E(3)∪E(D), Ω(3)∪Ω(D)) can be discarded because E(3)∪E(D) is contradictory,
as both constraints n = Z and n = S(m) are present. Its other element, (E(3) ∪E(C), Ω(3) ∪
Ω(C)), is coherent, so we can apply the Step rule. We write it (E1,Ω1) where E1 =
{l = Cons(l1, l2), n = S(n1), n = S(m)} and Ω1 is the set of typing obligations Ω1 =
{[

〈
l1,□

〉
: (ALen, qn)], [

〈
l2, n1

〉
: (ALen, qf )], [

〈
m

〉
: (AOdd, qe)]}. We now have the new

typing problem (E0 ∪ E1,Ω1). Rule Conclude still cannot be applied. Then, unfolds(Ω1)
has 8 elements, only 4 of which are coherent. Its four coherent element can be seen as two
times the almost-same two elements, the only difference being which rule has been applied
to [

〈
l1,□

〉
: (ALen, qn)]. For this example, we only show the two elements that used rule (A),

(E2,Ω2) and (E′
2,Ω′

2) with

E2 = {l1 = Z, l2 = Nil, n1 = Z, m = Z}, Ω2 = ∅,
E′

2 = {l1 = Z, l2 = Cons(l21, l22), n1 = S(n11), m = S(m1)},
Ω′

2 = {[
〈
l21,□

〉
: (ALen, qn)], [

〈
l22, n11

〉
: (ALen, qf )], [

〈
m1

〉
: (AOdd, qo)]}

Constraints E1 ∪ E2 are coherent and Ω2 is empty, so rule Conclude can be applied and a
solution can be built from E0 ∪ E1 ∪ E2, that is {n 7→ S(Z), l 7→ Cons(Z,Nil)}. The final
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proof tree is depicted below. For now, every proof tree is a single line. This will no longer be
true with the introduction of the rule Split in section 6.

Step

Step

Conclude
⊢ (E1 ∪ E2, ∅)

⊢ (E1,Ω1)
⊢ (∅,Ω0)

▶ Definition 25 (Heights). We define a useful metric for proofs, the height:
The height of a term t = f(t1, . . . , tn) is inductively defined as h(t) = 1+maxi∈J1,nK(h(ti)).
The height of a ground formula φ, written h(φ), is defined as the height of the highest
term occurring in it.
The height of a substitution σ together with a typing obligation ω = [

〈
x1, . . . , xn

〉
: (A, q)]

is defined as h(σ, ω) = maxi∈J1,nK(h(σ(xi))).
The height of a substitution with a set of typing obligations is h(σ,Ω) = maxω∈Ω(h(σ, ω)).
The height of a proof tree T , written h(T ), is defined as the maximal number of occurrences
of the Step rule on a branch.

▶ Theorem 26 (Proof system is correct and complete). We have ∀(E,Ω),
(
∃σ, σ |=

(E,Ω)
)

⇐⇒ ⊢ (E,Ω). More precisely, for any (E,Ω) and n ∈ N,
(A) For any proof tree T of ⊢ (E,Ω) with h(T ) = n, there exists a substitution σ such that

σ |= (E,Ω) and h(σ,Ω) = n.
(B) For any substitution σ such that σ |= (E,Ω) and h(σ,Ω) = n, there exists a proof tree T

of ⊢ (E,Ω) such that h(T ) = n.

The proof can be found in Appendix A.

▶ Corollary 27 (Smallest counter-example). By theorem 26, a breadth-first exploration of
proof trees for a given typing problem (E,Ω) admitting a solution yields a solution of minimal
height, that is, a substitution σ that has the minimal value h(σ,Ω).

6 Proof search procedure

The search of a proof or the certainty of the absence of proof is implemented as a breadth-first
exploration of the above-defined proof trees. This problem is undecidable in general [18],
thus this procedure either finds a solution to the typing problem (i.e. a counter-example
to M |= φ) or tries every possibility and finds no counter-example (meaning that M |= φ),
or diverges. We present two sound optimizations which significantly improve the proving
and disproving power of the proof search procedure. Using those optimizations makes this
procedure usable and efficient in practice (see experiments in Section 9).

The first optimisation consists in splitting independent typing obligations when they do
not depend on each other.

▶ Definition 28 (Independence). Let (E,Ω) be a typing problem with E coherent. Ωa ⊆ Ω
and Ωb ⊆ Ω are said independent w.r.t. E, written Ωa ∥E Ωb, when

∀σa, σb, [σE ;σa |= Ωa∧σE ;σb |= Ωb] ⇒ [∀x ∈ V ars(σE(Ωa))∩V ars(σE(Ωb)), σa(x) = σb(x)]

Therefore, any two solutions σ′
a of (E,Ωa) and σ′

b of (E,Ωb) with Ωa ∥E Ω can first
be factorized by σE by letting σa and σb such that σ′

a = σE ;σa and σ′
b = σE ;σb and then

joined into σab = σa ∪ σb, and we have σE ;σab |= (E,Ωa ∪ Ωb). Finding a most precise
partitioning of (E,Ω) into independent sub-problems is hard, as it may require to examine
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the shape of automata. We define below a safe and easy-to-compute approximation of these
independence classes that splits typing obligations whose variables cannot be related even
using the equalities of E.

▶ Definition 29 (Splitting). Let E be a set of constraints. Let VE([x⃗ : (A, q)]) .= V ars(σE(x⃗)).
The set VE([x⃗ : (A, q)]) is the set of variables remaining in a typing obligation after application
of the most general unifier σE of E. Note how (A, q) has not been used. We define DE ⊆ Ω×Ω
as DE(ω1, ω2) .= (VE(ω1) ∩ VE(ω2) ̸= ∅). Since DE is symmetric, its reflexive and transitive
closure D∗

E is an equivalence relation. We define the function Split(E,Ω) to return the
equivalence classes of D∗

E defined on Ω.

▶ Lemma 30. ∀Ω1,Ω2 ∈ Split(E,Ω), Ω1 ∥E Ω2.

Proof. For any Ω1,Ω2 ∈ Split(E,Ω), V ars(σE(Ω1)) ∩ V ars(σE(Ω2)) = ∅. Therefore
Ω1 ∥E Ω2. ◀

This separation into independent problems makes the search less combinatorial and give rise
to a new rule for our typing system:

Split
⊢ (E,Ω1) . . . ⊢ (E,Ωn)

⊢ (E,Ω) with {Ω1, . . . ,Ωn} = Split(E,Ω)

▶ Example 31 (Splitting (E1,Ω1)). In example 24, we had E1 = {l = Cons(l1, l2), n =
S(n1), n = S(m)} and Ω1 = {ω1, ω2, ω3} with ω1 = [

〈
l1,□

〉
: (ALen, qn)], with ω2 =

[
〈
l2, n1

〉
: (ALen, qf )], and ω3 = [

〈
m

〉
: (AOdd, qe)]. We have σE1 = {l 7→ Cons(l1, l2), n 7→

S(n′), n1 7→ n′, m 7→ n′}, VE1(ω1) = {l1}, VE1(ω2) = {l2, n′}, and VE1(ω3) = {n′}. There-
fore Split(E1,Ω1) =

{
{ω1}, {ω2, ω3}

}
.

Solving ω1 have no impact on the solving of ω2 and ω3 because the values that l1 can take
do not influence the values that l2, n1, or m2 can take. On the other hand, because of E1,
m and n1 must take the same value, and therefore typing obligations ω2 and ω3 cannot be
separated. Note that applying this Split rule before the second Step (of example 24) would
have separated (E1,Ω1) into two independent problems.

The second optimisation consists in pruning the search tree. The search space is, for almost
all typing problems, infinite. Without pruning, it would be impossible to cover the whole
search space, and therefore negative instances would (almost) all never terminate. Pruning
the search tree allows, in some cases, to finitely ensure that no typing proof exists.

▶ Definition 32 (Pruning). Let T be a proof tree. A node ⊢ (Eb,Ωb) that appears in the
sub-tree of T whose root is some other node ⊢ (Ea,Ωa) is prunable when both

(i) At least one Step rule is used on the path between ⊢ (Ea,Ωa) and ⊢ (Eb,Ωb);
(ii) ∃σ, σ(σEa

(Ωa)) ⊆ σEb
(Ωb).

▶ Theorem 33 (Safety of pruning). For any proof tree that contains a prunable node, there
exist a strictly smaller (w.r.t the total number of times the Step rule is used) proof tree with
the same root.

The idea of pruning a proof T is to replace the orange proof sub-tree of ⊢ (Ea,Ωa) with the
purple proof tree of ⊢ (Eb,Ωb) (with minor modifications).

Step
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Proof. Let T be a prunable tree, that is such that there exists nodes ⊢ (Ea,Ωa) and ⊢ (Eb,Ωb)
with respective proof trees Ta and Tb, with Tb a sub-tree of Ta with a Step rule between
⊢ (Ea,Ωa) and ⊢ (Eb,Ωb), and σ a substitution such that σ(σEa

(Ωa)) ⊆ σEb
(Ωb).

By theorem 26(A) there exists a substitution σb with σb |= (Eb,Ωb) and h(σb,Ωb) = h(Tb).
Because σEb

is the most general unifier of Eb and σb |= Eb, there exists σ′ such that σb =
σEb

;σ′. Therefore the substitution σa = σEa ;σ;σ′ is such that σa(Ωa) ⊆ σb(Ωb). Because
σb |= Ωb, we also have σa |= Ωa. Because σa first applies σEa

, we have σa |= Ea. Therefore
σa |= (Ea,Ωa). Finally, again because σa(Ωa) ⊆ σb(Ωb), we have h(σa,Ωa) ≤ h(σb,Ωb). By
applying theorem 26(B) there exists a proof T ′

a of ⊢ (Ea,Ωa) with h(T ′
a) = h(σa,Ωa) ≤

h(σb,Ωb) = h(Tb).
Therefore, the proof tree T whose sub-tree Ta has been replaced by T ′

a is valid and smaller.
Besides, we know that the sub-tree T ′

a is strictly smaller than Ta because Ta contains at least
one application of the Step rule between its root and Tb. Therefore, this transformation
strictly decreases the size of the proof tree. ◀

▶ Corollary 34. By induction, if there exists a proof tree T of some initial typing problem,
then there exists one without any prunable node along the proof tree, and therefore abandoning
the search of prunable branches is safe.

▶ Example 35 (Pruning of the search tree). During the second Step application of example 24,
the typing problem (E′

2,Ω′
2) is also in unfolds(Ω1). This was no problem, as the algorithm

found a solution and stopped. Now, if (for example) automaton ALen did not have rule
(D), then there would be no solution to the initial typing problem (E0,Ω0). The search
would never stop, as, after a bit of unification and renaming, (E0,Ω0) can be included in
(E1 ∪E′

2,Ω′
2). Without pruning, the typing algorithm could therefore loop forever instead of

returning None. Fortunately, (E1 ∪E′
2,Ω′

2) can be pruned by taking σ = {l 7→ l22, n 7→ n11},
as σ(σ0(Ω0)) ⊆ σ2(Ω′

2) (with σ0 and σ2 being most general unifiers of E0 and E0 ∪ E1 ∪ E′
2,

respectively).

7 Regular structure inference

This section presents a procedure for inferring a regular model of a set of CHCs. The input
set of CHCs we later use the procedure for is C = Γ ∪ Γ′, with Γ defining a program and
Γ′ the desired properties. The procedure follows the Implication Counter-Example (ICE)
framework [8]. In this framework, the task of inferring a correct model is divided between
two entities (or procedures), a learner and a teacher, working iteratively. There are three
possible outcomes for this procedure: either the learner finds a correct model (that the
teacher validates), the learner finds a contradiction, or the procedure loops forever with more
and more refined models.

The teacher’s procedure takes as input a model M and a CHC system C, and returns
an optional ground Horn clause. It returns None if M |= C, and Some(σ(φ)) if M ̸|= φ

with counter-example σ for some φ ∈ C. With the model checking procedure already defined,
a teacher’s implementation is only a matter of selecting an order in which to check the
formulas. For example, taking as input the problem of example 18, the output would be
Len(Cons(Z,Nil), S(Z)) ⇒ Even(S(Z)).

The learner’s procedure is responsible for inferring a model from examples or finding
a contradiction. It takes as input a finite set C of ground CHCs and returns None if C is
contradictory and Some(M) otherwise, with M being a smallest model (in the number of
states) satisfying C. This procedure is divided into two steps, which are the main subject of
this section, the working model generation and the working model generalisation.
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▶ Definition 36 (Working model generation). The working model W of a given finite set of
ground CHCs C is the smallest model (up to state renaming) recognizing exactly the terms
mentioned in C in a different state for each. That is, for any atom R(⃗t) of any φ ∈ C, there
exists a state q in W(R) such that R(W(R), q) = {t⃗}.

This working model construction is carried out by classical automaton algorithms [6]. The
model W can then be generalised by merging states and deciding which equivalence classes
are to be considered as final states. Merging states leads to additional terms being recognized
and makes regularity appear. We search for a merging that minimises the number of states
of W while ensuring that the resulting model satisfies C.

▶ Definition 37 (State merging problem). The minimisation problem we define is on the first-
order (functional) signature S = {cq | A ∈ dom(W) ∧ q ∈ Q(A)} ∪ {Final} containing only
constants, one for each state of every automaton in W, and one unary predicate Final. The
constraints are Cok ∪ Cf . The set Cok represents essential constraints: (i) merged states must
belong to the same automaton ; (ii) merged states must be of the same type ; (iii) any final
state must be of its automaton’s type. The set Cf forces states to be or not to be final, which
also have an impact on which states to merge. It is defined from C by transforming every clause
φ = R1(⃗t1) ∧ . . . ∧ Rn(⃗tn) ⇒ R0(⃗t0) into φq = Final(cq1) ∧ . . . ∧ Final(cqn

) ⇒ Final(cq0),
with each qi being the state of W(Ri) that recognizes exactly t⃗i. Recall that we use non-Horn
clauses, so the head of φ could be empty or contain multiple predicates.

A minimal solution J·K to the state merging problem can be computed by a finite model
finder. We write JFinalK for the set of final states of the solution and JcqK for the equivalence
class of constant cq.

▶ Definition 38 (Generalisation of working model). Given a solution J·K to the state merging
problem, we generalise the working model W by M with M(R) = (Q,Qf ,∆) with Q = {JcqK |
q ∈ Q(W(R))}, Qf = Q ∩ JFinalK and ∆ = {f⃗(Jcq1K, . . . , Jcqn

K) → Jcq0K | f⃗(q1, . . . , qn) →
q0 ∈ ∆(W(R))}.

▶ Example 39 (Learner: Model generation). We observe the ICE procedure after learner and
teacher already had two exchanges to learn the Len relation defined in Section 2. The learner
has accumulated the constraints {Len(Nil, Z), Len(Nil, Z) ⇒ Len(Cons(Z,Nil), S(Z))}.
The generated working model is W = {Len 7→ A} with A = (Q,Qf ,∆), Q = {ql0 , ql1 , qn},
Qf = ∅, and ∆ = {

〈
Nil, Z

〉
() → ql0 ;

〈
Cons, S

〉
(qn, ql0) → ql1 ;

〈
Z,□

〉
() → qn}. We

have R(A, ql0) = {(Nil, Z)}, R(A, qn) = {(Z,□)}, and R(A, ql1) = {(Cons(Z,Nil), S(Z))}.
Note that state qn recognizes the term

〈
Z,□

〉
which does not appear in C but is necessary

to recognize (Cons(Z,Nil), S(Z)).
The minimisation problem is therefore on the signature with unary predicate Final and

constant symbols cql0
, cql1

, and cqn . The constraints Cok are stating that qn cannot be
merged with ql0 nor ql1 because they are not of the same type, and that only ql0 and ql1 can
be final, as they are the only states of the automaton’s type, natlist× nat. The constraints
Cf , generated from C, are {Final(cql0

), F inal(cql0
) ⇒ Final(cql1

)}. The smallest model is
a two-elements set {ql, qz}, with JFinalK = {ql}, Jql0K = Jql1K = ql, and JqnK = qz.

The generalized model is M = {Len 7→ A′} with automaton A′ having states {ql, qz},
final states {ql}, and transitions {

〈
Nil, Z

〉
() → ql,

〈
Cons, S

〉
(qz, ql) → ql,

〈
Z,□

〉
() → qz}.

This automaton recognizes an almost-correct relation: the set of pairs (l, n) of a list of zeros
together with its size. The only missing rule is

〈
S,□

〉
(qz) → qz, which will be added by the

learner in the ICE step that follows.
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8 Approximation

As we suppose programs to be deterministic and terminating, the CHC representation of
a functional program has only one possible model. For many programs, this model is not
regular and cannot be represented using convoluted tree automata. As a result, trying
to verify a property using an exact model of the relation will fail on such programs. We
circumvent this problem by approximating relations.

Our verification goals are CHCs of the form ψ(x⃗) ∧ R1(x⃗1) ∧ . . . ∧ Rn(x⃗n) ⇒ R0(x⃗0).
Given a relation R we denote by R+ (resp. R−) an over-approximation (resp. under-
approximation) of R which can also be R itself. A safe way to prove the above implication
using approximations is to over-approximate R1, . . . , Rn and under-approximate R0. If
ψ(x⃗) ∧R+

1 (x⃗1) ∧ . . . ∧R+
n (x⃗n) ⇒ R−

0 (x⃗0) is true then so is the original CHC. Applying such
a reasoning on the CHCs of the verification goal, we can infer which relations can be over
or under-approximated. For instance, the functional program computing the sum of two
natural numbers is represented by the relation Plus(n,m, u) associating any two natural
numbers n and m with their sum u. This relation is not regular when using unary encoding
of numbers. The argument for seeing this is very similar to that of {an · bn | n ∈ N} not
being a regular string language. For the string automaton, it would require an unbounded
counter for as in order to later exactly match their number with bs. For a convoluted
tree automaton to recognize Plus(n,m, u), the counting is of the depth at which n and m

root symbol stop being both S, which later needs to match the number of Ss left on u.
However, to prove a property of the form Plus(n,m, u) ⇒ n ≤ u, we only need a regular
over-approximation of the relation Plus, say Plus+, and an under-approximation of ≤, say
≤−, such that Plus+(n,m, u) ⇒ n ≤− u.

In practice, we focus on over-approximation and do not under-approximate. We thus
prove the stronger goal Plus+(n,m, u) ⇒ n ≤ u. Here are the clauses defining the Plus
relation:

Plus(n, Z, n). Plus(n, m, u) ⇒ Plus(n, S(m), S(u)). Plus(v, w, x) ∧ Plus(v, w, y) ⇒ x = y.

These clauses form a system where the first clause invalidates under-approximations,
the second clause can invalidate both over and under approximations, whereas the third
only invalidates over-approximations. We can therefore obtain a safe approximation Plus+

from Plus by simply removing the third clause. In our example, this suffices to prove
Plus+(n,m, u) ⇒ n ≤ u because the approximation Plus+ we built relates any n,m with all
u greater than or equal to n (See the solver result for isaplanner_prop21.smt2 in http://
people.irisa.fr/Thomas.Genet/AutoForestation/results_right/benchmarks.html).

Finally, some relations cannot be approximated. If a relation appears on both sides of the
verification goal then it cannot be approximated. E.g., to prove Z < m ∧ Plus(n,m, u) ⇒
n < u, we can safely use Plus+. Since < occurs (positively) on the left and right-hand
side of the implication, we could use <+ on the left-hand side and <− on the right-hand
side. We could use different approximations for relations appearing at different positions in
the formula. However, in our analyser, we choose to use a common approximation for any
relation. In our example, we use the intersection between <+ and <−, which is exactly <.

9 Implementation and Experiments

We implemented the verification algorithm in Ocaml. It can be found on https://gitlab.
inria.fr/tlosekoo/auto-forestation. This provides an implementation of terms, tree
automata, model checking, model-inference procedure, as well as left, right, and complete
convolution.

http://people.irisa.fr/Thomas.Genet/AutoForestation/results_right/benchmarks.html
http://people.irisa.fr/Thomas.Genet/AutoForestation/results_right/benchmarks.html
https://gitlab.inria.fr/tlosekoo/auto-forestation
https://gitlab.inria.fr/tlosekoo/auto-forestation
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The teacher closely follows the depth-first search of the proof system described in section 5.
There is a lot of redundancy in the proof search, so we used canonization and memoisation
of typing problems. Memoisation avoids re-computing the unfolding of a typing problem if
the search already did. However, memoisation alone is not very useful, as even equivalent
typing problems are often different because of variable names. This is the reason for
using canonization, which ensures that equivalent typing problems have the same internal
representation. The learner delegates the merging of states to Clingo [9], a finite-model
finder.

The solver presented in this paper builds regular relations, as opposed to [16, 11, 17]
which only build regular sets of terms. Since regular sets are a particular case of regular
relations, our solver should be able to handle the examples covered by those techniques,
plus some relational problems. As a result, for the experiments, we choose some examples
coming from benchmarks of Timbuk [11], add relational examples taken from the Isaplanner
benchmark [7, 4] and built relational problems inspired by TIP [5, 4]. As shown in Section 2, a
typical property which can be automatically proved by those non-relational solvers [16, 11, 17]
is of the form ∀x l. less Z (len (Cons(x, l))) where l is any list of natural numbers.

Non-relational solvers can also handle a restricted form of relations: the finite union of
languages L1 × . . . × Ln where ∀i ∈ J1, nK, Li is a regular language. This allows to prove
properties with a limited form of relation. For instance, using a non-relational regular solver,
it is possible to prove the property ∀l1 l2. less Z (len l1) ⇒ less Z (len (append l1 l2))
where append is the function concatenating lists and l1 and l2 are lists of a. For the tuple of
variables (l1, l2) to cover all the possible cases, it is enough to consider the two languages
Lnil × Llists and LCons+ × Llists where Lnil = {Nil} and LCons+ = Llists \ Lnil. With the
first language, the property is true because the left-hand side of the implication is false. With
the second language LCons+ × Llist, both the left and right-hand side of the implication are
true.

One of the simplest problem which cannot be proved using a non-relational “regular”
solver is ∀x y. Cons(x, y) ̸= y. Proving such a property cannot be done using a finite union of
products of regular languages. However, this property can automatically be proven using our
relational solver. Additionally to the above examples, we highlight some relational properties
which are automatically proven using our solver.

∀(l : ablist). (len l) = (len (reverse l)) length_reverse_eq.smt2
∀(l1 : ablist) (l2 : ablist). (prefix l1 (append l1 l2)) prefix_append.smt2
∀(l : ablist). (len l) = (len (sort l)) sort_length_eq.smt2
∀(i : nat)(t1 : natbintree)(t2 : natbintree). t1 ̸= (node i t1 t2) tree_add_not_eq.smt2

On the following properties our solver is able to find a counter-example.
∀(n : nat). n < (double n) nat_double_is_le.smt2
∀(x : ab) (l : ablist). (delete_one x l) = (delete_all x l) list_delete_all_count.smt2

⇒ (count x l) = 1
On the following properties, our solver does not terminate due to trying to represent a
non-regular relation (ICE loops).

∀(x : ab) (l : ablist). (delete_one x l) = (delete_all x l) list_delete_all_count.smt2
⇒ (count x l) ≤ 1

∀(n : nat) (m : nat). n+m = m+ n plus_commutative.smt2

All of our experimental results for all convolution types are available at http://people.
irisa.fr/Thomas.Genet/AutoForestation/. Because the properties of our database were
mostly either on same-type relations or on lists and natural numbers, the right-convolution
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was the most efficient of convolution type. Left-convolution is not adapted for most of the
list-based examples and complete-convolution revealed to be too costly in practice though it
should help to prove properties on functions manipulating trees. On a total of 120 examples,
our solver (using right-convolution) proves 66, disproves 23, and timeouts on 31 after 60s.
Our solver succeeds on 20 out of the 79 first-order Isaplanner examples in less than 60s
(and 18 in less than 5s). Our solver reveals to be more efficient on examples where a single
level of structure have to be compared, i.e., natural numbers, lists of arbitrary elements,
etc. It is generally unsuccessful on examples mixing several layers of structure, e.g., lists of
natural numbers, or on examples where a precise counting is required to prove the property.
Finally, on examples where using a non-relational model suffices to prove the property, our
solving technique is flexible enough to find such a model, with an efficiency comparable with
non-relational solvers. For instance, on 11 examples coming from the Timbuk benchmarks,
we proved 6 of them (with execution times around 2 seconds), disproved 3, and have a
timeout on the 2 last.

10 Related work

Other approaches for automatically proving algebraic and relational properties also rely on a
CHC representation. The approach of [20] and [19] aims to solve the satisfiability problem
of Horn clauses over any underlying theory supported by an SMT solver. This approach
first reduces this problem to validity checking of first-order formulas with inductively-defined
predicates. It is then based on syntactic proof, together with calls to the underlying theory
solver. They design an inductive proof system tailored to Horn constraint solving. Using
the theory of inductive datatypes, their method can reason about, and automatically prove,
relational and algebraic properties.

Another approach, which is closer to ours, is that of [18]. This approach aims to check
properties on recursive data-structure by using symbolic automatic relations, which are
(almost) the languages defined by symbolic synchronous automata (ss-NFA), the combination
of symbolic automata and automatic relations. They devise a sound but (necessarily)
incomplete procedure for checking if a given formula admits an assignment of its free
variables that makes it true in a given ss-NFA. This procedure corresponds to the teacher
procedure, but for ss-NFAs. They plan to implement an ICE-based CHC solver, but have
left the model discovery (learner section) to future work.

By manually writing ss-NFAs, authors of [18] are able to benchmark their verification
procedure. Our approach and theirs seems to be complementary as they succeed on different
sets of examples. This can be observed on the IsaPlanner benchmark where our technique
fails on most of examples that [18] handles (i.e. 4, 5, 15, 16, 29, 30, 39, 42, 50, 62, 67, 71, 86)
and succeeds on examples on which they do not report any success (i.e. 17, 18, 21, 22, 23,
24, 25, 26, 31, 32, 33, 34, 45, 46, 65, 69).

In [3], the authors present an expressive formalism for representing relations between
trees called synchronized context-free programs. This formalism is more expressive than
convoluted tree automata presented here. In particular, it can represent languages of the
form {(gn(a), gn(b)) | n ∈ N} (like convoluted tree automata) and also languages of the form
{f(gn(a), gn(b)) | n ∈ N} and {gn(h(gn(a))) | n ∈ N} (out of the scope of convoluted tree
automata). This formalism is used to precisely approximate the set of outputs of a term
rewriting system. However, [3] does not show how to automatically infer such a representation
from the term rewriting system.
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11 Conclusion and future work

This paper demonstrates that it is possible to use tree automata as a basis for analysing
the input-output behaviour of a first-order functional program. This shows that existing
automata-based techniques for approximating the set of reachable states of a function can be
extended to also compute relations between input and output of a function. Such relational
analysis is key to scaling static analyses to larger programs, because it enables a modular,
function-by-function analysis technique. The extension to relational analysis is based on the
notion of tree automata convolution. We argue that the standard left-convolution can be
complemented by other convolution techniques in order to verify more properties of programs.
Another technical contribution of the paper is the proof tree pruning used for verifying
models of constrained Horn clauses. An efficient implementation of this proof search has
been an essential part of the counter-example guided learner-teacher algorithm for inferring
models from the CHC representation of the program to be analysed. This is confirmed by
the benchmark used to evaluate our implementation of the verifier.

We believe our ICE procedure to be relatively refutationally complete and relatively
complete on regular structures. Relative means that we suppose the termination of the
model-checking procedure to be able to study the ICE cycle. Refutationally complete means
that if the set of clauses C given to the ICE procedure is contradictory, then the procedure
eventually finds a contradiction and stops. Complete on regular structures means that if
the set of clauses C given to the ICE procedure admits a regular model, then the procedure
eventually finds a model of C. This has to be investigated further.

Fixing the convolution to be the either left or right convolution is however insufficient for
proving non-trivial properties that would need a different overlay of terms, for example the
height function on trees. Complete convolution can theoretically overcome this restriction
but, as confirmed by our benchmarks, the size explosion of convoluted term makes it unusable
in practice. We believe the convolution can and should be non-static, that is, being inferred
together with the model.

Moreover, unlike the convolutions presented in this paper, we think that convolution could
be lossy. For instance, if a subterm in a relation is not useful to prove a property, we think
that we can forget about it in the convolution. Later on, if a new ground counter-example
comes to the learner showing that the subterm was, in fact, necessary to prove the property
then the convolution needs to be extended for that purpose.
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A Appendix

Proof of theorem 26

Proof of A. Let suppose that T proves ⊢ (E,Ω) and h(T ) = n. Let us proceed by induction
on the last rule used in T .

case conclude:
By hypothesis, we have that T is of the form

⊢ (E, ∅)
with Coherent(E), and therefore

n = 0. Take σ = σE a most general unifier of E, which is well-defined, as E is coherent.
We have: (i) σ |= E is immediate, as σ unifies E; (ii) σ |= Ω is trivial, as Ω = ∅; (iii)
h(Ω, σ) = 0 = n, as Ω is empty.

case step:

By hypothesis, we have that T is of the form
Step

T ′

⊢ (E,Ω) with T ′ of the form
. . .

⊢ (E ∪ E′,Ω′)
and (E′,Ω′) ∈ unfolds(Ω). By induction, we have that there exists σ′ with σ′ |=
(E ∪E′,Ω′) and h(Ω′, σ′) = h(T ′). We also know that h(T ′) = n− 1. Take σ = σ′. Then:

σ |= E : Immediate by σ′ |= E ∪ E′ and monotonicity of first-order logic.
σ |= Ω : Let ω = [x⃗ : (A, q)] ∈ Ω. We must prove that σ(x⃗) ∈ R(A, q). For this, it is
sufficient (and necessary) to show that there exists a rule r = f⃗(q⃗) → q of A such that
∗ ∀i ∈ J1, |f⃗ |K, σ(xi) = fi(y⃗i) for some variables y⃗i ;
∗ ∀j ∈ J1, |q⃗|K, σ |= [⃝(y⃗1, . . . , y⃗|f⃗ |)[j] : (A, qj)].
Since (E′,Ω′) ∈ unfolds(Ω), we know that there exists such a rule r with (Er,Ωr) ∈
unfold(ω). The first property is immediate from σ |= E′ and Er ⊆ E′ while the
second is immediate from σ |= Ω′ and Ωr ⊆ Ω′.
h(Ω, σ) = n: Because (E′,Ω′) ∈ unfolds(Ω), every variable y in Ω′ is such that
there exists a variable x in Ω with σ(x) = f(. . . , σ(y), . . .) for some function f , that
is, h(σ,Ω′) < h(σ,Ω). Moreover, every variable x in Ω with h(σ(x)) > 1 yields a least
one variable y in Ω′ with h(σ(y)) = h(σ(x)) − 1.
Therefore, h(σ,Ω) = h(σ,Ω′) + 1 = h(T ′) + 1 = n. ◀

Proof of B.
Let us build a proof tree by induction on h(Ω, σ).
In any case, let suppose that there exists σ such that σ |= (E,Ω) and h(Ω, σ) = n. We

then construct a proof tree T of ⊢ (E,Ω) such that h(T ) = n.

case h(Ω, σ) = 0: This is only possible when Ω = ∅. Take T =
conclude

⊢ (E,Ω) . This proof
tree T is correct, as Ω = ∅ and E is coherent (because σ |= E). Also h(T ) = 0.

case h(Ω, σ) > 0:
Because σ |= Ω, we have, for each ω = [

〈
x1, . . . , xn

〉
: (A, q)] ∈ Ω, that there exists an

associated rule rω =
〈
f1, . . . , fn

〉
(q1, . . . , qk) → q such that

∀i ∈ J1, nK, σ(xi) = fi(⃗ti) for some terms t⃗i ;
∀j ∈ J1, kK,⃝(⃗t1, . . . , t⃗n)[j] ∈ R(A, qj).

Therefore we can build three functions, F c, F t, F s, which assign to each such typing
obligation and rule the following:
F c(ω) = {x1 = f1(x⃗1), . . . , xn = fn(x⃗n)}, with ∀i ∈ J1, nK, x⃗i are fresh variables.
F t(ω) = {[⃝(x⃗1, . . . , x⃗n)[j] : (A, qj)] | j ∈ J1, kK}
F s(ω) = {(xj

i , t
j
i ) | xi = fi(x1

i , . . . , x
m
i ) ∈ F c(ω) ∧ j ∈ J1,mK ∧ σ(xi) = f(t1i , . . . , tmi )}
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Let E′ =
⋃

ω∈Ω F
c(ω) and Ω′ =

⋃
ω∈Ω F

t(ω). Note that (E′,Ω′) ∈ unfolds(Ω).
Let σ′ = σ ∪

⋃
ω∈Ω F

s(ω). We have:
σ′ is well-defined: Any binding of σ′ which is not in σ is of the form xj

i = σ(tji ) for
some fresh variable xj

i . Therefore, as σ is well-defined, so is σ′.
σ′ |= E ∪ E′: We have σ ⊆ σ′, therefore σ′ |= E. Any constraint of E′ is of the form
xi = fi(x⃗i) with xi a variable appearing in a node ω ∈ Ω, for which we therefore have
σ′(xi) = fi(σ′(x⃗i)) = σ′(fi(x⃗i)) by definition of F s(ω).
σ′ |= Ω′: For any typing obligation ω′ ∈ Ω′, we have ω′ ∈ F t(ω) for some ω ∈ Ω,
so ω′ = [

〈
x1, . . . , xn

〉
: (A, qj)] for some x1, . . . , xn such that

〈
σ′(x1), . . . , σ′(xn)

〉
∈

R(A, qj), by definition of F t(ω) and F s(ω).
h(Ω′, σ′) = h(Ω, σ) − 1: For this case, let ω = argmaxω∈Ω(h(σ, ω)) and ω′ =
argmaxω′∈Ω′(h(σ′, ω′)). By definition of F t(ω) and F s(ω), we have both h(σ′,Ω′) ≥
h(σ, ω) − 1 and h(σ′,Ω′) ≤ h(σ, ω) − 1.

By induction on σ′ |= (E∪E′,Ω′), we have that there exists a proof tree T ′ of ⊢ (E∪E′,Ω′)
such that h(T ′) = h(σ′,Ω′).

Therefore, take T =
Step

T ′

⊢ (E,Ω)
We have that T is a valid proof tree and that h(T ) = h(T ′) + 1 = h(Ω, σ). ◀
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1 Introduction

Linear logic [18] provides a linear algebra flavour to logic, associating linear algebra operations
with logical connectives, e.g. tensor ⊗ is seen as a form of conjunction, direct sum ⊕ as a
disjunction and duality as an involutive negation (·)⊥. This perspective has given many
insights. In denotational semantics, we have quantitative semantics, e.g. [25, 21, 10, 11, 6, 24]:
a family of models denoting λ-terms and functional programs with some notion of analytic
maps or power series that can be locally approximated by multilinear functions, these
latter denoting linear logic proofs. In proof-theory, we have proof-nets: a representation
of proofs and programs expressing the interdependences of these algebraic operations in a
graph-theoretical fashion.

Quantitative semantics turns out to be particularly suitable for probabilistic programming,
giving fully abstract semantics [14, 15, 17], denoting probabilistic programs with very regular
functions (absolutely monotone) even on “continuous” datatypes (e.g. real numbers) [16, 5, 13],
giving a compositional analysis of various operational behaviours, such as runtime or liveness
[24], providing suitable notions of program metrics [12]. Due to this expressivity, calculating
the quantitative denotations for a Turing complete programming language is obviously
non-computable, but we can fix on relevant fragments supporting an effective procedure.
Effectiveness is a relevant feature for a denotational model, as it can provide automatic tools
for verifying program correctness, as well as the other mentioned operational properties.

Let us focus our attention to one of the simplest fragments of linear logic: the multiplicative
fragment (MLL), which has the ⊗ conjunction, its unit 1 and their respective duals, the par `
(a disjunction different from ⊕) and ⊥ = 1⊥. From a programming perspective, this fragment
contains (although it is not restricted to) an exponential-free fragment of the linear λ-calculus
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8:2 Sum-Product for MLL

with tuples, e.g. [1]: the linear functional type F ⊸ G is in fact represented by F⊥ ` G.
Although very simple, this fragment is already surprisingly expressive on probabilistic data.
First, positive types (i.e. combinations of 1, ⊕ and ⊗) express linear combinations of the
values of a finite data-type. For example, the quantitative denotation of 1⊕ 1 contains linear
combinations of booleans and can be used to model boolean random variables1. Moreover, it
is known since the inception of polarised linear logic that positive formulas are endowed with
a polarised version of the structural rules of weakening and contraction ([19] and Remark 3),
so one can represent λ-terms having multiple occurrences of a same boolean variable without
breaking the linearity features of MLL. In probabilistic programming, these occurrences
duplicate the samples from a random variable, but not the random variable itself. Finally,
we can allow semantical boxes expressing matrices indexed by finite data-types, which can
express conditional probabilities. We call this system quantitative MLL (Section 2).

As for the semantics, let us focus on the R≥0-weighted relation semantics (see Section 3
and [24]), which is one of the most basic examples of quantitative semantics, allowing to
model probabilistic programs over countable data-types. The denotation of a proof-net is
then a vector of dimension equal to the number of the possible samples of a probabilistic
distribution computed by the proof-net. This vector is computable for quantitative MLL
and the standard semantical definitions yield a recursive procedure (Figure 1c) to compute
it. In practice, this procedure is unfeasible, as it is exponential in time and in space with
respect to the size of the proof-net. The goal of this paper is to inaugurate a new approach
for improving it by taking inspiration from bayesian networks, which have partially a similar
graph-theoretical structure as proof-nets.

For example, the R≥0-weighted denotation of a proof-net describing a probabilistic
distribution over a tuple of n booleans is a vector of dimension 2n (the number of the
possible outcomes of a random variable over n booleans), independently whether the values
of some of these booleans depend each other or not (Example 9). The proof-net carries very
clearly these interdependences via paths over boolean edges: may we reduce the dimension
of its denotation by following such a structure? On a different note, the composition of two
proof-nets on a tuple of n booleans yields a sum of 2n terms (Example 11). However, this
composition can be ordered by following the switching paths over the corresponding cuts.
May we refactor the sum according to this order and gain in efficiency by memorising some
intermediate factors?

Similar questions are typical of the research on Bayesian networks ([27], see as reference [8]),
these latter being directed graphs expressing the conditional dependences between different
random variables. The benefit of this approach is to provide a battery of algorithms
computing, e.g., marginal distributions in a quite efficient way by taking advantage of the
graph-theoretical structure of a network. Our general goal is to inaugurate a new approach
to quantitative semantics which pays attention to the cost of computing the semantics, and
we do so by exploiting techniques form Bayesian inference. One paradigmatic example is the
sum-product variable elimination algorithm [29]: we propose here a formalism for computing
the semantics of a quantitative MLL proof-net by adapting this algorithm (here Algorithm 1).

1 It is known that the space of random variables ranging over a finite set of outcomes of cardinality n can
be described by the finite additive disjunction

⊕
i≤n

1 of the tensor unit, see e.g. [17]. This formula is
not in MLL, as ⊕ is not a multiplicative connective, but it appears in our setting as these spaces of
finite random variables are associated with the positive atomic formulas of MLL (see Example 7).
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Related works. Bayesian networks form, mutatis mutandis, a strict subset of quantitative
MLL proof-nets (Remark 1), morally the set of those proof-nets which do not contain formulas
alternating polarities, e.g. alternation of ⊗ and ` connectives. This correspondence has been
already acknowledged, with a slight different terminology, by the recent literature about the
semantical foundations of Bayesian programming. We mention in particular [3, 22] which
represent Bayesian networks as string diagrams and analyse the notion of disintegration.
The paper [26] proposes a game semantics based on event structures for a variant of the
linear λ-calculus underlined by quantitative MLL. The paper [28] studies an equational
theory and provides a denotational semantics based on matrices for this calculus when
restricted to ground data-types. However, to our knowledge, our paper is the first time that
the efficiency of computing the semantics is taken into consideration. Moreover, we show
that the techniques of Bayesian networks can be adapted to the more general framework of
quantitative MLL without so much effort.

Paper outline. Section 2 introduces quantitative MLL proof-nets and Section 3 its associated
R≥0-weighted relational semantics. Section 4 revisits the standard notion of factor in Bayesian
inference so to apply it to atomic proof-nets in Section 5 and to general proof-nets in Section 6.
Section 7 concludes by mentioning some future developments.

2 Quantitative Multiplicative Linear Logic

Metavariables X,Y, Z will vary over a countable set of propositional variables. The grammar
of the formulas of MLL is given by (together with its metavariables):

F,G,H ::= X+ | X− | 1 | ⊥ | F ⊗G | F `G. (1)

We call X+ (resp. X−) a positive atomic formula (resp. negative atomic formula) over the
variable X, the superscript symbol + (resp. −) being its polarity. We will write X◦ for a
generic atomic formula over X, if we do not want to precise its polarity. The linear logic
negation is introduced as syntactical sugar: (X+)⊥ ::= X−, 1⊥ ::= ⊥, (F⊗G)⊥ ::= F⊥`G⊥,
and for the dual cases (X−, ⊥, `), (F⊥)⊥ ::= F .

A sequent is a finite sequence F1, . . . , Fn of MLL formulas. Capital Greek letters Γ,∆, . . .
will vary over sequents. Given a sequent Γ = F1, . . . , Fn, we write Γ⊥ for the sequent
F⊥

1 , . . . , F
⊥
n . Moreover, if n > 0, we write `Γ (resp. ⊗Γ) for the formula F1 ` (· · · ` Fn)

(resp. F1 ⊗ (· · · ⊗ Fn)). If Γ is empty (i.e. n = 0), `Γ (resp. ⊗Γ) will mean ⊥ (resp. 1).
As accustomed in linear logic, sequent proofs are represented by special graphs, called

proof-nets. Figure 1e gives an example of two proof-nets: N at the left side of the arrow
∗−→, and N0 at the right side. A proof-net is a labelled directed acyclic graph2 (DAG for
short) such that the edges are labelled by MLL formulas and the nodes by deduction rules of
our extended MLL, i.e. by a symbol among: ax (axiom), cut (cut), 1 (one), ⊗ (tensor), ⊥
(bottom), ` (par), w (weakening), c (contraction), b (semantical box or simply box). The
nodes of the proof-nets in Figure 1e are represented just by their labels, except for the box
which is depicted as a rectangular and labeled by an enumerated occurrence of b. The label
of a node determines the number of incoming edges (called premises of the node) and the

2 More formally, a directed graph is a quadruplet (V,E, t, s) of a set V of vertices and a set E of edges,
and two maps t, s : E 7→ V associating an edge with a target and a source, respectively. We alllow
directed graphs with pending edges, i.e. t and s may be partial partial. The edges not in the domain of
t or s are called pending. A directed graph is acyclic (a DAG for short), if there is no directed cycle.

FSCD 2023



8:4 Sum-Product for MLL

number of outgoing edges (called conclusions of the node), as well as the type of formulas
labelling these edges, according to the rules sketched in Figure 1a. The edges will be oriented
top-bottom, so that axioms, ones, bottoms, weakenings and boxes have no premises, while
cuts have no conclusions. Figure 1e does not explicit all formulas labelling the edges of N and
N0, in fact these formulas can be recovered by the axioms and boxes labelling and the rules
sketched in Figure 1a. Proof-nets have edges without targets which are called the conclusions
of the proof-net. Both N and N0 have one single conclusion, labelled by X+

4 ⊗X
+
5 .

Not all DAGs of MLL nodes are proof-nets: the set of proof-nets is the subset of the set
of all DAGs which can be generated inductively by the rules sketched in Figure 1b. We call
atomic a proof-net whose edges are only labelled with atomic formulas. Notice that atomic
proof-nets can contain only axioms, cuts, weakening, contractions and semantical boxes.

▶ Example 1. The (atomic) proof-net N0 in Figure 1e is mutatis mutandis an example of a
Bayesian network as expressed by quantitative MLL. The propositional variables X1, . . . , X5
are place-holders for (sets of the possible outcomes of) random variables and the semantical
boxes are place-holders for their associated “conditional probabilistic tables” (we borrow
here the terminology of [8]). For example, the box b4 is a place-holder for a probabilistic
distribution over the variable X4 conditioned by the outcomes of the variables X2 and X3. The
polarities discriminate between input and output occurrences in a conditional probabilistic
table. These place-holders will be instantiated with concrete conditional distributions by the
semantics, as detailed in Section 3.

The acquainted reader in Bayesian graphs should be convinced that these latter are
depicted plainly in this syntax just by adding cuts transforming outputs into inputs. Notice
that by inverting the orientation of the edges labelled by negative atoms, we get exactly the
same directed paths between the nodes of the corresponding Bayesian network. Of course,
MLL allows for more nets than Bayesian graphs, for example the proof-net N at left of the
∗−→ arrow is not bayesian, namely it has par nodes. But yet, Remark 54 will allude to a
correspondence between N and a run of the sum-product algorithm over N0. Our goal is to
show how Bayesian graph algorithms can be imported in this more general setting.

▶ Remark 2. Some papers, e.g. [3, 22], represent Bayesian graphs as string diagrams, which
is a graphical syntax omitting the axiom and cut nodes. Although one can present MLL in a
similar way by using Lafont’s interaction nets [23], we prefer to keep axioms and cuts explicit
as they condense the main threats to an efficient computation of the semantics which is a
core topic of this paper.
▶ Remark 3. We allow for structural rules (weakening and contraction) on negative atomic
formulas. In fact, as it will be clear in Section 3, negative atoms will be interpreted by finite
products of bottoms

˘
x∈S ⊥ (although we do not detail here the additive connectives & and

⊕ and the exponential modalities ? and !). It is well-known since the inception of polarized
linear logic [19] that ⊥ is isomorphic to the exponential formula ?0, so that the structural
rules of ? can be lifted to

˘
x∈S ⊥, extending the expressivity of MLL. One might even allow

the structural rules to all formulas of negative polarity, but we preferred to restrict to atomic
formulas to ease the presentation, namely cut reduction.
▶ Remark 4. A less standard extension is given by the semantical boxes b, which are place
holders for conditional distributions or, more generally, matrices. For technical convenience,
we restrict their conclusions (as well as those of MLL axioms) to be atomic formulas with
exactly one occurrence of a positive formula. The structural rules of contractions and
weakenings take then a precise operational meaning: a cut between the positive conclusion of
a box and a contraction duplicates the samples of the probabilistic distribution associated with
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. . .
X−1

⊗
F G1

1

F

cut

F⊥ax

X− X+

`
F G⊥

⊥

c

X− X−w

X− X−n Y +

b

X−F `GF ⊗G

(a) Labelling of MLL nodes with their incident edges. Edges are oriented top-down.

empty = empty
graph one = 1

1 ⊥(N ) = ⊥

⊥
. . .
N
∆

b = . . .
X1
− Xn

− Y +

b axX =
ax

X− X+

`(NF,G) =
`F G. . .

∆

N

F `G

NF ⊗N ′
F ′ =

⊗F G

F ⊗G
. . .
∆

. . .
∆′

N N ′ cut(NF ,N ′
F⊥) =

cutF F⊥. . .
∆

. . .
∆′

N N ′

w(NX−) = w

X−
. . .
N
∆

c(NX−,X−) =
c

X− X−. . .
∆

N

X−

mix(N ,N ′) = . . .
∆

. . .
∆′

N N ′

(b) Sequent rules generating the set of proof-nets. The notation NΓ in the subscript of a rule stands for
the pair of a proof-net N and a sequence Γ of conclusions of N , which will be “active” in the rule.

JemptyK⋆ = JoneK⋆ = 1 J⊥(N )K
(d⃗,⋆)

= JN K
d⃗

JbK(x⃗,y) = ι(b)(x⃗,y) JaxXKx,x′ = δx,x′

J`(N )K
(d⃗,(x,y))

= JN K
(d⃗,x,y)

JN ⊗N ′K
(d⃗,d⃗′,(x,y))

= JN K
(d⃗,x)

JN ′K
(d⃗′,y)

Jcut(N ,N ′)K
d⃗,d⃗′ =

∑
x∈JF KJN K

d⃗,x
JN ′K

d⃗′,x

Jw(N )K
(d⃗,x)

= JN K
d⃗

Jc(N )K
(d⃗,x)

= JN K
(d⃗,x,x)

Jmix(N ,N ′)K
(d⃗,d⃗′)

= JN K
d⃗
JN ′K

d⃗′

(c) Inductive definition of the interpretation JN Kι by induction on a sequence of sequent rules giving N ,
we omit to explicit the valuation ι as well as the active sequent in the sequent rule.

ax

cut

ax

cut

1 ⊥ 1/⊥
graph

⊗
F G G⊥

`
F

cut

cut

cut

G G⊥F⊥F⊥

⊗/`empty

(d) MLL cut-reduction rewriting steps.

c

X+
2X−

1

X−
1X+

1

X−
2 X−

3
X+

3

X−
2

⊗

X+
4 X+

5

X+
4 ⊗X+

5

b1
b5b4

b2 b3

`

cut `

⊗
c

ax

ax

c ⊗ `
ax

⊗

cut

cut

X−
2

X+
2 ⊗X+

4
X+

2 ⊗ (X−
2 `X+

3 )

X−
1

∗−→

X+
1

c

c

X+
5

X−
3

⊗

X−
2

X+
3X−

1

X+
2X−

1

X+
4

X−
2

X+
4 ⊗X+

5

b5

b4b3

b2b1
c

cut
X−

2

cut
X−

2cut

(e) Example of two proof-nets of conclusion X+
4 ⊗X+

5 such that N ∗−→ N0. The labelling of some edges is
omitted.

Figure 1 The proof-net syntax and weighted-relational semantics of quantitative MLL.
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8:6 Sum-Product for MLL

the box, while weakenings maginalise out this distribution. These operations are categorically
axiomatised by the so-called CD-structure, for “copier” and “discarder”, e.g. [22, 28]. We
explicit here how the structural polarised linear logic rules perfectly fulfil this rôle, showing
a natural Curry-Howard correspondence with Bayesian programming.

Given a proof-net N and an edge e of N , we write by e : F whenever e is labelled by the
formula F . By ease of notation, we often write the sequent F1, . . . , Fn synonymously for an
enumeration e1 : F1, . . . , en : Fn of labelled edges, if the edges e1, . . . , en are clear from the
context or inessential. We write N : ∆ whenever the sequent ∆ enumerates the (formulas
labelling the) conclusions of N , also speaking about ∆ as simply the conclusions of N .

Cut-reduction is defined as a graph-rewriting, replacing a subgraph containing a cut (the
redex) with a new subgraph (the contractum) having the same pending edges. Figure 1d
sketches the three different kinds of MLL redexes: ax, 1/⊥, ⊗/`. We will write N −→ N ′

if N rewrites into N ′ by one single rewriting step. The fact that N ′ is still a proof-net is
proven by using the so-called correctness criteria (see [18] for details). We denote by ∗−→ the
reflexive and transitive closure of −→. A normal form is a proof-net which contains no redex
of any kind {ax, 1/⊥,⊗/`}. Cut-reduction is confluent and strong normalising [18].

▶ Example 5. Figure 1e gives an example of a proof-net N that rewrites into the normal
form N0. Notice that cuts between structural nodes (weakening and contraction) and boxes
are not reduced (see Remark 6) so that the normal form N0 yet contains some cuts. Notice
also that different sequences of rewriting steps may start from N but all of them can be
eventually completed into N0, in accordance with the confluence property.

▶ Remark 6. Weakening and contraction do not erase nor duplicate semantical boxes as this
rewriting would break the correspondence with Bayesian networks mentioned in Example 1.
In fact, if we rewrote a cut between a contraction and a box b into two distinct copies of b,
then this would correspond to create two independent and identically distributed random
variables out of a single one and not to duplicate a sample of this latter. The sharing nodes in
bayesian networks share samples of random variables but do not duplicate random variables
(see [7]). We will discuss this point also in Example 8 using the weighted relational semantics.

3 Weighted Relational Semantics

The quantitative semantics of linear logic refers to a family of denotational models based
on linear algebra constructions (tensors, linear functions, direct sums, dual spaces, etc.).
Many examples are known in the literature, such as finiteness and Koethe spaces [11, 10],
weighted relations [24], probabilistic coherence spaces [6], coherent Banach spaces [20] etc.
The common idea is to associate types with a mathematical structure underlying a notion of
vector space (or a module) and the poofs with linear maps represented by matrices, or simply
vectors in case of proof-nets. We consider here one of the most basic examples of quantitative
semantics, the “relations” weighted by non-negative real numbers, but the results of this
paper can be adapted trivially to any quantitative semantics mentioned above.

The model of R≥0-weighted relations is a variant of the relational semantics of linear
logic (see e.g. [2]), where the notion of a subset of a set S, seen as a vector (bx)x∈S of
booleans expliciting whether an element x ∈ S belongs or not to the subset, is generalised to
a vector of non-negative real numbers. This model is known and we thus just sketch here the
interpretation of quantitative MLL proof-nets, referring the reader to [24] for more details.
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Let us fix some basic notation. Metavariables S, T, U range over finite sets3. We denote
by R≥0 the cone of the non-negative real numbers. Metavariables ϕ, ψ, ξ will range over
vectors in RS≥0, ϕx denoting the scalar associated with x ∈ S by ϕ ∈ RS≥0. The identity
matrix over a set S, also called diagonal matrix or Kronecker delta, is denoted δ ∈ RS×S

≥0
and defined by δa,a′ = 1 if a = a′, otherwise δa,a′ = 0.

▶ Example 7. The simplest example we consider is the singleton set {⋆}, for some irrelevant
element ⋆. The singleton will be associated with multiplicative units 1 and ⊥ and it induces
the module of scalars, as R≥0

{⋆} ≃ R≥0. The module of couples of non-negative real numbers
is instead induced by any set of cardinality 2, like the set of booleans {t, f}: R{t,f}

≥0 ≃ R2
≥0.

In all the examples of this paper, we will in fact associate the propositional variables with
the set {t, f}, so that a proof-net with only one atomic conclusion will be interpreted with a
vector (λt, λf), giving a “score” to the two booleans. Notice that R2

≥0 = R≥0 ⊕ R≥0, with ⊕
denoting the direct sum over modules. This is reflected in linear logic by encoding the type
of booleans with the formula 1⊕ 1, where ⊕ refers to the additive disjunction. We however
avoid this notation as we do not consider the full additive connectives here.

More in general, the interpretation of a MLL formula F is a finite set JF Kι defined once
we have fixed a valuation ι as a function mapping the propositional variables to finite sets.
The definition of JF Kι is by induction on F , as follows:

JX+Kι = JX−Kι ::= ι(X), J1Kι = J⊥Kι ::= {⋆}, JF ⊗GKι = JF `GKι ::= JF Kι × JGKι.

It is easy to check that the usual isomorphisms of linear logic (like associativity and com-
mutativity of the binary connectives) are validated by set isomorphisms. In particular, we
can use tuples (x1, . . . , xn) for denoting elements in the interpretation of a n-fold connective,
e.g. JF1 ` (· · ·` Fn)Kι ≃ {(x1, . . . , xn) | ∀i ≤ n, xi ∈ JFiKι}.

Weighted relational semantics equates much more than just linear logic isomorphisms,
as for example JF Kι = JF⊥Kι for any formula F . More precisely, this semantics has the
structure of a compact closed category. There are more refined examples of quantitative
semantics which are not compact closed, e.g. probabilistic coherence spaces. Let us stress
that our results do not suppose compact closeness.

The interpretation JN Kι of a proof-net N of conclusions Γ is a vector in RJ`ΓKι

≥0 , which
can be equivalently seen as a multidimensional matrix indexed by the tuples in J`ΓKι. The
interpretation can be given inductively as sketched by Figure 1c, once we have associated with
each box b of conclusions X−

1 , . . . , X
−
n , Y

+ a vector ι(b) ∈ RJ(`iX−
i

)`Y +Kι

≥0 . This interpretation
is invariant under the cut-reduction rules of Figure 1d, i.e. N −→ N ′ implies JN K = JN ′K.

▶ Example 8. Consider the proof-net N ′ of conclusion X+
2 ⊗ (X−

2 `X+
3 ) contained in the

proof-net N depicted at left of Figure 1e and characterised by the three boxes b1, b2, b3
and the tensor and par above the cut over X+

2 ⊗ (X−
2 `X+

3 ). Notice that there is only one
sequence of the generating rules of Figure 1b producing this proof-net: one first applies a
par rule under the b3 conclusions X−

2 and X+
3 , then a tensor between the resulting proof-net

and b2, then a contraction between the two X−
1 conclusions and finally a cut between the

conclusion of this contraction and b1. Figure 1c applied to this sequence of rules gives:

JN ′Kι(x′,(x′′,x′′)) =
∑

y∈JX+
1 Kι

ι(b1)yι(b2)(y,x′)ι(b3)(y,(x′′,x′′)).

3 This kind of denotational semantics are defined for countable sets S in general. Infinite sets are necessary
to model linear logic exponential modality as well as the full λ-calculus. Since we focus here to only
MLL, we can restrict to finite sets.
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Notice that the cut composes the semantics of b1 with that of the proof-net containing b2
and b3, producing the sum over y ∈ JX+

1 Kι. Notice also that the contraction imposes that the
same index y is shared between the two different boxes (b2 and b3): contraction duplicates
the indexes of the vectors, but it does not yield different copies of the vectors themselves.
This is in accordance with Remarks 4 and 6: sharing of sampled values corresponds here to
sharing vector indices, which is different from duplicating whole vectors. If we consider in
fact the proof-net JN ′′Kι given by a tensor between b2 and b3 and two distinct copies of b1,
one cut with the X−

1 conclusion of b2 and the other one with that of b3, then we would have:

JN ′′Kι(x′,(x′′,x′′)) =
∑

y,y′∈JX+
1 Kι

ι(b1)yι(b2)(y′,x′)ι(b1)y′ι(b3)(y′,(x′′,x′′)).

▶ Example 9. Let us consider a proof-net N which is a bunch of n+1 axioms over a tree of n
contractions, of which edges are labelled by X−, so that N has conclusions X−, X+, . . . , X+.
The denotation JN Kι is then a vector indexed by the (n + 2)-tuples of elements in ι(X).
In fact, by using Figure 1c, one can check that JN Kι is a very sparse vector, having zero
everywhere but on the tuples of equal elements, i.e. (x, x, . . . , x) for x ∈ ι(X), in which
case JN Kι returns 1. We have here a first source of inefficiency of this kind of semantics,
representing the denotation of a proof-net with a vector of dimension exponential in the
number of its conclusions, where it would suffice a much more compact structure to store the
same information. Section 5 will provide this structure with the notion of component factor.

If N has several cuts, the computation of JN Kι can be considerably simplified by using
the following lemma, which is reminiscent of the notion of experiment introduced in [18].

▶ Lemma 10 (Cut bundles). Let CutΓ(N ) be a proof-net of conclusions ∆ that can be
decomposed into a proof-net N of conclusions ∆,Γ,Γ⊥ and a bundle of cuts between the
formulas in Γ and Γ⊥. Then, for every d⃗ ∈ J∆Kι, we have: JCutΓ(N )Kι

d⃗
=

∑
c⃗∈JΓKJN Kι

(d⃗,⃗c,⃗c)
.

▶ Example 11. Let us compute the semantics of the proof-net N0 in Figure 1e, by using
Lemma 10 and Figure 1c. We have that, for any (x4, x5) ∈ JX+

4 ⊗X
+
5 Kι:

JN0Kι(x4,x5) =
∑

xi∈ι(X+
i

)
for i ∈ {1, 2, 3}

ι(b1)x1ι(b2)(x1,x2)ι(b3)(x1,x2,x3)ι(b4)(x2,x3,x4)ι(b5)(x2,x5)

With a bit more of effort (due to the presence of axioms) also JN Kι can be associated with
the above summation. If we suppose that for every i, ι(Xi) = {t, f}, this summation has a
total of 23 terms, so that computing the whole vector JN0Kι requires ∼ 25 basic operations4,
i.e. a quantity exponential in the number of the semantical boxes.

By carefully inspecting the summation, one can however realise that it can be refactored
so to split factors over independent variables, getting for example the expression:∑

x3

(∑
x2

(∑
x1

ι(b1)x1ι(b2)(x1,x2)ι(b3)(x1,x2,x3)
)
ι(b4)(x2,x3,x4)

)
ι(b5)(x2,x5)

which, by memorising the intermediate sums, performs the same computation of JN Kι in just
∼ 23 operations.This kind of refactoring is at the core of many algorithms for exact inference
in Bayesian graphs and the next sections will show how to import these methods.

4 We are supposing that multiplication, addition and coefficient access are operations of constant cost.
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4 Factors

We adapt from Bayesian networks (e.g. [8]) the notion of factor (Definition 18) and of product
and projection of factors. A factor carries both a vector and a “sharing structure” about what
entries of this vector will be shared with possibly other factors so that we avoid the dimension
explosion which is the source of inefficiency in Example 9. Bayesian networks use random
variables for expressing such a “sharing structure”, while we reduce this latter into the very
basic definition of set-family, which encompasses the former (Example 15) and generalises
to whole quantitative MLL. The terminology “factor” is standard in Bayesian networks, in
fact this notion refers to the terms in the multiplication giving a joint distribution as the
outcome of the variable elimination algorithm (Algorithm 1). We introduce also a notion
of renaming (Definition 29) and of factor renaming (Definition 34) necessary to follow the
compositional structure of MLL (see discussion in Example 41).

▶ Definition 12 (Set-family). We call set-family a finite, indexed family of finite sets, i.e. a
map X from a finite set I(X) of indices to a set Sets(X) of finite sets. We denote by X(a)
the set associated with index a ∈ I(X) in X. Meta-variables X, Y, Z will range over such
set-families.

Two families X and Y are compatible whenever for all a ∈ I(X) ∩ I(Y), X(a) = Y(a).
Set-theoretical operations lift to compatible set-families by applying the former to the graph of
these latter, e.g. the intersection X∩Y is the set-family defined by I(X∩Y) ::= I(X)∩I(Y)
and (X ∩ Y)(a) ::= X(a) = Y(a) for every a ∈ I(X ∩ Y). Similarly, we will consider the
union X ∪Y and the set-theoretical difference X \Y. In the same spirit, we write Y ⊆ X, for
I(Y) ⊆ I(X) and for every a ∈ I(Y), Y(a) = X(a).

Given a set-family X, we denote by JXK the cartesian product
∏
a∈I(X) X(a) of the sets in

Sets(X), where the same set in Sets(X) can appear multiple times in the product if associated
with multiple indices. We denote the elements of JXK with the vectorial notation x⃗, to
underline that it is an element in a cartesian product rather than in a simple set.

▶ Notation 13. Any element x⃗ ∈ JXK can be seen as a collection (xa)a∈I(X) of elements in
Sets(X). In particular, given Y ⊆ X, we denote by x⃗|Y the projected element (xa)a∈I(Y) ∈ JYK.
Similarly, given two set-families X,Y having disjoint sets of indexes, so clearly compatible,
the elements of JX ⊎ YK can be written as (x⃗, y⃗), for x⃗ ∈ JXK and y⃗ ∈ JYK.

Notice that if X is empty, then JXK is the singleton set {()}.

▶ Notation 14. Since finite, set-families can be given by enumerating their graph, like in
X = {(a1, S1), . . . , (an, Sn)}. In this case we have: I(X) = {a1, . . . , an} and Sets(X) =
{S1, . . . , Sn}. In this latter set, the possible repetitions are equated, so Sets(X) might have
less than n elements.

▶ Example 15. A finite set {X1, . . . , Xn} of finite random variables defines the set-family
X = {(X1, JX1K), . . . , (Xn, JXnK)}, where JXiK denotes the finite set of the possible outcomes
taken by the random variable Xi. Notice that JXK is then the set of samples of the joint
distribution over X1, . . . , Xn. To be more explicit, suppose that each random variable Xi is
boolean, i.e. JXiK = {t, f} for all i ≤ n, then Sets(X) = {{t, f}}, while JXK = {(b1, . . . , bn) |
bi ∈ {t, f}}.

▶ Example 16. Consider a sequent Γ = X◦
1 , . . . , X

◦
n of atomic formulas. A natural set-family

that can be associated with Γ and a valuation ι, has indices the sequent positions {1, . . . , n}
and it maps a position i to the set ι(Xi). This set-family however is not the only possible
one: for example, one may take as indices the propositional variables X1, . . . , Xn, where
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multiple occurrences of the same variable are equated, and map Xi to ι(Xi). The two
set-families are quite different if Γ contains repetitions. Namely, let Γ = X+, X,+ X−, Y −,
with JXK = JY K = {t, f}. The two set-families are:

X = {(1, {t, f}), (2, {t, f}), (3, {t, f}), (4, {t, f})}, Y = {(X, {t, f}), (Y, {t, f})}.

▶ Remark 17. Notice that Z,Y ⊆ X implies that both Z and Y are compatible. Henceforth
we will always consider families which are subset of a fixed “universal” family (underlined by
a proof-net), so that the compatibility condition in Definition 12 is not an issue and hence
will be often not mentioned.

▶ Definition 18 (Factor). A generalised factor, or simply factor, ϕ is a pair (Fam(ϕ),Fun(ϕ))
of a set-family Fam(ϕ) and a function Fun(ϕ) from the set JFam(ϕ)K to R≥0.

We will short the notation Fun(ϕ) by writing just ϕ when it is clear from the context that we
are considering the function associated with a factor and not the whole pair (Fam(ϕ),Fun(ϕ)).
We often consider Fun(ϕ) as a vector indexed by the elements of its domain, so that ϕx⃗ stands
for Fun(ϕ)(x⃗), for every x⃗ ∈ JFam(ϕ)K.

▶ Example 19. Let us recall the set-family Y = {(X, {t, f}), (Y, {t, f})} of Example 16,
and consider the function Fun(ϕ) given by {(tX , tY ) 7→ 0.2, (tX , fY ) 7→ 0.25, (fX , tY ) 7→
0.25, (fX , fY ) 7→ 0.3}. The pair ϕ = (Y,Fun(ϕ)) is an example of factor. Intuitively, ϕ
can be seen as the presentation 0.2e(tX ,tY ) + 0.25e(tX ,fY ) + 0.25e(fX ,tY ) + 0.3e(fX ,fY ) of a
vector in R4

≥0 with respect to a set of basis vectors e(bX ,bY ) associated with the elements in
(bX , bY ) ∈ JYK.

▶ Definition 20 (Factor projection). Let ϕ be a factor and let X be a set-family compatible
with Fam(ϕ), the projection of ϕ to X is the factor πX(ϕ) defined by:

Fam(πX(ϕ)) ::= X, πX(ϕ)x⃗ ::=
∑

y⃗∈JFam(ϕ)\XK

ϕ(x⃗|Fam(ϕ),y⃗), for x⃗ ∈ JXK.

▶ Example 21. Recall the set-family Y and the factor Fun(ϕ) given in Example 19, let
X = {(X, {t, f})} ⊆ Y. We have that πX(ϕ) = {tX 7→ 0.45, fX 7→ 0.55}. Let now
Z = X ⊎ {(Z, {t, f})}, we have that πZ(ϕ) = {(tX , tZ) 7→ 0.45, (tX , fZ) 7→ 0.45, (fX , tZ) 7→
0.55, (fX , fZ) 7→ 0.55}. Notice in particular that the factor projection to a set-family Z does
not preserve in general the property of being a probability mass function, unless Z ⊆ Fam(ϕ).

▶ Remark 22. With the notations of Definition 20, if X ⊆ Fam(ϕ), then πX(ϕ) corresponds to
what is called in Bayesian programming summing out Fam(ϕ) \ X, which gives the marginal
distribution over X. Suppose on the contrary that X and Fam(ϕ) are disjoint, then for every
x⃗ ∈ JXK, πX(ϕ)x⃗ is the total mass of ϕ, i.e.

∑
y⃗∈JFam(ϕ)K ϕy⃗.

▶ Remark 23. Suppose that Fam(ϕ) has n indices and that k is the maximum cardinality of
a set in Sets(Fam(ϕ)), then the computation of the whole vector πX(ϕ) is in O(kn).

▶ Definition 24 (Binary factor product). Given two factors ϕ and ψ, such that Fam(ϕ) and
Fam(ψ) are compatible, we define their factor product as the factor ϕ⊙ ψ given by:

Fam(ϕ⊙ ψ) ::= Fam(ϕ) ∪ Fam(ψ), (ϕ⊙ ψ)z⃗ ::= ϕz⃗|Fam(ϕ)
ψz⃗|Fam(ψ)

, for z⃗ ∈ JFam(ϕ⊙ ψ)K.

▶ Remark 25. If Fam(ϕ) ∪ Fam(ψ) has n indices and k is the maximum cardinality of a set
in Sets(Fam(ϕ) ∪ Fam(ψ)), then the computation of the whole vector ϕ⊙ ψ is in O(kn).
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▶ Example 26. In terms of MLL operations, factor products correspond to a ⊗ product plus
a bunch of contractions on the common indexes. For example, let us take as indexes the
propositional variables and as sets just {t, f} (recall Example 16) and consider Fam(ϕ) =
{X2, X3, X4} and Fam(ψ) = {X2, X5} (this choice is reminiscent of the variables in the
proof-nets in Figure 1e, in fact ϕ and ψ can be associated with the boxes, respectively, b4 and
b5). Then, Fun(ϕ⊙ ψ) is over {X2, X3, X4, X5}, so of dimension 24, while Fun(ϕ)⊗ Fun(ψ)
is a vector indexed by tuples of 5 booleans, so of dimension 25.

The next proposition states expected properties of factor projection and product that are
fundamental in the sequel.

▶ Proposition 27. Factor product is associative and commutative, with neutral element the
empty factor (∅, 1). Moreover:
1. πX∪Z(πX∪Y(ϕ)) = πX∪Z(ϕ), whenever Y ⊆ Fam(ϕ) and Z ∩ Fam(ϕ) = ∅;
2. πX(ϕ⊙ ψ) = πX(ϕ)⊙ ψ, whenever Fam(ψ) ⊆ X.

▶ Definition 28 (n-factor product). Let I be a finite set. Given a collection of pairwise
compatible factors (ϕi)i∈I , we define their factor product as the factor

⊙
i∈I ϕi ::= ϕi1 ⊙

· · · ⊙ ϕin , for some enumeration of I. This is well-defined independently from the chosen
enumeration because of Proposition 27.

Section 5 will associate factors to MLL proof-nets and in order to make this association
compositional (Theorem 48) we introduce the following notion of renaming, as the contraction
and cut rules of Figure 1b may change the sharing structure associated with a proof-net.

▶ Definition 29 (Renaming). A renaming f from a set-family X to a set-family Y is a map
from I(X) to I(Y) such that for all a ∈ I(X), we have X(a) = Y(f(a)). Any such renaming
f induces the map f◦ from JYK to JXK by:

for y⃗ ∈ JYK, f◦(y⃗) ::= (yf(a))a∈I(X) ∈ JXK. (2)

Moreover, we say that a point x⃗ ∈ JXK agrees on f whenever, for every a, a′ ∈ I(X),
f(a) = f(a′) implies that xa = xa′ .

▶ Remark 30. The notion of “agreeing on a renaming f” generalises the notion in Bayesian
programming of a set of samples that “agrees on the same random variables” as used in
e.g. [8].

▶ Notation 31. Given a renaming f from X to Y, and a set-family X′ ⊆ X, we denote by
f(X′) the set-family having as indices the set f(I(X′)) ⊆ I(Y) and that it associates with
any b ∈ f(I(X′)) the set Y(b). Notice that f(X′) ⊆ Y.

▶ Proposition 32. Given a renaming from X to Y, the image set of f◦ is the subset of JXK
of the elements which agree on f . If, moreover, f is surjective over I(Y), then f◦ is an
injective map from JYK to JXK, hence a bijection from JYK to {x⃗ ∈ JXK | x⃗ agrees on f}. In
this case, we denote its inversion by f•.

▶ Example 33. Recall the set-families X and Y in Example 16, associated with the sequent
Γ = X+, X,+ X−, Y −. Let us consider the following two specific renamings from X to Y:

f =
{

1, 2, 3 7→ X

4 7→ Y
, g =

{
1, 2, 3, 4 7→ X .
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and take for example y⃗ = (tX , fY ) ∈ JYK. We have (we use the natural order (1,2,3,4) to
represent elements in JXK):

f◦(y⃗) = (t, t, t, f), g◦(y⃗) = (t, t, t, t).

Notice in fact that f◦(y⃗) agrees on f but not on g, while g◦(y⃗) agrees on both f and g. Also
notice that f is surjective and in fact f◦ is an injection, while g is not surjective and in fact
g◦ is not a injection, for example: g◦(tX , fY ) = g◦(tX , tY ).

▶ Definition 34 (Factor renaming). Let f be a renaming from Fam(ϕ) to a set-family X. The
renaming of ϕ along f is the factor f(ϕ) defined by:

Fam(f(ϕ)) ::= f(Fam(ϕ)), f(ϕ)x⃗ ::= ϕf⋆(x⃗), for x⃗ ∈ Jf(Fam(ϕ))K.

▶ Example 35. Recall the renaming f of Example 33 between the set-families X and Y given
in Example 16. Consider the factor ϕ over X defined by ϕ(b1,b2,b3,b4) ::= 1 if b1 = b2 = b3, 0
otherwise. This factor corresponds to the interpretation of the proof-net having a weakening
producing Y − and the axiom on top of a contraction giving X+, X+, X−. Then f(ϕ) is over
Y and its map is the constant function giving 1.

▶ Remark 36. Notice that one can formalise the notions of this section in a categorical way,
considering a category of renamings as morphisms between set-families. We did not develop
this more abstract presentation as not needed in the sequel.

5 Weighted Semantics by Factors, Atomic Case

We apply to MLL the notions introduced in Section 4. It is convenient to restrict to atomic
proof-nets and then to extend the results to the non-atomic case in Section 6. Definitions 37
and 45 associate two different set-families with an atomic proof-net N , the edge and the
component set-families. The edge set-family permits to consider the standard weighted
interpretation JN K as a factor (Definition 39), while the component set-family yields a
more compressed representation of JN K, the component factor (Definition 40), which has a
form of compositionality (Theorem 48) and hence can be computed directly (Theorem 49)
without using the rules of Figure 1c. Henceforth, this section fixes a valuation ι and considers
only atomic proof-nets. We recall that an atomic proof-net can contain only axioms, cuts,
weakening, contractions and semantical boxes.

▶ Definition 37 (Edge set-family). Let N be an atomic proof-net and ι be a valuation. The
edge set-family of N , written by Famι

e(N ), has the edges of N as indices and associates with
an edge e : X◦ the set ι(X). Given a sequence Γ of edges e1 : X◦

1 , . . . , en : X◦
n, we extend the

metavariable Γ to denote also the edge set-family {(e1, ι(X1)), . . . , (en, ι(Xn))} ⊆ Famι
e(N ).

▶ Remark 38. Let Γ be e1 : X◦
1 , . . . , en : X◦

n. The convention of denoting by Γ both
the underlined sequent X◦

1 , . . . , X
◦
n and the edge set-family {(e1, ι(X1)), . . . , (en, ι(Xn))} is

coherent because the cartesian product JΓK associated with the edge set-family is the same
set as the weighted denotation JΓKι, this latter also denoted simply by JΓK. This ease of
notation is necessary to avoid a formalism overkill.

▶ Definition 39. Given a valuation ι, the edge factor of an atomic proof-net N has as
set-family the edge-set family induced by the conclusions of N and as function the weighted
interpretation JN Kι. We take the liberty to denote this edge factor also by JN Kι.
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▶ Definition 40 (Component set-family and renaming). Let N¬b denote the graph obtained
from an atomic proof-net N by removing all its semantical boxes, so keeping their conclusions
as pending edges of the graph. Given an undirected connected component M of N¬b, one can
remark that all edges of M are atomic formulas over a unique variable, let us denote it XM.
The component set-family of N , written Famι

c(N ), has as indices the undirected connected
components of N¬b and associates with a component M the set ι(XM). The component
renaming of N , written ℓN , is the renaming from Famι

e(N ) to Famι
c(N ) mapping the edges

of N to the connected component of N¬b they belong to.

▶ Example 41. Consider the atomic proof-net Na obtained from the proof-net N0 in Figure 1e
by removing the tensor node, so that Na has conclusions X+

4 , X
+
5 . Notice that Na¬b has

five connected components which correspond to the five propositional variables X1, . . . , X5.
If however we consider the sub proof-net N ′

a obtained from Na by removing the cut and
the contraction insisting on the edges typed by, e.g., X−

1 , we have that N ′
a

¬b has now seven
connected components, in particular three of them supports the same variable X1. This
example shows that the generating rules of MLL (Figure 1b) require not to mix up the
component set-family with the variables labelling the edges (see also Remark 55).

▶ Remark 42. The ℓN information can be memorised once and for all by adding a further
labelling over the edges of N giving the same index to the edges belonging to the same
connected component of N¬b. This labelling can be computed in linear time with respect to
the size of N , by adapting one of the many connected component algorithms.

▶ Notation 43. Let Γ = e1 : X◦
1 , . . . , en : X◦

n be a set of edges of N , so that Γ is also the
set-family {(e1, ι(X1)), . . . , (en, ι(Xn))} contained in Famι

e(N ). By Notation 31, the writing
ℓN (Γ) denotes the set-family {(ℓN (e1), ι(X1)), . . . , (ℓN (en), ι(Xn))} ⊆ Famι

c(N ). Notice that
ℓN is surjective on I(ℓN (Γ)), so we can apply Proposition 32, getting the two maps:

ℓ◦
N from JℓN (Γ)K to JΓK,

its inverse ℓ•
N from {d⃗ ∈ JΓK | d⃗ agrees on ℓN } to JℓN (Γ)K.

▶ Remark 44. In general, given a set of edges Γ of an atomic proof-net N , we have that:
JℓN (Γ)K = JΓK if, and only if, all edges in Γ belong to pairwise different connected components
of N¬b. Moreover, if JℓN (Γ)K = JΓK, then every d⃗ ∈ JΓK agrees on ℓN .

▶ Definition 45. Given a valuation ι, the component factor of an atomic proof-net N is the
renaming ℓN (JN Kι) of its edge factor, i.e. if ∆ are the conclusions of N , Fam(ℓN (JN Kι)) =
ℓN (∆) and for d⃗ ∈ JℓN (∆)K, Fun(ℓN (JN Kι)d⃗ = JN Kι

ℓ◦
N (d⃗)

.

▶ Example 46. Recall the proof-net N and the valuation ι of Example 9. Notice that
Fam(ℓN (JN Kι)) is a singleton as the n+ 2 conclusions of N belong to the same component,
and Fun(ℓN (JN Kι)) = (1t, 1f), which is a more parsimonious object than JN Kι, this latter of
dimension exponential in n.

Proposition 47 details how to recover the original denotation of N out of its component
factor.

▶ Proposition 47. Let N be an atomic proof-net of conclusions ∆. For every d⃗ ∈ J∆K, we
have that:

JN Kι
d⃗

=
{
ℓN (JN Kι)ℓ•

N (d⃗) if d⃗ agrees on ℓN ,

0 otherwise.
(3)
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The following is the core theorem of this paper: MLL cuts correspond to a factor product
plus a projection.

▶ Theorem 48. Let N = CutΓ(N ′,N ′′) be an atomic proof-net of conclusions ∆ obtained
by connecting by a bunch of cuts over a sequent Γ a sub proof-net N ′, of conclusions Γ,∆′,
and N ′′, of conclusions Γ⊥,∆′′, so that ∆ = ∆′,∆′′. We have:

ℓN (JN Kι) = πℓN (∆)(ℓN (JN ′Kι)⊙ ℓN (JN ′′Kι)) (4)

As a consequence, we can compute the component factor of N without passing via JN Kι:

▶ Theorem 49. Let N be an atomic proof-net with conclusions ∆. We have: ℓN (JN Kι) =
πℓN (∆)(

⊙
b∈b(N )ℓN (ι(b))).

▶ Example 50. Consider an atomic proof-net N of conclusions ∆ such that no edge in ∆ is
connected in N¬b with a conclusion of a box of N . By Remark 22, πℓN (∆)(

⊙
b∈b(N ) ι(b)) is

the constant function giving the total mass of the vectors associated with the boxes of N .

Consider the atomic proof-net Na obtained by removing the tensor node from the proof-net
N0 of Figure 1e. If we apply Theorem 49 to Na, we will obtain exactly the same summation
given in Example 11, in fact the edge and component set-families of the conclusions of
Na are the same. However, we have now the correct formalism to apply exact inference
algorithms to refactor the expression πℓN (∆)(

⊙
b∈b(N )ℓN (ι(b))), by taking advantage of the

distributivity law of factor product over the projection (Proposition 27). We adapt here one
among the simplest such algorithms, called the sum-product variable elimination algorithm,
first introduced in [29], see [8] as a reference. The terminology “variable elimination” is
because this procedure infers from a Bayesian network the marginal distribution of a random
variable X out of a family5 X of variables containing X, by “eliminating” all the other
variables in X. In our case, what we “eliminate” are the N¬b components of the conclusions
of the box factors containing no conclusion of the proof-net.

Algorithm 1 MLL Sum-Product Algorithm.
input:

1: N ▷ an atomic proof-net of conclusions ∆
2: ι ▷ a valuation map
3: ω ▷ A linear order on the components in Famι

c(N ) not having a conclusion in ∆
output: the factor ℓN (JN Kι)

4: F ← {ℓN (ι(b)) | b ∈ b(N )} ▷ Factors of b(N )
5: for C in ω do
6: Fc ← {ϕ ∈ F | C ∈ I(Fam(ϕ))}
7: ψ ←

⊙
ϕ∈Fc ϕ ▷ Product

8: ρ← πFam(ψ)\{C}(ψ) ▷ Sum-out
9: F ← {ρ} ∪ (F \ Fc)

return
⊙

ϕ∈F ϕ

Algorithm 1 is our adaptation of the sum-product algorithm. Given a linear order ω
over the connected components of N¬b which contains no conclusion of N , the algorithm
proceeds as follows: line 4 initialises a variable F with the set of factors to compute; line 5

5 Any resemblance to the notations in Section 4 is purely voluntary.
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takes from ω the next connected component C to process; line 6 gathers in a variable Fc all
factors in F which have C as an index (i.e. a conclusion in C); line 7 computes the product
of these factors and line 8 projects it on the components different from C (a.k.a. summing
out C); line 9 updates F by replacing the processed factors with the result of this projection
and then it jumps back to line 5. At the end of this loop, F contains a set of factors indexed
over the components of N¬b connected with the conclusions in N and then it returns their
product.

Soundness follows from Proposition 27 and Theorem 49:

▶ Theorem 51. Algorithm 1 returns ℓN (JN Kι) if fed with an atomic proof-net N , a valuation
ι and a linear order on the components in Famι

c(N ) not containing any conclusion of N .

▶ Example 52. Consider the atomic proof-net Na obtained by removing the tensor node
from the proof-net N0 of Figure 1e (Example 1) and use the numbers 1, 2, 3, 4, 5 to denote
the five connected components of Na¬b such that component i is supported by variable Xi.
The components to eliminate are 1, 2, 3. By taking the order ω = 1 < 2 < 3, Algorithm 1
will calculate the following intermediate factors: ρ1 = π{2,3}(ι(b1) ⊙ ι(b2) ⊙ ι(b3)), ρ2 =
π{2,4}(ρ1 ⊙ ι(b4)), ρ3 = π{4,5}(ρ2 ⊙ ι(b5)), the output being ρ3. This yields exactly the
factored equation in Example 11 and it allows to calculate the whole semantics of Na
in O(k3) basic operations, if k is the maximal cardinality of the sets associated with the
propositional variables appearing in the proof-net.

▶ Remark 53. A run of Algorithm 1 depends on the chosen order ω. Different orders yield
different factorisations and have different performances. For example, by taking the inverse
order 3 < 2 < 1 in Example 52 we get a run in O(k4), which is an order of magnitude slower
than 1 < 2 < 3, although yet more efficient than the immediate recursive algorithm induced
by the standard semantics (Example 11).

In general, Algorithm 1 is in O(nkw), where n is the length of ω (i.e. the number of
components to eliminate), k is the maximal cardinality of a set interpreting an atomic variable
(in our examples we always suppose k = 2, for the two booleans) and w is the maximal
cardinality of Fam(ϕ), for ϕ a factor created/used by the algorithm (this parameter depends
on the chosen order ω).

The quest for optimal orders is a major topic in Bayesian networks, which is however
known to be a NP-hard problem [4]. Since probabilistic MLL contain Bayesian networks, we
should focus on heuristics that yield good performances in most cases.

▶ Remark 54. Recall the proof-net N in Figure 1e which cut reduces to N0. Notice that
this proof-net does not resemble to a Bayesian network, e.g. it alternates par and tensor
nodes. However, the reader may recognise the intermediate factors ρ1, ρ2 and ρ3 computed
by Algorithm 1 in Example 52 as the nested sub proof-nets of N of conclusions, respectively,
X+

2 ⊗ (X−
2 `X+

3 ), X+
2 ⊗X

+
4 and X+

4 ⊗X
+
5 . This is far from being a coincidence, as any run

of Algorithm 1 can in fact be associated with a MLL proof-net, although this latter might
need formulas with an arbitrary number of alternations between tensors and pars. We will
investigate this point in a forthcoming paper.

▶ Remark 55. The component renaming ℓN is omitted in the setting of Bayesian networks
as encoded in the formula labelling, by imposing the following type constraint:

(⋆) any two edges of N which are supported by the same propositional variable lay in
the same connected component of N¬b.

FSCD 2023
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If (⋆) holds (e.g. as for the proof-net Na discussed in Example 52), then ℓN is equivalent to
the renaming from the edge set-family to the variable set-family, an instance being given
by the renaming f mentioned in Example 33. Such a shortcut is however misleading in
our setting, as the rules generating MLL proof-nets (Figure 1b) are more “granular” than
the ones for Bayesian networks, in particular (⋆) is not preserved by the c(NX−,X−) rule
(Example 41). A better alternative would be to introduce “term” variables, like the variables
of simply typed λ-calculus, decorating edges.

6 The General Case

The results of the previous section can be extended to non-atomic proof-nets by using MLL
cut-reduction. We just sketch here the main ideas, giving the details in the appendix. The
reader can recall the proof-net N in Figure 1e to follow the reasoning with an example.
Given a MLL proof-net N of conclusion ∆: (i) reduce N to its normal form N0 by using
the cut-reduction rules of Figure 1d. (ii) Decompose N0 into the syntax forest F∆ of its
conclusions and the atomic sub proof-net Na of conclusions the atomic formulas At(∆)
appearing in ∆, which are the leaves of F∆. Notice that there is a bijection between J∆K
and JAt(∆)K, relating an element in d⃗ ∈ J∆K with a tuple At(d⃗) ∈ JAt(∆)K enumerating the
atomic components of d⃗. (iii) Apply Algorithm 1 in order to compute ℓN (JN K). We have:

▶ Corollary 56. Let N be a proof-net with conclusions ∆, and let N0 be the normal form of
N and (F∆,Na) be the decomposition of N0 described above. For every d⃗ ∈ J∆K, we have:

JN Kι
d⃗

= ℓN (JNaK)ℓ•
Na

(At(d⃗)), (5)

if At(d⃗) agrees on ℓNa
, otherwise JN Kι

d⃗
= 0.

The cut-reduction in step (i) is linear in the size of N0 as MLL cut-reduction shrinks the size
of a proof-net. Also the construction of Na out of N0, and the read of ℓ•

Na
(At(d⃗)) out of

d⃗ ∈ J∆K are linear. So all the complexity of this procedure is the calculation of ℓN (JNaK)
which has been discussed in the previous section.

7 Conclusion and Perspectives

We considered weighted relational semantics just as an instance of quantitative semantics, but
these techniques can be applied verbatim to other web-based semantics, such as probabilistic
coherence spaces [6] or finiteness or Köthe sequence spaces [11, 10].

One can wonder whether our results extend to richer linear logic fragments. The additive
connectives ⊕ and & can be reasonably added to the picture. In fact, by adopting some form
of additive boxes [9], one can revisit the sum-product algorithm as a refactorization of a
proof-net modulo commutative additive cuts. The exponential modalities (so encompassing
full simply typed probabilistic λ-calculus) are more challenging as they require infinite sets
at the semantical level. This will deserve future investigation.

Related to the above point is the correspondence alluded to in Remark 54. We will detail
in a future work how to map any run ρ of the sum-product algorithm on an atomic proof-net
N0 into a non-atomic proof-net Nρ, which rewrites into N0 and such that the intermediate
factors appearing in ρ correspond to sub-proof-nets of Nρ.

As mentioned by Remark 53, the performance of many exact inference algorithms, such
as sum-product, depends on the order of the components to eliminate and the problem of
finding optimal orders is known to be NP-hard [4]. Many heuristics have been given based
on the graph-theoretical structure of Bayesian nets. One can wonder whether the additional
proof-theoretical structure (e.g. switching paths, empires [18]) can suggest new heuristics.
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Generalized Newman’s Lemma for Discrete and
Continuous Systems
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Abstract
We propose a generalization of Newman’s lemma which gives a criterion of confluence for a wide
class of not-necessarily-terminating abstract rewriting systems. We show that ordinary Newman’s
lemma for terminating systems can be considered as a corollary of this criterion. We describe a
formalization of the proposed generalized Newman’s lemma in Isabelle proof assistant using HOL
logic.
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1 Introduction

Newman’s lemma [20, 10, 15, 2, 17] is a mathematical result that is well-known in computer
science community and that is usually associated with analysis of discrete structures and the
principle of well-founded1, or, dually, Noetherian induction. However, Noetherian induction
has a generalization to Raoult’s open induction principle [24] which can be considered as an
interesting example of unification of proof principles important for analysis of discrete and
continuous structures. More specifically, both the Noetherian induction principle for proving
properties of elements of a Noetherian poset and a variant of a real induction principle [4]
for proving properties of real numbers in a bounded closed interval can be interpreted as
applications of the open induction principle. Moreover, it is known [23] that real induction is
relevant to analysis of continuous-time dynamical systems defined using ordinary differential
equations.

Taking into account the above mentioned remarks, it is natural to consider the question
of whether Newman’s lemma can be generalized in such a way that its generalization can
be applied to a range of discrete, continuous, and discrete-continuous dynamical models
(e.g. [8]). Note that discrete-continuous (hybrid) models become increasingly important for
computer science with the spread of such concepts as cyber-physical systems [3], Internet of
Things, etc., and although mathematical systems theory and control theory study a variety
of models and properties (e.g. reachability, stability, controllability, etc.) that have certain
correspondences with computation-related notions considered in computer science, the task
of combining modeling and reasoning approaches from different fields remains non-trivial.

1 For example, as of the time of writing, the article on Newman’s lemma in English Wikipedia [21]
mentions: “Today, this is seen as a purely combinatorial result based on well-foundedness due to a proof
of Gérard Huet in 1980.”
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And to simplify this task one can search for such generalizations of important results from
one field (e.g. computer science) that they begin to directly overlap with another field (e.g.
control theory) and vice versa.

In literature one can find confluence conditions that can be considered as generalizations
of Newman’s lemma for certain classes of abstract rewriting systems (ARS) [26, 5, 6, 7]. A
notable example is Van Oostrom’s theorem [26, Theorem 3.7] and its corollary that any
Decreasing Church-Rosser (DCR) ARS is confluent. However, most of such conditions are
linked in some way to auxiliary well-foundness, countability, and/or cofinality assumptions
that are more relevant to analysis of discrete models of computation or discrete-continuous
dynamical models with limited nondeterminism.

In this paper we propose a different approach to the mentioned question which makes
use of a topology on the preordered set (X, →∗) associated with an ARS (X, →) in a
way reminiscent to how it is used in Raoult’s open induction principle, where →∗ denotes
the reflexive transitive closure of a reduction relation →. Using this approach we obtain
a generalized Newman’s lemma (Theorem 28 in Section 3) which gives a necessary and
sufficient condition of confluence for the class of ARS (X, →) such that (X, →∗) is a strictly
inductive [18] preordered set (i.e. a preordered set where every nonempty chain has a least
upper bound). Ordinary Newman’s lemma for terminating systems can be considered as a
corollary of the proposed criterion (Corollary 29 from Theorem 28).

As a proof of the main result we give a machine-checked formal proof of a formalized
statement of generalized Newman’s lemma in Isabelle proof assistant using HOL logic
[11, 22, 27] in supplementary material [14] for this paper. Note that this proof is not based
on direct application of either Noetherian or open induction, however, Noetherian induction
and a suitably adapted open induction principle can be used to characterize classes of ARS
for which the ordinary and generalized Newman’s lemmas can be used as confluence criteria
(Propositions 7 and 14 in Section 2).

Isabelle is a generic proof assistant software with a small logical core that provides a
meta-logic in which several object logics are encoded. Supported object logics include, in
particular, higher-order logic (HOL) and Zermelo-Fraenkel set theory (ZF). They can be used
to formalize statements and proofs from pure mathematics, but they also have applications
in the domain of formal specification and verification of systems and software. A user can
introduce new definitions and formulate statements (lemmas, theorems) using special formal
notation. In simple cases, a proof of a valid statement can be obtained automatically by
calling automated theorem provers, but in most non-trivial cases a user needs to guide the
system using a proof script or a structured proof text, so that a complete formal proof can
be constructed automatically from such a script/text.

Note that there exist other formalizations of ARS-related notions and results in Isabelle,
e.g. [25, 1, 29], however, our formalization does not depend on them. Our formalization
depends only on standard theories included in Isabelle distribution.

2 Preliminaries

Below we give definitions of the notions which we need to formulate and discuss the main result.
Definitions and propositions given in this section and Theorem 28 in Section 3 (main result)
are formulated using ordinary mathematical notation. Propositions 7-27 are accompanied
by non-formalized proof sketches which explain main proof ideas. Such formulations and
proof sketches are intended to simplify understanding of the main result and omit low-level
details of our Isabelle formalization. A reader can assume that a background theory for
understanding them is ZFC, however, our Isabelle formalization is based on HOL.
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Formalized versions of Definitions 1-24 and statements of Propositions 7-27 and The-
orem 28 for proof assistant software, as well as complete formal proof texts are given in [14]
(supplementary material for this paper). Formal proofs can be checked automatically using
Isabelle 2022 software [11].

2.1 Abstract rewriting systems
Let us recall several standard notions that appear in literature on rewriting systems (e.g.
[15, 2, 17]). Note that we assume that the axiom of choice holds.

We will denote logical negation, disjunction, conjunction, and implication as ¬, ∨, ∧, and
⇒ respectively.

▶ Definition 1. An abstract rewriting system (ARS) is a pair (X, →), where X is a set and
→ is a binary relation on X (called reduction).

Note that some authors define an ARS to be a pair of a set and an indexed family of reduction
relations (→i)i∈I . We do not use this approach in this paper and instead restrict attention
to ARS with a single reduction relation →. Also, we allow X to be empty.

Let (X, →) be an ARS. Denote as →+ the transitive closure of → , and denote as →∗

the reflexive transitive closure of →.

▶ Definition 2. Let x ∈ X. Then
(1) x is reducible, if there exists x′ ∈ X such that x → x′

(2) x is irreducible, if x is not reducible
(3) x′ ∈ X is a normal form of x, if x →∗ x′ and x′ is irreducible.

▶ Definition 3. An ARS (X, →) is
(1) (weakly) normalizing, if for each x ∈ X there exists x′ ∈ X such that x′ is a normal

form of x

(2) terminating (or, alternatively, strongly normalizing), if there is no infinite reduction
sequence x1 → x2 → ... (xi ∈ X).

▶ Definition 4. An ARS (X, →) is
(1) confluent, if

∀a, b, c ∈ X (a →∗ b ∧ a →∗ c ⇒ ∃d ∈ X (b →∗ d ∧ c →∗ d))

(2) locally confluent, if

∀a, b, c ∈ X (a → b ∧ a → c ⇒ ∃d ∈ X (b →∗ d ∧ c →∗ d)).

2.2 Noetherian induction
It is known that the condition that an ARS (X, →) is terminating can be characterized in
terms of soundness of a variant of Noetherian induction principle which can be used to show
that a given property P (x) holds for all x ∈ X.

We will use a variant of Noetherian induction principle similar to the one given in [17,
paragraph 1.3.15], but will reformulate it in extensional form by assuming that the mentioned
property P (x) is represented as x ∈ S, where S is a set.

▶ Definition 5. S is a Noetherian-inductive subset in ARS (X, →), if S ⊆ X and

∀x ∈ X ((∀y ∈ X (x →+ y ⇒ y ∈ S)) ⇒ x ∈ S).

FSCD 2023
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▶ Definition 6. (X, →) has sound Noetherian induction principle, if for every S ⊆ X, if S

is a Noetherian-inductive subset in ARS (X, →), then S = X.

▶ Proposition 7. For any ARS (X, →) the following conditions are equivalent:
1. (X, →) is terminating
2. (X, →) has sound Noetherian induction principle.

Proof sketch. Similar to the proof of [17, Theorem 1.3.16]. ◀

2.3 Strictly inductive ARS
Let (X, ≤) be a preordered set (so ≤ is a reflexive and transitive binary relation on X).

▶ Definition 8. Let A ⊆ X and x ∈ X. Then x is
(1) an upper bound of A, if ∀a ∈ A a ≤ x

(2) a least element of A, if x ∈ A ∧ ∀a ∈ A x ≤ a

(3) a least upper bound of A, if x is a least element of the set of all upper bounds of A.

▶ Definition 9. A subset A ⊆ X is
(1) a chain (in (X, ≤)), if ∀x, y ∈ A (x ≤ y ∨ y ≤ x)
(2) closed (in (X, ≤)), if for every nonempty chain C in (X, ≤), if C has a least upper bound

x ∈ X and C ⊆ A, then x ∈ A

(3) open (in (X, ≤)), if X\A is closed in (X, ≤)
(4) relatively open in B w.r.t. preorder relation ≤, where B ⊆ X is a superset of A, if A is

open in (B, ≤ ∩(B × B)).
▶ Remark. A Scott-open subset in a poset is open in the above mentioned sense, but the
converse may not hold. More information on topologies on ordered sets can be found in [9].

Some examples that illustrate Definition 9 are given below.

If X = [0, 1], where [0, 1] denotes the real unit interval, and ≤ is the standard order on
real numbers restricted to X, then

every subset of X is a chain
the set {1} is closed: every nonempty chain in {1} contains only 1, so its supremum is 1,
and 1 ∈ {1}
the set {1} is not open: the element 1 ∈ {1} can be approached from below using a
nonempty chain of elements outside {1}, e.g. 0.9, 0.99, 0.999, ...
the set (0, 1) is open: no number in (0, 1) can be approached from below using a nonempty
chain that has no elements in (0, 1).

If X is the set of all finite strings in the alphabet {0, 1} (e.g. 01010 ∈ X), and s ≤ s′ if
and only if s is a prefix of s′ (e.g. 01 ≤ 010, but 01 ̸≤ 110), then

the set {0, 00} is a chain
the set {0, 1} is not a chain: the elements 0, 1 are incomparable
the set {1} is closed and open.

▶ Definition 10. A preordered set (X, ≤) is strictly inductive, if every nonempty chain in
(X, ≤) has a least upper bound (i.e. for every nonempty chain C there exists x ∈ X such
that x is a least upper bound of C).

The term “strictly inductive” is adapted from [18]. Note that a dcpo is a strictly inductive
preordered set.
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▶ Definition 11. An ARS (X, →) is
(1) strictly inductive, if (X, →∗), considered as a preordered set, is strictly inductive
(2) acyclic [7], if for each x, y ∈ X, if x →+ y, then x ̸= y.

▶ Remark. In some literature, e.g. [15], an inductive ARS is defined as an ARS where for
every reduction sequence x1 → x2 → ... there exists x ∈ X such that xn →∗ x for all n.
In general, this condition is weaker than the condition that (X, →∗) is a strictly inductive
preordered set, so our terminology is consistent with such literature: a strictly inductive
ARS is inductive in the mentioned sense, but the converse may not hold.

Figure 1 Illustration of the notion of an inductive ARS: for every reduction sequence x1 → x2 → ...

there exists x ∈ X such that xn →∗ x for all n. Such an element x is an upper bound of {x1, x2, ...}
in the preordered set (X, →∗). The notion of a strictly indutive ARS further requires that {x1, x2, ...}
has a least upper bound, and, moreover, every nonempty chain in (X, ≤) has a least upper bound.

▶ Example 12. Let (X, →) = ([0, 1], < ∩ ([0, 1] × [0, 1])), where [0, 1] is the real unit interval
and < is the standard strict order on real numbers. Then (X, →) is a strictly inductive ARS.
Moreover, (X, →) is acyclic.

▶ Definition 13. An ARS (X, →) has sound open induction principle, if for every open
S ⊆ X in the preordered set (X, →∗), if S is a Noetherian-inductive subset in ARS (X, →),
then S = X.

▶ Proposition 14. For any ARS (X, →) the following conditions are equivalent:
1. (X, →) is a strictly inductive and acyclic ARS
2. (X, →) has sound open induction principle.

Proof sketch. A proof that Item 1 implies Item 2 is analogous to a proof of Raoult’s theorem
[24, Theorem 3.3]. A proof that Item 2 implies Item 1 consists of two parts.

A proof that an ARS with sound open induction principle is strictly inductive is analogous
to the proof of a converse open induction principle proposed in [13, Theorem 1].
A proof that an ARS with sound open induction principle is acyclic can be performed
by contradiction (by assuming that x →+ x holds for some x ∈ X and considering
S = X\{y ∈ X | y →∗ x} in Definition 13). ◀

▶ Proposition 15. Any terminating ARS is strictly inductive and acyclic.
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Proof sketch. Follows immediately from Propositions 7, 14 by noting that an ARS with
sound Noetherian induction principle also has sound open induction principle (see Definitions
6 and 13). ◀

▶ Proposition 16. If (X, →) is an ARS and X is finite, then (X, →) is strictly inductive.

Proof sketch. Follows from Definition 10 by noting that a nonempty finite chain in a
preordered set has a least upper bound. ◀

2.4 Quasi-normal forms
In contrast to terminating ARS, strictly inductive ARS are not necessarily weakly normalizing
(e.g., the ARS ({0},{(0,0)}) is strictly inductive, but is not weakly normalizing). However,
the following notions can be used to preserve a certain similarity between the studies of
properties of terminating and strictly inductive ARS in the general case.

▶ Definition 17. Let (X, →) be an ARS and x, x′ ∈ X. Then
(1) x is quasi-irreducible, if for each y ∈ X, x →∗ y implies y →∗ x

(2) x′ is a quasi-normal form of x (or, shortly, x′ is a QNF of x),
if x →∗ x′ and x′ is quasi-irreducible

(3) x, x′ are QNF-equivalent, if

{y ∈ X | y is a QNF of x} = {y ∈ X | y is a QNF of x′}.

▶ Definition 18. An ARS (X, →) is
(1) quasi-normalizing, if for each x ∈ X there exists x′ ∈ X such that x′ is a quasi-normal

form of x.
(2) openly quasi-normalizing, if (X, →) is quasi-normalizing and for each x, x′ ∈ X such

that x′ is a quasi-normal form of x, the set

{y ∈ X | x →∗ y ∧ y and x′ are QNF-equivalent }

is relatively open in {y ∈ X | x →∗ y} w.r.t. preorder relation →∗.

The quasi-normalization condition has an obvious analogy with the (weak) normalization
condition. In the general case, open quasi-normalization condition is a stroger requirement,
the importance of which for checking confluence will be shown below in Theorem 28 and
Example 31 (in particular, the ARS given in Example 31 is strictly inductive and quasi-
normalizing, but is neither openly quasi-normalizing, nor confluent, and in this example the
lack of confluence is linked to the lack of open quasi-normalization).

▶ Proposition 19. Any strictly inductive ARS is quasi-normalizing.

Proof sketch. Follows from Zorn’s lemma. ◀

▶ Proposition 20. Let (X, →) be a terminating ARS. Then for any sets A, B such that
A ⊆ B ⊆ X, A is relatively open in B w.r.t. preorder relation →∗.

Proof sketch. Follows from Definition 9 by noting that for a terminating (X, →), a nonempty
chain C in (X, →∗) has a greatest element (i.e. x ∈ C such that ∀c ∈ C c →∗ x). ◀

▶ Proposition 21. Any terminating ARS is openly quasi-normalizing.

Proof sketch. Follows immediately from Propositions 15, 19, 20 and Definition 18. ◀
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Another simple sufficient condition which guarantees that an ARS is openly quasi-
normalizing is given below.

▶ Definition 22. An ARS (X, →) is finitely normalizing, if it is normalizing and the set of
all irreducible elements in (X, →) is finite.

▶ Proposition 23. Any finitely normalizing ARS is openly quasi-normalizing.

Proof sketch. Follows from Definition 18 by noting that for a finitely normalizing (X, →),
the set

{y ∈ X | x →∗ y ∧ y and x′ are QNF-equivalent }

can be expressed as a complement of a finite union of closed sets in {y ∈ X | x →∗ y}
considered as an induced preordered set (from (X, →∗)). ◀

2.5 Quasi-local confluence
The notion of local confluence loses its usefulness when a reduction relation → is reflexive
and transitive, because in this case the definitions of confluence and local confluence become
trivially equivalent (and equivalent to the diamond property condition). In some of such
and other situations related to non-terminating ARS, the notion of quasi-local confluence
introduced below can be used as a replacement for local confluence.

▶ Definition 24. An ARS (X, →) is quasi-locally confluent, if for each a ∈ X there exists a
subset S ⊆ {x ∈ X | a →+ x} such that the following 2 conditions hold:
1. two-consistency condition:

∀b, c ∈ S ∃d ∈ X (b →∗ d ∧ c →∗ d)

2. coinitiality condition:

∀x ∈ X (a →+ x ⇒ (x →∗ a) ∨ (∃b ∈ S b →∗ x ∧ ¬(b →∗ a))).

Intuitively, a set S in Definition 24 can be thought of as a substitute for the set of
successors of a: {x ∈ X | a → x}. The latter set actually satisfies the conditions 1 and 2
in the case of locally confluent acyclic ARS as Proposition 26 below states. Basically, the
conditions 1 and 2 axiomatize some properties of the mentioned set to allow one to obtain
useful generalizations of confluence criteria for wider classes of ARS.

The two-consistency condition is an adaptation of the following notion of a 2-consistent
set for preordered sets to ARS: a subset A ⊆ X in a preordered set (X, ≤) is 2-consistent,
if for each a1, a2 ∈ A there exists x ∈ X such that a1 ≤ x and a2 ≤ x (when A ̸= ∅ this is
reminiscent to the notion of a directed set, however x is not required to belong to A). Thus
the two-consistency condition expresses the requirement that S is a 2-consistent set in the
preordered set (X, →∗).

The coinitiality condition is an adaptation of the notion of a coinitial subset for preordered
sets to ARS: if (X, ≤) is a preordered set and A, B ⊆ X, then A is a coinitial subset of B, if
A ⊆ B and for each b ∈ B there exists a ∈ A such that a ≤ b. In particular, when a reduction
relation → coincides with some strict partial order < on X, the coinitiality condition together
with the condition S ⊆ {x ∈ X | a →+ x} expresses the requirement that S is a coinitial
subset of {x ∈ X | a < x} in the poset (X, ≤), where x ≤ y ⇔ (x = y ∨ x < y).

▶ Proposition 25. Any confluent ARS is quasi-locally confluent.
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Proof sketch. Assume that an ARS (X, →) is confluent. Then it is straightforward to check
that for any a ∈ X, the set S = {x ∈ X | a →∗ x ∧ ¬(x →∗ a)} satisfies the conditions of
Definition 24. So (X, →) is quasi-locally confluent. ◀

▶ Proposition 26. Let (X, →) be a locally confluent acyclic ARS and
a ∈ X. Then S = {x ∈ X | a → x} satisfies the conditions 1-2 of Definition 24.

Proof sketch. A proof is straightforward and follows from the relevant definitions. ◀

▶ Proposition 27. Any locally confluent acyclic ARS is quasi-locally confluent.

Proof sketch. Follows immediately from Definition 24 and Proposition 26. ◀

3 Main Result

▶ Theorem 28 (Generalized Newman’s lemma). Let (X, →) be a strictly inductive ARS.
Then (X, →) is confluent if and only if (X, →) is openly quasi-normalizing and quasi-locally
confluent.

Proof sketch.

“If” part. Assume that (X, →) is a strictly inductive, openly quasi-normalizing, and
quasi-locally confluent ARS. Let us show that (X, →) is confluent.

Let a ∈ X. To show that for any b, c with a →∗ b ∧ a →∗ c there exists d ∈ X such that
b →∗ d ∧ c →∗ d, it is sufficient to show that all maximal elements in X ′ = {x ∈ X | a →∗ x},
considered as an induced preordered subset of the preordered set (X, →∗), are equivalent
w.r.t. the equivalence relation ≈, where x ≈ x′ if and only if x →∗ x′ ∧ x′ →∗ x.

Consider any two such maximal elements M, M ′ ∈ X ′ (they will also be maximal elements
in the preordered set (X, →∗) and quasi-normal forms in ARS (X, →)) and introduce an
auxiliary preordered set (X ′, ≤′), where

x ≤′ y ⇔ (x →∗ y ∨ ((∃x′ ∈ X ′ x →∗ x′ ∧ ¬(x′ →∗ M)) ∧ M ′ →∗ y))).

Then for each x ∈ X ′, x ≤′ M ∨ x ≤′ M ′ holds.
The main reason for introducing the preordered set (X ′, ≤′) is that it simplifies further

analysis of relations between M and M ′ (note that (X ′, ≤′) does not have any elements
incomparable with both M and M ′).

The preordered set (X ′, ≤′) can be shown to be strictly inductive using the assumption
that the ARS (X, →) is openly quasi-normalizing.

The sets {x ∈ X ′ | x ≤′ M}, {x ∈ X ′ | x ≤′ M ′} are closed in (X, ≤′). Denote their
intersection as D. Then D is closed in (X ′, ≤′), and is also nonempty since (X ′, ≤′) has a
least element. Since (X, ≤′) is strictly inductive (implicitly using Zorn’s lemma) one can
conclude that there is some ≤′-maximal element m ∈ D.

As before, for any preordered set (P, ≤) we call a subset A ⊆ P 2-consistent, if for each
a1, a2 ∈ A there exists x ∈ P such that a1 ≤ x ∧ a2 ≤ x. It is straightforward to show the
following criterion of 2-consistency: a subset A ⊆ P is 2-consistent if and only if for any
down-closed sets X1, X2 ⊆ P the condition P = X1 ∪ X2 implies A ⊆ X1 ∨ A ⊆ X2.

Using the assumption that the ARS (X, →) is quasi-locally confluent one can show that
there is some coinitial subset N of {x ∈ X ′ | m ≤′ x ∧ ¬x ≤′ m} which is 2-consistent in
(X ′, ≤′). The above mentioned 2-consistency criterion implies that N ⊆ {y ∈ X ′ | y ≤′

M} ∨ N ⊆ {y ∈ X ′ | y ≤′ M ′}.
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Suppose that M and M ′ are not comparable w.r.t. ≤′. Then using coinitiality of N ,
there exist b ∈ N and c ∈ N such that b ≤′ M and c ≤′ M ′. As we have mentioned above,
N ⊆ {y ∈ X ′ | y ≤′ M} ∨ N ⊆ {y ∈ X ′ | y ≤′ M ′}.

If N ⊆ {y ∈ X ′ | y ≤′ M}, then c ≤′ M , whence m ≤′ c ∧ ¬c ≤′ m and c ∈ D.
If N ⊆ {y ∈ X ′ | y ≤′ M ′}, then b ≤′ M ′, whence m ≤′ b ∧ ¬b ≤′ m and b ∈ D.
In both cases we have a contradiction with ≤′-maximality of m in D. Thus M and M ′

are comparable w.r.t. ≤′, which implies that M ≈ M ′.

“Only if” part. Assume that an ARS (X, →) is strictly inductive and confluent ARS. Let
us show that (X, →) is openly quasi-normalizing and quasi-locally confluent.

From Proposition 19 it follows that (X, →) is quasi-normalizing. Then it is straightforward
to show that (X, →) is openly quasi-normalizing by noting that in the case of a confluent
(X, →), for any x ∈ X and for any x′, x′′ ∈ X which are quasi-normal forms of x, x′ →∗

x′′ ∧ x′′ →∗ x′ holds. Also, (X, →) is quasi-locally confluent by Proposition 25. ◀

The following statements can be considered as corollaries from Theorem 28.

▶ Corollary 29. (Newman’s lemma) Any locally confluent terminating ARS is confluent.

Proof. Follows immediately from Theorem 28 and the following propositions from Section 2:
any terminating ARS is strictly inductive and acyclic (Proposition 15)
any terminating ARS is openly quasi-normalizing. (Proposition 21)
any locally confluent acyclic ARS is quasi-locally confluent (Proposition 27).

Note that straightforward proofs of these propositions do not rely on the ordinary
Newman’s lemma itself. ◀

▶ Corollary 30. Any locally confluent ARS which is strictly inductive, acyclic and finitely
normalizing is confluent.

Proof. Follows immediately from Theorem 28 and the following propositions from Section 2:
any finitely normalizing ARS is openly quasi-normalizing (Proposition 23)
any locally confluent acyclic ARS is quasi-locally confluent (Proposition 27). ◀

Note that in the general case, the open quasi-normalization condition cannot be omitted
from the statement of Theorem 28 as the following example shows.

▶ Example 31. Consider an ARS (P, →), where P = [0, 1] × [0, 1] (where [0, 1] denotes the
real unit interval) and the reduction relation → is defined as follows (where components of
elements of P are denoted as x and t):

(x, t) → (x′, t′) if and only if (x ≤ x′ ∧ t < t′ ∧ x′ − x ≤ t′ − t).

It is straightforward to check that (P, →) is strictly inductive, quasi-locally confluent, but
is not confluent. Then (P, →) is not openly quasi-normalizing by Theorem 28, however,
(P, →) is quasi-normalizing by Proposition 19. Thus in this example one can link the lack
of confluence to the lack of open quasi-normalization. The described ARS is illustrated in
Figure 2.

▶ Remark. A possible interpretation of the ARS (P, →) given in Example 31 in terms of
physics (special relativity) is as follows. Consider x as space coordinate, t as time coordinate,
P as a region of spacetime. The relation

t < t′ ∧ |x′ − x| ≤ t′ − t,
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which can also be expressed as

(t′ − t) > 0 ∧ c2(t′ − t)2 − (x′ − x)2 ≥ 0,

where c = 1, is a strict causal precedence between events in (1+1) dimensional Minkowski
spacetime2, so a reduction (x, t) → (x′, t′) is a conjunction of this relation and a spatial
direction condition x ≤ x′, restricted to P .

Figure 2 Illustration of the ARS (P, →) from Example 31. Horizontal axis is x, vertical axis is t.

▶ Remark. Using a slight generalization of a chain completion construction for posets given
in [18], Theorem 28 may be indirectly applied to ARS which are not strictly inductive.

▶ Example 32. Consider an ARS (X, →), where X = [0, 1] × [0, 1] (where [0, 1] denotes a
real interval) and → ⊆ X × X is a relation such that for each x, y, x′, y′ ∈ [0, 1],

(x, y) → (x′, y′) if and only if (x < x′ ∨ (x = x′ ∧ y′ < y ∧ (x < 1 ∨ y < 1))) ∧ (x − y ≤
x′ − y′)∧ (x = y ⇒ x′ = y′) ∧ (x ≤ y ⇒ x′ ≤ y′).

The behavior of → is illustrated in Figure 3 below.
It is straightforward to check that this ARS is strictly inductive and acyclic and that (1, 0)

and (1, 1) are the only irreducible elements. Then using Proposition 19 one can conclude that
(X, →) is finitely normalizing, so from Proposition 23 and Theorem 28 it follows that for
(X, →) confluence and quasi-local confluence conditions are equivalent. To show quasi-local
confluence, for any point a ∈ X it is sufficient to choose some set S (e.g. the set of p ∈ X

such that a →+ p and d(a, p) ∈ (0, ε) for a small positive number ε which may depend on a,
where d is Euclidean distance) which satisfies the coinitiality condition from Definition 24
and make sure that it satisfies the two-consistency condition, i.e. pairs of elements in S can
be joined using finite reduction sequences which are allowed to end outside S. Note that the
given ARS (X, →) is indeed confluent.

▶ Remark. Further examples of ARS can be obtained from reachability relations on states
of various (possibly nondeterministic) dynamical models. For example, consider a hybrid
automaton [8] illustrated in Figure 4 that represents a simple model of motion of a bouncing
ball. Note that it is usual to consider a simplified version of such an automaton with a single
discrete state (Discrete state 1 in Figure 4), however, a model with a single discrete state is
deterministic and has Zeno behavior [8] (semi-formally, performs infinitely many discrete

2 Note that there exist known links [19] between this notion and models of distributed systems in the
sense of computer science.
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Figure 3 Illustration for Example 32. Elements of the ARS are points in the square [0, 1] × [0, 1].
The reduction relation → is described in Example 32. Horizontal axis is x, vertical axis is y. Points
above or on the diagonal shown in the figure have the point (1, 1) as a unique normal form. Points
strictly below the diagonal shown in the figure have (1, 0) as a unique normal form. For this ARS
quasi-local confluence implies confluence. Semi-formally, the quasi-local confluence condition for this
(acyclic) ARS can be checked by making sure that for every point (x, y) (e.g. (x, y) is a point D)
there exists a set S (e.g. intersection of {(x′, y′) | (x, y) →+ (x′, y′)} and a neighborhood of D) such
that any two points in S (e.g. points E, F ) can be joined using some finite reduction sequences (e.g.
E → G → I → (1, 0) and F → H → (1, 0)), and any point which is reachable from (x, y) using a
nonempty finite reduction sequence can be reached from some element of S using a finite (possibly
empty) reduction sequence. Such a set S is a generalization of the set of direct successors of an
element and the mentioned conditions replace the local confluence condition.

transitions over a bounded interval of continuous time). Since one cannot expect such a
model to adequately represent the behavior of a real object when very short time intervals
and distances are involved, one can introduce a new discrete state [16] (Discrete state 2,
stopped ball) and a nondeterministic transition between discrete states that represents an
uncertain moment when the ball stops. This does not exclude Zeno executions, but allows
one to acknowledge limitations of the model and of its ability to predict the behavior of a
real object (there exist other ways to address Zeno behavior issue [8], however, we will not
focus on them in this paper).

With the resulting hybrid model one associate an ARS (X, →) such that X = [0, +∞)×R
(continuous state space) and (y1, v1) → (y2, v2), if (y2, v2) can be reached from (y1, v1)

either via continuous evolution within one discrete state (see Figure 6),
or as a result of a single transition between discrete states (from Discrete state 1 to
Discrete state 1 or 2).

Often, important properties of the reachability relation (bounds on reachable sets, etc.)
can be determined from a model without explicitly solving the equations that determine
evolution of state in time (e.g. ordinary differential equations associated with discrete states).
In particular, methods related to real induction can be used to prove bounds on reachable
sets [23]. In this example such methods are not required, because the model is very simple,
however, it is still possible to determine that (y2, v2) reachable from (y1, v1) via continuous
evolution within Discrete state 1 satisfies 1

2 v2
2 − 1

2 v2
1 = g(y1 − y2) using energy conservation

considerations (without solving differential equations explicitly). The obtained properties of
the reduction → can be used in confluence analysis. Note that the described ARS is confluent
since the final position and velocity of the ball are both zero.
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Figure 4 Illustration of a simple bouncing ball hybrid automaton with 2 discrete states.
Here t is time, y is a vertical position, v is a vertical velocity, g is the gravity constant,
c is a restitution coefficient, ε, ε′ are positive constants.
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Figure 5 An example of an execution of the hybrid model illustrated in Figure 4.

4 Isabelle Formalization

Below we give formalized versions of definitions from Section 2 that are needed to formulate
Theorem 28 and a formalized version of the statement of Theorem 28 (main result). Other
formal definitions, Propositions 7-27, and formal proof texts for Theorem 28 and Propositions
7-27 are included in [14] (supplementary material for this paper).

The notions of an ARS and a confluent ARS are formalized as follows.

— Definition 1: (X,σ) is an abstract rewriting system (ARS) with a single reduction relation
— σ represents a reduction relation (->) as a predicate
— this formal definition enforces the types of X and σ and the condition -> ⊆ X×X
definition is_ars :: "’a set ⇒ (’a ⇒ ’a ⇒ bool) ⇒ bool"
("_,_ is ARS")

where "X,σ is ARS ≡ (∀ x y. σ x y −→ x ∈ X ∧ y ∈ X)"

— Definition 4(1): (X,σ) is a confluent ARS
definition is_confl_ars ("_,_ is CONFLUENT ARS")

where "X,σ is CONFLUENT ARS ≡ (X,σ is ARS) ∧
(∀ a∈X. ∀ b∈X. ∀ c∈X. (σ^** a b ∧ σ^** a c −→

(∃ d∈X. σ^** b d ∧ σ^** c d)))"
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Figure 6 Continuous state space and example trajectories for the hybrid model
illustrated in Figure 4 (transitions between Discrete states 1 and 2 are not illustrated).

Formalizations of basic preorder-related notions are given below.

— Definition 8(1): x is an upper bound of A (in preordered set (X,ϱ))
— ϱ represents a preorder relation ≤ as a predicate
— assumptions: A ⊆ X and ϱ is reflexive and transitive
abbreviation is_upperbound ::

"’a ⇒ ’a set ⇒ ’a set ⇒ (’a ⇒ ’a ⇒ bool) ⇒ bool"
("_ is anUPPER BOUND of _ in _,_")

where
"x is anUPPER BOUND of A in X,ϱ ≡ x∈X ∧ (∀ a∈A. ϱ a x)"

— Definition 8(2): x is a least element of A (in preordered set (X,ϱ))
— assumptions: A ⊆ X and ϱ is reflexive and transitive
abbreviation is_leastelem ::

"’a ⇒ ’a set ⇒ ’a set ⇒ (’a ⇒ ’a ⇒ bool) ⇒ bool"
("_ is LEAST of _ in _,_")
where

"x is LEAST of A in X,ϱ ≡ x∈A ∧ (∀ a∈A. ϱ x a)"

— Definition 8(3): x is a least upper bound of A (in preordered set (X,ϱ))
— assumptions: A ⊆ X and ϱ is reflexive and transitive
definition is_lub ("_ is l.u.b. of _ in _,_")
where

"x is l.u.b. of A in X,ϱ ≡ (x is LEAST of
{u. u is anUPPER BOUND of A in X,ϱ} in X,ϱ)"

— Definition 9(1): A is a chain (in preordered set (X,ϱ))
— assumptions: ϱ is reflexive and transitive
definition is_achain ("_ is aCHAIN in _,_")
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where "A is aCHAIN in X,ϱ ≡ A⊆X ∧ (∀ x∈A. ∀ y∈A. ϱ x y ∨ ϱ y x)"

— Definition 9(2): A is a closed subset (in preordered set (X,ϱ))
— assumptions: ϱ is reflexive and transitive
definition is_cclosedset ("_ is CLOSED SUBSET in _,_")
where

"A is CLOSED SUBSET in X,ϱ ≡ A ⊆ X ∧
(∀ C x. (C is aCHAIN in X,ϱ) ∧ C ̸= {} ∧
(x is l.u.b. of C in X,ϱ) ∧ C ⊆ A −→ x ∈ A)"

— Definition 9(3): A is an open subset (in preordered set (X,ϱ))
— assumptions: ϱ is reflexive and transitive
definition is_copenset ("_ is OPEN SUBSET in _,_")
where

"A is OPEN SUBSET in X,ϱ ≡ A ⊆ X ∧ ((X-A) is CLOSED SUBSET in X,ϱ)"

— Definition 9(4): A is relatively open in B w.r.t. preorder ϱ

— assumptions: ϱ is reflexive and transitive
definition is_relopenset ("_ is REL.OPEN SUBSET in _ wrt _")
where

"A is REL.OPEN SUBSET in B wrt ϱ ≡
A is OPEN SUBSET in B,(λ x y. ϱ x y ∧ x ∈ B ∧ y ∈ B)"

— Definition 10: (X,ϱ) is a strictly inductive preordered set
— ϱ represents a preorder relation ≤ as a predicate
— this formal definition enforces that ≤ is reflexive and transitive
— but does not enforce that ≤ ⊆ X×X
definition is_siprset ("_,_ is S.I.PREORDERED")
where

"X,ϱ is S.I.PREORDERED ≡
(∀ x∈X. ϱ x x) ∧
(∀ x∈X. ∀ y∈X. ∀ z∈X. ϱ x y ∧ ϱ y z −→ ϱ x z) ∧
(∀ C. (C is aCHAIN in X,ϱ) ∧ C ̸= {} −→ (∃ x. (x is l.u.b. of C in X,ϱ)))"

— Definition 11(1): (X,σ) is a strictly inductive ARS
— Note that σ^** includes a diagonal relation which may relate
— elements which do not belong to X, but which are of the same type as members of X.
— However, existence of such elements is not significant for this formal definition.
definition is_si_ars ("_,_ is S.I.ARS")

where "X,σ is S.I.ARS ≡ (X,σ is ARS) ∧ (X,(σ^**) is S.I.PREORDERED)"

The notions related to quasi-normal forms are formalized as follows.

— Definition 17(1): x is quasi-irreducible in (X,σ)
— assumptions: (X,σ) is ARS and x ∈ X
abbreviation is_qirreduc :: "’a ⇒ ’a set ⇒ (’a ⇒ ’a ⇒ bool) ⇒ bool"
("_ is Q.IRREDUCIBLE in _,_")

where "x is Q.IRREDUCIBLE in X,σ ≡ ∀ y∈X. σ^** x y −→ σ^** y x"

— Definition 17(2): x’ is a quasi-normal form of x in (X,σ)
— assumptions: (X,σ) is ARS and x ∈ X
definition is_qnform ("_ is Q.N.F. of _ in _,_")

where "x’ is Q.N.F. of x in X,σ ≡
x’∈X ∧ σ^** x x’ ∧ (x’ is Q.IRREDUCIBLE in X,σ)"
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— Definition 17(3): x,x’ are quasi-equivalent in (X,σ)
— assumptions: (X,σ) is ARS and x ∈ X and x’ ∈ X
definition are_qequiv ("_,_ are QNF-EQUIVALENT in _,_")

where "x,x’ are QNF-EQUIVALENT in X,σ ≡
{y∈X. y is Q.N.F. of x in X,σ} = {y∈X. y is Q.N.F. of x’ in X,σ}"

— Definition 18(1): (X,σ) is a quasi-normalizing ARS
definition is_qn_ars ("_,_ is Q.N.ARS")

where "X,σ is Q.N.ARS ≡ (X,σ is ARS) ∧
(∀ x∈X. ∃ x’∈X. (x’ is Q.N.F. of x in X,σ))"

— Definition 18(2): (X,σ) is an openly quasi-normalizing ARS
definition is_oqn_ars ("_,_ is O.Q.N.ARS")

where "X,σ is O.Q.N.ARS ≡ (X,σ is Q.N.ARS) ∧
(∀ x∈X. ∀ x’∈X. (x’ is Q.N.F. of x in X,σ) −→

({y∈X. σ^** x y ∧ (y,x’ are QNF-EQUIVALENT in X,σ)}
is REL.OPEN SUBSET in {y∈X. σ^** x y} wrt (σ^**)))"

Quasi-local confluence is formalized as follows.

— A set S satisfies the two-consistency condition in ARS (X,σ)
— assumptions: (X,σ) is ARS and S ⊆ X
definition sat_two_consist_cond ("_ sat.2-CONSISTENCY in _,_")
where

"S sat.2-CONSISTENCY in X,σ ≡ (∀ b∈S. ∀ c∈S. ∃ d∈X. σ^** b d ∧ σ^** c d)"

— A set S satisfies the coinitiality condition in ARS (X,σ) w.r.t. element a
— assumptions: X,σ is ARS and S ⊆ X and a ∈ X
definition sat_coinit_cond ("_ sat.COINITIALITY in _,_ wrt _")
where

"S sat.COINITIALITY in X,σ wrt a ≡
(∀ x∈X. σ^++ a x −→ ((σ^** x a) ∨ (∃ b∈S. σ^** b x ∧ ¬ (σ^** b a))))"

— Definition 24: (X,σ) is a quasi-locally confluent ARS
definition is_qlconfl_ars ("_,_ is Q.L.CONFLUENT ARS")

where "X,σ is Q.L.CONFLUENT ARS ≡ (X,σ is ARS) ∧
(∀ a∈X. ∃ S ⊆ {x∈X. σ^++ a x}.
(S sat.2-CONSISTENCY in X,σ) ∧ (S sat.COINITIALITY in X,σ wrt a))"

The statement of the main result is formalized as follows.

theorem thm_28:
— Theorem 28 (main result, generalized Newman’s lemma)
fixes X σ

assumes "X,σ is S.I.ARS"
shows "(X,σ is CONFLUENT ARS) = ((X,σ is O.Q.N.ARS) ∧ (X,σ is Q.L.CONFLUENT ARS))"

5 Discussion

From a practical perspective, usual confluence criteria for ARS associated with discrete
models of computation can be used in software tools that allow a user to make sure that
an output of a nondeterministic program does not depend on its execution path. Program
nondeterminism is frequently caused by concurrent mode of execution, so such tools can
aid automated testing or formal verification of concurrent and distributed software. Similar

FSCD 2023
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reasons of nondeterminism exist for models of cyber-physical systems (CPS), however, for
such models other sources of nondeterminism may also have significant role, e.g. abstractions
and approximations used in dynamical models of physical components of a system can
lead to non-uniqueness of solutions of state evolution equations [16]. Thus the reasons
of development of confluence checkers for models of CPS can be generally analogous to
the reasons of development of such checkers for discrete models of computation. Practical
implementation of an automated confluence checker for models of CPS is out of scope of this
paper, however, we consider this an important problem which requires further work, and the
results obtained in this paper can be used to approach it.

One may question whether the notion of an ARS is adequate for modeling CPS. In our
opinion, ARS can be used as an auxiliary model of dynamics for such systems, assuming that
a reduction relation or its transitive closure represents a reachability relation on states of a
primary dynamical model of a CPS (e.g. described as a hybrid dynamical system, etc.). This
type of auxiliary model is most useful when a primary model satisfies a nondeterministic
version of Markovian property [28, 12] (an adaptation of the respective notion known from the
theory of stochastic processes to nondeterministic dynamical systems without any associated
probability measures), which, informally speaking, generalizes (to non-discrete-time cases)
the following condition which obviously holds for ARS: the set of possible reduction sequences
which begin at a given element x does not depend on how x has been reached. When
such a (generalized) property holds for a primary model, a correspondence between various
properties of interest of an auxiliary model/ARS (like confluence) and of a primary model
becomes particularly simple. Note that many types of (non-discrete-time) models relevant
for CPS domain can be represented using nondeterministic dynamical systems which have
Markovian property in the mentioned sense [12].

6 Conclusion

We have proposed a criterion of confluence for the class of abstract rewriting systems (X, →)
such that (X, →∗) is a strictly inductive preordered set, where →∗ is the reflexive transitive
closure of the reduction relation →. Ordinary Newman’s lemma for terminating abstract
rewriting systems can be considered as a corollary of this criterion. However, this criterion
can also be applied to a wide class of non-terminating abstract rewriting systems.

We have described a formalization of this criterion in Isabelle proof assistant using HOL
logic and have discussed its potential applications.
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Abstract
Higher-order unification (HOU) concerns unification of (extensions of) λ-calculus and can be seen
as an instance of equational unification (E-unification) modulo βη-equivalence of λ-terms. We
study equational unification of terms in languages with arbitrary variable binding constructions
modulo arbitrary second-order equational theories. Abstract syntax with general variable binding
and parametrised metavariables allows us to work with arbitrary binders without committing to
λ-calculus or use inconvenient and error-prone term encodings, leading to a more flexible framework.
In this paper, we introduce E-unification for second-order abstract syntax and describe a unification
procedure for such problems, merging ideas from both full HOU and general E-unification. We
prove that the procedure is sound and complete.
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1 Introduction

Higher-order unification (HOU) is a process of solving symbolic equations with functions.
Consider the following equation in untyped λ-calculus that we want to solve for m:

m g (λz.z a) ?= g a (1)

A solution to this problem (called a unifier) is the substitution θ = [m 7→ λx.λy.y x].
Indeed, applying θ to the equation we get β-equivalent terms on both sides:

θ(m g (λz.z a)) = (λx.λy.y x) g (λz.z a) ≡β (λy.y g) (λz.z a) ≡β (λz.z a) g ≡β g a = θ(g a)

Higher-order unification has many applications, including type checking [22] and automatic
theorem proving in higher-order logics [24]. In general, HOU is undecidable [12] and searching
for a unifier can be rather expensive without non-trivial optimizations. For some problems,
a decidable fragment is sufficient to solve for. For instance, Miller’s higher-order pattern
unification [23] and its variations [13, 37] are often used for dependent type inference.

Traditionally, HOU algorithms consider only one binder – λ-abstraction. A common
justification is an appeal to Higher-Order Abstract Syntax (HOAS) [27]:

It is well-known that λ-abstraction is general enough to represent quantification
in formulae, abstraction in functional programs, and many other variable-binding
constructs [27]. (Nipkow and Prehofer [25, Section 1])
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However, HOAS has received some criticism from both programming language imple-
mentors and formalisation researchers, who argue that HOAS and its variants [2, 36] have
some practical issues [19, 5], such as being hard to work under binders, having issues with
general recursion [18], and lacking a formal foundation [9].

Fiore and Szamozvancev [9] argue that existing developments for formalising, reasoning
about, and implementing languages with variable bindings ‘offer some relief, however at
the expense of inconvenient and error-prone term encodings and lack of formal foundations’.
Instead, they suggest to consider second-order abstract syntax [10], that is, abstract syntax
with variable binding and parametrised metavariables. Indeed, Fiore and Szamozvancev [9]
use second-order abstract syntax to generate metatheory in Agda for languages with variable
bindings.

In this paper, we develop a mechanisation of equational reasoning for second-order abstract
syntax. We take inspiration in existing developments for HOU and E-unification. Although
we cannot directly reuse all HOU ideas that rely heavily on the syntax of λ-calculus, we are
still able to adapt many of them, since second-order abstract syntax provides parametrised
metavariables which are similar to flex terms in HOU.

1.1 Related Work
To the best of our knowledge, there does not exist a mechanisation of equational reasoning for
second-order abstract syntax. Thus, we compare our approach with existing HOU algorithms
that encompass equational reasoning. Snyder’s higher-order E-unification [28] extends HOU
with first-order equational theories. Nipkow and Prehofer [25] study higher-order rewriting
and (higher-order) equational reasoning. As mentioned, these rely on λ-abstraction and a
HOAS-like encoding to work with other binding constructions. In contrast, we work with
arbitrary binding constructions modulo a second-order equational theory.

Dowek, Hardin, and Kirchner [8] present higher-order unification as first-order E-
unification in λσ-calculus (a variant of λ-calculus with explicit substitutions) modulo βη-
reduction. Their idea is to use explicit substitutions and de Bruijn indices so that metavariable
substitution cannot result in name capture and reduces to grafting (first-order substitution).
In this way, algorithms for first-order E-unification (such as narrowing) can be applied.
Kirchner and Ringeissen [17] develop that approach for higher-order equational unification
with first-order axioms. In our work, parametrised metavariables act in a similar way to
metavariables with explicit substitutions in λσ-calculus. While it should be possible to encode
second-order equations as first-order equations in σ-calculus (with explicit substitution, but
without λ-abstraction and application), it appears that this approach requires us to also
encode rules of our unification procedure.

As some equational theories can be formulated as term rewriting systems, a line of research
combining rewrite systems and type systems exists, stemming from the work of Tannen [33],
which extends simply-typed λ-calculus with higher-order rewrite rules. Similar extensions
exist for the Calculus of Constructions [1, 35, 29, 30] and λΠ-calculus [7]. Cockx, Tabareau,
and Winterhalter [6] introduce Rewriting Type Theory (RTT) which is an extension of Martin-
Löf Type Theory with (first-order) rewrite rules. Chrząszcz and Walukiewicz-Chrząszcz [3]
discuss how to extend Coq with rewrite rules. Cockx [4] reports on a practical extension
of Agda with higher-order non-linear rewrite rules, based on the same ideas as RTT [6].
Rewriting is especially useful in proof assistants that compare types (and terms) through
normalisation by evaluation (NbE) rather than higher-order unification. Contrary to type
theories extended with rewrite rules, our approach relies on simply-typed syntax, but allows
for an arbitrary second-order equational theory, enabling unification even in the absence of a
confluent rewriting system.
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Kudasov [20] implements higher-order (pre)unification and dependent type inference in
Haskell for an intrinsically scoped syntax using so-called free scoped monads to generate the
syntax of the object language from a data type describing node types. Such a definition
is essentially a simplified presentation of second-order abstract syntax. Kudasov’s pre-
unification procedure contains several heuristics, however no soundness or completeness
results are given in the preprint.

1.2 Contribution
The primary contribution of this paper is the introduction of E-unification for second-order
abstract syntax and a sound and complete unification procedure. The rest of the paper is
structured as follows:

In Section 2, we briefly revisit second-order abstract syntax, equational logic, and term
rewriting à la Fiore and Hur [10].
In Section 3, we generalise traditional E-unification concepts of an E-unification problem
and an E-unifier for a set of second-order equations E.
In Section 4, we define the unification procedure that enumerates solutions for any given
E-unification problem and prove it sound.
In Section 5, we prove completeness of our unification procedure, taking inspiration from
existing research on E-unification and HOU.
Finally, we discuss some potential pragmatic changes for a practical implementation as
well as limitations of our approach in Section 6.

2 Second-Order Abstract Syntax

In this section, we recall second-order abstract syntax, second-order equational logic, and
second-order term rewriting of Fiore and Hur [10].

2.1 Second-Order Terms
We start by recalling a notion of second-order signature, which essentially contains information
about the syntactic constructions (potentially with variable bindings) of the object language.

A second-order signature [10, Section 2] Σ = (T, O, | − |) is specified by a set of types
T , a set of operators1 O, and an arity2 function | − | : O → (T ∗ × T )∗ × T . For an operator
F ∈ O, we write F : (σ1.τ1, . . . , σn.τn)→ τ when |F| = ((σ1, τ1), . . . , (σn, τn), τ). Intuitively,
this means that an operator F takes n arguments each of which binds ni = |σi| variables of
types σi,1, . . . , σi,ni

in a term of type τi.
For the rest of the paper, we assume an ambient signature Σ, unless otherwise stated.
A typing context [10, Section 2] Θ | Γ consists of metavariable typings Θ and variable

typings Γ. Metavariable typings are parametrised types: a metavariable of type [σ1, . . . , σn]τ ,
when parametrised by terms of type σ1, . . . , σn, will yield a term of type τ . We will write a
centered dot (·) for the empty (meta)variable context.

For example, this context has a metavariable m with two parameters and variables x, y:
Θ | Γ = (m : [σ, σ ⇒ τ ]τ | x : σ ⇒ τ , y : σ).

1 In literature on E-unification, authors use the term functional symbol instead.
2 We follow the terminology of Fiore and Hur.
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x : τ ∈ Γ variablesΘ | Γ ⊢ x : τ

m : [σ1, . . . , σn]τ ∈ Θ
for all i = 1, . . . , n Θ | Γ ⊢ ti : σi metavariablesΘ | Γ ⊢ m[t1, . . . , tn] : τ

F : (σ1.τ1, . . . , σn.τn)→ τ

for all i = 1, . . . , n Θ | Γ, xi : σi ⊢ ti : τi operators
Θ | Γ ⊢ F(x1.t1, . . . , xn.tn) : τ

Figure 1 Second-order terms in context.

▶ Definition 1 ([10, Section 2]). A judgement for typed terms in context Θ | Γ ⊢ − : τ is
defined by the rules in Figure 1. Variable substitution on terms is defined in a usual way, see
[10, Section 2] for details.

Let Θ = (mi : [σi]τi)i∈{1,...,n}, and consider a term Θ | Γ ⊢ t : τ , and for all i ∈ {1, . . . , n}
a term in extended3 context Ξ | Γ, ∆, zi : σi ⊢ ti : τi. Then, metavariable substitution
t[mi[zi] 7→ ti]i∈{1,...,n} is defined recursively on the structure of t:

x[mi[zi] 7→ ti]i∈{1,...,n} = x

mk[s][mi[zi] 7→ ti]i∈{1,...,n} = tk[zk 7→ s[mi[zi] 7→ ti]i∈{1,...,n}]
when k ∈ {1, . . . , n} and |s| = |zk|

n[s][mi[zi] 7→ ti]i∈{1,...,n} = n[s[mi[zi] 7→ ti]i∈{1,...,n}] when n ̸∈ {m1, . . . , mn}

F(x.s)[mi[zi] 7→ ti]i∈{1,...,n} = F(x.s[mi[zi] 7→ ti]i∈{1,...,n})

We write θ : Θ | Γ→ Ξ | Γ, ∆ for a substitution θ = [mi[zi] 7→ ti]i∈{1,...,n}.
When both Γ and ∆ are empty, we write θ : Θ→ Ξ as a shorthand for θ : Θ | · → Ξ | ·.
For single metavariable substitutions in a larger context we will omit the metavariables

that map to themselves. That is, we write [mk[z] 7→ tk] : Θ | Γ → Ξ | Γ, ∆ to mean that
ti = mi[zi] for all i ̸= k.

2.2 Second-Order Equational Logic
We now define second-order equational presentations and rules of second-order logic, following
Fiore and Hur [10, Section 5]. This provides us with tools for reasoning modulo second-order
equational theories, such as βη-equivalence of λ-calculus.

An equational presentation [10, Section 5] is a set of axioms each of which is a pair of
terms in context.

▶ Example 2. Terms of simply-typed λ-calculus are generated with a family of operators (for
all σ, τ) – absσ,τ : σ.τ → (σ ⇒ τ) and appσ,τ : (σ ⇒ τ , σ)→ τ . And equational presentation
for simply-typed λ-calculus is given by a family of axioms:

m : [σ]τ , n : []σ | · ⊢ app(abs(x.m[x]), n[]) ≡ m[n[]] : τ (β)
m : []σ ⇒ τ | · ⊢ abs(x.app(m[], x)) ≡ m[] : σ ⇒ τ (η)

3 Here we slightly generalise the definition of Fiore and Hur by allowing arbitrary extension of context to
Γ, ∆ in the resulting term. This is useful in particular when Γ is empty. See Definition 26.
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(Θ | Γ ⊢ s ≡ t : τ) ∈ E
axiomΘ | Γ ⊢ s ≡E t : τ

Θ | Γ ⊢ t : τ
reflΘ | Γ ⊢ t ≡E t : τ

Θ | Γ ⊢ s ≡E t : τ sym
Θ | Γ ⊢ t ≡E s : τ

Θ | Γ ⊢ s ≡E t : τ Θ | Γ ⊢ t ≡E u : τ
trans

Θ | Γ ⊢ s ≡E u : τ

m1 : [σ1]τ1, . . . , mn : [σn]τn | Γ ⊢ s ≡E t : τ

for all i ∈ {1, . . . , n} Θ | ∆, xi : σi ⊢ si ≡E ti : τi
substΘ | Γ, ∆ ⊢ s[m1[x1] 7→ s1, . . . , mn[xn] 7→ sn] ≡E t[m1[x1] 7→ t1, . . . , mn[xn] 7→ tn] : τ

Figure 2 Rules of the second-order equational logic.

Note that the types here do not depend on the context, so it makes sense to only allow
equating terms of the same type. This is in contrast to dependently typed systems, where
terms can have different (but equivalent) types.

An equational presentation E generates a second-order equational logic [10, Fig. 2].
Rules for second-order equational logic are given in Figure 2.

In their paper, Fiore and Hur note that metavariables with zero parameters are equivalent
to regular variables. Indeed, we can parametrise every term Θ | Γ ⊢ t : τ to yield a term
Θ, Γ̂ | · ⊢ t̂ : τ where for Γ = (x1 : σ1, . . . , xn : σn) we have

Γ̂ = (x1 : []σ1, . . . , xn : []σn) t̂ = t[x1 7→ x1[], . . . , xn 7→ xn[]]

Applying parametrisation to an equational presentation E yields a set of parametrised
equations Ê. Note that the following are equivalent:

Θ | Γ ⊢ s ≡E t : τ iff Θ, Γ̂ | · ⊢ ŝ ≡
Ê

t̂ : τ

Thus, from now on, we assume that axioms have empty variable context.

2.3 Second-Order Term Rewriting
Finally, for the proof of completeness in Section 5, it will be helpful to rely on chains of term
rewrites rather than derivation trees of equality modulo E. Fiore and Hur introduce the
second-order term rewriting relation [10, Section 8].

An equational presentation E generates a second-order term rewriting relation
−→E [10, Fig. 4]. We write s

∗−→E t if there is a sequence of terms u1, . . . , un such that
s = u1 −→E . . . −→E un = t. We write s ←→E t if either s −→E t or t −→E s. We write
s

∗←→E t if there is a sequence of terms u1, . . . , un such that s = u1 ←→E . . .←→E un = t.
Since we only care about substitutions of metavariables in axioms (variable context is

empty), a simplified version of the rules is given in Figure 3.
An important result of Fiore and Hur is that of soundness and completeness of second-order

term rewriting [10, Section 8]: Θ | Γ ⊢ s ≡E t : τ iff Θ | Γ ⊢ s
∗←→E t : τ .

3 E-unification with Second-Order Equations

In this section, we formulate the equational unification problem for second-order abstract
syntax, describe what constitutes a solution to such a problem and whether it is complete.
We also recognise a subclass of problems in solved form, i.e. problems that have an immediate
solution. For the most part, this is a straightforward generalisation of standard concepts of
E-unification [11].
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10:6 E-Unification for Second-Order Abstract Syntax

(m1 : [σ1]τ1, . . . , mk : [σk]τk | · ⊢ l ≡ r : τ) ∈ E

Θ | Γ, xi : σi ⊢ ti : τi : for i ∈ {1, . . . , k}
Θ | Γ ⊢ l[mi[zi] 7→ ti]i∈{1,...,k} −→ r[mi[zi] 7→ ti]i∈{1,...,k} : τ

m : [σ]τ Θ | Γ ⊢ si −→ ti : σi

Θ | Γ ⊢ m[. . . , si, . . .] −→ m[. . . , ti, . . .] : τ

F : (σ1.τ1, . . . , σn.τn)→ τ Θ | Γ, xi : σi ⊢ si −→ ti : τi

Θ | Γ ⊢ F(. . . , xi.si, . . .) −→ F(. . . , xi.ti, . . .) : τ

Figure 3 Rules of the second-order term rewriting (simplified). In the second and third rules, the
subterms under (. . .) are kept unchanged, so only one subterm is rewritten per rule.

▶ Definition 3. A second-order constraint Θ | Γ∃, Γ∀ ⊢ s
?= t : τ is a pair of terms in a

context, where variable context is split into two components: Γ = (Γ∃, Γ∀).

The idea is that Γ∃ contains variables that we need to solve for (free variables), while Γ∀
contains variables that we cannot substitute (bound variables). Metavariables are always
treated existentially, so we do not split metavariable context. Similarly to equational
representations, we can parametrise (a set of) constraints, yielding Θ, Γ̂∃ | Γ∀ ⊢ s

?= t : τ .
Thus, from now on, we will assume Γ = Γ∀ (i.e. Γ∃ is empty) for all constraints.

▶ Example 4. Assume α = σ ⇒ τ , β = (σ ⇒ τ)⇒ τ . The following are equivalent:
1. For all g : α, a : σ, find m : α⇒ β ⇒ τ such that m g (λz.z a) = g a.
2. · | m : α⇒ β ⇒ τ , g : α, a : σ ⊢ app(app(m, g), abs(z.app(z, a))) ?= app(g, a) : τ

3. m : []α⇒ β ⇒ τ | g : α, a : σ ⊢ app(app(m[], g), abs(z.app(z, a))) ?= app(g, a) : τ

4. m : [α, β]τ | g : α, a : σ ⊢ m[g, abs(z.app(z, a))] ?= app(g, a) : τ

Here, Item 2 is a direct encoding of Item 1 as a second-order constraint. Item 3 is a
parametrised version of Item 2. Item 4 is equivalent to Item 3 modulo β-equality, witnessed
by metasubstitutions [m[] 7→ abs(x.abs(y.app(x, y)))] and [m[x, y] 7→ app(app(m[], x), y)].

▶ Definition 5. Given an equational presentation E, an E-unification problem ⟨Θ, S⟩ is
a finite set S of second-order constraints in a shared metavariable context Θ. We present an
E-unification problem as a formula of the following form:

∃(m1 : [σ1]τ1, . . . , mn : [σn]τn).(∀(z1 : ρ1).s1
?= t1 : τ1) ∧ . . . ∧ (∀(zk : ρk).sk

?= tk : τk)

▶ Definition 6. A metavariable substitution ξ : Θ → Ξ is called an E-unifier for an
E-unification problem ⟨Θ, S⟩ if for all constraints (Θ | Γ∀ ⊢ s

?= t : τ) ∈ S we have

Ξ | Γ∀ ⊢ ξs ≡E ξt : τ

We write UE(S) for the set of all E-unifiers for ⟨Θ, S⟩.

▶ Example 7. Consider unification problem ⟨Θ, S⟩ for the simply-typed λ-calculus:

Θ = m : [σ ⇒ τ , (σ ⇒ τ)⇒ τ ]τ

S = {Θ | g : σ ⇒ τ , y : σ ⊢ m[g, abs(x.app(x, y))] ?= app(g, y) : τ}

Substitution [m[z1, z2] 7→ app(z2, z1)] : Θ→ · is an E-unifier for ⟨Θ, S⟩.
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3.1 Unification Problems in Solved Form
Here, we recognise a class of trivial unification problems. The idea is that a constraint that
looks like a metavariable substitution can be uniquely unified. A unification problem can be
unified as long as substitutions for constraints are sufficiently disjoint. More precisely:

▶ Definition 8. An E-unification problem ⟨Θ, S⟩ is in solved form when S consists only of
constraints of the form Θ, m : [σ]τ | Γ∀ ⊢ m[z] ?= t : τ such that
1. z : σ ⊆ Γ∀ (parameters of m are distinct variables from Γ∀)
2. Θ | z : σ ⊢ t : τ (m and variables not occurring in z do not occur in t)
3. all constraints have distinct metavariables on the left hand side

▶ Example 9. Let Θ = (m : [σ, σ]σ). Then
1. {Θ | x : σ, y : σ ⊢ m[y, x] ?= app(abs(z.x), y) : σ} is in solved form;
2. {Θ | x : σ, y : σ ⊢ m[x, x] ?= app(abs(z.x), y) : σ} is not in solved form, since parameters of

m are not distinct variables and also since variable y occurs on the right hand side, but
does not occur in parameters of m;

3. {Θ | f : σ ⇒ σ, y : σ ⊢ m[y, app(f, y)] ?= app(f, y) : σ} is not in solved form, since second
parameter of m is not a variable.

▶ Proposition 10. An E-unification problem ⟨Θ, S⟩ in solved form has an E-unifier.

Proof. Assume Θ = {Θ | Γi ⊢ mi[zi]
?= ti : τi}i∈{1,...,n}. Let ξS = [mi[zi] 7→ ti]i∈{1,...,n}. Note

that ξS is a well formed metasubstitution since, by assumption, each zi is a sequence of
distinct variables, ti does not reference other variables or mi, and each metavariable mi is
mapped only once in ξS . Applying ξS to each constraint we get trivial constraints, which are
satisfied by reflexivity: Θ | Γi ⊢ ti ≡E ti : τi. Thus, ξS is an E-unifier for ⟨Θ, S⟩. ◀

Later, we will refer to the E-unifier constructed in the proof of Proposition 10 as ξS .

3.2 Comparing E-unifiers
In general, a unification problem may have multiple unifiers. Here, we generalise the usual
notion of comparing E-unifiers [11] to the second-order abstract syntax using the subsumption
order, leading to a straightforward generalisation of the ideas of the most general unifier
and a complete set of unifiers. We do not consider generalising essential unifiers [14, 32] or
homeomorphic embedding [31], although these might constitute a prospective future work.

▶ Definition 11. Two metavariable substitutions θ, ξ : Θ→ Ξ are said to be equal modulo
E (notated θ ≡E ξ) if for all metavariables m : [σ]τ ∈ Θ, any context Γ, and any terms
Θ | Γ ⊢ ti : σi (for all i ∈ {1, . . . , n}) we have

Ξ | Γ ⊢ θm[t1, . . . , tn] ≡E ξm[t1, . . . , tn] : τ

We say that θ is more general modulo E than ξ (notated θ ≼E ξ) when there exists
a substitution η : Ξ→ Ξ such that η ◦ θ ≡E ξ.

Empty substitution is more general than any substitution. A more interesting example
may be found in λ-calculus. Let

θ1 = [m[x, y] 7→ app(n[x], y)]
θ2 = [m[x, y] 7→ app(abs(z.x), y), n[x] 7→ abs(z.x)]
θ3 = [m[x, y] 7→ x, n[x] 7→ abs(z.x)]

Then, θ1 ≼E θ2, θ2 ≡E θ3, and θ1 ≼E θ3 (witnessed by [n[x] 7→ abs(z.x)] ◦ θ1 ≡E θ3).
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▶ Proposition 12. If θ ≡E ξ then for any E-unification problem ⟨Θ, S⟩ we have θ ∈ UE(S)
iff ξ ∈ UE(S).

Proof. For each constraint Θ | Γ∀ ⊢ s
?= t : τ , by induction on the structure of s and t it is

straightforward to show that Ξ | Γ ⊢ θs ≡E θt : τ iff Ξ | Γ ⊢ ξs ≡E ξt : τ . ◀

▶ Corollary 13. If θ ≼E ξ and θ ∈ UE(S) then ξ ∈ UE(S).

Not all substitutions can be compared. Consider untyped lambda calculus with ⋆ being
the type of any term. Let Θ = (m : [⋆, ⋆]⋆) and

θ = [m[z1, z2] 7→ app(z2, z1)]
ξ = [m[z1, z2] 7→ app(z1, app(z2, abs(z.z)))]

None of these substitutions is more general modulo equational theory E of untyped λ-calculus
than the other. At the same time, both are E-unifiers for the problem

∃(m : [⋆, ⋆]⋆). ∀(g : ⋆, y : ⋆). m[g, abs(x.app(x, y))] ?= app(g, y) : ⋆

3.3 Complete Sets of E-unifiers
While there is sometimes more than one solution to an E-unification problem, we may often
hope to collect several sufficiently general unifiers into a single set:

▶ Definition 14. Given an E-unification problem ⟨Θ, S⟩, a (minimal) complete set of
E-unifiers for ⟨Θ, S⟩ (notated CSUE(S)) is a subset of UE(S) such that
1. (completeness) for any η ∈ UE(S) there exists θ ∈ CSUE(S) such that θ ≼E η;
2. (minimality) for any θ, ξ ∈ CSUE(S) if θ ≼E ξ then θ = ξ.

We reserve the notation CSUE(S) to refer to minimal complete sets of E-unifiers (i.e.
satisfying both conditions).

▶ Example 15. The E-unification problem ⟨Θ, S⟩ in untyped λ-calculus has an infinite
CSUE(S):

⟨Θ, S⟩ = ∃(m : [⋆, ⋆]⋆). ∀(g : ⋆, y : ⋆). m[g, abs(x.app(x, y))] ?= app(g, y) : ⋆

CSUE(S) = {[m[z1, z2] 7→ app(z2, z1)],
[m[z1, z2] 7→ app(z1, app(z2, abs(x.x)))],
[m[z1, z2] 7→ app(app(z2, abs(x.abs(f.app(f, x)))), z1)], . . .}

▶ Proposition 16. For any two minimal complete sets of E-unifiers CSU1
E(S) and CSU2

E(S),
there exists a bijection f : CSU1

E(S)←→ CSU2
E(S) such that

∀θ ∈ CSU1
E(S). θ ≡E f(θ)

Thus, CSUE(S) is unique up to a bijection modulo E, so from now on we will refer to the
complete set of E-unifiers.

▶ Definition 17. When the complete set of E-unifiers CSUE(S) is a singleton set, then we
refer to its element as the most general E-unifier of S (notated mguE(S)).
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▶ Example 18. Consider this E-unification problem ⟨Θ, S⟩ in simply-typed λ-calculus:

∃(m : [σ ⇒ τ , (σ ⇒ τ)⇒ τ ]τ). ∀(g : σ ⇒ τ , y : σ). m[g, abs(x.app(x, y))] ?= app(g, y) : τ

For this problem the most general E-unifier exists: mguE(S) = [m[z1, z2] 7→ app(z2, z1)].
This example differs from Example 15 as here we work in simply-typed lambda calculus.

▶ Proposition 19. If ⟨Θ, S⟩ is an E-unification problem in solved form, then mguE(S) ≡E ξS.

Proof. It is enough to check that for any E-unifier θ ∈ UE(S) we have ξS ≼E θ. Observe
that θ ≡E θ ◦ ξS since for any constraint (Θ | Γ∀ ⊢M [z] ?= t : τ) ∈ S such that m : [σ]τ ∈ Θ,
any context Γ, and any terms Θ | Γ ⊢ ti : σi (for all i ∈ {1, . . . , n}) we have

Ξ | Γ ⊢ θm[t] ≡E θt[z 7→ t] ≡E θ(ξSm[z])[z 7→ t] ≡E θ(ξSm[t]) : τ ◀

4 Unification Procedure

In this section, we introduce a unification procedure to solve arbitrary E-unification problems
over second-order abstract syntax. We show that the procedure is sound at the end of this
section, and we devote Section 5 for the completeness result.

Our unification procedure has features inspired by classical E-unification and HOU
algorithms. For the equational part, we took inspiration from the complete sets of transform-
ations for general (first-order) E-unification of Gallier and Snyder [11]. For unification of
metavariables, we took inspiration from Huet’s higher-order pre-unification [15] and Jensen
and Pietrzykowski’s procedure [16]. Some key insights from the recent work by Vukmirovic,
Bentkamp, and Nummelin [34] give us the opportunity to improve the algorithm further,
however, we are not attempting to achieve an efficient E-unification for second-order abstract
syntax in this paper.

Note that we cannot directly reuse HOU ideas in our procedure, since we do not have full
λ-calculus at our disposal. Instead we only have parametrised metavariables m[t1, . . . , tn]
which are analogous to applications of variables in HOU (m t1 . . . tn). Still, we can adapt
some ideas if they do not rely on normalisation or specific syntax of λ-calculus. For other ideas,
we introduce simpler, yet more general versions. This allows us to preserve completeness,
perhaps, sacrificing some efficiency, making the search space larger. While we believe it is
possible to optimise our procedure to have virtually the same running time for unification
problems in λ-calculus as HOU algorithms mentioned above, we leave such optimisations for
future work.

To produce the unification procedure we follow and generalise some of the common steps
that can be found in literature on HOU and first-order E-unification:
1. Classify substitutions that will constitute partial solutions for certain classes of constraints.

The idea is that an overall solution will emerge as a composition of partial solutions.
2. Define transition rules that make small steps towards a solution.
3. Determine when to stop (succeed or fail).
4. If possible, organize rules in a proper order, yielding a unification procedure.

4.1 Bindings
Now we define different elementary substitutions that will serve as partial solutions for some
constraints in our unification procedure. Here, we generalise a list of bindings collected
by Vukmirovic, Bentkamp, and Nummelin [34]. From that list, Huet-style projection (also
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known as partial binding in HOU literature) is not used. Instead, imitation for axioms and
JP-style projection bindings cover all substitutions that can be generated by Huet-style
projection bindings4. We also use a simplified version of iteration binding here, again, since it
generates all necessary bindings when considered together with generalised imitation binding.

▶ Definition 20. We define the following types of bindings ζ:
JP-style projection for m. If m : [σ1, . . . , σk]τ and σi = τ then

ζ = [m[z] 7→ zi] is a JP-style projection binding
Imitation for m. If m : [σ1, . . . , σk]τ , F : (α1.β1, . . . , αn.βn) → τ and mi : [σ1, . . . , σk, αi]βi

for all i,
ζ = [m[z] 7→ F(x1.m1[z, x1], . . . , xn.mn[z, xn])] is an imitation binding

Elimination for m. If m : [σ1, . . . , σk]τ and 1 ≤ j1 < j2 < . . . < jn−1 < jn ≤ k such that
e : [σj1 , . . . , σjn ]τ then
ζ = [m[z] 7→ e[zj1 , . . . , zjn

]] is a (parameter) elimination binding
Identification of m and n. If m : [σ1, . . . , σk]τ , n : [ν1, . . . , νl]τ , i : [σ1, . . . , σk, ν1, . . . , νl]τ ,

mi : [σ1, . . . , σk]νi for all i ∈ {1, . . . , l}, and nj : [ν1, . . . , νl]σj for all j ∈ {1, . . . , k} then
ζ = [m[z] 7→ i[z, m1[z], . . . , ml[z]], n[y] 7→ i[n1[y], . . . , nk[y], y]] is an identification binding

Iteration for m. If m : [σ1, . . . , σk]τ , F : (α1.β1, . . . , αn.βn) → γ, h : [σ1, . . . , σk, γ]τ , and
mi : [σ1, . . . , σk, αi]βi for all i, then
ζ = [m[z] 7→ h[z, F(x1.m1[z, x1], . . . , xn.mn[z, xn])]] is an iteration binding

The iteration bindings allow to combine parameters of a metavariable in arbitrary ways.
This is also particularly influenced by the fact that the type γ used in the bindings may be
arbitrary. This type of bindings introduce arbitrary branching in the procedure below, so
should be used with caution in pragmatic implementations. Intuitively, we emphasize two
distinct use cases for the iteration bindings:
1. To extract a new term from one or more parameters by application of an axiom. In

this case, we use iteration, where the root of one of the sides of an axiom is used as an
operator F.

2. To introduce new variables in scope. In this case, any operator that introduces at least one
variable into scope is used in an iteration. This use case is important for the completeness
of the procedure. See Example 32.

4.2 Transition Rules
We will write each transition rule of the unification procedure in the form (Θ | Γ∀ ⊢ s

?= t :
τ) θ−→ ⟨Ξ, S⟩, where θ : Θ→ Ξ is a metavariable substitution and S is a new set of constraints
that is supposed to replace s

?= t. We will often write S instead of ⟨Ξ, S⟩ when Ξ is understood
from context.

We will now go over the rules that will constitute the E-unification procedure when put
in proper order. The first two rules are straightforward.

▶ Definition 21 (delete). If a constraint has the same term on both sides, we can delete it:

(Θ | Γ∀ ⊢ t
?= t : τ) id−→ ∅

4 Note, that Huet-style projection cannot be formulated in pure second-order abstract syntax as it
explicitly relies on abs and app. Thus, in E-unification we can recover such projections only by using
axioms in some form. Kudasov [20] implements a heuristic that resembles a generalisation of Huet-style
projections. We leave proper generalisations for future work.
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▶ Definition 22 (decompose). We define two variants of this rule:
1. Let F : (σ1.τ1, . . . , σn.τn)→ τ , then we can decompose a constraint with F on both sides

into a set of constraints for each pair of (scoped) subterms:

(Θ | Γ∀ ⊢ F(x.t) ?= F(x.s) : τ) id−→ {Θ | Γ∀, xi : σi ⊢ ti
?= si : τi}i∈{1,...,n}

2. Let m : [σ1, . . . , σn]τ , then we can decompose a constraint with m on both sides into a
set of constraints for each pair of parameters:

(Θ | Γ∀ ⊢ m[t] ?= m[s] : τ) id−→ {Θ | Γ∀ ⊢ ti
?= si : σi}i∈{1,...,n}

▶ Example 23.

Θ | Γ = (m : [σ]σ ⇒ σ | f : σ ⇒ σ)

{Θ | Γ ⊢ abs(x.app(m[x], x)) ?= abs(x.app(f, x))}
id−→{Θ | Γ, x : σ ⊢ app(m[x], x)) ?= app(f, x)}} (decompose)
id−→{Θ | Γ, x : σ ⊢ m[x] ?= f, Θ | Γ, x : σ ⊢ x

?= x} (decompose)
id−→{Θ | Γ, x : σ ⊢ m[x] ?= f} (delete)

The next two rules are second-order versions of imitate and project rules used in many
HOU algorithms. The idea is that a metavariable can either imitate the other side of the
constraint, or simply project one of its parameters:

▶ Definition 24 (imitate). For constraints with a metavariable m : [σs]τ and an operator
F : (σ1.τ1, . . . , σn.τn) → τ we can imitate the operator side using an imitation binding
(metavariables t are fresh):

(Θ | Γ∀ ⊢ m[s] ?= F(x.t) : τ) [m[zs]7→F(x.t[zs,x])]
−−−−−−−−−−−−−−−−−→ {Θ | Γ∀ ⊢ F(x.t[s, x]) ?= F(x.t) : τ}

Note that (imitate) can be followed up by an application of the (decompose) rule.

▶ Definition 25 (project). For constraints with a metavariable m : [σs]τ and a term u : τ , if
σi = τ then we can produce a JP-style projection binding for the parameter at position i:

(Θ | Γ∀ ⊢ m[s] ?= u : τ) [m[z] 7→zi]
−−−−−−−−→ {Θ | Γ∀ ⊢ si

?= u : τ}

The next rule is concerned with matching one side of a constraint against one side of an
axiom. When matching with an axiom, we need to instantiate it to the particular use (indeed,
an axiom serves as a schema!). However, it is not sufficient to simply map metavariables of
the axiom into fresh metavariables of corresponding types. Since we are instantiating axiom
for a particular constraint which may have a non-empty Γ∀, it is important to add all those
variables to each of the fresh metavariables5:

▶ Definition 26. Let Γ∀ = (x : α) and ξ : Ξ | · → Θ | Γ∀.
We say ξ instantiates the axiom Ξ | · ⊢ l ≡ r : τ in context Θ | Γ∀ if
1. for any (mi : [σ]τ) ∈ Ξ, ξ maps mi[t] to ni[t, x];
2. ni = nj iff i = j for all i, j.

5 This is different to E-unification with first-order axioms, where metavariables do not carry their own
context and can be unified with an arbitrary variable later.
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▶ Example 27. Let ξ = [m[z] 7→ m1[z, g, y], n[] 7→ n1[g, y]]. Then, ξ instantiates the axiom

m : [σ]τ , n : []σ | · ⊢ app(abs(x.m[x]), n[]) ≡ m[n[]] : τ

in context m1 : [σ, σ ⇒ τ , σ]τ , n1 : [σ ⇒ τ , σ]σ | g : σ ⇒ τ , y : σ.

▶ Definition 28 (mutate). For constraints where one of the sides matches6 an axiom in E:

Ξ | · ⊢ l ≡ r : τ

We rewrite the corresponding side (here, ξ instantiates the axiom in context Θ | Γ∀).

(Θ | Γ∀ ⊢ t
?= s : τ) id−→ {Θ | Γ∀ ⊢ t

?= ξl : τ} ⊎ {Θ | Γ∀ ⊢ ξr
?= s : τ}

In general, we may rewrite in both directions. However, it may be pragmatic to choose a
single direction to some of the axioms (e.g. βη-reductions), while keeping others bidirectional
(e.g. commutativity and associativity axioms). Note that, unlike previous rules, the (mutate)
rule can lead to infinite transition sequences.

The remaining rules deal with constraints with metavariables on both sides. One rule
attempts to unify distinct metavariables:

▶ Definition 29 (identify). When a constraint consists of a pair of distinct metavariables
m : [σ1, . . . , σk]τ and n : [γ1, . . . , γl]τ , we can use an identification binding (metavariables
i, m′, n′ are fresh):

(Θ | Γ∀ ⊢ m[s] ?= n[t]) [m[z] 7→i[z,m′[z]],n[y] 7→i[n′[y],y]]
−−−−−−−−−−−−−−−−−−−−−−−−−→ {Θ | Γ∀ ⊢ i[s, m′[s]] ?= i[n′[u], u]}

Another rule attempts to unify identical metavariables with distinct lists of parameters:

▶ Definition 30 (eliminate). When a constraint has the same metavariable m : [σ1, . . . , σn]τ
on both sides and there is a sequence (jk)n

k=1 such that sjk
= tjk

for all k ∈ {1, . . . , n}, then we
can eliminate every other parameter and leave the remaining terms identical (metavariable
e is fresh):

(Θ | Γ∀ ⊢ m[s] ?= m[t])
[m[z] 7→e[zj1 ,...,zjn ]]

−−−−−−−−−−−−−−−−−→ ∅

The idea of the final rule is to extend a list of parameters with some combination of those
that exist already. For example, consider constraint ∀x, y, z.m[pair(x, y), z] ?= n[x, z]. It is
clear, that if we can work with a pair of x and y, then we can work with them individually, since
we can extract x using fst and y using snd. Thus, a substitution [m[p, z] 7→ m1[p, z, fst(p)]]
would result in a new constraint ∀x, y, z.m1[pair(x, y), z, fst(pair(x, y))] ?= n[x, z]. This one
can now be solved by applying (identify), (eliminate), and (decompose) rules that will
lead us to ∀x, y, z.fst(pair(x, y)) ?= x : σ which will be processed using (mutate) rule.

▶ Definition 31 (iterate). When a constraint consists of a pair of (possibly, identical) metav-
ariables m : [σ1, . . . , σk]τ and n : [γ1, . . . , γl]τ , we can use an iteration binding (metavariables
h, k are fresh):

(Θ | Γ∀ ⊢ m[s] ?= n[t]) [m[z] 7→h[z,F(x.k[z,x])]]
−−−−−−−−−−−−−−−−−−−→ {Θ | Γ∀ ⊢ h[s, F(x.k[z, x])] ?= n[t]}

6 We check that the roots of terms match. Technically, we do not have to perform this check and apply
(mutate) rule for any axiom (non-deterministically), since full matching will be performed by the
unification procedure.
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The following example demonstrates the importance of iteration by an arbitrary operator
to introduce variables into scope:

▶ Example 32. Consider a unification problem for simply-typed λ-calculus:

∃m : [σ ⇒ σ ⇒ τ ](σ ⇒ τ)
∀f : σ ⇒ σ ⇒ σ ⇒ σ ⇒ τ .

m[λx.λy.f x y x x] ?= m[λx.λy.f y y x y] : σ ⇒ τ

It has the following E-unifier: ζ = [m[g] 7→ λz.g z z]. To construct this unifier from bindings,
we start with iteration binding [m[g] 7→ i[g, λz.m1[g, z]]], introducing the lambda abstraction,
which is followed by a projection [i[g, r] 7→ r], which is followed by another iteration (to
introduce application), and so on.

Finally, we compile all transition rules into the unification procedure:

▶ Definition 33. The E-unification procedure over an equational presentation E is
defined by repeatedly applying the following transitions (non-deterministically) until a stop:
1. If no constraints are left, then stop (succeed).
2. If possible, apply (delete) rule.
3. If possible, apply (mutate) or (decompose) rule (non-det.).
4. If there is a constraint consisting of two non-metavariables and none of the above trans-

itions apply, stop (fail).
5. If there is a constraint m[. . .] ?= F(. . .), apply (imitate) or (project) rules (non-det.).
6. If there is a constraint m[. . .] ?= x, apply (project) rules (non-det.).
7. If possible, apply (identify), (eliminate), or (iterate) rules (non-det.).
8. If none of the rules above are applicable, then stop (fail).

Many HOU algorithms [23, 21] implement a rule (typically called eliminate) that allows
to eliminate metavariables, when a corresponding constraint is in solved form. Such a rule is
not necessary here, as it is covered by a combination of (imitate), (decompose), (delete),
(identify), and (eliminate) rules. However, it simplifies presentation of examples and also
serves as a practical optimisation, so we include it as an optional rule:

▶ Definition 34 (eliminate*). When a constraint C = (Θ | Γ∀ ⊢ m[z] ?= u) is in solved form,
we can eliminate it with a corresponding unifier ξ{C} = [m[z] 7→ u]:

(Θ | Γ∀ ⊢ m[s] ?= u) [m[z] 7→u]
−−−−−−−−→ ∅

The (eliminate*) rule should have the same priority as (delete) in the procedure.

▶ Lemma 35. In the procedure defined in Definition 33, each step is sound. That is, if S
θ−→

S′ is a single-step transition that the procedure takes and ξ ∈ UE(S′) then ξ ◦ θ ∈ UE(S).

Proof. It is sufficient to show that each step is sound with respect to the constraint it
acts upon. That is, we consider the step {C} θ−→ S′′ such that C ∈ S and S′′ ⊆ S′. By
assumption ξ ∈ UE(S′) and thus also ξ ∈ UE(S′′). Note that for any constraint D ∈ (S−{C})
we have a corresponding constraint D′ ∈ (S′ − S′′) such that D′ = θD. Since ξ unifies D′ it
follows that ξ ◦ θ unifies D. Thus, it is enough for us to show that ξ ◦ θ unifies UE({C}).

We now go over the list of possible steps:
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(delete): it is clear that any substitution unifies C;
(decompose): since ξ unifies all subterm pairs in S′′, it also unifies C;
(imitate), (project), (identify), (eliminate), (iterate): all of these rules simply make
a decision on how to substitute some metavariables (choose θ) and immediately apply
that substitution. So, S′′ = {θC} and since ξ unifies S′ then ξ ◦ θ unifies S.
(mutate): let C = (Θ | Γ∀ ⊢ s

?= t : τ) and we mutate according to axiom (Ξ | · ⊢ l ≡ r :
τ) ∈ E with substitution ζ instantiating this axiom. By assumption, ξ unifies both s

?= ζl

and ζr
?= t. Also, Θ | Γ∀ ⊢ ζl ≡E ζr : τ . In this rule, θ = id, and so we can show that

ξ ◦ θ = ξ unifies s
?= t: ξs ≡E ξ(ζl) ≡E ξ(ζr) ≡E ξt ◀

▶ Theorem 36. The procedure defined in Definition 33 is sound. That is, if S
θ1−→ S1

θ2−→
. . .

θn−→ ∅ is a path produced by the procedure, then θ1 ◦ θ2 ◦ . . . ◦ θn ∈ UE(S).

Proof. Direct corollary of Lemma 35. ◀

5 Proof of Completeness

In this section we prove our main theorem, showing that our unification procedure is complete.
We start with a definition of mixed operators:

▶ Definition 37. We say that an operator F : (α1.β1, . . . , αn.βn) → γ is mixed iff αi is
empty and αj is not empty for some i and j.

Dealing with mixed operators can be very non-trivial. In the following theorem, we
assume that all operators either introduce scopes in all subterms, or in none. That is, for
each operator F : (α1.β1, . . . , αn.βn)→ γ, either |αi| = 0 for all i or |αi| > 0 for all i. The
assumption is justified since we can always encode a mixed operator as a combination of
non-mixed operators. For example, let(t1, x.t2) can be encoded as let(t1, block(x.t2)).

▶ Theorem 38. Assuming no mixed operators are used, the procedure described in Defini-
tion 33 is complete, meaning that all paths from a root to all (success) leaves in the search
tree constructed by the procedure, form a complete (but not necessarily minimal) set of E-
unifiers. More specifically, let E be an equational presentation and ⟨Θ, S⟩ be an E-unification
problem. Then for any E-unifier θ ∈ UE(S) there exists a path S

ξ−→ ∅ such that ξ ≼E θ.

▶ Remark 39. The unification procedure may produce redundant unifiers. For example,
consider the following unification problem in simply-typed λ-calculus:

∃m : [σ, σ]τ , n : [σ](σ ⇒ τ). ∀x : σ. m[x, x] ?= app(n[x], x)

Depending on whether we start with the (imitate) rule or the (mutate) first, we can
arrive at the following unifiers:

θ1 = [m[z1, z2] 7→ app(n[z1], z2)]
θ2 = [m[z1, z2] 7→ t[z2, z1], n[z1] 7→ abs(z.t[z1, z])]

It is clear that θ1 ̸= θ2, but θ1 ≼E θ2 (witnessed by [n[z1] 7→ abs(z.t[z1, z])]). Hence, the set
of E-unifiers produced for this unification problem is not minimal (by Definition 14).

Our proof is essentially a combination of the two approaches: one by Gallier and Snyder
in their proof of completeness for general (first-order) E-unification [11], and another one
by Jensen and Pietrzykowski (JP) [16], refined by Vukmirovic, Bentkamp, and Nummelin
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(VBN) [34] for full higher-order unification. In particular, we need to reuse some of the ideas
from the latter when dealing with parametrised metavariables. However, we cannot reuse
the idea of JP’s ω-simplicity or VBN’s base-simplicity, as those are dependent crucially on
the η-long terms, λ-abstraction, function application, which are not accessible to us in a
general second-order abstract syntax. Instead, we reuse the ideas of Gallier and Snyder to
understand when it is okay to decompose terms. To understand when to apply (iterate)
rule, we also look at the rewrite sequence instead of ω-simplicity of terms.

The main idea of the proof is to take the unification problem S together with its E-unifier
θ and then choose one of the rules of the procedure guided by θ. Applying a rule updates
constraints and the remaining substitution is also updated. To show that this process
terminates, we introduce a measure that strictly decreases with each rule application.

▶ Definition 40. Let θ ∈ UE(S). Then, define the measure on pairs ⟨S, θ⟩ as the lexico-
graphic comparison of
1. sum of lengths of the rewriting sequences θs

∗←→E θt for all s
?= t of S;

2. total number of operators used in θ;
3. total number of metavariables used in θ;
4. sum of sizes of terms in S.

We denote the quadruple above as ord(S, θ).

The following definition helps us understand when we should apply the (project) rule:

▶ Definition 41. A metavariable m : [σ]τ is projective at j relative to θ if θm[z] = zj.

One of the crucial points in the proof is to understand whether we can apply (identify)
or (eliminate) rules for constraints with two metavariables on both sides. The following
lemma provides precise conditions for this, allowing for (identify) when metavariables are
distinct or (eliminate) when they are equal.

▶ Lemma 42. Let s = m[u] and t = n[v] such that ζs
∗←→E ζt. Let s1, . . . , sn be the subterms

of ζs, t1, . . . , tn the subterms of ζt such that the rewriting sequence ζs
∗←→E ζt corresponds

to the union of independent rewritings si
∗←→E ti for all i ∈ {1, . . . , n}. If for all i we have

either that si is a subterm of an occurrence of ζuji or that ti is a subterm of an occurrence
of ζvji

, then there exist terms w, u′, v′ such that
1. u′[y 7→ ζv] ≡E ζu and v′[z 7→ ζu] ≡E ζv,
2. ζm[z] = w[y 7→ v′] and ζn[y] = w[z 7→ u′].

Proof. We define an auxiliary family of terms Ξ | x : α ⊢ w′(l, r) : τ for pairs of terms
Ξ | x : α, z : γ ⊢ l : τ and Ξ | x : α, y : β ⊢ r : τ such that l is a subterm of ζm[z] and r is a
subterm of ζn[y] satisfying l[z 7→ ζu] ≡E r[y 7→ ζv]. We define w′(l, r) inductively on the
structure of l and r, maintaining l ≡E w′(l, r)[y 7→ v′] and r ≡E w′(l, r)[z 7→ u′]:
1. if l = xi or r = xi, then l = r and w′(l, r) = xi;
2. if l = zk then w′(l, r) = zk and u′

k = r;
3. if r = yk then w′(l, r) = yk and v′

k = l;
4. if l = F(a.p) and r = F(a.q) then w′(l, r) = F(a.w′(p, q)); note that w′(pi, qi) is well-

defined for all i, since l[z 7→ ζu] ≡E r[y 7→ ζv] implies component-wise equality pi[z 7→
ζu] ≡E qi[y 7→ ζv] for all i. This is true, since otherwise we are rewriting (at root) both l

and r, but l[z 7→ ζu] nor r[y 7→ ζv] corresponds to a parameter occurrence ζuj or ζvj in
terms ζs or ζt correspondingly.

5. if l = m[p] and r = m[q] then w′(l, r) = m[w′(p, q)]; here, w′(pi, qi) is well-defined for all i,
similarly to the previous case.
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If uk (or vk) has not been defined for some k, it means that a corresponding parameter is
not essential and can be eliminated. We set7 such uk to be a fresh metavariable uk[]. We set
w = w′(ζm[z], ζn[y]). By construction, ζm[z] = w[y 7→ v′] and ζn[y] = w[z 7→ u′]. ◀

▶ Corollary 43. Let s = m[u] and t = m[v] such that ζs
∗←→E ζt. Let s1, . . . , sn be the

subterms of ζs, t1, . . . , tn the subterms of ζt such that the rewriting sequence ζs
∗←→E ζt

corresponds to the union of independent rewritings si
∗←→E ti for all i ∈ {1, . . . , n}. If for

all i we have either that si is a subterm of an occurrence of ζuji
or that ti is a subterm

of an occurrence of ζvji , then, there exists a sequence 1 ≤ j1 < . . . < jk ≤ such that and
FV (ζm[z]) = {zj1 , . . . , zjk

} and uji
≡E vji

for all i.

The following lemma will help us generalize solutions in Item 2(e)iii of the proof below.

▶ Lemma 44. Let Ξ | x : α ⊢ w : σ be a subterm of Ξ | x : α ⊢ t : τ . If t does not contain
mixed operators, then there exists a substitution ζw,t = [h[z, y] 7→ h] and a collection of terms
Ξ | x : α ⊢ s : β, such that each si is a subterm of t and ζw,th[w, s] = t.

Proof. Note that w and s are subterms of t and are not under binders (since they have the
same variable context). Then, by induction on the structure of t:
1. if t = w, then ζw,t = [h[z] 7→ z];
2. if t = F(x1.t1, . . . , xn.tn) then, since t does not contain mixed operators, xi is empty

for all i. Now, if w is a subterm of ti and ζw,ti
= [hti

[z, y′
1, . . . , y′

k] 7→ hti
] then ζ =

[h[z, y′
1, . . . , y′

k, y1, . . . , yn−1] 7→ F(y1, . . . , yi−1, hti , yi, . . . , yi−1)].
3. if t = n[t1, . . . , tn] such that w is a subterm of ti and ζw,ti

= [hti
[z, y′

1, . . . , y′
k] 7→ hti

]
then ζ = [h[z, y′

1, . . . , y′
k, y1, . . . , yn−1] 7→ n[y1, . . . , yi−1, hti

, yi, . . . , yi−1]].
Note that case of t = x is impossible unless t = w (case 1). ◀

We are now ready to prove Theorem 38.

Proof of Theorem 38. Let S0 = S and θ0 = ρ ◦ θ, where ρ is some renaming substitution
such that every metavariable occurring in θ0S0 does not occur in S0. Note that θ0 is an
E-unifier of S, since θ is by assumption.

We now inductively define Si, ξi, and θi until we reach some i such that Si = ∅. We
ensure that ord(Si, θi) decreases with every step, so that such sequence of steps would always
terminate. We maintain the following invariants for each step:
1. ⟨Si, θi⟩

ξi−→ ⟨Si+1, θi+1⟩ where Si
ξi−→ Si+1 by some rule of the unification procedure;

2. ord(Si+1, θi+1) < ord(Si, θi);
3. θi ∈ UE(Si);
4. θ0 ≡E θi ◦ ξi−1 ◦ . . . ◦ ξ0;
5. every free variable occurring in θiSi does not occur in Si;
If Si ̸= ∅, then let ∀x : σ.s

?= t : τ be a constraint in Si. We consider two major cases with
respect to the rewriting sequence Θi | x : σ ⊢ θis

∗←→E θit : τ :
1. The rewriting sequence contains a root rewrite. More precisely, there exists a

sequence θis = u0 ←→E . . . ←→E un = θit and some term uj such that uj ←→E uj+1
is a direct application of a rewrite using an axiom. This means that s and t can be
unified by a direct use of an axiom. More specifically, there exists an instantiation ζ of
an axiom Ξ | · · · ⊢ l ≡ r : τ from E such that ζl = uj , uj+1 = ζr, and θi unifies both

7 alternatively, we could have adjusted the statement to only mention subsets of variables z and y that
are used at least once
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s
?= uj and uj+1

?= t. Thus, we can apply (mutate) rule. The measure decreases since
the rewrite sequence s

∗←→E t is now split into two sequences s
∗←→ uj and uj+1

∗←→E t

such that sum of lengths of new sequences is exactly one less than the length of the
original sequence.

2. Rewriting sequence is empty or does not contain a root rewrite. This means
that rewrites may only happen in subterms.
a. If s = x and t = y where x and y are variables, then x = y and we can apply (delete)

rule, with ξi = id and θi+1 = θi. The measure is reduced since the total size of
constraints is reduced, while the rewriting sequences and the remaining substitution
remain the same.

b. If s = F(z.u) and t = F(z.v), then, θis = F(z.θiu) and θit = F(z.θiv). Since there are
no root rewrites, θi unifies each pair uj

?= vj in corresponding extended contexts, so
we can apply (decompose) rule with ξi = id and θi+1 = θi. Note that the chain of
rewrites may be split into several chains, but the total sum of lengths remains the
same. Second component of the measure also remains unchanged. We reduce the third
component of the measure, since the total size of terms in the unification problem
decreases, the sum of chains of rewrites is unchanged.

c. If s = m[u] and m is projective at j relative to θi then we can apply (project) rule
with ξi = [m[z] 7→ zj ]. Note that the chain of rewrites remains unchanged and ξi does
not take any operators away from θi+1 (which is a restriction of θi to metavariables
other than m). We reduce the measure by reducing the total size of terms in the
unification problem.

d. If s = m[u] where m is not projective relative to θi and θis = F(z.u) and t = F(z.v),
then θi unifies each pair ui

?= ζvi in corresponding extended contexts and we can apply
(imitate) rule with ξi = [m[z] 7→ F(x.t[z, x])]. Let θim[z] = F(x.w), then θi+1 is
constructed from θi by removing mapping for m and adding mappings [tj [z, xj ] 7→ wj ]
for all j. The chain of rewrites is unchanged and the measure decreases since we reduce
the number of operators in θi+1.

e. If s = m[u] where m is not projective relative to θi and θis
∗←→E θit contains a rewrite

of a subterm w in θis that is not a subterm of an occurrence of θiui for some i, then
i. If w is under a binder in θis, we take the outermost operator F that binds a

variable captured by w (that is, θis = . . . F(y1.s1, yj . . . . w . . . , yn.sn)) and ap-
ply (iterate) rule with ξi = [m[z] 7→ m′[z, F(y1.m1[z, y1], . . . , yn.mn[z, yn])]. Let
θim[z] = F(y.s′), then θi+1 is defined as θi with mapping of m removed and added
mappings [mi[z, yi] 7→ si]{i∈{1,...,n}}. The chain of rewrites remains unchanged and
the number of operators in θi+1 decreases by one, so the measure decreases.

ii. If w = F(. . .) and is not under a binder, then we apply (iterate) rule with
ξi = [m[z] 7→ m′[z, F(y1.m1[z, y1], . . . , yn.mn[z, yn])]. We define θi+1 and show that
the measure decreases analogously to the previous case.

iii. If w = w[v] and is not under a binder, then θim[z] contains w′ = w[v′] as a subterm
and v′

i[z 7→ u] = vi for all i (this is because w is not a subterm of any of the θiuj).
Since w′ is also not under binder, then by Lemma 44 and assumption of no mixed
operators we have that there exist terms h, s, and a substitution ζ = [h[z, y] 7→ h]
such that ζh[v′, s] = θim[z]. Set θ′

i = [m[z] 7→ h[y 7→ s]]. We have θi = ζ ◦ θ′
i, that

is θ′
i is more general that θi modulo E. The rewriting sequence remains unchanged.

If θis has an operator at root, then θ′
i has fewer operators which decreases the

measure. If θis has a metavariable at root, then θ′
i has fewer metavariables which

decreases the measure.
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f. If s = m[u] and t = n[v] where m ̸= n, both m and n are not projective relative to θi

and θis
∗←→E θit corresponds to the union of independent rewritings si

∗←→E ti for all
i ∈ {1, . . . , n} such that for all i we have either that si is a subterm of an occurrence
of ζuji or that ti is a subterm of an occurrence of ζvji , then by Lemma 42 there exist
terms w, u′, v′ such that θim[z] = w[y 7→ v′] and θin[y] = w[z 7→ u′]. We now can
apply (identify) rule with ξi = [m[z] 7→ w[y 7→ y[z]]n[y] 7→ w[z 7→ z[y]]]. We define
θi+1 to be defined as θi without mappings for m and n and with added mappings
[w[z, y] 7→ w, y[z] 7→ v′, z[y] 7→ u′]. The rewriting sequence remains unchanged, but
by Lemma 42 the term w is not a variable, so there is an operator or a metavariable
that was mentioned twice in θi (once for m and once for n) and is now mentioned once
in θi+1 (for w), so the number of operators or metavariables in θi+1 decreases by at
least 1. Thus, the measure decreases.

g. If s = m[u] and t = m[v] where m is not projective relative to θi and θis
∗←→E θit

corresponds to the union of independent rewritings si
∗←→E ti for all i ∈ {1, . . . , n}

such that for all i we have either that si is a subterm of an occurrence of ζuji
or that ti is

a subterm of an occurrence of ζvji
, then by Corollary 43 we have z′ = FV (θim[z]) ⊆ z

such that for each zk ∈ z′ we have θiuk ≡E θivk. Consider two subcases:
i. If z′ = z we apply (decompose) rule with ξi = id and θi+1 = θi. The chain of

rewrites remains, the remaining substitution is unchanged, but the total size of
constraints is reduced, so the measure decreases.

ii. If z′ ⊂ z we apply (eliminate) rule with ξi = [m[z] 7→ e[z′]] and θi+1 defined as a
version of θi with removed mapping for m and added mapping [e[z′] 7→ θis]. Note
that the chain of rewrites remains unchanged and ξi does not take any operators
away from θi+1. We reduce the measure by reducing the total size of terms in
the unification problem (as at least one parameter is removed from at least one
metavariable m).

We now have a sequence ⟨S0, θ0⟩
ξ0−→ ⟨S1, θ1⟩

ξ1−→ . . .. The sequence is finite since
the measure ord(Si, θi) strictly decreases with every step. Therefore, ⟨S, θ0⟩

ξ0−→ . . .
ξn−→

⟨∅, id⟩ and θ ≡E ρ−1 ◦ θi ◦ ξi−1 ◦ . . . ξ0 ≡E ρ−1 ◦ ξn ◦ . . . ◦ ξ0 ≼E ξn ◦ . . . ◦ ξ0, completing
the proof. ◀

6 Discussion

A pragmatic implementation of our procedure may enjoy the following changes. We find that
these help make a reasonable compromise between completeness and performance:
1. remove (iterate) rule; this rule sacrifices completeness, but helps significantly reduce non-

determinism; the solutions lost are also often highly non-trivial and might be unwanted
in certain applications such as type inference;

2. implement (eliminate*) rule;
3. split axioms E = B⊎R such that R constitutes a confluent and terminating term rewriting

system, and introduce (normalize) rule to normalize terms (lazily) before applying any
other rules except (delete) and (eliminate*);

4. introduce a limit on a number of applications of (mutate) rule;
5. introduce a limit on a number of bindings that do not decrease problem size;
6. introduce a limit on total number of bindings.
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When adapting ideas from classical E-unification and HOU, some technical difficulties
arise from having binders lacking (in general) the nice syntactic properties of λ-calculus. These
difficulties affect both the design of our unification procedure, leading to some simplifications,
and the completeness proof, requiring us to find a different approach to define the measure
and consider cases that do not have analogues.

In the procedure, we had to simplify whenever those ideas relied on normalisation, η-
expansion, or specific syntax of λ-terms. Many HOU algorithms look at syntactic properties
of terms to determine which rules to apply. In particular, HOU algorithms often distinguish
flex and rigid terms [15, 23]. Jensen and Pietrzykowski introduce a notion of ω-simple
terms [16]. Vukmirovic, Bentkamp, and Nummelin [34] introduce notions of base-simple
and solid terms. These properties crucially depend on specific normalisation properties of
λ-calculus, which might be inaccessible in an arbitrary second-order equational theory. Thus,
our procedure contains more non-determinism than might be necessary.

One notable example of such simplication is in the imitation and projection bindings. In
HOU algorithms, it is common to have substitutions of the form

[m 7→ λx1, . . . , xn.f (h1 x1 . . . xn) . . . (hk x1 . . . xn)]

where f can be a bound variable (one of x1, . . . , xn) or a constant of type σ1 ⇒ . . .⇒ σk ⇒ τ .
These are called Huet-style projection or imitation bindings [16, 34] or partial bindings [15, 23].
Huet-style projections (and conditions prompting their use) are non-trivial to generalise well
to arbitrary second-order abstract syntax, so we skipped them in this paper, opting out for
simpler rules but larger search space.

In the completeness proof for HOU algorithms, the syntactic properties of λ-calculus
are heavily exploited. Their inaccessibility in a general second-order equational theory has
contributed to some difficulties when developing the proof of completeness in Theorem 38.
Perhaps, the most challenging of all was handling of the Item 2(e)iii of the proof which
requires the assumption of no mixed operators and Lemma 44. These do not appear to have
an analogue in completeness proofs for HOU or first-order E-unification.

7 Conclusion and Future Work

We have formulated the equational unification problem for second-order abstract syntax,
allowing to reason naturally about unification of terms in languages with binding constructions.
Such languages include, but are not limited to higher-order systems such as λ-calculus, which
expands potential applications to more languages. We also presented a procedure to solve
such problems and our main result shows completeness of this procedure.

In future work, we will focus on optimisations and recognition of decidable fragments of
E-unification over second-order equations.

One notable optimisation is splitting E into two sets R ⊎B, where R is a set of directed
equations, forming a confluent second-order term rewriting system, and B is a set of undirected
equations (such as associativity and commutativity axioms).

Another potential optimisation stems from a generalisation of Huet-style binding (also
known as partial binding), which can lead to more informed decisions on which rule to apply
in the procedure, introduce Huet-style version of (project) and improve (iterate) rule, sig-
nificantly reducing the search space. A version of such an optimisation has been implemented
in a form of a heuristic to combine (imitate) and (project) rules by Kudasov [20].

There are several well-studied fragments both for E-unification and higher-order unifica-
tion. For example, unification in monoidal theories is essentially solving linear equations over
semirings [26]. In higher-order unification, there are several well-known decidable fragments

FSCD 2023
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such as pattern unification [23]. Vukmirovic, Bentkamp, and Nummelin have identified some
of the practically important decidable fragments as well as a new one in their recent work on
efficient full higher-order unification [34]. It is interesting to see if these fragments could be
generalised to second-order abstract syntax and used as oracles, possibly yielding an efficient
E-unification for second-order abstract syntax as a strict generalisation of their procedure.
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Abstract
This paper defines two decreasing measures for terms of the simply typed λ-calculus, called the
W-measure and the T m-measure. A decreasing measure is a function that maps each typable λ-term
to an element of a well-founded ordering, in such a way that contracting any β-redex decreases
the value of the function, entailing strong normalization. Both measures are defined constructively,
relying on an auxiliary calculus, a non-erasing variant of the λ-calculus. In this system, dubbed the
λm-calculus, each β-step creates a “wrapper” containing a copy of the argument that cannot be
erased and cannot interact with the context in any other way. Both measures rely crucially on the
observation, known to Turing and Prawitz, that contracting a redex cannot create redexes of higher
degree, where the degree of a redex is defined as the height of the type of its λ-abstraction. The
W-measure maps each λ-term to a natural number, and it is obtained by evaluating the term in the
λm-calculus and counting the number of remaining wrappers. The T m-measure maps each λ-term
to a structure of nested multisets, where the nesting depth is proportional to the maximum redex
degree.
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1 Introduction

In this paper we revisit a fundamental question, that of strong normalization of the simply
typed λ-calculus (STLC). We begin by recalling that a reduction relation is weakly normalizing
(WN) if every term can be reduced to normal form in a finite number of steps, whereas it is
strongly normalizing (SN) if there are no infinite reduction sequences (a1 → a2 → a3 → . . .).
Let us review three proof techniques for proving strong normalization of the STLC.

One of the better known ways to prove that the STLC is SN is through arguments
based on reducibility models. The idea is to interpret each type A as a set [[A]] of
strongly normalizing terms, and to prove that each term M of type A is an element of [[A]].
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Many variants of these ideas can be found in the literature, including Girard’s reducibility
candidates [17] and Tait’s saturated sets [30]. These techniques provide relatively succint
proofs and they generalize well to extensions of the STLC, e.g. to dependent type theory [6]
or classical calculi [13]. On the other hand, the abstract nature of reducibility arguments
does not provide a “tangible” insight on why a β-reduction step brings a term closer to
normal form. More specifically, reducibility arguments do not construct explicit decreasing
measures. By decreasing measure we mean a function “#” mapping each λ-term to a
well-founded ordering (X, >) such that M →β N implies #(M) > #(N).

Another way to prove strong normalization is based on redex degrees. A redex in the
STLC is an applied abstraction, i.e. a term of the form (λx. M) N . The degree of a redex
is defined as the height of the type of its abstraction. A crucial observation, that can be
attributed to an unpublished note of Turing (as reported by Gandy [15]; see also [4]), is that
contracting a redex cannot create a redex of higher or equal degree. Recall that a redex S is
created by the contraction of a redex R if S has no ancestor before R. Indeed, as shown by
Lévy [22], in the λ-calculus, redexes can be created in exactly one of the three ways below:

1 (λx. x) (λy. M) N →β (λy. M) N

2 (λx. λy. M) N P →β (λy. M [x := N ]) P

3 (λx. . . . x M . . .) (λy. N) →β . . . (λy. N) M [x := λy. N ] . . .

where we underline the λ of the contracted redex on the left, and the λ of the created redex
on the right. In each of these cases, it can be seen that the degree of the created redex is
strictly lower than the degree of the contracted redex. For instance, in creation case 1, the
type of the contracted redex is of the form (A → B) → (A → B), while the type of the
created redex is A→ B, so the height strictly decreases.

With this fact in mind, for each term M one can define what we call Turing’s measure,
i.e. the multiset T (M) of the degrees of all the redexes of M . One may hope that any
reduction step M →β N decreases the measure, i.e. T (M) ≻ T (N), where “≻” is the
usual well-founded multiset ordering induced by the ordering (N, >) of its elements [12].
Unfortunately, this is not the case: even though contracting a redex can only create redexes of
strictly lower degree, it can still make an arbitrary number of copies of redexes of arbitrarily
large degrees.

In his notes, Turing observed that one can follow a reduction strategy that always selects
the rightmost redex of highest degree. This strategy ensures that the contracted redex does
not copy redexes of higher or equal degree, which makes the T (−) measure strictly decrease,
thus proving that the λ-calculus is WN. An even simpler measure that also decreases, if one
follows this strategy, is T ′(M) = (D, n), where D is the maximum degree of the redexes in M

and n is the number of redexes of degree D in M . Similar ideas were exploited by Prawitz [28]
and Gentzen (as reported by von Plato [27]) to normalize proofs in natural deduction. After
WN has been established, an indirect proof of SN can be obtained by translating each typable
λ-term M to a typable term M ′ of the λI-calculus; see for instance [29, Section 3.5].

In summary, redex degrees can be used to define concrete measures such as T (M) and
T ′(M), that are computable in linear time and decrease when following a particular reduction
strategy. As already mentioned, these measures do not necessarily decrease when contracting
arbitrary β-redexes.

A third way to prove SN relies on an interpretation that maps terms to increasing
functionals. This approach was pioneered by Gandy [16] and refined by de Vrijer [10].
Each type A is mapped to a partially ordered set [[A]]. Specifically, base types are mapped
to (N,≤), and [[A → B]] is defined as the set of strictly increasing functions [[A]] → [[B]],



P. Barenbaum and C. Sottile 11:3

partially ordered by the point-wise order. Each term M of type A is interpreted as an element
[M ] ∈ [[A]]. Moreover, an element f ∈ [[A]] can be projected to a natural number f⋆ ∈ N in
such a way that M →β N implies [M ]⋆ > [N ]⋆. This indeed provides a decreasing measure.
One of the downsides of this measure is that computing [M ]⋆ is essentially as difficult as
evaluating M , because [M ] is defined as a higher-order functional with a similar structure as
the λ-term M itself.

In this work we propose two decreasing measures for the STLC, that we dub the
W-measure and the T m-measure, and we prove that they are decreasing. An ideal decreasing
measure should fulfill multiple (partly subjective) requirements: 1. the measure should be
easy to calculate, in terms of computational complexity; 2. its codomain (a well-founded
ordering) should be simple, in terms of its ordinal type; 3. it should give us insight on
why β-reduction terminates; 4. it should be easy to prove that the measure is decreasing.
A measure that excels simultaneously at all these requirements is elusive, and perhaps
unattainable. The proposed measures have different strengths and weaknesses.

Contributions and structure of this document. The W-measure and the T m-measure are
defined by means of on an auxiliary calculus that we dub the λm-calculus. The remainder of
the paper is structured as follows.

In Section 2 we define the λm-calculus. It is an extension of the STLC with terms1

of the form t{s}, called wrappers. A wrapper t{s} should be understood as essentially the
term t in which s is a memorized term, that is, leftover garbage that can be reduced but
cannot interact with the context in any way. The type of t{s} is the same as the type of t,
disregarding the type of s.

The β-reduction rule is modified so that contracting a redex (λx. t) s, besides substituting
the free occurrences of x by s in t, produces a wrapper that contains a copy of the argument s.
The reduction rule is (λx. t){u1} . . . {un} s →m t[x := s]{s}{u1} . . . {un}. Note that
we allow the presence of an arbitrary number of memorized terms mediating between the
abstraction and the application. This is to avoid memorized terms blocking redexes. For
example, if I = λx. x:

(λx. x(xy))I →m (I(Iy)){I}→m (Iy){Iy}{I}→m (Iy){y{y}}{I}→m y{y}{y{y}}{I}

Then we study some syntactic properties of λm. In particular, we define a relation t ▷ s of
forgetful reduction, meaning that s is obtained from t by erasing one memorized subterm.
For example, x {x{y}}{y{z}} ▷ x {y{z}}. Forgetful reduction is used as a technical tool
to prove that the measures are decreasing in the following sections.

In Section 3, we propose the W-measure (Def. 12), and we prove that it is decreasing.
To define the W-measure, we resort to an operation Sd(t) that simultaneously contracts
all the redexes of degree d in a term of the λm-calculus, that is, the result of the complete
development of all the redexes of degree d. The degree of a redex (λx. t){u1} . . . {un} s

is defined similarly as for the STLC, as the height of the type of the abstraction. To
calculate the W-measure of a λ-term M , let D be the maximum degree of the redexes in
M , and define W(M) as the number of wrappers in S1(S2(. . . SD(M))). For example, if
M = (λx. x (x y)) (λz. w), it turns out that S1(S2(M)) = w{w{y}}{λz. w} which has three

1 Note that terms of the λm-calculus are ranged over by t, s, . . . (rather than M, N, . . .).
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wrappers, so W(M) = 3. The W-measure maps each typable λ-term to a natural number.
The main result of Section 3 is Thm. 15, stating that W is decreasing, i.e. that M →β N

implies W(M) >W(N).

In Section 4 we study reduction by degrees, a restricted notion of reduction in the
λm-calculus, written t

d−→m s, meaning that t reduces to s by contracting a redex of degree d.
This section contains technical commutation, termination, and postponement results.

In Section 5, we propose the T m-measure, and we prove that it is decreasing. To
define the T m-measure, we define two auxiliary measures T m

≤D(t) and Rm
D (t), indexed by a

natural number D ∈ N0, mutually recursively:
T m

≤D(t) is the multiset of pairs (d,Rm
d (t)), for each redex occurrence of degree d ≤ D in t;

Rm
D (t) is the multiset of elements T m

≤D−1(t′), for each reduction sequence t
D−→∗

m t′.
The measure T m

≤D(t) is defined for every D ≥ 0, while Rm
D (t) is defined only for D ≥ 1.

Multisets are ordered according to the usual multiset ordering, and pairs according to the
lexicographic ordering. To calculate the T m-measure of a λ-term M , let D be the maximum
degree of the redexes in M , and define T m

≤ (M) def= T m
≤D(M). The measure T m

≤ (M) yields a
structure of nested multisets of nesting depth at most 2D. The main theorem of Section 3
is Thm. 32, stating that T m is decreasing, i.e. that M →β N implies T m

≤ (M) > T m
≤ (N).

Finally, in Section 6, we conclude.

2 The λm-calculus

As mentioned in the introduction, the λm-calculus is an extension of the STLC in which the
β-reduction rule keeps an extra memorized copy of the argument in a “wrapper” t{s}, in
such a way that contracting a redex like (λx. t) s does not erase s, even if x does not occur
free in t. In this section we define the λm-calculus and we prove some of the properties that
are needed in the following sections to prove that the W-measure and the T m-measure are
decreasing. In particular, we discuss subject reduction (Prop. 3) and confluence (Prop. 4); we
define an operation of simplification (Def. 5) which turns out to calculate the normal form
of a term (Prop. 7); and we define the relation called forgetful reduction (Def. 8), which is
shown to commute with reduction (Prop. 10).

First we fix the notation and nomenclature. Types of the STLC are either base types
(α, β, . . .) or arrow types (A → B). Terms are either variables (xA, yA, . . .), abstrac-
tions (λxA. M), or applications (M N), with the usual typing rules. Terms are defined
up to α-renaming of bound variables. We adopt an à la Church presentation of the STLC,
but we omit most type decorations on variables as long as there is little danger of confusion.
The β-reduction rule is (λx. M) N →β M [x := N ] where M [x := N ] is the capture-avoiding
substitution of the free occurrences of x in M by N .

The λm-calculus: syntax and reduction. The set of λm-terms – or just terms – is given by
t, s, . . . ::= xA | λxA. t | t s | t{s}. The four kinds of terms are respectively called variables,
abstractions, applications, and wrappers. In a wrapper t{s}, the subterm t is called the body
and s is called the memorized term. As in the STLC, we usually omit type annotations and
terms are regarded up to α-renaming. A context is a term C with a single free occurrence of
a distinguished variable □, and C[t] is the variable-capturing substitution of the occurrence
of □ in C by t.
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Typing judgments are of the form Γ ⊢ t : A where Γ is a partial function mapping variables
to types. Derivable typing judgments are defined by the following rules:

Γ, x : A ⊢ xA : A

Γ, x : A ⊢ t : B

Γ ⊢ λxA. t : A → B

Γ ⊢ t : A → B Γ ⊢ s : A

Γ ⊢ t s : B

Γ ⊢ t : A Γ ⊢ s : B

Γ ⊢ t{s} : A

A term t is typable if Γ ⊢ t : A holds for some Γ and some A. Unless otherwise specified,
when we speak of “terms” we mean “typable terms”. It is straightforward to show that a
typable term has a unique type. We write type(t) for the type of t.

A memory, written L, is a list of memorized terms, given by the grammar L ::= □ | L{t}.
If t is a term and L is a memory, we write tL for the term that results from appending all the
memorized terms in L to t, that is, (t)(□{s1} . . . {sn}) = t{s1} . . . {sn}. We write t[x := s]
for the operation of capture-avoiding substitution of the free occurrences of x in t by s. The
λm-calculus is the rewriting system whose objects are typable λm-terms, endowed with the
following notion of reduction, closed by compatibility under arbitrary contexts:

▶ Definition 1 (Reduction in the λm-calculus). (λx. t)L s →m t[x := s]{s}L

Abstractions followed by a memory, i.e. terms of the form (λx. t)L, are called m-abstractions.
Note that all abstractions are also m-abstractions, as L may be empty. A redex is an
expression matching the left-hand side of the →m-reduction rule, which must be an applied
m-abstraction, i.e. a term of the form (λx. t)L s. The height of a type is given by h(α) def= 0
and h(A → B) def= 1 + max(h(A), h(B)). The degree of a m-abstraction (λx. t)L is defined
as the height of its type; note that this number is always strictly positive, since the type
must be of the form A→ B. Moreover, this type is unique, so the operation is well-defined.
The degree of a redex (λx. t)L s is defined as the degree of the m-abstraction (λx. t)L. The
max-degree of a term t is written maxdeg(t) and it is defined as the maximum degree of
the redexes in t, or 0 if t has no redexes. The weight w(t) of a λm-term t is the number of
wrappers in t.

▶ Example 2. Let 0 be a base type and let t := (λx0→0. λy0. y0{x0→0 (x0→0 z0)}) I w0,
where I := λx0. x0. One possible way to reduce t is:

(λx. λy. y{x (x z)}) I w →m (λy. y{I (I z)}){I} w →m w{I (I z)}{w}{I}
→m w{I (z{z})} {w} {I} →m w{z{z}{z{z}}}{w}{I} = s

The degrees of the redexes contracted in each step are 2, 1, 1, and 1, in that order. Note
that maxdeg(t) = 2 and that the weight of the resulting term is w(s) = 6.

Two basic properties of the λm-calculus are subject reduction and confluence. These are
immediate consequences of the fact that the λm-calculus can be understood as an orthogonal
HRS in the sense of Nipkow [26], i.e. a left-linear higher-order rewriting system without
critical pairs.

▶ Proposition 3 (Subject reduction). Let Γ ⊢ t : A and t→m s. Then Γ ⊢ s : A.

▶ Proposition 4 (Confluence). If t1 →∗
m t2 and t1 →∗

m t3, there exists a term t4 such that
t2 →∗

m t4 and t3 →∗
m t4.

Full simplification. Next, we define an operation written S∗(t) and called full simplification.
Let d ≥ 1 be a natural number. The simplification of degree d, written Sd(t), is the

result of simultaneously contracting all the redexes of degree d in t, that is, the result of
the complete development of all redexes of degree d. Formally, for each λm-term t we define
Sd(t), and, for each memory L, we define Sd(L) as follows:
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▶ Definition 5 (Simplification).

Sd(x) def= x

Sd(λx. t) def= λx. Sd(t)

Sd(t s) def=
{

Sd(t′)[x := Sd(s)]{Sd(s)}Sd(L) if t = (λx. t′)L and it is of degree d

Sd(t) Sd(s) otherwise
Sd(t{s}) def= Sd(t){Sd(s)}

where if L is a memory, Sd(L) is defined by Sd(□) def= □ and Sd(L{t}) def= Sd(L){Sd(t)}.
Furthermore, if t is a λm-term of max-degree D, we define the full simplification of t as the
term that results from iteratively taking the simplification of degree i from D down to 1.
More precisely, S∗(t) def= S1(. . . SD−1(SD(t))).

▶ Example 6. Consider the λ-term M = (λx0→0. x0→0(x0→0 y0))(λz0. w0). It can be
regarded also as a λm-term, and we have:

S2(M) = ((λz0. w0) ((λz0. w0) y0)){λz0. w0}
S∗(M) = S1(S2(M)) = w0{w0{y0}}{λz0. w0}

Note that M has only one redex, whose abstraction is of type (0 → 0) → 0 and hence
of degree 2, and that S2(M) has two redexes, whose abstractions are of type 0 → 0 and
hence of degree 1. Moreover, consider the λ-term N = (λz0. w0) ((λz0. w0) y0). Then
S∗(N) = S1(N) = w{w{y}}. Note that N has two redexes whose abstraction is of type
0→ 0 and hence of degree 1. As an additional note, in the λ-calculus there is a reduction
step M →β N , and we have that w(S∗(M)) = 3 > 2 = w(S∗(N)). So this example illustrates
that the W-measure (as defined in Def. 12) is decreasing (as we will show in Thm. 15).

As it turns out, full simplification corresponds to reduction to normal form.
More precisely, we have the following result, which entails in particular that the λm-calculus
is weakly normalizing:

▶ Proposition 7. t→∗
m S∗(t), and moreover S∗(t) is a →m-normal form.

Proof. To show that t→∗
m S∗(t), it suffices to prove a lemma stating that t→∗

m Sd(t) for all
d ≥ 1. This implies that t→∗

m SD(t)→∗
m SD−1(SD(t)) . . .→∗

m S1(. . . SD−1(SD(t))) = S∗(t),
where D is the max-degree of t. The lemma itself is straightforward by induction on t.

To show that S∗(t) is a →m-normal form, the key property is that, after performing
a simplification of order d, no redexes of order d remain. The reason is that contracting
a redex of order d can only create redexes of lower degree. More precisely, we prove a
key lemma stating that if d ≥ 1 and maxdeg(t) ≤ d, then maxdeg(Sd(t)) < d. If we
let maxdeg(t) ≤ D, we can iterate this lemma, to obtain that maxdeg(SD(t)) < D, and
maxdeg(SD−1(SD(t))) < D − 1, . . ., and finally maxdeg(S1(. . . SD−1(SD(t)))) < 1. This
means that S∗(t) = S1(. . . SD−1(SD(t))) does not contain redexes, since there are no redexes
of degree 0, so S∗(t) must be a →m-normal form. ◀

Forgetful reduction. To conclude this section, we introduce the relation of forgetful reduction
t ▷+ s, and we prove that it commutes with reduction.

▶ Definition 8. A λm-term t reduces via a forgetful step to s, written t ▷ s, according to
the following axiom, closed by compatibility under arbitrary contexts:

t{s} ▷ t
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We say that t reduces via forgetful reduction to s if and only if t ▷+ s, where ▷+ denotes
the transitive closure of ▷.

▶ Example 9. (λx. x{y{y}}){z{z}} ▷ (λx. x{y{y}}){z} ▷ (λx. x){z} ▷ λx. x.

▶ Proposition 10 (Forgetful reduction commutes with reduction). If t ▷+ s and t →∗
m t′,

there exists a term s′ such that t′ ▷+ s′ and s →∗
m s′. Furthermore, if t ▷+ s and t is a

→m-normal form, then s is also a normal form.

Proof. The result can be reduced to a local commutation result, stating that if t ▷ s and
t→m t′, there exists a term s′ such that t′ ▷+ s′ and s→=

m s′, where →=
m is the reflexive

closure of →m. Local commutation can be proved by case analysis. The interesting cases are
when a shrinking step s ▷ s′ lies inside the argument of a redex, and when a reduction step
r →m r′ is inside erased garbage:

(λx. t)L s

��

▷ (λx. t)L s′

��
t[x := s]{s}L ▷+ t[x := s′]{s′}L

u{r}

��

▷ u

u{r′} ▷+ u

For the last part of the statement, it suffices to show that if t ▷ s in one step and t is a
→m-normal form, then s is also a normal form, which is straightforward by induction on t.

◀

Each step in the STLC has a corresponding step in the λm-calculus, that contracts
the redex in the same position. For instance the step (λx. x y) I →β I y in the STLC
has a corresponding step (λx. x y) I →m (I y){I} in the λm-calculus. In this example,
(I y){I} ▷ I y. The following easy lemma confirms that this is a general fact:

▶ Lemma 11 (Reduce/forget lemma). Let M →β N be a β-step, and let M →m s be the
corresponding step in λm. Then s ▷ N .

3 The W-measure

In this section, we define the W-measure (Def. 12) and we prove that it is decreas-
ing (Thm. 15). Let us try to convey some ideas that led to the definition of the W-
measure. Recall that an abstract rewriting system (A,→) is weakly Church–Rosser (WCR)
if ←→⊆→∗←∗, Church–Rosser (CR) if ←∗→∗⊆→∗←∗, and increasing (Inc) if there exists
a function | · | : A→ N such that a→ b implies |a| < |b|. Let us also recall Klop–Nederpelt’s
lemma [31, Theorem 1.2.3 (iii)], which states that Inc ∧ WCR ∧ WN =⇒ SN ∧ CR.

Let (A,→) be increasing and WCR. Given a reduction a→∗ b, where b is a normal form,
we can find a decreasing measure for the set of objects reachable from a, that is, the set
{c ∈ A | a→∗ c}. In fact, by Klop–Nederpelt’s lemma, we know that for every c ∈ A such
that a →∗ c we have that c →∗ b, which implies that |c| ≤ |b|, and hence we can define
#(c) := |b| − |c|. It is easy to see that #(−) is a decreasing measure, since c→ c′ implies
that |c| < |c′| so #(c) := |b| − |c| > |b| − |c′| = #(c′). Furthermore, the value of #(c) does
not depend on the choice of a, by uniqueness of normal forms.

The idea behind the W-measure is that the construction of a decreasing measure can be
based on an increasing measure, according to the previous observation. It is not possible
to build an increasing measure directly for the STLC; e.g. the following infinite sequence
of expansions t ← I t ← I (I t) ← . . . would induce an infinite decreasing chain of natural
numbers |t| > |I t| > |I (I t)| > . . ..
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One could try to define an increasing measure in a variant of the STLC such as Endrullis
et al.’s clocked λ-calculus [14], in which the β-rule becomes (λx. t) s→ τ(t[x := s]), that is,
contracting a β-redex produces a counter “τ” that keeps track of the number of contracted
redexes. One could then count the number of τ ’s: for example, in the reduction sequence
(λx. x (x y)) I → τ(I (I y))→ ττ(I y)→ τττy the number of counters strictly increases with
each step. Unfortunately, this does not define an increasing measure, due to erasure. For
example, (λx. y) t→ τy erases all the counters in t.

This is the motivation behind the definition of the λm-calculus, which avoids erasure
by always keeping an extra copy of the argument in a wrapper. The λm-calculus is indeed
increasing: in a step t→m s one has that w(t) < w(s), where we recall that w(t) denotes the
weight, i.e. the number of wrappers in t. For example, the step (λx. y) (z{z})→m y{z{z}}
increases the number of wrappers. The decreasing measure W(M) is defined essentially by
reducing M to normal form in the λm-calculus and counting the number of wrappers in the
result:

▶ Definition 12 (The W-measure). For each typable λ-term M , define W(M) def= w(S∗(M)).

As we show below, S∗(M) turns out to be exactly the normal form of M in the λm-calculus.
We insist in writing S∗(M) to emphasize that the definition of theW-measure does not require
to prove that the λm-calculus is weakly normalizing. Indeed, the simplification Sd(t) can be
defined by structural induction on t, and the full simplification S∗(t) = S1(S2(. . . SD(t))) can
be calculated in exactly D iterations. On the other hand, the proof that the W-measure is
decreasing does rely on the fact that S∗(M) is the normal form of M .

In the remainder of this section, we prove that the W-measure is indeed decreasing. The
following lemma states that forgetful reduction decreases weight, and it is straightforward to
prove:

▶ Lemma 13. If t ▷+ s then w(t) > w(s).

The proof that the W-measure decreases relies on the two following properties that relate
full simplification S∗(−) respectively with reduction (→m) and forgetful reduction (▷+):

▶ Lemma 14. 1. If t→m s then S∗(t) = S∗(s). 2. If t ▷+ s then S∗(t) ▷+ S∗(s).

Proof. For the first item, note that by Prop. 7, we know that t→∗
m S∗(t) and that t→m

s→∗
m S∗(s), where moreover S∗(t) and S∗(s) are →m-normal forms. By confluence (Prop. 4),

this means that S∗(t) = S∗(s).
For the second item, note that by Prop. 7, we know that t→∗

m S∗(t). Since we also know
t ▷+ s by hypothesis, and since forgetful reduction commutes with reduction (Prop. 10),
there exists a term u such that s→∗

m u and S∗(t) ▷+ u. By Prop. 7 we know that S∗(t) is in
normal form, so by Prop. 10 u must also be a normal form. On the other hand, by Prop. 7 we
know that s→∗

m S∗(s), where S∗(s) must also be a normal form. In summary, we have that
s→∗

m u and s→∗
m S∗(s), where both u and S∗(s) are normal forms. By confluence (Prop. 4)

u = S∗(s), and from this we obtain that S∗(t) ▷+ u = S∗(s), as required. ◀

▶ Theorem 15. Let M, N be typable λ-terms such that M →β N . Then W(M) >W(N).

Proof. Given the step M →β N , consider the corresponding step M →m s, and note that
s ▷+ N by the reduce/forget lemma (Lem. 11). Since M →m s ▷+ N , by Lem. 14, we have
that S∗(M) = S∗(s) ▷+ S∗(N). Finally, by Lem. 13, W(M) = w(S∗(M)) > w(S∗(N)) =
W(N). ◀
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The following is one example that the W-measure decreases (see Ex. 6 for another
example):

▶ Example 16. Let M = (λx0. y0→0→0 x0 x0) ((λx0→0. x0→0 z0) f0→0), consider the step
M = (λx. y x x)((λx. x z) f)→β (λx. y x x) (f z) = N , and note that W(M) = w(S∗(M)) =
4 > 1 =W(N), since:

S∗(M) = (y (f z){f} (f z){f}){(f z){f}} S∗(N) = (y (f z) (f z)){f z}

4 Reduction by degrees

This section is of purely technical nature. The aim is to develop tools that we use in
the following section to reason about the T m-measure. To do so, we need to introduce
witnesses of steps and reduction sequences, treating the λm-calculus as an abstract rewriting
system in the sense of [31, Def. 8.2.2] or as a transition system in the sense of [24, Def. 1].
Objects are λm-terms, steps are 5-uples R = (C, x, t, L, s) witnessing the reduction step
C[(λx. t)L s]→m C[t[x := s]{s}L] under a context C, and reductions (ρ, σ, . . .) are sequences
of composable steps. Similarly, forgetful steps are triples R = (C, t, s) witnessing the forgetful
reduction C[t{s}] ▷ C[t], and forgetful reductions (also written ρ, σ, . . .) are sequences of
composable forgetful steps. We write ρsrc and ρtgt respectively for the source and target
terms of ρ.

For each d ∈ N0, we define reduction of degree d as follows:

▶ Definition 17. t
d−→m s if and only if t→m s by contracting a redex of degree d.

We write R : t
d−→m s if R is a step witnessing a reduction step of degree d, and ρ : t

d−→∗
m s if

ρ is a reduction witnessing a sequence of reduction steps of degree d.
The following results require to explicitly manipulate steps and reductions.

▶ Proposition 18 (Commutation of reduction by degrees). For any two reductions ρ : t1
d−→∗

m t2

and σ : t1
D−→∗

m t3, there exists a term t4 and one can construct reductions σ/ρ : t2
D−→∗

m t4

and ρ/σ : t3
d−→∗

m t4 such that, furthermore, if d ̸= D, then 1. ρ/σ contains at least as many
steps as ρ; and 2. ρ/σ determines ρ, that is, ρ1/σ = ρ2/σ implies ρ1 = ρ2.

Proof. This is reduced to the fact that the λm-calculus can be understood as an orthogonal
higher-order rewriting system in the sense of Nipkow [26]. Indeed, ρ/σ and σ/ρ can be taken
to be the standard notion of projection based on residuals for orthogonal HRSs. Note that
item 1. holds because the λm-calculus is non-erasing while item 2. is a consequence of the
unique ancestor property, i.e. each redex descends from at most one redex. ◀

▶ Corollary 19 (Termination of reduction by degrees). The relation d−→m is strongly normalizing.

Proof. This is a consequence of the fact that HRSs enjoy the Finite Developments property [31,
Theorem 11.5.11], observing that reduction of degree d does not create redexes of degree d.
Alternatively, it can be easily shown that t

d−→∗
m Sd(t) and Sd(t) is in d−→m-normal form, so

d−→m is WN. Moreover, one can observe that d−→m is uniformly normalizing [19], given that
there is no erasure, which entails that d−→m is SN. ◀

▶ Proposition 20 (Lifting property for lower steps). Let d < D and t
d−→m s

D−→∗
m s′. Then

there exist terms t′, s′′ such that t
D−→∗

m t′ and s′ D−→∗
m s′′ and t′ d−→+

m s′′.

FSCD 2023
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Proof. Note that t
D−→∗

m SD(t). By Prop. 18, there exists a term u such that s
D−→∗

m u

and SD(t) d−→+
m u. Again by Prop. 18, there exists s′′ such that u

D−→∗
m s′′ and s′ D−→∗

m s′′.
Moreover, SD(t) is in D−→m-normal form. Since SD(t) d−→∗

m u with d < D and reduction does
not create redexes of higher degree, u is also in D−→m-normal form, so u = s′′, and we are
done. ◀

▶ Proposition 21 (Postponement of forgetful reduction). For any two reductions ρ : t ▷∗ t′

and σ : t′ d−→∗
m s′, there exists a term s and reductions ρ↷σ : s ▷∗ s′ and σ↶ρ : t

d−→∗
m s.

Furthermore, σ↶ρ determines σ, that is, σ↶
1 ρ = σ↶

2 ρ implies σ1 = σ2.

Proof. This can be reduced to an analysis of the critical pairs between the rewriting rules
defining ▷−1 and →m. Critical pairs are of the form (λx. t)L1{s}L2 u ▷ (λx. t)L1L2 u→m
t[x := u]{u}L1L2 and can be closed by (λx. t)L1{s}L2 u→m t[x := u]{u}L1{s}L2 ▷ t[x :=
u]{u}L1L2. ◀

The following diagrams depict the statements of the three preceding propositions:

t1

σ D

��

ρ

d // //

Prop. 18

t2

σ/ρ D
����

t3
ρ/σ

d // // t4

t

Prop. 20d

��

D // // t′

d

+��
s

D // // s′ D // // s′′

t

Prop. 21

ρ
▷∗

dσ↶ρ

����

t′

dσ

∗��
s

ρ↷σ
▷∗ s′

5 The T m-measure

In this section, we define the T m-measure (Def. 25) and we prove that it is decreas-
ing (Thm. 32). We start with some preliminary notions.

A partially ordered set (X, >) is well-founded if there are no infinite decreasing chains.
M(X) denotes the set of finite multisets over a set X, which are functions m : X → N0 such
that m(x) > 0 for finitely many values of x ∈ X. We write m + n for the sum of multisets,
and x ∈ m if m(x) > 0. We write [x1, . . . , xn] for the multiset of elements x1, . . . , xn, taking
multiplicities into account. If X is a finite set and f : X → Y is a function, we use the
“multiset builder” notation [f(x) || x ∈ X] to denote the multiset

∑
x∈X [f(x)]. If (X, >)

is a partially ordered set, we define a binary relation ≻1 on multisets by declaring that
m + [x] ≻1 m + n if x > y for every y ∈ n. The multiset order induced by (X, >) is the strict
order relation on multisets defined by declaring that m ≻ n if and only if m (≻1)+ n. We
recall the following widely known theorem by Dershowitz and Manna [12]:

▶ Theorem 22. If (X, >) is well-founded, then (M(X),≻) is well-founded.

As usual, m ⪰ n stands for (m = n ∨ m ≻ n), and m ⪯ n stands for n ⪰ m. We define an
operation k ⊗m by the recursive equations 0⊗m

def= [ ] and (1 + k)⊗m
def= m + k ⊗m. The

relation m :≻: n, called the pointwise multiset order, is defined to hold if m and n can be
written as of the forms m = [x1, . . . , xn] and n = [y1, . . . , yn] in such a way that xi > yi for
all i ∈ 1..n. Observe that if m :≻: n then for all k ∈ N0 we have that m ⪰ k ⊗ n. Another
easy-to-check property is that if m :≻: n and m is non-empty then m ≻ n.

A first frustrated attempt. As mentioned in the introduction, Turing’s measure, given
by T (M) def= [d || R is a redex occurrence of degree d in M ], decreases when contracting the
rightmost redex of highest degree. Our goal is to mend the T -measure in such a way that
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contracting any redex decreases the measure. The difficulty is that a redex of degree d may
copy redexes of a higher or equal degree d′ ≥ d. So one can wonder: whenever a redex R of
degree d makes n copies of a redex S of degree d′ ≥ d, in what sense can the copies of S be
considered “smaller” than S? To address this, we generalize the T -measure to a family of
measures TD(M) def= [(d, Td−1(M)) || R is a redex occurrence of degree d ≤ D in M ] indexed
by a degree D ∈ N0. Note that T0(M) is the empty multiset because there are no redexes of
degree 0.

Let us try to argue that if d ≤ D and M
d−→β N then TD(M) ≻ TD(N). Here M

d−→β N

means that M →β N by contracting a redex of degree d. Suppose that the contraction of the
redex R : M

d−→β N copies a redex S of degree d′, where we assume that d < d′ ≤ D, producing
n copies S1, . . . , Sn. Note that the contribution of S to the multiset is (d′, Td′−1(M)), and
the contribution of each Si is (d′, Td′−1(N)). By induction on D, we could inductively argue
that Td′−1(M) ≻ Td′−1(N), since d′ − 1 < d′ ≤ D. So far the property would seem to hold.

The problem with this proposal is that a redex R of degree d may still make copies of
redexes of degree exactly d, whose contribution does not necessarily decrease2.

A second frustrated attempt. The difficulty is to deal with the situation in which a redex
R of degree d makes n copies of a redex S of the same degree d. A key observation is that
a reduction sequence M

d−→∗
β N must be a development3 of the set of redexes of degree d.

This is because contracting a redex of degree d can only create redexes of degree strictly
less than d, so any redex of degree d that remains after one d−→β-step must be a residual
of a preexisting redex. This motivates our second attempt to define a measure, consisting
of two families of measures T β

≤D(−) and Rβ
D(−), indexed by D ∈ N0 and defined mutually

recursively:

T β
≤D(M) def= [(d,Rβ

d (M)) || R is a β-redex occurrence of degree d ≤ D in M ]

Rβ
D(M) def= [T β

≤D−1(M ′) || ρ : M
D−→∗

β M ′]

Note that there are no redexes of degree 0, so T β
≤D(M) may not depend on Rβ

0 (M). In
fact, Rβ

D(M) is defined only for D ≥ 1. The recursive definition is well-founded because
T β

≤D(M) may depend on Rβ
1 (M), . . . ,Rβ

D(M) which in turn may only depend on T β
≤d(M ′)

for d < D. The multiplicity of T β
≤D−1(M ′) in the multiset Rβ

D(M) is given by the number of
reduction sequences that contract only redexes of degree D, that is, the number of different
paths M

D−→∗
m M ′. One important point is that, for the measure Rβ

D(t) to be well defined,

one needs to argue that the number of paths M
D−→∗

m M ′ is finite. Since M
D−→∗

m M ′ is a
development, this is a consequence of the finite developments (FD) property for orthogonal
HRSs [31, Theorem 11.5.11].4

2 For example, in M = (λx0. y0→0→0 x0 x0) ((λz0. z0) w0) 1−→β y0→0→0 ((λz0. z0) w0) ((λz0. z0) w0) = N
the measure does not decrease, as T1(M) = [(1, []), (1, [])] = T1(N).

3 Recall that a development of a set of redexes X is a reduction sequence M →∗
β N in which each step

contracts a residual of a redex in X. The residuals of a redex S : t →β s after the contraction of a
redex R : t →β t′ are, informally speaking, the “copies” left of S in t′. For formal definitions see [3,
Section 11.2].

4 Note that FD only ensures that developments are finite. To see that the set {ρ | M
D−→∗

m M ′} is finite,
one should resort to König’s lemma, together with the fact that the STLC is finitely branching. For a
constructive proof, one can use a computable decreasing measure, such as in de Vrijer’s proof of FD [9].
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Let us try to argue that if d ≤ D and M
d−→β N then T β

≤D(M) ≻ T β
≤D(N). On the first

hand, if a redex R : M
d−→β N of degree d copies a redex S of exactly the same degree d making

n copies S1, . . . , Sn, the contribution of S to the multiset is (d,Rβ
d (M)), whereas each Si

contributes (d,Rβ
d (N)), and we can argue that Rβ

d (M) ≻ Rβ
d (N), because we can injectively

map each reduction sequence ρ : N
d−→∗

β N ′ to the reduction sequence Rρ : M
d−→β N

d−→∗
β N ′,

where Rρ denotes the composition of R and ρ. Furthermore, there is an empty reduction
sequence M

d−→∗
β M contributing an element T β

≤d−1(M) to Rβ
d (M) but not to Rβ

d (N).

On the other hand, if the contraction of a redex R : M
d−→β N of degree d copies a redex

S of strictly greater degree d′ > d making n copies S1, . . . , Sn, the weight of S is (d′,Rβ
d′(M))

and the weight of each Si is (d′,Rβ
d′(N)), and we would need to show that Rβ

d′(M) ≻ Rβ
d′(N).

One way to do so would be to map each reduction sequence ρ : N
d−→∗

β N ′ to a reduction

sequence σ : M
d−→∗

β M ′ such that T β
≤d′−1(M ′) ≻ T β

≤d′−1(N ′). However, there does not seem
to be a way to rule out the possibility that σ might erase R and that M ′ = N ′, which would
yield T β

≤d′−1(M ′) = T β
≤d′−1(N ′), rather than a strict inequality. The root of the problem

seems again to be erasure.

Definition of the T m-measure. The T m-measure is based on the ideas described above,
but considering reduction in the λm-calculus rather than in the STLC, to ensure that there
is no erasure. Informally, the T m-measure is defined by means of the two following equations.
These equations are exactly as the ones defining T β

≤D(−) and Rβ
D(−) above, with the only

difference that they deal with λm-terms and →m-reduction rather than with pure λ-terms
and →β-reduction:

T m
≤D(t) def= [(d,Rm

d (t)) || R is a m-redex occurrence of degree d ≤ D in t]

Rm
D (t) def= [T m

≤D−1(t′) || ρ : t
D−→∗

m t′]

To be able to reason about these measures inductively, it will be convenient to define an
auxiliary measure T m

d (t0, t) as the multiset of elements of the form (d,Rm
d (t0)) for each

m-redex occurrence of degree exactly d in t. This auxiliary measure takes two arguments
t0 and t, and it is defined by structural recursion on the second argument (t), while the
first argument (t0) is used to keep track of the original term. Note that, with this auxiliary
definition, we can write T m

≤D(t) as a sum, namely T m
≤D(t) = T m

1 (t, t) + . . . + T m
D (t, t).

To define the measure formally, we start by precisely defining its codomain.

▶ Definition 23 (Codomain of the T m-measure). For each d ≥ 0, we define a set Td, and for
d ≥ 1 we define a set Rd, mutually recursively:

Td
def= M({(i, b) | 1 ≤ i ≤ d, b ∈ Ri}) Rd

def= M(Td−1)

The sets Td and Rd are partially ordered by the induced multiset ordering on their
elements. Tuples (i, b) are ordered with the lexicographic order, that is, (i, b) > (i′, b′) if and
only if i > i′ ∨ (i = i′ ∧ b ≻ b′). Note that T0 = {[ ]} and that if d ≤ d′ then Td ⊆ Td′ and
Rd ⊆ Rd′ . Moreover, (Td,≻) and (Rd,≻) are well-founded partial orders by Thm. 22.

Given typable λm-terms t0, t, and d ∈ N0, we define T m
d (t0, t) ∈ Td and T m

≤d(t) ∈ Td,
and if d > 0 we define Rm

d (t) ∈ Rd, by induction on d as follows. Note that T m
d (t0, t) is

defined by a nested induction on t, and it is also defined on memories (T m
d (t0, L)):
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▶ Definition 24 (The measures T m
d (−,−), T m

≤d(−), and Rm
d (−)).

T m
d (t0, x) def= [ ]

T m
d (t0, λx. s) def= T m

d (t0, s)

T m
d (t0, s u) def=


T m

d (t0, s′) + T m
d (t0, L) + T m

d (t0, u) + [(d,Rm
d (t0))]

if s = (λx. s′)L and it is of degree d

T m
d (t0, s) + T m

d (t0, u) otherwise
T m

d (t0, s{u}) def= T m
d (t0, s) + T m

d (t0, u)

T m
d (t0,□) def= [ ]

T m
d (t0, L{t}) def= T m

d (t0, L) + T m
d (t0, t)

T m
≤d(t) def=

∑d
i=1 T m

i (t, t)

Rm
d (t) def= [T m

≤d−1(t′) || ρ : t
d−→∗

m t′]

Moreover, the T m-measure itself is defined for λ-terms as follows:

▶ Definition 25. If M is a typable λ-term, T m(M) def= T m
≤D(M) where D := maxdeg(M).

When we write T m
≤D(M), we implicitly regard M as a λm-term without any memorized

terms.
From a higher-level perspective, the T m

d (t0, t) measure defined above is the multiset of
pairs of the form (d,Rm

d (t0)) for each redex of degree d in t. Similarly, T m
≤D(t) is the multiset

of pairs of the form (d,Rm
d (t)) for each redex of degree d ≤ D in t. In particular, T m

0 (t0, t)
and T m

≤0(t) are empty multisets, because there are no redexes of degree 0. Two easy remarks
are that D ≤ D′ implies T m

≤D(t) ⪯ T m
≤D′(t), and that T m

d (t0, tL) = T m
d (t0, t) + T m

d (t0, L).
▶ Remark 26. As mentioned in the preceding discussion, one important point is that for
Rm

d (−) to be well-defined we need to argue that the set {ρ | ∃t′. ρ : t
d−→∗

m t′} is finite. This
is a consequence of Coro. 19.

▶ Example 27. Let ∆ := λx0→0. x0→0(x0→0z0) and W := λy0. w0 and consider the diagram:

t2 = w{Wz}{W} 1
,,

t0 = ∆ W
2 // t1 = (W (Wz)){W}

1 00

1 ..
t4 = w{w{z}}{W}

t3 = (W (w{z})){W} 1 22

Then T m
≤0(t1) = T m

≤0(t2) = T m
≤0(t3) = T m

≤0(t4) = T m
≤1(t4) = T m

≤2(t4) = [ ], and:

T m
≤2(t0)=[(2,Rm

2 (t0))] Rm
2 (t0)=[T m

≤1(t0), T m
≤1(t1)]

T m
≤2(t1)=T m

≤1(t1)=[(1,Rm
1 (t1)), (1,Rm

1 (t1))] Rm
1 (t1)=[T m

≤0(t1), T m
≤0(t2), T m

≤0(t3), T m
≤0(t4)]

T m
≤2(t2)=T m

≤1(t2)=[(1,Rm
1 (t2))] Rm

1 (t2)=[T m
≤0(t2), T m

≤0(t4)]
T m

≤2(t3)=T m
≤1(t3)=[(1,Rm

1 (t3))] Rm
1 (t3)=[T m

≤0(t3), T m
≤0(t4)]

In particular, T m
≤2(t0) ≻ T m

≤2(t1) ≻ T m
≤2(t2) ≻ T m

≤2(t4) and T m
≤2(t1) ≻ T m

≤2(t3) ≻ T m
≤2(t4).

The T m-measure is decreasing. Lastly, we show the main theorem of this section, stating
that if M →β N then T m(M) ≻ T m(N). This theorem is based on three technical results,
that we call high/increase, low/decrease, and forget/decrease:
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1. High/increase (Prop. 29) establishes – perhaps confusingly – that T m
≤d(−) (non-strictly)

increases if one contracts a redex of higher degree D > d. More precisely, if 0 ≤ d < D

and t
D−→m t′ then T m

≤d(t) ⪯ T m
≤d(t′). Note that T m

≤d(t) only looks at redexes of degree
i ≤ d, and contracting a redex of degree D > d cannot erase a redex of any degree i ≤ d,
because the λm-calculus is non-erasing. Contracting a redex of degree D can, at most,
replicate redexes of degree i. This property is needed for a technical reason to prove the
low/decrease property, and it relies crucially on the commutation result of the previous
section (Prop. 18).

2. Low/decrease (Prop. 30) establishes that T m
≤D(−) strictly decreases if one contracts

a redex of lower degree d < D. More precisely, if 1 ≤ d ≤ D and t
d−→m t′ then

T m
≤D(t) ≻ T m

≤D(t′). This is the core of the argument, and the most technically difficult
part to prove. It relies crucially on the lifting property of the previous section (Prop. 20).

3. Forget/decrease (Prop. 31) establishes that forgetful reduction (non-strictly) decreases
the measure. More precisely, if t ▷ t′ then T m

≤d(t) ⪰ T m
≤d(t′). This property is used as

a final step in the main theorem, and it relies crucially on postponement of forgetful
reduction, as studied in the previous section (Prop. 21).

Below we sketch the proofs of these three properties. Let us first mention a straightforward
lemma.

▶ Lemma 28 (Measure of a substitution). 1. T m
d (t0, t) ⪯ T m

d (t0, t[x := s]). 2. If s is not
a m-abstraction of degree d, then T m

d (t0, t[x := s]) = T m
d (t0, t) + k ⊗ T m

d (t0, s) for some
k ∈ N0.

Proof. By induction on t. ◀

▶ Proposition 29 (High/increase). Let D ∈ N0. Then the following hold:
1. If 1 ≤ d < D and t

D−→m t′ then Rm
d (t) ⪯ Rm

d (t′).
2. If 0 ≤ d < D and t0

D−→m t′
0 then T m

d (t0, t) ⪯ T m
d (t′

0, t).
3. If 0 ≤ d < D and t0

D−→m t′
0 and t

D−→m t′ then T m
d (t0, t) ⪯ T m

d (t′
0, t′).

4. If 0 ≤ d < D and t
D−→m t′ then T m

≤d(t) ⪯ T m
≤d(t′).

Proof. The four items are proved simultaneously by induction on d, where item 1 resorts
to the IH, and the following items may resort to the previous items without decreasing d.
Items 2 and 3 proceed by a nested induction on t. Most cases are straightforward.

One interesting situation occurs in item 3 when t = (λx. s)L u is the redex of degree D

contracted by the step t
D−→m t′. Then we resort to the first part of Lem. 28.

Another interesting part of the proof is item 1. Let 1 ≤ d < D and t
D−→m t′ and let us

show that Rm
d (t) ⪯ Rm

d (t′). Indeed, let X := {ρ | (∃s) ρ : t
d−→∗

m s} and Y := {σ | (∃s′) σ :

t′ d−→∗
m s′}, and let R : t

D−→m t′. Using Prop. 18, we can define an injective function
φ : X → Y by φ(ρ) := ρ/R. Note that T m

≤d−1(ρtgt) ⪯ T m
≤d−1(φ(ρ)tgt) holds for every ρ ∈ X

using item 4 of the IH (noting that 1 ≤ d− 1 < D holds because 1 ≤ d < D), resorting to
the IH as many times as the length of the reduction s

D−→∗
m s′

ρ. To conclude the proof, let
Z = Y \ φ(X). Then:

Rm
d (t) = [T m

≤d−1(ρtgt) || ρ ∈ X] ⪯(⋆) [T m
≤d−1(φ(ρ)tgt) || ρ ∈ X] =(⋆⋆) [T m

≤d−1(σtgt) || σ ∈ φ(X)]
⪯ [T m

≤d−1(σtgt) || σ ∈ φ(X)] + [T m
≤d−1(σtgt) || σ ∈ Z] = [T m

≤d−1(σtgt) || σ ∈ Y ] = Rm
d (t′)
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To justify the step marked with (⋆), note that [T m
≤d−1(ρtgt) || ρ ∈ X] =

∑
ρ∈X [T m

≤d−1(ρtgt)] ⪯∑
ρ∈X [T m

≤d−1(φ(ρ)tgt)] = [T m
≤d−1(φ(ρ)tgt) || ρ ∈ X] because T m

≤d−1(ρtgt) ⪯ T m
≤d−1(φ(ρ)tgt), as

we have already claimed. To justify the step marked with (⋆⋆), note that φ is injective. ◀

▶ Proposition 30 (Low/decrease). Let D ∈ N0. Then the following hold:
1. If 1 ≤ d ≤ j ≤ D and t

d−→m t′ then Rm
j (t) ≻ Rm

j (t′).
2. If 1 ≤ d ≤ j ≤ D and t0

d−→m t′
0 then T m

j (t0, t) :≻: T m
j (t′

0, t).
3. If 1 ≤ d ≤ D and t0

d−→m t′
0 and t

d−→m t′, then for all m ∈ Td−1 we have T m
d (t0, t) ≻

T m
d (t′

0, t′) + m.
4. If 1 ≤ d < j ≤ D and t0

d−→m t′
0 and t

d−→m t′ then T m
j (t0, t) ⪰ T m

j (t′
0, t′).

5. If 1 ≤ d ≤ D and t
d−→m t′ then T m

≤D(t) ≻ T m
≤D(t′).

Proof. The five items are proved simultaneously by induction on D, where item 1 resorts
to the IH, and the following items may resort to the previous items without decreasing d.
Items 2–4 proceed by a nested induction on t. We mention some of the interesting parts of
the proof.

For item 1, let 1 ≤ d ≤ j ≤ D and t
d−→m t′ and let us show that Rm

j (t) ≻ Rm
j (t′). Let

X := {ρ | (∃s) ρ : t
j−→∗

m s} and Y := {σ | (∃s′) σ : t′ j−→∗
m s′}, and consider two subcases:

If d = j, let R : t
d−→m t′, define an injective function φ : Y → X by φ(σ) = R σ, let

Z = X \ φ(Y ), and note that:

Rm
j (t) = [T m

≤j−1(ρtgt) || ρ ∈ φ(Y )] + [T m
≤j−1(ρtgt) || ρ ∈ Z]

= [T m
≤j−1(Rσtgt) || σ ∈ Y ] + [T m

≤j−1(ρtgt) || ρ ∈ Z] since φ is injective
= [T m

≤j−1(σtgt) || σ ∈ Y ] + [T m
≤j−1(ρtgt) || ρ ∈ Z] = Rm

j (t′) + [T m
≤j−1(ρtgt) || ρ ∈ Z]

To conclude that Rm
j (t) ≻ Rm

j (t′), note that Z is non-empty because it contains the

empty reduction ϵ : t
d−→∗

m t.
If d < j, we construct a function φ : Y → X as follows. By Prop. 20, for each
reduction σ : t′ j−→∗

m s′ there exist sσ, uσ, and reductions φ(σ) : t
j−→∗

m sσ and s′ j−→∗
m uσ

and sσ
d−→+

m uσ. Note that for every σ ∈ Y we have T m
≤j−1(φ(σ)tgt) = T m

≤j−1(sσ) ≻†

T m
≤j−1(uσ) ⪰‡ T m

≤j−1(s′) = T m
≤j−1(σtgt) where † holds by item 5 of the IH observing that

1 ≤ d ≤ j − 1 < D because d < j ≤ D, and ‡ holds by high/increase (Prop. 29) observing
that 0 ≤ j − 1 < j. To conclude the proof, let Z = X \ φ(Y ), and note that:

Rm
j (t) = [T m

≤j−1(ρtgt) || ρ ∈ φ(Y )] + [T m
≤j−1(ρtgt) || ρ ∈ Z]

= [T m
≤j−1(φ(σ)tgt) || σ ∈ Y ] + [T m

≤j−1(ρtgt) || ρ ∈ Z]

⪰ [T m
≤j−1(φ(σ)tgt) || σ ∈ Y ] ≻(⋆) [T m

≤j−1(σtgt) || σ ∈ Y ] = Rm
j (t′)

For the step marked with (⋆), note that [T m
≤j−1(φ(σ)tgt) || σ ∈ Y ] :≻: [T m

≤j−1(σtgt) || σ ∈ Y ]
because T m

≤j−1(φ(σ)tgt) ≻ T m
≤j−1(σtgt) holds by the claim above where, moreover, Y is

non-empty because it contains the empty reduction ϵ : t′ j−→∗
m t′.

Another interesting situation occurs in item 3, when t = (λx. s)L u is the redex of degree d

contracted by the step t
d−→m t′. The step is of the form t = (λx. s)L u

d−→m s[x := u]{u}L = t′.
Note that u is not an abstraction of degree d, because it is the argument of an abstraction of
degree d. So by Lem. 28 there exists k ∈ N0 such that T m

d (t′
0, s[x := u]) = T m

d (t′
0, s) + k ⊗

T m
d (t′

0, u). The crucial observation is that T m
d (t0, u) ⪰ (1 + k)⊗T m

d (t′
0, u), which is because

by item 2 we have that T m
d (t0, u) :≻: T m

d (t′
0, u).
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Finally, for item 5, let 1 ≤ d ≤ D and t
d−→m t′ and let us show that T m

≤D(t) ≻ T m
≤D(t′).

Indeed:

T m
≤D(t) =

D∑
i=1
T m

i (t, t) ⪰ T m
d (t, t) +

D∑
j=d+1

T m
j (t, t)

≻ T m
≤d−1(t′) + T m

d (t′, t′) +
D∑

j=d+1
T m

j (t, t) by item 3, taking m := T m
≤d−1(t′)

⪰ T m
≤d−1(t′) + T m

d (t′, t′) +
D∑

j=d+1
T m

j (t′, t′) = T m
≤D(t′) by item 4. ◀

▶ Proposition 31 (Forget/decrease). Let d ∈ N0. Then the following hold:
1. If t ▷ t′ then Rm

d (t) ⪰ Rm
d (t′).

2. If t0 ▷ t′
0 then T m

d (t0, t) ⪰ T m
d (t′

0, t).
3. If t0 ▷ t′

0 and t ▷ t′ then T m
d (t0, t) ⪰ T m

d (t′
0, t′).

4. If t ▷ t′ then T m
≤d(t) ⪰ T m

≤d(t′).

Proof. The four items are proved simultaneously by induction on D, where item 1 resorts
to the IH, and the following items may resort to the previous items without decreasing d.
Items 2 and 3 proceed by a nested induction on t.

The interesting part is item 1, so let t ▷ t′ and let us show that Rm
d (t) ⪰ Rm

d (t′). Let

X := {ρ | (∃s) ρ : t
d−→∗

m s} and Y := {σ | (∃s′) σ : t′ d−→∗
m s′}. Define an injective function

φ : Y → X by φ(σ) := σ↶R, resorting to Prop. 21, where σ↶R : t
d−→∗

m sσ. and sσ ▷∗ s′.
Note that for every σ ∈ Y we have T m

≤d−1(φ(σ)tgt) = T m
≤d−1(sσ) ⪰† T m

≤d−1(s′) = T m
≤d−1(σtgt),

where † holds by item 4 of the IH, observing that d − 1 < d. To conclude the proof, let
Z = X \ φ(Y ), and note that:

Rm
d (t) = [T m

≤d−1(ρtgt) || ρ ∈ φ(Y )] + [T m
≤d−1(ρtgt) || ρ ∈ Z] ⪰ [T m

≤d−1(ρtgt) || ρ ∈ φ(Y )]

=(⋆) [T m
≤d−1(φ(σ)tgt) || σ ∈ Y ] ⪰(⋆⋆) [T m

≤d−1(σtgt) || σ ∈ Y ] = Rm
d (t′)

For the step marked with (⋆), note that φ is injective. For the step marked with (⋆⋆),
note that [T m

≤d−1(φ(σ)tgt) || σ ∈ Y ] =
∑

σ∈Y [T m
≤d−1(φ(σ)tgt)] ⪰

∑
σ∈Y [T m

≤d−1(σtgt)] =
[T m

≤d−1(σtgt) || σ ∈ Y ] because T m
≤d−1(φ(σ)tgt) ⪰ T m

≤d−1(σtgt), as we have already justified. ◀

Finally, we prove the main theorem in this section:

▶ Theorem 32. Let M, N be typable λ-terms such that M →β N . Then T m(M) > T m(N).

Proof. Let D = maxdeg(M) and D′ = maxdeg(N). Let M →m s be the step corresponding
to M →β N . By Lem. 11 note that s ▷ N . Then:

T m(M) = T m
≤D(M) ≻Prop. 30 T m

≤D(s) ⪰Prop. 31 T m
≤D(N) ⪰ T m

≤D′(N) = T m(N)

The last inequality holds because D ≥ D′ since, as is well-known, contraction of a β-redex in
the simply typed λ-calculus cannot create a redex of higher degree. ◀
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6 Conclusion

We have defined two decreasing measures for the STLC, the W-measure (Def. 12) and the
T m-measure (Def. 25). These measures are decreasing (Thm. 15 and Thm. 32 respectively)
and, to the best of our knowledge, they provide two new proofs of strong normalization for
the STLC. Both measures are defined constructively and by purely syntactic methods, using
the λm-calculus as an auxiliary tool.

The problem of finding a “straightforward” decreasing measure for β-reduction in the
simply typed λ-calculus is posed as Problem #26 in the TLCA list of open problems [5], and
as Problem #19 in the RTA list of open problems [11].

One strength of the W-measure is that its codomain is simple: each term is mapped to a
natural number. One weakness is that the definition of the W-measure relies on reduction
in the λm-calculus, and computing the W-measure is at least as costly as evaluating the
λ-term itself. Measures based on Gandy’s [16, 10] have similar characteristics. One question
is whether the values of the W-measure and measures based on Gandy’s can be related. It is
not immediate to establish a precise correspondence.

On the other hand, one strength of the T m-measure is that it shows how to extend
Turing’s measure T (−) so that it decreases when contracting any redex. The proof is based
on a delicate analysis of how contracting a redex of degree d may create and copy redexes
of degree d′, depending on whether d < d′, or d = d′, or d > d′. We hope that this may
provide novel insights on why the STLC is SN. The codomain of the T m-measure is not
so simple, as the T m-measure maps each term to a structure of nested multisets. Yet, it is
“reasonably simple”: the fact that the partial orders Td and Rd are well-founded only relies
on the ordinary multiset and lexicographic orderings. The T m-measure is costly to compute;
in particular Rm

d (t) is defined as a sum over all reductions ρ : t
d−→∗

m t′, which may produce a
combinatorial explosion. Another weakness is that our proofs make use of relatively heavy
rewriting machinery, as we have to keep explicit track of witnesses (e.g. in Section 4).

Besides the techniques mentioned in the introduction, other proofs of SN of the STLC can
be found in the literature. For example, David [7] gives a purely syntactic proof of SN relying
on the standardization theorem; Loader [23], as well as Joachimski and Matthes [18], give
combinatorial proofs of SN based on inductive predicates characterizing strongly normalizing
terms. As far as we know, the only proofs that explicitly construct decreasing measures are
those based on Gandy’s.

The idea of keeping “leftover garbage” can be traced back to at least the works of
Nederpelt [21] and Klop [20], who studied non-erasing variants of (possibly) erasing rewriting
systems, in order to relate weak and strong normalization. Many variations of these ideas
have been explored in the past, such as in de Groote’s notion of βS reduction [8] or Neergaard
and Sørensen calculus with memory [25]. Instead of using the λm-calculus, it is possible that
other non-erasing systems may be used. For instance, Gandy [16] translates λ-terms to the
terms of λI-calculus to avoid erasing arguments.

The definition of reduction in the λm-calculus, which allows arbitrary memory in between
the abstraction and the application, is inspired by Accattoli and Kesner’s work on calculi
with explicit substitutions “at a distance” [1]. This mechanism can be traced back, again, to
at least the work of Nederpelt [21].

The definition of the λm-calculus as a means to obtain an increasing measure was inspired
by the fact that, in explicit substitution calculi without erasure, labeled reduction (in the
sense of Lévy labels [22]) increases the sum of the sizes of all the labels in the term [2].

FSCD 2023



11:18 Two Decreasing Measures for Simply Typed λ-Terms

References
1 Beniamino Accattoli and Delia Kesner. The structural lambda-calculus. In Computer Science

Logic, 24th International Workshop, CSL 2010, 19th Annual Conference of the EACSL, Brno,
Czech Republic, August 23-27, 2010. Proceedings, pages 381–395, 2010.

2 Pablo Barenbaum and Eduardo Bonelli. Optimality and the linear substitution calculus. In 2nd
International Conference on Formal Structures for Computation and Deduction, FSCD 2017,
September 3-9, 2017, Oxford, UK, pages 9:1–9:16, 2017. doi:10.4230/LIPIcs.FSCD.2017.9.

3 Henk Barendregt. The Lambda Calculus: Its Syntax and Semantics, volume 103. Elsevier,
1984.

4 Henk P. Barendregt and Giulio Manzonetto. Turing’s contributions to lambda calculus. In
B. Cooper and J. van Leeuwen, editors, Alan Turing - His Work and Impact, pages 139–143.
Elsevier, 2013.

5 TCLA Editorial Board. TLCA list of open problems. http://tlca.di.unito.it/opltlca/,
2006.

6 Thierry Coquand. Canonicity and normalization for dependent type theory. Theor. Comput.
Sci., 777:184–191, 2019. doi:10.1016/j.tcs.2019.01.015.

7 René David. Normalization without reducibility. Ann. Pure Appl. Log., 107(1-3):121–130,
2001. doi:10.1016/S0168-0072(00)00030-0.

8 Philippe de Groote. The conservation theorem revisited. In Marc Bezem and Jan Friso
Groote, editors, Typed Lambda Calculi and Applications, International Conference on Typed
Lambda Calculi and Applications, TLCA ’93, Utrecht, The Netherlands, March 16-18, 1993,
Proceedings, volume 664 of Lecture Notes in Computer Science, pages 163–178. Springer, 1993.
doi:10.1007/BFb0037105.

9 Roel de Vrijer. A direct proof of the finite developments theorem. The Journal of symbolic
logic, 50(2):339–343, 1985.

10 Roel de Vrijer. Exactly estimating functionals and strong normalization. In Indagationes
Mathematicae (Proceedings), volume 90, pages 479–493. North-Holland, 1987.

11 Nachum Dershowitz, Jean-Pierre Jouannaud, and Jan Willem Klop. Open problems in
rewriting. In International Conference on Rewriting Techniques and Applications, pages
445–456. Springer, 1991.

12 Nachum Dershowitz and Zohar Manna. Proving termination with multiset orderings. Commu-
nications of the ACM, 22(8):465–476, 1979.

13 Paul Downen, Philip Johnson-Freyd, and Zena M. Ariola. Abstracting models of strong
normalization for classical calculi. J. Log. Algebraic Methods Program., 111:100512, 2020.
doi:10.1016/j.jlamp.2019.100512.

14 Jörg Endrullis, Dimitri Hendriks, Jan Willem Klop, and Andrew Polonsky. Clocked lambda
calculus. Math. Struct. Comput. Sci., 27(5):782–806, 2017. doi:10.1017/S0960129515000389.

15 Robin O. Gandy. An early proof of normalization by A.M. Turing. In J.P. Seldin and
J.R. Hindley, editors, To H.B. Curry: Essays on Combinatory Logic, Lambda Calculus and
Formalism, pages 453–455. Academic Press, 1980.

16 Robin O. Gandy. Proofs of strong normalization. In J.P. Seldin and J.R. Hindley, editors, To
H.B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism, pages 457–477.
Academic Press, 1980.

17 Jean-Yves Girard. Interprétation fonctionnelle et élimination des coupures de l’arithmétique
d’ordre supérieur. PhD thesis, Université Paris 7, 1972.

18 Felix Joachimski and Ralph Matthes. Short proofs of normalization for the simply- typed
lambda-calculus, permutative conversions and Gödel’s T. Arch. Math. Log., 42(1):59–87, 2003.
doi:10.1007/s00153-002-0156-9.

19 Zurab Khasidashvili, Mizuhito Ogawa, and Vincent van Oostrom. Uniform normalisation
beyond orthogonality. In Aart Middeldorp, editor, Rewriting Techniques and Applications, 12th
International Conference, RTA 2001, Utrecht, The Netherlands, May 22-24, 2001, Proceedings,
volume 2051 of Lecture Notes in Computer Science, pages 122–136. Springer, 2001. doi:
10.1007/3-540-45127-7_11.

https://doi.org/10.4230/LIPIcs.FSCD.2017.9
http://tlca.di.unito.it/opltlca/
https://doi.org/10.1016/j.tcs.2019.01.015
https://doi.org/10.1016/S0168-0072(00)00030-0
https://doi.org/10.1007/BFb0037105
https://doi.org/10.1016/j.jlamp.2019.100512
https://doi.org/10.1017/S0960129515000389
https://doi.org/10.1007/s00153-002-0156-9
https://doi.org/10.1007/3-540-45127-7_11
https://doi.org/10.1007/3-540-45127-7_11


P. Barenbaum and C. Sottile 11:19

20 Jan Willem Klop. Combinatory Reduction Systems. PhD thesis, Utrecht University, 1980.
21 Robert Pieter Nederpelt Lazarom. Strong normalization in a typed lambda calculus with lambda

structured types. PhD thesis, TU Eindhoven, 1973.
22 Jean-Jacques Lévy. Réductions correctes et optimales dans le lambda-calcul. PhD thesis,

Université de Paris 7, 1978.
23 Ralph Loader. Notes on simply typed lambda calculus. Technical Report ECS-LFCS-98-381,

University of Edinburgh, 1998.
24 Paul-André Melliès. Axiomatic rewriting theory I: A diagrammatic standardization theorem.

In Aart Middeldorp, Vincent van Oostrom, Femke van Raamsdonk, and Roel C. de Vrijer,
editors, Processes, Terms and Cycles: Steps on the Road to Infinity, Essays Dedicated to Jan
Willem Klop, on the Occasion of His 60th Birthday, volume 3838 of Lecture Notes in Computer
Science, pages 554–638. Springer, 2005. doi:10.1007/11601548_23.

25 Peter Møller Neergaard and Morten Heine Sørensen. Conservation and uniform normalization
in lambda calculi with erasing reductions. Inf. Comput., 178(1):149–179, 2002. doi:10.1006/
inco.2002.3153.

26 Tobias Nipkow. Higher-order critical pairs. In Proceedings 1991 Sixth Annual IEEE Symposium
on Logic in Computer Science, pages 342–343. IEEE Computer Society, 1991.

27 Jan von Plato. Gentzen’s proof of normalization for natural deduction. Bulletin of Symbolic
Logic, 14(2):240–257, 2008.

28 Dag Prawitz. Natural deduction: a proof-theoretical study. PhD thesis, Almqvist & Wiksell,
1965.

29 Morten Heine Sørensen and Pawel Urzyczyn. Lectures on the Curry-Howard isomorphism,
volume 149. Elsevier, 2006.

30 William W. Tait. A realizability interpretation of the theory of species. In Rohit Parikh,
editor, Logic Colloquium, pages 240–251, Berlin, Heidelberg, 1975. Springer Berlin Heidelberg.

31 Terese. Term Rewriting Systems, volume 55 of Cambridge Tracts in Theoretical Computer
Science. Cambridge University Press, 2003.

FSCD 2023

https://doi.org/10.1007/11601548_23
https://doi.org/10.1006/inco.2002.3153
https://doi.org/10.1006/inco.2002.3153




Hydra Battles and AC Termination
Nao Hirokawa #

School of Information Science, JAIST, Ishikawa, Japan

Aart Middeldorp #

Department of Computer Science, Universität Innsbruck, Austria

Abstract
We present a new encoding of the Battle of Hercules and Hydra as a rewrite system with AC
symbols. Unlike earlier term rewriting encodings, it faithfully models any strategy of Hercules to
beat Hydra. To prove the termination of our encoding, we employ type introduction in connection
with many-sorted semantic labeling for AC rewriting and AC-RPO.
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1 Introduction

The mythological monster Hydra is a dragon-like creature with multiple heads. Whenever
Hercules in his fight chops off a head, more and more new heads can grow instead, since the
beast gets increasingly angry. Here we model a Hydra as an unordered tree. If Hercules cuts
off a leaf corresponding to a head, the tree is modified in the following way: If the cut-off
node h has a grandparent n, then the branch from n to the parent of h gets multiplied, where
the number of copies depends on the number of decapitations so far. Hydra dies if there are
no heads left, in that case Hercules wins. The following sequence shows an example fight:

✂

0

✂

1

✂

2

✂

3 4

Though the number of heads can grow considerably in one step, it turns out that the fight
always terminates, and Hercules will win independent of his strategy. Proving termination
of the Battle is challenging since Kirby and Paris proved in their landmark paper [11] that
termination for an arbitrary (computable) strategy is independent of Peano arithmetic.
In [11] a termination argument based on ordinals is used.

Starting with [4, p. 271], several TRS encodings of the Battle of Hercules and Hydra
have been proposed and studied [3, 5, 7, 17, 21]. Touzet [21] was the first to give a rigorous
termination proof and in [24] the automation of ordinal interpretations is discussed. In this
paper we present yet another encoding. In contrast to earlier TRS encodings that model a
specific strategy, it uses AC matching to represent arbitrary battles. To prove its termination,
we apply and extend existing termination methods for AC rewriting.
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The remainder of the paper is organized as follows. After recalling some basic definitions
in Section 2, we present our new encoding of the Battle in Section 3. We give a rigorous
proof that our encoding faithfully represents the Battle. In Section 4 we present many-sorted
semantic labeling for AC rewriting and apply it to our encoding. This results in an infinite
AC rewrite system, which is subjected to AC-RPO [20] in Section 5. Related work is discussed
in Section 6. In particular, we comment on earlier encodings of the Battle. We conclude in
Section 7 with suggestions for future research.

2 Preliminaries

Let S be a set of sorts. An S-sorted signature F consists of function symbols f having a
sort declaration S1 × · · · × Sn → S. Here S1, . . . , Sn and S are sorts in S and n is the arity
of f . By f (n) we indicate that f has arity n. Let V be a countably infinite set of variables,
where every variable has its own sort. We assume the existence of infinitely many variables
of each sort. Terms of sort S are inductively defined as usual: Every variable of sort S is
a term of sort S and if f has sort declaration S1 × · · · × Sn → S and ti is a term of sort
Si for all 1 ⩽ i ⩽ n then f(t1, . . . , tn) is a term of sort S. Ground terms are terms without
variables. By T ({f1, . . . , fm }) we denote the set of all ground terms over {f1, . . . , fm }. The
root symbol root(t) of a term t is t if it is a variable, and f if t = f(t1, . . . , tn). For every sort
S we introduce a fresh constant □S , called the hole. A term over F ⊎ {□S | S ∈ S} is a
context over F if it contains exactly one hole. Given a context C and a term t, we write C[t]
for the term resulting from replacing the hole in C by t. A mapping σ that associates each
variable to a term of the same sort is a substitution if its domain {x ∈ V | σ(x) ̸= x} is finite.
The application tσ of σ to a term t is defined as σ(t) if t is a variable and f(t1σ, . . . , tnσ)
if t = f(t1, . . . , tn). A binary relation → on terms is closed under substitutions if sσ → tσ

whenever s → t, for all substitutions σ. It is closed under contexts if C[s] → C[t] whenever
s → t, for all contexts C. Moreover, the relation → is said to be a rewrite relation if it is
closed under contexts and substitutions.

A rewrite rule ℓ → r consists of two terms ℓ and r of the same sort such that all variables
in r occur in ℓ. A (many-sorted) term rewrite system (TRS) is a set of rewrite rules. We
denote by →R the smallest rewrite relation that contains the pairs of the TRS R. A rule
ℓ → r is non-collapsing if r is not a variable. A TRS is called non-collapsing if all rules
are non-collapsing. Let FAC be a subset of the binary function symbols in F that have sort
declarations of the form S × S → S. We denote by AC the set of equations

f(f(x, y), z) ≈ f(x, f(y, z)) f(x, y) ≈ f(y, x)

expressing the associativity and commutativity of each f ∈ FAC. The relation →AC is defined
as expected and its reflexive, transitive, and symmetric closure is denoted by =AC. Let
R be a TRS. The relation =AC · →R · =AC is called AC rewriting and abbreviated by
→R/AC. We say that R is AC terminating if →R/AC is well-founded. A rewrite relation is a
reduction order if it is a well-founded order. A reduction order > is AC-compatible if the
inclusion =AC · > · =AC ⊆ > holds. AC termination of a TRS R can be shown by finding an
AC-compatible reduction order such that R ⊆ > holds.

The above definitions specialize to the usual unsorted setting when the set of sorts is a
singleton set.

Finally, we recall two order extensions. Let > be a strict order on a set A. The lexicographic
extension >lex of > is defined on tuples over A as follows: (a1, . . . , am) >lex (b1, . . . , bn) if
n = m and there exists an index 1 ⩽ k ⩽ n such that ak > bk and ai = bi for all i < k. The
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multiset extension >mul of > is defined on multisets over A as follows: M >mul N if there
exist multisets X and Y such that M = (N − X) ⊎ Y , ∅ ̸= X ⊆ M , and every b ∈ Y admits
an element a ∈ X with a > b.

3 Encoding

▶ Definition 1. To represent Hydras, we use a signature containing a constant symbol h
representing a head, a binary symbol | for siblings, and a unary function symbol i representing
the internal nodes. We use infix notation for | and declare it to be an AC symbol.

▶ Example 2. The Hydras in the above example fight are represented by the terms

H0 = i(i(h) | i(i(i(h) | i(h))) | h)
H1 = i(i(h) | i(i(i(h) | h | h)) | h)
H2 = i(i(h) | i(i(i(h) | h) | i(i(h) | h) | i(i(h) | h)) | h)
H3 = i(h | h | h | i(i(i(h) | h) | i(i(h) | h) | i(i(h) | h)) | h | h)
H4 = i(h | h | i(i(i(h) | h) | i(i(h) | h) | i(i(h) | h)) | h | h) ⌟

▶ Definition 3. The TRS H consists of the following 14 rewrite rules:

A(n, i(h)) 1−→ A(s(n), h) D(n, i(i(x))) 8−→ i(D(n, i(x)))

A(n, i(h | x)) 2−→ A(s(n), i(x)) D(n, i(i(x) | y)) 9−→ i(D(n, i(x)) | y)

A(n, i(x)) 3−→ B(n, D(s(n), i(x))) D(n, i(i(h | x) | y)) 10−→ i(C(n, i(x)) | y)

C(0, x) 4−→ E(x) D(n, i(i(h | x))) 11−→ i(C(n, i(x)))

C(s(n), x) 5−→ x | C(n, x) D(n, i(i(h) | y)) 12−→ i(C(n, h) | y)

i(E(x) | y) 6−→ E(i(x | y)) D(n, i(i(h))) 13−→ i(C(n, h))

i(E(x)) 7−→ E(i(x)) B(n, E(x)) 14−→ A(s(n), x) ⌟

The Battle is started with the term A(0, t) where t is the term representation of the initial
Hydra. Rule 1 takes care of the dying Hydra . Rule 2 cuts a head without grandparent
node, and so no copying takes place. Due to the power of AC matching, the removed head
need not be the leftmost one. With rule 3, the search for locating a head with grandparent
node starts. The search is performed with the auxiliary symbol D and involves rules 8–13.
When the head to be cut is located (in rules 10–13), copying begins with the auxiliary symbol
C and rules 4 and 5. The end of the copying phase is signaled with E, which travels upwards
with rules 6 and 7. Finally, rule 14 creates the next stage of the Battle. Note that we make
extensive use of AC matching to simplify the search process.

▶ Theorem 4. If H and H ′ are the encodings in T ({h, i, |}) of successive Hydras in an
arbitrary battle then A(n, H) →+

H/AC A(s(n), H ′) for some n ∈ T ({0, s}).

Before presenting the proof, we illustrate how the rewrite rules transform H0 to H1 in
Example 2.

▶ Example 5. The following sequence simulates the first step in the example fight:

A(0, H0) 3−→ B(0, D(s(0), H0))

=AC · 9−→ B(0, i(D(s(0), i(i(i(h) | i(h)))) | i(h) | h))
8−→ B(0, i(i(D(s(0), i(i(h) | i(h)))) | i(h) | h))
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12−→ B(0, i(i(i(C(s(0), h) | i(h))) | i(h) | h))
5−→ B(0, i(i(i(h | C(0, h) | i(h))) | i(h) | h))
4−→ B(0, i(i(i(h | E(h) | i(h))) | i(h) | h))

=AC · 6−→ B(0, i(i(E(i(h | h | i(h)))) | i(h) | h))
7−→ B(0, i(E(i(i(h | h | i(h)))) | i(h) | h))
6−→ B(0, E(i(i(i(h | h | i(h))) | i(h) | h)))

14−→ A(s(0), i(i(i(h | h | i(h))) | i(h) | h)) =AC A(s(0), H1) ⌟

It is important to note that the TRS H defined above is unsorted and we establish in
this paper the result that it is AC terminating on all terms. When simulating a battle, like
in the statement of the Theorem 4, we deal with well-behaved terms adhering to the sort
discipline introduced shortly. The restriction to sorted terms is crucial for our termination
proof, but entails no loss of generality. This is due to the following result, which is a special
case of [15, Corollary 3.9].

▶ Theorem 6. A non-collapsing TRS over a many-sorted signature is AC terminating if and
only if the corresponding TRS over the unsorted version of the signature is AC terminating.

The idea of using sorts to simplify termination proof goes back to Zantema [25]. The
TRS H can be seen as a TRS over the many-sorted signature F ′:

h : O i, E : O → O | : O × O → O A, B : N × O → S
0 : N s : N → N C, D : N × O → O

where N, O and S are sort symbols. Since H is non-collapsing, Theorem 6 guarantees that
AC termination of H follows from AC termination of well-sorted terms over F ′.

In the remainder of this section we present a proof of Theorem 4 and its converse.

▶ Definition 7. Let n be a natural number. The TRS Rn operates on encodings of Hydras
and consists of the following four rules:

i(i(h)) 1−→ i(hn+2) i(i(h) | y) 3−→ i(hn+2 | y)

i(i(h | x)) 2−→ i(i(x)n+2) i(i(h | x) | y) 4−→ i(i(x)n+2 | y)

Here tk for k ⩾ 1 is defined inductively as follows:

tk =
{

t if k = 1
tk−1 | t if k > 1

The following lemma relates successive Hydras in a battle to the rules in Definition 7.
The easy proof is omitted.

▶ Lemma 8. If H and H ′ be the encodings of Hydras at stages n and n + 1 in a battle then
1. H = i(h) and H ′ = h, or
2. H =AC i(h | t) and H ′ = i(t) for some term t, or
3. H →Rn/AC H ′.

In the following we write n for sn(0). Moreover, TH denotes the set of ground terms over
{h, i, |}, and CH denotes the set of ground contexts over {h, i, |}.
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▶ Lemma 9. If n > 0 then C(n, t) →∗
H/AC tn | E(t) for all terms t.

Proof. We use induction on n. If n = 1 then

C(n, t) 5−→ t | C(0, t) 6−→ t | E(t) = tn | E(t)

Suppose the result holds for n ⩾ 1 and consider n + 1. The induction hypothesis yields
C(n, t) →∗

H/AC tn | E(t). Hence

C(n+1, t) 5−→ t | C(n, t) →∗
H/AC t | (tn | E(t)) =AC tn+1 | E(t) ◀

▶ Lemma 10. If n ⩾ 0 then D(n+1, H) →∗
H/AC E(H ′).

Proof. We use structural induction on H and consider the following two cases.
First suppose H →Rn/AC H ′ is a root step. If the first rule of Rn is used then H = i(i(h))
and H ′ =AC i(hn+2). We have D(n+1, H) 13−→ i(C(n+1, h)). Using Lemma 9 we obtain

i(C(n+1, h)) →∗
H/AC i(hn+1 | E(h)) =AC · 6−→ E(i(h | hn+1)) =AC E(H ′)

If the second rule of Rn is used then H =AC i(i(h | t)) and H ′ =AC i(i(t)n+2) for some
term t. We have D(n+1, H) =AC · 11−→ i(C(n+1, i(t))). Using Lemma 9 we obtain

i(C(n+1, i(t))) →∗
H/AC i(i(t)n+1 | E(i(t))) =AC · 6−→ E(i(i(t) | i(t)n+1)) =AC E(H ′)

If the third rule of Rn is used then H =AC i(i(h) | t) and H ′ =AC i(hn+2 | t) for some term
t. We have D(n+1, H) =AC · 12−→ i(C(n+1, h) | t). The remaining argument is the same
as in the preceding cases. If the fourth rule of Rn is used then H =AC i(i(h | s) | t) and
H ′ =AC i(i(s)n+2 | t) for some terms s and t. Using Lemma 9 we obtain

D(n+1, H) =AC · 10−→ i(C(n+1, i(s)) | t) →∗
H/AC i((i(s)n+1 | E(i(s))) | t)

=AC · 6−→ E(i(i(s) | (i(s)n+1 | t))) =AC E(H ′)

Otherwise, H =AC i(H1 | H2 | · · · | Hm) and H ′ =AC i(H ′
1 | H2 | · · · | Hm) for some m ⩾ 1

and Hydras H1, . . . , Hm, H ′
1 with H1 →Rn/AC H ′

1. We obtain D(n+1, H1) →∗
H/AC E(H ′

1)
from the induction hypothesis. Note that root(H1) = i. If m = 1 then

D(n+1, H) =AC D(n+1, i(H1)) 8−→ i(D(n+1, H1)) →∗
H/AC i(E(H ′

1)) 7−→ E(i(H ′
1))

=AC E(H1)

and if m > 1 we reach the same conclusion using rules 9 and 6 instead of 8 and 7. ◀

Proof of Theorem 4. Our task is to show

A(n, H) →∗
H/AC A(n+1, H ′)

For the first two cases in Lemma 8 the claim is immediate by rules 1 and 2 of H. To verify the
third case, assume H →Rn/AC H ′. This implies root(H) = i. Using rules 3 and 14 together
with Lemma 10 yields

A(n, H) 3−→ B(n, D(n+1, H)) →∗
H/AC B(n, E(H ′)) 14−→ A(n+1, H ′) ◀

In the remaining part of this section we prove the converse of Theorem 4.
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▶ Theorem 11. Let H, H ′ ∈ TH be encodings of Hydras and let n be a natural number. If
A(n, H) →∗

H/AC A(n+1, H ′) then H and H ′ are successive Hydras in a battle.

In order to show the claim we need a few auxiliary lemmata.

▶ Definition 12. We define U as the set consisting of all terms of the forms A(n, t),
B(n, C[C(m, t)]), B(n, C[D(n+1, t)]), and B(n, C[E(t)]), where n, m ∈ N, t ∈ TH, and C ∈ CH.

The set U contains all terms reachable from A(n, H).

▶ Lemma 13. If t ∈ U and t →∗
H∪AC u then u ∈ U .

In order to analyze the rewrite sequence A(n, H) →∗
H/AC A(n+1, H ′) we define three

subsets of H: H1 = {1, 2}, H2 = {3, 4, 5, 6, 7, 8, 9, 14}, and H3 = {10, 11, 12, 13}. The
rewrite sequence in Example 5 can then be described as follows:

A(0, H0) →∗
H2/AC B(0, i(i(D(s(0), i(i(h) | i(h)))) | i(h) | h))

→H3/AC B(0, i(i(i(C(s(0), h) | i(h))) | i(h) | h))

→∗
H2/AC A(1, H1)

▶ Definition 14. We define V as the extension of U with TH and all terms of the forms
C[C(n, t)] C[D(n, t)], and C[E(t)] where n ∈ N, t ∈ TH, and C ∈ CH. The mapping
π : V → TH is defined as follows:

π(t) =



h if t = h
i(π(u)) if t = i(u)
π(u) | π(v) if t = u | v

u if t = A(n, u) or t = D(n, u) or t = E(u)
π(u) if t = B(n, u)
un+1 if t = C(n, u)

Taking the role of C into account, the mapping π computes the Hydra in a given term.
Applying π to the terms in the above rewrite sequence of H2/AC and H3/AC, we obtain

H0 = π(A(0, H0)) =AC π(B(0, i(i(D(s(0), i(i(h) | i(h)))) | i(h) | h)))
→R0/AC π(B(0, i(i(i(C(s(0), h) | i(h))) | i(h) | h)))

=AC π(A(1, H1)) = H1

This verifies that H1 is a successor of H0.

▶ Lemma 15. The following properties hold.
1. π(t) = t for all terms t ∈ TH,
2. π(C[t]) = C[π(t)] for all terms t ∈ V and contexts C ∈ CH,
3. π(C[t]) =AC π(D[u]) for all terms t, u ∈ TH and contexts C, D ∈ CH with t =AC u and

C =AC D.

Proof. The first statement is proved by induction on t ∈ TH. If t = h then π(t) = h = t.
If t = i(u) with u ∈ TH then π(t) = i(π(u)) = i(u) = t. If t = u | v with u, v ∈ TH
then π(t) = π(u) | π(v) = u | v = t. For the second statement we use induction on the
context C ∈ CH. If C = □ then π(C[t]) = π(t) = C[π(t)]. If C = i(D) then π(C[t]) =
i(π(D[t])) = i(D[π(t)]) = C[π(t)]. If C = D | u then D ∈ CH and u ∈ TH and thus
π(C[t]) = π(D[t])|π(u) = D[π(t)]|u = C[π(t)]. If C = u|D then D ∈ CH and u ∈ TH and thus
π(C[t]) = π(u) | π(D[t]) = u | D[π(t)] = C[π(t)]. The third statement follows from statements
(1) and (2): π(C[t]) = C[π(t)] = C[t] =AC D[t] =AC D[u] = D[π(u)] = π(D[u]). ◀
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The following lemma relates AC rewriting of H to rewriting of Hydras according to
Definition 7.

▶ Lemma 16. The following statements hold for all terms s ∈ U .
1. If s =AC t then π(s) =AC π(t).
2. If s →H2 t then π(s) =AC π(t).
3. If s →H3 t then π(s) →Rn/AC π(t) with s = B(n, s′) for some n ⩾ 0.

Proof. Let s ∈ U .
1. If s = A(n, u) with u ∈ TH then t = A(n, v) for some term v ∈ TH with u =AC v.

Since π(s) = u and π(t) = v, π(s) =AC π(t) follows. If s = B(n, C[C(m, u)]) with
n, m ∈ N, C ∈ CH and u ∈ TH then t = B(n, D[C(m, v)]) with C =AC D and u =AC v.
Using Lemma 15(1,2) we obtain π(s) = π(C[C(m, u)]) = C[π(C(m, u))] = C[um+1] and
π(t) = D[vm+1]. From u =AC v we infer um+1 =AC vm+1 and thus π(s) =AC π(t) by
Lemma 15(3). The cases s = B(n, C[D(n+1, u)]) and s = B(n, C[E(u)]) are treated in the
same way.

2. For the second statement we make a case analysis based on the employed rule in H2.
If s

3−→ t then s = A(n, i(u)) and t = B(n, D(n+1, i(u))) for some n ⩾ 0 and u ∈ TH.
We have π(s) = i(u) = π(D(n+1, i(u))) = π(t) by the definition of t.
If s

4−→ t then s = B(n, C[C(0, u)]) and t = B(n, C[E(u)]) for some n ⩾ 0, C ∈ CH and
u ∈ TH. We have π(s) = π(C[C(0, u)]) = C[u1] = C[u] = π(C[u]) = π(t).
If s

5−→ t then s = B(n, C[C(m, u)]) and t = B(n, C[u | C(m−1, u)]) for some n ⩾ 0,
m > 0, C ∈ CH and u ∈ TH. We have π(s) = C[um+1] =AC C[u | um] = C[π(u | um)] =
π(C[u | C(m−1, u)]) = π(t).
If s

6−→ t then s = B(n, C[i(E(u)|v)]) and t = B(n, C[E(i(u|v))]) for some n ⩾ 0, C ∈ CH
and u, v ∈ TH. We have π(s) = π(C[i(E(u) | v)]) = C[i(u | v)] = π(C[E(i(u | v))]) = π(t).
If s

7−→ t then s = B(n, C[i(E(u))]) and t = B(n, C[E(i(u))]) for some n ⩾ 0, C ∈ CH
and u ∈ TH. We have π(s) = π(C[i(E(u))]) = C[i(u)] = π(C[E(i(u))]) = π(t).
If s

8−→ t then s = B(n, C[D(n+1, i(i(u)))]) and t = B(n, C[i(D(n+1, i(u)))]) for some
n ⩾ 0, C ∈ CH and u ∈ TH. We have π(s) = C[i(i(u))] = π(t).
If s

9−→ t then s = B(n, C[D(n+1, i(i(u) | v))]) and t = B(n, C[i(D(n+1, i(u)) | v)]) for
some n ⩾ 0, C ∈ CH and u, v ∈ TH. In this case we obtain π(s) = C[i(i(u) | v)] = π(t).
If s

14−→ t then s = B(n, E(u)) and t = A(n+1, u) for some n ⩾ 0 and u ∈ TH. In this
case we have π(s) = π(E(u)) = u = π(t).

3. Again we make a case analysis on the applied rewrite rule.
If s

10−→ t then s = B(n, C[D(n+1, i(i(h | u) | v))]) and t = B(n, C[i(C(n+1, i(u)) | v)])
for some n ⩾ 0, C ∈ CH and u, v ∈ TH. We obtain π(s) = C[i(i(h | u) | v)] and
π(t) = C[i(i(u)n+2 | v)]. Hence π(s) →Rn π(t) by applying rule 4 of Rn.
If s

11−→ t then s = B(n, C[D(n+1, i(i(h | u)))]) and t = B(n, C[i(C(n+1, i(u)))]) for some
n ⩾ 0, C ∈ CH and u, v ∈ TH. We obtain π(s) = C[i(i(h | u))] and π(t) = C[i(i(u)n+2)].
Hence π(s) →Rn π(t) by applying rule 2 of Rn.
If s

12−→ t then s = B(n, C[D(n+1, i(i(h) | v))]) and t = B(n, C[i(C(n+1, h) | v)]) for some
n ⩾ 0, C ∈ CH and v ∈ TH. We obtain π(s) = C[i(i(h) | v)] and π(t) = C[i(hn+2 | v)].
Hence π(s) →Rn

π(t) by applying rule 3 of Rn.
If s

13−→ t then s = B(n, C[D(n+1, i(i(h)))]) and t = B(n, C[i(C(n+1, h))]) for some
n ⩾ 0 and C ∈ CH. We obtain π(s) = C[i(i(h))] and π(t) = C[i(hn+2)]. Hence
π(s) →Rn

π(t) by applying rule 1 of Rn. ◀
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So we are ready to prove the main claim.

Proof of Theorem 11. Suppose s = A(n, H) →+
H/AC A(n+1, H ′) = t. Inspection of H

reveals that one of the following two cases holds:
(a) s →H1/AC t, or
(b) s →∗

H2/AC · →H3/AC · →∗
H2/AC t.

We first consider (a). If s →H1/AC t is a root step using rule 1 then H = i(h) and H ′ = h. If
s →H1/AC t is a root step using rule 2 then H =AC i(h | u) and H ′ =AC i(u) for some term u.
Next we consider (b). We have s →∗

H2/AC s′ →H3/AC t′ →∗
H2/AC t for some s′ and t′. From

Lemma 13 we obtain s, s′, t′, t ∈ U . Hence

H = π(s) =AC π(s′) →Rn/AC π(t′) =AC π(t) = H ′

is obtained by Lemma 16 and thus also H →Rn/AC H ′. ◀

4 Many-Sorted Semantic Labeling modulo AC

The mutual dependence between the function symbols A and B in rules 3 and 14 of H makes
proving termination of H/AC a non-trivial task. We use the technique of semantic labeling
(Zantema [26]) to resolve the dependence by labeling both A and B by the ordinal value of
the Hydra encoded in their second arguments. Semantic labeling for rewriting modulo has
been investigated in [19]. We need, however, a version for many-sorted rewriting since the
distinction between ordinals and natural numbers is essential for the effectiveness of semantic
labeling for H/AC.

Before introducing semantic labeling, we recall some basic semantic definitions. An algebra
A for an S-sorted signature F is a pair ({SA }S∈S , {fA }f∈F ), where each SA is a non-empty
set, called the carrier of sort S, and each fA is a function of type f : (S1)A×· · ·×(Sn)A → SA,
called the interpretation function of f : S1 × · · · × Sn → S. A mapping that associates each
variable of sort S to an element in SA is called an assignment. We write AV for the set of
all assignments. Given an assignment α ∈ AV , the interpretation of a term t is inductively
defined as follows:

[α]A(t) =
{

α(t) if t is a variable
fA([α]A(t1), . . . , [α]A(tn)) if t = f(t1, . . . , tn)

Let A = ({SA }S∈S , {fA }f∈F ) be an S-sorted F -algebra. We assume that each carrier set SA
is equipped with a well-founded order >S such that the interpretation functions are weakly
monotone in all argument positions, and call (A, {>S }S∈S) a weakly monotone many-sorted
algebra. Given terms s and t of sort S, we write s ⩾A t (s =A t) if [α]A(s) ⩾S [α]A(t)
([α]A(s) =S [α]A(t)) holds for all α ∈ AV .

A labeling L for F consists of sets of labels Lf ⊆ SA for every f : S1 × · · · × Sn → S.
The labeled signature Flab consists of function symbols fa : S1 × · · · × Sn → S for every
function symbol f : S1 × · · · × Sn → S in F and label a ∈ Lf together with all function
symbols f ∈ F such that Lf = ∅. A labeling (L, lab) for (A, {>S }S∈S) consists of a labeling
L for the signature F together with a mapping labf : (S1)A × · · · × (Sn)A → Lf for every
function symbol f : S1 × · · · × Sn → S in F with Lf ̸= ∅. We call (L, lab) weakly monotone
if all its labeling functions labf are weakly monotone in all coordinates. The mapping labf

determines the label of the root symbol f of a term f(t1, . . . , tn), based on the values of
its arguments t1, . . . , tn. Formally, for every assignment α ∈ AV we define a mapping labα

inductively as follows:
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labα(t) =


t if t ∈ V
f(labα(t1), . . . , labα(tn)) if t = f(t1, . . . , tn) and Lf = ∅
fa(labα(t1), . . . , labα(tn)) if t = f(t1, . . . , tn) and Lf ̸= ∅

where a denotes the label labf ([α]A(t1), . . . , [α]A(tn)). Note that labα(t) and t have the same
sort. Given a TRS R over a (many-sorted) signature F , we define the labeled TRS Rlab over
the signature Flab as follows:

Rlab = { labα(ℓ) → labα(r) | ℓ → r ∈ R and α ∈ AV }

Since the AC symbol | in the encoding of the Hydra battle is a constructor, there is no need
to label it. Hence we assume for simplicity that Lf = ∅ for every AC symbol f ∈ F . The
TRS Dec consists of all rewrite rules

fa(x1, . . . , xn) → fb(x1, . . . , xn)

with f : S1 × · · · × Sn → S a function symbol in F , a, b ∈ Lf such that a >S b, and pairwise
different variables x1, . . . , xn. A weakly monotone algebra (A, >) is a quasi-model of R/AC
if ℓ ⩾A r for all rewrite rules ℓ → r in R and ℓ =A r for all equations ℓ ≈ r in AC.

▶ Theorem 17. Let R/AC be a TRS over a many-sorted signature F , (A, {>S }S∈S) a quasi-
model of R/AC with a weakly monotone labeling (L, lab). If (Rlab ∪ Dec)/AC is terminating
then R/AC is terminating.

Proof. We show
1. if t →R u then labα(t) →∗

Dec · →Rlab labα(u)
2. if t =AC u then labα(t) =AC labα(u)
for all sorts S, terms t, u ∈ TS(F , V), and assignments α ∈ AV . First suppose t →R u is a root
step using the rewrite rule ℓ → r. So t = ℓσ and u = rσ for some substitution σ. Define the
assignment β = [α]A ◦ σ and the (labeled) substitution τ = labα ◦ σ. An easy induction proof
yields labα(sσ) = labβ(s)τ for all terms s. By definition labβ(ℓ) → labβ(r) ∈ Rlab. Hence
labα(t) = labβ(ℓ)τ →Rlab labβ(r)τ = labα(u). Next suppose t →R u takes place below the root.
So t = f(t1, . . . , ti, . . . tn) and u = f(t1, . . . , ui, . . . tn) with ti →R ui. Let S1 × · · · × Sn → S

be the sort declaration of f . The induction hypothesis yields labα(ti) →∗
Dec · →Rlab labα(ui).

We obtain [α]A(ti) ⩾Si
[α]A(ui) from the quasi-model assumption. If Lf = ∅ then

labα(t) = f(labα(t1), . . . , labα(ti), . . . , labα(tn)) →∗
Dec · →Rlab

f(labα(t1), . . . , labα(ui), . . . , labα(tn)) = labα(u)

Suppose Lf ̸= ∅ and let

a = labf ([α]A(t1), . . . , [α]A(ti), . . . , [α]A(tn))
b = labf ([α]A(t1), . . . , [α]A(ui), . . . , [α]A(tn))

We obtain a ⩾S b from the weak monotonicity of the labeling function labf . Therefore, the
following rewrite sequence is constructed:

labα(t) = fa(labα(t1), . . . , labα(ti), . . . , labα(tn)) →∗
Dec

fb(labα(t1), . . . , labα(ti), . . . , labα(tn)) →∗
Dec · →Rlab

fb(labα(t1), . . . , labα(ui), . . . , labα(tn)) = labα(u)
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This concludes the proof of the first statement. For the second statement we use induction
on the number of applications of AC axioms in t =AC u. If this number is one, the conclusion
is reached by reasoning as above (with Lf = ∅ because AC symbols are not labeled and
hence the rules of Dec do not come into play). ◀

After these preliminaries, we are ready to put many-sorted semantic labeling to the test.
Consider the many-sorted algebra A with carriers N for sort N and O, the set of ordinal
numbers smaller than ϵ0, for sorts O and S and the following interpretation functions:

0A = hA = 1 sA(n) = n + 1 iA(x) = ωx

x |A y = x ⊕ y EA(x) = x + 1 CA(n, x) = x · n + 1
AA(n, x) = BA(n, x) = DA(n, x) = x

Here ⊕ denotes natural addition on ordinals, which is strictly monotone in both arguments.

▶ Lemma 18. The algebra (A, {>O, >N }) is a quasi-model of H/AC.

Proof. First note that the interpretation functions are weakly monotone. The rewrite rules
in H are oriented by ⩾O:

AA(n, iA(hA)) = ω >O 1 = AA(sA(n), hA) (1)
AA(n, iA(hA |A x)) = ωx+1 >O ωx = AA(sA(n), iA(x)) (2)

AA(n, iA(x)) = ωx =O ωx = BA(n, DA(sA(n), iA(x))) (3)
CA(0A, x) = x + 1 =O x + 1 = EA(x) (4)

CA(sA(n), x) = x · n + x + 1 =O x · n + x + 1 = x |A CA(n, x) (5)
iA(EA(x) |A y) = ωx⊕y +1 >O ωx⊕y + 1 = EA(iA(x |A y)) (6)

iA(EA(x)) = ωx+1 >O ωx + 1 = EA(iA(x)) (7)
DA(n, iA(iA(x))) = ωωx

=O ωωx

= iA(DA(n, iA(x))) (8)
DA(n, iA(iA(x) |A y)) = ωωx ⊕y =O ωωx ⊕y = iA(DA(n, iA(x)) |A y) (9)

DA(n, iA(iA(hA |A x) |A y)) = ωωx+1 ⊕y >O ωωx·n⊕y +1 = iA(CA(n, iA(x)) |A y) (10)

DA(n, iA(iA(hA |A x))) = ωωx+1
>O ωωx·n+1 = iA(CA(n, iA(x))) (11)

DA(n, iA(iA(hA) |A y)) = ωω ⊕y >O ω(n+1)⊕y = iA(CA(n, hA) |A y) (12)
DA(n, iA(iA(hA))) = ωω >O ωn+1 = iA(CA(n, hA)) (13)

BA(n, EA(x)) = x + 1 >O x = AA(sA(n), x) (14)

Note that inequalities (10) – (13) use the fact that ω >O n holds for n ∈ N. The compatibility
of A with AC follows from the associativity and the commutativity of ⊕:

(x |A y) |A z = (x ⊕ y) ⊕ z =O x ⊕ (y ⊕ z) = x |A (y |A z)
x |A y = x ⊕ y =O y ⊕ x = x |A y

Therefore, A is a quasi-model of H/AC. ◀

We now label A and B by the value of their second argument. Let LA = LB = O and
Lf = ∅ for the other function symbols f , and define lab as follows:

labA(n, x) = labB(n, x) = x
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The labeling (L, lab) results in the infinite rewrite system Hlab ∪ Dec with Hlab consisting of
the rewrite rules

Aω(n, i(h)) 1−→ A1(s(n), h) D(n, i(i(x))) 8−→ i(D(n, i(x)))

Aωv+1(n, i(h | x)) 2−→ Aωv (s(n), i(x)) D(n, i(i(x) | y)) 9−→ i(D(n, i(x)) | y)

Aωv (n, i(x)) 3−→ Bωv (n, D(s(n), i(x))) D(n, i(i(h | x) | y)) 10−→ i(C(n, i(x)) | y)

C(0, x) 4−→ E(x) D(n, i(i(h | x))) 11−→ i(C(n, i(x)))

C(s(n), x) 5−→ x | C(n, x) D(n, i(i(h) | y)) 12−→ i(C(n, h) | y)

i(E(x) | y) 6−→ E(i(x | y)) D(n, i(i(h))) 13−→ i(C(n, h))

i(E(x)) 7−→ E(i(x)) Bv+1(n, E(x)) 14−→ Av(s(n), x)

for all v ∈ O and Dec consisting of the rewrite rules

Av(n, x) → Aw(n, x) Bv(n, x) → Bw(n, x)

for all v, w ∈ O with v > w. According to Theorem 17, the AC termination of H on
many-sorted terms follows from the AC termination of Hlab ∪ Dec.

▶ Corollary 19. If Hlab ∪ Dec is AC terminating then H is AC terminating on sorted terms.

5 AC-RPO

In order to show AC termination of Hlab ∪ Dec we use the AC version of recursive path
orders (AC-RPO), introduced by Rubio [20]. In this section we first recall the definition of
AC-RPO, following the presentation in [23]. AC-RPO is a relation on terms constructed from
a strict order > on function symbols, called precedence. AC-RPO collects the arguments of
successive occurrences of the same AC symbols in a multiset. This operation is captured by
top-flattening. Let FAC be the set of AC symbols in F . The top-flattening of a term t with
respect to f ∈ FAC is the multiset ▽f (t) defined inductively as follows:

▽f (t) =
{
▽f (t1) ⊎ ▽f (t2) if t = f(t1, t2)
{t} otherwise

Multisets resulting from top-flattening are first compared by an embedding-like relation. Let
t be a term with root(t) = f ∈ FAC and ▽f (t) = {t1, . . . , tn }. We write t ▷f

emb u for all terms
u such that ▽f (u) = {t1, . . . , ti−1, sj , ti+1, . . . , tn } for some ti = g(s1, . . . , sm) with g ≯ f

and 1 ⩽ j ⩽ m. Then terms in the multisets are grouped according to their forms, and
compared in a sophisticated way. For this sake we define the following submultisets of a
multiset T of terms:

T ↾V = {x ∈ T | x ∈ V } T ↾>
f = {g(t1, . . . , tn) ∈ T \ V | g > f }

T ↾≮f = {g(t1, . . . , tn) ∈ T \ V | g ≮ f }

Let T = {t1, . . . , tn }. By #(T ) we denote the linear polynomial #(t1) + · · · + #(tn). Here
#(t) is defined as follows:

#(t) =
{

t if t is a variable
1 otherwise

Note that #(S) > #(T ) and #(S) ⩾ #(T ) denote comparisons of integer polynomials. After
these preliminaries, we are ready to present the definition of AC-RPO.
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▶ Definition 20. Let > be a precedence and let F \ FAC = Fmul ⊎ Flex. We define >acrpo
inductively as follows: s >acrpo t if one of the following conditions holds:
1. s = f(s1, . . . , sn) and si ⩾acrpo t for some 1 ⩽ i ⩽ n,

2. s = f(s1, . . . , sn), t = g(t1, . . . , tm), f > g, and s >acrpo tj for all 1 ⩽ j ⩽ m,

3. s = f(s1, . . . , sn), t = f(t1, . . . , tn), f /∈ FAC, s >acrpo tj for all 1 ⩽ j ⩽ n, and either
(a) f ∈ Flex and (s1, . . . , sn) >lex

acrpo (t1, . . . , tn), or

(b) f ∈ Fmul and {s1, . . . , sn } >mul
acrpo {t1, . . . , tn },

4. s = f(s1, s2), t = f(t1, t2), f ∈ FAC, and s′ ⩾acrpo t for some s′ such that s ▷f
emb s′,

5. s = f(s1, s2), t = f(t1, t2), f ∈ FAC, s >acrpo t′ for all t′ such that t ▷f
emb t′, S↾≮f ⊎

S↾V ⩾mul
acrpo,f T ↾≮f ⊎ T ↾V for S = ▽f (s) and T = ▽f (t), and

(a) S↾>
f >mul

acrpo T ↾>
f , or

(b) #(S) > #(T ), or

(c) #(S) ⩾ #(T ), and S >mul
acrpo T .

Here s >acrpo,f t means s >acrpo t and if root(s) ⩾̸ f then root(s) ⩾ root(t). The relation
=AC is used as preorder in >lex

acrpo, >mul
acrpo, and ⩾mul

acrpo,f as equivalence relation in ⩾acrpo.

▶ Theorem 21 ([20], Theorem 4). The relation >acrpo is a AC-compatible rewrite order with
the subterm property.

As a consequence, >acrpo is an AC-compatible reduction order when the underlying
signature is finite. As noted in [20, Section 8.2], this also holds for infinite signatures,
provided the precedence > is well-founded. This is important because the signature of Hlab
is infinite. Below, we will formally prove the correctness of the extension, by adopting the
approach of [16].

A strict order > on a set A is a partial well-order if for every infinite sequence a0, a1, . . .

of elements in A there exist indices i and j such that i < j and ai ⩽ aj . Well-founded total
orders (well-orders) are partial well-orders. Given a partial well-order > on F , the embedding
TRS Emb(F , >) consists of the rules f(x1, . . . , xn) → xi for every n-ary function symbol and
1 ⩽ i ⩽ n, together with the rules f(x1, . . . , xn) → g(xi1 , . . . , xim

) for all function symbols f

and g with arities m and n such that f > g, and indices 1 ⩽ i1 < i2 < · · · < im ⩽ n. Here
x1, . . . , xn are pairwise distinct variables.

▶ Theorem 22 ([16], Theorem 5.3). A rewrite order ≻ is well-founded if Emb(F , >) ⊆ ≻
for some partial well-order >.

▶ Theorem 23. The relation >acrpo is an AC-compatible reduction order for every well-
founded precedence >.

Proof. Let > be a well-founded precedence. We only need to show well-foundedness of >acrpo
because the other properties follow by Theorem 21. Let ⊐ be an arbitrary well-order that
contains >. Trivially, ⊐ is a partial well-order. The inclusion Emb(F ,⊐) ⊆ ⊐acrpo is easily
verified. Hence the well-foundedness of ⊐acrpo is obtained from Theorem 22. Since > ⊆ ⊐,
the incrementality of AC-RPO [20, Lemma 22] yields >acrpo ⊆ ⊐acrpo. It follows that >acrpo
is well-founded. ◀
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We show the termination of Hlab ∪Dec by AC-RPO. To this end, we consider the following
precedence > on the labeled signature:

Av > Aw for all v, w ∈ O with v > w

Bv > Bw for all v, w ∈ O with v > w

Bv+1 > Av > Bv for all v ∈ O
B0 > D > C > i > E > s > |

Note that > is well-founded.

▶ Theorem 24. Hlab ∪ Dec ⊆ >acrpo

Proof. We show the compatibility verification for rules 3 and 6 of Hlab. The other rewrite
rules are handled in a similar fashion. For rule 3 we have (the numbers next to the inference
steps refer to the cases in Definition 20)

Av > Bv

n ⩾acrpo n
2

ℓ3 >acrpo n

Aωv > D
Aωv > s

n ⩾acrpo n
1

ℓ3 >acrpo n
2

ℓ3 >acrpo s(n)
i(x) ⩾acrpo i(x)

1
ℓ3 >acrpo i(x)

2
ℓ3 >acrpo D(s(n), i(x)))

2
ℓ3 = Aωv (n, i(x)) >acrpo Bωv (n, D(s(n), i(x)))

For rule 6 we have

i > E

x ⩾acrpo x
1

E(x) >acrpo x

{E(x), y} ⩾mul
acrpo {x, y} {E(x)} >mul

acrpo ∅
5(a)

E(x) | y >acrpo x | y
3(a)

i(E(x) | y) >acrpo i(x | y)
2

i(E(x) | y) >acrpo E(i(x | y))

The multiset comparisons in 5(a) correspond to S↾≮f ⊎S↾V ⩾mul
acrpo,f T ↾≮f ⊎T ↾V and S↾>

f >mul
acrpo

T ↾>
f for f = |, S = ▽f (E(x) | y), and T = ▽f (x | y). These multisets are calculated as follows:

S = {E(x), y} S↾>
f = S↾≮f = {E(x)} S↾V = {y} S↾≮f ⊎ S↾V = {E(x), y}

T = {x, y} T ↾>
f = T ↾≮f = ∅ T ↾V = {x, y} T ↾≮f ⊎ T ↾V = {x, y} ◀

From Theorems 4 and 24 we conclude that Hercules eventually beats Hydra in any battle.
Theorems 24 and 6 in connection with Corollary 19 yield the AC termination of H on
arbitrary terms.

6 Related Work

In an influential survey paper, Dershowitz and Jouannaud [4, p. 270] introduced a 5-rule
rewrite system to simulate the Hydra Battle. The proposed rewrite system was later shown
to be erroneous. A corrected version together with a detailed termination analysis has been
given by Dershowitz and Moser [5], see also Moser [17]. Earlier, Touzet [21] presented an
11-rule rewrite system that encodes a specific battle with weakened Hydras (whose height is
bounded by 4) and proved total termination by a semantic termination method. It is worth
noting that our rewrite system H is not even simply terminating on unsorted terms. In fact,
we have the following cyclic sequence with respect to H ∪ Emb(F ,∅):

FSCD 2023
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A(E(i(x)), i(x)) 3−→ B(E(i(x)), D(s(E(i(x))), i(x))) →∗
Emb(F,∅) B(E(i(x)), i(x))

14−→ A(s(E(i(x))), i(x)) →Emb(F,∅) A(E(i(x)), i(x))

So the TRS H is not simply terminating (see [16, Lemma 4.6]).
The rewrite systems referred to above model the so-called standard battle, which corres-

ponds to a specific strategy for Hercules. In this regard it is interesting to quote Kirby and
Paris [11], who introduced the battle as an accessible example of an independence result for
Peano arithmetic (P):

A strategy is a function which determines for Hercules which head to chop off at each
stage of any battle. It is not hard to find a reasonably fast winning strategy (i.e. a
strategy which ensures that Hercules wins against any hydra). More surprisingly,
Hercules cannot help winning:

Theorem 2. (i) Every strategy is a winning strategy.

[. . . ]

Theorem 2. (ii) The statement “every recursive strategy is a winning strategy” is not
provable from P.

In a recent paper [6, Section 6], rules are presented to slay Hydras, independent of the strategy.
These rules do not constitute a term rewrite system in the usual sense (they operate on
terms with sequence variables). More importantly, the infinitely many rules do not faithfully
represent the battle. Earlier, Ferreira and Zantema [7, Section 10] presented an infinite
rewrite system to model the standard strategy and gave a direct ordinal interpretation to
conclude its termination. In neither of the latter two papers stages of the battle are modeled.

7 Conclusion

We presented a new TRS encoding of the Battle of Hydra and Hercules. Unlike earlier
encodings, it makes use of AC symbols. This allows to faithfully model any strategy of
Hercules, as envisaged in the paper by Kirby and Paris [11] in which the Battle was first
presented. To prove the termination of the encoding we employed many-sorted rewriting
modulo AC and we extended semantic labeling modulo AC to many-sorted TRSs. The
infinite TRS produced by semantic labelling was proved terminating by suitably instantiating
AC-RPO.

The finite TRS H poses an interesting challenge for automatic termination tools. None of
the tools (AProVE [8], muterm [1], NaTT [22]) competing in the “TRS Equational” category
of last year’s Termination Competition1 succeeds on H/AC. This is not really surprising
since most methods implemented in termination tool come with a multiple recursive upper
bound on the derivation height (e.g. [10, 13, 18]). The tools even fail to prove termination of
H without AC. The tool TTT2 [12] has support for ordinal interpretations [24] but also fails
on H.

Formalizing the techniques used in this paper in a proof assistant is an important task
to ensure the correctness of the results. Interestingly, the informal paper [9] in which we
announced our encoding also presents a termination proof, essentially extending a semantic

1 https://termcomp.github.io/Y2022/

https://termcomp.github.io/Y2022/
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method of Touzet [21] and Zantema [27] to AC rewriting. Although we believe the non-trivial
extension to be correct, its use in proving the AC termination of H has a critical mistake,
which we recently discovered.

Another topic for future research is to investigate the scope of many-sorted semantic
labeling. Can the termination of earlier encodings of the battle be established with many-
sorted semantic labeling followed by some standard simplification order? Variants of the
battle by Buchholz [2] and Lepper [14] are also of interest here.
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Abstract
As shown by Tsukada and Ong, simply-typed, normal and η-long resource terms correspond to plays
in Hyland-Ong games, quotiented by Melliès’ homotopy equivalence. Though inspiring, their proof
is indirect, relying on the injectivity of the relational model w.r.t. both sides of the correspondence –
in particular, the dynamics of the resource calculus is taken into account only via the compatibility
of the relational model with the composition of normal terms defined by normalization.

In the present paper, we revisit and extend these results. Our first contribution is to restate
the correspondence by considering causal structures we call augmentations, which are canonical
representatives of Hyland-Ong plays up to homotopy. This allows us to give a direct and explicit
account of the connection with normal resource terms. As a second contribution, we extend this
account to the reduction of resource terms: building on a notion of strategies as weighted sums of
augmentations, we provide a denotational model of the resource calculus, invariant under reduction.
A key step – and our third contribution – is a categorical model we call a resource category, which is
to the resource calculus what differential categories are to the differential λ-calculus.
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1 Introduction

The Taylor expansion of programs translates programs with possibly infinite behaviour to
infinite formal sums of terms of a language with a strongly finitary behaviour called the
resource calculus. Its discovery dates back to Ehrhard and Regnier’s differential λ-calculus
[13], reifying syntactically features of certain vectorial models of linear logic. Since its
inception [15], Taylor expansion was intended as a quantitative alternative to order-based
approximation techniques, such as Scott continuity and Böhm trees. For instance, Barbarossa
and Manzonetto leveraged it to get simpler proofs of known results in pure λ-calculus [2].

Game semantics is another well-established line of work, also representing programs as
collections of finite behaviours. It is particularly well known for its many full abstraction
results [16, 1]. How different is the Taylor expansion of the λ-calculus from its game semantics?
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Not very different, suggest Tsukada and Ong [23], who show that certain normal and η-long
resource terms correspond bijectively to plays in the sense of Hyland-Ong game semantics [16],
up to Opponent’s scheduling of the independent explorations of separate branches of the
term, as formalized by Melliès’ homotopy equivalence on plays [19].

The account of this insightful result by Tsukada and Ong is inspiring, but it also comes
with limitations. Their focus is on normal resource terms, and the dynamics is treated only
in the form of the composition of terms, i.e. substitution followed by normalization. The
correspondence is also very indirect, relying on the injectivity of the relational model w.r.t.
both normal resource terms and plays up to homotopy. In [23], after laying out the intuitions
supporting the correspondence, Tsukada and Ong motivate this indirect route, writing: “The
idea will now be intuitively clear. However the definition based on the above argument,
which heavily depends on graphical operations, does not seem so easy to handle.”

In the present paper, we handle this very task. We rely on a representation of plays
quotienting out Opponent’s scheduling, recently introduced by the first two authors [4]. This
was inspired by concurrent games [11] – similar causal structures existed before, first suggested
in [17], and fleshed out more in [22]. In [4], plays are replaced by so-called augmentations,
which augment valid states of the game with causal constraints imposed by the program. Our
first contribution is an explicit description of the bijection between normal resource terms
and isomorphism classes of augmentations (called isogmentations, for the sake of brevity), in
a style similar to traditional finite definability arguments: see Section 3.2.

We moreover strive to account for non-normal resource terms and reduction in the resource
calculus, which we recall in Section 2. In game semantics, this typically relies on a category
of strategies, whose composition is defined by interaction between plays. Considering the
interaction of augmentations – which was not addressed in [4] – an interesting phenomenon
occurs. Indeed, there is no canonical way to synchronize two augmentations: they can only
interact via a mediating map, called a symmetry, and the result of the interaction depends
on the chosen symmetry! Composition is then obtained by summing over all symmetries, as
discussed in Section 3.3. This is not an artificial phenomenon arising from our implementation
choices: it is analogous to the non-determinism inherent to the substitution of resource terms.
And this is instrumental in our second contribution: the correspondence between normal
resource terms and isogmentations refines into a denotational interpretation, invariant under
reduction, of resource terms as “strategies” – weighted sums of isogmentations.

To establish this result we expose the structure of the category of strategies that is
relevant to obtain a model of the resource calculus: we call resource categories the resulting
categorical model, which is our third contribution, in Section 4. And, in Section 5, we show
that strategies indeed form a resource category, completing the proof of the previous point.

Related and future work. As mentioned above, Tsukada and Ong [23] considered some
dynamic aspects of the correspondence: they proved their bijection compatible with the
compositions of terms and plays, via composition in the relational model. Nonetheless, they
did not consider an interpretation of non-normal resource terms as strategies: the question
of invariance under reduction could not even be formulated, and the relevant structure of
the category of strategies could not be exposed. Still, they state that the normal form of the
Taylor expansion of a λ-term is isomorphic to its game semantics.

Our results constitute a first step to flesh out this isomorphism into the diagrams:

M T (M) N (T (M))

JMK JT (M)K JN (T (M))K

T

J−K (a)

N

J−K (b) ≃

= =

s N (s)

JsK JN (s)K

N

J−K (c) ≃

=
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where M is a λ-term, s is a resource term, T is Taylor expansion, N is normalization and
J−K is game semantics. Square (a) should commute essentially by definition, while square (b)
should be deduced from (c): we leave the treatment of Taylor expansion for future work (see
also the next paragraphs and Section 6) but (c) already follows from our present results.

A significant aspect of our contributions is to take coefficients into account. This is far
from anecdotal: it requires new methods (we cannot get that via the relational model), it
makes the development significantly more complex, and it is necessary if one expects to apply
these tools to a quantitative setting (e.g., with probabilities) and to provide the basis of a
full game semantical account of quantitative Taylor expansion.

The exact correspondence between differential categories [5] and resource categories is
also left for future work. Anyway, we stress the fact that the resource calculus is the finitary
fragment of the differential λ-calculus: it does not contain the pure λ-calculus. Accordingly,
models of the resource calculus are rather related to those of promotion-free differential linear
logic [14]: the exponential modality (!) need not be a comonad. From such a model, one can
recover an interpretation of the full differential λ-calculus via Taylor expansion, provided the
necessary infinite sums are available. So we are convinced (see our concluding remarks in
Section 6) that our category of games does induce a cartesian closed differential category
[6, 9, 18]; more generally, we plan to study how this generalizes to any resource category –
provided the necessary sums of morphisms are available.

Outline. In Section 2, we detail our resource calculus. In Section 3 we introduce augment-
ations, show the correspondence with normal resource terms, and introduce strategies. In
Section 4 we introduce resource categories, define the interpretation of the resource calculus,
and prove that it is invariant under reduction. In Section 5, we show that strategies form a
resource category. We conclude in Section 6.

2 The Simply-Typed η-Expanded Resource Calculus

Preliminaries. If X is a set, we write X∗ for the set of finite lists, or tuples, of elements of
X, ranged over by a⃗, b⃗, etc. We write a⃗ = ⟨a1, . . . , an⟩ to list the elements of a⃗, of length
|⃗a| = n. The empty list is ⟨⟩, and concatenation is simply juxtaposition, e.g., a⃗⃗b. We write
B(X) for the set of finite multisets of elements of X, which we call bags, ranged over by
ā, b̄, etc. We write [a1, . . . , an] for the bag ā defined by a list a⃗ = ⟨a1, . . . , an⟩ of elements:
we then say a⃗ is an enumeration of ā. We write [] for the empty bag, and use ∗ for bag
concatenation. We also write |ā| for the size of ā: |ā| is the length of any enumeration of ā.

We shall often need to partition bags, which requires some care. For ā ∈ B(X) and k ∈ N,
a k-partitioning of ā is a function p : {1, . . . , |ā|} → {1, . . . , k}: we write p : ā◁ k. Given
an enumeration ⟨a1, . . . , an⟩ of ā, the associated k-partition is the tuple ⟨ā ↾p 1, . . . , ā ↾p k⟩,
where we set ā ↾p i = [aj | p(j) = i] for 1 ≤ i ≤ k, so that ā = ā ↾p 1 ∗ · · · ∗ ā ↾p k. The
obtained k-partition does depend on the chosen enumeration of ā but, for any function
f : B(X)k → M with values in a commutative monoid M (noted additively), the sum∑

ā◁ā1∗···∗āk

f(ā1, . . . , āk) def=
∑
p:ā◁k

f(ā ↾p 1, . . . , ā ↾p k)

is independent of the enumeration. When indexing a sum with ā◁ ā1 ∗ · · · ∗ āk we thus mean
to sum over all partitionings p : ā◁ k, āi being shorthand for ā ↾p i in the summand.

We will also use tuples of bags: we write S(X) for B(X)∗. We denote elements of S(X) as
a⃗, b⃗, etc. just like for plain tuples, but we reserve the name sequence for such tuples of bags.
A k-partitioning p : a⃗◁ k of a⃗ = ⟨ā1, . . . , ān⟩ is a tuple p = ⟨p1, . . . , pn⟩ of k-partitionings
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y⟨t̄/x⟩ def=


t if y = x and t̄ = [t]
y if y ̸= x and t̄ = []
0 otherwise

(λz.s)⟨t̄/x⟩ def= λz.s⟨t̄/x⟩

(s ū)⟨t̄/x⟩ def=
∑

t̄◁t̄1∗t̄2

(s⟨t̄1/x⟩) (ū⟨t̄2/x⟩)

[s1, . . . , sn]⟨t̄/x⟩ def=
∑

t̄◁t̄1∗···∗t̄n

[s1⟨t̄1/x⟩, . . . , sn⟨t̄n/x⟩]

Figure 1 Inductive definition of substitution (z is chosen fresh in the abstraction case).

(λx.s) t̄ → s⟨t̄/x⟩
s → S′

λx.s → λx.S′
s → S′

s t̄ → S′ t̄

s → S′

[s] ∗ t̄ → [S′] ∗ t̄
t̄ → T̄ ′

s t̄ → s T̄ ′

Figure 2 Rules of single-step reduction.

pi : āi ◁ k. This defines a partition ⟨⃗a ↾p 1, . . . , a⃗ ↾p k⟩, component-wise: each a⃗ ↾p i is the
sequence ⟨ā1 ↾p1 i, . . . , ān ↾pn

i⟩. We obtain a⃗ = a⃗ ↾p 1 ∗ · · · ∗ a⃗ ↾p k, applying the concatenation
of bags component-wise, to sequences all of the same length n. And, just as before, the result
of the following sum is independent from the enumeration of the bags of a⃗:∑

a⃗◁a⃗1∗···∗a⃗k

f (⃗a1, . . . , a⃗k) def=
∑
p:⃗a◁k

f (⃗a ↾p 1, . . . , a⃗ ↾p k) .

Resource calculus. The terms of the resource calculus [15] are just like λ-terms, except
that, in an application, the argument is a bag of terms instead of just one term. We denote
terms by s, t, u and bags of terms by s̄, t̄, ū, and write ∆ for the set of terms:

∆ ∋ s, t, u, . . . ::= x | λx.s | s [t1, . . . , tn] .

The dynamics relies on a multilinear variant of substitution, that we will call resource
substitution: a redex (λx.s) t̄ reduces to a (non-idempotent) sum s⟨t̄/x⟩ of terms obtained
by substituting each element of t̄ for exactly one occurrence of x in s. The inductive definition
is in Figure 1, relying on an extension of syntactic constructs to finite sums of expressions:

λx.S
def=

∑
i∈I

λx.si [S] ∗ T̄ def=
∑
i∈I

∑
j∈J

[si] ∗ t̄j S T̄
def=

∑
i∈I

∑
j∈J

si t̄j ,

for S =
∑
i∈I si and T̄ =

∑
j∈J t̄j . The actual protagonists of the calculus are thus sums

of terms rather than single terms. We will generally write Σ(X) for the set of finite formal
sums on set X – those may be considered as finite multisets, but we adopt a distinct additive
notation to avoid confusion with bags. Resource substitution is in turn extended by linearity,
setting S⟨T̄ /x⟩ def=

∑
i∈I

∑
j∈J si⟨t̄j/x⟩ with the same notations as above.

The reduction of resource terms → ⊆ ∆ × Σ(∆) is given in Figure 2. It is extended
to Σ(∆) × Σ(∆) by setting S → S′ whenever S = t+ U and S′ = T ′ + U with t → T ′.

▶ Theorem 1 ([15]). The reduction → on Σ(∆) is confluent and strongly normalizing.
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Γ, x⃗ : F⃗ ⊢Base s : o
abs

Γ ⊢Val λx⃗.s : F⃗ → o

Γ ⊢Val s : F⃗ → o Γ ⊢Seq t⃗ : F⃗
hr

Γ ⊢Base s t⃗ : o

Γ ⊢Var x : F⃗ → o Γ ⊢Seq t⃗ : F⃗
hv

Γ ⊢Base x t⃗ : o

id
Γ, x : F ⊢Var x : F

Γ ⊢Val s1 : F · · · Γ ⊢Val sn : F bag
Γ ⊢Bag [s1, . . . , sn] : F

Γ ⊢Bag s̄1 : F1 · · · Γ ⊢Bag s̄n : Fn seq
Γ ⊢Seq ⟨s̄1, . . . , s̄n⟩ : ⟨F1, . . . , Fn⟩

Figure 3 Typing rules for the simply-typed resource calculus.

Typing and expanded terms. In the remainder of the paper, we will consider a simply
typed version of the resource calculus, based on the following grammar of types

F,G,H, . . . ::= o | F → G

for a single base type o. If F⃗ = ⟨F1, . . . , Fn⟩, we write F⃗ → G
def= F1 → · · · → Fn → G =

F1 → (· · · → (Fn → G) · · · ). Then any type H can be written uniquely as H = F⃗ → o.
The above strong normalization result holds in the untyped setting. We use typing only

to enforce a syntactic constraint on terms: our resource expressions are η-expanded, i.e.
values of type F⃗ → o are terms λx1 . . . λx|F⃗ |.s with s of type o. We fix a type for each
variable, so that each type has infinitely many variables – and write x : F for F the type of x.
A typing context Γ is a finite set of typed variables. As usual we write it as any enumeration
x1 : F1, . . . , xn : Fn, abbreviated as x⃗ : F⃗ ; we may then also write λx⃗.s def= λx1 . . . λxn.s. We
call resource sequence any sequence s⃗ ∈ S(∆) = B(∆)∗. Given a term s and a resource
sequence t⃗ = ⟨t̄1, . . . , t̄k⟩, we also define the application s t⃗

def= s t̄1 · · · t̄k = (· · · (s t̄1) · · ·) t̄k.
We extend resource substitution to sequences by setting

⟨s̄1, . . . , s̄n⟩⟨t̄/x⟩ def=
∑

t̄◁t̄1∗···∗t̄n

⟨s̄1⟨t̄1/x⟩, . . . , s̄n⟨t̄n/x⟩⟩

so that (s u⃗)⟨t̄/x⟩ =
∑
t̄◁t̄1∗t̄2(s⟨t̄1/x⟩) (u⃗⟨t̄2/x⟩), as in the application case of Figure 1.

The type system appears in Figure 3. For X ∈ {Val,Base,Bag, Seq}, we write X(Γ;F )
for the set of those s s.t. Γ ⊢X s : F . For X = Base we have F = o, so we set Base(Γ) def=
Base(Γ; o). If Γ ⊢X s : F , then s is in normal form iff the judgment is derived without (hr)
– we write Xnf(Γ;F ) for the elements of X(Γ;F ) in normal form. We write ΣX(Γ;F ) for
Σ(X(Γ;F )).

▶ Lemma 2 (Subject reduction). If S ∈ ΣVal(Γ;F ) and S → S′ then S′ ∈ ΣVal(Γ;F ).

This follows from substitution lemmas for our four kinds of typed terms, proved by mutual
induction: if Γ, x : F ⊢X t : G and Γ ⊢Bag s̄ : F then t⟨s̄/x⟩ ∈ ΣX(Γ;G).

We also consider a many-step variant of resource reduction, following the structure of
expanded terms. We set s⟨⃗t/x⃗⟩ def= s⟨t̄1/x1⟩ · · · ⟨t̄n/xn⟩ when x⃗ = ⟨x1, . . . , xn⟩, t⃗ = ⟨t̄1, . . . , t̄n⟩,
and no xi occurs free in t⃗. The many-step reduction ⇒ is then defined from the base case

(λx⃗.s) t⃗ ∈ Base(Γ) ⇒ s⟨⃗t/x⃗⟩ ∈ ΣBase(Γ) (assuming |x⃗| = |⃗t| ̸= 0),

extended contextually to each syntactic kind of typed expressions, following inductively the
type system of Figure 3, and then to sums as for →. It is clear that ⇒ ⊂ →+ (the transitive
closure of →), and that an expanded term is ⇒-reducible iff it is →-reducible: it follows that
⇒ is strongly normalizing, with the same normal forms as →. In particular ⇒ is confluent.
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((o → o) → (o → o) → o) → o
q−

q+

q−

q+

q−

q+

q−

q+

Figure 4 A play in HO games.

((o → o) → (o → o) → o) → o
q−

q+

q−

q+

q−

q+

q−

q+

Figure 5 A homotopic play.

3 Resource Terms as Augmentations

Plays in game semantics. In Hyland-Ong game semantics [16] executions are formalized
as plays, drawn as in Figure 4, read temporally from top to bottom. Nodes are called moves,
negative (from Opponent / the environment) or positive (from Player / the program) – each
corresponds to a resource call, and the dotted lines, called justification pointers, carry the
hierarchical relationship between those calls. Both Figures 4 and 5 represent plays for

⊢ λf (o→o)→(o→o)→o. f (λxo. x) (λyo. y) : ((o → o) → (o → o) → o) → o ,

where Figure 4 reads as follows: Opponent starts computation with the initial q−, to which
Player reacts with the first q+, corresponding to calling f . With q− on the third line,
Opponents prompts f to call its first argument, to which Player responds the q+ on the
fourth line: a call to x. Subsequently Opponent evaluates the second argument of f – Player
responds by calling y – and then Opponent calls the first argument again.

Plays and resource terms. In [23], seeking a syntactic counterpart to the plays of HO
games, Tsukada and Ong state: “plays in HO/N-games are terms of a well-known and
important calculus, the resource calculus”. This is natural as both game semantics and the
resource calculus are quantitative and represent explicitly resource usage: in Figure 4, the
first argument of f is evaluated twice while the second one is evaluated once – following
Tsukada and Ong’s correspondence, the play is written s = λf. f [λx. x, λx. x] [λy. y] in the
resource calculus. However, Figure 5 also corresponds to s! Tsukada and Ong actually
establish a bijection between (normal) resource terms and plays up to Melliès’ homotopy
relation [19], relating plays which, like Figures 4 and 5, only differ via Opponent’s scheduling.
But then, is there a more explicit representation of plays up to homotopy?

As a matter of fact, there is. In [4], Blondeau-Patissier and Clairambault introduced a
causal representation of innocent strategies (inspired from concurrent games [11, 12] – see
also [22]) as a technical tool to prove a positional injectivity theorem for innocent strategies.
There a strategy is not a set of plays, but instead gathers diagrams as in Figure 6 in which
the trained eye can read exactly the same data as in the resource term s : the model replaces
the chronological plays of game semantics with causal structures called augmentations, of
which the plays are just particular linearizations. Thus as the first contribution of this paper,
we refine Tsukada and Ong’s result into a bijection of resource terms with augmentations.
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((o → o) → (o → o) → o) → o

q−
✹uu�

q+

✩nnu ✫oov
✹uu�

q−

✯qqx

q−

✰rry

q−
✹uu�

q+ q+ q+

Figure 6 An augmentation.

((o→o) → (o→o) →o)→ o

q−

q+

q− q−

q+ q+

Figure 7 An arena.

q−

tt+ ff+

Figure 8 Arena bool.

q−

0+ 1+ 2+ . . .

Figure 9 Arena nat.

(o → o) → o → o
q−

q+ q+

q−

Figure 10 Arena (o ⇒ o) ⇒ o ⇒ o.

3.1 Arenas, Positions, Augmentations
▶ Definition 3. An arena is A = ⟨|A|,≤A, polA⟩ where ⟨|A|,≤A⟩ is a (countable) partial
order, and polA : |A| → {−,+} is a polarity function. These data must satisfy:

finitary: for all a ∈ |A|, [a]A
def= {a′ ∈ |A| | a′ ≤A a} is finite,

forestial: for all a1, a2 ≤A a, then a1 ≤A a2 or a2 ≤A a1,
alternating: for all a1 _A a2, then polA(a1) ̸= polA(a2),

where a1 _A a2 means a1 <A a2 with no event strictly in between. A −-arena is additionally
negative, i.e. polA(a) = − for all a ∈ min(A) def= {a ∈ |A| | a minimal}.

Elements of |A| are called events or moves interchangeably. An isomorphism φ : A ∼= B

between arenas is a bijection between events preserving and reflecting all structure.
Arenas present computational events with their causal dependencies: positive moves for

Player, and negative moves for Opponent. We often annotate moves with their polarity. In
arenas we draw the immediate causality _ as dotted lines, read from top to bottom. Figures
8 and 9 show the arenas bool and nat. In those arenas, initial (i.e. minimal) moves are
Opponent moves starting computation, to which Player may respond with a value.

Constructions. We write X + Y for the disjoint union ({1} ×X) ∪ ({2} × Y ) of sets.

▶ Definition 4. The tensor of arenas A1 and A2 is defined in Figure 11.
If additionally A1 and A2 are −-arenas and A2 is pointed, i.e. min(A2) is a singleton,

then the arrow A1 ⇒ A2, a pointed −-arena, is defined in Figure 12.

The tensor directly extends to countable arity, and each arena decomposes as A ∼= ⊗i∈IAi
with Ai pointed. We set A⊥ as A with polarities reversed. We write A ⊢ B for A⊥ ⊗B, 1 is
the empty arena and o has exactly one (negative) move q. We interpret types as arenas via
JoK = o and JA → BK = JAK ⇒ JBK, and contexts via JΓK = ⊗(x:A)∈ΓJAK. Figure 10 shows
the interpretation of (o → o) → o → o, following the longstanding game semantics convention
that keeps moves distinct by attempting to always place them under the corresponding atom.
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|A1 ⊗A2| = |A1| + |A2|
(i, a) ≤A1⊗A2 (j, b) ⇔ i = j ∧ a ≤Ai

b

polA1⊗A2(i, a) = polAi
(a) .

Figure 11 Tensor of arenas.

|A1 ⇒ A2| = |A1| + |A2|
(i, a) ≤A1⇒A2 (j, b) ⇔ (i = j ∧ a ≤Ai b)

∨ (i = 2 ∧ a ∈ min(A2))
polA1⇒A2

(i, a) = (−1)i · polAi
(a) ,

Figure 12 Arrow of arenas.

Configurations. Next we define the states reached when playing on arena A. Intuitively,
a state is a sub-tree of A but where each branch may be explored multiple times – such
structures were first introduced by Boudes [7] under the name thick subtrees. Here, by
analogy with concurrent games [11], we call them configurations:

▶ Definition 5. A configuration x ∈ C(A) of arena A is x = ⟨|x|,≤x, ∂x⟩ such that ⟨|x|,≤x⟩
is a finite forest, and the display map ∂x : |x| → |A| is a function s.t.:

minimality-respecting: for any a ∈ |x|, a is ≤x-minimal iff ∂x(a) is ≤A-minimal,
causality-preserving: for all a1, a2 ∈ |x|, if a1 _x a2 then ∂x(a1) _A ∂x(a2),

and x is pointed (noted x ∈ C•(A)) if it has exactly one minimal event init(x).

A polarity on x is deduced by pol(a) = polA(∂x(a)). We write a− (resp. a+) for a s.t.
pol(a) = − (resp. pol(a) = +). Ignoring the arrows _, Figure 6 is a configuration on Figure
7 – notice that the branch on the left hand side is explored twice.

For x, y ∈ C(A), the sets |x| and |y| are arbitrary and only related to A via ∂x and ∂y –
their specific identity is irrelevant. So configurations should be compared up to symmetry: a
symmetry φ : x ∼=A y is an order-iso s.t. ∂y ◦ φ = ∂x. Symmetry classes of configurations
are called positions: the set of positions on A is written P(A), and they are ranged over
by x, y, etc. (note the change of font). A position x is pointed, written x ∈ P•(A), if any
of its representatives is. If x ∈ C(A), we write x ∈ P(A) for the corresponding position.
Reciprocally, if x ∈ P(A), we fix x ∈ C(A) a representative. In [4], positions were shown to
correspond to points in the relational model (if o is interpreted as a singleton).

If x ∈ C(A) and y ∈ C(B), then x⊗ y ∈ C(A⊗B) has events the disjoint union |x| + |y|,
and display map inherited. We define x ⊢ y ∈ C(A ⊢ B) similarly.

Augmentations. We finally define our representation of plays up to homotopy:

▶ Definition 6. An augmentation on arena A is a tuple q = ⟨|q|,≤LqM,≤q, ∂q⟩, where
LqM = ⟨|q|,≤LqM, ∂q⟩ ∈ C(A), and ⟨|q|,≤q⟩ is a forest satisfying:

rule-abiding: for all a1, a2 ∈ |q|, if a1 ≤LqM a2, then a1 ≤q a2,
courteous: for all a1 _q a2, if pol(a1) = + or pol(a2) = −, then a1 _LqM a2,

deterministic: for all a− _q a
+
1 and a− _q a

+
2 , then a1 = a2,

+-covered: for all a ∈ |q| maximal in q, we have pol(a) = +,
negative: for all a ∈ min(q), we have pol(a) = −,

we then write q ∈ Aug(A), and call LqM ∈ C(A) the desequentialization of q.
Finally, q is pointed if it has a unique minimal event, written q ∈ Aug•(A).

Figure 6 represents an augmentation q by showing both relations _LqM (as dotted lines)
and _q. An augmentation q ∈ Aug(A) augments a configuration x ∈ C(A) by specifying
causal constraints imposed by the term: for each event, the augmentation gives the necessary
conditions before it can be played. Augmentations are analogous to plays: plays in the
Hyland-Ong sense can be recovered via the alternating linearizations of augmentations [4].
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Isogmentations. Augmentations are also considered up to iso. An isomorphism φ : q ∼= p
is a bijection preserving and reflecting all structure. An isogmentation is an isomorphism
class of augmentations, ranged over by q,p, etc.: we write Isog(A) (resp. Isog•(A)) for
isogmentations (resp. pointed isogmentations). If q ∈ Aug(A), we write q ∈ Isog(A) for its
isomorphism class; reciprocally, if q ∈ Isog(A), we fix a representative q ∈ q.

3.2 Isogmentations are Normal Resource Terms
Now we spell out the link between isogmentations and normal resource terms. We first
show how the structure of each syntactic kind of terms is reflected by augmentations of the
appropriate type. The main result (Theorem 12) follows directly.

Tensors and sequences. To reflect the syntactic formation rule for sequences, we show
that isogmentations on A1 ⊗ . . . ⊗ An are tuples. Consider −-arenas Γ, A1, . . . , An, and
qi ∈ Aug(Γ ⊢ Ai) for 1 ≤ i ≤ n. We set q⃗ = ⟨qi | 1 ≤ i ≤ n⟩ ∈ Aug(Γ ⊢ ⊗1≤i≤nAi) with

|⃗q| =
n∑
i=1

|qi| ,
{
∂q⃗(i,m) = (1, g) if ∂qi(m) = (1, g),
∂q⃗(i,m) = (2, (i, a)) if ∂qi

(m) = (2, a),

with the two orders ≤q⃗ and ≤L⃗qM inherited. It is immediate that this construction preserves
isomorphisms, so that it extends to isogmentations.

▶ Proposition 7. There is a bijection ⟨−, . . . ,−⟩ :
∏n
i=1 Isog(Γ ⊢ Ai) ≃ Isog(Γ ⊢ ⊗1≤i≤nAi).

Proof. By negative and forestial, any q ∈ Aug(Γ ⊢ ⊗1≤i≤nAi) is isomorphic to some
⟨qi | 1 ≤ i ≤ n⟩; this is compatible with isos as they respect display maps. ◀

Bags and pointedness. Likewise, isogmentations are bags of pointed isogmentations.
We start by showing the corresponding construction. Consider −-arenas Γ and A, and

q1, q2 ∈ Aug(Γ ⊢ A). We set q1 ∗ q2 ∈ Aug(Γ ⊢ A) with events |q1 ∗ q2| = |q1| + |q2|,
and display ∂q1∗q2(i,m) = ∂qi

(m), and the two orders ≤q1∗q2 and ≤Lq1∗q2M inherited. This
generalizes to an n-ary operation in the obvious way, which preserves isomorphisms. The
operation induced on isogmentations is associative and admits as neutral element the empty
isogmentation 1 ∈ Isog(Γ ⊢ A) with (a unique representative with) no event.

▶ Proposition 8. There is a bijection − ∗ · · · ∗ − : B(Isog•(Γ ⊢ A)) ≃ Isog(Γ ⊢ A).

Proof. As q ∈ Aug(Γ ⊢ A) is a finite forest, it is isomorphic to a bag of trees. ◀

Currying. For −-arenas Γ, A and B, we have ΛΓ,A,B : Aug(Γ ⊗A ⊢ B) ≃ Aug(Γ ⊢ A ⇒ B)
a bijection compatible with isos, which leaves the core of the augmentation unchanged and
only reassigns the display map in the unique sensible way. Hence we obtain:

▶ Proposition 9. For every −-arenas Γ, A1, . . . , An, there is

ΛΓ,A⃗ : Isog•(Γ ⊗A1 ⊗ . . .⊗An ⊢ o) ≃ Isog•(Γ ⊢ A1 ⇒ . . . ⇒ An ⇒ o).

Head occurrence. The above cases handle syntactic kinds Seq, Bag and Val, following the
rules (seq), (bag) and (abs) of the type system of Figure 3. It remains to treat rule (hv), i.e.
to study the kind Base when the function subterm is a variable occurrence.
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Figure 13 Illustration of □i(q).

∥ − ∥ : Valnf(Γ;F ) ≃ Isog•(JΓK ⊢ JF K)
∥ − ∥ : Basenf(Γ) ≃ Isog•(JΓK ⊢ o)
∥ − ∥ : Bagnf(Γ;F ) ≃ Isog(JΓK ⊢ JF K)
∥ − ∥ : Seqnf(Γ; F⃗ ) ≃ Isog(JΓK ⊢ JF⃗ K)

Figure 14 Four bijections.

As above, we start with the corresponding construction on augmentations. We write B⃗ ⇒
o

def= B1 ⇒ . . . ⇒ Bp ⇒ o for B⃗ = ⟨B1, . . . , Bn⟩ a tuple of objects, and B⃗⊗ def= B1 ⊗ · · · ⊗Bn.
Consider Γ = A1 ⊗ . . . ⊗ An where each Ai is Ai = B⃗i ⇒ o ∼= B⃗⊗

i ⇒ o; consider also
q ∈ Aug(Γ ⊢ B⃗⊗

i ). The i-lifting of q, written □i(q) ∈ Aug•(Γ ⊢ o), is the augmentation
that after the initial Opponent move, starts by playing the initial move in Ai, then proceeds
as q. More precisely:

▶ Definition 10. Consider Γ = A1 ⊗ . . .⊗An, with

Ai = Bi,1 ⇒ . . . ⇒ Bi,pi
⇒ o ∼= B⃗⊗

i ⇒ o ,

writing B⃗⊗
i = Bi,1 ⊗ . . .⊗Bi,pi ; consider also q ∈ Aug(Γ ⊢ B⃗⊗

i ). The i-lifting of q, written
□i(q) ∈ Aug•(Γ ⊢ o), has partial order q prefixed with two additional moves, i.e. ⊖ _ ⊕ _ q.
Its static causality is the least partial order containing dependencies

m ≤L□i(q)M n for m,n ∈ |q| with m ≤LqM n,
⊕ ≤L□i(q)M m for all m ∈ |q| with ∂q(m) = (2,−),

and with display map given by the following clauses:

∂□i(q)(⊖) = (2, q)
∂□i(q)(⊕) = (1, (i, (2, q)))
∂□i(q)(m) = (1, a) if ∂q(m) = (1, a),
∂□i(q)(m) = (1, (i, (1, a))) if ∂q(m) = (2, a),

altogether defining □i(q) ∈ Aug•(Γ ⊢ o) as required.

We illustrate this in Figure 13. This construction again preserves isomorphisms, and
extends to give, for any q ∈ Isog(Γ ⊢ B⃗⊗

i ), its i-lifting □i(q) ∈ Isog•(Γ ⊢ o). Additionally:

▶ Proposition 11. Consider Γ, A1, . . . , An −-arenas and assume A1, . . . , An are as above.
We have a bijection: □ :

∑
1≤i≤n Isog(Γ ⊢ B⃗⊗

i ) ≃ Isog•(Γ ⊢ o).

Proof. Any p ∈ Aug•(Γ ⊢ o) has a unique initial move, which cannot be maximal by +-
covered. By determinism, there is a unique subsequent Player move, displayed to the initial
move of some Ai. The subsequent moves directly inform q ∈ Aug(Γ ⊢ B⃗⊗

i ) s.t. p ∼= □i(q). ◀

▶ Theorem 12. For Γ a context and F a type, there are bijections as in Figure 14.

3.3 Strategies and Composition
Next we extend this correspondence to the dynamics of resource terms, linking syntactic
substitution with an adequate notion of composition of augmentations.

Consider A,B and C three −-arenas, and fix two augmentations q ∈ Aug(A ⊢ B),
p ∈ Aug(B ⊢ C). We shall compose them via interaction, followed by hiding.
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Figure 15 Construction of an interaction p ⊛φ q.

o ⊗ o ⊢ (o → o → o) → o

q−
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q+

✶tt}
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q−

✸uu~

q−
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Figure 16 p ⊙φ q.

Interaction of augmentations. We can only compose q and p provided they reach the same
state on B, so we first extract this via their desequentializations: observe LqM ∈ C(A ⊢ B)
has form xq

A ⊢ xq
B; likewise we write LpM = xp

B ⊢ xp
C ∈ C(B ⊢ C). But what does it

mean to “reach the same state”? In general xq
B = xp

B is too much: it means q and p not
only agree on a common state, but also on its irrelevant concrete representation. States
in B are not configurations, but positions: symmetry classes of configurations. Thus q
and p are compatible if xq

B and xp
B are symmetric, i.e. if there is φ : xq

B
∼=B xp

B – we
write xq

B
∼=B xp

B for the equivalence. Accordingly, we must define the composition of two
compatible augmentations along with a mediating symmetry. We first form interactions:

▶ Proposition 13. For q, p as above and φ : xq
B

∼=B xp
B, setting |p ⊛φ q| = |q| + |p| with

▷q = {((1,m), (1,m′)) | m <q m
′} ,

▷p = {((2,m), (2,m′)) | m <p m
′} ,

▷φ = {((1,m), (2, φ(m))) | m ∈ xq
B & polA⊢B(∂q(m)) = +}

∪ {((2, φ(m)), (1,m)) | m ∈ xq
B & polB⊢C(∂p(m)) = +} ,

then ▷ = ▷q ∪ ▷p ∪ ▷φ is acyclic: its transitive closure is a strict partial order on |p ⊛φ q|.

We write ≤p⊛φq
def= ▷∗ for the reflexive and transitive closure of ▷. The acyclicity of

▷ corresponds to a subtle and fundamental property of innocent strategies: they always
have a deadlock-free interaction. Our proof is a direct adaptation of a similar fact in
concurrent games on event structures [10]. Figure 15 illustrates the construction of an
interaction. The two augmentations q ∈ Aug(o ⊗ o ⊢ o) – on the left hand side – and
p ∈ Aug(o ⊢ (o → o → o) → o) – on the right hand side – are shown with their common
interface in red, with a symmetry φ : qq ∼=o qq bridging them.

Composing augmentations. We compose q and p via φ, by hiding the interaction.

▶ Proposition 14. Write LqM = xq
A ⊢ xq

B, LpM = xp
B ⊢ xp

C , and φ : xq
B

∼=B xp
B.

Then, the structure p ⊙φ q obtained by restricting p ⊛φ q to events in xq
A + xp

C , with
∂p⊙φq((1,m)) = ∂q(m) and ∂p⊙φq((2,m)) = ∂p(m), is an augmentation on A ⊢ C.

The interaction in Figure 15 yields the augmentation in Figure 16, the composition of q
and p via φ. This extends to isogmentations: p ⊙φ q def= p ⊙φ q for q ∈ Isog(A ⊢ B) with
LqM = xq

A ⊢ xq
B , p ∈ Isog(B ⊢ C) with LpM = xp

B ⊢ xp
C , and φ : xq

B
∼=B xp

B .
One fact is puzzling: the composition of q and p is only defined once we have fixed a

mediating φ : xq
B

∼=B xp
B , which is not unique – for instance there are exactly two symmetries

qq ∼=o qq. Worse, the result of composition depends on the choice of φ: if Figure 15 was
constructed with the symmetry ψ : qq ∼=o qq swapping the two moves, we would get the
variant p ⊙ψ q of Figure 16 with the two final causal links crossed, different even up to iso.
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This reminds of the syntactic substitution (λf. f x x)⟨[y, z]/x⟩ → λf. f y z + λf. f z y. As
syntactic substitution of resource terms yields sums of resource terms, this suggests that
composition of isogmentations should produce sums of isogmentations, called strategies.

Strategies. Roughly speaking, a strategy is simply a weighted sum of isogmentations.

▶ Definition 15. A strategy on arena A is a function σ : Isog(A) → R+, where R+ is the
completed half-line of non-negative reals. We then write σ : A.

We regard σ : A as a weighted sum σ =
∑

q∈Isog(A) σ(q) · q. We lift the composition of
isogmentations to strategies via the formula

τ ⊙ σ
def=

∑
q∈Isog(A⊢B)

∑
p∈Isog(B⊢C)

∑
φ:xq

B
∼=Bx

p
B

σ(q)τ(p) · (p ⊙φ q) (1)

for σ : A ⊢ B and τ : B ⊢ C, i.e. (τ ⊙ σ)(r) is the sum of σ(q)τ(p) over all triples q,p, φ s.t.
r = p ⊙φ q – there are no convergence issues, as we have been careful to include +∞ as a
coefficient in Definition 15 (though this shall not arise in the interpretation).

Identities. We also introduce identities: copycat strategies, formal sums of specific isogmenta-
tions presenting typical copycat behaviour; we start by defining their concrete representatives.

Consider x ∈ C(A) on −-arena A. The augmentation ccx ∈ Aug(A ⊢ A), called the
copycat augmentation on x, has LccxM = x ⊢ x, and as causal order x ⊢ x, augmented with

(1,m) ≤ccx (2, n) if m ≤x n and polA(∂x(m)) = +,
(2,m) ≤ccx

(1, n) if m ≤x n and polA(∂x(m)) = −,

so ccx adds to x ⊢ x all immediate causal links of the form (2,m) _ (1,m) for negative
m, and (1,m) _ (2,m) for positive m. Again, this lifts to isogmentations by setting, for
x ∈ P(A), the copycat isogmentation ccx ∈ Isog(A ⊢ A) as the isomorphism class of ccx.

The strategy idA : A ⊢ A should have the isogmentation ccx for all position x ∈ P(A).
But with which coefficient? To cancel the sum over all symmetries in (1), we set:

idA
def=

∑
x∈P(A)

1
#Sym(x) · ccx (2)

where Sym(x) is the group of endosymmetries of x, i.e. of all φ : x ∼=A x – the cardinal of
Sym(x) does not depend on the choice of x. This use of such a coefficient to compensate for
future sums over sets of permutations is reminiscent of the Taylor expansion of λ-terms [15].

3.4 Proof of the Categorical Laws
In this section, we show the main arguments behind the following result:

▶ Theorem 16. The −-arenas and strategies between them form a category, Strat.

This is proved in several stages. Firstly, we establish isomorphisms corresponding to
categorical laws, working concretely on augmentations – this means that these laws will refer
to certain isomorphisms explicitly. Then, we show that composition of augmentations is
compatible with isomorphisms, so that it carries out to isogmentations. From all that, we
are in position to conclude and prove that Strat is indeed a category.
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Laws on the composition of augmentations. The following lemma specifies in what sense
the copycat augmentation is neutral for composition:

▶ Lemma 17 (Neutrality). Consider q ∈ Aug(A ⊢ B), x ∈ C(B) and φ : xq
B

∼=B x.
Then, ccx ⊙φ q ∼= q. Likewise, for any y ∈ C(A) and ψ : y ∼=A x

q
A, we have q ⊙ψ ccy ∼= q.

Proof. Recall that ccx ⊙φ q is obtained by considering ccx ⊛φ q with events |ccx| + |q|, i.e.
|q| + (x+ x) with causal order as described in Proposition 13. The composition ccx ⊙φ q is
then the restriction to its visible events, i.e. xq

A + (∅ + x). Then

|ccx ⊙φ q| = xq
A + (∅ + x) ≃ xq

A + x
xq

A
+φ−1

≃ xq
A + xq

B ≃ |q|

forms a bijection between the sets of events, which is checked to be an isomorphism of
augmentations by a direct analysis of the causal order of ccx ⊙φ q. ◀

It may be surprising that ccx ⊙φ q ∼= q regardless of φ: the choice of the symmetry is
reflected in the isomorphism ccx ⊙φ q ∼= q, which this lemma ignores. Similarly, we have:

▶ Lemma 18 (Associativity). Consider q ∈ Aug(A ⊢ B), p ∈ Aug(B ⊢ C), r ∈ Aug(C ⊢ D),
and two symmetries φ : xq

B
∼=B xp

B and ψ : xp
C

∼=C xr
C . Then

r ⊙ψ′ (p ⊙φ q) ∼= (r ⊙ψ p) ⊙φ′ q .

with φ′, ψ′ obtained from φ and ψ, ajusting tags for disjoint unions in the obvious way.

Proof. A routine proof, relating the two compositions to a ternary composition r ⊙3
ψ p ⊙3

φ q :
Aug(A ⊢ D), defined in a way similar to binary composition. ◀

Congruence. Consider augmentations q, q′ ∈ Aug(A ⊢ B) with φ : q ∼= q′, we know that φ
is an isomorphism of configurations φ : LqM ∼=A⊢B Lq′M – a symmetry – therefore it has the
form φA ⊢ φB , with φA : xq

A
∼=A x

q′

A and φB : xq
B

∼=B xq′

B .

▶ Lemma 19. Consider q, q′ ∈ Aug(A ⊢ B), p, p′ ∈ Aug(B ⊢ C), isomorphisms θ : xq
B

∼=B xp
B

and θ′ : xq′

B
∼=B xp′

B , φ : q ∼= q′ and ψ : p ∼= p′ such that θ′ ◦ φB = ψB ◦ θ.
Then, we have an isomorphism ψ ⊙θ,θ′ φ : p ⊙θ q ∼= p′ ⊙θ′ q′.

The proof is a direct verification that the obvious morphism between p ⊙θ q and p′ ⊙θ′ q′

is indeed an isomorphism. The main consequence of this lemma is the following. Consider
q, q′ ∈ Aug(A ⊢ B), p, p′ ∈ Aug(B ⊢ C), isomorphisms φ : q ∼= q′ and ψ : p ∼= p′, not
requiring any commutation property as above. Still, φ and ψ project to symmetries

φB : xq
B

∼=B xq′

B , ψB : xp
B

∼=B xp′

B .

inducing a bijection

χ : xq
B

∼=B xp
B ≃ xq′

B
∼=B xp′

B

θ 7→ ψB ◦ θ ◦ φ−1
B ,

so that for any θ : xq
B

∼=B xp
B , we have p ⊙θ q ∼= p′ ⊙χ(θ) q′ by Lemma 19. It ensues that we

can substitute one representative for another when summing over all mediating symmetries:∑
θ:xq

B
∼=Bx

p
B

p ⊙θ q =
∑

θ:xq
B

∼=Bx
p
B

p′ ⊙χ(θ) q′ =
∑

θ:xq′
B

∼=Bxp′
B

p′ ⊙θ q′

using the observation above, and reindexing the sum following χ – or in other words,
the composition of strategies does not depend on the choice of representative used for
isogmentations. This is often used silently throughout the development.
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µA

µA

= µA

µA

ηA
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= = ηA

µA µA

=

µA

Figure 17 Monoid laws.

Categorical laws. We are now equipped to show Theorem 16. First, the identity laws:

▶ Proposition 20. Consider σ : A ⊢ B. Then, idB ⊙ σ = σ ⊙ idA = σ.

Proof. We focus on idB ⊙ σ. For any p ∈ Isog(B ⊢ B), we write LpM = xp
l ⊢ xp

r . We have:

idB ⊙ σ =
∑

q∈Isog(A⊢B)

∑
p∈Isog(B⊢B)

∑
φ:xq

B
∼=Bx

p
l

σ(q)idB(p) · p ⊙φ q

=
∑

q∈Isog(A⊢B)

∑
x∈P(B)

∑
φ:xq

B
∼=Bx

σ(q)
#Sym(x) · ccx ⊙φ q

using definition of the composition and of the identity. Next, we compute

idB ⊙ σ =
∑

q∈Isog(A⊢B)

∑
x∈P(B)

∑
φ:xq

B
∼=Bx

σ(q)
#Sym(x) · q

=
∑

q∈Isog(A⊢B)

∑
φ∈Sym(xq

B
)

σ(q)
#Sym(xq

B)
· q

=
∑

q∈Isog(A⊢B)

σ(q) · q

which is σ; by Lemma 17 and direct reasoning on symmetries – σ⊙ idA = σ is symmetric. ◀

Notice how the sum over all symmetries exactly compensates for the coefficient in (2).
Likewise, associativity of the composition of strategies follows from Lemma 18 and bilinearity
of composition, altogether concluding the proof that Strat is a category.

4 Resource Categories

We now develop resource categories, models of the resource calculus inspired by Strat.

4.1 Motivation and Definition
As compositions generate sums, we need an additive structure. Following [5], an additive
symmetric monoidal category (asmc) is a symmetric monoidal category where each
hom-set is a commutative monoid, and each operation preserves the additive structure.

Bialgebras. As for differential categories, resource categories build on bialgebras:

▶ Definition 21. Consider C an additive symmetric monoidal category.
A bialgebra on C is (A, δA, ϵA, µA, ηA) with (A,µA, ηA) a commutative monoid (see

Figure 17), (A, δA, ϵA) a commutative comonoid, with additional bialgebra laws (Figure 18).
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Figure 18 Additional bialgebra laws.
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A
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Figure 19 Laws for (co)multiplication and pointed identity.

In a resource category, all objects shall be bialgebras. This means that for each object A,
we have morphisms δA : A → A⊗A, ϵA : A → I, µA : A⊗A → A, and ηA : I → A satisfying
coherence laws [5]. Comonoids (A, δA, ϵA) are the usual categorical description of duplicable
objects. Intuitively, requests made to δA on either side of the tensor on the rhs, are sent to
the left. Categorically the monoid structure (A,µA, ηA) is dual, but its intuitive behaviour is
different: each request on the rhs is forwarded, non-deterministically, to either side of the
tensor on the left, reflecting the sums arising in substitutions.

In contrast with differential categories, morphisms in a resource category intuitively
correspond to (sums of) bags rather than terms. Morally, the empty bag from A to B is
captured from the bialgebra structure as ηB ◦ϵA ∈ C(A,B), written 1. Likewise, the product
f ∗ g = µB ◦ (f ⊗ g) ◦ δA ∈ C(A,B) of f, g ∈ C(A,B) captures the union of bags. This
makes (C(A,B), ∗, 1) a commutative monoid, altogether turning C(A,B) into a commutative
semiring, though composition and tensor in C only preserve the additive monoid.

A bag of morphisms may be “flattened” into a morphism by the following operation: if
f̄ = [f1, . . . , fn] ∈ B(C(A,B)), we write Πf̄ def= f1 ∗ · · · ∗ fn ∈ C(A,B).

Pointed identities. Resource categories axiomatize categorically the singleton bags. For
that, a pivotal role is played by the pointed identity, a chosen idempotent id•

A ∈ C(A,A)
which we think of as a singleton bag with a linear copycat behaviour. More formally:

▶ Definition 22. Consider C an asmc where each object has a bialgebra structure.
For A ∈ C, a pointed identity on A is an idempotent id•

A ∈ C(A,A) satisfying the
equations shown as string diagrams in Figure 19, plus ϵA ◦ id•

A = 0 and id•
A ◦ ηA = 0.

Those laws are reminiscent of the laws of derelictions and coderelictions in bialgebra
modalities [5], except that both roles are played by id•

A. In a resource category C, all objects
have a pointed identity. The “singleton bags” are those f ∈ C(A,B) that are pointed, i.e.
id•
B ◦ f = f – we write C•(A,B). Dually, we may also capture those morphisms which require

exactly one resource: f ∈ C(A,B) is co-pointed if f ◦ id•
A = f , and we write f ∈ C•(A,B).

Resource categories. Altogether, we are now ready to define resource categories:

▶ Definition 23. A resource category is an asmc C where each A ∈ C has a bialgebra
structure (A, δA, ϵA, µA, ηA) and pointed identity id•

A, such that the bialgebra structure is
compatible with the monoidal structure of C (see Figure 20).
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Figure 20 Compatibility of comonoids with the monoidal structure – there are symmetric
conditions for the compatibility of monoids with the monoidal structure.
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Figure 21 Compatibility of bags with δ.

A⊗A
µA //∑

f̄◁f̄1∗f̄2
Πf̄1⊗Πf̄2

��

A

Πf̄
��

B ⊗B
µB

// B

Figure 22 Compatibility of bags with µ.

Additionally, C is closed if A⊗ − has a right adjoint A → − for each A ∈ C.

This simple definition has powerful consequences. In particular, the following key property,
derived from the definition of resource categories, expresses how the product of a bag of
pointed morphisms interacts with the comonoid structure – and dually for the product of a
bag of co-pointed morphisms and monoids. Much of the proof of invariance relies on it:

▶ Lemma 24. Consider C a resource category, then we have the following properties:
1. For any bag of pointed morphisms f̄ ∈ B(C•(A,B)),

(a) the diagram of Figure 21 commutes; and
(b) we have ϵB ◦ Πf̄ = 1 if f̄ is empty, 0 otherwise;

2. For any bag of co-pointed morphisms f̄ ∈ B(C•(A,B)),
(a) the diagram of Figure 22 commutes; and
(b) we have Πf̄ ◦ ηA = 1 if f̄ is empty, 0 otherwise.

Proof. This follows from a lengthy but mostly direct diagram chase. ◀

4.2 Interpretation of the Resource Calculus
In order to describe the interpretation of the resource calculus, it will be convenient to
introduce some of the combinators from the theory of cartesian closed categories:

Cartesian combinators. The pairing of f ∈ C(Γ, A) and g ∈ C(Γ, B) is

⟨f, g⟩ def= (f ⊗ g) ◦ δΓ ∈ C(Γ, A⊗B) ;

likewise π1
def= ρA ◦ (A⊗ ϵB) ∈ C(A⊗B,A) and π2

def= λB ◦ (ϵA⊗B) ∈ C(A⊗B,B) are the two
projections – we shall also use their obvious n-ary generalizations. The laws of cartesian
categories fail: we have ⟨π1, π2⟩ = idA⊗B , but e.g. π1 ◦ ⟨f, h⟩ = f only holds if h is erasable
(i.e. ϵB ◦ h = ϵΓ) and ⟨f, g⟩ ◦ h = ⟨f ◦ h, g ◦ h⟩ if h is duplicable (i.e. δΓ ◦ h = (h⊗ h) ◦ δ∆) –
so we do get the usual laws if h is a comonoid morphism [20].
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For any two objects A,B ∈ C, we have evA,B ∈ C((A → B) ⊗ A,B) the evaluation
morphism. If f ∈ C(A⊗B,C), its currying is written ΛA,B,C(f) ∈ C(A,B → C).

Lemmas on propagation of substitutions. Morphisms coming from the interpretation are
not comonoid morphisms, but many structural morphisms are: for instance it follows from a
direct diagram chase that projections are comonoid morphisms.

As explained above, comonoid morphisms propagate in tuples as in a cartesian cat-
egory. But importantly, resource categories also specify how some non comonoid morphisms
propagate through a pairing, even paired with a comonoid morphism:

▶ Lemma 25. Let b̄ ∈ B(C•(∆, A)), h ∈ C(∆,Γ), f ∈ C(Γ ⊗A,B), g ∈ C(Γ ⊗A,C).
If h ∈ C(∆,Γ) is a comonoid morphism, then we have:

⟨f, g⟩ ◦ ⟨h,Πb̄⟩ =
∑

b̄◁b̄1∗b̄2

⟨f ◦ ⟨h,Πb̄1⟩, g ◦ ⟨h,Πb̄2⟩⟩

Proof. A diagram chase leveraging case (1) of Lemma 24. ◀

This is fairly close to how substitutions propagate through terms in the resource λ-calculus
(see Section 2): we sum over all the partitions of the bag b̄ into two components, to be
distributed to the two components of the pair – when using this lemma in the proof of
the substitution lemma, the comonoid morphism h shall simply be an identity leaving all
the unsubstitued variables unchanged. Syntactic substitution has another important case,
namely when a substitution encounters a variable occurrence. Likewise here, we have:

▶ Lemma 26. Consider f̄ ∈ B(C•(A,B)). Then id•
B ◦ Πf̄ = v if f̄ = [v], 0 otherwise.

This lemma follows from the conditions of a resource category, though in a not so
straightforward way. It illustrates how the pointed identity is able to pick a single element of
a bag. If the bag has too many elements or not enough, then the composition yields 0.

Interpretation. From now on, we fix a closed resource category C with a chosen object o.
We first set JoK def= o, J⟨F1, . . . , Fn⟩K def= JF1K ⊗ · · · ⊗ JFnK and JF⃗ → oK def= JF⃗ K → o. For

contexts, JΓK def=
⊗

(x:F )∈ΓJF K. If (x : F ) ∈ Γ, we write varΓ
x ∈ C(JΓK, JF K) the projection.

For Γ and ∆ disjoint we use the iso !Γ,∆ ∈ C(JΓK ⊗ J∆K, JΓ,∆K).
The interpretation of terms (or, rather, of typing derivations) follows the four kinds of

judgements from Section 2: for Γ, A ∈ C and A⃗ = ⟨A1, . . . , An⟩, we define

ValC(Γ;A) def= C•(Γ, A) SeqC(Γ; A⃗) def= Π1≤i≤nBagC(Γ;Ai)
BaseC(Γ) def= C•(Γ, o) BagC(Γ;A) def= B(ValC(Γ;A)) .

Notably, sequences and bags are interpreted as actual sequences and bags at the “meta-
level”, rather than via the “internal” bags (i.e. products of pointed maps) or products (i.e.
via the monoidal structure) in C. This apparent duplication of structure is resolved when
interpreting applications: we set ⟨|f⃗ |⟩ def= ⟨Πf̄1, . . . ,Πf̄n⟩ ∈ C(Γ, A⃗⊗) for f⃗ = ⟨f̄1, . . . , f̄n⟩ ∈
SeqC(Γ, A⃗), called the packing of the sequence f⃗ .

Like bags, packed sequences distribute over pairs and products:

▶ Lemma 27. Let c⃗ ∈ SeqC(∆; A⃗), h ∈ C(∆,Γ), f ∈ C(Γ ⊗ A⃗, B), g ∈ C(Γ ⊗ A⃗, C).
If h ∈ C(∆,Γ) is a comonoid morphism, then we have:

⟨f, g⟩ ◦ ⟨h, ⟨|⃗c|⟩⟩ =
∑

c⃗◁c⃗1∗c⃗2

⟨f ◦ ⟨h, ⟨|⃗c1|⟩⟩, g ◦ ⟨h, ⟨|⃗c2|⟩⟩⟩ .
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JΓ ⊢Val λx⃗.s : F⃗ → oK = ΛJΓK,Jx⃗:F⃗ K,o(JΓ, x⃗ : F⃗ ⊢Base s : oK ◦ !JΓK,Jx⃗:F⃗ K)
JΓ ⊢Base x t⃗ : oK = evJF⃗ K,o ◦ ⟨id•

JF K ◦ varΓ
x , ⟨|JΓ ⊢Seq t⃗ : F⃗ K|⟩⟩

JΓ ⊢Base s t⃗ : oK = evJF⃗ K,o ◦ ⟨JΓ ⊢Val s : F⃗ → oK, ⟨|JΓ ⊢Seq t⃗ : F⃗ K|⟩⟩
JΓ ⊢Bag [s1, . . . , sn] : F K = [JΓ ⊢Val si : F K | 1 ≤ i ≤ n]
JΓ ⊢Seq ⟨s̄1, . . . , s̄n⟩ : F⃗ K = ⟨JΓ ⊢Bag s̄i : FiK | 1 ≤ i ≤ n⟩

Figure 23 Interpretation of the resource calculus.

Proof. Proved by iterating Lemma 25, for each component of the sequence. ◀

We also have a similar lemma for a substitution propagating through a product:

▶ Lemma 28. Consider f, g ∈ C(Γ ⊗ A,B), h ∈ C(∆,Γ) a comonoid morphism, and
c⃗ ∈ SeqC(∆, A⃗). Then,

(f ∗ g) ◦ ⟨h, ⟨|⃗c|⟩⟩ =
∑

c⃗◁c⃗1∗c⃗2

(f ◦ ⟨h, ⟨|⃗c1|⟩⟩) ∗ (g ◦ ⟨h, ⟨|⃗c2|⟩⟩)) ,

and 1 ◦ ⟨h, ⟨|⃗c|⟩⟩ = 1 if c⃗ is empty, 0 otherwise.

Proof. Similar to Lemma 27. ◀

We now define the four interpretation functions

Val(Γ;F ) → ValC(JΓK; JF K)
Base(Γ) → BaseC(JΓK)

Bag(Γ;F ) → BagC(JΓK; JF K)
Seq(Γ; F⃗ ) → SeqC(JΓK; JF⃗ K)

all written J−K, by mutual induction, as in Figure 23. The interpretation is extended to sums
of terms ΣVal(Γ;F ) → ValC(JΓK; JF K) and ΣBase(Γ) → BaseC(JΓK) relying on the additive
structure of C – we give no interpretation to sums of bags or sequences.

4.3 The Soundness Theorem
We show that this interpretation is invariant under reduction. The bulk of the proof consists
in proving a suitable substitution lemma, for which we must first give a semantic account of
substitution. We define three semantic substitution functions:

−⟨⟨−/x⃗⟩⟩ : ValC(JΓ, x⃗ : F⃗ K; JGK) × SeqC(JΓK; JF⃗ K) → ValC(JΓK; JGK)
−⟨⟨−/x⃗⟩⟩ : BaseC(JΓ, x⃗ : F⃗ K) × SeqC(JΓK; JF⃗ K) → BaseC(JΓK)
−⟨⟨−/x⃗⟩⟩ : SeqC(JΓ, x⃗ : F⃗ K; JG⃗K) × SeqC(JΓK; JF⃗ K) → C(JΓK, JG⃗K)

using our cartesian-like notations:

f⟨⟨g⃗/x⃗⟩⟩ def= f ◦ !JΓK,Jx⃗:F⃗ K ◦ ⟨idJΓK, ⟨|g⃗|⟩⟩ f⃗⟨⟨g⃗/x⃗⟩⟩ def= ⟨|f⃗ |⟩ ◦ !JΓK,Jx⃗:F⃗ K ◦ ⟨idJΓK, ⟨|g⃗|⟩⟩

where the first applies for f ∈ ValC(JΓ, x⃗ : F⃗ K; JGK) or f ∈ BaseC(JΓ, x⃗ : F⃗ K) and the second
for f⃗ ∈ SeqC(JΓ, x⃗ : F⃗ K; JG⃗K). We may now state the substitution lemma:

▶ Lemma 29. Consider t⃗ ∈ Seq(Γ, F⃗ ), ∆ = Γ, x⃗ : F⃗ and s ∈ Val(∆, G) or s ∈ Base(∆).
Then, Js⟨⃗t/x⃗⟩K = JsK⟨⟨J⃗tK/x⃗⟩⟩.
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Proof. We show the stronger statement that for all g⃗ ∈ Seq(Γ, F⃗ ), and ∆ = Γ, x⃗ : F⃗ ,
(1) If f ∈ Val(∆;G), then Jf⟨g⃗/x⃗⟩K = JfK⟨⟨Jg⃗K/x⃗⟩⟩.
(2) If f ∈ Base(∆), then Jf⟨g⃗/x⃗⟩K = JfK⟨⟨Jg⃗K/x⃗⟩⟩.
(3) Assume f⃗ ∈ Seq(∆; G⃗) with f⃗⟨g⃗/x⃗⟩ =

∑
1≤i≤n f⃗i, for f⃗i ∈ Seq(Γ; G⃗).

Then,
∑

1≤i≤n⟨|Jf⃗iK|⟩ = Jf⃗K⟨⟨Jg⃗K/x⃗⟩⟩;
which follows by induction on typing derivations, using all our lemmas above. ◀

From the substitution lemma above, we may easily deduce:

▶ Theorem 30. If S ∈ ΣVal(Γ;F ) and S ⇒ S′ then JSK = JS′K.

Proof. Preservation of β-reduction follows from Lemma 29. To show that this extends by
context closure, we prove the three statements:
(1) If s ∈ Val(Γ;F ) and s ⇒ S′ then JsK = JS′K,
(2) If s ∈ Base(Γ) and s ⇒ S′ then JsK = JS′K,
(3) If s⃗ ∈ Seq(Γ; F⃗ ) and s⃗ ⇒

∑
i∈I s⃗i then ⟨|Js⃗K|⟩ =

∑
i∈I⟨|Js⃗iK|⟩.

by mutual induction, following the inductive definition of context closure. Finally, it is
immediate that this extends to sums as required. ◀

5 Game Semantics as a Resource Category

It remains to check that Strat is indeed a resource category, and that the induced interpretation
of normal forms coincides with the bijections from Theorem 12.

5.1 Additive Symmetric Monoidal Structure
Tensor. As for composition we first define the tensor of augmentations, then isogment-
ations, then strategies. For Ai, Bi arenas with qi ∈ Aug(Ai ⊢ Bi) for i = 1, 2, we
set q1 ⊗ q2 ∈ Aug(A1 ⊗ A2 ⊢ B1 ⊗ B2) with |q1 ⊗ q2| = |q1| + |q2| and ∂q1⊗q2(i,m) =
(j, (i, n)) if ∂qi

(m) = (j, n), and the orders ≤q1⊗q2 and ≤Lq1⊗q2M inherited. This construction
preserves isomorphisms, hence the tensor q1 ⊗ q2 ∈ Isog(A1 ⊗A2 ⊢ B1 ⊗B2) may be defined
via any representative – for definiteness, we use the chosen representatives of q1 and q2. We
lift the definition to strategies with, for σ1 : Γ1 ⊢ A1 and σ2 : Γ2 ⊢ A2:

σ1 ⊗ σ2
def=

∑
q1∈Isog(A1⊢B1)

∑
q2∈Isog(A2⊢B2)

σ1(q1)σ2(q2) · (q1 ⊗ q2) .

Structural morphisms. Structural morphisms are all variations of copycat. As we did for
copycat itself, we start with concrete representatives. Consider A, B, C arenas, and x ∈ C(A),
y ∈ C(B), z ∈ C(C). Noting ∅ the empty configuration on 1, we set:

LλxAM = ∅ ⊗ x ⊢ x , Lαx,y,zA,B,CM = x⊗ (y ⊗ z) ⊢ (x⊗ y) ⊗ z ,

LρxAM = x⊗ ∅ ⊢ x , Lγx,yA,BM = x⊗ y ⊢ y ⊗ x .

and λxA, ρxA, αx,y,zA,B,C and γx,yA,B are defined from these, augmented with the obvious copycat
behaviour.

We lift this to isogmentations: for x ∈ P(A), λx
A is the isomorphism class of λx

A; and
likewise for the others. Then the strategy λA is defined as for idA in (2) (page 12) and likewise
for ρA, αA,B,C and γA,B. These structural morphisms satisfy the necessary conditions to
make (Strat,⊗, 1) a symmetric monoidal category.
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Additive Structure. The sum of strategies is defined pointwise, and 0 is the sum with
coefficients all null. All compatibility conditions are direct, making Strat an asmc.

5.2 Resource Category Structure
Bialgebra. For the strategies for (co)multiplication, we first set configurations Lδx,yA M =
x ∗ y ⊢ x⊗ y and Lµx,yA M = x⊗ y ⊢ x ∗ y for any A and x, y ∈ C(A); δx,yA , µx,yA are obtained
by adjoining copycat behaviour on x and y. This lifts to isogmentations δx,y

A and µx,y
A

for x, y ∈ P(A), and to strategies by summing over those with coefficients cancelling out
symmetries on x and y. The unit ϵA and co-unit and ηA are both strategies with only the
empty isogmentation in their support, with coefficient 1. We have:

▶ Proposition 31. For any −-arena A, the tuple (A, δA, ϵA, µA, ηA) is a bialgebra.

Additionally, it is direct that this is compatible with the monoidal structure.

Pointed Identity. The pointed identity id•
A is defined by (2), restricted to pointed positions

– the laws of Figure 19 follow. The categorical notion of pointedness from Section 4.1 agrees
with the concrete one in Section 3.1: σ is pointed iff all the isogmentations in its support are.

Closed structure. We use the currying bijection ΛΓ,A,B from Section 3. For σ : Γ ⊗A ⊢ B,
we set ΛΓ,A,B(σ) =

∑
q∈Isog(Γ⊗A⊢B) σ(q) · ΛΓ,A,B(q), which directly yields

ΛΓ,A,B : Strat(Γ ⊗A,B) ∼= Strat(Γ, A ⇒ B)

from which evaluation is evA,B = Λ−1
A⇒B,A,B(idA⇒B). Altogether:

▶ Theorem 32. Strat is a closed resource category.

Compatibility with normal forms. Finally, we show compatibility with normal forms – the
crux is that the i-lifting in Figure 13 matches the first Base clause in Figure 23, when x is
the i-th variable of Γ:

▶ Proposition 33. Consider s ∈ Val(Γ;F ) or s ∈ Base(Γ) a normal form.
Then, JsK is the sum having ∥s∥ with coefficient 1, and 0 everywhere else.

▶ Corollary 34. If s ∈ Val(Γ;F ) with normal form s ⇒∗ ∑
i∈I si, then JsK =

∑
i∈I ∥si∥.

6 Concluding remarks

The correspondence with game semantics relies on the terms of the resource calculus to be
η-expanded. This was expected – as in [23] – but some consequences deserve discussion.

Firstly, x : F → G is not a valid term as it is not η-long: it hides some infinitary copycat
behaviour that must be written explicitly in our typed resource calculus, requiring an infinite
sum as in (2). This makes our calculus finitary in a stronger sense than usual: each normal
resource term describes a simple, finite behaviour, and one can prove that it corresponds to
a single point of the relational model of [9]. This also means that in the absence of infinite
sums, our typed syntax is not a resource category as it lacks identities.

Secondly, one might think that having an η-long syntax puts the pure λ-calculus out of
reach. It is in fact possible to enforce η-expandedness on terms without typing, but this
requires altering the syntax of the calculus allowing for infinite sequences of abstractions, as
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well as applications to infinite sequences of (almost always empty) bags. This corresponds
to finding the analogue of a reflexive object in the category of games. In [23], Tsukada and
Ong suggest the resource calculus with tests [8] as a candidate, but this does not seem fit for
the task: it does not allow to represent arbitrary infinite sequences of abstractions; and it
gives a syntactic counterpart to points of the relational model that do not correspond to
any normal resource term nor any pointed augmentation. It is however possible to design
a suitable language, enjoying the same relationship with Nakajima trees [21] (see also [3,
Exercise 19.4.4]) as that of the ordinary resource calculus with Böhm trees. We leave the
exposition of this for future work.
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Abstract
In this paper we adapt previous work on rewriting string diagrams using hypergraphs to the case
where the underlying category has a traced comonoid structure, in which wires can be forked and the
outputs of a morphism can be connected to its input. Such a structure is particularly interesting
because any traced Cartesian (dataflow) category has an underlying traced comonoid structure. We
show that certain subclasses of hypergraphs are fully complete for traced comonoid categories: that is
to say, every term in such a category has a unique corresponding hypergraph up to isomorphism, and
from every hypergraph with the desired properties, a unique term in the category can be retrieved
up to the axioms of traced comonoid categories. We also show how the framework of double pushout
rewriting (DPO) can be adapted for traced comonoid categories by characterising the valid pushout
complements for rewriting in our setting. We conclude by presenting a case study in the form of
recent work on an equational theory for sequential circuits: circuits built from primitive logic gates
with delay and feedback. The graph rewriting framework allows for the definition of an operational
semantics for sequential circuits.
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1 Introduction

String diagrams constitute a useful and elegant conceptual bridge between term rewriting
and graph rewriting. We will not reprise here, for lack of space, the by now impressive body
of theoretical and applied work for and with string diagrams but will take it as a given. The
survey [30] is a suitable starting point into the literature.

The purpose of this paper is to support reasoning (via graph rewrite) in traced categories
with a comonoid structure but without a monoid structure. Prior art on this topic exists [21,
10], but it is based on the framework of “framed point graphs” which requires rewriting
modulo so called wire homeomorphisms. This style of rewriting is awkward and is increasingly
considered as obsolete as compared to more recent work on rewriting with hypergraphs [4, 5, 6],
possibly modulo Frobenius structure. The variation to just a (co)monoid structure (“half a
Frobenius”) has been studied as well [13, 27].

The study of rewriting for traced categories with a comonoid structure is motivated
by an important application, dataflow categories [8, 9, 15], which represent a categorical
foundation for the semantics of digital circuits [14]. It is also technically challenging, as it
falls in a gap between compact closed structures constructible via Frobenius and symmetric
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monoidal categories (without trace) so “off the shelf” solutions cannot be currently used. In
fact the gap between the kind of semantic models which use an underlying compact closed
structure and those which use a traced monoidal structure is significant: the former have a
relational nature with subtle causality (e.g. quantum or electrical circuits) whereas the latter
are functional with clear input-output causality (e.g. digital or logical circuits) so it is not
surprising that the underlying rewrite frameworks should differ.

A key feature of compact closed categories is that the Cartesian product, if it exists, is
degenerate and identified with the co-product. Even without invoking copying, we will see
how trying to perform rewriting in a traced category with a comonoid structure can also
lead to inconsistencies. This is a firm indication that a bespoke rewriting framework needs
to be constructed to fill this particular situation.

Contributions. This paper makes two distinct technical contributions. The first is to show
that one subclass of cospans of hypergraphs (“partial monogamous”) are fully complete for
traced terms (Corollary 35), and another class (“partial left-monogamous”) are fully complete
for traced comonoid terms (Theorem 46). The challenge is not so much in proving the
correctness of the construction but in defining precisely what these combinatorial structures
should be. In particular, the extremal point of tracing the identity: Tr

( )
= ,

corresponding graphically to a closed loop, provides a litmus test. The way this is resolved
must be robust enough to handle the addition of the comonoid structure, which graphically
corresponds to “tracing a forking wire”: Tr

( )
= .

The key step in performing double pushout (DPO) rewriting is identifying a pushout
complement: the context of a rewrite step. For a given rule and graph, there may be multiple
such pushout complements, but not all of these may represent a valid rewrite in a given string
diagram setting. When rewriting with Frobenius, every pushout complement is valid [4]
whereas when rewriting with symmetric monoidal structure exactly one pushout complement
is valid [5]. For the traced case some pushout complements are valid and some are not. The
second contribution is to characterise the valid pushout complements as “traced boundary
complements” (Definition 58).

This is best illustrated with an example in which there is a pushout complement that is
valid in a Frobenius setting because it uses the monoid structure, but it is not valid neither
in a traced, nor even in a traced comonoid setting. Imagine we have a rule ⟨ , e ⟩ and a
term e1 e2 , and rewrite it as follows.

0 1 10 10
e

0 1
e1 e2

e1
1

e2

0
1e1

e2
e

0

This corresponds to the term rewrite e1 e2 =
e1

e2 =
e1

e2
e

, which holds in a

Frobenius setting but not a setting without a commutative monoid structure. On the other
hand, the rewriting system for symmetric monoidal categories [5] is too restrictive as it
enforces that any matching must be mono: this prevents matchings such as e in e .
Here again the challenge is precisely identifying the concept of traced boundary complement
mathematically. The solution, although not immediately obvious, is not complicated, again
requiring a generalisation from monogamy to partial monogamy (Theorems 65 and 69).
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= = =

Figure 1 Equations ECMon of a commutative monoid.

= = =

Figure 2 Equations ECComon of a commutative comonoid.

2 Monoidal theories and hypergraphs

When modelling a system using monoidal categories, its components and properties are
specified using a monoidal theory. A class of SMCs particularly interesting to us is that of
PROPs [26] (“categories of PROducts and Permutations”), which have natural numbers as
objects and addition as tensor product.

▶ Definition 1 (Symmetric monoidal theory). A (single-sorted) symmetric monoidal theory
(SMT) is a tuple (Σ, E) where Σ is a set of generators in which each generator ϕ ∈ Σ has an
associated arity dom(ϕ) ∈ N and coarity cod(ϕ) ∈ N, and E is a set of equations. Given a
SMT (Σ, E), let SΣ be the strict symmetric monoidal category freely generated over Σ and
let SΣ,E be SΣ quotiented by the equations in E. We write S := S∅ for the SMC with terms
constructed solely from identities and symmetries.

▶ Remark 2. One can also define a multi-sorted SMT, in which wires can be of multiple
colours. For brevity, we will only consider the single-sorted case, but the results generalise
easily using the results of [4, 5].

While one could reason in SΣ using the one-dimensional categorical term language,
it is more intuitive to reason with string diagrams [19, 30], which represent equivalence
classes of terms up to the axioms of SMCs. In the language of string diagrams, a generator
ϕ : m→ n is drawn as a box ϕm n , the identity idn as n n , and the symmetry σm,n as

n
mn

m . Composite terms will be illustrated as wider boxes fm n to distinguish them from
generators: then (diagrammatic order) composition fm n # gn p is defined as horizontal

juxtaposition g pfm and tensor fm n ⊗ gp q as vertical juxtaposition
fm n

gp q
.

The graphical notation clearly illustrates the differences between the syntactic category SΣ
and the semantic category SΣ,E . In the former, only “structural” equalities of the axioms of
SMCs hold: moving boxes around while retaining connectivity. In the latter, more equations
hold so terms with completely different boxes and connectivity can be equal.

▶ Example 3. The monoidal theory of special commutative Frobenius algebras is defined as
(ΣFrob, EFrob) where ΣFrob := { , , , } and the equations of EFrob are listed
in Figures 1–3. We write Frob := SΣFrob,EFrob .

Reasoning equationally using string diagrams is certainly attractive as a pen-and-paper
method, but for larger systems it quickly becomes intractible to do this by hand. Instead, it
is desirable to perform equational reasoning computationally. Unfortunately, string diagrams
as topological objects are not particularly suited for this purpose; instead, we require a
combinatorial representation. Fortunately, this has been well studied recently, first with
string graphs [10, 21] and later with hypergraphs [4, 5, 6], a generalisation of regular graphs
in which edges can be the source or target of an arbitrary number of vertices. In this paper
we are concerned with the latter.

FSCD 2023
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= = =

Figure 3 Equations EFrob of a special commutative Frobenius algebra, in addition to those in
Figures 1 and 2.

Hypergraphs are formally defined as objects in a functor category.

▶ Definition 4 (Hypergraph). Let X be the category containing objects (k, l) for k, l ∈ N and
one additional object ⋆. For each (k, l) there are k + l morphisms (k, l)→ ⋆. Let Hyp be the
functor category [X, Set].

An object in Hyp maps ⋆ to a set of vertices, and each (k, l) to a set of hyperedges with
k sources and l targets. Given a hypergraph F ∈ Hyp, we write F⋆ for its set of vertices
and Fk,l for the set of edges with k sources and l targets. A morphism of hypergraphs
f : F → G ∈ Hyp consists of functions f⋆ and fk,l for each k, l ∈ N preserving sources
and targets in the obvious way. Hypergraph morphisms can be used to label hypergraphs
according to a signature.

▶ Definition 5 (Slice category [25]). For a category C and an object C ∈ C, the slice category
C/C is the category with objects the morphisms of C with target C, and where a morphism
(f : X → C)→ (f ′ : X ′ → C) is a morphism g : X → X ′ ∈ C such that f ′ ◦ g = f .

▶ Definition 6 (Hypergraph signature [4]). For a given monoidal signature Σ, its cor-
responding hypergraph signature JΣK is the hypergraph with a single vertex v and edges
eϕ ∈ JΣKdom(ϕ),cod(ϕ) for each ϕ ∈ Σ. For a hyperedge eϕ, i < dom(ϕ) and j < cod(ϕ),
si(eϕ) = tj(eϕ) = v.

▶ Definition 7 (Labelled hypergraph [4]). For a monoidal signature Σ, let the category HypΣ
be defined as the slice category Hyp/JΣK.

While (labelled) hypergraphs may have dangling vertices, they do not have interfaces
specifying the order of inputs and outputs. These can be provided using cospans.

▶ Definition 8 (Categories of cospans [5]). For a finitely cocomplete category C, a cospan
from X → Y is a pair of arrows X → A ← Y . A cospan morphism (X f−→ A

g←− Y ) →
(X h−→ B

k←− Y ) is a morphism α : A→ B ∈ C such that α ◦ f = h and α ◦ g = k.
Two cospans X → A← Y and X → B ← Y are isomorphic if there exists a morphism

of cospans as above where α is an isomorphism. Composition is by pushout. The identity is
X

idX−−→ X
idX←−− X. The category of cospans over C, denoted Csp(C) has as objects the objects

of C and as morphisms the isomorphism classes of cospans. This category has monoidal
product given by the coproduct in C with unit the initial object 0 ∈ C.

The interfaces of a hypergraph can be specified as cospans by having the “legs” of the
cospan pick vertices in the graph at the apex.

▶ Definition 9 (Discrete hypergraph). A hypergraph is called discrete if it has no edges.

A discrete hypergraph F with |F⋆| = n is written as n when clear from context. Morphisms
from discrete hypergraphs to a main graph pick out the vertices in the interface: to assign
an order to these vertices some more categorical machinery is required.
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fg h = fg h f
g = f

g =

f

X

Y

= f

X ⊗ Y
f

g

= f

g

Figure 4 Equations that hold in any symmetric traced monoidal category.

X

X
= XX

X

X
= XX

Figure 5 Equations that hold in any compact closed category.

▶ Theorem 10 ([4], Thm. 3.6). Let X be a PROP whose monoidal product is a coproduct,
C a category with finite colimits, and F : X→ C a coproduct-preserving functor. Then
there exists a PROP CspF (C) whose arrows m→ n are isomorphism classes of C cospans
Fm→ C ← Fn.

▶ Definition 11. Let F be the PROP with morphisms m→ n the functions between finite
sets [m]→ [n].

▶ Definition 12 ([4]). Let D : F→ HypΣ be the faithful, coproduct-preserving functor that
sends each object m ∈ F to the discrete hypergraph m ∈ HypΣ and each morphism to the
induced homomorphism of discrete hypergraphs.

From this we define the category CspD(HypΣ) with objects discrete cospans of hypergraphs.
Since the legs of each cospan are discrete hypergraphs containing some number of vertices,
the objects of this category can be viewed as natural numbers, making this another PROP.

3 Hypergraphs for traced categories

We wish to use the hypergraph framework for a setting with a trace.

▶ Definition 13 (Symmetric traced monoidal category [20, 16]). A symmetric traced monoidal
category (STMC) is a symmetric monoidal category C equipped with a family of functions
TrX

A,B (−) : C(X ⊗A, X ⊗B)→ C(A, B) for any objects A, B and X satisfying the axioms
of STMCs listed in Figure 4.

In string diagrams, the trace is represented by joining output wires to input wires:

TrX
A,B

(
f

A
X

B
X

)
def= f

A B

Traced monoidal categories are not the only kind of category in which wires can “bend”.

▶ Definition 14 (Compact closed category). A compact closed category (CCC) is a symmetric
monoidal category in which every object X has a dual X∗ equipped with morphisms called
the unit X∗

X (“cup”) and the counit X
X∗ (“cap”) satisfying the equations of CCCs listed

in Figure 5.

Dual objects are conventionally drawn as wires flowing the “other way”, but in this paper
this is not necessary as all categories will be self-dual : any object X is isomorphic to X∗.

FSCD 2023
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X ⊗ Y
X ⊗ Y

X ⊗ Y =
Y

X
X
Y
X
Y

X ⊗ Y
X ⊗ Y

X ⊗ Y =
Y

X
X
Y
X
Y

X ⊗ Y = Y
X

X ⊗ Y = Y
X

Figure 6 Equations EHyp of a hypergraph category, in addition to those in Figures 1–3.

▶ Proposition 15 (Canonical trace ([20], Prop. 3.1)). Any CCC has a trace TrX
A,B

(
fX X

A B

)
called the canonical trace, defined for the self-dual case as(

X
X ⊗ A A

)
#

(
X X ⊗ fX X

A B

)
#

(
X
X ⊗ B B

)
.

The category of interfaced hypergraphs as defined in the previous section already contains
the structure necessary to define a trace.

▶ Definition 16 (Hypergraph category [11]). A hypergraph category is a symmetric monoidal
category in which each object X has a special commutative Frobenius structure in the sense
of Example 3 satisfying the equations in Figure 6.

▶ Proposition 17 ([28]). Any hypergraph category is self-dual compact closed.

Proof. The cup is constructed as # and the cap as # . ◀

A generic “hypergraph category” should not be confused with the category of hypergraphs
Hyp, which is not itself a hypergraph category. However, the category of cospans of
hypergraphs is such a category.

▶ Proposition 18 ([7, 4]). CspD(HypΣ) is a hypergraph category.

Proof. A Frobenius structure can be defined on CspD(HypΣ) for each n ∈ N as follows:

n
n
n := n + n→ n← n n := 0→ n← n

n
n
n := n→ n← n + n n := n→ n← 0 ◀

▶ Corollary 19. CspD(HypΣ) is compact closed.

▶ Corollary 20. CspD(HypΣ) has a trace.

This means that a STMC freely generated over a signature faithfully embeds into a CCC
generated over the same signature, mapping the trace in the former to the canonical trace in
the latter. However, this mapping is not full: there are terms in a CCC that are not terms in
a STMC, such as ϕ . So we must still restrict the cospans of hypergraphs in CspD(HypΣ)
we use for traced terms.

3.1 Monogamy
In [3], it is shown that terms in a (non-traced) symmetric monoidal category are interpreted
via a faithful functor into a sub-PROP of CspD(HypΣ). One condition on this sub-PROP is
that all hypergraphs are acyclic. Clearly, to model trace this condition must be dropped.

However, there is also another condition known as monogamy: informally, this means
that every vertex has exactly one “in” and “out” connection, be it to an edge or an interface.
For the most part, this condition also applies to the traced case: wires cannot arbitrarily
fork and join. There is one nuance: the trace of the identity. This is depicted as a closed
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e e

︸ ︷︷ ︸
partial monogamous

e e

︸ ︷︷ ︸
not partial monogamous

Figure 7 Examples of cospans that are and are not partial monogamous.

loop Tr1
( )

= , and one might think that it can be discarded, i.e. = . This
is not always the case, such as in the category of finite dimensional vector spaces [15, Sec.
6.1]. These closed loops must be represented in the hypergraph framework: there is a natural
representation as a lone vertex disconnected from either interface. In fact, this is exactly
how the canonical trace applied to an identity is interpreted in CspD(HypΣ).

▶ Definition 21. For a hypergraph F ∈ Hyp, the degree of a vertex v ∈ F⋆ is a tuple (i, o)
where i is the number of pairs (e, i) where e is a hyperedge with v as its ith target, and o is
similarly the number of pairs (e, j) where e is a hyperedge with v as its jth target.

▶ Definition 22. For a cospan m
f−→ F

g←− n ∈ CspD(HypΣ), we say it is partial monogamous
if f and g are mono and, for all nodes v ∈ F⋆, the degree of v is

(0, 0) if v ∈ f⋆ ∧ v ∈ g⋆ (0, 1) if v ∈ f⋆

(1, 0) if v ∈ g⋆ (0, 0) or (1, 1) otherwise

Intuitively, partial monogamy means that each vertex has either exactly one “in” and
one “out” connection to an edge or to an interface, or none at all.

▶ Example 23. Examples of cospans that are and are not partial monogamous are shown in
Figure 7.

In order to establish a correspondence between cospans of partial monogamous hyper-
graphs, they need to be assembled into a sub-PROP of CspD(HypΣ).

▶ Theorem 24. Let m→ F ← n, n→ G← p, p→ H ← q and x + m→ K ← x + n be
partial monogamous cospans in CspD(HypΣ). Then,

identities and symmetries are partial monogamous;
m→ F ← n # n→ G← p is partial monogamous;
m→ F ← n⊗ p→ H ← q is partial monogamous; and
Trx (x + m→ K ← x + n) is partial monogamous.

Proof. Since any monogamous hypergraph is also partial monogamous, the first three points
hold due to [4, Prop.16], dropping the acyclicity condition. The final condition is routine by
case analysis on the interfaces a vertex occurs in. ◀

▶ Definition 25. Let PMCspD(HypΣ) be the sub-PROP of CspD(HypΣ) containing only
the partial monogamous cospans of hypergraphs.

Crucially, while we leave PMCspD(HypΣ) in order to construct the trace using the cup
and cap, the resulting cospan is in PMCspD(HypΣ).

FSCD 2023
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3.2 From terms to graphs
▶ Definition 26. For a SMT (Σ, E), let TΣ be the strict STMC freely generated over the
generators in Σ. Let TΣ,E be TΣ quotiented by equations in E.

A (traced) PROP morphism is a strict (traced) symmetric monoidal functor between
PROPs. For PMCspF I(HypΣ) to be suitable for reasoning with a traced category TΣ for some
given signature, there must be a fully complete PROP morphism TΣ → PMCspF I(HypΣ):
a full and faithful functor from terms to cospans of hypergraphs.

We exploit the interplay between compact closed and traced categories in order to reuse
the existing PROP morphisms from [4] for the traced case. Since SΣ is freely generated,
these PROP morphisms can be defined solely on generators.

▶ Definition 27 ([4]). Let J−KΣ : SΣ → CspD(HypΣ) be a PROP morphism defined as

J ϕm n KΣ := m→ ϕ
...

...m n ← n

J n n KΣ := n
id−→ n

id←− n J n
mn

m KΣ := m + n
[id,id]−−−→ m + n

[id,id]←−−− n + m

Let [−]Σ : Frob→ CspD(HypΣ) be a PROP morphism defined as in Proposition 18. Then,
let ⟨⟨−⟩⟩Σ : SΣ + Frob→ CspD(HypΣ) be the copairing of J−KΣ and [−]Σ.

▶ Lemma 28. Let fm n be a term in TΣ. Then there exists at least one gx x
m n ∈ SΣ

such that Trx
(

g
)

= f .

▶ Proposition 29. There exists a faithful PROP morphism ⌊−⌋TΣ : TΣ → SΣ + Frob.

Proof. Lemma 28 is used to isolate a term in SΣ. The corresponding term in SΣ + Frob
is then the canonical trace of this term. There may be many such terms in SΣ, but the
canonical trace being a trace means that any possible outcomes post-trace are all equal. The
equations of Frob do not merge any morphisms since the only use of the generators of Frob
is in the canonical trace, to which the Frobenius equations do not apply. ◀

A summary of these PROP morphisms is shown in Figure 8.
Before progressing to the main theorem, we must show a result about terms in S: terms

constructed from just symmetries and identities. There is a correspondence between such
terms and bijective functions.

▶ Definition 30. Let P be the sub-PROP of F containing only the bijective functions.

▶ Lemma 31. S ∼= P.

▶ Lemma 32. Given a monogamous cospan m
f−→ m

g←− m, there exists a unique term
hm m ∈ S up to the axioms of SMCs such that J h KΣ = m

f−→ m
g←− m.

Proof. Since the cospan is monogamous, f and g are mono. As the cospan is also discrete,
there exists a (unique) bijective function h′ : [m]→ [m] such that h′(i) = j if f(i) = g(j). By
Lemma 31, there is a corresponding term hm m ∈ S that is unique up to SMC axioms: a
simple induction shows that J h KΣ = m

f−→ m
g←− m. ◀

Cospans of the form above are used in order to reconstruct a term in TΣ given a cospan
of partial monogamous hypergraphs, showing that partial monogamy characterises the image
of ⟨⟨−⟩⟩Σ ◦ ⌊−⌋

T
Σ .
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CComon Frob

TΣ + CComon SΣ + Frob CspD(HypΣ)

TΣ SΣ

⌊−⌋C

[−]Σ

⌊−⌋Σ ⟨⟨−⟩⟩Σ

⌊−⌋T
Σ J−KΣ

Figure 8 The various PROP morphisms at play.

▶ Theorem 33. A cospan m→ F ← n is in the image of ⟨⟨−⟩⟩Σ ◦ ⌊−⌋
T
Σ if and only if it is

partial monogamous.

Proof (Sketch). The (⇒) direction is by induction on the structure of the term. For the
(⇐) direction, a cospan isomorphic to the original cospan can be constructed from which a
term in TΣ can be read off. Informally, this cospan is

Trx+n (x + n + m→ V ← m + x + n # m + x + n→ L + E + n← x + n + n) (1)

where V is all the vertices in F , L is the vertices with degree (0, 0) not in the image of the
interfaces, and E is the all the hyperedges in F , “stacked” in some arbitrary order. The first
component corresponds to a term in S by Lemma 32, and the stack of edges to a tensor of
generators in TΣ. ◀

This shows that ⟨⟨−⟩⟩Σ ◦ ⌊−⌋
T
Σ is a full mapping from TΣ to PMCspD(HypΣ). It remains

to show that it is faithful: every term in TΣ has a unique cospan of hypergraphs up to
isomorphism. By definition, ⌊−⌋TΣ is faithful, so we only need to consider ⟨⟨−⟩⟩Σ.

▶ Proposition 34 ([4]). J−KΣ and [−]Σ are faithful.

▶ Corollary 35. TΣ ∼= PMCspF I(HypΣ).

4 Hypergraphs for traced commutative comonoid categories

We are interested in another element of structure in addition to the trace: the ability to copy
and discard wires. This is known as a (commutative) comonoid structure: categories equipped
with such a structure are also known as gs-monoidal (garbage-sharing) categories [13].

▶ Definition 36. Let (ΣCComon, ECComon) be the symmetric monoidal theory of commut-
ative comonoids, with ΣCComon := { , } and ECComon defined as in Figure 2. We
write CComon := SΣCComon,ECComon .

From now on, we write “comonoid” to mean “commutative comonoid”. There has already
been work using hypergraphs for PROPs with a (co)monoid structure [13, 27] but these
consider acyclic hypergraphs: we must ensure that removing the acyclicity condition does
not lead to any degeneracies.

▶ Definition 37 (Partial left-monogamy). For a cospan m
f−→ H

g←− n, we say it is partial
left-monogamous if f is mono and, for all nodes v ∈ H⋆, the degree of v is (0, m) if v ∈ f⋆

and (0, m) or (1, m) otherwise, for some m ∈ N.

Partial left-monogamy is a weakening of partial monogamy that allows vertices to have
multiple “out” connections, which represent the use of the comonoid structure to fork wires.

FSCD 2023
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e e

︸ ︷︷ ︸
partial left-monogamous

e e

︸ ︷︷ ︸
not partial left-monogamous

Figure 9 Examples of cospans that are and are not partial left-monogamous.

▶ Example 38. Examples of cospans that are and are not partial left-monogamous are shown
in Figure 9.

▶ Remark 39. As with the vertices not in the interfaces with degree (0, 0) in the vanilla traced
case, the vertices not in the interface with degree (0, m) allow for terms such as Tr

( )
.

▶ Lemma 40. Let m→ F ← n, n→ G← p, p→ H ← q and x + m→ K ← x + n be partial
left-monogamous cospans. Then,

identities and symmetries are partial left-monogamous;
m→ F ← n # n→ G← p is partial left-monogamous;
m→ F ← n⊗ p→ H ← q is partial left-monogamous; and
Trx (x + m→ K ← x + n) is partial left-monogamous.

▶ Definition 41. Let PLMCspD(HypΣ) be the sub-PROP of CspD(HypΣ) containing only
the partial left-monogamous cospans of hypergraphs.

This category can be equipped with a comonoid structure.

▶ Definition 42. Let ⌊−⌋C : CComon→ Frob be the obvious embedding of CComon into
Frob, and let ⌊−⌋Σ : TΣ + Comon→ SΣ + Frob be the copairing of ⌊−⌋TΣ and ⌊−⌋C.

As before, these PROP morphisms are summarised in Figure 8. To show that partial
left-monogamy is the correct notion to characterise terms in a traced comonoid setting, it is
necessary to ensure that the image of these PROP morphisms lands in PLMCspD(HypΣ).

▶ Lemma 43. The image of [−]Σ ◦ ⌊−⌋
C is in PLMCspD(HypΣ).

▶ Corollary 44. The image of ⟨⟨−⟩⟩Σ ◦ ⌊−⌋Σ is in PLMCspD(HypΣ).

▶ Lemma 45. Given a partial left-monogamous cospan m
f−→ m

g←− n, there exists a unique
term hm n ∈ CComon up to the axioms of SMCs and comonoids such that

[⌊
h

⌋C
]

Σ
=

m
f−→ m

g←− n.

▶ Theorem 46. TΣ + CComon ∼= PLMCspF I(HypΣ).

Proof. Since ⟨⟨−⟩⟩Σ and [−]CΣ are faithful, it suffices to show that a cospan m→ F ← n in
PLMCspD(HypΣ) can be decomposed in such a way that each component is in the image of
either ⟨⟨−⟩⟩Σ◦⌊−⌋

T
Σ or [−]Σ◦⌊−⌋

C. This is achieved by taking the construction of Theorem 33
and allowing the first component to be partial left-monogamous; by Lemma 45 a term in
CComon can be retrieved from this. ◀
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L i + j R

G C H

m + n

⌝ ⌜

L i + j

G C

m + n

f

a:=[a1,a2]

c:=[c1,c2]
⌝

g

[b1,b2] d:=[d1,d2]

Figure 10 The DPO diagram and a pushout complement.

5 Graph rewriting

We have now shown that we can reason up to the axioms of symmetric traced categories with
a comonoid structure using hypergraphs: string diagrams equal by topological deformations
are translated into isomorphic hypergraphs. However, to reason about an monoidal theory
with extra equations we must actually rewrite the components of the graph. In the syntactic
realm this is performed with term rewriting.

▶ Definition 47 (Term rewriting). A rewriting system R for a traced PROP TΣ consists of
a set of rewrite rules ⟨ li j , ri j ⟩. Given terms gm n and hm n in TΣ we write

g ⇒R h if there exists rewrite rule ( li j , ri j ) in R and c
j i
m n in TΣ such

that g = l c and h = r
c by axioms of STMCs.

The equivalent for graphs is graph rewriting. A common framework is that of double
pushout rewriting (DPO rewriting); we use an extension, known as double pushout rewriting
with interfaces (DPOI rewriting).

▶ Definition 48 (DPO rule). Given interfaced hypergraphs i
a1−→ L

a2←− j and i
b1−→ R

b2←− j,
their DPO rule in HypΣ is a span L

[a1,a2]←−−−− i + j
[b1,b2]−−−−→ R.

▶ Definition 49 (DPO(I) rewriting). Let R be a set of DPO rules. Then, for morphisms
G ← m + n and H ← m + n in HypΣ, there is a rewrite G ⇝R H if there exist a rule
L← i + j → R ∈ R and cospan i + j → C ← n + m ∈ HypΣ such that diagram in the left
of Figure 10 commutes.

The first thing to note is that the graphs in the DPO diagram have a single interface
G ← m + n instead of the cospans m→ G← n we are used to. Before performing DPO
rewriting in HypΣ, the interfaces must be “folded” into one.

▶ Definition 50 ([5]). Let ⌜−⌝ : SΣ + Frob→ SΣ + Frob be defined as having action
fm n 7→ f

m

n .

Note that the result of applying ⌜−⌝ is not in the image of ⟨⟨−⟩⟩Σ ◦ ⌊−⌋
T
Σ any more. This

is not an issue, so long as we “unfold” the interfaces once rewriting is completed.

▶ Proposition 51 ([4], Prop. 4.8). If ⟨⟨ fm n ⟩⟩Σ = m
i−→ F

o←− n then ⌜⟨⟨ f ⟩⟩Σ⌝ is iso-
morphic to 0 −→ F

i+o←−− m + n.

In order to apply a given DPO rule L← i + j → R in some larger graph m→ G← n, a
morphism L→ G must first be identified. The next step is to “cut out” the components of
L that exist in G.
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▶ Definition 52 (Pushout complement). Let i + j → L → G → m + n be morphisms in
HypΣ. Then the pushout complement of these morphisms is an object C with morphisms
i+ j → C → G such that L→ G← C is a pushout and the diagram on the right of Figure 10
commutes.

Given a rule L← i+j → R and morphism L→ G, a pushout complement i+j → C → G

represents the context of a valid rewrite step. Once a pushout complement is computed, the
pushout of C ← i + j → R can be performed to obtain the completed rewrite H. However,
a pushout complement may not exist for a given rule and matching.

▶ Definition 53 ([4], Def. 3.16). Let i+j
a−→ L

f−→ G be morphisms in HypΣ. The morphisms
satisfy the no-dangling condition if, for every hyperedge not in the image of f , each of its
source and target vertices is either not in the image of f or are in the image of f ◦ a. The
morphisms satisfy the no-identification condition if any two distinct elements merged by f

are also in the image of f ◦ a.

▶ Proposition 54 ([4], Prop. 3.17). The morphisms i + j → L→ G have at least one pushout
complement if and only if they satisfy the no-dangling and no-identification conditions.

▶ Definition 55. Given a partial monogamous cospan i→ L← j, a morphism L → G is
called a matching if it has at least one pushout complement.

In certain settings, known as adhesive categories [23], it is possible to be more precise
about the number of pushout complements for a given matching and rewrite rule.

▶ Proposition 56 ([23]). In an adhesive category, pushout complements of i + j
a−→ L→ G

are unique if they exist and a is mono.

▶ Proposition 57 ([24]). HypΣ is adhesive.

A given pushout complement uniquely determines the rewrite performed, so it might seem
advantageous to always have exactly one. However, when writing modulo traced comonoid
structure there are settings where having multiple pushout complements is beneficial.

5.1 Rewriting with traced structure
While in the Frobenius case considered in [4], all valid pushout complements correspond to a
valid rewrite, this is not the case for the traced monoidal case. In [5], pushout complements
that correspond to a valid rewrite in the non-traced symmetric monoidal case are identified
as boundary complements. We will use a weakening of this definition.

▶ Definition 58 (Traced boundary complement). A pushout complement as in Definition 52 is
called a traced boundary complement if c1 and c2 are mono and j + m

[c2,d1]−−−−→ C
[d2,c1]←−−−− n + i

is a partial monogamous cospan.

Unlike [5], we do not enforce that the matching is mono, as this cuts off potential rewrites

in the traced setting, such as a matching inside a loop: e
0 1 →

e

0 1

.

▶ Definition 59 (Traced DPO). For morphisms G ← m + n and H ← m + n in HypΣ,
there is a traced rewrite G ⇝R H if there exists a rule L← i + j → G ∈ R and cospan
i + j → C ← n + m ∈ HypΣ such that diagram in Definition 49 commutes and i + j → C

is a traced boundary complement.
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Some intuition on the construction of traced boundary complements may be required:
this will be provided through a lemma and some examples.

▶ Lemma 60. In a traced boundary complement, let v ∈ i and w0, w1, · · ·wk such that
f(a1(v)) = f(a2(w0)), f(a1(v)) = f(a2(w1)) and so on. Then either (1) there exists exactly
one wl not in the image of d1 such that c1(v) = c2(wl); (2) c1(v) is in the image of d1; or
(3) c1(v) has degree (1, 0). The same also holds for w ∈ j, with the interface map as d2 and
the degree as (0, 1).

Often there can be valid rewrites in the realm of graphs that are non-obvious in the term
language. This is because we are rewriting modulo yanking.

▶ Example 61. Consider the rule ⟨ e ,
e1

e2
⟩. The interpretation of this as a DPO rule in

a valid traced boundary complement is illustrated below.

0

2 3

e
1 1

3

0

2

1

3

0

2
e1

e2

0 1 2 3

e

3 0 1 2
3 0

e1
1 2

e2

This corresponds to a valid term rewrite:

e =
e

=
e2

e1 = e1 e2

Note that applying yanking is required in the term setting because the traced wire is
flowing from right to left, whereas applying the rule requires all wires flowing left to right.

Unlike regular boundary complements, traced boundary complements need not be unique.
However, this is not a problem since all pushout complements can be enumerated given a
rule and matching [18].

▶ Example 62. Consider the rule ⟨ ,
e1

e2
⟩. Below are two valid traced boundary

complements involving a matching of this rule.

0 1

2 3

1

3

0

2

1

3

0

2
e1

e2

0 1 2 3 0 1 2 3 1 2 30
e1 e2

0 3

0 1

2 3

1

3

0

2

1

3

0

2
e1

e2

0 1 2 3 2 3 0 1 3 0 12
e2 e1

2 1
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Once again, these derivations arise through yanking:

= = =
e1

e2
= e1 e2

= = =
e1

e2
= e1e2

Rewriting modulo yanking also eliminates another foible of rewriting modulo (non-traced)
symmetric monoidal structure. In the SMC case, the image of the matching must be convex :
any path between vertices must also be captured. This is not necessary in the traced case.
▶ Example 63. Consider the following rewrite rule and its interpretation.

⟨ e1 e2 ,
e4

e4
⟩

e1 e2

0
1 3 1

2
3

20
e4

e4
1 3

20

Now consider the following term and interpretation:

e1
e3 e2 e1

e3 e2
0 10 1

Although it is not obvious in the original string diagram, there is in fact a matching of of the
former in the latter. Performing the DPO procedure yields the following:

e4 e3 e4
0 10 1

e4 e3 e4

In a non-traced setting this is an invalid rule! However, it is possible with yanking.

e1
e3 e2 =

e1
e3 e2

= e1

e3

e2 = e3 e4

e4

= e4 e3 e4

We are almost ready to show the soundness and completeness of this DPO rewriting
system. The final prerequisite is a decomposition lemma, akin to a similar result in [4].

▶ Lemma 64 (Traced decomposition). Given partial monogamous cospans m
d1−→ G

d2←− n

and i
a1−→ L

a2←− j, along with a morphism L
f−→ G such that i + j → L → G satisfies the

no-dangling and no-identification conditions, then there exists j + m
[c2,d1]−−−−→ C

[c1,d2]←−−−− i + n

such that m→ G← n can be factored as

Tri

 i
a1−→ L

a2←− j

⊗
m→ m← m

# j + m
[c2,d1]−−−−→ C

[c1,d2]←−−−− i + n

 (2)

where all cospans are partial monogamous and j + m
c2,d1−−−→ C

c1,d2←−−− i + n is a traced boundary
complement.

We write ⌜⌊R⌋TΣ⌝ for the pointwise map ( l , r ) 7→ (⌜
⌊

l
⌋T

Σ⌝, ⌜
⌊

r
⌋T

Σ⌝).
▶ Theorem 65. Let R be a rewriting system on TΣ. Then, gm n ⇒R hm n if and only
if ⟨⟨⌜

⌊
g

⌋T
Σ⌝⟩⟩Σ ⇝⟨⟨⌜⌊R⌋T

Σ⌝⟩⟩Σ
⟨⟨⌜

⌊
h

⌋T
Σ⌝⟩⟩Σ.

Proof. (⇒) follows by defining cospans corresponding each part of Definition 47 and com-
posing them together: since composition of cospans is by pushout, the DPO diagram can be
recovered and the pushouts checked to be traced boundary complements. (⇐) follows by
using Lemma 64 and the fullness of ⟨⟨−⟩⟩Σ to obtain the pieces of Definition 47. ◀
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5.2 Rewriting with traced comonoid structure

To extend rewriting with traced structure to the comonoid case, the traced boundary
complement conditions need to be weakened to the case of left-monogamous cospans.

▶ Definition 66 (Traced left-boundary complement). For partial left-monogamous cospans
i

a1−→ L
a2←− j and n

b1−→ G
b2←− m ∈ HypΣ, a pushout complement as in Definition 58 is

called a traced left-boundary complement if c2 is mono and j + m
[c2,d1]−−−−→ C

[c1,d2]←−−−− i + n is
a partial left-monogamous cospan.

▶ Definition 67 (Traced comonoid DPO). For morphisms G← m + n and H ← m + n in
HypΣ, there is a traced comonoid rewrite G⇝R H if there exists a rule L← i + j → G ∈ R
and cospan i + j → C ← n + m ∈ HypΣ such that diagram in Definition 49 commutes and
i + j → C → G is a traced left-boundary complement.

▶ Lemma 68 (Traced comonoid decomposition). Lemma 64 holds when all cospans are partial
left-monogamous and j + m

[c2,d1]−−−−→ C
[c1,d2]←−−−− i + n is a traced left-boundary complement.

▶ Theorem 69. Let R be a rewriting system on TΣ + CComon. Then, g ⇒R h in
TΣ + CComon if and only if ⟨⟨⌜

⌊
g

⌋
Σ⌝⟩⟩Σ ⇝⟨⟨⌜⌊R⌋Σ⌝⟩⟩Σ

⟨⟨⌜
⌊

h
⌋

Σ⌝⟩⟩Σ..

Proof. As Theorem 65, but with traced left-boundary complements. ◀

▶ Example 70. As with the traced case, there may be multiple valid rewrites given a particular
interface. The comonoid structure adds more possibilities, as there are the equations of
commutative comonoids to consider. Consider the following rule and its interpretation.

⟨ , e ⟩
0 1 2 0

1

2
0

1

2e

Two valid rewrites are as follows:

0 1 2 0
1

2
0

1

2e

0 1 2 3 0 1 2 3
0 1

2 3e

3

0 1 2 0
1

2
0

1

2e

0 1 2 3 0 2 1 3
0 1

2 3e

3

The first rewrite is the “obvious” one, but the second also holds by cocommutativity:

= e = = e

FSCD 2023
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n

n
fm = m

f

f

n

n

m f = m

e
0 1 2 0 1

2

e
0

1

e
2

e
0 0 0

Figure 11 Equations of the monoidal theory CartC , where fm n is an arbitrary morphism in
C, and the interpretations of these equations as rewrite rules for an arbitrary generator e.

6 Case studies

6.1 Cartesian structure

One important class of categories with a traced comonoid structure are traced Cartesian, or
dataflow, categories [8, 15]. These categories are interesting because any traced Cartesian
category admits a fixpoint operator [15, Thm. 3.1].

▶ Definition 71 (Cartesian category [12]). A monoidal category is Cartesian if its tensor is
given by the Cartesian product.

As a result of this, the unit is a terminal object in any Cartesian category, and any object
has a comonoid structure. Cartesian categories are settings in which objects can be copied
and discarded. These two operations are more clearly illustrated when viewed through the
lens of a monoidal theory.

▶ Definition 72. For a given base PROP TΣC with a comonoid structure, the monoidal theory
(ΣCartC , ECartC) is defined with ΣCartC := ΣC and ECartC as the equations in Figure 11.

Note that as the equations in ECartC are parameterised over any morphism fm n , a
separate DPO rewrite rule is required for every combination of generators as in Figure 11.
However, as is the case in the next section, it is often possible to characterise the copying
behaviour through a finite number of equations.

▶ Remark 73. The combination of Cartesian equations with the underlying compact closed
structure of CspD(HypΣ) may prompt alarm bells, as a compact closed category in which the
tensor is the Cartesian product is trivial. However, it is important to note that CspD(HypΣ)
is not subject to these equations: it is only a setting for performing graph rewrites.

Reasoning about fixpoints can be performed using the unfolding rule, which holds in any
traced Cartesian category.

f
m n

x

= f
m

x

n

= f

f
m

n

x

= f

x

fm
n

In the syntactic setting, this requires the application of multiple equations: the two
counitality equations followed by the copy equation and optionally some axioms of STMCs
for housekeeping. However, if we interpret this in the hypergraph setting, the comonoid
equations are absorbed into the notation so only the copy equation needs to be applied.
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= = = =

Figure 12 Equations EBialg of a bialgebra, in addition to those in Figures 1 and 2.

f

2 3

4 5

0

1

40
1

2

5
3

f
2
40

1
f

3
5

f

4 5

0 2 3

1

0 2

1
3
5

4 f 40 2

1
f

3
5

1 5

The dual notion of traced cocartesian categories [2] are also important in computer science:
a trace in a traced cocartesian category corresponds to iteration in the context of control
flow. The details of this section could also be applied to the cocartesian case by flipping all
the directions and working with partial right-monogamous cospans.

However, attempting to combine the product and coproduct approaches for settings
with a biproduct would simply yield the category CspD(HypΣ), a hypergraph category
(Proposition 18) subject to the Frobenius equations in Figure 3. A category with biproducts
is not necessarily subject to such equations, so this would not be a suitable approach.

6.2 Digital circuits
As mentioned above, traced Cartesian categories are useful for reasoning in settings with
fixpoint operators. One such setting is that of digital circuits built from primitive logic gates:
in [14], digital circuits are modelled as morphisms in a STMC. Here, the trace models a
feedback loop, and the comonoid structure represents forking wires. The semantics of digital
circuits can be expressed as a monoidal theory [14, Sec. 6].

▶ Definition 74 (Gate-level circuits). Let the monoidal theory of gate-level sequential circuits
be defined as (ΣSCirc, ESCirc), where

ΣSCirc := { , , , , , , t , f , b , }

and the equations of ESCirc are listed in Figures 1, 2, 12, and 13, where J−KG maps gates to
the corresponding truth table, ⊔ is the join in a lattice structure on {•, t, f, b}, and F nm

n
x is

defined inductively as F 0 := F and F k+1 := F

F k

.

The generators in ΣSCirc are, respectively: AND, OR and NOT gates; constructs for
introducing, forking, joining and stubbing wires; values representing a true signal, a false
signal, and both signals at once; and a delay of one unit of time. Note that while the
equations in ESCirc contain those of a commutative comonoid, they do not explicitly contain
the general Cartesian equations: instead, these are derived from smaller equations.

FSCD 2023
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v g = JgKG (v) v = v

v

v

w
= v ⊔ w v =

g =
g

g
g = = = g

v

m
=

gv

n g

= = = Fm n

x

= F 2x+1 Fm

x

= m

Figure 13 The equations of ESCirc, from the monoidal theory of gate-level sequential circuits.

F̃ n

s
v

m

=
F̃

m

F̃
s

v
n

F̃
s

v

Figure 14 The cycle equation, which is derivable from the equations in ESCirc.

Using graph rewriting, we can sketch out an operational semantics for sequential circuits.

For the interests of brevity, we will only consider circuits of the form
F n

v

m

: circuits

with no “non-delay-guarded feedback” in which the registers of the circuit have been isolated
from a core containing only “blue” (combinational) components, which models a function.
Any sequential circuit can be translated into such a form by the equational theory.

We can “apply” such a circuit to an input as shown in the left-hand side of Figure 14;
the equations in ESCirc can be used to derive the right-hand side. The four equations in the
top row of Figure 13 can then be repeatedly applied to reduce the two “new” cores down to
values, representing the output and new state of the circuit.

When the circuits are interpreted as hypergraphs and the equations as rewrites, a computer
could perform this sequence of rewrites in order to evaluate circuits in a step-by-step manner.

7 Conclusion, related and further work

We have shown how the frameworks for rewriting string diagrams modulo Frobenius [4]
and symmetric monoidal [5] structure using hypergraphs can also be adapted for rewriting
modulo traced comonoid structure, by using hypergraphs that sit between the two settings.

Graphical languages for traced categories have seen many applications, such as to illustrate
cyclic lambda calculi [15], or to reason graphically about programs [29]. The presentation
of traced categories as string diagrams has existed since the 90s [19, 20]; a soundness and
completeness theorem for traced string diagrams, folklore for many years but only proven
for certain signatures [30], was finally shown in [22]. Combinatorial languages predate even
this, having existed since at least the 80s in the guise of flowchart schemes [33, 8, 9]. These
diagrams have also been used to show the completeness of finite dimensional vector spaces [17]
with respect to traced categories and, when equipped with a dagger, Hilbert spaces [31].

We are not just concerned with diagrammatic languages as a standalone concept: we are
interested in performing graph rewriting with them to reason about monoidal theories. This
has been been studied in the context of traced categories before using string graphs [21, 10].
We have instead opted to use the hypergraph framework of [4, 5, 6] instead, as it allows
rewriting modulo yanking, is more extensible for rewriting modulo comonoid structure, and
one does not need to awkwardly reason modulo wire homeomorphisms.
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As mentioned during the case studies, there are still elements of the rewriting framework
that are somewhat informal. One such issue involves defining rewrite spans for arbitrary
subgraphs: this is hard to do at a general level because the edges must be concretely specified
in DPO rewriting. However, if we performed rewriting with hierarchical hypergraphs [1], in
which edges can have hypergraphs as labels, we could “compress” the subgraph into a single
edge that can be rewritten: this is future work.

In regular PROP notation, wires are annotated with numbers in order to avoid drawing
multiple wires in parallel: when interpreted as hypergraphs a vertex is created for each
wire, and simple diagrams can quickly get very large. The results of [5] also extend to the
multi-sorted case, in which vertices are labelled in addition to wires. We could use this in
combination with the strictifiers of [32]: these are additional generators for transforming buses
of wires into thinner or thicker ones. This could drastically reduce the number of elements in
a hypergraph, which is ideal from a computational point of view. Work has already begun
on implementing the rewriting system for digital circuits using these techniques.
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Abstract
Higher-order rewriting is a framework in which higher-order programs can be described by trans-
formation rules on expressions. A computation occurs by transforming an expression into another
using such rules. This step-by-step computation model induced by rewriting naturally gives rise
to a notion of complexity as the number of steps needed to reduce expressions to a normal form,
i.e., an expression that cannot be reduced further. The study of complexity analysis focuses on
the development of automatable techniques to provide bounds to this number. In this paper, we
consider a form of higher-order rewriting with a call-by-value evaluation strategy, so as to model
call-by-value programs. We provide a cost–size semantics: a class of algebraic interpretations to
map terms to tuples which bound both the reduction cost and the size of normal forms.
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1 Introduction

Term rewriting is a logical framework that, among other applications, provides a computa-
tional model to specify algorithms. Simple programs (especially functional programs) can
typically be modeled as a term rewriting system where a program state is expressed as a term
and evaluation is modeled by rewriting expressions using reduction rules. Higher-order term
rewriting in particular provides a natural model for functional programming languages. Due
to the abstract nature of rewriting, it is feasible to forgo specific language details and still
derive useful term rewriting results that may carry over to program analysis [3, 10, 15, 24].

In this paper, we study complexity, which in the context of term rewriting is typically
understood as the number of steps needed to reach a normal from when starting in terms of
a certain shape and size. A natural way to determine these bounds is adapting termination
proof techniques to deduce the complexity. There is a myriad of works following this idea. To
mention a few, see [4, 7, 9, 18, 19, 25] for interpretation methods, [8, 17, 31] for lexicographic
and path orders, and [16, 28] for dependency pairs.

However, those ideas are focused on first-order term rewriting. There is very little work
on complexity of higher-order term rewriting. While there is a lot of work on complexity of
functional programs [2, 13, 20, 26], this work uses quite different ideas from the methods
developed for term rewriting. It would be beneficial to combine these ideas.

In a previous work [21], we introduced an extension of the method of weakly monotonic
algebras [14, 29] to tuple interpretations. The idea of algebras is to choose an interpretation
domain A, and interpret terms s as elements JsK of A compositionally, in such a way that
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whenever s → t we have JsK > JtK. Hence, a rewriting step on terms implies a strict decrease
on A. The defining characteristic of tuple interpretations is to split the complexity measure
into abstract notions of cost and size. This coincides with ideas often used in resource
analysis of functional programs [2, 13]. This is a popular idea, as a very similar approach
was introduced for first-order rewriting around the same time [33].

This previous work considered full higher-order rewriting, so without an evaluation
strategy. However, this is not a very realistic setting, especially with the goal of eventually
extending the methodology to various functional programming languages. In practice,
program evaluation is deterministic, i.e., it follows a specific strategy such as call-by-value
evaluation. Reduction below a λ-binder is also not usually allowed. The difference can be
substantial: for instance for a pair of rules f x 0 → x, f x (s y) → f (pair x x) y, if x is
instantiated by a term that is not in normal form, the complexity is linear if we evaluate
call-by-value, and exponential with an arbitrary evaluation strategy. Also in complexity
analysis of first-order term rewriting, considering innermost evaluation is common [27, 28].

In this paper, our goal is to extend the work of [21] to weak call-by-value reduction. To
our knowledge, this is the first complexity method for higher-order term rewriting with an
evaluation strategy. While the restriction of the strategy leads to tighter complexity bounds,
the definitions needed to obtain these bounds are much more intricate, largely due to the
potential for rules and β-redexes of higher type. We believe that this will bring the method
of weakly monotonic algebras closer to the reality of functional program analysis.

Tuple interpretations do not provide a complete termination proof method: there are
terminating systems for which interpretations cannot be found. Consequently, it does not
induce a complete complexity analysis framework either. Notwithstanding, it has the potential
to be very powerful if we choose the cost–size sets wisely. A second limitation is that the
question whether a suitable interpretation exists is undecidable in general, which is expected
already in the polynomial case [23]. Undecidability never hindered computer scientists’ efforts
on mechanizing difficult problems, however. Indeed, several proof search methods have been
developed over the years to find interpretations automatically [6, 11, 12, 18, 33].

Contribution. This paper will introduce tuple interpretations for higher-order term rewriting
systems using a weak call-by-value evaluation strategy, and use them to define both a
termination method under this strategy, and a new definition of weak call-by-value runtime
complexity along with a methodology to derive bounds for it.

This paper builds on the ideas of [21], which introduces tuple interpretations and a notion
of runtime complexity for full higher-order rewriting (without evaluation strategy). The
key difference here is our focus on a weak call-by-value evaluation strategy. This allows for
tighter bounds, but also requires significant technical changes. since the “cost” for a term of
higher type can no longer be captured by just a function (as we will explain in Section 3).

An additional change compared to [21] is that we have separated the cost and size
components into distinct functions. In [21], it is in theory allowed for the size component
to depend on the cost component, even though in practice this never happened. By fully
separating the components, it is easier to prove correctness of a given tuple interpretation.

Paper Overview. In Section 2 we review basic notation on higher-order rewriting and define
our notion of call-by-value strategy. In Section 3 we give an informal overview of how the
technique works. These ideas are formalized in Sections 4 and 5 where we respectively provide
a formal cost–size semantics for simple types, and interpret terms as cost–size tuples as well
as proving some basic properties of them. We provide additional examples in Section 6. In
Section 7 we conclude the paper and discuss future work.
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2 Preliminaries

Unlike first-order rewriting, there is no single consensus formalism for higher-order rewriting,
but rather a variety of sometimes incompatible formats. The formalism we consider here is a
style of simply typed lambda calculus extended with function symbols and rules. The matching
mechanism is modulo alpha, and beta reduction is included in the rewriting relation. This is
essentially the formalism used in the higher-order category of the international termination
competition [32], but slightly simplified for easier representation.1

Types, Terms, and Equality. Let B be a nonempty set whose elements are called base
types and range over ι, κ, ν. The set TB of simple types over B is generated by the grammar:
TB := B | TB ⇒ TB. Types from TB range over σ, τ, ρ. The ⇒ type constructor is right-
associative, so we write σ ⇒ τ ⇒ ρ for (σ ⇒ (τ ⇒ ρ)). Notice that every simple type σ can
be written as τ1 ⇒ · · · ⇒ τn ⇒ ι. We informally say that the τi’s are the input types and the
base type ι is the output type. We abbreviate such types by τ ⇒ ι. The type order of a type
is the number: (a) ord(ι) = 0 and (b) ord(σ ⇒ τ) = max(1 + ord(σ), ord(τ)). A signature F
is a triple (B, Σ, ar) where B is a set of base types, Σ is a nonempty finite set of symbols, and
ar is a function ar : Σ −→ TB. For each type σ, we postulate the existence of a nonempty
set Xσ of countably many variables. Furthermore, we impose that Xσ ∩ Xτ = ∅ whenever
σ ̸= τ . Let X denote the family of sets (Xσ)σ∈TB

indexed by TB and assume that Σ ∩ X = ∅.
The set T(F,X) – of terms built from F and X – collects those expressions s for which

the judgment s : σ can be deduced using the following rules:

x ∈ Xσ
x : σ

f ∈ Σ ar(f) = σ

f : σ

s : σ ⇒ τ t : σ

(s t) : τ

x ∈ Xσ s : τ

(λx. s) : σ ⇒ τ

Application of terms is left-associative, so we write s t u for ((s t) u). Abstraction is right-
associative, so we write λxyz. s for λx. (λy. (λz. s)). Application takes precedence over
abstraction, which allows us to write λx. s t for λx. (s t). Unnecessary parentheses are
removed, and we write terms following these rules. The set fv(s) of free variables occurring
in s is defined as expected. A term s is closed if fv(s) = ∅. It is ground if no variable occurs
in it. A symbol f ∈ Σ is called the head symbol of s if s = f s1 . . . sk. A subterm of s is a term
t (we write s ⊵ t) such that (i) s = t; or (ii) t is a subterm of s′ or s′′, if s = s′ s′′; or t is a
subterm of s′, if s = λx. s′. A proper subterm of s is a subterm of s which is not equal to s.

A substitution γ is a type-preserving map from variables to terms such that the set
dom(γ) = {x ∈ X | γ(x) ̸= x} is finite. We may explicitly represent γ as a list of mappings
[x1 := s1, . . . , xk := sk]. The capture avoiding application of γ to s is defined as follows:

xγ = γ(x) (s t)γ = (sγ) (tγ)

fγ = f (λx. s)γ = λy. (s{x 7→y}γ), for y fresh

Here, s{x 7→y} denotes the term obtained by replacing every free occurrence of x by y in s.
The result of sγ is unique modulo α-renaming. We identify terms modulo α-equality, so
s = t denotes s =α t.

1 The format in the competition allows both function application and application as separate notions,
admitting the formation of terms such as f(s) · t. We here omit the functional notation, which is not
necessary since any term can be represented in a curried form. Beyond this, the formalism is the same,
including the permissiveness that left-hand sides do not need to be patterns or even in β-normal form.
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Higher-Order Rewriting. A rewrite rule ℓ → r is a pair of terms of the same type such
that ℓ = f ℓ1 . . . ℓk and fv(r) ⊆ fv(ℓ). A term rewriting system (TRS)2 R is a set of rules. A
relation → on terms is monotonic if s → s′ implies t s → t s′, s u → s′ u, and λx. s → λx. s′;
for all terms t and u of appropriate types. The rewrite relation →R induced by R is the
smallest monotonic relation containing R union the β rule-scheme (i.e., (λx. s) t →β s[x := t])
and closed under application of substitution. An R-reducible expression (redex) is a term of
form ℓγ for some rule ℓ → r and substitution γ. A β-redex is of the form (λx. s) t.

Every rewrite rule ℓ → r defines a symbol f, namely, the head symbol of ℓ. For each f ∈ Σ,
let Rf denote the set of rewrite rules that define f in R. A symbol f ∈ Σ is a defined symbol if
Rf ̸= ∅. A constructor symbol is a symbol c ∈ Σ such that Rf = ∅. We let Σdef be the set of
defined symbols and Σcon the set of constructor symbols. Hence, Σ = Σdef ⊎ Σcon. A ground
constructor term is a term c s1 . . . sn with n ≥ 0, where each si is a ground constructor term.

▶ Example 1. In this example we collect some common higher-order functions encoded as
rules: map applies a function to each element of a list; comp composes two functions, app is
the application functional, and rec encodes primitive recursion. Their monomorphic signature
is defined as expected with functional arguments of type nat ⇒ nat and lists having type list.

map F nil → nil comp F G → λx. F (G x)
map F (cons x xs) → cons (F x) (map F xs) app F → λx. F x

rec 0 y F → y rec (s x) y F → F x (rec x yF )

▶ Example 2. Some first-order functions over natural numbers:

dbl 0 → 0 add x 0 → 0 mult x 0 → 0
dbl (s x) → s(s (dbl x)) add x (s y) → s (add x y) mult x (s y) → add x (mult x y)

Call-by-Value Higher-order Rewriting. In this paper, we are interested in a restricted
evaluation strategy, which limits reduction to terms whose immediate subterms are values:

▶ Definition 3. A term s is a value whenever s is:
of the form f v1 . . . vn, with each vi a value and there is no rule f ℓ1 . . . ℓk → r with k ≤ n;
an abstraction, i.e., s = λx. t.

Notice that by definition ground constructor terms are values, since there is no rule
c ℓ1 . . . ℓk → r for any k if c ∈ Σcon. More complex values include partially applied functions
and lambda-terms; for example, add 0 or a list of functions [add 0; λx.x; mult 0; dbl]. In the
weak call-by-value reduction strategy defined below, we shall not reduce under abstractions.

▶ Definition 4. The higher-order weak call-by-value rewrite relation →v induced by
R is defined as follows:

f (ℓ1γ) . . . (ℓkγ) →v rγ, if f ℓ1 . . . ℓk → r ∈ R and each ℓiγ is a value;
(λx. s) v →v s[x := v], if v is a value;
s t →v s′ t if s →v s′; and s t →v s t′ if t →v t′.

2 Note that we use the acronym TRS for the style of higher-order term rewriting systems introduced
in this section; not for a limitation to first-order term rewriting systems as is sometimes done in the
literature. In this paper, we will not consider first-order TRSs as a special case at all.
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Notice that when instantiating rules we use value substitutions, that is, their image for
any nontrivial variable is always a value. All reductions in this paper are weak call-by-value.
So we drop the v from the arrow, and s → t should be read as s →v t. We use explicit
notation whenever confusion may arise.

We say that a term s is in normal form if there is no term t such that s →v t. A term s

has a normal form t if s →∗
v t and t is in normal form. A TRS R is terminating if no infinite

rewrite sequence s →v s1 →v . . . exists.

Ordered Sets and Monotonic Functions. A quasi-ordered set (A, ⊒) consists of a nonempty
set A and a quasi-order (reflexive and transitive) ⊒ on A. An extended well-founded set
(A, >,≳) is a nonempty set A together with a well-founded order > and a quasi-order ≳ on
A such that ≳ is compatible with >, i.e., x > y implies x ≳ y and x > y ≳ z implies x > z.
Below we refer to an extended well-founded set simply as well-founded set. The unit set is
the quasi-ordered set ({u}, ⊒), with u ⊒ u.

Given quasi-ordered sets (A, ⊒) and (B, ⊒), a function f : A −→ B is weakly monotonic
if x ⊒ y implies f(x) ⊒ f(y). Let A =⇒ B denote the set of weakly monotonic functions
from A to B. The comparison operator ⊒ on B induces point-wise comparison on A =⇒ B

as follows: f ⊒ g if f(x) ⊒ g(x) for all x ∈ A. This way (A =⇒ B, ⊒) is also quasi-ordered.
Given well-founded sets (A, >,≳) and (B, >,≳), a function f : A −→ B is said to be strongly
monotonic if x > y implies f(x) > f(y) and x ≳ y implies f(x) ≳ f(y).

3 Cost–Size Overview

In this section we sketch the broad idea of the methodology, focusing on intuition.
To start, every term is associated with a size. For a closed term of base type, this size

could for instance be the number of symbols in its normal form; or a pair of integers, or a set
of terms (e.g., the set of all normal forms of the term). We only require that each base type
is associated with a quasi-ordered set with a minimum element. For a term of higher type,
the size is a weakly monotonic function, which provides a bound for applications of the term.

▶ Example 5. In the signature of Examples 1 and 2, we may let Size(0) = 1 and Size(s t) =
1 + Size(t); intuitively, the size of a ground constructor term of type nat is the number
of function symbols in it. For lists, we could let Size(nil) = (0, 0) and Size(cons s t) =
(Size(t)1 + 1, max(Size(s), Size(t)2)); intuitively, the size of a list of numbers is the pair
(list length, size of its greatest element). We could let Size(add s) be the function that maps
n to Size(s) + n, and Size(map) the function that takes a (weakly monotonic) function F

and a pair (l, m), and returns (l, F (m)); intuitively, if F bounds the size of the first argument,
and we are given a list with maximum element of size m and length l, then applying map to
these arguments yields a list which has length l, and elements have sizes bounded by F (m).

Aside from a size, we need to calculate a cost for each term to associate a bound on the
number of steps that can be taken from a given starting term. Aside from associating a
natural number bounding this cost to each term, terms of higher type have computational
content even in normal form; hence, we should associate a cost function to such terms: a
weakly monotonic function that indicates the cost of applying this term to a value.

▶ Example 6 (First idea for costs). Intuitively, the number of steps to evaluate add s t is
bounded by the cost of evaluating the arguments, plus Size(s) (as we easily see by inspecting
the rules defining add). Hence, we would let Cost(add s t) = Cost(s) + Cost(t) + Size(s), and
could define Cost(add) = λλ(c1, s1), (c2, s2). c1 + c2 + s1. Note that the cost function takes a
pair of values for each argument: respectively, the cost and size of the argument.
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For map, the number of steps to evaluate map s t depends heavily on s, even if both
s and t are values: map (λx.add x 0) t will take substantially fewer steps than evaluating
map (λx.mult x x) t. Hence, we should take the cost function for s into account as well as
its size. This yields Cost(map) = λλ(Fcost, Fsize), (qcost, (l, m)). qcost + l + 1 + l ∗ Fcost(0, m):
the number of steps to evaluate map s t is bounded by the cost of evaluating t first, then
applying s ⟨length of list⟩ times to the largest element of t, plus the 1 + ⟨length of list⟩ steps
for the evaluation of map itself. Note that since we use a call-by-value strategy, the list q is
evaluated to a value before the map rule fires, which is why Fcost is given a zero argument.

The cost for constructor applications c s1 · · · sm is always just Cost(s1) + · · · + Cost(sm),
since applying a constructor to terms does not lead to a further computation being done.

Examples 5 and 6 sketch an idea where Size(s t) = Size(s)(Size(t)) and Cost(s t) =
Cost(s)(Cost(t), Size(t)). Unfortunately, while this idea works well for sizes, it has some
issues for costs; most importantly, that the computational content of terms of higher types is
ignored. Although a term λx.s cannot be reduced, a term such as add (dbl 0) can be, and
the cost for the dbl 0 reduction should be included. Moreover, terms of higher type can
also reduce directly even when their subterms are values; e.g., comp s t or (λx.s) t of type
nat ⇒ nat.

Hence, we will instead consider a pair of costs: each term has a cost number (a bound on
the number of steps to reduce this term to normal form), and a cost function (which bounds
the cost of applying this normal form to a value, or is unit for base-type terms).

Unfortunately, this choice necessarily imposes a more complicated definition, since a pair
cannot be applied like a function can; e.g., if the cost of s is (12, λλ(xcost, xsize). xcost + xsize),
then when computing the cost for s t, we cannot just apply the function and forget the 12.
Hence, we will define (formally in Definition 16) an alternative interpretation of application,
so that, for s : σ ⇒ τ and t : σ, Cost(s t) = ( CostN um(s) + CostN um(t) + c, fun ), where
CostFun(s)(CostFun(t), Size(t)) is the pair (c, fun).

▶ Example 7 (Cost pairs). We let Cost(add) = ( 0, λλ(u1, n). ( 0, λλ(u2, m). n ) ): the
first 0 is the “cost number” for add, which is 0 because add is in normal form; and the
function λλ(u1, n). ( 0, λλ(u2, m). n ) takes a unit element and the size of a value, and
returns a new pair. With the rough definition of application above, we have Cost(add s) =
( CostN um(s), λλ(u, n). ( Size(s), u ) ). This matches the intuition that the number of steps
needed to reduce add s to normal form is just the number of steps needed to reduce s, and the
result is a value of function type which, if applied to a value with size n, can be normalized
in Size(s) steps. We obtain Cost(add s t) = Cost(s) + Cost(t) + Size(s) as expected.

The notation is rather cumbersome but is needed for the formal definition. In practice, we
can identify unit×A and A×unit with A for any set, and use (x1, . . . , xn) 7→ φ as shorthand
for ( 0, λλx1. ( 0, λλx2. . . . φ ) ). Then we can use the more palatable notation Cost(add) =
(n, m) 7→ n, or Cost(comp) = ((Fcost, Fsize), (Gcost, Gsize)) 7→ ( 2, λλxsize.Gcost(xsize) +
Fcost(Gsize(xsize)) ) for the symbol comp which admits a rule of higher type nat ⇒ nat.

With these definitions, if we can show that (Cost(ℓ), Size(ℓ)) ≻ (Cost(r), Size(r)) for all
value instances of rules, then CostN um(s) defines a bound on the number of steps that can
be taken to reduce s to normal form. We can use this to define bounds on the runtime
complexity of the rewriting system – that is, on the number of steps that can be done when
starting in certain kinds of terms of a given size (as we will discuss in Section 6).

▶ Example 8. We choose Size(nil), Size(cons) and Size(map) following Example 5, and
let Cost(nil) = 0, Cost(cons) = (n, m) 7→ 0 and Cost(map) = ((Fcost, Fsize), (l, m)) 7→
l ∗ Fcost(m) + l + 1. Then, for a list cons h t with Size(t) = (l, m), we have
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Size(map F (cons h t)) = (l + 1, Size(F )(max(Size(h)), m))
= (l + 1, max(Size(F )(Size(h)), Size(F )(m)))
= Size(cons (F h) (map F t))

by weak monotonicity of Size(F ). Taking into account that if F , h and t are values, then
they all have a cost number of 0, we also have:

Cost(map F (cons h t)) = (l + 1) ∗ CostFun(F )(max(Size(h), m)) + l + 2
> CostFun(F )(Size(h)) + l ∗ CostFun(F )(m) + l + 1
= Cost(cons (F h) (map F t))

Hence, all value instantiations of the left-hand side of this rule both have greater cost, and
greater-than-or-equal size, to the right-hand sides. If the other rules are similarly oriented,
we can conclude that CostN um(s) provides a bound on the reduction cost of s.

In the rest of this paper, the ideas above will be formally defined and their correctness
proven. We will not use the elaborate names CostN um, Size, etc., but rather define
interpretations as tuples that contain all these components.

4 Cost–Size Semantics for Simple Types

In this section we build a set-theoretical cost–size semantics to the simple types in TB. The
goal is to define a function L·M that maps each type σ ∈ TB to a well-founded set LσM, the
cost–size interpretation of σ. We start by formally defining what we mean by cost–size sets.

▶ Definition 9. Given a well-founded set (C, >,≳), called the cost set, and a quasi-ordered
set (S, ⊒), called the size set, we call C × S the cost–size product of (C, >,≳) and (S, ⊒),
and its elements cost–size tuples.

Given a cost–size product C × S, the well-foundedness of C and quasi-ordering on S
naturally induce an order structure on the product C × S as follows.

▶ Definition 10 (Product Order). Let (C, >,≳) × (S, ⊒) be a cost–size product. Then we
define the relations ≻,≽ over C × S as follows: for all ⟨x, y⟩ and ⟨x′, y′⟩ in C × S,

⟨x, y⟩ ≻ ⟨x′, y′⟩ iff x > x′ and y ⊒ y′, and
⟨x, y⟩ ≽ ⟨x′, y′⟩ iff x ≳ x′ and y ⊒ y′.

Next, we show that the triple (C × S, ≻,≽) is well-founded.

▶ Lemma 11. The triple (C × S, ≻,≽) defined in Definition 10 is a well-founded set.

Proof. It follows immediately from Definition 10 that ≻,≽ are transitive and ≽ is reflexive.
To show well-foundedness of ≻ we note that the existence of an infinite chain ⟨x1, y1⟩ ≻
⟨x2, y2⟩ ≻ · · · would imply x1 > x2 > · · ·, which cannot be the case since > is well-founded.
We still need to check that ≽ is compatible with ≻.

Suppose ⟨x, y⟩ ≻ ⟨x′, y′⟩. Since x > x′ implies x ≳ x′, we have ⟨x, y⟩ ≽ ⟨x′, y′⟩.
Suppose ⟨x, y⟩ ≻ ⟨x′, y′⟩ ≽ ⟨x′′, y′′⟩. Since x > x′ ≳ x′′ implies x > x′′ and ⊒ is transitive,
we have ⟨x, y⟩ ≻ ⟨x′′, y′′⟩. ◀

We shall use product orders to induce well-founded ordering on cost–size sets. Let us
define next the requirements for the sets used for size interpretations.

▶ Definition 12 (Type Interpretation Key). Let B be a set of base types. An interpretation
key for B, denoted JB, is a function that maps each base type ι ∈ B to a quasi-ordered set
(JB(ι), ⊒) with a minimum element, i.e., it contains an element ⊥, such that x ⊒ ⊥ for all x.

FSCD 2023



15:8 Cost–Size Semantics for Call-By-Value Higher-Order Rewriting

▶ Example 13 (Cost–Size Tuples over natural numbers). A first example of an interpretation
key is that of tuples over N. For each ι ∈ B, JB/N(ι) is a set of the form (NK(ι), ⊒), with
K(ι) ≥ 1 and (x1, . . . , xK(ι)) ⊒ (y1, . . . , yK(ι)) iff xi ≥ yi for all 1 ≤ i ≤ K(ι). A minimum
element for such sets is (0, . . . , 0). Notice that (NK(ι), ⊒) is quasi-ordered for any choice of
K(ι) and JB/N is completely determined by a function mapping each ι ∈ B to K(ι) ∈ N.

The definition below formalizes our intuition for cost and size from Section 3. Given an
interpretation key JB we inductively interpret the elements of TB as cost–size products.

▶ Definition 14 (Interpretation of Types). Let JB be an interpretation key. We define for
each type σ the cost–size tuple interpretation of σ as the set LσM = Cσ × Sσ where Cσ

and Sσ are defined as follows (mutually with the set F c
σ):

Cσ = N × F c
σ Sι = JB(ι)

F c
ι = unit Sσ⇒τ = Sσ =⇒ Sτ

F c
σ⇒τ = (F c

σ × Sσ) =⇒ Cτ

The set LσM is ordered as follows:
⟨(n, f1), f2⟩ ≻ ⟨(m, g1), g2⟩ if n > m, f1 ≳ g1 and f2 ⊒ g2, and
⟨(n, f1), f2⟩ ≽ ⟨(m, g1), g2⟩ if n ≥ m, f1 ≳ g1 and f2 ⊒ g2.

We say a function f is a cost (size) function whenever f ∈ F c
σ (f ∈ Sσ), for some type σ.

▶ Lemma 15. For any type σ, (Cσ, >,≳) is well-founded and (Sσ, ⊒) is quasi-ordered with
a minimum. Therefore, LσM is a cost–size product.

Proof. When σ is a base type, Cσ = N × unit ∼= N and Sσ = JB(σ), so the statement is
trivially true. Let σ = τ ⇒ ρ, then by induction hypothesis Sτ and Sρ are quasi-ordered.
Quasi-ordering of (Sτ⇒ρ, ⊒) follows from the induced point-wise comparison. A minimum
for this size set is the function λλx.⊥. Well-foundedness of (Cσ, ≻,≽) follows from Lemma 11
by showing that F c

τ⇒ρ is quasi ordered. ◀

To map each term s : σ to an element of LσM (Definition 25), we need a notion of
application for cost-size tuples. More precisely, assume given a type σ ⇒ τ and cost–size
tuples f ∈ Lσ ⇒ τM and x ∈ LσM. We define the application of f to x, denoted f · x, as
follows.

▶ Definition 16. Let σ ⇒ τ be an arrow type, f = ⟨(n, f c), f s⟩ ∈ Lσ ⇒ τM, and x =
⟨(m, xc), xs⟩ ∈ LσM. The semantic application of f to x, denoted f · x, is defined by:

let f c(xc, xs) = (k, h); then ⟨(n, f c), f s⟩ · ⟨(m, xc), xs⟩ = ⟨(n + m + k, h), f s(xs)⟩

We set the semantic application to be left-associative, so f · g · h denotes (f · g) · h.

▶ Example 17. Let us illustrate semantic application with a concrete example: consider
the type σ = (nat ⇒ nat) ⇒ list ⇒ list, which is the type of map defined in Example 1.
The function map takes as argument a function F : nat ⇒ nat and list q and applies F to
each element of q. This formalizes the cost and size ideas in Examples 5 and 6. Hence, the
cost–size interpretation of map is an element ⟨(n, f c), f s⟩ of LσM. Its cost component (n, f c)
is in Cσ = N × F c

σ which is composed of a numeric and functional component. The numeric
component n carries the cost of partial application. Meanwhile, the functional component
in F c

σ is parametrized by functional arguments carrying the cost and size information of
F . Indeed, Definition 14 gives us f c : F c

nat⇒nat × Snat⇒nat =⇒ Clist⇒list, which can be written
explicitly as:
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the functional cost of map︷ ︸︸ ︷(unit × N =⇒ N × unit)︸ ︷︷ ︸
cost of F

× (Snat =⇒ Snat)︸ ︷︷ ︸
size of F

 =⇒

N ×

unit︸ ︷︷ ︸
qc

× Slist︸︷︷︸
qs

=⇒ N × unit


The set for the size function is somewhat simpler with f s : (Snat =⇒ Snat) =⇒ Slist =⇒ Slist.

Therefore, we apply f to a cost-size tuple x of the form ⟨(m, xc), xs⟩ where xc is the cost
of computing F (so an element of F c

nat⇒nat) and xs is the size of F , so an element of Snat⇒nat.
We proceed by applying the respective functions so f c(xc, xs) = (k, h) belongs to Clist⇒list
and f s(xs) is in Slist⇒list. We put everything together and add the numeric components to
obtain: f · x = ⟨(n + m + k, h), f s(xs)⟩. Notice that this gives us a new cost–size tuple with
the cost component in N × (Clist =⇒ Clist) and size component in Slist =⇒ Slist, which is a
tuple in Llist ⇒ listM.

Observe that our intention with Definition 16 is that the semantic application conforms
with a form of “application typing rule”. A straightforward analysis on Definition 16 shows
that this is indeed the case. This is summarized in the lemma below.

▶ Lemma 18. If f ∈ Lσ ⇒ τM and x ∈ LσM, then f · x belongs to LτM.

Definition 14 gives us a family of cost–size sets T = {LσM}σ∈TB
indexed by TB, and

combined with Definition 16 we get a family of application operators

(T , ·) =
(

{LσM}σ∈TB
, {·σ,τ }σ,τ∈TB

)
, with ·σ,τ : Lσ ⇒ τM × LσM −→ LτM

We call the pair (T , ·) the cost–size type structure generated by the interpretation key JB.
Indeed, in the next Lemma we show that such structure preserves the orderings ≻ and ≽ on
cost–size tuples.

▶ Lemma 19. The application operator is strongly monotonic in both arguments.

Proof. We need to prove the following: (i) if f ≻ g and x ≽ y, then f · x ≻ g · y; (ii) if
f ≽ g and x ≻ y, then f · x ≻ g · y; (iii) if f ≽ g and x ≽ y, then f · x ≽ g · y. Consider
cost–size tuples f , g ∈ Lσ ⇒ τM and x, y ∈ LσM. Let f = ⟨(n, f c), f s⟩, g = ⟨(m, gc), gs⟩,
x = ⟨(j, xc), xs⟩, and y = ⟨(j′, yc), ys⟩. We proceed to show (i) and observe that (ii) and (iii)
follow similar reasoning. Indeed, if f ≻ g and x ≽ y we have that n > m, f c ≳ gc, f s ⊒ gs,
j ≥ j′, xc ≳ yc, and xs ⊒ ys. Let f c(xc, xs) = (k, h) and gc(yc, ys) = (k′, h′), we get:

f · x = ⟨(n + j + k, h), f s(xs)⟩ ≻ ⟨(m + j′ + k′, h′), gs(ys)⟩ = g · y ◀

▶ Remark 20. Notice that the type structure (T , ·) is nonstandard. Indeed, the intended
standard semantics given to arrow types is usually a functional space [5, Chapter 3]. So
inhabitants of functional types are interpreted as functions. Since our intention with
defining cost–size type structures as above is to capture the complexity-wise behavior of
functions (defined by rewriting rules) and a cost component associated with the computational
environment, this non-standardness is expected. In the next sections we show that even
though our interpretations do not give rise to a standard semantic of simple types, we can
still prove classical lemmata for substitution and compatibility.

▶ Example 21. In Examples 1 and 2 we have two examples of base types: nat and list.
Values of type nat are built using the constructors 0 : nat and s : nat ⇒ nat. Similarly, for list
we have nil : list and cons : nat ⇒ list ⇒ list.

FSCD 2023



15:10 Cost–Size Semantics for Call-By-Value Higher-Order Rewriting

Let us give a cost–size type structure over N (Example 13) for B = {nat, list}. Essentially,
we need to choose the numbers K(nat), K(list) associated with nat and list, respectively. To
do so we take the intentional size semantic of nat, list into account. Let us set K(nat) = 1
and K(list) = 2. This exactly gives the size sets we used in Section 3, and allows us to use
“number of symbols” as a notion of size in a unary representation of numbers, and (length,
maximum element size) as a size notion for lists. Intuitively, since a list is a container-like
data structure we want to be able to simultaneously give upper bounds to “the size of the
container” (which is length for lists) and “the size of its elements”. This choice of JB/N affects
the shape of interpretations for symbols in Σ, as we will see in Example 23.

Even though we have manually chosen the size tuples for JB/N above, an automated
procedure can still be devised to determine the number K(ι), for ι ∈ B. A description of
such a procedure can be found in [22].

5 Cost–Size Semantics for Terms

In the previous section, we established a cost–size semantics for the simple types in TB. Our
goal in this section is to interpret terms as elements of those sets.

An interpretation of a signature F = (B, Σ, ar) interprets the base types in B and each
f ∈ Σ of arity ar(f) = σ as an element of LσM which is constructed by Definition 14. This is
formally stated in the definition below.

▶ Definition 22. A cost–size tuple interpretation F for a signature F = (B, Σ, ar)
consists of a pair of functions (JB, JΣ) where

JB is a type interpretation key (Definition 12),
JΣ is an interpretation of symbols in Σ which maps each f ∈ Σ with ar(f) = σ to a
cost–size tuple in LσM, where LσM is built using JB in Definition 14.

In what follows we slightly abuse notation by writing Jf for JΣ(f) and just J for JΣ.

▶ Example 23. As a first example of interpretation, let us interpret the data signature from
Example 21. Recall that 0 : nat, s : nat ⇒ nat are the constructors for nat and K(nat) = 1.

J0 =
〈

(0, u) , 1
〉

Js =
〈

(0, λλx.(0, u)) , λλx.x + 1
〉

The highlighted cost components for the constructors are filled with zeroes. That is because
in the rewriting cost model data values do not fire rewriting sequences. In the language of
Section 3: the cost number for 0 is 0, (because it is a value), the cost function is u (because
it has base type), and size component is 1 (since we chose a notion of size for terms of type
nat to mean “number of symbols”). The cost number for s is 0, the cost function is the
constant function mapping to 0, and the size component is the function λλx.x + 1 in Snat⇒nat.
We interpret the constructors for list, i.e., nil and cons, following the same principle, with
K(list) = 2. We write a size tuple q in Slist as (ql, qm) since the first component is to mean
the length of the list and the second a bound on the size of its elements.

Jnil =
〈

(0, u) , (0, 0)
〉

Jcons =
〈

(0, λλx.(0, λλq.(0, u))) , λλxq.(ql + 1, max(x, qm))
〉

The highlighted cost components are filled with zeroes for lists as well. Size components are
interpreted as expected, and exactly following Example 5.

The next step is to extend the interpretation of a signature F to the set of terms. But
first, we define valuation functions to interpret the variables in x : σ as elements of LσM.
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▶ Definition 24. A cost–size valuation α is a function that maps each x : σ to a cost-size
tuple in LσM such that:

α(x) = ⟨(0, u), xs⟩, for all x ∈ X of base type, and
α(F ) = ⟨(0, F c), F s⟩ when F :: σ ⇒ τ .

Notice that, in this definition, the cost component of α(x) has the form (0, u), if x : ι.
This interpretation is motivated by Definition 4, where a matching substitution γ (i.e., a
substitution such that ℓγ →v rγ) must map each x : ι to a value of base type. Those can only
have the form c(v1, . . . , vm) with c ∈ Σcon. Variables of arrow type still have a cost number
0; however, they can be instantiated to values that carry indirect computational content:
a partial application or abstraction. For instance, a variable of type F : nat ⇒ nat can be
instantiated with add 0, which is a value that produces a cost as soon as it is applied to the
next argument. We use the notation F c/F s to denote the cost/size component of α(F ).

▶ Definition 25. Assume given a signature F = (B, Σ, ar) and its cost–size tuple interpretation
F = (JB, J) together with a valuation α. The term interpretation JsKJ

α of s under J and
α is defined by induction on the structure of s as follows:

JxKJ
α = α(x) JfKJ

α = Jf Js tKJ
α = JsKJ

α · JtKJ
α

Jλx. sKJ
α =

〈(
0, λλd.(1 + π11(JsKJ

[x:=d]α), π12(JsKJ
[x:=d]α))

)
, λλds.π2(JsKJ

[x:=(0,d)]α)
〉

,

where πi is the projection on the ith-component and πij is the composition πj ◦ πi, and 0 is
a cost function of the form λλx1.(0, λλx2 . . . (0, u) . . . ). If d = (dc, ds), the notation [x := d]α
denotes the valuation that maps x to ⟨(0, dc), ds⟩ and every other variable y to α(y).

We write JsK for JsKJ
α whenever α and J are universally quantified or clear from the context.

The interpretation for abstractions may seem baroque, but can be understood as follows:
an abstraction is a value, so its cost number is 0. The cost of applying that abstraction on a
value v is 1 plus the cost number for s[x := v] – which is obtained by evaluating JsKJ

[x:=d]α if
d is the cost function/size pair for v. The cost function of this application is exactly the cost
function of s[x := v]. The size of an abstraction λx.s is exactly the function that takes a size
and maps it to the size interpretation of s where x is mapped to that size. Technically, to
obtain the size component of JsKJ

[x:=d]α we also need a cost component, but by definition, this
component does not play a role, so we can safely choose an arbitrary pair 0 in the right set.

▶ Example 26. We continue with Example 23 by interpreting ground constructor terms
fully. A ground constructor term d of type nat is of the form s (s . . . (s 0) . . . ) where the
number n ∈ N is represented by n successive applications of s to 0. Let us write n as
shorthand notation for such terms. Similarly, for ground constructor terms of type list,
we write [n1; . . . ; nk] for the term cons n1 . . . (cons nk nil). The empty list constructor nil is
written as [] in this notation. Hence, the cost–size interpretation of 3 : nat is given by:

J3K = Js (s (s 0))K = JsK · (JsK · (JsK · J0K)) =
〈

(0, u) , 4
〉

.

Consider, for instance, the list [1; 7; 9]. Its cost–size interpretation is given by:

J[1; 7; 9]K = Jcons 1 (cons 7 (cons 9 nil))K =
〈

(0, u) , (3, 10)
〉

.

The important information we can extract from such interpretations is their size component.
Indeed, J3Ks = 4 counts the number of constructor symbols in the term representation 3 and
J[1; 7; 9]Ks = (3, 10) gives us the length and an upper bound on the size of each element in
[1; 7; 9]. The size interpretation for the constructors of nat and list correctly capture our
notion of “size” given in Example 21.
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The next Lemma expresses the soundness of term interpretation, that is, the interpretation
of terms preserves the type structure:

▶ Lemma 27 (Type Soundness). If s : σ then JsK ∈ LσM.

Proof. The proof is by induction on the structure of s. The base cases follow directly from
Definitions 22 and 24. We use Lemmas 18 and 19 in the application case. The abstraction
case follows from the induction hypothesis and weak monotonicity of πi. ◀

Up to now, we have given cost–size semantics for types and terms. Observe that
Definition 22 only requires that we interpret function symbols as cost–size tuples in the
correct domain. For instance, we might interpret all function components as constant
functions. This is a valid, but not so useful, interpretation of terms. So we move on to the
next component of our interpretation framework: we want to interpret terms in such a way
that JsK ≻ JtK whenever s → t, for any pair of terms s, t.

▶ Definition 28. Consider a signature F = (B, Σ, ar). A cost–size call-by-value termina-
tion model for a term rewriting system (F,R) consists of the following ingredients:

an interpretation key JB (Definition 12), together with
a cost–size interpretation (JB, JΣ) (Definition 22),

such that the following compatibility conditions hold:
for all value substitutions γ and all terms s and t, JsγK ≻ JtγK whenever JsK ≻ JtK;
for every term s and value v, J(λx. s) vK ≻ Js[x := v]K;
for all terms s and t,

Js tK ≻ Js′ tK whenever JsK ≻ Js′K, and Js tK ≻ Js t′K whenever JtK ≻ Jt′K;
for all rules ℓ → r ∈ R, we have JℓK ≻ JrK.

Roughly speaking, a call-by-value termination model is an interpretation of types and
terms that is compatible with each rule in R, the call-by-value beta rule and the formation
of terms, and which is closed under value substitutions. By a straightforward induction on
the reduction s →v t, we can establish the following result.

▶ Theorem 29. Let (F,R) be a TRS. If we have a termination model of (F,R), then the
higher-order call-by-value rewriting relation →v is strongly normalizing.

Hence, termination models collect sufficient conditions for strong normalization. The
lemmata below are to show that cost–size interpretations satisfy some of the compatibility
conditions for termination models. Let us first prove closure under substitutions.

▶ Definition 30. Given a substitution γ and valuation α, we define the γ-extension of α

as the valuation defined by αγ = J·KJ
α ◦ γ.

▶ Lemma 31. If x /∈ fv(s) then JsK[x:=d]α = JsKα. Consequently, if x is not free in yγ for
any variable y, then ([x := d]α)γ = [x := d]αγ .

▶ Lemma 32 (Substitution Lemma). For any value substitution γ and valuation α, we have
that JsγKα = JsKαγ .
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Proof. Let us work out the abstraction case s = λx. t. Since we assume that the application
of substitution is capture-avoiding, we can assume that x does not occur free in any term in
the range of γ. Hence,

Jλx. (tγ)Kα =
〈(

0, λλd.(1 + π11(JtγKJ
[x:=d]α), π12(JtγKJ

[x:=d]α))
)

, λλds.π2(JtγKJ
[x:=(0,d)]α)

〉
IH=

〈(
0, λλd.(1 + π11(JtKJ

([x:=d]α)γ ), π12(JtKJ
([x:=d]α)γ ))

)
, λλds.π2(JtKJ

([x:=(0,d)]α)γ )
〉

=
〈(

0, λλd.(1 + π11(JtKJ
[x:=d]αγ ), π12(JtKJ

[x:=d]αγ ))
)

, λλds.π2(JtKJ
[x:=(0,d)]αγ )

〉
= Jλx. tKαγ . ◀

As a consequence of the substitution lemma, if JsKJ
α ≻ JtKJ

α for all α, then JsγKJ
α ≻ JtγKJ

α

for all α. Consequently, the first compatibility condition is valid for any interpretation. The
second compatibility requirement is for β reductions.

▶ Lemma 33. The call-by-value beta rule scheme (λx. s) v →v s[x := v] is strictly decreasing
for any cost–size interpretation.

Proof. The proof reduces to checking J(λx. s) vK ≻ Js[x := v]K. Let JvK = ⟨(0, vc), vs⟩, and
denote V for the pair (vc, vs). Then we have the following:

J(λx. s) vK = Jλx. sK · JvK

=
〈(

0, λλd.(1 + π11(JsKJ
[x:=d]α), π12(JsKJ

[x:=d]α))
)

, λλds.π2(JsKJ
[x:=(0,ds)]α)

〉
· JvK

=
〈(

0 + 0 + 1 + π11(JsKJ
[x:=V ]α), π12(JsKJ

[x:=V ]α)
)

, π2(JsKJ
[x:=⟨0,vs⟩]α)

〉
≻

〈(
π11(JsKJ

[x:=V ]α), π12(JsKJ
[x:=V ]α)

)
, π2(JsKJ

[x:=V ]α)
〉

= Js[x := v]Kα.

In the second-to-last step, we use that the size component of JsKJ
α does not regard any

cost component in α, so π2(JsKJ
[x:=⟨0,vs)⟩]α) = π2(JsKJ

[x:=V ]α). In the last step, we use the
substitution lemma. ◀

Compatibility over applicative terms is a consequence of Lemma 19. Notice that the
results above do not depend on a particular interpretation. Hence, to establish a termination
model for a TRS, only the last compatibility condition remains to be checked, i.e., JℓK ≻ JrK
for all rules ℓ → r in R. We collect this fact below, which is a consequence of Theorem 29
and the Lemmas above.

▶ Corollary 34. Let R be a TRS that admits a cost–size interpretation (JB, JΣ). If JℓK ≻ JrK
for all rules ℓ → r in R, then R is a termination model, and consequently strongly normalizing.

Interpretation techniques are usually applied to show full termination [7, 18, 25] or as
quasi-orderings for the dependency pair approach [1]. In the next example, we show that
cost–size interpretations are weak enough to prove termination of call-by-value systems that
do not necessarily terminate under full rewriting.

▶ Example 35. Let a, b : ι, g : ι ⇒ ι ⇒ ι, and f : ι ⇒ ι ⇒ ι ⇒ ι. The rewrite system introduced
by Toyama [30] and defined by R = {g x y → x, g x y → y, f a b z → f z z z} was given to
show that termination is not modular for disjoint unions of TRSs. Indeed, it admits the
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infinite rewriting sequence f a b (g a b) →R f (g a b) (g a b) (g a b) →+
R f a b (g a b), whereas the

systems Rg and Rf are individually terminating. If we restrict reductions to call-by-value,
then the rewrite relation →v induced by R is terminating.

In order to prove termination of R, we introduce a non-numeric notion of size. Let
JB(ι) = P(T(F,X)), i.e., the set of all subsets of T(F,X). This set is partially ordered
by inclusion, so we define x ⊒ y iff x ⊇ y which is a quasi-order. Consider the following
interpretation:

Ja =
〈

(0, u) , {a}
〉

Jg =
〈

(0, λλx.(0, λλy.(1, u))) , λλxy.x ∪ y
〉

Jb =
〈

(0, u) , {b}
〉

Jf =
〈

(0, λλx.(0, λλy.(0, λλz.(H(x, y), u)))) , λλxyz.∅
〉

,

where H is a helper function defined by H(x, y) = if xs ⊒ {a} ∧ ys ⊒ {b} then 1 else 0.
Notice that H is weakly monotonic, and the size tuples for interpretation of values are
sets of cardinality ≤ 1. Checking compatibility for this interpretation is straightforward:
Jg x yK = ⟨(1, u), x ∪ y⟩ ≻ ⟨(0, u), x⟩ = JxK and Jg x yK = ⟨(1, u), x ∪ y⟩ ≻ ⟨(0, u), y⟩ = JyK;
and finally Jf a b zK = ⟨(1, u), ∅⟩ ≻ ⟨(0, u), ∅⟩ = Jf z z zK, because any instantiation of z is
necessarily a value, so it cannot include both a and b.

6 Complexity Analysis of Call-by-Value Rewriting

In the previous section, we showed that cost–size tuples can be used to establish termination
of call-by-value rewriting. In this section, we concentrate on a quantitative analysis of such
termination proofs. Hence, the goal is not merely to find tuple interpretations that prove
termination but also ones that establish “good” upper bounds on the complexity of reducing
terms to normal form. To start, we will extend the notion of derivation height to our setting:

▶ Definition 36. The weak call-by-value derivation height of a term s, notation dhR(s), is
the largest number n such that s →v s1 →v . . . →v sn.

This notion is defined for all terms when the TRS is terminating. We will simply refer to the
weak call-by-value derivation height as “derivation height”.

The methodology of weakly monotonic algebras offers a systematic way to derive bounds
for the derivation height of a given term:

▶ Lemma 37. If JsK = ⟨(n, F c), F s⟩, then dhR(s) ≤ n.

Proof. By the lemmas in Section 5 we see that JsK ≻ JtK whenever s → t. Since this implies
π11(s) > π11(t), the lemma follows. ◀

As an illustration of how this is used, we present the formalized examples of Section 3
and complete the interpretation of Examples 1 and 2.

Let us start with the system Radd which intuitively defines addition over nat. We will use
the type and constructor interpretations as given in Example 23. The rules add x 0 → 0 and
add x (s y) → s (add x y) suggest the following cost–size interpretation:

Jadd =
〈

(0, λλx.(0, λλy.(ys, u))) , λλxy.x + y
〉

.

Notice that the (highlighted) cost component of Jadd suggest a linear cost measure for
computing with add. We also set the intermediate numeric components in the cost tuple to
zero. The reason for this choice is that in a cost tuple Cσ = N × F c

σ, the numeric component
N captures the cost of partially applying terms, which is 0 in this case. Using the shorthand
notation of Example 7), we could alternatively write Jadd = ⟨(xs, ys) 7→ ys, λλxsys.xs + ys⟩.
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Now, consider the partially applied term s = add (add 2 3) (of type nat ⇒ nat). Intuitively,
the cost of reducing this term to normal form, is the cost of reducing the subterm add 2 3 to
5, since the partially applied term add 5 cannot be reduced. Hence, dhR(s) = 4. This is also
the bound we find through interpretation:

JsK = JaddK · (JaddK · J2K · J3K)
= JaddK · ⟨(4, u), 7⟩

=
〈

(4, λλy.(ys, u)) , λλy.7 + y
〉

.

While in this case the bound we find is tight, this is not always the case; for instance
Jadd 0 (add 0 0)K = ⟨(3, u), 3⟩, even though dhR(add 0 (add 0 0)) = 2. We could obtain a
tight bound by choosing a different interpretation, but this is also not always possible.
▶ Remark 38. Intuitively, we think of the numeric component of a partially applied term
f s1 . . . sn that cannot be reduced at the root as the “environment cost” of computing
functional arguments to values. This plays an important role in the complexity analysis in
our setting. Namely, when interpreting terms this is what allows us to limit interest to value
substitutions, since the cost of reducing arguments to values is captured implicitly by the
· operator. This assumption consequently allows us to limit the class of cost functions to
weakly monotonic functions as used in Definition 14, as opposed to the strongly monotonic
functionals used in the full rewriting setting [21, 29].

In complexity analysis of term rewriting, it is common to consider bounds on the derivation
height for terms of a given size. However, it is useful to impose some limitations. Consider
for example a TRS consisting only of the two add rules. Then, we might construct a term
(λx.add x x) ((λx.add x x) (. . . (s 0) . . . )), with n occurrences of (λx.add x x). The size of
this term is linear in n, but its derivation height is exponential, since each contraction of
a λ essentially duplicates the number of s occurrences. Hence, the traditional notion of
derivational complexity (which maps a natural number n to the largest derivation height a
term of size n can have) is arguably not so useful in a setting with λ.

Instead, we will consider the runtime complexity of a TRS. Following the definition in [21]
for full higher-order runtime complexity, we define:

▶ Definition 39. A data constructor is a constructor with a type ι1 ⇒ . . . ⇒ ιm ⇒ κ, with
κ and all ιi base types.

A data term is a value of the form c d1 . . . dm with c : ι1 ⇒ . . . ⇒ ιm ⇒ κ a data
constructor, and each di a data term; that is, it is a value without any higher-order subterm.

A basic term is a base-type term of the form f d1 . . . dm with f ∈ Σdef a defined symbol
and all di data terms.

The weak call-by-value runtime complexity of a TRS is the function n 7→ rc(n) that maps
each natural number n to the largest number h with dhR(s) = h for some term s of size n.

Note that for instance lists of functions are not data terms, and therefore not considered
as viable inputs in the notion of runtime complexity. As discussed in [21] this arguably makes
the notion somewhat first-order, but it can still be used to analyse higher-order programs or
modules (so long as they, for instance, have a rule start x → r where x has base type, and r

is allowed to use abstractions, partial application or calls to higher-order functions).

▶ Example 40. Let us collect the interpretation for dbl and mult from Example 2.

Jdbl =
〈

(0, λλx.(xs, u)) , λλx.2x
〉

Jmult =
〈

(0, λλx.(0, λλy.2xsys, u)) , λλxy.xy
〉
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In the TRS of Example 2, the only basic terms have the form add v1 v2 or dbl v or
mult v1 v2. Since Jsn 0Ks = n + 1, Lemma 37 allows us to conclude that rc(n) < n2.

Now, the size bound for data constructors introduced in Example 23 is well-behaved.
However, suppose we had defined J0 = ⟨(0, u), 1⟩ and Js = ⟨(0, λλx.(0, u)), λλx.2x + 1⟩. In
this case, for a data term n = sn 0, we would have JnKs = 2n + n ≥ 2n. As a result, we would
only be able to derive exponential runtime complexity. Notice that this choice is compatible
with Radd, and hence proves its termination; however, it induces an exponential overhead
on the cost tuple of add, whose actual runtime complexity is linearly bounded as we saw in
Example 40. Such a huge overestimation is not desirable in a complexity analysis setting.
This behavior suggests an upper bound to the interpretation of data constructors; namely,
we seek to bound the constructor’s size interpretations additively.

Let c be a data constructor of type σ = ι1 ⇒ . . . ⇒ ιm ⇒ κ. The size component
of LσM is Sσ = NK(ι1) =⇒ . . . =⇒ NK(ιm) =⇒ NK(κ). The size tuple J s

c when fully
applied can be written in terms of its functional components. Hence, J s

c (x1, . . . , xm) =〈
f s

1(x1, . . . , xm), . . . , f s
K(κ)(x1, . . . , xm)

〉
.

▶ Definition 41. If c : σ is a data constructor as above, we say J s
c is additive if there is a

constant a ∈ N such that
∑K(κ)

l=1 f s
l (x1, . . . , xm) ≤ a +

∑m
i=1

∑K(ιi)
j=1 xij .

It is easy to show that size components for nat and list in Example 23 are additive.
If data constructors are additive, and there are only finitely many of them, then there

exists a constant a such that, for every data term d of size n: JdKs ≤ an. Hence, for instance
the following result from [21] also extends to our setting:

▶ Lemma 42 (From [21]; Corollary 33). Let R be a TRS. If all interpretations for data
constructors are additive and the interpretations for all defined symbols are polynomially
bounded, then the weak call-by-value runtime complexity of R is polynomially bounded.

This result provides us with a systematic approach to establishing bounds to the runtime
complexity of weak call-by-value systems. The difficulty now lies in developing techniques to
find suitable interpretation shapes. For instance, a first example of a higher-order function
over lists is that of map. We studied the structure of its cost–size tuples in Example 17 to
illustrate semantical application. We give a concrete cost–size interpretation for map below:

Jmap =
〈

(0, λλF.(0, λλq.(ql + F c(u, qm)ql + 1, u))) , λλFq.(ql, F (qm))
〉

,

The highlighted cost component accounts for ql possible β steps, the cost of applying the
higher-order argument F over the list q is bounded by F c(u, qm)ql since F c is assumed to be
weakly monotonic, and the unitary component is for dealing with the empty list case.

Finding such interpretations for higher-order systems can become quite challenging. In
the example below we collect basic weakly monotonic combinators in order to generate more
complex cost/size interpretations.

▶ Example 43. We list the following weakly monotonic combinators. Here, sets X, Y, Z are
used generically to denote cost/size sets:

for any X and a ∈ Y , there is a constant functional λλx.a in X =⇒ Y ;
for f : X =⇒ Y and g : Y =⇒ Z, we write g ◦ f : X =⇒ Z as the composition of f and g.
the projection function on the ith coordinate, πi : X1 × · · · × Xk =⇒ Xi;
given f : X =⇒ Y and g : X =⇒ Z, we have a function ⟨f, g⟩ : X =⇒ Y × Z which is
defined by ⟨f, g⟩ (x) = ⟨f(x), g(x)⟩;
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given f : Y × X =⇒ Z, we get a function λλf : X =⇒ (Y =⇒ Z). For each x ∈ X and
y ∈ Y , we define (λλf (x))(y) = f(y, x);
given f : X =⇒ (Y =⇒ Z) and g : X =⇒ Y , we obtain f . g : X =⇒ Z, which is defined
as (f . g)(x) = f(x)(g(x));
given f : X =⇒ Y and x ∈ X, we have an element application functional with domain
appx : (X =⇒ Y ) =⇒ Y which sends f to f(x), i.e., appx(f) = f(x).

Notice that we can use the combinators above with the usual monotonic functionals and
operators over N to produce new monotonic functionals and pointwise operators over sets
X =⇒ Y . For instance, we can utilize +, ∗, ⌊·⌋, max, log(⌊·⌋), and so forth.

These basic weakly monotonic functions provide the building blocks for constructing cost–size
interpretations.

▶ Example 44. The higher-order functions in Example 1 admit the following interpretations:

Japp =
〈

(0, λλF.(2, λλx.(F c(u, xs), u))) , λλFx.F (x)
〉

Jcomp =
〈

(0, λλF.(0, λλG.(2, λλx.(F c(u, Gs(xs)) + Gc(u, xs), u)))) , λλFGx.F (G(x))
〉

Jrec =
〈

(0, λλx.(0, λλy.(0, λλF.(xs + Hc(x, y, F ), u)))) , λλxyF.Hs(x, y, F )
〉

In the cost component for Jrec, the term xs computes the total number of rewriting steps
using the rec symbol. Meanwhile, Hc is an auxiliary symbol computing the total cost of
recursively applying the higher-order argument F . It can be defined as follows

Hc(x, y, F ) =
xs−1∑
i=1

π1(F c((u, i), (u, Hs(i, ys, F s))))

with the size helper function Hs given as a weakly monotonic variant of the recursor over N:

Hs(x, y, F ) =
{

y if x ≤ 1
max(y, F (x − 1, Hs(x − 1, y, F ))) if x > 1

7 Conclusions and Future Work

In this paper we introduced an interpretation method for higher-order rewriting with weak call-
by-value reduction. In this approach, we build on existing work defining tuple interpretations
[21, 33], but restrict the evaluation strategy, and define a cost–size semantics for types and
terms which generates a whole new class of cost–size termination models that can be used to
reason about both termination and complexity of weak call-by-value systems. We showed
that cost–size tuples correctly capture call-by-value termination and allow us to bound both
the cost (number of steps to reach normal forms) and a variety of size notions for different
data types. A second advantage of our approach compared to [21] is that the cost functionals
are now weakly rather than strongly monotonic functionals, which simplifies the search for
cost interpretations.

This is foundational work in the research direction of transposing the methodology and
tools from (higher-order) term rewriting to program analysis. A first step for future work is to
consider more expressive type theories, so we can capture more programs. For instance, the
power of the techniques developed here would be greatly improved if polymorphic types are
taken into account. A second step is to expand other complexity methods for innermost/call-
by-value rewriting to the higher-order setting, such as dependency tuples [27] or polynomial
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path orders [3]. Also for termination analysis, it would be interesting to combine tuple
interpretations with a higher-order variant of innermost dependency pairs [28], similar to
what was done for full rewriting with tuple interpretations in [22].

Finally, we plan to implement this work, to automatically derive bounds to the derivation
height of individual terms, as well as provide bounds for both full and call-by-value runtime
complexity of higher-order term rewriting systems. The automation approach could build on
the strategy for higher-order polynomial interpretations for full rewriting (not using tuples)
in [14, Section 5]. While the search for tuple interpretations has more unknowns than the
search for interpretations to N, and will therefore likely take longer, we expect that the
overall methodology can stay largely unchanged at least when it comes to an unrestricted
evaluation strategy. Adapting to weak call-by-value rewriting may require some additional
study, however.
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Abstract
The celebrated Squier theorem allows to prove coherence properties of algebraic structures, such
as MacLane’s coherence theorem for monoidal categories, based on rewriting techniques. We are
interested here in extending the theory and associated tools simultaneously in two directions. Firstly,
we want to take in account situations where coherence is partial, in the sense that it only applies for
a subset of structural morphisms (for instance, in the case of the coherence theorem for symmetric
monoidal categories, we do not want to strictify the symmetry). Secondly, we are interested in
structures where variables can be duplicated or erased. We develop theorems and rewriting techniques
in order to achieve this, first in the setting of abstract rewriting systems, and then extend them to
term rewriting systems, suitably generalized in order to take coherence in account. As an illustration
of our results, we explain how to recover the coherence theorems for monoidal and symmetric monoidal
categories.
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1 Introduction

A monoidal category consists of a category C equipped with a tensor bifunctor ⊗ : C × C → C

and unit element e : 1 → C together with natural isomorphisms αx,y,z : (x⊗y)⊗z → x⊗(y⊗z),
λx : e⊗x → x and ρx : x⊗e → x, satisfying two well-known axioms. Thanks to these, the way
tensor expressions are bracketed does not really matter: we can always rebracket expressions
using the structural morphisms (α, λ and ρ), and any two ways of rebracketing an expression
into the other are equal. In fact, there are various ways to formalize this [1]:
(C1) Every diagram in a free monoidal category made up of α, λ and ρ commutes

[17, Corollary 1.6], [26, Theorem VI.2.1].
(C2) Every diagram in a monoidal category made up of α, λ and ρ commutes

[27, Theorem 3.1], [26, Theorem XI.3.2].
(C3) Every monoidal category is monoidally equivalent to a strict monoidal category

[17, Corollary 1.4], [26, Theorem XI.3.1].
(C4) The forgetful 2-functor from strict monoidal categories to monoidal categories has a left

adjoint and the components of the unit are equivalences.
Condition (C1) implies (C2) as a particular case and the converse implication can also be
shown. Condition (C4) implies (C3) as a particular case, and it can be shown that (C3) in
turn implies (C2). Analogous statements hold for symmetric monoidal categories (monoidal
categories equipped with a suitable symmetry γx,y : x ⊗ y → y ⊗ x) although they are more
subtle [2]: in (C2), we have to suppose that the diagrams are “generic enough”, and in (C4)
the notion of strict symmetric monoidal category does not impose that the symmetry should
be an identity.

We first investigate here (in Section 2) an abstract version of this situation and formally
compare the various coherence theorems: we show that quotienting a theory by a subtheory W
gives rise to an equivalent theory if and only if W is coherent (or rigid), in the sense that all
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diagrams commute (Theorem 6). Moreover, this is the case if and only if they give rise to
equivalent categories of algebras (Proposition 9), which can be thought of as a strengthened
version of (C4). We also provide rewriting conditions which allow showing coherence in practice
(Proposition 13). The idea of extending rewriting theory in order to take coherence in account
dates back to pioneering work from people such as Power [30], Street [34] and Squier [32].
It has been generalized in higher dimensions in the context of polygraphs [33, 8], as well as
homotopy type theory [19], and used to recover various coherence theorem [22, 13].

We then extend (in Section 3) our results to the 2-dimensional cartesian theories, which
are able to axiomatize (symmetric) monoidal categories. Our work is based on the notion
of Lawvere 2-theory [12, 35, 36], and unfortunately lead us to discover an important flaw in
a main result about those [36]. The rewriting counterpart is based on a coherent extension
of term rewriting systems, following [10, 5, 28]. One of the main novelties here consists in
allowing for coherence with respect to a sub-theory (which is required to handle coherence
for symmetric monoidal categories), building on recent works in order to work in structures
modulo substructures [9, 29, 11].

2 Relative coherence and abstract rewriting systems

2.1 Quotient of categories
Suppose fixed a category C together with a set W of isomorphisms of C. Although the situation
is very generic, and the following explanation is only vague for now, it can be helpful to think
of C as a theory describing a structure a category can possess and W as the morphisms we
are interested in strictifying. For instance, if we are interested in the coherence theorem for
symmetric monoidal categories, we can think of the objects of C as formal iterated tensor
products, the morphisms of C as composites of α, λ, ρ and γ, and we would typically take W

as consisting of all instances of α, λ and ρ (but not γ). This will be made formal in Section 3.
A functor F : C → D is W -strict when it sends every morphism of W to an identity. We

write C/W for the quotient of C under W : this is the category equipped with a W -strict
functor C → C/W such that any W -strict functor F : C → D extends uniquely as a functor
F̃ : C/W → D. We write W for the subcategory of C generated by W (which we assimilate to a
subset of the morphisms of C). This is always a groupoid (a category in which every morphism
is invertible) and it is easily shown that C/W ∼= C/W , so that we can always suppose that we
quotient by a subgroupoid. Moreover, we can always suppose that this subgroupoid has the
same objects as C (we can add all identities in it without changing the quotient).

We say that a groupoid W is rigid when any two morphisms f, g : x → y which are parallel
(i.e. have the same source, and have the same target) are necessarily equal. Such a groupoid
can be thought of as a “coherent” sub-theory of C. It does not have non-trivial geometric
structure in the following sense:

▶ Lemma 1. A groupoid W is rigid if and only if either
(i) identities are the only automorphisms of W,
(ii) W is a “set”, i.e. is equivalent to a coproduct of instances of the terminal category.

The fact that W ⊆ C is rigid is thought here as the fact that coherence condition (C1) holds
for C, relatively to W.

General notions of quotients of categories are not trivial to construct (see for instance [4]),
but in the case of rigid categories, we have the following simple description.
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▶ Proposition 2. When W ⊆ C is rigid, the quotient category C/W is isomorphic to the
category where

objects are equivalence classes C0/W of objects of C under the equivalence relation ∼ such
that x ∼ y whenever there exists w : x → y in W (we write [x] for the class of an object x),
a morphism is of the form [f ] : [x] → [y] for some morphism f : x → y of C, under
the equivalence relation such that f ∼ f ′ whenever there exists v and w in W such that
w ◦ f = f ′ ◦ v,
given f : x → y and g : y′ → z with [y] = [y′], the composition is [g] ◦ [f ] = [g ◦ w ◦ f ] for
the “mediating” morphism w : y → y′ in W (uniquely determined by rigidity of W),
given x ∈ C, the identity is id[x] = [idx].

When W ⊆ C is not rigid, we can have a similar description, but we now have the choice
between multiple mediating morphisms in the definition of the composition, and all the
resulting composites in fact have to be identified in the quotient. This observation suggests
that the construction of the quotient category C/W , when W is not rigid, is better described
in two steps: we first formally make W rigid, and then apply Proposition 2. We say that a
functor F : C → D is W-rigid when any two parallel morphisms of W have the same image.
The W-rigidification of C is the category C//W equipped with a W-rigid functor C → C//W
such that any W-rigid functor F : C → D extends uniquely as a functor C//W → D.

▶ Lemma 3. The category C//W is the category obtained from C by quotienting morphisms
under the smallest congruence (wrt composition) identifying any two parallel morphisms of W.

▶ Proposition 4. The quotient C/W is isomorphic to (C//W)/W̃ where W̃ is the set of
equivalence classes of morphisms in W under the equivalence relation of Lemma 3.

Proof. Follows directly from the universal properties of the quotient and the rigidification,
and the fact that any W-strict functor is W-rigid. ◀

A consequence of the preceding explicit description of the quotient is the following:

▶ Lemma 5. The quotient functor C → C/W is surjective on objects and full.

Proof. By Proposition 4, the quotient functor is the composite of the quotient functors
C → C//W → C/W . The first one is surjective on objects and full by Lemma 3 and the second
one is surjective on objects and full by Proposition 2. ◀

This entails the following theorem, which is the main result of the section. Its meaning can be
explained by taking the point of view given above: thinking of C as describing a structure and
of W as a part of the structure we want to strictify, the structure is equivalent to its strict
variant if and only if the quotiented structure does not itself bear non-trivial geometry (in the
sense of Lemma 1).

▶ Theorem 6. Suppose that W is a subgroupoid of C. The quotient functor [−] : C → C/W is
an equivalence of categories if and only if W is rigid.

Proof. Since the quotient functor is always surjective and full by Lemma 5, it remains to show
that it is faithful if and only if W is rigid. Suppose that the quotient functor is faithful. Given
w, w′ : x → y in W, by Lemma 3 and Proposition 4 we have [w] = [w′] and thus w = w′ by
faithfulness. Suppose that W is rigid. The category C/W then admits the description given
in Proposition 2. Given f, g : x → y in C such that [f ] = [g], there is v : x → x and w : y → y

such that w ◦ f = g ◦ v. By rigidity, both v and w are identities and thus f = g. ◀
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▶ Example 7. As a simple example, consider the groupoid C freely generated by the graph

x y
f

g
. The subgroupoid generated by W = {g} is rigid, so that C is equivalent to the

quotient category C/W , which is the groupoid generated by x f . However, the groupoid
generated by W = {f, g} is not rigid (since we don’t have f = g). And indeed, C is not
equivalent to the quotient category C/W , which is the terminal category.

2.2 Coherence for algebras
Given a category C, we consider here a functor C → Cat as an algebra for C. Namely, if
we think of the category C as describing an algebraic structure (e.g. the one of monoidal
categories), an algebra can be thought of as a category actually possessing this structure (an
actual monoidal category).

We write Alg(C) for the category of algebras, with natural transformations as morphisms.
Any functor F : C → C′ induces, by precomposition, a functor Alg(F ) : Alg(C′) → Alg(C). We
can characterize situations where two categories give rise to the same algebras:

▶ Proposition 8. Suppose given a functor F : C → C′ between categories. The functor F is
an equivalence if and only if the induced functor Alg(F ) : Alg(C′) → Alg(C) is an equivalence.

Proof. Given a 2-category K, one can define a Yoneda functor YK : Kop → [K, Cat], where Cat
is the 2-category of categories, functors and natural transformations, and [K, Cat] denotes the
2-category of 2-functors K → Cat, transformations and modifications. In particular, given
0-cells x ∈ Kop and y ∈ K, we have YKxy = K(x, y). The Yoneda lemma states that this
functor is a local isomorphism (this is a particular case of the Yoneda lemma for bicategories
detailed for instance in [16, chapter 8]). In particular, taking K = Cat (and ignoring size
issues), the Yoneda functor sends a category C ∈ Kop to YKC = Alg(C), and the result follows
from the Yoneda lemma. ◀

As a particular application, given a category C and a subgroupoid W , we have by Theorem 6
that W is rigid if and only if the quotient functor C → C/W is an equivalence. By Proposition 8,
we thus have the following property which can be interpreted as the equivalence of coherence
conditions (C1) and a strengthened variant of (C4).

▶ Proposition 9. Given a category C and a subgroupoid W, the morphism Alg(C/W) → Alg(C)
induced by the quotient functor is an equivalence of categories if and only if W is rigid.

2.3 Coherent abstract rewriting systems
We now explain how the theory rewriting can be used to show the rigidity of a groupoid
in practice. In the same way the theory of rewriting can be studied abstractly [15, 3, 6],
i.e. without taking in consideration the structure of the objects getting rewritten, we first
develop the coherence theorems of interest in this article in an abstract setting. Although the
terminology is different, the formalization given here is based on the notion of polygraph [33, 8].

Extended abstract rewriting systems. An abstract rewriting system, or ars, P =
(P0, s0, t0, P1) consists of a set P0, a set P1 and two functions s0, t0 : P1 → P0. The ele-
ments of P0 are generally thought as the objects of interest, the elements of P1 as rewriting
rules, and the function s0 (resp. t0) associating to a rewriting rule its source (resp. target).
We write a : x → y for a rewriting rule a with s0(a) = x and t0(a) = y. We write P∗

1 for the
set of rewriting paths in the ars: its elements are (possibly empty) finite sequences a1, . . . , an
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of rewriting steps, which are composable in the sense that t0(ai) = s0(ai+1) for 1 ≤ i < n.
The source (resp. target) of such a rewriting path is s0(a1) (resp. t0(an)); we sometimes write
p : x

∗→ y to indicate that p is a rewriting path with x as source and y as target. Given two
composable paths p : x

∗→ y and q : y
∗→ z, we write p · q for their concatenation.

A morphism f : P → Q of ars is a pair of functions f0 : P0 → Q0 and f1 : P1 → Q1 such
that s0 ◦ f1 = f0 ◦ s0 and t0 ◦ f1 = f0 ◦ t0, and we write Pol1 for the resulting category. There
is a forgetful functor Cat → Pol1, sending a category C to the ars whose objects are those
of C and whose rewriting steps are the morphisms of C. This functor admits a left adjoint
−∗ : Pol1 → Cat sending an ars to the category with P0 as objects and P∗

1 as morphisms
(composition is given by concatenation of paths and identities are the empty paths).

As a variant of the preceding situation, we can consider the forgetful functor Gpd → Pol1,
from the category of groupoids. It also admits a left adjoint −∼ : Pol1 → Gpd, and we
write P∼

1 for the set of morphisms of the groupoid generated by an ars. The elements of P1
are rewriting zig-zags in the ars: they consist in finite sequences aϵ1

1 , . . . , aϵn
n with ai ∈ P1 and

ϵi ∈ {−, +} for 1 ≤ i ≤ n, which are
composable: t0(aϵi

i ) = s0(aϵi+1
i+1 ) for 1 ≤ i < n,

by convention s0(a+
i ) = s0(ai), t0(a+

i ) = t0(ai), s0(a−
i ) = t0(ai), t0(a−

i ) = s0(ai), and
reduced: if ai = ai+1 then ϵi = ϵi+1 for 1 ≤ i < n.

The intuition is that a zig-zag is a “non-directed” rewriting path, consisting of rewriting
steps, some of which are taken backward (i.e. formally inverted: those for which the exponent
is “−”). The source (resp. target) of a zig-zag as above is s0(aϵ1

1 ) (resp. t0(aϵn
n )) and we write

p : x
∼→ y to indicate that p is a zig-zag from x to y. Composition p · q of composable zig-zags

p : x
∼→ y and q : y

∼→ y is given by taking their concatenation and iteratively removing the
subpaths of the form a− · a+ or a+ · a− at the interface, which ensures that the composite is
reduced. Given a zig-zag p, we write p− for its inverse, obtained by inverting the polarity of
the exponents in p (we exchange “+” and “−”): it satisfies p · p− = id and p− · p = id, where
id denotes an empty zig-zag. Note that there is a canonical inclusion P∗

1 → P∼
1 , which adds

a “+” exponent to every step of a rewriting path, witnessing for the fact that rewriting paths
are particular zig-zags.

An extended abstract rewriting system, or 2-ars, P consists of an ars as above, together
with a set P2 and two functions s1, t1 : P2 → P∼

1 , such that s0 ◦ s1 = s0 ◦ t1 and t0 ◦ s1 = t0 ◦ t1.
The elements of P2 are coherence relations and the functions respectively describe their source
and target (which are rewriting paths). We sometimes write A : p ⇒ q to indicate that A ∈ P2

admits p (resp. q) as source (resp. target), which can be thought of as a 2-cell x y

p

q

A ⇓

where x (resp. y) is the common source (resp. target) of p and q. The notion of 2-ars is a
groupoidal variant of the one of 2-computad [33] aka 2-polygraph [8], which generalizes in
arbitrary dimension. The groupoid presented by a 2-ars P, denoted by P, is the groupoid
obtained from the free groupoid generated by the underlying ars by quotienting morphisms
under the smallest congruence identifying the source and the target of any element of P2.
The groupoid P thus has P0 as set of objects, the set P∼

1 of rewriting zig-zags as morphisms,
quotiented by the smallest equivalence relation ≡ such that p ·q ·r ≡ p ·q′ ·r for every rewriting
zig-zags p and r and coherence relation A : q ⇒ q′, which are suitably composable. Given a
rewriting zig-zag p ∈ P∼

1 , we write p for the corresponding morphism in P (i.e. its equivalence
class under ≡).

Rewriting properties. Now, suppose fixed a 2-ars P together with a set W ⊆ P1. We can
think of W as inducing a rewriting subsystem W of P, with P0 as objects, W as rewriting steps
and W2 = {A ∈ P2 | s1(A) ∈ W ∗ and t1(A) ∈ W ∗} as coherence relations, and formulate the
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various traditional rewriting concepts with respect to it. We are considering here the quotient
of a category C = P presented by a 2-ars P by the subgroupoid W generated by W , with the
aim of showing coherence results wrt the strictification of W as previously.

We say that P is W -terminating if there is no infinite sequence a1, a2, . . . of elements of W

such that every finite prefix is a rewriting path (i.e. belongs to W ∗). An element x ∈ P0 is
a W -normal form when there is no rewriting step in W with x as source. We say that P is
weakly W -normalizing when for every x ∈ P0 there exists a normal form x̂ and a rewriting
path nx : x

∗→ x̂. We necessarily have ˆ̂x = x̂ and we always suppose that nx̂ = idx̂.

▶ Lemma 10. If P is W -terminating then it is weakly W -normalizing.

Proof. Traditional rewriting argument: a maximal path (wrt prefix order) starting from x

exists (because W is terminating) and its target is necessarily a normal form. ◀

A W -branching is a pair of rewriting steps a1 : x → y1 and a2 : x → y2 in W which
are coinitial, i.e. have the same source. Such a branching is confluent when there is a pair
of cofinal (with the same target) rewriting paths p1 : y1 → z and p2 : y2 → z in W ∗ such
that a1 · p1 = a2 · p2 (as morphisms of P, or, equivalently, of W). We say that P is locally
W -confluent when W -branching is confluent. This condition is in particular satisfied when
there exists a coherence relation A : a1 · p1 ⇒ a2 · p2, or A : a2 · p2 ⇒ a1 · p1 in P2. Note that,
here, not only we require that we can close a span of rewriting steps by a cospan of rewriting
paths (as in the traditional definition of confluence), but also that the confluence square can
be filled coherence relations. Similarly, P is W -confluent when for every p1 : x

∗→ y1 and
p2 : x

∗→ y2 in W ∗, there exist q1 : y1
∗→ z and q2 : y2

∗→ z in W ∗ such that p1 · q1 = p2 · q2.
We say that P is W -convergent when it is both W -terminating and W -confluent.

The celebrated Newman’s lemma (also sometimes called the diamond lemma) along with
its traditional proof [6, Theorem 1.2.1 (ii)] easily generalizes to our setting:

▶ Proposition 11. If P is W -terminating and locally W -confluent then it is W -confluent.

Proof. Classical argument, by well-founded induction on x, using local W -confluence. ◀

We say that P is W -coherent if for any parallel paths p, q : x
∼→ y in W ∼, we have p = q.

In other words, P is W -coherent precisely when W is a rigid subgroupoid of P. The traditional
Church-Rosser property [6, Theorem 1.2.2] generalizes as follows in our setting:

▶ Proposition 12. If P is weakly W -normalizing and W -confluent then for any zig-zag
p : x

∼→ y in W ∼, we have p · ny = nx.

Proof. By confluence, given a rewriting path p : x
∗→ y in W ∗, we have x̂ = ŷ and p · ny = nx

(where nx and ny are paths to a normal form given by the weak normalization property),
and thus p+ · ny = nx and nx · p− = ny. Any zig-zag p : x

∼→ y in W ∼ decomposes as
p = p−

1 q+
1 p−

2 p+
2 . . . p−

n p+
n for some n ∈ N and paths pi and qi in W ∗. We thus have p · ny = nx,

since all the squares of the following diagram commute in W ∼ by the preceding remark:

x y1 x2 · · · xn yn y

x̂ x̂ x̂ · · · x̂ x̂ x̂

nx

p−
1

ny1

q+
1

nx2 nxn

p−
n

nyn

q−
n

ny

which allows us to conclude. ◀

This implies the following “abstract” variant of Squier’s homotopical theorem [32, 21, 14]:
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▶ Proposition 13. If P is weakly W -normalizing and is W -confluent then it is W -coherent.

Proof. Given two parallel zig-zags p, q : x
∼→ y in W ∼, we have p = q, since the following

diagram commutes in P:
y

x ŷ y

y

ny

idy

p

q

nx

n−
y

ny

idy

Namely, we have x̂ = ŷ by confluence, the two triangles above commute by Proposition 12,
and the two triangles below do because n−

y is an inverse for ny. ◀

▶ Example 14. As a variant of Example 7, consider the 2-ars P with P0 = {x, y}, P1 =
{a, b : x → y} and P2 = ∅, i.e. x y

a

b
. With W = {a}, we have that P is W -terminating

and locally W -confluent, thus W -confluent by Proposition 11, and thus W -coherent by
Lemma 10 and Proposition 13. With W = {a, b}, we have seen in Example 7 that the
groupoid W is not rigid and, indeed, P is not W -confluent because a ̸= b (because P2 = ∅).

In a situation as above, we write N(P) for the full subcategory of P whose objects are
W -normal forms. When P is weakly W -normalizing, we have that every object x of P is
isomorphic to one in the image by nx, and thus the inclusion functor N(P) → P is an
equivalence of categories. This equivalence is precisely the one with the quotient category
when P is W -convergent:

▶ Proposition 15. If P is W -convergent, the quotient category is isomorphic to the category
of normal forms: P/W ∼= N(P).

Proof. Since P is W -convergent, by Proposition 13, the groupoid generated by W is rigid
and we thus have the description of the quotient P/W given by Proposition 2. We have a
canonical functor N(P) → P/W , obtained as the composite of the inclusion functor N(P) → P
with the quotient functor P → P/W . By convergence, an equivalence class [x] of objects
contains a unique normal form (which is x̂), and the functor is bijective on objects. By weak
normalization (Lemma 10), any morphism f : x → y is equivalent to one with both normal
source and target, namely ny ◦ f ◦ n−

x : x̂ → ŷ, hence the functor is full. Suppose given two
morphisms f, g : x̂ → ŷ in P̂ with the same image [f ] = [g]: there exist morphisms v : x̂ → x̂

and w : ŷ → ŷ in W ∼ such that w ◦f = g ◦v. By the Church-Rosser property (Proposition 13),
we have v = nx̂ ◦ n−

x̂ and thus v = idx (since nx̂ = idx̂ by hypothesis), and similarly w = idy.
Hence f = g and the functor is faithful. ◀

We would now like to provide an explicit description of N(P). Since the rules in W are
quotiented out, we can expect that they can simply be removed from P. This is not the case in
general, but we provide here conditions which ensure that it holds, see also [9, 29] for alternative
conditions. We write P \ W for the 2-ars where (P \ W )0 = P0, (P \ W )1 = P1 \ W and
(P \ W )2 is P2 restricted to rewriting rules whose source and target both belong to (P1 \ W )∼.

▶ Proposition 16. Writing P′ = P \ W , suppose that
1. P is W -convergent,
2. every rule a : x → y in P′

1 has a normal target ŷ = y,
3. for every coinitial rules a : x → y in P′

1 and w : x → x′ in W , there is a path p : x′ ∗→ y

in P′∗
1 such that a = w · p,
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4. for every A : p ⇒ q : x → y in P2 and rule w : x → x′ in W , there is a relation
A′ : p′ ⇒ q′ : x′ → y in P′

2 (or, more generally, p′ = q′ in P′) where p′, q′ : x′ → y are
paths such that p = w · p′ and q = w · q′.

Then N(P) is isomorphic to N(P′).

Proof. We claim that for every zig-zag p : x
∼→ y in P∼

1 there is zig-zag q ∈ P′∼
1 such that

p = nx · q · n−
y . We have that p is of the form p = w0 · a1 · w1 · a2 · w2 · . . . · an · wn where the

ai are rules in P′
1 (possibly taken backward) and the wi are in W ∼. For instance, consider

the case n = 1 and a path p of the form p = v · a · w with a ∈ P′
1 and v, w ∈ W ∼ (the case

where a is reversed is similar, and the general case follows by induction):

x x′ y′ y

x̂ ŷ

nx

v

nx′

a

ny′

w

ny

q

By hypothesis 1 and Proposition 12, we have v = nx · n−
x′ and w = ny′ · n−

y . By hypothesis 2,
ny′ is the empty path. By iterated use of hypothesis 3, there is q ∈ P′∗

1 such that a = nx′ · q.
The canonical functor F : N(P′) → N(P) is the identity on objects. The above reasoning

shows that it is full. It can also be shown to be faithful by iterated use of hypothesis 4. ◀

We can finally summarize the results obtained in this section as follows. Given a 2-ars P
and a set W ⊆ P1, we have the following possible reasonable definitions of the fact that P is
coherent wrt W :
(1) Every parallel zig-zags with edges in W are equal

(i.e. the subgroupoid of P generated by W is rigid).
(2) The quotient map P → P/W is an equivalence of categories.
(3) The canonical morphism N(P) → P is an equivalence.
(4) The inclusion Alg(P/W ) → Alg(P) is an equivalence of categories.

▶ Theorem 17. If P is W -convergent then all the above coherence properties hold.

Proof. (1) is given by Proposition 13, (2) is given by (1) and Theorem 6, (3) is given by
Proposition 15, and (4) is given by (1) and Proposition 9. ◀

3 Relative coherence and term rewriting systems

In order to use the previous developments in concrete situations, such as (symmetric) monoidal
categories, we need to consider a more structured notion of theory. For this reason, we consider
here Lawvere 2-theories, as well as the adapted notion of rewriting, which is a coherent
extension of the traditional notion of string rewriting systems.

3.1 Lawvere 2-theories
A Lawvere theory T is a cartesian category, with N as set of objects, and cartesian product
given on objects by addition [25] (for simplicity, we restrict here to unsorted theories). In
such a theory, we usually restrict our attention to morphisms with 1 as codomain, since
T (n, m) ∼= T (n, 1)m by cartesianness. A morphism between Lawvere theories is a product-
preserving functor and we write Law1 for the category of Lawvere theories.

A (2, 1)-category is a 2-category in which every 2-cell is invertible (i.e. a category enriched
in groupoids). A Lawvere 2-theory T , as introduced in [12, 35, 36] (as well as [31] for the
enriched point of view), is a cartesian (2, 1)-category with N as objects, and cartesian product

FSCD 2023



S. Mimram 16:9

given on objects by addition. A morphism F : T → U between 2-theories is a functor which
preserves products. We write Law2 for the resulting category (which can be extended to a
3-category by respectively taking natural transformations and modifications as 2- and 3-cells).

3.2 Coherence for 2-theories
We can reuse the properties developed in Section 2 by working “hom-wise” as follows. Suppose
fixed a 2-theory T together with a subset W of the 2-cells. We write W for the sub-2-theory
of T , with the same 0- and 1-cells, and whose 2-cells contain W (we often assimilate this 2-
theory to its set of 2-cells). The quotient 2-theory T /W is the one representing the morphisms
from T sending 2-cells in W to identities; it comes equipped with a quotient 2-functor
T → T /W . We have T /W ∼= T /W, so that we can always assume that we are quotienting
by a sub-2-theory. On hom-categories, the quotient corresponds to the one introduced in
Section 2.1: for every m, n ∈ N, we have (T /W)(m, n) = T (m, n)/W(m, n).

We say that a morphism F : T → U is a local equivalence when for every objects m, n ∈ T ,
the induced functor Fm,n : T (m, n) → U(m, n) between hom-categories is an equivalence. We
say that W is 2-rigid when any two parallel 2-cells are equal, i.e. the category W(m, n) is
rigid for every 0-cells m and n. By direct application of Theorem 6, we have

▶ Theorem 18. The quotient 2-functor T → T /W is a local equivalence iff W is 2-rigid.

3.3 Extended rewriting systems
We briefly recall here the categorical setting for term rewriting systems. A more detailed
presentation can be found in [10, 5, 28].

A signature consists of a set S1 of symbols together with a function s0 : S1 → N associating
to each symbol an arity and we write a : n → 1 for a symbol a of arity n. A morphism of
signatures is a function between the corresponding sets of symbols which preserves arity, and
we write Pol×

1 for the corresponding category. There is a forgetful functor Law1 → Pol×
1 ,

sending a theory T on the set
⊔

n∈N T (n, 1) with first projection as arity. This functor admits
a left adjoint −∗ : Pol×

1 → Law1. Given a signature S1, and n ∈ N, S∗
1(n, 1) is the set of terms

formed using operations, with variables in {xn
1 , xn

2 , . . . , xn
n} (the superscript is necessary to

unambiguously recover the type of a variable, i.e. xn
i : n → 1, but for simplicity we will often

omit it in the following). More generally, a morphism in S∗
1(n, m) is an m-uple ⟨t1, . . . , tm⟩ of

terms with variables in {xn
1 , . . . , xn

n}, which can be thought of as a formal substitution, and
composition is given by parallel substitution:

⟨u1, . . . , uk⟩ ◦ ⟨t1, . . . , tm⟩ = ⟨u1[t1/x1, . . . , tn/xn], . . . , uk[t1/x1, . . . , tm/xm]⟩

(the term on the right is obtained by substituting each occurrence of a variable xi in a term uj

by ti). By abuse of notation, we write S∗
1 for the set of substitutions and s0, t0 : S∗

1 → N for
the source and target maps.

A term rewriting system, or trs, consists of a signature S1 together with a set S2 of
rewriting rules and functions s1, t1 : S2 → S∗

1 which indicate the source and target of each
rewriting rule, and are supposed to satisfy s0 ◦ s1 = s0 ◦ t1 and t0 ◦ s1 = t0 ◦ t1 = 1 (i.e. the
source and target of a rewriting rule are parallel terms). We sometimes write ρ : t ⇒ u for
a rule ρ with t as source and u as target. A context C of arity n is a term with variables in
{x1, . . . , xn,□} where the variable □ is a particular variable, the hole, occurring exactly once.
Given a term t of arity n, we write C[t] for the term obtained from C by replacing □ by t.
The composition of contexts C and D is given by substitution D ◦ C = D[C]. A bicontext
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is a pair (C, f) consisting of a context C and a substitution f . A rewriting step C[ρ ◦ f ] of
arity n is a triple consisting of a rewriting rule ρ : t ⇒ u, with t and u of arity k, together
with a hole C of arity n, as well as a substitution f : n → k in S∗

1: a rewriting step can
thus be thought of as a rewriting rule in a bicontext. Its source is the term C[t ◦ f ] and its
target is the term C[u ◦ f ]. We write S[]

2 for the set of rewriting steps. As in Section 2.3, we
write S∗

2 for the set of rewriting paths, which consist of composable sequence of rewriting steps,
and S∼

2 for the set of rewriting zig-zags in a trs, and use associated notations. Every term
rewriting system S freely generates a 2-Lawvere theory, with S∗

1 as 1-cells and S∼
2 as 2-cells.

Given a rewriting step C[ρ ◦ f ], a context D and a substitution g of suitable types, we have
D[C[ρ ◦ f ] ◦ g] = (D ◦ C)[ρ ◦ (f ◦ g)] so that bicontexts act on rewriting steps, and this action
extends to rewriting paths and zig-zags by functoriality, i.e. C[(p · q) ◦ f ] = C[p ◦ f ] · C[q ◦ f ].

An extended term rewriting system, or 2-trs, consists of a term rewriting system as above,
together with a set S3 of coherence relations and functions s2, t2 : S3 → S∼

2 , indicating their
source and target, such that s1 ◦ s2 = s1 ◦ t2 and t1 ◦ s2 = t1 ◦ t2. The Lawvere 2-theory
presented by a 2-trs S is the (2, 1)-category noted S, with N as 0-cells, S∗

1 as 1-cells and, as
2-cells the quotient of S∼

2 under the smallest congruence identifying the source and target of
any elements of S3.

▶ Example 19. The extended rewriting system Mon for monoids has symbols and rules

Mon1 = {m : 2 → 1, e : 0 → 1}
Mon2 = {α : m(m(x1, x2), x3) ⇒ m(x1, m(x2, x3)), λ : m(e, x1) ⇒ x1, ρ : m(x1, e) ⇒ x1}

There are coherence relations A, B, C, D and E, respectively corresponding to a confluence
for the five critical branchings of the rewriting system, whose 0-sources are

m(m(m(x1, x2), x3), x4) m(m(e, x1), x2) m(m(x1, e), x2) m(m(x1, x2), e) m(e, e)

Those coherence relations can be pictured as follows:

m(m(m(x1, x2), x3), x4) m(m(x1,m(x2, x3)), x4)

m(x1,m(m(x2, x3), x4))

m(m(x1, x2),m(x3, x4)) m(x1,m(x2,m(x3, x4)))

α

α

A⇒

α

α

α

m(m(e, x1), x2) m(e,m(x1, x2))

m(x1, x2)

λ

α

B⇒ λ

m(m(x1, e), x2) m(x1,m(e, x2))

m(x1, x2)

ρ

α

C⇒ λ

m(m(x1, x2), e) m(x1,m(x2, e))

m(x1, x2)

ρ

α

D⇒ ρ

m(e, e)

te

λ ρE⇒

For concision, for each arrow, we did not indicate the proper rewriting step, but only the
rewriting rule of the rewriting step (hopefully, the reader will easily be able to reconstruct it).
For instance, the coherence relation C has target α(x1, e, x2) · m(x1, λ(x2)).

3.4 Rewriting properties
Suppose fixed a 2-trs S together with W ⊆ S2. The 2-trs S induces an 2-ars in each hom-set:
this point of view will allow reusing the work done on 2-ars on Section 2.

▶ Definition 20. Given a 2-trs S and m, n ∈ N, we write S(m, n) for the 2-ars with
S(m, n)0 = S∗

1(n, m), S(m, n)1 = S[]
2 and S(m, n)2 = S3.
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Similarly, a set W induces a set W (m, n) ⊆ S(m, n)1 = S[]
2 , where W (m, n) is the set of

rewriting steps whose rewriting rule belongs to W (they are of the form C[α ◦ f ] with
α ∈ W ). We say that a 2-trs S is W -terminating / locally W -confluent / W -confluent /
W -coherent when each S(m, n) is with respect to W (m, n). We say that S is confluent when
it is W -confluent for W = S2 (and similarly for other properties).

A W -branching (α1, α2) is a pair of rewriting steps α1 : t ⇒ u1 and α2 : t ⇒ u2 in W []

with the same source:
u1 t u2

α1 α2

It is W -confluent when there are cofinal rewriting paths π1 : u1 ⇒ v and π2 : u2 ⇒ v in W ∗

such that α1 · π1 = α2 · π2, which is depicted on the left.

t

u1 u2

v

α1 α2

π1 π2

C[t ◦ f ]

C[u1 ◦ f ] C[u2 ◦ f ]

C[v ◦ f ]

C[α1◦f ] C[α2◦f ]

C[π1◦f ] C[π2◦f ]

By extension of Proposition 11, we have

▶ Proposition 21. If S is W -terminating and locally W -confluent then it is W -confluent.

In practice, termination can be shown as follows [3, Section 5.2]. A reduction order > is a
well-founded partial order on terms in S∗

1 which is compatible with context extension: given
terms t, u ∈ S∗

1, t > u implies C[t ◦ f ] > C[u ◦ f ] for every context C and substitution f ∈ S∗
1

(whose types are such that the expressions make sense).

▶ Proposition 22. A 2-trs S equipped with a reduction order such that t > u for any rule
α : t ⇒ u in W is W -terminating.

In order to construct a reduction order one can use the following “interpretation method” [3,
Section 5.3]. Suppose given a well-founded poset (X, <) and an interpretation JaK : Xn → X of
each symbol a ∈ S1 of arity n as a function which is strictly decreasing in each argument. This
induces, by composition and product, an interpretation JtK of every term. We define an order
on functions f, g : Xn → X by f ≻ g whenever f(x1, . . . , xn) ≻ g(x1, . . . , xn) for every xi ∈ X;
this order is well-founded because the order on X is. By extension, we define an order on
terms t, u ∈ S∗

1(n, 1) by t ≻ u whenever JtK ≻ JuK: this order is always a reduction order. By
Proposition 22, if we have t ≻ u for every rule α : t ⇒ u the 2-trs is thus W -terminating.

▶ Example 23. Consider the 2-trs Mon of Example 19. We interpret the symbols as
Jm(x1, x2)K = 2x1 + x2 and JeK = 1 on X = N \ 0. All the rules are decreasing since we have

Jm(m(x1, x2), x3)K = 4x1 + 2x2 + x3 > 2x1 + 2x2 + x3 = Jm(x1, m(x2, x3))K
Jm(e, x1)K = 2 + x1 > x1 = Jx1K Jm(x1, e)K = 2x1 + 1 > x1 = Jx1K

and the rewriting system is terminating.

We now briefly recall the notion of critical branching, see [28] for a more detailed pre-
sentation. We say that a branching (α1, α2) is smaller than a branching (β1, β2) when the
second can be obtained from the first by “extending the context”, i.e. when there exists a
context C and a morphism f of suitable types such that βi = C[αi ◦ f ] for i = 1, 2. In this
case, the confluence of the first branching implies the confluence of the second one (see the
diagram on the right above). The notion of context can be generalized to define the notion of
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a binary context C, with two holes, each of which occurs exactly once: we write C[t, u] for the
context where the holes have respectively been substituted with terms t and u. A branching
is non-overlapping when it consists of two rewriting steps at disjoint positions, i.e. when it is
of the form

C[u1 ◦ f1, t2 ◦ f2] C[t1 ◦ f1, t2 ◦ f2] C[t1 ◦ f1, u2 ◦ f2]C[α1◦f1,t2◦f2] C[t1◦f1,α2◦f2]

for some binary context C, rewriting rules αi : ti ⇒ ui in S2 and morphisms fi in S∗
1 of suitable

types. A branching is critical when it is not non-overlapping and minimal (wrt the above
order). A trs with a finite number of rewriting rules always have a finite number of critical
branchings and those can be computed efficiently [3].

▶ Lemma 24. A 2-trs S is locally W -confluent when all its critical W -branchings are
W -confluent.

Proof. Suppose that all critical W -branchings are confluent. A non-overlapping W -branching
is easily shown to be W -confluent. A non-minimal W -branching is greater than a minimal
one, which is W -confluent by hypothesis, and is thus itself also W -confluent. ◀

We write W3 ⊆ S3 for the set of coherence relations A : π ⇒ ρ such that both π and ρ belong
to W ∼. As a useful particular case, we have the following variant of the Squier theorem:

▶ Lemma 25. If 2-trs S has a coherence relation in W3 corresponding to a choice of confluence
for every critical W -branching then it is locally W -confluent.

▶ Example 26. The 2-trs Mon of Example 19. By definition, every critical branching is
confluent and Mon is thus locally confluent. From Example 23 and Proposition 21, we deduce
that it is confluent.

As a direct adaptation of Proposition 13, we have

▶ Lemma 27. If S is W -terminating and locally W -confluent then it is W -coherent.

From Examples 23 and 26, we deduce that the 2-trs Mon is coherent, thus showing the
coherence property (C1) for monoidal categories.

Suppose given a W -convergent 2-trs S. By Lemma 27, S is W -coherent, by Theorem 18,
the quotient functor S → S/W is a local equivalence, and by Proposition 15, S/W is obtained
from P by restricting to 1-cells in normal form. Moreover, in good situations, we can provide
a description of the quotient category S/W by applying Proposition 16 hom-wise.

3.5 Algebras for Lawvere 2-theories
The notion of algebra for 2-theories was extensively studied by Yanofsky [35, 36], we refer to
his work for details.

An algebra for a Lawvere 2-theory T is a 2-functor C : T → Cat which preserves products.
By abuse of notation, we often write C instead of C1 and suppose that products are strictly
preserved, so that Cn = Cn. A pseudo-natural transformation F : C ⇒ D between algebras C

and D consists in a functor F : C → D together with a family ϕf : Df ◦ F n ⇒ F ◦ Cf of
natural transformations indexed by 1-cells f : n → 1 in T , which is compatible with products,
composition and 2-cells of T . A modification µ : F ⇛ G : C ⇒ D between two pseudo-natural
transformations is a natural transformation µ : F ⇛ G which is compatible with 2-cells
of T . We write Alg(T ) for the 2-category of algebras, pseudo-natural transformations and
modifications. We write Alg(T ) for the category of algebras of a 2-theory T .
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▶ Example 28. Consider the 2-trs Mon of Example 19. The category Alg(Mon) of algebras of
the presented 2-theory is isomorphic to the category MonCat of monoidal categories, strong
monoidal functors and monoidal natural transformations. It might be surprising that Mon
has five coherence relations whereas the traditional definition of monoidal categories only
features two axioms (which correspond to the coherence relations A and C). There is no
contradiction here: the commutation of two axioms can be shown to imply the one of the
three other [18, 13].

A morphism F : T → U of 2-theories is a biequivalence when there is a morphism G : U → T
and natural transformations η : IdT ⇒ G ◦ f and ε : F ◦ G ⇒ IdU whose components are
equivalences. A generalization of Proposition 8 is shown in [36, Proposition 7]:

▶ Proposition 29. Suppose given a morphism F : T → T ′ between theories. It is a biequiv-
alence if and only if the functor Alg(F ) : Alg(T ′) → Alg(T ) induced by precomposition is a
biequivalence (in a suitable sense).

In particular, in the case where W is 2-rigid, it seems that we can deduce from Theorem 18 that
the projection functor T → T /W is a local equivalence, and thus a biequivalence, and thus
that the categories Alg(T ) and Alg(T /W) are biequivalent (for instance, it is claimed that the
categories of monoidal and strict monoidal categories are equivalent). However, the claim that
any local equivalence is a biequivalence [36, Proposition 6] is wrong: given a local equivalence
F : C → D between 2-categories, one can in general construct a pseudo-functor G : D → C
satisfying suitable properties, but not a strict one, see [20, Example 3.1] for a counter-example.
Intuitively, in the case where C = T and D = T /W with rewriting properties as in Section 3.4,
G will send a 1-cell to a normal form in its equivalence class, but the composite of two normal
forms is not itself a normal form in general, we can only expect that it is isomorphic to a
normal form.

We however conjecture that one can generalize the classical proof that any monoidal
category is monoidally equivalent to a strict one [26, Theorem XI.3.1] to show the following
general (C3) coherence theorem, as well as its (C4) generalization:

▶ Conjecture 30. When W is 2-rigid, every T -algebra is equivalent to a T /W algebra.

▶ Conjecture 31. When W is 2-rigid, the 2-functor Alg(T /W) → Alg(T ) induced by pre-
composition with the quotient functor T → T /W has a left adjoint such that the components
of the unit are equivalences.

This is left for future works. Note that, apart from informal explanations, we could not find a
proof of Conjectures 30 and 31 for symmetric or braided monoidal categories in the literature,
e.g. in [27, 17, 26] (in [17, Theorem 2.5] the result is only shown for free braided monoidal
categories).

3.6 Symmetric monoidal categories
A symmetric monoidal category is a monoidal category equipped with a natural isomorphism
γx,y : x ⊗ y → y ⊗ x, called symmetry, satisfying three classical axioms. A symmetric monoidal
category is strict when the structural isomorphisms α, λ and ρ are identities (but we do not
require γ to be an identity). We write SMonCat (resp. SMonCatstr) for the category of
symmetric monoidal categories (resp. strict ones). Using the same method as above, we can
show the coherence theorems for symmetric monoidal categories [17]. This example illustrates
more the interest of the previous developments since we are quotienting by a (2, 1)-category W
which is not the whole category.
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We write SMon for the 2-trs obtained from Mon (see Example 19) by adding a rewriting
rule γ : m(x1, x2) ⇒ m(x2, x1) (corresponding to symmetry), together with a coherence
relation

m(x1, x2) m(x2, x1)

m(x1, x2) m(x1, x2)

γ

F⇒ γ

as well as four relations corresponding to the critical branchings between the rule γ and the
rules α, λ or ρ:

m(m(x1, x2), x3) m(x3,m(x1, x2)) m(m(x3, x1), x2)

m(x1,m(x2, x3)) m(m(x2, x3), x1) m(x2,m(x3, x1))

α

γ

G⇒

α

γ

γ α

m(e, x1) m(x1, e)

x1

λ

γ

I⇒ ρ

m(m(x1, x2), x3) m(m(x2, x2), x3)

m(x1,m(x2, x3)) m(m(x2, x3), x1) m(m(x3, x2), x1)

α

γ

H⇒ γ

γ γ

m(x1, e) m(e, x1)

x1

ρ

γ

J⇒ λ

The category Alg(SMon) is isomorphic to the category SMonCat. The traditional definition
of symmetric monoidal categories only features axioms corresponding to F , G and I, but it
can be shown that they implies the commutation of the axiom corresponding to H (by using G

twice) and J (by using F and I). We write W = {α, λ, ρ}. The category Alg(SMon/W )
is isomorphic to SMonCatstr. We have that the 2-trs is W -terminating by Example 23
and W -locally confluent by definition (Example 19), it is thus W -coherent by Lemma 27.
From Conjecture 30, we would deduce that any symmetric monoidal category is monoidally
equivalent to a strict one.

Note that the above reasoning only depends on the convergence of the subsystem induced
by W , i.e. on the fact that every diagram made of α, λ and ρ commutes, but it does not
require anything on diagrams containing γ’s. In particular, if we removed the compatibility
relations G, H, I and J , the strictification theorem would still hold. The resulting notion of
strict symmetric monoidal category would however be worrying since, for instance, in absence
of I, the morphism γe,x1 : m(e, x1) → m(x1, e) would induce, in the quotient, a non-trivial
automorphism γe,x1 : x1 → x1 of each object x1. The following variant of the coherence
theorem is “stronger” in the sense that it requires these axioms to hold.

We have seen that for the theory of monoidal categories “every diagram commutes”, in
the sense that Mon is a 2-rigid (2, 1)-category. For symmetric monoidal categories, we do
not expect this to hold since γx1,x1 and idm(x1,x1) both are rewriting paths from m(x1, x1) to
itself, and are not equal in general (one can easily find an example of a symmetric monoidal
category in which the symmetry is not the identity, this is in fact the case for most usual
examples). It can however be shown that it holds for a subclass of 2-cells whose source and
target are affine terms: a term is affine if no variable occurs twice. We now explain this, thus
recovering a well-known property [27, Theorem 4.1] using rewriting techniques. Note that the
property of being affine, as well as the variables occurring in terms, are preserved by rewriting
steps. By inspection of critical branchings (Lemma 24), we have

▶ Lemma 32. The 2-trs SMon is locally confluent.

It is not terminating, even when restricted to affine terms, since we for instance have the loop

m(x1, x2) m(x2, x1) m(x1, x2)γ(x1,x2) γ(x2,x1)
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In order to circumvent this problem, we are going to formally “remove” the second morphism
above and only keep instances of γ which tend to make variables in decreasing order. Note
that the coherence relation F ensures that γ(x2, x1) = γ(x1, x2)− so that this removal does
not change the presented (2, 1)-category.

Given a term t, we write ∥t∥ the list of variables occurring in it, from left to right,
e.g. ∥m(m(x2, e), x1)∥ = x2x1. We order variables by xi ⪰ xj whenever i ≤ j and extend it
to lists of variables by lexicographic ordering (which is well-founded since we compare only
words of the same length). Given a rewriting step C[γ(t1, t2)] involving the rule γ is decreasing
when ∥t1∥∥t2∥ ≻ ∥t2∥∥t1∥. Fix n ∈ N, consider the 2-ars P′ = SMon(n, 1), and write P for
the 2-ars obtained from P′ by

removing from P′
1 all non-decreasing rewriting steps involving γ,

replacing in the source or target of a relation in P′
2 all non-decreasing steps C[γ(t1, t2)] by

C[γ(t2, t1)−].

▶ Lemma 33. The 2-ars P is locally confluent.

Proof. The above reasoning shows that we have P′ = P. Since SMon is locally confluent
(Lemma 32), P′ is locally confluent and thus also P. ◀

Since we restricted ourselves to decreasing symmetries, P is “almost” terminating since
rewriting rules tend to put variables in decreasing order. However, it sill does not prevent
loops when there is no variable: for instance, γ(e, e) is a rewriting step from m(e, e) to itself.
Fortunately, we can always remove units by restricting to terms which are in normal form
wrt λ and ρ. Namely, P satisfies the hypothesis of Proposition 16 with W consisting of all
rewriting steps generated by λ and ρ (condition 3. uses the compatibility relations G, H,
I and J). We can thus restrict to terms in which the unit e does not occur and for those
the system is terminating. Any two rewriting paths between affine terms are equals and the
algebras thus satisfy:

▶ Proposition 34. In a symmetric monoidal category, every diagram whose 0-source is a
tensor product of distinct objects commutes.

4 Future works

We believe that the developed framework applies to a wide variety of algebraic structures,
which will be explored in subsequent work. In fact, the full generality of the framework was
not needed for (symmetric) monoidal categories, since the rules of the corresponding theory
never need to duplicate or erase variables (and, in fact, those can be handled by traditional
polygraphs [22, 13]). This is however, needed for the case of rig categories [24], which feature
two monoidal structures ⊕ and ⊗, and natural isomorphisms such as δx,y,z : x ⊗ (y ⊗ z) →
(x ⊗ y) ⊕ (x ⊗ z) (note that x occurs twice in the target), generalizing the laws for rings. Those
were a motivating example for this work, and we will develop elsewhere a proof of coherence
of those structures based on our rewriting framework, as well as related approaches on the
subject [7, Appendix G].

A notion of Tietze transformation for term rewriting system, which are transformations
allowing one to navigate between the various presentations of a given Lawvere theory, were
given in [28]. It would be interesting to develop an analogous notion for 2-trs, presenting
a given Lawvere 2-theory: this would allow us to formalize reasoning about superfluous
generators or relations (such as in Example 28).
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Finally, the importance of the notion of polygraph can be explained by the fact that they
are the cofibrant objects in a model structure on ω-categories [23]. It would be interesting to
develop a similar point of view for higher term rewriting systems: a first step in this direction
is the model structure developed in [36].
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Abstract
Motivated by compositional categorical rewriting theory, we introduce a convolution product over
presheaves of double categories which generalizes the usual Day tensor product of presheaves of
monoidal categories. One interesting aspect of the construction is that this convolution product is
in general only oplax associative. For that reason, we identify several classes of double categories for
which the convolution product is not just oplax associative, but fully associative. This includes in
particular framed bicategories on the one hand, and double categories of compositional rewriting
theories on the other. For the latter, we establish a formula which justifies the view that the
convolution product categorifies the rule algebra product.
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1 Introduction

Our main motivation in this work is to categorify notions coming from compositional rewriting
theory in the sense of [1–5,8,9] and more specifically the concepts of rule algebra [1, 3, 8, 9]
and of tracelet [2,6]. There, a rewriting theory is specified by a base category C together with
a specific categorical description of direct derivations, defined as rewriting steps s : X á Y

obtained by applying a rewriting rule r : Aá B to a given object X P C of the base category.
Typical descriptions include double-pushout (DPO) [13] and sesqui-pushout (SqPO) [10]
formalisms. A rewriting theory defined in this way is called compositional when it satisfies a
technical property of two- and three-step derivation traces, ensuring that the two theorems
below are satisfied:

the concurrency theorem [1, 4, 5, 7, 13] states that every two-step derivation trace may be
(essentially uniquely) characterized by a one-step trace (i.e., a direct derivation) along a
composite rule capturing the causal interactions between the two rules,
the associativity theorem [1, 4, 5, 7, 9] states that whenever the concurrency theorem is
applied twice in order to convert a three-step trace into a one-step trace along a composite
rule, either possible nesting order of two-step rule composition operations yields essentially
the same one-step trace (i.e., up to universal isomorphisms).

One important benefit of compositionality is that every compositional rewriting theory gives
rise to a rule algebra defined as a vector space R (over a suitable field k such as k “ R) with
a basis indexed by (isomorphism classes of) rules, and equipped with a bilinear product that
maps a pair of basis elements to a sum over basis elements indexed by composite rules. More
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explicitly, letting δprq denote the basis vector of R indexed by (the isomorphism class of) a
rule r, writing ¨ ‹ ¨ for the aforementioned binary product, Mrpsq for admissible matches of
rule r into rule s, we have

δprq ‹ δpsq “
ÿ

µPMrpsq

δprµsq (1)

where rµs denotes one possible way to obtain a composite rule from r and s. Another
natural idea when reasoning about compositional rewriting systems is to study sets of direct
derivations as follows: we introduce a vector space S together with a notation |Xy for a basis
vector of S indexed by an (isomorphism class of an) object X of the underlying category.
We then define the algebra morphism (or representation) ρ : R Ñ EndokpSq as follows:

ρpδprqq |Xy :“
ÿ

mPMrpXq

|rmpXqy , (2)

where the right-hand side of the equation ranges over possible matches m PMrpXq of the
rule r into the object X, and where |rmpXqy is the vector indexed by the isomorphism class
of the outcome of applying r to X via m. The crucial fact that ρ satisfies the equation

ρpδprqqρpδpsqq “ ρpδprq ‹ δpsqq (3)

and thus defines a representation in S of the rule algebra pR, ‹q is far from trivial, and comes
from a subtle interplay between the concurrency and the associativity theorems [1, 4, 5, 7, 9].

In the present paper, our primary purpose is to begin to categorify the rule algebra
formalism, starting from the observation that the traditional frameworks for categorical
rewriting (including the double-pushout and sesqui-pushout formalisms) can be neatly
expressed using double categories. The idea is to associate to any such categorical rewriting
framework a specific double category D whose objects are the objects of the original base
category C and whose horizontal 1-cells X á Y are transformations typically defined as
spans X Ð S Ñ Y in C, defined in such a way that they include both the rewriting rules
r : A á B as well as the derivation traces s : X á Y of the underlying rewriting theory.
The double category D is then carefully designed in such a way that a direct derivation θ

applying the rewriting rule r : Aá B to define a rewriting step s : X á Y is the same thing
as a double cell θ : r Ñ s of the form below, in the double category D.

B A

Y X

r

g f

s

θ (4)

Here, the vertical maps f and g of the double category D indicate how the source A and the
target B of the rewriting rule r : Aá B are “embedded” in the objects X and Y , respectively,
in order to define the direct derivation θ : r Ñ s exhibiting s : X á Y as an instance of the
rewriting rule r. Given a rewriting rule r : A á B and a horizontal 1-cell s : X á Y , it
makes sense to look at the set ∆̂rpsq of double cells θ : r Ñ s of the form (4), which describes
all the possible embeddings f : A↣ X and g : Y ↣ B and all the possible ways θ : r Ñ s

the horizontal 1-cell s : X á Y can be seen as an instance of the rewriting rule r. An
important observation is that ∆̂r defines a covariant presheaf ∆̂r : D1 Ñ Set over the vertical
cell category D1 whose objects are horizontal 1-cells, and whose morphisms φ : sÑ s1 are
double cells of the form

Y X

Y 1 X”

s

hY hX

s1

φ (5)
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Note that the covariant presheaf ∆̂r : D1 Ñ Set is the representable presheaf ∆̂r “ D1pr,´q

which associates to every 1-cell s : X á Y the set ∆̂rpsq “ D1pr,´qpsq of all morphisms (4)
from r to s in the category D1. One main intuition guiding us in the process of categorification
is that the representable presheaf ∆̂r : D1 Ñ Set should play the role of the basis vector δprq
of rule algebra pR, ‹q.

This fundamental intuition brought us to develop a larger picture, and to associate to any
double category D the category pD of its vertical presheaves, simply defined as the category
pD “ rD1, Sets of covariant presheaves G,F : D1 Ñ Set over the vertical cell category D1
with natural transformations G ñ F between them. One main contribution of the paper
is the discovery of a convolution product ˚ : pD ˆ pD Ñ pD which generalizes the usual Day
convolution product of presheaves over a monoidal category, and is of interest in its own right.
In particular, we explain in §3 that, somewhat unexpectedly, the convolution product is only
oplax associative in general. We then examine in the paper a number of additional fibrational
properties of the double category D in order to recover strong associativity. We establish in
§4 that strong associativity is guaranteed for framed bicategories and then study in §5 how
the story unfolds for the case of double categories coming from rewriting frameworks. Finally,
we establish in §6 that the convolution product ∆̂r2 ˚ ∆̂r1 of two representable presheaves
∆̂r1 and ∆̂r2 can in certain situations be decomposed as a finite sum of representables,
categorifying equation (1).

2 Double categories

Throughout this paper, we consider double categories as weakly internal categories in
CAT [14, Ch. 12.3]. This means that a (weak) double category D consists of a pair of
categories D0 and D1 and a collection of functors

S, T : D1 ÝÑ D0 , U : D0 ÝÑ D1 , ˛h : D1 ˆD0 D1 ÝÑ D1 , (6)

(where D1 ˆD0 D1 denotes the pullback of S and T ) making the diagrams

D1 D1 ˆD0 D1 D1 D0

D0 D1 D0 D0 D1 D0T S

˛hT

π1 π2

S

T S

U

commute, together with natural isomorphisms pr ˛h sq ˛h t
„
ÝÑ r ˛h ps ˛h tq and U ˛h r

„
ÝÑ

r
„
ÝÑ r ˛h U expressing associativity and neutrality of the structure up to isomorphism, and

satisfying a number of coherence axioms.
We refer to the objects of D0 as 0-cells, to the morphisms of D0 as vertical 1-cells, to the

objects of D1 as horizontal 1-cells, and to the morphisms of D1 as double cells. We employ
a slightly non-standard convention in writing horizontal 1-cells from right to left, using
à arrows, and we reserve the arrow type ↣ for vertical 1-cells. With these conventions,
horizontal composition, denoted ˛h, reads as follows:

Z Y Y X Z X

Z 1 Y 1 Y 1 X 1 Z 1 X 1

s

g

s1

h ˛h

r

g f

r1

“

s˛hr

h f

s1
˛hr1

β α β˛hα

We emphasize that horizontal composition is only associative up to isomorphism. On the
other hand, vertical composition, denoted ˛v, is a strictly associative operation, corresponding
to composition of morphisms in the category D1 and of their images along the functors S
and T in the category D0.

FSCD 2023
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▶ Example 2.1. A prototypical example of a double category is the double category of spans
SpanpCq in some category C with chosen pullbacks, where:

0-cells and vertical 1-cells of SpanpCq are given by objects and morphisms of C;
horizontal 1-cells Y à X are given by spans Y Ð Z Ñ X in C;
double cells are given by morphisms of spans in the sense of a pair of commuting squares

Y X

Y 1 X 1

“

Y Z X

Y 1 Z 1 X 1

horizontal composition of spans is defined by pullback, with unit UX “ X
idX
Ð X

idX
Ñ X.

Observe that horizontal composition in SpanpCq is indeed only associative up to isomorphism.
For that reason, the notion of double category we have just introduced is sometimes called
weak double category.

▶ Example 2.2. In order to describe term rewriting in the language of double categories, we
consider the double category TRSrΣs associated to a fixed signature Σ of operations, defined
as follows:

0-cells are lists of terms t “ t1, . . . , tn over Σ with set of variables denoted Varptq;
vertical 1-cells t ↣ u represent subterm matchings, given by a pair pC | σq of a multi-hole
context C and a substitution σ such that u “ Crtσs;
there is a unique horizontal 1-cell t á t1 for every pair of lists of terms of the same length
|t| “ |t1| such that Varpt1q Ď Varptq;
double cells

t1 t

u1 u

are given by a pair pC | σq of a multi-hole context C and a substitution σ such that
u “ Crtσs and u1 “ Crt1σs.

The idea is that the horizontal 1-cells of TRSrΣs describe all possible shapes of (potentially
parallel) rewriting rules, and double cells close those rules under context extension and
substitution.

Any bicategory may be seen as a double category in which all vertical 1-cells are identities,
i.e., such that D0 is a discrete category. (As a special case, any monoidal category may be
seen as a double category with D0 “ 1 the terminal category.) Conversely, every double
category D has an underlying horizontal bicategory D‚, defined as the double category with
the same 0-cells and horizontal 1-cells as D, but restricted to double cells whose vertical
components are identities (i.e., morphisms α in D1 such that Spαq and T pαq are identity
morphisms), also said to be globular.

It will be convenient to also consider an “unbiased” (in the sense of [16, §3.1]) definition
of double category, starting from a pair of categories D0 and D1 and a family of functors
phn : Dn Ñ D1qně0 where Dn :“ D1 ˆD0 . . .ˆD0 D1

loooooooooomoooooooooon

n times

is the limit in Set of the “zig-zag”

diagram of functors:

D1 D1

D0 D0 ¨ ¨ ¨ D0 D0

T S T S
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where the category D1 appears n times and D0 appears n`1 times. The objects (respectively
morphisms) of Dn may be seen as sequences psn, . . . , s1q of n composable horizontal 1-cells
(resp. double cells), with the functor

hn “ psn, . . . , s1q ÞÑ hnpsn, . . . , s1q P objpD1q

performing the horizontal composition “all at once”. In this presentation, both associativity
and neutrality are represented by a single family of natural isomorphisms

hn ˝ phi1 , . . . , hin
q – hi1`¨¨¨`in

satisfying a number of coherence axioms.
We will go back and forth between the biased and unbiased definitions of a double

category, which are equivalent. In particular, given a double category with unit U and
(binary) horizontal composition ˛h, we can obtain a family of n-ary composition functors hn

by taking h0 “ U , h1 “ id, and hn to be any bracketing of n´ 1 ˛h’s for n ě 2.

3 A convolution product of presheaves over double categories

3.1 Presheaves over double categories and the convolution product
One starting point for our work was the observation that the Day convolution product
on presheaves over monoidal categories [11] may be extended to a convolution product
for vertical presheaves over double categories. As explained in the introduction, a vertical
presheaf over a double category D is simply defined as a covariant Set-valued presheaf over
the category D1 whose objects are the horizontal 1-cells and whose morphisms are the double
cells of D. We write pD “ rD1, Sets for the category of vertical presheaves over D and natural
transformations between them. A vertical presheaf F over a double category D thus assigns
a set F prq to every horizontal 1-cell r : Y à X, and a function F pαq : F prq Ñ F pr1q to
every double cell α : r Ñ r1. As also explained in the introduction, an important example is
provided by representable presheaves, which we notate ∆̂r :“ D1pr,´q.

▶ Example 3.1. Term rewriting systems may be modeled as vertical presheaves over the
double category TRSrΣs. For example, suppose Σ contains a binary operation m and a
constant e, and consider the rewriting rule r : mpe, xq á x. The presheaf ∆̂r in a sense
encapsulates all ways of applying r once to a subterm. For instance, ∆̂rpr

1 : mpe,mpe, xqq á

mpe, xqq contains exactly two elements, corresponding to the double cells α1 : r Ñ r1 and
α2 : r Ñ r1 defined by the context/substitution pairs pC1 “ ´ | σ1 “ mpe, xq{xq and
pC2 “ mpe,´q | σ2 “ x{xq respectively.

At this stage, we explain how we extend the Day convolution product to double categories.
We find it instructive to begin by recalling the usual definition of the Day convolution product
on presheaves over a category C equipped with a monoidal product b : C ˆ C Ñ C. Given a
pair of presheaves G and F over C, the convolution product G ˚ F is defined as the left Kan
extension of the presheaf over the product category C ˆ C

C ˆ C Set ˆ Set SetGˆF ˆ

along the monoidal product functor b:

C ˆ C Set ˆ Set Set

C

GˆF ˆ

b G˚F

FSCD 2023
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Equivalently, G ˚ F may be defined by the following well-known coend formula:

G ˚ F “ a ÞÑ

ż pc,bqPCˆC
Cpcb b, aq ˆGpcq ˆ F pbq (7)

Recall that in general, the coend
şxPC

Mpx, xq of a functor M : Cop ˆ C Ñ Set may be
explicitly computed as a quotient of the coproduct

š

xPC Mpx, xq modulo an equivalence
relation induced by the co- and contravariant actions of M [15, IX.6].

This definition of convolution product based on a left Kan extension and a coend formula
can be adapted to double categories in the following way. Given two presheaves G and F

over the category D1, the convolution product G ˚ F is the presheaf over the category D1
defined as the left Kan extension of the presheaf

D1 ˆD0 D1 D1 ˆ D1 Set ˆ Set Setˆproj GˆF

along the horizontal composition functor ˛h:

D1 ˆD0 D1 D1 ˆ D1 Set ˆ Set Set

D1

ˆproj GˆF

˛h G˚F

As in the case of the convolution product for monoidal categories, the left Kan extension can
be also neatly expressed as a coend formula:

G ˚ F “ r ÞÑ

ż ps2,s1qPD2

D1ps2 ˛h s1, rq ˆGps2q ˆ F ps1q (8)

As in the case of the Day convolution product, it follows from the definition that

▶ Proposition 3.2. The convolution product ˚ : pDˆpD Ñ pD preserves colimits component-wise.

Before proceeding further, let us consider an example from term rewriting that illustrates
the motivation for the definition of the convolution product.

▶ Example 3.3. Let r : mpe, xq á x as in Example 3.1, and consider the convolution product
∆̂r ˚ ∆̂r of ∆̂r with itself. Intuitively, this presheaf encapsulates all ways of applying the
rewriting rule r twice, possibly in parallel. One can verify that ∆̂r ˚ ∆̂r decomposes as a
sum of representables:

∆̂r ˚ ∆̂r – ∆̂r1 ` ∆̂r1 ` ∆̂r2 ` ∆̂r3 (9)

where

r1 : mpe,mpe, xqq á x , r2 : mpmpe, eq, xq á x , r3 : mpe, xq,mpe, yq á x, y .

The convolution product therefore allows us to express neatly in algebraic form by the
formula (9) the fact that there are four canonical ways of applying the rule r : mpe, xq á x

twice, corresponding to the two ways of deriving the r1 rule and the unique derivation of r2,
as well as the r3 rule corresponding to two parallel applications of r. In Section 6 we will
give a more general analysis of this phenomenon.
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Figure 1 Left: diagram illustrating an element of the convolution product F2 ˚ F1 evaluated at
a horizontal cell r, where α1 P F1ps1q and α2 P F2ps2q, and γ : s2 ˛h s1 Ñ r. Right: equivalence
relation on diagrams induced by the coend formula.

3.2 Oplax associativity of the convolution product

The binary convolution product naturally generalizes to an n-ary convolution product of
presheaves, defined in terms of the functors hn : Dn Ñ D1 discussed in Section 2.

▶ Definition 3.4. Let F1, . . . , Fn : D1 Ñ Set be an n-tuple of covariant presheaves over D1.
We define their convolution product by the coend formula

Fn ˚ . . . ˚ F1 “ r ÞÑ

ż psn,...,s1qPDn

D1phnpsn, . . . , s1q, rq ˆ Fnpsnq ˆ ¨ ¨ ¨ ˆ F1psnq (10)

with the understanding that the formula specializes to r ÞÑ
şXPD0 D1pUX , rq in the nullary

case n “ 0. Equivalently, Fn ˚ . . .˚F1 is defined by the following left Kan extension diagram:

Dn Dn
1 Setn Set

D1

proj Fnˆ¨¨¨ˆF1 ˆ

hn Fn˚...˚F1
(11)

For convenience, we write ˚n : pDn Ñ pD for the resulting n-ary convolution product, and we
also sometimes write Ū for the nullary case Ū “ ˚0.

We find it evocative to visualize the elements of the convolution product Fn˚ . . .˚F1 evaluated
at a horizontal 1-cell r by a kind of “rabbit diagram”, as illustrated on the left side of Figure 1
for the case n “ 2. In the diagram, α1 and α2 represent elements of F1ps1q and F2ps2q

respectively, where s1 and s2 are arbitrary horizontal 1-cells, and γ represents a double cell
s2 ˛h s1 Ñ r with Spγq “ f and T pγq “ g. (We will sometimes omit the labels of the various
cells in diagrams when they are unimportant.) On the right side of the figure, we also depict
the equivalence relation on tuples

pγ ˛v pβ1 ˛h β2q, α2, α1q „ pγ, F2pβ2qpα1q, F1pβ1qpα1qq (12)

that is forced by the coend formula (8).
Perhaps surprisingly, it turns out that in general convolution only defines an oplax

monoidal product on the presheaf category pD.

FSCD 2023
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▶ Theorem 3.5. The convolution product on the category pD of vertical presheaves is oplax
associative and oplax unital in the sense that there exists a family of natural transformations

pDn1`¨¨¨`nk pD

pDk

˚n1`¨¨¨`nk

˚n1 ˆ¨¨¨ˆ˚nk
˚k

pn1,...,nk

satisfying the coherence laws of an oplax monoidal product. In other words, pD is an oplax
monoidal category under the convolution product functors ˚n : pDn Ñ pD.

An illustrative example is given by the natural transformations

pF3 ˚ F2q ˚ F1 F3 ˚ F2 ˚ F1 F3 ˚ pF2 ˚ F1q
p2,1 p1,2

for any triple pF3, F2, F1q of presheaves of pD. To understand these natural transformations,
let us consider the following diagrams, which depict generic elements of pF3 ˚ F2q ˚ F1,
F3 ˚ F2 ˚ F1, and F3 ˚ pF2 ˚ F1q evaluated at a horizontal 1-cell r:

p2,1
ÐÝÝ

p1,2
ÝÝÑ (13)

Here s1, s2, s3, t are horizontal 1-cells, β, γ, and δ are double cells, and each αi is an element
of Fipsiq, while f, . . . , k are vertical 1-cells corresponding to the projections of the respective
double cells f “ T pδq, g “ T pγq, h “ Spγq, i “ Spδq, j “ T pβq, k “ Spβq. The diagram in
the middle of (13) may be seen as a degenerate case of the ones on the outside, in the
sense that it corresponds to taking γ to be the identity double cell (on s3 ˛h s2 and s2 ˛h s1
respectively) and taking δ “ β. This simple observation yields the natural transformations
p2,1 and p1,2. On the other hand, these natural transformations need not be invertible in
general for an arbitrary double category, since the diagrams on the outside of (13) cannot
necessarily be transformed into the one in the middle, in particular if the vertical 1-cells g
and h are non-trivial.

One special case where the oplaxity maps are easily seen to be invertible is when the
underlying vertical category D0 is discrete, i.e., when D is a bicategory.

▶ Definition 3.6. We say the convolution product on pD is strongly associative if the natural
transformations pn1,...,nk

of Theorem 3.5 are invertible for all n1, . . . , nk ě 1. We say that it
is strongly associative and unital if the pn1,...,nk

are invertible for all n1, . . . , nk ě 0.

▶ Proposition 3.7. If D0 is a discrete category then the convolution product on pD is strongly
associative and unital.

Proposition 3.7 covers in particular the case of the usual Day convolution product on
presheaves over a monoidal category, seen as a double category over the terminal category
D0 “ 1. In Section 5 we will establish sufficient conditions under which the convolution
product is strongly associative and unital. First, though, let us take a bit of time to consider
a well-known class of double categories for which it turns out that the convolution product is
strongly associative, but not strongly unital.
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4 Non-unital associativity in a framed bicategory

A special situation in which the convolution product becomes strongly associative is when
the horizontal 1-cells of the underlying double category may be “pushed” along vertical
1-cells independently with respect to their source and target, while leaving the other end
fixed. Such situations are captured precisely by the notion of framed bicategory [18].

▶ Definition 4.1 (Shulman [18, Definition 4.2]). A double category D is said to be a framed
bicategory if the pairing of the source and target functors pT, Sq : D1 Ñ D0 ˆ D0 is an
opfibration (or if it satisfies any of the equivalent conditions of [18, Theorem 4.1]).

The double category Span “ SpanpSetq is an example of a framed bicategory. Indeed, the
pushforward of a span of sets Y a

Ð Z
b
Ñ X along a pair of functions pg, hq : pY,Xq Ñ pY 1, X 1q

is given by composing the legs of the span with the two functions Y 1 g
Ð Y

a
Ð Z

b
Ñ X

h
Ñ X 1.

One important property of framed bicategories is that pushing forward along a pair of
vertical cells may be decomposed into a pair of pushforward operations with respect to the
source and the target. Given a horizontal 1-cell r : Y à X and a pair of vertical 1-cells
g : Y Ñ Y 1 and h : X Ñ X 1, we thus write xgyrxhy : Y 1 à X 1 for the pushforward of r along
pg, hq, which may be equivalently read as pxgyrqxhy (push r along g relative to T and then
along h relative to S) or as xgyprxhyq (push r along h relative to S and then along g relative
to T ). In particular, the pushforward operations are compatible with horizontal composition,
in the following sense.

▶ Proposition 4.2 ([18, Corollary 4.3]). In a framed bicategory, xgypt˛h sqxhy – pxgytq ˛h psxhyq.

This property is crucial in the proof of associativity of the convolution product for presheaves
on framed bicategories.

▶ Theorem 4.3. If D is a framed bicategory then the convolution product on pD is strongly
associative.

Proof sketch. The idea is summarized in the following series of diagrams:

= =
(T,S)-opcart

T-opcart S-opcart

(14)

Here, γ is the double cell appearing on the left side of (13), in the depiction of a generic
element of pF3 ˚ F2q ˚ F1. In the middle, by pushing s3 ˛h s2 forward along pg, hq, we have
factored γ as an op-Cartesian double cell followed by a globular cell β. On the right side
of (14), by applying Proposition 4.2, we have factored this op-Cartesian double cell as the
horizontal composition of a pair of op-Cartesian “triangles” (i.e., double cells with one side
being an identity vertical cell). Finally, using this factorization, we can turn a generic element
of pF3 ˚ F2q ˚ F1 into an element of F3 ˚ F2 ˚ F1:

ÞÑ

T-opcart S-opcart

(15)
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Note that here we rely on the covariant action of the presheaves F3 and F2 to extend the
elements α3 P F ps3q and α2 P F ps2q by the respective op-Cartesian triangles to obtain
elements of F3pxgys3q and F2ps2xhyq. It is routine to verify that the transformation (15)
defines an inverse to the natural transformation p2,1 : F3 ˚ F2 ˚ F1 Ñ pF3 ˚ F2q ˚ F1: the
equation q2,1 ˝ p2,1 “ id is trivial, while the equation p2,1 ˝ q2,1 “ id holds because the two
sides of (15) are equivalent modulo equation (12) (cf. right side of Figure 1). This argument
generalizes easily to inverting pn1,...,nk

for any n1, . . . , nk ě 1. ◀

However, the proof of the invertibility of the natural transformations pn1,...,nk
does not

extend to arbitrary sequences of non-negative integers n1, . . . , nk ě 0, and indeed in general
the convolution product on presheaves over framed bicategories is not strongly unital. Before
demonstrating this, we first state an easy observation about representability of the nullary
convolution product in the presence of an initial object.

▶ Proposition 4.4. If D0 has an initial object 0, then Ū – ∆̂U0 .

▶ Example 4.5 (Counterexample to unitality of convolution over framed bicategories). Consider
the framed bicategory Span, and let us write Span “ Span1 for its underlying category of
spans and double cells between them. Since Set has an initial object given by the empty
set H, the nullary convolution is representable (Prop. 4.4) by UH “ H Ð H Ñ H. Note
that the functor U : Set Ñ Span has a right adjoint given by the functor sending a span
Y Ð Z Ñ X to its underlying carrier Z, which implies (and indeed it is easy to verify) that
H Ð H Ñ H is itself an initial object in Span. This entails that Ū is isomorphic to the
terminal presheaf on Span.

Now, let F “ ∆̂U1 be the presheaf represented by the identity span over the one-element
set. By the aforementioned adjunction, for an arbitrary span r “ Y Ð Z Ñ X, elements
of F prq – SpanpU1, rq are in bijection with elements of Z, that is F prq – Z. In particular,
F prq is empty if Z is empty. On the other hand, since UY ˛h r

„
ÝÑ r and since Ūprq – t˚u,

every element of F pUY q – Y induces an element of pF ˚ Ūqprq. So pF ˚ Ūqprq is non-empty
if Y is non-empty. But this implies that there is no natural transformation q1,0 : F ˚ Ū Ñ F ,
and hence the oplax unitor p1,0 : F Ñ F ˚ Ū is not invertible.

5 Associativity from the positive cylindrical decomposition property

5.1 Cylindrical Decomposition Property
At this point, it must be stressed that our motivating examples of double categories coming
from rewriting theory are not framed bicategories. For many of these examples, each of
the source and target functors S, T : D1 Ñ D0 separately has some kind of opfibrational
structure (or multi-opfibrational structure, see [5]), yet the pairing pT, Sq : D1 Ñ D0 ˆ D0 is
typically not an opfibration, because pushing one end of a horizontal 1-cell along a vertical
1-cell will not leave the other end fixed. Nevertheless, we will see that such double categories
admit a strongly associative convolution product.

As an illustration, consider the double category DPO “ DPOpSetq defined as a sub-double
category of Span “ SpanpSetq with the same 0-cells and horizontal 1-cells, but restricting
vertical 1-cells to injections, and restricting double cells to pairs of pushout squares:

Y X

Y 1 X 1

“

Y Z X

Y 1 Z 1 X 1

{

{
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(DPO and similar double categories play a role in DPO-rewriting, see [5].) Now suppose that
we want to push a span of the form Y Ð H Ñ X along a pair of injective functions Y Ñ Y 1

and X Ñ X 1:

Y ∅ X

Y 1 X 1

Such a horn may be completed to a double cell in DPO just in case there exists a set Z 1

such that Y 1 – Y ` Z 1 and X 1 – X ` Z 1. But it is easy to construct examples for which
no such set exists, for instance taking |X| “ |Y | “ 1, |Y 1| “ 2, and |X 1| “ 3. So the functor
pT, Sq : DPO Ñ Inj ˆ Inj is not an opfibration.

However, despite DPO not being a framed bicategory, let us observe that it enjoys a
similar factorization property to the one used in the proof of Theorem 4.3, and which is
sufficient for proving associativity.

▶ Definition 5.1. We say that a double category D has the n-cylindrical decomposition
property if for every globular cell ρ : hnprn, . . . , r1q Ñ r and for every double cell φ : r Ñ s

there exists a family of n double cells pφn, . . . , φ1q : prn, . . . , r1q Ñ psn, . . . , s1q in Dn and a
globular cell σ : hnpsn, . . . , s1q Ñ s such that

φ ˛v ρ “ σ ˛v hnpφn, . . . , φ1q (16)

which means that the double cell φ˛v ρ factors as the vertical composition σ ˛v hnpφn, . . . , φ1q

of the globular cell σ after the horizontal composition hnpφn, . . . , φ1q, as depicted below:

¨ ¨ . . . ¨ ¨

¨ ¨

¨ ¨

rn r1

r

s

ρ

φ

“

¨ ¨ . . . ¨ ¨

¨ ¨ ¨ ¨ ¨ ¨ ¨

¨ ¨

rn r1

s

s1sn

φ1φn

σ

Moreover, the family of n cells pφn, . . . , φ1q and the globular cell σ are universal, in the
sense that for every family of n double cells pχn, . . . , χ1q : prn, . . . , r1q Ñ ptn, . . . , t1q in Dn,
for every globular cell τ : hnptn, . . . , t1q Ñ t and for every double cell ψ : sÑ t such that the
equation

ψ ˛v φ ˛v ρ “ τ ˛v hnpχn, . . . , χ1q (17)

holds, as depicted below

¨ ¨ . . . ¨ ¨

¨ ¨

¨ ¨

¨ ¨

rn r1

r

s

t

ρ

φ

ψ

“

¨ ¨ . . . ¨ ¨

¨ ¨ ¨ ¨ ¨ ¨ ¨

¨ ¨

rn r1

t

t1tn

χ1χn

τ
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there exists a unique family of n double cells pψn, . . . , ψ1q : psn, . . . , s1q Ñ ptn, . . . , t1q in Dn

such that the two equations

ψ ˛v σ “ τ ˛v hnpψn, . . . , ψ1q

pχn, . . . , χ1q “ pψn, . . . , ψ1q ˛v pφn, . . . , φ1q
(18)

are satisfied, as depicted below:

¨ ¨ . . . ¨ ¨

¨ ¨

¨ ¨

sn s1

s

t

σ

ψ

“

¨ ¨ . . . ¨ ¨

¨ ¨ ¨ ¨ ¨ ¨ ¨

¨ ¨

sn s1

t

t1tn

ψ1ψn

τ

¨ ¨ . . . ¨ ¨

¨ ¨ ¨ ¨ ¨ ¨ ¨

rn r1

t1tn

χ1χn “

¨ ¨ . . . ¨ ¨

¨ ¨ ¨ ¨ ¨ ¨ ¨

¨ ¨ ¨ ¨ ¨ ¨ ¨

rn r1

t1tn

sn s1

φn φ1

ψn ψ1

(19)

We say that D has the cylindrical decomposition property (or CDP) if it has the n-CDP for
all n ě 0, and the positive CDP if it has the n-CDP for all n ě 1.

▶ Example 5.2. Any framed bicategory has the positive CDP.

▶ Example 5.3 ([5], Prop. 6.5). DPO has the positive CDP.

▶ Example 5.4. TRSrΣs has the n-CDP for all n ě 0, in the even stronger sense that
any double cell φ : hnprn, . . . , r1q Ñ s factors uniquely as a horizontal composition φ “

hnpαn, . . . , α1q.

One can establish that

▶ Theorem 5.5. If D has the positive CDP then the convolution product on pD is strongly
associative. If it also has the 0-CDP then convolution is strongly associative and unital.

Momentarily putting aside the full motivation for the universality condition in Definition 5.1
(which will become clearer in Section 5.2 below), we can already give an intuitive explanation
for why the positive CDP entails strong associativity. Indeed, the factorization (16) applied
to the trivial globular cell γ : s3 ˝ s2 Ñ s3 ˝ s2 generalizes equation (14), allowing us to reuse
essentially the same procedure to invert the natural transformations pn1,...,nk

for any positive
n1, . . . , nk ě 1. For example, we can define an inverse q2,1 : pF3 ˚ F2q ˚ F1 Ñ F3 ˚ F2 ˚ F1
to p2,1 in an analogous way to the map (15) we used in proving strong associativity of the
convolution product over framed bicategories:

ÞÑ (20)
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Once again, the reason q2,1 defines an inverse to p2,1 boils down to the fact that the two sides
of (20) are equated by the coend formula defining the convolution product (recall Figure 1).
A similar argument can also be used to establish strong unitality when the underlying double
category D also has the 0-CDP.

Note however that neither example of Span nor DPO has the 0-CDP. It turns out
nevertheless that convolution over the latter is strongly unital, as we will briefly address in
Section 5.4.

5.2 Relative opfibrations
Here we explain how the cylindrical decomposition property can be reformulated in fibrational
terms, for a natural common generalization of the notions of Grothendieck opfibration and
of Street opfibration.

Let F : E Ñ B be a functor, and let G ι
ÝÑ B be a wide subcategory of B (i.e., ι is bijective

on objects). We define a new category F rGs as the category whose objects are given by
triples pe, b, γq of an object e P E, an object b P B, and an arrow γ : Fe↠ b in G, and whose
morphisms

pe, b, γq
pε,βq
ÝÝÝÑ pe1, b1, γ1q

are given by pairs of morphisms ε : e Ñ e1 and β : b Ñ b1 such that β ˝ γ “ γ1 ˝ Fε. This
category comes equipped with evident forgetful functors πE : F rGs Ñ E and πB : F rGs Ñ B.
Moreover, there is a functor inE : E Ñ F rGs defined on objects by inEpeq “ pe, Fe, idF eq, in
such a way that F “ πB ˝ inE. We remark that the functor inE is a left adjoint to the functor
πE, since

HomF rGspinEpeq, pe
1, b1, γ1qq “ HomF rGsppe, Fe, idF eq, pe

1, b1, γ1qq

“ tpε, βq | ε : eÑ e1, β : FeÑ b1, β ˝ idF e “ γ1 ˝ Fεu

– HomEpe, e
1q “ HomEpe, πEppe

1, b1, γ1qqq .

(21)

The construction generalizes to every wide subcategory G ι
ÝÑ B the construction of the free

opfibration πB : F rBs Ñ B associated to a functor F : E Ñ B, which one recovers when G is
the category B itself. This leads us to the following definition:

▶ Definition 5.6. Let F : E Ñ B be a functor, and let G be a wide subcategory of B. We say
that F is a G-relative opfibration if πB : F rGs Ñ B is a Grothendieck opfibration.

▶ Example 5.7. The definition above subsumes three standard notions of functor F : E Ñ B:
When G “ |B| is the discrete wide subcategory of B, a G-relative opfibration is the same
thing as a Grothendieck opfibration F : E Ñ B,
When G “ corepBq is the wide subcategory of reversible maps in B, a G-relative opfibration
is the same thing as a Street opfibration F : E Ñ B,
When G “ B is the category B itself, a G-relative opfibration F : E Ñ B is the same thing
a general functor F : E Ñ B.

Moreover, one can readily verify that the cylindrical decomposition property we introduced
above (Def. 5.1) corresponds to the following particular instance of G-relative opfibration.

▶ Proposition 5.8. A double category D satisfies the n-CDP precisely when the functor
hn : Dn Ñ D1 is a globular opfibration, that is, a G-relative opfibration where G “ D‚

1 is the
wide subcategory of D1 of globular double cells.
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The reason is that the category hnrGs can be neatly described as the category of cylindric
maps whose objects the tuples ps1, . . . , sn, s, σq where σ : hnpsn, . . . , s1q Ñ s is a globular
double cell, and whose morphisms

pψn, . . . , ψ1, ψq : psn, . . . , s1, s, σq ÝÑ ptn, . . . , t1, t, τq

consist of a family of n double cells pψn, . . . , ψ1q : psn, . . . , s1q Ñ ptn, . . . , t1q in Dn and of a
double cell ψ : sÑ t in D1 satisfying the equation

ψ ˛v σ “ τ ˛v hnpψn, . . . , ψ1q.

depicted in (19).

5.3 Kan extensions along relative opfibrations
We now state a basic result on left Kan extensions along G-relative opfibrations, analogous
to a standard result about Kan extension along Grothendieck opfibrations that is extremely
useful in practice:

▶ Lemma 5.9 (cf. e.g. [17], Cor. 5.8). Let F : E Ñ B be a Grothendieck opfibration between
small categories, and let C be cocomplete and locally small. Then the (point-wise) left Kan
extension of a functor G : E Ñ C along F at b P objpBq can be computed as a colimit over the
fiber F´1pbq,

LanFGpbq – colim
ePF ´1pbq

Gpeq . (22)

To develop a variant and generalization of this result for G-relative opfibrations, let us
first recall a few standard constructions and facts from category theory.

▶ Definition 5.10 (“Global” definition of left Kan extensions). Let p : C Ñ C1 be a functor,
and D a category. If p˚ :“ ´ ˝ p : rC1,Ds Ñ rC,Ds has a left adjoint p! : rC,Ds Ñ rC1,Ds, i.e.,
if p! % p˚, then for all functors F : C Ñ D the left Kan extension LanpF exists and is given
by LanpF “ p!F .

▶ Lemma 5.11. Let L % R be a pair of adjoint functors, with L : C Ñ C1 and R : C1 Ñ C.
Then for every category D, there is an induced pair of adjoint functors ´ ˝ R % ´ ˝ L :
rC1,Ds Ñ rC,Ds. Therefore, for any functor F : C Ñ D, the left Kan extension LanLF of F
along L is given by LanLF “ F ˝R.

▶ Theorem 5.12. Let F : E Ñ B be a G-relative opfibration for some wide subcategory G
of B, and let P : E Ñ Set be a covariant presheaf (for small categories E and B). Then for
every object b of B, we find that

LanFP pbq – LanπBP ˝ πEpbq – colim
pe,b,γqPπ´1

B pbq
P peq –

˜

ž

ePE
GpF̄ peq, b̄q ˆ P peq

¸

ä„G . (23)

Here, we used convenient shorthand notations F̄ peq :“ ι´1 ˝ F peq and b̄ :“ ι´1pbq, and the
equivalence relation „G is defined as

pe, pγ, pqq „G pe1, pγ1, p1qq :ô De´ εÑ e1 P E, pδ, qq P GpF̄ pe1q, b̄q ˆ P peq :
pγ, pq “ pδ ˝ ι´1 ˝ F pεq ˝ ι, qq ^ pγ1, p1q “ pδ, P pεqqq .

(24)
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Proof. Recall that F factorizes uniquely as F “ πB ˝ inE, and that inE % πE. Let us then
compute LanFP step-wise via LanFP “ LanπB˝inEP “ LanπBLaninEP :

E

F rGs Set

B

inEπE

πB

LaninE P

P

LanπB pLaninE P q“LanF P

F

%

λinE

λπB

(25)

By Lemma 5.11, since inE % πE, LaninEP “ P ˝ πE. Since F by assumption is a G-relative
opfibration, πB is in particular a Grothendieck opfirbation, hence according to Lemma 5.9,

LanπBP ˝ πEpbq – colim
pe,b,γqPπ´1

B pbq
P peq –

¨

˝

ž

pe,b,γqPπ´1
B pbq

P peq

˛

‚ä„F rGs
.

Here, the equivalence relation „F rGs is the least equivalence relation such that

ppe, b, γq, pq „F rGs ppe
1, b, γ1q, p1q :ô Dpe, b, γq

pε,idbq
ÝÝÝÝÑ pe1, b, γ1q P π´1

B pbq : p1 “ P pεqp .

Finally, according to the definition of morphisms in F rGs, for a morphism pε, idbq in the
above equation exists only if γ “ γ1 ˝ F pεq, which explains the last isomorphism in (23). ◀

We will now demonstrate the utility of these results for evaluating convolution products.
Invoking Theorem 5.12 yields the following results:

▶ Lemma 5.13. Let D be a double category such that for all n ą 1, the functors hn : Dn Ñ D1
are globular opfibrations (i.e., D has the positive CDP property). Denote by ι : D‚

1 Ñ D1 the
inclusion functor from the wide subcategory of globular morphisms into D1, and define D‚

n as
the wide subcategory of Dn whose morphisms satisfy hnpDnq P D‚

1. Let Fn, . . . , F1 : D1 Ñ Set
be covariant presheaves, and denote by F‚

n : Dn Ñ Set the restriction of Fn ˆ . . .ˆ F1 to D‚
n.

Then the convolution product formula simplifies as follows:

pFn ˚ . . . ˚ F1qprq –

¨

˝

ž

RPD‚
n

D‚
1phnpRq, rq ˆ F‚

npRq

˛

‚ä„‚n
(26)

where „‚n is the least equivalence relation that satisfies

pR, pσ, fqq „‚n pR1, pσ1, f 1qq ô DR´AÑ R1 P D‚
n, pγ, gq P D‚

1phnpR
1q, rq ˆ F‚

npRq :
pσ, fq “ pγ ˝ hnpAq, gq ^ pσ1, f 1q “ pγ,F‚

npAqgq .
(27)

In order to provide some intuition for the structure of convolution products within the
refined framework, we provide below a graphical illustration of „‚n

(where σ “ τ ˛v hnpAq):

¨ ¨ ¨ ¨ ¨ ¨

¨ ¨

R2

Fn F2 F1

s

Rn R1

f2
f1

τ˛vhnpAq

fn

„‚n
¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨

Fn F2 F1

s

R1
n R2 R1

Fnpαnqfn

τ

F2pα2qf2 F1pα1qf1

A “

¨ ¨ ¨ ¨ ¨ ¨

¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨
R1

n
R2 R1

Rn

R2
R1

αn α2 α1 P D‚
n

(28)
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The preceding discussion allows us to give a fully rigorous proof of Theorem 5.5, which
may be found in the long version of the paper (to appear).

5.4 A brief analysis of unitality
As already mentioned, neither the framed bicategory Span nor the double category DPO
modeling DPO-rewriting have the 0-CDP, in the sense that the functor h0 “ U : D0 Ñ D1
is not a globular opfibration. Nevertheless, the convolution product over DPO is in fact
strongly unital. One way to establish unitality is by showing that DPO and similar double
categories do satisfy a weakened version of the 0-CDP, equivalent to saying that h0 is an
opfibration relative to both the subcategory of S-vertical maps (i.e., double cells α such that
Spαq is an identity in D0) and the subcategory of T -vertical maps. We leave a more detailed
analysis of this phenomenon to future work.

6 Categorification of rule algebras

As a presheaf, the convolution product ∆̂s ˚ ∆̂r of two representable presheaves ∆̂r and ∆̂s is
isomorphic to a colimit of representables by general considerations on categories of presheaves.
Moreover, the fact that the convolution product ˚ : pDˆ pD Ñ pD preserves colimits component-
wise (Prop. 3.2) implies that it is entirely determined by its restriction D1 ˆ D1 Ñ D̂ to
representable presheaves. In the introduction, we recalled how the rule algebra product was
typically defined as a sum over admissible matchings between two rules, see equation (1).
We now categorify this formula by showing that in many situations the convolution product
of representable presheaves is isomorphic to a sum of representables of the following form

∆̂r2 ˚ ∆̂r1 –
ÿ

jPJ

∆̂sj

where the family of horizontal cells noted

r2 ⃝‹ r1 “
`

sj : Aj á Bj

˘

jPJ

can be effectively computed from r1 and r2. The property means that, in a certain sense, the
family r2 ⃝‹ r1 “ psjqjPJ classifies the convolution product of the presheaves ∆̂r2 with ∆̂r1 ,
thus providing a categorified version of what is known as the concurrency theorem in rewriting
theory (compare [1, 4, 5, 7, 13]). The intuition is that the composition of two rewrite rules
can be classified into a number of different, disjoint cases, induced by all possible ways of
matching the source of one rule with the target of the other.

In order to formalize this intuition in the language of double categories, we make from
now on the assumption that our double category D satisfies the following property:

(i) the vertical category D0 has multi-sums.

We find useful to recall at this stage the notion of multi-sum due to Diers [12]. Suppose
that A and B are objects in a category. A multi-sum (or multi-coproduct) of A and B is a
family of cospans

´

A
ai
ÝÑ Ui

bi
ÐÝ B

¯

iPI
(29)

such that for any cospan A
f
Ñ X

g
Ð B there exists a unique i P I and a unique morphism

rf, gs : Ui Ñ X such that f “ rf, gs ˝ ai and g “ rf, gs ˝ bi. The multi-sum generalizes
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the standard notion of coproduct A a
Ñ A ` B

b
Ð B to situations in which there may not

necessarily be a single universal cospan through which all other cospans A f
Ñ X

g
Ð B factor,

but there is nonetheless a universal family (29) of such cospans. As with the ordinary
coproduct of two objects, when it exists the multi-sum of A and B is unique up to unique
isomorphism.

Notation: given two horizontal 1-cells r1 : A á B and r2 : C á D of the double
category D, we find sometimes convenient to write Σ˚

pr2,r1q
for the set of cospans pm2,m1q “

pci, biq appearing in the multi-sum of B and C. This notation is used in particular in §6.2.

6.1 A first easy version of categorification
We start by establishing a categorification of equation (1) under the general assumption that
(ii) the source and target functors S, T : D1 Ñ D0 are Grothendieck opfibrations.

This assumption holds for framed bicategories since it is weaker than the assumption
that the pairing pT, Sq is an opfibration. It also holds for the double category TRSrΣs of
term rewriting which is not a framed bicategory. On the other hand, this assumption is too
strong for the double category DPO, and we will see further below how to weaken it to prove
a more general formula that also applies in that case. We establish that

▶ Theorem 6.1. Assume D is a small double category satisfying assumptions (i) and (ii)
and suppose that r1 : Aá B and r2 : C á D are horizontal 1-cells in D. In that case, the
convolution product of two representable presheaves is isomorphic to the sum of representables

∆̂r2 ˚ ∆̂r1 –
ÿ

iPI

∆̂r2 xciy ˛h xbiy r1 (30)

where the multi-sum of B and C is given by a family of cospans pB
bi
Ñ Ui

ci
Ð CqiPI , and

where r2 xciy denotes the S-pushforward of r2 along ci and xbiy r1 denotes the T -pushforward
of r1 along bi.

Proof. By definition, an element of ∆̂r2 ˚ ∆̂r1 evaluated at a generic horizontal 1-cell r
consists of three double cells of the following shape:

D C B A

¨ X ¨

¨ ¨

r1r2

g f

s1s2

r

β

α2 α1

Since pB
bi
Ñ Ui

ci
Ð CqiPI is the multi-sum of B and C, there exists a unique i P I and a

morphism rf, gs : Ui Ñ X such that f “ rf, gs ˝ bi and g “ rf, gs ˝ ci. By the assumption
that S and T are opfibrations, the double cells α1 and α2 therefore factor as follows:

D C B A

¨ X ¨

r1r2

g f

s1s2

α2 α1 “

D C B A

¨ Ui ¨

¨ X ¨

r1r2

s1s2

ci ui

rf,gs

r2xciy r1xbiy

α̃2

T opcartS-opcart

α̃1
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Observe that the double cell pα̃2 ˛h α̃1q ˛v β is an element of the representable ∆̂r2 xciy ˛h xbiy r1

evaluated at r. This defines a natural transformation from ∆̂r2 ˚ ∆̂r1 to
ř

iPI ∆̂r2 xciy ˛h xbiy r1 ,
which is invertible by the universal properties of the multi-sum and the pushforward. ◀

▶ Example 6.2. In Example 3.3 we saw how the convolution product ∆̂r ˚ ∆̂r of the
representable presheaf for the rewrite rule r : mpe, xq á x decomposes as the sum (9) of
representables. This decomposition may be seen as a consequence of Theorem 6.1. First,
note that the multi-sum of x and mpe, xq exists in TRSrΣs0, and is given by the minimal set
of four unifying context/substitution pairs depicted below (with the last corresponding to
the disjoint matching of the two terms, up to variable renaming).

mpe, xq x

mpe, xq

p´|mpe,xq{xq

mpe, xq x

mpe, xq

pmp´,xq|e{xq

mpe, xq x

mpe, xq

pmpe,´q|x{xq

mpe, xq x

mpe, xq, y

p´,y|idq pmpe,xq,´|y{xq

Moreover, observe that the functors S, T : TRSrΣs1 Ñ TRSrΣs0 are Grothendieck opfibrations,
indeed even discrete opfibrations: the S-pushforward of a rule t á t1 along a vertical 1-cell
t ↣ u “ Crtσs is the rule Crtσs á Crt1σs, and similarly for the T -pushforward along a
vertical 1-cell t1 ↣ u1 “ Crt1σs. Instantiating (30), we recover (9).

6.2 A more advanced version of categorification
In this subsection, we refine the assumptions of the previous subsection in order to establish
in a more general framework that the convolution product of two representable presheaves is
a sum of representables. One main motivation is to include among our examples the double
category DPO and other double categories of interest in graph rewriting theory. From now
on, we thus make the following two assumptions (iia) and (iib) on the double category D,
which generalize the assumption (ii) just made in the previous subsection:

(iia) the source functor S : D1 Ñ D0 is a multi-opfibration;
(iib) the target functor T : D1 Ñ D0 is a residual multi-opfibration.

The three assumptions (i), (iia) and (iib) are part of the definition of compositional
rewriting double category (crDC) formulated in [5] where the interested reader will find the
notion of (residual) multi-opfibration. We establish that

▶ Theorem 6.3. Assume D is a small double category satisfying assumptions (i), (iia)
and (iib) and suppose that r1 : Aá B and r2 : C á D are horizontal 1-cells in D. In that
case, the convolution product of two representable presheaves is isomorphic to the sum of
representables

∆̂r2 ˚∆̂r1 –
ÿ

pm2,m1qPΣ˚

pr2,r1q

ÿ

pm1 ‹j ,β1,jqPT ˚pr1;m1q

ÿ

β2,j,kPS˚pr2,m1 ‹j˝m2q

∆̂β2,j,kpr2q˛hβ1,jpr1q (31)

where Σ˚
pr2,r1q

denotes the set of cospans appearing in the multi-sum of B and C, and where
a choice of cleavages S˚, T˚ for S, T on D0, respectively.
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For illustration, every element of the presheaf ∆̂r2 ˚ ∆̂r1 at instance the horizontal arrow r

may be factored in the following way:

¨ ¨ ¨ ¨

¨ ¨

¨ ¨

r2 r1

¨

¨

r

m2

m1‹ j

m1

α

β2,j,k β1,j

(32)

where the pair pm2,m1q of vertical arrows m1 : B ↣ Ui and m2 : C ↣ Ui is an element of
the set Σ˚

pr2,r1q
of cospans appearing in the multi-sum of B and C.

7 Conclusion

In this paper, we explain how our original project of categorifying the rule algebra pR, ‹q
associated to a compositional rewriting theory brought us to formulate a very general notion
of convolution product ˚ : pDˆ pD Ñ pD for vertical presheaves over a double category D. The
convolution product is only oplax associative in general, and we thus investigate in the paper
sufficient conditions on the double category D for the convolution product to be strongly
associative. We start by establishing that the convolution product is strongly associative
in the case of framed bicategories, but not necessarily strongly unital. We then extend this
result by formulating a more general cylindrical decomposition property for double categories
(as an instance of the more general notion of relative opfibration) which, we show, implies
that the convolution product is strongly associative under the assumption of n-CDP for all
n ą 0. The question of the strong unitality of the convolution product appears to be very
subtle and interesting: it fails for the framed bicategory Span (Example 4.5), it holds for
TRSrΣs as a consequence of 0-CDP, and it holds for DPO despite the failure of 0-CDP.

One main achievement of the paper is to justify the view that the convolution product
˚ : pD ˆ pD Ñ pD categorifies the product ‹ : R bk R Ñ R of the rule algebra, thanks to
formulas (30) and (31) which play the role of formula (1). We see this as a foundation for
developing a deeper understanding of the rule algebra representation ρ : R Ñ EndokpSq
defined by formula (2) in the introduction, as well as formula (3). A strong benefit of
categorification which we will clarify in future work is that it unifies, thanks to the Yoneda
embedding, the rule algebra R with its action on states in S through the representation ρ,
following a healthy analogy with the well-known principle of Cayley theorem in algebra.
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Abstract
Metatheorems about type theories are often proven by interpreting the syntax into models constructed
using categorical gluing. We propose to use only sconing (gluing along a global section functor)
instead of general gluing. The sconing is performed internally to a presheaf category, and we recover
the original glued model by externalization.

Our method relies on constructions involving two notions of models: first-order models (with
explicit contexts) and higher-order models (without explicit contexts). Sconing turns a displayed
higher-order model into a displayed first-order model.

Using these, we derive specialized induction principles for the syntax of type theory. The input
of such an induction principle is a boilerplate-free description of its motives and methods, not
mentioning contexts. The output is a section with computation rules specified in the same internal
language. We illustrate our framework by proofs of canonicity and normalization for type theory.
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1 Introduction

The syntax of a type theory can be presented as the initial object in the category of models
of a generalized algebraic theory (GAT), i.e. as a quotient inductive-inductive type (QIIT).
Initiality provides an induction principle for the syntax, namely the dependent eliminator of
the QIIT. Metatheoretic properties of the syntax, such as canonicity or normalization, can
then be proven by carefully constructing models of the theory displayed over the syntax, or
equivalently the motives and methods of the induction principle. However, the presentation
of the syntax as a QIIT includes an explicit encoding of the substitution calculus of the
theory; in particular every type or term former comes with a substitution rule. If all of the
components of a complicated model are written explicitly, one has to prove that they all
respect substitution. More importantly, when working exclusively at this level of generality,
it is not easy to abstract the proof methods into reusable theorems.
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An alternative to the (first-order) genereralized algebraic presentation is to present a type
theory as a second-order or higher-order theory, for example by using a Logical Framework [20]
or Uemura’s representable map categories [36]. A higher-order presentation enables the use
of higher-order abstract syntax (HOAS), in which binders are encoded by metatheoretic
functions. In practice, this means that stability under substitution is implicit. Semantically,
HOAS admits an interpretation in the internal language of presheaf categories [22]. Within
the internal language of a presheaf category, all constructions are automatically stable under
the morphisms of the base category.

In this work we propose an approach that combines the strengths of the first-order and
higher-order presentations. We consider two notions of models of a type theory: first-order
models correspond to the first-order presentation, while higher-order models correspond to the
higher-order presentation. Typically, first-order models are categorical models of type theory
(categories with families equipped with additional structure), while higher-order models are
approximately universes closed under the type formers of the theory. Both of these notions
make sense both externally and in the internal language of a presheaf category. We also
have notions of displayed higher-order and first-order models, corresponding to the motives
and methods of induction principles. We present a small number of constructions switching
between external, internal, first-order and higher-order models. Any of these constructions is
individually simple, but they can be composed to derive the induction principles we need to
prove metatheoretic results. The constructions are listed below (FOM = first-order model,
HOM = higher-order model). The restriction and externalization operations can also be
applied to displayed first-order models and morphisms of first-order models.

Construction Input Output
Internalization FOM M HOM C in Psh(M)

Set-contextualization HOM M FOM SetM
Telescopic contextualization HOM M FOM TeleM

Restriction Functor F : C → D, FOM F ∗(M) in Psh(C)FOM M in Psh(D)
Externalization FOM M in Psh(D) External FOM 1∗

D(M)

Scone-contextualization FOM M, Displayed FOM SconeM• over MDisplayed HOM M• over M

The most notable operations are the contextualizations1, which turn higher-order models
into first-order models. The Set-contextualization generalizes the construction of a first-
order model from a universe; its underlying category is always the category of sets. The
telescopic contextualization is the contextual core of the Set-contextualization; it restricts
the underlying category to a category of telescopes. The Scone-contextualization is a
generalization of the Set-contextualization to displayed higher-order and first-order models,
which correspond to the motives and methods of induction principles; its underlying category
is always the Sierpinski cone, also called scone, of some first-order model M.

Our main observation is that sconing (that is Scone-contextualization) internally to
a presheaf category corresponds when viewed externally to a more complicated gluing
construction. For example, the normalization model from [12] can be recovered as the
externalization of the Scone-contextualization of a displayed higher-order model constructed
in presheaves over the category of renamings.

1 The word contextualization reflects the fact that these operations make contexts explicit. It is not
related to the notion of contextual model.
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The main intended application of these constructions is the statement and proofs of
relative induction principles. It is typically the case that the result of induction over the
syntax of type theory only holds over some of the syntactic contexts, or is only stable under
some of the syntactic substitutions. For example, canonicity only holds over the empty
context. Normalization holds over every context, but is only stable under renamings. This
situation is described by a functor into the syntax F : R → S: the result of the induction
should be stable under the morphisms of R. These functors are called “figure shapes” by
Sterling [32], they are also related to worlds in Twelf [29]. We prove the relative induction
principles for the following functors. For cubical type theories, see Appendix C in the Full
Version of the paper.

1Cat → ST Canonicity [12] (Theorem 14)
RenS → ST Normalization [4, 12] (Theorem 18)
□ → SCTT (Homotopy/strict) canonicity for cubical type theory [13]
A□ → SCTT Normalization for cubical type theory [34]

We also show how to prove canonicity and normalization by instantiating the relative induction
principles for 1Cat → ST and RenS → ST . We don’t prove canonicity nor normalization for
cubical type theory, but we expect that the currently known proofs could be reformulated as
instances of the relative induction principles for □ → SCTT and A□ → SCTT.

Typically, the category R can be described as the initial object of some category of
structured categories. A relative induction principle with respect to the functor F is an
induction principle that combines the universal properties of R and S. In our previous
work [10], the relative induction principles were stated in terms of the rather ad-hoc notions
of “displayed models without context extensions” and “relative sections”. In the present
work, the input of a relative induction principle is a displayed higher-order model S•, and
the result is just a (first-order) section J−K of SconeS• . The previous notion of “displayed
model without context extension” is recovered in the special case of displayed higher-order
models over F ∗(TeleS). The following diagram illustrates the constructions involved in the
statement and proof of a relative induction principle (F : R → S).

External Internal to Psh(S) Internal to Psh(R)

First-order

Higher-order

S

S

TeleS F ∗(TeleS) SconeS•

S•
Internalization

Telescopic
contextualization

Restriction

Scone-
contextualization

Both S• and SconeS• are displayed over the internal first-order model F ∗(TeleS).

S• SconeS•

F ∗(TeleS)

J−K

An important feature of our work is that the section J−K admits good computational
behaviour, although we do not formally analyze this behaviour. In fact, part of our under-
standing comes from looking at the computational behaviour of the congruence operation ap
in higher observational type theory [31, 6], which is also a morphism of (first-order) models
internally to presheaves over the syntax of H.O.T.T.

FSCD 2023
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Related work

Logical relations and categorical gluing. The initial motivation for this work was the
understanding of algebraic and reduction-free normalization proofs for dependent type
theories. Variants of categorical gluing were used to prove canonicity or normalization
for simple types [2, 15, 35], System F [3], and dependent types [4, 12, 14]. These can be
contrasted with reduction based normalization proofs such as [1, 30].

Logical relations were used to prove syntactic parametricity for type theory [9, 5] and
definability for simply typed lambda calculus [25]. It was shown that categorical gluing
generalizes both syntactic parametricity and canonicity proofs [27].

Logical frameworks and higher-order abstract syntax. Higher-order abstract syn-
tax (HOAS) is the use of metatheoretic functions to specify syntactic binders. Hofmann [22]
has explained how HOAS can be interpreted in the internal language of presheaf categories.

Uemura [36] has given a general definition of type theory based on these ideas, which
we will call second-order generalized algebraic theories (SOGATs). It generalizes notions of
second-order algebraic theories that have been studied by Fiore and Mahmoud [16]. Harper
presents an equational variant of logical framework [19] for defining theories with bindings
corresponding to SOGATs. We believe that the constructions in our paper generalize to
any SOGAT. Gratzer and Sterling [18] propose using LCCCs to define higher order theories
(without representability conditions) which correspond to our higher order models, but we
also consider first order models.

Synthetic Tait computability. Synthetic Tait computability (STC, [32, 33]) is an approach
that relies on the internal language of the Artin gluing of toposes, typically constructed
by gluing syntactic and semantic toposes. A pair of open/closed modalities can be used to
distinguish the syntactic and semantic parts in the internal language of the Artin gluing.
STC has been applied to proofs of normalization for cubical type theory [34], multimodal
type theory [17] and simplicial type theory [37].

Both STC and our approach provide a synthetic setting for proofs of metatheorems. Our
approach is perhaps simpler in some aspects, e.g. we don’t use any modalities and don’t need
to use realignment; we acknowledge that this is partly a matter of preference. The main
advantage of our approach over STC is that we have an internal specification of the result of
an induction principle.

In his thesis [32], Sterling briefly discusses the notion of Henkin model of a higher-order
theory. A Henkin model is a higher-order model with a non-standard interpretation of the
dependent products. We note that Henkin models are closely related to first-order models:
the Henkin models of a second-order theory are equivalent to the democratic first-order
models (this is [36, Theorem 7.30]).

Contributions

The main takeaway of this paper is that when using HOAS, we should not discard the first
order presentation, even in an internal setting. In particular, the right notion of displayed
higher-order model (input of an induction principle) lies over a first-order model. The output
of an induction principle is also a section of first-order models, still internal.

The technical contributions are:
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the relative induction principles which combine the initiality of the underlying category
and initiality of the syntax; we derive four such induction principles;
the internalization, contextualization, externalization constructions which let us formulate
the relative induction principles;
the derivation of internal sections by analyzing the category of sections.

The main takeaway is supported by applications of the induction principles: boilerplate-free
proofs of canonicity and normalization. The fact that the notion of section is specified
internally has the feature that we can reuse it directly in subsequent inductions. We exploit
this in the proof of uniqueness of normal forms which is proven in a separate step after
normalization, relying on how the section computes normal forms.

Structure of the paper
In Section 2 we define first-order- and higher-order models of an example type theory, and
constructions relating them. In Section 3, we define displayed higher order models which
collect the motives and methods of an induction principle. We also define sconing which
turns a displayed higher order model into its first order variant, also providing a notion
of section. Then we move on to applications: we prove canonicity in Section 4 using an
induction principle relative to the empty context (Theorem 14) which is a trivial consequence
of our previous definitions. In Section 5, we prove normalization using an induction principle
relative to renamings (Theorem 18). This induction principle is proved using the methods
described in Section 6. Another application (syntactic parametricity) of Theorem 14 is
described in the Full Version of the paper, Appendix B. In Appendix C of the Full Version,
cubical variants of the above induction principles are also proven.

Background
We assume some familiarity with the categorical semantics of type theory [11, 5] and with
the use of extensional type theory as the internal language of presheaf categories [21].

We use the notion of locally representable dependent presheaf to encode context extensions
(see Definition 21). This definition is a more indexed formulation of the notion of representable
natural transformation, which was used by Awodey to give an alternative definition of CwFs,
known as natural models [8].

2 First-order and higher-order models

Our running example is a minimal dependent type theory T with only Π-types, but our
constructions directly generalize to larger type theories. Some other type theories are
considered in the Full Version of this paper, including dependent type theories with universes
and cubical type theories. We leave generalization to arbitrary second-order generalized
algebraic theories to future work.

We define notions of higher-order and first-order models for T . A higher-order model is
essentially a universe closed under dependent products, while a first-order model is a category
with families (CwF) equipped with Π-types. The higher-order models are the models of some
higher-order theory T ho (a theory whose operations can have a higher-order sort; classified
by some locally cartesian closed category), whereas the first-order models are the models
of some (first-order) essentially2 algebraic theory T fo (a theory whose operations have a
first-order sort; classified by some finitely complete category).

2 The distinction between generalized algebraic theories and essentially algebraic theories is not relevant
in this paper.
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2.1 Definitions
▶ Definition 1. A higher-order model of T consists of the following families and opera-
tions:

Ty : Set,
Tm : Ty → Set,
Π : ∀(A : Ty)(B : Tm(A) → Ty) → Ty,

app : ∀A B (f : Tm(Π(A, B))) (a : Tm(A)) → Tm(B(a)),
lam : ∀A B (b : (a : Tm(A)) → Tm(B(a))) → Tm(Π(A, B)),

subject to equations corresponding to the β- and η-rules:

lam(λa 7→ app(f, a)) = f, app(lam(b), a) = b(a). ⌟

▶ Definition 2. A first-order model of T is a CwF C equipped with Π-types. ⌟

The notion of first-order model can be presented by a first-order generalized algebraic
theory T fo. Equivalently, a first-order model is a category C with a terminal object 1C , along
with a (global) higher-order model C of T in Psh(C) such that the dependent presheaf C.Tm
is locally representable. The higher-order model C is called the internalization of C.

We use blackboard bold letters M, N, C, S, R, etc. to refer to higher-order models, and
calligraphic letters M, N , C, S, R, etc. to refer to first-order models. We try to use the
corresponding letter for the underlying internal higher-order model of a first-order model,
e.g. if C is an external first-order model, we use C for its underlying internal higher-order
model in Psh(C). We denote the components of a model by C.Ty, C.Tm, C.Π, etc.

We write ModT for the 1-category of first-order models of T , and ST or just S for its
initial object (the letter “S” standing for both syntax and substitutions).

2.2 Contextualization
In general, we almost never want to construct all of the components of a first-order model
explicitly, because checking functoriality and naturality conditions without relying on the
internal language of a presheaf model is tedious. For some models however, the functoriality
and naturality conditions hold trivially. This is the case for the “standard model” of type
theory over the category of sets: when defining this standard model in intensional type
theory, all naturality and functoriality conditions hold definitionally.

The construction of the standard model generalizes to the construction of a first-order
model from a higher-order model, which we now describe.

▶ Construction 3 (Set-Contextualization). Let M be a higher-order model of T . We construct
a first-order model SetM, called the Set-contextualization of M. Its underlying category is
the category Set of sets.

The types and terms of SetM are indexed families of types and terms of M:
A type over Γ ∈ Set is a function Γ → M.Ty.
Type substitution along a function f : ∆ → Γ is precomposition with f .
A term of type A : Γ → M.Ty is a dependent function (γ : Γ) → M.Tm(A(γ)).
Term substitution along a function f : ∆ → Γ is precomposition with f .
The functoriality of substitution is associativity of function composition.
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The context extensions are given by dependent sums in Set:

(Γ.A) ≜ (γ : Γ) × M.Tm(A(γ)).

The type-theoretic operations are all defined pointwise:

SetM.Π(Γ, A, B) ≜ λγ 7→ M.Π(A(γ), λa 7→ B(γ, a)),
SetM.app(Γ, f, a) ≜ λγ 7→ M.app(f(γ), a(γ)),
SetM.lam(Γ, b) ≜ λγ 7→ M.lam(λa 7→ b(γ, a)).

The β- and η-rules for SetM hold as a consequence of the corresponding rules for M.
The naturality conditions are all trivial. For example, in the case of the Π type former,

we have to check Π(Γ, A, B)[f ] = Π(∆, A[f ], B[f+]) for any f : ∆ → Γ, where f+(γ, a) =
(f(γ), a). This amounts to checking the equality

(λγ 7→ M.Π(A(γ), λa 7→ B(γ, a))) ◦ f = (λγ 7→ M.Π((A ◦ f)(γ), λa 7→ (B ◦ f+)(γ, a))). ⌟

▶ Remark 4. Note that the underlying category Set of SetM now has two CwF structures:
An inner CwF structure, as defined in Construction 3.
An outer CwF structure, corresponding to the usual CwF structure on the category of
sets, modeling extensional type theory.

Together, they form a model of two-level type theory [7].

2.3 Telescopic contextualization
A first-order order model is said to be contextual when every object can be uniquely written
as an iterated context extension starting from the empty context. The contextual first-order
models form a coreflective subcategory Modcxl

T of ModT : the inclusion Modcxl
T → ModT

has a right adjoint cxl: the contextual core cxl(C) has as objects the iterated context extensions
of C, also known as telescopes, over the empty context.

▶ Definition 5. Let M be a higher-order model of T . The telescopic contextualization
TeleM is the contextual core of the Set-contextualization SetM. ⌟

By general properties of the contextual core, there is a model morphism ⌊−⌋ : TeleM →
SetM that is bijective on types and terms. (There is a cofibrantly generated factorization
system on first-order models with such morphisms as its right class. The contextual models
are precisely those in the left class.)

When working internally to some presheaf category Psh(C), another related construction
involves the internal subcategory spanned by よ : ObC → Set, where ObC is the discrete
presheaf on the set of objects of C, and よ internalizes the Yoneda embedding. This “Yoneda
universe” has been used by Hu et al. [23] to give semantics to contextual types.

2.4 Internal first-order models
Since the notion of first-order model is described by an essentially algebraic theory, it can
be interpreted in any finitely complete category. In particular, there is a notion of internal
first-order model in any category Ĉ of small presheaves, obtained by letting Set stand for the
Hofmann-Streicher universe of the presheaf topos Psh(C) in the definition of model.

▶ Proposition 6. The following three notions are equivalent:
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1. First-order models of T in Psh(C);
2. Finite limit preserving functors T fo → Ĉ, where T fo is the finitely complete category

classifying the first-order models of T ;
3. Functors C → Modop

T .

Proof. This is well-known [24, D1.2.14]. The equivalence between (1) and (2) is the fact
that T fo classifies the first-order models of T . The equivalence between (2) and (3) follows
from the fact that finite limits in Ĉ are computed pointwise. ◀

2.5 Restriction and externalization

Another important operation on first-order models is the restriction of a first-order model M
internal to Psh(D) along a functor F : C → D. This restricted model F ∗(M) is a first-order
model internal to Psh(C). If M is seen as a functor D → Modop

T , then the restriction
F ∗(M) : C → Modop

T is simply the precomposition (M ◦ F ). If M is seen instead as a
finite-limits preserving functor T fo → Psh(D), then F ∗(M) is postcomposition with the
inverse image functor F ∗ : Psh(D) → Psh(C). These two definitions coincide up to the
equivalence of Proposition 6; which is thus natural in the base category.

▶ Remark 7. A more explicit computation of the restriction can be given in the internal
language of Psh(C) using the dependent right adjoint associated to the adjunction (F! ⊣ F ∗).
When M is the Set- or telescopic contextualization of a higher-order model, then the
dependent right adjoint allows for the use of HOAS when working with F ∗(M). ⌟

A special case of the restriction is the externalization of an internal first-order model.

▶ Definition 8. Let C be any category with a terminal object 1C, and consider the functor
1C : 1Cat → C that selects this terminal object. For any internal first-order model M in
Psh(C), we have an external first-order model 1∗

C(M), called the externalization of M. ⌟

Given any higher-order model M in Psh(C), we can construct the externalization
1∗

C(TeleM) of its telescopic first-order model. Up to isomorphism, all external contextual
first-order models arise as the externalization of a telescopic contextualization.

▶ Lemma 9. Let C be an external first-order model, with C its underlying internal higher-order
model. Then 1∗

C(TeleC) is the contextual core of C.

Proof. See Corollary 24. ◀

In particular, since the initial model S is contextual, the externalization 1∗
S(TeleS) of its

telescopic contextualization is isomorphic to S.
We can also construct the externalization 1∗

C(SetC) of the internal Set-contextualization
of an higher-order model C. The underlying category of 1∗

C(SetC) is the category of presheaves
over C (restricted to some universe level); and 1∗

C(SetC) is an external model of two-level type
theory (its underlying category is the restriction of Psh(C) to some universe level). Recall
that there is, internally to Psh(C), a morphism ⌊−⌋ : TeleC → SetC of first-order models.
This morphism can also be externalized, giving an external morphism 1∗

C(⌊−⌋) : 1∗
C(TeleC) →

1∗
C(SetC) of first-order models. When 1∗

C(TeleC) ∼= C, this is a simple construction of the
embedding of C into the presheaf model of two-level type theory.
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3 Displayed higher-order models

3.1 Motives and methods
We now define the notion of displayed higher-order model, which collects the motives and
methods of induction principles. One could expect that a displayed higher-order model
would be displayed over a base higher-order model. We instead define the notion of displayed
higher-order model over a base first-order model; it is always possible to turn higher-order
models into first-order models using a contextualization, but not every first-order model
arises in this way.

▶ Definition 10. Let M be a first-order model of T . A displayed higher-order model
M• over M consists of the following data:

Ty• : M.Ty(1M) → Set,
Tm• : ∀(A : M.Ty(1M)) (A• : Ty•(A)) → M.Tm(1M, A) → Set,
Π• : ∀(A : M.Ty(1M)) (A• : Ty•(A))

(B : M.Ty(1M.A)) (B• : ∀(a : M.Tm(1M, A))(a• : Tm•(A•, a)) → Ty•(B[a]))
→ Ty•(Π(A, B)),

app• : ∀A A• B B• (f : M.Tm(1M, Π(A, B))) (f• : Tm•(Π•(A•, B•), f))
(a : M.Tm(1M, A)) (a• : Tm•(A•, a))
→ Tm•(B•(a•), app(f, a)),

lam• : ∀A A• B B• (b : M.Tm(1M.(a : A), B[a]))
(b• : ∀(a : M.Tm(1M, A))(a• : Tm•(A•, a)) → Tm•(B•(a•), b[a]))
→ Tm•(Π•(A•, B•), lam(b)),

such that the following equalities hold:

app•(lam•(b•), a•) = b•(a•), lam•(λa• 7→ app•(f•, a•)) = f•. ⌟

Most of the components of a displayed higher-order model only depend on the closed
types and terms of M; only the binders need to refer to open types and terms.

Note that the data of a displayed higher-order model over the terminal first-order model
is equivalent to the data of a non-displayed higher-order model.

3.2 Displayed contextualization
Given any displayed higher-order model M• over M, we construct a displayed first-order
model over M. This construction is a displayed generalization of the Set-contextualization.

The underlying displayed category of this construction is the Sierpinski cone, or scone,
of M. The scone of a category C with a terminal object is the comma category (Set ↓ ΓC),
where ΓC : C → Set is the global section functor ΓC = C(1C , −).

▶ Construction 11 (Displayed contextualization). Fix a displayed higher-order model M• over
a first-order model M. We construct a displayed first-order model SconeM• over M, called
the displayed contextualization of M•.

An object of SconeM• over Γ ∈ M is a family

Γ† : M(1M, Γ) → Set

over the global elements (i.e. closing substitutions) of Γ.
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A morphism of SconeM• from Γ† to ∆† over a base morphism f : M(Γ, ∆) is a family

f† : ∀(γ : M(1M, Γ)) → Γ†(γ) → ∆†(f ◦ γ).

The identity displayed morphism is given by

id† ≜ λγ γ• 7→ γ•,

whereas the composition of two displayed morphisms f† and g† is

f† ◦† g† ≜ λγ γ• 7→ f†(g†(γ•)).

A type of SconeM• over an object Γ† and a type A : M.Ty(Γ) is a function

A† : ∀γ (γ† : Γ†(γ)) → Ty•(A[γ]).

The restriction of A† along a displayed morphism f† is

A†[f†] ≜ λγ• 7→ A†(f†(γ•)).

A term of SconeM• of type A† over an object Γ† and a term a : M.Tm(Γ, A) is a function

a† : ∀γ (γ• : Γ†(γ)) → Tm•(A†(γ•), a[γ]).

The restriction of a† along a displayed morphism f† is

a†[f†] ≜ λγ• 7→ a†(f†(γ•)).

The empty displayed context is the family

1† ≜ λ_ 7→ 1.

The extension of a displayed context Γ† by a displayed type A† is the family

(Γ†.A†) ≜ λ⟨γ, a⟩ 7→ (γ• : Γ†(γ)) × Tm•(A†(γ•), a).

All type- and term- formers are defined pointwise using the corresponding component of
M•:

Π†(A†, B†) ≜ λγ• 7→ Π•(A†(γ•), λa• 7→ B†(γ•, a•)),
app†(f†, a†) ≜ λγ• 7→ app•(f†(γ•), a†(γ•)),

lam†(b†) ≜ λγ• 7→ lam•(λa• 7→ b†(γ•, a•)).

The β- and η-rules hold as a consequence of the β- and η-rules of M•.
All naturality conditions are trivial. ⌟

Note that when M is a higher-order model seen as a displayed higher-order model over
the terminal first-order model, then SconeM is equivalent to SetM.
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3.3 Sections of a displayed higher-order model
The notion of displayed higher-order model corresponds to the motives and methods of an
induction principle. We now define the notion of section of a displayed higher-order model,
corresponding to the result of applying an induction principle: it is simply defined as a
section of the displayed contextualization.

▶ Definition 12. A section of a displayed higher-order model M• is a section J−K of its
displayed contextualization SconeM• (in ModT ). ⌟

The definition of section of a displayed higher-order model M• over M can be unfolded
to the following components:

For every object Γ : M, a family

JΓK : M(1M, Γ) → Set

of environments.
For every morphism f : M(Γ, ∆), a family

JfK : ∀γ → JΓK(γ) → J∆K(f ◦ γ)

of maps between environments.
For every type A : M.Ty(Γ), a family

JAK : ∀γ (γ• : JΓK(γ)) → Ty•(A[γ])

of displayed types over closures of A.
For every term a : M.Tm(Γ, A), a family

JaK : ∀γ (γ• : JΓK(γ)) → Tm•(JAK(γ•), a[γ])

of displayed terms over closures of a.
Subject to functoriality and naturality equations:

JidK(γ•) = γ•,

Jf ◦ gK(γ•) = JfK(JgK(γ•)),
JA[f ]K(γ•) = JAK(JfK(γ•)),
Ja[f ]K(γ•) = JAK(JfK(γ•)).

Such that context extensions are preserved:

J1MK(⋆) = {⋆},

JΓ.AK(γ, a) = (γ• : JΓK(γ)) × (a• : Tm•(JAK(γ•), a)),
Jλγ 7→ (δ(γ), a(γ))K(γ) = (JδK(γ), JaK(γ)).

With computation rules for every type and term former:

Jλγ 7→ Π(A(γ), λa 7→ B(γ, a))K(γ•) = Π•(JAK(γ•), λa• 7→ JBK(γ•)),
Jλγ 7→ app(f(γ), a(γ))K(γ•) = app•(JfK(γ•), JaK(γ•)),
Jλγ 7→ lam(b(γ))K(γ•) = lam•(λa• 7→ JbK(γ•, a•)).

When x is a closed type or term of M, we write JxK for the interpretation JxK(⋆) of x in the
empty environment. We may use underlined names to distinguish the variable of open terms.
For instance, we may write Japp(f, a)K[f 7→ f ′, a 7→ a′] instead of Jλ(f, a) 7→ app(f, a)K(f ′, a′).
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▶ Remark 13. Let S• be a displayed higher-order model over the first-order model F ∗(TeleS)
in Psh(C), for some functor F : C → S. The displayed contextualization SconeS• is a dis-
played first-order model over F ∗(TeleS). Then its externalization 1∗

C(SconeS•) is an external
displayed first-order model lying over 1∗

C(F ∗(TeleS)) = 1∗
S(TeleS). Up to the isomorphism

1∗
S(TeleS) ∼= S, the externalized Scone-contextualization 1∗

C(SconeS•) coincides with gluing.
Its underlying category is the comma category (S ↓ NF ), where NF : S → Psh(C) is the
nerve functor S よ−→ Psh(S) F ∗

−−→ Psh(C). ⌟

4 Example: canonicity proof

As a first example of a relative induction principle and its application, we prove canonicity
for T extended with booleans (given by a type former Bool with constructors true and false
and a dependent eliminator elimBool with two computation rules).

We use the induction principle relative to the functor 1S : 1Cat → S that selects the
terminal object in the syntax S. It turns out that proving this specific relative induction
principle is trivial.

▶ Theorem 14 (Induction principle for S relative to 1S : 1Cat → S).
Let S• be a displayed higher-order model over the initial model S, or equivalently over
1∗

S(TeleS). Then SconeS• admits a section J−K over S.

Proof. By initiality of S. ◀

We now construct the displayed higher-order model S• over 1∗
S(TeleS) that will be used to

prove canonicity. A displayed type A• over a closed type A : S.Ty(1S) is a Set-valued logical
predicate over the closed terms of type A:

Ty•(A) ≜ S.Tm(1S , A) → Set.

A displayed term a• of type A• over a closed term a : S.Tm(1S , A) is an element of the
logical predicate A• evaluated at a:

Tm•(A•, a) ≜ A•(a).

Given logical predicates A• and B•, the logical predicate Π•(A•, B•) expresses the fact that
functions f : S.Tm(1S , Π(A, B)) should preserve the logical predicates.

Π•(A•, B•) ≜ λ(f : S.Tm(1S , Π(A, B))) 7→ (∀a a• → B•(a•, app(f, a))),
app•(f•, a•) ≜ f•(a•),
lam•(b•) ≜ λa• 7→ b•(a•).

It is easy to check that the displayed β- and η-rules hold. The logical predicate
Bool• : S.Tm(1S , Bool) → Set is defined as an inductive family with two constructors
true• : Bool•(true) and false• : Bool•(false). The displayed eliminator elim•

Bool is defined
using the elimination principle of Bool• and the displayed β-laws hold. This concludes the
definition of all components of S•.

▶ Theorem 15. The initial model S satisfies canonicity: any closed boolean term b :
S.Tm(1S , Bool) is canonical, i.e. equal to exactly one of true or false.



R. Bocquet, A. Kaposi, and C. Sattler 18:13

Proof. By the relative induction principle Theorem 14, the displayed higher-order model
S• admits a section J−K. Now given a closed boolean term b : S.Tm(1S , Bool), we have JbK :
Tm•(JBoolK, b). By the computation rule of the section for Bool, Tm•(JBoolK, b) = Bool•(b).
Thus, JbK : Bool•(b) witnesses the fact that b is canonical.

Since JtrueK = true•, JfalseK = false• and true• ̸= false•, we know that true ̸= false. ◀

Note that in the canonicity proof, we have not needed to evaluate the section J−K on
non-closed types or terms. Evaluating the section on open types and terms is usually only
needed when encountering binders: the evaluation of the section on a closed binder depends
on the evaluation of the section on an open type or term. The following is an example of the
computation of the evaluation of the section J−K on the application of the boolean negation
function lam(λb 7→ elimBool(Bool, false, true, b)) to true.

Japp(lam(λb 7→ elimBool(Bool, false, true, b)), true)K
= Jlam(λb 7→ elimBool(Bool, false, true, b))K(JtrueK)
= (λb• 7→ JelimBool(Bool, false, true, b)K[b 7→ b•])(true•)
= JelimBool(Bool, false, true, b)K[b 7→ true•]
= elim•

Bool(Bool•, false•, true•, true•)
= false•.

5 Example: normalization proof

In this section we prove normalization for the initial model S of T using an induction
principle relative to F : RenS → S, where RenS is the category of renamings of S, i.e. the
category whose morphisms are the substitutions of S that are built out of variables. We use
the alternative definition from [10] of RenS as the initial object in a category of first-order
renaming algebras.

5.1 The category of renamings
▶ Definition 16. Let C be a first-order model of T . A higher-order renaming algebra C
over C consists of:

C.Var : C.Ty(1C) → U ,

C.var : (A : C.Ty(1C)) → C.Var(A) → C.Tm(1C , A). ⌟

▶ Definition 17. Let D be a first-order model of T . A first-order renaming algebra
over D is a category C with a terminal object along with a functor F : C → D that preserves
the terminal object and with the structure of a global higher-order renaming algebra C
over F ∗(TeleD) such that C.Var is locally representable and C.var strictly preserves context
extensions. ⌟

Equivalently, a first-order renaming algebra over D is a CwF C together with a CwF
morphism F : C → D whose action on types is bijective. (There is a cofibrantly generated
factorization system with such morphisms as its right class. The renaming algebras are the
objects in the left class.) The category of first-order renaming algebras over S is locally finitely
presentable, and there is an initial first-order renaming algebra RenS . The category RenS

is the category of renamings of S; in this section we write F for the functor F : RenS → S.
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5.2 Relative induction principle
We pose SF ≜ F ∗(TeleS); SF is an internal first-order model in Psh(RenS).

▶ Theorem 18 (Induction principle for S relative to F : RenS → S).
Let S• be a displayed higher-order model over SF . Given the additional data of

var• : ∀(A : SF .Ty(1SF
)) (A• : Ty•(A)) (x : Var(A)) → Tm•(A•, var(x)),

the displayed contextualization SconeS• admits a section J−K that satisfies the additional
computation rule JvarA(x)K = var•(JAK, x).

Proof. See Appendix A.4. ◀

Note that varA(x) is always a closed term of SF , thus JvarA(x)K does not depend on any
environment.

5.3 Normal forms
Neutrals and normal forms are defined internally to Psh(RenS), as inductive families

Ne, Nf : ∀(A : SF .Ty(1SF
)) (a : SF .Tm(1SF

, A)) → Set,

generated by the following constructors:

varne : (x : Var(A)) → NeA(var(x)),
appne : NeΠ(A,B)(f) → NfA(a) → NeB[a](app(f, a)),

lamnf : ((a : Var(A)) → NfB[a](b[a])) → NfΠ(A,B)(lam(b)).

The goal of normalization is to prove that every term has a unique normal form:

∀(A : SF .Ty(1SF
)) (a : SF .Tm(1SF

, A)) → isContr(NfA(a)).

This is accomplished in two steps. First a normalization function is obtained from the
relative induction principle, witnessing the existence of normal forms. Then the uniqueness
of normal forms is derived from the stability of the normalization; a fact that is proven by
mutual induction on neutrals and normal forms.

5.4 Normalization displayed model
We now construct the normalization displayed higher-order model S• over SF .

A displayed type A• : Ty•(A) over a type A : SF .Ty(1SF
) is a triple (A•

p, A•
u, A•

q) consisting
of a logical predicate A•

p : SF .Tm(1SF
, A) → Set, over the terms of type A, valued in the

universe of sets; an unquoting (or reflection) function A•
u : (a : SF .Tm(1SF

, A)) → NeA(a) →
A•

p(a), witnessing the fact that any neutral term satisfies the logical predicate A•
p; a quoting

(or reification) function A•
q : (a : SF .Tm(1SF

, A)) → A•
p(a) → NfA(a), witnessing the fact a

term satisfying the logical predicate A•
p admits a normal form. A displayed term a• of type

A• over a term a : SF .Tm(1SF
, A) is an element of A•

p(a): Tm•(A•, a) ≜ A•
p(a). The logical

predicate for Π-types is defined in the same way as in the canonicity model.

Π•
p(A•, B•)(f) ≜ (∀a a• → B•

p(a•, app(f, a))).
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The unquoting function relies on the unquoting function of the codomain and the quoting
function of the domain.

Π•
u(A•, B•)(fne) ≜ λa• 7→ B•

u(a•, appne(fne, A•
q(a•))).

The quoting function says that any element of a Π-type is a lambda, as implied by the η-rule.
It relies on the quoting function of the codomain and the unquoting function of the domain,
and on the fact that every variable is neutral.

Π•
q(A•, B•)(f•) ≜ lamnf(λa 7→ let a• = A•

u(varne(a)) in B•
q (a•, f•(a•))).

This completes the definition of the displayed higher-order model S•. It remains to check the
last hypothesis of the relative induction principle:

var• : ∀A A• (x : Var(A)) → Tm•(A•, var(x)),
var•(A•, x) ≜ A•

u(varne(x)).

By the relative induction principle (Theorem 18), we obtain a section J−K of SconeS• .
We can then define the normalization function as follows:

norm : ∀A (a : SF .Tm(1SF
, A)) → NfA(a),

normA(a) ≜ JAKq(JaK).

5.5 Stability of normalization and uniqueness of normal forms
Finally, we show the uniqueness of normal forms following [26]: we prove that normalization
is stable, that is every normal form for a term a is equal to the normal form of a obtained
from the normalization function. As the proof relies on most of the computation rules of the
section J−K, it is a good example of computations with a section.

▶ Lemma 19 (Stability). Given any normal form anf : NfA(a), we have anf = normA(a).

Proof. We prove the following two facts, by mutual induction on neutrals and normal forms:

(ane : NeA(a)) → JaK = JAKu(ane), (anf : NfA(a)) → anf = JAKq(JaK).

Each case involves some of the computation rules of J−K.
Case ane = varne(A, x)

JvarA(x)K
= var•(JAK, x) (by the computation rule for Jvar(−)K)
= JAKu(ane). (by definition of var•)

Case ane = appne(fne, anf)

Japp(f, a)K
= app•(JfK, JaK) (by the computation rule for Japp(−)K)
= JfK(JaK) (by definition of app•)
= JΠ(A, B)Ku(fne, JaK) (by the induction hypothesis for fne)
= JB[a]Ku(appne(fne, anf)).

(by definition of Π•
u and the induction hypothesis for anf)

FSCD 2023
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Case anf = lamnf(bnf)

JΠ(A, B)Kq(Jlam(b)K)

= Π•
q(JAK, λa• 7→ JB(a)K[a 7→ a•])(λa• 7→ Jb(a)K[a 7→ a•])

(by the computation rules for JΠ(−)K and JlamK)

= lamnf(λa 7→ let a• = JAKu(varne(a)) in (JB(a)K[a 7→ a•])q(Jb(a)K[a 7→ a•])
(by definition of Π•

q)

= lamnf(λa 7→ (JB(a)K[a 7→ Jvar(a)K])q(Jb(a)K[a 7→ Jvar(a)K]))
(by the computation rule for Jvar(a)K)

= lamnf(λa 7→ JB[var(a)]Kq(Jb[var(a)]K)) (by the naturality of J−K)

= lamnf(bnf). (by the induction hypothesis for bnf) ◀

6 The category of sections of a displayed first-order model

The last tool that is needed for the proofs of relative induction principles is the category of
sections of an internal displayed higher-order model. This replaces the use of a displayed
inserter in our previous work [10].

Let M• be a global internal displayed first-order model over a first-order model M,
internally to some presheaf category Psh(C). We see M as a functor M : C → Modop

T , as
justified by Proposition 6. Write DispModT for the external category of a first-order model
of T with a displayed first-order model over it. There is a forgetful functor U : DispModT →
ModT . Since the notion of displayed first-order model is also essentially algebraic, we can
also view M• as a functor C → DispModop

T such that U ◦ M• = M. Similarly, writing
SectT for the category of a displayed first-order model of T with a section, a section of M•

can be identified with a functor J−K : C → Sectop
T such that V ◦ J−K = M•, where V is the

forgetful functor SectT → DispModT .

▶ Definition 20. The category Sectop
T [M•] of sections of M• is the pullback (in Cat)

Sectop
T [M•] Sectop

T

C DispModop
T

⌟
π0

J−K0

V

M•

By the universal property of the pullback, the data of a section of M• is equivalent to
the data of a section of π0 in Cat. The category Sectop

T [M•] is itself equipped with a section
J−K0 of π∗

0(M•), which is called the generic section of M•.
In order to prove an induction principle such as Theorem 18, we want to use the initiality

of C in some category to obtain section of π0. For example, when C is the category of
renamings, it suffices to equip Sectop

T [M•] with the structure of a renaming algebra that is
preserved by π0.

This typically involves lifting the terminal object and context extensions of C to
Sectop

T [M•]. Conditions for the lifting of these finite limits are given in Appendix A.3;
the initiality of the syntax is needed to lift the terminal object.
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A Technical results

A.1 Local representability
We recall the definition of the notion of locally representable dependent presheaf, which
encodes the notion of context extension.

▶ Definition 21. Let C be a category, X be a presheaf over C and Y be a dependent presheaf
over X. Then Y is said to be locally representable if for every element x : X(Γ), the
presheaf

Y|x : (C/Γ)op → Set,

Y|x(∆, ρ) ≜ Y (∆, x[ρ])

is representable. The representing object, consisting of an extended context and a projection
map, is written (Γ.Y [x], px) and the generic element is written qx : Y (Γ.Y [x], x[px]).

Given any object ∆ ∈ C, map ρ : ∆ → Γ and element y : Y (∆, x[ρ]), we write ⟨ρ, a⟩ for
the unique morphism such that px ◦ ⟨ρ, y⟩ = ρ and qx[⟨ρ, y⟩] = y. ⌟

A.2 Characterization of the telescopic contextualization
We define the contextual slices of a first-order model (which are called fibrant slices in [28]).

▶ Definition 22 (Contextual slice). Let C be a first-order model of T . Given Γ ∈ C, the
contextual slice (C � Γ) is the contextual first-order model given by:

Objects of (C � Γ) are telescopes (iterated context extensions) over Γ.
Morphisms from ∆1 to ∆2 are morphisms from Γ.∆1 to Γ.∆2 in (C/Γ).
The rest of the structure is inherited from C along the projection

(C � Γ) ∋ ∆ 7→ Γ.∆ ∈ C. ⌟

The contextual slice is functorial in both C and (contravariantly) Γ:
For any f : ∆ → Γ, there is a pullback morphism f∗ : (C � Γ) → (C � ∆). Its actions on
objects, substitutions, types and terms are all given by substitution along f .
For any F : C → D, there is a morphism (F � Γ) : (C � Γ) → (D � F (Γ)). Its actions
on objects, substitutions, types and terms are given by the actions of F on telescopes,
substitutions, types and terms.
The following diagrams commute (for any F : C → D and f : ∆ → Γ):

(C � Γ) (D � F (Γ))

(C � ∆) (D � F (∆)) .

(F �Γ)

f∗ f∗

(F �∆)
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For any f : Θ → Γ and object ∆ of (C � Γ), we have (f∗ � ∆) = ⟨p∗
∆(f), q∆⟩∗ as a

morphism from (C � Γ.∆) to (C � Θ.f∗(∆)). Here
〈
f ◦ pf∗(∆), qf∗(∆)

〉
is a morphism

from Θ.f∗(∆) to Γ.∆.

▶ Lemma 23. Let C be a first-order model of T . Then the telescopic contextualization TeleC
corresponds the contextual slice functor

(C � −) : C → Modop
T . ⌟

Proof. Immediate from unfolding the definitions. ◀

▶ Corollary 24. The externalization 1∗
C(TeleC) is the contextual core of C.

Proof. By Lemma 23, 1∗
C(TeleC) is the contextual slice (C �1C), the contextual core of C. ◀

▶ Lemma 25. Let C be a contextual first-order model and A : C.Ty(1C) be a closed type.
Then the contextual slice (C � A) satisfies the following universal property: for every model
E, morphism F : C → E and element a : E .Tm(F (A)), there is a unique morphism F̃ :
(C � 1C .A) → E such that F̃ ◦ p∗

A = F and F̃ (qA) = a.
In other words, (C � 1C .A) is the free extension of C by a generic element qA of type A.

See the Full Version of the paper for the proof.

▶ Lemma 26. Given any Γ ∈ C and A : C.Ty(Γ), then (C � Γ.A) satisfies the following
universal property: for every model E , morphism F : (C�Γ) → E and element a : E .Tm(F (A)),
there is a unique morphism F̃ : (C � Γ.A) → E such that F̃ ◦ p∗

A = F and F̃ (qA) = a.
In other words, (C � Γ.A) is the free extension of (C � Γ) by a generic element qA of

type A.

Proof. We have (C �Γ.A) ∼= ((C �Γ)�1(C�Γ).A). Then the result follows from Lemma 25. ◀

A.3 Properties of the category of sections
We now prove the properties of the category of sections of a displayed first-order model.
Fix a global internal first-order model M : C → Modop

T and a displayed first-order model
M• : C → DispModop

T over M.
We prove conditions that relate the existence of some finite limits in Sectop

T [M•] to the
universal properties of the first-order models M(Γ) for Γ ∈ C.

We have defined the category Sectop
T [M•] of sections of M• as the following pullback

Sectop
T [M•] Sectop

T

C DispModelop
T .

⌟
π0

J−K0

M•

Unfolding the definition, an object of Sectop
T [M•] is a pair (Γ, J−KΓ) where Γ ∈ C and

J−KΓ is a section of M•(Γ) over M(Γ). A morphism of from (Γ, J−KΓ) to (∆, J−K∆) is a
morphism f : C(Γ, ∆) such that the outer square commutes in the following diagram:

M•(∆) M•(Γ)

M(∆) M(Γ) .

M•(f)

M(f)
J−KΓ J−K∆
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▶ Lemma 27. If C has a terminal object 1C and M(1C) is the initial model of T , then
Sectop

M• has a terminal object that is strictly preserved by π0.

Proof. Since M(1C) is initial, we obtain a section J−K1C
of M•(1C). We now prove that

(1C , J−K1C
) is terminal in Sectop

M• . Let (Γ, J−KΓ) be any object of Sectop
M• . A morphism from

(Γ, J−KΓ) to (1C , J−K1C
) is a morphism f : C(Γ, 1C) such that the following square commutes:

M•(1C) M•(Γ)

M(1C) M(Γ) .

M•(f)

J−K1C

M(f)
J−KΓ

Since 1C is terminal, there is only one morphism f : C(Γ, 1C), and the corresponding
square commutes by initiality of M(1C). ◀

▶ Definition 28. Let X be a presheaf over C and Y be a locally representable dependent
presheaf over X. Assume given the data of global elements

fX : X → M.Ty(1M),
fY : (x : X) → Y (x) → M.Tm(1M, fX(x))

of Psh(C).
We say that fY is compatible with M if for every element x : X(Γ), the external first-order

model M(Γ.Y (x)) satisfies the following universal property: for every first-order model E,
morphism E : M(Γ) → E and element z : E .Tm(1E , E(fX(x))), there is a unique morphism
Ẽ : M(Γ.Y (x)) → E such that E = Ẽ ◦ M(px) and z = Ẽ(fY (x, qx)).

In other words, M(Γ.Y (x)) should be the free extension of M(Γ) by an element fY (x, qx)
of type fX(x), the extension being witnessed by the morphism M(px) : M(Γ) → M(Γ.Y (x)).

⌟

▶ Lemma 29. Let F : C → D be a CwF morphism.
Then the condition of Definition 28 is satisfied, with M = F ∗(TeleD), X and Y being

respectively the types and terms of C, and fX and fY being the actions of F on types and
terms.

Proof. By Definition 22, M correspond to the functor

C ∋ Γ 7→ (D � F (Γ)) ∈ Modop
T .

Thus, we need to check that given any Γ ∈ C and A : C.Ty(Γ), the model (D � F (Γ.A))
is the free extension of (D � F (Γ)) by a generic element of type F (A). Since F preserves
extensions, F (Γ.A) ∼= F (Γ).F (A), and thus the result follows by Lemma 26. ◀

▶ Lemma 30. Let X be a presheaf over C and Y be a locally representable presheaf family
over X equipped with operations fX and fY satisfying the condition of Definition 28. Finally,
assume that for every (Γ, J−KΓ) ∈ Sectop

M• , ∆ ∈ C, γ : C(∆, Γ), x : X(Γ) and y : Y (∆, x[γ])
we have

f•
Y (x, y) : M•(∆).Tm•(1•, M•(γ)(JfX(x)KΓ), fY (x[γ], y)),

naturally in (Γ, J−KΓ) and ∆.

FSCD 2023
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Consider the presheaf X0 ≜ π∗
0(X) over Sectop

M• and the dependent presheaf Y0 over X0
specified on objects by:

Y0((Γ, J−KΓ), x) ≜ {y : Y (Γ, x) | JfY (x, y)KΓ = f•
Y (x, y)}.

Then the presheaf family Y0 is locally representable and the action induced by the first
projections Y0((Γ, J−KΓ), x) → Y (Γ, x) strictly preserve context extensions.

Proof. Let (Γ, J−KΓ) be an object of Sectop
M• and x : X(Γ) be an element of X0 at this

object. We have to prove that the presheaf Y0|x over (Sectop
M•/(Γ, J−KΓ)) is representable.

Consider the diagram:

M•(Γ) M•(Γ.Y (x))

M(Γ) M(Γ.Y (x))

M•(px)

M(px)
J−KΓ J−KΓ.Y (x)

We construct a section J−KΓ.Y (x) of M•(Γ.Y (x)) over M(Γ.Y (x)). Using the universal
property of M(Γ.Y (x)), we define J−KΓ.Y (x) as the unique extension of M•(px) ◦ J−KΓ that
sends fY (x, qx) to f•

Y (x, qx).
We can check that px lifts to a morphism px : (Γ.Y (x), J−KΓ.Y (x)) → (Γ, J−KΓ) in Sectop

M• .
We now show that ((Γ.Y (x), J−KΓ.Y (x)), px) represents the functor Y0|x. Let (∆, J−K∆)

be another object of Sectop
M• , with a morphism ρ : (∆, J−K∆) → (Γ, J−KΓ) and an element

y : Y0|x((∆, J−K∆), ρ). Unfolding the definitions, we have y : Y (∆, x[ρ]) with JfY (x[ρ], y)K∆ =
f•

Y (x[ρ], y).
The local representability of Y implies that there is a unique morphism ρ̃ : ∆ → Γ.Y (x)

in C such that px ◦ ρ̃ = ρ and qx[ρ̃] = y. We have to show that this morphism lifts to Sectop
M• ,

i.e. that the following square commutes:

M•(Γ.Y (x)) M•(∆)

M(Γ.Y (x)) M(∆)

M•(ρ̃)

M(ρ̃)

J−KΓ.Y (x) J−K∆

By the universal property of M(Γ.Y (x)), it suffices to show that fY (x, qx) is mapped to
the same element by the compositions M•(ρ̃) ◦ J−KΓ.Y (x) and J−K∆ ◦ M(ρ̃). We compute
M•(ρ̃)(JfY (x, qx)KΓ.Y (x)) = M•(ρ̃)(f•

Y (x, qx)) = f•
Y (x[ρ], y) and JM(ρ̃)(fY (x, qx))K∆ =

JfY (x[ρ], y)K∆ = f•
Y (x[ρ], y).

This completes the proof that ((Γ.Y (x), J−KΓ.Y (x)), px) represents the functor Y0|x.
We have proven that Y0|x is representable for every x, i.e. that Y0 is locally representable.

The first projections Y0((Γ, J−KΓ), x) → Y (Γ, x) strictly preserve the chosen representing
objects. ◀

A.4 Proofs of relative induction principles
Proof of Theorem 18. We consider the category Sectop

T [SconeS• ] of sections of SconeS• .
By Lemma 27, the category Sectop

T [SconeS• ] has a terminal object. We equip it with the
structure of a higher-order renaming algebra (Var0, var0) over (F ◦π0) : Sectop

T [SconeS• ] → S
as follows:

Var0((Γ, J−KΓ), A) ≜ {a : Var(Γ, A) | Jvar(Γ, a)KΓ = var•(Γ, JAKΓ, a)},

var0((Γ, J−KΓ), A, a) ≜ var(Γ, a).



R. Bocquet, A. Kaposi, and C. Sattler 18:23

By Lemma 29, the action of F : R → S on variables is compatible with SF . By Lemma 30,
the presheaf family Var0 is locally representable and the first projections Var0((Γ, J−KΓ), A) →
Var(Γ, A) strictly preserve context extensions. By initiality of R among first-order renaming
algebras, we obtain a section H of π0 in the category of first-order renaming algebras.

We thus have a section J−K ≜ H∗(J−K0) of SconeS• in Psh(R). The action of H on
variables proves that it satisfies the equality JvarA(x)K = var•(JAK, x). ◀
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Abstract
The essence of compiling with continuations is that conversion to continuation-passing style (CPS)
is equivalent to a source language transformation converting to administrative normal form (ANF).
Taking as source language Moggi’s computational lambda-calculus (λC), we define an alternative
to the CPS-translation with target in the sequent calculus LJQ, named value-filling style (VFS)
translation, and making use of the ability of the sequent calculus to represent contexts formally.
The VFS-translation requires no type translation: indeed, double negations are introduced only
when encoding the VFS target language in the CPS target language. This optional encoding,
when composed with the VFS-translation reconstructs the original CPS-translation. Going back
to direct style, the “essence” of the VFS-translation is that it reveals a new sublanguage of ANF,
the value-enclosed style (VES), next to another one, the continuation-enclosing style (CES): such
an alternative is due to a dilemma in the syntax of λC, concerning how to expand the application
constructor. In the typed scenario, VES and CES correspond to an alternative between two proof
systems for call-by-value, LJQ and natural deduction with generalized applications, confirming proof
theory as a foundation for intermediate representations.
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1 Introduction

The conversion of a program in a source call-by-value language to continuation-passing style
(CPS) by an optimizing translation that reduces on the fly the so-called administrative
redexes produces programs which can be translated back to direct style, so that the final
result, obtained by composing the two stages of translation, is a new program in the source
language which can be obtained from the original one by reduction to administrative normal
form (ANF) – a program transformation in the source language [10, 24]. This fact has
been dubbed the “essence” of compiling with continuations and has had a big impact and
generated an on-going debate in the theory and practice of compiler design [11, 16, 18].

Our starting point is the refinement of that “essence”, obtained in [25], in the form
of a reflection of the CPS target in the computational λ-calculus [20], the latter playing
the role of source language and here denoted λC – see Fig. 1. Then we ask: What is the
proof-theoretical meaning of this reflection? What is the logical reading of this reflection
in the typed setting? Of course, the CPS-translation has a well-known logical reading as a
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λC

admin
��

CPS-translation

$$
ANF

kernel of CPS-translation //
CPS

inverse CPS-translation
oo

Direct Style Continuation-Passing Style

Figure 1 The essence of compiling with continuations.

negative translation, based on the introduction of double negations, capable of translating
a classical source calculus with control operators [19, 12, 26]. But it is not clear how this
reading is articulated with the reflection in Fig.1, which provides a decomposition of the
CPS-translation as the reduction to ANF followed by a “kernel” translation that relates the
“kernel” ANF with CPS.

It is also well-known that the CPS-translation can be decomposed in several ways:
indeed in the reference [25] alone we may find two of them, one through the monadic meta-
language [21], the other through the linear λ-calculus [17]. Here we will propose another
intermediate language, the sequent calculus LJQ [3, 4]. The calculus LJQ has a long history
and several applications in proof theory [3] and can be turned into a typed call-by-value
λ-calculus in equational correspondence with λC [4]. Here we want to show it has a privileged
role as a tool to analyze the CPS-translation.

Languages of proof terms for the sequent calculus handle contexts (i.e. λ-terms with a
hole) formally [13, 1, 8, 5]. This seems most convenient, since a continuation may be seen
as a certain kind of context, and suggests that we can write an alternative translation into
the sequent calculus, as if we were CPS-translating, but without the need to pass around
a reification of the current continuation as a λ-abstraction, nor the concomitant need to
translate types by the insertion of double negations, to make room for a type A∼ of values, a
type ¬A∼ of continuations and a type ¬¬A∼ of programs, out of a source type A.

We develop this in detail, which requires: to rework entirely the term calculus for LJQ

and obtain a system, named λQ, more manageable for our purposes; and to identify the kernel
and the sub-kernel of λQ, the latter being the target system, named V FS after value-filling
style, of the new translation. In the end, we are rewarded with an isomorphism between
V FS and the target of the CPS-translation, which, when composed with the alternative
translation, reconstructs the CPS-translation. The isomorphism is a negative translation,
reduced to the role of optional and late stage of translation.

Going back to direct style, the “essence” of the VFS-translation is that it reveals a new
sublanguage of ANF, the value-enclosed style (VES), next to another sublanguage of ANF,
the continuation-enclosing style (CES): such alternative between VES and CES is due to a
dilemma in the syntax of λC, concerning how to expand the application constructor. Hence,
these two sub-kernels of λC are under a layer of expansion – and the same was already true
for the passage from the kernel to the sub-kernel of λQ.
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λC

admin
��

CPS-translation

�� ��

VFS-translation

(( ((

LJQ
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��
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��
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∼= // V FS

negative translation

∼= // // CPS

��
CES

∼= // CNF
∼= // CP S

Direct Style Generalized Applications Sequent Calculus Continuation-Passing Style

Figure 2 The logical essence of compiling with continuations.

While VES corresponds to the sub-kernel VFS of λQ, CES corresponds to a fragment
of λJv [6], a call-by-value λ-calculus with generalized applications; the fragment is that of
commutative normal forms (CNF), that is, normal forms w. r. t. the commutative conversions,
naturally arising when application is generalized, which reduce both the head term and the
argument in an application to the form of values. So the alternative between VES and CES
is also a reflection, in the source language, of the alternative between two proof systems for
call-by-value: the sequent calculus LJQ and the natural deduction system behind λJv.

A summary is contained in Fig. 2: it shows a proof-theoretical background hidden in
Fig. 1, which this paper wants to reveal. In the process, we want to confirm proof theory as a
foundation for intermediate representations useful in the compilation of functional languages.

Plan of the paper. Section 2 recalls λC and the CPS-translation. Section 3 contains
our reworking of LJQ. Section 4 introduces the alternative translation into LJQ and the
decomposition of the CPS-translation. Section 5 goes back to direct style and studies the
sub-kernels of λC. Section 6 summarizes our contribution and discusses related and future
work. All proofs can be found in the long version of this paper [7].

2 Background

Preliminaries. Simple types (=formulas) are given by A, B, C ::= a|A ⊃ B. In typing
systems, a context Γ will always be a consistent set of declarations x : A; consistency here
means that no variable can be declared with two different types in Γ.

We recall the concepts of equational correspondence, pre-Galois connection and reflection
[4, 24, 25] characterizing different forms of relationship between two calculi.

▶ Definition 1. Let (Λ1,→1) and (Λ2,→2) be two calculi and, for each i = 1, 2, let ↠i

(resp. ↔i) be the reflexive-transitive (resp. reflexive-transitive-symmetric) closure of →i.
Consider the mappings f : Λ1 → Λ2 and g : Λ2 → Λ1.

FSCD 2023
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f and g form an equational correspondence between Λ1 and Λ2 if the following
conditions hold: (1) If M →1 N then f(M) ↔2 f(N); (2) If M →2 N then g(M) ↔1
g(N); (3) M ↔1 g(f(M)); (4) f(g(M))↔2 M .
f and g form a pre-Galois connection from Λ1 to Λ2 if the following conditions
hold: (1) If M →1 N then f(M) ↠2 f(N); (2) If M →2 N then g(M) ↠1 g(N); (3)
M ↠1 g(f(M)).
f and g form a reflection in Λ1 of Λ2 if the following conditions hold: (1) If M →1 N

then f(M) ↠2 f(N); (2) If M →2 N then g(M) ↠1 g(N); (3) M ↠1 g(f(M)); (4)
f(g(M)) = M .

Note that if f and g form a pre-Galois connection from Λ1 to Λ2 and →2 is confluent, then
→1 is also confluent. Besides, it is also important to observe that if f and g form a reflection
from Λ1 to Λ2, then g and f form a pre-Galois connection from Λ2 to Λ1.

Computational lambda-calculus. The computational λ-calculus [20] is defined in Fig. 3. In
addition to ordinary λ-terms, one also has let-expressions let x := M in N : these are explicit
substitutions which trigger only after the actual parameter M is reduced to a value (that is,
a variable or λ-abstraction). So, in addition to the rule letv that triggers substitution, there
are reduction rules – let1, let2 and assoc – dedicated to that preliminary reduction of actual
parameters in let-expressions.

For the reduction of β-redexes, we adopt the rule B from [4], which triggers even if the
argument N is not a value, and just generates a let-expression. Most presentations of λC
[20, 25] have rule βv instead, which reads (λx.M)V → [V/x]M . The two versions of the
system are equivalent. In our presentation, the effect of βv is achieved with B followed by
letv. Conversely, when N is not a value, we can perform the reduction

(λx.M)N → let y := N in (λx.M)y → let y := N in [y/x]M =α let x := N in M .

The first step is by let2, the second by βv. The last term is the contractum of B.
In this paper, we leave the η-rule for λ-abstraction out of the definition of λC, and

similarly for other systems – since it plays no rule in what we want to say. But we include
the η-rule for let-expressions, and other incarnations of it in other systems.

In [4, 25] the λC-calculus is studied in its untyped version. Here we will also consider its
simply-typed version, which handles sequents Γ ⊢C M : A, where Γ is a set of declarations
x : A. The typing rules are obvious, Fig. 3 only contains the rule for typing let-expressions.

The kernel of the computational λ-calculus [25] is defined in Fig. 4. It is named here
ANF , after “administrative normal form”, because its terms are the normal forms w. r. t. the
administrative rules of λC: let1, let2 and assoc [25].

In the kernel, only a specific form of applications and two forms of let-expressions are
primitive. The general form of a let-expression, written LET y := M in P , is a derived form
defined by recursion on M as follows:

LET y := V in P = let y := V in P

LET y := V W in P = let y := V W in P

LET y := (let x := V in M) in P = let x := V in LET y := M in P

LET y := (let x := V W in M) in P = let x := V W in LET y := M in P

Obviously, given M and P in the kernel, let y := M in P ↠assoc LET y := M in P in λC.
Hence, a Bv-step in the kernel can be simulated in λC as a B-step followed by a series of
assoc-steps. On the other hand B′

v is a restriction of rule B to the sub-syntax, and the same
is true of the remaining rules of the kernel.
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(terms) M, N, P, Q ::= V |MN | let x := M in N

(values) V, W ::= x |λx.M

(B) (λx.M)N → let x := N in M

(letv) let x := V in M → [V/x]M
(ηlet) let x := M in x → M

(assoc) let y := (let x := M in N) in P → let x := M in let y := N in P

(let1) MN → let x := M in xN (a)
(let2) V N → let x := N in V x (b)

Γ ⊢C M : A Γ, x : A ⊢C N : B

Γ ⊢C let x := M in N : B

Figure 3 The computational λ-calculus, here also named λC-calculus. Provisos: (a) M is not a
value. (b) N is not a value. Typing rules for x, λx.M and MN as usual.

(terms) M, N, P, Q ::= V |V W | let x := V in M | let x := V W in M

(values) V, W ::= x |λx.M

(Bv) let y := (λx.M)V in P → let x := V in LET y := M in P

(B′
v) (λx.M)V → let x := V in M

(letv) let x := V in M → [V/x]M
(ηlet) let x := V W in x → V W

Figure 4 The kernel of the computational λ-calculus, here named ANF .

Notice that in the form let x := V W in M the immediate sub-expressions are V , W and
M – but not V W . For this reason, there is no overlap between the redexes of rules Bv and
B′

v, nor between the redexes of rules B′
v and ηlet.

Our presentation of the kernel is very close to the original one in [25], as detailed in
Appendix B.

CPS-translation. We present in this subsection the call-by-value CPS-translation of λC.
It is a “refined ” translation [4], in the sense that it reduces “administrative redexes” at
translation time, as already done in [23].

The target of the translation is the system CPS, presented in Fig. 5. This target is
a subsystem of the λ-calculus (or of Plotkin’s call-by-value λv-calculus – the “indifference
property” [23]), whose expressions are the union of four different classes of λ-terms (commands,
continuations, values and terms), and whose reduction rules are either particular cases of
rules β and η (the cases of σv or ηk, respectively), or are derivable as two β-steps (the case
of βv). Each command or continuation has a unique free occurrence of k, which is a fixed (in
the calculus) continuation variable. A term is obtained by abstracting this variable over a
command. A command is always composed of a continuation K, to which a value may be
passed (the form KV ), or which is going to instantiate k in the command resulting from an
application V W (the form V WK).

There is a simply-typed version of this target, not found in [23, 4, 25], defined as follows.
Simple types are augmented with a new type ⊥, and we adopt the usual abbreviation

FSCD 2023
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¬A := A ⊃⊥. Then, as defined in Fig. 5, one has: two subclasses of such types, one ranged
by A, A′ and the other ranged over by B, B′; four kinds of sequents, one per each syntactic
class; and one typing rule for each syntactic constructor.

(Commands) M, N ::= KV |V WK

(Continuations) K ::= λx.M | k
(Values) V, W ::= λx.P |x
(Terms) P ::= λk.M

(σv) (λx.M)V → [V/x]M
(βv) (λxk.M)WK → [K/k][W/x]M
(ηk) λx.Kx → K if x /∈ FV (K)

Types: A ::= a |A ⊃ B B ::= ¬¬A

Contexts Γ: sets of declarations (x : A)

Sequents: k : ¬A, Γ ⊢CPS M :⊥ k : ¬A, Γ ⊢CPS K : ¬A′ Γ ⊢CPS V : A Γ ⊢CPS P : B

k : ¬A, Γ ⊢CPS K : ¬A′ Γ ⊢CPS V : A′

k : ¬A, Γ ⊢CPS KV :⊥

Γ ⊢CPS V : A ⊃ ¬¬A′ Γ ⊢CPS W : A k : ¬A′′, Γ ⊢CPS K : ¬A′

k : ¬A′′, Γ ⊢CPS V WK :⊥

k : ¬A, Γ, x : A′ ⊢CPS M :⊥
k : ¬A, Γ ⊢CPS λx.M : ¬A′ k : ¬A, Γ ⊢CPS k : ¬A

Γ, x : A ⊢CPS P : B
Γ ⊢CPS λx.P : A ⊃ B Γ, x : A ⊢CPS x : A

k : ¬A, Γ ⊢CPS M :⊥
Γ ⊢CPS λk.M : ¬¬A

Figure 5 The system CP S.

The CPS-translation is defined in Fig. 6. It comprises: For each V ∈ λC, a value V †; for
each term M ∈ λC and continuation K ∈ CPS, a command (M : K); for each term M ∈ λC,
a command M⋆ and a term M .

In the typed setting, each simple type A of λC determines an A-type A† and a B-type
A, as in Fig. 6. The translation preserves typing, according to the admissible typing rules
displayed in the last row of the same figure.

3 Sequent calculus LJQ and its simplification λQ

In this section we start by recapitulating the term calculus for LJQ designed by Dyckhoff-
Lengrand [4]. Next we do some preliminary work, by proposing a simplified variant, named
λQ, more appropriate for our purposes in this paper. Finally, we also single out the kernel of
λQ, which is the sub-calculus of “administrative” normal forms. This further simplification
will be necessary for the later analysis of CPS.
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x† = x (V : K) = KV †

(λx.M)† = λx.M (PQ : K) = (P : λm.(mQ : K)) (a)
M = λk.M⋆ (V Q : K) = (Q : λn.(V n : K)) (b)

M⋆ = (M : k) (V W : K) = V †W †K

(let y := M in P : K) = (M : λy.(P : K))

A = ¬¬A† a† = a (A ⊃ B)† = A† ⊃ B

Γ ⊢C V : A

Γ† ⊢CPS V † : A

Γ ⊢C M : A k : ¬B†, Γ ⊢CPS K : ¬A†

k : ¬B†, Γ† ⊢CPS (M : K) :⊥

Γ ⊢C M : A

k : ¬A†, Γ† ⊢CPS M⋆ :⊥
Γ ⊢C M : A

Γ† ⊢CPS M : A

Figure 6 The CPS-translation, from λC to CP S, with admissible typing rules. Provisos: (a) P

is not a value. (b) Q is not a value.

The original term calculus. An abridged presentation of the original term calculus for
LJQ by Dyckhoff-Lengrand is found in Fig. 7 1. The separation between terms and values
corresponds to the separation between the two kinds of sequents handled by LJQ: the
ordinary sequents Γ⇒M : A and the focused sequents Γ→ V : A. There are three forms
of cut and the reduction rules correspond to cut-elimination rules. We may think of the
forms C1(V, x.W ) and C2(V, x.N) as explicit substitutions: in this abridged presentation we
omitted the rules for their stepwise execution.

We now introduce a slight modification of λLJQ, named λLjQ, determined by two
changes in the reduction rules: in rule (6) we omit the proviso; and rule (5) is dropped. A
former redex of (5) is reduced by (6) – now possible because there is no proviso – followed
by (4), achieving the same effect as previous rule (5).

In fact, very soon we will define a big modification and simplification of the original λLJQ,
which is more appropriate to our goals here. But we need to justify that big modification,
by a comparison with the original system. For the purpose of this comparison, we will use,
not λLJQ, but λLjQ instead. So, the first thing we do is to check that λLjQ has the same
properties as the original.

The maps between λC and λLJQ defined by Dyckhoff-Lengrand can be seen as maps to
and from λLjQ instead. Next, it is easy to see that such maps still establish an equational
correspondence, now between λC and λLjQ. It turns out that the correspondence is also a
pre-Galois connection from λLjQ to λC. Because of this, λLjQ inherits confluence of λC, as
λLJQ did.

A simplified calculus. We now define the announced simplified calculus, named λQ. It is
presented in Fig. 8. The idea is to drop the cut forms C1(V, x.W ) and C2(V, x.N), which
correspond to explicit substitutions. Since only one form of cut remain, C3(M, x.N), we
write it as C(M, x.N). The typing rules of the surviving constructors remain the same. The
omitted reduction rules for the stepwise execution of substitution are now dropped, since
they concerned the omitted forms of cut. Rules (1) and (3) are renamed as Bv and ηcut,
respectively. Rules (4) and (6) are renamed π1 and π2, respectively, and we let π := π1 ∪ π2.
Rules (2) and (7) are combined into a single rule named σv.

1 See Appendix A for the full system.
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(terms) M, N ::= ↑V |x(V, y.N) |C2(V, x.N) |C3(M, x.N)
(values) V, W ::= x |λx.M |C1(V, x.W )

(1) C3(↑(λx.M), y.y(V, z.N)) → C3(C3(↑V, x.M), z.N) (a)
(2) C3(↑x, y.N) → [x/y]N
(3) C3(M, x. ↑x) → M

(4) C3(z(V, y.P ), x.N) → z(V, y.C3(P, x.N))
(5) C3(C3(↑W, y.y(V, z.P )), x.N) → C3(↑W, y.y(V, z.C3(P, x.N))) (b)
(6) C3(C3(M, y.P ), x.N) → C3(M, y.C3(P, x.N)) (c)
(7) C3(↑(λx.M), y.N) → C2(λx.M, y.N) (d)

Γ, x : A→ x : A
Ax

Γ→ V : A
Γ⇒↑V : A

Der

Γ, x : A⇒M : B

Γ→ λx.M : A ⊃ B
R⊃

Γ⇒M : A Γ, x : A⇒ N : B

Γ⇒ C3(M, x.N) : B
Cut3

Γ, x : A ⊃ B → V : A Γ, x : A ⊃ B, y : B ⇒ N : C

Γ, x : A ⊃ B ⇒ x(V, y.N) : C
L⊃

Figure 7 The original calculus by Dyckhoff-Lengrand, here named λLJQ-calculus (abridged).
Provisos: (a) y /∈ F V (V ) ∪ F V (N). (b) y /∈ F V (V ) ∪ F V (P )). (c) If rule (5) does not apply. (d) If
rule (1) does not apply.

The design of rule σv is interesting. Rule (2) fired a variable substitution operation
[x/y]−, already present in the original calculus. The contractum of rule (7), being an explicit
substitution, has to be replaced by the call to an appropriate, implicit, substitution operator
[λx.M/y]−, whose stepwise execution should be coherent with the omitted reduction rules
for C1(V, x.W ) and C2(V, x.N). Hopefully, the sought operation and the already present
variable substitution operation are subsumed by a value substitution operation [V/y]−.

The critical clause is the definition of [V/y](y(W, z.P )). We adopt [V/y](y(W, z.P )) =
C(↑V, y.y([V/y]W, z.[V/y]P )) in the case V = λx.M , but not in the case of V = x, because
σv would immediately generate a cycle in the case y /∈ FV (V ) ∪ FV (N). We adopt instead
[x/y](y(W, z.P )) = x([x/y]W, z.[x/y]P ) which moreover is what the original calculus dictates.
Notice that another cycle would arise, if a Bv-redex was contracted by σv. But this is blocked
by the proviso of the latter rule.

There is a map (_)
√

: λLjQ→ λQ, based on the idea of translating the omitted cuts by
calls to substitution: C1(V, x.W ) is mapped to [V/x]W and C2(V, y.N) is mapped to [V/x]N .
This map, together with the inclusion λQ ⊂ λLjQ (seeing C(M, x.N) as C3(M, x.N)) gives
a reflection of λQ in λLjQ. This reflection allows to conclude easily that reduction in λLjQ

is conservative over reduction in λQ. Moreover, this reflection can be composed with the
equational correspondence between λC and λLjQ to produce an equational correspondence
between λC and λQ. Finally, this reflection is also a pre-Galois connection from λQ to λLjQ.
Thus, confluence of λQ can be pulled back from the confluence of λLjQ.

To sum up, we obtained a more manageable calculus, conservatively extended by the
original one, which, as the latter, is confluent and is in equational correspondence with λC.
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(terms) M, N ::= ↑V |x(V, y.N) |C(M, x.N)
(values) V, W ::= x |λx.M

(Bv) C(↑(λx.M), y.y(V, z.N)) → C(C(↑V, x.M), z.N) if y /∈ FV (V ) ∪ FV (N)
(σv) C(↑V, y.N) → [V/y]N if Bv does not apply

(ηcut) C(M, x. ↑x) → M

(π1) C(z(V, y.P ), x.N) → z(V, y.C(P, x.N))
(π2) C(C(M, y.P ), x.N) → C(M, y.C(P, x.N))

Figure 8 The simpified λLJQ-calculus, named λQ-calculus.

The kernel of the simplified calculus. For a moment, we do an analogy between λC
and λQ. As was recalled in Section 2, the former system admits a kernel, a subsystem of
“administrative” normal forms, which are the normal forms with respect to a subset of the
set of reduction rules [25]. For λQ, the “administrative” normal forms are very easy to
characterize: in a cut C(M, x.N), M has to be of the form ↑V . Logically, this means that
the left premiss of the cut comes from a sequent Γ→ V : A; given that such sequents are
obtained either with Ax or R⊃, the cut formula A in that premiss is not a passive formula
of the previous inference; hence the cut is fully permuted to the left – so we call such forms
left normal forms. The reduction rules of λQ which perform left permutation are rules π1
and π2 (even though textually the outer cut in the redex of those rules seems to move to the
right after the reduction), so these rules are declared “administrative”.

The kernel of λQ is named LNF . The specific form of cut allowed, namely C(↑V, x.N), is
written Cv(V, x.N). No other change is made to the grammar of terms. Given M, N ∈ LNF ,
the general form of cut becomes in LNF a derived constructor written Cv(M : z.N) and
defined by recursion on M as follows:

Cv(↑V : z.N) = Cv(V, z.N)
Cv(x(V, y.M) : z.N) = x(V, y.Cv(M : z.N))

Cv(Cv(V, y.M) : z.N) = Cv(V, y.Cv(M : z.N))

As to reduction rules, rule Bv in LNF reads

Cv(λx.M, y.y(V, z.N))→ Cv(V, x.Cv(M : z.N)) .

Notice that the contractum is the same as Cv(Cv(↑V : x.M) : z.N). The proviso remains the
same: y /∈ FV (V ) ∪ FV (N). As to the other reduction rules: there is no change to rule σv;
the specific form of rule ηcut that survives becomes a particular case of σv, hence is omitted;
and the system has no π-rules.

There is a map (_)▽ : λQ → LNF based on the idea of replacing C(M, x.N) by
Cv(M : x.N). This map, together with the inclusion LNF ⊂ λQ (seeing Cv(V, x.N) as
C(↑V, x.N)), gives a reflection in λQ of LNF . Quite obviously, M ↠π M▽; in fact M▽ is a
π-normal form, as are all the expressions of LNF .

LNF is a stepping stone in the way to the definition, in the next section, of the value-filling
style fragment, which will be a central player in this paper.
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4 The value-filling style

In this section we define the target language V FS (a fragment of LNF ) of a new compilation
of λC, the value-filling style translation. Next we slightly modify the target CPS, and
introduce the negative translation, mapping V FS to the modified CPS. Then we show that
the CPS-translation is decomposed in terms of the alternative compilation and the negative
translation; and that the negative translation is in fact an isomorphism.

The sub-kernel of LJQ. We now define the sub-kernel of λQ, a language named V FS that
will serve as a target language for compilation alternative to CPS. Despite the simplicity
of λQ, there is still room for a simplification: to forbid the left-introduction constructor
y(W, x.M) to stand as a term on its own. However, we regret that, by that omission, that
term cannot be used in a very particular situation: as the term N in Cv(V, y.N), when
y /∈ FV (W ) ∪ FV (M). So, we keep that particular combination of cut and left-introduction
as a separate form of cut. The result is presented in Fig. 9.

(terms) M, N ::= ↑V |Cv(V, c)
(values) V, W ::= x |λx.M

(formal contexts) c ::= x.M | (W, x.M)

(Bv) Cv(λx.M, (V, y.N)) → Cv(V, x.Cv(M : y.N))
(σv) Cv(V, y.N) → [V/y]N

Γ→ V : A Γ|A⇒ c : B

Γ⇒ Cv(V, c) : B

Γ, x : A⇒M : B

Γ|A⇒ x.M : B

Γ→W : A Γ, x : B ⇒M : C

Γ|A ⊃ B ⇒ (W, x.M) : C

Figure 9 The sub-kernel of the λQ, named V F S. Typing rules for ↑V , x and λx.M as before.

In fact, we introduce a third syntactic class, that of formal contexts – this terminology
will be justified later. Think of (W, x.M) as y.y(W, x.M) with y /∈ FV (W ) ∪ FV (M). The
new class allows us to account uniformly for the two possible forms of cut: Cv(V, c). The
reduction rules of V FS are those of the kernel LNF , restricted to the sub-kernel: pleasantly,
the side conditions have vanished! Moreover, the operation [V/y]N is now plain substitution.

There is, again, an auxiliary operation used in the contractum of Bv. Cut Cv(M : c′) and
formal context (c : c′) are defined by simultaneous recursion on M and c as follows:

Cv(↑V : c′) = Cv(V, c′) ((x.M) : c′) = x.Cv(M : c′)
Cv(Cv(V, c) : c′) = Cv(V, (c : c′)) ((W, x.M) : c′) = (W, x.Cv(M : c′))

In the type system, a third form of sequents is added for the typing of formal contexts.
We know the formula A in Γ→ V : A is a focus [4], but the formula A in Γ|A⇒ c : B is not,
since it can simply be selected from the context Γ in the typing rule for x.M .

We already know how to map V FS back to LNF . How about the inverse direction? How
do we compensate the omission of y(W, x.M)? The answer is: by the following expansion

y(W, x.M)←σv Cv(y, z.z(W, x.M)) = Cv(y, (W, x.M)) (1)

The VFS-translation. The system V FS is the target of a translation of λC alternative to
the CPS-translation, to be introduced now. The idea is to represent a term of λC, not as a
command of CPS (in terms of a continuation that is called of passed), but rather as a cut of
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the sequent calculus V FS, making use of “formal contexts”. Later, we will give a detailed
comparison with the CPS-translation, which will make sense of the terminology “formal
context” and “value-filling”; more importantly, the comparison will show that V FS and the
translation into it is a style equivalent to CPS, but much simpler, in particular due to this
very objective fact: there is no translation of types involved.

The VFS-translation is given in Fig. 10. It comprises: For each V ∈ λC, a value V ◦ in
V FS; for each M ∈ λC and formal context c ∈ V FS, a cut (M ; c) in V FS; for each M ∈ λC,
a cut M• in V FS. Again: there is no translation of types.

x◦ = x (V ; x.N) = Cv(V ◦, x.N)
(λx.M)◦ = λx.M• (PQ; x.N) = (P ; m.(mQ; x.N)) (∗)

(V Q; x.N) = (Q; n.(V n; x.N)) (∗∗)
M• = (M ; x. ↑x) (V W ; x.N) = Cv(V ◦, (W ◦, x.N))

(let y := M in P ; x.N) = (M ; y.(P ; x.N))

Γ ⊢C V : A

Γ→ V ◦ : A

Γ ⊢C M : A Γ|A⇒ c : B

Γ⇒ (M ; c) : B

Γ ⊢C M : A

Γ⇒M• : A

Figure 10 The VFS-translation, from λC to V F S. Provisos: (∗) P is not a value. (∗∗) Q is not
a value.

▶ Theorem 1 (Simulation).
1. Let R ∈ {B, letv, ηlet}. If M →R N in λC then M• ↠ N• in V FS.
2. Let R ∈ {let1, let2, assoc}. If M →R N in λC then M• = N• in V FS.

The language CP S. Recall the CPS-translation of λC, given in Fig. 6, with target system
CPS, given in Fig. 5, our own reworking of Reynold’s translation and respective target [4].
We now introduce a tiny modification in the CPS-translation, an η-expansion of k in the
definition of M⋆: M⋆ = (M : λx.kx). This requires a slight modification of the target system.
First, the grammar of commands and continuations becomes:

(Commands) M, N ::= kV |KV |V WK (Continuations) K ::= λx.M

The continuation variable k is no longer by itself a continuation – but nothing is lost with
respect to CPS, since k may be expanded thus:

k ←ηk
λx.kx (2)

Since K is now necessarily a λ-abstraction, the ηk-reduction λx.Kx→ K of CPS becomes
a σv-reduction in the modified target, and so the latter system has no rule ηk.

We do a further modification to the reduction rules: instead of following [25] and
having rule βv, we prefer that the modified target system has the rule (λxk.M)WK →
(λx.[K/k]M)W , named Bv. That is, we substitute K, but not W .2 The new contractum is
a σv-redex, that can be immediately reduced to produce the effect of CPS’s rule βv.

2 We could have made this modification in Fig. 5, without any change to our results. The only thing
to observe is that, if we want CP S (or its modification) to consists of syntax that is derivable from
the ordinary λ-calculus or Plotkin’s call-by-value λ-calculus, then we have to consider these systems
equipped with the well-known permutation (λx.M)V V ′ → (λx.MV ′)V .
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In the typed case, the typing rule for k is replaced by this one:

Γ ⊢CPS V : A
k : ¬A, Γ ⊢CPS kV :⊥

No other modification is introduced w. r. t. Fig. 5. The obtained system is named CPS.
For the modified CPS-translation, we reuse the notation M , M⋆, V † and (M : K). From

now on, “CPS-translation” refers to the modified one, while the original one will be called
CPS-translation.

In CPS, k is a fixed continuation variable. In CPS, k is a fixed covariable, again
occurring exactly once in each command and continuation. The word “covariable” intends to
be reminiscent of the covariables, or “names”, of the λµ-calculus [22]. Accordingly, kV is
intended to be reminiscent of the naming constructor of that calculus, and some “structural
substitution” should be definable in CPS.

Indeed, consider the following notion of context for CPS: C ::= K[_] | [_]WK. Filling
the hole [_] of C with V results in the command C[V ]. Then, we can define the structural
substitution operation [C/k]− whose critical clause is [C/k](kV ) = C[V ]. There is no need
to recursively apply the operation to V , since k /∈ FV (V ).

Now in the case C = K[_], the structural substitution [C/k]− is the same operation
as the ordinary substitution [K/k]−, and it turns out that we will only need this case of
substitution. That is why we will not see the structural substitution anymore in this paper.

However, contexts C will be crucial for understanding the relationship between V FS and
CPS. In preparation for that, we derive typing rules for contexts of CPS. The corresponding
sequents are of the form Γ|A ⊢CPS C :⊥, where A is the type of the hole of C. Hence, the
command C[V ] is typed as follows:

Γ ⊢CPS V : A Γ|A ⊢CPS C :⊥
Γ ⊢CPS C[V ] :⊥ C1

The rules for typing C are obtained from the rules for typing KV and V WK in Fig. 5,
erasing the premise relative to V and declaring V ’s type as the type of the hole of C:

k : ¬A, Γ ⊢CPS K : ¬A′

k : ¬A, Γ|A′ ⊢CPS K[_] :⊥ C2
Γ ⊢CPS W : A k : ¬A′′, Γ ⊢CPS K : ¬A′

k : ¬A′′, Γ|A ⊃ ¬¬A′ ⊢CPS [_]WK :⊥ C3

We also observe that KC := λz.C[z] is a continuation, and that KCV →σv C[V ] in CPS.

VFS vs CPS: the negative translation. We now see that the CPS-translation can be
decomposed as the VFS-translation followed by a negative translation of system V FS. This
latter translation is a CPS-translation, hence involving, at the level of types, the introduction
of double negations (hence the name “negative”). It turns out that this negative translation
is an isomorphism between V FS and CPS, at the levels of proofs and proof reduction. This
renders the last stage of translation (the negative stage) and its style of representation (the
CPS style) an optional addition to what is already achieved with VFS.

The negative translation is found in Fig. 11. It comprises: For each V ∈ V FS, a value
V ∼ in CPS; for each M ∈ V FS, a command M ≀ and a term M− in CPS.

The translation has a typed version, mapping between the typed version of source and
target calculi. This requires a translation of types: for each simple type A of V FS, there
is an A-type A∼ and a B-type A−, as defined in Fig. 11. The translation preserves typing,
according to the admissible rules displayed in the last row of the same table.
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x∼ = x (↑V )≀ = kV ∼

(λx.M)∼ = λx.M− Cv(V, x.M)≀ = (λx.M ≀)V ∼

M− = λk.M ≀ Cv(V, (W, x.M))≀ = V ∼W ∼(λx.M ≀)

A− = ¬¬A∼ a∼ = a (A ⊃ B)∼ = A∼ ⊃ B−

Γ→ V : A
Γ∼ ⊢CPS V ∼ : A∼

Γ⇒M : A

k : ¬A∼, Γ∼ ⊢CPS M ≀ :⊥
Γ⇒M : A

Γ∼ ⊢CPS M− : A−

Figure 11 The negative translation, from V F S to CP S, with admissible typing rules.

The negative translation is defined at the level of terms and values. How about formal
contexts? A formal context c is translated as a context c≀ of CPS, defined as follows:

(x.M)≀ = (λx.M ≀)[_] (W, x.M)≀ = [_]W ∼(λx.M ≀)

Then the definition of Cv(V, c)≀ can be made uniform in c as c≀[V ∼]. The translation of non-
values Cv(V, c)≀ is thus defined as filling the (translation) of V in the hole of the actual context
c≀ that translates the formal context c. Hence the name “value-filling” of the translation.

We have two admissible typing rules:

Γ|A⇒ c : B

k : ¬B∼, Γ∼|A∼ ⊢CPS c≀ :⊥
(a) Γ|A⇒ c : B

k : ¬B∼, Γ∼ ⊢CPS Kc≀ : ¬A∼ (b)

Rule (a) follows from typing rules C2 and C3; rule (b) is obtained from (a) and rule C1.
It is no exaggeration to say that typing rule (b) is the heart of the negative translation.

In the sequent calculus V FS we can single out a formula A in the l. h. s. of the sequent to
act as the type of the hole of a (formal) context c. In CPS, we have the related concept
of a continuation K, a function of type A ⊃⊥. The type B of c has to be stored as the
negated type ¬B of a special variable k. Cutting with c in the sequent calculus corresponds
to applying K, to obtain a command, of type ⊥. But the cut produces a term of type B,
while the best we can do in CPS is to abstract k, to obtain ¬¬B. In the sequent calculus, a
type A may have uses in both sides of the sequent. To approximate this flexibility in CPS,
a type A requires types A, ¬A, and ¬¬A = B, presupposing ⊥.

▶ Theorem 2 (Decomposition of the CPS-translation).
1. For all V ∈ λC, V ◦∼ = V †.
2. For all M ∈ λC, N ∈ V FS, (M ; x.N)≀ = (M : λx.N ≀).
3. For all M ∈ λC, M•≀ = M⋆.
4. For all M ∈ λC, M•− = M .

Nothing is lost, if we wish to replace CPS with V FS, because the negative translation
is an isomorphism. Its inverse translation comprises: For each term P ∈ CPS, a term
P + ∈ V FS; for each command M ∈ CPS, a term M× ∈ V FS; for each value V ∈ CPS, a
value V ×× ∈ V FS. The definition is as follows:

(λk.M)+ = M×

(kV )× = ↑(V ××)
((λx.M)V )× = Cv(V ××, x.M×)

(V W (λx.M))× = Cv(V ××, (W ××, x.M×))
x×× = x

(λx.P )×× = λx.P +
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▶ Theorem 3 (V FS ∼= CPS).
1. For all M, V ∈ V FS, M−+ = M and M ≀× = M and V ∼×× = V .
2. For all P, M, V ∈ CPS, P +− = P and M×≀ = M and V ××∼ = V .
3. If M1 →M2 in V FS then M ≀

1 →M ≀
2 in CPS (hence M−

1 →M−
2 in CPS).

4. If M1 → M2 in CPS then M×
1 → M×

2 in V FS. Hence If P1 → P2 in CPS then
P +

1 → P +
2 in V FS.

5 Back to direct style

We now do to the VFS-translation what [10, 25] did to the CPS-translation, that is, try to
find a program transformation in the source language λC that corresponds to the effect of
the translation. We have seen in Section 4 that the VFS-translation identifies reduction steps
generated by let1, let2 and assoc. So we start from the normal forms w. r. t. these rules,
that is, from the kernel ANF (recall Fig. 4). We first identify two sub-syntaxes relevant in
this analysis. Next, we point out the proof-theoretical meaning of such alternative.

Two sub-kernels of ANF . It turns out that the syntax of ANF , despite its simplicity,
still contains several dilemmas: (1) Do we need a let-expression whose actual parameter is a
value V ? Or should we normalize with respect to letv? (2) Do we need V W to stand alone
as a term and also as the actual parameter of a let-expression? (3) Is ηlet a reduction or an
expansion? Some of these dilemmas give rise to the following diagram:

V W let x := V in xW
letvoo

let y := V W in y

ηlet

OO

let x := V in let y := xW in y︸ ︷︷ ︸
cx

letv

oo

ηlet

OO (3)

We take this diagram as giving, in its lower row, two different ways of expanding V W .
These two alternatives signal two sub-syntaxes of ANF without V W . In the alternative
corresponding to the expansion let y := V W in y, we are free to, additionally, normalize
w. r. t. letv and get rid of the form let x := V in M . In the alternative let x := V in let y :=
xW in y, we are not free to normalize w. r. t. letv, as otherwise we might reverse the intended
expansions. In both cases, values are V, W ::= x |λx.M . Moreover, we do not want to
consider ηlet as a reduction rule; and rule B′

v disappears, since there are no applications V W .
In the first sub-kernel, named CES, terms M are given by the grammar

M ::= V | let x := V W in M .

We call this representation continuation enclosing style, since the “serious” (=non-value)
terms have the form of an application V W enclosed in a let-expression. The unique reduction
rule of CES is

(βv) let y := (λx.M)V in P → LET y := [V/x]M in P

In ANF , it corresponds to a Bv-step followed by letv-step. The operation LET y := M in P

of ANF is reused, except that the base case of its definition integrates a further letv-step:
LET y := V in P = [V/y]P .
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In the second sub-kernel, named V ES, terms are given by the grammar

M, N ::= V | let x := V in cx

cx ::= M | let y := xW in N, where x /∈ FV (W ) ∪ FV (N)

We call this representation value enclosed style, since the serious terms have the form of a
value enclosed in a let-expression. There are two reduction rules:

(Bv) let y := (λx.M) in let z := yV in P → let x := V in LET z := M in P

(letv) let y := V in N → [V/y]N

In V ES, we define LET y := M in P and LET y := cz in P , which are a term and an
element of the class cz, respectively, the latter satisfying z /∈ FV (P ). The definition is by
simultaneous recursion on M and cz as follows:

LET y := V in P = let y := V in P

LET y := (let z := V in cz) in P = let z := V in LET y := cz in P

LET y := (let x := zW in N) in P = let x := zW in LET y := N in P

In the second equation, since in the l. h. s. P is not in the scope of the (inner) let-expression,
we may assume z /∈ FV (P ). So, the proviso for the call LET y := cz in P in the r. h. s. is
satisfied. In the third equation, cz in the l. h. s. is let x := zW in N . By definition of cz,
z /∈ FV (W ) ∪ FV (N); moreover, we may assume z /∈ FV (P ): hence the r. h. s. is in cz.

Despite the trouble with variable conditions, this definition corresponds to the operator
LET y := M in P of ANF restricted to the syntax of V ES. Therefore, rule Bv of V ES

corresponds, in ANF , to a letv-step followed by a Bv-step.

Proof-theoretical alternative. We now see that V ES is related to the sequent calculus
V FS, while CES is related to a fragment CNF of the call-by-value λ-calculus with generalized
applications λJv introduced in [6]. In both cases, the relation is an isomorphism, in the sense
of a type-preserving bijection with a 1-1 simulation of reduction steps.

▶ Theorem 4. V ES ∼= V FS and CES ∼= CNF .

Therefore the alternative between the two sub-kernels corresponds to the alternative
between two proof-systems for call-by-value, the sequent calculus LJQ and the natural
deduction system with general elimination rules behind λJv.

A λJv-term is either a value or a generalized applications M(N, x.P ), with typing rule

Γ ⊢J M : A ⊃ B Γ ⊢J N : A Γ, x : B ⊢J P : C

Γ ⊢J M(N, x.P ) : C

If the head term M is itself an application M1(M2, y.M3), then M3 has type A ⊃ B and the
term can be rearranged as M1(M2, y.M3(N, x.P )), to bring M3 and N together. This is a
known commutative conversion [15], here named π1, which aims to convert the head term M

to a value V . On the other hand, if the argument N is itself an application N1(N2, y.N3),
then N3 has type A and the term can be rearranged as N1(N2, y.M(N3, x.P )), to bring M

and N3 together. This is a conversion π2 which has not been studied, and which aims to
convert the argument N to a value W .

The combined effect of π := π1 ∪ π2 is to reduce generalized applications to the form
V (W, x.P ), called commutative normal form. On these forms, the βv-rule of λJv reads

(βv) (λy.M)(W, x.P )→ [[W/y]M\x]P
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The left substitution operation [N\x]P is defined by

[V \x]P = [V/x]P [V (W, y.N3)\x]P = V (W, y.[N3\x]P )

The commutative normal forms, equipped with βv, constitute the system CNF .

Ψ(V ) = ↑Ψv(V )
Ψ(let x := V in cx) = Cv(ΨvV, Ψx(cx))

Ψv(x) = x

Ψv(λx.M) = λx.ΨM

Ψx(M) = x.ΨM

Ψx(let y := xW in N) = (ΨW, y.ΨN)

Θ(↑V ) = Θv(V )
Θ(Cv(V, c)) = let x := ΘvV in Θx(c)

Θv(x) = x

Θv(λx.M) = λx.ΘM

Θx(y.M) = [x/y](ΘM)
Θx(W, y.N) = let y := x(ΘvW ) in ΘN

Figure 12 Translation from V ES to V F S and vice-versa.

Υ(x) = x

Υ(λx.M) = λx.ΥM

Υ(let x := V W in M) = ΥV (ΥW, x.ΥM)

Φ(x) = x

Φ(λx.M) = λx.ΦM

Φ(V (W, x.M)) = let x := ΦV ΦW in ΦM

Figure 13 Translation from CES to CNF and vice-versa.

The announced isomorphisms are given in Figs. 12 and 13. The map Ψ : V ES → V FS

requires the key auxiliary map Ψx, whose design is guided by types: if Γ, x : A ⊢C cx : B

then Γ|A ⇒ Ψx(cx) : B. The isomorphism Υ : CES → CNF should be obvious. It can
be proved that the operation LET y := M in P in CES is translated as left substitution:
Υ(LET y := M in P ) = [ΥM\y]ΥP .

A final point. The sub-kernel V ES is isomorphic to the CPS-target, after composition
with the negative translation: V ES ∼= V FS ∼= CPS. A variant of the negative translation
delivers:

▶ Theorem 5. CNF ∼= CP S.

So we also have CES ∼= CNF ∼= CP S. Here CP S is the sub-calculus of CPS where
commands KV are omitted and σv normalization is enforced. Its unique reduction rule,
named βv, becomes

(βv) (λy.λk.M)W (λx.N)→ [λx.N/k][W/y]M
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The definition of substitution [λx.N/k]M has the following critical clause:

[λx.N/k](kV ) = [V/x]N

This clause does the reduction of the σv-redex (λx.N)V on the fly; and it echoes the
critical clause of a structural substitution. Moreover, CP S is the target of a version of the
CPS-translation, obtained by changing just one clause: (V : λx.M) = [V †/x]M .

The variant of the negative translation yielding CNF ∼= CP S is defined by

(V (W, x.M))≀ = V ∼W ∼(λx.M ≀)

All the other needed clauses as before. For the isomorphism, we have to prove:

([N\x]M)≀ = [λx.M ≀/k]N ≀

This is a last minute bonus: a CP S explanation of left substitution.

6 Conclusions

Contributions. We list our main contribution: the VFS-translation; the negative translation
as an isomorphism between the VFS and CPS targets; the decomposition of the CPS-
translation in terms of the VFS-translation and the negative translation; the two sub-kernels
of λC and their perfect relationship with appropriate fragments of the sequent calculus LJQ

and natural deduction with general eliminations; the reworking of the term calculus for LJQ.
In all, we took the polished account of the essence of CPS, obtained in [25] and illustrated

in Fig. 1, and revealed a rich proof-theoretical background, as in Fig. 2, with a double layer
of sub-kernels, under a layer of expansions (see the dotted lines in Fig. 2 and recall (1),
(2), and (3)), intersecting an intermediate zone, between the source language and the CPS
targets, of calculi corresponding to proof systems.

Related work. In [4], LJQ is studied as a source language, while the CPS translation of
LJQ is a tool to establish indirectly a connection with λC, through their respective kernels,
in order to confirm that cut-elimination in LJQ is connected with call-by-value computation.
There is nothing wrong with using the sequent calculus as source language and translating
it with CPS: this has been done abundantly, even by the first author [1, 27, 4, 9]. But the
point made here is that the sequent calculus should also be used as a tool to analyze the
CPS-translation, and is able to play a special role as an intermediate language.

The sequent calculus was put forward as an intermediate representation for compilation
of functional programs in [2]. This study addresses compilation of programs for a real-world
language; designs an intermediate language Sequent Core (SC) inspired in the sequent calculus
for such source language; and compares SC with CPS heuristically w. r. t. several desirable
properties in the context of optimized compilation. In the present paper, we address the
foundations of compilation, employing theoretical languages; pick the sequent calculus LJQ,
which is a standard systems with decades of history in proof-theory [3]; and compare LJQ

and CPS, not through a benchmarking of competing languages, but through mathematical
results showing their intimate connection.

Future work. We know an appropriate CPS target will be capable of interpreting a classical
extension of our chosen source language. The problem in moving in this direction is that there
is no standard extension of λC with control operators readily available. Source languages
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with let-expressions and control operators can be found in [14, 5], but adopting them means
to redo all that we have done here – that is another project. On the other hand, maybe a
system with generalized applications will make a good source language. The system λJv

performed well in this paper, since its sub-kernel of administrative normal forms (CNF) is
reachable without consideration of expansions – a sign of a well calibrated syntax.
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A The original LJQ system

The original calculus by Dyckhoff-Lengrand is recalled in Fig. 14.

B Kernel of λC

Our presentation of the kernel of λC given in Fig. 4 is very close to the original one in [25],
as we now see. In [25], the terms M of the kernel are generated by the grammar:

M, N, P ::= K[V ]|K[V W ]
V, W ::= x|λx.M

K ::= [_]|let x := [_] in P

We take for granted the sets of terms and values of λC, together with the set of contexts of
λC, which are λC-terms with a single hole, and the concept of hole filling in such contexts.
This grammar defines simultaneously a subset of the terms of λC, a subset of the values of
λC, and a subset of the contexts of λC.
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The second production in the grammar of terms, K[V W ], should be understood thus:
given in the kernel values V , W and a context K, the λC-term K[V W ], obtained by filling the
hole of K with the λC-term V W , is in the kernel. In λC, V W is a subterm of K[V W ]; but,
as we observed in Section 2, in the kernel, the term V W is not an immediate subterm of
K[V W ] – the immediate subexpressions are just V , W , and K. Notice the λC-term M = V W

is a term in the kernel, generated by the second production of the grammar with K = [_].
But that second production should not be interpreted as K[M ] with M = V W .

There is no primitive K[M ] in the kernel. Instead, there is the operation (M : K), defined
by recursion on M as follows:

(V : K) = K[V ]
(V W : K) = K[V W ]

(let x := V in M : K) = let x := V in (M : K)
(let x := V W in M : K) = let x := V W in (M : K)

It is easy to see that (M : let x := [_] in P ) = LET x := M in P and that (M : [_]) = M .
In [25], the kernel has the following reduction rule

(β.v) K[(λx.M)V ]→ ([V/x]M : K) .

There is no need for the requirement of maximal K in this rule, as done in [25], once the
above clarification about K[V W ] is obtained. We now see the relationship between β.v and
our Bv and B′

v.
Let K = let y := [_] in P . Then rule Bv can re written as

K[(λx.M)V ]→ let x := V in (M : K) .

The contractum is a letv-redex, which could be immediately reduced, to achieve the effect
of β.v. Here we prefer to delay this letv-step, and the same applies to our rule B′

v, which
corresponds to the case K = [_]. This issue of delaying letv is also seen in Section 5.

Finally, rule ηlet in [25] reads let x := [_] in K[x]→ K. We argue that in our presentation
we can derive

(M : let x := [_] in K[x])→ (M : K) .

If K = [_], then we have to prove LET x := M in x → M . This is proved by an easy
induction on M : the case M = V (resp. M = V W ) gives rise to a σv-step (resp. ηlet-step);
the remaining two cases follow by induction hypothesis.

If K = let y := [_] in P , then we have to prove LET x := M in let y := x in P → LET y :=
M in P . Now let y := x in P →letv

[y/x]P . Since Q → Q′ implies LET x := M in Q →
LET x := M in Q′, we obtain LET x := M in let y := x in P → LET x := M in [y/x]P =α

LET y := M in P .



J. Espírito Santo and F. Mendes 19:21

(terms) M, N ::= ↑V |x(V, y.N) |C2(V, x.N) |C3(M, x.N)
(values) V, W ::= x |λx.M |C1(V, x.W )

(1) C3(↑(λx.M), y.y(V, z.N)) → C3(C3(↑V, x.M), z.N) (a)
(2) C3(↑x, y.N) → [x/y]N
(3) C3(M, x. ↑x) → M

(4) C3(z(V, y.P ), x.N) → z(V, y.C3(P, x.N))
(5) C3(C3(↑W, y.y(V, z.P )), x.N) → C3(↑W, y.y(V, z.C3(P, x.N))) (b)
(6) C3(C3(M, y.P ), x.N) → C3(M, y.C3(P, x.N)) (c)
(7) C3(↑(λx.M), y.N) → C2(λx.M, y.N) (d)
(8) C1(V, x.x) → V

(9) C1(V, x.y) → y (e)
(10) C1(V, x.(λy.M)) → λy.C2(V, x.M)
(11) C2(V, x. ↑W ) → ↑(C1(V, x.W ))
(12) C2(V, x.x(W, z.N)) → C2(↑V, x.x(C1(V, x.W ), z.C2(V, x.N)))
(13) C2(V, x.y(W, z.N)) → y(C1(V, x.W ), z.C2(V, x.N)) (e)
(14) C2(V, x.C3(M, y.N)) → C3(C2(V, x.M), y.C2(V, x.N))

Provisos: (a) y /∈ FV (V ) ∪ FV (N). (b) y /∈ FV (V ) ∪ FV (P )). (c) If rule (5) does not
apply. (d) If rule (1) does not apply. (e) x ̸= y.

Γ, x : A→ x : A
Ax

Γ→ V : A
Γ⇒↑V : A

Der

Γ, x : A⇒M : B

Γ→ λx.M : A ⊃ B
R⊃

Γ⇒M : A Γ, x : A⇒ N : B

Γ⇒ C3(M, x.N) : B
Cut3

Γ→ V : A Γ, x : A→W : B

Γ→ C1(V, x.W ) : B
Cut1

Γ→ V : A Γ, x : A⇒ N : B

Γ⇒ C2(V, x.N) : B
Cut2

Γ, x : A ⊃ B → V : A Γ, x : A ⊃ B, y : B ⇒ N : C

Γ, x : A ⊃ B ⇒ x(V, y.N) : C
L⊃

Figure 14 The original calculus by Dyckhoff-Lengrand.
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Abstract
In this paper we are concerned with understanding the nature of program metrics for calculi with
higher-order types, seen as natural generalizations of program equivalences. Some of the metrics we
are interested in are well-known, such as those based on the interpretation of terms in metric spaces
and those obtained by generalizing observational equivalence. We also introduce a new one, called
the interactive metric, built by applying the well-known Int-Construction to the category of metric
complete partial orders. Our aim is then to understand how these metrics relate to each other,
i.e., whether and in which cases one such metric refines another, in analogy with corresponding
well-studied problems about program equivalences. The results we obtain are twofold. We first show
that the metrics of semantic origin, i.e., the denotational and interactive ones, lie in between the
observational and equational metrics and that in some cases, these inclusions are strict. Then, we
give a result about the relationship between the denotational and interactive metrics, revealing that
the former is less discriminating than the latter. All our results are given for a linear lambda-calculus,
and some of them can be generalized to calculi with graded comonads, in the style of Fuzz.
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1 Introduction

Program equivalence is one of the most important concepts in the semantics of programming
languages: every way of giving semantics to programs induces a notion of equivalence, and
the various notions of equivalence available for the same language, even when very different
from each other, help us understanding the deep nature of the language itself. Indeed, there
is not one single, preferred way to construct a notion of equivalence for programs. The latter
is especially true in presence of higher-order types or in scenarios in which programs have a
fundamentally interactive behavior, e.g. in process algebras. For example, the relationship
between observational equivalence, the most coarse-grained congruence relation among those
which are coherent with the underlying notion of observation, and denotational semantics
has led in some cases to so-called full-abstraction results (e.g. [20, 13]), which are known
to hold only for some denotational models and in some programming languages. A similar
argument applies to applicative bisimilarity, which, e.g., is indeed fully abstract in presence
of probabilistic effects [5, 8] but not so in presence of nondeterministic effects [23].
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dequ

dden dint

dobs = dlog

Figure 1 Illustration of our comparison results for program metrics: an arrow da → db indicates
that db is coarser (i.e. less discriminating) than da. Thick arrows indicate strict domination.

Equivalences, although central to the theory of programming languages, do not allow
us to say anything about all those pairs of programs which, while qualitatively exhibiting
different behaviors, behave similarly in a quantitative sense. This has led to the study of
notions of distance between programs, which often take the form of (pseudo-)metrics on the
space of programs or of their denotations. In this sense we can distinguish at least three
defining styles:

First, observational equivalence can be generalized to a metric, maintaining the intrinsic
quantification across all contexts, but observing a difference rather than an equality [6, 7].
There is also an approach obtained by generalizing equational logic, recently introduced
by Mardare et al. [25], which has been adapted to higher-order computations with both
linear [9] and non-linear [11] types.
Finally, linear calculi admit a denotational interpretation in the category of metric
complete partial orders [2], and this is well-known to work well in presence of graded
comonads.

In other words, various definitional styles for program equivalences for higher-order calculi
have been proved to have a meaningful metric counterpart, at least when the underlying
type system is based on linear or graded types. Actually, metric semantics for non-linear
[15, 28] as well as effectful [14, 10] higher-order calculi have also been recently explored.
However, there is a missing tale in this picture, namely the one provided by interactive
semantic models akin to game semantics and the geometry of interaction [17], which were key
ingredients towards the aforementioned full-abstraction results. Moreover, the relationship
between the various notions of distance in the literature has been studied only superficially,
and the overall situation is currently less clear than for program equivalences.

The aim of this work is to shed light on the landscape about metrics in higher-order
programs. Notably, a new metric between programs inspired by Girard’s geometry of
interaction [17] is defined, being obtained by applying the so-called Int-construction [21, 1]
to the category of metric complete partial orders. The result is a denotational model, which,
while fundamentally different from existing metric models, provides a natural way to measure
the distance between programs, which we call the interactive metric. In the interactive
metric, differences between two programs can be observed incrementally, by interacting with
the underlying denotational interpretation in the question-answer protocol typical of game
semantics and the geometry of interaction.

Technically, the main contribution of the paper is an in-depth study of the relationships
between the various metrics existing in the literature, including the interactive metric.
Overall, the result of this analysis is the one in Figure 1. The observational metric remains
the least discriminating, while the equational metric is proved to be the one assigning the
greatest distances to (pairs of) programs. The two metrics of a semantic nature, namely the
denotational one and the interactive one, stand in between the two metrics mentioned above,
with the interactive metric being more discriminating than the denotational one.
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The remainder of this manuscript is structured as follows. After recalling some basic
facts about metric spaces in Section 2, in Section 3 we introduce a basic linear programming
language over the reals and its associated notion of program metrics; in Section 4, we discuss
the logical relation metric and the observational metric; in Section 5, we discuss the equational
metric; in Section 6, we introduce the two denotational metrics; Sections 7 and 8 contain our
main comparison results, and in Section 9, we shortly discuss the case of graded exponentials.
Some proofs are omitted and can be found in an extended version of this paper [12].

2 Preliminaries

In this section, we recall the notions of extended pseudo-metric spaces and non-expansive
functions. Let R∞

≥0 be the set {a ∈ R | a ≥ 0}∪{∞} of non-negative real numbers and infinity.
An extended pseudo-metric space X consists of a set |X| and a function dX : |X|× |X| → R∞

≥0
satisfying the following conditions:

For all x ∈ |X|, we have dX(x, x) = 0;
For all x, y ∈ |X|, we have dX(x, y) = dX(y, x);
For all x, y, z ∈ |X|, we have dX(x, z) ≤ dX(x, y) + dX(y, z).

In the sequel, we simply refer to extended pseudo-metric spaces as metric spaces, and we
denote the underlying set |X| by X.

For metric spaces X and Y , a function f : X → Y is said to be non-expansive when for all
x, y ∈ X, we have dY (fx, fy) ≤ dX(x, y). We write Met for the category of metric spaces
and non-expansive functions. The category Met has a symmetric monoidal closed structure
(1,⊗,⊸) where the metric of the tensor product X ⊗ Y is given by

dX⊗Y ((x, y), (z, w)) = dX(x, z) + dY (y, w).

We suppose that the monoidal product is left associative, and we denote the n-fold monoidal
product of X by X⊗n. In the sequel, R denotes the metric space of real numbers equipped
with the absolute distance dR(a, b) = |a− b|.

3 A Linear Programming Language

3.1 Syntax and Operational Semantics
We introduce our target language that is a linear lambda calculus equipped with constant
symbols for real numbers and non-expansive functions. We fix a set S of non-expansive
functions f : R⊗n → R with n ≥ 1. We call n the arity of f . For example, S may include
addition +: R ⊗ R → R and trigonometric functions such as sin, cos : R → R. We assume
function symbols f for f ∈ S and constant symbols a for real numbers a ∈ R.

Our language, denoted by ΛS , is given as follows. Types and environments are given by

Types τ, σ := R | I | τ ⊸ σ | τ ⊗ σ, Environments Γ,∆ := ∅ | Γ, x : τ.

We denote the set of types by Ty and denote the set of environments by Env. We always
suppose that every variable appears at most once in any environment. For environments Γ
and ∆ that do not share any variable, we write Γ#∆ for a merge [3, 18] of Γ and ∆, that is
an environment obtained by shuffling variables in Γ and ∆ preserving the order of variables
in Γ and the order of variables in ∆. For example, (x : τ, y : σ, y′ : σ′, x′ : τ ′) is a merge
of (x : τ, x′ : τ ′) and (y : σ, y′ : σ′). When we write Γ#∆, we implicitly suppose that no
variable is shared by Γ and ∆. Terms, values and contexts are given by the following BNF.
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x : τ ⊢ x : τ
a ∈ R

⊢ a : R ⊢ ∗ : I
f ∈ S Γ1 ⊢ M1 : R . . . Γar(f) ⊢ Mar(f) : R

Γ1# · · · #Γar(f) ⊢ f(M1, . . . ,Mar(f)) : R

Γ, x : σ ⊢ M : τ
Γ ⊢ λx : σ.M : σ ⊸ τ

Γ ⊢ M : σ ⊸ τ ∆ ⊢ N : σ
Γ#∆ ⊢ M N : τ

Γ ⊢ M : τ ∆ ⊢ N : σ
Γ#∆ ⊢ M ⊗N : τ ⊗ σ

Γ ⊢ M : I ∆ ⊢ N : τ
Γ#∆ ⊢ let ∗ be M in N : τ

Γ ⊢ M : σ1 ⊗ σ2 ∆, x : σ1, y : σ2 ⊢ N : τ
Γ#∆ ⊢ let x⊗ y be M in N : τ

Figure 2 Typing Rules.

V ↪→ V

M1 ↪→ a1 . . . Mn ↪→ an

f(M1, . . . ,Mn) ↪→ f(a1, . . . , an)
M ↪→ λx : τ. L N ↪→ V L[V/x] ↪→ U

M N ↪→ U

M ↪→ V N ↪→ U

M ⊗N ↪→ V ⊗ U

M ↪→ ∗ N ↪→ V

let ∗ be M in N ↪→ V

M ↪→ V ⊗ U N [V/x, U/y] ↪→ W

let x⊗ y be M in N ↪→ W

Figure 3 Evaluation Rules.

Terms M,N := x ∈ Var | a | ∗ | f(M1, . . . ,Mar(f)) | M N | λx : τ.M |
M ⊗N | let ∗ be M in N | let x⊗ y be M in N

Values V,U := a | ∗ | λx : τ.M | V ⊗ U

Contexts C[−] := [−] | f(M, . . . ,M ′, C[−], N ′, . . . , N) | C[−]M | M C[−] | λx : τ. C[−] |
C[−] ⊗M | M ⊗ C[−] | let ∗ be C[−] in M | let ∗ be M in C[−] |
let x⊗ y be C[−] in M | let x⊗ y be M in C[−]

Here, a ranges over R, f ranges over S, and x ranges over a countably infinite set Var of
variables. We write Γ ⊢ M : τ when the typing judgement is derived from the rules given in
Figure 2. Evaluation rules are given in Figure 3. Since ΛS is a purely linear programming
language, for any closed term ⊢ M : τ , there is a value ⊢ V : τ such that M ↪→ V . For an
environment Γ and a type τ , we define Term(Γ, τ) to be the set of all terms M such that
Γ ⊢ M : τ , and we define Value(τ) to be the set of closed values of type τ . We simply write
Term(τ) for Term(∅, τ), that is the set of closed terms of type τ . For a context C[−], we
write C[−] : (Γ, τ) → (∆, σ) when for all terms Γ ⊢ M : τ , we have ∆ ⊢ C[M ] : σ.

We adopt Church-style lambda abstraction so that every type judgement Γ ⊢ M : τ has a
unique derivation, which makes it easier to define denotational semantics for ΛS . Except for
this point, our language can be understood as a fragment of Fuzz [29] – the typing judgment
x : σ, . . . , y : ρ ⊢ M : τ corresponds to x :1 σ, . . . , y :1 ρ ⊢ M : τ in Fuzz. In Section 9, we
discuss extending our results in this paper to a richer language, closer to the one from [29].

3.2 Equational Theory
In this paper, we consider an equational theory for ΛS , which will turn out to be instrumental
to define a notion of well-behaving family of metrics for ΛS called admissibility (Section 3.3)
and to give a quantitative equational theory for ΛS (Section 5). In both cases, if two terms
are to be considered equal, then the distance between them is required to be 0. Here, we
adopt the standard equational theory for the linear lambda calculus [24] extended with the
following axiom

f ∈ S f(a1, . . . , aar(f)) = b

⊢ f(a1, . . . , aar(f)) = b : τ .

For terms Γ ⊢ M : τ and Γ ⊢ N : τ , we write Γ ⊢ M = N : τ when the equality is derivable.



U. Dal Lago, N. Hoshino, and P. Pistone 20:5

We may add some other axioms to the equational theory as long as the axioms are valid
when we interpret function symbols f as f and constant symbols a as a. For example, when
add: R ⊗ R → R is in S, we may add the commutativity law x : R, y : R ⊢ add(x, y) =
add(y, x) : R to the equational theory. The rest of this paper is not affected by such
extensions to the equational theory.

3.3 Admissibility
Let us call a family {dΓ,τ }Γ∈Env,τ∈Ty in which dΓ,τ is a metric on Term(Γ, τ) a metric on
ΛS . We introduce a class of metrics on ΛS , which is the object of study of this paper.

▶ Definition 1 (Admissible Metric). Let {dΓ,τ }Γ∈Env,τ∈Ty be a metric on ΛS. We say that
{dΓ,τ }Γ∈Env,τ :Ty is admissible when the following conditions hold:
(A1) For any environment Γ, any type τ , any pair of terms Γ ⊢ M : τ , Γ ⊢ N : τ and any

context C[−] : (Γ, τ) → (∆, σ), we have d∆,σ(C[M ], C[N ]) ≤ dΓ,τ (M,N).
(A2) For all a, b ∈ R, we have d∅,R(a, b) = |a− b|.
(A3) For all a1, . . . , an, b1, . . . , bn ∈ R and all closed values ⊢ V : τ and ⊢ U : τ , we have

d∅,R⊗n⊗τ

(
a1 ⊗ · · · ⊗ an ⊗ V, b1 ⊗ · · · ⊗ bn ⊗ U

)
≥ |a1 − b1| + · · · + |an − bn|.

(A4) If Γ ⊢ M = N : τ , then dΓ,τ (M,N) = 0.

The first condition (A1) states that all contexts are non-expansive, and the second
condition (A2) states that the metric on R coincides with the absolute metric on R. (A3) states
that the distance between two terms a1 ⊗ · · · ⊗an ⊗V and b1 ⊗ · · · ⊗ bn ⊗U is bounded (from
below) by the distance between their “observable fragments” dR⊗n((a1, . . . , an), (b1, . . . , bn)).
The last condition (A4) states that dΓ,τ subsumes the equational theory for ΛS .

The definition of admissibility is motivated by the study of Fuzz [29], which is a linear type
system for verifying differential privacy [4]. There, Reed and Pierce introduce a syntactically
defined metric on Fuzz using a family of relations called metric relations, and they prove that
all programs are non-expansive with respect to the syntactic metric (Theorem 6.4 in [29]).
(A1) is motivated by this result. Furthermore, in the definition of the metric relation, the
tensor product of types is interpreted as the monoidal product of metric spaces, and the type
of real numbers is interpreted as R with the absolute distance. (A2) and (A3) are motivated
by these definitions. In fact, given an admissible metric {dΓ,τ }Γ∈Env,τ∈Ty on ΛS , we can
show that d∅,R⊗n coincides with the metric of R⊗n:

▶ Lemma 2. If a metric {dΓ,τ }Γ∈Env, τ∈Ty is admissible, then for all a1, b1, . . . , an, bn ∈ R,

d∅,R⊗n(a1 ⊗ · · · ⊗ an, b1 ⊗ · · · ⊗ bn) = |a1 − b1| + · · · + |an − bn|. (1)

The reason that we do not take (1) as the third condition of admissibility and instead rely
on the stronger condition (A3) above is that requiring (1) would not allow us to characterize
the observational metric (Section 4.2) as the least admissible metric on ΛS .

4 Logical Metric and Observational Metric

We give two syntactically defined metrics on ΛS : one is based on logical relations, and the
other is given in the style of Morris observational equivalence [27]. We then show that the
two metrics coincide. This can be seen as a metric variant of Milner’s context lemma [26].
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4.1 Logical Metric
The first metric on ΛS is given by means of a quantitative form of logical relations [29] called
metric logical relations. Here, we directly define metric logical relations, and then, we define
the induced metric on ΛS . The metric logical relations

{(−) ≃τ
r (−) ⊆ Term(τ) × Term(τ)}τ∈Ty, r∈R∞

≥0

are given by induction on τ as follows.

M ≃R
r N ⇐⇒ M ↪→ a and N ↪→ b and |a− b| ≤ r

M ≃I
r N ⇐⇒ M ↪→ ∗ and N ↪→ ∗

M ≃τ⊗σ
r N ⇐⇒ M ↪→ V ⊗ V ′ and N ↪→ U ⊗ U ′ and

∃s, s′ ∈ R∞
≥0, V ≃τ

s U and V ′ ≃σ
s′ U ′ and s+ s′ ≤ r

M ≃τ⊸σ
r N ⇐⇒ M ↪→ λx : τ.M ′ and N ↪→ λx : τ.N ′ and

∀V,U ∈ Value(τ), if V ≃τ
s U, then M ′[V/x] ≃σ

r+s N
′[U/x]

Then for an environment Γ = (x : σ, . . . , y : ρ) and a pair of terms Γ ⊢ M : τ and Γ ⊢ N : τ ,
we define dlog

Γ,τ (M,N) ∈ R∞
≥0 by

dlog
Γ,τ (M,N) = inf{r ∈ R∞

≥0 | λx : σ. · · ·λy : ρ.M ≃σ⊸···⊸ρ⊸τ
r λx : σ. · · ·λy : ρ.N}.

We give a consequence of our results in this paper, namely, Theorem 6 and Theorem 18.
For the detail of the proof of Proposition 3, see [12].

▶ Proposition 3. For any environment Γ and any type τ , the function dlog
Γ,τ is a metric on

Term(Γ, τ). Furthermore, {dlog
Γ,τ }Γ∈Env,τ∈Ty is admissible.

We call dlog logical metric. We note that we can directly check that dlog satisfies (A2) and
(A3), and we need Theorem 6 and Theorem 18 to show that dlog is a metric on ΛS and
satisfies (A1) and (A4).

▶ Example 4. In this example, we suppose that the addition add: R ⊗ R → R is in S. Let
M be λk : R ⊸ R. k 1, and let N be λk : R ⊸ R. add(−2, k 0). Then

dlog
∅,R⊸R(M,N) ≤ 1 + 2 = 3

because we have V 1 ≃R
s+1 U 0 for any pair V ≃R⊸R

s U . In fact, we have dlog
∅,R⊸R(M,N) = 3,

which follows from Theorem 6. See Example 7. ⌟

▶ Example 5. For a ∈ R, we define a term Ma to be

⊢ a⊗ a⊗ V : R ⊗ R ⊗ ((R ⊗ R ⊸ R) ⊸ R) where V = λk : R ⊗ R ⊸ R. k (0 ⊗ 0).

Since dlog
∅,R(0, 1) = 1, we obtain dlog

∅,R⊗R⊗((R⊗R⊸R)⊸R)(M0,M1) = 1 + 1 + 0 = 2. ⌟

4.2 Observational Metric
We next give a metric, which we call the observational metric, that measures distances
between terms by observing concrete values produced by any possible context. For terms
Γ ⊢ M : τ and Γ ⊢ N : τ , we define dobs

Γ,τ (M,N) ∈ R∞
≥0 by

dobs
Γ,τ (M,N) = sup

(n,σ,C[−])∈K(Γ,τ)

{
|a1 − b1| + · · · + |an − bn|

∣∣∣∣C[M ] ↪→ a1 ⊗ · · · ⊗ an ⊗ V

and C[N ] ↪→ b1 ⊗ · · · ⊗ bn ⊗ U

}
where (n, σ, C[−]) ∈ K(Γ, τ) if and only if C[−] is a context from (Γ, τ) to (∅,R⊗n ⊗ σ).
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Γ ⊢ M = N : τ
Γ ⊢ M ≈0 N : τ

Γ ⊢ M ≈r N : τ
Γ ⊢ N ≈r M : τ

Γ ⊢ M ≈r N : τ Γ ⊢ N ≈s L : τ
Γ ⊢ M ≈r+s L : τ

|a− b| ≤ r

⊢ a ≈r b : R
Γ ⊢ M ≈r N : τ C[−] : (Γ, τ) → (∆, σ)

∆ ⊢ C[M ] ≈r C[N ] : σ

Figure 4 Derivation Rules for Γ ⊢ M ≈r N : τ .

▶ Theorem 6. For any environment Γ and any type τ , we have dobs
Γ,τ = dlog

Γ,τ .

This theorem follows from coincidence of the metric logical relations with the metric rela-
tions [29] and the fundamental lemma for metric logical relations.

▶ Example 7. Let M and N be terms given in Example 4. By observing these terms by the
context [−] (λx : R. x), we see that dlog

∅,(R⊸R)⊸R(M,N) ≥ 3. By Theorem 6 and Example 4,
we obtain dlog

∅,(R⊸R)⊸R(M,N) = 3. ⌟

▶ Example 8. We consider the term ⊢ Ma : τ given in Example 5 again. By observing M0 and
M1 by the trivial context [−], we can directly check that dobs

∅,R⊗R⊗((R⊗R⊸R)⊸R)(M0,M1) ≥
2. (In fact, it follows from Theorem 6 that the distance is equal to 2.) The purpose of the
auxiliary type σ in the definition of K(Γ, τ) is to enable observations of this type. In this case,
while the logical metric distinguishes M0 from M1, we can not observationally distinguish M0
from M1 by means of observations at types R⊗n when S is empty. This is because there is
no closed term of type R ⊗ R ⊸ R when S is empty. For a detailed explanation, see [12]. ⌟

5 Equational Metric

We give another syntactic metric on ΛS , which we call the equational metric. This is
essentially the quantitative equational theory from [9] without the rules called weak, join
and arch. We exclude these rules since they do not affect the equational metric dequ given
below.

For terms Γ ⊢ M : τ and Γ ⊢ N : τ , and for r ∈ R∞
≥0, we write

Γ ⊢ M ≈r N : τ

when we can derive the judgement from the rules in Figure 4. Then, for terms Γ ⊢ M : τ
and Γ ⊢ N : τ we define dequ

Γ,τ (M,N) ∈ R∞
≥0 by

dequ
Γ,τ (M,N) = inf{r ∈ R∞

≥0 | Γ ⊢ M ≈r N : τ}.

▶ Proposition 9. For any environment Γ and any type τ , the function dequ
Γ,τ is a metric on

Term(Γ, τ). Furthermore, {dequ
Γ,τ }Γ∈Env,τ∈Ty is admissible.

▶ Example 10. The equational metric measures differences between terms by comparing their
subterms. For example, we have ⊢ 2 ≈1 3 : R, and therefore, k : R ⊸ R ⊢ k 2 ≈1 k 3 : R
holds. From this, we see that dequ

(k:R⊸R),R(k 2, k 3) ≤ 1. In fact, this is an equality. This
follows from dobs

(k:R⊸R),R(k 2, k 3) ≥ 1, which is easy to check, and Theorem 18 below. ⌟

In general, we have dobs
Γ,τ (M,N) < dequ

Γ,τ (M,N), i.e., the equational metric is strictly more
discriminating than the observational metric (Theorem 18), which is proved by semantically
inspired metrics in the next section.
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6 Models of ΛS and Associated Metrics

Now, we move our attention to semantically derived metrics on ΛS . We first give a notion of
models of ΛS based on Met-enriched symmetric monoidal closed categories. Met-enriched
symmetric monoidal closed categories are studied in [9] as models of quantitative equational
theories for the linear lambda calculus. Then, we give two examples of semantic metrics on
ΛS : one is based on domain theory, and the other is based on the Geometry of Interaction.

6.1 Met-enriched Symmetric Monoidal Closed Category
We say that a symmetric monoidal closed category (C, I,⊗,⊸) is Met-enriched when every
hom-set C(X,Y ) has the structure of a metric space subject to the following conditions:

the composition is a morphism in Met from C(X,Y ) ⊗ C(Z,X) to C(Z, Y ); and
the tensor is a morphism in Met from C(X,Y ) ⊗ C(Z,W ) to C(X ⊗ Z, Y ⊗W ); and
the currying operation is an isomorphism in Met from C(X ⊗ Y, Z) to C(X,Y ⊸ Z).

For morphisms f, g : X → Y in C, we write d(f, g) for the distance between f and g.

▶ Definition 11. A pre-model M = (C, I,⊗,⊸, ⌊−⌋) of ΛS is a Met-enriched symmetric
monoidal closed category (C, I,⊗,⊸) equipped with an object ⌊R⌋ ∈ C and families of
morphisms {⌊a⌋ : I → ⌊R⌋}a∈R and {⌊f⌋ : ⌊R⌋⊗ar(f) → ⌊R⌋}f∈S.

For a pre-model M = (C, I,⊗,⊸, ⌊−⌋) of ΛS , we interpret types as follows:

JRKM = ⌊R⌋, JIKM = I, Jτ ⊗ σKM = JτKM ⊗ JσKM, Jτ ⊸ σKM = JτKM ⊸ JσKM.

For an environment Γ = (x : τ, . . . , y : σ), we define JΓKM to be JτKM ⊗ · · · ⊗ JσKM. Then,
the interpretation JΓ ⊢ M : τKM : JΓKM → JτKM in M is given in the standard manner
following [24], and constants are interpreted as follows: J⊢ a : RKM = ⌊a⌋,

JΓ# · · · #∆ ⊢ f(M, . . . , N) : RKM = ⌊f⌋ ◦ (JMKM ⊗ · · · ⊗ JNKM) ◦ θ

where θ : JΓ#∆KM ∼=−→ JΓKM ⊗ J∆KM swaps objects following the merge Γ#∆.

▶ Definition 12. We say that a pre-model M = (C, I,⊗,⊸, ⌊−⌋) of ΛS is a model of ΛS if
M satisfies the following three conditions.

(M1) For any f ∈ S, if f(a1, . . . , aar(f)) = b, then Jf(a1, . . . , an)KM = JbKM.
(M2) For all a, b ∈ R, d(⌊a⌋, ⌊b⌋) = |a− b|.
(M3) For all x, y : I → X in C and all finite sequences a1, . . . , an, b1, . . . , bn ∈ R, we have

d(⌊a1⌋ ⊗ · · · ⊗ ⌊an⌋ ⊗ x, ⌊b1⌋ ⊗ · · · ⊗ ⌊bn⌋ ⊗ y) ≥ |a1 − b1| + · · · + |an − bn|.

The first condition corresponds to the reduction rule for function symbols and is necessary
to prove soundness for models of ΛS . The remaining conditions are for admissibility of the
metric derived from models of ΛS .

▶ Proposition 13 (Soundness). Let M be a model of ΛS. For any term M ∈ Term(τ) and
any value V ∈ Value(τ), if M ↪→ V , then JMKM = JV KM.

Let M = (C, I,⊗,⊸, ⌊−⌋) be a model of ΛS . For an environment Γ and a type τ , we
define dM

Γ,τ to be the function d(J−KM, J−KM) from Term(Γ, τ) × Term(Γ, τ) to R∞
≥0.

▶ Proposition 14. For any environment Γ and any type τ , the function dM
Γ,τ is a metric on

Term(Γ, τ). Furthermore, {dM
Γ,τ }Γ∈Env,τ∈Ty is admissible.

▶ Example 15. The symmetric monoidal closed category Met of metric spaces and non-
expansive functions can be extended to a model (Met, I,⊗,⊸, ⌊−⌋) of ΛS where we define
⌊R⌋ ∈ Met to be R, and for f ∈ S, we define ⌊f⌋ : R⊗ar(f) → R to be f . ⌟



U. Dal Lago, N. Hoshino, and P. Pistone 20:9

6.2 Denotational Metric
In this section, we recall the notion of metric cpos introduced in [2] as a denotational model
of Fuzz, and we give a model of ΛS based on metric cpos. While we do not need the domain-
theoretic nature of metric cpos to model ΛS , we believe that the category of metric cpos is a
good place to explore how metrics from denotational models and metrics from interactive
semantic models are related. This is because the domain theoretic structure of the category
of metric cpos directly gives rise to an interactive semantic model via Int-construction as we
show in Section 6.3.2.

Let us recall the notion of (pointed) metric cpos [2].

▶ Definition 16. A (pointed) metric cpo X consists of a metric space (|X|, dX) with a
partial order ≤X on |X| such that (|X|,≤X) is a (pointed) cpo, and for all ascending chains
(xi)i∈N and (x′

i)i∈N on X, we have dX

(∨
i∈N xi,

∨
i∈N x

′
i

)
≤

∨
i∈N dX(xi, x

′
i).

For metric cpos X and Y , a function f : |X| → |Y | is said to be continuous and non-expansive
when f is a continuous function from (|X|,≤X) to (|Y |,≤Y ) and is a non-expansive function
from (|X|, dX) to (|Y |, dY ). Below, we simply write X for the underlying set |X|.

Pointed metric cpos and continuous and non-expansive functions form a category, which is
denoted by MetCppo. The unit object I of MetCppo is the unit object of Met equipped
with the trivial partial order. The tensor product X ⊗ Y is given by the tensor product of
metric spaces with the componentwise order. The hom-object X ⊸ Y is given by the set of
continuous and non-expansive functions equipped with the pointwise order and

dX⊸Y (f, g) = sup
x∈X

dY (fx, gx).

We associate MetCppo with the structure of a model of ΛS as follows. We define R = ⌊R⌋
to be (R∪ {⊥}, dR,≤R) where dR is the extension of the metric on R given by dR(a,⊥) = ∞
for all a ∈ R, and (R ∪ {⊥},≤R) is the lifting of the discrete cpo R. For f ∈ S, we define
⌊f⌋ : R⊗ar(f) → R to be the function satisfying ⌊f⌋(x1, . . . , xar(f)) = y ∈ R if and only if
x1, . . . , xar(f) ∈ R and f(x1, . . . , xar(f)) = y. In the sequel, we denote the metric on ΛS

induced by this model by dden, and we call the metric dden the denotational metric.

6.3 Interactive Metric
We describe another model of ΛS , which we call the interactive semantic model. Categorically
speaking, the construction is based on the notion of trace operator and on the related
Int-construction [21]. Below, we first sketch how terms are interpreted, and then, we formally
describe the construction of the interactive semantic model.

6.3.1 How Terms are Interpreted, Informally
Via the Curry-Howard correspondence, our target language can be considered as the (intu-
itionistic) multiplicative fragment of linear logic equipped with an atomic proposition ρ and
derivation rules

f
⊢ ρ⊥, . . . , ρ⊥, ρ ,

a
⊢ ρ

for each f ∈ S and each a ∈ R. Roughly speaking, the metric induced by the interactive
semantic model measures distances between terms by measuring distances between the proof
structures [16] associated to the corresponding proofs in this extension of linear logic; and
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the distances between proof structures are given by the distances between the non-expansive
functions associated to proof structures. We will use the Int-construction as a categorical
machinery to associate non-expansive functions to proof structures. Below, without going
into categorical detail, we illustrate how we measure distances between terms using concrete
examples.

For simplicity, we suppose that S is the set of all non-expansive functions from R to R.
Then the proof structures associated to proofs are generated by the axiom links and the
cut-links:

ϕ ϕ⊥ ϕ⊥ ϕ

with the following nodes:

⊗ϕ ψ

ϕ⊗ ψ
`ϕ ψ

ϕ` ψ
f

ρ⊥ ρ
a
ρ

labeled by f : R → R in S and a ∈ R. The first two nodes are called tensor-node and
par-node, respectively. The latter two nodes corresponds to derivation rules for f ∈ S and
a ∈ R. Labels ϕ, ψ, . . . on edges are formulae of the multiplicative fragment of linear logic
given by: ϕ, ψ ::= ρ | ρ⊥ | ϕ⊗ψ | ϕ`ψ. As usual, (−)⊥ is an involutive operator inductively
defined by ρ⊥⊥ = ρ, (ϕ⊗ ψ)⊥ = ϕ⊥ ` ψ⊥, and (ϕ` ψ)⊥ = ϕ⊥ ⊗ ψ⊥.

As an example, let us consider Ma = λk : R ⊸ R. k a for a ∈ R. The proof and the
proof structure corresponding to Ma are

⊢ ρ⊗ ρ⊥, ρ⊥ ` ρ

a
⊢ ρ ⊢ ρ⊥, ρ

⊢ ρ⊗ ρ⊥, ρ

⊢ ρ⊗ ρ⊥, ρ ,
⊗

a
ρ ρ⊥

ρ

,ρ⊗ ρ⊥ρ⊥ ` ρρ⊗ ρ⊥

and the interactive semantic model associates this proof structure with a non-expansive
function fa : R → R ⊗ R given by fa(x) = (a, x). Intuitively, this non-expansive function f

represents information flow on the proof structure. In this case, the information flow on the
proof structure can be visualized by replacing edges labeled by ρ⊗ ρ⊥ and ρ⊥ ` ρ with pairs
of directed wires and removing the tensor node:

a

.

ρ
ρ⊥ρ

Here, we have one incoming edge labeled by ρ⊥, and given an input x to this edge, we
will obtain a pair of outputs: one is a from the left outgoing edge and the other is x from
the right outgoing edge. This way, we obtain the function fa(x) = (a, x). Technically
speaking, this graph transformation is precisely what the Int-construction does: the Int-
construction provides a way to represent undirected graphs as bidirectional information flows.
Finally, we can compute the distance between Ma and Mb by comparing fa and fb. Since
dR⊸R⊗R(fa, fb) = |a− b|, the distance between Ma and Mb in the interactive semantic model
is |a− b|.
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An important feature of the interactive semantic model is that it provides an intensional
view. For example, for a ∈ R, let La be λk : R ⊸ R. c(k a) where c ∈ S is the constant
function given by c(x) = 0. Then, for all a, b ∈ R, while La and Lb are extensionally
equivalent, the interactive semantic model distinguishes La from Lb if a ̸= b. Below, we
explain how the interactive semantic model distinguishes these terms. The proof and the
proof structure corresponding to La are

Πa

⊢ ρ⊗ ρ⊥, ρ
c

⊢ ρ⊥, ρ

⊢ ρ⊗ ρ⊥, ρ ,

Pa
c

ρ⊗ ρ⊥ ρ ρ⊥ ρ

where Πa in the left hand side denotes the proof associated to Ma, and Pa in the right hand
side denotes the proof structure associated to Ma. By replacing edges in Pa with bidirectional
edges (depicted in the gray region in the following graph), we obtain

a

c
ρ

ρ⊥ ρ

.
ρ⊥ρ

This graph represents ga : R → R ⊗ R given by ga(x) = (0, a). Because dR⊸R⊗R(ga, gb) =
|a − b|, we see that the distance between La and Lb in the interactive semantic model is
|a− b|. In other words, the interactive semantic model distinguishes La and Lb by looking
at their computational processes, namely, applying either a or b to its argument and then
returning 0, rather than their extensional behavior.

Finally, we give a remark on the name interactive semantic model. Interaction in the
interactive semantic model can be found when we consider terms that have β-redexes. For
example, the bidirectional graph associated to Ma (λx : R.f(x)) is

P⇆
af

ρ ρ⊥
ρ

,

where P⇆
a is the bidirectional graph obtained from Pa. In this graph, we can find interaction

between the node f and the node P⇆
a .

6.3.2 The Interactive Semantic Model, Formally
In order to formally describe the interactive semantic model, we first observe that the
category MetCppo has a trace operator, which is necessary to apply the Int-construction
to MetCppo. For f : X ⊗ Z → Y ⊗ Z in MetCppo, we define trZ

X,Y (f) : X → Y by

trZ
X,Y (f)(x) = the first component of f(x, z)

where z is the least fixed point of the continuous function f(x,−) : Z → Z. When we
ignore metric enrichment, the definition of trZ

X,Y (f) coincides with the definition of the trace
operator associated to the least fixed point operator on the category of pointed cpos and
continuous functions [18]. Hence, in order to show that trZ

X,Y is a trace operator, it is enough
to check non-expansiveness of trZ

X,Y (f).
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idX : X → X (g : Y → Z) ◦ (f : X → Y ) f : X ⊗ · · · ⊗ Z → Y ⊗ · · · ⊗ W

X f gX
Y

Z f
...

...
X Y

Z W

(f : X → Y ) ⊗ (g : Z → W ) symX,Y : X ⊗ Y → Y ⊗ X trZ
X,Y (f) : X → Y

f

g

X Y

Z W

X

Y

Y

X
f

X Y

Figure 5 String Diagrams for the Traced Symmetric Monoidal Structure.

▶ Proposition 17. The symmetric monoidal category (MetCppo, I,⊗) equipped with the
family of operators {trZ

X,Y }X,Y,Z∈MetCppo is a traced symmetric monoidal category.

Now, we can apply the Int-construction to MetCppo and obtain a symmetric monoidal
closed category Int(MetCppo). (In fact, what we obtain is a compact closed category,
and we only need its symmetric monoidal closed structure to interpret ΛS .) Objects in
Int(MetCppo) are pairs X = (X+, X−) consisting of objects X+ and X− in MetCppo,
and a morphism from X to Y in Int(MetCppo) is a morphism from X+ ⊗ Y− to X− ⊗ Y+
in MetCppo. The identity on (X+, X−) is the symmetry X+ ⊗X− ∼= X− ⊗X+, and the
composition of f : (X+, X−) → (Y+, Y−) is given by

trY−⊗Y+
X+⊗Z−,X−⊗Z+

((X− ⊗ θ) ◦ (f ⊗ g) ◦ (X+ ⊗ θ′))

where θ : Y+ ⊗ Y− ⊗ Z+ → Z+ ⊗ Y− ⊗ Y+ and θ′ : Y− ⊗ Y+ ⊗ Z− → Z− ⊗ Y− ⊗ Y+ are the
canonical isomorphisms, and we omit some coherence isomorphisms. The symmetric monoidal
closed structure of Int(MetCppo) is given as follows. The tensor unit is (I, I), and the
tensor product X⊗Y is (X+ ⊗Y+, X− ⊗Y−). The hom-object X ⊸ Y is (X− ⊗Y+, X+ ⊗Y−).
For more details on the categorical structure of Int(MetCppo), see [21, 30].

We associate Int(MetCppo) with the structure of a model of ΛS as follows. We define
⌊R⌋ to be (R, I), and for each f ∈ S, we define ⌊f⌋ : (R, I)⊗ar(f) → (R, I) by

R⊗ar(f) ⊗ I
∼=−→ R⊗ar(f) the interpretation of f in MetCppo−−−−−−−−−−−−−−−−−−−−−−−→ R

∼=−→ I⊗ar(f) ⊗R.

We write dint for the metric on ΛS induced by the interactive semantic model, and we call
dint the interactive metric.

In Figure 6, we describe the interpretation of ΛS in Int(MetCppo) in terms of string
diagrams. Here, we write LτM+ and LτM− for the positive part and the negative part of the
interpretation of τ , and we write LΓ ⊢ M : τM for the interpretation of a term Γ ⊢ M : τ . See
Figure 5 (and [30]) for the meaning of string diagrams. The interpretation L⊢ ∗ : IM is not in
Figure 6 since L⊢ ∗ : IM is the identity on the unit object I, which is presented by zero wires.
In the interpretation of f(M1, . . . ,Mar(f)), we suppose that ar(f) = 2 for legibility.

7 Finding Your Way Around the Zoo

We describe how the admissible metrics on ΛS considered in this paper are related. Below,
for metrics d = {dΓ,τ }Γ∈Env,τ∈Ty and d′ = {d′

Γ,τ }Γ∈Env,τ∈Ty on ΛS , we write d ≤ d′ when
for all terms Γ ⊢ M : τ and Γ ⊢ N : τ , we have dΓ,τ (M,N) ≤ d′

Γ,τ (M,N). We write d < d′

when we have d ≤ d′ and d ̸= d′. Our main results are about the relationships between the
various metrics on ΛS , as from Figure 1.
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Lx : τ ⊢ x : τM LΓ ⊢ λx : σ. M : σ ⊸ τM LΓ#∆ ⊢ M N : τM

LτM+

LτM−

M

LΓM+ LΓM−

LσM+ LσM−

LτM− LτM+
M

LτM− LτM+

L∆M−L∆M+

N
LΓM+ LΓM−

LσM− LσM+

L⊢ a : RM LΓ#∆ ⊢ f(M, N) : RM LΓ#∆ ⊢ M ⊗ N : τ ⊗ σM

a R

N

R

L∆M−

L∆M+

MLΓM+
LΓM−

R f R N
LσM− LσM+

L∆M−L∆M+
M

LΓM+ LΓM−

LτM+LτM−

LΓ#∆ ⊢ let ∗ be M in N : τM LΓ#∆ ⊢ let x ⊗ y be M in N : σM

N
LτM− LτM+

L∆M− L∆M+

MLΓM+ LΓM−

N
LσM− LσM+

L∆M−L∆M+

M
LΓM+ LΓM−

Lτ1 ⊗ τ2M− Lτ1 ⊗ τ2M+

Figure 6 The Interpretation of ΛS in Int(MetCppo).

▶ Theorem 18. The following inclusions hold.
1. For any admissible metric d on ΛS, we have dlog = dobs ≤ d ≤ dequ.
2. dlog = dobs ≤ dden < dint ≤ dequ.

The first claim in the above theorem states that the observational metric is the least
admissible metric and the equational metric is the greatest admissible metric. In the proof,
the conditions (A1), (A2), (A3) and (A4) in the definition of admissibility play different
roles. While dobs ≤ d follows from (A1), (A3) and (A4), d ≤ dequ follows from (A1), (A2)
and (A4). In the long version [12], we also show the converse of this statement. Namely, if a
metric d on ΛS satisfies (A1) and dobs ≤ d ≤ dequ, then d is admissible. This implies the
notion of admissibility captures reasonable class of metrics on ΛS . The second claim in the
main theorem is what illustrated in Figure 1. The inequalities dobs ≤ dden and dint ≤ dequ

follow from the first claim; the proof of the strict inequality dden < dint is deferred to the
next section.

Concrete metrics in-between dobs and dequ are useful to approximately compute dobs and
dequ. For example, it is not easy to directly prove dequ

(k:R⊸I),I(k 2, k 3) ≥ 1 since we need to
know that whenever k : R ⊸ I ⊢ k 2 ≈r k 3 : I is derivable, we have r ≥ 1. Let us give
a semantic proof for the inequality dequ

(k:R⊸I),I(k 2, k 3) ≥ 1. Here, we use the interactive
semantic model. The interpretations of these terms in the interactive semantic model are

I

I

2 R , I

I

3 R

where we can directly see the values applied to k. Hence, we obtain dint
(k:R⊸I),I(k 2, k 3) = 1.

Then, the claim follows from dint ≤ dequ.

FSCD 2023



20:14 On the Lattice of Program Metrics

fx

y y

z

f(x, z)

0
2

0
2

gx

y

z

z

g(x, y)

3
1

3
1

Figure 7 String diagrams with Int-terms for M = f(x(y0), z2) and N = g(x(z1), y3).

8 Comparing the Two Denotational Viewpoints

We show that by switching from MetCppo to the interactive semantic model via the
Int-construction, one obtains a more discriminating metric. In other words, our goal is
to establish that dden < dint. In this section, besides the standard equational theory from
Section 3, we will also make reference to the standard β-reduction relation on ΛS .

Let us start by making the interactive semantic metric more explicit. Notably, in
the case of β-normal terms, computing distances in Int(MetCppo) can be reduced to
computing distances in MetCppo as follows: a morphism from Γ to σ in Int(MetCppo)
is a morphism in MetCppo from LΓM+ ⊗ LσM+ to LΓM− ⊗ LσM+, where these two objects
correspond to tensors of the form U ⊗ · · · ⊗ U, with U ∈ {I,R}, More precisely, with
any list of types Γ one can associate two natural numbers Γ+,Γ− defined inductively as
(∅)+ = (∅)− = 0, (U ∗ Γ)+ = 1 + Γ+, (U ∗ Γ)− = Γ−, (σ ⊸ τ ∗ Γ)+ = σ− + τ+ + Γ+,
(σ ⊸ τ ∗ Γ)− = σ+ + τ− + Γ−, (σ ⊗ τ ∗ Γ)+ = σ+ + τ+ + Γ+, (σ ⊗ τ ∗ Γ)− = σ− + τ− + Γ−.
Then one has the following:

▶ Proposition 19 (First-Order Int-Terms). Let M,N be β-normal terms such that Γ ⊢ M,N : σ
and let m = Γ+ + σ−, n = Γ− + σ+. Then there exist first-order linear terms HM

1 , . . . ,HM
n ,

depending on variables x1, . . . , xm, and a partition I1, . . . , Im of {1, . . . ,m} such that:
Γj ⊢ HM

j : U, for all j = 1, . . . , n, where Γj = {xl : U | l ∈ Ij}, with U ∈ {I,R};
JMKInt(MetCppo) =

⊗
jJH

M
j KMetCppo.

Intuitively, the variables occurring in the left-hand of Γj ⊢ HM
j : U correspond to the left-

hand “wires” of the string diagram representation of JMKInt(MetCppo), and the first-order
term HM

j describes what exits from i-th right-hand “wire” of JMKInt(MetCppo).

▶ Example 20. Let M = f(x(y0), z2) and N = g(x(z1), y3), so that Γ ⊢ M,N : R, where
Γ = {x : R ⊸ R, y : R ⊸ R, z : R ⊸ R}. The string diagram representations of M and N ,
with the associated Int-terms, are illustrated in Fig. 7. ⌟

From Proposition 19 we can now deduce the following:

▶ Corollary 21. For all β-normal terms M,N , dint(M,N) =
∑n

j=1 d
den(HM

j , HN
j ).

For instance, in the case of Example 20, the distance dint(M,N) coincides with the sum
of the distances, computed in MetCppo, between the Int-terms illustrated in Fig. 7.

We can use Corollary 21 to show that the equality dint = dden cannot hold. For instance,
while dden

(k:R⊸I),I(k2, k3) = 0, by computing the Int-terms Hk2
1 (x) = Hk3

1 (x) = x, Hk3
2 = 2,

Hk3
2 = 3 we deduce dint

(k:R⊸I),I(k2, k3) = 0 + 1 = 1.
It remains to prove then that dden ≤ dint.

▶ Theorem 22. For all M,N such that Γ ⊢ M,N : σ holds, dden(M,N) ≤ dint(M,N).
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Proof sketch. It suffices to prove the claim for M,N β-normal, using the fact that, if M∗ and
N∗ are the β-normal forms of M,N , then dden(M,M∗) = dden(N,N∗) = 0, and moreover
dint(M∗, N∗) ≤ dint(M,N), as a consequence of the non-expansiveness of the trace operator.
Recall that

dden(M,N) = sup{dden
σ (JMKMetCppo(⃗a), JNKMetCppo(⃗a)) | a⃗ ∈ JΓKMetCppo},

dint(M,N) = sup
{

n∑
i=1

dden
R (HM

i [r⃗], HN
i [r⃗])

∣∣∣ r⃗ ∈ Rm

}
.

For fixed a⃗ ∈ JΓKMetCppo we will construct reals r⃗ ∈ Rm, a sequence of terms M =
M0, . . . ,Mk = N , where k = Γ− + σ+, and a bijection ρ : {1, . . . , k} → {1, . . . k} such that
the distance between Mi [⃗a] and Mi+1 [⃗a] is bounded by the distance between the Int-terms
HM

ρ(i+1)[r⃗] and HN
ρ(i+1)[r⃗]. In this way we can conclude by a finite number of applications of

the triangular law that

dden
σ (M [⃗a], N [⃗a]) ≤ dden

σ (M0 [⃗a],M1 [⃗a]) + · · · + dden
σ (Mk−1 [⃗a],Mk [⃗a])

≤ dden
R (HM

ρ(1)[r⃗], HN
ρ(1)[r⃗]) + · · · + dden

R (HM
ρ(k)[r⃗], HN

ρ(k)[r⃗]) ≤ dint(M,N).

We observe (see [12] for more details) that:
the bound or free variables xi of M are bijectively associated with the subterms ϕiM of
M of the form xiQ⃗ and with first-order variables αi;
the Int-terms HM

i [αi1 , . . . , αis ] are bijectively associated with the subterms ψiM of M of
the form HM

i [ϕi1M, . . . , ϕis
M ].

Similar observations hold for N , and ρ is defined so that, whenever ψiN is a subterm of ψjN ,
ϕ(j) ≤ ϕ(i). Let us set rαj

:= ϕjM [⃗a]. The desired sequence is defined by letting M0 = M

and Mi+1 be obtained from Mi by replacing the subterm ψρ(i)M = HM
ρ(i)[ϕi1M, . . . , ϕis

M ]
by HN

ρ(i)[ϕi1M, . . . , ϕis
M ]. Using the properties of ρ, one can check that this replacement is

well-defined at each step, and that Mk actually coincides with N . Moreover, at each step
the passage from Mi to Mi+1 is bounded in distance by

dden(HM
ρ(i)[. . . ϕjM [⃗a] . . . ], HN

ρ(i)[. . . ϕjM [⃗a] . . . ]) = dint(HM
ρ(i)[. . . raj . . . ], HN

ρ(i)[. . . raj . . . ])

≤ dint(HM
ρ(i), HN

ρ(i)). ◀

▶ Example 23. For the terms M and N from Example 20, the procedure just sketched

defines the sequence: M = f(x(y0), z2) f(x,z)7→g(x,y)→ g(x(y0), y0) y 7→z→ g(x(z2), y0) 07→3→
g(x(z2), y3) 27→1→ g(x(z1), y3) = N , where at each step the replacement is of the form
HM

i [. . . φjM . . . ] 7→ HN
i [. . . φjM . . . ]. ⌟

While the argument above holds in the linear case, it does not seem to scale to graded
exponentials, and in this last case we are not even sure if a result like Theorem 22 may
actually hold (see also the discussion in the next section).

9 On Graded Exponentials

One of the (original) motivations of this paper was to study distances between programs in
Fuzz [29], which is a linear type system designed to track program sensitivity . A function
f : R → R is said to be r-sensitive for r ∈ R∞

≥0 when f is a non-expansive function from
!rR → R where !rR is the metric space of real numbers with d!rR(a, b) = r|a− b|. Sensitivity
tells how much a function depends on its arguments. Since Fuzz adopts the scaling modalities

FSCD 2023
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!r(−) as type constructors, when we are to extend our results in this paper to Fuzz, we need
to take care of the scaling modalities. In this section, we give some hints about which ones
of our results can be extended to Fuzz.

As for Theorem 6, we can show that the metric given in [29] in terms of metric logical
relations equals the observational metric dobs

Γ,τ (M,N) given by

sup
C[−] : (Γ,τ)→(∅,R)

inf
{
r ∈ R∞

≥0

∣∣∣∣ if C[M ] ↪→ a, then C[N ] ↪→ b and |a− b| ≤ r,

and if C[N ] ↪→ a, then C[M ] ↪→ b and |a− b| ≤ r

}

as long as we equip Fuzz with unary multiplications r × (−) : !rR → R for all r ∈ R≥0. For
Fuzz without unary multiplications, we need to define observational metric by observations
at types !r1R ⊗ · · · ⊗ !rn

R in order to prove that the observational metric coincides with
the logical metric. We can also extend the over-approximation of the observational metric
by the denotational metric to Fuzz. This follows from the adequacy theorem of MetCppo
with respect to Fuzz shown in [2]. In MetCppo, the scaling modalities !r(−) of Fuzz are
interpreted as scaling operators r · (−): for any metric space X, r ·X is a metric space defined
to be |X| with dr·X(x, y) = rdX(x, y). Unfortunately, generalizing the over-approximation
of the observational metric by the interactive semantic metric to Fuzz is not done yet. The
main difficulty lies in the interpretation of the scaling modalities !r(−). Since the scaling
modalities can be understood as a graded variant of the linear exponential comonad in linear
logic [22], it is reasonable to explore graded variants of Abramsky and Jagadeesan’s a model
of linear logic based on Int(Cppo) [1]. However, at this point, we could only accommodate
grades as non-negative possibly infinite integers [12]. We believe that this restriction is not
so strong because, for example, closed terms of type !k/nR ⊸ !h/mR in Fuzz are “definable”
as closed terms of type !kmR ⊸ !hnR.

10 Conclusion

In this paper, we study quantitative reasoning about linearly typed higher-order programs.
We introduce a notion of admissibility for families of metrics on a purely linear programming
language ΛS , and among them, we investigate five notions of program metrics and how
these are related, namely the logical, observational, equational, denotational, and interactive
metrics. Some of our results can be seen as quantitative analogues of well-known results
about program equivalences: the observational metric is never more discriminating than the
semantic metrics, and non-definable functionals in the semantics are the source of inclusions.
We list some open problems:

Does the denotational metric coincide with the observational metric?
Does the interactive metric coincide with the equational metric?
We may define another observational metric dobsbase where we observe terms only at R.
This observational metric dobsbase is less than or equal to the logical metric and depends
on the choice of S. For which choices of S does dobsbase coincide with the logical metric?
We have another semantic metric obtained from the category of metric spaces. How is
the metric related to the denotational metric?
There is a symmetric monoidal coreflection between Int(MetCppo) and MetCppo [19].
This is a strong connection between the two models. However, we do not know whether
this categorical structure sheds any light on their relationship at the level of higher-order
programs.
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On the last point, we can say that our study reveals the intrinsic difficulty of comparing deno-
tational models with interactive semantic models obtained by applying the Int-construction.
Indeed, their relationship is not trivial already at the level of program equivalences.

Some of our results can be extended to a fragment of Fuzz where grading is restricted to
extended natural numbers. Providing a quantitative equational theory and an interactive
metric for full Fuzz is another very interesting topic for future work. There are some notions of
metric that we have not taken into account in this paper. In [14], Gavazzo gives coinductively
defined metrics for an extension of Fuzz with algebraic effects and recursive types, which
we do not consider here. The so-called observational quotient [20] can be seen as a way to
construct less discriminating program metrics from fine-grained ones. A thorough comparison
of these notions of program distance with the ones we introduce here is another intriguing
problem on which we plan to work in the future.
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1 Introduction

Linear logic (LL) [20] and its differential counterpart [14] give a framework to study resource
usages of proofs and programs. These logics were invented by enriching the syntax of proofs
with new constructions observed in denotational models of λ-calculus [21, 11]. The exponential
connective ! introduces non-linearity in the context of linear proofs and encapsulate the notion
of resource usage. This notion was refined into parametrised exponentials [22, 13, 17, 19],
where exponential connectives are indexed by annotations specifying different behaviors. Our
aim here is to follow Kerjean’s former works [25] by indexing formulas of Linear Logic with
Differential Operators. Thanks to the setting of Bounded Linear Logic, we formalize and
deepen the connection between Differential Linear Logic and Differential Operators.

The fundamental linear decomposition of LL is the decomposition of the usual non-linear
implication ⇒ into a linear one⊸ from a set of resources represented by the new connective !:
(A ⇒ B) ≡ (!A⊸ B). Bounded Linear Logic (BLL) [22] was introduced as the first attempt
to use typing systems for complexity analysis. But our interest for this logic stems from the
fact that it extends LL with several exponential connectives which are indexed by polynomially
bounded intervals. Since then, some other indexations of LL have been developed for many
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purposes, for example IndLL [13] where the exponential modalities are indexed by some
functions, or the graded logic BSLL [6, 19, 29] where they are indexed by the elements of a
semiring S. This theoretical development finds applications in programming languages [1, 16].

Differential linear logic [14] (DiLL) consists in an a priori distinct approach to linearity,
and is based on the denotational semantics of linear proofs in terms of linear functions. In
the syntax of LL, the dereliction rule states that if a proof is linear, one can then forget
its linearity and consider it as non-linear. To capture differentiation, DiLL is based on a
codereliction rule which is the syntactical opposite of the dereliction. It states that from
a non-linear proof (or a non-linear function) one can extract a linear approximation of it,
which, in terms of functions, is exactly the differential (one can notice that here, the analogy
with resources does not work). Then, models of DiLL interpret the codereliction by different
kinds of differentiation [10, 3].

A first step towards merging the graded and the differential extension of LL was made by
Kerjean in 2018 [25]. In this paper, she defines an extension of DiLL, named D-DiLL, in which
the exponential connectives ? and ! are indexed with a fixed linear partial differential operator
with constant coefficients (LPDOcc) D. There, formulas !DA and ?DA are respectively
interpreted in a denotational model as spaces of functions or distributions which are solutions
of the differential equation induced by D. The dereliction and codereliction rules then
represent respectively the resolution of a differential equation and the application of a
differential operator. This is a significant step forward in our aim to make the theory of
programming languages and functional analysis closer, with a Curry-Howard perspective. In
this work, we will generalize D-DiLL to a logic indexed by a monoid of LPDOcc.

Contributions. This work considerably generalizes, corrects and consolidates the extention
of DiLL to differential operators sketched in [25]. It extends D-DiLL in the sense that the
logic is now able to deal with all LPDOcc and combine their action. It corrects D-DiLL
as the denotational interpretation of indexed exponential ?D and !D are changed, leaving
the interpretation of inference rules unchanged but reversing their type in a way that is
now compatible with graded logics. Finally, this work consolidates D-DiLL by proving a
cut-elimination procedure in the graded case, making use of an algebraic property on the
monoid of LPDOcc.

Outline. We begin this paper in Section 2 by reviewing Differential Linear Logic and its
semantics in terms of functions an distributions. We also recall the definition of BSLL.
Section 3 focuses on the definition of an extension of BSLL, where we construct a finitary
differential version for it and prove a cut-elimination theorem. The cut-elimination procedure
mimicks partly the one of DiLL or BSLL, but also deals with completely new interactions with
inference rules. Then, Section 4 generalizes D-DiLL into a framework with several indexes and
shows that it corresponds to our finitary differential BSLL indexed by a monoid of LPDOcc.
It formally constructs a denotational model for it. This gives in particular a new semantics
for BSLL. Finally, Section 5 discusses the addition of an indexed promotion to differential
BSLL and possible definitions for a semiring of differential operators.

2 Linear logic and its extensions

Linear Logic refines Classical Logic by introducing a notion of linear proofs. Formulas are
defined according to the following grammar (omitting neutral elements which do not play a
role here):

A,B := A⊗B | A`B | A&B | A⊕B | ?A | !A | · · · .
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The linear negation (_)⊥ of a formula is defined on the syntax and is involutive, with
in particular (!A)⊥ := ?(A)⊥. The connector ! enjoys structural rules, respectively called
weakening w, contraction c, dereliction d and promotion p:

Γ ⊢ ∆ w
Γ, !A ⊢ ∆

Γ, !A, !A ⊢ ∆ c
Γ, !A ⊢ ∆

Γ, A ⊢ ∆
dΓ, !A ⊢ ∆

!Γ ⊢ A p
!Γ ⊢ !A

These structural rules can be understood in terms of resources: a proof of A ⊢ B uses exactly
once the hypothesis A while a proof of !A ⊢ B might use A an arbitrary number of times.
Notice that the dereliction allows to forget the linearity of a proof by making it non-linear.

▶ Remark 1. The exponential rules for LL are recalled here in a two-sided flavour, making their
denotational interpretation in Section 2.1 easier. However, we always consider a classical
sequent calculus, and the new DBSLL will be introduced later in a one-sided flavour to
lightens the formalism.

Differentiation is then introduced through a “codereliction” rule d̄, which is symmetrical
to d and allows to linearize a non-linear proof [14]. To express the cut-elimination with the
promotion rule, other costructural rules are needed, which find a natural interpretation in
terms of differential calculus. Note that the first version of DiLL, called DiLL0, does not
feature the promotion rule, which was introduced in later versions [30]. The exponential rules
of DiLL0 are then w, c, d with the following coweakening w̄, cocontraction c̄ and codereliction d̄
rules, given here in a one-sided flavour.

w̄⊢ !A
⊢ Γ, !A ⊢ ∆, !A

c̄⊢ Γ,∆, !A
⊢ Γ, A

d̄⊢ Γ, !A

In the rest of the paper, as a support for the semantical interpretation of DiLL, we denote
by Da(f) the differential of a function f at a point a, that is:

Daf : v 7→ lim
h→0

f(a+ hv) − f(a)
h

2.1 Distribution theory as a semantical interpretation of DiLL
DiLL originates from vectorial refinements of models of LL [11], which mainly keep their
discrete structure. However, the exponential connectives and rules of DiLL can also be
understood as operations on smooth functions or distributions [31]. In the whole paper,
(_)′ := L(_,R) is the dual of a (topological) vector space, and distributions with compact
support are by definition linear continuous maps on the space of smooth scalar maps, that is
elements of (C∞(Rn,R))′. Distributions are sometimes described as “generalized functions”1

Let us recall the notation for Dirac operator, which is a distribution with compact support
and used a lot in the rest of the paper: δ : v ∈ Rn 7→ (f 7→ f(v)) ∈ (C∞(Rn,R))′

.

Recently, Kerjean [25] gave an interpretation of the connective ? by a space of smooth
scalar functions, while ! is interpreted as the space of linear maps acting on those functions,
that is a space of distributions:

J?AK := C∞(JAK′,R) J!AK := C∞(JAK,R)′.

1 Indeed, any function with compact support g ∈ C∞(Rn,R) acts as a distribution Tg ∈ (C∞(Rn,R))′

with compact support, through integration: Tg : f 7→
∫

gf . It is indeed a distribution, as it acts linearly
(and continuously) on smooth functions.

FSCD 2023
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Note that the language of distributions applies to all models of DiLL as noticed by Ehrhard
on Köthe spaces [10]. The focus of this model was to find smooth infinite dimensional models
of DiLL, whose objects were invariant under double negation, that is a model of classical DiLL.
This is an intricate issue, see [8], and a simple solution is to consider models of polarized
calculus. Polarized Linear Logic LLpol [27] separates formulas in two classes:

Negative Formulas: N,M := a | ?P | ˆP | N `M | ⊥ | N &M | ⊤.
Positive Formulas: P,Q := a⊥ | !N | ´N | P ⊗Q | 0 | P ⊕Q | 1.

We interpret formulas of LLpol by Nuclear topological vector spaces, and add the condition
that the spaces are Fréchet or DF according to the polarity of the formulas. Positive formulas
(left stable by ⊗ !) are interpreted as Nuclear DF spaces while Negative formulas (left stable
by ` ?) are interpreted by Nuclear Fréchet spaces. We will not dive into the details of these
definitions, see [24] for more details, but the reader should keep in mind that the formulas are
always interpreted as reflexive topological vector spaces, that is spaces E which are isomorphic
to their double dual E′′. The model of functions and distribution is thus a model of classical
DiLL, in which J(_)⊥K := (_)′.

Nicely, every exponential rule of DiLL has an interpretation in terms of functions and
distributions, through the following natural transformations. In the whole paper, E and
F denote topological vector spaces, which will represent the interpretation JAK and JBK of
formulas A,B of DiLL. For the sake of readability, we will denote the natural transformations
(e.g. d, d̄) by the same label as the deriving rule they interpret, and likewise for connectors
(e.g. ?,⊗, !) and their associated functors.

The weakening w : R → ?E maps 1 ∈ R to the constant function at 1, while the
coweakening w̄ : R → !E maps 1 ∈ R to Dirac distribution at 0: δ0 : f 7→ f(0).
The dereliction d : E′ → ?(E′) maps a linear function to itself while the codereliction
d̄ : E → !E maps a vector v to the distribution mapping a function to its differential at 0
according to the vector v:

d : ℓ 7→ ℓ d̄ : v 7→ (D0(_)(v) : f 7→ D0(f)(v)) .

The contraction c : ?E ⊗ ?E → ?E maps two scalar functions f, g to their scalar
multiplication f.g while the cocontraction c̄ : !E ⊗ !E → !E maps two distributions ψ
and ϕ to their convolution product ψ ∗ ϕ : f 7→ ψ (x 7→ ϕ(y 7→ f(x+ y))), which is a
commutative operation over distributions.

These interpretations are natural, while trying to give a semantics of a model with smooth
functions and distributions. The dereliction is the one from LL, and the codereliction is
the differentiation at 0, which is what differential linear logic provides. The fact that the
contraction is interpreted by the scalar product comes from the kernel theorem, and the
weakening is the neutral element for this operation. The cocontraction is interpreted by the
convolution product, as the natural monoidal operation on distributions, with its neutral
element to interpret the coweakening: the dirac operator at 0.

The natural transformations w, w̄, d, d̄ can also be directly constructed from the biproduct
on topological vector spaces and Schwartz’ Kernel Theorem expressing Seely isomorphisms.

2.2 Differential operators as an extension of DiLL
A first advance in merging the graded and the differential extensions of LL was made by
Kerjean in 2018 [25]. In this paper, she defines an extension of DiLL named D-DiLL. This
logic is based on a fixed single linear partial differential operator D, which appears as a single
index in exponential connectives !D and ?D.
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The abstract interpretation of ? and ! as spaces of functions and distributions respectively
allows to generalize them to spaces of solutions and parameters of differential equations. To
do so, we generalize the action of D0(_) in the interpretation of d̄ to another differential
operator D. The interpretation of d̄ then corresponds to the application of a differential
operator while the interpretation of d corresponds to the resolution of a differential equation
(which is ℓ itself when the equation is D0(_) = ℓ, but this is specifically due to the involutivity
of D0).

In D-DiLL, the exponential connectives can be indexed by a fixed differential operator. It
admits a denotational semantics for a specific class of those, whose resolution is particularly
easy thanks to the existence of a fundamental solution. A Linear Partial Differential Operator
with constant coefficients (LPDOcc) acts linearly on functions f ∈ C∞(Rn,R), and by duality
acts also on distributions. In what follows, each aα will be an element of R. By definition,
only a finite number of such aα are non-zero.

D : f 7→

(
z 7→

∑
α∈Nn

aα
∂|α|f

∂xα
(z)
)

D̂ : f 7→

(
z 7→

∑
α∈Nn

(−1)|α|aα
∂|α|f

∂xα
(z)
)

(1)

▶ Remark 2. The coefficients (−1)|α| in equation 1 originates from the intuition of distri-
butions as generalized functions. With this intuition, it is natural to want that for each
smooth function f , D(Tf ) = TD(f), where Tf stands for the distribution generalizing the
function f . When computing TD(f) on a function g with partial integration one shows that
TD(f)(g) =

∫
D(f)g =

∫
f(D̂(g)) = Tf ◦ D̂, hence the definition.

We make D act on distributions through the following equation:

D(ϕ) :=
(
ϕ ◦ D̂ : f 7→ ϕ(D̂(f))

)
∈ C∞(Rn,R)′. (2)

Thanks to the involutivity of D, we have D̂(ϕ) = ϕ ◦D.

▶ Definition 3. Let D be a LPDOcc. A fundamental solution of D is a distribution
ΦD ∈ C∞(Rn,R)′ such that D(ΦD) = δ0.

▶ Proposition 4 (Hormander, 1963). LPDOcc distribute over convolution, meaning that
D(ϕ ∗ ψ) = D(ϕ) ∗ ψ = ϕ ∗D(ψ) for any ϕ, ψ ∈ !E.

The previous proposition is easy to check and means that knowing the fundamental solution
of D gives access to the solution ψ ∗ ΦD of the equation D(_) = ψ. It is also the reason
why indexation with several differential operators is possible. Luckily for us, LPDOcc are
particularly well-behaved and always have a fundamental solution. The proof of the following
well-known theorem can for example be found in [23, 3.1.1].

▶ Theorem 5 (Malgrange-Ehrenpreis). Every linear partial differential operator with constant
coefficients admits exactly one fundamental solution.

Using this result, D-DiLL gives new definitions for d and d̄, depending of a LPDOcc D:

dD : f 7→ ΦD ∗ f d̄D : ϕ 7→ ϕ ◦D.

These new definitions came from the following ideas. Through the involutory duality, each
v ∈ E corresponds to a unique δv ∈ E′′ ≃ E, and d̄D is then interpreted as ϕ ∈ E′′ 7→ ϕ ◦D0.
Then Kerjean considered that E′′ = (D0(?(E′),R))′ and generalized it by replacing D0 with D,
defining ?DE := D(C∞(E′,R)). This gave types dD : ?DE

′ → ?E′ and d̄D : !DE → !E.

FSCD 2023
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The reader should note that these definitions only work for finite dimensional vector
spaces: one is able to apply a LPDOcc to a smooth function from Rn to R using partial
differentiation on each dimension, but this is completely different if the function has an
infinite dimensional domain. The exponential connectives indexed by a LPDOcc therefore
only apply to finitary formulas: that are the formulas with no exponentials.

2.3 Indexed linear logics: resources, effects and coeffects
Since Girard’s original BLL [22], several systems have implemented indexed exponentials to
keep track of resource usage [9, 15]. More recently, several authors [19, 17, 6] have defined a
modular (but a bit less expressive) version BSLL where the exponentials are indexed (more
specifically “graded”, as in graded algebras) by elements of a given semiring S.

▶ Definition 6. A semiring (S,+, 0,×, 1) is given by a set S with two associative binary
operations on S: a sum + which is commutative and has a neutral element 0 ∈ S and a
product × which is distributive over the sum and has a neutral element 1 ∈ S.
Such a semiring is said to be commutative when the product is commutative.
An ordered semiring is a semiring endowed with a partial order ≤ such that the sum and the
product are monotonic.

This type of indexation, named grading, has been used in particular to study effects and
coeffects, as well as resources [6, 5, 17]. The main feature is to use this grading in a type
system where some types are indexed by elements of the semiring. This is exactly what is
done in the logic BSLL, where S is an ordered semiring. The exponential rules of BSLL are
adapted from those of LL, and agree with the intuitions that the index x in !xA is a witness
for the usage of resources of type A during the proof/program.

Γ ⊢ B
Γ, !0A ⊢ B

w
Γ, !xA, !yA ⊢ B

Γ, !x+yA ⊢ B
c Γ, A ⊢ B

Γ, !1A ⊢ B
d

!x1A1, . . . , !xn
An ⊢ B

!x1×yA1, . . . , !xn×yAn ⊢ !yB
p

Finally, a subtyping rule is also added, which uses the order of S. In Section 3, we will use an
order induced by the additive rule of S, and this subtyping rule will stand for a generalized
dereliction.

Γ, !xA ⊢ B x ≤ y

Γ, !yA ⊢ B
dI

3 A differential BSLL

In this section, we extend a graded linear logic with indexed coexponential rules. We define
and prove correct a cut-elimination procedure.

Formulas and proofs

We define a differential version of BSLL by extending its set of exponential rules. Here, we
will restrict ourselves to a version without promotion, as it has been done for DiLL originally.
Following the ideas behind DiLL, we add costructural exponential rules: a coweakening w̄, a
cocontraction c̄, an indexed codereliction d̄I and a codereliction d̄. The set of exponential
rules of our new logic DBSLL is given in Figure 1. Note that by doing so we study a classical
version of BSLL, with an involutive linear duality.
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⊢ Γ w
⊢ Γ, ?0A

⊢ Γ, ?xA, ?yA c
⊢ Γ, ?x+yA

⊢ Γ, ?xA x ≤ y dI⊢ Γ, ?yA

⊢ Γ, A
d⊢ Γ, ?A

w̄⊢ !0A
⊢ Γ, !xA ⊢ ∆, !yA c̄⊢ Γ,∆, !x+yA

⊢ Γ, !xA x ≤ y
d̄I⊢ Γ, !yA

⊢ Γ, A
d̄⊢ Γ, !A

Figure 1 Exponential rules of DBSLL.

▶ Remark 7. In BSLL, we consider a semiring S as a set of indices. With DBSLL, we do
not need a semiring: since this is a promotion-free version, only one operation (the sum)
is important. Hence, in DBSLL, S will only be a monoid. This modification requires two
precisions:

The indexed dereliction uses the fact that S is an ordered semiring. Here, the order will
always be defined through the sum: ∀x, y ∈ S, x ≤ y ⇐⇒ ∃x′ ∈ S, x+ x′ = y. This is
due to the fact that for compatiblity with coexponential rules, we always need ∀x, 0 ≤ x.
In BSLL, the dereliction is indexed by 1, the neutral element of the product. In DBSLL,
we will remove this index since we do not have a product operation and simply use !
and ? instead of !1 and ?1.

Since every element of S is greater than 0, we have two admissible rules which will appear in
the cut elimination procedure: an indexed weakening wI and an indexed coweakening w̄I :

⊢ Γ
⊢ Γ, ?xA

wI :=
⊢ Γ w

⊢ Γ, ?0A dI⊢ Γ, ?xA

⊢ !xA
w̄I :=

w̄⊢ !0A d̄I⊢ !xA
.

Definition of the cut elimination procedure

Since this work is done with a Curry-Howard perspective, a crucial point is the definition of
a cut-elimination procedure. The cut rule is the following one

⊢ Γ, A ⊢ A⊥,∆
cut⊢ Γ,∆

which represents the composition of proofs/programs. Defining its elimination, corresponds
to express explicitly how to rewrite a proof with cuts into a proof without any cut. It
represents exaclty the calculus of our logic.

In order to define the cut elimination procedure of DBSLL, we have to consider the cases
of cuts after each costructural rule that we have been introduced, since the cases of cuts after
MALL rules or after w, c, dI and d are already known. An important point is that we will
use the formerly introduced indexed (co)weakening rather than the usual one.

Before giving the formal rewriting of each case, we will divide them into three groups.
Since DBSLL is highly inspired from DiLL, one can try to adapt the cut-elimination procedure
from DiLL. This adaptation would mean that the structure of the rewriting is exactly the
same, but the exponential connectives have to be indexed. For most cases, this method
works and there is exactly one possible way to index these connectives, since wI , w̄I , c, c̄, d
and d̄ do not require a choice of the index (at this point, one can think that there is a choice
in the indexing of wI and w̄I , but this is a forced choice thanks to the other rules).
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However, the case of the cut between a contraction and a cocontraction will require some
work on the indexes because these two rules use the addition of the monoid. The index of
the principal formula x (resp. x′) of a contraction (resp. cocontraction) rule is the sum of
two indexes x1 and x2 (resp. x3 and x4). But x=x′ does not imply that x1=x3 and x2=x4.
We will then have to use a technical algebraic notion to decorate the indexes of the cut
elimination between c and c̄ in DiLL: the additive splitting.

▶ Definition 8. A monoid (M,+, 0) is additive splitting if for each x1, x2, x3, x4 ∈ M such
that x1 + x2 = x3 + x4, there are elements x1,3, x1,4, x2,3, x2,4 ∈ M such that

x1 = x1,3 + x1,4 x2 = x2,3 + x2,4 x3 = x1,3 + x2,3 x4 = x1,4 + x2,4.

This notion appears in [5], for describing particular models of BSLL, based on the relational
model. Here the purpose is different: it appears from a syntactical point of view. In the rest
of this section, we will not only require S to be a monoid, but to be additive splitting as well.

Now that we have raised some fundamental difference in a possible cut-elimination
procedure, one can note that we do not have mentioned how to rewrite the cuts following an
indexed (co)dereliction. This is because the procedure from DiLL cannot be adapted at all in
order to eliminate those cuts, as dI and d̄I have nothing in common with the exponential
rules of DiLL. The situation is even worse: these cuts cannot be eliminated since these rules
are not deterministic because of the use of the order relation. These considerations lead to
the following division between the cut elimination cases.
Group 1: The cases where DiLL can naively be decorated. These will be cuts involving two

exponential rules, with at least one being an indexed (co)weakening or a non-indexed
(co)dereliction.

Group 2: The case where DiLL can be adapted using algebraic technicality, which is the cut
between a contraction and a cocontraction.

Group 3: The cases highly different from DiLL. Those are the ones involving an indexed
dereliction or an indexed codereliction.

The formal rewritings for the cases of groups 1 and 2 are given in Figure 2. The cut-
elimination for contraction and a cocontraction uses the additive splitting property with the
notations of Definition 8.

Finally, the last possible case of an occurrence of a cut in a proof is the one where dI

or d̄I is applied before the cut: the group 3. The following definition introduces rewritings
where these rules go up in the derivation tree, and which will be applied before the cut
elimination procedure. This technique is inspired from subtyping ideas, which make sense
since dI is originally defined as a subtyping rule.

▶ Definition 9. The rewriting procedures ⇝dI
and ⇝d̄I

are defined on proof trees of DBSLL.
1. When dI (resp. d̄I) is applied after a rule r and r is either from MALL (except the axiom)

or r is w̄I , c̄, d̄I (resp. wI , c, dI), d̄ or d, the rewriting ⇝dI ,1 (resp. ⇝d̄I ,1) exchanges r
and dI (resp. d̄I) which is possible since r and dI do not have the same principal formula.

2. When dI or d̄I is applied after a (co)contraction, the rewriting is

Π
⊢ Γ, ?x1A, ?x2A c
⊢ Γ, ?x1+x2A dI⊢ Γ, ?x1+x2+x3A

⇝dI ,2

Π
⊢ Γ, ?x1A, ?x2A c
⊢ Γ, ?x1+x2A wI⊢ Γ, ?x1+x2A, ?x3A c

⊢ Γ, ?x1+x2+x3A
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Π1

⊢ Γ wI⊢ Γ, ?xA
w̄I

⊢ !xA⊥

cut⊢ Γ

⇝cut
Π1

⊢ Γ

Π1

⊢ Γ, A
d⊢ Γ, ?A

Π2

⊢ ∆, A⊥

d̄
⊢ ∆, !A⊥

cut⊢ Γ, ∆

⇝cut

Π1

⊢ Γ, A

Π2

⊢ ∆, A⊥

cut⊢ Γ, ∆

Π1

⊢ Γ, ?xA, ?yA
c

⊢ Γ, ?x+yA
w̄I

⊢ !x+yA⊥

cut⊢ Γ

⇝cut

Π1

⊢ Γ, ?xA, ?yA
w̄I

⊢ !yA⊥

cut⊢ Γ, ?xA
w̄I

⊢ !xA⊥

cut⊢ Γ

Π1

⊢ Γ, !xA

Π2

⊢ ∆, !yA
c̄Γ, ∆, !x+yA

Π3

⊢ Ξ wI

⊢ Ξ, ?x+yA⊥

cut⊢ Γ, ∆, Ξ

⇝cut

Π1

⊢ Γ, !xA

Π3

⊢ Ξ wI

⊢ Ξ, ?xA⊥

cut⊢ Γ, Ξ wI

⊢ Γ, Ξ, ?yA⊥
Π2

⊢ ∆, !yA
cut⊢ Γ, Ξ, ∆

Π1

⊢ Γ, ?x1 A⊥, ?x2 A⊥
c

⊢ Γ, ?x1+x2 A⊥

Π2

⊢ ∆, !x3 A

Π3

⊢ Ξ, !x4 A
c̄⊢ ∆, Ξ, !x3+x4=x1+x2 A

cut⊢ Γ, ∆, Ξ

⇝cut

Πb

⊢ Γ, ?x1,4 A⊥, ?x2,4 A⊥, ?x3 A⊥
Π2

⊢ ∆, !x3 A
cut

⊢ Γ, ∆, ?x1,4 A⊥, ?x2,4 A⊥

c
⊢ Γ, ∆, ?x4 A⊥

Π3

Ξ, !x4 A
cut⊢ Γ, ∆, Ξ

in which Πa and Πb are as follows:

Πa =

ax
⊢ ?x2,3 A⊥, !x2,3 A

ax
⊢ ?x2,4 A⊥, !x2,4 A

c̄
⊢ ?x2,3 A⊥, ?x2,4 A⊥, !x2 A

Π1

⊢ Γ, ?x1 A⊥, ?x2 A⊥

cut
⊢ Γ, ?x2,3 A⊥, ?x2,4 A⊥, ?x1 A⊥

Πb =

Πa

⊢ Γ, ?x2,3 A⊥, ?x2,4 A⊥, ?x1 A⊥

ax
⊢ ?x1,3 A⊥, !x1,3 A

ax
⊢ ?x1,4 A⊥, !x1,4 A

c̄
?x1,3 A⊥, ?x1,4 A⊥, !x1 A

cut
⊢ Γ, ?x2,3 A⊥, ?x2,4 A⊥, ?x1,3 A⊥, ?x1,4 A⊥

c
⊢ Γ, ?x1,4 A⊥, ?x2,4 A⊥, ?x3 A⊥

Figure 2 Cut elimination for DBSLL: group 1 and group 2. FSCD 2023
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Π1
⊢ Γ, !x1A

Π2

⊢ ∆, !x2A c̄⊢ Γ,∆, !x1+x2A d̄I⊢ Γ,∆, !x1+x2+x3A

⇝d̄I ,2

Π1
⊢ Γ, !x1A

Π2

⊢ ∆, !x2A c̄⊢ Γ,∆, !x1+x2A
⊢ w̄I⊢ !x3A c̄⊢ Γ,∆, !x1+x2+x3A

3. If it is applied after an indexed (co)weakening, the rewriting is

Π
⊢ Γ wI⊢ Γ, ?xA dI⊢ Γ, ?x+yA

⇝dI ,3

Π
⊢ Γ wI⊢ Γ, ?x+yA

Π
⊢ w̄I⊢ !xA d̄I⊢ !x+yA

⇝d̄I ,3

Π
⊢ w̄I⊢ !x+yA

4. And if it is after an axiom, we define
ax

⊢ !xA, ?xA
⊥

dI⊢ !xA, ?x+yA
⊥

⇝dI ,4

ax
⊢ !xA, ?xA

⊥
wI

⊢ !xA, ?xA
⊥, ?yA

⊥
c

⊢ !xA, ?x+yA
⊥

ax
⊢ !xA, ?xA

⊥
d̄I⊢ !x+yA, ?xA

⊥
⇝d̄I ,4

ax
⊢ !xA, ?xA

⊥
⊢ w̄I⊢ !yA c̄

⊢ !x+yA, ?xA
⊥

One defines ⇝dI
(resp. ⇝d̄I

) as the transitive closure of the union of the ⇝dI ,i (resp. ⇝d̄I ,i).

Even if this definition is non-deterministic, this is not a problem. Every indexed
(co)dereliction goes up in the tree, without meeting another one. This implies that this
rewriting is confluent: the result of the rewriting does not depend on the choices made.
▶ Remark 10. It is easy to define a forgetful functor U , which transforms a formula (resp. a
proof) of DBSLL into a formula (resp. a proof) of DiLL. For a formula A of DBSLL, U(A)
is A where each !x (resp. ?x) is transformed into ! (resp. ?), which is a formula of DiLL.
For a proof-tree without any dI and d̄I , the idea is the same: when an exponential rule of
DBSLL is applied in a proof-tree Π, the same rule but not indexed is applied in U(Π), which
is a proof-tree in DiLL. Moreover, we notice that if Π1 ⇝cut Π2, U(Π1)⇝DiLL U(Π2) where
⇝DiLL is the cut-elimination in [12].
We can now define a cut-elimination procedure:

▶ Definition 11. The rewriting ⇝ is defined on derivation trees. For a tree Π, we ap-
ply ⇝dI

, ⇝d̄I
and ⇝cut as long as it is possible. When there are no more cuts, the rewriting

ends.

▶ Theorem 12. The rewriting procedure ⇝ terminates on each derivation tree, and reaches
an equivalent tree with no cut.

In order to prove this theorem, we first need to prove a lemma, which shows that the
(co)dereliction elimination is well defined.

▶ Lemma 13. For each derivation tree Π, if we apply ⇝dI
and ⇝d̄I

to Π, this procedure
terminates such that Π⇝dI

Π1 ⇝d̄I
Π2 without any dI and d̄I in Π2.

Proof. Let Π be a proof-tree. Each rule has a height (using the usual definition for nodes
in a tree). We define the depth of a node as the height of the tree minus the height
of this node. The procedure ⇝dI

terminates on Π: let a(Π) be the number of indexed
derelictions in Π and b(Π) be the sum of the depth of each indexed derelictions in Π. Now,
we define H(Π) = (a(Π), b(Π)) and <lex as the lexicographical order on N2. For each step of
⇝dI

such that Πi ⇝dI
Πj , we have H(Πi) <lex H(Πj):
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1. If Πi ⇝dI ,1 Πj , the number of dI does not change and the sum of depths decreases by 1.
Hence, H(Πi) <lex H(Πj).

2. If Πi ⇝dI ,k Πj with 2 ≤ k ≤ 4, the number of derelictions decreases, so H(Πi) <lex H(Πj).
Using this property and the fact that <lex is a well-founded order on N2, this rewriting
procedure has to terminates on a tree Π1. Moreover, if there is an indexed dereliction in Π1,
this dereliction is below an other rule, so ⇝dI ,i for 1 ≤ i ≤ 4 can be applied which leads to a
contradiction with the definition of Π1. Then, there is no indexed dereliction in Π1.

Using similar arguments, the rewriting procedure ⇝d̄I
on Π1 ends on a tree Π2 where

there is no codereliction (and no dereliction because the procedure ⇝d̄I
does not introduce

any derelictions). ◀

Proof of Theorem 12. If we apply our procedure ⇝ on a tree Π we will, using Lemma 13,
have a tree ΠdI ,d̄I

such that Π ⇝dI
ΠdI

⇝d̄I
ΠdI ,d̄I

and there is no dereliction and no
codereliction in ΠdI ,d̄I

. Hence, the procedure ⇝ applied on Π gives a rewriting

Π⇝dI
ΠdI
⇝d̄I

(
ΠdI ,d̄I

= Π0
)
⇝cut Π1 ⇝cut . . .

Applying the forgetful functor U from Remark 10 on each tree Πi (for i ∈ N), the cut-
elimination theorem of DiLL [30] implies that this rewriting terminates at a rank n, because
the cut-elimination rules of DBSLL which are used in Π0 are those of DiLL when the indexes
are removed. Then, Π⇝∗ Πn where Πn is cut-free. ◀

▶ Remark 14. Notice that while DiLL is famous for introducing formal sums of proofs with
its cut-elimination, we have none of that here. The syntactical reason is that, as exponential
are labelled with indices, there is no non-deterministic choices to make here. The semantical
reason is that sum is introduced while operating a cut between codereliction and contraction
(differentiating a scalar multiplication of functions) or a cut between a dereliction and
cocontraction (applying a convolution product of distributions to a linear map). As detailed
in Section 4, LPDOcc do not behave like this and fundamental solutions or differential
operators are painlessly propagated into the first argument of a distribution or function.

4 An indexed differential linear logic

In the previous section, we have defined a logic DBSLL as the syntactical differential of an
indexed linear logic BSLL, with its cut elimination procedure. It is a syntactical differentiation
of BLL, as it uses the idea that differentiation is expressed through co-structural rules that
mirror the structural rules of LL. Here we will take a semantical point of view: starting from
differential linear logic, we will index it with LPDOcc into a logic named IDiLL, and then
study the relation between DBSLL and IDiLL.

4.1 IDiLL: a generalization of D-DiLL
As we saw in Section 2, Kerjean generalized d̄ and d in previous work [25], with the idea
that in DiLL, the codereliction corresponds to the application of the differential operator D0
whereas the dereliction corresponds to the resolution of the differential equation associated
to D0. This led to a logic D-DiLL, where d̄ and d have the same effect but with a LPDOcc D
instead of D0, and where the exponential connectives are indexed by this operator D. One
would expect that this work could be connected to DBSLL, but these definitions clash with
the traditional intuitions of graded logics. The first reason is syntactical: in graded logics,
the exponential connectives are indexed by elements of an algebraic structure, whereas in

FSCD 2023
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⊢ Γ wI⊢ Γ, ?DA

⊢ Γ, ?D1A, ?D2A c
⊢ Γ, ?D1◦D2A

⊢ Γ, ?D1A dI⊢ Γ, ?D1◦D2A

w̄I⊢ !DA
⊢ Γ, !D1A ⊢ ∆, !D2A c̄⊢ Γ,∆, !D1◦D2A

⊢ Γ, !D1A d̄I⊢ Γ, !D1◦D2A

Figure 3 Exponential rules of IDiLL.

D-DiLL only one operator is used as an index. We then change the logic D-DiLL into a logic
IDiLL, which is much closer to what is done in the graded setting. In this new framework, we
will consider the composition of two LPDOcc as our monoidal operation. Indeed, thanks
to Proposition 4, we have that D1(ϕ) ∗D2(ψ) = (D1 ◦D2)(ϕ ∗ ψ). The convolution ∗ being
the interpretation of the cocontraction rule c̄, the composition is the monoidal operation
on the set of LPDOcc that we are looking for. Moreover, the composition of LPDOcc
is commutative, which is a mandatory property for the monoidal operation in a graded
framework. We describe the exponential rules of IDiLL in Figure 3.

The indexed rules dD and d̄D are generalized to rules dI and d̄I involving a variety of
LPDOcc, while rules d and d̄ are ignored for now (see the first discussion of section 5). The
interpretations of ?DA and !DA, and hence the typing of dI and d̄I are changed from what
D-DiLL would have directly enforced (see remark 15). Our new interpretations for ?DA

and !DA are now compatible with the intuition that in graded logics, rules are supposed to
add information.

J?DAK := {g | ∃f ∈ J?AK, D(g) = f} J!DAK := J?DA
⊥K′ = D̂(J!AK)

dI : J?D1AK → J?D1◦D2AK d̄I : J!D1AK → J!D1◦D2AK

The reader might note that these new definitions have another benefit: they ensure
that the dereliction (resp. the codereliction) is well typed when it consists in solving (resp.
applying) a differential equation. This will be detailed in Section 4.3.

Notice that a direct consequence of Proposition 4 is that for two LPDOcc D1 and D2,
ΦD1◦D2 = ΦD1 ∗ ΦD2 . It expresses that our monoidal law is also well-defined w.r.t. the
interpretation of the indexed dereliction.

▶ Remark 15. Our definition for indexed connectives and thus for the types of dD and d̄D

differs from the original one in D-DiLL [25]. Kerjean gave types dD : ?D,oldE
′ → ?E′

and d̄D : !D,oldE → !E. However, graded linear logic carries different intuitions: indices are
here to keep track of the operations made through the inference rules. As such, dD and d̄D

should introduces indices D and not delete it. Compared with work in [25], we then change
the interpretation of ?DA and !DA, and the types of dD and d̄D. Thanks to this change, we
will see in the rest of the paper D-DiLL as a particular case of DBSLL.

4.2 Grading linear logic with differential operators
In this section, we will show that IDiLL consists of admissible rules of DBSLL for the monoid
of LPDOcc. In order to connect IDiLL with our results from Section 3, we have to study the
algebraic struture of the set of linear partial differential operators with constant coefficients D.
More precisely, our goal is to prove the following theorem.
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▶ Theorem 16. The set D of LPDOcc is an additive splitting monoid under composition,
with the identity operator id as the identity element.

To prove this result, we will use multivariates polynomials: R[X(ω)] :=
⋃

n∈N R[X1, . . . , Xn].
It is well known that (R[X(ω)],+,×, 0, 1) is a commutative ring. Its monoidal restriction
is isomorphic to (D, ◦, id), the LPDOcc endowed with composition, through the following
monoidal isomorphism

χ :


(D, ◦) → (R[X(ω)],×)∑

α∈Nn

aα
∂|α|(_)
∂xα

7→
∑

α∈Nn

aαX
α1 . . . Xαn

n

The following proposition is crucial in the indexation of DBSLL by differential operators,
since the monoid in DBSLL has to be additive splitting.

▶ Proposition 17. The monoid (R[X(ω)],×, 1) is additive splitting.

The proof requires some algebraic definitions to make it more readable.

▶ Definition 18. Let R be a non-zero commutative ring.
1. R is an integral domain if for each x, y ∈ R\{0}, xy ̸= 0.
2. An element u ∈ R is a unit if there is v ∈ R such that uv = 1.
3. Two elements x, y ∈ R are associates if x divides y and y divides x.
4. R is a factorial ring if it is an integral domain such that for each x ∈ R\{0} there is a

unit u ∈ R and p1, . . . , pn ∈ R irreducible elements such that x = up1 . . . pn and for every
other decomposition vq1 . . . qm = up1 . . . pn (with v unit and qi irreducible for each i)
we have n = m and a bijection σ : {1, . . . , n} → {1, . . . , n} such that pi and qσ(i) are
associated for each i.

Proof of Proposition 17. For each integer n, the ring R[X1, . . . , Xn] is factorial. This
classical proposition is for example proved in [4, 2.7 Satz 7].

Let us take four polynomials P1, P2, P3 and P4 in R[X(ω)] such that P1 × P2 = P3 × P4.
There is n ∈ N such that P1, P2, P3, P4 ∈ R[X1, . . . , Xn].

If P1 = 0 or P2 = 0, then P3 = 0 or P4 = 0, since R[X1, . . . , Xn] has integral domain. If
for example P1 = 0 and P3 = 0, one can define

P1,3 = 0 P1,4 = P4 P2,3 = P2 P2,4 = 1

which gives a correct decomposition. And we can reason symmetrically for the other cases.
Now, we suppose that each polynomials P1, P2, P3 and P4 are non-zero. By factoriality

of R[X1, . . . , Xn], we have a decomposition

Pi = uiQni−1+1 × . . . Qni
(for each 1 ≤ i ≤ 4)

where n0 = 0 ≤ n1 · · · ≤ n4, ui are units and Qi are irreducible. Then, the equal-
ity P1P2 = P3P4 gives

u1u2Q1 . . . Qn2 = u3u4Qn2+1 . . . Qn4 .

Since u1u2 and u3u4 are units, the factoriality implies that n2 = n4 − n2 and that there
is a bijection σ : {1, . . . , n2} → {n2 + 1, . . . , n4} such that Qi and Qσ(i) are associates for
each 1 ≤ i ≤ n2. It means that for each 1 ≤ i ≤ n2, there is a unit vi such that Qσ(i) = viQi.
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Hence, defining two sets A3 = σ−1({n2 + 1, . . . , n3}) and A4 = σ−1({n3 + 1, . . . , n4}) we can
rewrite our polynomials P1 and P2 using:

A1,3 = A3 ∩ {1, . . . , n1} = p1, . . . , pm1 R1,3 = Qp1 . . . Qpm1
v1,3 = vp1 . . . vpm1

A1,4 = A4 ∩ {1, . . . , n1} = q1, . . . , qm2 R1,4 = Qq1 . . . Qqm2
v1,4 = vq1 . . . vqm2

A2,3 = A3 ∩ {n1 + 1, . . . , n2} = r1, . . . , rm3 R2,3 = Qr1 . . . Qrm3
v2,3 = vr1 . . . vrm3

A2,4 = A4 ∩ {n1 + 1, . . . , n2} = s1, . . . , sm4 R2,4 = Qs1 . . . Qsm4
v2,4 = vs1 . . . vsm4

which leads to

P1 = u1R1,3R1,4 P2 = u2R2,3R2,4 P3 = u3v1,3R1,3v2,3R2,3 P4 = u4v1,4R1,4v2,4R2,4

Finally, we define our new polynomials

P1,3 = u1R1,3 P1,4 = R1,4 P2,3 = u3v1,3v2,3

u1
R2,3 P2,4 = u1u2

u3v1,3v2,3
R2,4

gives the wanted decomposition: this is straightforward for P1, P2 and P3 (the coefficients
are chosen for that), and for P4, it comes from the fact that u1u2 = u3u4 (which is in the
definition of a factorial ring), and that v1,av1,bv2,av2,b = 1 which is easy to see using our new
polynomials R1,3, R1,4, R2,3, R2,4 and the equality P1P2 = P3P4. ◀

This result ensures that (D, ◦, id) is an additive splitting monoid. Then, D induces a
logic DBDLL. In this logic, since the order of the monoid is defined through the composition
rule, for D1 and D2 in D we have

D1 ≤ D2 ⇐⇒ ∃D3 ∈ D, D2 = D1 ◦D3

which expresses that the rules dI and d̄I from IDiLL and those from DBDLL are exactly the
same. In addition, the weakening and the coweakening from DBDLL are rules which exists in
IDiLL (the (co)weakening with D = id), and a weakening (resp. a coweakening) in IDiLL can
be expressed in DBDLL as an indexed weakening (resp. an indexed coweakening). In fact,
this indexed weakening is the one that appears in the cut elimination procedure of DBSLL.
Hence, this gives the following proposition.

▶ Proposition 19. Each rule of IDiLL is admissible in DBDLL, and each rule of DBDLL
except d and d̄ is admissible in IDiLL.

With this proposition, Theorem 12 ensures that IDiLL enjoys a cut elimination procedure,
which is the same as the one defined for DBSLL. This procedure will even be easier in the case
of IDiLL. One issue in the definition of the cut elimination of DBSLL is to define wI and w̄I .
This is no longer a problem in IDiLL because these rules already exist in this framework.

4.3 A concrete semantics for IDiLL
Now that we have defined the rules and the cut elimination procedure for a logic able to
deal with the interaction between differential operators in its syntax, we should express how
it semantically acts on smooth maps and distributions. For MALL formulas and rules, the
interpretation is the same as the one for DiLL (or D-DiLL), given in Section 2. First, we give
the interpretation of our indexed exponential connectives. Beware that we are still here in a
finitary setting, in wich exponential connectives only apply to finite dimensional vector spaces,
meaning that JAK = Rn for some n in equation (3) below. This makes sense syntactically as
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long as we do not introduce a promotion rule, and corresponds to the denotational model
exposed originally by Kerjean. As mentioned in the conclusion, we think that work in higher
dimensional analysis should provide an higher-order interpretation for indexed exponential
connectives [18].

Consider D ∈ D. Then D applies independently to any f ∈ C∞(Rn,R) for any n,
by injecting smoothly C∞(Rn,R) ⊆ C∞(Rm,R) for any m ≥ n. We give the following
interpretation of graded exponential connectives:

J!DAK := ({f ∈ C∞(JAK,R) | ∃g ∈ C∞(JAK,R), D(f) = g})′ = D̂(J!AK)
J?DAK := {f ∈ C∞(JAK′,R) | ∃g ∈ C∞(JAK′,R), D(f) = g} = D−1(J?AK) (3)

We recall that D̂ appears in the definition of the application of a LPDOcc to a distribution,
see equation 2.

From this definition, one can note that when D = id, we get

J!idAK = (C∞(JAK,R))′ = J!AK J?idAK = C∞(JAK′,R) = J?AK.

▶ Remark 20. One can notice that, as differential equations always have solutions in our case,
the space of solutions J?DAK is isomorphic to the function space J?AK. The isomorphism in
question is plainly the dereliction dD : f 7→ ΦD ∗ f . While our setting might be seen as too
simple from the point of view of analysis, it is a first and necessary step before extending
IDiLL to more intricate differential equations. If we were to explore the abstract categorical
setting for our model, these isomorphisms would be relevant in a bicategorical setting.

The next step is to give a semantical interpretation of the exponential rules. Most of these
interpretations will be quite natural, in the sense that they will be based on the intuitions
given in Section 4.1 and on the model of DiLL described in previous work [25]. However, the
contraction rule will require some refinements. The contraction takes two formulas ?D1A

and ?D2A, and contracts them into a formula ?D1◦D2A. In our model, it corresponds to the
contraction of two functions f ∈ C∞(E′,R) such that D1(f) ∈ C∞(E′,R) and g ∈ C∞(E′,R)
such that D2(g) ∈ C∞(E′,R) into a function h ∈ C∞(E′,R) such that D1◦D2(h) ∈ C∞(E′,R).
In differential linear logic, the contraction is interpreted as the pointwise product of functions.
This is not possible here, since we do not know how to compute D1 ◦D2(f.g). We will then
use the fundamental solution, which has the property that D(ΦD ∗ f) = f . This leads to the
following definition.

▶ Definition 21. We define the interpretation of each exponential rule of IDiLL by:

w :
{
R → ?idE

1 7→ cst1
w̄ :

{
R → !idE
1 7→ δ0

c :
{

?D1E ⊗̂ ?D2E → ?D1◦D2E

f ⊗ g 7→ ΦD1◦D2 ∗ (D1(f).D2(g))
c̄ :
{

!D1E ⊗̂ !D2E → !D1◦D2E

ψ ⊗ ϕ 7→ ψ ∗ ϕ

dI :
{

?D1E → ?D1◦D2E

f 7→ ΦD2 ∗ f
d̄I :

{
!D1E → !D1◦D2E

ψ 7→ ψ ◦D2

▶ Remark 22. One can note that we only have defined the interpretation of the (co)weakening
when it is indexed by the identity. This is because, as well as for DBSLL, the one of wI and
w̄I can be deduced from this one, using the definition of dI and d̄I . This leads to

wI : 1 7→ ΦD ∗ cst1 = cstΦD(cst1) w̄I : 1 7→ δ0 ◦D = (f 7→ D(f)(0)).
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The interpretation for c̄ and c is justified by the fact that in Nuclear Fréchet or Nuclear
DF spaces [25], both the ` and ⊗ connectors of LL are interpreted by the same completed
topological tensor product ⊗̂. They however do not apply to the same kind of spaces, as ?E
is Fréchet while !E isn’t. Thus, basic operations on the interpretation of A`B or A⊗B are
first defined on elements a⊗ b on the tensor product, and then extended by linearity and
completion.

In order to ensure that Definition 21 gives a correct model of IDiLL, we should verify the
well-typedness of each morphism. First, this is obvious for the weakening and the coweakening.
The function cst1 defined on E is smooth, and δ0 is the canonical example of a distribution.
Moreover, we interpret w and w̄ in the same way as in the model of DiLL on which our intuitions
are based. The indexed dereliction is well-typed, because for f ∈ ?D1E, there is g ∈ C∞(E′,R)
such that D1(f) = g by definition. Hence, D1 ◦D2(ΦD2 ∗ f) = D1(f) = g ∈ C∞(E′,R) so
dI(f) ∈ ?D1◦D2E. For the contraction, if f ∈ ?D1E and g ∈ ?D2E, D1(f) and D2(g) are in
C∞(E′,R), and so is their scalar product. Hence, D1 ◦D2(c(f ⊗ g)) = D1(f).D2(g) which
is in C∞(E′,R). The indexed codereliction is also well-typed: for ψ ∈ !D1E, equation (3)
ensures that ψ = D̂1(ψ1) with ψ1 ∈ !E, so ψ ◦D2 = (ψ1 ◦D1) ◦D2 ∈ !D1◦D2E. Finally, using
similar arguments for the cocontraction, if ψ ∈ !D1E and ϕ ∈ !D2E, then ψ = D̂1(ψ1) and
ϕ = D̂2(ϕ1), with ψ1, ϕ1 ∈ !E. Hence,

ψ ∗ ϕ = (ψ1 ◦D1) ∗ (ϕ1 ◦D2) = (ψ1 ∗ ϕ1) ◦ (D1 ◦D2) = D̂1 ◦D2(ψ1 ∗ ϕ1) ∈ !D1◦D2E.

We have then proved the following proposition.

▶ Proposition 23. Each morphism w, w̄, c, c̄, dI and d̄I is well-typed.

Another crucial point to study is the compatibility between this model and the cut elimination
procedure ⇝. In denotational semantics, one would expect that a model is invariant w.r.t.
the computation. In our case, that would mean that for each step of rewriting of ⇝, the
interpretation of the proof-tree has the same value.

It is easy to see that this is true for the cut wI/w̄I , since D(ΦD ∗ cst1)(0) = cst1(0) = 1.
For the cut between a contraction and an indexed coweakening, the interpretation before the
reduction is δ0(D1 ◦D2)(ΦD1◦D2(D1(f).D2(g))) = D1(f)(0).D2(g)(0), which is exactly the
interpretation after the reduction2.

Finally, proving the invariance of our semantics over the cut between a contraction or a
weakening, and a cocontraction takes slightly more work. The weakening case is enforced by
linearity of the distributions, while the contraction case relies on the density of {δx | x ∈ E}
in !E.

▶ Lemma 24. The interpretation of DBSLL with D as indexes is invariant over the c/c̄ and
the c̄/wI cut-elimination rules, as given in Figure 2.

Proof. Before cut-elimination, the interpretation of the c̄/w as given in Figure 2 is:

(ψ ∗ ϕ)(ΦD1◦D2 ∗ cst1)
= ψ(x 7→ ϕ(y 7→ ΦD1 ∗ (ΦD2 ∗ cst1)(x+ y)))
= ψ(x 7→ ϕ(y 7→ ΦD1(z 7→ ΦD2 ∗ cst1(x+ y − z))))
= ψ(x 7→ ϕ(y 7→ ΦD1(cstΦD2 (cst1))))

2 The scalar product (_._) appears as the tensor product in R ⊗ R, and is transparent in sequent
interpretation as R = J⊥K.
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= ψ(x 7→ ϕ(y 7→ ΦD1(ΦD2(cst1).cst1)))
= ψ(x 7→ ϕ(y 7→ ΦD2(cst1).ΦD1(cst1))) (by homogeneity of ϕ)
= ψ(x 7→ ϕ(cstΦD2 (cst1).ΦD1 (cst1)))

= ψ(x 7→ ϕ(ΦD1(cst1).cstΦD2 (cst1)))

= ψ(x 7→ ΦD1(cst1).ϕ(cstΦD2 (cst1))) (by homogeneity of ϕ)

= ψ(cstΦD1 (cst1).ϕ(cstΦD2 (cst1)))

= ψ(ϕ(cstΦD2 (cst1)).cstΦD1 (cst1))

= ϕ(cstΦD2 (cst1)).ψ(cstΦD1 (cst1)) (by homogeneity of ψ)

which corresponds to the interpretation of the proof after cut-elimination.
Let us tackle now the c̄/c cut-elimination case. Suppose that we have D1, D2, D3, D4 ∈ D

such that D1 ◦D2 = D3 ◦D4. By the additive splitting property we have D1,3, D1,4, D2,3, D2,4
such that

D1 = D1,3 ◦D1,4 D2 = D2,3 ◦D2,4 D3 = D1,3 ◦D2,3 D4 = D1,4 ◦D2,4.

The diagrammatic translation of the cut-elimination rule in Figure 2 is the following.

!D1E ⊗ !D2E !D1,3E⊗!D1,4E⊗!D2,3E⊗!D2,4E

!D1◦D2E =!D3◦D4E

!D3E⊗!D4E !D1,3E⊗!D2,3E⊗!D1,4E⊗!D2,4E

c̄D1,D2

c′
D1,3,D1,4 ⊗c′

D2,3,D2,4

c′
D3,D4

c̄D1,3,D2,3 ⊗c̄D1,4,D2,4

As we interpret formulas by reflexive spaces, we can without loss of generality interpret
contraction as a law c′

Da,Db
: !Da◦Db

E → !Da
E ⊗ !Db

E. Because we are working on finite
dimensional spaces E, an application of Hahn-Banach theorem gives us that the span
of {δx | x ∈ E} is dense in !E. As such, the interpretation of c′ can be restricted to
elements of the form δx ◦ Da ◦Db ∈ !Da◦Db

E, and one checks easily that the dual of c
(Definition 21) is : c′

Da,Db
: δx ◦ Da ◦Db 7→ (δx ◦ Da) ⊗ (δx ◦ Db). Remember that the

convolution of Dirac operators is the Dirac of the sum of points, and as such we have :
c̄Da,Db

: (δx ◦ Da) ⊗ (δy ◦ Db) 7→ (δx+y ◦ Db ◦ Da). Now one can compute easily that the
diagram above commutes on elements (δx ◦ D1) ⊗ (δy ◦ D2) of !D1E ⊗ !D2E, and as such
commutes on all elements by density and continuity of c̄ and c′. ◀

In order to ensure that this model is fully compatible with ⇝, it also has to be invariant
by ⇝dI

and by ⇝d̄I
. For ⇝dI

, the interpretation of the reduction step when the indexed
dereliction meets a contraction is

ΦD3 ∗ (ΦD1◦D2 ∗ (D1(f).D2(g)))
= ΦD1◦D2◦D3 ∗ ((D1(f).D2(g)).cst1)
= ΦD1◦D2◦D3 ∗ ((D1(f).D2(g)).D3(ΦD3 ∗ cst1))
= ΦD1◦D2◦D3 ∗ (D1 ◦D2(ΦD1◦D2 ∗ (D1(f).D2(g))).D3(ΦD3 ∗ cst1))

which is the interpretation after the application of⇝dI ,2. The case with a weakening translates
the fact that ΦD1◦D2 = ΦD1 ∗ΦD2 . Finally, the axiom rule introduces a distribution ψ ∈ !D1E

and a smooth map f ∈ !D1E, and⇝dI ,4 corresponds to the equality ΦD1◦D2 ∗D1(f) = ΦD2 ∗f .
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The remaining case is the procedure ⇝d̄I
, which is quite similar to ⇝dI

. The invariance
of the model with the cocontraction case follows from Proposition 4. For the weakening,
this is just the associativity of the composition, and the axiom works because δ0 is the
neutral element of the convolution product. We can finally deduce that our model gives an
interpretation which is invariant by the cut elimination procedure of Section 3.

▶ Proposition 25. Each morphism w, w̄, c, c̄, dI and d̄I is compatible with the cut elimination
procedure ⇝.

5 Promotion and higher-order differential operators

In the previous section, we have defined a differential extension of graded linear logic, which
is interpreted thanks to exponentials indexed by a monoid of differential operators. This
extension is done up-to promotion, meaning that we do not incorporate promotion in the set
of rules. There are two reasons why it makes sense to leave promotion out of the picture:

DiLL was historically introduced without it, with a then perfectly symmetric set of rules.
Concerning semantics, LPDOcc are only defined when acting on functions with finite
dimensional codomain: D : C∞(Rn,R) → C∞(Rn,R). Introducing a promotion rule
would mean extending the theory of LPDOcc to higher-order functions.

In this section, we sketch a few of the difficulties one faces when trying to introduce promotion
and dereliction rules indexed by differential operators, and explore possible solutions.

Graded dereliction

Indexing the promotion goes hand-in-hand with indexing the dereliction. In Figure 1, we
introduced a basic (not indexed) dereliction and codereliction rule d and d̄. The original
intuition of DiLL is that codereliction computes the differentiation at 0 of some proof.
Following the intuition of D-DiLL, dereliction computes a solution to the equation D0(_) = ℓ

for some ℓ. Therefore, as indexes are here to keep track of the computations, and following
equation (3), we should have (co)derelictions indexed by D0 as below:

⊢ Γ, A
d̄⊢ Γ, !A

⊢ Γ, A
d⊢ Γ, ?A

⊢ Γ, A
d̄D0⊢ Γ, !D0A

⊢ Γ, A dD0⊢ Γ, ?D0A

Mimicking what happens in graded logics, D0 should be the identity element for the
second law in the semiring interpreting the indices of exponentials in DBSLL. However, D0
is not a linear partial differential operator (even less with constant coefficient). Let us briefly
compare how a LPDOcc D and D0 act on a function f ∈ C∞(Rn,R):

D : f 7→

(
y ∈ Rn 7→

∑
α∈Nn

aα
∂|α|f

∂xα
(y)
)

D0 : f 7→

y ∈ Rn 7→
∑

0≤i≤n

yi
∂f

∂xi
(0)


where (xi)i is the canonical base of Rn, yi is the i-th coordinate of y in the base (xi)i,
and aα ∈ R. To include LPDOcc and D0 in a single semiring structure, one would need to
consider global differential operators generated by:

D : f 7→

(
(y, v) 7→

∑
α∈Nn

aα(v)∂
|α|f

∂xα
(y)
)
, with aα ∈ C∞(Rn,R).

The algebraic structure of such a set would be more complicated, and the composition in
particular would not be commutative, and as such not suitable for the first law of a semi-ring
which is essential since it ensures the symmetry of the contraction and the cocontraction.
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Graded promotion

To introduce a promotion law in DBSLL, we need to define a multiplicative law ⊙ on D,
with D0 as a unit. We will write it under a digging form:

⊢ Γ, ?D1?D2A dig⊢ Γ, ?D1⊙D2A

This relates with recent work by Kerjean and Lemay [26], inspired by preexisting
mathematical work in infinite dimensional analysis [18]. They show that in particu-
lar quantitative models, one can define the exponential of elements of !A, such that
eD0 : C∞(Rn,R) → C∞(Rn,R) is the identity. It hints at a possible definition of the
multiplicative law as D1 ⊙D2 := D1 ◦ eD2 .

Even if one finds a semi-ring structure on the set of all LPDOcc, the introduction of
promotion in the syntax means higher-order functions in denotational models. Indexed
exponential connectives are defined so-far thanks to the action of LPDOcc on functions with
a finite number of variable. To make LPDOcc act on higher order function (e.g. elements of
C∞(C∞(Rn,R),R) and not only C∞(Rn,R)) one would need to find a definition of partial
differential operators independent from any canonical base, which seems difficult. Moreover,
contrarily to what happens regarding the differentiation of the composition of function, no
higher-order version of the chain rule exists for the action of LPDOcc on the composition
of functions. A possible solution could come from differentiable programming [7], in which
differentials of first-order functions are propagated through higher-order primitives.

As a trick to bypass some of these issues, we could consider that the !D modalities are not
composable. This is possible in a framework similar to the original BLL or that of IndLL [13],
where indexes have a source and a target.

6 Conclusion

In this paper, we define a multi-operator version to D-DiLL, which turns out to be the finitary
differential version of Graded Linear Logic. We describe the cut-elimination procedure and
give a denotational model of this calculus in terms of differential operators. This provides
a new and unexpected semantics for Graded Linear Logic, and tighten the links between
Linear Logic and Functional Analysis.

There are several directions to explore now that the proof theory of DBSLL has been
established. The obvious missing piece in our work is the categorical axiomatization of our
model. In a version with promotion, that would consist in a differential version of bounded
linear exponentials [6]. A first study based on with differential categories [2] was recently
done by Pacaud-Lemay and Vienney [28]. While similarities will certainly exist in categorical
models of DBSLL, differences between the dynamic of LPDOcc and of differentiation at 0 will
certainly require adaptation. In particular, the treatment of the sum will require attention
(proof do not need to be summed here while differential categories are additive). Finally,
beware that our logic does not yet extend to higher-order and that without a concrete
higher-model it might be difficult to design elegant categorical axioms.

Another line of research would consist in introducing more complex differential operators
as indices of exponential connectives. Equations involving LPDOcc are extremely simple
to manipulate as they are solved in a one step computation (by applying a convolution
product with their fundamental solution). The vast majority of differential equations are
difficult if not impossible to solve. One could introduce fixpoint operators within the theory
of DBSLL, to try and modelize the resolution of differential equation by fixed point. This
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could also be combined with the study of particularly stable classes of differential operators,
as D-finite operators. We would also like to understand the link between our model, where
exponentials are graded with differential operators, with another new model of linear logic
where morphisms corresponds to linear or non-linear differential operators [32].

References
1 Jean-Philippe Bernardy, Mathieu Boespflug, Ryan R. Newton, Simon Peyton Jones, and

Arnaud Spiwack. Linear haskell: practical linearity in a higher-order polymorphic language.
In Principles of Programming Languages 2018 (POPL 2018). ACM, January 2018.

2 Rick Blute, Robin Cockett, and Robert Seely. Differential categories. Mathematical Structures
in Computer Science, 16(6), 2006.

3 Rick Blute, Thomas Ehrhard, and Christne Tasson. A convenient differential category. Les
cahiers de topologie et de géométrie différentielle catégorique, 2012.

4 Siegfried Bosch. Algebra. Springer-Lehrbuch. Springer, 2009.
5 Flavien Breuvart and Michele Pagani. Modelling Coeffects in the Relational Semantics of Linear

Logic. In Computer Science Logic (CSL ), Leibniz International Proceedings in Informatics
(LIPIcs). Schloss Dagstuhl, 2015.

6 Aloïs Brunel, Marco Gaboardi, Damiano Mazza, and Steve Zdancewic. A core quantitative
coeffect calculus. In Programming Languages and Systems. Springer Berlin Heidelberg, 2014.

7 Aloïs Brunel, Damiano Mazza, and Michele Pagani. Backpropagation in the Simply Typed
Lambda-calculus with Linear Negation. Principles of Programming Languages, 2020.

8 Y. Dabrowski and M. Kerjean. Models of Linear Logic based on the Schwartz epsilon product.
Theory and Applications of Categories, 2020.

9 Ugo Dal Lago and Martin Hofmann. Bounded linear logic, revisited. In Typed Lambda Calculi
and Applications (TLCA). Springer Berlin Heidelberg, 2009.

10 Thomas Ehrhard. On Köthe Sequence Spaces and Linear Logic. Mathematical Structures in
Computer Science, 12(5), 2002.

11 Thomas Ehrhard. Finiteness spaces. Mathematical Structures in Computer Science, 15(4),
2005.

12 Thomas Ehrhard. An introduction to differential linear logic: proof-nets, models and antide-
rivatives. Mathematical Structures in Computer Science, 28(7), 2018.

13 Thomas Ehrhard and Antonio Bucciarelli. On phase semantics and denotational semantics:
the exponentials. Annals of Pure and Applied Logic, 109(3), 2001.

14 Thomas Ehrhard and Laurent Regnier. Differential interaction nets. Theoretical Computer
Science, 364(2), 2006.
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Since the specific variable names are actually irrelevant (cf. [12]), the result of an evaluation
should also not be influenced by the specific names. An option is to work with some kind of
unique representatives of α-equivalence classes of λ-term, e.g. with De Bruijn’s λ-terms with
nameless dummies [12] (see below for more). Though that certainly is a possibility, here we
stick to Church’s original proposal and work with explicit α-conversion steps, enabling to
state the main questions addressed in this paper: can α-conversion steps be avoided for a
λ-term M , by suitably α-converting it up front, say to a term M ′ such that no α-conversion
step needs to be invoked along any reduction from M ′. Such a characterisation should allow
for a more efficient reduction, based on naïve substitutions, that applies α-conversion (if at
all) only on the initial term. In the sequel, by “avoiding α” we mean that we can α-convert
a λ-term M to some λ-term M ′ so that subsequent α-conversions are not needed in any
computation from M ′.

Before proceeding let us relate the question addressed here to the so-called Variable
Convention [6] stating that variables may be assumed to be suitably renamed apart in a
given context. On the one hand, this convention has been widely adopted in the literature.
On the other hand, examples as in Figure 1, where renaming apart in the initial term does
not suffice, abound. From that perspective our investigation addresses the question in what
contexts exactly does the Variable Convention work?

In the examples presented in Figure 1, α cannot be avoided, no matter how the variables
are (re)named initially. Without the explicit α-conversion steps and substituting naïvely,
would lead to variable capture and give rise to the λ-terms λzz.z z and λcxy.c x x respectively,
which do not have the intended semantics. (Hence omitting the α-conversion steps would
break the Church–Rosser property.) Note that though the example on the left in Figure 1
cannot be (simply) typed, the example on the right can, showing that type regimes in general
do not guarantee that α can be avoided.

Contributions

As already indicated in Figure 1, α-conversion may be unavoidable in the (untyped)
λ-calculus. This motivates the question about the algorithmic feasibility of the problem.
We establish that (for leftmost–outermost reductions) the problem is undecidable.
We present a sound characterisation for α-avoidance via α-paths. A-paths give a novel
perspective on α; they can be utilised as a tool to predict for a given λ-term M the
potential need for α-conversion, i.e. the need for α-conversion in any step N →β L after
any β-reduction M →∗

β N . To that end, α-paths combine two known ideas.
Foremost, α-paths build on the notion of legal path, cf. [3], characterising the so-called
virtual redexes of a term M , where a virtual redex of M is a redex that can arise in any
term N along any reduction M →∗

β N . Legal paths arose from Girard’s geometry of
interaction; see [2] for various characterisations of them attesting to their canonicity. The
intuition for them employed here, is that a redex R in N is represented in the graph of N
by a single-edge-path from an application node to an abstraction node, and that pulling
that path back along the reduction M →∗

β N gives rise to a path in M , the legal path
representing the redex R in N as a virtual redex in M .
The intuition then is that α-conversion is potentially needed in M when there is a virtual
redex in M , that is, a redex in N , whose contraction needs α-conversion. Since also
the need for α-conversion can be characterised by means of paths, namely by so-called
binding-capturing chains [17, 7], we arrive at our notion of α-path, combining legal paths
with binding-capturing chains.
To ease work with α-paths, we have implemented the method; the tool is publicly available.
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(λx.x x) (λyz.y z)
→β (λyz.yz) (λyz.y z)
→β λz.(λyz.y z) z

→α λz.(λyz′.y z′) z

→β λzz′.z z′

(λfc.f (f c)) (λzxy.z y x)
→β λc.(λzxy.z y x) ((λzxy.z y x) c)
→β λc.(λzxy.z y x) (λxy.c y x)
→β λc.(λxy.(λxy.c y x) y x)
→α λc.(λxy.(λxy′.c y′ x) y x)
→β λcxy.(λy′.c y′ y) x

→β λcxy.c x y

A A

B

B

C

C

A...duplication B...redex creation C...open redex contraction

Figure 1 α is needed in the λ-calculus.

We exemplify the versatility of α-paths through various important sub-calculi of the
λ-calculus, listed below. The first three calculi arise from a careful analysis of the
canonical example illustrating why α-conversion is unavoidable in the λ-calculus, the λ-
term (λx.x x) (λyz.y z). As illustrated in Figure 1, its reduction to normal form comprises
first a duplicating step A (the subterm λyz.y z is duplicated), then a creating step B
(creating the redex (λyz.y z) z), and finally a non-closed step C (contracting an open
redex (λyz.y z) z, containing the free variable z bound outside). Somewhat surprisingly,
forbidding one of these three types of steps suffices for α-avoidance.

1. Developments [14] are reductions in which no created redexes are contracted. Stated
differently, in a development from M only residuals of redexes in M (no virtual redexes)
are contracted. Intuitively, α can then be avoided since all residuals of a given redex
are disjoint along a development.
Developments [14, 6] feature prominently in the λ-calculus since its inception. They
form the basis for the proof that β-reduction has the Church–Rosser property, more
precisely, that parallel β-reduction has the diamond property and satisfies the cube
law, using that all developments are finite (unlike arbitrary reductions).

2. The linear (affine) λ-calculus [21] forbids duplication. That is achieved formally by
restricting term-formation, requiring the variable x to occur free exactly (at most) once
in M in an abstraction term λx.M . Intuitively, α can then be avoided since variables
persist linearly along reductions.
Though the linear λ-calculus [21, 23, 27, 38] had been studied before, it rose to
prominence after the introduction of linear logic, via the connection between linear
λ-terms and MLL-proofnets, with abstractions and applications corresponding to pars
and tensors. Linearity affords nice properties, e.g. termination and simple typability.

3. The weak λ-calculus [39] forbids to contract open redexes. Intuitively, α is then avoided
since when substituting by closed terms only, there’s no risk of variable capture either.
Weak reduction [37, 31, 1, 39, 8, 5] forms the basis of functional programming languages
such as Haskell that evaluate to weak head normal form. Indeed, the fact that α-
conversion can then be avoided was stated as an explicit motivation in [31], and makes
that functional programs can be represented as orthogonal term rewrite systems and
weak reduction can be optimally implemented via Wadsworth’s graph reduction. (Weak
reduction is often paraphrased as “no reduction under a λ”, but that restriction is
undesirable as it breaks the Church–Rosser property.)

These three examples are mainly methodological, since the fact that α can be avoided for
them is well-known. We also present two important but less well-known examples.

4. The modal µ-calculus [25] has unfolding rules for least (µ) and greatest (ν) fixed-points
in its formulas. Intuitively, α can then be avoided for the same reason it can for
developments, namely that unfolding does not create new redexes [17, 7]. Here we show

FSCD 2023
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that this can be obtained via α-paths, under a standard embedding of modal µ-formulas
in the λ-calculus, representing unfolding using Turing’s fixed-point combinator.
Though the literature on the modal µ-calculus is rich, only recently issues related
to α-conversion seem to have been addressed [26]. The main point of this example
is to suggest that the technology developed here for avoiding α in the λ-calculus,
can be transferred to other calculi with binding, in mathematics, logic, programming
languages, linguistics, music theory, etc..

5. In the safe λ-calculus [10, 9, 11] the occurrences of (free) variables are restricted
according to the order of their type. Intuitively, this restriction on the order of the
types of the variables can be transferred to the variables, guaranteeing that α can be
avoided. (Note that as observed above, typing disciplines, say simple typing, in general
do not suffice to be able to avoid α.)
Analysing the safe λ-calculus as presented in [9, 11] using our tools, we found that the
claim that α could be avoided in it, was not entirely correct, provoking the further
analysis, and a proposal for slight amendations, presented below.

Related Work

In the classical literature on the λ-calculus the focus was not on α-conversion. However,
when the λ-calculus started being used as a tool, α-conversion had to be addressed. We
briefly discuss two important strands of research. One approach is to abstract α away and
to exclusively work with (representatives of) α-equivalence classes of λ-terms.2 De Bruijn’s
lambda notation with nameless dummies [12] is widely adopted in implementations. This
typically side-steps the issue but does not resolve it: the cost of α is now inextricably hidden
in the cost of β, and α-conversion disappears in the notation with nameless dummies only
to resurface in the form of reindexing. Moreover, any such representation runs the risk of
creating a gap between the theory in the literature and the representation.3 Another approach
is to bring α-conversion about in another way. The nominal approach [19] is a prominent
exponent of this, recasting the notion of a variable being bound via the dual notion of a
variable being free for, allowing to recast α-conversion via the classical notion of permutation.
We stress that α-conversion resurfaces in this setting, but unlike the modulo-approach now
in an explicit form as in our case, making it interesting to study our question for it (and
then compare both). We leave that to further research.

Finally, we mention that several other decision problems about α have been considered
by Statman, which were reported in [35]. This work is based on [18].

Outline

This paper is structured as follows. In the next section, we recall fundamental concepts
and notions. In Section 3, we motivate the definition of α-paths and provide a syntactic
proof that developments can avoid α by using of a restricted form of α-paths. The latter
are generalised in Section 4, where we establish the main contribution of this work, a sound
characterisation of α-avoidance via α-paths. Section 5 applies this characterisation to affine,
weak and the safe λ-calculus. Finally, we conclude in Section 6.

2 Higher-Order Abstract Syntax goes one (big) step further by working with simply typed αβη-equivalence
classes of terms.

3 The same holds for programming; everyone will have encountered inscrutable error-messages on De
Bruijn-indices representing variables.
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Table 1 Capture-avoiding and capture-permitting substitution.

M Jx := NK (capture-avoiding) [x := N ] (capture-permitting)
x N N

y y y

e1 e2 e1Jx := NK e2Jx := NK e1[x := N ] e2[x := N ]
λx.e λx.e λx.e

λy.e λy.eJx := NK if y ̸∈ FV (N) λy.e[x := N ]
λz.eJy := zKJx := NK else with z fresh for e and N .

2 Preliminaries

We assume acquaintance with the standard definitions of the λ-calculus, cf. [6], but recall
relevant concepts and notations. We use = to denote syntactic equality of λ-terms, and ≡α

for equality modulo α. We write FV (M) for the set of free variables in a λ-term M and
BV (M) for the set of bound variables. We distinguish between a capture-avoiding and a
capture-permitting substitution, cf. Table 1. The capture-avoiding substitution, denoted
as MJx := NK, deals with a potential variable capture, whereas the capture-permitting
substitution, denoted as M [x := N ], naïvely substitutes. If MJx := NK ≡α M [x := N ]
then we say that the substitution of N for x in M is α-free. The single-step β-reduction
contracting a redex (λx.M)N in some arbitrary context, is said to be α-free, if the applied
substitution is α-free.

▶ Definition 1. A reduction sequence starting from a λ-term M is said to be α-free, if each
β-reduction step is α-free. A λ-term M has α-free simulations, if there exists an α-equivalent
λ-term N such that every reduction sequence starting from N is α-free. In such case we say
that N avoids α. We say that we can avoid α in a calculus, if every term in this calculus has
α-free simulations.

The reduction sequence illustrated in Figure 1 is not α-free. The λ-term (λx.x x) (λyz.y z)
does not have α-free simulations, which shows that α cannot be avoided in the pure λ-calculus.
The λ-term (λfx.f (f x)) (λfx.f (f (f x))), denoting the exponentiation 32 via Church numer-
als, has α-free simulations as the α-equivalent λ-term (λfy.f (f y)) (λfx.f (f (f x))) avoids
α. (This can also be checked with our tool, see Listing 1 in Section 4 below).

The position in a λ-term is a finite sequence of 1s and 2s. The set of positions of a λ-term
M is denoted as Pos(M). We write M |p for the subterm at position p in M and M(p) for
the symbol at position p (the head-symbol of M |p), where M(p) ∈ {x,@, λx} for some x. In
the following we may write sp when we depict a specific symbol s of a λ-term M at position
p, s = M(p), whenever both the position and the symbol are of interest.

M |p :=


M if p = ϵ

N |p′ if M = λx.N and p = p′1
Ni|p′ if M = N1 N2 and p = p′i

A position p is a prefix of a position q, if q = pq′ for some position q′. We use the notation
p ⪯ q to denote that p is a prefix of q and p ≺ q to denote that p is a strict prefix of q (q′ is
non-empty). Two positions p, q are said to be parallel, denoted by p ∥ q, if p ⪯̸ q ∧ q ⪯̸ p. A
position p is said to be left of a position q, written as p ∥l q, if p = s · 1 · p′ and q = s · 2 · q′.
We define the trace relation ▶ to be the relation between positions in the source and in the
target of a β-step s →β t contracting a redex at position o (cf. [36, Section 8.6.1]):

FSCD 2023
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M
N

@p

λxp1

λy

@

x y

y

xp1s1t

yp2q

λyp1s

1

3

2

4

Figure 2 Substitution dynamics leading to variable capture.

(context) p ▶ p if o is not prefix of p,
(body) o11p ▶ op if p ̸= ϵ and p ̸= q,
(arg) o2p ▶ oqp for all positions q, such that o11q is bound by o1.

A redex in a term t at position q is called a residual of a redex in some origin s (s →β . . . →β t),
if p ▶ . . . ▶ q and s|p is a redex (cf. [15, Chapter 4, Section 4]).

A path σ = (p1, p2, . . . , pn) in a λ-term M is a sequence of positions in Pos(M). The
length |σ| of a path σ is the number of positions minus 1. An edge is a path of length 1.

The reversal of a path σ is denoted by (σ)r. Two paths σ = (p1, p2, . . . , pn) and
ψ = (q1, q2, . . . , qn) are said to be composable, if pn = q1. We write σ · ψ to denote the
composition of two (composable) paths σ, ψ resulting in (p1, p2, . . . , pn, q2, . . . , qn).

A path in M starting at position p and ending at position q is of type:
1) @–v, if M(p) = @ and M(q) = x for some x.
2) @–λ, if M(p) = @ and M(q) = λx for some x.
3) @–@, if M(p) = @ and M(q) = @.
4) v–v, if M(p) = x and M(q) = y for some x, y.
5) v–λ, if M(p) = x and M(q) = λy for some x, y.
To illustrate, let M = (λx.x x) (λyz.y z). σ = (ϵ, 2, 2112) is a @–v-path in M with |σ| = 2.
σ and (σ)r are composable and the path (ϵ, 2, 2112, 2, ϵ) resulting from their composition
σ · (σ)r is of type @–@.

3 Developments Are α-Avoiding

Recall that reductions of residuals, also known as developments, are finite. This was proved
already in 1936 by Church–Rosser for the λI-calculus [14] and then generalised to the full
λ-calculus by Schroer [34] and independently by Hindley [20]. It is well known that in finite
developments α-renaming can be avoided, cf. [24]. Intuitively, this is due to the fact that
in developments the residuals of a redex-pattern remain disjoint [22]. Thus, if all binders
are initially properly renamed apart, α can be avoided. To prepare the ground for our main
contribution – α-paths – we sketch a purely syntactic proof of this result in this section.

We start by giving an intuition for how a capturing-potential can be characterised by
paths. A naïve substitution leads to a variable capture whenever we

(i) naïvely contract a redex (λx.M) N where
(ii) some variable y occurring free in N

(iii) is moved into M , where some x is free in M

(iv) is in the scope of a λy.
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Each of these conditions can be represented via edges in the abstract syntax tree (AST),
as formalised below and illustrated in Figure 2 for the redex (λx.M)N . More precisely, we
have an a-edge (p2q, p), an r-edge (p, p1), a b-edge (p1, p1s1t) and a c-edge (p1s1t, p1s).

Let M be a λ-term. We conceive the AST of M as a graph and define four additional
types of edges for M :
1. (r-edge ) A redex-edge (p, p1) connects an @-node at position p to its left son at

position p1, if M(p1) = λx for some x.
2. (a-edge ) An application-edge (p2q, p) connects a variable x at position p2q to an

@-node at position p, if x is free in M |p2.
3. (b-edge ) A binding-edge (p, p1q) connects a λx at position p to a variable y at

position p1q, if x = y and y is free in M |p1.
4. (c-edge ) A capturing-edge (p1q, p) connects a variable y at position p1q to a λx

at position p to, if x ̸= y and y is free in M |p1.
We add the a-, r-, b- and c-edges as actual edges to the graph of M in the standard way.
We call such a graph the α-graph of a λ-term M , denoted as Gα(M). From the definition of
an r-edge, we immediately obtain that for any r-edge in Gα(M) with the source at position
p, M |p is a redex.

▶ Definition 2. Let M be a λ-term, a an a-edge, r an r-edge and b a b-edge in Gα(M) with
a, r and r, b composable. We call the v–v-path σarb = a · r · b an arb-path of M .

yp

a-edge

@ @

r-edge

λx λx

b-edge

xq

Let p be the position of the starting v-node y and q the position of the ending v-node of
an arb-path φ. Then we have q ∥l p.

The example term from Figure 3 illustrates an example where an outermost reduction
strategy needs α in the second reduction step. To characterise the need for α after the
contraction of one or multiple redexes, arbic-paths are introduced next.

▶ Definition 3. The set of arbic-paths of a λ-term M is inductively defined as follows.
(base case) Let σarb be an arb-path of M and c a c-edge in Gα(M) with σarb, c composable.
Then the v–λ–path σarb · c is an arbic-path of M .
(arb-composition) Let σarb be an arb-path and ψ an arbic-path of M with σarb, ψ com-
posable. Then the v–λ–path σarb · ψ is an arbic-path of M .

x

a-edge r-edge b-edge

(
a-edge r-edge b-edge

)∗

c-edge

λy

From Definition 3 we see that arbic-paths are non-empty sequences of arb-paths followed
by a c-edge (σ+

arb · c). As already remarked, an arb-path connects the occurrence of a variable
to the occurrence of another variable at its left. By consequence arbic-paths are acyclic and the
set of arbic-paths of a λ-term M is finite. The paths σ0 = 112 → 11 → 111 → 111111 → 11111
and σ1 = 2 → ϵ → 1 → σ0 are arbic-paths for the λ-term illustrated in Figure 3. Specialising
arbic-paths such that the names of the initial variable and of the final abstraction are equal,
we obtain a characterisation of the need for α in some reduction sequence.

▶ Definition 4 (arbic α-path). Let M be a λ-term and ψ an arbic-path of M . If ψ starts
with a variable x and ends with a λ-node λy where x = y, then ψ is called an arbic α-path.
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@ϵ

λz1

@11

λx111

@1111

λy11111

x111111

x11112

z112

y2

leftmost–outermost reduction
(λz.(λx.(λy.x) x) z) y

→β (λx.(λy.x) x) y

→β (λy′.y) x

→β y

leftmost–innermost reduction
(λz.(λx.(λy.x) x) z) y

→β (λz.(λx.x) z) y

→β (λz.z) y

→β y

Figure 3 Leftmost–outermost needs α.

The path σ1 as defined above is an arbic α-path for the λ-term illustrated in Figure 3.
Now, essentially by construction, we can see that if there is no arbic α-path in Gα((λx.M)N)
starting at a free variable in N and ending in M , then MJx := NK ≡α M [x := N ]. We
emphasise, that we only claim α-equivalence and not syntactic equivalence (=) of MJx := NK
and M [x := N ]. To clarify, let (λx.M)N be a redex with M = λy.y and N = y. Then
MJx := NK = λz.z and M [x := N ] = λy.y. We have MJx := NK ≡α M [x := N ], but
MJx := NK ̸= M [x := N ]. Hence, α-equivalence is the strongest property that we can
conclude.4

▶ Lemma 5. Let s →β t. If Gα(s) contains no arbic α-path, then Gα(t), where the set of
r-edges is restricted to those denoting residuals, also does not.

Proof. We write ⟨Gα(t)⟩ for the sub-graph of Gα(t), where the set of r-edges is restricted
to those denoting residuals of s. Since there are no arbic α-paths in Gα(s), the β-step can
be performed by means of capture-permitting substitution (no variable capture). We have
s = C[(λx.M)N ] and t ≡α C[M [x := N ]] for some context C, body M and argument N ,
with (λx.M)N being the contracted redex at position o. We prove the lemma by relating
the edges in ⟨Gα(t)⟩ to edges and paths in Gα(s) and making a distinction according to the
components as they appear in the source and the target. As done in [17], we use primed
variables (p′, q′) to range over positions in the target term t, indicating the positions they
trace back to in the source term s, by unpriming (p, q).

Consider an a- or a c-edge from p′ to q′ in ⟨Gα(t)⟩ where p′ denotes the position of a
variable y and q′ the position of an application (in the case of an a-edge) or an abstraction
(in the case of a c-edge). We have q′ ≺ p′ and the variable y at t(p′) occurs free in t|q′ . We
distinguish the following cases:

p′, q′ in the same component: we have the same edge from p to q in Gα(s).
q′ in the context and p′ in the body: then x ̸= y (otherwise the y would have been
replaced by N) and we have the same edge in Gα(s) with 11 inserted at o.
q′ in the context and p′ in the argument: there is no variable capture so s(p) must occur
free in s|q. Therefore, we have the same edge from p to q in Gα(s).
q′ in the body and p′ in the argument: the origin of the a-edge/c-edge is an arb-path
from p to qq1, for some q1, followed by an a-edge/c-edge from qq1 to q in Gα(s).

4 We stick to the standard definition of substitution MJx := NK, which renames even if the variable x to
be replaced does not occur in the body M [6]. We note that, if we were to adapt the substitution so that
it is not applied when the argument is erased (x ̸∈ FV (M)), then we could claim syntactic equivalence.
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@ϵ

x11 @12

λy121

λz1211

@12111

y121111 z121112

z122
naïve →β

context

body

argument

@ϵ

x11 λz12

@121

z1211 z1212

context

body

argument

Figure 4 A b-edge that traces back to an arbic α-path.

Given a b-edge from q′ to p′ in ⟨Gα(t)⟩. p′ denotes the position of the bound variable y, q′

the position of the binder λy. We have q′ ≺ p′ and distinguish following cases:
p′, q′ in the same component: then we have a b-edge from q to p in Gα(s).
q′ in the context and p′ in the body: we have x ̸= y and a b-edge in Gα(s) with 11
inserted at o.
q′ in the context and p′ in the argument: there is no variable capture so s(p) must occur
free in s|q. Therefore, we have a b-edge from q to p in Gα(s).
q′ in the body and p′ in the argument: such a b-edge would map back to an arbic α-path
from p to q in Gα(s), which is excluded by the assumption (Figure 4 illustrates an
example).

For the r-edges (p′, p′1) in ⟨Gα(t)⟩ we make the following case distinction:
p′ and q′ are in the same component: then we have an r-edge from p to q in Gα(s).
in all other cases: such an r-edge would denote a created redex in t. We have no such
r-edge in ⟨Gα(t)⟩.

We have seen that a r-edges and b-edges in ⟨Gα(t)⟩ map back to an edge of the same type
in Gα(s). a-edges and c-edges map back to a path of shape σ∗

arb · e, where e denotes an
edge of the same type and σarb an arb-path in Gα(s). An arbic α-path in Gα(t) has the
following shape (a′

1, r
′
1, b

′
1, . . . , a

′
n, r

′
n, b

′
n, c

′), where xi denotes an x-edge (pi, qi). If we replace
the edges in this path by the edges and paths they map back to, we get a path of the shape
(σ∗

arb1
· a1, r1, b1, . . . , σ

∗
arbn

· an, rn, bn, σ
∗
arb · c), which would be an arbic α-path in Gα(s). ◀

Based on the lemma, we obtain the characterisation of α-freeness via arbic α-paths. Let
M be a λ-term. If M contains no arbic α-path, then every development from M is α-free.
Arbic α-paths can also witness to the capture-potential for the term shown in Figure 3, where
α is needed in the second reduction step. Note that with these arbic α-paths we do not yet
characterise variable captures that result from the contraction of created redexes. This we
will take up in Section 4 below, where we make use of legal paths, cf. [3].

In sum, α-paths allow us to reprove the well-known result that in finite developments
α-conversions potentially only need to be performed on the initial term (and are thus cheap).

▶ Theorem 6. In finite developments α can be avoided.

FSCD 2023
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(a) Base case. (b) @-composition. (c) λ-composition.

Figure 5 Well-balanced paths [3].

Proof. Let M be a λ-term. By the above, if M contains no arbic α-path, then every
development from M is α-free. Thus, it remains to observe that for every λ-term M there
exists a λ-term N where M ≡α N , such that N does not contain any arbic α-paths. The
latter follows as all binders in M can trivially be renamed apart. ◀

This result is not new, as noted above, but illustrates how α-paths give a new perspective
on this problem and therefore offer a different way to reason about α.

4 α-Paths – A Sound Characterisation For α

In this section, we generalise arbic α-paths so that the thus obtained α-paths reflect the
conditions that necessitate the application of α. For that we also have to characterise the
need for α that may arise for created redexes. A (sub)term, which is not a redex yet, but
might become one along reduction, is called a virtual redex, which in turn is characterised
by legal paths, cf. [3].

Legal Paths

In the following, to keep this paper self-contained, we briefly recall the formal definition of
legal paths as established in [3]. For motivation and underlying intuitions, we kindly refer
the reader to [3] and to [4], where the legal paths have been introduced. Legal paths start
at an @-node and connect via a path the @-node with all the subterms with which it can
interact in some reduction sequence. Legal paths ending at a λ-node therefore characterise a
virtual redex. Legal paths are defined via the well-balanced paths.

The set of well-balanced paths (abbreviated as wbp) of a term M is inductively defined
on Gα(M) as described in the following and illustrated in Figure 5.

(base case) The path (p, p1) with M(p) = @ is a wbp.
(@-composition) let ψ,φ be two composable wbps of type @–@ and @–λ, respectively. Then
ψ · φ · u is a wbp, where u = (p, p1) with p the position of the final abstraction of φ.
(λ-composition) Let φ = (p, . . . , pn) a wbp of type @–λ and ψ = σa · (σb)r with σa a wbp
of type @–v ending at position q and σb = (pn, q) a b-edge in Gα(M). Then ψ · (φ)r · u,
where u = (p, p2), is a wbp.

Legal paths impose a legality constraint on the well-balanced paths, restricting the call
and return paths of cycles. Next, we recall the definition of a cycle. Let φ be a wbp. A
subpath ψ of φ is an elementary @-cycle of ψ (over an @-node) when (i) it starts and ends
with the argument edge of the @-node and (ii) is internal to the argument N of the application
corresponding to the @-node (i.e., does not traverse any variable that occurs free in N). The
set of @-cycles of φ (over an @-node) and of the v-cycles of φ (over the occurrence v of a
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variable) is defined inductively, as follows: (i) every elementary @-cycle of ζ is an @-cycle; (ii)
v-cycle: every cyclic subpath of ζ of the form (v)r · (ϕ)r · ψ · ϕ · v, where ϕ = (p2, . . . , qn) is a
wbp, ψ is an @-cycle and v = (p1, p2) a b-edge, is an v-cycle; (iii) @-cycle: every subpath ψ

of ζ that starts and ends with the argument edge of a given @-node, and that is composed of
subpaths internal to the argument N of @- and v-cycles over free variables of N is an @-cycle
(over the @-node). As stated by the following proposition @-cycles are always surrounded by
two wbps of type @–λ, cf. [3].

▶ Proposition 7 ([3, Corollary 6.2.26]). Let ψ be an @-cycle of ϕ over an @-node. The wbp
ϕ can be uniquely decomposed as: ϕ = ζ1 λ (ζ2)r @ ψ @ ζ3 λ ζ4,5 where ζ2 (call-path) and ζ3
(return-path) are wbps of type @–λ.

Considering the statement of the proposition, the last label of ζ1 and the first label of
ζ4 are called discriminants. Finally, the legality constraint ensures that the call- and the
return-path of such cycles coincide.

▶ Definition 8 ([3, Definition 6.2.27]). A wbp is a legal path if the call and return paths of
any @-cycle are one the reverse of the other and their discriminants are equal.

▶ Proposition 9 ([3, Section 6.2.5]). For all (virtual) redexes of a λ-term M there is a legal
path of type @–λ in M .

It follows that for any (created) redex along a reduction sequence starting from a λ-term
M , we have a legal path in M characterising the redex. This path also encodes the reduction
sequence that leads to its creation, if it is not already a redex in M .

Characterisation of α-avoidance via α-paths

In Section 3, we have seen how arbic α-paths characterise the need for α for developments
with no redex creation. The α-paths presented in this section are an extension of them and
allow to characterise the need for α in λ-calculi with redex creation. α-paths are defined on
the so-called albic-paths that rely on legal paths.6 First, we define alb-paths.

▶ Definition 10. Let M be λ-term, a an a-edge, l a legal path and b a b-edge in Gα(M)
with a, l and l, b composable and b, a not composable. We call the v–v-path σalb = a · l · b an
alb-path of M .

Second, essentially iterating alb-paths, we obtain the definition of albic-paths. Note that
each arbic-path is also an albic-path, as each r-edge constitutes a legal path.

▶ Definition 11. The set of albic-paths of M is inductively defined:
(base case) let σalb be an alb-path and c a c-edge with σalb, c composable; Then the
v–λ–path σalb · c is an albic-path.
(alb-composition) let σalb be an alb-path and ψ an albic-path with σalb, ψ composable.
Then the v–λ–path σalb · ψ is an albic-path.

x

a-edge l-path b-edge

(
a-edge l-path b-edge

)∗ . . .

c-edge

λy

5 We use the λ- and @-symbol to point out the start- and end-nodes of the different wbps.
6 We call them albic, or (alb)ic, because they consist of i (with i ≥ 1) sequences of alb-paths and a final

c-edge.
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@ϵ

λx1

@11

x111 x112

λy2

λx21

@211

y2111 z2112

(λx.x x) (λyx.y z)
→β (λyx.y z) (λyx.y z)
→β λx.(λyx.y z) z

→β λx.(λx.z z)

(λx.x x) (λyx.y z) is α-free

Figure 6 α-paths overapproximate the need for α.

Finally, based on Definitions 10 and 11 we can define α-paths.

▶ Definition 12 (α-path). Let ψ be an albic-path of λ-term M . If ψ starts at a variable x
and ends at a λ-node λy, where x = y, then the v–λ–path ψ is called an α-path.

Inductively, we can conclude that the absence of α-paths implies α-avoidance.

▶ Lemma 13 (α-free). Suppose that there is no α-path in Gα((λx.M)N) starting at a free
variable in N and ending in M . Then MJx := NK ≡α M [x := N ].

Proof. If there is no α-path, then by Definition 12 there is no albic α-path hence also no
arbic α-path, as observed above. From this we conclude MJx := NK ≡α M [x := N ] by using
the observation below Definition 4. ◀

Further, α-path freeness is preserved by β-reduction.

▶ Lemma 14 (β-invariance). →β preserves α-path-freeness.

Proof. The proof proceeds the same way as the proof of Lemma 5. We restrict ourselves
to the most interesting parts here. Again, we use primed variables (p′, q′) to range over
positions in the target term t, indicating the positions they trace back to in the source
term s, by unpriming (p, q). Let s →β t. r-edges and b-edges in ⟨Gα(t)⟩ map back to
an edge of the same type in Gα(s). a-edges and c-edges map back to a path of shape
σ∗

alb · e, where e denotes an edge of the same type and σalb an alb-path in Gα(s). An α-path
in t has the following shape (a′

1, l
′
1, b

′
1, . . . , a

′
n, l

′
n, b

′
n, c

′), where xi denotes an x-edge/legal
path from pi to qi. If we replace a-edges and c-edges by the path the map back to we get
(σ∗

alb1
· a1, l1, b1, . . . , σ

∗
albn

· an, ln, bn, σ
∗
alb · c), where σ∗

albi
· xi in s connects the same positions

as the corresponding x-edge in t. It follows that if we have an α-path in t, then we have an
α-path in s. ◀

▶ Theorem 15. Let M be a λ-term. If M contains no α-path, then M avoids α.

Proof. Assume M contains no α-path. Due to Lemma 14, α-path freeness is preserved by
β-reduction. Then it follows by Lemma 13 that capture-permitting substitutions can be
employed in place of capture-avoiding ones. Thus M avoids α. ◀

Not every α-path is problematic in the sense that it characterises a variable capture.
An α-path may predict name collisions that will never occur if the starting variable gets
substituted before the characterised redex will be contracted. This is the case for the term
depicted in Figure 6. The α-path 112 → 11 → 111 → 1 → ϵ → 2 → 2111 → 21 is harmless, as
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@ϵ

λx1

@11

x111 x112

λy2

λz21

@211

y2111 z2112

(a) Gα((λx.x x) (λyz.y z)).

@ϵ

λx1

@11

x111 λy112

@1121

x11211 y11212

λf2

λz21

@211

f2111 z2112

(b) Gα((λx.x (λy.x y)) (λfz.f z)).

Figure 7 Unremovable α-paths.

the variable x112 gets substituted by the argument λyx.y z before the redex characterised by
the legal path 11 → 111 → 1 → ϵ → 2 gets contracted. Thus, α-paths overapproximate the
need of α. This overapproximation is sufficiently accurate to still allow interesting statements
about different calculi, since α-avoidance is mainly about unremovable α-paths.

An α-path is called unremovable, if it starts at a variable occurrence at position p1q and
ends at its binder at position p (p ≺ p1q). In Theorem 6 we employed that we can get rid of
arbic α-paths by naming all binders appropriately. This is possible because the starting and
the ending position of these paths are always parallel. For unremovable α-paths this is not
always the case, as illustrated by the λ-terms in Figures 7a and 7b. Note that Figure 7b
illustrates that an unremovable α-path does not necessarily have to contain legal paths from
a position p to a position q with q ≺ p.

▶ Lemma 16. For every λ-term M containing no unremovable α-paths, there exists a λ-term
N where M ≡α N , such that N does not contain any α-paths.

Undecidability

Arbitrary λ-terms may have an unbounded set of legal paths, all of them characterising
a different virtual redex. For such terms, making a prediction about the need for α via
α-paths is not feasible. This problem is even undecidable for leftmost–outermost reductions,
as established by our next result.

▶ Theorem 17. α-avoidance is undecidable for the leftmost–outermost reduction strategy.

Proof. In proof, we employ a reduction from Post’s correspondence problem (PCP short),
whose undecidability is well-known [32]. Recall that PCP asks whether for an arbitrary finite
set of string pairs ⟨s1, s

′
1⟩, ⟨s2, s

′
2⟩, . . . , ⟨sn, s

′
n⟩ over the alphabet {a, b}, there exists indices

ij ∈ {1, 2, . . . , n} such that

si1si2 . . . sik
= s′

i1
s′

i2
. . . s′

ik
k ⩾ 1 .

It is not difficult to define λ-terms for (i) strings aa, bb, namely AA := λabx.a (a x) and
BB := λabx.b (b x), respectively; (ii) conditionals (denoted as ITE); (iii) pairs (PAIRS) and
(iv) in particular PCP (PCP), such that the λ-term PCP takes an (encoding) of list of pairs

FSCD 2023
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µx
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y x
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t(µx.M)

(a) A self-capturing chain in µ.M .
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f

λx

M
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(b) An α-path in t(µ.M).

Figure 8 A self-capturing chain in µ is an α-path in Λµ.

as input and recursively combines them, until a solution is produced (if it exists at all). As
the leftmost–outermost strategy is normalising for the λ-calculus, this solution can be found
by this strategy. Now, consider the following program

(ITE (PCP PAIRS)AABB) (λxyz.(x z) y) ,

ITE, PCP, PAIRS, AA and BB are defined as above. As ITE (PCP PAIRS)AABB is
typable, α can be avoided in its reduction, cf. Section 5.3 or [31, Section 11.3.2]. If the
problem has a solution, it will reduce to the λ-term AA (λxyz.(x z) y), where α is unavoidable.
Otherwise, it will reduce to the λ-term BB (λxyz.(x z) y), from which we get with one β-step
to λbx.b (b x). Moreover, as mentioned the reduction sequence to these terms is α-free. Thus,
if we further reduce these terms to normal form, then we need α iff the PCP problem has a
solution. Thus, we conclude the theorem. ◀

As already mentioned, α-paths characterise α-avoidance for seemingly unrelated calculi
like (i) developments, (ii) affine λ-calculus, (iii) weak λ-calculus and (iv) safe λ-calculus. In
Section 3 we have already seen this for developments and in the next section we illustrate this
characterisation of the affine and the weak λ-calculus as well as the safe λ-calculus [11, 9].

In the sequel, we clarify the ancestry of α-paths wrt. the concept of chains in the µ-
calculus, cf. [17]. Further, we briefly detail our tool Alpha that can be used to compute and
illustrate α-paths.

Interpretation of µ in the λ-calculus

We show that α-paths are a strict generalisation of the chains considered for the µ-calculus
in [17]. We do this by considering the sub-calculus Λµ of the λ-calculus obtained by the
t-image of µ-terms defined as t(x) = x, t(M N) = t(M) t(N), t(µx.M) := AA (λx.t(M)) for
A = λaf.f (a a f). As suggested in [17], this translation allows simulating µ-terms in the
λ-calculus, provided that we adopt the leftmost–outermost reduction strategy.

t(µx.M) := AA (λx.t(M)) →β (λf.f (AAf)) (λx.t(M)) →β (λx.t(M)) (AA (λx.t(M)))
→β t(M)Jx := AA (λx.t(M))K = t(M)Jx := t(µx.M)K
= t(MJx := µx.MK) .
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Figure 9 α-avoidance tool web-interface.

In Λµ we can use α-paths to characterise α. We sketch the argument that an α-path in
t(M) for some µ-term M correspond a self-capturing chain in M . Note that, as reducing
Turing’s fixed point combinator AA itself does not cause any capturing problems, we do not
introduce ”new α-problems”. Thus, we only need to characterise the paths that correspond
to reductions at the root of a reduct of AA (λx.M) to characterise the need for α in Λµ.
For that, we observe that a pair of connected binding and capturing links in µ correspond
to an alb-path in Λµ and a self-capturing chain to an α-path. Figure 8 illustrates this
correspondence.

Implementation

Based on the notion of α-paths, we have implemented a tool, dubbed Alpha, to (partially)
decide whether or not α-conversion can be avoided. The tool is publicly available and can
either be accessed via the command-line or its web interface. The web interface also visualises
the computed α-paths.

Depending on whether α-paths can be found or not (up to a variable depth), the tool
gives one of the following results:
1) alpha free, if no α-paths were found and the calculation is terminated;
2) alpha can be avoided, if α-paths were found (but no unremovable α-paths); in this

case, the tools prints an α-equivalent term for which the calculation is α-free;
3) alpha is unavoidable, if unremovable α-paths have been found;
or returns maybe, if no α-paths have been found, but the computation has not been terminated
(the maximum depth has been reached). Recall that the problem is undecidable, cf. Section 4.7
Listing 1 shows an exemplary output of the command line tool.

Listing 1 Church encoding of 32.
$ dune exec bin/main.exe "(/f␣x.f␣(f␣x))␣(/f␣x.f␣(f␣(f␣x)))"
alpha can be avoided:
(/f x.f (f x)) (/f p_12.f (f (f p_12 )))

The web interface displays the α-graph and the computed α-paths. Figure 9 shows a
screenshot of the tool illustrating this for (λx.x x) (λyz.y z).

7 The command line tool and the link to the web interface can be found at https://tcs-informatik.
uibk.ac.at/tools/alpha/.
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5 α-Avoidance In Affine, Safe And Weak λ-Calculi

In this section, we show how α-paths can be applied to analyse the need for α in restricted
λ-calculi.

5.1 The affine λ-calculus
The affine λ-calculus [21, 23, 27, 38], forbids duplication by restricting term-formation,
requiring the variable x to occur free at most once in M in an abstraction term λx.M . This
calculus is strongly normalising; we recall the central definition.

▶ Definition 18. The set ΛAF F of affine λ-terms is a subset of Λ and inductively defined as
follows:

(var) x ∈ ΛAF F , for all variables x;
(app) M,N ∈ ΛAF F =⇒ M N ∈ ΛAF F , if FV (M) ∩ FV (N) = ∅;
(abs) M ∈ ΛAF F =⇒ λx.M ∈ ΛAF F .

Since the size of terms steadily decreases with each reduction step and variables persist
linearly along reductions, it follows that this calculus is strongly normalising. This allows a
precise analysis for the need of α.

▶ Lemma 19. Let M ∈ ΛAF F , M →β N and q ≺ p for some positions p, q in M . If p ▶ p′

and q ▶ q′, then q′ ≺ p′.

Proof. Since we have no duplication, each symbol has at most one copy in N . We distinguish
the following cases where we have p ≺ q, with p ▶ p′ and q ▶ q′:
1. p, q both in the context: Then as p′ = p and q′ = q so by assumption we have p′ ≺ q′.
2. p = o11s1 and q = o11s2 both in the body: Then from p ≺ q we know that s1 ≺ s2 and

we have os1 = p′ ≺ q′ = os2.
3. p = o2s1 and q = o2s2 both in the argument: Then from p ≺ q we know that s1 ≺ s2

and we have ots1 = p′ ≺ q′ = ots2.
4. p is in the context and q = o11s in the body. Then p′ = p and q′ = os and since p ≺ q we

also have p′ ≺ q′.
5. p is in the context and q = o2s in the argument. Then p′ = p and q′ = oqs. Since we

know that p ≺ o (because it is in the context), we also have p′ ≺ q′.
The other cases can be omitted because they violate the assumption that p ≺ q. ◀

Since each β-step preserves the property proven in Lemma 19, we cannot have a reduct
of M where for the copy of p (the position of a variable), p′, and the copy q (the position of
an abstraction), q′, we have p′ ∥ q′, if for the origins we have q ≺ p. This would temporarily
be needed to form a redex whose contraction causes a variable capture. Moreover, as argued
above we could map back such a setting to an (unremovable) α-path in M . We conclude
that no such path can exist in M .

▶ Lemma 20. Let M be an arbitrary term in ΛAF F . There are no unremovable α-paths
in M .

In sum, we obtain the following, well-known result.

▶ Theorem 21. In the affine λ-calculus α can be avoided.

Proof. Due to Lemma 20 it only remains to prove that for every affine λ-term M there
exists an affine λ-term N such that M ≡α N and N avoids α. This, however, follows from
Lemma 19 in conjunction with Lemma 16. ◀
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(var) x : A ⊢s x : A
(const) ⊢s f : A

f : A ∈ Ξ (wk)
Γ ⊢s M : A

∆ ⊢s M : A
Γ ⊂ ∆ (δ)

Γ ⊢s M : A

Γ ⊢asa M : A

(appasa)
Γ ⊢asa M : A → B Γ ⊢s N : A

Γ ⊢asa M N : B
(app)

Γ ⊢asa M : A → B Γ ⊢s N : A

Γ ⊢s M N : B
ord B ≤ ord Γ

(abs)
Γ, x1 : A1, . . . , xn : An ⊢asa M : B

Γ ⊢s λxA1
1 . . . xAn

n .M : (A1, . . . , An, B)
ord (A1, . . . , An, B) ≤ ord Γ

Figure 10 The safe λ-calculus [9].

5.2 The safe λ-calculus
In the safe λ-calculus, a variable capture can never occur by definition, thus α is not needed.
This calculus was first introduced in [28] and then further developed and formalised in [11].
The fundamental concept allowing α-free computations is known as the safety restriction. In
the standard form this syntactic restriction restricts the free occurrences of variables according
to their type-theoretic order. It was initially introduced for higher-order grammars, cf. [16].
The safe λ-calculus is the result of the transposal of the safety condition for higher-order
grammars to the simply-typed calculus à la Church.

In this section, we show that α cannot be avoided in the safe λ-calculus as presented
in [11] and [9] by giving a counterexample and clarify why we need to stick to a more
restricted version of the safe λ-calculus (as presented in [10]) if we aim for α-free reductions.
More precisely, we show how α-paths can be used to reason that α is not needed in the safe
λ-calculus and that the absence of α-paths implies the safe variable typing convention.

Simple types over the atomic type o are defined as usual, cf. [6], A1 → · · · → An → o is
abbreviated as (A1, . . . , An, o) and (o) as o. The order of a type is given by (i) ord o := 0
and (ii) ord (A → B) := max(1 + ordA, ordB). The order of a typed term or symbol is
defined to be the order of its type. The lowest order in a set of type assignments Γ is denoted
by ord Γ (0 if Γ empty). A set of type assignments Γ is order-consistent if all the types
assigned to a given variable are of the same order.

▶ Example 22. Let Γ = {x : o, y : (o, o)}, then Γ is order-consistent and ord Γ = 0.
Conversely, the set {x : ((o, o), o), x : (o, o)} is not order-consistent and ord Γ = 1.

▶ Definition 23. A term M of type A is said to be safe, if FV (M) ⊢s M : A is a valid
statement in the inference system of the safe λ-calculus depicted in Figure 10.

We can abstract multiple variables at once, λx1 . . . xn.M , provided that they are pairwise
distinct (abs-rule). In particular, λ.x and λxo.λxo.x are valid λ-terms of the safe λ-calculus,
λxoxo.x is not. The conditions on the types in the app- and abs-rule ensure that the variables
occurring free in some term M have order at least the order M (safety condition). The
subscript asa stands for almost safe (application). Almost safe applications can be turned
into a safe term via further applications or further abstractions. For example, (λxoyo.x) z
(with z of type o) is an almost safe application but not safe. However, in (λxoyo.x) z f (with
f, z of type o) it is a subterm of a safe application.

In the safe λ-calculus, consecutive redexes are contracted simultaneously, as the standard
β-reduction does not preserve safety [9, Section 3.1.2]. This requires a notion of simultaneous
substitution. The definitions of simultaneous capture-permitting and simultaneous capture-
avoiding substitution are given in Table 2.
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Table 2 Simultaneous capture-avoiding and simultaneous capture-permitting substitution.

M MJN/xK (sim. capture-avoiding) M [N/x] (sim. capture-permitting)
xi Ni Ni

y y y

e1 e2 e1JN/xK e2JN/xK e1[N/x] e2[N/x]
(λy.e)JN/xK λy.eJN ′/x′K where x′ = x − y λy.e[N ′/x′] where x′ = x − y

if y ∩ FV (t) = ∅ for all t ∈ N ′, else
λz.eJz/yKJN/xK where zi fresh for e, N

▶ Definition 24 (safe redex [9, Definition 3.21]). An untyped safe redex is an untyped almost
safe application (a succession of several standard redexes) of the form (λx1 . . . xn.M)N1 . . . Nl

for some l, n ≥ 1 where λx1 . . . xn.M is safe and each Ni, for 1 ≤ i ≤ n, is safe.

▶ Definition 25 (safe redex contraction). The relation βs is defined on the set of safe redexes
as follows:

βs = {(λx1 . . . xn.M)N1 . . . Nl 7→ (λxl+1 . . . xn.M)[N1 . . . Nl/x1 . . . xl] | n > l}
∪ {(λx1 . . . xn.M)N1 . . . Nl 7→ M [N1 . . . Nn/x1 . . . xn]Nn+1 . . . Nl | n ≤ l}

where λ.M = M and M [N/x] denotes the simultaneous capture-permitting substitution.

Note that simultaneous capture-permitting substitution cannot be applied serially because
it may require α. The statement M [x1 := N1][x2 := N2] = M [x := y, y := z] is not true in
general, as x2 may be free in N1, e.g. x[x := y][y := z] = z and x[x := y, y := z] = y.

▶ Definition 26. The safe β-reduction, written as →βs , is the compatible closure of the
relation βs with respect to the formation rules of the safe λ-calculus.

In addition to the inference rules, the safe variable typing convention is adopted, which
restricts the naming of variables according to their type.

▶ Definition 27 (safe variable typing convention [9]). A type-annotated term M is order-
consistent just if the set of type-assignments induced by the type annotations in M is. In any
definition, theorem or proof involving countably many terms, it is assumed that the set of
terms involved is order-consistent.

According the safe variable typing convention, variables of distinct order must have distinct
names. This is crucial for α-avoidance in the safe λ-calculus.8 However, if we consider the
term M = λyo.(λxoyo.x) y we see that although this term is safe (⊢s λy

o.(λxoyo.x) y : (o, o))
and (λxoyo.x) y is a safe redex, it cannot be contracted by means of capture-permitting
substitution, because this would lead to a variable capture. This invalidates a central property
of this calculus, according to which a variable capture can never happen, and leads to the
fact that we may compute different normal forms for α-equivalent terms.9

8 {y : (((o, o), o), o), z : ((o, o), o)} ⊢s (λx((o,o),o)y(o,o)zo.x) (λq(o,o).y z) : ((o, o), o, ((o, o), o)) is a counter-
example to [9, Lemma 3.17].

9 Compare to the errata published at https://github.com/blumu/dphil.thesis/blob/erratum/
Current/thesis-erratum/dphilerratum.pdf.

https://github.com/blumu/dphil.thesis/blob/erratum/Current/thesis-erratum/dphilerratum.pdf
https://github.com/blumu/dphil.thesis/blob/erratum/Current/thesis-erratum/dphilerratum.pdf
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(var)
{x : A} ⊢sα x : A (const)

⊢sα f : A f : A ∈ Ξ (wk)
Γ′ ⊢sα M : A
Γ ⊢sα M : A Γ′ ⊂ Γ

(app)
Γ ⊢sα M : (A1, . . . , An, B) Γ≥m ⊢sα N1 : A1 . . . Γ≥m ⊢sα Nj : Bj

Γ ⊢sα M N1 . . . Nj : B m = ordB

(abs)
Γ≥m ∪ {x1 : A1, . . . , xn : An} ⊢sα M : B

Γ ⊢sα λx1 . . . xn.M : (A1, . . . , An, B) m = ord (A1, . . . , An, B)

Figure 11 An α-avoiding safe λ-calculus.

A more restrictive set of rules is needed to resolve this issue. These rules are depicted
in Figure 11.10 In this system we dropped the ”almost safety” and allow to type only
applications that provide enough arguments to abstractions. More precisely, if an argument
of order k is provided, the arguments of all abstracted variables of order k and higher must
be provided. In this way, we avoid free variables ending up in the scope of abstractions of the
same order during reduction. This avoids potential variable capture, since it can be assumed
that free variables are always of a higher order than the abstractions they enter the scope of.
Therefore, according to the safe variable typing convention, they are named differently.11

▶ Example 28. The simply-typed term (λf (o,o,o)yo.f y) (λxoyo.x) is derivable in the safe
λ-calculus from Figure 10, but not in the system from Figure 11 because of the unsafe
application f y. Indeed, this term reduces in one step to λyo.(λxoyo.x) y where α is required
to further reduce it.

In the following Lemma 29 we show that the safe λ-calculus of Figure 11 avoids α by
reasoning with α-paths. This can be done by interpreting safe λ-terms as ordinary terms.

▶ Theorem 29. In the safe λ-calculus no variable capture can occur, provided that the safe
variable typing convention is adopted.

Proof. Suppose we have an α-path in a safe λ-term M with Γ ⊢sα M : A. Then this path
would start at a variable y occurring free in the argument N of some application, which is
connected via a legal path to an abstraction λx binding a variable x in the scope of a λy, as
illustrated below. In such case, by definition of safe terms, we know that λx.M and N are
both safe. Moreover, we know that ord y ≥ N and ordN = ord x. We can therefore have
the following two cases: (i) ord y > ord x or (ii) ord y = ord x. In any case, as the subterm
λy.M ′ would be unsafe in isolation, we conclude that the λy and the λx must be jointly
abstracted. By definition of safe β-reduction, we know that compound abstractions of same
order are contracted simultaneously. Therefore, we cannot have a variable capture. ◀

5.3 The weak λ-calculus
The weak λ-calculus [39] forbids to contract open redexes, i.e. redexes that involve free
variables that are bound outside. Thus, if the name of the free variables and the bound
variables are chosen to be distinct, a variable capture can by definition never occur. We
recall the notion of weak β-reduction.

10 Simultaneous substitutions coincide with the singleton substitutions from Table 1 in the case |x| = 1.
11We note that these rules correspond to the rules of the safe λ-calculus published in [10] and to the

typing rules for long-safe terms (without constants) listed in [9, Table 3.2].
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▶ Definition 30 (weak λ-reduction [39, Definition 3.1]). A particular occurrence of a redex R
in a λ-term M will be called weak in M iff no variable-occurrence free in R is bound in M .
A weak β-contraction in M is the contraction of a β-redex-occurrence that is weak in M .

The characterisation of the virtual redexes by legal paths is not suitable for the weak
λ-calculus, since they include redexes that are not reduced at all. However, we can infer
from the structure of the unremovable α-paths that α can also be avoided in this calculus.
To this end, we rely on the fact that bound variables are never released, i.e. they do not
change or loose their binder.

▶ Lemma 31. For every λ-term M there exists a λ-term N such that M ≡α N and any
→βw-reduction from N is α-free.

Proof. We prove it by showing that the name-collision characterised by an unremovable
α-paths will not arise. Suppose we have an unremovable α-path in a λ-term M . Such path
has the shape σ+

alb ·c. Assume, that at some point along the reduction sequence of M we reach
a λ-term N , containing a redex R whose contraction leads to the predicted name-collision.
Let q be the position of the variable y occurring free in the argument of R in N . Since the
position q originates from position p in M (p ▶ p′ ▶ . . . ▶ q) and the variable occurrence at
position p in M was bound, we know that also the variable y at position q in N is bound (as
bound variables are never released). So R would be an open redex and thus not contracted.
Any other α-path can be removed by naming each binder distinctly and distinct from the
free variables, as proven in Lemma 16. ◀

In sum, α-avoidance is immediate from the definitions.

▶ Theorem 32. In the weak λ-calculus α can be avoided.

6 Conclusion

We have presented a sound characterisation of α-avoidance, via α-paths, generalising self-
capturing chains [17], studied in the context of the µ-calculus; α-paths exploit the predictive
power of legal paths, characterising virtual redexes of a λ-term M , that is, all redexes
occurring in some reduction sequence starting from M . By reasoning on the structure of
the initial term, we estimated whether α is needed, when contracting these virtual redexes.
Further, we have shown undecidability of α avoidance for (leftmost-outermost reductions in)
the untyped λ-calculus. Moreover, α-paths were instantiated to different restrictive λ-calculi,
where they can be used to show that α can be avoided, namely developments, the affine
λ-calculus, the weak λ-calculus and the safe λ-calculus. In short, forbidding redex creation,
duplication, or the contraction of redexes involving variables bound outside is enough to
allow α-avoidance. For all calculi where we can avoid α, we can infer potential α-conversions
needed to allow α-free computations from the α-paths. This allows to move a dynamic
problem to a static one.

We have shown that α-avoidance is undecidable for the leftmost–outermost strategy in
the untyped λ-calculus. These leaves the question open, whether undecidability holds in
general. We further note that α-paths only overapproximate the need for α. It remains an
open question whether we could tighten the definition of α-paths such that the established
(sound) characterisation becomes precise, that is, complete. These questions are left to future
work.
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Abstract
In the process of designing a computer system S and checking whether an abstract model M of
S verifies a given specification property η, one might have only a partial knowledge of the model,
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1 Introduction

In the process of designing a computer system S and checking whether an abstract transition
system M modelling S satisfies a given specification property η, one might have only a partial
knowledge of the model, either because M has not yet been completely defined (constructed)
by the designer, or because it is not completely observable by the verifier. Typically, M

is a finite transition system with states labeled by sets of atomic propositions (Boolean
variables) with their truth values, and the partial construction or partial observability may
be manifested in one or more of the following components: a) the truth values of some
propositions at some states; b) whether two given states are connected by a transition; c)
whether the observed states are all the existing or intended states, or there are more, not
observed or not yet constructed. In a multi-agent context there are additional components,
e.g., some agents and/or their actions might also be partly observable or unspecified yet.

Now two natural questions arise:
i) whether there is at least some way to extend (eventually, complete) the partially con-

structed transition system in such a way that the property η holds.
ii) whether what is already known suffices to verify η, no matter how the partial information

might be extended (eventually, completed).
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(Alternatively, one may think that in both cases the model is partially constructed, but in
the former case it is up to the verifier to complete the construction, whereas in the latter
case it will be completed by another, possibly adversarial, agent.)

These questions have been stated respectively as partial model synthesis and partial model
checking and discussed in general in [14], on which the present work follows up.

In this paper we take the property η to be expressed by an LTL formula and the model
M to be a transition system (Kripke structure), which is incomplete in either of the senses
a, b and c described above. Then the two questions above unfold into four decision problems
and two associated synthesis problems, precisely described in Section 3. The aim of this
work is not only to provide a unified approach for solving the decision problems, but also to
provide constructive methods for their solutions, thus also solving the associated synthesis
problems, by constructive methods that are neither non-deterministic nor brute-force. Thus,
when considering, for instance, whether there exists an extension of the partially given model
M assuring the existence of a path verifying η, we are not only interested in providing a
correct YES/NO answer, but, in the case where the answer is positive, we want to build an
extension M ′ of the input M , and a path in it that is a linear model of η.

Furthermore, when extending the model with truth values of Boolean variables at states,
we aim to do it in a “minimal” (or, “most general”) way, so as to leave to the designer as
much freedom as possible for further extensions. That is, if a given Boolean variable p has
an unspecified (or, unknown) truth value at a given state s on a path that is to satisfy η, we
only force that value to be defined (True or False) when this is really necessary to produce
such a path. For these reasons, inter alia, our methods and algorithms are inspired by the
tableau methods for constructively solving the satisfiability problem in LTL, first developed
in [22] and further optimised and presented in detail in [11, Chapter 13], that are usually
proposed as the most constructive methods for solving the satisfiability problem. Here we
will follow the style and technical details of the tableaux construction procedure in the latter.

The decision problems described in Section 3 informally ask respectively whether some
(resp., every) admissible extension of the partial model is such that some (resp., every) path
in it starting from the given initial state satisfies η. These problems are denoted respectively
EE,AA,EA,AE. In this work we first present in full details the solution to EE (and to its
dual problem AA) in the case where only the state labels (given by the truth values of the
Boolean variables) may be not yet determined or unknown, but the states themselves and
the transitions between them are completely specified and observed. Then we show how the
proposed algorithm can be extended to deal also with the cases where transitions and/or
states may be not yet determined or unknown, partially or completely (the limit case being
when nothing is known at all). After that, we show how the proposed methods for solving
EE and AA also enable handling of the problems EA and AE. Thus, the algorithm that we
initially propose for solving EE is the core method of our approach, to which all the other
variants of model extension or completion problems are reduced.

Some of the problems that we address here are related to previously published work, esp.
on partial model checking of LTL and other logics. For instance, there is a clear connection
between our work and [9, 13]. We postpone the discussion of related works to Section 7.2.

The paper is organized as follows. In section 2 we briefly recall some standard notions on
LTL and we set some preliminary definitions and notation. In Section 3 we state the main
problems. In Section 4 we describe our core algorithm and in Section 5 we present basic
results about it. In Section 6 we show how it can be used to solve the other problems we
consider. Section 7 discusses related works, points at some perspectives, and concludes.
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2 Preliminaries

2.1 Partial transition systems, extensions, and completions
In what follows, Prop is a nonempty finite set of atomic propositions (Boolean variables)
and B = {⊤, ?,⊥} is the set of truth-values, where ? is a third Boolean value intuitively
meaning “undetermined” or “unknown”. The definition below extends the well-known notion
of transition system (aka Kripke structure) to the case of partial construction or incomplete
knowledge. It combines some ideas that come, inter alia, from [16] (for transitions) and [13]
(for three-valued state labels).

▶ Definition 1 (Partial and complete transition systems). A Partial transition system
(also called further a partial model) is a tuple M = (S,Rmust, Rmay, L), where: S is a
finite set of states, Rmust ⊆ S × S and Rmay ⊆ S × S are two transition relations such that
Rmust ⊆ Rmay, and L : S × Prop −→ B is an interpretation function associating with
each state in S and each atomic proposition in Prop a truth value in B. The relation Rmust

corresponds to the already determined, or known, transitions, whereas Rmay also includes the
possible but not yet determined, or not yet known, transitions.

We assume that Rmay is serial (aka, total); hence, every path in (S,Rmay, L) is infinite.
If Rmay = Rmust = R, we denote the partial transition system simply as (S,R,L) and say

that it is transition-complete. A transition-complete structure (S,R,L) is complete, or
just a transition system, if all values that L assigns are in {⊤,⊥}. Thus, every (complete)
transition system is also a partial transition system.

▶ Definition 2 (Extension and completion of an interpretation function). Given a partial
transition system M = (S,Rmust, Rmay, L), an interpretation function L′ : S × Prop −→ B

is said to be an extension of L, denoted by L ⪯ L′, if for each s ∈ S and p ∈ Prop, if
L(s, p) ̸=? then L′(s, p) = L(s, p). When L′ : S × Prop −→ {⊤,⊥} (i.e., all values that L′

assigns are in {⊤,⊥}), then L′ is said to be a completion, denoted L ⪯c L′.

▶ Definition 3 (Extension and completion of a partial transition system). A partial transition
system M ′ = (S′, R′ must, R′ may, L′) is an extension of a partial transition system
M = (S,Rmust, Rmay, L), denoted by M ⪯ M ′ if: S ⊆ S′, Rmust ⊆ R′ must, R′ may ⊆ Rmay,
and L ⪯ L′. If R′ must is serial, then M ′ is a total extension of M . A complete transition
system M ′ = (S′, R′, L′) which is a total extension of M ′ is a completion of M , denoted
by M ⪯c M ′. Thus, M ⪯c M ′ iff: S ⊆ S′, Rmust ⊆ R′ ⊆ Rmay, R′ is serial, and L ⪯c L′.

2.2 The logic LTL
Here we only fix basic notation and terminology on the Linear Temporal Logic LTL used
further in the paper. For further details the reader is referred e.g., to [11].

The formulae of LTL are given by the grammar

φ,ψ := ⊤ | ⊥ | p | ¬φ | (φ ∧ ψ) | Xφ | Gφ | (ψUφ)

where p ∈ Prop. The operators ∨, −→, ↔, and F are defined in the standard way.
A linear model for LTL is an infinite sequence σ : N −→ P(Prop). Truth (satisfaction)

of an LTL formula φ at a position i ∈ N of a linear model σ, denoted σ, i |= φ, is
defined as usual. An LTL formula φ is said to be true in a linear model σ, denoted σ |= φ,
if σ, 0 |= φ; in this case σ is said to be a linear model of φ.
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LTL formulae are also interpreted at states in transition systems, as follows. Given a
transition system M = (S,R,L) the sequence π = s0, s1, s2, ... is a path in M if s0Rs1Rs2, ....
Every finite sequence s0, s1, ..., sn is called an initial sub-path of π. The computation
in M corresponding to π is the sequence of labels (sets of true propositions) along π:
T (s0), T (s1), T (s2) . . . , ..., where T (i) = {p ∈ Prop | L(si, p) = ⊤}. Given a state s ∈ S, we
denote by computM (s) the set of computations in M with initial state s.

Every computation in M can be regarded as a linear LTL model, hence the notions
σ, i |= φ and σ |= φ are readily defined for any computation σ. We say that an LTL formula
φ is universally true in a transition system M at a state s if σ |= φ for all elements σ of
computM (s). In that case, we also simply say that φ is true in M at s, denoted M , s |=∀ φ

or just M , s |= φ. Likewise, we say that φ is existentially true in M at s if for some
computation σ ∈ computM (s) we have σ |= φ. In that case we write M , s |=∃ φ.

Given a finite set of formulas Γ = {φ1, . . . , φn}, where n ≥ 0, we denote∨
Γ := φ1 ∨ · · · ∨ φn, and

∧
Γ := φ1 ∧ · · · ∧ φn. When Γ = ∅,

∨
Γ := ⊥ and

∧
Γ := ⊤.

We will write M , s |= Γ as a shorthand for M , s |=
∧

Γ.

2.3 Tableau-related preliminaries
The definitions here are borrowed from the presentation of tableaux for LTL in [11, Ch.13.2].

We distinguish four types of formulas in LTL: literals (atoms or negated atoms), conjunct-
ive, disjunctive and successor formulas, and eventualities, i.e. formulas of the type Fφ or
ψUφ. In both cases, their truth at a time point implies that φ must be realised at some
point in the future, but its realisation can be procrastinated. By the well known fixed-point
LTL equivalences Fφ ≡ φ ∨ X Fφ and ψUφ ≡ φ ∨ (ψ ∧ X (ψUφ)), an eventuality can be
seen as a disjunction, as it is shown Figure 1.

▶ Definition 4 (Components of a formula). The components of a formula φ are defined
depending on its type. The components of a conjunctive (resp. disjunctive) formula φ are
formulas, defined further, such that φ is equivalent to their conjunction (resp. disjunction).
A successor formula ψ has only one component, written scomp(ψ). Literals do not have
components. All types and components of LTL-formulas are summarised in table 1.

Table 1 Types and components of formulas in LTL.

conjunctive disjunctive successor
formula components formula components formula components
¬¬φ φ, φ φ ∨ ψ φ, ψ Xφ φ

φ ∧ ψ φ, ψ φ → ψ ¬φ, ψ ¬Xφ ¬φ
¬(φ ∨ ψ) ¬φ, ¬ψ ¬(φ ∧ ψ) ¬φ, ¬ψ
¬(φ → ψ) φ, ¬ψ Fφ φ, X Fφ
Gφ φ, X Gφ ψUφ φ, ψ∧X (ψ Uφ)
¬Fφ ¬φ, X ¬Fφ ¬Gφ ¬φ, X ¬Gφ
¬(ψUφ) ¬ψ ∨ X ¬(ψUφ), ¬φ

When Γ is a set of formulae, the notation Scomp(Γ) will denote {scomp(ψ)|ψ ∈ Γ}.

▶ Definition 5 (Extended closure of a formula). The extended closure ecl(φ) of the formula φ
is the least set of formulas such that :
1. φ ∈ ecl(φ),
2. ecl(φ) is closed under taking all conjunctive, disjunctive, successor components of the

respective formulas in ecl(φ).
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▶ Definition 6 (Extended closure of a set of formulas). For any set of formulas Γ we define

ecl(Γ) :=
⋃

{ecl(φ)|φ ∈ Γ}.

A set of formulas Γ is closed if Γ = ecl(Γ).

▶ Definition 7 (Patently inconsistent). A set of formulas is patently inconsistent if it
contains ⊥, or ¬⊤, or a contradictory pair of formula φ and ¬φ.

▶ Definition 8 (Fully expanded). A set of formulas Γ is fully expanded if and only if
1. it is not patently inconsistent,
2. for every conjunctive formula in Γ, all of its conjunctive components are in Γ,
3. for every disjunctive formula in Γ, at least one of its disjunctive components is in Γ.

Note that the empty set of formulas is vacuously fully expanded.

▶ Definition 9 (Full expansion of a set of formulas). A fully expanded set of formulas ∆ is a
full expansion of a set of formulas Γ if ∆ can be obtained from Γ by repeated applications
of the following rules, where initially no formula is marked as “used”:

(C-comp) for every conjunctive formula φ in the current set Γ that has not been marked
as “used”, add all of its conjunctive components to Γ and mark φ as “used”.
(D-comp) for every disjunctive formula φ in the current set Γ that has not been marked
as “used”, add one of its disjunctive components to Γ and mark φ as “used”.

Note that the rule (D-comp) is non-deterministic, so a set Γ may have several (or no) full
expansions. The notation FE(∆) means the set of the full expansions of a set of formulas ∆.

Below we also recall some definitions and a theorem about Hintikka traces, that can be
found in [11], as we will make use of them in our approach.

▶ Definition 10. Given a closed set of formulas Γ, a Hintikka trace (HT) for Γ is a
mapping H : N −→ P(Γ) satisfying the following conditions for every n ∈ N:
1. H(n) is fully expanded.
2. If φ ∈ H(n) is a successor formula, then scomp(φ) ∈ H(n+ 1).
3. If φUψ ∈ H(n), then there exists i ≥ n such that ψ ∈ H(n + i) and φ ∈ H(n + j) for

every j such that 0 ≤ j < i.

An LTL formula φ is satisfiable in a Hintikka trace H if φ ∈ H(n) for some n ∈ N.

▶ Theorem 11. An LTL formula η is satisfiable iff it is satisfiable in some Hintikka trace.

3 The problems we study

Let M be a partial transition system, let s0 be a state in M and let η be an LTL formula.
The following four decision problems naturally arise (cf. Definitions 2 and 3):

Existential extension for path existence
Are there a total extension M ′ of M and a path s0, s1, s2, ... in M ′ such that its corresponding
computation σ is a linear model of η? We denote this decision problem by EE.
Existential extension for all paths
Is there a total extension M ′ of M , so that for all paths s0, s1, s2, ... in M ′ the corresponding
computations are linear models of η? We denote this decision problem by EA.
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Universal extension for path existence
Does every total extension M ′ of M has a path s0, s1, s2, ... such that its corresponding
computation is a linear model of η? We denote this decision problem by AE.
Universal extension for all paths
Is every total extension M ′ of M such that for every path s0, s1, s2, ... in it the corresponding
computation is a linear model of η? We denote this decision problem by AA.

Clearly, the problems EE and AA are dual: a positive answer to EE with input (M , s0, η)
is a negative answer for AA on input (M , s0,¬η), while a negative answer for EE on input
(M , s0, η) is a positive answer for AA on input (M , s0,¬η). Likewise, EA and AE are dual.

It is worthwhile observing that when M is completely unknown then EE coincides with
EA and amounts to the LTL satisfiability problem, while each of the problems AA and AE is
nothing but the LTL validity problem. On the other hand, when M is completely known,
both EE and AE turn out to be the existential model checking problem, while EA and AA
coincide with the universal model checking problem.

As mentioned in the introduction, we consider three types of possible extensions and
completions of partial transition systems. Each case is a special case of an extension in terms
of Definition 3, as follows: (i) label extension, where the states and transitions are fixed,
but the labels of the states are extended by an extension of the interpretation function (cf.
Definition 2); (ii) transition extension, where the states (and their labels) are fixed, but
new transitions are added; (iii) state extension, where new states, with partial or complete
labels, as well as transitions to and from them can be added. Clearly, (i) and (ii) can be
combined, whereas (iii) subsumes (ii) and can naturally subsume (i), too.

Each of these decision problems is easily seen to be PSPACE-complete. In the cases of
label extensions and transition extensions, let us non-deterministically choose a completion
M ′ and existentially - respectively universally - model-check η on M ′. Since the decision
problems for existential and universal model checking of LTL formulae are PSPACE complete
([17, 11]), EE and EA are NPSPACE-easy. On the other hand, they are also NPSPACE-
hard, because existential - respectively universal - model checking problems are trivially
polynomially reducible to them (as they are the special cases where M is already complete).
Hence they are NPSPACE-complete, so, by Savitch theorem, they are PSPACE-complete.
Consequently, their dual problems AE and AA, are also PSPACE-complete. In the case
of state extensions, as shown in Section 6.3, the EE problem is easily reducible to the
satisfiability of a formula produced from η and the label of the initial state, AA is again
its dual, and the problems AE and EA are reducible to repeatedly solving EE, hence they
are PSPACE-complete, too. Still, let us note that the decision methods developed here are
practically much more efficient than brute-force, generic PSPACE-complete algorithms.

There are variants of two of the previous problems that are not decision problems but
rather model synthesis problems. The variant of EE where, on the same input, one does not
ask for a YES/NO answer, but rather for an output consisting of a total extension M ′ and
a path π = s0, s1, s2, ... in M ′ such that its corresponding trace σ is a linear model of η,
when these exists (and for a failure message otherwise) is the synthesis problem that we will
denote by EES. Similarly, the variant of EA where one asks for an extension M c where η is
universally true is the synthesis problem denoted by EAS.

4 Tableau-based algorithms for EE and EES for label extensions

Usually, tableau methods are used to determine the satisfiability of an input formula η by
trying systematically to build from scratch possible models of it. Here, we adapt the method
to take into account also a partial Kripke structure M as an additional input, the goal being
to possibly construct a model of η extending M .
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Here we consider the case of partial transition systems M = (S,Rmust, Rmay, L), where
Rmust = Rmay = R and S is fixed, and focus on the case of label extensions.

The core algorithm that we propose solves both problems EE and EES (modulo some tech-
nical variations) as follows. Given as an input a partial transition system M , a distinguished
state s0 ∈ M and an LTL formula η, the algorithm enables the computation of all the total
extensions1 M ′ where η is true on some path starting from s0, in a sense explained further.

4.1 The Core Tableau-based Algorithm
We describe the algorithm step-by-step, with the help of a very simple running example.

▶ Example 12 (Running Example). We have a partial model of an automatic subway and
we want to know if it can be extended/completed according to the specification “the doors
cannot be open while the train is running, and the train will eventually run”. For the sake
of simplicity, we assume that the partial model consists of only two states and we suppose
that the doors are open at the initial state s0. This partial model is represented in Figure 1.
Formally the question is “Is there an extension M ′ of the partial model M and a computation
σ in computM (s0) such that σ, s0 |= η0?”, where η0 := F r ∧ G (r −→ ¬d), with d interpreted
as “the doors are open” and r as “the train is running”.

s0

d : ⊤
r :?

s1

d :?
r :?

Figure 1 A partial model for Example 12.

The approach that we use to solve this problem is based on the tableau methods for LTL
satisfiability, also modified for LTL model-checking, outlined in [11, Section 13.2]. Here is an
outline of our procedure. First, we construct a tableau, adapted so as to take into account
the partially constructed or partially observable input model. Then we use it to:

conclude that the answer to the decision problem EE is YES, when the tableau is “open”
(in a sense that will be specified further), else it is NO;
in the case of YES, to extract an extension M ′ of M and a path π in it, starting from
s0, such that the corresponding computation in M c satisfies η.

4.1.1 Pretableau Construction Phase
Here, as in Section 2, Prop is a set of atomic propositions. Given a partial model M = (S,R,L)
(i.e., R = Rmust = Rmay) a state s0 ∈ S and an LTL formula η, we construct a graph called
pretableau of (M , s0, η) and denoted PM ,s0,η. The pretableau, and then the tableaus,
are directed graphs consisting of nodes and arrows between them. The nodes are triples

1 To be precise, the algorithm itself does not produce the set of all such extensions – including completions
of the input model – as it may leave undetermined the truth values of some atoms at states of paths
that are not relevant for the existence of a path satisfying η. But, all the extensions of the input model
can be trivially computed from the set of the extensions directly built via the tableau based algorithm.
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(s,Γ, AΓ) consisting of: (the name of) a state s in M , a set of formulas Γ that must be true at
that state, which we call its description, and an annotation function AΓ : S× Prop → B,
explained further2.

There are two types of nodes in the pretableau:
tableau states3, where the set of formulas is fully expanded;
prestates, that only play an auxiliary and temporary role.

As explained in [11, Chapter 13], the sets of formulae labelling a tableau prestate are not
yet fully processed. For example, a prestate component Γ may declare that a formula p∨ q is
true in some state s in M without indicating which of p and q must be true. Thus, in order
to get a precise description of s, Γ needs to be expanded (via the rule later called Exp) into
two alternative sets, by explicitly adding respectively p and q to them, and possibly leading
to two “offspring states”.

The initialisation of the algorithm produces an initial tableau prestate. Then, tableau
states and prestates are built alternatively, in an iterative way described further.

▶ Notation 13. Let Γ be a set of LTL formulas, M = (S,R,L) be a partial model, and let
s ∈ S. We denote Litt(s,Γ, L) the set of literals l over atomic propositions appearing in
Γ such that the truth value of l at s according to the input interpretation function L is ⊤.
Formally, for p ∈ Prop: Litt(s,Γ, L) := {p|p ∈ Γ, L(s, p) = ⊤} ∪ {¬p|p ∈ Γ, L(s, p) = ⊥}.

4.1.2 Initialisation of the algorithm
The pretableau construction begins with the creation of the prestate (s0,Γ0, AΓ0) where
Γ0 := {η} ∪ Litt(s0, ecl(η)) and the initial annotation function AΓ0 coincides with L. Note
that, in general, any propositional letter q ∈ PROP ∩ ecl(η) such that r does not occur
in η is such that neither of q and ¬q is in ecl(η), so r’s truth value does not impact the
satisfaction of η0.

▶ Example 14 (Running Example continued). In Example 12 with η0 = F r ∧ G (r → ¬d),
we obtain ecl(η0) = {η0,F r, r,X F r,G (r −→ ¬d), r −→ ¬d,X G (r −→ ¬d),¬r,¬d}. Further, the
input partial model is such that L(s0, d) = ⊤ and L(s0, r) =?, so Litt(s0, ecl(η0), L) = ∅ and
Γ0 := {η0}. Note that although ¬r ∈ ecl(η0) neither r nor ¬r appears in Γ0, as its truth
value is undetermined/unknown. The construction of the tableau begins with the creation of
the prestate node (s0,Γ0, AΓ0) where AΓ0 = L

4.1.3 The body of the algorithm
Two rules will be alternatively applied:

Exp: producing so called offspring states of a given prestate,
Next: producing successor prestates of a given state.

Each rule may be applied at most once to each node, to ensure termination.
The rule Exp, defined below, statically analyzes the formulas in a tableau prestate,

following their semantics, and generates tableau states.

2 An annotation function should not be confused with the interpretation function L given in the input
model; it is used in a tableau node to describe and extend, incrementally, the interpretation function L
given in the input model.

3 Not to be confused with states in a partial transition system.
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▶ Definition 15 (Rule Exp). Given a prestate (s,Γ, AΓ), do the following:
1. Compute the family FE(Γ) of all full expansions of Γ in the sense of Definition 9.
2. For each ∆ ∈ FE(Γ) and p ∈ prop define the new annotation function A∆ as

A∆(s, p) =


LΓ(s, p) if LΓ(s, p) ̸=?
⊤ if LΓ(s, p) =? and p ∈ ∆
⊥ if LΓ(s, p) =? and ¬p ∈ ∆
? if LΓ(s, p) =? and p,¬p ̸∈ ∆

and add in the current pretableau a new offspring state (s,∆, A∆).
3. For each newly introduced state (s,∆, A∆), create an edge (s,Γ, AΓ) 99K (s,∆, A∆).
4. If the pretableau already contains a state (s,∆, A∆), then do not create a new state but

create only an edge (s,Γ, AΓ) 99K (s,∆, A∆) to that state.

▶ Notation 16. The set {(s,∆, A∆)|(s,Γ, AΓ) 99K (s,∆, A∆)} of offspring states of (s,Γ, AΓ)
is denoted by states(s,Γ, AΓ);

▶ Example 17 (Running example continued). We apply the rule Exp to the prestate
(s0,Γ0, AΓ0) obtained in Example 14. The set of the full expansions of Γ0 contains only one
state, ∆0, because a choice of r when expanding Γ0 would lead to a patently inconsistent set
of formulae. We have:

∆0 := {d,¬r, η0,G (r −→ ¬d),F r, r −→ ¬d,X F r,X G (r −→ ¬d)}.

Note that ¬r ∈ ∆0 while L(s0, r) =?.
The new annotation function A∆0 is defined by: A∆0(s0, d) = ⊤ and A∆0(s0, r) = ⊥.
This is the beginning of the update of the input interpretation function in M .

The currently constructed pretableau is given in Figure 2.

s0, {d, η0}, AΓ0

s0, {d,¬r, η0,G (r −→ ¬d),F r, r −→ ¬d,X F r,X G (r −→ ¬d)}, A∆0

Figure 2 The pretableau construction stage after applying the rule Exp to the initial prestate,
for Example 17.

The rule Next creates in the tableau graph successors of any tableau state (s,∆, A∆)
corresponding to a state s in input model M . (NB the distinction between states in a model,
which are semantic objects, and tableau states, which are syntactic objects.)

▶ Definition 18 (Rule Next). Given a state (s,∆, A∆), do the following:
If there are no R-successors of s in the partial model, remove the state (s,∆, A∆) from
the pretableau. Else:

For every R-successor state t of s in the current partial model, add in the current
pretableau a successor prestate (t, Scomp(∆) ∪ Litt(t, ecl(η), A∆)) of (s,∆, A∆)
If the pretableau-graph already contains a node V = (t,Γ, AΓ) that is then do not create
a new state but create only an edge (s,∆, A∆) −→ (t,Γ, AΓ) to V.
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▶ Example 19 (Running example continued). We apply the rule Next to the offspring state
(s0,∆0, A∆0) obtained in the example 17. There is only one R-successor of s0 that is s1 in
our partial model. So, the rule Next generate the only prestate (s1,Γ1, AΓ1), where
Γ1 := {F r,G (r −→ ¬d)}. We have that AΓ1 = A∆0(only the rule Exp can modify an
annotation function). The current pretableau is given in Figure 3.

s0, {d, η}, AΓ0

s0, {d,¬r, η,G (r −→ ¬d),F r, r −→ ¬d,X F r,X G (r −→ ¬d)}, A∆0

s1, {F r,G (r −→ ¬d)}, AΓ1

Figure 3 The pretableau construction stage for Example 19.

▶ Lemma 20. The pretableau construction phase terminates.

Proof. For any pretableau node ⟨s,Σ, A⟩ there are only finitely many annotation functions
A (since both S and P are finite) and Σ ⊆ ecl(η), where ecl(η) is finite. Now, it suffices to
note that both the rules Exp and Next disallow duplication of already existing nodes. ◀

▶ Example 21 (Running example continued). At the end of the construction phase we obtain
the pretableau shown in the in the Figure 4, where prestates are indicated with rectangular
boxes and states with oval boxes. Nodes of the pretableau are enumerated to help reading
the picture, but we leave it to the interested reader to flesh out the content of each node.

4.1.4 Prestate and State Elimination Phase
First, we remove all prestates from the pretableau with their incoming and outgoing edges,
by applying the following prestate elimination rule:

▶ Definition 22 (Rule PrestateElim). For every prestate (s,Γ, AΓ) in the pretableau, do:
1. Remove (s,Γ, AΓ) from the pretableau;
2. If there is a state (t,∆, A∆) in the pretableau with (t,∆, A∆) −→ (s,Γ, AΓ), then for every

state (s,∆′, A′
∆) ∈ states(s,Γ, AΓ) create an edge (t,∆, A∆) −→ (s,∆′, A′

∆).
The resulting graph is called the initial tableau for (M , s0, η), denoted by T M ,s0,η

0 .

Once all prestates have been eliminated, we must remove all “wrong” states from the
tableau (dead ends and roots of paths that never realize an eventuality, which is explained
further) by applying the rules StateElim1 and StateElim2, formulated shortly.

In what follow, we denote T M ,s0,η
n the tableau obtained from the initial tableau after n

applications of an elimination rule StateElim1 or StateElim2.
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so,Γ0, AΓ0

s0,∆0, A∆0

s1,Γ1, AΓ1

s1,∆10, A∆10

s0,Γ20, AΓ20

s0,∆20, A∆20

s1,Γ21, AΓ21

s1,∆21, A∆21

s0,Γ30, AΓ30

s0,∆30, A∆30

s1,Γ31, AΓ31

s1,∆12, A∆12

s0,Γ24, AΓ24

s0,∆23, A∆23

s1,Γ25, AΓ25

s1,∆24, A∆24

s1,∆11, A∆11

s0,Γ22, AΓ22

s0,∆22, A∆22

s1,Γ23, AΓ23

Figure 4 The complete pretableau for the running example 21.

▶ Definition 23 (Rule StateElim1). If a state (r,∆, A∆) has no successor states in the current
tableau, then remove (r,∆, A∆) from the tableau.

In order to formulate StateElim2 we need the following definition.

▶ Definition 24 (Realization of an eventuality at a tableau state). An eventuality φUψ (resp.
Fψ) is realized at the state (s,∆, A∆) in T M ,s0,η

n if there exists a finite path in T M ,s0,η
n

Π = (s,∆, A∆), (si1 ,∆j1 , A∆j1
), . . . , (sim

,∆jm
, A∆jm

)

where m ≥ 0, such that
φUψ,ψ ∈ ∆jm (resp. Fψ,ψ ∈ ∆jm);
φUψ,φ ∈ ∆ji

(resp. Fψ ∈ ∆ji
) for every i = 0, . . . ,m− 1.

We say that φUψ (resp. Fψ) is realized on the path Π, and we call any such path a witness
of the realization of the eventuality φUψ (resp. Fψ) in ∆. If ψ ∈ ∆, then we say that φUψ
(resp. Fψ) is immediately realized at the state (s,∆, A∆) (on the path constituted by the
singleton (s,∆, A∆)).

▶ Definition 25 (Rule StateElim2). If an eventuality α ∈ ∆ is not realised on any path
starting from (s,∆, A∆) in the current tableau, then remove (s,∆, A∆) from the tableau.

The state elimination phase is carried out in a sequence of stages, starting at stage 0
with the initial tableau T M ,s0,η

0 , and eliminating at every stage n at most one state for the
current tableau T M ,s0,η

n – by applying one of the state elimination rules – , to produce the
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new current tableau T M ,s0,η
n+1 . When the state elimination phase reaches a stabilisation point,

i.e. no more nodes are removed, the current tableau at that stage is called final tableau for
(M , s0, η) and denoted by T M ,s0,η.

▶ Example 26 (Running example continued). Figure 5 shows the initial tableau, where only
prestates have been eliminated. All the states here have at least one successor state so the
rule StateElim1 can not be applied. However there is a state with description component
{d,¬r,F r,X F r,G (r −→ ¬d), r −→ ¬d,X G (r −→ ¬d}) shown in Figure 6.

s0,∆0, A∆0

s1,∆10, A∆10

s0,∆20, A∆20 s1,∆21, A∆21

s0,∆30, A∆30

s1,∆12, A∆12

s0,∆23, A∆23 s1,∆24, A∆24

s1,∆11, A∆11

s0,∆22, A∆22

Figure 5 The initial tableau for the running example.

s0,∆0, A∆0

s1,∆12, A∆12

s0,∆23, A∆23 s1,∆24, A∆24

s1,∆11, A∆11

s0,∆22, A∆22

Figure 6 The final tableau for the running example 26.

▶ Definition 27. The final tableau T M ,s0,η is open if it contains at least one state
(s0,∆0, A∆0) such that η ∈ ∆0. Otherwise it is closed.

4.2 Specialized algorithms for EE and EES

The tableau-based core algorithm that we have described in Section 4.1 can be refined and
modified so as to obtain two algorithms, solving respectively the problem EE and the problem
EES. In both cases the input is given by a partial model M = (S,R,L), a distinguished state
s0 and an LTL formula η. However the outputs are different. The initial procedure is always
the same: apply the core algorithm to construct a tableau (T )M ,s0,η.

4.2.1 Algorithm for EE
The output for the decision problem EE is either YES or NO. Once applied the core algorithm
to construct a tableau (T )M ,s0,η, the output is YES if and only if (T )M ,s0,η is open.
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4.2.2 Algorithm for EES

We give two versions of the algorithm. The first version is non-deterministic, and outputs
just an extension of the input model M and a path in it (whenever some exist) that satisfies
the specification formula η. The second version (useful in Section 6) is deterministic and
produces all possible ways to extend the input model so as to existentially satisfy η, and thus
enables the generation of all such extensions, which we will use in Section 6.

Non-deterministic version ND-EES. Here the output is either ∅ (when T M ,s0,η is closed)
or else a singleton containing a pair (M ′ = (S,R,L′), π) where M ′ is an extension of the
input model and π a path in it starting at s0 and satisfying η.

1. Construct the tableau T M ,s0,η.
2. If the final tableau is closed, then return the empty set. Else:

a. Non-deterministically choose a path (s0,∆0, A∆0), (s1,∆1, A∆1), . . . in T M ,s0,η that
starts from a root of the tableau (note that it may have several roots) and such that
the trace ∆0,∆1, . . . is a Hintikka trace (as in Definition 10).
(When the final tableau is open such a Hintikka trace exists, as we prove in Section 5.)

b. Define L′ as follows:
if A∆n

(s, p)=⊤ for some node (sn,∆n, A∆n
) on the chosen path, then L′(s, p) := ⊤;

else:
if A∆n

(s, p)=⊥ for some node (sn,∆n, A∆n
) on the chosen path then L′(s, p) :=

⊥;
else set L′(s, p) := ?.

c. Return M ′ = (S,R,L′) and the path s0, s1, s2, . . . .

Deterministic version D-EES. Here the output is either the empty set (when T M ,s0,η is
closed) or else a set of pairs (M ′, σ), such that M ′ is a total extension of M and σ is a path
in it starting at s0 and satisfying η. Intuitively, the algorithm can eventually produce all
possible ways to extend the input model so as to existentially satisfy η.

1. Construct the tableau T M ,s0,η.
2. If the tableau is closed, then return the empty set.
3. Else, let paths(T M ,s0,η) be the set of all paths in T M ,s0,η starting from a root node

such that the sequence of their description components is a Hintikka trace (Def. 10):

paths(T M ,s0,η) := {(s0,∆0, A∆0), (s1,∆1, A∆1), · · · | ∆0,∆1, . . . is a Hintikka trace}

For every tableau path π in paths(T M ,s0,η), define σπ = s0, s1, s2, . . . and the set LC(σπ)
as the set of all the interpretation functions Lc

σπ such that:
if A∆n

(s, p) = ⊤ for some node (sn,∆n, A∆n
) of π, then Lc

σπ
(s, p) = ⊤;

if A∆n
(s, p) = ⊥ for some node (sn,∆n, A∆n

) of π, then Lc
σπ (s, p) = ⊥.

If A∆n
(s, p) =? for every node (sn,∆n, A∆n

) of π, then we have two possibilities:
Lc

σπ = ⊤ and Lc
σπ = ⊥, hence here the construction of Lc

σπ branches and two
different interpretation functions are produced.

It is now easy to define a sub-procedure that generates, path by path, the elements of
the set of all couples formed by a total extension M c of the input partial model that is
induced by an element of paths(T M ,s0,η) and a path in it, namely the set:

{((S,R,L′), σπ) | π ∈ paths(T M ,s0,η), L′ ∈ LC(σπ)}.

Applying such a sub-procedure will eventually generate the full set described above.
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▶ Example 28 (End of the running example). The final tableau for the running example of
this section is the one in Figure 6. This tableau is open, so the partial model M given in
Example 12 can be completed so as to show that a path starting from s0 and satisfying η
exists. For instance, one can take the path s0, s1, s1, s1, . . . in the complete transition system
(S,R,L′) where L′ = A∆1.1 is such that:

L′(s0, d) = ⊤ L′(s0, r) = ⊥ L′(s1, d) = ⊥ L′(s1, r) = ⊤

Indeed the tableau path (s0,∆0, A∆0), (s1,∆12, A∆12), (s1,∆24, A∆24), (s1,∆24, A∆24), . . .
corresponds to the Hintikka trace ∆0,∆12,∆24,∆24, . . . where
∆0 := {d,¬r, η,G (r −→ ¬d),F r, r −→ ¬d,X F r,X G (r −→ ¬d)},
∆12 := {¬d, r,F r,G (r −→ ¬d), r −→ ¬d,X G (r −→ ¬d)},
∆24 := {¬d, r,G (r −→ ¬d), r −→ ¬d,¬d,X G (r −→ ¬d))}.

The following result is an immediate consequence of Lemma 20:

▶ Theorem 29. The algorithms for EE and for EES (in both versions) terminate.

5 Soundness and Completeness Results

▶ Theorem 30. Let M = (S,R,L) be a partial model, let s0 ∈ S be an initial state and let
η be an LTL formula, such that T M ,s0,η is an open tableau. Then the following hold:
1. Soundness with respect the existence of a solution for EE.

The problem EE has an answer YES.
2. Appropriate tableau paths describe solutions for EE.

Let π = (s0,∆0, A0), (s1,∆1, A1), (s2,∆2, A2), . . . be any path in T M ,s0,η such that
∆0,∆1,∆2, . . . is a Hintikka trace. Then for any extension M ′ = (S,R,L′) of M

such that An ⪯ L′ for each n, the computation σ in M ′ = (S,R,L′) corresponding to
s0, s1, s2, ... satisfies η.

Proof.
1. Here, intuitively we show that any open tableau T M ,s0,η necessarily contains at least

some path π that “describes” some solution to EE.
First, we inductively construct an infinite chain S of initial sub-paths in the tableau:
π0 = (s0,∆0, A0),
π1 = (s0,∆0, A0), (s1∆1, A1),
π2 = (s0,∆0, A0), (s1,∆1, A1), (s2,∆2, A2)...
where each πk is a finite initial sub-path of the next one, as follows:
π0 consists of the initial state node (s0,∆0, A0), where η ∈ ∆0 and A0 = L.
Let πk be the last constructed sub-path and let V = (sk,∆k, Ak) be its last node. Let
E be the set of eventualities in ∆k.

If E is non-empty, let e = φUψ be one of them. Since rule StateElim2 has not
removed V , there is a finite sub-path πsub in the tableau which starts at V and
ends at a node (sk+m,∆k+m, Ak+m), for some m ≥ 0, such that φUψ,ψ ∈ ∆k+m.
Let us observe that if e′ = φ′ Uψ′ is another eventuality in E, and ψ′ does not
appear in (the description component of) any node of πsub, then each node in such
a sub-path will be such that its ∆l component has φ′ Uψ′ as an element (by tableau
construction). We then build the new sub-path πk+1 by appending πsub to πk.
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If E is empty, then let V ′ be any successor of V in the tableau T M ,s0,η (by rule
StateElim1 each tableau path is infinite). We extend πk by appending V ′ to it,
thereby obtaining πk+1. Let us observe that this case necessarily eventually occurs,
because eventuality formulae in T M ,s0,η are elements of ecl(η), that is finite.

Let π be the limit tableau path of the sequence S . The sequence of the description
components of the vertices in π is a Hintikka trace (see Definition 10). By construction,
each node (si,∆i, Ai) ∈ π is such that L ⪯ Ai, and for some n ≥ 0 the annotation
function becomes stable, that is, for any m ≥ n, Am = An.

Now let M ′ be the extension of M obtained by replacing L by An. It is easy to show
that every state si in M ′ satisfies all the formulae in ∆i. In particular s0 satisfies all
formulae in ∆0, in particular η. Therefore the computation corresponding to the path
s0, s1, s2, ... generated by π is a linear model of η, and the answer to EE is YES.

2. Now we must show that any tableau path π = (s0,∆0, A0), (s1,∆1, A1), (s2,∆2, A2), . . .
where the corresponding description components constitute a Hintikka trace describes
a linear model σ of η for some extension M ′ = (S,R,L′) of M (actually for a class
of extensions). A computation σ in M ′ = (S,R,L′) corresponding to s0, s1, s2, ... is
defined so that, for any i ≥ 0, L′(si) = Prop ∩ ∆i. For any i, we have σ, i |= ∆i, thus, in
particular, we have σ, 0 |= ∆0, and η ∈ ∆0, which implies that σ is a linear model of η.

◀

The completeness result below shows not only that when the answer to EE is YES due
to some extension M ′ then the corresponding tableau is open, but a stronger result, which
intuitively says that each computation in M ′ satisfying η is described by a path of such a
tableau. We make use of this stronger result in Section 6.

▶ Theorem 31 (Completeness, stronger version).
1. All solutions to EE are described by tableau paths.

Let M = (S,R,L) be a partial transition system that is transition-complete, let η be an
LTL formula and let s0 ∈ S. Let M ′ = {S,R,L} be any total extension of M and let
s0, s1, s2, . . . be a path in M ′ such that its corresponding computation σ satisfies η.
Then any final tableau T M ,s0,η contains a path π =
(s0,∆0, A0), (s1,∆1, A1), (s2,∆2, A2), . . . such that for each n we have An ⪯ L′.

2. Completeness with respect to the existence of a solution for EE.
If a solution to EE exists than T M ,s0,η is open.

Proof.
1. To prove this item we build π inductively, so that each step of the construction satisfies

the following invariants:
a. For any i, Ai ⪯ L′.
b. For any tableau state (si,∆i, Ai) in π, we have σ, i |= ∆i.
Here is the construction. The initial node is the state (s0,∆0, A∆0) defined as follows.
The state description ∆0 is obtained by applying Exp to the original prestate (s0,Γ0, AΓ0)
where Γ0 := {η} ∪ Litt(s0, ecl(η)) and the initial annotation function AΓ0 coincides with
L. By the assumption that σ satisfies η and by definition of Litt(s0, ecl(η), we have that
σ, 0 |= Γ0. Then we choose ∆0 to be a full expansion of Γ0 such that σ, 0 |= ∆0. The
annotation function A∆0 is determined by ∆0, and by construction obviously A∆0 ⪯ L′.

Now, suppose the sub-path πj of π = (s0,∆0, A0), · · · , (sj ,∆j , Aj) has been already
defined. If ∆j contains a still pending eventuality e = φUψ by the hypothesis on σ we have
σ, j |= e. Therefore there is finite initial segment of σ, say s0, · · · sj , sj+1, · · · sk , for some

FSCD 2023



23:16 Partial Model Checking and Partial Model Synthesis in LTL

k > j, such that σ, k |= ψ and for any r in [j, ..., k−1] we have σ, r |= φ. Then the tableau
sub-path πk = (s0,∆0, A0), · · · , (sj ,∆j , Aj), (sj+1,∆j+1, Aj+1) · · · , (sk,∆k, Ak) can be
obtained by choosing in the suitable way (via applications of Next) the corresponding
prestates (sj+1,Γj+1, Aj+1), ..., (sk,Γk, Ak) in the pretableau, and choosing the suitable
full expansions of their Γ-components. It is worthwhile observing that each given Γj+i

component determines its corresponding annotation function Ai (while Next does not
produce updates of the annotation function). If ∆j contains no pending eventuality then
any tableau sub-path having πj has initial sub-path will do.

This completes the inductive definition of π. Let us observe that the invariants 1a and 1b
hold for π and a third property holds: any eventuality e in a description component ∆i

is realized on a finite sub-path of π. These three properties of π imply that no state in π

is removed by any application of the rules StateElim1 or StateElim2. In fact, a routine
induction on the number of rounds in the elimination phase suffices to prove this claim.
Hence the defined π survives to the elimination procedure and, as required, for each n we
have An ⪯ L′.

2. This claim of the theorem follows from the previous one. ◀

▶ Corollary 32 (Soundness and completeness of the tableau). Let M = (S,R,L) be a partial
model, s0 ∈ S a state in it and η an LTL formula. Then the tableau T M ,s0,η is open if and
only if the answer to the problem EE is YES.

6 Harvest: solving all problems

So far we have only considered the problems EE and EES in the case of label extensions
and have developed methods for their solution. Here we will adapt our methods to solve all
problems defined in Section 3 for all cases of extensions that we study. For lack of space,
here we leave out the routine details and only outline the adapted procedures.

6.1 The case of label extensions

Since our approach solves EE for label extensions, it clearly also solves the corresponding dual
problem AA with input (M , s0, η), by calling the algorithm for EE on the input (M , s0,¬η).

Now, for EA and its dual problem AE, we proceed as follows.
1. First, we apply the algorithm for AA with the input (M , s0, η). If the answer to AA is

YES, then so are also the answers to EA and AE and we are done.
2. In the case the answer to AA is NO, we call the algorithm for EE on (M , s0,¬η).

a. If the returned answer is NO, return YES for both EE and AE.
b. If the answer is YES, an application of algorithm D-EES (Section 4.2.2) on (M , s0,¬η)

generates all total extensions where ¬η is existentially true at s0 (Thm. 31, claim 1).
If there is at least one (amongst the finitely many) total extension M ′ of M that is
not returned by D-EES, this means that ¬η is not existentially true in M ′ at s0.
Hence, η is universally true in M c at s0, therefore the answer to EA is YES.
Else, if every possible total extension of M is returned, then the answer of AE on
(M , s0,¬η) is YES and EA returns NO.
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6.2 The case of transition extensions
Now, we will adapt our methods to the case of transition extensions. (We can just as well
consider the more general case of combined transition and label extensions, but the case of
transition extensions is representative enough for that more general case.) First, the tableau
based method presented in Section 4.1 is modified to solve EE and EES in this case, as follows.

The pretableau construction phase starts with a partial model M = (S,Rmust, Rmay, L),
a state s0 ∈ S and an LTL formula η and aims to construct a pretableau PM ,s0,η.
The main difference is that, whenever the rule Next is applied to a given pretableau state
(s,∆, A∆), the first (state) components of the successor prestates are selected amongst all
Rmay-successors of s in M . In the case of the EE problem, one such prestate is guessed,
or selected non-deterministically, and added to the pretableau. In the case of the EES

problem, all such prestates are identified and added to the pretableau.
(In order to keep the method more economical in terms of the number of added trans-
itions of the produced extension, in case of several possible successor prestates those
corresponding to Rmust-successors of s may be selected with priority.)
Thereafter, the prestate elimination and state elimination phases, as well as the analysis
of the outcome, being the final tableau, proceed essentially the same way as before.

Now, the problem EES is solved just like in the case of label extensions, with an algorithm
generating all (finitely many) total transition extensions satisfying η. Then, the problems
AA, EA, and AE are solved essentially in the same way as for label extensions.

6.3 The case of state extensions
Finally, we consider the most general case, of state extensions. Note that it subsumes the case
of transition extensions, and it can also naturally incorporate the case of label extensions,
where states with partial labels may be added. The EE problem now takes as an input
M = (S,Rmust, Rmay, L), a state s0 ∈ S and an LTL formula η and asks for a total extension
of M with new states and transitions to them that has a path starting at s0 and satisfying η.

Note that this problem is easily reducible to the LTL satisfiability problem as follows.
Let V ar(η) be the set of all propositional variables occurring in η, and let lM (s0, η) :=∧

Litt(s0, V ar(η), L) =
∧

{p|p ∈ V ar(η), L(s0, p) = ⊤} ∧
∧

{¬p|p ∈ V ar(η), L(s0, p) = ⊥}.
Then lM (s0, η) is true at s0 in M and in any extension of M of the most general type.

Therefore, a path starting at s0 in any such extension satisfies η iff it satisfies η ∧ lM (s0, η).
On the other hand, any linear LTL model σ that satisfies η ∧ lM (s0, η) can be “grafted” to
M as a path starting at s0, i.e. all states of σ after s0 can be added as new states to M ,
and the resulting state extension of M will be a solution of the problem EE. Thus, EE
has a solution iff η ∧ lM (s0, η) is satisfiable. Furthermore, it suffices to consider only state
extensions of M obtained by grafting at s0 “small satisfiability witnesses” of the satisfiability
of η ∧ lM (s0, η), i.e., ultimately periodic linear models of size exponentially bounded by the
length of η ∧ lM (s0, η) (cf. [11, Section 6.3]). So, the problem is clearly decidable, and can
be solved in PSPACE, just like the satisfiability problem for LTL.

In a sense, this observation all but relatively trivialises the problem EE in the case of state
extensions. If, however, a “minimal” state extension solving the problem EE is sought, in the
sense of adding the least possible number of additional states, then the problem becomes
non-trivial again, in terms of its practical complexity. We leave the search for practically
optimal algorithms to future work.

Now, the problem AA is again solved as dual to EE. To solve the AE and EA problems,
we would need a procedure generating and checking all (infinitely many!) state + transition
extensions of M for existential, respectively universal truth of η. That task, however, can
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be reduced to a finitary one, as follows. Consider the EA problem. To solve it, it suffices to
look for a total state extension of η solving the problem EA which is minimal in the sense
of only grafting at each existing dead-end state an ultimately periodic path of sufficiently
“small size” (lengths of the prefix and of the period, to be guessed, according to the theory
of LTL satisfiability, cf. e.g., [11, Chapter 6]) initially with labels assigning ? to all atomic
propositions, and then solving the EA problem for a label extension on the resulting state
extension. If a solution exists for some suitable guesses of the sizes of the appended ultimately
periodic paths, then the initial EA problem for (total) state extensions has a solution, too.
Otherwise, that problem has no solution. Indeed, if there is any such solution, then there
would be one of the type described above for suitable choices of the sizes of the appended
ultimately periodic paths, because of the “small satisfiability witness” property of LTL (cf.
[11, Section 6.3]). The solution of the EA problem also solves the AE problem by duality.

7 Concluding remarks: summary, related work, and future work

7.1 Summary
In this paper we have formulated four decision problems concerning the possibility of extending
and completing in three natural possible ways a partially defined or partially known transition
system M which is supposed to satisfy a specification expressed by an LTL formula. We have
also considered two variations of the first two problems, that are model synthesis problems.
We have proposed tableau based algorithms that provably solve the core problems EE and EES

and we have shown how these algorithms can also be used to solve the remaining problems.

7.2 Related Work
Here we mention and briefly discuss some previous publications that are related, at least in
terms of the framework and problems they consider, to our work.

One essentially related work is [20], although the formal tools used there (partially labeled
transition systems (PTS) and the logic FLTL) are different. Indeed, in that work PTS are
labelled transition systems where states are not labelled by propositions (expressing static
atomic properties), but, rather, transitions (edges) are labelled by actions; some actions
(resp. transitions), however, are forbidden. As in our work, the authors are concerned
with explicitly modelling those aspects of system behaviour that are still unknown, because
knowing such gaps can help to improve incremental system modelling. Compared to the
notion of PTS in [20], our notion of partial transition system allows for the expression of
two distinct kind of incomplete knowledge: of static properties of individual states as well
of transitions between states. Another specificity of our approach is that it allows for the
precise formulation of six different completion problems and establishes a unified framework
where the classical decisions problems of satisfiability, validity, existential model-checking
and universal model-checking for LTL formulae are just specific cases.

In [13] two distinct, though related, problems are studied, both named Generalized Model
checking (LTL GMC). The first problem had already been introduced in [9] and amounts to
deciding, given a transition system M where the state labels are 3-valued, and an LTL formula
η, whether there exists a 2-valued partial transition system M ′ that is “more complete” than
M and that universally satisfies η, i.e. all the paths issued from its initial state satisfy η.
The notion “more complete” is based on a completeness pre-order ⪯ on states of partial
transition systems, that, in its turn, induces a pre-order on partial transition systems. This
is closely related to the notion of bisimilarity between transition systems. The complexity of
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this problem is shown to be 2EXPTIME in the length of the formula and polynomial in the
size of the model, by reduction to LTL synthesis. The LTL GMC problem in this version
is obviously related to our EA problem, limited to the case where only state labels can be
unknown. Yet, the two problems do not coincide. Our problem EA asks whether M itself
can be extended (that is: its labels can), and possibly completed so as to get a bi-valued
M c that universally satisfy η, whereas the above described LTL GMC problem asks for the
existence of some model M ′ satisfying η, where M and M ′ are related via the mentioned
pre-order on structures; observe that M ′ might have less states than M . The second version
of LTL GMC studied in [13]) is based on a simpler pre-order on partial transition systems
(previously suggested in [9]). It is less directly related to our work, so we will not discuss it.

Other, conceptually or technically related earlier works include:
[18], taking an algebraic approach to the completion of partial first-order models, again
representing partial information about the actual world;
[2] (see also, [3], [10]) where a technique also called “partial model checking” was introduced
for verifying concurrent systems by gradually removing concurrent components and then
reducing the specification, until completely checked, in order to avoid the state explosion
problem. This idea is only implicitly related to the problems discussed here.
[15], where synthesis of reactive programs and systems under incomplete information
is studied, in the case of an open system must be guaranteed to satisfy a given safety
specification but can only partly read the input signals generated by its environment. An
important practical case of synthesis from partial models is the problem of controller
synthesis.

Lastly, another, more technically related to the present work, is the line of research in
modal logic involving modal operators that change the models dynamically in the course of
formula evaluation. It originates, inter alia, with van Benthem’s sabotage logics [21], [8] and
Gabbay’s reactive Kripke semantics [12]. These were followed by various further proposals
for model update logics, including enrichments of modal logics with global and local graph
modifiers [7], and relation-changing modal operators and logics [4]. Typically, these approaches
involve operations on models that not only extend, but also shrink or modify them in various
ways and, moreover, add syntactic instructions for such operations in the language. These
features can often lead to undecidability of both model checking and satisfiability of such
logics, see [5], [6].

7.3 Future Work
We intend to organise implementation of our algorithms and to experimentally test their
practical feasibility on some case studies. For example, our approach might be adapted to the
formal modelling of ecology systems via transition graphs, proposed in [19]. Clearly, some
expert knowledge can be missing in representations based on empirical observations of the
environment, and to fill such gaps might turn out useful. In that case, as in other application
cases, certainly not every conceivable completion of a partial transition system might be
suitable for the intended applications, because of possibly implicit assumptions on which are
the “realistic possible completions”. It would then be interesting to study also criteria for
classifying completions, so as to direct the search in a more realistic way, according to the
domain experts.

We also intend to extend the study to the branching time logics CTL and CTL*, and to
a multi-agent context, where some agents and/or their actions might also be unspecified or
unknown, thus possibly taking branching time and multi-agent logics, such as the alternating
time temporal logic ATL [1], to express specification properties.
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Abstract
It is well-known that extensional lambda calculus is equivalent to extensional combinatory logic. In
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1 Introduction

Proofs of the equivalence of extensional lambda calculus and extensional combinatory
logic (e.g. [10, 5, 11, 6]) generally use the traditional untyped definition of presyntax.
In particular, abstraction for combinators (the lambda operator, also called the bracket
abstraction algorithm) is defined on combinator preterms. There are hints in the literature
[21, 12] that the correspondence can be proven in an algebraic setting. This would be
contrasted with the textbook proofs which work on particular representations of the syntax.

It is clear what combinatory logic is as an algebraic theory: there is a single sort of
terms, two nullary operations S and K, one binary operation – · – and two equations
S · t · u · v = t · v · (u · v) and K · u · v = u. Models of this theory are called combinatory
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algebras. What about the lambda calculus? Castellan, Clairambault and Dybjer [9] suggest
that the syntax of lambda calculus should be defined as the initial category with families
(CwF) with extra structure. This representation is generalised algebraic [8], and by indexing
terms by their typing contexts, it avoids the problems related to the ξ rule [21]. In short,
untyped lambda calculus is a uni-typed CwF with an isomorphism

lam : Tm (m + 1) ∼= Tm m

natural in m, where Tm is the sort of terms which is indexed by the possible number of free
variables. The left to right direction is abstraction, the right to left direction is application,
the fact that the two roundtrips are identities are the β and η laws. In simply typed CwFs,
terms are also indexed by types, the simply typed lambda calculus has an arrow type former
– ⇒ – : Ty → Ty → Ty and the above isomorphism becomes

lam : Tm (Γ ▷ A) B ∼= Tm Γ (A ⇒ B).

Here terms are indexed both by contexts and types, and Γ ▷ A is the context Γ extended with
one variable of type A. In fact, the untyped case is a special case of the typed one where we
assume all elements of Ty to be equal.

Quotient inductive-inductive types (QIITs) [14, 15] are inductive types where later sorts
can be indexed over previous ones, and where equality constructors are also allowed: a QIIT
is freely generated by its constructors and is quotiented at the same time by its equality
constructors. The sorts, constructors and equality constructors of a QIIT can be also seen as
the sorts, operations and equations of a generalised algebraic theory. Given a generalised
algebraic theory, the corresponding QIIT is its initial algebra. The elimination principle of the
QIIT correponds exactly to the universal property (initiality) of the initial algebra. When a
language is defined as an algebraic theory, the corresponding QIIT is its intrinsic (well-formed,
well-typed) syntax quotiented by conversion. That is, convertible terms are equal in such
a syntax. This approach to the syntax is very natural for dependently typed languages [2]
where conversion cannot be defined separately from typing, but in this paper we apply it in a
simply typed setting. Cubical Agda [24] is currently the only implementation of type theory
with native support for QIITs. It features the more general higher inductive-inductive types
(HIITs [15]). A QIIT is a HIIT with constructors truncating each sort to be a set, in the
sense of homotopy type theory [18]. This means that any two equalities between equalities of
elements of a QIIT are equal. Cubical Agda also features the univalence axiom which turns
an isomorphism (bijection) into an equality.

In this paper we prove that combinatory terms of a given type are isomorphic to lambda
terms of the same type, thus by univalence we obtain an equality TmC A = TmL ⋄ A. The
subscripts denote combinatory and lambda terms, respectively, and ⋄ is the empty context.
Here TmC also features four equations expressing extensionality in addition to the computation
rules of S and K mentioned above. In the proof, we make use of an auxiliary theory Cwk
which is a variant of C featuring contexts, an operation q (the last variable in a context,
a.k.a. the zero De Bruijn index) and a weakening operation (which is also the successor
operation for De Bruijn indices). We define lambda abstraction by induction on terms in
Cwk. An illustration of Cwk is that extensionality can be expressed by the implication
wk t · q = wk t′ · q → t = t′.

Equality of combinatory and lambda terms ensures that lambda terms can be replaced
by combinatory terms in any construction and vice versa. This is indeed the case in Cubical
Agda as equality of the two different sets of terms is proof-relevant, and we can transport
over it. Our proof is parameterised by a set of types Ty closed under arrow – ⇒ –, thus it
applies to both the un(i)-typed and simply typed cases.
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The main contribution of this paper is an algebraic proof of the equivalence of combinatory
logic and lambda calculus which does not mention representations. Further contributions are
the typing generality and the formalisation in Cubical Agda.

1.1 Structure of the paper
After summarising related work and describing our notations, in Section 2 we define the
three theories C, Cwk and L. In Section 3 we prove the isomorphism TmC A ∼= TmCwk ⋄ A.
We define the lambda calculus operations using the syntax of Cwk in Section 4. Using
these, in Section 5 we prove the isomorphism TmCwk Γ A ∼= TmL Γ A. To represent open
lambda terms as combinator terms, we introduce an arrow type with a context domain.
Γ ⇒∗ A is defined as ⋄ ⇒∗ A :≡ A and (Γ ▷ B) ⇒∗ A :≡ Γ ⇒∗ B ⇒ A. In Section 6 we
prove TmL ⋄ (Γ ⇒∗ A) ∼= TmL Γ A. Putting together everything we obtain our main theorem
TmC (Γ ⇒∗ A) ∼= TmL Γ A. We conclude in Section 7.

1.2 Related work
It is usual to describe the semantics of languages as (generalised or essentially) algebraic
theories, see e.g. [16]. The syntax is however usually given by abstract syntax trees. There are
few textbooks which use well-typed unquotiented syntax trees, e.g. [25]. Several important
constructions on the syntax of typed lambda calculi can be performed on intrinsic quotiented
terms, e.g. normalisation [1], parametricity [2] and typechecking [13]. In this paper we show
that the bracket abstraction algorithm can be also defined in the typed and quotiented
setting.

Selinger [21] remarks that extensional models of lambda calculus do not form an algebraic
variety because the subalgebra of closed terms is not extensional. This does not apply
in our setting using CwFs because closed terms do not form a subalgebra. We use the
algebraic description of lambda calculus by Castellan, Clairambault and Dybjer (uni-typed
CwF) [9]. Hyland [12] describes lambda calculus in a way equivalent to ours using notions
from categorical universal algebra, but omits the connection to combinatory logic for reasons
of space.

Swierstra [22] defines a correct-by-construction conversion of combinators into lambda
terms. He uses intrinsically typed unquotiented terms indexed by their semantics using a
trick by McBride [17].

The relationship of combinatory logic and lambda calculus is still an active research
area, for example a rewriting relation for combinator terms equivalent to β reduction was
investigated in [19, 20], using preterms and typing relations. Combinators are used in
realisability semantics in the form of partial combinatory algebras, for example in [4].

1.3 Metatheory and formalisation
We work with notations close to Agda’s. The universe of types is written Set, we don’t write
universe indices, however we work in a predicative setting. Dependent functions are written
(x : A) → B where B can use x, application is juxtaposition. We write implicit arguments
as {x : A} → B or we simply omit them and just write B. When f is an implicit function,
we can supply arguments in curly brackets as f {a}. Implicit arguments are used in many
places for readability, but this is just a concise notation, formally all arguments are always
specified. Σ types are written using infix ×, the unit type ⊤ has one definitionally unique
element tt. We write definitional equality as ≡, definitions using :≡, propositional equality
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as =. We assume definitional function extensionality, that is, a propositional equality of
two functions is proven as a pointwise equality. We use equational reasoning notation when
proving equalities. We define isomorphism as the following iterated Σ type (named record
type). We overload the name of the isomorphism and the function in the forward direction.

(f : A ∼= B) :≡ (f : A → B) × (f−1 : B → A) × (fβ : f−1 (f a) = a) × (fη : f (f−1 b) = b)

We use QIITs (set-truncated HIITs) and eliminate from them by pattern matching. All the
pattern matching definitions can be defined using the elimination principles of the QIITs.
Because most of the equalities that we prove or use are propositions, we do not prove
equalities of equalities in the paper. This is the main difference between the paper and
the Cubical Agda formalisation. In the formalisation most of the line count comes from
boilerplate proofs proving equalities of equalites using the isSet constructors of QIITs. We
define special cases of the elimination principles for some of the QIITs and use them to reduce
this boilerplate. For example, when proving a proposition by induction on a QIIT, we do not
need to provide methods for the equality constructors. The only non-propositional equalities
we prove are coming from isomorphisms via univalence. The formalisation is available as
supplementary material.

This paper can be understood without knowing Cubical Agda or even homotopy type
theory.

2 Three theories

We parameterise Sections 2–6 by a Ty : Set and – ⇒ – : Ty → Ty → Ty. We define contexts
inductively by the following constructors.

Con : Set
⋄ : Con
– ▷ – : Con → Ty → Con

⋄ denotes the empty context, Γ ▷ A is the context Γ extended by the type A. A context of
length three containing types A, B, C is written ⋄ ▷ A ▷ B ▷ C.

In Figures 1, 2, 3 we define the theories C, Cwk and L, respectively. The syntaxes (initial
models/algebras) for these theories are implemented in Cubical Agda using inductive types
with equality constructors. The syntaxes of C and Cwk are indexed quotient inductive types
(QIT), the syntax of L is given by two mutually defined indexed QITs. The operators become
constructors, the equations become equality constructors, and each type has an extra isSet
constructor ensuring that the higher equality structure is trivial.

In the rest of this section we explain the operations and equations of the three theories,
and define some derivable operations and equations in each.

2.1 Combinatory logic with extensionality
Theory C is defined by the indexed sort, three operations and six equations in Figure 1. Some
of the operators have implicit parameters. For example, application – · – takes the types A

and B implicitly, its fully explicit type is {A : Ty}{B : Ty} → Tm (A ⇒ B) → Tm A → Tm B.
K has two, S has three implicit type parameters. Kβ has two implicit type parameters and two
implicit term parameters, and we understand Kβ with the most general implicit parameters,
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Tm : Ty → Set
– · – : Tm (A ⇒ B) → Tm A → Tm B

K : Tm (A ⇒ B ⇒ A)
S : Tm

(
(A ⇒ B ⇒ C) ⇒ (A ⇒ B) ⇒ A ⇒ C

)
Kβ : K · u · v = u

Sβ : S · t · u · v = t · v · (u · v)
lamKβ : S · (K · S) ·

(
S · (K · K)

)
= K

lamSβ : S ·
(

K ·
(
S · (K · S)

))
·
(

S · (K · S) ·
(
S · (K · S)

))
=

S ·
(

S · (K · S) ·
(

S · (K · K) ·
(
S · (K · S) · (S · (K · (S · (K · S))) · S)

)))
· (K · S)

lamwk· : S · (K · K) = S ·
(

S · (K · S) ·
(
S · (K · K) · (S · (K · S) · K)

))
· (K · K)

η : S · K · K = S ·
(
S · (K · S) · K

)
·
(
K · (S · K · K)

)
Figure 1 Theory C: combinatory logic with extensionality equations. Note that Ty, – ⇒ – are

parameters (beginning of Section 2).

Tm : Con → Ty → Set
– · – : Tm Γ (A ⇒ B) → Tm Γ A → Tm Γ B

K : Tm Γ (A ⇒ B ⇒ A)
S : Tm Γ

(
(A ⇒ B ⇒ C) ⇒ (A ⇒ B) ⇒ A ⇒ C

)
Kβ : K · u · v = u

Sβ : S · t · u · v = t · v · (u · v)
q : Tm (Γ ▷ A) A

wk : Tm Γ A → Tm (Γ ▷ B) A

wk· : wk (t · u) = wk t · wk u

wkK : wk K = K
wkS : wk S = S
lamKβ : S {⋄} · (K · S) ·

(
S · (K · K)

)
= K

lamSβ : S {⋄} ·
(

K ·
(
S · (K · S)

))
·
(

S · (K · S) ·
(
S · (K · S)

))
=

S {⋄} ·
(

S · (K · S) ·
(

S · (K · K) ·
(
S · (K · S) · (S · (K · (S · (K · S))) · S)

)))
· (K · S)

lamwk· : S {⋄} · (K · K) = S ·
(

S · (K · S) ·
(
S · (K · K) · (S · (K · S) · K)

))
· (K · K)

η : S {⋄} · K · K = S ·
(
S · (K · S) · K

)
·
(
K · (S · K · K)

)
Figure 2 Theory Cwk: combinatory logic with variables, weakenings and extensionality equations.

Note that the extensionality equations only hold in the empty context. This is enforced by specifying
the implicit context argument of the first Ss to be the empty context ⋄. Ty and – ⇒ – are parameters,
Con is defined inductively (beginning of Section 2).
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i.e. u : Tm A, v : Tm B where A and B don’t have to be the same. Similarly, we use the
most general versions of the the other equations. The last four equations don’t have terms
as parameters, but do have implicit type parameters.

Using implicit parameters, we can write typed combinatory terms the same way as we
would write untyped ones. For example, the identity combinator is defined as follows.

I : Tm (A ⇒ A)
I :≡ S · K · K

If we write out the implicit parameters of the S and Ks (but not the – · – applications),
this becomes S {A}{A ⇒ A}{A} · K {A}{A ⇒ A} · K {A}{A}. If we provide Agda with the
information that I will have type Tm (A ⇒ A), it is enough to specify the second parameter
of the second K. This uniquely determines the other implicit parameters, so in Agda we
write I :≡ S · K · K {}{A}. We prove the β law for I using equational reasoning.

Iβ : I · t ≡ S · K · K · t
Sβ= K · t · (K · t) Kβ= t

We say that C has extensionality because of the last four equations lamKβ, . . . , η. We
add these so as to be equivalent to Cwk which includes these equations so as to be equivalent
to L. The origin of these equations will be partly revealed in Subsection 2.2 and fully revealed
in Section 4.

Our equations lamKβ, lamSβ, lamwk·, η correspond to E-ax 4, E-ax 5, E-ax 1, E-ax 2 of
[11, Definition 8.10], respectively. E-ax 3 is not needed as the I combinator is not part of our
syntax. lamSβ, lamwk·, η correspond to A.5, A.3, A.6 of [5, Corollary 7.3.15], respectively.
The equation A.4 is a modified version of lamKβ because [5] considers the non-extensional
case as well, and the translation of lamKβ does not hold in lambda calculus without η, see
[5, Remark before Lemma 7.3.8].

2.2 Combinatory logic with variables, weakenings and extensionality
Theory Cwk is defined in Figure 2. The sort of terms is now indexed by both contexts and
types. Application, K, S, Kβ and Sβ are just like for C with the difference that all these
work in an arbitrary context. We have two extra operations which correspond to the Peano
constructors of De Bruijn indices: q is the zero index, wk is successor. For example De
Bruijn index 2 is written wk (wk q) : Tm (Γ ▷ A ▷ B ▷ C) A. Note that Γ, A and B are implicit
arguments of wk. As wk can be applied to any term, we add equations expressing that
it commutes with – · –, K and S. Finally, the three equations lamKβ, lamSβ, lamwk· are
needed for defining lambda abstraction (lam) by recursion on the syntax (see Section 4). The
equation η corresponds to the η rule in L. We restrict these equations to be only valid in the
empty context because lam then vacously preserves them (the input of lam is in an extended
context). Limiting to the empty context is not a real limitation when contexts are defined
inductively. We prove that the equations hold in any context by adding wk as many times as
the length of the context. Because wk commutes with K, S and – · – and the four equations
do not contain anything else, the weakened terms will be the same as the original terms, just
in a different context. Thus we obtain the general primed versions lamKβ′, lamSβ′, lamwk·′
and η′. For example, lamKβ′ is defined as follows. For readability, we merged some steps.

lamKβ′ : {Γ : Con} → S {Γ} · (K · S) ·
(
S · (K · K)

)
= K

lamKβ′ {⋄} : S {⋄} · (K · S) ·
(
S · (K · K)

) lamKβ= K {⋄}
lamKβ′ {Γ ▷ A} : S {Γ ▷ A} · (K · S) ·

(
S · (K · K)

)
=(wkS, wkK 3x each)
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wk (S {Γ}) · (wk K · wk S) ·
(
wk S · (wk K · wk K)

)
=(wk· twice)

wk (S {Γ}) · (wk (K · S)) ·
(
wk S · (wk (K · K))

)
=(wk· twice)

wk
(
S {Γ} · (K · S)

)
· wk (S · (K · K)) =(wk·)

wk
(
S {Γ} · (K · S) · (S · (K · K))

)
=(lamKβ′ {Γ})

wk (K {Γ}) =(wkK)
K {Γ ▷ A}

We derive another version of each of the four equations which we call the pointful variants.
These are the versions that will be actually used when defining lam.

lamKβ′′ : S · (S · (K · K) · u) · v = u

lamSβ′′ : S ·
(
S · (S · (K · S) · t) · u

)
· v = S · (S · t · u) · (S · u · v)

lamwk·′′ : K · (t · u) = S · (K · t) · (K · u)
η′′ : t = S · (K · t) · (S · K · K)

We obtain the pointful versions by applying Kβ, Sβ multiple times to the pointfree version.
Here is the proof for lamKβ, see Appendix A or the formalisation for the other equations.

lamKβ′′ : S · (S · (K · K) · u) · v =(Kβ)
K · S · u ·

(
S · (K · K) · u

)
· v =(Sβ)

S · (K · S) ·
(
S · (K · K)

)
· u · v =lamKβ′

K · u · v =(Kβ)
u

2.3 Lambda calculus
Theory L is defined in Figure 3. Lambda calculus can be seen as a second order theory with
one sort Tm indexed by Ty and an isomorphism (Tm A → Tm B) ∼= Tm (A ⇒ B). The left
to right direction is the binder lam which takes a function as an input. We turn this second
order theory into a first order theory using a substitution calculus with term-variables in
which the second order operation lam becomes a first order operation with an input in an
extended context. We describe all the operations in detail: Con, Sub form a category with
terminal object ⋄. ⋄ is the empty context, Sub ∆ Γ is called a substitution from ∆ to Γ. It
is a list of terms, where all terms have free variables in ∆ and their types are in Γ. For
example, a Sub ∆ (⋄ ▷ A ▷ B) corresponds to a Tm ∆ A together with a Tm ∆ B. Terms can
be instantiated by substitutions: if we have a t : Tm Γ A and a substitution σ : Sub ∆ Γ, then
we obtain a term t[σ] which we call the instantiation of t by σ. This operation replaces
all free variables in t by terms in σ, which in turn have free variables declared by ∆. The
instantiation operation is functorial, witnessed by [◦] and [id]. A substitution can either
be the unique empty substitution ϵ which targets the empty context ⋄ or a substitution
built using – , – which targets an extended context. The operations – , –, p, q and equations
▷β1, ▷β2, ▷η can be summarised as an isomorphism Sub ∆ (Γ ▷ A) ∼= Sub ∆ Γ × Tm ∆ A.
The variables are typed De Bruijn indices built by q and – [p], the latter takes the role
of wk. We have application – · – and abstraction lam with the computation rule ⇒β and
uniqueness rule ⇒η. The rules for the arrow type are summarised by the isomorphism
Tm (Γ ▷ A) B ∼= Tm Γ (A ⇒ B) natural in Γ. Naturality is expressed by lam[] and ·[]. Again
we stress that most operations in L take implicit arguments, e.g. lam takes Γ, A and B

implicitly before its first and only explicit argument.
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Sub : Con → Con → Set
– ◦ – : Sub ∆ Γ → Sub Θ ∆ → Sub Θ Γ
ass : (σ ◦ ρ) ◦ τ = σ ◦ (ρ ◦ τ)
id : Sub Γ Γ
idl : σ ◦ id = σ

idr : id ◦ σ = σ

ϵ : Sub Γ ⋄
⋄η : {σ : Sub Γ ⋄} → σ = ϵ

Tm : Con → Ty → Set
– [– ] : Tm Γ A → Sub ∆ Γ → Tm ∆ A

[◦] : A[σ ◦ ρ] = A[σ][ρ]
[id] : A[id] = A

– , – : Sub ∆ Γ → Tm ∆ A → Sub ∆ (Γ ▷ A)
p : Sub (Γ ▷ A) Γ
q : Tm (Γ ▷ A) A

▷β1 : p ◦ (σ, t) = σ

▷β2 : q[σ, t] = t

▷η : {σ : Sub ∆ (Γ ▷ A)} → σ = (p ◦ σ, q[σ])
lam : Tm (Γ ▷ A) B → Tm Γ (A ⇒ B)
– · – : Tm Γ (A ⇒ B) → Tm Γ A → Tm Γ B

⇒β : lam t · u = t[id, u]
⇒η : {t : Tm Γ (A ⇒ B)} → t = lam (t[p] · q)
lam[] : (lam t)[σ] = lam (t[σ ◦ p, q])
·[] : (t · u)[σ] = (t[σ]) · (u[σ])

Figure 3 Theory L: lambda calculus. A concise description using categorical terminology: a
category with terminal object where objects are Con and the terminal object is ⋄; for each A : Ty a
locally representable presheaf Tm – A over the category where – ▷ – generates the new objects; an
isomorphism Tm (Γ ▷ A) B ∼= Tm Γ (A ⇒ B) natural in Γ. Note that Ty and – ⇒ – are parameters,
Con is defined inductively (beginning of Section 2).

Naturality of substitution extension holds in any model of L:

,◦ : (σ, t) ◦ ρ =(▷η)(
p ◦ ((σ, t) ◦ ρ), q[(σ, t) ◦ ρ]

)
=(ass, [◦])(

(p ◦ (σ, t)) ◦ ρ, q[σ, t][ρ]
)

=(▷β1, ▷β2)
(σ ◦ ρ, t[ρ])

In every model of L, pointwise equal functions are equal, we call this property funext:

funext : t[p] · q = t′[p] · q → t = t′

funext e : t
⇒η= lam (t[p] · q) e= lam (t′[p] · q) ⇒η= t′

3 Combinators with and without weakenings are equal

In this section we prove the equivalence of the syntaxes of C and Cwk. We will define an
isomorphism f : TmC A ∼= TmCwk ⋄ A, and via univalence obtain TmC A = TmCwk ⋄ A. The
four extensionality equations do not play a role in this section. In fact, any number of closed
equations are preserved by f, as long as the same equations hold in Cwk. For readability, we
will just say C when we mean the syntax of C, and similarly for Cwk.

In Figure 4 we define the forward and backward directions of f by recursion on TmC and
TmCwk, respectively. We use pattern matching notation. As C is included in Cwk we just
return the same operations. We overload the constructors of the two syntaxes, e.g. we write
K both for KC and KCwk, it should be clear from the context which is meant. With implicit
arguments, the line for K is f (K {A}{B}) :≡ K {⋄}{A}{B}, so we choose the output K to be
in the empty context. In the other direction we know that the input is in the empty context,
hence we define f−1 (K {⋄}{A}{B}) :≡ K {A}{B}.
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f : TmC A → TmCwk ⋄ A

f (t · u) :≡ f t · f u

f K :≡ K
f S :≡ S

f−1 : TmCwk ⋄ A → TmC A

f−1 (t · u) :≡ f−1 t · f−1 u

f−1 K :≡ K
f−1 S :≡ S

Figure 4 The proof-relevant parts of the isomorphism f : TmC A ∼= TmCwk ⋄ A. In the f−1 direction
we don’t have to provide cases for constructors q and wk because they are not in the empty context:
Con is defined inductively, hence we know that ⋄ ̸= Γ ▷ A for any Γ and A. We treat the cases for
equality constructors in the main text.

Part of the definitions of f and f−1 are that they preserve the equality constructors. f
maps each equality constructor of C to the corresponding equality constructor of Cwk. We
spell out the implicit arguments for Kβ: f (Kβ {A}{B}{u}{v}) :≡ Kβ {⋄}{A}{B}{f u}{f v}.
On the Cwk side we again use the empty context, the same types and we apply f to the term
arguments. The other cases are simply f Sβ :≡ Sβ, f lamKβ :≡ lamKβ, . . . , f η :≡ η.

f−1 also preserves all the equations in Cwk by their corresponding equations in C. The
three extra equations of wk·, wkK and wkS are preserved vacously because they are equating
terms in open contexts.

When proving that f ◦ f−1 = λt.t and vice versa, we only have to compare the results
of the proof irrelevant parts shown in Figure 4 because the other components are equal by
isSet. We prove fβ and fη by trivial inductions on TmC and TmCwk, respectively.

4 Lambda calculus operations in Cwk

In this section we derive the operations of L in the syntax of Cwk. We first define the
operations in Figure 5.

Substitutions are defined by recursion on the target context. Then we define weakening
of these substitutions by iterating wk for terms, again by recursion on the target context.
Instantiation of Cwk terms by a substitution is defined by recursion on terms. We show that
instantiation preserves the equations as follows.

Kβ[σ] : (K · u · v)[σ] ≡ K · (u[σ]) · (v[σ]) Kβ= u[σ]

Sβ[σ] : (S · t · u · v)[σ] ≡ S · (t[σ]) · (u[σ]) · (v[σ]) Sβ= t[σ] · (v[σ]) · (u[σ] · (v[σ]))
wk·[σ] : (wk (t · u))[σ, v] ≡ (t[σ]) · (u[σ]) ≡ (wk t · wk u)[σ, v]
wkK[σ] : (wk K)[σ] ≡ K ≡ K[σ]
wkS[σ] : (wk S)[σ] ≡ S ≡ S[σ]
lamKβ[σ] :≡ lamKβ′

lamSβ[σ] :≡ lamSβ′

lamwk·[σ] :≡ lamwk·′

η[σ] :≡ η′

The last four equations use the generalised versions of the extensionality equations which
work in arbitrary contexts (defined in Subsection 2.2). Composition – ◦Γ – is defined by
induction on the target context and uses instantiation. We write the implicit argument Γ in
superscript for readability. The identity substitution id is defined by induction on the context.
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Sub : Con → Con → Set
Sub ∆ ⋄ :≡ ⊤
Sub ∆ (Γ ▷ A) :≡ Sub ∆ Γ × Tm ∆ A

wks : {Γ : Con} → Sub ∆ Γ → Sub (∆ ▷ A) Γ
wks {⋄} tt :≡ tt
wks {Γ ▷ A} (σ, t) :≡ (wks {Γ} σ, wk t)

– [– ] : Tm Γ A → Sub ∆ Γ → Tm ∆ A

(t · u)[σ] :≡ (t[σ]) · (u[σ])
K[σ] :≡ K
S[σ] :≡ S
q[σ, u] :≡ u

(wk t)[σ, u] :≡ t[σ]

– ◦ – : {Γ : Con} → Sub ∆ Γ →
Sub Θ ∆ → Sub Θ Γ

tt ◦{⋄} ρ :≡ tt
(σ, t) ◦{Γ ▷ A} ρ :≡ (σ ◦{Γ} ρ, t[ρ])

id : {Γ : Con} → Sub Γ Γ
id {⋄} :≡ tt
id {Γ ▷ A} :≡ (wks (id {Γ}), q)

p : Sub (Γ ▷ A) Γ
p :≡ wks id

lam : Tm (Γ ▷ A) B → Tm Γ (A ⇒ B)
lam (t · u) :≡ S · lam t · lam u

lam K :≡ K · K
lam S :≡ K · S
lam q :≡ S · K · K
lam (wk t) :≡ K · t

Figure 5 The definitions of L operations in the syntax of Cwk. See the text for the proof-irrelevant
parts.

The first projection p is the weakening of identity. lam is also defined by recursion on Cwk
terms. This is usually called the bracket abstraction algorithm. lam of application applies
the S combinator to the results of the recursive calls, lam of q is the identity combinator, lam
of K and S are constant K and S, respectively, while lam of a weakened term is constantly
that term. The fact that lam preserves the equations is the source of the three equations
lamKβ, lamSβ and lamwk·. The reason for the naming of these equations is thus revealed.

lam Kβ : lam (K · u · v) ≡
S · lam (K · u) · lam v ≡
S ·

(
S · (K · K) · lam u

)
· lam v =(lamKβ′′)

lam u

lam Sβ : lam (S · t · u · v) ≡
S · lam (S · t · u) · lam v ≡
S ·

(
S · lam (S · t) · lam u

)
· lam v ≡

S ·
(
S · (S · (K · S) · lam t) · lam u

)
· lam v =(lamSβ′′)

S · (S · lam t · lam u) · (S · lam u · lam v) ≡
S · lam (t · u) · lam (u · v) ≡
lam

(
t · v · (u · v)

)
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lam wk· : lam (wk (t · u)) ≡ K · (t · u) lamwk·′′

= S · (K · t) · (K · u) ≡ lam (wk t · wk u)
lam wkK : lam (wk K) ≡ K · K ≡ lam K
lam wkS : lam (wk K) ≡ K · S ≡ lam S

We make use of the double-primed non-closed and pointful variants, but we put the closed
pointfree variants in the definition of Cwk because they are vacuously preserved by lam as
lam operates on terms in the nonempty context. The last of the four extensionality equations
η will be used to prove the η law for the defined lam.

Now we prove all the equations of L in the following order. The proofs are straightforward,
see Appendix B or the formalisation for the details.

[◦] : {t : Tm Γ A} → t[σ ◦ ρ] = t[σ][ρ] induction on t

ass : {Γ : Con}{σ : Sub ∆ Γ} → (σ ◦ ρ) ◦ τ = σ ◦ (ρ ◦ τ) induction on Γ
wks◦ : {Γ : Con} → wks {Γ} σ ◦ (ρ, u) = σ ◦ ρ induction on Γ
idl : {Γ : Con} → id {Γ} ◦ σ = σ induction on Γ
[wks] : {t : Tm Γ A} → t[wks σ] = wk (t[σ]) induction on t

[id] : {t : Tm Γ A} → t[id] = t induction on t

idr : {Γ : Con} → σ ◦Γ id = σ induction on Γ
⋄η : {σ : Sub Γ ⋄} → σ = ϵ holds by definition

▷β1 : p ◦ (σ, t) ≡ wks id ◦ (σ, t) wks◦= id ◦ σ
idl= σ derivable

▷β2 : q[σ, t] ≡ t holds by definition

▷η : (σ, t) ▷β1= (p ◦ (σ, t), t) ≡ (p ◦ (σ, t), q[σ, t]) derivable
⇒β : {t : Tm (Γ ▷ A) B} → lam t · v = t[id, v] induction on t

⇒η : t = lam (t[p] · q) derivable using η′′

lam[] : (lam t)[σ] = lam (t[σ ◦ p, q]) induction on t

·[] : (t · u)[σ] ≡ (t[σ]) · (u[σ]) holds by definition

Finally we show how instantiation interacts with the combinators K and S:

K[] : K[σ] ≡ K[wks id] [wks]= wk (K[id]) [id]= wk K wkK= K

S[] : S[σ] ≡ S[wks id] [wks]= wk (S[id]) [id]= wk S wkS= S

5 Combinators with weakenings and lambda terms are equal

The proof-relevant parts of g : TmCwk Γ A ∼= TmL Γ A are defined in Figure 6.
Mapping Cwk terms to L terms (left hand side of Figure 6) is easy for those accustomed

to the lambda calculus. The combinatory operations have straightforward implementations
using lambda terms. It is similarly straightforward to show that g preserves the equations of
Cwk. As an example we show all the steps in proving preservation of Kβ. This also illustrates
working with the equational theory of L, or in other words working within a CwF. The
preservation of the other equations is proven in an analogous way.

g Kβ : g (K · u · v) ≡
lam

(
lam (q[p])

)
· g u · g v =(⇒β)

lam (q[p])[id, g u] · g v =(lam[])
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g : TmCwk Γ A → TmL Γ A

g (t · u) :≡ g t · g u

g K :≡ lam
(
lam (q[p])

)
g S :≡ lam

(
lam

(
lam

(
q[p ◦ p] · q · (q[p] · q)

)))
g q :≡ q
g (wk t) :≡ (g t)[p]

g : {Γ : Con} → SubCwk ∆ Γ → SubL ∆ Γ
g {⋄} tt :≡ ϵ

g {Γ ▷ A} (σ, t) :≡ (g σ, g t)

g−1 : SubL ∆ Γ → SubCwk ∆ Γ
g−1 : TmL Γ A → TmCwk Γ A

g−1 (σ ◦ ρ) :≡ g−1 σ ◦ g−1 ρ

g−1 id :≡ id
g−1 ϵ :≡ tt
g−1 (t[σ]) :≡ (g−1 t)[g−1 σ]
g−1 (σ, t) :≡ (g−1 σ, g−1 t)
g−1 p :≡ p
g−1 q :≡ q
g−1 (lam t) :≡ lam (g−1 t)
g−1 (t · u) :≡ (g−1 t) · (g−1 u)

Figure 6 The proof-relevant parts of the isomorphism g : TmCwk Γ A ∼= TmL Γ A. We treat the
cases for equality constructors in the main text.

lam
(
q[p][(id, g u) ◦ p, q]

)
· g v =([◦])

lam
(
q[p ◦ ((id, g u) ◦ p, q)]

)
· g v =(▷β1)

lam
(
q[(id, g u) ◦ p]

)
· g v =(,◦)

lam
(
q[id ◦ p, g u[p]]

)
· g v =(▷β2)

lam
(
(g u)[p]

)
· g v =(⇒β)

(g u)[p][id, g v] =([◦])
(g u)[p ◦ (id, g v)] =(▷β1)
(g u)[id] =([id])
g u

We also define g on SubCwk by induction on the target context, and we prove that g preserves
the lambda operations defined in Section 4 as follows, in the following order.

gwks : {σ : Sub ∆ Γ} → g (wks σ) = g wks ◦ p induction on Γ
gid : {Γ : Con} → g (id {Γ}) = id induction on Γ

gp : g p ≡ g (wks id) gwks= g id ◦ p gid= id ◦ p idl= p derivable
g[] : g (t[σ]) = (g t)[g σ] induction on t

g◦ : {σ : Sub ∆ Γ} → g (σ ◦ ρ) = g σ ◦ gρ induction on Γ
glam : g (lam t) = lam (g t) induction on t

In the other direction we use the lambda calculus operations defined in Cwk in Section
4. g−1 is defined by mutual recursion on SubL and TmL on the right hand side of Figure 6.
Preservation of the equations correspond to the counterparts of the equations in Cwk that
we proved in Section 4. So g−1 assL :≡ assCwk, . . . , g−1 ·[]L :≡ ·[]Cwk.

The first roundtrip is proven by induction on TmCwk as follows.

gβ : {t : TmCwk Γ A} → g−1 (g t) = t

gβ {t · u} : g−1 (g (t · u)) ≡ g−1 (g t) · g−1 (g t) gβ {t},gβ {t}= t · u

gβ {K} : g−1 (g K) ≡ g−1 (lam (lam (q[p]))) ≡ lam (lam (q[p])) funext (funext K=)= K
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gβ {S} : g−1 (g S) ≡ lam
(

lam
(

lam
(
q[p ◦ p] · q · (q[p] · q)

)))
funext (funext (funext S=))= S

gβ {q} : g−1 (g q) ≡ g−1 q ≡ q

gβ {wk t} : g−1 (g (wk t)) ≡ (g−1 (g t))[p] gβ {t}= t[p] ≡ t[wks id] [wks]= wk (t[id]) [id]= wk t

The interesting cases are K and S: here we use function extensionality which holds in any
model of L (thus in Cwk as shown in Section 4). To prove that the implementation of K
using lam (lam (q[p])) is equal to K we apply funext twice, and then we can use well-known
reasoning with CwF combinators. The proof of S= is analogous.

K= :
((

lam (lam (q[p])))[p] · q
)

[p] · q =(CwF reasoning)

lam (lam (q[p])) · q[p] · q =(⇒β twice and more CwF reasoning)
q[p] =(Kβ)
K · q[p] · q =(K[] twice)
K[p][p] · q[p] · q =(·[])
(K[p] · q)[p] · q

The second roundtrip is a mutual induction on SubL and TmL. We make use of the fact
that g preserves the lambda operations.

gη : {σ : SubL ∆ Γ} → g (g−1 σ) = σ

gη : {t : TmL Γ A} → g (g−1 t) = t

gη {σ ◦ ρ} : g (g−1 (σ ◦ ρ)) ≡ g (g−1 σ ◦ g−1 ρ) g◦= g (g−1 σ) ◦ g (g−1 ρ) gη {σ},gη {ρ}= σ ◦ ρ

gη {id} : g (g−1 id) ≡ g id gid= id
gη {ϵ} : g (g−1 ϵ) ≡ g {⋄}tt ≡ ϵ

gη {t[σ]} : g (g−1 (t[σ])) ≡ g
(
(g−1 t)[g−1 σ]

) g[]= (g (g−1 t))[g (g−1 σ)] gη {t},gη {ρ}= t[σ]

gη {σ, t} : g (g−1 (σ, t)) ≡ g {Γ ▷ A} (g−1 σ, g−1 t) ≡
(
g (g−1 σ), g (g−1 t)

) gη

= (σ, t)

gη {p} : g (g−1 p) ≡ g p gp= p
gη {q} : g (g−1 q) ≡ t

gη {lam t} : g (g−1 (lam t)) ≡ g
(
lam (g−1 t)

) glam= lam (g (g−1 t)) gη {t}= lam t

gη {t · u} : g (g−1 (t · u)) ≡ g (g−1 t) · g (g−1 u) gη {t},gη {u}= t · u

6 Lambda terms can be moved to the empty context

We define h : TmL ⋄ (Γ ⇒∗ A) ∼= TmL Γ A. Both directions and the roundtrips are defined by
induction on Γ.

h : {Γ : Con} → TmL ⋄ (Γ ⇒∗ A) → TmL Γ A

h {⋄} t :≡ t

h {Γ ▷ B} t :≡ (h {Γ} t)[p] · q
h−1 : {Γ : Con} → TmL Γ A → TmL ⋄ (Γ ⇒∗ A)
h−1 {⋄} t :≡ t
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h−1 {Γ ▷ B} t :≡ h−1 {Γ} (lam t)
hβ : {Γ : Con} → h−1 {Γ} (h {Γ} t) = t

hβ {⋄} : h−1 {⋄} (h {⋄} t) ≡ t

hβ {Γ ▷ B} : h−1 {Γ ▷ B} (h {Γ ▷ B} t) ≡ h−1 (
lam ((h t)[p] · q)

) ⇒η= h−1 (h t) hβ {Γ}= t

hη : {Γ : Con} → h {Γ} (h−1 {Γ} t) = t

hη {⋄} : h {⋄} (h−1 {⋄} t) ≡ t

hη {Γ ▷ B} : h {Γ ▷ B} (h−1 {Γ ▷ B} t)≡(
h (h−1 (lam t))

)
[p] · q =(hη {Γ})

(lam t)[p] · q =(lam[])
lam (t[p ◦ p, q]) · q =(⇒β)
t[p ◦ p, q][id, q] =(CwF reasoning)
t[id] =([id])
t

Putting together f from Section 3, g from Section 5 and h, we obtain TmC (Γ ⇒∗ A) ∼=
TmL Γ A.

7 Conclusions and further work

We proved the equivalence (and thus, in a univalent setting, equality) of the syntax of
combinatory logic and lambda calculus in an abstract setting. In this algebraic setting
we do not refer to specific representations of the syntaxes. In particular, the bracket
abstraction algorithm (defining lambda for combinators) preserves all equations. We believe
that avoiding talking about representations is beneficial because the proof is more general, it
applies to all representations. Thus we can extend the title of Selinger’s paper [21] saying that
lambda calculus is algebraic and (at least some) proofs about lambda calculus can be done
algebraically. Moreover, we can run all the proofs even in this abstract setting using QIITs
of Cubical Agda. For example, given a formalisation of normalisation for lambda calculus,
we also obtain an algorithm for normalisation of combinator terms up to extensionality. In
the future, it would be interesting to characterise normal forms of extensional combinatory
logic using this technique.

There are several remaining open questions regarding the algebraic presentation of
combinatory logic. For example, we do not know how to define lambda by recursion on the
syntax of the following theories, even though they are all equivalent to Cwk: extensional
combinatory logic with only variables; combinatory logic without the four extensionality
equations but with funext; simply typed CwF with application, K, S and extensionality. In
the future we would like to describe combinatory logic algebraically with ξ but without η

following [7]. In the other direction, we would like to define an algebraic presentation of
lambda calculus that is equivalent to combinatory logic without the extensionality equations.
We only related the syntaxes of lambda calculus and combinatory logic, but more generally,
we can turn any model of lambda calculus into a model of combinatory logic, while the other
way we have to restrict to definable terms. It would be interesting to formalise this more
general correspondence.

Another future research direction is the algebraic presentation of dependently typed
combinatory logic following [23, 3].
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A Derivation of the pointful versions of the extensionality equations
from the pointfree variants

In this section we derive lamSβ′′ from lamSβ′, lamwk·β′′ from lamwk·β′, η′′ from η. See
Subsection 2.2 for the derivation of lamKβ′ from lamKβ′′.

lamSβ′′ : S ·
(
S · (S · (K · S) · t) · u

)
· v =(Kβ)

K · S · u ·
(

S ·
(
S · (K · S) · t

)
· u

)
· v =(Sβ)

S · (K · S) ·
(

S ·
(
S · (K · S) · t

))
· u · v =(Kβ)

S · (K · S) ·
(

K · S · t ·
(
S · (K · S) · t

))
· u · v =(Kβ, Sβ)

K ·
(
S · (K · S)

)
· t ·

(
S · (K · S) ·

(
S · (K · S)

)
· t

)
· u · v =(Sβ)

S ·
(

K ·
(
S · (K · S)

))
·
(

S · (K · S) ·
(
S · (K · S)

))
· t · u · v =(lamSβ′)

S ·
(

S · (K · S) ·
(

S · (K · K) ·
(
S · (K · S) · (S · (K · (S · (K · S))) · S)

)))
·

(K · S) · t · u · v =(Sβ)

S · (K · S) ·
(

S · (K · K) ·
(
S · (K · S) · (S · (K · (S · (K · S))) · S)

))
· t·

(K · S · t) · u · v =(Sβ, Kβ)

S ·
(

K · K · t ·
(
S · (K · S) · (S · (K · (S · (K · S))) · S) · t

))
· S · u · v =(Kβ, Sβ)

S ·
(

K ·
(
K · S · t · (S · (K · (S · (K · S))) · S · t)

))
· S · u · v =(Kβ, Sβ)

S ·
(

K ·
(
S · (K · (S · (K · S)) · t · (S · t))

))
· S · u · v =(Kβ)

S ·
(

K ·
(
S · (S · (K · S) · (S · t))

))
· S · u · v =(Sβ)

K ·
(
S · (S · (K · S) · (S · t))

)
· u · (S · u) · v =(Kβ)

S · (S · (K · S) · (S · t)) · (S · u) · v =(Sβ)
S · (K · S) · (S · t) · v · (S · u · v) =(Sβ)
K · S · v · (S · t · v) · (S · u · v) =(Kβ)
S · (S · t · u) · (S · u · v)
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lamwk·′′ : K · (t · u) =(Kβ)
K · K · u · (t · u) =(Sβ)
S · (K · K) · t · u =(lamwk·′)

S ·
(

S · (K · S) ·
(
S · (K · K) · (S · (K · S) · K)

))
· (K · K) · t · u =(Sβ)

S · (K · S) ·
(
S · (K · K) · (S · (K · S) · K)

)
· t · (K · K · t) · u =(Sβ, Kβ)

K · S · t ·
(
S · (K · K) · (S · (K · S) · K) · t

)
· K · u =(Kβ, Sβ)

S ·
(
K · K · t · (S · (K · S) · K · t)

)
· K · u =(Kβ, Sβ)

S ·
(
K · (K · S · t · (K · t))

)
· K · u =(Kβ)

S ·
(
K · (S · (K · t))

)
· K · u =(Sβ)

K · (S · (K · t)) · u · (K · u) =(Kβ)
S · (K · t) · (K · u)

η′′ : t =(Kβ)
K · t · (K · t) =(Sβ)
S · K · K · t =(η′)

S ·
(
S · (K · S) · K

)
·
(
K · (S · K · K)

)
· t =(Sβ)

S · (K · S) · K · t ·
(
K · (S · K · K) · t

)
=(Sβ, Kβ)

K · S · t · (K · t) · (S · K · K) =(Kβ)
S · (K · t) · (S · K · K)

B Proofs of lambda calculus equations in Cwk

We prove all the equations stated in Section 4.

[◦] : {t : Tm Γ A} → t[σ ◦ ρ] = t[σ][ρ]

[◦] {t · u} : (t · u)[σ ◦ ρ] ≡ (t[σ ◦ ρ]) · (u[σ ◦ ρ]) [◦]= (t[σ][ρ]) · (u[σ][ρ]) ≡ (t · u)[σ][ρ]
[◦] {K} : K[σ ◦ ρ] ≡ K ≡ K[σ][ρ]
[◦] {S} : S[σ ◦ ρ] ≡ S ≡ S[σ][ρ]
[◦] {q} : q[(σ, u) ◦ ρ] ≡ u[ρ] ≡ q[σ, u][ρ]

[◦] {wk t} : (wk t)[(σ, u) ◦ ρ] ≡ t[σ ◦ ρ] [◦]= t[σ][ρ] ≡ (wk t)[σ, u][ρ]
ass : {Γ : Con}{σ : Sub ∆ Γ} → (σ ◦ δ) ◦ τ = σ ◦ (δ ◦ τ)
ass {⋄} : (tt ◦ ρ) ◦ τ ≡ ρ ◦ τ ≡ tt ◦ (ρ ◦ τ)
ass {Γ ▷ A} : ((σ, t) ◦ ρ) ◦ τ ≡

((σ ◦ ρ) ◦ τ, t[ρ][τ ]) =(ass {Γ}, [◦])
(σ ◦ (ρ ◦ τ), t[ρ ◦ τ ]) ≡
(σ, t) ◦ (ρ ◦ τ)

wks◦ : {Γ : Con} → wks {Γ} σ ◦ (ρ, u) = σ ◦ ρ

wks◦ {⋄} : wks {⋄} tt ◦ (ρ, u) ≡ tt ◦ (ρ, u) ≡ tt ≡ tt ◦ ρ

wks◦ {Γ ▷ A} : wks {Γ ▷ A} (σ, t) ◦ (ρ, u) ≡
(wks σ, wk t) ◦ (ρ, u) ≡
(wks {Γ} σ ◦ (ρ, u), t[ρ]) =(wks◦ {Γ})
(σ ◦ ρ, t[ρ]) ≡
(σ, t) ◦ ρ
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idl : {Γ : Con} → id {Γ} ◦ σ = σ

idl {⋄} : id {⋄} ◦ tt ≡ tt ◦ tt ≡ tt
idl {Γ ▷ A} : id {Γ ▷ A} ◦ (σ, t) ≡

(wks id, q) ◦ (σ, t) ≡
(wks id ◦ (σ, t), t) =(wks◦)
(id {Γ} ◦ σ, t) =(idl {Γ})
(σ, t)

[wks] : {t : Tm Γ A} → t[wks σ] = wk (t[σ])
[wks] {t · u} : (t · u)[wks σ] ≡

(t[wks σ]) · (u[wks σ]) =([wks] {t}, [wks] {u})
wk (t[σ]) · wk (u[σ]) =(wk·)
wk ((t[σ]) · (u[σ])) ≡
wk ((t · u)[σ])

[wks] {K} : K[wks σ] ≡ K wkK= wk K ≡ wk (K[σ])

[wks] {S} : S[wks σ] ≡ S wkS= wk S ≡ wk (S[σ])
[wks] {q} : q[wks (σ, u)] ≡ q[wks σ, wk u] ≡ wk u ≡ wk (q[σ, u])
[wks] {wk t} : (wk t)[wks (σ, u)] ≡

(wk t)[wks σ, wk u] ≡
t[wks σ] =([wks] {t})
wk (t[σ]) ≡
wk ((wk t)[σ, u])

[id] : {t : Tm Γ A} → t[id] = t

[id] {t · u} : (t · u)[id] ≡ (t[id]) · (id) [id] {t},[id] {u}= t · u

[id] {K} : K[id] ≡ K
[id] {S} : S[id] ≡ S
[id] {q} : q[id] ≡ q[wks id, q] ≡ q

[id] {wk t} : (wk t)[id] ≡ (wk t)[wks id, q] ≡ t[wks id] [wks]= wk (t[id]) [id] {t}= wk t

idr : {Γ : Con} → σ ◦Γ id = σ

idr {⋄} : tt ◦ id ≡ tt

idr {Γ ▷ A} : (σ, t) ◦Γ ▷ A id ≡ (σ ◦Γ id, t[id]) idr {Γ},[id]= (σ, t)
⇒β : {t : Tm (Γ ▷ A) B} → lam t · v = t[id, v]
⇒β {t · u} : lam (t · u) · v ≡

S · lam t · lam u · v =(Sβ)
lam t · v · (lam u · v) =(⇒β {t}, ⇒β {u})
(t[id, v]) · (u[id, v]) ≡
(t · u)[id, v]

⇒β {K} : lam K · v ≡ K · K · v
Kβ= K ≡ K[id, v]
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⇒β {S} : lam S · v ≡ K · S · v
Kβ= S ≡ S[id, v]

⇒β {q} : lam q · v ≡ S · K · K · v
Sβ= K · v · (K · v) Kβ= v ≡ q[id, v]

⇒β {wk t} : lam (wk t) · v ≡ K · t · v
Kβ= t

[id]= t[id] ≡ (wk t)[id, v]
⇒η : t = lam (t[p] · q)
⇒η : t =(η′′)

S · (K · t) · (S · K · K) ≡
S · lam (wk t) · (S · K · K) =([id])
S · lam (wk (t[id])) · (S · K · K) =([wks])
S · lam (t[wks id]) · (S · K · K) ≡
lam (t[p] · q)

lam[] : (lam t)[σ] = lam (t[σ ◦ p, q])
lam[] {t · u} : (lam (t · u))[σ] ≡

S · ((lam t)[σ]) · ((lam u)[σ]) =(lam[] {t}, lam[] {u})
S · lam (t[σ ◦ p, q]) · lam (u[σ ◦ p, q]) ≡
lam ((t[σ ◦ p, q]) · (u[σ ◦ p, q])) ≡
lam ((t · u)[σ ◦ p, q])

lam[] {K} : (lam K)[σ] ≡ (K · K)[σ] ≡ K · K ≡ lam K ≡ lam (K[σ ◦ p, q])
lam[] {S} : (lam S)[σ] ≡ (K · S)[σ] ≡ K · S ≡ lam S ≡ lam (S[σ ◦ p, q])
lam[] {q} : (lam q)[σ] ≡ (S · K · K)[σ] ≡ S · K · K ≡ lam q ≡ lam (q[σ ◦ p, q])
lam[] {wk t} : (lam (wk t))[σ] ≡

(K · t)[σ] ≡
K · (t[σ]) ≡
lam (wk (t[σ])) =([id])
lam (wk (t[σ][id])) =([wks])
lam (t[σ][wks id]) =([◦])
lam (t[σ ◦ wks id]) ≡
lam (t[σ ◦ p]) ≡
lam (wk t[σ ◦ p, q])
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Abstract
Taking a quotient roughly means changing the notion of equality on a given object, set or type. In a
quantitative setting, equality naturally generalises to a distance, measuring how much elements are
similar instead of just stating their equivalence. Hence, quotients can be understood quantitatively
as a change of distance. Quotients are crucial in many constructions both in mathematics and
computer science and have been widely studied using categorical tools. Among them, Lawvere’s
doctrines stand out, providing a fairly simple functorial framework capable to unify many notions of
quotient and related constructions. However, abstracting usual predicate logics, they cannot easily
deal with quantitative settings. In this paper, we show how, combining doctrines and the calculus of
relations, one can unify quantitative and usual quotients in a common picture. More in detail, we
introduce relational doctrines as a functorial description of (the core of) the calculus of relations.
Then, we define quotients and a universal construction adding them to any relational doctrine,
generalising the quotient completion of existential elementary doctrine and also recovering many
quantitative examples. This construction deals with an intensional notion of quotient and breaks
extensional equality of morphisms. Then, we describe another construction forcing extensionality,
showing how it abstracts several notions of separation in metric and topological structures.
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1 Introduction

Quotients are pervasive both in mathematic and computer science, as they are crucial in
carrying out many fundamental arguments. Quotients have been widely studied and several
constructions have been refined to allow one to work with quotients even though they are not
natively available in the setting in which one is reasoning (such as within a type theory, where
usually quotients are not a primitive concept). The intuition behind these constructions is
that taking a quotient changes the notion of equality on an object to a given equivalence
relation. Then, to work with (formal) quotients, one just endows each object (set, type,
space, . . .) with an (abstract) equivalence relation and forces the object to “believe” that
that equivalence relation is the equality. This idea underlies the construction of setoids in
type theories [7, 30], which are the common solution to work with quotients in that setting
and underlies also the exact completion of a category with weak finite limits [14, 15].

Quantitative methods are increasingly used in many different domains, such as differential
privacy [51, 9, 59, 8], denotational semantics [5, 21], algebraic theories [45, 46, 47, 1, 4],
program/behavioural metrics [17, 19, 20, 22, 26, 57], and rewriting [27]. This is mainly due
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to the fact that these methods better deal with the imprecision arising when one reasons
about the behaviour of complex software systems, especially when interacting with physical
processes. In a quantitative setting, equivalence relations naturally generalise to distances,
which measure how much two elements are similar instead of just saying whether they are
equivalent or not. Hence, quotients could be seen quantitatively as a change of distance.
Indeed, this operation is often used when dealing with metric structures, see for instance the
construction of monads associated with quantitative equational theories [1, 45, 46].

A unified view of quotients covering both usual and quantitative settings is missing. The
aim of this paper is to develop a notion of quotient, related concepts and constructions
extending known results and incorporating new quantitative examples.

Many mathematical tools have been adopted to study quotients. Among them, Lawvere’s
doctrines [36, 37] stand out as a simple and powerful framework capable to cope with a large
variety of situations (see [31, 50, 58] and references therein). Doctrines provide a functorial
description of logical theories, abstracting the essential algebraic structure shared by both
syntax and semantics of logics.

In particular, Maietti and Rosolini [42, 41] identified doctrines modelling the conjunctive
fragment of first order logic with equality as the minimal setting where to define equivalence
relations and quotients. Then they defined a universal construction, named elementary
quotient completion, that freely adds quotients to such doctrines, showing that it subsumes
many others, such as setoids and the exact completion.

In order to move this machinery to a quantitative setting, one may try to work with
doctrines where the usual conjunction is replaced by its linear counterpart. In this way,
equivalence relations becomes distances as transitivity becomes a triangular inequality.
However smooth, this transition is less innocent than it appears. As shown in [18], to
properly deal with a quantitative notion of equality one needs a more sophisticated structure,
which however fails to capture important examples like the category of metric spaces and non-
expansive maps. The main difficulty in working with Lawvere’s doctrines is that doctrines,
modelling usual predicate logic, take care of variables. This is problematic in a quantitative
setting as the use of variables usually has an impact on the considered distances.

For these reasons, in this paper we take a different approach: we work with doctrines
abstracting the calculus of relations [3, 49, 55] which is a variable-free alternative to first order
logic. Here one takes as primitive concept (binary) relations instead of (unary) predicates,
together with some basic operations, such as relational identities, composition and the
converse of a relation. Even though in general it is less expressive than first order logic,1 it is
still quite expressive, for instance, one can axiomatise set theory in it [54]. Moreover, being
variable-free, it scales well to quantitative settings, as witnessed by the fruitful adoption of
relational techniques to develop quantitative methods [19, 26, 27].

Then, in this paper, we introduce relational doctrines, as a functorial description of the
calculus of relations. Relying on this structure, we define a notion of quotient capable to deal
with also quantitative settings. We present a universal construction to add such quotients to
any relational doctrine. The construction extends the one in [42, 41] and can also capture
quantitative instances such as the category of metric spaces and non-expansive maps.

Furthermore, related to quotients, we study the notion of extensional equality. Roughly,
two functions or morphisms are extensionally equal if their outputs coincide on equal inputs.
Even if quotients and extensionality are independent concepts, several known constructions
that add quotients often force extensionality (see e.g., Bishop’s sets, setoids over a type theory

1 The calculus of relations is equivalent to first order logic with three variables [28].
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or the ex/lex completion). Therefore the study of extensionality is essential to cover these
well-known examples. We show that the relational quotient completion, changing the notion
of equality on objects without affecting plain equality on arrows in the base category, may
break this property. Thus, we define another universal construction that forces extensionality.
We show also how this logical principle captures many notions of separation in metric and
topological structures.

These results are developed using the language of 2-categories [33]. To this end, we
organise relational doctrines in a suitable 2-category where morphisms abstract the usual
notion of relation lifting [32]. Since many categorical concepts can be defined internally to
any 2-category, in this way we get them for free also for relational doctrines. For instance,
following [53], we can define (co)monads on relational doctrines, which nicely corresponds
to (co)monadic relation liftings used to reason about (co)effectful programs [26, 19]. The
universality of our constructions is then expressed in terms of (lax) 2-adjunctions [10], thus
describing their action not only on relational doctrines, but on their morphisms as well.

The paper is organised as follows. In Section 2 we introduce relational doctrines with
their basic properties, presenting several examples. In Section 3 we define quotients and the
relational quotient completion, proving it is universal. In Section 4 we discuss extensionality,
its connection with separation and the universal construction forcing it, showing also how it
interacts with quotients. In Section 5 we compare our approach with two important classes
of examples: ordered categories with involution [35], which are a generalisation of both
allegories and cartesian bicategories, and elementary existential doctrines [42, 41]. Finally,
Section 6 summarises our contributions and discusses directions for future work.

2 Relational Doctrines: Definition and First Properties

Doctrines are a simple and powerful framework introduced by Lawvere [36, 37] to study
several kinds of logics using categorical tools. A doctrine P on C is a contravariant functor
P : C op Ñ Pos , where Pos denotes the category of posets and monotone functions. The
category C is named the base of the doctrine and, for X in C , the poset P pXq is called fibre
over X. For f : X Ñ Y an arrow in C , the monotone function Pf : P pY q Ñ P pXq is called
reindexing along f . Roughly, the base category collects the objects one is interested in with
their transformations, a fibre P pXq collects predicates over the object X ordered by logical
entailment and reindexing allows to transport predicates between objects according to their
transformations. An archetypal example of a doctrine is the contravariant powerset functor
P : Set op

Ñ Pos , where predicates are represented by subsets ordered by set inclusion.
Doctrines capture the essence of predicate logic. In this section, we will introduce

relational doctrines as a functorial description of the essential structure of relational logics.
To this end, since binary relations can be seen as predicates over a pair of objects, we will
need to index posets over pairs of objects, that is, to consider functors R : pC ˆ C qop Ñ Pos ,
where each fibre RpX,Y q collects relations from X to Y . Here the reference example are
set-theoretic relations: they can be organised into a functor Rel : pSet ˆ Set qop Ñ Pos where
RelpX,Y q “ PpX ˆ Y q and sending f, g to the inverse image pf ˆ gq´1.

We endow these functors with a structure modelling a core fragment of the calculus of
relations given by relational identities, composition and converse [3, 49, 55]. For set-theoretic
relations, the identity relation on a set X is the diagonal dX “ txx, x1y P XˆX | x “ x1u, the
composition of α P RelpX,Y q with β P RelpY, Zq is the set α ;β “ txx, zy P X ˆ Z | xx, yy P

α, xy, zy P β for some y P Y u, and the converse of α P RelpX,Y q is the set αK “ txy, xy P

Y ˆX | xx, yy P αu. These operations interact with reindexing, i.e. inverse images, by the

FSCD 2023



25:4 Quotients and Extensionality in Relational Doctrines

following inclusions: dX Ď pf ˆ fq´1pdY q and pf ˆ gq´1pαq ;pg ˆ hq´1pβq Ď pf ˆ hq´1pα ;βq
and also ppf ˆ gq´1pαqqK Ď pg ˆ fq´1pαKq. The first two inclusions are not equalities in
general: the former is an equality when f is injective, while the latter is an equality when g

is surjective. These observations lead us to the following definition.

▶ Definition 1. A relational doctrine consists of the following data:
a base category C ,
a functor R : pC ˆ C qop Ñ Pos ,
an element dX P RpX,Xq, for every object X in C , such that dX ď Rf,f pdY q, for every
arrow f : X Ñ Y in C ,
a monotone function – ; – : RpX,Y q ˆRpY,Zq Ñ RpX,Zq, for every triple of objects
X,Y, Z in C , such that Rf,gpαq ;Rg,hpβq ď Rf,hpα ;βq, for all α P RpA,Bq, β P RpB,Cq

and f : X Ñ A, g : Y Ñ B and h : Z Ñ C arrows in C ,
a monotone function p–qK : RpX,Y q Ñ RpY,Xq, for every pair of objects X,Y in C ,
such that pRf,gpαqq

K ď Rg,f pα
Kq, for all α P RpA,Bq and f : X Ñ A and g : Y Ñ B,

satisfying the following equations for all α P RpX,Y q, β P RpY,Zq and γ P RpZ,W q

α ;pβ ; γq “ pα ;βq ; γ dX ;α “ α α ; dY “ α

pα ;βqK “ βK ;αK dK
X “ dX αKK “ α

The element dX is the identity or diagonal relation on X, α ;β is the relational composition of
α followed by β, and αK is the converse of the relation α. Note that all relational operations
are lax natural transformations, but the operation of taking the converse, being an involution,
is actually strictly natural. Also, each one of the two axioms stating that d is the neutral
element of the composition, together with the other axioms, implies the other.

▶ Remark 2. The data defining a relational doctrine R : pC ˆ C qop Ñ Pos determine the
following diagram in the category of doctrines and lax natural transformations, describing
an internal dagger category:

R2 xxπ1,π3y,– ; –y // R

xxπ2,π1y,p–q
K

y

��

xπ2,ζy

##

xπ1,ζy

;; 1C
x∆,dyoo

Here, 1C : C op Ñ Pos is the trivial doctrine, mapping every object of C to the singleton
poset, ζ is the natural transformation whose components are the unique maps into the
singleton poset, and R2 is the pullback of xπ1, ζy against xπ2, ζy, that is, the functor R2 :
pC ˆ C ˆ C qop Ñ Pos defined by R2pX,Y, Zq “ RpX,Y qˆRpY,Zq and R2

f,g,h “ Rf,gˆRg,h.

The following list of examples is meant to give a broad range of situations that can be
described by relational doctrines. Order categories and existential elementary doctrines
provide two large classes of examples which are intentionally omitted as, due to their relevance,
they will be discussed separately in Section 5.

▶ Example 3.
1. Let V “ x|V |,ĺ, ¨, 1y be a commutative quantale. A V -relation [29] between sets X and Y

is a function α : X ˆ Y Ñ |V |, where αpx, yq P |V | intuitively measures how much elements
x and y are related by α. Then, we consider the functor V -Rel : pSet ˆ Set qop Ñ Pos



F. Dagnino and F. Pasquali 25:5

where V -RelpX,Y q “ |V |XˆY is the set of V -relations from X to Y with the pointwise
order, V -Relf,g is precomposition with f ˆ g and The identity relation, composition and
converse are defined as follows:

dXpx, x1q “

#

1 x “ x1

K x ‰ x1
pα ;βqpx, zq “

ł

yPY

pαpx, yq ¨βpy, zqq αKpy, xq “ αpx, yq

where α P V -RelpX,Y q and β P V -RelpY, Zq. Special cases of this doctrine are Rel :
pSet ˆ Set qop Ñ Pos , when the quantale is B “ xt0, 1u,ď,^, 1y, and metric relations,
when one considers the Lawvere’s quantale Rě0 “ xr0,8s,ě,`, 0y as in [38].

2. Let R “ x|R|,ĺ,`, ¨, 0, 1y be a continuous semiring [34, 48], that is, an ordered semiring
where x|R|,ĺy is a directed complete partial order (DCPO), 0 is the least element and `

and ¨ are Scott-continuous functions. In this setting, we can compute sums of arbitrary
arity. For a function f : X Ñ |R|, we can define its sum

ř

f , also denoted by
ř

xPX fpxq,
as

ÿ

f “
ł

IPPωpXq

ÿ

iPI

fpiq

where PωpXq is the finite powerset of X. Consider R-Mat : pSet ˆ Set qop Ñ Pos where
R-MatpX,Y q is the set of functions X ˆ Y Ñ |R| with the pointwise order, R-Matf,g

is precomposition with f ˆ g. Elements in R-MatpX,Y q are a matrices with entries
in |R| and indices for rows and columns taken from X and Y . The identity relation,
composition and converse are given by the Kronecker’s delta (i.e. the identity matrix),
matrix multiplication and transpose, defined as follows:

dXpx, x1q “

#

1 x “ x1

0 x ‰ x1
pα ;βqpx, zq “

ÿ

yPY

pαpx, yq ¨βpy, zqq αKpy, xq “ αpx, yq

where α P R-MatpX,Y q and β P R-MatpY,Zq. This relational doctrine generalises
V -relations since any quantale is a continuous semiring (binary/arbitrary joins give
addition/infinite sum). The paradigmatic example of a continuous semiring which is not
a quantale is that of extended non-negative real numbers r0,8s, with the usual order,
addition and multiplication. Restricting the base to finite sets all sums become finite,
hence the definition works also for a plain ordered semiring.

3. Let C be a category with weak pullbacks. Denote by SpnC
pX,Y q the poset reflection

of the preorder whose objects are spans in C between X and Y and X
p1
ÐÝ A

p2
ÝÑ Y ď

X
q1
ÐÝ B

q2
ÝÑ Y iff there is an arrow f : A Ñ B such that p1 “ q1 ˝ f and p2 “ q2 ˝ f .

Given a span α “ X
p1
ÐÝ A

p2
ÝÑ Y and arrows f : X 1 Ñ X and g : Y 1 Ñ Y in C , define

Spnf,gpαq P SpnC
pX 1, Y 1q by one of the following equivalent diagrams:

W

||

  wpb

W 1

|| !!
wpbX 1

f ""

A

p1|| p2   

Y 1

g~~
X Y

W

""

}} wpb

W 1

!!}}
wpbX 1

f !!

A

p1}} p2 ""

Y 1

g||
X Y
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The functor SpnC : pC ˆ C qop Ñ Pos is a relational doctrine where, for α “ X
p1
ÐÝ A

p2
ÝÑ

Y and β “ X
q1
ÐÝ B

q2
ÝÑ Y it is

dX “

X
idX

~~
idX

  
X X

α ;β “

W

~~   
wpbA

p1~~ p2   

B

q1~~ q2   
X Y Z

αK “

A
p2

~~
p1

  
Y X

One can do a similar construction for jointly monic spans, provided that the category
C has strong pullbacks and a proper factorisation system. In particular, the relational
doctrine of jointly monic spans over Set is the relational doctrine Rel of set-based relations
already mentioned in Item 1.

4. Let Vec the category of vector spaces over real numbers and linear maps. Write |X| for
the underlying set of the vector space X. The functor Vec : pVec ˆ Vecqop Ñ Pos sends
X,Y to the suborder of Rě0-Relp|X|, |Y |q on those α that are subadditive functions, i.e.
αpx ` x1,y ` y1q ě αpx,yq ` αpx1,y1q and homogeneous, αpax, ayq “ |a|αpx,yq. The
functor Vec is a relational doctrine where

dXpx,x1q “

#

0 x “ x1

8 x ‰ x1
pα ;βqpx, zq “ inf

yP|Y |
pαpx,yq`βpy, zqq αKpy,xq “ αpx,yq

5. Let R : pC ˆ C qop Ñ Pos be a relational doctrine and F : D Ñ C a functor. The
change-of-base of R along F is the relational doctrine F ‹R : pD ˆ Dqop Ñ Pos obtained
precomposing R with pF ˆF qop. The change of base allows to use relations of R to reason
about the category D . For example the forgetful functor U : C Ñ Set of a concrete
category C allows the use of set-theoretic relations to reason about C , considering the
doctrine U‹Rel which maps a pair of objects X,Y in C to PpUX ˆ UY q.

Let R be a relational doctrine on C and α P RpX,Y q a relation, α is functional if
αK ;α ď dY , total if dX ď α ;αK, injective if α ;αK ď dX , and surjective if dY ď αK ;α. The
next proposition shows that functional and total relations are discretely ordered.

▶ Proposition 4. For functional and total relations α, β P RpX,Y q if α ď β, then α “ β.

Every arrow f : X Ñ Y defines a relation Γf “ Rf,idY
pdY q P RpX,Y q, called the graph

of f whose converse is given by ΓK
f “ Rf,idY

pdY qK “ RidY ,f pdK
Y q “ RidY ,f pdY q.

▶ Proposition 5. Let f : X Ñ Y an arrow in C . Then, Γf is functional and total.

Relational composition allows us to express reindexing in relational terms and to show it
has left adjoints, as proved below. Recall that in Pos a left adjoint of a monotone function
g : K Ñ H is a monotone function f : H Ñ K such that for every x in K and y in H, both
y ď gfpyq and fgpxq ď x hold, or, equivalently, y ď gpxq if and only if fpyq ď x.

▶ Proposition 6. For f : A Ñ X and g : B Ñ Y in C the reindexing Rf,g : RpX,Y q Ñ

RpA,Bq has a left adjoint ER
f,g : RpA,Bq Ñ RpX,Y q and for α P RpX,Y q and β P RpA,Bq

Rf,gpαq “ Γf ;α ; ΓK
g

ER
f,gpβq “ ΓK

f ;β ; Γg

We conclude the section describing the 2-category RD of relational doctrines. Objects
are relational doctrines, while a 1-arrow F : R Ñ S, where R : pC ˆ C qop Ñ Pos and
S : pD ˆ Dqop Ñ Pos , is a pair x pF , F y consisting of a functor pF : C Ñ D and a natural
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transformation F : R .
Ñ S ˝ p pF ˆ pF qop, laxly preserving relational identities, composition

and converse, that is, satisfying d
pF X ď FX,XpdXq and FX,Y pαq ;FY,Zpβq ď FX,Zpα ;βq and

pFX,Y pαqqK ď FY,XpαKq, for α P RpX,Y q and β P RpY,Zq. A 2-arrow θ : F ñ G is a
natural transformation θ : pF

.
Ñ pG such that FX,Y ď SθX ,θY

˝GX,Y , for all objects X,Y in
the base of R. By Propositions 5 and 6 the condition of a 2-arrow θ : F ñ G is equivalent to
both FX,Y pαq ď ΓθX

;GX,Y pαq ; ΓK
θY

and FX,Y pαq ; ΓθY
ď ΓθX

;GX,Y pαq, for α P RpX,Y q.
It is easy to see that 1-arrows actually strictly preserve the converse, since it is an involution,

and laxly preserve graphs of arrows, that is, Γ
pF f ď FX,Y pΓf q and ΓK

pF f
ď FY,XpΓK

f q, for
every arrow f : X Ñ Y in the base of R. A 1-arrow is called strict if it strictly preserves
relational identities and composition. In this case, it also strictly preserves graphs of arrows.
We denote by RDs tns the 2-full 2-subcategory of RD where 1-arrows are strict.

▶ Example 7 (Relation lifting). A key notion used in relational methods is that of relation
lifting or lax extension or relator [6, 32, 56]. It can be used to formulate bisimulation for
coalgebras or other notions of program equivalence. A (conversive) relation lifting of a functor
F : Set Ñ Set is a family of monotonic maps FX,Y : RelpX,Y q Ñ RelpFX,FY q, indexed
by sets X and Y , such that FX;Y pαqK Ď FY,XpαKq, FX,Y pαq ;FY,Zpβq Ď FX,Zpα ;βq and
Ff Ď FX,Y pfq, where α and β are relations and f : X Ñ Y is a function. Note that in the
last condition we are using the function to denote its graph, which is perfectly fine since
set-theoretic functions coincide with their graph. It is easy to see that these requirements
ensure that xF, F y : Rel Ñ Rel is a 1-arrow in RD. Conversely any 1-arrow G : Rel Ñ Rel is
such that G is a relation lifting of pG, showing that 1-arrows between Rel and Rel are exactly
the relation liftings. Hence, 1-arrows of the form F : R Ñ R in RD can be regarded as a
generalisation of relation lifting to an arbitrary relational doctrine R.

Finally, relying on the 2-categorical structure of RD, we get for free a notion of monad
on a relational doctrine. A monad consists of a 1-arrow T : RÑ R together with 2-arrows
η : IdR ñ T and µ : T ˝ T ñ T satisfying usual diagrams:

T

id �$

ηT +3 T 2

µ

��

T
T ηks

idz�
T

T 3 T µ +3

µT
��

T 2

µ

��
T 2 µ +3 T

Thanks to the conditions that 2-arrows in RD have to satisfy, such monads capture precisely
the notion of monadic relation lifting used to reason about effectful programs [26]. Similarly,
comonads in RD abstracts comonadic relation liftings [19].

▶ Example 8. Recall V -Rel : pSet ˆ Set qop Ñ Pos the doctrine of V -relations from Ex-
ample 3(1). Consider the 1-arrow P : V -Rel Ñ V -Rel where pP : Set Ñ Set is the covariant
powerset functor and PX,Y : V -RelpX,Y q Ñ V -Relp pPX, pPY q maps a V -relation α to the
function PX,Y pαqpA,Bq “ hαpA,Bq^hαKpB,Aq where ^ denotes the binary meet operation
in V and for every β : Z ˆW Ñ |V |, we set

hβpA,Bq “
ľ

xPA

ł

yPB

βpx, yq for A Ď Z and B ĎW

It is easy to check that this is indeed a 1-arrow. In particular, when considering the boolean
quantale B, given α : X ˆ Y Ñ t0, 1u we have that PX,Y pαq relates A and B iff for all x P A,
there is y P B s.t. αpx, yq “ 1 and viceversa; considering instead Lawvere’s quantale Rě0,
PX,Y pαq is a generalisation to arbitrary Rě0-relations of the Hausdorff pseudometric on
subsets of (pseudo)metric spaces.
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25:8 Quotients and Extensionality in Relational Doctrines

▶ Example 9. Let Ω be a signature of function symbols with finite arity. Denote by ΩX the
signature obtained from Ω by adding a constant symbol for every element in X. Write xTΩX

for the set of closed ΩX -terms. It is known that xTΩ extends to a monad on Set . Consider
the doctrine V -Rel of V -relations (cf. Example 3(1)). Every V -relation α P V -RelpX,Y q can
be extended to a V -relation α‹ P V -RelpxTΩX,xTΩY q by induction on the structure of terms:
α‹px, q “ αpx, yq, if x P X and y P Y , α‹pfpt1, . . . , tnq, fps1, . . . , snqq “

Ź

iP1..n α
‹pti, siq, if

f is an n-ary symbol of Ω, and α‹pt, sq “ K, otherwise. We set TΩX,Y pαq “ α‹. Then, it is
not difficult to see that TΩ : Rě0-Rel Ñ Rě0-Rel is a monad in RD.

▶ Example 10 (Bisimulations). We can express the notion of bisimulation for coalgebras
in an arbitrary relational doctrine, thus covering both usual and quantitative versions of
bisimulation. If F : RÑ R is a 1-arrow in RD and xX, cy and xY, dy two pF -coalgebras, then
a relation α P RpX,Y q is a F -bisimulation from xX, cy to xY, dy if α ď Γc ;FX,Y pαq ; ΓK

d or,
equivalently, α ; Γd ď Γc ;FX,Y pαq. This means that α has to agree with the dynamics of
the two coalgebras. Indeed, if R is Rel (the doctrine of set-theoretic relations), this condition
states that, if x P X is related to y P Y by α and y evolves to B P pFY through d, then x

evolves to some A P pFX through c and A is related to B by the lifted relation FX,Y pαq.
This definition looks very much like that of simulation, but, since 1-arrows preserve the
converse, it is easy to check that, if α is a bisimulation, then αK is a bisimulation as well,
thus justifying the name. Furthermore, one can easily check that F -bisimulations are closed
under relational identities and composition. Then, the category of pF -coalgebras is the base
of a relational doctrine bisimF where relations in bisimF

pxX, cy, xY, dyq are F -bisimulations
between coalgebras xX, cy and xY, dy.

As a concrete example, let us consider the 1-arrow P : V -Rel Ñ V -Rel of Example 8. A
pP -coalgebra is a usual (non-deterministic) transition system and a P -bisimulation from xX, cy

to xY, dy is a V -relation α : X ˆ Y Ñ |V | such that αpx, yq ĺ hαpcpxq, dpyqq^ hαpdpyq, cpxqq,
for all x P X and y P Y . Roughly, this means that similar states reduce to similar states.
When considering the boolean quantale B, we get the usual notion of bisimulation, while
considering Lawvere’s quantale Rě0 we get a form of metric bisimulation.

▶ Example 11 (Barr lifting). Let C be a category with weak pullbacks and F : C Ñ C a weak
pullbacks preserving functor. It induces a strict 1-arrow xF, F y : SpnC

Ñ SpnC mapping a
span X

p1
ÐÝ A

o2
ÝÑ Y to FX F p1

ÐÝÝ FA
F p2
ÝÝÑ FY . This provides an abstract version of the

well-known Barr lifting for set-theoretic relations. It is easy to see that this construction
extends to a 2-functor Spn– from the 2-category of categories with weak pullbacks, functor
preserving them and natural transformations to the 2-category RD. Hence, every weak
pullbacks preserving monad on a category C with weak pullbacks, induces a monad on SpnC .

3 The Relational Quotient Completion

Here we show how one can deal with quotients in relational doctrines extending the quotient
completion in [41, 42] which we used as inspiration for many notions and constructions. We
present instances having a quantitative flavour that usual doctrines do not cover, showing
that quotients are the key structure characterising them.

In a relational doctrine R : pC ˆ C qop Ñ Pos an R-equivalence relation on an object X
in C is a relation ρ P RpX,Xq satisfying the following properties:

reflexivity: dX ď ρ symmetry: ρK
ď ρ transitivity: ρ ; ρ ď ρ
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▶ Example 12.
1. In the doctrine of V -relations V -Rel (cf. Example 3(1)), an equivalence relation ρ :

X ˆX Ñ |V | on a set X is a (symmetric) V -metric [29]: reflexivity is 1 ĺ ρpx, xq, for all
x P X, symmetry is ρpx, yq ĺ ρpy, xq, for all x, y P X, and transitivity is

Ž

yPX ρpx, yq ¨

ρpy, zq ĺ ρpx, zq, which is equivalent to ρpx, yq ¨ ρpy, zq ĺ ρpx, zq, for all x, y, z P X,
by properties of suprema. For the boolean quantale B these are usual equivalence
relations, while for the Lawvere’s quantale Rě0 these are the so-called pseudometrics as
the transitivity property is exactly the triangular inequality.

2. In the doctrine SpnC (cf. Example 3(3)) of spans in a category with weak pullbacks, an
equivalence relation on X is a pair of parallels arrows r1, r2 : A Ñ X such that there
are arrows r : X Ñ A with r1r “ r2r “ idX (reflexivity), s : A Ñ A with r1s “ r2 and
r2s “ r1 (symmetry), and t : W Ñ A with r1t “ r1d1 and r2t “ r2d2 where

W
d1

~~
d2

  
wpbA

r2   

A

r1~~
X

is a weak pullback. These spans are the pseudo-equivalence relations of [14, 15].
3. In the relational doctrine Vec : pVec ˆ Vecqop Ñ Pos (cf. Example 3(4)) an equivalence

relation over a vector space X is a subadditive and homogeneous function ρ : |X| ˆ |X| Ñ

r0,8s such that ρpx,xq “ 0 as reflexivity suffices to get symmetry and transitivity. Indeed
one can prove that ρpx,yq “ ρp0,y ´ xq. Symmetry follows from ρpx,yq “ ρp0,y ´ xq “
|´1|ρp0,x´yq “ ρpy,xq and transitivity from ρpx,yq`ρpy, zq “ ρp0,y´xq`ρp0, z´yq ě
ρp0 ` 0, py ´ xq ` pz ´ yqq “ ρp0, z ´ xq “ ρpx, zq. Hence a Vec-equivalence on a vector
space X is a subadditive and homogeneous pseudometric on it.

Every arrow f : X Ñ Y in C induces a R-equivalence relation on X, dubbed kernel of f ,
given by Γf ; ΓK

f . The fact that this is an equivalence follows immediately since Γf is a total
and functional relation. Roughly, the kernel of f relates those elements which are identified
by f ; indeed, for the relational doctrine Rel : pSet ˆ Set qop Ñ Pos it is defined exactly in
this way. Kernels are crucial to talk about quotients as the following definition shows.

▶ Definition 13. Let R : pC ˆ C qop Ñ Pos be a relational doctrine on C and ρ a R-
equivalence relation on an object X in C . A quotient arrow of ρ is an arrow q : X ÑW in
C such that ρ ď Γq ; ΓK

q and, for every arrow f : X Ñ Z with ρ ď Γf ; ΓK
f , there is a unique

arrow h : W Ñ Z such that f “ h ˝ q. The quotient arrow q is effective if ρ “ Γq ; ΓK
q and it

is descent if dW ď ΓK
q ; Γq.

We say that R has quotients if every R-equivalence relation admits an effective descent
quotient arrow.

Intuitively, a quotient of ρ is the “smallest” arrow q which transforms the equivalence ρ
into the relational identity, that is, such that ρ is smaller than the kernel of q. The quotient q
is effective when its kernel Γq ; ΓK

q coincides with the equivalence relation ρ and it is descent
when its graph is surjective.

▶ Example 14. To exemplify the definition above, let us unfold it for the relational doctrine
Rel : pSet ˆ Set qop Ñ Pos , which has quotients. Recall from Example 12(1) that a Rel-
equivalence is just a usual equivalence relation. Here, a quotient arrow for an equivalence
relation ρ on a set X is a function q : X ÑW which is universal among those functions f
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whose kernel includes the equivalence ρ, that is, such that ρpx, x1q implies fpxq “ fpx1q.
Effectiveness requires the converse inclusion, i.e. qpxq “ qpx1q implies ρpx, x1q. Finally, the
descent condition amounts to requiring q to be surjective in the usual sense. A choice for
such a function q is the usual quotient projection from X to the set X{ρ of ρ-equivalence
classes, which maps x P X to its equivalence class rxs. Indeed, by definition this function is
surjective and ρpx, x1q holds iff rxs “ rx1s. Moreover, for every function f such that ρpx, x1q

implies fpxq “ fpx1q, the function rxs ÞÑ fpxq turns out to be well-defined, proving that the
quotient projection is universal.

▶ Example 15. Consider the relational doctrine Rě0-Rel of Rě0-relations where Rě0 is the
Lawvere’s quantale xr0,8s,ě,`, 0y (cf. Example 3(1)) and suppose ρ : X ˆX Ñ r0,8s

is a Rě0-Rel-equivalence relation , i.e. a pseudometric on X (cf. Example 12(1)). Define
an equivalence relation on X setting x „ρ y whenever ρpx, x1q ‰ 8, that is, when x and
x1 are connected. The canonical surjection q : X Ñ X{ „ mapping x to qpxq “ rxs is a
quotient arrow for ρ. It is immediate to see that ρpx, x1q ě dX{„ρ

prxs, rx1sq as dXprxs, rx1sq

is either 0 or 8 and dX{„ρ
prxs, rx1sq “ 8 precisely when x and x1 are not connected, that

is, when ρpx, x1q “ 8. The universality of q easily follows from its universal property as a
quotient of „ρ in Rel (cf. Example 14). This shows that Rě0-Rel has quotient arrows for all
pseudometrics, which are descent: for q : X Ñ X{ „ρ a quotient of ρ, the descent condition
becomes dX{„ρ

py, y1q ě infxPX

`

dX{„ρ
py, qpxqq ` dX{„ρ

pqpxq, y1q
˘

, which trivially holds since
q is surjective and dX{„ρ

is either 0 or 8. However, such quotients arrows cannot be effective.
Indeed, if f : X Ñ Y is a function, since the relational identity dY is only either 0 or 8,
the kernel of f is given by x, x1 ÞÑ dY pfpxq, fpx1qq, thus it takes values in t0,8u. Hence, if
a quotient arrow q for a pseudometric ρ was effective, then ρ would be either 0 or 8, as it
would coincide with the kernel of q and clearly this is not the case in general. This shows
that Rě0-Rel has not quotients in the sense of Definition 13.

Example 15 shows that relational doctrines need not have quotients in general. Hence,
we now describe a free construction that takes a relational doctrine R : pC ˆ C qop Ñ Pos
and builds a new one pRqq : pQR ˆ QRq

op Ñ Pos which has (effective descent) quotients for
all equivalence relations. The construction is inspired by the quotient completion in [41, 42]
and a comparison with it is delayed to Section 5.

The category QR is defined as follows:
an object is a pair xX, ρy, where X is an object in C and ρ is a R-equivalence relation on
X,
an arrow f : xX, ρy Ñ xY, σy is an arrow f : X Ñ Y in C such that ρ ď Rf,f pσq, and
composition and identities are those of C .

By Proposition 6 the condition ρ ď Rf,f pσq is equivalent to both ρ ď Γf ;σ ; ΓK
f and

ΓK
f ; ρ ; Γf ď σ.

Given R-equivalence relations ρ and σ over X and Y the suborder Desρ,σpX,Y q of
RpX,Y q of descent data with respect to ρ and σ is defined by

Desρ,σpX,Y q “ tα P RpX,Y q | ρK ;α ;σ ď αu

Roughly, a descent datum is a relation which is closed w.r.t. ρ on the left and σ on the
right. For every arrow f : xX, ρy Ñ xX 1, ρ1y and g : xY, σy Ñ xY 1, σ1y in QR, the monotone
function Rf,g : RpX 1, Y 1q Ñ RpX,Y q applies Desρ1,σ1pX 1, Y 1q into Desρ,σpX,Y q as Indeed,
for α P Desρ1,σ1pX 1, Y 1q, we have

ρK ;Rf,gpαq ;σ ď Rf,f pρ
1K
q ;Rf,gpαq ;Rg,gpσ

1q ď Rf,gpρ
1K ;α ;σ1q ď Rf,gpαq
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Therefore the assignments pRqqpxX, ρy, xY, σyq “ Desρ,σpX,Y q and pRqq
f,g “ Rf,g determine

a functor pRqq : pQR ˆ QRq
op Ñ Pos .

▶ Proposition 16. The functor pRqq : pQR ˆ QRq
op Ñ Pos is a relational doctrine, where

composition and converse are those of R and dxX,ρy “ ρ.

A pRqq-equivalence relation over an object xX, ρy is a R-equivalence σ over X such that
ρ ď σ. Note that these conditions imply that σ is a descent datum in Desρ,ρpX,Xq. Then,
xX,σy is an object of QR and idX : xX, ρy Ñ xX,σy is a well-defined arrow in QR, which
turns out to be an effective descent quotient arrow for σ. In this way we construct quotient
arrows for all pRqq-equivalence relations, thus obtaining the following result.

▶ Proposition 17. The relational doctrine pRqq over QR has effective descent quotients.

▶ Example 18.
1. For the doctrine V -Rel of V -relations, the category QV -Rel is the category of V -metric

spaces with non-expansive maps. By Example 12(1), an object xX, ρy is a V -metric space
and f : xX, ρy Ñ xY, σy has to satisfy ρpx, x1q ĺ σpfpxq, fpx1qq.

2. For the relational doctrine Vec over the category of real vector spaces, QVec is the category
of semi-normed vector spaces with short maps. An object xX, ρy in QVec is a vector space
with a subadditive and homogeneous pseudometric on it. Such a pseudometric satisfies
ρpx,yq “ ρp0,y ´ xq (see Example 12(3)), so }x} “ ρp0,xq defines a semi-norm on X.

Following Lawvere’s structural approach to logic, we can characterise the property of
having effective descent quotients by an adjunction in RD. First observe that the doctrine R
is embedded into pRqq by the 1-arrow ER : RÑ pRqq in RD defined as follows: the functor
yER : C Ñ QR maps f : X Ñ Y in C to f : xX, dXy Ñ xY, dY y; the natural transformation
ER : R .

Ñ pRqq ˝ pyER ˆyERqop is the family of identities RpX,Y q “ DesdX ,dY
pX,Y q. The

1-arrow ER shows that constructing pRqq “extends” R adding (effective descent) quotients
for any equivalence relation.

▶ Lemma 19. A relational doctrine R has effective descent quotients if and only if ER has
a strict reflection left adjoint F : pRqq Ñ R.

This means that the 1-arrow F : pRqq Ñ R is strict and it is a left adjoint of ER in RD
and the counit of this adjunction is an isomorphism, hence F ˝ ER – IdR. Intuitively, the
1-arrow F : pRqq Ñ R computes quotients of R-equivalence relations: the object pF xX, ρy is
the codomain of a quotient arrow obtained by applying pF to idX : xX, dXy Ñ xX, ρy which
is the quotient arrow of ρ in pRqq viewed as a pRqq-equivalence over xX, dXy.

The construction of pRqq is universal as it is part of a lax 2-adjunction [10]. To show this,
we first introduce the 2-category QRD as the 2-full 2-subcategory of RD whose objects are
relational doctrines with quotients and whose 1-arrows are those of RD that preserve quotient
arrows, i.e. 1-arrows F : R Ñ S in RD mapping a quotient arrow for a R-equivalence ρ
over X to a quotient arrow for FX,Xpρq, which can be easily proved to be a S-equivalence
over pFX. There is an obvious inclusion 2-functor Uq : QRD Ñ RD which simply forgets
quotients. Moreover, the construction above determines a 2-functor Q : RD Ñ QRD,
defined as follows: for a 1-arrow F : RÑ S in RD, the 1-arrow QpF q “ pF qq : pRqq Ñ pSqq

is given by zpF qqxX, ρy “ x pFX,FX,Xpρqy and zpF qqf “ pFf and pF qq
xX,ρy,xY,σypαq “ FX,Y pαq,

and for a 2-arrow θ : F ñ G in RD, the 2-arrow Qpθq “ pθqq : pF qq ñ pGqq is given by
pθqq

xXρy
“ θX .

▶ Theorem 20. The 2-functors Q and Uq are such that Q %l Uq is a lax 2-adjunction.

FSCD 2023
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This means that, for every relational doctrine R and every relational doctrine with quotients
S, the functor

Uqp–q ˝ ER : QRDppRqq, Sq Ñ RDpR,UqpSqq (1)

has a left adjoint.

▶ Example 21. Let R be a relational doctrine with quotients and F : R Ñ R be a 1-
arrow in QRD, that is, it preserves quotient arrows. Recall from Example 10 the doctrine
bisimF on the category CoAlg p pF q of pF -coalgebras, where relations between coalgebras are
F -bisimulations. It is easy to see that bisimF has quotients. Indeed, a bisimF -equivalence
relation ρ on a pF -coalgebra xX, cy is an F -bisimulation which is also a R-equivalence relaiton
on X. Since R has quotients, ρ admits an effective descent quotient arrow q : X ÑW in the
base of R. To conclude, it suffices to endow W with an pF -coalgebra structure, making q an
pF -coalgebra homomorphism. To this end, note that, since ρ is a F -bisimulation and pFq is
a quotient arrow for FX,Xpρq, we get ρ ď Γ

pF q˝c ; ΓK
pF q˝c

. Thus by the universal property of
quotients, we get a unique arrow cρ : W Ñ pFW making the following diagram commute:

X

c

��

q // W

cρ

��
pFX

pF q // pFW

This shows that the doctrine of F bisimulations inherits quotients, provided that F preserves
them. If however quotients are not available in R and/or F does not preserve them, we
can use the relational quotient completion to freely add them to bisimF . In this way, we
get the doctrine pbisimF

qq whose base category has as objects triple xX, c, ρy where xX, cy

is an pF -coalgebra and ρ is an F -bisimulation equivalence on it. Notice that, applying Q to
the 1-arrow F , we get a 1-arrow pF qq : pRqq Ñ pRqq. Then, we can construct the doctrine
bisimpF q

q

of pF qq-bisimulations. It is easy to check that pbisimF
qq is isomorphic to bisimpF q

q

,
that is, the costruction of coalgebras commutes with the quotient completion.

▶ Example 22. Let Ω be a signature of function symbols with finite arity. Recall from
Example 9 that we have the monad TΩ : V -Rel Ñ V -Rel of terms over Ω. Applying the
relational quotient completion, since it is a 2-functor, we get a monad pTΩq

q : pV -Relqq Ñ

pV -Relqq. In particular, we get a monad {pTΩqq : QV -Rel Ñ QV -Rel on the category of V -
metric spaces (the base of pV -Relqq), which is a slight generalisation of the free monad for
quantitative algebras over Ω described in [1, 2].

We conjecture that a similar construction should be possible also when considering a
Quantitative Equational Theory [45, 46, 4, 1] over Ω, extending the construction in that
papers to V -Rel. However, this is still an open problem, we leave for future work.

The 2-adjunction of Theorem 20, being lax, establishes a weak correspondence between
RD and QRD: between their hom-categories there is neither an isomorphism, nor an
equivalence, but just an adjunction. Moreover, the family of 1-arrows ER is only a lax
natural transformation. This is essentially due to the fact that 1-arrows of RD and QRD
laxly preserve relational operations, in particular, relational identities. Hence, a way to
recover a stronger correspondence may be to restrict to strict 1-arrows.

Denote by QRDs the 2-full 2-subcategory of QRD whose 1-arrows are strict. Then, it
is easy to see that Q applies RDs into QRDs, obtaining the following result.
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▶ Theorem 23. The lax 2-adjunction Q %l Uq restricts to a (pseudo) 2-adjunction between
QRDs and RDs.

This means that the family of 1-arrows ER becomes a strict 2-natural transformation
and the functor in Equation (1) becomes an equivalence of categories when restricted to
QRDs and RDs.

4 Extensionality and separation

An important logical principle commonly assumed is the extensionality of equality. Intuitively,
it means that two functions f and g are equal exactly when their outputs coincide on equal
inputs, that is, whenever x “ y implies fpxq “ gpyq. This is the usual notion of equality
for set-theoretic functions, however, if we move to more constructive settings such as Type
Theory, it is not necessarily the case that extensionality holds. Relational doctrines are able
to distinguish the two notions of equality of arrows.

▶ Definition 24. Let R : pC ˆ C qop Ñ Pos be a relational doctrine and f, g : X Ñ Y two
parallel arrows in C . We say that f and g are R-equal, notation f « g, if dX ď Rf,gpdY q.
We say that R is extensional if for every f, g in C , f « g implies f “ g.

That is, R is extensional if R-equality implies equality of arrows. The other implication
always holds, therefore in an extensional relational doctrine f « g if and only if f “ g.

▶ Proposition 25. Let R : pC ˆ C qop Ñ Pos be a relational doctrine and f, g : X Ñ Y two
parallel arrows in C . Then, f « g iff Γf “ Γg.

Proposition 25 with Proposition 6 mean that R-equal arrows cannot be distinguished by
the logic of R since they behave in the same way w.r.t. reindexing. Indeed given f, f 1 : X Ñ A

and g, g1 : Y Ñ B in the base, f « f 1 and g « g1 imply Rf,g “ Rf 1,g1 .
From a quantitative or topological perspective, extensional equality is related to various

notions of separation. Take for example the doctrine pRě0-Relqq over the category QRě0-Rel of
pseudometric spaces and non-expansive maps (cf. Example 18(1)). Functions f, g : xX, ρy Ñ
xY, σy are pRě0-Relqq-equal iff σpfpxq, gpxqq “ 0 , which implies f “ g exactly when xY, σy

satisfies the identity of indiscernibles, i.e. the axiom stating that σpx, yq “ 0 implies x “ y.
This requirement turns a pseudometric space into a usual metric space and forces a strong
separation property: the topology associated with the metric space is Hausdorff.

This observation shows that the relational quotient completion does not preserve exten-
sionality. Indeed the relational doctrine Rě0-Rel on Set is extensional, while pRě0-Relqq is
not as not all pseudometric spaces are separated. This is due to the fact that the relational
quotient completion changes equality, as it modifies identity relations, while the equality
between arrows of the base category remains unchanged. The following completion forces
extensionality or, in quantitative terms, separation. As for the relational quotient completion,
it is inspired by the extensional collapse of an elementary doctrines introduced in [42].

▶ Proposition 26. Let R be a relational doctrine and f, f 1 : X Ñ Y and g, g1 : Y Ñ Z are
arrows in the base C . Then f « f 1 and g « g1 imply g ˝ f « g1 ˝ f 1.

It shows that « is a congruence on C . Let ER be the quotient of C modulo «, not-
ably, objects are those of C and arrows are equivalence classes of arrows in C modulo «,
denoted by rf s. Define a functor pRqe : pER ˆ ERq

op Ñ Pos by pRqepX,Y q “ RpX,Y q and
pRqe

rfs,rgs
pαq “ Rf,gpαq. It is well-defined on arrows by Propositions 6 and 25.

FSCD 2023
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▶ Lemma 27. The functor pRqe : pER ˆ ERq
op Ñ Pos together with relational operations

of R is an extensional relational doctrine.

Taking terminology from [42], the doctrine pRqe is the extensional collapse of R. The
following examples show some connections between the extensional collapse and notions of
separation in metric and topological structures.

▶ Example 28.
1. Let V “ x|V |,ĺ, ¨, 1y be a commutative quantale. Recall from Example 18(1) that the

category QV -Rel is the category of V -metric spaces and non-expansive maps. It is the base
of the doctrine pV -Relqq, whose identity relation is given by dxX,ρy “ ρ for every V -metric
space xX, ρy. A V -metric sapce xX, ρy is separated if 1 ĺ ρpx, yq implies x “ y. Notice
that a separated Rě0-metric space is the usual notion of metric space. Denote by V -Met s
the full subcategory of QV -Rel of separated V -metric spaces. Applying the extensional
collapse to pV -Relqq we get ppV -Relqqqe where two arrows rf s, rgs : xX, ρy Ñ xY, σy of
its base EpV -Relqq are equal when ρpx, yq ĺ σpfpxq, gpyqq. The fully faithful inclusion
of V -Met s into EpV -Relqq is an equivalence: for any V -metric space xX, ρy, write x „ y

when 1 ĺ ρpx, yq and take the quotient space xX{ „, ρ„y, where ρ„prxs, rysq “ ρpx, yq,
is separated. The projection map rqs : xX, ρy Ñ xX{ „, ρ„y is an isomorphism whose
inverse is represented by any chosen section s : X{ „ Ñ X of q.

2. Recall from Example 18(2) that the base QVec of the relational doctrine pVecqq is the
category of semi-normed real vector spaces and short linear maps: an object xX, ρy is
a real vector space X with a subadditive and homogeneous pseudometric ρ that gives
a semi-norm }x} “ ρp0,xq. A semi-norm is a norm when }x} “ 0 implies x “ 0, which
is equivalent to ρ being separated. The category NVec of normed vector spaces is
equivalent to the base category EpVecqq of the extensional collapse of pVecqq. The proof
of the essential surjectivity of the obvious inclusion of NVec into EpVecqq uses arguments
similar to those used in Example 28(1). In particular it relies on the axiom of choice.
There is only a little care in taking sections s : X{ „ Ñ X of a quotient map q in Vec as
these have to be linear. But from a section s one cane take its values on the vectors of
a chosen base of X{ „ and generate from this assignment a linear map s1 : X{ „ Ñ X

which is easily proved to be a section of q.

▶ Example 29. Let Top be the category of topological spaces and continuous functions
and TRel : pTop ˆ Topqop Ñ Pos be the change-of-base U‹Rel along the forgetful functor
U : Top Ñ Set as in Example 3(5). The base QTRel of the relational quotient completion of
TRel provides an “intensional” version of Scott’s equilogical spaces2 [52]. Objects of QTRel are
pairs xX, ρy of a topological space X and an equivalence relation ρ on the underlying set of X
and arrows are continuous maps preserving the equivalences. Any section S : Top Ñ QTRel
of the forgetful functor QTRel Ñ Top picks an equivalence relation over every space in a way
that relations are compatible with continuous maps. The change-of-base S‹pTRelqq provides
a new logic on Top where identity relations are changed according to S. For a space X, the
doctrine S‹TRel can not distinguish points which are related by ρX , while such points may
differ in the base. The extensional collapse makes such points indistinguishable in the base
as well. Instances of this construction are the category Top0 of T0-spaces and the homotopy
category hTop. The former is given by defining ρX as follows: xx, yy P ρX iff x and y are
topologically indistinguishable, that is, for every open subset U Ď X, x P U iff y P U . The
latter is given by defining ρX as follows: xx, yy P ρX iff there is a continuous path from x to
y, that is, there is a continuous function h : r0, 1s Ñ X such that hp0q “ x and hp1q “ y.

2 Applying the extensional collapse we get exactly the category of equilogical spaces.
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The relational doctrine pRqe comes together with a 1-arrow CR : R Ñ pRqe where
xCR : C Ñ ER maps f : A Ñ B to rf s : A Ñ B and CR

X,Y maps RpX,Y q to itself. The
extensional collapse is universal if we restrict to strct 1-arrows. Let ERDs denote the full
2-subcategory of RDs whose objects are extensional relational doctrines and Ue : ERDs Ñ

RDs the obvious inclusion 2-functor.

▶ Theorem 30. The 2-functor Ue : ERDs Ñ RDs has a left 2-adjoint E : RDs Ñ ERDs

such that EpRq “ pRqe.

The extensional collapse interacts well with quotients. Indeed, if R has (effective descent)
quotients, its extensional collapse pRqe has (effective descent) quotients as well. More
precisely, let us denote by EQRDs the full 2-subcategory of QRDs whose objects are
extensional relational doctrines with quotients. We get two obvious inclusion 2-functors
Uq

1 : EQRDs Ñ QRDs and EQRDs : ERDs Ñ which respectively forget extensionality
and quotients.3 Then, we get the following result.

▶ Theorem 31. The 2-adjunction E % Ue restricts to a 2-adjunction between EQRDs and
QRDs.

In summary, by Theorems 23, 30, and 31, we get the following diagram

EQRDs

Uq
1

33K

Ue
1

��

QRDs

Uq

��
$

E1

rr

ERDs

Ue
++

J RDs
E

kk

Q

WW

where the external square commutes and E1 is a lifting of E, that is, Ue
1
˝ E1 “ E ˝ Uq. The

composite E1 ˝ Q : RDs Ñ EQRDs gives a universal construction adding (effective descent)
quotients and forcing extensionality. Finally note that the relational quotient completion does
not preserve extensionality. Therefore the restriction of Q to ERDs, namely, the composite
Q ˝Ue, may not provide a left 2-adjoint to Ue

1. To get such a left 2-adjoint, we need to force
extensionality again, that is, we need the 2-functor E1 ˝ Q ˝ Ue, which however is not the
lifting of Q (in other words, the diagram of left 2-adjoints would not commute).

▶ Example 32.
1. Recall from [11, 12] that a Bishop’s set, or setoid, is a pair xA, ρy of a set A and an

equivalence relation ρ Ď A ˆ A. A Bishop’s function from the setoid xA, ρy to the
setoid xB, σy is an equivalence class of functions f : AÑ B preserving the equivalence
relations, where f and g belong to the same equivalence class if fpaqσgpaq for all a P

A. A relation from xA, ρy to xB, σy is a subset U Ă A ˆ B such that pa, bq P U ,
aρa1, bσb1 imply pa1, b1q P U . Call BSet the category of Bishop’s sets and functions
and BRel : pBSet ˆ BSet qop Ñ Pos the relational doctrine that maps two setoids to
the collection of relations between them. The relational doctrine ppRelqqqe (obtained
completing Rel : pSet ˆ Set qop Ñ Pos first with quotients and then forcing extensionality)
is BRel.

3 EQRDs can be seen as the pullback of Ue against Uq.
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2. One of the most widely used constructions to complete a category with quotients is the
exact completion of a weakly lex category presented in C [14, 15]. This is an instance
of our constructions. Recall the relational doctrine SpnC from Example 3(3). Complete
it first with quotients and then force extensionality. One get the relational doctrine
ppSpnC

qqqe whose base is Cex/wlex. If products of C are strong, the construction coincides
with the elementary quotient completion of the doctrines of weak subobjects of C shown
in [41, 42]. A comparison between these two constructions is in Section 5.

5 Related Structures

There are many categorical models abstracting the essence of the calculus of relations, such as
cartesian bicategories [16] or allegories [25] which are both special cases of ordered categories
with involution [35]. Also existential and elementary doctrines, i.e. those doctrines that
model pD,^,J,“q-fragment of first order logic, encode a calculus of relations. A natural
question is how relational doctrines differ from these models.

We show that when working with an ordered category, one implicitly accepts two logical
principles, which are not necessarily there in a relational doctrine, and we show that when
working with existential elementary doctrines, one implicitly accepts to work with variables,
which are not necessarily there in relational doctrines. These comparison are carried out
restricting to the 2-category RDs where 1-arrows are strict.

Ordered categories with involution. An ordered category with involution [35] is a Pos -
enriched category C together with an identity-on-objects and self inverse Pos -functor p–qK :
C op Ñ C . Intuitively, arrows can be seen as relations whose inverse is given by the involution.

A relational doctrine R : pC ˆ C qop Ñ Pos defines an ordered category with involution
OR as follows: objects are those of C , the poset of arrows between X and Y is the fibre
RpX,Y q, composition and identities are given by relational ones and the involution is given by
the converse operation. The assignment extends to a 2-functor O : RDs Ñ OCI, where OCI
is the 2-category of ordered categories with involution whose 1-arrows F : C Ñ D are ordered
functors preserving involution and a 2-arrows θ : F ñ G are lax natural transformations.

To see how to obtain a relational doctrine from an ordered category, first note that any
ordered category with involution C induces a category MappC q, called the category of maps
in C , whose objects are those of C and an arrow f : X Ñ Y is an arrow in C such that
fK : Y Ñ X is its right adjoint, that is f ˝fK ď idY and idX ď fK ˝f . We define a relational
doctrine MapC : pMappC q ˆ MappC qqop Ñ Pos where MapC

pX,Y q “ C pX,Y q is the poset
of all arrows in C from X to Y and, for f : AÑ X and g : B Ñ Y arrows in Map(C ), the
map MapC

f,g : MapC
pX,Y q Ñ MapC

pA,Bq sends α to the composition gK ˝ α ˝ f . Relational
composition and identities are composition and identities of C and the relational converse is
given by the involution p–qK. The assignment extends to a 2-functor Map : OCI Ñ RDs.

Relational doctrines of the form MapC have extensional equality. They also validates
the rule of unique choice which says that whenever a relation is functional and total, there
is a function that for every x in the domain picks the unique y related to x. Formally
R : pC ˆ C qop Ñ Pos satisfies the rule of unique choice, (ruc) for short, if for every
α P RpX,Y q such that dX ď α ;αK and αK ;α ď dY , there is f : X Ñ Y in C with Γf ď α.

Next theorem shows that extensionality and (ruc) are exactly the two logical principles
that a relational doctrine needs to coincide with an ordered category. Indeed the essential
image of 2-functor Map is ERD(ruc), the full 2-subcategory of RDs on extensional doctrines
satisfying (ruc) and its inverse is the restriction of O : RDs Ñ OCI to ERD(ruc).
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▶ Theorem 33. The 2-categories OCI and ERD(ruc)are 2-equivalent.

The equivalence stated in Theorem 33 generalises a similar result proved in [13], which
compares cartesian bicategories and existential elementary doctrines. The way we built the
two functors of the equivalence shows also that OCI is a 1-full subcategory of ERD(ruc).
Examples of relational doctrines that are not in OCI because they are not extensional were
given in Section 4. The following example presents a relational doctrine outside OCI because
it does not satisfy (ruc).

▶ Example 34. Take a set A with more than one element. The set PpAq of subsets of A is a
complete Heyting algebra, therefore a commutative quantale. Recall from Item 1 that in the
relational doctrine PpAq-Rel : pSet ˆ Set qop Ñ Pos of PpAq-relations, for every set X the
relation dX maps px, x1q to A if x “ x1 and to H if x “ x1. This relational doctrine does not
satisfy the (ruc). Consider α P PpAq-Relp1, Aq given by αp˚, aq “ tau, it holds

d1 “ A “
ď

aPA

tau “ α ;αK and pαK ;αqpa, a1q “ tau X ta1u Ď dA

Suppose f : 1 Ñ A is such that Γf Ď α, i.e. dApfp˚q, aq Ď αp˚, aq “ tau. Then A “

dApfp˚q, fp˚qq Ď tfp˚qu, but this inclusion is contradictory with the assumption that A has
more than one element.

Existential elementary doctrines. Doctrines P : C op Ñ Pos are algebraic representations of
fragment of first order predicate logic, where objects and arrows of C are contexts and terms
and fibres P pXq collect the predicates with free variables over X ordered by logical entailment.
To sustain this intuition in practice the base category C needs finite products to model
context concatenation (see also [50]). Once C is assumed to have finite products, an easy way
to extract a relational doctrine out of P is to consider the functor RelP : pC ˆ C qop Ñ Pos
mapping xX,Y y to P pXˆY q and xf, gy to Pfˆg. To define relational composition mimicking
the standard definition one needs to restrict to those doctrines that models at least and the
pD,^,J,“q-fragment of first order logic. These are called elementary existential doctrines.

A doctrine P : C op Ñ Pos is existential elementary if all the following hold: C has
finite products; every fibre has finite meets and these are preserved by reindexing; for every
f : X Ñ Y in C the reindexing Pf has a left adjoint E

f : P pXq Ñ P pY q such that for every
ϕ P P pXq and every ψ P P pY q it holds that E

f pϕq^ψ “

E

f pϕ^Pfψq (Frobenius reciprocity);
for every arrow f : AÑ B in C and every object X in C it holds that Pf

E

πB
“

E

πA
PidX ˆf ,

where πA : X ˆAÑ A and πB : X ˆB Ñ B are projections (Beck-Chevalley condition).

▶ Example 35. An archetypal example of existential elementary doctrine is the contravariant
powerset functor P : Set op

Ñ Pos . For a function f : X Ñ Y , the left adjoint E

f is the
direct image mapping. Two instances are of interest. The first is when f is the diagonal
∆X : X Ñ X ˆX. In this case the direct image evaluated on the the top element (i.e. the
whole X) is the diagonal relation, that is E

∆X
pJXq “ tpx, x1q P X ˆX | x “ x1u. The other

is when f is a projection π2 : X ˆ Y Ñ Y . In this case E

π2pϕq “ ty P Y | DxPX px, yq P ϕu.

The previous example shows the underling idea that, in an existential elementary doctrine,
left adjoints along diagonals compute diagonal relations, lefts adjoints along projections
compute existential quantifications. So every existential elementary doctrine P : C op Ñ Pos
generates a relational doctrine RelP : pC ˆ C qop Ñ Pos setting RelP pX,Y q “ P pX ˆY q and
RelPf,g “ Pfˆg and

dX “

E

∆X
pJq α ;β “

E

xπ1,π3ypPxπ1,π2ypαq ^ Pxπ2,π3ypβqq αK “ Pxπ2,π1ypαq
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for α P P pX ˆ Y q and β P P pY ˆ Zq. The assignment extends to a 2-functor Rel : EED Ñ

RDs where EED denotes the 2-category whose objects are existential elementary doctrines,
1-arrows F : P Ñ Q are pairs x pF , F y where tha functor pF : C Ñ D preserves finite products
and F : P .

Ñ Q ˝ pF preserves finite meets and commutes with left adjoints.

▶ Example 36. Consider the powerset functor as an existential and elementary doctrine as
in Example 35. It is immediate to see that RelP is Rel.

From a relational doctrine of the form RelP one recovers P mapping A to RelP pA, 1q “
P pAˆ 1q » P pAq. This suggests where to look for the inverse of Rel.

First of all note that existential elementary doctrines have finite products in the base,
finite meets on all fibres preserved by reindexing, while relational doctrines need not have.
These structures have a neat algebraic description that uses the finite products in 2-category
Dtn: a doctrine P is based on a category with finite products, has finite meets on each fibre
and these are stable under reindexing if and only if both the unique arrow !P and the diagonal
∆P have a right adjoint in Dtn. Since the 2-category RDs of relational doctrines has finite
products too, we take advantage of this characterisation and we say that a relational doctrine
R is cartesian if the 1-arrows !R and ∆R have right adjoints in RDs.

▶ Example 37. The doctrine RelP “ Rel : pSet ˆ Set qop Ñ Pos is cartesian. The right
adjoint to ∆Rel is given using products. Indeed for xxA,By, xX,Y yy the base of Rel ˆ Rel the
natural transformation RelpA,Bq ˆ RelpX,Y q

.
Ñ RelpAˆX,B ˆ Y q maps α P RelpA,Bq and

β P RelpX,Y q to txxa, xy, xb, yyy | xa, by P α and xx, yy P βu.

For a cartesian relational doctrine R denote by DocR the doctrine obtained by the
composition of R with x´, 1y : C op Ñ pC ˆ C qop. Proposition 6 shows that DocR has left
adjoints to all reindexing maps. One can also show that the left adjoints along projections
satisfies the Beck-Chevalley condition, the only missing ingredient is the Frobenius reciprocity.
We say that a relational doctrine R is cartesian Frobenius if it is cartesian and for every X
and Y in C and every α P RpX,Y q it holds

ΓK
∆X

; Γ∆X
“ Γ∆X ˆidX

; ΓK
idX ˆ∆X

Γ∆X ˆidY
;pdX ‚ α ‚ dY q ; ΓK

idX ˆ∆Y
“ pΓ∆X ˆidY

;pdX ‚ α ‚ dY q ; ΓK
idX ˆ∆Y

qK

where the first condition is inspired by [13]. In general relational doctrines need not be
cartesian Frobenius as shown by the following example.

▶ Example 38. Consider the relational doctrine Rě0-Rel : pSet ˆ Set qop Ñ Pos of metric
relations, where Rě0 “ xr0,8s,ě,`, 0y is the Lawvere’s quantale as in Example 3. This
doctrine is not cartesian. Indeed to be cartesian would imply the existence of a 1-arrow
ˆ : Rě0-Rel ˆ Rě0-Rel Ñ Rě0-Rel which is right adjoint to ∆Rě0-Rel. The right adjoint should
be a pair xpˆ,ˆy where ˆ commutes with relational composition, that is it satisfies equations
of the form pαˆβq ;pα1ˆβ1q “ pα ;α1qˆpβ ;β1q. For α P Rě0-RelpA,Bq and β P Rě0-RelpX,Y q

the relation αˆβ is computed as follows

pαˆβqpa, x, b, yq “ sup tαpa, bq, βpx, yqu

Suppose α and β are constant functions, and take two other constant functions for α1 P

Rě0-RelpB,Cq and β1 P Rě0-RelpY, Zq. The equation pαˆβq ;pα1ˆβ1q “ pα ;α1qˆpβ ;β1q

reduces to sup tα, βu`sup tα1, β1u “ sup tα` α1, β ` β1u that need not hold (take α “ β1 “ 0
and α1 “ β “ 1).
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Relational doctrines of the form RelP are cartesian Frobenius, therefore the essential
image of Rel is FRD, the 2-full 2-subcategory of RDs on cartesian Frobenius relational
doctrines and 1-arrows that preserve the cartesian structure. Moreover doctrines of the form
DocR are existential elementary if and only if R is cartesian Frobenius. This determines
a 2-functor Doc : FRD Ñ EED that, together with Rel : EED Ñ FRD, determine the
equivalence stated by the following theorem.

▶ Theorem 39. The 2-categories FRD and ERD(ruc)are 2-equivalent.

Relying on the equivalence proved in Theorem 39, the completion of an elementary
existential doctrine with quotients introduced in [42] is equivalent to the relational quotient
completion of a cartesian Frobenius relational doctrine. The elementary quotient completion
of an existential elementary doctrine introduced in [41] is equivalent to the extensional
collapse of the relational quotient completion of cartesian Frobenius relational doctrines.
This results in a wide range of examples of relational doctrines such as realisability doctrines,
doctrines of (strong/weak) subobjects and syntactic doctrines [31, 50, 58]. Also dependent
Types Theories give rise to existential elementary doctrines whose elementary quotient
completion is the category of setoids [41, 42].

We proved that existential elementary doctrines and cartesian Frobenius relational
doctrines are equivalent, and the completions introduced in this paper coincide with the
corresponding ones introduced by Maietti and Rosolini. Both of them work on larger classes
of doctrines. More specifically, the completions proposed by Maietti and Rosolini can be
applied to doctrines that need not be existential in the sense that they need not have left
adjoints to all the reindexing maps, but they need finite products in the base and finite
meets in the fibres. On the other hand relational doctrines intrinsically have left adjoints
to all reindexing maps, but the completions described in this paper work also on relational
doctrines that need not be cartesian and need not have a base with finite products. This is a
crucial ingredient to cover the quantitative examples.

6 Conclusions

We introduced relational doctrines as a functorial description of the essence of the calculus
of relations. Relying on this structure, we defined quotients and a universal construction
adding them capable to cover quantitative settings as well. Then, we studied extensional
equality in relational doctrines, showing it captures various notion of separation in metric and
topological structures. Moreover, we described a universal construction forcing extensionality,
thus separation, analysing how it interacts with quotients. Finally, we compared relational
doctrines with two important classes of examples: ordered categories with involution, proving
these correspond to relational doctrines having both extensional equality and the rule of
unique choice, and existential elementary doctrines, showing they correspond to cartesian
relational doctrines satisfying suitable Frobenius rules.

There are many directions for future work. The first one is the study of choice rules in the
framework of relational doctrines, extending known results for doctrines [40, 44], giving them
a quantitative interpretation, for instance in terms of completeness, following the connection
between (ruc) and Cauchy completeness pointed out in [39]. Moreover, this could lead us to
the definition of a quantitative counterpart of the tripos-to-topos construction, generalising
known results [24, 43], which could generate categories of complete (partial) metric spaces.

We also plan to bring the study of relations to the proof-relevant setting of type theories.
Algebraically this can be done moving from doctrines to arbitrary fibrations as it is common
practice. On the syntactic side, instead, things are much less clear: developing a proper
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syntax and rules for a “relational type theory” is something interesting per se. Actually, we
do not even have a syntactic calculus behind relational doctrines. Then, another interesting
direction is to design it, possibly in a diagrammatic way, for instance in the style of string
diagrams.

Another interesting direction is to study relational doctrines with tools coming from the
theory of double categories. Indeed, from Remark 2 one can easily read a relational doctrine
as a special double category and equivalence relations looks similar to monads in such a
double category [23]. Thus, it would be interesting applying general results for monads in
double categories to this specific case, possibly deriving properties and constructions related
to equivalences and quotients.

Finally, a promising direction would be the use of relational doctrines as an abstract
framework where to formulate and develop relational techniques used in the study of
programming languages and software systems, such as (coalgebraic) bisimulation, program
equivalence or operational semantics, as well as, quantitative equational theories and rewriting.
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We characterize type isomorphisms in the multiplicative-additive fragment of linear logic (MALL),
and thus for ⋆-autonomous categories with finite products, extending a result for the multiplicative
fragment by Balat and Di Cosmo [2]. This yields a much richer equational theory involving
distributivity and annihilation laws. The unit-free case is obtained by relying on the proof-net
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1 Introduction

The question of type isomorphisms consists in trying to understand when two types in
a type system (or two formulas in a logic) are “the same”. The general question can be
described in category theory: two objects A and B are isomorphic (A ≃ B) if there exist
morphisms A

f−→ B and B
g−→ A such that f ◦ g = idB and g ◦ f = idA. f and g are the

underlying isomorphisms. Given a (class of) category, the question is then to find equations
characterizing when two objects A and B are isomorphic (in all instances of the class). The
focus here is on pairs of isomorphic objects rather than on the isomorphisms themselves.
For example, in the class of cartesian categories, one finds the following isomorphic objects:
A × B ≃ B × A, (A × B) × C ≃ A × (B × C) and A × ⊤ ≃ A. Regarding type systems
and logics, one can instantiate the categorical notion. For instance in typed λ-calculi: two
types A and B are isomorphic if there exist two λ-terms M : A→ B and N : B → A such
that λx : B.(M (N x)) =βη λx : B.x and λx : A.(N (M x)) =βη λx : A.x where =βη is
βη-equality. This corresponds to isomorphic objects in the syntactic category generated by
terms up to =βη. Similarly, type isomorphisms can also be considered in logic, following
what happens in the λ-calculus through the Curry-Howard correspondence: simply replace
λ-terms with proofs, types with formulas, β-reduction with cut-elimination and η-expansion
with axiom-expansion. In this way, type isomorphisms are studied in a wide range of theories,
such as category theory [16], λ-calculus [4] and proof theory [2]. They may be used to develop
practical tools, such as search in a library of a functional programming language [14].
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Following the definition, it is usually easy to prove that the type-isomorphism relation is
a congruence. It is then natural to look for an equational theory generating this congruence.
Testing whether or not two types are isomorphic is then much easier. An equational theory
T is called sound with respect to type isomorphisms if types equal up to T are isomorphic.
It is called complete if it equates any pair of isomorphic types. Given a (class of) category,
a type system or a logic, our goal is to find an associated sound and complete equational
theory for type isomorphisms. This is not always possible as the induced theory may not be
finitely axiomatisable (see for instance [6]).

Soundness is usually the easy direction as it is sufficient to exhibit pairs of terms
corresponding to each equation. The completeness part is often harder, and there are in the
literature two main approaches to solve this problem. The first is a semantic method, relying
on the fact that if two types are isomorphic then they are isomorphic in all (denotational)
models. One thus looks for a model in which isomorphisms can be computed (more easily
than in the syntactic model) and are all included in the equational theory under consideration
(this is the approach used in [16, 12] for example). Finding such a model simple enough for
its isomorphisms to be computed, but still complex enough not to contain isomorphisms
absent in the syntax is the difficulty. The second method is the syntactic one, which consists
in studying isomorphisms directly in the syntax. The analysis of pairs of terms composing to
the identity should provide information on their structure and then on their type so as to
deduce the completeness of the equational theory (see for example [4, 2]). The easier the
equality (=βη for example) between proof objects can be computed, the easier the analysis
of isomorphisms will be.

We place ourselves in the framework of linear logic (LL) [7], the underlying question
being “is there an equational theory corresponding to the isomorphisms between formulas
in this logic?”. LL is a very rich logic containing three classes of propositional connectives:
multiplicative, additive and exponential ones. The multiplicative and additive families provide
two copies of each classical propositional connective: two copies of conjunction (⊗ and &), of
disjunction (` and ⊕), of true (1 and ⊤) and of false (⊥ and 0). The exponential family is
constituted of two modalities ! and ? bridging the gap between multiplicatives and additives
through four isomorphisms !(A & B) ≃ !A⊗ !B, ?(A⊕ B) ≃ ?A ` ?B, !⊤ ≃ 1 and ?0 ≃ ⊥.
In the multiplicative fragment (MLL) of LL (using only ⊗, `, 1 and ⊥, and corresponding
to ⋆-autonomous categories), the question of type isomorphisms was answered positively
using a syntactic method based on proof-nets by Balat and Di Cosmo [2]: isomorphisms
emerge from associativity and commutativity of the multiplicative connectives ⊗ and `, as
well as neutrality of the multiplicative units 1 and ⊥. The question was also solved for the
polarized fragment of LL by one of the authors using game semantics [12]. It is conjectured
that isomorphisms in full LL correspond to those in its polarized fragment (Table 1 together
with the four exponential equations above). As a step towards solving this conjecture, we
prove the type isomorphisms in the multiplicative-additive fragment (MALL) of LL are
generated by the equational theory of Table 1 (and this applies at the same time to the class
of ⋆-autonomous categories with finite products).

This situation is much richer than in the multiplicative fragment since isomorphisms
include not only associativity, commutativity and neutrality, but also the distributivity of the
multiplicative connective ⊗ (resp. `) over the additive ⊕ (resp. &) as well as the associated
annihilation laws for the additive unit 0 (resp. ⊤) over the multiplicative connective ⊗
(resp. `). Using a semantic approach looks difficult as most of the known models of MALL
immediately come with unwanted isomorphisms not valid in the syntax: ⊤ ⊗ A ≃ ⊤ in
coherent spaces for example [7]. For this reason we use a syntactic method. We follow the
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Table 1 Type isomorphisms in MALL.

Commutativity A ⊗ B = B ⊗ A A ` B = B ` A A ⊕ B = B ⊕ A A & B = B & A

Associativity A ⊗ (B ⊗ C) = (A ⊗ B) ⊗ C A ` (B ` C) = (A ` B) ` C

A ⊕ (B ⊕ C) = (A ⊕ B) ⊕ C A & (B & C) = (A & B) & C

Distributivity A ⊗ (B ⊕ C) = (A ⊗ B) ⊕ (A ⊗ C) A ` (B & C) = (A ` B) & (A ` C)

Neutrality A ⊗ 1 = A A ` ⊥ = A A ⊕ 0 = A A & ⊤ = A

Annihilation A ⊗ 0 = 0 A ` ⊤ = ⊤

approach by Balat and Di Cosmo [2] based on proof-nets. Indeed, proof-nets provide a very
good syntax for linear logic where studying composition of proofs by cut, cut-elimination and
identity of proofs is very natural. However, already in [2] some trick had to be used to deal
with units as proof-nets are working perfectly only in the unit-free multiplicative fragment
of linear logic. If one puts units aside, there is a notion of proof-nets incorporating both
multiplicative and additive connectives in such a way that cut-free proofs are represented
in a canonical way, and cut-elimination can be dealt with in a parallel manner. This is the
syntax of proof-nets introduced by Hughes & Van Glabbeek in [10].

Our proof of the completeness of the equational theory of Table 1 goes in two steps.
First we adapt, in Section 3, the proof of Balat & Di Cosmo [2] to the setting of Hughes &
Van Glabbeek’s proof-nets [10]. This requires a precise analysis of the structure of proof-nets
because of the richer structure induced by the presence of the additive connectives. The
situation is much more complex than in the multiplicative setting since for example sub-
formulas can be duplicated through distributivity equations, breaking a linearity property
crucial in [2]. Once this is solved, it remains to add units (Section 4). By lack of a good-
enough notion of proof-nets for MALL including units, we go back to the sequent calculus to
deal with units on top of the results obtained for the unit-free fragment. This goes through
a characterization of the equality of proofs up to cut-elimination and axiom-expansion by
means of rule commutations. A result which is not surprising, but never proved before for
MALL as far as we know, and rather tedious to settle. Using it, we analyse the behaviour
of units inside isomorphisms to conclude that they can be replaced with fresh atoms, once
formulas are simplified appropriately. We can conclude by means of the unit-free case. Finally,
seeing MALL as a category, we extend our result to conclude that Table 1 (together with
A ⊸ B ≃ A⊥ ` B, De Morgan’s laws and involutivity of negation) provides the equational
theory of isomorphisms valid in all ⋆-autonomous categories with finite products (Section 5).

2 Definitions and preliminary results

2.1 Multiplicative-Additive Linear Logic
The multiplicative-additive fragment of linear logic [7], denoted by MALL, has formulas
given by the following grammar, where X belongs to a given enumerable set of atoms:

A, B := X | X⊥ | A⊗B | A ` B | 1 | ⊥ | A & B | A⊕B | ⊤ | 0

Orthogonality (·)⊥ expands into an involution on arbitrary formulas through X⊥⊥ = X on
an atom X, 1⊥ = ⊥, ⊥⊥ = 1, ⊤⊥ = 0, 0⊥ = ⊤ and De Morgan’s laws (A⊗B)⊥ = B⊥ ` A⊥,
(A`B)⊥ = B⊥⊗A⊥, (A & B)⊥ = B⊥ ⊕A⊥, (A⊕B)⊥ = B⊥ & A⊥. The non-commutative
De Morgan’s laws are the good notion of duality, as shown in the context of cyclic linear
logic where this leads to planar proof-nets [1]. This choice in our setting will often result in
planar graphs on our illustrations, with axiom links not crossing each others.

FSCD 2023
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Sequents are lists of formulas of the form ⊢ A1, . . . , An. Sequent calculus rules are:1

ax
⊢ A⊥,A

⊢ Γ ex
⊢ σ(Γ)

⊢ A, Γ ⊢ A⊥, ∆
cut⊢ Γ, ∆

⊢ A, Γ ⊢ B, ∆ ⊗
⊢ A⊗B, Γ, ∆

⊢ A, B, Γ `⊢ A ` B, Γ 1⊢ 1
⊢ Γ ⊥⊢ ⊥, Γ

⊢ A, Γ ⊢ B, Γ
&⊢ A & B, Γ

⊢ A, Γ ⊕1⊢ A⊕B, Γ
⊢ B, Γ ⊕2⊢ A⊕B, Γ ⊤⊢ ⊤, Γ

In practice we consider exchange rules as incorporated in the conclusion of the rule above, thus
dealing with rules like: ⊢ A, B, Γ, ∆ `⊢ Γ, A ` B, ∆

. In this spirit, when we write ⊢ Γ, A, B, ∆ `⊢ Γ, A ` B, ∆
we mean that the appropriate permutation is also incorporated in the rule above.

The main difference with the multiplicative fragment of linear logic (MLL) is the &-rule,
which introduces some sharing of the context Γ. From this comes the notion of a slice [7, 8]
which is a partial proof missing some additive component. Slices are obtained by using the
same rules as proofs except for the &-rule which is replaced by its two sliced versions:

⊢ A, Γ &1⊢ A & B, Γ
⊢ B, Γ &2⊢ A & B, Γ

By unit-free MALL, we mean the restriction of MALL to formulas not involving the
units 1, ⊥, ⊤ and 0, and as such without the 1, ⊥ and ⊤-rules. When speaking of a positive
formula, we mean a formula with main connective ⊗ or ⊕, a unit 1 or 0, or an atom X. A
negative formula is one with main connective ` or &, a unit ⊥ or ⊤, or a negated atom X⊥.

2.2 Linear isomorphisms
▶ Definition 1 (Isomorphism). Two formulas A and B are isomorphic, denoted A ≃ B, if
there exist proofs π of ⊢ A⊥, B and π′ of ⊢ B⊥, A whose composition by cut over B (resp. A)
is equal to the axiom on ⊢ A⊥, A (resp. ⊢ B⊥, B) up to axiom-expansion and cut-elimination.
(Axiom-expansion and cut-elimination for MALL are recalled in Appendix A.)

Because of the analogy with the λ-calculus and since there will be no ambiguity, we use
the notation =βη for equality of proofs up to cut-elimination (β) and axiom-expansion (η).
Similarly, =β is equality up to cut-elimination only. We use the notations π

B

▷◁ π′ for the
proof obtained by adding a cut on B between π and π′, and A

π, π′

≃ B when π and π′ define an
isomorphism between A and B, that is when π

B

▷◁ π′ =βη idA and π
A

▷◁ π′ =βη idB (where
idA is the axiom-expansion of the proof of ⊢ A⊥, A containing just an axiom rule).

We aim to prove that two MALL (resp. unit-free MALL) formulas are isomorphic if and
only if they are equal in the equational theory E (resp. E†) defined as follows.

▶ Definition 2 (Equational theories). We denote by E the equational theory given on Table 1
on Page 3, while E† denotes the part not involving units, i.e. with commutativity, associativity
and distributivity only.

Given an equational theory T , the notation A =T B means that formulas A and B are
equal in the theory T . As often, the soundness part is easy (but tedious) to prove.

▶ Theorem 3 (Isomorphisms soundness, see Lemma 3 in [12]). If A =E B then A ≃ B.

1 With A and B arbitrary formulas, Γ and ∆ contexts (i.e. lists of formulas) and σ a permutation.
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All the difficulty lies in the proof of the other implication, completeness, on which the
rest of this work focuses.

2.3 Axiom-expansion
A first simplification is that we can reduce the definition of isomorphisms to proofs with
expanded axioms only, no more using the η relation. Given an MALL proof π, we denote by
η(π) the η-normal form of π, i.e. the proof obtained by expanding iteratively all ax-rules in
π (axiom-expansion is confluent and strongly normalizing).

▶ Proposition 4 (Reduction to axiom-expanded proofs). Let π and ϖ be MALL proofs such
that π =βη ϖ. Then η(π) =β η(ϖ) with, in this sequence, only proofs in η-normal form.

Thus, we will from now on consider only proofs with expanded axioms, manipulated
through composition by cut and cut-elimination. To prove completeness, we start with the
unit-free case by using a syntactic approach based on the proof-nets from Hughes & Van
Glabbeek [10], which are a more canonical representation of proofs [11].

2.4 Proof-nets for unit-free MALL
We use the definition of unit-free MALL proof-net from [10]. Other definitions exist, see the
original one from Girard [8], or others such as [5, 9]. Still, the definition we take is one of
the most satisfactory, from the point of view of canonicity and cut-elimination for instance
(see [10, 11], or the introduction of [9] for a comparison of alternative definitions). We recall
here quickly this definition of proof-nets. Please refer to [10] for more details.

A sequent is seen as its syntactic forest with as internal vertices its connectives and as
leaves the atoms of its formulas. We always identify a formula A with its syntactic tree T (A).
A cut pair is a formula A ∗A⊥, for a formula A; the connective ∗ is unordered. A cut sequent
[Σ] Γ is composed of a list Σ of cut pairs and a sequent Γ. When Σ = ∅ is empty, we denote
it simply by Γ. When we write a `\&-vertex, we mean a `- or &-vertex (a negative vertex);
similarly a ⊗\⊕-vertex is a ⊗- or ⊕-vertex (a positive vertex). An additive resolution of a
cut sequent [Σ] Γ is any result of deleting zero or more cut pairs from Σ and one argument
subtree of each additive connective (& or ⊕) of Σ ∪ Γ. A &-resolution of a cut sequent [Σ] Γ
is any result of deleting one argument subtree of each &-connective of Σ ∪ Γ.

An (axiom) link on [Σ] Γ is an unordered pair of complementary leaves in Σ ∪ Γ (labeled
with X and X⊥). A linking λ on [Σ] Γ is a set of links on [Σ] Γ such that the sets of the
leaves of its links form a partition of the set of leaves of an additive resolution of [Σ] Γ,
additive resolution which is denoted [Σ] Γ ↾ λ.

A set of linkings Λ on [Σ] Γ toggles a &-vertex W if both arguments (called premises) of
W are in [Σ] Γ ↾ Λ :=

⋃
λ∈Λ[Σ] Γ ↾ λ. We say a link a depends on a &-vertex W in Λ if there

exist λ, λ′ ∈ Λ such that a ∈ λ\λ′ and W is the only &-vertex toggled by {λ; λ′}. The graph
GΛ is defined as [Σ] Γ ↾ Λ with the edges from ∪Λ and enriched with jump edges l→W for
each leaf l and each &-vertex W such that there exists a ∈ λ ∈ Λ, between l and some l′,
with a depending on W in Λ. When Λ = {λ} is composed of a single linking, we shall simply
denote Gλ = G{λ} (which is the graph [Σ] Γ ↾ λ with the edges from λ and no jump edge).

A switch edge of a `\&-vertex N is an in-edge of N , i.e. an edge between N and one of
its premises or a jump to N . A switching cycle is a cycle with at most one switch edge of
each `\&-vertex. A `-switching of a linking λ is any subgraph of Gλ obtained by deleting a
switch edge of each `-vertex; denoting by ϕ this choice of edges, the subgraph it yields is Gϕ.

FSCD 2023
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X1 X⊥
4

& ⊕ ∗

X5 X⊥
6 X⊥

2 X3

& ⊕

X1 X⊥
2 X3 X⊥

4

& ⊕ ∗

X5 X⊥
6

Figure 1 Graphs from an example of a proof-net: from left to right Gλ1 , Gλ2 and G{λ1;λ2}.

▶ Definition 5 (Proof-net). A unit-free MALL proof-net θ on a cut sequent [Σ] Γ is a set of
linkings satisfying:
(P0) Cut: Every cut pair of Σ has a leaf in θ.
(P1) Resolution: Exactly one linking of θ is on any given &-resolution of [Σ] Γ.
(P2) MLL: For every `-switching ϕ of every linking λ ∈ θ, Gϕ is a tree.
(P3) Toggling: Every set Λ ⊆ θ of two or more linkings toggles a &-vertex that is in no

switching cycle of GΛ.

These conditions are called the correctness criterion. Condition (P0) is here to prevent
unused ∗-vertices. A cut-free proof-net is one without ∗-vertices (it respects (P0) trivially).
Condition (P1) is a correctness criterion for ALL proof-nets [10] and (P2) is the Danos-
Regnier criterion for MLL proof-nets [3]. However, (P1) and (P2) together are insufficient
for cut-free MALL proof-nets, hence the last condition (P3) taking into account interactions
between the slices (see also [5] for a similar condition for example). Sets composed of a single
linking λ are not considered in (P3), for by (P2) the graph Gλ has no switching cycle.

An example of proof-net, illustrated on Figure 1, is the following. On the cut sequent
[X5 ∗X⊥

6 ] X1 & X⊥
2 , X3 ⊕X⊥

4 (where each Xi is an occurrence of the same atom X), set
λ1 = {(X1, X⊥

6 ), (X⊥
4 , X5)} and λ2 = {(X⊥

2 , X3)}. One can check {λ1; λ2} is a proof-net.
In the particular setting of isomorphisms, we mainly consider proof-nets with two con-

clusions. This allows to define a notion of duality on leaves and connectives. Consider a
cut sequent containing both A and A⊥. For V a vertex in (the syntax tree T (A) of) A, we
denote by V ⊥ the corresponding vertex in A⊥. As expected, V ⊥⊥ = V . This also respects
orthogonality for formulas on leaves: given a leaf l of A, labeled by a formula X, the label of
l⊥ is X⊥. We can also define a notion of duality on premises: given a premise of a vertex
V ∈ T (A), the dual premise of V ⊥ is the corresponding premise in T (A⊥). In other words,
if in L− V −R we consider the premise L then in R⊥ − V ⊥ − L⊥ its dual premise is L⊥.

▶ Definition 6 (Composition). Given proof-nets θ and ϑ of respective conclusions [Σ] Γ, A and
[Ξ] ∆, A⊥, the composition over A of θ and ϑ is the proof-net θ

A

▷◁ ϑ = {λ ∪ µ | λ ∈ θ, µ ∈ ϑ},
with conclusions [Σ, Ξ, A ∗A⊥] Γ, ∆.

For example, see Figure 7 with a composition of the proof-nets on Figure 5.

▶ Definition 7 (Cut-elimination). Let θ be a set of linkings on a cut sequent [Σ] Γ, and A∗A⊥

a cut pair in Σ. Define the elimination of A ∗A⊥ (or of the cut ∗ between A and A⊥) as:
(a) If A is an atom, delete A ∗A⊥ from Σ and replace any pair of links (l, A), (A⊥, m) (l

and m being other occurrences of A⊥ and A respectively) with the link (l, m).
(b) If A = A1 ⊗A2 and A⊥ = A⊥

2 ` A⊥
1 (or vice-versa), replace A ∗A⊥ with two cut pairs

A1 ∗A⊥
1 and A2 ∗A⊥

2 . Retain all original linkings.
(c) If A = A1 & A2 and A⊥ = A⊥

2 ⊕A⊥
1 (or vice-versa), replace A ∗A⊥ with two cut pairs

A1 ∗A⊥
1 and A2 ∗A⊥

2 . Delete all inconsistent linkings, namely those λ ∈ θ such that in
[Σ] Γ ↾ λ the children & and ⊕ of the cut do not take dual premises. Finally, “garbage
collect” by deleting any cut pair B ∗ B⊥ for which no leaf of B ∗ B⊥ is in any of the
remaining linkings.



R. Di Guardia and O. Laurent 26:7

See Figure 8 for a result on applying steps (b) and (c) to the proof-net of Figure 7.

▶ Proposition 8 (Proposition 5.4 in [10]). Eliminating a cut in a proof-net yields a proof-net.

▶ Theorem 9 (Theorem 5.5 in [10]). Cut-elimination of proof-nets is strongly normalizing
and confluent.

A linking λ on a cut sequent [Σ] Γ matches if, for every cut pair A ∗A⊥ in Σ, any given
leaf l of A is in [Σ] Γ ↾ λ if and only if l⊥ of A⊥ is in [Σ] Γ ↾ λ. A linking matches if and only
if, when cut-elimination is carried out, the linking never becomes inconsistent, and thus is
never deleted. This allows defining Turbo Cut-elimination [10], eliminating a cut in a single
step by removing inconsistent linkings.

3 Completeness for unit-free MALL

Our method relates closely to the one used by Balat and Di Cosmo in [2]. We work on proof-
nets, as they highly simplify the problem by representing proofs up to rule commutations [11].
We start by transposing the study of unit-free MALL isomorphisms to proof-nets of a
particular shape, called bipartite full (Sections 3.1 and 3.2). Then, we use the distributivity
isomorphisms to reduce the problem to special formulas, called distributed, allowing to
consider even more constrained proof-nets (Section 3.3). These are the key differences with
the proof in MLL from [2], where some properties are given for free as there are no slice
nor distributivity isomorphism. From this point the problem is similar to unit-free MLL,
with commutativity and associativity only. We conclude as in [2]: restricting the problem to
so-called non-ambiguous formulas, isomorphisms are easily characterized (Section 3.4).

3.1 Reduction to proof-nets
We desequentialize a unit-free MALL proof π (with expanded axioms) into a proof-net R(π)
by induction on π using the steps detailed on Figure 2, following [10] with the notation θ▷[Σ] Γ
for “θ is a set of linkings on the cut sequent [Σ] Γ”. As identified in Section 5.3.4 of [10],
desequentializing with both cut and &-rules is complex, for cuts can be shared (or not) when

translating a &-rule: θ ▷ [Σ, Ξ] A, Γ ϑ ▷ [Σ, Φ] B, Γ
&

θ ∪ ϑ ▷ [Σ, Ξ, Φ] A & B, Γ
. We choose to never share

cuts (Σ = ∅), thus desequentialization is a function. The cost being that the following &−cut

commutation yields different proof-nets (contrary to the other commutations, see [11]).
π1

⊢ A, B, Γ
π2

⊢ A, C, Γ
&⊢ A, B & C, Γ

π3

⊢ A⊥, ∆
cut⊢ B & C, Γ, ∆

≡

π1
⊢ A, B, Γ

π3

⊢ A⊥, ∆
cut⊢ B, Γ, ∆

π2
⊢ A, C, Γ

π3

⊢ A⊥, ∆
cut⊢ C, Γ, ∆

&⊢ B & C, Γ, ∆

▶ Theorem 10 (Sequentialization, Theorem 5.9 in [10]). A set of linkings on a cut sequent is
a translation of a MALL proof if and only if it is a proof-net.

▶ Definition 11 (Identity proof-net). We call identity proof-net of a unit-free MALL formula
A, the proof-net corresponding to the proof idA (the axiom-expansion of ax

⊢ A⊥,A ).

▶ Theorem 12 (Simulation Theorem). Let π and ϖ be unit-free MALL proof trees (with
expanded axioms). If π =β ϖ, then R(π) =β R(ϖ).

A notion of isomorphism A
θ, ϑ≃ B can be defined directly on proof-nets: θ and ϑ are two

cut-free proof-nets of respective conclusions A⊥, B and B⊥, A such that θ
B

▷◁ ϑ and ϑ
A

▷◁ θ

reduce by cut-elimination to identity proof-nets. Using the Simulation Theorem, we obtain:

FSCD 2023
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ax
{{(X, X⊥)}} ▷ [∅] X, X⊥

θ ▷ [Σ] Γ
ex

θ ▷ [Σ] σ(Γ)

θ ▷ [Σ] A, Γ ϑ ▷ [Ξ] A⊥, ∆
cut

{λ ∪ µ | λ ∈ θ, µ ∈ ϑ} ▷ [Σ, Ξ, A ∗A⊥] Γ, ∆

θ ▷ [Σ] A, Γ ϑ ▷ [Ξ] B, ∆
⊗

{λ ∪ µ | λ ∈ θ, µ ∈ ϑ} ▷ [Σ, Ξ] A⊗B, Γ, ∆
θ ▷ [Σ] A, B, Γ `

θ ▷ [Σ] A ` B, Γ

θ ▷ [Ξ] A, Γ ϑ ▷ [Φ] B, Γ
&

θ ∪ ϑ ▷ [Ξ, Φ] A & B, Γ
θ ▷ [Σ] A, Γ

⊕1
θ ▷ [Σ] A⊕B, Γ

θ ▷ [Σ] B, Γ
⊕2

θ ▷ [Σ] A⊕B, Γ

We use the implicit tracking of formula occurrences downwards through the rules.

Figure 2 Inductive definition of the translation of unit-free MALL proof trees to sets of linkings.

X⊥ X

X⊥ Y ⊥ Y X

` ⊗

X⊥ Y ⊥ Y X

& ⊕

Figure 3 Identity proof-nets (from left to right: atoms, `\⊗ and &\⊕).

▶ Theorem 13 (Type isomorphisms in proof-nets). Let A and B be two unit-free MALL
formulas. If A ≃ B then there exist two proof-nets θ and ϑ such that A

θ, ϑ≃ B.

3.2 Reduction to bipartite full proof-nets
▶ Definition 14 (Full, Ax -unique, Bipartite proof-net). A cut-free proof-net is called full if any
of its leaves has (at least) one link on it. Furthermore, if for any leaf there exists a unique
link on it (possibly shared among several linkings), then we call this proof-net ax -unique.

A cut-free proof-net is bipartite if it has two conclusions, A and B, and each of its links
is between a leaf of A and a leaf of B (no link between leaves of A, or between leaves of B).

We show identity proof-nets are bipartite ax-unique, and isomorphisms are bipartite full.
Using an induction on the formula A, we can prove the following results on the identity

proof-net of A (see Figure 3 for a graphical intuition).

▶ Proposition 15.
(i) An identity proof-net is bipartite ax-unique.
(ii) The axiom links of an identity proof-net are exactly the (l, l⊥), for any leaf l.
(iii) In the identity proof-net of A, exactly one linking is on any given additive resolution of

the conclusion A.

Neither fullness, ax-uniqueness nor bipartiteness is preserved by cut anti-reduction. A
counter-example is given on Figure 4, with a non bipartite proof-net and a non full one whose
composition reduces to the identity proof-net (bipartite ax-unique by Proposition 15(i)).2
However, if both compositions yield identity proof-nets, we get bipartiteness and fullness.

2 This example gives a retraction between (A ` A⊥) ⊗ B and ((A ` A⊥) ⊗ B) ⊕ B in MALL which is not
an isomorphism (as is the retraction between A and (A ⊸ A) ⊸ A = (A ⊗ A⊥) ` A in MLL).
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A

`

A⊥

⊗

B

B⊥

&

B⊥

`

A

⊗

A⊥

B

⊕

B

⊗

A⊥

`

A A⊥

⊗

A

`

B⊥

A

`

A⊥

⊗

B

B⊥

&

B⊥

`

A

⊗

A⊥

B

⊕

B

⊗

A⊥

`

A A⊥

⊗

A

`

B⊥

∗

Figure 4 Non bipartite proof-net (top-left), non full proof-net (top-right) and one of their
composition yielding the identity proof-net (bottom) (jump edges not represented).

▶ Lemma 16. Let θ and θ′ be cut-free proof-nets of respective conclusions A⊥, B and B⊥, A,
such that θ′ A

▷◁ θ reduces to the identity proof-net of B. For any linking λ ∈ θ, there exists
λ′ ∈ θ′ such that λ ∪ λ′ matches in the composition over B of θ and θ′, θ

B

▷◁ θ′.

Proof. Let us consider a linking λ ∈ θ, and call C the choices of premise on additive
connectives of B that λ makes. We search some λ′ ∈ θ′ making the dual choices of premise
on additive connectives of B⊥ compared to C. Consider the composition of θ and θ′ over
A. It reduces to the identity proof-net of B by hypothesis. By Proposition 15(iii), there
exists a unique linking in the identity proof-net of B corresponding to C. Furthermore, the
linkings of the identity proof-net are derived from the µ ∪ µ′ for µ a linking of θ and µ′ one
of θ′, with µ ∪ µ′ matching for a cut over A: a linking in the identity proof-net is a linking
of the form µ ∪ µ′ where axiom links (l, m) ∈ µ and (m⊥, l⊥) ∈ µ′ are replaced with (l, l⊥),
with l a leaf of B and m one of A⊥ (because an identity proof-net has only links of the form
(l, l⊥) by Proposition 15(ii)). Therefore, there exist µ ∈ θ and µ′ ∈ θ′ such that µ makes the
choices C on B and µ ∪ µ′ matches for the composition of θ and θ′ over both A and B. But
λ makes the same choices C on B as µ: λ ∪ µ′ also matches for a cut over B. ◀

▶ Corollary 17. Assuming A
θ, θ′

≃ B, θ and θ′ are bipartite.

Proof. We proceed by contradiction: w.l.o.g. there is a link a in some linking λ ∈ θ which
is between leaves of A⊥. By Lemma 16 there exists λ′ ∈ θ′ such that λ ∪ λ′ matches for
a cut over B. Whence a, which does not involve leaves of B, belongs to a linking of the
composition where cuts have been eliminated (it belongs to the linking resulting from λ∪ λ′).
But this reduction yields a bipartite proof-net by Proposition 15(i), a contradiction. ◀

▶ Lemma 18. Assume θ and θ′ are cut-free proof-nets of respective conclusions A⊥, B and
B⊥, A, and that their composition over B yields the identity proof-net of A. Then any leaf
of A⊥ (resp. A) has (at least) one axiom link on it in θ (resp. θ′).

▶ Theorem 19. Assuming A
θ, θ′

≃ B, θ and θ′ are bipartite full.

FSCD 2023
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A B C

⊕

⊗

C⊥ A⊥ B⊥ A⊥

` `

&

A B A C

⊗ ⊗

⊕

C⊥ B⊥ A⊥

&

`

Figure 5 Proof-nets for A ⊗ (B ⊕ C) ≃ (A ⊗ B) ⊕ (A ⊗ C).

3.3 Distribution
In general, isomorphisms do not yield ax-unique proof-nets. A counter-example is distributiv-
ity: A⊗ (B⊕C) ≃ (A⊗B)⊕ (A⊗C), see Figure 5. Nonetheless, distributivity equations are
the only ones in E† not giving ax-unique proof-nets. We will restrict our study to so-called
distributed formulas. Once formulas are distributed, distributivity isomorphisms can be
ignored, and isomorphisms between distributed formulas happen to be bipartite ax-unique.

▶ Definition 20 (Distributed formula). An MALL formula is distributed if it does not have
any sub-formula of the form A⊗ (B ⊕ C), (A⊕B)⊗ C, A⊗ 1, 1⊗A, A⊕ 0, 0⊕A, A⊗ 0,
0⊗A or their duals (C & B)`A, C ` (B & A), ⊥`A, A`⊥, ⊤& A, A &⊤, ⊤`A, A`⊤
(where A, B and C are any formulas).

▶ Remark. This notion is stable by duality: if A is distributed, so is A⊥.

▶ Proposition 21. If E is complete for isomorphisms between distributed formulas, then it is
complete for isomorphisms between arbitrary formulas.

Proof. Up to equations of Table 1, any formula can be rewritten into a distributed one. ◀

We mostly use the correctness criterion through the fact we can sequentialize, i.e. recover
a proof tree from a proof-net by Theorem 10. However, in order to prove ax-uniqueness, we
make a direct use of the correctness criterion to deduce geometric properties of proof-nets.
This part of the proof takes benefits from the specificities of this syntax. We begin with
two preliminary results. For Λ a set of linkings and W a &-vertex, ΛW denote the set of all
linkings in Λ whose additive resolution does not contain the right argument of W .

▶ Lemma 22 (Lemma 4.32 in [10], adapted). Let ω be a jump-free switching cycle in a
proof-net θ. There exists a subset of linkings Λ ⊆ θ such that ω ⊆ GΛ, ω ̸⊆ GΛW and for any
&-vertex W toggled by Λ, there exists an axiom link a ∈ ω depending on W in Λ.

For U and V vertices in a tree, their first common descendant is the vertex of the tree
which is a descendant of both U and V and which has no descendant respecting this property
(with a tree represented with its root at the bottom, which is a descendant of the leaves).

▶ Lemma 23. Let θ be a proof-net of conclusions Γ, A. If there is a jump edge l
j−→W with

l, W ∈ T (A) and W not a descendant of l, then their first common descendant C is a `.

Proof. As there is a jump l
j−→W , there exist linkings λ, λ′ ∈ θ such that W is the only &

toggled by {λ; λ′}, and a link a ∈ λ\λ′ using the leaf l. In particular, the jump l
j−→W is in

G{λ;λ′}. For l and W are both in the additive resolution of λ, both premises of C are in the
additive resolution of λ, thus C cannot be an additive connective, so not a & nor a ⊕-vertex.

Assume by contradiction that C is a ⊗. Call δ the path in T (A) from W to C, and
µ the one from C to l (see Figure 6). Then, (l j−→ W )δµ is a switching cycle in G{λ;λ′}.
According to (P3), there exists a & toggled by {λ; λ′} not in any switching cycle of G{λ;λ′}.
A contradiction, for W is the only & toggled by {λ; λ′}. Whence, C can only be a `. ◀
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A

T (A)

l

W&

C

µ

δ

j

Figure 6 Illustration of the proof of Lemma 23.

A B C

⊕

⊗

C⊥ A⊥ B⊥ A⊥

` `

&

A B A C

⊗ ⊗

⊕

C⊥ B⊥ A⊥

&

`
∗

Figure 7 Proof-nets from Figure 5 composed by cut on (A ⊗ B) ⊕ (A ⊗ C).

Now, let us prove that isomorphisms of distributed formulas are bipartite ax-unique. We
will consider proof-nets corresponding to an isomorphism that we cut and where we eliminate
all cuts not involving atoms. To give some intuition, let us consider the non-ax-unique
proof-nets of Figure 5. Composing them together by cut on (A ⊗ B) ⊕ (A ⊗ C) gives the
proof-net illustrated on Figure 7. Reducing all cuts not involving atoms yields the proof-net
on Figure 8, that we call an almost reduced composition. We stop there because of the
switching cycle produced by the two links on A (dashed in blue on Figure 8), less visible in the
non-reduced composition of Figure 7. However, reducing all cuts gives the identity proof-net,
which has no switching cycle: during these reductions, both links on A are merged. By using
almost reduced composition, we are going to prove that links preventing ax-uniqueness yield
switching cycles, and moreover that these cycles are due to non-distributed formulas only.

▶ Definition 24 (Almost reduced composition). Take θ and θ′ cut-free proof-nets of respective
conclusions A, B and B⊥, C. The almost reduced composition over B of θ and θ′ is the
proof-net resulting from the composition over B of θ and θ′ where we repeatedly reduce all
cuts not involving atoms ( i.e. not applying step (a) of Definition 7).

Let us fix A and B two unit-free MALL (not necessarily distributed yet) formulas as well
as θ and θ′ such that A

θ, θ′

≃ B. By Theorem 19, θ and θ′ are bipartite full. We denote by
ϑ the almost reduced composition over B of θ and θ′. Here, we can extend our duality on
vertices and premises (defined in Section 2.4) to links.

A B C

⊕

⊗

C⊥ A⊥ B⊥ A⊥ A B A C C⊥ B⊥ A⊥

&

`
∗
∗
∗
∗

Figure 8 An almost reduced composition of the proof-nets on Figure 5.
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A A⊥B B⊥
...
∗

...T (A) T (A⊥)
l . . . m . . . . . . m⊥ . . .

a

l⊥

a⊥

Figure 9 Illustration of Lemma 25.

▶ Lemma 25. Given l a leaf of A (resp. A⊥) and m one of B⊥ (resp. B), there is an axiom
link a = (l, m) in some linking λ ∈ ϑ if and only if there is an axiom link (l⊥, m⊥) in the
same linking λ, that we will denote a⊥ = (l⊥, m⊥) (see Figure 9).

Proof. By symmetry, assume (l, m) ∈ λ ∈ ϑ. As the cut m ∗m⊥ belongs to the additive
resolution of λ (for m is inside), m⊥ is a leaf in this resolution. Thus, there is a link
(m⊥, l′) ∈ λ for some leaf l′, which necessarily belongs to A by bipartiteness of θ′. It stays to
prove l′ = l⊥. If we were to eliminate all cuts in ϑ, we would get the identity proof-net on A

by hypothesis. But eliminating the cut m ∗m⊥ yields a link (l, l′), which is not modified by
the elimination of the other atomic cuts. By Proposition 15(ii), l′ = l⊥ follows. ◀

▶ Lemma 26. Let λ be a linking of ϑ, and V an additive vertex in its additive resolution.
Then V ⊥ is also inside, with as premise kept the dual premise of the one kept for V .

▶ Lemma 27. Let W and P be respectively a &-vertex and a ⊕-vertex in ϑ, with W an
ancestor of P . Then for any axiom link a depending on W in ϑ, a also depends on P ⊥ in ϑ.

Proof. There exist linkings λ, λ′ ∈ ϑ such that W is the only & toggled by {λ; λ′} and
a ∈ λ\λ′. We consider a linking λP ⊥ defined by taking an arbitrary &-resolution of λ where
we choose the other premise for P ⊥ (and arbitrary premises for &-vertices introduced this
way): by (P1), there exists a unique linking on it. By Lemma 26, the additive resolutions
of λ and λP ⊥ (resp. λ and λ′) differ exactly on ancestors of P and P ⊥ (resp. W and W ⊥).
Thus, the additive resolutions of λ′ and λP ⊥ also differ exactly on ancestors of P and P ⊥,
for W is an ancestor of P . In particular, {λ; λP ⊥}, as well as {λ′; λP ⊥}, toggles only P ⊥. If
a ∈ λP ⊥ , then a depends on P ⊥ in {λ′; λP ⊥}. Otherwise, a depends on P ⊥ in {λ; λP ⊥}. ◀

The key result to use distributivity is that a positive vertex “between” a leaf l and a
&-vertex W in the same tree prevents them from interacting, i.e. there is no jump l

j−→W .

▶ Lemma 28. Let l
j−→W be a jump edge in ϑ, with l not an ancestor of W and l, W ∈ T (A⊥)

(resp. T (A)). Denoting by N the first common descendant of l and W , there is no positive
vertex in the path between N and W in T (A⊥) (resp. T (A)).

Proof. Let P be a vertex on the path between N and W in T (A⊥). By Lemma 23, N is a
`-vertex. We prove by contradiction that P can neither be a ⊕ nor a ⊗-vertex.

Suppose P is a ⊕-vertex. By Lemma 27, a depends on P ⊥, and so does a⊥ through
Lemma 25: there is a jump edge l⊥ j−→ P ⊥. Applying Lemma 23, the first common
descendant of l⊥ and P ⊥, which is N⊥, is a `-vertex: a contradiction as it is a ⊗-vertex.

Assume now P to be a ⊗-vertex. As there is a jump l
j−→W , there exist linkings λ, λ′ ∈ ϑ

and a leaf m of B such that W is the only & toggled by {λ; λ′} and a = (l, m) ∈ λ\λ′. For P is
a ⊗, there is a leaf p which is an ancestor of P in the additive resolution of λ, from a different
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A⊥ A

l p

W&

P⊗

N`

l⊥p⊥

W ⊥⊕
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B B⊥

. . . q m m⊥q⊥ . . .

∗
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a a⊥
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Figure 10 Switching cycle containing W if P is a ⊗-vertex in the proof of Lemma 28.

A⊥
...

∗
∗
...

AB B⊥

T (A⊥) T (A)
l . . . l0 l1 . . . . . . l⊥

1 l⊥
0

. . .

a

b

l⊥

a⊥
b⊥

Figure 11 Almost reduced composition ϑ of θ and θ′ by cut over B in the proof of Theorem 29.

premise of P than W ; it is used by a link b = (p, q) ∈ λ3 (see Figure 10). Then the switching
cycle l

j−→ W → P ← p b— q → ∗ ← q⊥ b⊥— p⊥ → P ⊥ → N⊥ ← l⊥ a⊥— m⊥ → ∗ ← m a— l

(dashed in blue on Figure 10) belongs to G{λ;λ′}. Contradiction: W , the only & toggled by
{λ; λ′}, cannot be in any switching cycle of G{λ;λ′} by (P3). ◀

▶ Theorem 29. Assuming A
θ, θ′

≃ B with A and B distributed, θ and θ′ are bipartite ax-unique.

Proof. We already know that θ and θ′ are bipartite full thanks to Theorem 19. We reason
by contradiction and assume w.l.o.g. that θ is not ax-unique: there exist a leaf l of A⊥ and
two distinct leaves l0 and l1 of B with links a = (l, l0) and b = (l, l1) in θ. We consider ϑ

the almost reduced composition of θ and θ′ over B, depicted on Figure 11. By Lemma 16, a

and b are also links in ϑ (for the linkings they belong to in θ have matching linkings in θ′,
and we did not eliminate atomic cuts). Using Lemma 25, we have in Gϑ a switching cycle
ω = l a— l0 → ∗ ← l⊥

0
a⊥— l⊥ b⊥— l⊥

1 → ∗ ← l1
b— l.

Let Λ be a set of linkings given by Lemma 22 applied to ω. As there are two distinct
links on l in ω ⊆ GΛ, Λ contains at least two linkings. By (P3), there exists W a & toggled
by Λ that is not in any switching cycle of GΛ. By Lemma 22, a, a⊥, b or b⊥ depends on W .
So a or b depends on W by Lemma 25; w.l.o.g. a depends on W . The vertex W belongs
to either T (A) or T (A⊥): up to considering a⊥ instead of a, W is in T (A⊥). Remark l is
not an ancestor of W : if it were, by symmetry assume it is a left-ancestor. Whence a and b

belong to ΛW , so a⊥ and b⊥ too (Lemma 25); thus ω ⊆ GΛW , contradicting Lemma 22. By
Lemma 23, the first common descendant N of l and W in T (A⊥) is a `. There is a ⊗\⊕ on
the path between the ` N and its ancestor the & W in T (A⊥), for there is no sub-formula
of the shape −` (−&−) in the distributed A⊥. This contradicts Lemma 28. ◀

3 With q ̸= m, as a and b are two distinct links in the same linking λ.
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3.4 Non-ambiguous formulas & Completeness for unit-free MALL
Once our study is restricted to bipartite ax-unique proof-nets, we can also restrict formulas.

▶ Definition 30 (Non-ambiguous formula). A formula A is said non-ambiguous if each atom
in A occurs at most once positive and once negative.

▶ Remark. This means all leaves in A are distinct. If A is non-ambiguous, so is A⊥.
For instance, X & X⊥ is non-ambiguous, whereas (A⊗B)⊕ (A⊗ C) is ambiguous. The

reduction to non-ambiguous formulas requires to restrict to distributed formulas first: in
(A⊗B)⊕ (A⊗ C) ≃ A⊗ (B ⊕ C) we need the two occurrences of A to factorize. The two
following results are a direct adaptation of Section 3 in [2].

▶ Corollary 31 (Reduction to distributed non-ambiguous formulas). The set of couples of
distributed formulas A and B such that A

θ, ϑ≃ B is the set of instances (by a substitution on
atoms) of couples of distributed non-ambiguous formulas A′ and B′ such that A′θ

′, ϑ′

≃ B′.

▶ Corollary 32. Let A and B be non-ambiguous formulas. If there exist bipartite proof-nets
θ and ϑ of respective conclusions A⊥, B and B⊥, A, then A

θ, ϑ≃ B.

We then prove the completeness of E† for unit-free MALL by reasoning as in Section 4
of [2] (with some more technicalities for we reorder not only `-vertices but also &-vertices).

▶ Theorem 33 (Isomorphisms completeness for unit-free MALL). Given A and B two unit-free
MALL formulas, if A ≃ B, then A =E† B.

4 Completeness for MALL with units

We now consider full MALL, with units, and show how to reduce it to the unit-free case.
We solve this addition purely in sequent calculus showing that, for distributed formulas,
multiplicative and additive units can be replaced by fresh atoms.

A key property of proof-nets is to define a quotient of sequent calculus proofs up to rule
commutations [11] (see Appendix A for rule commutations in MALL). Because no such notion
of proof-nets exist with units, we are forced to stay in the sequent calculus, meaning that we
have to deal with possible rule commutations. As a key example, cut-elimination in proof-nets
is confluent and leads to a unique normal form. This is not true in the sequent calculus and
we need to relate the different possible cut-free proofs obtained by cut-elimination.

▶ Theorem 34 (Confluence up to rule commutations). If π1 and π2 are cut-free proofs obtained
by cut-elimination from the same proof π, then π1 and π2 are equal up to rule commutations.

This result is not surprising but has not already been proved as far as we know for it is
rather tedious to establish. It is an important general result about sequent calculus which
we are convinced should hold for full linear logic. It can be lifted to βη-equality of proofs.

▶ Theorem 35. Let π and ϖ be βη-equal MALL proofs. Then, letting π′ (resp. ϖ′) be a
result of expanding all axioms and then eliminating all cuts in π (resp. ϖ), π′ is equal to ϖ′

up to rule commutations.

After these general properties, let us move to the question of type isomorphisms. We
need to analyse the behaviour of units in proofs equal to idA up to rule commutations. We
only do so for a distributed formula A as we have already seen it is enough in Section 3.3.
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▶ Proposition 36. Let π be a proof equal, up to rule commutations, to idA with A distributed.
The ⊤-rules of π are of the shape ⊤⊢ ⊤, 0 (with ⊤ in A being the dual of 0 in A⊥,
or vice-versa) and ⊥-rules and 1-rules come by pairs separated with ⊕i-rules only, called a

1/ ⊕ /⊥-pattern:
1⊢ 1 ρ

⊢ F ⊥⊢ ⊥, F

where ρ is a sequence of ⊕i-rules (with ⊥ in A being the

dual of 1 in A⊥, or vice-versa).

Proof. The key idea is to find properties of idA preserved by all rule commutations and
ensuring the properties described in the statement. For any sequent S in the proof:
(1) the formulas of S are distributed;
(2) if ⊤ is a formula of S, then S = ⊢ ⊤, 0;
(3) if ⊥ is a formula of S, then S = ⊢ ⊥, F with F given by the following grammar

F := 1 | F ⊕ D | D ⊕ F , where the distinguished 1 is the dual of ⊥ in A⊥ if ⊥ a
sub-formula of A (or vice-versa), D is any formula, and the sub-proof of π above S is a
sequence of ⊕i rules leading to the distinguished 1;

(4) if B & C is a formula of S, then S = ⊢ B & C, F with F given by the following grammar
F := C⊥ ⊕ B⊥ | F ⊕ D | D ⊕ F , where the distinguished C⊥ ⊕ B⊥ is the dual of
B & C in A⊥ if B & C a sub-formula of A (or vice-versa), D is any formula, and in the
sub-proof of π above S the ⊕-rules of the distinguished C⊥ ⊕B⊥ are a ⊕2-rule in the
left-branch of the &-rule of B & C, and a ⊕1-rule in its right branch;

(5) if S contains several negative formulas or several positive formulas, then its negative
formulas are `-formulas. ◀

These properties are preserved by cut anti-reduction.

▶ Lemma 37. If A
π, π′

≃ B with π and π′ cut-free then all ⊤-rules in π and π′ are of the form
⊤⊢ ⊤, 0 and all ⊥-rules and 1-rules belong to 1/⊕ /⊥-patterns.

Moving each ⊥-rule up to the associated 1-rule (which can be done up to βη-equality)
allows us to consider units as fresh atoms introduced by ax-rules and to apply Theorem 33.

▶ Theorem 38 (Isomorphisms completeness with units). If A ≃ B then A =E B.

5 Star-autonomous categories with finite products

We prove here that the equational theory E (along A ⊸ B ≃ A⊥ `B, De Morgan’s laws and
involutivity of negation) also corresponds to the isomorphisms present in all ⋆-autonomous
categories with finite products. For the historical result of how linear logic can be seen as a
category, see [15].

We establish this result from the one on MALL, first proving that MALL (with proofs con-
sidered up to βη-equality) defines a ⋆-autonomous category with finite products (Section 5.1).
Then, we conclude using a semantic method (Section 5.2).

5.1 MALL as a star-autonomous category with finite products

The logic MALL, with proofs taken up to βη-equality, defines a ⋆-autonomous category with
finite products, that we will call MALL. Indeed, we can define it as follows.
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Objects of MALL are formulas of MALL, while its morphisms from A to B are proofs
of ⊢ A⊥, B, considered up to βη-equality.4 One can check that a proof of MALL is an
isomorphism if and only if, when seen as a morphism, it is an isomorphism in MALL.

We define a bifunctor ⊗ on MALL, associating to formulas (i.e. objects) A and B the
formula A ⊗ B and to proofs (i.e. morphisms) π0 and π1 respectively of ⊢ A⊥

0 , B0 and
⊢ A⊥

1 , B1 the following proof of ⊢ (A0 ⊗A1)⊥, B0 ⊗B1:

π0

⊢ A⊥
0 , B0

π1

⊢ A⊥
1 , B1 ⊗

⊢ A⊥
1 , A⊥

0 , B0 ⊗B1 `
⊢ A⊥

1 ` A⊥
0 , B0 ⊗B1

One can check that (MALL,⊗, 1, α, λ, ρ, γ) forms a symmetric monoidal category, where 1 is
the 1-formula, α are isomorphisms of MALL associated to (A⊗B)⊗ C ≃ A⊗ (B ⊗ C) seen
as a natural isomorphism of MALL, and similarly for λ with 1⊗A ≃ A, ρ with A⊗ 1 ≃ A,
and γ with A⊗B ≃ B ⊗A.

Furthermore, define A ⊸ B := A⊥ ` B and evA,B as the following morphism from
(A ⊸ B)⊗A to B (i.e. a proof of ⊢ A⊥ ` (B⊥ ⊗A), B):

ax
⊢ B⊥,B

ax
⊢ A⊥,A ⊗

⊢ A⊥, B⊥ ⊗A, B `
⊢ A⊥ ` (B⊥ ⊗A), B

It can be checked that MALL is a symmetric monoidal closed category with as exponential
object (A ⊸ B, evA,B) for objects A and B.

Moreover, one can also check that ⊥ is a dualizing object for this category, making MALL
a ⋆-autonomous category. This relies on the following morphism from (A ⊸ ⊥) ⊸ ⊥ to A

(which is an inverse of the curryfication of evA,⊥):

1⊢ 1

ax
⊢ A⊥,A

⊥
⊢ A⊥,⊥, A `
⊢ A⊥ `⊥, A ⊗

⊢ 1⊗ (A⊥ `⊥), A

Finally, ⊤ is a terminal object of MALL, and A & B is the product of objects A and B,
with as projections πA and πB the following morphisms respectively from A & B to A and
from A & B to B:

ax
⊢ A⊥,A ⊕2

⊢ B⊥ ⊕A⊥, A
and

ax
⊢ B⊥,B ⊕1

⊢ B⊥ ⊕A⊥, B

Therefore, MALL is a ⋆-autonomous category with finite products [15].

5.2 Isomorphisms of star-autonomous categories with finite products
We take the same notations as in the previous section (& for product, . . . ). One can easily
check that isomorphisms in a ⋆-autonomous category with finite products form a congruence
(as all binary connectives define bifunctors), and that E is sound (i.e. that equations defining

4 We recall that (·)⊥ is defined by induction, making it an involution.
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Table 2 De Morgan’s isomorphisms.

A ⊸ B ≃ A⊥ ` B X⊥⊥ ≃ X

(A⊗B)⊥ ≃ B⊥ ` A⊥ (A ` B)⊥ ≃ B⊥ ⊗A⊥

1⊥ ≃ ⊥ ⊥⊥ ≃ 1
(A & B)⊥ ≃ B⊥ ⊕A⊥ (A⊕B)⊥ ≃ B⊥ & A⊥

⊤⊥ ≃ 0 0⊥ ≃ ⊤

E in Table 1 on Page 3 are isomorphisms in any ⋆-autonomous category with finite products).
Moreover the isomorphisms of Table 2 (which are equalities in MALL) also hold in any
⋆-autonomous category with finite products.

Completeness follows by Theorem 38 (isomorphisms in MALL are exactly those given by
E) and from the fact that two objects definable in the language of ⋆-autonomous categories
with finite products are equal in MALL if and only if they are related by the equational theory
generated by Table 2. For example, one can deduce (A ⊸ ⊥) ⊸ ⊥ ≃ (A⊥ ` ⊥)⊥ ` ⊥ ≃
(A⊥ ` ⊥)⊥ ≃ 1 ⊗ A⊥⊥ ≃ A⊥⊥ ≃ A (the last equation being derivable by induction on
A). Henceforth, isomorphisms valid in all ⋆-autonomous categories with finite products are
included in E enriched with Table 2.

▶ Theorem 39 (Isomorphisms in ⋆-autonomous categories with finite products). E enriched
with Table 2 is a sound and complete equational theory for isomorphisms in ⋆-autonomous
categories with finite products.

6 Conclusion

Extending the result of Balat and Di Cosmo in [2], we give an equational theory characterising
type isomorphisms in multiplicative-additive linear logic with units as well as in ⋆-autonomous
categories with finite products: the one described on Table 1 on Page 3 (together with Table 2
for ⋆-autonomous categories). Looking at the proof, we get as a sub-result that isomorphisms
for ALL (resp. unit-free ALL) are given by the equational theory E (resp. E†) restricted to
ALL formulas (and more generally this applies to any fragment of MALL, thanks to the
sub-formula property). Proof-nets were a major tool to prove completeness, as notions like
fullness and ax-uniqueness are much harder to define and manipulate in sequent calculus.
However, we could not use them for taking care of the (additive) units, because there is no
known appropriate notion of proof-nets. We have thus been forced to develop (some parts
of) the theory of cut-elimination, axiom-expansion and rule commutations for the sequent
calculus of MALL with units.

The immediate question to address is the extension of our results to the characterization
of type isomorphisms for full propositional linear logic, thus including the exponential
connectives. This is clearly not immediate since the interaction between additive and
exponential connectives is not well described in proof-nets.

A more general problem is the study of type retractions (where only one of the two
compositions yields an identity) which is also much more difficult (see for example [13]). The
question is mostly open in the case of linear logic. Even in multiplicative linear logic (where
there is for example a retraction between A and (A ⊸ A) ⊸ A = (A⊗A⊥)`A which is not
an isomorphism, and where the associated proof-nets are not bipartite), no characterization
is known. In the multiplicative-additive fragment, the problem looks even harder, with more
retractions; for instance the one depicted on Figure 4, but there also is a retraction between
A and A⊕A.
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Table 3 Axiom-expansion in the sequent calculus of MALL.

` − ⊗ ax
⊢ A ⊗ B, B⊥ ` A⊥

η−→

ax
⊢ A⊥,A

ax
⊢ B⊥,B

⊗
⊢ A ⊗ B, A⊥, B⊥ `

⊢ A ⊗ B, B⊥ ` A⊥

& − ⊕ ax
⊢ A ⊕ B, B⊥ & A⊥

η−→

ax
⊢ B, B⊥ ⊕2

⊢ A ⊕ B, B⊥

ax
⊢ A, A⊥ ⊕1

⊢ A ⊕ B, A⊥
&

⊢ A ⊕ B, B⊥ & A⊥

⊥ − 1 ax
⊢ 1, ⊥

η−→
1⊢ 1 ⊥⊢ 1, ⊥

⊤ − 0 ax
⊢ 0, ⊤

η−→ ⊤⊢ 0, ⊤

Table 4 Cut-elimination in sequent calculus (key cases).

ax
ax

⊢ A⊥,A
π

⊢ A, Γ
cut⊢ A, Γ

β−→
π

⊢ A, Γ

` − ⊗

π1

⊢ A, Γ
π2

⊢ B, ∆
⊗

⊢ A ⊗ B, Γ, ∆

π3

⊢ B⊥, A⊥, Σ `
⊢ B⊥ ` A⊥, Σ

cut⊢ Γ, ∆, Σ

β−→ π1

⊢ A, Γ

π2

⊢ B, ∆
π3

⊢ B⊥, A⊥, Σ
cut

⊢ A⊥, ∆, Σ
cut⊢ Γ, ∆, Σ

& − ⊕1

π1

⊢ A1, Γ
π2

⊢ A2, Γ
&⊢ A1 & A2, Γ

π3

⊢ A⊥2 , ∆ ⊕1
⊢ A⊥2 ⊕ A⊥1 , ∆

cut⊢ Γ, ∆

β−→
π2

⊢ A2, Γ
π3

⊢ A⊥2 , ∆
cut⊢ Γ, ∆

& − ⊕2

π1

⊢ A1, Γ
π2

⊢ A2, Γ
&⊢ A1 & A2, Γ

π3

⊢ A⊥1 , ∆ ⊕2
⊢ A⊥2 ⊕ A⊥1 , ∆

cut⊢ Γ, ∆

β−→
π1

⊢ A1, Γ
π3

⊢ A⊥1 , ∆
cut⊢ Γ, ∆

⊥ − 1 1⊢ 1

π
⊢ Γ ⊥⊢ Γ, ⊥

cut⊢ Γ

β−→
π

⊢ Γ

(No ⊤ − 0 key case as there are no rule for 0.)
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Table 5 Cut-elimination in sequent calculus (commutative cases).

` − cut

π1

⊢ A, B, C, Γ `⊢ A, B ` C, Γ
π2

⊢ A⊥, ∆
cut⊢ B ` C, Γ, ∆

β−→

π1

⊢ A, B, C, Γ
π2

⊢ A⊥, ∆
cut⊢ B, C, Γ, ∆ `⊢ B ` C, Γ, ∆

⊗ − cut − 1

π1

⊢ A, B, Γ
π2

⊢ C, ∆
⊗

⊢ A, B ⊗ C, Γ, ∆
π3

⊢ A⊥, Σ
cut⊢ B ⊗ C, Γ, ∆, Σ

β−→

π1

⊢ A, B, Γ
π3

⊢ A⊥, Σ
cut⊢ B, Γ, Σ

π2

⊢ C, ∆
⊗

⊢ B ⊗ C, Γ, ∆, Σ

⊗ − cut − 2

π1

⊢ B, Γ
π2

⊢ A, C, ∆
⊗

⊢ A, B ⊗ C, Γ, ∆
π3

⊢ A⊥, Σ
cut⊢ B ⊗ C, Γ, ∆, Σ

β−→ π1

⊢ B, Γ

π2

⊢ A, C, ∆
π3

⊢ A⊥, Σ
cut⊢ C, ∆, Σ

⊗
⊢ B ⊗ C, Γ, ∆, Σ

& − cut

π1

⊢ A, B, Γ
π2

⊢ A, C, Γ
&⊢ A, B & C, Γ

π3

⊢ A⊥, ∆
cut⊢ B & C, Γ, ∆

β−→

π1

⊢ A, B, Γ
π3

⊢ A⊥, ∆
cut⊢ B, Γ, ∆

π2

⊢ A, C, Γ
π3

⊢ A⊥, ∆
cut⊢ C, Γ, ∆

&⊢ B & C, Γ, ∆

⊕i − cut

π1

⊢ A, Bi, Γ ⊕i⊢ A, B1 ⊕ B2, Γ
π2

⊢ A⊥, ∆
cut⊢ B1 ⊕ B2, Γ, ∆

β−→

π1

⊢ A, Bi, Γ
π2

⊢ A⊥, ∆
cut⊢ Bi, Γ, ∆ ⊕i⊢ B1 ⊕ B2, Γ, ∆

⊥ − cut

π1

⊢ A, Γ
⊥⊢ A, ⊥, Γ

π2

⊢ A⊥, ∆
cut⊢ ⊥, Γ, ∆

β−→

π1

⊢ A, Γ
π2

⊢ A⊥, ∆
cut⊢ Γ, ∆

⊥⊢ ⊥, Γ, ∆

⊤ − cut
⊤⊢ A, ⊤, Γ

π

⊢ A⊥, ∆
cut⊢ ⊤, Γ, ∆

β−→ ⊤⊢ ⊤, Γ, ∆

cut − cut

π1

⊢ A, B, Γ
π2

⊢ B⊥, ∆
cut⊢ A, Γ, ∆

π3

⊢ A⊥, Σ
cut⊢ Γ, ∆, Σ

β−→

π1

⊢ A, B, Γ
π3

⊢ A⊥, Σ
cut⊢ B, Γ, Σ

π2

⊢ B⊥, ∆
cut⊢ Γ, ∆, Σ

(No ax − cut nor 1 − cut nor 0 − cut commutative cases as the ax and 1-rules have no context and there are no rule for 0.)

Table 6 Rule commutations involving a unit rule.

⊤⊢ A1 ` A2, ⊤, Γ
C`

⊤−→
←−
C⊤`

⊤⊢ A1, A2, ⊤, Γ `⊢ A1 ` A2, ⊤, Γ

π1

⊢ A1, A2, Γ `⊢ A1 ` A2, Γ
⊥⊢ A1 ` A2, ⊥, Γ

C`
⊥−→
←−
C⊥`

π1

⊢ A1, A2, Γ
⊥⊢ A1, A2, ⊥, Γ `⊢ A1 ` A2, ⊥, Γ

⊤⊢ A1 ⊗ A2, ⊤, Γ, ∆
C

⊗
⊤−→
←−
C⊤

⊗

⊤⊢ A1, ⊤, Γ
π

⊢ A2, ∆
⊗

⊢ A1 ⊗ A2, ⊤, Γ, ∆

π1

⊢ A1, Γ
π2

⊢ A2, ∆
⊗

⊢ A1 ⊗ A2, Γ, ∆
⊥⊢ A1 ⊗ A2, ⊥, Γ, ∆

C
⊗
⊥−→
←−
C⊥

⊗

π1

⊢ A1, Γ
⊥⊢ A1, ⊥, Γ

π2

⊢ A2, ∆
⊗

⊢ A1 ⊗ A2, ⊥, Γ, ∆

⊤⊢ A1 ⊗ A2, ⊤, Γ, ∆
C

⊗
⊤−→
←−
C⊤

⊗

π
⊢ A1, Γ ⊤⊢ A2, ⊤, ∆

⊗
⊢ A1 ⊗ A2, ⊤, Γ, ∆

π1

⊢ A1, Γ
π2

⊢ A2, ∆
⊗

⊢ A1 ⊗ A2, Γ, ∆
⊥⊢ A1 ⊗ A2, ⊥, Γ, ∆

C
⊗
⊥−→
←−
C⊥

⊗

π1

⊢ A1, Γ

π2

⊢ A2, ∆
⊥⊢ A2, ⊥, ∆
⊗

⊢ A1 ⊗ A2, ⊥, Γ, ∆

⊤⊢ A1 & A2, ⊤, Γ
C&

⊤−→
←−
C⊤

&

⊤⊢ A1, ⊤, Γ ⊤⊢ A2, ⊤, Γ
&⊢ A1 & A2, ⊤, Γ

π1

⊢ A1, Γ
π2

⊢ A2, Γ
&⊢ A1 & A2, Γ

⊥⊢ A1 & A2, ⊥, Γ

C&
⊥−→
←−
C⊥

&

π1

⊢ A1, Γ
⊥⊢ A1, ⊥, Γ

π2

⊢ A2, Γ
⊥⊢ A2, ⊥, Γ
&⊢ A1 & A2, ⊥, Γ

⊤⊢ A1 ⊕ A2, ⊤, Γ
C

⊕i
⊤−→
←−
C⊤

⊕i

⊤⊢ Ai, ⊤, Γ ⊕i⊢ A1 ⊕ A2, ⊤, Γ

π
⊢ Ai, Γ ⊕i⊢ A1 ⊕ A2, Γ

⊥⊢ A1 ⊕ A2, ⊥, Γ

C
⊕i
⊥−→
←−
C⊥

⊕i

π
⊢ Ai, Γ

⊥⊢ Ai, ⊥, Γ ⊕i⊢ A1 ⊕ A2, ⊥, Γ

⊤0⊢ ⊤0, ⊤1, Γ
C⊤

⊤−→ ⊤1⊢ ⊤0, ⊤1, Γ

π
⊢ Γ ⊥0⊢ ⊥0, Γ

⊥1⊢ ⊥0, ⊥1, Γ

C⊥
⊥−→

π
⊢ Γ ⊥1⊢ ⊥1, Γ

⊥0⊢ ⊥0, ⊥1, Γ

⊤⊢ ⊤, ⊥, Γ
C⊥

⊤−→
←−
C⊤

⊥

⊤⊢ ⊤, Γ
⊥⊢ ⊤, ⊥, Γ

(No commutation with ax, 1 nor 0 as the ax and 1-rules have no context and there are no rule for 0.)
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Table 7 Rule commutations not involving a unit rule.

π
⊢ A1, A2, B1, B2, Γ `⊢ A1 ` A2, B1, B2, Γ `⊢ A1 ` A2, B1 ` B2, Γ

C`̀
−→

π
⊢ A1, A2, B1, B2, Γ `⊢ A1, A2, B1 ` B2, Γ `⊢ A1 ` A2, B1 ` B2, Γ

π1

⊢ A1, Γ

π2

⊢ A2, B1, ∆
π3

⊢ B2, Σ
⊗

⊢ A2, B1 ⊗ B2, ∆, Σ
⊗

⊢ A1 ⊗ A2, B1 ⊗ B2, Γ, ∆, Σ

C
⊗
⊗−→

π1

⊢ A1, Γ
π2

⊢ A2, B1, ∆
⊗

⊢ A1 ⊗ A2, B1, Γ, ∆
π3

⊢ B2, Σ
⊗

⊢ A1 ⊗ A2, B1 ⊗ B2, Γ, ∆, Σ

π1

⊢ A1, Γ

π2

⊢ B1, ∆
π3

⊢ A2, B2, Σ
⊗

⊢ A2, B1 ⊗ B2, ∆, Σ
⊗

⊢ A1 ⊗ A2, B1 ⊗ B2, Γ, ∆, Σ

C
⊗
⊗−→

π1

⊢ A1, Γ
π3

⊢ A2, B2, Σ
⊗

⊢ A1 ⊗ A2, B2, Γ, Σ
π2

⊢ B1, ∆
⊗

⊢ A1 ⊗ A2, B1 ⊗ B2, Γ, ∆, Σ
π1

⊢ A1, B1, Γ
π2

⊢ B2, ∆
⊗

⊢ A1, B1 ⊗ B2, Γ, ∆
π3

⊢ A2, Σ
⊗

⊢ A1 ⊗ A2, B1 ⊗ B2, Γ, ∆, Σ

C
⊗
⊗−→

π1

⊢ A1, B1, Γ
π3

⊢ A2, Σ
⊗

⊢ A1 ⊗ A2, B1, Γ, Σ
π2

⊢ B2, ∆
⊗

⊢ A1 ⊗ A2, B1 ⊗ B2, Γ, ∆, Σ
π1

⊢ B1, Γ
π2

⊢ A1, B2, ∆
⊗

⊢ A1, B1 ⊗ B2, Γ, ∆
π3

⊢ A2, Σ
⊗

⊢ A1 ⊗ A2, B1 ⊗ B2, Γ, ∆, Σ

C
⊗
⊗−→

π1

⊢ B1, Γ

π2

⊢ A1, B2, ∆
π3

⊢ A2, Σ
⊗

⊢ A1 ⊗ A2, B2, ∆, Σ
⊗

⊢ A1 ⊗ A2, B1 ⊗ B2, Γ, ∆, Σ
π1

⊢ A1, B1, Γ
π2

⊢ A2, B1, Γ
&⊢ A1 & A2, B1, Γ

π3

⊢ A1, B2, Γ
π4

⊢ A2, B2, Γ
&⊢ A1 & A2, B2, Γ

&⊢ A1 & A2, B1 & B2, Γ

C&
&−→

π1

⊢ A1, B1, Γ
π3

⊢ A1, B2, Γ
&⊢ A1, B1 & B2, Γ

π2

⊢ A2, B1, Γ
π4

⊢ A2, B2, Γ
&⊢ A2, B1 & B2, Γ

&⊢ A1 & A2, B1 & B2, Γ
π

⊢ Ai, Bj , Γ
⊕i⊢ A1 ⊕ A2, Bj , Γ ⊕j⊢ A1 ⊕ A2, B1 ⊕ B2, Γ

C
⊕i
⊕j−→

π
⊢ Ai, Bj , Γ ⊕j⊢ Ai, B1 ⊕ B2, Γ

⊕i⊢ A1 ⊕ A2, B1 ⊕ B2, Γ
π1

⊢ A1, A2, B1, Γ `⊢ A1 ` A2, B1, Γ
π2

⊢ B2, ∆
⊗

⊢ A1 ` A2, B1 ⊗ B2, Γ, ∆

C`
⊗
−→
←−
C

⊗
`

π1

⊢ A1, A2, B1, Γ
π2

⊢ B2, ∆
⊗

⊢ A1, A2, B1 ⊗ B2, Γ, ∆ `⊢ A1 ` A2, B1 ⊗ B2, Γ, ∆

π1

⊢ B1, Γ

π2

⊢ A1, A2, B2, ∆ `⊢ A1 ` A2, B2, ∆
⊗

⊢ A1 ` A2, B1 ⊗ B2, Γ, ∆

C`
⊗
−→
←−
C

⊗
`

π1

⊢ B1, Γ
π2

⊢ A1, A2, B2, ∆
⊗

⊢ A1, A2, B1 ⊗ B2, Γ, ∆ `⊢ A1 ` A2, B1 ⊗ B2, Γ, ∆
π1

⊢ A1, A2, B1, Γ `⊢ A1 ` A2, B1, Γ

π1

⊢ A1, A2, B2, Γ `⊢ A1 ` A2, B2, Γ
&⊢ A1 ` A2, B1 & B2, Γ

C`
&−→
←−
C&`

π1

⊢ A1, A2, B1, Γ
π1

⊢ A1, A2, B2, Γ
&⊢ A1, A2, B1 & B2, Γ `⊢ A1 ` A2, B1 & B2, Γ

π1

⊢ A1, A2, Bi, Γ `⊢ A1 ` A2, Bi, Γ ⊕i⊢ A1 ` A2, B1 ⊕ B2, Γ

C`
⊕i−→
←−
C

⊕i`

π1

⊢ A1, A2, Bi, Γ ⊕i⊢ A1, A2, B1 ⊕ B2, Γ `⊢ A1 ` A2, B1 ⊕ B2, Γ
π1

⊢ A1, Γ
π2

⊢ A2, B1, ∆
⊗

⊢ A1 ⊗ A2, B1, Γ, ∆

π1

⊢ A1, Γ
π3

⊢ A2, B2, ∆
⊗

⊢ A1 ⊗ A2, B2, Γ, ∆
&⊢ A1 ⊗ A2, B1 & B2, Γ, ∆

C
⊗
&−→
←−
C&

⊗

π1

⊢ A1, Γ

π2

⊢ A2, B1, ∆
π3

⊢ A2, B2, ∆
&⊢ A2, B1 & B2, ∆

⊗
⊢ A1 ⊗ A2, B1 & B2, Γ, ∆

π1

⊢ A1, B1, Γ
π2

⊢ A2, ∆
⊗

⊢ A1 ⊗ A2, B1, Γ, ∆

π3

⊢ A1, B2, Γ
π2

⊢ A2, ∆
⊗

⊢ A1 ⊗ A2, B2, Γ, ∆
&⊢ A1 ⊗ A2, B1 & B2, Γ, ∆

C
⊗
&−→
←−
C&

⊗

π1

⊢ A1, B1, Γ
π3

⊢ A1, B2, Γ
&⊢ A1, B1 & B2, Γ

π2

⊢ A2, ∆
⊗

⊢ A1 ⊗ A2, B1 & B2, Γ, ∆
π1

⊢ A1, Bi, Γ
π2

⊢ A2, ∆
⊗

⊢ A1 ⊗ A2, Bi, Γ, ∆ ⊕i⊢ A1 ⊗ A2, B1 ⊕ B2, Γ, ∆

C
⊗
⊕i−→
←−
C

⊕i
⊗

π1

⊢ A1, Bi, Γ ⊕i⊢ A1, B1 ⊕ B2, Γ
π2

⊢ A2, ∆
⊗

⊢ A1 ⊗ A2, B1 ⊕ B2, Γ, ∆
π1

⊢ A1, Γ
π2

⊢ A2, Bi, ∆
⊗

⊢ A1 ⊗ A2, Bi, Γ, ∆ ⊕i⊢ A1 ⊗ A2, B1 ⊕ B2, Γ, ∆

C
⊗
⊕i−→
←−
C

⊕i
⊗

π1

⊢ A1, Bi, Γ

π2

⊢ A2, ∆ ⊕i⊢ A2, B1 ⊕ B2, ∆
⊗

⊢ A1 ⊗ A2, B1 ⊕ B2, Γ, ∆
π1

⊢ A1, Bi, Γ
π2

⊢ A2, Bi, Γ
&⊢ A1 & A2, Bi, Γ ⊕i⊢ A1 & A2, B1 ⊕ B2, Γ

C&
⊕i−→
←−
C

⊕i
&

π1

⊢ A1, Bi, Γ ⊕i⊢ A1, B1 ⊕ B2, Γ

π2

⊢ A2, Bi, Γ ⊕i⊢ A2, B1 ⊕ B2, Γ
&⊢ A1 & A2, B1 ⊕ B2, Γ

(No commutation with ax, 1 nor 0 as the ax and 1-rule have no context and there are no rule for 0.)
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Abstract
We investigate the cyclic proof theory of extensions of Peano Arithmetic by (finitely iterated)
inductive definitions. Such theories are essential to proof theoretic analyses of certain “impredicative”
theories; moreover, our cyclic systems naturally subsume Simpson’s Cyclic Arithmetic.

Our main result is that cyclic and inductive systems for arithmetical inductive definitions are
equally powerful. We conduct a metamathematical argument, formalising the soundness of cyclic
proofs within second-order arithmetic by a form of induction on closure ordinals, thence appealing to
conservativity results. This approach is inspired by those of Simpson and Das for Cyclic Arithmetic,
however we must further address a difficulty: the closure ordinals of our inductive definitions
(around Church-Kleene) far exceed the proof theoretic ordinal of the appropriate metatheory (around
Bachmann-Howard), so explicit induction on their notations is not possible. For this reason, we
rather rely on formalisation of the theory of (recursive) ordinals within second-order arithmetic.
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1 Introduction

Cyclic proof theory studies “proofs” whose underlying dependency graph may not be well-
founded, but are nonetheless regular. Soundness for such systems is controlled by an
appropriate “correctness criterion”, usually an ω-regular property on infinite branches,
defined at the level of formula ancestry. Cyclic proofs are a relatively recent development in
proof theory (and related areas), with origins in seminal work of Niwiński and Walukiewicz
for the modal µ-calculus [18]. Inspired by that work, Brotherston and Simpson studied the
extension of first-order logic by (ordinary) inductive definitions [7, 9, 10]. More recently,
Simpson has proposed Cyclic Arithmetic (CA), an adaptation of usual Peano Arithmetic
(PA) to the cyclic setting [21].

One of the recurring themes of cyclic proof theory is the capacity for non-wellfounded
reasoning to simulate inductive arguments with apparently simpler (and often analytic)
invariants. Indeed this difference in expressivity has been made formal in various settings
[3, 6] and has been exploited in implementations [8, 20, 26, 27]. Within the setting of
arithmetic, we have a more nuanced picture: while Simpson showed that CA and PA are
equivalent as theories [21], Das has shown that indeed the logical complexity of invariants
required in CA is indeed strictly simpler than in PA [11]. These arguments typically follow a
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metamathematical approach, formalising the soundness argument of cyclic proofs themselves
within arithmetic and relying on a reflection principle (though there are alternative approaches
too, cf. [4, 5]). Due to the infinitary nature of non-wellfounded proofs and the complexity of
correctness, such arguments require a further detour through the reverse mathematics of
ω-automata theory, cf. [14, 15].

In this work we somewhat bridge the aforementioned traditions in the µ-calculus, first-
order logic with inductive definitions, and arithmetic. In particular we present a cyclic proof
system CID<ω over the language of (finitely iterated) arithmetical inductive definitions: the
closure of the language of arithmetic under formation of (non-parametrised) fixed points.
Such languages form the basis of important systems in proof theory, in particular ID<ω,
which allows for an ordinal analysis of impredicative second-order theories such as Π1

1-CA0.
Our cyclic system CID<ω over this language is essentially recovered by directly importing
analogous definitions from the µ-calculus and first-order inductive definitions.

Our main result is the equivalence between CID<ω and its inductive counterpart ID<ω.
While subsuming inductive proofs by cyclic proofs is a routine construction, the converse
direction constitutes a generalisation of ideas from the setting of arithmetic, cf. [21, 11].
One particular nuance here is that the soundness of cyclic proofs with forms of inductive
definitions typically reduces to a form of induction on the corresponding closure ordinals. For
the setting of even unnested inductive definitions, ID1, closure ordinals already exhaust all
the recursive ordinals (up to Church-Kleene, ωCK

1 ). On the other hand the proof theoretical
ordinal of ID1 is only the Bachmann-Howard ordinal, so we cannot formalise the required
induction principle on explicit ordinal notations. Instead we rely on a (known) formalisation
of (recursive) ordinal theory within appropriate fragments of second-order arithmetic.

This paper is structured as follows. In Section 2 we recall the syntax and semantics of
first-order logic with inductive definitions, as well as the Knaster-Tarski fixed point theorem
specialised to P(N). In Section 3 we recall PA and ID<ω, recast in the sequent calculus to
facilitate the definition of CID<ω. The latter is presented in Section 4 where we also show its
simulation of ID<ω. In Section 5 we show that the system CID<ω is indeed sound for the
standard model. In Sections 6 and 7 we formalise aspects of inductive definitions, truth,
order theory and fixed point theory within suitable fragments of second-order arithmetic.
Finally in Section 8 we present the converse simulation, from CID<ω to ID<ω, by essentially
arithmetising the soundness argument of Section 5.

Due to space constraints, most proofs and auxiliary material are omitted.

2 Syntax and semantics of arithmetical inductive definitions

2.1 First-order logic (with equality)
In this work we shall work in predicate logic over various languages, written L,L′ etc. We
write x, y etc. for (first-order) variables and s, t etc. for terms, and φ,ψ etc. for formulas
(including equality). For later convenience, we shall write formulas in De Morgan normal
form, with negations only in front of atomic formulas. I.e. formulas are generated from
“atomic” formulas P (⃗t),¬P (⃗t), s = t,¬s = t under ∨,∧, ∃, ∀. From here we use standard
abbreviations for negation and other connectives.

In order to interpret “inductive definitions” in the next section, it will be useful to consider
a variation of usual Henkin semantics that interprets (relativised) formulas as operators on a
structure. Given a language L, We write L(X) for the extension of L by the fresh predicate
symbol X. For instance formulas of L(X), where X is unary, include all those of L, new
“atomic” formulas of the form X(t) and ¬X(t), and are closed under usual logical operations.
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Fix a language L and L-structure M with domain M . Let X be a fresh k-ary predicate
symbol and let x⃗ = x1, . . . , xl be distinguished variables. Temporarily expand L to include
each a ∈M as a constant symbol and each A ⊆Mk as a predicate symbol and fix aM := a

and AM := A. We interpret formulas φ(X, x⃗) of L(X) as functions φM : P(Mk)→ P(M l)
by setting a⃗ ∈ φM(A) just if M ⊨ φ[A/X][⃗a/x⃗].

Let us call a formula φ(X) positive in X if it has no subformula of the form ¬X (⃗t). The
following result motivates the “positive inductive definitions” we consider in the next section:

▶ Proposition 2.1 (Positivity implies monotonicity). Let L, M, X, x⃗ be as above. If φ, a
formula of L(X), is positive in X then φM is monotone: A ⊆ B =⇒ φM(A) ⊆ φM(B).

Proof idea. By straightforward induction on the structure of φ. ◀

2.2 Languages of arithmetic and (finitely iterated) inductive definitions
The language of arithmetic (with inequality) is LA := {0, s,+,×, <}. Here, as usual, 0 is a
constant symbol (i.e. a 0-ary function symbol), s is a unary function symbol, + and × are
binary function symbols, and < is a binary relation symbol.

Throughout this paper we shall work with (certain extensions of) LA:

▶ Definition 2.2 ((Finitely iterated) inductive definitions). L<ω is the smallest language
containing LA and closed under:

if φ is a formula of L<ω(X) positive in X, for X a fresh unary predicate symbol, and x
is a distinguished variable, then Iφ,X,x is a unary predicate symbol of L<ω.

Note that we only take the case that X is unary above since we can always code k-ary
predicates using unary ones within arithmetic. When X,x are clear from context, we shall
simply write Iφ instead of Iφ,X,x. We shall also frequently suppress free variables and
parameters (i.e. predicate symbols), e.g. writing interchangably φ(X,x) and φ, when it is
convenient and unambiguous.

Let us introduce some running examples for this work.

▶ Example 2.3 (Naturals, evens and odds). We define the following formulas of LA(X):
n(X,x) := x = 0 ∨ ∃y(X(y) ∧ x = sy).
e(X,x) := x = 0 ∨ ∃y(X(y) ∧ x = ssy).
o(X,x) := x = 1 ∧ ∃y(X(y) ∧ x = ssy) (where 1 := s0).

By definition L<ω contains the symbols N := In, E := Ie and O := Io. Now, writing,
m(X,x) := e(X,x) ∨ (∀y(E(y)→ X(y)) ∧ x = 1)

we also have that M := Im is a symbol of L<ω, by the closure property of the language.

All our theories are interpreted by the “standard model” of arithmetic N = (0, s,+,×, <),
which we extend to a L<ω-structure by:

INφ,X,x :=
⋂
{A ⊆ N : φN(A) ⊆ A}

2.3 On Knaster-Tarski: inductive definitions as fixed points
We conclude this section by making some comments about the interpretation of inductive
definitions as fixed points. Let us first state a version of the well-known Knaster-Tarski
theorem specialised to the setting at hand:

▶ Proposition 2.4 (Knaster-Tarski on P(N)). Let F : P(N) → P(N) be monotone, i.e.
A ⊆ B ⊆ N =⇒ F (A) ⊆ F (B). Then F has a least fixed point µF and a greatest fixed point
νF . Moreover, we have: µF =

⋂
{A ⊆ N : F (A) ⊆ A} and νF =

⋃
{A ⊆ N : A ⊆ F (A)}.
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We shall henceforth adopt the notation of the theorem above, writing µF and νF for the
least and greatest fixed point of an operator F , when they exist.

In light of Proposition 2.1 we immediately have:

▶ Corollary 2.5. INφ = µφN, i.e. INφ is the least fixed point of φN : P(N)→ P(N).

▶ Example 2.6 (Naturals, evens and odds: interpretation). Revisiting Example 2.3 we have:
NN = N
EN = E := {2n : n ∈ N}
ON = O := {2n+ 1 : n ∈ N}

It turns out that also MN = N. While this is readily verifiable with the current definitions,
we shall delay a justification of this until we have built up some more technology.

Let us point out that the syntax of L<ω also allows the formation of greatest fixed points,
by appealing to duality via negation, but we omit such considerations here.

It is well known that least (and greatest) fixed points can be approximated “from
below” (and “from above”, respectively) via the notion of (ordinal) approximant. For any
F : P(N)→ P(N), let us define by transfinite induction,

F 0(A) := A

Fα+1(A) := F (Fα(A))
Fλ(A) :=

⋃
α<λ

Fα(A) if λ is a limit ordinal
(1)

By appealing to the transfinite pigeonhole principle we have:

▶ Proposition 2.7. For F : P(N)→ P(N) monotone, there is an ordinal α s.t. µF = Fα(∅).

Indeed we may assume that such α is countable and, by the well-ordering principle, there is
indeed a least such α satisfying the proposition above.

▶ Example 2.8 (Naturals, evens and odds: closure ordinals). Revisiting Example 2.3 again, it
is not hard to see that the approximants of nN, eN, oN are respectively:

(nN)0(∅) = ∅
(nN)1(∅) = {0}
(nN)2(∅) = {0, 1}

...
(nN)ω(∅) = N

(eN)0(∅) = ∅
(eN)1(∅) = {0}
(eN)2(∅) = {0, 2}

...
(eN)ω(∅) = E

(oN)0(∅) = ∅
(oN)1(∅) = {1}
(oN)2(∅) = {1, 3}

...
(oN)ω(∅) = O

Note that for each of these operators we reached the (least) fixed point for the first time at
stage ω. We say that ω is the closure ordinal of these operators.

Now, returning to the formula m(X,x), let us finally compute its least fixed point in N

by the method of approximants:

(mN)0(∅) = ∅
(mN)1(∅) = {0}
(mN)2(∅) = {0, 2}

...

(mN)ω(∅) = E
(mN)ω+1(∅) = E ∪ {1}
(mN)ω+2(∅) = E ∪ {1, 3}

...

(mN)ω2(∅) = E ∪O = N

Thus indeed INm = N, but this time with closure ordinal ω2.
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id
Γ, φ⇒ ∆, φ

Γ⇒ ∆
w

Γ,Γ′ ⇒ ∆,∆′

Γ⇒ ∆
θ

θ(Γ)⇒ θ(∆)
Γ⇒ ∆, φ Γ, φ⇒ ∆

cut
Γ⇒ ∆

Γ⇒ ∆, χ
¬-l

Γ,¬χ⇒ ∆
Γ, φ⇒ ∆ Γ, ψ ⇒ ∆

∨-l
Γ, φ ∨ ψ ⇒ ∆

Γ⇒ ∆, φ, ψ
∨-r

Γ⇒ ∆, φ ∨ ψ
Γ, χ⇒ ∆

¬-r
Γ⇒ ∆,¬χ

Γ⇒ ∆, φ Γ⇒ ∆, ψ
∧-r

Γ⇒ ∆, φ ∧ ψ
Γ, φ, ψ ⇒ ∆

∧-l
Γ, φ ∧ ψ ⇒ ∆

Γ⇒ ∆, φ[y/x]
∀-r y fresh

Γ⇒ ∆, ∀xφ
Γ, φ(t)⇒ ∆

∀-l
Γ, ∀xφ(x)⇒ ∆

Γ, φ[y/x]⇒ ∆
∃-l y fresh

Γ, ∃xφ⇒ ∆
Γ⇒ ∆, φ(t)

∃-r
Γ⇒ ∆, ∃xφ(x)

Γ(s, t)⇒ ∆(s, t)
=-l

Γ(t, s), s = t⇒ ∆(t, s)
=-r

Γ⇒ ∆, t = t

Figure 1 The sequent calculus LK= for first-order logic with equality. θ is always a substitution,
i.e. a map from variables to terms, extended to formulas and cedents in the expected way. χ is
always an atomic formula P (⃗t) or s = t.

3 Arithmetical theories of inductive definitions

Thusfar we have only considered the language of arithmetic and inductive definitions (“syn-
tax”) and structures over these languages (“semantics”). We shall now introduce theories
over these languages, in particular setting them up within a sequent calculus system, in order
to facilitate the definition of the non-wellfounded and cyclic systems we introduce later.

▶ Definition 3.1 (Sequent calculus for PA). A sequent is an expression Γ⇒ ∆ where Γ and
∆ are sets of formulas (sometimes called cedents).1 The calculus LK= for first-order logic
with equality and substitution is given in Figure 1.

The sequent calculus for PA extends LK= by initial sequents for all axioms of Robinson
Arithmetic Q, as well as the induction rule:

Γ⇒ ∆, φ(0) Γ, φ(y)⇒ ∆, φ(sy)
ind y fresh

Γ⇒ ∆, φ(t)

We will present some examples of proofs shortly, but first let us develop the implementation
of the first-order theories we consider within the sequent calculus.

3.1 Theory of (finitely iterated) inductive definitions
ID<ω is a L<ω-theory that extends PA by (the universal closures of):2

(Pre-fixed) ∀x(φ(Iφ, x)→ Iφ(x))
(Least) ∀x(φ(ψ, x)→ ψ(x))→ ∀x(Iφ(x)→ ψ(x))

for all formulas φ(X,x) positive in X.

1 The symbol ⇒ is just a syntactic delimiter, but is suggestive of the semantic interpretation of sequents.
2 Formally, we include instances of the induction schema for all formulas φ in the extended language too.
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Note that, while the first axiom states that Iφ is a pre-fixed point of φ(−), the second
axiom (schema) states that Iφ is least among the (arithmetically definable) pre-fixed points.
As before, we implement this theory within the sequent calculus:

▶ Definition 3.2 (Sequent calculus for ID<ω). The sequent caclulus for ID<ω extends that for
PA by the rules:

Γ, φ(Iφ, t)⇒ ∆
Iφ-l

Γ, Iφ(t)⇒ ∆
Γ⇒ ∆, φ(Iφ, t)

Iφ-r
Γ⇒ ∆, Iφ(t)

(2)

Γ, φ(ψ, y)⇒ ∆, ψ(y) Γ, ψ(t)⇒ ∆
ind(φ) y fresh

Γ, Iφ(t)⇒ ∆
(3)

3.2 Examples
In this subsection we consider some examples of sequent proofs for ID<ω.

Note that the Iφ-r and ind(φ) rules correspond respectively to the axioms we gave for
ID<ω. The Iφ-l rule, morally stating that Iφ is a post-fixed point of φ(−), does not correspond
to any of the axioms. In fact we may consider it a form of “syntactic sugar” that will be
useful for defining our cyclic systems later:

▶ Example 3.3 (Post-fixed point). We can derive the Iφ-l rule from the other two as follows:

id
φ(Iφ, y)⇒ φ(Iφ, y)

Iφ-r
φ(Iφ, y)⇒ Iφ(y)

φ

φ(φ(Iφ), y)⇒ φ(Iφ, y) Γ, φ(Iφ, t)⇒ ∆
ind(φ)

Γ, Iφ(t)⇒ ∆

where the derivation marked φ (“functoriality”) is obtained by structural induction on φ.

▶ Example 3.4 (Subsuming numerical induction). Recalling the inductive predicate N from
Example 2.3, the usual induction rule of PA is an immediate consequence of ∀xN(x):

Γ⇒ ∆, φ(0)
=
z = 0,Γ⇒ ∆, φ(z)

Γ, φ(y)⇒ ∆, φ(sy)
=
z = sy,Γ, φ(y)⇒ ∆, φ(z)

∃,∨
Γ, n(φ, z)⇒ ∆, φ(z)

id
φ(t)⇒ φ(t)

ind(n)
Γ, N(t)⇒ ∆, φ(t)

∀xN(x)
Γ⇒ ∆, φ(t)

4 Cyclic proofs for the theory of (finitely iterated) inductive definitions

In this section we introduce our “cyclic” version of the theory ID<ω, based on ideas from the
modal µ-calculus [18, 25, 2] and calculi of first-order logic with inductive definitions [7, 9, 10].

4.1 Non-wellfounded and cyclic proofs
The “non-wellfounded derivations” we consider will be potentially infinite proofs (of height
≤ ω) generated coinductively from the rules of the calculus. More formally:
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▶ Definition 4.1 (Preproofs). A (infinite, binary) tree is a prefix-closed (potentially infinite)
subset of {0, 1}∗. A preproof π in a system L is a map from a tree Tπ (the support of π)
to inference steps of L such that, whenever π(v) has premisses S1, . . . , Sn, v has precisely n
children3 v1, . . . , vn ∈ Tπ where π(v1), . . . , π(vn) have conclusions S1, . . . , Sn respectively.

Given some u ∈ Tπ, we write πu for the preproof with support Tπu = {v : uv ∈ Tπ}
given by πu(v) := π(uv). We call such πu a sub-preproof of π. If π has only finitely many
sub-preproofs, we call it regular or cyclic.

Regular preproofs π can be represented as a finite (possibly cyclic) graph in the expected
way, by simply quotienting Tπ by the relation ∼⊆ Tπ × Tπ given by u ∼ v if πu = πv. Let
us now set up our principal system of interest:

▶ Definition 4.2 (Rules for preproofs). The system LID−
<ω extends LK= by:

initial sequents ⇒ φ for each axiom φ of Q; and,
the rules Iφ-l and Iφ-r from (2); and,

the following additional rule: N

Γ⇒ ∆, N(t)

The “−” superscript in LID−
<ω indicates that we do not include the ind(φ) rules in this

system. Note in the definition above that, in light of Example 3.4, we have chosen to simplify
our system by omitting an explicit rule for numerical induction and instead simply including
a rule that insists that our domain consists only of natural numbers. This streamlines the
resulting definition of “progressing trace”:

▶ Definition 4.3 (Traces and progress). Fix a LID−
<ω-preproof π and (vi)i∈ω an infinite branch

along Tπ. A trace along (vi)i∈ω is a sequence of formulas (φi)i≥k, with each φi occurring on
the LHS of π(vi), such that for all i ≥ k:

π(vi) is not a substitution step and φi+1 = φi; or,
π(vi) is a θ-substitution step and θ(φi+1) = φi; or,
π(vi) is a = -l step with respect to s = t and, for some ψ(x, y), we have φi+1 = ψ(s, t)
and φi = ψ(t, s); or,
φi is the principal formula of π(vi) and φi+1 is auxiliary.

We say that φk+1 is an immediate ancestor of φk if they extend to some trace (φi)i≥k. A
trace (φi)i≥k is progressing if it is principal infinitely often.

▶ Definition 4.4 (Non-wellfounded proofs). A (non-wellfounded) LID−
<ω-proof is a LID−

<ω-
preproof π for which each infinite branch has a progressing trace. We also say that π is
progressing in this case. If π is regular, we call it a cyclic proof.

We write LID−
<ω ⊢nwf φ or LID−

<ω ⊢cyc φ if there is a non-wellfounded or cyclic, respect-
ively, LID−

<ω-proof of φ. We write CID<ω for the class of cyclic LID−
<ω-proofs.

Many of the basic results and features of non-wellfounded and cyclic proofs for arithmetic
from [21, 11] are present also in our setting, and we point the reader to those works for
several examples further to those we give here.

3 Implicit here is the assumption that all rules of L have at most two premisses, so n ≤ 2. This assumption
covers all systems in this work.
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▶ Example 4.5 (Naturals, evens and odds: proving relationships). Let us revisit once more
Example 2.3. Several examples about the relationships between N,E,O for a similar
framework of first-order logic with inductive definitions are given in [7, 9, 10], in particular
including ones with complex cycle structure. Here we shall instead revisit the relationship
between the inductive predicates M and N .

Recall that we showed in Example 2.8 that N and M compute the same set, namely N,
in the standard model. We can show this formally within CID<ω by means of cyclic proofs.
For the direction M ⊆ N :

N(0)
x = 0 ⇒ N(x)

...
Im-l •

M(x) ⇒ N(x)
[y/x]

M(y) ⇒ N(y)
N(ss)

M(y) ⇒ N(ssy)
=,∧,∃

∃y(x = ssy ∧M(y)) ⇒ N(x)
∨-l

e(M,x) ⇒ N(x)

N(1)
x = 1 ⇒ N(1)

w,∧
∀y(E(y) → M(y)) ∧ x = 1 ⇒ N(x)

∨-l
m(M,x) ⇒ N(x)

Im-l •
M(x) ⇒ N(x)

where the derivations marked N(0), N(ss), N(1) all have simple finite proofs by unfolding
N on the RHS. Again we indicate by • roots of identical subproofs, and the only infinite
branch, looping on •, has progressing trace in blue.

4.2 Simulating inductive proofs
Our cyclic system CID<ω subsumes ID<ω by a standard construction:

▶ Theorem 4.6 (Induction to cycles). If ID<ω ⊢ φ then CID<ω ⊢ φ.

Proof sketch. We proceed by induction on the structure of a ID<ω proof. The critical step
is ind(φ), for which we do not have a corresponding rule in LID−

<ω. We simulate this rule by,

...
Iφ-l •

Γ, Iφ(t)⇒ ∆, ψ(t)
φ

Γ, φ(Iφ, t)⇒ ∆, φ(ψ, t)
Γ, φ(ψ, y)⇒ ∆, ψ(y)

[t/y]
Γ, φ(ψ, t)⇒ ∆, ψ(t)

cut
Γ, φ(Iφ, t)⇒ ∆, ψ(t)

Iφ-l •
Γ, Iφ(t)⇒ ∆, ψ(t) Γ, ψ(t)⇒ ∆

cut
Γ, Iφ(t)⇒ ∆

where • marks roots of identical subproofs and the derivation marked φ is obtained by
induction on the structure of φ. Any infinite branch is either progressing by the induction
hypothesis, or loops infinitely on • and has the progressing trace coloured in blue. ◀

Of course, the converse result is much harder (and, indeed, implies soundness of cyclic proofs).

4.3 About traces
Our notion of (progressing) trace may seem surprisingly simple to the seasoned cyclic proof
theorist, when comparing to analogous conditions in similar logics such as the µ-calculus
requiring complex “signatures”, e.g. [18, 25, 2]. However this simplicity arises naturally from
the way we have formulated our syntax. Let us take some time to detail some of properties
of (progressing) traces that will facilitate our soundness argument later.
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Write I for the set of inductive predicates of L<ω (i.e. the set of symbols Iφ). Write <
for the smallest transitive relation on I satisfying:

if Iφ occurs in ψ(X,x) then Iφ < Iψ.
By the inductive definition of the language L<ω, it is immediate that < is a well-founded
relation on I. In what follows, we shall extend < arbitrarily to a (total) well-order on I, so
as to freely use of terminology peculiar to linear orders.
▶ Proposition 4.7 (Properties of progressing traces). Let (τi)i≥k be a progressing trace. There
is a (unique) inductive predicate symbol Iψ and some k′ ≥ k such that:
1. τi is of the form Iψ(t) and principal for infinitely many i ≥ k;
2. Iψ occurs positively in each τi, for i ≥ k′;
3. for any j ≥ k′ and Iχ occurring in τj, we have Iχ ≤ Iψ.

5 Soundness of non-wellfounded proofs

The main goal of this section is to prove the following result:
▶ Theorem 5.1 (Soundness). If LID−

<ω ⊢nwf φ then N ⊨ φ.
Before proving this, it is convenient to omit consideration of substitutions in preproofs:

▶ Proposition 5.2 (Admissibility of substitution). If there is a (non-wellfounded) LID−
<ω-proof

of a sequent Γ⇒ ∆, then there is one not using the substitution rule.

5.1 Satisfaction with respect to approximants
Before proceeding, let us build up a little more theory about approximants of (least) fixed
points. Let us temporarily expand the language L<ω to include, for each inductive predicate
symbol Iφ and each ordinal α a symbol Iαφ . We do not consider these symbols “inductive
predicates”, but rather refer to them as approximant symbols. In the standard model, using
the notation of Section 2, we set (Iαφ )N := (φN)α(∅).

For a formula φ of L<ω whose <-greatest inductive predicate in positive position is Iψ,
we write φα for the formula obtained from φ by replacing each positive occurrence of Iψ by
Iαψ . As an immediate consequence of the characterisation of least fixed points by unions of
approximants, Proposition 2.7, we have:
▶ Corollary 5.3 (of Proposition 2.7). If N ⊨ φ then there is an ordinal α such that N ⊨ φα.

Note that, as a consequence of positivity implying monotonicity, we also have:
▶ Corollary 5.4 (of Proposition 2.1). If α ≤ β then N ⊨ φα → φβ.

Finally, let us point out that, by the definition of the inflationary construction in
Equation (1), if tN ∈ µφN, then the least ordinal α with tN ∈ (φN)α must be a successor
ordinal. Albeit rather immediate, we better state the following consequence of this reasoning:
▶ Observation 5.5. If α, β are least s.t. N ⊨ Iαφ (t) and N ⊨ φ(Iβφ , t) respectively, then β < α.

5.2 Building countermodels
An assignment is a (partial) map ρ from variables to natural numbers. If φ is a formula and
ρ : FV(φ) → N, we define N, ρ ⊨ φ (or simply ρ ⊨ φ) by simply interpreting free variables
under ρ in N. Formally, N, ρ ⊨ φ if N ⊨ φ [ρ(x)/x]x∈FV(φ).4

4 Note here we are implicitly identifying natural numbers with their corresponding numerals.
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As a consequence of local soundness of the rules, as well as preserving truth we have that
rules “reflect” falsity. In fact we can say more:

▶ Lemma 5.6 (Reflecting falsity). Fix an inference step:

Γ1 ⇒ ∆1 · · · Γn ⇒ ∆n
r

Γ⇒ ∆
(4)

If ρ ⊨
∧

Γ and ρ ⊭
∨

∆ then there is an assignment ρ′ and premiss Γ′ ⇒ ∆′ with:
1. ρ′ extends ρ, i.e. ρ′(x) = ρ(x) for any x in the domain of ρ;
2. ρ′ ⊨

∧
Γ′ and ρ′ ⊭

∨
∆′;

3. if ψ ∈ Γ′ is an immediate ancestor of φ ∈ Γ then either:
a. I, I ′ are the greatest inductive predicates occurring in φ,ψ resp. and I ′ < I; or,
b. For any ordinal α, we have ρ ⊨ φα =⇒ ρ′ ⊨ ψα.

The proof is similar to analogous results in [21, 11], however we must also take care to
maintain the invariant Item 3 during the construction. An important distinction here is
that, for Item 3b, we must find the least ordinal approximating the principal formula of,
say a ∨-left step, and evaluate auxiliary formulas with respect to this ordinal in order to
appropriately choose the correct premiss. The required property then follows by monotonicity,
Proposition 2.1, and the fact that approximants form an increasing chain, cf. Equation (1).
The necessity of this consideration is similar to (but somewhat simpler than) analogous issues
arising in the cyclic proof theory of the modal µ-calculus, cf. [18, 25, 2].

5.3 Putting it all together

We are now ready to prove the main result of this section.

Proof of Theorem 5.1. Let π be a (non-wellfounded) LID−
<ω proof of the sequent ⇒ φ and

suppose, for contradiction, that N ⊭ φ. We define a branch (vi)i<ω and assignments (ρi)i<ω
by setting:

ρ0 := ∅ and v0 := ε (the root of π);5

appealing to Lemma 5.6, if π(vi) has form (4), we set vi+1 s.t. π(vi+1) has conclusion
Γ′ ⇒ ∆′ and ρi+1 := ρ′

i.

By assumption that π is progressing, let (τi)i≥k be a progressing trace along (vi)i<ω, and
let αi be the least ordinals such that N ⊨ ταi

i for i ≥ k.
Now, let k′ ≥ k and Iψ be obtained from (τi)i≥k by Proposition 4.7. By Items 2 and 3

of Proposition 4.7 we have that Iψ is the greatest inductive predicate occurring (positively)
in each τi, for i ≥ k′, and so Item 3a of Lemma 5.6 never applies (for i ≥ k′). Thus, by
Proposition 2.1, we have αi+1 ≤ αi for i ≥ k′.

On the other hand, at any Iψ-l step where τi is principal, for i ≥ k′, we must have that
αi+1 < αi by Observation 5.5. Since this happens infinitely often, by Item 1 of Proposition 4.7,
we conclude that (αi)i≥k′ is a monotone non-increasing sequence of ordinals that does not
converge, contradicting the well-foundedness of ordinals. ◀

5 We assume here that φ is closed, i.e. has no free variables.
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6 Inductive definitions and truth in second-order arithmetic

The remainder of this paper is devoted to proving the converse of Theorem 4.6. For this,
we are inspired by the ideas of previous work [21, 11], using “second-order” theories to
formalise the metatheorems of cyclic systems (namely soundness), and then appealing to
conservativity results. However the exposition here is far more involved than the analogous
ones for arithmetic. For this reason, we rather rely on a formalisation of the “theory of
recursive ordinals” (with parameters) in Π1

1-CA0, and formalise the soundness argument
abstractly in this way.

6.1 Subsystems of second-order arithmetic and inductive definitions
We shall work with common subsystems of second-order arithmetic, as found in textbooks
such as [22], and assume basic facts about them.

In particular, recall that ACA0 is a two-sorted extension of basic arithmetic by:
Arithmetical comprehension. ∃X∀x(X(x)↔ φ(x)) for each arithmetical formula φ(x).
Set induction. ∀X(X(0)→ ∀x(X(x)→ X(sx))→ ∀xX(x))

From here Π1
1-CA0 is the extension of ACA0 by the comprehension schema for all Π1

1
formulas. It is well-known that Π1

1-CA0 proves also the Σ1
1-comprehension scheme, a fact

that we shall freely use, along with other established principles, e.g. from [22].
We can interpret L<ω into the language of second-order arithmetic by:

Iφ(t) := ∀X((∀xφ(X,x)→ X(x))→ X(t)) (5)

This interpretation induces a bona fide (and well-known) encoding of ID<ω within Π1
1-CA0, and

we shall henceforth freely use (arithmetical) inductive predicates when working within Π1
1-CA0,

always understanding them as abbreviations under (5). In fact, we can make a stronger
statement. Not only does Π1

1-CA0 extend ID<ω arithmetically, it does so conservatively:

▶ Theorem 6.1 (E.g., [12]). Π1
1-CA0 is arithmetically conservative over ID<ω.

This is a nontrivial but now well-known result in proof theory whose details we shall not
recount. We will use this result as a “black box” henceforth.

6.2 Satisfaction as an inductive definition
As usual, there is no universal (first-order) truth predicate for a predicate language, for
Tarskian reasons. However we may define partial truth predicates for fragments of the
language. In a language closed under inductive definitions, this is particularly straightforward
since satisfaction itself is inductively defined (at the meta level). In what follows we will
employ standard metamathematical notations and conventions for coding, e.g. we write ⌜E⌝
for the Gödel code of an expression E. Also, when it is not ambiguous, we shall typically use
the same notation for meta-level objects/operations and their object-level (manipulations
on) codes, as a convenient abuse of notation.

▶ Proposition 6.2 (Formalised relative satisfaction). Let X⃗ = X1, . . . , Xk be a sequence of set
symbols. There is a Π1

1 formula SatX⃗(ρ,m, A⃗) such that Π1
1-CA0 proves the characterisation

in Figure 2 for φ,ψ ranging over arithmetical formulas over X⃗.

▶ Corollary 6.3 (Reflection, Π1
1-CA0). For any arithmetical formula φ(X⃗, x⃗) with all free

first-order variables displayed, we have SatX⃗(ρ, ⌜φ(X⃗, x⃗)⌝, A⃗)↔ φ(A⃗, ρ(x⃗)).
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∀ρ,m, A⃗


SatX⃗(ρ,m, A⃗) ↔

m = ⌜s = t⌝ ∧ ρ(s) = ρ(t)
∨ m = ⌜s < t⌝ ∧ ρ(s) < ρ(t)
∨ m = ⌜φ ∨ ψ⌝ ∧

(
SatX⃗(ρ, ⌜φ⌝, A⃗) ∨ SatX⃗(ρ, ⌜ψ⌝, A⃗)

)
∨ m = ⌜φ ∧ ψ⌝ ∧

(
SatX⃗(ρ, ⌜φ⌝, A⃗) ∧ SatX⃗(ρ, ⌜ψ⌝, A⃗)

)
∨ m = ⌜∃xφ⌝ ∧ ∃n SatX⃗(ρ{x 7→ n}, ⌜φ⌝, A⃗)
∨ m = ⌜∀xφ⌝ ∧ ∀n SatX⃗(ρ{x 7→ n}, ⌜φ⌝, A⃗)

∨
k∨

i=1
(m = ⌜Xi(t)⌝ ∧ ρ(t) ∈ Ai)

∨
k∨

i=1
(m = ⌜¬Xi(t)⌝ ∧ ρ(t) /∈ Ai)


Figure 2 Inductive characterisation of the satisfaction predicate.

7 Approximants and transfinite recursion in second-order arithmetic

Throughout this section we shall fix a list X⃗ of set variables that may occur as parameters
in all formulas. We shall almost always suppress them. We work within Π1

1-CA0 throughout
this section, unless otherwise stated.

7.1 Order theory and transfinite recursion in second-order arithmetic
We assume some basic notions for speaking about (partial) (well-founded) orders in second-
order arithmetic, and some well-known facts about them. Definitions and propositions in
this section have appeared previously in the literature, e.g., [22].

A (binary) relation is a set symbol R, construed as a set of pairs, with domain |R| :=
{x : R(x, x)}. We write simply x ≤R y for x ∈ |R| ∧ y ∈ |R| ∧R(x, y) and x <R y := x ≤R
y ∧ ¬x = y. We write:

LO(R) for an arithmetical formula stating that <R is a linear order on |R|.
WF(R) for a Π1

1-formula stating that <R is well-founded on |R|.
WO(R) := LO(R) ∧WF(R). (“R is a well-order”)
R <WO R′ if WO(R),WO(R′) and there is an order preserving bijection from R onto a
proper initial segment of R′. (<WO is provably ∆1

1 within Π1
1-CA0).

We have, already in ACA0, transfinite induction (for sets) over any well-order:

▶ Proposition 7.1. ∀X,R(WO(R)→ ∀a ∈ |R| (∀b <R aX(b)→ X(a))→ ∀a ∈ |R|X(a))

More importantly we have that the class of well-orders itself is well-founded under comparison:

▶ Proposition 7.2 (Well-orders are well-ordered, ATR0). If F : N→WO then there is n ∈ N
with F (n+ 1) ̸<WO F (n)

An important principle within Π1
1-CA0 is arithmetical transfinite recursion (ATR). Since

we shall need to later bind the well-order over which recursion takes place, we better develop
the principle explicitly.

▶ Definition 7.3 (Approximants). Let φ(X,x) be arithmetical and R a relation. We define:

IRφ (a, x) := ∃F ⊆ |R| × N (∀b ∈ |R| ∀y (F (b, y)→ ∃c <R b φ(F (c), y)) ∧ F (a, x))
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Intuitively we may see IRφ (a) as the union of a family of sets F (b), indexed by b <R a,
satisfying F (b) =

⋃
c<Rb

φ(F (c)), here construing φ(−) as an operation on sets. The notation

we have used is suggestive: the point of this section is to characterise inductive definitions in
terms of approximants given by transfinite recursion.

Note that IRφ is a Σ1
1-formula. The following is well-known:

▶ Proposition 7.4 (Bounded recursion). Let φ(X,x) be an arithmetical formula and suppose
WO(R). IRφ is a set (uniquely) satisfying:

∀a ∈ |R| ∀x (IRφ (a, x)↔ ∃b <R aφ(IRφ (b), x))
(

i.e. IRφ (a) =
⋃
b<Ra

φ(IRφ (b))
)

(6)

As a consequence of transfinite induction, Proposition 7.1 we have:

▶ Corollary 7.5. Let φ(X,x) be arithmetical and positive in X, and suppose WO(R). We
have ∀a <R b ∀x(IRφ (a, x)→ IRφ (b, x)).

Intuitively the above statement tells us that IRφ (−) forms an increasing chain along R.
Henceforth we write IRφ (x) := ∃a ∈ |R| IRφ (a, x) which, with R occurring as a parameter,

is again a Σ1
1 formula.

7.2 Formalising recursive ordinals and approximants
Π1

1-CA0 is not strong enough a theory to characterise inductive definitions by limits of
approximants, in general. However, when the closure ordinals of inductive definitions are
recursive, they may be specified by finite data and duly admit such a characterisation within
Π1

1-CA0. This subsection is devoted to a development of this characterisation; the definitions
and propositions have appeared previously in the literature, e.g., [12, 13].

Let us fix a recursive enumeration of Σ0
1-formulas with free (first-order) variables among

x, y, and write α, β etc. to range over their Gödel codes. Thanks to a (relativised) universal
Σ0

1-formula, we can readily evaluate (the codes of) Σ0
1 formulas already within RCA0. In this

way we may treat α, β etc. as binary relations, and duly extend the notations of the previous
subsections approriately, e.g. freely writing |α|,≤α, <α,LO(α),WF(α),WO(α), α <WO β, Iαφ .

▶ Definition 7.6 (Recursive ordinals). Write O := {α : WO(α)}, obtained by Π1
1-

comprehension, and α <O β for O(α) ∧ O(β) ∧ α <WO β.
We also write IO

φ (x) := ∃α ∈ O Iαφ (x).

Of course, well-foundedness of O under <O is directly inherited from well-foundedness of
WO under <WO, Proposition 7.2. Note that IO

φ (x) is again a Σ1
1-formula, and so we have

access to IO
φ as a set within Π1

1-CA0. In fact we even have access to the restriction I−
φ (−) ⊆

O × N again by Σ1
1-comprehension. As a result we can give a recursive characterisation of

IO
φ similar to Proposition 7.4 but at the level of O:

▶ Proposition 7.7 (Recursion). Let φ(X,x) be arithmetical and positive in X. We have:

∀α ∈ O ∀x (Iαφ (x)↔ ∃β <O αφ(Iβφ , x))

i.e. Iαφ =
⋃

β<Oα

φ(Iβφ)

 (7)

The following are well-known properties about O:
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▶ Proposition 7.8 (Properties of O). We have the following:
1. (Increase) ∀α ∈ O ∃β ∈ O α <O β.
2. (Collection) ∀x∃α ∈ Oφ→ ∃β ∀x ∃α <O β φ.

Turning back to positive formulas again, we have the following useful consequence:

▶ Corollary 7.9. Let φ(X,x) and ψ(X) be arithmetical and positive in X. ψ(IO
φ )→ ∃αψ(Iαφ ).

7.3 Characterising inductive definitions as limits of approximants
The main result of this section is:

▶ Theorem 7.10 (Characterisation). ∀x(Iφ(x)↔ IO
φ (x)) (i.e. Iφ = IO

φ ).

Proof sketch. For (→), it suffices to show that IO
φ is a prefixed point of φ(−):6

φ(IO
φ ) ⊆ φ(Iαφ ) for some α, by Corollary 7.9

φ(IO
φ ) ⊆ Iβφ for some β >WO α by Propositions 7.7 and 7.8

φ(IO
φ ) ⊆ IO

φ by definition of IO
φ

Iφ ⊆ IO
φ ∵ Π1

1-CA0 proves Iφ is least among pre-fixed points

Note here it is crucial that we have access to IO
φ as a set, thanks to Σ1

1-comprehension.
For (←), we show Iαφ (a) ⊆ IO

φ (i.e. ∀x(Iαφ (a, x)→ Iφ(x))) by α-induction on a ∈ |α|:

Iαφ (b) ⊆ Iφ ∀b <α a by inductive hypothesis⋃
b<αa

Iαφ (b) ⊆ Iφ by ∃-left-introduction

φ

( ⋃
b<αa

Iαφ (b)
)
⊆ φ(Iφ) by positivity of φ(−)

Iαφ (a) ⊆ φ(Iφ) by (6)
Iαφ (a) ⊆ Iφ ∵ Π1

1-CA0 proves Iφ is a pre-fixed point

Note here that it is crucial that we have access to Iφ as set, thanks to Π1
1-comprehension. ◀

8 Simulating cyclic proofs within ID<ω

The goal of this section is to finally establish the converse to Theorem 4.6:

▶ Theorem 8.1. Let φ be arithmetical. If CID<ω ⊢ φ then ID<ω ⊢ φ.

The argument proceeds essentially by formalising the soundness argument of Section 5
within Π1

1-CA0, with respect to the partial satisfaction predicate Sat. We spend most of this
section explaining this formalisation.

We henceforth work within Π1
1-CA0, unless otherwise stated.

Necessity of non-uniformity. In light of Theorem 6.1 and Theorem 4.6, we obviously cannot
formalise soundness of CID<ω uniformly within Π1

1-CA0, for Gödelian reasons. Instead we
take a non-uniform approach. Let us henceforth fix a CID<ω proof π of a sequent Γ⇒ ∆.
We assume π uses only inductive predicates among I⃗ = Iφ1 , . . . , Iφn . All notions about
(recursive) ordinals from Section 7 are now relativised to I⃗ (recall that we allowed free set
variables to occur as parameters throughout).

6 Here we are using expressions, say, φ(A) ⊆ B as an abbreviation for ∀x(φ(A, x) → B(x)).
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Formalising properties of traces. The results of Section 4.3, in particular Proposition 4.7, in-
volve only finitary combinatorics and are readily formalisable already within RCA0, essentially
following the given (meta-level) proofs.

“Knowing that” a regular proof is progressing. At some point during the soundness
argument, namely after constructing the “countermodel branch”, we shall need to extract a
progressing thread from an infinite branch of π. However, this requires our ambient theory
knowing that π is progressing, hitherto a meta-level assumption. Let us point out that in our
non-uniform exposition, for fixed π, known progressiveness has been shown to be available in
even the weakest of the “big five”:

▶ Proposition 8.2 (RCA0, [11]). π is progressing.

Formalised admissibility of substitution. The admissibility of substitution, Proposition 5.2,
is available already in weak theories by a simple inductive construction: from π define
π′ a substitution-free LID−

<ω non-wellfounded proof node-wise by simply composing the
(finitely many) substitutions up to a node. The progressing criterion means that there are, in
particular, infinitely many non-substitution steps along any infinite branch, and so by (weak)
König’s lemma have that the resulting binary tree is well-defined.

We henceforth work with π′ a substitution-free LID−
<ω non-wellfounded proof of Γ⇒ ∆

using only inductive predicates among I⃗ = Iφ1 , . . . , Iφn
, that we “know” is progressing.

Formalising satisfaction with respect to approximants. We already defined recursive
approximants in Π1

1-CA0 in Section 7.2. The formalised version of Corollary 5.3 is given by
Corollary 7.9, and the formalised version of Corollary 5.4 is available already in pure logic.
The existence of least ordinals satisfying a property is given by well-foundedness of WO
under <WO, Proposition 7.2, and thus Observation 5.5 follows from Equation (6).

Formalised building countermodels. To speak about satisfaction and truth of formulas in
π′, we use the formalised notion SatI⃗ in place of the meta-level “⊨”. Note that the inductive
predicates occurring in π′ parametrise the satisfiability predicate. From here Lemma 5.6
is formalised by proving soundness of the rules of LID−

<ω with respect to SatI⃗ , keeping
track of immediate ancestry and using the results of the previous subsection. We use the
(formalised) notions Iαφ as inputs to SatI⃗ in order to evaluate formulas like φα, and we rely
on well-foundedness of the class of well-orders, Proposition 7.2, to make the correct decisions
cf. Item 3b. Let us point out that, for a fixed step r, the description of (ρ′, S′) from (ρ, S)
is arithmetical in I⃗ , SatI⃗ , <WO, O and I⃗−, by essentially following the specification in the
Lemma statement, relativising “ordinals” to O.

Putting it all together, formally. Finally let us discuss how the proof of Theorem 5.1 (for
π′) is formalised. Recall that the infinite “countermodel branch” (vi)i<ω is recursive in the
construction from (formalised) Lemma 5.6. Since that construction was arithmetical (in
certain set symbols), we indeed have access to the countermodel branch (vi)i<ω as a set by
comprehension. Now, since we know that π′ is progressing, we can duly take a progressing
trace (τi)i≥k along it. From here the obtention of the sequence of (now recursive) ordinals
(αi)i≥k is obtained by a simple comprehension instance arithmetical in SatI⃗ , I⃗

− and <WO.
The remainder of the argument goes through as written, appealing to formalised versions of
auxiliary statements.

From here we may conclude the main result of this section as promised:

FSCD 2023
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Proof sketch of Theorem 8.1. From CID<ω ⊢ φ, for φ arithmetical, the explanations in
this section give us Π1

1-CA0 ⊢ Sat∅(∅, ⌜φ⌝,∅). By reflection, Corollary 6.3, we thus have
Π1

1-CA0 ⊢ φ, and so by conservativity, Theorem 6.1, we have ID<ω ⊢ φ, as required. ◀

9 Conclusions

We presented a new cyclic system CID<ω formulated over the language L<ω of finitely iterated
arithmetical inductive definitions. We showed the arithmetical equivalence of CID<ω and its
inductive counterpart ID<ω by nontrivially extending techniques that have recently appeared
in the setting of cyclic arithmetic [21, 11]. Among other things, this work serves to further
test the metamathematical techniques and methodology now available in cyclic proof theory.

Extensions of predicate logic by “ordinary” inductive definitions, which are essentially
quantifier-free but allow for a form of simultaneous induction, were extensively studied by
Brotherston and Simpson, in particular in the setting of cyclic proofs [7, 9, 10]. Indeed
recently Berardi and Tatsuta have shown that cyclic systems for extensions of Peano and
Heyting arithmetic by such inductive definitions prove the same theorems as the corresponding
inductive systems [4, 5]. As noted by Das in [11] the result of [4] (for Peano arithmetic) is, in
a sense, equivalent to Simpson’s in [21] since ordinary inductive definitions can be encoded
by Σ1-formulas: closure ordinals of ordinary inductive definitions are always bounded above
by ω. Comparing to the current work, recall that the closure ordinals of even a single
arithmetical inductive definition exhaust all recursive ordinals.

There are many other possible extensions of the language of arithmetic LA by fixed points.
One natural avenue for further work would be to consider Lα for both α < ω and α ≥ ω.
Again the corresponding finitary systems IDα play a crucial role in the ordinal analysis of
stronger impredicative subsystems of second-order arithmetic (see, e.g., [19]). However what
may be more interesting in the context of cyclic proof theory is the extension of LA (and
L<ω) by so-called “general” inductive definitions, as in [16, 17]. These essentially extend the
syntax of LA in the same way that fixed points of the modal µ-calculus extend the language
of modal logic, in particular allowing set parameters within inductive definitions. Such a
setting necessarily exhibits more complicated metatheory, but is a natural target in light of
the origins of cyclic proof theory based in the µ-calculus and first-order logic with inductive
definitions. To this end, let us point out that cyclic systems for the “first-order µ-calculus”
have already appeared [24, 23, 1], and so could form the basis of such investigation.
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Abstract
This work aims at exploring the algebraic structure of concurrent processes and their behavior
independently of a particular formalism used to define them. We propose a new algebraic structure
called conjunctive involutive monoidal algebra (CIMA) as a basis for an algebraic presentation of
concurrent realizability, following ideas of the algebrization program already developed in the realm
of classical and intuitionistic realizability. In particular, we show how any CIMA provides a sound
interpretation of multiplicative linear logic. This new structure involves, in addition to the tensor
and the orthogonal map, a parallel composition. We define a reference model of this structure as
induced by a standard process calculus and we use this model to prove that parallel composition
cannot be defined from the conjunctive structure alone.
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1 Introduction

1.1 Realizability and its algebrization
Realizability provides a well-established and general set of techniques for studying the
relationships between programs and proofs. In the traditional presentation of intuitionistic
realizability, one starts from a set A of realizers, which are objects with computational
meaning, programs in some formalism (codes of recursive functions, λ-terms, etc). Logic
is then interpreted in the powerset of A, in such a way that the meaning of a formula is
essentially a set of programs sharing a computational behavior dictated by the formula. From
an algebraic viewpoint, the set A induces in its powerset a Heyting algebra, which in turn
induces a topos [12, 20].

Classical realizability adapts these principles to classical logic, building on different
foundations [13]. The computational part is based on the duality between programs (potential
proofs) and environments (counter-proofs). The proper categorical structure underlying
classical realizability was discovered by Streicher [22] and involves an ordered combinatory
algebra (OCA) induced by terms and stacks. This construction was later generalized in a
different setting, namely Krivine ordered combinatory algebras [6], with the feature that
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Streicher’s construction can be carried out in a purely axiomatic context. In particular, both
truth values and realizers belong to the underlying set of these structures and the partial
order subsumes subtyping, term reduction and the realizability relation. A similar approach
was later followed within Miquel’s implicative algebras [15] (and some variants by the last
author’s [16]), a slightly different structure which allows to encompass intuitionistic and
classical models of forcing and realizability into a general framework, keeping the feature that
truth values and realizers (and also forcing conditions) both belong to the underlying set of
the implicative algebra. All these works therefore advocate for foundations of realizability
seeking to transform a rather complex and operational definition into a much simpler and
algebraic one.

1.2 Logic for concurrency
Process calculi form a wide range of formalisms designed to model concurrent systems and
reason about them by means of term rewriting. Their applications are diverse, from the
semantics of proof systems to the conception of concrete programming languages. Type
systems for such calculi are therefore a wide domain, with systems of different kinds designed
to capture different behaviors and ensure different properties of processes: basic interfacing,
input-output discipline, linearity, lock-freeness, termination, respect of communication pro-
tocols, etc. To better understand the diversity of calculi and uncover basic structures and
general patterns, many authors have searched for languages with simpler or more general
theory in which the most features could be expressed by means of restrictions or encodings.
Similar unification has been searched for in the realm of types, but no system can yet claim
to be as basic and universal as, e.g., simple types for the λ-calculus, which perfectly capture
the abstraction and application mechanism in the logical world.

Concurrent realizability, developed by Beffara [2], transposes the ideas of classical realiz-
ability in a context of interacting concurrent processes. Following the constructions of phase
semantics from linear logic [8] and ludics [9], the combinatory algebra is replaced with a
variant of the π-calculus, endowed with a structure of commutative monoid under parallel
composition. The pole, which defines orthogonality as in classical realizability, is seen as a
testing protocol between processes, and the sets of processes that are closed by biorthogonality
act both as truth values and behaviors. However, in the original construction, processes are
subject to polarization and interfacing constraints which restrict the use of names, in order
to avoid ambiguity when composing and to ensure consistency. As a consequence, operations
over behaviors inherit such restrictions, which makes them partial in general.

The aim of the present work is to set the basis for an algebraic presentation of concurrent
realizability, as a way to study processes and their types in a well-structured algebraic
framework. We propose that, as with sequential models, the algebraic presentation is based
on an ordered algebraic structure which must allow interpreting truth values and concurrent
programs in its underlying set, subsuming the reduction semantics in the order relation.
Furthermore, we want to avoid imposing a priori restrictions on processes.

1.3 Principles of the construction
We aim for an algebraic structure in which we can represent processes, types and operators
in a uniform setting and we will refer to elements of such a structure as behaviors. A guiding
intuition is to see behaviors as particular sets of terms in a process algebra, with some notion
of closure by observational equivalence (a formal implementation is presented in Section 4).
We postulate three fundamental structures over behaviors:
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a complete lattice structure, taking a comparison a ≤ b to mean that b exhibits more
possible behaviors than a;
a binary operator ⊗, continuous with respect to the lattice structure, that represents an
operation of parallel composition without interaction.
an anti-monotone unary operator (·)⊥ s.t. a⊥ represents the tests that a passes.

This yields a variant of the last author’s conjunctive structure [16], including notions of arrow
and application and allowing for a sound interpretation of multiplicative linear logic. Within
this framework, we study parallel composition as an additional continuous binary operation
in the conjunctive structure.

Note that the notion of name, though pervasive in process algebra, is not taken to be
primitive because different calculi and type systems make different choices on the use of
names and actions (monadicity vs polyadicity, polarization, synchrony, etc). Instead, we
consider that the multiplicative structure includes some way of managing connections between
processes so that the axioms are satisfied.

1.4 Outline of the paper

We start by introducing in Section 2 the conjunctive structures that we identified to be
conducive to the analysis of concurrent computation from an algebraic viewpoint. In Section 3,
we develop a construction over process algebras to formally extend a language of processes
with generalized fusions (PGF), on top of which we build a realizability model in Section 4
with the expected algebraic structure. We then explain in Section 5 how to equip conjunctive
structures with parallelism and we illustrate it in the case of PGF. In Section 6, we prove
that parallel composition cannot have an internal representation in the axioms of purely
conjunctive structures, using a model that validates these axioms but does not have an
operator for general parallel compisition.

2 Logic in conjunctive structures

Following the program of algebrization of realizability models that was mostly undertaken
in the realm of Krivine realizability [22, 6, 15, 16] and previous work by the first author on
concurrent computation [2], we introduce a particular class of conjunctive algebras which we
identify as the key algebraic structures underlying realizability models induced by process
calculi. We first define the notion of conjunctive structure, which reflects the algebraic
structure of these models (how are the truth values defined?), and then define a notion of
separator that allows to capture the logical content (which processes define valid realizers?).

2.1 Conjunctive structures

▶ Definition 1. A conjunctive structure (CS) is a tuple (C,≼, ⊗, (·)⊥) such that
1. (C,≼) is a complete lattice;
2. ⊗ is a binary monotone operation of C and (·)⊥ is a unary antimonotone function on C;
3. ⊗ distributes over the join operation

b
, i.e. for any a ∈ C and B ⊆ C we haveb

b∈B(a ⊗ b) = a ⊗
(b

b∈B b
)

and
b

b∈B(b ⊗ a) =
(b

b∈B b
)

⊗ a;
4. the orthogonal map (·)⊥ satisfies De Morgan’s law

(b
b∈B b

)⊥ =
c

b∈B b⊥.
We say that the structure is involutive (CIS) if (·)⊥ is involutive: a⊥⊥ = a for all a ∈ C.
Also we call unitary every CS (resp. CIS) with a distinguished element 1 ∈ C.

FSCD 2023
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To draw the comparison with the conjunctive structures defined in the last author’s
work [16], the only difference lies in the use of an orthogonal map instead of a negation ¬
that was meant to convey a computational content. In particular, even in the classical case,
a and ¬¬a are logically equivalent but not necessarily equal.

▶ Example 2. Any complete Boolean algebra (B,≼, ∧, ∨, ¬) defines a CIS using the conjunc-
tion as tensor (a ⊗ b ≜ a ∧ b) and the negation for orthogonal map (a⊥ ≜ ¬a).

▶ Example 3. A phase space [8] is defined by a commutative monoid M and a subset ⊥ ⊆ M .
For a ⊆ M , define the dual a⊥ ≜ {x : ∀y ∈ a, xy ∈ ⊥}; define a ⊗ b ≜ {xy : x ∈ a, y ∈ b}⊥⊥

for a, b ⊆ M . Then the set of subsets a ⊆ M such that a⊥⊥ = a forms a CIS.

Given a conjunctive structure (C,≼, ⊗, (·)⊥), we define the usual connectives and quantifiers
of multiplicative linear logic (MLL) on C as follows, where F is a function over C:

a ` b ≜ (a⊥ ⊗ b⊥)⊥ a ⊸ b ≜ (a ⊗ b⊥)⊥ ∃F ≜
j

a∈C

F (a) ∀F ≜
k

a∈C

F (a)

These definitions induce a canonical interpretation of MLL formulas within any CIS.

▶ Definition 4. Consider a unitary CS (C,≼, ⊗, (·)⊥, 1). The interpretation of closed MLL
formulas with parameters P ∈ C is defined as follows:

J1K ≜ 1 JA ⊗ BK ≜ JAK ⊗ JBK J∃X.AK ≜ ∃
(
P 7→ JAK{X := P}

)
J⊥K ≜ 1⊥ JA ` BK ≜ JAK ` JBK J∀X.AK ≜ ∀

(
P 7→ JAK{X := P}

)
JP K ≜ P

Given a sequent ⊢ A1, . . . , Ak, the interpretation JA1, . . . , AkK is defined as JA1K if k = 1 and
JA1K ` JA2, . . . , AkK otherwise.

▶ Remark 5. As usual, the interpretation JAK of a formula A depends only upon the assignment
of the free variables of A. The same is valid for sequents.
▶ Remark 6. If C is a CIS, the involutivity of (·)⊥ actually implies that (C,≼,⊸) is an
implicative structure in the sense of Miquel [15] since ⊸ satisfies the expected variance and
continuity properties: in particular

(b
b∈B b

)
⊸ a =

c
b∈B(b ⊸ a) for any a ∈ C and B ⊆ C.

Note that this applies to structures, which only define operators and their relationships.
The algebras defined below, which include a notion of logical validity, will actually diverge
since implicative algebras model intuitionistic logic, while our algebras apply to linear logic.

2.2 Separators and internal logic
Conjunctive structures are suited to interpret formulas of MLL. To account for a validity
notion, we need to introduce the notion of separator [15, 16], a subset of the structure which
intuitively distinguishes valid formulas, similarly to a filter in a Boolean algebra. Separators
are built upon a set of combinators that one can understand as axioms for the internal logic.

▶ Definition 7. Consider a unitary CS (C,≼,
b

, ⊗, (·)⊥, 1). The MLL combinators are:
S3 ≜

c
a,b∈C(a ⊗ b) ⊸ (b ⊗ a)

S4 ≜
c

a,b,c∈C(a ⊸ b) ⊸ (a ⊗ c) ⊸ (b ⊗ c)
S5 ≜

c
a,b,c∈C((a ⊗ b) ⊗ c) ⊸ (a ⊗ (b ⊗ c))

S6 ≜
c

a∈C a ⊸ (1 ⊗ a)
S7 ≜

c
a∈C(1 ⊗ a) ⊸ a

S8 ≜
c

a,b∈C(a ⊸ b) ⊸ (b⊥ ⊸ a⊥)

The definitions (and names) for S3, S4 and S5 come from the notion of separator in conjunctive
algebras [16]. The original S1 and S2 are replaced here by S6, S7 and S8 to account for
linearity. The set of combinators {S3, . . . , S8} is known to be complete for MLL [1].
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⊢ 1 : 1
(1)

⊢ I : A⊥, A
(Ax)

⊢ a : A1, . . . , Ak

⊢ ex(σ) ∗ a : Aσ(1), . . . , Aσ(k)
(Ex)

⊢ a : Γ, A ⊢ b : B, ∆
⊢ t ∗ a ∗ b : Γ, A ⊗ B, ∆

(⊗)

⊢ a : Γ, A ⊢ b : A⊥, ∆
⊢ c ∗ a ∗ b : Γ, ∆

(Cut)
⊢ a : Γ, A{X := B}

⊢ a : Γ, ∃X.A
(∃)

⊢ a : Γ, A X not free in Γ
⊢ a : Γ, ∀X.A

(∀)

Figure 1 Semantic typing rules for MLL.

▶ Definition 8. Let us consider (C,≼,
b

, ⊗, (·)⊥, 1) a unitary CIS. A monoidal separator
on C is an upwards closed set S ⊆ C such that:

S contains the MLL-combinators S3, . . . , S8.
For any a, b ∈ C, if a ⊸ b ∈ S and a ∈ S then b ∈ S.

A conjunctive involutive monoidal algebra (CIMA) is a unitary CIS C together with a
monoidal separator S.

▶ Example 9. In any CIS induced by a complete Boolean algebra B (see Example 2), all the
combinators are tautologies trivially interpreted by the maximal element ⊤. Therefore, the
singleton {⊤} (or alternatively any filter on B) defines a separator for this CIS.

▶ Definition 10. Let C be a CS. A semantic judgement is a statement ⊢ a : Γ where a ∈ C
and Γ is a sequent of formulas with parameters in C. Such a judgement is sound if a ≼ JΓK.
A semantic typing rule is an inference rule where the premises and conclusion are semantic
judgements, possibly involving free variables. Such a rule is sound if the soundness of its
premises entails that of its conclusion for any instantiation of the variables in C.

We provide semantic typing rules for MLL in Figure 1, Using the following terms, where
σ : [1; k] → [1; k] is a permutation and a ∗ b ≜

c
{c ∈ C | a ≼ b ⊸ c} is the usual application

from implicative algebras:

I ≜
c

a∈C (a ⊸ a)
t ≜

c
a,b,g,d∈C ((g ` a) ⊸ (b ` d) ⊸ g ` ((a ⊗ b) ` d))

c ≜
c

a,g,d∈C

(
(g ` a) ⊸ (a⊥ ` d) ⊸ (g ` d)

)
ex(σ) ≜

c
a1,...,ak∈C

(
(a1 ` · · · ` ak) ⊸ (aσ(1) ` · · · ` aσ(k))

)
▶ Proposition 11. For any CIMA (C, S) and any permutation σ, the combinators I, t, c
and ex(σ) belong to the separator S

Proof. These proofs are essentially simple combinatorial manipulations within conjunctive
involutive structures. We detail here the proof that I ∈ S as an example. Let us consider a
CIMA (C, S) and define:

S′
4 ≜

k

a,b,c∈C

(a ⊸ b) ⊸ (b ⊸ c) ⊸ a ⊸ c t ◦ s ≜ S′
4 ∗ s ∗ t

It is an easy exercise to check that S′
4 ∈ S (this follows from combinatorial manipulations

using the closure under modus ponens and the fact that S4, S8 ∈ S). Besides, similarly to
what happens for implicative algebras, separators of CIMAs are closed under application ∗,
and as such they are also closed under composition ◦. To prove that I ∈ S, observe that for
any a ∈ C we have S6 ≼ a ⊸ a ⊗ 1 and S7 ≼ a ⊗ 1 ⊸ a. Then S7 ◦ S6 ≼ a ⊸ a (uniformly
on a ∈ C) and thus we get S7 ◦ S6 ∈ S and then

c
a∈C a ⊸ a ∈ S. ◀

FSCD 2023
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▶ Theorem 12. The semantic typing rules of Figure 1 are sound for all unitary CS. Moreover,
for any CIMA (C, S) if ⊢ a : Γ is provable, then a ∈ S.

Proof. The soundness of rule (1) is just reflexivity of ≼ and that of rules (Ax), (∀) and
(∃) holds by definition of the meet operation. For the other rules, remark that if for some
a, b, t, u ∈ C we have t ≼ a ⊸ b and u ≼ a, then t ≼ u ⊸ b, hence t ∗ u ≼ b by definition of ∗.
This entails the soundness of (Ex), (⊗) and (Cut) by definition of I, t and c.

Besides, by definition of ∗, we also have a ≼ b ⊸ a ∗ b for all a and b, which implies
that separators are closed under ∗. This, with the results of Proposition 11, entails that the
left-hand sides of derivable judgements are always in S. ◀

As a consequence, we conclude that all provable MLL formulas are interpreted by elements
in the separator (i.e. validated by the model).

As stated in Remark 6, unitary CISs are implicative structures while in general CIMAs are
not implicative algebras. Due to the chosen notion of separator, CIMAs do not (in general)
model intuitionistic logic. Nevertheless, some specific CIMAs can model intuitionistic or
classical logics if their separators contains non linear terms.

3 Processes with global fusions

In this section, we define a computational structure that will serve as our reference. We first
recall the basic definitions of a standard π-calculus, then we build processes with fusions as
a formal extension of this language. These fusions, being an additional structure to extend
the expressiveness of an existing algebra (as opposed to a feature that we would impose on
the underlying calculus, which would restrict the range of calculi our study applies to), bring
the necessary connections to realize MLL axioms.

Hence, it should be made clear that the point of this section is not to define “yet another
π-calculus” but, on the contrary, to show that our study applies to any process calculus. The
only technical constraint is that the combinators from Definition 7 should not be degenerate
(i.e. equal to ⊥), otherwise there is no meaningful seperator. This essentially requires to
have realizers that act as substitutions (or “forwarders”). The construction below consists in
formally completing a process algebra with such objects.

So the choice of a particular variant of the π-calculus is essentially arbitrary, we pick this
one for the purpose of illustration. The only features we need are the ability to perform
renaming and the availability of parallel composition and hiding with usual properties. The
point of the construction is to extend the language with name fusions at top-level while
preserving this composition structure. Keeping fusions at top-level is the only generic choice
that does not impose to reason on the syntax of the calculus we build on, thus allowing
for working with fusions in the algebraic structure without imposing constraints on the
underlying process language.

3.1 Basic processes
The following recalls the standard definitions of the polyadic asynchronous π-calculus with
its operational semantics by reduction [21]. We leave out replication and addition because
these will not be used in this paper, but including them is not a problem.

▶ Definition 13. The set Π of π-processes is defined by the following grammar:

P, Q ::= 1 | (P | Q) | u(x⃗).P | ū ⟨v⃗⟩ | (νy)P
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where x⃗ is a finite sequence of pairwise distinct names that range over the set N of natural
numbers, v⃗ is a finite sequence of names, y and u are names. The term 1 is the unit and the
operators |, u(x⃗), ū ⟨v⟩ , (νy) are respectivelly called parallel composition, reception, emission
and hiding.

The names in x⃗ are bound in u(x⃗).P , the name y is bound in (νy)P . The set of free
names of a term P is denoted by FN(P ). Terms are considered up to renaming of bound
names, also called α-conversion, written ≡α.

Structural equivalence is the smallest congruence over terms such that
(Π, |, ≡) is an commutative monoid, i.e. 1|P ≡ P , P |Q ≡ Q|P and (P |Q)|R ≡ P |(Q|R),
P ≡ (νx)P and P | (νx)Q ≡ (νx)(P | Q) whenever x /∈ FN(P ),
(νx)(νy)P ≡ (νy)(νx)P and we write (νxy)P ≜ (νx)(νy)P .

▶ Definition 14. A substitution is a function σ : N → N. Provided that the names in x⃗ are
pairwise distinct and that x⃗ and v⃗ have the same length, {x⃗ := v⃗} denotes the substitution
which replaces x⃗ by v⃗ and leaves all other names unchanged.

Given X ⊆ N we denote by σ↾X the substitution which coincides with σ on X and is the
identity outside. We write σ\X for the substitution σ↾Xc .

We denote by P σ the result of applying σ to P ∈ Π, defined inductively in the standard
way. Given substitutions σ1, . . . , σk we denote by P σ1...σk the term (. . . (P σ1) . . . )σk .

▶ Definition 15. One-step reduction is the smallest binary relation −→1 over Π such that
ū ⟨v⃗⟩ | u(x⃗).P −→1 P {x⃗:=v⃗},
−→1 is compatible with ≡, i.e. if P ≡ P ′, Q ≡ Q′ and P −→1 Q then P ′ −→1 Q′,
−→1 is compatible with parallel composition and hiding, i.e. if x ∈ N and P −→1 P ′,
then P | Q −→1 P ′ | Q and (νx)P −→1 (νx)P ′.

We do not define a higher-level semantics at this point. The semantics induced by the
conjunctive structures defined in the following sections will be a generic form of testing and
most of the construction will be parametric in the particular testing protocol.

3.2 Processes with fusions
A fusion is, intuitively, a connection between channels. The defining property of a fusion
u↔v is that its presence within a process allows actions on channel u to synchronize with
actions on channel v. Several works have defined extensions of the π-calculus with this
feature [7, 19, 23] and studied its effects on the theory and the expressiveness of the language.

Instead, the construction presented in this section rather aims at extending an arbitrary
process calculus with fusions without affecting its theory, for our study to be compatible
with any particular process language. This is made possible by the fact that we only need
fusions at top-level, so that they can live side-by-side with standard processes. Intuitively, a
fusion u↔v at top level in a process can be interpreted as the information that u and v will
eventually get substituted with the same name.

▶ Definition 16. A fusion is an equivalence relation over N. The set of fusions is written E .
Given e ∈ E we write x ∼

e
y instead of (x, y) ∈ e. For e, f ∈ E we write ef for the smallest

equivalence that contains both e and f .

▶ Remark 17. The set E is a complete lattice under inclusion, with the identity ∆N ≜
{(x, x) | x ∈ N} as minimum and the full relation ∇N ≜ N × N as maximum. The meet of a
set S ⊆ E is the intersection

⋂
S and its join

∨
S is the transitive closure of the union

⋃
S.
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▶ Definition 18. Given e ∈ E, x, y ∈ N, X ⊆ N and σ : N → N, define
the equivalence class of x as [x]e ≜ {y ∈ N | x ∼

e
y}, extended as [X]e ≜

⋃
x∈X [x]e;

the domain of e as |e| ≜ {x ∈ N | [x]e ̸= {x}};
the restriction of e to X as e ∩ X ≜ (e ∩ (X × X)) ∪ ∆N;
the hiding of X in e as e \ X ≜ e ∩ Xc;
the elementary fusion of x and y as x↔y ≜ {(x, y), (y, x)} ∪ ∆N.

An equivalence e can be induced by a function σ, considering that equivalent elements are
the ones with the same image under σ. Such a function can always be deduced from e by
picking a representative in each equivalence class. The following definitions formalize these
constructions, exploiting the well-ordering over N to get canonical representatives.

▶ Definition 19. Given a fusion e ∈ E, x ∈ N and a function τ : N → N, we define:

x•
e ≜ min[x]e and x∗

e ≜

{
x if [x]e = {x}
min([x]e\{x}) if [x]e ̸= {x}

σ•
e : x 7→ x•

e for all x, the substitution induced by e;
ετ ≜

∨
x∈N(x↔τ(x)), the fusion induced by τ ;

eτ ≜
∨

x∼
e

y(τ(x)↔τ(y)), the composition of e with τ .

We are now ready to introduce the notion of processes with global fusions, and extend
the constructions on processes to this generalization. This is similar to that of unitization in
algebras, where a non-unital algebra is extended with a formal extra element and saturated
to preserve the structure and endow the extra element with desired properties.

▶ Definition 20. The set of processes with global fusions (PGF) is defined as

Π̄ ≜ Π × E = {(P, e) | P ∈ Π, e ∈ E}

Over Π̄, define substitution, free names, α-equivalence and structural equivalence ≡ as

(P, e)τ ≜ (P τ , eτ ) (P, e) ≡α (Q, f) ⇐⇒ e = f and P σ•
e ≡α Qσ•

f

FN(P, e) ≜ FN(P ) ∪ |e| (P, e) ≡ (Q, f) ⇐⇒ e = f and P σ•
e ≡ Qσ•

f

When it is not necessary to specify process and fusion, we will use the lowercase letters p, q, r, s

to refer to processes with fusions.
Remark that the definitions of α-equivalence and structural equivalence allow renaming

of free names as long as the equivalence class of each name is unchanged, so that we have for
instance (a(x).P, a↔b) ≡ (b(x).P, a↔b). Including |e| in FN(P, e) ensures that, despite such
renaming, FN is invariant under ≡α as expected. Note also that if we identify each term P

with the pair (P, ∆N), then the operations defined above coincide with those of Π.

▶ Definition 21. One-step reduction in Π̄ is the relation −→1 such that (P, e) −→1 (Q, f) if
and only if e = f and P σ•

e −→1 Qσ•
f . Multistep reduction −→ is the reflexive and transitive

closure of −→1.

Again, this extends the associated relation from Π to Π̄ and allows more reductions
when the fusion relates two names on which compatible actions occur. For instance we have
(u(x).P | v̄ ⟨y⟩ , u↔v) −→1 (P{x := y}, u↔v).

▶ Definition 22. For (P, e), (Q, f) ∈ Π̄, define (P, e) | (Q, f) ≜ (P | Q, ef).
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Identifying a pure fusion e with the pair (1, e), we have (P, e) ≡ P | e for every P , since
P | 1 ≡ P in Π. So in this sense Π and E generate Π̄ under parallel composition. Besides,
reduction −→1 is compatible with ≡ and parallel composition, as in the basic calculus.

We now need to extend name hiding to Π̄. The result of (νx)(P, e) must be (Q, f)
where x /∈ FN(Q, f), hence x /∈ FN(Q) ∪ |f |. Consider a pair (νx)(x̄, x↔y): even if x

must be bound in (νx)(x̄, x↔y), since x is fused with y, we have (x̄, x↔y) ≡α (ȳ, x↔y) so
the only reasonable definition for (νx)(x̄, x↔y) is (ȳ, ∆N), which is structurally equivalent
to ((νx)ȳ, ∆N). On the other hand, if we consider (νx)(x̄, ∆N), we expect to get simply
((νx)x̄, ∆N). Definition 19 provides the notation x∗

e to represent this in a general way.

▶ Definition 23. For (P, e) ∈ Π̄ and x ∈ N, define (νx)(P, e) ≜
(
(νx)P{x := x∗

e}, e \ {x}
)
.

▶ Remark 24. Whenever x is not equivalent to another name, i.e. [x]e = {x}, we have x = x∗
e

and therefore the binder νx on a PGF process only computes as expected on the process
side: (νx)(P, e) = ((νx)P, e). If, instead, x is equivalent to other names, i.e. [x]e ≠ {x}, then
x ̸= x∗

e and νx will disconnect x from its fusion-side equivalents, while replacing it by an
equivalent name on the process side: ((νx)P{x := x∗

e}, e\{x}) ≡ (P{x := x∗
e}, e\{x}).

To extend the definition of ν to finite sets, we first need to ensure that, up to α-equivalence,
the order of application of ν is irrelevant.

▶ Lemma 25. Consider (P, e) ∈ Π̄ and x, y ∈ N, then (νx)(νy)(P, e) ≡α (νy)(νx)(P, e).

Proof. On the one hand

(νx)(νy)(P, e) = (νx)((νy)P{y := y∗
e}, e\{y}) = ((νxy)P{y := y∗

e}{x := x∗
e\{y}}, e\{x, y}).

On the other hand, it can be shown that the last process is α-equivalent to

((νyx)P{x:=x∗
e}{y:=y∗

e\{x}}, e\{x, y}) = (νy)((νx)P{x:=x∗
e}, e\{x}) = (νy)(νx)(P, e).◀

▶ Definition 26. Given a finite set of names X = {x1, . . . , xk} with x1 < · · · < xk, define
(νX)(P, e) ≜ (νxk) · · · (νx1)(P, e).

Later on, we will need to extend this definition for a possibly infinite set X. Even if, for
any PGF p, there exist only finitely many free names of p in X which we need to hide, for
each of them we need to treat them differently depending on whether their equivalence class
is included in X or not. The following definitions generalize the unary definition of ν in that
regards.

▶ Definition 27. Consider a set X ⊆ N and a fusion e ∈ E. Define the substitution

µ(X,e)(x) ≜
{

x•
e if [x]e ⊆ X

min([x]e \ X) if [x]e \ X ̸= ∅

▶ Definition 28. Let (P, e) ∈ Π̄ and X ⊆ N. Since FN(P ) is finite, there exists classes
[x1]e, . . . , [xh+k]e in the quotient N/e such that for each i ≤ h we have [xi]e ⊆ X and for
each j > h we have [xj ] \ X ̸= ∅, and moreover FN(P ) ∩ X ⊆

⋃h+k
i=1 [xi]e. Define

(νX)(P, e) ≜
(
(νx•

1,e, . . . , x•
h,e)P µ(X,e) , e \ X

)
Let us denote by ν̄ the binder (νN).

Finally, let us state a technical result that emphasizes how we can embed a substitution
within the calculus by means of the corresponding fusion.
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▶ Proposition 29. Consider a substitution τ : X → Xc for a set X ⊂ N and p, q ∈ Π̄ such
that FN(p) ⊆ X and FN(q) ⊆ Xc. Then (νX)(p | q | ετ ) ≡α pτ | q.

We defer the proof to the extended version of this paper, as it requires a number of
technical lemmas whose statements and proofs are of little interest by themselves. The
property above will be a crucial ingredient later on to build appropriate realizers. Obtaining
it is the point of the PGF construction and we will not rely on more details when studying
the conjunctive structure.

4 Conjunctive structure of processes

Following the first author’s work [2], we shall now see how to define realizability models which
interpret MLL formulas as sets of processes. These models actually induce a conjunctive
involutive monoidal algebra and as such provides a sound interpretation of MLL. In particular,
we would like to emphasize that this illustrates a significant benefit of our approach, which
allows us to isolate logical properties that are shared by all concurrent realizability models
sharing this algebraic structure, ensuring that these properties are indeed insensitive to
implementation details such as the choice of a particular syntax for processes.

4.1 Concurrent realizability with PGF
We build upon the main insight of Krivine’s realizability [14], by parameterizing the interpre-
tation by a pole, a set of processes somewhat characterizing valid interactions between terms.
In this setting, we will consider poles that are simply closed under structural equivalence to
characterize the soundness of interaction with respect to the renaming mechanism that is
necessary for pure parallel composition, without focusing so far on the reduction of processes.
From now on, we denote by P the set of all sets of processes P ≜ P(Π̄).

▶ Definition 30. A pole is a set of closed processes ⊥⊥ ⊆ {p ∈ Π̄ | FN(p) = ∅} that is closed
under ≡, i.e. if p ≡ q and q ∈ ⊥⊥ then p ∈ ⊥⊥.

Given a pole ⊥⊥, we say that two processes p, q are orthogonal, which we write p ⊥ q,
whenever ν̄(p | q) ∈ ⊥⊥. This naturally induces an orthogonal operator (·)⊥ : P → P on sets of
processes by defining A⊥ ≜ {p ∈ Π̄ : ∀q∈A, p⊥q}. This operator satisfies the usual property
of orthogonality.

▶ Proposition 31. For all A, B ∈ P and for any non-empty B ⊆ P we have:
1. If A ⊆ B then B⊥ ⊆ A⊥

2. A ⊆ A⊥⊥ and A⊥ = A⊥⊥⊥

3.
(⋃

X∈B X
)⊥ =

⋂
X∈B X⊥ and if B ̸= ∅ then

(⋂
X∈B X

)⊥ ⊇
(⋃

X∈B X⊥)
4.

(⋃
X∈B X⊥⊥)⊥ =

(⋃
X∈B X

)⊥

Proof. Part 1, 2, 3 directly follow from the definition, in particular (Π, Π, ⊥) where ⊥=
{(p, q) | p ⊥ q} is called a polarity in [6] and it defines a Galois connection [3]. For part 4, it

suffices to see that
( ⋃

X∈B X⊥⊥
)⊥

=
⋂

X∈B X⊥⊥⊥ =
⋂

X∈B X⊥ =
( ⋃

X∈B X
)⊥

. ◀

Our realizability interpretation is inspired by the semantics of phases, in particular we
interpret formulas in the set of behaviors B ≜ {A ∈ P : A⊥⊥ = A}, i.e. the sets that are
closed under double orthogonal. This set can be endowed with a structure of complete lattice,
as the next proposition shows.
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▶ Proposition 32. Let us define
∨
B ≜ (

⋃
B)⊥⊥ for all B ⊆ B. Then:

1. (P,
⋂

,
⋃

, ⊆) is a complete lattice with top element Π and bottom element ∅.
2. (B,

⋂
,
∨

, ⊆) is a complete lattice with top element Π and bottom element ∅⊥⊥.

In order to interpret MLL formulas in this framework, the main idea consists in seeing
the tensor ⊗ as defining the parallel composition of two processes in such a way that they
do not communicate. This is achieved by making extensive use of substitutions to assign
each process a disjoint space of names. Technically, we rely on the fact that N is in bijection
with the set of even (or odd) natural numbers, somehow reflecting the tree structure of the
formulas into the space of names.

▶ Definition 33. We fix injections ι1, ι2 : N → N such that1 ι1(N) ∩ ι2(N) = ∅ and
ι1(N) ∪ ι2(N) = N. We use the following notations: Ni ≜ ιi(N), n.i := ιi(n), pi ≜ pιi and
ei ≜ eιi . Given p ∈ Π̄ s.t. FN(p) ⊆ Ni we denote as p−i the process pι−1

i . Similarly, if e is a
fusion s.t. |e| ⊆ Ni, we denote as e−i the fusion eι−1

i .

We can now define the semantic counterpart of MLL connectives on processes, which can
then lift to behaviors.

For technical purposes, we also define an operator · ∗ ·, which in fact coincides with the
usual application, i.e. the left adjoint of the linear implication ⊸ as Proposition 37 shows.

▶ Definition 34. For all p = (P, e) and q = (Q, f) define the following operations2:
p • q ≜ p1 | q2 = (P 1|Q2, e1f2) p ∗ q ≜ ((νN1)(p | q1))−2 = ((νN1)(P |Q1, ef1))−2.

▶ Definition 35. We define the following operations on P:

1 := {(1, ∆N)}⊥⊥

A • B := {p • q | p ∈ A, q ∈ B}
A | B := {p | q | p ∈ A, q ∈ B}
A ∗ B := {p ∗ q | p ∈ A, q ∈ B}⊥⊥

A ⊗ B := (A • B)⊥⊥

A ` B := (A⊥ ⊗ B⊥)⊥

A ⊸ B := (A ⊗ B⊥)⊥

A ∥ B := (A | B)⊥⊥

A ↾ X := {p ∈ A | FN(p) ⊆ X}

Observe that the definitions of 1, ∗, ⊗,`,⊸, ∥ define behaviors, and besides, they are
insensitive to double orthogonal:

▶ Proposition 36. For any A, B ∈ P, it holds that (A • B)⊥ = (A⊥⊥ • B⊥⊥)⊥. As a
consequence, A ⊗ B = A⊥⊥ ⊗ B⊥⊥, A ` B = A⊥⊥ ` B⊥⊥ and A ⊸ B = A⊥⊥ ⊸ B⊥⊥.

Proof. The inclusion (A⊥⊥•B⊥⊥)⊥ ⊆ (A•B)⊥ is true by anti monotonicity of the orthogonal
operator. For the reverse inclusion, let us consider r ∈ (A • B)⊥ and let us prove that r ∈
(A⊥⊥ • B⊥⊥)⊥. First, observe that for any processes p, q,, we have the following equivalences:
ν̄(p1 | q2 | r) ≡ ν̄(((νN2)(r | q2))−1 | p) ≡ ν̄(((νN1)(r | p1))−2 | q). In particular, for p ∈ A and
q ∈ B, we have ν̄(((νN2)(r|q2))−1|p) ≡ ν(p1|q2|r) ∈ ⊥⊥. Then ((νN2)(r|q2))−1 ∈ A⊥ = A⊥⊥⊥

and thus ν(p1 | q2 | r) ∈ ⊥⊥ for all p ∈ A⊥⊥, q ∈ B. Using the same observation, we get that
((νN1)(r | p1))−2 ∈ B⊥⊥⊥ for all p ∈ A⊥⊥. Finally, using this observation again we obtain
that ν(p1 | q2 | r) ∈ ⊥⊥ for all p ∈ A⊥⊥, q ∈ B⊥⊥, which is what we wanted to prove. ◀

1 For instance, we can take ι1(n) ≜ 2n + 1 and ι2(n) ≜ 2n.
2 Observe that FN((νN1)((P, e)|(Q, f)1) ⊆ N2 and thus we can apply ι−1

2 to this process.
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▶ Proposition 37. Let us consider A, B, C ∈ P. Then:
1. C ⊆ A ⊸ B ⇐⇒ C ∗ A ⊆ B⊥⊥.
2. C ∗ A =

⋂
{B ∈ B | C ⊆ A ⊸ B} = min{B ∈ B | C ⊆ A ⊸ B}.

(In particular, if B ∈ B then C ⊆ A ⊸ B ⇐⇒ C ∗ A ⊆ B).

Proof.
1. Observe that A ⊸ B = (A • B⊥)⊥. Therefore, we have:

C ⊆ (A • B⊥)⊥ ⇔ ∀p ∈ C.∀q ∈ A.∀r ∈ B⊥. p ⊥ q • r

⇔ ∀p ∈ C.∀q ∈ A.∀r ∈ B⊥. ν̄(p|q1|r2) ∈ ⊥⊥
⇔ ∀p ∈ C.∀q ∈ A.∀r ∈ B⊥. (νN2)

(
(νN1)(p|q1)|r2

)
∈ ⊥⊥

⇔ ∀p ∈ C.∀q ∈ A.∀r ∈ B⊥. ν̄
(

(νN1)(p|q1)−2|r
)

∈ ⊥⊥
⇔ ∀p ∈ C.∀q ∈ A.∀r ∈ B⊥. p ∗ q ⊥ r

⇔ C ∗ A ⊆ B⊥⊥

2. Using Part 1, we get that C ∗ A ⊆ C ∗ A ⇐⇒ C ⊆ A ⊸ (C ∗ A) from which we deduce
that C ∗ A ∈ {B | C ⊆ A ⊸ B}. On the other hand, if C ⊆ A ⊸ B, then C ∗ A ⊆ B. ◀

To complete the definition of the concurrent realizability interpretation of MLL using
processes, it only remains to define the realizability relation.

▶ Definition 38. We say that a PGF p realizes a behavior A, which we write p ⊩ A, if p ∈ A.

A detailed study of this interpretation and of the computational content of realizers, which
mostly ensure adequate communication between adequate channels using an appropriate
fusion, is out of the scope of this paper. We simply illustrate how the identity can be realized.

▶ Proposition 39. For any A ∈ P, we have that I ≜
∨

n∈N
(n.1↔n.2) ⊩ A ⊸ A.

Proof. We have A ⊸ A = (A • A⊥)⊥ (using Proposition 37). Let us consider p ∈ A and
q ∈ A⊥, it suffices to prove that I⊥⊥p1 | q2. Using Proposition 29, we get that ν̄(p1 | q2 | I) ≡α

(ν2)(ν1)(p1 | q2 | I) ≡α (ν)(p | q) and we conclude by observing that (ν)(p | q) ∈ ⊥⊥. ◀

4.2 The induced conjunctive involutive monoidal algebra
Most importantly, we can prove that this construction actually defines a conjunctive involutive
monoidal algebra. In particular, this entails (via Theorem 12) that it defines a valid
interpretation of MLL. The proof is in two parts, we prove that the interpretation induces a
CIS, then we show that the set of realized behaviors defines a valid separator.

▶ Proposition 40. The tuple (B, ⊆, ⊗, (·)⊥), where (B, ⊆) is the lattice defined in Proposi-
tion 32, is a conjunctive involutive structure.

Proof. We have to check that the axioms of Definition 1 are satisfied. The variance properties
and De Morgan law directly follow from the definition of B, ⊗ and from Proposition 31. We
prove the first distributivity law, the other one being similar. For any B ⊆ B, we have:

A ⊗
∨

B∈B

B =
def ∨

A ⊗
( ⋃

B∈B

B
)⊥⊥ =

Prop 36
A ⊗

⋃
B∈B

B =
def ⊗

(
A •

⋃
B∈B

B
)⊥⊥

=
( ⋃

B∈B

(A • B)
)⊥⊥ =

Prop 31.4

( ⋃
B∈B

(A • B)⊥⊥)⊥⊥ =
def ⊗

( ⋃
B∈B

(A ⊗ B)
)⊥⊥ =

def ∨

∨
B∈B

(A ⊗ B)

◀
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F (a, 1) ≡F a F (1, a) ≡F a F (a, b) ≡F F (b, a) F (a, F (b, c)) ≡F F (F (a, b), c)

a ≡F a′ b ≡F b′

F (a, b) ≡F F (a′, b′)
a ≡F a′ b ≡F b′

a ⊗ b ≡F a′ ⊗ b′
a ≡F a′

a⊥ ≡F a′⊥
a ≡F a′ b ≡F b′ a ≼ b

a′ ≼ b′

Figure 2 Axioms for the compositional structure associated to F.

▶ Proposition 41. The following behaviors are realized by pure fusions:
1.

⋂
A∈B A ⊸ A.

2.
⋂

A,B∈B(A ⊗ B) ⊸ (B ⊗ A).
3.

⋂
A,B,C∈B(A⊸B)⊸(B⊸C)⊸A⊸C.

4.
⋂

A,B,C∈B((A ⊗ B) ⊗ C) ⊸ (A ⊗ (B ⊗ C)).

5.
⋂

A∈B A ⊸ (1 ⊗ A).
6.

⋂
A∈B(1 ⊗ A) ⊸ A.

7.
⋂

A,B∈B(A ⊸ B) ⊸ (B⊥ ⊸ A⊥).

Proof. The first statement is Proposition 39, and the other statements follow similar ideas.
We give here a realizer for the second statement as an example.

By Definition 35, we have (A ⊗ B) ⊸ (B ⊗ A) =
(
(A • B) • (B • A)⊥)⊥. Consider

p ∈ (B • A)⊥, q ∈ A and r ∈ B, in particular, they satisfy ν(r1 | q2 | p) ∈ ⊥⊥. By definition
q1.1 | r2.1 | p2 ∈ (A ⊗ B) ⊸ (B ⊗ A). To get a realizer, we define the substitution τ : N1 → N2

s.t. τ(n.1.1) := n.2.2 and τ(n.2.1) := n.1.2. It is now enough to prove that ετ ⊥⊥q1.1 | r2.1 | p2,
i.e.: ν(q1.1 |r2.1 |p2 |ετ ) ∈ ⊥⊥. Moreover ν(q1.1 |r2.1 |p2 |ετ ) ≡ (νN2)(νN1)(q1.1 |r2.1 |p2 |ετ ) ≡
(νN2)(q2.2 | r1.2 | p2) ≡ ν(r1 | q2 | p) ∈ ⊥⊥, which ends the proof. ◀

▶ Proposition 42. The set of non-empty behaviors SB ≜ B\∅ defines a separator for the
conjunctive structure (B, ⊆, ⊗, (·)⊥).

Proof. SB is upwards closed by construction, and the proof that all the combinators are
inhabited by fusions is given in Proposition 41. To prove that it is compatible with the
modus ponens, let a, b ∈ B be behaviors and p, q be processes such that p ∈ a ⊸ b and q ∈ a.
By Proposition 37, we get (a ⊸ b) ∗ a ⊆ b, and thus in particular p ∗ q ∈ b, i.e. b ∈ SB. ◀

5 Conjunctive algebras for concurrency

5.1 Parallel composition
So far, we identified the conjunctive part of the realizability model, that is, processes handling
disjoint namespaces. We shall now investigate the necessary structure to algebrize parallelism.

▶ Definition 43. Let us consider a CS (C, ⊗, (·)⊥,≼). A composition on C is an increasing
and

b
-continuous function F : C × C → C.

Given a composition F on C, define the induced compositional structure associated to F

as the quotient C/ ≡F where the equivalence relation ≡F is the minimum equivalence relation
that satisfies the rules of Figure 2.

Observe that the first four rules express that (C, F, 1, ≡F ) is an commutative monoid while
the last ones express that the structure of the CS C is lifted to the quotient C/ ≡F , thus
inducing respectively the operations ⊗F , (·)⊥

F and the preorder ≼F . It is a direct verification
that the structure (C/≡F , ⊗F , (·)⊥

F ,≼F ) is also a CS. Provided there is no ambiguity, we
will avoid the subscripts F on the induced operations. The structure (C/≡F , ⊗, (·)⊥, F,≼)
induced by F on C is denoted as CF .

▶ Definition 44. Let us consider (C, ⊗, (·)⊥, 1, F,≼) a CS with composition F . We define
▷F : C × C → C by means of b ▷F c ≜

b
{x ∈ C | xFb ≼ c}.
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It is straightforward to check that ▷F defines a right adjoint to F .

▶ Proposition 45. Let us consider (C, ⊗, (·)⊥, 1, F,≼) a CS with composition F . Then
aFb ≼ c ⇐⇒ a ≼ b ▷F c for all a, b, c ∈ C.

Proof. For the direct implication, aFb ≼ c implies that a ∈ {x ∈ C | xFb ≼ c} hence
a ≼ b ▷F c. For the reverse implication, since F is monotone, we have

aFb ≼ (b ▷F c)Fb =
(j

{x ∈ C | xFa ≼ c}
)

| b ≼
j

{xFb | x ∈ C, xFb ≼ c} ≼ c. ◀

▶ Proposition 46. Consider the CS (B, ⊗, (·)⊥, 1, ⊆) of behaviors over Π̄.
1. The operation ∥ (from Definition 35) is a composition over B, the equivalence ≡∥ is

equality and its right adjoint is B ▷∥ C := (B ∥ C⊥)⊥.
2. The operation ⊗ (from Definition 35) is a composition over B and its right adjoint is

B ▷⊗ C :=
(
((B2 ∥ C⊥)⊥)↾N1

)−1.

Proof.
1. Since (Π, |, 1) is a commutative monoid, then (B, ∥, 1) is also a commutative monoid

with unit 1 := {1}⊥⊥. The function ∥ is increasing by definition. For the continuity,
we can check that (

∨
B) |A ⊆

∨
{B∥A | B ∈ B} for all B ⊆ B and A ∈ B, and we

prove the continuity in the right argument similarly. Besides, A∥B ⊆ C is equivalent to
C⊥ ⊆ (A∥B)⊥, which is equivalent to ∀p ∈ A, q ∈ B, r ∈ C⊥, ν(p | q | r) ∈ ⊥⊥. The last
condition is equivalent to A ⊆ (B∥C⊥)⊥, which proves that B ▷∥ C := (B∥C⊥)⊥ is the
right adjoint of ∥.

2. We have (
∨
B) ⊗ A =

∨
{B ⊗ A | B ∈ B} and A ⊗ (

∨
B) =

∨
{A ⊗ B | B ∈ B} from

Proposition 40, and by construction ⊗ is increasing. Moreover, A ⊗ B ⊆ C is equivalent
to C⊥ ⊆ (A ⊗ B)⊥, which is equivalent to ∀p ∈ A, q ∈ B, r ∈ C⊥, ν(p1 | q2 | r) ∈ ⊥⊥. The
last condition is equivalent to A1 ⊆ ((B2 | C⊥)⊥)↾N1 hence A ⊆

(
((B2 | C⊥)⊥)↾N1

)−1,
which proves that B ▷⊗ C :=

(
((B2 | C⊥)⊥)↾N1

)−1 is the right adjoint of ⊗. ◀

5.2 Embedding the π-calculus through Honda-Yoshida combinators
Following previous works on algebraic structures for realizability models based on sequential
calculi [15, 16], we face two options to show that the π-calculus can be faithfully embedded
with conjunctive involutive structure with compositions. Either we find a way to soundly
embed the different constructs u(x⃗).P, ū ⟨v⃗⟩ , | (νy)P , or we can define a set of combinators
that is complete for this calculus (as are S and K for the λ-calculus). We opt for the second
approach, building on Honda & Yoshida combinators for the π-calculus [10].

▶ Definition 47. A Honda-Yoshida structure (HYS) is a CIS (C,≼, ⊗, |, (·)⊥, 1) with com-
position | together with a function M : N × N → C. Given such a structure, we define the
Honda-Yoshida combinators of C by means of:

K(a)≜
c

x∈N

(
M(a, x) ▷ 1

)
F(a, b)≜

c
x∈N

(
M(a, x) ▷ M(b, x)

)
Bl(a, b)≜

c
x∈N

(
M(a, x) ▷ F(x, b)

) Br(a, b)≜
c

x∈N

(
M(a, x) ▷ F(b, x)

)
D(a, b, c)≜

c
x∈N

(
M(a, x) ▷ M(b, x)|M(c, x)

)
S(a, b, c)≜

c
x∈N

(
M(a, x) ▷ F(b, c)

)
These definitions are sound with respect to the expected reductions of these combinators,

in the sense that each reduction rule p → q (in [10]) directly yields an inequality p ≼ q.
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▶ Proposition 48. Given a HYS (C,≼, ⊗, |, (·)⊥, 1, M) we have:

K(a)|M(a, x) ≼ 1
F(a, b)|M(a, x) ≼ M(b, x)

D(a, b, c)|M(a, x) ≼ M(b, x)|M(c, x)

Bl(a, b)|M(a, x) ≼ F(x, b)
Br(a, b)|M(a, x) ≼ F(b, x)

S(a, b, c)|M(a, x) ≼ F(b, c)

Proof. Straightforward from the definitions. ◀

▶ Definition 49. A Honda-Yoshida algebra (HYA) is a HYS (C,≼, ⊗, |, (·)⊥, 1, M) together
with a monoidal separator S ⊆ C s.t. all Honda-Yoshida combinators belong to S.

So far we have not needed to introduce a notion of reduction because the constructors
of Linear Logic in our types reflect the properties of connections and handling of names.
However, to obtain a model of behaviors B where the Honda-Yoshida combinators are
inhabited, we ask the poles to be closed by anti-reduction. This choice follows the first
author’s design when defining the regular poles in [2].

▶ Definition 50. Let us consider a pole ⊥⊥ ⊆ Π̄. We say that ⊥⊥ is regular iff for all
(P, e), (Q, f) (PGF)-processes and names u, x⃗, {(P | Q, ef)}⊥ ⊆ {(ū ⟨x⃗⟩ .P | v(x⃗).Q, ef)}⊥

whenever u ∼
ef

v.

Following [11], the combinators of Honda & Yoshida can be encoded into PGF using the
usual π-calculus (pure) processes:

m(a, x) ≜ ā ⟨x⟩
k(a) ≜ a(x)

f(a, b) ≜ a(x).b̄ ⟨x⟩
bl(a, b) ≜ a(x).f(x, b)

br(a, b) ≜ a(x).f(b, x)
d(a, b, c) ≜ a(x).(m(b, x) | m(c, x))
s(a, b, c) ≜ a(x).f(b, c)

▶ Proposition 51. A CIMA of behaviours (B,≼, ⊗, ∥, (·)⊥, 1, SB) induced by a regular pole ⊥⊥
is a HYA with the definition M(a, b) ≜ {(a ⟨b⟩ .1, ∆N)}⊥⊥.

Proof. It suffices to prove that all the combinators of Definition 47 are inhabited. For
that we consider the standard encoding of the negative combinators into the π-calculus
(which is embedded into PGF). Then, using the regularity of the pole, we prove that
the encoding belongs to the corresponding combinator defined in C. Since M(a, b) is not
empty, we have M(a, b) ∈ SB by definition of SB. The other combinators K(a), F(a, b),
Bl(a, b), Br(a, b), D(a, b, c) and S(a, b, c) are given by Definition 49 and they are inhabited by
their respective encoding on (PGF).

Let us illustrate the technique by proving the case of Ka. Observe that since the pole is
regular, we have {1}⊥ ⊆ {k(a)|m(a, x)}⊥ =

(
{k(a)}⊥⊥ |M(a, x)

)⊥
=

(
{k(a)}⊥⊥ ∥ M(a, x)

)⊥
.

Applying the orthogonal map we get: {k(a)}⊥⊥ ∥ M(a, x) ⊆ {1}⊥⊥ def= 1. By Proposition 45
we deduce that {k(a)}⊥⊥ ⊆ M(a, x) ▷ 1 for all names a, b, x. Taking the meet over x, we
obtain k(a) ∈ {k(a)}⊥⊥ ⊆

∧
x∈N

(M(a, x) ▷ 1) = K(a) and thus k(a) ∈ K(a). ◀

6 Parallel composition cannot be derived

We shall now see that the extra structure presented in the previous section to encompass
parallelism within conjunctive involutive monoidal algebra is actually necessary, in the sense
that parallelism cannot be derived from the ground structure of a conjunctive involutive
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(x : P ⊥) ∈ Γ
⊢ x : P | Γ

(Ax+)
⊢ t : A | Γ ⊢ u : B | Γ

⊢ (t, u) : A ⊗ B | Γ
(⊗)

⊢ t : A[P/X] | Γ
⊢ t : ∃X.A | Γ

(∃)

(α : N⊥) ∈ Γ
⊢ α : N | Γ

(Ax−)
c : (⊢ κ : A, κ′ : B, Γ)

⊢ µ(κ, κ′).c : A ` B | Γ
(`)

⊢ V : A | Γ X /∈ FV (Γ)
⊢ V : ∀X.A | Γ

(∀)

c : (⊢ κ : A, Γ)
⊢ µκ.c : A | Γ

(µ)
⊢ t : A | Γ ⊢ u : A⊥ | Γ

⟨t || u⟩ : (⊢ Γ)
(Cut)

Figure 3 System L, typing rules.

monoidal algebra. Indeed, we observed that in the CIMA induced by PGF behaviors, the
parallel composition is preexistent since there exists not only an external3 continuous function,
but even a term Φ s.t. Φ ∗ t ∗ u = t∥u for all t, u. This explains why, in this case, there is no
need for a quotient (see Proposition 46.1).

In the general case, when there is no such preexisting term, it is always possible to follow
Definition 43 to recover the expected structure through a quotient. We will now highlight
that this is, in general, necessary, in the sense that parallel composition can not always be
defined with only terms and application in an arbitrary CIMA. We do so by providing a
concrete example of a conjunctive involutive monoidal algebra in which we prove that there
is no term satisfying the axioms of parallel composition.

We build on a realizability interpretation based on a fragment of Munch-Maccagnoni’s
system L [17], a polarised sequent calculus tailored to give a term language to Girard’s classical
logic LC. To draw the comparison with other sequent calculi such as Curien-Herbelin’s λ̄µµ̃-
calculus [4], the main difference lies in the use of polarisation, which makes lazy and strict
qualify logical connectives rather than evaluation strategies: instead of having to enforce
globally a strategy to avoid critical pairs, lazy and strict evaluations coexist and are dictated
locally by the polarities of the corresponding connectives. For a more detailed introduction
on the rationale of L, we refer the interested reader to [18].

We work here with a fragment of L, keeping only the connectives necessary to induce a
CIMA. As explained above, formulas are divided into positive and negative ones:

Positive formulas P ::= X | A ⊗ B | ∃X.A

Negative formulas N ::= X⊥ | A ` B | ∀X.A
Formulas A, B ::= P | N

To each positive formula P is associated a dual negative formula P ⊥ (and vice-versa), defined
by induction on the syntax of formulas. As is usual in linear logic, the map (·)⊥ defines an
involutive function on formulas:

(X)⊥ = X⊥

(X⊥)⊥ = X

(A ⊗ B)⊥ = A⊥ ` B⊥

(A ` B)⊥ = A⊥ ⊗ B⊥
(∀X.A)⊥ = ∃X.A⊥

(∃X.A)⊥ = ∀X.A⊥

Similarly, the syntax of terms and values reflect these distinction between negative and
positive connectives. To ease the connection with [17], we stick to the same presentation:

Variables κ ::= x | α

Terms t− ::= α | µx.c | µ(κ, κ).c
t+ ::= x | µα.c | (t, u)
t ::= t+ | t−

Commands c ::= ⟨t+ || t−⟩ | ⟨t− || t+⟩

Values V+ ::= x | (V, V ′)
V ::= V+ | t−

3 That is a meta-theoretic function, as opposed to an internal term definable in the language of the
algebraic structure at play.
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In the sequel, we write T+ (resp. T−, C, V) for the set of positive terms (resp. negative terms,
commands, values), and denote by T 0

+ , etc... the corresponding set of closed terms. As in [17],
we use monolateral sequents, following Girard’s tradition to have all the formulas on the
right. To that end, we need to quotient the syntax with a new α-equivalence ⟨t || u⟩ ≡ ⟨u || t⟩,
which will simplify overall the presentation. The type system, which distinguishes between
sequents of the shape ⊢ t : A | Γ to type terms (where A is the formula in the stoup) and
sequents of the shape c : (⊢ Γ) to type commands, is given in Figure 3. The reader may
observe that the rule for the universal quantifier has to be restricted to values in order to
avoid the usual inconsistency of polymorphism in presence of side-effects [17].

The operational semantics is defined as a weak-head reduction relation on commands, by
means of the following reduction rules:

⟨µα.c || V ⟩ →µ c[V/α]
⟨V || µx.c⟩ →µ c[V/x]

⟨(V, V ′) || µ(κ, κ′).c⟩ →β c[V/κ, V ′/κ′]
⟨(t, t′) || u⟩ →ξ

〈
t
∣∣∣∣∣∣ µκ.

〈
t′

∣∣∣∣ µκ′.⟨(κ, κ′) || u⟩
〉〉

The different binders only reduce in front of values, while the →ξ rules specify how constructors
should be expanded when they are built on top of a term instead of a value. In particular, it
is worth noting that the reduction →≜→µ ∪ →β ∪ →ξ has no critical pair, which entails the
Church-Rosser property when considering its extension to subcommands.

Following [17], we can now define a realizability interpretation à la Krivine relying on this
calculus. As is usual in Krivine realizability, we say that a pole is any subset of C0 that is
closed by anti-reduction. This induces an orthogonality relation on terms, which we extend
to any sets T ∈ P(T 0

+) or U ∈ P(T 0
−) by defining:

T ⊥ ≜ {t− ∈ T 0
− : ∀t+ ∈ T, ⟨t+ || t−⟩ ∈ ⊥⊥} U⊥ ≜ {t+ ∈ T 0

+ : ∀t− ∈ U, ⟨t+ || t−⟩ ∈ ⊥⊥}

In this context, we call behavior any subset T of T 0
+ or T 0

− such that T = T ⊥⊥ and we denote
by H the set of all behaviors. Observe that (·)⊥ defines an involutive map on H.

We are now ready to define a realizability interpretation that will associate to any formula
a behavior. More precisely, we extend the language of formulas to consider formulas with
(positive) parameters R in the set Π ≜ P(T 0

+ ∩ V), and to any such positive formula P we
associate a behavior |P | ∈ P(T 0

+) while to any negative formula N we associate a behavior
|N | ∈ P(T 0

−). The interpretation | · | is defined by induction on formulas:

|R| ≜ R⊥⊥

|A ⊗ B| ≜ (|A| ⊗ |B|)⊥⊥

|∃X.A| ≜
(⋃

R∈V |A[R/X]|V
)⊥⊥

|R⊥| ≜ R⊥

|A ` B| ≜ (|A⊥| ⊗ |B⊥|)⊥

|∀X.A| ≜
(⋂

R∈V |A[R/X]|V
)⊥⊥

where |A|V ≜ |A| ∩ V and T ⊗ U ≜ {(t, u) : t ∈ T ∧ u ∈ U}. Observe that by construction,
for any closed formula A, it holds that |A⊥| = |A|⊥.

▶ Definition 52. For any term t, one says that t realizes a formula A whenever t ∈ |A|,
which we denote by t ⊩ A. Similarly, we write σ ⊩ Γ to denote that a substitution σ realizes
a context Γ ≡ x1 : A1, ..., xn : An when for any 1 ≤ i ≤ n, σ(xi) ⊩ Ai.

We say that t is a universal realizer of A and we write t ⊪ A when a term t realizes A

for any possible choice of pole.

We will not develop any further the properties of this construction, but we shall at
least emphasize that the typing rules defined in Figure 3 are adequate with respect to this
interpretation, which is proven as usual by induction over typing derivations [17].
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▶ Proposition 53 (Adequacy). Let Γ be a typing context, ⊥⊥ a pole and σ be a substitution
such that σ ⊩ Γ, then for any term t and formula A, if ⊢ t : A | Γ, then tσ ⊩ A.

Even though the fragment of L we have selected does not account for linearity, the last
proposition shows that the realizability interpretation still defines a model for MLL. In
particular, as was observed in [16], algebraically it induces a conjunctive structure. This
observation can be adapted to our framework, to show that the realizability interpretation
defined above actually induces a conjunctive involutive monoidal algebra.

▶ Proposition 54. The tuple (H, ⊆, ⊗, (·)⊥, 1, S), where 1 ≜ T 0
+ and S = H\∅, is a CIMA.

Proof. The proof is analogous to the proof in [16], up to the observation that (·)⊥ is involutive
on H (by definition of H). We first show that (H, ⊆, ⊗, (·)⊥) is a conjunctive involutive
structure. Indeed, the set of behaviors, ordered by inclusion, defines a complete lattice whose
join is given by the union, and the map · ⊗ · is clearly covariant in its two arguments. while it
is clear that (·)⊥ is anti-monotonic. Regarding De Morgan law, we have for any set U ⊆ T 0:( ⋃

T ∈U
T

)⊥
=

( ⋃
T+∈U∩T+

T+ ∪
⋃

T−∈U∩T−

T−

)⊥
=

( ⋃
T+∈U∩T+

T+

)⊥
∩

( ⋃
T−∈U∩T−

T−

)⊥

=
⋂

T+∈U∩T+

T ⊥
+ ∩

⋂
T−∈U∩T−

T ⊥
− =

⋂
T ∈U

T ⊥

Then we prove that, when considering the unit 1 ≜ T 0
+ (which is indeed a behavior), the

set of non-empty behaviors S = H\∅ defines a valid separator. This mostly amounts to
finding a realizer for each of the different axioms, since S is clearly upwards-closed. and is
compatible with modus ponens. Indeed, if A, B ∈ H are such that A ⊸ B ∈ S and A ∈ S, by
definition of S it means that there exists two terms t and u such that t ∈ A ⊸ B and u ∈ A.
Then t u = µκ.⟨t || (u, α)⟩ ⊩ B, using the typing rule for application above and Proposition 53.
To find realizers for the axiom, it suffices to find a term of the expected type, and to use
adequacy (cf. Proposition 53). For instance, we can pick:

µ(x, α).
〈
x

∣∣∣∣ µ(κ1, κ2).⟨(κ2, κ1) || α⟩
〉
⊩ (A ⊗ B) ⊸ (B ⊗ A)

λz.µ(x, β).
〈
x

∣∣∣∣ µ(κ, κ′).⟨(z κ, κ′) || β⟩
〉
⊩ (A ⊸ B) ⊸ (A ⊗ C) ⊸ (B ⊗ C)

µ(x, α).
〈

x
∣∣∣∣∣∣ µ(y, κ3).

〈
y

∣∣∣∣ µ(κ1, κ2).⟨(κ1, (κ2, κ3)) || α⟩
〉〉

⊩ ((A⊗B)⊗C) ⊸ (A⊗ (B ⊗C))
For any t+ ∈ T 0

+ , λκ.(t+, κ) ⊩ A ⊸ 1 ⊗ A

µ(x, κ).
〈
x

∣∣∣∣ µ(_, κ′).⟨κ′ || κ⟩
〉
⊩ 1 ⊗ A ⊸ A

µ(x, α).
〈
x

∣∣∣∣ µ(κ, κ′).⟨(κ, κ′) || α⟩
〉
⊩ (A ⊸ B) ⊸ (B⊥ ⊸ A⊥) ◀

We have shown so far that the realizability interpretation based on L defines a conjunctive
involutive monoidal algebra as expected. Besides, we can show that this particular kind of
CIMA does not admit parallelism, thus justifying the necessity of the extra requirements
formulated in Definition 43. Indeed, to obtain a compositional structure in such a model
without adding some extra structure would mean the desired composition F could be defined
by means of a term t (i.e. F (u, v) ≜ t u b) such that the expected axioms are satisfied.

We prove that this is not possible, in that the first two axioms (F (a, 1) ≡ a and
F (1, a) ≡ a) cannot be satisfied together. The proof, which is folklore in Krivine realizability,
mostly consists in proving that a term that realizes both of these axioms should essentially
behave like a parallel ⋔ operator, which does not exist in L. This should not come as a
surprise, since, to put it differently, it essentially means that to get the algebraic structure
corresponding to parallelism, we actually need to have parallel computations in our calculus.

▶ Proposition 55. There is no t ∈ T 0
+ s.t. t ⊪ ∀X.(X⊸1⊸X) and t ⊪ ∀X.(1⊸X⊸X).



E. Beffara, F. Castro, M. Guillermo, and É. Miquey 28:19

Proof. To simplify the proof, let us assume that the calculus is extended with two inert
(positive) constants κ1, κ2 and a negative one α (alternatively, one could consider any terms
u1, u2 ∈ T 0

+ and v ∈ T 0
− such that the commands ⟨u1 || v⟩ and ⟨u2 || v⟩ are blocked).

We reason by contradiction by assuming that such a term t exists. Let u ∈ T 0
− be any

term, and X ≜ {u} ∈ Π. Consider the pole ⊥⊥1 = {c : c → ⟨κ1 || u⟩}. By construction, we
have that κ1 ∈ |X|, κ2 ∈ |1| and α ∈ |X|⊥. Since by assumption t ⊩ X ⊸ 1 ⊸ X, we get
⟨t || (κ1, (κ2, α))⟩ ∈ ⊥⊥1, i.e. ⟨t || (κ1, (κ2, α))⟩ → ⟨κ1 || α⟩.

By taking ⊥⊥2 = {c : c → ⟨κ2 || α⟩}, we prove similarly that ⟨t || (κ1, (κ2, α))⟩ → ⟨κ2 || α⟩.
Since both commands ⟨κ1 || α⟩ and ⟨κ2 || α⟩ are blocked and the calculus is deterministic, we
indeed found a contradiction. ◀

7 Conclusion and future work

7.1 Exponentials
In addition to studying in more depth the properties of the various structures introduced in
this paper, a natural prolongation of this work would be to investigate the possibility to build
on conjunctive involutive monoidal algebra to account for more expressive logical systems,
in particular MALL with exponentials. This would provide us with a complete algebraic
presentation of the first author’s work [2]. To that end, we could rely on Honda & Yoshida
combinatorial approach to replication [11]. Another path to follow in that direction would
consist in exploring the connections with the Geometry of Interaction as it is presented in
Duchesne’s work [5], where MLL is interpreted using partial permutations and the tensor
corresponds to an appropriate disjoint union. This bears similarities with our interpretation
using injections ιi : N → N for the tensor to ensure disjoint namespaces.

7.2 Concurrency
A central element in our study of parallelism and its axiomatization is the role of non-
determinism. Indeed, the presence in a process of several actions that may synchronize
together in different ways is both a source of expressiveness, as witnessed by the famous
“parallel or” which relies on this feature, but also an obstacle for logical study. In some sense,
our search for an axiomatization of parallel composition aims at identifying the part of the
logical structure that is responsible for such phenomena. An analogy can be made with the
computational interpretation of classical logic: it is well known that the classical sequent
calculus LK is not confluent, to the point that any direct denotational semantics of proofs is
degenerated, but interesting semantics can be obtained by means of translations into better
behaved logics. Such translations are effective because they impose constraints on proof
reduction, like call-by-name or call-by-value policies in languages with control. Our system
with parallelism could be envisaged as a linear analogue of full classical logic with no a priori
constraints on strategies.

process
calculus

deterministic
processes

linear
logic

determinization

typing

LK

LJ

¬¬ and CPS
translations

axiomatization of
concurrency?

linearization

various
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In this line of thought, the conjunctive structures we are after will provide the funda-
mental structure for logics of concurrent behaviours, which we can call an axiomatization
of concurrency. Particular logics or type systems would be built on top of this structure,
through the choice of appropriate operators, and possibly extra axioms, so that soundness
of a particular type system for a particular calculus reduces to the fact that the considered
calculus does provide an appropriate conjunctive structure.
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Abstract
This work introduces a quantitative version of the simple type assignment system, starting from a
suitable restriction of non-idempotent intersection types. The resulting system is decidable and has
the same typability power as the simple type system; thus, assigning types to terms supplies the
very same qualitative information given by simple types, but at the same time can provide some
interesting quantitative information. It is well known that typability for simple types is equivalent
to unification; we prove a similar result for the newly introduced system. More precisely, we show
that typability is equivalent to a unification problem which is a non-trivial extension of the classical
one: in addition to unification rules, our typing algorithm makes use of an expansion operation that
increases the cardinality of multisets whenever needed.
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1 Introduction

Simple types. Simple type assignment for λ-calculus [8, 13] is a way of assigning types,
which are formulas of minimal intuitionistic logic, to λ-terms. It enjoys important properties:
to be typable implies strong normalization, and both typability and inhabitation are decidable
– typability being the problem of determining, given a term, whether it is possible to assign a
type to it, and inhabitation the problem of determining, given a type, if there is a term to
which it can be assigned. Considering the λ-calculus as a general paradigm for functional
programming languages, types are program specifications, so the decidability of typability
provides tools for proving program correctness, that of inhabitation for program synthesis.
Simple type assignment is the basis of typed functional languages, like ML and Haskell.

Quantitative intersection types. Recently the scientific community interest turned to a
quantitative approach for program semantics, and from this point of view non-idempotent
intersection types are a powerful tool. Intersection types have been introduced in [9], in
order to increase the typability power of simple type assignment systems, but quite early
they turned out to be useful in characterizing qualitative semantic properties of λ-calculus
like solvability and strong normalization, and in describing models of λ-calculus in various
settings [2, 20]. Intersection types are built by adding to the connective → of simple types
an intersection connective ∧ which enjoys associativity, commutativity and idempotency,
i.e., A ∧ A = A; in other words, an intersection of types can be seen as a notation for a
set of types. A variant of intersection types, where intersection is no more idempotent (so
that intersection of types becomes a notation for multisets), was first designed by [10], and
later used by De Carvalho [12], for the purpose of studying the complexity of reduction.

© Daniele Pautasso and Simona Ronchi Della Rocca;
licensed under Creative Commons License CC-BY 4.0

8th International Conference on Formal Structures for Computation and Deduction (FSCD 2023).
Editors: Marco Gaboardi and Femke van Raamsdonk; Article No. 29; pp. 29:1–29:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:daniele.pautasso@unito.it
mailto:ronchi@di.unito.it
https://doi.org/10.4230/LIPIcs.FSCD.2023.29
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


29:2 A Quantitative Version of Simple Types

Indeed non-idempotency has a quantitative flavour: non-idempotent intersection types have
been used to design relational models of λ-calculus [17, 5], to characterize polynomial time
computational complexity [4], and to compute the exact number of reductions to reach the
normal form of a term [14]. The typability problem is undecidable both in idempotent and
non-idempotent intersection type assignment systems; on the other hand, the inhabitation
problem is decidable if we consider non-idempotent intersection [6], while it is undecidable
for the idempotent case [22].

A question naturally arises: is there a quantitative version of simple types? Rephrasing it
in a more technical way: is there a restriction of the non-idempotent intersection type system
with the same typability power as the simple type system?

Contribution of this paper. In this paper we give a positive answer: we introduce a non-
idempotent intersection type assignment system which is a restriction of the one defined in [7],
and prove that the typability problem is decidable. The key idea is to restrict the multiset
formation to uniform types, two types being uniform if they differ only in the cardinality of
the multisets occurring in it. Assigning types to terms in such a system, which we name
system U , supplies the very same qualitative information given by simple types, but at the
same time provides some interesting quantitative information.

In our analysis we take the well-known equivalence between typability in simple types
and unification as a starting point, and prove a similar result for system U . More precisely,
we show that typability is equivalent to an extension of the classical unification problem:
in addition to unification rules, our algorithm makes use of an operation, called expansion,
which increases the cardinality of multisets whenever needed. Indeed, in the simple type
system all the derivations for a given term share the same structure (as trees), and differ from
each other only in the types occurring in their nodes. But, in the intersection type system,
derivations for the same term can differ both in the previous sense and in the structure of
the derivation. So unification is used to match the types in the nodes of a derivation, while
the expansion modifies its structure.

Related works. Typability for intersection types has been intensively studied. A first
approach, introducing the notion of expansion, can be found in [10]; the result was then
extended to a more general case in [21, 19]. Both type systems considered in the aforemen-
tioned works enjoy an approximation theorem, where approximants are head normal forms
in the λ-calculus extended with a constant Ω. This property allows the principal pair to be
defined by induction on the structure of terms. We cannot use a similar technique here, since
there is no syntactical characterization of simply typable terms. A different methodology has
been explored in [16], by enriching types with pointers to the subtypes that can be modified
by the expansion. In our work this role is played by a system of constraints, which also keeps
track of the restrictions on the construction of multisets.

In the literature, some decidable restrictions of idempotent intersection types have been
proposed, namely in [11] and [15]. In both cases, however, they are obtained by limiting the
shape of types, and do not supply subsets of terms with interesting properties.

Paper organization. In Section 2 some well-known and essential facts about the simply
typed λ-calculus are presented, together with the notion of principal derivation. In Section 3
we introduce the type assignment system U of uniform intersection types, extend the notion
of principal derivation to it, and design a typing algorithm. Section 4 contains some clarifying
examples and Section 5 the main result of the paper. A short conclusion is in Section 6. The
most technical proof can be found in the Appendix.
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Γ, x : A ⊢ x : A (var) Γ, x : A ⊢M : B
Γ ⊢ λx.M : A→ B

(→I)

Γ ⊢M : A→ B ∆ ⊢ N : A Γ ⌣ ∆
Γ ∪∆ ⊢MN : B (→E)

Figure 1 The system S.

2 Simple types

We briefly recall the λ-calculus grammar and the simple type assignment system. Terms and
term contexts of the λ-calculus are generated by the following grammars, respectively:

M,N,P ::= x | λx.M |MN C ::= □ | λx.C | CM |MC

where x ranges over a countable set of variables. FV(M) denotes the set of free variables of
M . We will use for λ-calculus the notations in [1].

▶ Definition 1. The set TS of simple types is defined by the following grammar:

A,B,C ::= a | A→ B

where a ranges over a countable set of type variables.

A context is a set of pairs x : A, where x is a term variable and A ∈ TS ; contexts
are ranged over by Γ,∆. If x : A ∈ Γ, then Γ(x) = A; the domain of a context Γ
is dom(Γ) = {x | x : A ∈ Γ}; the writing Γ ⌣ ∆ means that Γ and ∆ agree, i.e. if
x ∈ dom(Γ) ∩ dom(∆) then Γ(x) = ∆(x); if S is a set of variables, then Γ|S denotes the
restriction of dom(Γ) to S; moreover Γ,∆ is short for Γ ∪∆ in case dom(Γ) ∩ dom(∆) = ∅.

The simple type assignment system S is a set of rules proving statements (typings) of
shape Γ ⊢ M : A, where Γ is a context, M a term and A ∈ TS . The rules are shown in
Figure 1. A derivation is a tree of rules, such that its leaves are applications of rule (var)
and the root is its conclusion. Derivations are ranged over by Π,Σ,Θ. We write Γ ⊢M : A
as a shorthand for the existence of a derivation proving Γ ⊢ M : A, and when we want to
name a particular derivation with such conclusion we write Π ▷ Γ ⊢ M : A. The system
enjoys two important properties:

▶ Theorem 2 (subject reduction). Γ ⊢M : A and M →β N imply Γ ⊢ N : A.

▶ Theorem 3 (strong normalization). Γ ⊢M : A implies M is strongly normalizing.

The principal derivation
System S is decidable, and it enjoys the principal typing property, i.e., each typing for a
term M is obtained from the principal one by substitution and weakening [3, 13].

Let Var(A) be the set of type variables occurring in the type A; we say that A and B are
disjoint (notation A ∗B) if Var(A) ∩ Var(B) = ∅. Both the definition of Var and the notion
of disjointness can be extended to contexts and derivations in the standard way. A type A is
fresh w.r.t. a derivation Π if A ∗B for each B occurring in Π. Throughout the work we will
frequently use indexed types, where indexes are natural numbers, and the symbols I, J will
denote sets of indexes.
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Π ▷ x : a ⊢p x : a
(var) (EΠ, VΠ) = (∅, ∅)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Σ ▷ Γ, x : a ⊢p M : A

Π ▷ Γ ⊢p λx.M : a → A
(→I) (EΠ, VΠ) = (EΣ, VΣ)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Σ ▷ Γ ⊢p M : A x ̸∈ dom(Γ) a fresh
Π ▷ Γ ⊢p λx.M : a → A

(→I)∅ (EΠ, VΠ) = (EΣ, VΣ)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Σ1 ▷ Γ ⊢p M : a → B Σ2 ▷ ∆ ⊢p N : A Σ1 ∗ Σ2

Π ▷ Γ ∪ ∆ ⊢p MN : B
(→E1)

EΠ = EΣ1 ∪ EΣ2 ∪ {a
.= A}

VΠ = VΣ1 ∪ VΣ2 ∪ {Γ(x) .= ∆(x) | x ∈ dom(Γ) ∩ dom(∆)}
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Σ1 ▷ Γ ⊢p M : a Σ2 ▷ ∆ ⊢p N : A b fresh Σ1 ∗ Σ2

Π ▷ Γ ∪ ∆ ⊢p MN : b
(→E2)

EΠ = EΣ1 ∪ EΣ2 ∪ {a
.= A → b}

VΠ = VΣ1 ∪ VΣ2 ∪ {Γ(x) .= ∆(x) | x ∈ dom(Γ) ∩ dom(∆)}

Figure 2 Principal derivation for S.

A pseudo-derivation is a tree of rules assigning simple types to terms; we extend to pseudo-
derivations all the notations for derivations. To each pseudo-derivation Π is associated a
system of constraints (EΠ, VΠ), where EΠ and VΠ are sets of equations between types, written
A
.= B; we will drop subscripts from EΠ and VΠ when they are clear from the context.

▶ Definition 4. The principal derivation for a term M , denoted by PD(M), is a pair
(Π, (EΠ, VΠ)), where Π is a pseudo-derivation with subject M and (EΠ, VΠ) is the associated
system of constraints, as defined in Fig. 2. PD(M) is unique, modulo renaming of type
variables.

▶ Definition 5. Let S = {Ai
.= Bi | i ∈ I} be a set of equations between types.

S is solvable if there is a substitution θ, replacing type variables by types, such that
θ(Ai) = θ(Bi) for all i ∈ I.
S is in solved form iff:

every Ai is a variable ai, and all ai are distinct;
no left-hand side ai appears in some right-hand side Bj for all i, j ∈ I.

If S = {ai
.= Ai | i ∈ I} is in solved form, S⃗ such that S⃗(ai) = Ai is the most general

substitution solving it, also called most general unifier (m.g.u.).
S is in unsolvable form iff it contains a circular equation, i.e. an equation a

.= A such
that a occurs in A.

The rules reducing an equational system either to solved or unsolvable form are given in
Fig. 3; they are directly obtained from the classical Robinson’s unification algorithm [18]. We
will write Unify(S) for the procedure applying to S the rules of Fig. 3 as much as possible.
A substitution θ can be extended to types and pseudo-derivations in the standard way.
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S ∪ {A .= A}
S

erase
S ∪ {A→ B

.= C → D}
S ∪ {A .= C} ∪ {B .= D}

decompose

S ∪ {A→ B
.= a}

S ∪ {a .= A→ B}
swap

S ∪ {a .= A} a /∈ Var(A) a ∈ Var(S)
S[A/a] ∪ {a .= A} substitute

Figure 3 Unification rules for simple types.

▶ Remark 6. A principal derivation PD(M) = (Π, (E, V )) essentially becomes a derivation in
S under a substitution θ solving the system of constraints; due to the differences between
system S and the rules in Fig. 2, however, some minor adjustments are needed. To ease the
notation we will leave such transformations implicit and just write θ(Π) for the derivation in
which all (→I)∅ rules have been replaced by (→I) rules (by suitably exploiting weakening in
the axioms to introduce the abstracted dummy variables), and the distinction between rules
(→E1) and (→E2) has been dropped, yielding rule (→E).

The following result, first proved in [3], is well known:

▶ Theorem 7. Let PD(M) = (Π, (E, V )), where Π ▷ Γ ⊢p M : A.
1. For every substitution θ which is a solution of E ∪ V , θ(Π) ▷ θ(Γ) ⊢M : θ(A).
2. For every derivation Σ ▷ ∆ ⊢ M : B there is a substitution θ, solution of E ∪ V , such

that θ(Γ) = ∆|FV(M) and θ(A) = B.

▶ Remark 8. In the literature the property speaks about principal pair, not principal
derivation. The result is the same; here the presentation through the derivation is useful for
the comparison with intersection types.

3 Uniform intersection types

We now define the uniform intersection type assignment system, based on the notion of
uniform multiset. A multiset is an unordered list of elements; ⊎ denotes the union of multisets
taking into account the multiplicities, and |σ| denotes the cardinality of the multiset σ. The
system is obtained from the system He,w in [6] by requiring that multisets contain only
equivalent types.

▶ Definition 9.
Intersection types (I) are defined by the following grammar:

(Intersection Types) A,B,C ::= a | σ → A

(Multisets) σ, τ ::= [A1, . . . , An] (n ≥ 1)

where a ranges over a countable set of type variables.
Equivalence relation on intersection types:

a ∼ a for all variables a;
σ → A ∼ τ → B iff σ ∼ τ and A ∼ B;
[A1, ..., Am] ∼ [B1, ..., Bn] iff ∀i, j.Ai ∼ Bj (1 ≤ i ≤ m, 1 ≤ j ≤ n)

Uniform intersection types (TU ) are defined by the following grammar:

(Unif. Int. Types) A,B,C ::= a | σ → A

(Uniform Multisets) σ, τ ::= [A1, ..., An] ∀i, j.Ai ∼ Aj (1 ≤ i, j ≤ n)

FSCD 2023
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A ∈ σ
Γ, x : σ ⊢i x : A (var) Γ, x : σ ⊢i M : A

Γ ⊢i λx.M : σ → A
(→I)

Γ ⊢i M : [A1, ..., An]→ B (∆i ⊢i N : Ai)1≤i≤n ∀i.Γ ∼ ∆i ∀ij.∆i ∼ ∆j

Γ ⊎1≤i≤n ∆i ⊢i MN : B (→E)

Figure 4 The system U .

For the sake of brevity, we well speak about types and multisets in both cases, when
being uniform or not is clear from the context. Remark that in both grammars the empty
multiset is not allowed. The types A = [[a, a, a]→ b, [a]→ b]→ c and B = [[a, a]→ b]→ c

are uniform, whereas [a, [a]→ b]→ c is not; moreover, observe that A ∼ B.
The system U , assigning types in TU ⊂ I to terms, is shown in Fig. 4. We use the same

notations as for simple types, but note that now a context assigns uniform multisets to term
variables. If σ and τ are multisets, σ ⊆ τ means ∃ρ.τ = σ ⊎ ρ. If Γ and ∆ are two contexts,
Γ ∼ ∆ means that ∀x ∈ dom(Γ) ∩ dom(∆).Γ(x) ∼ ∆(x). The system is quantitative in the
following sense:

▶ Property 10. Let Π ▷ Γ, x : σ ⊢i M : A.
The number of free occurrences of x in M is bounded by |σ|.
If n is the maximal cardinality of a multiset in Π, then every variable in M , either free
or bound, has a number of occurrences ≤ n.

Both the following properties are inherited from [7].

▶ Theorem 11 (Subject reduction). Γ ⊢i M : A and M →β N imply Γ ⊢i N : A.

▶ Theorem 12 (Strong normalization). Γ ⊢i M : A implies M is strongly normalizing.

3.1 Principal derivations
We adapt the notion of principal derivation to system U . In this setting, we will deal both
with sets of equations and sets of equivalences between intersection types (multisets), written
respectively as A .= B (σ .= τ), and A ≈ B (σ ≈ τ). A pseudo-derivation is a tree of rules
assigning intersection types to terms. From now on multisets in a pseudo-derivation will
be considered as lists, and consequently also the minor premises of the rules (→E1) and
(→E2) will be ordered; this is essential to limit the complexity of the algorithm Solve we
will discuss in the following section. To each pseudo-derivation Π we associate a system of
constraints (EΠ, VΠ), where EΠ is a set of equations between intersection types and VΠ is a
set of equivalence constraints between type variables.

▶ Definition 13.
A principal derivation for a term M is a pair PDi(M) = (Π, (EΠ, VΠ)), where Π is a
pseudo-derivation with subject M and (EΠ, VΠ) is the associated system of constraints,
as defined in Fig. 5.
The minimal principal derivation for a term M is a principal derivation for M obtained
by posing n = 0 whenever dealing with rule (→I) of Fig. 5, and n = 1 whenever dealing
with rules (→I)∅ and (→E2). Since the minimal principal derivation is unique, modulo
renaming of type variables, we will refer to it as PDmin

i (M).
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Π ▷ x : [a] ⊢q x : a
(var) (EΠ, VΠ) = (∅, ∅)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Σ ▷ Γ, x : σ ⊢q M : A a1, ..., an fresh
Π ▷ Γ ⊢q λx.M : σ ⊎ [a1, ..., an] → A

(→I) EΠ = EΣ

VΠ = VΣ ∪ {a ≈ b | a, b ∈ σ ⊎ [a1, ..., an]}
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Σ ▷ Γ ⊢q M : A x ̸∈ dom(Γ) a1, ..., an fresh
Π ▷ Γ ⊢q λx.M : [a1, ..., an] → A

(→I)∅
EΠ = EΣ

VΠ = VΣ ∪ {a ≈ b | a, b ∈ [a1, ..., an]}
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Σ ▷ Γ ⊢q M : [a1, ..., an] → B (Σi ▷ ∆i ⊢q N : Ai)1≤i≤n ∀i.Σ ∗ Σi ∀ij.Σi ∗ Σj (i ̸= j)
Π ▷ Γ ⊎1≤i≤n ∆i ⊢q MN : B

(→E1)

EΠ = EΣ ∪1≤i≤n EΣi ∪ {ai
.= Ai}1≤i≤n

VΠ = VΣ ∪1≤i≤n VΣi ∪ {a ≈ b | x ∈ dom(Γ) ∩1≤i≤n dom(∆i), a ∈ Γ(x), b ∈ ∆i(x)}
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Σ ▷ Γ ⊢q M : a (Σi ▷ ∆i ⊢q N : Ai)1≤i≤n b fresh ∀i.Σ ∗ Σi ∀ij.Σi ∗ Σj (i ̸= j)
Π ▷ Γ ⊎1≤i≤n ∆i ⊢q MN : b

(→E2)

EΠ = EΣ ∪1≤i≤n EΣi ∪ {a
.= [A1, ..., An] → b}

VΠ = VΣ ∪1≤i≤n VΣi ∪ {a ≈ b | x ∈ dom(Γ) ∩1≤i≤n dom(∆i), a ∈ Γ(x), b ∈ ∆i(x)}

Figure 5 Principal derivations for U .

▶ Definition 14. Let us denote by ψ a substitution Var → I, and by ϕ a substitution
Var→ TU . Substitutions are extended to multisets and pseudo-derivations in the standard
way.

ψ solves E = {Ai
.= Bi | i ∈ I} ∪ {σj

.= τj | j ∈ J} if ψ(Ai) = ψ(Bi) for all i ∈ I and
ψ(σj) = ψ(τj) for all j ∈ J ;
ϕ satisfies V = {Ai ≈ Bi | i ∈ I} ∪ {σj ≈ τj | j ∈ J} if ϕ(Ai) ∼ ϕ(Bi) for all i ∈ I and
ϕ(σj) ∼ ϕ(τj) for all j ∈ J ;
E is solvable w.r.t. V if there is a substitution ϕ solving E and satisfying V .

In order to solve a system of constraints, we extend to intersection types the unification
rules for simple types: Fig. 6 introduces two sets of rules for solving sets of equations or
equivalences (replacing ≃ either by .= or by ≈, respectively). All the rules but decomposeM
are the same for the two cases; observe that, in particular, the definition of decomposeM .=
for multisets relies on the fact that multisets are now ordered. Let QuasiUnify .=(S) (resp.
QuasiUnify≈(S)) denote the application of the rules in Fig. 6, replacing ≃ by .= (resp. by
≈), to the set S as much as possible. Moreover, if S is a set of equations, let S/≈ denote the
set of equivalence constraints obtained replacing .= by ≈. The writing S/ .= is used for the
dual transformation.

▶ Definition 15.
A set of constraints between intersection types S = {A1 ≃ B1, . . . , An ≃ Bn, σ1 ≃
τ1, . . . , σm ≃ τm}, where ≃∈ { .=,≈}, is in solved form iff:
m = 0, i.e. there is no constraint involving multisets;
every Ai is a variable ai, and all variables ai are distinct;
no left-hand side ai appears in some right-hand side Bj (1 ≤ i, j ≤ n).
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S ∪ {A ≃ A} ({σ ≃ σ})
S

erase
S ∪ {σ → A ≃ τ → B}
S ∪ {σ ≃ τ} ∪ {A ≃ B}

decomposeT

S ∪ {σ → A ≃ a}
S ∪ {a ≃ σ → A}

swap
S ∪ {a ≃ A} a /∈ Var(A) a ∈ Var(S)

S[A/a] ∪ {a ≃ A} substitute

S ∪ {[A1, . . . , An] .= [B1, . . . , Bn]}
S ∪ {Ai

.= Bi}1≤i≤n

decomposeM .=

S ∪ {σ ≈ τ}
S ∪ {A ≈ B | A ∈ σ,B ∈ τ}

decomposeM≈

Figure 6 Unification rules for intersection types.

A constraint of the form a ≃ A such that a occurs in A is a circular constraint.
An equation between multisets σ .= τ such that |σ| ̸= |τ | is a critical equation.
A set S is in unsolvable form if it contains at least one circular constraint.
A set of equations S is in blocked form if it contains at least one critical equation.

▶ Property 16.
1. Let S be a set of equations. Then QuasiUnify .=(S) outputs a set of equations either in

solved, unsolvable, or blocked form. Moreover, QuasiUnify .=(S) = S′ in solved form if
and only if S⃗′ is the m.g.u. of S.

2. Let S be a set of equivalences. Then QuasiUnify≈(S) outputs a set of equivalences either
in solved or unsolvable form. Moreover, QuasiUnify≈(S) = S′ in solved form implies S⃗′

satisfies S.

Proof.
1. From the fact that the rules of Fig. 6, when ≃ is replaced by .=, are precisely the

Robinson’s unification rules.
2. From the previous point and the fact that, when ≃ is replaced by ≈, multisets can be

decomposed even if they have different cardinalities. ◀

3.2 Expansion
In order to deal with a set of equations in blocked form, we introduce an operation called
expansion, working on principal derivations. Intuitively, an expansion modifies a principal
derivation by replicating the minor premises of a rule (→Ei), increasing the cardinality of
multisets, and updating the associated constraints accordingly.

▶ Definition 17.
Let (Π, (E, V )) be a principal derivation for M , and let x be a bound variable occurring
in M . This means that in Π there is a rule:

Γ, x : σ ⊢q N : B σ ⊆ τ
Γ ⊢q λx.N : τ → B

(→I)

If there is also a subsequent rule:

Γ′ ⊢q P : τ → B (∆i ⊢q Q : Ci)1≤i≤|τ |

Γ′ ⊎1≤i≤|τ | ∆i ⊢q PQ : B
(→E1)
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then we say that x is an applied bound variable in Π, and this last rule is called the
application rule for x. Otherwise x is an unapplied bound variable in Π. We denote B
the set of applied bound variables in Π.
Let (Π, (E, V )) be a principal derivation for M , and let x, y be applied bound variables in
Π. If M = C[λx.C′[λy.N ]], then define y < x.

▶ Definition 18. An expansion, denoted Expand(σ, n), has two parameters: a multiset σ and
a natural number n ≥ 1. Applying Expand(σ, n) to a principal derivation (Π, (E, V )) means
to perform the steps described below. There are four cases:
1. If there is a rule (→I) with conclusion Γ ⊢q λx.N : σ → A, and x is an unapplied bound

variable in Π, then:
a. replace, in the conclusion of the rule (→I) and in the subsequent rules, the multiset σ

by σ ⊎ [a1, ..., an] where all the ai are fresh;
b. recompute the system of constraints (E, V ) according to Fig. 5, taking into account

the increased cardinality.
2. If σ = [A1, ..., Am] and in Π there is an elimination rule of shape

Γ ⊢q P : B (Σi ▷ ∆i ⊢q Q : Ai)1≤i≤m

Ξ = Γ ⊎1≤i≤m ∆i ⊢q PQ : C
(→Ej)

perform the following actions:
a. update the structure of Π by adding n disjoint copies of PDmin

i (Q) as the rightmost
premises of the (→Ej) rule;

b. compute the new conclusion context Ξ′ by taking into account the newly added premises,
and replace Ξ by Ξ′ in the conclusion of the rule (→Ej) and in all subsequent rules;

c. if B = [a1, ..., am]→ C, i.e. if the rule was the application rule for some variable x,
then replace, in the conclusion of the (→I) rule abstracting x and in the subsequent
rules, the multiset [a1, ..., am] by [a1, ..., am, am+1, ..., am+n], where am+1, ..., am+n are
fresh;

d. let B be the set of applied bound variables in Π, and let L = B ∩ dom(∆i).
While L ̸= ∅ do:

let min(L) be the minimum element of L according to the < relation of Definition
17, and let its application rule be:

Φ ⊢q S : τ → D (Θi ▷ Ψi ⊢q T : Di)1≤i≤s

Υ = Φ ⊎1≤i≤s Ψi ⊢q ST : D (→E1)

the modifications until this point certainly increased |τ |, so |τ | > s. Identify in
τ the |τ | − s type variables that were introduced by the expansion, i.e. the set
F = {a | a ∈ τ, a ̸∈ Var(V )};
update the structure of Π by adding |τ | − s disjoint copies of PDmin

i (T ) as premises
of the (→E1) rule, matching them to the type variables in F ;
compute the new conclusion context Υ′ by taking into account the newly added
premises, and replace Υ by Υ′ in the conclusion of the rule (→E1) and in all
subsequent rules;
update L by posing L = (L − min(L)) ∪ (B ∩ dom(Θi));

e. recompute the system of constraints (E, V ) according to Fig. 5, taking into account
the new structure of the pseudo-derivation Π.
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3. If σ = [a1, ..., am] and in Π there is a rule:

Γ ⊢q P : [a1, ..., am]→ B (Σi ▷ ∆i ⊢q Q : Ai)1≤i≤m

Γ ⊎1≤i≤m ∆i ⊢q PQ : B (→E1)

then perform Expand([A1, ..., Am], n).
4. If none of the above conditions is met, the expansion behaves as the identity, i.e.

Expand(σ, n)(Π, (E, V )) = (Π, (E, V ))

▶ Lemma 19. Let (Π, (E, V )) be a principal derivation for M . For all σ, n, the expansion
Expand(σ, n)(Π, (E, V )) terminates, returning a principal derivation for M .

Proof. Both in cases (1) and (4) the expansion obviously stops without altering the structure
of Π, and the result is coherent with the definition of principal derivation. Case (3) reduces
to (2), hence we limit our analysis to such case. Clearly the structure of the output derivation
differs from the input one, as some minor premises of elimination rules are extended with
multiple copies of the original subderivations; however, since such copies introduce only
fresh variables, all the new subderivations are disjoint, in agreement with the definition
of principal derivation. We now prove that the number of while iterations is finite. The
key observation is the following one: choosing the minimal element of L ensures that any
applied bound variable is considered at most once, because a variable cannot re-enter the
set L after being selected as min(L) and then discarded. To see this, let x, y ∈ B; moreover
let Σ be the subderivation whose conclusion is the (→I) rule abstracting x, and let Σ′ be
the subderivation whose conclusion is the (→I) rule abstracting y. Indeed, y < x means
that Σ′ is a subderivation of Σ. Hence modifications performed by the expansion when the
while loop selects y as min(L) may increment the premise of x in the context (note that x
is possibly free in the subderivation being replicated), but not the other way around. We
conclude that the number of while iterations is bounded by |B|. ◀

Thanks to the expansion, the notion of solvability can be extended to principal derivations.
We stress that the considerations made in Remark 6 apply also to the present case, and
therefore we adopt the same conventions.

▶ Definition 20. Let PDi(M) = (Π ▷ Γ ⊢q M : A, (E, V )). A solution of PDi(M) is a pair
(ē, ϕ), where ē is sequence of expansions such that ē(Π, (E, V )) = (Π′ ▷ Γ′ ⊢q M : A′, (E′, V ′)),
and ϕ : Var→ TU is a solution of E′ w.r.t. V ′, i.e. ϕ(Π′) ▷ ϕ(Γ′) ⊢i M : ϕ(A′).

For the sake of simplicity, from now on if ē(Π, (E, V )) = (Π′, (E′, V ′)) we will also denote Π′

by ē(Π), E′ by ē(E) and V ′ by ē(V ).

3.3 The algorithm
In this subsection we present an algorithm Solve which tries to solve the system of constraints
generated by PDmin

i (M). A solution, if it exists, is found by interleaving unification rules and
expansions. In Solve we make use of the following notations:

Let S be a set of equivalences. Fail(S) = true iff S is in unsolvable form.
Let S be a set of equations. Blocked(S) = true iff S is in blocked form.

Informally, the algorithm behaves as follows. QuasiUnify≈(E/≈ ∪ V ) is used to check if
the constraints of V can be respected by E; in case of failure, there is no solution. Otherwise,
the algorithm tries to solve E. If a blocked form is reached, a critical equation is dealt with
using the operation of expansion. At every expansion, the system of constraints (E, V ) is
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Algorithm 1 The algorithm Solve. Input: a term M .

1: function Solve(M)
2: (Π, (E, V ))← PDmin

i (M)
3: C ← QuasiUnify≈(E/≈ ∪ V )
4: if Fail(C) then FAIL
5: end if
6: E∗ ← QuasiUnify .=(E)
7: while Blocked(E∗) do
8: choose (σ .= τ) ∈ E∗ such that |σ| ̸= |τ |
9: if |σ| > |τ | then

10: n← |σ| − |τ |
11: (Π, (E, V ))← Expand(τ, n)(Π, (E, V ))
12: else
13: n← |τ | − |σ|
14: (Π, (E, V ))← Expand(σ, n)(Π, (E, V ))
15: end if
16: E∗ ← QuasiUnify .=(E)
17: end while
18: V ∗ ← QuasiUnify≈(E⃗∗(V ))
19: S ← QuasiUnify .=(E∗ ∪ V ∗/ .=)
20: return (Π, S⃗)
21: end function

recomputed, then QuasiUnify .=(E) is applied again; the loop stops as soon as a solved form
is reached. Note that since the system of constraints is recomputed after each expansion, the
only purpose of the calls to QuasiUnify .=(E) in the while loop is to expose critical equations,
thus guiding the expansions. Lastly, the final calls to QuasiUnify≈ and QuasiUnify .=
generate the unifying substitution. The algorithm is non-deterministic, as critical equations
are randomly chosen. Remark that, in an actual implementation, the efficiency of Solve could
be improved by avoiding unnecessary and time consuming steps, such as recomputing the
system of constraints from scratch after each expansion and repeating the whole unification
procedure: this would require keeping track of the modified/added constraints only. Here
we favoured both clarity and brevity of exposition over efficiency; we leave more detailed
considerations about the time complexity, as well as possible optimizations, to future work.
In what follows we prove that the algorithm behaves correctly.

▶ Remark 21. Solve does not find all possible solutions of PDmin
i (M), since expansions are

used only when strictly necessary (i.e. when the set of equations E∗ is in blocked form).
Note also that not all cases considered in Definition 18 are actually needed for the purposes
of the algorithm: in particular case 4 never applies, but has been included for completeness.

Let A be an intersection type. The syntactic tree of A, written T (A), is a tree defined
inductively as follows: if A = a, then T (a) is a single node named a; otherwise, if A =
[A1, ..., An]→ B, T (A) is an ordered tree whose root, labelled A, has n+ 1 children, namely
T (A1), ..., T (An) and T (B). Two subtypes of A and B are corresponding if they occur at the
same path in T (A) and T (B).

▶ Lemma 22. Let PDmin
i (M) = (Π ▷ Γ ⊢q M : A, (E, V )) and C = QuasiUnify≈(E/≈ ∪ V ).

If C is in unsolvable form then PDmin
i (M) is unsolvable.
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Proof. C in unsolvable form means that it contains a circular constraint, let it be b ≈ B, such
that b occurs in B. If E is unsolvable, i.e. b and B are corresponding subtypes of two equated
intersection types, then the result is obtained by observing that no amount of expansions
can get rid of the circular equation: indeed, an expansion can add new constraints, but not
erase the existing ones. On the other hand, assume E solvable, i.e. there is a sequence s of
expansions and applications of unification rules such that s(E) is in solved form. Then the
circularity has been introduced by the constraints in V , that is, b and B must be equivalent
to each other. But by definition of ∼, it does not exist ϕ such that ϕ(b) ∼ ϕ(B), because
if b occurs in B, ϕ(b) and ϕ(B) have syntactic trees of different depths, for all ϕ; again, no
amount of expansions can get rid of the circularity. ◀

▶ Theorem 23 (Partial Correctness). Let PDmin
i (M) = (Π ▷ Γ ⊢q M : A, (E, V )) and assume

Solve(M) terminates. If the result is FAIL then M is not typable in U ; otherwise the
algorithm outputs (Σ ▷ Γ′ ⊢q M : A′, ϕ) such that ϕ(Σ) ▷ ϕ(Γ′) ⊢i M : ϕ(A′).

Proof. Let C = QuasiUnify≈(E/≈∪V ). Then C is either in solvable or unsolvable form. In
the latter case Solve immediately returns FAIL, and the result follows by Lemma 22. If C is
in solved form, the algorithm continues by performing an interleaved sequence s of unification
rules and expansions. First we show that, for all sequences s, both QuasiUnify≈(s(E)/≈ ∪
s(V )) and QuasiUnify .=(s(E)) do no not contain circular constraints. The unification rules
play no role in the introduction or elimination of circular constraints, hence we limit our
analysis to the sequence of expansions ē belonging to s. It is easy to check that no circularity
can be introduced as a result of an expansion: indeed, each expansion creates disjoint replicas
of sub-pseudo-derivations which were part of PDmin

i (M), thus it can only originate fresh
copies of constraints that already existed from the beginning. We conclude by observing
that the equations that can be generated during a call to QuasiUnify .=(ē(E)) form a subset
of the constraints that can be generated during a call to QuasiUnify≈(ē(E)/≈ ∪ ē(V )).
The last thing to do is proving that if the check on C does not fail, then Solve outputs
a pair (Σ, ϕ) with the desired properties. Since we assumed that Solve(M) terminates,
the number of iterations of the while loop is finite; this means that the algorithm builds
a principal derivation (Σ, (EΣ, VΣ)) such that E∗

Σ = QuasiUnify .=(EΣ) is in solved form.
Clearly dom(E⃗∗

Σ) ∩ Var(E⃗∗
Σ(VΣ)) = ∅, so V ∗ = QuasiUnify≈(E⃗∗

Σ(VΣ)) induces a substitution
V⃗ ∗ whose domain and codomain are disjoint from the domain of E⃗∗

Σ, that is, (dom(V⃗ ∗) ∪
cod(V⃗ ∗)) ∩ dom(E⃗∗

Σ) = ∅. Therefore S = QuasiUnify .=(E∗
Σ ∪ V ∗/ .=) is in solved form. As

E⃗∗
Σ solves E∗

Σ and V⃗ ∗ satisfies VΣ, it is easy to verify that ϕ = S⃗ is a solution of EΣ w.r.t VΣ.
Then ϕ(Σ) is a correct derivation, because (EΣ, VΣ) consists of all and only the constraints
needed to convert a pseudo-derivation into an actual derivation. ◀

The following two results guarantee that the algorithm does not perform an infinite
sequence of expansions and unification rules. Moreover they show that expansions and
β-reductions are closely related.

▶ Lemma 24. If M is in normal form then Solve(M) stops without performing any
expansion.

Proof. By induction on M . Recall that a normal form is defined by the following grammar:

M,N ::= λx.M | xM...M︸ ︷︷ ︸
n

n ≥ 0
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If M = x the proof is trivial, as E = ∅. M = λx.N follows by induction, as no new equation
is added. Lastly, consider the case M = xM1...Mn for n > 0. Let PDmin

i (x) = (Π0 ▷ x :
[a0] ⊢q x : a0, (∅, ∅)) and PDmin

i (Mi) = (Πi, (Ei, Vi)) where Πi ▷ Γi ⊢q Mi : Ai (1 ≤ i ≤ n).
Then PDmin

i (M) = (Π, (E, V )), where E =
⋃

1≤i≤n Ei ∪ {a0
.= [A1] → a1, a1

.= [A2] →
a2, ..., an−1

.= [An]→ an} and a1, . . . , an are fresh. If the check on QuasiUnify≈(E/≈ ∪ V )
fails, the algorithm immediately stops; otherwise it computes QuasiUnify .=(E). Since by
induction Ei does not generate critical equations, neither does E, because a0 does not occur
in Ei and a1, . . . , an are fresh. As QuasiUnify .=(E) does not contain critical equations, the
algorithm exits the while loop without performing any expansion. ◀

▶ Theorem 25 (Partial Termination). Let M be strongly normalizing. Then Solve(M)
terminates.

Proof. The proof is in the Appendix. ◀

4 Some examples

▶ Example 26. In order to understand the necessity and the behaviour of expansions,
consider the term M = ((λy.λx.yxx)(λp.λr.wpp))(tz). The associated minimal principal
derivation is PDmin

i (M) = (ΠM , (E, V )), where:
Π is:

y : [a1] ⊢q y : a1 x : [b1] ⊢q x : b1

y : [a1], x : [b1] ⊢q yx : c1 x : [b2] ⊢q x : b2

y : [a1], x : [b1, b2] ⊢q yxx : d1

y : [a1] ⊢q λx.yxx : [b1, b2]→ d1

Π ▷ ⊢q λy.λx.yxx : [a1]→ [b1, b2]→ d1

Σ is:

w : [e1] ⊢q w : e1 p : [f1] ⊢q p : f1

w : [e1], p : [f1] ⊢q wp : g1 p : [f2] ⊢q p : f2

w : [e1], p : [f1, f2] ⊢q wpp : h1

w : [e1], p : [f1, f2] ⊢q λr.wpp : [k1]→ l1

Σ ▷ w : [e1] ⊢q λp.λr.wpp : [f1, f2]→ [k1]→ l1

Θ1 is:

t : [m1] ⊢q t : m1 z : [n1] ⊢q z : n1

Θ1 ▷ t : [m1], z : [n1] ⊢q tz : o1

Θ2 is a disjoint instance of Θ1, and lastly ΠM is:

Π Σ
⊢q (λy.λx.yxx)(λp.λr.wpp) : [b1, b2]→ d1 Θ1 Θ2

ΠM ▷ w : [e1], t : [m1,m2], z : [n1, n2] ⊢q ((λy.λx.yxx)(λp.λr.wpp))(tz) : d1

E = {a1
.= [b1] → c1, c1

.= [b2] → d1, e1
.= [f1] → g1, g1

.= [f2] → h1, a1
.= [f1, f2] →

[k1]→ l1,m1
.= [n1]→ o1, m2

.= [n2]→ o2, b1
.= o1, b2

.= o2}.
V = {b1 ≈ b2, f1 ≈ f2, m1 ≈ m2, n1 ≈ n2}.
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Applying the unification rules to E, we obtain equation [b1] → c1
.= [f1, f2] → [k1] → l1;

decomposing yields the critical equation [b1] .= [f1, f2]. Therefore we need to perform
Expand(σ, n) with σ = [b1] and n = 1. Under the action of the expansion, the derivation Π
becomes:

y : [a1] ⊢q y : a1 x : [b1] ⊢q x : b1 x : [b3] ⊢q x : b3

y : [a1], x : [b1, b3] ⊢q yx : c1 x : [b2] ⊢q x : b2

y : [a1], x : [b1, b3, b2] ⊢q yxx : d1

y : [a1] ⊢q λx.yxx : [b1, b3, b2]→ d1

Π ▷ ⊢q λy.λx.yxx : [a1]→ [b1, b3, b2]→ d1

Consequently ΠM becomes:

Π Σ
⊢q (λy.λx.yxx)(λp.λr.wpp) : [b1, b3, b2]→ d1 Θ1 Θ2

ΠM ▷ w : [e1], t : [m1,m2], z : [n1, n2] ⊢q ((λy.λx.yxx)(λp.λr.wpp))(tz) : d1

At this point ΠM is no longer a principal derivation for M , as its last rule is incorrect. But
the expansion is not terminated yet: there is one applied bound variable in the context of the
duplicated subderivation, namely x. Therefore we enter the while loop with L = {x}, and
since the application rule for x is the last rule of ΠM , we update the derivation as follows:

Π Σ
⊢q (λy.λx.yxx)(λp.λr.wpp) : [b1, b3, b2]→ d1 Θ1 Θ3 Θ2

ΠM ▷ w : [e1], t : [m1,m3,m2], z : [n1, n3, n2] ⊢q ((λy.λx.yxx)(λp.λr.wpp))(tz) : d1

where Θ3 is yet another disjoint instance of Θ1. No applied bound variable is in the context
of Θi, so L = ∅ and we exit the while loop. Lastly we recompute the constraints, which now
are:

E = {a1
.= [b1, b3] → c1, c1

.= [b2] → d1, e1
.= [f1] → g1, g1

.= [f2] → h1, a1
.= [f1, f2] →

[k1]→ l1,m1
.= [n1]→ o1, m2

.= [n2]→ o2, m3
.= [n3]→ o3, b1

.= o1, b2
.= o2, b3

.= o3}.
V = {b1 ≈ b2, b2 ≈ b3, f1 ≈ f2, m1 ≈ m2, m2 ≈ m3, n1 ≈ n2, n2 ≈ n3, . . . }.

The reader can infer the omitted equivalence constraints by considering the equivalence
relation induced by V . Note that all the constraints generated by Θi have been duplicated.
Now E can be reduced to solved form by decomposing equation [b1, b3] .= [f1, f2].

▶ Example 27. Let M = λx.xx, which is not simply typable. PDmin
i (M) = (ΠM , (E, V ))

where:

x : [a] ⊢q x : a x : [b] ⊢q x : b
x : [a, b] ⊢q xx : c

ΠM ▷ ⊢q λx.xx : [a, b]→ c

E = {a .= [b]→ c} and V = {a ≈ b}. Clearly E is unsolvable w.r.t. V .

5 From simple types to intersection types and viceversa

In this section we will prove the main result of the paper, namely the correspondence between
the two systems S and U . First we define a translation from intersection types to simple
types, which erases the multisets in I.
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▶ Definition 28. The collapse translation t from I to TS is defined by induction on the size
of types in the following way (recall that multisets are now ordered):

t(a) = a;
t(σ → A) = t(σ)→ t(A);
t([A1, ..., An]) = t(A1).

The following property is easy to prove, by induction on types.

▶ Property 29. A ∼ B implies t(A) = t(B).

Observe that in the translation of an (ordered) multiset we could have chosen any of its
elements, in a nondeterministic way. However, always choosing the first one allows us to
easily extend the translation to pseudo-derivations and derivations.

▶ Definition 30.
t(.) is extended to contexts by posing t(Γ) = {x : t(σ) | x : σ ∈ Γ}.
t(.) is extended to pseudo-derivations in the following way:

if Π ▷ x : [a] ⊢q x : a, then t(Π) ▷ x : t([a]) ⊢p x : t(a);
the case the subject is λx.M is straightforward.
let Π be:

Γ ⊢q M : A (∆i ⊢q N : Bi)1≤i≤n

Γ ⊎1≤i≤n ∆i ⊢q MN : C
(→Ej)

then t(Π) is:

t(Γ) ⊢p M : t(A) t(∆1) ⊢p N : t(B1)
t(Γ) ∪ t(∆1) ⊢p MN : t(C)

(→Ej)

t(.) can be extended to principal derivations by posing t(Π, (E, V )) = (t(Π), (Et(Π), Vt(Π))),
where the system of constraints (Et(Π), Vt(Π)) is computed from the pseudo-derivation t(Π)
according to Fig. 2, as usual.
t(.) is extended to derivations in the same way as for pseudo-derivations.

▶ Property 31. Let PDi(M) = (Π, (E, V )). For each sequence of expansion ē, PD(M) =
(t(ē(Π)), (Et(ē(Π)), Vt(ē(Π)))).

Proof. In case ē is the empty sequence the proof follows by induction on the definition of
PD(M) and PDi(M), recalling that PD(M) is defined modulo renaming of type variables. The
general case follows from the definition of expansion. ◀

We are now able to prove the decidability of U , and the fact that the systems S and U
have the same typability power.

▶ Theorem 32. The system U is decidable.

Proof. Let PDmin
i (M) = (Π, (E, V )) and PD(M) = (t(Π), (Et(Π), Vt(Π))). We already proved

that Solve(M) terminates with a correct result in case M is strongly normalizing (Theorems
23 and 25). If M is not strongly normalizing, then it is not simply typable, i.e. Unify(Et(Π)∪
Vt(Π)) fails. Observe that QuasiUnify≈ decomposes multiset equivalences by introducing
equivalence constraints between all possible pairs of elements, hence it generates a circular
constraint exactly when Unify does. We conclude that the failure of Unify(Et(Π) ∪ Vt(Π))
implies the failure of the check on QuasiUnify≈(E/≈ ∪ V ) performed at the beginning of
the algorithm Solve. ◀
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▶ Corollary 33. PDmin
i (M) is solvable if and only if PD(M) is solvable.

Proof. Let PDmin
i (M) = (Π, (E, V )). PDmin

i (M) is solvable if and only if (by Theorem 23) the
check on QuasiUnify≈(E/≈ ∪ V ) succeeds if and only if (looking at the proof of Theorem
32) PD(M) is solvable. ◀

The main result

The main result of this paper is the correspondence between the derivations in the two
systems S and U : from one side the translation of every derivation in U is a derivation in S,
and on the other side for each derivation Π in S there is an infinite set of derivations in U
from which Π can be obtained through the translation.

▶ Theorem 34.
1. Γ ⊢i M : A implies t(Γ) ⊢M : t(A);
2. Π ▷ Γ ⊢M : A implies there exists Πi ▷ Γi ⊢i M : Ai such that Γ = t(Γi) and A = t(Ai).

Proof.
1. Easy, by definition of collapse translation.
2. First we consider the case dom(Γ) = FV(M). Let PD(M) = (Σ, (EΣ, VΣ)); clearly Π ▷ Γ ⊢

M : A implies that there is θ m.g.u. of EΣ ∪ VΣ, and there is θ′ such that θ′ ◦ θ(Σ) = Π.
Moreover, by Corollary 33, Solve(M) = (Σi, ϕ); let (EΣi , VΣi) be the system of constraints
associated to Σi. It is easy to verify that r ◦ t ◦ ϕ(Σi) = θ(Σ) for some renaming of type
variables r : Var → Var (trivially extended to derivations): this follows from the fact
that both systems of constraints, namely (EΣ, VΣ) for simple types and (EΣi , VΣi) for
uniform intersection types, contain all and only the constraints strictly needed to type M
in the corresponding type system. Then, choosing any substitution ϕ′ : Var→ TU such
that t ◦ ϕ′ = θ′, one can build Πi = ϕ′ ◦ r ◦ ϕ(Σi). In case there is x : B ∈ Γ such that
x ̸∈ FV(M), starting from the above construction and suitably exploiting (var) rules it is
always possible to obtain a derivation Πi such that x : σ ∈ Γi and t(σ) = B. ◀

6 Conclusion

Starting from a non-idempotent intersection type assignment system which is undecidable,
as it characterises strong normalisation, we have built a decidable restriction of it. More
precisely, we designed an algorithm Solve that, given in input a λ-term, outputs either
FAIL, if the term cannot be typed, or the most general typing for it. System U has the
same typability power as the simple type assignment system, and the derivations in the two
systems are related through a translating function. Furthermore, the system is quantitative,
in the sense that some information about the number of occurrences of a variable in the
subject can be deduced from a derivation in system U . In the future we plan to use this new
system to reason about properties related to the complexity of reductions of simply typed
terms. Moreover we would like to investigate the existence of further decidable restrictions
with interesting properties. From a technical point of view, we also aim at studying the
time and space complexity of Solve in more detail, in order to come up with an efficient
implementation.



D. Pautasso and S. Ronchi Della Rocca 29:17

References

1 Henk Barendregt. The Lambda Calculus: Its Syntax and Semantics, volume 103 of Studies in
logic and the foundation of mathematics. North-Holland, Amsterdam, 1984.

2 Henk Barendregt, Mario Coppo, and Mariangiola Dezani-Ciancaglini. A filter model and the
completeness of type assignment. J. Symb. Log., 48(4):931–940, 1983. doi:10.2307/2273659.

3 Choukri-Bey Ben-Yelles. Type-assignment in the lambda-calculus; syntax and semantics. PhD
thesis, University of Wales Swansea, 1979.

4 Erika De Benedetti and Simona Ronchi Della Rocca. A type assignment for lambda-calculus
complete for fptime and strong normalization. Inf. Comput., 248(195-214):195–214, 2016.
doi:10.1016/j.ic.2015.12.012.

5 Antonio Bucciarelli, Thomas Ehrhard, and Giulio Manzonetto. Not enough points is enough.
In Jacques Duparc and Thomas A. Henzinger, editors, CSL 2007, volume 4646, pages 298–312,
2007.

6 Antonio Bucciarelli, Delia Kesner, and Simona Ronchi Della Rocca. Inhabitation for non-
idempotent intersection types. Log. Methods Comput. Sci., 14(3), 2018. doi:10.23638/
LMCS-14(3:7)2018.

7 Antonio Bucciarelli, Delia Kesner, and Daniel Ventura. Non-idempotent intersection types for
the lambda-calculus. Logic Journal of the IGPL, 25(4):431–464, 2017.

8 Alonzo Church. A formulation of simple theory of types. J. Symbolic Logic, 5:56–68, 1940.
9 Mario Coppo and Mariangiola Dezani-Ciancaglini. An extension of the basic functionality

theory for the λ-calculus. Notre Dame J. Form. Log., 21(4):685–693, 1980.
10 Mario Coppo, Mariangiola Dezani-Ciancaglini, and Betti Venneri. Functional characters of

solvable terms. Math. Log. Q., 27(2-6):45–58, 1981.
11 Mario Coppo and Paola Giannini. Principal types and unification for a simple intersection

type system. Inf. Comput., 122(1):70–96, 1995.
12 Daniel de Carvalho. Execution time of lambda-terms via denotational semantics and intersec-

tion types. CoRR, abs/0905.4251, 2009.
13 Roger J. Hyndley. Basic Simple Type theory. Hoepli, 1997.
14 Delia Kesner and Daniel Ventura. Quantitative types for the linear substitution calculus. In

TCS, LNCS, 2014.
15 Assaf J. Kfoury and Joe B. Wells. Principality and decidable type inference for finite-rank

intersection types. In Andrew W. Appel and Alex Aiken, editors, POPL ’99, Proceedings of
the 26th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, San
Antonio, TX, USA, January 20-22, 1999, pages 161–174. ACM, 1999.

16 Assaf J. Kfoury and Joe B. Wells. Principality and type inference for intersection types using
expansion variables. Theor. Comput. Sci., 311(1-3):1–70, 2004.

17 Luca Paolini, Mauro Piccolo, and Simona Ronchi Della Rocca. Essential and relational models.
Mathematical Strucures in Computer Science, 27, 2017.

18 John A. Robinson. A machine-oriented logic based on the resolution principle. J. Asoc. for
Computing Machinery 12 (1965), 12:23–41, 1965.

19 Simona Ronchi Della Rocca. Principal type scheme and unification for intersection type
discipline. Theor. Comput. Sci., 59:181–209, 1988. doi:10.1016/0304-3975(88)90101-6.

20 Simona Ronchi Della Rocca and Luca Paolini. The Parametric Lambda Calculus - A Metamodel
for Computation. Texts in Theoretical Computer Science. An EATCS Series. Springer, 2004.

21 Simona Ronchi Della Rocca and Betti Venneri. Principal type schemes for an extended type
theory. Theor. Comput. Sci., 28:151–169, 1984. doi:10.1016/0304-3975(83)90069-5.

22 Pawel Urzyczyn. The emptiness problem for intersection types. In Proceedings of the Ninth
Annual Symposium on Logic in Computer Science (LICS ’94), Paris, France, July 4-7, 1994,
pages 300–309. IEEE Computer Society, 1994. doi:10.1109/LICS.1994.316059.

FSCD 2023

https://doi.org/10.2307/2273659
https://doi.org/10.1016/j.ic.2015.12.012
https://doi.org/10.23638/LMCS-14(3:7)2018
https://doi.org/10.23638/LMCS-14(3:7)2018
https://doi.org/10.1016/0304-3975(88)90101-6
https://doi.org/10.1016/0304-3975(83)90069-5
https://doi.org/10.1109/LICS.1994.316059


29:18 A Quantitative Version of Simple Types

A Proof of Theorem 25

Proof (Hint). In order to develop some useful intuitions, we start by considering M that
reduces to N in one step, by reducing one of its innermost redexes; we denote this fact
by writing M →in

β N . Let PDmin
i (M) = (ΠM , (EM , VM )), PDmin

i (N) = (ΠN , (EN , VN )),
M = C[(λx.P )Q] and N = C[P [Q/x]]. Assume QuasiUnify≈(EM/≈ ∪ VM ) is in solved
form, termination being obvious in the other case. We will prove that there is a run of
Solve(M) performing an interleaved sequence s of unification rules and expansions such that
EN ⊂ s(EM ) and VN ⊂ ē(VM ), where ē is the sequence of expansions belonging to s. At
the same time we will show that s(EM )− EN is in solved form and cannot generate critical
equations. The proof depends on the occurrences of x in P .

x does not occur in P . Let ΠM contain subderivations Πj
(λx.P )Q (j ∈ J) of shape:

(Πj
(λx.P )Q)

Γj ⊢q P : Bj

Πj
λx.P ▷ Γj ⊢q λx.P : [aj ]→ Bj Πj

Q ▷ ∆j ⊢q Q : Aj

Γj ⊎∆j ⊢q (λx.P )Q : Bj

where (Πj
λx.P , (E

j
λx.P , V

j
λx.P )) and (Πj

Q, (E
j
Q, V

j
Q)) are disjoint instances of PDmin

i (λx.P ) and
PDmin

i (Q) respectively. Moreover let EM = E′ ∪j∈J (Ej
λx.P ∪E

j
Q ∪Ej

app) and VM = V ′ ∪j∈J

(V j
λx.P ∪ V

j
Q ∪ V j

app), where Ej
app = {aj .= Aj} and V j

app = {bj ≈ cj | y ∈ dom(Γj) ∩
dom(∆j), bj ∈ Γj(y), cj ∈ ∆j(y)}. First, observe that EN = E′ ∪j∈J E

j
P = E′ ∪j∈J E

j
λx.P

and VN = V ′ ∪j∈J V
j

P ⊂ VM . Since Q is in normal form, by Lemma 24, for all j we know
that Ej∗

Q = QuasiUnify .=(Ej
Q) is in solved form. Let ū be the sequence of unification rules

performed by all QuasiUnify .=(Ej
Q) (j ∈ J); clearly each aj occurs only in Ej

app, hence
ū(EM ) − EN =

⋃
j∈J E

j∗
Q ∪ Ej

app is in solved form and cannot generate critical equations.
Note that in this case ē is the empty sequence.

x occurs in P . Let ΠM contain subderivations Πj
(λx.P )Q (j ∈ J) ending by:

(Πj
(λx.P )Q)

Γj , x : [aj
i ]i∈Ij ⊢q P : Bj

Γj ⊢q λx.P : [aj
i ]i∈Ij → Bj (∆j

i ⊢q Q : Aj
i )i∈Ij

Γj ⊎i∈Ij ∆j
i ⊢q (λx.P )Q : Bj

where Ij is a suitable set of indexes. Focusing on the occurrences of x in functional position
in P , each Πj

(λx.P )Q contains disjoint subderivations of shape:

(Σj
i )

x : [aj
i ] ⊢q x : aj

i Ψj
i ⊢q Ri : Cj

i

{x : [aj
i ]} ⊎Ψj

i ⊢q xRi : ej
i

where i ∈ Ij
fun ⊆ Ij (recall that, by construction, each application uses a different premise

on x). The set of equations generated by the last rule of all the aforementioned Σj
i is:

Efun = {aj
i
.= [Cj

i ]→ ej
i | j ∈ J, i ∈ I

j
fun}

Focusing instead on the occurrences of x in argument position, each Πj
(λx.P )Q contains disjoint

subderivations of shape:

(Θj
k)

Φj
k ⊢q Sk : Dj

k (x : [aj
i ] ⊢q x : aj

i )i∈Ij
k

Φj
k ⊎i∈Ij

k
{x : [aj

i ]} ⊢q Skx : F j
k
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where k ∈ Kj and the sets Ij
k form a partition of indexes, i.e. Ij

k ∩ I
j
k′ = ∅ if k ̸= k′ and⋃

k∈Kj I
j
k = Ij

arg = (Ij − Ij
fun); observe that |Kj | ≤ |Ij

arg|. Indeed, either the type of Sk is an
arrow type, let it be Dj

k = [dj
i ]i∈Ij

k
→ F j

k , or both Dj
k = dj

k and F j
k = f j

k are type variables.
Let Kj

arr = {k ∈ Kj | the type of Sk is an arrow type} and Kj
var = Kj − Kj

arr; note that
k ∈ Kj

var implies Ij
k is a singleton, hence Kj

var and
⋃

k∈Kj
var
Ij

k can be identified. The last rule
of all subderivations Θj

k generate equations:

Earg = {dj
i
.= aj

i | j ∈ J, k ∈ K
j
arr, i ∈ I

j
k} ∪ {d

j
k

.= [aj
k]→ f j

k | j ∈ J, k ∈ K
j
var}

The sequence s varies depending on whether Aj
i is a type variable or not. In the former case

no expansion is needed, i.e. s consists of unification rules only. We now analyse both cases
in detail.

Aj
i is a variable. Aj

i is a variable means that Q is not an abstraction. Let Aj
i = bj

i and
EM = E′ ∪ Efun ∪ Earg ∪ {aj

i
.= bj

i | j ∈ J, i ∈ Ij}. Consider the sequence of substitutions
ū replacing each aj

i by bj
i . These substitutions modify only the components Efun and Earg,

which become:

E∗
fun = {bj

i
.= [Cj

i ]→ ej
i | j ∈ J, i ∈ I

j
fun}

E∗
arg = {dj

i
.= bj

i | j ∈ J, k ∈ K
j
arr, i ∈ I

j
k} ∪ {d

j
k

.= [bj
k]→ f j

k | j ∈ J, k ∈ K
j
var}

Observe that EN = E′∪E∗
fun∪E∗

arg ⊂ ū(EM ), because in ΠN the subderivations corresponding
to Σj

i and Θj
k are, respectively:

(Σ′j
i )

∆j
i ⊢q Q : bj

i Ψ′j
i ⊢q Ri[Q/x] : Cj

i

∆j
i ⊎Ψ′j

i ⊢q Q(Ri[Q/x]) : ej
i

(Θ′j
k )

Φ′j
k ⊢q Sk[Q/x] : Dj

k (∆j
i ⊢q Q : bj

i )i∈Ij
k

Φ′j
k ⊎i∈Ij

k
∆j

i ⊢q (Sk[Q/x])Q : F j
k

The various aj
i do not occur in ΠN , thus we also have VN = VM −{aj

i ≈ a
j
l | j ∈ J, i, l ∈ Ij}.

We conclude that in this case s = ū, i.e. the sequence consists of the unification rules
transforming Efun∪Earg∪{aj

i
.= bj

i | j ∈ J, i ∈ Ij} into E∗
fun∪E∗

arg∪{a
j
i
.= bj

i | j ∈ J, i ∈ Ij}.
It is straightforward to check that ū(EM )− EN = {aj

i
.= bj

i | j ∈ J, i ∈ Ij} is in solved form,
and that all variables aj

i do not occur outside of ū(EM )− EN . Hence ū(EM )− EN cannot
play any role in generating critical equations.

Aj
i is not a variable. Since Q is in normal form, Aj

i not a variable means that Q is an
abstraction; hence the reduction C[(λx.P )Q]→in

β C[P [Q/x]] may generate new redexes. Let
Aj

i = σj
i,0 → . . . → σj

i,q → cj
i for some q ≥ 0, and let |σj

i,p| = nj
i,p (0 ≤ p ≤ q). For

j ∈ J , i ∈ Ij
fun and pj

i ≤ q, let σj
i,0 . . . , σ

j

i,pj
i

be associated to applied bound variables in ΠN ;

then the application of unification rules generates one critical equation for each σj
i,p such

that p ≤ pj
i and nj

i,p > 1. During the while loop, Solve can choose exclusively these critical
equations and perform the appropriate expansions. For any given j ∈ J, i ∈ Ij

fun, a single
expansion Expand([Cj

i ], nj
i,0 − 1) transforms Σj

i into:

(Σ̂j
i )

x : [aj
i ] ⊢q x : aj

i (Ψj
i,m ⊢q Ri : Cj

i,m)1≤m≤nj
i,0

{x : [aj
i ]} ⊎1≤m≤nj

i,0
Ψj

i,m ⊢q xRi : ej
i
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Similarly, with the convention that ej
i = ej

i,1, an expansion for 1 ≤ p ≤ pj
i transforms a

subderivation like:

(Ωj
i,p)

Ξj
i,p ⊢q Ui,p : ej

i,p Υj
i,p ⊢q Vi,p : Gj

i,p

Ξj
i,p ⊎Υj

i,p ⊢q Ui,pVi,p : ej
i,p+1

into:

(Ω̂j
i,p)

Ξj
i,p ⊢q Ui,p : ej

i,p (Υj
i,p,m ⊢q Vi,p : Gj

i,p,m)1≤m≤nj
i,p

Ξj
i,p ⊎1≤m≤nj

i,p
Υj

i,p,m ⊢q Ui,pVi,p : ej
i,p+1

Observe that each espansion may increase the cardinality of the set of indexes Ij : think,
for instance, of the term P = x(xP ′)(P ′′x) when Q : [a, a′]→ [b, b′]→ c. This originates a
sequence of expansions ē and an increasing sequence Ij

e1, I
j
e2, I

j
e3, . . . of sets of indexes. Let

Îj denote the last set of the sequence: such a set must exist because functional occurrences
of x may increment, to their right, the number of subderivations with subject x, but not
vice versa. Let Π̂M = ē(ΠM ) be derivation obtained after all the aforementioned expansions,
and let (ÊM , V̂M ) = (ē(EM ), ē(VM )) be its associated constraints (w.l.o.g., we ignore the
unification rules performed between expansions: they are not relevant in our proof because
the system of constraints is recomputed after each expansion). In the same way as before,
for each j ∈ J it is possible to identify Îj

fun ⊆ Îj and the partition {Îj
k | k ∈ K̂j} such that⋃

k∈K̂
Îj

k = Îj
arg = (Îj − Îj

fun); with these subsets of indexes, the equations related to all
occurrences of x in functional and argument position can be expressed respectively as:

Êfun = {aj
i
.= [Cj

i,0, . . . , C
j

i,nj
i,0

]→ ej
i | j ∈ J, i ∈ Î

j
fun}

Êarg = {dj
i
.= Aj

i | j ∈ J, k ∈ K̂
j
arr, i ∈ Î

j
k} ∪ {d

j
k

.= [Aj
k]→ f j

k | j ∈ J, k ∈ K̂
j
var}

Moreover, the equalities generated by the last elimination rule of the various Ω̂j
i,p are (recall

that ej
i = ej

i,1):

ÊΩ̂ = {ej
i,p

.= [Gi,p,1, . . . , Gi,p,nj
i,p

]→ ej
i,p+1 | j ∈ J, i ∈ Î

j
fun, 1 ≤ p ≤ pj

i}

Now let σj
i,p = [bj

i,p,1, ..., b
j

i,p,nj
i,p

] (0 ≤ p ≤ pj
i ) and observe that {aj

i
.= Aj

i | j ∈ J, i ∈ Îj} ⊂

ÊM . Thanks to the now agreeing multiset cardinalities, the call to QuasiUnify .=(ÊM ) on
line 16 of the algorithm can finally apply a sequence ū of unification rules that perform all
substitutions involving the various ej

i,p and replace aj
i by Aj

i , then decompose the resulting
equations. Such a sequence transforms Êfun and Êarg into:

Ê∗
fun = {bj

i,0,1
.= Cj

i,1, . . . , b
j

i,0,nj
i,0

.= Cj

i,nj
i,0
| j ∈ J, i ∈ Îj

fun}

Ê∗
arg = {dj

i
.= Aj

i | j ∈ J, k ∈ K̂
j
arr, i ∈ Î

j
k} ∪ {d

j
k

.= [Aj
k]→ f j

k | j ∈ J, k ∈ K̂
j
var}

These equations are also part of EN because, by construction, in ΠN the subderivations
corresponding to Σ̂j

i and Θ̂j
k (j ∈ J, i ∈ Îj , k ∈ K̂j) are, respectively:

(Σ′j
i )

∆j
i ⊢q Q : σj

i,0 → . . .→ σj
i,q → cj

i (Ψ′j
i,m ⊢q Ri[Q/x] : Cj

i,m)1≤m≤nj
i,0

∆j
i ⊎1≤m≤nj

i,0
Ψ′j

i,m ⊢q Q(Ri[Q/x]) : σj
i,1 → . . .→ σj

i,q → cj
i
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where σj
i,0 = [bj

i,0,1, ..., b
j

i,0,nj
i,0

], and

(Θ′j
k )

Φ′j
k ⊢q Sk[Q/x] : Dj

k (∆j
i ⊢q Q : Aj

i )
i∈Îj

k

Φ′j
k ⊎i∈Ij

k
∆j

i ⊢q (Sk[Q/x])Q : F j
k

Moreover, focusing on the equations that involve σj
i,p (1 ≤ p ≤ pj

i ), one can see that applying
the multiset decompositions in ū produces:

Eσ = {bi,p,1
.= Gi,p,1, . . . , bi,p,nj

i,p

.= Gi,p,nj
i,p
| j ∈ J, i ∈ Îj

fun, 1 ≤ p ≤ pj
i}

Clearly the above equations are part of EN too, as ΠN contains subderivations of shape:

(Ω′j
i,p)

Ξ′j
i,p ⊢q Ui,p[Q/x] : σj

i,p → . . . → σj
i,q → cj

i (Υ′j
i,p,m ⊢q Vi,p[Q/x] : Gj

i,p,m)1≤m≤n
j
i,p

Ξ′j
i,p ⊎1≤m≤n

j
i,p

Υ′j
i,p,m ⊢q (Ui,pVi,p)[Q/x] : σj

i,p+1 → . . . → σj
i,q → cj

i

Recall that ÊM = ē(EM ) and V̂M = ē(VM ). Hence, ignoring the unification rules performed
between expansions, we have EN = E′∪Ê∗

fun∪Ê∗
arg∪Eσ ⊂ ū(ÊM ) = ū◦ ē(EM ); moreover the

various aj
i do not occur in ΠN , so VN = ē(VM )−{aj

i ≈ a
j
l | j ∈ J, i, l ∈ Îj}. Summarising, if

Aj
i is not a variable the sequence s = ū◦ ē consists of a sequence of expansions ē transforming

(EM , VM ) into (ÊM , V̂M ), followed by the unification rules ū eventually leading to a superset
of EN . We conclude by observing that s(EM )− EN = ū(ÊΩ̂) ∪ {aj

i
.= Aj

i | j ∈ J, i ∈ Ij} is
in solved form, and that all variables aj

i and ej
i,p do not occur outside of s(EM )−EN . Thus,

once again, equations belonging to s(EM )− EN cannot play any role in generating critical
equations.

The special case P = x. This is the only way x can occur in P , but neither in functional
nor argument position. A sequence s = ū◦ ē of expansions and unification rules similar to the
one described above may be necessary also in this case, because P [Q/x] = Q can generate
new redexes in N if Q is an abstraction.

Now consider an innermost strategy, say the rightmost-innermost one; thanks to the
fact that s(EM )− EN cannot generate critical equations, termination of Solve(M) (more
precisely, of a deterministic version that always performs the expansions associated to the
rightmost-innermost redex) follows by induction on the length of the rightmost-innermost
reduction from M to its normal form, using Lemma 24. The extension of this result to all
possile sequences of expansions can then be obtained by observing that a critical equation
always originates from a redex appearing in one of the reduction sequences from M to its
normal form. Therefore, taking into account that:

M is strongly normalizing, so the length of all reduction sequences from M to its normal
form is finite;
a β-reduction corresponds to a finite number ≥ 0 of expansions on PDi(M);
different critical equations are generated in different subtrees of PDi(M), hence the order
in which expansions are performed does not matter;

we can conclude that the number of expansions performed by the algorithm is always finite,
i.e. Solve(M) terminates. ◀
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Abstract
We introduce a new form of restricted term rewrite system, the graph-embedded term rewrite
system. These systems, and thus the name, are inspired by the graph minor relation and are more
flexible extensions of the well-known homeomorphic-embedded property of term rewrite systems. As
a motivating application area, we consider the symbolic analysis of security protocols, and more
precisely the two knowledge problems defined by the deduction problem and the static equivalence
problem. In this field restricted term rewrite systems, such as subterm convergent ones, have proven
useful since the knowledge problems are decidable for such systems. However, many of the same
decision procedures still work for examples of systems which are “beyond subterm convergent”.
However, the applicability of the corresponding decision procedures to these examples must often
be proven on an individual basis. This is due to the problem that they don’t fit into an existing
syntactic definition for which the procedures are known to work. Here we show that many of these
systems belong to a particular subclass of graph-embedded convergent systems, called contracting
convergent systems. On the one hand, we show that the knowledge problems are decidable for
the subclass of contracting convergent systems. On the other hand, we show that the knowledge
problems are undecidable for the class of graph-embedded systems.
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1 Introduction

In this paper we introduce a new form of term rewrite system, called the graph-embedded term
rewrite systems, and motivate the study and use of such rewrite systems by demonstrating
their usefulness in the application of security protocols.

The research area of cryptographic protocol analysis contains a number of innovative
algorithms and procedures for checking various security properties of protocols, see for
example [1, 12, 15, 17]. These procedures consider protocols modeled in a symbolic way,
typically via a rewrite system or equational theory. Often the procedure is proven sound
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and complete for specific classes of theories. One of the most common classes are those
theories that can be represented by subterm convergent term rewrite systems. That is, term
rewrite systems where the right-hand side of the rules are ground or strict subterms of the
left-hand side. For example, see the procedures developed in [1, 15]. Interestingly, many of
these same procedures also work for theories that are “beyond subterm convergent”. That
is, they are not strictly subterm convergent. However, since these examples don’t fit into a
known class of theories for which soundness and completeness proofs already exist, they must
be proven on an individual bases. For example, the procedures of [1, 12, 15, 17] are shown
to work on the theory of blind signatures, see Example 2 below. However, the theory is
not subterm convergent, notice in the final rule, unblind(sign(blind(x, y), z), y) → sign(x, z),
that sign(x, z) is not a strict subterm of unblind(sign(blind(x, y), z), y). Thus, in each case a
unique proof is needed to show applicability of the procedure on the theory of blind signatures.
Several additional examples of beyond subterm theories are given throughout the paper. This
begs the question of whether there is a syntactic definition of a class of term rewrite systems
such that the definition encapsulates these beyond subterm examples yet still maintains some
of the useful properties needed to ensure applicability of the above procedures.

In the paper we answer the question in the positive by introducing first graph-embedded
term rewrite systems and then a particular subclass called contracting rewrite systems.
These systems are inspired by the notions of graph embeddings and graph minors. Here
we are able to translate the notion to term rewrite systems. This translation is done in a
very similar fashion to what has been done with homeomorphic embeddings. We are able
to provide a rewrite schema which induces graph-embedded systems in a similar way in
which homeomorphic-embedded systems are induced by a rewrite system (see [7] for more
details). To the best of our knowledge these systems have not been explored before. We
then explore some of the properties of these new systems. Interestingly, the graph-embedded
systems encompass most of the beyond subterm examples from many of the protocol analysis
procedures [1, 12, 15, 17]. As an initial step, in this paper we concentrate on the knowledge
problems considered in [1] using the notion of locally stable theories. Local stability is a
desirable property which ensures the decidability of the critical symbolic security question of
deducibility. In the class of graph-embedded convergent systems, we are now able to identify
a particular subclass called the contracting convergent systems, which are beyond subterm
convergent, encompass most of the beyond subterm examples of [1, 12, 15, 17], and are
locally stable. As a consequence, the knowledge problems of deduction and static equivalence
are decidable for the subclass of contracting convergent systems. Furthermore, we show that
the knowledge problems are undecidable for the class of graph-embedded convergent systems
in general.

Finally, this paper represents the initial exploration of graph-embedded term rewrite
systems and their application to protocol analysis. We hope that the formulation proves
useful in areas beyond security protocols as homeomorphic embeddings have proven useful in
many areas. We conclude the paper with a discussion of several open questions related to
graph-embedded systems.

Paper Outline. The remainder of the paper is organized as follows. Section 2 contains
the preliminaries, introducing the necessary background material on term-rewrite systems,
graph theory and security protocol analysis. Section 3 introduces the graph-embedded
term rewrite systems and explores some of their basic properties. Section 4 introduces the
motivating application area of this paper for graph-embedded systems, security protocol
analysis. In that section, we show that the knowledge problems are undecidable for the



S. Dwyer Satterfield, S. Erbatur, A. M. Marshall, and C. Ringeissen 30:3

class of graph-embedded convergent systems but decidable for the subclass of contracting
convergent systems. Section 5 considers the relation to another common and useful property,
the Finite Variant Property (FVP). Finally, Section 6 contains the concluding remarks, future
work, and some open problems. Our decidability result relies on lemmas that are proven in
Appendix A.

2 Preliminaries

We use the standard notation of equational unification [8] and term rewriting systems [7].
Given a first-order signature Σ and a (countable) set of variables V , the Σ-terms over
variables V are built in the usual way by taking into account the arity of each function
symbol in Σ. Each Σ-term is well-formed: if it is rooted by a n-ary function symbol in Σ,
then it has necessarily n direct subterms. The set of Σ-terms over variables V is denoted by
T (Σ, V ). Given a (countable) set of constants C disjoint from V and Σ, the set of Σ-terms
over V ∪ C is denoted in the same way by T (Σ, V ∪ C). In the following, a Σ-term is
assumed to be a term in T (Σ, V ∪ C). The set of variables (resp., constants) from V (resp.,
C) occurring in a term t ∈ T (Σ, V ∪ C) is denoted by Var(t) (resp., Cst(t)). A term t is
ground if Var(t) = ∅. A Σ ∪ C-rooted term is a term whose root symbol is in Σ ∪ C. For
any position p in a term t (including the root position ϵ), t(p) is the symbol at position p,
t|p is the subterm of t at position p, and t[u]p is the term t in which t|p is replaced by u.
A substitution is an endomorphism of T (Σ, V ∪ C) with only finitely many variables not
mapped to themselves. A substitution is denoted by σ = {x1 7→ t1, . . . , xm 7→ tm}, where
the domain of σ is Dom(σ) = {x1, . . . , xm} and the range of σ is Ran(σ) = {t1, . . . , tm}.
Application of a substitution σ to t is written tσ.

The size of a term t, denoted by |t|, is defined inductively as follows: |f(t1, . . . , tn)| =
1 + Σn

i=1|ti| if f is a n-ary function symbol with n ≥ 1, |c| = 1 if c is a constant, and |x| = 1
if x is a variable. The depth of a term t, denoted by depth(t), is defined inductively as
follows: depth(f(t1, . . . , tn)) = 1 + maxi=1,...,n depth(ti) if f a n-ary function symbol with
n ≥ 1, depth(c) = 0 if c is a constant, and depth(x) = 0 if x is a variable.

A context is a term with holes. More formally, a context is a term where each variable
occurs at most once. Thus, the size of a context follows from the size of a term, where any
hole occurrence counts for 1.

Equational Theories

Given a set E of Σ-axioms (i.e., pairs of terms in T (Σ, V ), denoted by l = r), the equational
theory =E is the congruence closure of E under the law of substitutivity (by a slight abuse
of terminology, E is often called an equational theory). Equivalently, =E can be defined as
the reflexive transitive closure ↔∗

E of an equational step ↔E defined as follows: s ↔E t if
there exist a position p of s, l = r (or r = l) in E, and substitution σ such that s|p = lσ and
t = s[rσ]p.

Rewrite Relations

A term rewrite system (TRS) is a pair (Σ, R), where Σ is a signature and R is a finite
set of rewrite rules of the form l → r such that l, r are Σ-terms, l is not a variable and
Var(r) ⊆ Var(l). A term s rewrites to a term t w.r.t R, denoted by s →R t (or simply
s → t), if there exist a position p of s, l → r ∈ R, and substitution σ such that s|p = lσ

and t = s[rσ]p. If the rewrite step occurs at the root position of the term s we denote this
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as s →ϵ
R t. When σ is a variable renaming, we say that s rewrites to t applying a variable

instance of l → r. A TRS R is terminating if there are no infinite reduction sequences
with respect to →R. A TRS R is confluent if, whenever t →∗

R s1 and t →∗
R s2, there exists

a term w such that s1 →∗
R w and s2 →∗

R w. A confluent and terminating TRS is called
convergent. In a convergent TRS R, we have the existence and the uniqueness of R-normal
forms, denoted by t↓R for any term t. When R is clear from the context, the normal form of
t may be written t↓. Given a substitution σ, σ↓ = {x 7→ (xσ)↓}x∈Dom(σ) is the substitution
corresponding to the normal form of σ.

A convergent term rewrite system (TRS) R is said to be subterm convergent if for any
l → r ∈ R, r is either a strict subterm of l or a ground term. An equational theory, E, is
subterm convergent if it is presented by a subterm convergent TRS. That is, there exists a
subterm convergent TRS, R, such that =E and =R coincide.

▶ Definition 1 (Homeomorphic Embedding). The homeomorphic embedding, ⊵emb is a binary
relation on terms such that: s ⊵emb t if one of the following conditions hold:
1. s = x = t for some variable x,
2. s = f(s1, . . . , sn) and t = f(t1, . . . , tn) and s1 ⊵emb t1, . . . , sn ⊵emb tn,
3. s = f(s1, . . . , sn) and si ⊵emb t for some i, 1 ≤ i ≤ n.
A TRS R is said to be a homeomorphic-embedded TRS if for any l → r ∈ R, l ⊵emb r.

More interestingly we can also define ⊵emb as the reduction relation →∗
Remb

induced by
the rewrite system Remb = {f(x1, . . . , xn) → xi | f is n-ary, n ≥ 1, 1 ≤ i ≤ n}.

▶ Example 2 (Blind Signatures). The theory of blind signatures [15] is a homeomorphic-
embedded convergent TRS:

checksign(sign(x, y), pk(y)) → x

unblind(blind(x, y), y) → x

unblind(sign(blind(x, y), z), y) → sign(x, z)

Notions of Knowledge

The applied pi calculus and frames are used to model attacker knowledge [2]. In this model,
the set of messages or terms which the attacker knows, and which could have been obtained
from observing one or more protocol sessions, are the set of terms in Ran(σ) of the frame
ϕ = νñ.σ, where σ is a substitution ranging over ground terms. We also need to model
cryptographic concepts such as nonces, keys, and publicly known values. We do this by using
names, which are essentially free constants. Here also, we need to track the names which the
attacker knows, such as public values, and the names which the attacker does not know a
priori, such as freshly generated nonces. ñ consists of a finite set of restricted names, these
names represent freshly generated names which remain secret from the attacker. The set of
names occurring in a term t is denoted by fn(t). For any frame ϕ = νñ.σ, let fn(ϕ) be the
set of names fn(σ)\ñ where fn(σ) =

⋃
t∈Ran(σ) fn(t); and for any term t, let tϕ denote by a

slight abuse of notation the term tσ. We say that a term t satisfies the name restriction (of
ϕ) if fn(t) ∩ ñ = ∅.

▶ Definition 3 (Deduction). Let ϕ = νñ.σ be a frame, and t a ground term. We say that t is
deduced from ϕ modulo E, denoted by ϕ ⊢E t, if there exists a term ζ such that ζσ =E t

and fn(ζ) ∩ ñ = ∅. The term ζ is called a recipe of t in ϕ modulo E.

Another form of knowledge is the ability to tell if two frames are statically equivalent
modulo E, sometimes also called indistinguishability.
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▶ Definition 4 (Static Equivalence). Two terms s and t are equal in a frame ϕ = νñ.σ modulo
an equational theory E, denoted (s =E t)ϕ, if sσ =E tσ, and ñ ∩ (fn(s) ∪ fn(t)) = ∅. The set
of all equalities s = t such that (s =E t)ϕ is denoted by Eq(ϕ). Given a set of equalities Eq,
the fact that (s =E t)ϕ for any s = t ∈ Eq is denoted by ϕ |= Eq. Two frames ϕ = νñ.σ and
ψ = νñ.τ are statically equivalent modulo E, denoted as ϕ ≈E ψ, if Dom(σ) = Dom(τ),
ϕ |= Eq(ψ) and ψ |= Eq(ϕ).

Both deduction and static equivalence are known to be decidable in subterm convergent
rewrite systems [1]. In this paper, we lift these results to rewrite systems that are beyond
the class of subterm convergent rewrite systems.

▶ Example 5. Let E be the equational theory presented by the subterm convergent TRS
{dec(enc(x, y), y) → x}. Applying the decision procedure developed in [1], one can check that
ϕ = ν{n}.{v 7→ enc(a, n)} and ψ = ν{n}.{v 7→ enc(b, n)} are statically equivalent modulo
E. Consider now ϕ′ = ν{n}.{v 7→ enc(a, n), w 7→ n} and ψ′ = ν{n}.{v 7→ enc(b, n), w 7→ n}.
Since dec(v, w) = a ∈ Eq(ϕ′) and dec(v, w) = a /∈ Eq(ψ′), ϕ′ and ψ′ are not statically
equivalent modulo E.

Term Graphs

Each term t can be viewed in a graphical representation, called a term graph. Each node in
the graph is labeled either by a function symbol or a variable. Each function symbol node
also has an associated successor number, corresponding to the arity of the function. Edges
connect the nodes of the term graph based on the subterm relation. The notion of term
graph is illustrated in Examples 19 and 20.

▶ Definition 6 (Term Graph Measures). We introduce some convenient notation:
Let VP(t) denote the list of leaf nodes in the term graph of a term t labeled by a variable.
Notice that two distinct nodes could be labeled by the same variable.
Let FP(t) denote the list of nodes in the term graph of t labeled by a function symbol.
Notice that two distinct nodes could be labeled by the same function symbol.
Let FS(t) denote the set of function symbols in the term t.

Some Graph Theory

We will also need a few notions from graph theory, we introduce those in this section. We
will typically use G to denote a graph, V the set of vertex and E the set of edges of the
graph.

▶ Definition 7 (Graph Isomorphism). Let G = (V,E) and G′ = (V ′, E′) be two graphs. We
say that G and G′ are isomorphic, denoted G ≃ G′, if there exists a bijection ϕ : V → V ′

with xy ∈ E iff ϕ(x)ϕ(y) ∈ E′, ∀x, y ∈ V .

▶ Definition 8 (Edge Contraction). Let G = (V,E) and e = xy. G/e is the graph G′ = (V ′, E′)
such that V ′ = (V \ {x, y}) ∪ {ve}, where ve is a new vertex, and E′ = {vw ∈ E | {v, w} ∩
{x, y} = ∅} ∪ {vew | xw ∈ E \ {e} or yw ∈ E \ {e}}.

We say that G′ is obtained from G by contracting the edge e.

We use the following definition of graph minor which essentially says that a graph minor
of a graph G can be obtained by a series of graph contractions (see [16] for more details).
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▶ Definition 9 (Graph Minor). The graph G′ is a graph minor of the graph G, if there exist
graphs G0, G1, . . . , Gn and edges ei ∈ Gi such that G = G0, Gn ≃ G′, and Gi+1 = Gi/ei

for i = 0, . . . , n− 1. We use the notation G ≽ G′ if G′ is a graph minor of G.
Further, we extend the pure graph definition above to terms using the same notion as

follows. For terms t and t′, t ≽ t′ if for the corresponding term graphs of t and t′, denoted
as G and G′ respectively, we have G ≽ G′.

▶ Remark 10. Note, in the classical definition of graph minor (see [16]), if G is a subgraph of
a larger graph Glarge, then also Glarge ≽ G′. However, this component of the definition is
not necessary for the results of this paper and by leaving it out we are able to simplify the
later definitions and presentation.

The above type of embedding, denoted by ≽, provides more flexibility than the traditional
subterm relation while still preserving some features we need.

▶ Example 11. Notice that G′ is obtained from G by first applying a sequence of edge
contractions, contracting the edge depicted by || at each step, resulting in G2, and finally
G2 ≃ G′. Therefore, G ≽ G′.

G G1 G2 G′

We can now extend the above graph-theoretic notions to the term rewrite setting.

3 Graph-Embedded Systems

The key to translating from the graph theory setting to the term setting is to use the same
methods, contractions, but require that the final term graph constructed in this fashion
represent a well-formed term. That is, we need to enforce the notion of a well formed term.

To begin we need to model the graph isomorphism. A restricted form of isomorphism
can be translated into the term rewriting setting by considering permutations.

▶ Definition 12 (Leaf and Subterm Permutations). We define two types of permutations, ≈s

and ≈l:
1. For terms t and t′, we say t is subterm permutatively equal to t′, denoted t ≈s t

′, if one
of the following is true:
a. t = t′, where t and t′ are constants or variables, or
b. t = f(u1, . . . , un) and t′ = f(uσ(1), . . . , uσ(n)) where f is a n-ary function symbol,

n ≥ 1, and σ is a permutation of the indexes (1, . . . , n).
2. For terms t and t′, we say t is leaf permutatively equal to t′, denoted t ≈l t

′, if t′ = tσ and
σ is the unique endomorphism of T (Σ ∪V ∪C) such that its restriction to Var(t) ∪ Cst(t)
is a permutation on Var(t) ∪ Cst(t) and its restriction to (V ∪ C)\(Var(t) ∪ Cst(t)) is
the identity.

The first type of permutation, ≈s, allows for permutation inside the term but preserves
the layer like structure of the function symbols in the term graph. The second type of
permutation in the classical leaf permutability and is restricted to the leaf nodes, i.e., just
the variables and constants of the term graph. We will use a combination of the above two
permutations in the definition employed for graph-embedded TRS.
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▶ Definition 13 (Permutatively Equal). For terms t and t′, we say t is permutatively equal
to t′, denoted t ≈ t′, if t ≈s t

′′ ≈l t
′, for some term t′′.

▶ Remark 14. It is useful here to remark on the motivation of the above definition, ≈. The
goal is to model the graph isomorphism property. At the same time one needs to be careful
not to be too broad and remove layer preserving properties of Definition 15 and thus later
protocol properties such as local stability (see Definition 46). In addition, one cannot be too
restricted and disallow working protocol representations such as Example 22 which requires
more than just leaf permutability. However, it may be possible to improve upon the above
definition and allow for additional systems while still maintaining the decidability of the
knowledge problems shown here, see the discussion in Section 6.

The next step is to develop a set of rewrite schema which preserve a type of graph
minor relation on the term graphs. This set of schema then induces a graph-embedded term
rewrite system. Notice that this is very similar to what is often done when considering the
homeomorphic embeddings, see Definition 1.

▶ Definition 15 (Graph Embedding). Consider the following reduction relation, →∗
Rgemb

,
where Rgemb is the set of rewrite rules given by the instantiation of the following rule schema:

for any f ∈ Σ
(1) f(x1, . . . , xn) → xi

(2) f(x1, . . . , xi−1, xi, xi+1 . . . , xn) → f(x1, . . . , xi−1, xi+1, . . . , xn)
and for any f, g ∈ Σ

(3) f(x1, . . . , xi−1, g(z̄), xi+1, . . . , xm) → g(x1, . . . , xi−1, z̄, xi+1, . . . , xm)
(4) f(x1, . . . , xi−1, g(z̄), xi+1, . . . , xm) → f(x1, . . . , xi−1, z̄, xi+1, . . . , xm)


We say a term t′ is graph-embedded in a term t, denoted t ≽gemb t

′, if t′ is a well formed
term and there exists a term s such that t →∗

Rgemb
s ≈ t′.

A TRS R is graph-embedded if for any l → r ∈ R, l ≽gemb r or r is a constant.

▶ Remark 16. Notice that the rules in Rgemb ignore function arity, thus intermediate terms
between t and t′ may not be well formed. It is only the final term for which function arity
and the relation between variables and functions must obey the standard term definition
requirements. Note also that, like homeomorphic embedding, the particular schema rules
themselves allow for the rewriting of terms down to a single variable. However, the schema
are being used to establish the graph-embedded property of a TRS with non-trivial normal
forms.

▶ Remark 17. The rules of Definition 15 provide a convenient schema for defining graph-
embedded systems. However, they are also very useful in proving properties about graph-
embedded systems. Notice that any rewrite step in a graph-embedded system corresponds to
one or more steps of the above rules, thus proofs about graph-embedded TRSs can often be
reduced to arguments on the properties of the rules of Definition 15.

Definition 15 provides a rewrite relation interpretation of graph-embedded systems which
is contained in the ≽ relation given in Definition 9.

▶ Lemma 18. For any terms t and t′, t ≽gemb t
′ implies t ≽ t′, i.e., ≽gemb ⊆ ≽.

▶ Example 19. Consider the two terms t = f(h(a, b), h(c, d)) and t′ = f(d, a). Then,
t ≽gemb t

′, since t →∗
Rgemb

s ≈ t′ where the derivation t →∗
Rgemb

s is as follows:
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f

h h

a b c d

t

→∗
Rgemb f

h h

a d

u

→∗
Rgemb f

a d

s

▶ Example 20 (Malleable Encryption). Consider the theory of Malleable Encryption, Rmal:

dec(enc(x, y), y) → x

mal(enc(x, y), z) → enc(z, y)

For the second rule, let t1 = mal(enc(x, y), z) and the following derivation t1 →∗
Rgemb

t3:

mal

enc z

x y

t1

→(3)
Rgemb enc

x y z

t2

→(2)
Rgemb enc

y z

t3

Since t3 ≈ enc(z, y), we have mal(enc(x, y), z) ≽gemb enc(z, y). The first rule of Rmal

being subterm, dec(enc(x, y), y) ≽gemb x. Thus, Rmal is a graph-embedded TRS.

▶ Example 21. The theory of blind signatures from Example 2 is also a graph-embedded
TRS. All but the final rule are subterm. For the final rule,

unblind(sign(blind(x, y), z), y) →Rgemb
sign(blind(x, y), z)

via rule (1). Then,

sign(blind(x, y), z) →Rgemb
sign(x, y, z)

via rule (4). Notice again that this intermediate term is not well formed. Finally

sign(x, y, z) →Rgemb
sign(x, z) ≈ sign(x, z)

via rule (2).

▶ Example 22 (Addition). Consider the theory of Addition, Radd, from [1]:

plus(x, s(y)) → plus(s(x), y)
plus(x, 0) → x

pred(s(x)) → x

Radd is a graph-embedded TRS. Notice that plus(x, s(y)) ≈ plus(s(x), y).

▶ Example 23 (Prefix with Pairing). The theory of prefix with pairing [14, 17] is a graph-
embedded TRS:

dec(enc(x, y), y) → x

prefix(enc(< x, y >, z)) → enc(x, z)
fst(< x, y >) → x

snd(< x, y >) → y
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▶ Example 24 (Trap-door Commitment). The theory of trap-door commitment [15] is a
graph-embedded TRS:

open(td(x, y, z), y) → x

open(td(x1, y, z), f(x1, y, z, x2)) → x2

td(x2, f(x1, y, z, x2), z) → td(x1, y, z)
f(x2, f(x1, y, z, x2), z, x3) → f(x1, y, z, x3)

▶ Example 25 (Strong Secrecy). Subterm convergent theories where the right hand side can
be a subterm or a constant are graph-embedded such as the following system for considering
a form of strong secrecy [10, 12]:

fst(< x, y >) → x

snd(< x, y >) → y

adec(aenc(x, pk(y)), y) → x

dec(enc(x, y), y) → x

check(sign(x, y), pk(y)) → ok
msg(sign(x, y)) → x

3.1 Some Properties of Graph-Embedded Systems
As an initial step we explore some of the basic properties of the graph-embedded TRSs.
Similar to the class of subterm TRSs, the graph-embedded TRSs have several nice properties
such as termination.

We can first note that the ≽gemb relation is a partial order on the class of terms. This
follows from Lemma 18 and the fact that the graph-embedded relation is a partial ordering
on the class of finite graphs (See Proposition 1.7.3 from [16]).

In addition, rewriting at the root position preserves the graph-embedded property. This
is due to the fact that for any graph-embedded TRS R and for any l → r ∈ R, l ≽gemb r.
Thus, lσ = t1 ≽gemb t2 = rσ. More formally, if t1 and t2 are terms, R a graph-embedded
TRS, and t1 →ϵ

R t2, then, t1 ≽gemb t2.
Graph-embedded systems also have the nice property of being size reducing when rewrite

steps are applied and thus terminating.

▶ Lemma 26. Let R be a graph-embedded TRS such that for all l → r ∈ R, l →+
Rgemb

· ≈ r.
Assume t →R t′. Then,

|Var(t′)| ≤ |Var(t)|,
|VP(t′)| ≤ |VP(t)|,
FS(t′) ⊆ FS(t),
|FP(t′)| < |FP(t)|.

Proof. No rule from Definition 15 introduces additional function symbols or variables,
satisfying the first and third condition. All rules from Definition 15 remove function symbols
except the second rule and ≈. Notice that if rule 2 is applied then one of the other rules
must also be applied to ensure the final term is well formed. Finally, since we require that
at least one rewrite step is applied, the size of the term will be reduced even if ≈ doesn’t
reduce the size of the term. Thus the remaining conditions are satisfied. ◀
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▶ Remark 27. Notice that if only ≈ steps are applied in a graph-embedded system then
termination is not guaranteed. However, if at least one rewrite rule from Rgemb is applied
then by Lemma 26, the system will be terminating.

Comparing Definitions

We can compare the two embedded definitions. Consider Malleable Encryption, Rmal, from
Example 20. Rmal is a graph-embedded TRS, as is shown in Example 20. However, Rmal is not
a homeomorphic-embedded TRS. This can be seen in the rule mal(enc(x, y), z) → enc(z, y).
There is no way to obtain the term enc(z, y) from the term mal(enc(x, y), z) by application
of only the projection rule, f(x1, . . . , xn) → xi. Thus, it’s easy to see that there exist
graph-embedded TRSs which are not homeomorphic-embedded TRSs. Furthermore, we see
that homeomorphic-embedded TRSs are a subset of graph-embedded TRSs.

▶ Example 28. Consider the theory of trap-door commitment from Example 24. Notice
that this theory is not a homeomorphic-embedded TRS. For the final rule,

f(x2, f(x1, y, z, x2), z, x3) → f(x1, y, z, x3),

we cannot obtain the right-hand side from the left by the simple projection type relation of
Definition 1.

4 Knowledge Problems in Graph-Embedded Systems

In this section we look at how graph-embedded TRSs can be used to both extend results in
security protocols and also give a formal syntactic definition to classes of protocol presentations
for which the decidability of the two knowledge problems are already known. In this section
we focus on theories with the local stability property as introduced in [1] (and extended
in [6]). For this purpose, we need to consider a restricted form of graph-embedded system
called contracting system introduced in Definition 33. One can show that without such a
restriction, the knowledge problems for graph-embedded TRSs are undecidable in general.

4.1 Undecidable Knowledge Problems
It is shown in [1] that the knowledge problems are undecidable in general. For graph-
embedded systems we can reuse, with modification, a proof that was developed in [3] for the
unification problem in ∆-strong convergent theories. A very similar proof can be found in
the research report [4] of the paper [5]. The proof in [3] is via a reduction from the Modified
Post Correspondence Problem (MPCP). There, MPCP is needed to ensure solutions, such as
σ = {x 7→ c, y 7→ c}, which don’t actually solve an instance of the problem are not possible.
We use a similar approach but reduce from the standard Post Correspondence Problem
(PCP), using a similar rewrite system to that developed in [3]. We use the standard PCP
instead of the MPCP since the encoding works better for the deduction problem where you
are finding recipe terms not substitutions. This modification also requires adapting the
reduction to the use of frames.

Let Γ = {a, b} be the alphabet of the PCP problem. Then, an instance of the problem is
a finite set of string pairs, S = {(αi, βi)| i ∈ [1, n]} ⊆ Γ+ × Γ+. A solution is a sequence of
indexes i1, . . . ik ∈ [1, n] such that αi1αi2 . . . αik

= βi1βi2 . . . βik
.

▶ Lemma 29. The deduction problem is undecidable for the class of homeomorphic-embedded
convergent TRSs.
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Proof. Let PCP = {(αi, βi)| i ∈ [1, n]} over the alphabet Γ = {a, b}. Consider unary
function symbols a1, b1, a2, b2, and gi for each i ∈ [1, n]. Let f be a ternary function
symbol and let c be a constant. Each string from PCP can be viewed as a sequence of
applications of the unary function symbols. Let γ ∈ Γ and for each pair (αi, βi), α̃i(x) =
γ̃α′

i(x) = γ1(α̃′
i(x)), and β̃i(x) = γ̃β′

i(x) = γ2(β̃′
i(x)). Construct a TRS R as follows: Let

R =
⋃n

i=1{f(α̃i(x), gi(y), β̃i(z)) → f(x, y, z)}. The gi ensure there are no critical pairs
between rules and thus we have a convergent TRS. Consider the frame ϕ = νñ.σ with
ñ = {c} and σ =

⋃n
i=1{xi 7→ α̃i(c), yi 7→ β̃i(c), zi 7→ gi(c)}

Finally, let the target ground term be f(c, c, c). Notice that if there is a solution to the
PCP then there exists a recipe term ζ such that ζσ =R f(c, c, c). Furthermore, if there is a
recipe term ζ such that ζσ =R f(c, c, c) then a solution to the PCP can be extracted from
the indexes of the gi function symbol in the term ζσ. Finally, the recipe cannot just be
f(c, c, c) since c ∈ ñ. ◀

▶ Example 30. Consider the following PCP:

pair 1︷ ︸︸ ︷(
ba

baa

)
,

pair 2︷ ︸︸ ︷(
ab

ba

)
,

pair 3︷ ︸︸ ︷(
aaa

aa

)
Following the construction of Lemma 29:

R =


f(b1(a1(x)), g1(y), b2(a2(a2(z)))) → f(x, y, z)
f(a1(b1(x)), g2(y), b2(a2(z))) → f(x, y, z)
f(a1(a1(a1(x))), g3(y), a2(a2(z))) → f(x, y, z)


And we construct the frame ϕ = νc̃.{x1 7→ b1(a1(c)), y1 7→ b2(a2(a2(c))), z1 7→ g1(c), x2 7→

a1(b1(c)), y2 7→ b2(a2(c)), z2 7→ g2(c), x3 7→ a1(a1(a1(c))), y3 7→ a2(a2(c)), z3 7→ g3(c)}
Then, a recipe is ζ = f(b1(a1(x3)), g1(z3), b2(a2(a2(y3)))) since ζσ →R f(c, c, c).

As a corollary of Lemma 29 we obtain the following.

▶ Corollary 31. The deduction problem is undecidable for the class of graph-embedded
convergent TRSs.

▶ Remark 32. Note that the knowledge problems of deduction and static-equivalence were
already proven undecidable in general in [1], where a reduction from PCP is also used.
However, the system used in the proof from [1] is not graph-embedded and it’s not clear how
to directly adapt that proof to the graph-embedded case of Lemma 29.

4.2 Decidable Knowledge Problems
We consider below a restricted form of the graph-embedded TRS for which we can show
decidability of the knowledge problems.

▶ Definition 33 (Contracting TRS). A TRS, R, is contracting if for each l → r ∈ R such
that r is not a constant, we have that l ≈ r and depth(r) ≤ 2, or l →+

Rgemb
· ≈ r and r is a

well-formed term and depth(r) ≤ 1, where, considering the rules of Definition 15:
root application of rule (1) are applied before other rules in Rgemb.
if rule (1), f(x1, . . . , xn) → xi, is applied below the root then only a variable instance of
it is applied and if xi is not removed by a latter rule then there exist a rule l′ → xi ∈ R

and a position q such that l′|q = f(x1, . . . , xn).
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if rule (2), f(x1, . . . , xi−1, xi, xi+1 . . . , xn) → f(x1, . . . , xi−1, xi+1, . . . , xn), is
applied then only a variable instance of it is applied.
if rule (4), f(x1, . . . , xi−1, g(z̄), xi+1, . . . , xm) → f(x1, . . . , xi−1, z̄, xi+1, . . . , xm), is
applied then only a variable instance of it is applied and if all z̄ are not removed by latter
rules, then for each zi not removed there exists a rule l′ → zi ∈ R such that l′|q = g(z̄).
for ≈, only a single ≈s-permutation can be applied at the root followed by one or no
≈l-permutations at the variable positions. In addition:

if a variable x occurs in a direct subterm C[x] of l not equal to x, and by application
of ≈ the variable x occurs in a direct subterm of r not equal to C[x], then there exist a
rule l′ → x ∈ R and a position q such that l′|q = C[x].

Although the definition restricts the set of graph-embedded systems it is still sufficient to
model many security protocols of interest. We include several such examples below.

▶ Example 34. Consider several convergent TRSs given in previous examples:
The theory of blind signatures from Example 2 is contracting. Consider the rule
unblind(sign(blind(x, y), z), y) → sign(x, z) and the rewriting

unblind(sign(blind(x, y), z), y) →∗
Rgemb

sign(x, z).

The chain of rules in the rewriting could be:
rule (1) - placing sign at the root,

unblind(sign(blind(x, y), z), y) →Rgemb
sign(blind(x, y), z),

rule (4) - removing blind, sign(blind(x, y), z) →Rgemb
sign(x, y, z),

rule (2) - removing y, sign(x, y, z) →Rgemb
sign(x, z).

Since rule (4) was applied, removing blind and variable x was not removed by rule (2),
there needs to be a rule l → r in R such that x = r, which is the case with the rule
unblind(blind(x, y), y) → x.
The theory of addition, introduced in Example 22, is a contracting TRS. Notice that
plus(x, s(y)) ≈ plus(s(x), y) and that the cap, here s(), has been removed from y. Thus,
there needs to be a rule, l → r, such that l|p = s(y) and r = y. This is exactly the rule
pred(s(x)) → x.
The theory of prefix with pairing from Example 23 is a contracting TRS.
Any subterm convergent TRS such that the right-hand side is either a strict subterm or
a constant is contracting, like for instance the theory of pairing with encryption, R =
{fst(⟨x, y⟩) → x, snd(⟨x, y⟩) → y, dec(enc(x, y), y) → x}, and the theory of Example 25.

▶ Example 35. Consider several of the previous example TRSs:
The theory of trap-door commitment of Definition 24 is not a contracting TRS. Interest-
ingly, this theory is also not locally stable [15]. However, if we add the rules,

fst(f(x1, x2, x3, x4)) → x1, snd(f(x1, x2, x3, x4)) → x2, thd(f(x1, x2, x3, x4)) → x3,

then the theory is contracting and locally stable.
The theory of Example 20 is not contracting. Notice that for the rule mal(enc(x, y), z) →
enc(z, y), the node labeled with z is moved under the enc node on the right-hand side.
This violates the requirements of Definition 33, specifically requiring rule (3). Thus, even
with additional rules, it cannot be made to be contracting. This theory is also not locally
stable, as shown in [15].
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▶ Remark 36. If we consider now the TRS from the undecidability proof of Lemma 29 we can
see that while the system is graph-embedded it is not contracting. The system can be made
contracting by adding a set of rewrite rules of the form a1(x) → x, b1(x) → x, a2(x) → x, . . ..
Then, clearly for this new system both the deduction problem and unification problem
detailed in the proof are decidable.

We now develop a few results and definitions we need to show the decidability of the
knowledge problems for contracting, graph-embedded convergent systems.

▶ Definition 37 (Context Bound). Let ar(Σ) denote the maximal arity of any function symbol
in Σ. Define the context bound of a graph-embedded TRS, R = {li → ri}, 1 ≤ i ≤ n, as

cR = max1≤i≤n(|li|, ar(Σ) + 1)

▶ Example 38. For the theory of malleable encryption from Example 20, cRmal = 5. For the
theory of blind signatures, Rblind , from Example 2, cRblind = 7.

▶ Definition 39 (Graph-Embedded Subterms). Let R be a contracting TRS and let st(t) be the
set of subterms of a term t. Then, the set of graph-embedded subterms of a term t, denoted
as gst(t), is defined as: gst(c) = {c}, where c is a name or a constant, gst(t) = {t′|t →∗

Rgemb

t′′ ≈ t′, and t′ is a well formed term } ∪
⋃

t′′∈st(t) gst(t′′). Let ϕ = νñ.σ be a frame, then
gst(ϕ) = ∪t∈Ran(σ)gst(t).

Notice that for any term t, gst(t) is a finite set. This is due to the fact that when
recursively constructing gst(t) in the second rule of Definition 39, t′ is equal or smaller in size
to t, and any term t′′ ∈ st(t) must be strictly smaller than t. Thus, we have the following
result.

▶ Lemma 40. For any term t and any frame ϕ, gst(t) and gst(ϕ) are finite sets.

Based on the extended definition of subterms, gst, we can now construct a saturation set
for frames. Computing such a saturation set is the goal of many procedures that consider
security notions such as deducibility. The saturation set represents the knowledge of the
attacker and their ability to deduce a term from that knowledge, see [1] for more background.

▶ Definition 41 (Frame Saturation for Contracting Convergent TRS). Let ϕ = νñ.σ be a frame,
and R a contracting convergent TRS. Define the set sat(ϕ) to be the smallest set such that
Ran(σ) ⊆ sat(ϕ), and n ∈ sat(ϕ) for every n ∈ fn(ϕ), and closed under the following two
rules:
1. if M1, . . . ,Ml ∈ sat(ϕ) and f(M1, . . . ,Ml) ∈ gst(ϕ), then f(M1, . . . ,Ml) ∈ sat(ϕ),
2. if M1, . . . ,Ml ∈ sat(ϕ), C[M1, . . . ,Ml] →ϵ

R M , where C is a context, |C| ≤ cR, fn(C) ∩
ñ = ∅, and M ∈ gst(ϕ), then M ∈ sat(ϕ).

▶ Remark 42. It is important to note that sat(ϕ) should contain the set of deducible terms
from the frame. For example, it would be tempting to just place all of gst(ϕ) into sat(ϕ)
immediately, but this would add non-deducible terms to the set and invalidate the results.

Also notice for Definition 41, by applying an empty context, the second rule ensures that
for any S ∈ sat(ϕ), if S →ϵ

R S′ and S′ ∈ gst(ϕ), then S′ ∈ sat(ϕ).

This set is also finite which is critical to computing the possible attackers knowledge thus
having a finite set is useful for any practical procedure for deciding deducibility.

▶ Lemma 43. For any frame ϕ, sat(ϕ) is finite.
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Proof. New terms not originally contained in ϕ are only added to sat(ϕ) if they are first
contained in gst(ϕ). Since gst(ϕ) is finite by Lemma 40, sat(ϕ) is finite. ◀

The following definition and lemma will be useful in proving the main motivating result
as they show key components of the local stability property given in Definition 46.

▶ Definition 44 (Closure Under Small Context). Let ϕ = νñ.σ be a frame, and R a convergent
TRS. A finite set of ground terms, S, is closed under small ϕ-restricted context by R if
the following property holds: for any context C with |C| ≤ cR and fn(C) ∩ ñ = ∅, and any
S1, . . . , Sl ∈ S, if C[S1, . . . , Sl] →ϵ

R M then there exist a context C ′ and S′
1, . . . , S

′
k ∈ S such

that |C ′| ≤ c2
R, fn(C ′) ∩ ñ = ∅, and M →∗

R C ′[S′
1, . . . , S

′
k]. When ϕ is clear from the context,

S is said to be closed under small context by R.

Using c2
R as an upper bound is somewhat arbitrary since we need just some fixed bound.

We use c2
R since it is sufficient for the results in this paper and it is the bound used in [1].

▶ Lemma 45. For any frame ϕ and any contracting convergent TRS R, let sat(ϕ) be the set
given in Definition 41. Then, sat(ϕ) is closed under small context by R.

Proof. See Appendix A. ◀

We can now introduce the local stability property, which if satisfied ensures the decidability
of deduction. The local stability property was introduced in [1] and improved in [6]. A
simplified version of this definition is introduced below. It is simplified because we don’t
consider AC-symbols as in [1, 6].

▶ Definition 46 (Local Stability [1]). A convergent TRS, R, is locally stable if, for every
frame ϕ = νñ.σ, where σ is a ground R-normalized substitution, there exists a finite set
sat(ϕ) of ground terms such that:

Ran(σ) ⊆ sat(ϕ) and n ∈ sat(ϕ), for all n ∈ fn(ϕ);
if M1, . . . ,Mk ∈ sat(ϕ) and f(M1, . . . ,Mk) ∈ st(sat(ϕ)), then f(M1, . . . ,Mk) ∈ sat(ϕ);
if C[S1, . . . , Sl] →ϵ

R M , where C is a context with |C| ≤ cR and fn(C) ∩ ñ = ∅, and
S1, . . . , Sl ∈ sat(ϕ), then there exist a context C ′ and S′

1, . . . , S
′
k ∈ sat(ϕ) such that

|C ′| ≤ c2
R, fn(C ′) ∩ ñ = ∅, and M →∗

R C ′[S′
1, . . . , S

′
k];

if M ∈ sat(ϕ) then ϕ ⊢ M .

▶ Remark 47. The existence of a set sat(ϕ) in the above definition means that any set
satisfying the conditions of Definition 46 is sufficient. In Definition 41 we give a particular
such set for contracting convergent TRSs which satisfies the conditions of Definition 46, as
shown below.

In a locally stable TRS, any deduction problem reduces to check finitely many terms
that could be possible recipes of the input, and any static equivalence problem reduces to
checking finitely many equations between bounded terms satisfying the name restriction [1].

For any contracting convergent TRS, Lemma 45 establishes all but the last item of
Definition 46, and this item has already been shown in [1].

▶ Lemma 48 ([1]). For any frame ϕ and any ground term M , if M ∈ sat(ϕ) then ϕ ⊢ M .

This result is proven in [1] where they also consider the more complicated case of systems
with AC-symbols.

▶ Theorem 49. Any contracting convergent TRS is locally stable.
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Proof. The first two conditions follow from Definition 41 where sat(ϕ) is given in the
particular case of a contracting convergent TRS. Then, the third condition follows from
Lemma 45. The final condition follows from Lemma 48. ◀

▶ Example 50. Continuing Example 34:
Since the theory of blind signatures is a contracting convergent TRS, it is locally stable
by Theorem 49. Since this theory doesn’t contain an AC-symbol it is also locally finite [1].
The theory of blind signatures being both locally stable and locally finite, both deduction
and static-equivalence are decidable [1].
All the theories from Example 34 are thus locally stable and locally finite, thus both
knowledge problems are decidable.
By the same argument the theory from Example 22 is locally stable and both knowledge
problems are decidable.
By the same argument any subterm convergent theory such that the right-hand side is
either a strict subterm or a constant is locally stable and both knowledge problems are
decidable.

Directly from Theorem 49 and the result in [1], which establish the decidability of deduction
and static equivalence for locally stable and finite theories, we obtain the following corollary.

▶ Corollary 51. The deduction and static equivalence problems are both decidable for the
class of contracting convergent TRSs.

5 Relation to the Finite Variant Property

The Finite Variant Property (FVP) is a useful property which is utilized in a number of
applications, including protocol analysis. See for example [12, 17]. Before discussing the
relation it’s useful to introduce the following definition.

▶ Definition 52 (Boundedness Property). A convergent TRS, R, has the boundedness property
if ∀t∃n∀σ : t(σ↓) →≤n

R (tσ)↓. That is, for any term t there exists a bound, n, on the number
of step required to reach the normal form, and this bound is independent of the substitution.

▶ Remark 53. It’s been shown in [11] that a TRS has the FVP iff it has the boundedness
property of Definition 52. See also [13, 18] for more background.

One could naturally ask if the graph-embedded or contracting definitions just lead to
systems with the FVP. This is not the case but some of the examples above, such as blind
signatures, do have the FVP. This is not surprising, given that the FVP can be useful
for showing things like termination. Therefore, a more interesting question could be: are
there interesting examples from the protocol analysis literature for which deduction and
static equivalence are decidable, do not have the FVP, but are representable by contracting
convergent TRSs? Here we answer positively this question.

▶ Example 54. Consider again the theory of Addition, Radd, from Example 22. Radd is a
contracting convergent TRS, is locally stable, and contains no AC-symbols, thus deduction
and static equivalence are decidable. However, Radd does not have the FVP, we can see
this by considering the rule plus(x, s(y)) → plus(s(x), y) and the boundedness property.
Notice that for any finite bound n one can select a normal form substitution, σ, such that
plus(x, s(y))σ ≥n→Radd

(plus(x, s(y))σ)↓. Namely, σ = {y 7→ sn+1(z)}. Since Radd does not
have the boundedness property it can’t have the FVP [11]. Yet, Radd is a contracting
convergent TRS. Notice that the second and third rules are already subterm. The first rule
is obtained by applying Definition 13. Therefore, Radd satisfies Corollary 51.
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6 Conclusions and Future Work

In this paper, we have introduced the idea of graph-embedded term rewrite systems and
shown their applicability in protocol analysis for identifying protocols with the local stability
property. This in turn allows for the identification of protocols with decidable deduction
and static-equivalence problems. However, this could be just the first step as there are
many additional questions about the use of graph-embedded systems applied to the protocol
analysis domain and also outside that domain.

With respect to the current paper, a natural question arises. While the knowledge
problems are undecidable for graph-embedded convergent systems in general and that they
are decidable for contracting, graph-embedded convergent systems, there is a gap between
the two classes of systems. That is, how much can the contracting subclass be extended
before the undecidable barrier is encountered? In this direction, we could try to weaken the
rule application strategy used in Definition 33.

With respect to additional security protocol applications there are several interesting
areas that could be explored:

It would be interesting to consider termination conditions of various procedures [1, 12,
15, 17] with respect to graph-embedded systems. That is, do graph-embedded systems
provide any help with obtaining termination guarantees?
The cap problem, developed in [5] could be viewed as a particular form of deduction where
one wants to determine whether a given secret constant is deducible or not. We conjecture
that the cap problem is decidable for contracting convergent TRSs and undecidable for
general graph-embedded convergent TRSs. A proof of this would be useful.
It would be useful to consider additional properties that have been developed for use in
protocol analysis. For example, layer-convergence is a property developed in [9] where
it’s shown that the YAPA procedure for protocol analysis will not fail on theories with
this property. While termination is not ensured, this does provide a useful condition for
knowing if the procedure can be used. Currently, we don’t know how the graph-embedded
property compares to layer-convergence. Note, checking for the graph-embedded property
is relatively easy. Thus, if a restricted form of graph embedding could be shown to be
related to layer-convergence, then such a graph embedding could be a useful way to
identify layer-convergent systems. This in turn would be useful for identifying systems
for which the YAPA procedure could be applied.

With respect to graph theory ideas, we are also interested in knowing if additional graph
theory ideas could be useful in symbolic security protocol analysis:

Of course not absolutely all theories considered in [1, 12, 15, 17] are graph-embedded.
It would be interesting to know if such systems could be considered via graph minor
concepts?
In addition, are graph minor relations such as topological minors useful? Given standard
graph theory this would seem not to be the case. The containment of the topological
minor relation in the graph minor relation would appear to rule this out. However, this
may not be completely true in the term graph domain, where we must obey the standard
well-formed term requirements.
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A Technical Appendix

Let us first introduce some additional notations that are useful in the proofs of our results.
Given a set S̄ of ground term, a frame ϕ = νñ.σ and a TRS R, a context instantiated with
terms in S̄ is a ground term of the form uα where u is a term including no names in ñ, and
α a substitution such that Dom(α) = Var(u) and Ran(α) ⊆ S̄. The term u is called the
context part of t. The term t is called a small context if the size of its context part u satisfies
|u| ≤ cR. A term denoted by u[S1, . . . , Sn] for S1, . . . , Sn ∈ S̄ corresponds to the context
instantiated with terms in S̄ defined by u[x1, . . . , xn]{x1 7→ S1, . . . , xn 7→ Sn}, where the set
of variables in u[x1, . . . , xn] is assumed to be {x1, . . . , xn}.

A.1 Additional Lemmas
The following two technical lemmas are useful to prove the closure property stated by
Lemma 45 for any contracting convergent TRS.

A rewrite step applied at the root position is denoted by ϵ→, while a rewrite step applied
at some non-rooted position is denoted by ̸=ϵ→.

▶ Lemma 55. Let R be a contracting convergent TRS. Let l ̸=ϵ→
+
Rgemb

· ≈ r such that l is a
subterm of the left-hand side l′ of a rule l′ → r in R where depth(r) = 1. For any variable x
in r occurring in l at a position p such that |p| > 1, and any substitution φ, the following is
true: for any positions q, q′ such that ϵ < q < q′ ≤ p, q′ = q.i, l(q) is a function symbol f , if
l|qφ ∈ sat(ϕ) then there exists a projecting rule C[f(x1, . . . , xn)] → xi in R.

Proof. The proof is by induction on dp(l) = max{p | l(p)∈Var(r)} |p|. For the base case, one
can check that the property holds for dp(l) = 2 due the particular form of r. For the induction
step, consider a derivation

l[f(y1, . . . , yj−1, g(. . . , xi, . . . ), yj+1, . . . , yn)]
̸=ϵ→

+
Rgemb

l[f(v1, . . . , vj−1, vj , vj+1, . . . , vn)]
̸=ϵ→

∗

Rgemb
r

where:
the ̸=ϵ→

+
Rgemb

derivation consists of a single rule (1) or a single rule (4) followed by the
repeated application of rule (2) to retrieve a well-formed term of arity n;
xi occurs in l at a position p such that |p| = dp(l) and xi ∈ Var(r).

Let l′ = l[f(v1, . . . , vj−1, vj , vj+1, . . . , vn)]. We have dp(l′) < dp(l) and so we can assume
that the property holds for l′. Moreover, vj occurs in r, otherwise it would contradict
that xi occurs in r. By the induction hypothesis, there must exist a projecting rule to get
vj from f(v1, . . . , vj−1, vj , vj+1, . . . , vn). This projection rule can be reused for the redex
f(y1, . . . , yj−1, g(. . . , xi, . . . ), yj+1, . . . , yn) of l. By Definition 33, there exists a projecting
rule to get xi from the subterm g(. . . , xi, . . . ) of l. For all the strict subterms of l above the
redex which are on the path to the root of l, we can reuse all the projecting rules available
for all the strict subterms of l′ above f(v1, . . . , vj−1, vj , vj+1, . . . , vn) which are on the path
to the root of l′. Consequently, there is a projecting rule for all the strict subterms of l above
xi at position p which are on the path to the root of l. Thus, the property holds for l. ◀



S. Dwyer Satterfield, S. Erbatur, A. M. Marshall, and C. Ringeissen 30:19

▶ Lemma 56. Let l ≈ r be a rule of a contracting convergent TRS such that depth(l) =
depth(r) = 2. For any variable x in r occurring at a position p of l in a non-variable direct
subterm l|q of l which is not a direct subterm of r, and any substitution φ, the following is
true: if l|qφ ∈ sat(ϕ), then l|pφ ∈ sat(ϕ).

Proof. Thanks to Definition 33. ◀

A.2 Proof of Lemma 45
Proof. Let us analyse the different forms of derivation that may occur in the definition a
rule of a contracting TRS.

First, if l ϵ→Rgemb
r, then r is direct subterm of l. According to [1], for any term t

corresponding to a small context instantiated by terms in sat(ϕ) such that t = lφ, the term
rφ remains a small context instantiated by terms in sat(ϕ). Then, we prove by induction on
the length of the derivation that the same property also holds for ϵ→

∗
Rgemb

.

Second, consider a derivation l
̸=ϵ→

+
Rgemb

r where depth(r) ≤ 1. The case depth(r) = 0
is easy since it corresponds to the classical subterm case (see above). So, let us assume
r = h(x1, . . . , xn) and a small context instantiated by terms in sat(ϕ), say t, such that t = lφ.
Let i be any integer in {1, . . . , n}. Any xi occurs in l either at depth at most 1 or at some
depth strictly greater than 1.

If xi occurs in l at depth at most 1, then xiφ is a small context instantiated by terms in
sat(ϕ).
if xi occurs in l at some depth strictly greater than 1, then xiφ is a small context
instantiated by terms in sat(ϕ) by Lemma 55.

Then, rφ = h(x1σ, . . . , xnσ) is a small context instantiated by terms in sat(ϕ). Indeed, by
construction, the context part of rφ cannot be greater than the context part of lσ.

Third, consider the case l ≈ r where depth(r) ≤ 2. By definition of ≈, we have
depth(l) = depth(r). The case depth(r) ≤ 1 being easy, let us assume depth(l) = depth(r) = 2,
r = h(r1, . . . , rn), and a small context instantiated by sat(ϕ), say t, such that t = lφ. Let i
be any integer in {1, . . . , n}.

If ri is a variable occurring at depth at most 1 in l, then riφ is a small context instantiated
by terms in sat(ϕ).
If ri is a variable occurring at depth 2 in l, then riφ is a small context instantiated by
terms in sat(ϕ) by Lemma 56.
If ri is a non-variable term occurring as a direct subterm lj of l for some j ∈ [1, n], then
riφ = ljφ is a small context instantiated by terms in sat(ϕ).
If ri is a non-variable term f(x̄) not occurring as a direct subterm of l, then there are
two cases for any variable x ∈ x̄: if x occurs at depth at most 1 in l, then xφ is a small
context instantiated by terms in sat(ϕ); otherwise x also occurs at depth 2 in l and xφ is
a small context instantiated by terms in sat(ϕ) by Lemma 56.

Then, rφ = h(r1σ, . . . , rnσ) is a small context instantiated by terms in sat(ϕ). Indeed,
by definition of ≈, the context part of rφ cannot be greater than the context part of lσ. ◀
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Abstract
In this paper, we define the logic of Linear Temporal Bunched Implications (LTBI), a temporal
extension of the Bunched Implications logic BI that deals with resource evolution over time, by
combining the BI separation connectives and the LTL temporal connectives. We first present the
syntax and semantics of LTBI and illustrate its expressiveness with a significant example. Then
we introduce a tableau calculus with labels and constraints, called TLTBI, and prove its soundness
w.r.t. the Kripke-style semantics of LTBI. Finally we discuss and analyze the issues that make the
completeness of the calculus not trivial in the general case of unbounded timelines and explain how
to solve the issues in the more restricted case of bounded timelines.
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1 Introduction

The notion of resource is a fundamental concept in various fields, especially in computer
science. For instance, resources play a central role in designing systems such as computer
networks or programs that access memory and manipulate data structures using pointers [9].
It is well known that Linear Logic [8] emphasizes an aspect of resource management that
is closely related with resource consumption, whereas the Logic of Bunched Implications
(BI) [13, 15] focuses more on aspects related with resource sharing and separation [7]. Recent
works consider modal and/or epistemic extensions of BI and Boolean BI (BBI) in order to
deal with more dynamic aspects of resource management [3, 4].

In this paper, we introduce the logic of Linear Temporal Bunched Implications (LTBI),
a temporal extension of BI that deals with resource evolution over time. LTBI extends BI
with operators borrowed from Linear Temporal Logic (LTL) to handle temporal aspects
of computer systems [16]. Both temporal and separation logics have proven themselves
successful in the design and formal verification of computer systems. Temporal logics are also
well-known for their ability to state and verify safety and liveness properties (e.g., using Buchi
automata [11]) and have a wide range of applications including model checking, concurrent
programming, and reactive systems [2]. It is therefore interesting to study a logic for which
the spatial connectives of BI cohabit with the temporal modalities of LTL.

Let us remark that a temporal extension of BI, called tBI, has been introduced in [10].
This extension derives an enriched sequent calculus from LBI (the standard sequent calculus
of BI) and gives various embedding of tBI into BI. In this paper, we follow another approach
based on labelled tableaux, in the spirit of [3, 4]. Although tBI might at first glance seem
very similar to our logic LTBI, they bear significant differences that we discuss in details in
Section 5 (after the required technical notions have been introduced).
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31:2 Labelled Tableaux for Linear Time Bunched Implication Logic

The paper is organized as follows: in Section 2 we describe the syntax and semantics of
our LTBI logic that mixes the separation connectives of BI [7] with the temporal connectives
♢, □, ◦ of LTL. We also illustrate the expressiveness of LTBI with a significant example. In
Section 3, we introduce TLTBI, our labelled tableau calculus for LTBI in the spirit of [7, 3].
We then illustrate how it works with some examples. In Section 4 we prove the soundness
of the TLTBI calculus. Finally, Section 5 ends the paper with a discussion of the several
completeness issues that arise when trying to keep the labels constraints isomorphic to the
standard linear order of the natural numbers.

2 Linear Temporal Bunched Implication Logic

Separation logics like BI and its variants are well suited to state (static) spatial properties
about resources [6, 7]. DBI [3], a recent extension of BI with S4 modalities ♢ and □, opens
the way for more dynamic aspects of resource management, but only to some extent. In
this section we introduce Linear Temporal BI (LTBI) as a combination of BI and LTL [2, 16]
interpreted on a discrete timeline.

2.1 Syntax and Semantics of LTBI
LTBI is an extension of BI [7, 14] with the three main LTL unary connectives □, ♢ and ◦. We
do not consider the binary connectives U and R (“until” and “release”) in this paper and
leave them for future work.

▶ Definition 1. Let P be a countable set of propositional letters. The set F of LTBI formulas
is given by the following grammar:

A ::= P | ⊤ | ⊥ | A ∧ A | A ∨ A | A → A | I | A ∗ A | A −∗ A | □A | ♢A | ◦A

Additive negation is defined as usual as A → ⊥.
In order to define a Kripke-style semantics for LTBI, we first introduce the notions of

linear resource frames (LRF), interpretation and models.

▶ Definition 2. An LTBI-frame is a structure R = (R, ⋆, ϵ,⩽r, π, S,⩽s, s0), where:
(R, ⋆, ϵ,⩽r, π) is a resource monoid, i.e., a partially ordered commutative monoid of
elements, called resources, such that:

ϵ is the unit of ⋆, i.e. ϵ ⋆ r = r ⋆ ϵ = r,
π is the greatest element of R w.r.t. ⩽r and ∀ r ∈ R. r ⋆ π = π,
∀ r, r′, r′′ ∈ R. r ⩽r r′ implies r ⋆ r′′ ⩽r r′ ⋆ r′′.

(S,⩽s, s0) is a discrete timeline, i.e., a subset of N totally ordered by ⩽s taken as the
restriction to S of the standard order on N, and such that s0 is the least element of S
w.r.t. ⩽s. The elements of S are called states.

For all s ∈ S, we define N(s) as the set { s′ | s′ ∈ S and s <s s′ }. We then write n for
the function “next” induced on S by ⩽s and such that for all s ∈ S, n(s) is the least element
of N(s) if N(s) is not empty and undefined otherwise.

▶ Definition 3. An LTBI-valuation is a partial function [·] : P → ℘(R × S) that satisfies the
following conditions:
(MK) ∀ p ∈ P. ∀ s ∈ S. ∀ r, r′ ∈ R. if r ⩽r r′ and (r, s) ∈ [p] then (r′, s) ∈ [p],
(Mπ) ∀ p ∈ P. ∀ s ∈ S. (π, s) ∈ [p].
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▶ Definition 4. An LTBI-model is a triple M = (R, [·],⊩), where R is an LTBI-frame, [·] is
an LTBI-valuation and ⊩ ⊆ R × S × F is the smallest forcing relation such that:

(r, s) ⊩ p iff (r, s) ∈ [p]
(r, s) ⊩ I iff ϵ ⩽r r

(r, s) ⊩ ⊥ iff π ⩽r r

(r, s) ⊩ ⊤ always
(r, s) ⊩ A ∨ B iff (r, s) ⊩ A or (r, s) ⊩ B
(r, s) ⊩ A ∧ B iff (r, s) ⊩ A and (r, s) ⊩ B
(r, s) ⊩ A → B iff ∀ r′ ∈ R. if r ⩽r r′ and (r′, s) ⊩ A then (r′, s) ⊩ B
(r, s) ⊩ A ∗ B iff ∃ r′, r′′ ∈ R. r′ ⋆ r′′ ⩽r r, (r′, s) ⊩ A and (r′′, s) ⊩ B
(r, s) ⊩ A −∗ B iff ∀ r′, r′′ ∈ R. if (r′, s) ⊩ A and r′ ⋆ r ⩽r r′′ then (r′′, s) ⊩ B
(r, s) ⊩□A iff ∀ s′ ∈ S. if s ⩽s s′ then (r, s′) ⊩ A
(r, s) ⊩ ♢A iff ∃ s′ ∈ S. s ⩽s s′ and (r, s′) ⊩ A
(r, s) ⊩ ◦A iff ∃ s′ ∈ S. s′ = n(s) and (r, s′) ⊩ A

▶ Definition 5. A formula A is satisfied in an LTBI-model M, written M ⊨ A, iff (ϵ, s) ⊩ A
for all s ∈ S. A formula A is valid, written ⊨A, iff it is satisfied in all LTBI-models.

It is routine to show that conditions MK and Mπ of Definition 3 extend from propositional
letters to arbitrary formulas, as stated in the following Lemma.

▶ Lemma 6. For all LTBI-models M:
(MK) ∀ A ∈ F. ∀ s ∈ S. ∀ r, r′ ∈ R. if r ⩽r r′ and (r, s) ⊩ A then (r′, s) ⊩ A,
(Mπ) ∀ A ∈ F. ∀ s ∈ S. (π, s) ⊩ A.

Let us remark that the resource semantics we use for LTBI is based on total (and not
partial) resource monoids to avoid tricky additional definedness conditions. The introduction
of a greatest element π at which all formulas are satisfied is therefore required in the presence
of ⊥ (as explained in [7], for example, to enforce the validity of BI formulas such as A∗(A−∗⊥)
where A is a theorem of intuitionistic logic).

2.2 Expressiveness of LTBI
To illustrate what kind of properties LTBI is able to express, let us consider the timeline
(S = [2023 − 2025],⩽s, 2023) and the resource monoid (R = N ∪ { ∞ }, +, 0,⩽r, ∞), where
⩽r and + are the extensions of the standard order and of the standard addition on natural
numbers such that r ⩽r ∞ and r + ∞ = ∞ for all r ∈ R.

Now, let G = { g1, g2, g3 } be a set of goods the price of which (in euros) evolves over the
years according to the pricing function pr : G × S → N given in Table 1.

We can then define the affordability predicate on multisets of goods as follows:

∀ (r, s) ∈ R × S. (r, s) ⊩ Af (gs) iff pr(gs, s) def=
∑
g∈gs

pr(g, s) ⩽ r

We write x1, . . . , xn as a shorthand for the multiset { x1, . . . , xn }. Therefore, Af ({ g, g′ }) is
more shortly written as Af (g, g′). It is easy to see that

∀ (r, s) ∈ R × S. ∀ g, g′ ∈ G. (r, s) ⊩ Af (g, g′) iff (r, s) ⊩ Af (g) ∗ Af (g′)

As an example, let us suppose that each year, we get an amount of money that we are
required to spend buying goods on some dedicated website. LTBI allows us to state properties
about our ability to buy goods depending on the year and on the amount of money available.
For instance,

(3000, 2023) ⊩ Af (g1) ∧ (Af (g2) ∗ Af (g3))

FSCD 2023
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Table 1 Prices of three goods over the years.

Prices (¤)

good 2023 2024 2025

g1 2000 2100 2200
g2 300 250 350
g3 1700 1800 1500

intuitively means that in 2023 (the current year), with 3000 euros, we can choose to buy g1
and we can also choose to split our money into two disjoint amounts, the first one to buy g2
and the second one to buy g3. Let us remark that although the two options are available to
us simultaneously, it does not necessarily imply that we could afford to buy all three goods
simultaneously. Indeed, with an amount of 3000 euros, we would have to make a choice since
pr({ g1, g2, g3 }, 2023) = 4000. Therefore, (3000, 2023) ⊮ Af (g1, g2, g3).

Using the temporal modalities, we can state more complex propositions that take into
account the evolution of prices over the years. For instance,

(3000, 2023) ⊩□Af (g2) ∗ (♢Af (g3) ∧ (Af (g1) ∗ ◦Af (g2)))

states that in 2023, we can split 3000 euros into two disjoint amounts of money, the first
one keeping g2 affordable every year from 2023 until 2025, the second one bringing us two
choices. The first choice ensures that g3 should become affordable at least one year during
between 2023 and 2025. The second choice tells us that we could split our second amount
of money once again into two new disjoint amounts, one making g3 affordable currently (in
2023), the other making g2 affordable only one year later (in 2024).

3 An LTBI Labelled Tableau Calculus

The labelled tableau calculus for LTBI, called TLTBI, is in the spirit of the ones for BI [7] and
DBI [3] and relies on the introduction of labels and constraints. TLTBI deals with two kinds
of labels, namely resource labels and state labels.

We shall see that the latter require a careful and specific treatment in order to keep them
isomorphic to natural numbers.

3.1 Labels and Constraints
We define a set of state labels and constraints that deals with temporality in order to capture
the notion of resource evolution.

▶ Definition 7 (Resource labels and constraints). The set Lr of resource labels is built from
the countable set γr = { ϵL , c1, c2, . . . } of resource constants and label composition ◦ according
to the grammar X ::= γr | X ◦ X. A resource constraint is an expression of the form x ⩽r

L
y,

where x and y are resource labels.

Label composition is interpreted as an associative and commutative operation on Lr that
admits ϵL as its neutral element. We shall frequently write x y instead of x ◦y for convenience.
We say that x is a sublabel of y iff there exists z ∈ Lr such that x ◦ z = y and E(x) denotes
the set of sublabels of a label x.
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▶ Definition 8 (State labels and constraints). The set Ls of state labels is built from the
countable set γs = { γ0, γ1, γ2, . . . } of state constants and the successor symbol η according
to the grammar X ::= γs | ηX. Given two state labels τ and τ ′, a state constraint is an
expression of the form τ ⩽s

L
τ ′, τ <s

L
τ ′, τ =s

L
τ ′ or τ ̸=s

L
τ ′.

▶ Definition 9 (Domain and alphabet). Let Cr be a set of resource constraints. The domain of
Cr, denoted Dr(Cr), is the set of all the sublabels occurring in Cr. More formally, Dr(Cr) =⋃

x⩽r
L

y∈Cr
(E(x) ∪ E(y)). The alphabet (or basis) of Cr is the set Ar(Cr) = γr ∩ Dr(Cr).

Ds(Cs) and As(Cs), where Cs is a set of state constraints, are defined similarly.

▶ Definition 10 (Closure of resource constraints). Let Cr be a set of resource constraints, the
closure C•

r is the smallest set such that Cr ⊆ C•
r that is closed under the following rules:

x ⩽r
L

y y ⩽r
L

z
x ⩽r

L
z

x ⩽r
L

y
x ⩽r

L
x

x ⩽r
L

y
y ⩽r

L
y

x y ⩽r
L

x y
x ⩽r

L
x

z y ⩽r
L

z y x ⩽r
L

y
z x ⩽r

L
z y

These rules reflect the properties of transitivity and reflexivity of ⩽r
L

and the compatibility
of ◦ w.r.t. ⩽r

L
. Since none of these rules introduce any new resource constant, we have

Ar(Cr) = Ar(C•
r ).

▶ Definition 11 (Closure of state constraints). Let Cs be a set of state constraints, the closure
C•

s is the smallest set such that Cs ⊆ C•
s that reflects in ⩽s

L
, <s

L
, =s

L
, ̸=s

L
the properties of

⩽, <, =, ≠ in N and such that η syntactically reflects the properties of the “next” function n.

▶ Proposition 12. Let Cr be a set of resource constraints:
1. If z x ⩽r

L
y ∈ C•

r , then x ⩽r
L

x ∈ C•
r

2. If x ⩽r
L

z y ∈ C•
r , then y ⩽r

L
y ∈ C•

r

Proof. From z x ⩽r
L

y we get z x ⩽r
L

z x (reflexivity), then x z ⩽r
L

x z (commutativity) and
then x ⩽r

L
x (compatibility). The other case is similar. ◀

3.2 Rules of the TLTBI Tableau Calculus
▶ Definition 13 (Labelled Formula). A labelled formula is a quadruple (S, A, x, τ), denoted
S A : (x, τ), where S ∈ {T,F } is a sign, A ∈ F is a formula, and (x, τ) ∈ Lr × Ls is a label.

▶ Definition 14 (CTSS). A constrained temporal set of statements (CTSS) is a triple noted
⟨F , Cr, Cs⟩, where F is a set of labelled formulas, Cr is a set of resource constraints and Cs

is a set of state constraints. A CTSS is required to satisfy the following condition:

(CTSSR) for all S A : (x, τ) ∈ F , x ⩽r
L

x ∈ Cr and τ ⩽s
L

τ ∈ Cs.

A CTSS is finite if all of its three components are finite.

▶ Definition 15 (Inconsistent Label). Let ⟨F , Cr, Cs⟩ be a CTSS. The label (x, τ) is inconsistent
if there exist two resource labels y and z such that y ◦ z ⩽r

L
x ∈ C•

r and T ⊥ : (y, τ) ∈ F . A
label is consistent if it is not inconsistent.

▶ Proposition 16. Let ⟨F , Cr, Cs⟩ be a CTSS. The following properties hold:
1. If y ⩽r

L
x ∈ C•

r and (x, τ) is consistent, then (y, τ) is a consistent label.
2. If x ◦ y ∈ Dr(C•

r ) and (x ◦ y, τ) is consistent, then (x, τ) and (y, τ) are consistent.

Proof. Assume that (y, τ) is inconsistent, then there are two resource labels z, z′ and a state
label τ such that z ◦ z′ ⩽r

L
y ∈ C•

r and T ⊥ : (z, τ) ∈ F . By transitivity with y ⩽r
L

x ∈ C•
r we

get z ◦ z′ ⩽r
L

x ∈ C•
r , meaning that (x, τ) is inconsistent, which contradicts our assumption.

The other proof is similar. ◀
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T A ∧ B : (x, τ)

T A : (x, τ)
T B : (x, τ)

F A ∧ B : (x, τ)

F A : (x, τ)
∣∣∣ F B : (x, τ)

F A ∨ B : (x, τ)

F A : (x, τ)
F B : (x, τ)

T A ∨ B : (x, τ)

T A : (x, τ)
∣∣∣ T B : (x, τ)

T A → B : (x, τ)

R x ⩽r
L

y
F A : (y, τ)

∣∣∣∣∣ R x ⩽r
L

y
T B : (y, τ)

F A → B : (x, τ)

A x ⩽r
L

a
T A : (a, τ)
F B : (a, τ)

T I : (x, τ)

A ϵL ⩽r
L

x

T A ∗ B : (x, τ)

A ab ⩽r
L

x
T A : (a, τ)
T B : (b, τ)

F A ∗ B : (x, τ)

R y z ⩽r
L

x
F A : (y, τ)

∣∣∣∣∣ R y z ⩽r
L

x
F B : (z, τ)

F A −∗ B : (x, τ)

A x a ⩽r
L

b
T A : (a, τ)
F B : (b, τ)

T A −∗ B : (x, τ)

R x y ⩽r
L

z
F A : (y, τ)

∣∣∣∣∣ R x y ⩽r
L

z
T B : (z, τ)

T ◦A : (x, τ)

A τ <s
L

ητ

T A : (x, ητ)

F ◦A : (x, τ)

R τ <s
L

ητ

F A : (x, ητ)

T □A : (x, τ)

R τ ⩽s
L

α

T A : (x, α)

F □A : (x, τ)

A τ ⩽s
L

υ

F A : (x, υ)

T ♢A : (x, τ)

A τ ⩽s
L

α

T A : (x, α)

F ♢A : (x, τ)

R τ ⩽s
L

υ

F A : (x, υ)

CD

R τ ⩽s
L

υ

A τ <s
L

υ

∣∣∣∣∣ R τ ⩽s
L

υ

A τ =s
L

υ

LR
R τ ⩽s

L
υ

R τ ⩽s
L

ζ

A υ ⩽s
L

ζ

∣∣∣∣∣∣∣
R τ ⩽s

L
υ

R τ ⩽s
L

ζ

A ζ ⩽s
L

υ

S A : (c, τ)

R τ =s
L

υ

S A : (c, υ)

Figure 1 Rules of the TLTBI calculus.

The rules of TLTBI are presented in Figure 1, where a, b denote fresh resource constants
and α denotes a fresh state constant. We observe that some of the rules introduce fresh
constants and label constraints called assertions. For instance, expanding a labelled formula
F A→B: (x, τ) generates a (resource) assertion A x ⩽r

L
a where a is a fresh resource constant.

Similarly, expanding a labelled formula T ♢A : (x, τ) generates a (state) assertion A τ ⩽s
L

α

where α is a fresh state constant. We also observe that some of the rules introduce label
constraints on arbitrary labels called requirements. For instance, expanding a labelled formula
T A → B : (x, τ) generates a (resource) requirement R x ⩽r

L
y. Similarly, expanding a labelled

formula F ♢A : (x, τ) generates a (state) requirement R τ ⩽s
L

υ.
Before we explain how requirements work, let us note that a tableau branch B corresponds

to a CTSS ⟨F , Cr, Cs⟩, where F is the set of all labelled formulas occurring in B and Cr, Cs

are the sets of all resource and state assertions occurring in B respectively, i.e. Cr = {A x ⩽r
L

y | A x ⩽r
L

y ∈ B } and Cs = {A x Rs
L

y | A x Rs
L

y ∈ B } for Rs
L
∈ {⩽s

L
, <s

L
, =s

L
, ̸=s

L
}. Now if

we want to expand a labelled formula T A → B : (x, τ) occurring in B, the label constraint
R x ⩽r

L
y requires us to find a label y such that x ⩽r

L
y ∈ C•

r , i.e., a label y for which the
requirement is derivable from (the closure of) the assertions that already occur in the branch.

The last line of Figure 1 presents the structural rules of TLTBI. The first one is the case
distinction rule CD that disambiguates any label state constraint τ ⩽s

L
υ derivable from the

closure of the state assertions (hence the requirement R τ ⩽s
L

υ) w.r.t. <s
L

and =s
L
. The
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second one is the linearizing rule LR that arranges any pair of state labels υ and ζ branching
from τ into a linear order τ ⩽s

L
υ ⩽s

L
ζ or τ ⩽s

L
ζ ⩽s

L
υ. The last one is the equality rewriting

rule which is there mostly for convenience to make the closing of a branch easier to check.

▶ Definition 17. A tableau for a formula A is a tableau built inductively according to the
rules depicted in Figure 1 the root node of which is the labelled formula F A : (ϵL , γ0).

Definition 17 implies that a TLTBI tableau for a LTBI formula A begins with the initial
CTSS ⟨F A : (ϵL , γ0), { ϵL ⩽r

L
ϵL }, { γ0 ⩽s

L
γ0 }⟩. Moreover, we define a rule application

strategy according to the following order of precedence from highest to lowest:
1. The rules T I, F→, T ∗, F−∗, T♢, F□,T ◦ and F ◦, called πα-rules, take precedence over

the other rules.
2. The structural rules CD and LR have middle precedence.
3. The rules T→, F ∗, T−∗, F♢, T□, called πβ-rules, have low precedence.

▶ Definition 18 (Closing conditions). A CTSS ⟨F , Cr, Cs⟩ is closed if it satisfies one of the
following conditions:
1. T A : (x, τ) ∈ F , F A : (y, υ) ∈ F , x ⩽r

L
y ∈ C•

r and τ =s
L

υ ∈ C•
s .

2. F I : (x, τ) ∈ F and ϵL ⩽r
L

x ∈ C•
r

3. F ⊤ : (x, τ) ∈ F
4. F A : (x, τ) ∈ F and (x, τ) is inconsistent
5. τ =s

L
υ ∈ C•

s and τ ̸=s
L

υ ∈ C•
s .

A tableau branch is closed if its corresponding CTSS is closed. A CTSS, or a tableau branch,
is open if it is not closed. A tableau is closed if all of its branches are closed.

▶ Definition 19 (TLTBI-proof). A TLTBI-proof for a formula A is a closed TLTBI tableau for A.

▶ Example 20. Let us now illustrate in Figure 2 the construction of a TLTBI tableau with an
example leading to a closed tableau.

We start with F ♢A ∧ ♢B → ♢(A ∧ ♢B) ∨ ♢(B ∧ ♢A) : (ϵL , γ0). In Step [2], expanding
T ♢A ∧ ♢B : (c1, γ0) introduces T ♢A : (c1, γ0) and T ♢B : (c1, γ0). After Steps [3, 4], we
obtain two assertions A γ0 ⩽s

L
γ1 and A γ0 ⩽s

L
γ1. In Step [5] we expand the signed

formula F ♢(A ∧ ♢B) ∨ ♢(B ∧ ♢A) : (c1, γ0) and then generate F ♢(A ∧ ♢B) : (c1, γ0) and
F ♢(B ∧ ♢A) : (c1, γ0).

Before expanding them, we apply the linearizing rule LR in Step [6] and the tableau
splits into two branches: the left one with the assertion A γ1 ⩽s

L
γ2 and the right one

with the assertion A γ2 ⩽s
L

γ1. Now we consider Step [7] in the left branch (with assertion
A γ1 ⩽s

L
γ2) that corresponds to the expansion of F ♢(A ∧ ♢B) : (c1, γ0) introducing a

requirement R γ0 ⩽s
L

v1 and the labelled formula F A ∧ ♢B : (c1, v1) with v1 a variable to
be instantiated from the closure of the assertions in the branch. Here we choose v1 = γ1 in
order to satisfy the requirement.

Then, in Step [8] F A ∧♢B : (c1, γ1) splits the leftmost branch into two sub-branches. The
first one is closed because it contains both T A : (c1, γ1), and F ♢B : (c1, γ1). The second one
continues with Step [9] that introduces a requirement R γ1 ⩽s

L
v2 and the labelled formula

F B : (c1, v2) with v2 a variable to be instantiated from the closure of the assertions in the
branch. Here we choose v2 = γ2 that satisfies the requirement because γ1 ⩽s

L
γ2. Then we

obtain the labelled formula F B : (c1, γ2) and the branch is closed because it also contains
T B:(c1, γ2). The tableau on the right(hand side of Step [6] similarly leads to closed branches.

FSCD 2023



31:8 Labelled Tableaux for Linear Time Bunched Implication Logic

F ♢A ∧ ♢B → ♢(A ∧ ♢B) ∨ ♢(B ∧ ♢A) : (ϵL , γ0)[1]
1

A ϵL ⩽r
L

c1
T ♢A ∧ ♢B : (c1, γ0)[2]
F ♢(A ∧ ♢B) ∨ ♢(B ∧ ♢A) : (c1, γ0)[5]

2
T ♢A : (c1, γ0)[3]
T ♢B : (c1, γ0)[4]

3
A γ0 ⩽s

L
γ1

T A : (c1, γ1)∗1

4
A γ0 ⩽s

L
γ2

T B : (c1, γ2)∗2

5
F ♢(A ∧ ♢B) : (c1, γ0)[7]
F ♢(B ∧ ♢A) : (c1, γ0)[10]

R γ0 ⩽s
L

γ1
R γ0 ⩽s

L
γ2

A γ1 ⩽s
L

γ2
7

R γ0 ⩽s
L

γ1
F A ∧ ♢B : (c1, γ1)[8]

F A : (c1, γ1)∗1

8

∣∣∣∣∣∣∣∣
F ♢B : (c1, γ1)[9]

9
R γ1 ⩽s

L
γ2

F B : (c1, γ2)∗2

6

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

R γ0 ⩽s
L

γ1
R γ0 ⩽s

L
γ2

A γ2 ⩽s
L

γ1
10

R γ0 ⩽s
L

γ2
F B ∧ ♢A : (c1, γ2)[11]

F B : (c1, γ2)∗2

11

∣∣∣∣∣∣∣∣
F ♢A : (c1, γ2)[12]

12
R γ2 ⩽s

L
γ1

F A : (c1, γ1)∗1

Figure 2 Closed Tableau for ♢A ∧ ♢B → ♢(A ∧ ♢B) ∨ ♢(B ∧ ♢A).

▶ Example 21. Let us now illustrate in Figure 3 the construction of a TLTBI tableau with an
example leading to a non closed tableau.

We start with F (♢A ∗ ◦B) → (♢B ∗ ◦A) : (ϵL , γ0). Then, Step [2], T ♢A ∗ ◦B : (c1, γ0)
introduces the assertion A c2 c3 ⩽r

L
c1 and to the labelled formulae T ♢A : (c2, γ0) and

T ◦B : (c3, γ0). In Step [3] we expand the first one and generate an assertion A γ0 ⩽s
L

γ1 and
the labelled formula T A : (c2, γ1). In Step [4] we expand the second one and generate the
labelled formula T B : (c3, ηγ0). Step [5] deals with the labelled formula F ♢B ∗ ◦A : (c1, γ0)
and its expansion rules creates two branches: the left one with the requirement R y z ⩽r

L
c1

and the labelled formula F ♢B : (c1, γ0) and the right one with the requirement R y z ⩽r
L

c1
and the labelled formula F ◦A : (z, γ0).

Let us consider the left branch. The requirement R y z ⩽r
L

c1 can only be satisfied in
two cases: (1) y = c3, z = c2 and (2) y = c2, z = c3. Step [6] in the left branch corresponds
to the expansion of F ♢B : (y, γ0). It generates the requirement R γ0 ⩽s

L
v and the labelled

formula F B : (y, v). In order to be able to close the branch with T B : (c3, ηγ0) we have to
set y = c3 (with z = c2) and to instantiate the variable v such that γ0 ⩽s

L
v. If we instantiate

v with ηγ0 we satisfy the requirement R γ0 ⩽s
L

v and then the branch is closed.
Let us consider the right branch branch in which the requirement R yz ⩽r

L
c1 is satisfied

with y = c3, z = c2. Step [7] in the left branch corresponds to the expansion of F ◦A : (c2, γ0)
that generates the labelled formula F A : (c2, ηγ0). We observe that we cannot close this
branch with the latter labelled formula and T A : (c2, γ1) because there is no possible equality
between γ1 and ηγ0. Then in case (1) there is an open branch and the tableau is not closed.
Developing case (2) also leads to an open branch.
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F (♢A ∗ ◦B) → (♢B ∗ ◦A) : (ϵL , γ0)[1]
1

A ϵL ⩽r
L

c1
T ♢A ∗ ◦B : (c1, γ0)[2]
F ♢B ∗ ◦A : (c1, γ0)[5]

2
A c2 c3 ⩽r

L
c1

T ♢A : (c2, γ0)[3]
T ◦B : (c3, γ0)[4]

3
A γ0 ⩽s

L
γ1

T A : (c2, γ1)
4

A γ0 <s
L

ηγ0
T B : (c3, ηγ0)

R y z ⩽r
L

c1
F ♢B : (y, γ0)[6]

6
R γ0 ⩽s

L
v

F B : (y, v)

5

∣∣∣∣∣∣∣∣∣∣
R y z ⩽r

L
c1

F ◦A : (z, γ0)[7]
7

R γ0 ⩽s
L

ηγ0
F A : (z, ηγ0)

Figure 3 Non-closed Tableau for (♢A ∗ ◦B) → (♢B ∗ ◦A).

4 Soundness of TLTBI

In this section, we prove the soundness of TLTBI following a method based on the notion of
realizability of a CTSS that is similar to the one used for various flavours of BI [5].

▶ Definition 22 (Realization). A realization of a CTSS ⟨F , Cr, Cs⟩ is a triple (M, [.]r, [.]s),
where M is an LTBI-model, and [.]r, [.]s are order preserving homomorphisms from resource
and state labels to resources and states respectively. More precisely, we have [.]r : Dr(C•

r ) → R
and [.]s : Ds(C•

s ) → S, such that:
[ϵL ]r = ϵ, [x ◦ y]r = [x]r ⋆ [y]r, [ητ]s = n[τ]s
If T A : (x, τ) ∈ F , then ([x]r, [τ]s) ⊩ A
If F A : (x, τ) ∈ F , then ([x]r, [τ]s) ⊮ A
If x ⩽r

L
y ∈ Cr, then [x]r ⩽r [y]r

If τ Rs
L

υ ∈ Cs, then [τ]s Rs [υ]s, with Rs∈ {⩽s, <s, =s, ̸=s }

A CTSS (or branch) is realizable if it has a realization. A tableau is realizable if it has at
least one realizable branch.

▶ Lemma 23. Let (M, [.]r, [.]s) be a realization of a CTSS ⟨F , Cr, Cs⟩. For all x ⩽r
L

y ∈ C•
r

and for all τ Rs
L

υ ∈ C•
s , [x]r ⩽r [y]r and [τ]s Rs [υ]s.

Proof. Straightforward since the closure rules for Cr and Cs preserve compatibility. ◀

▶ Lemma 24. If a TLTBI tableau is closed then it is not realizable.

Proof. If a closed tableau is realizable then it contains at least one branch B that is realizable
in a LTBI-model.

If the branch is closed with complementary formulas T A : (x, τ) and F A : (y, τ) then by
Definition 22 we have x ⩽r

L
y. By Lemma 23, we have [x]r ⩽r [y]r and since the branch is

realized, by Definition 22, we have ([x]r, [τ]s) ⊩ A and ([y]r, [τ]s) ⊮ A. We thus reach a
contradiction since by Lemma 6 (monotonicity) ([y]r, [τ]s) ⊩ A.
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if the branch is closed because of F ⊤ : (x, τ), then ([x]r, [τ]s)⊮⊤, which is a contradiction.
The other cases are similar. ◀

▶ Lemma 25. All TLTBI rules preserve realizability.

Proof. Let B be a tableau branch and (M, [.]r, [.]s) be a realization of its CTSS ⟨F , Cr, Cs⟩.
We proceed by case analysis on the rule that expands B.

The cases for BI connectives are similar to the ones given in [7] for BI tableaux. We thus
only consider the modal operators.

Case T ◦:
Suppose that the labelled formula T ◦A : (x, τ) has just been expanded in the branch B.
Then, B is extended with a new labelled formula T A:(x, ητ) and a new assertion A τ <s

L
ητ.

Since B was realizable before the expansion, we have ([x]r, [τ]s) ⊩ ◦A. Therefore, there
exists s′ such that s′ = n[τ]s and ([x]r, s′) ⊩ A. Since n[τ]s = [ητ]s and [τ]s <s [ητ]s, both
T A : (x, ητ) and A τ <s

L
ητ are realized.

Case F ◦:
Suppose that the labelled formula F ◦A : (x, τ) has just been expanded in the branch B.
Then, B is extended with a new labelled formula F A : (x, ητ) and a new requirement
R τ <s

L
ητ. A valid application of the expansion rule requires that τ <s

L
ητ ∈ C•

s . Since B
was realizable before the expansion, we have ([x]r, [τ]s) ⊮ ◦A and Lemma 23 entails
[τ]s <s [ητ]s. Since n[τ]s = [ητ]s, ([x]r, [τ]s) ⊮ ◦A implies ([x]r, [ητ]s) ⊮ A by definition.
Therefore, both F A : (x, ητ) and R τ <s

L
ητ are realized.

The other cases are similar. ◀

▶ Theorem 26 (Soundness). If there exists a TLTBI proof for A, then A is valid.

Proof. Let T be a TLTBI-proof of A. Assume that A is not valid, then there exists a
linear resource model M such that (ϵ, s) ⊮ A for some state s. Since the initial CTSS
⟨{F A : (ϵL , γ0) }, { ϵL ⩽r

L
ϵL }, { γ0 ⩽s

L
γ0 }⟩ is trivially realizable by setting [γ0]s = s,

Lemma 25 implies that the tableau T contains at least one realizable branch, which contradicts
the fact that T is a tableau proof. Indeed, if T is a tableau proof for A, then all of its
branches should be closed by definition, and thus not realizable by Lemma 24. Therefore, A
is valid. ◀

5 Completeness

In this section we discuss the reasons why the completeness result for TLTBI is not trivial and
still an open problem.

A usual way of proving the completeness of a labelled tableau calculus is by counter-model
construction from an open and completed branch, as we did for BI [7], BBI [12] and various
modal extensions of BI [3, 4]. This approach requires the definition of a suitable notion of
what it means for a labelled formula to be completely analyzed or fulfilled. Although such a
definition can be given for TLTBI, the completion of an open branch raises several issues.

▶ Definition 27. Let ⟨F , Cs, Cr⟩ be the CTSS associated to a tableau branch B. A labelled
formula S C : (x, τ) is fulfilled (or completely analyzed) in B, denoted B ⊨ S C : (x, τ), iff:

Base cases:
B ⊨ S ⊤ : (x, τ) always
B ⊨ S ⊥ : (x, τ) always
B ⊨ T I : (x, τ) iff ϵL ⩽r

L
x ∈ C•

r

B ⊨ F I : (x, τ) always
B ⊨ T p : (x, τ) iff T p : (y, τ) ∈ F for some y ̸= x such that y ⩽r

L
x ∈ C•

r

B ⊨ F p : (x, τ) iff F p : (y, τ) ∈ F for some y ̸= x such that x ⩽r
L

y ∈ C•
r
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Induction:
B ⊨ T A ∧ B : (x, τ) iff B ⊨ T A : (x, τ) and B ⊨ T B : (x, τ)
B ⊨ F A ∧ B : (x, τ) iff B ⊨ F A : (x, τ) or B ⊨ F B : (x, τ)
B ⊨ T A ∨ B : (x, τ) iff B ⊨ T A : (x, τ) or B ⊨ T B : (x, τ)
B ⊨ F A ∨ B : (x, τ) iff B ⊨ F A : (x, τ) and B ⊨ F B : (x, τ)
B ⊨ T A ∗ B : (x, τ) iff B ⊨ T A : (y, τ) and B ⊨ T B : (z, τ) for some y z ⩽r

L
x ∈ C•

r

B ⊨ F A ∗ B : (x, τ) iff B ⊨ F A : (y, τ) and B ⊨ F B : (z, τ) for all y z ⩽r
L

x ∈ C•
r

B ⊨ T A → B : (x, τ) iff B ⊨ F A : (y, τ) or B ⊨ T B : (y, τ) for all x ⩽r
L

y ∈ C•
r

B ⊨ F A → B : (x, τ) iff B ⊨ T A : (y, τ) and B ⊨ F B : (y, τ) for some x ⩽r
L

y ∈ C•
r

B ⊨ T A −∗ B : (x, τ) iff B ⊨ F A : (y, τ) or B ⊨ T B : (z, τ) for all x y ⩽r
L

z ∈ C•
r

B ⊨ F A −∗ B : (x, τ) iff B ⊨ T A : (y, τ) and B ⊨ F B : (z, τ) for some x y ⩽r
L

z ∈ C•
r

B ⊨ S ◦A : (x, τ) iff B ⊨ S A : (y, ητ)
B ⊨ T ♢A : (x, τ) iff B ⊨ T A : (y, υ) for some τ ⩽s

L
υ ∈ C•

s

B ⊨ F ♢A : (x, τ) iff B ⊨ F A : (y, υ) for all τ ⩽s
L

υ ∈ C•
s

B ⊨ T □A : (x, τ) iff B ⊨ T A : (y, υ) for all τ ⩽s
L

υ ∈ C•
s

B ⊨ F □A : (x, τ) iff B ⊨ F A : (y, υ) for some τ ⩽s
L

υ ∈ C•
s

▶ Definition 28. A branch B is completed (also saturated) if all of its labelled formulas are
fulfilled and all possible expansions of the structural rules CD and LR have been applied.

It is folklore to define a completion procedure for an open branch by defining a fair
strategy for formula expansion (see [5, 4] for details). The actual problem is to turn an open
and completed branch into a suitable LTBI counter-model.

5.1 Counter-Model Construction
Let us first illustrate how to construct a counter-model from an open and completed branch
using the leftmost open branch of the tableau depicted in Figure 3.

Firstly, we define the set of resources as the set Dr(C•
r ) ∪ { π } and the composition of

resources as:
x ⋆ y = xy if xy ∈ Dr(C•

r )
x ⋆ ϵL = x
x ⋆ π = π

The resource ordering ⩽r is induced by the closure of the resource assertions occurring in
the branch, i.e.:

⩽r = C•
r ∪ { x ⩽ π | x ∈ Dr(C•

r ), }

which, in our example, corresponds to the following transitive and reflevixe closure of the set
of relations:

{ ϵL ⩽r
L

c1, c2c3 ⩽r
L

c1 }

augmented with π as the greatest element.
Secondly, the timeline is defined as the set { 0, 1, 2 } with the state labels realized

(interpreted) as follows: [γ0]s = 0, [ηγ0]s = 1, [γ1]s = 2.
Thirdly, the forcing relation is induced by the following LTBI-valuation that matches the

positive labelled formulas (those with a sign T) occurring in the branch:{
[A] = { (π, 0), (π, 1), (π, 2), (c2, 2) }
[B] = { (π, 0), (π, 1), (π, 2), (c3, 2) }

FSCD 2023



31:12 Labelled Tableaux for Linear Time Bunched Implication Logic

F ((♢A → B) → C) → C : (ϵL , γ0)[1]
1

A ϵL ⩽r
L

c1
T (♢A → B) → C : (c1, γ0)[2,2′]
F C : (c1, γ0)∗1

R c1 ⩽r
L

c1
F ♢A → B : (c1, γ0)[3]

3
A c1 ⩽r

L
c2

T ♢A : (c2, γ0)[4]
F B : (c2, γ0)

4
A γ0 ⩽s

L
γ1

T A : (c2, γ1)

R c1 ⩽r
L

c2
F ♢A → B : (c2, γ0)[3′]

3′

A c2 ⩽r
L

c′
2

T ♢A : (c′
2, γ0)[4′]

F B : (c′
2, γ0)

4′

A γ0 ⩽s
L

γ′
1

T A : (c′
2, γ′

1)
R γ0 ⩽s

L
γ′

1
R γ0 ⩽s

L
γ1

A γ′
1 ⩽s

L
γ1

5

∣∣∣∣∣∣∣
R γ0 ⩽s

L
γ′

1
R γ0 ⩽s

L
γ1

A γ1 ⩽s
L

γ′
1

2′

∣∣∣∣∣ R c1 ⩽r
L

c2
T C : (c2, γ0)∗1

2

∣∣∣∣∣ R c1 ⩽r
L

c1
T C : (c1, γ0)∗1

Figure 4 Liberizable Infinite Tableau.

Finally, the reason why we have an actual counter-model can be read directly from the
labelled formulas of the completed open branch:
1. We have (c2, 2) ⊩ A (by definition), which implies (c2, 0) ⊩ ♢A.
2. Moreover, we have (c3, 1) ⊩ B (by definition) and thus we get (c3, 0) ⊩ ◦B.
3. From 1 and 2, we get (c2c3, 0) ⊩ ♢A ∗ ◦B which implies (c1, 0) ⊩ ♢A ∗ ◦B by Kripke

monotonicity (as c2c3 ⩽ c1 by definition).
4. Besides, we have (c0, 0) ⊮ ♢B ∗ ◦A because (x, τ) ⊮ ◦A for all resources x and all states τ

(since the timeline has no state 3 and A is only true at (c2, 2)).

The first and third points (construction of a total resource monoid and of a forcing
relation) described above work in the general case for any open and completed branch, not
just for the tableau depicted in Figure 3. The second point (construction of discrete linear
timeline) is however more problematic.

5.2 The Dense Timeline Issue
A first issue in TLTBI is that the completion procedure might result in a set of state constraints
that, although representing a discrete linear order, might not be isomorphic to any subset
of (N,⩽) because it might be dense.

Let us for example consider the tableau depicted in Fig. 4. Its leftmost branch grows
infinitely because the πβ-formula T (♢A → B) → C contains a πα-subformula F ♢A → B
the expansion of which repeatedly generates new resource constants c2, c′

2, c′′
2 , ci

2 (i > 2) to
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be fed to the πβ-formula for its fulfillment. For instance in Step [3], the resource assertion
A c1 ⩽r

L
c2 is generated, where c2 is fresh. Then, in Step [4], the state assertion A γ0 ⩽s

L
γ1

is generated, where γ1 is fresh. Since the requirement R c1 ⩽r
L

c2 is met, Step [2] must be
reproduced with c2 instead of c1, which gives Step [2′]. After Step [2′], Steps [3′] and [4′]
reproduce Steps [3] and [4] leading to new assertions A c2 ⩽r

L
c′

2 and A γ0 ⩽s
L

γ′
1.

After Step [4′], we get two state labels γ1 and γ′
1 that are not linearly ordered. We

therefore use the linearizing rule LR in Step [5] to get (in the leftmost branch) the assertion
A γ′

1 ⩽s
L

γ1. Several applications of the case distinction rule CD (not represented in Fig. 4
for conciseness) allow us to get the following ordering of the state labels: γ0 <s

L
γ′

1 <s
L

γ1.
Repeating the previous steps infinitely many times we can generate a strictly decreasing
infinite chain of state labels (γi

1)i∈N between γ0 and γ1.
The situation described in Fig. 4 well illustrates the fact that our logic LTBI is not a simple

and orthogonal combination of BI and LTL connectives, but induces an actual interaction
between resource and state labels. Indeed, the infinite chain of state labels γi

1 derives from
the creation of an infinite chain of resource labels ci

2.

5.3 Unsoundness of the Liberalized Rules
Tableau branches that might grow infinitely because of the creation of infinitely many fresh
labels is a problem that already occurs in tableaux for BI [7]. In the case of BI, such a
situation can be remedied using liberalized versions of the tableaux rules that allow the reuse
of previously generated labels under specific conditions.

For example, the rule F→ would be allowed to expand F A → B : (x, τ) to T A : (x, τ),F B :
(x, τ) without generating a fresh (resource) constant whenever the branch already contains a
labelled formula T A : (y, τ) for which the requirement R y ⩽r

L
x is met. Under the liberalized

version of F→, the leftmost branch of the tableau depicted in Fig. 4 would be completed
after Step [3′] since the introduction of T ♢A : (c2, γ0) in Step [3] would allow Step [3′] to
reuse c2 instead of generating a fresh c′

2, making Step [3′] a redundant copy of Step [3] adding
no new information to the branch.

It would be tempting to think that adopting the liberalized rules given for BI in [7] would
solve the problem of getting an infinite amount of state labels from the generation of an
infinite number of fresh resource labels. Unfortunately, our second issue is that this approach
does not work, as illustrated in Fig. 5.

The liberalized rule for T ∗ (resp. F−∗) in BI tableaux only generates fresh constants for
the first instance of a labelled formula T A ∗ B : x (or F A −∗ B : x) in a tableau branch. Every
subsequent instance of the same labelled formula in the same branch is allowed to reuse the
constants that have been generated by the expansion of the first instance.

After Step [4], the tableau described in Fig. 5 splits into two branches, the second one
being similar to the first one (replacing occurences of A with B) and thus not fully depicted
in the figure for conciseness. As easily checked, repeating Steps [2] through [6] makes the
leftmost branch of the tableau grow infinitely. The repetitions Step [3i] of Step [3] generate
infinitely many decompositions ci

2 ci
3(i ∈ N) of the resource constant c1. In turn, this leads to

the repetitions Step [5i] of Step [5] which generate infinitely many state labels γi
1 and state

assertions A γ0 ⩽s
L

γi
1.

Using the liberalized version of T ∗ in Step [3′] as in BI tableaux would result in reusing
the constants c2 and c3 generated during Step [3] instead of introducing the new constants
c′

2 and c′
3. The branch would then be closed, having both T A : (c2, γ1) from Step [3′] and

F A : (c2, γ1) from Step [5]. Proceeding similarly in the branch that is eluded in Fig. 5, we
would finally get a closed TLTBI tableau for a formula which is not valid in LTBI. This shows
that the liberalized rules for BI are not sound for LTBI.

FSCD 2023



31:14 Labelled Tableaux for Linear Time Bunched Implication Logic

F □(A ∗ B) → (□A ∗ □B) : (ϵL , γ0)[1]
1

A ϵL ⩽r
L

c1
T □(A ∗ B) : (c1, γ0)[2,2′]
F □A ∗ □B : (c1, γ0)[4]

2
R γ0 ⩽s

L
γ0

T A ∗ B : (c1, γ0)[3]
3

A c2 c3 ⩽r
L

c1
T A : (c2, γ0)∗1

T B : (c3, γ0)
R c2 c3 ⩽r

L
c1

F □A : (c2, γ0)[5]
5

A γ0 ⩽s
L

γ1
F A : (c2, γ1)[7]

R γ0 ⩽s
L

γ1
A γ0 <s

L
γ1

2′

R γ0 ⩽s
L

γ1
T A ∗ B : (c1, γ1)

3′

A c′
2 c′

3 ⩽r
L

c1
T A : (c′

2, γ1)
T B : (c′

3, γ1)

6

∣∣∣∣∣∣∣∣∣∣
R γ0 ⩽s

L
γ1

A γ0 =s
L

γ1
7

R γ0 =s
L

γ1
F A : (c2, γ0)∗1

4

∣∣∣∣∣∣∣
R c2 c3 ⩽r

L
c1

F □B : (c3, γ0)[6]
...

Figure 5 Unliberizable Infinite Tableau.

5.4 Non-equivalence of LTBI and tBI

In BI tableaux, the soundness of the liberalized rules (as well as the decidability arguments
for BI) does not rely on the widespread Kripke resource semantics of BI, but rather on its
Beth resource semantics (see [7] for details). The fact that the liberalized rules are unsound
for TLTBI suggests that replacing the Kripke resource monoid in Definition 2 with a Beth
resource monoid would yield a non-equivalent resource semantics for LTBI.

In [10], both a logic called tBI (mixing LTL and BI) for linear bounded timelines and a
corresponding purely syntactic sound and complete sequent style proof-system called GtBI
are introduced. The semantics of tBI is an extension of the Grothendieck topological resource
semantics of BI. The GtBI sequent system is an extension of LBI, the standard bunched
sequent calculus of BI. The Grothendieck topological semantics of BI is shown in [7] to be
equivalent to its Beth resource semantics w.r.t. provability in LBI, more precisely, for any
BI formula A, we have ⊨Beth A ⇔ ⊢LBI A ⇔ ⊨Grot A. Therefore, the unsoundness of the
liberalized rules for TLTBI proves that even if we would extend GtBI to deal with unbounded
timelines, it would be hopeless to try to show the completeness of TLTBI by translating proofs
of GtBI (with liberalized rules) into closed TLTBI tableaux.

More importantly, as stated in Definition 5, the validity of a formula in TLTBI only
depends on its satisfiability in all time states for the empty resource ϵ, while its validity in tBI
depends on its satisfiability in all time states for all resources in the underlying Grothendieck
resource monoid. Consequently, although seemingly (syntactically) similar, LTBI and tBI are
semantically distinct logics and the results obtained for tBI in [10] do not apply to LTBI.
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F □◦A −∗ ◦□A : (ϵL , γ0)[1]
1

T □◦A : (c1, γ0)[4,6]
F ◦□A : (c1, γ0)[2]

2
F □A : (c1, ηγ0)[3]

F A : (c1, ηγ0)∗1

4
T ◦A : (c1, γ0)[5]

5
T A : (c1, ηγ0)∗1 3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

T A : (c1, ηγ0)
F □A : (c1, ηηγ0)[8]

6
T ◦A : (c1, ηγ0)[7]

7
T A : (c1, ηηγ0)∗2

8
F A : (c1, ηηγ0)∗2

Figure 6 Tableau with Bounded Timeline of Length 3.

5.5 The Bounded Timeline Case
We can solve the completeness issues discussed previously by restricting the semantics of
LTBI to bounded timelines. It is well known that LTL with bounded time domains can prove
almost all of the typical axioms of unbounded LTL. Moreover, practical uses of LTL almost
always consider bounded time domains.

Let us assume a bounded timelime S = Sn = { i < n | i ∈ N } of length n ∈ N∗. Using
the fixpoint definitions of the modal operators, we can derive a new tableau system Tn

LTBI in
which the rules T♢ and F□ of TLTBI are replaced by the following fixpoint rules:

when i < n − 1:

T ♢A : (x, ηiγ0)

T A : (x, ηiγ0)
∣∣∣∣∣ F A : (x, ηiγ0)

T ♢A : (x, ηi+1γ0)

F □A : (x, ηiγ0)

F A : (x, ηiγ0)
∣∣∣∣∣ T A : (x, ηiγ0)

F □A : (x, ηi+1γ0)

when i = n − 1:

T ♢A : (x, ηiγ0)

T A : (x, ηiγ0)

F □A : (x, ηiγ0)

F A : (x, ηiγ0)

Let us remark that we distinguish two cases (when i < n − 1 and when i = n − 1) because
in our semantics (as described in Definition 4), the truth of the next modality requires the
existence of a successor. A semantics in which the next modality is true whenever interpreted
in a time state which is out of the bounds (as in tBI) can be obtained by using only the first
pair of rules (the forking rules) in any case. Figure 6 gives an example of a closed bounded
tableau of length 3 for the formula □◦A −∗ ◦□A.

With the fixpoint rules, we claim the following completeness result for bounded tableaux:

▷ Claim 29. Tn
LTBI is complete for bounded timelines of length n.

Proof (Sketch). We first observe that in TLTBI the only rules that can introduce new state
labels are the rules T♢ and F□. In Tn

LTBI those rules are replaced with the fixpoint rules
that no longer introduce new state labels, but create terms of the form ηiγ0 from the root
state label γ0. Therefore, once γ0 is interpreted as 0 and η is interpreted as the successor
function, the generated timeline cannot be dense. Finally, since there are only finitely many
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terms of the form ηiγ0 with 0 ⩽ i < n, the tableau branch completion procedure necessarily
terminates. Now, if the completion procedure results in an open branch, the counter-model
construction procedure described in Section 5.1 yields an actual counter-model for the initial
formula at the root of the tableau branch. ◁

6 Conclusion and Perspectives

In this paper we introduced a new resource logic called LTBI that mixes BI and LTL unary
connectives. We proposed a labelled tableau proof system TLTBI for LTBI and proved its
soundness. We discussed the various and non-trivial completeness issues that arise when
trying to show the completeness of TLTBI in the general case of an unbounded timelime.

A first perspective is to give a detailed proof of the completeness result claimed previously
for bounded timelines.

A second perspective is to extend the completeness result to unbounded timelines. Such
an extension would necessarily require the definition of a cyclic proof system with some form
of induction to decide when the fixpoint rules should stop forking. Closing conditions for
sequent style cyclic proof systems have been given in the literature for unbounded LTL and
the task is not at all trivial (as explained in [1]). It is presently unclear to us how to adapt
such cyclic closing conditions in the context of a labelled tableau calculus and in the presence
of BI multiplicative connectives.

A third perspective is to study variants of LTBI, for example variants that incorporate the
binary temporal connectives U and R (until and release), or variants where the underlying
resource composition is bounded (e.g. rn = π when n > p for some p ∈ N∗) or satisfies more
specific axioms (e.g., r ⋆ r ⩽r r).

References
1 Kai Brünnler and Martin Lange. Cut-free sequent systems for temporal logic. The Journal of

Logic and Algebraic Programming, 76(2):216–225, 2008.
2 Edmund M Clarke and I Anca Draghicescu. Expressibility results for Linear-time and

Branching-time Logics. In Workshop/School/Symposium of the REX Project (Research and
Education in Concurrent Systems), LNCS 354, pages 428–437. Springer, 1988.

3 Jean-René Courtault and Didier Galmiche. A modal BI Logic for Dynamic Resource Properties.
In Int. Symposium on Logical Foundations of Computer Science, LFCS 2013, LNCS 7734,
pages 134–148. Springer, 2013.

4 Jean-René Courtault and Didier Galmiche. A Modal Separation Logic for Resource Dynamics.
Journal of Logic and Computation, 28(4):733–778, 2018.

5 Didier Galmiche and Daniel Méry. Semantic Labelled Tableaux for Propositional BI without
⊥. Journal of Logic and Computation, 13(5):707–753, 2003.

6 Didier Galmiche and Daniel Méry. Tableaux and Resource Graphs for Separation Logic.
Journal of Logic and Computation, 20(1):189–231, 2010.

7 Didier Galmiche, Daniel Méry, and David Pym. The semantics of BI and Resource Tableaux.
Mathematical Structures in Computer Science, 15(6):1033–1088, 2005.

8 Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50(1):1−101, 1987.
9 Samin S Ishtiaq and Peter W. O’Hearn. BI as an Assertion language for Mutable Data

Structures. In Proceedings of the 28th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 14−26, 2001.

10 Norohiro Kamide. Temporal BI: proof system, semantics and translations. Theoretical
Computer Science, 492:40–69, 2013.

11 Fred Kröger and Stephan Merz. Temporal Logic and State Systems (Texts in Theoretical
Computer Science. an EATCS Series). Springer Publishing Company, Incorporated, 2008.



D. Galmiche and D. Méry 31:17

12 Dominique Larchey-Wendling and Didier Galmiche. The Undecidability of Boolean BI through
phase Semantics. In 2010 25th Annual IEEE Symposium on Logic in Computer Science, pages
140−149. IEEE, 2010.

13 Peter W. O’Hearn and David J. Pym. The Logic of Bunched Implications. Bulletin of Symbolic
Logic, 5(2):215–244, 1999.

14 David J. Pym. The Semantics and Proof Theory of the Logic of Bunched Implications,
volume 26. Applied Logic Series. Kluwer Academic Publishers, 2002.

15 John C. Reynolds. Separation Logic: A Logic for Shared Mutable Data Structures. 17th
Annual IEEE Symposium on Logic in Computer Science (LICS’02), pages 55–74, 2002.

16 Kristin Y. Rozier. Linear Temporal Logic Symbolic Model Checking. Computer Science
Review, 5(2):163–203, 2011.

FSCD 2023
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Abstract
We present a generalization of Spector’s bar recursion to the Diller-Nahm variant of Gödel’s Dialectica
interpretation. This generalized bar recursion collects witnesses of universal formulas in sets of
approximation sequences to provide an interpretation to the double-negation shift principle. The
interpretation is presented in a fully computational way, implementing sets via lists. We also present
a demand-driven version of this extended bar recursion manipulating partial sequences rather than
initial segments. We explain why in a Diller-Nahm context there seems to be several versions of this
demand-driven bar recursion, but no canonical one.
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1 Introduction

Gödel’s functional interpretation [5], also known as the Dialectica interpretation (from the
name of the journal it was published in) is a translation from intuitionistic arithmetic into the
Σ0

2 fragment of intuitionistic arithmetic in finite types. If π is a proof of arithmetical formula
A, then the functional interpretation of π is a proof of a formula AD ≡ ∃x⃗∀y⃗AD (x⃗, y⃗) where
AD is quantifier-free. This formula can be understood as asserting that some two-player
game has a winning strategy: there exists a strategy x⃗ such that for all strategy y⃗, x⃗ wins
against y⃗, that is, AD (x⃗, y⃗) holds. By the witness property, the proof of AD yields a proof of
∀y⃗AD

(
t⃗, y⃗
)

for some sequence of terms t⃗ in system T: simply-typed λ-calculus with recursion
over natural numbers at all finite types. This sequence t⃗ of programs is the computational
content of π under the Dialectica interpretation.

Since the negative translation of every axiom of arithmetic is provable in intuitionistic
arithmetic, the Dialectica interpretation combined with a negative translation provides an
interpretation of classical arithmetic. When it comes to classical analysis (classical arithmetic
plus the axiom of countable choice) this is not true anymore, as the negative translation of
the axiom of choice fails to be an intuitionistic consequence of the axiom of choice. Spector’s
bar recursion operator [11] provides a Dialectica interpretation of the double-negation shift
(DNS) principle, from which one can derive intuitionistically any formula from its negative
translation. Applying this to the axiom of countable choice, Spector obtains an interpretation
of classical analysis.

Interpreting the contraction rule A ⇒ A ∧ A in Gödel’s original interpretation requires
(besides the λx. ⟨x, x⟩ component) a program that, given a witness M and two potential
counterwitnesses x and y of A such that either x or y wins against M , answers with a single
counterwitness that wins against M . Doing that relies on the decidability of winningness,
which ultimately relies on the decidability of atomic formulas of the source logic (which is true
in arithmetic). In order to get rid of this decidability requirement, Diller and Nahm [2] defined
a variant of Gödel’s interpretation where the programs provide a finite set of counterwitnesses,
with the requirement that at least one is correct. In the previous example, the program
interpreting the contraction rule answers with the set {x; y} and does not have to decide
which one is correct. The first contribution of this paper is the extension of Spector’s bar
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Dialectica

Realizability

Gödel’s
Dialectica [5]

Diller-Nahm’s
set interpretation [2]

Spector’s
bar recursion [11]

Diller-Nahm
bar recursion

Kleene’s
number realizability [6]

Kreisel’s
modified realizability [7]

Berardi-Bezem-Coquand’s
demand-driven bar recursion [1]

Oliva-Powell’s
demand-driven bar recursion [8]

Diller-Nahm
demand-driven bar recursion

Figure 1 Contributions of the paper, in bold font.

recursion to the Diller-Nahm setting. Our operator has a lot in common with the extension
of bar recursion to the Herbrand functional interpretation of non-standard arithmetic [3],
though there are notable differences which are discussed.

Berardi, Bezem and Coquand [1] adapted Spector’s bar recursion from Gödel’s Dialectica
to Kreisel’s modified realizability [7]. Their operator also behaves differently from Spector’s
original bar recursion as it is demand-driven: it computes the choice sequence in an order
that is driven by the environment, rather than in the natural order on natural numbers.
This provides a more natural computational interpretation to the axiom of countable choice.
More recently, Oliva and Powell [8] adapted Berardi-Bezem-Coquand’s operator to Gödel’s
Dialecica interpretation and obtained a demand-driven bar-recursive interpretation of the
axiom of countable choice in this setting. The second contribution of this paper is the
definition of a demand-driven bar recursion operator in the Diller-Nahm setting.

Figure 1 summarizes the two contributions of this paper as well as their relationship to
the state of the art. An arrow from X to Y means that Y is an extension/refinement/variant
of X, and we distinguish elements that take place in the framework of realizability from those
that take place in the framework of Dialectica-style functional interpretations.

First, we introduce the logical system and programming language we are working with.
Then, we define precisely the Dialectica interpretation of the former into the latter. Finally,
we present the two contributions of the paper : first, a variant of Spector’s bar recusion in
the Diller-Nahm setting, and then a demand-driven version of this operator.

2 Logical System and Programming Language

This section contains the definitions of the logical system and programming language that
we will use throughout the paper.

2.1 Logical System
The Dialectica interpretation was originally formulated in a “Hilbert-style” presentation
of arithmetic. Moreover, nowadays it is still often presented as a translation on formulas
that satisfies a soundness theorem. In this setting, the construction of the witness x⃗ of the
interpretation ∃x⃗∀y⃗AD (x⃗, y⃗) of a formula A is hidden in the proof of the soundness theorem.
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Γ ⊢ pi : Ai

Γ ⊢ π : ⊥
Γ ⊢ ⊥A (π) : A

Γ ⊢ π : A ⇒ ⊥
Γ ⊢ ¬i (π) : ¬A

Γ, pn+1 : An+1 ⊢ π : B

Γ ⊢ λpn+1.π : An+1 ⇒ B

Γ ⊢ π : A
x/∈F V (Γ)

Γ ⊢ λx.π : ∀x A

Γ ⊢ π : ¬A
Γ ⊢ ¬e (π) : A ⇒ ⊥

Γ ⊢ π1 : A ⇒ B Γ ⊢ π2 : A

Γ ⊢ π1 π2 : B
Γ ⊢ π : ∀x A

Γ ⊢ π t : A [t/x]

Figure 2 Rules of first-order logic.

In contrast we present here the Dialectica interpretation as a proof translation, in the line
of Pédrot [9, 10]. For that, we define precisely the logical system under consideration as
a version of natural deduction in a sequent-calculus presentation (with explicit listing of
hypotheses). This system is equipped with proof terms in order to ease the definition of
the Dialectica interpretation, but these should be seen as purely syntactic artefacts without
any notion of β-reduction or cut-elimination. We then give an inductive definition of the
program witnessing the interpretation of a formula.

We work in first-order logic parameterized by a signature that is a set of function symbols
(ranged over by metaviariable f) and predicate symbols (ranged over by metaviariable P )
with arities:

t, u ::= x | f (t1, . . . , tn) A, B ::= P (t1, . . . , tn) | ⊥ | ¬A | A ⇒ B | ∀x A

We use a primitive negation operator rather than a definition in terms of implication and
absurdity. This is completely equivalent but will simplify a lot the functional interpretation
in the next sections, especially that of the double-negation shift principle. We consider only
a reduced set of connectives with no conjunction or existential quantification in order to
simplify the presentation, but these could easily be handled. The rules of the system are
given in figure 2, where Γ denotes a context of the form p⃗ : A⃗ ≡ p1 : A1, . . . , pn : An, where
we use ≡ throughout the paper for definitions at the meta-level.

Arithmetic

In the Dialectica interpretation, the theory under consideration is that of arithmetic. There
are 4 function symbols: 0 or arity 0, S of arity 1, + and × of arity 2, for which we use infix
notation. The only predicate symbol is = of arity 2, for which we use infix notation as well.

The axioms of arithmetic are, as usual, those of equality (reflexivity and Leibniz’s scheme),
the 4 axioms defining addition and multiplication, non-confusion, injectivity of S and the
induction scheme. They are given in figure 3.

2.2 Programming Language
Gödel’s initial interpretation targeted quantifier-free arithmetic at finite types: system T.
Nowadays, system T is usually described as primitive recursive functionals, or simply-typed
lambda-calculus with natural numbers.

We use a programming language that is a variant of system T where the type of natural
numbers is replaced with types σ∗ of lists of elements of type σ, for each σ. This type
is extensively used for encoding sets that are manipulated in the Diller-Nahm variant of
Dialectica. Also, we use it to encode the types of booleans and natural numbers, and the
initial segments and partial functions manipulated in our versions of bar recursion.
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∀x (x = x) ∀xy (x = y ⇒ A [x/z] ⇒ A [y/z])

∀x (x + 0 = x) ∀xy (x + S y = S (x + y))

∀x (x × 0 = 0) ∀xy (x × S y = x × y + x)

∀x ¬ (S x = 0) ∀xy (S x = S y ⇒ x = y)

A [0/x] ⇒ ∀x (A ⇒ A [S x/x]) ⇒ ∀x A

Figure 3 Axioms of arithmetic.

x:σ∈Γ
Γ ⊢ x : σ

Γ, x : σ ⊢ M : τ

Γ ⊢ λx.M : σ → τ
Γ ⊢ M : σ → τ Γ ⊢ N : σ

Γ ⊢ M N : τ

Γ ⊢ M : σ Γ ⊢ N : τ
Γ ⊢ ⟨M, N⟩ : σ × τ

Γ ⊢ M : σ × τ
Γ ⊢ M.1 : σ

Γ ⊢ M : σ × τ
Γ ⊢ M.2 : τ Γ ⊢ ⟨⟩ : 1

Γ ⊢ nil : σ∗ Γ ⊢ M : σ Γ ⊢ N : σ∗

Γ ⊢ M :: N : σ∗ Γ ⊢ rec : τ → (σ → σ∗ → τ → τ) → σ∗ → τ

Figure 4 Typing rules of the programming language.

For simplicity we also include unit and product types in our programming language. The
types and terms are as follows, the typing rules are given in figure 4:

σ, τ ::= σ → τ | σ × τ | 1 | σ∗ M, N ::= x | λx.M | M N | ⟨M, N⟩ | M.1 | M.2 | ⟨⟩
| nil | M :: N | rec

Term constructions are, in order: variable, abstraction, application, pairing, first and second
projections, unit, empty list, list consing and recursion on lists.

The operational semantics of this language is given by the following β-reduction system:

(λx.M) N →β M [N/x] ⟨M, N⟩ .1 →β M ⟨M, N⟩ .2 →β N

rec P Q nil →β P rec P Q (M :: N) →β Q M N (rec P Q N)

As with Gödel’s system T, every program of this simple programming language terminates.
As usual we combine variables bound by λ-abstraction, so λxy.y x is a notation for

λx.λy.y x. Also, if some variable is bound in an expression, we allow the use of _ in place
of the variable if the variable does not appear free in the term. For example, λx_.x is a
notation for λxy.x.

We encode Booleans in our programming language as follows:

bool ≡ 1∗ false ≡ nil true ≡ ⟨⟩ :: nil

With these definitions we can derive the following typing rules (a dashed line means that a
rule is admissible):

Γ ⊢ false : bool Γ ⊢ true : bool

We define case analysis on Booleans via case analysis on lists, for which we can derive the
expected typing rule:
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if M then N else P ≡ rec P (λ_ _ _.N) M

Γ ⊢ M : bool Γ ⊢ N : σ Γ ⊢ P : σ
Γ ⊢ if M then N else P : σ

We also define a few basic operations on Booleans:

M & N ≡ if M then N else false Γ ⊢ M : bool Γ ⊢ N : bool
Γ ⊢ M & N : bool

¬M ≡ if M then false else true Γ ⊢ M : bool
Γ ⊢ ¬M : bool

We also encode natural numbers as follows:

nat ≡ 1∗ 0 ≡ nil S M ≡ ⟨⟩ :: M Γ ⊢ 0 : nat
Γ ⊢ M : nat

Γ ⊢ S M : nat

Recursion on natural numbers and its expected derivable typing rule are as follows:

recN M N ≡ rec M (λ_.N) Γ ⊢ M : σ Γ ⊢ N : nat → σ → σ

Γ ⊢ recN M N : nat → σ

We also define a few basic operations on natural numbers:

M = N ≡ recN (recN true (λ_ _.false)
) (

λ_f.recN false (λx_.f x)
)

M N

Γ ⊢ M : nat Γ ⊢ N : nat
Γ ⊢ M = N : bool

M − N ≡ recN (λx.x)
(
λ_f.recN 0 (λx_.f x)

)
N M

Γ ⊢ M : nat Γ ⊢ N : nat
Γ ⊢ M − N : nat

M < N ≡ S M − N = 0 Γ ⊢ M : nat Γ ⊢ N : nat
Γ ⊢ M < N : bool

3 Diller-Nahm interpretation

We define in this section the Diller-Nahm variant [2] of the Dialectica interpretation [5]. We
present the interpretation as an explicit translation from proofs to programs and since we
work with natural deduction we handle contexts similarly to Pédrot [9, 10].

We define some notations that will make the interpretation easier to read. First, since
we need an interpretation for the ex falso quodlibet principle, we introduce dummy terms at
each type:

□σ→τ ≡ λ_.□τ □σ×τ ≡ ⟨□σ,□τ ⟩ □1 ≡ ⟨⟩ □σ∗ ≡ nil

Second, since we work in the Diller-Nahm variant of the Dialectica interpretation in which
several witnesses can be collected for a single formula, we extensively use an encoding of sets
as lists. Note that we impose no restriction on this encoding, so that a single element can
appear several times and the order of elements is of no importance. We use set notations as
follows:

{σ} ≡ σ∗ {M1; M2; . . . ; Mn} ≡ M1 :: M2 :: · · · :: Mn :: nil

Γ ⊢ M1 : σ Γ ⊢ M2 : σ · · · Γ ⊢ Mn : σ

Γ ⊢ {M1; M2; . . . ; Mn} : {σ}

M ∪ N ≡ rec M (λx_z.x :: z) N
Γ ⊢ M : {σ} Γ ⊢ N : {σ}

Γ ⊢ M ∪ N : {σ}
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{N | x ∈ M ∧ P} ≡ rec nil (λx_z.if P then N :: z else z) M

Γ ⊢ M : {σ} Γ, x : σ ⊢ N : τ Γ, x : σ ⊢ P : bool
Γ ⊢ {N | x ∈ M ∧ P} : {τ}

{N | x ∈ M} ≡ {N | x ∈ M ∧ true} Γ ⊢ M : {σ} Γ, x : σ ⊢ N : τ

Γ ⊢ {N | x ∈ M} : {τ}⋃
M ≡ rec nil (λx_z.x ∪ z) M

Γ ⊢ M : {{σ}}
Γ ⊢

⋃
M : {σ}

∀x ∈ M, N ≡ rec true (λx_z.N & z) M
Γ ⊢ M : {σ} Γ, x : σ ⊢ N : bool

Γ ⊢ ∀x ∈ M, N : bool

[0; M [ ≡ recN nil (λxy.x :: y) M
Γ ⊢ M : nat

Γ ⊢ [0; M [ : {nat}
In order to ensure the preservation of computations via the Dialectica interpretation,

Pédrot axiomatized abstract multisets via a series of laws that these should satisfy. Here
we work with a concrete implementation of these abstract multisets as lists. To simplify
the presentation we do not define any reduction on proofs, and therefore we do not aim at
preservation of computations. Consequently we do not define our implementation of sets in
such a way that they satisfy the monadic and distributive laws of Pédrot. Choosing carefully
the implementation should allow to satisfy some of these laws. Some other (in particular
commutativity of union) would be more technical to implement in a terminating language.

The Dialectica interpretation provides a computational interpretation of proofs. Therefore,
the meaning of such an interpretation is defined up to equivalence of programs: witnesses of
formulas are equivalence classes of programs. In our case this equivalence is β-equivalence =β ,
defined as the reflexive symmetric transitive contextual closure of β-reduction →β . When this
is clear from the context we will describe an equivalence class by one of its representatives.

Since we work in the context of first-order logic, the whole interpretation is parameterized
by an interpretation of the function and predicate symbols. In the general case, the type of
programs interpreting first-order terms should be a parameter of the interpretation as well.
However, since in the present work we only consider arithmetic and its extensions, we fix this
type to be nat, the type of natural numbers. The interpretation is therefore parameterized
by the interpretations of function and predicate symbols. The interpretation of a function
symbol f of arity n is a program:

f• : nat → . . . → nat → nat (n arguments)

and the interpretation of a predicate symbol P of arity n is a set:

P • ⊆ natn
/=β

of n-tuples of (equivalence classes of) programs of type nat, where nat/=β
denotes the set of

equivalence classes of terms of type nat. This interpretation is extended to all first-order
terms as follows, so that FV (t) = FV (t•):

x• ≡ x (f (t1, . . . , tn))• ≡ f• t•
1 . . . t•

n

Following Pédrot we define for each formula A the type of its witnesses A (Pédrot’s W (A))
and the type of its counterwitnesses A (Pédrot’s C (A)). Since we use a non-dependently-
typed language, the types of witnesses and counterwitnesses of atomic predicates P (t1, . . . , tn)
cannot depend on t•

1, . . . , t•
n, even though the truth of these predicates does depend on them.
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witnesses counterwitnesses
P (t1, . . . , tn) ≡ 1 P (t1, . . . , tn) ≡ 1

⊥ ≡ 1 ⊥ ≡ 1
¬A ≡ A →

{
A
}

¬A ≡ A

A ⇒ B ≡ (A → B) ×
(
A → B →

{
A
})

A ⇒ B ≡ A × B

∀x A ≡ nat → A ∀x A ≡ nat × A

Figure 5 Types of witnesses and counterwitnesses of formulas.

The interpretation itself therefore does not depend on the interpretations P • of predicates
P , but the correctness of the interpretation will be expressed via an orthogonality relation
afterwards. The types of witnesses and counterwitnesses of formulas are defined inductively
in figure 5.

We now lift this interpretation of formulas to an interpretation of proofs, so that a proof
of the sequent p⃗ : A⃗ ⊢ π : A (where p⃗ : A⃗ ≡ p1 : A1, . . . , pn : An) is interpreted as a collection
of programs with the following types, where FV

(
A⃗, A

)
⊆ x⃗:

x⃗ : nat, p⃗ : A⃗ ⊢ π• : A

x⃗ : nat, p⃗ : A⃗ ⊢ πp1 : A →
{

A1
}

...

x⃗ : nat, p⃗ : A⃗ ⊢ πpn : A →
{

An

}
The interpretation of proofs is given in figure 6, where some type superscripts have been added
to ease the reading. Note that (π1 π2)pj

involves the union of counterwitnesses comming
from both π1 and π2.

p•
i ≡ pi pipj

≡

λqAi . {q} if j = i

λ_Ai . {} if j ̸= i

(⊥A (π))• ≡ □A (⊥A (π))pj
≡ λ_A.πpj

⟨⟩

(¬i (π))• ≡ λx.π•.2 x ⟨⟩ (¬i (π))pj
≡ λq¬A.πpj

⟨q, ⟨⟩⟩

(¬e (π))• ≡ ⟨λ_. ⟨⟩ , λx.λ_.π• x⟩ (¬e (π))pj
≡ λqA⇒⊥.πpj

q.1

(λpn+1.π)• ≡
〈
λpn+1.π•, λpn+1.πpn+1

〉
(λpn+1.π)pj

≡ λqAn+1⇒B .
(
λpn+1.πpj

)
q.1 q.2

(π1 π2)• ≡ π•
1 .1 π•

2 (π1 π2)pj
≡ λqB .

(
π1pj

⟨π•
2 , q⟩

)
∪
(⋃{

π2pj
r
∣∣ r ∈ π•

1 .2 π•
2 q
})

(λx.π)• ≡ λx.π• (λx.π)pj
≡ λq∀x A.

(
λx.πpj

)
q.1 q.2

(π t)• ≡ π• t• (π t)pj
≡ λqA[t/x].πpj

⟨t•, q⟩

Figure 6 Diller-Nahm interpretation of proofs.
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M⊥P (t1,...,tn)N iff (t•
1, . . . , t•

n) ∈ P •

M⊥⊥N is false
M⊥¬AN iff N⊥AP is false for some P ∈ M N

M⊥A⇒BN iff N.1⊥AP for all P ∈ M.2 N.1 N.2 implies M.1 N.1⊥BN.2
M⊥∀x AN iff M N.1⊥A[N.1/x]N.2

Figure 7 Definition of the orthogonality relation.

As explained before, the first-order structure is not reflected in this interpretation, as ⟨⟩
has the type interpreting any atomic formula, including ⊥. Similarly, λ_. {} has the type
interpreting ¬A for any formula A. Therefore, typing is not sufficient to ensure correctness
of the interpretation, both because of the first-order aspect of our logic and because the
Diller-Nahm variant manipulates “false” witnesses and counterwitnesses (M⊥¬AN only
requires ¬ (N⊥AP ) for some P ∈ M N). In order to express correctness, we define an
orthogonality relation between (equivalence classes of) witnesses and (equivalence classes of)
counterwitnesses of formulas that corresponds Gödel’s AD. When viewing the interpretation
as games, this orthogonality relation represents the outcome of the game: a witness is
orthogonal to a counterwitness whenever the witness wins against the counterwitness. In the
following, if N : {σ} then we write “M ∈ N” as a shorthand for “N =β {N1; . . . ; Nn} and
M =β Ni for some i”. If M : A and N : A, then M⊥AN is defined in figure 7.

With this orthogonality relation at hand we can now formulate the correctness theorem
of the interpretation:

▶ Theorem 1. If p⃗ : A⃗ ⊢ π : B is derivable in first-order logic and FV
(

A⃗, B
)

⊆ x⃗, then for
all X⃗ : ⃗nat, P⃗ : A⃗ and Q : B:

if for all i and for all R ∈ πpi

[
P⃗ , X⃗/p⃗, x⃗

]
Q we have Pi⊥AiR, then π•

[
P⃗ , X⃗/p⃗, x⃗

]
⊥BQ

Proof. By induction on π, see Pédrot [10]. ◀

This theorem states that whenever P⃗ are witnesses of A⃗ and Q is a counterwitness of B,
if for each i Pi wins against every counterwitness of Ai computed by πpi (using P⃗ and Q),
then the witness of B computed by π• (using P⃗ ) wins against Q.

Arithmetic

The interpretations of function symbols of arithmetic are the expected implementations of
operations on natural numbers in our programming language, and the only predicate of
arithmetic, equality, is interpreted as:

=•≡ {(M, M) | M : nat}

The interpretation of the axioms of arithmetic, except for induction, is relatively
straightforward and is given in figure 8. The case of induction is more complex. Its
interpretation is of the form ⟨λp. ⟨λq.a, λqr.c [r.1, r.2/z, r]⟩ , λps.d [s.1, s.2.1, s.2.2/q, z, r]⟩,
where we define a, b, c and d as follows:
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∀x (x = x) λ_. ⟨⟩
∀xy (x = y ⇒ A [x/z] ⇒ A [y/z]) λ_ _.

〈
λ_. (λp.p)•

, λ_ _. {⟨⟩}
〉

∀x (x + 0 = x) λ_. ⟨⟩
∀xy (x + S y = S (x + y)) λ_. ⟨⟩
∀x (x × 0 = 0) λ_. ⟨⟩
∀xy (x × S y = x × y + x) λ_. ⟨⟩
∀x ¬ (S x = 0) λ_ _. {⟨⟩}
∀xy (S x = S y ⇒ x = y) λ_ _. ⟨λ_. ⟨⟩ , λ_ _. {⟨⟩}⟩

Figure 8 Interpretation of the axioms of arithmetic, except induction.

p : A [0/x], q : ∀x (A ⇒ A [S x/x]) ⊢ a : ∀x A

p : A [0/x], q : ∀x (A ⇒ A [S x/x]), z : nat, r : A ⊢ b : nat →
{

A
}

p : A [0/x], q : ∀x (A ⇒ A [S x/x]), z : nat, r : A ⊢ c :
{

A [0/x]
}

p : A [0/x], q : ∀x (A ⇒ A [S x/x]), z : nat, r : A ⊢ d :
{

∀x (A ⇒ A [S x/x])
}

a ≡ recN p (λxy. (q x) .1 y)

b ≡ recN {r}
(

λxy.
⋃

{(q (z − (S x))) .2 (a (z − (S x))) g | g ∈ y}
)

c ≡ b z

d ≡
⋃

{{⟨n, ⟨a n, g⟩⟩ | g ∈ b (z − (S n))} | n ∈ [0; z[}

a performs standard recursion on natural numbers, while b 0, . . . , b z compute sets of
counterwitnesses to A [n/x] for n from z down to 0, starting with counterwitness r for
A [z/x]. The following lemma is the core of correctness of this interpretation:

▶ Lemma 2. Let P : A [0/z], Q : ∀x (A [x/z] ⇒ A [S x/z]), Z : nat and R : A, and
let A ≡ a [P, Q/p, q], B ≡ b [P, Q, Z, R/p, q, z, r], C ≡ c [P, Q, Z, R/p, q, z, r] and D ≡
d [P, Q, Z, R/p, q, z, r].

if for any S ∈ C we have P⊥A[0/z]S

and if for any S ∈ D we have Q⊥∀x(A[x/z]⇒A[S x/z])S

then for any N ∈ [0; S Z[ and S ∈ B (Z − N) we have A N⊥A[N/z]S

Proof. By induction on N from 0 to Z. ◀

With this lemma at hand it becomes easy to prove correctness of the interpretation of
arithmetic:

▶ Theorem 3. For any axiom A of arithmetic interpreted as a : A, for all M : A, a⊥AM .
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4 Double-Negation Shift

This section is devoted to the main contributions of this paper: bar recursive interpretations
of the double-negation shift (DNS) principle in the Diller-Nahm variant of the Dialectica
interpretation.

The negative translation provides an interpretation of classical logic into intuitionistic
logic, at the expense of changing the formula proven: if A is provable in classical logic then A¬

is provable in intuitionistic logic, where A¬ is the negative translation of A defined inductively
on the structure of A. This negative translation can be extended to arithmetic because the
negative translation of every axiom of arithmetic is derivable in intuitionistic arithmetic.
Combined with Friedman’s translation [4] one can even eliminate classical logic without
changing the formula in the case of Π0

2 formulas, which means that classical arithmetic is
conservative over intuitionistic arithmetic for this class of formulas.

When it comes to richer theories, however, negative translation can fail. In particular,
the negative translation of the axiom of choice fails to be an intuitionistic consequence of the
axiom of choice. In order to recover the negative translation on such theories, one can use
the DNS principle:

∀x¬¬A ⇒ ¬¬∀x A

Using this principle, A¬ becomes an intuitionistic consequence of A for any formula A. This
allows the extension of the negative translation from plain logic to any theory. In particular,
negative translation can then be applied to classical analysis using DNS on natural numbers.
Combining the negative translation with an extension of the Dialectica interpretation to the
DNS principle on natural numbers, one obtains a computational interpretation of classical
analysis.

In the past, several versions of bar recursion have been used to provide a Dialectica
interpretation of the DNS principle, including Spector’s original bar recursion [11], as well as
Oliva-Powell’s demand-driven variant [8], inspired by Berardi-Bezem-Coquand’s demand-
driven operator [1]. In the following sections we give new versions of bar recursion that are
compatible with the Diller-Nahm variant of the Dialectica interpretation. This extends the
Dialectica interpretation to classical theories with non-decidable atomic predicates.

4.1 Diller-Nahm Bar Recursion

In this section we define an adaptation of Spector’s original bar recursion to the Diller-Nahm
setting. Bar recursion builds incrementally finite aproximations to a witness of ∀x A (x).
These finite aproximations are sequences of witnesses for A (0) , . . . , A (n − 1) for some n ∈ N.
We encode these approximations as lists of programs of type A, so that if for i < n, ai : A is
a witness for A (i), then an−1 :: . . . :: a1 :: a0 :: nil is such an approximation. We define the
following notation for the length of an approximation:

|M | ≡ rec 0 (λ_ _z.S z) M
Γ ⊢ M : σ∗

Γ ⊢ |M | : nat

We also define the “dummy” completion of an approximation an−1 :: . . . :: a1 :: a0 :: nil into
a full sequence mapping i < n to ai and i ≥ n to □σ:

M+ ≡ λn.rec□σ (λxyz.if n = |y| then x else z) M
Γ ⊢ M : σ∗

Γ ⊢ M+ : nat → σ



V. Blot 32:11

Finally, each relation between nat and σ can be turned into a function from nat to {σ}:

M̂ ≡ λx. {y.2 | y ∈ M ∧ y.1 = x}
Γ ⊢ M : {nat × σ}
Γ ⊢ M̂ : nat → {σ}

Computing the required type for a program interpreting the DNS principle gives:

∀x ¬¬A ⇒ ¬¬∀x A ≡ (∀x ¬¬A → ¬∀x A → {nat → A})
×
(
∀x ¬¬A → ¬∀x A →

{
nat ×

(
A →

{
A
})})

∀x ¬¬A ≡ nat →
(
A →

{
A
})

→ {A} ¬∀x A ≡ (nat → A) →
{

nat × A
}

The interpretation is therefore a pair of two programs a and b with respective types:

a :
(
nat →

(
A →

{
A
})

→ {A}
)

→
(
(nat → A) →

{
nat × A

})
→ {nat → A}

b :
(
nat →

(
A →

{
A
})

→ {A}
)

→
(
(nat → A) →

{
nat × A

})
→
{

nat ×
(
A →

{
A
})}

Unfolding the definitions we see that in order to satisfy correctness, a and b should satisfy
for any arguments P : nat →

(
A →

{
A
})

→ {A} and Q : (nat → A) →
{

nat × A
}

:

if for any M ∈ b P Q, P ⊥∀x¬¬AM

then there is some M ∈ a P Q such that for all N ∈ Q M, M⊥∀x AN

In other words, we should put in b P Q counterwitnesses of ∀x¬¬A such that whenever
P wins against all of them, we can use that hypothesis to ensure that a P Q contains at
least an element M that wins against every element of Q M . The elements of a P Q will
be “dummy” completions of finite approximations, that is, they will be of the form S+ for
S : A∗. Given such a finite approximation S, if Q S+ contains some ⟨N, R⟩ then S+ N should
win against R. But if N ≥ |S| then S+ N is the dummy value □A, meaning that S is not
a sufficiently precise approximation in order to be correct. The idea is then to extend S

with a value at point |S|, using P |S| (which is a witness for ¬¬A [|S| /x]) and continue the
process. Computation stops when a sufficiently precise approximation is found, that is, an
approximation S such that for all ⟨N, R⟩ ∈ Q S+, we have N < |S|.

Our variant dnbr of bar recursion is an operator that, given an approximation in A∗,
computes extensions of this approximation in such a way that at least one of these extensions
is correct. Then a is obtained by running this operator on the empty approximation. In
order to distinguish sufficiently precise approximations we use the notation:

S ⋐ Q ≡ ∀z ∈ Q S+, z.1 < |S| Γ ⊢ Q : (nat → σ) → {nat × τ} Γ ⊢ S : σ∗

Γ ⊢ S ⋐ Q : bool

In order to facilitate the reading we also use the notation:

let f = M in N ≡ (λf.N) M
Γ ⊢ M : σ Γ, f : σ ⊢ N : τ

Γ ⊢ let f = M in N ≡ (λf.N) M : τ

We now extend our programming language with this operator and its reduction rule:

dnbr :
(
nat →

(
A →

{
A
})

→ {A}
)

→
(
(nat → A) →

{
nat × A

})
→ A∗ → {A∗}

dnbr P Q S →β {S} ∪ if S ⋐ Q then {}
else let f = λx.dnbr P Q (x :: S) in⋃{

f x
∣∣∣x ∈ P |S|

(
λy.
⋃{

Q̂ t+ |S|
∣∣∣ t ∈ f y ∧ t ⋐ Q

})}
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Observe that given P , Q and an approximation S as input, if for every ⟨N, R⟩ ∈ Q S+ we
have N < |S| then S ⋐ Q so S is a potentially correct approximation and the recursive calls
stop. Otherwise, new recursive calls are made on extensions of S with values obtained from
P |S|.

A fundamental result about this operator is that for any P , Q and S, dnbr P Q S has a
normal form. Otherwise, there would be an infinite sequence of programs M0, M1, . . . such
that for any k there exists ⟨N, R⟩ ∈ Q (Mk−1 :: . . . :: M1 :: M0 :: nil)+ with N > k. But
continuity of λf. {x.1 | x ∈ Q f} : (nat → A) → {nat} implies that the sequence:

{
x.1
∣∣x ∈ Q nil+} ,

{
x.1
∣∣∣x ∈ Q (M0 :: nil)+

}
, . . . ,{

x.1
∣∣∣x ∈ Q (Mk−1 :: . . . :: M1 :: M0 :: nil)+

}
, . . .

is ultimately constant, hence the contradiction.
With this operator at hand we can finally define a and b, and therefore the interpretation

of the DNS principle in the Diller-Nahm variant of the Dialectica interpretation:

a ≡ λpq.
{

s+ ∣∣ s ∈ dnbr p q nil ∧ s ⋐ q
}

b ≡ λpq.

{〈
|s| , λx.

⋃{
q̂ t+ |s|

∣∣∣ t ∈ dnbr p q (x :: s) ∧ t ⋐ q
}〉 ∣∣∣∣∣ s ∈ dnbr p q nil

∧ ¬ s ⋐ q

}

Correctness of this interpretation relies on the following lemma:

▶ Lemma 4. Let P : nat →
(
A →

{
A
})

→ {A} and Q : (nat → A) →
{

nat × A
}

and let
D ≡ dnbr P Q. If for any M ∈ b P Q we have P⊥∀x¬¬AM , then there exists a sequence of
programs M0, . . . , Mn−1 such that if we write Si ≡ Mi−1 :: . . . :: M0 :: nil:
(a) D nil = D S0 ⊇ D S1 ⊇ . . . ⊇ D Sn

(b) for all i ≤ n, S ∈ D Si and N ∈ Q S+, if S ⋐ Q and N.1 < i then S+
i N.1⊥A[N.1/x]N.2

(c) for all N ∈ Q S+
n , N.1 < n

Proof. S0 = nil trivially satisfies (b). Suppose now M0, . . . , Mk−1 already defined, and
satisfying (a) and (b). If for all N ∈ Q S+

k , N.1 < k, then we choose n = k and we are done
since (c) is verified. Otherwise we have:

D Sk =β {Sk} ∪
⋃{

D (x :: Sk)
∣∣∣x ∈ P k

(
λy.
⋃{

Q̂ t+k
∣∣∣ t ∈ D (y :: Sk) ∧ t ⋐ Q

})}
and we have Sk ∈ D Sk ⊆ C nil, so:〈

k, λx.
⋃{

Q̂ t+k
∣∣∣ t ∈ D (x :: Sk) ∧ t ⋐ Q

}〉
∈ b P Q

and therefore by hypothesis:

P⊥∀x¬¬A

〈
k, λx.

⋃{
Q̂ t+k

∣∣∣ t ∈ D (x :: Sk) ∧ t ⋐ Q
}〉

which means that there must be some:

M ∈ P k
(

λx.
⋃{

Q̂ t+k
∣∣∣ t ∈ D (x :: Sk) ∧ t ⋐ Q

})
such that for all:

N ∈
⋃{

Q̂ t+k
∣∣∣ t ∈ D (M :: Sk) ∧ t ⋐ Q

}
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we have M⊥A[k/x]N . Define Mk ≡ M . We have (a) since D Sk+1 ≡ D (Mk :: Sk) ⊆ D Sk.
For (b), let S ∈ D Sk+1 and N ∈ Q S+ such that S ⋐ Q and N.1 < S k. If N.1 < k

then S+
k+1 N.1 =β S+

k N.1 and we are done by hypothesis on Sk. Otherwise N.1 =β k and
S+

k+1 N.1 =β Mk. But then we can prove that:

N.2 ∈
⋃{

Q̂ t+k
∣∣∣ t ∈ D (Mk :: Sk) ∧ t ⋐ Q

}
so we obtain Mk⊥A[k/x]N.2 by property of Mk. ◀

Finally we can conclude that our interpretation of the DNS principle is correct:

▶ Theorem 5. For any P : nat →
(
A →

{
A
})

→ {A} and Q : (nat → A) →
{

nat × A
}

:

if for any M ∈ b P Q we have P⊥∀x¬¬AM

then there is some M ′ ∈ a P Q such that for all N ∈ Q M ′ we have M ′⊥∀x AN

Proof. Apply the previous lemma and take M ′ = S+
n . The conclusion follows from properties

2 and 3. ◀

We now discuss the relationship between our operator and Herbrand bar recursion [3]
(hBR). In the Diller-Nahm interpretation, finite sets appear only in the return type of the
“reverse component” of the witnesses of implication. In the Herbrand functional interpretation,
handling of standard and non-standard elements requires the use of finite sets in several places.
In particular both components of the witnesses of implication are finite sets. Nevertheless,
hBR is very similar in principle to dnbr. But besides technical differences there is also
a conceptual difference: dnbr handles the argument Q of type (nat → A) →

{
nat × A

}
more carefully than hBR. Indeed, for each t, Q t+ is a set of pairs ⟨N, R⟩ where R is a
potential counterwitness of A [N/x]. However, since dnbr on S extends S at point |S|,
the only useful counterwitnesses are those of the form ⟨|S| , R⟩, which are those we get
via Q̂ t+ |S|. Conversely, in hBR, Q is split in two components: q ≡ λf. {x.2 | x ∈ q f} and
ω ≡ λf.max {x.1 | x ∈ q f}. Therefore in q f the information about the N in A [N/x] for which
the element of q f is a counterwitness is lost. When extending S at point |S|, hBR considers all
the elements of q S+, that is, {x.2 | x ∈ Q S+}, instead of only {x.2 | x ∈ Q S+ ∧ x.1 = |S|}
(as dnbr does). In that sense hBR is less optimal that dnbr.

4.2 Diller-Nahm Demand-Driven Bar Recursion
In this last section we present the second contribution of the paper: a demand-driven version
of bar recursion in the context of the Diller-Nahm variant of the Dialectica interpretation.
The first demand-driven bar recursion was defined by Berardi, Bezem and Coquand in
the context of Kreisel’s realizability, but this was only recently adapted to the Dialectica
interpretation by Oliva and Powell. Here we take inspiration both from Oliva and Powell’s
operator, and from the version of bar recursion presented in the previous section.

Instead of working on initial segments, demand-driven bar recursion works on partial
sequences that may be defined at arbitrary points. We encode these partial functions as
lists of points, that is, lists of pairs of a natural number and its image. We define the empty
function and the extension of a function with a new value as follows:

ϵ ≡ nil Γ ⊢ ϵ : (nat × σ)∗

M [N 7→ P ] ≡ ⟨N, P ⟩ :: M
Γ ⊢ M : (nat × σ)∗ Γ ⊢ N : nat Γ ⊢ P : σ

Γ ⊢ M [N 7→ P ] : (nat × σ)∗
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Similarly to the _+ operator on initial segments, we define the “dummy” completion of a
partial function:

M† ≡ λn.rec□σ (λx_z.if x.1 = n then x.2 else z) M
Γ ⊢ M : (nat × σ)∗

Γ ⊢ M† : nat → σ

We also define the domain of definition of a partial function as follows:

dom (M) ≡ rec {} (λx_z. {x.1} ∪ z) M
Γ ⊢ M : (nat × σ)∗

Γ ⊢ dom (M) : {nat}

We will also need some more operations on sets:

M \ N ≡ {x | x ∈ M ∧ ∀y ∈ N, ¬ (x = y)} Γ ⊢ M : {nat} Γ ⊢ N : {nat}
Γ ⊢ M \ N : {nat}

M ⊆ N ≡ ∀x ∈ M, ¬∀y ∈ N, ¬ (x = y) Γ ⊢ M : {nat} Γ ⊢ N : {nat}
Γ ⊢ M ⊆ N : bool

Similarly to the ⋐ relation on initial segments, sufficiently precise partial functions are the
ones satisfying:

S ∝ Q ≡ dom
(
Q S†) ⊆ dom (S) Γ ⊢ Q : (nat → σ) → {nat × τ} Γ ⊢ S : (nat × σ)∗

Γ ⊢ S ∝ Q : bool

Finally, we define an operator that picks an element in a non-empty set:

choose (M) ≡ M ? {nil 7→ □σ | x :: _ 7→ x} Γ ⊢ M : {σ}
Γ ⊢ choose (M) : σ

The new demand-driven bar recursion operator is very similar to the previous one, except
that if some N ∈ Q S† is such that N.1 falls outside the domain of definition of S we do not
discard N and extend the function in a linear order as before, but we use this N.1 as a hint
and extend the current partial function at this point.

We extend our programming language with the following demand-driven bar recursion
operator and its reduction rule:

dnddbr :
(
nat →

(
A →

{
A
})

→ {A}
)

→
(
(nat → A) →

{
nat × A

})
→ (nat × A)∗ →

{
(nat × A)∗}

dnddbr P Q S →β {S} ∪ if S ∝ Q then {}
else let f = λzx.dnddbr P Q (S [z 7→ x]) in

let z = choose
(
dom

(
Q S†) \ dom (S)

)
in⋃{

f z x
∣∣∣x ∈ P z

(
λy.
⋃{

Q̂ t† z
∣∣∣ t ∈ f z y ∧ t ∝ Q

})}
Note that while in the previous section the expansions were always performed at |S|, here we
expand the function at a point chosen in the domain of Q S† but outside the domain of S.
Since the final goal is to obtain a partial function S such that S ∝ Q, choosing such a point
is more natural and may avoid some useless recursive calls.

As before, the continuity of λf.dom (Q f) ensures that dnddbr P Q S has a normal form
for every arguments P , Q and S.

Using this new operator we define the demand-driven interpretation of the DNS principle
as follows:

a ≡ λpq.
{

s† ∣∣ s ∈ dnddbr p q ϵ ∧ s ∝ q
}



V. Blot 32:15

b ≡ λpq.


let z = choose

(
dom

(
q s†) \ dom (s)

)
in(

λz.

〈
z, λx.

⋃{
q̂ t† z

∣∣∣∣∣ t ∈ dnddbr p q (s [z 7→ x])
∧ t ∝ q

}〉) ∣∣∣∣∣∣∣∣
s ∈ dnddbr p q ϵ

∧ ¬ s ∝ q


The following lemma is an adaptation of the one in the previous section:

▶ Lemma 6. Let P : nat →
(
A →

{
A
})

→ {A} and Q : (nat → A) →
{

nat × A
}

and let
D ≡ dnddbr P Q. If for any M ∈ b P Q we have P⊥∀x¬¬AM , then there exists a sequence of
programs N0, M0, . . . , Nn−1, Mn−1 such that if we write Si ≡ ϵ [N0 7→ M0] . . . [Ni−1 7→ Mi−1]:
(a) D ϵ = D S0 ⊇ D S1 ⊇ . . . ⊇ D Sn

(b) for all i ≤ n, S ∈ D Si and N ∈ Q S†

if S ∝ Q and N.1 ∈ dom (Si) then S†
i N.1⊥A[N.1/x]N.2

(c) for all N ∈ Q S†
n, N.1 ∈ dom (Sn)

Proof. S0 = ϵ trivially satisfies (b). Suppose now N0, M0, . . . , Nk−1, Mk−1 already defined,
and satisfying (a) and (b). If for all N ∈ Q S†

k, N.1 ∈ dom (Sk), then we choose n = k and
we are done since (c) is verified. Otherwise, let Nk ≡ choose

(
dom

(
Q S†

k

)
\ dom (Sk)

)
. We

have:

D Sk =β {Sk}∪
⋃{

D (Sk [Nk 7→ x])

∣∣∣∣∣x ∈ P k

(
λx.

⋃{
Q̂ t†k

∣∣∣∣∣ t ∈ D (Sk [Nk 7→ x])
∧ t ∝ Q

})}

and we have Sk ∈ D Sk ⊆ D ϵ, so:〈
Nk, λx.

⋃{
Q̂ t† Nk

∣∣∣ t ∈ D (Sk [Nk 7→ x]) ∧ t ∝ Q
}〉

∈ b P Q

and therefore by hypothesis:

P⊥∀x¬¬A

〈
Nk, λx.

⋃{
Q̂ t† Nk

∣∣∣ t ∈ D (Sk [Nk 7→ x]) ∧ t ∝ Q
}〉

which means that there must be some:

M ∈ P Nk

(
λx.

⋃{
Q̂ t†Nk

∣∣∣ t ∈ D (Sk [Nk 7→ x]) ∧ t ∝ Q
})

such that for all:

N ∈
⋃{

Q̂ t†Nk

∣∣∣ t ∈ D (Sk [Nk 7→ M ]) ∧ t ∝ Q
}

we have M⊥A[Nk/x]N . Define Mk ≡ M . We have (a) since D Sk+1 ≡ D (Sk [Nk 7→ Mk]) ⊆
D Sk. For (b), let S ∈ D Sk+1 and N ∈ Q S† such that N.1 ∈ dom (Sk+1) = {Nk} ∪ dom (Sk).
If N.1 ∈ dom (Sk) then S†

k+1 N.1 =β S†
k N.1 and we are done by hypothesis on Sk. Otherwise

N.1 =β Nk and S†
k+1 N.1 =β Mk. But then we can prove that:

N.2 ∈
⋃{

Q̂ t†Nk

∣∣∣ t ∈ D (Sk [Nk 7→ Mk]) ∧ t ∝ Q
}

so we obtain Mk⊥A[Nk/x]N.2 by property of Mk. ◀

Correctness of this new interpretation of the DNS principle then follows from this lemma
as in the previous section.

Having a demand-driven operator allows for a potentially simpler interpretation, as well
as a more natural one. Indeed, there is no reason why the bar recursion operator should rely
on a particular ordering of natural numbers (as the non-demand-driven one does) and the
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intuitive interpretation should be that the operator only computes the witnesses that are
necessary, rather than collecting blindly witnesses until there are enough of them. This also
opens the possibility of interpreting theories other than arithmetic, where basic objects are
not natural numbers and may not have any natural ordering.

It should be noted that while choose (M) picks the first element of (the list encoding)
M , this property is never used in the proof. The only required property is that if M has
at least one element, then choose (M) picks an element of M (hence its name). Picking
any other element would work as well, and the choice we made seems arbitrary. In the
context of the standard Dialectica interpretation, Oliva and Powell did not encounter this
because in that case Q S† returns a single pair, and there is only one possible point at which
S can be extended. In the Diller-Nahm variant, however, there may be several points in
dom

(
Q S†)\dom (S) and there seems to be no canonical choice. Depending on the case it may

be interesting to use some heuristic to choose the point at which S is extended. One may also
wonder whether S could be extended at every point in dom

(
Q S†) \ dom (S) simultaneously,

but this seems impossible since the correctness proof requires that the sequence of partial
functions S0, S1, . . . is totally ordered.
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Dinaturality Meets Genericity: A Game Semantics
of Bounded Polymorphism
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Abstract
We study subtyping and parametric polymorphism, with the aim of providing direct and tractable
semantic representations of type systems with these expressive features. The liveness order uses
the Player-Opponent duality of game semantics to give a simple representation of subtyping: we
generalize it to include graphs extracted directly from second-order intuitionistic types, and use the
resulting complete lattice to interpret bounded polymorphic types in the style of System F<: , but
with a more tractable subtyping relation.

To extend this to a semantics of terms, we use the type-derived graphs as arenas, on which
strategies correspond to dinatural transformations with respect to the canonical coercions (“on the
nose” copycats) induced by the liveness ordering. This relationship between the interpretation of
generic and subtype polymorphism thus provides the basis of the semantics of our type system.
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1 Introduction and Related Work

Subtype and parametric polymorphism both provide powerful principles for data abstraction.
Combining them via bounded quantification increases this expressive power: they may be
used to write programs which are generic, but range over a constrained set of types (a program
of type ∀(X <: S).T may be instantiated only with a subtype of S). They have been used to
develop formal theories of key aspects of object oriented languages such as inheritance [3, 17].
This combination is not without its challenges: for example, discovering type systems in
which the fundamental problems, such as typechecking of terms, are efficiently decidable [19].

Our aim is to describe and relate simple, concrete notions of subtype and generic,
parametric polymorphism and show that they can work together to give an interpretation of
bounded polymorphism which is both tractable and intensional, yielding a formal semantic
account of the constraints on behaviour which can be expressed in such a setting. This
allows for models which combine bounded polymorphism with computational effects (in
particular, state) and, potentially, for semantics-based subtyping theories which capture
aspects of program behaviour.

Earlier models of subtyping, and bounded polymorphism in particular, are based on
realizability-style interpretations (partial equivalence relations) [2]. These have made an
important contribution to the semantic understanding and development of typing systems
such as System F<: [4, 7], but do not give a direct and effective characterization of the
subtyping relation. Indeed, the subtyping relation of System F<: (which they validate) is
itself problematic from an algorithmic point of view – in particular, it is undecidable [19].
There is a body of work dedicated to giving typing systems for bounded quantification which
are more tractable, but still expressive [12, 23, 10]. As advocated in [5], semantics should be
a guide to this search, and this is one of our motivations. We show that our interpretation
of subtyping may be used to interpret a typing system which subsumes several proposed
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restrictions of System F<: by distinguishing the introduction and elimination forms of bounded
quantification: in [16] this type system, and its subtyping and type-checking algorithms is
studied in more detail.

The nature of the subtype order makes it difficult to capture in a simple and finitary way
using semantic structures such as domains: a subtype may be a restriction of its supertype
(e.g. signed and unsigned integers) or an extension of it (e.g. record types). This dependence
on interaction with consuming contexts can be captured via the Player/Opponent duality of
game semantics in the liveness ordering [6]. We generalize this ordering to graph structures
which may be derived from AJM-style games, directly from types themselves via the subtype
ordering, and Hyland-Ong style arenas (which are are a widely-used basis for sequential and
concurrent semantics of functional and object-oriented programming languages), and and
use its lattice structure to construct an interpretation of bounded quantification.

The game semantics of parametric polymorphism underlying our interpretation is a novel
presentation of the well-bracketed second order games model [13, 14], which is based on
instantiating pairs of question-answer moves with copycat behaviour, structure which is
made more immediate by using second-order types as moves. The glue which binds this
to subtyping (and allows for a sound model of bounded quantification) is the dinaturality
of strategy instantiation with respect to copycat strategies – canonical subtyping coercions
which (as we show) are characteristic of the liveness order. Dinaturality has been proposed as
a core semantic principle for modelling polymorphism [1] but as a general property is neither
preserved by composition, nor possessed by all terms of System F [8]. However, copycat
dinaturality is the key to soundly modelling bounded abstraction and instantiation.

1.1 Contribution of this work
This work establishes the relevance and tractability of the calculus for bounded polymorphism
described in [16] by giving a concrete denotational semantics for it, in a setting (HO game
semantics) which is readily extendable with relevant computational effects such as stateful
objects. Giving such a semantics requires the integration of two kinds of polymorphism –
subtyping and parametric polymorphism. The more general contribution is to show that
this can be achieved in such a setting, using dinaturality and copycat strategies to relate
rather diverse elements of game semantics – the liveness order and the well-bracketing
condition. Finally, by generalising the liveness order, and showing that it may be described
directly at the syntactic level, on types, it is hoped to draw it to wider attention as a way of
understanding and studying subtyping.

2 Subtyping Graphs

The game semantic interpretation of subtyping as a liveness ordering was introduced by
Chroboczek [6] for games presented positionally, as sequences of moves. Here, we generalize it
to graph structures of disjoint sets of nodes, which include Hyland-Ong (HO) style arenas [11],
which provide a general setting for interpreting types in sequential and concurrent game
semantics. In the next section we will describe the derivation of these graphs directly from
the subtyping order on second-order types.

▶ Definition 1. A graph-arena is a rooted, directed graph with a partition of its non-root
nodes: given as a tuple (O, P, ▷) consisting of :

Disjoint sets of nodes O and P , not containing the distinguished root node ⊤.
An edge relation ▷ ⊆ (O ∪ P ∪ {⊤}) × (O ∪ P )

with the following properties:
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Well-Foundedness. There is no infinite chain . . . ▷ mi+1 ▷ mi ▷ . . . ▷ m0
Quasi-Arborescence. If l ▷ m, m ▷ n and m′ ▷ n then l ▷ m′.

l

��⑧⑧
⑧⑧
⑧⑧
⑧⑧

  
m

  ❅
❅❅

❅❅
❅❅

❅ m′

~~⑥⑥
⑥⑥
⑥⑥
⑥⑥

n

Quasi-Partition. If m ▷ n and m′ ▷ n then m, m′ ∈ O or m, m′ ∈ P

Fixing a graph U = (O, P, ▷), for any set of nodes A ⊆ O ∪ P , let E(A) = {u ∈ O ∪ P | ∃u ∈
A ∪ {⊤}.u ▷ v} be the set of vertices accessible from A. Writing ▷A for the restriction of ▷ to
A ∪ {⊤}:

▶ Definition 2. A sub-arena of U is a non-empty subset A ⊆ O ∪ P such that ⊤ ▷∗
A a for all

a ∈ A (i.e. a root-connected subgraph of U).

▶ Proposition 3. A ⊆ O ∪ P is a sub-arena if and only if A ⊆ E(A).

Proof. Evidently, if A is root-connected, every node in A is connected to one in A ∪ {⊤}.
The converse follows by Noetherian induction: if a is initial then it is evidently hereditarily
enabled in A. Otherwise there exists a′ ∈ A such that a′ ▷ a. By hypothesis, this is connected
to ⊤ through A and hence so is a. ◀

Partitioning E(A) into the sets P (A) = E(A) ∩ P and O(A) = E(A) ∩ O, we now define the
liveness order on sub-arenas.

▶ Definition 4. Let (S(U),≼) be the partially ordered set of sub-arenas of U , where ≼ is the
liveness order:

A ≼ B if and only if O(A) ∩ B ⊆ A and P (B) ∩ A ⊆ B.

In other words, A ≼ B if all of the P -nodes in A which are accesible from B are already in
B, and all O-nodes in B which are accessible from A are in A.

For example AJM-style games are given by sets of plays (alternating sequences over a set
of moves partitioned between Opponent and Proponent). Their arena graphs are given by
taking O and P to be the sets of plays ending in Proponent and Opponent moves, respectively,
with an edge from s to t if the latter has the form sa. In this case A ≼ B if for any Opponent
move a, s ∈ A and sa ∈ B implies sa ∈ A, and for any Proponent move b, s ∈ B and sb ∈ A

implies sb ∈ B. This is the liveness ordering defined in [6].
The following lemma is used to show that this is a well-defined partial order,

▶ Lemma 5. If A ≼ B and B ≼ C then E(A) ∩ E(C) ⊆ E(B).

Proof. By Noetherian induction. Suppose b ∈ E(A) ∩ E(C). If ⊤ � b then b ∈ E(B) as
required. Otherwise, there exist a ∈ A and c ∈ C such that a ▷ b and c ▷ b, and a, c ∈ P

or a, c ∈ O by quasi-partition. Supposing the former, by connectedness of A there exists
a′ ∈ A ∪ {⊤} such that a′ ▷ a. By quasi-arboresecence, a′ ▷ c, and so c ∈ E(A) ∩ E(C). By
induction hypothesis, c ∈ E(B) and so c ∈ P (B) ∩ C. Thus c ∈ B (since B ≼ C) and so
b ∈ E(B) as required. The case where a, c ∈ O is symmetric. ◀
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▶ Proposition 6. (S(U),≼) is a partial order.

Proof. Reflexivity is evident.
For transitivity, suppose A ≼ B and B ≼ C. Then O(A) ∩ C ⊆ O(A) ∩ E(C) ∩ C by

connectedness of C

⊆ O(A) ∩ O(B). ∩ C (by Lemma 5)
⊆ O(A) ∩ B (since B ≼ C)
⊆ A (since A ≼ B). By symmetry, P (C) ∩ A ⊆ C.

For antisymmetry, suppose A ≼ B and B ≼ A. Then A = A ∩ E(A) by connectedness
⊆ A ∩ E(B) by Lemma 5
= A ∩ O(B) ∪ P (B) = (A ∩ O(B)) ∪ (A ∩ P (B))
⊆ B ∪ B = B as A ≼ B and B ≼ A.

By symmetry, B ⊆ A and hence A = B as required. ◀

In fact (S(U),≼) is a complete lattice.

▶ Definition 7. The maximal sub-arena of a set X ⊆ O ∪ P is X◦ =
⋃

{A ∈ S(U) | A ⊆ X}.

X◦ is root-connected – X◦ =
⋃

{A ∈ S(U) | A ⊆ X} ⊆
⋃

{E(A) ∈ S(U) | A ⊆ X} = E(X◦)
– and thus a well-defined sub-arena.

▶ Lemma 8. For any X ⊆ O ∪ P , E(X◦) ∩ X = X◦

Proof. X◦ ⊆ E(X◦) and X◦ ⊆ X by definition. Conversely, suppose x ∈ X ∩ E(X◦).
Then X◦ ∪ {x} ⊆ X and X◦ ∪ {x} ⊆ E(X◦) and so X◦ ∪ {x} ⊆ X◦ – i.e. x ∈ X◦ and so
X ∩ E(X◦) ⊆ X◦ as required. ◀

The ≼-infimum of a set of sub-arenas ∆ ⊆ S(U) is the maximal sub-arena of the maximal
subset of

⋃
∆ in which any P-node which has an enabling node in two sub-arenas A, B ∈ ∆

is in their intersection.

▶ Definition 9. Given ∆ ⊆ S(U), let∧
∆ = {m ∈

⋃
∆ | m ∈ P (A) ∩ P (B) =⇒ m ∈ A ∩ B}

and define∧
∆ = (

∧
∆)◦.

▶ Proposition 10.
∧

∆ is the greatest lower bound of ∆ in S(U).

Proof. We suppose A ∈ ∆ and show that
∧

∆ ≼ A. First if m ∈ O(
∧

∆) ∩ A then m ∈
∧

∆,
as the condition m ̸∈ P (B) ∩ P (C) for all B, C ∈ ∆. So m ∈ E(

∧
∆) ∩

∧
∆

=
∧

∆ by Lemma 8.
Now suppose m ∈ P (A) ∩

∧
∆, so that m ∈ B ⊆ E(B) for some B ∈ ∆.

Then m ∈ P (A) ∩ P (B), implying that m ∈ A ∩ B ⊆ A as required, since m ∈
∧

∆.
Now we suppose C ≼ A for all A ∈ ∆ and show that C ≼

∧
∆. First, if m ∈ O(C) ∩

∧
∆

then m ∈ O(C) ∩ A for some A ∈ ∆ with C ≼ A and so m ∈ C as required. Now suppose
m ∈ P (

∧
∆)∩C. Then m ∈ P (A)∩C ⊆ A for some A ∈ ∆, so A ∈

⋃
∆. If m ∈ P (A)∩P (B)

for A, B ∈ ∆ (so C ≼ A, B) then m ∈ P (A) ∩ P (B) ∩ (C) ⊆ A ∩ B – i.e. m ∈ P (A) ∩ P (B))
implies m ∈ A ∩ B and thus m ∈

∧
∆. So m ∈ E(

∧
∆) ∩

∧
∆ =

∧
∆ by Lemma 8. ◀
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3 Arena Graphs from Types

As an example showing the relationship between the liveness ordering and subtyping, (and a
step towards a semantics of bounded quantification) we derive arena-graphs directly from
the subtyping relation of System F⊤, which is System F (the second-order λ-calculus [9, 21])
extended with with products and a supertype ⊤ [4] – i.e. its set of types is given by the
grammar:

S ::= ⊤ | X | S → S | S × S | ∀X.S

The ⊤ type allows for a for non-trivial subtyping relation, given by the following derivation
rules:

Top
T <: ⊤ Refl

T <: T
T <: T ′ T ′ <: T ′′

Trans
T <: T ′′

S′ <: S T <: T ′
→

S → T <: S′ → T ′
S <: S′ T <: T ′

×
S × T <: S′ × T ′

T <: T ′
∀

∀X.T <: ∀X.T ′

For example, the standard System F representation of the Booleans – the type ∀X.X →
X → X has the subtypes ∀X.⊤ → X → X, ∀X.X → ⊤ → X and ∀X.⊤ → ⊤ → X.

3.1 Type Arenas for System F⊤

We now derive an arena-graph in which to interpret System F⊤ subtyping. The sets O and
P of O-nodes and P-nodes (respectively) consist of the types given by the grammars:

o ::= X | ⊤ → o | p → ⊤ | ⊤ × o | o × ⊤ | ∀X.o

p ::= ⊤ → p | o → ⊤ | ⊤ × p | p × ⊤ | ∀X.p

where X ranges over an unbounded set of type variables. Note that each such node-type m

contains exactly one occurrence of a type-variable X, which may be bound or free, so we
may write it as m[X]. It is an O-node if X occurs “positively” and a P-node if it occurs
“negatively”.

The edge relation for our second-order type arena-graph is derived from the subtyping
order. Let <· be the covering relation for its restriction to O ∪ P ∪ {⊤} – i.e. m <· m′ if
m <: m′, m ̸= m′ and if m <: m′′ <: m′ then m′′ = m or m′′ = m′.

▶ Definition 11. Let ▷ be the least relation on (O ∪ P ∪ {⊤}) × (O ∪ P ) such that:
If o is <:-minimal (i.e. o′ <: o implies o = o′) then ⊤ ▷ o.
If p <· p′, p′ ▷ o and o <: p′ then o ▷ p.
If o <· o′, o ▷ p and o′ <: p then p ▷ o.

In other words, a node m is initial (enabled by ⊤) if its type variable occurs on the
right of every arrow (→) in m. Otherwise it has the form C[m′ → ⊤], for some unique
initial node m′, and is enabled by any node of the form C[⊤ → n], where n is an initial
node. Quasi-arboresecence follows from this characterization: while ▷ is not a tree, (e.g.
⊤ → (X × ⊤) ▷ X → ⊤ and ⊤ → (⊤ × X) ▷ X → ⊤, both ⊤ → (X × ⊤) and ⊤ → (⊤ × X)
are initial. Hence (O, P, ▷) is an arena – it is a bipartite graph by construction, and it is
well-founded, as any chain . . . on+1 ▷ pn ▷ on ▷ . . . ▷ p1 ▷ o1 contains an infinite descending
chain . . . <: on+1 <: on <: . . . <: o1: a straightforward induction establishes that no such
chain exists.

We may now define a sub-arena (its type-arena) for each type.
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▶ Definition 12. Let ⊑⊤ be the least congruence on types such that S ⊑⊤ ⊤ for all types S.
Then for any type T , let [[T ]] = {m ∈ O ∪ P∥ m ⊑⊤ T}◦

In other words, [[T ]] is the (root-connected) set of nodes which may be obtained from T by
replacing subterms of T with ⊤. For example, the Boolean type ∀X.X → X → X denotes
the set containing the O-node ∀X.⊤ → X and the P-nodes ∀X.⊤ → X → ⊤ and ∀X.X → ⊤.
The edge-relation restricts to these nodes as follows:

⊤ ▷ ∀X.⊤ → ⊤ → X, since ∀X.⊤ → ⊤ → X is a <:-minimal type.
∀X.⊤ → ⊤ → X ▷ ∀X.⊤ → X → ⊤, ∀X.X → ⊤ since ⊤ ▷ ∀X.⊤ → ⊤ → X, and
∀X.⊤ → ⊤ → X <: ∀X.⊤ → X → ⊤, ∀X.X → ⊤, ∀X.⊤ → X → ⊤, ∀X.X → ⊤ <· ⊤.

yielding the expected graph structure:

⊤

��
∀X.⊤ → ⊤ → X

vv❧❧❧
❧❧❧

❧❧❧
❧❧❧

❧

))❙❙❙
❙❙❙❙

❙❙❙❙
❙❙❙❙

∀X.X → ⊤ ∀X.⊤ → X → ⊤

Type-arenas may also be defined compositionally:
[[⊤]] = ∅, [[X]] = {X},
[[S × T ]] = [[S]] × [[T ]] ≜ {m × ⊤ | m ∈ S} ∪ {⊤ × m | m ∈ T} ,
[[S → T ]] = [[S]] → [[T ]] ≜ ({m → ⊤ | m ∈ S} ∪ {⊤ → m | m ∈ T})◦,
[[∀X.S]] = ∀X.M ≜ {∀X.m | m ∈ S}.

Using this decomposition, and the soundness of each of the subtyping derivation rules: e.g. if
A′ ≼ A and B ≼ B′ then A → B ≼ A′ → B′, it follows that subtyping is sound with respect
to the liveness order:

▶ Proposition 13. If S <: T then [[S]] ≼ [[T ]].

4 Bounded Quantification

We now describe an interpretation of bounded (universal) quantification types. The standard
typing system for the second-order λ-calculus with such types is System F<: [7, 4, 18], in which
terms of type ∀(X <: S).T may only be instantiated with a subtype of S. (Thanks to the
presence of a <:-greatest type ⊤, System F may be viewed as a proper subsystem of System
F<: by reading unbounded quantification ∀X.S as the bounded quantification ∀(X <: ⊤).S.)
However, System F<: lacks reasonable algorithmic characteristics – in particular, its subtyping
relation (and thus also typechecking) is undecidable [19]. The culprit is the rule for subtyping
bounded quantification:

E ⊢ T0 <: S0 E , X <: T0 ⊢ S1 <: T1 ∀ − Orig
E ⊢ ∀(X <: S0).S1 <: ∀(X <: T0).T1

where E is a subtyping context – a sequence of subtyping assumptions X1 <: S1, . . . , Xn <: Sn

such that X1, . . . , Xi−1 ⊢ Si for each 1 <: i <: n.
This problem is also reflected in the difficulty of giving a direct game semantics of the

System F<: subtyping relation. The game semantics for bounded quantification given in [15]
constructs a subtyping relation from the derivation system: in particular, the above rule
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does not respect the liveness in that model. Various modifications to F<: have been proposed
with the aim of giving a more tractable system [12, 23, 10, 5], including three restrictions of
this rule.

The first restricts the subtype order to quantified types which have identical bounds:

E , X <: S ⊢ T <: T ′
∀ − FunE ⊢ ∀(X <: S).T <: ∀(X <: S).T ′

This yields a calculus, Kernel F<: , which is well-behaved (subtyping and type-checking are
efficiently decidable) at the cost of expressiveness.

The second rule (proposed by Castagna and Pierce as the basis of System F⊤
<: [5]) does not

use assumptions about the bounds on variables when inferring the subtype relation between
the bodies.

E ⊢ T0 <: S0 E , X <: ⊤ ⊢ S1 <: T1 ∀ − Top
∀(X <: S0).S1 <: ∀(X <: T0).T1

It has an expressive subtyping relation with nice properties, including decidability. However,
it lacks the minimal typing property, and thus an evident typechecking algorithm.

The third rule [5] uses the greater of the two bounds when inferring the subtype relation
between the bodies.

E ⊢ T0 <: S0 E , X <: S0 ⊢ S1 <: T1 ∀ − LocE ⊢ ∀(X <: S0).S1 <: ∀(X <: T0).T1

This is expressive (subsuming both rules ∀−Fun and ∀−Top) but lacks a sound and complete
(let alone, decidable) subtyping algorithm.

In [16], it is shown that these three rules may coexist in a single system (FF⊤
<: ) for

subtyping bounded quantification by distinguishing the introduction and elimination forms
of bounded quantification, and making the former a subtype of the latter. This avoids the
pitfalls of ∀ − Top and ∀ − Loc but allows for a more expressive typing relation than Kernel
F<: .

4.1 System FF⊤
<:

The type system (System FF⊤
<: ) decorates bounded quantifiers with the superscripts {F, ⊤}

(F for the introduction form, which obeys the rule of Kernel F<: and ⊤ for the elimination
form, which obeys that of System F⊤

<: ). Raw types are given by the grammar:

T ::= ⊤ | X | T → T | ∀F(X <: T ).T | ∀⊤(X <: T ).T

Table 1 gives rules defining subtyping judgments, E ⊢ S <: T , where E is a context of type
variable bounds. These replace the single original typing rule for bounded quantification of
System F<: with the rules ∀ − Top, ∀ − Fun and ∀ − Loc.

4.2 Semantics of Bounded Quantification
To interpret bounded quantification, we first observe that type-variable substitution can
be extended to arenas. Node-types (which properly come with a context of free variables
Θ ⊢ m) are closed under substitution.

▶ Lemma 14. Given nodes Θ, X, Θ′′ ⊢ m and Θ, Θ′ ⊢ n, the substitution of n for any free
occurrence of X in m yields a node Θ, Θ′, Θ′′ ⊢ m[n/X].

FSCD 2023
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Table 1 Subtyping Rules for System FF⊤
<: .

Θ, X <: T, Θ′ ⊢ ⊤
Var

Θ, X <: T, Θ′ ⊢ X <: T

Θ ⊢ T TopΘ ⊢ T <: ⊤
Θ ⊢ T ReflΘ ⊢ T <: T

Θ ⊢ T <: T ′ Θ ⊢ T ′ <: T ′′
Trans

Θ ⊢ T <: T ′′

Θ ⊢ S′ <: S Θ ⊢ T <: T ′
→

Θ ⊢ S → T <: S′ → T ′
Θ, X <: S ⊢ T <: T ′

∀ − Fun
Θ ⊢ ∀F(X <: S).T <: ∀F(X <: S).T ′

Θ ⊢ T0 <: S0 Θ, X <: S0 ⊢ S1 <: T1 ∀ − Loc
Θ ⊢ ∀F(X <: S0).S1 <: ∀⊤(X <: T0).T1

Θ ⊢ T0 <: S0 Θ, X <: ⊤ ⊢ S1 <: T1 ∀ − ⊤
Θ ⊢ ∀⊤(X <: S0).S1 <: ∀⊤(X <: T0).T1

Noting that m[n/X] ∈ O if m, n ∈ O or m, n ∈ P , and m[n/X] ∈ P otherwise, we define
substitution into sub-arenas separately for negative and positive occurrences. Writing Θ ⊢ A

if Θ ⊢ m for every m ∈ A:

▶ Definition 15. The substitution of sub-arenas Θ, Θ′ ⊢ B, C into Θ, X, Θ′′ ⊢ A is defined:

Θ, Θ′, Θ′′ ⊢ A(B, C)X = {m[n/X] | m ∈ A ∩ P, n ∈ B} ∪ {m[n/X] | m ∈ A ∩ O, n ∈ C}◦.

This substitution operation is antitone (with respect to the liveness ordering) in the first
argument and monotone in the second:

▶ Lemma 16. If B′ ≼ B and C ≼ C ′ then A(B, C)X ≼ A(B′, C ′)X .

Proof. Suppose m ∈ E(A(B, C)X) ∩ O(A(B′, C ′)X). Then m = m′[n/X] for some m′ ∈ A

and n ∈ B′ ∪ C ′. There are three possibilities.
m′ ∈ O(A) and n ∈ O(C ′). Then n ∈ E(C) ∩ O(C ′) and so n ∈ C and m = m′[n/X] ∈
A(B, C)X as required.
m′ ∈ P (A) and n ∈ P (B′). Then n ∈ E(B) ∩ P (B′) and so n ∈ B and m = m′[n/X] ∈
A(B, C)X as required.
X is not free in m′ – then m = m′ ∈ A(B, C)X as required.

Similarly, E(A(B′, C ′)X) ∩ P (E(A, B)) ⊆ A(B′, C ′)X . ◀

A subtyping constraint of the form X <: S corresponds to the ability to subsume any
term of type X into the type S – i.e. there should be a canonical coercion of [[X]] into S.
Thus a S-bounded type-variable may be represented as the arena Θ, X ⊢ {X} ∧ [[S]] (cf [18])
– i.e. X <: S ⊢ T denotes [[T ]]({X} ∧ [[S]], X ∧ [[S]]), so that [[X <: S ⊢ X]] = {X} ∧ [[S]] ≼
[[X <: S ⊢ S]].

However, these coercions are are only actually used for type-variables which occur
negatively. This allows for two possible interpretations of bounded quantification – as
∀X.[[T ]](X ∧ S, X ∧ S)X or as ∀X.[[T ]](X ∧ S, X)X . Noting that:

∀X.[[T ]](X ∧ S, X ∧ S)X ≼ ∀X.[[T ]](X ∧ S, X)X by Lemma 16.
Subtypings inferred using the bound hold for the first interpretation but not the second.
The second interpretation is antitone in the variable bound but not the first.

we extend the interpretation of System F⊤ types to System FF⊤
<: .
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[[E ⊢ ∀K(X <: S).T ]] = ∀X.[[E , X <: S ⊢ T ]]
[[E ⊢ ∀⊤(X <: S).T ]] = ∀X.[[E , X <: ⊤ ⊢ T ]]({X} ∧ [[E ⊢ S]], {X})

Using Lemma 16, we show that this is sound with respect to the three subtyping rules for
bounded quantification:
∀ − Fun: If A({X} ∧ S, {X} ∧ S)X ≼ B({X} ∧ S, {X} ∧ S)X then

∀X.A({X} ∧ S, {X} ∧ S)X ≼ ∀X.B({X} ∧ S, {X} ∧ S)X .
∀ − Loc: If D ≼ C and A({X} ∧ C, {X} ∧ C)X ≼ B({X} ∧ C, {X} ∧ C)X then

∀X.A({X} ∧ C, {X} ∧ C)X ≼ ∀X.B({X} ∧ C, {X} ∧ C)X ≼ ∀X.B({X} ∧ C, {X})X ≼
∀X.B({X} ∧ D, {X})X .

∀ − Top: If D ≼ C and A({X}, {X}) ≼ B({X}, {X}) then
∀X.A({X} ∧ C, {X}) ≼ ∀X.B({X} ∧ C, {X})X ≼ ∀X.B({X} ∧ D, {X})X .

Thus (by induction on the length of derivation of Θ ⊢ S <: T ):

▶ Proposition 17 (Soundness). If E ⊢ S <: T then [[E ⊢ S]] ≼ [[E ⊢ T ]].

5 Copycat Strategies

Having described an interpretation of bounded polymorphism at the level of subtyping, it
is now necessary to show that this carries through to the term level. Interpreting terms as
strategies on our type-arenas yields a semantics for subtype and parametric polymorphism
which is based on copycat strategies. As canonical coercions, these give an alternative
characterization of the liveness ordering – a “hereditarily total” copycat strategy exists
between two arenas if and only if they are in the ordering. We now identify nodes explicitly
with moves.

▶ Definition 18. A legal sequence on an arena graph is a finite sequence of its moves
which starts with an Opponent move, alternates between Opponent and Proponent moves and
is equipped with a justification pointer [11] from each non-initial move to some preceding,
enabling move.

Given arenas A, B, let L(A, B) denote the set of legal sequences from A to B – that is,
legal sequences on the arena A ⊕ B, where (O, P, ▷) ≜ (P, O, ▷) swaps Proponent and
Opponent moves, and (O, P, ▷) ⊕ (O′, P ′, ▷′) ≜ (O ⊎ O′, P ⊎ P ′, ▷ ⊕ ▷′) is the smash sum
of rooted graphs.
Let C(A, B) denote the set of copycat sequences from A to B – that is, legal sequences
t ∈ L(A, B) such that for every even-prefix s ⊑E t, s↾A = s↾B.

It is easy to see that C(A, B) is a deterministic strategy from A to B – that is, a non-empty
set of even-length sequences in L(A, B) which is even-prefix-closed and even-branching (if
s, t ∈ C(A, B) then s ∩ t has even length). Moreover:

▶ Lemma 19. If A ≼ B then C(A, B) is a hereditarily total strategy: for any sequence
sm ∈ L(A, B) with s ∈ C(A, B) there exists n such that smn ∈ σ.

Proof. Suppose s ∈ C(A, B) and s(b.r) ∈ L(A, B), where b is an Opponent move in B.
Either b is initial, or else it has a justifier in s↾B, which therefore also occurs in s↾A. So
b ∈ E(A) ∩ O(B) ⊆ A (since A ≼ B) and s(b.r)(b.l) ∈ C(A, B) as required. The case where
s(a.l) ∈ L(A, B) for some Proponent move in A is similar. ◀

The proof of the converse uses the following lemma.

FSCD 2023
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▶ Lemma 20. Suppose C(A, B) is heredarily total.
(i) If m ∈ E(A)∩O(B) then there is a justified sequence of the form s(m.r)(m.l) in C(A, B).
(ii) If m ∈ E(B)∩P (A) then there is a justified sequence of the form s(m.l)(m.r) in C(A, B).

Proof. By Noetherian induction. If m is initial then by totality, if m ∈ O(B) then
(m.r)(m.l) ∈ C(A, B) and if m ∈ P (B) then (m.l)(m.r) ∈ C(A, B). For the induction
case suppose, for example, that m ∈ E(A) ∩ O(B) is enabled by a ∈ A and b ∈ B, which
must both be Proponent or both Opponent moves by quasi-bipartiteness. In the former
case, there exists b′ ∈ B ∪ {⊤} such that b′ ▷ B, and by quasi-arborescence b′ ▷ a – i.e.
a ∈ E(B) ∩ P (A), and so by inductive hypothesis there exists a justified sequence of the
form s(a.l)(a.r) ∈ C(A, B). Then s(a.l)(a.r).(m.r) (with a pointer from m.r to a.r) is a
well-formed justfied sequence, and so by totality s(a.l)(a.r)(m.r)(m.l) ∈ C(A, B) as required.
The other cases are similar. ◀

Evidently, (i) and (ii) imply that A ≼ B and so:

▶ Proposition 21. C(A, B) is hereditarily total if and only if A ≼ B.

6 QA-arenas

To describe the interpretation of parametric polymorphism requires further structure on arenas
– a question-answer labelling and question-answer relation supporting the interpretation of
type abstraction and instantiation – introduced in [13, 14], (to which we refer for further
details and proofs).

▶ Definition 22. A QA-arena over a set L of labels (not containing “Q” and “A”) is an
arena (O, P, ▷) with the following additional structure:

a labelling function λ : O ∪ P → L ∪ {Q, A} partitioning moves into sets of
questions,answers and L-labelled holes.
a scoped question answer/relation – a ternary relation on moves – ◁ ⊆ (O ∪ P ) ×
λ)−1(Q) × (λ)−1(A). The relation m ◁ (q, a) holds if a can answer q within the scope
of m: Proponent questions are scoped by Proponent moves and answered by Opponent
moves, and Opponent moves are scoped by Opponent moves and answered by Proponent
moves.

The type-arena defined in Section 3 is refined to a QA-arena for each type-variable context
Θ by defining a QA-labelling and QA-relation over Θ for moves Θ ⊢ m. This is defined
inductively via judgments of the form Θ ⊢QA m : L (where Θ ⊢ m and L ∈ {Q, A} ∪ Θ) and
Θ ⊢QA m ◁ (q, a) (where Θ ⊢ m, q, a), for which derivation rules are given in Table 2.

Informally, a move m[X] is labelled with X if X occurs free in M . Otherwise (if X is
bound):

m is a question if X occurs in m with the same polarity as its binder.
Its answers are moves m′[X] in which X occurs with the opposite polarity to its binder.
They are scoped by moves of the form C[∀X.m′′] where m′ is an initial move.

For example, in the sub-arena ∀X.X → X → X, the initial (Opponent) move ∀X.⊤ →
⊤ → X is a question, with answers ∀X.⊤ → X → ⊤ and ∀X.X → ⊤. The scoping move
for both question-answer pairs is the initial move ∀X.⊤ → ⊤ → X. In other words, this
corresponds to the usual QA-labelling for the arena of Booleans.



J. Laird 33:11

Table 2 Typing Judgments for QA-Labelling and QA-relation.

Θ⊢QAX:X
Θ⊢QAm:X

Θ⊢QA∀X.m:Q m ∈= O
Θ⊢QAm:X

Θ⊢QA∀X.M :A m ∈ P
Θ⊢QAm:L

Θ⊢QA∀X.m:L L ̸= X

Θ⊢QAm:L
Θ⊢QAM→⊤:L

Θ⊢QAm:L
Θ⊢QA⊤→m:L

Θ⊢QAm:L
Θ⊢QAm×⊤:L

Θ⊢QAm:L
Θ⊢QA⊤×m:L

Θ⊢⊤▷m Θ⊢QAm′:X Θ⊢QAm′′:X
Θ⊢QA∀X.m◁(∀X.m′,∀X.m′′) (m′, m′′) ∈ (O, P )

Θ⊢QAm◁(m′,m′′)
Θ⊢QAm→⊤◁(m′→⊤,m′′→⊤)

Θ⊢QAm◁(m′,m′′)
Θ⊢QA⊤→m◁(⊤→m′,⊤→m′′)

Θ⊢QAm◁(m′,m′′)
Θ⊢QAm×⊤◁(m′×⊤,m′′×⊤)

Θ⊢QAm◁(m′,m′′)
Θ⊢QA⊤×m◁(⊤×m′,⊤×m′′)

6.1 Well-bracketed Strategies
A QA-arena over the empty set of labels is closed: matching questions and answers as opening
and closing parentheses induces a relation between the moves of any legal sequence over a
closed QA-arena : it is well-bracketed if this relation is contained within the QA-relation.
More precisely, let the pending question of a sequence of moves t over such a closed arena be
the prefix of t given (where defined) by:

pending(sm) =
{

sm if m is a question
pending(s′) if m is an answer and pending(s) = s′m′

.

▶ Definition 23. A well-bracketed sequence on a closed arena A is a legal sequence t on
A which satisfies the bracketing condition: Whenever sa ⊑ t, where a is an answer, then
pending(s) = s′q, where m ◁ (q, a) for some move m in s′ which hereditarily justifies both q

and a.

The closure of a QA-arena A over L is obtained by converting L-labelled Opponent and
Proponent moves to questions and answers, respectively, and extending the QA-relation by
making initial moves into scoping moves for pairs of (Opponent,Proponent) moves with the
same label.

▶ Definition 24. Given L ⊢ A, the closed arena ∀A has the same underlying arena. The
QA-labelling is:

λ∀A(m) =


Q if λA(m) ∈ L and m ∈ O

A if λA(m) ∈ L and m ∈ P

λA(m) otherwise

and the QA-relation is:

m ◁∀A (q, a) if m ◁A (q, a) or λA(q) = λA(a) = l ∈ L and ⊤ ▷ m

A strategy σ from A to B is well-bracketed if every s ∈ σ is a well-bracketed sequence on
∀(A ⊎ B). It is thread-independent if:

FSCD 2023
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For any well-bracketed r, s, t, where r is an interleaving of s and t:
r ∈ σ if and only if s, t ∈ σ.

Let CW (A, B) be the set of well-bracketed copycat sequences from A to B: this is
well-bracketed by definition, and since any legal interleaving of legal sequences s and t is a
copycat sequence if and only if r and s are copycats, it is a thread-independent strategy.

▶ Definition 25. For a QA-arena U , the category G(U) consists of (objects) the sub-arenas
of U with (morphisms) thread-independent strategies between them. Strategies are composed
by parallel composition plus hiding

{s ∈ w(A, C) | ∃t ∈ (A + B + C)∗.t↾A, B ∈ σ ∧ t↾B, C ∈ τ}

The identity on A is the well-bracketed copycat CW (A, A).

Well-bracketed copycats have a more general identity property.

▶ Proposition 26. If A′ ≼ A and B ≼ B′ then for any σ : A → B,
CW (A, A′); σ; CW (B, B′) = σ ∩ L(A′, B′).

In particular, if A ≼ B and B ≼ C then CW (A, B); CW (B, C) = CW (A, C), justifying:

▶ Definition 27. Let CW : S(U) → G(U) be the identity-on-objects functor from the lattice
S(U) (considered as a thin category) into G(U), sending A ≼ B to the copycat CW (A, B).

7 Copycat Dinaturality

Returning to our family of second-order type arenas, the instantiation of a sub-arena into a
strategy is given (as in [14]) by playing copycat between the arenas plugged into the holes.
To define this on type arenas we make use of a restriction operation – a partial inverse to
subsitution on moves:

▶ Definition 28. Given moves Θ, Θ′, Θ′′ ⊢ m and Θ, X, Θ′′ ⊢ n[X] the restriction of m to
n[X] is defined:

m↾n[X] =
{

l if m = n[l/X]
undefined otherwise

.

By definition, m[n/X]↾m = n and if m↾n[X] is defined, then m[(m↾n[X])/X] = m.
This operation lifts to justified sequences by applying it pointwise to the moves on which

it is defined, and omitting moves on which it is not defined.

▶ Definition 29. Given a justified sequence t, and move n, let t↾n be the justified sequence
such that ε↾n = ε and

(tm)↾n =
{

(t↾n)(m↾n) if m↾n ↓
t↾n otherwise

where m↾n points to m′↾n′ in t↾n, if both are defined and m points to m′ in t. (Otherwise
m↾n is initial and requires no pointer.)

We may now describe the instantiation of an arena into a strategy on type-arenas. Suppose
t is a well-bracketed sequence from A(C, C)X to B(C, C)X , such that t ↾∀(A ⊎ B) is a
well-bracketed sequence. For any even prefix sp[X] ⊑ t↾∀A ⊎ B, p[X] is a Proponent answer
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in ∀A ⊎ B, so by well-bracketing pending(s) = s′o[X], where o[X] is an Opponent question in
∀A ⊎ B. Say that t is a copycat-instantiated sequence for X if it is a copycat between every
such pair of moves – i.e. for any even-length sequence t′ with s ⊑ t′ ⊑ t, t↾p[X] = t↾o[X].

▶ Definition 30. Given a strategy Θ, X, Θ′ ⊢ σ : A → B,let Θ, Θ′, Θ′′ ⊢ σ[C]X : A(C, C)X →
B(C, C)X be the set of sequences t on ∀A(C, C)X → B(C, C)X which are copycat-instantiated
for X, such that there exists s ∈ σ with s = t↾∀(A ⊎ B).

This yields a family of strategies σ[_]X =

{Θ, Θ′, Θ′′ ⊢ σ[C]X : A(C, C)X → B(C, C)X | Θ, Θ′ ⊢ C}.

By Proposition 16, A(_, _)X and B(_, _)X act as mixed variance functors from S(Θ, Θ′)
to S(Θ, Θ′, Θ′′), which may be composed with the copycat functor CW : S(Θ, Θ′, Θ′′) →
G(Θ, Θ′, Θ′′).

▶ Proposition 31. σ[_]X is a dinatural transformation from CW · A(_, _)X to CW ·
B(_, _)X .

Proof. In other words, for any arenas Θ, Θ′ ⊢ C ≼ D, the dinaturality hexagon:

A(C, C)X
σ[C]X // B(C, C)X

CW (B(C,C),B(C,D))
▼▼

&&▼▼

A(D, C)X

CW (A(D,C),A(C,C))qq

88qq

CW (A(D,C),A(D,D))
▼▼

&&▼▼

B(C, D)X

A(D, D)X
σ[D]X // B(D, D)X

CW (B(D,D),B(C,D)qq

88qq

commutes. By Proposition 26, this is equivalent to requiring that σ[C]X ∩ W (C, D) =
σ[D]X ∩ W (C, D), which follows from the definition of copycat instantiation. ◀

Note the importance of the restriction to copycat (or, at least, strict) strategies – the
dinaturality hexagon above need not commute for all morphisms from C to D (even if σ is
the denotation of a term of System F : see [8] for examples).

Instantiation extends to tuples of arenas – B(A1, A′
1)X1 . . . (An, A′

n)Xn substitutes the
moves of A1 for negative occurrences of X1 in B, the moves of A′

1 for positive occurrences of
X1 and so on, giving a family of n-ary mixed variance functors on S(Θ) to S(Θ) which is
closed under composition. Using these we may define a hyperdoctrine model of System F [20].

Let I be the category in which objects are type-variable contexts and morphisms from Θ
to Θ′ = X1, . . . , Xn are substitutions – n-tuples of arenas ⟨Θ ⊢ A1, . . . , Θ ⊢ An⟩ composed
by instantiation: ⟨B1, . . . , Bm⟩ · ⟨A1, . . . , An⟩ =
⟨B1(A1, A1)X1 . . . (An, An)Xn

, . . . , Bm(A1, A1)X1 . . . (An, An)Xn
⟩.

For ⟨A1, . . . , An⟩ : Θ → Θ′, the instantiation functor G⟨A1, . . . , An⟩ : G(Θ′) → G(Θ)
sends Θ′ ⊢ B to Θ ⊢ B(A1, A1)X1 . . . (An, An)Xn , and Θ′ ⊢ σ : B → C to Θ′ ⊢
σ[A1]X1 . . . [An]Xn

.
Each category G(Θ) is cartesian closed (A × B is the cartesian product of A and B, and
A → B is their internal hom) and instantiation preserves this structure. Thus we have a
functor G from Iop to the category of cartesian closed categories sending Θ to G(Θ) and
⟨A1, . . . , An⟩ to G⟨A1, . . . , An⟩.
For context Θ, Θ, X is the product of Θ with X in I, and the image of the corresponding
projections, G(π) : G(Θ) → G(Θ, X) has an indexed left adjoint ∀X. Since instantiation
commutes with type-variable abstraction, this satisfies the Beck-Chevalley condition.
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Table 3 Typing Judgments for System FF⊤
<: .

E ⊢ Γ E ⊢ ⊤ ⊤Θ ⊢ top : ⊤
E ⊢ Γ, x : T, Γ′

var
E ; Γ, x : T, Γ′ ⊢ x : T

E ; Γ ⊢ t : T E ⊢ T <: T ′

subE ; Γ ⊢ t : T ′

E ; Γ, x : S ⊢ t : T
→ −iE ; Γ ⊢ λx : S.t : S → T

E ; Γ ⊢ t : S → T E ; Γ ⊢ s : S
→ −e

E ; Γ ⊢ ts : T

E , X <: S; Γ ⊢ t : T E ⊢ Γ
∀ − i

E ; Γ ⊢ Λ(X <: S).t : ∀F(X <: S).T

E ; Γ ⊢ t : ∀⊤(X <: S).T E ⊢ S′ <: S
∀ − e

E ; Γ ⊢ t{S′} : T [S′/X]

8 System FF⊤
<: and its Semantics

The raw terms of System FF⊤
<: are those of System F<: – given by the grammar:

t ::= top | x | λ(x : T ).t | Λ(X <: T ).t | t t | t{T}

Typing judgments (derived according to the rules in Table 3) take the form E ; Γ ⊢
t : T , where Γ is a context of term-variables x1 : T1, . . . xn : Tn such that E ⊢ Γ – i.e.
E ⊢ T1, . . . , E ⊢ Tn. Type-variable abstraction (∀-introduction) is typed using ∀F and
instantiation (∀-elimination) is typed using ∀⊤ – subsumption allows conversion from the
former to the latter.

Each term-in-context E ; x1 : S1, . . . , xn : Sn ⊢ t : T denotes a morphism from [[E ⊢
S1]] × . . . × [[E ⊢ Sn]] to [[E ⊢ T ]] in the category G([|E|]), where |X1 <: R1, . . . , Xm <: Rm| =
X1, . . . , Xm. To interpret instantiation for bounded variables we require an operation taking
a strategy σ : A → ∀X.B({X} ∧ C, {X})X and a bounded argument D ≼ C to a strategy on
A → B(D, D)X . The obvious way to do this is by instantiation of D for X in σ, followed by
subsumption. However, the substitution operation on arenas does not respect the lattice
structure of the liveness ordering.

▶ Lemma 32. (C ∧ A)(B, B)X ̸= C(B, B)X ∧ C(B, B)X in general.

Proof. The meet {X} ∧ A is the union {X} ∪ A (since X contains only a single initial move):
the instantiation ({X} ∧ A)(B, B)X is thus equal to the union A ∪ B, which is not the same
as A ∧ B in general. ◀

However, when substituting in bounded types we can use the following lemma

▶ Lemma 33. If C ≼ B then C ≼ (B ∪ C).

Proof. O(C)∩(C∪B) = (O(C)∩C)∪O(C)∩B ⊆ C∪C = C. P (B∪C)∩C ⊆ C ⊆ B∪C. ◀

So if C ≼ D, then A(X ∧ B, X)X(C, C)X = A(C ∪ B, C)X ≼ A(C, C)X , and we may
interpret bounded instantiation by substitution followed by subsumption – if E ⊢ S <: S′

then [[E ; Γ ⊢ t{S′} : T [S′/X]]] =

[[E ; Γ ⊢ t : ∀⊤(X <: S)]]; CW ([[E, X <: S ⊢ T ]]([[E ⊢ S′]], [[E ⊢ S′]])X , [[E ⊢ T [S′/X]]]).
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Since use of the subsumption rule may yield multiple derivations of the same typing
judgment it is not immediately obvious that this defines a unique denotation for each term-
in-context – we need to show that any derivation for a given term in context yields the same
denotation (coherence).

▶ Proposition 34. Every derivable typing judgment Θ; Γ ⊢ t : T denotes a unique morphism
[[Θ; Γ ⊢ M : T ]].

Proof. In [16] we define a derivation system for minimal types, such that if t is typable
in context E ; Γ there is a unique derivation of a minimal type E ; Γ ⊢ t : T such that if
E ; Γ ⊢ t : T ′ then E ⊢ T <: T ′. To establish coherence, we show that any denotation for
E ; Γ ⊢ t : T ′ satisfies [[E ; Γ ⊢ t : T ′]] = [[E ; Γ ⊢ t : T ]]; cw([[E ⊢ T ]], [[E ⊢ T ]]). ◀

Copycat dinaturality is the key to showing that the semantics is sound with respect to
second-order β and η-equivalence:

▶ Lemma 35. The model soundly interprets the rules:

E , X <: S; Γ ⊢ t : T E ; Γ ⊢ R <: S
β2E ; Γ ⊢ (Λ(X <: S).t){R} = t[R/X] : T [R/X]

E ; Γ ⊢ t : ∀⊤X <: S.T
Y ̸∈ dom(E) η2

E ; Γ ⊢ Λ(Y <: S).(t{Y }) = t : ∀⊤(X <: S).T

Proof. We give the case of second-order η-equivalence as an example. Suppose σ is the
uncurrying of [[E ; Γ ⊢ t : ∀⊤(X <: S).T ]]. The diagram

[[E, X <: S ⊢ T ]]({X} ∧ [[E ⊢ S]], {X} ∧ [[E ⊢ S]])
≼❨❨❨❨

❨❨❨❨❨

,,❨❨❨❨❨❨

[[E ⊢ Γ]]

σ[{X}∧[[E⊢S]]X ]❣❣❣❣❣❣❣

33❣❣❣❣

σ[{X}]X
❲❲❲❲❲

❲❲

++❲❲❲❲

[[E, X <: ⊤ ⊢ T ]]({X} ∧ S, X)X

[[E, X <: S ⊢ T ]]({X}, {X})X

≼❡❡❡❡❡❡❡❡❡

22❡❡❡❡❡❡❡❡❡

commutes by copycat dinaturality, and so [[E ; Γ ⊢ t : ∀⊤X <: S.T ]] = [[E ; Γ ⊢ ΛX.t{X} :
∀⊤(X <: S).T ]] as required. ◀

▶ Proposition 36. If E ; Γ ⊢ t =βη t′ : T then [[E ; Γ ⊢ t]] = [[E ; Γ ⊢ t′ : T ]].

9 Conclusions and Further Directions

Our interpretation of the subtyping relation on Hyland-Ong arenas may be applied to a wide
range of games models which employ this basic structure. We have also shown that it can
be integrated, via dinaturality, with an interpretation of generic polymorphism based on
bracketing structure, providing a way to use this principle which might be further explored
in reasoning about program equivalence. This gives us the ingredients to develop existing
games semantics for stateful objects with more expressive type theories such as Dependent
Object Types [17, 22] (with an appropriate treatment for subtyping bounded quantification –
see also [10]) as well as bounded abstract data types.
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Representing Guardedness in Call-By-Value
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Abstract
Like the notion of computation via (strong) monads serves to classify various flavours of impurity,
including exceptions, non-determinism, probability, local and global store, the notion of guardedness
classifies well-behavedness of cycles in various settings. In its most general form, the guardedness
discipline applies to general symmetric monoidal categories and further specializes to Cartesian and
co-Cartesian categories, where it governs guarded recursion and guarded iteration respectively. Here,
even more specifically, we deal with the semantics of call-by-value guarded iteration. It was shown
by Levy, Power and Thielecke that call-by-value languages can be generally interpreted in Freyd
categories, but in order to represent effectful function spaces, such a category must canonically arise
from a strong monad. We generalize this fact by showing that representing guarded effectful function
spaces calls for certain parametrized monads (in the sense of Uustalu). This provides a description of
guardedness as an intrinsic categorical property of programs, complementing the existing description
of guardedness as a predicate on a category.
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1 Introduction

A traditional way to model call-by-value languages is based on a clear cut separation between
computations and values. A computation can be suspended and thus turned into a value,
and a value can be executed, and thus again be turned into a computation. The paradigmatic
example of these conversions are the application and abstraction mechanisms of λ-calculus.
From the categorical modelling perspective, this view naturally requires two categories,
suitably connected with each other. As essentially suggested by Moggi [28], a minimal
modelling framework requires a Cartesian category (i.e. a category with finite products) as a
category of values and a Kleisli category of a strong monad over it, as a category of (side-
effecting) computations (also called producers [23]). A generic computational metalanguage
thus arises as an internal language of strong monads. Levy, Power and Thielecke [25],
designed a refinement of Moggi’s computational metalanguage, called fine-grain call-by-value
(FGCBV), whose models are not necessarily strong monads, but are more general Freyd
categories. They have shown that a strong monad in fact always emerges from a Freyd category
if certain function spaces (needed to interpret higher-order functions), are representable as
objects of the value category – thus strong monads arise from first principles.

Here we analyse an extension of the FGCBV paradigm with a notion of guardedness,
which is a certain predicate on computations, certifying their well-behavedness, in particular
that they can be iterated [19, 24]. A typical example is guardedness in process algebra,
where guardedness is often used to ensure that recursive systems of process definitions have
unique solutions [27]. FGCBV does not directly deal with fixpoints, since these are usually
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Figure 1 Three dimensions within call-by-value.

considered to be features orthogonal to computational effects and evaluation strategies.
Analogously, even though the notion of guardedness is motivated by fixpoints, here we do not
consider (guarded) fixpoints as a core language feature. In fact, in practically relevant cases
guardedness is meaningful on its own as a suitable notion of productivity of computation,
and need not be justified via fixpoints, which may or may not exist. In FGCBV one typically
regards general recursion to be supported by the category of values, and once the latter
indeed supports it, it is obvious to add a corresponding fixpoint construct to the language.
Nevertheless, general recursion entails partiality for programs, which means that even if
we abstract away from recursion, the corresponding effect of partiality must be part of the
computational effect abstraction (see e.g. [12]). Recursion and computational effects are thus
intimately connected. This connection persists under the restriction from general recursion
to iteration, which is subject to a much broader range of models, and triggers the partiality
effect just as well. Arguably, the largest class of monads, supporting iteration are Elgot
monads [3, 16]. These are monads T , equipped with Elgot iteration:

f : X Ñ T pY ` Xq

f : : X Ñ TY
(1)

and subject to established equational laws of iteration [7, 35]. Intuitively, f : is obtained
from f by iterating away the right summand in the output type Y ` X. For example, the
maybe-monad p--q ` 1 is an Elgot monad over the category of classical sets, which yields a
model for a while-language with non-termination as the only computational effect. Now,
guarded Elgot monads [24] refine Elgot monads in that, the operator (1) needs only be defined
w.r.t. a custom class of guarded morphisms, governed by simple laws. Proper partiality of
the guardedness predicate is relevant for various reasons, including the following:

Guarded fixpoints often uniquely satisfy the corresponding fixpoint equation, which
greatly facilitates reasoning, which is extensively used in process algebra.
In type-theoretic and constructive setting guarded iteration can often be defined natively
and more generally, e.g. the “simplest” guarded Elgot monad is Capretta’s delay monad
(initially called “partiality monad”) [8], rendered by final coalgebras D “ νγ. p--`γq,
which yield an intensional counterpart of the maybe-monad; guardedness then means

1 More precisely, representability yields parametrized guarded monads, subject to an additional monicity
condition. This is treated in detail in Section 7.
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productivity, i.e. that the computation signals as it evolves. Contrastingly, the “simplest”
Elgot monad is much harder to construct and arguably requires additional principles to
be available in the underlying metatheory [9, 4, 11, 14].
Guardedness is a compositional type discipline, and hence it potentially helps to en-
capsulate additional information about productivity of programs in types, like monads
encapsulate the information about potential side-effects.

As indicated above, strong monads can be regarded as structures, in a canonical way arising
from FGCBV by adding the requirement of representability of certain function spaces in
the category of values. This is behind the mechanism of representing computational effects
via monads in type systems (e.g. in Fω, by quantification over higher kinds) and hence in
programming languages (e.g. in Haskell). Our goal is to provide an analogous mechanism
for guardedness and for its combinations with computational effects and strength. That
is, (strong) monads are an answer to the question: what is the categorical/type-theoretic
structure that faithfully represents computational effects within a higher-order universe?
Here, we answer the question: what is the categorical/type-theoretic structure that faithfully
represents guarded computational effects within a higher-order universe? In other words, we
seek a formulation of guardedness as an intrinsic structural property of morphisms, instead
of additional data that (anonymously) identifies guarded morphisms among others. In
doing so, we take inspiration from the view of monads as structures for representing effects,
as summarized above. In fact, we show that strength, representability and guardedness
can be naturally arranged within FGCBV as three orthogonal dimensions, as shown in
Figure 1 (the arrows point from more general concepts to more specific ones). The bottom
face of the cube features the above mentioned connection between Freyd categories and
strong monads, and a corresponding connection between identity-on-object functors and (not
necessarily strong) monads. We contribute with the top face, which combines guardedness
with the other dimensions. The pivotal point is the combination of guardedness with
representability, which produces a certain class of parametrized monads [37], which we dub
guarded parametrized monads.

Related work. We benefit from the analysis of Power and Robinson [32] who introduced pre-
monoidal categories as an abstraction of Kleisli categories. Freyd categories were subsequently
defined by Power and Thielecke [33] as premonoidal categories with additional structure and
also connected to strong monads. Levy [23] came up with an equivalent definition, which we
use throughout. In the previous characterization [33, 25], strong monads were shown to arise
jointly with Kleisli exponentials from closed Freyd categories. We refine this characterization
(Corollary 9) by showing that strong monads in fact arise independently of exponentials
(Proposition 8). Distributive Freyd categories were defined by Staton [36] – here we use them
to extend the FGCBV language by coproducts and subsequently with guardedness predicates.
Previous approaches to identifying structures for ensuring guardedness on monads involved
monad modules [30, 2] – we make do with guarded parametrized monads instead, which
combine monads with modules over them and arise universally.

Plan of the paper. After short technical preliminaries, we start off by introducing a
restricted version of FGCBV in Section 3 and extensively discuss motivating examples, which
(with a little effort) can already be encoded despite restrictions. We establish a very simple
form of the representability scenario, producing monads, and meant to serve as a model for
subsequent sections. In Section 4 we deal with full FGCBV, Freyd categories, modelling
them and strong monads, representing Freyd categories. The guardedness dimension is added
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in Section 5 where we introduce guarded Freyd categories and in Section 6 we analyse the
representability issue for them. Finally, in Section 7 we introduce an equational axiomatization
of a categorical structure for representing guardedness, called guarded parametrized monads.
As a crucial technical step, we establish a coherence property in the style of Mac Lane’s
coherence theorem for monoidal categories [26]. Conclusions are drawn in Section 8.

2 Preliminaries

We assume familiarity with the basics of category theory [26, 5]. For a category V, |V| will
denote the class of objects and VpX, Y q will denote morphisms from X to Y . We tend to
omit indexes at natural transformations for readability. A category with finite (co-)products
is called (co-)Cartesian. In a co-Cartesian category with selected coproducts, we write
! : 0 Ñ A for the initial morphism, and inl : A Ñ A ` B and inr : B Ñ A ` B for the left and
right coproduct injections correspondingly. A distributive category [10] is a Cartesian and
co-Cartesian category, in which the natural transformation

X ˆ Y ` X ˆ Z
ridˆinl, idˆinrs

ÝÝÝÝÝÝÝÝÝÝÝÑ X ˆ pY ` Zq

is an isomorphism, whose inverse we denote distX,Y,Z (a co-Cartesian and Cartesian closed
category is always distributive). Let ∆ “ ⟨id, id⟩ : X Ñ X ˆX and ∇ “ rid, ids : X `X Ñ X.

A monad T on V is determined by a Kleisli triple pT, η, p´q‹q, consisting of a
map T : |V| Ñ |V|, a family of morphisms pηX : X Ñ TXqXP|V| and Kleisli lifting sending
each f : X Ñ TY to f‹ : TX Ñ TY and obeying monad laws:

η‹ “ id, f‹ ˝ η “ f, pf‹ ˝ gq‹ “ f‹ ˝ g‹.

It follows that T extends to a functor, η extends to a natural transformation – unit, µ “

id‹ : TTX Ñ TX extends to a natural transformation – multiplication, and that pT, η, µq is
a monad in the standard sense [26]. We will generally use blackboard capitals (such as T) to
refer to monads and the corresponding Roman letters (such as T ) to refer to their functor
parts. Morphisms of the form f : X Ñ TY are called Kleisli morphisms and form the Kleisli
category VT of T under Kleisli composition f, g ÞÑ f‹ ˝ g with identity η.

A functor F is strong if it is equipped with a natural transformation strength τ : XˆFY Ñ

F pX ˆ Y q, such that the diagrams

1 ˆ FX FX

F p1 ˆ Xq

τ

snd

F snd

pX ˆ Y q ˆ FZ F ppX ˆ Y q ˆ Zq

X ˆ pY ˆ FY q X ˆ F pY ˆ Zq F pX ˆ pY ˆ Zqq

–

τ

–

Xˆτ τ

commute. A natural transformation, between two strong functors is strong if it preserves
strength in the obvious sense, and a monad T is strong if T is strong with some strength
τ : X ˆ TY Ñ T pX ˆ Y q and η and µ are strong with id being the strength of Id and
Tτ ˝ τ : X ˆ TTY Ñ TT pX ˆ Y q being the strength of TT .

3 Simple FGCBV with Coproducts

We start off with a restricted – single-variable – fragment of FGCBV, but extended with
coproduct types. Since we will not deal with operational semantics, we simplify the language
slightly (e.g. we do not include let-expressions for values). We also stick to a Haskell-style
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x : A $v x : A

f : A Ñ B P Σv Γ $v v : A

Γ $v fpvq : B

f : A Ñ B P Σc Γ $v v : A

Γ $c fpvq : B

Γ $v v : A

Γ $c return v : A

Γ $c p : A x : A $c q : B

Γ $c do x Ð p; q : B

Γ $v v : 0
Γ $v init v : A

Γ $v v : A

Γ $v inl v : A ` B

Γ $v v : B

Γ $v inr v : A ` B

Γ $v v : A ` B x : A $c p : C y : B $c q : C

Γ $c case v of inl x ÞÑ p; inr y ÞÑ q : C

Figure 2 Simple FGCBV with coproducts.

syntax with do-notation and case-expressions. We fix a collection of sorts S1, S2, . . . , a
signature Σv of pure programs f : A Ñ B, and a signature Σc of effectful programs f : A Ñ B

(also called generic effects [31]) where A and B are types, generated with the grammar

A, B ::“ S1, S2, . . . | 0 | A ` B. (2)

We then define terms in context of the form x : A $v v : B and x : A $c p : B for value terms
and computation terms inductively by the rules given in Figure 2. (where we chose to stick
to the syntax of the familiar Haskell’s do-notation): This language is essentially a refinement
of Moggi’s simple (!) computational metalanguage, which only has one-variable contexts,
instead of the fully fledged multi-variable contexts. In terms of monads, the present language
corresponds to not necessarily strong ones. Such monads are not very useful in traditional
programming languages semantics, however we dwell on this case for several reasons. We aim
to explore the interaction between guardedness and monads from a foundational perspective
and stay as general as possible to cover the cases where strength does not exist or is not
relevant. We also would like to identify the basic representation scenario, to be extended
later in more sophisticated cases.

An obvious extension of the presented language would be the iteration operator:

Γ $c p : A x : A $c q : B ` A

Γ $c iter x Ð p; q : B
(3)

meant to satisfy the fixpoint equality iter x Ð p; q “ iter x Ð pdo x Ð p; qq; q. This syntax
serves its technical purpose of adding expressivity to the language, but can be criticized
from a pragmatic perspective – an arguably more convenient, equivalent syntax of “labelled
iteration” can be used instead [13], and carried over to guarded setting [17]. Presently, we
focus on representing guardedness as such and do not include iteration in the language.

We present three examples, which can be interpreted w.r.t. the single-variable case, to
demonstrate the unifying power of FGCBV and to illustrate various flavours of guardedness.

▶ Example 1 (Basic Process Algebra [6]). Basic process algebra (BPA) over a set of actions A
is defined by the grammar: P, Q ::“ pa P Aq | P ` Q | P ¨ Q. One typically considers
BPA-terms over free variables (seen as process names) to solve systems of recursive process
equations w.r.t. these variables. E.g. we can specify a 2-bit FIFO buffer as a solution to

B0 “ in0 ¨B
0
1 ` in1 ¨B

1
1 , Bi

1 “ in0 ¨B
0,i
2 ` in1 ¨B

1,i
2 ` outi ¨B0, Bi,j

2 “ outj ¨B
i
1,

where i, j P {0, 1}. We view B0 as an empty FIFO, Bi
1 as a FIFO carrying only i and Bi,j

2 as
a FIFO, carrying i and j. For example, the trace B0

in0
ÝÝÑ B0

1
in1
ÝÝÑ B1,0

2
out0
ÝÝÑ B1

1
out1
ÝÝÑ B0

is valid and represents pushing 0 and 1 to an empty FIFO and then popping them out in
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the same order. We can model such systems of equations in FGCBV as follows. Let us fix
a single sort 1 and identify an n-fold sum p. . . p1 ` . . .q . . .q ` 1 with the natural number n.
The injections inji : 1 Ñ n are defined inductively in the obvious way. Let Σv “ ∅ and
Σc “ {a : 1 Ñ 1 | a P A}Y {toss : 1 Ñ 2}. A BPA-term over process names {N1, . . . , Nn} can
be translated to FGCBV recursively, with the following rules where ⇝ reads as “translates”:

Ni ⇝ x : 1 $c returnpinlpinji xqq : n ` 1 a⇝ x : 1 $c do x Ð apxq; returnpinr xq : n ` 1

P ⇝ x : 1 $c p : n ` 1 Q⇝ x : 1 $c q : n ` 1
P ` Q⇝ x : 1 $c do x Ð tosspxq; case x of inl x ÞÑ p; inr x ÞÑ q : n ` 1

P ⇝ x : 1 $c p : n ` 1 Q⇝ x : 1 $c q : n ` 1
P ¨ Q⇝ x : 1 $c do x Ð p; case x of inl x ÞÑ returnpinl xq; inr x ÞÑ qpxq : n ` 1

Intuitively, the terms x : 1 $c p : n ` 1 represent processes with n ` 1 exit points: every
process name Ni identifies an exit i, in addition to the global anonymous exit, as e.g. in
an action, regarded as a process. The generic effect toss induces binary nondeterminism
as a coin-tossing act. Every tuple px : 1 $c pi : mqiăn can be represented by a single term
x : n $c p̂n : m, inductively defined as follows:

p̂0 “ returnpinit xq, p̂n`1 “ case x of inl x ÞÑ p̂n ; inr x ÞÑ pn`1.

Every system of n equations with m ` n variables is thus represented by a term x : n $c
p : m ` n. The iteration x : n $c iter x Ð return x; p : m computes a solution of this system,
sending every i-th variable to a term over the remaining m free variables. Guarded systems
are those, where recursive calls are preceded by actions. Such systems have a unique solution
(under bisimilarity). The simplest unguarded example P “ P has arbitrary solutions, and
translates to x : 1 $c iter x Ð return x; returnpinr xq : 0.

▶ Example 2 (Imperative Traces). We adapt the semantic framework of Nakata and
Uustalu [29] for imperative coinductive traces to our setting. Let us fix a set P of predicates,
a set T of state transformers, and let the corresponding pure and effectful signatures be
Σv “ {p : S Ñ S ` S | p P P} Y {t : S Ñ S | t P T} and Σc “ {put : S Ñ 1, get : 1 Ñ S} over
the set of sorts {S, 1}. The intended interpretation of this data is as follows:

S is a set of memory states, e.g. the set of finitely supported partial functions N ↪Ñ 2;
T are state transformers, e.g. functions, updating precisely one specified memory bit;
p P P encode predicates: ppsq “ inl s if the predicate is satisfied and ppsq “ inr s otherwise,
e.g. p can capture functions that give a Boolean answer to the questions “is the specified
bit 0?” and “is the specified bit 1?”.

For example, the following program negates the i-th memory bit (if it is present)

x : 1 $c do s Ð getpxq; case psris “ 0q of inl s ÞÑ putpsri :“ 1sq; inr s ÞÑ putpsri :“ 0sq : 1

where p--ris “ 0q, p--ri :“ 0sq and p--ri :“ 1sq are the obvious predicate and state transformers.
Nakata and Uustalu [29] argued in favour of (infinite) traces as a particularly suitable
semantics for reasoning about imperative programs. This means that store updates must
contribute to the semantics, which can be ensured by a judicious choice of syntax, e.g.
by using skip “ do s Ð getpxq; putpsq, but not return. In FGCBV, however, iterating
x : 1 $c returnpinr xq : 1 would not yield any trace. By restricting to guarded iteration with
guardedness meaning writing to the store, we can indeed prevent iterating such programs,
by defining guardedness in such a way that recursive calls are preceded by put.
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▶ Example 3 (Hybrid Programs). Hybrid programs combine discrete and continuous capabil-
ities and thus can be used to describe behaviours of cyber-physical systems. For simplicity
we consider time delays as the only hybrid facility – more sophisticated scenarios are treated
elsewhere [15] (more sophisticates scenarios can be modelled in a similar way [15]). Let Rě0 be
the sort of non-negative real numbers and let Σv contain all unary operations on non-negative
reals and additionally is0 : Rě0 Ñ Rě0 ` Rě0, which sends n “ 0 to inl n and n ą 0 to inr n.
Let Σc “ {wait : Rě0 Ñ Rě0}. With waitprq we can introduce a time delay of length r and
return r. With iteration we can write programs like

x : Rě0 $c iter x Ð return x; case is0pxq of
inl x ÞÑ returnpinl xq;
inr x ÞÑ pdo x Ð waitpxq; returnpinr fpxqqq : Rě0,

which terminate successfully in finite time (fpxq “ x .́ 12), run infinitely (fpxq “ 1), or
exhibit Zeno behaviour (fpxq “ x{2), i.e. consume finite time, but never terminate. In all
these examples, every iteration consumes non-zero time. This is also often considered to be
a well-behavedness condition, which can be interpreted as guardedness.

In order to interpret the language from Figure 2, let us fix two co-Cartesian categories V
and C, and an identity-on-objects functor J : V Ñ C (hence |V| “ |C|), strictly preserving
coproducts. A semantics of pΣv, Σcq over J assigns

an object JAK P |V| to each sort A;
a morphism JfK P VpJAK, JBKq to each f : A Ñ B P Σv;
a morphism JfK P CpJAK, JBKq to each f : A Ñ B P Σc,

which extends to types and terms as follows: J0K “ 0, JA ` BK “ JAK ` JBK,
Jx : A $v x : AK “ id;
JΓ $v fpvq : BK “ JfK ˝ JΓ $v v : AK;
JΓ $c fpvq : BK “ JfK ˝ JJΓ $v v : AK;
JΓ $c return v : AK “ JJΓ $v v : AK;
JΓ $c do x Ð p; q : BK “ Jx : A $c q : BK ˝ JΓ $c p : AK;
JΓ $v init v : AK “ !;
JΓ $v inl v : A ` BK “ inl ˝JΓ $v v : AK;
JΓ $v inr v : A ` BK “ inr ˝JΓ $v v : BK;
JΓ $c case v of inl x ÞÑ p; inr y ÞÑ q : CK

“
[
Jx : A $c p : CK, Jy : B $c q : CK

]
˝ JJΓ $v v : A ` BK.

As observed by Power and Robinson [32] (cf. [34, 0.1]), monads arise from the requirement
that J is a left adjoint, thus simple FGCBV can be interpreted w.r.t. a monad on V:

▶ Proposition 4. Let J : V Ñ C be an identity-on-objects functor. Then J is a left adjoint
iff C is isomorphic to a Kleisli category of some monad T on V and Jf “ Hpη ˝ fq for
all f P VpX, Y q where H : VT – C is the relevant isomorphism.

Moreover, in this situation, finite coproducts in C are inherited from those in V, i.e. J !
is the initial morphism in C and pA ` B, J inl, J inrq is a binary coproduct in C.

2 .́ refers to truncated subtraction: x .́ y “ x ´ y if x ě y, and x .́ y “ 0 otherwise.
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x : A in Γ
Γ $v x : A

f : A Ñ B P Σv Γ $v v : A

Γ $v fpvq : B

f : A Ñ B P Σc Γ $v v : A

Γ $c fpvq : B

Γ $v v : A

Γ $c return v : A

Γ $c p : A Γ, x : A $c q : B

Γ $c do x Ð p; q : B

Γ $v v : 0
Γ $v init v : A

Γ $v v : A

Γ $v inl v : A ` B

Γ $v v : B

Γ $v inr v : A ` B

Γ $v v : A ` B x : A $c p : C y : B $c q : C

Γ $c case v of inl x ÞÑ p; inr y ÞÑ q : C

Γ $v v : A Γ $v w : B

Γ $v ⟨v, w⟩ : A ˆ B

Γ $v p : A ˆ B Γ, x : A, y : B $c q : C

Γ $c case p of ⟨x, y⟩ ÞÑ q : C

Figure 3 FGCBV with coproducts.

▶ Example 5 (Monads). Let us recall relevant monads on V “ Set for further reference.
1. TX “ νγ. PωppX`1q`Aˆγq where Pω is the finite powerset functor and νγ. Fγ denotes

a final F -coalgebra. This monad provides a standard strong bisimulation semantics for
BPA (Example 1). The denotations in TX are finitely branching trees with edges labelled
by actions and with terminal nodes labelled in X (free variables) or in 1 (successful
termination). This monad is an instance of the coinductive resumption monad [30].

2. TX “ PpA‹ ˆ pX ` 1q ` A‹q is the monad of finite traces (terminating successfully
A‹ ˆ pX ` 1q and divergent A‹), which can again be used as a semantics of Example 1.

3. TX “ PpA‹ ˆ pX ` 1q ` pA‹ ` Aωqq is a refinement of 2. collecting not only finite,
but also infinite traces. If we extend BPA with countable non-determinism, we obtain
a semantics properly between strong bisimilarity finite trace equivalence. For example,
the equation P “ a ¨ P produces the infinite trace aω and P 1 “

∑
iPN Pi with P0 “ a and

Pi`1 “ a ¨ Pi does not, and P is finite trace equivalent to P ` P 1, but not infinite trace
equivalent.

4. TX “ pνγ. X ˆ S ` γ ˆ SqS can be for Example 2. In Set, TX – pX ˆ S` ` SωqS , i.e.
an element TX is isomorphic to a function that takes an initial state in S and returns
either a finite trace in X ˆ S` or an infinite trace in Sω. We can use Proposition 4
to argue that T indeed extends to a monad. Let C be the category with CpX, Y q “

SetpX ˆ S, νγ. Y ˆ S ` γ ˆ Sq, which is a full subcategory of the Kleisli category of
the coinductive resumption monad νγ. p--`γ ˆ Sq. Now, the obvious identity-on-objects
functor J : Set Ñ C is a left adjoint, which yields the original T .

5. TX “ Rě0 ˆX ` R̄ě0 is a monad, which can be used for Example 3. Here Rě0 ˆX refers
to terminating behaviours and R̄ě0 “ Rě0 Y {8} to Zeno and infinite behaviours.

4 Freyd Categories and Strong Monads

The full FGCBV (with coproducts) is obtained by extending the type syntax (2) with
products A ˆ B, and by replacing the rules in Figure 2 with the rules in Figure 3. We
now assume that variable contexts Γ are (possibly empty) lists px1 : A1, . . . , xn : Anq with
non-repetitive x1, . . . , xn. To interpret the resulting language, again, we need an identity-on-
objects functor J : V Ñ C, an action of V on C, and J to preserve this action.

▶ Definition 6 (Actegory [20]). Let pV, b , Iq be a monoidal category. Then an action of V
on a category C is a functor m : V ˆ C Ñ C together with the unitor and the actor natural
isomorphisms υ : 1 m X – X, α : X m pY m Zq – pX b Y q m Z, satisfying expected coherence
conditions. Then C is called an (V-)actegory.
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Note that every monoidal category trivially acts on itself via m “ b . In the sequel, we will
only consider Cartesian categories, i.e. actegories w.r.t. pV,ˆ, 1q.

▶ Definition 7 ((Distributive) Freyd Category [23, 36]). A Freyd category pV, C, Jp--q,mq

consists of the following data:
a Cartesian category V;
a category C with |V| “ |C|;
an identity-on-objects functor J : V Ñ C;
a monoidal action of V on C, such that J preserves the V-action, i.e. Jpf ˆ gq “ f m Jg

for all f P VpX, X 1q, g P VpY, Y 1q, υ “ J snd and α “ J⟨id ˆ fst, snd ˝ snd⟩.
A Freyd category pV, C, Jp--q,mq is distributive if V is distributive, C is co-Cartesian and J

strictly preserves coproducts (this is equivalent to the requirement that the action preserves
binary coproducts in the second argument coherently with dist).

Given a distributive Freyd category pV, C, Jp--q,mq, we update the semantics from Section 3
as follows, where JA ˆ BK “ JAK ˆ JBK, Jx1 : A1, . . . , xn : AnK “ JA1K ˆ . . . ˆ JAnK:

Jx1 : A1, . . . , xn : An $v xi : AiK “ proji;
JΓ $c do x Ð p; q : BK “ JΓ, x : A $c q : BK ˝ pid m JΓ $c p : AKq ˝ ∆;
JΓ $c case v of inl x ÞÑ p; inr y ÞÑ q : CK

“
[
JΓ, x : A $c p : CK, JΓ, y : B $c q : CK

]
˝J dist ˝pidmJJΓ $v v : A`BKq ˝J∆;

JΓ $v ⟨v, w⟩ : A ˆ BK “ ⟨JΓ $v v : AK, JΓ $v w : BK⟩.
Freyd categories are to strong monads as identity-on-objects functors to monads.

▶ Proposition 8. Let pV, C, Jp--q,mq be a Freyd category. Then J is a left adjoint iff C
is isomorphic to a Kleisli category of some strong monad T on V and Jf “ Hpη ˝ fq for
all f P VpX, Y q where H : VT – C is the relevant isomorphism.

Proposition 8 allows us to refactor the existing characterization of closed Freyd categories [25,
Theorem 7.3] along the following lines. In order to include higher-order types to the language,
we would need to add A Ñ B as a new type former and the following term formation rules:

Γ, x : A $c p : B

Γ $v λx. p : A Ñ B

Γ $v w : A Γ $v v : A Ñ B

Γ $c vw : B

We then need to provide the following additional semantic clauses:
JΓ $v λx. p : A Ñ BK “ curryJΓ, x : A $c p : BK;
JΓ $c vw : BK “ curry-1JΓ $v v : A Ñ BK ˝ pid m JJΓ $v w : AKq ˝ J∆,

where JA Ñ BK “ JAK⊸ JBK, ⊸ : |V| ˆ |C| Ñ |C|, and curry is an isomorphism

curry : CpJpX ˆ Aq, Bq – VpX, A⊸ Bq (4)

natural in X. In particular, this says that J is left adjoint to 1⊸ p--q, which, as we have seen
in Proposition 4, means that C is isomorphic to the Kleisli category of a strong monad T,
and hence (4) amounts to VpX ˆ A, TBq – VpX, A ⊸ Bq, i.e. to the existence of Kleisli
exponentials, which are exponentials of the form pTBqA. We thus obtain the following

▶ Corollary 9. Let pV, C, Jp--q,mq be a Freyd category. The following are equivalent:
an isomorphism (4) natural in X exists;
for all A P |V|, Jp--ˆAq : V Ñ C is a left adjoint;
C is isomorphic to a Kleisli category of a strong monad, and Kleisli exponentials exist.

A yet another way to express (4) is to state that the presheaves CpJp--ˆAq, Bq : Vop Ñ Set
are representable. We will use this formulation in our subsequent analysis of guardedness.
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5 Guarded Freyd Categories

We proceed to recall the formal notion of guardedness [19, 24].

▶ Definition 10 (Guardedness). A guardedness predicate on a co-Cartesian category C
provides for all X, Y, Z P |C| a subset C‚pX, Y, Zq Ď CpX, Y `Zq, whose elements we write
as f : X Ñ Y ⟩⟩⟩ Z and call guarded (in Z), such that

(trv‚) f : X Ñ Y

inl ˝f : X Ñ Y ⟩⟩⟩ Z
(par‚) f : X Ñ V ⟩⟩⟩ W g : Y Ñ V ⟩⟩⟩ W

rf, gs : X ` Y Ñ V ⟩⟩⟩ W

(cmp‚) f : X Ñ Y ⟩⟩⟩ Z g : Y Ñ V ⟩⟩⟩ W h : Z Ñ V ` W

rg, hs˝f : X Ñ V ⟩⟩⟩ W

A guarded category is a category, equipped with a guardedness predicate. A guarded functor
between two guarded categories is a functor F : C Ñ D that strictly preserves coproducts, and
preserves guardedness in the following sense: f P C‚pX, Y, Zq entails f P D‚pFX, FY, FZq.

Intuitively, C‚pX, Y, Zq axiomatically and compositionally distinguishes those morphisms
X Ñ Y ` Z for which the program flow from X to Z is guarded, in particular, if X “ Z

then the corresponding guarded loop can be safely closed. Note that the standard (total)
iteration is an instance with C‚pX, Y, Zq “ CpX, Y ` Zq. Consider other instances.

▶ Example 11 (Vacuous Guardedness [18]). The least guardedness predicate is as follows:
C‚pX, Y, Zq “ {inl ˝f : X Ñ Y ` Z | f P CpX, Y q}. Such C is called vacuously guarded.

▶ Example 12 (Coalgebraic Resumptions). Let T be a monad on a co-Cartesian category V
and let H : V Ñ V be an endofunctor such that all fixpoints THX “ νγ. T pX ` Hγq

exist. These extend to a monad TH , called the (generalized) coalgebraic resumption monad
(transform) of T [30, 19]. The Kleisli category of TH is guarded with f : X Ñ Y ⟩⟩⟩ Z if

X T pY ` HTHpY ` Zqq

THpY ` Zq T ppY ` Zq ` HTHpY ` Zqq

g

f T pinl `idq
out

for some g : X Ñ T pY `HTHpY `Zqq. Guarded iteration operators canonically extend from
T to TH [24].

▶ Example 13 (Algebraic Resumptions). A simple variation of the previous example involves
least fixpoints T HX “ µγ. T pX ` Hγq instead of the greatest ones and in-1 instead of out
where in : T pX ` HT HXq Ñ T HX is the initial algebra structure of T HX, which is an
isomorphism by Lambek’s lemma. However, we can no longer generally induce non-trivial
(guarded) iteration operators for TH .

▶ Example 14. Let us describe natural guardedness predicates on the Kleisli categories of
monads from Example 5.
1. TX “ νγ. PωppX ` 1q ` A ˆ γq is a special case of Example 12.
2. For TX “ PpA‹ˆpX`1q`A‹q, let f : X Ñ Y ⟩⟩⟩ Z if for every x P X, inlpw, inl inr yq P fpxq

entails w ‰ ϵ.
3. For TX “ PpA‹ ˆ pX ` 1q ` pA‹ ` Aωqq guardedness is defined as in clause 2.
4. For TX “ pνγ. X ˆ S ` γ ˆ SqS , recall that SetT is isomorphic to a full subcategory of

the Kleisli category of νγ. p--`γ ˆ Sq, which is again an instance of Example 12 with
TX “ X and HX “ X ˆ S. The guardedness predicate for T thus restricts accordingly.

5. For TX “ pRě0 ˆ Xq ` R̄ě0 let f : X Ñ Y ⟩⟩⟩ Z if fpxq “ inl pr, inr zq implies r ą 0.
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x : A in Γ
Γ $v x : A

f : A Ñ B P Σv Γ $v v : A

Γ $v fpvq : B

f : A Ñ B ⟩⟩⟩ C P Σc Γ $v v : A

Γ $c fpvq : B ⟩⟩⟩ C

Γ $v v : A

Γ $c return v : A ⟩⟩⟩ B

Γ $c p : A ⟩⟩⟩ B Γ, x : A $c q : C ⟩⟩⟩ D Γ, y : B $c r : C ` D ⟩⟩⟩ 0
Γ $c docase p of inl x ÞÑ q ; inr y ÞÑ r : C ⟩⟩⟩ D

Γ $v v : 0
Γ $v init v : A

Γ $v v : A

Γ $v inl v : A ` B

Γ $v v : B

Γ $v inr v : A ` B

Γ $v v : A ` B Γ, x : A $c p : C ⟩⟩⟩ D Γ, y : B $c q : C ⟩⟩⟩ D

Γ $c case v of inl x ÞÑ p; inr y ÞÑ q : C ⟩⟩⟩ D

Γ $v v : A Γ $v w : B

Γ $v ⟨v, w⟩ : A ˆ B

Γ $v p : A ˆ B Γ, x : A, y : B $c q : C ⟩⟩⟩ D

Γ $c case p of ⟨x, y⟩ ÞÑ q : C ⟩⟩⟩ D

Figure 4 Term formation rules of guarded FGCBV.

We proceed to extend the language of Figure 3 with guardedness data. As before, Σv consists
of constructs of the form f : A Ñ B, while Σc consists of constructs of the form f : A Ñ B ⟩⟩⟩ C.
In Figure 4 we display the new formation rules that replace their counterparts from Figure 3.
The rule for return corresponds to the (trv‚) rule. The rule for do now handles the guarded
and unguarded branches, as prescribed by the (cmp‚) rule, that is,

docase p of inl x ÞÑ q ; inr y ÞÑ r

is meant to have the same semantics as do z Ð p; case z of inl x ÞÑ q ; inr y ÞÑ r, modulo
guardedness information. The rule (par‚) corresponds to the rule for case, which is essentially
unchanged w.r.t. Figure 3. Note that a guarded iteration operator could be added with the
following rule:

Γ $c p : A ⟩⟩⟩ 0 Γ, x : A $c q : B ⟩⟩⟩ C ` A

Γ $c iter x Ð p; q : B ⟩⟩⟩ C

The rule (par‚) corresponds to the rule for case. For every Γ $c p : A ⟩⟩⟩ B ` C we can
construct

Γ $c docase p of inl x ÞÑ returnpinl xq;
inr z ÞÑ case z of inl x ÞÑ returnpinl inr xq;

inr y ÞÑ returnpinr yq : A ` B ⟩⟩⟩ C,

which means that weakening the guardedness guarantee is expressible.

▶ Example 15. The updated effectful signature of Example 1 now involves a : 1 Ñ 0 ⟩⟩⟩ 1
and toss : 1 Ñ 2 ⟩⟩⟩ 0, indicating that actions guard everything, while nondeterminism guards
nothing. The signature Σc from Example 2 can be refined to {put : S Ñ 0 ⟩⟩⟩ 1, get : 1 Ñ S ⟩⟩⟩ 0},
meaning again that put guards everything and get guards nothing. Example 3 is more subtle
since wait : Rě0 Ñ Rě0 is meant to be guarded only for non-zero inputs. We thus can embed
the involved case distinction into wait by redefining it as wait : Rě0 Ñ Rě0 ⟩⟩⟩ Rě0.

▶ Definition 16 (Guarded Freyd Category). A distributive Freyd category pV, C, Jp--q,mq is
guarded if C is guarded and the action of V on C preserves guardedness in the following
sense: Given f P VpA, Bq, g P C‚pX, Y, Zq, J dist ˝pf m gq P C‚pA ˆ X, B ˆ Y, B ˆ Zq.
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The semantics of pΣv, Σcq over a guarded Freyd category pV, C, Jp--q,mq interprets types and
operations from Σv as before and sends each f : A Ñ B ⟩⟩⟩ C P Σc to JfK P C‚pJAK, JBK, JCKq.
Terms in context are interpreted as JΓ $v v : BK P VpJAK, JBKq and JΓ $c p : B ⟩⟩⟩ CK P

CpJAK, JBK ` JCKq as follows:
Jx1 : A1, . . . , xn : An $v xi : AiK “ inji;
JΓ $v fpvq : BK “ JfK ˝ JΓ $v v : AK;
JΓ $c fpvq : BK “ JfK ˝ JJΓ $v v : AK;
JΓ $c return v : A ⟩⟩⟩ BK “ J inl ˝JJΓ $v v : AK;
JΓ $c docase p of inl x ÞÑ q ; inr y ÞÑ r : C ⟩⟩⟩ DK

“
[
JΓ, x : A $c q : C ⟩⟩⟩ DK, Jrid, !s ˝ JΓ, y : B $c r : C ` D ⟩⟩⟩ 0K

]
˝ J dist ˝pid m JΓ $c p : A ⟩⟩⟩ BKq ˝ ∆;

JΓ $v init v : AK “ !;
JΓ $v inl v : A ` BK “ inl ˝JΓ $v v : AK;
JΓ $v inr v : A ` BK “ inr ˝JΓ $v v : BK;
JΓ $c case v of inl x ÞÑ p; inr y ÞÑ q : C ⟩⟩⟩ DK

“
[
JΓ, x : A $c p : C ⟩⟩⟩ DK, JΓ, y : B $c q : C ⟩⟩⟩ DK

]
˝ J dist ˝pid m JJΓ $v v : A ` BKq ˝ J∆.

JΓ $v ⟨v, w⟩ : A ˆ BK “ ⟨JΓ $v v : AK, JΓ $v w : BK⟩.
This is well-defined, which can be easily shown by structural induction:

▶ Proposition 17. For any derivable Γ $c p : A ⟩⟩⟩ B, JΓ $c p : A ⟩⟩⟩ BK P C‚pJAK, JBK, JCKq.

6 Representing Guardedness

In Section 4 we explored the combination of strength (i.e. multivariable contexts) and
representability of presheaves CpJp--q, Xq : Vop Ñ Set, sticking to the bottom face of
the cube in Figure 1. Our plan is to obtain further concepts via representability
of C‚pJp--q, X, Y q : Vop Ñ Set. Note that representability of guardedness jointly with func-
tion spaces amounts to representability of C‚pJp--ˆXq, Y, Zq : Vop Ñ Set, i.e. existence of
an endofunctor⊸ : Vop ˆCˆC Ñ C, such that C‚pJp--ˆXq, Y, Zq –Vp--, X ⊸Z Y q. This
is exactly the structure, one would need to extend Figure 4 with function spaces as follows:

Γ, x : A $c p : B ⟩⟩⟩ C

Γ $v λx. p : A ÑC B

Γ $v w : A Γ $v v : A ÑC B

Γ $c vw : B ⟩⟩⟩ C

The decorated function spaces A ÑC B then can be interpreted as JAK⊸JCK JBK, which is a
subobject of the Kleisli exponential JAK Ñ T pJBK` JCKq, consisting of guarded morphisms.

▶ Definition 18. Given J : V Ñ C, where C is guarded co-Cartesian, we call the guardedness
predicate C‚ J-representable if for all X, Y P |C| the presheaf C‚pJp--q, X, Y q : Vop Ñ Set is
representable; C‚ J-guarded if it is equipped with a J-representable guardedness predicate.

J-representability means that for all X, Y P |C| there is UpX, Y q P |V| such that
C‚pJZ, X, Y q – VpZ, UpX, Y qq naturally in Z. Hence, J-representability of guardedness
entails that J is a left adjoint. This can be formulated in terms of free objects [1].

▶ Lemma 19. Given an identity-on-objects guarded functor J : V Ñ C (with V regarded as
vacuously guarded), C‚ is J-representable iff

there is a family of objects pUpX, Y q P |V|qX,Y P|C|;
there is a family of guarded morphisms pϵX,Y : UpX, Y q Ñ X ⟩⟩⟩ Y qX,Y P|C|;
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there is an operator p--q6 : C‚pZ, X, Y q Ñ VpZ, UpX, Y qq sending each f : Z Ñ X ⟩⟩⟩ Y to
the unique morphism f 6 for which the diagram

UpX, Y q

X X ` Y

ϵX,Y
Jf6

f

commutes.
These conditions entail that U is a bifunctor and that ϵX,Y is natural in X and Y .

▶ Lemma 20. If C is J-guarded co-Cartesian then J % Up--, 0q with U as in Lemma 19.

By Lemma 20, representability fails already if J fails to be adjoint. Instructive examples of
non-representability are thus only those, where J does have a right adjoint.

▶ Proposition 21. Let T be a monad over the category of sets Set with the axiom of choice.
If SetT is guarded, the guardedness predicate is representable iff every f : X Ñ T pY ` Zq is
guarded whenever all the compositions 1 ↪Ñ X

f
ÝÑ T pY ` Zq are guarded.

▶ Example 22 (Failure of Representability). In Set, let f : X Ñ Y ` Z be guarded in Z if
{z P Z | f -1pinr zq ‰ ∅} is finite. The axioms of guardedness are easy to verify. By Proposi-
tion 21, this predicate is not Id-representable, as any 1 ↪Ñ X

inr
ÝÑ 0 ` X is guarded, but inr

is not if X is infinite.

In what follows, we will be using# as a binary operation that binds stronger than monoidal
products (b , `, . . .), so e.g. X b Y #Z will read as X b pY #Zq.

▶ Theorem 23. Given an identity-on-objects guarded J : V Ñ C, C‚ is J-representable iff
there is a bifunctor # : V ˆ V Ñ V, such that --#0 is a monad and C – V--#0;
there is a family of guarded morphisms (w.r.t. the guardedness predicate, induced by
C – V--#0) pϵX,Y : X # Y Ñ X ⟩⟩⟩ Y qX,Y P|V|, natural in X and Y ;
for every guarded f : X Ñ Y ⟩⟩⟩ Z there is unique f 7 : X Ñ Y # Z, such that the diagram

Y # Z

X pY ` Zq # 0
ϵY,Z

f7

f

commutes.

Theorem 23 provides a bijective correspondence between morphisms f : X Ñ Y ⟩⟩⟩ Z in C
and the morphisms f 7 : X Ñ Y #Z in V, representing them. Uniqueness of the f 7 is easily
seen to be equivalent to the monicity of the ϵX,Z .

7 Guarded Parametrized Monads

Theorem 23 describes guardedness as a certain bifunctor # : V ˆ V Ñ V and a family
of morphisms pϵX,Y qX,Y P|V|, so that the guardedness predicate is derivable. However, the
guardedness laws are still formulated in terms of this predicate, and not in terms of # and ϵ.
To resolve this issue, we must identify a collection of canonical morphisms, and a complete
set of equations relating them, in the sense that the guardedness laws for all derived guarded
morphisms follow from them. For example, by applying p--q7 to the composition

A#pB ` Cq
ϵA,B`C
ÝÝÝÝÝÑ pA ` pB ` Cqq#0 – ppA ` Bq ` Cqq#0
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we obtain a morphism υA,B,C : A#pB `Cq Ñ pA`Bq#C, which represents weakening of the
guardedness guarantee: in A#pB ` Cq the guarded part is B ` C, while in pA ` Bq#C the
guarded part is only C. It should not make a difference though if starting from A#pB`pC`Dqq

we apply υ twice or rearrange B ` pC ` Dq by associativity and subsequently apply υ only
once – the results must be canonically isomorphic, which is indeed provable. Similarly, we
will introduce further morphisms like υ and derive laws, relating them. We then prove that
the resulting axiomatization enjoys a coherence property (Theorem 25) in the style of Mac
Lane’s coherence theorem for (symmetric) monoidal categories [26],
▶ Definition 24 (Guarded Parametrized Monad). A guarded parametrized monad on a
symmetric monoidal category pV, b , Iq consists of a bifunctor # : V ˆ V Ñ V and natural
transformations

η : A Ñ A#I,

υ : A#pB b Cq Ñ pA b Bq#C, ξ : pA#Bq#C Ñ A#pB b Cq,

χ : A#B b C#D Ñ pA b Cq#pB b Dq, ζ : A#pB#Cq Ñ A#pB b Cq.

such that the following diagrams commute, where – refers to obvious canonical isomorphisms

A#pI b Cq pA b Iq#C

A#C

υ

–
–

A#pB b pC b Dqq A#ppB b Cq b Dq

pA b Bq#pC b Dq

ppA b Bq b Cq#D pA b pB b Cqq#D

–

υ

υ

υ

–

A b B A#I b B#I

pA b Bq#I pA b Bq#pI b Iq

η

η b η

χ

–

A#B b C#D C#D b A#B

pA b Cq#pB b Dq pC b Aq#pD b Bq

χ

–

χ

–

A#B b pC#D b E#F q pA#B b C#Dq b E#F

A#B b pC b Eq#pD b F q pA b Cq#pB b Dq b E#F

pA b pC b Eqq#pB b pD b F qq ppA b Cq b Eq#ppB b Dq b F q

id#χ

–

χ#id

χ χ

–

pA#Iq#B A#pI b Bq

A#B

ξ

η#id –

A#pB#Iq A#pB b Iq

A#B

ζ

id#η –

A#ppB#Cq#pD#Eqq

A#ppB#Cq b pD#Eqq A#ppB#Cq#pD b Eqq

A#ppB b Dq#pC b Eqq A#pB#pC b pD b Eqqq

A#ppB b Dq b pC b Eqq – A#pB b pC b pD b Eqqq

ζ id#ζ

id#χ id#ξ

ζ ζ
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pA#pB#Cqq#pD#Eq

A#ppB#Cq b pD#Eqq pA#pB b Cqq#pD#Eq

A#ppB#Cq b pD#Eqq pA#pB b Cqq#pD b Eq

A#ppB b Dq b pC b Eqq – A#ppB b Cq b pD b Eqq

ξ ζ#id

id#χ id#ξ

ζ ξ

ppA#Bq#Cq b ppD#Eq#F q pA#B b D#Eq#pC b F q

A#pB b Cq b D#pE b F q ppA b Dq#pB b Eqq#pC b F q

pA b Dq#ppB b Cq b pE b F qq pA b Dq#ppB b Eq b pC b F qq

χ

ξ#ξ χ#id

χ ξ

–

pA#pB#Cqq b pD#pE#F qq pA b Dq#pB#C b E b F q

A#pB b Cq b D#pE b F q pA b Dq#ppB b Eq#pC b F qq

pA b Dq#ppB b Cq b pE b F qq pA b Dq#ppB b Eq b pC b F qq

ζ#ζ

χ

id#χ

χ ζ

–

pA#Bq#pC#D b E#F q pA#B b C#Dq#pE#F q

pA#Bq#ppC b Eq#pD b F qq ppA b Cq#pB b Dqq#pE#F q

pA#Bq#ppC b Eq b pD b F qq ppA b Cq#pB b Dqq b pE#F q

A#pB b ppC b Dq b pE b F qqq pA b Cq#ppB b Dq b pE b F qq

A#pC b ppB b Dq b pE b F qqq pA b Cq#ppB b Dq b pE b F qq

υ

id#χ χ#id

ζ ζ

ξ ξ

–

υ

A#B b C#pD b Eq A#B b pC b Dq#E

pA b Cq#pB b pD b Eqq pA b pC b Dqq#pB b Eq

pA b Cq#pD b pB b Eqq ppA b Cq b Dqq#pB b Eq

id b υ

χ χ

– –

υ

A#pB#pC b Dqq A#ppB b Cq#Dq

A#pB b pC b Dqq A#ppB b Cq b Dq

id#υ

ζ ζ

–

pA#pB b Cqq#D ppA b Bq#Cq#D

A#ppB b Cq b Dq pA b Bq#pC b Dq

A#pB b pC b Dqq pA b Bq#pC b Dq

υ#id

ξ ξ

–

υ
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The value of the presented axiomatization is attested by the following

▶ Theorem 25 (Coherence). Let E1, E2 and E2 be expressions, built from b ,#and I over a set
of letters, in such a way that E1 and E2#E 1

2 contain each letter at most once and neither E2 nor
E 1

2 contain#. Given two expressions f and g built from b and# over identities, associators,
unitors, braidings, η, υ, ξ, ζ, χ, in such a way that formally f, g : E1 Ñ E2#E 1

2, then f “ g

follows from the axioms of guarded parametrized monads.

Proof Sketch. Let us refer to the described expressions E1 as object expressions and to f

formed as described as morphism expressions. For two morphism expressions f, g : E Ñ E1,
let f ” g denote ‘f “ g follows from the axioms of guarded parametrized monads‘. An object
expression is normal if it is of the form E#E 1 and E and E 1 do not contain#. For an object
expression E , we define object expressions nf1pEq and nf2pEq recursively with the clauses:

nf1pEq “ E , nf2pEq “ I if E “ I or E is a letter;
nf1pE b E 1q “ nf1pEq b nf1pE 1q, nf2pE b E 1q “ nf2pEq b nf2pE 1q;
nf2pE#E 1q “ nf1pEq, nf2pE b E 1q “ nf1pE 1q b pnf2pEq b nf2pE 1qq.

Let nfpEq “ nf1pEq#nf2pEq, so nfpEq is normal. For any object expression E we also define a
normalization morphism expression nmpEq : E Ñ nfpEq, by induction as follows:

nmpEq “ η if E “ I or E is a letter;
nmpE b E 1q “ χ ˝ pnmpEq b nmpE 1qq;
nmpE#E 1q “ ξ ˝ ζ ˝ pnmpEq#nmpE 1qq.

The goal will follow from the following subgoals.
1. If a morphism expression f : E Ñ E 1 does not contain υ then nmpE 1q ˝ f ” nmpEq ˝ g for

a suitable isomorphism g, constructed from b ,# and the coherent isomorphisms of the
monoidal structure.

2. If a morphism expression f : E Ñ E 1 does not contain η, ξ, ζ, χ then there exists
g : nfpEq Ñ nfpE 1q that also does not contain η, ξ, ζ, χ and such that nmpE 1q˝f ” g˝nmpEq.

3. If f, g : E Ñ E 1, E is a normal object expression and g and f do not contains η, ξ, ζ and
χ then f ” g.

Indeed, given f, g : E Ñ E 1 with normal E 1, to prove f ” g, it suffices to prove that f is
equal to E nmpEq

ÝÝÝÝÑ nfpEq f 1

ÝÑ E 1 for a suitable f 1 – the analogous statement would be true
for g, and we would be done by 3. Let us represent f as a composition fn ˝ . . . ˝ f1 where
every fi with even i contains precisely one occurrence of υ and every fi with odd i contains
no occurrences of υ. We obtain

E E1 E2 En

nfpEq nfpE1q nfpE2q nfpEnq

nmpEq

f1

nmpE1q

f2

nmpE2q

. . .

nfpEnq

– . . .

where every odd diagram commutes by 1 and every even diagram commutes by 2. Note
that nfpEnq is an isomorphism, since En “ E 1 is normal, and therefore we obtain the desired
presentation for f . Let us show the subgoals.
1. W.l.o.g. assume that f contains precisely one letter from the list η, ξ, ζ, χ, ρ, λ, α, γ

where ρ, λ are the right and left unitors of b , α is the associator and γ is braiding.
The general case will follow by induction. Furthermore, by structural induction over
E , we restrict to the situation that f P {η, ξ, ζ, χ, ρ, λ, α, γ}. The rest follows by case
distinction.

2. Again, w.l.o.g. f contains precisely one occurrence of υ. The reduction to f “ υ, runs by
structural induction over E and in contrast to the previous clause relies on the diagrams,
combining υ with ξ, ζ and χ correspondingly.
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3. Observe that f is a composition of morphisms of the form β ˝ h ˝ α where α and β

are coherent isomorphisms and h contains one occurrence of υ. By induction, using
the properties of υ we can reduce to the case f “ α ˝ h ˝ β and analogously, we can
reduce to g “ α1 ˝ h1 ˝ β1. It is then easy to see that h and h1 are equal up to a coherent
isomorphism, and the desired equality f ” g follows by coherence for symmetric monoidal
categories. ◀

The present version is sufficient for our purposes. It is an open question if a stronger
version with general f, g : E1 Ñ E2 can be proven. In the sequel, we will only deal with
guarded parametrized monads over pV,`, 0q. Recall that a parametrized monad [37] is a
bifunctor T : V ˆ V Ñ V, such that each T p--, Xq is a monad and each T p--, fq is a monad
morphism.

▶ Proposition 26. Every guarded parametrized monad is a parametrized monad with A
η
ÝÑ

A#0 id#!
ÝÝÑ A#B as unit and pA#Bq#B

ξ
ÝÑ A#pB ` Bq

id#∇
ÝÝÝÑ A#B as multiplication.

Proof Sketch. The proof essentially follows from coherence. For example, consider the
associativity monad law µA,B ˝µA#B,B “ µA,B ˝ pµA,B#Bq. On the one hand (by naturality),

µA,B ˝ µA#B,B “ pA#∇q ˝ ξA,B,B ˝ ppA#Bq#∇q ˝ ξA#B,B,B

“ pA#∇q ˝ pA#pB ` ∇qq ˝ ξA,B,B`B ˝ ξA#B,B,B

“ pA#p∇ ˝ pB ` ∇qqq ˝ ξA,B,B`B ˝ ξA#B,B,B .

On the other hand,

µA,B ˝ pµA,B#Bq “ pA#∇q ˝ ξA,B,B ˝ ppA#∇q ˝ ξA,B,B#Bq

“ pA#∇q ˝ pA#p∇ ` Bqq ˝ ξA,B`B,B ˝ pξA,B,B#Bq

“ pA#p∇ ˝ p∇ ` Bqqq ˝ ξA,B`B,B ˝ pξA,B,B#Bq.

By coherence, ξA,B,B`B ˝ ξA#B,B,B and ξA,B`B,B ˝ pξA,B,B#Bq are equal up to the canonical
isomorphism pB ` Bq ` B – B ` pB ` Bq and hence the expressions we computed above are
equal as well. ◀

▶ Theorem 27. Given co-Cartesian V and an identity-on-object functor J : V Ñ C strictly
preserving coproducts, C is guarded and C‚ is representable iff C – V--#0 for a guarded
parametrized monad p#, η, υ, χ, ξ, ζq, the compositions υX,Y,0 ˝ pid# inlq are all monic and
f : X Ñ Y ⟩⟩⟩ Z iff f factors through Y #pZ ` 0q υ

ÝÑ pY ` Zq#0.

Vacuous guardedness is clearly representable and by Theorem 27 corresponds to those guarded
parametrized monads#, which do not depend on the parameter, i.e. to monads.

▶ Example 28. Let us revisit Example 12. Let X # Y “ T pX ` HTHpX ` Y qq, and note
that --#0 is isomorphic to TH . Assuming existence of some morphism p : 1 Ñ H1, for every X,
we obtain the final map p̂ : 1 Ñ THX, induced by the coalgebra map 1 η˝inr ˝p

ÝÝÝÝÝÑ T pX ` H1q.
Now, T pinl`idq is a section, since T rid ` Hp̂ ˝ p ˝ !, inrs ˝ T pinl`idq is the identity. By
Theorem 23, # is a guarded parametrized monad.

▶ Example 29. Let us revisit Example 14. Let X # Y “ Rě0 ˆ X ` Rą0 ˆ Y ` R̄ě0. Then
X # 0 – Rě0 ˆ X ` R̄ě0 and there is an obvious injection ϵX,Y from X # Y to pX ` Y q # 0.
By definition, every guarded f : X Ñ Y # Z uniquely factors through ϵY,Z , and hence # is a
guarded parametrized monad.
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▶ Definition 30 (Strong Guarded Parametrized Monad). A guarded parametrized monad p#, η,

υ, χ, ξ, ζq is strong, if # is strong as a monad in the first argument and as a functor in the
second argument, and the diagram

X ˆ pY #Zq X ˆ pY ` Zq#0 pX ˆ pY ` Zqq#0 pX ˆ Y ` X ˆ Zq#0

pX ˆ Y q#Z pX ˆ Y ` Zq#0

idˆϵ

τ

τ dist#0

pid`sndq#0

ϵ

commutes, where ϵX,Y “ υX,Y,0 ˝ pid#inlq and τ is the monadic strength of #.

▶ Remark 31. Strength is commonly referred to as a “technical condition”. This is justified
by the fact that in self-enriched categories strength is equivalent to enrichment of the
corresponding functor or a monad [21], and in foundational categories, like Set, every functor
and every natural transformation are canonically enriched w.r.t. Cartesian closeness as
the self-enrichment structure. Then canonical strength ρX,Y : X ˆ FY Ñ F pX ˆ Y q for a
functor F is defined by the expression ρX,Y “ λpx, zq. F pλy. px, yqqpzq. We conjecture that
strengths involved in Definition 30 are technical in the same sense, in particular the requested
commutative diagram is entailed by enrichment of ϵ.
Finally, let us establish the analogue of Theorem 27 for Freyd categories.

▶ Theorem 32. A Freyd category pV, C, Jp--q,mq is guarded and C‚ is representable iff
C–V--#0 for a strong guarded parametrized monad p#, η, υ, χ, ξ, ζq, the compositions υX,Y,0 ˝

pid#inlq are all monic and f : X Ñ Y ⟩⟩⟩ Z iff f factors through Y #pZ ` 0q υ
ÝÑ pY ` Zq#0.

For a strong guarded parametrized monad#, let ~
τ be the composition

X ˆ pY #Zq
∆ˆid
ÝÝÝÑ pX ˆ Xq ˆ pY #Zq – X ˆ pX ˆ pY #Zqq

idˆρ
ÝÝÝÑ X ˆ pY #pX ˆ Zqq

τ
ÝÑ pX ˆ Y q#pX ˆ Zq

where τ is the monadic strength of# and ρ is the functorial strength of#. It is easy to check
that τ and ρ are derivable from ~

τ , and in the sequel, we will include it as the last element
in a tuple p#, η, υ, χ, ξ, ζ,

~
τq, defining a strong guarded parametrized monad.

Finally, we can interpret the guarded version of FGCBV over a strong guarded para-
metrized monad p#, η, υ, χ, ξ, ζ,

~
τq on V. Let sorts and function symbols from Σv be

interpreted as usual and let JfK P VpJAK, JBK # JCKq for f : A Ñ B ⟩⟩⟩ C P Σc. Then
JΓ $v v : BK P VpJAK, JBKq and JΓ $c p : B ⟩⟩⟩ CK P VpJAK, JBK # JCKq are defined with
the following clauses:

Jx1 : A1, . . . , xn : An $v xi : AiK “ inji;
JΓ $v fpvq : BK “ JfK ˝ JΓ $v v : AK;
JΓ $c fpvq : BK “ JfK ˝ JΓ $v v : AK;
JΓ $c return v : A ⟩⟩⟩ BK “ ηJAK,JBK ˝ JΓ $v v : AK;
JΓ $c docase p of inl x ÞÑ q ; inr y ÞÑ r : C ⟩⟩⟩ DK “ p∇#∇q ˝ ξJCK,JDK,JCK`JDK

˝ ζJCK#JDK,JCK,JDK ˝ pJΓ, x : A $c q : C ⟩⟩⟩ DK#JΓ, y : B $c r : C ⟩⟩⟩ DKq
˝

~
τ JΓK,JAK,JBK ˝ ⟨id, JΓ $c p : A ⟩⟩⟩ BK⟩;

JΓ $v init v : AK “ !;
JΓ $v inl v : A ` BK “ inl ˝JΓ $v v : AK;
JΓ $v inr v : A ` BK “ inr ˝JΓ $v v : BK;
JΓ $c case v of inl x ÞÑ p; inr y ÞÑ q : C ⟩⟩⟩ DK “ p∇#∇q ˝ χJCK,JDK,JCK,JDK

˝ pJΓ, x : A $c p : C ⟩⟩⟩ DK ` JΓ, y : B $c q : C ⟩⟩⟩ DKq ˝ dist ˝⟨id, JΓ $v v : A ` BK⟩.
JΓ $v ⟨v, w⟩ : A ˆ BK “ ⟨JΓ $v v : AK, JΓ $v w : BK⟩.
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Note that what allows us to sidestep the monicity condition of the representability criterion
(Theorem 27) is that we gave up on the assumption that the space of guarded morphisms
X Ñ Y #Z injectively embeds to the space of all morphisms X Ñ pY ` Zq#0, in particular,
the entire notion of guardedness predicate is eliminated.

8 Conclusions and Further Work

We investigated a combination of FGCBV and guardedness by taking inspiration from the
previous work on relating Freyd categories with strong monads via a natural requirement
of representability of certain presheaves. An abstract notion of guardedness naturally fits
the FGCBV paradigm and gives rise to more general formats of presheaves, which must
be representable e.g. in order to be able to interpret higher-order (guarded) functions. In
our case, the representability requirement gave rise to a novel categorical structure, we
dub (strong) guarded parametrized monad, which encapsulate computational effects under
consideration, simultaneously with guardedness guarantees.

We regard our present results as a prerequisite step for implementing guarded programs
in existing higher-order languages, such as Haskell, and in proof assistants with strict support
of the propositions-as-types discipline, such as Coq and Agda, where unproductive recursive
definitions cannot be implemented directly, and thus the importance of guarded iteration is
particularly high. It would be interesting to further refine guarded parametrized monads so
as to include further quantitative information on how productive a computation is, or how
unproductive it is, so that this relative unproductivity could possibly be cancelled out by
composition with something very productive. Another strand for future work comes from
the observation that guarded iteration is a formal dual of guarded recursion [18]. A good
deal of the present theory can be easily dualized, which will presumably lead to guarded
parametrized comonads and comonadic recursion – we are planning to investigate these
structures from the perspective of comonadic notion of computation [38]. In terms of syntax,
a natural extension of fine-gain call-by-value is call-by-push-value [22]. We expect it to be a
natural environment for analysing the above mentioned aspects in the style of the presented
approach.
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