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Abstract
We consider an extension of multiplicative linear logic which encompasses bayesian networks and
expresses samples sharing and marginalisation with the polarised rules of contraction and weakening.
We introduce the necessary formalism to import exact inference algorithms from bayesian networks,
giving the sum-product algorithm as an example of calculating the weighted relational semantics of
a multiplicative proof-net improving runtime performance by storing intermediate results.
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1 Introduction

Linear logic [18] provides a linear algebra flavour to logic, associating linear algebra operations
with logical connectives, e.g. tensor ⊗ is seen as a form of conjunction, direct sum ⊕ as a
disjunction and duality as an involutive negation (·)⊥. This perspective has given many
insights. In denotational semantics, we have quantitative semantics, e.g. [25, 21, 10, 11, 6, 24]:
a family of models denoting λ-terms and functional programs with some notion of analytic
maps or power series that can be locally approximated by multilinear functions, these
latter denoting linear logic proofs. In proof-theory, we have proof-nets: a representation
of proofs and programs expressing the interdependences of these algebraic operations in a
graph-theoretical fashion.

Quantitative semantics turns out to be particularly suitable for probabilistic programming,
giving fully abstract semantics [14, 15, 17], denoting probabilistic programs with very regular
functions (absolutely monotone) even on “continuous” datatypes (e.g. real numbers) [16, 5, 13],
giving a compositional analysis of various operational behaviours, such as runtime or liveness
[24], providing suitable notions of program metrics [12]. Due to this expressivity, calculating
the quantitative denotations for a Turing complete programming language is obviously
non-computable, but we can fix on relevant fragments supporting an effective procedure.
Effectiveness is a relevant feature for a denotational model, as it can provide automatic tools
for verifying program correctness, as well as the other mentioned operational properties.

Let us focus our attention to one of the simplest fragments of linear logic: the multiplicative
fragment (MLL), which has the ⊗ conjunction, its unit 1 and their respective duals, the par `
(a disjunction different from ⊕) and ⊥ = 1⊥. From a programming perspective, this fragment
contains (although it is not restricted to) an exponential-free fragment of the linear λ-calculus
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8:2 Sum-Product for MLL

with tuples, e.g. [1]: the linear functional type F ⊸ G is in fact represented by F⊥ ` G.
Although very simple, this fragment is already surprisingly expressive on probabilistic data.
First, positive types (i.e. combinations of 1, ⊕ and ⊗) express linear combinations of the
values of a finite data-type. For example, the quantitative denotation of 1⊕ 1 contains linear
combinations of booleans and can be used to model boolean random variables1. Moreover, it
is known since the inception of polarised linear logic that positive formulas are endowed with
a polarised version of the structural rules of weakening and contraction ([19] and Remark 3),
so one can represent λ-terms having multiple occurrences of a same boolean variable without
breaking the linearity features of MLL. In probabilistic programming, these occurrences
duplicate the samples from a random variable, but not the random variable itself. Finally,
we can allow semantical boxes expressing matrices indexed by finite data-types, which can
express conditional probabilities. We call this system quantitative MLL (Section 2).

As for the semantics, let us focus on the R≥0-weighted relation semantics (see Section 3
and [24]), which is one of the most basic examples of quantitative semantics, allowing to
model probabilistic programs over countable data-types. The denotation of a proof-net is
then a vector of dimension equal to the number of the possible samples of a probabilistic
distribution computed by the proof-net. This vector is computable for quantitative MLL
and the standard semantical definitions yield a recursive procedure (Figure 1c) to compute
it. In practice, this procedure is unfeasible, as it is exponential in time and in space with
respect to the size of the proof-net. The goal of this paper is to inaugurate a new approach
for improving it by taking inspiration from bayesian networks, which have partially a similar
graph-theoretical structure as proof-nets.

For example, the R≥0-weighted denotation of a proof-net describing a probabilistic
distribution over a tuple of n booleans is a vector of dimension 2n (the number of the
possible outcomes of a random variable over n booleans), independently whether the values
of some of these booleans depend each other or not (Example 9). The proof-net carries very
clearly these interdependences via paths over boolean edges: may we reduce the dimension
of its denotation by following such a structure? On a different note, the composition of two
proof-nets on a tuple of n booleans yields a sum of 2n terms (Example 11). However, this
composition can be ordered by following the switching paths over the corresponding cuts.
May we refactor the sum according to this order and gain in efficiency by memorising some
intermediate factors?

Similar questions are typical of the research on Bayesian networks ([27], see as reference [8]),
these latter being directed graphs expressing the conditional dependences between different
random variables. The benefit of this approach is to provide a battery of algorithms
computing, e.g., marginal distributions in a quite efficient way by taking advantage of the
graph-theoretical structure of a network. Our general goal is to inaugurate a new approach
to quantitative semantics which pays attention to the cost of computing the semantics, and
we do so by exploiting techniques form Bayesian inference. One paradigmatic example is the
sum-product variable elimination algorithm [29]: we propose here a formalism for computing
the semantics of a quantitative MLL proof-net by adapting this algorithm (here Algorithm 1).

1 It is known that the space of random variables ranging over a finite set of outcomes of cardinality n can
be described by the finite additive disjunction

⊕
i≤n

1 of the tensor unit, see e.g. [17]. This formula is
not in MLL, as ⊕ is not a multiplicative connective, but it appears in our setting as these spaces of
finite random variables are associated with the positive atomic formulas of MLL (see Example 7).
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Related works. Bayesian networks form, mutatis mutandis, a strict subset of quantitative
MLL proof-nets (Remark 1), morally the set of those proof-nets which do not contain formulas
alternating polarities, e.g. alternation of ⊗ and ` connectives. This correspondence has been
already acknowledged, with a slight different terminology, by the recent literature about the
semantical foundations of Bayesian programming. We mention in particular [3, 22] which
represent Bayesian networks as string diagrams and analyse the notion of disintegration.
The paper [26] proposes a game semantics based on event structures for a variant of the
linear λ-calculus underlined by quantitative MLL. The paper [28] studies an equational
theory and provides a denotational semantics based on matrices for this calculus when
restricted to ground data-types. However, to our knowledge, our paper is the first time that
the efficiency of computing the semantics is taken into consideration. Moreover, we show
that the techniques of Bayesian networks can be adapted to the more general framework of
quantitative MLL without so much effort.

Paper outline. Section 2 introduces quantitative MLL proof-nets and Section 3 its associated
R≥0-weighted relational semantics. Section 4 revisits the standard notion of factor in Bayesian
inference so to apply it to atomic proof-nets in Section 5 and to general proof-nets in Section 6.
Section 7 concludes by mentioning some future developments.

2 Quantitative Multiplicative Linear Logic

Metavariables X,Y, Z will vary over a countable set of propositional variables. The grammar
of the formulas of MLL is given by (together with its metavariables):

F,G,H ::= X+ | X− | 1 | ⊥ | F ⊗G | F `G. (1)

We call X+ (resp. X−) a positive atomic formula (resp. negative atomic formula) over the
variable X, the superscript symbol + (resp. −) being its polarity. We will write X◦ for a
generic atomic formula over X, if we do not want to precise its polarity. The linear logic
negation is introduced as syntactical sugar: (X+)⊥ ::= X−, 1⊥ ::= ⊥, (F⊗G)⊥ ::= F⊥`G⊥,
and for the dual cases (X−, ⊥, `), (F⊥)⊥ ::= F .

A sequent is a finite sequence F1, . . . , Fn of MLL formulas. Capital Greek letters Γ,∆, . . .
will vary over sequents. Given a sequent Γ = F1, . . . , Fn, we write Γ⊥ for the sequent
F⊥

1 , . . . , F
⊥
n . Moreover, if n > 0, we write `Γ (resp. ⊗Γ) for the formula F1 ` (· · · ` Fn)

(resp. F1 ⊗ (· · · ⊗ Fn)). If Γ is empty (i.e. n = 0), `Γ (resp. ⊗Γ) will mean ⊥ (resp. 1).
As accustomed in linear logic, sequent proofs are represented by special graphs, called

proof-nets. Figure 1e gives an example of two proof-nets: N at the left side of the arrow
∗−→, and N0 at the right side. A proof-net is a labelled directed acyclic graph2 (DAG for
short) such that the edges are labelled by MLL formulas and the nodes by deduction rules of
our extended MLL, i.e. by a symbol among: ax (axiom), cut (cut), 1 (one), ⊗ (tensor), ⊥
(bottom), ` (par), w (weakening), c (contraction), b (semantical box or simply box). The
nodes of the proof-nets in Figure 1e are represented just by their labels, except for the box
which is depicted as a rectangular and labeled by an enumerated occurrence of b. The label
of a node determines the number of incoming edges (called premises of the node) and the

2 More formally, a directed graph is a quadruplet (V,E, t, s) of a set V of vertices and a set E of edges,
and two maps t, s : E 7→ V associating an edge with a target and a source, respectively. We alllow
directed graphs with pending edges, i.e. t and s may be partial partial. The edges not in the domain of
t or s are called pending. A directed graph is acyclic (a DAG for short), if there is no directed cycle.

FSCD 2023
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number of outgoing edges (called conclusions of the node), as well as the type of formulas
labelling these edges, according to the rules sketched in Figure 1a. The edges will be oriented
top-bottom, so that axioms, ones, bottoms, weakenings and boxes have no premises, while
cuts have no conclusions. Figure 1e does not explicit all formulas labelling the edges of N and
N0, in fact these formulas can be recovered by the axioms and boxes labelling and the rules
sketched in Figure 1a. Proof-nets have edges without targets which are called the conclusions
of the proof-net. Both N and N0 have one single conclusion, labelled by X+

4 ⊗X
+
5 .

Not all DAGs of MLL nodes are proof-nets: the set of proof-nets is the subset of the set
of all DAGs which can be generated inductively by the rules sketched in Figure 1b. We call
atomic a proof-net whose edges are only labelled with atomic formulas. Notice that atomic
proof-nets can contain only axioms, cuts, weakening, contractions and semantical boxes.

▶ Example 1. The (atomic) proof-net N0 in Figure 1e is mutatis mutandis an example of a
Bayesian network as expressed by quantitative MLL. The propositional variables X1, . . . , X5
are place-holders for (sets of the possible outcomes of) random variables and the semantical
boxes are place-holders for their associated “conditional probabilistic tables” (we borrow
here the terminology of [8]). For example, the box b4 is a place-holder for a probabilistic
distribution over the variable X4 conditioned by the outcomes of the variables X2 and X3. The
polarities discriminate between input and output occurrences in a conditional probabilistic
table. These place-holders will be instantiated with concrete conditional distributions by the
semantics, as detailed in Section 3.

The acquainted reader in Bayesian graphs should be convinced that these latter are
depicted plainly in this syntax just by adding cuts transforming outputs into inputs. Notice
that by inverting the orientation of the edges labelled by negative atoms, we get exactly the
same directed paths between the nodes of the corresponding Bayesian network. Of course,
MLL allows for more nets than Bayesian graphs, for example the proof-net N at left of the
∗−→ arrow is not bayesian, namely it has par nodes. But yet, Remark 54 will allude to a
correspondence between N and a run of the sum-product algorithm over N0. Our goal is to
show how Bayesian graph algorithms can be imported in this more general setting.

▶ Remark 2. Some papers, e.g. [3, 22], represent Bayesian graphs as string diagrams, which
is a graphical syntax omitting the axiom and cut nodes. Although one can present MLL in a
similar way by using Lafont’s interaction nets [23], we prefer to keep axioms and cuts explicit
as they condense the main threats to an efficient computation of the semantics which is a
core topic of this paper.
▶ Remark 3. We allow for structural rules (weakening and contraction) on negative atomic
formulas. In fact, as it will be clear in Section 3, negative atoms will be interpreted by finite
products of bottoms

˘
x∈S ⊥ (although we do not detail here the additive connectives & and

⊕ and the exponential modalities ? and !). It is well-known since the inception of polarized
linear logic [19] that ⊥ is isomorphic to the exponential formula ?0, so that the structural
rules of ? can be lifted to

˘
x∈S ⊥, extending the expressivity of MLL. One might even allow

the structural rules to all formulas of negative polarity, but we preferred to restrict to atomic
formulas to ease the presentation, namely cut reduction.
▶ Remark 4. A less standard extension is given by the semantical boxes b, which are place
holders for conditional distributions or, more generally, matrices. For technical convenience,
we restrict their conclusions (as well as those of MLL axioms) to be atomic formulas with
exactly one occurrence of a positive formula. The structural rules of contractions and
weakenings take then a precise operational meaning: a cut between the positive conclusion of
a box and a contraction duplicates the samples of the probabilistic distribution associated with
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. . .
X−1

⊗
F G1

1

F

cut

F⊥ax

X− X+

`
F G⊥

⊥

c

X− X−w

X− X−n Y +

b

X−F `GF ⊗G

(a) Labelling of MLL nodes with their incident edges. Edges are oriented top-down.

empty = empty
graph one = 1

1 ⊥(N ) = ⊥

⊥
. . .
N
∆

b = . . .
X1
− Xn

− Y +

b axX =
ax

X− X+

`(NF,G) =
`F G. . .

∆

N

F `G

NF ⊗N ′
F ′ =

⊗F G

F ⊗G
. . .
∆

. . .
∆′

N N ′ cut(NF ,N ′
F⊥) =

cutF F⊥. . .
∆

. . .
∆′

N N ′

w(NX−) = w

X−
. . .
N
∆

c(NX−,X−) =
c

X− X−. . .
∆

N

X−

mix(N ,N ′) = . . .
∆

. . .
∆′

N N ′

(b) Sequent rules generating the set of proof-nets. The notation NΓ in the subscript of a rule stands for
the pair of a proof-net N and a sequence Γ of conclusions of N , which will be “active” in the rule.

JemptyK⋆ = JoneK⋆ = 1 J⊥(N )K
(d⃗,⋆)

= JN K
d⃗

JbK(x⃗,y) = ι(b)(x⃗,y) JaxXKx,x′ = δx,x′

J`(N )K
(d⃗,(x,y))

= JN K
(d⃗,x,y)

JN ⊗N ′K
(d⃗,d⃗′,(x,y))

= JN K
(d⃗,x)

JN ′K
(d⃗′,y)

Jcut(N ,N ′)K
d⃗,d⃗′ =

∑
x∈JF KJN K

d⃗,x
JN ′K

d⃗′,x

Jw(N )K
(d⃗,x)

= JN K
d⃗

Jc(N )K
(d⃗,x)

= JN K
(d⃗,x,x)

Jmix(N ,N ′)K
(d⃗,d⃗′)

= JN K
d⃗
JN ′K

d⃗′

(c) Inductive definition of the interpretation JN Kι by induction on a sequence of sequent rules giving N ,
we omit to explicit the valuation ι as well as the active sequent in the sequent rule.

ax

cut

ax

cut

1 ⊥ 1/⊥
graph

⊗
F G G⊥

`
F

cut

cut

cut

G G⊥F⊥F⊥

⊗/`empty

(d) MLL cut-reduction rewriting steps.

c

X+
2X−

1

X−
1X+

1

X−
2 X−

3
X+

3

X−
2

⊗

X+
4 X+

5

X+
4 ⊗X+

5

b1
b5b4

b2 b3

`

cut `

⊗
c

ax

ax

c ⊗ `
ax

⊗

cut

cut

X−
2

X+
2 ⊗X+

4
X+

2 ⊗ (X−
2 `X+

3 )

X−
1

∗−→

X+
1

c

c

X+
5

X−
3

⊗

X−
2

X+
3X−

1

X+
2X−

1

X+
4

X−
2

X+
4 ⊗X+

5

b5

b4b3

b2b1
c

cut
X−

2

cut
X−

2cut

(e) Example of two proof-nets of conclusion X+
4 ⊗X+

5 such that N ∗−→ N0. The labelling of some edges is
omitted.

Figure 1 The proof-net syntax and weighted-relational semantics of quantitative MLL.
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the box, while weakenings maginalise out this distribution. These operations are categorically
axiomatised by the so-called CD-structure, for “copier” and “discarder”, e.g. [22, 28]. We
explicit here how the structural polarised linear logic rules perfectly fulfil this rôle, showing
a natural Curry-Howard correspondence with Bayesian programming.

Given a proof-net N and an edge e of N , we write by e : F whenever e is labelled by the
formula F . By ease of notation, we often write the sequent F1, . . . , Fn synonymously for an
enumeration e1 : F1, . . . , en : Fn of labelled edges, if the edges e1, . . . , en are clear from the
context or inessential. We write N : ∆ whenever the sequent ∆ enumerates the (formulas
labelling the) conclusions of N , also speaking about ∆ as simply the conclusions of N .

Cut-reduction is defined as a graph-rewriting, replacing a subgraph containing a cut (the
redex) with a new subgraph (the contractum) having the same pending edges. Figure 1d
sketches the three different kinds of MLL redexes: ax, 1/⊥, ⊗/`. We will write N −→ N ′

if N rewrites into N ′ by one single rewriting step. The fact that N ′ is still a proof-net is
proven by using the so-called correctness criteria (see [18] for details). We denote by ∗−→ the
reflexive and transitive closure of −→. A normal form is a proof-net which contains no redex
of any kind {ax, 1/⊥,⊗/`}. Cut-reduction is confluent and strong normalising [18].

▶ Example 5. Figure 1e gives an example of a proof-net N that rewrites into the normal
form N0. Notice that cuts between structural nodes (weakening and contraction) and boxes
are not reduced (see Remark 6) so that the normal form N0 yet contains some cuts. Notice
also that different sequences of rewriting steps may start from N but all of them can be
eventually completed into N0, in accordance with the confluence property.

▶ Remark 6. Weakening and contraction do not erase nor duplicate semantical boxes as this
rewriting would break the correspondence with Bayesian networks mentioned in Example 1.
In fact, if we rewrote a cut between a contraction and a box b into two distinct copies of b,
then this would correspond to create two independent and identically distributed random
variables out of a single one and not to duplicate a sample of this latter. The sharing nodes in
bayesian networks share samples of random variables but do not duplicate random variables
(see [7]). We will discuss this point also in Example 8 using the weighted relational semantics.

3 Weighted Relational Semantics

The quantitative semantics of linear logic refers to a family of denotational models based
on linear algebra constructions (tensors, linear functions, direct sums, dual spaces, etc.).
Many examples are known in the literature, such as finiteness and Koethe spaces [11, 10],
weighted relations [24], probabilistic coherence spaces [6], coherent Banach spaces [20] etc.
The common idea is to associate types with a mathematical structure underlying a notion of
vector space (or a module) and the poofs with linear maps represented by matrices, or simply
vectors in case of proof-nets. We consider here one of the most basic examples of quantitative
semantics, the “relations” weighted by non-negative real numbers, but the results of this
paper can be adapted trivially to any quantitative semantics mentioned above.

The model of R≥0-weighted relations is a variant of the relational semantics of linear
logic (see e.g. [2]), where the notion of a subset of a set S, seen as a vector (bx)x∈S of
booleans expliciting whether an element x ∈ S belongs or not to the subset, is generalised to
a vector of non-negative real numbers. This model is known and we thus just sketch here the
interpretation of quantitative MLL proof-nets, referring the reader to [24] for more details.
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Let us fix some basic notation. Metavariables S, T, U range over finite sets3. We denote
by R≥0 the cone of the non-negative real numbers. Metavariables ϕ, ψ, ξ will range over
vectors in RS≥0, ϕx denoting the scalar associated with x ∈ S by ϕ ∈ RS≥0. The identity
matrix over a set S, also called diagonal matrix or Kronecker delta, is denoted δ ∈ RS×S

≥0
and defined by δa,a′ = 1 if a = a′, otherwise δa,a′ = 0.

▶ Example 7. The simplest example we consider is the singleton set {⋆}, for some irrelevant
element ⋆. The singleton will be associated with multiplicative units 1 and ⊥ and it induces
the module of scalars, as R≥0

{⋆} ≃ R≥0. The module of couples of non-negative real numbers
is instead induced by any set of cardinality 2, like the set of booleans {t, f}: R{t,f}

≥0 ≃ R2
≥0.

In all the examples of this paper, we will in fact associate the propositional variables with
the set {t, f}, so that a proof-net with only one atomic conclusion will be interpreted with a
vector (λt, λf), giving a “score” to the two booleans. Notice that R2

≥0 = R≥0 ⊕ R≥0, with ⊕
denoting the direct sum over modules. This is reflected in linear logic by encoding the type
of booleans with the formula 1⊕ 1, where ⊕ refers to the additive disjunction. We however
avoid this notation as we do not consider the full additive connectives here.

More in general, the interpretation of a MLL formula F is a finite set JF Kι defined once
we have fixed a valuation ι as a function mapping the propositional variables to finite sets.
The definition of JF Kι is by induction on F , as follows:

JX+Kι = JX−Kι ::= ι(X), J1Kι = J⊥Kι ::= {⋆}, JF ⊗GKι = JF `GKι ::= JF Kι × JGKι.

It is easy to check that the usual isomorphisms of linear logic (like associativity and com-
mutativity of the binary connectives) are validated by set isomorphisms. In particular, we
can use tuples (x1, . . . , xn) for denoting elements in the interpretation of a n-fold connective,
e.g. JF1 ` (· · ·` Fn)Kι ≃ {(x1, . . . , xn) | ∀i ≤ n, xi ∈ JFiKι}.

Weighted relational semantics equates much more than just linear logic isomorphisms,
as for example JF Kι = JF⊥Kι for any formula F . More precisely, this semantics has the
structure of a compact closed category. There are more refined examples of quantitative
semantics which are not compact closed, e.g. probabilistic coherence spaces. Let us stress
that our results do not suppose compact closeness.

The interpretation JN Kι of a proof-net N of conclusions Γ is a vector in RJ`ΓKι

≥0 , which
can be equivalently seen as a multidimensional matrix indexed by the tuples in J`ΓKι. The
interpretation can be given inductively as sketched by Figure 1c, once we have associated with
each box b of conclusions X−

1 , . . . , X
−
n , Y

+ a vector ι(b) ∈ RJ(`iX−
i

)`Y +Kι

≥0 . This interpretation
is invariant under the cut-reduction rules of Figure 1d, i.e. N −→ N ′ implies JN K = JN ′K.

▶ Example 8. Consider the proof-net N ′ of conclusion X+
2 ⊗ (X−

2 `X+
3 ) contained in the

proof-net N depicted at left of Figure 1e and characterised by the three boxes b1, b2, b3
and the tensor and par above the cut over X+

2 ⊗ (X−
2 `X+

3 ). Notice that there is only one
sequence of the generating rules of Figure 1b producing this proof-net: one first applies a
par rule under the b3 conclusions X−

2 and X+
3 , then a tensor between the resulting proof-net

and b2, then a contraction between the two X−
1 conclusions and finally a cut between the

conclusion of this contraction and b1. Figure 1c applied to this sequence of rules gives:

JN ′Kι(x′,(x′′,x′′)) =
∑

y∈JX+
1 Kι

ι(b1)yι(b2)(y,x′)ι(b3)(y,(x′′,x′′)).

3 This kind of denotational semantics are defined for countable sets S in general. Infinite sets are necessary
to model linear logic exponential modality as well as the full λ-calculus. Since we focus here to only
MLL, we can restrict to finite sets.

FSCD 2023



8:8 Sum-Product for MLL

Notice that the cut composes the semantics of b1 with that of the proof-net containing b2
and b3, producing the sum over y ∈ JX+

1 Kι. Notice also that the contraction imposes that the
same index y is shared between the two different boxes (b2 and b3): contraction duplicates
the indexes of the vectors, but it does not yield different copies of the vectors themselves.
This is in accordance with Remarks 4 and 6: sharing of sampled values corresponds here to
sharing vector indices, which is different from duplicating whole vectors. If we consider in
fact the proof-net JN ′′Kι given by a tensor between b2 and b3 and two distinct copies of b1,
one cut with the X−

1 conclusion of b2 and the other one with that of b3, then we would have:

JN ′′Kι(x′,(x′′,x′′)) =
∑

y,y′∈JX+
1 Kι

ι(b1)yι(b2)(y′,x′)ι(b1)y′ι(b3)(y′,(x′′,x′′)).

▶ Example 9. Let us consider a proof-net N which is a bunch of n+1 axioms over a tree of n
contractions, of which edges are labelled by X−, so that N has conclusions X−, X+, . . . , X+.
The denotation JN Kι is then a vector indexed by the (n + 2)-tuples of elements in ι(X).
In fact, by using Figure 1c, one can check that JN Kι is a very sparse vector, having zero
everywhere but on the tuples of equal elements, i.e. (x, x, . . . , x) for x ∈ ι(X), in which
case JN Kι returns 1. We have here a first source of inefficiency of this kind of semantics,
representing the denotation of a proof-net with a vector of dimension exponential in the
number of its conclusions, where it would suffice a much more compact structure to store the
same information. Section 5 will provide this structure with the notion of component factor.

If N has several cuts, the computation of JN Kι can be considerably simplified by using
the following lemma, which is reminiscent of the notion of experiment introduced in [18].

▶ Lemma 10 (Cut bundles). Let CutΓ(N ) be a proof-net of conclusions ∆ that can be
decomposed into a proof-net N of conclusions ∆,Γ,Γ⊥ and a bundle of cuts between the
formulas in Γ and Γ⊥. Then, for every d⃗ ∈ J∆Kι, we have: JCutΓ(N )Kι

d⃗
=

∑
c⃗∈JΓKJN Kι

(d⃗,⃗c,⃗c)
.

▶ Example 11. Let us compute the semantics of the proof-net N0 in Figure 1e, by using
Lemma 10 and Figure 1c. We have that, for any (x4, x5) ∈ JX+

4 ⊗X
+
5 Kι:

JN0Kι(x4,x5) =
∑

xi∈ι(X+
i

)
for i ∈ {1, 2, 3}

ι(b1)x1ι(b2)(x1,x2)ι(b3)(x1,x2,x3)ι(b4)(x2,x3,x4)ι(b5)(x2,x5)

With a bit more of effort (due to the presence of axioms) also JN Kι can be associated with
the above summation. If we suppose that for every i, ι(Xi) = {t, f}, this summation has a
total of 23 terms, so that computing the whole vector JN0Kι requires ∼ 25 basic operations4,
i.e. a quantity exponential in the number of the semantical boxes.

By carefully inspecting the summation, one can however realise that it can be refactored
so to split factors over independent variables, getting for example the expression:∑

x3

(∑
x2

(∑
x1

ι(b1)x1ι(b2)(x1,x2)ι(b3)(x1,x2,x3)
)
ι(b4)(x2,x3,x4)

)
ι(b5)(x2,x5)

which, by memorising the intermediate sums, performs the same computation of JN Kι in just
∼ 23 operations.This kind of refactoring is at the core of many algorithms for exact inference
in Bayesian graphs and the next sections will show how to import these methods.

4 We are supposing that multiplication, addition and coefficient access are operations of constant cost.
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4 Factors

We adapt from Bayesian networks (e.g. [8]) the notion of factor (Definition 18) and of product
and projection of factors. A factor carries both a vector and a “sharing structure” about what
entries of this vector will be shared with possibly other factors so that we avoid the dimension
explosion which is the source of inefficiency in Example 9. Bayesian networks use random
variables for expressing such a “sharing structure”, while we reduce this latter into the very
basic definition of set-family, which encompasses the former (Example 15) and generalises
to whole quantitative MLL. The terminology “factor” is standard in Bayesian networks, in
fact this notion refers to the terms in the multiplication giving a joint distribution as the
outcome of the variable elimination algorithm (Algorithm 1). We introduce also a notion
of renaming (Definition 29) and of factor renaming (Definition 34) necessary to follow the
compositional structure of MLL (see discussion in Example 41).

▶ Definition 12 (Set-family). We call set-family a finite, indexed family of finite sets, i.e. a
map X from a finite set I(X) of indices to a set Sets(X) of finite sets. We denote by X(a)
the set associated with index a ∈ I(X) in X. Meta-variables X, Y, Z will range over such
set-families.

Two families X and Y are compatible whenever for all a ∈ I(X) ∩ I(Y), X(a) = Y(a).
Set-theoretical operations lift to compatible set-families by applying the former to the graph of
these latter, e.g. the intersection X∩Y is the set-family defined by I(X∩Y) ::= I(X)∩I(Y)
and (X ∩ Y)(a) ::= X(a) = Y(a) for every a ∈ I(X ∩ Y). Similarly, we will consider the
union X ∪Y and the set-theoretical difference X \Y. In the same spirit, we write Y ⊆ X, for
I(Y) ⊆ I(X) and for every a ∈ I(Y), Y(a) = X(a).

Given a set-family X, we denote by JXK the cartesian product
∏
a∈I(X) X(a) of the sets in

Sets(X), where the same set in Sets(X) can appear multiple times in the product if associated
with multiple indices. We denote the elements of JXK with the vectorial notation x⃗, to
underline that it is an element in a cartesian product rather than in a simple set.

▶ Notation 13. Any element x⃗ ∈ JXK can be seen as a collection (xa)a∈I(X) of elements in
Sets(X). In particular, given Y ⊆ X, we denote by x⃗|Y the projected element (xa)a∈I(Y) ∈ JYK.
Similarly, given two set-families X,Y having disjoint sets of indexes, so clearly compatible,
the elements of JX ⊎ YK can be written as (x⃗, y⃗), for x⃗ ∈ JXK and y⃗ ∈ JYK.

Notice that if X is empty, then JXK is the singleton set {()}.

▶ Notation 14. Since finite, set-families can be given by enumerating their graph, like in
X = {(a1, S1), . . . , (an, Sn)}. In this case we have: I(X) = {a1, . . . , an} and Sets(X) =
{S1, . . . , Sn}. In this latter set, the possible repetitions are equated, so Sets(X) might have
less than n elements.

▶ Example 15. A finite set {X1, . . . , Xn} of finite random variables defines the set-family
X = {(X1, JX1K), . . . , (Xn, JXnK)}, where JXiK denotes the finite set of the possible outcomes
taken by the random variable Xi. Notice that JXK is then the set of samples of the joint
distribution over X1, . . . , Xn. To be more explicit, suppose that each random variable Xi is
boolean, i.e. JXiK = {t, f} for all i ≤ n, then Sets(X) = {{t, f}}, while JXK = {(b1, . . . , bn) |
bi ∈ {t, f}}.

▶ Example 16. Consider a sequent Γ = X◦
1 , . . . , X

◦
n of atomic formulas. A natural set-family

that can be associated with Γ and a valuation ι, has indices the sequent positions {1, . . . , n}
and it maps a position i to the set ι(Xi). This set-family however is not the only possible
one: for example, one may take as indices the propositional variables X1, . . . , Xn, where
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multiple occurrences of the same variable are equated, and map Xi to ι(Xi). The two
set-families are quite different if Γ contains repetitions. Namely, let Γ = X+, X,+ X−, Y −,
with JXK = JY K = {t, f}. The two set-families are:

X = {(1, {t, f}), (2, {t, f}), (3, {t, f}), (4, {t, f})}, Y = {(X, {t, f}), (Y, {t, f})}.

▶ Remark 17. Notice that Z,Y ⊆ X implies that both Z and Y are compatible. Henceforth
we will always consider families which are subset of a fixed “universal” family (underlined by
a proof-net), so that the compatibility condition in Definition 12 is not an issue and hence
will be often not mentioned.

▶ Definition 18 (Factor). A generalised factor, or simply factor, ϕ is a pair (Fam(ϕ),Fun(ϕ))
of a set-family Fam(ϕ) and a function Fun(ϕ) from the set JFam(ϕ)K to R≥0.

We will short the notation Fun(ϕ) by writing just ϕ when it is clear from the context that we
are considering the function associated with a factor and not the whole pair (Fam(ϕ),Fun(ϕ)).
We often consider Fun(ϕ) as a vector indexed by the elements of its domain, so that ϕx⃗ stands
for Fun(ϕ)(x⃗), for every x⃗ ∈ JFam(ϕ)K.

▶ Example 19. Let us recall the set-family Y = {(X, {t, f}), (Y, {t, f})} of Example 16,
and consider the function Fun(ϕ) given by {(tX , tY ) 7→ 0.2, (tX , fY ) 7→ 0.25, (fX , tY ) 7→
0.25, (fX , fY ) 7→ 0.3}. The pair ϕ = (Y,Fun(ϕ)) is an example of factor. Intuitively, ϕ
can be seen as the presentation 0.2e(tX ,tY ) + 0.25e(tX ,fY ) + 0.25e(fX ,tY ) + 0.3e(fX ,fY ) of a
vector in R4

≥0 with respect to a set of basis vectors e(bX ,bY ) associated with the elements in
(bX , bY ) ∈ JYK.

▶ Definition 20 (Factor projection). Let ϕ be a factor and let X be a set-family compatible
with Fam(ϕ), the projection of ϕ to X is the factor πX(ϕ) defined by:

Fam(πX(ϕ)) ::= X, πX(ϕ)x⃗ ::=
∑

y⃗∈JFam(ϕ)\XK

ϕ(x⃗|Fam(ϕ),y⃗), for x⃗ ∈ JXK.

▶ Example 21. Recall the set-family Y and the factor Fun(ϕ) given in Example 19, let
X = {(X, {t, f})} ⊆ Y. We have that πX(ϕ) = {tX 7→ 0.45, fX 7→ 0.55}. Let now
Z = X ⊎ {(Z, {t, f})}, we have that πZ(ϕ) = {(tX , tZ) 7→ 0.45, (tX , fZ) 7→ 0.45, (fX , tZ) 7→
0.55, (fX , fZ) 7→ 0.55}. Notice in particular that the factor projection to a set-family Z does
not preserve in general the property of being a probability mass function, unless Z ⊆ Fam(ϕ).

▶ Remark 22. With the notations of Definition 20, if X ⊆ Fam(ϕ), then πX(ϕ) corresponds to
what is called in Bayesian programming summing out Fam(ϕ) \ X, which gives the marginal
distribution over X. Suppose on the contrary that X and Fam(ϕ) are disjoint, then for every
x⃗ ∈ JXK, πX(ϕ)x⃗ is the total mass of ϕ, i.e.

∑
y⃗∈JFam(ϕ)K ϕy⃗.

▶ Remark 23. Suppose that Fam(ϕ) has n indices and that k is the maximum cardinality of
a set in Sets(Fam(ϕ)), then the computation of the whole vector πX(ϕ) is in O(kn).

▶ Definition 24 (Binary factor product). Given two factors ϕ and ψ, such that Fam(ϕ) and
Fam(ψ) are compatible, we define their factor product as the factor ϕ⊙ ψ given by:

Fam(ϕ⊙ ψ) ::= Fam(ϕ) ∪ Fam(ψ), (ϕ⊙ ψ)z⃗ ::= ϕz⃗|Fam(ϕ)
ψz⃗|Fam(ψ)

, for z⃗ ∈ JFam(ϕ⊙ ψ)K.

▶ Remark 25. If Fam(ϕ) ∪ Fam(ψ) has n indices and k is the maximum cardinality of a set
in Sets(Fam(ϕ) ∪ Fam(ψ)), then the computation of the whole vector ϕ⊙ ψ is in O(kn).
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▶ Example 26. In terms of MLL operations, factor products correspond to a ⊗ product plus
a bunch of contractions on the common indexes. For example, let us take as indexes the
propositional variables and as sets just {t, f} (recall Example 16) and consider Fam(ϕ) =
{X2, X3, X4} and Fam(ψ) = {X2, X5} (this choice is reminiscent of the variables in the
proof-nets in Figure 1e, in fact ϕ and ψ can be associated with the boxes, respectively, b4 and
b5). Then, Fun(ϕ⊙ ψ) is over {X2, X3, X4, X5}, so of dimension 24, while Fun(ϕ)⊗ Fun(ψ)
is a vector indexed by tuples of 5 booleans, so of dimension 25.

The next proposition states expected properties of factor projection and product that are
fundamental in the sequel.

▶ Proposition 27. Factor product is associative and commutative, with neutral element the
empty factor (∅, 1). Moreover:
1. πX∪Z(πX∪Y(ϕ)) = πX∪Z(ϕ), whenever Y ⊆ Fam(ϕ) and Z ∩ Fam(ϕ) = ∅;
2. πX(ϕ⊙ ψ) = πX(ϕ)⊙ ψ, whenever Fam(ψ) ⊆ X.

▶ Definition 28 (n-factor product). Let I be a finite set. Given a collection of pairwise
compatible factors (ϕi)i∈I , we define their factor product as the factor

⊙
i∈I ϕi ::= ϕi1 ⊙

· · · ⊙ ϕin , for some enumeration of I. This is well-defined independently from the chosen
enumeration because of Proposition 27.

Section 5 will associate factors to MLL proof-nets and in order to make this association
compositional (Theorem 48) we introduce the following notion of renaming, as the contraction
and cut rules of Figure 1b may change the sharing structure associated with a proof-net.

▶ Definition 29 (Renaming). A renaming f from a set-family X to a set-family Y is a map
from I(X) to I(Y) such that for all a ∈ I(X), we have X(a) = Y(f(a)). Any such renaming
f induces the map f◦ from JYK to JXK by:

for y⃗ ∈ JYK, f◦(y⃗) ::= (yf(a))a∈I(X) ∈ JXK. (2)

Moreover, we say that a point x⃗ ∈ JXK agrees on f whenever, for every a, a′ ∈ I(X),
f(a) = f(a′) implies that xa = xa′ .

▶ Remark 30. The notion of “agreeing on a renaming f” generalises the notion in Bayesian
programming of a set of samples that “agrees on the same random variables” as used in
e.g. [8].

▶ Notation 31. Given a renaming f from X to Y, and a set-family X′ ⊆ X, we denote by
f(X′) the set-family having as indices the set f(I(X′)) ⊆ I(Y) and that it associates with
any b ∈ f(I(X′)) the set Y(b). Notice that f(X′) ⊆ Y.

▶ Proposition 32. Given a renaming from X to Y, the image set of f◦ is the subset of JXK
of the elements which agree on f . If, moreover, f is surjective over I(Y), then f◦ is an
injective map from JYK to JXK, hence a bijection from JYK to {x⃗ ∈ JXK | x⃗ agrees on f}. In
this case, we denote its inversion by f•.

▶ Example 33. Recall the set-families X and Y in Example 16, associated with the sequent
Γ = X+, X,+ X−, Y −. Let us consider the following two specific renamings from X to Y:

f =
{

1, 2, 3 7→ X

4 7→ Y
, g =

{
1, 2, 3, 4 7→ X .
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and take for example y⃗ = (tX , fY ) ∈ JYK. We have (we use the natural order (1,2,3,4) to
represent elements in JXK):

f◦(y⃗) = (t, t, t, f), g◦(y⃗) = (t, t, t, t).

Notice in fact that f◦(y⃗) agrees on f but not on g, while g◦(y⃗) agrees on both f and g. Also
notice that f is surjective and in fact f◦ is an injection, while g is not surjective and in fact
g◦ is not a injection, for example: g◦(tX , fY ) = g◦(tX , tY ).

▶ Definition 34 (Factor renaming). Let f be a renaming from Fam(ϕ) to a set-family X. The
renaming of ϕ along f is the factor f(ϕ) defined by:

Fam(f(ϕ)) ::= f(Fam(ϕ)), f(ϕ)x⃗ ::= ϕf⋆(x⃗), for x⃗ ∈ Jf(Fam(ϕ))K.

▶ Example 35. Recall the renaming f of Example 33 between the set-families X and Y given
in Example 16. Consider the factor ϕ over X defined by ϕ(b1,b2,b3,b4) ::= 1 if b1 = b2 = b3, 0
otherwise. This factor corresponds to the interpretation of the proof-net having a weakening
producing Y − and the axiom on top of a contraction giving X+, X+, X−. Then f(ϕ) is over
Y and its map is the constant function giving 1.

▶ Remark 36. Notice that one can formalise the notions of this section in a categorical way,
considering a category of renamings as morphisms between set-families. We did not develop
this more abstract presentation as not needed in the sequel.

5 Weighted Semantics by Factors, Atomic Case

We apply to MLL the notions introduced in Section 4. It is convenient to restrict to atomic
proof-nets and then to extend the results to the non-atomic case in Section 6. Definitions 37
and 45 associate two different set-families with an atomic proof-net N , the edge and the
component set-families. The edge set-family permits to consider the standard weighted
interpretation JN K as a factor (Definition 39), while the component set-family yields a
more compressed representation of JN K, the component factor (Definition 40), which has a
form of compositionality (Theorem 48) and hence can be computed directly (Theorem 49)
without using the rules of Figure 1c. Henceforth, this section fixes a valuation ι and considers
only atomic proof-nets. We recall that an atomic proof-net can contain only axioms, cuts,
weakening, contractions and semantical boxes.

▶ Definition 37 (Edge set-family). Let N be an atomic proof-net and ι be a valuation. The
edge set-family of N , written by Famι

e(N ), has the edges of N as indices and associates with
an edge e : X◦ the set ι(X). Given a sequence Γ of edges e1 : X◦

1 , . . . , en : X◦
n, we extend the

metavariable Γ to denote also the edge set-family {(e1, ι(X1)), . . . , (en, ι(Xn))} ⊆ Famι
e(N ).

▶ Remark 38. Let Γ be e1 : X◦
1 , . . . , en : X◦

n. The convention of denoting by Γ both
the underlined sequent X◦

1 , . . . , X
◦
n and the edge set-family {(e1, ι(X1)), . . . , (en, ι(Xn))} is

coherent because the cartesian product JΓK associated with the edge set-family is the same
set as the weighted denotation JΓKι, this latter also denoted simply by JΓK. This ease of
notation is necessary to avoid a formalism overkill.

▶ Definition 39. Given a valuation ι, the edge factor of an atomic proof-net N has as
set-family the edge-set family induced by the conclusions of N and as function the weighted
interpretation JN Kι. We take the liberty to denote this edge factor also by JN Kι.
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▶ Definition 40 (Component set-family and renaming). Let N¬b denote the graph obtained
from an atomic proof-net N by removing all its semantical boxes, so keeping their conclusions
as pending edges of the graph. Given an undirected connected component M of N¬b, one can
remark that all edges of M are atomic formulas over a unique variable, let us denote it XM.
The component set-family of N , written Famι

c(N ), has as indices the undirected connected
components of N¬b and associates with a component M the set ι(XM). The component
renaming of N , written ℓN , is the renaming from Famι

e(N ) to Famι
c(N ) mapping the edges

of N to the connected component of N¬b they belong to.

▶ Example 41. Consider the atomic proof-net Na obtained from the proof-net N0 in Figure 1e
by removing the tensor node, so that Na has conclusions X+

4 , X
+
5 . Notice that Na¬b has

five connected components which correspond to the five propositional variables X1, . . . , X5.
If however we consider the sub proof-net N ′

a obtained from Na by removing the cut and
the contraction insisting on the edges typed by, e.g., X−

1 , we have that N ′
a

¬b has now seven
connected components, in particular three of them supports the same variable X1. This
example shows that the generating rules of MLL (Figure 1b) require not to mix up the
component set-family with the variables labelling the edges (see also Remark 55).

▶ Remark 42. The ℓN information can be memorised once and for all by adding a further
labelling over the edges of N giving the same index to the edges belonging to the same
connected component of N¬b. This labelling can be computed in linear time with respect to
the size of N , by adapting one of the many connected component algorithms.

▶ Notation 43. Let Γ = e1 : X◦
1 , . . . , en : X◦

n be a set of edges of N , so that Γ is also the
set-family {(e1, ι(X1)), . . . , (en, ι(Xn))} contained in Famι

e(N ). By Notation 31, the writing
ℓN (Γ) denotes the set-family {(ℓN (e1), ι(X1)), . . . , (ℓN (en), ι(Xn))} ⊆ Famι

c(N ). Notice that
ℓN is surjective on I(ℓN (Γ)), so we can apply Proposition 32, getting the two maps:

ℓ◦
N from JℓN (Γ)K to JΓK,

its inverse ℓ•
N from {d⃗ ∈ JΓK | d⃗ agrees on ℓN } to JℓN (Γ)K.

▶ Remark 44. In general, given a set of edges Γ of an atomic proof-net N , we have that:
JℓN (Γ)K = JΓK if, and only if, all edges in Γ belong to pairwise different connected components
of N¬b. Moreover, if JℓN (Γ)K = JΓK, then every d⃗ ∈ JΓK agrees on ℓN .

▶ Definition 45. Given a valuation ι, the component factor of an atomic proof-net N is the
renaming ℓN (JN Kι) of its edge factor, i.e. if ∆ are the conclusions of N , Fam(ℓN (JN Kι)) =
ℓN (∆) and for d⃗ ∈ JℓN (∆)K, Fun(ℓN (JN Kι)d⃗ = JN Kι

ℓ◦
N (d⃗)

.

▶ Example 46. Recall the proof-net N and the valuation ι of Example 9. Notice that
Fam(ℓN (JN Kι)) is a singleton as the n+ 2 conclusions of N belong to the same component,
and Fun(ℓN (JN Kι)) = (1t, 1f), which is a more parsimonious object than JN Kι, this latter of
dimension exponential in n.

Proposition 47 details how to recover the original denotation of N out of its component
factor.

▶ Proposition 47. Let N be an atomic proof-net of conclusions ∆. For every d⃗ ∈ J∆K, we
have that:

JN Kι
d⃗

=
{
ℓN (JN Kι)ℓ•

N (d⃗) if d⃗ agrees on ℓN ,

0 otherwise.
(3)
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The following is the core theorem of this paper: MLL cuts correspond to a factor product
plus a projection.

▶ Theorem 48. Let N = CutΓ(N ′,N ′′) be an atomic proof-net of conclusions ∆ obtained
by connecting by a bunch of cuts over a sequent Γ a sub proof-net N ′, of conclusions Γ,∆′,
and N ′′, of conclusions Γ⊥,∆′′, so that ∆ = ∆′,∆′′. We have:

ℓN (JN Kι) = πℓN (∆)(ℓN (JN ′Kι)⊙ ℓN (JN ′′Kι)) (4)

As a consequence, we can compute the component factor of N without passing via JN Kι:

▶ Theorem 49. Let N be an atomic proof-net with conclusions ∆. We have: ℓN (JN Kι) =
πℓN (∆)(

⊙
b∈b(N )ℓN (ι(b))).

▶ Example 50. Consider an atomic proof-net N of conclusions ∆ such that no edge in ∆ is
connected in N¬b with a conclusion of a box of N . By Remark 22, πℓN (∆)(

⊙
b∈b(N ) ι(b)) is

the constant function giving the total mass of the vectors associated with the boxes of N .

Consider the atomic proof-netNa obtained by removing the tensor node from the proof-net
N0 of Figure 1e. If we apply Theorem 49 to Na, we will obtain exactly the same summation
given in Example 11, in fact the edge and component set-families of the conclusions of
Na are the same. However, we have now the correct formalism to apply exact inference
algorithms to refactor the expression πℓN (∆)(

⊙
b∈b(N )ℓN (ι(b))), by taking advantage of the

distributivity law of factor product over the projection (Proposition 27). We adapt here one
among the simplest such algorithms, called the sum-product variable elimination algorithm,
first introduced in [29], see [8] as a reference. The terminology “variable elimination” is
because this procedure infers from a Bayesian network the marginal distribution of a random
variable X out of a family5 X of variables containing X, by “eliminating” all the other
variables in X. In our case, what we “eliminate” are the N¬b components of the conclusions
of the box factors containing no conclusion of the proof-net.

Algorithm 1 MLL Sum-Product Algorithm.
input:

1: N ▷ an atomic proof-net of conclusions ∆
2: ι ▷ a valuation map
3: ω ▷ A linear order on the components in Famι

c(N ) not having a conclusion in ∆
output: the factor ℓN (JN Kι)

4: F ← {ℓN (ι(b)) | b ∈ b(N )} ▷ Factors of b(N )
5: for C in ω do
6: Fc ← {ϕ ∈ F | C ∈ I(Fam(ϕ))}
7: ψ ←

⊙
ϕ∈Fc ϕ ▷ Product

8: ρ← πFam(ψ)\{C}(ψ) ▷ Sum-out
9: F ← {ρ} ∪ (F \ Fc)

return
⊙

ϕ∈F ϕ

Algorithm 1 is our adaptation of the sum-product algorithm. Given a linear order ω
over the connected components of N¬b which contains no conclusion of N , the algorithm
proceeds as follows: line 4 initialises a variable F with the set of factors to compute; line 5

5 Any resemblance to the notations in Section 4 is purely voluntary.
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takes from ω the next connected component C to process; line 6 gathers in a variable Fc all
factors in F which have C as an index (i.e. a conclusion in C); line 7 computes the product
of these factors and line 8 projects it on the components different from C (a.k.a. summing
out C); line 9 updates F by replacing the processed factors with the result of this projection
and then it jumps back to line 5. At the end of this loop, F contains a set of factors indexed
over the components of N¬b connected with the conclusions in N and then it returns their
product.

Soundness follows from Proposition 27 and Theorem 49:

▶ Theorem 51. Algorithm 1 returns ℓN (JN Kι) if fed with an atomic proof-net N , a valuation
ι and a linear order on the components in Famι

c(N ) not containing any conclusion of N .

▶ Example 52. Consider the atomic proof-net Na obtained by removing the tensor node
from the proof-net N0 of Figure 1e (Example 1) and use the numbers 1, 2, 3, 4, 5 to denote
the five connected components of Na¬b such that component i is supported by variable Xi.
The components to eliminate are 1, 2, 3. By taking the order ω = 1 < 2 < 3, Algorithm 1
will calculate the following intermediate factors: ρ1 = π{2,3}(ι(b1) ⊙ ι(b2) ⊙ ι(b3)), ρ2 =
π{2,4}(ρ1 ⊙ ι(b4)), ρ3 = π{4,5}(ρ2 ⊙ ι(b5)), the output being ρ3. This yields exactly the
factored equation in Example 11 and it allows to calculate the whole semantics of Na
in O(k3) basic operations, if k is the maximal cardinality of the sets associated with the
propositional variables appearing in the proof-net.

▶ Remark 53. A run of Algorithm 1 depends on the chosen order ω. Different orders yield
different factorisations and have different performances. For example, by taking the inverse
order 3 < 2 < 1 in Example 52 we get a run in O(k4), which is an order of magnitude slower
than 1 < 2 < 3, although yet more efficient than the immediate recursive algorithm induced
by the standard semantics (Example 11).

In general, Algorithm 1 is in O(nkw), where n is the length of ω (i.e. the number of
components to eliminate), k is the maximal cardinality of a set interpreting an atomic variable
(in our examples we always suppose k = 2, for the two booleans) and w is the maximal
cardinality of Fam(ϕ), for ϕ a factor created/used by the algorithm (this parameter depends
on the chosen order ω).

The quest for optimal orders is a major topic in Bayesian networks, which is however
known to be a NP-hard problem [4]. Since probabilistic MLL contain Bayesian networks, we
should focus on heuristics that yield good performances in most cases.

▶ Remark 54. Recall the proof-net N in Figure 1e which cut reduces to N0. Notice that
this proof-net does not resemble to a Bayesian network, e.g. it alternates par and tensor
nodes. However, the reader may recognise the intermediate factors ρ1, ρ2 and ρ3 computed
by Algorithm 1 in Example 52 as the nested sub proof-nets of N of conclusions, respectively,
X+

2 ⊗ (X−
2 `X+

3 ), X+
2 ⊗X

+
4 and X+

4 ⊗X
+
5 . This is far from being a coincidence, as any run

of Algorithm 1 can in fact be associated with a MLL proof-net, although this latter might
need formulas with an arbitrary number of alternations between tensors and pars. We will
investigate this point in a forthcoming paper.

▶ Remark 55. The component renaming ℓN is omitted in the setting of Bayesian networks
as encoded in the formula labelling, by imposing the following type constraint:

(⋆) any two edges of N which are supported by the same propositional variable lay in
the same connected component of N¬b.

FSCD 2023
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If (⋆) holds (e.g. as for the proof-net Na discussed in Example 52), then ℓN is equivalent to
the renaming from the edge set-family to the variable set-family, an instance being given
by the renaming f mentioned in Example 33. Such a shortcut is however misleading in
our setting, as the rules generating MLL proof-nets (Figure 1b) are more “granular” than
the ones for Bayesian networks, in particular (⋆) is not preserved by the c(NX−,X−) rule
(Example 41). A better alternative would be to introduce “term” variables, like the variables
of simply typed λ-calculus, decorating edges.

6 The General Case

The results of the previous section can be extended to non-atomic proof-nets by using MLL
cut-reduction. We just sketch here the main ideas, giving the details in the appendix. The
reader can recall the proof-net N in Figure 1e to follow the reasoning with an example.
Given a MLL proof-net N of conclusion ∆: (i) reduce N to its normal form N0 by using
the cut-reduction rules of Figure 1d. (ii) Decompose N0 into the syntax forest F∆ of its
conclusions and the atomic sub proof-net Na of conclusions the atomic formulas At(∆)
appearing in ∆, which are the leaves of F∆. Notice that there is a bijection between J∆K
and JAt(∆)K, relating an element in d⃗ ∈ J∆K with a tuple At(d⃗) ∈ JAt(∆)K enumerating the
atomic components of d⃗. (iii) Apply Algorithm 1 in order to compute ℓN (JN K). We have:

▶ Corollary 56. Let N be a proof-net with conclusions ∆, and let N0 be the normal form of
N and (F∆,Na) be the decomposition of N0 described above. For every d⃗ ∈ J∆K, we have:

JN Kι
d⃗

= ℓN (JNaK)ℓ•
Na

(At(d⃗)), (5)

if At(d⃗) agrees on ℓNa
, otherwise JN Kι

d⃗
= 0.

The cut-reduction in step (i) is linear in the size of N0 as MLL cut-reduction shrinks the size
of a proof-net. Also the construction of Na out of N0, and the read of ℓ•

Na
(At(d⃗)) out of

d⃗ ∈ J∆K are linear. So all the complexity of this procedure is the calculation of ℓN (JNaK)
which has been discussed in the previous section.

7 Conclusion and Perspectives

We considered weighted relational semantics just as an instance of quantitative semantics, but
these techniques can be applied verbatim to other web-based semantics, such as probabilistic
coherence spaces [6] or finiteness or Köthe sequence spaces [11, 10].

One can wonder whether our results extend to richer linear logic fragments. The additive
connectives ⊕ and & can be reasonably added to the picture. In fact, by adopting some form
of additive boxes [9], one can revisit the sum-product algorithm as a refactorization of a
proof-net modulo commutative additive cuts. The exponential modalities (so encompassing
full simply typed probabilistic λ-calculus) are more challenging as they require infinite sets
at the semantical level. This will deserve future investigation.

Related to the above point is the correspondence alluded to in Remark 54. We will detail
in a future work how to map any run ρ of the sum-product algorithm on an atomic proof-net
N0 into a non-atomic proof-net Nρ, which rewrites into N0 and such that the intermediate
factors appearing in ρ correspond to sub-proof-nets of Nρ.

As mentioned by Remark 53, the performance of many exact inference algorithms, such
as sum-product, depends on the order of the components to eliminate and the problem of
finding optimal orders is known to be NP-hard [4]. Many heuristics have been given based
on the graph-theoretical structure of Bayesian nets. One can wonder whether the additional
proof-theoretical structure (e.g. switching paths, empires [18]) can suggest new heuristics.
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