
Combinatory Logic and Lambda Calculus Are
Equal, Algebraically
Thorsten Altenkirch #

School of Computer Science, University of Nottingham, UK

Ambrus Kaposi #

Eötvös Loránd University, Budapest, Hungary

Artjoms Šinkarovs #

Heriot-Watt University, Edinburgh, UK

Tamás Végh #

Eötvös Loránd University, Budapest, Hungary

Abstract
It is well-known that extensional lambda calculus is equivalent to extensional combinatory logic. In
this paper we describe a formalisation of this fact in Cubical Agda. The distinguishing features of our
formalisation are the following: (i) Both languages are defined as generalised algebraic theories, the
syntaxes are intrinsically typed and quotiented by conversion; we never mention preterms or break
the quotients in our construction. (ii) Typing is a parameter, thus the un(i)typed and simply typed
variants are special cases of the same proof. (iii) We define syntaxes as quotient inductive-inductive
types (QIITs) in Cubical Agda; we prove the equivalence and (via univalence) the equality of these
QIITs; we do not rely on any axioms, the conversion functions all compute and can be experimented
with.

2012 ACM Subject Classification Theory of computation → Type theory

Keywords and phrases Combinatory logic, lambda calculus, quotient inductive types, Cubical Agda

Digital Object Identifier 10.4230/LIPIcs.FSCD.2023.24

Supplementary Material Software (Formalisation): https://bitbucket.org/akaposi/combinator
archived at swh:1:dir:5275bf1e26eb4aa1e2391d0ace5953c3f4898ef4

Funding The first two authors were supported by the “Application Domain Specific Highly Reliable
IT Solutions” project which has been implemented with support from the National Research,
Development and Innovation Fund of Hungary, financed under the Thematic Excellence Programme
TKP2020-NKA-06 (National Challenges Subprogramme) funding scheme.
Artjoms Šinkarovs: Supported by the Engineering and Physical Sciences Research Council through
the grant EP/N028201/1.

1 Introduction

Proofs of the equivalence of extensional lambda calculus and extensional combinatory
logic (e.g. [10, 5, 11, 6]) generally use the traditional untyped definition of presyntax.
In particular, abstraction for combinators (the lambda operator, also called the bracket
abstraction algorithm) is defined on combinator preterms. There are hints in the literature
[21, 12] that the correspondence can be proven in an algebraic setting. This would be
contrasted with the textbook proofs which work on particular representations of the syntax.

It is clear what combinatory logic is as an algebraic theory: there is a single sort of
terms, two nullary operations S and K, one binary operation – · – and two equations
S · t · u · v = t · v · (u · v) and K · u · v = u. Models of this theory are called combinatory

© Thorsten Altenkirch, Ambrus Kaposi, Artjoms Šinkarovs, and Tamás Végh;
licensed under Creative Commons License CC-BY 4.0

8th International Conference on Formal Structures for Computation and Deduction (FSCD 2023).
Editors: Marco Gaboardi and Femke van Raamsdonk; Article No. 24; pp. 24:1–24:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:thorsten.altenkirch@nottingham.ac.uk
https://orcid.org/0000-0002-6582-5025
mailto:akaposi@inf.elte.hu
https://orcid.org/0000-0001-9897-8936
mailto:a.sinkarovs@hw.ac.uk
https://orcid.org/0000-0003-3292-2985
mailto:vetuaat@inf.elte.hu
https://orcid.org/0000-0002-3784-6523
https://doi.org/10.4230/LIPIcs.FSCD.2023.24
https://bitbucket.org/akaposi/combinator
https://archive.softwareheritage.org/swh:1:dir:5275bf1e26eb4aa1e2391d0ace5953c3f4898ef4;origin=https://bitbucket.org/akaposi/combinator;visit=swh:1:snp:0516a89dda26df8f77b98fdb0c75a052641be1c7;anchor=swh:1:rev:18fc581cbb3f68e855576d82d1d205cc500e368c
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


24:2 Combinatory Logic and Lambda Calculus Are Equal, Algebraically

algebras. What about the lambda calculus? Castellan, Clairambault and Dybjer [9] suggest
that the syntax of lambda calculus should be defined as the initial category with families
(CwF) with extra structure. This representation is generalised algebraic [8], and by indexing
terms by their typing contexts, it avoids the problems related to the ξ rule [21]. In short,
untyped lambda calculus is a uni-typed CwF with an isomorphism

lam : Tm (m + 1) ∼= Tm m

natural in m, where Tm is the sort of terms which is indexed by the possible number of free
variables. The left to right direction is abstraction, the right to left direction is application,
the fact that the two roundtrips are identities are the β and η laws. In simply typed CwFs,
terms are also indexed by types, the simply typed lambda calculus has an arrow type former
– ⇒ – : Ty → Ty → Ty and the above isomorphism becomes

lam : Tm (Γ ▷ A) B ∼= Tm Γ (A ⇒ B).

Here terms are indexed both by contexts and types, and Γ ▷ A is the context Γ extended with
one variable of type A. In fact, the untyped case is a special case of the typed one where we
assume all elements of Ty to be equal.

Quotient inductive-inductive types (QIITs) [14, 15] are inductive types where later sorts
can be indexed over previous ones, and where equality constructors are also allowed: a QIIT
is freely generated by its constructors and is quotiented at the same time by its equality
constructors. The sorts, constructors and equality constructors of a QIIT can be also seen as
the sorts, operations and equations of a generalised algebraic theory. Given a generalised
algebraic theory, the corresponding QIIT is its initial algebra. The elimination principle of the
QIIT correponds exactly to the universal property (initiality) of the initial algebra. When a
language is defined as an algebraic theory, the corresponding QIIT is its intrinsic (well-formed,
well-typed) syntax quotiented by conversion. That is, convertible terms are equal in such
a syntax. This approach to the syntax is very natural for dependently typed languages [2]
where conversion cannot be defined separately from typing, but in this paper we apply it in a
simply typed setting. Cubical Agda [24] is currently the only implementation of type theory
with native support for QIITs. It features the more general higher inductive-inductive types
(HIITs [15]). A QIIT is a HIIT with constructors truncating each sort to be a set, in the
sense of homotopy type theory [18]. This means that any two equalities between equalities of
elements of a QIIT are equal. Cubical Agda also features the univalence axiom which turns
an isomorphism (bijection) into an equality.

In this paper we prove that combinatory terms of a given type are isomorphic to lambda
terms of the same type, thus by univalence we obtain an equality TmC A = TmL ⋄ A. The
subscripts denote combinatory and lambda terms, respectively, and ⋄ is the empty context.
Here TmC also features four equations expressing extensionality in addition to the computation
rules of S and K mentioned above. In the proof, we make use of an auxiliary theory Cwk
which is a variant of C featuring contexts, an operation q (the last variable in a context,
a.k.a. the zero De Bruijn index) and a weakening operation (which is also the successor
operation for De Bruijn indices). We define lambda abstraction by induction on terms in
Cwk. An illustration of Cwk is that extensionality can be expressed by the implication
wk t · q = wk t′ · q → t = t′.

Equality of combinatory and lambda terms ensures that lambda terms can be replaced
by combinatory terms in any construction and vice versa. This is indeed the case in Cubical
Agda as equality of the two different sets of terms is proof-relevant, and we can transport
over it. Our proof is parameterised by a set of types Ty closed under arrow – ⇒ –, thus it
applies to both the un(i)-typed and simply typed cases.



T. Altenkirch, A. Kaposi, A. Šinkarovs, and T. Végh 24:3

The main contribution of this paper is an algebraic proof of the equivalence of combinatory
logic and lambda calculus which does not mention representations. Further contributions are
the typing generality and the formalisation in Cubical Agda.

1.1 Structure of the paper
After summarising related work and describing our notations, in Section 2 we define the
three theories C, Cwk and L. In Section 3 we prove the isomorphism TmC A ∼= TmCwk ⋄ A.
We define the lambda calculus operations using the syntax of Cwk in Section 4. Using
these, in Section 5 we prove the isomorphism TmCwk Γ A ∼= TmL Γ A. To represent open
lambda terms as combinator terms, we introduce an arrow type with a context domain.
Γ ⇒∗ A is defined as ⋄ ⇒∗ A :≡ A and (Γ ▷ B) ⇒∗ A :≡ Γ ⇒∗ B ⇒ A. In Section 6 we
prove TmL ⋄ (Γ ⇒∗ A) ∼= TmL Γ A. Putting together everything we obtain our main theorem
TmC (Γ ⇒∗ A) ∼= TmL Γ A. We conclude in Section 7.

1.2 Related work
It is usual to describe the semantics of languages as (generalised or essentially) algebraic
theories, see e.g. [16]. The syntax is however usually given by abstract syntax trees. There are
few textbooks which use well-typed unquotiented syntax trees, e.g. [25]. Several important
constructions on the syntax of typed lambda calculi can be performed on intrinsic quotiented
terms, e.g. normalisation [1], parametricity [2] and typechecking [13]. In this paper we show
that the bracket abstraction algorithm can be also defined in the typed and quotiented
setting.

Selinger [21] remarks that extensional models of lambda calculus do not form an algebraic
variety because the subalgebra of closed terms is not extensional. This does not apply
in our setting using CwFs because closed terms do not form a subalgebra. We use the
algebraic description of lambda calculus by Castellan, Clairambault and Dybjer (uni-typed
CwF) [9]. Hyland [12] describes lambda calculus in a way equivalent to ours using notions
from categorical universal algebra, but omits the connection to combinatory logic for reasons
of space.

Swierstra [22] defines a correct-by-construction conversion of combinators into lambda
terms. He uses intrinsically typed unquotiented terms indexed by their semantics using a
trick by McBride [17].

The relationship of combinatory logic and lambda calculus is still an active research
area, for example a rewriting relation for combinator terms equivalent to β reduction was
investigated in [19, 20], using preterms and typing relations. Combinators are used in
realisability semantics in the form of partial combinatory algebras, for example in [4].

1.3 Metatheory and formalisation
We work with notations close to Agda’s. The universe of types is written Set, we don’t write
universe indices, however we work in a predicative setting. Dependent functions are written
(x : A) → B where B can use x, application is juxtaposition. We write implicit arguments
as {x : A} → B or we simply omit them and just write B. When f is an implicit function,
we can supply arguments in curly brackets as f {a}. Implicit arguments are used in many
places for readability, but this is just a concise notation, formally all arguments are always
specified. Σ types are written using infix ×, the unit type ⊤ has one definitionally unique
element tt. We write definitional equality as ≡, definitions using :≡, propositional equality

FSCD 2023



24:4 Combinatory Logic and Lambda Calculus Are Equal, Algebraically

as =. We assume definitional function extensionality, that is, a propositional equality of
two functions is proven as a pointwise equality. We use equational reasoning notation when
proving equalities. We define isomorphism as the following iterated Σ type (named record
type). We overload the name of the isomorphism and the function in the forward direction.

(f : A ∼= B) :≡ (f : A → B) × (f−1 : B → A) × (fβ : f−1 (f a) = a) × (fη : f (f−1 b) = b)

We use QIITs (set-truncated HIITs) and eliminate from them by pattern matching. All the
pattern matching definitions can be defined using the elimination principles of the QIITs.
Because most of the equalities that we prove or use are propositions, we do not prove
equalities of equalities in the paper. This is the main difference between the paper and
the Cubical Agda formalisation. In the formalisation most of the line count comes from
boilerplate proofs proving equalities of equalites using the isSet constructors of QIITs. We
define special cases of the elimination principles for some of the QIITs and use them to reduce
this boilerplate. For example, when proving a proposition by induction on a QIIT, we do not
need to provide methods for the equality constructors. The only non-propositional equalities
we prove are coming from isomorphisms via univalence. The formalisation is available as
supplementary material.

This paper can be understood without knowing Cubical Agda or even homotopy type
theory.

2 Three theories

We parameterise Sections 2–6 by a Ty : Set and – ⇒ – : Ty → Ty → Ty. We define contexts
inductively by the following constructors.

Con : Set
⋄ : Con
– ▷ – : Con → Ty → Con

⋄ denotes the empty context, Γ ▷ A is the context Γ extended by the type A. A context of
length three containing types A, B, C is written ⋄ ▷ A ▷ B ▷ C.

In Figures 1, 2, 3 we define the theories C, Cwk and L, respectively. The syntaxes (initial
models/algebras) for these theories are implemented in Cubical Agda using inductive types
with equality constructors. The syntaxes of C and Cwk are indexed quotient inductive types
(QIT), the syntax of L is given by two mutually defined indexed QITs. The operators become
constructors, the equations become equality constructors, and each type has an extra isSet
constructor ensuring that the higher equality structure is trivial.

In the rest of this section we explain the operations and equations of the three theories,
and define some derivable operations and equations in each.

2.1 Combinatory logic with extensionality
Theory C is defined by the indexed sort, three operations and six equations in Figure 1. Some
of the operators have implicit parameters. For example, application – · – takes the types A

and B implicitly, its fully explicit type is {A : Ty}{B : Ty} → Tm (A ⇒ B) → Tm A → Tm B.
K has two, S has three implicit type parameters. Kβ has two implicit type parameters and two
implicit term parameters, and we understand Kβ with the most general implicit parameters,



T. Altenkirch, A. Kaposi, A. Šinkarovs, and T. Végh 24:5

Tm : Ty → Set
– · – : Tm (A ⇒ B) → Tm A → Tm B

K : Tm (A ⇒ B ⇒ A)
S : Tm

(
(A ⇒ B ⇒ C) ⇒ (A ⇒ B) ⇒ A ⇒ C

)
Kβ : K · u · v = u

Sβ : S · t · u · v = t · v · (u · v)
lamKβ : S · (K · S) ·

(
S · (K · K)

)
= K

lamSβ : S ·
(

K ·
(
S · (K · S)

))
·
(

S · (K · S) ·
(
S · (K · S)

))
=

S ·
(

S · (K · S) ·
(

S · (K · K) ·
(
S · (K · S) · (S · (K · (S · (K · S))) · S)

)))
· (K · S)

lamwk· : S · (K · K) = S ·
(

S · (K · S) ·
(
S · (K · K) · (S · (K · S) · K)

))
· (K · K)

η : S · K · K = S ·
(
S · (K · S) · K

)
·
(
K · (S · K · K)

)
Figure 1 Theory C: combinatory logic with extensionality equations. Note that Ty, – ⇒ – are

parameters (beginning of Section 2).

Tm : Con → Ty → Set
– · – : Tm Γ (A ⇒ B) → Tm Γ A → Tm Γ B

K : Tm Γ (A ⇒ B ⇒ A)
S : Tm Γ

(
(A ⇒ B ⇒ C) ⇒ (A ⇒ B) ⇒ A ⇒ C

)
Kβ : K · u · v = u

Sβ : S · t · u · v = t · v · (u · v)
q : Tm (Γ ▷ A) A

wk : Tm Γ A → Tm (Γ ▷ B) A

wk· : wk (t · u) = wk t · wk u

wkK : wk K = K
wkS : wk S = S
lamKβ : S {⋄} · (K · S) ·

(
S · (K · K)

)
= K

lamSβ : S {⋄} ·
(

K ·
(
S · (K · S)

))
·
(

S · (K · S) ·
(
S · (K · S)

))
=

S {⋄} ·
(

S · (K · S) ·
(

S · (K · K) ·
(
S · (K · S) · (S · (K · (S · (K · S))) · S)

)))
· (K · S)

lamwk· : S {⋄} · (K · K) = S ·
(

S · (K · S) ·
(
S · (K · K) · (S · (K · S) · K)

))
· (K · K)

η : S {⋄} · K · K = S ·
(
S · (K · S) · K

)
·
(
K · (S · K · K)

)
Figure 2 Theory Cwk: combinatory logic with variables, weakenings and extensionality equations.

Note that the extensionality equations only hold in the empty context. This is enforced by specifying
the implicit context argument of the first Ss to be the empty context ⋄. Ty and – ⇒ – are parameters,
Con is defined inductively (beginning of Section 2).

FSCD 2023



24:6 Combinatory Logic and Lambda Calculus Are Equal, Algebraically

i.e. u : Tm A, v : Tm B where A and B don’t have to be the same. Similarly, we use the
most general versions of the the other equations. The last four equations don’t have terms
as parameters, but do have implicit type parameters.

Using implicit parameters, we can write typed combinatory terms the same way as we
would write untyped ones. For example, the identity combinator is defined as follows.

I : Tm (A ⇒ A)
I :≡ S · K · K

If we write out the implicit parameters of the S and Ks (but not the – · – applications),
this becomes S {A}{A ⇒ A}{A} · K {A}{A ⇒ A} · K {A}{A}. If we provide Agda with the
information that I will have type Tm (A ⇒ A), it is enough to specify the second parameter
of the second K. This uniquely determines the other implicit parameters, so in Agda we
write I :≡ S · K · K {}{A}. We prove the β law for I using equational reasoning.

Iβ : I · t ≡ S · K · K · t
Sβ= K · t · (K · t) Kβ= t

We say that C has extensionality because of the last four equations lamKβ, . . . , η. We
add these so as to be equivalent to Cwk which includes these equations so as to be equivalent
to L. The origin of these equations will be partly revealed in Subsection 2.2 and fully revealed
in Section 4.

Our equations lamKβ, lamSβ, lamwk·, η correspond to E-ax 4, E-ax 5, E-ax 1, E-ax 2 of
[11, Definition 8.10], respectively. E-ax 3 is not needed as the I combinator is not part of our
syntax. lamSβ, lamwk·, η correspond to A.5, A.3, A.6 of [5, Corollary 7.3.15], respectively.
The equation A.4 is a modified version of lamKβ because [5] considers the non-extensional
case as well, and the translation of lamKβ does not hold in lambda calculus without η, see
[5, Remark before Lemma 7.3.8].

2.2 Combinatory logic with variables, weakenings and extensionality
Theory Cwk is defined in Figure 2. The sort of terms is now indexed by both contexts and
types. Application, K, S, Kβ and Sβ are just like for C with the difference that all these
work in an arbitrary context. We have two extra operations which correspond to the Peano
constructors of De Bruijn indices: q is the zero index, wk is successor. For example De
Bruijn index 2 is written wk (wk q) : Tm (Γ ▷ A ▷ B ▷ C) A. Note that Γ, A and B are implicit
arguments of wk. As wk can be applied to any term, we add equations expressing that
it commutes with – · –, K and S. Finally, the three equations lamKβ, lamSβ, lamwk· are
needed for defining lambda abstraction (lam) by recursion on the syntax (see Section 4). The
equation η corresponds to the η rule in L. We restrict these equations to be only valid in the
empty context because lam then vacously preserves them (the input of lam is in an extended
context). Limiting to the empty context is not a real limitation when contexts are defined
inductively. We prove that the equations hold in any context by adding wk as many times as
the length of the context. Because wk commutes with K, S and – · – and the four equations
do not contain anything else, the weakened terms will be the same as the original terms, just
in a different context. Thus we obtain the general primed versions lamKβ′, lamSβ′, lamwk·′
and η′. For example, lamKβ′ is defined as follows. For readability, we merged some steps.

lamKβ′ : {Γ : Con} → S {Γ} · (K · S) ·
(
S · (K · K)

)
= K

lamKβ′ {⋄} : S {⋄} · (K · S) ·
(
S · (K · K)

) lamKβ= K {⋄}
lamKβ′ {Γ ▷ A} : S {Γ ▷ A} · (K · S) ·

(
S · (K · K)

)
=(wkS, wkK 3x each)



T. Altenkirch, A. Kaposi, A. Šinkarovs, and T. Végh 24:7

wk (S {Γ}) · (wk K · wk S) ·
(
wk S · (wk K · wk K)

)
=(wk· twice)

wk (S {Γ}) · (wk (K · S)) ·
(
wk S · (wk (K · K))

)
=(wk· twice)

wk
(
S {Γ} · (K · S)

)
· wk (S · (K · K)) =(wk·)

wk
(
S {Γ} · (K · S) · (S · (K · K))

)
=(lamKβ′ {Γ})

wk (K {Γ}) =(wkK)
K {Γ ▷ A}

We derive another version of each of the four equations which we call the pointful variants.
These are the versions that will be actually used when defining lam.

lamKβ′′ : S · (S · (K · K) · u) · v = u

lamSβ′′ : S ·
(
S · (S · (K · S) · t) · u

)
· v = S · (S · t · u) · (S · u · v)

lamwk·′′ : K · (t · u) = S · (K · t) · (K · u)
η′′ : t = S · (K · t) · (S · K · K)

We obtain the pointful versions by applying Kβ, Sβ multiple times to the pointfree version.
Here is the proof for lamKβ, see Appendix A or the formalisation for the other equations.

lamKβ′′ : S · (S · (K · K) · u) · v =(Kβ)
K · S · u ·

(
S · (K · K) · u

)
· v =(Sβ)

S · (K · S) ·
(
S · (K · K)

)
· u · v =lamKβ′

K · u · v =(Kβ)
u

2.3 Lambda calculus
Theory L is defined in Figure 3. Lambda calculus can be seen as a second order theory with
one sort Tm indexed by Ty and an isomorphism (Tm A → Tm B) ∼= Tm (A ⇒ B). The left
to right direction is the binder lam which takes a function as an input. We turn this second
order theory into a first order theory using a substitution calculus with term-variables in
which the second order operation lam becomes a first order operation with an input in an
extended context. We describe all the operations in detail: Con, Sub form a category with
terminal object ⋄. ⋄ is the empty context, Sub ∆ Γ is called a substitution from ∆ to Γ. It
is a list of terms, where all terms have free variables in ∆ and their types are in Γ. For
example, a Sub ∆ (⋄ ▷ A ▷ B) corresponds to a Tm ∆ A together with a Tm ∆ B. Terms can
be instantiated by substitutions: if we have a t : Tm Γ A and a substitution σ : Sub ∆ Γ, then
we obtain a term t[σ] which we call the instantiation of t by σ. This operation replaces
all free variables in t by terms in σ, which in turn have free variables declared by ∆. The
instantiation operation is functorial, witnessed by [◦] and [id]. A substitution can either
be the unique empty substitution ϵ which targets the empty context ⋄ or a substitution
built using – , – which targets an extended context. The operations – , –, p, q and equations
▷β1, ▷β2, ▷η can be summarised as an isomorphism Sub ∆ (Γ ▷ A) ∼= Sub ∆ Γ × Tm ∆ A.
The variables are typed De Bruijn indices built by q and – [p], the latter takes the role
of wk. We have application – · – and abstraction lam with the computation rule ⇒β and
uniqueness rule ⇒η. The rules for the arrow type are summarised by the isomorphism
Tm (Γ ▷ A) B ∼= Tm Γ (A ⇒ B) natural in Γ. Naturality is expressed by lam[] and ·[]. Again
we stress that most operations in L take implicit arguments, e.g. lam takes Γ, A and B

implicitly before its first and only explicit argument.

FSCD 2023



24:8 Combinatory Logic and Lambda Calculus Are Equal, Algebraically

Sub : Con → Con → Set
– ◦ – : Sub ∆ Γ → Sub Θ ∆ → Sub Θ Γ
ass : (σ ◦ ρ) ◦ τ = σ ◦ (ρ ◦ τ)
id : Sub Γ Γ
idl : σ ◦ id = σ

idr : id ◦ σ = σ

ϵ : Sub Γ ⋄
⋄η : {σ : Sub Γ ⋄} → σ = ϵ

Tm : Con → Ty → Set
– [– ] : Tm Γ A → Sub ∆ Γ → Tm ∆ A

[◦] : A[σ ◦ ρ] = A[σ][ρ]
[id] : A[id] = A

– , – : Sub ∆ Γ → Tm ∆ A → Sub ∆ (Γ ▷ A)
p : Sub (Γ ▷ A) Γ
q : Tm (Γ ▷ A) A

▷β1 : p ◦ (σ, t) = σ

▷β2 : q[σ, t] = t

▷η : {σ : Sub ∆ (Γ ▷ A)} → σ = (p ◦ σ, q[σ])
lam : Tm (Γ ▷ A) B → Tm Γ (A ⇒ B)
– · – : Tm Γ (A ⇒ B) → Tm Γ A → Tm Γ B

⇒β : lam t · u = t[id, u]
⇒η : {t : Tm Γ (A ⇒ B)} → t = lam (t[p] · q)
lam[] : (lam t)[σ] = lam (t[σ ◦ p, q])
·[] : (t · u)[σ] = (t[σ]) · (u[σ])

Figure 3 Theory L: lambda calculus. A concise description using categorical terminology: a
category with terminal object where objects are Con and the terminal object is ⋄; for each A : Ty a
locally representable presheaf Tm – A over the category where – ▷ – generates the new objects; an
isomorphism Tm (Γ ▷ A) B ∼= Tm Γ (A ⇒ B) natural in Γ. Note that Ty and – ⇒ – are parameters,
Con is defined inductively (beginning of Section 2).

Naturality of substitution extension holds in any model of L:

,◦ : (σ, t) ◦ ρ =(▷η)(
p ◦ ((σ, t) ◦ ρ), q[(σ, t) ◦ ρ]

)
=(ass, [◦])(

(p ◦ (σ, t)) ◦ ρ, q[σ, t][ρ]
)

=(▷β1, ▷β2)
(σ ◦ ρ, t[ρ])

In every model of L, pointwise equal functions are equal, we call this property funext:

funext : t[p] · q = t′[p] · q → t = t′

funext e : t
⇒η= lam (t[p] · q) e= lam (t′[p] · q) ⇒η= t′

3 Combinators with and without weakenings are equal

In this section we prove the equivalence of the syntaxes of C and Cwk. We will define an
isomorphism f : TmC A ∼= TmCwk ⋄ A, and via univalence obtain TmC A = TmCwk ⋄ A. The
four extensionality equations do not play a role in this section. In fact, any number of closed
equations are preserved by f, as long as the same equations hold in Cwk. For readability, we
will just say C when we mean the syntax of C, and similarly for Cwk.

In Figure 4 we define the forward and backward directions of f by recursion on TmC and
TmCwk, respectively. We use pattern matching notation. As C is included in Cwk we just
return the same operations. We overload the constructors of the two syntaxes, e.g. we write
K both for KC and KCwk, it should be clear from the context which is meant. With implicit
arguments, the line for K is f (K {A}{B}) :≡ K {⋄}{A}{B}, so we choose the output K to be
in the empty context. In the other direction we know that the input is in the empty context,
hence we define f−1 (K {⋄}{A}{B}) :≡ K {A}{B}.



T. Altenkirch, A. Kaposi, A. Šinkarovs, and T. Végh 24:9

f : TmC A → TmCwk ⋄ A

f (t · u) :≡ f t · f u

f K :≡ K
f S :≡ S

f−1 : TmCwk ⋄ A → TmC A

f−1 (t · u) :≡ f−1 t · f−1 u

f−1 K :≡ K
f−1 S :≡ S

Figure 4 The proof-relevant parts of the isomorphism f : TmC A ∼= TmCwk ⋄ A. In the f−1 direction
we don’t have to provide cases for constructors q and wk because they are not in the empty context:
Con is defined inductively, hence we know that ⋄ ≠ Γ ▷ A for any Γ and A. We treat the cases for
equality constructors in the main text.

Part of the definitions of f and f−1 are that they preserve the equality constructors. f
maps each equality constructor of C to the corresponding equality constructor of Cwk. We
spell out the implicit arguments for Kβ: f (Kβ {A}{B}{u}{v}) :≡ Kβ {⋄}{A}{B}{f u}{f v}.
On the Cwk side we again use the empty context, the same types and we apply f to the term
arguments. The other cases are simply f Sβ :≡ Sβ, f lamKβ :≡ lamKβ, . . . , f η :≡ η.

f−1 also preserves all the equations in Cwk by their corresponding equations in C. The
three extra equations of wk·, wkK and wkS are preserved vacously because they are equating
terms in open contexts.

When proving that f ◦ f−1 = λt.t and vice versa, we only have to compare the results
of the proof irrelevant parts shown in Figure 4 because the other components are equal by
isSet. We prove fβ and fη by trivial inductions on TmC and TmCwk, respectively.

4 Lambda calculus operations in Cwk

In this section we derive the operations of L in the syntax of Cwk. We first define the
operations in Figure 5.

Substitutions are defined by recursion on the target context. Then we define weakening
of these substitutions by iterating wk for terms, again by recursion on the target context.
Instantiation of Cwk terms by a substitution is defined by recursion on terms. We show that
instantiation preserves the equations as follows.

Kβ[σ] : (K · u · v)[σ] ≡ K · (u[σ]) · (v[σ]) Kβ= u[σ]

Sβ[σ] : (S · t · u · v)[σ] ≡ S · (t[σ]) · (u[σ]) · (v[σ]) Sβ= t[σ] · (v[σ]) · (u[σ] · (v[σ]))
wk·[σ] : (wk (t · u))[σ, v] ≡ (t[σ]) · (u[σ]) ≡ (wk t · wk u)[σ, v]
wkK[σ] : (wk K)[σ] ≡ K ≡ K[σ]
wkS[σ] : (wk S)[σ] ≡ S ≡ S[σ]
lamKβ[σ] :≡ lamKβ′

lamSβ[σ] :≡ lamSβ′

lamwk·[σ] :≡ lamwk·′

η[σ] :≡ η′

The last four equations use the generalised versions of the extensionality equations which
work in arbitrary contexts (defined in Subsection 2.2). Composition – ◦Γ – is defined by
induction on the target context and uses instantiation. We write the implicit argument Γ in
superscript for readability. The identity substitution id is defined by induction on the context.

FSCD 2023



24:10 Combinatory Logic and Lambda Calculus Are Equal, Algebraically

Sub : Con → Con → Set
Sub ∆ ⋄ :≡ ⊤
Sub ∆ (Γ ▷ A) :≡ Sub ∆ Γ × Tm ∆ A

wks : {Γ : Con} → Sub ∆ Γ → Sub (∆ ▷ A) Γ
wks {⋄} tt :≡ tt
wks {Γ ▷ A} (σ, t) :≡ (wks {Γ} σ, wk t)

– [– ] : Tm Γ A → Sub ∆ Γ → Tm ∆ A

(t · u)[σ] :≡ (t[σ]) · (u[σ])
K[σ] :≡ K
S[σ] :≡ S
q[σ, u] :≡ u

(wk t)[σ, u] :≡ t[σ]

– ◦ – : {Γ : Con} → Sub ∆ Γ →
Sub Θ ∆ → Sub Θ Γ

tt ◦{⋄} ρ :≡ tt
(σ, t) ◦{Γ ▷ A} ρ :≡ (σ ◦{Γ} ρ, t[ρ])

id : {Γ : Con} → Sub Γ Γ
id {⋄} :≡ tt
id {Γ ▷ A} :≡ (wks (id {Γ}), q)

p : Sub (Γ ▷ A) Γ
p :≡ wks id

lam : Tm (Γ ▷ A) B → Tm Γ (A ⇒ B)
lam (t · u) :≡ S · lam t · lam u

lam K :≡ K · K
lam S :≡ K · S
lam q :≡ S · K · K
lam (wk t) :≡ K · t

Figure 5 The definitions of L operations in the syntax of Cwk. See the text for the proof-irrelevant
parts.

The first projection p is the weakening of identity. lam is also defined by recursion on Cwk
terms. This is usually called the bracket abstraction algorithm. lam of application applies
the S combinator to the results of the recursive calls, lam of q is the identity combinator, lam
of K and S are constant K and S, respectively, while lam of a weakened term is constantly
that term. The fact that lam preserves the equations is the source of the three equations
lamKβ, lamSβ and lamwk·. The reason for the naming of these equations is thus revealed.

lam Kβ : lam (K · u · v) ≡
S · lam (K · u) · lam v ≡
S ·

(
S · (K · K) · lam u

)
· lam v =(lamKβ′′)

lam u

lam Sβ : lam (S · t · u · v) ≡
S · lam (S · t · u) · lam v ≡
S ·

(
S · lam (S · t) · lam u

)
· lam v ≡

S ·
(
S · (S · (K · S) · lam t) · lam u

)
· lam v =(lamSβ′′)

S · (S · lam t · lam u) · (S · lam u · lam v) ≡
S · lam (t · u) · lam (u · v) ≡
lam

(
t · v · (u · v)

)



T. Altenkirch, A. Kaposi, A. Šinkarovs, and T. Végh 24:11

lam wk· : lam (wk (t · u)) ≡ K · (t · u) lamwk·′′

= S · (K · t) · (K · u) ≡ lam (wk t · wk u)
lam wkK : lam (wk K) ≡ K · K ≡ lam K
lam wkS : lam (wk K) ≡ K · S ≡ lam S

We make use of the double-primed non-closed and pointful variants, but we put the closed
pointfree variants in the definition of Cwk because they are vacuously preserved by lam as
lam operates on terms in the nonempty context. The last of the four extensionality equations
η will be used to prove the η law for the defined lam.

Now we prove all the equations of L in the following order. The proofs are straightforward,
see Appendix B or the formalisation for the details.

[◦] : {t : Tm Γ A} → t[σ ◦ ρ] = t[σ][ρ] induction on t

ass : {Γ : Con}{σ : Sub ∆ Γ} → (σ ◦ ρ) ◦ τ = σ ◦ (ρ ◦ τ) induction on Γ
wks◦ : {Γ : Con} → wks {Γ} σ ◦ (ρ, u) = σ ◦ ρ induction on Γ
idl : {Γ : Con} → id {Γ} ◦ σ = σ induction on Γ
[wks] : {t : Tm Γ A} → t[wks σ] = wk (t[σ]) induction on t

[id] : {t : Tm Γ A} → t[id] = t induction on t

idr : {Γ : Con} → σ ◦Γ id = σ induction on Γ
⋄η : {σ : Sub Γ ⋄} → σ = ϵ holds by definition

▷β1 : p ◦ (σ, t) ≡ wks id ◦ (σ, t) wks◦= id ◦ σ
idl= σ derivable

▷β2 : q[σ, t] ≡ t holds by definition

▷η : (σ, t) ▷β1= (p ◦ (σ, t), t) ≡ (p ◦ (σ, t), q[σ, t]) derivable
⇒β : {t : Tm (Γ ▷ A) B} → lam t · v = t[id, v] induction on t

⇒η : t = lam (t[p] · q) derivable using η′′

lam[] : (lam t)[σ] = lam (t[σ ◦ p, q]) induction on t

·[] : (t · u)[σ] ≡ (t[σ]) · (u[σ]) holds by definition

Finally we show how instantiation interacts with the combinators K and S:

K[] : K[σ] ≡ K[wks id] [wks]= wk (K[id]) [id]= wk K wkK= K

S[] : S[σ] ≡ S[wks id] [wks]= wk (S[id]) [id]= wk S wkS= S

5 Combinators with weakenings and lambda terms are equal

The proof-relevant parts of g : TmCwk Γ A ∼= TmL Γ A are defined in Figure 6.
Mapping Cwk terms to L terms (left hand side of Figure 6) is easy for those accustomed

to the lambda calculus. The combinatory operations have straightforward implementations
using lambda terms. It is similarly straightforward to show that g preserves the equations of
Cwk. As an example we show all the steps in proving preservation of Kβ. This also illustrates
working with the equational theory of L, or in other words working within a CwF. The
preservation of the other equations is proven in an analogous way.

g Kβ : g (K · u · v) ≡
lam

(
lam (q[p])

)
· g u · g v =(⇒β)

lam (q[p])[id, g u] · g v =(lam[])

FSCD 2023



24:12 Combinatory Logic and Lambda Calculus Are Equal, Algebraically

g : TmCwk Γ A → TmL Γ A

g (t · u) :≡ g t · g u

g K :≡ lam
(
lam (q[p])

)
g S :≡ lam

(
lam

(
lam

(
q[p ◦ p] · q · (q[p] · q)

)))
g q :≡ q
g (wk t) :≡ (g t)[p]

g : {Γ : Con} → SubCwk ∆ Γ → SubL ∆ Γ
g {⋄} tt :≡ ϵ

g {Γ ▷ A} (σ, t) :≡ (g σ, g t)

g−1 : SubL ∆ Γ → SubCwk ∆ Γ
g−1 : TmL Γ A → TmCwk Γ A

g−1 (σ ◦ ρ) :≡ g−1 σ ◦ g−1 ρ

g−1 id :≡ id
g−1 ϵ :≡ tt
g−1 (t[σ]) :≡ (g−1 t)[g−1 σ]
g−1 (σ, t) :≡ (g−1 σ, g−1 t)
g−1 p :≡ p
g−1 q :≡ q
g−1 (lam t) :≡ lam (g−1 t)
g−1 (t · u) :≡ (g−1 t) · (g−1 u)

Figure 6 The proof-relevant parts of the isomorphism g : TmCwk Γ A ∼= TmL Γ A. We treat the
cases for equality constructors in the main text.

lam
(
q[p][(id, g u) ◦ p, q]

)
· g v =([◦])

lam
(
q[p ◦ ((id, g u) ◦ p, q)]

)
· g v =(▷β1)

lam
(
q[(id, g u) ◦ p]

)
· g v =(,◦)

lam
(
q[id ◦ p, g u[p]]

)
· g v =(▷β2)

lam
(
(g u)[p]

)
· g v =(⇒β)

(g u)[p][id, g v] =([◦])
(g u)[p ◦ (id, g v)] =(▷β1)
(g u)[id] =([id])
g u

We also define g on SubCwk by induction on the target context, and we prove that g preserves
the lambda operations defined in Section 4 as follows, in the following order.

gwks : {σ : Sub ∆ Γ} → g (wks σ) = g wks ◦ p induction on Γ
gid : {Γ : Con} → g (id {Γ}) = id induction on Γ

gp : g p ≡ g (wks id) gwks= g id ◦ p gid= id ◦ p idl= p derivable
g[] : g (t[σ]) = (g t)[g σ] induction on t

g◦ : {σ : Sub ∆ Γ} → g (σ ◦ ρ) = g σ ◦ gρ induction on Γ
glam : g (lam t) = lam (g t) induction on t

In the other direction we use the lambda calculus operations defined in Cwk in Section
4. g−1 is defined by mutual recursion on SubL and TmL on the right hand side of Figure 6.
Preservation of the equations correspond to the counterparts of the equations in Cwk that
we proved in Section 4. So g−1 assL :≡ assCwk, . . . , g−1 ·[]L :≡ ·[]Cwk.

The first roundtrip is proven by induction on TmCwk as follows.

gβ : {t : TmCwk Γ A} → g−1 (g t) = t

gβ {t · u} : g−1 (g (t · u)) ≡ g−1 (g t) · g−1 (g t) gβ {t},gβ {t}= t · u

gβ {K} : g−1 (g K) ≡ g−1 (lam (lam (q[p]))) ≡ lam (lam (q[p])) funext (funext K=)= K



T. Altenkirch, A. Kaposi, A. Šinkarovs, and T. Végh 24:13

gβ {S} : g−1 (g S) ≡ lam
(

lam
(

lam
(
q[p ◦ p] · q · (q[p] · q)

)))
funext (funext (funext S=))= S

gβ {q} : g−1 (g q) ≡ g−1 q ≡ q

gβ {wk t} : g−1 (g (wk t)) ≡ (g−1 (g t))[p] gβ {t}= t[p] ≡ t[wks id] [wks]= wk (t[id]) [id]= wk t

The interesting cases are K and S: here we use function extensionality which holds in any
model of L (thus in Cwk as shown in Section 4). To prove that the implementation of K
using lam (lam (q[p])) is equal to K we apply funext twice, and then we can use well-known
reasoning with CwF combinators. The proof of S= is analogous.

K= :
((

lam (lam (q[p])))[p] · q
)

[p] · q =(CwF reasoning)

lam (lam (q[p])) · q[p] · q =(⇒β twice and more CwF reasoning)
q[p] =(Kβ)
K · q[p] · q =(K[] twice)
K[p][p] · q[p] · q =(·[])
(K[p] · q)[p] · q

The second roundtrip is a mutual induction on SubL and TmL. We make use of the fact
that g preserves the lambda operations.

gη : {σ : SubL ∆ Γ} → g (g−1 σ) = σ

gη : {t : TmL Γ A} → g (g−1 t) = t

gη {σ ◦ ρ} : g (g−1 (σ ◦ ρ)) ≡ g (g−1 σ ◦ g−1 ρ) g◦= g (g−1 σ) ◦ g (g−1 ρ) gη {σ},gη {ρ}= σ ◦ ρ

gη {id} : g (g−1 id) ≡ g id gid= id
gη {ϵ} : g (g−1 ϵ) ≡ g {⋄}tt ≡ ϵ

gη {t[σ]} : g (g−1 (t[σ])) ≡ g
(
(g−1 t)[g−1 σ]

) g[]= (g (g−1 t))[g (g−1 σ)] gη {t},gη {ρ}= t[σ]

gη {σ, t} : g (g−1 (σ, t)) ≡ g {Γ ▷ A} (g−1 σ, g−1 t) ≡
(
g (g−1 σ), g (g−1 t)

) gη

= (σ, t)

gη {p} : g (g−1 p) ≡ g p gp= p
gη {q} : g (g−1 q) ≡ t

gη {lam t} : g (g−1 (lam t)) ≡ g
(
lam (g−1 t)

) glam= lam (g (g−1 t)) gη {t}= lam t

gη {t · u} : g (g−1 (t · u)) ≡ g (g−1 t) · g (g−1 u) gη {t},gη {u}= t · u

6 Lambda terms can be moved to the empty context

We define h : TmL ⋄ (Γ ⇒∗ A) ∼= TmL Γ A. Both directions and the roundtrips are defined by
induction on Γ.

h : {Γ : Con} → TmL ⋄ (Γ ⇒∗ A) → TmL Γ A

h {⋄} t :≡ t

h {Γ ▷ B} t :≡ (h {Γ} t)[p] · q
h−1 : {Γ : Con} → TmL Γ A → TmL ⋄ (Γ ⇒∗ A)
h−1 {⋄} t :≡ t

FSCD 2023



24:14 Combinatory Logic and Lambda Calculus Are Equal, Algebraically

h−1 {Γ ▷ B} t :≡ h−1 {Γ} (lam t)
hβ : {Γ : Con} → h−1 {Γ} (h {Γ} t) = t

hβ {⋄} : h−1 {⋄} (h {⋄} t) ≡ t

hβ {Γ ▷ B} : h−1 {Γ ▷ B} (h {Γ ▷ B} t) ≡ h−1 (
lam ((h t)[p] · q)

) ⇒η= h−1 (h t) hβ {Γ}= t

hη : {Γ : Con} → h {Γ} (h−1 {Γ} t) = t

hη {⋄} : h {⋄} (h−1 {⋄} t) ≡ t

hη {Γ ▷ B} : h {Γ ▷ B} (h−1 {Γ ▷ B} t)≡(
h (h−1 (lam t))

)
[p] · q =(hη {Γ})

(lam t)[p] · q =(lam[])
lam (t[p ◦ p, q]) · q =(⇒β)
t[p ◦ p, q][id, q] =(CwF reasoning)
t[id] =([id])
t

Putting together f from Section 3, g from Section 5 and h, we obtain TmC (Γ ⇒∗ A) ∼=
TmL Γ A.

7 Conclusions and further work

We proved the equivalence (and thus, in a univalent setting, equality) of the syntax of
combinatory logic and lambda calculus in an abstract setting. In this algebraic setting
we do not refer to specific representations of the syntaxes. In particular, the bracket
abstraction algorithm (defining lambda for combinators) preserves all equations. We believe
that avoiding talking about representations is beneficial because the proof is more general, it
applies to all representations. Thus we can extend the title of Selinger’s paper [21] saying that
lambda calculus is algebraic and (at least some) proofs about lambda calculus can be done
algebraically. Moreover, we can run all the proofs even in this abstract setting using QIITs
of Cubical Agda. For example, given a formalisation of normalisation for lambda calculus,
we also obtain an algorithm for normalisation of combinator terms up to extensionality. In
the future, it would be interesting to characterise normal forms of extensional combinatory
logic using this technique.

There are several remaining open questions regarding the algebraic presentation of
combinatory logic. For example, we do not know how to define lambda by recursion on the
syntax of the following theories, even though they are all equivalent to Cwk: extensional
combinatory logic with only variables; combinatory logic without the four extensionality
equations but with funext; simply typed CwF with application, K, S and extensionality. In
the future we would like to describe combinatory logic algebraically with ξ but without η

following [7]. In the other direction, we would like to define an algebraic presentation of
lambda calculus that is equivalent to combinatory logic without the extensionality equations.
We only related the syntaxes of lambda calculus and combinatory logic, but more generally,
we can turn any model of lambda calculus into a model of combinatory logic, while the other
way we have to restrict to definable terms. It would be interesting to formalise this more
general correspondence.

Another future research direction is the algebraic presentation of dependently typed
combinatory logic following [23, 3].



T. Altenkirch, A. Kaposi, A. Šinkarovs, and T. Végh 24:15

References
1 Thorsten Altenkirch and Ambrus Kaposi. Normalisation by evaluation for dependent types. In

Delia Kesner and Brigitte Pientka, editors, 1st International Conference on Formal Structures
for Computation and Deduction, FSCD 2016, June 22-26, 2016, Porto, Portugal, volume 52
of LIPIcs, pages 6:1–6:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016. doi:
10.4230/LIPIcs.FSCD.2016.6.

2 Thorsten Altenkirch and Ambrus Kaposi. Type theory in type theory using quotient inductive
types. In Rastislav Bodík and Rupak Majumdar, editors, Proceedings of the 43rd Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2016,
St. Petersburg, FL, USA, January 20 - 22, 2016, pages 18–29. ACM, 2016. doi:10.1145/
2837614.2837638.

3 Thorsten Altenkirch, Ambrus Kaposi, Artjoms Šinkarovs, and Tamás Végh. The Münchhausen
method and combinatory type theory. In Delia Kesner and Pierre-Marie Pédrot, editors, 28th
International Conference on Types for Proofs and Programs (TYPES 2022). University of
Nantes, 2022. URL: https://types22.inria.fr/files/2022/06/TYPES_2022_paper_8.pdf.

4 Robert Atkey. Syntax and semantics of quantitative type theory. In Anuj Dawar and
Erich Grädel, editors, Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in
Computer Science, LICS 2018, Oxford, UK, July 09-12, 2018, pages 56–65. ACM, 2018.
doi:10.1145/3209108.3209189.

5 Hendrik Pieter Barendregt. The lambda calculus - its syntax and semantics, volume 103 of
Studies in logic and the foundations of mathematics. North-Holland, 1985.

6 Katalin Bimbó. Combinatory Logic: Pure, Applied and Typed. Taylor & Francis, 2011.
7 Martin W. Bunder, J. Roger Hindley, and Jonathan P. Seldin. On adding ξ to weak equality

in combinatory logic. J. Symb. Log., 54(2):590–607, 1989. doi:10.2307/2274872.
8 John Cartmell. Generalised algebraic theories and contextual categories. Ann. Pure Appl.

Log., 32:209–243, 1986. doi:10.1016/0168-0072(86)90053-9.
9 Simon Castellan, Pierre Clairambault, and Peter Dybjer. Categories with families: Unityped,

simply typed, and dependently typed. CoRR, abs/1904.00827, 2019. arXiv:1904.00827.
10 Haskell B. Curry, Robert Feys, and William Craig. Combinatory logic, volume i. Philosophical

Review, 68(4):548–550, 1959. doi:10.2307/2182503.
11 J. Roger Hindley and Jonathan P. Seldin. Lambda-Calculus and Combinators: An Introduction.

Cambridge University Press, USA, 2 edition, 2008.
12 J. M. E. Hyland. Classical lambda calculus in modern dress. Math. Struct. Comput. Sci.,

27(5):762–781, 2017. doi:10.1017/S0960129515000377.
13 Ambrus Kaposi. Formalisation of type checking into algebraic syntax. https://bitbucket.

org/akaposi/tt-in-tt/src/master/Typecheck.agda, 2018.
14 Ambrus Kaposi, András Kovács, and Thorsten Altenkirch. Constructing quotient inductive-

inductive types. Proc. ACM Program. Lang., 3(POPL):2:1–2:24, 2019. doi:10.1145/3290315.
15 András Kovács. Type-Theoretic Signatures for Algebraic Theories and Inductive Types. PhD

thesis, Eötvös Loránd University, Hungary, 2022. URL: https://andraskovacs.github.io/
pdfs/phdthesis_compact.pdf.

16 J. Lambek and P. J. Scott. Introduction to Higher Order Categorical Logic. Cambridge
University Press, USA, 1986.

17 Conor McBride. Outrageous but meaningful coincidences: dependent type-safe syntax and
evaluation. In Bruno C. d. S. Oliveira and Marcin Zalewski, editors, Proceedings of the ACM
SIGPLAN Workshop on Generic Programming, WGP 2010, Baltimore, MD, USA, September
27-29, 2010, pages 1–12. ACM, 2010. doi:10.1145/1863495.1863497.

18 The Univalent Foundations Program. Homotopy Type Theory: Univalent Foundations of
Mathematics. Institute for Advanced Study, 2013. URL: https://homotopytypetheory.org/
book/.

19 Jonathan P. Seldin. The search for a reduction in combinatory logic equivalent to λβ-reduction.
Theor. Comput. Sci., 412(37):4905–4918, 2011. doi:10.1016/j.tcs.2011.02.002.

FSCD 2023

https://doi.org/10.4230/LIPIcs.FSCD.2016.6
https://doi.org/10.4230/LIPIcs.FSCD.2016.6
https://doi.org/10.1145/2837614.2837638
https://doi.org/10.1145/2837614.2837638
https://types22.inria.fr/files/2022/06/TYPES_2022_paper_8.pdf
https://doi.org/10.1145/3209108.3209189
https://doi.org/10.2307/2274872
https://doi.org/10.1016/0168-0072(86)90053-9
https://arxiv.org/abs/1904.00827
https://doi.org/10.2307/2182503
https://doi.org/10.1017/S0960129515000377
https://bitbucket.org/akaposi/tt-in-tt/src/master/Typecheck.agda
https://bitbucket.org/akaposi/tt-in-tt/src/master/Typecheck.agda
https://doi.org/10.1145/3290315
https://andraskovacs.github.io/pdfs/phdthesis_compact.pdf
https://andraskovacs.github.io/pdfs/phdthesis_compact.pdf
https://doi.org/10.1145/1863495.1863497
https://homotopytypetheory.org/book/
https://homotopytypetheory.org/book/
https://doi.org/10.1016/j.tcs.2011.02.002


24:16 Combinatory Logic and Lambda Calculus Are Equal, Algebraically

20 Jonathan P. Seldin. The search for a reduction in combinatory logic equivalent to λβ-reduction,
part II. Theor. Comput. Sci., 663:34–58, 2017. doi:10.1016/j.tcs.2016.12.016.

21 Peter Selinger. The lambda calculus is algebraic. J. Funct. Program., 12(6):549–566, 2002.
doi:10.1017/S0956796801004294.

22 Wouter Swierstra. A correct-by-construction conversion to combinators, 2021. ht-
tps://webspace.science.uu.nl/ swier004/publications/2021-jfp-submission-2.pdf. URL: https:
//webspace.science.uu.nl/~swier004/publications/2021-jfp-submission-2.pdf.

23 William W Tait. Variable-free formalization of the Curry-Howard Theory. In Twenty Five
Years of Constructive Type Theory. Oxford University Press, October 1998. doi:10.1093/
oso/9780198501275.003.0016.

24 Andrea Vezzosi, Anders Mörtberg, and Andreas Abel. Cubical agda: A dependently typed
programming language with univalence and higher inductive types. J. Funct. Program., 31:e8,
2021. doi:10.1017/S0956796821000034.

25 Philip Wadler, Wen Kokke, and Jeremy G. Siek. Programming Language Foundations in Agda.
August 2022. URL: https://plfa.inf.ed.ac.uk/22.08/.

A Derivation of the pointful versions of the extensionality equations
from the pointfree variants

In this section we derive lamSβ′′ from lamSβ′, lamwk·β′′ from lamwk·β′, η′′ from η. See
Subsection 2.2 for the derivation of lamKβ′ from lamKβ′′.

lamSβ′′ : S ·
(
S · (S · (K · S) · t) · u

)
· v =(Kβ)

K · S · u ·
(

S ·
(
S · (K · S) · t

)
· u

)
· v =(Sβ)

S · (K · S) ·
(

S ·
(
S · (K · S) · t

))
· u · v =(Kβ)

S · (K · S) ·
(

K · S · t ·
(
S · (K · S) · t

))
· u · v =(Kβ, Sβ)

K ·
(
S · (K · S)

)
· t ·

(
S · (K · S) ·

(
S · (K · S)

)
· t

)
· u · v =(Sβ)

S ·
(

K ·
(
S · (K · S)

))
·
(

S · (K · S) ·
(
S · (K · S)

))
· t · u · v =(lamSβ′)

S ·
(

S · (K · S) ·
(

S · (K · K) ·
(
S · (K · S) · (S · (K · (S · (K · S))) · S)

)))
·

(K · S) · t · u · v =(Sβ)

S · (K · S) ·
(

S · (K · K) ·
(
S · (K · S) · (S · (K · (S · (K · S))) · S)

))
· t·

(K · S · t) · u · v =(Sβ, Kβ)

S ·
(

K · K · t ·
(
S · (K · S) · (S · (K · (S · (K · S))) · S) · t

))
· S · u · v =(Kβ, Sβ)

S ·
(

K ·
(
K · S · t · (S · (K · (S · (K · S))) · S · t)

))
· S · u · v =(Kβ, Sβ)

S ·
(

K ·
(
S · (K · (S · (K · S)) · t · (S · t))

))
· S · u · v =(Kβ)

S ·
(

K ·
(
S · (S · (K · S) · (S · t))

))
· S · u · v =(Sβ)

K ·
(
S · (S · (K · S) · (S · t))

)
· u · (S · u) · v =(Kβ)

S · (S · (K · S) · (S · t)) · (S · u) · v =(Sβ)
S · (K · S) · (S · t) · v · (S · u · v) =(Sβ)
K · S · v · (S · t · v) · (S · u · v) =(Kβ)
S · (S · t · u) · (S · u · v)

https://doi.org/10.1016/j.tcs.2016.12.016
https://doi.org/10.1017/S0956796801004294
https://webspace.science.uu.nl/~swier004/publications/2021-jfp-submission-2.pdf
https://webspace.science.uu.nl/~swier004/publications/2021-jfp-submission-2.pdf
https://doi.org/10.1093/oso/9780198501275.003.0016
https://doi.org/10.1093/oso/9780198501275.003.0016
https://doi.org/10.1017/S0956796821000034
https://plfa.inf.ed.ac.uk/22.08/


T. Altenkirch, A. Kaposi, A. Šinkarovs, and T. Végh 24:17

lamwk·′′ : K · (t · u) =(Kβ)
K · K · u · (t · u) =(Sβ)
S · (K · K) · t · u =(lamwk·′)

S ·
(

S · (K · S) ·
(
S · (K · K) · (S · (K · S) · K)

))
· (K · K) · t · u =(Sβ)

S · (K · S) ·
(
S · (K · K) · (S · (K · S) · K)

)
· t · (K · K · t) · u =(Sβ, Kβ)

K · S · t ·
(
S · (K · K) · (S · (K · S) · K) · t

)
· K · u =(Kβ, Sβ)

S ·
(
K · K · t · (S · (K · S) · K · t)

)
· K · u =(Kβ, Sβ)

S ·
(
K · (K · S · t · (K · t))

)
· K · u =(Kβ)

S ·
(
K · (S · (K · t))

)
· K · u =(Sβ)

K · (S · (K · t)) · u · (K · u) =(Kβ)
S · (K · t) · (K · u)

η′′ : t =(Kβ)
K · t · (K · t) =(Sβ)
S · K · K · t =(η′)

S ·
(
S · (K · S) · K

)
·
(
K · (S · K · K)

)
· t =(Sβ)

S · (K · S) · K · t ·
(
K · (S · K · K) · t

)
=(Sβ, Kβ)

K · S · t · (K · t) · (S · K · K) =(Kβ)
S · (K · t) · (S · K · K)

B Proofs of lambda calculus equations in Cwk

We prove all the equations stated in Section 4.

[◦] : {t : Tm Γ A} → t[σ ◦ ρ] = t[σ][ρ]

[◦] {t · u} : (t · u)[σ ◦ ρ] ≡ (t[σ ◦ ρ]) · (u[σ ◦ ρ]) [◦]= (t[σ][ρ]) · (u[σ][ρ]) ≡ (t · u)[σ][ρ]
[◦] {K} : K[σ ◦ ρ] ≡ K ≡ K[σ][ρ]
[◦] {S} : S[σ ◦ ρ] ≡ S ≡ S[σ][ρ]
[◦] {q} : q[(σ, u) ◦ ρ] ≡ u[ρ] ≡ q[σ, u][ρ]

[◦] {wk t} : (wk t)[(σ, u) ◦ ρ] ≡ t[σ ◦ ρ] [◦]= t[σ][ρ] ≡ (wk t)[σ, u][ρ]
ass : {Γ : Con}{σ : Sub ∆ Γ} → (σ ◦ δ) ◦ τ = σ ◦ (δ ◦ τ)
ass {⋄} : (tt ◦ ρ) ◦ τ ≡ ρ ◦ τ ≡ tt ◦ (ρ ◦ τ)
ass {Γ ▷ A} : ((σ, t) ◦ ρ) ◦ τ ≡

((σ ◦ ρ) ◦ τ, t[ρ][τ ]) =(ass {Γ}, [◦])
(σ ◦ (ρ ◦ τ), t[ρ ◦ τ ]) ≡
(σ, t) ◦ (ρ ◦ τ)

wks◦ : {Γ : Con} → wks {Γ} σ ◦ (ρ, u) = σ ◦ ρ

wks◦ {⋄} : wks {⋄} tt ◦ (ρ, u) ≡ tt ◦ (ρ, u) ≡ tt ≡ tt ◦ ρ

wks◦ {Γ ▷ A} : wks {Γ ▷ A} (σ, t) ◦ (ρ, u) ≡
(wks σ, wk t) ◦ (ρ, u) ≡
(wks {Γ} σ ◦ (ρ, u), t[ρ]) =(wks◦ {Γ})
(σ ◦ ρ, t[ρ]) ≡
(σ, t) ◦ ρ

FSCD 2023



24:18 Combinatory Logic and Lambda Calculus Are Equal, Algebraically

idl : {Γ : Con} → id {Γ} ◦ σ = σ

idl {⋄} : id {⋄} ◦ tt ≡ tt ◦ tt ≡ tt
idl {Γ ▷ A} : id {Γ ▷ A} ◦ (σ, t) ≡

(wks id, q) ◦ (σ, t) ≡
(wks id ◦ (σ, t), t) =(wks◦)
(id {Γ} ◦ σ, t) =(idl {Γ})
(σ, t)

[wks] : {t : Tm Γ A} → t[wks σ] = wk (t[σ])
[wks] {t · u} : (t · u)[wks σ] ≡

(t[wks σ]) · (u[wks σ]) =([wks] {t}, [wks] {u})
wk (t[σ]) · wk (u[σ]) =(wk·)
wk ((t[σ]) · (u[σ])) ≡
wk ((t · u)[σ])

[wks] {K} : K[wks σ] ≡ K wkK= wk K ≡ wk (K[σ])

[wks] {S} : S[wks σ] ≡ S wkS= wk S ≡ wk (S[σ])
[wks] {q} : q[wks (σ, u)] ≡ q[wks σ, wk u] ≡ wk u ≡ wk (q[σ, u])
[wks] {wk t} : (wk t)[wks (σ, u)] ≡

(wk t)[wks σ, wk u] ≡
t[wks σ] =([wks] {t})
wk (t[σ]) ≡
wk ((wk t)[σ, u])

[id] : {t : Tm Γ A} → t[id] = t

[id] {t · u} : (t · u)[id] ≡ (t[id]) · (id) [id] {t},[id] {u}= t · u

[id] {K} : K[id] ≡ K
[id] {S} : S[id] ≡ S
[id] {q} : q[id] ≡ q[wks id, q] ≡ q

[id] {wk t} : (wk t)[id] ≡ (wk t)[wks id, q] ≡ t[wks id] [wks]= wk (t[id]) [id] {t}= wk t

idr : {Γ : Con} → σ ◦Γ id = σ

idr {⋄} : tt ◦ id ≡ tt

idr {Γ ▷ A} : (σ, t) ◦Γ ▷ A id ≡ (σ ◦Γ id, t[id]) idr {Γ},[id]= (σ, t)
⇒β : {t : Tm (Γ ▷ A) B} → lam t · v = t[id, v]
⇒β {t · u} : lam (t · u) · v ≡

S · lam t · lam u · v =(Sβ)
lam t · v · (lam u · v) =(⇒β {t}, ⇒β {u})
(t[id, v]) · (u[id, v]) ≡
(t · u)[id, v]

⇒β {K} : lam K · v ≡ K · K · v
Kβ= K ≡ K[id, v]



T. Altenkirch, A. Kaposi, A. Šinkarovs, and T. Végh 24:19

⇒β {S} : lam S · v ≡ K · S · v
Kβ= S ≡ S[id, v]

⇒β {q} : lam q · v ≡ S · K · K · v
Sβ= K · v · (K · v) Kβ= v ≡ q[id, v]

⇒β {wk t} : lam (wk t) · v ≡ K · t · v
Kβ= t

[id]= t[id] ≡ (wk t)[id, v]
⇒η : t = lam (t[p] · q)
⇒η : t =(η′′)

S · (K · t) · (S · K · K) ≡
S · lam (wk t) · (S · K · K) =([id])
S · lam (wk (t[id])) · (S · K · K) =([wks])
S · lam (t[wks id]) · (S · K · K) ≡
lam (t[p] · q)

lam[] : (lam t)[σ] = lam (t[σ ◦ p, q])
lam[] {t · u} : (lam (t · u))[σ] ≡

S · ((lam t)[σ]) · ((lam u)[σ]) =(lam[] {t}, lam[] {u})
S · lam (t[σ ◦ p, q]) · lam (u[σ ◦ p, q]) ≡
lam ((t[σ ◦ p, q]) · (u[σ ◦ p, q])) ≡
lam ((t · u)[σ ◦ p, q])

lam[] {K} : (lam K)[σ] ≡ (K · K)[σ] ≡ K · K ≡ lam K ≡ lam (K[σ ◦ p, q])
lam[] {S} : (lam S)[σ] ≡ (K · S)[σ] ≡ K · S ≡ lam S ≡ lam (S[σ ◦ p, q])
lam[] {q} : (lam q)[σ] ≡ (S · K · K)[σ] ≡ S · K · K ≡ lam q ≡ lam (q[σ ◦ p, q])
lam[] {wk t} : (lam (wk t))[σ] ≡

(K · t)[σ] ≡
K · (t[σ]) ≡
lam (wk (t[σ])) =([id])
lam (wk (t[σ][id])) =([wks])
lam (t[σ][wks id]) =([◦])
lam (t[σ ◦ wks id]) ≡
lam (t[σ ◦ p]) ≡
lam (wk t[σ ◦ p, q])

FSCD 2023


	1 Introduction
	1.1 Structure of the paper
	1.2 Related work
	1.3 Metatheory and formalisation

	2 Three theories
	2.1 Combinatory logic with extensionality
	2.2 Combinatory logic with variables, weakenings and extensionality
	2.3 Lambda calculus

	3 Combinators with and without weakenings are equal
	4 Lambda calculus operations in Cwk
	5 Combinators with weakenings and lambda terms are equal
	6 Lambda terms can be moved to the empty context
	7 Conclusions and further work
	A Derivation of the pointful versions of the extensionality equations from the pointfree variants
	B Proofs of lambda calculus equations in Cwk

