ISSN 2509-8195

DARTS Special Issue Editors

Matthias Becker
KTH Royal Institute of Technology, Stockholm, Sweden
mabecker@kth.se
https://orcid.org/0000-0002-1276-3609

Julien Forget
Université de Lille, France
julien.forget@univ-lille.fr
https://orcid.org/0000-0002-1669-8971

ACM Classification 2012
Software and its engineering

Published online and open access by
Schloss Dagstuhl – Leibniz-Zentrum für Informatik
GmbH, Dagstuhl Publishing, Saarbrücken/Wadern, Germany.
Online available at
http://drops.dagstuhl.de/darts.

Publication date
July, 2023

License
This work is licensed under a Creative Commons Attribution 4.0 International license (CC BY 4.0):
https://creativecommons.org/licenses/by/4.0.

In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work under the following conditions, without impairing or restricting the authors' moral rights:
- Attribution: The work must be attributed to its authors.

The copyright is retained by the corresponding authors.

Contact
Schloss Dagstuhl – Leibniz-Zentrum für Informatik
DARTS, Editorial Office
Oktavie-Allee, 66687 Wadern, Germany
publishing@dagstuhl.de

Digital Object Identifier
10.4230/DARTS.9.1.0
http://www.dagstuhl.de/darts

Aims and Scope
The Dagstuhl Artifacts Series (DARTS) publishes evaluated research data and artifacts in all areas of computer science. An artifact can be any kind of content related to computer science research, e.g., experimental data, source code, virtual machines containing a complete setup, test suites, or tools.
Contents

Artifact Evaluation Process

Matthias Becker and Julien Forget ... 0:vii

Artifact Evaluation Committee

... 0:ix

Artifacts

A New Perspective on Criticality: Efficient State Abstraction and Run-Time Monitoring of Mixed-Criticality Real-Time Control Systems (Artifact)

Tim Rheinfels, Maximilian Gaukler, and Peter Ulbrich 1:1–1:3

FUSIONCLOCK: WCEC-Optimal Clock-Tree Reconfigurations (Artifact)

Eva Dengler, Phillip Raffeck, Simon Schuster, and Peter Wägemann 2:1–2:3

Isospeed: Improving (min,+)

Convolution by Exploiting (min,+)/(max,+)

Isomorphism (Artifact)

Raffaele Zippo, Paul Nikolaus, and Giovanni Stea 3:1–3:4

From FMTV to WATERS: Lessons Learned from the First Verification Challenge at ECRTS (Artifact)

Sebastian Altmeyer, Étienne André, Silvano Dal Zilio, Loïc Fejoz, Michael González Harbour, Susanne Graf, J. Javier Gutiérrez, Rafik Henia, Didier Le Botlan, Giuseppe Lipari, Julio Medina, Nicolas Navet, Sophie Quinton, Juan M. Rivas, and Youcheng Sun 4:1–4:6
Artifact Evaluation Process

The ECRTS Artifact Evaluation (AE) process takes place after the paper decisions have been finalized. We seek to achieve the benefits of the AE process without disturbing the current process through which ECRTS has generated high-quality programs in the past. Therefore, the current submission, review and acceptance procedure are completely unaltered by the decision of running an AE process.

Once acceptance decisions are final, the authors of accepted papers are invited to submit an artifact evaluation (or replication) package. Hence, the repeatability evaluation process has no impact on whether a paper is accepted at ECRTS, and is entirely optional and up to authors. Moreover, there is no disclosure of the title and authors of papers which do not pass the repeatability evaluation. This is to avoid negative bias towards submitting their artifact on the authors’ part. Once authors that desire to do so have submitted their artifacts, an Artifact Evaluation Committee (AEC) composed mainly of PhD students close to graduation, postdocs and young researchers evaluates the artifacts.

Artifacts include two components:
- a document explaining how to use the artifact and which of the experiments presented in the paper are repeatable (with reference to specific digits, figures and tables in the paper), the system requirements and instructions for installing and using the artifact;
- the software and any accompanying data.

During the first week, all the evaluators check that they can run the code of artifacts assigned to them. Problems encountered at that state are anonymously reported to the authors of the artifact who can help fixing them. Afterwards, reviewers have 2 weeks to complete their reviews. Finally, PC chairs take the decision to either accept or reject the submissions based on the reviews, and notifications are then sent to authors.
Artifact Evaluation Committee

Fabien Bouquillon
Università di Modena e Reggio Emilia
Modena, Italy
fabien.bouquillon@unimore.it

Cédric Courtaud
Max Planck Institute for Software Systems
Kaiserslautern, Germany
courtaud@mpi-sws.org

Xiaotian Dai
University of York
York, UK
xiaotian.dai@york.ac.uk

Bryan Donyanavard
San Diego State University
San Diego, USA
bdonyanavard@sdsu.edu

Martin Frieb
Augsburg University
Augsburg, Germany
martin.frieb@informatik.uni-augsburg.de

Alban Gruin
Université de Toulouse
Toulouse, France
alban.gruin@irit.fr

Mario Günzel
TU Dortmund
Dortmund, Germany
mario.guenzel@tu-dortmund.de

Bahar Houtan
Mälardalen University
Mälardalen, Sweden
bahar.houtan@mdh.se

Cláudio Maia
CISTER Research Centre
Porto, Portugal
crrm@isep.ipp.pt

Romaric Pegdwende Nikiema
Inria Rennes
Rennes, France
pegdwende.nikiema@inria.fr

Luigi Pannocchi
Scuola Superiore Sant’Anna
Pisa, Italy
luigi.pannocchi@santannapisa.it

Houssam-Eddine Zahaf
Université de Nantes
Nantes, France
Houssameddine.Zahaf@univ-nantes.fr

Editors: Matthias Becker and Julien Forget
Dagstuhl Artifacts Series
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany