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Preface

Message from the Chairs

We welcome you to ECRTS 2023, in Vienna, Austria. Alongside RTSS and RTAS, ECRTS
ranks as one of the top three international conferences on real-time systems and is the premier
European conference series on this topic. Given the lessons learned during the pandemic, we
continue even for this year ECRTS to include the possibility to participate online, as this
is an opportunity to make the community more diverse. We are delighted to have you join
the second hybrid ECRTS, for an exciting program consisting of both scientific talks and
opportunities for socializing and collaborative work.

ECRTS has been at the forefront of recent innovations in the real-time systems community
such as artifact evaluation, open-access proceedings, and a flexible page limit. This year
we have consolidated the experience and repeated a double-blind submission process with
flexible page limit, that does not constrain the authors and allows them to put the effort
into optimizing the content of their submission, rather than space utilization.

ECRTS 2023 received a total of 65 submissions from Asia, Europe, and North America.
Each submission was reviewed by at least three expert members of the program committee
and discussed both on the discussion board of the submission website and at the program
committee meeting that took place on April 19 and 20, 2023. The program committee
accepted 18 papers for publication and presentation, which translates to an acceptance rate
of 27.7%. An additional paper has been invited to discuss the lessons learned from the first
verification challenge at ECRTS.

In addition, on the scientific side, the ECRTS industrial challenge will be presented and
discussed at the conference, following a long-lasting tradition of industrial challenges coming
from the WATERS workshop.

A major conference like ECRTS 2023 is the result of the hard work of many people
involved in the conference organization. First of all, we would like to thank the program
committee members, for their hard work despite all the burdens of yet another challenging
year. Similarly, thanks to all external and secondary reviewers, who provided many valuable
perspectives and important feedback. We are especially grateful to those PC members and
additional reviewers who went “above and beyond” serving as shepherds. We would also
like to extend our thanks to the Artifact Evaluation Chairs, Julien Forget and Matthias
Becker, and their board of Artifact Evaluators for running the AE process, and to the
Real-Time Pitches Chair, Alexander Züpke, for bringing fresh new ideas and discussions to
the conference. Without the dedicated support of all these colleagues, we would not have
been able to put together such an excellent program. Many thanks to all of you!

We would like to thank the ECRTS Executive Committee, Yasmina Abdeddaïm, Sebastian
Altmeyer, Steve Goddard, and Marcus Völp, for their outstanding service to the community.
Last but not least, we thank all authors for submitting to ECRTS 2023. Whether or not the
submission was ultimately accepted for publication, we deeply appreciate your fine work and
the tremendous effort and care that has gone into it; this conference would not be possible
without you.
35th Euromicro Conference on Real-Time Systems (ECRTS 2023).
Editor: Alessandro V. Papadopoulos
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0:viii Preface

Finally, we would like to thank all authors who submitted their work to ECRTS 2023,
whether it was accepted or not. Without them, this conference would not have been possible.

We are looking forward to an inspiring scientific program in Vienna and online. Please
join us in enjoying both the technical content and everything around it, especially with the
return to in-person events.

Peter Puschner Alessandro V. Papadopoulos
General Chair ECRTS 2023 Program Chair ECRTS 2023
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Abstract
We present an extension of the synchronous-reactive model for specifying multi-rate systems. A
set of periodically executed components and their communication dependencies are expressed in a
Lustre-like programming language with features for load balancing, resource limiting, and specifying
end-to-end latencies. The language abstracts from execution time and phase offsets. This permits
simple clock typing rules and a stream-based semantics, but requires each component to execute
within an overall base period. A program is compiled to a single periodic task in two stages.
First, Integer Linear Programming is used to determine phase offsets using standard encodings
for dependencies and load balancing, and a novel encoding for end-to-end latency. Second, a code
generation scheme is adapted to produce step functions. As a result, components are synchronous
relative to their respective rates, but not necessarily simultaneous relative to the base period. This
approach has been implemented in a prototype compiler and validated on an industrial application.
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1 Introduction

Embedded control software is often designed as a set of components that each repeatedly
sample inputs, compute a transition function, and update outputs. Such components must
be scheduled so as to share processor resources while respecting timing and communication
requirements. Scheduling determines how data propagates along chains of components from
sensor acquisitions, through successive computations, to corresponding actuator emissions.
The end-to-end latencies of such chains are crucial to overall system performance.

We characterize and extend an approach for developing avionics software based on the
synchronous-reactive languages Lustre [29] and Scade [13]. Our application model comprises
(i) a set of components whose execution rates are specified as unit fractions (1/n) of a base rate,
and (ii) a graph of data flow between components. The Worst-Case Execution Time (WCET)
of each component must be less than the base period. This is a significant restriction, but
one that is acceptable for safety-critical avionics applications. The implementation target is
one or more sequential step functions called cyclically to, in turn, call individual component
step functions. Data is exchanged by reading and writing static variables.

Besides providing a way to specify real-time behavior, execution rates allow implementa-
tions to balance requirements and resources. For example, in the absence of other constraints,
a component at rate 1/3 can be scheduled to run every 3 cycles with any of the phases 0, 1,
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or 2. Such choices are made to distribute total computation load over successive cycles, to
implement the dataflow specification by ordering variable reads and writes, and to respect
resource bounds such as, for example, the capacity of an avionics bus. We show how it is also
possible to choose component phases so as to satisfy overall end-to-end latency requirements.

In our approach, scheduling occurs in two stages. The first assigns components to phases
and the second orders the components within a cycle. We realize the first stage by generating
and solving an Integer Linear Programming (ILP) problem and the second by adapting an
algorithm [4] used to compile Lustre and Scade. Using the ILP encoding presented in this
article, offline scheduling is restricted by end-to-end latency constraints declared in source
programs. As a result, if scheduling succeeds, these source-level constraints are respected by
the generated code. We have implemented the presented techniques in a prototype compiler
and validated them on a large flight control program.

Industrial context
This article characterizes an industrial approach to developing avionics software. We focus
on a flight control and guidance system that is developed as follows. The control laws and
monitoring functions are specified in the Scade language. The resulting design comprises
approximately 5000 individual components communicating over 120 000 named signals. A
component is a block diagram comprising blocks and lines: blocks represent basic arithmetic
operations, unit delays, filters, etcetera; lines connect block outputs to block inputs. A code
generator transforms each Scade component into a C function that reads and writes static
variables corresponding to its input signals, output signals, and internal states. Preemption
and dynamic scheduling are rigorously avoided to simplify reasoning and testing. The
resulting code is then implemented on an embedded platform.

Scade programs are compiled following the synchronous paradigm: code generation
produces step functions for cyclic execution. Since it is not feasible to execute all 5000
components in a single cycle of the platform, each is executed at an integer multiple (2, 4, 8,
24, or 48) of the base period of 5 ms and scheduled to distribute the computational load. It
is crucial that (a) the aggregate of computations executed within a cycle does not exceed the
base period; and (b) the final system strictly respects end-to-end latency constraints on servo
control loops. The first constraint is taken into account during scheduling and validated on
the generated executable using WCET analysis. End-to-end latencies are currently specified
indirectly by application engineers who assign execution orders and bounds to certain function
sequences. These indirect constraints, and platform limitations related to the avionics bus,
are encoded by software engineers into an ILP problem that is solved to give a schedule.

Our work systematizes and streamlines the process described above. The idea is to specify
the system as a single program that instantiates the 5000 individual functions together
with constraints on resources and end-to-end latencies. In this way, we clarify the overall
semantics, allow direct specification of end-to-end latencies, and automate compilation. We
have successfully applied our approach to the avionics system, but industrial constraints
prevent us reporting the details, so we instead focus on the ROSACE case study [51]. It has
only 11 components but is representative of the domain and makes for a good example.

Although our work is guided by a specific application, we believe it is applicable more
generally. For instance, many companies develop control applications as Simulink block
diagrams and either manually reprogram or automatically generate code for single-tasking
execution [46, §4-6]. Other applications are developed using a similar non-preemptive tasking
model even though they are not specified explicitly as block diagrams. Examples include the
open-source ArduPilot [1] and Paparazzi UAV [5] projects.
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2 A rate-synchronous model

The first part of this section presents a variant of Lustre [29] with unit-fraction clocks. Unlike
in similar programming languages [10, 15, 33, 45, 55], our clocks specify a rate without a
phase. This is natural for real-time scheduling where release times may implement data
dependencies [9 | 6, §3.5.2]. Our proposition is inspired by Prelude [22, 24] but restricts
communication primitives and generates sequential code rather than real-time tasks.

The last part of this section presents our version of ROSACE and the results of the
scheduling and code generation techniques which are detailed in the remainder of the article.

2.1 Syntax
As in any Lustre-like language, a function is defined by a set of mutually recursive equations.

eq ::= x = e | x ∗ = f (e∗ )

A basic equation defines a variable using an expression. An instantiation of a function f
defines the function inputs using a list of expressions and associates each output to a variable.

An expression is a constant, a variable, an application of a unary or binary operator, a
conditional expression, the previous value of a variable, a sampling of a faster variable, a
sampling of the previous value of a faster variable, or a buffering of a slower variable.

e ::= c | x | ⋄ e | e ⊕ e | if e then e else e | last x
| x when s | (last x) when s | current(x, s)

s ::= (c % c) | (? % c)

The last operator [12, 53] can only be applied to a variable, but otherwise has the same
meaning as Lustre’s pre operator: it delays a signal by one cycle relative to its rate. Unlike
pre, the last operator can be directly translated into flow graphs, as will be seen when they
are introduced in Section 3.1, and directly implemented by a shared variable. It may only be
applied to a variable declared with an initial last value.

For similar reasons, our when operator only applies to a variable or last expression.
The sample choice argument s defines how to sample incoming values. For instance, 1 % 4
selects the second, numbered from zero, of every four values and ? % 3 lets offline scheduling
determine which of every three values to sample. This choice is then fixed throughout all
executions of the generated code. For m % n, it must be that 0 ≤ m < n and 1 < n.

Our current operator buffers the value of a variable x, which must have an initial last
value. The sample choice s determines how to hold incoming values. For instance, 2 % 4
specifies to repeat the initial value twice before repeating each input value four times and
? % 4 lets scheduling determine how many times to repeat the initial value.

A program comprises a list of declarations of resources, external functions, and functions.

p ::= (d ;)∗

d ::= resource x : ty
| node f ( (x : ty ;)∗ ) returns ( (x : ty ;)∗ ) requires ( (x = c ;)∗ )
| node f ( (x : ty :: ck [last = c] ;)∗ ) returns ( (x : ty :: ck [last = c] ;)∗ )

var (x : ty :: ck [last = c] ;)∗ let (((pragmas eq) | cst) ;)+ tel

pragmas ::= [label(x)] [phase(c % c)]

A resource declaration introduces a name x for an integer or floating-point quantity that the
scheduler must take into account. For example, busout for the number of digital outputs to
be sent on an avionics bus, or cpu for a measure of processor load.

ECRTS 2023
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An external function declaration specifies the name f of an external function together
with its input/output interface and its resource requirements. The inputs and outputs are
each specified by a list of variable names and their types. The resource requirements are a
list of resource names, each paired with a constant quantity.

A function definition specifies the name f and input/output interface and defines its
implementation as a list of local variables and a list of equations and constraints. Each
variable x has a declared type ty, clock type ck, and, optionally, an initial last value c

(denoted x-1 = c). We only consider primitive types, namely ty ::= bool | int | float, and
unit-fraction clocks ck ::= 1/c, where 1/1, normally written as 1, represents the base rate of
a function and 1/c represents a fraction of the base rate. Expressions may refer to input,
local, and output variables. Equations define local and output variables only. Each local and
output variable must appear at left of exactly one equation. An equation may be preceded
by pragmas: label specifies a unique identifier and phase fixes the schedule. The label of
an instantiation x ∗ = f ( e∗ ) defaults to f when not ambiguous. In addition to equations,
the definition may also include resource and timing constraints.

cst ::= resource balance x
| resource x rel c
| latency (exists | forward | backward) rel c ( x , x (, x)∗ )

rel ::= <= | < | = | > | >=

A balance constraint directs the scheduler to minimize, across cycles, differences in the sum
of a given resource, like cpu. A resource constraint places a constant bound c on the sum
of a resource, like busout, in a single cycle. A latency constraint sets a constant bound c
on the end-to-end latency of one instance, or all forward or backward instances, of a chain.
A chain is a sequence of equations, eq0, eq1, . . . , eqn−1 where at least one of the variables
defined at left of eqi appears in an expression at right of equation eqi+1.

2.2 Semantics
The focus here is not on programming languages, so we only outline the main principles.
In a dataflow semantics [34], expressions are associated with sequences of values, equations
associate variables to sequences, and functions map sequences to sequences. In a synchronous
dataflow semantics [7], infinite sequences, or streams, are aligned. The idea is that they are
calculated together over successive rounds. Streams are often presented in grids with rows
for expressions and columns for rounds. Alignment may be shown in a grid by leaving gaps.
In our model, slower streams are shown by placing their values in wider columns: they are
synchronous at their rate and “simultaneous” with multiple values of faster streams.

Consider a simple example adapted from Forget [21, Figure 5.1] and sketched in Figure 1a.
There is a fast component that executes every cycle and a slow one that executes every three
cycles. We instantiate the two components below.
node eg1 () returns ()
var vf : int :: 1;

vs : int :: 1/3 last = 0;
n : int :: 1 last = 0;

let
n = (last n) + 1;
vf = n + current (vs , (2 % 3));
vs = (vf when (1 % 3)) + 5;

tel
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fast :: 1 slow :: 1/3

vf

vs
(a) Fast and slow components.

vf 1 2 10 11 12 23 24 25 39 · · ·
n 1 2 3 4 5 6 7 8 9 · · ·

vs 7 17 30 · · ·
(b) Synchronized streams in the rate-synchronous model.

Figure 1 Structure and trace of node eg1().

Je1 ⊕ e2K (i) = Je1K (i) ⊕ Je2K (i)

Jlast xK (i) =
{

x-1 if i = 0
JxK (i − 1) otherwise

Jx when (s % n)K (i) = JxK (n · i + s)

Jcurrent(x, (s % n))K (i) =
{

x-1 if i < s

JxK (
⌊

i−s
n

⌋
) otherwise

J(last x) when (s % n)K (i) ={
x-1 if i + s = 0
x(n · i + s − 1) otherwise

(a) Stream-based semantics (x−1 is a declared initial last value).

e1 :: 1/n e2 :: 1/n

e1 ⊕ e2 :: 1/n

x :: 1/n

last x :: 1/n

x :: 1/m

x when (· % n) :: 1/mn

x :: 1/mn

current(x, (· % n)) :: 1/m

(b) Clock typing rules.

Figure 2 Key formal definitions for expressions.

The vf and vs signals are declared with their execution rates. The local variable n is a
counter used by the fast component. Both vs and n are declared with initial last values, so
that they can be used with the last and current operators. Rate transitions are expressed
with current (slow-to-fast) and when (fast-to-slow) operators. The fast value, vf, sums the
counter with the initial last value of vs repeated twice and then each of its values repeated
three times. The slow value, vs, adds five to the second of every three fast values. Figure 1b
shows the resulting streams.

The grid shown in Figure 1b gives the meaning of the program. Each row in the grid
associates a variable with a stream. This intuitive idea is made precise in Figure 2a by a
semantic function J·K that maps each syntactic element to a stream (N0 → V); that is, to a
function from a cycle number i to the value of the expression in that cycle. The semantic
function distributes over expressions to return a constant function for literals c or the value
of an input or equation for variables x (not shown). A binary operator ⊕ is applied pointwise
to its input streams. The last operator returns the initial last or preceding value of the
named stream. The when operator selects one of every n input values. The current operator
repeats values from the input stream with a special case for the first s values. The rule for
(last x) when (s % n) can be derived by substitution from the rules for when and last. If a
program contains ? % n, the s in the corresponding stream equation can take any value in
[0, n) and the semantic rules may admit more than one solution.

An expression like x + (x when (0 % 3)) has a well-defined value according to the semantic
rules but cannot be implemented without an unbounded buffer. Programs that require
unbounded memory are unsuited to embedded control applications. In Lustre-like languages,
a clock type system prescribes how streams may be combined [7] and thereby which programs
are accepted for compilation. Every expression is associated with a rate by syntax-directed
rules that define acceptable expressions. Figure 2b shows the main rules for the presented

ECRTS 2023
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language. For binary operators, the two input expressions (above the line) and the output
expression (below the line) must all have the same rate (1/n). A similar rule, not shown,
applies to function instances. The last operator does not change the rate of its argument, and
the rate transition operators respectively divide or multiply the rate of an input argument.

Communications between non-harmonic rates require an intermediate equation at a
common multiple of both rates. For example, between a writer w :: 1/6 and a reader r :: 1/8,
one could add an explicit buffer b :: 1/2.
b = current (w, (? % 3));
r = b when (? % 4);

Finally, there are well-clocked programs that have no semantics. For instance, in the
eg1 node, replacing last n by n or exchanging the 2 % 3 and 1 % 3 sample choices results in
cyclic definitions for which there are no solutions. There are also correct programs that
our current code generator cannot handle. For instance, changing the definition of vs to
vf when (0 % 2) + vf when (1 % 2) gives a valid program that cannot be implemented using a
single shared variable for vf. We do not pursue these issues here: scheduling simply fails for
such programs.

2.3 Compilation
The source language allows specifying and reasoning about programs in terms of streams
of values. Generating code for such programs and defining end-to-end latencies requires a
change of perspective. We now want to consider a program as a set of components that
repeatedly read and write shared variables. Each iteration of the program is termed a cycle.
We will also refer to the hyperperiod of a set of equations hp, which is the Least Common
Multiple (LCM) of their periods, that is, of the denominators of their rates. In the source
semantics, each variable is associated with a single value for the duration of its round (that is,
during one period / within one dataflow grid column), but the corresponding shared variable
is updated in a specific cycle when the code generated for its defining equation executes.
Execution order now becomes paramount: each equation must be assigned a phase relative
to its execution rate and ordered relative to other equations for execution within a cycle.

The following C code was generated for eg1.
static int c = 0;

void step () {
static int vs = 0, n = 0;
int vf;

n = n + 1;
vf = n + vs;
if (c == 1) { vs = vf + 5; }
c = (c + 1) % 3;

}

A static variable c is introduced to count off successive phases of the hypercycle (hp = 3).
Static variables are declared for c and vs. Their values persist across cycles. A local variable
is declared for vf since its value is only needed within a cycle. In every cycle, n is updated
first, then vf, and then, but only in the second of every three cycles, vs. The new value of vs
is not used until the subsequent cycle.

The assignment of equations to phases, termed scheduling, and the ordering of equations
within a cycle, termed microscheduling, are central to the compilation scheme presented
in the following sections on constraint and code generation. First, though, we apply the
specification language to an existing case study which will serve as a running example.
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2.4 Example: ROSACE
The ROSACE case study [51] considers the development process of a longitudinal flight
controller. Figure 3a shows our reimplementation of the original Prelude program [51, Figure 3
and §III.B]. Since the fastest components run at 200 Hz, that is, with a period of 5 ms, we
set the cycle period to 2.5 ms to allow load balancing. Inputs are declared for the desired
altitude h_c and speed va_c, both at 10 Hz. Outputs are declared for the throttle d_th_c and
elevator deflection d_e_c commands, both at 50 Hz. Local signals are declared with explicit
rates. The node body contains three groupings of components. At 200 Hz are the elevator,
engine, and dynamics components that provide a discretized model of the environment. Such
components would not normally be included in a controller, but we maintain them for the
sake of the example. At 100 Hz are five filters on altitude h, vertical acceleration az, pitch
rate q, vertical speed vz, and true airspeed va. At 50 Hz are the control laws for tracking the
requested altitude alt_hold, vertical speed vz_control, and airspeed va_control. We use free
sample choices (?) in when and current rate transitions to give greater scheduling freedom
at the cost of underspecification.

Figure 3c graphs the data flows between components. There is a vertex for each equation.
An arc indicates that a signal defined by the “tail” equation is used in the “head” equation.
For example, there is an arc from az_filter to vz_control due to the az_f signal.

Strictly speaking, either the clock types of the local variables or the sample rates of the
when and current operators could be inferred by the compiler; as in Prelude or Simulink.
In this work, we prefer to state them explicitly. The compiler detects and signals any
discrepancies when it checks clock types after parsing a source file.

The node body also contains two constraints. A given task chain must execute within
5 ms every 20 ms [51, §III.C], that is, with an end-to-end latency ≤ 2 cycles. The exists
keyword specifies that only one instance of the chain per hypercycle need satisfy the bound.
A resource called ops must be balanced across cycles. We calculated ops values in a simple
way from the Prelude definitions: +10 for each libm function, node instance, or if/then/else;
+3 for each multiplication or division; +1 for other operators and each equation. The weights,
see Figure 3d, are added to external function declarations for each component, for example,
node alt_hold (h_c , h_f : float )
returns (vz_c : float )
requires (ops = 201);

Figure 3d also shows the scheduled phases. Since the dynamics node requires many more
operations than the others, it has been scheduled with elevator in odd cycles. These two
components are scheduled in the same cycle due to the tight latency constraint. The other
components are scheduled in even cycles such that dependency and latency constraints are
satisfied. Better load balancing could be obtained by inlining the dynamics and alt_hold
nodes, and halving the cycle period while doubling all the rates.

The schedule is realized in the generated code, Figure 3b, via the guards of if and switch
statements. The optimization of conditionals can be reduced so that if (c % 4 == 2) {· · ·}
is after, rather than within, if (c % 2 == 0) {· · ·} , and the grouping by period is retained.
Microscheduling determines the order of function calls for a given value of the counter c.
Notably, elevator runs before dynamics; the ∗_filter run before va_control, vz_control,
and alt_hold; and alt_hold runs before vz_control. In these cases, an output calculated
by one component is propagated in a cycle to become the input for another. Conversely,
the outputs calculated by dynamics are sampled less often by the ∗_filter and with a delay
of one cycle. In this code, signals are implemented by reading and writing static variables
inside components. The compiler can also generate code that passes values on the stack.
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node assemblage (
h_c : float :: 1/40 last = 0.;

va_c : float :: 1/40 last = 0.)
returns (

d_th_c : float :: 1/8 last = 1.6402;
d_e_c : float :: 1/8 last = 0.0186)

var
vz_c : float :: 1/8;
d_e , th , h, az , va , q, vz : float :: 1/2;
vz_f , va_f , h_f , az_f , q_f : float :: 1/4;

let
(* 200 Hz = 1/2 *)
d_e = elevator ( current (d_e_c , (? % 4)));
th = engine ( current (d_th_c , (? % 4)));
(va , az , q, vz , h) = dynamics (th , d_e );
(* 100 Hz = 1/4 *)

h_f = h_filter ( h when (? % 2));
az_f = az_filter (az when (? % 2)); ...
(* 50Hz = 1/8 *)
vz_c = alt_hold ( current (h_c , (? % 5)),

h_f when (? % 2));
d_e_c = vz_control (vz_c ,

vz_f when (? % 2),
q_f when (? % 2),
az_f when (? % 2));

d_th_c = va_control (
current (va_c , (? % 5)),
va_f when (? % 2),
q_f when (? % 2),
vz_f when (? % 2));

latency exists <= 2 (dynamics , h_filter ,
alt_hold , vz_control , elevator );

resource balance ops;
tel

(a) Source program.

static int c = 0;

static float h_c = 0,
va_c = 0;
d_th_c = 1.6402 ,
d_e_c = 0.0186
vz_c , ..., q_f;

void step0 ()
{

if (c % 2 == 0) {
engine ();
if (c % 4 == 2) {

vz_filter ();
h_filter ();
va_filter ();
q_filter ();
az_filter ();

}
} else {

elevator ();
dynamics ();

}
switch (c) {
case 2:

va_control ();
break ;

case 6:
alt_hold ();
vz_control ();
break ;

}

c = (c + 1) % 8;
}

(b) Generated code.

elevator

engine

dynamics q_filter

az_filter

h_filter

vz_filter

va_filter

alt_hold

vz_control

va_control

Dw
f

Dw
f

/2 f

/2 f

/2 f

/2 f

/2 f

/2 f

Dw
f/2 f

/2 f

/2 f/2 f

/2 f

/2 f

∗4 b

∗4 b

1/2 (200 Hz) 1/4 (100 Hz) 1/8 (50 Hz)
(c) Flow graph.

ops phase
elevator 98 1 % 2 (pe)
engine 82 0 % 2
dynamics 1174 1 % 2 (pd)
h_filter 38 2 % 4 (ph)
az_filter 37 2 % 4
q_filter 37 2 % 4
vz_filter 37 2 % 4
va_filter 38 2 % 4
alt_hold 201 6 % 8 (pa)
vz_control 88 6 % 8 (pv)
va_control 90 2 % 8

(d) Schedule.

Figure 3 Main ROSACE [51, Figure 3] node.
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3 Constraint generation

A source program is transformed into sequential code in three steps. First, the compiler is
invoked to generate an ILP encoding of the constraints on equation phases. Second, the
encoding is passed to an external solver like the IBM ILOG CPLEX Optimizer [32]. Third,
if the solver finds a solution, it is returned to the compiler which then generates code. Both
compiler invocations manipulate a flow graph constructed from the program source. We first
describe the flow graphs before presenting the ILP encodings of data dependencies, resource
constraints, and latency chains. The second compiler invocation is addressed in Section 4.

3.1 Flow graphs
As an intermediate step in the passage from dataflow programs to sequential code, we adapt
the standard definition of flow graphs by labeling edges with sampling and microscheduling
information. Subsequent definitions and reasoning are in terms of flow graphs, which thus
provide a way to apply the results independently of the source language.

A flow graph is a directed graph (V, A) with labeled arcs A ⊆ V × S × C × V . The
first label specifies the sampling: S = {Dw, Dr, D?, /n, L/n, ∗n, . . .} with n ∈ {2, 3, . . .}; and the
second one specifies the concomitance: C = {f, b}. Vertexes V represent equation labels,
which for simplicity we conflate with the equations themselves. An arc from eqw to eqr

indicates that a variable defined by eqw appears in the defining expression of eqr. That is,
values flow from eqw to eqr, or, in implementation terms, eqw writes shared variables that
eqr reads. The flow graph for the ROSACE example is shown in Figure 3c.

There are three types of sampling. Direct sampling indicates equations at the same rate:
Dw is the standard case where writing must occur before reading; Dr is used to encode the
last operator, where variables must be read before they are written; and D? indicates that
writing and reading may be scheduled in any order, but that the concomitance is important,
otherwise the arc could simply be omitted. Fast-to-slow sampling, /n, indicates that the
writer has a higher rate than the reader, the subscript, n, is the relative ratio. The L/n form
additionally specifies sampling of the last operator. Slow-to-fast sampling, ∗n, indicates that
the writer is slower than the reader. The symbols are adapted from Prelude [21, §4.2.2] and
recall the clocking rules of Figure 2b. A when divides the writer rate by sampling a subset of
its values. A current multiplies the writer rate by duplicating (buffering) input values.

For scheduling and microscheduling to work coherently they must agree on the order of
related equations within a single phase. The concomitance labels C solve this problem by
fixing the intraphase ordering prior to scheduling. They specify how two equations will be
ordered if ever they execute in the same cycle: f, forward concomitance, constrains the write
to occur before the read, immediately communicating a value; and b, backward concomitance,
constrains the write to occur after the read, delaying the communication by one period.

For our source language, the generation of a flow graph from a function definition is
immediate. For each equation eqr, we simply descend into the defining expression (x = e)
or argument expressions (x ∗ = f (e∗ )), ignoring constants and continuing recursively through
operators and conditionals. The remaining cases all involve a variable x . If the variable is an
input, or last y for y defined by eqr, nothing is done, otherwise its defining equation eqw is
identified and an arc is added to the flow graph as per the cases:

x eqw
Dw

f−→ eqr

last x eqw
Dr

b−→ eqr

x when (· % n) eqw
/n f−−→ eqr

(last x) when (· % n) eqw

L/n b−−→ eqr

current(x, (· % n)) eqw
∗n f−−→ eqr (by default)

eqw
∗n b−−→ eqr (if “fast-first”)
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The current operator normally has forward concomitance, but a “fast-first” option that
makes it backward permits equations to be ordered within a cycle from fastest to slowest.

Clock typing almost guarantees the absence of arcs with different labels between two
equations, but it is still necessary to reject equations that read both x and last x, for
example, y = x + last x. Their compilation requires extra buffering: lx = last x, y = x + lx .

3.1.1 Circular dependencies
Equations with circular dependencies, or “algebraic loops” [45, §3–39], are normally rejected
since a unique solution does not exist or cannot be found without iteration. For example, no
streams satisfy both x = y + 1 and y = x + 1, and all pairs of identical streams satisfy x = y

and y = x. Typically, circular dependencies are broken by manually adding last operators.
For example, the definitions x = last y + 1 and y = x + 1 are valid.

A Lustre program is analyzed by checking a graph of its static dependencies for cycles [29,
§III.A] [4, §3.1]. A dependency graph is obtained from a flow graph by reversing all edges
with backward concomitance. There are two kinds of cycles in such graphs. A direct cycle
only contains arcs with direct sampling labels. All the equations in such a cycle have the
same rate, will necessarily be scheduled in the same phase, and cannot be microscheduled.
An inter-rate cycle contains at least one slow-to-fast and one fast-to-slow arc.

3.1.1.1 Direct cycles

In the industrial context that motivates our work, the standard solution of breaking direct
cycles by manually adding last operators is untenable. There are simply too many cycles,
mostly due to feedback from monitoring and maintenance features, and too many variables.
Furthermore, it does not usually matter whether the most recent or last value is read as the
extra delay usually has no consequence on overall system behaviour. Many variables carry
samples of signals that change slowly, or their contribution to feedback and output calculations
is minimal. Manually breaking cycles complicates development and overconstrains scheduling.

As a solution to this problem, Wyss et al. [57] propose a don’t-care operator dc x that
the compiler resolves to x or last x. Iooss et al. [33, §5.1] adopt a similar solution with their
last? x operator. We considered adding such an operator to our source language, but for
the flight control system described in the introduction, we found that programmers would
simply add this operator to all direct reads. For large programs, this complicates the source
text without providing any real advantages.

Instead, we provide three compiler options that transform a flow graph prior to scheduling:
(i) relax same period, (ii) relax same period cycles, and (iii) cut same period cycles. The first
drops all direct arcs that are not needed for latency chains and relabels those in latency chains
with D?. It has the same effect as replacing all variables x in expressions e with last? x. The
second is similar but only applies to arcs within a strongly connected component (SCC) of
the dependency graph. The third calculates a minimum feedback arc set of the dependency
graph and inverses the concomitance of those arcs in the flow graph to eliminate all cycles.
That is, it replaces some variable instances x with last? x. Finding the smallest such set
is NP-hard for general graphs [35], so we adapt a heuristic [18, 19] that executes in time
O(|V | · |A|) and produces a minimum feedback arc set that is at worst twice the size of a
minimal one. In limited experiments, neither of the three transformations proved better
than the others in terms of scheduling time or result quality. The compiler options provide a
pragmatic solution to a practical problem but require deforming the source-level specification.
It remains to be seen whether such applications can be specified in a more principled manner.
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3.1.1.2 Inter-rate cycles

Identifying cyclic dependencies between equations at multiple rates is challenging. For
example, the equations x = y when (1 % 2) and y = current(x, (0 % 2)) have no solution
since y must buffer the value of x in the first of every two rounds, but x may only sample y

in the second one. Dependencies may even change over the course of a hypercycle. For now,
we simply accept that constraint solving will fail for such programs.

When the generated constraints have a solution, however, we must ensure that mi-
croscheduling will succeed. We do so by transforming the original flow graph, prior to
scheduling, to inverse the concomitance of all forward slow-to-fast arcs (∗n f) between vertexes
in the same SCC of the dependency graph. Then, even if interdependent equations are
scheduled in the same phase, they can still be microscheduled. The semantics of the program
is unchanged. This treatment occurs in Figure 3c where the arcs from vz_control to elevator,
and from va_control to engine have backward concomitance. According to the schedule of
Figure 3d, only va_control and engine may execute together in the same cycle, and engine
then goes first, as in Figure 3b.

3.2 Dependency constraints
The flow graph produced from a program and modified as described above is translated
into a set of ILP constraints. The encoding is unsurprising. The phase of an equation eq is
represented by an integer variable 0 ≤ peq < period(eq), where period(eq) = n for eq :: 1/n.
Any solution found for the phase variables is a valid schedule. A variable is unnecessary if
period(eq) = 1. The substitution peq = 0 is then applied to constraints and solutions.

In the following, we consider arbitrary pairs of equations eqw and eqr, where eqw defines a
variable w that eqr uses to define a variable r. We will reason in terms of w and r, conflating
variables and equations and ignoring the details of expressions. The generalization is trivial.

For equations of the form r = w, writing must occur before reading. For those of the form
r = last w, reading must occur before writing. Whether reading and writing may occur in
the same phase or not, and thus the strictness of inequalities, depends on the concomitance.
For example, for Dw

b , w and r must not be scheduled in the same phase, since backward
concomitance requires that microscheduling place the computation of r before that of w.
Flow-graph arcs are thus translated to phase constraints as follows.

w
Dw

f−→ r becomes pw ≤ pr

w
Dw

b−→ r becomes pw < pr

w
Dr

f−→ r becomes pr < pw

w
Dr

b−→ r becomes pr ≤ pw

For an equation r = w when (i % n), where 0 ≤ i < n, with forward concomitance, the
read must occur with or after the ith write and strictly before any subsequent write:

i · period(w) + pw ≤ pr < (i + 1) · period(w) + pw for w
/n f−−→ r.

For backward concomitance, w
/n b−−→ r, the strictnesses are reversed: · · · < pr ≤ · · · .

For free sample choices, r = w when (? % n), the rule is write before first read. Only the
lower bound is needed and i = 0, giving pw ≤ pr for w

/n f−−→ r, and pw < pr for w
/n b−−→ r.

For an equation r = (last w) when (i % n), with backward concomitance, the read must
occur strictly after any (i − 1)th write and before or with the subsequent write:

(i − 1) · period(w) + pw < pr ≤ i · period(w) + pw for w
L/n b−−→ r.

For r = (last w) when (? % n), the rule is read before last write. Only the upper bound is
needed and i = n − 1 = period(r)

period(w) − 1, giving pr ≤ period(r) − period(w) + pw.
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For an equation r = current(w, (i % n)) with forward concomitance, the write must occur
with or before the ith read but strictly after the preceding one:

(i − 1) · period(r) + pr < pw ≤ i · period(r) + pr for w
∗n f−−→ r.

For r = current(w, (? % n)), the rule is write before last read. Only the upper bound is
needed and i = n − 1 = period(w)

period(r) − 1, giving pw ≤ period(w) − period(r) + pr.

3.3 Resource constraints
The resource constraint encoding is relatively standard [33, §4.3]. For each equation eq
with period(eq) > 1, we introduce a set of phase weight variables: pweq,i ∈ {0, 1} indicates
whether eq is scheduled in phase 0 ≤ i < period(eq). Two constraints relate them to the
corresponding phase variable:

period(eq)−1∑
i=0

pweq,i = 1
period(eq)−1∑

i=0
i · pweq,i = peq.

For example, for period(eq) = 3, if peq = 2 then pweq,0 = 0, pweq,1 = 0, and pweq,2 = 1.
For a declared resource res, let w(res, eq) represent the amount of res required by

the equation eq. For instantiations, w(res, x∗ = f(e∗)) refers to the constant given in the
declaration of f and defaults to 0. Otherwise w(res, x = e) = 0.

A constraint of the form “resource balance res” is encoded by introducing an integer
variable rmaxres, and a constraint for each phase of the hypercycle 0 ≤ k < hp:

0 ≤ rmaxres −
∑

{eq | period(eq)>1}

w(res, eq) · pweq,(k mod period(eq)).

The objective is then to minimize each rmaxres variable, which means choosing equation
phases that equalize as much as possible the sums of weights across all phases of the hypercycle.
The k mod period(eq) term accounts for the repetition of an equation across the hypercycle.

A source constraint of the form “resource res ∼ c” is encoded by constraining the sum
of resources in each phase 0 ≤ k < hp:∑
{eq | period(eq)>1}

w(res, eq) · pweq,(k mod period(eq)) ∼ c −
∑

{eq | period(eq)=1}

w(res, eq).

The equations with period(eq) = 1 are included in every phase by subtracting their weights
from the constant c.

3.4 Latency constraints
Latency refers to the number of cycles from an initial read forwards to eventual related writes,
or from a final write backwards to earlier related reads. Compared to the ILP encodings of
dependency and resource constraints, the treatment of latency constraints is less obvious. A
constraint latency m ∼ b (eq0, eq1, . . . , eqn−1), where m ∈ {exists, forward, backward}
and b is a constant bound, is valid only if the chain describes a path through the source
program’s flow graph, eq0

s0 ,c0−−−→ eq1
s1 ,c1−−−→ · · · sn−2 ,cn−2−−−−−−→ eqn−1 . A schedule associates phases

to the equations in a chain and thereby induces forward and backward end-to-end latencies.
For the ROSACE example, the latency path is d /2 f−−→ h /2 f−−→ a Dw

f−→ v ∗4 b−−→ e, written here
with truncated equation labels and traced in red in the flow graph of Figure 3c. The left half
of Figure 4 plots the elements of this chain over a hypercycle, hp = lcm(2, 4, 8, 8, 2) = 8, for
the schedule of Figure 3d. There is a row for each equation: the downward pointing arrows
indicate the equation’s scheduled phase repeated across the hypercycle.
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Figure 4 Unsimplified constraints for latency exists <= 2 (d, h, a, v, e).
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Figure 5 Latency chain: branching then selection.

The forward latencies, or reaction times (first-to-first [20, Figure 7]), are determined by
working from the first equation in the chain through to the last. Consider the first of the four
instances of d: the next closest instances are those of h after 1 cycle, the only instance of a
after 4 cycles, that of v after 0 cycles, and finally the fourth instance of e after 1 cycle. The
end-to-end latency is thus 1 + 4 + 0 + 1 = 6. This is not the actual first-to-first path, which
rather passes via the second instance of h, but it does not matter since, in terms of the sum
of latencies, the paths commute. By always taking the next closest instance, we arrive at the
correct corresponding last instance. The other forward end-to-end latencies are calculated
similarly and shown at the top of the figure. Note that the fourth instance of d is sampled
in a subsequent hypercycle and that the latency calculation thus “wraps around” through
the first instance of h. The backward latencies, or data ages (last-to-last [20, Figure 7]), are
determined by working from the last equation in the chain back to the first one. Consider
the fourth instance of e: the closest preceding instance of v is 1 cycle before, those of a
and h are immediate, and the third instance of d is 1 cycle before. The end-to-end latency is
thus 1 + 0 + 0 + 1 = 2. The backward end-to-end latencies are shown at the bottom of the
figure. The forward and backward constraints require that all end-to-end latencies satisfy
the bound, the exists constraint only requires that one backward latency does.

The goal now is to define an ILP encoding that characterizes end-to-end latencies in
terms of phase variables. Bounding the resulting latency formulas constrains their phase
variables and thus restricts the set of valid schedules.
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3.4.1 Minimum pairwise latencies
A first idea is to calculate the end-to-end latency as the sum of minimum pairwise latencies.
The minimum pairwise latency of a link with forward concomitance from w to r is

latw,r = (pr − pw + period(w)) mod period(w) with 0 ≤ latw,r < period(w).

Adding period(w) avoids a negative modulo. For a link with backward concomitance, the
minimum pairwise latency is period(w) when pw = pr mod period(w), giving

latw,r = ((pr − pw + period(w) − 1) mod period(w)) + 1 with 0 < latw,r ≤ period(w).

Unfortunately this idea does not work for chains that contain both slow-to-fast links, which
introduce branching, and fast-to-slow links, which filter branches. For example, consider the
scheduled chain in Figure 5. The sequence of flow-graph arcs are shown at right. Taking
the sum of minimum pairwise latencies incorrectly gives 1 + 2 + 2 = 5. The correct forward
latency, 11, is show at top, and the backward latencies, 11, 14, and 17, are shown at bottom.
As explained by Feiertag et al. [20, Figure 7], the problem is that scheduling choices induce
different propagation paths between a write to a chain’s first variable and a corresponding
read of its last one.

3.4.2 Closest instances
A better idea for encoding end-to-end latency is to characterize an arbitrary propagation
path by introducing variables to identify the instances of each closest reader/writer relative
to the hypercycle. Each such variable is constrained by the preceding write and subsequent
read, and the sum of their pairwise latencies gives the end-to-end latency. We explain the
idea on the ROSACE example before presenting the formal definition.

Returning to Figure 4, we introduce an instance variable for each equation in the
chain. Since there are four instances of d that could participate in a path through the
hypercycle, its instance variable is 0 ≤ id < 4. Similarly, the instance variable for h

is 0 ≤ ih < 2. We represent the latency between these two arbitrary instances by introducing
a variable 0 ≤ latd,h < L. The value of L is crucial. Since the example has an exists
constraint, which applies to backward latencies, each reader instance must be associated to
the immediately preceding writer instance by setting L to the period of the writer. Thus,
here, L = period(d) = 2. For forward latencies, each writer instance must be associated
to the immediately succeeding reader instance by setting L to the period of the reader. A
constraint is introduced to match writer and reader instances: 2 ·id +pd +latd,h = 4 ·ih +ph.
For each equation, we multiply the instance by the period and add the phase. The difference
gives the pairwise latency. The right side of Figure 4 shows the result of applying this idea
along the chain from d through to v. The instance variables ia and iv are not strictly
necessary since they always equal zero. In the implementation, such variables are removed in
a separate constant propagation pass.

For the v
∗4 b−−→ e link, the value of v may be read from the previous hypercycle. We permit

such wraparounds by adding a variable wrapv,e ∈ {0, 1} and subtracting hp · wrapv,e from
the writer expression: 8 · iv + pv + latv,e − 8 · wrapv,e = 2 · ie + pe. This encodes a modulo
allowing instances to match within (wrapv,e = 0) and across (wrapv,e = 1) hypercycles. The
strictnesses of the bounds 0 < latv,e ≤ 8 account for the backward concomitance.

Finally, the sum of pairwise latencies is constrained: latd,h +lath,a +lata,v +latv,e ≤ 2.
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The scheme sketched above is implemented as a function from a list of flow-graph arcs
to a set of ILP constraints. The function first calculates hp, the LCM of the periods in the
chain’s equations, and adds an instance variable for the initial writer 0 ≤ iw < hp/period(w).
Then, for each arc w

s,c−−→ r, it adds three fresh variables, with their bounds,

0 ≤ ir < hp/period(r)

0 ≤ latw,r < L, for c = f / 0 < latw,r ≤ L, for c = b
where L = period(r) if forward and L = period(w) if backward,

0 ≤ wrapw,r ≤ 1, if forward and s ̸∈ {Dw, ∗n} or if backward and s ̸∈ {Dw, /n},

and an equality constraint,

period(w) · iw + pw + latw,r − hp · wrapw,r = period(r) · ir + pr.

A wrapw,r term is not needed if, within a hypercycle, the dependency constraints guarantee
that, if forward, a read follows the last write; or if backward, a write precedes the first read.
The function compresses maximal sequences w

Dw
f−→ · · ·

Dw
f−→ r to w

Dw
f−→ r. Finally, it adds the

requested constraint on the sum of pairwise latencies: lateq0 ,eq1 + · · · + lateqn−2 ,eqn−1 ∼ b.
For an exists constraint, the solver need only find a single propagation path that

satisfies the constraints. For forward constraints, however, all propagation paths from the
first equation in the chain must be considered. This is done by invoking the constraint
generation function for each instance i of the first equation eq0, and by anchoring the resulting,
fresh first instance variable by an equality ieq0 = i. Similarly, for backward constraints, all
propagation paths to the last equation in the chain must be considered. The function is
invoked for each instance i of the last equation eqn−1, and the resulting, fresh last instance
variable is anchored by an equality ieqn−1 = i.

4 Code generation

The code generator takes as input (i) the original source program, (ii) a solution to the
constraints from Section 3 that assigns a value to every peq, and (iii) a parameter ns, the
number of step functions to generate, which must evenly divide the hyperperiod of all
equations, that is, ns | hp. It recreates the flow graph (V, A) used to generate the constraints
and then produces code comprising a static variable c, initialized to zero and incremented
modulo hp at the end of every cycle, and ns step functions, called over successive cycles in a
repeating sequence. The code in Figure 3b shows the typical case where ns = 1.

A step function stepi is generated for every 0 ≤ i < ns and called in cycles where
c mod ns = i. The equations are filtered to determine which to include in stepi :

includei(eq)=


peq mod ns = i if ns | period(eq)
i mod period(eq) = peq if period(eq) | ns

true otherwise

Consider, for example, ns = 4: for period(a) = 8 and pa = 5, the first case applies, and
the equation a need only be included in step1 ; for period(b) = 2 and pb = 1, the second
case applies, and b need only be included in step1 and step3 ; for period(c) = 3, c must be
included in all step functions regardless of its phase.
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The equations within a stepi are microscheduled according to their instantaneous depend-
ency graph (V ′

i , A′
i), which is derived from the flow graph (V, A):

V ′
i = {w | w ∈ V ∧ includei(w)} A′

i = {w −→ r | w
s,f−→ r ∈ A ∧ stogetheri(w, r)}

∪ {r −→ w | w
s,b−−→ r ∈ A ∧ stogetheri(w, r)} .

That is, it only has vertexes for equations in stepi and arcs for equations that may execute in
the same instant; and arcs with backward concomitance become reversed dependencies. The
predicate stogetheri(w, r) defines if a pair of communicating equations w and r sometimes
execute together in stepi , recalling that either period(w) | period(r) or period(r) | period(w):

stogetheri(w, r) = includei(w) ∧ includei(r)
∧ (pr mod period(w) = pw ∨ pw mod period(r) = pr) .

For example, if period(w) = 3, pw = 2, period(r) = 6, and pr = 3, then even if the two
equations are in the same step function, they will never be executed together in the same
cycle. However, if pr = 5, then r executes together with every second execution of w.

A standard algorithm [4, §5] is adapted to generate code for each stepi . It orders the
equations according to (V ′

i , A′
i) and translates each eq into a guarded assignment statement:

switch (c % period(eq)) { case peq: TEq(eq);},

where TEq translates the equation. No guard is added if period(eq) | ns, since it would always
be true. As usual, a heuristic apposes equations with similar guards so that a subsequent
join optimization can merge them to reduce branching. In our case, this means grouping
equations with the same period where possible, and otherwise preferring equations with a
greater harmonic period. The microscheduler is implemented so that equations are ordered
by increasing period when the “fast-first” option is used.

5 Related work

5.1 Programming languages
Lustre [29] is a specification language with expressive activation conditions: arbitrary boolean
expressions. These conditions are formalized in Lucid synchrone [7] as clock types, where
a clock type is a sequence of variable names that abstract from the underlying boolean
conditions. Various proposals have been made to restrict clock types to allow for specialized
code generation. We present them in chronological order.

Periodic computations were specified in Signal [41] using affine clocks [55]. Abusing our
notation, base on (1 % 4) is an affine clock since it is activated at instants { n

4 + 1 | n ∈ N0}
relative to a base clock. The clock calculus is enriched with equational rules, for example,
base on 1 % 4 on 0 % 2 = base on 1 % 8. More programs can then be accepted, since two signals
that do not have the same clock expression may still be composed synchronously.

The n-synchronous model [10] also uses clocks to specify periodic computations, this
time as ultimately periodic binary words, like 00(10100). Such clocks are more expressive
than affine periods but deciding equality is costly since they must be expanded to their
LCM. Clock abstraction [11] solves this problem by considering envelopes (sets of clocks)
characterized by a rational slope (the period) and an interval (possibly of length zero) for
the initial phase. The slope of the on operation is the product of its argument’s slopes as in
our clock rules. This proposal was implemented, without code generation, in Lucy-n [43,52].
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Prelude is a multi-periodic synchronous language [21,23, 24] whose clock types combine
a rational phase and rational period. Following [7], the clock calculus is a type system
that conservatively extends the ML-like clock calculus [14] of Lucid synchrone [53]. Pre-
lude’s periodic clocks correspond to clock envelopes [11], but the absence of subtyping
gives a simpler, more efficient, but also more restrictive calculus. For example, the expres-
sion f(x when (1 % 4)) + g(x when (0 % 4)) is accepted by Lucy-n but rejected by Prelude
because the clocks 1 % 4 and 0 % 4 have different phases and thus are not equal. Like Prelude,
we adopt a “relaxed synchrony hypothesis” [15]: each stream may have its own notion of
instant [21, §3.1.2]. The rules in Figure 2b are essentially the same as Prelude’s periodic clock
transformations [24, §3.3]. Prelude’s semantics [21, §4.6] is defined using the tagged-signal
model [42] with rational timestamps. In our setting, integer indexes suffice. While our
components must execute within a cycle, those of Prelude execute as multiple tasks [50] with
fixed [22] or dynamic [26] priorities. Compared to an earlier proposition [33], we discard
phases in clock types, reduce the number of operators, and generate sequential code directly.

Other work treats the compilation of component-based languages into real-time tasks.
Caspi et al. [8] propose a dynamic buffering protocol for multi-rate synchronous programs,
and Giotto [31] introduces Logical Execution Time (LET) [37] to decouple execution and
communication. Hamann et al. [30] describe AUTOSAR, where runnables, which correspond
to our equations, are grouped into periodic tasks and communicate via direct, implicit, or
LET conventions. The static ordering within a task determines which communications are
“forward” or “backward” [30, §4.3]. Ignoring execution time and preemption allows us to
propose a simpler model, constrain end-to-end latency, and generate sequential code.

The discrete-time subset of Simulink is a multi-periodic programming language. Sample
times [45, §7] are period/phase pairs that are subject to rules like those for our clock types.
Rate transition blocks play the same role as our when and current operators. When both
data integrity and determinism are required, the writer and reader rates must be integer
multiples of one another [44, §1-1482]. While Simulink models can be compiled to Lustre [56],
Simulink Coder [46] is normally used. Code generation flattens a model, groups blocks by
sample rate giving priority to faster ones, and produces one or more tasks for scheduling.

5.2 Real-time scheduling and end-to-end Latency

End-to-end latency continues to be studied in the context of real-time systems. Gerber
et al. [27] and Davare et al. [16] apply constraint solving to assign task periods to ensure
that latency bounds are met. Gerber et al. consider chains with direct and fast-to-slow
links, for which sums of pairwise latencies suffice (Section 3.4.1). Davare et al. define a
coarse upper bound: the sum of task periods and response times (§2.1: lp =

∑
k∈p tk + rk),

with response times considering preemptive scheduling for an ECU and non-preemptive
scheduling for a CAN bus. The linearity of the bound permits its use in constraint-based
scheduling. A tighter upper bound is possible when task priority decreases from producers
to consumers [17, 39] since this reduces interference from preemption and thus worst-case
response times. Task periods can be excluded from the sum if each task in a chain activates its
successor. These “trigger” [49], “functional” [28], or “active” [17] chains, where activation and
data dependencies coincide, are studied, for example, by Schlatow and Ernst [54] and Girault
et al. [28]. In contrast, our constraint-based scheduling treats sample-based activation, assigns
offsets not periods, requires slicing a source program into small tasks to avoid preemption,
and uses an encoding that precisely characterizes end-to-end latencies (Section 3.4.2).
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For the flight control system described in the introduction, and, doubtless, other systems,
upper bounds on end-to-end latency can be too pessimistic. Doing better requires considering
how chains are instantiated in a concrete schedule. Feiertag et al. [20, Figure 7] clearly describe
the importance of propagation paths through communicating job instances and considering
the “branching and filtering” effect of mixing slow-to-fast and fast-to-slow communications.

Which jobs actually communicate depends on the read/write discipline. It can be
formalized using read and data intervals [3] or classified into direct, read-execute-write, or
LET [30] communications. Direct access to shared variables complicates analysis and may
cause inconsistencies. For read-execute-write, a task samples inputs when it begins and
writes outputs when it ends. For LET, such atomic reads and writes occur at fixed times,
isolating them from the effects of varying response times, and giving predictable but greater
end-to-end latencies [47]. These issues do not arise in our source language and compilation
scheme, but we do need to consider the timing of communications within a step function
(“microscheduling”). To analyze non-harmonic communications, Hamann et al. [30, §5.2.2.3]
insert virtual copy operations, much as we require programmers to insert explicit ones.

Calculating the exact worst-case end-to-end latency of a set of tasks, as opposed to
an upper bound, requires exploring all data propagation paths in all possible schedules.
Mohalik et al. [48] apply model-checking techniques. Lauer et al. [40] apply Mixed Integer
Linear Programming (MILP) and use optimization to calculate the maximum end-to-end
latency; our equality constraints (Section 3.4.2) resemble their constraints on production and
consumption [40, §3.1, (2) & (5)] but we avoid real-valued time stamps, handle propagation
paths across multiple hypercycles, and constrain latency during scheduling. Khatib et al. [36]
propose an algorithm based on translating multi-periodic real-time task sets into Synchronous
Dataflow (SDF) graphs. The algorithms of Kloda et al. [39, §IV.C] and Becker et al. [3, §V]
iterate over a hypercycle through the jobs of the first task in a chain and recursively explore
data propagation paths. In our approach, a solver combines (offline) scheduling with end-to-
end latency calculation, allowing the latter to constrain the former. The solution of Becker
et al. [3, §VI] is to prune data propagation paths that would exceed a given latency bound
by adding job-level dependencies. This approach is implemented in a tool [2], which Klaus
et al. [38] have incorporated into a compilation chain. They note that cyclic dependencies
can be problematic [38, §6.2]. For Prelude, Wyss et al. [58] calculate worst-case latencies at
the source level by defining propagation paths as data dependency words. Forget et al. [25]
generalize this approach in a formal language for expressing end-to-end timing properties.

6 Conclusion

We present a language for expressing execution rates and rate transitions in the synchronous-
reactive model. It is a special case of Lustre where programmers allow scheduling to reconcile
resource requirements and end-to-end latencies. Our flow graphs facilitate the treatment of
cycles and the interaction of two scheduling passes, one using an ILP solver to assign tasks
to phases and the other ordering tasks within a phase. Our novel encoding of end-to-end
latency constraints, allowing unconstricted rate transitions, improves on the current practice
of manually scheduling critical sequences. Finally, we generalize a standard compilation
scheme to produce sequential code.
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Abstract
The notion of efficient explainability was recently introduced in the context of hard-real-time
scheduling: a claim that a real-time system is schedulable (i.e., that it will always meet all deadlines
during run-time) is defined to be efficiently explainable if there is a proof of such schedulability that
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1 Introduction

A workshop titled Explainability of Real-Time Systems and their Analysis (ERSA)
was held as part of the 2022 edition of the IEEE Real-Time Systems Symposium (RTSS),
with a goal “to understand the role, meaning, and value of explanation in critical systems –
in particular real-time systems.” In a paper [8] that we had presented at this workshop, we
introduced the notion of efficient explainability in the context of hard-real-time scheduling.
In this we drew inspiration from the remarkable success that cyclic-executive (CE) [4, 5]
based approaches to demonstrating timing correctness in safety-critical systems have enjoyed,
particularly with regard to achieving statutory certification. In such CE based approaches,
the system developer provides the certification authority (CA) with a lookup table that
explicitly enumerates which task will execute at each instant; the CA checks that repeated
execution of this lookup table assigns adequate computing to each task to allow all its timing
constraints to be met (provided, of course, that each task respects its worst-case execution
time bound). From this perspective, the lookup table may be thought of as a certificate
that “explains” the system-developer’s claim that the system is schedulable. We accordingly
defined a claim of schedulability to be efficiently explainable if there is a certificate of the
schedulability that can be verified in time polynomial in the representation of the system for
which schedulability is being claimed. We applied this notion to the schedulability analysis
of independent sporadic task systems upon preemptive uniprocessors, and made some simple
observations that may nevertheless be surprising (e.g., that for uniprocessor scheduling of
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constrained-deadline sporadic task systems [27, 30], fixed-priority schedulability is efficiently
explainable but, under the widely-held assumption that NP ̸= coNP, EDF-schedulability is
not), and posed some open questions and possible directions for further research.

This Work: Motivation and Scope. We believe that the concept of efficient explainability
potentially has an important role to play in the verification of future safety-critical real-time
systems as such systems become ever more complex, and as they are increasingly coming to
be implemented upon resource-constrained platforms:

1. CAs may be unwilling to undertake inordinately long computational procedures in order
to verify the correctness of systems that are submitted for certification. This becomes
more challenging for modern systems given the increased complexity of these systems
and the correctness properties that they are expected to maintain in the ever-increasingly
complex environments within which they operate.

2. An additional motivation for efficient explainability comes from the increasing application
of the paradigm of edge computing in many safety-critical applications like autonomous
navigation. Due to size, weight and power (SWaP) constraints, devices on the edge
typically have limited computational capabilities; hence it is beyond their ken to undertake
complex computations that are computationally demanding. They may nevertheless
need to perform complex run-time operations such as admission control. One approach
to this would be to perform the actual admission control computation “in the cloud”
where more extensive computational capabilities are available. If such cloud computations
determine that the workload remains schedulable upon admitting the additional work,
then the specifications of the schedulable system including the newly-admitted work,
along with an efficiently-verifiable proof (the “efficient explanation”) of the schedulability,
are communicated to the computationally limited edge device. The edge device can then
verify the schedulability and admit the new work, without needing to trust the cloud
computation.

These motivating considerations have prompted us to study the concept of efficient explain-
ability further, with a view of better understanding its applicability to safety-critical system
design, implementation, and verification. In this paper we report on our investigations into
two aspects of efficient explainability:

1. We characterize several schedulability-analysis problems beyond those considered in [8]
as being efficiently explainable or not.

2. If some schedulability analysis problem is unlikely to allow efficiently-verifiable certificates
for all instances, there may be sub-problems of it that do. We investigate this idea in
depth, proposing several avenues to identifying efficiently explainable sub-problems, as
well as alternative notions of efficient explainability.

The specific contributions of our work include the following.

1. We extend the results of [8] to multiprocessors by characterizing the efficient explainability
(or absence thereof) of multiprocessor partitioned schedulability of recurrent task systems.

2. We obtain a series of results that identify efficiently explainable sub-problems of unipro-
cessor EDF-schedulability of sporadic task systems (a problem that was observed in [8] to
not be efficiently explainable). We also extend these results to partitioned EDF scheduling
upon multiprocessor platforms.
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3. We propose a novel concept, Fully Polynomial-Time Verification Approximation Scheme
(FPTVAS), that extends the notion of FPTAS’s, widely studied in the context of ap-
proximation algorithms [3, 34], from polynomial-time computation to polynomial-time
verification (i.e., from P to NP).

4. We introduce, and initiate a study of, a previously unconsidered complexity class –
pseudoNP: non-deterministic pseudo-polynomial time that helps generalize the concept of
efficient explainability. This generalization seems particularly relevant as the schedulability
problems for which efficient explanations are sought become computationally more
challenging.

Organization. The remainder of this manuscript is organized as follows. In Section 2 we
place this work within the larger context of verification of real-time systems, and briefly
review some concepts from real-time scheduling and complexity theory that will be used in
later sections of this document. Sections 3–6 contain our main technical contributions: after
briefly identifying some efficiently explainable multiprocessor schedulability analysis problems
in Section 3, we turn our attention, in Sections 4–6, to identifying efficiently explainable
sub-problems of uni- and multi-processor schedulability analysis problems that are unlikely
to be efficiently explainable. We conclude in Section 7 by reiterating the significance of the
research described in this paper, and proposing some directions for further research.

2 Context, and Background & Related Work

The web page1 for the ERSA workshop observes that “many software-intensive systems of
current and future application domains require (or will require) approval from a certification
authority.” It highlights limitations of current approaches to obtaining such approval,
particularly when applied to advanced application domains, and states, as motivation for the
workshop, that “it is worth exploring [· · ·] whether explainability can help.” We would like to
emphasize that there are a myriad of aspects to explainability as it pertains to such a use-case.
Let us consider, as an illustrative toy example, an effort at convincing a certification authority
(CA) of the correctness of the timing behavior of a particular system by appealing to the
well-known result in Liu and Layland’s seminal paper [27] that a periodic task system with
utilization ≤ ln 2 will meet all its deadlines when scheduled using rate-monotonic scheduling
(or in the terminology of explainability, that a periodic task system’s utilization being ≤ ln 2
constitutes an ‘explanation’ of its schedulability.)

1. The party seeking certification must demonstrate that the periodic task model proposed
in [27] adequately models the salient characteristics of the workload, and that the pre-
emptive uniprocessor model assumed in [27] adequately models the salient characteristics
of the implementation platform.

2. They must provide justification for the values they have assigned to the task WCET
parameters (by, for instance, showing that the values were obtained using tools [35] that
have been certified for this purpose), as well as the values assigned to the task period
parameters.2

1 https://sites.google.com/view/ersa22
2 Examples of WCET analysis tools are aiT (https://www.absint.com/ait/), Heptane (https://team.

inria.fr/pacap/software/heptane/) and OTAWA (http://www.tracesgroup.net/otawa/).
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3. The CA must accept the validity of the analysis presented in [27], that any rate-monotonic
scheduled system with utilization ≤ ln 2 will meet all deadlines.3

4. Finally, the party seeking certification must demonstrate to the CA that the system
utilization – i.e., the sum, over all the tasks in the system, of the ratio of their WCET
parameters to their period parameters – does not exceed ln 2. (Recall that this constitutes
the ‘explanation’ of the system’s schedulability, which the CA will presumably seek
to verify on their own – i.e., they will not simply take the word of the party seeking
certification that it is so.)

While each of these steps is crucial to achieving certification, the focus of this paper is on the
last step. (Although this step is quite trivial for our toy example above, we will see that it is
not always so.) Hence the work described in this paper should be looked upon as constituting
only one part of a certification process that necessarily includes a social dimension (Step
1, accepting the mapping from an actual system to an abstract model, inherently possesses
a social aspect in addition to technical ones, as do parts of Step 2); tool-development and
certification (Step 2); and formal verification of schedulability results (Step 3). Our long-term
vision for the non-social aspects of certification is that an automatically-verifiable proof of
system correctness in some formalism such as Coq [11] or Prosa [15] will be provided to the
CA. This will incorporate correctness proofs of the schedulability results (see, e.g., [13, 10]
for some examples of such proofs) upon which such correctness depends, and additionally
include a certificate that explains why these schedulability results imply the correctness of
the specific system being considered for certification (see [29] for a seminal work on creating
such certificates in Prosa). It is this last part – explaining why the formally-verified general
schedulability results imply correctness for the particular system – that we address: we want
to ensure that the certificate of correctness can be verified efficiently by the CA. In this work
we outline and study theoretical underpinnings to understand which schedulability problems
allow for efficient verifiability (or explainability, in the terminology adopted in this paper),
and how to deal with schedulability problems that are unlikely to allow this for all instances.

Efficient Explainability. A schedulability problem is here said to be efficiently explainable if
and only if for all schedulable task systems there is a certificate of this schedulability that can
be verified by an algorithm that has running time polynomial in the size of the representation
of the task system. This definition directly links efficient explainability to well-studied
concepts in computational complexity theory [31, 2]; in particular, the complexity class NP:
“NP is the class of languages that can be verified by a polynomial-time algorithm” [16, page
1064]. Hence, a schedulability problem is efficiently explainable if it belongs to NP, and
showing that a schedulability-analysis problem is unlikely to be in NP offers strong evidence
that it is not efficiently explainable. In Sections 5 and 6 we will also consider wider notions
of efficient explainability than simply equating it with NP.

How does one show that a schedulability-analysis problem is unlikely to be in NP? Here
one again makes use of well-established results from computational complexity theory: there
are several complexity classes (see Figure 1 for some) that are widely believed to be distinct
from NP in the sense that there are problems within these complexity classes that do not
also belong in NP. Recall that a problem is defined to be hard for a complexity class if it

3 We point out that this step is by no means trivial or automatic – examples abound of results that passed
peer-review and were published in technical forums, only to subsequently be discovered to be erroneous.
Hence it is understandable that a CA be sceptical of published results and seek further justification of
their correctness than merely having passed peer review.
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Figure 1 Complexity classes considered in this manuscript. Complexity theory researchers widely
believe that no region in this diagram is empty – each is populated with problems.

is, intuitively speaking, at least as computationally difficult to solve as every other problem
in that complexity class (or more precisely, every problem in the complexity class can be
reduced, in polynomial time, to this hard problem). Hence showing a schedulability-analysis
problem to be hard for any complexity class believed to be distinct from NP offers strong
evidence that it cannot also be in NP and is therefore not efficiently explainable.

Efficient Explainability: Prior Results. The following observations and results were obtained
in [8] by exploiting this equivalence between efficient explainability and membership in NP:

It is efficiently explainable whether or not a constrained-deadline synchronous periodic or
sporadic4 task system is FP-schedulable upon a preemptive uniprocessor.
In contrast, determining whether a constrained (or arbitrary) deadline synchronous
periodic or sporadic task system is EDF-schedulable or not upon a preemptive uniprocessor
platform is unlikely to be efficiently explainable.
Suppose one were given an FP-scheduled constrained-deadline synchronous periodic task
system in which each task is additionally characterized by a lower bound (a ‘best-case
execution time’) on its execution duration, and a lower bound is specified on the response
time – i.e., the duration between a job’s arrival and its completion – that is acceptable for
each task. Determining whether such a system will be scheduled to respect the specified
response time lower bounds is not likely to be efficiently explainable.

4 Recall that for a periodic task the period parameter denotes the exact duration between successive job
arrivals, whereas for a sporadic task it denotes the minimum duration between successive job arrivals.
In a synchronous periodic task system, the first task of each job arrives at time-instant zero.
In constrained-deadline task systems, the relative deadline parameter of each task is ≤ the task’s period
parameter; no such relationship need exist in arbitrary-deadline task systems. (Implicit-deadline task
systems have each task’s deadline parameter equal to its period parameter.)

ECRTS 2023
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FPTAS’s. As stated in Section 1, one of our goals is to identify efficiently explainable
sub-problems of schedulability-analysis problems that are determined to not be efficiently
explainable. We will see that this goal essentially translates to one of obtaining sufficient
(rather than exact) schedulability tests. Speedup factors [24, 32, 25] are a commonly used
quantitative metric of the effectiveness of sufficient schedulability tests. The speedup factor
of a sufficient schedulability test A is defined to be the smallest real number δ ≥ 0 such that
if any task system Γ is schedulable upon a unit-speed processor, then A will determine that
Γ is schedulable upon a speed-(1 + δ) processor. Smaller speedup factors denote ‘better’
(i.e., closer to optimal in the worst case) sufficient tests. Thus, obtaining a good sufficient
schedulability test may be thought of as obtaining a good approximation algorithm that
minimizes the speedup factor. In the theory of approximation algorithms [3, 34], it is widely
accepted that an FPTAS (see, e.g., [16, p. 1107] for a textbook description) is the ‘best’ kind
of approximation algorithm: it allows for approximations that are arbitrarily close to the
optimal by appropriately assigning a value to a parameter δ. In the context of sufficient
schedulability tests, an FPTAS may be defined as follows:5

▶ Definition 1 (FPTAS). A fully polynomial-time approximation scheme (FPTAS) for a
schedulability analysis problem is an algorithm that, given as input any problem instance Γ
and a parameter δ > 0, returns “unschedulable” if Γ is unschedulable on a speed-1 processor,
and returns “schedulable” if Γ is schedulable on a speed-(1/(1 + δ)) processor. Its running
time is bounded by a polynomial in the two parameters |Γ| and

( 1
δ

)
.

2.1 Some relevant results from real-time scheduling theory
Fixed-Priority scheduling. Response-time analysis (RTA) [23, 26] is the standard technique
for determining whether a constrained-deadline synchronous periodic task system is schedu-
lable or not under fixed-priority (FP) scheduling. RTA is based on the observation [23] that
if a constrained-deadline task system is schedulable under FP, then the maximum possible
duration between the release of a job of τi and the instant this job completes execution
(called the worst-case response time of task τi) is equal to the smallest positive value of Ri

that satisfies the following recurrence (here hp(τi) denotes all jobs in the task system that
have scheduling priority greater than τi’s scheduling priority):

Ri = Ci +
∑

τj∈hp(τi)

⌈
Ri

Tj

⌉
× Cj (1)

As observed in [8], it is well known that FP-schedulability is in NP and must therefore be
efficiently explainable: the certificate for FP-schedulability for a given task system Γ is a
value for Ri for each τi ∈ Γ that satisfies Expression 1 and is ≤ Di’s. Such a certificate
comprises |Γ| numbers, and so is polynomial (in fact linear) in the representation of the
task system Γ. It is straightforward to observe that each claimed Ri can be verified to be a
solution to Equation 1 in linear time.

5 It should be noted here that we are abusing the notion of an FPTAS slightly, to be consistent with prior
work in real-time scheduling. In Definition 1 we are assuming that processor speed is the quantity to
be approximated, even though the usual definition of FPTAS’s allow any other approximation metric.
Other metrics relevant for scheduling are, for example, makespan or maximum tardiness. We are also
not quite treating the FPTAS in Definition 1 as an approximation algorithm (since the algorithm should
output only “schedulable” or “unschedulable”), but without much further work we can use binary search
to turn such an algorithm into an algorithm for approximating the minimum processor speed needed to
schedule the task system.
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Earliest-Deadline-First scheduling. In earliest-deadline-first (EDF) scheduling, at each
instance the currently active (i.e., needing execution) job with the earliest deadline is
executed. It is unlikely that EDF-schedulability is efficiently explainable since it has been
shown [18, 20, 19] to be coNP-hard. If it was possible to create polynomial-time verifiable
certificates for all EDF-schedulable task systems, attesting their EDF-schedulability, then by
definition the EDF-schedulability problem would be in NP. This would immediately imply
that NP = coNP, which goes against the expectations of most researchers in complexity
theory. It is interesting to note that even though uniprocessor FP-schedulability (which is
NP-complete [22]) and uniprocessor EDF-schedulability (which is coNP-complete [18]) in some
sense are qualitatively equally hard to solve (they are both complete at the first level of the
polynomial hierarchy), their verification problems are indeed of very different hardness.

Processor-demand analysis (PDA) [7] is the standard technique for determining whether
a synchronous periodic task system is schedulable or not under EDF scheduling. PDA is
centered upon the concept of the demand bound function (dbf): for any sporadic task τi and
any interval-duration t ≥ 0, dbfi(t) denotes the maximum possible cumulative execution
requirement by jobs of task τi that both arrive in, and have deadlines within, any interval of
duration t. The following formula for computing dbfi(t) was derived in [7]:

dbfi(t) = max
(⌊

t−Di

Ti

⌋
+ 1, 0

)
× Ci (2)

It was also shown in [7] that a necessary and sufficient condition for task system Γ to be
EDF-schedulable is that the following condition holds for all t ≥ 0:∑

τi∈Γ
dbfi(t) ≤ t (3)

Processor Demand Analysis, PDA, is essentially a means of determining whether Expression 3
holds for all t. It was proved in [7] that Condition 3 need only be checked for values of t

that are of the form t = (k × Ti + Di) for some non-negative integer k and some τi ∈ Γ;
furthermore, only such values that are no larger than the hyper-period HP(Γ) (the least
common multiple of all the Ti parameters) need be tested. The set of all such values of t for
which it needs to be checked that Condition 3 is satisfied in order to verify EDF-schedulability
is called the testing set for the sporadic task system Γ and often denoted T (Γ). It is known [7]
that the cardinality |T (Γ)| of the testing set T (Γ) may in general be exponential in the
representation of Γ. However, it has been shown [6, Theorem 3.1] that a smaller testing
set, of pseudo-polynomial cardinality (i.e., polynomial in the size of the representation of Γ
and its largest numerical parameter), can be identified for bounded-utilization task systems.
Those are the task systems Γ satisfying the additional condition that

∑
τi∈Γ Ci/Ti ≤ c for

some pre-defined constant c < 1.

3 Efficiently Explainable Schedulability

We start out identifying some important efficiently explainable schedulability-analysis prob-
lems. As mentioned in Section 2.1 above, fixed-priority (FP) schedulability of constrained-
deadline sporadic task systems upon preemptive uniprocessor platforms was observed to be
efficiently explainable in [8]; this result is easily generalized to show that FP schedulability
of constrained-deadline sporadic task systems upon multiprocessor platforms under the
partitioned paradigm6 is also efficiently explainable:

6 Throughout this paper, when discussing partitioned scheduling, we refer to strict temporal partitioning
where tasks on one partition execute independently of tasks on another partition. Semi-partitioned
approaches or cases where tasks share locks across partitions may require additional care for verifiability.
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▶ Theorem 2. Partitioned multiprocessor fixed-priority schedulability of constrained-deadline
sporadic task systems is efficiently explainable.

Proof. In Section 2.1 we have briefly described the procedure for constructing efficiently-
verifiable certificates of uniprocessor FP-schedulability of constrained deadline task systems.
This procedure is easily generalized to establish the efficient explainability of partitioned
FP-schedulability for constrained-deadline systems upon multiprocessors as well: an efficiently-
verifiable certificate of the partitioned fixed-priority schedulability for a constrained-deadline
sporadic task system Γ upon an m-processor platform comprises
1. The actual partitioning of Γ into the m sets of tasks assigned to the m processors; and
2. For each of the m partitions, a certificate of its uniprocessor fixed-priority schedulability

that is constructed using the procedure that we had described in Section 2.1.
It is evident that such a certificate can be verified by a polynomial-time algorithm, and
hence establishes that FP-schedulability under the partitioned paradigm of multiprocessor
scheduling is efficiently explainable.

We point out that nothing in this proof requires that the processors be identical to
one another; hence the result of this theorem holds for the more general heterogeneous
multiprocessor platforms. ◀

As stated in Section 2.1, preemptive uniprocessor EDF-schedulability analysis for sporadic
task systems is not likely to be efficiently explainable, in contrast to FP scheduling. Since
partitioned multiprocessor EDF scheduling is a generalization of uniprocessor EDF scheduling,
it therefore follows that partitioned multiprocessor EDF-schedulability analysis problem is
also unlikely to be efficiently explainable. However, for the special case of implicit-deadline
task systems (for which the corresponding uniprocessor problem is efficiently explainable –
simply determine whether system utilization does not exceed the processor capacity), efficient
explainability is easily established:

▶ Theorem 3. Partitioned multiprocessor EDF schedulability of implicit-deadline sporadic
task systems is efficiently explainable.

Proof. An efficiently-verifiable certificate of the partitioned EDF schedulability for an implicit-
deadline sporadic task system Γ upon an m-processor platform comprises the actual parti-
tioning of Γ into the m sets of tasks assigned to the m processors. Given such a certificate,
it can be verified in polynomial time that the sum of the utilizations of the tasks assigned to
each processor does not exceed the capacity of that processor. ◀

Perhaps somewhat surprisingly, most other common real-time schedulability analysis problems
are unlikely to have polynomial-time verifiable certificates for explaining schedulability; this
motivates our efforts, reported in Sections 4–6, to investigate other avenues to dealing with
such problems.

4 Identifying Efficiently Explainable Sub-Problems

In this section we consider one approach to achieving efficient explainability of problems
that are not in NP (and hence not efficiently explainable): to identify relevant sub-problems
that are in NP. We exemplify this approach with the EDF-schedulability problem. As stated
in Section 2.1, the uniprocessor EDF-schedulability problem of three-parameter7 sporadic

7 That is, a task specified by a triple of its task parameters: τi = (Ci, Di, Ti).
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(or periodic) tasks is coNP-complete, from which it follows that it cannot be in NP unless
NP = coNP and the polynomial hierarchy collapses to its first level. Barring the unlikely event
of such a collapse, we cannot produce polynomially-sized explanations of EDF schedulability
for all schedulable task systems that can be verified by a third party in polynomial time.

We set out to identify sub-problems of the uniprocessor EDF-schedulability problem
for sporadic (or synchronous periodic) task systems that are in NP, and therefore efficiently
explainable. We do so by identifying subsets of the language of EDF-schedulable task sets
that are in NP (or indeed, even in P). Since the union of a finite set of languages in NP is
itself a language in NP, we can try to cover as much as possible of the EDF-schedulable task
sets with different subsets in NP, and in the end take the union of any such subsets. Any
EDF-schedulable task set that is in this union of smaller languages does have a polynomially-
sized certificate that can be verified by a third party in polynomial time.

Before proceeding we should make some important points.

It is not possible to completely cover the coNP-complete language of EDF-schedulability
by a finite set of subset languages that are each in NP (assuming NP ̸= coNP) – there will
remain an infinite set of EDF-schedulable task sets that are not covered.
In this work we do not attempt to maximize the covering, but instead focus on identifying
a few rather ‘natural’ subsets that are in NP. The covering presented here could most
certainly be expanded – this is a direction of future work.
We are here interested in the efficient explainability of the identified subsets – that it
is possible to efficiently verify a certificate of a solution – but for now are not much
concerned by the efficiency of finding those solutions (and certificates) in the first place.
As a result, some subsets may in practice be more difficult computational problems to
solve than the original EDF-schedulability problem, but they will be easier to verify.

4.1 Efficiently explainable subsets of uniprocessor EDF-schedulability
Here we will list efficiently explainable subsets (forming languages in NP) to the EDF-
schedulability problem. The relationships between these subsets are shown in Figure 2. The
most natural such subsets are those for which the EDF-schedulability problem itself is easy to
solve. The following two subsets of EDF-schedulability are known to be in P.

[I] – Implicit deadlines. From Liu and Layland [27] we know that a task set Γ is EDF-
schedulable if it has implicit deadlines and

∑
τi∈Γ Ci/Ti ≤ 1. Both conditions are trivial

to check in polynomial time, and so EDF-schedulable task sets with implicit deadlines
form a language in P (and therefore in NP).

[II] – Harmonic periods and constrained deadlines. Similarly, Bonifaci et al. [12] have
given a polynomial-time algorithm for determining if a task set with constrained deadlines
and harmonic periods is EDF-schedulable. Hence such task sets also form a language in
P (and therefore in NP).

Another approach to identifying efficiently explainable subsets is by exploiting the optimality
of EDF upon preemptive uniprocessors. From this optimality we trivially get that for any
uniprocessor scheduling algorithm A, the set of all of A-schedulable task systems is a subset
of the set of EDF-schedulable task systems. For which A is A-schedulability in NP? An
obvious candidate is Fixed-Priority (FP).

[III] – FP-schedulable with constrained deadlines. As explained in Section 2.1, the task
systems that are FP-schedulable form a language in NP, and this language must be a subset
of EDF-schedulability. We should use the optimal deadline-monotonic (DM) priority
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Implicit
deadlines

and EDF-
sched.

FP-
sched.

FP+fluid-
sched.

FP+split-

sched.

FP+fluid+split-

schedulable

Harmonic

and EDF-
sched.

A&S
FPTAS

q-PDA

EDF-
schedulable

Figure 2 The relationships between the different languages of uniprocessor schedulability consid-
ered in this work. While the outer language of EDF-schedulability is coNP-complete, the marked
subsets are all languages in NP. The union of any collection of these subsets is also in NP and therefore
admits polynomial-time verifiable certificates. The two languages demarcated by dashed lines – the
Albers & Slomka FPTAS and EDF-schedulability by q-PDA – are of a different sort than the others
in that they are parameterized approximations; they will be described later in Section 5.

ordering to make the subset as large as possible. It is not known if FP-schedulability for
task sets with arbitrary deadlines is in NP, but we can certainly truncate any Di > Ti to
Di = Ti as preprocessing if we wish.

We note that Davis et al. [17] have shown that the considered subset of FP-schedulable
task sets with constrained deadlines (and DM priorities) itself contains as a strict subset
the set of all task sets with constrained deadlines that are EDF-schedulable on a speed-Ω
processor, where Ω ≈ 0.56714 is the unique constant such that ΩeΩ = 1. This gives
us a bound on how much processor capacity we can lose in the worst case by proving
EDF-schedulability by means of FP-schedulability.8

Are there more uniprocessor scheduling algorithms A for which A-schedulability is in NP?
There are very many, and the key to seeing this is to recognize that A does not need to be
any kind of “practically reasonable” scheduling algorithm, since we do not intend to actually
execute A during runtime – we are simply exploiting the fact that, since EDF is optimal,

8 As a curiosity and an aside, this also means we have the marvelous situation that a coNP-complete lan-
guage (EDF-schedulability on a speed-1 processor) contains an NP-complete language (FP-schedulability
on a speed-1 processor) that in turn contains a coNP-complete language (EDF-schedulability on a
speed-Ω processor). Indeed, we can make the infinite chain of strict subsets

(EDF, speed-1) ⊃ (FP, speed-1) ⊃ (EDF, speed-Ω) ⊃ (FP, speed-Ω) ⊃ (EDF, speed-Ω2) ⊃ · · ·

which alternate forever between being coNP- and NP-complete!
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A-schedulability necessarily implies EDF-schedulability. Thus we just want to efficiently
verify EDF-schedulability by means of verifying A-schedulability instead, but EDF, which
has very efficient implementations, will be the run-time scheduling algorithm that is used.
Fluid schedulers are among the scheduling algorithm that are easy to reason about, although
they may be difficult to implement. Next, we consider a scheduler that schedules some tasks
fluidly.

[IV] – FP+fluid-schedulability. A fluid scheduler assigns a constant fraction fi of the pro-
cessor to task τi, such that τi is served continuously at this rate. Clearly, τi will meet all
of its deadlines if it scheduled fluidly with a rate fi = δi, where δi = Ci/min(Di, Ti) is
the density of the task.

However, we do not need to schedule all tasks in the task set fluidly. We define the
FP+fluid scheduler to be the scheduler that (optimally) partitions the task set Γ into
two disjoint subsets Γfluid and Γfp, and then schedules each task τi ∈ Γfluid fluidly with
rate δi, and schedules the tasks τi ∈ Γfp with an FP-scheduler (and DM priorities). The
tasks in Γfluid run on a reserved processor fraction of speed ∆, where ∆ =

∑
τi∈Γfluid

δi,
and the tasks in Γfp run on the “remaining” processor fraction of speed 1−∆.

To see that FP+fluid-schedulability is in NP, consider that all tasks will meet their
deadlines if both ∆ ≤ 1 and the tasks in Γfp are FP-schedulable on a processor of
speed 1−∆. A certificate of FP+fluid-schedulability can then simply consist of (1) the
partitioning of Γ into Γfluid and Γfp, and (2) fixed-points to the response-time equation of
the tasks in Γfp, where each Ci has been multiplied by 1/(1−∆). Given such a certificate
we could easily verify in polynomial time that indeed Γ = Γfluid ∪ Γfp, that ∆ ≤ 1, and
that the given fixed-points are actual fixed-points (≤ Di) to the response-time equation
for each task τi ∈ Γfp on a speed-(1−∆) processor.

FP+fluid-schedulability is of course a superset of plain FP-schedulability (since we can
set Γfluid = ∅ and Γfp = Γ) and a superset of plain fluid scheduling (since we can set
Γfluid = Γ and Γfp = ∅). To see that FP+fluid-schedulability is in fact a strict superset of
the union of both, we can consider the following simple task set:

Γ = {τ1 = (2, 4, 4), τ2 = (3, 6, 8), τ3 = (1, 9, 10)}

It can be readily checked that this task set is not fluid-schedulable (the total density > 1)
and is also not FP-schedulable (τ2 will miss a deadline under DM-priority ordering). It is
however FP+fluid-schedulable with Γfluid = {τ1} and Γfp = {τ2, τ3}.

FP+fluid-schedulability is an example of a subset of EDF-schedulability that seems
potentially harder to solve in practice than just solving EDF-schedulability. For example,
it is well-known that EDF-schedulability can be solved in pseudo-polynomial time for
bounded-utilization task sets [7], but it is not obvious that FP+fluid-schedulability can
be so solved if we want to find the best possible partitioning of Γ into Γfluid and Γfp.
However, this is not our main concern, and being in NP it is qualitatively easier to verify
the solutions of FP+fluid-schedulability.

Task splitting is another common scheduling technique that we can exploit to come up with
suitable scheduling algorithms A. Task splitting is known to often improve schedulability
(see for example [14], where this technique is referred to as period transformation), but it
normally comes with the drawback of some extra runtime overheads, especially if tasks are
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split into many much smaller pieces. This is not a concern in this context as we again do not
intend to ever run the resulting scheduling algorithm A, we merely want to find A such that
A-schedulability is in NP.

[V] – FP+split-schedulability. We consider here the simple splitting technique where a
constrained-deadline task τi = (Ci, Di, Ti) can be split into the smaller task

τ ′
i =

(
Ci

ki
,

Ti

ki
− (Ti −Di),

Ti

ki

)
,

for ki ∈ N+, with which every job of τi is served as ki jobs of τ ′
i . It can be readily

confirmed that if the ki jobs of τ ′
i all meet their deadlines, then so does the original job

that they serve. Note that splitting a task τi with Di < Ti may result in it receiving a
negative relative deadline, in which case the split task is clearly unschedulable.

FP+split-schedulability is in NP since we can provide as a certificate the ki’s and fixed-
points to the response-time equation for the split tasks τ ′

i . The solution is then verified
in polynomial time by reproducing the split tasks using the ki’s (some tasks may have
ki = 1, and remain unsplit) and verifying that the provided fixed-points are indeed valid
fixed-points to the response-time equation that are each ≤ Ti

ki
− (Ti −Di).

Now that we have FP+fluid and FP+split, nothing is stopping us from combining the power
of both, if indeed verification time and not solution time is our main concern, because
combining them will not take us out of NP.

[VI] – FP+fluid+split-schedulability. The FP+fluid+split scheduler simply partitions the
task set Γ into Γfluid and Γfp, and then schedules the tasks in Γfluid fluidly and then allows
the tasks in Γfp to be split into smaller tasks before they are scheduled by an FP scheduler
on the remaining processor fraction. Polynomial-time verifiable certificates are easily
constructed similarly to how they are constructed for FP+fluid and FP+split.

We note that FP+fluid-schedulability [IV] and FP+split-schedulability [V] both contain
as subsets the plain FP-schedulability for constrained deadlines [III] as well as EDF-
schedulability with implicit deadlines [I]. As we will see below, neither contain the other
though, they each cover different parts of the original EDF-schedulability problem. The
following is a simple task set that can be readily checked to be unschedulable by FP+fluid,
but schedulable by FP+split (by splitting τ1 into τ ′

1 = (1, 1, 2)):

Γ = {τ1 = (2, 3, 4), τ2 = (3, 6, 6)}

In the other direction, the following example can be checked to be unschedulable by
FP+split (no task can be split and keep a non-negative relative deadline), but to be
schedulable by FP+fluid (by setting Γfluid = {τ3} and Γfp = {τ1, τ2}):

Γ = {τ1 = (1, 2, 9), τ2 = (7, 9, 100), τ3 = (1 + ϵ, 10, 100)}

Now that we have seen that FP+fluid-schedulability and FP+split-schedulability cover dif-
ferent parts of the EDF-schedulability language, we note that FP+fluid+split-schedulable
is in fact more than just the union of these two. This is demonstrated by the following
example, which is unschedulable by both FP+fluid and FP+split, but is schedulable by
FP+fluid+split:

Γ = {τ1 = (3, 6, 8), τ2 = (7, 12, 100), τ3 = (1/2 + ϵ, 13, 100)}
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It is readily confirmed that none of the eight possible choices for which subset of tasks
to schedule fluidly would cause Γ to be FP+fluid-schedulable, and none of the possible
task splittings (only τ1 can be split and keep a positive deadline) would cause Γ to
be FP+split-schedulable. However, by splitting τ1 into τ ′

1 = (3/2, 2, 4) and by setting
Γfluid = {τ3} and Γfp = {τ ′

1, τ2}, the task system is indeed FP+fluid+split-schedulable
(for small enough ϵ).

The above list of sub-problems in NP to uniprocessor EDF-schedulability is by no means
comprehensive. It is always possible to come up with additional artificial sub-problems in
NP (for example by hard-coding schedulable task systems), and quite likely there are several
more “natural” sub-problems other than the ones presented here as well.

We note that while the above is presented for three-parameter sporadic or synchronous
periodic tasks, we can trivially use exactly the same sub-problems for asynchronous periodic
tasks as well, by simply ignoring the release offsets of all tasks. This is because the
synchronous arrival sequence is the worst-case for uniprocessor EDF [7], so if we can show
EDF-schedulability for the corresponding synchronous task system (for example using one of
the explainable sub-problems above), then we immediately show it also for the asynchronous
task system.

4.2 Efficiently explainable subsets of partitioned EDF-schedulability

Similarly to the FP-schedulability case in Section 3, as soon as we have efficient explainability
of a uniprocessor schedulability problem, then we automatically get efficient explainability
of the corresponding partitioned multiprocessor schedulability problem. This is the case
even though the partitioned multiprocessor variant may be much harder to solve than the
uniprocessor variant. For instance, while the EDF-schedulability problem is “only” coNP-
complete on uniprocessors, it is both NP- and coNP-hard on partitioned multiprocessors,
thus unlikely to be even in coNP. Indeed, the partitioned EDF-schedulability problem for
asynchronous task systems is ΣP

2-complete [21], and is a much harder problem than for
uniprocessors. Even so, partitioned EDF-schedulability is no less explainable than the
uniprocessor variant. A certificate of partitioned EDF-schedulability can simply consist
of the partitioning Γ1, . . . , Γm of Γ upon the m processors, together with a certificate of
uniprocessor EDF-schedulability for each of the m partitions. This certificate is verified by
checking that indeed Γ = Γ1 ∪ · · · ∪ Γm, and by verifying the per-partition certificates. Note
that the per-partition certificates do not have to be of the same type, they could for example
be certificates from different sub-problems listed earlier in this section.

5 A Scheme for Efficient Explainability

In Section 4 we explored two approaches to identifying efficiently explainable sub-problems
of the EDF-schedulability analysis problem: (i) restricting the problem instances (in [I]
and [II]); and (ii) instead testing schedulability for some other scheduler that is dominated
by EDF (in [III]–[VI]). Here we propose a third approach: directly designing a sufficient
schedulability test for EDF-schedulability analysis. For this the sufficient test should define
a language in NP, in the sense that for all task systems that pass the test, we can create
polynomial-time verifiable certificates of this fact.
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t
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Figure 3 The left plot depicts dbfi(t) for a task τi with Ci = 1, Di = 2, and Ti = 3. The center
plot depicts dbfi(t) with k = 3, and the right plot, dbfi(t, Si) for Si = {1, 2, 5}. Note that dbfi(t)
(dbfi(t, Si), respectively) is discontinuous only at the first k steps (only around the steps in Si,
resp.), and is piecewise linear with slope ≤ Ci/Ti everywhere else.

As stated in Section 2.1, processor-demand analysis (PDA) is the standard test for
EDF-schedulability. PDA checks that Eq. 3 (reproduced below):∑

τi∈Γ
dbfi(t) ≤ t

holds for all values of t ∈ T (Γ), where T (Γ) is the potentially exponentially-sized testing
set. A sufficient EDF-schedulability test is easily obtained by replacing each task’s demand
bound function (the dbfi(t) terms in Eq. 3) with an approximation dbfi(t), such that
dbfi(t) ≤ dbfi(t) for all t. It is evident (see Eq. 2) that dbfi(t) is a step function with a
zeroth step over interval [0, Di), a first step over interval [Di, Ti + Di) and so on – see the
left plot in Fig. 3. Albers and Slomka [1] proposed the following approximation to dbfi(t)
(depicted in the center plot in Fig. 3): letting k denote any positive integer constant, their
approximation retains steps zero through k while the remainder is over-approximated by a
straight line with slope equal to the task’s utilization:

dbfi(t) =
{

dbfi(t), for t < Di + kTi

(Ti −Di + t)× Ci

Ti
, for t ≥ Di + kTi

(4)

We note that dbfi(t) is discontinuous only at points t = ℓ Ti + Di for some τi ∈ Γ and ℓ ∈
{0, 1, . . . , k}. It therefore follows that the left-hand side of the approximated version of Eq. 3,
i.e.,

∑
τi∈Γ dbfi(t), is discontinuous at no more than ((k + 1)× |Γ|) points, and is piecewise

linear with slope at most
∑

τi∈Γ Ci/Ti elsewhere. Assuming
∑

τi∈Γ Ci/Ti ≤ 1, we therefore
only need to evaluate the approximated version of Eq. 3 at the ≤ ((k + 1)× |Γ|) points of
discontinuity; for constant k, this yields a polynomial-time sufficient EDF-schedulability test.
It was also shown in [1] that any Γ that is deemed to not be EDF-schedulable by this sufficient
test is guaranteed to actually not be EDF-schedulable upon a speed-(k/(k + 1)) processor.
Since k may take on any value, the Albers and Slomka polynomial-time sufficient test [1]
is therefore an FPTAS (see Definition 1) for EDF schedulability analysis; as mentioned in
Section 2, FPTAS’s are considered to be the ‘best’ kind of approximation algorithm (that
runs in polynomial time).

A scheme for efficient explainability. We can directly use the Albers and Slomka FPTAS [1]
to design a scheme for efficient explainability, in the following manner. Suppose that we
wish to explain, with a speedup factor9 equal to (1 + δ), that some task system Γ is EDF-
schedulable – we can do so by simply using the Albers and Slomka [1] over-approximation

9 I.e., if we fail to explain the EDF-schedulability of Γ then Γ is in fact guaranteed to not be EDF-
schedulable upon a speed-(1/(1 + δ)) processor.
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of the demand bound function with k ← ⌈1/δ⌉. Since the running time of the Albers and
Slomka [1] test is polynomial in |Γ| and k, i.e., polynomial in |Γ| and (1/δ), it follows that
this does indeed constitute a scheme for efficient explainability of EDF schedulability.

An improved scheme for efficient explainability. The scheme described in the previous
paragraph is obtained by direct application of the FPTAS from [1]. But we can in fact
improve on this for the purposes of efficient explainability: There is no particular reason why
it is the first k steps of dbfi that must be exact (not over-approximated), nor why the dbfi

of each task τi must be exact for the same number of steps (the same value of k).
Let us examine these ideas a bit further. Observe that in the function dbfi the interval

of the ℓth step, ℓ ≥ 1, is given by

stepi(ℓ) =
[
(ℓ− 1)Ti + Di, ℓ Ti + Di

)
. (5)

For any Si ⊂ N+, let us define dbfi(t,Si) to be the approximation to dbfi(t) that agrees with
dbfi(t) over the intervals of the steps in Si, and is a linear over-approximation elsewhere:

dbfi(t,Si) =


0, if t < Di

dbfi(t), if t ∈ stepi(ℓ) for some ℓ ∈ Si

(Ti −Di + t) Ci

Ti
, otherwise

(6)

The approximation dbfi(t,Si) is illustrated in the right-most plot of Fig. 3. For any Si, we
have dbfi(t) ≤ dbfi(t,Si) for all t. By picking some set of steps Si for each task τi and then
replacing dbfi(t) by dbfi(t,Si) in Eq. 3 we therefore get a sufficient EDF-schedulability test.

As with the Albers and Slomka [1] approximation, we note that dbfi(t,Si) is discontinuous
only at points t = ℓTi +Di where ℓ ∈ Si∪{0}, and is piecewise linear with slope at most Ci/Ti

elsewhere. It follows that
∑

τi∈Γ dbfi(t,Si) is discontinuous at most at
∑

τi∈Γ(|Si|+1) points,
and is piecewise linear with slope at most

∑
τi∈Γ Ci/Ti elsewhere. Assuming

∑
τi∈Γ Ci/Ti ≤ 1,

we therefore only need to evaluate the approximated version of Eq. 3 at the points of
discontinuity (that are less HP(Γ)). If

∑
τi∈Γ(|Si|+ 1) is bounded by a polynomial in the

size of the task system, then we can check all points in the testing set in polynomial time.

For a fixed polynomial q, we let q-PDA be the subset of all task systems Γ for which there
exists sets Si ⊂ N+ for each τi ∈ Γ, such that

∑
τi∈Γ dbfi(t,Si) ≤ t for all 0 ≤ t ≤ HP(Γ)

and
∑

τi∈Γ(|Si|+ 1) ≤ q(|Γ|). By the reasoning above, q-PDA is in NP since a task set Γ can
be verified to be in q-PDA in polynomial time if given the sets Si as a certificate.

While it may require significant effort to find the sets Si, the q-PDA has the potential to
allow much more efficient verification of solutions than the Albers and Slomka FPTAS. In
fact, using q-PDA we may exponentially decrease the discontinous points that need to be
checked in Eq. 3. The following simple example demonstrates this.

▶ Example 4. Consider the task set Γ = {τ1 = (1, 1, 2), τ2 = (α/2, α, 2α)}, where α is some
large even number. It can be readily confirmed that Γ is EDF-schedulable. However, using
the approximation in Eq. 4 with k < α/2 we get

∑
τi∈Γ dbfi(α) = α + 1/2, and therefore

we need k ≥ α/2 to establish that Γ is schedulable with the Albers and Slomka FPTAS,
for a total of at least α discontinuous points to check. However, using q-PDA and the
approximation in Eq. 6 with S1 = {α/2} and S2 = {1}, we can establish that Γ is schedulable
by only checking 4 discontinuous points. In other words, Γ is in q-PDA with q(n) = 2n. ⌟
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How much of EDF-schedulability that is covered by q-PDA depends very much on ’q,
which makes it a type of parameterized approximation. This motivates the following
definition, which extends the concept of FPTAS’s for schedulability tests that was introduced
(Definition 1) in Section 2.

▶ Definition 5 (FPTVAS). A fully polynomial-time verification approximation scheme
(FPTVAS) for a schedulability analysis problem is an algorithm that, given as input an instance
Γ, a parameter δ > 0, and a certificate, returns “unschedulable” if Γ is unschedulable
on a speed-1 processor, and returns “schedulable” if Γ is schedulable on a speed-(1/(1 + δ))
processor. Its running time is bounded by a polynomial in the two parameters |Γ| and

( 1
δ

)
.

While our definition of FPTAS’s for schedulability analysis problems (Definition 1) is
essentially an instantiation of the preëxisting concept of FPTAS’s from approximation
theory [3, 34], the notion of FPTVAS’s in Definition 5 above is, to our knowledge, novel –
we are not aware of prior work in complexity theory that lifts the concept of FPTAS’s from
polynomial-time computation (i.e., the complexity class P) to polynomial-time verification
(the class NP).

5.1 Extension to Multiprocessors
In contrast to uniprocessor EDF schedulability where an FPTAS is known to exist [1],
no FPTAS is known for multiprocessor partitioned EDF schedulability – indeed, a lower
bound of 1.5026 was recently obtained [28] on the speedup factor of the state-of-the-art
partitioned EDF scheduling heuristic [9]. We cannot therefore simply use a preëxisting
FPTAS to obtain an approximation scheme for efficient explainability of partitioned multi-
processor EDF schedulability. We can, however, extend the FPTVAS for uniprocessor EDF
schedulability obtained above in the following manner to obtain an FPTVAS for partitioned
EDF-schedulability of sporadic / synchronous periodic task systems. Suppose task system Γ
is EDF-schedulable upon being partitioned upon an m-processor platform. For any fixed
polynomial function q, the certificate of its schedulability would consist of
1. The partitioning Γ1, Γ2, . . . , Γm of Γ amongst the m processors; and
2. For each partition Γj , 1 ≤ j ≤ m, a certificate of its uniprocessor EDF schedulability. Such

a certificate would comprise the sets Si for each τi ∈ Γj , together satisfying the constraints
that

∑
τi∈Γj

dbfi(t,Si) ≤ t for all 0 ≤ t ≤ HP(Γj) and
∑

τi∈Γj
(|Si|+ 1) ≤ q(|Γj |).

As in the uniprocessor case, this FPTVAS immediately implies an approximation scheme for
efficient explainability of partitioned multiprocessor EDF schedulability.

6 Explainability Beyond Polynomial-time

There are many examples in real-time scheduling theory where not only polynomial-time
algorithms are considered to be efficient, but also pseudo-polynomial time algorithms. (E.g.,
both response-time analysis [23] for FP-schedulability and the processor-demand approach [7]
for EDF-schedulability of bounded-utilization systems are widely used schedulability analysis
algorithms that have pseudo-polynomial running times.) The fundamental reason for why
pseudo-polynomial time algorithms are often considered as being efficient in real-time
scheduling is simply that the numerical parameters that appear in scheduling problems tend
to have some direct physical meaning. For example, the parameters Ci, Di and Ti of a
sporadic task are supposed to represent physical time in some given unit, and we would
therefore not expect to be given input instances with numerical parameters that are too
large to be meaningful on a human timescale. Whether a pseudo-polynomial time algorithm
is to be considered efficient certainly depends on what we expect the inputs to look like.
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If we do accept pseudo-polynomial time as acceptably efficient in the context of solving
problems, should we also accept pseudo-polynomial time as acceptably efficient for verifying
solutions? We see no particular reason to not do so, if the problem is such that numerical
values tend to be reasonably small. This motivates the following definition.

▶ Definition 6 (pseudoNP). We can consider pseudoP as the complexity class of problems
that can be solved by a pseudo-polynomial time algorithm. Equivalently, pseudoP contains
the problems that would be in P if numbers were written in unary. Analogously, we define
pseudoNP as the class of problems that would be in NP if numbers were written in unary. The
class pseudoNP then contains the problems for which there exist pseudo-polynomially sized
certificates that can be verified in pseudo-polynomial time.

The classes pseudoP and pseudoNP do not fit so neatly into the hierarchy of complexity
classes shown in Figure 1. We can see that pseudoP of course contains P, but must also be
contained in EXP since the value of a (naturally represented) numerical parameter is at most
exponential in the total length of the input, and therefore any polynomial in the value of the
largest number cannot be larger than exponential in the input length. Further, any problem
in EXP can be (artificially) transformed to allow a pseudo-polynomial time algorithm by
padding input instances with large numbers. Hence, pseudoP intersects with all the classes
up to EXP in Figure 1, but only completely contains P. By similar arguments, pseudoNP
contains NP, is contained in NEXP and intersects with all other classes in Figure 1, including
NEXP. The class pseudoNP captures an interesting property of problems, which to the authors’
knowledge is not well-studied.

What problems can be found in pseudoNP that are neither in pseudoP nor in NP?
Partitioned EDF-schedulability is again a good example. We know that uniprocessor EDF-
schedulability of three-parameter sporadic (or synchronous periodic) tasks can be solved
in pseudo-polynomial time if the utilization of task systems is bounded by some constant
c < 1 (say, c = 0.99). [7] On the other hand, we know that partitioned EDF-schedulability is
both NP- and coNP-hard, even with utilization bounded by any c > 0 [21], and thus is not
in NP (unless NP = coNP). It is not difficult to see that this is the case even if we enforce a
per-partition utilization bound of c. Also, the partitioned problem is NP-hard in the strong
sense (as it generalizes Bin-Packing) and is therefore not in pseudoP (unless P = NP).
However, the partitioned EDF-schedulability problem with a per-partition utilization bound
of c < 1 is in pseudoNP. A certificate for this problem can simply consist of the partitioning,
and the verifier can check that each partition has a utilization of at most c, and then directly
verify the schedulability of each partition in pseudo-polynomial time using the standard PDA
test [7].

An example of a problem that is not in pseudoNP is the uniprocessor EDF-schedulability
problem for unbounded-utilization task systems. Since this problem is coNP-complete in the
strong sense [20], it is (by definition) coNP-complete also if numbers are written in unary.
Since the unary version is coNP-complete, it cannot be in NP (unless NP = coNP), and therefore
the uniprocessor EDF-schedulability problem for unbounded-utilization task systems is not
in pseudoNP.

7 Discussion

1. We have classified several multiprocessor schedulability analysis problems as efficiently
explainable or not.

2. Using uniprocessor EDF schedulability analysis as a concrete example problem, we have
developed multiple distinct methods for identifying efficient explainable sub-problems of
problems that are not efficiently explainable. (We have also applied these methods to
partitioned multiprocessor EDF schedulability analysis.)
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3. We have extended the notion of FPTAS’s, which are widely studied for approximation
algorithms, from approximately solving a problem to verifying an approximate solution
– this yields the novel concept of FPTVAS’s (Definition 5), and extends the idea of
approximation schemes to schemes for efficient explainablity.

4. We have extended the concept of pseudo-polynomial time algorithms, which are in-
creasingly coming to be accepted as being ‘efficient enough’ for pre-run-time analysis
(such as schedulability analysis), from efficient determination of schedulability to ef-
ficient explanation of schedulability, by defining the novel complexity class pseudoNP
(Definition 6).

Our contributions in all these aspects are by no means complete or comprehensive – a large
amount of work remains to be done in both classifying the explainability or non-explainability
of other important schedulability-analysis problems, and in identifying efficiently-explainable
sub-problems for those determined to not be efficiently explainable. Additionally, our
explorations of the concepts of FPTVAS’s (Definition 5) and pseudoNP (Definition 6) are
quite basic – we believe both these concepts are potentially very meaningful and so merit
considerable additional investigation.

We reiterate that we believe the use of formal, machine-verifiable proofs (such as those in
Maida et al. [29]) is a promising way forward if we wish to use advanced techniques and recent
developments in real-time systems research to explain schedulability to a certification authority
(CA). Rather than trying to convince the CA that, say, an analysis for FP+fluid+split is sound
and can be used to indirectly prove EDF-schedulability, such details can all be contained
in the formal proof. The CA needs only to trust the proof assistant itself (e.g., Coq) and
agree with the model of the system and basic definitions. The stated goal of the certification
step (e.g., that the system is EDF-schedulable) is then guaranteed by the proof produced by
the proof assistant, and can be trusted without even knowing the particular proof strategy
employed. With this work we want to put forward the idea that techniques for enabling
efficient explainability, as outlined in brief in this paper, could guide the creation of such
machine-verifiable proofs that may indeed be verified efficiently, even as systems grow in size
and complexity.

Finally, a discussion on verifiability of solutions to computational problems would not
be complete without mentioning interactive proof systems. IP is the complexity class of
problems where a verifier with only polynomial computational resources can be convinced
(to an arbitrary degree of certainty) by an all-powerful prover that a valid solution exists to
a given problem instance. In contrast to the static certificates –the explanations– considered
in this paper, interactive proof systems work by letting the verifier and prover interactively
exchange messages with each other, where the verifier challenges the explanations of the
prover by asking specially-crafted (and randomized) questions. IP was shown to equal PSPACE
(see Figure 1) in a landmark result [33], meaning that very many practical problems have
such interactive proof systems. While interactive proof systems come with their own set of
significant challenges, requiring interactive communication and accepting a small probability
of incorrectly verified solutions, we believe that they have a place in explainability of real-time
systems as well, and represent an interesting direction for future work.
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Abstract
The algorithm-design paradigm of algorithms using predictions is explored as a means of incorporating
the computations of lower-assurance components (such as machine-learning based ones) into safety-
critical systems that must have their correctness validated to very high levels of assurance. The
paradigm is applied to two simple example applications that are relevant to the real-time systems
community: energy-aware scheduling, and classification using ML-based classifiers in conjunction
with more reliable but slower deterministic classifiers. It is shown how algorithms using predictions
achieve much-improved performance when the low-assurance computations are correct, at a cost of
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1 Introduction

The increasing use of Learning-Enabled Components (LECs) in safety-critical applications
such as autonomous driving present unique challenges to the discipline of safety-critical
systems engineering. On the one hand, the availability of such LECs dramatically enhances
the capabilities of autonomous cyber-physical systems – it is hard to conceive of, e.g., self-
driving cars that do not make extensive use of LECs such as Deep Neural Networks for
perception. But on the other hand, most widely used LECs cannot provide performance
guarantees at high enough levels of assurance that they may be used in the verification and
validation processes that are so fundamental to safety-critical systems engineering.

Context. A recent line of work in the algorithms community, algorithms using predictions,
offers a promising approach for incorporating low-assurance predictions of the kind that
are typically provided by LECs into algorithms designed for use in safety-critical systems.
Algorithms using predictions are intended to perform very well when the predictor is accurate
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(this property is called consistency – see Sec. 3), while simultaneously guaranteeing to provide
acceptable performance regardless of the quality of the predictions (called robustness – also
formally defined in Sec. 3).

In this paper, we investigate the applicability of this framework to safety-critical systems.
We have found that the framework needs to be adapted for this purpose due, amongst other
reasons discussed in Sec. 3, to the presence of hard constraints (e.g., deadlines that must
be met) in many safety-critical systems. Most prior work on algorithms using predictions
has focused upon pure optimization problems that do not include such hard constraints1 –
indeed, amongst the 28 papers tagged with the keyword “scheduling” in the comprehensive
list of publications on the topic that is maintained on the Algorithms With Predictions
web-site,2 we found only two [2, 3] that consider workload models with hard deadlines. (We
will discuss these two papers further in Sec. 2.)

Our Contributions. In this paper, we adapt the algorithms using predictions framework
for use in safety-critical systems and provide an introductory explanation of the adapted
framework, specifically written to be comprehensible with moderate effort by members of
the real-time systems community who may have had no prior exposure to algorithms using
predictions. This explanation emphasizes the main features of the framework, and makes
the case that this framework can contribute to the ongoing efforts of our community at
incorporating LECs into safety-critical CPS’s. In addition, we illustrate the applicability of
this framework to real-time systems by considering the following two problems that are of
interest to the real-time systems community:
1. As a first example illustration, we examine a problem that has been studied extensively

in our community: energy-efficient hard-real-time scheduling. One of the main challenges
encountered in this problem is what is commonly referred to as “the WCET problem” [16]
– the non-determinism and variation in the execution duration of individual pieces of
code upon modern computing platforms. In hard-real-time systems, the WCET problem
requires that computing capacity be provisioned to accommodate a conservative worst-
case upper bound on the needed amount of computation; we will see that this can lead
to excessive energy being consumed during run time. If a reasonably good (although not
guaranteed to be correct) prediction on the actual execution duration of the code is also
available, then we will see that the algorithms using predictions framework can realise
considerable energy savings.

2. Our second example illustration considers a form of LECs called IDK classifiers that has
recently garnered some attention in the real-time systems community (see, e.g., [1, 5, 6]).
Classifiers are used for classifying sensor readings into one of a set of a classes (e.g., a
camera input to “pedestrian”, “stop sign”, etc.); LEC-based classifiers are generally not
able to guarantee to do so at a high enough level of assurance and so should be backed
up by deterministic – i.e., not learning-enabled – classifiers (including, perhaps human
intervention). We will examine how the framework of algorithms using predictions can
nevertheless use LEC-based classifiers to provide improved performance in the form of
reduced expected response times.

1 E.g., a paper at RTSS last year [18] proposed an algorithm using predictions for soft real-time scheduling
to minimize the average response time – it is not at all obvious how one would adapt this algorithm to
handle hard deadlines.

2 https://algorithms-with-predictions.github.io (Accessed on 25/02/2023.)
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Organization. The remainder of this manuscript is arranged as follows. In Section 2 we
step through the process of designing an algorithm using predictions for a very simple
energy-aware scheduling application, emphasizing, at each point in the presentation, the
role that the predictions play in the algorithm design and the consequent implications on
algorithm performance. This example application will give us an intuitive understanding of
the algorithm-design paradigm of algorithms using predictions; we formalize this intuition
in Section 3 and explicitly articulate the elements of the paradigm. We provide a second,
somewhat more sophisticated, illustration of the application of this paradigm in Section 4,
where we design an algorithm using predictions for minimizing the expected duration needed
to successfully complete a classification operation. We close in Section 5 by placing this work
within a larger context of safety-critical systems design, and some suggested directions of
follow-up research.

2 Illustrative Example: Energy-Efficient Scheduling

In this section we apply the algorithms using predictions framework, suitably adapted as
needed, to a problem that has been widely studied in the real-time systems community:
scheduling to minimize energy consumption (see, e.g., the surveys [4, 9] and the references
cited therein). We will show how predictions of run-time behavior, when available, can be
used to significantly reduce energy consumption when the predictions are somewhat accurate
while not requiring too much additional energy when the predictions are completely wrong.

This section is organized as follows. We first briefly describe (Sec. 2.1) the system
model we will use, in which a job is characterized by its worst-case execution time, which is
guaranteed to be a safe upper bound on its actual execution duration, as well as a prediction
(which may be inaccurate) of the actual duration for which it will execute. We then propose
(Sec. 2.2) a baseline prediction-oblivious algorithm that is fairly straightforward – what a
real-time systems developer would probably come up with if no prediction of the actual
execution duration had been provided. Next (in Sec. 2.3) we explain how the prediction can
be incorporated to obtain an algorithm that is more energy-efficient than the prediction-
oblivious one when the prediction is more-or-less correct, whilst consuming not much more
energy than the prediction-oblivious algorithm even when the prediction is completely off the
mark. We then (Sec. 2.4) address the issue of learning better predictions during run-time,
and finally (Sec. 2.5) apply these concepts upon a simple example system. We close out the
section by discussing related work and listing some open questions (Sec. 2.6).

2.1 System model
Since our primary purpose is to illustrate the algorithms using predictions framework, we will
make a number of simplifying assumptions in both our workload model and our energy model
for the purposes of ease of presentation (and so that we can focus on emphasizing the use of
prediction in the algorithms we develop). We will point out, where relevant, how our results
are easily modified to account for the factors that we abstract away in our simplifications.

We assume that we have a single job that is released at time zero, has a hard deadline
at time D, and is characterized by a worst-case execution time parameter (WCET) W ,
that is to be executed upon a uniprocessor platform. The work done by the processor over
any time-interval [t1, t2] is equal to

(∫ t2
t1

s(t) dt
)

, where s(t) denotes the processor speed at
time-instant t. The speed may be changed by the run-time scheduler at any instant to take
on any non-negative real value; there is no cost or penalty associated with changing the
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Table 1 Summarizing the system model: ⟨W, D, P, α, γub⟩.

symbol interpretation
W worst-case execution time
D deadline
P predicted execution time
α exponent of power function (power = speedα)

γub robustness bound (maximum ratio of energy consumed)

speed. The power required to run the processor at some speed s is equal to sα, where α is a
positive real value that is larger than 1.3 Hence, the energy consumed by the processor over
any time-interval [t1, t2] is given by

(∫ t2
t1

(
s(t)

)α
dt

)
.

A predicted execution duration. As is widely known in the real-time systems community,
in safety-critical systems the values that are assigned to WCET parameters tend to be
conservative over-approximations; hence it is unlikely that our example job will actually need
to execute for a duration W under the overwhelming majority of run-time circumstances
that arise in practice. Let us assume that we additionally have a prediction, P , on the actual
execution time (AET) of the job, where P is a non-negative real-valued number that is no
larger than the WCET W .

Recall that our goal is to develop an algorithm that performs very well when the
prediction is correct, while simultaneously guaranteeing to not perform too poorly even when
the prediction is incorrect. We assume that we are provided with an additional parameter
that is a real number > 1, γub, specifying the maximum multiplicative factor by which the
energy consumed by an algorithm using predictions may exceed the energy consumed by a
reasonable prediction-oblivious algorithm that ignores the prediction (which we will describe
in Sec. 2.2), regardless of how poor the prediction turns out to be.

Generalizing the model. As stated earlier, we are assuming a very simple system model
in order to keep the focus on the algorithms using predictions framework. Here, we briefly
discuss possible extensions to our model that render it more realistic.

We are considering the problem of scheduling a single job within a specified time-
interval [0, D]. Such problems could arise in application systems where a more complex
workload is being scheduled non-preemptively, with the non-preemptive schedule generated
using heuristic tools that seek to maximize the slack for each job. Energy-efficient
implementation of the schedule so generated would require us to schedule each job within
a specified time-interval, yielding (for each job) the problem addressed in our model.
Our energy model (that the power needed to execute the processor at speed s is equal to
sα) is idealized in that it ignores, e.g., leakage energy. But as we will see later in this
section, the methodology we develop allows for “black-box” models to be substituted
for this simple energy model – the overall methodology remains unchanged, the only
difference being that numerical computation (rather than the solving of closed-form
expressions) may be needed.
In a similar vein, adding the restriction that the processor speed may only take on one
of a few pre-specified permissible values does not change the essential structure of our
methodology (although the combinatorial explosion resulting from having to choose from
amongst a set of discrete speeds may slow down the running times).

3 Observe that energy-efficient scheduling is trivial if α ≤ 1: it is optimal to simply run the processor at
maximum speed until the job completes.
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time

speed

tv D

(
P
tv

)
(

W −P
D−tv

)

Figure 1 Speed profile for Algorithm alg (Sec. 2.3): A job is executed according to this profile
until completion (upon which the speed is set to zero).

2.2 A Prediction-Oblivious Algorithm
If we were to choose to not make use of the prediction, a reasonable run-time algorithm
would be to set the processor speed to (W/D) and then execute the job until completion.
(This follows from the well-understood phenomenon – see, e.g., [17] – that for α > 1, the
energy required to complete a known amount of work is minimized by having the CPU run
at a constant speed for the duration of execution of the work. Thus, setting the processor
speed equal to W/D would result in the minimum energy consumption in the worst case –
i.e., when the job requires maximum execution.) Since this algorithm has the least worst-case
energy consumption, let us refer to it as WC. Note that the duration for which WC would
execute a job whose realized (i.e., actual) execution time turns out to be equal to A is

A
speed = A

W/D = AD
W time units. Hence, the energy consumed in executing a job with

actual execution time A, denoted EWC(A), is given by the following expression.

EWC(A) def=
[(

W

D

)α

×
(

AD

W

)]
=

[(
W

D

)α

× A ·
(

D

W

)]
=

(
W

D

)α−1
× A (1)

2.3 Incorporating The Prediction
We now develop an algorithm, alg, that makes use of the predicted value P of the actual
execution time of the job. Recall that the goal in so doing is to have alg consume less energy
than WC if the prediction is correct, i.e., if the actual execution time happens to be equal
(or close) to P , while consuming no more than γub times the amount of energy consumed by
WC even if the prediction is completely off.

Our prediction-oblivious algorithm of Section 2.2 had set the processor speed to equal
W/D. Observe that it is unsafe for alg to analogously replace the WCET W by the predicted
execution duration P and simply set the speed equal to P/D, since it would then have
completed exactly P units of execution by the deadline D. Hence if the prediction turns
out to be an underestimation and the actual execution time exceeds P , alg would cause a
deadline miss to occur. Therefore alg instead sets itself a virtual deadline tv that is strictly
before the actual deadline at D (i.e., tv < D – see Figure 1), and seeks to ensure that the job
will complete at this virtual deadline if the prediction is correct (i.e., the job needs exactly P

units of execution). Analogously to Algorithm WC in Section 2.2, this goal is achieved by
setting the initial processor speed equal to exactly P/tv. If during some execution the job
completes prior to time-instant tv, then it follows, by a reasoning analogous to that used
in deriving Expression 1, that the energy consumed in alg is equal to

(
(P/tv)α−1 × A

)
,

where A again denotes the actual execution time (the AET) of the job on this particular
execution. If however the job has not completed execution by its virtual deadline, alg
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concludes that the prediction is incorrect and adjusts processor speed to ensure that the
maximum amount of execution that could remain, (W −P ), will complete within the duration
remaining prior to the actual deadline, (D − tv); it does this by increasing the processor
speed to equal (W − P )/(D − tv). In this case the energy consumed over the interval [0, tv]
equals

(
(P/tv)α−1 × P

)
(since P units of work was done during this interval), while (A − P )

units of work is done for the remainder of the execution and so the energy consumed between
time-instant tv and the job’s completion is equal to

(
((W − P )/(D − tv))α−1 × (A − P )

)
.

Putting the pieces together, we conclude that the energy consumed by alg on executing an
invocation of the job that has AET A is given by

Ealg(A) =


(

P
tv

)α−1
× A, if A ≤ P(

P
tv

)α−1
× P +

(
W −P
D−tv

)α−1
× (A − P ), otherwise

(2)

It remains to specify how the value of tv is to be determined. Informally speaking, the slower
the processor speed the less the energy consumed. Since our goal in designing algorithms
that use predictions is to have excellent performance (in this example, minimal energy
consumption) in the event that the prediction is correct, we would like the initial processor
speed to be as small as possible – this is achieved by setting tv to be as large as we possibly
can. (Note from Expression 2 that Ealg(P ) is smaller for larger tv.) However in the event of
the prediction turning out to be incorrect, there should be adequate time remaining between
the virtual deadline and the actual one to allow the job to be completed by increasing the
processor speed. We have seen that increasing the processor speed requires an exponential
increase in the power needed (and hence the energy consumed) – we must ensure that
the total amount of energy consumed when the prediction is incorrect does not break the
specified robustness bound (i.e., does not exceed γub times the amount of energy that would
be consumed by Algorithm WC to execute the same job). It is evident that since alg
executes at a greater speed (and hence less energy-efficiently) than WC for A > P , the ratio
of Ealg(A)/EWC(A) increases with increasing A, taking its maximal value when the job
actually executes for a duration equal to its WCET (i.e., A takes on its largest possible value
of W ). The virtual deadline is therefore assigned the largest value of t for which

Ealg(W ) ≤ γub × EWC(W )

≡
(

P

t

)α−1
× P +

(
W − P

D − t

)α−1
× (W − P ) ≤ γub ×

(
W

D

)α−1
× W (3)

Computing the virtual deadline tv. We now discuss how the largest value of t satisfying
Expression 3 is determined. For the special case where α, the exponent defining the
relationship between the processor’s speed and its power consumption, is equal to two (i.e.,
power equals speed-squared), Expression 3 may be algebraically rewritten as the quadratic
inequality

γub × t2 −

−B︷ ︸︸ ︷(
(γub − 1) × D + 2PD

W

)
×t +

C︷ ︸︸ ︷(
PD

W

)2
≤ 0 (4)

and hence, using the well-known formula for finding the roots of a quadratic equation, we get
the following closed-form expression for tv (with B and C denoting the expressions indicated
in Eqn 4 above):

tv = −B +
√

B2 − 4γubC

2γub
(5)
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For values of α other than two, we do not have a closed-form expression for tv Instead we
can obtain, via numerical methods, an arbitrarily close approximation of the true value of tv

in the following manner.
1. Since alg should have its initial speed be no larger than the worst-case algorithm WC’s

initial speed, we should have (P/tv) ≤ (W/D) or tv ≥ (P/W ) × D. This defines a lower
bound on the value of tv; D is obviously an upper bound.

2. Within this range, observe the monotonicity property of t satisfying Expression 3: if to

satisfies Expression 3 than so do all t < to; if to does not satisfy Expression 3 then neither
does any t > to.

3. We can therefore do binary search between
(
(P/W )×D

)
and D to determine an arbitrarily

close approximation of the largest value of t satisfying Expression 3.
We have assumed here the simplified power model: (power = speedα) to derive the value to
be assigned to tv. We point out that more complex models may be used – simply replace
the one occurrence in the derivation of Eqn. 1 and the two occurrences in the derivation of
Eqn. 2 of (speedα) by calls to a black-box implementation of the appropriate power function.

2.4 Learning an Improved Prediction

Thus far, we have assumed that our goal is to schedule the execution of a single job in an
energy-efficient manner. It may be the case for certain application scenarios that this single
job is invoked repeatedly in a periodic or sporadic manner. In such applications it may make
sense to update the predicted execution duration (the parameter P ) based on the observed
actual execution times of previously-executed invocations. (Standard techniques, such as a
PID controller or some appropriate Reinforcement Learning [15] method, may be used for
this purpose.) But observe that P appears in Expression 3 which is used in computing the
virtual deadline; hence, updating the value of P will require that the value assigned to the
virtual deadline parameter tv also be updated. That is, if the value of P is not a priori fixed
then the value assigned to the virtual deadline can be looked upon as a function of P – this
dependence of the virtual deadline on the value of P may be made explicit by referring to
the virtual deadline as a function of P : tv(P ). Computing tv(P ) every time the value of P

is updated may be computationally too expensive to do during run-time; hence we propose
to precompute the values of tv(P ) within a reasonable range of values for P , and store these
values (alongwith the corresponding values of the speeds at which the processor should be
run before and after tv) in a lookup table for use during run-time.

2.5 An Example

We will now illustrate the concepts introduced above upon an example problem instance
⟨W, D, P, α, γub⟩ = ⟨8, 10, 5, 2, 1.1⟩. That is, we have a job with WCET W = 8, relative
deadline D = 10, and a predicted execution duration P = 5, that is to be executed upon a
processor with the power exponent α = 2 (recall that this means that executing the processor
at speed s requires power sα). A robustness bound γub = 1.1 is also specified: in using the
prediction we may not exceed 1.1 times the energy consumed by the prediction-oblivious
algorithm WC regardless of how inaccurate the prediction turns out to be.

Computing the virtual deadline. Since α happens to have value 2 in our example instance,
we may solve for tv exactly using Equation 5 to compute that tv = 7.6.
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Comparing the two algorithms. We have plotted the ratio of the energy that is consumed
by the algorithm using predictions to that consumed by the prediction-oblivious algorithm in
Figure 2. This plot reveals that alg consumes approximately 82.2% of the energy that WC

Figure 2 Ratio of energy consumed by alg to the energy consumed by WC as a function of the
actual execution time (AET), as AET ranges from 0 to W = 8.

consumes when the AET of the job is at (or below) its predicted execution duration. Thus,
in this example a perfect prediction results in an approximately 17.8% savings in consumed
energy. This same level of savings is also obtained with predictions that over-estimate the
AET (i.e., when AET < P ). And while the relative savings decreases as the AET increases
beyond the predicted value, notice that the energy consumed by alg remains below that
consumed by WC as long as the AET is no larger than ≈ 6.575. Algorithm WC is more
energy-efficient for values of AET that fall in the range (6.575, 8]; note, however, that the
ratio never exceeds the specified bound of γub = 1.1.

Updating the prediction. For application scenarios where the same job is invoked repeatedly
at run-time, we had discussed in Section 2.4 how one could use on-line learning to update the
value of the prediction P . We had stated that the value of the virtual deadline parameter
tv changes as P changes – Figure 3 depicts tv as a function of P for our example. Prior to
run-time a table of values for tv as a function of P should be pre-computed and stored for
use during run-time.

Figure 3 The virtual deadline tv(P ) as a function of the predicted execution duration P .
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2.6 Related Work and Future Directions

Although (as mentioned earlier) there is an extensive body of work dealing with energy-efficient
scheduling, most of it does not consider predictions. We found only three papers [2, 3, 10]
dealing with energy from amongst the 28 papers tagged with the keyword “scheduling” in
the list of publications maintained on the Algorithms With Predictions web-site4 (“energy”
is not a searchable keyword there). In contrast to our model where we have just a single
job, these papers all allow for multiple jobs; however they make simplifying assumptions
regarding AETs that appear unrealizable in practice. Antoniadis et al. [2] assume that
the exact execution duration of a job is known beforehand (and it is the arrival times and
deadlines that are unknown and the subject of prediction), while Bamas et al. [3] assume
that a job’s AET becomes known at the instant of job arrival. These assumptions do not
model the reality of the vast majority of embedded systems where the AET only becomes
known by actually executing a job to completion. Lee et al. [10] consider a very different
problem (that does not involve deadlines): minimize energy cost in data centres where the
cost of energy depends upon both the volume and the peak usage, and where energy can be
either locally generated or drawn from the grid.

Future work. In our opinion, the most obvious generalization of our model would be to allow
for the specification of multiple jobs (eventually, even recurrent tasks). However exploiting
predictions for energy-efficient scheduling becomes considerably more challenging when
multiple jobs are to be considered – the interested reader is encouraged to glance through [3]
to get a flavor for the complexities that arise even under the unrealistic assumption that
predictions of a job’s AET are revealed to hold or not upon job arrival (despite the other
simplifying assumptions there, such as that all jobs have the same relative deadline, processor
sharing is permitted, etc.).

3 Algorithms Using Predictions: The Foundations

The idea of “better than worst case” analysis has recently enjoyed much attention in theoretical
computer science [14]. The motivation is that worst case instances are not common, and so
we should design algorithms to also perform well in the common case while simultaneously
maintaining worst case guarantees. One approach is to use predictions to guide an algorithm
– these predictions may be generated via machine learning, human intuition, or other low
assurance methods. Such predictions may be incorrect, therefore algorithms should not trust
them entirely. The goal is to get the best of both worlds by improving performance when
the prediction holds, without degrading performance by too much when the prediction fails.
More specifically, these algorithms are characterized by three properties (formally defined a
bit later in this section):
1. Consistency (Definition 4): When the predictions are correct, the algorithm provides very

good performance for the instance.
2. Robustness (Definition 3): When the predictions are incorrect, the algorithm is not much

worse than a good algorithm that does not use predictions.
3. Smoothness (Definition 5): The algorithm’s performance degrades smoothly with the

error in the prediction.

4 https://algorithms-with-predictions.github.io (Accessed on 25/02/2023.)
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In other words, the consistency of an algorithm using predictions characterizes its performance
when the predictor is perfectly accurate, and its robustness its performance guarantee
regardless of the quality of the predictions.

▶ Example 1. Let us revisit the example application of Sec. 2 – Fig 2 denotes the performance
ratio of the algorithm using predictions, alg, to that of the prediction-oblivious algorithm
WC. Note that the performance ratio is ≈ 0.822 when the prediction is exact – this is a
quantitative measure of alg’s consistency. alg’s robustness follows from the observation
that the performance ratio never exceeds the specified bound of γub = 1.1. alg’s smoothness
property is visually evident from Fig 2: the performance ratio remains ≈ 0.822 for AETs ≤
prediction, and degrades smoothly with increasing error for AETs > the prediction. ⌟

The standard manner of characterizing the performance of any algorithm (not just those using
predictions) designed to operate in an online setting is via competitive analysis. Consider
some relevant performance objective that we want to minimize 5 – in the example in Section 2,
this metric is energy.

▶ Definition 2 (Competitive Ratio). For any input X, let opt(X) denote the cost achieved
by an optimal clairvoyant algorithm and let alg(X) denote the cost of the online algorithm
alg on this input. The competitive ratio of alg is the ratio (alg(X)/opt(X)) maximized
over all possible inputs X.

One can think of the algorithms using predictions framework as a generalization of competitive
analysis. In this framework, the online algorithm gets a prediction, say P . This prediction
should be something that allows the algorithm to make better decisions than it would be able
to in the absence of this prediction – for instance, in the example of Sec. 2, the prediction is
the actual execution time (AET) of the job. We want the algorithm to perform well even with
incorrect predictions; therefore, robustness is simply the competitive ratio of an algorithm
which uses predictions.

▶ Definition 3 (Robustness). Given an online input X and prediction P for X, let alg(X, P )
denote the cost of the online algorithm using this prediction and opt(X) the cost of the
optimal clairvoyant algorithm. alg’s robustness is defined as the ratio (alg(X, P )/opt(X))
maximized over all values of X and P .

The algorithms using predictions framework seeks to ensure that robustness of an algorithm
is as close as possible to the best competitive ratio that can be achieved by any online
algorithm for the problem.

Informally, consistency is the competitive ratio of the algorithm when the prediction is
accurate – it measures how well the algorithm uses predictions to improve performance. In
particular,

▶ Definition 4 (Consistency). Given an online input X and an exact prediction P for X,
let alg(X, P ) denote the cost of the online algorithm using this prediction and opt(X) the
cost of the optimal clairvoyant algorithm. The consistency for the algorithm is defined as the
ratio alg(X, P )/opt(X) maximized over all values of X assuming P exactly matches the
predicted value.

5 We can define this for maximization objectives in a similar manner.
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There typically is a trade-off between consistency and robustness since one can think of
robustness as hedging against an inaccurate prediction. In the energy example of Section 2,
one can adjust this trade-off by making different decisions about the virtual deadline – a
later virtual deadline may improve consistency while potentially being less robust and vice
versa.

In addition to consistency and robustness, we want the algorithms to be able to gracefully
handle small errors in predictions – this property is called smoothness. Smoothness is harder
to define precisely and generally. Given an input X, say the perfect prediction for X is PX

– this is the prediction which one would generate if we knew X precisely. Say the actual
prediction given the algorithm alg is P . The error error is some function of PX and
P – this function can be problem and algorithm specific, but informally is some difference
function between the two parameters which is 0 when P = PX and increases as the difference
between the two increases. Ideally, we want algorithms whose competitive ratio relative to
the optimal increases slowly as the error increases.

▶ Definition 5 (Smoothness). Given an online input X and a prediction P for X, let
alg(X, P ) denote the cost of the online algorithm using this prediction and opt(X) the
cost of the optimal clairvoyant algorithm Let error denote the error between the prediction
P and the perfect prediction Px for X. We say that the algorithm is f(error)-smooth if
alg(X, P )/opt(X) ≤ β + f(error) for all error and all X.

We want the smoothness function f(error) to grow smoothly as error moves away
from 0. Therefore, smoothness is simply a generalization of consistency – most definitions of
consistency are also in terms of the competitive ratio when the error is 0.

Adapting the framework. Above we have described the algorithms using predictions
framework as it is currently defined (and used) by the optimization algorithms community.
We now briefly discuss two ways in which this framework needs adaptation in order to render
it more suitable for safety-critical systems.
1. Whereas the framework focuses on the trade-off between robustness and consistency, we

look upon robustness as a constraint that must be met, with consistency (and smoothness)
being metrics that we can optimize for/ trade off amongst. Although this is in one sense
merely a restriction of the algorithms using predictions framework, both our examples (in
Sec. 2 and the upcoming one in Sec. 4) show that this restriction fundamentally changes
the process of applying the framework to specific problems.

2. The framework, as currently defined, primarily compares the performance of alg with that
of an optimal clairvoyant algorithm. But such comparison may not always be appropriate:
consider, for instance, our energy-efficient scheduling application of Sec. 2. It is evident
that no on-line algorithm can have a competitive ratio (Definition 2) smaller than infinity6,
and hence the framework as currently defined is not applicable to this application. But
we saw in Sec. 2 that applying our adaptation, which compares the performance of alg
with that of a reasonable prediction-oblivious algorithm, yields significant energy savings.

6 To see this, let so denote the initial speed at which alg runs the processor; for very (small) AET A, it
consumes

(
sα−1

o × A
)

units of energy. Meanwhile the clairvoyant opt, knowing the value of A, would
execute at speed (A/D) and so consume

(
(A/D)α−1 × A

)
units of energy. The competitive ratio is

thus
(

so D
A

)α−1, which, for any fixed so > 0 (i.e., any initial speed chosen by alg), approaches ∞ as
A → 0.

ECRTS 2023



3:12 The Safe and Effective Use of Low-Assurance Predictions in Safety-Critical Systems

input Base Classifier

⟨χ1, p1⟩
⟨χ2, p2⟩
⟨χ3, p3⟩

· · ·
· · ·

⟨χk, pk⟩

p1 ≥ pT ? χ1
Y

“IDK”N

Figure 4 Obtaining an IDK classifier from a base classifier. For a given input, the base classifier
outputs up to k ordered pairs ⟨χi, pi⟩, indicating that it believes that the input belongs to the class
χi with confidence score pi. (It is assumed that p1 ≥ p2 ≥ · · · ≥ pk, i.e., χ1, χ2, . . . , χk are the k

most likely classes, in order.) The threshold confidence parameter for the IDK classifier is set at pT .

We point out that while the first adaption above can be looked upon as a restriction of the
algorithms using predictions framework, the second adaptation expands the typical use-case
for this framework and thereby enables its use in situations where the original framework is
not directly applicable. This expanded applicability was in evidence in Sec. 2; next in Sec. 4,
we will however not make use of this second adaptation, instead going back to the original
framework and comparing with an optimal clairvoyant algorithm.

4 Illustrative Example: IDK Classifiers

A classifier is a software component that categorizes each input provided to it into one of a
fixed set of classes. IDK classifiers, also known as classifiers that defer [7, 8, 12], are obtained
from base classifiers that use deep learning and related AI technologies in the following
manner (see Figure 4): if the base classifier is unable to arrive at a classification decision at an
adequately high level of confidence, then a dummy class, IDK (for “I Don’t Know”) is output
instead. In scenarios where classification is safety-critical, IDK classifiers should be used
in conjunction with more traditional (“deterministic”) classifiers for the same classification
problem: if an IDK classifier outputs IDK upon some input, then the deterministic classifier
is called upon that input to provide an authoritative classification. (Of course, it is only
meaningful to use IDK classifiers in this manner if doing so is more efficient, in some sense
or the other, than directly calling the deterministic classifier in the first place.)

As part of ongoing efforts to provide a scheduling-theoretic framework that allows for
the use of LECs in hard-real-time safety-critical systems, the real-time scheduling theory
community has recently (see, e.g., [1, 5, 6]) begun studying IDK classifiers. The three cited
papers [1, 5, 6] consider variants of this problem: given one or more IDK classifiers and a
deterministic classifier for the same classification problem, how does one determine which
of the classifiers to execute, and in what order, to minimize the expected duration needed to
obtain a successful classification (perhaps within a specified hard deadline)?

Abdelzaher et al. [1] describe how the training phase of IDK classifiers should be modified
in order to estimate the probabilities that they will succeed in classifying an arbitrary input.7

In this paper, we look upon the probability values so obtained as predictions of the true
(unknown – perhaps unknowable) underlying probabilities, and apply the algorithms using
predictions paradigm to deal with the possibility that these predictions are incorrect.

7 Dependencies amongst classifiers can also be estimated by the method in [1]; e.g., what is the conditional
probability that IDK classifier Ki returns “IDK” upon inputs for which classifier Kj has returned
“IDK”?
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The specific problem considered. Analogously to our approach in Section 2, we consider
here a simplified version of the problem studied in [1, 5, 6] upon which to apply our adaptation
of the algorithms using predictions framework. Specifically, we assume that we have available
to us a single IDK classifier and a single deterministic classifier for the same classification
problem, and must decide whether to (i) directly execute the deterministic classifier; or
(ii) first call the IDK classifier, subsequently calling the deterministic classifier in the event
that the IDK classifier returns “IDK.” Our objective is to minimize the expected execution
duration – i.e., the duration needed to successfully classify the input. If the probability of the
IDK classifier returning a successful classification were a priori known, this problem would
be trivial to solve: call the IDK classifier first if and only if its execution duration, plus the
product of the probability it returns “IDK” times the execution duration of the deterministic
classifier, is strictly smaller than the execution duration of the deterministic classifier. As
stated above we assume, however, that we only have a predicted, rather than the actual,
value of this probability. Specifically, let us suppose that the available pair of classifiers is
characterized as a three-tuple I

def= ⟨C, Π, D⟩ where
C is the execution duration8 of the IDK classifier, and D is the execution duration of
the deterministic classifier. (It is a reasonable assumption that C < D, since if C ≥ D

there is no benefit, from the perspective of minimizing the expected execution duration,
to executing the IDK classifier.)
Π is the predicted probability that the IDK classifier will succeed (i.e., (1 − Π) is the
predicted probability that it will output “IDK”).
We point out that the “real” probability that the IDK classifier will succeed, which we will
denote as P , is unknown to a non-clairvoyant algorithm. That is, Π is a prediction of the
unknown (perhaps unknowable) value of P .

Given such a three-tuple I
def= ⟨C, Π, D⟩, an algorithm must decide whether to call the IDK

classifier first (and call the deterministic classifier only if this returns “IDK”), or to directly
call the deterministic classifier. The performance metric of an algorithm that makes this
decision is the expected duration of its classification decision:{

C + (1 − P ) × D, if the algorithm calls the IDK classifier first
D, if the algorithm directly calls the deterministic classifier

The objective is to obtain a classification with minimum expected duration. We define
the prediction error (see Sec. 3, the paragraphs between Definitions 4 and 5) to be the
difference between the actual and the predicted success probabilities:

error(I) def= |Π − P | (6)

A problem instance. As we have previously pointed out, in safety-critical systems it makes
sense to place a bound on the “poorness” of acceptable solutions – in the formalism of
algorithms using predictions as laid out in Sec. 3, to specify a bound on the robustness of
the algorithm. Hence we specify a problem instance as (I, γub) where I denotes the pair
of classifiers: I = ⟨C, Π, D⟩, and γub denotes the maximum acceptable robustness, defined
here as the ratio of the expected execution duration for the algorithm using predictions

8 For this application (in contrast to the one in Sec. 2), we make the simplifying assumption that the
given parameters C and D represent the actual execution times (AETs) of the classifiers – this allows
us to focus on LEC-specific aspects of prediction without getting bogged down revisiting the kinds of
issues explored in Sec 2. The model is easily generalized to incorporate uncertainty in (and predictions
of) the values of these AET’s.
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C
D

bound on expected execution duration ratio

1

2

1

(1, 1)

(1, 2)

Figure 5 Bound on ratio of expected execution durations as a function of C/D. The straight
line: use the IDK classifier. The curve: do not use the IDK classifier.

to the expected execution duration for an optimal algorithm (denoted opt) that knows
the value of P . Note that in contrast to the energy-efficient scheduling example of Sec. 2
where we had compared its performance of an algorithm designed to use predictions against
the “reasonable” prediction-oblivious algorithm that we specified in Sec. 2.2, here we are
comparing against an idealized clairvoyant optimal algorithm in opt.

4.1 An Algorithm Using the Prediction
We will now design an algorithm, alg (see Algorithm 1), that uses the predicted value Π to
decide whether to directly execute the deterministic classifier, or to execute the IDK classifier
first and the deterministic one only if the IDK classifier fails. We will first explore the
constraints placed on alg due to the robustness requirement: that its performance (expected
duration) never exceed that of opt by more than a factor γub. Once we have identified the
space of robust designs, we will next see how consistency considerations direct us to a choice
within this design space; finally, we will characterize the smoothness characteristics of this
choice.

Meeting the robustness constraint. alg must make one of the two available choices:
execute the IDK classifier first, or directly execute the deterministic classifier. Let us study
the implications upon robustness of each choice.
1. If alg executes the IDK classifier first, its expected duration is C + (1 − P ) × D. In

the worst-case scenario for alg, the value of P turns out to be equal to zero and opt,
knowing this, would directly execute the deterministic classifier for a duration of D. The
performance ratio is therefore equal to

(
1 + C

D

)
– this is plotted as a function of (C/D)

in magenta as the increasing straight line in Fig. 5.
2. If alg directly executes the deterministic classifier, then its duration is D. In the worst-

case scenario for alg, P = 1 and hence opt would execute the IDK classifier for a
duration of C. The performance ratio is therefore equal to

(
D
C

)
– this is plotted as a

function of (C/D) in teal as the decreasing curve in Fig. 5.
The plots of Figure 5 help us identify the space of acceptable designs for any given problem
instance (I = ⟨C, Π, D⟩, γub). For this instance, locate the position of the point with x-
coordinate (C/D) and y-coordinate γub in Fig. 5.
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1. If this point lies below both the curves, then neither choice can guarantee to meet the
specified robustness bound and hence we must declare failure.

2. If this point lies between the two curves, the choice of whether to directly call the
deterministic classifier or to call the IDK classifier first is forced on alg by the robustness
bound. If the point lies to the left of the intersection of the two curves, then only calling
the IDK classifier first can guarantee the robustness bound whereas if it lies to the right
of the intersection, then only directly calling the deterministic classifier can guarantee
the robustness bound.

3. However if this point lies above both curves, then either choice meets the robustness
bound. This is the only situation where an algorithm is free to use the prediction; below
we will discuss how it does so and makes a choice to achieve consistency.

Let (x̂, ŷ) denote the point where the two curves in Fig. 5 intersect. We have 1 + x̂ = 1/x̂ and
ŷ = 1/x̂, from which it follows that (x̂, ŷ) = (1/φ, φ) where φ denotes the famous constant
commonly called the Golden Ratio: φ = (1 +

√
5)/2 ≈ 1.618. Theorem 6 follows:

▶ Theorem 6. (i) alg never returns failure for problem instances with γub ≥ φ; and (ii) the
prediction is never useful for instances with γub ≤ φ, where φ denotes the Golden Ratio:
φ = (1 +

√
5)/2. ⌟

Achieving Consistency. As we have observed above, the prediction is meaningful only for
systems (I = ⟨C, Π, D⟩, γub) for which the point (C/D, γub) lies above both curves in Fig. 5.
Recall (Definition 4) that consistency characterizes the performance of an algorithm using
predictions when the prediction is exactly correct; for our example, that translates to the
case when Π = P . If Π = P , it is evident that alg should use the IDK classifier iff(

C + (1 − Π) · D < D
)

⇔
(

C + D − Π D < D
)

⇔
(

Π >
C

D

)
An alg that executes the IDK classifier iff

(
Π > (C/D)

)
clearly has consistency equal to

one: when the prediction is exact, it has exactly the same expected duration to successful
classification as opt does.

Smoothness Analysis. We now analyze the smooth properties (Definition 5) of the algorithm
obtained above (for convenience, also listed in pseudo-code form in Algorithm 1). Since the
predictions are only usable when γub > max(D/C, (1 + C/D)), we restrict our analysis of
smoothness to instances satisfying this property. In Figure 6, we plot the expected duration
of both alg (in blue) and opt (in red) as a function of the true probability of successful
classification by the IDK classifier, P , for both the cases when alg chooses to first execute
the IDK classifier (top left), and when it directly executes the deterministic classifier (bottom
left). Let us separately consider the two cases.
1. For alg to choose to use the IDK classifier (top left in Fig. 6), it must be the case that

Π > C/D. Now when P is also ≥ C/D, alg’s performance is the same as opt’s. On the
other hand when P < C/D, the performance ratio is given by

C + (1 − P ) × D

D
= C

D
+ (1 − P ) = 1 +

(
C

D
− P

)
Meanwhile, error = Π − P >

(
C
D − P

)
; plugging into the above expression, we have

performance ratio

= 1 +
(

C

D
− P

)
< 1 + error
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Algorithm 1 The algorithm using predictions alg. (The prediction finds use in Lines
10-13.)

Input: (I, γub)

1 /*I
def= ⟨C, D, Π⟩; γub is the maximum permissible robustness

2 if
(
γub < min

(
1 + C

D
, D

C

))
then /*Below both lines in Figure 5

3 return failure

4 if
(
min(1 + C

D
, D

C
) ≤ γub ≤ max

(
1 + C

D
, D

C

))
then /*Between the lines in Figure 5

5 if
(
1 + C

D

)
≤ D

C
then

6 return execute the IDK classifier first
7 else
8 return execute the deterministic classifier

9 if
(
γub > max

(
1 + C

D
, D

C

))
then /*Above both lines in Figure 5

10 if
(
Π > D

C

)
then

11 return execute the IDK classifier first
12 else
13 return execute the deterministic classifier

Observe that alg’s performance loss when compared to opt is one-sided – there is no
performance loss unless P < Π (i.e., Π is an over-estimation of the true probability P ).
The top right plot of Fig 6 plots the worst-case relative performance as a function of
error, as the error ranges over [0, C/D].

2. We can similarly consider the situation where alg decides against using the IDK classifier
(bottom left in Fig. 6). It must then be the case that Π ≤ C/D. If P is also ≤ C/D,
then the performance ratio is one. If P > C/D, then the performance ratio is given by

D

C + (1 − P ) × D
= 1(

C
D

)
+ (1 − P )

= 1
1 −

(
P − C

D

)
Meanwhile, error = P − Π > P −

(
C
D

)
; plugging into the above expression, we have

performance ratio

= 1
1 −

(
P − C

D

) <

(
1

1 − error

)
Once again, alg’s performance loss when compared to opt is one-sided – there is no loss
unless P > Π (i.e., Π is an under-estimation of the true probability P ). The bottom right
plot of Fig 6 plots the worst-case relative performance as a function of error, as the error
ranges over [0, 1 − (C/D)].

By visual inspection of the right-hand plots in Fig. 6, it is clear that the relative performance
of alg does indeed degrade smoothly with error. (When alg chooses to use the IDK classifier
– top right in Fig. 6 – the performance degrades linearly with error, but that is not the case
when alg directly uses the deterministic classifier – bottom right in Fig. 6.)

4.2 Related Work and Future Directions (on IDK Classifiers)
While several papers [1, 5, 6] dealing with IDK classifiers have recently appeared in the
real-time literature, we are not aware of any prior work that integrates predictions with IDK
classifiers. We nevertheless consider the prior papers [1, 5, 6] to be very relevant to our work
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Figure 6 Smoothness. Blue is alg; red is opt. Top: alg uses the IDK classifier (and so

Π > C/D). Bottom: alg does not use the IDK classifier (Π ≤ C/D).

(and closely related to it) since they, Abdelzaher et al. [1] in particular, directly address the
issue of obtaining a probabilistic characterization of run-time behavior of the classifiers by
detailing procedures for determining the probability values – these are the “predictions” of
our model. These papers also consider cascades of multiple classifiers (rather than just two,
one IDK and one deterministic, as we have done), and show that one can in general obtain
smaller expected duration to classification via such longer cascades. As future work, we plan
to extend the methodology we have proposed in this manuscript to cascades of > 2 classifiers.

Another direction of future research involves incorporating learning. In our energy-efficient
scheduling example of Sec. 2, we saw that if the job under consideration is repeatedly invoked
and predictions can therefore be improved via a process of on-line learning, how doing so may
allow for further efficiency gains (Sec. 2.4). But incorporating learning is not straightforward
for IDK’s even if the classification problem is repeatedly invoked: if Π ≤ C/D, then alg
recommends against the use of the IDK classifier and we will never have a chance to update
the prediction (the value of Π). Therefore some more sophisticated learning framework must
be applied. We may, for example, consider using RL-based learning [15] to occasionally force
alg to call the IDK classifier, but for this we can only guarantee robustness over a sequence
of classification decisions rather than on each individual classification.

5 Context and Conclusions

Sources of uncertainty abound in safety-critical real-time CPS’s that operate within complex
environments – these include traditional sources such as variation in run-time execution
duration (the “WCET problem” [16]), and newer ones arising from the use of learning-
enabled components in such systems. We believe that the recently proposed algorithm-design
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paradigm of Algorithms using Predictions may be a good fit for dealing with such uncertainty,
and should therefore be considered for use in safety-critical real-time systems – this manuscript
reports on our efforts at doing so. Most prior work on algorithms using predictions dealt
with pure optimization problems, and studied trade-offs between consistency (making good
use of accurate predictions) and robustness (not suffering too much performance loss when
predictions turn out to be incorrect). Since safety-critical systems are characterized by hard
constraints, we had to adapt the framework and accord primacy to robustness: given an
acceptable degree of robustness, identify a design space of acceptable algorithms and determine
the algorithm offering maximum consistency within this space (and then characterize the
smoothness of this algorithm). To demonstrate the usefulness of this framework, we have used
it to design algorithms for a pair of applications that are of current interest to the real-time
computing community; for both, we have shown that algorithms using predictions achieve
improved performance when accurate predictions are available, without being penalized
beyond pre-specified robustness bounds if the predictions go wrong.

As stated earlier, there are multiple sources of uncertainty in modern complex safety-
critical real-time CPS’s in addition to the two we have considered here. For each such source,
the availability of good predictions could potentially be used to improve performance. For
instance, in many event-triggered systems where triggering events may occur repeatedly, the
period parameter [11, 13] specifies the minimum duration between successive triggerings.
Current scheduling techniques usually allocate computational resources assuming that suc-
cessive triggerings will occur at the maximum rate (i.e., separated by exactly the period
parameter); if predictions are available of a larger inter-triggering duration, the algorithms
using predictions framework could perhaps be used to design algorithms that make efficient
use of computational resources when such predictions are correct, without catastrophic
consequences if they turn out wrong.
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Abstract
Temporal isolation is one of the most significant challenges that must be addressed before Multi-
Processor Systems-on-Chip (MPSoCs) can be widely adopted in mixed-criticality systems with
both time-sensitive real-time (RT) applications and performance-oriented non-real-time (NRT)
applications. Specifically, the main memory subsystem is one of the most prevalent causes of
interference, performance degradation and loss of isolation. Existing memory bandwidth regulation
mechanisms use static, dynamic, or predictive DRAM bandwidth management techniques to restore
the execution time of an application under contention as close as possible to the execution time in
isolation.

In this paper, we propose a novel distribution-driven regulation whose goal is to achieve a
timeliness objective formulated as a constraint on the probability of meeting a certain target
execution time for the RT applications. Using existing interconnect-level Performance Monitoring
Units (PMU), we can observe the Cumulative Distribution Function (CDF) of the per-request
memory latency. Regulation is then triggered to enforce first-order stochastical dominance with
respect to a desired reference. Consequently, it is possible to enforce that the overall observed
execution time random variable is dominated by the reference execution time. The mechanism
requires no prior information of the contending application and treats the DRAM subsystem as
a black box. We provide a full-stack implementation of our mechanism on a Commercial Off-
The-Shelf (COTS) platform (Xilinx Ultrascale+ MPSoC), evaluate it using real and synthetic
benchmarks, experimentally validate that the timeliness objectives are met for the RT applications,
and demonstrate that it is able to provide 2.2x more overall throughput for NRT applications
compared to DRAM bandwidth management-based regulation approaches.
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Figure 1 Execution time distributions in isolation (blue) and contention (red). The controlled
degradation target can be expressed by reasoning in terms of controlled distribution shift (green).

1 Introduction

An important trend across industrial, automotive and avionics domains is the adoption of
MPSoCs. However, a key barrier in designing mixed-criticality systems is the presence of
shared resources like the main memory, the cache and the interconnect, which makes it
non-trivial to bound the execution time of RT applications running on these MPSoCs. This
is because when two or more applications are executed in parallel on different cores, which
we refer to as the contention scenario, the interaction between them on shared hardware
resources can lead to unforeseen and unpredictable delays [8, 34,36]. It is well known that
memory contention is a key source for performance degradation [7], and practitioners across
the industry and academia are looking for solutions that facilitate temporal isolation between
applications while using COTS platforms.

Existing hardware-oriented mechanisms for memory interference control require dedic-
ated hardware [2, 11, 13] that is not feasible in COTS multi-core platforms. In contrast,
software-oriented memory bandwidth management-based regulation mechanisms are prom-
ising grassroots techniques to approach the problem of controlling memory interference by
periodically monitoring the memory bandwidth originating from each core and stalling cores
when the egress memory bandwidth exceeds a pre-defined threshold. This threshold can be (1)
fixed and computed offline for a given combination of applications [5,41], (2) predicted on the
fly [5, 41, 42] or (3) computed dynamically by instrumenting the current memory utilization
at the memory controller [23]. A common denominator across the above approaches is that
(1) the system parameters for regulation are based on experimental evaluation and not on
a formal analysis (2) they focus on restoring the execution time of an application under
contention as close as possible to the execution time in isolation.

Ideally, however, the aggressiveness of regulation should directly depend on the target
execution time. Indeed, if the RT applications have sufficient slack, less aggressive regulation
is desirable as it enables better progress for the NRT applications. Consider the qualitative
situation depicted in Figure 1. On the left (resp., right) side of the figure, we depict the
distribution of execution time of an application executing in isolation, blue area (resp.,
contention, red area). Controlled degradation (green area) is achieved if a bounded shift is
allowed from the solo case and in the direction of the contention case. With this intuition, a
timeliness objective can be non-ambiguously expressed as a (1) target execution time and (2)
a condition on the mass of the execution time distribution that can cross said target.
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In this paper, we propose a distribution-driven regulation approach, whose goal is to
achieve a timeliness objective formulated as a constraint on the probability of meeting a
certain target execution time. This definition allows us to unite WCET-like constraints and
high-percentile latency constraints typical of real-time cloud systems (tail latency). The
basic premise of our approach stems from the observation that the latency distribution
of memory transactions of an application under contention gets skewed compared to the
execution in isolation. Therefore, it is possible to precisely influence the overall application
execution time so long as we can (1) characterize this distribution and (2) affect its shape
via regulation. With this basic principle, we first theoretically compute the reference CDF
from the distribution of the per-request memory latency for a given target execution time.
Then, we enforce first-order stochastical dominance by periodically checking that the CDF
of the observed memory latency distribution of the RT application (obtained by sampling at
the PMU) stays above the reference CDF of the per-request memory latency. In case this
condition is violated, the NRT cores are suspended till the condition of first-order stochastical
dominance holds again. If the reference per-request memory latency first-order stochastically
dominates the observed latency, then it follows that the overall execution time random
variable is dominated by the reference execution time random variable. Consequently, the
observed execution time achieves the timeliness objective.

The proposed distribution-driven regulation truly considers the impact of memory conten-
tion on the latency and execution time of an application, as opposed to memory bandwidth-
based [5, 41, 42] or memory utilization-based approaches [23]. Furthermore, we can also
control the level of degradation while guaranteeing timeliness by varying the reference CDF
of the per-request memory latency.

With this work, we make the following contributions:

1. To the best of our knowledge, our work is the first that demonstrates the use of an
interconnect-level PMU to capture the latency distribution of memory transactions and
to leverage it for precise control over an application’s execution time under contention.

2. We mathematically characterize the distribution of memory latency for an application
and demonstrate its effect when the application is executed in isolation and contention.

3. We provide a formal mathematical proof supporting how our proposed approach meets
the imposed timeliness objective for the RT applications, ultimately enabling controlled
degradation.

4. Finally, we perform an evaluation on a COTS platform (Xilinx Ultrascale+ MPSoC)
using an extensive set of realistic and synthetic benchmarks from the San Diego Vision
Benchmarks [35], DAPHNE [30], and IsolBench [33] suites. We demonstrate its effect-
iveness in (1) allowing controlled degradation, (2) providing probabilistic guarantees for
RT application, and (3) reducing the execution time of NRT applications by up to 2.2x
compared to DRAM bandwidth management-based regulation approaches.

The rest of the paper is organized as follows: Section 2 provides the survey of related
work. Section 3 describes the system model and the main assumptions of our approach.
After presenting the main theory behind our approach and its mathematical formalization
in Section 4, Section 5 describes the overall architecture and the main algorithm of our
approach. Section 6 describes the implementation, and Section 7 discusses the experimental
setup and presents the results. Finally, Section 8 concludes with a summary and outlook on
future work.
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2 Related Work

There has been a significant amount of work [18] to tackle the issue of memory interference.

The first category includes techniques that essentially employ memory bandwidth
management-based regulation. In this category of approaches, the effects of memory conten-
tion are statically regulated by controlling the outgoing memory bandwidth from each core as
in MemGuard [5,41,42], or by directly measuring the utilization at the memory controller [23]
and then based on the observed utilization, dynamically regulating the outgoing memory
bandwidth from each of the cores. In these approaches, the designer has to experimentally
derive the correct system parameters, and furthermore, there are no formal techniques to
guarantee the impact of such a regulation on the execution time of the application.

The second category includes profile-driven approaches like E-WarP [27,29] and the work
in [1], where an application’s behavior is profiled to sufficiently characterize it. Then, together
with insights into the underlying regulation mechanism – E-WarP uses Memguard under the
hood – it is possible to accurately predict the worst-case execution time. In contrast, the
proposed approach in this paper is not about predicting the WCET but rather about setting
a target execution-time distribution and adjusting the regulation scheme accordingly.

The third category of approaches falls broadly into the category of WCET estimation
approaches [14,18,20]. These approaches perform WCET estimation by leveraging detailed
models of the memory subsystem and do not assume any specific regulation approach. They
only consider worst-case memory access latencies considering a certain arbitrary memory
placement (bank arrangement) and the underlying workload.

Next, there are the hardware-based regulation mechanisms, which include using a dedic-
ated memory controller [2] or additional hardware like FPGAs [11,13], which is orthogonal
to our approach. In addition, embedded high-performance platforms are increasingly offering
QoS modules [25,31,45] on the interconnect between masters (CPUs, GPUs, DMAs) and main
memory to regulate and prioritize memory requests. However, the existing QoS modules
account for the traffic generated by the core cluster connected to the interconnect as a
single master, which does not alleviate cross-core contention [21]. Secondly, a static QoS
configuration may lead to inefficiencies in the utilization of the underlying DRAM subsystem
for dynamic workloads.

Other hardware-based techniques for COTS platforms, such as RDT [9,28] and MPAM [44],
essentially enforce a desired memory bandwidth limit at the hardware-level. This reduces
the regulation overhead and significantly improves the granularity of bandwidth regulation.
The recently proposed MemPol [46] loosely belongs to this category because it leverages
debug interfaces to halt/resume CPUs with the goal of enforcing a target bandwidth.
Despite said benefits, the aforementioned shortcomings of memory bandwidth management-
based regulation are still present. Nonetheless, a promising direction for future work entails
combining the techniques proposed in this paper with hardware-based bandwidth enforcement.

We approach the problem from a different perspective by not relying on the notion of
DRAM bandwidth. Instead, we directly reason on the properties of the observed distribution
of latencies for the memory transactions performed by the application under analysis.
Our approach starts by considering design-time timeliness constraints and uses one such
specification to construct a target cumulative distribution (CDF). The latter is then used
to enact regulation. The proposed approach also makes no assumptions on the memory
transactions generated by the contending applications.
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3 System Model and Assumptions

We hereby review the key assumptions and the system model required for the results presented
in Section 4 to hold. These assumptions are also experimentally validated in Section 7.2 and
Section 7.3.

A1: Multicore Platform Topology. We assume a system comprised of m application CPUs
Π1, . . . , Πm. For simplicity, we assume that the high-criticality workload is only deployed
on CPU Π1, which can be considered the real-time core. The memory hierarchy comprises
zero or more levels of cache. Cache misses caused by load or store instructions at the
last-level cache (LLC) cause read/write memory requests to be initiated towards a single
shared main memory subsystem via a single shared bus. Note that we distinguish between
memory instructions (load/store) and the resulting traffic that they might cause in terms
of read (and possibly write) requests to the underlying main memory subsystem.

A2: Cache Model. We assume that (1) either all the cache levels are private per-core
caches, or (2) if shared cache levels exist, they can be partitioned among the cores to prevent
inter-core cache interference. All the cache levels adopt a write-back, write-allocate policy. By
write-allocate, store instructions that cause a cache miss to trigger a read memory request
downstream to fill the cacheline to be modified. A cacheline that has been modified is marked
as dirty. By write-back, cache refills might trigger a write memory request downstream if the
cache replacement policy has selected a dirty cacheline for eviction. We make no assumption
about the specific cache replacement policy adopted by the cache controllers at the different
levels. We make no assumption about the inclusiveness of adjacent cache levels.

A3: In-order CPUs. We assume that the considered CPUs are unable to reorder instructions.
Thus, the latency incurred by pending load instructions is additive with respect to the time
spent executing instructions that do not perform memory operations. The same is true
for store instructions. This assumption is pessimistic yet safe if out-of-order CPUs are
considered instead.

Timing anomalies arising due to microarchitectural effects can violate this assumption.
In this work, we followed a measurement-based evaluation approach. Therefore, timing
anomalies are accounted for in the measured runtime. If these anomalies are to be estimated
using static analysis, the work in [12] demonstrates that timing anomalies can be statically
bounded and accounted for at design time without introducing an intractable amount of
pessimism.

A4: Blocking reads, non-blocking writes. As per A2, both load and store instructions
cause an LLC cache miss to trigger a read request to the main memory. As per A3, the
latency incurred by such read requests is additive with respect to the time spent by the rest
of the instructions that do not generate main memory requests. Conversely, if a memory
instruction triggers a write-back to the main memory, the resulting write memory transaction
is carried out non-blockingly with respect to the instruction stream under analysis. Therefore,
the latency of read requests in main memory is on the critical path from the standpoint of
total execution time, while the latency of write requests is not. This is not to say that the
contention generated by write requests is not considered, but rather that what matters is
their impact on the latency of read transactions.
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Note that, in typical DRAM subsystems, batched write requests could be prioritized
over reads, causing read requests to temporarily stall. However, by controlling the latency
distribution of read requests, one can control how this reflects into the total execution time,
essentially factoring in the overall impact of write requests.

A5: Measurable Read Latency Distribution. We assume that the platform provides a
performance monitoring unit (PMU) capable of collecting measurements on the latency of
read memory requests. The PMU shall be located at the interface of the shared bus and
main memory subsystem. The latency is measured as the difference between the timestamp
at which a read request is forwarded to the main memory and the timestamp at which the
response for the said request is returned (request turnaround time). We assume that, when
queried, the PMU can return (an approximation of) the distribution of the observed latencies
of read requests issued by a core Πk under analysis. We will discuss the ability to do so in
commercial platforms in Section 6.

A6: Computation and Read-latency Additivity. By A4 and A5, we can decompose the
worst-case execution time E as a sum of two contributions E = C + L, where L is the total
latency of read memory transactions. Let N denote the worst-case number of read requests
and let us indicate the per-request latency as li, then L =

∑N
i=1 li. C denotes the time

spent for anything other than waiting for read responses, and is a constant, regardless of
whether the workload executes in isolation vs. contention. Conversely, li and thus L and
E are random variables that are affected by the level of congestion of the main memory
subsystem. In practice, we observe a small deviation (less than 1.8%) in the value of C

when measured in isolation vs. under contention, as evaluated in detail in Section 7.3. One
such deviation might arise from contention over Miss Status Holding Registers (MSHR) [33]
or LLC tag/data banks [6]. For the sake of simplicity, C is assumed to be constant in our
theoretical formulation. In practical instantiations of our framework, this value should be
experimentally derived and a safe upper-bound on the compute-only time shall be used.

A7: Profiled Critical Workload. We assume that the high-criticality workload deployed
on Π1 can be profiled offline to derive the worst-case execution time Eisol and total read
latency Lisol in isolation. This can be done using traditional measurement-based approaches
and allows us to upper-bound the value of C = Eisol − Lisol, which is the time spent by the
CPU to carry out any other operation except waiting for read requests to be fulfilled. As
per A2, C is computed with statically partitioned shared caches (if any). As per A5, Lisol

measurement is enabled by the PMU.

A8: I.I.D. Read Transaction Latencies. We assume that li are independent samples from
the same (unknown) distribution. Intuitively, the independence arises from the fact that
between any two subsequent read transactions, a random amount of time can elapse, and a
random amount of congestion can be caused by interfering CPUs. Thus, li’s are independent
and identically-distributed (i.i.d.) random variables.

4 Distribution-Driven Regulation

In this section, we introduce the theoretical results that represent the foundation of the
proposed distribution-driven regulation. We introduce the notations in Table 1.
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Table 1 Summary of notation used.

Symbols Descriptions Symbols Descriptions

Eisol Total execution time in isolation l̄σ2 Variance of read memory transactions reference
Ereg Total execution time under regulation Lisol Total latency of read memory trans. in isolation

Ē Total execution time target lmin Min read latency
C Non-memory compute time lmax Max read latency
L Total latency of read memory transactions li Latency of an individual read memory transaction i

lµ Mean latency of read memory transactions N Worst-case number of read requests
lσ2 Variance of read memory transactions α Acceptable tolerance for execution time to exceed Ē

l̄µ Mean latency of read memory trans. reference

Regulation Goal. Unlike the related literature surveyed in Section 2, our goal is to achieve
a timeliness objective formulated as a constraint on the probability of meeting a certain
execution time target Ē. Formally, given an execution time target Ē and an acceptable error
α ∈ [0, 1], the goal of regulation can we written as

P (Ereg ≤ Ē) ≥ 1 − α, (1)

where Ereg is the actual execution time observed under regulation and (possibly) in the
presence of main memory contention for the application under analysis. When α is such that
α → 0, then Ē represents a worst-case execution time (WCET) constraint. Note however
that the timeliness constraint formulation in Eq. 1 is more generic. For instance, setting
α = 0.01 expresses a 99th-percentile tail latency requirement on Ereg.

Goal-driven Regulation Strategy. We hereby describe how the regulation strategy can be
built from the goal formulated in Eq. 1 given a value of Ē and α. Following the notation
and assumptions in A6 (Section 3), we can rewrite Eq. 1 as follows:

P (C + L ≤ Ē) = P

(
N∑

i=1
li ≤ Ē − C

)
≥ 1 − α. (2)

The key insight into our approach is that, by controlling the distribution of per-request
latency li via regulation, we can directly control the distribution of the total memory latency
L and thus impact the distribution of Ereg to satisfy Eq. 1.

As we previously mentioned, li’s are independent and identically-distributed random
variables (as per A8) following an unknown distribution. Call lµ and lσ2 , respectively, the
(unknown) mean and variance of the li random variables. From the Central Limit Theorem
(CLT) [10], it holds that the random variable Z constructed as

Z =
∑N

i=1 li − Nlµ√
Nlσ2

= L − Nlµ√
Nlσ2

∼ N (0, 1), (3)

follows a standard normal distribution, i.e. a normal distribution with mean µ = 0 and
variance σ2 = 1. The latter property is captured by the notation Z ∼ N (0, 1). Note that
Eq. 3 only holds for large values of N . Since our goal is to analyze and regulate memory-
intensive applications, this condition holds. In fact, our experiments described in Section 7
highlight that for the considered applications, the order of magnitude of N is somewhere
between 106 and 107.

From Eq. 3 we can derive that L ∼ N (Nlµ, Nlσ2). Let us indicate with Φ(x) the
Cumulative Distribution Function (CDF) of the standard normal distribution. We can then
rewrite Eq. 2 as follows:
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P (L ≤ Ē − C) = Φ
(

(Ē − C) − Nlµ√
Nlσ2

)
≥ 1 − α. (4)

So far, we have treated lµ and lσ2 as unknown values. The insight at this point is that,
when regulation is performed (by pausing/resuming the activity of interfering cores), we can
exert direct control over the underlying distribution of L =

∑N
i=1 li and thus over the value

of Nlµ and Nlσ2 . In fact, our goal is not to enforce a specific value of lµ and lσ2 . Instead, it
is enough to identify two values l̄µ and l̄σ2 such that the following inequality holds for every
value of Ē ∈ R+:

Φ
(

(Ē − C) − Nlµ√
Nlσ2

)
≥ Φ

(
(Ē − C) − Nl̄µ√

Nl̄σ2

)
≥ 1 − α. (5)

Regulation Condition. Recall from A5 in Section 3 that we are able to periodically snapshot
the distribution of read latencies. By enacting start/stop control over the interfering cores,
we can impact such distribution. We are now ready to derive the condition according to
which, given a snapshot, we should pause or resume the activity of the interfering cores.

More specifically, we can observe the CDF of the random variable li while the application
under analysis is running. Call this observed CDF function Fl(t) = P (li ≤ t). If regulation
is applied such that

∀t ∈ R+, Fl(t) ≥ Φ
(

(Ē − C) − l̄µ√
l̄σ2

)
= F̄l(t), (6)

then we have two properties. The first, is that F̄l(t) is the CDF of a random variable
lnorm
i ∼ N (l̄µ, l̄σ2). The second is that lnorm

i is said to first-order stochastically dominate
li [26]. Indeed, Eq. 6 is one possible definition of first-order stochastic dominance, also
indicated with the notation lnorm

i ≥1 li.
It is a known result [26, Theorem 1.A.3] [19, Lemma 6] that stochastical dominance

between random variables implies stochastical dominance in the aggregate. Formally, given
two random variables X and Y and a positive integer k, if Y is k-th order stochastically
dominated by X (i.e., X ≥k Y ), then ∀n ∈ N+ and i.i.d. replicas X1, . . . , Xn of X and
Y1, . . . , Yn of Y it holds that

n∑
i=1

Xi ≥k

n∑
i=1

Yi =⇒
n∑

i=1
Xi ≥1

n∑
i=1

Yi. (7)

Next, we note that from Eq. 7 and 6 it immediately follows that
∑N

i=1 lnorm
i ≥1

∑N
i=1 li.

Moreover, by leveraging the properties of the normal distribution [17], we know that∑N
i=1 lnorm

i ∼ N (Nl̄µ, N l̄σ2). This brings us to the final step. That is, the random variable
L under regulation is first-order stochastically dominated by a normal distribution of mean
Nl̄µ and variance Nl̄σ2 . This means that, as long as Eq. 6 is ensured via regulation, Eq. 5
holds.

Final Formulation. Putting everything together, we have the following workflow. First,
given the target Ē and α, numerically compute l̄µ and l̄σ2 such that

Φ
(

(Ē − C) − Nl̄µ√
Nl̄σ2

)
≥ 1 − α (8)
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holds. Second, use the same values of l̄µ and l̄σ2 to construct the target per-request
latency CDF F̄l as described in Eq. 6. Next, at runtime, observe the CDF of li, namely
Fl, and pause/resume (regulate) the activity of the non-real-time CPUs to ensure that
∀t ∈ R+, Fl(t) ≥ F̄l(t). So long as this inequality holds, it also holds that P (C + L ≤ Ē) =
P (L ≤ Ē − C) ≥ 1 − α because Eq. 5 holds.

4.1 Discrete-domain Formulation
The results derived so far in Section 4 assume that we are able to snapshot online a continuous
distribution of read latency accesses. This is practically impossible with realistic hardware.
In this subsection, we relax precisely this requirement.

Let lmin and lmax be the minimum and maximum possible read latency. Consider a
realistic PMU that defines K latency observation bins with configurable size b. If a transaction
i was counted in the first bin, then its latency li was somewhere in the range [lmin, lmin + b);
more in general, if it was counted in the kth bin with k ∈ {0, . . . , K − 1}, then its latency
was somewhere in the range [lmin + kb, lmin + (k + 1)b).

When queried, the PMU reports the number of read transactions completed by Π1 whose
latency fell in each of the K bins. Assume that this number is cumulative since the time at
which the application was launched – if it is reset after a snapshot, e.g. to prevent overflows
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Algorithm 1 Memory Latency Distribution-Driven Regulator.

input : number of latency bins K, reference CDF F̄k ∀ k ∈ {0 . . . K − 1}
1 foreach regulation interval r do
2 foreach latency bin k ∈ {0 . . . K − 1} do
3 Sample the height of latency bin lk,r

4 γk,r = γk,r−1 + lk,r

5 end
6 foreach latency bin k ∈ {0 . . . K − 1} do
7 fk,r = γk,r∑K−1

k=0
γk,r

▷ Normalize bins to obtain PMF

8 Fk,r =
∑k

m=0 fm,r ▷ Construct observed CDF
9 end

10 if F0,r < F̄0 ∨ · · · ∨ FK−1,r < F̄K−1 then
11 suspend all NRT cores
12 else
13 resume all NRT cores
14 end
15 r = r + 1
16 end

in the counters, then it can be accumulated in software at each snapshot. In software, divide
the number of transactions in each bin (i.e. the height of the bin) by the total number of
transactions in the entire snapshot. The result is a valid observed Probability Mass Function
(PMF) fl(k) for the read request latency li for the generic request i. Figure 2 provides a
visual representation of the PMF. In other words, the height of each bin provides the value of
fl(k) = P (lmin + kb ≤ li < lmin + (k + 1)b). From the acquired PMF, it is easy to compute
the corresponding observed CDF as

Fl(k) =
k∑

j=0
fl(j) = P (li < lmin + (k + 1)b). (9)

Recall that (Eq. 6) we can construct a normal distribution F̄l(t) of reference with
appropriate values of l̄µ and l̄σ2 such that Eq. 8 is satisfied. At runtime, whenever a new
read latency distribution snapshot is acquired, it is enough to check the following condition:

∀k ∈ {0, . . . , K − 1}, Fl(k) ≥ F̄l(lmin + (k + 1)b). (10)

This condition is visually depicted in Figure 3. Indeed, if the condition expressed in Eq. 10
holds, then our reference lnorm

i ∼ N (l̄µ, l̄σ2) first-order stochastically dominates li. This is
the case for the blue curve in Figure 3. Conversely, if for some k Eq. 10 does not hold, the
non-real-time CPUs must be paused – regulation must be triggered. This is the case for the
orange line in Figure 3. The implicit assumption, which we validate in Section 7.3, is that
pausing the interfering CPUs allows to shift the observed Fl(k) in subsequent snapshots.

Finally, note that numerically computing the value of F̄l(t) online can lead to excessive
overhead in the regulator. Instead, the K values of F̄l(k) necessary to check the validity of
Eq. 10 can be pre-computed offline and stored in a lookup table for efficient online retrieval.
These values are depicted as red dots in Figure 3.
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5 System Overview

An overview of our system architecture is depicted in Figure 4. We consider an MPSoC in
which a core designated as RT core is dedicated to host time-sensitive RT applications, while
the others are designated as NRT cores that host performance-oriented NRT applications.

The purpose of the memory latency distribution-driven regulator introduced in Section 4
is to achieve the timeliness objective (Equation (1)) on the execution time of applications
running on the RT core. The regulator is activated periodically on each NRT core using a
timer interrupt. The timer interrupt triggers the sampling of memory latency distribution
using the Performance Monitoring Unit (PMU) (shown in blue in Figure 4) for the memory
transactions originating from RT core. This memory latency distribution is normalized to
obtain the probability mass function (PMF), as described in Section 4.1 and then is used
to derive the cumulative distribution function (CDF). From the CDF, we enforce the rule
of first-order stochastic dominance (Equation (6)), which states that if any bin violates the
reference CDF for the target distribution of execution time, the regulation is triggered, and
all the NRT cores are suspended, as highlighted with red lines in Figure 4.

In principle, the regulator could reside either in software, such as the Operating System
(OS) or hypervisor, or in hardware, such as a Field Programmable Gate Array (FPGA). For
analysis and evaluation of the mechanism, the regulator optionally stores the PMF and key
characteristics in the DRAM memory.

The proposed mechanism can be implemented on any platform on which we are able to
measure (1) memory latency distribution and (2) filter the memory transaction on a per core
basis.

5.1 Memory Latency Distribution-Driven Regulator Algorithm
Algorithm 1 sketches our proposed distribution-driven regulation. Let the total number of
bins in the memory latency distribution be denoted by K. Furthermore, we denote by F̄k

the reference CDF assigned to each bin.
At the beginning of each regulation interval r > 1, the regulator first samples the number

of transactions (since the last interval) with latency that falls in bin lk,r. This is repeated
for each bin (Line 3). The samples are accumulated into the variable γk,r (Line 4). We then
apply height normalization to derive the PMF fk (Line 7). The PMF is converted into a
CDF Fk by summing up the probabilities associated with the variable up to each bin (Line 8).
This CDF Fk is then compared against the reference CDF F̄k for each bin (Line 10). If the
condition in Eq. 10 does not hold, all the NRT cores are suspended (Line 11). They will be
resumed only when Eq. 10 holds again (Line 15).

The theoretical formulation provided in Section 4 assumes that the PMF (or CDF) of the
per-request latency can be observed infinitely fast. Clearly, this is not possible in realistic
hardware, hence a non-zero regulation interval Tr must be picked. Because of that, what
could happen is that during Tr, the distribution of memory latencies shifts so drastically that
it cannot be recovered. Although this can happen, its effect can be easily bounded. In the
worst-case, right after a snapshot that satisfied Eq. 10 (otherwise, the NRT cores would be
stopped) with exact equalities between left- and right-hand sides, a back-to-back sequence of
memory transactions with latency lmax occurs. These can be at most ⌈Tr/lmax⌉ because Π1
is an in-order CPU (A3 in Section 3). Thus, the extra time cost H = (lmax − lmin)⌈Tr/lmax⌉
can be accounted for by computing a new, more restrictive Ē′ = Ē − H. Interestingly,
since we can observe the typical latency distribution under unrestricted contention, it is also
possible to compute the probability that such a case can occur.
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6 Implementation

We have performed a full-system implementation that includes a partitioning hypervisor
augmented to support the proposed memory latency distribution-driven regulator. The
implementation is carried out on the Xilinx Ultrascale+ Multi-Processor System-on-Chip
(MPSoC) ZCU102 [40]. The SoC features 4 ARM Cortex A53 [4] cores clocked at 1.2 GHz.
Each core has its own private L1 data and instruction cache, whereas the 4 cores share a
unified L2 cache. The SoC also features a tightly-coupled FPGA, which is not needed to
implement the proposed approach. We only use the FPGA for the validation experiments on
the nature of DRAM read transaction latencies conducted in Section 7.2.

We use the Jailhouse-RT partitioning hypervisor [15, 27] to partition resources in our
system, which is an ideal choice for this type of implementation because it is lightweight,
easy to port/modify, includes support for cache coloring [16,43] and bandwidth regulation,
and is open-source.

6.1 AXI Performance Monitor (APM)
We sample the memory latency in the Xilinx Ultrascale+ MPSoC [40] using the AXI
Performance Monitor (APM) hardware module. The APM measures the key performance
metrics like the amount of read/write memory transactions, min/max/total latency, and
other performance metrics for the AMBA AXI [3] in a system. The APMs implemented on
Xilinx Ultrascale+ MPSoC [40] are based on the Xilinx AXI Performance Monitor available
as a LogiCORE IP [37].

The APM has 10 hardware counters that can be configured to simultaneously monitor
up to 10 performance metrics for any interface points called slots on the AXI interconnect.
There is also a global-clock counter in addition to these 10 hardware counters that run at
the APM clock frequency of 533.5 MHz.

The APM can be configured to monitor the performance metrics for a particular slot
using the Metric Selector register. Furthermore, the APM contains a Range Incrementer
module that compares the performance metric count with the low and high ranges from the
Range register and increments the count of the given performance metric by one if the value
falls within the limits. The Range Incrementer is useful in obtaining the read/write latency
ranges that we leverage in this work to sample the memory latency distribution.

We configured 8 Metric Selector registers in conjunction with 8 Range registers to monitor
read memory latency (as defined in Section 3 A6: Measurable Read Latency Distribution) with
respectively low and high ranges of 0-40, 41-80, 81-120, 121-160, 161-200, 201-240, 241-280,
and 281-2000 clock cycles. The rationale behind the selection of these ranges is discussed in
Section 7.4. These 8 performance metrics provide the number of read memory transactions
that fall within the given read memory latency limits, referred to as bins. Furthermore,
2 Metric Selector registers are configured to report the total number of read transactions
and total read latency. The total number of read transactions is N , as used throughout
the mathematical formalization in Section 3. Additionally, we verify that the total number
of read transactions and the sum of all bins are always the same. This ensures that no
memory transaction escapes the bins. The global-clock counter is used as the reference for
all the calculations in this paper. The included hardware counters can be set and read via a
memory-mapped interface.

The APM slot is configured to monitor the AXI communication between the cores and the
memory controller. In addition, we employ the AXI ID filtering to monitor the transactions
emanating from a core with a certain AXI ID. The AXI IDs for the cores are evaluated
experimentally. Once the AXI IDs for each core have been determined, we utilize the Filter
and Mask registers to set up AXI ID filtering.
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Currently, the APMs are adopted in Xilinx Ultrascale boards. However, since these APM
IPs are part of the AXI bus, they are deployable on other SoCs. They can also be deployed
in programmable logic (FPGA) to gather statistics on the traffic observed over AXI bus
segments generated, for instance, by in-FPGA accelerators.

7 Validation and Evaluation

In this section, we first experimentally validate the key assumptions presented in Section 3.
Then we discuss the key design parameters of our system. Finally, we present a full system
evaluation where we validate the effectiveness of our approach to ensure the timeliness of
different sets of applications.

7.1 Experimental Setup
We evaluate our approach on the Xilinx Ultrascale+ Multi-Processor System-on-Chip
(MPSoC) ZCU102 [40] as introduced in Section 6. A combination of real-world [35], [30], and
synthetic [33] benchmarks are used to evaluate the proposed approach. For our real-world
benchmarks, we use a subset of the benchmarks in the San Diego Vision Benchmark Suite
(SD-VBS) [35]. The input dataset for the benchmark applications comes in 9 different sizes.
Since we are interested in DRAM-bounded applications, we use the ones with the largest
input data size (named FullHD). The other benchmark suite is the Darmstadt Automotive
Parallel Heterogeneous Benchmark Suite (DAPHNE) [30], which represents parallelizable
workloads from the automotive domain. For our evaluation, we used the applications that run
exclusively on the CPU. We also use a synthetic ’Bandwidth’ benchmark from the IsolBench
suite [33] that is engineered to continuously perform memory write operations. In the rest of
the paper, we refer to this benchmark as the MemBomb application.

Unless otherwise stated, all experiments refer to the isolation scenario or simply isolation
in which the disparity application is running on the designated RT core with no other
applications running in parallel. In contrast, a contention scenario or simply contention
happens when the same disparity application is running on the designated RT core while
synthetic MemBomb applications are running on the three NRT cores. The disparity
application is selected as it has the lowest average IPC and the highest average memory
utilization [23] in the benchmark suite, making it an ideal candidate for demonstrating
memory interference-related effects.

For consistency, we always activate the hypervisor. The regulator is activated on each
NRT core to facilitate comparison with a memory bandwidth management-based regulation
(MemGuard [5]). However, the current implementation can be extended to sample the PMU
values from only one NRT core responsible for suspending the other NRT cores. All the
obtained results are calculated on 100 runs for each configuration to remain statistically
significant.

7.2 Validation of I.I.D. Assumption A8
In order to validate hypothesis A8 in Section 3, i.e., that the latencies of read memory
transactions emitted by the cores are i.i.d., we perform 10 different statistical tests called
Permutation Tests [32]. These tests are designed to find evidence that empirical samples are
i.i.d.. The rationale is that if i.i.d. holds in all cases, the regulation system is guaranteed to
be operated correctly. Conversely, if the i.i.d. property is validated only in some cases, a
full-system implementation and evaluation are necessary to assess the correct end-to-end
behavior of a system that employs the proposed distribution-driven regulation.

ECRTS 2023



4:14 Memory Latency Distribution-Driven Regulation for Temporal Isolation in MPSoCs

Table 2 Summary of permutation testing results for Synthetic (table upper half) and Real-world
(table lower half) memory traffic. Test pass noted with ✓and fail with ×.

Test no. 1 2 3 4 5 6 7 8 9 10 Pass (%)

Synthetic Benchmarks: AXI Traffic Generator

Rand. Pattern + Rand. ITG ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 100
Rand. Pattern + Fix ITG ✓ ✓ ✓ × ✓ ✓ × ✓ ✓ × 70
Seq. Pattern + Rand. ITG ✓ ✓ × × ✓ ✓ ✓ ✓ ✓ ✓ 80
Seq. Pattern + Fix ITG ✓ ✓ × × ✓ ✓ × ✓ ✓ × 60

Real-world Benchmarks: SD-VBS

Best-case ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 100
Worst-case ✓ × ✓ × ✓ ✓ × ✓ × × 50
Mode-case ✓ ✓ ✓ × ✓ ✓ ✓ ✓ ✓ ✓ 90
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Figure 5 Experimental results to validate the key assumptions, as stated in detail in Section 3,
hold for our system.

Performing permutation testing requires measuring the memory latency of individual
memory transactions at the finest granularity. The aforementioned APMs can only measure
aggregated latency values and are thus not suitable for the purpose. Instead, and only for
these experiments, we leverage the tightly-coupled FPGA of the evaluation platform.

The experiment is divided into four successive steps: (1) generate memory traffic, (2)
capture the activity at the AXI level, (3) measure and compile each transaction’s response
time, and (4) perform a set of permutation tests.

To evaluate the memory latency of both synthetic and real-world benchmarks, we
implement two distinct FPGA designs. The first FPGA design is composed of an AXI
Traffic Generator (ATG) [38], which generates heavy synthetic memory traffic toward the
memory controller. We configure the ATG to generate four types of access patterns that
combine random and sequential accesses with random and fixed inter-transaction gaps (ITG).
The traffic activity created by the ATG is captured and stored for post-processing by an
Integrated Logic Analyzer [39] (ILA), which is also instantiated in the FPGA.

The second FPGA design is implemented to evaluate the real-world memory traffic by
observing the activity originating from the main CPUs running SD-VBS benchmarks in
isolation. The design is a simplified version of the approach introduced in [22] and consists
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of only a loopback IP linking the core cluster with the memory controller through the
FPGA (i.e., no transformations are performed on the transactions’ address). Similarly, the
Jailhouse-RT hypervisor [15] is instrumented to target the FPGA memory range instead of
the memory controller, making the hypervisor and benchmark memory traffic observable
via an ILA. We run different SD-VBS benchmarks with different inputs in a sequence and
randomly acquire fragments of memory traces. Thus, while we know that the captured
activity belongs to some SD-VBS benchmark, we cannot determine which trace corresponds
to which specific benchmark.

Table 2 shows the results of the first 10 permutation tests performed on the two FPGA
designs, on the top and bottom, respectively. For synthetic benchmarks, the number of
passed tests increases as randomness in the pattern, and ITG is introduced. Therefore, for
ATG with random memory access pattern and random ITG has the highest tests pass of
100%, whereas sequential memory access pattern with fixed ITG has the lowest test pass of
60%. Hence, the percentage of tests pass increases as access pattern and ITG randomness
grow.

For real-world benchmarks, 30 snapshots of memory traffic are captured. Since applications
have different phases, the ILA buffer is small, and memory transactions are captured
asynchronously, we observed variation in the results of permutation tests. In the best-case
scenario, all tests are passed, although pass percentages as low as 50% have been seen on
rare occasions. The mode (value that appears most often) indicates a 90% pass.

In summary, the permutation testing indicates that not all tests are passed under all
scenarios, albeit an indication that A8 holds in most of the cases has emerged. Nonetheless,
we conduct a full-stack implementation to verify that the timeliness objective (Equation (1))
we impose is, in fact, met with real-world applications.

7.3 Validation of Other Key System Assumptions
In this subsection, we experimentally validate that the key assumptions, as stated in detail
in Section 3, hold for our system.

Validation of A2: Cache Model. First, we show that the total numbers of LLC misses
for an application executed in isolation and contention scenarios are comparable. Figure 5a
illustrates the average total number of LLC misses that occur during 100 runs for disparity,
tracking, mser and ndt_mapping in isolation and contention, respectively. It can be observed
that the total number of LLC misses is comparable in both scenarios, with an average
difference of less than 1% in their counts. This demonstrates that there is no inter-core cache
interference, which is consistent with assumption A2.

Validation of A6: Computation and Read-latency Additivity and A7: Profiled Critical
Workload. Next, we show that the compute time C of an application remains the same in
isolation and contention. We measure the worst-case execution time E and the total latency
of read memory transactions L and determine the compute time C by: C = E − L

In Figure 5b, it is shown that the compute time of the application under consideration
(disparity, tracking, mser and ndt_mapping) is similar in both the scenarios, with an average
difference of less than 1.8%. Thus, assumptions A6 and A7 hold.

Validation of A5: Measurable Read Latency Distribution. Finally, we demonstrate the
capability of measuring (an approximation of) the latency distribution of read memory
transactions in a COTS platform – without redirecting memory transactions through the
FPGA – as stated in A5.
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Figure 6 Impact of memory interference on the shape of nor-
malized memory latency distribution for disparity on RT core.
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Figure 7 Impact of bin size
on the shape of memory latency
distribution.

Figure 6 shows the normalized read memory latency distribution obtained from the
APM present in the evaluation platform (Xilinx Ultrascale+ MPSoC [40]) in isolation and
contention. According to Figure 6a, the majority of individual memory read transactions for
disparity have a latency of less than 80 clock cycles in isolation.

When multiple contending MemBomb applications are running in parallel, the disparity
benchmark experiences a significant increase in memory latency, resulting in a shift of the
memory latency distribution to the right (higher memory latency bins), as seen in Figure 6b.
Under contention, the majority of individual memory read transactions have latency in the
range of 41 to 160 clock cycles.

7.4 Configuration Parameters

Configuring the proper system parameters is one of the primary challenges system designers
face when implementing any regulating mechanism. In this subsection, we explain the key
design parameters of our approach and the rationale behind their selection.

7.4.1 Regulation Interval

The choice of the regulation interval Tr is a trade-off between regulation granularity and
overhead due to the generation of more frequent timer interrupts. The smaller regulation
granularity is beneficial for finer grain control over the enforcement of our regulator. A
regulation interval Tr = 1 ms has shown to yield good results and is set throughout the
evaluation setup.

7.4.2 Total Bins

The number of bins defines the quantization that can be used to approximate the memory
latency distribution. The PMU present in our evaluation platform offers 10 hardware counters
as described in Section 6.1, which can be accordingly used to set 10 latency bins. However,
we only dedicate 8 hardware counters for measuring memory latency distribution, resulting
in 8 bins. The other two hardware counters are reserved for the purposes of (1) measuring
the total number of read transactions as well as (2) the total read latency. This is done to
validate the key system assumptions that are specified in Section 3.
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(b) tracking on RT core and MemBomb on NRT
cores.
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(c) mser on RT core and MemBomb on NRT cores.
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(d) ndt_mapping on RT core and MemBomb on
NRT cores.

Figure 8 Execution Time Distribution (for 100 runs each).

7.4.3 Bin Size

The bin size of the memory latency distribution needs to be chosen in such a way that all
possible individual read memory latencies can be covered while ensuring that distribution
shifts can be effectively captured. Simultaneously, one must ensure that the bins are equally
spaced and without discontinuities to provide a well-formed distribution snapshot when
sampled. To determine the appropriate bin size, the APM is initially configured to measure
the minimum and maximum memory latency values during a set of application runs. We
observed a minimum read latency of 38 clock cycles and a maximum of approximately
600 clock cycles. Based on these values, we fix 40 clock cycles as the bin size. We also
experimented with a larger bin size of 75 clock cycles with the same setup as shown in
Figure 6b, which resulted in nearly empty bins with memory latency values greater than 375
clock cycles, as seen in Figure 7. We set the upper limit of the last bin to 2000 clock cycles in
order to capture all conceivable memory latencies that a memory transaction may encounter.

7.5 Effectiveness of the Approach

The objective of this experiment is to show that, given Ē and α, Eq. 1 holds. Figure 8
summarizes the execution time distribution of applications during 100 runs and compares the
target execution time Ē against the actual execution time Ereg. As a point of reference, the
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Figure 9 Validation of timeliness objective
for various values of acceptable error α.
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Figure 10 CDF for disparity on RT core.

execution time distribution in isolation (blue) and contention (orange) are also provided. The
expected discretized execution time distribution of the target execution time is theoretically
computed and is depicted as a discretized bell curve, whereas the actual execution time
distribution is experimentally evaluated and depicted by a bar plot.

Figure 8a presents the target execution time Ē of 3755 ms and 4018 ms with an acceptable
error α = 0.10% for 1st and 2nd target execution times, respectively. Notably, as there are
multiple possible normal distributions for a given Ē, we fix σ =

√
µ
2 and σ =

√
µ
6 for the 1st

and 2nd Ē, respectively and then find the corresponding mean µ that is evaluated to 3700 ms
and 4000 ms, respectively. Lowering/rising the standard deviation σ only narrows/widens
the normal distribution curve and thus controls the tightness of the timeliness objective. The
actual execution time Ereg for the given α is 3683 ms and 3997 ms , respectively and less
than the target execution time. Hence the timeliness goal defined in Equation (1) is satisfied.

In order to validate the applicability of the approach for diverse workloads, we applied
the same methodology to a number of different applications. We considered tracking, mser
and ndt_mapping to be RT applications hosted on the RT core, while MemBomb running
on the three NRT cores, as shown in Figure 8b, Figure 8c and Figure 8d, respectively. We
use the same target execution time Ē of 4560 ms with an acceptable error α = 0.10% for
all three sets of experiments. Also, we use the same σ =

√
µ
2 . The actual execution time

Ereg for tracking, mser and ndt_mapping was measured as 4387 ms, 4399 ms and 4315 ms,
respectively, which is less than the target execution time and hence satisfies the timeliness
goal defined in Equation (1).

Figure 9 shows the validation of the timeliness objective for various values of α for the
same set of applications and experimental setup used in Figure 8a. We consider four values
of α: 0.01, 0.3, 0.7 and 0.99. These are applied to both the expected and achieved target
execution time distribution and highlighted by dashed and solid lines, respectively, in Figure 9.
We found out that, for any value of α, the criteria Ereg < Ē holds. This provides empirical
evidence to corroborate our expectation that the timeliness constraint formula presented in
Equation (1) indeed holds for arbitrary values of α.

Finally, we illustrate the CDF of read memory latency observed by the dispartiy application
in isolation and under contention, as well as the enforced reference CDF. The reference
CDF F̄ used in Figure 8 for the 1st target execution time Ē of 3755 ms is highlighted with
green lines in Figure 10. The CDF in isolation (blue lines) and contention (orange lines) are



A. Saeed et al. 4:19

0 1000 2000 3000 4000
Time (ms)

0

25

50

75

100

125

Av
er

ag
e 

M
em

or
y 

La
te

nc
y 

(C
lo

ck
 C

yc
le

s)
0

25

50

75

100

Re
gu

la
tio

n 
on

 N
RT

 c
or

es
 (%

)

Contention
1st Target
2nd Target
Isolation.
1st Target (% regulation)
2nd Target (% regulation)

Figure 11 Impact of regulation on the average memory latency for disparity on RT core.

computed using the same PMFs previously shown in Figure 6. It can be noted that the F̄ (k)
computed for each bin k lies between the envelope defined by the CDFs measured in isolation
(upper bound) and under contention (lower bound). These F̄ (k) values are subsequently used
by the memory latency distribution-driven regulator (Algorithm 1) to achieve an execution
time Ereg that meets the timeliness objective.

7.6 Impact of Regulation on the Average Memory Latency
The selection of the target execution time Ē impacts the aggressiveness of the regulation,
which in turn affects the average memory latency of an application. The average memory
latency is defined as the total read memory latency divided by total number of read memory
transactions over the Tr = 1 ms regulation interval.

The average memory latency of disparity under the same experimental setup as in
Figure 8a is shown in Figure 11. However, instead of presenting the average memory latency
over 100 runs, we present the WCET case: where the observed execution time is the highest.

It can be observed that the average memory latency for the 1st target execution time,
with an observed WCET of 3714 ms, is around 70 clock cycles. For the 2nd target with
an observed WCET of 4037 ms, the average memory latency is around 90 clock cycles.
Consequently, the average memory latency is proportional to the target execution time Ē.

As the target execution time for the 2nd target is more relaxed relative to the 1st target,
the overall percentage of regulation that is enforced on the NRT cores decreases from 75% to
50% as seen in Figure 11. The percentage of regulation is calculated by dividing the total
number of regulation intervals in which the NRT cores are suspended by the total number of
regulation intervals in the experiment. Hence, the percent regulation that is enforced on the
NRT cores is inversely proportional to the target execution time Ē.

It is worthwhile to note that traditional DRAM bandwidth management-based regulation
mechanisms [5, 23, 41] tend to bring the actual execution time as close as possible to the
isolation scenario. However, our approach allows for the actual execution time to be anywhere
between the execution time in contention to isolation.

7.7 Comparison with DRAM bandwidth-based regulation
To demonstrate that distribution-driven regulation is more beneficial than traditional DRAM
bandwidth-based regulation mechanisms, we compare the slowdown ratio experienced by
the applications running under the following scenarios (1) unregulated execution, in which
the applications are running in parallel on their respective cores without any regulation

ECRTS 2023



4:20 Memory Latency Distribution-Driven Regulation for Temporal Isolation in MPSoCs

Table 3 Slowdown Ratio of benchmarks in contention without regulation and with different
regulation mechanisms.

RT Core NRT Cores
disparity MemBomb on each NRT Core

Unregulated MemGuard Distribution-Driven Unregulated MemGuard Distribution-Driven
1.28 1.03 1.03 3.79 16.67 7.05

disparity MemBomb (HB) on each NRT Core
1.25 1.03 1.03 1.41 8.07 3.49

mechanism, (2) a memory bandwidth management-based regulation (MemGuard [5])1, and
(3) distribution-driven regulation. We define the slowdown ratio of an application as the
ratio of execution time under contention to the execution time in isolation.

We use the latest implementation of MemGuard [5] that regulates LLC write-backs in
addition to LLC misses, ported to the partitioning hypervisor and configured for static
bandwidth reservation. The key parameter used by MemGuard is the guaranteed (worst-case)
bandwidth, which is approximately 960 MB/s for our evaluation platform based on the work
in [24]. We allocated half of the said bandwidth for the application running in the RT core,
and the remaining is distributed equally among the three applications running in the NRT
cores.

Once the configurations for MemGuard have been selected, the parameters of the
distribution-driven regulator (target execution time Ē and acceptable error α) are selected
in such a way that the actual execution time Ereg for the application running on the RT
core is the same under MemGuard and distribution-driven regulation. This allows for a fair
comparison of slowdown ratios for applications running on NRT cores while keeping the same
slowdown ratios for the application running on the RT core.

We conducted the evaluation with two different sets of applications. In the first set
of applications, disparity is running on the designated RT core while synthetic MemBomb
applications are running on the three NRT cores. In the second set of applications, only
the MemBomb is modified to perform memory write operations for half of its duration
periodically. We refer to this modified MemBomb application as MemBomb Half Blast (HB).

Table 3 shows the slowdown ratios for different run settings compared to the execution
times in isolation. We compare (1) unregulated runs in which the applications are executed
concurrently in the respective cores with no regulation mechanism in place to (2) the proposed
distribution-driven regulator and to (3) regulation done using MemGuard.

As expected, both regulation approaches achieve the same slowdown ratios of 1.03 for
disparity. However, with MemGuard, both sets of applications running on the NRT cores
suffer the highest slowdowns of 16.67 and 8.07, respectively. By contrast, the distribution-
driven regulator is able to improve the slowdown ratio of the NRT applications on average
by 2.2× compared to MemGuard.

8 Conclusion and Future Work

In this work, we presented a novel distribution-based regulation mechanism that enforces a
timeliness objective formulated as a constraint on the probability of meeting any execution
time target, which can be anywhere between the execution time in isolation and contention

1 Comparison against a more recent work [23] is not possible due to the unavailability of memory utilization
metric in our evaluation platform, which is necessary for the latter work.
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scenario. The timeliness objective is met by directly controlling the distribution of total
memory latency via regulation, which eventually impacts the distribution of the observed
execution time.

We implemented our solution inside the Jailhouse-RT hypervisor [15] and deployed it on a
COTS platform (Xilinx Ultrascale+ MPSoC) to demonstrate its effectiveness in meeting the
timeliness objective for time-sensitive RT applications. Our approach can also be extended to
handle multiple RT cores by assigning ranks to the RT cores based on their criticality level.
The level of criticality then determines the order of suspension of the cores. If the observed
CDF is below the reference CDF, the NRT cores are suspended first, followed by the RT
core with the lowest criticality level, and so on, until the observed CDF no longer remains
below the reference CDF. This is not immediately feasible with the same PMU due to the
limited number of AXI ID filtering blocks. However, APM blocks can be instantiated on the
on-chip FPGA, and memory traffic can be observed through-FPGA instead.
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Abstract
The use of integrated architectures, such as integrated modular avionics (IMA) in avionics, IMA-SP
in space, and AUTOSAR in automotive, running on Multi-Processor System-on-Chip (MPSoC)
is on the rise. Timing isolation among the different software partitions or applications thereof in
an integrated architecture is key to simplifying software integration and its timing validation by
ensuring the performance of each partition has no or very limited impact on others despite they
share MPSoC’s hardware resources. In this work, we contend that the increasing hardware support
for Quality of Service (QoS) guarantees in modern MPSoCs can be leveraged via specific setups
to provide strong, albeit not full, isolation among different software partitions. We introduce the
concept of Quasi Isolation QoS (QIQoS) setups and instantiate it in the Xilinx Zynq UltraScale+.
To that end, out of the millions of setups offered by the different QoS mechanisms, we identify
specific QoS configurations that isolate the traffic of time-critical software partitions executing in
the core cluster from that generated by contender partitions in the programmable logic. Our results
show that the selected isolation setup results in performance variations of the partitions run in the
computing cores that are below 6 percentage points, even under scenarios with extremely high traffic
coming from the programmable logic.
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1 Introduction

MPSoCs are progressively used in safety-critical domains, like avionics and space, to cater for
augmented performance requirements. Besides the sheer computational power they provide,
MPSoCs increasingly incorporate substantial Quality of Service (QoS) features [60, 44]. QoS
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Figure 1 IMA setup with multiple applic-
ations and Design Assurance Levels.

Figure 2 Representation of interference mitiga-
tion impact under a QIQoS setup.

support was originally designed for performance optimization and load balancing, but is
increasingly considered as a means to better control contention effects among co-running
tasks and enforce a more deterministic timing behavior [48, 50]. QoS support is provided as
software-controlled “knobs” that allow to intentionally bias the execution towards a given
task by providing it with privileged access to hardware shared resources, more bandwidth in
an interconnect, reserved space in stateful hardware resources, and the like.

When an MPSoC is used to support exclusively a monolithic application using several or
all underlying cores (e.g. a single ARINC 653 partition), deployed for example by a single
avionics original equipment manufacturer or TIER1 provider, the contention each process can
suffer can be bounded already in early software development stages: contender information
is available as they are part of the same monolithic application. In such scenario, different
QoS setups may be explored to find a setup that satisfies the performance requirements of
all processes [48].

However, this is seldom the case and instead an IMA-MPSoC setup is deployed: multiple
applications from different software providers are typically integrated on the same target
MPSoC, with a view to reducing integration and validation costs. In this line, integrated
architectures 1 like IMA [12] build on time and space partitioning concepts, as defined by the
ARINC 653 [4] open standard, to simplify the allocation of computing resources to different
applications. This effectively allows integrating several applications onto less computing
hardware, as illustrated in Figure 1. While IMA time partitioning ensures each application
receives a given amount of CPU time, the actual progress made by an application in the
time window also depends on the share of hardware resources the application receives.

MPSoC timing interference arises on contending accesses to shared hardware resources [19,
39, 55], which causes an application’s execution time to depend on the use of resources made
by applications in other software partitions. Waiting until late development and integration
stages, when all providers make their applications available, to address the timing dimension
and assess timing interference has opposing effects. On the positive side, only the system’s
intended final configuration [1, 18, 21] is considered, which reduces the risk of overestimating
the contention impact. On the negative side, there is a non-negligible risk of detecting
software timing violations too late in the validation and verification stages, when reacting to
time misconfigurations can result in unaffordable changes to the applications, system design
and schedule, and the entailed regression testing.

1 For instance, Integrated Modular Avionics (IMA) for avionics, IMA for Spacecrafts (IMA-SP) [56] in
space, and AUTomotive Open System ARchitecture (AUTOSAR) [13].
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In IMA-MPSoC scenarios, QoS support can be leveraged to anticipate late timing
issues related to multicore contention by preserving partition-level time budgets against the
interference of (unknown or partially known) contender applications. This is, in fact, aligned
with CAST-32A [18] advisory circular and A(M)C 20-193 [21] for multicore certification in
the avionics domain, establishing that separate determination of the WCET of an application,
without any other applications executing, is only valid if the applicant can demonstrate that
they build on a multicore Platform with robust partitioning or that time interference from
other applications is avoided or mitigated for that application.

Concept. We contend that existing hardware QoS solutions can be used to enforce setups
under which timing interference is mitigated and the execution time of an application is less
exposed to contention from other co-running applications. We aim at devising a set of QoS
setups, which we call Quasi Isolation QoS setups or QIQoS, that guarantee a high-degree
of isolation (performance guarantees) to the applications regardless of the contention its
co-runners put on MPSoC’s hardware shared resources, hence meeting IMA assumptions
and requirements. QIQoS setups are meant to reduce the impact on execution time when
varying the contender loads on the system shared resources. Figure 2 illustrates the effects
of a given QIQoS setup in reducing the sensitivity to contention scenario by enforcing an
upper bound to the incurred timing interference. As an immediate effect, the enforcement of
a proper QIQoS setup will increase the representativeness of early time budgets, typically
obtained by running the application against synthetic aggressors, making them much tighter
and stable. The gap between the multicore interference empirically observed during the
timing verification campaign by deploying synthetic worst-case contention scenarios and that
observed in the final system configuration will be sensibly narrowed.

Realization. In this work, we instantiate our QIQoS approach on the Xilinx Zynq UltraS-
cale+ [60, 59] to address contention arising on accesses to the DDR main memory. The DDR
memory controller (DDRMC) provides DDR access to the different computing elements
on the MPSoC through its six ports, and offers a complex multi-layer QoS mechanism to
control the traffic coming through each port. This includes traffic classes, port throttling,
and per-traffic class resource allocation. Hence, the QoS of the DDRMC allows millions
of configurations that are remarkably challenging to master for the end users [48]. Our
first step is then, identifying several specific DDRMC QIQoS configurations that allow,
to different degrees, isolating DDR traffic of critical tasks from that generated by other
tasks. Subsequently, we expose the specific characteristics of the identified QIQoS from the
standpoint of the type and degree of isolation they can assure.

When facing the increasing QoS support in modern MPSoCs, the challenge lies in making
effective and consistent use of the available features. One of the proposed QIQoS setups
exploits the timeout features at the port level, while the second QIQoS instead mainly builds
on starvation prevention features. Both QIQoS setups use traffic classes and transaction
throttling. Other common features to both include preventing specific settings for the
DDRMC that, if wrongly set, could defy the benefits achieved through the QoS layer. These
include limiting the allowed DDR memory commands that can be sent out of order to the
DDR device, and preventing critical and non-critical tasks from sharing the same memory
port.

Our results show that the proposed DDRMC QIQoS configurations can effectively isolate
the execution of the critical tasks that run in the A53 and the R5 cores from the load coming
from the programmable logic (PL) in the access to memory, despite the latter produces in our
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experiments huge amounts of DDR accesses. The degree of isolation can be configured based
on a set of parameters provided for each QIQoS setup, which allows end users to achieve
the desired balance between isolation and performance. Under the most aggressive QIQoS
setups, the performance variation across substantially different loads that the PL put on the
DDRMC is as low as 6 percentage points.

The rest of this paper is organized as follows. Section 2 presents the related works.
Section 3 introduces our target platform. Section 4 presents the principles of QIQoS setups
and describes their application on the target platform. Section 5 provides the experimental
results. Finally, Section 6 presents the main conclusions of this work.

2 Related Works

Domain-specific safety standards and support documents specifically identify the need for
controlling and reducing the impact of contention arising on shared resources accesses as a
fundamental requirement for certification [1, 18, 21, 34]. Massive research efforts have been
devoted to cope with the impact of multicore timing interference on system performance and
predictability [46, 48]. Whereas custom hardware designs have been proposed to balance
predictability and performance [42, 30, 54, 37], in this work we focus on a COTS MPSoC
and analyze the predictability of its memory controller.

Several works pursue analytically bounding the worst-case interference suffered by each
application [17, 19, 24, 39, 57]. Regardless of the tightness of the adopted method, contention
can be too large (e.g. some works report more than 20x performance degradation [55]),
which ultimately leads to severe system under-utilization. While we are still interested in
analyzing the timing interference, our main focus is to enforce a-priori control of contention
via appropriate QoS configurations.

Controlling the impact of contention by determining how resources are shared among
applications, as opposed to just analyzing it, allows to reduce the impact of contention and is
a fundamental enabler for the analyzability of multicore systems [48, 43, 28]. Time and space
partitioning of shared resources has been explored building on top of existing hardware and
software solutions, typically handled either as part of the static system configuration [4, 28],
or as part of more or less complex run-time monitoring of resource usage at RTOS or
Hypervisor level [43]. Software solutions, in particular, constraint applications usage of
shared resources, like the last level cache and DRAM [29, 16], to predetermined quotas. In
this work, we do not focus on specific run-time support, which is in fact dependent on the
full software stack, but we only focus on exploiting the existing hardware QoS support. In
fact, software-based are deployed on top of existing hardware support for QoS and need to
be consistent and compatible with the underlying QoS configuration at the risk of obtaining
suboptimal or even counter intuitive results. For example, while it is possible to regulate
the memory bandwidth of each core by constraining read/write requests, for example with
MemGuard [16], the actual operation of bandwidth regulation and prioritization mechanism
can be jeopardized by a QoS configuration assigning low priority in the memory controller to
the high bandwidth thread. Nonetheless, QoS features can also be leveraged to support and
improve the effectiveness of more complex software-level paradigms.

Hardware providers are increasingly aware of the importance of regulating the impact of
contention and are providing hardware level solutions for controlling and apportioning the
usage of shared resources such as Intel Resource Director Technology (RDT) [33] and ARM
Memory System Resource Partitioning and Monitoring (MPAM) [9]. Initial assessment of
those solutions from the standpoint of timing predictability has been conducted in [49, 63]
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arising some concerns on the effectiveness of design and implementations of such modules. A
custom FPGA implementation to regulate memory accesses in the Zynq UltraScale+ platform
has also been proposed in [32]: despite its effectiveness, the approach entails non-negligible
performance overheads due to routing core DDR requests via the PL.

More recently, the availability of increasingly-powerful QoS features [6, 7] in COTS
platforms has prompted the exploitation of QoS elements, traditionally used for performance
balancing and tuning, as an effective means to control multicore timing interference [48].
An adequate degree of software controllability of such QoS features is also a mandatory
requirement [22]. An initial study on the QoS features in a representative platform for the
avionics domain has been reported [48], providing evidence of how the manifold QoS features
provide sufficient malleability to enforce different resource sharing scenarios. While sharing
with [48] the focus on the Zynq UltraScale+ memory controller, in this work we focus on
defining quasi isolation envelops for critical tasks against non-critical activities generated
from the PL rather than exploring different performance trade-offs among software partitions.
In fact, while the work in [48] fits the monolithic application scenario, where the goal is
finding a setup that satisfies the performance requirements of all processes, it cannot be used
in IMA-MPSoC scenarios to increase the representativeness of early time budgets by devising
a set of QoS setups that guarantee a high-degree of performance isolation.

Partial explorations of the impact of SMT-related QoS modules on execution time
performance have been conducted in [15, 31] for IBM and Intel processors respectively. The
QoS support in the UltraScale+ platform is partially addressed in [41] where a specific QoS
setup for the memory controller is used to explore possible throughput configurations for the
DDR memory module. These works are focusing on preventing performance degradation
rather than exploiting contention control for enabling stronger performance guarantees.

Finally, some works attempt to analytically model the effect of configuring QoS features
and contention regulation mechanisms in general. The work in [32] builds on profile-based
analytical predictive models to enforce a bandwidth regulation policy, including the use of
a set of QoS parameters to regulate traffic from the PL logic. An analytical model of the
QoS-400 module in the Zynq UltraScale+ is analyzed in [64]. Despite the expected higher
accuracy of analytical characterization approaches, they are often building on partial and
potentially misleading information on the hardware modules they are meant to model [14],
due to increasing hardware complexity and poor documentation. For this reason, they can
be useful for deriving early time estimates, they cannot be generally considered a robust and
generic alternative to more empirical approaches, as the one proposed in this work.

3 Target System

We focus on an MPSoC IMA setup in which a system integrator is in charge of deploying in the
same computing platform multiple applications with different functional safety requirements
from different software providers. These systems are typically scheduled following a layered
approach where the first level, either provided by an executive layer or a hypervisor, is
responsible for scheduling the different software partitions and each partition is in turn
responsible for executing single applications or processes. However, no or limited information
is available on software components from other providers unless in the very final stage of system
development. In particular, we do not consider relatively simpler monolithic system designs
where software components are responsibility of a single provider, and hence simultaneously
available for timing analysis purposes, including the early characterization of contention
impact and the exploration of different system configurations and QoS setups [45, 48].
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In an MPSoC IMA scenario, instead, different software modules are incrementally made
available and integrated into the final intended configuration. The lack of early and precise
information on the different software modules requires the application of compositional
approaches for the analysis of multicore timing interference. Hence, timing budgets can
be consolidated before the whole system is available and do not need to be re-determined
whenever a new component is integrated.

One practical approach for early characterization of timing interference consists in using
synthetic ’aggressor’ programs [35] during early stages to test representative contention
scenarios despite some software modules may not be available. These synthetic applications
can be exploited to generate high load on shared resources. Thus, by running each application
against aggressors already in early development stages, early figures on the impact of high
contention scenarios on the application’s execution time can be produced. However, as the
amount of shared resources in multicore processors used in embedded domains is constantly
increasing, the impact of aggressors on application’s execution time is potentially huge (20x
and higher) [36, 55], resulting in overly pessimistic execution time budgets.

In this IMA-MPSoC scenario, tighter figures on contention impact of each module can
only be provided by limiting the amount of interference possibly suffered by the application
or module under analysis, regardless of (or with limited correlation with) the co-runners.
In this work, we show how available QoS support in modern MPSoCs can be exploited to
enable early consolidation of tight contention-aware time budgets by providing quasi-isolation
scenarios where the impact of contention is bounded by specific QoS configurations.

3.1 Introduction to the Zynq UltraScale+

The Zynq UltraScale+ MPSoC [60, 59] comprises four main types of hardware blocks:
computing elements (CEs), communication elements, memory, and I/O controllers.

The CEs, see Figure 3(a), include a high-performance CPU cluster (called APU or
application processing unit) comprising 4 Arm Cortex A53 cores [8], a real-time CPU cluster
(called RPU or real-time processing unit) with 2 Arm Cortex R5 cores [10], an Arm Mali-400
GPU [11], and a programmable logic (PL) block that in real-time systems is usually deployed
to synthesize components to support I/O or computing acceleration of some functionalities.

In terms of memories, the MPSoC includes an on-chip memory (OCM), the DDR SDRAM
memory controller (DDRMC), and interfaces to access ROM and flash memories, which are
generally not used for the normal operation of end-user applications and hence excluded from
our discussions in the rest of the paper. The MPSoC also includes a complex I/O system
that handles accesses to generic (e.g USB) and specific controllers (e.g CAN).

An Arm AXI-based distributed network orchestrates the communications among all
elements – usually from (to) CE to (from) memory or I/O. It includes the cache-coherent
interconnect (CCI) hardware block that controls aspects related to coherence and distrib-
uted memory; top-level switches like the RPU switch; and smaller or secondary switches –
highlighted with an ’X’ in Figure 3(b). The interconnect is heterogeneous and distributed
meaning that the set of switches that each CE has to traverse to reach a given destination
varies per CE. For instance, Figure 3(b) shows an abstraction of most relevant connection
between the different elements in the system. It shows the interconnect IP blocks each CE
has to traverse to reach the DDRMC. This path can be configured, e.g. the APU can use
one or two ports to access memory, while the RPU can also send requests to the DDRMC
via the CCI using a single DDRMC port.
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(a) Computing elements (left), inter-connect (b) Paths from computing elements
(middle), and memories and I/O (right). to the DDR MC.

Figure 3 Different block diagrams of the Zynq UltraScale+ MPSoC.

3.2 Hardware support for QoS
The UltraScale+ offers a variety of hardware QoS mechanisms that help shaping the speed at
which the requests are sent conveyed from source to destination. The most relevant ones are:
Static QoS. Every AXI request in a point-to-point communication is tagged with a QoS

value (AXQoS) from 0 to 15 that the target of the communication can use to prioritize it
(the higher the AXQoS value, the higher the priority).

Dynamic QoS. Different interconnect elements, when they can receive requests from different
sources, can apply mechanisms that dynamically adjust the static QoS value to reach a
given target metric like controlling the maximum number of outstanding requests.

QVN. QoS virtual networks (QVN) use tokens to control transaction flows to ensure that a
transaction can always be accepted at its destination before it is sent by a source.

DDRMC QoS. The QoS at the memory controller offers a complex multilayered prioritization
system that we analyze more in detail in the following section.

QoS on the interconnect is especially relevant when dealing with request flows from
different CEs to different destinations, like DDRMC and I/O [64, 50]. However, when
different CEs target the same destination, the speed at which the target processes the
requests of each flow is the main factor determining the QoS each flow receives. In this work,
we focus on memory contention on the DDR memory as it is one of the major bottlenecks
in real-time systems [36, 55]. In fact, it is the last arbitration tier in charge of contain
contention when other mechanism failed to provide isolation or timing guarantees. This trend
continues [38] as more AI software is used in real-time systems processing huge amounts of
data coming from different sensors like video cameras and radars. Hence, in this work, we
focus on the QoS in the DDRMC, fix the same static QoS for all requests, and disable all
dynamic QoS and QVN mechanisms.

3.3 The DDRMC in the Zynq UltraScale+
The DDR memory subsystem encompasses the DDR memory controller (DDRMC) – which
comprises a DDR QoS module – and the DDR Physical Interface (DFI), see Figure 4. The
former receives the AXI requests from the distributed interconnect via six different ports and
converts them into DDR commands. The latter translates the DDR commands into signals
to the external DDR3/4 compliant device.

3.3.1 DDRMC
The DDRMC dynamic scheduling optimizes bandwidth and latency using a programmable
QoS controller. Traffic (i.e. flows of AXI requests) arrives to the DDRMC via the six AXI
ports (XPI ), referred to as Pi in Figure 3(b).
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(a) Main QoS-related components of the DDRMC. (b) XPI configurations.

Figure 4 Block diagram of the DDR Memory subsystem in the Zynq UltraScale+.

Traffic Classes. Reads are classified into low, high, or video traffic classes (LPR, HPR, and
VPR). Meanwhile writes into low or normal (LPW =NPW ) and video (VPW ).

Expired commands. VPR/VPW commands behave as low priority when they have not
expired (i.e. there is not a transaction timeout). Once expired, they are promoted to a
priority higher than that of the HPR/NPW commands. The timeout period for VPR and
VPW transactions (RTOUT and WTOUT, respectively) is configured via control registers.

CAMs. DDR commands (or simply commands) translated from incoming AXI requests are
stored into the content addressable memories (CAMs) both shared by all ports.

A 64-entry write CAM or wCAM that is shared by all traffic classes (and all ports).
A 64-entry read CAM or rCAM split into two partitions based on traffic type.

The first partition (hpr rCAM ) is used for HPR traffic classes.
The second partition (lvpr rCAM ) is used for LPR/VPR traffic classes.

There is a single rCAM so that all ports with HPR traffic share the hpr rCAM and all
ports with LPR/VPR traffic share the lvpr rCAM. The size of the hpr rCAM and lvpr rCAM
is controlled by configuration registers: hprSIZE and lvprSIZE respectively. Each partition
can be configured to have from 1 to 64 entries, with the constraint that their addition must
be equal to the rCAM size, 64. Hence, for instance, if hprSIZE = 24 then lvprSIZE = 40.

CAM allocation is performed by the Port Arbiter (PA) that selects from all DDR ports
the command to issue to the CAMs based on several levels of arbitration.
1. Reads are prioritized while there are VPR expired, or there are reads and no expired VPW.

Writes are served when there are no reads, and if there are expired VPW and no expired
VPR. The expiration period can be configured via setting timeouts for VPR/VPW.

2. HPR traffic has higher priority than LPR/VPR on the read channel and NPW/VPW
has the same priority on the write channel, with VPR/VPW prioritized if they time out.

3. Priorities are given on per-command based on their static QoS (AXQOS signals).
4. Conflicts are resolved using round-robin arbitration.

Port throttling changes this behavior by throttling ports that has their throttle-enable
control register set, when certain occupancy-related conditions are met:

When the available entries in the hpr rCAM partition are below an availability threshold,
set via a control register (hprAVAIL), those ports with read traffic mapped to the HPR
class can be throttled, if their port hpr throttling is enabled.
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Likewise, when the number of available entries in the lvpr rCAM is below an availability
threshold (lvprAVAIL), those ports with read traffic mapped to the LPR class can also
be throttled, if their port lpr throttling is enabled.
When the count of wCAM available entries is below wAVAIL, those ports with write
traffic mapped to the LPR=VPR class can also be throttled, if their port write throttling
is enabled.

Note that ports with traffic mapped to the VPR/VPW class cannot be throttled. Naturally,
and beyond the port throttling control, all ports are stalled when any CAM or any other
internal resource of the DDRMC is exhausted.

Other. There are other DDRMC features that we have not used because their interaction
with the ones we actually use is hard to control, as described in Section 4. These features
are port aging (that moves a port to the highest priority when an outstanding request is not
served after the established time); urgent transactions (indicating that there is a read/write
urgent transaction); and regions, defined at port level to help mapping AXI static priorities
and traffic classes.

3.3.2 DFI
When issuing commands from the CAMs to the DFI, command reordering is allowed to favor
page hits, potentially causing out-of-order execution of the commands. A regulator limits
the issue to up to 4 out-of-order commands. When it is disabled, no restriction is applied,
resulting in no control over the number of out-of-order commands executed.

CAM deallocation. On the egress side of the CAMs, depicted as scheduler in Figure 4(a),
the SoC allows setting a maximum starve period that a CAM can be without issuing a
command to the DFI. There is one period per CAM (hpr rCAM, lvpr rCAM, and wCAM )
before the queue goes into a “critical” state and it gets priority to send commands to the
DFI. Note that reduced starving periods increase the switching among queues.

3.4 Software Partition Setup
The most natural and efficient way to use the Zynq UltraScale+ in IMA-MPSoC real-time
systems is by consolidating different software partitions (SWP), ensuring that the needed
mechanisms to simplify integration and testing are in place. All main real-time operating
systems and hypervisors build on the concept of separation kernels that enable different
software partitions to achieve the required safety and security goals. Examples include Lynx
Secure [40] and DDC-I Deos [20], which are compliant with the highest-criticality levels in
Avionics, i.e. DAL A in DO-178C [47]. SWPs are usually executed in a disjoint set of the
available CEs in the underlying platform to reduce timing interactions among them, see
Figure 1. In the Zynq UltraScale+, a SWP can span from using a single R5 or A53 core to
use a subset of the R5 cores, A53 cores and integrate some acceleration in the PL.

To perform a reasoned exploration of configuration setups, we define the application
deployment scenarios (ADS) shown in Table 1. We focus on two classes of applications,
depending on whether they comprise critical tasks (CT) or not (NCT). In each ADS, we
assume up to two SWPs with CT applications being deployed in the CPU clusters and NCT
ones in the PL. Applications are assumed to be independent or share data via predictable
communication channels [4]. The goal is to isolate the performance of the applications of the
critical SWPs from the traffic coming from the PL, so that they can be analyzed in isolation.
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Table 1 SWP active in each core under each ADS.

R5 R5 A53 A53
ADS1 SWP1 – – –
ADS2 – – SWP1 –
ADS3 SWP1 – SWP1 –
ADS4 – – SWP1 SWP2
ADS5 SWP1 SWP2 SWP1 SWP2

Other deployment scenarios are possible in which the PL is not used and the NCT runs,
for instance, in the A53 cores. In that case, the NCT running in the A53 can be mapped to
one port (e.g., P1), while the CT in the R5 can use a different port (e.g., P2), see Figure 3(b).
This port selection is a configurable option [48]. In that scenario, the very same principles we
describe in this work apply. In fact, the scenarios we address, with the NCT running in the
PL, are more challenging since both, the R5 and A53, limit the number of requests in-flight,
which further limits the pressure on memory. In particular, the R5 cores allow one in-flight
load/store per core and the A53 allows a maximum of 3 in-flight loads per core. Instead, the
PL can exploit more ports to memory, and we are able to instantiate several AXI Traffic
Generators per port, allowing many more independent requests, hence resulting in higher
pressure on memory (more details on the setup are provided in Section 5.1).

4 Quasi Isolation QoS Setups

4.1 Context and Approach
Meeting safety standards requirements against the complexity of current and upcoming
MPSoCs is a challenging endeavor. Evidence must be provided that the contention tasks
generate on each other is anticipated and controlled. Unfortunately, such evidence cannot be
derived by acquiring full information about hardware behavior to build a comprehensive and
accurate model on how resources are shared among co-running tasks. While reasonable, such
approach is deeply invalidated in practice.

On the one hand, it is extremely improbable, if at all possible, that IP providers give full
access to the currently-confidential technical documentation as required to derive detailed
contention models. The number of examples in this direction are endless: from the very
limited information on NoCs (e.g. the functional behavior of the Arm NIC-400 [5] is limited
to few pages and, similarly, the description provided by NXP of its CoreNet Coherence Fabric
in the T2080 TRM [26] is minimal and includes no information about its internal behavior
in terms of buffering or prioritization), to the almost non-existent information about GPU
timing behavior [11]. Such trend is not expected to change in the near future, with recent
architectures like the NXP LX2160 [44] and the Xilinx Versal [62] equipping increasingly
complex components with increasingly limited descriptions of their functional and timing
behavior. The Zynq UltraScale+, target of this work, is not an exception: even just the
memory controller exhibits several levels of prioritization (see Section 3.3.1) and there is not
available information to derive the exact way the scheduler sends requests to the DFI, how
exactly the drain of the CAMs occurs when a CAM goes critical, and many other details.

On the other hand, even if enough information was available, modern MPSoCs include a
score of dynamic features that make modeling extremely hard without resorting to overly-
pessimistic (conservative) assumptions. The Zynq UltraScale+ is a clear example of such
scenario as it includes a relevant set of dynamic features that are triggered based on the
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(dynamic) behavior of the traffic. Dynamic features include, among others the read and
write timeout feature, which depends on how long a command is waiting until being served;
the port throttling mechanism, which is triggered based on the availability of the partitions
of the rCAM; the wCAM, which in turn, depends on the (dynamic) traffic coming via the
different port to the DDRMC; and the prioritization mechanism in the PA, which builds on
the status of expired/not expired commands.

Overall, while several reverse engineering and characterization of specific features have
been carried out (from SMT processors, cache, memory, and GPUs), the complexity of
the current MPSoCs, the limited information, and the number of different IP components
intervening in the computation and communication, prevent the definition of a precise
contention-aware functional and timing model in practice.

Hence, the challenge for the real-time research community and original equipment man-
ufacturers and TIER1/2 companies in critical domains is to make the system as safe as
possible building on the (limited) available information supported by empirical evidence. The
remaining uncertainty (risks) are covered by specific mechanisms defined in safety standards
like safety nets that can assume control of the system if the main MPSoC fails either in
terms of hardware reliability or in terms of execution time violations [21].

4.2 Concepts and Benefits
Building on the considerations above, in this work, we do not attempt to develop a model that
describes how the different QoS mechanisms work and make predictions for other applications,
or how the current application would behave under a different QoS setup. Instead, in our
target IMA-MPSoC setup (see Section 3.3.1) we aim at enforcing a high-degree of performance
isolation. A Quasi Isolation QoS setup, QIQoS for short, is a particular configuration (setup)
of the QoS mechanisms in the underlying platform that provides performance guarantees
to a particular set of tasks running in different CEs. That is, QIQoS helps containing the
impact that MPSoC contention generated by the NCT can have on the CT, and hence makes
early time budgets more representative under a set of QoS setups.

We assess the quality of a specific QIQoS along three main axes: first, for performance
guarantees, we look at the slowdown of the CT (the lower the better); second, for timing
predictability, we evaluate CT’s performance variability when run against different NCT (the
lower the better), for instance different aggressor benchmarks that put variable high load on
the shared resources; finally, for overall performance and fairness, we consider the average
performance of the NCT (the higher the better). This last dimension can be used as a tie
breaker among comparable QIQoS setups. We will formalize relevant metrics for evaluating
QIQoS setups in Section 5.2.1.

When deployed, a QIQoS setup simplifies incremental integration by reducing the con-
tention impact that co-runners (NCT) can have on the analysis tasks (CT). QIQoS allows
deriving timing budgets that are robust against contention scenarios and do not build on any
specific run-time support on commercial MPSoCs. Both aspects together are fundamental
enablers for the integration and reuse of software modules from different vendors in mixed-
criticality systems. The achieved quasi-isolation guarantees the applications’ timing behavior,
partially consolidated in the early development stages, will be confirmed at integration,
reducing the risk of unexpected timing misbehavior and commercially disruptive rollbacks.
The proposed QIQoS approach contrasts with previous works that assuming that both CT
and NCT are known and focus on exploring different QoS setup that satisfies performance
requirements [48]. That is while QIQoS focus on IMA-MPSoC setups, previous works [48]
target a monolithic application as presented in Section 1.
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4.3 Application to the DDRMC
We instantiate the QIQoS approach on the DDRMC by developing two specific and well-
justified QoS isolation setups, each one exploiting a different set of QoS mechanisms at the
DDRMC level. QIQoS1 exploits the timeouts defined at port level; QIQoS2 leverages CAM
draining features (starving) in the DDRMC. A comprehensive overview of QIQoS parameters
for each ADS is provided in Table 2.

4.3.1 Common elements to QIQoS1 and QIQoS2
We first develop on the main common features to both QIQoS. These arose from a series of
empirical observations on how to configure some QoS features, since other configurations
would prevent enforcing performance guarantees.

Use of private ports. Each CT uses a private port to memory that is not shared with
any other CT or NCT. We do so because some QoS features, like traffic class and port
type, are set at the port level, so sharing the same port can produce uncontrolled CT’s
performance drop. Taking Figure 3(b) as a reference, ports P0-P2 are reserved for the
CT that run in the R5 and/or A53 cores, and P3-P5 for the PL.
Reduced command reordering. In all QIQoS we set the maximum number of out-
of-order commands that can be sent from the CAMs to the DFI to the minimum value
allowed (4). Without this limitation, the DDRMC is allowed to prioritize many memory
commands over an older memory command if they hit in an open page. This is done for
performance-improvement reasons obtained by enabling the DDRMC to increase page hits.
However, if the memory command that are bypassed by more recent commands belongs to
the CTs, out-of-order commands may have disruptive effects on CTs predictability [36, 55].
Avoidance of incoherent QoS setups. We prevent the incoherent QoS setups [48]
by configuring the port type in accordance with the traffic class. Best Effort (BE) ports
type are mapped to LPR and LPW traffic classes (respectively for reads and writes), low
latency (LL) ports to HPR and LPW traffic classes, and video priority (VP) ports to
VPR and VPW traffic classes. This setup is summarized in Figure 4(b). In Table 2, port
type and traffic assignments follow these rules for every port (Pi) and under any ADS
and QIQoS.
Maximization of resource usage. In the same line, we force the number of entries
assigned to HPR and LPR/VPR traffic in the rCAM to match the total number of entries.
In particular, we assign 32 of the 64 entries to each partition (hprSIZE = lvprSIZE =
32). In Table 2 we see that this criterion holds for all ADS.

Another commonality of all QIQoS setups is that some additional QoS features of the
DDRMC are not considered, namely: port aging, urgent transactions, and regions defined
at port level. While these features provide additional capabilities to control the ingress of
requests to and the egress of memory commands from the DDRMC, they are hard to master
in conjunction with the other QoS mechanisms in use. On the one hand, the number of
possible QoS configurations increases exponentially. On the other hand, their use can easily
produce non-linear effects or even jeopardize the effect of other QoS features, ultimately
precluding any chance to achieve the required isolation [48].

4.3.2 QIQoS1
The first QIQoS setup leverages on controlling the ingress of requests to the CAMs to provide
isolation for the CT. To that end, QIQoS1 builds on the timeout feature at port level, while
the egress prioritization (i.e. the starving feature) is not used. The rows (ADSi, QIQoS1)
in Table 2 summarize the parameters enforced under QIQoS1 for each ADS.
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Table 2 Parameters of each QIQoS for the DDRMC of the Zynq UltraScale+ for each ADS.

CT. Read requests from the CT are assigned the VPR traffic class. QIQoS1 sets the timeout
values for reads coming from the port(s) used by the CT to one RT =RTOUT =1 as read
operations are usually blocking and any delay they can suffer directly affects performance.

Write operations (e.g. stores) instead are assigned the VPW traffic class. They can be
processed “off-line” by the A53 as they are not blocking – to a certain extent. For this
reason, we set variably high WT =WTOUT values, symbolized with X in QIQoS1 entries
in Table 2. The lower the value of WTOUT, the more frequently requests of the CT –
mapped to the VPR/VPW traffic classes – will transition into expired mode and, therefore,
will be prioritized over the other requests. Hence, by varying WTOUT we aim to achieve
different balance points between CT isolation and NCT performance.

NCT. Read traffic of the NCT is set as HPR. This allows to segregate requests from the
CT and NCT in the rCAM with a view to favor isolation: the HPR traffic from the NCT
will use the HPR part of the rCAM, while the VPR traffic from the CT will exploit the LPR
part of the rCAM. It should be noted that, under normal operation, the NCT HPR traffic
do have a higher priority than CT VPR traffic. However, the use of sufficiently small values
for RTOUT and WTOUT ensures that the CT VPR traffic is steadily expired and hence its
priority is promoted to surpass that of the NCT.

By varying the number of entries that must be available in the hpr rCAM partition
(hprAVAIL), symbolized with Y in QIQoS1 entries in Table 2), it is possible to control the
contention generated by the NCT. With high availability thresholds, the port assigned to
the NCT will be throttled down more frequently (and vice versa), hence stalling NCT’s
generated traffic.

Write traffic of the NCT is set as LPW=NPW traffic classes that are not subject to
timeout (only VPR/VPW classes are). For the wCAM availability (wAVAIL) we apply the
same value (Y) set for hprAVAIL to control the write traffic of the NCT by stalling write
traffic from the ports of the NCT (P3-P5) more frequently for low wAVAIL values. Also note
that as the CT port (P0-P2) type is video priority, CT traffic will not be stalled due to low
availability values (it will only when the CAM gets fully occupied).
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4.3.3 QIQoS2
Unlike QIQoS1, that relies on the timeout feature to isolate the requests from the CT,
QIQoS2 builds on CAM egress control.

Traffic classes. In particular, the read/write requests of the CT are respectively set to
HPR/LPW traffic class and the read/write requests of the NCT to the LPR/LPW traffic
class (respectively). Hence, since there is no VPR/VPW traffic class, the timeout feature is
not used. The main rationale behind QIQoS2 is that no request is upgraded due to a timeout
and hence under the default traffic class arbitration policy HPR traffic class is prioritized
over LPR and VPR traffic classes.

Starving control. QIQoS2 combines traffic class control as presented above with the CAM
egress control feature, or starvation control, to ensure that the time commands of CT are in
the CAMs is bounded. In particular:

We set the starving attribute of the rCAM’s hpr partition to 1 (ShprrCAM = 1) so as
to make reads of the CT to be served as soon as possible.
The read traffic of the NCT is mapped to the lvpr rCAM partition for which we set a
maximum starving period of 40 cycles (SlvprrCAM = 40).
Finally, we explore different values for the starving period of the wCAM, which is shared
by writes from all ports, to assess its impact on predictability and performance. This is
symbolized as Z in QIQoS2 entries in Table 2.

Like QIQoS1, QIQoS2 controls CAM availability (Y in QIQoS2 entries in Table 2): with
high availability thresholds causing the port assigned to the NCT to be throttled down more
frequently, hence stalling NCT traffic. Also note that, under QIQoS1, NCT reads and CT
reads are respectively mapped to the hpr and lpr rCAM partitions, as opposed to QIQoS2,
where the hpr rCAM partition holds the CT reads and the lpr rCAM partition holds NCT
reads.

4.3.4 Generalization
The concept of QIQoS, i.e. exploiting specific QoS setups to guarantee a high-degree isolation
of some applications regardless of the contention co-runners may generate on MPSoC’s shared
resources, can be extended to other QoS mechanisms and resources. However, the concrete
instantiation requires some adaptations with respect to what has been presented in this work.

In this work we focused on the realization of QIQoS on the Zynq UltraScale+. This
decision is motivated not only by the complexity of the QoS mechanisms in its DDRMC,
but also because of the industrial relevance of the Zynq UltraScale+, which is already
considered for avionics certification when running different functionalities (subsystems) [59].
In terms of potential reuse, the Zynq UltraScale+ instantiates the Synopsis Universal
DDRMC(uMCTL2) [51] which is quite configurable, allowing designers to tailor it for
optimizing latency, bandwidth, and area. Any MPSoC implementing the same DDRMC can
directly benefit from the results of this work.

5 Experimental Setup and Results

In this work we focus on a ZCU102 Evaluation Board that comes as part of the Zynq
UltraScale+ MPSoC ZCU102 Evaluation Kit [58]. The board is equipped with a Xilinx Zynq
UltraScale+ MPSoC [60]. We run on bare-metal (no operating system) and the external
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code reduces to the First Stage Boot Loader (FSBL) provided by Xilinx toolchain (Vitis-
2019.2). This contributes reducing non-hardware interference (noise) in the experiments. We
developed low-overhead software to configure the board by writing to specific control registers
and read execution cycles. Under ADS4 and ADS5, we force each SWP to access a different
subset of the L2 cache sets, preventing them from evicting each other’s data in the LLC. The
NCTs were synthesized as accelerators on the PL, which has a direct connection to the three
uppermost DDRc ports using the high-performance non-coherent ports (hp0_lpd, hp1_fpd,
hp2_fpd, hp3_fpd) in its default configuration. The board has different clock domains, and
each of them was configured to its maximum allowed frequencies, i.e., PL 250MHz, APU
1200MHz, LPD-interconnect/RPU 500MHz, and FPD-interconnect/DDRc 533.500MHz.

5.1 Experimental Setup

Kernels. We have reviewed different performance-demanding applications relevant for
existing and forthcoming safety-critical systems, such as those providing object detection
and navigation capabilities. While some of those applications can be run in accelerators,
many of them are run on the CPU, either because accelerators are too busy, or because
their working set is not overly large and the overheads to issue kernels and transfer data
do not pay off [48]. For instance, radar-based object detection uses small matrices, and
LiDAR-based object detection may find accelerators busy running heavier camera-based
object detection. Hence, both are examples of data-intensive workloads often run in the CPU.
The schematic of the hierarchy of their components is shown in Figure 5. A key element in
many of those applications is the use of Convolutional Neural Networks (CNNs) for camera
and LiDAR-based object detection [52, 2, 3]. In those CNNs, a central element is matrix
multiplication (MMB) [52], which has been shown to account for most of the execution
time (between 67% and 98.5% across deployments [23, 25]). Along with MMB, some other
compute-intensive CNN layers rely on image-to-columns (I2C) used for tensor lowering to
enable matrix convolutions needed by neural networks, and the rectifier (RELU) function in
neural networks defined as the positive value of its argument [3]. Libraries for CNNs also
include other matrix-based operations such as the pervasive vector-multiply-add (VMA) and
matrix transpose (MT) [52]. Those kernels are also present in other key applications such
as, for instance, commercial automotive radar applications [27, 53], which build upon MMB
to compute the (self) covariance of the input radar data. Overall, as CT applications, we
deploy the following benchmarks: MMB, I2C, RELU, VMA, and MT.

Figure 5 Hierarchy of applications and their components with mapping to specific kernels.
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NCT. In the PL, as NCT (i.e. aggressor benchmarks), we instantiate one or several AXI
Traffic Generator [61] (ATG) modules to generate variable traffic to stress the DDR. The
ATG generates read and write traffic with a burst size of 16 bytes. Operations are strided so
they access all DDR banks to maximize the chance of generating page misses on the kernels
(CT). Note that it is generally not possible to know the exact memory access patterns of the
kernels. Likewise, it is not feasible to interleave the request of the kernels and the NCT at
will. For instance, if the kernel accesses banks (B0, B0, B0, B1, B1, B2) it is not possible to
force the NCT to access the same bank as the kernel but few cycles before to ensure that
the kernel suffers a page miss on every memory access. The degree of controllablity required
is not achievable in real hardware platforms, not only because of the noise incurred by the
RTOS on the NCT but also due to the inherent hardware jitter arising from execution in
out-of-order execution processor pipelines and multi-level cache systems.

We define four configurations where NCT (i.e. ATGs) produces an increasing load: Low,
Medium, High, and Very high. Under each of these ATG setups, we instantiate an increasing
number of ATG units per port (P3, P4, and P5), see Figure 3(b). In particular we instantiate
1 (L), 3 (M), 5 (H), 9 (V) ATGs per port, each one constantly accessing all banks. Hence,
the pressure they put in the memory controller is huge and much higher than expected by a
regular accelerator, which combines memory accesses phases with computing phases.

When run in isolation, the PL achieves the following bandwidth results (in brackets the
relative percentage of the peak bandwidth measured in giga transfers per second): 6.1 GT/s
(14%) for L, 17.5 GT/s (40%) for M, 27.8 GT/s (64%) for H, and 43.2 GT/s (100%) for V.

5.2 Experimental Results

5.2.1 Evaluation metrics

QIQoS aim at providing guarantees on the performance of the CT under different loads
generated by the NCT. We use three main metrics to assess the effectiveness of a QIQoS
setup.

M1. Minimize the slowdown, i.e. maximize the relative performance (rperf), of the CT.
A rperf of X means a slowdown of 1/X (e.g., rperf=50% means 2x slowdown).

M2. Reducing CT’s rperf variability across different loads that the NCT (the PL in our case)
can put on the DDRMC. Note that M1 and M2 contribute to the primary goal of finding
a QoS setup that satisfies the performance requirements of all processes and increase
the representativeness of early time budgets by achieving high-degree of performance
isolation.

M3. A secondary goal is maximizing NCT rperf, in particular preventing that the NCT
receive no service, as long as the target minimum thresholds set for M1 and M2 are
achieved.

In terms of M1 and M3, when a SWP encompasses several tasks either as CT or NCT, as
it is the case in ADS3 and ADS5, we report the average rperf of all CT tasks and the average
of all NCT tasks, respectively. For instance, under ADS3 we report as CT rperf the average
of the rperf of the R5 and A53 tasks in each SWP (i.e., SWP1 and SWP2). Likewise, as
rperf of the NCT the average of the rperf of all ATGs. Our results show that in all scenarios
our results show that the variability in the rperf of the tasks is less than 7 percentage points.
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Figure 6 rperf of the CT (kernels) without any QIQoS setup.

5.2.2 Uncontrolled contention
When running the different kernels under the default QoS setup (i.e. no QIQoS) in the Zynq
UltraScale+ increasing the traffic load sent from the PL to the DDRMC (L, M, H, and V), we
observe that the impact of DDRMC contention on the performance of the benchmarks is huge,
see Figure 6. The reported results have been collected while running the benchmarks in one
core of the A53 (ADS2), but exactly the same trend is also observed when the benchmarks
are run in an R5 core. Even under the smallest PL, i.e. ATG, load (L), rperf drops down to
the range 0.60 − 0.75 for the different benchmarks. As we increase the load, the DDRMC
saturates reducing the rperf of the CT down to the range of 0.10 − 0.25 for V.

5.2.3 Detailed Analysis
In this section, we analyze the challenging ADS4 setup that comprises two SWPs whose
tasks are CT, and the ATGs in PL set as NCT, so all traffic coming from ports P3, P4
and P5 belongs to the NCT. For the sake of conciseness, we also focus on the kernel VMA,
for which we provide detailed explanations. The results obtained for ADS1, ADS2, ADS3,
and ADS5 and the wider set of kernels are explained in Section 5.2.4. Under ADS4 the
baseline performance is that of a single copy of VMA running in isolation. This allows us to
discriminate between the performance slowdown caused by deploying a second instance of
VMA in another A53 core and the slowdown due to the traffic coming from the PL.

5.2.3.1 QIQoS1

The rperf variation observed for both CT and NCT in ADS4 scenario under QIQoS1 is
reported in Figure 7. QIQoS1 parameters values are mapped to the x-axis, reporting different
CAM availability thresholds (Y = hprAV AIL = wAV AIL) within 1 and 12, and different
X=WTOUT values from 2048 down to 32 (as defined in Table 2 for ADS4-QIQoS1). Note
that for QIQoS1 we refer to both hprAV AIL and wAV AIL as AV AIL for simplicity.

CT performance. Figure 7(a) focuses on VMA rperf under QIQoS1. Note that the rperf
results are the same for both VMA copies, each running in a different A53 core. The different
series represent an increase load of the PL: L, M, H, and V. We observe the following:
1. Under the PL load L (dashed black line), the impact of the NCT traffic on the CT is

notably reduced: the slowdown is quite small and stable with rperf around 90% under all
WTOUT and AV AIL setups. This slowdown, that is even observed under the highest
isolation configurations (i.e. high AV AIL values and low WTOUT values) is caused by
the contention the two VMA copies generate on each other.

ECRTS 2023



5:18 Quasi Isolation QoS Setups to Control MPSoC Contention

Figure 7 VMA (CT) and NCT rperf for
ADS4 under QIQoS1.

Figure 8 VMA (CT) and NCT rperf for
ADS4 under QIQoS2.

2. Under the PL load M (solid black line) results are also quite stable, though in this case
CT’s rperf sits between 80% (specially for small AV AIL values) and 90%. Under both
loads, L and M , the variability across setups is limited because the DDRMC can handle
requests of both the PL and both VMA copies running in two A53.

3. Under the loads H and V , the impact of the PL traffic increases with higher variability
across AV AIL and WTOUT setups. In particular, as we increase AV AIL, the ports
used by the PL (NCT) are throttled more frequently, reducing their impact on the CT.
When AV AIL is set to 8−12 entries, the slowdown NCT cause on the CT is considerably
reduced and the variability across loads also heavily reduces. Also, for any AV AIL value,
as we decrease the value of the WTOUT , the CT gets less contention from the NCTs
as CT requests are more frequently under expired mode and hence are prioritized over
NCTs’ requests.

NCT performance. Figure 7(b) shows the rperf of the PLs. We see that the impact of
varying WTOUT and AV AIL is reduced, with the variability mainly arising because of
different PL loads. Under L the PL suffers limited slowdown (i.e. its rperf is high) since the
memory controller can comfortably provide the performance required. As we increase the
load of the PL to M , H, and V the rperf decreases: for L the rperf stays over 60% while for
V it stays below 40%. This is so because heavier loads saturate the DDRMC so they are
more affected by the memory activity of the A53. Instead, lighter loads left some bandwidth
unused allowing the A53 to inject their traffic with limited impact. As it can be observed,
under M and L loads NCT performance is quite similar, even with higher performance under
M than under L. Our results seem to suggest that this is due to arbitration among ports
that cause higher ID ports to receive comparatively less service under lighter loads.

5.2.3.2 QIQoS2

Figure 8 shows the rperf variation for the CT and NCT in ADS4 scenario under QIQoS2.
QIQoS2 relevant parameters are mapped to the x-axis, reporting different CAM availability
thresholds (Y = lvprAV AIL = wAV AIL) within 1 and 12, and different wCAM starving
(Z=SwCAM) values, from 64 down to 1 and no starving (as defined in Table 2 for ADS4-
QIQoS2). Note that for QIQoS2 we refer to both lvprAV AIL and wAV AIL as AV AIL

for simplicity.
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Table 3 Analysis of the rperf of the CT and NCT under various benchmarks on ADS4 (AV AIL=
12 and W T OUT =32 for QIQoS1; and AV AIL=12 and SwCAM =1 for QIQoS2).

VMA
L M H V

QIQoS1 CT 0.90 0.88 0.88 0.87
NCT 0.64 0.59 0.38 0.27

QIQoS2 CT 0.85 0.82 0.83 0.81
NCT 0.62 0.60 0.39 0.25

(a)

MT MMB
L M H V L M H V

QIQoS1 CT 0.99 0.97 0.96 0.95 0.91 0.88 0.88 0.88
NCT 0.51 0.27 0.15 0.11 0.62 0.36 0.24 0.19

QIQoS2 CT 0.88 0.85 0.84 0.83 0.82 0.76 0.76 0.76
NCT 0.59 0.47 0.29 0.19 0.60 0.38 0.23 0.17

RELU I2C
L M H V L M H V

QIQoS1 CT 0.96 0.97 0.92 0.97 0.94 0.91 0.89 0.89
NCT 0.46 0.37 0.12 0.14 0.51 0.29 0.18 0.12

QIQoS2 CT 0.81 0.81 0.80 0.79 0.81 0.77 0.76 0.75
NCT 0.58 0.42 0.27 0.19 0.59 0.30 0.19 0.14

(b)

CT performance. Regarding the rperf of the CT (VMA), see Figure 8(a), we extract two
main conclusions. On the one hand, for the “no starving” case, we see that the impact of the
PL is higher. It is particularly relevant the V load for which the experiment, after executing
more than 100x times its duration in isolation, did not finish. Hence, we concluded that
starving must be enabled and do not further discuss “no starving” results. It is noted that
while starving prevention is enabled by default, it is one of the parameters whose impact we
wanted to explore and hence decided to observe the impact of disabling it. On the other
hand, as we increase AV AIL we see how the rperf of the CT slightly increases. CT’s rperf
also increases as we decrease the starvation threshold as CT requests are kept shorter in the
CAMs when AV AIL is 1 or 2 (this effect reduces and even disappears for M and L, arguably
because the load of the NCT on the DDRMC decreases). When AV AIL goes beyond 2 (i.e.
4, 8, 12), it cancels out the impact of starvation prevention. Anyways, the impact on rperf is
relatively small, so QIQoS keeps high quality results (high values for rperf and low variability
of rperf across load) under all explored variations.

NCT performance. In Figure 8(b) shows the rperf of the NCT. Other than for the “no
starving” setup that, as pointed out before, we exclude from the discussion, the variability
is very small across the explored AV AIL and SwCAM values, with a slight decrease with
higher values of both parameters. This is so because lower loads of the PL do not saturate
the DDRMC, thus leaving some bandwidth for the A53 and R5 to execute with less impact
on the PL. The major difference appears across PL loads, with rperf drop values around 30%
for L, 40% for M , 60% for H, and 70% for V .

5.2.3.3 Metrics M1, M2, and M3

We assess the quality of QIQoS1 and QIQoS2 using metrics M1, M2, and M3 as defined in
Section 5.2.1. For both QIQoS we choose the aggressive isolation setups: AV AIL = 12 and
WTOUT = 32 for QIQoS1 and AV AIL = 12 and SwCAM = 1 for QIQoS2.

Results are shown in Table 3(a), comparing the QIQoS setups on VMA rperf for variable
PL load, yet focusing on the specific scenario ADS4. Regarding M1, for VMA we see that the
rperf of the CT is slightly higher with QIQoS1, varying from 0.87 to 0.90, than for QIQoS2
for which CT rperf varies from 0.81 to 0.85. For both QIQoS rperf is quite high. In terms
of variability (M2) both are quite similar being 3 percentage points for QIQoS1 and 4 for
QIQoS2. The results for M1 and M2 provide evidence that the developed QIQoS are very
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competitive, achieving good rperf and isolation figures. This, in fact, allows to define SWPs
timing budgets during early stages of the development process of a IMA-SoC product, with
high confidence that those bounds are going to hold at operation. In this line, it is worth
recalling that under the V load there are 9 ATGs per port constantly accessing memory to
different banks. This is arguably a much higher load than an accelerator would put on the
DDRMC. Finally, the performance of the NCT (M3) is quite similar across both setups.

5.2.4 Wider result set
Figures 7 and 8 provided a detailed set of results and analysis of the proposed QIQoS setups
for one specific benchmark (VMA) under a single scenario (ADS4). In this section, we extend
the analysis of results to all kernels and all ADS scenarios but, for the sake of conciseness,
we restrict our focus on a specific PL load (L) and fixing the parameters AV AIL = 12 and
WTOUT = 32 for QIQoS1 and AV AIL = 12 and SwCAM = 1 for QIQoS2. In any case,
results for variable loads and kernels under ADS4 are reported in Table 3(b), as will be
commented next.

Figure 9 shows the rperf of the CT (left) and the rperf of the NCT (right) for all
benchmarks under all ADS scenarios, with PL load set to L. In both charts, results for each
kernel under QIQoS1 and QIQoS2 are shown in consecutive bars. For instance, bars 1 and 2
compare the result of QIQoS1 and QIQoS2 for ADS1, bars 3 and 4 for ADS2, bar 5 and 6
for ADS3, and so on so forth. We observe that:

In terms of the rperf of the CT (left chart), in general QIQoS1 provides slightly better
performance than QIQoS2. The rperf reduces for more aggressive ADS staying between
0.5 and 0.8.
In terms of the rperf of the NCT (right chart), in general results are quite similar across
the proposed setups, with QIQoS2 slightly outperforming QIQoS1.

Regarding metrics M1, M2, and M3, under ADS4 the same conclusions derived for VMA
under different PL loads generally hold for the other kernels, as reported in Table 3(b). First,
QIQoS1 provides higher CT’s performance than QIQoS2 (M1). Second, the variability of
CT’s rperf (M2) is quite similar for both QIQoS: 5 percentage points in the worst case for
QIQoS1 and 6 for QIQoS2. And third, in terms of the rperf of the NCT both setups provide
similar results with rperf gradually increasing as the load of the PL moves from L to V .

Overall, we conclude the same trends observed for VMA holds for the rest of the kernels
and configurations, confirming that the proposed QIQoS achieved the intended goals.

6 Conclusions

In this work we have shown how hardware QoS support can be exploited in modern MPSoCs
with the goal of providing a high degree of isolation to selected applications. We instantiate
Quasi Isolation QoS setups (QIQoS), introduce and explain two particular QIQoS to achieve
isolation in the DDR memory controller of the Zynq UltraScale+. The main lessons learned are
that transaction timeout (QIQoS1) and CAM starving control (QIQoS2), both underpinned
by traffic classes and port throttling, provide good isolation results. Overall, the proposed
QIQoS guarantee that applications’ execution time is much less sensitive to co-runners’
contention, and hence, the timing estimates obtained when running the application against
aggressors in early development stages become much tighter and stable across integrations.
Our future work includes exploiting more features of the DDR memory controller to further
isolate APU and RPU cores from the PL traffic, and also isolate cores in the APU and the
RPU from each other.
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Figure 9 Minimum rperf for the CT (left chart) and NCT (right chart), for QIQoS1 and QIQoS2
under L load of the PL (AV AIL = 12 and W T OUT = 32 for QIQoS1; and AV AIL = 12 and
SwCAM = 1 for QIQoS2).
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Abstract
Numerous embedded real-time systems have, besides their timing requirements, strict energy
constraints that must be satisfied. Examples of this class of real-time systems are implantable
medical devices, where knowledge of the worst-case execution time (WCET) has the same importance
as of the worst-case energy consumption (WCEC) in order to provide runtime guarantees. The
core hardware component of modern system-on-chip (SoC) platforms to configure the tradeoff
between time and energy is the system’s clock tree, which provides the necessary clock source to all
connected devices (i.e., memory, sensors, transceivers). Existing energy-aware scheduling approaches
have shortcomings with regard to these modern, feature-rich clock trees: First, with their reactive,
dynamic (re-)configuration of the clock tree, they are not able to provide static guarantees of the
system’s resource consumption (i.e., energy and time). Second, they only account for dynamic
voltage/frequency scaling of the CPU and thereby miss the reconfiguration of clock sources and
clock speed for the other connected devices on such SoCs. Third, they neglect the reconfiguration
penalties of frequency scaling and clock/power gating in the presence of the CPU’s sleep modes.

In this paper, we present FusionClock, an approach that exploits a fine-grained model of
the system’s temporal and energetic behavior. By means of our developed clock-tree model,
FusionClock processes time-triggered schedules and finally generates optimized code for a system
where offline-determined and online-applied reconfigurations lead to the worst-case–optimal energy
demand while still meeting given timing-related deadlines. For statically determining these energy-
optimal reconfigurations on task level, FusionClock builds a mathematical optimization problem
based on the tasks’ specifications and the system’s resource-consumption model. Specific components
like transceivers of SoCs usually have strict requirements regarding the used clock source (e.g.,
phase-locked loop, RC network, oscillator). FusionClock accounts for these clock-tree requirements
with its ability to exploit application-specific knowledge within an optimization problem. With
our resource-consumption model for a modern SoC platform and our open-source prototype of
FusionClock, we are able to achieve significant energy savings while still providing guarantees for
timeliness, as our evaluations on a real hardware platform (i.e., ESP32-C3) show.
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6:2 FusionClock

1 Introduction

Providing Static Time & Energy Guarantees. Developing systems that meet resource
requirements (i.e., time and energy in this paper) with provably optimal resource usage is
a central challenge in computer science [9, 32]. While the real-time–systems community
has developed numerous analysis approaches to guarantee timing requirements with energy
awareness in embedded single-core systems [3, 53], the combined handling of both time and
energy constraints still goes beyond the current state of the art in view of modern system-
on-chip (SoC) hardware platforms. Specific application scenarios that need to meet both
timing and energy requirements include implantable medical devices, such as artificial cardiac
pacemakers or defibrillators. Guaranteeing timeliness demands the worst-case execution
time (WCET) [51] in order to build a schedule that eventually meets the given tasks’ deadlines.
Likewise, the tasks’ worst-case energy consumption (WCEC) [22, 47, 48, 49] is a fundamental
measure for enabling a guaranteed execution of jobs under given limited energy budgets.
Having an accurate model of the target hardware platform’s temporal and energetic behavior
is essential in order to give static resource-consumption guarantees.

Configuring the Time & Energy Tradeoff with Clock Trees. Modern integrated SoC
platforms [13] offer a huge variety of features and options to configure the tradeoff between
performance (i.e., execution speed) and energy demand, with the heart of this configuration
space being the system’s clock tree [8, 40]. The purpose of the clock tree is to distribute
available clock signals to all components on the SoC by utilizing different signal-forwarding
mechanisms such as multiplexers, scalers, or clock gates. Figure 1 shows an example of such
a clock tree, which will be detailed later. Since components provided with a clock source via
an active signal through the clock-distribution network eventually lead to an increase in the
whole system’s energy consumption (i.e., power over time), these clock gates are also referred
to as power gates. Besides gating power (i.e., on/off switching), the clock tree includes the
possibility to scale frequencies up/down with multipliers by using scalers or select one out of
multiple input signals with the use of multiplexers. In summary, modern clock trees of SoCs
provide substantial configuration spaces for the tradeoff between time and energy, which has
not yet been sufficiently addressed in the context of energy-constrained real-time systems.

Energy Demand of Devices. The clock tree not only spans the configuration options for the
CPU: Modern SoC platforms are characterized by their multitude of integrated components,
such as transceivers (e.g., WiFi, Bluetooth, LoRa), sensors (e.g., analog-to-digital converter,
ADC), controllers (e.g., USB, SPI, DMA), or storage devices (e.g., non-volatile memory).
From a generic point of view, all these components have the same behavior as the CPU with
regard to clock gating: Switching off devices by clock gating them (when their service is not
needed) significantly reduces the system’s power and, therefore, is beneficial for energy savings.
While numerous energy-aware real-time scheduling approaches account for the systems’ energy
demand [3, 53], they have shortcomings with (1) comprehensively modeling the resource
demand of devices and (2) handling their hardware-related constraints with respect to multiple
available clock sources: For example, the WiFi device on a SoC [13] typically requires a specific
clock-tree configuration to operate. During operation, its power demand is up to 1105 mW,
being significantly larger than the CPU’s demand in run mode (i.e., at 1 MHz: 20 mW,
at 160 MHz: 100 mW). In summary, to address optimal energy-consumption reduction in
real-time systems, knowledge of the whole system’s resource-consumption behavior, with all
connected consumers, is inevitable.
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Low-Power Phases & Sleep Modes. As with the mentioned devices, the CPU is a device
itself and does not necessarily have a utilization of 100 % in embedded, energy-constrained
settings. Lower utilizations, and thereby slack time, offer the possibility to enter sleep
modes that decrease the system’s power demand down to, for example, 0.15 mW for the
previously mentioned SoC [13]. From a technical perspective, entering a sleep mode means a
reconfiguration of the clock tree. An essential accompanying, unavoidable effect of clock-tree
reconfigurations is the penalty for the reconfiguration. That is, both clock gating and clock
scaling involve significant time and accompanying energy overheads, which, for example,
come from the duration to stabilize the frequency of a phase-locked loop (PLL) clock source.
To give an example, reconfiguring the clock to wake up from a deep sleep mode, enter run
mode, and being able to execute user-provided code takes 70.26 ms on the example SoC [13],
which needs to be accounted for (1) resource-optimal and (2) deadline-aware execution.
With regard to the given real-time constraints, break-even points decide whether a specific
clock-tree reconfiguration is beneficial: For example, entering and subsequently exiting a sleep
mode could have adverse effects on the system’s resource consumption. In this paper, we
exploit a comprehensive clock-tree model including reconfiguration penalties (i.e., transition
costs between clock configurations) to determine worst-case–optimal reconfigurations.

Application-Dependent Reconfiguration. Not all tasks in real-time systems make use
of further devices besides the CPU. When considering chains of sense-compute-actuate
tasks, the sense phase requires data from sensor devices, and the actuate phase could use
transmitters to share results. Neither is the sensor required by the actuation phase nor the
transmitter during sensing. For computation tasks, no further devices are needed. Having
active devices while executing the compute phase leads to subpar energy demands. From a
general perspective, task-agnostic clock-tree reconfigurations inevitably lead to subpar results.
Thus, making use of application dependencies is essential for resource-optimal solutions.

Paper’s Contributions. This paper introduces FusionClock, an approach that addresses
the challenge of meeting deadlines of real-time tasks on single-core SoC platforms while
determining an optimum for the energy demand with the use of WCET and WCEC knowledge.
FusionClock handles time-triggered schedules and generates code for online reconfiguration
of the system’s clock tree, tailored for the specific device usage. The name FusionClock
originates from our objective of resource-optimally fusing clock-tree reconfigurations with the
application’s device requirements. FusionClock is able to handle clock trees with multiple
input sources and clock/power gates. The paper makes five contributions:

1. Problem Formalization: We present a generic quadratic optimization formulation that
makes use of a resource-consumption model and is able to adhere to real-time constraints
while optimally fulfilling the objective of minimizing worst-case energy demands.

2. Resource-Consumption Model : We developed a hardware model for clock-tree recon-
figurations on a SoC platform, which is the basis to resource guarantees.

3. Application-Aware Approach: We propose an application-aware approach that exploits
knowledge of clock requirements and device-aware resource-consumption analyses.

4. Code Generation: Based on the quadratic problem’s solution for a given taskset and
time-triggered schedule, our code-generation approach yields a functionally equivalent
but resource-optimal schedule with code for reconfiguring the clock tree between jobs.

5. Evaluation: Relying on a hardware platform and employing accurate energy measure-
ments, we demonstrate the effectiveness and validity of our open-source prototype of
FusionClock.

ECRTS 2023
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2 Background & System Model

FusionClock targets embedded energy-constrained real-time systems executed on single-
core SoC platforms. For the tasksets to be optimized, FusionClock assumes a strictly
periodic, cyclic task model. As FusionClock optimizes the clock-tree configurations of
pre-existing time-triggered schedules, we further assume the availability of a valid, non-
preemptive schedule for the taskset. As common in real-time systems, each individual task τi

can be described by the parameters of its period Ti, its WCET Ci, and its relative deadline
Di. After the hyperperiod H, which is the least common multiple of task periods, the
schedule (with its determined clock-tree reconfigurations) repeats. Specific to our approach,
we give WCET bounds dependent on the clock-tree configuration, replacing the single Ci

with the mapping Ci(conf). Additionally, the task description is extended by the set of
device dependencies (e.g., τ1 uses ADC device 2).

As an ahead-of-time mechanism, FusionClock has requirements on the hardware
architecture. We assume static analyzability in the temporal and energetic domain: The
hardware’s structure allows for the derivation of a static, sound model for the purpose of
WCET and WCEC analyses with acceptable analysis pessimism. Besides the feasibility of
capturing the microarchitectural behavior, such suitability for resource analysis includes
the possibility to describe the energy demand of particular program sections with a known
system state (i.e., clock-tree and device configuration) as (monotonic) function of its execution
time [48]. We further assume compositionality for energy and time [19, 37]: The validity of
safely combining the individual resource demands of continuous sections to a total demand.
The limited complexity of the hardware (RISC architecture, simple microarchitecture) found
in the targeted system class [13] facilitates modeling for static analyses.

Apart from the processor, SoC systems in the targeted domain also feature numerous
devices, such as sensors, actuators, or peripheral communication devices. Due to the nature
of SoCs with their integration of various components, all peripherals are generally seen as
devices. Those devices significantly influence the system’s overall power consumption. We
assume to have an accurate bound on the maximum power demand of those devices in
all of their different operation modes as well as the transitions between different modes.
Accurately determining such application-specific maximum power demands is possible, as
shown by Cherupalli et al. [7], which validates FusionClock’s related assumption. The
same consideration of being able to accurately model time and energy penalties holds for
clock-tree reconfigurations, as shown by Park et al. [36].

We assume a feature-rich clock tree that can be reconfigured at runtime by software,
allowing fine-grained control over the power consumption of any devices in the system. As
for peripheral devices, accurate upper bounds on the time and energy demand of clock-tree–
configuration switches are statically determinable. Lastly, every sleep mode of the clock
tree has a lower power consumption than all modes used for the execution of tasks. This
assumption prevents that unexpected idle times consume more power than the execution of
tasks, which is given for our target SoC [13].

The Clock Tree. The clock tree is the clock-distribution network within a system, routing
the signal from a clock source to all components in the system, potentially modifying the
source signal for specific devices. The complexity of this network heavily depends on the
chosen hardware platform. Modern SoC platforms feature a variety of clock sources based on
different technologies to serve diverse needs and provide a suitable signal source for different
application and device demands. The provided clock sources differ from each other with
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PLL

RC

OSC

PLL_DIV

FOSC_DIV

MU
X1 DIV MU

X2 CPU_CLK

MU
X3 GATE WIFI

BLUETOOTH

Figure 1 Example of a clock tree for modern SoC platforms [13]. The requirement for the clock-
tree configuration are both task- and hardware-related: (1) Tasks can require a specific device (e.g.,
WiFi) and (2) devices can require a specific clock source with specific multiplexer/divider settings.

regard to, for example, precision, energy efficiency, signal stability, and robustness against
environmental conditions [40]. In general, not every signal source may be suitable for every
device or at least not for every operation mode of a device, for example, because a device
operation requires a particularly high frequency that cannot be provided by every source.

Figure 1 shows an exemplary clock tree capable of clock-source selection and signal
modification. In the example, the tree has three different clock sources (PLL, RC, OSC) and
three different devices (CPU_CLK, WIFI, BLUETOOTH), whereas CPU_CLK denotes the source
clock for the CPU itself. A network of intermediate nodes in the clock tree allows for the
modification of the input signal to achieve the requested output signals. This network consists
of mainly three different types of nodes: First, there are clock gates (GATE), the simplest
form of modifying an input signal: It can either let the signal pass through the gate to the
output or block it off, which can be used to deactivate devices or even complete peripheral
busses (i.e., clock-tree subsystems). The second node type in a clock tree is a scaler (PLL_DIV,
FOSC_DIV, DIV). It modifies the input signal by multiplying or dividing it with a factor before
forwarding it to the remaining network. Finally, multiplexers (MUX1–MUX3) receive multiple
input signals and, depending on the configuration, select one of them as the output.

This richness of features and configuration possibilities creates high flexibility, enabling
trading off between performance and energy efficiency for all devices. It comes, however,
with penalties for each clock-tree reconfiguration. A penalty describes the time and energy
needed to perform the reconfiguration. On the hardware level, modifications to the clock-
tree configuration come with varying penalties ranging from miniscule (i.e., few cycles) to
significant overheads (i.e., hundreds of milliseconds) [13, 40]. A simple change of a (pre-)scaler,
for example, usually requires only a single write to the corresponding divider register. More
complex changes, on the other hand, can even require intermediate changes to a temporary
helper clock before switching back to the reconfigured original clock (e.g., when switching
between PLL clock sources in a microcontroller [33]). These reconfiguration penalties, with
regard to both power consumption and time, heavily influence the system’s behavior.

3 Problem Statement

In our target domain of embedded energy-constrained real-time systems, applications consist
of a set of tasks, the canonically smallest workload unit. Each of these tasks may have
different requirements regarding device usage and, thus, different demands on the clock-tree
configuration. The naive approach to satisfy device demands is to unselectively choose
one configuration that fits all tasks (all-always-on approach), but this comes with a higher
consumption than necessary for some tasks, for example, because unneeded peripheral devices
are enabled. Figure 2 illustrates this problem for a taskset comprising two tasks (task_τ1,
task_τ2), with each task requiring one or more devices in addition to the CPU. The upper
variant of the hyperperiod function displays the all-always-on variant mentioned above and
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Devices’ Max. Power Pmax

CPU (idle ): 20mW
CPU ( PLL@160 ): 100 mW

WiFi device : 1000 mW
SPI device : 2mW

sensor device : 10mW

task_τ1

...
wifi_ack () ...
spi_write () ...

task_τ2

...
read_sensor () ...

all-always-on approach

hyperperiod {
clock_tree_config ( ALL_ON )
task_τ1 ()
task_τ2 ()
clock_tree_config ( ALL_OFF )

}

task-selective approaches

hyperperiod {
clock_tree_config (?)
task_τ1 ()
clock_tree_config (?)
task_τ2 ()
clock_tree_config (?)

}

Po
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r

Time
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we

r

Time
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Time

?
CTC1
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Figure 2 The decision when to apply clock-tree configurations (CTC), for example, to de-/activate
devices, significantly influences the system’s resource consumption. Different power consumptions
and reconfiguration penalties affect both the execution time and the energy demand. The energy
demands (i.e., integral over power) of reconfiguration penalties are illustrated as gray areas .

the higher-than-necessary power consumption caused by it. The lower variant is expected
to have a lower power consumption, as depicted. The effectiveness of selective clock-tree
configurations over the all-always-on approach depends on multiple factors, such as the
execution time in one clock-tree configuration and the associated reconfiguration penalties.
Thus, break-even points between resource demands determine optimal configurations. In
summary, an operating system or runtime environment trying to optimize the handling of
these different demands with regard to resource usage faces multiple problems:

Problem # 1: Purely dynamic, feedback-based energy minimization approaches pay for their
flexibility with a loss of predictability for the system behavior, which is unacceptable in
real-time systems executing under strict time and energy budgets.

Problem # 2: CPU-only, device-independent approaches miss the optimization potential of
clock-tree reconfigurations that target arbitrary devices on the SoC.

Problem # 3: Modern clock trees with various features are subject to reconfiguration costs
that have adversarial effects on reconfigurations and, thus, have to be selectively considered
in a configuration-specific approach.

Problem # 1: Resource-Consumption Guarantees. As FusionClock targets real-time
systems, optimizing solely for energy consumption does not suffice and threatens the correct
system behavior if deadlines cannot be met. The temporal behavior of devices and the tasks
using them depends, among other factors, on the active configuration of the clock tree. In the
case of the CPU, for example, a lower frequency allows for a more energy-efficient execution
while simultaneously prolonging the task execution. The fact that a task running at a lower
frequency jeopardizes not only its own deadline but potentially the deadlines of all following
tasks exacerbates the problem. In view of this complexity, only static guarantees enable a
safe execution at runtime.

Problem # 2: CPU-only Modeling & Energy-Aware Scheduling. The body of related
work for energy-aware real-time scheduling is substantial; we refer to the survey of Bambagini
et al. [3] and to the overview of device-aware scheduling techniques [52] for further reading.
Common to all these works is either the use of CPU-only models or the use of models
that do not cover the complexity of modern clock trees in SoC platforms, especially for
configuring devices. The energy consumption of peripheral devices such as those used for
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communication (e.g., WiFi or Bluetooth) often heavily outweighs the demand of the CPU.
Consequently, to have usable models for real-world scenarios, WCET and WCEC analyses
have to consider the whole system, including all devices [48]. Otherwise, they are not able to
give safe estimates of the total energy demand.

But even without modeling additional devices, the different configurations of embedded
SoC platforms, which are available for online reconfiguration, yield a broad range of energy
consumption: For example, the ESP32-C3 [13], a RISC-V microcontroller SoC, uses 100 mW
for the highest available CPU frequency of 160 MHz, while only 20 mW are consumed at a
CPU frequency of 1 MHz. For the available sleep modes, this demand drops to 1.3 mW for
light sleep and 0.15 mW for deep sleep.

Problem # 3: Clock-Tree–Reconfiguration Penalties. To achieve minimal energy con-
sumption, the specific requirements of all tasks in a system concerning device usage have
to be considered. In theory, reconfiguring the clock tree enables us to address selective
device demands of each task and to operate devices only in the state required by the current
task. Knowledge about these device dependencies alone is, however, not enough, as every
reconfiguration itself also influences the system behavior. Depending on the concrete parts of
the clock tree that need to be changed, the degree of this influence varies. As such, complex
changes come with time and energy penalties: Frequently switching clock-tree configurations
tailored to the needs of each specific task can even amount to a higher resource consumption
than operating the system at the same configuration for all tasks.

Our Approach. In order to deploy task-specific configurations, we reconfigure the clock
tree during the system’s runtime making substantial use of a-priori knowledge about the
tasks: device usage, temporal properties (period, release time, deadline), and bounds on
the WCET and WCEC. Modeling the clock tree in a graph, which includes accurate costs
for the transitions between configurations, allows us to assess the influence of potential
reconfigurations between tasks and consequently decide which reconfigurations are beneficial.
By expressing the WCET of tasks dependent on the active clock configuration and considering
transition penalties, we are able to determine the slack time in the schedule and use it as
optimization potential by shifting task executions and idle phases for a more energy-efficient
schedule. Combining all of the above enables us to generate an energy-optimal variant of the
system’s schedule by inserting reconfigurations and idle phases that optimize energy usage
while simultaneously guaranteeing the correct real-time behavior of all tasks.

4 The FusionClock Approach

In the following, we detail FusionClock, our approach to determining application- and
device-aware, guaranteed, worst-case–optimal clock-tree–reconfiguration schedules for embed-
ded systems. Fundamentally, FusionClock is based on the realization that within a given
time-triggered schedule, the search for a worst-case–optimal clock-tree configuration is equiv-
alent to a minimum-cost flow problem within a suitably structured clock-tree–reconfiguration
graph that incorporates the required application- and device-dependent knowledge as construc-
tion constraints and transition costs. This section is structured as follows: First, we describe
the structure of FusionClock’s central data structure, the clock-tree–reconfiguration graph.
FusionClock uses this graph for flow restrictions in a quadratic-programming problem
solvable by mathematic optimizers. We then show how an extension of this problem allows
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...
spi_write ()
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· · ·
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Figure 3 Construction of a clock-tree–reconfiguration graph from application- and device-dependent
knowledge, here indicated for a job instance J1,1 of task τ1 along with the transitions to the job
instance J2,1 of the subsequent task τ2.

the optimizer to redistribute slack within the schedule to reduce a hyperperiod’s worst-case
energy demand to automatically generate an optimized executable from the solver’s output.
Finally, we provide a complete formal depiction of the problem.

Clock-Tree–Reconfiguration Graph. The clock-tree–reconfiguration graph provides the ba-
sis to determine a schedule’s worst-case–optimal sequence of clock-tree configurations (CTC),
which is the sequence that will minimize the schedule’s WCEC per hyperperiod by selecting
optimal reconfiguration points and configurations. At its core, a time-triggered schedule
provides a non-preemptive sequence of individual jobs Ji,k for the different tasks τi within
the taskset. In this work, we regard those tasks as the indivisible unit of processing. Here,
especially for embedded/cyber-physical systems, it is typical for the individual tasks to
interact with various devices within the system, both internal ones such as the CPU device
as well as other devices (i.e., sensors, transceivers). However, usage of individual components
here requires preparations: As outlined above, tasks can require a specific clock-source
configuration to work. At the same time, power gating or frequency scaling different com-
ponents is vital to minimize energy consumption, an energy-optimal execution of a taskset
progresses through a series of different clock-tree configurations. If a task consists of multiple
phases with very varied device usage patterns, it thus may be advisable to split those phases
into a series of individual subtasks whose CTCs can be optimized individually. Devising
a suitable splitting strategy, however, is out of scope of this work. As a first step towards
optimization, FusionClock collects the static device-usage information for the individual
tasks, which is highlighted with the � symbol in Figure 3. This is then combined with
the SoC-specific knowledge of the individual requirements of a particular device, such as
minimum bus frequencies or a specific clock source (e.g., WiFi can require a distinct, highly
stable clock [13]), and the corresponding feasible clock-tree configurations. As displayed in
Figure 3, these two information sources allow FusionClock to determine the set of feasible
clock-tree configurations (✓) for this particular job as the intersection of the different device
dependencies in an application-aware manner.

Even more, by performing a static WCET analysis and combining the result with the
SoC’s resource-consumption model, we further enrich the graph by attributing upper bounds
on the energy consumption of every job’s execution phase within the schedule. With this
knowledge, it is possible to determine the optimal configuration for every individual phase
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by comparing the different consumptions of the various viable configurations (see green
nodes with @ symbols in Figure 3). However, as each clock-tree reconfiguration comes with
transition penalties, those have to be considered when searching for an optimal configuration
sequence. For example, performing a rather energy- and runtime-intensive reconfiguration to
reach the optimal operation point for a rather short job can have adverse effects on the energy
demand. If the former job was executed in a compatible but slightly more energy-intensive
configuration, keeping this configuration can turn out cheaper than paying the reconfiguration
penalties. To correctly model those penalties, we add an additional set of transition nodes to
our flow graph (gray nodes with → labels): For every pair of job instances of subsequent
jobs (in their respective feasible clock-tree configurations), we add a transition node on
the edge to which we assign the particular transition costs obtained from a SoC-specific
resource-consumption model for the clock tree. That way, a minimal-flow analysis through
the graph is guaranteed to retrieve the optimal, penalty-aware reconfiguration sequence for
the application’s taskset. The right side of Figure 3 shows the initial section of an exemplary
clock-tree–reconfiguration graph, displaying the first two job instances of the tasks τ1 and τ2.

Linear Constraints. We first express this minimal-flow analysis as an integer linear pro-
gram (ILP). Later, we extend the ILP and formulate a quadratic program (QP) to account
for deadlines in multi-rate systems. In the ILP, we add a binary decision variable (n) for
every node in the graph that describes whether the particular node is part of the optimal
clock-tree–configuration switching sequence or not. Furthermore, we require that for every
set of configuration alternatives of a particular job instance in the graph, at least one has
to be taken (i.e., their decision variables have to sum up to one). Additionally, we enforce
flow-preservation constraints within the graph: We assign binary decision variables to all
transition nodes, and each configuration node’s decision variable is equal to those of the sum
of the transition nodes on its incoming and outgoing edges. Our constraints formulate a
single consecutive path through the flow graph. With respect to the flow constraints, the
energy-minimization objective of the sum of all binary decision variables multiplied by the
respective energy cost of its particular job or transition yields an energy-optimal assignment
to the decision variables, sufficient to reconstruct the optimal schedule. A full formalization,
along with the QP extension described subsequently, is listed at the end of this section.

Quadratic Constraints for Slack Redistribution. This ILP is not yet sufficient as it neglects
important aspects of temporal constraints. Not every energy-optimal configuration sequence
guarantees deadline adherence. Also, in the case of multi-rate systems, the ILP formulation
does not yet guarantee the correct handling of release times. Therefore, we refine the
formulation of FusionClock to incorporate those constraints for the final QP formulation.

As indicated, FusionClock iterates upon a pre-existing time-triggered schedule. When
considering an exemplary schedule, such as the one displayed in Figure 4, two observations
are essential: (1) In addition to the actual job instances and their compute time, the schedule
further contains slack time (tsi). However, as the execution of the schedule is periodic and
repeats after the hyperperiod H , the energy consumption of the complete hyperperiod has to
be considered and optimized for. (2) As long as neither releases nor deadlines are violated,
FusionClock can redistribute slack across this schedule by “compressing” and “stretching”
appropriate parts of the schedule within those limits, as illustrated by the springs in Figure 4.
Considering that sleep modes represent one of the most energy-efficient clock-tree states
but – especially in the case of deep sleep modes – come with high reconfiguration/wake-up
penalties, exploiting this slack redistribution is crucial. Therefore, we model and expose idle
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Figure 4 Time-triggered schedules with utilizations below 100 % contain slack time (tsi). As
long as no release or deadline requirements of the underlying tasks are violated, this slack can be
redistributed. This image displays a simplified view, as the ILP does not pack fixed-duration jobs
but the optimizer is allowed to select different clock-tree configurations for each job instance – each
of which can shrink or expand the instance’s variable (i.e., clock-frequency–dependent) WCET.

phases as first-class citizens in our optimization formulation: For every idle phase, we add an
additional set of alternatives (i.e., different sleep modes and idling variants), along with their
reconfiguration/wake-up penalties, to the clock-tree–reconfiguration graph. What sets these
phases apart, however, is that they are of variable length: Their combined duration

∑
tsi,

along with the selected job-instance variants’ WCETs
∑

Ci,j(conf), has to sum up to the
system’s hyperperiod. That way, the solver is allowed to redistribute the slack for energy
minimization. However, this extension comes with the cost of creating a QP based on the
initial ILP: When multiplying the variable-length idle times by their selection variables
to choose an appropriate sleep mode, we form a multiplication and, thereby, a quadratic
optimization problem.

Additionally, we enforce that the scheduled work preceding any job instance’s dispatch
time (i.e., the time when it is scheduled to start executing) sums up to or surpasses the job
instances’ release time – this ensures that the optimizer includes sufficient idle time (e.g.,
ts1 + Creconf(cs1, c1,1) + C1,1(c1,1) + Creconf(c1,1, cs2) + ts2 + Creconf(cs2, c2,1) ≥ r2,1). At
the same time, we enforce that when further adding the selected configuration’s WCET
to that timespan, we still finish before the job instance’s deadline: For example, ts1 +
Creconf(cs1, c1,1) + C1,1(c1,1) + Creconf(c1,1, cs2) + ts2 + Creconf(cs2, c2,1) + C2,1(c2,1) ≤ d2,1.
Thereby, FusionClock guarantees timeliness of the optimized schedule. For providing
guarantees, this formulation operates on worst-case values. In practice, job instances may
not exercise their full WCET and WCEC. This is, however, not a problem, as idling in the
same CTC or entering sleep modes earlier and thus sleeping longer only reduces the system’s
online energy consumption.

By solving the min-cost flow problem, FusionClock is thus able to determine the global,
worst-case–optimal clock-tree configuration with optimized dispatch timings. FusionClock’s
code generation then extracts this information, in particular the adjusted dispatch timings as
well as the CTC-selection variables, from the QP’s solution to generate a minimal, tailored
implementation of the optimal schedule for the taskset that includes the previously determined
clock-tree reconfigurations.

Formalization. Consider a schedule as an alternating sequence of idle phases and job
executions, both marked by common but unique indices. For the sake of readability, we omit
the mapping of these global job-execution indices to the corresponding task and task-specific
job (i.e., from Cȷ̂ to Ci,j), as this mapping is always reconstructable from the available
knowledge when constructing concrete formalizations. With this notion and the variables
described in Table 1, we are able to formulate the description given above:
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min



∑
ȷ̂∈Ĵ

fȷ̂−1∑
c=0

nȷ̂,c Eȷ̂(c)︸ ︷︷ ︸
energy costs of jobs

+
∑
i∈I

fi−1∑
c=0

ni,c tsi,c Pi,c︸ ︷︷ ︸
energy costs of idle phases

+
N−1∑
i=0

fi−1∑
c=0

f(i+1)−1∑
c′=0

n(i,c)→(i+1,c′) Ereconf (c, c′)︸ ︷︷ ︸
energy penalty for reconfiguration


wrt.

Linear constraints:

exactly one active configuration per job:

∀i ∈ {0, . . . , N − 1} :
fi−1∑
c=0

ni,c = 1

flow-preservation constraint for incoming edges:

∀i ∈ {0, . . . , N − 1} : ∀c ∈ {0, . . . , fi − 1} :
fi−1−1∑

c′=0
n(i−1,c′)→(i,c) = ni,c

flow-preservation constraint for outgoing edges:

∀i ∈ {0, . . . , N − 1} : ∀c ∈ {0, . . . , fi − 1} :
fi+1−1∑

c′=0
n(i,c)→(i+1,c′) = ni,c

Quadratic constraints:

idle-phase durations and configuration-specific job WCETs sum up to the hyperperiod:∑
i∈I

fi−1∑
c=0

ni,c tsi,c︸ ︷︷ ︸
idle durations

+
∑
ȷ̂∈Ĵ

fȷ̂−1∑
c=0

nȷ̂,c Cȷ̂(c)

︸ ︷︷ ︸
execution times

+
N−1∑
i=0

fi−1∑
c=0

f(i+1)−1∑
c′=1

n(i,c)→(i+1,c′) Creconf (c, c′)︸ ︷︷ ︸
time penalty for clock-tree reconfiguration

= H

preceeding work and idle time sums up to or surpasses release time:

∀ȷ̂ ∈ Ĵ :
∑

i∈I,i<ȷ̂

fi−1∑
c=0

ni,c tsi,c︸ ︷︷ ︸
idle durations

+
∑

ȷ̂′∈Ĵ ,ȷ̂′<ȷ̂

fȷ̂′ −1∑
c=0

nȷ̂′,c Cȷ̂′(c)

︸ ︷︷ ︸
execution times (note the <)

+
ȷ̂−1∑
i=0

fi−1∑
c=0

f(i+1)−1∑
c′=1

n(i,c)→(i+1,c′) Creconf ((c, c′)︸ ︷︷ ︸
time penalty for clock-tree reconfiguration

≥ rȷ̂

preceeding work and idle time plus job WCET adheres to deadline:

∀ȷ̂ ∈ Ĵ :
∑

i∈I,i<ȷ̂

fi−1∑
c=0

ni,c tsi,c︸ ︷︷ ︸
idle durations

+
∑

ȷ̂′∈Ĵ ,ȷ̂′≤ȷ̂

fȷ̂′ −1∑
c=0

nȷ̂′,c Cȷ̂′(c)

︸ ︷︷ ︸
execution times (note the ≤)

+
ȷ̂−1∑
i=0

fi−1∑
c=0

f(i+1)−1∑
c′=1

n(i,c)→(i+1,c′) Creconf (c, c′)︸ ︷︷ ︸
time penalty for clock-tree reconfiguration

≤ dȷ̂
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Table 1 Overview of the notation used for FusionClock’s ILP and QP formalization. Not
shown for the sake of readability is the mapping from ȷ̂ to the corresponding job j and task i, which
should be trivially available when constructing concrete problem formalizations.

variable meaning

H hyperperiod

N number of jobs and idle phases

Ĵ ordered set of global indices corresponding to jobs in start-time order; ∀ȷ̂ ∈ Ĵ : ȷ̂ < N

I ordered set of indices corresponding to idle phases (with variable length); ∀i ∈ I : i < N

fi number of possible clock-tree configurations for job/idle phase i

ni,c binary decision variable for configuration c of job/idle phase i

n(i,c)→(i′,c′) binary decision variable for reconfiguration from c to c′ between jobs/idle phases i and i′

Cȷ̂(c) WCET of the job corresponding to the global job index ȷ̂ in configuration c

Eȷ̂(c) WCEC of the job corresponding to the global job index ȷ̂ in configuration c

rȷ̂ absolute release time of the job corresponding to the global job index ȷ̂

dȷ̂ absolute deadline of the job corresponding to the global job index ȷ̂

tsi,c duration of idle phase i in configuration c

Pi,c power consumption for configuration c in idle phase i

Creconf(c, c′) worst-case time penalty for reconfiguration from c to c′

Ereconf(c, c′) worst-case energy penalty for reconfiguration from c to c′

5 Implementation of FusionClock

To show FusionClock’s feasibility and evaluate its performance, we created a prototypical
implementation of FusionClock on the ESP32-C3 SoC [13]. Figure 5 shows FusionClock’s
key components and data structures. After discussing important aspects of the hardware
and their implications, this section explains how FusionClock uses this information.

FusionClock’s Target Platform. The ESP32-C3 is a RISC-V single-core microprocessor,
running up to 160 MHz. It features many devices, such as WiFi, Bluetooth, SPI, UART, and
multiple low-power modes, along with frequency-scaling support for the CPU device. The SoC
is partitioned into nine power domains, de-/activated in four predefined power modes (i.e.,
active, modem sleep, light sleep, and deep sleep). This offers for a broad tradeoff between
energy consumption and performance, depending on the clock-tree configuration. As such, the
ESP32-C3 constitutes a suitable test bed for our clock-tree–reconfiguration approach. For our
evaluations, we designed a minimal custom PCB. This allows us to observe energy and timing
behavior as accurately as possible while avoiding interference factors such as noisy switching
regulators. By using the PCB, the hardware is sufficiently deterministic in its temporal and
energetic behavior to derive a reliable, clock-tree–aware resource-consumption model from
measurements. We detail this process in Section 6.1. This resource-consumption model is the
basis for the cost-annotated clock-distribution graph: It captures all timing and energy costs
for each clock-tree configuration as well as the reconfiguration penalties. Further, we derive
the SoC’s device-dependency graph from the relevant documentation [10, 12, 13] by manual
inspection. It captures the dependence of individual devices on certain properties of the
clock-tree configuration (e.g., minimal bus frequencies, power gates). This hardware-related
model is the basis for our software-related contributions.

FusionClock’s Workflow. FusionClock’s input comprises two parts: (1) information
about the clock tree, which splits up into the device-dependency graph and the cost-annotated
clock-distribution graph, as derived above, and (2) information about the application tasks,
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Figure 5 Overview of the FusionClock approach with its central inputs, derived data structures,
processing steps, and final output result.

their timing constraints, and device requirements. The information on the tasks’ requirements
is combined (Z) with the device-dependency graph to determine the valid configurations for
each task. As a next step, we use our WCET analyzer (see Section 6.1) to obtain WCETs
for all individual tasks. Along with the phase order extracted from a time-triggered schedule,
this information then allows to construct the system’s clock-tree–reconfiguration graph.

As explained in Section 4, the min-cost flow problem of the clock-tree–reconfiguration
graph is translated into a formula understandable by a mathematical solver. After executing
the solver, FusionClock uses its output to extract the selected configurations for each task
and the time of all variable-length idle tasks. This allows FusionClock to generate code of
a specialized system instance by prepending a special prepare-hook for each task. It inserts
tailored reconfiguration code to transition the SoC to the new clock-tree configuration if the
QP’s decision variables indicate a reconfiguration. If this reconfiguration did not utilize its
full WCET as accounted for in the QP, the task awaits the dispatch time of the subsequent
phase to ensure compliance with the time-triggered schedule. Then, the task’s workload is
evaluated. In a similar fashion, for sleep phases, the system prepares the sleep timer and
enters the sleep mode or – in case of active idle – the system idles for the predicted sleep
time. This process ensures that the worst-case–optimal system configuration – as determined
by the QP’s solution – is effectively applied to the target system in a fully automatic manner.

6 Evaluation

This section first describes our evaluation setup (see Section 6.1). Then, we present the
evaluation results (see Section 6.2), which consist of three parts: (1) a scalability test for
the QP, followed by energy measurements on the SoC for (2) executable tasksets, and (3) a
break-even analysis for sleep modes with the help of a benchmark from TACLeBench [14].

6.1 Evaluation Setup
Timing Analysis. Static analyses are conducted using the open-source toolkit Platin [38].
We add a custom RISC-V 32-bit architecture for the ESP32-C3 SoC in addition to the
previously supported architectures PATMOS [41] and ARM. As the documentation [11, 12, 13]
does not provide the microarchitectural details required to create a static hardware model for
this chip, the model is based on measurements of individual instruction-cycle timings utilizing
a hardware configuration tailored towards deterministic execution. In this configuration, all
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Figure 6 Heatmap showing the solver efficiency for a variable number of tasks on the x-axis and
a variable number of possible configurations on the y-axis. With increasing values, the time needed
to solve the QP also grows, with a largest value of 464 s, which is still considered acceptable.

application code resides within zero-wait–cycle accessible SRAM, bypassing the need to model
flash-access latency and caching behavior. The backing measurements further exercise both
pipelining- as well as alignment-related effects that originate from the RV32C (Compressed
Instructions) extension [39]. While we cannot guarantee soundness of this model in the
current prototype, we did not experience any underestimation in all subsequent evaluations.

Resource-Consumption Model. As the documentation of the energy consumption for
the SoC does not provide detailed information about the energy consumption, we used a
measurement-based approach to build an expressive energy-consumption model for Fusion-
Clock’s clock-tree configurations. Here, to derive upper bounds, we base our model on the
worst-observed power consumption of the individual clock-tree configurations c weighed by
execution time, or expressed formally: Ei,j(c) = Pmax,c · Ci,j(c). Relying on the assumption
that Pmax bounds the maximum configuration-specific power demand and that the WCET
bound (C) is safe, this linear approximation determines a valid upper bound of the WCEC.
While FusionClock supports expressing the WCEC as a general function (E), this model
emphasizes safety over accuracy. To approximate Pmax,c in a measurement-based manner,
we make use of the Joulescope JS220 energy-measurement tool [23], which allows for simulta-
neously measuring current/voltage, and consequently power demand. To make the model as
reliable as possible, the worst-observed energy consumption over multiple runs is taken as a
pessimistic reference value for the power consumption of the individual configurations under
evaluation. When obtaining WCETs, our model differentiates between two types of tasks:
CPU-centric workloads scaling with the underlying clock’s frequency, for which we perform
the static analyses with Platin as well as fixed-time workloads where a particular device
latency determines the (fixed) execution time. For the device-related latencies, we have to
rely on worst-observed timings. We found that modeling transition penalties between sleep
modes and run modes, with the linear approximation mentioned above (Pmax · WCET ),
yielded comparably pessimistic results. As a result, we determine these penalties through
measurement-based analysis. In all cases, our model provides upper bounds over all observed
runs of our evaluation setup.

6.2 Evaluation Results
Solution Efficiency of the Quadratic Program. To solve QPs, a powerful mathematical
solver such as Gurobi [17] is required. For evaluation, we deploy Gurobi in version 10.0.0
with a set of synthetic test cases on a machine equipped with two AMD EPYC 7702 64-core
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processors with a total of 512 GiB of RAM. As test-case sizes, we use a varying number
of jobs up to 80 and a varying number of possible clock-tree configurations per job up to
80 possible configurations, allowing a maximum of 6400 different reconfigurations between
two subsequent jobs. We consider these sizes comparably large for the context of energy-
constrained real-time systems running on modern SoCs. Each job in the test cases has,
besides a synthetic WCET, a randomly generated release time and deadline provided to the
solver. To allow the presented dynamic redistribution of slack for each job, we bridge every
two jobs with an additional idle phase. The resulting evaluation times of Gurobi are presented
in Figure 6. As expected, the time needed to solve the test cases grows with the number
of configurations and jobs. The maximum time needed to solve the QP within the given
evaluation scenario is 464 s, which we consider practical with regard to the fact that static
analyses are conducted once during design time. Due to our approach of producing generic
QP formulations, we further benefit from continuous improvements (e.g., parallelization) of
mathematical solvers.

Break-Even–Point Evaluation. FusionClock strives to provide energy-optimal clock-
tree–reconfiguration sequences for the individual tasksets. However, to likewise provide
guarantees, FusionClock’s underlying resource-consumption model contains some degree
of pessimism. This effect is especially visible close to break-even points, that is, instances
where the optimal CTC for a certain phase changes due to varying task parameters such as
its WCET. Subsequently, we study this effect by the example of a variable-sized sleep phase,
as the ESP32-C3’s different sleep modes (i.e., active idle, light sleep, deep sleep) with their
varying reconfiguration penalties and energy consumptions show a representative evaluation
scenario. In this scenario, the system executes a single task, the binarysearch benchmark
of the TACLeBench benchmark suite [14], before awaiting the hyperperiod’s next execution.
We then vary the length of the hyperperiod H to determine the break-even points between
active idling, light sleep, and deep sleep. Figure 7 displays the maximum measurements over
5 runs for all modes, as well as the optimized estimation of the QP (dotted).

For the computation workload on this SoC, the highest CPU frequency is the most energy
efficient in terms of instructions per Joule, and, as a consequence, the solver chooses this
configuration for the binarysearch benchmark for every tested QP formulation. However,
the same is not true for the idle phases: Here, minimizing Joule per time is required, and
consequently, FusionClock correctly prefers the lowest CPU frequency in this case (active
idle ). Still, regarding this metric, the SoC’s two sleep modes fare even better, but their
high, static reconfiguration penalties still make them unfavorable for short hyperperiods (i.e.,
H ≤ 8 ms). Here, FusionClock accurately predicts the break-even point from active idle
to light sleep (left side of Figure 7). For the second break-even point (around 3200 ms, right
hand figure) signaling the switch from light sleep to deep sleep , we observe a deviation
between the theoretical prediction based on our resource-consumption model Pmax (dotted)
and the observed, measured break-even point around values of H = 6000 ms. We trace
this gap back to our pessimistic hardware model of the ESP32-C3 during light sleep: The
maximum observed power consumption is 1.31 mW, while the consumption averages around
0.65 mW with a standard deviation of 0.11 mW, the maximum value manifesting in outliers.
To illustrate this point, we introduce two additional variations of our power model for light
sleep into Figure 7, where we instead base the model on the average value µ with an additional
safety margin derived from the standard deviation σ: P3sig = µ + 3σ and P1sig = µ + σ.
These two models move the solver estimation substantially closer to the observed break-even
point. Thus, this observation indicates one way of further improving FusionClock’s current
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Figure 7 Break-even–point measurements for active idle , light sleep , and deep sleep in
comparison to QP results with different energy models. Pmax (dotted) assumes the maximum
measured power consumption for each phase for the QP. The models P3sig (dashed) and P1sig

(dashdotted) assume a power consumption of µ + 3σ and µ + σ of the measured values for light
sleep. In the left part, measurements from 5 ms to 10 ms are in steps of 1 ms, for the right in steps
of 1000 ms, with additional measurement points for active idle to visualize the higher energy costs
compared to both sleep modes. QP results are shown in 1 ms steps (left) and in 100 ms steps (right).

prototype: A more accurate sleep-energy prediction model with less pessimism shifts the
reconfiguration sequence towards the observed measurements. In this evaluation, no case
of the QP’s predicted resource demand shows an underestimation compared to the actual
measured demand of the code with its reconfigurations. Thus, the main conclusion for
FusionClock from this evaluation is the ability to generate reconfiguration sequences
to optimize the energy consumption of the system under observation while accounting for
reconfiguration penalties between the respective modes.

Taskset Evaluation. We automatically generate test cases to evaluate whether our approach
actually (1) provides a reliable upper bound for the energy consumption and (2) minimizes the
energy in comparison to a device-unselective (i.e., all-always-on) application. The generation
happens with the following steps: First, we generate tasksets according to an energy-aware
generator [50] relying on the UUniFast algorithm [4]. Then, we used a simulation of RMA
scheduling [31] at design time to create a time-triggered schedule for these tasksets, splitting
tasks where necessary, which eventually creates a sequence of independent tasks. To simulate
the tasks’ device usage, we assume that device interaction consists of three phases: First
sensing the environment, then computing the resulting action, followed by actuating depending
on the computation outcome. Therefore, each task is put into one of two groups: 70 %
are fixed-time slots, as these devices are assumed to have a non-frequency–scalable timing
behavior. The remaining 30 % are considered compute-only tasks where the time depends
on the CPU frequency of the SoC. Thereby, we achieve a similar distribution between these
three phases, slightly favoring device interactions. As configuration options, we support here
5 clock-tree options in addition to 2 sleep modes, selectively reconfigurable for each task.
The hyperperiods range from H = 25 ms to H = 125 ms over the tasksets consisting of 9 to
18 tasks within a multi-rate system having harmonic periods, which we consider as realistic
for our target scenarios. The QP description groups all this information, for which the
Gurobi solver then determines an optimized reconfiguration schedule. Next, FusionClock’s
code generator builds the necessary reconfiguration and idle tasks. For the task’s temporal
behavior, a loop waits to reach each task’s determined WCET. As these evaluations on real
hardware require manual interaction with the energy-measurement device over the course
of several hours, we conduct this evaluation based on a practically manageable set of ten
tasksets, which we randomly selected from the generated tasksets. Figure 8 shows the
results of this evaluation by increasing utilizations: The left bars in blue (for the respective
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Figure 8 Normalized comparison of an all-always-on approach to the QP solution to the measured
energy consumption. The tasksets are ordered by the utilization of the taskset before optimization.

utilization) show the measured, worst-observed energy consumption for each taskset over
50 runs for the utilizations. The middle (green) bars are the solution determined through
FusionClock’s QP solution, while the right bars show the task-unselective approach to clock
configuration, which is also determinable with the QP by restricting the configuration space
to the all-always-on option. In all experiments, the QP either selected active idling on the
lowest frequency or the light sleep, as the penalty for the deep-sleep mode (i.e., 70.26 ms) is
relatively high for these utilizations and hyperperiods. We observe close estimations between
the measured and the predicted values: The smallest relative overestimation is in the first
shown taskset with 1.8 % (10 µJ in total), while the largest relative difference is in the fourth
taskset 15 % (431 µJ in total). The reason for this difference is due to the fact that the tasks
consume less than their given budget by the Pmax energy model. Throughout all evaluated
benchmarks, the total measured energy demand is below FusionClock’s estimation given
by the solver with the help of our resource-consumption model. These values confirm the
validity of our modeling approach. Regarding the energy minimization in contrast to the
unselective approach, we observed significant improvements: Due to energy savings with the
most energy-efficient configuration over time for fixed-time tasks (20 mW to 100 mW) and the
energy savings for idle modes, the geometric mean over all observed improvements is 79.4 %.
As a main conclusion, we state that FusionClock achieves significant energy improvements,
while showing overestimations with acceptable accuracy of the resource model.

7 Related Work

While real-time systems with energy constraints are a well-explored topic, FusionClock
goes beyond the current state of the art with its use of static reasoning for guarantees,
its penalty-aware handling of multi-source clock trees, its exploitation of application-aware
device constraints, and its final code generation. Due to FusionClock’s multi-faceted
approach to resource-consumption optimization, our work has several scopes of related
work: (1) clock-tree (re)configuration, (2) energy-aware real-time scheduling, and (3) static
resource-consumption analysis, which are subsequently discussed in this order.

Clock-Tree Reconfiguration. The recent work on ScaleClock [40] for the RIOT operating
system [1] presents an approach for the online exploration of the clock tree. Instead of
building a static clock-tree model, ScaleClock employs reconfigurations of the clock tree
and thereby learns the model during the system’s runtime. In contrast to ScaleClock,
our FusionClock approach relies on a statically determined clock-tree model with the
associated reconfiguration penalties. Having a static model is mandatory in order to give
guarantees for timeliness and the execution within energy budgets, which is not possible with
ScaleClock. As a commonality, we share the same argumentation as ScaleClock: Selective
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clock reconfigurations play a key role in configuring the tradeoff between energy and time in
modern SoCs. From FusionClock’s perspective, ScaleClock is similar to Power Clocks [8]
with its management of multiple clocks in embedded systems. In contrast to both existing
clock-tree reconfiguration techniques, FusionClock has the major difference of giving static
runtime guarantees and finding a resource-optimal configuration. Our energy optimizations
are possible due to our underlying resource-consumption model of the target hardware.

Industry also tries to satisfy tool-supported configurations of clock trees: The integrated
development platform of CubeMX [45] from STMicroelectronics has an option to brute-force
clock-tree configurations until an option satisfying all device constraints is found. This clock-
tree option is fixed since no reconfigurations happen during runtime prior to dispatching
jobs. Therefore, CubeMX makes suboptimal use of resources. With FusionClock, we
exploit the notion of the clock tree along with the tasks’ WCET and WCEC under respective
configurations in order to yield resource-optimal, job-specific configurations.

Energy Awareness in Real-Time Systems. Energy-aware real-time scheduling is a well-
explored topic with a substantial body of related work, as surveyed by Bambagini et al. [3].
In this context, works closer related to FusionClock target the scheduling of non-DVS
components; we refer to the overview on these techniques from Yang et al. [53]. These
scheduling techniques partly share our notion of devices, which show an increase in power
consumption when active. For example, these techniques cover the topics of device-aware
procrastination [6] and preemption control [52]. However, these works have shortcomings
in light of modern SoC platforms featuring feature-rich clock trees, which we address with
FusionClock. In contrast to prior work, FusionClock has the expressiveness to cope
with multiple clock input sources for energy minimization under timing constraints. Further,
FusionClock is able to optimally select clock sources based on the fact that devices can
have distinct clock-source constraints (e.g., a specific clock source running at its highest
frequency). Additionally, due to our generic clock-tree abstraction, we support arbitrary
changes and their respective context-sensitive penalties of clock-tree reconfigurations. Finally,
the expressiveness of FusionClock’s abstraction seamlessly integrates the handling of
low-power/sleep modes. Consequently, FusionClock worst-case optimally answers the
question of whether to race or pace to idle [26].

Recent work on energy-constrained real-time systems addresses the energy hotspot detec-
tion EHDE [44] with static analysis techniques. Similar to FusionClock’s argumentation,
their work emphasizes the need to account for devices and their dynamic range in power
demand for energy-aware real-time scheduling. EHDE uses a notion of best-case execution
time and WCET to move the activation and deactivation in the control-flow graph to yield
energy reductions while maintaining a logically and temporally correct system. EHDE ’s
energy-optimization formulation, which includes the best case, helps to approximate the
benefits of the code transformation. In contrast to their work, FusionClock has a com-
prehensive model of the system’s clock tree along with the associated transition latencies
under worst-case assumptions. That way, FusionClock is able to jointly account for task
dependencies on hardware devices while selecting feasible and worst-case–optimal clock
sources along with their configuration (i.e., multiplexer, scalers). Thereby, FusionClock
generates systems that execute during runtime energy-optimal clock-tree reconfigurations
under real-time constraints based on the tasks’ WCEC and WCET.

WCET & WCEC Analysis. The resource-consumption analysis for the WCET is well-
explored with numerous presented tools [2, 15, 16, 18, 20, 21, 24, 27, 29, 30, 38]. Likewise,
several static WCEC-analysis approaches are presented in literature [22, 35, 47, 48, 49].
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However, none of these worst-case approaches addresses the static analysis of penalties when
reconfiguring the clock tree. The work closest related to FusionClock with regard to
WCET analysis with frequency awareness is FAST from Seth et al. [42]. FAST is able to
accurately model caching behavior, which we solve with our zero-wait–cycle accessible SRAM.
In contrast to FAST, FusionClock has a notion of multiple clock sources and multiple
devices driven by means of the SoC’s clock tree.

FusionClock’s implementation uses the tasks’ WCET combined with the maximum
power demand of the respective clock-tree configuration. That way, FusionClock is
supposed to yield overestimations but leads to pessimism. Numerous related works exist on
energy-cost models for the processors [5, 25, 28, 34, 35, 43, 46]. Employing more fine-grained,
instruction-level energy models reduces the pessimism with regard to the energy demand of
machine code. However, considering the relations of power consumers (i.e., nW to W) in
energy-constrained systems, processing cores only take a minor portion of the whole system.
Further reducing FusionClock’s pessimism in maximum-power determination is possible
with more sophisticated approaches as presented by Cherupalli et al. [7].

8 Conclusion

Clock trees are the heart of modern SoC platforms providing the heartbeat to any connected
component. We argue that building FusionClock’s clock-tree abstraction and employing
this abstraction for energy minimization in real-time systems by means of a mathematical
optimization problem advances the state of the art: While existing techniques for clock-tree
reconfigurations are able to reduce the energy demand, they are not capable of providing
both WCEC and WCET guarantees, being now possible with FusionClock. Thereby,
FusionClock yields the optimal energy demand with respect to worst-case assumptions.
Further, our abstraction integrates the scaling and gating of clocks for all devices, including
the CPU itself, in a uniform way. Having such an abstraction is powerful in light of our whole-
system resource-consumption optimization. One part of our future work is the reordering of
tasks with respect to their precedence constraints, such that, for example, tasks benefitting
from the same (or a similar) clock-tree configuration are executed subsequently. Further, the
handling of interrupts is considered future work, which will allow us to handle a broader range
of real-time applications. Our evaluation on a hardware platform along with measurements
emphasizes what the name FusionClock expresses: Fusing the clock-tree configurations
between jobs, which, in turn, can use power-consuming devices (e.g., transceivers, memory
controllers, sensors), leads to energy-optimal execution sequences, while maintaining deadlines
of tasks. The evaluations further outline that significant (i.e., around 80 %) energy savings are
possible compared to clock-tree–agnostic approaches. Besides these savings, FusionClock’s
analysis time to determine worst-case–optimal solutions in large clock-tree–configuration
spaces is considerably short (i.e., few minutes) for static-analysis approaches, which is due to
our approach of formulating quadratic problems for fast mathematical solvers. As a future
perspective, we envision that more approaches use clock-tree abstractions as the basis for
resource-consumption optimizations in embedded systems.

Source code of FusionClock: https://gitlab.cs.fau.de/fusionclock
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Abstract
This paper presents CAWET, a hybrid worst-case program timing estimation technique. CAWET
identifies the longest execution path using static techniques, whereas the worst-case execution
time (WCET) of basic blocks is predicted using an advanced language processing technique called
Transformer-XL. By employing Transformers-XL in CAWET, the execution context formed by
previously executed basic blocks is taken into account, allowing for consideration of the micro-
architecture of the processor pipeline without explicit modeling. Through a series of experiments on
the TacleBench benchmarks, using different target processors (Arm Cortex M4, M7, and A53), our
method is demonstrated to never underestimate WCETs and is shown to be less pessimistic than its
competitors.
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1 Introduction

The Worst-case execution time (WCET) of a task is its maximum execution time when
varying its input data and hardware state. Knowledge of the WCET of all tasks in a system
allows schedulability analysis techniques to demonstrate that all tasks will meet their timing
requirements in real-time systems. The challenge addressed in this paper is to estimate
WCETs for Commercial Off The Shelf (COTS) processors, for which the micro-architecture
details are not fully known.

WCET estimation techniques can be divided into three broad categories [36]: static,
measurement-based, and hybrid techniques.

Static techniques (ST, e.g., [16, 3]) operate on the Control Flow Graph (CFG) of the
task, extracted from its binary code. The nodes in the CFG are Basic Blocks1 (BB), and the
edges represent the control flow between the BB. Static techniques proceed in two phases:
in the first phase, the WCET of each BB is estimated using abstractions of the hardware
state; in the second phase, the whole program’s WCET is calculated by finding the worst
path inside the CFG (e.g., this is achieved by employing the commonly used implicit path
enumeration technique – IPET – [36]). Although the static techniques produce safe WCET
estimates, using hardware abstractions on complex micro-architectures will inevitably lead
to state explosion. Moreover, each new architecture demands the design of a new hardware
abstraction, which is time-consuming and error-prone (especially without the processor’s
micro-architectural details).

1 A basic block is defined as a sequence of instructions with a single entry point at the beginning and a
single exit point at the end, without any branching or jumping to other instructions within the block.
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Measurement-based techniques (MBT) (e.g., [9]) are empirical techniques that run the
program end-to-end with varied input data and hardware states to gather measurements.
The WCET is then estimated from the measurements by either returning the largest observed
timing (with a configurable safety margin) or using statistical techniques such as extreme
value theory to infer a probabilistic WCET from the observed values [29, 30]. Unless the
worst input and hardware state are found, techniques in this category may produce unsafe
results.

Hybrid techniques (HT) [4, 32, 11, 20, 21] combine the benefits of ST and MBT: the
longest path is safely identified using techniques from ST, like IPET; measurements are
used at the BB level, avoiding the costly and error-prone design of hardware abstractions.
However, using measurements at the BB level in hybrid methods raises code coverage issues:
each BB has to be executed at least once, and each BB’s worst-case scenario must be covered.

In recent works, machine learning (ML) techniques are used in HT instead of measurements
to predict the WCET of BBs [5, 18, 17, 24, 25, 2]. These techniques, named HT-ML in the
following, train an ML model (e.g., neural network) on a large dataset of BB whose WCET is
known. The ML model is then used to predict the WCET of previously unseen BB. HT-ML
techniques have the following benefits:

(i) The time-consuming phase of HT-ML (training) is executed only once (per architecture)
and does not need any design of a hardware abstraction like in ST.

(ii) Although the training phase may be long, prediction is fast and does not require
thousands of measurements per BB.

(iii) HT-ML can process large amounts of execution scenarios for BB and identify patterns,
allowing more accurate predictions.

Nevertheless, the current HT-ML methods use oversimplified code characterization. The
features used for learning and prediction abstract too much information from the machine
code, causing information that impacts timing to be lost. For example, not considering the
ordering of machine instructions in a BB will make the technique unable to accurately learn
the impact of pipelines on timing.

In this paper, we propose a novel HT-ML WCET estimation technique called CAWET, for
Context-Aware Worst-case execution time Estimation using Transformers. This technique
uses the advanced machine learning algorithm Transformers-XL [8]. Unlike other HT-ML
methods, which only consider static features, CAWET considers the internal dependencies
within each BB and the context surrounding it when estimating its WCET. This is performed
by treating the sequence of instructions in a BB as a natural language, where the timing of a
BB depends not only on its own sequence of instructions but also on the sequence of BBs
executed before it.

CAWET consists of two main stages: training and deployment (or estimation). As in
all systems using Transformers, the Transformer model is first pre-trained in the learning
phase to comprehend the vocabulary (in our context, assembly language). Then, the model
is fine-tuned using extensive measurements on various basic blocks extracted from real codes.
In this fine-tuning stage, the model learns how to calculate the WCET of each basic block
by considering the context surrounding the block (previously executed BBs). During the
estimation stage, the WCET of each BB is determined for all bounded-length contexts leading
to the BB, extracted from the program’s CFG. The maximum timing estimate for these
contexts is then selected as the WCET of the basic block and used by IPET to calculate the
WCET of the overall program.

CAWET is easy to deploy, as the training has to be done only once. Consideration of
pipeline effects is performed automatically because of the consideration of the execution
context of all basic blocks.
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CAWET is evaluated on processors of varied complexity, including the basic pipeline-
only cortex-M4, the more advanced cortex-M7 that features a cache, and the even more
sophisticated cortex-A53. The quality of WCET estimates produced by CAWET is compared
to those produced by WE-HML, the HT-ML technique closest to CAWET [2], on 13 programs
from the TACLeBench benchmark suite [13]. Our results show that CAWET produces better
estimates than its competitors on more diverse architectures.

Our contributions are:
A new hybrid timing ML-based WCET analysis technique that uses Transformers-XL to
estimate the WCET of basic blocks and considers dependencies between instructions.
We take into account the execution context that surrounds the BB under analysis by
automatically exploring all bounded-length paths that leads to it.
We provide an empirical study on different targets and techniques. Our results show that
this complex ML method is well-suited for timing estimation, with an average error of
23.8%, 102.2%, and 62.4%, on the Cortex M4, Cortex M7, and Cortex A53 processors,
respectively.

The rest of this paper is organized as follows. Section 2 presents the CAWET HT-ML
technique. The experimental methodology for evaluating it is detailed in Section 3, and
experimental results are given in Section 4. Section 5 compares our approach to related
techniques. We conclude in Section 6.

2 CAWET: Context-Aware WCET estimation using Transformers

CAWET is a hybrid context-aware WCET estimation technique that predicts an in-context
WCET of individual basic blocks and then uses the predictions to calculate the overall
program’s WCET. A high-level overview of CAWET is given in Section 2.1. The two main
phases of CAWET: training (using Transformers-XL) and prediction (i.e., deployment), are
then respectively presented in Sections 2.2 and 2.3.

2.1 Overview of CAWET
CAWET consists of two main stages: training and deployment (or estimation). Both stages
operate on individual basic blocks (BB) and account for the execution context of the BB
under study (i.e., the sequence of BBs executed before it). CAWET relies on Transformers-
XL, originally used in natural language processing, for their ability to learn long-term
dependencies between words. In CAWET, the language under study is a sequence of BBs,
each composed of a sequence of assembly instructions. The overall structure of CAWET is
depicted in Figure 1.

In the training phase (left block of Figure 1), the Transformer model is first pre-trained
on real programs to learn the vocabulary of the language it will process (in our context,
assembly language) as it is usually done for large language models [10]. Then, the model is
fine-tuned using extensive measurements on a large set of BBs extracted from real code. In
this fine-tuning stage, the model learns how to calculate the WCET of each BB by considering
the context surrounding it (i.e., previously executed BBs).

During the estimation stage (right block of Figure 1), the WCET of each BB is determined.
Since there might be different execution paths leading to the BB under study, prediction
operates on the set of contexts corresponding to these paths, with care taken to avoid
combinatorial explosion, as further explained in Section 2.3. The prediction phase first
computes the list of contexts of the BB under study (BB number 8 in the Figure). The result

ECRTS 2023
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Figure 1 Overview of CAWET.

in the example is a list of 4 contexts, made of the sequence of BBs executed before BB 8:
(1, 4, 5), (1, 2, 3), (3, 4, 5), and (3, 6, 7). The timing of BB 8 is estimated for each context. The
maximum timing estimate is then selected as the WCET of the BB and used by IPET to
calculate the WCET of the overall program.

2.2 Training phase using Transformers-XL
A transformer is a neural network architecture originally designed for natural language
processing, which can perform tasks such as language translation, text summarizing, and
text-to-speech. It was first proposed in [35], and one of its main advantages is using self-
attention mechanisms that enable the model to weigh different parts of the input data when
making predictions. However, as defined in [35], the original transformer architectures have
a fixed-length context window and may struggle to handle sequential data with long-term
dependencies. To address this limitation, Transformers-XL (TXL) [8] were introduced. A
TXL is a variation of the transformer architecture that uses a so-called memory-augmented
attention to better remember and utilize information from earlier in the sequence. We use a
TXL architecture in CAWET because it improves the ability of the transformer to handle
long-term dependencies, which is necessary for handling long sequences of code.

Estimating the WCET of a given BB given its context is performed by first processing
the context (formed by the BB executed before the analyzed BB as well as the analyzed
BB), followed by processing the BB under analysis. This results in two embedding matrix
representations (a global attention matrix for the context and a local attention matrix for the
BB under analysis) that are then concatenated. The resulting embedding representation is
given as input to a fully connected layer, producing a single scalar value (the timing estimate
for the analyzed BB). Figure 4 provided in the Appendix illustrates this process.

The training of a TXL consists of two stages (pre-training and fine-tuning). During the
pre-training stage, the TXL is trained to learn the structure of assembly instructions in text
format using self-supervised learning. This classical self-supervised learning phase [10] is
achieved by masking random operations or operands in the sequence and (pre)training the
model to reconstitute (i.e., predict) them as output. To perform this pre-training phase,
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thousands of disassembled binary programs are used without needing labeled information.
Details about the hyper-parameters of the TXL architecture are provided in Table 10 in the
Appendix.

In the fine-tuning stage, a set of programs, the target processor, and a measurement
tool are required. BBs execution time is measured using the measurement tool. Then, the
instruction sequences are tokenized using sentence piece [23], a well-known tokenization
technique trained in our work on the target assembly instructions. The training dataset
for the fine-tuning stage is then built using the maximum observed timing of each BB, the
tokenized BB, and its context. Contexts have a maximum size; the context size, expressed as
a number of basic blocks, is a hyperparameter of the Tranformer-XL.

2.3 Prediction phase

CAWET predicts the WCET of BBs by considering their execution context. The results
from CAWET can then be used by a static WCET estimation tool. Section 2.3.1 presents the
concepts and notations CAWET relies on. Section 2.3.2 then details the context generation.
Section 2.3.3 describes how the WCET of a BB is obtained from the predictions and the
overall WCET of the program is finally calculated.

2.3.1 Concepts and notations

The concepts and notations used in CAWET are standard concepts used in compilers. They
are illustrated in Figure 3, which will be reused later to illustrate how CAWET works.

▶ Definition 1 (Control Flow Graph). A Control flow graph (CFG) is a directed graph where
each node represents a BB, and each edge represents the control flow from one BB to another.

▶ Definition 2 (SESE regions, SESE trees). A Single Entry Single Exit (SESE) region, as
defined in [19], is a sub-graph of a CFG that can only be entered by one edge and exited by
one edge. A property of SESE regions is that they can be arranged into a tree, constructed in
linear time.

An example of CFG (with 7 BBs numbered from 1 to 7), and its SESE regions is depicted
in Figure 2 (A). The dotted arrow in the figure represents the back edge of the loop composed
of BB 5 and 6. The SESE tree that corresponds to the CFG is depicted in Figure 2 (B). The
rationale behind using SESE regions is to have subsets of the CFG that are simple enough to
explore all paths exhaustively, with the overall objective of avoiding combinatorial explosion
when generating the possible contexts of a BB.

▶ Definition 3 (Cyclomatic complexity). Cyclomatic complexity is a software metric that
measures the number of independent paths through a program or a CFG [12]. It can be
thought of as the number of unique paths that can be taken through the code. It is calculated
using the following formula: Cyclomatic_complexity(CFG) = edges − nodes + 2

The cyclomatic complexity will be used during the prediction phase to decide which paths
leading to a BB are worth exploring. The cyclomatic complexity of the SESE regions in our
example is displayed in Figure 2 (B).

ECRTS 2023
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Figure 2 A CFG example transformed into a SESE tree and annotated with cyclomatic complexity.

2.3.2 Context generation
The task of finding all the possible paths in a graph may be computationally expensive.
To address this issue, we use a divide-and-conquer strategy based on the SESE tree of the
program. In the example of Figure 2, the root SESE region (SESE 1) represents the entire
CFG. Each tree level represents a sub-SESE region (e.g., SESE 2 and SESE 3 are the children
of SESE 1), with smaller and thus simpler sub-graphs.

To limit the complexity, CAWET performs an exhaustive path exploration only for the
SESE regions that are simple enough (based on their Cyclomatic Complexity, CC) to allow
a full path exploration. SESE selection is performed using a top-bottom traversal of the
SESE tree, and the SESE regions with a value of CC strictly higher than a threshold are
filtered out. Path exploration for the selected regions uses Depth-First Search [34] (DFS) to
enumerate all possible paths2. We ensure, by construction, that the chosen SESE covers the
entire input code. i.e., in situations where a SESE node cannot be analyzed due to its high
CC value, we analyze all its children. Additionally, basic blocks that do not belong to any
region in the tree are included to ensure complete code coverage.

This process is illustrated in Figure 3 step 1 using the CFG and SESE in Figure 2 as an
example, with a CC threshold of 2. In this example, the SESE regions 2 and 3 are selected,
and their paths are fully explored (step 2 in Figure 3).

Management of loops

As explained above, the enumeration of paths in SESE regions ignores the back edges of
loops. Therefore, all paths in a given loop are explored only for one iteration. Obtaining the
execution context of any BB to be executed after a loop requires considering several loop

2 DFS traversal ignores loop back-edges. Loop management is described later in this Section.
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Figure 3 Example of the different steps for context generation, where the cyclomatic complexity
limit is set to 2 and the context size is set to 3 BBs.

iterations. This is achieved in CAWET using (virtual) unrolling: the context of a loop is
composed of several iterations of the loop body (from zero to the loop’s maximum number
of iterations).

As the path followed may differ across iterations, generating all possible contexts may
lead to a combinatorial explosion. This issue is addressed by restricting the number of BBs
added by the unrolling process for the loop body to a fixed value, the hyperparameter context
size of CAWET. In the presence of nested loops, the context of the inner loops is generated
first, to be further used to generate the context for outer loops. This is performed using a
bottom-up traversal of the loop nesting tree of every CFG3.

The result of the loop unrolling process on our example is given in Figure 3 step 3, for
SESE 3. Three contexts are generated, corresponding respectively to 1, 2, and 3 executions
of the loop. Note that, at this step, the size of the contexts of SESE regions may be longer
than the context size hyperparameter.

Per BB context generation

The execution traces for the different SESE regions, after loop unrolling, are used to generate
the context list of every basic block, as depicted in Figure 3 step 4. The size of each context
is limited to the context size hyperparameter of CAWET.

3 A loop nesting tree is a tree data structure used to represent nested loops. Each node in the tree
represents a loop, and the edges between the nodes represent the nesting relationship between the loops.

ECRTS 2023
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In some cases, the initial nodes of some SESE sub-regions are smaller than the context
size hyperparameter. To address this issue, we look for the preceding SESE region or BB to
access the end of its traces. The peeked-on edges are shown in Figure 3; they can easily be
found by looking at the end of the traces of all the BB that occur before this trace. The
obtained information can then be used as context for the start nodes of the current SESE
region, provided we can find a region before the current one.

As an example, Figure 3 step 5 shows that the context of BB 5 can be augmented by
peeking at the execution trace of SESE 2.

2.3.3 Basic Block WCET estimation and program WCET calculation
After generating all possible limited-size contexts for each BB, we move on to estimating
its WCET. This involves predicting the execution time of the BB under study for all its
contexts. In an architecture without a cache, the maximum estimated time is selected as
the worst-case scenario. If the target architecture includes a cache, we keep track of the two
highest estimated execution values to account for cache effects. The largest value represents
the first execution of the basic block within a loop, which is typically long, while the other
value represents subsequent executions of the same basic block, which may be shorter4. The
WCET of BBs is then fed into a static WCET estimation tool to calculate the WCET of the
overall program using standard techniques such as IPET [36].

3 Experimental setup

This Section provides a comprehensive description of the experimental setup used to evaluate
CAWET on multiple ARM Cortex targets, specifically M4, M7, and A53. The programs used
to train CAWET and evaluate the quality of predictions are first described in Section 3.1.
The context-agnostic baselines CAWET is compared to are presented in Section 3.2, followed
by an introduction to the software and hardware environments in Section 3.3. The setups
for the learning and prediction phases of CAWET are presented respectively in Section 3.4
and 3.5.

3.1 Dataset and benchmarks
CAWET training consists of two steps: (self-supervised) pre-training and fine-tuning. We
have pre-trained CAWET on a large number of BBs in order for the Transformer to learn
the assembly language under study, using CodeNet [28]. CodeNet is a collection of solutions
submitted by the public to competitive programming websites. It contains approximately
900,000 C programs, which we cross-compile to the target architecture and disassemble using
GNU binary utilities using objdump. The textual format produced by objdump, after some
basic parsing (e.g., extraction of addresses, separation of BBs) allows the creation of a large
pre-training set. This pre-training set is used to build a vocabulary model with sentence
piece [23]. Once the model (sentence piece model) has been trained, it is then used to tokenize
any binary programs written with the target instruction set. To fine-tune CAWET on basic
blocks with their context, we have used a diverse and publicly available set of programs:

4 Since the context size is limited, the predicted timing values may be too optimistic. We, therefore,
analyze in Section 4.2 and 4.4 a technique that applies static cache analysis, and we add the overhead
obtained by this analysis to the timing values produced by CAWET.
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The Algorithms5, MiBench [15] and Polybench [37]. Table 1 gives a short description of
each benchmark suite, the number of programs it contains, and the total number of BBs
encountered when executing the programs.

Table 1 The benchmarks used for training CAWET.

Dataset name Description Nb. of programs Nb. of BB

The Algorithms Collection of open-source implementations
of a variety of algorithms implemented in C 200 12123

PolyBench A collection of benchmarks containing static control parts.
The purpose is to uniformize the execution and monitoring of kernels 30 11224

MiBench A free, commercially representative embedded benchmark suite 14 8324
Total 244 31671

Table 2 Selected TacleBench codes used to evaluate the quality of the predictions.

Name Description
bs Binary search in an array

bsort Bubble sort algorithm
countnegative Basic counting on arrays

crc Cyclic redundancy codes
expint Exponential integral function
fdct Fast discrete cosine transform.
fir Finite impulse response filter

h264 dec H.264 block decoding functions
insertsort Insertion sort
jfdctint Discrete-cosine transformation
matrix1 Generic matrix multiplication

ns Search in 4-dimension array
petrinet Petri net simulation

To validate the quality of the WCET predictions provided by CAWET, we use a subset
of the codes from the TacleBench benchmark suite [13] whose characteristics are given in
Table 2. We chose these codes because: (i) the programs are analyzable by static WCET
estimation tools, and in particular, they contain loop-bound annotations; (ii) they come
with input data known to trigger the worst-case execution paths; (iii) they are used in our
closest competitor WE-HML [2], allowing us to compare CAWET with this work. Note that
the selected TacleBench programs were not used during any of the two steps of the training
phase.

3.2 Context-agnostic baselines
CAWET is evaluated by comparing it to two context-agnostic WCET predictors. The first
one is a Multi-Layer Perceptron regressor (loosely called a neural network (NN)). Although
not a naive approach, the neural network is a feed-forward architecture that does not
incorporate sequential information and requires a fixed-size input. Our implementation of
the NN employs a total of 233 static features of the basic blocks as input, including the
proportion of different machine instruction types (e.g., MOV, ADD, LDR). We used a greedy
search algorithm to determine optimal hyperparameters for the NN, including the number of

5 Available here: https://github.com/TheAlgorithms/C
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hidden layers, optimizer, learning rate, and loss function. Based on the validation dataset,
the ideal parameters were determined to be hidden layer sizes=(512, 256, 128), learning
rate=’adaptive’, learning rate init=0.001, solver=’adam’. The other baseline CAWET is
compared with is WE-HML, a hybrid ML-based WCET estimation technique presented
in [2]. The best performing ML algorithm of [2] (Neural Network trained to account for
cache effects) is used. CAWET is compared to WE-HML for the Cortex A53 processor only,
a processor for which the results of WE-HML were available.

3.3 Hardware and software setups
Accurate timing values must be employed whenever possible when training and validating
CAWET, and the method used to obtain the timing values should not interfere with the
execution of the code, a phenomenon commonly known as the probe effect. CAWET either
uses a hardware-based approach or a software solution when the hardware-based solution
is not accessible. The hardware solution leverages the Joint Test Action Group (JTAG)
interface. The J-Trace Pro trace solution from Segger [31] is used to connect to the JTAG
interface of the target processor (in our case Cortex-M4 and Cortex-M7), in conjunction with
Ozone [14], a cross-platform debugger and performance analyzer. Ozone generates execution
traces that provide the value of the cycle counter, the instruction’s address, opcode, and
operands, as well as the corresponding assembly code for each instruction. The software
solution involves adding code instrumentation to measure the execution time of individual
basic blocks (BB) in a program. To provide context and assembly code for the timed BB,
we retrieve the execution trace using GDB (the GNU Debugger). The software solution is
only used when no JTAG interface is available since it is prone to probe effects and requires
significant human effort to implement.

Our experiments are performed on various Arm processors, whose characteristics are
summarized in Table 3. We initially focus on the Cortex-M4 processor, which has a simple
in-order pipeline with three stages and no cache. This processor allows us to validate our
method on a deterministic processor with precise timing measurements through the JTAG
interface. Then, we evaluate our approach to the more advanced Cortex-M7 processor. This
processor features a 6-stage in-order pipeline, data and instruction caches, and a branch
predictor. Finally, we use a more complex processor, Cortex-A53, which is hosted in a
Raspberry Pi 3. This superscalar processor has two data and instruction cache levels: an
8-stage in-order pipeline and a branch predictor. The Cortex-A53 has no JTAG interface;
the reading of the cycle counter is used for the timing measurements. Using this commercial
off-the-shelf (COTS) hardware is part of the experiments in the WE-HML approach [2].

Table 3 Summary of the processors used and their micro-architectural features.

Target Measurement solution OS? Pipeline/#stages Branch predictor Cache memory and proprieties
Cortex-M4 Hardware (JTAG) Baremetal In-order/3 No No

Cortex-M7 Hardware (JTAG) Baremetal In-order/6 Yes Yes data and instruction cache,
L1, random replacement policy

Cortex-A53
(also used in [2]) Software Linux In-order/8 Yes Yes data and instruction cache,

L2, random replacement policy

3.4 Setup for the learning phase
PyTorch was used to implement the learning models, which were then trained on a Tesla V100.
Each setting (processor) required two days for CAWET training: 1,5 days for pre-training and
0,5 days to fine-tune the model. To avoid underestimating execution times, we employed the
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Root Mean Squared Logarithmic Error (RMSLE) loss function provided in Equation 1, which
tends to penalize underestimations more heavily than overestimations. We also incorporated
an additional penalty for predictions that underestimated the execution time, according to
Equation 2. We artificially modify the target value in the loss when the prediction is too low.
When computing the loss, this is done by increasing the target with the predicting error
(target − prediction).

RMSLE(target, predict) =
√

(log (target + 1 ) − log (predict + 1 ))2 (1)

UsedTarget =
{

target if target ≤ prediction

target + (target − prediction) if target > prediction
(2)

3.5 Setup for the prediction phase
The CFG, the SESE tree, and the loop tree is generated by the Heptane WCET estimation
tool [16]. These structures are used to construct the list of contexts for each BB. Then,
we predict the WCET for each BB using CAWET. Finally, we employ Heptane’s IPET to
determine the overall WCET of the program.

To create the contexts, we opted for a cyclomatic complexity of 5, as this value has
been shown empirically to generate paths within a reasonable amount of time (less than five
minutes to generate traces for each basic block in the 13 programs previously described).
Since the best context size varies across different architectures, we only considered a fixed
number N of consecutive basic blocks, where N corresponds to the number of pipeline
stages.

4 Results

The quality of WCET predictions for the Cortex M4 and Cortex M7 architectures is evaluated
in Sections 4.1 and 4.2. The effect of the different features of CAWET on the quality of
the predictions is studied in Section 4.3. Finally, CAWET is evaluated in Subsection 4.4 on
a more complex processor, the Cortex-A53, using a software measurement method and an
operating system, allowing us to compare the WCET predictions of CAWET with those of
WE-HML [2].

4.1 Quality of WCET predictions for the Cortex M4
Table 4 compares the WCET predictions of the selected TacleBench programs on the
deterministic cache-less architecture Cortex M4. WCET predictions of BBs are either
obtained by CAWET or by the context-agnostic Neural Network (NN) baseline described in
Section 3.2. The table gives for the two techniques both the WCET prediction in cycles and
the Relative Percentage Error RPE defined as RPE = (P redict−Actual)

Actual ∗ 100. A context size
of 3 BB is used.

The results show that CAWET is twice less pessimistic than the NN baseline on average,
using the Mean Absolute Error6 on the RPE (i.e., Error = RPE). This can be explained by
the fact that: (i) neural networks do not consider the ordering of instructions in BBs (ii)
neural networks are context-agnostic. We also observe that neither CAWET nor the NN
baseline underestimates the WCET since all RPE are positive.

6 Mean Absolute Error: MAE = 1
n ∗

∑n |Error|

ECRTS 2023



7:12 CAWET: Context-Aware Worst-Case Execution Time Estimation

Table 4 Comparison of WCET predictions for CAWET and a Neural Network (NN) baseline on
TacleBench programs for Cortex-M4.

Benchmark Maximum observed
execution time (Cycles)

NN
estimations

(Cycles)

NN
RPE
(%)

CAWET
estimations

(Cycles)

CAWET
RPE
(%)

bs 140 307 119.2 272 94.3
bsort 317279 414882 30.7 374712 18.1

countnegative 9638 14047 45.7 12858 33.4
crc 78496 102005 29.9 92872 18.3

expint 5683 7758 36.5 5727 0.7
fdct 7308 10557 44.4 8606 17.7
fir 6882 10844 57.5 7490 8.8

h264_dec 573752 661037 15.2 607918 5.9
insertsort 3125 3964 26.8 3898 24.7
jfdctint 7761 11454 47.5 9968 28.4
matrix1 440243 577831 31.2 564921 28.3

ns 28444 45026 58.2 34367 20.8
petrinet 3283 4159 26.7 3592 9.4

Avg. MAE – – 43.80 – 23.8

Impact of the context size. Table 5 shows the considered context size’s impact on the
prediction quality. Four values are considered: 0 (no context), 1 BB as context, 3 BBs as
context, and 20 BBs as context.

Table 5 Impact of the context size on the Mean Absolute Error (MAE) on TacleBench programs
for Cortex-M4.

Benchmark Context 0 Context 1 BB Context Pipeline size (3) Context 20 BB
bs 104,2% 97,6% 94,3% 117,9%

bsort 22,4% 27,6% 18,1% 34,2%
countnegative 47,3% 38,9% 33,4% 46,2%

crc 19,6% 11,1% 18,3% 19,3%
expint 21% 15,9% 0,7% 21,6%
fdct 39,2% 28,4% 17,7% 38,2%
fir 34,5% 31,6% 8,8% 39%

h264_dec 30,2% 22,1% 5,9% 30,9%
insertsort 15,5% 25,6% 24,7% 27,4%
jfdctint 34,6% 31,9% 28,4% 41,9%
matrix1 36,1% 33,3% 28,3% 53,4%

ns 45,7% 33,8% 20,8% 41,3%
petrinet 11% 17,2% 9,4% 16%

Avg. MAE 35,5% 31,9% 23,8% 40,6%

The results show that, on average, the error is minimal when the context size is 3 BBs.
Accounting for the execution context of BBs is beneficial to the quality of the predictions up
to a context size of 3. Taking into account larger context sizes results in much higher error
values. One possible explanation for these higher error values is that the context vector is
being disrupted by extensive information that cannot be processed efficiently with the current
TXL architecture. In future works, we plan to examine this phenomenon more closely, which
will require substantial computing resources.
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4.2 Quality of WCET predictions for the Cortex M7
The Cortex M7 processor is more complex than the Cortex M4. It features a 6-stage in-order
pipeline, data, and instruction caches with random cache replacement and a branch predictor.
Table 6 evaluates WCET predictions produced by CAWET and the baseline NN for the
Cortex M7, using a context size of 6 for CAWET.

Table 6 Comparison of WCET predictions for CAWET (vanilla) and a Neural Network (NN)
baseline for Cortex-M7.

Benchmark Maximum observed
execution time (Cycles)

NN
estimations

(Cycles)

NN
RPE
(%)

CAWET
estimations

(Cycles)

CAWET
RPE
(%)

bs 140 307 119.3 280 100.0
bsort 191406 464616 142.7 376784 96.9

countnegative 6956 15874 128.2 13904 99.9
crc 47476 98473 107.4 88668 86.8

expint 3592 8260 130.0 7140 98.8
fdct 4957 12044 143.0 9341 88.4
fir 4625 10856 134.7 9132 97.4

h264_dec 362349 779905 115.2 706162 94.9
insertsort 1760 4188 138.0 3414 94.0
jfdctint 4011 11877 196.1 10215 154.7
matrix1 301866 660739 118.9 644668 113.6

ns 21253 46004 116.5 41167 93.7
petrinet 1595 3741 134.5 3342 109.5

Avg. MAE – – 132.7 – 102.2

The results show that even with no explicit support for caches, CAWET never underes-
timates compared to the Maximum observed execution time (the max of 1000 executions)
and is again more precise than the NN baseline. It should also be noted that the average
MAE, both for CAWET and NN, is, as one would expect, higher for the more complex
Cortex M7 than for the very simple Cortex M4, showing that the tight timing analysis of
complex processors is harder to achieve than the analysis of simpler ones.

Since the context size in CAWET is limited, the reuse of code/data (with instruction/data
caches) may not be fully taken into account by the model. We thus modified CAWET to
add a cache miss penalty to the WCET of a BB when the static cache analysis of Heptane
cannot guarantee a cache hit. The same procedure is applied to the NN baseline, and the
results are reported in Table 7.

The integration of cache analysis results into CAWET and NN leads to more pessimistic
WCETs for both techniques. Two factors explain this additional pessimism: (i) the static
cache analysis for random cache replacement is inherently pessimistic; (ii) CAWET already
captures parts of the cache behavior due to its use of the execution contexts for BBs. Thus
the impact of some cache misses may be counted twice.

4.3 Impact of CAWET features (Cortex M4 and M7)
In this section, we analyze the effect of different features of CAWET on the Relative
Percentage Error (RPE): context accounting, peek-on mechanism, loop management, and
using Heptane’s cache analysis. Our study involves a comparison of the impact of each
feature, starting with context accounting (A), followed by the peek-on mechanism (B), loop
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Table 7 Comparison of WCET predictions for CAWET and a Neural Network (NN) baseline for
Cortex-M7 when accounting for the static cache analysis results.

Benchmark Maximum observed
execution time (Cycles)

NN
estimations

(Cycles)

NN
RPE
(%)

CAWET
estimations

(Cycles)

CAWET
RPE
(%)

bs 140 537 283.6 516 268.6
bsort 191406 840959 339.4 699961 265.7

countnegative 6956 33552 382.3 26997 288.1
crc 47476 184152 287.9 166025 249.7

expint 3592 14528 304.5 12764 255.3
fdct 4957 34861 603.3 20076 305.0
fir 4625 18088 291.1 16554 257.9

h264_dec 362349 1281479 253.7 1403042 287.2
insertsort 1760 6040 243.2 7105 303.7
jfdctint 4011 34044 748.8 19663 390.2
matrix1 301866 2021791 569.8 1249975 314.1

ns 21253 97870 360.5 76205 258.6
petrinet 1595 5813 264.5 6372 299.5

Avg. MAE – – 398.1 – 289.6

unrolling (C), and finally, applying cache analysis (D). The results in Table 8 show that
incorporating the context (A) provides the most significant improvement to CAWET, while
the effects of peeking (B) and loop enrolling (C) are less substantial. Additionally, we can see
that adding the cache analysis (D) in Cortex M7 has a considerable impact on the predictions,
with a significant increase in pessimism.

Table 8 RPE measures of CAWET predictions for Cortex-M4 and Cortex-M7 when adding
different features of CAWET: context accounting (A), peek-on mechanism (B), loop unrolling (C),
and cache analysis (D).

Feature(s) \Optimization Cortex-M4 RPE (%) Cortex-M7 RPE (%)
None 35.5 142.5

A 25.2 130.2
A+B 24.9 126.1

A+B+C 23.8 102.2
A+B+C+D NA 288.0

4.4 Quality of WCET predictions for the Cortex A53
The objectives of these experiments are twofold: (i) evaluate the WCET predictions produced
by CAWET for a more complex processor than the Cortex M7; (ii) be able to compare
CAWET to WE-HML [2], the related work closest to CAWET, that targets this architecture.
We re-use the very same experimental conditions as in WE-HML: software measurements
of execution times, and execution on top of an operating system. The maximum measured
BB execution time is used alongside its context to train CAWET. We have collected 1000
measurements for each studied benchmark and kept the maximum execution time observed
as a reference value to calculate the RPE. On the thousand measurements collected, we
have also applied the probabilistic WCET technique as described in [30], where we set the
probability to 10−3 to provide another reference point than the MOET.
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Table 9 Comparison of WCET predictions on Cortex A53 for: CAWET, a probabilistic WCET
solution, WE-HML, CAWET (vanilla), and a modified CAWET to account for static cache analysis
results.

Benchmark MOET
(Cycles)

pWCET10−3

RPE (%)
WE-HML
RPE (%)

Vanilla CAWET
RPE (%)

CAWET
with cache analysis

RPE (%)
bs 2568 43.8 177.1 97.0 122.8

bsort 358380 60.4 838.3 18.6 21.3
countnegative 29720 6.3 168.5 70.2 169.6

crc 66867 64.2 315.2 53.8 86.5
expint 6122 1.0 352.5 29.0 80.3
fdct 8877 1.2 195.0 25.5 52.2
fir 7646 -13.6 391.4 31.1 114.9

h264_dec 426327 120.4 590.0 76.5 88.4
insertsort 3042 75.8 297.6 29.6 40.2
jfdctint 8070 51.1 296.1 44.4 57.5
matrixl 21380 5.8 207.1 223.9 236.6

ns 22018 -0.3 731.1 108.6 119.5
petrinet 3920 30.7 1865.3 2.3 30.8

Avg. MAE – 36.5 494.2 62.4 93

Table 9 shows the Maximum Observed Execution Times (MOET) and Relative Percentage
Error (RPE) for all considered techniques: probabilistic WCET estimation, WE-HML, Vanilla
CAWET, and CAWET modified with the results of static cache analysis. On all benchmarks
but one (matrix1), CAWET is much less pessimistic than WE-HML (even for the modified
CAWET). This is due to the significant pessimism introduced by WE-HML to account for
caches (WE-HML evaluates cache effects by generating the worst possible cache pollution in
loops regardless of the actual accesses performed in the loop).

Compared to the probabilistic technique, we observe that the pWCET is sometimes
unsafe. This may come from rare outliers (due, for example, to the presence of an operating
system) that are considered as WCET and that pWCET (smartly) ignores because they
are sufficiently rare. It may also happen when pWCET is less pessimistic than CAWET.
However, in general, pWCET techniques may miss the worst-case execution path in programs,
whereas CAWET, a hybrid technique, will not.

5 Related works

The challenge of accurately estimating the WCET of programs has led to the development
of various hybrid timing analysis techniques that are compared with CAWET below. These
techniques can be broadly categorized into two types: those that use measurements to
estimate the WCET of individual basic blocks and those that incorporate machine learning
to learn the BB’s timing patterns.
1. Hybrid WCET estimation techniques using measurements

AbsInt [11, 20, 21] and Rapita [4, 32] have developed hybrid WCET estimation solutions,
namely Timeweaver and Rapitime, which rely on hardware-assisted measurements (e.g.,
JTAG) and manual annotations (way/trace points and interest points, respectively) to
measure the WCET on code snippets, and then estimate the WCET of the program with
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their static tool. Kirner et al. propose in [22] to perform measurements on code segments
larger than a basic block and propose techniques to enforce coverage of the measured
segments. In contrast to these research works, CAWET does not use measurements to
estimate the WCET of code snippets. Instead, it utilizes a timing model learned through
Machine Learning (ML) techniques.

2. Hybrid WCET estimation techniques using ML
Several methods for estimating Worst-Case Execution Time (WCET) using Machine
Learning (ML) have been proposed [5, 18, 17, 2, 24, 25]. Bonenfant et al. [5] use
worst-case event counts for training a neural network, that will be subsequently used to
calculate the WCET of a program at an early stage. Similarly, the approaches proposed
by Kumar [24, 25] estimate WCET using features extracted from the source code. These
approaches disregard valuable information about the code flow and hide the compilation
effects by operating at the source code or intermediate code level, which can bias the
timing prediction. The research works presented in [17, 2], similarly to CAWET, propose
to extract features from the binary code and to use ML techniques to predict the WCET
of individual basic blocks. However, contrary to [18, 17, 2], CAWET takes a more
fine-grained approach, considering the context surrounding each basic block, and the
dependencies between instructions within it to better consider hardware components such
as the pipeline. [2] accounts for data caches by simulating the worst possible data access
pattern for basic blocks within loops, whereas CAWET relies on static analysis through
the Heptane tool [16] to obtain less pessimistic estimations of data cache behavior. [26]
propose a technique similar to linear regression to estimate the WCET from a set of
end-to-end measurements. Unlike CAWET, this approach uses static features and is thus
not able to accurately predict pipeline effects.
All approaches described in this section oversimplify the code characterization, either by
using high-level abstractions of the source code or by relying on static features of basic
blocks at the binary code level. In contrast, CAWET operates on the flow of instructions
using state-of-the-art ML techniques (Transformers-XL).

3. Machine Learning for contention prediction and throughput prediction
Brando et al. [6] use neural networks to estimate the worst contention factor of programs
using hardware event counters. Similarly, Courtaud et al. [7] introduce a profiling tool
that produces high-resolution profiles of the memory behavior of applications. They train
a regressor using microbenchmarks to finally calculate contention. Even though these
two studies rely heavily on ML, they focus on contention prediction on multi-core targets
and not on WCET prediction for single-cores like CAWET.
Deep PM [33] and Ithemal [27] employ transformers and LSTMs, respectively, to predict
the throughput of isolated basic blocks. However, CAWET takes a different approach by
incorporating the execution context to predict WCETs. Similarly, CATREEN [1] uses
stacked LSTMs to forecast the average execution time of basic blocks in a contextualized
manner, but it differs from CAWET in its focus on average execution time rather than
worst-case execution time.

6 Conclusion

In this paper, we presented CAWET: a hybrid approach that estimates the worst-case
program timing for individual basic blocks in a program. Our approach uses static techniques
to identify the longest execution path and an advanced machine learning architecture called
transformer-XL to predict the worst-case execution time of each basic block. By considering
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the execution context formed by previously executed basic blocks, CAWET is able to
account for the micro-architecture of the processor pipeline without explicit modeling. The
technique is demonstrated to be empirically reliable and less pessimistic than its competitors
in experiments on the TacleBench benchmarks for different target processors. While there are
still challenges to be addressed, such as the need for more accurate context for less pessimistic
predictions, CAWET offers a promising solution for predicting worst-case execution times for
Commercial off-the-shelf processors. In future work, the technique will be further explored
for processors with out-of-order pipelines, such as Cortex A9 or A72.
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A Appendix

Table 10 Hyperparameters used during transformer XL pretraining and finetuning.

Hyperparameters Pretraining phase Finetuning phase
Number of layer 4 4
Number of attention heads 3 3
Dimension of head 22 22
Dimension of inner head 128 128
Dimension of hidden layers 512 512
Optimizer “adam” “adam”
Target length 512 512
Memory length 1024 1024
Linear layer (fine tuning) – {512, 256, 128, 1}
Learning rate 0.00025 0.0001
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1 Introduction

Multi-core processors are increasingly appearing as an enabling platform for embedded systems
(e.g., mobile phones, tablets, drones, computerized numerical controls, etc.). The parallel task
model can exploit the multi-core platform’s capability as they support intra-task parallelism,
where a task can execute on multiple cores simultaneously. Many computation-intensive
systems (e.g., self-driving cars) that demand stringent timing requirements often evolve in the
form of parallel tasks. Many recent studies on real-time scheduling and analysis have focused
on the directed acyclic graph (DAG) model of parallel tasks [8, 9, 16, 37, 38, 53, 55]. The
DAG model is a general workload model for representing intra-task parallelism, where nodes
represent threads of execution and edges represent their dependencies. Several real-world
applications use the DAG model [29].

Energy efficiency is essential for embedded systems, as they rely on a time-limited energy
sources (i.e., batteries, energy harvesting devices). Modern generation processors minimize
power consumption through dynamic voltage and frequency scaling (DVFS) that adjusts the
voltage and frequency at runtime. To date, some works considered the energy-aware real-time
scheduling of parallel tasks [10,11,54]. These works adopted the federated scheduling [38]
or task decomposition framework [55] with the DVFS policy for minimizing system energy
consumption in the per-core or per-node (of a DAG task) speed modulation settings. Such
speed tuning is inefficient as it increases the hardware cost [31]. Also, there is an ongoing trend
of considering the cluster-based platform (e.g., big.LITTLE [48]), which groups processors
into multiple islands, each execute at the same speed. Such a cluster-based platform balances
energy efficiency and cost [43]. To date, few efforts have been made to study the energy-aware
real-time scheduling of parallel tasks in a clustered platform [11,25].

All these works assumed that hard real-time constraints must be satisfied to guarantee
the system’s correctness. For a hard real-time task, missing a deadline is considered a
system failure and may result in catastrophic consequences. Hence, most schedulability
analyses considered that a task could execute up to its worst-case execution time (WCET).
WCET-based schedulability test is often very pessimistic [42], and the task execution pattern
varies significantly across different job releases, rarely executing up to its WCET [58]. Thus,
designing a system that relies primarily on WCET may lead to resource over-provisioning in
typical cases [46]. Moreover, modern embedded systems pose strict energy constraints and
demand leveraging richer system models to optimize energy consumption under typical-case
instead of worst-case. To address this issue, this paper requires system designers to provide at
least two execution time estimates for a task: a WCET and a typical-case execution budget
(no more than the WCET). The first will give worst-case guarantees, while the latter is used
for energy minimization. Although a dual-execution-estimation setting may appear similar
to the mixed-criticality (MC) framework [59], this work focuses on a different problem. In
an MC setup, a common platform integrates different tasks with varying levels of criticality.
A criticality level is assigned to each task with multiple execution time thresholds. Under
such settings, existing works studied energy minimizing [12,13,34,47,60]. However, these
works assume that all the tasks execute up to their WCET at the respective criticality levels.
Meanwhile, our approach proposes optimizing energy consumption under the typical-case
execution time instead of WCET. Our approach also ensures that all tasks must receive
full-service guarantees under all circumstances.

The energy-aware scheduling of real-time tasks is challenging due to the complicated
dependencies among frequency, energy consumption, and execution time [24]. Existing works
focused mostly on the DVFS policy [10, 11, 25, 26, 54] with a significant limitation: it is
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not effective in reducing static power consumption, which may elevate to 50% or more of
the overall power consumption [33]. Besides, existing energy minimization approaches are
applied to WCET and thus will only lead to better power/energy behaviors in the worst
case (rare event) instead of the typical/average scenarios. Given both typical and worst-case
execution time estimates, we propose an energy-aware technique that minimizes the typical
energy consumption while guaranteeing (worst-case) timing correctness for all tasks.

Challenges. Handling the dual execution estimation is challenging for the following reasons.
First, schedulers are unaware of each task’s exact behavior before run-time. Such non-
clairvoyance of execution length typically leads to NP-Hard problems. Second, all tasks
receive full-service assurances under any circumstances. Third, some recent works have
studied the energy-aware scheduling of the MC task model [12,13,34,47], but thy did not
consider intra-task parallelism.

Motivated by these facts, we study the real-time scheduling of DAG tasks in a clustered
platform to minimize their CPU energy consumption, one of the significant contributors to the
overall system power consumption. The scheduling problem aims to achieve both worst-case
real-time guarantees and typical-case energy efficiency. In a clustered platform, all cores in the
same cluster execute at the same speed. However, different clusters can operate at different
speeds [48]. We adopt the DPM policy to reduce static power consumption. DPM policy
reduces static power consumption by utilizing idle intervals. If the idle interval is at least
equal to a certain threshold (known as the break-even time [18]), the processor is switched to
a low-power sleep mode, thus reducing its static power consumption. Our approach finds the
minimum but a sufficient number of low-speed cores for each task, leaving many high-speed
cores idle for a long duration. If the low-speed cores are insufficient to schedule all the tasks,
we assign additional high-speed cores. Therefore, the proposed approach can lead to high
energy savings resulting from the power-down of CPU components such as cores, caches, and
translation look-aside buffer.

The key objective of the proposed method is to conserve energy during the actual execution
of a DAG task when its nodes do not execute until their WCET. Several factors, including
pipelines, branch predictors, and caches, impact the WCET estimation of the nodes in the
DAG task, thereby impacting the task’s makespan estimation. In addition, hardware features
often introduce pessimism to the WCET estimation, implying the difference between WCET
estimation and actual execution time increases considerably. In such cases, the proposed
approach will significantly increase energy savings by allocating resources only when needed.
Specifically, we make the following key contributions:

We utilize DPM to propose an energy-aware federated scheduling strategy of parallel
DAG tasks on dual-speed platforms. Given both typical and worst-case execution time
estimations, our energy-aware approach determines the required (minimum) number of
low-speed processors to minimize the typical CPU energy consumption while guaranteeing
worst-case timing correctness for all tasks.
Under multi-speed cluster-based settings, we propose an energy-efficient task-cluster
partitioning technique without violating the schedulability guarantees.
We perform the experimental study under randomly generated task sets. We report the
schedulability ratio of our approach, and demonstrate a minimum of 29.23% less power
consumption against state-of-the-art approach [39].
We present onboard experiments conducted on Intel Xeon 2680 v3 multi-core (12-core)
platform and report up to 30% energy savings compared to the existing approach.

ECRTS 2023
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2 Related Work

There have been works studying the energy-efficient real-time scheduling of sequential tasks
in both uni- and multi-processor platforms (few to mention [15,17,19,35,47,50,51]; refer to [4]
for a comprehensive survey). However, all these works considered the sequential task model.
In contrast, a parallel task can make use of multiple cores simultaneously and complete the
same amount of work in a shorter time via exploiting the internal parallelism. Hence, the
scheduling strategy and analysis of parallel task is significantly different from the sequential
task. The state-of-the-art parallel real-time scheduling primarily emphasizes scheduling
analysis and does not account for energy awareness [1, 5, 8, 9, 23,55,56].

To date, a few works studied the energy-aware scheduling of parallel tasks. Li et al. [40]
studied a non-recurrent task model with a fixed number of parallel threads. Paolillo et al. [52]
studied the energy-aware scheduling of the gang task model. Zhu et al. [61,62] proposed a
slack stealing based scheduling approach considering the inter-dependent sequential tasks.
Energy-aware scheduling of DAG tasks was proposed by Bhuiyan et al. [10] and Guo et
al. [26]. Both of them have considered a simplified model (i.e., the number of cores cannot
be pre-fixed). They have considered table-driven scheduling. Hence, the entire schedule
until the hyper-period needed to be created in advance. Some recent efforts have been
made to study the energy-efficient scheduling of parallel (and sequential) tasks in a clustered
platform [11,20,25,41,45]. However, our work’s focus differs from existing ones. We study
the energy-efficient scheduling of parallel tasks on a clustered platform while minimizing their
typical-case CPU energy consumption while guaranteeing worst-case execution requirements.

Meanwhile, extensive research has investigated the real-time scheduling of the MC task
model considering both the sequential and parallel task model (e.g., [1, 5, 7, 12–14,22, 27, 39]).
Regarding the task model, the work in [1] is most near to us. However, our paper’s
contributions differ significantly from [1] regarding problem statement, challenges, solution
techniques, and evaluation. For MC DAG tasks, [1] did not consider energy-aware scheduling.
In contrast, our paper adopts the DPM policy to minimize power consumption. Incorporating
the DPM policy into the existing analysis is not trivial because (i) DPM policy utilizes the
processor’s idle slot that is unknown apriori; (ii) We have considered the clustered platform.
Hence, we cannot turn off some processors in a cluster while others are running.

3 System Model and Background Concepts

In this work, we consider a set of sporadic parallel DAG tasks denoted by τ = {τ1, τ2, · · · , τn}.
Each DAG contains a set of nodes, where a node represents some sequential computation.
The precedence constraint between two nodes is represented by a directed edge. A node
can only execute if all of its predecessors have finished execution. For each task τi ∈ τ , we
consider the following two parameters: (i) total work, which is the sum of the number of clock
cycles (i.e., total computation work) performed by all nodes in τi; and (2) the critical-path
length, which is defined as the number of clock cycles of the longest directed path of the
DAG (i.e., the path with the largest computation work).

Each task τi ∈ τ is characterized by a 5-tuple (CN
i , CO

i , LN
i , LO

i , Ti). Here, CN
i denotes

the typical-case execution time of the task (referred to as lo-criticality execution time1),
while CO

i denotes the overload execution time (referred to as hi-criticality execution time).

1 Although the terms lo- and hi-criticality may lead to the assumption that we are considering tasks
with different criticality levels [59]. In this work, the term criticality is used to distinguish whether a
job exceeds its typical workload and whether a job’s execution modes are still exhibiting the typical (or
overload) workload estimates.
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Similarly, LN
i (LO

i ) denotes the typical (overload) critical-path length estimates, referred to
as lo(hi)-criticality critical-path length estimates. Note that the typical workload estimates
(i.e., CN

i and LN
i ) are obtained using a less pessimistic yet practical tool and are expected

to occur during regular operations. In contrast, a more pessimistic tool (by considering all
possible scenarios, including the worst-case ones) is used to obtain CO

i and LO
i . Thus, the

overload workload estimates may exceed the typical ones in several orders of magnitudes.
However, executing up to its overload workload is rare for a task. We assume that under
any condition, a task’s total work and critical-path length will never exceed CO

i and LO
i ,

respectively. The period of task τi is denoted by Ti. We assume that each task τi has an
implicit deadline, i.e., the relative deadline Di is equal to Ti. For τi to be scheduled during an
overload scenario, the condition Ti ≥ LO

i must be satisfied, where LO
i denotes the minimum

time required to complete task τi even when an infinite number of cores are available. The
typical (overload) utilization of task τi is defined as the ratio of its typical (overload) total
work and its period. Let, uN

i = CN
i

Ti
and uO

i = CO
i

Ti
denote the typical and overload utilization,

respectively.

▶ Example 1. Consider two DAG tasks τ1 and τ2, where τ1 = (12, 24, 4.08, 8.16, 21.6) and
τ2 = (12, 36, 3.36, 12.24, 33.12). The typical total work of τ1 is 12 and the overload total work
is 24. The typical and overload critical-path lengths of τ1 are 4.08 and 8.16, respectively.
Because τ1 has a period of 21.6, its typical utilization uN

1 = 12
21.6 = 0.56 and its overload

utilization uO
1 = 24

21.6 = 1.11. Similarly, the typical utilization uN
2 and overload utilization

uO
2 of task uN

2 are uN
2 = 12

33.12 = 0.36 and uO
2 = 36

33.12 = 1.087, respectively.

System behavior. In this work, we consider a task’s two different execution (typical and
overload) requirement. At runtime, the scheduler does not know the exact behavior of each
job of a task, e.g., the exact workload or critical-path length of the job. Thus, it is expected
that the job of a task starts execution using its typical execution budget. If a job’s total work
or the critical-path length exceed this task’s typical total work or critical-path length, this
job execute according to its hi-criticality execution budget and critical-path length estimate.
Note that the precise timing of when a task may require the use of its overload execution
budget is unpredictable. However, once a job (of any task) finishes executing its overload
execution budget, the next job (of the same task) starts running according to its typical
execution requirement.

Power/Energy model. In this work, we consider the following power model to represent
the CPU power consumption by a processor [10, 26, 34, 47, 50, 51]. Let s denotes the main
frequency (speed) of a processor, and the power consumption P (s) can be expressed as:

P (s) = Psta + Pdyn(s) = β + αsγ (1)

Here, Psta and Pdyn(s) denote the static/leakage consumption and dynamic power con-
sumption, respectively. If a processor is not entirely turned off, Psta (represented as β) is
introduced in the system due to leakage current, and the frequency-dependent switching
activities introduce Pdyn(s) (represented as αsγ). For modeling the dynamic power consump-
tion Pdyn(s), α depends on the effective switching capacitance and α > 0 [50]; γ is a fixed
parameter determined by the hardware and it ranges between [2,3]. Pagani et al. [50] have
shown that this model is highly realistic by comparing the power consumption (estimated
by this model) with the actual power consumption results from [32]. Table 1 illustrates the

ECRTS 2023
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Table 1 Comparison of the CPU power consumption Pequ considering the power model in Eq (1)
and experimental data Pexp from [32]. The error rate is defined as 100 × (Pequ − Pexp)/Pexp.

Frequency Pexp Pequ Error rate
0.24 GHz 0.54 W 0.52 W -3.7%
0.46 GHz 0.70 W 0.67 W -4.28%
0.68 GHz 1.04 W 1.05 W 0.96%
0.84 GHz 1.5 W 1.54 W 2.67%
0.92 GHz 1.96 W 1.88 W -4.07%
1.02 GHz 2.30 W 2.35 W 2.17%

detailed comparison. Given a fixed amount of workload C executing on a speed-s processor,
we can calculate the total energy consumption E(C, s) as the integral of power throughout
C/s, where E(C, s) = (β + αsγ) × C

s = βC
s + αCsγ−1.

We aim to reduce static energy consumption by employing the DPM approach, which
utilizes the processor’s idle time. If the idle interval in a processor is greater or equal to a
certain threshold (i.e., break-even time [18]), the processor enters a low-power sleep mode.
In this work, we try to allocate low-speed cores to all tasks, leaving the high-speed cores idle.
The high-speed cores are used when some jobs enter hi-criticality mode due to exceeding
their typical workload estimates. In this case, additional resources (i.e., some high-speed
cores) are needed to complete the overload workload. Because tasks rarely exceed their
typical workload estimates, the high-speed cores typically idle for a long duration. Thus,
these idle cores can enter the low-power sleep mode, reducing static energy consumption.

Platform model. We are examining a homogeneous multi-core architecture called the
Intel Xeon 2680 V3, where each core can have a designated clock frequency and a set of
customized fine-tuned cores. In contrast to the initially clustered platforms such as the
Odroid XU4 ARM’s big.LITTLE architecture [48], which forces a fixed number of cores
in each cluster to be synchronized at the same speed. This feature of the Xeon Processor
facilitates the identification of the appropriate number of cores in each cluster. It gives a
final general solution where clusters are initialized with a constant speed that can be fixed to
a corresponding speed optimized through DAG Task features. In this case study, we halve
the platforms cores referring to ξ clusters (each with n cores), and all cores in the same
cluster execute at the same speed. However, different clusters can operate at different speeds.
The maximum speed is sL (sH) for the lo(hi)speed clusters, where sL ≤ sH . In a clustered
architecture, we assume that any core can be put to sleep (i.e., processor clock turned off)
and only an entire cluster can be put to deep sleep (processor and L2 clock turned off) [3].

Virtual Deadline. The concept of the virtual deadline was first proposed in [6], considering
MC scheduler. High-criticality task is assigned a virtual deadline which is less than the
actual deadline (and thus a higher priority). This ensures the hi-criticality jobs get sufficient
slack for their overload workload to complete after a mode switch.

Federated Scheduling Algorithm. In real-time systems, multiprocessor algorithms are
implemented considering either the global or partitioned approach. In the partitioned
approach, a task to processor mapping is performed before run-time for each task. During
run-time, no job migration is allowed, and all the jobs generated by a task execute only on
its mapped processor. Considering the parallel DAG task models, Li et al. [37] proposed
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Table 2 Major notations used throughout the paper.

Symbol Description
W

or
kl

oa
d

τi The ith task
CN

i (CO
i ) typical (overload) execution budget of task τi

LN
i (LO

i ) typical (overload) critical-path length estimates of task τi

uN
i (uO

i ) typical (overload) utilization of τi

Ti(Di) period (relative deadline) of task τi

D′
i virtual deadline of task τi

P
la

tf
or

m

Ki ith cluster
Mi number of sub-cluster in ith cluster
Kn

m nth sub-cluster inside mth cluster
sL(sH) execution speed of the low (high) speed cores

Sk Speed of kth cluster
mL

i (mH
i ) number of low(high) speed cores allocated to task τi

E
Kn

m
i energy consumption by a sub-cluster Kn

m when executing a task τi

the federated scheduling approach, which is considered a reasonable extension of partitioned
scheduling for parallel tasks. A federated scheduling algorithm classifies a task as a heavy
task if its utilization is greater than or equal to 1; otherwise, the task is classified as a light
task. Each heavy task receives a set of cores dedicated to this task. All the remaining cores
(i.e., the cores left after each heavy task receives its portion) are given to all light tasks.
A multiprocessor scheduling algorithm (e.g., partitioned earliest deadline first [44] or rate
monotonic schedulers [2]) is used to schedule all these light tasks sequentially. In contrast to
heavy tasks, light tasks can share cores.

Given a task set τ , a federated scheduler works as follows. The task set τ is divided into
disjoint sets, i.e., τheavy and τlight. Here, τheavy contains all the heavy tasks (utilization is
at least 1), and τlight contains all the light tasks (utilization is less than 1). A heavy task

τi ∈ τheavy, receives mi cores. Here, mi =
⌈

Ci−Li

Ti−Li

⌉
(refer to [37]), where, Ci is the WCET

of τi, Li is the critical path length, and Di(= Ti) the deadline. Then, the remaining mlight

cores, where mlight = m −
∑

τi∈τheavy
mi, can be used by all the light tasks. The light tasks

are forced to execute sequentially and scheduled by a multiprocessor scheduling algorithm.
After a valid task to core allocation, runtime scheduling is performed as follows:

For a high-utilization task τi ∈ τheavy, any greedy or work-conserving parallel scheduler
is used to schedule τi on mi cores.
Any multiprocessor scheduling algorithm is used to schedule all light tasks on the remaining
mlight cores if the algorithm’s schedulability test is passed.

4 Energy-aware Federated Scheduling for the Dual-Speed Platform

This section discusses our energy-aware federated scheduling strategy for platforms with
dual-speed cores. Considering that the platform supports cores with two speeds, i.e., low- and
high-speeds, we aim to minimize the CPU energy consumption under typical scenarios while
guaranteeing that all tasks receive enough execution budget even under overload scenarios.
Our approach relies on the DPM approach to reduce energy consumption and tries to allocate
only the low-speed cores to all tasks, leaving the high-speed cores idle in most cases, leading
to reduced dynamic power consumption. Besides, all these high-speed idle cores can enter
the low-power sleep mode, which further minimizes the static energy consumption.
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Towards this goal, Subsection 4.1 determines the required minimum number of low-speed
cores mL

i for each task τi ∈ τ to complete the overload workload. If there are not enough
low-speed cores to serve all the tasks under overload scenarios, we compensate for this
shortage by assigning additional high-speed cores to some of the tasks when their jobs exceed
typical workloads; on the other hand, the numbers of low-speed cores allocated to these tasks
are reduced under typical scenarios. Because tasks rarely exhibit overload behavior, the
high-speed cores typically are not used, which is beneficial for reducing energy consumption.
Subsection 4.2 presents a greedy approach (Algorithm 1) that checks if there are enough
low-speed cores to serve all the tasks under overload scenarios. If not, Algorithm 1 allocates
additional high-speed cores under overload scenarios to some tasks that provide the maximum
relative core saving ratio under typical scenarios. Note that, in this approach, we assume
that the processor speeds are given.

4.1 Determining the Number of Cores for Each Task
In this subsection, we determine the number of cores required for each task τi ∈ τ to meet
its deadline. Our analysis considers the following assumption.

Assumption. This section assumes that the platform consists of two types of cores, i.e.,
low-speed cores and high-speed cores. The execution speed of any task τi on the low-speed
and high-speed cores are respectively denoted by sL and sH .2 The execution speed of a core
denotes the (minimum) amount of computation that can be completed per time unit. This
section assumes that the total workload and the processor speed have a linear relationship [13].
Hence, for any task τi, we can translate the total workload to the execution time on s-speed
cores as Cχ

i /s, where χ = {N, O}. Similarly, for any task τi, we can translate the critical
path to the execution time on s-speed cores as Lχ

i /s. Now, we classify a task τi ∈ τ into the
following three categories:
Category 0: CO

i ≤ sLDi. Task τi in this category with WCET CO
i /sL and deadline Di

is a light (or low utilization) task even on low-speed cores. We enforce these tasks to
execute sequentially and use any traditional multiprocessor scheduling (e.g., partitioned
EDF) approach to schedule them on the low-speed cores.

Category 1: CO
i > sLDi and CN

i /sL > CO
i /sH − LO

i /sH . For tasks in this category,
we allocate mL

i low-speed cores for both lo- and hi–criticality modes. According to
Lemma 1 in [1], any task τi (where τi belongs to Category 1) has a maximum makespan of
(CO

i − LO
i )/m + LO

i , where m is the number of unit-speed cores allocated to τi. Therefore,
to meet deadline Di on cores with speed sL, the lower bound on mL

i can be calculated as
follows:

CO
i

sL − LO
i

sL

mL
i

+ LO
i

sL
≤ Di =⇒ CO

i − LO
i

sL × mL
i

≤ sL × Di − LO
i

sL

=⇒ CO
i − LO

i

sL × Di − LO
i

≤ mL
i

Hence, we allocate mL
i low-speed cores to τi belonging to Category 1, where mL

i =⌈
CO

i −LO
i

sL×Di−LO
i

⌉
. Here, we assume that mL

i ≥ 0, meaning that the critical-path length of
each DAG on the low-speed cores is shorter than its corresponding deadline, and it is

2 This section assumes that all the low (or high) speed cores execute at the same speed, which is
independent of the executing tasks. Hence, for any task τi, τj ∈ τ , their execution speeds are the same,
if they are allocated in the same cluster. Such a restriction appears commonly in existing systems [48],
where all processors within the same cluster/island execute at the same speed during run time.



A. Bhuiyan, M. Pivezhandi, Z. Guo, J. Li, V. P. Modekurthy, and A. Saifullah 8:9

feasible to assign each task τi to a low-speed core. One could relax this constraint and
include tasks that are assigned to high-speed cores; however, the energy-saving techniques
proposed in this paper are no longer applicable in this situation. In this work, we focus
on minimizing energy consumption while ensuring that all tasks meet their deadlines
using low-speed cores. Hence, handling any infeasible task to schedule on low-speed cores
falls beyond the scope of this paper.

Category 2: CO
i /(sL × Di) > 1 and CN

i /sL ≤ CO
i /sH − LO

i /sH . For any task τi that
belongs to Category 2, we try to allocate

⌈
CO

i −LO
i

sL×Di−LO
i

⌉
low-speed cores to it in both

modes, if there is sufficient number of low-speed cores available. Otherwise, we allocate
fewer low-speed cores and set a virtual deadline D′

i for the lo-criticality mode. The
virtual deadline D′

i is set as D′
i = CN

i

mL
i

×sL , so that task τi can finish its nominal workload
by D′

i if no core idles. In summary, we set mL
i as follows:

mL
i =



⌈
CO

i − LO
i

sL × Di − LO
i

⌉
; If available lo-speed cores

are sufficient. CN
i /sL

(Di − LO
i

sH − CO
i

−CN
i

−LO
i

mH
i

×sH )

 ; Otherwise.

(2)

Here, mH
i and sH denote the number of high-speed cores (allocated to task τi) and

their speed, respectively, for the case where not enough low-speed cores available. See
Theorem 1 for the derivation of mL

i .

For task τi with fewer low-speed cores available and assigned to it, we assign it mH
i

high-speed cores and consider the actual deadline Di during the hi-criticality mode. In order
to meet the deadline, the computing power in the high-criticality mode must be equal to or
greater than the computing power in the low-criticality mode, meaning that, meaning that, so
mH

i ×sH ≥ mL
i ×sL. Additionally, task τi needs to finish the remaining work and critical-path

length within Di − D′
i time units. The worst case scenario happens when there is no progress

on the critical-path length LO
i , which leaves a remaining work of CO

i − mL
i × D′

i × sL. This
is the worst-case scenario because more processor times are idling due to the critical-path
length given the relation between mH

i and mL
i , where mH

i ≥ mL
i × sL/sH . Therefore, to

meet the deadline, mH
i can be calculated as follows:

mH
i = max

{
mL

i × sL

sH
,

⌈ (CO
i −mL

i ×D′
i×sL−LO

i )
sH

(Di − D′
i) − LO

i

sH

⌉}

= max
{

mL
i × sL

sH
,

⌈
CO

i − mL
i × D′

i × sL − LO
i

(Di − D′
i) × sH − LO

i

⌉}
Refer to [1] for the formal proof.

▶ Theorem 1. If there is not enough low-speed cores for task τi, mL
i can be reduced to

mL
i =

 CN
i /sL

(Di−
LO

i
sH −

CO
i

−CN
i

−LO
i

mH
i

×sH
)

 by assigning mH
i high-speed cores to τi during the hi-criticality

mode, where mH
i ≥ CO

i −mL
i ×D′

i×sL−LO
i

(Di−D′
i
)×sH −LO

i

.
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Proof. For any task τi, when there are not enough low-speed cores, we assign additional
high-speed cores to τi to update mL

i . Since D′
i = CN

i

mL
i

×sL , we have

mH
i ≥ CO

i − mL
i × D′

i × sL − LO
i

(Di − D′
i) × sH − LO

i

=⇒(Di − D′
i) × sH − LO

i ≥ CO
i − mL

i × D′
i × sL − LO

i

mH
i

=⇒Di × sH − CN
i × sH

mL
i × sL

− LO
i ≥ CO

i − CN
i − LO

i

mH
i

=⇒mL
i ≥ CN

i × sH

(Di × sH − LO
i − CO

i
−CN

i
−LO

i

mH
i

) × sL
= CN

i /sL

(Di − LO
i

sH − CO
i

−CN
i

−LO
i

mH
i

×sH )

which holds since mL
i =

 CN
i /sL

(Di−
LO

i
sH −

CO
i

−CN
i

−LO
i

mH
i

×sH
)

. ◀

4.2 When Low-Speed Cores Are Not Sufficient
Section 4.1 determines the number of low-speed cores (mL

i ) required for each task, τi ∈ τ , to
meet its deadline. If there are a finite number of low-speed cores, some tasks may not receive
enough low-speed cores. In this section, we present Algorithm 1 that first tries to allocate the
desired number (mL

i ) of low-speed cores to each task τi. If there are not enough low-speed
cores, Algorithm 1 assigns additional high-speed cores to compensate for this shortage. In
this approach, we assume that the processor speeds are given.

Algorithm 1 starts by checking whether a task τi is a Category-0 task (i.e., CO
i /(sL×Di) ≤

1). If yes, we use traditional multiprocessor scheduling (e.g., partitioned EDF) for sequential
tasks with WCET CO

i /sL and deadline Di on the minimum number of low-speed cores
(Lines 3-4). If a task τi belongs to Category-1, i.e., CN

i /sL > CO
i /sH − LO

i /sH , we allocate
mL

i =
⌈

CO
i −LO

i

Di×sL−LO
i

⌉
low-speed cores and meet its deadline Di (Lines 5-6). Let, τ̃ denotes the

set of unscheduled tasks, which is updated continuously (Line 4 and Line 6). After allocating
the required number of low-speed cores to all Category-0 and Category-1 tasks, we calculate
the remaining low-speed cores, m̃L (Line 9).

For any task τi ∈ τ̃ , we set mL
i as

⌈
CO

i −LO
i

Di×sL−LO
i

⌉
and mH

i (i.e., number of high-speed
cores allocated to τi) to 0 (Lines 9-11). If all the tasks in τ̃ receive the required number of
low-speed cores, then the algorithm terminates (Lines 12-13). Else, we update the required
number of high-speed cores allocated to task τi and denote it as mH

i (Line 16), and also
update mL

i (Line 17). We calculate the relative core saving ratio (Line 15) and pick the task
(say τi) that has the highest relative core saving ratio (Line 16). If there are sufficient cores
for τi, we remove τi from τ̃ , and update m̃L (Line 18). If τ̃ is empty, then the algorithm
terminates successfully (Line 20). Else, repeat the same process to reduce the number of
low-speed cores allocated to a task τi (Line 22). At any point, if cores are unavailable
for task τi, then the task set is not schedulable and the algorithm returns failure. Upon
successful completion, this algorithm greedily reduces the number of allocated low-speed
cores by assigning (available) additional high-speed cores. If there are total K tasks in τ ,
the time complexity to calculate core allocation is O(K).

▶ Example 2. Let us consider a platform with four low-speed cores of speed 0.75, and four
high-speed cores of speed 1.0, two DAG tasks τ1 and τ2, where τ1 = (12, 24, 4.08, 8.16, 20) and
τ2 = (12, 36, 3.36, 12.24, 33.12). Here, the low-speed and high-speed are normalized w.r.t. to
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Algorithm 1 greedyAlloc(τ).

1 Input: The set of DAG tasks τ .
2 Output: Allocation of low(high)-speed cores to each task.
3 Unscheduled tasks, τ̃ = τ ; m̃L = Available lo-speed cores
4 for (each τi ∈ τ) do
5 if (CO

i /(sL × Di) ≤ 1) then
6 use traditional multiprocessor scheduling for sequential tasks; τ̃ = τ̃ − τi;
7 else if (CN

i /sL > CO
i /sH − LO

i /sH) then
8 mL

i =
⌈

CO
i −LO

i

Di×sL−LO
i

⌉
; τ̃ = τ − τi;

9 m̃L = m̃L −
∑

τi∈(τ−τ̃) mL
i , and ∀im

H
i = 0;

10 for (each τi ∈ τ̃) do
11 mL

i =
⌈

CO
i −LO

i

Di×sL−LO
i

⌉
, and m̃L = m̃L − mL

i ;

12 if m̃L ≥ 0 then
13 ∀τi ∈ τ allocate mL

i and mH
i cores and RETURN SUCCESS ;

14 else
15 for (each τi ∈ τ̃) do
16 mH

i == 0?mH
i =

⌈
mL

i × sL/sH
⌉

: (mH
i = mH

i + 1);

17 Update mL
i as m̄L

i , where m̄L
i =

⌈
(CN

i /sL)/(Di − LO
i

sH − CO
i −CN

i −LO
i

m̄H
i

×sH )
⌉

;

coreSavingi = (mL
i − m̄L

i )/(m̄H
i − mH

i ); ▷ Relative core saving ratio of τi

18 maxCoreSaving = ∀τi∈τ̃ max(coreSavingi);
19 if (There are enough cores for τi ) then
20 τ̃ = τ̃ − τi and m̃L = m̃L + (mL

i − m̄L
i ) ▷ Update τ̃ and m̃L

21 if τ̃ = NIL then
22 RETURN SUCCESS ;
23 else
24 Go to Line-9;

25 else
26 RETURN FAILURE ;

maximum speed supported by this platform. Here, τ1 is a category-1 task ( 12
0.75 > 24

1.0 − 8.16
1.0 ),

and τ2 is a category-2 task ( 12
0.75 < 36

1.0 − 12.24
1.0 ). For task τ1, we calculate the required

number of low-speed cores mL
1 as mL

1 =
⌈

CO
i −LO

i

Di×sL−LO
i

⌉
=

⌈
24−8.16

20×0.75−8.16

⌉
= 3 (Line 9).

Task τ2 belongs to τ̃ , and we calculate the required number of low-speed cores mL
2 as

mL
2 =

⌈
CO

i −LO
i

Di×sL−LO
i

⌉
=

⌈
36−12.24

33.12×0.75−12.24

⌉
= 2 (Line 15). As there are not enough low-speed

cores available for τ2, two additional high-speed cores are allocated to τ2 (Line 21). Now, τ2
is removed from τ̃ (Line 27). Both τ1 and τ2 receive the required number of cores and hence
the algorithm terminates (Line 29).

5 Energy-aware Federated Scheduling for Multi-Speed Clustered
Platform

We now describe how to allocate the low (or high) speed cores to each task. We extend
the analysis presented in Sec. 4.1 to fit a multi-speed clustered platform, where different
clusters offer different speeds. Hence, the energy consumption by different clusters (while
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executing the same task) may vary significantly. For such a multi-speed clustered platform,
we propose a task to cluster Hungarian assignment algorithm [36] to minimize the CPU
energy consumption while satisfying the real-time schedulability guarantee.

5.1 Task to Cluster Assignment Approach
In this subsection, we discuss our approach to allocate all Category-1 (tasks with CN

i /sL >

CO
i /sH − LO

i /sH) and Category-2 (tasks with CN
i /sL < CO

i /sH − LO
i /sH) DAG tasks into

clusters, such that CPU energy consumption is reduced without violating the real-time
guarantee. We assume that a task can not be allocated to multiple clusters.

Let, Z denotes the total number of available low-speed clusters, where each cluster is
denoted as {K1, K2, · · · KZ}. We assume that each of these processors in the Kth cluster
(where 1 ≤ K ≤ Z) execute at speed Sk. This assumption is motivated by Theorem 4
in [26], which asserted that executing a task with a consistent speed reduces the energy
consumption significantly. In Section 4.1, we have shown the steps to determine the minimum
number of processors to τi such that τi finishes execution within its deadline. That analysis
assumes only two speed settings, i.e., low and high speed. Note that, different cluster
offers different speed settings. Hence, for the same task, the required number of exclusively
allocated processors may vary in different clusters. From now on, we assume these exclusively
allocated processors form a sub-cluster inside the cluster. Let us assume that we know
the number of available sub-clusters inside each cluster and each sub-cluster’s size 3. Let
us denote a sub-cluster as Kn

m which denotes the nth sub-cluster inside mth cluster, and
Kn

m ∈ {K1
1, K2

1, · · · , Kx
1 , · · · , K1

Z , · · · , Ky
Z}.

Algorithm 2 createTable(τheavy, K).

1 Input: The set of heavy DAGs τheavy and the set of sub-clusters
K = {K1

1, · · · , Kx
1 , · · · , K1

Z , · · · , Ky
Z}.

2 Output: A table E storing the energy consumption value.
3 E[size(τheavy)][size(K)]; /*Store energy consumption*/;
4 for x = 1 to size(τheavy) do
5 for y = 1 to size(K) do
6 if the considered sub-cluster satisfy the minimum allocation requirement then
7 Calculate Ey

x ; /* Energy consumed by task x in sub-cluster y */
8 E[x][y] = Ey

x ;
9 else

10 E[x][y] = ∞; /* Set to a very large value */;

Let a task τi is allocated to the Kth cluster, and it needs mK
i cores. We conclude that,

there exists an Kn
K ∈ KK such that mK

i fits to Kn
K . Now, we calculate the energy consumed

by task τi (when executing in a sub-cluster Kn
K), which is denoted as E

Kn
K

i . We repeat this
step for all task τi ∈ τ , and for all sub-cluster ∈ {K1

1, K2
1, · · · , Kx

1 , · · · , K1
Z , · · · , Ky

Z}. Refer
to Section 3 for details regarding energy consumption.

Algorithm 2 starts by creating a table E, which stores the energy consumption by a DAG
task when allocated to a sub-cluster (Line 3). Then, it traverses each heavy DAG task τi and
each sub-cluster ∈ {K1

1, K2
1, · · · , Kx

1 , · · · , K1
Z , · · · , Ky

Z} (Lines 4-5). Then it checks whether

3 The number and size of sub-clusters (inside any KK) depend on which task is allocated to KK . We
handle the task-cluster allocation in Section 5.1.
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the DAG task can be allocated to a sub-cluster (Line 7), i.e., the number of cores available
in this sub-cluster satisfies the minimum processor required (refer to Subsection 4.1 and 4.2)
for this DAG task. If it satisfies the constraints, we store the energy consumed by this DAG
task (when allocated to this sub-cluster) at Table E (Line 8). Else, we put an arbitrarily
large value to E (Line 10). We do this to ensure that the scheduler will never assign a DAG
task τi to any sub-cluster that does not have enough cores to execute τi.

Determining the number of sub-cluster and number of cores inside each sub-cluster. So
far, we have discussed how to create the energy consumption table and find the task to
sub-cluster allocation using the information presented in this table. However, we did not
mention the total number of available sub-cluster inside each cluster and the number of
cores in each sub-cluster. Recall that the cluster speed influences the minimum number of
cores required (i.e., the sub-cluster size) for any task τi. As we do not know the task-cluster
mapping, we are unaware of the available sub-clusters inside any cluster. As a preliminary
approach, we divide any cluster KK into MK sub-cluster, where:

MK =


⌊ M

mK

⌋
+ 1, if M(mod mK) ̸= 0

M

mK
, Otherwise

(3)

Here, M is the number of cores inside any cluster KK ∈ K. We calculate mK as mK =
max{mK

i }, for all tasks τi ∈ τ . Here, mK
i is calculated using the analysis provided in

Subsection 4.1. Each of these MK sub-clusters contains mK cores, if M(mod mK) = 0. Else,
the first MK − 1 sub-clusters contain mK cores, and the remaining sub-cluster contains
M − (MK − 1) × mK cores. Note that partitioning a cluster with respect to the task that
needs the maximum number of cores (in this cluster) may seem pessimistic. This is because
any other task that is also allocated in KK may not need mK cores. To tackle this pessimism,
we will update the sub-cluster number and their size (in Algorithm 3) until all the tasks are
scheduled, or the algorithm returns failure.

Task to Cluster Assignment. Now we know the energy consumption at all possible combin-
ations of the DAG task to the sub-cluster mapping. We use this information to determine the
processor allocation that provides the minimum energy consumption. At each sub-cluster,
we assign a task that is not allocated to any other sub-cluster previously – we can pick a
single entry from each row and column in the energy consumption table. The pseudo-code
for this approach is presented in Algorithm 3.

We determine the optimum assignment that minimizes the total energy consumption
using the Hungarian algorithm [36] (Line 10). The algorithm takes the energy consumption
table as input and returns an ordered collection of a task to sub-cluster allocation. The
allocation provides the lowest combined energy consumption. The Hungarian algorithm has
two significant advantages: it produces an optimal solution if the elements are non-negative
(as in our case), and it has a polynomial complexity (i.e., affordable even for a large number
of tasks). Note that the Hungarian algorithm works only when the input is an N × N

square matrix. In our case, the energy consumption table may not be square in size. Hence,
Algorithm 3 adds extra dummy rows in the table (to make it square in size) if the number
of tasks is less than the number of sub-clusters, and fills them with arbitrary large values
(Lines 6–9). Recall that we partition a cluster with respect to the task that needs the
maximum number of cores (in this cluster), and it minimizes the number of sub-clusters in
each cluster. Hence, some tasks may not get any sub-cluster, while some sub-clusters may
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Algorithm 3 taskToClusterAllocation(τheavy, K).

1 Input: The set of Category-1 heavy DAGs τheavy and the set of sub-clusters
K = {K1

1, · · · , Kx
1 , · · · , K1

Z , · · · , Ky
Z}.

2 Output: Processor to task allocation.
3 Set ∞ to 106 /* An arbitrary large value */;
4 createTable(τheavy, K) /* The number of sub-clusters (in any cluster) is calculated using

Equation (3) */
5 j = size(τheavy); k = size(K);
6 if j < k then
7 for x = j + 1 to k do
8 for y = 1 to k do
9 E[x][y] = ∞; /*Dummy row makes E square */

10 Solve E using the Hungarian algorithm [36].
11 for i = 1 to n do
12 if τi is allocated in any sub-cluster in Ky

x ∈ K then
13 τheavy = τheavy − τi /* Update task set */;
14 if (size(Ky

x) − mx
i ) > 0 then

15 /* yth sub-cluster of Kx has idle cores */;
16 size(Ky

x) = size(Ky
x) − mx

i ;

17 if 0 < size(τheavy) < j then
18 Repeat taskToClusterAllocation(τ, K);
19 else if size(τheavy) == 0 then
20 return the optimal processor to task allocation and allocate the remaining light DAGs to

remaining cores of each sub-cluster;
21 else
22 Return FAILURE;

remain underutilized. To tackle this issue, we continuously check for the tasks that get an
allocation and remove them from the task set τ (Line 13). If any sub-cluster is underutilized
(i.e., a task receives more cores than required), we update the sub-cluster size (Lines 14–16).
We repeat Algorithm 3 if some tasks are removed from the task set, i.e., some update in the
task set takes place, but some tasks are still unassigned to any cluster (Lines 17–18). When
all tasks are allocated to some sub-cluster (i.e., size(τ) becomes 0). Algorithm 3 concludes
by returning the task to sub-cluster allocation that results in minimum energy consumption
(Lines 19–20). Else, i.e., no task receives any cores as there are not sufficient cores, the
algorithm stops and returns failure (Line 22).

Algorithm 3 performs a task to cluster allocation considering the Category-1 DAG tasks
and low-speed clusters. We use a slightly modified version of Algorithm 3 to allocate
Category-2 tasks to the remaining low-speed cores. When all Category-1 tasks receive the
required number of low-speed cores, we use Algorithm 3 again to allocate the remaining
low-speed cores to the Category-2 DAG tasks. This time the input to Algorithm 3 is the
set of Category-2 DAG tasks and the set of sub-clusters K = {K1

1, · · · , Kx
1 , · · · , K1

Z , · · · , Ky
Z}

which has some low-speed cores unused. If the available low-speed cores are insufficient to
accommodate all the Category-2 tasks, we call Algorithm 3 again with a modified input
parameter (i.e., set of Category-2 DAG tasks that do not receive enough low-speed cores and
set of sub-clusters containing high-speed cores) to allocate additional high-speed cores.
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(a) Schedulability ratio for different sL values.
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(b) Power consumption for different sL values.

Figure 1 Schedulability ratio and power consumption for different sL values.
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Figure 2 Power consumption comparison between our approach and MCFS_Li [39]. In this
simulation, we set the value of sL to 0.55.

6 Evaluation

This section demonstrates the algorithm’s performance through evaluation conducted on a
randomly generated task set. We report the schedulability ratio and the power consumption
of our approach for different speed settings of a low-speed cluster. In this setup, the low-speed
is normalized w.r.t. to the maximum speed supported by this platform, ranging from 0.45 to
0.6. We use the following parameters to generate the random task-set:

ζ: number of task set, ranged between [200-1000].
ζG: number of tasks per task set, ranged between [5-10].
Di := xCO

i : relative deadline of a task, x = [0.9 − 1.0].
[Zdown, Zup]: the range of the ratio of normal and overload execution budget. We set
1 ≤ Zup

Zdown
≤ 8.

sL: speed of the low-speed cluster, ranging [0.45-0.6].

The reference approach. To date, no work has investigated the same problem studied
in this paper, i.e., minimize CPU power consumption for the DAG tasks by adopting the
DPM policy in a clustered platform. Hence, we do not have a direct baseline to compare.
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We consider a reference approach (for performance comparison) based on the DAG tasks
scheduling [39], denoted as MCFS_Li. Similar to us, the reference approach has characterized
a DAG task using its typical (and overload) execution requirement and the critical path
length. The approach in [39] also proposed a core assignment to each DAGs. However, unlike
us, [39] did not consider a multi-speed clustered platform. Hence, we assume that all the
cores execute at the maximum speed (i.e., sH) possible for the reference approach.

In Figure 1a, we vary the sL values for a different size task set and report the schedulability
ratio. As expected, the schedulability ratio is directly proportional to sL, but not strongly
correlated with with task-set size. Figure 1b shows the system power consumption for
different sL values over the different sizes of task sets. We see that energy consumption
increases with a higher sL value. In Figure 2, we compare our approach with an existing
approach [39], denoted as MCFS_Li. We set the value of sL to 0.55, and our approach
leads to a power-saving of at least 29.23% compared to MCFS_Li (Figure 2). While
guaranteeing real-time correctness, our approach utilizes the low-speed core as much as
possible (Subsection 4.1 and 4.2), which leads to an energy-saving.

All these experiments in this work involve varying the number of randomly generated
task sets. The aim is to investigate whether our proposed method’s results are sensitive
to changes in the number of tasks. However, our findings show no significant correlation
between power consumption, schedulability ratio, and the number of tasks. This observation
concludes that the proposed method is robust to different task set sizes.

7 Proof-of-Concept on Real-Time Platform Experiments

This section evaluates the proposed approach on a 12-core Intel Xeon 2680 v3 platform. The
proposed method applies to ARM big.LITTLE architectures and modern Intel processors.
However, the choice of the Xeon 2680 Processor stems from its well-studied power and
energy consumption behavior [28], the ease of in-kernel status monitoring while having the
per-core speed adjustment, per-core sleep, energy monitoring, and tracking the per-core
temperature. The energy consumption behavior of modern Intel processors shows a significant
deviation from energy models obtained on older Intel platforms due to latencies in changing a
core’s energy state, uncore frequencies, and out-of-order throttling at lower frequencies [57] –
furthermore, documentation for turning off an entire cluster in ARM big.LITTLE architecture
is sparse, and ARM does not provide public libraries for energy management.

On the platform, 11 of the 12 cores are isolated from kernel processes, user processes,
and interrupts using isolcpus option in the kernel bios. Among these eleven cores, six cores
represent Low-speed cores, and five cores represent High-speed cores. For a High-speed core,
the minimum and maximum frequencies are normalized in the frequency range between 1.2
GHz and 2.5 GHz, respectively, with a minimum transition time of 20µs. The minimum
frequency of a Low-speed core is 1.2 GHz while the maximum frequency is a parameter of
the evaluation. Additionally, each core can be independently turned off using DPM.

We conducted experiments on an Ubuntu 20.04 operating system, utilizing the default
Completely Fair scheduler (CFS) introduced in Linux kernel version 2.6.23 [49]. The CFS
scheduler is designed to allocate CPU times fairly among all runnable tasks on the system,
making it ideal for our experiments. As a non-real-time scheduler, it provides a fair CPU
time allocation among all runnable tasks on the system. We utilized the CFS scheduler by
not specifying a scheduler type through the sudo cset set command. Our implementation
of the proposed task-to-cluster allocation algorithm was written in Python. It periodically
executed each benchmark task on the isolated 11 cores using the cset command-line option
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Figure 3 Change in energy consumption dependency with response time.

with a nice default value. In addition, our program modified kernel parameters, turned off
appropriate clusters and monitored power consumption information from the allocated cluster.
We used several average-case power management governors from the Linux Kernel to ensure a
fair comparison, including schedutil, performance, powersave, conservative, and ondemand as
baselines. Hyper-threading was turned off on all cores by adjusting the scaling_max_freq
parameter in the Linux kernel. We fixed the frequency of each core using the cpufrequtils
tool. Finally, we turned off Turbo mode to avoid unwanted frequency adjustments in each
core.

The Barcelona OpenMP tasksuit (BOTS) [21] benchmark is used to evaluate the energy
consumption of the proposed approach. Each of the 43 tasks within the BOTS benchmark
follows the DAG task model discussed in Section 3. Nodes within a benchmark task are
created using a task directive, while edges between nodes are generated using depend or
taskwait directives. Nodes within a DAG task are scheduled using a greedy algorithm,
as proposed in [37]. While intel p-state and c-state configurations transfer resource and
power control to the hardware, we turned off this configuration for our application. We
used advanced configuration and power interface (ACPI), which gives software access to
touch voltage and frequency for speed adjustment and provides the baselines and userspace
configuration. The ACPI-Freq is portable to other platforms.

To extract performance results, the perf Linux profiler and a hardware energy counter
tool called reduced average power limit (RAPL) are used to monitor energy consumption
during the execution of each DAG task [30]. Since the Linux profiler does not provide
tool with the capability to profile multiple DAGs simultaneously, this evaluation focuses on
evaluating single DAG tasks. This simplification is due to the limitation on profiling ring
buffers and a socket hardware profiling register.

The paper proposes an approach for energy minimization while ensuring the schedulability
of DAG tasks. Although other factors may affect the energy consumption in DAG benchmarks,
including context switches, branch misses, and the number of instructions, these effects
are out of the scope of this research. The correlation between response time and energy
consumption is shown in Fig. 3, as we used the different numbers of cores. The results on Intel
Xeon 2680 and core i7 show as we increased the number of cores, the energy consumption
decreased on average on all the targeted benchmarks due to increasing the level of parallelism.
When allocating only one core, the time to process increases, and the number of inactive
cores adds much more waste on energy consumption.

This paper aims to determine the schedulability condition at runtime. To achieve this, we
estimate DAG tasks’ workload execution and critical path when executed at normal speed
and allocate the number of cores accordingly. We assume the critical path can be determined
when all cores are assigned to a DAG benchmark. Due to the absence of execution time
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Figure 4 The response time of one DAG makespan is based on the critical path definition,
workload execution time, and the virtual deadline.
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satisfaction of Category 2 in resource allocation.

tools for DAG tasks, the execution budget is obtained by running the DAG on a single core.
From 20 corresponding iterations, the average value represents the typical condition, and the
maximum value represents the overload condition. The results of this configuration for one
task are shown in Fig. 4, and we obtain deadline constraints using Graham’s bound. The
virtual deadline is estimated using the following expression V D < L + (C − L)/m.

This paper defines different categories and allocates high-speed and low-speed cores based
on core speeds and virtual deadlines. As explained in Section 4, there are three categories,
and Category 2 involves meeting the condition CN

i /sL < CO
i /sH − LO

i /sH . This means that
we may need to increase the speed of low-speed cores, decrease the speed of high-speed cores,
or add high-speed cores to meet the required deadline. In theory, speed refers to the amount
of computation in a given unit of time, while in experiments, it refers to the frequency of
operation that determines the amount of computation that can occur in a given unit of time.
Experiments utilize DVFS-enabled processors to control frequency within a predetermined
range of frequencies. While the speed can theoretically range from 0 to 1, in practice, it is
limited to the frequency range supported by the platform, as shown in Figure 5.

Based on Figure 5, the DAG tasks are assigned two low-speed and one high-speed core set.
Six cores were assigned to low speed and five to high speed. In the experiments conducted
for this paper, multiple clusters were used to test different scenarios where the number of
low-speed and high-speed cores exceeded the schedulability requirements. Figure 5 shows an
example where task 10 is allocated six low-speed cores with a speed of 0.1 and high-speed
cores with a speed of 0.7 while maintaining schedulability. Similarly, this schedulability
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Figure 6 The federated energy-aware scheduling algorithm gives better results in terms of energy
consumption and execution time compared to all the available Linux governors. Here task 18 is 30%
better energy-efficient compared with the Linux governors.
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Figure 7 Evaluation on schedulability and aggregated energy consumption.

can be achieved by increasing the number of high-speed cores or by increasing both the
number and speed. To test energy efficiency under these conditions, we developed a clustering
algorithm. Thus, cluster allocation is needed to get the optimal spot in energy minimization.
We changed the speed of low-speed and high-speed cores to test the proposed method. We
would fix the speed of high-speed cores to 0.7 of maximum speed in the Intel Xeon processor
and observe the extra allocation of high-speed cores to heavy tasks in Fig. 5 as the speed of
low-speed cores increases.

After setting the high and low-speed cores for each task and running the tasks in the
directed acyclic graph (DAG) to create an energy matrix, we can accurately estimate the
required low and high-speed cores. The results obtained with the proposed Federated
scheduler were compared to state-of-the-art Linux governors, and it was found that the
energy consumption was 30% less than the best result obtained from the governors, while
the overall results were not worse than state-of-the-art. The advantage of this algorithm is
that it takes schedulability conditions into account, unlike the Linux governors, which cannot
do so.
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The task to cluster allocation happens according to Algorithm 3, i.e., an energy value
would be assigned to each table element according to the defined number of low(high)-speed
cores and core’s speed. We will allocate the low-speed cores based on the specified task
categories. We would evaluate the conditions above requirements to fill the table. The
element in the search table showing the optimal energy value would get the configuration
needed for each task. The schedulability results in Fig. 7a for the table with 192 elements
show we have at least one element in the search table, which follows the virtual deadline and
schedulability conditions which means 100% schedulability all the time. While in Fig 6, we
see some times 30% improvement in energy consumption on some tasks, the results show
similar values in most of the evaluated tasks regarding all the times schedulability is met. The
proposed algorithm represents results in Fig. 7b indicate an approximately 7% improvement
in energy consumption when aggregating over all the tasks.

8 Conclusion and Future Work

The traditional workload model for real-time embedded systems focuses on worst-case
behaviors to provide worst-case guarantees. However, modern embedded systems possess
more energy constraints and require a richer system model to optimize energy consumption
under typical scenarios instead of worst-case scenarios. In this work, we propose the
energy-aware scheduling framework for DAGs in a clustered platform to minimize the typical-
case energy while guaranteeing worst-case temporal correctness. Specifically, we propose
determining the minimum number of low-speed cores required to schedule each DAG task
under a dual-speed platform. If there are not enough low-speed cores, our algorithm assigns
additional high-speed cores to a DAG, providing maximum energy-saving benefits. For multi-
speed platform, we further propose a task to cluster partitioning approach to reduce the
typical energy consumption without violating the worst-case real-time scheduling guarantee.
We evaluate our algorithm via extensive simulations on randomly generated task set and
report the energy consumption and the schedulability ratio. We also have implemented our
algorithm on an Intel Xeon 2680 v3 platform and report that our approach reduces energy
consumption by up to 30% w.r.t. the compared baseline.

Our current workload characterization assumes two thresholds: a typical execution length
and a WCET. It would be interesting to study the situation when more detailed information
can be provided, e.g., in the form of multiple thresholds, even with probability information.
We also plan to investigate the impact of other components, e.g., cache misses, context
switches, bus accesses, I/O usage, on the total power consumption. In the future, we plan to
extend the evaluation to ARM big.LITTLE architecture and 12th generation Intel Core i7
clustered mobile platform with four High-speed and eight Low-speed cores.
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Abstract
Many modern applications need to run on massively interconnected sets of heterogeneous nodes,
ranging from IoT devices to edge nodes up to the Cloud. In this scenario, communication is often
implemented using the publish-subscribe paradigm. The Data Distribution Service (DDS) is a
popular middleware specification adopting such a paradigm. The DDS is becoming a key enabler for
massively distributed real-time applications, with popular frameworks such as ROS 2 and AUTOSAR
Adaptive building on it. However, no formal modeling and analysis of the timing properties of DDS
has been provided to date. This paper fills this gap by providing an abstract model for DDS systems
that can be generalized to any implementation compliant with the specification. A concrete instance
of the generic DDS model is provided for the case of eProsima’s FastDDS, which is eventually used
to provide a real-time analysis that bounds the data-delivery latency of DDS messages. Finally, this
paper reports on an evaluation based on a representative automotive application from the WATERS
2019 challenge by Bosch.
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1 Introduction

The Data Distribution Service (DDS) is a standard specification by the Object Management
Group (OMG) describing a transfer protocol based on a data-centric publish-subscribe pat-
tern (DCPS) [48]. With the advent of massively distributed applications, such as autonomous
driving [9, 26, 31, 34], smart cities, Industry 4.0 [61], and more, the DDS gained a renewed in-
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terest in allowing communication among a vastly heterogeneous set of computing devices [42],
such as those involved in the so-called IoT-to-Edge-to-Cloud compute continuum [5]. Fur-
thermore, other popular frameworks, such as ROS 2 [12, 17, 21] and Autoware [34], build
on top of the DDS to implement the publish-subscribe communication. In the automotive
field, the AUTOSAR consortium has recently integrated DDS in its Adaptive Platform
software standard [4]. Moreover, DDS support is being integrated in the next release of
AUTOSAR Classic Platform [56]. In many of these applications, it is important to provide
real-time guarantees on the delivery latency of messages passing through the DDS. However,
the DDS is implemented as a complex multi-threaded middleware with threads that must
be properly scheduled to achieve the desired real-time performance. These threads serve
many purposes, from message dispatching, listening and liveliness monitoring, to garbage
collection. Furthermore, some DDS threads implement custom, implementation-specific
message queuing policies that can severely affect the message response times.

In this complex scenario, designers of real-time edge applications are called to provide
proper values for several critical parameters, such as periods, application and DDS threads
priorities, queue sizes, and others. Without fine-grained modeling and analysis of the system,
designers can only rely on trial-and-error approaches, deploying system configurations and
empirically assessing their performance, which is heavily time-consuming and error-prone.

Contribution. This paper provides a detailed modeling of DDS-enabled real-time systems.
First, it provides a general model based on the DDS specification. Then, it shows how to
instantiate it for the case of the eProsima’s FastDDS [27], one of the most popular and
efficient [57, 69] DDS implementation, leveraging an extensive exploration of the source code,
documentation, and a set of experiments to validate the behavior inferred from the source
code. Building on the model, we devise a response-time analysis for messages in a DDS-based
distributed real-time system. The analysis can be used as an essential building block for
future tools for design-space exploration of the system parameters, which can significantly
help designers in configuring complex DDS-based systems. Finally, we evaluate our approach
using the WATERS 2019 Industrial Challenge by Bosch [30], which represents a complex
and real case of autonomous driving application, and we compare the analysis results with
the latency values observed by running a simple FastDDS-enabled use-case application on a
real platform.

2 Background

In this section, we review the DDS standard. Then, we highlight the peculiarities of FastDDS,
i.e., the DDS implementation considered in this work, and we review the Compositional
Performance Analysis (CPA) scheme, adopted in the paper.
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Figure 1 Example of connections between DDS participants in a domain.
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2.1 The DDS Standard
The DDS standard specifies a data transfer protocol based on a Data-Centric Publisher-
Subscriber (DCPS) pattern [48]. The DCPS model leverages the concept of a Global
Data Space (GDS), accessible to all the interested applications. Applications that provide
information to the GDS declare their intent to become Publishers, whereas applications that
want to access portions of the data space are identified as Subscribers. The DDS provides
mechanisms for the exchange of data between these applications. Whenever a publisher
publishes new data into the GDS, the middleware broadcasts this data to all interested
subscribers. Moreover, the information flow is regulated by Quality of Service (QoS) policies
at various levels of the communication stack [45]. According to the DDS specification, the
transfer of any information happens in a logical area called Domain, which can be seen as
a set of abstract links that connect all the communicating distributed applications. In any
domain, there are several Participants and Topics. Topics are unambiguous identifiers that
associate a name, unique within the Domain, to a data type and a set of attached data-specific
QoS policies. Topics can be seen as channels for exchanging data. Participants are entities
that can send and receive information from any topic in one Domain. A participant can
include one or more publishers and/or subscribers. A publisher can send information over
multiple different topics through DataWriter (DW) objects, and, similarly, a subscriber can
receive data from different topics through DataReader (DR) objects. Each DW or DR object is
linked to a single topic. Figure 1 shows an example of connections between DDS participants
in a domain. The DDS leverages a lower-level protocol, the Real-Time Publish-Subscribe
Protocol [46]. RTPS provides both best-effort and reliable publish-subscribe communications
over unreliable transports, such as UDP, in both unicast and multicast settings. The OMG
has standardized RTPS as the interoperability protocol for all the DDS implementations.
Despite its name, RTPS does not define any real-time specific feature. The DDS operates
in three main phases: 1) Discovery phase, when the DDS participants find each other in
the network, 2) Matching phase, when the discovered participants determine if they should
engage in a publish-subscribe relationship, and 3) Data Distribution phase, when data is
disseminated from the publishers to the matching subscribers.

2.2 The FastDDS Implementation
FastDDS is a C++ implementation of the DDS with a complex multi-threaded architecture,
analyzed by means of code inspection. FastDDS threads are usually scheduled with the
SCHED_OTHER (i.e., CFS) standard scheduler of Linux.

Publisher application. A publisher application consists of: a publisher thread, an event
thread, and meta-traffic listener threads. The publisher thread is a user-level thread that
manages a single publisher object. It is responsible for preparing and publishing application
data on topics. The publishing of data can be 1) synchronous, when it is performed by the
publisher thread and 2) asynchronous, when data is sent through the network on behalf
of the publisher thread by a flow-controller thread, i.e., FastDDS internal middleware-level
thread. If the publishing mode is asynchronous, the publisher thread inserts the new message
into a queue of pending messages shared with the flow-controller thread. The queue contains
messages related to different topics. The queue can be ordered according to three policies,
i.e., FIFO, RR (round robin), HIGH_PRIORITY (fixed priority). The flow-controller thread is
responsible for extracting data from the queue and sending it over the network. A publisher
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thread can refer to multiple flow-controller threads if it publishes to multiple topics. The
middleware-level event thread processes periodic and time-triggered events (mainly related to
discovery/matching and QoS-checking services). The middleware-level meta-traffic listener
threads manage the reception of discovery information.

Subscriber application. A subscriber application consists of: i) a subscriber thread, an event
thread, a user-traffic listener thread, and meta-traffic listener threads. The subscriber thread is
a user-level thread managing a single subscriber object, which is responsible for reading and
interpreting data from topics. As for the publisher application, the subscriber application
includes the middleware-level event thread. The middleware-level user-traffic listener thread
manages the reception of user data (i.e., application data). The middleware-level meta-traffic
listener threads manage incoming meta-traffic information.

Communication threads. FastDDS allows multiple publisher threads to publish data over
the same topic. Similarly, multiple subscriber threads can subscribe to a specific topic. In
this way, many-to-many communications between participants are supported. In FastDDS,
the transport layer provides communication services between DDS entities, being in charge of
sending and receiving messages over a physical transport [27]. Note that a listener thread is
spawned for each reception channel, where the definition of channel depends on the adopted
transport layer (UDP, TCP, or shared memory transport port).

2.3 Compositional Performance Analysis
CPA [32] is a framework for analyzing the timing behavior of complex heterogeneous and
distributed real-time systems. CPA is built around two main concepts: workloads and com-
putational resources. Workloads consist of tasks with precedence constraints. Applications
are modeled as a direct acyclic graph (DAG) of communicating tasks. Groups of tasks
execute on a resource, which provides the supply time and determines the resource-specific
scheduling policy. In CPA, the source task of a chain is triggered according to an externally
provided event arrival curve η(∆), denoting an upper bound on the number of release events
in any interval [t, t + ∆). Non-source tasks are triggered by derived arrival curves. Derived
curves are obtained from arrival curves by accounting for the activation delay given by the
completion times of predecessor tasks. The typical approach consists in accounting for a
release jitter in non-source tasks that depends on predecessors’ response times. The basic
CPA analysis uses the sum of individual response-time bounds of each task to bound the
end-to-end latency of a processing chain, while extensions have been designed to improve the
precision in specific conditions [55].

3 Compositional DDS Model

Next, we model a DDS-based system in two steps. First, we provide a general and compos-
itional model based on the DDS specification only that can be instantiated on any DDS
implementation. Then, we show how to instantiate the model for the specific case of FastDDS.

We leverage a compositional approach to model the DDS middleware in an implementation-
independent manner by mapping DDS operations to compositional Logic Functional Blocks
(LFBs). Each block describes the basic DDS operations. LFBs are divided into two categories:
(i) principal blocks, which are directly involved in the data exchange from the publisher to
the subscriber, and (ii) auxiliary blocks providing support (middleware) features such as
discovery/matching, QoS-enforcement, or other implementation-specific services. Examples
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Figure 2 Instantiation of FastDDS threads on DDS model.

of DDS auxiliary implementation-specific services are represented by FastDDS’s Timed-
Event handling and Eclipse CycloneDDS’s Garbage Collector and Liveliness monitoring [68].
Publisher, Subscriber, Outgoing Flows Dispatching (OFD), Network, and Incoming Flows
Dispatching (IFD) are principal LFBs. The Publisher and Subscriber blocks implement the
fundamental publishing and subscribing operations, respectively, performed by user-level
application-specific threads. The OFD block receives data from the Publisher block and
controls the process of publishing it over the Network block. Note that the DDS standard
does not define how data dispatching over the network should be implemented. The IFD block
manages the procedure of processing messages received by the Network block. Furthermore,
it is responsible to deliver messages to the Subscriber block. Finally, the Network block
maps the functionalities of a network protocol and it is in charge of transmitting data over a
communication link, from a source node to a destination node.

FastDDS instance of the model. Figure 2 shows the FastDDS implementation-specific
instance of the abstract compositional DDS model. Each FastDDS thread we identified is
mapped in its corresponding LFB. Meta-traffic listener and event threads have been mapped
to the auxiliary services block. The publisher and subscriber threads have been mapped
respectively to the Publisher block and Subscriber block. The flow-controller thread, discussed
in Section 2.2, has been instantiated upon the OFD block when asynchronous-send mode is
enabled. Similarly, the user-traffic listener (from now on, we refer to it simply as listener)
thread has been mapped to the IFD block. Finally, the functionalities of a transport protocol
and the network have been mapped onto the Network block.

4 FastDDS-based System Model and Problem Definition

The considered FastDDS-based system comprises a set C of cores, where each core ck ∈ C is
possibly distributed onto multiple nodes in a distributed system.

Thread model. Four classes are used to identify the system threads: publisher, flow-
controller, listener, and subscriber, contained in the sets Γp, Γf, Γl, and Γs, respectively.
Threads are scheduled using a partitioned fixed-priority scheduler (each thread is statically
allocated to a core). An arbitrary i-th thread belonging to each category is denoted as
τp

i ∈ Γp, τ f
i ∈ Γf, τ l

i ∈ Γl, or τ s
i ∈ Γs, respectively. The set Γall = {Γp ∪ Γf ∪ Γs ∪ Γl}

represents all the threads in the system. When the type of a thread is not relevant or clear
from the context, the thread is simply denoted with τi. The set of middleware-level threads
includes flow-controller and listener threads and is denoted with Γmw = Γf ∪ Γl. The set Γk

all
includes all threads of any type running on core ck ∈ C. Γk

mw ⊆ Γk
all is the subset of the

middleware threads on ck. Each thread τi ∈ Γall is associated with a unique fixed priority.
Finally, we use the notation hpk

oth(τi) ⊆ Γk
all \ Γk

mw and hpk
mw(τi) ⊆ Γk

mw to indicate the set
of non-middleware- and middleware-level threads, respectively, that run on core ck and have
priority higher than τi ∈ Γk

all.

ECRTS 2023



9:6 Bounding the Data-Delivery Latency of DDS Messages in Real-Time Applications

Topic and message model. To define the logical communication channels between publisher
and subscriber applications, we define a set of topics Θ. Each topic θj ∈ Θ has a unique
priority within the whole system, which is independent of the priorities of the corresponding
threads, discussed in the Thread model . The topic priority is then inherited by each instance
of any message mz(τp

i , θj) published by the publisher thread τp
i over the topic θj . We simply

use the symbol mz whenever it is not needed to identify the publisher thread and the topic.
An instance of a message mz is said to be pending in a middleware-level thread τi ∈ Γmw from
when it is released in the thread to when its processing completes in the middleware-level
thread. The set of messages associated with a topic θj is denoted with M(θj). Each instance
of the publisher thread τp

i can send up to wj
i messages to topic θj . We define Θ(τ s

j ) ⊆ Θ as
the subset of the topics from which a subscriber thread τ s

j can receive messages. Nsub(mz)
denotes the number of subscribers interested in message mz.

Association among threads. A publisher thread τp
i can be associated to multiple flow-

controller threads τ f
i ∈ Γf if it publishes to multiple topics. A subscriber thread τ s

j is
associated to a unique listener thread τ l

j , which can handle messages from different topics. A
pair (publisher thread, topic) (τp

i , θj), and therefore a message mz(τp
i , θj), is associated with

a single flow-controller thread and a single listener thread. The association of a message to a
middleware thread is denoted by mz ∈ τ t

i , with t ∈ {f, l}.

Execution times and activations. Non-middleware-level threads τj ∈ Γall \ Γmw are char-
acterized by a worst-case execution time ej . This paper considers a discrete-time model,
i.e., all time parameters are integer multiples of a basic time unit (e.g., a processor cycle),
defined as ϵ ≜ 1. Each publisher thread τp

i is characterized by an externally-provided event
arrival curve ηp

i (∆). Subscriber thread instances are triggered in a data-driven fashion.
Therefore, each subscriber thread τ s

j is associated with a derived arrival curve ηs
j (∆), which

depends on the response times of the message triggering the computation. We show later
in Section 5.2 how to derive such curves. Differently, the worst-case execution time and
activation patterns of flow-controller and listener threads are determined by the arrival
patterns and message-processing delays of the messages. We denote with ηf

z,i(∆) and ηl
z,j(∆)

the derived arrival curve of each message in their flow-controller thread τ f
i and listener thread

τ l
j , respectively. Whenever it is not relevant whether τi is a flow-controller or a listener

thread, we simply denote the arrival curve of a message with ηz,i(∆). The parameters δf(mz)
and δl(mz) denote the worst-case time required to process a message mz in its flow-controller
and listener threads, respectively, without the interference of any other message and thread.
In the flow-controller, this time is required to execute a single system send call, while in
the listener involves the deserialization of a single message and delivery of the message to
the subscriber object. In both cases, the message size affects the parameter. The network
propagation delay of a message mz is denoted as δnet(mz). It can be either pragmatically
estimated or analytically bounded, depending on the underlying network [23, 35, 67].

Flow-controller scheduling policies. We define the available scheduling policies of flow-
controller threads as HP and F, denoting the HIGH_PRIORITY and FIFO policies as defined
by FastDDS, respectively. The analysis of the RR policy is left as future work. Within the
same flow-controller, messages that have the same priority (related to the same topic) are
processed in FIFO order. When using the HP policy, given an arbitrary message mz and a
flow-controller thread τi, the symbols hpi(mz), epi(mz), and lpi(mz) denote the set of all
the messages with higher, equal, and lower priority than mz in τi, respectively.
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Table 1 Table of main symbols.

Sym. Description Sym. Description
cj j-th physical core τ t

i i-th thread of type t ∈ {p, f, l, s}
Θ set of topics mz(τp

i , θj) z-th msg published by τp
i over θj

θj j-th topic wj
i max. num. msgs to θj for each τp

i instance
M(θj) msgs for a topic θj Θ(τ s

j ) topics from which τ s
j receives msgs

Γt threads of type t Nsub(mz) num. of subscribers subscribed to mz

Γmw middleware threads hpk
mw(τi) mw-thrds with pr. higher than τi on ck

Γall all threads hpk
oth(τi) non-mw-thrds with pr. higher than τi on ck

Γk
t threads of type t on ck rbfi(∆) request-bound function of τi

ej WCET of τ t
j , t ∈ {p, s} sbfk(∆) supply-bound function of ck

ηt
i(∆) τ t

i arr. curve, t ∈ {p, s} ηt
z,i(∆) arrival curve of mz in τ t

i , t ∈ {f, l}

Static discovery. In this paper, we consider a static network of publishers and subscribers,
meaning that no new participant join at run-time. Under this assumption, the overhead due to
the discovery mechanism becomes negligible by leveraging the FastDDS Static Discovery [27].
This configuration implies that, after static discovery is over, the network of entities is fixed,
and no other discovery messages are exchanged among them. Thus, delay due to meta-traffic
listener and event threads becomes negligible (auxiliary services block in Fig. 2), since they
are responsible for processing discovery periodic events (e.g., sending of heartbeat messages
for remote node liveliness) and QoS-checking services.

Listener threads. Each listener thread handles one network socket through which the thread
receives data related to different topics, possibly sent by different publishers. Incoming
messages are processed in FIFO order.

Queues. When using the FIFO policy, each flow-controller (or listener) thread τ t
j ∈ Γmw,

with t ∈ {f, l}, manages one queue of pending messages that can contain at most MF
j

messages. Differently, using the HP policy, each priority-level i corresponds to a queue of size
MHP,i

j . Note that HP is only used for flow-controller threads. Buffers should be large enough
so that no messages are dropped at both the sender and receiver sides.

Supply-bound function. In this work, analysis and results rely on the existence of a supply-
bound function sbfk(∆) that denotes the minimum time of processor service provided by
a core ck ∈ C in any time window of length ∆, [16, 40, 60]. This abstraction is useful to
make the analysis extensible with reservation-based scheduling mechanisms [1], such as those
implemented by the SCHED_DEADLINE scheduling class of Linux [39] or by the QNX Adaptive
Partitioning Scheduler [22], and naturally generalizes to the case without reservation (if a
core is fully available, sbfk(∆) = ∆).

Table of symbols. Table 1 summarizes the main symbols introduced in this paper.

4.1 Problem Statement
The metric of interest for the analysis in this paper is:

▶ Definition 1 (Data Delivery Latency). The Data Delivery Latency (DDL) Lz experienced
by a message mz sent by a publisher thread to a matching subscriber thread is the longest
time span elapsed between the time instant in which mz is sent by the publisher and the time
instant when the corresponding instance of the subscriber thread is released.
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Note that, as described next in Section 4 (Execution times and activations), for each subscriber
thread, exactly one subscriber thread instance is triggered for each received message instance.
Moreover, the DDL only accounts for the time spent by a message in the middleware-level
threads, and does not include the time in which the target instance of the subscriber is
waiting for being scheduled. Our goal is to leverage the model to devise a real-time analysis
capable of bounding the worst-case data delivery latency of any DDS message.

4.2 Thread behavioral rules
Next, we formalize the behavior of the FastDDS middleware implementation through a set
of rules, considering the interactions between the modeled threads.
R1 – Pub-to-Flow: When a publisher thread needs to send data over a topic, it performs
a write operation and notifies the corresponding flow-controller thread.
R2 – Flow-to-Net: If the queue of pending messages is not empty, the flow-controller thread
extracts a message from the head of the queue, arranges the RTPS packet (serialization),
and performs a system network send operation for each interested subscriber. The number of
send operations corresponds to the number of message copies to be sent to each subscriber,
expressed by the parameter Nsub(mz). When the queue is empty, the flow-controller thread
blocks until its associated publisher thread notifies it with new data to send.
R3 – Net-to-List: A listener thread performs a blocking system network receive operation
on a socket. Whenever a message is received and written to a socket buffer by the system
network functionalities, the listener thread is woken up and becomes ready to process
incoming messages.
R4 – List-to-Sub: The listener thread takes a message from the socket buffer, following
a FIFO pattern. Then, it deserializes the message. The message is then delivered to the
subscriber thread, which is notified of the new message presence.
R5 – Non-preemptiveness: The send operation of a message is non-preemptive, meaning
that, if a message has been extracted from the queue, it and all of its copies to different
subscribers are sent over the network, even if a higher priority message has arrived in the
meantime.
R6 – HIGH_PRIORITY (HP) policy: Under this policy, each message is assigned to a priority
inherited from the corresponding topic. Messages are handled in the flow-controller thread
in priority order, from the highest to the lowest.
R7 – FIFO (F) policy: Under this policy, the flow-controller thread handles each message
in a first-in-first-out fashion.
R8 – Work-conservation: Flow-controller and listener threads never become idle if there
are messages to be served.

4.3 Model Validation
The model and the above behavioral rules have been derived with a deep inspection of
the FastDDS documentation and source code (GitHub repository [28]). To corroborate our
findings with empirical evidence, we performed several experiments to figure out interactions
between threads by focusing on shared data structures and condition variables. To this end,
an application constituted of three publishers and one subscriber exchanging data over three
topics was executed on two desktop machines running Ubuntu 20.04 and interconnected
through a point-to-point Ethernet link using UDP communication. Furthermore, we designed
ad-hoc experiments to corroborate the behavior of the two scheduling policies of the flow
controller. In each experiment, the subscriber is subscribed to three topics (θ1, θ2, θ3) on
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Figure 3 Validation experiments for R5 (C), R6 (B), and R7 (A) rules.

which each publisher publishes three messages over one of the topics. Each message payload
contains the timestamp of the moment when it is sent on the network. Subscribers and
publishers run on different machines.

FIFO policy. First, the flow-controller was configured to work with the FIFO policy. To
corroborate rule R7, we checked that at the subscriber listener side, messages were received
from the oldest timestamp to the most recent one. Figure 3 (A) shows the result of this
experiment: the sequence of messages sent over the network by the flow controller are in
FIFO order as the order observed by the sender and the receiver corresponds1.

HIGH_PRIORITY policy. A similar experiment was performed to check the behavior of the
HIGH_PRIORITY policy (rule R6). In this experiment, each topic is assigned to a priority.
Topic θ2 is assigned to priority 1, which is the highest of this configuration. θ1 and θ3 are
both assigned to priority 2. Figure 3 (B) shows the results of this experiment. As expected,
messages related to topic θ2 (with the highest priority) were sent first on the network, while
the messages related to the topics with the same priority were handled in FIFO order.

Non-preemptiveness. We checked the non-preemptiveness (rule R5) of the sending opera-
tion, modifying the previous experiment. Referring to Figure 3 (B), when the last message
related to topic θ3 has already been extracted from the pending message queue, we manually
injected, by modifying the source code, a new higher-priority message (i.e., m3 related to
topic θ2) in the queue, as shown in Figure 3 (C). Even if the new message should be processed
first according to the priority order, the flow-controller thread waits until the current message
was sent, before processing the highest-priority one.

Making FastDDS more predictable. We introduced two features to improve FastDDS
predictability, considering a Linux-based system, and to show that it is possible to make
FastDDS fully compliant with our model. We leveraged these changes in the comparison
of analysis-driven and empirical latencies in Section 6.2. First, FastDDS does not provide
any mechanism to set scheduling properties for its internal threads, such as thread priorities
and usage of the Linux’s fixed-priority scheduler to schedule such threads. Therefore, we
modified FastDDS to introduce a new scheduling service able to initialize these parameters
at the system start time. Second, message queues (e.g., in the flow-controller) are unbounded

1 In principle, it would have been possible to observe out-of-order delivery due to data streams following
multiple paths through the network and the lack of flow control mechanisms in UDP protocol [70]. Our
experiment leveraged a point-to-point connection to mitigate the issue.
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Network

Figure 4 Source-Destination data path and arrival curve propagation.

by default, which may lead to unbounded growth of memory if the system is flooded with a
considerably large amount of messages (e.g., due to a distributed denial-of-service attack).
Hence, we modified the source code to comply with a limited size. Methods to derive a
suitable size for such queues will be derived in future work.

5 Data-Delivery Latency Analysis

Figure 4 leverages the FastDDS instance of the compositional model to summarize the
message path from the publisher to the subscriber. Once the publisher thread prepares new
data to transmit, such data is inserted in a queue of pending messages managed by the
flow controller thread, which sends messages through the network. When the subscriber
listener thread receives the message, it is processed and delivered to the user-level subscriber
thread. To bound the DDL of an arbitrary message mz we provide bounds for the worst-case
response-time experienced by each message in each middleware thread of interest, namely,
the flow-controller and listener threads. The worst-case response time of a message mz

in a middleware (either the flow-controller or the listener) thread τ t
i , with t ∈ {f, l}, is

the longest time span from the release of the message instance in the thread to when the
message instance processing completes. We denote with the symbols Rf

x(mz) and Rl
y(mz) a

response-time bound for message mz in the associated flow-controller thread τ f
x and listener

thread τ l
y, respectively. Whenever specifying the involved thread is not needed or clear from

the context, we simply write R(mz). Note that all the threads involved in the communication
can be allocated to arbitrary cores. The following analysis leverages the knowledge of arrival
curves of messages at the flow-controller and listener threads: we show later in Section 5.2
how to derive them. Following CPA [32] and by rules R1-R4, the DDL Lz of an arbitrary
message mz can be bounded as the sum of the individual worst-case delays experienced in
the network and flow-controller and listener threads, i.e.,

Lz = Rf
x(mz) + Rl

y(mz) + δnet(mz). (1)

For each thread τi ∈ Γall \ Γmw, the symbol rbfi(∆) denotes its request-bound function
(RBF). The RBF returns the maximum processor time needed by the thread instances of
τi in any interval of length ∆, i.e., rbfi(∆) = ηt

i(∆) · ei, with t ∈ {p, s} [15, 17]. The sum
of request-bound functions of an arbitrary set of threads Γ′ is referred to as RBF (Γ′, ∆) =∑

τ
j
∈Γ′ rbfj(∆).

5.1 Response-Time Analysis for a Fast-DDS message
Definitions. To bound the worst-case response time of a message mz while being processed
by middleware thread τ t

i , with t ∈ {f, l}, or simply τi if the type is not needed, we start
defining the sources of interference that can delay mz, and the corresponding bounds. We
start from the thread-level interference, which depends on higher-priority non-middleware
threads running on the same core.
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▶ Definition 2 (Thread-level Interference). The thread-level interference Ithread
i,z (∆) is an upper

bound on the delay suffered by an arbitrary instance of mz while pending in middleware thread
τi ∈ Γk

mw, in any time interval of length ∆, due to non-middleware threads τj ∈ Γk
all \ Γk

mw
allocated on the same core ck.

Other sources of interference are due to messages. This interference can be either due to:
(i) messages handled in other middleware threads with higher priority running on the same
core, or (ii) messages handled in the same middleware thread τi under analysis. We call (i)
inter-thread message interference, and (ii) intra-thread message interference.

▶ Definition 3 (Inter-Thread Message Interference). The inter-thread message interference
I inter

i,z (∆) is an upper bound on the delay suffered by an arbitrary instance of mz while being
pending in middleware thread τi ∈ Γk

mw, in any time interval of length ∆, due to the processing
of other messages by high-priority middleware-level threads τj ∈ hpk

mw(τi) on the same core
ck.

▶ Definition 4 (Intra-Thread Message Interference). The intra-thread message interference
I intra

i,z (∆) is an upper bound on the delay suffered by an arbitrary instance of mz, in any time
interval of length ∆, due to messages processed by the same middleware-level thread τi ∈ Γk

mw
where mz is pending.

Note that Definition 4 includes both interference due to instances of other messages
mr ̸= mz, and from other instances (previously released) of the same message under analysis.
We call the latter self-interference, and the corresponding instances self-interfering instances.

Policy-independent bounds. Now, we instantiate the previously defined interference bounds,
and we finally derive a generic response-time bound for a message in a middleware-level
thread, which can be used for both flow-controller and listener threads. We start presenting
bounds for the thread-level and inter-thread message interference, which are independent of
the scheduling policy adopted in the middleware-level thread. To this end, Lemma 5 bounds
the number of pending message instances in a middleware-level thread.

▶ Lemma 5. Let R(mz) be a response-time bound for mz in an arbitrary middleware-level
thread τi. In any interval of length ∆, there are at most ηz,i(∆+R(mz) − ϵ) pending instances
of mz in τi.

Proof. Consider an arbitrary interval [t̄, t̄ + ∆), with ∆ > 0. First, note that instances of
mz released at or after t̄ + ∆ are not pending in [t̄, t̄ + ∆). Note that ηz,i(∆ + R(mz) − ϵ)
counts all the instances released in (t̄ − R(mz), t̄ + ∆), which has length ∆ + R(mz) − ϵ.
By contradiction, assume there are more than ηz,i(∆ + R(mz) − ϵ) pending instances in τi.
Then it means there exists an instance of mz released at or before t̄ − R(mz) that is still
pending in [t̄, t̄ + ∆). This leads to a contradiction because R(mz) is a response-time bound
for mz. ◀

While Lemma 5 is presented as a mean to derive a response-time bound for mz, it requires,
in turn, a pre-existing response-time bound R(mz), hence introducing a circular dependency.
The same notation for pre-existing bounds is used also in the presentation of the following
results: the dependency can be solved by using standard real-time analysis techniques [32]
that provide an outer response-time analysis loop and initially set R(mz) = 0, deriving a
response-time estimate at every iteration, and updating R(mz) until a global fixed-point
is achieved. The procedure is guaranteed to converge since response-time estimates never
decrease [32]. Further details are provided next in Section 5.3.

Next, Lemma 6 bounds the thread-level interference.
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▶ Lemma 6. Let τi be a thread handling an instance of message mz (either as flow-controller
or listener thread) running on ck. In any interval of length ∆, the corresponding thread-level
interference is bounded by

Ithread
i,z (∆) ≜ RBF (hpk

oth(τi), ∆). (2)

Proof. By definition, the thread-level interference involves all non-middleware threads with
a higher priority than τi. These threads are contained into the set hpk

oth(τi). The lemma
follows by noting that RBF (hpk

oth(τi), ∆) sums all terms rbfh(∆) due to each τh ∈ hpk
oth(τi),

where each term rbfh(∆) bounds the individual demand due to τh , in any interval of length
∆ > 0. ◀

Next, we consider the interference due to messages. Before starting, we derive a bound
on the delay due to each message processed by a flow-controller or listener thread.

▶ Lemma 7. The delay due to a single instance of an interfering message mz in a middleware-
level thread τ t

i ∈ Γmw is bounded by

δt
i(mz) ≜

{
δf(mz) · Nsub(mz) if t = f,
δl(mz) if t = l.

(3)

Proof. Recall that the delay due to an instance of message mz is equal to δf(mz) for a
flow-controller thread and δl(mz) for a listener thread. By rule R2, for each instance of a
message mz sent by a publisher, the flow controller sends Nsub(mz) copies towards subscribers.
This leads to a delay of δf(mz) · Nsub(mz), proving the first branch of Equation (3). The
second branch follows by noting that, due to rule R4, for each message instance processed
by the listener only one message instance at a time is forwarded to the subscriber. ◀

With the previous result in place, Lemma 8 bounds the inter-thread message interference
experienced by an arbitrary message mz under analysis.

▶ Lemma 8. Consider a message mz in a middleware-level thread τ t
i ∈ Γmw

k . Let R
t

j(mr)
be a response-time bound for mr in an arbitrary middleware-level thread τ t

j ∈ hpk
mw(τ t

i ). In
any window of length ∆ > 0, the inter-thread message interference of an instance of mz is
bounded by:

I inter
i,z (∆) ≜

∑
τ t

j
∈hpk

mw(τ t
i
)

∑
mr∈τ t

j

ηr,j(∆ + R
t

j(mr) − ϵ) · δt
j(mr), with t ∈ {f, l} (4)

Proof. By definition, I inter
i,z (∆) includes all the interference due to messages in other mid-

dleware level threads τ t
j ∈ hpk

mw(τ t
i ) on the same core ck. The first summation sums over

all such threads, and the second over all messages handled by each thread. The lemma
follows by recalling that, by Lemmas 5 and 7, each of such messages contributes with at
most ηr,j(∆ + R

t

j(mr) − ϵ) instances, each one with a delay of at most δt
j(mr). ◀

Policy-dependent bounds. Next, we present the bounds on the intra-thread message
interference, which depends on the policy used in the middleware-level thread. Before
proceeding, we bound the number of self-interfering instances in Lemma 9.

▶ Lemma 9. Let R(mz) be a response-time bound for mz in an arbitrary middleware-level
thread. In any interval of length ∆, the number of self-interfering instances to an arbitrary
instance of a message mz in a middleware-level thread τi ∈ Γmw is bounded by

sii(mz, ∆) ≜ max(0, ηz,i(∆ + R(mz) − ϵ) − 1). (5)
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Proof. The lemma follows from Lemma 5 by noting that only pending instances of mz

can cause self-interference in the interval [t̄, t̄ + ∆), with ∆ > 0, excluding the message
instance under analysis, and noting that the number of self-interfering instances cannot be
negative. ◀

The precision of the self-interference bound can be further tightened at the cost of testing
a search space of multiple message release times in a busy window [17], thus complicating the
analysis and requiring additional running time. To keep the analysis simple, this potential
improvement is left as future work.

HIGH_PRIORITY policy. Under this policy, each instance of mz under analysis can be delayed
by: (i) low-priority messages causing delay due to non-preemptive message handling (rule
R5), (ii) equal-priority messages enqueued before and thus being prioritized by the FIFO tie-
break, and (iii) higher-priority messages. Let I lp

i,z(∆), Iep
i,z(∆), and Ihp

i,z(∆) be the interference
bounds for (i), (ii), and (iii), respectively, so that I intra

i,z (∆) ≜ I lp
i,z(∆) + Iep

i,z(∆) + Ihp
i,z(∆). We

begin by considering equal-priority messages in Lemma 10.

▶ Lemma 10. All the delays that may contribute to the intra-thread message interference of
an instance of mz that is pending in a middleware-level thread τ t

i ∈ Γmw, during any interval
of length ∆ and due to messages with same priority, are contained into the multiset2

Dep
i (∆) =

⊎
mr∈epi(mz)

{δt
i(mr)} ⊗ ηr,i(∆), with t ∈ {f, l} (6)

where

ηr,i(∆) ≜
{

sii(mz, ∆) if z = r,

ηr,i(∆ + R
t

i(mr) − ϵ) otherwise,
(7)

where δt
i(mr) is given by Lemma 7 and R

t

i(mr) is a response-time bound for mr in τ t
i .

Proof. First, note that delays due to intra-thread message interference to an instance of
message mz from messages with the same priority in a middleware-level thread τ t

i are due to
other messages mr ∈ epi(mz) in the queue of the same thread. By Lemma 7, each message
contributes with a delay of at most δt

i(mr). By Lemma 9, mz can contribute with up to
sii(mz, ∆) interfering message instances. The lemma follows by noting that other messages
can interfere only if they are pending in the same middleware-level thread, with up to
ηr,i(∆ + R

t

i(mr) − ϵ) due to Lemma 5. ◀

Hereafter, the notation Σ(x, M) denotes the sum of the x largest elements in a multiset
M . If M contains less than x elements, all elements in M are summed.

▶ Lemma 11. Let j be the priority of message mz. Consider an instance of mz that is
pending in a middleware-level thread τ t

i ∈ Γmw that uses the HIGH_PRIORITY policy and an
arbitrary time window of length ∆. It holds

Iep
i,z(∆) ≜ Σ(MHP,j

i − 1, Dep
i (∆)). (8)

2 The operator ⊎ denotes the union of multisets, e.g., {3, 3}⊎{6, 2} = {3, 3, 6, 2}, and the product operator
⊗ multiplies the number of instances of each element in the multiset, e.g., {1, 4} ⊗ 2 = {1, 1, 4, 4}.
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Proof. By definition, the j-th priority queue of τ t
i has size MHP,j

i . Therefore, at most MHP,j
i −1

message instances with same priority can interfere with the one under analysis. By Lemma 10,
the delays of message instances with same priority that may contribute to the intra-thread
interference of mz are contained into the multiset Dep

i (∆). Hence Σ(MHP,j
i − 1, Dep

i (∆))
bounds the intra-thread interference generated by messages with the same priority of mz. ◀

Next, we provide a bound to the intra-thread interference due to messages with lower
priority, which occurs because each message is handled in a non-preemptive manner [23, 43]
locally to each thread.

▶ Lemma 12. Consider an instance of a message mz in a middleware-level thread using the
HIGH_PRIORITY policy τ t

i ∈ Γmw and a time window of length ∆. It holds

I lp
i,z(∆) ≜ max

mr∈lpi(mz)
δt

i(mr), with t = f. (9)

Proof. Low-priority messages can contribute with at most one instance due to the non-
preemptive handling of messages (rule R5). The corresponding delay can be at most equal
to the longest delay δt

i(mr), yielding the bound I lp
i,z(∆). ◀

Differently from equal-priority messages (Lemma 11), the bound for higher-priority
messages cannot rely on message queue sizes. This is because the message under analysis is
placed in a different queue: thus, the bound can only leverage the message arrival curves on
the middleware-level thread under consideration. A bound on the intra-thread interference
due to higher-priority messages is reported in Lemma 13.

▶ Lemma 13. Consider an instance of a message mz in a middleware-level thread using
the HIGH_PRIORITY policy τ t

i ∈ Γmw and a time window of length ∆. Let R
t

i(mr) be a
response-time bound for a higher priority message mr in τ t

i , it holds

Ihp
i,z(∆) ≜

∑
mr∈hpi(mz)

ηr,i(∆ + R
t

i(mr) − ϵ) · δt
i(mr), with t = f. (10)

Proof. Higher-priority messages can interfere with all instances that are pending in an
arbitrary interval [t̄, t̄ + ∆). By Lemma 5, the number of such instances is bounded by
ηr,i(∆ + R

t

i(mr) − ϵ), each one delaying for up to δt
i(mr). ◀

With Lemmas 11, 12, and 13 in place, we have all the interference components to
instantiate a response-time bound under the HIGH_PRIORITY policy, which we present later
in Theorem 15.

FIFO policy. Under the FIFO policy, all messages of a middleware-level thread τ t
i are handled

in a single queue of size MF
i . Since the tie-break policy for messages with equal priority under

HIGH_PRIORITY is FIFO too, intra-thread message interference I intra
i,z (∆) can be bounded as

Iep
i,z(∆) in Lemma 11, but considering MF

i in place of MHP,j
i , and using set τ t

i in the union of
Lemma 10 instead of epi(mz).

Response-time bound. We provide the response-time bound by proceeding in two steps.
First, we bound the start time of an arbitrary message instance m′

z under analysis, i.e., the
time in which the middleware-level thread starts serving non-preemptively m′

z, locally to
the middleware-level thread under consideration. However, note that m′

z can still suffer
thread-level and inter-thread message interference due to higher-priority threads. Later,
we bound the response time by leveraging the start-time bound and the fact that once m′

z

started being served, it cannot experience intra-thread message interference.
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Theorem 14 bounds the start-time of an arbitrary message instance m′
z in a middleware-

level thread τi.

▶ Theorem 14. Consider an arbitrary instance m′
z of message mz running in a middleware-

level thread τi released at a time A. If S∗ is the least positive solution (if any) of the following
inequality

sbfk(S∗) ≥ ϵ + I intra
i,z (S∗) + Ithread

i,z (S∗) + I inter
i,z (S∗), (11)

then m′
z starts being processed in the middleware-level thread no later than time A + S∗.

Proof. By Lemmas 6 and 8, Ithread
i,z (S∗) and I inter

i,z (S∗) bound the thread-level and inter-
thread message interference, respectively. The intra-thread message interference is bounded
by I intra

i,z (S∗) due to Lemmas 11, 12 and 13, if the middleware-level thread adopts the
HIGH_PRIORITY policy, or Lemma 11 (slightly modified as suggested above) if the FIFO
policy is used. If S∗ satisfies Equation (11), then the service time sbfk(S∗) supplied by
core ck in any interval of length S∗ is enough to satisfy the computational demand of the
whole interference to m′

z in the same interval. Therefore, being the middleware-level thread
work-conserving (rule R8), m′

z starts being served in the middleware-level thread no later
than time A + S∗ and the theorem follows. ◀

Finally, Theorem 15 provides a response-time bound R∗.

▶ Theorem 15. Consider an arbitrary instance m′
z of message mz processed by a middleware-

level thread τ t
i released at a time A. If S∗ is defined as in Theorem 14 and R∗ is the least

positive solution (if any) of the following inequality

sbfk(R∗) ≥ ϵ + I intra
i,z (S∗) + Ithread

i,z (R∗) + I inter
i,z (R∗) + δt

i(mz), (12)

then m′
z completes no later than A + R∗.

Proof. By Theorem 14, m′
z starts being served no later than time A + S∗. After that, due to

rule R5, it starts being processed non-preemptively in the middleware-level thread and it does
not suffer intra-thread interference anymore. Hence I intra

i,z (S∗) bounds the overall intra-thread
interference suffered by m′

z in [A, A + R∗). Inter-thread and thread-level interference in
the same interval are bounded by I inter

i,z (R∗) and Ithread
i,z (R∗), respectively. If R∗ satisfies

Equation (12), then the service time sbfk(R∗) supplied by core ck in any interval of length
R∗ is enough to satisfy the computational demand of the whole interference suffered by m′

z,
plus the time δt

i(mz) to process m′
z itself. Hence, the theorem follows. ◀

Response-time bounds for the flow-controller and listener threads required to compute the
DDL (see Equation (1), terms Rf

i (mz) and Rl
j(mz)) can be computed with the results

presented in this section, considering either the HIGH_PRIORITY or FIFO policy for the flow
controller, and the FIFO policy for the listener.

5.2 Arrival-curve propagation
The DDL bound derived in the previous section is based on the knowledge of the arrival
curves of the various threads in the system. Using the standard arrival curve propagation
approach of CPA [32], they can be derived from the externally-provided arrival curves ηp

i (∆)
of publisher threads τp

i ∈ Γp, response-time bounds, and network propagation delay, if any,
in the path from the source to the destination.
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As discussed in Section 4, a message mz(τp
i , θj) is identified by its publisher τp

i and
topic θj . Furthermore, the per-message arrival curve depends on the number of messages wj

i

published by each instance of the publisher to θj . The arrival curve propagation process is
shown in Figure 4. The first step is to compute the arrival curve of a message mz in the
flow-controller thread τ f

x starting from the arrival curve of its publisher and the number of
message instances sent in each publisher instance to θj . This can be computed as:

ηf
z,x(∆) = ηp

i (∆ + R(τp
i ) − ϵ) · wj

i , (13)

where R(τp
i ) is a response-time bound for the publisher thread, which can be derived with

standard methods for response-time analysis under preemptive fixed-priority scheduling [38].
As shown in Figure 4, the message then passes through the network, with a delay δnet(mz),
and it is received by the listener thread τ l

y. The arrival curve of the message within the
listener thread is hence computed as:

ηl
z,y(∆) = ηf

z,x(∆ + R
f
x(mz) + δnet(mz) − ϵ). (14)

Finally, the arrival curve of the subscriber thread is obtained with an OR-activation
semantics [33, 32] by summing all the activations due to all messages mz ∈ M(θj), from the
topics θj ∈ Θ(τ s

q) to which the thread τ s
q subscribes to, i.e.,

ηs
q(∆) =

∑
θj∈Θ(τs

q)

∑
mz∈M(θj)

ηl
z,y(∆ + R

l
y(mz) − ϵ). (15)

5.3 Analysis summary and its applicability
Analysis summary. Algorithm 1 summarizes the analysis proposed in this paper for the
purpose of computing the DDL according to Equation (1). The pseudo-code relies on
global variables to store response-time bounds and their candidates (line 2). Then, function
compute_RT_bounds() needs to be called to populate the global variables Rf

x(mz) and Rl
y(mz)

with the response-time bounds of each message mz in the corresponding flow-controller and
listener threads, respectively.

The calculation leverages functions ResponseTimeBound_FlowController() (line 17) and
ResponseTimeBound_Listener() (line 27) that properly instantiate I intra

i,z (∆) as discussed in
Section 5.1, while I inter

i,z (∆) and Ithread
i,z (∆) are defined as in Lemmas 6 and 8 in both the cases.

As discussed in Section 5.1, the computation of the response-time bounds Rf
x(mz), Rl

y(mz)
(functions ResponseTimeBound_FlowController() and ResponseTimeBound_Listener())
cyclically depends on the existence of pre-existing response-time bounds R

f
x(mz), R

l
y(mz).

The dependency is broken by initializing the bounds to zero (line 6) and performing an
outer loop (lines 7-15) until a global fixed-point is reached (i.e., Rf

x(mz) ̸= R
f
x(mz) and

Rl
y(mz) ̸= R

l
y(mz) for each message mz) and performing arrival curve propagation (see

Section 5.2) inside the loop. Convergence is guaranteed by the fact that response-time
estimates (variables R

l
y(mz) and R

f
x(mz)) never decreases. Response-time bounds for

publisher and subscriber threads also need to be computed (according to standard fixed-
priority scheduling, line 13) inside the loop, updating global response time variables (as those
initialized in line 6) to be used in the arrival curve propagation process (e.g., Equation (13),
not detailed in the pseudo-code for brevity). When compute_RT_bounds() completes, the
global variables are configured to the correct response-time bound values, and the function
DDL(mz, δnet(mz)), at line 33 of the Algorithm 1, can be used to compute the DDL of a
given message mz according to Equation (1) by providing the network delay δnet(mz) as an
input parameter.
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Algorithm 1 Pseudo-code of the DDL analysis.

1: global variables ∀ θj ∈ Θ, mz ∈M(θj), define ▷ for each message in the system
2: Rf

x(mz), Rl
y(mz), R

f
x(mz), R

l
y(mz) to store response-time bounds and the corresponding candidates

3:
4: function compute_RT_bounds( )
5: ∀ θj ∈ Θ, mz ∈M(θj) : ▷ for each message in the system:
6: Rf

x(mz)← 0, Rl
y(mz)← 0, R

f
x(mz)← 0, R

l
y(mz)← 0

7: do
8: ∀ θj ∈ Θ, mz ∈M(θj) : ▷ for each message in the system
9: R

f
x(mz)← Rf

x(mz), R
l
y(mz)← Rl

y(mz)
10: FC_SCHED_POL ← scheduling policy of the flow-controller thread handling mz

11: Rf
x(mz)← ResponseTimeBound_FlowController(mz, FC_SCHED_POL)

12: Rl
y(mz)← ResponseTimeBound_Listener(mz)

13: compute response time bounds for application threads
14: perform arrival curve propagation ▷ see Section 5.2
15: while no more response-time bounds updates ∀ mz

16:
17: function ResponseTimeBound_FlowController(mz , FC_SCHED_POL)
18: switch FC_SCHED_POL do
19: case HIGH_PRIORITY:
20: Set I intra

x,z (∆)← Iep
x,z(∆) + I lp

x,z(∆) + Ihp
x,z(∆)

21: ▷ where Iep
x,z(∆), I lp

x,z(∆), Ihp
x,z(∆) are bounded as in Lemmas 11, 12, and 13

22: case FIFO:
23: Set I intra

x,z (∆) = Iep
x,z(∆) ▷ using Lemma 11

24: ▷ with MF
x in place of MHP,j

x , and with τ f
x in the union of Lemma 11 in place of epx(mz)

25: Compute S∗ using Theorem 14, compute R∗ using Theorem 15
26:
27: function ResponseTimeBound_Listener(mz)
28: Set I intra

y,z (∆) = Iep
y,z(∆) ▷ using Lemma 11

29: ▷ with MF
y in place of MHP,j

y , and with τ l
y in the union of Lemma 11 in place of epy(mz)

30: Compute S∗ using Theorem 14, compute R∗ using Theorem 15
31: return R∗

32:
33: function DDL(mz , δnet(mz)) ▷ to be called after compute_RT_bounds()
34: return Rf

x(mz) + δnet(mz) + Rl
y(mz)

Applicability. The analysis strategy we proposed makes our method applicable to several
practically useful scenarios.

Linux – SCHED_FIFO. A natural fit for our method is to analyze the timing behavior of
FastDDS-based applications running on the SCHED_FIFO scheduling class of Linux, which
provides a fixed-priority scheduler fulfilling the assumptions of our model. In this case,
each core provides the full supply to the scheduled applications, since no reservation-based
mechanism is provided. Hence, sbfk(∆) = ∆, ∀k.

Linux – SCHED_DEADLINE and QNX APS. Thanks to the supply-bound function ab-
straction, our analysis is suitable also for being applied to systems using the SCHED_DEADLINE
scheduler of Linux, a reservation-based scheduler. Under SCHED_DEADLINE, each thread can
be individually isolated from a temporal perspective by associating it with a budget and period
pair [1, 11]. The corresponding definition for sbfk(∆) is available in the literature [10, 15, 40].
Thanks to the temporal isolation, Ithread

i,z (∆) = 0 and I inter
i,z (∆) = 0. Furthermore, our

analysis also generalizes to the QNX APS reservation-based scheduler [6, 22], by considering
only threads allocated to the same APS partition of the thread under analysis when deriving
Ithread

i,z (∆) and I inter
i,z (∆).

ECRTS 2023
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Processing chains and ROS. Thanks to the compositionality of our approach, our analysis
can be used to study the end-to-end response-time of data-driven distributed applications [7,
29, 64, 65]. Furthermore, our approach makes few assumptions on how application-level
threads are scheduled, making it easily extensible to work with methods to study the
response-time of processing chains using ROS 2 [13, 17], which leverages the DDS as a
lower-layer middleware and hence it is a practical use case for the DDS. However, none of
the analyses for ROS 2 currently available in the literature provides a method to bound the
DDS-related delay. For example, the analysis in [17] for ROS 2 models the delay due to
the DDS as a single parameter and suggests estimating it empirically. The analysis of this
paper (Equation (1)) presents the first analytical solution to provide a theoretically-sound
bound on the single-parameter DDS-related delay of [17], which can therefore be used as a
complement of previous work on ROS 2 processing chains.

6 Evaluation

First, we evaluated our analysis on a case study based on the WATERS 2019 Challenge by
Bosch [30], which consists of a representative autonomous driving application. Then, we
report on a comparison between the analysis results and actual measurements on a real
platform running FastDDS and a relatively simple application.

6.1 WATERS 2019 Challenge case study
The model for the Challenge provides parameters such as periods, worst-case execution
times, and data exchanged among threads (i.e., shared labels) for nine threads. While the
challenge model was not designed to work with the DDS, the target application is a good fit
to work with a pub/sub paradigm. Figure 5 illustrates how the Challenge application was
adapted to work with the DDS. Shared labels were modeled as topics (represented by ellipses)
having the same payload size as labels, with the following meaning: when a task writes
on a label is publishing messages on that label, i.e., topic, and a task reading on a label is
receiving messages from that topic. Threads performing only reads on labels were considered
as subscribers with data-driven activation based on the subscription to the corresponding
topics (e.g., see the DASM task). For threads that are both reading and writing labels (LOC,
EKF, and PLAN), two sub-threads were identified, representing the subscriber and a publisher
(denoted in the figure with the prefixes “S_” and “P_” respectively). In this way, the original
periods of the Challenge were preserved for the publishers. Given the original WCET ei of
the challenge model, individual WCETs of the corresponding publisher and subscriber thread
were derived as epub

i = ei · α and esub
i = ei · (1 − α), with α ∈ [0, 1]. The other threads were

left unaltered. The parameter α is introduced to split the WATERS Challenge’s threads into
publisher-subscriber pairs and can be used to regulate how much computation time to assign
to publish and subscribe parts of each thread.

Message delays in the flow-controller and listener. To run the analysis, it is necessary to
know the worst-case delays δf(mz) and δl(mz) to process a message in the flow-controller
and listener thread, respectively. To estimate such parameters, we developed a FastDDS
application consisting of a publisher, its flow-controller, a subscriber, and its listener. The
two application-level threads communicate through a single topic, using UDP through the
loopback interface. The application was executed on an 8-core Dell Optiplex 7070 machine
running Ubuntu 20.04. The flow-controller and listener threads were mapped to two different
cores with the highest priority. Each message was processed 50000 times by each middleware
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thread. Middleware threads were configured to collect data about the execution time of each
processed message. Figure 6 illustrates the results. For each payload size (x-axis) used in the
WATERS 2019 Challenge, the graph shows the minimum, maximum, average, and standard
deviation of message delays (y-axis). Both graphs show the same trend. For payload sizes
≤ 24kB, the execution time trend is fairly constant and does not exceed 125µs and 200µs
for flow-controller and listener messages, respectively. As payload size exceeds loopback
MTU (64kB), the fragmentation and reassembly of UDP packets was found to cause relevant
overheads, affecting the processing time of the messages.

Analysis results. Next, we discuss the results of the analysis of this case study, which
was implemented using the pyCPA framework [25]. The priorities of publishers were set
according to rate-monotonic. In this case study, at most one thread publishes on each
topic. Therefore, we assign to each topic the same priority of the corresponding publisher
(which is then inherited by each message sent through the topic). Whenever a publisher
publishes on multiple topics, the topic (i.e. message) associated with a smaller payload size
is assigned a higher priority. Subscribers S_loc, S_EKF, S_plan inherited the priority of
the corresponding publishers, while S_DASM priority was set to the highest priority in the
system because of providing the application’s output. We set δnet(m) = 0 since we studied
threads running on the same computing node. We evaluated the analysis on a vast range
of configurations, where multiple design-level parameters were varied: (i) the task-to-core
assignment, (ii) the priorities of application-level and middleware-level threads, (iii) the
number of flow-controllers and the topics-to-flow-controller assignments, (iv) the message
priorities in the flow-controller threads.

Among them, we selected four relevant system configurations (with α = 0.95) and we
discuss their trade-offs:
(A) A configuration in which each publisher has its own flow-controller, and all the threads

are exclusively assigned to a core, and no thread-level interference can occur;
(B) A configuration with eight flow-controllers, where flow-controllers and listeners are in

the same core of their publishers and subscribers, respectively;
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(C) A configuration with two flow-controllers, in which one flow-controller manages messages
with lower payload ({1, 3, 5, 24} kB), while the other handles messages with higher
payload ({500, 750, 1500} kB).

(D) A configuration with one flow-controller handling all messages, allocated on a dedicated
core.

In (C) and (D), listeners are allocated to the same core of corresponding subscribers. For
each configuration, Figure 7 shows the DDL (y-axis) for each message (x-axis).

Configuration A. Figure 7 (A) shows the results of the configuration, where threads
execute exclusively on a core. Thus, a message can only suffer interference due to messages
within the same flow-controller thread, which occurs for publishers sending multiple different
messages. We considered two scenarios for the HP and F policies of the flow-controller. In this
configuration, both sending policies found not to have any significant effects on the DDL. For
the vchl_stat_plan message, the F policy generates a slightly higher DDL than the HP, due
to the fact that, under HP, this message has the highest priority within the flow-controller.

Configuration B. In this configuration, we evaluated the effects of the relative priority
between a publisher and its flow-controller thread. To this end, we considered four different
cases in Figure 7 (B): (i) the HP policy of the flow-controller (settings 1-HP and 2-HP),
(ii) the FIFO policy of the flow-controller (1-F and 2-F), (iii) flow-controllers with higher
priorities than publishers (1-HP and 1-F), (iv) flow-controllers with lower priorities than
publishers (2-HP and 2-F). When flow-controllers have a high priority, results show the same
behavior and same values of Figure 7 (A). When we consider lower-priority flow-controllers
in the cases 2-HP and 2-F, the DDL increases for each message that can suffer from the
publisher execution interference. The longest DDLs (16.5ms for 2-HP and 17ms for 2-F) are
observed for the occ_grid message, with a 3x latency increment w.r.t. (A).

Configurations C and D. Figures 7 (C) and 7 (D) show the results of the configurations
with two and one flow-controller, respectively. Scenarios 1-HP-L>S and 1-F-L>S consider
the HP and FIFO policies of the flow-controllers when listeners have higher priorities than
their subscribers. Scenarios 2-HP-L<S and 2-F-L<S consider listeners with lower priorities
than their subscribers. Considering 1-HP-L>S and 2-HP-L<S, the configuration in inset
(D) leads low-priority messages (e.g., ln_bnd, pose, dpth_est) to suffer from a significant
interference from the processing of high-priority messages compared to configuration in inset
(C). Moreover, due to the non-preemptiveness of the sending operation, for each message, the
DDL of the configuration (D) always accounts the time needed to process the highest-payload
message (cloud message, with size 1500kB). Differently, in configuration (C), lower-payload
messages just suffer at most from of non-preemptiveness processing delay due to messages
with size 24kB. This is an advantage due to having two flow-controllers that manage different
data flows. In both configurations, lower-priority listeners cause larger DDL for all messages
due to subscriber-related interference.

6.2 Comparing analysis bounds with measured DDLs
Next, we compare the results of our analysis with empirical measurements collected from
a real FastDDS application executed on the previously mentioned Optiplex 7070 platform,
running Ubuntu 20.04. The considered application consists of a publisher τp

1 , with its flow-
controller τ f

2, and a subscriber τ s
4, with its listener τ l

3, exchanging data over three different
topics (θ1, θ2, θ3). Messages (named m(θ1), m(θ2), m(θ3)) have the same payload size
(1kB). Message delays are set according to the measurements reported in Figure 6 for 1kB

payloads. Threads τp
1 and τ f

2 are allocated to the same core c1 and assigned to the two
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highest priorities, with τ f
2 having higher priority than τp

1 . τ s
4 and τ l

3 are mapped, respectively,
to cores c3 and c2, and set with the highest priority in their respective core. τp

1 is configured
as a periodic thread with period 2ms. Therefore, it is characterized by an arrival curve
ηp

1(∆) = ⌈ ∆
T ⌉. On the Optiplex platform, middleware threads of the FastDDS application are

configured to measure the DDL for each message over 50000 samples. We tested two different
configurations: Conf. 1), in which messages in the flow-controller are scheduled under FIFO
policy; Conf. 2) in which the flow-controller schedules messages under the HIGH_PRIORITY
policy and topics are assigned to a unique priority such that lower topic subscript identifiers
indicate higher priority values. Figure 8 shows the DDL (y-axis) for each message (x-axis)
obtained through measurements and by the analysis for both configurations.

Conf. 1). Under FIFO policy, each flow-controller message can interfere with others. Our
analysis accordingly computes the same DDL bound (5446us) for all of them. Comparing
the DDL bound with the measured values on the Optiplex platform we can observe that
values do not exceed the DDL bound found by the analysis, corroborating its validity.

Conf. 2). Under HP policy, both the analysis and the measurements on the Optiplex
platform show DDL values that depend upon the message priority. Moreover, we can observe
that for the lowest priority message (i.e., m(θ3)), the DDL bound of the analysis equals the
DDL bound found in the Conf. 1). Also in this case, empirical DDL values do not exceed
the DDL bounds found with the analysis.

In Table 2, we reported the relative distance, in percentage, between the DDL bound
provided by the analysis and the measured value, showing that the DDL bounds found are
tight for the considered application.

ECRTS 2023
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Table 2 Table of percentage relative distances: measurements vs. analysis bound.

Message Configuration (1) FIFO Configuration (2) HIGH_PRIORITY
m(θ1) 6.3 % 14.5 %
m(θ2) 11.1 % 10.7 %
m(θ3) 6.9 % 7.7 %

7 Related Work

The literature regarding the real-time aspects of DDS is quite limited. To the best of our
knowledge, this is the first attempt to model the DDS from a real-time perspective and
provide real-time analysis for DDS-based communications.

Most of the previous research on DDS focused on empirical performance measurement.
For instance, Bellavista et al. [8] compared the DDS implementation OpenSlice with Connext-
DDS by Real-Time Innovations [54]. Krinkin et al. [36] proposed a framework to assess
the effectiveness of various DDS implementations in terms of message transport latency
and throughput. Other works attempted to suggest potential improvements for DDS imple-
mentations. For example, Choi et al. [19] studied a real-time DDS setup over specialized
packet-switching ASICs to enable Software Defined Networking (SDN). Peeck et al. [50]
presented a UDP-based protocol for effective error correction with integrity guarantees that
considers the DDS as the middleware for data-centric embedded systems. Agarwal et al. [2]
proposed the integration of a DDS implementation with a TSN protocol for real-time data
transfers. Stevanato et al. [62] proposed a reference architecture for implementing virtualized
DDS communications in a hypervisor-based multi-domain system. Finally, Scordino et
al. [56] implemented in hardware some DDS functionalities. Other works considered other
middlewares, e.g., OpenMP [58, 63], ROS 2 [3, 17, 20, 64, 66], the ROS-based framework
Apex.OS [51], and RT-Appia [53]. However, none of the works addressing the analysis of
ROS 2 provides analytical methods to bound the data-delivery latency of the DDS. Empirical
evaluations of ROS 2 over different DDS implementations have been carried out by Maruyama
et al. [41] and Kronauer et al. [37], providing guidelines on designing ROS 2 applications to
minimize latencies.

8 Conclusion and Future Work

In this paper, we derived a compositional model for studying the timing of the DDS standard
and we instantiated it for FastDDS. We inspected the FastDDS documentation and source
code to build an accurate model capable of capturing the FastDDS-specific timing-related
effects, and we corroborated our findings by running validation experiments on an actual
FastDDS system. Building on the model, we derived an analysis to bound the data-delivery
latency of messages. We evaluated our analysis based on the WATERS 2019 Industrial
Challenge showing how thanks to our analysis, it becomes easily possible to compare a vast
range of configurations without the need to deploy them on a real system.

Furthermore, we compared analysis results with actual measurements on a real plat-
form running FastDDS and a relatively simple application, showing the tightness of our
analysis for the specific use case. The proposed analysis will enable system designers to
configure DDS-based systems, guiding choices such as thread-to-core allocation, priorities,
and reservation budgets in a timing-constraints-driven perspective. It will set the foundation
to account for DDS-related delays in analysis-driven orchestration algorithms, which will
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be the subject of future work. Other directions for future research include combining this
analysis with other analysis techniques [47] to improve the analysis precision, the holistic
consideration of scheduling effects due to the DDS with OS overheads [24], I/O-related
contention delays [59, 71], and network delays [14, 18, 44, 52] with special emphasis on
Time-Sensitive Networking [49].
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Abstract
Real-time systems require a formal guarantee of timing-constraints, not only for individual tasks
but also for data-propagation. The timing behavior of data-propagation paths in a given system is
typically described by its maximum reaction time and its maximum data age. This paper shows
that they are equivalent.

To reach this conclusion, partitioned job chains are introduced, which consist of one immediate
forward and one immediate backward job chain. Such partitioned job chains are proven to describe
maximum reaction time and maximum data age in a universal manner. This universal description
does not only show the equivalence of maximum reaction time and maximum data age, but can
also be exploited to speed up the computation of such significantly. In particular, the speed-up for
synthesized task sets based on automotive benchmarks can be up to 1600.

Since only very few non-restrictive assumptions are made, the equivalence of maximum data age
and maximum reaction time holds for almost any scheduling mechanism and even for tasks which
do not adhere to the typical periodic or sporadic task model. This observation is supported by a
simulation of a ROS2 navigation system.
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sensor to an actuator, where the first task reads the sensor value (cause), the second task
processes the data, and the third task produces an output for the actuator (an effect is
triggered). Timing properties of such cause-effect chains must be validated to ensure system
safety.

Typical metrics to describe end-to-end timing properties are maximum reaction time
(MRT) and maximum data age (MDA). The MRT is the longest time interval from an
external cause until the earliest time where this external cause is fully processed (also called
the maximum button to action delay). The MDA is the longest time interval starting from
sampling a value and ending at an actuation that takes place based on that sampled data
(also called the data freshness). Due to their importance, multiple approaches to calculate or
bound MRT or MDA have been provided [2, 3, 6, 8–11,13,17,24,26].

However, the relation between the MRT and MDA values is less analyzed. This is kind of
surprising, since answering the questions if, how, and in which scenarios the MRT and MDA
values are related is interesting – both from a practical perspective (since it may be sufficient
to analyze one metric instead of two) and from a research perspective (since analysis methods
for one metric may also be applied when analyzing the other). Hence, in this work, we focus
on such relations between MRT and MDA. The strongest analytical result known has been
provided by Günzel et al. [13], showing that the MRT is an upper bound for the MDA.

Nonetheless, empirical observations suggest a stronger relation. More specifically, the
AUTOSAR Timing Extensions [1] provide an important observation about the relation
between MRT and MDA, namely, that “without over- and undersampling, age and reaction
are the same” [1, Section 7.2, p. 149]. However, while this observation seems to imply that
MRT and MDA can differ for systems with over- or undersampling, recent measurements
in Robot Operating System 2 (ROS2) show that the observed MRT and MDA always
coincide [27]. Hence, it is unclear in which scenarios MRT and MDA coincide. Even more,
while both observations suggest a strong relation between MRT and MDA, no proof for such
a relation is provided.

Hence, in this paper, we further investigate MRT and MDA through analytical discussion
to determine if, how, and in which scenarios the MRT and MDA values are related. Specific-
ally, we formally prove that they are equivalent after a warm-up period, i.e., after the data
passes the complete cause-effect chain once. This insight allows the verification of timing
constraints for both metrics at the same time. Moreover, analytical results in the literature
for one metric can be utilized for the other one.

We build on the established result [9, 13] that for each cause-effect chain MRT and MDA
can be calculated based on the length of the related job chains; that is, the time interval
between the moment the first job in the chain reads data and the moment the last job in
the chain writes data. On a high level, our idea is to first examine the job chains that must
be considered for the MRT; that is, the job chains from the first task in the chain (i.e., the
sensor) to the last (i.e., the actuator). In the next step, we consider a chain comprised of two
sub-chains, both starting from the second task in the chain – one going back to the sensor
and one going forward to the actuator. We call such a chain a p-partitioned job chain, where
p denotes the position of the task in the chain (in this case, p = 2). We show that one of
these 2-partitioned job chains has at least the same length as the job chain that determines
the MRT. We continue by induction over the tasks in the chain, showing that the MRT is
upper-bounded by the MDA. Afterwards, we similarly show that the MDA is upper-bounded
by the MRT by starting from the last task in the chain.
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Contributions. We show the equivalence of MRT and MDA while making only very few non-
restrictive assumptions regarding tasks, communication, and scheduling model. Therefore,
our results apply for a large variety of systems. Specifically, our results can be applied
for but are not limited to periodic or sporadic tasks and implicit communication or logical
execution time (LET) [15]. The underlying scheduler may be (i) a job-level or task-level
static priority scheduler (e.g., EDF and rate-monotic, respectively), (ii) work-conserving or
non-work-conserving, and (iii) preemptive or non-preemptive. Furthermore, jobs may be
executed on different processing units (e.g., on different electronic control units (ECUs)). In
detail, we make the following technical contributions:

In Section 4, we define p-partitioned job chains, where p is an integer value not larger
than the number of jobs |E| in the evaluated job chain. We show that MRT and MDA
can be expressed as 1-partitioned job chains and E-partitioned job chains, respectively.
In Section 5, we discuss the equivalence between MRT and MDA using partitioned job
chains and show that the timing behavior is independent of p, i.e., any arbitrary p can be
chosen to compute MDA and MRT.
The implication of our results in practice is discussed in Section 6.
We discuss how to apply our results to a reduced version of MRT and MDA in Section 7.1
and how this equivalence can be transferred to a definition of MRT and MDA based on
valid job chains Section 7.2.
We evaluate our results considering randomly generated periodic tasks, communicating
via Logical Execution Time (LET) [15] in Section 8. In particular, we show that by the
right choice of p the required time for computation is reduced significantly.
To validate our theoretical results, we examine MRT, MDA on a ROS2 system with
non-periodic tasks under implicit communication in Section 9.

2 System Model and Problem Definition

This section introduces the definitions and notations for task model, communication model,
and cause-effect chains, as well as our problem definition. For our analysis, a very general
task and communication model with very few assumptions is sufficient. Yet, we introduce
the notion of periodic and sporadic tasks as well as the communication policies implicit
communication and logical execution time (LET), as they are utilized to provide intuitive
examples, in the empirical evaluation with synthesized tasks sets in Section 8, and for the
case study in Section 9. Our notation is summarized in Table 1.

Jobs and Tasks. A job is a program instance that produces output based on its input.
The aggregation of all jobs of the same program is called a task, denoted by τ . We denote
the (countably many) jobs of task τ by (τ(m))m∈N+ , and denote the induced ordering by
τ(i) ≼ τ(j) if and only if i ≤ j. The set of all tasks in the system is denoted by T.

For our analysis, we need no further assumption on the job releases. Specifically, we make
no assumptions regarding the first time a job of a task arrives or on the inter-arrival pattern
of jobs. However, the most common task models, namely the periodic and the sporadic
model, both fulfill our assumptions.

A periodic task τ is described as τ = (Cτ , Tτ , ϕτ ) ∈ R3, where Cτ ≥ 0 is the worst-case
execution time (WCET), Tτ > 0 is the period, and ϕτ is the phase of the task. The first job
τ(1) of τ is released at time ϕτ and subsequent jobs are released every Tτ time units, i.e.,
τ(m) is released at time ϕτ + (m − 1)Tτ . Every job of τ executes for at most Cτ time units.

ECRTS 2023



10:4 Equivalence of Max. Reaction Time and Max. Data Age for Cause-Effect Chains

Table 1 Notation in this work.

Variable Definition
T task set under analysis
τ ∈ T a task
τ(m), m ∈ N+ m-th job of task τ

≼ job ordering for jobs of one task
τ = (Cτ , Tτ , ϕτ ) periodic task
τ = (Cτ , Tτ ) sporadic task
re(J) time of read-event of a job J

we(J) time of write-event of a job J

E cause-effect chain under analysis
E any cause-effect chain (can be E or a sub-chain of E)
|E| number of tasks in E

E(i), i ∈ {1, . . . , |E|} i-th task of E

A sporadic tasks τ is described by the tuple τ = (Cτ , Tτ ) ∈ R2, where Cτ ≥ 0 is the
worst-case execution time (WCET), and Tτ > 0 is the minimum inter-arrival time between
two jobs. The release of two subsequent jobs of τ are separated by at least Tτ time units
and each job executes for at most Cτ time units.

Communication. Jobs communicate by receiving (reading) their input from a shared
resource and handing over (writing) their output to a shared resource. We denote the time
that the read-event of a job J takes place by re(J) ∈ R and the time that the write-event
of J takes place by we(J) ∈ R. We assume the following two requirements are met:

(R1) For each task τ ∈ T, the read- and write-events of its jobs are ordered in the sense
that re(τ(m)) < re(τ(m + 1)), we(τ(m)) < we(τ(m + 1)), and re(τ(m)) ≤ we(τ(m)) for
all m ∈ N.
(R2) The sets {re(τ(m)) | m ∈ N} and {we(τ(m)) | m ∈ N} have no accumulation point,
i.e., the number of read- and write-events in each bounded time interval is finite.

These not very restrictive requirements are fulfilled by commonly considered communica-
tion semantics, e.g., for logical execution time and implicit communication.
Logical Execution Time (LET): Under logical execution time [15], each task τ is assigned

an arbitrary deadline Dτ , and the read-event and write-event of each job J of τ is set to
its release time rJ and its absolute deadline rJ + Dτ , respectively.

Implicit Communication: Under implicit communication, each job has its read-event at the
first time that it is executed, i.e., when the job starts, and the job has its write-event at
the last time it is executed, i.e., when the job finishes.

Cause-effect chains. A cause-effect chain E = (τ1 → τ2 → · · · → τk), with k ∈ N, describes
the path of data through different programs by a finite sequence of tasks τi ∈ T. The
number of entries in the sequence E is denoted as |E| and E(i) is the task at the i-th
entry of E for i ∈ {1, . . . , |E|}. This definition of cause-effect chains is inspired by event-
chains of the AUTOSAR Timing Extensions [1], which represent chains of more general
functional dependency. We assume implicit sampling, where the sampling for a cause-effect
chain E happens at the read-event of each job of E(1). However, we can easily model
any kind of sampling by adding a sampling task τ sample to the system, where each job
τ sample(1), τ sample(2), . . . reads and writes data at a time when the sampling happens.
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If the data dependency is described by a directed acyclic graph (DAG) with several sources
and sinks, we follow the typical approach from the literature and analyze each cause-effect
chain (i.e., path through the DAG from a source to a sink) individually.

Problem definition. For a given cause-effect chain E, we discuss the equivalence of its
maximum reaction time and maximum data age. Specifically, we answer the question: To
which extent can the maximum reaction time and maximum data age (and their variations)
be derived from each other? We answer this question for large variety of systems, including
periodic or sporadic task systems with LET or implicit job communication.

3 Maximum Reaction Time & Maximum Data Age

This section specifies the analyzed End-to-End latencies, namely, the maximum reaction
time (MRT), which is the length of the longest time interval from an external cause until the
earliest time where this external cause is fully processed (i.e., the maximum button to action
delay), and the maximum data age (MDA), which is the length of the longest time interval
starting from sampling a value until an actuation based on that sampled value takes place
(i.e., the data freshness). The definitions are based on job chains which represent the path
of data through the schedule. We recap the job chain definitions for arbitrary cause-effect
chains E of the task set T as stated by Günzel et al. [13].

▶ Definition 1 (Job chain [13]). Let E be a cause effect chain of the task set T. A job chain
c = (J1, . . . , J|E|) for E is a sequence of jobs where the following two conditions are fulfilled:

Ji is a job of task E(i) for all i ∈ {1, 2, . . . , |E|}.
Each job in the chain reads the data not before it was written by the previous job in the
chain. That is, we(Ji−1) ≤ re(Ji) for all i ∈ {2, 3, . . . , |E|}.

The length of a job chain c is the length of the time interval between the read-event of
the first job J1 in the chain and the write-event of the last job J|E| in the chain, i.e.,

ℓ(J1, J2, . . . , J|E|) = we(J|E|) − re(J1). (1)

We denote the i-th job in c as c(i) for i ∈ {1, 2, . . . , |E|}, hence, ℓ(c) = we(c(|E|)) − re(c(1)).
Like in previous work [9,13], our analysis for MRT and MDA is built on two related types

of jobs chains: Immediate forward job chains and immediate backward job chains.

▶ Definition 2 (Immediate forward job chain [13]). Let E be a cause-effect chain for task set
T. A job chain c = (J1, J2, . . . , J|E|) for E is immediate forward if for all i ∈ {2, . . . , |E|} the
job Ji is the earliest job of task E(i) with read-event no earlier than the write-event of Ji−1.
That is, Ji is the earliest job that fulfills the properties from Definition 1.
We denote the m-th immediate forward job chain for E (i.e., J1 = E(1)(m)) by c⃗E

m, m ∈ N+.

▶ Definition 3 (Immediate backward job chain [13]). Let E be a cause-effect chain for task set
T. A job chain c = (J1, J2, . . . , J|E|) for E is immediate backward if for all i ∈ {|E| − 1, . . . , 1}
the job Ji is the latest job of task E(i) with write-event no later than the read-event of Ji+1.
That is, Ji is the latest job that fulfills the properties from Definition 1.
For m ∈ N+, if there is an immediate backward job chain with J|E| = E(|E|)(m), then we
call it the m-th immediate backward job chain ⃗cE

m.
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Figure 1 Cause-effect chain E = (τ1 → τ2 → τ3) for three tasks with implicit communication.
Forward arrows mark the job chains with first job τ1(1), the immediate forward job chain c⃗E

1 is
marked red. The dashed blue arrow marks the immediate backward job chain ⃗cE

6 starting at τ3(6).
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a⃗c1
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Figure 2 Cause-effect chain E = (τ1 → τ2 → τ3) with implicit communication. The immediate
forward augmented job chain a⃗c1 = (3, τ1(2), τ2(4), τ3(8), 29) is marked red, and the immediate
backward augmented job chain ⃗ac6 = (3, τ1(1), τ2(2), τ3(5), 21) is marked by a dashed blue arrow.

For an example system with three tasks and implicit communication, the forward arrows
in Figure 1 mark all job chains starting at the job τ1(1). The immediate forward job chain
starting at τ1(1) is marked red. The immediate backward job chain starting at τ3(6) is
marked with a dotted blue arrow.

To account for the time of the external activity (z) and the actuation (z′), we consider
augmented job chains.

▶ Definition 4 (Immediate forward augmented job chain [13]). Let m ∈ N+. We define the
m-th immediate forward augmented job chain for E by a⃗cm = (z, J1, . . . , J|E|, z′), where
z ∈ R is just after the read-event of the m-th job of task E(1), (J1, . . . , J|E|) is the (m + 1)-th
immediate forward job chain for E, and z′ is at the write-event of J|E|.

▶ Definition 5 (Immediate backward augmented job chain [13]). Let m ∈ N+. If ⃗cE
m−1

exists, then we define the m-th immediate backward augmented job chain for E by ⃗acm =
(z, J1, . . . , J|E|, z′), where z′ is just before the write-event of the m-th job of task E(|E|),
(J1, . . . , J|E|) is the (m−1)-th immediate backward job chain for E, and z is at the read-event
of job J1.

Examples of an immediate forward augmented job chain and an immediate backward
augmented job chain are illustrated in Figure 2. Note that ⃗acm can only be constructed if

⃗cE
m−1 exists. Moreover, if ⃗acm exists, then for all m̃ ≥ m, ⃗acm̃ exists as well. Our notation

related to job chains is summarized in Table 2.
MRT and MDA can be defined based on Definition 4 and Definition 5 directly. However,

if not all tasks in the chain are released at system start, data may be processed by some tasks
in the chain but not by all and no actuation based on this data can happen. For example, in
Figure 3 data written by τ1(1) is overwritten by τ1(2). Similarly, data written by τ1(2) is
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Table 2 Job chains and extensions defined in this paper.

Symbol Name Defined in
c Job chain Sec. 3, Def. 1
c⃗ Immediate forward job chain Sec. 3, Def. 2

⃗c Immediate backward job chain Sec. 3, Def. 3
a⃗c Immediate forward augmented job chain Sec. 3, Def. 4

⃗ac Immediate backward augmented job chain Sec. 3, Def. 5
pc Partitioned job chain Sec. 4, Def. 9

τ1

τ2

τ3

c⃗1
⃗c2

τ3(F3): First job of τ3
that processes data

τ1(F1): First job of τ1
that produces relevant data

Figure 3 Schedule for the cause-effect chain E = (τ1 → τ2 → τ3). Data arrives at job τ3(2). The
warm-up covers the white jobs. MRT and MDA of the gray jobs coincides.

used only by τ2(1) but never reaches the last task because τ2(2) overwrites the data written
by τ2(1). Hence, intuitively, only the gray jobs that process data that might be used in an
actuation should be considered when determining MRT and MDA. We say that the system
has warmed up when the complete chain processes data for the first time.

The first job of task E(|E|) that reads data processed by all jobs in E can be determined
by one immediate forward job chain, i.e., it is the last entry of c⃗1. The immediate backward
job chain based on that job exists and determines the first job of E(1) which processes data
that reaches task E(|E|). The procedure is summarized in Figure 3. We formalize this by
specifying the warm-up period of the system.

▶ Definition 6 (Warm-up). Let F ∈ N+ such that c⃗E
1 (|E|) is the F -th job of E(|E|). Then

we construct the immediate backward job chain ⃗cE
F and denote by F1, . . . , F|E| ∈ N+ the job

number of each job in ⃗cE
F , i.e., ⃗cE

F = (E(1)(F1), . . . , E(|E|)(F|E|)).
1

The warm-up covers all jobs of E(i) before E(i)(Fi), i = 1, . . . , |E|. In particular, those
jobs are not considered for the maximum reaction time or maximum data age.

Only augmented job chains with z no earlier than the read-event of E(1)(F1) should
be considered for the end-to-end latency. These are all a⃗cm with m ≥ F1 and all ⃗acm with
m ≥ F|E| + 1. For the following definitions, the length of an immediate forward or an
immediate backward augmented job chain is the length of the time interval from z to z′, i.e.,
ℓ(z, J1, . . . , J|E|, z′) = z′ − z.

1 The existence of the immediate forward job chain c⃗E
1 ensures that ⃗cE

F can be fully constructed, i.e.,
during the backwards construction a job that writes data early enough can always be found. This is
captured by Lemma 13 and not further discussed here to improve the reading flow.

ECRTS 2023
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▶ Definition 7 (Maximum reaction time). The maximum reaction time for E is defined as

MRT = sup
m≥F1

ℓ(a⃗cm) (2)

▶ Definition 8 (Maximum data age). The maximum data age for E is defined as

MDA = sup
m≥F|E|+1

ℓ( ⃗acm) (3)

In this work, for MRT the time from the external event z is included in the definition, as
it is also done by Feiertag et al. [10], Dürr et al. [9], and Günzel et al. [13]. For the MDA,
however, z′ is included by Günzel et al. [13] but not by Feiertag et al. [10] and Dürr et al. [9].
We refer to this definition as maximum reduced data age (MRDA). These definitions cover
slightly different scenarios: (i) The MRDA assumes that the actuation is directly triggered
by the write event of the last task in the chain, while (ii) the MDA assumes the actuation is
not directly triggered; thus, additional time for the actuation has to be included, which, in
the worst case, may happen directly before the next write event of the last task in the chain.
How MDA relates to MRDA is discussed in Section 7.1. Note, while not specifically stating
this, AUTOSAR [1] considers MDA, as explained at the end of Section 7.1.

The definitions of MRT and MDA are similar in the work by Günzel et al. [13]. However,
their calculation of MRT and MDA starts as soon as the augmented job chains become valid,
which potentially includes part of the warm-up period. We discuss in Section 7.2 how our
results can be extended to the definition of [13].

4 Partitioned Job chains

In this section, for a given task chain E, we define p-partitioned job chains (p ∈
{

1, 2, . . . , |E|
}

).
We show that these p-partitioned job chains allow maximum reaction time (MRT) and
maximum data age (MDA) definitions that are equivalent to the ones based on augmented
job chains stated in Section 3. In particular, a 1-partitioned job chain is equivalent to an
immediate forward augmented job chain and an |E|-partitioned job chain is equivalent to
an immediate backward augmented job chain. In Section 5, we utilize these p-partitioned
job chains to show the equivalence between MRT and MDA by discussing the difference of
p-partitioned and (p + 1)-partitioned job chains for p = 1, . . . , |E| − 1.

A p-partitioned job chain is a combination of (i) two subsequent jobs Jp and J̃p of task
E(p), (ii) an immediate backward job chain that starts at Jp, and (iii) an immediate forward
job chain that starts at J̃p. In Figure 4, the dashed chain pc2

1 is a 2-partitioned job chain
consisting of an immediate backward job chain with last entry τ2(1), an immediate forward
job chain with first entry τ2(2), and the connection between τ2(1) and τ2(2).

We start by formally defining partitioned job chains.

▶ Definition 9 (Partitioned job chain). Let p ∈
{

1, . . . , |E|
}

and m ∈ N+. Moreover, let

E
first

p = (E(1) → · · · → E(p)), and let E
last

p = (E(p) → · · · → E(|E|)). If ⃗c
E

first

p
m exists,

then we define the m-th p-partitioned job chain pcp
m by

pcp
m = (J1, . . . , Jp, J̃p, . . . , J̃|E|) (4)

where (J1, . . . , Jp) = ⃗c
E

first

p
m is the m-th immediate backward job chain for the cause-effect

chain E
first

p and (J̃p, . . . , J̃|E|) = c⃗
E

last

p

m+1 is the (m + 1)-th immediate forward job chain for
E

last

p . In particular, Jp = E(p)(m) and J̃p = E(p)(m + 1).
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τ1

τ2

τ3

τ4

0 2 4 6 8 10 12 14 16 18 20 22 24

pc3
1

pc2
1

Jp = J′
p

Jp+1 J̃p+1

J̃′
p

J̃′
p+1

Figure 4 Four tasks with cause-effect chain (τ1 → τ2 → τ3 → τ4) communicating via implicit
communication. The red line depicts the chain pc3

1 whereas the dashed red line depicts pc2
1. The

length of pc3
1 is upper bounded by the length of pc2

1. The blue job annotations illustrate the proof of
Lemma 12 (≥-relation).

The length of a partitioned job chain is ℓ(J1, . . . , Jp, J̃p, . . . , J̃|E|) = we(J̃|E|) − re(J1).
Since pc1

m is composed of c⃗E
m+1 and one additional job at the beginning (for the external

activity), it is equivalent to a⃗cm. Since pc
|E|
m is composed of ⃗cE

m and one additional job at
the end (for the actuation), it is equivalent to ⃗acm+1. For instance, in Figure 2 the chain
a⃗c1 is equivalent to the 1-partitioned job chain pc1

1 = (τ1(1), τ1(2), τ2(4), τ3(8)), and ⃗ac6 is
equivalent to the |E|-partitioned job chain pc

|E|
5 = (τ1(1), τ2(2), τ3(5), τ3(6)). Note that the

m-th |E|-partitioned job chain pc
|E|
m is equivalent to the (m + 1)-th augmented backward job

chain ⃗acm+1, i.e., the index is shifted by 1. Thus, their length is also the same:

▶ Corollary 10. For all m ∈ N+ the following two properties hold.
1. ℓ(pc1

m) = ℓ(a⃗cm).
2. pc

|E|
m exists if and only if ⃗acm+1 exists. If they exist, then ℓ(pc

|E|
m ) = ℓ( ⃗acm+1).

We restate the definitions of MRT and MDA using p-partitioned job chains.

▶ Definition 11 (MRT and MDA by partitioned job chains). The maximum reaction time
(MRT) and the maximum data age (MDA) of the cause-effect chain E can be expressed by
partitioned job chains as follows:

MRT = sup
m≥F1

ℓ(pc1
m) (5)

MDA = sup
m≥F|E|

ℓ(pc|E|
m ) (6)

5 Equivalence of MRT and MDA

In this section, we show the equivalence of maximum reaction time (MRT) and maximum data
age (MDA). More precisely, we prove that, for a given cause-effect chain E, the maximum
length of a p-partitioned job chain is the same for all p ∈

{
1, . . . , |E|

}
. Since MRT and

MDA can be expressed by 1-partitioned and by |E|-partitioned job chains, respectively, this
directly shows the equivalence of MRT and MDA.

We prove that the maximum length of a p-partitioned job chain is the same for all
p ∈

{
1, . . . , |E|

}
in two steps: (i) We show that for all p ∈

{
|E|, . . . , 2

}
the length of every

p-partitioned job chain is upper bounded by the length of a (p − 1) partitioned job chain.
This scenario is depicted in Figure 4, where the length of pc3

1 is upper bounded by the

ECRTS 2023
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τ1

τ2

τ3

τ4

0 2 4 6 8 10 12 14 16 18 20 22 24

pc2
2

pc3
1

J̃p+1 = J̃′
p+1

J̃pJp

J′
p+1

J′
p

Figure 5 Four tasks with cause-effect chain (τ1 → τ2 → τ3 → τ4) communicating via implicit
communication. The red line depicts the chain pc2

2 whereas the dashed red line depicts pc3
1. The

length of pc2
2 is upper bounded by the length of pc3

1. The blue job annotations illustrate the proof of
Lemma 12 (≥-relation).

length of pc2
1. (ii) Conversely, we show that for all p ∈

{
1, . . . , |E| − 1

}
the length of every

p-partitioned job chain is upper bounded by the length of a (p + 1)-partitioned job chain.
This is depicted in Figure 5, where the length of pc2

2 is upper bounded by the length of pc3
1.

One problem we have to consider during step (ii) is that some (p + 1)-partitioned job
chains may not be fully constructed. For example, if the first job of τ1 in Figure 5 would
be missing, then pc3

1 could not be fully constructed and there would be no 3-partitioned job
chain which provides an upper bound on the length of pc2

2. This, however, does not impact
our result, since we show that this scenario never occurs for p-partitioned job chains pcp

m

after the warm-up, i.e., if m ≥ Fp with Fp from Definition 6.
The following lemma indicates that p-partitioned job chains for different p can be used

equivalently for the computation of MDA and MRT according to their description by
partitioned job chains from Definition 11.

▶ Lemma 12. For all p ∈
{

1, . . . , |E| − 1
}

, we have

sup {ℓ(pcp
m) | m ≥ Fp} = sup

{
ℓ(pcp+1

m )
∣∣ m ≥ Fp+1

}
. (7)

To prove this lemma, we apply fundamental properties of immediate forward and imme-
diate backward job chains (which are part of the partitioned job chains). In particular:

If an immediate forward job chain c⃗ starts at or before another job chain c, then no job
of c can be before the job of c⃗ because in the forward chain always the earliest possible
job is chosen during construction.
If an immediate backward job chain ⃗c ends at or after another job chain c, then no job of
c can be after the job of ⃗c because in the backward chain always the latest possible job is
chosen during construction.

We formalize those two properties in the following lemma that we utilize to prove Lemma 12.
It is formulated for an arbitrary cause-effect chain E which can be E or a sub-chain of E.

▶ Lemma 13. Let E be a cause-effect chain in T, let c be a job chain for E, let c⃗ be an
immediate forward job chain for E, and let ⃗c be an immediate backward job chain for E.
1. If i ∈ {1, . . . , |E|} exists such that c⃗(i) ≼ c(i), then c⃗(j) ≼ c(j) for all j ∈ {i, . . . , |E|}.
2. If i ∈ {1, . . . , |E|} exists such that c(i) ≼ ⃗c(i), then c(j) ≼ ⃗c(j) for all j ∈ {1, . . . , i}.

The proof for Lemma 13 is provided in the appendix. We now provide the proof of
Lemma 12. We split the proof into two steps, showing the ≥-relation and the ≤-relation,
from which the equality directly follows.
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To proof idea for the ≥-relation is as follows. First, we pick any p-partitioned and the
related (p + 1)-partitioned job chain that have the job of E(p) in common. Second, we show
(i) that their immediate backward job chains both end at the same job of E(1), and (ii) that
the immediate forward job chain related to the p + 1-partitioned job chain ends not later
than the one related to the p-partitioned job chain. For instance, in Figure 4, pc3

1 and pc2
1

have job τ2(1) in common, both immediate backwards job chains end at τ1(1), and pc3
1 ends

at τ4(2) which is not later than the end of pc2
1 at τ4(3). Hence, ℓ(pc2

1) ≥ ℓ(pc3
1).

Proof of Lemma 12, ≥-relation. Let m ≥ Fp+1. We denote the jobs of the partitioned job
chain pcp+1

m by pcp+1
m = (J1, . . . , Jp, Jp+1, J̃p+1, . . . , J̃|E|). Let ξ ∈ N such that Jp is the ξ-th

job of E(p), i.e., E(p)(ξ) = Jp. We prove that the length of pcp+1
m is upper bounded by the

length of pcp
ξ = (J ′

1, . . . , J ′
p, J̃ ′

p, . . . , J̃ ′
|E|) by showing we(J̃ ′

|E|) − re(J ′
1) ≥ we(J̃|E|) − re(J1)

in two substeps: First, we show that J1 and J ′
1 are the same (i.e., J1 = J ′

1), and second,
that pcp+1

m finishes not later than pcp
ξ (i.e., J̃|E| ≼ J̃ ′

|E|). Important jobs of this proof are
illustrated in Figure 4.
Step 1 (J1 = J ′

1): By definition, Jp = J ′
p. Since (J1, . . . , Jp) and (J ′

1, . . . , J ′
p) are immediate

backward job chains with the same last entry, they coincide. Hence, J1 = J ′
1.

Step 2 (J̃|E| ≼ J̃ ′
|E|): Since (J1, . . . , Jp+1) is an immediate backward job chain, this means

that Jp = E(p)(ξ) is the latest job with write-event no later than the read-event of Jp+1.
Therefore, the write-event of the subsequent job of the same task, which is E(p)(ξ+1) = J̃ ′

p,
must be after the read-event of Jp+1, i.e., re(Jp+1) < we(J̃ ′

p).
The job J̃p+1 of E(p+1) subsequent to Jp+1 either has its read-event before we(J̃ ′

p) as well
(i.e., re(J̃p+1) < we(J̃ ′

p)) or is the earliest job of E(p + 1) with re(J̃p+1) ≥ we(J̃ ′
p). In both

cases J̃p+1 ≼ J̃ ′
p+1 as re(J̃ ′

p+1) ≥ we(J̃ ′
p). Since (J̃p+1, . . . , J̃|E|) and (J̃ ′

p+1, . . . , J̃ ′
|E|) are

both immediate forward job chains and J̃p+1 ≼ J̃ ′
p+1, we know J̃|E| ≼ J̃ ′

|E| by Lemma 13.

Combining Step 1 and 2, we get ℓ(pcp+1
m ) = we(J̃|E|)−re(J1) ≤ we(J̃ ′

|E|)−re(J ′
1) = ℓ(pcp

ξ).
Since (J1, . . . , Jp+1) is an immediate backward job chain and E(p + 1)(Fp+1) ≼ Jp+1, by
Lemma 13, E(p)(Fp) ≼ Jp holds as well. As Step 1 shows Jp = J ′

p = E(p)(ξ), we conclude
that ξ ≥ Fp. Hence, ℓ(pcp+1

m ) ≤ ℓ(pcp
ξ) ≤ sup

{
ℓ(pcp

η)
∣∣ η ≥ Fp

}
.

Since m ≥ Fp+1 is arbitrarily chosen, we obtain sup
{

ℓ(pcp+1
m )

∣∣ m ≥ Fp+1
}

≤
sup

{
ℓ(pcp

η)
∣∣ η ≥ Fp

}
, i.e., the relation ≥ holds for Equation (7) ◀

Similarly, we show the ≤-relation by picking any p-partitioned and the related (p + 1)-
partitioned job chain that have the job of E(p + 1) in common. Second, we show (i) that
their immediate forward job chains both end at the same job of E(|E|), and (ii) that the
immediate backward job chain related to the p + 1-partitioned job chain ends not later than
the one related to the p-partitioned job chain. For instance, in Figure 5, pc3

1 and pc2
1 have

job τ3(2) in common, both immediate forward job chains ends τ4(2), and pc3
1 ends at τ1(1)

which is not later then the end of pc2
2 at τ1(2). Hence, ℓ(pc2

2) ≤ ℓ(pc3
1).

Proof of Lemma 12, ≤-relation. Let m ≥ Fp. We denote the jobs of the partitioned job
chain pcp

m by pcp
m = (J1, . . . , Jp, J̃p, J̃p+1, . . . , J̃|E|). Let ξ ∈ N such that J̃p+1 is the ξ-th job

of E(p + 1), i.e., E(p + 1)(ξ) = J̃p+1.
As an additional step, we must show that ξ − 1 ≥ Fp+1 holds for the previous job of

E(p + 1)(ξ − 1). Assume for contradiction that ξ − 1 < Fp+1. Then ξ ≤ Fp+1. Therefore,
J̃p+1 ≼ E(p + 1)(Fp+1) holds. Since (E(1)(F1), . . . , E(|E|)(F|E|)) is an immediate backward
job chain, by Lemma 13 we obtain that J̃p ≼ E(p)(Fp). Furthermore, since J̃p = E(p)(m + 1)
by definition of pcp

m, we obtain m + 1 ≤ Fp, i.e., m < Fp which contradicts that m ≥ Fp.
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Since ξ − 1 ≥ Fp+1 and for Fp+1 an immediate backward job chain exists, the immediate

backward job chain ⃗c
E

first

p+1
ξ−1 can be fully constructed and pcp+1

ξ−1 exists. We now prove that the
length of pcp

m is upper bounded by the length of pcp+1
ξ−1 = (J ′

1, . . . , J ′
p+1, J̃ ′

p+1, . . . , J̃ ′
|E|), i.e.,

we show that we(J̃ ′
|E|) − re(J ′

1) ≥ we(J̃|E|) − re(J1). Specifically, we show J̃|E| = J̃ ′
|E| and

J ′
1 ≼ J1 in two individual steps. Important jobs of this proof are illustrated in Figure 5.

Step 1 (J̃ ′
|E| = J̃|E|): By definition, we have J̃ ′

p+1 = E(p + 1)(ξ) = J̃p+1. Since the
immediate forward job chains (J̃ ′

p+1, . . . , J̃ ′
|E|) and (J̃p+1, . . . , J̃|E|) both have the same

job as the first entry, these job chains coincide. In particular, J̃ ′
|E| = J̃|E|.

Step 2 (J ′
1 ≼ J1): Since (J̃p, . . . , J̃|E|) is an immediate forward job chain, the job J̃p+1 =

E(p+1)(ξ) is the earliest job with read-event no earlier than we(J̃p). Thus, the read-event
of E(p + 1)(ξ − 1) = J ′

p+1 must be before the write-event of J̃p, i.e., we(J̃p) > re(J ′
p+1).

For the job of E(p) previous to J̃p, which is Jp, we either have we(Jp) > re(J ′
p+1) as well,

or Jp is the latest job of E(p) with we(Jp) ≤ re(J ′
p+1). In both cases J ′

p ≼ Jp because
we(J ′

p) ≤ re(J ′
p+1). Since (J ′

1, . . . , J ′
p) and (J1, . . . , Jp) are both immediate backward job

chains and J ′
p ≼ Jp, we have J ′

1 ≼ J1 as well by Lemma 13.

Therefore, we obtain ℓ(pcp
m) = we(J̃|E|) − re(J1) ≤ we(J̃ ′

|E|) − re(J ′
1) = ℓ(pcp+1

ξ−1). We
already showed that ξ − 1 ≥ Fp+1, hence ℓ(pcp

m) ≤ ℓ(pcp+1
ξ−1) ≤ sup

{
ℓ(pcp+1

η )
∣∣ η ≥ Fp+1

}
.

Since m ≥ Fp is arbitrarily chosen, the relation ≤ holds for Equation (7) as
sup {ℓ(pcp

m) | m ≥ Fp} ≤ sup
{

ℓ(pcp+1
η )

∣∣ η ≥ Fp+1
}

. ◀

We have shown that p-partitioned job chains for different p can be utilized equivalently.
The equivalence of MRT and MDA follows directly by applying Lemma 12 multiple times.

▶ Theorem 14 (Equivalence). The maximum reaction time and maximum data age are
equivalent, i.e.,

MRT = sup {ℓ(pcp
m) | m ≥ Fp} = MDA (8)

for all p ∈
{

1, . . . , |E|
}

.

6 Implication in Practice

The provided result is much stronger than the observation made in the AUTOSAR timing
specification, namely, that “without over- and undersampling, age and reaction are the
same” [1, Section 7.2, p. 149]. Specifically, in Section 5 we show that MRT and MDA are
always the same. Since we only assume that each task releases a countably infinite number
of jobs, this equivalence holds for a variety of scenarios. This covers, for example:

Systems with over- and undersampling
Implicit communication or communication by logical execution time (LET)
Fixed-priority or Dynamic-priority schedulers
Tasks scheduled by the Robot Operating System 2 (ROS2), as demonstrated in Section 9
Synchronized or asynchronized distributed systems
Periodic or sporadic task systems

This implies that for many industrial applications MRT and MDA can be used and
analyzed equivalently. In particular, any guarantee for one metric holds for the other one as
well. Furthermore, end-to-end timing specification in industrial systems only needs to consider
one instead of two different latencies. This eases the verification of timing constraints.
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The model of p-partitioned job chains, introduced in Section 4, and the description of
MRT and MDA independent of p can be used to improve end-to-end latency analysis. For
instance, a significant speedup of the latency calculation of periodic tasks communicating
via LET can be obtained by choosing the right p, as demonstrated in Section 8.

7 Extension to Alternative Definitions

In this section we discuss how the results from Section 5 can be used for alternative definitions
of MRT and MDA. In particular, we discuss reduced end-to-end latencies used by Dürr et
al. [9] and Feiertag et al. [10] in Section 7.1, and we discuss a definition based on valid job
chains used Günzel et al. [13] in Section 7.2.

7.1 Maximum Reduced Data Age and Reaction Time
The reaction time definition by, e.g., Dürr et al. [9] and Feiertag et al. [10] coincides with the
maximum reaction time specified in Section 3. However, their definition of maximum data
age does not include the additional time between the last job in the chain and the actuation
(at time z′); they use MRDA instead. In this section, we discuss how our results can be
transferred to this alternative definition of the end-to-end latencies.

We start by defining the reduced length of a job chain providing a maximum reduced
reaction time (MRRT), analogously to the MRDA definition by Günzel et al. [13]. The MRT
assumes a similar scenario.

▶ Definition 15 (Reduced length). For an immediate forward or immediate backward
augmented job chain (z, J1, . . . , J|E|, z′), we define the reduced length ℓ∗ as the length of the
intermediate job sequence, i.e., ℓ∗(z, J1, . . . , J|E|, z′) = ℓ(J1, . . . , J|E|).

This MRDA definition assumes that the actuation is directly triggered by the write event
of the last task in the chain, while the MDA definition assumes that the actuation is based
on the calculated value but not triggered directly.

▶ Definition 16 (Maximum reduced data age). The maximum reduced data age (MRDA) is:
MRDA = supm≥F|E|+1 ℓ∗( ⃗acm).

Similarly, one can distinguish between the MRT, assuming a scenario where an external
cause happens at any time and is registered at the read-event of the first task in the chain,
and the MRRT, where read-event and cause happen at the same time.

▶ Definition 17 (Maximum reduced reaction time (MRRT)). We define the maximum reduced
reaction time (MRRT) as: MRRT = supm≥F1 ℓ∗(a⃗cm).

Since the reduced length can be computed from the length of a cause-effect chain by
removing the additional time at the beginning or at the end, there is the following relation
between MRT (MDA, respectively) and MRRT (MRDA, respectively).

▶ Theorem 18. Let ρ+(τ) be the maximal time between two subsequent read-events of a
task τ , and let ρ−(τ) be the minimal time between two subsequent read-events of a task τ .
Then the following two bounds hold:

MRT − MRRT ∈ [ρ−(E(1)), ρ+(E(1))] (9)
MDA − MRDA ∈ [ρ−(E(|E|)), ρ+(E(|E|))] (10)
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We omit the proof, as the relation directly follows from the definition. The above relations
can be utilized to transfer the statements from Theorem 14 to MRDA and MRRT. We note
that for periodic or sporadic systems MRT = MDA > MRDA holds, i.e., MRT ̸= MRDA
in all scenarios. In particular, AUTOSAR considers MDA since they observe that “without
over- and undersampling, age and reaction are the same” [1, Section 7.2, p. 149].

7.2 MRT and MDA Based On Valid Chains

In this section, we extend the equivalence results from the Section 5 to MRT and MDA as
defined by Günzel et al. [13] based on valid immediate forward and valid immediate backward
augmented job chains. In particular, valid job chains are defined in [13] as follows.

▶ Definition 19 (Valid [13]). Let (z, J1, . . . , J|E|, z′) be an immediate forward or immediate
backward augmented job chain. Moreover, let j ∈ N+ such that z = re(E(1)(j)), i.e., z is at
the read-event of the j-th job of E(1). Then (z, J1, . . . , J|E|, z′) is called valid, if and only if j ≥
vE , where vE be the smallest integer such that re(E(1)(vE +1)) > maxi∈{1,...,|E|} re(E(i)(1)).

We denote the MRT and MDA based on valid chains by MRTV and MDAV, respectively.
For the MRT based on valid chains, instead of m ≥ F1 all m ∈ N+ such that a⃗cm is valid
are considered. Similarly, for the MDA based on valid chains, instead of m + 1 ≥ F|E| all
m ∈ N+ such that ⃗acm exists and is valid are considered.

MRTV = sup
{

ℓ(a⃗cm)
∣∣ m ∈ N+, a⃗cm valid

}
(11)

MDAV = sup
{

ℓ( ⃗acm)
∣∣ m ∈ N+, ⃗acm exists and valid

}
(12)

In the following we discuss the equivalence of MRTV and MDAV. To that end, we first
define V1, . . . , VE through an immediate backward job chain as follows.

▶ Definition 20. Let V ∈ N+ such that ⃗cE
V is the first immediate backward job chain with

E(1)(vE) ≼ ⃗cE
V (1), with vE defined as in Definition 19. We denote by V1, . . . , V|E| ∈ N+ the

job number of each job in ⃗cE
V , i.e., ⃗cE

V = (E(1)(V1), . . . , E(|E|)(V|E|)).

With an analogous proof as in Lemma 12 we obtain that for all p ∈
{

1, . . . , |E| − 1
}

, we
have sup {ℓ(pcp

m) | m ≥ Vp} = sup
{

ℓ(pcp+1
m )

∣∣ m ≥ Vp+1
}

. As a result,

sup
m≥V1

ℓ(a⃗cm) = sup
m≥V1

ℓ(pc1
m) = sup

m≥Vp

ℓ(pcp
m) = sup

m≥V|E|

ℓ(pc|E|
m ) = sup

m≥V|E|+1
ℓ( ⃗acm). (13)

By the definition of V|E| it can be shown that MDAV = supm≥V|E|+1 ℓ( ⃗acm). For MRTV

one additional immediate augmented forward job chain has to be included to account for
the m in

{
vE , . . . , V1

}
. In particular, MRTV = max(ℓ(a⃗c

vE ), supm≥V1 ℓ(a⃗cm)). We conclude
that for the alternative definition of MRT and MDA based on valid chains, an equivalence
can be obtained up to the first immediate forward augmented job chain, i.e.,

MRTV = sup(ℓ(a⃗c
vE ), MDAV), (14)

where a⃗c
vE is the first valid immediate forward augmented job chain. The proof of this

equivalence is provided in the appendix.
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8 Application: Analysis of Chains with Periodic LET Tasks

In this section, we experimentally evaluated the correctness of the relations from Theorem 14
and Theorem 18 by comparing the results to the state of the art by Günzel et al. [13].
In particular, we applied them to periodic tasks scheduled on one electronic control unit
(ECU) and communicating under Logical Execution Time (LET) to see if the correct latency
values were calculated. Furthermore, we examined whether our approach resulted in faster
computation time than the state of the art.

Considered approaches. We compared our approach to Günzel et al. [13].
Approach by Günzel et al. [13] (G21): Let Φ(E) := max

{
ϕE(i)

∣∣∣ i = 1, . . . , |E|
}

be the

maximal phase of the tasks in E and let H(E) := lcm(
{

TE(i)

∣∣∣ i = 1, . . . , |E|
}

) be the
hyperperiod of all tasks in E. Then under LET the immediate forward and immediate
backward augmented job chains with external activity during the interval [Φ(E) +
H(E), Φ(E) + 2H(E)) repeat each hyperperiod. In particular only those immediate
forward and immediate backward augmented job chains with external activity no later
than Φ(E) + 2H(E) have to be constructed and compared to obtain the MDA, MRDA,
MRT and MRRT.

Our approach (Our): According to Theorem 14 it is sufficient to examine the p-partitioned
job chains for one p ∈

{
1, . . . , |E|

}
to compute the maximum data age. To minimize the

calculation time, we considered the task E(p) with the highest period. By this choice of
p, the number of constructed job chains can be reduced significantly. MRT and MDA are
computed by Theorem 14. By applying Theorem 18, the MRDA and the MRRT can be
computed from the MDA and MRT, respectively, since ρ−(τ) = Tτ = ρ+(τ) for all LET
tasks τ .

Task set generation. We randomly generated 10000 task sets T, each with a random cardin-
ality of nT ∈ [50, 100]∩N. To evaluate the approaches with tasks similar to a real-world applic-
ation, we generated tasks according to the Automotive Benchmark by Kramer et al. [19]. In
particular, for each task τ we drew a period Tτ from the set {1, 2, 5, 10, 20, 50, 100, 200, 1000}
according to the related share2 of these periods in [19, Table III, IV and V]. We assumed
implicit deadlines, i.e., the relative deadline Dτ was set to the period Tτ , and the phase ϕτ

was set to 0 for all tasks. Since the read- and write-events under logical execution time are
independent from the execution behavior, no execution time of the task was synthesized.

Cause-effect chain generation. For each task set T, we generated a cause-effect chain E

according to Kramer et al. [19, Section IV-E]. In particular, we applied the following steps:
1. The number of involved activation patterns PE ∈ {1, 2, 3}, i.e., the number of unique

periods of the tasks in the cause-effect chain E, was drawn according to the distribution
in [19, Table VI].

2. A set SE of PE unique periods was uniformly drawn from the periods in T.
3. For each period in SE , we drew 2 to 5 tasks at random (without replacement) according

to the distribution in [19, Table VII] from the tasks in T with the respective period. The
cause-effect chain E consists of these tasks in random order.

2 The sum of probabilities in [19] is only 85%. The remaining 15% are reserved for angle-synchronous
tasks that we do not consider here. Therefore, all share values were divided by 0.85.
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Figure 6 The time_ratio for different number
of involved activation patterns. Red line depicts
median, blue box 50% of the data, and the whiskers
all data except the highest and the lowest 1%.

Table 3 Speed-up for different number of
activation patterns.

involved patterns 1 2 3

number values 8109 1436 455

min speed-up 1.08 1.44 1.35

median speed-up 2.83 8.70 20.71

mean speed-up 3.03 48.13 96.27

max speed-up 5.76 1476.02 1623.50

Sensor1

Sensor2

Sensor3

Fusion Perception Planning Control Actuator

Figure 7 ROS2 basic navigation system.

If there were not sufficient tasks with required period in Step 3, we discarded the set and
randomly drew another task set until a cause-effect chain was successfully created.

Evaluation results. For each cause-effect chain, we applied (G21) to compute MDA, MRT,
MRDA, and MRRT. Additionally, we applied (Our) to calculate the same values using
Theorem 14 and Theorem 18. For the runtime measurements, we use a machine equipped
with 2x AMD EPYC 7742 running Linux, i.e., in total 256 threads with 2.25GHz and 256GB
RAM. Each measurement runs on one independent thread.

Observation 1: For all 10000 cause-effect chains all latency values obtained by (Our) coincide
with the corresponding values obtained by (G21). In particular, the equivalence of MRT
and MDA holds for all scenarios, even with over- and undersampling.

Observation 2: Our results can reduce the required time for computing the end-to-end
latencies significantly. Specifically, Figure 6 depicts the time ratio, defined by time_our

time_g21 ,

where time_our and time_g21 is the time needed by (Our) and (G21), respectively, to
derive all four latency values (considering the minimal runtime over 1000 runs for each of
the 10000 cause effect chains). On the x-axis the number of different activation patterns,
i.e., the number of different periods in the cause-effect chain, is shown. Additionally,
Table 3 shows the speed-up, defined as time_g21

time_our .

We observe that (Our) reduces the required time significantly compared to (G21). In
particular, when all tasks in the cause-effect chain have the same period, then the number of
computed chains, and hence the runtime, is halved on average. When there is more than one
activation pattern, then (Our) reduces the number of constructed chains by choosing p such
that E(p) is the largest period, and a much larger speed-up is observed such cases.
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Table 4 Periods and WCET of the nodes.

Component Type Period WCET
Sensor time-trig. 100ms 10ms

Fusion time-trig. 100ms 100ms

Fusion event-trig. - 5ms

Perception event-trig. - 200ms

Planning event-trig. - 100ms

Control event-trig. - 50ms

Actuator event-trig. - 5ms

Table 5 Measurements of the ROS2 system.

MRT 4.0

MDA 4.0

MRRT 3.5

MRDA 3.5

ℓ(a⃗cm′ ) 3.5

ρ+(E(1)) 0.5

ρ−(E(1)) 0.5

ρ+(E(|E|)) 0.5

ρ−(E(|E|)) 0.5

9 Case Study: ROS2

In this section, we validate Theorem 18 and Theorem 14 considering a basic navigation
system, as shown in Figure 7, and apply the scheduling mechanism of the Robot Operating
System 2 [23] (ROS2) on a single ECU. The navigation system includes three sensors, whose
data is combined and processed for the perception of the environment, planning the route,
controlling the vehicle, and sending the output to the vehicle interfaces via an actuator.

A system in ROS2 consists of nodes and topics. Each node represents one component of
the system, which can communicate with other nodes via topics, that implement a publish-
subscribe architecture. Nodes are represented by tasks and each execution of a node can be
considered as the execution of a job. The nodes follow an implicit communication policy, i.e.,
the read-event of a node is at its start and the write-event of a node is at its finish. Nodes are
either time-triggered and event-triggered, i.e., some tasks have an aperiodic behavior. ROS2
has a non-standard custom scheduler that executes tasks instances under a round-robin
scheduling approach. Specifically, the scheduler repeatedly collects at most one job of each
task for the round, after which it executes them according to their priority. However, the
results from this work can still be applied as the basic assumptions (R1) and (R2) for the
read- and write-events in Section 2 are met. We do not provide details of the ROS2 scheduling
approach here, as we only focus on the timing behavior of the resulting system.

The system depicted in Figure 7 has three sensors whose data is combined in the fusion
node. The perception, planning, and control node process the data and supply the actuator
node with instructions. For the simulation of the ROS2 scheduling behavior we assume
that all jobs have a fixed execution time. Table 4 gives an overview of the WCET of each
component and of the period of the time-triggered components.

For the first chain E = (Sensor1, . . . , Actuator) marked in orange in Figure 7, we measured
the MRT, MDA, MRRT, and MRDA by determining the longest immediate forward and
immediate backward augmented job chains. The measured values are summarized in Table 5,
showing that Theorem 14 and Theorem 18 hold.

10 Related Work

The first end-to-end latency analysis for maximum reaction time of a cause-effect chain was
developed by Davare et al. [8] in 2007. Later, in 2009, the end-to-end semantics were further
extended by Feiertag et al. [10]. Specifically, a formal definition of maximum data age and
maximum reaction time is proposed by timed paths to distinguish the semantics for the
data propagation delay. Based on forward reachability and overwriting of data, first-to-first
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and last-to-last data propagation semantics are proposed, coinciding with the maximum
reaction time and the maximum data age, respectively. In addition, they are also known as
First-in-First-out (FIFO) and Last-in-Last-out (LILO), respectively [21,22].

The semantics of maximum reaction time and maximum data age have been widely
studied in the literature. Several techniques have been derived through formal verification
and compiler to verify the data propagation delay for periodic task systems. Rajeev et
al. [24] develop a model-checking based technique to compute the end-to-end delay under
both semantics for periodic tasks. Forget et al. [28] propose a language-based approach to
verify end-to-end delay at the model level. Klaus et al. [16] extend the design flow of the
Real-Time Systems Compiler (RTSC) to take data propagation delay into account but only
focus on the maximum data age.

The analysis approaches for end-to-end delays can be classified into two paradigm: active
approaches [5,7,12,25], where the release of jobs in the chain is actively controlled depending
on the production of data to ensure the data coherence for read and write, and passive
approaches [2, 3, 6, 8–11, 13, 17, 24, 26], that focus on how the data is produced and consumed
among the jobs of the recurrent tasks in the cause-effect chain provided that the release
of jobs of subsequent tasks is independent from the production of data. The approaches
proposed in this work are passive ones, but the equivalence of both end-to-end semantics
holds in general; that is, the equivalence is not limited to the passive paradigm.

Some recent results focus on end-to-end analysis under the Logical Execution Time
(LET) communication model, proposed by Kirsch and Sokolova [15]. Martinez et al. [20]
analyzed its effect on the end-to-end delay. Becker et al. [4] further extend their previous
analysis from implicit communication to LET. Kordon and Tang [18] develop a framework to
calculate the maximum data age under the LET communication based on a given general task
dependency graph. Hamann et al. [14] propose a model transformation method to increase
the expressiveness of current timing analysis. They address heterogeneous communication
semantics including LET. Our analysis is also applicable for LET communication.

11 Conclusion

Over the last years different timing metrics for the end-to-end latency of cause-effect chains
were considered. Of particular interest are the maximum reaction time and the maximum
data age. AUTOSAR observed that both metrics coincide if no over- and undersampling
occurs. However, it was assumed that both metrics differ for the general case.

In this paper, we show the equivalence of maximum reaction time and maximum data
age. To this end, we introduce p-partitioned job chains and show that both timing metrics
can be determined by constructing p-partitioned job chains for the same p.

The impact of the equivalence is twofold:
1. Analytical literature results for one metric can immediately be used for the other.
2. The choice of p ∈

{
2, . . . , |E| − 1

}
allows novel analysis approaches and a reduced runtime

of current approaches by reducing the number of necessary job chains under consideration.
We demonstrate the impact of this work by considering the case of periodic tasks communic-
ating under LET. In particular, we show that the end-to-end analysis can be performed up
to 1600 times faster in this scenario.

The equivalence holds for almost any scheduling mechanism and even for task systems
which do not adhere to the typical periodic or sporadic task model. We support this statement
with a case study based on ROS2.
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for E, let c⃗ be an immediate forward job chain for E, and let ⃗c be an immediate backward
job chain for E.
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2. If there exists i ∈ {1, . . . , |E|} such that c(i) ≼ ⃗c(i), then c(j) ≼ ⃗c(j) for all j ∈ {1, . . . , i}.
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Proof. We prove 1) by induction over j = i, . . . , |E|.

Initial case. For j = i, c⃗(j) ≼ c(j) by assumption.

Induction step. If c⃗(j) ≼ c(j) for j ∈ {i, . . . , |E| − 1}, then this means that the write-event
of the job c⃗(j) is no later than the write-event of the job c(j). Since the read-event of the job
c(j + 1) is no earlier than the write-event of c(j) by definition of a job chain, the read-event
of c(j + 1) is also no earlier than the write-event of c⃗(j). Since c⃗(j + 1) is the earliest job
with read-event no earlier than the write-event of c⃗(j), we conclude that c⃗(j + 1) ≼ c(j + 1).

We prove 2) by induction over j = i, . . . , 1.

Initial case. For j = i, c(j) ≼ ⃗c(j) by assumption.

Induction step. If c(j) ≼ ⃗c(j) for j ∈ {i, . . . , 2}, then this means that the read-event of
the job c(j) is no later than the read-event of the job c(j). Since the write-event of the job
c(j − 1) is no later than the read-event of c(j) by definition of a job chain, the write-event
of c(j − 1) is also no later than the read-event of ⃗c(j). Since ⃗c(j − 1) is the latest job with
write-event no later than the read-event of ⃗c(j), we conclude that c(j − 1) ≼ ⃗c(j − 1). ◀

B Proof of Extension to Valid Chains

In Section 7.2 it is shown that supm≥V1 ℓ(a⃗cm) = supm≥V|E|+1 ℓ( ⃗acm). It is left to show how
this relates to MDAV and MRTV. We start with MDAV.

▶ Lemma 14. We have MDAV = supm≥V|E|+1 ℓ( ⃗acm).

Proof. By definition in Equation (12), MDAV = sup {ℓ( ⃗acm) | m ∈ N+, ⃗acm exists and valid}.
We divide the proof in two steps: MDAV ≥ supm≥V|E|+1 ℓ( ⃗acm) and MDAV ≤
supm≥V|E|+1 ℓ( ⃗acm).

Step 1 (MDAV ≥ supm≥V|E|+1 ℓ( ⃗acm)). We know that ⃗acV|E|+1 is composed of z′ =

we(E(|E|)(V|E| + 1)), the immediate backward job chain ⃗cE
V|E|

, and z ≥ re(E(1)(vE)).

Therefore, ⃗acV|E|+1 is valid. Consequently, all ⃗acm with m ≥ V|E| + 1 are valid and MDAV ≥
supm≥V|E|+1 ℓ( ⃗acm) holds.

Step 2 (MDAV ≤ supm≥V|E|+1 ℓ( ⃗acm)). We prove this step by contradiction and assume
that there exists a valid ⃗acm = (z, J1, . . . , J|E|, z′) with m < V|E| + 1. In that case J|E| must
be a job before E(V|E|). Since by Definition 20, ⃗cE

V|E|
is the first chain with E(1)(vE) ≼ ⃗cE

V (1),

the job J1 must be earlier than E(1)(vE). Hence, ⃗acm = (z, J1, . . . , J|E|, z′) is not valid,
which is a contradiction. ◀

For the MRT, we may need to account for additional immediate forward augmented job
chains before V1. By definition, valid immediate forward augmented job chains a⃗cm with
vE ≤ m < V1 include the immediate forward job chain c⃗E

m+1 with v|E| < m + 1 ≤ V1. The
following lemma examines those immediate forward job chains further, showing that all of
them end at the same job, which means that the longest a⃗c1

m with m < F1 is the first one.
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▶ Lemma 15. Let m ∈ N+ with vE ≤ m ≤ V1. The last entry of the m-th immediate forward
job chain c⃗E

m is the job where ⃗cE
V ends, i.e., c⃗E

m(|E|) = E(|E|)(V|E|).

Proof. Let ξ ∈ N+ such that c⃗E
m(|E|) = E(|E|)(ξ). In the following, we show that ξ = V .

Since there exist job chains with last job E(|E|)(ξ), this means that ⃗cE
ξ exists as well

because for the backward construction of that chain in each step a job can be chosen.
Moreover, since ⃗cE

ξ is immediate backward and c⃗E
m is a job chain with the same job as last

entry, by Lemma 13 c⃗E
m(1) ≼ ⃗cE

ξ (1). Hence, E(1)(v|E|) ≼ ⃗cE
ξ (1). Since ⃗cE

V is the earliest
immediate backward job chain with this property, we obtain ξ ≥ V .

Since c⃗E
m(1) ≼ E(|E|)(V1) = ⃗cE

V (1) and c⃗E
m is immediate forward, we can apply Lemma 13

and obtain c⃗E
m(|E|) ≼ ⃗cE

V (|E|) = E(|E|)(V|E|), i.e., ξ ≤ V . ◀

Since the last job of every c⃗E
m with v|E| ≤ m ≤ V1 is E(|E|)(V|E|), the last job of every

a⃗cm with v|E| ≤ m < V1 is E(|E|)(V|E|) as well. Furthermore, since the a⃗c1
m with the lowest

m has the earliest first job, it is the longest one, i.e., to obtain MRTV only the first valid
immediate forward augmented job chain is considered in addition to supm≥V1

ℓ(a⃗cm).

▶ Lemma 16. We have MRTV = max(ℓ(a⃗c
vE ), supm≥V1 ℓ(a⃗cm)), where a⃗c

vE is the first
valid immediate forward augmented job chain.

Proof. By definition, V1 ≥ vE . Moreover, 1-partitioned job chains a⃗cm are valid if
and only if m ≥ vE . Therefore, MRTV is the maximum of sup {ℓ(a⃗cm) | m ≥ V1} and
max

{
ℓ(a⃗cm)

∣∣∣ V1 > m ≥ vE
}

. Moreover, by Lemma 15 max
{

ℓ(a⃗cm)
∣∣∣ V1 > m ≥ vE

}
is

either 0 if V1 = vE , or it is the length of a⃗c
vE . ◀

We summarize the relation between MDAV and MRTV.

▶ Proposition 17. The maximum reaction time MRTV = sup(ℓ(a⃗c
vE ), MDAV), where a⃗c

vE

is the first valid immediate forward augmented job chain.

The MRTV can also be formulated as MRTV = max(ℓ(pc1
vE

), MDAV), where pc1
vE

is
the first valid immediate forward augmented job chain, since by Lemma 10 ℓ(pc1

vE
) =

ℓ(a⃗c
vE ). Moreover, MDAV can be computed through p-partitioned job chains as MDAV =

supm≥Vp
ℓ(pcp

m) for any p ∈
{

1, . . . , |E|
}

.
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Abstract
The increasing complexity of real-time systems, comprising control tasks interacting with physics and
non-control tasks, comes with substantial challenges: meeting various non-functional requirements
implies conflicting design goals and a pronounced gap between worst and average-case resource
requirements up to the overall timeliness being unverifiable. Mixed-criticality systems (MCS) is a
well-known mitigation concept that operates the system in different criticality levels with timing
guarantees given only to the subset of critical tasks. However, in many real-world applications,
the criticality of control tasks is tied to the system’s physical state and control deviation, with
safety specifications becoming a crucial design objective. Monitoring the physical state and adapting
scheduling is inaccessible to MCS but has been dedicated mainly to control engineering approaches
such as self-triggered (model-predictive) control. These, however, are hard to integrate with
scheduling or expensive at run-time.

This paper explores the potential of linking both worlds and elevating the physical state to a
criticality criterion. We, therefore, propose a dedicated state estimation that can be leveraged as a
run-time monitor for criticality mode changes. For this purpose, we develop a highly efficient one-
dimensional state abstraction to be computed within the operating system’s scheduling. Furthermore,
we show how to limit abstraction pessimism by feeding back state measurements robustly. The
paper focuses on the control fundamentals and outlines how to leverage this new tool in adaptive
scheduling. Our experimental results substantiate the efficiency and applicability of our approach.

2012 ACM Subject Classification Computer systems organization → Real-time systems; Computer
systems organization → Embedded and cyber-physical systems; Computer systems organization →
Dependable and fault-tolerant systems and networks
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1 Introduction

For quite some time, we have been facing a rapidly increasing complexity of real-time (control)
systems, such as the proliferation of autonomous driving and robotic applications. These are
characterized by high performance requirements with numerous control tasks, which interact
with physics in closed loops, and non-control tasks executed along with them, forming
a heterogenous task set. Meeting all the tasks’ non-functional requirements (e.g., QoC,
performance, costs) implies conflicting design goals and a pronounced gap between worst and
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Wind disturbance

Zero state
Safety specification

Low-criticality state estimation

High-criticality state estimation

Criticality mode change required
(state-dependent)

Figure 1 Illustration of a system with safety constraints: the UAV must stay within given bounds
(filled area). Compliance is challenged by disturbances (i.e., wind), which, in the worst case, can
only be rejected in ℎ𝑖 mode. Note that criticality change depends on the physical state (i.e., position
and velocity vectors). State estimation (hatched areas) varies between modes as laxer scheduling
implies more pessimism due to less stringent control.

average-case resource requirements up to the overall timeliness and safety being unverifiable.
This gap is a well-known challenge for heterogeneous task sets with a large body of work
on mitigation techniques, particularly the concept of mixed-criticality systems (MCS) first
introduced by Vestal [42]. It facilitates adapted design and verification of task sets with
varying requirements, such that task parameters (e.g., WCETs, periods) become dependent
on a criticality level. As a result, MCSs operate in different modes, transparently monitored
(e.g., execution time) and enforced by the operating system, with timing guarantees given
only to the subset of critical (control) tasks; MCS typically have no intended bearing on the
physical side of the system.

As an orthogonal approach, conflicting design goals can be eased by reducing the timing
requirements of control tasks based on the inherent robustness of controllers. The latter is
exploited to relax, for example, periodicity [11] or deadline adherence [32] while guaranteeing
stability. A popular approach is, for example, (𝑚, 𝐾)-firm scheduling [21], which requires
at least 𝑚 out of 𝐾 consecutive job releases to meet their deadlines in terms of a weakly-
hard [7] real-time design. Consequently, the controller consistently provides the best possible
performance, depending on the utilization, without failing in the worst case [4]. However, this
behavior, in turn, represents significant over-provisioning on average. Extended variants of
these co-design approaches also allow the controller to adapt to specific job drop scenarios [29]
or switch between different controller modes [15], further softening timing constraints. We
will discuss a large body of related work in Section 5.

1.1 Problem Statement

In real-world applications, a crucial design objective [2, 6, 38] is to ensure that a system
will remain within given safety specifications (e.g., maximum deviation from equilibrium)
even at the worst assumed disturbance. Here, the necessary system response’s stringency
(e.g., temporal) varies with the state-dependent deviation (e.g., control error). Although the
control-aware scheduling approaches above can exploit varying demands, they typically aim
solely at control stability and thus cannot guarantee compliance with such safety specifications.
Note that, in this context, stability only implies that the system reaches equilibrium in the
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absence of disturbances without any assertions of the largest possible deviation they inflict.
On the other hand, a control task’s criticality could be characterized by the risk of a safety
violation. However, typically, MCS cannot meet such requirements since they do not assess
criticality based on control error but on timing, whereby only an indirect relationship exists
between temporal and physical properties.

In the following, we use the UAV in Figure 1 as an illustrative example to make our
point. It must follow a given flight trajectory, perform collision avoidance, and simultaneously
fulfill other mission objectives, all on a shared resource-limited computing platform. In
addition, per safety specifications, the UAV must settle and stay within a one-meter radius
around its reference (filled area) to avoid crashing into obstacles even in the presence of
wind disturbance. On the other hand, higher accuracy inside this envelope is generally
desirable yet not mandatory. Finally, assuming worst-case wind disturbances to be a rare
failure scenario, we can design the system with a low (𝑙𝑜) and a high (ℎ𝑖) criticality mode.
The former facilitates sharing and uses relaxed parameters, for example, larger periods, lax
WCETs, or an (m, K) execution model. The latter provides strong isolation, high assurance,
and fault rejection. In the given scenario, the maximum wind disturbance drives the UAV off.
For some time (i.e., first two states), the relaxed execution behavior in low-criticality mode
remains tolerable due to inertia. However, depending on the UAV’s physical state, notably
its position and velocity vectors, switching to high-criticality mode at a precise moment (i.e.,
third state) is imperative to avoid the momentum carrying the UAV outside the safety limit.
Our concern is that monitoring timing parameters is insufficient to identify the criticality
change. Cheng et al. [13] consequently propose using the quality of control as a changeover
criterion, however, assuming uncorrelated noise and resorting to a probabilistical model,
which is hardly suited for our scenario.

In control engineering, some approaches tie criticality to the current system state. For
example, in self-triggered control (STC) methods [23], the controller itself computes the
next necessary control instant based on the physical state. Thus, STC releases control tasks
sporadically whenever the system threatens to deviate from equilibrium too far, establishing a
form of adaptive scheduling. Self-triggered model predictive control (MPC) schemes go even
one step further by controlling the process and computing the next sampling instant [25] while
enforcing state and control value constraints in the presence of disturbances [28]. However,
by unifying state estimation and scheduling, these approaches are inherently incompatible
with traditional scheduling methods: jobs must be executed with high timing adherence once
released. Thus we lose support for heterogeneous task sets and adaptive scheduling (e.g.,
criticality-dependent task parameters).

We can address the problem by separating state estimation from controller execution. For
the UAV example, a safe decision must be made for a criticality mode. Since the execution
conditions in low-criticality mode are more relaxed, the reachable physical state for a given
observation period is larger: with less control, the drone can drift further. Conversely, the
reachable set is much tighter in high mode. However, robustly observing and predicting the
system’s physical state is challenging. Established approaches, for example, a set-valued
Kalman filter [30], can robustly locate the physical state up to a time-varying ellipsoid. Yet,
computational costs have thwarted their use as run-time monitoring for mixed-criticality or
other adaptive scheduling approaches at the operating system (OS) level. Our evaluation in
Section 4 highlights the overheads associated with set-valued state estimation.

The fundamental issue addressed in this paper is to facilitate the use of the physical
state of control systems as a general criticality and scheduling criterion at the OS level.
Our approach offers significant advantages over application-level solutions, such as isolation,
standard interfaces, and, most importantly, seamless integration with temporal monitoring
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Application
Standard

Timing
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Standard
Application
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Application

Control
Application

Criticality-Aware 
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Analysis
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Real-Time Operating System
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Configuration
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Monitoring

Mode
Change
Request

Mode
Change
Request

Figure 2 Overview of our approach: implementing state monitoring at the OS level facilitates
strong isolation, an application-independent interface, and seamless integration with traditional (MC)
execution-time monitoring and scheduling. State abstractions are parameterized by design-time
analysis for safe mode switching.

and scheduling of all the system’s tasks. As a first step, we focus on low-overhead yet robust
(i.e., sound) state estimation at run time and design-time verification of it as a prerequisite
for this aim. Therefore, we derive the necessary control engineering background and provide
an interface to real-time scheduling. At this point, we emphasize that in this paper, we are
concerned with the basic methodology rather than a specific scheduling approach; we believe
our approach can serve a wide range of existing scheduling techniques.

Conceptually, we seek a time-dynamic and one-dimensional state abstraction 𝑣𝑘 :

𝑣𝑘+1 = 𝜌𝜎𝑘
𝑣𝑘 + 𝛽𝜎𝑘

, 0 ≤ 𝑣𝑘
!
≤ 𝑣𝑚𝑎𝑥 ∀𝑘 ∈ N0.

While the quantity 𝑣𝑘 provides an upper bound on the system’s state, 𝜌𝜎𝑘
denotes the

time-varying decay rate (i.e., a lower bound for speed of convergence) and 𝛽𝜎𝑘
the disturbance

term (i.e., how the system deviates from equilibrium due to disturbances). Finally, 𝑣𝑚𝑎𝑥 gives
the application-specific safety requirement (i.e., the maximum permissible deviation from
the nominal state). The robust prediction 𝑣𝑘+1 provides a unified framework to monitor the
physical state in the OS-level at run time, for example, allowing us to identify the changeover
instant between both modes in our example from Figure 1. However, this seemingly simple
requirement is tied to a number of fundamental challenges.

Challenge 1: Run-Time Monitoring by an Easy-to-Compute State Abstraction

Reachability analysis using time-variant sets can yield precise results. However, for example,
computing the distance between two sets is prohibitively expensive at run time. Therefore,
we aim for a state abstraction (i.e., sound estimation) that reliably predicts future violations
of the control’s safety specification, serving as a run-time monitor for criticality modes.
Furthermore, the abstraction should facilitate a simple application-independent interface and
simultaneously be economical to compute.

Our Approach. Based on [19], we develop a one-dimensional state abstraction (called blind
abstraction) for switched linear control systems. This allows us to restrict the prediction
horizon to one time step (e.g., time slice of the scheduler), permitting a timely mode change
and, if necessary, an adaptation of the control regime to reject worst-case disturbance safely.
Furthermore, reducing the state dimensions and prediction horizon grants low run-time
overhead and a simple interface. Figure 2 outlines our approach and illustrates how the state
abstractions fit the OS kernel and scheduling.
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Challenge 2: Selective Reduction of State Abstraction Overestimation

Abstraction reduces complexity but is typically accompanied by considerable pessimism. Ac-
cordingly, we must ensure appropriate accuracy by leveraging the available state information.
Furthermore, executing modes of lower criticality causes the state information to become
increasingly uncertain. Consequently, the abstraction’s overapproximation could lead to
premature anticipation of safety violations causing false changeovers. Such behavior would
jeopardize its use as a monitoring function.

Our Approach. We introduce the concept of an observer abstraction, which mitigates the
statically inferred worst-case pessimism of the abstraction by robustly feeding uncertain
measurements of the system state into the (formerly blind) abstraction.

Challenge 3: Design-Time Analysis for Efficiently Choosing the Parameters

Finally, we must ensure that all abstractions fit the system and are safe to use. The challenge
is to tailor our abstractions at design time to a system with multiple criticality levels and
system parameters for which potentially only the most stringent one guarantees adherence
to the safety specification. Simply put, starting with the worst-case observer abstraction for
the worst case, we must parameterize the observers for the lower criticality levels such that
the system remains in optimistic execution with high probability and that each criticality
level has a reasonable operating range.

Our Approach. Based on semidefinite programming, we develop a heuristic which optimizes
all design-time parameters for the average case while still guaranteeing safety in the worst
case. This analysis, as shown in Figure 2, is used to parameterize the state abstractions
offline based on the control applications’ specification and criticality modes.

1.2 Contribution and Outline
This paper makes the following four contributions: (1) Extend the convergence rate abstrac-
tions presented in our previous work [19] to a more general linear system model. (2) An
observer-based approach to mitigate over-estimation in those state abstractions by feeding
back uncertain measurements robustly. (3) Determine safe change-over points for criticality
and implement a prototypical adaptive run-time policy. (4) A design-time heuristic to
parameterize the observer abstractions’ parameters.

The remainder is organized as follows. In Section 2, we detail our system model and present
relevant background information. Our approach on efficient and robust state monitoring to
facilitate run-time adaptivity is presented informally as well as formally in Section 3 while the
necessary mathematical proofs are detached to Appendix A. Section 4 provides experimental
results as part of a case study. Section 5 discusses related work. Finally, we conclude our
work in Section 6.

2 System Model

In this section, we define the paper’s notation, describe the mathematical foundations, and
formulate our control-theoretic system model. Further, we outline integrating the latter into
a real-time system’s scheduling and schedulability analysis.
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2.1 Notation, Ellipsoids, and Relevant Norms

We denote both scalars 𝜌 ∈ R and vectors 𝑥 ∈ R𝑛 as lowercase, matrices 𝐴 ∈ R𝑛×𝑛 as uppercase
letters. The identity matrix of appropriate size is referred to as 𝐼. We use 𝐴𝑇 and 𝐴−1 for
a matrix’s transposed and inverse and denote a symmetric and positive definite (s.p.d.) /
semidefinite (s.p.sd.) matrix 𝑃 = 𝑃𝑇 , 𝑥𝑇𝑃𝑥 > 0∀𝑥 ≠ 0 / 𝑥𝑇𝑃𝑥 ≥ 0∀𝑥 as 𝑃 ≻ 0 / 𝑃 ⪰ 0. For
an s.p.d. matrix 𝑃 ≻ 0, we refer to its lower Cholesky decomposition as 𝑃 1

2 , i.e. 𝑃 = 𝑃
1
2 𝑃

𝑇
2 .

Given two symmetric matrices 𝑃 = 𝑃𝑇 , 𝑄 = 𝑄𝑇 , we abbreviate 𝑥𝑇𝑃𝑥 ≥ 𝑥𝑇𝑄𝑥 ∀𝑥 as 𝑃 ⪰ 𝑄.
Based upon the Euclidean vector norm | |𝑥 | |, we define the 𝑃-weighted norm | |𝑥 | |𝑃 := | |𝑃 𝑇

2 𝑥 | |
with 𝑃 ≻ 0. The inequality | |𝑥 | |𝑃 ≤ 1 defines a non-degenerate and centered ellipsoid.

Given the spectral norm | | · | |, we generalize the vector norms | | · | |𝑃 to matrix norms
| |𝐴| |𝑃𝑄 in terms of the s.p.d. weight matrices 𝑃,𝑄 ≻ 0, 𝑃 ∈ R𝑛×𝑛, 𝑄 ∈ R𝑚×𝑚. With correctly
sized 𝑥 and s.p.d. 𝑊 ≻ 0, the following hold [46, pp. 34–35]:

| |𝐴| |𝑃𝑄 := max
| |𝑥 | |𝑄=1

| |𝐴𝑥 | |𝑃 (Definition as Operator Norm) (1a)

| |𝐴| |𝑃𝑄 = | |𝑃 𝑇
2 𝐴𝑄− 𝑇

2 | | (Relation to Spectral Norm) (1b)
| |𝐴𝑥 | |𝑃 ≤ ||𝐴| |𝑃𝑄 | |𝑥 | |𝑄 (Consistency) (1c)
| |𝐴𝐵| |𝑃𝑄 ≤ ||𝐴| |𝑃𝑊 | |𝐵| |𝑊𝑄 (Generalized Consistency) (1d)

The last equation (1d) is a generalization of [46] (Wang et al. assume P=Q). Given the
sub-multiplicativity (| |𝐴𝐵| | ≤ | |𝐴| | | |𝐵| |) of the spectral norm, the proof is:

| |𝐴𝐵| |𝑃𝑄
(1b)
= | |𝑃 𝑇

2 𝐴𝑊− 𝑇
2𝑊

𝑇
2︸     ︷︷     ︸

=𝐼

𝐵𝑄− 𝑇
2 | | ≤ | |𝑃 𝑇

2 𝐴𝑊− 𝑇
2 | | | |𝑊 𝑇

2 𝐵𝑄− 𝑇
2 | | (1b)

= | |𝐴| |𝑃𝑊 | |𝐵| |𝑊𝑄 . (2)

Further, we will be using the defining properties of (semi-) norms, i.e., for any norm | | · | |,
vectors 𝑥, 𝑦, and scalar 𝛼

| |𝛼𝑥 | | = |𝛼 | | |𝑥 | | (Homogeneity) (3a)
| |𝑥 | | ≥ 0 (Non-negativity) (3b)

| |𝑥 + 𝑦 | | ≤ | |𝑥 | | + | |𝑦 | | (Triangle Inequality) (3c)

The notation 𝑎
!
≤ 𝑏 indicates that we must ensure 𝑎 ≤ 𝑏 by applying adequate measures.

2.2 System Model

This section defines the system model used in the remainder of the paper. For each control
application, we assume a switched linear plant and controller with a finite number of modes.
All states, potentially including sensor and actuator values, are summarized into an extended
linear system. This model allows for complex real-time behavior, e.g., omitting controller
executions or sampling only a part of the available sensors [45, 44, 18]. Adding safety outputs
allows us to both disregard states (e.g., controller states or measurements) aiding the analysis
or impose additional constraints (e.g., limits on the control signals). The safety goal is to
keep these outputs inside of a given ellipsoid. The dynamics are influenced by an ellipsoidally
bounded process uncertainty, as are the uncertain measurements. The initial state is also
constrained to an ellipsoid. The state-space model reads
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𝑥𝑘+1 = 𝐴𝜎𝑘
𝑥𝑘 + 𝐺𝜎𝑘

𝑑𝑘 (Dynamics)
𝑦𝑘 = 𝐶𝜎𝑘

𝑥𝑘 + 𝐻𝜎𝑘
𝑧𝑘 (Measurements)

| |𝑑𝑘 | |𝐷𝜎𝑘
≤ 1, | |𝑧𝑘 | |𝑍𝜎𝑘

≤ 1 (Disturbances)

| |𝑥0 | |𝑋0 ≤ 1 (Initial State)
𝑠𝑘 := 𝐶𝑠𝑥𝑘 (Safety Outputs)

| |𝑠𝑘 | |𝑆
!
≤ 1 (Safety Specification)

𝜎𝑘 ∈ Σ, |Σ | = 𝑛Σ (Switching Sequence)

(4a)
(4b)
(4c)

(4d)
(4e)

(4f)
(4g)

∀𝑘 ∈ N0, where 𝑥𝑘 ∈ R𝑛𝑥 , 𝑑𝑘 ∈ R𝑛𝑑 (𝜎𝑘 ) , 𝑧𝑘 ∈ R𝑛𝑧 (𝜎𝑘 ) , 𝑦𝑘 ∈ R𝑛𝑦 (𝜎𝑘 ) , and 𝑠𝑘 ∈ R𝑛𝑠 are the
system state, process and measurement disturbances, as well as the measurements and the
safety outputs. All matrices should be of appropriate (possibly zero) size. The ellipsoids (if
not of zero dimension) are assumed to be non-degenerate, i.e. 𝐷𝜎 , 𝑍𝜎 , 𝑋0, and 𝑆 ≻ 0 ∀𝜎 ∈ Σ.

Given the system model, we define the worst-case disturbance as the values of 𝑥0, 𝑑𝑘
and 𝑧𝑘 , which steer the safety outputs the closest to the specification boundary for a given
switching sequence 𝜎𝑘 , i.e., sup𝑥0∈𝑋0 ,𝑑𝑘 ∈𝐷𝜎𝑘

,𝑧𝑘 ∈𝑍𝜎𝑘
,𝑙∈N0 | |𝑠𝑙 | |𝑆. These values can not readily

be obtained as the optimization horizon is infinite.
For the sake of clarity, we omitted any reference signals 𝑤𝑘 ∈ R𝑛𝑥 , 𝑥𝑟 ,𝑘+1 = 𝐴𝜎𝑘

𝑥𝑟 ,𝑘 + 𝑤𝑘

and 𝑦𝑟 ,𝑘 = 𝐶𝜎𝑘
𝑥𝑟 ,𝑘 . They can, however, be incorporated by substituting 𝑥𝑘 and 𝑦𝑘 in the

system above by their corresponding error signals Δ𝑥𝑘 := 𝑥𝑘 − 𝑥𝑟 ,𝑘 and Δ𝑦𝑘 := 𝑦𝑘 − 𝑦𝑟 ,𝑘 . The
abstraction then bounds the tracking error, which leads to the same analytical results as
below due to the system’s linearity.

We assume that, except for potential reference signals, a single application implements
the above controller. Every criticality mode 𝜎 inside this application has its own task set.
Our approach is agnostic to the underlying scheduling scheme as long as the signals meet
their sampling points. This can, e.g., be achieved using the logical execution time (LET)
paradigm. Multiple independent control applications can be used if the scheduling algorithm
guarantees their timeliness.

3 Approach

With our system model defined, we proceed by detailing our state abstraction approach
in this section. In an informal description in Section 3.1, we first recapitulate the intent
of state abstractions, describe how they interact with the real-time control system, and
discuss what sets them apart from well-known state observers. After Section 3.2 extends
the convergence rate abstractions presented in our previous work [19] to our system model,
Section 3.3 shows how to incorporate measurements to reduce their pessimism. In Section 3.4,
we derive the run-time monitoring algorithm and a prototypical approach for guaranteed safe
switching decisions. Finally, Section 3.5 describes a heuristic for choosing the design-time
parameters. To better convey the ideas, we detach the necessary formal proofs to Appendix A
and reference them as needed.

3.1 Informal Description
We seek a method of monitoring the system model presented in Section 2.2 at run time
with respect to safety, i.e., how close the physical state is to its specified limits and, in
extension, predict points where criticality changes. When reaching such a point, the scheduler

ECRTS 2023
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must alter the switching sequence 𝜎𝑘 to avoid specification violations. Note that safety is a
stronger condition than mere exponential stability for which the literature already provides
solutions [45].

Our approach provides (state) abstractions 𝑣𝑘 , which are one-dimensional and positive
dynamic systems. An abstraction’s state 𝑣𝑘 is an upper bound on the control system’s
physical state expressed in the analysis norm | | · | |𝑃, i.e., 0 ≤ ||𝑥𝑘 | |𝑃 ≤ 𝑣𝑘∀𝑘 ∈ N0. As a
geometric interpretation: instead of the ellipsoidal observers, which track how the system’s
dynamics recursively alters the initial state ellipsoid at run time, we choose a fix-shaped
analysis ellipsoid parametrized by 𝑃 ≻ 0 at design time, leaving the scaling factor 𝑣𝑘 as
the only run-time parameter. The abstraction dynamics, i.e., the coefficients 𝜌𝜎 and 𝛽𝜎

mentioned above, are chosen such that the scaled analysis ellipsoid is guaranteed to contain
the system’s state for the switching sequence 𝜎𝑘 at hand. Tightly over-approximating the
initial state and safety ellipsoids yields the two static factors 𝑣0 and 𝑣𝑚𝑎𝑥 . While the former
is the initial value for the abstraction state, the latter links it to the safety goal: for our
approach to guarantee safety, 𝑣𝑘 ≤ 𝑣𝑚𝑎𝑥 must be enforced at all times by choosing the
switching sequence accordingly.

The intermediate steps introduce analysis pessimism as the ellipsoids are usually not
aligned in practice. Further, the exponential envelope curve 𝑣𝑘 has to incorporate all transient
behavior and overshoot in the system state even under worst-case disturbance. Despite the
high pessimism, the lack of overshoot allows us to derive scheduling decisions at a single
time step prediction horizon. We will later introduce observer abstractions to alleviate the
pessimism by feeding back uncertain state measurements. The analysis presented in this
section expresses the scheduling horizon in terms of a maximum safe value 𝑣∗𝜎 for every
mode 𝜎 ∈ Σ, i.e., the highest value of 𝑣𝑘 for which the corresponding mode is sufficient.
Consequentially, modes with higher 𝑣∗𝜎 indicate higher physical criticality as they allow the
control loop to withstand more severe conditions. If 𝑣∗𝜎 ≥ 𝑣𝑚𝑎𝑥 holds for a mode 𝜎, it is
a safe mode as applying it guarantees the system to remain safe at all times. We call the
excess 𝑣∗𝜎 − 𝑣𝑚𝑎𝑥 the safety margin.

While set-valued observers are available for our system model [16, 30], they perform the
aforementioned ellipsoidal analysis at run time, yielding a precise bound on the system’s
state. However, choosing the switching sequence 𝜎𝑘 requires further assessing the system’s
reachability at run time which is expensive as the ellipsoids are not aligned in general. In
contrast, their non-robust counter parts (e.g., the classical Luenberger observer) give static
guarantees on the estimation error’s decay. Going down this path will eventually lead to
similar results as presented in this paper.1

Since our analysis is sound as long as the IO timing is met, every (mixed-criticality)
scheduling scheme suffices when choosing the control application’s criticality high enough.
Conversely, the abstraction introduces some overhead. The value of 𝑣𝑘 has to be updated
every time step given (8a), potentially reusing the measurements from the controller. Then,
the scheduler has to select one of the feasible modes defined by (13) for the upcoming time
step and possibly reconfigure the real-time system accordingly using a mode change. These
operations look the same for every control loop and thus share a common interface. As shown
in Section 4, they are also cheap to compute. Thus, they lend themselves to be executed as
privileged operations inside the RTOS’s kernel.

1 We omitted the analysis for the sake of brevity. As an outline: compute the estimate 𝑥𝑘 as usual and
bound the uncertainty ellipsoid just as the blind abstractions bound the state. Then, | |𝑥𝑘 | |𝑃 − 𝑣𝑘 ≤
| |𝑥𝑘 | |𝑃 ≤ | |𝑥𝑘 | |𝑃 + 𝑣𝑘∀𝑘.
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Figure 3 Example task set illustrating the application of state abstractions for mixed-criticality
real-time control systems. (A) shows the time-dynamic state abstraction monitoring a UAV under
the influence of varying wind conditions. (B) illustrates the resulting schedule with criticality change.

We exemplify our approach using the UAV from above as an illustrative example. The
safety goal is to keep the UAV’s position 𝑝𝑘 inside a one-meter radius around its reference
trajectory. Thus, the safety outputs omit all other state components such as the UAV’s
velocities, i.e., 𝑠𝑘 = 𝑝𝑘 . 𝑆 = 𝐼 models the 1m radius. Figure 3 (B) shows the exemplary
task set: the flight controller application carries out the state reconstruction by linearly
fusing inertial (IMU) and GPS measurements, then computes the control values, and finally
outputs them to the propellers. To avoid jitter, sensing and actuation follow the logical
execution time (LET) paradigm. The application features two periodic task sets whose
physical (i.e., abstraction coefficients) and temporal properties vary with their criticality
levels: in the 𝑙𝑜-criticality mode 𝜎 = 1, the IMU measurement task is omitted, also leading
to a smaller WCET for the sensor fusion task in comparison to the ℎ𝑖-criticality mode 𝜎 = 0.
Consequently, the deadline for the controller task can be relaxed, leaving enough resources to
guarantee schedulability of the less critical path-planning application. The latter comprises
only a single long-running periodic task altering the controller’s set point.

At the beginning of the timeline in Figure 3 (A), the UAV is in good condition, indicated
by 𝑣𝑘 ≤ 𝑣∗1. Measurements allow the observer abstraction to detect the mild gust of wind
and its state rises in turn. While the 𝑙𝑜-criticality mode 𝜎 = 1 can reject this disturbance,
the strong gust of wind occurring later drives the UAV further off its reference trajectory,
eventually leading to a change in criticality when 𝑣𝑘 passes 𝑣∗1. Here, the scheduler timely
reconfigures the system for the ℎ𝑖-criticality mode, which can withstand the strongest specified
disturbance for any amount of time. However, the increased computational demand for 𝜎 = 0
implies that guaranteed timeliness for the less critical path planning application must be
dropped. Figure 3 (B) illustrates how worst-case timing leads to a deadline violation in the
latter. Recapitulating, this signifies the notion of physical mixed-criticality introduced by
our approach: in the average case, the whole system works as expected. However, during
unusually high disturbances, the criticality changes based on the underlying physical process.
If the system becomes overloaded, it still has a defined fault state. In the UAV’s case, it
will hover around the last known reference point until the disturbance wears off and then
continue its flight.
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3.2 Blind Abstractions
As a first step, we apply the idea presented in [19] to our system model (4) by restricting
it to the linear case and extending it to support ellipsoidal bounds and multiple switching
modes. For this, we base the analysis on the | | · | |𝑃𝑄-norms introduced in Section 2.1.

While the rigorous proofs are detached to Appendix A, we still want to exemplify the
derivation here. The key mathematical idea is to express the system’s safety outputs under
the | | · | |𝑆-norm, split the resulting equation by applying the triangle inequality, and upper
bound the uncertain terms by their specified ellipsoids. Introducing an analysis ellipsoid
parametrized by the matrix 𝑃 ≻ 0 yields a time-dynamic expression | |𝑥𝑘 | |𝑃, which we can
relate to the specification. Applying the ideas, we get

| |𝑠𝑘+1 | |𝑆
(4a),(4e)

= | |𝐶𝑠 (𝐴𝜎𝑘
𝑥𝑘+𝐺𝜎𝑘

𝑑𝑘) | |𝑆
(3)
≤ ||𝐶𝑠 | |𝑆𝑃 ( | |𝐴𝜎𝑘

| |𝑃𝑃 | |𝑥𝑘 | |𝑃+||𝐺𝜎𝑘
| |𝑃𝐷𝜎𝑘

)
(4f),!
≤ 1. (5)

Appendix A gives a more formal derivation. There, we prove why the following linear
system, which we call blind (state) abstraction, provides a sound upper bound (Theorem 3)
on the system’s state, i.e., | |𝑥𝑘 | |𝑃 ≤ 𝑣𝑘 ∀𝑘 ∈ N0 and how obeying the specification translates
to a constant-valued safety bound 𝑣𝑚𝑎𝑥 on the abstraction’s state (6c) (Theorem 4). ∀𝑘 ∈ N0:

𝑣𝑘+1 = 𝜌𝜎𝑘
𝑣𝑘 + 𝛽𝜎𝑘

(Dynamics)
𝑣0 = 𝛼 (Initial State)

𝑣𝑘
!
≤ 𝑣𝑚𝑎𝑥 . (Safety Bound)

(6a)
(6b)

(6c)

All coefficients can be derived from the system model (4) by applying different | | · | |𝑃𝑄-
norms as

𝜌𝜎 := | |𝐴𝜎 | |𝑃𝑃 𝛽𝜎 := | |𝐺𝜎 | |𝑃𝐷𝜎
𝑣𝑚𝑎𝑥 := | |𝐶𝑠 | |−1

𝑆𝑃 𝛼 := | |𝐼 | |𝑃𝑋0 . (7)

While 𝛼 is the abstraction’s lowest admissible initial state, 𝜌𝜎 and 𝛽𝜎 define the worst-
case exponential decays and disturbance influences for each mode 𝜎 ∈ Σ, respectively. Aside
from being one-dimensional, the abstraction’s state 𝑣𝑘 inherits the desirable property of non-
negativity from the norm-based coefficients. In combination, this allows for easy monitoring
of the system with respect to two values with clear interpretations: while for 𝑣𝑘 = 0 the
system is in perfect condition, 𝑣𝑘 = 𝑣𝑚𝑎𝑥 indicates that the abstraction is on the verge of
guaranteeing safety.

3.3 Adding Measurements: Observer Abstractions
We argue that the blind abstraction (6) poses a valuable analysis tool. However, as we will
show in Section 4, the pessimistic assumptions make it hard to use in practice. This section
presents how uncertain measurements can be fed into the abstraction to improve the average-
case behavior. Casually speaking, the measurement allows the arising observer abstractions
to rule out impossible abstraction values. The underlying assumption is that these impossible
cases are more often on the pessimistic side than not, improving the abstraction’s performance
on average.

The key concept behind incorporating measurements is to add a Luenberger observer,
i.e., superimposing the state estimate with some linear combination of the measurements.
The observer gains 𝐿𝜎 ∈ R𝑛𝑥×𝑛𝑦 (𝜎) define the weights for every state and measurement
component. As shown by Lemma 1, the observer abstractions truly generalize the blind
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ones when disregarding the measurements, i.e., choosing 𝐿𝜎 = 0 ∀𝜎 ∈ Σ. In a slight abuse
of notation, we redefine the symbols used before and arrive at the following definition of
observer abstractions. ∀𝑘 ∈ N0:


𝑣𝑘+1 = 𝜌𝜎𝑘

𝑣𝑘 + 𝛽𝜎𝑘
+ ||𝐿𝜎𝑘

𝑦𝑘 | |𝑃 (Dynamics)
𝑣0 = 𝛼 (Initial State)

𝑣𝑘
!
≤ 𝑣𝑚𝑎𝑥 . (Safety Bound)

(8a)
(8b)

(8c)

Comparing (6) and (8), their structure differs only in the additional measurement term
in the dynamics equation. To discuss how adding measurements alters the abstraction, we
first introduce the observer dynamics matrix to abbreviate the results later on:

𝐴𝜎 := 𝐴𝜎 − 𝐿𝜎𝐶𝜎 . (9)

With this in mind, the coefficients for (8) are again | | · | |𝑃𝑄-norms of the matrices defining
the system model (4). They read{

𝜌𝜎 := | |𝐴𝜎 | |𝑃𝑃 𝛽𝜎 := | |𝐺𝜎 | |𝑃𝐷𝜎
+ ||𝐿𝜎𝐻𝜎 | |𝑃𝑍𝜎

𝑣𝑚𝑎𝑥 := | |𝐶𝑠 | |−1
𝑆𝑃

𝛼 := | |𝐼 | |𝑃𝑋0

𝛾𝜎 := | |𝐿𝜎𝐶𝜎 | |𝑃𝑃 𝛿𝜎 := | |𝐿𝜎𝐻𝜎 | |𝑃𝑍𝜎
.

(10a)
(10b)

Besides the coefficients already introduced for the blind abstractions, assessing the worst-
case behavior of the observer abstractions requires the two additional terms 𝛾𝜎 and 𝛿𝜎.
Lemma 5 shows that the dynamic system{

𝑣𝑘+1 = (𝜌𝜎𝑘
+ 𝛾𝜎𝑘

)𝑣𝑘 + 𝛽𝜎𝑘
+ 𝛿𝜎𝑘

∀𝑘 ∈ N0

𝑣0 = 𝛼

(11a)
(11b)

provides an upper bound on the observer abstraction, i.e., 𝑣𝑘 ≤ 𝑣𝑘 ∀𝑘 ∈ N0, effectively
reducing the worst-case behavior to a more pessimistic version of the blind abstraction (6).
Interpreting this result, the coefficients 𝛾𝜎 and 𝛿𝜎 describe the additional decay rate and
disturbance input separating the average from the worst case.

Assuming that the pair (𝐴𝜎 , 𝐶𝜎) is sufficiently observable,2 the gains 𝐿𝜎 allow for altering
the abstraction dynamics for the better (i.e., reduce 𝜌𝜎 and 𝛽𝜎) on average. This reduction
comes at the cost of adding uncertainty originating from the measurements via 𝛿𝜎. We
want to make clear that we are still concerned with how the system states behave, not the
observer’s error dynamics. It is impossible to alter the system’s dynamic properties via the
measurements, even if they are perfect, i.e., 𝛿𝜎 = 0. They only allow for improving upon our
knowledge about its state. The triangle inequality reflects this mathematically:

| |𝐴𝜎 | |𝑃𝑃

(9)
= | |𝐴𝜎 + 𝐿𝜎𝐶𝜎 | |𝑃𝑃

(3c),(10)
≤ 𝜌𝜎 + 𝛾𝜎 .

As a note, the observer gains shown here are independent of any observer encapsulated
in (4). While they allow for adding any measurement of the form (4b), we assume that the
abstraction is only fed a subset of those measurements used for the controller as querying
additional sensors at run time defies the goal of cheap state monitoring.

2 While full observability allows for choosing 𝜌𝜎 arbitrarily small or even as 0 [33, 40], its value can
already be reduced with only subsystems being observable.
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3.4 Safe Abstraction-Based Run-Time Switching Policies
If we recapitulate on the previous sections, we have found a safe upper bound for assessing
the system’s state and how well it obeys its safety specification by introducing state abstrac-
tions (8). Based upon the assumption of a safe mode, i.e., one which can provably withstand
the worst-case disturbance over any amount of time, we derive the set of feasible switching
modes for the current abstraction state. Finally, we describe a prototypical algorithm for
abstraction-based run-time scheduling.

To find the set of feasible modes and thus determine points at which criticality changes,
we first use the results from Lemma 5 to define the maximum safe value 𝑣∗𝜎 for every mode
𝜎 as the highest abstraction value which guarantees that the abstraction stays within its
safety bound for the next time step when choosing 𝜎𝑘 = 𝜎:

𝑣∗𝜎 := 𝑣𝑚𝑎𝑥 − 𝛽𝜎 − 𝛿𝜎
𝜌𝜎 + 𝛾𝜎

∀𝜎 ∈ Σ. (12)

Note that modes with negative 𝑣∗𝜎 are infeasible, i.e., our analysis provides them with no
safety guarantees at any time. In contrast, the feasible set Σ 𝑓 (𝑣𝑘) at time step 𝑘 defines all
modes for which the abstraction stays safe for 𝑘 + 1, i.e.,

Σ 𝑓 (𝑣𝑘) := {𝜎 ∈ Σ |𝑣𝑘 ≤ 𝑣∗𝜎}. (13)

By Theorem 7, this set is never empty if a) the system is feasible and b) there is at least
one safe mode 𝜎 permitting worst-case disturbance for any amount of time, which translates
to

𝑣0 ≤ 𝑣𝑚𝑎𝑥 and (14)
∃𝜎 ∈ Σ : 𝑣∗𝜎 ≥ 𝑣𝑚𝑎𝑥 . (15)

Notice that the condition (15) requires exponential stability, i.e., 𝜌𝜎 + 𝛾𝜎 < 1. If these
assumptions hold, the system is guaranteed to remain safe by Corollary 8 when the scheduler
chooses the switching sequence from the feasible set (13):

𝜎𝑘 ∈ Σ 𝑓 (𝑣𝑘) ∀𝑘 ∈ N0 ⇒ ||𝑠𝑘 | |𝑆 ≤ 1 ∀𝑘 ∈ N0. (16)

We now define a prototypical switching policy. It greedily chooses the least critical but
feasible mode 𝜎 for the timestep 𝑘 by assessing the abstraction’s state 𝑣𝑘 . Without loss of
generality, we assume that the states are ordered by criticality with 𝜎 = 0 being the highest
critical one. Formally:

𝜎𝑘 = max Σ 𝑓 (𝑣𝑘) ∀𝑘 ∈ N0. (17)

3.5 Design-Time Analysis
Aside from the analysis ellipsoid parametrized by the matrix 𝑃 ≻ 0, each set of observer
gains 𝐿𝜎 introduces additional parameters. While the problem of choosing them looks
similar to designing a robust observer for switched systems for which the literature provides
optimal solutions [16], we are again not concerned with the observer’s error dynamics but
the system’s safety. Therefore, the problem is more challenging: as shown in Section 3.3,
adding an observer will – at best – not increase the abstraction coefficients (10). However,
as of Section 3.4, we need only one safe mode to guarantee safety at all times. This allows us
to adapt the parameters accordingly and incorporate the other (possibly unstable) modes
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to best effort. In this section, we derive a heuristic for choosing the parameters for large
𝑣∗𝜎 by formulating a parametric semidefinite program (SDP) and solving it on a grid 𝑖 ∈ G.
To keep the parameters and variables for the individual optimization problems distinct
from the derivations above, we index them using 𝑖 as, e.g., 𝑃(𝑖). Afterward, we choose the
actual abstraction parameters as the best feasible solution found on the grid. Note that this
part of the paper is not a rigorous derivation but a piece of engineering that works for our
purposes. Consequently, we focus on conveying the underlying thoughts instead of detailing
the fundamentals of and modeling with semidefinite programming. We refer the interested
reader to e.g., [41] and [16].

As a starting point, the abstraction coefficients (10) can be computed for every 𝑃 ≻ 0.
This allows us to apply any heuristic for choosing 𝑃 and the 𝐿𝜎 and later assess if the
resulting abstraction guarantees safety. With that in mind and for the sake of brevity, we
do not give proofs for the derivation of the heuristic and formulate assumptions from which
we proceed. Informally, the SDP aims to maximize the smallest 𝑣∗𝜎 (𝑖), i.e., make the least
critical mode schedulable for the longest amount of time. In the following, we will detail
the optimization problem mathematically. Most of the constraints are needed to express
different | | · | |𝑃𝑄-norms, but we also add additional ones to enforce safe modes.

The first set of constraints follows from the static portions of the system model (4): we
require that the safety outputs obey the specification for all initial states, i.e., | |𝑥0 | |𝑋0 ≤ 1 ⇒
||𝐶𝑠𝑥0 | |𝑆 ≤ 1. The following linear matrix inequality (LMI) is mathematically equivalent:

𝑋0
!
⪰ 𝐶𝑇

𝑠 𝑆𝐶𝑠 . (18)

We want to ensure that the analysis ellipsoid of the 𝑖-th problem expressed by the matrix
variable 𝑃(𝑖) ≻ 0 is non-degenerate and well-conditioned. For convenience, we confine it
between the initial state and the specification ellipsoid, leading to 0 ≤ 𝑣0 ≤ 𝑣𝑚𝑎𝑥 ≤ 1 if the
problem is feasible. To avoid a loss of definiteness in case of 𝐶𝑠 not being full-ranked, we
restrict the smallest eigenvalue to the arbitrary value

√
10−6. The following LMIs express all

of this:

𝑃(𝑖)
!
⪰ 𝐶𝑇

𝑠 𝑆𝐶𝑠 and 𝑋0
!
⪰ 𝑃(𝑖), 𝑃(𝑖)

!
⪰ 10−6 · 𝐼 . (19)

To make the optimizer aware of the 𝑣∗𝜎 (𝑖), we must provide it with the abstraction
coefficients (10), which depend on 𝑃(𝑖). We assume there is no convex representation for
choosing the 𝜌𝜎 (𝑖), 𝛾𝜎 (𝑖), 𝐿𝜎 (𝑖), and 𝑃(𝑖) simultaneously, use the former two as parameters
for the semidefinite program, and confine them to a grid later. To incorporate the observer
gains, we define the optimization variables 𝑊𝜎 (𝑖) := 𝑃(𝑖)𝐿𝜎 (𝑖). By Schur’s complement and
after multiplying with 𝑃(𝑖), we can rewrite | |𝐴𝜎 (𝑖) | |𝑃 (𝑖)𝑃 (𝑖) ≤ 𝜌𝜎 (𝑖) and | |𝐿𝜎 (𝑖)𝐶𝜎 | |𝑃 (𝑖)𝑃 (𝑖) ≤
𝛾𝜎 (𝑖) as ∀𝜎 ∈ Σ :[

𝜌𝜎 (𝑖)𝑃(𝑖) (𝑃(𝑖)𝐴𝜎 −𝑊𝜎 (𝑖)𝐶𝜎)𝑇
𝑃(𝑖)𝐴𝜎 −𝑊𝜎 (𝑖)𝐶𝜎 𝜌𝜎 (𝑖)𝑃(𝑖)

]
!
⪰ 0 and

[
𝛾𝜎 (𝑖)𝑃(𝑖) (𝑊𝜎 (𝑖)𝐶𝜎)𝑇
𝑊𝜎 (𝑖)𝐶𝜎 𝛾𝜎 (𝑖)𝑃(𝑖)

]
!
⪰ 0. (20)

We want to avoid introducing additional parameters and, therefore, an exponential
increase in the search space they span. Thus, we define the optimization variables 𝛽2

𝑘
(𝑖)

and 𝛿2
𝑘
(𝑖) and (probably falsely) assume that 𝛽2

𝑘
(𝑖) ≈ 𝛽𝑘 and 𝛿2

𝑘
(𝑖) ≈ 𝛿𝑘 . This makeshift is

valuable as we can avoid non-convex products such as 𝛿𝜎 (𝑖)𝑃−1 (𝑖) and instead reformulate
| |𝐺𝜎 | |2𝑃 (𝑖)𝐷𝜎

≤ 𝛽2
𝜎 (𝑖) and | |𝐿𝜎 (𝑖)𝐻𝜎 | |2𝑃 (𝑖)𝑍𝜎

≤ 𝛿2
𝜎 (𝑖) as the LMI contraints[

𝛽2
𝜎 (𝑖)𝐷𝜎 (𝑃(𝑖)𝐺𝜎)𝑇
𝑃(𝑖)𝐺𝜎 𝑃(𝑖)

]
!
⪰ 0 and

[
𝛿2
𝜎 (𝑖)𝑍𝜎 (𝑊𝜎 (𝑖)𝐻𝜎)𝑇

𝑊𝜎 (𝑖)𝐻𝜎 𝑃(𝑖)

]
!
⪰ 0 ∀𝜎 ∈ Σ. (21)
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To express the maximum safe values, we rewrite (12) as (𝜌𝜎 +𝛾𝜎)𝑣∗𝜎 + 𝛽𝜎 +𝛿𝜎 ≤ 𝑣𝑚𝑎𝑥 and
introduce 𝑣∗𝜎 (𝑖) as optimization variables. We have found empirically that this inequality can
be approximated as 𝑐𝜎 (𝑖) := (𝜌𝜎 (𝑖) + 𝛾𝜎 (𝑖))𝑣∗𝜎 (𝑖) + 𝛽2

𝜎 (𝑖) + 4𝛿2
𝜎 (𝑖) ≤ 𝑣𝑚𝑎𝑥 . Given the norm-

based definition (10) of 𝑣𝑚𝑎𝑥 , which is also used to obtain its actual value after optimization,
we get[

𝑃(𝑖) 𝑐𝜎 (𝑖)𝐶𝑇
𝑠

𝑐𝜎 (𝑖)𝐶𝑠 𝑆−1

]
!
⪰ 0 ∀𝜎 ∈ Σ. (22)

We require a subset of modes ∅ ≠ Σ𝑠 ⊆ Σ to be safe which translates to

𝑣∗𝜎
!
≥ 𝑣𝑚𝑎𝑥 ∀𝜎 ∈ Σ𝑠 . (23)

As a last set of constraints, we introduce the single variable 𝑣∗
𝑚𝑖𝑛

(𝑖) as the minimum of
all 𝑣∗𝜎 (𝑖),

𝑣∗𝑚𝑖𝑛 (𝑖)
!
≤ 𝑣∗𝜎 (𝑖) ∀𝜎 ∈ Σ, (24)

and use it as the maximization objective. Requirements on the modes’ exponential decays
can then be imposed using the optimization parameters 𝜌𝜎 (𝑖) and 𝛾𝜎 (𝑖). The next step
is to define a grid for their values on which to solve the SDP. The parameter space grows
exponentially in the number of modes. We consider this to be undesired and consequentially
constrain all values 𝜌𝜎 (𝑖) and 𝛾𝜎 (𝑖) onto a one-dimensional grid 𝑖 ∈ G := {0, . . . , 𝑛𝑔 − 1} as

𝜌𝜎 (𝑖) = r𝜎 +
𝑟𝜎 − r𝜎
𝑛𝑔 − 1 𝑖 and 𝛾𝜎 (𝑖) = 𝑙𝜎 − 𝜌𝜎 (𝑖) ∀𝜎 ∈ Σ. (25)

With the spectral radius R(𝐴𝜎), i.e., 𝐴𝜎 ’s largest absolute eigenvalue, the hyperparame-
ters for our heuristic are given by Σ𝑠, R(𝐴𝜎) ≤ 𝑙𝜎 , 0 ≤ r𝜎 ≤ 𝑟𝜎 ≤ 𝑙𝜎. Again without proof,
we conceptualize their meaning: 𝑙𝜎 sets the maximum admissible decay rate. Bounding it
from below makes sense, as a sound abstraction must not decay faster than the underlying
system. Imposing r𝜎 ≤ 𝜌𝜎 (𝑖) avoids high observer gains which amplify noise, i.e., they
increase 𝛾𝜎 (𝑖) and 𝛿𝜎 (𝑖). Lastly, 𝜌𝜎 (𝑖) ≤ 𝑟𝜎 sets the desired decay rate in the optimistic
case.

The parameterization works as follows: for every grid point 𝑖 ∈ G, solve the SDP
max 𝑣∗

𝑚𝑖𝑛
(𝑖) in 𝑃(𝑖),𝑊𝜎 (𝑖), 𝛽2

𝜎 (𝑖), 𝛿2
𝜎 (𝑖), 𝑣∗𝜎 (𝑖) and 𝑣∗

𝑚𝑖𝑛
(𝑖) subject to (18)–(24) with the

parameters set by (25), then compute 𝐿𝜎 (𝑖) = 𝑃−1 (𝑖)𝑊𝜎 (𝑖). For all feasible SDPs, determine
the actual abstraction coefficients (10) as the optimization variables do not reflect their
actual values. Of all safe abstraction parametrizations, choose the one which maximizes the
actual 𝑣∗

𝑚𝑖𝑛
:= min

𝜎∈Σ
𝑣∗𝜎 obtained from (10).

4 Evaluation

In this section, we evaluate how introducing measurements lessens the blind abstractions’
inherent pessimism and that the run-time policy (17) adapts well in a weakly-hard setting.
Further, we demonstrate that mere stability is insufficient for guaranteeing safety and that
correlated disturbances justify using a set-valued disturbance model. While this was carried
out in a custom simulator, we complement the results with execution time measurements,
which compare the abstractions’ run-time overheads to those of set-valued estimators from
the literature on an ARM Cortex-M4F processor.



T. Rheinfels, M. Gaukler, and P. Ulbrich 11:15

4.1 Benchmark System
We use a double integrator as our benchmark system. The two modes are defined as 𝑐𝑜𝑛𝑡𝑟𝑜𝑙
(𝜎 = 0) and 𝑠𝑘𝑖𝑝 (𝜎 = 1), i.e., measure both states and apply a state-space controller as the
control signal or skip measurements and zero the controller output. They represent extreme
examples for high and low criticality. We do not consider that measurement uncertainties
enter the system via the controller and instead specify a single process disturbance affecting
the states, which is the same mathematically. Further, we subject the measurements passed to
the state abstraction to uncertainties. When executed, the controller places both closed-loop
eigenvalues at 0.9. The safety specification is set arbitrarily to constrain both states and
the control signal to a sphere of radius 1.25. The initial state is chosen as one tenth of this
radius. For the lack of an analytical bound, we empirically chose the disturbances as high as
possible such that our heuristic is still able to verify that 𝜎 = 0 is a safe mode, i.e., 𝑣𝑚𝑎𝑥 ≤ 𝑣∗0.
The benchmark’s system model reads

𝐴0 =

[
0.9950 8.205 · 10−2

−0.1100 0.8050

]
, 𝐴1 =

[
1 9.091 · 10−2

0 1

]
𝐺0 = 𝐺1 =

[
−5.051 · 10−3

−0.1111

]
, 𝐷0 = 𝐷1 = 3.516 · 10−4

𝐶0 = 𝐻0 = 𝐼, 𝑍0 = 2.384 · 10−5 · 𝐼, 𝐶1, 𝐻1, 𝑍1 empty

𝑋0 = 1.563 · 10−2 · 𝐼, 𝐶𝑠 =


1 0
0 1

0.99 1.755

 , 𝑆 = 1.563 · 𝐼 .

(26)

We draw the initial states independently and identically (i.i.d.) uniformly distributed
from the surface of E(𝑋0).

4.2 Disturbance Scenarios
According to their elliptical bounds, we specify two types of disturbance scenarios for the
simulation runs: in the benign case, we draw both disturbances uniformly and i.i.d. from
their ellipsoids’ volumes resulting in uncorrelated noise. In contrast, the malicious scenario
aims to approximate the worst-case disturbance. We achieve this by drawing 100 points
uniformly and i.i.d. from the corresponding ellipsoids’ surfaces in each timestep. For the
process disturbance, we then select the point 𝑑𝑘 which maximizes | |𝐶𝑠 (𝑥𝑘 + 𝐺𝜎𝑘

𝑑𝑘) | |𝑆 given
the current state 𝑥𝑘 . As the measurement uncertainty only affects the abstraction, we select
𝑧𝑘 to maximize | |𝑥𝑘 + 𝐿𝜎𝑘

𝐻𝜎𝑘
𝑧𝑘 | |𝑃. This procedure yields time-correlated values.

4.3 Effect of Measurements
In a first simulative experiment, we want to assess the effect of adding measurements as
described in Section 3.3 by parametrizing three different state abstractions: the first one
performs a full measurement, i.e., it utilizes both measurements via 𝐶0 and 𝐻0. The second
abstraction uses partial measurements only, i.e., it disregards the measurement 𝑦2 by omitting
the second row of 𝐶0 and 𝐻0, respectively. Finally, the third abstraction is blind and thus
disregards both 𝑦1 and 𝑦2, allowing it only to use the worst-case assumptions. Note that no
measurements are used when skipping the controller.

Parametrizing each abstraction using our heuristic on an Intel Core i7-8565U took less
than five seconds. Both observer abstractions were parametrized for r0 = 0.3, 𝑟0 = 0.9,
𝜆0 = 0.94, r1 = 1.05 and 𝑟1 = 𝜆1 = 1.15 on 𝑛𝑔 = 101 grid points. For the blind abstraction, we
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Figure 4 Effect of measurements. A double integrator is subjected to the benign (left) and
malicious (right) disturbance scenario. Its state (dotted black) is compared to three state abstractions
(blue), either running blindly (dash-dotted), measuring its partial (dashed), or full state (solid).
The controller is always executed until time step 1000 and then subjected to 50% dropout, i.e., the
modes are alternated deterministically.

Table 1 State abstraction coefficients for the double integrator and different measurement outputs
computed by (10) and rounded to three significant digits.

Measurement 𝛼 𝑣𝑚𝑎𝑥 𝜎 𝜌𝜎 𝛾𝜎 𝛽𝜎 𝛿𝜎 𝑣∗𝜎

Full 0.314 1.00 0 0.396 0.554 0.0104 0.00616 1.05
1 1.07 0.00 0.00425 0.00 0.934

Partial 0.317 1.00 0 0.900 0.0400 0.00448 0.000235 1.06
1 1.07 0.00 0.00425 0.00 0.933

Blind 0.310 1.00 0 0.940 0.00 0.00411 0.00 1.06
1 1.07 0.00 0.00411 0.00 0.933

matched 𝑟0 = 𝜆0 = 0.94 to make the SDP feasible. Table 1 shows the resulting abstraction

coefficients computed via (10). The observer gains read 𝐿0 ≈
[

0.577 0.0487
−0.0687 0.458

]
for the

full and 𝐿0 ≈
[

0.0393
−0.0233

]
for the partial measurement. The condition numbers of the shape

matrices 𝑃−1 range between ∼6.64 and ∼7.48 with ∼0.155 being the smallest of all their
eigenvalues, i.e., the analysis ellipsoids are well-defined.

Figure 4 depicts two simulations in which the controller always runs at first and is
then subjected to a deterministic 50% dropout sequence, i.e., the switching signal alternates
between both modes starting at time step 1000. The benign or malicious disturbances perturb
the system during the whole simulation, respectively. After the initial values have decayed,
the blind abstraction’s state is strictly higher than those of both observer abstractions. In the
malicious scenario, the latter are nearly indistinguishable until the dropouts occur. There,
the full measurement improves its abstraction noticeably. As we show later, the additional
run-time overhead is negligible if the measurement is already available. Quantifying the
overapproximation over 100 simulation runs by comparing the mean quotient of the individual
𝑣𝑘 and 𝑣𝑚𝑎𝑥 · | |𝑠𝑘 | |𝑆 yields factors between ∼2.37 (full measurement, malicious disturbance,
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Figure 5 Execution times for updating a blind and observer abstraction by (6a) and (8a) as well
as the update steps for a set-valued Luenberger observer [16] and Kalman filter [30] for different
measurement sizes 𝑛𝑦 . Times are given in CPU cycles on an ARM Cortex-M4F processor and
plotted in logarithmic scales.

during dropout) and ∼71.6 (partial measurement, benign disturbance, during dropout). This
comparison leaves out the blind abstraction during dropout as – opposed to the observer
abstractions – it appears to diverge. The large discrepancy signifies the benefit of separating
the average case from the worst case at run time by reusing the controller’s measurements.
While our analysis cannot give guarantees about the steady states in case of dropouts, the
simulations indicate that the observer abstractions average out well below their safety bound.
The run-time algorithm (8) can predict upcoming violations in any case, such as for the
blind abstraction around timestep 1200, allowing the scheduler to timely reconfigure the
system for higher criticality.

4.4 Run-Time Overhead

While Section 4.3 focuses on the benefits of adding measurements, this section addresses
their run-time overhead. For this, we measured the execution times of updating a blind and
an observer abstraction by (6a) and (8a) given different measurement sizes 𝑛𝑦 ∈ {1, . . . , 60}.
To contrast the results, we also measured the cost of updating a set-valued Luenberger
observer [16] and Kalman filter [30]. Most of the time, only a subset of the states is measured,
i.e., 𝑛𝑦 < 𝑛𝑥 . We set 𝑛𝑥 = 𝑛𝑦 for both observers, effectively reducing their execution time
to a minimum. This does not affect the observer abstractions as the measurement term is
independent of 𝑛𝑥 , i.e., | |𝐿𝜎𝑘

𝑦𝑘 | |𝑃 =

√︃
𝑦𝑇
𝑘
𝐿𝑇𝜎𝑘

𝑃𝐿𝜎𝑘
𝑦𝑘 . We further reduced the cost for the

Kalman filter by omitting the proposed line search for 𝜔 in [30, (13c)] in favor of a constant
value while choosing 𝜔 by the trace criterion given in [16, (29)] for [30, (11c)].

Note that an additional online reachability analysis is required in all cases. While for
state abstractions this reduces to trivial real-valued comparisions as outlined in Section 3.4,
both set-valued observers from the literature require elaborate techniques as their ellipsoids’
shapes are time-varying. As the references do not provide the respective analyses, we neither
investigated this cost here nor their pessimism in Section 4.3. In all cases, we do not consider
the acquisition of measurements as we assume that a state abstraction reuses the ones passed
to the controller.
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Figure 6 Comparison between the abstraction switching policy (17) and a minimal (1, 5) sequence
(columns) subject to both disturbance scenarios (rows) when applied to the double integrator (26).

We conducted the experiment on an STM32F411E-Discovery board [37] with an
ARM Cortex-M4F processor using gcc with -O3 -ffp-contract=off. Utilizing the DWT
cycle counter, the measurement overhead amounted to one cycle consistently. We drew all
coefficient values at random and computed the corresponding update steps in single precision
for ten iterations utilizing some optimizations (e.g., take into account positive definiteness).
We repeated this procedure for ten sets of coefficients, yielding 100 measurements per update
step and 𝑛𝑦. Note that the parameters are stored in RAM. Placing them in flash adds
additional wait states [37, p. 44]. This, however, affects all candidates. Figure 5 depicts the
measurement results.

While the blind abstraction used 10 cycles consistently, the execution times for the
other update steps rise for increasing measurement sizes. Note that this rise is not always
monotonic as of compiler optimizations. The cycle counts for each size 𝑛𝑦 coincide for all 100
execution time measurements of every individual update step (except for the Kalman filter
for which the variations were negligible), which is to be expected as all are constant-time
algorithms. The observer abstraction’s maximum of 29874 cycles was attained at 𝑛𝑦 = 58. In
comparison, the Luenberger observer and Kalman filter took ∼198 and ∼1057 times longer
for an update of this size. Considering the 96 MHz clock, updating the observer abstraction
took around 300𝜇𝑠 for a system with 𝑛𝑦 = 58 measurement signals. Looking at the data, we
conclude that the additional overhead from adding measurements is still negligible compared
to the complexity imposed by a control system of this size.

4.5 Abstraction-Based Run-Time Switching and Insufficiency of Stability
Sections 4.3 and 4.4 evaluate the abstraction itself, i.e., how well it can track the physical
state and how expensive the assessment is at run time. This is possible for any known
switching sequence. In contrast, here we use the state abstraction as an inexpensive way to
construct the switching sequence such that the system stays safe at all times by applying
our prototypical policy (17). Further, we exemplify that stability alone is an insufficient
criterion for safety when dealing with disturbances. These experiments were again carried
out in simulation.
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We only consider an abstraction utilizing both measurements. Without the more pes-
simistic configurations detailed in Section 4.3, we were able to increase the process uncertainty
by a factor of 10 (i.e., 100 · 𝐷𝜎) while keeping the heuristic working. To achieve this, we de-
creased 𝑟0 to 0.7, which was previously disregarded to keep the full and partial measurements
comparable.

As the system is feasible and 𝜎 = 0 is safe, the policy guarantees safety at all time steps by
Corollary 8, which was validated over 100 simulation runs. For the experiment, we compare
it to a minimal (1, 5)-switching sequence, i.e., execute the controller only every fifth time.
We decided on this specific sequence as its execution ratio is close to but higher than the
average generated by the abstraction switching in the benign case. As shown by Theorem 9,
the system is exponentially stable even under the more general (1, 5) weakly-hard execution,
i.e., skip no more than four consecutive controller executions. Even though our approach
cannot guarantee safety under this sequence, the abstraction again remains a sound upper
bound on the specification output as of Theorem 3. Subjecting each switching policy to both
disturbance scenarios yields four combinations. Figure 6 depicts one of the 100 simulation
runs obtained this way. As a visual guide for the switching sequence, the plots are overlaid
with the average cost from controller execution defined by 𝑐𝑘 := 1 − avg(𝜎𝑘) where avg(·) is
the moving average over 31 time steps.

While the abstraction stays below 𝑣𝑚𝑎𝑥 for (1, 5)-switching under the benign disturbance,
even the system itself violates its specification in the malicious case for all 100 runs indicating a
critical condition. This shows that mere stability is insufficient in the presence of disturbances
and that correlated disturbances require more pessimistic approaches, such as ellipsoidal
models.

By design, the switching policy (17) keeps the abstraction and, by extension, the system
within safe bounds at all time steps. While the average cost stays nearly constant at 15% to
20% of the controller executions during the benign disturbance, it adapts to the malicious
case by increasing the average cost to around 45% after a brief period of overshoot between
timesteps 100 and 150. From this, we conclude that our state abstractions are a pessimistic
yet cheap and simple enough tool for monitoring and influencing run-time adaptive switched
linear systems at the operating system level.

5 Related Work

Adaptive scheduling and selective verification of CPSs is a thriving field of research. Our
approach shares its objective correspondingly with a wide area of related work that we
inherently expand upon as well. Yet, we are not aware of any approach that provides (1)
sound yet very cost-effective state abstraction, (2) guarantees not only stability but also
adhering to safety constraints, and (3) uses observer-based feedback of measured values to
mitigate pessimism. The following papers each differ from our approach in one or more
respects.

We are not the first to note that CPSs are a combination of criticalities in time and
quality of control (QoC), thus sharing parallels with MCS. For example, in [34], the QoC is
maximized while preserving guarantees for cyber tasks, while [26] maps high-level hazards to
the criticality of tasks.

The co-design of the controller and real-time system was introduced by Seto et al. [36]
to improve utilization by relaxing timing requirements. Realizing the impact on QoC [4],
[31] proposed to adjust control parameters to counteract deadline misses. For example, by
adapting the control period and deadline adherence [10, 11, 17, 20]. A popular variant of
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mitigated timing constraints is (𝑚, 𝐾)-firm scheduling introduced by [21]. Subsequently, more
flexible task models and switching between safe and optimistic control were researched [15,
47, 43, 5, 35]. Likewise, for sporadic bursts of deadline misses, control parameters can be
adapted [32, 14] and [44, 29] provide stability analysis of closed-loop systems.

Conversely, optimal sampling period approaches [8, 12] infer a sampling period to maximize
QoC and minimize the quadratic cost function regardless of other tasks.

Even more radical are approaches on self-triggered control [3, 39, 22, 23], which analyze the
system state to predict the next control instant. These approaches offer superior average-case
performance – unfortunately – to the detriment of overall schedulability.

The field of model predictive control emerged from the requirement to impose bounds on
control systems. Naturally, our approach reuses its fundamental concepts, e.g. bounding the
reachable sets of a perturbed system by ellipsoids as in Tube Model Predictive Control [9].
In fact, it can be interpreted as a stripped down version of MPC. While utilizing information
about the full system state promises to be less pessimistic and there are even variants
available which incorporate scheduling decisions [24, 25, 28], they require solving potentially
large optimization problems at run time. Further, determining a discrete switching sequence
can yield a problem growing exponentially in the prediction horizon [1]. This poses a high
burden on their implementation in embedded control systems [27]. We argue that while
superior in performance, MPC is only viable if the control system requires it anyway.

6 Conclusion

The physical state, or rather its distance from the safety specification, is a crucial criterion for
the actual criticality of control applications in many real-world applications. In this paper, we
proved that careful abstraction allows for state estimation efficiently enough to serve as run-
time monitoring. Therefore, we extended our previously defined one-dimensional convergence
rate abstractions described in [19] to linear systems which feature multiple modes of controller
execution and are subject to ellipsoidally bound disturbances. Further, we introduced the
concept of observer abstractions that allow for the feedback of uncertain measurements to
lessen overapproximation, making the abstractions much more practical. Given a well-posed
specification, we then developed a design-time analysis for their parameterization. Finally,
as part of a case study, we validated our disturbance model, showed that the benefits
of introducing measurements outweighs their run-time overhead, and illustrated that our
prototypical run-time policy for optimistically choosing the mode of controller execution
adapts well to changing disturbances while obeying safety specifications even in the worst case.
We consider our work a foundation for designing mixed-criticality systems and scheduling
approaches that leverage a system’s physical state for control tasks as an additional criticality
criterion.
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A Proofs

While in Section 3 we focused on conveying the ideas and design decisions behind our
approach, here we formalize and prove the state abstractions’ properties.

▶ Lemma 1 (Generalization). By setting 𝐿𝜎 = 0 ∀𝜎 ∈ Σ, the observer abstraction (8) is a
true generalization of the blind abstraction (6).

Proof. When applying norm homogeneity (3a), the observer abstraction’s dynamics (8a)
and their coefficients (10) are reduced to the blind counterparts (6a) and (7) by setting
𝐿𝜎 = 0 ∀𝜎 ∈ Σ. ◀

▶ Lemma 2 (Disturbance Bound). The highest impact of an ellipsoidally constrained distur-
bance in terms of the 𝑃-norm is attained at the ellipsoid’s surface:

max
| |𝑥 | |𝑄≤1

| |𝑀𝑥 | |𝑃 = max
| |𝑥 | |𝑄=1

| |𝑀𝑥 | |𝑃
(1c)
= | |𝑀 | |𝑃𝑄 . (27)
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Proof. We prove destructively: assume some 𝑥 with | |𝑥 | |𝑄 < 1 were a maximizer on the
ellipsoid’s inside. Then 𝑥 := | |𝑥 | |−1

𝑄
𝑥 is of unit length (i.e., it lies on the surface of 𝑄) and by

the norm properties

| |𝑀𝑥 | |𝑃
(3a)
= | |𝑥 | |−1

𝑄︸ ︷︷ ︸
>1

| |𝑀𝑥 | |𝑃
(3b)
> | |𝑀𝑥 | |𝑃

is greater than the assumed maximizer. This contradiction concludes (27). ◀

▶ Theorem 3 (Soundness). For any switching sequence 𝜎𝑘 ∈ Σ, 𝑘 ∈ N0, an (observer)
abstraction (8) poses a sound upper bound for the underlying system’s state (4), i.e.,

| |𝑥𝑘 | |𝑃 ≤ 𝑣𝑘 ∀𝑘 ∈ N0. (28)

Proof. We prove (28) by induction.

Base Case. By the ellipsoidal constraint on the initial state, the norm properties, and the
definition of blind abstractions

| |𝑥0 | |𝑃
(4d)
≤ max

| |𝑥 | |𝑋0 ≤1
| |𝑥 | |𝑃

(27)
= | |𝐼 | |𝑃𝑋0︸  ︷︷  ︸

(10)
= 𝛼

(8b)
= 𝑣0.

Inductive Assumption (I.A.). | |𝑥𝑘 | |𝑃 ≤ 𝑣𝑘 .

Inductive Step (𝒌 → 𝒌 + 1). We incorporate the observer by adding a zero and substituting
the measurement. Applying the triangle inequality and bounding the summands by the norm
properties yields the abstraction’s coefficients and dynamics by definition:

| |𝑥𝑘+1 | |𝑃
(4a)
= | |𝐴𝜎𝑘

𝑥𝑘 + 𝐺𝜎𝑘
𝑑𝑘 | |𝑃

(9),+0
= | |𝐴𝜎𝑘

𝑥𝑘 + 𝐺𝜎𝑘
𝑑𝑘 + 𝐿𝜎𝑘

𝐶𝜎𝑘
𝑥𝑘 | |𝑃

(4b)
=

| |𝐴𝜎𝑘
𝑥𝑘 + 𝐺𝜎𝑘

𝑑𝑘 − 𝐿𝜎𝑘
𝐻𝜎𝑘

𝑧𝑘 + 𝐿𝜎𝑘
𝑦𝑘 | |𝑃

(3c)
≤ ||𝐴𝜎𝑘

𝑥𝑘 | |𝑃 + ||𝐺𝜎𝑘
𝑑𝑘 | |𝑃 + ||𝐿𝜎𝑘

𝐻𝜎𝑘
𝑧𝑘 | |𝑃

+ ||𝐿𝜎𝑘
𝑦𝑘 | |𝑃

(1c),(4c),(27)
≤ ||𝐴𝜎𝑘

| |𝑃𝑃︸       ︷︷       ︸
(10)
= 𝜌𝜎𝑘

| |𝑥𝑘 | |𝑃 + ||𝐺𝜎𝑘
| |𝑃𝐷𝜎𝑘

+ ||𝐿𝜎𝑘
𝐻𝜎𝑘

| |𝑃𝑍𝜎𝑘︸                                       ︷︷                                       ︸
(10)
= 𝛽𝜎𝑘

+||𝐿𝜎𝑘
𝑦𝑘 | |𝑃

𝐼.𝐴.
≤

𝜌𝜎𝑘
𝑣𝑘 + 𝛽𝜎𝑘

+ ||𝐿𝜎𝑘
𝑦𝑘 | |𝑃

(8a)
= 𝑣𝑘+1. ◀

▶ Theorem 4 (Safety Bound). If an abstraction’s state is within its safety bound, the system
is guaranteed to obey its specification, i.e.,

𝑣𝑘 ≤ 𝑣𝑚𝑎𝑥 ⇒ ||𝑠𝑘 | |𝑆 ≤ 1 ∀𝑘 ∈ N0. (29)

Proof. After expanding the definitions, we apply Theorem 3 and the norm consistency.
Assume 𝑣𝑘 ≤ 𝑣𝑚𝑎𝑥 (∗), then

| |𝑠𝑘 | |𝑆
(4e)
= | |𝐶𝑠𝑥𝑘 | |𝑆

(1c)
≤ ||𝐶𝑠 | |𝑆𝑃︸   ︷︷   ︸

(10)
= 𝑣−1

𝑚𝑎𝑥

| |𝑥𝑘 | |𝑃
(28)
≤ 𝑣−1

𝑚𝑎𝑥𝑣𝑘
(∗)
≤ 1. ◀
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▶ Lemma 5 (Worst-case Behavior). The dynamic system (11) provides an upper bound on
the observer abstraction (8), i.e.,

𝑣𝑘 ≤ 𝑣𝑘 ∀𝑘 ∈ N0. (30)

Proof. First, we decompose the measurement term and apply Theorem 3:

| |𝐿𝜎𝑘
𝑦𝑘 | |𝑃

(4b)
≤ ||𝐿𝜎𝑘

𝐶𝜎𝑘
𝑥𝑘 + 𝐿𝜎𝑘

𝐻𝜎𝑘
𝑧𝑘 | |𝑃

(1c),(3c),(4c),(27)
≤

||𝐿𝜎𝑘
𝐶𝜎𝑘

| |𝑃𝑃︸            ︷︷            ︸
(10)
= 𝛾𝜎𝑘

| |𝑥𝑘 | |𝑃 + ||𝐿𝜎𝑘
𝐻𝜎𝑘

| |𝑃𝑍𝜎𝑘︸               ︷︷               ︸
(10)
= 𝛿𝜎𝑘

(28)
≤ 𝛾𝜎𝑘

𝑣𝑘 + 𝛿𝜎𝑘
. (31)

We then prove (30) by induction:
Base Case: By definition, 𝑣0

(8b),(11b)
= 𝑣0.

Inductive Assumption (I.A.): 𝑣𝑘 ≤ 𝑣𝑘 .
Inductive Step (𝒌 → 𝒌 + 1):

𝑣𝑘+1
(8a),(31)

≤ (𝜌𝜎𝑘
+ 𝛾𝜎𝑘

)𝑣𝑘 + 𝛽𝜎𝑘
+ 𝛿𝜎𝑘

𝐼.𝐴.
≤ (𝜌𝜎𝑘

+ 𝛾𝜎𝑘
)𝑣𝑘 + 𝛽𝜎𝑘

+ 𝛿𝜎𝑘

(11a)
= 𝑣𝑘+1. ◀

▶ Lemma 6 (An Inclusion Condition). The feasible set (13) obeys the following inclusion
condition:

𝑎 ≤ 𝑏 ⇒ Σ 𝑓 (𝑏) ⊆ Σ 𝑓 (𝑎). (32)

Proof.

Σ 𝑓 (𝑏)
(13)
= {𝜎 ∈ Σ |𝑏 ≤ 𝑣∗𝜎}

𝑎≤𝑏
= {𝜎 ∈ Σ |𝑎 ≤ 𝑣∗𝜎 ∨ 𝑏 ≤ 𝑣∗𝜎} ⊆ {𝜎 ∈ Σ |𝑎 ≤ 𝑣∗𝜎}

(13)
= Σ 𝑓 (𝑎). ◀

▶ Theorem 7 (Recursive Feasibility). Under the conditions (14) and (15), the switching
policy (16) is recursivly feasible, i.e., Σ 𝑓 (𝑣𝑘) ≠ ∅ ∀𝑘 ∈ N0. Assume (w.l.o.g.) that 𝑣∗0 ≥ 𝑣𝑚𝑎𝑥.
Then,

0 ∈ Σ 𝑓 (𝑣𝑘) ≠ ∅ ∀𝑘 ∈ N0. (33)

Proof. In preparation, observe that

𝜎 ∈ Σ 𝑓 (𝑣𝑘)
(13)
⇔ 𝑣𝑘 ≤ 𝑣∗𝜎

(12)
=

𝑣𝑚𝑎𝑥 − 𝛽𝜎 − 𝛿𝜎
𝜌𝜎 + 𝛾𝜎

⇔ (𝜌𝜎 + 𝛾𝜎)𝑣𝑘 + 𝛽𝜎 + 𝛿𝜎 ≤ 𝑣𝑚𝑎𝑥 . (34)

We prove (33) by induction using the results from Lemma 6:
Base Case: By assuming (14) and (15), 𝑣0 ≤ 𝑣𝑚𝑎𝑥 ≤ 𝑣∗0. Therefore:

0
(13)
∈ Σ 𝑓 (𝑣∗0)

(32)
⊆ Σ 𝑓 (𝑣0).

Inductive Assumption (I.A.): 0 ∈ Σ 𝑓 (𝑣𝑘).
Inductive Step (𝒌 → 𝒌 + 1): Assuming the I.A. holds, we know that Σ 𝑓 (𝑣𝑘) ≠ ∅, therefore,

using any policy 𝜎𝑘 ∈ Σ 𝑓 (𝑣𝑘) leads to

𝑣𝑘+1
(8a),(31)

≤ (𝜌𝜎𝑘
+ 𝛾𝜎𝑘

)𝑣𝑘 + 𝛽𝜎𝑘
+ 𝛿𝜎𝑘

≤ max
𝜎∈Σ 𝑓 (𝑣𝑘 )

((𝜌𝜎 + 𝛾𝜎)𝑣𝑘 + 𝛽𝜎 + 𝛿𝜎)
(34)
≤ 𝑣𝑚𝑎𝑥

(15)
≤ 𝑣∗0.

(35)

Using the definition of feasible sets, we arrive at 𝑣𝑘+1 ≤ 𝑣∗0
(13)
⇔ 0 ∈ Σ 𝑓 (𝑣𝑘+1). ◀
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▶ Corollary 8 (Guaranteed Safety). Under the conditions of Theorem 7, any switching policy
obeying (16) guarantees the safety specification (4f) ∀𝑘 ∈ N0.

Proof. 𝑣𝑘 ≤ 𝑣𝑚𝑎𝑥 holds for 𝑘 = 0 due to (14) and for 𝑘 ∈ N due to (15) and (33)–(35).
Theorem 4 concludes (4f) ∀𝑘 ∈ N0. ◀

▶ Theorem 9 (Double Integrator Stability). In the absence of disturbances (𝑑𝑘 = 0, 𝑧𝑘 = 0∀𝑘 ∈
N0), the double integrator benchmark (26) is exponentially stable under (1, 5)-switching, i.e.,
there exist some 𝐶 > 0, 0 < 𝜆 < 1 such that

| |𝑥𝑘 | |𝑃 ≤ 𝐶𝜆𝑘 | |𝑥0 | |𝑃 . (36)

Proof. Given 𝑑𝑘 = 0, 𝑧𝑘 = 0∀𝑘 ∈ N0, the system dynamics (4a) have the explicit solution

| |𝑥𝑘 | |𝑃 = | |
(
𝑘−1∏
𝑖=0

𝐴𝜎𝑖

)
𝑥0 | |𝑃 . (37)

For any switching sequence satisfying the (1, 5) constraint, we can decompose the product
(37) into 𝑛 shorter sequences of the shape 𝑀𝑚 = 𝐴0𝐴

𝑚
1 and some open loop part 𝐴𝑙1 with

𝑚, 𝑙 ∈ {0, . . . , 4}. Let 𝑓 (𝑖) be the mapping for the concrete sequence (∗∗). Applying the
consistency properties yields

| |𝑥𝑘 | |𝑃
(37), (∗∗)

= | |𝐴𝑙1

(
𝑛∏
𝑖=1

𝑀 𝑓 (𝑖)

)
𝑥0 | |𝑃

(1c),(1d)
≤ ||𝐴𝑙1 | |𝑃𝑃

(
𝑛∏
𝑖=1

| |𝑀 𝑓 (𝑖) | |𝑃𝑃

)
| |𝑥0 | |𝑃

(3b),𝑛≥0
≤ max

𝑙∈{0,...,4}
| |𝐴𝑙1 | |𝑃𝑃︸                 ︷︷                 ︸

=:𝐶

( max
𝑚∈{0,...,4}

| |𝑀𝑚 | |𝑃𝑃︸                   ︷︷                   ︸
=:𝜆

)𝑛 | |𝑥0 | |𝑃 .

Given that the 𝑀𝑚 describe between one and five timesteps, we can bound 𝑛 from below
as ⌊ 𝑘5 ⌋ ≤ 𝑛. Assuming 0 ≤ 𝜆 ≤ 1, the exponential decay can be upper bounded as

𝐶𝜆𝑛 ≤ 𝐶𝜆⌊ 𝑘
5 ⌋ ⌊ 𝑘

5 ⌋≥ 𝑘
5 −1

= 𝐶𝜆
𝑘
5 −1 = 𝐶𝜆−1︸︷︷︸

=:𝐶

( 𝜆 1
5︸︷︷︸

=:𝜆

)𝑘 .

Combining the above yields the stability condition (36), i.e., | |𝑥𝑘 | |𝑃 ≤ 𝐶𝜆𝑛 | |𝑥0 | |𝑃 ≤
𝐶𝜆𝑘 | |𝑥0 | |𝑃.

The last step is to prove that 0 ≤ 𝜆 ≤ 1 which can be shown for 𝑃 :=
[
5.849 5.045
5.045 13.45

]
≻ 0

and (1b) yielding 𝜆 = 0.9712 and therefore stability with 𝐶 = 1.191 and 𝜆 = 0.9942. ◀
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computationally expensive, due to the fact that: i) its complexity is superquadratic with respect to
the size of the operands; ii) operands must be extended before starting its computation, and iii) said
extension is tied to the least common multiple of the operand periods.

In this paper, we leverage the isomorphism between (min,+) and (max,+) algebras to devise
a new algorithm for (min,+) convolution, in which the need for operand extension is minimized.
This algorithm is considerably faster than the ones known so far, and it allows us to reduce the
computation times of (min,+) convolution by orders of magnitude.
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1 Introduction

(min,+) and (max,+) algebras [2, 17] lie at the core of theories for the analysis of worst-case
performance bounds.1 More specifically, Deterministic Network Calculus (DNC) [10, 9,
8, 15, 4] – devised for network traffic – and Real-Time Calculus (RTC) [25] – devised for
event-triggered systems – are both based on (min,+) and (max,+) algebra. Some recent
papers analyzing real-time systems using DNC or RTC are [24, 19, 7, 3]. In both theories,
flows of traffic (in DNC) or events (in RTC) are represented as cumulative functions of time,

1 While commonly called algebras in DNC jargon, (min,+) and (max,+) are semirings [4, Ch. 2].

C
o

n
si

st

en
t * Complete * W

ell D
o

cu
m

ented * Easy to
 R

eu
se

 *

 *
  Evaluated  *

  E
C

R
T
S
  *

 Artifact  *
  A

E

© Raffaele Zippo, Paul Nikolaus, and Giovanni Stea;
licensed under Creative Commons License CC-BY 4.0

35th Euromicro Conference on Real-Time Systems (ECRTS 2023).
Editor: Alessandro V. Papadopoulos; Article No. 12; pp. 12:1–12:24

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:raffaele.zippo@ing.unipi.it
https://rzippo.github.io/
https://orcid.org/0000-0001-9111-7471
mailto:nikolaus@cs.uni-kl.de
https://disco.cs.uni-kl.de/index.php/people/former-members/paul-nikolaus
https://orcid.org/0000-0001-5277-0267
mailto:giovanni.stea@unipi.it
http://docenti.ing.unipi.it/g.stea/
https://orcid.org/0000-0001-5310-6763
https://doi.org/10.4230/LIPIcs.ECRTS.2023.12
https://doi.org/10.4230/DARTS.9.1.3
https://doi.org/10.4230/DARTS.9.1.3
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


12:2 Isospeed: Improving Convolution by Isomorphism

counting the traffic (or the events) arrived up to time t. The service guarantees offered
by elements where resource contention may occur (e.g., packet schedulers at the output
of a network) are also represented as functions of time, called curves.2 I/O relationships
at a node, represented as operations in (min,+) and (max,+) algebra, allow one to derive
worst-case performance guarantees, e.g., bounds on the transit delay of a flow, or the backlog
at a node. These theories are compositional, i.e., they allow one to model complex systems
by first modeling their elements in isolation, and then composing their models, again using
operations in (min,+) or (max,+) algebra. For instance, in DNC, the minimum service that
a packet scheduler guarantees to a flow traversing it is represented by a service curve β.
Accordingly, if a flow traverses two such schedulers, having service curves β1 and β2, the
minimum service that the latter is guaranteed on an end-to-end basis can be obtained by
computing the (min,+) convolution of β1 and β2. A similar property exists in RTC. In
this paper, we concentrate on properties of (min,+) algebra. However, given the strong
similarities between the two theories, we will often use (·,+) when the discussion applies to
both (min,+) and (max,+) algebra.

The issue of automated computation of (·,+) algebra expressions is relevant: algebraic
expressions which look simple on paper can in fact require lengthy computations. The
research community has therefore developed several software packages to automate this task.
In doing so, they have addressed the problem of finding efficient data structures to represent
functions and curves, and efficient algorithms to implement basic (·,+) algebra operations.
Works [6, 4] provided an “algorithmic toolbox” for DNC: they showed that piecewise-affine
functions that are ultimately pseudo-periodic (UPP) represent suitable models for both
traffic and service guarantees, and provided algorithms for most (·,+) algebra operations.
The toolbox was first implemented in the COINC free library [5], which is not available
anymore, and later by the commercial library RTaW-Pegase [21] and the open-source library
Nancy [28]. A very similar model [4, p. 95], called variability characterization curves (VCCs),
was implemented by the RTC toolbox [26]. Broadly speaking, in both UPP and VCC models
functions and curves are represented as sequences of segments, and periodicity is leveraged
to allow functions defined in [0, +∞) to be represented with a finite amount of information.

One of the most important operations in (min,+) algebra is (min,+) convolution. The
latter has a complexity which is superquadratic with the size of its operands (i.e., the number
of segments in their sequences), which makes it computationally expensive. What is worse,
the algorithms that compute these operations require that the sequences of operands must
be extended beforehand, which reflects on the overall complexity. Operand extension, in turn,
depends heavily on numerical properties of the operands themselves, and is often related to
the hyperperiod, i.e., the least common multiple (lcm) of the period lengths of the operands.
The impact of the above issue grows exponentially when operations are chained together,
which limits the scope of the studies that one can do in practice. Different techniques have
been proposed in the literature to mitigate or avoid this issue, such as using containers and
inclusion functions [16], avoiding the periodic parts altogether by bounding the study a priori
[12, 13, 14], using a posteriori representation minimization to mitigate the impact on chained
operations [29], devising more efficient algorithms for specific subclasses of operands and
operations [29], namely subadditive functions and (min,+) convolution.

In this paper, we provide a novel technique to reduce the computation cost of (min,+)
convolution, under general hypotheses on the operands, which we call isospeed. Our technique
relies on exploiting the isomorphism between (min,+) and (max,+) algebra, thoroughly

2 To be precise, in a curve an abscissa τ describes what may happen in any interval of length τ .
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described in [17]. It is shown therein that the result of a (min,+) convolution can be obtained
by computing the isomorphic operation, i.e., the (max,+) convolution, if one applies a simple
transformation to the operands beforehand, and to the result afterwards. This transformation
is called pseudoinversion. This implies that there are always two ways to compute a (min,+)
convolution: the direct one, e.g., using the algorithm described in [4], and the inverse one
– i.e., the one based on pseudoinversion and isomorphism. This was first observed in [20]:
the authors found that – in their specific use cases – the inverse algorithm for (min,+)
convolution was considerably faster than the direct one. However, they did not provide an
explanation as to why. Lacking the above, one cannot know whether this is a general result
or just a stroke of luck. In this paper, we investigate the above in depth, providing novel
results of both theoretical and practical significance. First, we offer a cogent explanation for
the empirical observation in [20], which allows us to understand when and why one algorithm
will be faster than the other a priori, and when instead no conclusion can be drawn. This
is because the complexity of (min,+) convolution depends on numerical properties of the
operands, and pseudoinversion modifies them, making the computational cost of the inverse
algorithm different from the direct one’s. Then, we build on the above observation to devise
a new algorithm, that reduces the operand extension and the runtime of (min,+) convolution
to a minimum. This makes it no worse (barring negligible overhead), and often much better,
than the fastest between the direct algorithm and inverse one. Our algorithm improves the
feasibility of performance studies that cannot benefit from the other methods mentioned
above. For instance, it applies regardless of the shape of the operands, unlike the algorithms
in [29], which requires operands to be subadditive, or the method described in [12, 13, 14],
which requires service curves to be superadditive. Moreover, it optimizes single (min,+)
convolutions, unlike the representation minimization in [29], which is only beneficial when
chaining operations and does nothing to optimize individual ones. While the two methods
can work in conjunction, individual (min,+) convolutions may take minutes or more using
the standard algorithm. Due to space limitations, we can only focus on (min,+) convolution
in this paper. However, our results can be generalized to (max,+) convolution as well, which
can be improved in the same way, with the same performance benefits. This is because the
isomorphism, as the name implies, works both ways.

The rest of this paper is organized as follows: In Section 2, we introduce the mathematical
background and state of the art. Then, in Section 3, we present our isospeed algorithm,
which is evaluated in Section 4. Section 5 concludes the paper and highlights future work.

2 Background and Notation

In this section, we provide the mathematical and algorithmic background required for this
paper. We define the types of functions that we use and the operations that we aim to
improve. We use a ∧ b = min (a, b) and a ∨ b = max (a, b). We also use N0 to denote the set
of non-negative integers {0, 1, 2, 3, . . . }, N for the set of strictly positive integers {1, 2, 3, . . . },
and Q+ the set of non-negative rationals (including 0).

2.1 The UPP Model
To implement DNC and RTC computations in software, one needs to provide finite repres-
entations of functions and well-formed algorithms for (·,+) operations. In this paper, we
use the model discussed in [29, 27] and implemented in Nancy [28], which we also use to
implement our optimization. According to the widely accepted approach described in [6, 4],
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Tf

df

cf

time

data

(a) f .

Tf

df

cf

time

data

(b) Rf .

Figure 1 An ultimately pseudo-periodic piecewise-affine function f and its representation Rf .

a sufficiently generic class of functions useful for (·,+) computations is the set U of (i)
ultimately pseudo-periodic Q+ → Q ∪ {+∞, −∞} (ii) piecewise affine functions. We define
both properties (i) and (ii) separately:

▶ Definition 1 (Ultimately Pseudo-Periodic Function [6, p. 8]). Let f be a function Q+ →
Q ∪ {+∞, −∞}. Then, f is ultimately pseudo-periodic (UPP) if exists Tf ∈ Q+, df ∈
Q+ \ {0}, cf ∈ Q ∪ {+∞, −∞} such that

f(t + k · df ) = f(t) + k · cf , ∀t ≥ Tf , ∀k ∈ N. (1)

We call Tf the pseudo-periodic start, or length of the initial transient, df the period length,
and cf the period height. We also say that f is UPP from Tf .

▶ Definition 2 (Piecewise Affine Function [6, p. 9]). We say that a function f is piecewise
affine (PA) if there exists an increasing sequence (ai), i ∈ N0 which tends to +∞, such that
a0 = 0 and ∀i ∈ N0, it either holds that f(t) = bi + ρit for some bi, ρi ∈ Q, or f(t) = +∞,
or f(t) = −∞ for all t ∈ ]ai, ai+1[.

We remark that functions in U are not necessarily non-decreasing, and can assume infinite
values. Both these properties are useful for algebraic manipulations. Among the functions in
U , we distinguish Ultimately Constant (UC) ones. A function is UC if there exists a T ∈ Q+
such that f(t) = f(T ) ∀t ≥ T . Similarly, an Ultimately Infinite (UI) function is one such that
f(t) = +∞, or f(t) = −∞ for all t ≥ T . Typical cases of UI curves in DNC are the service
curves of delay elements. Throughout this paper, we will exclude UC and UI functions,
because some properties do not hold otherwise. This limitation is of negligible impact, since
(min,+) convolution is computationally trivial when an operand is UC/UI.

For functions in U , it is enough to store a representation of the initial transient part
and of one period, which is a finite amount of information. This is exemplified in Figure 1.
Accordingly, we call a representation Rf of a function f the tuple (S, T, d, c), where T, d, c

are the values described above, and S is a sequence of points and open segments describing f

in [0, T + d[. We use both points and open segments in order to easily model discontinuities.
We will use the umbrella term elements to encompass both when convenient. We denote
with n(S) the cardinality of a sequence S, i.e., the number of its elements. Note that, given
Rf , one can compute f(t) for all t ≥ 0, and also SI

f , i.e., a sequence describing f in the finite
interval I for any I ⊂ Q+

0 . Furthermore, being finite, Rf can be used as a data structure to
represent f in code. As it will be useful in the following, we define Cut to be an (obvious)
algorithm that, given Rf and an interval I, computes SI

f . With a little abuse of notation,
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we will use (·,+) operators directly on finite sequences such as SI
f . For instance, given the

(min,+) convolution (formally defined later), we will write S
If

f ⊗ S
Ig
g to express that we

are computing the (min,+) convolution f ⊗ g, limited to the values of f in interval If and
those of g in interval Ig. It will be useful in the following to consider a function f ∈ U in a
restricted support D.3 This is done as follows:

▶ Definition 3 (Min and Max Restrictions). Let f ∈ U and D ⊆ Q+. Then, its min restriction
over a support D is defined as

f |∧D :=
{

f(t), if t ∈ D,
+∞, otherwise.

Moreover, its max restriction over a support D is defined as

f |∨D :=
{

f(t), if t ∈ D,
−∞, otherwise.

In this work, we will often consider D to be an interval I of the form [0, a[ or [a, +∞[.
In many cases, it will be useful to restrict a function to its transient part, i.e, to interval
I = [0, Tf [, or to its periodic part, i.e., I = [Tf , +∞[, using shorthands f∧

t and f∨
t , as well as

f∧
p and f∨

p , respectively. Accordingly, one can decompose f as f = f∧
t ∧ f∧

p or f = f∨
t ∨ f∨

p .
A (·,+) operator can be defined computationally as an algorithm that takes UPP repres-

entations of its input functions and yields a UPP representation of the result. Considering
a generic binary operator4 [·] ∗ [·], in order to compute f ∗ g we need an algorithm that
computes Rf∗g from Rf and Rg, i.e., Rf , Rg → Rf∗g. We call this by-curve algorithm. Such
an algorithm consists of the following steps:
1. compute valid parameters Tf∗g, df∗g and cf∗g for the result.
2. compute the intervals If and Ig, for the sequences S

If

f = Cut(Rf , If ) and, likewise, S
Ig
g ;

3. compute S
If

f , S
Ig
g → S

If∗g

f∗g where If∗g = [0, Tf∗g + df∗g[, i.e., use an algorithm that
computes the resulting sequence from the sequences of the operands. We call this
by-sequence algorithm for operator [·] ∗ [·];

4. return Rf∗g = (Sf∗g, Tf∗g, df∗g, cf∗g).

The by-curve algorithm for operator [·] ∗ [·] allows us to compute the result with any
operands. Works [6, 4] provide such computational descriptions for most DNC operators,
such as (·,+) convolution and deconvolution, while [27] provides the same for pseudoinverses
(formally defined in the next section).

▶ Remark 4. Parameters Tf∗g, df∗g and cf∗g, as well as intervals If and Ig, are sufficient to
compute a representation Rf∗g. There may be, in general, more than one way to compute
them for an algorithm, resulting in different performance.

Intuitively, dealing with shorter sequences leads to faster by-sequence algorithms. Optim-
ized parameters and intervals can be found either by making restrictive assumptions on the
shape of the operands, or – as we do in this paper – by exploiting algebraic properties.

3 Inspired by [6, p. 7], we use support D to assign a subset outside of which the function is constantly
−∞ or +∞. Note that this does not necessarily mean, in general, that f is finite on D. We mostly use
it to define a set within which the properties of f are observed.

4 The same process applies also, with minor adjustments, to unitary operators.
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2.2 Upper and Lower Pseudoinverses
It was first shown in [17] that (min,+) and (max,+) algebra can be regarded as specular
images of each other. In fact, results in one algebra can be mapped to the other via
pseudoinversion of operands and results. This isomorphism will be exploited throughout
this paper. Hereafter, we discuss the essential definitions and properties of pseudoinverses,
taken from [27].5

▶ Definition 5 (Lower and Upper Pseudoinverse). Let f ∈ U be non-decreasing. Then its
lower pseudoinverse f−1

↓ and its upper pseudoinverse f−1
↑ are defined as

f−1
↓ (y) := inf {t ≥ 0 | f(t) ≥ y} ,

f−1
↑ (y) := sup {t ≥ 0 | f(t) ≤ y} .

The lower pseudoinverse is always left-continuous and the upper pseudoinverse is right-
continuous. Moreover, upper and lower pseudoinverses can be combined to yield something
close to an involutive property. Consider a non-decreasing function f . Then, if f is left-
continuous, f(t) =

(
f−1

↑

)−1

↓
(t). If f is right-continuous, f(t) =

(
f−1

↓

)−1

↑
(t). UPP properties

and algorithms for the pseudoinverses are summarized here.

▶ Theorem 6 ([27], Theorem 9, Theorem 10). Let f be a non-decreasing UPP function that
is neither UC nor UI. Then, f−1

↓ and f−1
↑ are function of U with

Tf−1
↓

= f (Tf + df ) , (2)

Tf−1
↑

= f (Tf ) (3)

df−1
↓

= df−1
↑

= cf , (4)

cf−1
↓

= cf−1
↑

= df . (5)

The exact algorithm for upper/lower pseudoinverses is reported in [27]. In both cases, it
can be computed in linear time with the operand’s sequence size, i.e., it is O (n(S)). This
makes pseudoinversion considerably less complex than (min,+) convolution, which – as we
will discuss below – is superquadratic. Both operations yield a result whose sequence has
a cardinality similar to its operand’s. The two cardinalities are not exactly equal because
constant segments in the operand map to discontinuities in the pseudoinverse and vice versa.
Segments count as elements in the cardinality, whereas discontinuities do not. This will be
recalled later on, when we discuss performance.

2.3 (min,+) and (max,+) Convolution
Convolution is one of the most common operations in (·,+) algebra. We introduce here both
(min,+) and (max,+) convolution.

▶ Definition 7 (Convolution in (min,+) / (max,+) Algebra). Let f, g be non-decreasing. Their
(min,+) convolution is defined for all t ≥ 0 as

f ⊗ g(t) := inf
0≤s≤t

{f(s) + g(t − s)} .

5 These definitions differ from the ones in [17, p. 60]. In fact, [17] considers functions defined in R, hence
having no boundaries, whereas functions in U are defined in Q+, hence 0 and f(0) constitute a boundary.
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Their (max,+) convolution is defined for all t ≥ 0 as

f ⊗ g(t) := sup
0≤s≤t

{f(s) + g(t − s)} .

A fundamental result, which uses the above properties, is the isomorphism between
(min,+) and (max,+) convolution, which enables us to replace one with the other, via
pseudoinversion of operands and results.

▶ Theorem 8 (Isomorphism of Convolution For Left-Continuous Functions ∈ U). Let f, g ∈ U
be left-continuous and non-decreasing. Then,

(f ⊗ g)−1
↑ =

(
f−1

↑

)
⊗
(

g−1
↑

)
. (6)

A proof can be derived by following along the lines of [20, Theorem 1], [17, Theorem 10.3b],
but adapting to the fact that we consider functions ∈ U . As a consequence, since the (min,+)
convolution of left-continuous functions is itself left-continuous, we obtain:

f ⊗ g =
(

(f ⊗ g)−1
↑

)−1

↓
=
(

f−1
↑ ⊗ g−1

↑

)−1

↓
. (7)

The algorithms for (·, +) convolution of UPP curves require one to specialize the generic
steps described in Section 2.1. Due to space limitations, we discuss in depth (min,+)
convolution only. (max,+) convolution can be presented along the same lines.

It was proved in [6] that (min,+) convolution f ⊗g can be computed if one decomposes its
operands into their transient and periodic parts, according to Definition 3. More specifically,
the procedure is as follows:
1. Decompose the operands as f = f∧

t ∧ f∧
p and g = g∧

t ∧ g∧
p .

2. Compute partial convolutions involving at least one transient part: htt := f∧
t ⊗ g∧

t ,
htp := f∧

t ⊗ g∧
p , hpt := f∧

p ⊗ g∧
t . These can be computed using the algorithms described

in [6]. These computations are not particularly complex, since at least one of the operands
is defined in a finite interval.

3. Compute the partial convolution of the periodic parts, hpp := f∧
p ⊗ g∧

p . This is the
computationally complex part, as we detail below.

4. Compute f ⊗ g = htt ∧ htp ∧ hpt ∧ hpp.

In [6, Proposition 4.5], UPP properties are derived for all these parts (htt, htp, hpt, hpp)
and their minimum. We summarize this result here as Proposition 9.

▶ Proposition 9 ([6], Proposition 4.5). Let f, g ∈ U . Then their (min,+) convolution f ⊗ g

is again ∈ U . Moreover,

df⊗g = lcm(df , dg) , (8)

cf⊗g = df⊗g · min
(

cf

df
,

cg

dg

)
= lcm(df , dg) · min

(
cf

df
,

cg

dg

)
(9)

are a period length and height for f ⊗ g.

From the proof of [6, Proposition 4.5] we can extract the following result for, in particular,
the convolution of periodic parts.
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▶ Corollary 10 ((min,+) convolution of periodic parts.). Let f and g ∈ U . Then, hpp = f∧
p ⊗g∧

p

is again a function of U with

dhpp = df⊗g = lcm(df , dg) , (10)

chpp
= cf⊗g = dhpp

· min
(

cf

df
,

cg

dg

)
, (11)

Thpp
= Tf + Tg + lcm(df , dg) . (12)

And that, in order to compute f∧
p ⊗ g∧

p , it is sufficient to use

If∧
p

=
[
Tf , Tf + 2 · dhpp

[
,

Ig∧
p

=
[
Tg, Tg + 2 · dhpp

[
,

Ihpp
=
[
Tf + Tg, Tf + Tg + 2 · dhpp

[
.

(13)

Corollary 10 shows that the period of the convolution of the periodic parts depends on the
lcm of the periods of the operands. Algorithm 1 reports the pseudocode for the (min,+) con-
volution algorithm, based on the above decomposition [6]. When computing the convolution
of the periodic parts, operands have to be extended, i.e., computed in intervals If∧

p
, Ig∧

p
. The

complexity of the by-sequence algorithm for the convolution (line 6) is [6, p. 43]

O
(

n

(
S

If∧
p

f∧
p

)
· n

(
S

Ig∧
p

g∧
p

)
· log

(
n

(
S

If∧
p

f∧
p

)
· n

(
S

Ig∧
p

g∧
p

)))
. (14)

However, domains If∧
p

, Ig∧
p

depend on lcm(df , dg). On one hand, this corroborates the
observation that computing hpp is the most complex task. On the other hand, the number of
operations required may vary considerably depending on numerical properties of the operands.
In fact, lcm(df , dg) ranges from max (df , dg) to the product of the numerators of df and dg

6.
Therefore, the runtime of the convolution of the periodic parts may vary a lot.

We briefly discuss (max,+) convolution, to highlight that it can be computed via the
same decomposition, at similar big-O complexity, as the (min,+) convolution [6]. The main
difference is that, since a supremum is used in place of an infimum, the decomposition is
based on the maximum, rather than the minimum, of the parts. The procedure is as follows:
1. Decompose the operands as f = f∨

t ∨ f∨
p and g = g∨

t ∨ g∨
p .

2. Compute partial convolutions involving at least one transient part: htt := f∨
t ⊗ g∨

t ,
htp := f∨

t ⊗ g∨
p , hpt := f∨

p ⊗ g∨
t . These can be computed by adapting the algorithms for

the (min,+) convolution described in [6]. Again, these computations are not particularly
complex, since at least one of the operands is defined in a finite interval.

3. Compute the partial convolution of the periodic parts, hpp := f∨
p ⊗ g∨

p .
4. Compute f ⊗ g = htt ∨ htp ∨ hpt ∨ hpp.

When computing the convolution of the periodic parts, operands have to be computed in
intervals If∨

p
, Ig∨

p
, which do depend on dhpp

= lcm(df , dg). The worst-case complexity of the
by-sequence algorithm for the (max,+) convolution can be derived following the same steps
as for the (min,+) convolution in [6, p. 43], and is the same as in (14), provided that one
substitutes S

Ix∨
p

x∨
p

for S
Ix∧

p

x∧
p

for both operands x. Like with (min,+) convolution, domains If∨
p

,
Ig∨

p
depend on lcm(df , dg). Therefore, the same observations already discussed apply here as

well: computing hpp is the most complex task, and the number of operations it requires may
vary considerably depending on numerical properties of the operands.

6 We recall that the lcm of two fractions is the lcm of their numerators divided by the greatest common
divisor of their denominators.



R. Zippo, P. Nikolaus, and G. Stea 12:9

Algorithm 1 Pseudocode for (min,+) convolution.
Input Functions f and g.
Return Their (min,+) convolution f ⊗ g.

1: Decompose the operands as f = min
(
f∧

t , f∧
p

)
and g = min

(
g∧

t , g∧
p

)
2: Compute htt := f∧

t ⊗ g∧
t , htp := f∧

t ⊗ g∧
p , hpt := f∧

p ⊗ g∧
t as described in [6]

3: Compute hpp := f∧
p ⊗ g∧

p as follows:
4: Let dhpp

= lcm(df , dg); chpp
= dhpp

· min
(

cf

df
,

cg

dg

)
; Thpp

= Tf + Tg + dhpp
.

5: Let
If∧

p
=
[
Tf , Tf + 2 · dhpp

[
;

Ig∧
p

=
[
Tg, Tg + 2 · dhpp

[
;

Ihpp =
[
Tf + Tg, Tf + Tg + 2 · dhpp

[
.

6: Compute S
Ihpp

hpp
= S

If∧
p

f∧
p

⊗ S
Ig∧

p

g∧
p

7: Rhpp =
(

S
Ihpp

hpp
, Thpp , dhpp , chpp

)
8: f ⊗ g = min (htt, htp, hpt, hpp)

3 Improving the Runtime of (min,+) Convolution

This section reports our contributions. First, we observe that there are always two algorithms
to compute the (min,+) convolution, and discuss why one can be faster than the other. Our
observations motivate our improved (min,+) convolution algorithm, which outperforms both
the above.

3.1 Alternative Algorithms for (min,+) Convolution
The algorithms for (min,+) and (max,+) convolution are very similar, and they have the same
complexity on the same operands. However, a (min,+) convolution f ⊗ g can be computed
via a (max,+) convolution of pseudoinverse operands f−1

↑ , g−1
↑ , as per (7) [20].

This means that one can always compute a (min,+) convolution in two different ways:
1. the direct method, using Algorithm 1;
2. the inverse method, using pseudoinversion of the operands, (max,+) convolution, and

pseudoinversion of the result, via (7).
Now, both methods have the same big-O complexity. In fact, pseudoinversion is linear,
and – as explained in the previous section – both (min,+) and (max,+) convolutions
are superquadratic. Despite this, it was observed in [20] that the inverse algorithm was
significantly faster than the direct one, which is counterintuitive, since pseudoinversion adds
overhead.7

We present here a sound explanation of the above phenomenon, which is missing in [20],
and serves as a basis for our improved method. In both the (min,+) and (max,+) convolutions,
the dominant factor for the complexity is the length of the extended sequences (as per (14)),
which depends on the number of periods that each operand must be extended. For the

7 In [20], this result was presented within the context of VCC curves using RTC Toolbox [26] and event-
based service curves, which differs from the one referenced here, which is instead based on the UPP
model implemented in Nancy [28]. However, this distinction does not affect the following discussion.
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Figure 2 Example of event-based service curve
used in [20], having abscissas in R+ and ordinates
in N0.
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Figure 3 runtimes of the direct vs. inverse
algorithms for (min,+) convolution.

direct algorithm, such extension occurs on hyperperiod lcm(df , dg). Hence, we can write
lcm(df , dg) = kdf

· df = kdg
· dg. We call kdf

and kdg
extension multipliers. Computing the

cut of f in
[
Tf , Tf + 2 · dhpp

[
(13) entails extending f by 2 · kdf

periods – and g by 2 · kdg .
On the other hand, the inverse algorithm uses pseudoinversion of the operands, which

swaps their period lengths df , dg with their period heights cf , cg. Consider in fact computing
f ⊗ g via (7). We obtain for the inner function f−1

↑ ⊗ g−1
↑ , using Theorem 6,

df−1
↑ ⊗ g−1

↑
= lcm

(
df−1

↑
, dg−1

↑

)
= lcm(cf , cg) ,

cf−1
↑ ⊗ g−1

↑
= max

(
cf−1

↑

df−1
↑

,
cg−1

↑

dg−1
↑

)
· df−1

↑ ⊗ g−1
↑

= max
(

df

cf
,

dg

cg

)
· lcm(cf , cg) .

(15)

Thus, in the inverse algorithm, the hyperperiod is lcm(cf , cg) = kcf
· cf = kcg

· cg, and
the extension multipliers are instead kcf

and kcg
.

Both algorithms have the same complexity, but the operands they work on may have
considerably different size (i.e., the cardinalities of their extended sequences), hence their
runtime can be vastly different. For instance, if kdf

> kcf
and kdg > kcg , the inverse

algorithm will be faster. This is likely the case in the experiments of work [20], which uses
event-based service curves, exemplified in Figure 2. However, depending on the parameters
of the operands, two more cases can be given, i.e.:

kdf
< kcf

and kdg
< kcg

, in which case the direct algorithm will generally be faster;
kdf

< kcf
and kdg > kcg (or vice versa), in which case the comparison is inconclusive.

Figure 3 compares the direct and the inverse approach. We generated 100 pairs of operands
randomly, and reported the runtimes of each (min,+) convolution as coordinates of points
on the cartesian plane, with the direct algorithm on the ordinates and the inverse one on the
abscissas. The horizontal (or vertical) distance between a point and the bisector indicates
the difference (in orders of magnitude) between choosing one algorithm or the other. The
above figure clearly shows that the comparison may swing either way, and that there is a lot
to be gained in choosing wisely.

Hereafter, we follow up on the above observations. We show that the (min,+)/(max,+)
isomorphism holds in more general settings than those described in Section 2, and that this,
in turn, can be leveraged to define an improved algorithm for (min,+) convolution.
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3.2 Exploiting Isomorphism to Speed up (min,+) Convolution
As discussed above, the most expensive part of (min,+) convolution is computing hpp =
f∧

p ⊗ g∧
p , and this is due to the problem of operand extension. We have observed in the

previous section that pseudoinversion may considerably alter the way operands are extended.
Our intuition is that we can limit the extension of each operand individually to the minimum
of what the direct and inverse algorithms would do, i.e., we can always choose the smallest
extension multiplier operand by operand, independently. This will allow hpp to be computed
using smaller sequences, in considerably less time. We obtain this result via incremental
steps. First, we show that isomorphism allows us to find another set of parameters for hpp.

▶ Theorem 11. Let f, g ∈ U be left-continuous and non-decreasing functions. Then, hpp =
f∧

p ⊗ g∧
p is again a function of U with

dhpp = max
(

df

cf
,

dg

cg

)
· lcm(cf , cg) = max

(
kcg · dg, kcf

· df

)
, (16)

chpp
= lcm(cf , cg) , (17)

Thpp
= sup

{
t ≥ Tf + Tg | f∧

p ⊗ g∧
p (t) ≤ f(Tf ) + g(Tg) + lcm(cf , cg)

}
. (18)

The proof is reported in Appendix A.2. Now, since both Corollary 10 and Theorem 11
compute valid parameters for hpp, we can always use the minimum of each:

dhpp
= min

(
lcm(df , dg) , max

(
kcg

· dg, kcf
· df

))
, (19)

chpp =dhpp · min
(

cf

df
,

cg

dg

)
, (20)

Thpp
= min(Tf + Tg + lcm(df , dg) ,

sup
{

t ≥ Tf + Tg | f∧
p ⊗ g∧

p (t) ≤ f(Tf ) + g(Tg) + lcm(cf , cg)
}

). (21)

Then, we show that we can find alternative cuts of f∧
p and g∧

p required to compute hpp.

▶ Corollary 12. Given f and g ∈ U which are left-continuous and non-decreasing in [Tf , +∞[
and [Tg, +∞[, respectively, and are neither UC nor UI. Then, to compute f∧

p ⊗g∧
p via (max, +)

isomorphism of restricted functions, it is sufficient to use sequences S
I′

f∧
p

f∧
p

and S
I′

g∧
p

g∧
p

, with

I ′
f∧

p
=
[
Tf , T ′

f + 2 · kcf
· df

]
, I ′

g∧
p

=
[
Tg, T ′

g + 2 · kcg
· dg

]
. (22)

where we used T ′
f = sup {t ≥ Tf | f(t) = f(Tf )} and T ′

g = sup {t ≥ Tg | g(t) = g(Tg)}.8

The proof is reported in Appendix A.2. Corollary 12 states that, instead of computing
f∧

p ⊗ g∧
p using domains If∧

p
and Ig∧

p
defined in (13), we can use both I ′

f∧
p

and I ′
g∧

p
, whose size

depends on kcf
, kcg instead of kdf

, kdg . Finally, we show that we can mix and match the
above intervals, to minimize the extension of each operand, independently.

▶ Theorem 13 (Mix and Match ((min,+) Convolution)). Let f and g ∈ U which are neither
UC nor UI, and are left-continuous and non-decreasing in [Tf , +∞[ and [Tg, +∞[, respectively.
Let If∧

p
, Ig∧

p
be the intervals to compute f∧

p ⊗ g∧
p according to (13), and let I ′

f∧
p

, I ′
g∧

p
be the

intervals to compute the same through Corollary 12. Then If∧
p

∩ I ′
f∧

p
, Ig∧

p
∩ I ′

g∧
p

are valid
intervals to compute f∧

p ⊗ g∧
p .

8 The suprema are attainable since the functions are left-continuous over the respective intervals.
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t1 t2 t3 t4
f(t1)

f(t2)

f(t4)

ρ1
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ρ3

time

data

(a) Sf .

t1

t2

t3

t4

f(t1) f(t2) f(t4)
1/ρ1

1/ρ3

time

data

(b) Sf
−1
↑ .

Figure 4 Example of upper pseudoinverse of a sequence Sf .

The proof is reported in Appendix A.2. This theorem allows us to compute hpp using
extended sequences that have the minimum cardinality between those that the direct and
the inverse methods would compute. We exemplify this through a simple example.

Consider f and g with df = 2, cf = 13, dg = 11 and cg = 3. Then, using the direct
method we will compute 2 · kdf

= 22 period extensions of f and 2 · kdg
= 4 period extensions

of g. On the other hand, using the inverse method, we will compute the same result with
2 · kcf

= 6 period extensions of f and 2 · kcg
= 26 period extensions of g. Which of the two

will be faster depends both on the number of elements contained in each period of f and g,
but also on the topological properties of these elements, which are difficult to understand
ex ante [29]. Using the above theorem, though, we can just take the best option for each
independently: 2 · kcf

= 6 period extensions of f and 2 · kdg = 4 period extensions of g –
which is clearly better than both the previous options.

Based on the above, we can define a new algorithm, called isospeed, which outperforms
both the direct and the inverse ones. It consists in modifying in Algorithm 1 including the
new, optimized values for the parameters, i.e., (19), (20) and (21) at line 4, and Theorem 13
at line 5. Moreover, we also optimize line 6, i.e., the by-sequence convolution, still leveraging
isomorphism. We start from the algorithm in [6], summarized below.

Given two sequences Sa and Sb, consider their elements ea
1 , . . . , ea

n and eb
1, . . . , eb

m, where
n = n(Sa), m = n(Sb). For each pair ea

i , eb
j , we can then compute the elementary (min,+)

convolution ea
i ⊗ eb

j , i.e., n(Sa) · n(Sb) elementary convolutions. Then, Sa ⊗ Sb is computed
as the lower envelope of these elementary convolutions. However, it is easy to see that not all
pairs ea

i , eb
j will contribute to the end result. Indeed, the convolution result is relevant only

for a given interval (e.g., in Algorithm 1 Ihpp
= [Tf + Tg, Tf + Tg + 2 · lcm(df , dg)[), thus

any elementary convolution whose abscissas fall outside such interval can be safely skipped.
We call this horizontal filtering. Similarly, when applying the optimizations described in
the previous section, we can ignore elementary convolutions whose ordinates fall outside
[f(Tf ) + g(Tg), f(Tf ) + g(Tg) + 2 · lcm(cf , cg)] (vertical filtering). Horizontal and vertical
filtering further reduce the computation time.

Moreover, we recall that – under pseudoinversion – constant segments become discontinu-
ities and vice versa, leading to different cardinalities for the sequences of an operand. This is
exemplified by Figure 4, where Sf has six elements, while Sf

−1
↑ has four. While constant

segments do contribute to the complexity of computing the convolution, discontinuities do
not, being only a difference in value between two elements. Thus, also within the by-sequence
convolution there may be a runtime difference between the direct and inverse approach.
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time

data

(a) “Horizontal” curve.

time

data

(b) “Vertical” curve.

time

data

(c) “Balanced” curve.

Figure 5 Shapes of curves used in our experiments.

Accordingly, we optimize the by-sequence convolution via the following heuristic: we
count the total number of constant segments and discontinuities of the two operands, call
them C and D, respectively. Then, if D > C, we perform the by-sequence convolution of the
operands as they are. If, instead D < C, we pseudo-invert the sequences first, perform a
(max,+) by-sequence convolution, and then pseudo-invert the result again. This heuristic is
cheap, being O (n(Sf ) + n(Sg)). However, it may not have 100% accuracy. In fact, work [29]
discusses that the topological properties of the elements, which are difficult to understand ex
ante, may also influence the runtime of by-sequence convolution.

Finally, we discuss the algorithmic cost of the isospeed algorithm. Applying the mix-
and-match theorem requires computing the extension multipliers of both operands and
comparing constants, which is O (1). However, testing the hypotheses that each operand
must be left-continuous and non-decreasing is – strictly speaking – O (n(S)), where S is the
base sequence, not the extended one. Note that the same cost has to be paid in the inverse
algorithm as well. However, we observe that such a cost can easily be amortized by testing
these properties once per operand and caching the result. Moreover, computing C and D for
the heuristic also has a linear cost.

4 Performance Evaluation

The isospeed algorithm has been implemented by extending Nancy [28], an open-source
library implementing the algorithms from [6, 29, 27].We compared it against two baselines,
i.e., the direct algorithm, [6], recalled in Algorithm 1, and the inverse one [20]. To highlight
the impact of the by-sequence convolution and its heuristic, we run the experiments using
three different shapes of operands, shown in Figure 5. Horizontal curves have constant
segments but no discontinuities, whereas vertical curves have discontinuities but no constant
segments. Balanced curves are similar to the type of curves studied in [20], and have an
equal number of constant segments and discontinuities.

We run the experiments on a cloud Virtual Machine (Intel Xeon Processors (CascadeLake)
cores @2.2 GHz, 32 GB of DRAM, Ubuntu 22.04), using randomly generated parameters for
the shapes discussed above. We run all algorithms in serial mode (rather than parallel, which
is the default in Nancy). To make the comparison more challenging, horizontal filtering is
included in the baseline algorithms as well, since it does not depend on the results of this
paper, whereas vertical filtering – which is a consequence of isomorphism – is used only in
the isospeed algorithm. Moreover, we include the cost of testing operand properties in the
isospeed and inverse algorithms (there is nothing to test for the direct one). We measured
the time to compute the convolution using the three methods.
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Our results are shown in Figures 6–8. The results of Figures 6a, 7a, and 8a and Figures 6b,
7b, and 8b clearly show that the isospeed algorithm outperforms blindly choosing either
the direct or the inverse approach, reducing runtimes often by several orders of magnitude.
Moreover, Figures 6c, 7c, and 8c show that isospeed performs at least as well as the best
between direct and inverse in most cases, and sometimes even better, being up to one order
of magnitude faster. The improvements occur whenever both baseline algorithms extend
one operand more than necessary, whereas the isospeed does not, due of its mix-and-match
approach. At the risk of stating the obvious, we remark that you do not know which of the
two baseline algorithms is the best beforehand.

There are indeed some cases when isospeed adds a modicum of overhead – see the few
points above the bisector in the figures. This is due to two different reasons: the points in
the bottom-left corner of, e.g., Figures 7a and 7c are experiments where runtimes are in the
order of milliseconds, and the overhead of testing hypotheses is significant against such a
short timespan. We do not see this as a relevant shortcoming – there is little to optimize if
the baseline is already that fast. The points above the bisector in the top-right region of
Figures 8b and 8c are instead experiments when our heuristic fails to select the most efficient
way to perform the by-sequence convolution. This only occurs with balanced curves, and
for a reason: with horizontal and vertical curves, the choice is quite clear-cut – it is either
D ≫ C or C ≪ D, respectively, and the heuristic always selects the best approach. Balanced
curves, instead, are designed to thwart our heuristic – they have, in fact, D ≈ C.

All the above experiments highlighted speedups of up to one order of magnitude against
the (clairvoyant) best baseline. Such speedups depend on numerical properties of the
operands, and random generation of operand parameters seldom hits on the most interesting
cases. As a last set of experiments, we generate horizontal operands in such a way that
kdf

> kcf
and kdg

< kcg
(or vice versa), as in the example reported at the end of Section 3.2,

so that each baseline algorithm will always extend one operand more than necessary. The
results of these experiments are reported in Figure 9, and they show more frequent and
significant speedups against the best baseline (e.g., compared with Figure 6) – reaching two
orders of magnitude.

As a last remark, we observe that the absolute magnitude of the runtimes involved in
these experiments is a few tens of seconds at most. This was done on purpose to keep
experiments manageable, and it certainly does not imply that (min,+) convolutions are
always that fast. One can always devise cases where runtimes are in the order of hours or
more – all it takes is period lengths and heights that are products of large primes. Moreover,
it is well known that chaining convolutions leads to exponentially increasing runtimes, much
like chaining lcms does, a phenomenon called state explosion [12, 13, 29]. In these cases,
isospeed may act as an enabler of otherwise unfeasible performance studies.

5 Conclusions

In this paper, we have investigated what is perhaps the most common operation in (min,+) al-
gebra, i.e., (min,+) convolution. Starting from the observation that – due to (min,+)/(max,+)
isomorphism – there are always two ways to compute a (min,+) convolution, the direct
and inverse algorithm, we provide a technically sound explanation of an observation first
appeared in [20], i.e., that one algorithm can be considerably faster than the other. The
reason lies in the way the two algorithm extend operands, which is the key factor in the
complexity of said algorithms. Based on the above observation, we prove algebraic properties
that allow one to minimize operand extension, for each operand independently. This allows
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Figure 6 Performance comparison of the three algorithms. Operands are horizontal curves.
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Figure 7 Performance comparison of the three algorithms. Operands are vertical curves.
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Figure 8 Performance comparison of the three algorithms. Operands are balanced curves.

us to devise a novel algorithm, called isospeed, that outperforms both the direct and inverse
algorithms, reducing runtimes often by several orders of magnitude. More interestingly, our
isospeed algorithm also beats a clairvoyant heuristic that guesses the best of the above two
baselines: except in few cases when it adds a modicum of overhead, isospeed is at least as
fast as that, and can be one or two orders of magnitude faster.

Abating the cost of (min,+) convolution by orders of magnitude is not just a performance
improvement: it may also enable performance studies that were previously considered to be
beyond the realm of doable, e.g., because of state explosion. Some examples of this problem
are reported in [29]. Our findings allow us to reduce this problem as much as possible, in the
most general settings: unlike the techniques described in [12, 13, 14, 29], which only apply
to specific classes of operands, isospeed only requires operands to be left-continuous and
non-decreasing.
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Figure 9 Performance comparison of the three algorithms. Operands are horizontal curves, and
their parameters are set so that comparing extension multipliers is inconclusive.

Due to space limitations, we were unable to discuss (max,+) convolution in this paper.
However, all the results in this paper apply – via minor, straightforward changes – to
that as well, because isomorphism works both ways. More to the point, the performance
improvements for (max,+) convolution are exactly the same, since – as we discussed briefly
in Section 2 – the algorithm for the (max,+) convolution is not different from that of (min,+)
convolution. This increases the significance of our findings.

As a future work, we plan to devise more precise heuristics, that allow one to identify the
most efficient by-sequence convolution more effectively. Moreover, we believe that the same
process highlighted in this paper could be used to find alternative, improved algorithms for
other operations, e.g., the (·, +) deconvolution.

Finally, many works in real-time literature deal with supply functions and demand bound
functions, which are similar to the curves discussed here [23, 11, 18, 22, 1]. A further avenue
of research is then to explore the possibility to express these results using Real-Time Calculus,
hence making the computational improvements discussed in this paper available to speed up
the resolution of these problems.
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A Appendix

This appendix reports the proofs of the main results of this paper, i.e., Theorem 11, Corol-
lary 12 and Theorem 13. In order to make these proofs rigorous, we need a few preliminary
technical clarifications. These preliminaries state that the (min,+)/(max,+) isomorphism
stated in [20, 17] holds for the convolution of periodic parts as well. This is fairly intuitive,
but requires to be rigorously stated nonetheless. Said preliminaries re-state existing results
from [6, 4, 17, 27], tweaking the existing proofs to accommodate restricted functions in U .
The preliminary results are reported in the first part of this appendix, and the proof of our
main results follow in the second part.

A.1 Preliminary results

In the main results of this work, we exploit properties analogue to the isomorphisms proved
in [17], such as Theorem 8, which need to be applied to functions restricted over a support,
e.g., f∧

p . Now, pseudoinverses – and, consequently, isomorphism – are defined for non-
decreasing functions, and restricted functions are not. Thus, in this section we generalize
pseudoinversion and isomorphism to include restricted functions.

▶ Definition 14 (Lower and Upper Pseudoinverse over an Interval). Let f ∈ U be non-
decreasing over I, where I = [a, +∞[ ⊂ Q. Then, its lower pseudoinverse over (the interval)
I is defined as

f−1
↓,I (y) :=

{
inf {t ∈ I | f(t) ≥ y} , if y ≥ f(a),
+∞, otherwise,

(23)

and its upper pseudoinverse over (the interval) I is defined as

f−1
↑,I (y) :=

{
sup {t ∈ I | f(t) ≤ y} , if y ≥ f(a),
−∞, otherwise.

(24)

Note that it does not hold in general that sup {t ∈ I | f(t) < y} = inf {t ∈ I | f(t) ≥ y},
for the lower pseudoinverse, as well as sup {t ∈ I | f(t) ≤ y} = inf {t ∈ I | f(t) > y}, for the
upper pseudoinverse. However, if y > f(a) (for I = [a, +∞[), the two equations hold. We
also note that, since these pseudoinverses consider only values of f(t) for t ∈ I, it follows
that f−1

↓,I =
(

f |∧I
)−1

↓,I
=
(

f |∨I
)−1

↓,I
, and similarly for f−1

↑,I . Finally, given f(I) := [f(a), +∞[,
the lower pseudoinverse over I is left-continuous over f(I), and the upper pseudoinverse over
I is right-continuous over f(I).

▶ Theorem 15. Let I be an interval of the form [a, +∞[. Let f ∈ U be neither UC nor UI,
and is non-decreasing over I. Then, its lower pseudoinverse over I, f−1

↓,I , is again a function
of U with

Tf−1
↓,I

=
{

f (Tf + df ) , if a ≤ Tf ,
f (a + df ) , if a > Tf ,

(25)

df−1
↓,I

= cf , (26)

cf−1
↓,I

= df , (27)
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and its upper pseudoinverse over I, f−1
↑,I , is again a function of U with

Tf−1
↑,I

=
{

f (Tf ) , if a ≤ Tf ,
f (a) , if a > Tf ,

(28)

df−1
↑,I

= cf , (29)

cf−1
↑,I

= df . (30)

The proofs are easily derived following the steps of those in Theorem 9 and Theorem 10
in [27]. The only difference is that, since we are considering values of f(t) only for t ∈ [a, +∞[,
we can only consider f(t) to be UPP from max (Tf , a). Note that, in the rest of this paper,
we will always use a ≤ Tf , thus only the first branch of (25) and (28) apply. As briefly
mentioned in [27], one can improve the result of (25) using additional assumptions on the
shape of f . As this will be useful in this work, we derive these results explicitly.

▶ Lemma 16. Let f ∈ U be neither UC nor UI, right-continuous, and non-decreasing over
the interval I = [a, +∞[, where a ≤ Tf . Let

T ∗
f := f−1

↓,I (f(Tf )) = inf {t ≥ a | f(t) = f(Tf )} , (31)

T ∗∗
f := f−1

↓,I (f(T ∗
1 + df )) = inf {t ≥ a | f(t) = f(T ∗

1 + df )} . (32)

Then, if f is UPP from T ∗
f and if T ∗∗

f = T ∗
f + df , the pseudo-periodic start Tf−1

↑
in (25) can

be improved into

Tf−1
↓,I

= f(Tf ). (33)

The properties addressed by Lemma 16 have to do with constant segments at the start
and the end of the pseudo-period which, as discussed in [27], can lead to Tf−1

↓,I
> f(Tf ). The

conditions of Lemma 16 ensure that this does not happen, by checking that either a) there
are no constant segments before Tf and Tf + d, or b) these constant segments are of equal
length, such that f−1

↓,I is UPP from f(Tf ). The proof consists, in fact, in verifying that due
to right-continuity of f and the definitions of T ∗

f , T ∗∗
f , it follows that a) or b) are verified

and thus Tf−1
↓,I

= f(Tf ).

▶ Lemma 17. Let f ∈ U be neither UC nor UI, left-continuous, and non-decreasing over the
interval I = [a, +∞[, where a ≤ Tf . Moreover, let f−1

↑,I be its upper pseudoinverse over I.

Then, f−1
↑,I satisfies the conditions of Lemma 16, thus its lower pseudoinverse

(
f−1

↑,I

)−1

↓,[f(a),+∞[
is UPP from f−1

↑,I (Tf−1
↑,I

) = Tf .

The proof is easily derived by observing that, in order for f−1
↑,I to violate the conditions of

Lemma 16, f would need to have left-discontinuities, which is a contradiction.

▶ Lemma 18 (Sufficient cut for Upper Pseudoinverse over Interval). Let f ∈ U be neither
UC nor UI, and is left-continuous and non-decreasing over I = [a, +∞[. Then, in order to
compute f−1

↑,I (x) and x ∈ [x1, x2] ⊂ [f(a), +∞[ with x1 < x2, it is sufficient to use f(t) with
t ∈ [t1, t2], where t1 := f−1

↑,I (x1) and t2 := f−1
↑,I (x2).

The proof is easily derived by observing that, for any x ∈ [x1, x2], sup {t ≥ a | f(t) ≤ x} =
sup {t1 ≤ t ≤ t2 | f(t) ≤ x}.
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▶ Lemma 19 (Sufficient cut for Lower Pseudoinverse over Interval). Let f ∈ U be neither UC
nor UI, and is right-continuous and non-decreasing over I = [a, +∞[. Then, in order to
compute f−1

↓,I (x) with x ∈ [x1, x2] ⊂ [f(a), +∞[ and x1 < x2, it is sufficient to use f(t) with
t ∈ [t1, t2], where t1 := f−1

↓,I (x1) and t2 := f−1
↓,I (x2).

The proof is similar to the one for Lemma 18.

▶ Lemma 20. Let f ∈ U be non-decreasing and I = [a, +∞[ ⊂ Q+. Let x ∈ I. If f(x) ≤ y,
then f−1

↑,I (y) ≥ x.

The proof follows along the lines of [17, pp. 62], since it follows from x ∈ I that we are in
the supremum case of (24). Next, we generalize Proposition 3.10 in [4, pp. 48].

▶ Proposition 21. Let f, g ∈ U be left-continuous and non-decreasing. Then, for any
t ∈ [Tf + Tg, +∞[ it exists s∗ ∈ [Tf , t − Tg] such that

(f∧
p ⊗ g∧

p )(t) = inf
Tf ≤s≤t−Tg

{
f∧

p (s) + g∧
p (t − s)

}
= f(s∗) + g(t − s∗).

In other words, the infimum is attainable.

The proof follows along the lines of [4, pp. 48]. The only difference is related to the use
of Bolzano-Weierstrass theorem for real sequences, obtaining s∗ ∈ R+. However, it is easy
to show that, since functions of U are piecewise affine Q+ → Q ∪ {+∞, −∞}, given any
convergent sequence f(sn), sn ∈ Q+ and s∗ attains the limit of this sequence, then s∗ ∈ Q+.

▶ Proposition 22. Let f and g be non-decreasing and right-continuous functions of U . Then,
for any t ∈ [Tf + Tg, +∞[ it exists s∗ ∈ [Tf , t − Tg] such that

(f∨
p ⊗ g∨

p )(t) = sup
Tf ≤s≤t−Tg

{
f∨

p (s) + g∨
p (t − s)

}
= f(s∗) + g(t − s∗)

In other words, the supremum is attainable.

The proof follows along the same lines as Proposition 21. Next, we provide a generalization
of Theorem 8 for functions restricted to their periodic part.

▶ Theorem 23. Let f, g ∈ U be left-continuous and non-decreasing. Then(
f∧

p ⊗ g∧
p

)−1
↑,[Tf +Tg,+∞[ =

(
f−1

↑,p ⊗ g−1
↑,p

)
. (34)

The proof follows along the same lines of [17, Theorem 10.3, p. 69]. The only difference
is that, for x < f(Tf ) + g(Tg), we derive that both sides are −∞. Next, we also generalize
the involutive property of pseudoinverses.

▶ Proposition 24. Let f ∈ U be left-continuous and non-decreasing on the interval I =
[a, +∞[. Let a′ := sup {t ≥ a | f(t) = f(a)} ≥ a. Then(

f−1
↑,[a,+∞[

)−1

↓,[f(a),+∞[
= f |∧[a′,+∞[.

The proof follows along the same lines of [17, Lemma 10.1 (c), pp. 64-6]. The only
difference is that, for t < a′, we derive that for both sides are +∞. Note that Proposition 24
implies that performing the lower pseudoinverse (over an interval) of an upper pseudoinverse
(over an interval) does not reconstitute f over that same interval, but only a subset of
it: in fact, we obtain f |∧[a′,+∞[ instead of f |∧[a,+∞[, where a′ ≥ a. This information loss
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Figure 10 Example of loss of information when computing pseudoinverses over an interval.

is exemplified in Figure 10, where we show that the values of f between 1 and 2 are lost.
However, if the value a is known, it is easy to reconstitute f |∧[a,+∞[ by observing that the
missing values of f in [a, a′[ are all f(a′), which is part of the result. Again referencing
Figure 10, we can see how the constant segment in red is the missing piece that can be
reconstituted by knowing a = 1. We formalize this process through the reconstruction
operator, [f ]a. Given a function f that is either +∞ or −∞ in [0, a′[, and finite in [a′, +∞[,
then

[f ]a (t) :=


f(t), if t ∈ [0, a[,
f(a′), if t ∈ [a, a′[,
f(t), if t ∈ [a′, +∞[.

(35)

Using the reconstruction operator, we can state a stronger version of Proposition 24.

▶ Proposition 25. Let f ∈ U be left-continuous and non-decreasing on the interval I =
[a, +∞[. Let a′ := sup {t ≥ a | f(t) = f(a)} ≥ a. Then[(

f−1
↑,[a,+∞[

)−1

↓,[f(a),+∞[

]
a

= f |∧[a,+∞[. (36)

The proof is easily derived by applying (35). Combining these results, we can derive an
alternative expression for f∧

p ⊗ g∧
p , which is the analogous to (7) for restricted functions.

f∧
p ⊗ g∧

p =
[(

f−1
↑,p ⊗ g−1

↑,p

)−1

↓,[f(Tf )+g(Tg),+∞[

]
Tf +Tg

. (37)

A.2 Proofs of the results in Section 3.2
▶ Theorem 11. Let f, g ∈ U be left-continuous and non-decreasing functions. Then, hpp =
f∧

p ⊗ g∧
p is again a function of U with

dhpp
= max

(
df

cf
,

dg

cg

)
· lcm(cf , cg) = max

(
kcg

· dg, kcf
· df

)
, (16)

chpp
= lcm(cf , cg) , (17)

Thpp
= sup

{
t ≥ Tf + Tg | f∧

p ⊗ g∧
p (t) ≤ f(Tf ) + g(Tg) + lcm(cf , cg)

}
. (18)
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Proof. Using Proposition 25, we have that

f∧
p ⊗ g∧

p

(36)=
[((

f∧
p ⊗ g∧

p

)−1
↑,[Tf +Tg,+∞[

)−1

↓,[f(Tf )+g(Tg),+∞[

]
(Tf +Tg)

(34)=
[(

f−1
↑,p ⊗ g−1

↑,p

)−1

↓,[f(Tf )+g(Tg),+∞[

]
(Tf +Tg)

,

where we used Theorem 23 in the second line. For the inner part (the (max,+) convolution),
we obtain for all x ≥ f(Tf ) + g(Tg) + chpp = f(Tf ) + g(Tg) + lcm(cf , cg) that(

f−1
↑,p ⊗ g−1

↑,p

) (
x + chpp

)
= sup

f(Tf )≤u≤x+chpp −g(Tg)

{
f−1

↑,p (u) + g−1
↑,p(x + chpp

− u)
}

(x−g(Tg)≥f(Tf )+chpp)
= sup

f(Tf )≤u≤x−g(Tg)

{
f−1

↑,p (u) + g−1
↑,p(x + chpp − u)

}
∨ sup

f(Tf )+chpp ≤u≤x+chpp −g(Tg)

{
f−1

↑,p (u) + g−1
↑,p(x + chpp

− u)
}

,

We continue by substituting v := x + chpp
− u:(

f−1
↑,p ⊗ g−1

↑,p

) (
x + chpp

)
(v:=x+chpp −u)

= sup
f(Tf )≤u≤x−g(Tg)

f−1
↑,p (u) + g−1

↑,p(x + lcm(cf , cg)︸ ︷︷ ︸
=kcg cg

−u)


∨ sup

g(Tg)≤v≤x−f(Tf )

f−1
↑,p (x + lcm(cf , cg)︸ ︷︷ ︸

=kcf
cf

−v) + g−1
↑,p(v)


(x−u≥g(Tg),x−v≥f(Tf ))

= sup
f(Tf )≤u≤x−g(Tg)

{
f−1

↑,p (u) + g−1
↑,p(x − u)

}
+ kcg

dg

∨ sup
g(Tg)≤v≤x−f(Tf )

{
f−1

↑,p (x − v) + g−1
↑,p(v)

}
+ kcf

df

=
(

f−1
↑,p ⊗ g−1

↑,p

)
(x) + max

(
kcg · dg, kcf

· df

)
,

where we used Theorem 6 in the fourth line. It follows then that

T ⊗−1
p

= f(Tf ) + g(Tg) + lcm(cf , cg) , (38)

d ⊗−1
p

= chpp = lcm(cf , cg) , (39)

c ⊗−1
p

= max
(
kcg · dg, kcf

· df

)
. (40)

Next, for the outer part we consider the lower pseudoinverse of the above result, over the
interval [f(Tf ) + g(Tg), +∞[. From Lemmas 16 and 17, it follows that

Thpp

(33)=
(
f∧

p ⊗ g∧
p

)−1
↑,[Tf +Tg,+∞[

(
T ⊗−1

p

)
(24)= sup

{
t ≥ Tf + Tg | f∧

p ⊗ g∧
p (t) ≤ T ⊗−1

p

}
.
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From Theorem 15 it follows also that

dhpp
= c ⊗−1

p
= max

(
kcg

· dg, kcf
· df

)
,

chpp
= d ⊗−1

p
= lcm(cf , cg) .

This finishes the proof. ◀

▶ Corollary 12. Given f and g ∈ U which are left-continuous and non-decreasing in [Tf , +∞[
and [Tg, +∞[, respectively, and are neither UC nor UI. Then, to compute f∧

p ⊗g∧
p via (max, +)

isomorphism of restricted functions, it is sufficient to use sequences S
I′

f∧
p

f∧
p

and S
I′

g∧
p

g∧
p

, with

I ′
f∧

p
=
[
Tf , T ′

f + 2 · kcf
· df

]
, I ′

g∧
p

=
[
Tg, T ′

g + 2 · kcg
· dg

]
. (22)

where we used T ′
f = sup {t ≥ Tf | f(t) = f(Tf )} and T ′

g = sup {t ≥ Tg | g(t) = g(Tg)}.9

Proof. The proof is based on using Proposition 25, as we did in the proof of Theorem 11. We
thus compute f∧

p ⊗ g∧
p through f−1

↑,p ⊗ g−1
↑,p. In the proof of Theorem 11, we derived the UPP

properties of the latter as (38), (39) and (40). Thus, we need to compute S
I

⊗−1
p

⊗−1
p

= S
Iq
q ⊗ SIr

r ,

where q := f−1
↑,p and r := g−1

↑,p with

I ⊗−1
p

= [f(Tf ) + g(Tg), f(Tf ) + g(Tg) + 2 · lcm(cf , cg)[ , (41)

If−1
↑,p

= [f(Tf ), f(Tf ) + 2 · lcm(cf , cg)] =
[
f(Tf ), f(Tf ) + 2 · kcf

· cf

]
, (42)

Ig−1
↑,p

= [g(Tg), g(Tg) + 2 · lcm(cf , cg)] =
[
g(Tg), g(Tg) + 2 · kcg · cg

]
. (43)

Next, we derive which values of f∧
p and g∧

p are needed in order to compute the values
of f−1

↑,p in If−1
↑,p

and g−1
↑,p in Ig−1

↑,p
. We focus, without loss of generality, on f∧

p , and obtain via
Lemma 18 that

f−1
↑,p (f(Tf )) = sup {t ≥ Tf | f(t) ≤ f(Tf )} = T ′

f ,

and using Theorem 6

f−1
↑,p (f(Tf ) + 2 · lcm(cf , cg)) = f−1

↑,p (f(Tf )) + 2 · kcf
· df = T ′

f + 2 · kcf
· df .

Hence, it is sufficient to use
[
T ′

f , T ′
f + 2 · kcf

· df

]
for f−1

↑,p , and
[
T ′

g, T ′
g + 2 · kcg · dg

]
for g−1

↑,p,
to compute f−1

↑,p ⊗ g−1
↑,p. Then, to compute the lower pseudoinverse, we do not require any

additional value from f and g. We do so however for the last step, due to the loss of
information implied by having T ′

f and T ′
g as left boundaries. Using Proposition 25, the

reconstruction operator requires us to know that f(t) = f(Tf ) ∀Tf ≤ t ≤ T ′
f , we obtain

I ′
f∧

p
=
[
Tf , T ′

f + 2 · kcf
· df

]
, I ′

g∧
p

=
[
Tg, T ′

g + 2 · kcg · dg

]
. ◀

▶ Theorem 13 (Mix and Match ((min,+) Convolution)). Let f and g ∈ U which are neither
UC nor UI, and are left-continuous and non-decreasing in [Tf , +∞[ and [Tg, +∞[, respectively.
Let If∧

p
, Ig∧

p
be the intervals to compute f∧

p ⊗ g∧
p according to (13), and let I ′

f∧
p

, I ′
g∧

p
be the

intervals to compute the same through Corollary 12. Then If∧
p

∩ I ′
f∧

p
, Ig∧

p
∩ I ′

g∧
p

are valid
intervals to compute f∧

p ⊗ g∧
p .

9 The suprema are attainable since the functions are left-continuous over the respective intervals.
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Proof. We prove the result for If∧
p

⊃ I ′
f∧

p
, Ig∧

p
= I ′

g∧
p

, and Thpp as given by (18). The
remaining cases follow by commutativity and / or along the same lines. Let If∧

p
= [Tf , b],

I ′
f∧

p
= [Tf , a] with a < b. Moreover, we define dhpp according to (19). We show now that the

values of f in ]a, b] are not necessary for the computation. Therefore, assume that this is not
the case, i.e., there exists some t∗ ∈

[
Tf + Tg, Thpp

+ dhpp

]
, s∗ ∈ ]a, b] such that

inf
0≤s≤t∗, s/∈]a,b]

{
f∧

p (s) + g∧
p (t∗ − s)

}
> f∧

p ⊗ g∧
p (t∗) = f∧

p (s∗) + g∧
p (t∗ − s∗) =: z∗.

From I ′
f∧

p
= [Tf , a] and Lemma 18 it follows that If−1

↑,p
= [f(Tf ), f(a)]. Let us consider now(

f∧
p ⊗ g∧

p

)−1
↑ (z∗) = f−1

↑,p ⊗ g−1
↑,p(z∗). We distinguish two cases: either z∗ ∈ I ⊗−1

p
, computed

according to (41), or it is larger than the upper boundary of I ⊗−1
p

. In the first case, i.e.,
z∗ < f(Tf ) + g(Tg) + 2 · lcm(cf , cg), we have

f−1
↑,p ⊗ g−1

↑,p(z∗) = sup
0≤v≤z∗

{
f−1

↑,p (v) + g−1
↑,p(z∗ − v)

}
= f−1

↑,p (v∗) + g−1
↑,p (z∗ − v∗) ,

where v∗ ∈ I ′
f−1

↑,p

= [f(Tf ), f(a)] such that the supremum is attained (which exists being the
upper pseudoinverses right-continuous and due to Proposition 22). Moreover, since I ′

f−1
↑,p

and

Ig−1
↑,p

are sufficient to compute f−1
↑,p ⊗ g−1

↑,p(z) for any z ∈ I ⊗−1
p

(Corollary 12), it follows that
v∗ ∈ I ′

f−1
↑,p

and z∗ − v∗ ∈ Ig−1
↑,p

, hence we do not need any value of f and g outside of these
intervals to perform the computation for z∗ in particular. But, since the interval ]a, b] was
not used to compute I ′

f−1
↑,p

, this is a contradiction to s∗ ∈ ]a, b] being needed for f∧
p ⊗ g∧

p .

In the second case (z∗ ≥ f(Tf ) + g(Tg) + 2 · lcm(cf , cg)), f−1
↑,p ⊗ g−1

↑,p(z∗) can be computed
by applying the UPP property meaning that

f−1
↑,p ⊗ g−1

↑,p(z∗) = f−1
↑,p ⊗ g−1

↑,p

(
z∗ − k · d ⊗−1

p

)
+ k · c ⊗−1

p

for d ⊗−1
p

and c ⊗−1
p

described in (39) and (40), respectively, and some k ∈ N such that
z∗ − k · d ⊗−1

p
∈ I ⊗−1

p
. We can follow for the latter the same reasoning as in the first

case, thus having again a contradiction to the assumption that s∗ ∈ ]a, b] is needed for the
computation of f∧

p ⊗ g∧
p . ◀
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1 Introduction

Prompted by the proliferation of cyber-physical, safety-critical, and human-in-the-loop
systems, the notion of timeliness in computing has gained growing interest. The accompanying
demand for complex, robust, and computationally demanding control algorithms has led
the real-time community to shift its focus away from simpler hardware platforms to high-
complexity and high-performance platforms. As the complexity increases in platforms, many
challenges have surfaced at all the software/hardware stack layers. It is well understood that
the logic of an application can be hardened against control-flow attacks via Control Flow
Integrity (CFI) [39] methods. But no established methodologies exist for the dual problem
in the temporal domain, for which we coin the name Timely Progress Integrity (TPI).

The introduction of heterogeneous multi-core System-on-Chip (SoC) along with complex
memory subsystem mechanisms at the hardware level has complicated the problem of ensuring
TPI. In particular, memory subsystem hierarchy such as shared [49], non-blocking caches [62],
shared memory controller [66], and DRAM organization [65] are among noteworthy sources of
interference. The interplay of each element mentioned above renders the task of guaranteeing
timeliness an open challenge. In turn, the introduced complexity in SoCs and their ongoing
proliferation have prompted the need for more complex operating systems and OS-level
scheduling strategies, which exacerbate the problem.

The real-time community has achieved important milestones towards restoring predict-
ability [45, 48]. But traditional methods – e.g. static WCET analysis, memory resource
partitioning – have largely focused on respecting end-to-end constraints in the worst case, as
opposed to reason on the current (timely) rate of progress of live applications. Solutions that
leverage code instrumentation have been proposed to checkpoint the progress of applications
at runtime [37, 38, 58], but a system-level solution that can operate on black-box binaries
and inform a rich OS of the expected/detected progress of its applications for it to make
informed management decisions has not been studied. We propose one such solution.

Timely progress assessment as a system commodity. Reasoning about, controlling, and
reacting to changes in the progress of safety-critical applications is the goal. Thus, the ability
to assess an application’s progress must become a system commodity. In referring to this
capability, we coin the term Timely Progress Assessment (TPA). With TPA, a system is
capable of detecting deviations in the timely progress of an application well before a deadline
is missed, providing the ability to enact corrective measures toward ensuring TPI early on.
On the other hand, when faster-than-expected progress is detected, the accumulated slack
can be redistributed to other workloads. Thus, TPA is an enabling capability towards Timely
Progress Integrity (TPI).

This article presents a system design and methodology called Milestone-Based Timely
Progress Assessment (MB-TPA) to perform TPA on live black-box applications. MB-TPA
relies on binary analysis and widely available on-chip tracing subsystems to detect the timely
completion of intermediate progress milestones for an application under analysis. We discuss
a full-stack implementation of MB-TPA on commercial hardware. The implemented TPA
subsystem was termed Timely Progress Assessment with 0 Overhead (TPAw0v), which we
describe and evaluate. We show that MB-TPA (1) introduces negligible (< 0.6%) overhead
to the monitored applications under test. MB-TPA is able to provide live progress assessment
even if a low-power CPU is used to monitor a high-performance CPU. In light of the discussion
above, we make the following contributions:
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Figure 1 High-level overview of the proposed system design. The CFG of the target application
is analyzed to produce a Timed Milestone Graph (TMG). Together with the online data produced
by the Trace Unit (TU), a progress tracker assesses timely progress and reports to the OS. The OS
can take corrective measures accordingly.

1. We propose the concept of TPI as a requirement that is complementary to CFI to marry
logical and temporal integrity.

2. We demonstrate for the first time that online progress assessment without source code
instrumentation for black-box applications is feasible in commercial platforms.

3. We present a method called MB-TPA, that solves key challenges with offline milestone
identification and online progress assessment.

4. Provide a full-stack proof-of-concept implementation and evaluation of MB-TPA for
multi-core Arm Aarch64 SoCs. We refer to our implementation as TPAw0v.

5. Showcase three use cases focusing on real-world vision applications. We leverage TPA
to (1) enforce the WCET of a target application; (2) achieve controlled performance
degradation of the target application by modulating the degree of contention over shared
memory resources; and (3) retrieve live progress-aware profiles of the microarchitectural
resources used by the target application.

1.1 Overview of Proposed System Design for MB-TPA
The goal of making TPA a system commodity imposes two main design constraints. First and
foremost, it must be possible for a system to enact TPA on potentially unknown (black-box)
applications that cannot be recompiled from sources. At the same time, TPA shall be
carried out with negligible temporal overhead. An overview of the proposed system design
is provided in Figure 1. The design involves the use of a Tracee PE (Processing Element)
where a target application (Task) runs unmodified. A second low-power/low-performance
PE, the Tracer, controls the TU to generate trace data transparently to the application
under analysis. Section 4 discusses the system assumptions that enable instantiating the
proposed system.

Initially, the unmodified binary of the target application is analyzed to construct its
Control Flow Graph (CFG) – (1) in Figure 1. Through a sequence of refinement steps, a
Timed Milestone Graph (TMG) is derived from the original CFG. An in-depth description
of the methodology proposed to produce a TMG from a CFG is provided in Section 5. The
TMG is a graph of milestones, each corresponding to some vertex in the original CFG, with
associated time information – (2) in Figure 1. At runtime, the tracer uses the input TMG
and the data received from the TU and detects (un)timely completion of the milestones –
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(3) in Figure 1. The detected positive/negative progress slack is reported back to the OS to
enact management decisions. The tracer was implemented as bare-metal firmware running
on a low-power CPU. The details of our implementation are provided in Section 7.

2 Related Works

Our work finds context in the broad literature concerned with ensuring that the timeliness of
a (set of) critical task(s) can be controlled. In modern platforms, the progress of application
workload can be impacted by many factors. These include scheduling decisions, overheads
introduced by preemptions and migrations [15, 40, 50] and I/O activity [16, 33, 55, 67], un-
predictable cache effects such as self-eviction [17,27], and contention over shared hardware
resources [45, 48]. The set of solutions proposed by the real-time community to reason about
the timeliness of an application can be placed on a spectrum. On one end are static analysis
approaches; on the other are runtime monitoring solutions.

Timeliness (interpreted as the ability to meet a completion deadline) in static analysis
approaches [5, 20, 31, 47] is ensured by computing an absolute worst-case execution time
(WCET) which is then used to compute a worst-case response time (WCRT). The promise is
that WCET/WCRT computation is done by considering the initial state(s) and sequences of
system states that lead to the worst possible temporal application behavior. Given the sheer
complexity of interactions between applications, system-level, and hardware-level components,
static approaches seldomly scale to modern multicore processors [30,35,46].

Recently, approaches based on runtime monitoring have gained momentum. At a high
level, these approaches select a monitoring scheme and a set of system metrics. By monitoring
such metrics online – and taking management actions accordingly – the system detects and/or
avoids undesired outcomes, e.g., uncontrolled contention over a shared resource or a deadline
miss for a critical task. To properly contextualize our work with respect to related approaches,
we categorize runtime monitoring solutions into software- and hardware-based approaches.

2.1 Software-based Monitoring and Progress Assessment
The vast majority of solutions for runtime monitoring and progress assessment introduce
software mechanisms to enact monitoring and/or enact management decisions. We distinguish
four main sub-categories discussed below.

(A) Memory Bandwidth Regulation. Memory bandwidth controllers [59,62,66] monitor
the number of last-level data cache refills and/or writebacks against an allocation budget.
Periodically, they stall the processor if the consumed budget is exceeded. Although bandwidth
regulation aims to prevent the unbalanced progress of co-running applications sharing the
same memory subsystem, no exact knowledge of application progress is constructed.

(B) Feedback Control Scheduling. Feedback control scheduling represents another form of
runtime monitoring. In the context of real-time systems, this approach was pioneered in [60].
The key insight is that the knowledge of task parameters computed offline is refined via
online observations performed at task completion. Task admission is geared accordingly to
meet a target deadline miss ratio. Since the aforementioned original work, a broad literature
on feedback control scheduling has surfaced [19,44,53].

(C) Early Deadline Detection. Early deadline detection is the runtime monitoring technique
at the center of adaptive mixed-criticality scheduling (AMC) [14, 18]. The key insight is
that multiple (at least two) runtime estimates are expressed for high-criticality tasks with
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varying degrees of pessimism. Initially, an optimistic execution time is assumed, and an early
deadline (virtual deadline) is set accordingly. At runtime, the system detects if any early
deadline is missed and takes corrective measures accordingly by dropping [13,24,29,41,54] or
degrading low-criticality tasks [28, 42]. Like feedback control scheduling, runtime monitoring
in AMC systems is limited to detecting an application’s completion (or lack thereof) by a set
(early) deadline. This is equivalent to detecting a single milestone at the application’s end.

(D) Progress Detection. A handful of works attempt to provide a finer-grained under-
standing of the progress of target applications. For instance, the work in [26] periodically
monitors the number of retired instructions to detect a sequence of phases in which the
application’s usage of hardware resources changes. This approach is inherently limited to
applications with a single execution path. In a way that is more closely related to our work,
the works in [36–38,58] consider the full CFG of a target application. These works propose
to instrument a target application’s code via source-to-source translation and/or a modified
compiler. The goal is to insert watchpoints at which progress is assessed in software. At
runtime, when the execution reaches a watchpoint, an interrupt/syscall is issued to decide
whether the system should raise the critical level and drop/suspend low-criticality jobs. In
previous works, the overhead is a limiting factor. Kritikakou et al., in an extension [36]
to [37, 38], propose an algorithm to ignore some checkpoints in order to reduce the overhead.
The authors of PAStime [58] place watchpoints outside of loops to limit the overhead.

Compared to the works in the four categories surveyed above, this paper sets itself apart
because we aim at precise progress assessment without the need to modify/recompile the
application under analysis. Importantly, we are able to express a notion of timely progress
even if the control flow is input dependent. Finally, for the first time, we demonstrate that
leveraging widely available tracing hardware for progress assessment is possible and minimizes
runtime overhead. Indeed, our system never interrupts the application under analysis while
its progress is assessed asynchronously and, therefore, off the critical path.

2.2 Run-time Monitoring via Hardware
Comparatively, less work has explored progress monitoring via specialized hardware support.
Most notably, Lo et al. proposed a customized hardware architecture for runtime monitoring
of hard real-time tasks [43]. Apart from timely progress, the work aims to monitor other
safety properties, such as the presence of uninitialized memory and the correctness of return
addresses. Differently from [43], we focus on commercially available hardware.

Few works have also proposed to leverage trace unit at runtime to perform control flow
integrity [25, 34], while FPGA-based trace decoders were proposed in [6, 32]. We are the first
to utilize a trace unit online to perform timely progress assessment in real-time systems.

3 Background

All the aforementioned approaches for progress assessment [36–38,43,58] consider the CFG
of critical tasks. Kritikakou et al. have constructed a formal grammar to extract the
CFG from a wide range of binaries [37]. There are also a plethora of tools capable of such
transformations [57]. The following section provides a brief overview of CFGs.

(A) Basic Block and Branch Instructions. A basic-block (BB) is a contiguous sequence of
non-branching (assembly) instructions ending with a branching instruction. In other words,
except for the last instruction, a basic block only contains instructions for which the program
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counter (PC) of the CPU – or more generally, processing element (PE) – is monotonously
incremented. A branch instruction has one or more target BBs. For example, in Arm®
aarch32/64 [11], an unconditional branch instruction b would take PC to the operand
address, the beginning of a BB. Conditional branch instructions b.cond have two target
BBs. When b.cond is executed, if the condition is met, the PC is set to the operand address,
otherwise to the instruction following the b.cond instruction. The return instruction ret
can have more than two target BBs. It is possible to statically know its target(s) if the call
sites can be fully enumerated.

(B) Control Flow Graph. A program’s control flow transfer information can be expressed
as a directed graph G = (V, E). A node n ∈ V represents a BB, and an edge (np, ns) ∈ E
indicates that the branch instruction in np has ns as a target. We term this type of edge
a normal edge. In practice, it is unnecessary to expand the complete CFG for runtime
monitoring purposes. Instead, one can view the program as a collection of functions with
the entry point at main [37]. Thus, if no watchpoints are to be placed inside a function f,
all nodes and edges related to f can be removed, and an edge from the caller BB to the
returning BB is added. We refer to this operation as the folding of function f, and to the
newly added edge as the folding edge.

(C) Processor Trace. The processor trace, often called the embedded trace, is a highly
compressed data stream generated by a PE when executing binary code. The trace contains
the necessary information to reconstruct the history of the executed program. Trace generation
is often used for debugging and performance evaluation purposes. As such, the on-chip
hardware circuitry dedicated to processor trace generation, i.e., the trace unit (TU), is
designed to introduce negligible overhead, if at all. The typical use of processor tracing
capabilities is in conjunction with external trace probes. In this case, the system runs without
modification while external hardware (probe) is connected to a physical trace port. The
probe collects (portions of) the produced processor trace data for offline analysis. Two
broadly used hardware probes are the Lauterbach® PowerTrace [1] and the Green Hills®
Probe V4 [2].

Trace generation units are almost ubiquitous in embedded and general-purpose high-
performance CPUs. Many embedded modern processors include more or less capable on-chip
TU’s. For example, Arm’s lineup of hardware modules for tracing and debugging that
fall under the CoreSight [7] umbrella includes TU modules such as the Embedded Trace
Macrocell (ETM) and Program Trace Macrocell (PTM). The TU solution from Intel® is
called Processor Trace (PT). The PT infrastructure has been introduced in 5th generation
Intel processors, promising overheads below 5% [21, Chapter 32]. RISC-V also has its own
embedded trace specification [4].

Since trace data is produced at the same (or comparable) timescale as instruction execution,
the data bandwidth is usually considerably high, even after many lossless compression
techniques are applied. A common compression technique only reports the progression of BBs
instead of individual instructions. If the current BB is known, then a single bit of information
is enough to encode whether the (conditional) branch at the end of the BB is taken or not.
When this information is combined with static knowledge of the binary under analysis, the
entire control flow can be recovered. If the current BB ends with an indirect branch such as
a function return, the trace provides an explicit branching address.

Trace data include additional metadata about the processor state. For instance, in systems
that support multiple tasks, the context ID of the process in execution (as determined by the
OS) is also generated. The virtual machine ID is also included for systems with hardware
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virtualization extensions. Similarly, information that can identify an interrupt context
(interrupt taken, interrupt type, interrupt return) is also provided. Other valuable meta-
information for performance analysis can also be included, such as the cycle counter and the
occurrence of other microarchitectural events.

A TU includes hardware resources that go beyond embedded trace generation to perform
some degree of pre-processing. For instance, trace packet filters, counters, sequencers/format-
ters, external input selectors, or aggregators to combine trace data from multiple sources
(e.g., multiple CPUs) can be included in the TU subsystem.

4 System Model and Assumptions

In this section, we describe the assumed system model upon which our MB-TPA is formulated.
These assumptions also dictate the system requirements to implement the proposed MB-TPA,
and ultimately introduce timely progress assessment as a commodity.

4.1 System-level Assumptions

(A) Tracee PE and Tracer PE. We assume that at least two PEs are present: (1) a main
PE (or tracee) running the application under analysis and (2) the other PE serving as a tracer.
Note that no assumption on the components’ nature nor performance is made, meaning that
the tracer and tracee can be implemented using various technologies. For instance, a system
could have high-performance PEs as tracee and be monitored by a low-performance real-time
core or specialized hardware implemented as an ASIC or on an FPGA.

(B) Address Range Filters. We assume that the tracee features a TU providing at least
one range-programmable instruction address filter. That way, the TU can be programmed
to trace specific address ranges corresponding to the immediate next milestones.

(C) On-chip Trace Data Path. We assume that an on-chip data path exists through which
the TU-generated trace data stream can be forwarded to the tracer, as it is commonly the case
for high-performance embedded systems. For instance, many ARM-based COTS platforms
offer dedicated on-chip trace routing and storage within the CoreSight [7] infrastructure1.

4.2 Application-level Assumption

(A) Single Binary. This work targets single-binary applications running on the tracee.
No restrictions on the number of software layers used by the tracee are imposed, meaning
that the target applications can equally run on top of a full-fledged OS, inside a virtual
machine on a hypervisor, or as a bare-metal application. The binary is sufficient to apply the
proposed MB-TPA: we place no assumption on the availability of the target’s source code,
nor that it can be recompiled and/or binary-instrumented. The goal is that MB-TPA can be
automatically employed by a system.

1 Trace data routing components include the Embedded Trace Router (ETR), Embedded Trace FIFO,
and Funnel. Storage components include the Embedded Trace Buffer and Trace Memory Controller.
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Figure 2 Abstract tool-chain proposed. Ovals represent the inputs and outputs, red rectangles
represent timing-sensitive tools, and green rectangles represent timing-insensitive tools.

(B) Single Entry/Exit. Without loss of generality, we assume that the entry BB address
and the exit BB address are (1) known, (2) within the target’s binary, and (3) they are linked
by at least one valid control path. The entry and exit BB of a function generally2 represent a
valid selection. Otherwise, for applications implementing time- or event-triggered logic in an
infinite loop, the first and last BBs of the loop iteration can be selected as the entry and exit
BB points. If the debug symbols are part of the binary, the entry/exit BB selection can be
automated (e.g., given a function name).

(C) Availability of Representative Inputs. Finally, for complex and input-dependent
applications, we assume that a set of representative input vectors is available to experimentally
produce (offline) a nominal progress reference to check against during the online phase.

5 Methodology for Milestone-Based Timely Progress Assessment

We hereby describe the proposed Milestone-Based Timely Progress Assessment in its different
phases. With reference to Figure 1, this section details the design choices and steps involved
in going from CFG creation to TMG generation. A bird’s eye view of MB-TPA is depicted
in Figure 2. The following sections cover the numbered steps (1) through (5) in detail.

5.1 Intuition of Key Challenges and Solutions
(A) Monotonic Progress in Black-Box Binaries. As discussed in Section 3, the execution
of a binary implies control flow transfer over a graph. On the other hand, the idea that a
target application must execute (and thus complete) on time implies a monotonic notion
of progress. Therefore, the first challenge we face is to construct a notion of progress given
black-box application binaries.

Our solution consists in identifying BBs that represent progress milestones (Section 5.3).
Intuitively, a BB is a progress milestone (a.k.a. MBB) if, once reached, it is possible to
conclude that a sizable amount of progress has been made by the application logic. Milestone
identification is done through a combination of (1) CFG extraction, (2) CFG refinement by
observing concrete runs of the target, and (3) applying the milestone placement algorithm.
The output of the algorithm is a milestone graph (MG). The procedure is detailed in
Section 5.3.

(B) Keeping up with Trace Data. Timely progress assessment has to be performed in a
timely manner. Assuming that a valid set of MBBs has been identified, the goal is to detect
the completion of milestones at the tracer as soon as they are reached on the tracee, or with

2 If no infinite loops are present in the function nor in any other routine that can be called by it.



W. Chen et al. 13:9

negligible delay. This way, the tracer can promptly assess TPI violations and trigger any
correction countermeasure if necessary. Conversely, if the tracer lags significantly behind the
tracee, then it might be too late to act upon detected TPI violations – and one might as well
detect TPI violations at target completion instead.

What makes this challenging? The first issue might reside in the latency for the
propagation of TU-generated data to the tracer PE. As we evaluate in Section 8.1, it is not
an issue if the tracer and tracee are different PEs on the same SoC. A second (and more
problematic) issue is the limited bandwidth of the on-chip channels via which trace data
is streamed. Despite aggressive trace compression, allowing the TU to stream trace data
unrestrictedly leads to buffer overflows due to the performance gap between tracer and tracee
PEs. These overflows can occur both within the TU or at the interface between the TU
and the tracer, preventing any packet from reaching the tracer. Thus the naïve solution of
constantly streaming data from the TU and matching against MBBs does not work.

(C) Dynamic TU Reconfiguration. To reliably ensure milestone detection, we propose
to dynamically reconfigure the TU so that it is silent for most of the time and only emits
bare minimum packets when the event of interest happens – i.e., one of the next MBBs is
reached. At this point, a new set of MBBs to monitor is configured. The TU then becomes
silent again, waiting for the next milestone. In this paradigm, the TU only emits sporadic
and short-lived signals, thus consuming a fraction of the sustainable trace bandwidth. The
information of which MBBs to monitor after a given MBB is reached is expressed in the TMG.

5.2 Trace Blackout Window
Two milestones cannot be placed arbitrarily close to one another. This is a consequence of
the dynamic TU reconfiguration. Suppose MBB1 and MBB2 are adjacent, i.e., when the TU
has detected that tracee’s execution has reached MBB1, then the TU should be reconfigured
to detect tracee’s execution on MBB2. The reconfiguration typically consists of (1) disabling
the TU to reprogram the relevant registers, (2) identifying the MBB that has been reached,
(3) looking up in the TMG the next set of milestones to detect, and (4) resuming the TU.

Let t1 and t2 denote the time for tracee’s execution reaching MBB1 and MBB2 respectively.
From the time t1 at which MBB1 is reached and until the TU is brought back online to
monitor MBB2, there is a window of time during which milestones cannot be monitored. We
call this the trace blackout window and indicate it with the symbol Tr. If the best-case
path between MBB1 and MBB2 is such that (t2 − t1) < Tr, then detection of MBB2 cannot be
guaranteed. Our methodology avoids this issue by design.

Formally, call D(MBBi,MBBj) ∈ R+ the time-cost to reach MBBj starting from MBBi.
Clearly, this cost is a random variable that depends on the specific path taken and the
progress at which the target executes. Moreover, D(MBBi,MBBj) = ∞ if MBBj cannot be
reached from MBBi. We show that a lower-bound of this cost can be computed and impose
that, for any two valid MBBi,MBBj , it must hold that

min
i,j

{D(MBBi,MBBj)} > Tr. (1)

It is worth noting that the blackout window and the sizable progress requirement discussed
in the first challenge in Section 5.1 both require the distance between two milestones to
be sufficiently large. In practice, the blackout window is generally smaller – we derive this
parameter for our implementation in Section 8.1. Thus ensuring that enough progress occurs
between milestones implies that the constraint imposed by the blackout window is also met.
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(a) The extracted CFG. Red edges
are folding.
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responding edges.

Figure 3 Illustrative MG generation for the main of the disparity benchmark.

5.3 Milestone Graph Construction (Step 1 and 2)

Figure 3 depicts the intuition behind the Milestone Graph (MG) construction procedure.
First, the CFG of the target application is extracted (Figure 3a). The CFG is annotated by
adding a weight on each edge that is indicative of the temporal distance between two nodes.
Then a subset of nodes satisfying the constraint expressed in Eq. 1 is selected – the red
nodes in Figure 3b. Finally, new edges are added to the red nodes to maintain reachability
relationships, as per Figure 3c. The resultant digraph is a valid MG.

(A) CFG Notation. Given a target black-box binary, the CFG is extracted (Step 1 in
Figure 2). This is a digraph GCF G = (V, E) where V and E are the set of all the vertices and
edges, respectively. Here a vertex vi ∈ V is a BB. An edge (vi, vj) ∈ E is either normal or
folding (Section 3)3. For any edge (vi, vj) ∈ E , we assign a per-edge weight w equal to the
lower bound on the time to execute the instructions in vi, including the folded function if
its out-edge is folding. A safe albeit inaccurate lower bound can be obtained by dividing
the number of instructions in vi by the maximum clock frequency of the tracee4. We define
D(vi, vj) for any two vertices in V as the cost of the path (if any) from vi to vj with the
minimum cost. This is used to lower-bound the minimum time needed to reach vj from vi.

(B) MG Notation. An MG GMG = (M, Q), is a digraph where M ⊆ V is the set of MBBs.
For each MBBi ∈ M, an edge (MBBi,MBBj) ∈ Q signifies that (1) MBBj is one of the next
milestones to detect after MBBi has been reached, and (2) Eq. 1 holds. Note: the edge (MBBi,
MBBj) might not exist in E because the corresponding BBs might not be in an immediate
predecessor/successor relationship in GCF G.

(C) Milestone Selection. The milestone selection problem is the following: (1) given a
blackout window Tr, color the vertices in GCF G either red or white; (2) ensure that for
any two red nodes, ri, rj ∈ V, D(ri, rj) > Tr; and (3) find the maximal set of red nodes.
Other optimization objectives and heuristics could also be used – e.g, minimizing the sum
of distances among red nodes. Finding the optimal solution is not the focus of this work
and left as future work; an algorithm that is guaranteed to find a solution (if one exists) is
presented here.

3 Folding all functions except for main can already produce meaningful milestone graphs for applications
under test. In practice, if the execution time of a function is long, unfolding it to allow milestones to be
placed inside can achieve better granularity.

4 We assume the CPI is greater or equal to one. Notice this might not be true for multi-issue processors.
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(D) Graph Coloring Heuristic. The proposed strategy (Step 2 in Figure 2) is described
in Algorithm 1. The algorithm first colors all of the vertices red (Line 6–8), then iterates
over any non-visited remaining red vertex in DFS search order – thus, starting from the
root BB (Line 9). Next, for each red vertex ri we compute the path with the shortest total
cost D(ri, rj) to all other red vertices in V (Line 12). If for some rj D(ri, rj) > Tr does not
hold (Line 14), color rj white (Line 15). The full adjacency map D for ri can be computed
using Dijkstra’s algorithm [22]. The only adaptation needed to the standard algorithm is to
correctly compute D(vi, vi), which is always 0 in the traditional algorithm. Instead, we must
compute the cost to come back into vi if vi was reached, which can be computed as

D(vi, vi) =
{

wi if (vi, vi) ∈ E
min(vi,vj)∈E{D(vj , vi) + wi} otherwise.

(2)

Algorithm 1 Constrained Directed Graph Coloring.
1 input:
2 GCF G = (V, E), Tr ◁ CFG graph and blackout window
3 output:
4 Colored GCF G ◁ CFG graph with red-colored marked MBB’s
5 init:
6 for each v ∈ V do
7 v.color ← red ◁ Color all nodes red
8 end
9 Rleft ← Topol(V) ◁ Red vertices to visit, in DFS search order

10 algorithm:
11 for each ri ∈ Rleft do
12 D ← Dijkstra(ri, GCF G) ◁ Get all shortest-paths from ri

13 for each rj ∈ V s.t. rj .color == red do
14 if D(ri, rj) ≤ Tr then
15 rj .color ← white ◁ rj unsafe milestone from ri

16 Rleft ← Rleft \ {rj} ◁ Remove rj from Rleft

17 end
18 end
19 Rleft ← Rleft \ {ri} ◁ Mark ri as visited
20 end

To finalize the MG GMG, we proceed as follows. M is created from the colored GCF G by
removing all the white vertices vi. To compute Q from E , we proceed as follows. For each
white vertex vi, remove any self-loop and say that incoming (resp., outgoing) edges are of
the form (vp, vi) (resp., (vi, vs)). Then, for each direct predecessor vp of an incoming edge,
we add all the edges of the form (vp, vs) for any direct successor vs of vi in Q.

(E) Degree Reduction. Recall that the number of address range registers available (noted
M∗) at the TU is limited (Section 3). Intuitively, M∗ constraint how many milestones can
be monitored by the TU after (one of) the current milestone is hit. After the MG has been
produced following the procedure described so far, there is no guarantee that the outdegree
(number of outgoing edges) of all the ri ∈ M is below M∗. Thus, a simple pruning strategy
is adopted. That is, for each ri with outdegree greater than M∗, randomly pick one of the
outgoing edges and color the vertex pointed by that edge white; then repeat the procedure to
remove white nodes. This is done until no vertex with outdegree greater than M∗ is found.

We call FinalizeMG(Colored GCF G, M∗) the routine that takes in input a colored
MG and performs edge construction plus MG pruning. Note that the selection of Tr and
computation of the weights w can affect the pessimism of Algorithm 1. Moreover, in the
presence of loops, the lack of static knowledge about the number of iterations that will be
executed at runtime forces the algorithm to assume that only the iteration lower bound is
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taken. Finally, error-handling branches that are never taken during nominal execution create
short-cut paths (e.g., from entry to exit in a routine) that prevent many intermediate BBs
from being colored in red. Nonetheless, the important advantage of this first step is that an
initial MG can be produced without the need to execute the application.

5.4 Milestone Graph Refinement with Concrete Runs (Step 3)

Refinement of the MG with concrete runs (Step 3 in Figure 2) mitigates the problems with
static MG construction described in Section 5.3. During refinement, the target is executed
on a set of representative inputs, potentially multiple times for each input. Techniques such
as symcretic execution that combine symbolic execution and concrete runs can be used to
automate the generation of representative inputs [23]. For the purpose of this work, we
assume that a set of representative inputs has been identified for the target application.

By executing the target application using representative inputs, we are able to measure
the temporal distance between two BBs in the CFG and gather additional information about
the path(s) taken by the target for each input. Importantly, we can now compute the
max/min number of times that each edge (vi, vj) ∈ E was taken, and thus the min/max
number of iterations of each loop is discovered. We record both observed minimum ai,j and
maximum bi,j number of times each edge is visited. We only preserve the number of visits,
but not their order, despite the trace data does provide the full history of the visited BBs.

These runs are a way to collect extra information about the target and belong to the
offline analysis phase of MB-TPA. In this phase, the TU is configured in a special mode
where the TU can slow down the tracee. This is because the high-bandwidth nature of the
trace data stream can overflow the internal buffer of the TU and cause information loss.
Thus the slowdown ensures that a complete trace from entry to exit of the target is acquired.
This is the only case in MB-TPA when the target is executed with a (possibly) heavy impact
on its runtime due to the activity of the TU.

(A) Branches as a Proxy of Distance. Since the exact temporal progress has been impacted,
we need a different metric that correlates (and lower-bounds) the temporal distance between
MBBs. The metric must be available from the traces and preserved when the runtime of the
application is impacted. Thus, we use the reported number of visited BBs – i.e., the number of
executed branch instructions. The advantage is threefold: (1) can be computed directly from
the acquired trace without interfacing with any other architectural unit – e.g., a performance
measurement unit; (2) when execution flows within the known CFG of the target, one can
always retrieve the number of instructions executed; (3) we can put a (conservative) weight
on branches to the outside of the CFG under analysis, such as calls to dynamically linked
libraries and system calls. From our experience, (2) is unnecessary since the newly acquired
information about the min/max number of loop iterations and the presence of never-observed
paths already enables much lower pessimism in the MG construction.

Under the new metric, the weight of every normal edge equals to one. The weight of a
folding edge depends on the number of branch instructions executed in the folded function
which can vary across different sample inputs. To ensure the blackout window condition
holds (Eq.1), the weight of a folding edge is assigned to be the minimum across all inputs.
Now the effective temporal distance D(ri, rj) is the shortest path from ri to rj . The following
two heuristics can further fold subgraphs with certain properties, so that extra milestones
can be placed.
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(a) The number of access are a1,2 = 1,
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self-loop becomes the weight for (v2, v3),
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(b) No pair of nodes in the gray region
satisfies the constraint. Thus the total
number of branch instructions taken inside
the region becomes the weight for wen,ex.

Figure 4 Refinement by heuristics. The subgraphs before the heuristics applied are shown on
top, in which the number on an edge indicates the number of access ai,j . The subgraphs after the
heuristics applied are below, in which the number indicates the assigned weight wi,j .

(B) Simplify Self-Loops. We identify any BB vi having only (1) one incoming edge (vi−1, vi),
(2) one outgoing edge (vi, vi+1), and (3) one self-loop (vi, vi). All edges are normal. If the
incoming and outgoing edges are both accessed only once, then replace the temporal cost
wi,i+1 with the minimum number ai,i of self-edge accesses, and remove the self-loop, as
shown in Figure 4a. Without this simplification, a suitable milestone candidate v3 would not
be considered due to D(v1, v3) = 2.

(C) Simplify Sub-graphs. Consider any sub-graph GCF G
sub with a single entry vertex ven and

single-exit vex, in which all edges are normal. If it was unsafe to place any milestones within
GCF G

sub , then (1) remove all the vertices that belong to GCF G
sub except ven and vex; (2) add the

folding edge (ven, vex); and (3) set the temporal cost wen,ex = Wsub to the minimum number
of branches Wsub observed across all runs inside GCF G

sub , as shown in Figure 4b.
Besides the two heuristics above, the nodes/edges never accessed across all reference

inputs are also removed. For this work, we only apply the above refinements, but a large
space exists for more advanced heuristics.

5.5 Timed Milestone Graph Generation (Step 4)
By the end of Step 3 (Section 5.4), an MG refined using concrete runs is obtained. Recall
that the goal is to monitor the target’s progress online with negligible overhead. At this stage
(Step 5 in Figure 2), the (refined) MG is decorated with timeliness information. The output
of this step produces a Timed Milestone Graph (TMG) where each milestone is associated
with a notion of when the milestone should be completed for satisfactory progress.

(A) Milestone Timing. To associate timing information to milestones, the TU is configured
never to slow down the traced application. In this mode, allowing full trace generation might
result in unpredictable trace overflows, as discussed in Section 5.1. Instead, the refined MG is
used to wake up the TU and tracer only when a milestone is reached, as depicted in Figure 5.
In the considered example, the tracee is initially (Figure 5a) executing code within v2. The
TU is configured to remain silent; its address range filter registers (see Section 3) are set to
detect the arrival of execution into the next milestone (v3). When v3 is reached, the TU
emits trace activity towards the tracer (Figure 5b). The TU uses the MG to dynamically
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(a) Initially, assume that tracee’s
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(c) The TU reconfiguration is com-
plete and the tracer is ready to
wait for tracee’s execution to enter
either v5 or v7. By design, tracee’s
execution has not yet reached
them.

Figure 5 Tracer-Tracee interaction for milestone detection and dynamic TU reconfiguration.

reconfigure the TU to detect the next milestones, in this case, v5 and v7. Upon completion
of the latter operation, the tracer goes back to waiting for an event from the TU (Figure 5c).
Whenever a control transfer between two milestones is observed, the tracer measures the
time – in terms of elapsed clock cycles – for the transfer.

(B) Milestone Timeliness Information. Using the measured milestone-to-milestone time,
timeliness information is added to the MG in two parts. (1) Each node in the MG is given a
tail time; (2) each edge in the MG is given a nominal time.

Tail time: The tail time Tt(MBBi) is the absolute time by which the target must hit
MBBi for the last time. This value is the maximum taken across all the timed runs on the
given set of representative inputs – worst-case in isolation. The tail time can be understood
as the WCET till a specific milestone. However, loops and alternative paths make the tail
time insufficient to assess a broader set of timeliness properties beyond WCET enforcement.
Consider the case where we want to detect timely progress via loop iterations. Even if each
iteration of the loop takes longer than usual, the tracer cannot detect per-iteration slowdowns
by only using the tail time. The nominal time is designed to overcome such a limitation.

Nominal time: Given an edge (MBBi,MBBj) ∈ Q, the nominal time Tn(MBBi,MBBj) is
a reference time the application is expected to spend to transfer from MBBi to MBBj . Once
again, the maximum is taken across all the timed runs. Even if the target runs in isolation
(all other PEs idle), fluctuations in the value of Tn can occur due to microarchitectural noise.
If (MBBi,MBBj) is part of a loop, nominal time is effective in detecting slower-than-expected
transfer between MBBi and MBBj . Thus the nominal time offers finer timeliness checking per
iteration.

5.6 Online Timely Progress Assessment (Step 5)

Once a TMG has been obtained, online TPA is possible, which is the focus of Step 5 in
Figure 2 and described below. The TMG is passed to the tracer when the target is launched.
The MBB0 that corresponds to the selected entry point for the target is programmed by the
tracer on the TU. Live tracking of the application under analysis is performed by employing
the same strategy described in Section 5.5 and illustrated in Figure 5.
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At runtime, we track two times: (1) the actual time Θ(i) and (2) the running nominal
time N(i). Let MBBi be the i-th milestone for which a hit has been detected. Θ(i) is updated
with the current time. Therefore, it tracks the time measured since MBB0 was hit and until
MBBi is reached. Conversely, N(i) is updated as N(i) = N(i − 1) + Tn(MBBi−1,MBBi).

At this point, everything is set to assess the timely progress of the target. Whenever a
milestone MBBi is hit, the tracer can check that Θ(i) ≤ min(Tt(MBBi), N(i)). If a controllable
amount of degradation – compared to the reference timing acquired in isolation – is accepted,
one can express the allowed slowdown as α > 1 and check the following condition instead:

Θ(i) ≤ α min(Tt(MBBi), N(i)). (3)

Importantly, all the elements are in place not only for the detection of TPI violations but
also to routinely report positive/negative current slack to the tracee PE. The slack at MBBi

can be calculated as slack(i) = min(αTt(MBBi), αN(i)) − Θ(i).

6 Use Cases for MB-TPA

We hereby provide three use-cases enabled by the ability of MB-TPA to provide runtime
timely progress assessment as a system commodity.

(A) Strict WCET Enforcement. Previous work has provided a methodology based on
code-level instrumentation to insert progress checkpoints (milestones in our notations) with
the goal of enforcing a target WCET for a high-criticality task under analysis [36–38,58]. The
capabilities of MB-TPA seamlessly support one such use case. Consider a mixed-criticality
system in which a critical task is scheduled exclusively on the main core, and low critical
tasks are scheduled on other cores. Kritikakou et al. [37] have proved that the following
regulation policy can guarantee the timeliness of the critical task5. Following their strategy,
low-criticality tasks are suspended if a checkpoint is reached and the slack is not sufficient as
indicated by the following condition:

RWCETiso(x) + RWCETmax + tRT > Dc − ET (x),

where RWCETiso(x) is the remaining WCET (measured in isolation) from the arrival at
watchpoint x until completion. In our MB-TPA, this is equivalent to Tt(MBBexit) − Tt(MBBx).
RWCETmax is the WCET from watch-point x to the next watchpoint when other low critical
tasks are present, which can be measured as Tn(MBBx,MBBx+1) according to Section 5.5 by
adding interference. tRT is the software interrupt overhead. Our MB-TPA does not use
interrupts, but to remain safe, the delay in the milestone detection at the tracer must be
considered. This term is evaluated in Section 8.1. Dc and ET (x) are deadline and actual
time at x. We refer to the latter as Θ(x). The required metrics for the regulation policy are
offered by MB-TPA, thus our method can also achieve strict WCET enforcement.

(B) Progress-aware Profiling. In this use case, we demonstrate that it is possible to acquire
application profiles about their interaction with the underlying hardware in a way that is
progress aware. This can be done by performing online tracking according to what described
in Section 5.6. In addition, the tracer is modified to interface with the performance monitoring

5 Due to space constraint, the proof is omitted here. The work also includes a treatment to regulate loop
components.
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unit of the tracee. By doing so, it is possible to measure the progression of architectural
events (e.g. cache misses, branch mispredictions, bus stalls) at the reached milestones. This
allows precise attribution of exhibited behaviors to specific code paths inside the target. More
importantly, it enables correlating slowdowns on specific milestones to root causes in terms
of platform behavior. And therefore, to identify hardware bottlenecks on a per-code-path
basis. We evaluate this use case in Section 8.2.

(C) Progress-aware Controlled Degradation. Lastly, we consider TPA-driven detection of
TPI violations due to contention over shared memory resources and perform regulation of
interfering PEs with the goal of tracking a degraded performance setpoint for the target.

In a nutshell, TPI violation is triggered if the target suffers a slowdown greater than
a selected α factor. At runtime, if Equation 3 does not hold, the tracer sends a signal to
the tracee to pause the activity of all the other PEs. After the interfering cores have been
stopped, the target might recover some slack. Thus, it might be possible to resume the
paused PEs. To decide when the interfering PEs should be resumed, we use an aggressiveness
parameter β ∈ [0, 1]. Whenever slack(i) > βαN(i), the interfering PEs are resumed. As
β decreases, the tracer resumes the co-runners as early as possible. When β increases, the
tracer becomes more conservative. We evaluate this use case in Section 8.2.

7 System Instantiation and Implementation Details

We performed a full-stack implementation of the proposed MB-TPA. We name our proof-
of-concept system instantiation Timely Progress Assessment with 0 Overhead (TPAw0v).
TPAw0v was implemented on the ZCU102 development board featuring a Xilinx UltraScale+
MPSoC. The target platform comprises two CPU clusters: (1) the APU cluster with four
ARM Cortex-A53 CPUs operating at 1.3GHz, used as the tracee; (2) the RPU cluster with
two ARM Cortex-R5 CPUs operating at 600MHz, used to implement the tracer. Following
the platform assumptions described in Section 4, the target platform features an ARM
Coresight infrastructure commonly with tracing capability.

Figure 6 illustrates the trace data path. Each tracee CPU has a TU, namely an ARM
Embedded Trace Macrocell (ETM) [10]. The ETMs produce trace data for the respective
core. The ETMs are capable of filtering the trace data by comparing the PC against a set of
4 range-address filters. Each filter uses two registers (TRCACVRn) for the address range’s
upper and lower ends. Trace data packets are generated whenever the PC falls within any of
the defined ranges.

The trace packets traverse multiple on-chip CoreSight components. The bare-metal
drivers used by the tracer to manage all these components were written from scratch. In
TPAw0v, the ETR is configured to asynchronously store trace packets to the RPU cluster’s
scratchpad (TCM), where a 2KB circular buffer is reserved. The TMG in binary format is
also stored on the TCM. The tracer implements all the modes to carry out the full MB-TPA
pipeline described in Section 5, including online tracking.

7.1 Constructing MB-TPA with ETM
To implement MB-TPA, the ETM is driven using a Finite State Machine (FSM) by the
tracer and composed of three states (solid circles), two transition states (dashed circles),
and several transitions as depicted in Figure 7. The controller starts in the Inactive state.
This state is the only one in which reconfiguring the ETM (modifying the address filtering
registers) is allowed, as the ETM is idle. Once reconfiguration is completed, the controller
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Figure 6 The Embedded Trace Macrocell (ETM) is the CPU-local device responsible for trace
generation. The Trace Memory Controller [8] can be configured into an Embedded Trace FIFO
(ETF) or Embedded Trace Router (ETR). The former serves as a buffer for the trace stream; the
latter routes trace data to memory. ARM AMBA Advanced Trace Bus (ATB) [9] is adopted for
trace data transmission. Funnels merge trace streams from potentially multiple ETMs and ATBs
into a single ATB. The Replicator duplicates trace data from a single master to two slaves [12].

Figure 7 Tracer’s controller
as a finite state machine.

Figure 8 Delivery time (cumulative) distribution.

activates the ETM by asserting the TRCPRGCTLR.EN register (A), leading to a transition
state to guarantee that the ETM is not idle. Here, the tracer waits for the TRCSTATR.IDLE
register to be cleared before moving to the Active-off state (B). In Active-off, the ETM
is monitoring the PC, but not generating informative packets6, because the PC has not
reached any addresses specified by the address filtering registers. I.e. the PC has not reached
any milestones yet. When the PC reaches any of the specified addresses, Three packets
are emitted in order by the ETM: a synchronization, a trace-on, and an address
packet. This sequence signifies that a milestone was hit and the address packet includes
the current value of the PC. Then, the controller moves to the Active-on state (C). Otherwise,
the controller stays in Active-off (!C). Similar to its “off” counterpart, the Active-on state
keeps the ETR actively waiting for the next packet (!D). Once the packet is finally captured,
the controller (1) identifies the milestone hit via the PC, (2) computes the negative slack, and
(3) propagates the latter to the tracee. The controller then moves back to the Active-off state
(D). In both active states, the controller is allowed to request a change of address range to
monitor. In such case, the ETM must be set to idle by clearing the TRCPRGCTLR.EN register
(D). Then, the controller enters a transition state where it awaits for the TRCSTATR.IDLE
register to be asserted, ensuring the ETM is idle (E).

6 In Active-off state the ETM still generates synchronization and address packet pairs at a very
low rate. These packet pairs can be ignored for our purpose.
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8 Evaluation

First, we evaluate TPAw0v to understand its performance in terms of milestone detection
delay, size of the trace blackout window, and overhead on the tracee. Next, we evaluate the
ability to enact progress-aware profiling and controlled performance degradation.

8.1 Progress Assessment Performance
(A) Delivery Time. Let t denote the time at which tracee executes the first instruction in
the monitored MBB. The TU generates a trace packet toward the tracer via on-chip buses.
Let t′ denote the time at which the tracer receives it. The delivery time ∆t = t′ − t has to
be comparably small so that the TPAw0v can operate effectively. To measure ∆t, we use a
synthetic benchmark on the tracee in which the cycle counter is periodically read. MBBs are
chosen as the BBs where the cycles are sampled. The tracer reads the same cycle counter
upon receiving the signal. For a given MBB, the application’s timestamp is t; the tracer’s
is t′. We sample 1500 data points, 50% in isolation and the rest with interference from
memory-intensive applications. Figure 8 shows the overall (cumulative) distribution. The
delivery time is upper-bounded by 5750 cycles, or 4.4µs on our 1.3GHz tracee.

Recall that software-based detection methods [38,58] inevitably introduce overhead due
to synchronous interrupt handling. In contrast, our method never interrupts the tracee. Due
to our monitoring scheme’s asynchronous nature, the delivery time is not an overhead term.
Nonetheless, it is informative to contrast the overhead for software-based detection to the
magnitude of our delivery time. A convenient way to obtain such measurement is to use
a widely-adopted Linux support for dynamic binary instrumentation, namely UPROBEs [3].
They allow hooks to be registered at different locations of a user application. A software
interrupt is issued when a hook is reached and time can be sampled. We measured the
overhead of UPROBEs at about 4µs.

(B) Blackout Window Size. The reconfiguration of the TU is solely handled by the
function reconfigure residing in the control logic of the tracer. Thus by reading the cycle
counter before/after the function call of reconfigure, the size of Tr can be measured. We
conduct such measurements while running TPAw0v normally with target applications from
the SD-VBS suite [63] which is a diverse collection of computer vision applications. The
characteristics of these benchmarks have been extensively studied by the community [51,52,61].
Our measurements show that Tr is around 3µs. Recall that we choose Tr in terms of number
of executed branch instructions. In the (very unlikely) worst case, all the instructions
executed during the blackout window are branch instructions. Thus, we conservatively set
Tr = 10000 given the 1.3GHz tracee.

(C) Overhead on Tracee. When the tracer only performs TPA but takes no regulation
actions, the target should only experience a negligible slowdown. Five SD-VBS benchmarks
were evaluated: disparity, texture_synthesis, mser, tracking, and sift.

We run benchmarks with their respective default inputs in two configurations: (1) without
TPAw0v, and (2) with TPAw0v but taking no regulation actions. Ten runs are conducted per
benchmark and in each configuration. The top section of Table 1 reports the slowdown caused
by TPAw0v on the benchmarks as a percentage of their runtime. Expectedly, the overhead is
low (< 0.6%). The low yet visible overhead in some applications might arise from interference
on the main interconnect between the tracer and the tracee CPUs. Implementing the tracer
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Table 1 Overhead (%) of tracer activity and TMG/trace size information.

Benchmark disparity text. mser tracking sift

Mean(%) 0.512 -0.009 0.250 -0.072 0.168
Max(%) 0.585 0.033 0.263 -0.110 0.194
Min(%) 0.483 0.085 0.225 -0.059 0.173

# of MBBs in TMG 17 5 18 16 13
# of MBB hit in execution 143 1169 20 18 19
# of unfolding functions 1 1 1 1 2
TMG size (bytes) 340 108 408 320 324
Raw trace size (MB) 10 44.4 14 175.2 236.4
Filtered trace size (bytes) 1500 9400 210 350 300

on the on-chip FPGA might mitigate the issue [64] and further reduce the overhead. Negative
entries indicate that the applications run faster when traced. H. Shah et al. [56] observed
and theorized such counterintuitive timing anomalies.

(D) Application Considerations. The sum of delivery time and blackout window size
(∼ 7.4µs) indicates the responsiveness of the tracer in detecting and reacting to milestone
hits. Thus, TPAw0v is better suited for applications with execution times on the order of
103µs and above, e.g., data processing workloads. Approaches using software interrupts
would incur overheads of at least 4µs, as measured on our platform. Thus, for short-lived
applications, the overhead introduced by software instrumentation would significantly degrade
performance.

8.2 Evaluation of MB-TPA Use Cases
We hereby evaluate the last two use cases described in Section 6. For our evaluation,
we consider the same five aforementioned SD-VBS benchmarks. The memory-intensive
application bandwidth from IsolBench [62] is deployed on all the other cores to create
interference in both main memory and shared cache.

(A) TMG Construction. First, we provide information regarding TMGs and trace data in
the second section of Table 1. When a milestone is placed inside a loop, high granularity
regulation can be achieved. disparity and texture synthesis demonstrate such
granularity as the number of milestones hit is high. TMG size refers to the memory usage
for the tracer to store the binary TMG; raw traces are only used during the offline MG
refinement phase; the TU generates the filtered trace during online tracking.

(B) Progress-aware Profiling. When the execution reaches a milestone, we collect architec-
tural event statistics by directly reading the PMU event counters7. In this evaluation, the
architectural event monitored is the L2 data cache refill, i.e. we track last-level cache misses.
The benchmarks under evaluation run (1) in isolation and (2) with interference tasks. In each

7 ETM can also report architectural events in the trace stream. ETM can optionally implement external
inputs which connect to PMU event bus lines. Event packets can be inserted into the trace stream
whenever the monitored events occur.
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(b) Mser.

200 400 600 800 1000 1200 1400
Milestone Hit time (ms)

0.0

0.5

1.0

1.5

2.0

2.5

L2
 C

ac
he

 R
ef

ill 
Co

un
ts

1e6
Nominal
With co-runner

(c) Tracking.

Figure 9 Relationship between timeliness (x), L2 cache misses (y), and milestones (markers).
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(a) Disparity.
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(b) Texture Synthesis.
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(c) Mser.
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(d) Tracking.
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(e) Sift.

Figure 10 The TMG for disparity and texture synthesis captures appropriate loops,
achieving fine granularity. Despite a coarser control for mser, TPI is maintained.

case, the benchmark runs 20 times. The tracer reports the time and cache refill statistics at
each milestone hit. The relationship between elapsed time (x-axis), cumulative number of L2
misses (y-axis), and milestones hit (markers) – and therefore segments of executed code –
as captured for three SD-VBS applications is reported in Figure 9. The figure highlights
that disparity and tracking suffer only marginally from cache contention, while five
milestones in mser are significantly impacted by contention in L2.

The significance of relating the consumption of hardware resources to progress is twofold.
First, resource management decisions can be enacted proactively as opposed to reactively.
Second, by comparing the expected profile at a milestone to what is observed online, a system
can identify the root causes of performance degradation and enact appropriate corrective
actions. The combination of progress tracking and progress-aware resource management
requires extensive research.

(C) Controlled Performance Degradation. In this scenario, we evaluate the ability to
set a degraded performance setpoint for the application under analysis and stop/resume
interfering cores based on the online slack calculation reported by the tracer. The behavior of
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(b) Texture Synthesis.
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(c) Tracking.

Figure 11 As target deviation β increases, the tracer becomes more conservative, and only
resumes the co-runner when a sufficient positive slack presents. Thus, the application follows the
set-point more closely for small β.

the five SD-VBS benchmarks is reported in Figure 10. We compare the runtime under tracer-
enforced regulation (“Regulated Run Time”) with two other cases: (1) the nominal case,
i.e., the worst-case progress in isolation, and (2) the progress under unregulated interference
(“Co-runner w/o Regulation”). We use α = 1.3 and β = 7%; the resulting progress reference
is labeled “Set point.” The history of accessed milestones in chronological order is reported
on the y-axis; the time elapsed between milestones is reported on the x-axis; the binary
decisions to suspend (red dot) or resume (green dot) the co-runners are reported.

In all the cases, the tracer was able to enforce a controllably degraded notion of TPI for
the target. Corrective measures are taken as soon as the detected progress falls below the
reference. The specific value of β we considered works well in most cases but becomes overly
conservative in the case of mser. In this case, preventing a slowdown in the early stages
(at milestones 2–4) is sufficient to ensure that the setpoint is met for the rest of the run.
The behavior of sift (Figure 10e) is interestingly different. The solo, uncontrolled, and
controlled progress nearly coincide. This indicates that sift is unaffected by the interference
tasks. The nominal progress, however, is slower than the above three. Recall that the
nominal time for each edge is taken as the maximum transfer time across all runs. But in a
single run, not all transfers take the worst-case time.

To better understand the impact of β on the behavior of the applications, we sweep
through values of β ∈ [1%, . . . , 19%] and present the results in Figure 11. The “Exec Time”
bar captures the runtime under contention and regulation. The “Ctrl. Ratio” bar reports the
fraction of time during which the real-time is below the set-point. As β increases, TPAw0v
becomes more conservative, and the aggressiveness of the regulation increases. sift is not
included since it does not suffer from performance degradation.

9 Conclusion

Prompted by the demand for high-performance embedded platforms, the design of modern
system-on-chip has gained in complexity at the expense of software predictability and
timeliness. We argue that reasoning on the progress of live applications must be a key
requirement to achieve Timely Progress Integrity. In this paper, we propose a method called
MB-TPA and present a prototype, TPAw0v, feasible on widely available commercial platforms
featuring tracing capabilities. Our experiments show that our prototype is successful in
tracking the progress of applications under test with near-zero overhead while operating on a
lower-performance core! Moreover, through its prototype implementation, we demonstrate
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the capability of our model to detect execution anomalies and enforce corrective measures
to preserve TPI. We envision that the contributions made by this work represent the first
building blocks towards elaborated real-time policies with TPI at their core.
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Abstract
Safety-critical systems have to absorb accidental and malicious faults to obtain high mean-times-
to-failures (MTTFs). Traditionally, this is achieved through re-execution or replication. However,
both techniques come with significant overheads, in particular when cold-start effects are considered.
Such effects occur after replicas resume from checkpoints or from their initial state. This work aims
at improving on the performance of control-task replication by leveraging an inherent stability of
many plants to tolerate occasional control-task deadline misses and suggests masking faults just with
a detection quorum. To make this possible, we have to eliminate cold-start effects to allow replicas
to rejuvenate during each control cycle. We do so, by systematically turning stateful controllers
into instants that can be recovered in a stateless manner. We highlight the mechanisms behind this
transformation, how it achieves consensual resilient control, and demonstrate on the example of an
inverted pendulum how accidental and maliciously-induced faults can be absorbed, even if control
tasks run in less predictable environments.
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1 Introduction

Safety-critical systems used to be closed systems built from highly predictable components
and with accidental fault tolerance obtained through triple-modular redundancy (TMR) [37]
(e.g., in the time-triggered architecture (TTA) [31]). Although some systems continue to
be built along these lines, real-time systems, in general, became more open, networked,
functionally richer and dynamic and, as such, also more susceptible to accidental faults
and targeted attacks. Cyberattacks are a reality for real-time as well as safety-critical
systems [34, 11, 58, 69, 36, 70, 28, 56, 49, 53, 41].
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Fault and intrusion detection, paired with a mechanism to recover and re-execute faulty
tasks (see, e.g., Zou et al. [73]), as well as fault-masking through voting has been proposed
as application-agnostic techniques to mitigate accidental and intentionally-induced malicious
faults. However, these techniques come at high costs, in particular, due to cold-start effects
when running recovered tasks from their initial state or from a checkpoint. As control systems
become more complex, we observe recovery effects become more prominent. For example,
stopping and restarting (from its initial state) the perception module of an autonomous
driving stack may well lead to cold-start effects that require the vehicle to stop for several
seconds before environmental perception gets restored1.

In this paper, we address the performance problems of recovering tasks from a cold
state to allow them to rejuvenate each time the control task is invoked. We utilize this
possibility to rejuvenate to operate control with a quorum that is just large enough to detect
faults. We then leverage recent results from Maggio et al. [39] and Vreman et al. [65], which
state conditions under which a controlled system can tolerate missing up to m subsequent
actuations, to reach consensus over time. More precisely, in case the detection quorum is not
able to reach consensus immediately (which is the case if a fault manifests in a disagreement
of votes), we rejuvenate and re-execute control task replicas in the subsequent control periods
– which we call epochs. Rejuvenated tasks re-execute the original problem (i.e., sensor inputs
and state) to collect over up to k epochs the matching proposals we need to reach consensus.
We do so while ensuring k is bounded from above by the missable deadlines (i.e., k ≤ m).

More precisely, Maggio et al. [39] identified an inherent stability of many plants that
allows them to tolerate several deadline misses in a row without losing said stability, provided
no wrong actuator signal reaches the plant. Vreman et al. [65], further found that an even
larger number of deadline misses can be tolerated, provided the controller enters a subsequent
no-miss phase in which deadlines can be guaranteed to be met. Whereas the first result
allows operating the controller just with a detection quorum, reaching an agreement over
time, the latter gives rise to adjust the system’s resilience by switching from a detection to
a masking quorum, by adjusting its resilience to adapt to more critical failures [57] or by
engaging in more elaborate recovery actions.

The prerequisite for applying any of these techniques is the system’s ability to recover
faulty replicas extremely fast to allow rejuvenating them after each invocation. Naive recovery
would require creating a new instance of the control task, bringing it up to speed with the
state of its peers (e.g., by resuming it from a checkpoint and by replaying previous requests),
and configuring its privileges to participate in the consensus decisions instead of the faulty
task it replaces. The costs of these operations are high and challenging to bind from above.
In other words, such a recovery method is not suitable to be applied in between any two
invocations of the control task. Imagine instead the task would be stateless in the sense
of observing all required information by reading out the plant’s sensors. It would need to
maintain no other state from one invocation to another. Then, rejuvenation would amount
to a trivial reset of the task, its control flow and stack to the beginning of its control loop.
Unfortunately, most control tasks are not stateless and even seemingly stateless control
algorithms, such as the Linear Quadratic Regulator (LQR), may become stateful in case, not
all values can be directly observed from the plant.

This paper demonstrates how stateful tasks can be systematically transformed into
instances that can be recovered like stateless ones. This way, recovery becomes fast enough
to be executed before every invocation. Moreover, we show how consensual memory [19]
helps protect any state that needs to be maintained across control-task invocations.

1 Observation from injecting crash faults into Apollo’s perception system [14].
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We make the following contributions:
We introduce in Section 5 our Consensual Resilient Control (CRC) approach, capable of
masking up to f accidental faults every control period T (which we call epoch), including
some maliciously-induced faults as detailed in our system and fault model in Section 4.
To achieve this, we systematically convert stateful control tasks into statelessly recoverable
instances (see Section 5.1), which we execute in a replicated manner, but just with a
detection quorum of n = f + 1 replicas.
We equip replicas with a means to revert to the current and previous plant state (see
Section 5.2) and utilize the latter to reach consensus, in case this was not possible in a
single epoch.
We provide them with a trusted voter, which is simple enough to allow hardware or
FPGA implementations, but more importantly, which can be brought to a zero defect
target. The voter is used to actuate the plant after agreement has been reached, but
also to store data in consensual memory if this information needs to be carried across
control-task invocations (see Section 5.3). An FPGA implementation is not part of this
work.
And, we evaluate the performance of our approach against a non-resilient (singleton)
version of the control task, as well as against a classical Triple Modular Redundancy (TMR)
setup. To prevent adversaries from exhausting the healthy majority that TMR needs to
mask faults, we consider also the proactive rejuvenation of replicas that participate in
TMR (e.g., by operating with n = 4 replicas to tolerate one fault, even when one of the
four replicas is rejuvenated). We restart this replica from its initial state.

This paper is organized as follows: in Section 2, we present our evaluation vehicle and
running example (an inverted pendulum). We continue by relating our work to the works of
others (in Section 3) and by formally introducing our system and fault model (in Section 4).
In this work, we focus exclusively on faults pertaining to the execution of control tasks. We
assume (possibly fused) sensor data to be correct. In the future, we will then investigate the
interplay of resilience mechanisms for internal faults with measures, such as Choi et al.[12],
to cope with sensor failures.

2 Running Example: Inverted Pendulum

The inverted pendulum serves today as the text-book example in control-theory [3]. It
lies at the heart of many control theory problems ranging from self-balancing hover-boards
to stabilizing rocket propulsion systems. Indeed the inverted pendulum is investigated
throughout the scientific literature as a minimum-viable benchmark to study a myriad of
control problems present in neural-network based controllers [67], complex-simplex control
systems [42], and works in the real-time systems domain [54]. By virtue of its simplicity, we
chose the one-dimensional inverted pendulum model as the running example throughout this
paper. We evaluated our Consensual Resilient Control approach by using a custom-made
design (shown in Figure 1(a)). The pendulum consists of a moving mass (M) articulating
another mass (m) through a free falling rigid rod (of length L) along a one-dimensional axis. In
this work, we shall use the pendulum as an example to illustrate how our novel CRC approach
can mask faults in stateful controllers with just n = f + 1 replicas, which normally allow only
detecting the presence of a wrong actuation. For that, we restrict ourselves to the linear regime
where the inverted pendulum (in the literature referred to as the plant) state h(t) is proximal
at any moment t to its stable point i.e. h(t) = [x(t), ẋ(t), θ(t), θ̇(t)] → hs = [x0, 0, 0, 0]. Here
x is the position of the pendulum along the one-dimensional axis, ẋ its linear velocity, θ
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(a) Custom-made inverted pendulum breadboard-based
setup and the PCB board that replaces it in the most
recent version. The pendulum uses a 12V DC motor
coupled with rotary encoders to measure position and
angle.

(b) Pendulum schematics and parameters
that govern the pendulum’s equations of mo-
tion.

Figure 1 Experimental setup of our inverted pendulum. A motor (2) provides a force u via a belt
on a rail-sliding mass M whose position along the x axis is determined by a rotatory encoder (4). A
secondary rotatory encoder (3) measures the angle θ of the rod (1) which has a length L.

its time-varying angle with-respect to the vertical axis and θ̇ the associated angular speed.
In this stability region and in the presence of a feedback control u(t) the fully non-linear
equation of motion approximately linearize and are given by θ̈ = 1

L

(
g cos θ(t) − u(t) sin θ(t)

)
.

The task of every feedback control system is to keep the state of the plant close to the stable
point by first sensing its current state and subsequently imparting a counter balancing force
u, in our case to the sliding mass M . Various control algorithms exist, the most common
ones used in order to stabilize the inverted pendulum are the Linear-Quadratic-Regulator
(LQR) and the Proportional–Integral–Derivative controller (PID).

LQR implements the control task by feeding back a force which is proportional to the
error of the current state with respect to the stable point such that uk = −K · δhk, where
δh = hk − hs and K is a matrix of constant weights that are fine-tuned as a function of the
plant’s dynamical properties.

PID takes a similar approach by adding two additional terms to the proportional term of
LQR uk = Kp · δhk + Ki ·

∑k
m=k−l δhm + Kd · dδhk

dk where the integral term accumulates
the k − m historic errors and the derivative term determines how fast the stable point is
reached2. One striking difference between PID and LQR is that the former needs to keep
track of the historic states in order to compute the integral term and is therefore referred
to as a stateful controller as opposed to LQR being a stateless controller. However, given
the technical specifications of our measurement devices3, instantaneous measures such as

2 We refer the reader to the corresponding control literature for further information on how to tune the
PID gains and K matrix for LQR.

3 Position and angle are sensed through two rotary encoders, which detect changes of the encoders’
rotation angle as quadratically shifted square waves in two channels. That is, angular changes are
reported as raising and falling edges of the square waves, whereby the shift between channels indicates
the direction of rotation.
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linear and angular speed are not immediately available for a given epoch but have to be
indirectly inferred through first recording past positions and angles and then computing the
temporal variation of the latter. Consequently, LQR becomes effectively stateful. Formally
for a given epoch k the forward function that models the control feedback loop can be written
as f(hk−l, ..., hk) = uk where for LQR l = 1 and PID l ≥ 1. The necessary state that the
controller needs to keep track of (h) would allow us to turn an effectively stateful controller
into a stateless recoverable instance (see Section 5.1).

For PID and LQR of an inverted pendulum, this state is trivially small for modern
computational devices as just a couple of variables are saved across invocations. However, for
this work, the actual algorithms are not relevant. We must observe that over the years, several
increasingly sophisticated control algorithms have been proposed to cope with increasing
plant complexities, including Model Predictive Controllers (MPC). One glaring example is
the electric microgrid, as exemplified by Huo et al. [27] where MPC optimizes the energy
generation and storage decisions based on a state as large as 420KB (at each step).

On the other hand, there is a theoretical possibility to optimize an MPC algorithm imple-
mentation on a 43KB-limited microcontroller [40], using techniques that enable satisfactory
control performance while respecting memory constraints.

3 Related Work

To the best knowledge of the authors, this is the first work to leverage application-specific
knowledge to optimize the more general resilience problem of tolerating up to f simultaneous
faults over extended periods of time (from at least n = 2f + 1 replicas – plus potentially
additional replicas to compensate for unavailable ones during rejuvenation – to n = f + 1
replicas). Several works contribute as individual building blocks for this work, which we
review in the following.

Hard and weakly hard real-time systems. Traditionally hard-real time systems consider
deadline misses fatal as they put safety at risk. However, this is not generally true. Weakly-
hard real-time systems [7] characterize systems by the number of deadlines that can be missed
during any given time window. The m − K model4 [2, 18, 23] allows up to m deadlines to be
missed among any K consecutive jobs of the task. In control, the parameters m and K can
be derived when analyzing the inherent stability of plants [39, 65]. In this work, we leverage
these results to operate under a detection quorum, respectively, in reduced tolerance settings
until the system can be adapted to mask faults immediately.

Fault tolerance and recovery. The Time-Triggered Architecture (TTA) [31] is among the
most advanced and elaborate bodies of work developed to tolerate faults in safety-critical
systems. TTA ensures message exchange in non-overlapping message slots and provides
membership, fault tolerance, and actuation voting by leveraging apriori knowledge about the
messages that replicas should send in the individual slots. TTA and its time partitioning
are required in many standards, including ISO 26262 (automotive), IEC 61508 (industrial
control), and DO-178C (avionics), and adopted by prominent industrial players, such as
Audi, Volkswagen, and Honeywell [51]. The fault tolerance layer [5] is based on cold restart
from the ground state (g-state) or history states (h-state). TTA is often used in conjunction
with other methods for fault tolerance, such as redundancy, re-execution, and self-healing, to

4 Not to confuse our K gain matrix of the LQR controller with a m − K model from the control literature.
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build robust and reliable real-time systems. Our CRC differs in that it ensures that both
recovery states, critical for preserving data integrity and consistency, are always accessible to
applications, even in case of a system failure or unexpected interruption.

One of the most popular methods used in fault tolerance is TMR [37], an instance of
active replication. Its purpose is to improve the reliability of a system by using three (or,
in general, n) functionally equivalent components to perform the same function, with the
system’s output being the majority vote of the three (n). TMR is commonly used in safety-
critical systems, such as aerospace [68], nuclear power plants [66], and medical devices [17],
where a single failure could result in severe harm or damage. The idea behind TMR is that
the probability of all three components failing simultaneously is extremely low, so the system
is highly reliable. While effective in improving system reliability, there are some downsides
such as increased cost, power consumption, and complexity, which may make it less practical
for some applications. Our CRC is an instance of active replication. It reduces the costs
of the system by reducing the number of nodes from n = 2f + 1 to n = f + 1. One of the
prerequisites for this reduction is the possibility of utilizing shared memory.

In addition to active replication, spare replicas can be kept hot, warm or cold, which
translates to different response times for taking over after a fault is detected and the spare
activated. Our approach applies active replication. Both active and passive replication will,
over time, exhaust the majority of healthy replicas [59], in particular when cyberattacks
persist. Our approach specifically address this concern by providing an extremely fast
rejuvenation scheme for control-task replicas. Rejuvenating active replicas normally requires
a cold restart of the faulty replica and additional replicas to compensate this downtime. Our
approach avoids both.

Re-execution [72, 25] is a fault recovery technique used to improve the reliability of
tasks by executing them multiple times and by selecting the correct output from multiple
executions. It uses slack time on the processor to detect faults locally at the end of task
execution and re-execute the task when a fault is detected. A faulty task can either be
re-executed from the start or restored from the most recent checkpoint before the fault
occurred [48]. Our CRC approach extends this technique by transforming control tasks to
always maintain a known healthy saved state from which we restart tasks. This is achieved
by not only voting on the result, but also on the state that must be maintained.

Other recent works in the intersection of fault tolerance and real-time systems include[32,
46, 10, 13, 1, 21].

Shared State. Replicated systems are typically constructed to avoid shared state due to the
vulnerabilities entailed with this state failing. However, since recent microcontroller product
families for safety-critical systems [61] offer ECC and RAID-protected shared memory [24, 64],
we will leverage such memory to allow control replicas to maintain state across epochs. In
particular, we will turn this memory into consensual memory, as exemplified by Gouveia et
al. [19]. Read-only shared memory is commonly used in hypervisor-based systems to isolate
VMs [43] (e.g., when deduplicating pages in their memory image). Our solution works in a
hypervisor or RTOS setup, but equally well also on a bare-metal configuration where replicas
receive read-only access to their shared memory. Read-only access suffices because, as we
shall see, updates are performed consensually through a voter.

ECC embeds the possibility to tolerate faults without exposing them to the application
and its state. It encodes values (e.g., into a hamming code) to tolerate a certain number
of bit flips by correcting them when reconstructing the original value. The same coding
can further be used to detect additional bit flips. As bit flips accumulate over time when
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unhandled, ECC should be frequently be overwritten with a technique called scrubbing to
restore its tolerance capabilities. Scrubbing overwrites the memory with the same value to
restore non-stuck bits to their correct encoding of the value, which allows tolerating the
original number of bit flips minus those that got stuck. We shall use ECC memory to protect
state in consensual memory.

Checkpoint Recovery. Macroscopically, our approach could be characterized as a checkpoint
recovery scheme albeit with an ultra-high checkpoint frequency and unconditional recovery
at the end of each epoch. However, when we compare to other checkpointing approaches,
such as [47, 71, 4], in more detail, there are substantial differences, which we characterize in
the following:

Checkpoints typically capture the entire state of a task in a consistent cut across all replicas
(updating the previous checkpoint with what has been modified since then), whereas in
our approach and using consensual memory, replicas propose only very selectively what
portion of that state they will need for future epochs. The remaining (writable) state is
simply discarded.
Computation of and agreement on a new checkpoint are typically separate operations.
Our approach combines both by only changing the shared state after f +1 healthy replicas
agree on the update.
Checkpoints are typically computed asynchronously to the execution of checkpointed
tasks (e.g., by marking modified pages as copy on write to create a consistent cut). This
is not necessary, since replicas end their activity in an epoch by proposing both what
should be updated in the shared state and how to actuate the plant. This further ensures
that the agreed-upon state corresponds to the latest plant actuation, since agreement is
reached on both simultaneously and the voter follows suite in applying the updates.
Recovery from a checkpoint is typically performed only after replicas have failed. This is
not sufficient as compromised replicas might remain stealthy and go undetected. For this
reason, we recover replicas after every epoch, by resetting them to the beginning of their
control loop.
Last but not least, checkpointing diversified replicas requires determining whether the
individual checkpoints denote the same progress, whereas agreeing just on the values to
be carried across control epochs, avoids such complications, because (i) the agreed upon
state needs not to be diversified (it can only be written consensually), and (ii) healthy
replicas agree on the same updates, despite computing them in a sufficiently different
manner.

CPS Attacks. Various studies have investigated attacks on CPSs, including sensor [60], GPS
spoofing [63, 26], and AI-related attacks [20]. In this work, we focus exclusively on tolerating
cyberattacks that may be successful in compromising up to f control replicas while assuming
adversaries cannot exceed that bound faster than Ta. Rejuvenating all replicas faster than
Ta allows us to tolerate such adversarial attacks over extended periods of time [59].

4 System and Fault Model

System Model. This work concerns the fault tolerant control of a plant by means of
replicating its control task across n nodes (see Figure 2). We assume nodes fail independently,
but are sufficiently closely coupled to access a voter through the IO channels it offers and to
access shared ECC and possibly RAID protected memory. These can be cores of a multi- or
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Figure 2 Replicated control architecture. Control task replicas sense the plant and have read-only
access to shared state. They propose an actuation signal and state update, which the voter applies
after reaching consensus.

many-core system (e.g., controlling a drone), multi-chip modules or more loosely coupled,
but close compute nodes. If cached, the minimum requirement for the shared ECC memory
is to invalidate cachelines upon writes, which as we shall see are updated exclusively by the
voter.

A minimal control task senses the state of the plant, executes a control algorithm and
proposes a signal for actuation. However, control tasks may also be more complex (e.g.,
structured as a directed acyclic graph of runnables) and involve filters, sensor aggregation
and models of the plan to compute hidden state. Our goal is to support plants that are
unaware of their controller’s replicated nature. As such, we introduce a voter, which is
trusted to consolidate control-task proposals into a singleton actuation signal. We shall also
use the voter to update shared memory after reaching a consensus on how this state should
be updated.

For simplicity, we assume a single control task having a single period is responsible for
actuating the plant. Replicas of that task are invoked periodically every T time units and
receive a consistent view of the plant state as far as this is observable through the plant’s
sensors. Supporting multi-periodic tasks (see e.g., Pagetti et al. [45]) is trivial as long as
actuations are independent one from another. By replicating the multi-periodic control
tasks individually and by introducing additional voters for each such group of replicas, one
can achieve the desired actuation rates in the absence of errors. However, under faults,
plants will have to tolerate missing some actuations for a number of epochs while others
keep arriving. A discussion of multi-periodic control tasks with dependent actuations, where
related actuations must not be passed to the plant if any of them cannot be performed at a
given time, is out of the scope of this paper. We return in Section 5.2 to demonstrate how
periodic activation and consistent sensing can be achieved using a trusted real-time operating
system (RTOS) but also on bare metal. We call the T -distant invocations control epochs.
Being invoked synchronously every T with a consistent view implies we operate under the
assumptions of a synchronous system model.

Our approach is parametric in the number of faults f it can tolerate in an epoch (see our
Fault model below for details) and in the number of epochs k by which we guarantee it to
reach consensus. The parameters f and k determine how many replicas are required. Maggio
et al. [39] found that many plants tolerate missing deadlines. The parameter k is bounded
from above by this number m of deadlines that can be missed. Some plants, such as electric
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steering can miss up to m = 17 deadlines. Our goal is to leverage this possibility to miss
deadlines to optimize the system by reducing the number of replicas n required. Immediate
masking (i.e., k = 1) within a single epoch (e.g., TMR) requires n ≥ 2f + 1 replicas. Our
goal is to reduce this number to as low as just n = f + 1 replicas, which can only detect
faulty invocations that manifest in deviating proposals passed to the voter. With n = f + 1
replicas, at least one replica is guaranteed to make a healthy proposal. More generally, we are
guaranteed to receive n − f such healthy proposals during each epoch. To reach consensus,
we have to collect f + 1 matching proposals including from at least one healthy replica.
Our fault model rules out reaching such a match without healthy replica. But with only
n − f healthy proposals in each epoch, we are sure to collect the f + 1 matching proposals
only after

⌈
f+1
n−f

⌉
epochs, which bounds k from below. TMR typically operates under the

assumption of f = 1, but there are systems deployed (e.g., for energy-grid safety), which
have to tolerate f = 5 or even more faults simultaneously.

Fault Model. As mentioned above, we aim to protect against both accidental faults and
intentionally induced, malicious faults (e.g., from cyberattacks). We shall therefore discuss
several classes of faults and how we represent them in our abstract fault model, which
is a slightly extended variant of the standard fault model for persistent and repeatedly
partially-successful cyberattacks originally introduced by Sousa et al. [59].

Our fault model and hence the system we propose is parametric in the number of
simultaneously occuring faults f that it can tolerate as well as in a few parameters (T f

fault−type)
which depend on the type of fault and which characterize when faults of that type may
reoccur. The combination of number of faults and time of re-occurrence is quite standard,
even in real-time systems. For example, the fault-tolerant time-triggered protocol by Kopetz
and Grundsteidl [30] already assumed such a model. TTP can tolerate one fault among four
synchronization replicas, provided the fault will not re-appear in the immediately following
synchronization interval.

These parameters f , k and T f
fault−type are related to the configuration of the system in

terms of the number of control-task replicas n that need to be deployed to tolerate this
number of faults, the time Trejuvenate to rejuvenate replicas and in the time Tagree until
agreement must be reached. The latter is further constrained by the number of subsequent
deadline misses m that the plant can tolerate.

Deploying a system in an environment where these constraints cannot be guaranteed
(e.g., because more than f faults of a class occur faster than T f

fault−type) constitutes a failure
in using the system. Fault tolerance and in consequence safety are no longer guaranteed once
the thresholds are exceeded.

In terms of accidental faults, we consider transient and correctable faults that manifest
in all parts of the system state, including in memory and in the internal and architecturally
visible registers of the CPU. Such faults include bit flips due to radiation, charge deposited
in flash memory cells, etc. We assume the RTOS frequently corrects such faults (e.g., by
overwriting registers with the correct value or by scrubbing ECC memory). In particular
we shall establish consensually-updated memory in ECC and possibly even RAID-protected
memory. This memory will be shared between replicas and must return the latest written
values, even in the presence of faults. If, on the other hand, bit flips occur only in a replica’s
memory and in not more than f over a period T f

accidental , leaving our consensual memory
unaffected, our system can handle these faults by collecting proposals from other replicas
and by rejuvenating the faulty replica.
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Accidental faults typically follow well understood characteristics from which a mean-time-
to-failure (MTTF) can be derived and hence a high probability that faults will not reoccur
within a certain time period, which for accidental faults we call T f

accidental .
Faults of this nature often arise from external factors like radiation or fluctuations in

temperature and are generally considered to be random events. To model these faults,
stochastic processes, such as Poisson processes, are commonly employed. These models can
help estimate the likelihood of faults happening within a designated time frame [38].

In the case of alpha particles hitting memory, this phenomenon is known as soft errors
or single-event upsets (SEUs). Soft errors are transient faults that do not cause permanent
damage to the system. They occur when high-energy particles, such as alpha particles or
cosmic rays, strike the sensitive regions of semiconductor devices, causing bit flips in memory
cells [6].

Malicious faults result from an attacker redirecting the control flow and altering the task’s
state to serve its purposes. Notice that techniques, such as return-oriented programming [9,
50], allow deviating from the task’s intended control flow without modifying its code. This
can happen, for example, by exploiting vulnerabilities such as buffer overflows to push return
addresses that redirect the control flow to snippets of the task’s code that, when combined,
implement the adversary’s desire. We assume a strong adversary capable of identifying,
reaching, and exploiting such a vulnerability in control replicas.

Obviously, with identical replicas, no bound on the simultaneously affected replicas can
be guaranteed. Instead, replicas need to be sufficiently diverse such that an attack applied
to one replica cannot just be applied to another replica. Over time, adversaries may find
vulnerabilities in more than f replicas by analyzing their current state (e.g., how its address
space is randomized) and adjusting their exploit to the replicas state. This leads to two
durations, which characterize the adversary. The time T f

deploy required to deploy an attack
and compromise a replica in the desired way, and the time T f

exceed by which the adversary
has analyzed more than f replicas. In this work, we allow T f

deploy to become small (see
below). However, we shall assume, as recommended by Sousa [59], that the RTOS diversifies
all n replicas as part of the rejuvenation process faster than T f

exceed (e.g., by re-randomizing
their address space layout [8, 15] or by applying other diversification techniques [16, 35, 52]).
Notice also that fault statistics do not apply to malicious faults.

We shall not further discuss diversification in this paper, as this needs to be applied at a
different time scale5, but they can easily be merged with the rejuvenation process we will
introduce in Section 5.1 by not returning to the original binary’s control loop and instead
first activating a transition control loop after adjusting the address space of the task and
then to the diversified version’s control loop. See Section 5.4 for further details.

Rejuvenating replicas before each epoch to address faults, our approach can tolerate
accidental and malicious faults, provided (i) the overall number of accidental and malicious
faults will not exceed f and provided (ii) no more than f faults happen within any sliding
window of length kT . The second condition holds if T f

accidental > kT and if T f
deploy > kT . Of

course, mean-time-to-failure is a value derived from fault statistics, which means that with a
certain probability accidental faults can occur more frequently.

We shall not make such assumptions about accidental faults, but support more frequent
occurrence of accidental faults, by leveraging another characteristics of such faults, namely
that it is highly unlikely that two faults in two replicas will result in identical proposals. We

5 T f
exceed well exceeds the m epochs by which agreement needs to be reached.
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will further reduce the likelihood of this happening by requiring replicas to solve a challenge
for their proposal to be considered. Notice that this also addresses persistent faults, since
a replica experiencing such a fault is unlikely to solve the challenge. Of course, persistent
faults must be properly attributed in the overall number of faults and must be addressed by
replacing the affected replica, which is out of the scope of this work. We shall return to this
in Section 5.4.

It is also highly unlikely that adversaries will be able to predict accidental-fault intrinsics
of a replica that still is able to solve the challenge, such that it can predict what that replica
will propose. For application scenarios which can tolerate a low residual likelihood that the
system becomes unsafe in case such a combination of events happen, we can therefore also
deploy our solution in environments where up to f faults happen in each of the k epochs
and where from the fk total faults, at most f are maliciously induced.

While replicas may fail as described above, we shall assume that the voter, the RTOS and
the system clock will not fail in a similar manner. We assume they remain correct even in
the presence of accidental faults and cyberattacks. For the voter, this assumption is justified
by its simplicity, which allows implementing it entirely as custom logic in silicon or on an
FPGA. Implementing the RTOS itself in a fault tolerant manner [55, 19] allows lifting the
second assumption. Such a fault tolerant RTOS may then consensually update the system
clock to remain in synchrony with other nodes in the system. Our solution is not resilient to
physical attacks.

5 Consensual Resilient Control

In this section, we present our approach to consensual resilient control to tolerate up to
f faults with just a detection quorum of n ≥ f + 1 replicas. For now, let n = k = f + 1
and f = 1. That is, n replicas are periodically invoked with a consistent view of the plant
state and are expected to produce an actuation signal, which they pass to the voter, which
actuates the plant only after f + 1 replicas agree to the actuation value. In addition, to allow
extremely fast recovery from faults and to make it possible to rejuvenate replicas in between
any two subsequent invocations, they also vote on the state they would like to preserve across
epochs.

Figure 3 shows for f = 1 and n = k = 2 how such a majority for the state update
and actuation signal can be formed. In the first epoch, no faults happen, and the two
replicas propose the same state update and actuation signal, which the voter applies since the
f + 1 agreement has been reached. Even though replicas were correct, they are proactively
rejuvenated to also return compromised but stealthy replicas to a known good state. In
epoch 2, replica R1 becomes faulty (either due to an attack or accidentally) and proposes an
actuation value a′

2 instead. Without further knowledge about the plant, the voter cannot
discern which of the two proposed actuation signals is correct and will therefore not actuate
(while possibly holding the previous actuation value a1 if the plant requires that). It will
also not update the state, even though the replicas agree on this part of the proposal. This
is to avoid inconsistencies between the plant and the state maintained by the replicas. As for
now, the plant is not actuated, and we experience a deadline miss, which, since we so far
missed less than k deadlines, we assume the plant tolerates. After rejuvenating the replicas,
the replicas start. However, this time, no agreement could be reached in the previous epoch,
with the sensor information captured at the beginning of epoch 2. This time replica R2
fails in epoch 3. If the previous fault of R1 was due to a cyberattack, R2 could fail only
due to accidental causes because we assume adversaries cannot compromise more than f
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Figure 3 Example illustrating how f + 1 agreement can be achieved despite replicas failing.
Shown is a scenario with f = 1 and n = k = f + 1 = 2 over three epochs. In the first, correct replicas
agree. In the second epoch, no agreement can be reached due to replica R1 failing. In epoch 3, the
voter is able to collect f + 1 matching proposals after R1 rejuvenates, even if this time R2 fails.

replicas faster than the duration of k epochs. Also, by our fault model, the proposal of such
an accidentally failing replica will not match the proposal R1 made during epoch 2. If R1
fails accidentally, adversaries are unlikely to predict how the failure will manifest. In both
cases, the proposal from R1 in epoch 2 and R2 in epoch 3 will not already form a majority.
However, after k = 2 epochs, the voter collected two votes from correct replicas (from R2 in
epoch 2 and R1 in epoch 3). Finally, the voter is able to actuate again (with a2) and update
the state (with h2).

Moreover, operating the system with more than n = f + 1 replicas is possible. In this
case, n − f replicas are correct by our fault model, and the voter can collect n − f correct
proposals in each epoch. Therefore, the number of epochs k needed before f + 1 agreement
can be reached is k =

⌈
f+1
n−f

⌉
. As long as a plant can tolerate at least k deadline misses, n

and k will be a correct configuration to tolerate up to f faults for that plant. An important
prerequisite for this approach to work is that replicas can be recovered fast enough from
faults and rejuvenated between any two invocations.

In the following, we shall therefore discuss how to systematically turn stateful control
tasks into statelessly-recoverable instants (Section 5.1), how to invoke replicas with the
same plant state (Section 5.2), and how to design a voter that is capable of supporting
this construction and that is sufficiently simple to be implemented at the hardware level as
a trusted-trustworthy component (Section 5.3). Then in Section 5.4, we bring everything
together and discuss in Section 5.5 why it is safe to deploy our solution in an environment
that meets the conditions laid out in the fault model in Section 4.

5.1 Converting stateful replicas into statelessly-recoverable instants
Control tasks, like other applications, modify their internal state. For example, both single
and multi-threaded control tasks typically implement function invocation and local variables
using a stack, they use global variables and, at least during startup, they may allocate objects
on the heap. The easiest way of converting this state into easily recoverable information is
to make all state read only and to store it in ECC-protected memory. This way, accidental
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faults cannot manifest in the state and the error correcting code (ECC) captures accidental
faults that occur in the memory block. Moreover, by making state read only, adversaries
have no chance of modifying it without bypassing the processor’s protection mechanism6.

Indeed, it will not be possible to make the entire state of a control task read-only. At least
the stack must remain writeable to support function calls and local variables. Fortunately,
resetting the stack pointer to the location before a function call discards all values a previous
function call has pushed. Therefore, to trivially recover control tasks, we turn the control
loop of these tasks into a call to a function, which, as we shall see, will never need to
return. Instead, it checks the voter to see whether the previous epoch was successful, which
determines whether the current plant state should be considered or whether the replica needs
to execute the control problem of a previous epoch, by reaching to that epoch’s captured
state and sensor values, to reach consensus about this epoch’s control problem. It then
proposes the actuation value and whatever part of this dynamic state should be preserved for
the next epoch. Then, because we rejuvenate control tasks irrespective of their fault status,
the only remaining part is to return to the control loop function while resetting the stack
pointer. In other words, we turn the control loop function into a continuation and invoke it
after every rejuvenation of the control task.

As we have seen, the state that control algorithms need to carry across epochs may range
from a few values (such as the error and accumulator for PID) to several kilobytes of data
(as in the electric microgrid controller from Huo et al. [27]). Our strategy for protecting this
state is to store it in consensually-updated memory [19]. Consensually-updated memory is a
memory shared among several replicas. To read, replicas can directly access the memory as it
can be mapped read-only into the replica’s address space. However, writing requires agreeing
on which part of the memory should be updated and how. We leverage the voter to perform
also these updates. In particular, we propose simultaneously all updates and the actuation
signal to avoid inconsistencies due to partial updates. Also, since we collect proposals over k

epochs, we cannot go back in time to receive additional parts of a proposal from a replica.
Control tasks not specifically built for our system will include code to read and write

parts of this state. The transformation required to turn these control tasks into consensual-
resilient-control (CRC) aware tasks is as follows. We analyze the program and allocate space
on the stack in the context of the control-loop continuation. Upon the first write to a variable
in consensual memory, we create a copy in that space and modify this copy instead of the
original location7. Subsequent reads and writes then refer to this copy instead of the original
location, and finally, the value of this copy is proposed as part of the update that the voter
should apply. Transformations like the above are readily available in modern compilers (e.g.,
when constructing single-assignment form).

Figure 4 illustrates the above on an example address space layout of control task applica-
tions. Replicas receive a read-only copy of the plant state (see next section) and share as
read-only mapping the code, read-only data, and shared memory. Stack and the MMIO
interface to invoke the voter remain mapped in a writable manner. As part of the first write,
a copy of the consensually updated state is created in the space allocated in the control-loop
continuation’s context on the stack, and all subsequent reads and writes are directed to this
copy. The last operation of the control-loop continuation (fn_ctl) is to propose the copy as
part of the state update and with the actuation signal, which the voter applies once f + 1

6 We hope future safety-critical systems will be constructed from hardware components that are resistant
to protection-bypassing attacks, such as Rowhammer [29].

7 Being at the top of the stack, functions called from the continuation can reach this space.
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Figure 4 Address space layout of a control task replica. Shared state, code, and data are mapped
read-only into the address space. Dashed lines indicate the data flow for variables in the consensually
updated shared memory. Upon the first write, a copy is created on the stack and finally proposed to
update the state after reaching a consensus. After reset, the instruction pointer (IP) is reset to the
control loop function (fn_ctl) and the stack pointer (SP) to the beginning of the stack.

agreement with other replicas is reached. Irrespective whether or not fn_ctl terminates,
the control task will be resumed in the next epoch with that function, after resetting its
stack to remove any modifications an attack could have performed. This is important since
compromised replicas may fail in an arbitrary manner, including by not proposing or by not
terminating.

5.2 Sensing and control-task invocation
This section explains how we ensure replicas are invoked with the same view of the plant,
both in a hosted environment and on bare metal. We start by looking at the implications of
not invoking replicas with the same view of the plant. In this case, each replica would need
to sense the plant state individually and would produce slightly different actuation signals
and values to carry to the next epoch, even if we consider only correct replicas. Consequently,
the voter would now need to identify when values are sufficiently close, which adds extra
complexity to support this form of approximate agreement.

Instead of adding this complexity to the voter, it can also be added to the replicas by
either reaching agreement on the sensed values or by agreeing on the actuation value and
state update before presenting this to the voter. In either case, first reaching agreement
requires collecting the opinions of f + 1 healthy replicas, which can only be guaranteed to
happen after k epochs. Therefore, any additional agreement would require the plant to
tolerate an extra k epochs of deadline misses, which would severely limit the applicability of
our approach. In the following, we therefore present solutions that do not require additional
agreement rounds other than for actuating the plant and updating consensual memory.

5.2.1 Hosted environments
Assuming a trusted-trustworthy operating system (OS), OS-level drivers could read sensors
on the replicas’ behalf and provide them with the values they read. Since replicas may need
to revert to the past k elements, a k + 1 element ring buffer suggests itself as data structure,
which the RTOS can map to the replicas’ address spaces in a read-only manner.

Figure 5 shows the ring-buffer data structure used to grant the control task access to
past sensor values and the pseudocode for a very simple controller leveraging this data
structure. Retrieving from the voter the last epoch where votes were successful, replicas
either contribute to the current control problem at hand (if this was the previous epoch)
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(a) Ringbuffer’s W/R mechanism.

1 // control loop
2 fn_ctl () {
3 epoch = voter . last_successful_epoch + 1;
4
5 // read sensor values
6 input = ring_buffer . get_sensor (( epoch + 1) % k);
7
8 // compute controller response
9 <output , new_state > = control (input , state );

10
11 // make proposal
12 propose ( voter . get_nonce (),epoch ,output , new_state );
13
14 // wait for next epoch
15 // ( resumes with continuation fn_ctl )
16 sleep ();
17 }

(b) Simple controller pseudocode.

Figure 5 Controller function fn_ctl and the ring buffer data structure used to refer back to
previous plant states in case the previous epoch was not successful.

or they contribute to forming a majority for a past control problem that has failed so far
to reach an agreement. As the code shows, with the ringbuffer in place, both cases can be
treated in the same way, by obtaining the sensor value from the buffer (Line 6), computing
the control output and state to carry over (Line 9) and by proposing both (Line 12) before
yielding or sleeping until the next invocation. Replicas will be woken up as part of the
rejuvenation process and resume at the beginning of the control loop captured in fn_ctl (at
Line 3).

1 on rotary_interrupt :
2 epoch = (now () - start_time ) / T;
3 angle [( epoch + 1) mod m] += direction ()
4 return from interrupt

Figure 6 Interrupt handler for decoding rotary controller interrupts from the rotary encoder
sensors of our pendulum into angular values (See also the pendulum in Section 2).

Let us illustrate the use of this data structure on an example with less cooperative sensors.
Rotary encoders do not reveal the angle directly, but instead signal a change of their rotation
angle by triggering interrupts. In our running example, we use the data structure shown
in Figure 5 to sample the angles of the rotary controllers from the interrupts they generate
at the rising and falling edge. To obtain the desired angle, rotary controllers require the
operating system to accumulate angular changes, which they notify through interrupts. The
interrupt handler code in Figure 6 shows this decoding of interrupts to angular values, where
angle is the ringbuffer shown in Figure 5(a) and direction returns +4 or -4, depending on
whether the encoder was turned right or left (i.e., depending on which of the two channels
preceded the other (see Section 2)).
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Figure 7 Layout of one of the voter buffers. The size s of the proposal and its inner structure in
the form of m address, size, value triples are stored consecutively for easier comparisson.

5.2.2 Bare metal

Not all control tasks run in a hosted environment. In the following, we therefore sketch how
replica invocation and sensing can be handled in a simple microcontroller for applications
running on bare metal. We assume that in such an architecture, we still have the possibility
to statically configure privileges (before the system starts critical operation) and to program
a non-maskable timer to enter a read-only interrupt service routine that executes the code
to activate the fn_ctl continuation at the beginning of the epoch and to reset the stack
accordingly (Line 2 in Figure 5(b)).

Without additional hardware support, replicas, in a bare-metal configuration, have to
sense themselves, which requires agreement and plants that tolerate at least 2k deadline misses
before actuation can be guaranteed. To avoid the overhead entailed with this agreement, we
suggest deploying capture hardware units [62] to periodically sample sensors in a reliable
way and store the sampled results in memory that gets mapped to the replicas’ address
spaces in a read-only manner. Deploying 2fccu + 1 such units, where fccu is the tolerated
fault threshold for these units allows replicas to immediately mask wrong sensor values and
proceed with their control tasks. In particular for interrupt-driven sensors, such as the rotary
controllers of our pendulum, the capture units should perform the accumulation task to
avoid replicas having to accumulate captured interrupts themselves.

5.3 Voting on state updates and actuation

Consolidating the replicas’ proposals into a single actuation output turns the voter into
a necessarily trusted component, which, to be trustworthy, should remain as simple as
possible. However, unlike voting in traditional TMR systems, not all proposals are available
simultaneously, which requires the voter to buffer requests before f +1 matching votes can be
extracted. In particular, we need nk buffers for n ≥ f + 1 replicas and for k =

⌈
f+1
n−f

⌉
epochs.

For our pendulum and most systems we have investigated, actuation amounts to writing
several memory-mapped registers, where the final write typically triggers the actuation.
Likewise, consensual memory updates of state that should be carried to the next epoch
also amount to writes to ECC-protected memory, respectively, to multiple locations in case
of RAID. These write locations are typically not consecutive and, as we have seen before,
proposals must be submitted in their entirety. Therefore an interface suggests itself where
replicas specify m writes as address-size-value triples, stored as s consecutive bytes, as shown
in Figure 7. This way, the f + 1 matching proposals can be identified by matching s and the
strings of size s in the respective buffers. Moreover, the voter can apply a successful vote (i.e.,
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one reaching f + 1 agreement) by performing the m writes to the specified locations. Aside
from maintaining the order of writes, we did not see any need for sophisticated consistency
models other than register consistency, since voter-initiated writes will typically happen
after replicas end their activity in an epoch and before the next epoch starts. In addition,
healthy replicas may identify state updates in progress, by means of simple sequence locks in
consensual memory.

To interface with the voter, we implement channels and map each channel to one replica.
Moreover, we make the voter aware of epochs by exposing two read-only registers to each
replica. The first contains the current epoch and is advanced every T . The second contains
the epoch number when the last successful vote has happened (see Line 3 in Figure 5(b)).
Making the voter aware of epochs avoids costly operations when resetting replicas, which
otherwise would require changing the permissions of a replica to use a different channel.
Upon receiving a message through the channel, the voter copies the proposal to the respective
buffer for this replica and the epoch it is executing in, rotating through buffers as epochs
advance.

As indicated in our fault model, we further complicate the case of faulty replicas reaching
f + 1 agreement by introducing a challenge response mechanism to the voter interface. At
the start of each epoch, after rejuvenating all replicas, the voter presents each replica a
different random value – called nonce, which they are asked to reflect to the voter by xor-ing
their proposal with this value. Then, rather than comparing the strings bytewise, the voter
first xors the proposed string with the replica’s current nonce, which returns the original
string and then tries to find f + 1 matching proposals. This way, accidentally faulty replicas,
in addition to adversaries needing to guess their proposal, must still be sufficiently correct
to encode both the state update and the actuation signal using the provided nonce and to
propose both to the voter before they are rejuvenated at the end of the epoch, which is
highly unlikely. Notice that because the nonce is random and different every epoch, replicas
which do not propose in an epoch are automatically considered as faulty replicas.

In preparation for changing the active replica set, we equip voters with more than n

channels and with buffers for more than k epochs. This way, the active set can be supported
with a subset of the resources available in the voter. A trusted replica manager can change
this subset and the parameters n, k, and f over time, should that be necessary. The active
subset is encoded in a bit vector with one bit per channel (considering those channels as
active whose bit is set). Replicas with access to an inactive channel may already propose,
but are ignored until their channel becomes active. This way, additional replicas can already
be started and allowed to participate while the previous set of replicas is still in control
of the plant. Then, once the new set of replicas are prepared, the trusted replica manager
atomically transitions to this set by means of writing a single register. The change will
become effective at the beginning of the next epoch. Figure 8 shows the channels, buffers,
epoch registers as well as the reconfiguration registers just described.

From the description above, it should be clear that such a voter can be implemented as a
service at the application level (waiting for signals from the replicas) as an operating-system
service (invoked by system calls) or as a fixed-function custom logic mapped to an FPGA
or implemented in silicon. In the latter two cases, replicas interface with the voter through
memory-mapped IO registers that are mapped into the replicas’ address spaces.

Notice also that while replicas must produce identical actuation signals and state updates
to reach agreement (given the same consensually updated state and sensor values), they may
(and in fact should to ensure fault independence) compute these proposals in a sufficiently
different manner, such that an attack of one replicas does not automatically apply to others.
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Figure 8 Voter internal structure. The voter provides one buffer per replica and epoch, which
the replica can access through a channel. The proposal communicated through the channel is copies
into the corresponding buffer of this replica for the current epoch. The voter reveals as well the
current epoch and the last epoch where f + 1 agreement could be reached and allows k, f and n to
be reconfigured by a trusted replica manager (if necessary).

5.4 Bringing it all together
With the above building blocks, we can now bring everything together. The system starts by
initializing the plant, the trusted replica-management service (if necessary), and the replicas,
which enter the control loop (fn_ctl) as a continuation. When the continuation starts, the
RTOS or capture units have already sensed the observable part of the plant and captured
that information in a ring-buffer. Therefore if the previous epoch was successful, the replica
can proceed with the current sensor values and the current state in consensual memory to
produce an actuation signal and update for the state that needs to be carried to the next
epoch. Both are proposed to the voter to reach an agreement.

If the previous epoch was unsuccessful, the replica performs the same steps but with
the sensor values for the epoch that precedes the last successful one. Notice that in this
case, the consensual memory has not been updated and contains the control parameters
(e.g., accelerator and previous value for PID control) required for that epoch. Once the voter
receives f + 1 matching proposals, it marks the current epoch as the last successful and
executes the agreed-upon sequence of writes, updating the consensual memory and actuating
the plant.

Healthy replicas end their activity in an epoch by sleeping. However, regardless of whether
a replica sleeps, the RTOS/non-maskable timer will signal a protected handler in the replicas,
which resets the replica by returning to the start of the control-loop continuation (fn_ctl)
and by resetting the replica’s stack.

5.5 Safe Deployment
In our fault model in Section 4, we have defined constraints for the safe deployment of
systems that implement our solution. If these constraints are met, control tasks will reach
an agreement, and the agreement is on a correct proposal only. System safety then depends
on correct control tasks proposing correct actuations in the given situation, which to ensure
is out of the scope of this work.

The constraints highlighted in Section 4 are that (i) no more than f total faults occur and
that (ii) the system addresses faults faster than kT with no further faults occurring before
that time. In particular, we have discussed that malicious faults must be constrained through
diversification such that not all replicas become faulty simultaneously, with the additional
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constraint that the time to re-deploy an attack remains above kT . We have also discussed
that persistent faults, which cannot be handled at that timescale need to be accounted for.
That is, if there are fpersistent < f faults, present, only up to f − fpersistent faults of another
kind may occur within the sliding windows of length at least kT .

With up to f faults over a time kT , at most f proposals may originate from faulty of
otherwise compromised replicas. Therefore, when f + 1 matching proposals are collected,
they are collected from at least one healthy replica. In particular, by the measures we discuss
in Section 5.2 and Section 5.3, we ensure that all replicas operate from the same state and
are invoked in a reliable manner after rejuvenation. This means (due to our assumption that
fused sensor values are correct) that any healthy replica will propose a correct proposal and
that agreement can only be reached on such a proposal.

It is always possible to reach agreement on such a proposal because over up to k epochs,
n − fk replicas are correct (possibly after rejuvenating them), which because k =

⌈
f+1
n−f

⌉
, is

larger or equal to f + 1. Hence the system is life.
To see why our system is also correct in case up to f faults occur during each epoch,

but with the additional constraints that (iii) among the fk faults over any sliding window
of length kT only up to f are malicious faults, (iv) that malicious faults do not propose
the same value as accidental faults and (v) no two accidental faults agree in their value,
we have to see that agreement cannot already be reached among faulty replicas. Condition
(iii) rules out agreement just by including malicious replicas and (iv) that malicious replicas
collude with an accidentally faulty replica, even if up to f malicious replicas agree in their
proposal. (v) avoids agreement among accidentally faulty replicas. Notice though that these
are probabilistic arguments and that, as mentioned in Section 4, systems cannot safely be
deployed if the residual likelihood of agreement among accidentally faulty replicas or if in
the targeted environment, the residual likelihood of malicious replicas guessing the fault
characteristics of an accidentally faulty replica, cannot be tolerated by the system. Our
challenge to require replicas to send their proposals by xor-ing a voter provided nonce, further
reduces these likelihoods, as accidentally faults replicas must remain able to do so, despite
the fault manifesting.

The above condition also ensures liveness in this setting, since n − f replicas remain
correct in each epoch, which, when collecting their proposals over k epochs sums up to at
least f + 1 proposals from correct replicas.

5.6 Distributed Control

Until now and for our evaluation, we have assumed systems that are sufficiently tightly
coupled so that communication through shared, ECC- and RAID-protected memory remains
possible. In such a setting, a voter can collect proposals, update consensual memory and
actuate the plant. The same applies to closely coupled nodes for the control task, but a
remote plant as long as communication between the voter and the plant is reliable.

To support distributed nodes for the control tasks and a remote plant, both the sensor
signals and the actuation signals must be communicated reliably to all notes in the system
(e.g., by using communication media that already have such a reliability built in [22] or by
running a suitable reliable transmission protocol [33, 44]. In such a setting, shared memory
will likely not be available and should therefore be replaced by consensually updating locally
accessible, read-only mapped memories and by reconstructing the state of such a memory
from its peers in case one of the nodes’ memory fails. Investigating the tradeoffs of such a
solution is out of the scope of this paper.
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6 Evaluation

To demonstrate that our approach to consensual resilient control is in fact robust, even in
the presence of errors, we have implemented the voter and two control algorithms (LQR and
PID) by leveraging Linux’s user-level driver infrastructure to sense and actuate our inverted
pendulum. In particular, we were interested in whether the ability to tolerate accidental
faults in the time domain allows controlling such an application from the less predictable
environment that standard Linux offers. For small epochs (T < 10ms), we had to use Linux’
“silent core” feature to limit OS activity on the cores to which we pinned our control tasks.

All measurements were conducted on a 4-core Raspberry 3 Model B+ with 1GB RAM,
running at 1.4 GHz, using the pendulum shown in Section 2. In addition, to evaluate the
scalability of our approach, we used a 4x6 core Intel Xeon Gold 6334 CPU, running at 3.4
GHz, and a software emulator of the pendulum (implementing its equation of motion and
random turbulence).

We have implemented the voter in software as a user-level task and have pinned replicas
and the voter each to a separate core. Replicas communicate with the voter through a
dedicated shared memory region, as depicted in Figure 4, which implements the voter’s
channel interface. We inject faults into randomly selected replicas and consider only faults
that manifest in proposing values that are different from those of healthy replicas. For
accidental faults, a random value is proposed. For maliciously-induced faults, we as well
select a random value but will use the same value for all compromised replicas. In addition,
for demonstration purposes, pressing a button on the Raspberry PI will as well cause a
random replica to fail.

6.1 Overhead

Since our approach is to re-execute replicas after rejuvenation for up to k epochs, the runtime
overhead in terms of time to agreement under faults is dominated by the number of epochs
required to collect f + 1 faults. In no faults occur, replicas actuate within a single epoch
and the worst-case time to agreement is the WCET of the control task plus the overhead to
propose and update the state that needs to be preserved across epochs.

We measured this overhead for PID and LQR on the Raspberry PI and with our inverted
pendulum (f = 1, n = 2) to be 0.39 µs for the time that the replica needs to preserve the state
for the next epoch, by proposing the error and accumulator (PID) and the measured angles
to calculate angular velocities (LQR). The voter required 0.034 µs to update consensual
memory and actuate the plant.

In addition, we performed a series of microbenchmarks on our x86-based simulator of
the pendulum to understand these overheads for different controllers that require preserving
increasing amounts of state across epochs. Figure 9 shows these results for the same scenario
(f = 1 and n = 2). Shown are the maximum observed (bars), average (green dot) and P95
(top) and P05 (bottom) percentiles of these execution-time overheads.

As can be seen, the overhead of turning control tasks into statelessly-recoverable instants,
by pushing all state that needs to be maintained across epochs to consensual memory, is
negligible for controllers with small state and well below 2ms for controllers that operate on
a significant amount of dynamic state (such as the one from Huo et al. [27]). It should be
noted that typical book-keeping tasks can also be performed on consensual memory, with
little additional overhead for logging system states in consensual memory.
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Figure 9 Overhead of consensual resilient control (in µs) broken down into the overhead on the
replica side to propose the actuation value and update of the state that should be preserved for the
next epoch and into the voter overhead of applying this update and the actuation signal. Shown is
the scenario for f = 1, n = 2.

6.2 Breakdown of Voting Overheads
Figure 10 further breaks down the overhead for voting into the different operations that a
software-level voter needs to perform. Hardware implementations can avoid buffering costs
by directing inputs directly to the current epoch’s buffer and they may parallelize agreement
checks. Figure 10(a) investigates for n = 2 replicas how the voting overhead scales with the
size of the state that needs to be preserved across epochs. Figure 10(b) shows these results
for increasing n and therefore also for increasing f and a fixed state size of 200KB.

As can be seen, updating consensual memory, copying to the buffer and checking for
agreement is linear in the size of the proposal, given that the number of replicas is fixed
to n = 2 for these measurements. Similarly, updating consensual memory and copying to
the buffer are constant for a fixed-size message, irrespective of the number of replicas and
the agreement check linear in the number of replicas (and hence faults tolerated) in case
no faults occur (as shown in 10(b)) and quadratic (n · k) when f + 1 agreement must be
collected over up to k epochs. This is because whenever a replica proposes, the voter checks
this proposal to all buffers that already contain a proposal for the voted-upon epoch.

6.3 Actuation Signals
Figure 11 shows the sensor (Channel 2–4) and actuation signal (Channel 1) of the inverted
pendulum, controlled over three epochs with a consensual resilient PID controller. The
scenario depicted in the figure roughly resembles the situation presented in Figure 3. During
the first epoch, actuating at vertical line (4), no faults happen and the DC motor gets
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(a) Breakdown of the overhead of voting for n = 2. (b) Scalability of voting overhead for larger f
and n. Shown are the results for a 200KB cross
epoch state.

Figure 10 Voting overhead for the constant invocation of T = 25ms.

configured to a 66% duty cycle, as seen in the wider pulse width in Channel 1. As a response
to this actuation, the rate of change of the angle drops, as can be seen from the longer
distances between the rising and falling edges on Channel 2 and 3. Therefore, the control
algorithm selects a lower duty cycle to reduce motor velocity and slow down the cart and
thereby also the pendulum motion even further, with the idea of reaching the stable point
where the pendulum is pointing straight to the top. Unfortunately, a replica fails during that
epoch (since we injected a fault). In consequence, after the voter receives f + 1 proposals at
the point in time denoted by vertical line (5), no agreement can be reached and the voter
will hold the previous duty cycle of 66%. In the following epoch, we again inject a fault
into one of the replicas, but this time, f + 1 agreement can be reached by combining the
proposals of the current and the previous epoch. The voter applies the proposal and adjusts
the duty cycle to 8.3%, as can be seen in the change of the pulse-width encoded signal. We
also see slight variations between the actuation points. This is due to the control replicas
executing with slightly different actual execution times within the 7ms epochs.

6.4 Rejuvenation costs
A central contribution of this work is the reduction of rejuvenation costs to just resuming
the control loop continuation (fn_ctl) and resetting the stack, which both have overheads in
the single to double-digit cycle range. In addition, we induce a maximum observed overhead
of 0.39µs (with LQR and PID) for proposing and updating the state in consensual memory
that must be preserved across epochs.

To compare and contrast these costs, we have also measured the average-case overhead
when rejuvenating replicas traditionally by creating a new process (329.06µs), a new thread
(13.28µs) and by mapping the voter interface to this replica (100.82µs). In addition, such a
replica would experience cold start effects and need to catch up to the state of other replicas.
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Figure 11 Sensor and actuation signals of the pendulum were evaluated using a logic analyzer.
Shown are the points in time of actuation (vertical lines) for three epochs (marked on the top as 4, 5
and 6). The individual channels show DC motor actuation (1), encoded as a pulse-width modulated
signal, the two channels of the rotary encoder which measures the angle of the pendulum (2) and
(3), as well as the two channels measuring the position (4) and (5).

However, as can already be seen from the reported numbers, the costs of rejuvenating replicas
traditionally are significant. It should also be noted that it is difficult to bind these costs
from above, which is why typically, real-time systems only use these operations while they
have to guarantee timeliness. Notice that rejuvenation will also be required in systems, such
as TMR, that are capable of masking faults. This is because persistent attacks exhaust the
healthy majority over time. Rejuvenation restores this majority.

7 Conclusion

This paper presents Consensual Resilient Control, a framework specifically designed to ensure
the resilience of control tasks to accidental and malicious faults. We have shown how stateful
control tasks can be systematically transformed into statelessly-recoverable instances by
protecting in consensual memory any state that must be preserved across epochs (such as
the PID controller’s error and accumulator for derivative and integral control). This allows
masking faults just with a detection quorum of n ≥ f + 1 replicas, provided f + 1 agreement
can be collected over k =

⌈
f+1
n−f

⌉
epochs and provided the plant can tolerate up to k deadline

misses.
We discuss several intricacies of applying consensual resilient control to a real-life applic-

ation scenario by demonstrating its operation with our self-made inverted pendulum. In
addition, we have evaluated our approach in the less predictable setting of running controllers
as user-level Linux processes with user-level drivers for sensing and actuating the plant. We
have also conducted several microbenchmarks to assess the behavior of consensual resilient
control when increasing amounts of state have to be preserved across epochs (up to the
420KB required for the MPC electric microgrid controller by Huo et al. [27]) as well as for
increasing f and n.

In the future, we plan to investigate scenarios requiring a change of the control algorithm,
as well as simplex/complex controller interplays in a fault-tolerant setting.
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Abstract
As time-critical systems require timing guarantees, Worst-Case Execution Times (WCET) have to
be employed. However, WCET estimation methods usually assume fault-free hardware. If proper
actions are not taken, such fault-free WCET approaches become unsafe, when faults impact the
hardware during execution. The majority of approaches, dealing with hardware faults, address
the impact of faults on the functional behavior of an application, i.e., denial of service and binary
correctness. Few approaches address the impact of faults on the application timing behavior, i.e.,
time to finish the application, and target faults occurring in memories. However, as the transistor
size in modern technologies is significantly reduced, faults in cores cannot be considered negligible
anymore. This work shows that faults not only affect the functional behavior, but they can have a
significant impact on the timing behavior of applications. To expose the overall impact of faults,
we enhance vulnerability analysis to include not only functional, but also timing correctness, and
show that faults impact WCET estimations. As common techniques to deal with faults, such as
watchdog timers and re-execution, have large timing overhead for error detection and correction, we
propose a mechanism with near-zero and bounded timing overhead. A RISC-V core is used as a case
study. The obtained results show that faults can lead up to almost 700% increase in the maximum
observed execution time between fault-free and faulty execution without protection, affecting the
WCET estimations. On the contrary, the proposed mechanism is able to restore fault-free WCET
estimations with a bounded overhead of 2 execution cycles.
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1 Introduction

1.1 Context
Time-critical systems, such as safety-critical and mixed-criticality systems, consist of hard
real-time applications. For such applications, timing guarantees must be provided, i.e.,
their worst-case response time must be less than their respective deadlines and/or the total
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execution does not exceed a given latency requirement [47]. To rigorously provide such
guarantees, a safe estimation of the Worst-Case Execution Time (WCET) [20] has to be
employed during the system design. The estimation of WCET is performed through (i)
measurement-based approaches, where the task is executed on the platform under study,
and (ii) static analysis approaches, where the software source code and the platform under
study are automatically examined, before the application runs [16]. The majority of WCET
estimation approaches assumes that the underlying hardware is fault-free, i.e., during WCET
estimation no faults occur in the hardware of the target platform [24, 48].

However, in reality, a system is threatened by phenomena that can lead to several
permanent or temporary faults, occurring during execution. Especially due to the reduced
transistor sizes and lower supply voltages of modern technologies [26, 17], systems are
becoming more and more sensitive to environmental sources [39], such as ionization, radiation,
and high-energy electromagnetic interference, leading to temporary reliability violations,
called transient faults. Transient faults can affect the system behavior by corrupting the
system information. Therefore, as systems become more and more prone to faults during
execution [21], fault-free WCET bounds cannot be considered safe anymore [48].

1.2 Motivation
To deal with hardware faults, existing approaches apply fault-tolerant techniques to the
system. The majority of these works focuses on the impact of faults on the functional
behavior of the applications. Functional behavior refers to denial of service, i.e., no outcome
is generated because the application is hanged or crashed, and to binary correctness, i.e., the
application outcome is different than expected [40].

Fault mitigation considering real-time aspects is usually achieved through scheduling
techniques applied at the task-level, such as replication of tasks [27, 5] and task check-
pointing/re-execution [12, 51, 50, 27]. When fault tolerance techniques are inserted into the
system, their timing impact on WCET has to be taken into account, in order to still provide
timing guarantees. To do so, the fault-free WCET is extended with the timing overhead
of the applied fault tolerance techniques. However, faults impact not only the functional
behaviour, but also the timing behaviour, i.e., the application finishes within a given time,
but its execution time is different compared to the fault-free execution. This fault impact
is bound by the denial of service, i.e., when the execution time exceeds a threshold, it is
considered as not responsive. Such application hangs are detected by a watchdog-timer
and they are remedied by resetting the system and restarting execution. However, such
approaches have significant time overhead, since the transient fault is detected much later
than occurred, e.g., when the application finishes execution or the watchdog timer expires. To
deal with this limitation, low-level fault-tolerant techniques can circumvent the fault impact,
at the time instance when the fault occurs, leading to remedies with significantly lower and
bounded time overhead than watchdog timers and less area overhead than replicating the
complete processor.

Few approaches address the impact of hardware faults on the timing behaviour of
applications. Existing work addresses hardware faults occurring in cache memories, while
the rest of the architecture is assumed fault-free. Approaches focus on estimating the timing
impact by accounting for the hardware degradation of the cache memory due to the presence
of faults, e.g., additional misses due to faulty cache lines [23]. Some approaches have been
extended to incorporate the timing impact of inserted fault tolerant techniques to detect,
correct or mitigate faults in memories, e.g, when a parity bit is used for error detection [11].
Other works focus on mitigating the hardware degradation in caches, due to occurring faults,
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using redundant hardware, e.g., through a shared reliable buffer [24]. As a result, the timing
impact of faults on the execution time, and thus the WCET, is mitigated and the timing
characteristics of the memory hardware are maintained, leading to a timing behavior close
to the fault-free one, despite the presence of faults. However, existing works mainly focus on
permanent faults occurring to memories. Nevertheless, with technology size reduction, faults
occurring inside the cores cannot be considered negligible anymore [32, 43]. Such faults can
significantly affect the execution time of an application.

1.3 Contributions
The contribution of this work is to expose the following key aspect: transient faults affecting
the cores impacts not only the functional behavior of an application, but it also has a
significant impact on its timing behavior, affecting WCET estimations. To achieve that, we
leverage typical fault-free WCET estimations to be fault-aware, by taking into account the
impact of transient faults occurring on cores. More precisely, we firstly perform a vulnerability
analysis on a target system through extensive fault injection. The analysis verifies not only
functional correctness, but also timing correctness of applications, when executed on a core.
Then, we apply a typical measurement-based WCET estimation method to verify the impact
of faults on WCET estimation. A RISC-V core, named Comet, is used as a case study [41].
Comet is an on open-source High Level Synthesis (HLS) implementation of RV32I base ISA1.

From the obtained results, we observe that the application execution time can be signific-
antly increased under the presence of transient faults, up to 700%, compared to the application
execution time without faults. Furthermore, the distribution of execution time traces is
significantly modified, compared to the fault-free distribution. The above observations have
direct consequences; the time required to finish execution under faults can be significantly
higher than the fault-free WCET. Thus, existing approaches should use watchdog timers, in
order to bound the impact of transient faults on the application execution time, and keep
safe the overall schedule. When the timer expires or an error is detected, the application
requires to be re-executed, fully or partially, depending on the approach, leading to high
error detection and correction timing overhead. To deal with this limitation, we propose a
mechanism with near-zero and bounded overhead (two clock cycles) that circumvents the
faults as soon as they occur – before being propagated and affecting the execution time –
and thus restores WCET estimations close to the faulty-free one.

The paper is organized as follows. Section 2 describes the methodology followed to
obtain fault-aware WCET estimations, based on functional and timing vulnerability analysis
combined with a measurement-based WCET approach. Section 3 describes the proposed
fault-tolerant mechanism and bounds its timing overhead. Section 4 presents and analyzes
the experimental results. Section 5 discusses the related work. Finally, conclusion is presented
in Section 6.

2 Fault-aware WCET estimation methodology

This section describes the methodology followed to obtain WCET estimations under transient
faults occurring on cores. To obtain realistic fault analysis, hardware fault injection is needed.
Thanks to this, faults can be injected in the actual hardware structures, and not only in
application variables as done by software fault injection [37]. Hence, a measurement-based
WCET estimation method is required in order to be able to analyze the timing impact,
when faults are injected in the hardware, compared to a static analysis. Therefore, firstly
we perform a vulnerability analysis through hardware fault injection. Then, we apply a

1 https://gitlab.inria.fr/srokicki/Comet/-/tree/master
ECRTS 2023
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Figure 1 Illustration of LESR mechanism.

typical Measurement Based Probabilistic Timing Analysis (MBPTA) to analyze the impact
of faults on WCET. The MBPTA is a mathematical method for estimating the extreme
values probability of rare events [18, 13]. This method allows us to see the tail behaviour
and determine the probabilistic WCET (pWCET) for a set of execution time traces. Note
that, the goal of the fault-aware WCET estimation methodology is not to propose a new
method to obtain tighter bounds, but to study typical measurement-based WCET estimation
approaches in presence of faults. The next paragraphs describe the steps of the fault-aware
WCET estimation methodology.
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Figure 2 Overview of fault-aware WCET estimation methodology.

2.1 Data collection through vulnerability analysis

During the data collection step, we need to obtain the execution cycles describing the timing
behaviour of the application, under transient faults occurring on the core.

To achieve that, we design a functional and timing vulnerability analysis and study the
impact of transient faults to the functional and timing correctness of an application executed
on the core. This is performed through a Cycle-Accurate Bit-Accurate (CABA) simulator,
where transient faults are injected based on a given fault model at the pipeline registers of
the core. In order to expose the timing impact of faults, we need to monitor any difference
between the execution cycles, required for the fault-free execution, and the observed execution
cycles under the presence of faults. Therefore, we remove any other source that may lead to
variation of the application execution cycles [16], i.e., the application is executed in isolation,
with the caches disabled and the initial state of the processor are forced to be the same
among executions. Figure 2a illustrates the data collection step. Prior to any fault injection,
we execute the application under study with a given set of input data without faults, in order
to obtain a set of golden references: i) the application output, ii) the system state (core
registers), and iii) the number of cycles required for the execution of the application with the
given set of input data. Then, the core simulator is extended with fault injection capabilities
in order to execute the application and to inject faults, based on the considered fault model,
to the registers, while the application runs. The cycle to inject the faults is chosen randomly
between the first cycle and the total number of cycles needed for the fault-free execution for
the given set of data. The location, where the faults are injected, is driven by the size of the
logic of each pipeline stage. The larger the area, the higher its probability to be selected.
After the fault injection and upon application termination, the observed results are compared
to the golden references to categorize the impact of faults as:
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Execution Cycles Mismatch (ECM): The execution cycles of the application are different
than those of the golden reference.
Hang (H): The execution time of the application has exceeded a waiting threshold, and
thus, it is assumed that it has entered an infinite loop. A cycle counter is used to stop
the current execution, when the counted cycles exceed the given threshold.
Crash (C): The execution of the application has terminated unexpectedly and an exception
has been thrown (out of bound memory access, misaligned PC, hardware trap, etc.)
Application Output Mismatch (AOM): The application output is different than the golden
reference.
Internal State Mismatch (ISM): The system state (registers) are different than the golden
reference.
Functionally Masked (FM): The application has finished execution, with no AOM and no
ISM.

By using the aforementioned vulnerability analysis with several random inputs, we obtain
the required set of execution cycle traces under faults to be used for the WCET estimation.

2.2 Data grouping, distribution fitting and pWCET estimation
After the collection of the execution cycle traces under faults, the next step is to group the
data, so as to select the tail values, perform distribution fitting and estimate the pWCET, as
illustrated in Fig 2b.

To select the tail values, we use the Block Maxima (BM) approach, one of the two
common methods used, along with Peak-Over-Threshold. Following the BM approach, the
data collected from the vulnerability analysis are grouped into blocks of equal size. Note
that, grouping of data is performed in the order the values have been collected, without
applying any shuffling or sorting. Then, the maximum value is picked from each data block
to obtain the BM block, to be used for the distribution fitting. The most commonly used
distributions for pWCET estimation are Weibul, Gumbel and Frechet [13], and our approach
currently uses the Gumbel distribution, as it is one of the most representative ones [45].

Note that, the way the data is grouped affects the distribution fitting, which affects the
pWCET estimation. Selecting a big block size may result into having very few values in
the BM block, while selecting a small block size may result into taking into account all the
values, some of those may not be representative values as tail values. The proposed approach
performs block size exploration in order to select the best representative size considering
the Gumbel distribution. In order to qualify the fitting of the distribution, we use the
Kolmogorov-Smirnov (KS) test to get the p-value and the ks-statistic value of BM block.
The KS test compares the Cumulative Distribution Function (CDF) of the empirical data
with the CDF of the theoretical distribution. The p-value tests the null hypothesis H0 that
the data came from the fitted distribution. With a significance level of α = 0.05, the H0 can
be rejected, meaning that the data does not come from the fitter distribution, if the p-value
is bellow α. However, if the p-value is higher than the significance level, the H0 cannot be
rejected. The ks-statistic value is the maximum absolute difference between the two CDFs,
the smaller the value the better the fit. Thus, we select the configuration with the smallest
ks-statistic value that does not reject the hypothesis of having a Gumbel distribution, as the
most fitting configuration.

The selected configuration gives the distribution parameters, such as the scale (σ), the
location (µ) and the shape (ξ). These values are used, along with a given threshold value,
to derive the maximum value that we can observe using the Percent Point Function (PPF)
(inverse of cdf – percentiles).
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3 Fault-tolerant mechanism with near-zero WCET overhead

This section describes the proposed fault-tolerant mechanism with near-zero WCET overhead
based on Lock-step Execution and Shadow Register (LESR) and reports the upper bound of
the error detection and correction time.

Overview. Figure 1 illustrates the proposed LESR mechanism. Two identical cores are
working in lock-step, executing the same instruction at each clock cycle. Each pipeline stage
stores the result of its logic computation in a pipeline register. The error detection and
correction logic is the following: in each clock cycle, we compare the pipeline registers of
the two cores, containing the results of the computation of the previous cycle. If no error is
detected, all the pipeline registers are copied to a BacKuP copy (BKP) and the execution
continues normally (Figure 1a). Otherwise, if a fault impacted the logic during the cycle
(Figure 1b) or the pipeline register itself, a wrong result is stored in the register. In this
case, a flag is raised, the results of the current computation are discarded and the pipeline
registers of both cores are restored with the values in BKP (Figure 1c). In this way, in the
next cycle, the pipeline re-executes the cycle that was impacted by a fault (Figure 1d).

To illustrate the proposed mechanism with a simple example, let us consider the C code
of listing 1. Listing 2 depicts the assembly code snippet that corresponds to the subtraction
($1 – $4), multiplication ($5 – $6) and the addition ($7 – $9) instructions, considering a
RISC-V core with 5 pipeline stages, i.e., Fetch (F), Decode (D), Execute (EX), Memory
(MEM) and WriteBack (WB), as the one used in our case study in Section 4.

Listing 1 C program.
# include <stdio.h>
int a = 10; int b = 20; int c = 0; int d = 0;
int main () {

d = a-b;
c = a+b*4;
return 0;

}

Listing 2 Assembly code of illustration example program.
0001018 c <main >:

---
$1 101 a8: lw a4 ,a(r0) ;load word ( variable a)
$2 101 ac: lw a5 ,b(r0) ;load word ( variable b)
$3 101 b0: sub a5 ,a4 ,a5 ; subtraction operation
$4 101 b4: sw a5 ,d(r0) ;store word ( variable d)
$5 101 b8: lw a5 ,b(r0) ;load word ( variable b)
$6 101 bc: slli a5 ,a5 ,0x2 ; logical left shift by 2
$7 101 c0: lw a4 ,a(r0) ;load word ( variable a)
$8 101 c4: add a5 ,a4 ,a5 ; addition
$9 101 c8: sw a5 ,c(r0) ;store word ( variable c)

---

Table 1 (left part) shows a snapshot of the processor pipeline stages during a fault-free
execution of this program. Let us suppose that, at the end of cycle n − 1, the computation
had no errors. As highlighted in the right part of Table 1, at the beginning of cycle n the
pipeline registers are compared and no error is detected; hence, the content of the pipeline is
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Table 1 Pipeline status for Listing 2 example.

Fault-free execution Execution under faults with LESR
Pipeline stage n-1 n n+1 n+2 n+3 n-1 n n+1 n+2 n+3

F $5 $6 $7 $8 $9 $5 $6 $7 $6 $7
D $4 $5 $6 $7 $8 $4 $5 $6 $5 $6

EX $3 $4 $5 $6 $7 $3 $4 $5 $4 $5
MEM $2 $3 $4 $5 $6 $2 $3 $4 $3 $4
WB $1 $2 $3 $4 $5 $1 $2 $3 $2 $3

copied to the BKP registers. Let us now suppose that a transient fault impacts the D stage
logic during cycle n. In cycle n + 1, the pipeline registers of the two cores are compared and
an error is detected, due to the fault in cycle n. In detail, the error is detected by comparing
input registers of stage EX, which are also output registers of stage D. Thus, the results of
the computations are discarded and the content of BKP is copied back. Finally – in cycle
n + 2 – the cycle impacted by the fault can be re-executed and the computations goes back
to normal.

Bound WCET overhead. The LESR approach entails a constant overhead of two clock
cycles, namely the cycle where the fault occurred, and the cycle where the fault is detected
and the values of the core registers are restored from the BKP registers, for processors with
hardware function units that require one cycle to execute the instruction. Further discussion
is provided in Section 4.3.

4 Evaluation for RISC-V case study

4.1 Experimental setup
Our case study is Comet, an open-source HLS 32-bit RISC-V processor [41], which supports
the RV32I base ISA2. Note that, by using HLS, a unique high-level synthesis and simulation
C++ model is used to design the processor. The model is used to generate both the hardware
target design through High-Level Synthesis, as well as a Cycle-Accurate Bit-Accurate (CABA)
simulator through software compilation. The processor consists of a standard 5-stage pipeline,
including a forwarding mechanism and a register file with 32 registers in the write-back stage,
as illustrated in Figure 3. Table 2 depicts the area of each pipeline stage of the core.

Table 2 Area of RISC-V pipeline stages.

Pipeline stage Fetch Decode Execute Memory WriteBack
Area 6.01% 11.02% 35.47% 5.10% 42.41%

The LESR approach has been implemented in the RISC-V CABA simulator, and it is
available in FSR_comet branch from the Comet repository. We have enhanced both the
unprotected and the protected version of the RISC-V core with hardware fault injection
capabilities. The used fault model is a bit-flip. A framework based on pythons scripts has
been designed in order to perform the data collection with and without fault injection, obtain

2 https://gitlab.inria.fr/srokicki/Comet/-/tree/master

https://gitlab.inria.fr/srokicki/Comet/-/tree/master
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Figure 3 RISC core with 5-stage pipeline, forward mechanism, and data and instruction
caches [41].

the vulnerability metrics and execution cycle traces, perform the data grouping, distribution
fitting and pWCET estimation. Note that, the threshold for considering that an application
is not responsive is set to eight times the execution cycles without faults.

In this first step towards the exploration of the impact on the execution time and
WCET estimation of transient faults occurring inside the processor, we used as benchmarks
typical kernels, applied in many application domains, such as multimedia, automotive, image
processing etc. The goal is to first explore the fault impact on the kernels, before dealing
with more complex applications. Five benchmarks with different complexities and execution
cycles have been analyzed. More precisely, Binary Search (BS) searches an index in a
sorted array of a size equal to 15 and Prime checks whether two input integers are prime or
not. Both benchmarks are taken from the TACLeBench suite. Qsort sorts the elements of
an array of size 10 and its implementation is inspired from MiBench. Moving Average (MA)
makes the average of nearby pixels of an 8x8 matrix and is inspired from AxBench. Matmult
multiplies two 4x4 matrices and it is taken from Polybench. The app, kernel, sequential
and test benchmarks from TACLeBench, except those with floating point operations, have
been successfully compiled and executed on the proposed lockstep version and fault injection
campaigns will be performed in the future. The source code of the benchmarks is available in
the FSR_comet3 branch of the Comet repository. For the data collection step, based on [13],
we use 650 different inputs for each benchmark, in order to obtain the data for the benchmark
timing behavior, leading to 650 fault-free executions per benchmark. The inputs are generated
by selecting each integer randomly between the integer range [INTMIN , INTMAX ], except for
Prime, where we used positive numbers.

For the estimation under faults, note that, exhaustive fault injection is not computationally
possible, due to the prohibitive number of fault injection points during the execution of an
application. The different fault injection points are given by the number of different register
bits of the processor and the number of cycles required for the fault-free benchmark execution.
Thus, the vulnerability analysis is based on statistical fault injection, as in the the state-
of-the-art approaches. The number of faults N to be injected in order to have statistically
confident results is defined based on the required confidence level of the statistical analysis

3 https://gitlab.inria.fr/srokicki/Comet/-/tree/FSR_comet/tests/basic_tests
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as N = t2 × p × (1 − p)
e2 , where t is the critical value related to the statistical confidence

interval, e the error margin, and p the percentage of the possible fault population individuals
that are assumed to lead to errors [29, 53]. With p = 0.5, we obtain the maximum number
of faults to be injected in order to have statistically confident results, considering infinite
number of fault injection points. Based on the above formula, we have injected 250,250
faults per benchmark, which lead to results with a 99.8% confidence interval and a 0.3%
error margin. More precisely, we have injected 385 faults per different input, providing 5%
confidence interval and a 5% error margin [53] for each input, considering 650 different inputs.
Note that, to keep the collected data independent and identically distributed, we keep the

maximum clock cycle observed out of the 385 injections on every input generated to be used
for the pWCET estimation.

4.2 Experimental Results
This section presents the execution cycle traces, the best selected configuration for the BM
and the WCET estimation for: i) the unprotected version without faults, as currently done in
the State-Of-the-Art, ii) the unprotected version under faults, and iii) the protected version
using the LESR mechanism under faults. Furthermore, we provide the functional and timing
vulnerability metrics, as discussed in Section 2.1, for the last two set-ups.

Table 3 shows the each vulnerability metric for the unprotected version under faults in
absolute values and Figure 4 schematically illustrates the corresponding percentages. For
instance, for the Matmult benchmark, 2.5% of the fault injections has led to application
hangs, 2.72% to application crashes, 8.31% to wrong output, 0.32% to wrong internal state,
3.85% to both wrong application output and wrong internal state, and 82.28% were masked.
Similar are the results for the rest of the benchmarks. On average, 3.02% of the fault
injections has led to application hangs, 3.45% to application crashes, 3.95% to wrong output,
4.16% to wrong internal state, 1.99% to both wrong application output and wrong internal
state, and 83.43% were masked. Regarding timing correctness, all benchmarks experienced
mismatches in their number of execution cycles. More precisely, the benchmark affected the
least is Binary search, where 6.25% of the total benchmark executions, under the presence
of faults, lead to a different number of execution cycles compared to the fault-free execution.
The most affected benchmark is Prime, where 8.10% of the benchmark executions under
faults lead to ECM. On average, 7.14% of the executions under faults lead to ECM among
all benchmarks. For the protected version with LESR, mechanism, all faults have been
corrected.

Figures 5, 6, 7, 8 and 9 show the distribution of execution cycles for the five benchmarks.
In each figure, the subfigures (a), (b) and (c) correspond to unprotected version without faults,
the unprotected version with faults and the protected version with faults, respectively. For
the experimental set-up with faults, the distribution shows the execution cycles for 250, 250

Table 3 Functional and timing vulnerability metrics (absolute value).

Benchmark AOM ISM AOM & ISM Hang Crash Masked ECM
Qsort 3,284 12,573 4,216 7,424 10,501 212,252 19,429
Prime 107 18,868 262 7,582 8,497 214,934 20,276

BS 883 18,975 1,548 10,387 9,719 208,738 15,646
Matmult 20,800 816 9,637 6,257 6,829 205,911 16,232

MA 24,351 894 9,102 6,105 7,671 202,127 17,832
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Figure 4 Functional and timing Errors for the five benchmarks under study.

executions (excluding the Crash and Hangs cases for the unprotected version). Note that,
for the unprotected version as the value variations are high, the histogram is presented in
logarithmic scale. The overall observation among all benchmarks is that, when faults impact
the unprotected core, the distribution is modified significantly, both in shape and location,
as shown by Figures 5b, 6b, 7b, 8b, and 9b. Note that, the x-axis for the unprotected
version under faults is significantly larger than the unprotected version without faults and
the protected version with faults. Furthermore, the high peak observed in the unprotected
version under faults corresponds to the execution cycles obtained for the executions where
the faults have been masked.

Let’s further analyze this impact using the Binary search, which is the simplest bench-
mark. The execution time of binary search depends on the position of the index of the sorted
array and it is upper bounded by log2(M), with M the size of the array. This statement is in
line with the observations during the experiments, as Binary search searches in an array of
15 elements, and thus, 4 different values are observed during the 650 executions, as depicted
in Fig. 5a. However, when faults are injected in the unprotected version, the distribution of
collected execution traces is significantly modified. On the contrary, the protected version,
using the proposed LESR mechanism, it is able to maintain a distribution very close to the
original one under faults, i.e., the number of execution cycles is increased by two cycles.

To illustrate the applied methodology, Figure 10a depicts the histogram of the BM block,
along with the Gumbel distribution, and Figure 11a the Quantile-Quantile plot for Matmult
benchmark, which is one of the benchmarks with higher complexity. We observe a rather
good resemblance to the line x = y, which means that the collected data follows the Gumbel

(a) Unprotected without faults. (b) Unprotected under faults. (c) Protected under faults.

Figure 5 Binary search: Collected data regarding execution cycles for all processor versions.
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(a) Unprotected without faults. (b) Unprotected under faults. (c) Protected under faults.

Figure 6 Prime: Collected data regarding execution cycles for all processor versions.

(a) Unprotected without faults. (b) Unprotected under faults. (c) Protected under faults.

Figure 7 Qsort: Collected data regarding execution cycles for all processor versions.

(a) Unprotected without faults. (b) Unprotected under faults. (c) Protected under faults.

Figure 8 Moving Average: Collected data regarding execution cycles for all processor versions.

(a) Unprotected without faults. (b) Unprotected under faults. (c) Protected under faults.

Figure 9 Matmult: Collected data regarding execution cycles for all processor versions.
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distribution. However, when faults are injected in the unprotected version, the shape of the
BM histogram is modified (Figure 10b), as shows Figure 11b. On the contrary, the protected
version with LESR is able to keep the shape of the distribution similar to the fault-free
distribution (Figure 10c) and obtain a similar fitting (Figure 11c). Table 4 shows the best
configuration obtained during experiments.

(a) Unprotected without faults. (b) Unprotected under faults. (c) Protected under faults.

Figure 10 Matmult: Block Maxima and Gumbel distribution for all processor versions for the
best configuration.

(a) Unprotected without faults. (b) Unprotected under faults. (c) Protected under faults.

Figure 11 Matmul: Q-Q plot of the distribution for all processor versions for the best configuration.

Table 4 Best BM configuration per version and benchmark.

Benchmark Binary search Prime Qsort Moving Average Matmult
Unprotected without faults

Number of blocks 3 108 650 44 50
Block size 217 6 1 15 13

Unprotected under faults
Number of blocks 24 18 39 5 3

Block size 28 36 17 130 217
Protected under faults

Number of blocks 3 81 217 50 41
Block size 217 8 3 13 16

Table 5 illustrates the pWCET estimation, using the best configuration shown in Table 4,
and the maximum observed value during experiments, for all versions and benchmarks. The
red (green) color highlights pWCET estimations that have a lower (higher) value than the
maximum observed one. As long as the pWCET is lower than the maximum observed
value, we increase the threshold until we are able to obtain an estimation higher than the
maximum observed during experiments. From Table 5, we observe that typical WCET
estimation approaches are able to tightly bound the unprotected version without faults.
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However, when faults impact the processors, such methods provide less tight bounds with
respect to the maximum observed value. This is due to the impact of the faults in the
execution cycle distribution, which modifies the shape and the location. Overall, we observe
that the difference between the pWCET and the maximum observed value is higher for
the majority of the benchmarks. Furthermore, this difference is more significant as the
complexity of the benchmark increases, e.g., as shown by the difference that progressively
increases with the benchmark complexity, from Binary Search to Matmult. On the contrary,
the proposed LESR protection mechanism is able to restore the execution cycle distribution
close to the fault-free distribution, with an impact in the number of execution cycles equal
to two. As a result, we are able to obtain pWCET estimations similar to the fault-free
execution. Furthermore, the two cycles difference can be observed in the difference between
the maximum observed value of the unprotected version without faults and the maximum
observed value of protected version under faults.

4.3 Discussion

For the lock-step processor core that we implemented based on Comet [41], the proposed
fault-tolerant mechanism entails a number of additional cycles bounded to two (one cycle
to detect the fault and one to restore the correct pipeline register values), as confirmed by
the experimental results. For other processor versions, the bound of two cycles will hold for
similar cores, where the function units require one cycle for the instruction execution. To
support a processor with the different extensions, capable of executing more complicated
instructions in hardware, two approaches exist, i.e., insert a hardware function unit or
implement multi-cycle operations sharing existing function units. In the first case, the
proposed mitigation approach will be applied without modifications. Note that, different
execution cycles will still be observed in the fault-free execution for applications that have
different execution paths, which are selected based on data values. In the second case, the
multi-cycle instruction is broken down into small control steps and is expressed as Finite
State Machines (FSM). Each state of the FSM corresponds to a computation cycle. For
instance, in the case of the multiplication, there is a state for each bit (or group of bits) in
the operand. Note that, when a multi-cycle opcode enters the execution stage, the pipeline
will be stalled until the FSM has reached its final state and the result is produced. We expect
that this behavior will not jeopardize the fact that the proposed approach is bounded. To
implement the proposed approach on a processor with a multi-cycle operation, a shadow
register is required to be added in the internal register that accumulates the partial results.
If the proposed approach is applied as it is, the bound is expected to increase from two cycles
to the number of cycles required for the instruction, in the worst case. Therefore, there is a
trade-off in the processor design between the overhead of inserting an additional hardware
function unit and the overhead of the fault recovery approach.

As future work, we will leverage the proposed approach for different extensions of the
RISC-V core and perform extensive fault injection campaigns for more complex applications.
We expect that the results will be of similar nature, in the sense that, the more complex the
application is, the more execution paths we expect to have, and thus, more execution cycle
traces are expected.
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Table 5 pWCET estimation (cycles) based on the best fitting configuration for different threshold
value, the maximum observed cycle and their difference (%).

Benchmark threshold Max
0.9 0.99 0.999 observed

Unprotected without faults

Binary Search
Cycles 2,334 2,334 2,334 2,334Difference (%) 0 0 0

Prime
Cycles 4,972 5,976 6,962 5,093Difference (%) -2.37 17.33 36.39

Qsort
Cycles 4,811 5,267 5,715 5,436Difference (%) -11.50 -3.11 5.13

Moving Average
Cycles 20,592 20,702 20,810 20,700Difference (%) -0.52 ≈ 0 0.53

Matmult
Cycles 21,073 21,257 21,438 21,211Difference (%) -0.65 0.22 1.07

Unprotected with faults

Binary Search
Cycles 18,696 18,826 18,953 18,671Difference (%) 0.13 0.83 1.51

Prime
Cycles 34,873 45,176 55,291 37,381Difference (%) -6.70 20.85 47.91

Qsort
Cycles 34,444 43,480 52,351 35,085Difference (%) -1.82 23.93 49.21

Moving Average
Cycles 107,264 163,318 218,353 151,384Difference (%) -29.14 7.88 44.24

Matmult
Cycles 170,521 267,413 362,545 129,179Difference (%) 31.79 107 180

Protected under faults

Binary Search
Cycles 2,336 2,336 2,336 2,336Difference (%) 0 0 0

Prime
Cycles 5,047 5,959 6,855 5,095Difference (%) -0.94 16.95 34.54

Qsort
Cycles 4,984 5,387 5,783 5,438Difference (%) -8.35 -0.94 6.34

Moving Average
Cycles 20,582 20,686 20,788 20,702Difference (%) -0.58 -0.08 0.41

Matmult
Cycles 21,077 21,231 21,383 21,213Difference (%) -0.64 0.08 0.80

5 Related Work

The state-of-the-art, relevant to our work, concerns i) real-time approaches for WCET
estimation and fault-tolerant techniques under the presence of faults, ii) lock-step techniques,
with focus on RISC-V related implementations, and iii) vulnerability analysis approaches.
Table 6 summarizes the related work using the following criteria:
1. Hardware faults under study are Permanent Faults (PF) or Transient Faults (SE).
2. Hardware faults under study impact the Memory (M) or Core (C) of the target platform.
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3. The Functional Behaviour (FB) or Timing Behaviour (TB) of the applications is checked.
Functional behaviour refers to Denial of Service (DS), i.e., no outcome is generated
because the application hanged or crashed, and to Binary Correctness (BC), i.e., the
application’s outcome is different than expected [40]. Timing behaviour refers to an
application execution time that is different than the fault-free execution, due to a hardware
fault.

4. Vulnerability analysis is performed through SoftWare (SW) or HardWare (HW) fault
injection or placing the platform under Radiation Beam (RB).

5. WCET estimation assumes that hardware faults do not have a timing impact on execution,
i.e., Fault-Free (FF), or not, i.e., Fault-Aware (FA).

Table 6 Summary of related work and positioning.

Fault Fault Fault Vulnerability WCET
model location detection analysis estimation

Ref. PF TF M C DS BC TB SW HW RB FF FA
[52, 22, 1, 16, 57, 44]

√

[14, 3, 36, 25, 12, 54]
√ √ √ √

[5, 27, 50]
√ √ √ √

[19]
√ √ √ √

[35]
√ √ √ √ √ √

[23]
√ √ √

[48]
√ √ √ √

[24, 9, 2]
√ √ √ √

[11, 10, 49]
√ √ √ √ √

[56]
√ √ √ √ √

[33, 34, 30]
√ √ √ √ √

[38, 55, 8, 37, 4]
√ √ √ √ √

[28]
√ √ √ √ √ √

[6]
√ √ √ √

[46, 31]
√ √ √ √ √

[59]
√ √ √ √ √ √

[15, 58]
√ √ √ √ √ √ √

This work √ √ √ √ √ √ √

Regarding WCET estimation approaches, the estimation is performed through safe
measurements, based on application execution, or static analysis of the programs [16]. For
instance, a number of static analysis methods have been proposed, such as [52, 22], focusing on
caches, and measurement-based approaches, such as [16, 44, 1]. A more detailed description
of WCET estimation methods and tools is available in surveys, such as [57]. The majority of
existing approaches does not consider faults, since the hardware of the target platform is
assumed to be fault-free, during WCET estimation [24, 48].

To protect the system from faults, real-time approaches apply fault tolerant techniques.
The faults under study usually lead to application execution failure or to erroneous outputs.
To deal with these issues, the majority of real-time approaches focus on fault mitigation,
through scheduling techniques applied at the task-level, such as replication of tasks [14] and
task check-pointing/re-execution [19], while the fault detection is assumed to be performed
by the hardware. When fault techniques are inserted to the system, their timing impact
on WCET has to be taken into account, in order to still provide the timing guarantees.
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To do so, existing approaches extend the fault-free WCET with the time overhead of
the applied fault tolerant techniques. Works analyse this overhead by exploring how the
applied fault tolerant technique impacts schedulability and providing schedulability analysis,
e.g., for task replication techniques [5, 3, 36, 25] and task re-execution/check-pointing
techniques [12, 27, 50]. Probabilistic worst-case schedulability analysis are also presented,
e.g., for active and passive replicas [35]. Last, other works consider faults are rare events,
and thus, the WCET should not consider the time overhead for recovery to avoid over-
dimensioning the system, and fault recovery is modeled as an overshoot [54]. The above
works can have significant time overhead, since the transient fault is detected very late,
potentially after fault-free WCET bound is exceeded.

Few approaches address the impact of hardware faults on the timing behaviour of
applications. Existing works focus on hardware faults in cache memories, while the rest
of the architecture is assumed fault-free [7]. Approaches focus on estimating the timing
impact, by accounting for the hardware degradation due to the presence of faults. For
instance, static analysis probabilistically quantifies the WCET impact of permanent faults
at instruction caches. The probability of an SRAM cell to be faulty is used to evaluate the
additional cache misses that may occur [23]. A measurement-based approach for permanent
faults occurring to caches provides the WCET impact, when cache lines are disabled due to
faults [48]. Such approaches have been extended to incorporate the timing impact of inserted
fault tolerant techniques to detect, correct or mitigate faults. For instance, the computation
of the worst-case additional misses, due to defected cache lines, and the use of a parity bit
for error detection [11]. Static probabilistic timing analysis is performed with fault detection
mechanisms that periodically checks caches for faults and disable faulty cache blocks, under
permanent faults [9] and also soft errors [10]. The maximum delay, introduced by error
detection and correction codes, is computed in [49]. Other approaches focus on mitigating
the hardware degradation, due to occurring faults, using redundant hardware. As a result,
the timing impact of faults on WCET is mitigated and the timing characteristics of hardware
are maintained, leading to WCET estimations close to fault-free WCET ones, despite the
presence of faults. For instance, timing analysis considers a reliable victim cache to replace
faulty entries [2], an extra reliable cache way per set and a shared reliable buffer [24]. Existing
works mainly focus on permanent faults occurring to memories. Nonetheless, with technology
size reduction, faults inside the processors cannot be considered negligible anymore [32].

Regarding vulnerability estimation approaches, existing approaches mainly focus only
on estimating the functional correctness of the system under study. To achieve that, they
apply fault injection at the software level and at the hardware level or put the device
under radiation. Software fault injection is hardware agnostic. It is capable of flipping
bits only in the data structures of the application [33, 34, 56, 30]. To improve accuracy,
vulnerability analysis approaches have to consider the hardware details and perform bit-
flips [38, 55, 8, 4, 37, 15, 46, 31]. Other approaches place the platform under radiation to
analyze its behavior [15, 59]. However,the majority of existing vulnerability approaches focus
on functional behaviour, i.e., checking for functional interruptions and erroneous values of
the system under study [56, 38, 55, 8, 4, 37, 15]. However, not only the functional behaviour,
but also the timing behaviour must be taken into account during vulnerability analysis for
safety-critical systems. Few recent studies explore the impact of soft errors on the timing
behaviour. They use software fault injection and their application domain is limited to
iterative methods, e.g., the performance impact is given by the number of iterations required
for iterative solvers to converge [34, 33] and their execution time [30], and hardware fault
injection [28] using a single input. However, such approaches focus on the average behavior,
neglecting WCET aspects.
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Other fault tolerant approaches exist, which, however, do not focus on WCET aspects.
Regarding lock-step execution, it can be based on non-intrusive and intrusive approaches.
Non-intrusive approaches do not modify the processor architecture, and are typically used
when the internal architecture details are hidden or difficult to modify, e.g., Commercial
Off-The-Shelf (COTS) processors. For instance, lockstep approach uses ARM A9 as hard
core and RISC-V as soft core [15]. Lockstep execution is achieved by inserting checkpoints in
the application, where a synchronisation module is activated to check for mismatch between
the status of the cores and apply roll-back. However, to perform lockstep with hard cores,
processors should have specific architecture support. However, this functionality is not present
on all processors [15]. Intrusive approaches modify internally the processor architecture.
Hence, when rollback mechanisms are applied, they do not require to insert checkpoints
at the application level. For instance, RISC ISA SH-2 processors and rollback are used to
achieve error correction [59]. Interleaved multithreated execution is used to implement a dual
lockstep approach using two virtual RISC-V cores [46]. Other approaches extend the pipeline
registers with error detection and correction codes, e.g., a RISC-V core with Single Error
Correction Double Error Detection (SECDED) [31]. Last, approaches triplicate components
inside the RISC-V core to enhance its reliability. For instance, Control and Status Registers,
Program Counter and the register file [6], FFs, LUTs, BRAMS, and DSPs [58], and the
arithmetic and logic unit (ALU) are triplicated [42]. However, existing approaches do not
focus on providing simple mechanisms with low WCET bounds regarding the error detection
and correction time.

Compared to the state of the art, this work leverages vulnerability analysis approaches
with timing correctness for transient faults occurring in processors. Through extended
set of experiments, it exposes the fault impact to both functional and timing behavior of
the application. Such vulnerability analysis is combined with measurement-based WCET
estimation, leading to fault-aware WCET estimations. Last, a mechanism is proposed
to remedy the impact of transient faults, with a bounded and near-zero timing overhead,
compared to existing approaches, without the need of triplicating the complete processor.

6 Conclusion

This work leverages architectural vulnerability analysis to include not only functional correct-
ness, but also timing correctness, under the presence of transient faults on cores. Using this
analysis, we show that the number of execution cycles of an application, under the presence
of transient faults, may increase significantly, compared to the fault-free execution. Through
a measurement-based WCET estimation approach, we show that impact on the WCET
estimation. Compared to common approaches, based on watchdog timers and re-execution
with long error detection and correction time, we propose a fault tolerant technique with
near-zero WCET overhead that circumvent the fault, as soon as it occurs, before being
propagated and affects the execution time.
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Abstract
Real-time locking protocols are typically designed to reduce any priority-inversion blocking (pi-
blocking) a task may incur while waiting to access a shared resource. For the multiprocessor case, a
number of such protocols have been developed that ensure asymptotically optimal pi-blocking bounds
under job-level fixed-priority scheduling. Unfortunately, no optimal multiprocessor real-time locking
protocols are known that ensure tight pi-blocking bounds under any scheduler. This paper presents
the first such protocols. Specifically, protocols are presented for mutual exclusion, reader-writer
synchronization, and k-exclusion that are optimal under first-in-first-out (FIFO) scheduling when
schedulability analysis treats suspension times as computation. Experiments are presented that
demonstrate the effectiveness of these protocols.
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1 Introduction

In recent years, a number of suspension-based multiprocessor real-time locking protocols have
been developed that provide asymptotically optimal bounds on priority-inversion blocking
(pi-blocking) under suspension-oblivious (s-oblivious) schedulability analysis, which treats
suspension time analytically as computation time [11,13,14]. For mutual-exclusion (mutex)
sharing, most (if not all) known asymptotically optimal locking protocols ensure a per-task
s-oblivious pi-blocking bound of 2m−1 request lengths on an m-processor platform under job-
level fixed-priority (JLFP) scheduling [11, 13].1 The commonality of this bound is somewhat
surprising as these protocols include ones that target different scheduling strategies (e.g.,
partitioned, global, and clustered scheduling) and employ different mechanisms to cope with
pi-blocking (e.g., priority inheritance vs. priority donation [11,13]).

In contrast, under s-oblivious analysis, the current best lower bound yields a worst-case
per-task pi-blocking bound of at least m − 1 request lengths [11]. This gap between the
existing lower bound and upper bound raises an obvious question: is a pi-blocking bound of
2m − 1 request lengths fundamental under JLFP scheduling?

In this paper, we answer this question negatively by showing that, under s-oblivious
analysis, the existing lower bound of m − 1 request lengths is tight under first-in-first-out
(FIFO) scheduling. To show this, we give a suspension-based locking protocol for mutex
sharing that ensures a per-lock-request s-oblivious pi-blocking bound of at most m−1 request

1 We refine this statement later by distinguishing between request blocking and release blocking.
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lengths under FIFO scheduling, matching the lower bound. Our protocol is designed for
clustered scheduling, so it can be applied under global and partitioned scheduling as well.
To our knowledge, this is the first truly optimal suspension-based multiprocessor locking
protocol under any practical scheduling algorithm.

In designing our protocol, we exploit the fact that independent (non-resource-sharing)
tasks are non-preemptive under FIFO scheduling. Such non-preemptivity is a property of the
scheduler itself and does not have to be otherwise enforced: under FIFO scheduling, a newly
released instance of a task cannot cause any other task instance to have insufficient priority
to be scheduled. Asymptotically optimal locking protocols such as the C-OMLP [13] enforce
such a property via an explicit progress mechanism. We show that such mechanisms are not
required under FIFO scheduling.

Our locking protocol strengthens the case for using FIFO scheduling on multiprocessors.
In addition to enabling a tight pi-blocking bound, FIFO scheduling has low overheads, ensures
bounded response times (and hence bounded deadline tardiness in soft real-time systems)
without capacity loss [2, 22], and is sustainable with respect to execution times, meaning
that it is safe to perform schedulability analysis assuming all instances of a task take its
worst-case execution time (WCET) to complete. Moreover, non-preemptive execution also
eases the determination of WCETs, which is challenging on modern multiprocessors [31].
According to a recent survey, around 30% of industrial respondents reported using FIFO
scheduling [3].

Contributions. Our contributions are fourfold.
First, we propose a suspension-based mutex locking protocol called the optimal locking

protocol under FIFO scheduling (OLP-F). The OLP-F restricts a task from issuing a resource
request until it has high enough priority. Together with properties of FIFO scheduling, this
ensures that the OLP-F has a tight s-oblivious pi-blocking bound under FIFO scheduling.

Second, we consider an extension of mutex sharing called k-exclusion sharing, which
permits k simultaneous lock holders. For k-exclusion, we propose the optimal locking protocol
for k-exclusion under FIFO scheduling (k-OLP-F) and show that it has a tight s-oblivious
pi-blocking bound under FIFO scheduling.

Third, we expand even further beyond mutex sharing by considering reader-writer (RW)
sharing, where exclusive resource usage is only required for write accesses and concurrent read
accesses are permitted. For RW sharing, we propose the read-optimal RW locking protocol
under FIFO scheduling (RW-OLP-F), which provides a tight s-oblivious pi-blocking bound for
read requests under FIFO scheduling. Additionally, under the RW-OLP-F, the pi-blocking
bound for write requests is just under two request lengths of optimal.

Finally, we provide experimental results that show the benefits of our locking protocols.

Organization. In the rest of this paper, we provide needed background (Sec. 2), delve
further into s-oblivious pi-blocking (Sec. 3), establish a FIFO-based progress property for
resource sharing (Sec. 4), present the above-mentioned protocols (Secs. 5–7), present our
experimental results (Sec. 8), more fully review related work (Sec. 9), and conclude (Sec. 10).

2 System Model and Background

In this section, we provide needed definitions; Tbl. 1 summarizes the notation given here.

Task model. We consider a system of n sporadic tasks τ1, τ2, . . . , τn to be scheduled on m

identical processors by a FIFO scheduler. Each task τi releases a potentially infinite sequence
of jobs Ji,1, Ji,2, . . .. (We omit job indices if they are irrelevant.) Each task τi has a period Ti
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Table 1 Notation summary.

Symbol Meaning Symbol Meaning
n Number of tasks ℓq qth shared resource
m Number of processors Nq

i Maximum number of requests for ℓq by τi

τi ith task Lq
i Maximum request length for ℓq by τi

Ji,j jth job of τi Lq
max max1≤i≤n{Lq

i }
Ti Period of τi Lmax max1≤q≤nr Lq

max

Ci WCET of τi R A request
Di Relative deadline of τi ri,j Release time of Ji,j

ui Utilization of τi fi,j Finish time of Ji,j

nr Number of resources Lq
sum,h sum of the h highest Lq

i values

specifying the minimum spacing between consecutive job releases. Each task has a relative
deadline Di. Task τi has an implicit deadline if Di = Ti, a constrained deadline if Di ≤ Ti,
and an arbitrary deadline if no relationship between Di and Ti is assumed. Each task has a
WCET denoted Ci. Task τi’s utilization is defined as ui = Ci/Ti.

The release time (resp., finish time) of a job Ji,j is given by ri,j (resp., fi,j). Ji,j is
pending at time t if ri,j ≤ t < fi,j . Jobs of a task τi are sequential, i.e., Ji,j+1 cannot
commence execution before Ji,j finishes. Job Ji,j is eligible to execute at time t if Ji,j is
pending at time t and t ≥ fi,j−1 holds (if j > 1). An eligible job is either ready (when it can
be scheduled) or suspended (when it cannot be scheduled).

We assume time to be discrete and a unit of time to be 1.0. All scheduling decisions are
taken at integer points in time. We also assume all task parameters to be integers.

Multiprocessor scheduling. Multiprocessor scheduling approaches can be broadly classified
into two categories: partitioned and global. Under partitioned scheduling, a task is statically
assigned to a processor and cannot migrate to another processor. Global scheduling allows a
task to execute on any of the m processors. Clustered scheduling is a hybrid of partitioned
and global scheduling. Under clustered scheduling, all m processors are partitioned into
m/c ∈ N clusters (without loss of generality, we assume m is an integer multiple of c) each
containing c processors.2 Each task is assigned to a cluster and can migrate only among the
processors of the cluster. We consider clustered scheduling, as both partitioned and global
scheduling are special cases (c = 1 and c = m, respectively).

Under a job-level fixed-priority (JLFP) scheduler, each job is assigned a fixed priority
throughout its execution, but a task’s priority may change over time. Common JLFP
schedulers include earliest-deadline-first (EDF), FIFO, and fixed-priority scheduling algorithms.
When such algorithms are employed with clustered scheduling, the c highest-priority ready
jobs (if that many exist) of each cluster are scheduled on the processors of that cluster. In
this paper, we consider clustered FIFO (C-FIFO) scheduling where, within a cluster, jobs
with earlier release times have higher priority. We assume ties are broken arbitrarily but
consistently. Hereafter, we assume all schedules to be C-FIFO unless otherwise stated.

Resource model. We consider a system that has a set {ℓ1, . . . , ℓnr } of shared resources.
For now, we limit attention to mutual exclusion (mutex) sharing, although other notions of
sharing will be considered later. Under mutex sharing, a resource ℓq can be held by at most

2 Our results can be adapted for non-uniform cluster sizes at the expense of additional notation.
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Table 2 Asymptotically optimal locking protocols for mutex locks under s-oblivious analysis.

Scheduling Protocol Release blocking Request blocking
Global JLFP OMLP [11] 0 (2m − 1)Lq

max

Clustered JLFP C-OMLP [13] mLmax (m − 1)Lq
max

Clustered JLFP OMIP [7] 0 (2m − 1)Lq
max

C-FIFO OLP-F (This work) 0 (m − 1)Lq
max

one job at any time. When a job Ji requires a resource ℓq, it issues a request R for ℓq. R
is satisfied as soon as Ji holds ℓq, and completes when Ji releases ℓq. R is active from its
issuance to its completion. Ji must wait until R can be satisfied if it is held by another job.
It may do so either by busy-waiting (or spinning) in a tight loop, or by being suspended by
the operating system (OS) until R is satisfied. We assume that if a job Ji holds a resource
ℓq, then it must be scheduled to execute.3 A resource access is called a critical section (CS).

We assume that each job can request or hold at most one resource at a time, i.e., resource
requests are non-nested. We let Nq

i denote the maximum number of times a job of task τi

requests ℓq, and let Lq
i denote the maximum length of such a request. We define Lq

i to be 0
if Nq

i = 0. Finally, we define Lq
max = max1≤i≤n{Lq

i }, and Lmax = max1≤q≤nr {Lq
max}, and

let Lq
sum,h be the sum of the h largest Lq

i values. We assume all Lq
i and Nq

i to be constant.

Priority inversions. Priority-inversion blocking (or pi-blocking) occurs when a job is delayed
and this delay cannot be attributed to higher-priority demand for processing time. Under a
given real-time locking protocol, a job may experience pi-blocking each time it requests a
resource – this is called request blocking – and/or upon its release and each time it releases a
resource – this is called release blocking.

On multiprocessors, the formal definition of pi-blocking actually depends on how schedulab-
ility analysis is done. Of relevance to suspension-based locks, schedulability analysis may be
either suspension-oblivious (s-oblivious) or suspension-aware (s-aware) [11]. Under s-oblivious
analysis (the focus of this work), suspension time is analytically treated as computation time.

Blocking complexity. Request lengths are unavoidable in assessing maximum pi-blocking,
as a request-issuing job may have to wait for a current resource-holder to complete before
its request can be satisfied. As such, maximum pi-blocking bounds are usually expressed
as an integer multiple of the maximum request length, i.e., the number of requests that are
satisfied while a resource-requesting job is pi-blocked.

Asymptotically optimal locking protocols. For mutex locks, Brandenburg and Anderson
established a lower bound of m − 1 request lengths on per-request s-oblivious pi-blocking
under any JLFP scheduler [11]. Thus, under s-oblivious analysis, an asymptotically optimal
locking protocol achieves O(m) per-job pi-blocking. Locking protocols such as the OMLP [11],
the OMIP [7], and the C-OMLP [13] are asymptotically optimal under JLFP scheduling.
Tbl. 2 provides a summary of existing asymptotically optimal locking protocols.4

3 This is a common assumption in work on synchronization. It is needed for shared data, but may be
pessimistic for other shared resources such as I/O devices.

4 Note that, for the C-OMLP, the 2m − 1 bound mentioned in Sec. 1 comes from a combination of release
and request blocking.
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Figure 1 A schedule illustrating s-oblivious pi-blocking for arbitrary-deadline tasks.

Optimal locking protocols. We call a locking protocol optimal under a scheduling algorithm
if it ensures a pi-blocking bound that is tight, i.e., it matches the lower bound on pi-blocking
under that scheduling algorithm.

3 Suspension-Oblivious Pi-Blocking

Under s-oblivious schedulability analysis, each task’s WCET is inflated by the amount of
worst-case s-oblivious pi-blocking any of its jobs may suffer. Such s-oblivious pi-blocking
was originally defined for implicit-deadline hard real-time systems [11]. In this section, we
show that this definition needs refinement for systems with arbitrary deadlines or soft timing
constraints. We also provide a refined definition that works under such cases. We begin by
reviewing the original definition of s-oblivious pi-blocking under clustered scheduling.

▶ Definition 1 ([11]). Under s-oblivious schedulability analysis, a job Ji incurs s-oblivious
pi-blocking at time t if Ji is pending but not scheduled and fewer than c higher-priority jobs
are pending in its cluster.

If tasks have arbitrary deadlines or can miss their deadlines due to soft timing constraints,
Def. 1 may inappropriately identify certain delays due to the sequential execution of tasks as
s-oblivious pi-blocking. The following example illustrates this.

▶ Example 2. Fig. 1 illustrates two consecutive jobs Ji,j , and Ji,j+1 of a task τi with Ti = 7
and Di = 11. Job Ji,j+1 is released at time 7 and job Ji,j finishes execution at time 10.
Thus, job Ji,j+1 is pending but not eligible during the time interval [7, 10). Assume that
both Ji,j and Ji,j+1 are among the c highest-priority pending jobs in their cluster during
[7, 10). Assuming c > 1, by Def. 1, Ji,j+1 is s-oblivious pi-blocked during the interval [7, 10).
However, Ji,j+1’s delay during [7, 10) is not due to a locking-related suspension. Under
s-oblivious schedulability analysis, it is not necessary to inflate τi’s WCET to include such a
delay. In fact, doing so may cause a circular problem, i.e., the inflated WCET may cause
additional delays, which can then necessitate further inflation.

The above example motivates refining the notion of s-oblivious pi-blocking as follows.

▶ Definition 3. Under s-oblivious schedulability analysis, a job Ji incurs s-oblivious pi-
blocking at time t if Ji is eligible but not scheduled and fewer than c higher-priority jobs are
eligible in its cluster.

▶ Example 2 (Cont’d). Ji,j+1 is pending but not eligible during the interval [7, 10). Thus,
it is not s-oblivious pi-blocked during that interval. However, Ji,j+1 is eligible during
[12, 13). Assume that Ji,j+1 is among the c highest-priority eligible jobs during [12, 13), but
is suspended. Then, by Def. 3, Ji,j+1 is s-oblivious pi-blocked during [12, 13).
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4 Resource-Holder’s Progress Under FIFO Scheduling

Any real-time locking protocol needs to ensure a resource-holding job’s progress whenever
a job waiting for the same resource is pi-blocked, for otherwise, the maximum per-job
pi-blocking can be very large or even unbounded. To ensure that the maximum pi-blocking
is reasonably bounded, real-time locking protocols employ progress mechanisms that may
temporarily raise a job’s effective priority. One such mechanism is priority inheritance [26,28],
which raises the effective priority of a job holding resource ℓq to the maximum of its priority
and the priorities of all jobs waiting for ℓq. Another alternative is priority donation [14],
which ensures that a job Ji can only issue a request when its priority is high enough to
be scheduled. Moreover, if a job Jj ’s release causes Ji to have insufficient priority to be
scheduled, then Jj “donates” its priority to Ji. This ensures that a resource holder is always
scheduled. This property makes priority donation particularly effective under clustered
scheduling.

Progress under FIFO scheduling. The above-mentioned progress mechanisms can be
utilized to design multiprocessor locking protocols that are asymptotically optimal under
any JLFP scheduling policy [11, 14]. Interestingly, for the case of C-FIFO scheduling, no
such progress mechanism is required to design optimal locking protocols. In fact, the C-FIFO
scheduling policy itself has properties that ensure the progress of a resource-holding job. The
key property that enables such progress is given in the following lemma.

▶ Lemma 4. Under C-FIFO scheduling, if a job Ji,j becomes one of the c highest-priority
eligible jobs in its cluster at time th, then it remains so during [th, fi,j).

Proof. Assume for a contradiction that t is the first time instant in [th, fi,j) such that Ji,j

is not one of the c highest-priority eligible jobs in its cluster. Then, t > th holds. By the
definition of time t, there are at most c − 1 (resp., at least c) eligible jobs with higher priority
than Ji,j at time t − 1 ≥ th (resp., t) in Ji,j ’s cluster. Thus, there is a task τu that has an
eligible job Ju,v with higher priority than Ji,j at time t, but has no such job at time t − 1.

Since Ju,v’s priority exceeds Ji,j ’s, ru,v ≤ ri,j holds. Since Ji,j is eligible at time th,
ri,j ≤ th holds. Thus, ru,v ≤ th and Ju,v is pending at time t − 1. We now consider two cases.
Case 1: v = 1. In this case, Ju,v is also eligible at time t − h. Thus, τu has an eligible job

with higher priority than Ji,j at time t − 1, a contradiction.
Case 2: v > 1. Since Ju,v is not eligible at time t − 1, job Ju,v−1 is eligible at time t − 1.

We have ru,v−1 < ru,v ≤ ri,j . Thus, τu has an eligible job with higher priority than Ji,j

at time t − 1, a contradiction.
Therefore, we reach a contradiction in both cases. ◀

Utilizing Lemma 4, we have the following lemma.

▶ Lemma 5. If a job Ji,j issues a request R when it is one of the c highest-priority jobs in
its cluster, then Ji,j is always scheduled from R’s satisfaction to completion.

Proof. Let tr, ts, and tc be the time instants when R is issued, satisfied and complete,
respectively. Thus, tr ≤ ts ≤ tc holds. Since Ji,j is one of the c highest-priority eligible jobs
in its cluster at time tr, by Lemma 4, Ji,j remains one of the c highest-priority eligible jobs
in its cluster throughout [tr, tc). Since R is satisfied at time ts ≥ tr, Ji,j is ready throughout
[ts, tc). Thus, Ji,j is scheduled during [ts, tc). ◀



S. Ahmed and J. H. Anderson 16:7

Time
J1

J2

J3

0 5 10 15
CS
Normal Execution

Suspension

Lock Release
Request Issuance
Completion
Deadline
Release

Figure 2 A schedule illustrating the OLP-F.

Thus, by requiring a request to be issued only when the request-issuing job is one of
the top-c-priority jobs in its cluster, we can ensure a resource-holder’s progress under FIFO
scheduling. We exploit this property in designing our protocols. Note that the C-OMLP
ensures this property by employing priority donation as its progress mechanism at the expense
of additional release blocking that may be incurred by a job even if it does not require any
resource [13]. Due to this, our protocols have features in common with the C-OMLP.

5 Mutex Locks

In this section, we introduce the optimal locking protocol for mutual exclusion sharing under
C-FIFO scheduling (OLP-F), which achieves optimal pi-blocking under C-FIFO scheduling. To
match the lower bound on pi-blocking, the OLP-F ensures that each job suffers pi-blocking
for the duration of at most m − 1 request lengths and incurs no release blocking.

Structures. For each resource ℓq, we have a FIFO queue FQq that contains requests for ℓq.
A request R is satisfied if and only if R is the head of the FQq.

Rules. When a job Ji attempts to issue a request R for a resource ℓq, it proceeds according
to the following rules.
M1 Ji is allowed to issue R only if it is one of the c highest-priority eligible jobs in its cluster.

Ji suspends if necessary to ensure this condition.
M2 When Ji issues R, R is enqueued in FQq. If Ji becomes the head of FQq, then it is

immediately satisfied. Otherwise, it suspends.
M3 R is satisfied when it is the head of FQq. R is removed from the FQq when it is complete.

▶ Example 6. Fig. 2 illustrates a C-FIFO schedule of three jobs on a two-processor cluster.
J1 and J2 are released earlier (hence, have higher priorities) than J3. Both J1 and J2 issue
requests for resource ℓq at time 3 and J1’s request is enqueued first. Assuming no job in
a different cluster holds ℓq, J1 acquires ℓq at time 3 by Rule M2. At time 3, since J2 is
suspended, J3 starts to execute. At time 4, J3 attempts to issue a request for ℓq, but it is
suspended due to Rule M1 as it is not one of the top-2-priority jobs at that time. At time 6,
J1 releases ℓq and J2’s request is satisfied according to Rule M3. Since J3 becomes one of
the top-2-priority jobs when J1 completes, it issues a request for ℓq at time 7.

Analysis. To derive an upper bound on the pi-blocking suffered by a job, we first show that
FQq contains no more than m requests at any time.

▶ Lemma 7. Under the OLP-F , at any time, FQq contains at most m requests.
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Figure 3 Timeline of a request under the OLP-F.

Proof. Assume that t is the first time instant when FQq contains more than m requests.
Each job has at most one active request at any time. Thus, at time t, FQq must contain a
request R issued by a job Ji that is not one of the c highest-priority eligible jobs in its cluster.
Let t′ ≤ t be the time instant when Ji issues R. By Rule M1, Ji is one of the c highest-priority
eligible jobs in its cluster at time t′. Since Ji is not complete at time t, by Lemma 4, it is
one of the c highest-priority eligible jobs in its cluster at time t, a contradiction. ◀

We now determine an upper bound on the request blocking suffered by job Ji when it
issues a request R for resource ℓq. Fig. 3 depicts the timeline of R from when Ji attempts
to issue R to when R completes. Let t1 be the time instant when job Ji attempts to issue
request R. Let t2 be the first time instant at or after time t1 when Ji, becomes one of the
top-m-priority eligible jobs. Therefore, by Rule M1, R is issued at time t2. Let t3 and t4 be
the time instants when R is satisfied and completes, respectively.

▶ Lemma 8. During [t1, t3], Ji incurs pi-blocking for at most Lq
sum,m−1 time units.

Proof. By the definition of t2, Ji is not one of the top-c-priority eligible jobs in its cluster
during [t1, t2). Hence, Ji is not pi-blocked during that time. By Lemma 4, Ji is pi-blocked
throughout [t2, t3). By Lemma 5, Ji is continuously scheduling during [t3, t4). Thus, from t1
to t4, Ji is only pi-blocked during [t2, t3).

By Lemma 7, at most m − 1 other requests precede R in FQq at time t2. By Rule M3
and Lemma 5, each job at the head of FQq is continuously scheduled until its request is
complete. Since each task has at most one eligible job and each job has at most one request
at any time, t3 − t2 is not more than Lq

sum,m−1 time units and the lemma follows. ◀

We now show that the OLP-F does not cause any release blocking under C-FIFO scheduling.

▶ Lemma 9. Under the OLP-F , no job incurs release blocking.

Proof. Since a resource-holding job is scheduled only when its priority is among the top c in
its cluster, a resource request R does not cause pi-blocking to any job (within and across
cluster boundaries) that does not issue a request during the time R is satisfied. ◀

▶ Theorem 10. Under the OLP-F , Ji is pi-blocked for at most bi =
∑nr

q=1 Nq
i · Lq

sum,m−1
time units.

Proof. Follows from Lemmas 8 and 9. ◀

Thus, the OLP-F is an optimal locking protocol under C-FIFO scheduling.
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Table 3 Asymptotically optimal locking protocols for k-exlcusion locks under s-oblivious analysis.

Scheduling Protocol Release blocking Request blocking
Clustered JLFP CK-OMLP [11] maxq{⌈m/kq⌉Lq

max} (⌈m/kq⌉ − 1)Lq
max

Global JLFP OKGLP [18] 0 (2⌈m/kq⌉ + 4)Lq
max

Global JLFP R2DGLP [30] 0 (2⌈m/kq⌉ − 2)Lq
max

C-FIFO k-OLP-F (This work) 0 (⌈m/kq⌉ − 1)Lq
max

6 k-Exclusion Locks

k-exclusion generalizes mutual exclusion by allowing up to k simultaneous lock holders; thus,
mutual exclusion is equivalent to 1-exclusion. In this section, we give an optimal k-exclusion
locking protocol under C-FIFO scheduling. We assume that a resource ℓq can be concurrently
held by up to kq ≤ m jobs. We begin by reviewing lower bound results for k-exclusion.

Lower bound on pi-blocking. For k-exclusion, Elliot et al. showed that a task system and
a release sequence for it exist such that a job requesting a resource ℓq incurs s-oblivious
pi-blocking for the duration of ⌈ m−kq

kq
⌉ request lengths under any JLFP scheduler [18].

Asymptotically optimal locking protocols. Under s-oblivious analysis, the CK-OMLP [11],
the OKGLP [18], and the R2DGLP [30] ensure asymptotically optimal pi-blocking for k-
exclusion. Tbl. 3 summarizes these protocols.

The k-OLP-F. We now introduce the optimal locking protocol for k-exclusion under C-FIFO
scheduling (k-OLP-F), which achieves optimal pi-blocking for k-exclusion under C-FIFO
scheduling. The k-OLP-F ensures that a job suffers pi-blocking for the duration of no more
than ⌈ m−kq

kq
⌉ request lengths for each request for ℓq and incurs no release blocking.

Structures. For each resource ℓq, we have a FIFO queue FQq that contains waiting requests
for ℓq. We also have a queue SQq of length at most kq that contains the satisfied requests
for ℓq. Initially, both queues are empty. A request R is satisfied if and only if R is in SQq.

Rules. When a job Ji attempts to issue a request R for a resource ℓq, it proceeds according
to the following rules.
K1 Ji is allowed to issue R only if Ji is one of the c highest-priority eligible jobs in its cluster.

Ji suspends if necessary to ensure this condition.
K2 If the length of SQq is less than kq when Ji issues R, then R is enqueued in SQq and is

immediately satisfied. Otherwise, R is enqueued in FQq and Ji suspends.
K3 When R completes, it is removed from SQq. If FQq is non-empty at that time, then the

head of FQq is dequeued, enqueued in SQq, and satisfied.

▶ Example 11. Fig. 4 shows a schedule of five jobs that share a resource ℓq with kq = 2.
Jobs J1, J2, and J3 (resp., J4, and J5) are FIFO scheduled on a two-processor cluster G1
(resp., G2). Since SQq is initially empty, by Rule K2, J4 and J1 acquire ℓq at times 2 and 3,
respectively. Since both J2 and J5 are one of the top-2-priority eligible jobs in their clusters,
by Rule K1, they issue requests for ℓq at times 4 and 5, respectively. At time 5, J3 attempts
to issue a request for ℓq, but is suspended, by Rule K1. At time 5, J4 releases ℓq and is
removed from SQq by Rule K3. J2’s request is at the head of FQq at time 5, so by Rule K3,
it is removed from FQq, enqueued in SQq, and satisfied. At time 7, J1 completes and J3
becomes one of the top-2-priority jobs in G1 and issues its request, by Rule K1.
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Figure 4 A schedule illustrating the k-OLP-F. Concurrent resource accesses are shaded differently.

Analysis. We now derive an upper bound on the pi-blocking suffered by a job under the
k-OLP-F. We first derive an upper bound on the number of waiting requests in FQq.

▶ Lemma 12. Under the k-OLP-F , FQq contains at most m − kq requests.

Proof. Assume otherwise. Let t be the first time instant such that FQq contains more than
m − kq requests. Thus, a new request R′ is enqueued in FQq at time t. By Rule K2, SQq

contains kq requests at time t. Thus, the number of active requests (either satisfied or
waiting) is more than kq + m − kq = m at time t. Since each job has at most one active
request at any time, there is an active request R issued by a job Ji that is not one of the
c highest-priority jobs in its cluster. By Rule K1, Ji is one of the c highest-priority jobs
in its cluster when it issues R at time t′ ≤ t. By Lemma 4, Ji remains as one of the c

highest-priority jobs in its cluster at time t, a contradiction. ◀

We now determine an upper bound on request blocking. We consider a job Ji that issues a
request R for resource ℓq. As in Fig. 3, let t1, t2, t3, and t4 be the time instants corresponding
to when Ji attempts to issue R, and when R is issued, satisfied, and complete, respectively.

▶ Lemma 13. For request R, Ji suffers request blocking for at most Lq

sum,⌈ m−kq
kq

⌉
time units.

Proof. By Def. 3, Ji does not suffer any pi-blocking during [t1, t2) and [t3, t4). By Lemma 4
and the definition of t2, Ji suffers pi-blocking during the entire duration of [t2, t3), so it suffices
to upper bound (t3 − t2). If SQq contains fewer than kq requests at time t2, then t3 − t2 = 0
holds by Rule K2, so assume otherwise. At time t2, no two requests in SQq and FQq are from
the same task. By Rule K3, R is satisfied when it is dequeued from FQq. Thus, by Lemma 12,
at most m − kq requests are required to be dequeued to satisfy R. By Rule K2, kq jobs
hold ℓq throughout [t2, t3). By Rule K1 and Lemma 5, each resource-holding job is always
scheduled. Thus, per Lq

sum,h time units during [t2, t3) at least h · kq requests complete – and
hence, by Rule K3, at least h ·kq requests are dequeued from FQq. Dequeuing m−kq requests
from FQq thus requires at most Lq

sum,⌈ m−kq
kq

⌉
time units, so t3 − t2 ≤ Lq

sum,⌈ m−kq
kq

⌉
. ◀

Similar to the OLP-F, no release blocking occurs under the k-OLP-F. Therefore, by
Lemma 13, we have the following theorem.

▶ Theorem 14. Under the k-OLP-F , Ji suffers pi-blocking for at most bi =
∑nr

q=1 Nq
i ·

Lq

sum,⌈ m−kq
kq

⌉
time units.

Thus, the k-OLP-F is optimal for k-exclusion locking under C-FIFO scheduling.
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7 Reader-Writer Locks

Some resources can be read without alteration. For such resources, it may be desirable to
support reader-writer (RW) sharing. Here, writers have mutually exclusive access to the
resource, but multiple readers can access the resource simultaneously.

Under RW sharing, it is often desirable to ensure fast read access. However, enabling fast
read access may cause write requests to starve. This can happen under a read-preference
RW lock that never satisfies a write request if a read request is active. More generally, these
observations give rise to an important question: what is the minimum request blocking a
read request can incur without causing a write request to starve?

Lower bound on read request blocking. As we show next, ensuring a read request delay of
2Lq

max − 2 time units can in fact cause writer starvation.
▶ Theorem 15. For m ≥ 8, a task system and a release sequence for it exist such that any
locking protocol that ensures request blocking of at most 2Lq

max −2 time units for read requests
causes unbounded request blocking for write requests under any work-conserving scheduler.
Proof. We give an example task system Γ and a release sequence for it supporting the claim.
Let τ1, τ2, . . . , τm be m sporadic tasks scheduled on m processors. All tasks have WCETs of
L + 1 time units with 2 ≤ L ≤ (m − 2)/3. Fig. 5 illustrates this for m = 8 and L = 2. Each
job’s execution consists of 1.0 time unit of non-CS execution followed by L time units of CS
execution. Tasks τ1, τ2, . . . , τm−1 issue read requests for resource ℓq, while τm issues a write
request for ℓq. The periods of all tasks are m − 1. Each task has an implicit deadline.

Feasibility of Γ. We show that Γ is feasible under a write-preference RW lock. Such lock
does not satisfy any read request if a write request is waiting. Since τm is the only writer task,
under a write-preference RW lock, τm’s jobs acquire ℓq immediately (if no reader jobs hold
ℓq) or immediately after the currently satisfied read requests complete (otherwise). Thus,

E each of τm’s jobs acquires ℓq within L time units of its request issuance.

Since there are m tasks, a processor is always available for τm. Thus, with a WCET
of L + 1 and resource acquisition time of at most L, each job of τm completes within
L + 1 + L = 2L + 1 ≤ 2(m − 2)/3 + 1 < m − 2 + 1 = m − 1 = Tm time units after its release.

For reader tasks τ1, τ2, . . . , τm−1, a read request R issued at time t is satisfied immediately
if there is no waiting write request. Otherwise, by (E), the pending write request by τm’s
job is satisfied by time t + L and complete by time t + L + L = t + 2L (as a processor is
available). Since τm is the only writer task, after completion of the write request, there is no
pending write request. Thus, R is satisfied by time t + 2L. With a WCET of L + 1, the job
issuing R completes within L + 1 + 2L = 3L + 1 ≤ 3(m − 2)/3 + 1 = m − 2 + 1 = m − 1 = Ti

time units after its release. Therefore, Γ is feasible.

Release sequence for Γ. τm releases its jobs periodically from time 1. τ1 releases its first
job at time 0 and its subsequent jobs’ release times are defined as r1,j+1 = fm−1,j − L. The
release times of τi’s jobs with 2 ≤ i < m are ri,j = fi−1,j − L. Thus, for 2 ≤ i < m, we have

ri,j = fi−1,j − L

≥ {Since Ji−1,j executes for L + 1 time units}
ri−1,j + L + 1 − L

= ri−1,j + 1. (1)
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Figure 5 A schedule illustrating Theorem 15.

Similarly, for τ1, it can be shown that

r1,j+1 ≥ rm−1,j + 1. (2)

We now show that consecutive jobs of τi with i < m are released at least Ti time units apart.
For 2 ≤ i < m, by (1), we have

ri,j+1 ≥ ri−1,j+1 + 1
≥ {Applying (1) repeatedly for i − 2 times}

r1,j+1 + 1 + (i − 2)
≥ {By (2)}

rm−1,j + 1 + (i − 1)
≥ {Applying (1) repeatedly for m − 1 − i times}

ri,j + (m − 1 − i) + i

= ri,j + m − 1
= ri,j + Ti. (3)

Similarly, we can show that consecutive jobs of τ1 are released at least T1 time units apart.
We now show that each job of τi with i < m is eligible when it is released by showing

that Ji,j completes before Ji,j+1’s release. For 2 ≤ i < m − 1, in the third step of the
derivation of (3), applying (1) repeatedly for m − 2 − i times instead of m − 1 − i times,
we have ri,j+1 ≥ ri+1,j + (m − 2 − i) + i = ri+1,j + m − 2. Since L ≤ (m − 2)/3 < m − 2
and ri+1,j = fi,j − L, we get ri,j+1 > ri+1,j + L = fi,j . For i = m − 1, the first step in the
derivation of (3) yields rm−1,j+1 ≥ r1,j+1 +1+(m−1−2) = r1,j+1 +m−2 > r1,j+1 +L. Since
r1,j+1 = fm−1,j − L, we get rm−1,j+1 > fm−1,j . For i = 1, applying (1) in (2) repeatedly for
m − 3 times, we have r1,j+1 ≥ r2,j + m − 2 > r2,j + L = f1,j . Thus, ri,j+1 > fi,j for i < m.

Finishing up. We now prove the theorem by showing that Jm,1’s write request is never
satisfied if the request delay for read requests is at most 2L − 2. Assume that Jm,1’s request
is satisfied at time t. We have t > 2, as Jm,1 issues its request at time 2 and J1,1 holds
ℓq then (under a work-conserving scheduling policy, J1,1 acquires ℓq at time 1). Since the
scheduling policy is work-conserving, a job Ji,j must release ℓq at time t. Thus, fi,j = t.
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Figure 6 A schedule illustrating Theorem 16. Read and write CSs are shaded differently.

By the job release pattern of τ1, τ2, . . . , τm−1, there exists a job Ju,v such that ru,v =
fi,j − L = t − L. Since each job is eligible when it is released and there are m tasks, Ju,v

issues a read request R at time ru,v + 1 = t − L + 1 < t (as L ≥ 2). Since Jm,1’s write request
is satisfied at time t, R cannot be satisfied before time t + L. Since the task count is m, Ju,v

is pi-blocked for a duration of at least t + L − (t − L + 1) = 2L − 1 time units. Thus, request
blocking for read requests exceeds 2L − 2 time units, reaching a contradiction. ◀

Thus, read request blocking of at least 2Lq
max − 1 time units is fundamental to avoid

writer starvation. We now establish a lower bound on write request blocking when read
requests suffer request blocking for at most 2Lq

max − 1 time units.5

▶ Theorem 16. For m ≥ 4, there exists a task system and a release sequence for it such
that any locking protocol that ensures at most 2Lq

max − 1 read request blocking causes write
request blocking of (2m − 5)Lq

max − 1 time units under any work-conserving scheduler.

Proof. Let τ1, τ2, . . . , τn be n tasks scheduled on m ≥ 4 processors, where n = 2m − 4. Each
task has a WCET of L + 1 time units with L ≥ 1. Fig. 6 illustrates this for m = 5 and
L = 3. Each job’s execution consists of 1.0 time unit of non-CS execution followed by L

time units of CS execution. Tasks τ1, τ2, . . . , τm−2 issue write requests for resource ℓq, while
τm−1, τm, . . . , τ2m−4 issue read requests for ℓq. Each task’s period is T ≥ (2m − 4) · (L + 1).
The task WCETs sum to (2m − 4) · (L + 1), so assuming implicit deadlines, the task system
can be scheduled by sequentially executing the jobs on a single processor (i.e., it is feasible).

Tasks τ1, τ2, . . . , τm−2 release their first jobs at time 1. Task τm−1 releases its first job
at time 0. For i > m − 1, the release time of Ji,1 is determined as ri,1 = fi−1,1 − 1. Hence,
from time 0, there is always an eligible first job of a task until all first jobs are complete.
Since all WCETs sum to (2m − 4) · (L + 1), under a work-conserving scheduler, the first job
of each task completes by time (2m − 4) · (L + 1) ≤ T . Subsequent job release times can be
easily defined so that each task’s consecutive job releases are at least T time units apart.

We now prove that each first job Ji,1 always incurs pi-blocking when it is waiting for ℓq.
For any job Ji,1 with i > m, we have ri,1 = fi−1,1 − 1 ≥ ri−1,1 + L + 1 − 1 = fi−2,1 − 1 + L.
Since L ≥ 1, we have ri,1 ≥ fi−2,1. Thus, at most two first jobs of the last m − 2 tasks are
pending at the same time. Therefore, at most m − 2 + 2 = m first jobs are pending at any
time, which implies that a job Ji,1 incurs pi-blocking if it is waiting.

5 Assuming higher read request blocking would yield a smaller lower bound on write request blocking.
Note that deriving tight lower bounds for RW locks is much more complicated than for the other locks
considered in this paper because much leeway exists regarding the interplay between readers and writers.
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Table 4 Asymptotically optimal locking protocols for RW locks under s-oblivious analysis.

Scheduling Protocol Release
blocking

Read request
blocking

Write request
blocking

Clustered JLFP CRW-OMLP [11] 2mLmax 2Lq
max (2m − 1)Lq

max

C-FIFO RW-OLP-F (This work) 0 2Lq
max − 1 (2m − 3)Lq

max

Finally, we prove the claim of the theorem by showing that there is a writer job that incurs
pi-blocking for the duration of (2m − 5)L − 1 time units. Job Jm−1,1 issues a read request at
time 1 and acquires ℓq (as the scheduling policy is work-conserving). Fig. 6 illustrates this.
Each job Ji,1 with i < m − 1 issues a write request at time 2.

Each job Ji,1 with i > m − 1 (e.g., the jobs of τ5 and τ6 in Fig. 6) is released 1.0 time unit
before Ji−1,1 completes and issues a read request when Ji−1,1 completes. Thus, Ji,1’s read
request cannot be delayed to satisfy two or more pending write requests without incurring
read request blocking of at least 2L time units. As a result, at most one write request can
be satisfied between two consecutive read requests. Thus, there is a write request from a job
Ju,1 with i < m − 1 (e.g., τ3’s job in Fig. 6) that must be satisfied after all read and write
requests of each job Ji,1 with i ̸= u complete.

Since Ju,1 issues its request at time 2 and Jm−1,1 (e.g., τ4’s job in Fig. 6) acquires ℓq at
time 1, Jm−1,1 pi-blocks Ju,1 for L − 1 time units. The stated job release pattern ensures
that no two of the remaining m − 3 read requests (e.g., those by τ5 and τ6 in Fig. 6) overlap,
so they pi-block Ju,1 for (m − 3)L time units. Finally, Ju,1 is pi-blocked by each of the other
m − 3 write requests (e.g., those by τ1 and τ2 in Fig. 6) for (m − 3)L time units. Thus, Ju,1
incurs pi-blocking for L − 1 + (m − 3)L + (m − 3)L = (2m − 5)L − 1 time units. ◀

For simplicity, Theorems 5 and 16 are stated for work-conserving scheduling. However,
both theorems are also true under a wider class of schedulers and locking protocols that are
top-c-work-conserving. On a c-processor cluster, a top-c-work-conserving scheduling ensures
that any top-c-highest priority ready job immediately acquires a shared resource (including
processor) if such a resource is idle. Note that a work-conserving scheduler and locking
protocol combination is also top-c-work-conserving.

Asymptotically optimal RW locking protocols. For RW locks, the CRW-OMLP is an
asymptotically optimal locking protocol under clustered JLFP scheduling [11]. The CRW-
OMLP is a phase-fair RW locking protocol. Phase-fair RW locks satisfy read and write
requests in alternating phases [12]. At the beginning of a reader phase, all waiting read
requests are satisfied simultaneously, while at the beginning of a writer phase, a single waiting
write request is satisfied. Tbl. 4 summarizes the CRW-OMLP.

The RW-OLP-F. We now introduce the read-optimal RW locking protocol under C-FIFO
scheduling (RW-OLP-F ), which achieves optimal pi-blocking for read requests under C-FIFO
scheduling. The RW-OLP-F is a phase-fair RW locking protocol that achieves 2Lq

max − 1
(resp., (2m − 3)Lq

max) request blocking for read (resp., write) requests – here, however, we
only prove a bound of 2Lq

max for reads due to space limitation. Unlike the CRW-OMLP, the
RW-OLP-F has no release blocking under C-FIFO scheduling.

Structures. For each resource ℓq, we have two queues RQ1
q and RQ2

q that contain read
requests for ℓq, and a FIFO queue WQq that contains write requests for ℓq. One of the read
queues acts as a collecting queue and the other acts as a draining queue. The roles of RQ1

q

and RQ2
q alternate, i.e., each switches over time between being the collecting queue and being

the draining queue. Initially, RQ1
q is the collecting queue and RQ2

q is the draining queue.
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Reader rules. Assume that a job Ji attempts to issue a read request R for resource ℓq. Let
RQc

q and RQd
q be the collecting and draining queues, respectively, when Ji issues R.

R1 Ji is allowed to issue R only if it is one of the c highest-priority eligible jobs in its cluster.
Ji suspends if necessary to ensure this condition.

R2 If WQq is empty when Ji issues R, then R is immediately satisfied and enqueued in
RQd

q . Otherwise, Ji suspends and R is enqueued in RQc
q.

R3 If R is in RQc
q, then it is satisfied (along with all other requests in RQc

q) when RQc
q

becomes the draining queue (see Rule W3). If RQc
q becomes the draining queue at time t

and a read request is issued at time t, then that request is enqueued in RQc
q before making

it the draining queue. R is removed from RQc
q when it is complete. If RQc

q becomes
empty because of R’s removal, then the head of WQq (if any) is satisfied.

Writer rules. When a job Jw attempts to issue a write request R for a resource ℓq, it
proceeds according to the following rules.
W1 Jw is allowed to issue R only if it is one of the c highest-priority eligible jobs in its cluster.

Jw suspends if necessary to ensure this condition.
W2 If RQ1

q, RQ2
q, and WQq are empty when R is issued, then R is immediately satisfied

and enqueued in WQq. Otherwise, R is enqueued in WQq and Jw suspends.
W3 Let RQd

q and RQc
q be the draining and collecting queues, respectively, when R is the

head of WQq. R is satisfied when R is the head of WQq and RQd
q is empty. When R

is complete, R is dequeued from WQq and if RQc
q is non-empty, then RQc

q (resp., RQd
q)

becomes the draining (resp., collecting) queue. Otherwise (RQc
q is empty), the new head

of WQq (if any) is satisfied.

Analysis. We now determine an upper bound on request blocking. For m ≤ 2, by Lemma 4
and Rules R1 and W1, there are at most two active requests and at most one waiting request
at any time, so request blocking is at most Lq

max time units for both reads and writes.
Henceforth, we assume m ≥ 3. The following lemma follows from Lemma 4 and Rules R1
and W1; we omit its proof as it is similar to Lemma 7.

▶ Lemma 17. The total number of requests in RQ1
q, RQ2

q, and WQq is at most m.

We now give two helper lemmas.

▶ Lemma 18. If a write request R is the head of WQq at time t, then it is satisfied by
time t + Lq

max.

Proof. Let RQc
q and RQd

q be the collecting and draining queue, respectively, at time t. If R
is not satisfied at time t, then by Rule W3, RQd

q is non-empty at time t. By Rule R3, jobs
with requests in RQd

q hold ℓq at time t. Let t′ be the time instant when all such requests
are complete. By Lemma 5 and Rule R1, t′ ≤ t + Lq

max. By Rule R2, no read requests are
enqueued in RQd

q during [t, t′). Thus, RQd
q becomes empty at time t′. By Rule W3, R is

satisfied at time t′. Thus, the lemma holds. ◀

▶ Lemma 19. If a write request R is the head of WQq at time t, then it is complete by
time t + 2Lq

max.

Proof. By Lemma 18, R is satisfied by time t + Lq
max. By Lemma 5 and Rule W1, R

completes within Lq
max time units after being satisfied. Thus, the lemma holds. ◀
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We now determine an upper bound on the request blocking suffered by a job when it
issues a read request. We consider a job Ji that issues a read request R for resource ℓq. As
depicted in Fig. 3, let t1, t2, t3, and t4 be the time instants corresponding to when Ji attempts
to issue R, and when R is issued, satisfied, and complete, respectively. In the lemma below,
for simplicity, we show that request blocking for read requests is at most 2Lq

max. A tight
bound of 2Lq

max − 1 can be established by a detailed analysis involving multiple cases.

▶ Lemma 20. For a read request R, Ji suffers request blocking for at most 2Lq
max time units.

Proof. Ji suffers pi-blocking for the duration of [t2, t3). Let RQc
q and RQd

q be the collecting
and draining queue, respectively, at time t2. If WQq is empty at time t2, then t2 = t3 holds
according to Rule R2, so assume otherwise. By Rule R2, R is enqueued in RQc

q. Let R′ be
the request at the head of WQq at time t2. Let t′

2 be the time instant when R′ completes.
By Lemma 19, t′

2 ≤ t2 + 2Lq
max holds. By Rule W3, RQc

q becomes the draining queue at time
t′
2. Thus, by Rule R3, all requests in RQc

q, including R, are satisfied at time t′
2, implying

t3 = t′
2. Therefore, we have t3 − t2 ≤ 2Lq

max. ◀

Finally, we give an upper bound on the request blocking incurred by a job when issuing a
write request. Let Jw be a job that issues a write request R at time t.

▶ Lemma 21. For a write request R, Jw incurs request blocking for at most (2m − 3)Lq
max

time units.

Proof. If no request holds ℓq at time t, then by Rule W2, R is immediately satisfied. This
leaves two cases.

Case 1. A job with a read request holds ℓq at time t. By Lemma 17, RQ1
q, RQ2

q, and WQq

hold at most m requests at time t. Since there is an active read request, at most m − 2 write
requests precede R in WQq. By Rule W3, each of those write requests becomes the head
of WQq when its preceding write request completes. By Lemma 19, a write request at the
head of WQq completes within 2Lq

max time units from when it becomes the head. Thus, all
m − 2 write requests that precede R in WQq are complete by time t + 2(m − 2)Lq

max. By
Lemma 18, after becoming the head of WQq, R is satisfied within an additional Lq

max time
units. Thus, R is satisfied by time t + (2m − 3)Lq

max.

Case 2. A job with a write request R′ holds ℓq at time t. We consider two subcases.

Case 2a. WQq contains m requests at time t. Thus, m − 1 requests precede R in WQq.
By Lemma 5 and Rule W1, R′ completes within Lq

max time units from t. By Lemma 4 and
Rules R1 and W1, no requests are issued before R′ completes. Thus, by Rule W3, the write
request R′′ following R′ is satisfied when R′ is complete. By Lemma 5 and Rule W1, R′′

completes within Lq
max time from when it is satisfied. Thus, the top two requests in WQq

are complete by time t + 2Lq
max. By Lemma 19, each of the remaining m − 3 write requests

preceding R is complete within 2Lq
max time units after becoming the head of WQq. Thus,

R becomes the head of WQq by time t + 2Lq
max + 2(m − 3)Lq

max = t + 2(m − 2)Lq
max. By

Lemma 18, R is satisfied within Lq
max time units after becoming WQq’s head. Thus, R is

satisfied by time t + (2m − 3)Lq
max.

Case 2b. WQq contains at most m − 1 requests at time t. Thus, at most m − 2 requests
precede R in WQq. By Lemma 5, R′ completes within Lq

max time units from t. By Lemma 19,
each of the remaining m − 3 write requests preceding R′ completes within 2Lq

max time units
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from when it becomes the head of WQq. Thus, R becomes the head of WQq within
Lq

max +2(m−3)Lq
max = (2m−5)Lq

max time units from t. By Lemma 18, R is satisfied within
Lq

max time units after becoming WQq’s head. Thus, R is satisfied by time (2m−4)Lq
max. ◀

Similar to the OLP-F, no job suffers release blocking due to a resource-holding job under
the RW-OLP-F. By Lemma 20 and 21 and letting Nq,r

i and Nq,w
i denote the maximum

number of read and write requests for ℓq by τi, we have the following.

▶ Theorem 22. Under the RW-OLP-F , Ji is pi-blocked for at most

bi =
nr∑

q=1
(Nq,r

i · 2Lq
max + Nq,w

i · (2m − 3)Lq
max) .

As mentioned already, the 2Lq
max term above can be replaced by 2Lq

max −1 at the expense
of more lengthy analysis. By Rules R1, R2, W1, and W2, FIFO scheduling and RW-OLP-F
ensures top-c-work-conserving property. Thus, by Theorems 15 and 16, the RW-OLP-F
ensures optimal request blocking for read requests, while ensuring that the request blocking
for write requests is just under two request lengths of optimal.

8 Experimental Evaluation

In this section, we present the results of experiments we have conducted using the SchedCAT
toolkit [1] to evaluate our proposed locking protocols.

Task system generation. Our task-system generation method is similar to that used in
prior locking-related schedulability studies [6,9,32]. We generated task systems randomly for
systems with {4, 8, 16} processors. For each processor count, we generated task systems that
have a normalized utilization, i.e.,

∑n
i=1 ui/m, from 0.2 to 0.9 with a step size of 0.1. We chose

the number of tasks uniformly from [2m, 150]. We generated each task’s utilization uniformly
following procedures from [19]. We chose each task’s period randomly from [3, 33]ms (short),
[10, 100]ms (moderate), or [50, 500]ms (long). We set each task’s WCET Ci to Ti · ui rounded
to the next microsecond.

We considered {m/4, m/2, m, 2m} number of shared resources. For each τi and resource
ℓq, we selected τi to access resource ℓq with probability pacc ∈ {0.1, 0.25, 0.5}. If so selected,
τi was defined to access ℓq via Nq

i ∈ {1, 2, . . . , 5} requests. For each Nq
i > 0, we chose

the maximum request length Lq
i randomly from three uniform distributions ranging over

[1, 15]µs (short), [1, 100]µs (medium), or [5, 1280]µs (long). A chosen Lq
i value was decreased

accordingly if it caused the sum of all request length of τi to exceed Ci. For each combination
of m, normalized utilization, Ti, Lq

i , pacc, and nr, we generated 1,000 task systems. We call
each combination of these parameters a scenario.

Experiment 1. In our first experiment, we considered mutex sharing. Each task had a soft
timing constraint, meaning that it was deemed schedulable if its response time was bounded.
We considered resource synchronization under the OLP-F, the OMLP [11], the C-OMLP [13],
the OMIP [7], and the FMLP [5]. For the OLP-F, each task system’s schedulability was tested
under global FIFO scheduling [22]. For the remaining protocols, s-oblivious schedulability
tests were performed under global EDF scheduling [16].6 For each scenario, we assessed
acceptance ratios, which give the percentage of task systems that were schedulable under
each locking protocol. We present a representative selection of our results in Fig. 7.

6 The same schedulability test also applies for a wider class of global schedulers including FIFO.
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Figure 7 Experimental results.

▶ Observation 1. The average improvement under the OLP-F over the OMLP, the C-OMLP,
the OMIP, and the FMLP was 20.2%, 14.9%, 16.4%, and 27.5%, respectively.

This can be seen in insets (a) and (b) of Fig. 7. Unsurprisingly, schedulability was
improved under the OLP-F because of lower pi-blocking compared to the other protocols.
In some cases, as depicted in Fig. 7(b), all protocols had similar schedulability. This can
happen when the number of request-issuing jobs for each resource is small (e.g., less than
the number of processors), in which case all protocols have similar pi-blocking bounds.

Experiment 2. This experiment pertains to RW sharing. To generate task systems, we used
one additional parameter pwrite ∈ {0.1, 0.2, 0.3, 0.5, 0.7}. We defined each resource access to
be a write (resp., read) access with probability pwrite (resp., 1 − pwrite). In this experiment,
we considered soft real-time scheduling with resource synchronization under the RW-OLP-F,
the CRW-OMLP [13], and the OLP-F. Each task system’s schedulability was tested under
global FIFO scheduling when the OLP-F and the RW-OLP-F were employed, and under global
EDF scheduling otherwise. We have the following observation.

▶ Observation 2. The RW-OLP-F improved schedulability over the CRW-OMLP across all
scenarios. The RW-OLP-F had less schedulability than the OLP-F when write accesses were
more frequent, i.e., high pwrite values.

This can be seen in Fig. 7(c). The improved pi-blocking bound enabled higher schedulab-
ility under the RW-OLP-F. The RW-OLP-F had better or equal schedulability than the OLP-F
across 90% of the total scenarios. Since the RW-OLP-F has higher write request blocking
compared to the OLP-F (which does not have optimal read request blocking), the OLP-F had
better schedulability than the RW-OLP-F when pwrite values are high, e.g., pwrite = 0.7.
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Experiment 3. In this experiment, we considered hard real-time scheduling under mutex
locks. For each task τi, we randomly chose a relative deadline between [Ti, 2Ti]. We considered
partitioned scheduling because of the lack of hard real-time schedulability tests for global
FIFO scheduling. We used the worst-fit bin packing heuristic to partition each task system.
We compared schedulability under the OLP-F and partitioned FIFO scheduling with the
partitioned OMLP (the C-OMLP with c = 1) and partitioned EDF scheduling.

▶ Observation 3. The partitioned OMLP had better schedulability compared to the OLP-F .

This can be seen in Fig. 7(d). Despite having lower pi-blocking and bounded response
times, the partitioned OMLP enabled better schedulability because of the optimality of
uniprocessor EDF in scheduling hard real-time workloads. Note that, unlike for EDF, the
employed FIFO schedulability test was non-exact [4].

9 Related Work

The literature on suspension-based multiprocessor real-time locking protocols is quite vast
(e.g., [7, 11, 13–15,17, 20, 21, 23–25,27, 29]). An excellent recent survey is given in [10]. Below,
we comment further on a few specific relevant protocols.

In work on mutex locks, the FMLP [5] was the first multiprocessor locking protocol to be
studied under s-oblivious analysis. While relatively simple, the FMLP has O(n) pi-blocking
under s-oblivious analysis. The first mutex protocols that were shown to have asymptotically
optimal s-oblivious pi-blocking were the OMLP and its variants, which include protocols
applicable under partitioned, global, and clustered JLFP scheduling [11,13,14]. In later work,
the OMIP [7] was presented; it upholds an independence preserving property that results in
asymptotically optimal s-oblivious pi-blocking under clustered JLFP scheduling.

The first multiprocessor mutex locking protocols were designed to be studied under
s-aware analysis. Many of these protocols (e.g., the MPCP [27], the PPCP [17], the PIP [26],
etc.) were inspired by classical uniprocessor locking protocols. The FMLP+ [9] is an extension
of the FMLP that has been shown to have asymptotically optimal s-aware pi-blocking under
clustered JLFP scheduling. In other work, linear-programming techniques were proposed
that enable improved s-aware analysis of various protocols, including the PIP, the PPCP, and
the FMLP, under global and partitioned fixed-priority scheduling [8, 32].

10 Conclusion

In this paper, we have presented optimal suspension-based multiprocessor locking protocols
for mutex, k-exclusion, and RW synchronization. In particular, we have shown that the
s-oblivious lower bound of m − 1 request lengths for mutex locks is indeed tight under FIFO
scheduling. We have also provided a tight s-oblivious lower bound on read-request blocking
for RW locks. All three locking protocols presented herein can be used together in the same
system without jeopardizing the presented analysis. Moreover, spin-based versions of these
protocols can be easily obtained by following the same design principles.

For some non-FIFO JLFP schedulers, it may be possible that 2m − 1 request lengths is
indeed a tight lower bound on s-oblivious pi-blocking for mutex locks. Showing this would
require a new lower-bound proof. As seen in Sec. 7, finding task systems that justify such a
lower bound can be quite difficult. The results of this paper show that any task system used
to justify a 2m − 1 lower bound must necessarily not be FIFO-scheduled. In some sense, this
is unfortunate, as FIFO schedules are somewhat easier to deal with in lower-bound arguments,
given that having “top-c” priority is a stable property for FIFO-scheduled jobs.
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Abstract
To facilitate the safe adoption of multi-core platforms in real-time systems, a plethora of recent
research efforts aim at bounding the delays induced by interference upon accessing the shared
memory resources in these platforms. These efforts, despite their value, are scattered, with each
one focusing solely on only one of these resources with the premise that latency bounds separately
driven for each resource can be added all together to provide a safe end-to-end memory bound.
In this work, we put this assumption to the test for the first time by 1) considering a realistic
multi-core memory hierarchy system, 2) deriving the bounds for accessing the shared resources in
this system, and 3) highlighting the limitations of this widely-adopted approach. In particular, we
show that this approach leads to not only excessively pessimistic but also unsafe bounds. Motivated
by these findings, we propose GRROF: a novel approach to predictably and efficiently schedule
memory requests while traversing the entire memory hierarchy through coordination among arbiters
managing all the resources in this hierarchy. By virtue of this novel mechanism, we managed to
exploit pipelining upon analyzing the latency of the memory requests for tightly bounding the
worst-case latency. We prove in the paper that GRROF enables us to derive a drastically tighter
bound compared to the common additive latency approach with more than 18× reduction in the
end-to-end memory latency bound for a modern Out-of-Order quad-core platform. The reduction is
further improved significantly with the increase in the number of cores. The proposed solution is fully
prototyped and tested in a cycle-accurate simulation. We also compare it with real-time competitive
state-of-the-art and performance-oriented solutions existing in modern Commercial-off-the-Shelf
(COTS) platforms.
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17:2 A Tight Holistic Memory Latency Bound

1 Introduction

With the increasing performance requirements and amounts of data to be processed by
modern real-time systems, adopting multi-core platforms becomes favorable, if not necessary.
One of the main roadblocks to this adoption is the architectural complexity of these platforms,
which threatens the timing analyzability of the system and the ability to derive safe yet tight
Worst-Case Execution Time (WCET) for real-time tasks. In particular, the several memory
resources among the cores pose a significant challenge in bounding the interference-induced
delays suffered upon accessing these resources. Therefore, the real-time community has
recently invested significant (but somewhat scattered) efforts to address this challenge at each
of the different memory resources, including interconnects [14,25,42], caches [8,11,27,28,37,41],
and main memories [1, 6, 9, 20]. Each of these efforts focused solely on one of these resources
with the premise that latency bounds separately driven for each resource can be added
altogether to provide a safe end-to-end memory bound, which we refer to as the additive
latency approach [10].

In this work, we assess this assumption by conducting the following contributions.
1. We consider a comprehensive and realistic multi-core memory hierarchy system modeled

after Commercial-off-the-Shelf (COTS) platforms, where they are independent resources
that can be accessed in parallel. This includes a split-transaction interconnect between
private L1 caches and the shared Last Level Cache (LLC) composed of a request and
a response bus, a realistic cache model with write buffers and non-blocking support to
enable several requests to be serviced in parallel, a bankized LLC with several independent
banks that can be accessed in parallel, and a system bus to carry requests from the
LLC misses and write backs to the memory controller to be sent to the off-chip memory.
Section 3 elaborates on this system model.

2. We derive the bounds for the resources in this system following the aforementioned
additive latency approach by considering each resource independently. We then use this
step to highlight two limitations of this approach. In particular, a) on the one hand, it
leads to excessively pessimistic bounds to the level that they reach several thousands of
cycles for one request and hence becomes practically useless. This is due to the aggressive
reordering and parallelism deployed in these COTS platforms. b) On the other hand,
it leads to unsafe bounds due to the fact that each separate resource has to make local
assumptions about the ordering of requests that does not necessarily align with the actual
request orders in the system. These two limitations are further discussed in Section 2.2
and are illustrated with a numerical example in Section 4.

3. To address this problem, we propose the Global Round Robin Oldest-First (GRROF) as a
novel methodology to predictably and efficiently schedule memory requests upon traveling
through the entire memory hierarchy. Instead of managing resources independently and
analyzing them in isolation from each other, GRROF enables arbiters to operate fully in
parallel yet coordinate by sharing and updating a centralized engine that tracks states
about requests currently in the system. More details about this approach are provided in
Section 4.

4. We use this coordination to conduct a novel analysis that derives a bound, for the first
time to the best of our knowledge, on the end-to-end latency suffered by a request upon
accessing the memory hierarchy including accessing the interconnect, the LLC, the system
bus to the off-chip DRAM, if it is a miss in the LLC, and all the way until it returns to
its requesting core and retires. This novel analysis leverages GRROF to pipeline requests
among these resource and apply the delay composition theorem originally proposed in [21].
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Table 1 DDR4-2400U Timing Constraints [38]. l and s refer to the large (same bank group) and
small (different bank groups) timing constraints, respectively.

Inter-Bank Constraints Intra-Bank Constraints
Description Cycles Description Cycles

tRRD ACT to ACT l=6, s=4 tRL RD to DATA 18
tF AW 4 ACT Window 26 tW L WR to DATA 12
tW T R WR DATA to RD l=9, s=3 tW R WR DATA to PRE 18
tW toR WR to RD 25 tRP PRE to ACT 18
tRT W RD to WR 12 tRCD ACT to CAS 18
tBUS DATA 4 tRT P RD to PRE 9
tCCD CAS to CAS l=6, s=4 tRC ACT to ACT 57

tRAS ACT to PRE 39

This leads to a drastically tighter bound compared to the common additive latency
approach. This reaches more than 18× reduction in a modern Out-of-Order quad-core
platform. The analysis is derived in Section 5.

5. We prototype this whole memory system in a cycle-accurate simulator in addition to
three other approaches. The first two are modeled after predictable hard-ware real-time
solutions, such as Round-Robin (RR) [7,36] and Round-Robin Oldest-First (RROF) [30,33],
while the third represents a First-Ready First-Come First-Serve (FRFCFS) approach
that reorders requests to increase system performance and is commonly used in COTS
platforms. Section 6 discusses the detailed results of these comparisons. And finally,
Section 7 is the conclusion.

2 Background and Related Work

2.1 DRAM Memory Background

DRAM device is the off-chip main memory that communicates with on-chip processing
elements through a Memory Controller (MC). The device consists of multiple banks of 2D
array structure that are indexed by row and column addresses and accessed through data,
address, and command buses. Accessing data from a DRAM bank is generally a two-stage
process. 1) The row address is provided to activate the requested row through an activation
(ACT) command. 2) The column address is provided to conduct the requested read/write
operation through a CAS (RD/WR) command. Each DRAM bank also has a row buffer that
holds the most recently accessed row from that bank. This enables future accesses to the
same row by read/write from the buffer directly without re-activating the row (row hit), and
that only requires a CAS command. On the other hand, if a request accesses a row different
than the one in the buffer (row miss), the MC has first to pre-charge the row through a PRE
command, and then issues the ACT and CAS commands. Those commands (PRE, ACT,
and R/W CAS) should be separated by the timing constraints defined in the DRAM JEDEC
standard [38] to ensure a correct behavior from the DRAM. Table 1 shows the relevant timing
constraints. Some of these constraints apply to the commands of the same bank (intra-bank),
while others apply to the commands among different banks (inter-bank). A command is
considered intra-ready or inter-ready when it satisfies its intra-bank or inter-bank constraints,
respectively, and it becomes ready when both constraints are met.
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2.2 Motivation: State-of-The-Art Limitations

The current paradigm to calculate the total WCET of a task in a multi-core platform
while accounting for the interference along the memory hierarchy is to use the additive
latency approach [10]. In this approach, every resource that is subject to contention is
analyzed separately (i.e., independent of other resources) to derive an upper bound on
the latency suffered upon accessing that resource. Afterwards, all latency bounds of all
resources can be added together to provide an overall safe bound. Most of the existing work
in bounding memory-related interference follows that approach; for instance, by focusing on
caches [12,13,18,23,33], DRAM [15,16,30,31], or memory interconnect [14,17]. Thus, we
make two critical observations about this approach.

1) On the one hand, this analysis conducted separately at each resource has
to assume the maximum possible interference at this resource. This has to be
applied to all considered resources leading to very pessimistic bounds when all added together.
For example, for a multi-core system with M Out-of-Order (OoO) cores, each of which
can have Npend possible outstanding requests, the analysis has to assume the maximum
possible interfering requests from all other cores on the resource under analysis, which is
(M − 1) · Npend. For example, existing work in analyzing DRAMs has considered this number
of possible competing requests [15, 43]. We make the observation that this is due to the
fact that COTS platforms, to optimize performance, deploy aggressive parallelism among
these resource and reorderings among requests targeting them. They do not maintain a global
ordering view that is shared by all these resources. Using this observation, we show that by
providing such global ordering, GRROFenables us to derive a considerably tighter bound
by making a holistic analysis of all the resources amenable. 2) On the other hand, the
conducted analysis considering only one resource can lead to unsafe assumptions.
In particular, in the case of analyzing requests from an OoO core with multiple outstanding
requests, the analysis has to consider the request that arrives first to the resource under
consideration to be the oldest from that core. This is, for example, what is conducted in the
existing analysis for DRAMs [32] and caches [33]. Although this is true from this resource
perspective, it is not necessarily valid from the real (core issuance) perspective. For instance,
in a real multi-core platform, where there exists parallelism in the memory hierarchy, a
younger request can arrive at a resource before an older one from the same core. This simply
destroys the notion of older request from a core perspective, which can entail significant
delays to that request upon being arbitrated at one of the resources. The only way to derive
a safe bound on such a case is to always assume that the request under analysis arrives at
this resource last after the maximum possible number of earlier requests from the same core.
This further pushes the pessimism of the analysis leading to extremely significant latency
bounds. We will discuss these limitations more with an illustrative example in Section 4 and
analytically bound the delays using the additive latency approach in Section 5.3.

2.3 Delay Composition Theorem for Real-Time Pipelines

Our analytical bounds use the delay composition strategy first introduced in [21] and apply it
to the whole memory hierarchy. While this analysis method has been introduced to compute
the worst-case latency of distributed real-time jobs, it has also been previously applied to
obtain upper latency bounds for DRAM requests [15,16,43]. In detail, the analysis considers
a set of jobs, which we will equate to hardware requests, executing on a given sequence
of resources (or pipeline stages). Each request has a known worst-case execution time on
each stage; once a request finishes executing on a stage, except the last, it immediately
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becomes ready for the next stage. The total latency of a request is defined by the difference
between the time it finishes execution on the last stage in the pipeline, and the time at
which it arrives on the first stage. At each stage, requests are scheduled according to either a
fixed-priority preemptive or a fixed-priority non-preemptive policy; in this paper, we employ
the latter since it matches the behavior of hardware resources. The main result in [21] is
that pipelining allows us to constrain the interference caused by higher priority requests on a
given request under analysis rua: such interference is limited to the longest execution time
of a higher priority request r on any stage, rather than the sum of r’s execution times on all
stages. Intuitively, the idea is that once r “gets ahead” of rua, it will become ready and start
executing on successive stages ahead of it; therefore, it cannot cause maximum interference
on rua on each stage.

However, for this property to hold, the theorem requires the relative priority of requests
to remain the same on all stages: if r temporarily drops its priority below that of rua on
a stage, it might be delayed by other lower-priority requests on that stage; and once it
regains its higher priority on a later stage, it might interfere again with rua. One of the main
contributions of this paper is proposing a novel architecture that enables the coordinated
management of all memory resources (i.e., stages) such that this property is satisfied. As
a result, this enables us to leverage the pipelining feature from the theorem to derive a
significantly tighter holistic memory latency bound.

Finally, the original delay composition analysis in [21] assumes that all requests traverse
the same pipeline stages. This is not generally the case for a modern memory hierarchy
where requests of different types can access resources in a different order. Consider, for
example, a demand miss request from a core compared to a write-back request of an evicted
line from either L1 or LLC. We will thus use the improved analysis in [22], which supports
such an extension. The key idea in the analysis is to split every higher priority interfering
request into a set of segments: each segment represents the execution of that request on a
sequence of consecutive stages in the path of the request under analysis, encountered either
in the same or exactly in reverse order.

3 System Model

3.1 Architecture
This section introduces the hardware architecture considered in this paper, as shown in
Figure 1a.

Processing Cores. We consider a multi-core system with M cores P1, .., Pi, .., PM ,
which can be In-order (IO) or OoO cores. OoO cores can have multiple outstanding
memory requests. We denote the maximum number of such in-flight requests as Npend,
which is usually determined by the number of available entries in the Miss Status Holding
Registers (MSHRs) in the platform’s caches [41,43].
Caches. We assume each core has exclusive access to a private cache (L1), and all the
cores share an on-chip Last-Level Cache (LLC). In line with related work, we assume a
partitioned LLC to eliminate data interference between cores at the LLC level [8]. Our
proposal does not require a particular technique for partitioning; however, for the analysis,
we assume a set-partitioned LLC. L1s and LLC are write-back write-allocate caches and
implement Least Recently Used (LRU) replacement policy. Unlike state-of-the-art works
in cache analysis in the real-time domain, a critical aspect of this paper is that we consider
a more realistic cache model that employs several of the optimizations commonly deployed
in COTS cache systems to improve system performance. 1) MSHRs. In order to leverage
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(a) System model. (b) Cacheline hit in
LLC (T1).

(c) Cacheline hit in
the write-back buffer
of LLC (T2).

(d) Cacheline hit in
the MC requests buf-
fer (T3).

(e) Cacheline miss
in LLC and hit in
DRAM (T4).

(f) Write-back an
evicted Cacheline
from L1 cache (T5).

(g) Evict dirty
Cacheline from LLC,
Clean state in L1
(T6).

(h) Evict dirty Cach-
eline from LLC, Dirty
state in L1 (T7).

Figure 1 Considered system model (a) and different request types for both demand (b – e) and
write-back (f – h) requests.

the performance gain from the OoO cores, we also consider a non-blocking cache that
can service multiple requests at a time. Non-blocking cache is an old concept [26] that
is widely adopted in modern COTS platforms. The considered caches allow both a
hit-over-miss and a miss-over-miss (i.e., servicing hits and misses while there is a pending
miss), subject to the number of MSHR entries. 2) Allocate-on-Fill. We consider an
allocate-on-fill cache, where cache lines that miss in the cache are allocated in the data
array only upon receiving the data from the lower memory. This avoids unnecessary early
eviction of cache lines and hence can enable more hits [2]. 3) Write Buffer. Caches
employ a write buffer where it places dirty lines upon eviction to be written to the lower
memory level. This enables a faster allocation for the new cache line without waiting for
the evicted line to be written to that lower memory. Similar to MSHR, write buffering is
a standard technique in modern COTS platforms [39] including Intel’s [19] and ARM’s [3].
It does not only exist in high-end platforms, but even the low-end ones usually used in
real-time embedded systems such as the ARM M4 includes some form of a write buffer [4].
4) Write Buffer Hits. Furthermore, the cache controller allows hitting in its write-back
buffer if it receives a request to a dirty cache line that exists in the write buffer; hence,
preventing unnecessary high miss latency. Upon hitting in the write buffer, the cache
controller takes two simultaneous actions to serve such requests: it sends the requested
data to the requestor and saves the data again in the cache’s data array. 5) Bankized
LLC. We consider a multi-bank LLC where data is distributed over N cache banks;
B1, .., BN . LLC banks are independent and can serve different requests in parallel; hence,
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they are modeled as separate resources, and the process time of the data in/out the data
arrays of a bank is cBANK . Since each LLC bank is independent, it will have its own set
of write buffer and MSHRs. We assume that both write buffers and MSHRs in shared
LLC are not source of interference among cores. This is because their sizes in COTS
platforms are usually set large enough to accommodate the maximum number of possible
outstanding requests from all cores in the system. Even in the case that this assumption
does not hold for some particular platform, existing works can be used to eliminate the
effect on request latency such as the work in [41] for MSHRs and in [5] for write buffers.
6) Miss Forwarding. The caches deploy a common optimization to reduce the miss
penalty, where requests can be determined to be whether a hit or a miss by checking the
tag/status bits. This tag checking can be done in parallel to and independent of accessing
the cache data array. Consequently, upon a miss, the cache controller forwards the miss
to be filled from the lower level memory without accessing the data array, which reduces
miss penalty. Additionally, once the data refill arrives from the lower memory, it can be
immediately forwarded to the requesting core on the response bus (subject to arbitration
as detailed later on), while simultaneously placed to be written also to the cache data
array. 7) Immediate Back Invalidation. We also assume that back invalidation from
a lower level of memory uses a dedicated special bus, and hence, do not interfere with
demand requests on the request bus.
Interconnect Bus. The system model considers a split-transaction shared bus between
the L1 caches and the LLC. This bus comprises two independent buses: a request bus
for sending requests from the L1s to the LLC and a response bus for data transmissions.
This architecture allows a concurrent operation for the requests and data responses on
the buses, where the transmission latency of packets on the request and the response
buses are cREQ and cRESP , respectively.
System Bus. The system bus is the interconnect between the LLC and the main
memory, and used for transmitting requests and data. A packet on the bus can contain a
request, data, or both, and its transmission latency is cSBUS . In our model, we assume
a full-duplex system bus, as shown in Figure 2, which consists of two buses: one is for
packets that are sent from LLC to the main memory (LLC-DRAM bus), and the second
is for the way back from the main memory (DRAM-LLC bus).
Memory Controller and DRAM. Accesses to the off-chip DRAM memory are managed
through an on-chip MC, as explained in Section 2.1. The MC stores incoming requests
from the system bus in per-requestor buffers. We consider a DRAM with n private
banks: b1, .., bn, where the MC maps every request to a bank that is assigned to its core.
Afterwards, the MC translates each request into its corresponding set of commands and
buffers them into the per-bank command queues. The MC arbitrates between the ready
commands based on the arbitration scheme order. Two more COTS features we consider
in our system model. 1) Write Data Queue Hit. We assume that the MC allows
demanding requests to hit in its request data buffers in order to reduce the memory
latency. This means that if a demanding request reaches the request buffers of the MC
while the required data is in one of the outstanding write requests, the data is read
from the buffers directly. 2) Clock Domain Crossing (CDC) Effect. Since off-chip
DRAM can generally operate at a different frequency than the on-chip core one, in our
end-to-end latency calculations, we have to consider the clock domain crossings that
requests suffer upon traversing the memory hierarchy. This can be done simply by doing
clock transformations (or calculating latencies at all stages in terms of absolute nano

seconds). For convention, we refer to the DRAM and core clocks as tDRAM
CLK and tCP U

CLK ,
respectively.
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Arbitration. Arbiters are required in the system to regulate access to shared resources.
The considered resources for arbitration are the request bus, the response bus, each
bank of the LLC, the LLC-DRAM bus, and the three stages of the main memory (PRE,
ACT, CAS). The DRAM-LLC bus does not require an arbiter as it does not incur any
contention. This is because the DRAM-LLC bus is an on-chip bus between the DRAM
memory controller and the LLC; therefore, its data transfer time is much lower than that
of the off-chip DRAM access time. The arbitration scheme we propose to coordinate all
these resources is discussed in detail in Section 4.1.

3.2 Latency Model
For any request r, let ta

r be the time at which r arrives in the system and tf
r the time at

which r finishes executing. Formally, request r is outstanding in interval [ta
r , tf

r ]. As discussed
in Section 3.1, an OoO core can have multiple outstanding requests. Hence, it is essential
to clarify how to compute the latency of a request. Using the same approach as in [31],
we say that r is oldest at time t if it is the earliest arrived request of its core that is still
outstanding at t. Note that because our architecture model allows multiple outstanding
requests to execute in parallel and complete out-of-order, a request r might never become
the oldest. However, if it does, it remains oldest until its finish time tf

r . Furthermore, it
must become oldest either at ta

r , if there is no other outstanding request of the same core, or
at the latest finish time of a request of the same core that arrived before r. The processing
latency of a request is then the time during which it is oldest or zero if it never becomes
oldest. Intuitively, this ensures that we do not count in the latency of a request the queuing
delay caused by other requests of the same core that arrived before it. Note that when a core
generates multiple concurrent requests, the time required to complete executing all requests
is bounded by the sum of their processing latencies.

3.3 Request Model
In line with the delay composition theorem summarized in Section 2.3, we model each request
r as executing on a sequence of stages corresponding to hardware resources in our system
where requests are scheduled based on an arbiter. For LLC and interconnections, such
resources comprise each of the N LLC banks, which we denote with BANK, the request bus
REQ, the response bus RESP, and the LLC-DRAM bus SBUS. Note that the DRAM-LLC
bus is not modeled as a pipeline stage since it is not subject to arbitration, as explained in
Section 3.1.

Similar to [15,16,43], we model DRAM as consisting of three stages: PRE:ACT:CAS.
Each stage models the interference of other requests on commands of the corresponding type.
Note that because we assume private banks in DRAM, such interference can only be caused
by intra-stage DRAM constraints. We define the execution time on any s stage of these
stages as cs. For instance, the execution time on the REQ stage is cREQ, and on the SBUS
stage is cSBUS .

3.4 Request Types
Following the described request model, we classify requests into a set of request types; the
type T (r) of request r determines the list of stages/resources traversed by r. We notice that
requests are issued to the memory system for two main reasons: a load/store request for data
that is miss in the L1 cache or a write-back request for a victim dirty cache line to the lower
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memory level. Thus, the request types are split into two groups. The first one contains the
demanding requests that are miss in the L1 cache, in which a core broadcasts a load/store
request on the request bus and waits for the demanding data to be sent on the response bus
(T1, T2, T3 and T4). This is denoted in Figures 1b – 1e. On the other hand, Figures 1f – 1h
show the write-back requests of a dirty evicted cache line from L1 and LLC, which compose
the second group (T5, T6 and T7). We now explain each of the request types in detail.

T1) REQ:BANK:RESP. This type explains the path for a request demanding a cache line
that exists in the LLC. After the core broadcasts a request on the request bus, the data is
read from the LLC bank and then sent to the core on the response bus (Figure 1b).

T2) REQ:RESP/BANK. In this case, the request hits into data that is found in the
LLC write buffer. Based on the miss forwarding optimization discussed in Section 3.1, the
requested cache line will be sent to the core on the response bus while simultaneously being
rewritten to the LLC bank (Figure 1c).

T3) REQ:SBUS:RESP/BANK. This represents the case of a request that misses in the
LLC bank but hits in the MC. This happens when this request targets a cache line that
has been recently evicted from the LLC and sent to the DRAM; and hence, not yet written
into the DRAM banks. Therefore, the system will fetch the data directly from the memory
controller, and send it back to be simultaneously processed on the corresponding LLC bank,
while also being sent to the requesting core through the response bus similar to the previous
type. This is depicted in Figure 1d.

T4) REQ:SBUS:PRE:ACT:CAS:RESP/BANK. This represents the case where the request
needs to fetch the data from the DRAM device. Accordingly, once the request is issued in the
request bus, and misses in the LLC, the request will be sent to the DRAM on the system bus.
Afterwards, the data will be fetched from the DRAM bank through the PRE:ACT:CAS
stages. Then, the fetched data will be sent to the LLC bank to be written to its data
array and simultaneously to the requesting core through the response bus as illustrated in
Figure 1e.

T5) REQ:RESP:BANK. This type corresponds to a write-back request from L1 to the LLC
due to the eviction of a dirty line. It first sends a request on the request bus to notify the
LLC that it is going to update a cache line, and then it puts the data on the response bus to
the LLC. Finally, the LLC bank gets the data and processes it as delineated in Figure 1f.

T6) SBUS:PRE:ACT:CAS. This type represents the write-back from LLC to DRAM due to
the eviction of a dirty up-to-date cache line from the LLC bank. The LLC sends concurrently
an invalidation message to the L1 caches and a write-back request to the DRAM through
the SBUS. Please note that as aforementioned, the back invalidation to the L1s happens in
its dedicated bus, and hence, is not subject to arbitration. Therefore, it does not have a
dedicated stage. In contrast, the write to the DRAM after traversing the SBUS, requires the
three DRAM stages: PRE:ACT:CAS. This type is shown in Figure 1g.

T7) RESP:SBUS:PRE:ACT:CAS. Similar to T6, this type represents an LLC write-back
of a dirty evicted line to the DRAM. However, unlike T6, the evicted line in this case is
stale, which means that it is updated in the L1 cache. Thus, when the L1 cache receives the
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Figure 2 The architecture of GRROFproviding the global view for all arbiters.

invalidation message, it sends the updated version of the line to the LLC on the response
bus. The cache controller stores the line in its write buffer until the data is received from L1
and then sends a write request to the main memory. Therefore, it requires RESP stage from
L1 to the LLC, SBUS stage from LLC to the DRAM, and then the three DRAM stages:
PRE:ACT:CAS. This type is shown in Figure 1h.

Two important general notes to make about the request types. First, requests of type T2,
T3 and T4 execute in parallel on two stages (BANK and RESP ) instead of a linear sequence
of stages which is the supported model by the existing pipelining analysis in [21]. To be able
to pipeline, we apply the delay analysis to the two possible sequences and take the one that
leads to the worst-case latency. More details on how to apply the delay analysis to such
requests are in Section 5. Second, for the request types accessing the DRAM (namely, T4, T6
and T7), we assume a request targeting a closed row in the DRAM bank. This assumption
is mandatory to provide safe worst-case latency bounds. This is because as explained in
Section 2, requests targeting a closed DRAM row suffer larger delays compared to requests
targeting an open row.

4 GRROF: Coordinating Management of All Memory Resource

In this section, we introduce the proposed architecture to coordinate all arbiters in the
memory hierarchy, enabling us to apply the pipelining idea from the delay composition
theorem. The high-level diagram of the proposed architecture is shown in Figure 2, and we
use Figure 3 as a running example to explain its operation.

Since one of the motivations of this work is the inherent pessimism in considering each
memory resource separately and then applying the additive latency approach, we start with
an illustrative example that highlights this pessimism. Figure 3 considers a system with three
cores P1 – P3 where each Pi issues three requests ri,1-ri,3 to the cache hierarchy. Request’s
arrival to the system is modeled by the up arrows ↑. For example, r1,1, r1,2, and r1,3 from
P1 arrive at the timestamps 1, 9, and 17, respectively. The system has multiple arbitration
stages REQ, BANK0−6, and RESP. In Figure 3a, each stage employs an independent RR
arbiter. Requests r1,1, r2,1, and r3,1 target BANK0, while the other requests are distributed
over the other banks. According to the given scenario and the separate RR arbitration,
request r1,1 incurs a significant delay on RESP stage despite being the oldest request from P1
and does not finish up until timestamp 58 (modeled by the down arrow ↓). More importantly,
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if we use the additive latency approach naively without considering the fact that r1,1 while
being the oldest for P1 might not be the local oldest at each separate resource, the bound
will be the maximum possible interference due to requests from other cores in addition to the
service time of r1,1 itself in each resource. Since this is RR, it will be 2 × 3 + 10 × 3 + 5 × 3=
51 cycles. This is less than the actual suffered bound; and hence, is in fact an unsafe bound.
The only possible way to derive a safe bound is to assume that the request under analysis
is always arriving last to each resource after the maximum number of requests from the
same core. As explained in Section 2.2, this provides a safe bound at the expense of being
extremely pessimistic.

4.1 GRROF: Coordinated Management of All Memory Resources
Motivated by these observations about the existing direction in analyzing memory resources
in multi-core real-time systems, we propose GRROF: a methodology to coordinate all the
arbitration decisions across all resources in the memory hierarchy of a modern multi-core
platform. This includes shared interconnects (request, response, and system buses), shared
cache(s), and shared off-chip DRAM. The key idea behind this methodology is to enable
all the arbiters in the memory hierarchy to use a shared state of the system to make a
coordinated scheduling decision. It is important to emphasize that under GRROF, every
resource in the memory hierarchy still deploys its own dedicated arbiter, which is essential
for parallelism. This is in contrast to assuming a unified global arbiter that manages all the
memory resources. We observe that, for instance, most of the existing works in cache analysis
combine all interconnect resources to the shared cache as well as the shared cache itself into
one resource that is arbitrated using one arbiter (e.g. [14, 24, 42]). Instead, in GRROF and as
explained in Section 3, every resource has its own arbiter. So, there is a dedicated arbiter for
the request bus, response bus, each LLC bank, system bus to the DRAM, and the DRAM
memory controller. However, all these arbiters operate in coordination using a global view of
the state of different requests in the system.

We now detail the operation of GRROF. The global view is maintained using the GRROF
Engine in Figure 2. This engine maintains the following state.

1) RR Order. It maintains a RR order among the cores. Arbiters arbitrate among cores
according to this RR order. Therefore, all arbiters see the same RR order view. A core gets
pushed into the RR order queue if it has issued a request to the system (e.g., upon an L1
miss in our system model). Once a core is at the head of the RR order, it keeps that order
until its oldest request retires from the system. For example, in Figure 3b, P3 maintains
its position at the top of the RR order despite having r3,2 retired at timestamp 24. This is
because the oldest request from P3 is r3,1, which still needs to finish. This is vital to provide
tight guarantees for the oldest requests. The intuition is that the oldest memory request is
the one stalling the pipeline [34,35]; and hence, contributing to the task’s WCET [33]. In
the same example in the figure, by keeping its RR position, P3 manages to finish its oldest
request r3,1 at timestamp 29 compared to what happens for uncoordinated arbitration where
P3 loses its RR order in Figure 3a leading r3,1 to wait for another slot for P3 in the response
bus resource and finishes at 39.

2) Per-Core FIFO Order. For arbiters to be able to determine the relative order of requests
from the same core, the GRROF Engine maintains one First-In First-Out queue (FIFO) per
core. Upon arrival to the system, a request ID is pushed in the corresponding core’s FIFO.
The request ID is removed from such FIFO upon retiring from the system. Accordingly,
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(a) Uncoordinated RR arbitration.

(b) Proposed GRROF solution. The bottom of the figure shows the state tracked
by the GRROF Engine, including the per-core FIFO order and the RR order
among cores.

Figure 3 An example that shows the behavior of GRROF compared to separated RR. The assumed
system contains three cores P1−3 that share resources REQ, BANK0−6, and RESP. Access latencies
for the REQ, BANK, and RESP resources are assumed to be 2, 10, and 5 cycles, respectively.

the FIFOs keep state about this relative order for requests from the same core. Again, all
arbiters have access to these FIFOs and hence, can decide accordingly which request to elect
for service at the arbitrated resource.

The arbiters deploy Round Robin Oldest First (RROF) arbitration [33]. They first
conduct a RR among the oldest requests of the cores. Only if no older requests are ready
to be serviced at that resource the arbiter conducts RR among younger requests (in the
order of the FIFO for the same core and RR among cores). In the example in Figure 3b, the
response bus (RESP) arbiter elects r1,1 at timestamp 34 because it is the oldest request from
the core at the top of the RR order. On the other hand, at 19, the RESP arbiter cannot
issue any of the oldest requests (r1,1, r2,2, r3,1) since none of them is ready for this resource.
Accordingly, it picks r3,2 as the only ready non-oldest request.

The important and novel aspect here is that this RROF at each resource uses the global
system state from the GRROF Engine (Namely, RR Order and per-core request FIFO order).
As a result, the relative request priorities remain the same for all arbitrated resources (stages
in delay composition theorem terminology); hence, we can apply the pipelining from the
theorem. We prove in our analysis in Section 5 how this enables us to significantly reduce the
worst-case latencies suffered by the oldest requests in the system. Considering r1,1 in Figure 3,
we observe that r1,1 arrives at the RESP bus resource last among all the requests since it
has been delayed by r2,1 and r3,1 in the Bank0 stage. As a result, in the uncoordinated RR
baseline in Figure 3a, according to the local RR arbiter at the RESP stage, this request has
to wait for all the requests to finish, including the non-oldest requests from the same core.
We see in Figure 3a that r1,1 suffers interference from requests from the two other cores
in all the stages (REQ, BANK, and RESP) (Observation 1 in Section 2.2). Moreover, r1,3
is serviced by the RESP before r1,1 since locally, r1,3 is considered older (Observation 2 in
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Section 2.2). This overall leads r1,1 to finish at timestamp 58. On the other hand, GRROF,
in Figure 3b, is aware of the global order of all requests, thus once r1,1 arrives at the RESP
stage, it gets the highest priority among all P1 requests since it is the oldest. Additionally,
P1 is at the top of the RR queue since its oldest request still needs to finish. As a result, r1,1
is serviced at timestamp 39 instead of 58.

4.2 The Proposed Memory Controller

To be able to apply the pipelining from the delay composition theorem across the entire
memory hierarchy, the schedulers inside the DRAM MC have to apply the exact arbitration
mechanism described in Section 4.1. Therefore, we also propose an MC scheduler that utilizes
the global request state from the GRROF Engine. In detail, we employ three distinct RROF
arbiters for PRE, ACT, and CAS commands, which follow the global order maintained by the
centralized GRROF Engine. If multiple commands from different arbiters are selected at the
same time, a command bus conflict may happen. The MC handles this conflict by prioritizing
CAS commands over ACT, and ACT over PRE commands, which is the common approach
followed by COTS MCs. The intuition is that CAS commands are for row hit requests and
hence prioritizing them will increase the overall system performance. However, the proposed
MC strictly applies the RROF scheme between CAS commands and handles reads and writes
equivalently. This is in contrast to DuoMC [32], which deploys read/write batching, where
several read (write) commands are scheduled together as a batch and executed in a read
(write) round, and rounds are alternating types. The reason for avoiding read/write batching
is we find this to break the property required by the delay composition theorem. Basically, by
read/write batching, requests no longer keep their relative priority across the different stages
in the memory hierarchy. For example, a write might have a higher priority than a read in
one of the cache levels (according to GRROF orders) but the write gets deprioritized at the
MC (e.g. if it is executing a read batch upon its arrival to its request queues). Breaking this
property hinders our goal of being able to apply pipelining to the memory latency analysis.
Instead, by handling reads and writes in a similar fashion, we are able to apply the pipelining
among DRAM command stages. This pipelining at the DRAM has been explored by previous
works [15,16,43], albeit they considered DRAM only.

It is important to notice that deploying the same GRROF arbitration methodology at all
memory resources including within cache hierarchy as well as in DRAM enables us to apply
the delay composition theorem since all requests maintain their relative order throughout
the resources. Without this coordination, 1) suffered delays at different stages cannot be
overlapped by applying to the pipeline, and 2) the oldest request at one resource can become
non-oldest at another resource and hence can be significantly delayed. This is similar to the
clarified example in Figures 3a and 3b.

5 Latency Analysis

In this section, we show how to obtain a latency bound Lua on the worst-case processing
latency of the oldest request under analysis rua of a given type, following our described
GRROF arbitration in Section 4.1 and MC in Section 4.2, and based on the delay composition
framework.
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Figure 4 The delay composition for the request under analysis.

5.1 Main Memory Latency Analysis
Based on the proposed MC arbitration, we next determine an upper bound to the delay
that the oldest request under analysis rua can suffer in the main memory. In the worst-case
scenario, rua and all interfering requests require to issue three commands: PRE, ACT, and
CAS. Figure 4 shows how to decompose the latency of rua based on two types of terms: 1)
intra-bank constraints between commands issued to the same bank, or between command
and data, and 2) inter-bank constraints caused by the same type of command issued to
other banks. Since we assume private banks, intra-bank constraints can only be caused
by commands of the core that issued rua, while requests of other cores cause inter-bank
constraints. This section aims to derive the worst-case latency components of the three
DRAM stages, which we will then use in Section 5 in order to calculate the total worst-case
request latency. These components are as follows:
1. For the PRE stage: DP RE is the maximum latency of PRE from the time it becomes

intra-ready until it is issued, caused by interfering PRE commands of other cores.
2. For the ACT stage: DACT is the maximum latency of ACT from the time it becomes

intra-ready until it is issued, caused by interfering ACT commands of other cores.
3. For the CAS stage: DCAS is the maximum latency of CAS from when it becomes

intra-ready until it is issued, again caused by interfering CAS commands of other cores.

We next derive bounds on DP RE , DACT and DCAS as a function of the numbers NP RE ,
NACT and NCAS of higher priority requests whose PRE, ACT and CAS commands, respect-
ively, interfere with the commands of rua. However, since, as aforementioned applying the
pipelining from the delay composition theory to these three DRAM stages is not novel, and
the latency components have already been derived in several previous works [15,43], we do
not formally prove their derivation and instead use the values directly from those works.
That said, for comprehensiveness in the paper, we intuitively explain each equation.

For the PRE stage, Equation 1 calculates DP RE , which uses the same analysis as in [43]
(Equation 2). The intuition behind Equation 1 is as follows. Since there is no inter-bank
timing constraint between PRE commands, each interfering PRE contributes one clock cycle
of delay; however, we have to add an additional cycle per command to account for the effects
of command bus conflicts.

DP RE(NP RE) = 2 · NP RE · tDRAM
clk (1)

For the ACT stage, ACT commands have two inter-bank timing constraints, tl
RRD which

applies between successive commands, and tF AW which applies every 4 commands. Hence, the
bound must consider the maximum of the two constraints. The value of each timing constraint
is increased by one clock cycle to account for bus conflicts caused by CAS commands. That
is one difference between Equation 2 below and Equation 3 in [43]. In the latter, each
timing constraint is instead increased by two clock cycles because ACT commands can suffer
bus conflicts due to both PRE and CAS commands, while for our proposed controller, as
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explained in Section 4.2, ACT will not suffer command bus contention from PRE. Finally,
in Equation 2, tF AW − 3 · tl

RRD − tDRAM
clk represents the maximum delay caused by ACT

commands of lower-priority requests issued as late as possible before the ACT of rua becomes
intra-ready.

DACT (NACT ) = tF AW − 3 · tl
RRD − tDRAM

clk + max
(

NACT · (tl
RRD + tDRAM

clk ),

⌊NACT /4⌋ · (tF AW + tDRAM
clk ) + (NACT %4) · (tl

RRD + tDRAM
clk )

)
(2)

Finally, for the CAS stage, Equations 3 and 4 calculate DCAS for read (RD) and write
(WR) requests, respectively. Since in our controller, CAS commands have the highest priority
for accessing the command bus; they cannot suffer command bus conflicts. Also, since in
our controller RD and WR commands are scheduled fairly, contrary to [43] and similar
to [15], the NCAS interfering commands can comprise both RD and WR. Inter-bank timing
constraints between CAS commands are longer when switching between RD-to-WR (tRT W )
and WR-to-RD (tW L + tBus + tW T R) compared to issuing two RD or two WR commands
back-to-back (tl

CCD); this is because the data bus needs this time to change the direction of
the data sent on the bus. Hence, to bound the worst-case latency for a CAS command, we
consider the maximum alternation between RD and WR commands. Again, a lower-priority
CAS command can be issued one clock cycle before the CAS of rua becomes intra-ready;
hence, the total number of interfering requests is NCAS + 1. Noticing that the last constraint
must be a WR-to-RD switch if rua is an RD (Equation 3), and an RD-to-WR switch if rua

is a WR (Equation 4).

DRD
CAS(NCAS) =

⌊NCAS + 1
2

⌋
· tRT W +

⌈NCAS + 1
2

⌉
· (tW L + tBus + tW T R) − tDRAM

clk (3)

DW R
CAS(NCAS) =

⌈NCAS + 1
2

⌉
· tRT W +

⌊NCAS + 1
2

⌋
· (tW L + tBus + tW T R) − tDRAM

clk (4)

In addition to the latency of each of these stages, there are additional across-stage delays
a request can suffer. These are as follows. 1) tINIT is the worst-case latency from the
time rua arrives at the MC to PRE becoming intra-ready. In the worst case depicted in
the figure, a non-oldest request r of the same core as rua could issue an ACT command
one cycle before rua arrives at the MC. In such a case, although rua preempts r, the ACT
command imposes an ACT-to-PRE timing constraint tRAS . Thus, in the worst case we have
tINIT = tRAS − tDRAM

clk . Additionally, intra-bank constraints impact when a request can
become ready at a particular stage. Namely, 2) tRP is the PRE-to-ACT timing constraint,
and 3) tRCD is the ACT-to-CAS timing constraint. We now show how to use all these
components to derive the total end-to-end worst-case latency of a memory request.

5.2 Holistic Memory Latency Bound
To maximize Lua, we assume that rua becomes oldest at the earliest possible time ta

rua
. Since

we have several request types for rua as well as for interfering requests. Proving the worst-case
Lua for all scenarios is impossible within the paper space. Instead, we developed a brute-force
algorithm that covers all possible scenarios and calculates their latency to ensure that we
correctly compute the latency bound for every request type and values of timing parameters
and corresponding valid values of NREQ, NSBUS , NP RE , NACT , NCAS , NRESP , NBANK

1. It

1 source code is available here: https://gitlab.com/FanosLab/endtoend_wcl_cases_matlab/
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is worth noting that the running time of this brute-force machinery is in the range of few
seconds. That said, it is done offline; therefore, the exact run-time complexity is irrelevant to
the proposed solution. In the rest of this section, we focus on deriving the global worst-case
Lua across all scenarios, which corresponds to a rua of type T4, which traverses the most
stages and has the highest latency for our system. First note that as pointed out in Section 3.4,
requests of type T4 (as well as those of type T2, T3) execute simultaneously on BANK and
RESP, rather than traversing a linear sequence of stages. Since BANK and RESP are
the last stages on which rua executes, its latency depends on which of the two stages it
last finishes execution on. If rua finishes executing on BANK after RESP, then we can
obtain a latency bound by analyzing its execution along path (REQ, SBUS, PRE, ACT,
CAS, BANK); otherwise, by analyzing path (REQ, SBUS, PRE, ACT, CAS, RESP).
Therefore, we can compute Lua by applying the delay composition analysis to both stage
sequences and taking the maximum obtained bound.

Second, as discussed in Section 2.3, we use the improved delay composition analysis
in [22] to support requests of different types. This analysis’s key idea is to split every higher
priority interfering request r into a set of segments: each segment represents the execution of
r on a sequence of consecutive stages in the path of the request under analysis encountered
either in the same or exactly in reverse order. We consider the path (REQ, SBUS, PRE,
ACT, CAS, RESP) as an example since we find it to lead to the maximum possible Lua in
our system. Then, the following segments must be considered:

Each request of type T1, T2 or T5 is split into a segment (REQ) and a segment (RESP).
Note that no segment can represent execution on BANK since this stage is not part of
the analyzed path of rua.
Each request of type T3 is split into a segment (REQ, SBUS) and a segment (RESP).
Each request of type T4 corresponds to a single segment (REQ, SBUS, PRE, ACT,
CAS, RESP).
Each request of type T6 corresponds to a single segment (SBUS, PRE, ACT, CAS).
Each request of type T7 is split into a segment (RESP) and a segment (SBUS, PRE,
ACT, CAS).

Lua is obtained by summing the following terms:
1. Ltrav

ua : this is the time required by rua to traverse its required stages (based on type),
assuming it suffers no interference at all. For each stage, this is the maximum time
required to move to the next one along the path or the time needed to finish executing
the last stage.

2. Llp
ua: this is the latency component caused by low-priority requests. For each stage,

the maximum interference is caused by a single lower-priority request. In GRROF, such
request must start executing no later than one clock cycle before rua or any higher-
priority request becomes ready at that stage, otherwise the arbiter will not select the
lower-priority request; therefore, the maximum interference is equal to the execution time
of any lower-priority request on that stage minus one clock cycle.

3. Lhp
ua: this is the latency component caused by higher-priority requests. For every segment,

its maximum execution time on any one stage on which it executes.

We begin by discussing Ltrav
ua . Here, we are interested in the time between a request

starting execution on a stage and becoming ready to be arbitrated on the next stage. Since
the request becomes ready on SBUS immediately after finishing executing on REQ, the time
from REQ to SBUS is simply the execution time cREQ on REQ. Similarly, the time to finish
executing on RESP is cRESP . However, in the case of DRAM stages, we have to consider the
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effect of intra-bank DRAM constraints. As discussed in Section 5.1, the time from PRE to
ACT is tRP and the time from ACT to CAS is tRCD. For the time from SBUS to PRE, we
have to consider three time components: (a) the time cSBUS required to execute on SBUS;
(b) the time tcross required to cross clock domains since the system bus and the DRAM
controller use different clocks. In the worst case, we assume that such time equals one clock
cycle of the destination domain, i.e., tcross = 1. (c) The time tINIT = tRAS − 1 required
for the request to become ready on PRE after arriving at the memory controller. Hence,
the required time is equal to cSBUS + tRAS . Finally, for CAS to RESP, the time includes
tRL + tBUS to obtain the data after issuing the CAS command, tcross = 1 to cross back into
the CPU clock domain 2, and cSBUS to send the data back through the DRAM-LLC bus,
for a total of tRL + tBUS + 1 + cSBUS . Summing over all stages, for our example, we obtain
a total of:

Ltrav
ua =cREQ + cSBUS + 1+(

(tRAS − 1) + tRP + tRCD + tRL + tBUS

)
· (tDRAM

CLK /tCP U
CLK) + cSBUS + cRESP .

(5)

Next, we consider the interference of lower and higher-priority requests/segments
(Lintf

ua = Lhp
ua + Llp

ua). Let NREQ, NSBUS , NP RE , NACT , NCAS to denote the number of
segments that interfere on the corresponding stage, subject to the constraint that each
segment interferes on only one stage. Then including the effect of a lower-priority re-
quest, the total interference on REQ, SBUS and RESP is equal to DREQ(NREQ) =
cREQ −1+NREQ ·cREQ, DSBUS(NSBUS) = cSBUS −1+NSBUS ·cSBUS , DRESP (NRESP ) =
cRESP − 1 + NRESP · cRESP ; while the interference on PRE, ACT and CAS is equal to
DP RE(NP RE), DACT (NACT ) and DRD

CAS(NCAS) as computed in Equations 1, 2, 3. The
total interference is thus calculated by Equation 6 maximized over all possible values of
NREQ, NSBUS , NP RE , NACT , NCAS , NRESP .

Lintf
ua =DREQ(NREQ) + DSBUS(NSBUS) + DRESP (NRESP )+(

DP RE(NP RE) + DACT (NACT ) + DRD
CAS(NCAS)

)
· (tDRAM

CLK /tCP U
CLK) (6)

Note that based on our GRROF arbitration, at most M −1 requests can have higher priority
than rua. For the system settings employed in our evaluation, Equation 6 is maximized
when all M − 1 requests are of type T7, yielding M − 1 segments of type (RESP) with
NRESP = M − 1 and M − 1 segments of type (SBUS, PRE, ACT, CAS) interfering on
CAS (i.e., NCAS = M − 1), for a resulting interference:

Lintf,GRROF
ua =DREQ(0) + DSBUS(0) + +DRESP (M − 1)+(

DP RE(0) + DACT (0) + DRD
CAS(M − 1)

)
· (tDRAM

CLK /tCP U
CLK). (7)

Summing Equations 5 and 7 then yields a latency bound for path (REQ, SBUS, PRE,
ACT, CAS, RESP), which again based on our system setting, is the latency bound Lua for
requests of type T4 (Equation 8).

LGRROF
ua = Ltrav

ua + Lintf,GRROF
ua (8)

2 Note that for the system in Section 6, we assume that the CPU clock has double the frequency of the
DRAM clock and that the two clocks are synchronized. Under such assumption, we can take tcross = 0.
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Finally, note that when analyzing a path through BANK, the maximum interference is
similarly equal to DBANK(NBANK) = cBANK − tCP U

CLK + NBANK · cBANK . It is important
to consider that here NBANK represents the number of segments that interfere on the same
LLC bank as rua. However, a higher-priority request might also target a different LLC bank.
For example, when T (rua) = T1, a higher priority request r also of type T1 would yield a
single segment (REQ, BANK, RESP) if it targets the same bank as rua, and two segments
(REQ) and (RESP) if it targets a different bank. If cBANK ≥ cREQ + cRESP , then the first
case results in higher interference; otherwise, the second.

5.3 Effect of Additive Latency Approach

After deriving the latency bounds for GRROF and using the pipelining analysis from the
delay composition theorem, this section shows how pessimistic the resulting bounds are
upon considering resources separately and follow the additive latency approach even when
pipelining has been considered at one or more of the components in the system but not at the
holistic level of the memory. In doing so, we first derive this bound for two systems that apply
the latency additive theorem at different scale. Please note that to derive a safe bound using
this approach, we follow the direction discussed in Section 2.2 by assuming the maximum
possible delay from younger requests of the same core at each resource. As explained in
Section 2.2, this provides a safe bound at the expense of being extremely pessimistic. We
first define the two systems as follows. Discrete-RR is a system that deploys traditional RR
arbitration at the REQ, RESP, and BANK stages, while it uses the MC model proposed
in Section 4.2 deploying the RROF arbitration at the three DRAM stages: PRE, ACT,
and CAS. Split-RROF is a system that deploys RROF arbitration locally at DRAM stages
using the MC model proposed in Section 4.2 and at the cache stages. However, there is
no coordination between the DRAM subsystem and the cache subsystem stages. We use a
DRAM with a pipelined stages model for the two systems since the state-of-the-art analysis
in DRAM already applies the delay composition theorem [15,16,43]. The Discrete-RR system,
on the other hand, is using a traditional RR arbiter at each of the remaining three stages:
REQ, BANK, and RESP. In contrast, the Split-GRROF goes one step further and even
pipelines these three stages together. The reason for choosing this model is to show that even
when pipelining resources at one of the levels and not at the system level, latency bounds
are still quite pessimistic.

The latency bound Lua for Discrete-RR, LDRR
ua can be calculated as follows. First, the

latency of each of the REQ, RESP, BANK, and SBUS stages has to be separately calculated.
Since each of these stages adopts a RR arbiter and each core has a maximum of Npend

pending requests. The worst-case for rua is to assume that it arrives at the stage after
Npend − 1 requests from Pua and that Pua is last in the RR order. This yields a total of
M · Npend · cs, where s is any of the REQ, RESP, BANK, or SBUS stages, which includes
the execution of rua itself in s. For the DRAM stages, there is one clock cycle for domain
crossing. Afterwards, in contrast to GRROF since the relative priority of requests can no
longer be assumed to be the same between the cache and the DRAM subsystems, rua has to
assume that it arrives at the DRAM in worst-case as the last request similar to all other
stages. Therefore, it has to wait for Npend−1 requests to finish from Pua, which in worst-case
are all write requests. This is the second line in Equation 9. Afterwards, rua itself can suffer
M − 1 requests from other cores due to RR order. This is the third line in Equation 9. Since
DRAM is pipelined, we maximized the delay over the ACT, PRE, and CAS stages, which
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happens to be that in worst-case all the M − 1 interfering requests are contributing to the
CAS stage similar to GRROF in Equation 7. Applying the additive latency theorem, this
gives a total delay for the Discrete-RR as follows:

LDRR
ua = M · Npend · (cREQ + cSBUS + cBANK) + 1 + cSBUS(
(Npend − 1)(DP RE(0) + tRP + DACT (0) + tRCD + DW R

CAS(M − 1) + tW L + tBUS + tW R)+

DP RE(0) + DACT (0) + DRD
CAS(M − 1) + tRL + tBUS

)
· (tDRAM

CLK /tCP U
CLK). (9)

The latency bound Lua for Split-RROF, LSRROF
ua can be calculated as in Equation 10.

One important observation to highlight is that because of the pipelining effect in the cache
subsystem, Split-RROF has to account only for interference from M − 1 requests instead of
the M ·Npend in Discerete-RR case. However, because Split-RROF does not pipeline the cache
and the DRAM subsystems together, a special consideration has to be paid for what requests
interfere with rua in the cache subsystem. In particular, because there are now requests
that will hit in the BANK and requests that miss and go to the DRAM, requests will take
different paths in the cache pipeline stage. The hit requests will be REQ, BANK, and RESP,
while the miss requests (from the cache pipeline perspective) will be REQ, then go off the
system (to DRAM), then come back to execute RESP and BANK in parallel. Due to this
fact, rua can indeed suffer interference both at the REQ stage and at the BANK stage. This
is accounted for in the second line in Equation 10. The first line represents the traversing
latency similar to Equation 5 for GRROF. It basically goes through REQ, SBUS, then cross
to DRAM (one cycle for clock domain crossing), and then comes back from DRAM through
SBUS and then is processed in BANK. The third and fourth lines are accounting for DRAM
interference very similar to Equation 9. The last line accounts for one low-priority request at
each stage rua traverses.

LSRROF
ua = cREQ + cSBUS + 1 + cSBUS + cBANK+

DREQ(M − 1) + DSBUS(0) + DBANK(M − 1)+(
(Npend − 1)(DP RE(0) + tRP + DACT (0) + tRCD + DW R

CAS(M − 1) + tW L + tBUS + tW R)+

DP RE(0) + DACT (0) + DRD
CAS(M − 1) + tRL + tBUS

)
· (tDRAM

CLK /tCP U
CLK)+

(cREQ − 1) + (cSBUS − 1) + (cBANK − 1) (10)

6 Evaluation Results

We implement the proposed solution as well as the two systems we compare against (Discrete-
RR and Split-RROF from Section 5.3) on a cycle-accurate simulation platform integrating
the cache subsystem simulator provided in [17] with MCsim as a main memory system
simulator [29], in order to mimic the whole path of a request. By this way, we are able to
accurately obtain end-to-end latency for memory accesses.

Experimental Setup. Unless otherwise specified, in all our experiments we use a quad-core
system clocked at 2.4 GHz, where each core is OoO with up to 16 Npend and a 32 KB 4-way
set-associative private L1 cache. Through a split-transaction interconnect, the cores share
access to a 4 MB 8-ways set-associative bankized LLC that comprises 8 separate banks. Both
L1s and the LLC are write-back write-allocate non-blocking caches with a cache line size of
64 bytes and an LRU replacement policy. The LLC is set-partitioned such that each core has
its own private sets. Nonetheless, all cores can access all LLC banks. To map the requests to
the different LLC banks, the cache controller uses the Least-Significant-Bits (LSBs) in the
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tag address bits to denote the bank number, such that a core can access all banks within its
private sets. We use a DDR4-2400U for the main memory with a single-channel single-rank
DRAM device. DRAM banks are partitioned such that each core accesses its own private set
of banks. We assume that processing L1 hit requests takes a single cycle and processing data
in the LLC data array takes ten cycles (cBANK = 10). We also configure processing time
on request and response buses to 2 and 5 cycles, respectively (tREQ = 2, tRESP = 5). The
system bus between the LLC and the MC has a latency of (tSBUS = 5) in either direction
LLC-DRAM or DRAM-LLC.

Workloads. We use SPEC CPU benchmark [40]. While running a SPEC workload on one
of the cores, the other cores are running a stressing microbenchmark to generate the most
interference on the task under analysis. For these stressors, we use the latency benchmark
from the IsolBench suite [41].

Compared Systems. In addition to the two real-time systems of (Discrete-RR and Split-
RROF, we compare GRROF against COTS high performance arbiter using FRFCFS arbitration
for all resources.

Figure 5 Per-request worst-case latency both Observed (solid bars) and analytical (T-shape) for
SPEC workloads.

6.1 Per-Request Worst-Case Latency
Figure 5 delineates both the observed and analytical WCL suffered by any memory request
for all the systems. Note that the high performance FRFCFS is theoretically unbounded
(assuming that there is no threshold for requests reordering), thus there is no estimated bound
for it. The figure shows that: 1) the analytical bounds for Split-RROF and Discrete-RR are
very pessimistic. Compared to the observed WCL, they reach up to 26× (namd) and 30×
(astar) for Split-RROF and Discrete-RR, respectively. This clearly shows the pessimism of
the additive latency approach, as discussed throughout the paper. 2) GRROF manifests the
lowest observed WCL per-request for all the workloads. For the worst-case observed latency
across all the workloads, GRROF shows 8× and 18.4× reduction compared to Split-RROF
and Discrete-RR, respectively. 3) The analytical bound of GRROF is the tightest latency
bound which does not exceed than 2× of the experimental latency (namd). In fact, GRROF
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achieves a 14.8 and 17.5 reduction on the analytical latency bound compared to Split-RROF
and Discrete-RR, respectively. This experiment clearly emphasizes that using conventional
per-resource real-time arbitration schemes alongside the additive latency approach suffers
from excessively pessimistic latency bounds and that coordinating these resources such that
pipelining analysis can be applied has a huge potential as an alternative.

Figure 6 Per-task observed memory latency for SPEC benchmarks (solid bars), compared to the
analytical memory processing time (T-shape). Values in y-axis are in logarithmic scale.

6.2 Per-Task Worst-Case Memory Latency
In this experiment, we evaluate the total task Memory Latency and compute the analytical
total task’s worst-case memory latency (WCML). Figure 6 shows the experimental total
memory latency for SPEC benchmarks. Additionally, it shows the analytical WCML as T-bar.
The analytical bound for each task is obtained by summing up the following components:
1) the number of L1 hit requests multiplied by the L1 hit latency, 2) the number of LLC
hit requests multiplied by the WCL of a request hitting in LLC (this is type T1 in this
case), and 3) the number of DRAM access requests multiplied by WCL of a miss (this
is type T4 as driven in Equation 8). Please note that write-backs are not considered in
this task analysis since they are neither stalling core pipeline nor in the critical path of
the requests based on the considered system architecture in Section 3.1. From the figure,
we observe that, the observed total memory time for the three systems are very close for
the SPEC benchmarks. When investigating the reason for this, we found that most of the
SPEC BMs exhibit a very high L1 hit rate. However and more importantly from a real-time
prespective, in terms of predictability, the calculated bounds for Split-RROF and Discrete-RR
are drastically pessimistic. In case of Split-RROF, the analytical WCML varies between
2×-36× of the observed latency. And for Discrete-RR, it varies between 4×-48×. This wide
variability makes them poor in predictability and entails bounds not very useful. By looking
at GRROF bounds, on the other hand, it is clear that it provides the tightest WCML, which
does not overrun 1.5× and can be as close as 16% of the actual experimental latency.

6.3 Sensitivity Test
In this section, we conduct two experiments that study the request worst-case latency while:
1) increasing number of cores in the system (Figure 7a), and 2) increasing the size of MSHR
buffer entries (and hence, the Npending from each core) (7b). In both figures, we show the
results for only one SPEC benchmark (mcf ). We observe similar trend for all the other
benchmarks. For the first experiment, we experiment with 1, 4, 8, 16 and 32 core systems.
Figure 7a emphasizes that the bound of GRROF increases linearly with number of cores.
Likewise the previous experiment, we run SPEC workload aside with a stressing workloads. It
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(a) Increasing number of cores. (b) Increasing Npend.

Figure 7 Per-request worst-case latency of mcf workload from SPEC benchmark. Column and
T-shape bars denote experimental and analytical values, respectively.

Figure 8 The bandwidth of SPEC workloads in a quad-core system.

is clear that GRROF’s estimated latency is tightly bounded and very close to the experimental
results, which does not exceed 0.6× of the observed WCL, in the most interfering setup
of 32-cores. However, Split-RROF and Discrete-RR systems shows very large execution
time which increases dramatically with increasing number of interfering cores, up to 8× and
32× of the observed WCL of GRROF. For the second experiment, it conveys the results for
increasing number of Npend entries as 1, 4, 8 and 16. In Figure 7b, the latency for GRROF
is fixed and independent of the number of the Npend entries. This is because, regardless of
Npend, GRROF ensures that the latency of any request can suffer interference delays from
only one request from every other core as shown in Section 5. On the other hand, although
Discrete-RR can provide a bound on the WCL for memory accesses, it is quadratically
increased by the increasing number of outstanding requests on OoO systems. Requests may
suffer up to 165× of their latency on an IO system. Split-RROF reduces this large variance,
however the requests can suffer up to 12× of their latency on an IO system.

6.4 Average Performance
In this experiment, we evaluate the average-performance of GRROF. Figure 8 shows the
average memory bandwidth of SPEC benchmarks running on GRROF and FRFCFS-COTS,
and normalized on FRFCFS-COTS performance. Comparing the average-performance with
the high-performance system, we make these observation points: 1) the memory bandwidth
of GRROF is on-par with the COTS solution and performs even slightly better (2.9%) on
average results. The reason for this improvement is that GRROF introduces more fairness to
all benchmarks by prioritizing the oldest requests from all cores over younger ones. This
protects tasks from severe interference from other co-running aggressor tasks.
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7 Conclusions

In this paper, we introduce a coordinating management mechanism for the holistic memory
system in order to sustain priorities of requests across all the shared resources in the memory
system. By virtue of this novel mechanism, we could tightly bound the estimated per-request
and per-task memory latency. And by comparing the proposed solution to the conventional
real-time solutions, we made the point their analysis model is not convenient nor reliable for
tightly bounding the latencies. In addition, we show that our system drastically reduces the
WCL with more than 18× reduction in memory latency and tightly bounds the estimated
latency by not exceeding 16% of the experimental latency.
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Abstract
Multiprocessors have become the standard computing platform for real-time embedded systems. To
efficiently leverage the computational power of such platforms, software tasks are often characterized
by an internal structure where concurrent subtasks can execute in parallel on different processors.
Existing strategies for the scheduling of parallel real-time tasks on multiprocessor platforms, such
as partitioned, global, and federated scheduling, were inspired by earlier techniques that were
not conceived to explicitly support parallel tasks, thus carrying advantages but also well-known
limitations. This paper introduces replication-based scheduling, a specialized scheduling paradigm
for parallel real-time DAG tasks. Replication-based scheduling leverages the internal structure of the
parallel tasks to assign replicas of the subtasks to different processors, while ensuring that exactly
one replica of each subtask will be executed at runtime for every task instance. This approach aims
at preserving the advantages of partitioned scheduling while simplifying the timing analysis. The
replication-based scheduling framework is first defined, together with a strategy for implementing
replication-based scheduling in real-time operating systems. Then, offline allocation strategies
for subtask replicas and a response-time analysis are presented. In the provided experiments, the
schedulability achieved with replication-based scheduling is compared with that of existing techniques
for the scheduling of parallel real-time tasks on multiprocessors.
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1 Introduction

With the emergence of multiprocessor systems as the standard enabling platform for high-
performance real-time embedded computing systems, computational workloads have evolved
towards highly parallel structures to match the enhanced processing capabilities offered by the
underlying hardware. Numerous models exist to capture and analyze the timing behavior of
the scheduling system and guide the allocation of the computational activities to the available
processing elements, both at design time and at runtime, in order to maximize resource usage
while ensuring timely execution of all software activities in the system. However, existing
scheduling solutions for parallel tasks are characterized by either achieving low resource
utilization levels, or by excessive complexity in their runtime behavior and implementation,
leading to conservative analyses and significant runtime overheads [9, 8, 11, 23, 19].
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18:2 Replication-Based Scheduling of Parallel Real-Time Tasks

Contributions. This paper presents the replication-based scheduling paradigm (RBS) for
managing the execution of sporadic parallel real-time tasks on multiprocessor computing
platforms, which aims at improving the achieved system utilization and schedulability
performance by employing a flexible allocation and execution scheme based on subtask
replication. The main contributions are as follows:
1. Definition of the replication-based scheduling approach and discussion on its distinguishing

features in comparison with existing approaches.
2. Description of a pattern of implementation of replication-based scheduling in real-time

operating systems.
3. Real-time analysis for parallel tasks executing on a multiprocessor platform under pree-

mptive fixed-priority replication-based scheduling.
4. Experimental evaluation of the schedulability performance of replication-based scheduling,

in comparison with existing techniques for the scheduling of real-time parallel tasks.

2 System model

We consider a set τ = {τ1, . . . , τn} of n sporadic parallel real-time tasks, to be scheduled on
a multiprocessor platform consisting of m identical processors P1, . . . , Pm under preemptive
fixed-priority scheduling. Each task τi releases a potentially infinite sequence of jobs,
each separated from the next by at least a minimum inter-arrival time Ti, and subject
to a constrained relative deadline Di, such that Di ≤ Ti. The parallel computational
structure of each task τi is modeled as a directed acyclic graph (DAG) Gi = (Vi, Ei), where
Vi = {vi,1, vi,2, . . . , vi,ni} is a set of ni nodes (or vertices), and Ei ⊆ Vi×Vi is a set of directed
edges between nodes in Vi. Each node vi,a ∈ Vi represents a sequential computational unit,
or subtask, of the task τi, and is characterized by a worst-case execution time (WCET) Ci,a.
Each edge in Ei represents a precedence constraint between two nodes of the DAG Gi. If
ea,b

i = (vi,a, vi,b) is an edge connecting the vertices vi,a and vi,b, then, for every job of τi,
subtask vi,b cannot execute before vi,a is completed. Each task τi is assigned an unique fixed
scheduling priority πi. Subtasks inherit the priority of the corresponding task. The set of
tasks with priorities higher than or equal to that of a task τi, excluding τi itself, is denoted
by hep(τi). Overall, a task τi is characterized by the tuple (Gi, Ti, Di, πi).

The cumulative worst-case execution time (WCET) Ci of a task τi is defined as Ci =∑
vi,a∈Vi

Ci,a. The utilization factor Ui of τi is defined as Ui = Ci/Ti. The response time of
a job of a task τi is defined as the difference between its finishing time, that is, the time at
which the job completes its execution, and its arrival time. The worst-case response time
(WCRT) Ri of a task τi is defined as the maximum response time across all possible jobs of
τi in all possible schedules of task set τ , with respect to the adopted scheduling algorithm.
Analogously, the response time of an instance of a subtask vi,a within a job of τi is defined
as the difference between the finishing time of that instance and the arrival time of the
corresponding job, while the WCRT Ri,a of a subtask vi,a is defined as the maximum possible
response time of vi,a across all possible jobs of τi in all possible schedules of task set τ .

Whenever an edge from vi,a to vi,b exists, vi,a is said to be an immediate predecessor
of vi,b, whereas vi,b is said to be an immediate successor of vi,a. The set of immediate
predecessors of vi,a is denoted by ipred(vi,a), while the set of immediate successors of vi,a

is denoted by isucc(vi,a). When the immediate predecessor and the immediate successor
definitions are applied transitively starting from a node vi,a over the topology of the DAG
Gi, the set of predecessors and the set of successors of vi,a are obtained, respectively. Two
different nodes are said to be independent from each other if neither is a predecessor or a
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Figure 1 Example of computational structure of a parallel task τ1, modeled as a DAG G1.

successor of the other. A node with no incoming edge is referred to as a source node, while a
node with no outgoing edge is referred to as a sink node. The set of sink nodes in a DAG Gi

is denoted by sink(Gi). In the following we assume, without loss of generality, that a single
source node, denoted by vi,S , is present in each DAG Gi. A path in a DAG Gi is defined as
an ordered sequence of nodes where a directed edge exists between any two adjacent nodes
in the sequence, each node in the sequence is an immediate predecessor of the following
node, and the sequence starts from a source node and ends on a sink node. Given a path λ,
V (λ) represents the set of nodes belonging to the path. The set of all paths in a DAG Gi is
denoted by path(Gi).

Running example. Figure 1 depicts the DAG topology G1 of an example parallel task τ1
composed of n1 = 7 nodes. In the figure, the WCET C1,a of each subtask v1,a is reported
next to the corresponding node.

2.1 Scheduling requirements

Designing a suitable scheduling paradigm for parallel tasks requires satisfying the following
requirements for each task set τ scheduled under that paradigm.

Requirement 1. For each task τi ∈ τ , in all jobs of τi, the precedence constraints in Gi

must be properly enforced, meaning that each node in Gi cannot start executing before
all of its predecessors have completed.
Requirement 2. For each task τi ∈ τ , in all jobs of τi, each node in Gi must execute
exactly once.

3 Background and motivations

Several parallel task models have been proposed in the literature to represent the different
forms of workload generated by well-known parallel programming models. In the fork-join
model [22, 27, 4], tasks are represented as an interleaved sequence of sequential and parallel
segments, where synchronization is assumed at the boundary of every segment. The sporadic
DAG model was introduced by Saifullah et al. [28] to support less restrictive parallel structure
structures. A number of works demonstrated that the DAG task model resembles commonly
used parallel programming models such as OpenMP [30, 25].

The following techniques are considered the primary options when dealing with the
scheduling of sporadic DAG tasks on multiprocessor platforms.

ECRTS 2023
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Global scheduling. Under fixed-priority global scheduling, the m highest-priority pending
subtasks are scheduled at any given time. If tasks are preemptive, the execution of a low-
priority subtask may be preempted by a higher-priority one. When resuming its execution,
the preempted subtask may migrate to a different processor than that on which it was
preempted. Therefore, global scheduling requires the underlying system to be capable of
moving the execution context of a job from one processor to another. Migrations are typically
costly and increase the execution time of jobs. An advantage of global scheduling is that
all scheduling decisions are taken at runtime, and no design time resource assignment is
required. Global scheduling for parallel tasks was investigated in numerous works, such as
those by Bonifaci et al. [12], Baruah [5], and Fonseca et al. [17, 18].

Partitioned scheduling. Under partitioned scheduling, each subtask is statically assigned
to a specific processor at design time, and can only execute on that processor at runtime.
Execution of the subtasks allocated to each processor is then managed by a dedicated
uniprocessor scheduler. As a result, the partitioned scheduling approach entails solving a
complex allocation problem to map subtasks on processors. On the other hand, partitioned
scheduling can be easily implemented in a real-time operating system by reusing techniques
from uniprocessor scheduling. Parallel tasks under partitioned scheduling were analyzed by
Fonseca et al. [19], Casini et al. [13], and Aromolo et al. [2] by means of model transformation
techniques to self-suspending task models [14].

Federated scheduling. Federated scheduling, originally proposed by Li et al. [23], splits the
task set into two disjoint sets: the set of high-utilization tasks, which contains all tasks τi such
that Ui ≥ 1, and the set of low-utilization tasks, which contains all tasks τi such that Ui < 1.
The two sets of tasks are then treated separately. First, each high-utilization task τi is assigned
a set of mi =

⌈
Ci−Li

Di−Li

⌉
dedicated processors, with Li = maxλ∈path(Gi)

{∑
vi,a∈V (λ) Ci,a

}
.

Each high-utilization task is scheduled on its dedicated mi processors by any work-conserving
scheduler. Low-utilization tasks are treated as sequential tasks and executed with any
multiprocessor scheduling algorithm for sequential tasks on the processors that were not
assigned to high-utilization tasks. Subsequent works, such as those by Baruah [6, 7], Jiang
et al. [21], Ueter et al. [29], Dinh et al. [15], and Jiang et al. [20], explored the application of
federated scheduling under different assumptions.

3.1 Motivations
The scheduling approaches mentioned above come with both advantages (e.g., simplicity or
load balancing) and disadvantages (e.g., resource over-provisioning or limited analyzability),
which were properly documented in previous work [9, 8, 11, 2]. It is worth highlighting the
benefits of partitioned scheduling, which include the possibility of accurately controlling
the contention for memory resources and the typically lower overheads implied by its imple-
mentations compared to schedulers that support job migrations. Nevertheless, partitioned
scheduling of parallel tasks proved to introduce significant complexity in the response-time
analysis, which inevitably also affects the performance of partitioning algorithms [19].

Motivated by these observations, this work investigates a specialized scheduling approach
for parallel tasks that aims at preserving the overall philosophy of partitioned scheduling on
a per-job basis, while at the same time drastically simplifying the timing analysis.

The proposed replication-based scheduling algorithm leverages the internal structure of
each parallel task to assign replicas of its nodes to different processors, while ensuring that
exactly one replica of each node will be executed at runtime for every job.
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Other scheduling approaches leveraging replication have been investigated in the context
of high-performance computing, with the aim of reducing communication costs and improving
the expected response times, but are characterized by different scheduling behaviors. For
instance, duplication-based scheduling [1] statically assigns nodes of parallel tasks redundantly
to different processors in order to minimize the overheads incurred due to inter-processor
communication. Duplication-based scheduling was also adopted to devise a specialized parti-
tioning strategy for real-time parallel DAG tasks which aims at eliminating inter-processor
dependencies between subtasks, thus simplifying the resulting schedulability analysis [16].
However, in duplication-based approaches, all copies of each node are executed for each job,
whereas the replication-based scheduling approach ensures that exactly one node replica
executes for each job, meaning that the overall computational workload of the task is not
increased. Concerning distributed server systems, replication-based load balancing techniques
were proposed to minimize the expected response time for the incoming job requests by
creating multiple replicas of the job on different servers [26]. Unlike replication-based load
balancing, which aims at minimizing the expected latency for job requests in distributed
systems, our solution focuses on ensuring that precedence constraints and real-time properties
are satisfied in the scheduling of parallel real-time tasks.

4 Replication-based scheduling

This section presents the replication-based scheduling strategy for parallel tasks, for the
specific case of preemptive fixed-priority systems. The aim of the proposed replication-based
scheduling paradigm is to mitigate the limitations and performance loss suffered by existing
techniques by leveraging the knowledge of the internal computational structure of the parallel
tasks, in terms of their DAG topology.

4.1 Overview

As with partitioned and federated scheduling, replication-based scheduling consists of two
phases; namely, an allocation phase at design time, and a dynamic scheduling phase at
runtime. The core feature of replication-based scheduling is that, during the allocation
phase, each node of the DAG of a given parallel task can be replicated and made available
for execution on a subset of processors. For each job, a single replica of each node is then
selected for execution at runtime, depending on the dynamic scheduling situation.

4.1.1 Allocation phase

In the system design phase, the computational parallel structure of each task is first de-
composed into a set of linear node sequences by means of a specialized sequence expansion
algorithm, specified later in Section 4.2. Each node sequence generated by this algorithm
represents a subpath in the DAG which should be executed sequentially and without sus-
pension on a single processor. Then, in a sequence allocation step, each node sequence is
allocated to a specific processor, meaning that it can only execute on that specific processor
at runtime. In the following, let Si,q = ⟨vi,a, vi,b, . . . ⟩ represent an ordered sequence of nodes
of task τi, and let Si = {Si,1, Si,2, . . . } represent the set of node sequences generated by the
sequence expansion algorithm for a task τi. Then, P (Si,q) represents the processor to which
a sequence Si,q of a task τi is assigned.

ECRTS 2023
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Running example. Figure 2 illustrates the four linear node sequences {S1,1, S1,2, S1,3, S1,4}
obtained for the example task τ1 of Figure 1 with the sequence expansion algorithm specified
later in Section 4.2. Sequence S1,1 = ⟨v1,1, v1,2, v1,5, v1,7⟩ contains all nodes in the upper
path of τ1. Sequence S1,2 = ⟨v1,3, v1,5, v1,7⟩ contains the subpath starting at node v1,3. S1,3
starts at node v1,4 and S1,4 at node v1,6. The arrows in Figure 2 represent the precedence
constraints between nodes in the sequences, inherited from the DAG G1 of τ1.

Sequence constraints
Inherited constraints

Figure 2 Example set of node sequences S1 obtained from the decomposition of parallel task τ1.

As can be seen from the above example, each node of the original DAG of a given
parallel task can be present in multiple sequences (e.g., v1,5 and v1,7 appear 3 and 4 times,
respectively), which are then potentially allocated to different processors. Therefore, the
nodes that belong to multiple sequences allocated to different processors are said to be
replicated.

4.1.2 Runtime phase
As in the partitioned approach, the scheduling of the node sequences on each processor is
managed by a dedicated uniprocessor scheduler. The runtime scheduler is designed in a way
that ensures that exactly one replica of each node is executed for each job of a parallel task
while enforcing the precedence constraints of the original DAG.

To do so, whenever a sequence completes the execution of a node, it checks whether all
the precedence constraints of the next node in the sequence are satisfied. If they are, then
the next node in the sequence is executed. If they are not, the execution of the sequence is
terminated. This provides two properties. First, during system execution, a node sequence
can be modeled as a sequential task without suspensions but with varying execution time
executed on a single processor. Second, the combination of structural properties observed
on the sequences obtained in the decomposition algorithm and of the early termination
mechanism guarantees that nodes do not execute before their corresponding precedence
constraints are satisfied (i.e., a sequence is ended if precedence constraints of the next node
are not respected), and that exactly one replica of each node will execute for each job of a
task (i.e., the replica in the last sequence reaching that node).

This means that resources are initially set aside for the execution of a specific node on
multiple processors, but those resources will only be utilized in one processor for each job of
the task, depending on the ongoing dynamic scheduling situation.

Running example. Assume that the sequences of Figure 2 are each assigned to a different
processor of a multicore platform, so that P (S1,1) = P1, P (S1,2) = P2, P (S1,3) = P3, and
P (S1,4) = P4. Note that there are four replicas of v1,7 and three replicas of v1,5 in this case.
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Figure 3 Example schedules of parallel task τ1 under replication-based scheduling, in isolation
(a) and with preemption by a higher-priority task τh (b).

Figure 3(a) provides an example schedule of a job of task τ1 when all its subtasks execute
for their WCET in isolation according to the algorithm explained above. The figure depicts
the schedule of each sequence in S1 on the corresponding processor. In the example, the job
of τ1 is released at time 0. Therefore, the corresponding sequences arrive on the associated
processor at time 0, as represented by the upward arrows. Since it corresponds to the only
source node in the DAG G1, subtask v1,1 starts executing on processor P1 as part of the
sequence S1,1. Once v1,1 terminates at time 1, subtasks v1,2, v1,3, and v1,4 can start their
execution and sequences S1,2 and S1,3 are released on processors P2 and P3. At time 2,
subtask v1,4 terminates. At this point, the incoming precedence constraints towards the next
subtask in the sequence S1,3, i.e., v1,5, are not yet satisfied. For this reason, the execution of
the sequence S1,3 is forcibly terminated for this job, and it will not execute its replicas of the
nodes v1,5 and v1,7. Similarly, at time 3, the execution of subtask v1,2 terminates, but the
next subtask in the sequence S1,1, i.e., v1,5, cannot start executing at this time because the
precedence constraint incoming from node v1,3 is not yet satisfied. Therefore, the execution
of sequence S1,1 is also terminated early for this job. S1,1 does not execute its replicas of the
nodes v1,5 and v1,7. When, at time 4, subtask v1,3 terminates its execution as part of the
sequence S1,2, all precedence constraints towards node v1,5 are satisfied. This means that
the replica of node v1,5 belonging to the sequence S1,2 can start its execution at time 4. At
the same time, the precedence constraints towards node v1,6 are satisfied, so that sequence
S1,4 can start its execution on processor P4. When subtask v1,5 terminates at time 6, node
v1,7 cannot start executing because the precedence constraint incoming from v1,6 is not yet
satisfied, therefore the corresponding sequence S1,2 is terminated early. Finally, subtask
v1,7 starts executing on processor P4 once subtask v1,6 terminates at time 7, since all of its
precedence constraints are satisfied at that time. The job of τ1 finishes at time 9, when S1,4
completes the execution of v1,7.

Figure 3(b) provides an example schedule of a job of task τ1 and another higher-priority
task τh executing some workload on processor P1 between time instants 2 and 5. This example
highlights how the overall scheduling scenario on the multiprocessor system dynamically
affects the selection of the replica to be executed for a job of any parallel task in the system.

In this scenario, node v1,2 is preempted at time 2 on processor P1, and cannot execute
until time 5, when the processor becomes again available for execution of τ1. Since node
v1,2 is the last of the predecessors of v1,5 to terminate in this schedule, the replica of v1,5
to be executed in this case is the one in S1,1, instead of S1,2 as in the previous schedule
(Figure 3(a)). Similarly, the replica which is executed for the sink node v1,7 is the one in
S1,1, again differently from the previous case.
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Note that, within the schedules in Figure 3(a) and Figure 3(b), (1) each subtask of τ1 is
executed exactly once, (2) replicated nodes (v1,5 and v1,7) are always executed by the last
sequence that reaches that node, (3) all precedence constraints between nodes of the DAG
are respected, and (4) sequences may suffer release jitter and early-termination but never
suffer self-suspension. These observations will be leveraged in Section 5 in order to derive a
real-time analysis for replication-based scheduling.

4.2 Specification of the allocation algorithms
In the following, we specify the two algorithms that are part of the design phase of replication-
based scheduling; namely, sequence expansion and sequence allocation.

4.2.1 Sequence expansion
The sequence expansion algorithm performs a decomposition of the DAG Gi of each task
τi into sequences corresponding to subpaths in the DAG topology. The purpose of this
algorithm is to generate a set of node sequences that can be executed as sequential sporadic
tasks with release jitter and execution time variation.

A possible approach to perform the sequence expansion step for a given task τi ∈ τ is
described in Algorithm 1, where head(Si,q) and tail(Si,q) represent the first and the last node
in a sequence Si,q, respectively. First, the set Si is initialized with a single sequence Si,1,
initially only including the source node vi,S of Gi (Lines 2-3). Then, the set Si is extended
in an incremental procedure (Lines 6-20). In this procedure, each sequence in Si, starting
with Si,1, is expanded by appending nodes to the sequence, following one path of the DAG
Gi until a sink node of Gi is reached (Lines 7-10). When expanding a sequence Si,q, all
immediate successors of the last node in Si,q that are not added to Si,q initiate new sequences
in Si that are added to Si (Lines 11-17). The sequences in Si are expanded in the order in
which they were created. A pair of indices, q and c, is used to keep track of the sequence
that is currently being explored and of the last sequence added to Si (Lines 4-5), and the
procedure continues until all sequences in Si have been expanded. Whenever a node is added
to sequence, one of the successors isucc(vi,L) of the last node vi,L of Si,q is selected according
to the policy implemented in the SelectSuccessor procedure and is appended to the
sequence Si,q (Lines 8-10); then, for all the other nodes vi,K in isucc(vi,L), an additional
sequence, initially containing vi,K only, is added to Si if no other sequence starting with
node vi,K exists in Si (Lines 11-17).

The selection of the successor to be appended to the sequence Si,q that is being explored
(SelectSuccessor at Line 8) can be performed according to different policies. In the
following, we assume that a static successor selection policy is adopted, meaning that, for
each node vi,a ∈ Vi, the node selected to follow a replica of vi,a must be the same for all
sequences in Si in which vi,a appears. For instance, the immediate successor node vi,r with
smallest index r might be selected to be added as the next element in Si,q. Another option
could be that the next selected node is the node among the candidate successors which
comes first in a fixed topological ordering of the nodes of the DAG Gi. Different policies
may bring to different outcomes of the sequence expansion algorithm in terms of number
and structure of the resulting node sequences. In future work, one may propose a non-static
successor selection policy which, for example, may consist in keeping track of the number
of times each node is visited as a successor of other nodes within the sequence expansion
algorithm, and then selecting the node which was visited the least number of times. Figure 2
shows the sequences resulting from applying Algorithm 1 to the DAG of Figure 1, when
SelectSuccessor selects the immediate successor with smallest index.
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Algorithm 1 Sequence expansion algorithm for a task τi.

1: procedure SequenceExpansion(τi)
2: Si,1 ← ⟨vi,S⟩
3: Si ← {Si,1}
4: q ← 1 ▷ Index of the next sequence to be expanded
5: c← 1 ▷ Index of the last sequence added to Si

6: while q ≤ c do
7: while tail(Si,q) /∈ sink(Gi) do
8: vi,L ← tail(Si,q)
9: vi,A ← SelectSuccessor(Gi, vi,L)

10: Si,q ← Si,q ∥ vi,A ▷ Append vi,A to Si,q

11: for all vi,K ∈ isucc(vi,L) \ vi,A do
12: if ∀Si,p ∈ Si, vi,K ̸= head(Si,p) then
13: c← c + 1
14: Si,c ← ⟨vi,K⟩
15: Si ← Si ∪ Si,c

16: end if
17: end for
18: end while
19: q ← q + 1
20: end while
21: return Si

22: end procedure

4.2.2 Sequence allocation

Following the sequence expansion, each sequence in the set Si for each task τi in τ must be
allocated to a specific processor, on which it is bound to execute at runtime. This procedure
is akin to the partitioning problem for partitioned scheduling of sequential and parallel tasks,
and can be approached with different techniques.

A possible sequence allocation scheme is described in Algorithm 2. Under this approach,
tasks are allocated in order of decreasing utilization (Line 2), and each sequence is allocated
in topological order of the first node of the sequence (Line 3). The choice for the allocation of
each sequence is determined based on the impact on the schedulability of a partial version of
the task set following a tentative allocation of the sequence on each available processor, thus
determining the allocation of each task incrementally. The schedulability can be evaluated
with the response-time analysis that will be presented in Section 5. In Algorithm 2, the choice
for the allocation of each sequence Si,q of a task τi is determined by tentatively allocating Si,q

to each of the processors P1, . . . , Pm, one after the other, followed, for every such allocation,
by applying the schedulability analysis to all the sequences in the partial task set including
the tentatively allocated sequence Si,q and all the other sequences that were already allocated
to a processor (Lines 4-12). Note that, since the allocation of tasks does not follow a priority
order, the schedulability results obtained for tasks that were already allocated cannot be
reused; therefore, the schedulability of the partial task set composed of all the sequences
that were already allocated must be reevaluated for each allocation attempt. In case none
of the allocations produces a schedulable task set, the task set is deemed not schedulable,
and the allocation returns a failure (Lines 13-15). Otherwise, the preferred allocation is
selected according to a specific policy among those that result in a schedulable partial task
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Algorithm 2 Sequence allocation algorithm for a task set τ .

1: procedure SequenceAllocation(τ)
2: for all τi ∈ τ in decreasing utilization order do
3: for all Si,q ∈ Si in topological order of the first node head(Si,q) do
4: Pi,q ← ∅ ▷ Set of schedulable allocations of Si,q

5: for all Pk ∈ P do
6: P (Si,q)← Pk ▷ Tentatively allocate Si,q to Pk

7: Test the schedulability of Si,q assuming it is allocated to Pk

8: For all Sj,p that have already been allocated, test the schedulability of Sj,p

assuming Si,q is allocated to Pk

9: if P (Si,q) = Pk yields a schedulable task set then
10: Pi,q ← Pk

11: end if
12: end for
13: if Pi,q = ∅ then
14: return Failure (no valid allocation was found)
15: end if
16: P (Si,q)← SelectProcessor(Pi,q) ▷ Select a schedulable allocation
17: end for
18: end for
19: return Success (all sequences were allocated)
20: end procedure

set (SelectProcessor at Line 16). One possible selection strategy is to first determine the
slack Si of the partial version of task τi within the partially allocated task set, computed as
Si = Di −Ri, where Ri is an upper bound on the WCRT of τi (computed with respect to
the sequences that were already allocated), and then apply a Worst Fit, Best Fit, or First
Fit heuristic (or a combination of them) with respect to the available slack to select the
allocation. Specifically, Worst Fit and Best Fit select the allocation producing, respectively,
the largest and the smallest slack Si, while First Fit simply selects the first processor that
fits the sequence.

A variant of this approach is inspired by the dual allocation scheme proposed in federated
scheduling. In this case, tasks are allocated in order of decreasing utilization, where the
sequences of the high-utilization tasks, i.e., those tasks τi with utilization factor Ui ≥ 1, are
allocated as in the above approach. Instead, for sequences of low-utilization tasks, i.e., those
tasks τi with utilization factor Ui < 1, an attempt is first made to allocate the full task to a
processor as a single linearized sequence of τi, corresponding to a topological sorting of the
nodes in Gi, similar to how low-utilization tasks are treated in federated scheduling. If the
attempt fails, the task is allocated as in the above approach leveraging the slack.

4.3 Runtime phase and implementation pattern
The runtime phase of replication-based scheduling decides which replica of each subtask
should be executed at runtime. As discussed in Section 4.1, the executed replica varies
for each job of a task and depends on runtime properties like the actual execution time of
predecessors or the interference suffered by subtasks. In order to realize a runtime mechanism
for replication-based scheduling that is consistent with the requirements for the scheduling
of parallel tasks, the following rules govern the execution of the task sequences.
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Rule 1. Each sequence Si,q ∈ Si of every task τi ∈ τ is scheduled on the assigned
processor P (Si,q) according to a preemptive fixed-priority policy using the priority πi of
the corresponding task τi. If two or more sequences have equal priority, then the one that
was released the earliest is considered as having higher priority.
Rule 2. For all tasks τi ∈ τ and each sequence Si,q ∈ Si, when a job of τi is released, the
sequence Si,q arrives on the corresponding processor, but is released and becomes eligible
for execution only once all the precedence constraints incoming into the first node of the
sequence, head(Si,q), are satisfied.
Rule 3. For all tasks τi ∈ τ and each sequence Si,q ∈ Si, nodes in the sequence Si,q are
executed in the order in which they appear in the sequence.
Rule 4. For all tasks τi ∈ τ and each sequence Si,q ∈ Si, for each pair (vi,a, vi,b) of
consecutive nodes in the sequence Si,q, whenever node vi,a terminates its execution as part
of Si,q and at least one of the precedence constraints incoming into vi,b is not satisfied,
then the execution of the sequence Si,q is terminated (i.e., vi,b and the following nodes
are not executed).
Rule 5. For all tasks τi ∈ τ , for each job of τi, no more than one replica of each node
vi,b ∈ Vi can start its execution across the sequences in Si. In case multiple replicas of
a node vi,b could start executing in different sequences at the same time, one of those
sequences executes vi,b and the other sequences are terminated early, according to an
arbitrary tie-breaking rule.

In the following, we describe a possible implementation pattern for the runtime rules of
replication-based scheduling in a real-time operating system.

Rules 1-3 can be obtained by extending the runtime support for a preemptive fixed-priority
scheduler for uniprocessors to support delaying the release of a sequence with respect to
its arrival and signaling the corresponding events. In particular, Rule 1 is implemented by
executing sequences according to a uniprocessor preemptive fixed-priority scheduling policy
on the processor on which they are assigned. Rule 2 is implemented by delaying the release of
the sequence until all the precedence constraints incoming into the first node in the sequence
are satisfied. Then, Rule 3 is obtained by executing nodes in a sequence in order, one after
the other.

Rules 4 and 5 require implementing an efficient inter-processor synchronization mechanism.
A simple and efficient way to implement this kind of synchronization is to leverage the
availability of atomic instructions (e.g., store-exclusive instructions in Arm architectures) or
higher-level operating system constructs emulating their behavior. These instructions can
be used by the replication-based scheduler to control the contents of a small memory area
dedicated to the scheduling of a specific task, which contains the completion state of each
subtask for the current job of the task, assuming that each task releases at most one job
at a time. In particular, consider a task τi ∈ τ . The scheduler reserves a memory area Bi

for τi that is shared among all processors to which at least one sequence of τi is allocated.
The bits in this shared memory area can be accessed and manipulated as a bitmap using
atomic instructions. The bits in Bi are interpreted as a vector [Bi,1, Bi,2, . . . , Bi,ni ] of ni

consecutive data elements, where each element Bi,a distinguishes the completion status of the
corresponding subtask vi,a in τi for the job which is currently pending among three possible
states, i.e., pending but not started (Bi,a = SP ), started but not completed (Bi,a = SS),
and completed (Bi,a = SC). In particular, when a job of the task is released, the scheduler
sets the state of all nodes in Bi to the state SP . Then, the code that controls the execution
of each sequence Si,q is instrumented such that the following rules are applied.
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Whenever a node vi,a starts executing as part of a sequence of τi, the corresponding state
Bi,a ∈ Bi is set to SS , meaning that the node has started its execution for the current
job but did not complete yet.
Whenever a node vi,a completes its execution as part of a sequence of τi, the corresponding
state Bi,a ∈ Bi is set to SC , meaning that the node has completed its execution for the
current job.
Whenever a node vi,a with precedence constrains incoming from other sequences is the
next subtask to execute in a sequence Si,q, the shared memory area is accessed as a
bitmap by the sequence Si,q to simultaneously check the value of all bits corresponding
to the completion state of the nodes from which the precedence constraints incoming into
vi,a originate. If at least one of those states is not SC , meaning that the corresponding
node has not yet completed in the current job of τi, the sequence Si,q is terminated early
(enforcing Rule 4).
Whenever a node vi,a could start executing in a sequence Si,q, the completion status of
Bi,a is accessed and, if Bi,a ≠ SP , meaning that the corresponding node has already
started executing in the current job of τi, the sequence Si,q is terminated early (enforcing
Rule 5).

Running example. In the schedule in Figure 3(a), node v1,5 cannot execute as part of
sequence S1,3 at time 2 since the completion states of nodes v1,2 and v1,3 are B1,2 = SS and
B1,3 = SS at this time. Therefore, the corresponding sequence S1,3 is terminated at time 2.
Instead, node v1,5 is executed as part of the sequence S1,2 since, at time 4, all of the elements
B1,2, B1,3, and B1,4 corresponding to the set of nodes with precedence constraints towards
v1,5 (i.e., nodes v1,2, v1,3 and v1,4) signal a completion state SC .

The most important advantage with respect to global scheduling is that replication-based
scheduling does not require support for the migration of jobs and subtasks among processors.
Instead, whenever data needs to be transferred from one DAG subtask to one of its successors,
it only requires that such data can be accessed by the replicas of the successor node, which
can be deployed in different sequences assigned to different processors. This can be achieved
by using message passing or shared memory, like in any other partitioned or global scheduler.
All the node replicas must have access to the shared memory or message queue, but only one
will write into it and read from it at each job execution.

4.4 Properties
In the following, we derive a set of properties of replication-based scheduling, also proving
that the requirements presented in Section 2.1 for a correct execution of parallel tasks are
respected with replication-based scheduling.

▶ Lemma 1. For each task τi ∈ τ and each node vi,a ∈ Vi, vi,a is present in at least one
sequence in Si.

Proof. By Algorithm 1, the source node of the DAG of τi is the first node of sequence Si,1
(Line 3). Now, for any node that is in a sequence Si,q ∈ Si, all its immediate successors
are either in the sequence Si,q (Lines 8-10 of Algorithm 1) or are the first node of another
sequence in Si (Lines 11-17 of Algorithm 1). Therefore, by induction starting from the source
node of τi, all nodes of τi are at least in one sequence in Si. ◀

▶ Lemma 2. Replication-based scheduling satisfies Requirement 1; i.e., for each task τi ∈ τ ,
each node in Gi does not start executing before all of its predecessors have completed.
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Proof. Consider a task τi ∈ τ . Consider a replica of a node vi,a ∈ Vi in a sequence Si,q. If
that replica is located at the start of the sequence Si,q, then, by Rule 2, the release of the
sequence, and thus the start of the replica, is delayed until all the precedence constraints
incoming into node vi,a are satisfied. Instead, if that replica is not the first node of the
sequence Si,q, then, by Rule 3, nodes in Si,q are executed in the order in which they appear
in the sequence, and, by Rule 4, the sequence is terminated if at least one of the predecessors
of the replica of vi,a did not yet execute when the replica of vi,a is reached in Si,q. Therefore,
a replica of vi,a may only execute if all precedence constraints are satisfied. ◀

▶ Lemma 3. Replication-based scheduling satisfies Requirement 2; i.e., for each task τi ∈ τ ,
in all jobs of τi, each node in Gi executes exactly once.

Proof. By Rule 5, each node in Gi does not execute more than once in all jobs of τi. It then
remains to prove that each node in Gi executes at least once in all jobs of τi. We prove it
by structural induction on the topology of the DAG Gi. The base case of the structural
induction corresponds to proving that the source node vi,S executes at least once in each
job of τi. This holds by considering that the source node vi,S has no incoming precedence
constraints and a single replica of vi,S is present as the starting node of Si,1 in Si; therefore,
that replica can immediately start executing once the job of the task is released (Rule 2) and
can never be prevented from executing as a result of Rules 4 or 5. For the inductive step,
we prove that, in a generic job of τi, if all the predecessors of any node vi,a ∈ Vi execute
at least once, then vi,a executes at least once. First, by Lemma 1, for each task τi, each
node vi,a ∈ Vi is present in at least one sequence in Si. If at least one replica of vi,a appears
as the first node of a sequence Si,q ∈ Si, then that replica can never be terminated as a
result of Rule 4, and can in fact only be terminated if another replica of vi,a is selected for
execution according to the tie-breaking in Rule 5, therefore vi,a will be executed in Si once
all the precedence constraints incoming into vi,a are satisfied (Rule 2). In the following,
consider the case where vi,a never appears as the first node of a sequence in Si. Consider
the last sequence that executes an immediate predecessor of vi,a. Call that sequence Si,L

and the executed predecessor vi,L. Si,L must exist since, by the induction assumption, all
immediate predecessors of vi,a must execute at least once for each job of τi. By Algorithm 1
(Lines 7-18), all sequences that include an immediate predecessor vi,L of vi,a must have a
replica of vi,a right after vi,L. Thus, Si,L either executes vi,a after vi,L, which would complete
the proof, or Si,L is terminated early after executing vi,L. In the latter case, it means that,
by Rule 4, at least one of the predecessors of vi,a must not have completed its execution
when Si,L completes the execution of vi,L. However, this contradicts the assumptions that
all predecessors of vi,a execute, and that Si,L is the last sequence executing a predecessor of
vi,a. Thus, vi,a certainly executes as part of Si,L. ◀

5 Schedulability analysis

Unlike other scheduling algorithms (e.g., partitioned or global fixed-priority or Earliest
Deadline First scheduling), replication-based scheduling was designed from the ground up
so as to simplify its schedulability analysis and avoid analytical pessimism introduced by a
limited understanding of which schedule may lead to the worst-case response time of each
DAG task. In fact, a task set scheduled with replication-based scheduling may simply be
analyzed as a set of sequential sporadic tasks with release jitter scheduled on single core
platforms.
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The proposed response-time analysis for replication-based scheduling derives a WCRT
upper bound Ri,a for each node vi,a in Vi. Then, the WCRT upper bound Ri of a task τi is
given by the maximum value of Ri,a for any vi,a in Vi, or, equivalently, for any vi,a ∈ sink(Gi).
The task set τ is then deemed schedulable if Ri ≤ Di holds for each task τi. The main
observation behind the analysis is that each sequence of a parallel task τi in τ behaves as a
sporadic task with release jitter and execution time variation.

5.1 Response-time analysis with model transformation
Consider the following properties of replication-based scheduling to support our claim that
each sequence can be modeled as an independent sequential sporadic task with release jitter
and execution time variation executing on a single core platform.

▶ Property 1 (From Rule 3). A sequence Si,q starts by executing its first node head(Si,q),
and all the following nodes will execute sequentially.

▶ Property 2 (From Rule 2). The first node of a sequence Si,q, vi,s = head(Si,q), arrives at
the same time as the job of the task τi, but is released and becomes eligible for execution only
once all the precedence constraints incoming into vi,s have been fulfilled.

▶ Property 3. A sequence Si,q never self-suspends as part of its execution.

Proof. None of the Rules 1-5 allows a sequence Si,q to perform a self-suspension. ◀

▶ Property 4. A sequence Si,q never migrates.

Proof. By Rule 1, Si,q can only execute on the processor P (Si,q) on which it is assigned. ◀

From the above properties, it is evident that the behavior of a sequence Si,q is equivalent
to executing a sequential sporadic task τ ′

i on a single-core platform, subject to a release
jitter J ′

i , where the jitter is given by the largest amount of time by which the precedence
constraints of the first nodes of the sequence are fulfilled, i.e., by the maximum response time
among the immediate predecessors of the first node of Si,q, while the WCET C ′

i is simply
given by the sum of the WCETs of the nodes in Si,q.

Since the above observation holds for every sequence of every task in τ , the WCRT of a
sequence Si,q can be obtained by means of a model transformation of the set of sequences
allocated to the same processor P (Si,q) as Si,q into a set of sporadic tasks with release jitter.

The WCRT R′
i of a task τ ′

i , and thus of a sequence Si,q, in a set τ ′ of sporadic tasks with
release jitter can then be computed with the response-time analysis by Audsley et al. [3].
That is, R′

i = r′
i + J ′

i , where r′
i is the smallest positive solution of the recurrent equation1

r′
i = C ′

i +
∑

τ ′
k

∈{τ ′\τ ′
i
}|πk=πi

C ′
k +

∑
τ ′

j
∈hp(τ ′

i
)

⌈
r′

i + J ′
j

T ′
j

⌉
C ′

j , (1)

where hp(τ ′
i) denotes the set of tasks with priority higher than that of τ ′

i .
Applying the above transformation requires deriving an upper bound on the release jitter

J ′
i of a sequence Si,q, which is a function of the WCRT of the predecessors of the first node

of Si,q. In fact, a sequence Si,q is released only when all nodes with a precedence constraint
towards Si,q have completed their execution. Therefore, for every DAG task τi, the proposed
analysis computes WCRT upper bounds for each node of τi in their topological order in Gi.

1 Note that, since jobs with identical priorities are executed in FIFO order, at most one job of a task
with identical priority to τ ′

i can interfere with a job of τ ′
i , hence the second term of Equation (1).
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Algorithm 3 Derivation of WCRT upper bounds Ri for each task τi in τ .

1: procedure ComputeWCRTUpperBounds(τ)
2: for all τi ∈ τ in decreasing priority order do
3: for all vi,a ∈ Vi in topological order do
4: for all Si,q ∈ Si | vi,a ∈ Si,q do
5: τ ′ ← Transformation(τ, (i, a, q))
6: Ri,a,q ← RTA(τ ′, (i, a))
7: end for
8: Ri,a ← max

{
Ri,a,q | vi,a ∈ Si,q ∧ Si,q ∈ Si

}
9: end for

10: Ri ← max
{

Ri,a | vi,a ∈ Vi

}
11: end for
12: end procedure

More specifically, as detailed in Algorithm 3, tasks in τ are analyzed in decreasing priority
order, and the subtasks of each task τi are analyzed in topological order. A WCRT upper
bound Ri,a is derived for each subtask vi,a, by taking the maximum value of the WCRT
bounds of all replicas of that node across all sequences of τi (Lines 3-10). The WCRT upper
bound Ri of τi is then given by the response time of the node of τi with the largest response
time (Line 10). At Line 5, the WCRT bound Ri,a,q for the replica of a node vi,a in a sequence
Si,q is calculated by transforming τi and all higher-priority and equal-priority tasks into a
set of equivalent sporadic tasks τ ′ using Algorithm 4, detailed later in this section. The
WCRT upper bound of vi,a in a sequence Si,q is then obtained by applying the response-time
analysis by Audsley et al. [3] presented above to the equivalent sporadic task τ ′

i,a ∈ τ ′ (RTA
at Line 6).

The model transformation procedure (Transformation at Line 5) is detailed in Al-
gorithm 4. The procedure constructs a set τ ′ of sporadic tasks with release jitter. For the
analysis of a replica of node vi,a of τi in sequence Si,q, Algorithm 4 creates one sporadic
task for each node of every task with priority higher than or equal to that of τi that has a
replica assigned to the same processor as Si,q. The procedure is based on the following three
lemmas.

▶ Lemma 4. The interference generated by a sequence Sh,p with release jitter Jh,p and WCET∑
vh,k∈Sh,p

Ch,k in an interval of length ∆ is upper bounded by the sum of the interference
generated by each of its nodes vh,k modeled as sporadic tasks with release jitter Jh,p and
WCET Ch,k.

Proof. Since Sh,p behaves as a sporadic sequential task, the interference generated by Sh,p dur-
ing an interval ∆ is upper bounded by

⌈
∆+Jh,p

Th

⌉
×

∑
vh,k∈Sh,p

Ch,k =
∑

vh,k∈Sh,p

⌈
∆+Jh,p

Th

⌉
×

Ch,k, which is equivalent to the interference generated by a set of sporadic tasks made of one
task per node vh,k ∈ Sh,p with release jitter Jh,p and execution time Ch,k. ◀

▶ Lemma 5. Maximizing the release jitter of a node vh,k maximizes the interference it
generates.

Proof. Equation (1) is monotonically non-decreasing with respect to the release jitter of
each task. ◀

▶ Lemma 6. Let vi,b be a node of τi that is not in sequence Si,q and has a precedence
constraint towards the first node of Si,q. The node vi,b cannot interfere with Si,q.
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Algorithm 4 Model transformation algorithm.

1: procedure Transformation(τ, (i, a, q))
2: τ ′ ← ∅ ▷ Transformed task set

▷ For all sequences of higher or equal priority assigned to the same processor as Si,q

3: for all τh ∈ hep(τi) do
4: for all Sh,p ∈ Sh | P (Sh,p) = P (Si,q) do
5: Jh,p ← max

{
0, maxvh,b∈ipred(head(Sh,p))

{
Rh,b

}}
▷ Release jitter of Sh,p

6: end for
▷ For all nodes of τh with a replica assigned to the same processor as Si,q

7: for all vh,k ∈ Vh | ∃Sh,p ∈ Sh, vh,k ∈ Sh,p ∧ P (Sh,p) = P (Si,q) do
8: J ′

h,k ← maxSh,p|vh,k∈Sh,p∧P (Sh,p)=P (Si,q){Jh,p} ▷ Max. release jitter of vh,k

9: τ ′
h,k ← Create a sporadic task with release jitter J ′

h,k and WCET Ch,k

10: τ ′ ← τ ′ ∪ τ ′
h,k

11: end for
12: end for

▷ For all nodes of τi assigned to the same processor as Si,q

13: for all vi,b ∈ {Vi \ vi,a} | ∃Si,p ∈ Si, vi,b ∈ Si,p ∧ P (Si,p) = P (Si,q) do
14: if vi,b is independent from head(Si,q) in Gi then
15: τ ′

i,b ← Create a sporadic task with WCET Ci,b and release jitter J ′
i,b = 0

16: τ ′ ← τ ′ ∪ τ ′
i,b

17: end if
18: end for
19: S⋆

i,q ← The sequence obtained by removing all nodes after vi,a in Si,q

20: J ′
i,q ← max

{
0, maxvi,b∈ipred(head(Si,q))

{
Ri,b

}}
▷ Max. release jitter of Si,q

21: τ ′
i,a ← Create a sporadic task with WCET

∑
vi,j∈S⋆

i,q
Ci,j and release jitter J ′

i,q

22: τ ′ ← τ ′ ∪ τ ′
i,a

23: return τ ′

24: end procedure

Proof. Let head(Si,q) be the first node of Si,q. The node vi,b is either a predecessor or a
successor of head(Si,q). In case vi,b is a predecessor of head(Si,q), then vi,b must be completed
when Si,q is released. Therefore, vi,b does not interfere with Si,q. In case vi,b is a successor
of head(Si,q), then a job of vi,b can only be released after Si,q. Since jobs with equal priority
execute in FIFO order, vi,b executes after Si,q, and thus does not interfere with Si,q. ◀

Following the result in Lemma 4, Algorithm 4 creates one sporadic task τ ′
h,k per node vh,k

of each sequence of every higher-priority or equal-priority task different from τi (i.e., of every
task in the set hep(τi)) assigned to the same core as the sequence Si,q under analysis (Lines 3-
12), in order to upper bound the interference generated by those sequences. According to
Lemma 3, for each job released by a task, each of its nodes executes at most once, irrespective
of its number of replicas. Therefore, Algorithm 4 only generates one sporadic task per node
instead of one sporadic task per replica. The WCET of the generated task τ ′

h,k is then equal
to the WCET of the node vh,k, and its release jitter is the maximum release jitter of all the
sequences in which vh,k appears (Line 8), so as to maximize the interference it generates (see
Lemma 5). The minimum inter-arrival time and the priority of the generated task τ ′

h,k are
inherited from the corresponding task τh.

After generating equivalent sporadic tasks for all the tasks in hep(τi), Algorithm 4
generates sporadic tasks to model the self-interference of nodes of τi on the sequence Si,q

under analysis (Lines 13-18). One such task is generated for each node of τi, except vi,a
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itself, that is independent from the first node in Si,q and has a replica assigned to P (Si,q)
(in accordance with Lemma 6). Note that, according to Equation (1), since the sporadic
tasks modeling the self-interference of nodes of τi have the same priority as Si,q, their release
jitter does not influence the WCRT of the sequence under analysis. Therefore, Algorithm 4
arbitrarily sets their release jitter to 0.

Finally, since we aim at computing the WCRT of node vi,a in sequence Si,q, Algorithm 4
models the partial sequence S⋆

i,q ⊆ Si,q ending at vi,a as a sporadic task τ ′
i,a, with WCET

equal to the sum of the execution time of its nodes and release jitter equal to the maximum
WCRT upper bound of the predecessors of the first node of Si,q (Lines 19-22).

5.2 Analysis improvements
Although the analysis presented in Section 5.1 is an efficient approach to test the schedulability
of a set of parallel tasks executing under replication-based scheduling, the analysis might
yield pessimistic WCRT upper bounds in some cases.

In order to identify a potential source of such analytical pessimism, consider a replica of
the node under analysis vi,a in sequence Si,q and a replica of another node vi,b in Si,p that
triggers the release of Si,q (i.e., it is an immediate predecessor of head(Si,q) that causes the
release jitter on Si,q). According to the analysis in Section 5.1, the WCRT of vi,a in Si,q is
upper bounded by the WCRT upper bound of vi,b added to the solution to Equation (1) for
vi,a. Assume that there is a node vh of a higher-priority task with replicas assigned to the
processors where Si,q and Si,p execute. Then, vh interferes with both vi,a and vi,b. Since the
analysis in Section 5.1 analyses the WCRT of vi,a and vi,b independently from each other, it
may account for the same jobs of vh as interfering with both vi,a and vi,b, thus overestimating
the overall interference those jobs may generate.

The following lemma provides a lower bound on the redundant interference caused by
the higher-priority node vh in the computation of Ri,a,q, with reference to the replicas of vi,a

in Si,q and of vi,b in Si,p.

▶ Lemma 7. Let ri,a,q and ri,b,p represent the solutions to Equation (1) for, respectively,
vi,a in Si,q and vi,b in Si,p. Assume that the release jitter of Si,q is equal to the WCRT upper
bound Ri,b,p of the replica of vi,b in Si,p. The redundant interference caused by vh on both
the replica of va in Si,q and the replica of vb in Si,p, i.e., the amount of interference caused
by vh included in the computation of both ri,a,q and ri,b,p, is lower bounded by(⌈

ri,b,p + J ′
h

Th

⌉
+

⌈
ri,a,q + J ′

h

Th

⌉
−

⌈
ri,b,p + ri,a,q + J ′

h

Th

⌉)
· C ′

h. (2)

Proof. Let J ′
h and Th be the release jitter and minimum inter-arrival time of node vh. The

number of jobs of vh considered as causing direct interference on the replica of vi,a in Si,q

as part of ri,a,q is given by
⌈

ri,a,q+J′
h

Th

⌉
(from Equation (1)). Similarly, the number of jobs

of vh considered as causing interference on the replica of vi,b in Si,p is given by
⌈

ri,b,p+J′
h

Th

⌉
.

Since the analysis in Section 5.1 adds the WCRT upper bound of vi,b (as part of the release
jitter of vi,a) to ri,a,q to calculate the WCRT upper bound of vi,a, it considers that, in
total,

⌈
ri,a,q+J′

h

Th

⌉
+

⌈
ri,b,p+J′

h

Th

⌉
jobs of vh participate to the WCRT upper bound of vi,a.

However, since vi,b in Si,p triggers the release of Si,q, the time between the release of vi,b

in Si,p and the completion of vi,a in Si,q is upper bounded by ri,b,p + ri,a,q. Therefore, the
number of jobs of vh released between the release time of vi,b and the completion of vi,a

cannot be larger than
⌈

ri,b,p+ri,a,q+J′
h

Th

⌉
. Thus, the analysis in Section 5.1 considers at least
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Algorithm 5 Analysis improvements for the derivation of the WCRT of a node vi,a in sequence
Si,q of a task τi ∈ τ .

1: procedure ReduceJitter(τ, (i, a, q))
2: ri,a,q ← The solution to Equation (1) for vi,a in Si,q

3: Ji,a,q ← 0 ▷ Jitter of vi,a in Si,q

4: vi,s ← head(Si,q)
5: for all vi,b ∈ ipred(vi,s) do
6: for all Si,p ∈ Si | vi,b ∈ Si,p do
7: ri,b,p ← The solution to Equation (1) for vi,b in Si,p

8: Vh ← The set of all nodes with higher priority than τi with replicas assigned
to both P (Si,q) and P (Si,p)

9: for all vh ∈ Vh do
10: J ′

h ← The maximum release jitter of vh as an interfering sequential task
11: C ′

h ← The WCET of node vh

12: Iredundant
h ←

(⌈
ri,b,p+J′

h

Th

⌉
+

⌈
ri,a,q+J′

h

Th

⌉
−

⌈
ri,b,p+ri,a,q+J′

h

Th

⌉)
· C ′

h

13: end for
14: J⋆

i,a,q ← Ri,b,p −
∑

vh∈Vh
Iredundant

h

15: Ji,a,q ← max{Ji,a,q, J⋆
i,a,q}

16: end for
17: end for
18: Ri,a,q ← Ji,a,q + ri,a,q

19: return Ri,a,q

20: end procedure

⌈
ri,b,p+J′

h

Th

⌉
+

⌈
ri,a,q+J′

h

Th

⌉
−

⌈
ri,b,p+ri,a,q+J′

h

Th

⌉
too many jobs of vh as contributing to the WCRT

of vi,a in Si,q. Every such job of vh has a WCET of C ′
h. Therefore, Equation (2) is a lower

bound on the redundant interference caused by vh on both the replica of vi,a in Si,q and the
replica of vi,b in Si,p. ◀

We use Lemma 7 to improve the analysis in Section 5.1. We introduce an additional step
in Algorithm 3 right after the WCRT upper bound Ri,a,q for a node vi,a within a sequence
Si,q is obtained (i.e., right after Line 6). The additional analysis step computes a reduced
value for the release jitter of the sporadic task modeling the sequence Si,q in the analysis
of vi,a by discounting redundant interference caused by higher-priority nodes that interfere
both with immediate predecessors of head(Si,q), whose WCRT upper bounds determine the
release jitter of Si,q, and with Si,q itself.

Algorithm 5 details how the WCRT upper bound Ri,a,q is updated for the node vi,a within
the sequence Si,q, by computing a reduced release jitter Ji,a,q for Si,q. In the algorithm,
the jitter Ji,a,q is initially set to 0 (Line 3). Then, at Lines 4-17, the procedure examines
each immediate predecessor of head(Si,q) to determine which predecessors may generate
the largest release jitter Ji,a,q for Si,q. For every predecessor vi,b of head(Si,q), and for
every sequence Si,p in Si containing a replica of vi,b, a candidate value J⋆

i,a,q for the release
jitter is obtained by subtracting redundant interference from the WCRT upper bound Ri,b,p

(Lines 5-16). Specifically, the total redundant interference on vi,a in Si,q and vi,b in Si,p to
be subtracted from Ri,b,p is derived by first identifying all nodes with higher priority than
τi that have at least one replica assigned to processor P (Si,q) and one replica assigned to
processor P (Si,p), meaning that they contribute interference in the computation of both
ri,a,q and ri,b,p. For every such higher-priority node vh, we use Equation (2) to compute
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the redundant interference and discount it from Ri,b,p to obtain J⋆
i,a,q. The value of Ji,a,q

is then set to the maximum between J⋆
i,a,q and the current value of Ji,a,q. Thus, the final

value of Ji,a,q is given by the maximum release jitter candidate among those computed for
all replicas of every immediate predecessor of head(Si,q). As a result, the replicas of the
immediate predecessor of head(Si,q) that produced a candidate release jitter value equal
to the final value of Ji,a,q satisfy the assumption in Lemma 7. Finally, given the resulting
value of Ji,a,q, the WCRT upper bound of vi,a within the sequence Si,q is recomputed as
Ri,a,q = Ji,a,q + ri,a,q (Line 18).

6 Experimental results

This section presents the results of an experimental evaluation of the proposed replication-
based scheduling approach, including a comparison with state-of-the-art variants of federated
scheduling [23] and partitioned scheduling [2].

6.1 Experimental setup
The experimental campaign is based on the analysis of randomly generated task sets. The
task set generation procedure works as follows. The number of tasks n composing each
task set τ is a generation parameter which is fixed for each experiment. For each parallel
task τi, the topology of the DAG Gi is generated according to the technique by Melani et
al. [24]. This approach generates a series-parallel graph with multiple levels of nested parallel
branches in a recursive approach which starts from an initial graph composed of two nodes
and then recursively expands non-terminal nodes to either terminal nodes or additional
parallel subgraphs, until a maximum recursion depth is reached. The maximum recursion
depth is modeled as a generation parameter nrec, and another generation parameter ppar is
used to represent the probability with which a non-terminal node is expanded to a parallel
subgraph within the recursion. The level of parallelism of the parallel subgraph is controlled
with an additional parameter, npar. In particular, the number of branches to which a node
is expanded is selected from the discrete uniform distribution [2, npar].

Given the value of the system utilization U , the UUniFast algorithm by Bini and
Buttazzo [10] was used to generate the utilization Ui for each task τi ∈ τ . In particular,
UUniFast is used to uniformly select n real values Ûi ∈ [0, 1] such that

∑n
i=1 Ûi = 1; then,

the utilization Ui of each task τi is set to Ui = U · Ûi. Once the DAG topology Gi of a task
τi is generated, the minimum inter-arrival time Ti of τi is selected from a discrete uniform
distribution with range [Tmin, Tmax], where Tmin and Tmax are generation parameters. The
deadline of each task τi is set to Di = Ti (implicit deadlines). The cumulative WCET Ci

of τi is set to Ci = Ui · Ti; then, the WCET Ci,a of each node vi,a ∈ Vi is generated using
the UUniFast algorithm by distributing the WCET Ci among the nodes of Gi in such a way
that

∑
vi,a∈Vi

Ci,a = Ci. In particular, UUniFast is used to uniformly select ni real values
Ĉi,a ∈ [0, 1] such that

∑
vi,a∈Vi

Ĉi,a = 1; then, the WCET Ci,a of each node vi,a ∈ Vi is set to
Ci,a = Ci · Ĉi,a. Finally, the priority level πi of each task τi is assigned according to the Rate
Monotonic algorithm, which assigns higher priority levels to tasks with smaller minimum
inter-arrival time Ti.

In order to limit the amount of non-feasible task sets generated for the experiments,
the generation procedure for each task τi is repeated (up to 5000 times) in case either (i)
Ci,a > Di holds for some node vi,a ∈ Vi; or (ii)

∑
vi,a∈V (λ) Ci,a > Di holds for some path

λ ∈ path(Gi).
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In each experiment, the number of processors m in the platform was fixed to a specific
value, and the system utilization U was varied between 0 and m in increments of 0.5. For
each value of U , 100 task sets were generated and analyzed using the replication-based,
federated, and partitioned scheduling approaches. The performance metric considered in the
experiments is the schedulability ratio with respect to the system utilization U , computed as
the ratio between the number of task sets deemed schedulable by a given analysis approach
and the total number of task sets evaluated for the utilization point U .

The following scheduling approaches and respective analyses were tested: (RBS-WBF)
replication-based scheduling, testing all the available heuristics (Worst Fit, Best Fit, First
Fit) and applying the analysis in Section 5.1; (RBS-WBF-I) like RBS-WBF, but leveraging
the improved analysis in Section 5.2; (RBS-DUAL) replication-based scheduling using the
variant allocation approach which treats high-utilization and low-utilization tasks differently,
testing the Worst Fit heuristic and applying the analysis in Section 5.1; (RBS-DUAL-I)
like RBS-DUAL, but leveraging the improved analysis in Section 5.2; (RBS-OR) logic OR
combination of RBS-WBF and RBS-DUAL, which deems a task set schedulable if it is deemed
schedulable by at least one of RBS-WBF and RBS-DUAL; (RBS-OR-I) logic OR combina-
tion of RBS-WBF-I and RBS-DUAL-I; (FED-WBF) federated scheduling [23], allocating
low-utilization tasks by decreasing utilization order and testing all the standard Worst Fit,
Best Fit, and First Fit heuristics; and (PART-EDD) partitioned scheduling, analyzed using
an approach leveraging mixed-integer linear programming following a transformation to the
event-driven delay-induced task model, and with allocation determined according to the
best performing variant of the pseudo-federated approach, which treats high-utilization and
low-utilization tasks similarly to federated scheduling and distributes nodes of low-utilization
tasks on underutilized dedicated processors of high-utilization tasks [2].

6.2 Experimental results
Figure 4 reports the results of the experiments. For all system configurations, the values of
nrec, ppar, Tmin, and Tmax were set to nrec = 2, ppar = 0.8, Tmin = 100, and Tmax = 1000,
while the other parameters (m, n, npar) were varied among the experiments, and their value
for each experiment is reported above the corresponding graph. The PAR-FEAS curve
represents the ratio of task sets which satisfy both feasibility conditions in the generation, i.e.,
Ci,a ≤ Di for all nodes vi,a ∈ Vi, and

∑
vi,a∈V (λ) Ci,a ≤ Di for all paths λ ∈ path(Gi). This

curve represents an upper bound on the attainable performance of the evaluated scheduling
and analysis approaches.

The results for npar = 3 (Figures 4(a-c)) share a common overall trend, with replication-
based scheduling outperforming both federated and partitioned scheduling by a significant
margin. For what concerns replication-based scheduling, the most significant performance
loss occurs at utilization values U that are above 50% of the available system utilization m

across all processors, with the overall performance decline starting at around 37.5% of m.
Partitioned scheduling follows with an intermediate level of performance, while federated
scheduling exhibits the worst performance among the evaluated approaches. The same
general pattern is observed in the experiments in which a larger number of nodes is generated
for each task, i.e., when npar = 5 (Figures 4(d-f)). In this case, the drop-off for replication-
based scheduling with respect to U occurs again at around 37.5% of m, but with a sharper
performance loss after that point. Partitioned scheduling suffers a similar loss in performance,
whereas federated scheduling exhibits robust performance with respect to the previous case.
Across all experiments, the two tested allocation approaches for replication-based scheduling,
RBS-WBF and RBS-DUAL, show comparable performance, with the combined approach
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Figure 4 Schedulability ratio with respect to the system utilization U obtained for different
system configurations.

RBS-OR granting an additional edge in performance, meaning that neither of the methods
dominates the other. Finally, in all the tested scenarios, the RBS-WBF-I, RBS-DUAL-I,
and RBS-OR-I approaches utilizing the improved analysis in Section 5.2 provided slightly
improved performance with respect to the corresponding RBS-WBF, RBS-DUAL, and
RBS-OR approaches adopting the analysis in Section 5.1.

Overall, the experiments show that replication-based scheduling can outperform both
partitioned and federated scheduling by a large margin across several system configurations.

7 Conclusions and future work

This paper presented replication-based scheduling, a specialized scheduling approach for
parallel real-time tasks executing on a multiprocessor platform which leverages the internal
topology of the DAG of each task to provide enhanced schedulability performance with limited
expected runtime overhead and analysis complexity. In addition to the overall scheduling
paradigm, design-time allocation strategies were discussed, and a response-time analysis for
the case of fixed-priority preemptive scheduling was provided. Experimental results showed
that replication-based scheduling significantly outperforms state-of-the-art variations of both
federated and partitioned scheduling. Future work includes implementing replication-based
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scheduling in a real-time operating system, investigating further improvements to the provided
analysis, and exploring variants of replication-based scheduling supporting Earliest Deadline
First scheduling and non-preemptive execution of nodes. Finally, given the flexibility of the
proposed scheduling framework, future work should also evaluate further variations to the
design-time allocation algorithms.
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Abstract
We present here the main features and lessons learned from the first edition of what has now
become the ECRTS industrial challenge, together with the final description of the challenge and a
comparative overview of the proposed solutions. This verification challenge, proposed by Thales,
was first discussed in 2014 as part of a dedicated workshop (FMTV, a satellite event of the FM 2014
conference), and solutions were discussed for the first time at the WATERS 2015 workshop. The use
case for the verification challenge is an aerial video tracking system. A specificity of this system lies
in the fact that periods are constant but known with a limited precision only. The first part of the
challenge focuses on the video frame processing system. It consists in computing maximum values
of the end-to-end latency of the frames sent by the camera to the display, for two different buffer
sizes, and then the minimum duration between two consecutive frame losses. The second challenge
is about computing end-to-end latencies on the tracking and camera control for two different values
of jitter. Solutions based on five different tools – Fiacre/Tina, CPAL (simulation and analysis),
IMITATOR, Uppaal and MAST – were submitted for discussion at WATERS 2015. While none of
these solutions provided a full answer to the challenge, a combination of several of them did allow to
draw some conclusions.
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1 Introduction

Many model-based techniques and tools have been developped for the timing estimation
and verification of critical real-time systems. One can classify these approaches into three
categories: simulation, model checking and response-time analysis. The many existing tools
apply to different but sometimes similar models and may provide different types of guarantees.
This makes it difficult for researchers and practitioners to understand the advantages and
drawbacks of one approach compared to another, or even simply to figure out which tools
can perform a given type of analysis on a given system.

The WATERS industrial challenge was introduced in 2015 to address this issue by
providing an opportunity for researchers to try their favorite tool on a practical problem. For
Thales, who proposed the first challenge, this was an opportunity to better understand how
various analysis methods and tools proposed by the research community can be applied to
the large variety of real-time requirements of the Thales products (ranging from hard to soft
real-time requirements). For the research community, the main motivation for participating
to the challenge was to address concrete timing analysis problems issued from real industrial
case studies. Such a challenge thus promotes discussions and closer interactions between
research and industry.

A preliminary version of the challenge was presented and discussed at the FMTV 2014
workshop (FMTV standing for “Formal Methods for Timing Verification”), a satellite event
of FM 2014 (the 19th International Symposium on Formal Methods) [11]. An improved
version was then proposed for WATERS 2015 (the 6th International Workshop on Analysis
Tools and Methodologies for Embedded and Real-time Systems) [22], a satellite event of
ECRTS 2015. Five solutions, representing all model-based timing analysis techniques (model
checking, response-time analysis and simulation), were submitted that year. Interestingly, no
tool was able to solve all subchallenges, which shows that there is currently no unique solution
that fits every timing verification problem. The combined use of several tools, however, led
to better results than those provided by each individual tool, while increasing the confidence
in the produced results.

The first WATERS industrial challenge provided Thales, the solution providers as well
as all WATERS 2015 attendees with a better understanding of the various techniques and
tools, and in particular of their strengths and weaknesses with respect to several aspects,
such as: ease of modeling, level of automation of the verification process, verification time,
reliability of the results, etc. Based on the feedback given by the solution providers with
respect to the description of the challenge, Thales were also able to provide a consolidated
version of the challenge including a corresponding model in Papyrus [13], for which solutions
could subsequently be submitted (see e.g., [21]).

Although this challenge is quite ancient now, we believe that the lessons learned from this
experience and the research perspectives that it opened are still relevant today. The purpose
of this paper is therefore to share that knowledge and to make available to the community

https://doi.org/10.4230/DARTS.9.1.4
https://doi.org/10.4230/DARTS.9.1.4
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Figure 1 Subsystems of the aerial video tracking system.

the final description of the challenge and a comparative overview of the proposed solutions.
The authoritative model of the challenge as well as the code for several of the solutions is
available as additional material submitted together with this paper.

2 Presentation of the verification challenge

The use-case provided by Thales consists of an aerial video system to detect and track
moving objects, e.g., vehicles on a roadway. Aerial video tracking systems are mission critical
real-time systems since they embed intelligence, surveillance, reconnaissance, tactical and
security applications characterized by strict constraints on timing. The main system tasks
consist in:

displaying high quality video images to the user;
following the tracked object even when it is temporarily hidden from view (e.g., the
vehicle proceeds in and out of a tree obstructed area) through motion prediction;
detecting patches of the image that may be moving differently from the background by
combining image registration and motion prediction.

For simplicity, the use-case is limited to the timing related aspects of two subsystems of
the aerial video tracking system, as represented in Figure 1: a video frame processing system
and a tracking and camera control system. As suggested by its name, the first subsystem
processes the video frames sent by the camera. This includes embedding tracking data into
the video, converting the frames to the required format and displaying a high quality video
running at 25 frames per second on the monitor. The second subsystem performs motion
prediction for the tracked object. Based on this prediction and the aircraft sensors data
(position, direction, speed, etc.) it calculates new camera angles and sends instructions to
control the camera.

We propose timing verification challenges related to each subsystem of the aerial video
tracking use-case.

2.1 Challenge 1: Video Frame Processing
The functional view of the video frame processing subsystem is illustrated in Figure 2. It
consists of a sequence of 4 functions processing the video frames from the camera to the
display. The Pre-processing function removes reflections from the frames and normalizes the
intensity of the individual pixels. The Processing function embeds tracking information into
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Figure 2 Functional view of the video frame processing subsystem.

Figure 3 Architectural view of the video frame processing subsystem.

the pre-processed frames and executes zoom-in and zoom-out instructions. The Filtering
function resizes the processed frames and removes noise. Finally, the D/A converting
function converts the frames from digital to analog and sends them to the monitor.

For simplicity, we assume that each function is executed by a single task Ti, as illustrated
in Figure 3. All tasks are assumed to be mapped onto a different processor. Table 1 shows
the execution time for tasks T1, T3 and T4 and the response time for task T2.1

Each frame sent by the camera activates task T1. The frames are sent strictly periodically
with period P1, i.e., the time distance between two consecutive frames sent by the camera is
constant. The exact value of P1 is however unknown since it may slightly vary from camera
to camera. We know, however, that it ranges between 40 ms − 0.01% and 40 ms + 0.01%.
This constant but unknown value is a key aspect of the challenge.

1 We need a response time rather than an execution time for T2 because it is running concurrently with
other tasks that will be described in Challenge 2.
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Table 1 Execution/response times of tasks from the video frame processing subsystem.

Task Execution time
T1 bcet1 = wcet1 = 28 ms
T3 bcet3 = wcet3 = 8 ms
T4 bcet4 = 1 ms ; wcet4 = 10 ms

Task Response time
T2 bcrt2 = 17 ms ; wcrt2 = 19 ms

After each execution, T1 sends a frame through its output that activates task T2. A
register R is used for the communication between T2 and T3. At the end of each execution,
T2 overwrites the register content with the new frame.

When activated, task T3 reads the current frame stored in the register R. For simplicity,
we assume that there are no conflicts between read and write accesses to R. The activation
of T3 is strictly periodic, i.e., the value of period P3 is constant. However, due to minor
uncertainties in the clock implementation, the exact value of P3 is unknown: it ranges between
40
3 ms − 0.05% and 40

3 ms + 0.05%. Note that, since task T3 is activated more frequently than
task T2, it will process the same register content more than once.

At the end of each execution, task T3 produces a frame. Frames originating from the
same register content are identical copies and are therefore assigned identical indices. The
frames are inserted into a buffer Buf read by T4. Buffer Buf has size n. For each frame, the
following conditions must be met to get actually stored in Buf:
1. It is not full.
2. No other frame having the same index (i.e., identical copy) has already been stored in

the buffer.

Otherwise, the frame is discarded. We call this a smart insert function. The time required
to discard a frame or to store it in Buf can be ignored.

Task T4 is activated strictly periodically, i.e., the value of period P4 is constant. As
for T1 and T3, the exact value of P4 is again unknown, but we know that it is in the range
40 ms ± 0.01%. Each activation of T4 leads to an execution. If buffer Buf is empty, the
execution of T4 takes 1 ms. Otherwise, T4 consumes a single frame from the buffer, and in
this case, its execution takes exactly 10 ms. Once a frame has been processed, task T4 sends
it (at the end of its execution) to be displayed on the monitor.

Communication between processors, access to register R between T2 and T3 and access to
buffer Buf between T3 and T4 are considered to not consume any time.

Challenge 1A

The first part of the video frame processing timing verification challenge is to analyze
the latency E2E1A (standing for end-to-end delay) of the frames sent by the camera that
successfully reach the display.
1. Compute E2E1A

max , the maximum value of this latency, for a buffer size n = 1.
2. Compute E2E1A

max for a buffer size n = 3.
Upper bounds for E2E1A

max are also of interest.
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Figure 4 Functional view of the tracking and camera control subsystem.

Challenge 1B

Due to the small size of the buffer read by T4, it may happen that all frames with identical
indices (i.e., all copies originating from the same register content between T2 and T3) are
discarded at its entrance, e.g., when the period of T4 is smaller than the period of T1
(remember that the periods of T1, T3 and T4 are fixed, but their exact values are unknown).
That is, no copy of the corresponding frame produced by the camera will ever reach the
display. Losing frames is not very critical. However above a certain limit this may have an
impact on the video quality and may be detected by the human eye.

The second part of the video frame processing timing verification challenge is therefore
to analyze the distance between two frames produced by the camera that will be discarded
at the buffer entrance, called dist. This distance dist may be expressed as a time distance
or as a number of frames produced between two successive losses:
3. Compute the minimum loss distance distmin for a buffer size n = 1.
4. Compute distmin for a buffer size n = 3.

2.2 Challenge 2: Tracking and Camera Control
The functional view of the tracking and camera control subsystem is illustrated in Figure 4.
It consists of 3 functions. The Tracking control function processes the aircraft sensors
data (position, direction, speed, etc.), controls the whole tracking process and generates
alerts and various tracking data. The Target position prediction function receives data
about the aircraft speed, position and direction from the Tracking control function and
performs motion prediction for the tracked object. The Camera control function receives
data about the position of the tracked object from the Tracking control function and
calculates a new angle for the camera based on the aircraft position, speed and direction and
the tracked object motion prediction.

For simplicity, we assume that each function is executed by a single task, as illustrated in
Figure 5. All tasks are mapped to a same processor GPP1 to which task T2 (which belongs
to the video frame processing subsystem) is also mapped. All tasks are triggered by the
arrival of data at their inputs. We assume fixed priority preemptive scheduling on the GPP1
with the following priority order: T2 > T6 > T5 > T7.
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Figure 5 Architectural view of the tracking and camera control subsystem.

Figure 6 Sequence diagram of the functions on GPP1.

ECRTS 2023
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Table 2 Execution times of the individual functions and function segments by the tasks.

Function Corresponding Execution Time
[bcet, wcet] in ms

Tracking control
Segment 1 [4, 4]
Segment 2 [9, 10]
Segment 3 [4, 5]

Target position prediction [4, 7]
Camera control [11, 14]

Processing [17, 17]

Figure 6 represents the sequence diagram of the functions on GPP1. The Tracking
control function is activated periodically every 100 ms. Its periodic activation can however
deviate by a jitter value jitter. As in Challenge 1, the Process function is activated strictly
periodically, i.e., the time distance between two consecutive frames is constant. The exact
value of the period is however unknown since it may slightly vary from camera to camera.
However, we know that it ranges between 40 ms − 0.01% and 40 ms + 0.01%.

A first segment of the Tracking control function is executed by task T6. Then the
Tracking control function performs a synchronous call to the Target position prediction
function and is suspended waiting for the answer. At the end of the Target position
prediction function, task T6 resumes executing a second segment of the Tracking control
function. An asynchronous call is then performed to the Camera control function executed
by T7 while the last segment of the Tracking control function is executed by T6. All
execution times by the tasks of the individual functions and function segments are given in
Table 2.

Challenge 2A

The first part of the tracking and camera control timing verification challenge is to compute
the best-case and worst-case end-to-end latencies from the activation of T6 to the termination
of T7, E2E2A

min and E2E2A
max for different values of jitter:

1. Compute E2E2A
min and E2E2A

max for a jitter value jitter = 0 ms.
2. Compute E2E2A

min and E2E2A
max for a jitter value jitter = 20 ms.

Challenge 2B

Let us now assume that T2 and T5 have access to a shared resource (because the prediction
requires information from the image). The resource is mutually exclusive and is protected by
a priority ceiling protocol. The access to the shared resource takes 2 ms for both tasks. The
second part of the tracking and camera control timing verification challenge is again to:
1. Compute E2E2B

min and E2E2B
max for a jitter value jitter = 0 ms.

2. Compute E2E2B
min and E2E2B

max for a jitter value jitter = 20 ms.
3. Compute the optimum priority assignment minimizing the worst-case latency wcrt for

jitter values jitter = 0 ms and jitter = 20 ms.

2.3 Discussion about the challenge
The challenge proposed by Thales is taken from a real industrial application. While the
behavior described in the first part of the challenge conforms to a real application (only some
execution times were modified), the second part of the challenge was synthesized based on
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real timing behaviors encountered in several Thales real-time applications. A model of the
application and its real-time behavior based on the Papyrus Modeling Environment and the
MARTE profile was made available as a result of the WATERS 2015 workshop [13].

The second part of the challenge represents a classical scheduling verification problem
that can be solved even manually by timing verification experts. This eases the evaluation of
the quality of proposed solutions. The first part of the challenge, however, is rather untypical
and more difficult to solve, thus requiring a tooled solution. In particular, the fact that
the exact period for the arrival/sending of the video frames along the processing chain is
constant but unknown represents a challenge for existing verification techniques. In addition,
while the loss of data is usually not considered in classical scheduling problems, video frames
may be discarded in the first part of the challenge depending on the buffer status.

3 Overview of the solutions provided

The proposed solutions fall into three categories: model checking, simulation and scheduling
analysis. More specifically, the proposed solutions were based on the following tools:

the timed model-checker Uppaal (Section 3.1);
the parametric timed model-checker IMITATOR (Section 3.2);
the timed model-checking framework Fiacre/Tina (Section 3.3);
the tool for real-time systems schedulability analysis MAST (Section 3.4); and
the simulation environment of CPAL (Section 3.5).

None of the proposed solutions could fully address the challenge, and it turned out that
there were some misinterpretations of the model description, leading to very different answers
for some of the solutions. In the rest of this section, we provide an overview of the various
approaches. The objective is not so much to underline each individual contribution (some of
which are outdated by now) than to provide a summary of the discussions that this challenge
raised, and of the conclusions that were reached.

3.1 Solution using UPPAAL
The Uppaal solution [19] uses timed model checking as the main technique for answering
challenge 1. The input formalism is timed automata (Ta) [2] – a dense-time extension of finite-
state automata with a set of clocks measuring time – and the software used is Uppaal [14],
a tool for the analysis of real-time systems described by a system of communicating timed
automata.

A solution to challenge 1 was proposed2 by a straightforward representation of the task
system that almost directly maps to an implementation: each task is represented as a
Ta executing a simple time- or event-triggered loop. Frames are represented by indexes
counted modulo a sufficient3 window size Nw. For answering the challenge questions, for each
frame id, an observer Ta Thread(id) is defined, which starts counting time when the frame
is created and follows its progress through the tasks until the frame is lost or successfully
processed. The variable execution time of task T2 is expressed by a time interval that is
handled symbolically by the verification tool.

2 Uppaal can also express Challenge 2, but the use of a schedulability analysis tool seemed to us a more
obvious choice for that.

3 The window size defines the number of frames which may be “in the system” simultaneously. In
practice, we fix a size Nw, and prove that it is sufficient by verifying that no frame lives longer than the
corresponding time window P1 × Nw (a new frame is created every P1 time units).
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In order to model the assumed uncertainty about the periods of the different tasks, for
each period, an integer constant (a “parameter”4) is defined, which is instantiated with a set of
relevant values. This may be considered as a limitation, as the challenge specification specifies
that the periods can take any value within some interval. Still, explicitly distinguishing
different cases provides some insight: that only cases where P1 < P4 will lead to losses was
not really a surprise, but the fact that even large deviations of P3 (of 1

3 or more) have only
very little influence on the results obtained, was probably less evident. The regularity of the
results obtained for decreasing deviations (Table 3 shows results for 1

3 , 1
6 , 1

12 ) allows us to
extrapolate the results for smaller deviations.

The basic verification with Uppaal can be considered in the present case as a sort of
compromise between simulation and parametric verification as proposed by Section 3.2. It
provides exact results for given parameter instances, and there was no issue with scaling to
compute minimal or maximal E2E or dist when excluding the first few hundred frames (600
and 1000 frames respectively in the results reported in Table 3). The solution uses the basic
model-checking algorithms of Uppaal based on a symbolic clock representation. This allows
us to achieve exact verification results for the model under study. Using relevant properties,
a set of timings can thus be derived. The simulation capacities of Uppaal were also used
but only to get some initial understanding or for debugging. Results were then confirmed by
model checking.

3.2 Solution using IMITATOR
The IMITATOR solution [20] uses parametric timed model checking as the main technique
to derive the end-to-end timings for answering Challenge 1. The underlying formalism is
parametric timed automata [3], an extension of timed automata [2] with unknown timing
parameters, in addition to the clocks used in timed automata invariants and guards. The
software used is IMITATOR [5], a parametric timed model checker taking as input networks of
parametric timed automata augmented with useful features such as rational-valued variables,
stopwatches, etc.

The key solution to solve Challenge 1A is to consider a single arbitrary frame processing.
Thanks to the symbolic representation of the state space offered by IMITATOR, the system
can start from an arbitrary state, and perform a finite number of discrete actions simulating
this arbitrary frame. Measuring the time from its input to the output, IMITATOR therefore
derives a (parametric) best and worst case time. Parameters (i.e., unknown constants)
are used to model the uncertain periods; an additional parameter E2E ≥ 0 is also used to
represent the end-to-end latency of the target frame. And, for a given run, this value is
unique as a single frame is considered.

The key aspect of this solution is the use of rational-valued timing parameters to model
perfectly the unknown (but constant) periods. This solution is correct, as opposed to intervals
– in which case the actual period can vary at each cycle, which is not the intended specification
in the challenge. The solutions to Challenge 1A (see Table 3) for both buffer sizes are exact,
while the proposed solution to Challenge 1B is only approximated, due to the increased
system complexity.

In addition, a solution is derived for Challenge 2A by the same authors [20] using analytical
methods, and then confirmed by IMITATOR. The extension of the solution to Challenge 2B
was not modeled in [20] due to lack of time but seems straightforward to the authors.

4 Note that this is different from the timing parameters (unknown constants) that will be described
in Section 3.2, as they are handled manually here.
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Finally, this way of modeling the solution was a source of inspiration for subsequent work
on addressing scheduling problems under uncertainty using (extensions of) parametric timed
automata [6].

3.3 Solution using Fiacre and Tina
The Tina approach [8] relies on several models to answer questions from Challenge 1, defined
using either Time Petri Nets (TPN) [16] or Fiacre [7], a component-based specification
language that extends TPN with data and priorities. All our models derive from a common
specification, but are each specifically instrumented in order to check a given property:
minimal and maximal traversal time; influence of different clock rates; possibility to lose
frames; etc.

Our results are computed using the model-checking tool sift, part of the Tina toolbox [9],
that provides state-space exploration and reachability algorithms for both TPN and Fiacre
models. Like with IMITATOR and Uppaal, our approach is based on a dense-time hypothesis.
We are not totally faithful to the specification though. In particular, we decided to use time
intervals to model the uncertainty on the period instead of a fixed value inside an interval.
This means that, inside the same execution trace, the periods of a task may vary. Because of
this, each experiment that we perform only returns approximate results. Nonetheless, by
using several iterations, and by using together methods that over- or under-approximate
the possible behaviors, we were able to compute results within a given accuracy threshold
(we use 10µs in Table 3). It would have been possible to derive an “exact” model using an
extension of TPN with stopwatches, but this is way more computationally expensive and not
usable in practice.

The frame processing challenge turned out to be a very interesting case study for our
model-checking toolbox. First, since the description is highly modular, it is well-suited for
component-based modeling languages. Also, it provides a good motivation for the use of
high-level data structures in a specification language. In our Fiacre models, for instance, we
use a queue of identifiers with a dedicated insertion function to model an unbounded number
of frames. As a result, in the case n = 3, we can prove that there can be at most 5 different
frames traveling at a given time in the pipeline, without the need to provide a bound a priori.
Finally, many requirements can be reduced to safety properties, that is, checking that some
“bad state” cannot occur. In this case, we often do not need to explore the whole state space
of the system to return a meaningful result. We can also use more aggressive abstractions,
that are able to speed up our computations. We give an example of such optimization in [8]
that was able to reduce some model-checking tasks by a factor of ×250 (from about 100s to
less than 0.4s).

3.4 Solution using MAST
This approach [15] is based on the Modeling and Analysis Suite for Real-Time Applications
(MAST) [12], which is an open source set of tools for developing real-time applications to
perform various kinds of schedulability analysis.

For Challenge 1, the authors focused on a different research question than the one posed by
Thales, namely finding the worst-case conditions under which the system is still schedulable
(i.e., it loses no frame). Under these assumptions, 3 out of the 4 questions can be answered
by combining the information directly provided by MAST and ad-hoc external methods. In
particular when n = 3, results for the required latencies and distances can be calculated as
the maximum number of frames enqueued is 2. Furthermore, distance between two frames
can be calculated for n = 1 based on the MAST method for calculating the buffer size.
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The relevant characteristics for modeling Challenge 2 are: Each function is mapped to
one task. All tasks are in the same processor using FP preemptive scheduling with priority
order: T2 > T6 > T5 > T7. All tasks are triggered by the arrival of data at their inputs. T7 is
invoked from an action in the middle of T6. Here the authors need to define the models
to explore timing responses and priority assignments for tasks in GPP1 that encompass a
fork, activation jitter for one of the two concurrent flows of execution, and shared resources.
The approach in this case is to adapt the models used to the sets of equivalent cases for the
relative values of priorities and the capacities of the analysis techniques available.

The presence of a fork leads to a multipath model for which only the holistic technique
was available [15]. If the fork is decomposed using the values of the priorities to linearize it,
then, this linear model is analyzed using offset-based techniques. A newer technique enabling
the offset-based analysis of the multipath model has been more recently published in [4].

3.5 Solution using CPAL

This approach [1] is based on CPAL (Cyber Physical Action Language) [10], a language
meant to model, simulate, verify and program Cyber-Physical Systems (CPS). CPAL does
not provide any fully automatic analysis to compute a solution to the FMTV challenge.
However, it helps to identify and validate best and worst-case scenarios. Thus, the language
features of CPAL used for solving the challenges are the formal description, the edition,
graphical representation and simulation of CPS models. The two challenges as specified in the
original description of the FMTV challenge could come out as a little ambiguous: the CPAL
model in contrast must be unambiguous and adhere to the well-defined semantics of the
execution and simulation environment. Furthermore, the models can be written directly in
the graphical CPAL editor, providing an immediate feedback on where and in which aspects
the informal problem descriptions were underspecified. Since CPAL is a domain-specific
language with native support for real-time scheduling, the modeling effort is small, and the
risk of translation errors is limited.

4 Discussion

Let us now discuss briefly the results obtained using the different tools, and provide some
overall conclusions. Table 3 shows an overview of the results for Challenge 1, and Table 4
those for Challenge 2. A first outcome is that no tool solved all challenges, even with an
approximate solution. Challenge 1A is the one with the highest number of answers, with 4 out
of 5 tools being able to make some answers – this challenge also has the highest diversity rate
in terms of results (see below). Then, Challenge 1B had 4 out of 5 tools offering a solution,
while the other challenges (2A and 2B) had 3 out of 5 tools being able to provide a (partial)
solution. A second outcome is that the range of solutions is highly diverse: that is, different
tools obtained different answers. This is not entirely surprising, as several tools knowningly
analyzed slightly different problems (as detailed in Section 3), leading to completely different
answers. Still, a certain (partial) consensus can be obtained by looking closely at the results,
as will be discussed later.

5 P1 = P4 = 3 × P3.
6 All measured results were below or equal to 146, the true worst-case is thus at least 146ms.



S. Altmeyer et al. 19:13

Table 3 Overview of the results for Challenge 1.

Tool 1A: E2E or E2Emax 1B: dist or distmax

ms ms or frames
n = 1 n = 3 n = 1 n = 3

Uppaal
no deviation5 [63, 118.33] ms [63, 118.33] ms none none
P4 = P1 − 1

3 [63, 118] ms [63, 118] ms none none
P4 = P1 + 1

3 [63, 145.33] ms [63, 226] ms [42, 240] frames [79, 480] frames
after ≥ 600 fr [90, 145.33] ms [170.66, 226] ms [79, 161] frames [79, 161] frames
P4 = P1 + 1

6 [63, 145.16] ms [63, 225.66] ms [84, 480] frames [159, 958] frames
after ≥ 1000 fr [89.84, 145.16] ms [162.66, 225.66] ms [159, 321] frames [159, 321] frames
P4 = P1 + 1

12 [63, 145.08] ms – – [319, −] frames
IMITATOR [63, 145.008] ms [63, 225.016] ms – < 5, 000 frames

Fiacre/Tina [89.66, 145.33] ms [89.66, 225.33] ms 2 frames between 35 and
4085 frames

MAST –
If P1 ≥ 39.996 ms
and n ≥ 2
[63, 118.344] ms

55.344 ms

28 ms for the
highest possible
frame production
rate of P1 = 28 ms

CPAL simulation ≥ 146 ms 6 ≥ 220 ms 2 frames 4 400 frames

CPAL analysis
[89.6656, 146] ms
(E2Eminis 63 ms
for the 1st frame)

[89.6656, 226] ms
(E2Emin is 63 ms for
the 1st frame)

– –

Table 4 Overview of the results for Challenge 2.

Tool 2A: [bcrt,wcrt] 2B: [bcrt,wcrt]
jitter jitter jitter jitter Optimization
= 0 ms = 20 ms = 0 ms = 20 ms

Uppaal – – – – –
IMITATOR [49, 74] ms [49, 94] ms – – –

Fiacre/Tina – – – – –

MAST [32, 74] ms [32, 94] ms [32, 78] ms [32, 98] ms

T5 > T7 > T6 > T2;
if jitter = 0 ms
then wcrt = 39 ms;
if jitter = 20 ms
then wcrt = 59 ms

CPAL – – – – –
simulation

CPAL [33, 75] ms [33, 112] ms [33, 75] ms [33, 112] ms T7 > T6 > T5 > T2
analysis (37 ms)
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4.1 Modeling
One important lesson from this challenge is related to the fact that there were ambiguities
in the description, leading to misinterpretations (the same problem was understood and
interpreted differently by different participants to the challenge). This shows the importance
of providing unambiguous models to avoid misunderstandings. Based on this observation,
Thales published a consolidated version of the challenge [13] including a Papyrus model
annotated with MARTE.

A second observation related to modeling is that the ease of modeling differed quite a
lot between the different tools. Some were quite well adapted to the nature of the challenge
while others required quite heavy work to address the problem at hand. This made it difficult
to validate the correctness of the proposed models.

4.2 Different solutions
Focusing on the solutions that did model the constant, yet unkown period parameter, a
certain (partial) consensus can be obtained on some results.

For Challenge 1A, the lower bound for both n = 1 and n = 3 is around 89 ms, which is
obtained by most tools (with some differences due to rounding approximations). The value
63 ms found by IMITATOR and Uppaal corresponds to the first frame, which has a specific
behavior.

In addition, 4 out of 5 tools agree that the upper bound is between 145 and 146 ms for
n = 1, and between 225 and 226 ms for n = 3. Most importantly, the solution obtained by
simulation for n = 1 (CPAL: 146 ms), and that acts as a lower bound on the desired maximum,
matches the result obtained by parametric model checking (IMITATOR: 145.008 ms), which
acts as an upper bound on the desired maximum. (The fact that the “lower” upper bound
found with simulation by CPAL is lower than the upper bound found by model-checking
comes from the discrete-time setting of CPAL simulation tool.) That is, the desired maximum
is necessarily in (145, 145.008] ms.

Concerning Challenge 1B, results are completely different. This challenge was the most
difficult according to the participants. The actual value is probably around the result of
CPAL, i.e., 4 400 frames, according to the participants, but no conclusion has been reached.

Although it was considered easy according to the participants, results for Challenges 2A
and 2B vary quite a lot and more research would be needed to converge towards a consensual
answer.

4.3 No perfect tool
The developers of the challenge were hoping to have a single tool being able to solve all
sub-challenges immediately. Instead, it turned out that different tools solved parts of the
challenge, and that had different strengths and weaknesses: ease of modeling, level of
automation of the verification process, computational complexity of verification, reliability of
the results, etc.

An additional lesson learned from the challenge is that the use of different techniques
to solve the same timing verification problem may increase the confidence in the produced
results. For example by applying simulation to an execution scenario identified by scheduling
analysis as worst-case, we may determine if the analysis results are too pessimistic or not and
thus evaluate the analysis quality. This point is very important in the industrial development
of real-time systems since overestimation margins are usually small (over approximation up
to 20 % are in general accepted in industry, larger over-approximations are refused due to
the cost of the corresponding over dimensioned solutions).
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For example, in Challenge 1A, combining the formal methods based result of IMITATOR
(a possibly overapproximate result) with the simulation based result of CPAL (a possibly
underapproximate result, due to the weakness of simulation) allowed us to confirm the
exactness of both methods. Similarly, in [17], two different formalisms (parametric timed
Petri nets and parametric timed automata) were used in academic software developed by two
different teams in order to solve a problem close to the problem described in the current paper.
The fact that both solutions led to the same result increases significantly the confidence
we can have in these results. Finally, some tools could potentially be used together in a
sequential manner: for example, the results of IMITATOR could be fed into non-parametric
tools such as Uppaal or CPAL, so as to first infer a set of possible solutions, and then verify
them using non-parametric methods. It remains an open question whether we can easily
derive a holistic tool that solves the complete challenge.

5 Conclusion and perspectives

In this paper, we have presented the main features and lessons learned from the first edition of
what has now become the ECRTS industrial challenge. This verification challenge, proposed
by Thales, was first discussed in 2014 as part of a dedicated workshop (FMTV, a satellite
event of the FM 2014 conference), and solutions were discussed for the first time at the
WATERS 2015 workshop.

The use case for the verification challenge is an aerial video tracking system. The first
part of the challenge focuses on the video frame processing system. It consists in computing
maximum values of the end-to-end latency of the frames sent by the camera to the display,
for two different buffer sizes, and then the minimum duration between two consecutive
frame losses. The second challenge is about computing end-to-end latencies on the tracking
and camera control for two different values of jitter. Solutions based on five different tools
– Fiacre/Tina, CPAL (simulation and analysis), IMITATOR, Uppaal and MAST – were
submitted for discussion at WATERS 2015. While none of these solutions provided a full
answer to the challenge, a combination of several of them did allow to draw some conclusions.

From Thales’ point of view, the timing verification challenge was a success. The submitted
solutions to the challenge represent all three model-based timing verification techniques:
timing simulation, scheduling analysis and model checking using timed automata. This gave
Thales the opportunity to evaluate these techniques and better understand their strengths
and weaknesses. As a direct result of the challenge, point to point collaborations were set-up
with several participants. Thales and RTaW set-up a research project (FUI WARUNA)
focusing on timing verification and its integration into the industrial design process. The
solution using IMITATOR was further evaluated by a trainee at Thales and the results were
published in a joint paper [17]. Another joint paper between Thales and UNICAN about the
integration of response-time analysis and optimization in the industrial design process was
also published [18].

From an academic perspective, we also consider this first edition as a success. This
event provided a unique opportunity for researchers to try out their pet tool on a problem
of industrial relevance, and to discuss and compare its performance and limitations with
colleagues in a collaborative way. Although the challenge was fairly simple in its formulation,
it was sufficient to underline the gap that exists between academic tools and industrial
real-time systems. Still, the proposed verification problem did strike a difficult balance
between practical relevance and feasibility: it was challenging, yet within reach of academic
tools. Furthermore, the fact that a combination of solutions could provide a much better
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answer to the challenge than any single tool opens up a scientific line of research that has not
been explored since: when is it useful to combine different formalisms and analysis techniques
to solve a verification problem, and how can this be done in an efficient manner?

This first positive experience triggered a series of subsequent industrial challenges at
WATERS, most notably two iterations by Bosch GmbH. The WATERS challenge has now
grown to become a full-fledged event of the ECRTS conference.

Let us conclude this paper by a few general comments. We believe that the noncompetitive
way in which the challenge was organized contributed a lot to its success. The review process
focused on clarifying assumptions and limitations of the proposed solutions and did not
intend to declare a winner. In fact, participants to the challenge were invited to review other
submissions, considering that they were the best suited for this. This process ensured that
everyone could focus on the scientific discussions without the additional burden of organizing
or participating in a competition.

More generally, events like this help bringing closer researchers in academia and industrial
practitioners from different application domains. For real-time systems research, which tends
to measure its success by its practical relevance and transfer to industry, this is obviously very
useful. Now, this raises an interesting question, which is rarely discussed by the community:
how much research should focus on addressing the needs of industry? A useful expansion of
the challenge in future years could experiment with other types of collaborative efforts, e.g.,
research approaches that would investigate alternative trajectories to those of immediate
interest to industry – for example, approaches that would strike a different balance between
predictability and complexity – or even focusing on society’s needs via another proxy than
industry – for example by collaborating with nonprofit organizations. In any case, one can
only hope that more use cases will be made available to the community in the future, and
that venues for discussing them and potential solutions will spread.
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