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Abstract
Temporal isolation is one of the most significant challenges that must be addressed before Multi-
Processor Systems-on-Chip (MPSoCs) can be widely adopted in mixed-criticality systems with
both time-sensitive real-time (RT) applications and performance-oriented non-real-time (NRT)
applications. Specifically, the main memory subsystem is one of the most prevalent causes of
interference, performance degradation and loss of isolation. Existing memory bandwidth regulation
mechanisms use static, dynamic, or predictive DRAM bandwidth management techniques to restore
the execution time of an application under contention as close as possible to the execution time in
isolation.

In this paper, we propose a novel distribution-driven regulation whose goal is to achieve a
timeliness objective formulated as a constraint on the probability of meeting a certain target
execution time for the RT applications. Using existing interconnect-level Performance Monitoring
Units (PMU), we can observe the Cumulative Distribution Function (CDF) of the per-request
memory latency. Regulation is then triggered to enforce first-order stochastical dominance with
respect to a desired reference. Consequently, it is possible to enforce that the overall observed
execution time random variable is dominated by the reference execution time. The mechanism
requires no prior information of the contending application and treats the DRAM subsystem as
a black box. We provide a full-stack implementation of our mechanism on a Commercial Off-
The-Shelf (COTS) platform (Xilinx Ultrascale+ MPSoC), evaluate it using real and synthetic
benchmarks, experimentally validate that the timeliness objectives are met for the RT applications,
and demonstrate that it is able to provide 2.2x more overall throughput for NRT applications
compared to DRAM bandwidth management-based regulation approaches.
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Figure 1 Execution time distributions in isolation (blue) and contention (red). The controlled
degradation target can be expressed by reasoning in terms of controlled distribution shift (green).

1 Introduction

An important trend across industrial, automotive and avionics domains is the adoption of
MPSoCs. However, a key barrier in designing mixed-criticality systems is the presence of
shared resources like the main memory, the cache and the interconnect, which makes it
non-trivial to bound the execution time of RT applications running on these MPSoCs. This
is because when two or more applications are executed in parallel on different cores, which
we refer to as the contention scenario, the interaction between them on shared hardware
resources can lead to unforeseen and unpredictable delays [8,34,36]. It is well known that
memory contention is a key source for performance degradation [7], and practitioners across
the industry and academia are looking for solutions that facilitate temporal isolation between
applications while using COTS platforms.

Existing hardware-oriented mechanisms for memory interference control require dedic-
ated hardware [2, 11, 13] that is not feasible in COTS multi-core platforms. In contrast,
software-oriented memory bandwidth management-based regulation mechanisms are prom-
ising grassroots techniques to approach the problem of controlling memory interference by
periodically monitoring the memory bandwidth originating from each core and stalling cores
when the egress memory bandwidth exceeds a pre-defined threshold. This threshold can be (1)
fixed and computed offline for a given combination of applications [5,41], (2) predicted on the
fly [5, 41, 42] or (3) computed dynamically by instrumenting the current memory utilization
at the memory controller [23]. A common denominator across the above approaches is that
(1) the system parameters for regulation are based on experimental evaluation and not on
a formal analysis (2) they focus on restoring the execution time of an application under
contention as close as possible to the execution time in isolation.

Ideally, however, the aggressiveness of regulation should directly depend on the target
execution time. Indeed, if the RT applications have sufficient slack, less aggressive regulation
is desirable as it enables better progress for the NRT applications. Consider the qualitative
situation depicted in Figure 1. On the left (resp., right) side of the figure, we depict the
distribution of execution time of an application executing in isolation, blue area (resp.,
contention, red area). Controlled degradation (green area) is achieved if a bounded shift is
allowed from the solo case and in the direction of the contention case. With this intuition, a
timeliness objective can be non-ambiguously expressed as a (1) target execution time and (2)
a condition on the mass of the execution time distribution that can cross said target.
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In this paper, we propose a distribution-driven regulation approach, whose goal is to
achieve a timeliness objective formulated as a constraint on the probability of meeting a
certain target execution time. This definition allows us to unite WCET-like constraints and
high-percentile latency constraints typical of real-time cloud systems (tail latency). The
basic premise of our approach stems from the observation that the latency distribution
of memory transactions of an application under contention gets skewed compared to the
execution in isolation. Therefore, it is possible to precisely influence the overall application
execution time so long as we can (1) characterize this distribution and (2) affect its shape
via regulation. With this basic principle, we first theoretically compute the reference CDF
from the distribution of the per-request memory latency for a given target execution time.
Then, we enforce first-order stochastical dominance by periodically checking that the CDF
of the observed memory latency distribution of the RT application (obtained by sampling at
the PMU) stays above the reference CDF of the per-request memory latency. In case this
condition is violated, the NRT cores are suspended till the condition of first-order stochastical
dominance holds again. If the reference per-request memory latency first-order stochastically
dominates the observed latency, then it follows that the overall execution time random
variable is dominated by the reference execution time random variable. Consequently, the
observed execution time achieves the timeliness objective.

The proposed distribution-driven regulation truly considers the impact of memory conten-
tion on the latency and execution time of an application, as opposed to memory bandwidth-
based [5, 41, 42] or memory utilization-based approaches [23]. Furthermore, we can also
control the level of degradation while guaranteeing timeliness by varying the reference CDF
of the per-request memory latency.

With this work, we make the following contributions:

1. To the best of our knowledge, our work is the first that demonstrates the use of an
interconnect-level PMU to capture the latency distribution of memory transactions and
to leverage it for precise control over an application’s execution time under contention.

2. We mathematically characterize the distribution of memory latency for an application
and demonstrate its effect when the application is executed in isolation and contention.

3. We provide a formal mathematical proof supporting how our proposed approach meets
the imposed timeliness objective for the RT applications, ultimately enabling controlled
degradation.

4. Finally, we perform an evaluation on a COTS platform (Xilinx Ultrascale+ MPSoC)
using an extensive set of realistic and synthetic benchmarks from the San Diego Vision
Benchmarks [35], DAPHNE [30], and IsolBench [33] suites. We demonstrate its effect-
iveness in (1) allowing controlled degradation, (2) providing probabilistic guarantees for
RT application, and (3) reducing the execution time of NRT applications by up to 2.2x
compared to DRAM bandwidth management-based regulation approaches.

The rest of the paper is organized as follows: Section 2 provides the survey of related
work. Section 3 describes the system model and the main assumptions of our approach.
After presenting the main theory behind our approach and its mathematical formalization
in Section 4, Section 5 describes the overall architecture and the main algorithm of our
approach. Section 6 describes the implementation, and Section 7 discusses the experimental
setup and presents the results. Finally, Section 8 concludes with a summary and outlook on
future work.

ECRTS 2023



4:4 Memory Latency Distribution-Driven Regulation for Temporal Isolation in MPSoCs

2 Related Work

There has been a significant amount of work [18] to tackle the issue of memory interference.

The first category includes techniques that essentially employ memory bandwidth
management-based regulation. In this category of approaches, the effects of memory conten-
tion are statically regulated by controlling the outgoing memory bandwidth from each core as
in MemGuard [5,41,42], or by directly measuring the utilization at the memory controller [23]
and then based on the observed utilization, dynamically regulating the outgoing memory
bandwidth from each of the cores. In these approaches, the designer has to experimentally
derive the correct system parameters, and furthermore, there are no formal techniques to
guarantee the impact of such a regulation on the execution time of the application.

The second category includes profile-driven approaches like E-WarP [27,29] and the work
in [1], where an application’s behavior is profiled to sufficiently characterize it. Then, together
with insights into the underlying regulation mechanism – E-WarP uses Memguard under the
hood – it is possible to accurately predict the worst-case execution time. In contrast, the
proposed approach in this paper is not about predicting the WCET but rather about setting
a target execution-time distribution and adjusting the regulation scheme accordingly.

The third category of approaches falls broadly into the category of WCET estimation
approaches [14,18,20]. These approaches perform WCET estimation by leveraging detailed
models of the memory subsystem and do not assume any specific regulation approach. They
only consider worst-case memory access latencies considering a certain arbitrary memory
placement (bank arrangement) and the underlying workload.

Next, there are the hardware-based regulation mechanisms, which include using a dedic-
ated memory controller [2] or additional hardware like FPGAs [11,13], which is orthogonal
to our approach. In addition, embedded high-performance platforms are increasingly offering
QoS modules [25,31,45] on the interconnect between masters (CPUs, GPUs, DMAs) and main
memory to regulate and prioritize memory requests. However, the existing QoS modules
account for the traffic generated by the core cluster connected to the interconnect as a
single master, which does not alleviate cross-core contention [21]. Secondly, a static QoS
configuration may lead to inefficiencies in the utilization of the underlying DRAM subsystem
for dynamic workloads.

Other hardware-based techniques for COTS platforms, such as RDT [9,28] and MPAM [44],
essentially enforce a desired memory bandwidth limit at the hardware-level. This reduces
the regulation overhead and significantly improves the granularity of bandwidth regulation.
The recently proposed MemPol [46] loosely belongs to this category because it leverages
debug interfaces to halt/resume CPUs with the goal of enforcing a target bandwidth.
Despite said benefits, the aforementioned shortcomings of memory bandwidth management-
based regulation are still present. Nonetheless, a promising direction for future work entails
combining the techniques proposed in this paper with hardware-based bandwidth enforcement.

We approach the problem from a different perspective by not relying on the notion of
DRAM bandwidth. Instead, we directly reason on the properties of the observed distribution
of latencies for the memory transactions performed by the application under analysis.
Our approach starts by considering design-time timeliness constraints and uses one such
specification to construct a target cumulative distribution (CDF). The latter is then used
to enact regulation. The proposed approach also makes no assumptions on the memory
transactions generated by the contending applications.
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3 System Model and Assumptions

We hereby review the key assumptions and the system model required for the results presented
in Section 4 to hold. These assumptions are also experimentally validated in Section 7.2 and
Section 7.3.

A1: Multicore Platform Topology. We assume a system comprised of m application CPUs
Π1, . . . , Πm. For simplicity, we assume that the high-criticality workload is only deployed
on CPU Π1, which can be considered the real-time core. The memory hierarchy comprises
zero or more levels of cache. Cache misses caused by load or store instructions at the
last-level cache (LLC) cause read/write memory requests to be initiated towards a single
shared main memory subsystem via a single shared bus. Note that we distinguish between
memory instructions (load/store) and the resulting traffic that they might cause in terms
of read (and possibly write) requests to the underlying main memory subsystem.

A2: Cache Model. We assume that (1) either all the cache levels are private per-core
caches, or (2) if shared cache levels exist, they can be partitioned among the cores to prevent
inter-core cache interference. All the cache levels adopt a write-back, write-allocate policy. By
write-allocate, store instructions that cause a cache miss to trigger a read memory request
downstream to fill the cacheline to be modified. A cacheline that has been modified is marked
as dirty. By write-back, cache refills might trigger a write memory request downstream if the
cache replacement policy has selected a dirty cacheline for eviction. We make no assumption
about the specific cache replacement policy adopted by the cache controllers at the different
levels. We make no assumption about the inclusiveness of adjacent cache levels.

A3: In-order CPUs. We assume that the considered CPUs are unable to reorder instructions.
Thus, the latency incurred by pending load instructions is additive with respect to the time
spent executing instructions that do not perform memory operations. The same is true
for store instructions. This assumption is pessimistic yet safe if out-of-order CPUs are
considered instead.

Timing anomalies arising due to microarchitectural effects can violate this assumption.
In this work, we followed a measurement-based evaluation approach. Therefore, timing
anomalies are accounted for in the measured runtime. If these anomalies are to be estimated
using static analysis, the work in [12] demonstrates that timing anomalies can be statically
bounded and accounted for at design time without introducing an intractable amount of
pessimism.

A4: Blocking reads, non-blocking writes. As per A2, both load and store instructions
cause an LLC cache miss to trigger a read request to the main memory. As per A3, the
latency incurred by such read requests is additive with respect to the time spent by the rest
of the instructions that do not generate main memory requests. Conversely, if a memory
instruction triggers a write-back to the main memory, the resulting write memory transaction
is carried out non-blockingly with respect to the instruction stream under analysis. Therefore,
the latency of read requests in main memory is on the critical path from the standpoint of
total execution time, while the latency of write requests is not. This is not to say that the
contention generated by write requests is not considered, but rather that what matters is
their impact on the latency of read transactions.

ECRTS 2023
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Note that, in typical DRAM subsystems, batched write requests could be prioritized
over reads, causing read requests to temporarily stall. However, by controlling the latency
distribution of read requests, one can control how this reflects into the total execution time,
essentially factoring in the overall impact of write requests.

A5: Measurable Read Latency Distribution. We assume that the platform provides a
performance monitoring unit (PMU) capable of collecting measurements on the latency of
read memory requests. The PMU shall be located at the interface of the shared bus and
main memory subsystem. The latency is measured as the difference between the timestamp
at which a read request is forwarded to the main memory and the timestamp at which the
response for the said request is returned (request turnaround time). We assume that, when
queried, the PMU can return (an approximation of) the distribution of the observed latencies
of read requests issued by a core Πk under analysis. We will discuss the ability to do so in
commercial platforms in Section 6.

A6: Computation and Read-latency Additivity. By A4 and A5, we can decompose the
worst-case execution time E as a sum of two contributions E = C + L, where L is the total
latency of read memory transactions. Let N denote the worst-case number of read requests
and let us indicate the per-request latency as li, then L =

∑N
i=1 li. C denotes the time

spent for anything other than waiting for read responses, and is a constant, regardless of
whether the workload executes in isolation vs. contention. Conversely, li and thus L and
E are random variables that are affected by the level of congestion of the main memory
subsystem. In practice, we observe a small deviation (less than 1.8%) in the value of C

when measured in isolation vs. under contention, as evaluated in detail in Section 7.3. One
such deviation might arise from contention over Miss Status Holding Registers (MSHR) [33]
or LLC tag/data banks [6]. For the sake of simplicity, C is assumed to be constant in our
theoretical formulation. In practical instantiations of our framework, this value should be
experimentally derived and a safe upper-bound on the compute-only time shall be used.

A7: Profiled Critical Workload. We assume that the high-criticality workload deployed
on Π1 can be profiled offline to derive the worst-case execution time Eisol and total read
latency Lisol in isolation. This can be done using traditional measurement-based approaches
and allows us to upper-bound the value of C = Eisol − Lisol, which is the time spent by the
CPU to carry out any other operation except waiting for read requests to be fulfilled. As
per A2, C is computed with statically partitioned shared caches (if any). As per A5, Lisol

measurement is enabled by the PMU.

A8: I.I.D. Read Transaction Latencies. We assume that li are independent samples from
the same (unknown) distribution. Intuitively, the independence arises from the fact that
between any two subsequent read transactions, a random amount of time can elapse, and a
random amount of congestion can be caused by interfering CPUs. Thus, li’s are independent
and identically-distributed (i.i.d.) random variables.

4 Distribution-Driven Regulation

In this section, we introduce the theoretical results that represent the foundation of the
proposed distribution-driven regulation. We introduce the notations in Table 1.
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Table 1 Summary of notation used.

Symbols Descriptions Symbols Descriptions

Eisol Total execution time in isolation l̄σ2 Variance of read memory transactions reference
Ereg Total execution time under regulation Lisol Total latency of read memory trans. in isolation

Ē Total execution time target lmin Min read latency
C Non-memory compute time lmax Max read latency
L Total latency of read memory transactions li Latency of an individual read memory transaction i

lµ Mean latency of read memory transactions N Worst-case number of read requests
lσ2 Variance of read memory transactions α Acceptable tolerance for execution time to exceed Ē

l̄µ Mean latency of read memory trans. reference

Regulation Goal. Unlike the related literature surveyed in Section 2, our goal is to achieve
a timeliness objective formulated as a constraint on the probability of meeting a certain
execution time target Ē. Formally, given an execution time target Ē and an acceptable error
α ∈ [0, 1], the goal of regulation can we written as

P (Ereg ≤ Ē) ≥ 1 − α, (1)

where Ereg is the actual execution time observed under regulation and (possibly) in the
presence of main memory contention for the application under analysis. When α is such that
α → 0, then Ē represents a worst-case execution time (WCET) constraint. Note however
that the timeliness constraint formulation in Eq. 1 is more generic. For instance, setting
α = 0.01 expresses a 99th-percentile tail latency requirement on Ereg.

Goal-driven Regulation Strategy. We hereby describe how the regulation strategy can be
built from the goal formulated in Eq. 1 given a value of Ē and α. Following the notation
and assumptions in A6 (Section 3), we can rewrite Eq. 1 as follows:

P (C + L ≤ Ē) = P

(
N∑

i=1
li ≤ Ē − C

)
≥ 1 − α. (2)

The key insight into our approach is that, by controlling the distribution of per-request
latency li via regulation, we can directly control the distribution of the total memory latency
L and thus impact the distribution of Ereg to satisfy Eq. 1.

As we previously mentioned, li’s are independent and identically-distributed random
variables (as per A8) following an unknown distribution. Call lµ and lσ2 , respectively, the
(unknown) mean and variance of the li random variables. From the Central Limit Theorem
(CLT) [10], it holds that the random variable Z constructed as

Z =
∑N

i=1 li − Nlµ√
Nlσ2

= L − Nlµ√
Nlσ2

∼ N (0, 1), (3)

follows a standard normal distribution, i.e. a normal distribution with mean µ = 0 and
variance σ2 = 1. The latter property is captured by the notation Z ∼ N (0, 1). Note that
Eq. 3 only holds for large values of N . Since our goal is to analyze and regulate memory-
intensive applications, this condition holds. In fact, our experiments described in Section 7
highlight that for the considered applications, the order of magnitude of N is somewhere
between 106 and 107.

From Eq. 3 we can derive that L ∼ N (Nlµ, Nlσ2). Let us indicate with Φ(x) the
Cumulative Distribution Function (CDF) of the standard normal distribution. We can then
rewrite Eq. 2 as follows:

ECRTS 2023
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P (L ≤ Ē − C) = Φ
(

(Ē − C) − Nlµ√
Nlσ2

)
≥ 1 − α. (4)

So far, we have treated lµ and lσ2 as unknown values. The insight at this point is that,
when regulation is performed (by pausing/resuming the activity of interfering cores), we can
exert direct control over the underlying distribution of L =

∑N
i=1 li and thus over the value

of Nlµ and Nlσ2 . In fact, our goal is not to enforce a specific value of lµ and lσ2 . Instead, it
is enough to identify two values l̄µ and l̄σ2 such that the following inequality holds for every
value of Ē ∈ R+:

Φ
(

(Ē − C) − Nlµ√
Nlσ2

)
≥ Φ

(
(Ē − C) − Nl̄µ√

Nl̄σ2

)
≥ 1 − α. (5)

Regulation Condition. Recall from A5 in Section 3 that we are able to periodically snapshot
the distribution of read latencies. By enacting start/stop control over the interfering cores,
we can impact such distribution. We are now ready to derive the condition according to
which, given a snapshot, we should pause or resume the activity of the interfering cores.

More specifically, we can observe the CDF of the random variable li while the application
under analysis is running. Call this observed CDF function Fl(t) = P (li ≤ t). If regulation
is applied such that

∀t ∈ R+, Fl(t) ≥ Φ
(

(Ē − C) − l̄µ√
l̄σ2

)
= F̄l(t), (6)

then we have two properties. The first, is that F̄l(t) is the CDF of a random variable
lnorm
i ∼ N (l̄µ, l̄σ2). The second is that lnorm

i is said to first-order stochastically dominate
li [26]. Indeed, Eq. 6 is one possible definition of first-order stochastic dominance, also
indicated with the notation lnorm

i ≥1 li.
It is a known result [26, Theorem 1.A.3] [19, Lemma 6] that stochastical dominance

between random variables implies stochastical dominance in the aggregate. Formally, given
two random variables X and Y and a positive integer k, if Y is k-th order stochastically
dominated by X (i.e., X ≥k Y ), then ∀n ∈ N+ and i.i.d. replicas X1, . . . , Xn of X and
Y1, . . . , Yn of Y it holds that

n∑
i=1

Xi ≥k

n∑
i=1

Yi =⇒
n∑

i=1
Xi ≥1

n∑
i=1

Yi. (7)

Next, we note that from Eq. 7 and 6 it immediately follows that
∑N

i=1 lnorm
i ≥1

∑N
i=1 li.

Moreover, by leveraging the properties of the normal distribution [17], we know that∑N
i=1 lnorm

i ∼ N (Nl̄µ, N l̄σ2). This brings us to the final step. That is, the random variable
L under regulation is first-order stochastically dominated by a normal distribution of mean
Nl̄µ and variance Nl̄σ2 . This means that, as long as Eq. 6 is ensured via regulation, Eq. 5
holds.

Final Formulation. Putting everything together, we have the following workflow. First,
given the target Ē and α, numerically compute l̄µ and l̄σ2 such that

Φ
(

(Ē − C) − Nl̄µ√
Nl̄σ2

)
≥ 1 − α (8)



A. Saeed et al. 4:9

Pr
ob

ab
ili

ty

Clock Cycles
min min

+b
min
+2b

0 maxmax
-b

max
-2bmin

+kb

..... .....

P (Lmin + kb < Li ≤ Lmin + (k + 1)b)

min+
(k+1)b

Figure 2 Visual representation of the read-
latency PMF.

C
um

ul
at

iv
e

Pr
ob

ab
ili

ty

Clock Cycles

lmin0

F l(lmin + (k + 1)b)

1

Compliant Fl(k)

Non-compliant Fl(k)

lmin

+kb
lmin

+(k + 1)b
lmax

Figure 3 Discretized, compliant and non-
compliant latency CDF.

OS or Hypervisor

DRAM

Memory Controller

CORECORE
NRT

CORE
NRT

CORECORE
NRT

CORE
NRT

CORECORE
NRT

CORE
NRT

CORECORE
RT

CORE
RT

Memory Latency Distribution-Driven Regulator

Interconnect Bus

Performance Monitoring Unit (PMU)

Figure 4 Overview of our system architecture consisting of MPSoC.

holds. Second, use the same values of l̄µ and l̄σ2 to construct the target per-request
latency CDF F̄l as described in Eq. 6. Next, at runtime, observe the CDF of li, namely
Fl, and pause/resume (regulate) the activity of the non-real-time CPUs to ensure that
∀t ∈ R+, Fl(t) ≥ F̄l(t). So long as this inequality holds, it also holds that P (C + L ≤ Ē) =
P (L ≤ Ē − C) ≥ 1 − α because Eq. 5 holds.

4.1 Discrete-domain Formulation
The results derived so far in Section 4 assume that we are able to snapshot online a continuous
distribution of read latency accesses. This is practically impossible with realistic hardware.
In this subsection, we relax precisely this requirement.

Let lmin and lmax be the minimum and maximum possible read latency. Consider a
realistic PMU that defines K latency observation bins with configurable size b. If a transaction
i was counted in the first bin, then its latency li was somewhere in the range [lmin, lmin + b);
more in general, if it was counted in the kth bin with k ∈ {0, . . . , K − 1}, then its latency
was somewhere in the range [lmin + kb, lmin + (k + 1)b).

When queried, the PMU reports the number of read transactions completed by Π1 whose
latency fell in each of the K bins. Assume that this number is cumulative since the time at
which the application was launched – if it is reset after a snapshot, e.g. to prevent overflows

ECRTS 2023
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Algorithm 1 Memory Latency Distribution-Driven Regulator.

input : number of latency bins K, reference CDF F̄k ∀ k ∈ {0 . . . K − 1}
1 foreach regulation interval r do
2 foreach latency bin k ∈ {0 . . . K − 1} do
3 Sample the height of latency bin lk,r

4 γk,r = γk,r−1 + lk,r

5 end
6 foreach latency bin k ∈ {0 . . . K − 1} do
7 fk,r = γk,r∑K−1

k=0
γk,r

▷ Normalize bins to obtain PMF

8 Fk,r =
∑k

m=0 fm,r ▷ Construct observed CDF
9 end

10 if F0,r < F̄0 ∨ · · · ∨ FK−1,r < F̄K−1 then
11 suspend all NRT cores
12 else
13 resume all NRT cores
14 end
15 r = r + 1
16 end

in the counters, then it can be accumulated in software at each snapshot. In software, divide
the number of transactions in each bin (i.e. the height of the bin) by the total number of
transactions in the entire snapshot. The result is a valid observed Probability Mass Function
(PMF) fl(k) for the read request latency li for the generic request i. Figure 2 provides a
visual representation of the PMF. In other words, the height of each bin provides the value of
fl(k) = P (lmin + kb ≤ li < lmin + (k + 1)b). From the acquired PMF, it is easy to compute
the corresponding observed CDF as

Fl(k) =
k∑

j=0
fl(j) = P (li < lmin + (k + 1)b). (9)

Recall that (Eq. 6) we can construct a normal distribution F̄l(t) of reference with
appropriate values of l̄µ and l̄σ2 such that Eq. 8 is satisfied. At runtime, whenever a new
read latency distribution snapshot is acquired, it is enough to check the following condition:

∀k ∈ {0, . . . , K − 1}, Fl(k) ≥ F̄l(lmin + (k + 1)b). (10)

This condition is visually depicted in Figure 3. Indeed, if the condition expressed in Eq. 10
holds, then our reference lnorm

i ∼ N (l̄µ, l̄σ2) first-order stochastically dominates li. This is
the case for the blue curve in Figure 3. Conversely, if for some k Eq. 10 does not hold, the
non-real-time CPUs must be paused – regulation must be triggered. This is the case for the
orange line in Figure 3. The implicit assumption, which we validate in Section 7.3, is that
pausing the interfering CPUs allows to shift the observed Fl(k) in subsequent snapshots.

Finally, note that numerically computing the value of F̄l(t) online can lead to excessive
overhead in the regulator. Instead, the K values of F̄l(k) necessary to check the validity of
Eq. 10 can be pre-computed offline and stored in a lookup table for efficient online retrieval.
These values are depicted as red dots in Figure 3.



A. Saeed et al. 4:11

5 System Overview

An overview of our system architecture is depicted in Figure 4. We consider an MPSoC in
which a core designated as RT core is dedicated to host time-sensitive RT applications, while
the others are designated as NRT cores that host performance-oriented NRT applications.

The purpose of the memory latency distribution-driven regulator introduced in Section 4
is to achieve the timeliness objective (Equation (1)) on the execution time of applications
running on the RT core. The regulator is activated periodically on each NRT core using a
timer interrupt. The timer interrupt triggers the sampling of memory latency distribution
using the Performance Monitoring Unit (PMU) (shown in blue in Figure 4) for the memory
transactions originating from RT core. This memory latency distribution is normalized to
obtain the probability mass function (PMF), as described in Section 4.1 and then is used
to derive the cumulative distribution function (CDF). From the CDF, we enforce the rule
of first-order stochastic dominance (Equation (6)), which states that if any bin violates the
reference CDF for the target distribution of execution time, the regulation is triggered, and
all the NRT cores are suspended, as highlighted with red lines in Figure 4.

In principle, the regulator could reside either in software, such as the Operating System
(OS) or hypervisor, or in hardware, such as a Field Programmable Gate Array (FPGA). For
analysis and evaluation of the mechanism, the regulator optionally stores the PMF and key
characteristics in the DRAM memory.

The proposed mechanism can be implemented on any platform on which we are able to
measure (1) memory latency distribution and (2) filter the memory transaction on a per core
basis.

5.1 Memory Latency Distribution-Driven Regulator Algorithm
Algorithm 1 sketches our proposed distribution-driven regulation. Let the total number of
bins in the memory latency distribution be denoted by K. Furthermore, we denote by F̄k

the reference CDF assigned to each bin.
At the beginning of each regulation interval r > 1, the regulator first samples the number

of transactions (since the last interval) with latency that falls in bin lk,r. This is repeated
for each bin (Line 3). The samples are accumulated into the variable γk,r (Line 4). We then
apply height normalization to derive the PMF fk (Line 7). The PMF is converted into a
CDF Fk by summing up the probabilities associated with the variable up to each bin (Line 8).
This CDF Fk is then compared against the reference CDF F̄k for each bin (Line 10). If the
condition in Eq. 10 does not hold, all the NRT cores are suspended (Line 11). They will be
resumed only when Eq. 10 holds again (Line 15).

The theoretical formulation provided in Section 4 assumes that the PMF (or CDF) of the
per-request latency can be observed infinitely fast. Clearly, this is not possible in realistic
hardware, hence a non-zero regulation interval Tr must be picked. Because of that, what
could happen is that during Tr, the distribution of memory latencies shifts so drastically that
it cannot be recovered. Although this can happen, its effect can be easily bounded. In the
worst-case, right after a snapshot that satisfied Eq. 10 (otherwise, the NRT cores would be
stopped) with exact equalities between left- and right-hand sides, a back-to-back sequence of
memory transactions with latency lmax occurs. These can be at most ⌈Tr/lmax⌉ because Π1
is an in-order CPU (A3 in Section 3). Thus, the extra time cost H = (lmax − lmin)⌈Tr/lmax⌉
can be accounted for by computing a new, more restrictive Ē′ = Ē − H. Interestingly,
since we can observe the typical latency distribution under unrestricted contention, it is also
possible to compute the probability that such a case can occur.
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6 Implementation

We have performed a full-system implementation that includes a partitioning hypervisor
augmented to support the proposed memory latency distribution-driven regulator. The
implementation is carried out on the Xilinx Ultrascale+ Multi-Processor System-on-Chip
(MPSoC) ZCU102 [40]. The SoC features 4 ARM Cortex A53 [4] cores clocked at 1.2 GHz.
Each core has its own private L1 data and instruction cache, whereas the 4 cores share a
unified L2 cache. The SoC also features a tightly-coupled FPGA, which is not needed to
implement the proposed approach. We only use the FPGA for the validation experiments on
the nature of DRAM read transaction latencies conducted in Section 7.2.

We use the Jailhouse-RT partitioning hypervisor [15, 27] to partition resources in our
system, which is an ideal choice for this type of implementation because it is lightweight,
easy to port/modify, includes support for cache coloring [16,43] and bandwidth regulation,
and is open-source.

6.1 AXI Performance Monitor (APM)
We sample the memory latency in the Xilinx Ultrascale+ MPSoC [40] using the AXI
Performance Monitor (APM) hardware module. The APM measures the key performance
metrics like the amount of read/write memory transactions, min/max/total latency, and
other performance metrics for the AMBA AXI [3] in a system. The APMs implemented on
Xilinx Ultrascale+ MPSoC [40] are based on the Xilinx AXI Performance Monitor available
as a LogiCORE IP [37].

The APM has 10 hardware counters that can be configured to simultaneously monitor
up to 10 performance metrics for any interface points called slots on the AXI interconnect.
There is also a global-clock counter in addition to these 10 hardware counters that run at
the APM clock frequency of 533.5 MHz.

The APM can be configured to monitor the performance metrics for a particular slot
using the Metric Selector register. Furthermore, the APM contains a Range Incrementer
module that compares the performance metric count with the low and high ranges from the
Range register and increments the count of the given performance metric by one if the value
falls within the limits. The Range Incrementer is useful in obtaining the read/write latency
ranges that we leverage in this work to sample the memory latency distribution.

We configured 8 Metric Selector registers in conjunction with 8 Range registers to monitor
read memory latency (as defined in Section 3 A6: Measurable Read Latency Distribution) with
respectively low and high ranges of 0-40, 41-80, 81-120, 121-160, 161-200, 201-240, 241-280,
and 281-2000 clock cycles. The rationale behind the selection of these ranges is discussed in
Section 7.4. These 8 performance metrics provide the number of read memory transactions
that fall within the given read memory latency limits, referred to as bins. Furthermore,
2 Metric Selector registers are configured to report the total number of read transactions
and total read latency. The total number of read transactions is N , as used throughout
the mathematical formalization in Section 3. Additionally, we verify that the total number
of read transactions and the sum of all bins are always the same. This ensures that no
memory transaction escapes the bins. The global-clock counter is used as the reference for
all the calculations in this paper. The included hardware counters can be set and read via a
memory-mapped interface.

The APM slot is configured to monitor the AXI communication between the cores and the
memory controller. In addition, we employ the AXI ID filtering to monitor the transactions
emanating from a core with a certain AXI ID. The AXI IDs for the cores are evaluated
experimentally. Once the AXI IDs for each core have been determined, we utilize the Filter
and Mask registers to set up AXI ID filtering.
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Currently, the APMs are adopted in Xilinx Ultrascale boards. However, since these APM
IPs are part of the AXI bus, they are deployable on other SoCs. They can also be deployed
in programmable logic (FPGA) to gather statistics on the traffic observed over AXI bus
segments generated, for instance, by in-FPGA accelerators.

7 Validation and Evaluation

In this section, we first experimentally validate the key assumptions presented in Section 3.
Then we discuss the key design parameters of our system. Finally, we present a full system
evaluation where we validate the effectiveness of our approach to ensure the timeliness of
different sets of applications.

7.1 Experimental Setup
We evaluate our approach on the Xilinx Ultrascale+ Multi-Processor System-on-Chip
(MPSoC) ZCU102 [40] as introduced in Section 6. A combination of real-world [35], [30], and
synthetic [33] benchmarks are used to evaluate the proposed approach. For our real-world
benchmarks, we use a subset of the benchmarks in the San Diego Vision Benchmark Suite
(SD-VBS) [35]. The input dataset for the benchmark applications comes in 9 different sizes.
Since we are interested in DRAM-bounded applications, we use the ones with the largest
input data size (named FullHD). The other benchmark suite is the Darmstadt Automotive
Parallel Heterogeneous Benchmark Suite (DAPHNE) [30], which represents parallelizable
workloads from the automotive domain. For our evaluation, we used the applications that run
exclusively on the CPU. We also use a synthetic ’Bandwidth’ benchmark from the IsolBench
suite [33] that is engineered to continuously perform memory write operations. In the rest of
the paper, we refer to this benchmark as the MemBomb application.

Unless otherwise stated, all experiments refer to the isolation scenario or simply isolation
in which the disparity application is running on the designated RT core with no other
applications running in parallel. In contrast, a contention scenario or simply contention
happens when the same disparity application is running on the designated RT core while
synthetic MemBomb applications are running on the three NRT cores. The disparity
application is selected as it has the lowest average IPC and the highest average memory
utilization [23] in the benchmark suite, making it an ideal candidate for demonstrating
memory interference-related effects.

For consistency, we always activate the hypervisor. The regulator is activated on each
NRT core to facilitate comparison with a memory bandwidth management-based regulation
(MemGuard [5]). However, the current implementation can be extended to sample the PMU
values from only one NRT core responsible for suspending the other NRT cores. All the
obtained results are calculated on 100 runs for each configuration to remain statistically
significant.

7.2 Validation of I.I.D. Assumption A8
In order to validate hypothesis A8 in Section 3, i.e., that the latencies of read memory
transactions emitted by the cores are i.i.d., we perform 10 different statistical tests called
Permutation Tests [32]. These tests are designed to find evidence that empirical samples are
i.i.d.. The rationale is that if i.i.d. holds in all cases, the regulation system is guaranteed to
be operated correctly. Conversely, if the i.i.d. property is validated only in some cases, a
full-system implementation and evaluation are necessary to assess the correct end-to-end
behavior of a system that employs the proposed distribution-driven regulation.
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Table 2 Summary of permutation testing results for Synthetic (table upper half) and Real-world
(table lower half) memory traffic. Test pass noted with ✓and fail with ×.

Test no. 1 2 3 4 5 6 7 8 9 10 Pass (%)

Synthetic Benchmarks: AXI Traffic Generator

Rand. Pattern + Rand. ITG ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 100
Rand. Pattern + Fix ITG ✓ ✓ ✓ × ✓ ✓ × ✓ ✓ × 70
Seq. Pattern + Rand. ITG ✓ ✓ × × ✓ ✓ ✓ ✓ ✓ ✓ 80
Seq. Pattern + Fix ITG ✓ ✓ × × ✓ ✓ × ✓ ✓ × 60

Real-world Benchmarks: SD-VBS

Best-case ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 100
Worst-case ✓ × ✓ × ✓ ✓ × ✓ × × 50
Mode-case ✓ ✓ ✓ × ✓ ✓ ✓ ✓ ✓ ✓ 90
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Figure 5 Experimental results to validate the key assumptions, as stated in detail in Section 3,
hold for our system.

Performing permutation testing requires measuring the memory latency of individual
memory transactions at the finest granularity. The aforementioned APMs can only measure
aggregated latency values and are thus not suitable for the purpose. Instead, and only for
these experiments, we leverage the tightly-coupled FPGA of the evaluation platform.

The experiment is divided into four successive steps: (1) generate memory traffic, (2)
capture the activity at the AXI level, (3) measure and compile each transaction’s response
time, and (4) perform a set of permutation tests.

To evaluate the memory latency of both synthetic and real-world benchmarks, we
implement two distinct FPGA designs. The first FPGA design is composed of an AXI
Traffic Generator (ATG) [38], which generates heavy synthetic memory traffic toward the
memory controller. We configure the ATG to generate four types of access patterns that
combine random and sequential accesses with random and fixed inter-transaction gaps (ITG).
The traffic activity created by the ATG is captured and stored for post-processing by an
Integrated Logic Analyzer [39] (ILA), which is also instantiated in the FPGA.

The second FPGA design is implemented to evaluate the real-world memory traffic by
observing the activity originating from the main CPUs running SD-VBS benchmarks in
isolation. The design is a simplified version of the approach introduced in [22] and consists
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of only a loopback IP linking the core cluster with the memory controller through the
FPGA (i.e., no transformations are performed on the transactions’ address). Similarly, the
Jailhouse-RT hypervisor [15] is instrumented to target the FPGA memory range instead of
the memory controller, making the hypervisor and benchmark memory traffic observable
via an ILA. We run different SD-VBS benchmarks with different inputs in a sequence and
randomly acquire fragments of memory traces. Thus, while we know that the captured
activity belongs to some SD-VBS benchmark, we cannot determine which trace corresponds
to which specific benchmark.

Table 2 shows the results of the first 10 permutation tests performed on the two FPGA
designs, on the top and bottom, respectively. For synthetic benchmarks, the number of
passed tests increases as randomness in the pattern, and ITG is introduced. Therefore, for
ATG with random memory access pattern and random ITG has the highest tests pass of
100%, whereas sequential memory access pattern with fixed ITG has the lowest test pass of
60%. Hence, the percentage of tests pass increases as access pattern and ITG randomness
grow.

For real-world benchmarks, 30 snapshots of memory traffic are captured. Since applications
have different phases, the ILA buffer is small, and memory transactions are captured
asynchronously, we observed variation in the results of permutation tests. In the best-case
scenario, all tests are passed, although pass percentages as low as 50% have been seen on
rare occasions. The mode (value that appears most often) indicates a 90% pass.

In summary, the permutation testing indicates that not all tests are passed under all
scenarios, albeit an indication that A8 holds in most of the cases has emerged. Nonetheless,
we conduct a full-stack implementation to verify that the timeliness objective (Equation (1))
we impose is, in fact, met with real-world applications.

7.3 Validation of Other Key System Assumptions
In this subsection, we experimentally validate that the key assumptions, as stated in detail
in Section 3, hold for our system.

Validation of A2: Cache Model. First, we show that the total numbers of LLC misses
for an application executed in isolation and contention scenarios are comparable. Figure 5a
illustrates the average total number of LLC misses that occur during 100 runs for disparity,
tracking, mser and ndt_mapping in isolation and contention, respectively. It can be observed
that the total number of LLC misses is comparable in both scenarios, with an average
difference of less than 1% in their counts. This demonstrates that there is no inter-core cache
interference, which is consistent with assumption A2.

Validation of A6: Computation and Read-latency Additivity and A7: Profiled Critical
Workload. Next, we show that the compute time C of an application remains the same in
isolation and contention. We measure the worst-case execution time E and the total latency
of read memory transactions L and determine the compute time C by: C = E − L

In Figure 5b, it is shown that the compute time of the application under consideration
(disparity, tracking, mser and ndt_mapping) is similar in both the scenarios, with an average
difference of less than 1.8%. Thus, assumptions A6 and A7 hold.

Validation of A5: Measurable Read Latency Distribution. Finally, we demonstrate the
capability of measuring (an approximation of) the latency distribution of read memory
transactions in a COTS platform – without redirecting memory transactions through the
FPGA – as stated in A5.
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Figure 6 Impact of memory interference on the shape of nor-
malized memory latency distribution for disparity on RT core.
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Figure 7 Impact of bin size
on the shape of memory latency
distribution.

Figure 6 shows the normalized read memory latency distribution obtained from the
APM present in the evaluation platform (Xilinx Ultrascale+ MPSoC [40]) in isolation and
contention. According to Figure 6a, the majority of individual memory read transactions for
disparity have a latency of less than 80 clock cycles in isolation.

When multiple contending MemBomb applications are running in parallel, the disparity
benchmark experiences a significant increase in memory latency, resulting in a shift of the
memory latency distribution to the right (higher memory latency bins), as seen in Figure 6b.
Under contention, the majority of individual memory read transactions have latency in the
range of 41 to 160 clock cycles.

7.4 Configuration Parameters

Configuring the proper system parameters is one of the primary challenges system designers
face when implementing any regulating mechanism. In this subsection, we explain the key
design parameters of our approach and the rationale behind their selection.

7.4.1 Regulation Interval

The choice of the regulation interval Tr is a trade-off between regulation granularity and
overhead due to the generation of more frequent timer interrupts. The smaller regulation
granularity is beneficial for finer grain control over the enforcement of our regulator. A
regulation interval Tr = 1 ms has shown to yield good results and is set throughout the
evaluation setup.

7.4.2 Total Bins

The number of bins defines the quantization that can be used to approximate the memory
latency distribution. The PMU present in our evaluation platform offers 10 hardware counters
as described in Section 6.1, which can be accordingly used to set 10 latency bins. However,
we only dedicate 8 hardware counters for measuring memory latency distribution, resulting
in 8 bins. The other two hardware counters are reserved for the purposes of (1) measuring
the total number of read transactions as well as (2) the total read latency. This is done to
validate the key system assumptions that are specified in Section 3.
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(b) tracking on RT core and MemBomb on NRT
cores.
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(c) mser on RT core and MemBomb on NRT cores.
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(d) ndt_mapping on RT core and MemBomb on
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Figure 8 Execution Time Distribution (for 100 runs each).

7.4.3 Bin Size

The bin size of the memory latency distribution needs to be chosen in such a way that all
possible individual read memory latencies can be covered while ensuring that distribution
shifts can be effectively captured. Simultaneously, one must ensure that the bins are equally
spaced and without discontinuities to provide a well-formed distribution snapshot when
sampled. To determine the appropriate bin size, the APM is initially configured to measure
the minimum and maximum memory latency values during a set of application runs. We
observed a minimum read latency of 38 clock cycles and a maximum of approximately
600 clock cycles. Based on these values, we fix 40 clock cycles as the bin size. We also
experimented with a larger bin size of 75 clock cycles with the same setup as shown in
Figure 6b, which resulted in nearly empty bins with memory latency values greater than 375
clock cycles, as seen in Figure 7. We set the upper limit of the last bin to 2000 clock cycles in
order to capture all conceivable memory latencies that a memory transaction may encounter.

7.5 Effectiveness of the Approach

The objective of this experiment is to show that, given Ē and α, Eq. 1 holds. Figure 8
summarizes the execution time distribution of applications during 100 runs and compares the
target execution time Ē against the actual execution time Ereg. As a point of reference, the
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Figure 9 Validation of timeliness objective
for various values of acceptable error α.
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Figure 10 CDF for disparity on RT core.

execution time distribution in isolation (blue) and contention (orange) are also provided. The
expected discretized execution time distribution of the target execution time is theoretically
computed and is depicted as a discretized bell curve, whereas the actual execution time
distribution is experimentally evaluated and depicted by a bar plot.

Figure 8a presents the target execution time Ē of 3755 ms and 4018 ms with an acceptable
error α = 0.10% for 1st and 2nd target execution times, respectively. Notably, as there are
multiple possible normal distributions for a given Ē, we fix σ =

√
µ
2 and σ =

√
µ
6 for the 1st

and 2nd Ē, respectively and then find the corresponding mean µ that is evaluated to 3700 ms
and 4000 ms, respectively. Lowering/rising the standard deviation σ only narrows/widens
the normal distribution curve and thus controls the tightness of the timeliness objective. The
actual execution time Ereg for the given α is 3683 ms and 3997 ms , respectively and less
than the target execution time. Hence the timeliness goal defined in Equation (1) is satisfied.

In order to validate the applicability of the approach for diverse workloads, we applied
the same methodology to a number of different applications. We considered tracking, mser
and ndt_mapping to be RT applications hosted on the RT core, while MemBomb running
on the three NRT cores, as shown in Figure 8b, Figure 8c and Figure 8d, respectively. We
use the same target execution time Ē of 4560 ms with an acceptable error α = 0.10% for
all three sets of experiments. Also, we use the same σ =

√
µ
2 . The actual execution time

Ereg for tracking, mser and ndt_mapping was measured as 4387 ms, 4399 ms and 4315 ms,
respectively, which is less than the target execution time and hence satisfies the timeliness
goal defined in Equation (1).

Figure 9 shows the validation of the timeliness objective for various values of α for the
same set of applications and experimental setup used in Figure 8a. We consider four values
of α: 0.01, 0.3, 0.7 and 0.99. These are applied to both the expected and achieved target
execution time distribution and highlighted by dashed and solid lines, respectively, in Figure 9.
We found out that, for any value of α, the criteria Ereg < Ē holds. This provides empirical
evidence to corroborate our expectation that the timeliness constraint formula presented in
Equation (1) indeed holds for arbitrary values of α.

Finally, we illustrate the CDF of read memory latency observed by the dispartiy application
in isolation and under contention, as well as the enforced reference CDF. The reference
CDF F̄ used in Figure 8 for the 1st target execution time Ē of 3755 ms is highlighted with
green lines in Figure 10. The CDF in isolation (blue lines) and contention (orange lines) are
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Figure 11 Impact of regulation on the average memory latency for disparity on RT core.

computed using the same PMFs previously shown in Figure 6. It can be noted that the F̄ (k)
computed for each bin k lies between the envelope defined by the CDFs measured in isolation
(upper bound) and under contention (lower bound). These F̄ (k) values are subsequently used
by the memory latency distribution-driven regulator (Algorithm 1) to achieve an execution
time Ereg that meets the timeliness objective.

7.6 Impact of Regulation on the Average Memory Latency
The selection of the target execution time Ē impacts the aggressiveness of the regulation,
which in turn affects the average memory latency of an application. The average memory
latency is defined as the total read memory latency divided by total number of read memory
transactions over the Tr = 1 ms regulation interval.

The average memory latency of disparity under the same experimental setup as in
Figure 8a is shown in Figure 11. However, instead of presenting the average memory latency
over 100 runs, we present the WCET case: where the observed execution time is the highest.

It can be observed that the average memory latency for the 1st target execution time,
with an observed WCET of 3714 ms, is around 70 clock cycles. For the 2nd target with
an observed WCET of 4037 ms, the average memory latency is around 90 clock cycles.
Consequently, the average memory latency is proportional to the target execution time Ē.

As the target execution time for the 2nd target is more relaxed relative to the 1st target,
the overall percentage of regulation that is enforced on the NRT cores decreases from 75% to
50% as seen in Figure 11. The percentage of regulation is calculated by dividing the total
number of regulation intervals in which the NRT cores are suspended by the total number of
regulation intervals in the experiment. Hence, the percent regulation that is enforced on the
NRT cores is inversely proportional to the target execution time Ē.

It is worthwhile to note that traditional DRAM bandwidth management-based regulation
mechanisms [5, 23, 41] tend to bring the actual execution time as close as possible to the
isolation scenario. However, our approach allows for the actual execution time to be anywhere
between the execution time in contention to isolation.

7.7 Comparison with DRAM bandwidth-based regulation
To demonstrate that distribution-driven regulation is more beneficial than traditional DRAM
bandwidth-based regulation mechanisms, we compare the slowdown ratio experienced by
the applications running under the following scenarios (1) unregulated execution, in which
the applications are running in parallel on their respective cores without any regulation
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Table 3 Slowdown Ratio of benchmarks in contention without regulation and with different
regulation mechanisms.

RT Core NRT Cores
disparity MemBomb on each NRT Core

Unregulated MemGuard Distribution-Driven Unregulated MemGuard Distribution-Driven
1.28 1.03 1.03 3.79 16.67 7.05

disparity MemBomb (HB) on each NRT Core
1.25 1.03 1.03 1.41 8.07 3.49

mechanism, (2) a memory bandwidth management-based regulation (MemGuard [5])1, and
(3) distribution-driven regulation. We define the slowdown ratio of an application as the
ratio of execution time under contention to the execution time in isolation.

We use the latest implementation of MemGuard [5] that regulates LLC write-backs in
addition to LLC misses, ported to the partitioning hypervisor and configured for static
bandwidth reservation. The key parameter used by MemGuard is the guaranteed (worst-case)
bandwidth, which is approximately 960 MB/s for our evaluation platform based on the work
in [24]. We allocated half of the said bandwidth for the application running in the RT core,
and the remaining is distributed equally among the three applications running in the NRT
cores.

Once the configurations for MemGuard have been selected, the parameters of the
distribution-driven regulator (target execution time Ē and acceptable error α) are selected
in such a way that the actual execution time Ereg for the application running on the RT
core is the same under MemGuard and distribution-driven regulation. This allows for a fair
comparison of slowdown ratios for applications running on NRT cores while keeping the same
slowdown ratios for the application running on the RT core.

We conducted the evaluation with two different sets of applications. In the first set
of applications, disparity is running on the designated RT core while synthetic MemBomb
applications are running on the three NRT cores. In the second set of applications, only
the MemBomb is modified to perform memory write operations for half of its duration
periodically. We refer to this modified MemBomb application as MemBomb Half Blast (HB).

Table 3 shows the slowdown ratios for different run settings compared to the execution
times in isolation. We compare (1) unregulated runs in which the applications are executed
concurrently in the respective cores with no regulation mechanism in place to (2) the proposed
distribution-driven regulator and to (3) regulation done using MemGuard.

As expected, both regulation approaches achieve the same slowdown ratios of 1.03 for
disparity. However, with MemGuard, both sets of applications running on the NRT cores
suffer the highest slowdowns of 16.67 and 8.07, respectively. By contrast, the distribution-
driven regulator is able to improve the slowdown ratio of the NRT applications on average
by 2.2× compared to MemGuard.

8 Conclusion and Future Work

In this work, we presented a novel distribution-based regulation mechanism that enforces a
timeliness objective formulated as a constraint on the probability of meeting any execution
time target, which can be anywhere between the execution time in isolation and contention

1 Comparison against a more recent work [23] is not possible due to the unavailability of memory utilization
metric in our evaluation platform, which is necessary for the latter work.
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scenario. The timeliness objective is met by directly controlling the distribution of total
memory latency via regulation, which eventually impacts the distribution of the observed
execution time.

We implemented our solution inside the Jailhouse-RT hypervisor [15] and deployed it on a
COTS platform (Xilinx Ultrascale+ MPSoC) to demonstrate its effectiveness in meeting the
timeliness objective for time-sensitive RT applications. Our approach can also be extended to
handle multiple RT cores by assigning ranks to the RT cores based on their criticality level.
The level of criticality then determines the order of suspension of the cores. If the observed
CDF is below the reference CDF, the NRT cores are suspended first, followed by the RT
core with the lowest criticality level, and so on, until the observed CDF no longer remains
below the reference CDF. This is not immediately feasible with the same PMU due to the
limited number of AXI ID filtering blocks. However, APM blocks can be instantiated on the
on-chip FPGA, and memory traffic can be observed through-FPGA instead.
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