
Approximation Algorithms for Envy-Free Cake
Division with Connected Pieces
Siddharth Barman #

Indian Institute of Science, Bangalore, India

Pooja Kulkarni #

University of Illinois at Urbana-Champaign, IL, USA

Abstract
Cake cutting is a classic model for studying fair division of a heterogeneous, divisible resource
among agents with individual preferences. Addressing cake division under a typical requirement
that each agent must receive a connected piece of the cake, we develop approximation algorithms for
finding envy-free (fair) cake divisions. In particular, this work improves the state-of-the-art additive
approximation bound for this fundamental problem. Our results hold for general cake division
instances in which the agents’ valuations satisfy basic assumptions and are normalized (to have
value 1 for the cake). Furthermore, the developed algorithms execute in polynomial time under the
standard Robertson-Webb query model.

Prior work has shown that one can efficiently compute a cake division (with connected pieces) in
which the additive envy of any agent is at most 1/3. An efficient algorithm is also known for finding
connected cake divisions that are (almost) 1/2-multiplicatively envy-free. Improving the additive
approximation guarantee and maintaining the multiplicative one, we develop a polynomial-time
algorithm that computes a connected cake division that is both

(
1
4 + o(1)

)
-additively envy-free and(

1
2 − o(1)

)
-multiplicatively envy-free. Our algorithm is based on the ideas of interval growing and

envy-cycle elimination.
In addition, we study cake division instances in which the number of distinct valuations across

the agents is parametrically bounded. We show that such cake division instances admit a fully
polynomial-time approximation scheme for connected envy-free cake division.

2012 ACM Subject Classification Theory of computation → Algorithmic game theory; Theory of
computation → Algorithmic game theory and mechanism design

Keywords and phrases Fair Division, Envy-Freeness, Envy-Cycle Elimination

Digital Object Identifier 10.4230/LIPIcs.ICALP.2023.16

Category Track A: Algorithms, Complexity and Games

Related Version Full Version: https://arxiv.org/abs/2208.08670 [6]

Funding Siddharth Barman: Siddharth Barman gratefully acknowledges the support of a SERB
Core research grant (CRG/2021/006165).

1 Introduction

Cake cutting is an exemplar of fair division literature [9, 22, 21]. Since the foundational work
of Steinhaus, Banach, and Knaster [24], fair cake division has been extensively studied over
decades, and it continues to inspire research, including algorithmic breakthroughs [4], deep
mathematical connections [17, 20], and applicable variants [16]. This fair-division model
captures resource-allocation domains in which a divisible, heterogeneous resource (metaphor-
ically, the cake) needs to be fairly divided among agents with individual, distinct preferences.
For instance, cake division has been studied in the context of border negotiations [9] and fair
electricity division [5]. The predominant fairness notion of envy-freeness was also defined in

EA
T
C
S

© Siddharth Barman and Pooja Kulkarni;
licensed under Creative Commons License CC-BY 4.0

50th International Colloquium on Automata, Languages, and Programming (ICALP 2023).
Editors: Kousha Etessami, Uriel Feige, and Gabriele Puppis; Article No. 16; pp. 16:1–16:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:barman@iisc.ac.in
mailto:poojark2@illinois.edu
https://doi.org/10.4230/LIPIcs.ICALP.2023.16
https://arxiv.org/abs/2208.08670
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

16:2 Approximation Algorithms for Envy-Free Cake Division with Connected Pieces

the cake-division context [14]. This solution concept deems a cake division to be fair if each
agent values the piece assigned to her over that of any other agent, i.e., if the agents are not
envious of each other.

Formally, the cake is modeled as the interval [0, 1] and the cardinal preferences of the n

participating agents (over pieces of the cake) are expressed via valuation functions v1, . . . , vn;
in particular, vi(I) ∈ R+ denotes the value that agent i has for any interval I ⊆ [0, 1]. In
this work, we address cake division under the requirement that every agent must receive
a connected piece (i.e., an interval) of the cake. That is, our goal is to partition the cake
[0, 1] into exactly n pairwise-disjoint intervals and assign them among the n agents. This
connectivity requirement is standard in literature and is motivated by practical settings
wherein each agent must receive a contiguous part of the resource; consider, for instance,
division of land or non-preemptive scheduling. Hence, in this setup, an envy-free (i.e., fair)
division corresponds to a partition of [0, 1] into n pairwise-disjoint intervals, I1, I2, . . . , In,
such that assigning each interval Ii to agent i ∈ [n] results in no envy, i.e., vi(Ii) ≥ vi(Ij),
for all agents i, j ∈ [n].

The significance of envy-freeness is elevated by universal existential guarantees: under
benign assumptions on agents’ valuations, an envy-free cake division, in which each agent
receives a connected piece, is guaranteed to exist [25, 23, 27]. Here, the elegant proof of
Su [27] is considered a foundational result across all of fair division. These strong existential
results, however, do not have an algorithmic counterpart. Stromquist [26] has shown that
even a finite-time algorithm does not exist for computing an envy-free cake division with
connected pieces; this negative result holds in a model where the valuations are specified via
an (adversarial) oracle. Furthermore, it is known that, under ordinal preferences, achieving
envy-freeness with connected pieces is PPAD-hard [12].

These algorithmic barriers in route to finding exact envy-free cake divisions necessitate the
study of approximation guarantees. The current paper contributes to this research thread by
developing algorithms for finding connected cake divisions that are approximately envy-free.
In particular, this work improves the state-of-the-art additive approximation bound for this
fundamental fair division problem.

Our Results and Techniques. Our algorithmic results hold for general cake division instances
in which the agents’ valuations satisfy basic assumptions and are normalized, such that the
value for the entire cake for every agent is equal to one, i.e., vi([0, 1]) = 1 for all agents
i ∈ [n]. Furthermore, the developed algorithms execute in the standard Robertson-Webb
query model [21].

We address both additive and multiplicative approximations of envy-freeness. Specifically,
for parameter ε ∈ (0, 1), a connected cake division I1, . . . In (in which interval Ii is assigned
to agent i ∈ [n]) is said to be ε-envy-free (ε-EF) iff no agent has more than ε envy towards any
other agent, i.e., vi(Ii) ≥ vi(Ij)−ε for all agents i, j ∈ [n]. Analogously, an α-multiplicatively
envy-free (α-mult-EF) cake division I1, . . . In is one in which the envy is multiplicatively
bounded within a factor of α, i.e., vi(Ii) ≥ αvi(Ij) for all agents i, j ∈ [n]; here parameter
α ∈ (0, 1].

Our main result is a polynomial-time algorithm that computes a cake division (with
connected pieces) that is simultaneously

(1
4 + c

)
-EF and

(1
2 − c′)-mult-EF (Theorems 13

and 14); here, c and c′ are polynomially small (in n) terms. For instance, our algorithm can
be used to efficiently find a cake division that is 0.251-EF and 0.499-mult-EF.

Our result improves upon the previously best known additive approximation guarantee.
Specifically, prior work of Goldberg et al. [15] provides an efficient algorithm for computing
a 1

3 -EF cake division (with connected pieces); here, the computed allocation can leave some

S. Barman and P. Kulkarni 16:3

agents with no cake allocated to them and, hence, incur unbounded multiplicative envy.
On the multiplicative front, for a lower order term κ, Arunachaleswaran et al. [3] obtain a(1

2 − κ
)
-mult-EF guarantee, in conjunction with an additive envy bound close to 1

3 . Therefore,
for envy-free cake division, we improve the additive approximation guarantee from 1

3 to
(almost) 1

4 , while maintaining the best known multiplicative one.
Our algorithm extends the interval-growing method of [3] with the idea of bifurcating

intervals (see Definition 3). Such intervals satisfy the property that if an agent i receives
an interval that is bifurcating with respect to vi, then irrespective of how the rest of the
cake is assigned, agent i’s envy towards others remains bounded. For the algorithm’s design
and analysis, we modify each agent’s valuation to have a preference for bifurcating intervals.
With these modified valuations, we build upon the idea of interval growing. In particular, we
first obtain an allocation of (pairwise disjoint) intervals that might partially cover the entire
cake, though induce bounded envy among the agents and against the unassigned intervals.
Then, we use an envy-cycle-elimination idea to further allocate small pieces till at most
n unassigned intervals remain. Envy-graphs and the cycle-elimination method have been
extensively utilized in fair division; see, e.g., [19]. However, their use for contiguous cake
cutting (i.e., division under the contiguity requirement) is novel. We employ cycle elimination
in such a way that envy remains bounded as we allocate more and more of the cake. Finally,
we have n assigned and at most n unassigned intervals. We pair up adjacent assigned and
unassigned intervals to overall obtain a complete partition of the cake that has bounded
envy; see Section 3.1 for a detailed description of the algorithm.

It is relevant to note the technical distinctions between the algorithm of Arunachaleswaran
et al. [3] and the current one. In contrast to the prior work, the current algorithm executes
with a novel modification of the valuations (to incorporate preferences towards bifurcating
intervals). Moreover, the current analysis is more involved; in particular, the analysis requires
multiple new lemmas and consideration of intricate cases (see, e.g., Lemmas 6 to 11 and the
case analysis in the proof of Theorem 13).

Our second result addresses cake division instances in which the number of distinct
valuations is bounded. Specifically, we consider instances in which, for a parameter ε ∈ (0, 1)
and across the n agents, the number of distinct valuations is at most (εn − 1). For such
instances with bounded heterogeneity, we provide an algorithm that computes ε-EF allocations
in time polynomial in n and 1

ε (Theorem 16). Note that such settings naturally generalize
the case of identical valuations. Fair division algorithms under identical valuations have been
developed in many contexts (beyond cake division). Our result shows that, under this natural
generalization, a strong additive approximation guarantee can be obtained for connected
envy-free cake division; see Section 4.1

Additional Related Work. Prior works in (connected) cake division have also studied
improved approximation guarantees for specific valuation classes. For instance, it is shown
in [7] that a connected cake division with arbitrarily small envy can be computed efficiently
if the agents’ value densities satisfy the monotone likelihood ratios property. Another studied
valuation class is that of single-block valuations; in particular, these correspond to valuations
in which the agents have a constant density over some (agent-specific) interval of cake and
zero everywhere else. The work of Alijani et al. [1] provides an efficient algorithm for finding
(exact) envy-free cake division under single-block valuations that satisfy an ordering property.

1 We also detail at the end of the Section 4 that achieving multiplicative approximation bounds for envy
under bounded heterogeneity is as hard as it is in the general case.

ICALP 2023

16:4 Approximation Algorithms for Envy-Free Cake Division with Connected Pieces

For arbitrary single-block valuations (without the ordering property), Goldberg et al. [15]
obtain a 1

4 -EF guarantee. They also obtain NP-hardness results for connected envy-free cake
division under additional constraints, such as conforming to a given cut point.

Focussing on query complexity, Brânzei and Nisan [10] show that an ε-EF cake division
(with connected pieces) can be computed in a query efficient manner but the algorithm runs
in time exponential in n and 1

ε . By contrast, we develop polynomial-time algorithms.
The study of approximation guarantees – to bypass computational or existential barriers

– is an established research paradigm in theoretical computer science. For instance, in
discrete fair division, (multiplicative) approximation bounds for the maximin share has
received significant attention in recent years; see [2] and multiple references therein. Also, in
algorithmic game theory, approximation guarantees for Nash equilibria in two-player games
have been extensively studied; see, e.g., [11, 28, 18]. Our work contributes to this thematic
thread with a focus on cake division.

Non-Contiguous Cake Division. Algorithmic aspects of (exact) envy-free cake division
remain challenging even without the connectivity requirement. In fact, the existence of
a finite-time algorithm for noncontiguous envy-free cake division remained open until the
work of Brams and Taylor [8]. For noncontiguous envy-free cake divisions, an explicit
runtime bound – albeit a hyper-exponential one – was obtained in the notable work of
Aziz and Mackenzie [4]. Prior works have also addressed non-contiguous envy-free cake
division for special valuation classes: [1] obtains a polynomial-time algorithm for finding
(exact, but not necessarily contiguous) envy-free cake divisions under single-block valuations.
Also, [29] develops a polynomial-time algorithm for computing non-contiguous envy-free
cake divisions under single-peaked preferences. For the non-contiguous setting, [19] provides
a fully polynomial-time approximation scheme for computing approximate envy-free cake
divisions.

2 Notation and Preliminaries

We consider fair division of a divisible, heterogeneous good – i.e., a cake – among n agents.
The cake is modeled as the interval [0, 1], and the cardinal preferences of the agents i ∈ [n]
over the cake are expressed via valuation functions vi. In particular, vi(I) ∈ R+ denotes the
valuation that agent i ∈ [n] has for any interval I = [x, y] ⊆ [0, 1]; here, 0 ≤ x ≤ y ≤ 1. As
in prior works (see, e.g., [21]), we will address valuations {vi}n

i=1 that are (i) nonnegative:
vi(I) ≥ 0 for all intervals I ⊆ [0, 1], (ii) normalized: vi([0, 1]) = 1 for all agents i, (iii)
divisible: for any interval [x, y] ⊆ [0, 1] and scalar λ ∈ [0, 1], there exists a point z ∈ [x, y]
with the property that vi([x, z]) = λvi([x, y]), and (iv) additive: vi(I ∪ J) = vi(I) + vi(J) for
any pair of disjoint intervals I, J ⊆ [0, 1].

These properties ensure that for all agents i ∈ [n] and each interval I ⊆ [0, 1] we have
0 ≤ vi(I) ≤ 1. Also, note that, since the valuations vi are divisible, they are non-atomic:
vi([x, x]) = 0 for all points x ∈ [0, 1]. Relying on this property, we will throughout regard,
as a convention, two intervals to be disjoint even if they intersect exactly at an endpoint.
Our algorithms efficiently execute in the standard Robertson-Webb query model [22], that
provides access to the agents’ valuations via the following queries:

(i) Evaluation queries, Evali(x, y): Given points 0 ≤ x ≤ y ≤ 1, the oracle returns the
value that agent i has for the interval [x, y], i.e., returns vi([x, y]).

(ii) Cut queries, Cuti(x, ν): Given an initial point x ∈ [0, 1] and a value ν ∈ (0, 1), the
oracle returns the leftmost point y ∈ [x, 1] with the property that vi([x, y]) ≥ ν. If no
such y exists, the response to the query is 1.

S. Barman and P. Kulkarni 16:5

Allocations. The current work addresses fair cake division under the requirement that
each agent must receive a connected piece. That is, we focus solely on assigning to each
agent a single sub-interval of [0, 1]. Specifically, in a cake division instance with n agents, an
allocation is defined as an n-tuple of pairwise-disjoint intervals, I = (I1, I2, . . . , In), where
interval Ii is assigned to agent i ∈ [n] and

⋃n
i=1 Ii = [0, 1]. In addition, we will use the

term partial allocation to refer to an n-tuple of pairwise-disjoint intervals P = (P1, . . . , Pn)
that do not necessarily cover the entire cake, ∪i∈[n]Pi ⊊ [0, 1]. Note that, in an allocation
J = (J1, J2, . . . , Jn), partial or complete, each interval Ji is indexed to identify the agent i

that owns the interval, and not how the intervals are ordered within [0, 1].
Furthermore, for a partial allocation P = (P1, . . . , Pn), write UP = {U1, . . . , Ut} to denote

the collection of unassigned intervals that remain after the assigned ones (i.e., Pis) are
removed from [0, 1]. Formally, UP = {U1, . . . , Ut} is the minimum-cardinality collection of
disjoint intervals that satisfy

⋃
i Ui = [0, 1] \

(⋃n
j=1 Pj

)
.

Approximate Envy-Freeness. The fairness notions studied in this work are defined next.
An allocation E = (E1, . . . , En) is said to be envy free (EF) iff each agent prefers the interval
assigned to her over that of any other agent, vi(Ei) ≥ vi(Ej) for all agents i, j ∈ [n]. This
paper addresses both additive and multiplicative approximations of envy-freeness.

▶ Definition 1 (ε-EF). In a cake division instance with n agents and for a parameter
ε ∈ (0, 1), an (partial) allocation I = (I1, I2, . . . , In) is said to be ε-additively envy-free
(ε-EF) iff vi(Ii) ≥ vi(Ij)− ε, for all agents i, j ∈ [n].

▶ Definition 2 (α-mult-EF). For a parameter α ∈ (0, 1), an (partial) allocation I =
(I1, I2, . . . , In) is said to be α-multiplicatively envy-free (α-mult-EF) iff, for all agents i, j ∈ [n],
we have vi(Ii) ≥ α vi(Ij).

3 Approximation Algorithm for Envy-Free Cake Division

This section develops an algorithm for efficiently computing a cake division (with connected
pieces) that is

(1
4 + o(1)

)
-EF and

(1
2 − o(1)

)
-mult-EF.

For the design of the algorithm, we will use the notion of bifurcating intervals. For an
agent i, a bifurcating interval X satisfies the property that, if i is assigned interval X, then
one can divide the rest of the cake in any way and still agent i will have at most 1/4 envy
towards any other agent. Formally,

▶ Definition 3 (Bifurcating Intervals). An interval [x, y] ⊆ [0, 1] is said to be a bifurcating
interval for an agent i ∈ [n] iff

vi([x, y]) ≥ 1
4 , vi([0, x]) ≤ 1

2 , and vi([y, 1]) ≤ 1
2 .

For each agent i ∈ [n], we extend the valuation vi to a function v̂i which codifies a preference
towards bifurcating intervals. Formally, for each agent i ∈ [n] and any interval X ⊆ [0, 1],
define

v̂i(X) :=
{

1 if X is bifurcating for i.

vi(X) if X is not bifurcating for i.
(1)

ICALP 2023

16:6 Approximation Algorithms for Envy-Free Cake Division with Connected Pieces

We note that, in contrast to the valuation vi, the function v̂i is not additive.2 However,
analogous to vi, the function v̂i is monotonic, normalized, and nonnegative. In addition,
given access to Evali() queries, we can efficiently compute v̂i(X) for any interval X ⊆ [0, 1].
We will show in the analysis that the algorithm’s steps involving v̂is can be implemented
efficiently, given Robertson-Webb query access to the underlying valuations. The claim below
provides a bound on the value of non-bifurcating intervals.

▷ Claim 4. For any agent i ∈ [n], if Y ⊆ [0, 1] is not a bifurcating interval, then,
v̂i(Y) = vi(Y) < 1

2 .

Proof. All intervals H ⊆ [0, 1] of value vi(H) ≥ 1
2 are bifurcating; see Definition 3 and recall

that the agents’ valuations are normalized, vi([0, 1]) = 1. Hence, for any non-bifurcating
interval Y ⊆ [0, 1] we have vi(Y) < 1

2 , i.e., v̂i(Y) = vi(Y) < 1
2 (see equation (1)). ◁

We will also use the construct of an envy-graph. Specifically, for a partial allocation
P = (P1, . . . , Pn), an envy-graph GP is a directed graph over n vertices. Here, the vertices
represent the n agents and a directed edge, from vertex i to vertex j, is included in the
graph iff v̂i(Pi) < v̂i(Pj). Envy-graphs and the cycle-elimination algorithm (detailed next)
have been extensively utilized in discrete fair division; see, e.g., [19]. However, their use for
contiguous cake cutting is novel.

We will next show that, if for any partial allocation P = (P1, . . . , Pn), the envy-graph
GP contains a cycle, then we can in fact resolve the cycle – by reassigning the intervals – and
eventually obtain a partial allocation Q = (Q1, . . . , Qn) whose envy-graph GQ is acyclic.3

▶ Lemma 5. Given any partial allocation P = (P1, . . . , Pn), one can reassign the intervals
Pis among the agents and efficiently find another partial allocation Q = (Q1, . . . , Qn) with
the properties that

(i) The envy-graph GQ is acyclic.
(ii) The value v̂i(Qi) ≥ v̂i(Pi), for all agents i ∈ [n].

The proof of Lemma 5 is standard and, for completeness, is provided in Appendix A.
Recall that, for any partial allocation P = (P1, . . . , Pn), the set UP = {U1, . . . , Ut} denotes
the collection of unassigned intervals that remain after the intervals Pis are removed from
[0, 1]. Also, note that for any partial allocation P = (P1, . . . , Pn), we have |UP | ≤ n + 1.

3.1 Interval Growing and Cycle Elimination
Our algorithm (Algorithm 1) consists of two phases. In Phase I (Lines 2 to 6 in Algorithm

1), which we call the interval growing phase, the algorithm starts with empty intervals –
i.e., Pi = ∅ for all i – and iteratively grows these intervals while maintaining bounded envy
among the agents. In particular, to extend a partial allocation P = (P1, . . . , Pn), we first
judiciously select an unassigned interval U ∈ UP and then assign an inclusion-wise minimal
sub-interval of U to an agent a. The sub-interval of U and agent a are selected such that the
function value, v̂a, increases appropriately and, at the same time, the envy towards a (from
any other agents) remains bounded. Note that, in this phase, the cake might not be allocated
completely, but the invariant of bounded envy is maintained throughout. Phase I terminates
with a partial allocation P = (P 1, . . . , P n) under which each agent i ∈ [n] has bounded envy
towards the other agents and towards all the unassigned intervals U ∈ UP (see Lemma 8).

2 Also, the function v̂i is not divisible.
3 Here, the reassignment of the intervals implies that there exists a permutation π ∈ Sn such that

Qi = Pπ(i) for all agents i.

S. Barman and P. Kulkarni 16:7

Algorithm 1 Approximation Algorithm for Connected Cake Division.
Input: A cake division instance with oracle access to the valuations {vi}n

i=1 of the n agents
and a fixed constant δ ∈ (0, 1).
Output: A complete allocation (I1, . . . , In).

1: Initialize partial allocation P = (P1, . . . , Pn) = (∅, . . . , ∅) and UP = {[0, 1]}.
2: while there exists an unassigned interval U = [ℓ, r] ∈ UP and an agent i ∈ [n] such that

v̂i(U) ≥ v̂i(Pi) + δ
n do

3: Let C :=
{

i ∈ [n] : v̂i(U) ≥ v̂i(Pi) + δ
n

}
and, for every agent i ∈ C, set ri ∈ [ℓ, r] to

be the leftmost point such that v̂i([ℓ, ri]) ≥ v̂i(Pi) + δ
n .

4: Select agent a ∈ arg mini∈C ri and update the partial allocation P : assign Pa ← [ℓ, ra]
and keep the interval assignment of all other agents unchanged.

5: Update UP to be the collection of intervals that are left unassigned under the current
partial allocation P.

6: end while
7: while |UP | > n do
8: Update P = (P1, . . . , Pn) following Lemma 5 to ensure that the envy-graph GP is

acyclic.
9: Let s ∈ [n] be a source vertex in the graph GP , with assigned interval Ps = [ℓs, rs].

10: Let Ũ = [rs, r̃] ∈ UP be the unassigned interval that is adjacent (on the right) to Ps.
{Since |UP | > n, such an interval Ũ is guaranteed to exist.}

11: Write x ∈ [rs, r̃] to be the point with the property that vi([rs, x]) ≤ δ
n for all agents i

and this inequality is tight for at least one agent. Append Ps ← Ps ∪ [rs, x].
{If for all agents the value of Ũ is at most δ

n , then append Ps ← Ps ∪ Ũ .}
12: end while
13: Index the unassigned intervals Uj ∈ UP such that each Uj is adjacent to a distinct interval

Pj , for all j. {Since |UP | ≤ n, such an indexing is possible.}
14: For all agents i, set interval Ii = Pi ∪ Ui. {If an unassigned interval is not associated

with Pi, then set Ii = Pi.}
15: return allocation I = (I1, . . . , In).

At the end of Phase I, it is possible that the number of unassigned intervals is n + 1. The
objective of Phase II (Lines 7 to 12 in the algorithm) is to reduce the number of unassigned
intervals, while maintaining bounded envy between the agents and against the unassigned
intervals. Towards this, we use the cycle-elimination method (Lemma 5) to first ensure that
for the maintained partial allocation P the envy-graph GP is acyclic. Now, given that the
directed graph GP is acyclic, it necessarily admits a source vertex s ∈ [n], i.e., a vertex s with
no incoming edges. Furthermore, by the definition of the envy graph, we get that no agent
has sufficiently high envy towards the source vertex s ∈ [n]. With this guarantee in hand, we
enlarge the interval assigned to s (i.e., enlarge Ps) while maintaining bounded envy overall.
Specifically, we append to Ps a piece of small enough value from the unassigned interval Ũ

adjacent to Ps. Since |UP | = n + 1, an unassigned interval, adjacent to Ps, is guaranteed to
exist. Also, note that this extension ensures that Ps continues to be a connected piece of the
cake, i.e., agent s continues to receive a single interval. Performing such updates, Phase II
efficiently finds a partial allocation P with the property that |UP | ≤ n. Since at the end of
Phase II the number of unassigned intervals is at most n, we can associate each unassigned
interval U ∈ UP with a distinct assigned interval Pj that is adjacent to U . We merge each
assigned interval Pi with the associated and adjacent unassigned interval Ui (if any) to obtain

ICALP 2023

16:8 Approximation Algorithms for Envy-Free Cake Division with Connected Pieces

the interval Ii for each agent i ∈ [n]. The intervals I1, I2, . . . , In completely partition the
cake [0, 1] and constitute the returned allocation I = (I1, I2, . . . , In). In Appendix A.1, we
will prove that the two phases run in polynomial time under the Robertson-Webb query
model. We now establish the approximation guarantee of the Algorithm.

3.2 Approximation Guarantee
We first note a monotonicity property with respect to the function values, v̂is, satisfied during
the execution of the algorithm.

▶ Lemma 6. For any agent i ∈ [n], the function values v̂i of the assigned intervals, Pis, are
nondecreasing through the execution of Algorithm 1.

Proof. To establish the monotonicity under v̂i in Phase I, consider any iteration for the first
while-loop. Here, for the selected agent a ∈ [n], the value of the assigned interval, under v̂a,
in fact increases and for all the other agents it continues to be the same. Hence, the lemma
holds throughout Phase I. The monotonicity is also maintained during the execution of Phase
II: the value under v̂i does not decrease in Line 8 (Lemma 5) or in Line 11. Therefore, the
lemma stands proved. ◀

Next, we assert that, throughout the execution of the algorithm, the assigned intervals
satisfy an inclusion-wise minimality property. Note that in the following lemma we evaluate
agent i’s assigned interval under the function v̂i and evaluate the compared interval X under
the valuation vi.

▶ Lemma 7. Let P ′ = (P ′
1, . . . , P ′

n) be any partial allocation considered during the execution
of Algorithm 1. Then, for any two assigned intervals P ′

i and P ′
j = [ℓ′

j , r′
j] along with any

strict subset X = [ℓ′
j , x] ⊊ P ′

j (i.e., x < r′
j), we have vi(X) < v̂i(P ′

i) + δ
n .

Proof. We establish the lemma via an inductive argument. Indeed, the initial partial
allocation (∅, . . . , ∅) satisfies the desired property. Now, consider any iteration of the first-
while loop, and write P ′′ = (P ′′

1 , . . . , P ′′
n) to be the partial allocation that gets updated (in

this iteration) to P ′ = (P ′
1, . . . , P ′

n). In particular, let a be the agent selected in Line 4.
Note that for all the other agents i ̸= a, the assigned interval remains unchanged, P ′

i = P ′′
i .

Also, the induction hypothesis implies that P ′′ satisfies the lemma. Hence, for all the agents
i, j ≠ a (whose assigned intervals have not changed), the desired property continues to hold.
Furthermore, agent a receives an interval of higher function value, v̂a(P ′

a) ≥ v̂a(P ′′
a) + δ/n.

Hence, we have the lemma from agent a against any other agent j.
It remains to show that the lemma holds between P ′

i and P ′
a = [ℓ′

a, r′
a]. Assume, towards a

contradiction, that there exists a strict subset X = [ℓ′
a, x] ⊊ P ′

a such that vi(X) ≥ v̂i(P ′
i)+δ/n.

Since P ′
i = P ′′

i and v̂i(X) ≥ vi(X), we obtain v̂i(X) ≥ v̂i(P ′′
i) + δ/n. This, however,

contradicts the selection criterion in Lines 3 and 4. In particular, this bound implies ri < ra

(see Line 3) and, hence, a would not be the selected agent in Line 4. Therefore, by way of
contradiction, we have that the property holds with respect to P ′

a as well.
The above-mentioned arguments prove that the lemma holds for all allocations considered

in Phase I. Next, we show that it continues to hold through Phase II.
Consider any iteration of the second while-loop, and write P ′′ = (P ′′

1 , . . . , P ′′
n) to be the

partial allocation that gets updated in this iteration. The induction hypothesis gives us that
P ′′ satisfies the desired property. In Line 8 the intervals are reassigned among the agents
(i.e., the collection of intervals remains unchanged) and for each agent i, the value, under
v̂i, of the assigned interval does not decrease; see Lemma 5. Hence, the property continues

S. Barman and P. Kulkarni 16:9

to hold after Line 8. For analyzing the rest of the iteration, let s ∈ [n] denote the (source)
agent that gets selected in Line 9 and P ′

s be the updated interval for agent s; in particular,
interval P ′

s is obtained by appending a piece to P ′′
s . Since s is the only agent whose interval

got updated here, the lemma continues to hold between all other agents i, j ̸= s. Also, the
property is maintained from agent s’s perspective, since v̂s(P ′

s) ≥ v̂s(P ′′
s). To complete the

proof we will next show that the property is upheld between P ′
i and P ′

s, for any i ∈ [n].
Note that, for agent i ≠ s, the assigned interval remains unchanged during the current

update, P ′
i = P ′′

i . Furthermore, the fact that s is a source vertex gives us

v̂i(P ′′
i) ≥ v̂i(P ′′

s) ≥ vi(P ′′
s) (2)

The extension of P ′′
s to P ′

s (performed in Line 11) ensures that vi(P ′
s) ≤ vi(P ′′

s) + δ/n. Hence,
inequality (2) gives us vi(P ′

s) ≤ v̂i(P ′
i) + δ/n. That is, there does not exist an X ⊊ P ′

s with
the property that vi(X) ≥ v̂i(P ′

i) + δ/n. This completes the proof. ◀

The next lemma provides a bounded envy guarantee for the partial allocation P =
(P 1, . . . , P n) computed by Phase I. Note that in this lemma, while considering envy from
agent i to agent j, we evaluate P i with respect to v̂i and evaluate P j under vi.

▶ Lemma 8. Let P = (P 1, . . . , P n) be the partial allocation maintained by Algorithm 1 at
the end of Phase I (i.e., at the termination of the first while-loop). Then, for all agents
i, j ∈ [n] and all unassigned intervals U ∈ UP , we have

v̂i(P i) ≥ vi(P j)− δ

n
and v̂i(P i) ≥ vi(U)− δ

n
.

Proof. Fix an arbitrary agent i ∈ [n] and consider any unassigned interval U ∈ UP . The
execution condition of the first while-loop ensures that at termination it holds that v̂i(P i) ≥
v̂i(U) − δ

n ≥ vi(U) − δ
n ; the last inequality directly follows from the definition of v̂i. This

establishes the desired inequalities with respect to the unassigned intervals.
Next, for any assigned interval Pj = [ℓj , rj], assume, towards a contradiction, that

vi(P j) > v̂i(P i) + δ/n. Since the valuation vi is divisible (see Section 2),4 there exists a
strict subset X = [ℓj , x] ⊊ P j with the property that vi(X) = v̂i(P i) + δ/n. This, however,
contradicts Lemma 7 (instantiated with P ′ = P). The lemma stands proved. ◀

Next, we show that the bounded envy guarantee obtained at the end of Phase I (as stated
in Lemma 8) continues to hold in Phase II.

▶ Lemma 9. Let P = (P1, . . . , Pn) be the partial allocation maintained by Algorithm 1 at the
end of Phase II. Then, for all agents i, j ∈ [n] and all unassigned intervals U ∈ UP , we have

v̂i(Pi) ≥ vi(Pj)− δ

n
and v̂i(Pi) ≥ vi(U)− δ

n
.

Proof. Let P = (P 1, . . . , P n) be the partial allocation maintained by Algorithm 1 at the
end of Phase I. Note that UP and UP denote the collection of unassigned intervals left at
the end of Phase I and Phase II, respectively. We observe that, for all unassigned intervals
U ∈ UP , there exists an unassigned interval U ∈ UP such that U ⊆ U . These containments

4 Here, we invoke divisibility of vi with factor α = v̂i(P i)+δ/n

vi(P j)
∈ (0, 1). Also, note that, in contrast to vi,

the function v̂i is not divisible.

ICALP 2023

16:10 Approximation Algorithms for Envy-Free Cake Division with Connected Pieces

follow from the fact that in each iteration of the second while-loop (i.e., in Phase II) we
either reassign the allocated intervals (which preserves the collection of the unassigned ones)
or we enlarge a chosen assigned interval (Line 11); under such an enlargement, one of the
unassigned intervals gets reduced and the others remain unchanged.

Furthermore, Lemma 6 gives us v̂i(Pi) ≥ v̂i(P i) ≥ vi(U)− δ/n, for any interval U ∈ UP ;
here, the last inequality follows from Lemma 8. Using this bound and the above-mentioned
containment of unassigned intervals we get v̂i(Pi) ≥ vi(U) − δ/n, for all U ∈ UP . This
establishes the desired inequalities with respect to the unassigned intervals.

Next, for any assigned interval Pj = [ℓj , rj], assume, towards a contradiction, that
vi(Pj) > v̂i(Pi) + δ/n. Since the valuation vi is divisible, there exists a strict subset
X = [ℓj , x] ⊊ Pj with the property that vi(X) = v̂i(Pi) + δ/n. This, however, contradicts
Lemma 7 (instantiated with P ′ = P). The lemma stands proved. ◀

The following lemma shows that, at the end of Phase I, if an agent i does not receive a
bifurcating interval but some other agent j does, then j’s interval cannot be bifurcating (for
i) with an additional margin of δ

n . Formally,5

▶ Lemma 10. Let P = (P 1, . . . , P n) be the partial allocation maintained by Algorithm 1 at
the end of Phase I. If, for an agent i ∈ [n], the assigned interval P i is not bifurcating (for i),
but interval P j = [ℓj , rj] is bifurcating (for i). Then, at least one of the following inequalities
holds:

vi(P j) <
1
4 + δ

n
or vi([rj , 1]) >

1
2 −

δ

n
.

Proof. Assume, towards a contradiction, that the bifurcating interval P j = [ℓj , rj] has value
vi(P j) ≥ 1

4 + δ
n and vi([rj , 1]) ≤ 1

2 −
δ
n . These properties in fact imply the existence of a

strict subset X ⊊ P j that is bifurcating for i: write x ∈ [ℓj , rj] to denote the leftmost point
that satisfies vi([ℓj , x]) = vi(P j)− δ

n and set X = [ℓj , x]. Since valuation vi is divisible, such
a point x exists and we have x < rj . Furthermore, the lower bound on the value of P j gives
us vi(X) ≥ 1

4 . In addition, note that vi([0, ℓj]) ≤ 1/2, since P j = [ℓj , rj] is bifurcating. Also,
using the inequality vi([rj , 1]) ≤ 1

2 −
δ
n and the additivity of the valuation vi, we get that

vi([x, 1]) ≤ 1
2 . Indeed, these bounds ensure that X is a strict subset of P j and is bifurcating

for agent i.
The existence of X contradicts the selection criterion in Lines 3 and 4. In particular,

consider the iteration in which P j was assigned and write P ′
i to denote the interval assigned

to agent i during that iteration. We note that

v̂i(P ′
i) ≤ v̂i(P i) (via Lemma 6)

<
1
2 (P i is non-bifurcating & Claim 4)

On the other hand, v̂i(X) = 1, for the interval X identified above. Hence, j would not be
the selected agent in Line 4. This contradiction establishes the lemma. ◀

We next prove that a guarantee, analogous to Lemma 10, holds for Phase II as well.6

5 Note that, in contrast to Lemmas 8 and 9, here we have an absolute bound on the value of the compared
interval P j .

6 As in Lemma 10, here we have an absolute bound on the value of the compared interval Pj .

S. Barman and P. Kulkarni 16:11

▶ Lemma 11. Let P = (P1, . . . , Pn) be the partial allocation maintained by Algorithm 1 at
the end of Phase II. If, for an agent i ∈ [n], the assigned interval Pi is not bifurcating (for i),
but interval Pj = [ℓj , rj] is bifurcating (for i). Then, at least one of the following inequalities
holds:

vi(Pj) <
1
4 + δ

n
or vi([rj , 1]) >

1
2 −

δ

n
.

Proof. Write P = (P 1, . . . , P n) to denote the partial allocation at the end of Phase I. Note
that, throughout Phase II, the algorithm either reassigns the intervals (Line 8) or appends
(unassigned) pieces to them (Line 11). Hence, for the interval Pj , assigned to agent j at the
end of Phase II, there exists P k, for some k ∈ [n], such that Pj ⊇ P k.

We assume, towards a contradiction, that the bifurcating interval Pj = [ℓj , rj] has value
vi(Pj) ≥ 1

4 + δ
n and vi([rj , 1]) ≤ 1

2 −
δ
n . It cannot be the case that Pj = P k (for an interval

P k assigned at the end of Phase I), since this would contradict Lemma 10. Hence, in the
remainder of the proof we address the complementary case wherein Pj was obtained by
appending to an interval, say P ′

s, in an iteration of the second while-loop (specifically, Line 11).
Also, write P ′

i to denote the interval assigned to agent i during that iteration. Lemma 6 and
the fact that Pi is non-bifurcating for i (Claim 4) give us v̂i(P ′

i) ≤ v̂i(Pi) < 1/2. Using this
inequality and the fact that s was a source agent during the iteration under consideration,
we get

v̂i(P ′
s) ≤ v̂i(P ′

i) < 1/2 (3)

However, the assumptions on the values of Pj = [ℓj , rj] and [rj , 1] contradict inequality (3):
Let z denote the right endpoint of P ′

s, i.e., P ′
s = [ℓj , z]. Since a piece of bounded value is

appended in Line 11, we have vi(P ′
s) ≥ vi(Pj)− δ

n ≥
1
4 . Furthermore, using the inequality

vi([rj , 1]) ≤ 1
2 −

δ
n , we obtain vi([z, 1]) ≤ 1

2 . In addition, the fact that Pj = [ℓj , rj] is a
bifurcating interval gives us vi([0, ℓj)) ≤ 1

2 , i.e., the value to the left of P ′
s = [ℓj , z] is at most

1/2. These observations imply that P ′
s is a bifurcating interval for i; in particular, v̂i(P ′

s) = 1.
This bound contradicts inequality (3) and completes the proof. ◀

Using Lemma 9, we next obtain a relevant envy bound for the allocation I returned by
the algorithm.

▶ Lemma 12. The allocation I = (I1, . . . , In) computed by Algorithm 1 satisfies vi(Ii) ≥
1
2 vi(Ij)− δ

n , for all agents i, j ∈ [n].

Proof. Write P = (P1, . . . , Pn) to denote the partial allocation of the algorithm at the end
of Phase II. The execution condition of the second while-loop ensures that |UP | ≤ n. Also,
at the end of the algorithm, for each unassigned interval U ∈ UP , we select a distinct and
adjacent interval Pj and associate U with Pj . In particular, let Uj be the unassigned interval
associated with Pj . If Pj is not associated with any unassigned interval, then set Uj = ∅.
Indeed, Ij = Pj ∪ Uj is a connected piece of the cake, i.e., an interval.

For any agent i ∈ [n], if interval Ii is bifurcating, then vi(Ii) ≥ 1
4 . Furthermore, any other

assigned interval Ij is either completely to the left of Ii or to the right of Ii. In either case,
by the definition of bifurcating intervals, we have vi(Ij) ≤ 1

2 . Hence, for agents i that receive
a bifurcating interval Ii, we have the stated inequality, vi(Ii) ≥ 1

2 vi(Ij).
It remains to show that the lemma holds for agents i for whom Ii is not bifurcating.

For such agents, the interval Pi ⊆ Ii is also non-bifurcating and, hence, vi(Pi) = v̂i(Pi).
Therefore,

vi(Ii) ≥ vi(Pi) ≥ vi(Pj)− δ

n
and vi(Ii) ≥ vi(Pi) ≥ vi(Uj)− δ

n
(via Lemma 9)

ICALP 2023

16:12 Approximation Algorithms for Envy-Free Cake Division with Connected Pieces

Summing we get

2vi(Ii) ≥ vi(Pj) + vi(Uj)− 2δ

n
= vi(Ij)− 2δ

n
(since vi is additive)

Hence, we obtain the stated inequality, vi(Ii) ≥ 1
2 vi(Ij)− δ

n . This completes the proof. ◀

We now establish the main result of this section.

▶ Theorem 13. Given any cake division instance – with Robertson-Webb query access to the
valuations of the n agents – and parameter δ ∈ (0, 1), Algorithm 1 computes a connected cake
division (i.e., an allocation) I = (I1, . . . , In) that is

(1
4 + 2δ

n

)
-EF. The algorithm executes in

time that is polynomial in n and 1
δ .

Proof. Fix any agent i ∈ [n]. We establish the theorem by considering three complementary
and exhaustive cases, based on the interval Ii (assigned to agent i):
Case 1: Interval Ii is bifurcating,
Case 2: Value vi(Ii) < 1

4 ,
Case 3: Interval Ii is not bifurcating and vi(Ii) ≥ 1

4 .

In Case 1, since interval Ii is bifurcating for agent i, we have vi(Ii) ≥ 1
4 and, for any

other interval Ij (either to the left of Ii or to its right), we have vi(Ij) ≤ 1
2 . Therefore, in

this case, the stated approximation bound on envy holds, vi(Ii) ≥ vi(Ij)− 1
4 .

In Case 2, value vi(Ii) < 1
4 . Note that, Lemma 12 gives us vi(Ii) ≥ 1

2 vi(Ij)− δ
n , for any

other agent j ∈ [n]. Multiplying both sides of this inequality by 2 and simplifying we obtain

vi(Ii) ≥ vi(Ij)− vi(Ii)−
2δ

n
≥ vi(Ij)− 1

4 −
2δ

n
(since vi(Ii) < 1

4)

Therefore, in Case 2 as well, for agent i the envy is additively at most
(1

4 + 2δ
n

)
.

0 1

UjPj Ii

{ Ij

Case 3a

vi(Pj) ≥ 1
4 +

δ
n vi(Uj) ≥ 1

4 +
δ
n vi(Ii) ≥ 1

4

0 1

Uj Pj Ii
Case 3b

Figure 1 Placement of intervals Pj and Uj in Case 3.

Finally, in Case 3, interval Ii is not bifurcating and vi(Ii) ≥ 1
4 . Write P = (P1, . . . , Pn)

to denote the partial allocation at the end of Phase II and recall that Ik = Pk ∪ Uk, for
each agent k ∈ [n] and the associated unassigned interval Uk ∈ UP . For analyzing this case,
assume, towards a contradiction, that there exists an interval Ij that violates the stated
approximate envy-freeness bound, i.e.,

vi(Ij) > vi(Ii) + 1
4 + 2δ

n
. (4)

S. Barman and P. Kulkarni 16:13

Since, in the current case, vi(Ii) ≥ 1
4 , inequality (4) reduces to vi(Ij) > 1

2 + 2δ
n . We will

further show that for interval Ij the composing sub-intervals Pj and Uj are each of value
(under vi) at least 1

4 + δ
n . Towards this, note that, in the current case, since Ii is not

bifurcating for i, neither is Pi ⊆ Ii. Furthermore,

vi(Ii) ≥ vi(Pi) (vi is monotonic)
= v̂i(Pi) (since Pi is not bifurcating for i)

≥ vi(Pj)− δ

n
(5)

The last inequality follows from Lemma 9. A similar application of the lemma also gives us

vi(Ii) ≥ vi(Uj)− δ

n
(6)

Inequalities (4), (5), and (6) imply that the values of both Pj and Uj are at least 1
4 + δ

n .
Otherwise, say vi(Pj) < 1

4 + δ
n . Then,

vi(Ij) = vi(Pj) + vi(Uj) <
1
4 + δ

n
+ vi(Uj) ≤ vi(Ii) + 1

4 + 2δ

n
(via inequality (6))

Since the last inequality contradicts assumption (4), we have vi(Pj) ≥ 1
4 + δ

n . Similarly,
vi(Uj) ≥ 1

4 + δ
n .

As mentioned previously, vi(Ij) > 1
2 + 2δ

n . Hence, the values to the left and to the right
of Ij = [ℓj , rj] are upper bounded as follows:7 vi([0, ℓj]) ≤ 1

2 −
2δ
n and vi([rj , 1]) ≤ 1

2 −
2δ
n .

For the subsequent analysis, we also assume that interval Ij is on the left of Ii (see Figure
1); the proof for the other configuration (of Ij being to the right of Ii) follows analogously.
Now, there are two sub-cases to consider:
Case 3a: Interval Pj is to the left of Uj (i.e., Uj lies between Pj and Ii).
Case 3b: Interval Pj is to the right of Uj (i.e., Pj lies between Uj and Ii).

In Case 3a, we note that the interval Uj ∈ UP is bifurcating for agent i: As observed above,
vi(Uj) ≥ 1

4 + δ
n and the value (in the cake) to the right of Uj is equal to vi([rj , 1]) ≤ 1

2 −
2δ
n .

In addition, the value to the left of Uj is at most 1− (vi(Uj)+vi(Ii)) ≤ 1− 1
4 −

1
4 −

δ
n = 1

2 −
δ
n ;

interval Ii is to the right to Ij and, hence, to the right of Uj . Hence, Uj ∈ UP is bifurcating
for agent i.

Also, the design of Phase II ensures that, for the interval Uj , there exists an unassigned
interval U ∈ UP such that U ⊇ Uj ; here P = (P 1, . . . , P n) denotes the partial allocation at
the end of Phase I. Since Uj is bifurcating for i, so is U . By contrast, in the current case
(Case 3), the interval Pi is not bifurcating for i and, hence, neither is P i (Lemma 6). That
is, v̂i(P i) < 1

2 < 1 = v̂i(U). The bound, however, contradicts the termination of the first
while-loop. Therefore, by way of contradiction, we get that assumption (4) cannot hold in
Case 3a. This completes the analysis of this sub-case.

In Case 3b, we note that the interval Pj is bifurcating for agent i, with a margin of δ
n : As

observed above, vi(Pj) ≥ 1
4 + δ

n and the value to the right of Pj is equal to vi([rj , 1]) ≤ 1
2 −

2δ
n .

In addition, the value to the left of Pj is at most 1− (vi(Pj)+vi(Ii)) ≤ 1− 1
4 −

1
4 −

δ
n = 1

2 −
δ
n .

The existence of such a bifurcating interval Pj contradicts Lemma 11. Hence, even in Case
3b, we must have vi(Ij) ≤ vi(Ii) + 1

4 + 2δ
n , i.e., the stated bound on envy holds.

This completes the analysis for all the cases, and the theorem stands proved. ◀

7 Recall that the value of the entire cake is normalized, vi([0, 1]) = 1.

ICALP 2023

16:14 Approximation Algorithms for Envy-Free Cake Division with Connected Pieces

Complementing the additive envy-freeness guarantee obtained in Theorem 13, the next
result establishes that, in the computed allocation I, the envy is within a factor of (2 + c),
where parameter c ∈ (0, 1) is polynomially small (in n).

▶ Theorem 14. Given any cake division instance – with Robertson-Webb query access to the
valuations of the n agents – and parameter c ∈ (0, 1), we can compute (in time polynomial in
n and 1/c) a connected cake division (i.e., an allocation) I = (I1, . . . , In) that is 1

2+c -mult-EF.

Proof. The theorem directly follows from Lemma 12. In particular, we execute Algorithm 1
with parameter δ = c

8 , for a sufficiently small c ∈ (0, 1),8 and note that, for the computed
allocation I, Lemma 12 gives us vi(Ii) ≥ 1

2 vi(Ij) − δ
n = 1

2 vi(Ij) − c
8n , for agents i, j ∈ [n].

Summing over j, we obtain

n vi(Ii) ≥
1
2

n∑
j=1

vi(Ij)− c

8 = 1
2 −

c

8 (7)

The last equality follows from the fact that I1, . . . , In constitute a complete partition of the
cake, with value vi([0, 1]) = 1. Since constant c ≤ 1, inequality (7) reduces to vi(Ii) ≥ 1

4n ,
for all agents i ∈ [n]. Therefore, the bound obtained in Lemma 12 can be expressed as

vi(Ii) ≥
1
2vi(Ij)− c

8n
≥ 1

2vi(Ij)− c

2vi(Ii).

Simplifying we obtain (2 + c) vi(Ii) ≥ vi(Ij), for all agents i, j ∈ [n]. Therefore, the computed
allocation is 1

2+c -mult-EF ◀

4 An ε-EF Algorithm under Bounded Heterogeneity

This section addresses cake division instances in which, for a parameter ε ∈ (0, 1) and
across the n agents, the number of distinct valuations is at most (εn− 1). Our algorithm
(Algorithm 2) for finding ε-EF allocations in such instances in detailed next.

We first show in Lemma 15 below that the collection of intervals computed by Algorithm 2
cover the entire cake. We will then use this lemma to establish the approximate envy-freeness
guarantee in Theorem 16.

▶ Lemma 15. Given any cake division instance in which, across the n agents, the number
of distinct valuations is at most (εn− 1), Algorithm 2’s output I = (I1, . . . , In) is a complete
allocation, i.e., Iis are pairwise disjoint and ∪i∈[n]Ii = [0, 1].

Proof. By construction, the set of intervals F populated in Line 4 of Algorithm 2 are pairwise
disjoint and cover the entire cake. We will show that the number of intervals in F is at most
n, i.e., |F| ≤ n. Since the assigned intervals, Iis, are selected from the set F (see the for-loop
in the algorithm), the cardinality bound implies that no interval in F remains unassigned.
Hence, ∪i∈[n]Ii = [0, 1]. Also, given that the intervals in F are pairwise disjoint, so are the
Iis. Therefore, I = (I1, . . . , In) is a complete allocation.

We complete the proof by establishing that |F| ≤ n. Towards this it suffices to show that
|Z| ≤ n + 1; see Line 4 and note that |F| = |Z| − 1. In Line 2, for each agent i ∈ [n], we
consider T + 1 cut points 0 = xi

0 < xi
1 < xi

2 < . . . < xi
T −1 < xi

T = 1. The end points of the
cake, 0 and 1, are considered for every agent. Moreover, for any two agents, i, j ∈ [n], with

8 With this parameter choice, the algorithm executes in time that is polynomial in n and 1/c.

S. Barman and P. Kulkarni 16:15

Algorithm 2 ε-EF under bounded heterogeneity.
Input: A cake division instance with oracle access to the valuations {vi}n

i=1 of the n agents
along with parameter ε ∈ (0, 1).
Output: A complete allocation (I1, . . . , In).

1: Set T to be the smallest integer such that Tε ≥ 1, i.e., T :=
⌈ 1

ε

⌉
.

2: For each agent i ∈ [n], let 0 = xi
0 < xi

1 < xi
2 < . . . < xi

T −1 < xi
T = 1 be the

collection of (T + 1) cut points that satisfy vi([xi
t−1, xi

t]) = ε, for all 1 ≤ t ≤ T − 1, and
vi([xi

T −1, xi
T]) ≤ ε.

3: Let Z be the union of these cut points Z :=
⋃

i∈[n]
{

xi
0, xi

1, . . . , xi
T −1, xi

T

}
{Z is not a multiset, i.e., multiple instances of same cut point are not repeated in Z.}

4: Index the points in Z = {z0, z1, z2, . . . , zr} such that 0 = z0 < z1 < z2 < . . . < zr = 1
and define the collection of intervals F :=

{
[zt, zt+1]

}r−1

t=0
5: for agents i = 1 to n do
6: If F = ∅, then set interval Ii = ∅. Otherwise, if F ̸= ∅, then set Ii = arg maxF ∈F vi(F)

and update F ← F \ {Ii}.
7: end for
8: return allocation I = (I1, . . . , In).

identical valuations, vi = vj , even the remaining (T − 1) points are the same: xi
t = xj

t for
all 1 ≤ t ≤ T − 1. Since the number of distinct valuations is at most (εn − 1), there are
at most (εn − 1)(T − 1) cut points in Z that are strictly between 0 and 1. Including the
endpoints of the cake in the count, we get |Z| ≤ (εn− 1) (T − 1) + 2 ≤ (εn− 1) 1

ε + 2. The
last inequality follows from the definition of T ; in particular, T − 1 < 1

ε . Simplifying we
obtain |Z| ≤ n− 1

ε + 2 ≤ n + 1; recall that ε ≤ 1. Therefore, |F| ≤ n and the lemma stands
proved. ◀

The following theorem establishes that Algorithm 2 finds an allocation I = (I1, . . . , In)
that satisfies vi(Ii) ≥ vi(Ij)− ε for all agents i, j ∈ [n].

▶ Theorem 16. Given any cake division instance in which, across the n agents, the number
of distinct valuations is at most (εn− 1), Algorithm 2 (with Robertson-Webb query access to
the valuations) computes an ε-EF allocation in polynomial time.

Proof. The runtime analysis of the algorithm is direct. Also, via Lemma 15, we have that
the the returned tuple I = (I1, . . . , In) is indeed a complete allocation.

For proving that the algorithm achieves an ε-EF guarantee, consider any agent i ∈ [n]
and interval Ij = [zt, zt+1], where zt and zt+1 are successive points in the set Z; see Line 4.
If Ij = ∅, then in fact i does not envy j. We will show that vi(Ij) ≤ ε and, hence, obtain the
desired bound: vi(Ii) ≥ vi(Ij)− ε.

For agent i, write xi
s to be the largest (rightmost) cut point considered in Line 2 that

satisfies xi
s ≤ zt. In particular, xi

s+1 > zt. Note that the set Z (see Line 3) contains all
the points xi

0, xi
1, . . . , xi

T −1, xi
T ; in particular, xi

s+1 ∈ Z. In addition, zt and zt+1 are two
successive points in Z. Hence, we have zt+1 ≤ xi

s+1 and the interval Ij = [zt, zt+1] ⊆ [xi
s, xi

s+1].
By construction, vi([xi

s, xi
s+1]) ≤ ε and, hence, vi(Ij) ≤ ε. This bound on the valuation of

interval Ij implies that the computed allocation is ε-EF. The theorem stands proved. ◀

Note that the algorithm might assign some agents i ∈ [n] an interval of value of zero; in
particular, Ii = ∅. Imposing the requirement that each agent i ∈ [n] receives an interval of
nonzero value (to i) renders the problem as hard as finding an ε-EF allocation in general cake

ICALP 2023

16:16 Approximation Algorithms for Envy-Free Cake Division with Connected Pieces

division instances (without bounded heterogeneity). To see this, consider any cake division
instance (which might not satisfy the bounded heterogeneity condition). Append to the cake
another unit length interval and include

⌈
n+2

ε

⌉
dummy agents that have identical valuation

confined to the appended interval. This new instance satisfies bounded heterogeneity. Now,
if each agent in the constructed instance receives an interval of nonzero value, then the
appended interval must have been divided among the dummy agents and the underlying
cake [0, 1] among the original agents. This way we obtain an ε-EF allocation for the original
instance. Furthermore, note that an α-mult-EF guarantee, for any α > 0, implies that each
agent receives an interval of nonzero value. Therefore, achieving multiplicative approximation
bounds for envy under bounded heterogeneity is as hard as the general case.
▶ Remark 17. The discretization method used in Algorithm 2 has been utilized in prior
works as well; see [10] and [19]. The relevant insight obtained here is the difference between
additive and multiplicative approximations: While one can efficiently achieve an ε-additive
approximation under bounded heterogeneity, establishing any multiplicative guarantee is as
hard as solving the problem in complete generality.

5 Conclusion and Future Work

Algorithmically, connected envy-free cake division is a challenging and equally intriguing
problem at the core of fair division. The proof of existence of envy-free cake divisions (with
connected pieces) does not lend itself to efficient (approximation) algorithms and, at the
same time, negative results – that rule out, say, a polynomial-time approximation scheme
(PTAS) – are not known either. In this landscape, the current work improves upon the
previously best-known approximation guarantee for connected envy-free cake division. We
develop a computationally efficient algorithm that finds a connected cake division that is
simultaneously (1/4 + o(1))-EF and (1/2− o(1))-mult-EF. We also show that specifically for
instances with bounded heterogeneity, an ε-EF division can be computed in time polynomial
in n and 1/ε.

In addition to the patent problem of efficiently finding ε-EF connected cake divisions,
developing ε-EF algorithms for special valuation classes (such as single-block and single-
peaked valuations) is a relevant direction of future work. Inapproximability results – similar
to the ones recently obtained for ε-consensus halving [13] – are also interesting.

References
1 Reza Alijani, Majid Farhadi, Mohammad Ghodsi, Masoud Seddighin, and Ahmad Tajik.

Envy-free mechanisms with minimum number of cuts. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 31(1), 2017.

2 Georgios Amanatidis, Georgios Birmpas, Aris Filos-Ratsikas, and Alexandros A Voudouris.
Fair division of indivisible goods: A survey. arXiv preprint, 2022. arXiv:2202.07551.

3 Eshwar Ram Arunachaleswaran, Siddharth Barman, Rachitesh Kumar, and Nidhi Rathi. Fair
and efficient cake division with connected pieces. In International Conference on Web and
Internet Economics, pages 57–70. Springer, 2019.

4 Haris Aziz and Simon Mackenzie. A discrete and bounded envy-free cake cutting protocol for
any number of agents. In 2016 IEEE 57th Annual Symposium on Foundations of Computer
Science (FOCS), pages 416–427. IEEE, 2016.

5 Dinesh Kumar Baghel, Vadim E Levit, and Erel Segal-Halevi. Fair division algorithms for
electricity distribution. arXiv preprint, 2022. arXiv:2205.14531.

6 Siddharth Barman and Pooja Kulkarni. Approximation algorithms for envy-free cake division
with connected pieces, 2022. arXiv:2208.08670.

https://arxiv.org/abs/2202.07551
https://arxiv.org/abs/2205.14531
https://arxiv.org/abs/2208.08670

S. Barman and P. Kulkarni 16:17

7 Siddharth Barman and Nidhi Rathi. Fair cake division under monotone likelihood ratios.
Mathematics of Operations Research, 2021.

8 Steven J Brams and Alan D Taylor. An envy-free cake division protocol. The American
Mathematical Monthly, 102(1):9–18, 1995.

9 Steven J Brams and Alan D Taylor. Fair Division: From cake-cutting to dispute resolution.
Cambridge University Press, 1996.

10 Simina Brânzei and Noam Nisan. The query complexity of cake cutting. In Advances in
Neural Information Processing Systems, 2022.

11 Constantinos Daskalakis, Aranyak Mehta, and Christos Papadimitriou. Progress in approx-
imate nash equilibria. In Proceedings of the 8th ACM Conference on Electronic Commerce,
pages 355–358, 2007.

12 Xiaotie Deng, Qi Qi, and Amin Saberi. Algorithmic solutions for envy-free cake cutting.
Operations Research, 60(6):1461–1476, 2012.

13 Aris Filos-Ratsikas, Alexandros Hollender, Katerina Sotiraki, and Manolis Zampetakis.
Consensus-halving: Does it ever get easier? In Proceedings of the 21st ACM Conference on
Economics and Computation, pages 381–399, 2020.

14 Duncan K Foley. Resource allocation and the public sector, 1967.
15 Paul Goldberg, Alexandros Hollender, and Warut Suksompong. Contiguous cake cutting:

Hardness results and approximation algorithms. Journal of Artificial Intelligence Research,
69:109–141, 2020.

16 Hadi Hosseini, Ayumi Igarashi, and Andrew Searns. Fair division of time: Multi-layered cake
cutting. In 29th International Joint Conference on Artificial Intelligence, IJCAI 2020, pages
182–188. International Joint Conferences on Artificial Intelligence, 2020.

17 Duško Jojić, Gaiane Panina, and Rade Živaljević. Splitting necklaces, with constraints. SIAM
Journal on Discrete Mathematics, 35(2):1268–1286, 2021.

18 Spyros C Kontogiannis, Panagiota N Panagopoulou, and Paul G Spirakis. Polynomial
algorithms for approximating nash equilibria of bimatrix games. In International Workshop
on Internet and Network Economics, pages 286–296. Springer, 2006.

19 Richard J Lipton, Evangelos Markakis, Elchanan Mossel, and Amin Saberi. On approximately
fair allocations of indivisible goods. In Proceedings of the 5th ACM conference on Electronic
commerce, pages 125–131. ACM, 2004.

20 Gaiane Panina and Rade Živaljević. Envy-free division via configuration spaces. arXiv preprint,
2021. arXiv:2102.06886.

21 Ariel D Procaccia. Cake cutting algorithms. In Handbook of Computational Social Choice,
chapter 13. Citeseer, 2015.

22 Jack Robertson and William Webb. Cake-cutting algorithms: Be fair if you can. AK
Peters/CRC Press, 1998.

23 FW Simmons. Private communication to Michael Starbird, 1980.
24 Hugo Steinhaus. The Problem of Fair Division. Econometrica, 16:101–104, 1948.
25 Walter Stromquist. How to cut a cake fairly. The American Mathematical Monthly, 87(8):640–

644, 1980.
26 Walter Stromquist. Envy-free cake divisions cannot be found by finite protocols. the electronic

journal of combinatorics, 15(1):11, 2008.
27 Francis Edward Su. Rental harmony: Sperner’s lemma in fair division. The American

mathematical monthly, 106(10):930–942, 1999.
28 Haralampos Tsaknakis and Paul G Spirakis. An optimization approach for approximate nash

equilibria. In International Workshop on Web and Internet Economics, pages 42–56. Springer,
2007.

29 Chenhao Wang and Xiaoying Wu. Cake cutting with single-peaked valuations. In Combinatorial
Optimization and Applications: 13th International Conference, COCOA 2019, Xiamen, China,
December 13–15, 2019, Proceedings 13, pages 507–516. Springer, 2019.

ICALP 2023

https://arxiv.org/abs/2102.06886

16:18 Approximation Algorithms for Envy-Free Cake Division with Connected Pieces

A Missing Proofs from Section 3

Here, we restate and prove Lemma 5.

▶ Lemma 5. Given any partial allocation P = (P1, . . . , Pn), one can reassign the intervals
Pis among the agents and efficiently find another partial allocation Q = (Q1, . . . , Qn) with
the properties that

(i) The envy-graph GQ is acyclic.
(ii) The value v̂i(Qi) ≥ v̂i(Pi), for all agents i ∈ [n].

Proof. If, for given partial allocation P = (P1, . . . , Pn), the envy-graph GP is already acyclic,
then we directly obtain the lemma by setting Q = P. Hence, in the remainder of the proof
we consider the case wherein GP is cyclic.

Write C = i1 → i2 → . . . → ik → i1 to denote a cycle in GP . To obtain a new partial
allocation P ′ = (P ′

1, . . . , P ′
n), we reassign the intervals as follows: for all agents j not in the

cycle (i.e., j /∈ {i1, i2, . . . , ik}), set P ′
j = Pj . Furthermore, for all the agents it in the cycle C,

with 1 ≤ t < k, we set P ′
it

= Pit+1 and P ′
ik

= Pi1 . That is, each agent in the cycle receives
the interval assigned to its successor in the cycle. This reassignment ensures that, for all
agents i ∈ [n], we have v̂i(P ′

i) ≥ v̂i(Pi); recall that a directed edge (i, j) is included in the
graph GP iff v̂i(Pi) < v̂i(Pj).

We will now show that the number of edges in the envy-graph GP′ is strictly smaller
than the number of edges in GP . Hence, repeated elimination of cycles leads to an allocation
Q that satisfies the lemma. Note that the collection of intervals assigned in the allocation
P ′ is the same as the collection of intervals in P. Also, the out-degree of any vertex i in
GP (or in GP′) is equal to the number of bundles Pjs (or P ′

js) have value (under v̂i) strictly
greater than i’s value (again, under v̂i) for her own bundle. These observations imply that
for all agents not in the cycle C, the out-degree is the same in GP and GP′ . Moreover, for
all agents it in the cycle C, we have v̂it(P ′

it
) > v̂it(Pit). Hence, the out-degree of any such

agent it in GP is strictly smaller than its out-degree in GP . Therefore, the number of edges
in GP′ is strictly smaller than the ones in GP . This strict reduction in the number of edges
implies that after a polynomial number of cycle eliminations we obtain an allocation Q for
which GQ is acyclic and we have v̂i(Qi) ≥ v̂i(Pi), for all agents i ∈ [n]. The lemma stands
proved. ◀

A.1 Runtime Analysis of Algorithm 1
We begin by noting that, given Robertson-Webb query access to the underlying valuation vis,
we can answer cut and evaluation queries for the functions v̂i (see equation (1)) in polynomial
time. That is, given points 0 ≤ x ≤ y ≤ 1, we can find v̂i([x, y]) in polynomial time. Also,
given a point x ∈ [0, 1] and value ν ∈ [0, 1], we can efficiently compute the leftmost point y

(if one exists) that satisfies v̂i([x, y]) ≥ ν.

▷ Claim 18. For any agent i ∈ [n], given Robertson-Webb query access to the valuation vi,
we can answer cut and evaluation queries with respect to the function v̂i in polynomial time.

Proof. We first address the evaluation query for v̂i. Given interval [x, y] ⊆ [0, 1], we use Evali
to obtain the following three values: vi([x, y]), vi([0, x]), and vi([y, 1]). These three values tell
us whether [x, y] is a bifurcating interval for agent i; see Definition 3. If [x, y] is a bifurcating
interval, then we have v̂i([x, y]) = 1. Otherwise, v̂i([x, y]) = vi([x, y]).

Now, we consider the cut query for v̂i. Given a point x ∈ [0, 1], and a value ν ∈ [0, 1],
we identify two candidate points y1 and y2 and set y := min{y1, y2} as the leftmost point
that satisfies v̂i([x, y]) ≥ ν. The first candidate point is defined as y1 := Cuti(x, ν), i.e., y1

S. Barman and P. Kulkarni 16:19

is the leftmost point that satisfies vi([x, y1]) = ν. The definition of v̂i (see equation (1))
implies that v̂i([x, y1]) ≥ vi([x, y1)] = ν. Still, there could be a point y2 to the left of y1 such
that the interval [x, y2] is bifurcating for i and, hence, v̂i([x, y2]) ≥ ν. Therefore, the second
candidate y2 is computed by finding the smallest bifurcating interval, if one exists, starting
at x. Towards this, we first use the query Evali(0, x) to ensure that vi([0, x]) ≤ 1

2 . If the
interval [0, x] is of value more than 1/2, then we set y2 = 1. In case vi([0, x]) ≤ 1

2 , we set
y2 := max {Cuti(x, 0.25), Cuti(0, 0.5)}. Finally, we return the minimum of y1 and y2 as the
answer y to the cut query for v̂i.

Overall, we get that both the cut and the evaluation queries for v̂i can be answered in
polynomial time. This completes the proof. ◁

We now prove that the algorithm executes in polynomial time.

▶ Lemma 19. Given a fixed constant δ ∈
(
0, 1

4
)

and any cake division instance with
(Robertson-Webb) query access to the valuations of the n agents, Algorithm 1 computes an
allocation in time that is polynomial in n and 1

δ .

Proof. We will first establish the time complexity of Phase I of the algorithm. Note that, in
every iteration of this phase (i.e., in every iteration of the while-loop between Lines 2 and 6),
for some agent a ∈ [n], the value v̂a(Pa) increases additively by at least δ

n ; see Lines 3 and 4.
Since the functions v̂is are monotonic and upper bounded by 1, the first while-loop in the
algorithm iterates at most n2

δ times. We next show that each iteration of this while-loop
can be implemented in polynomial time and, hence, obtain that overall Phase I executes
in polynomial time. Note that the execution condition of the while-loop (Line 2) can be
evaluated efficiently, since the evaluation query under v̂is can be answered in polynomial time
(Claim 18). Similarly, the candidate set C in Line 3 can be computed efficiently. Finding
the points ris in Line 3 entails answering cut queries for the functions v̂is and this too can
be implemented efficiently (Claim 18). Therefore, all the steps in the while-loop can be
implemented efficiently, and we get that Phase I terminates in polynomial time.

For Phase II and each maintained partial allocation P = (P1, . . . , Pn), consider the
potential φ(P) :=

∑n
i=1

∑n
j=1 vi(Pj). In each iteration of the second while-loop (Lines 7 to

12), the assigned region of the cake (i.e., ∪i∈[n]Pi) monotonically increases. Indeed, while
updating a partial allocation, the intervals might get reassigned among the agents, however,
the union ∪i∈[n]Pi increases in each iteration of the second while-loop. Furthermore, in
every iteration, for at least one agent i and the selected interval Ps (see Line 11), the value
increases by δ

n .9 Hence, in each iteration, the potential φ increases by at least δ
n . Also, note

that the potential is upper bounded by n and, hence, the second while-loop iterates at most
n2

δ times. Since all the steps in each iteration of the loop can be implemented in polynomial
time – including the envy cycle elimination one (Lemma 5) – we get that Phase II itself
executes in polynomial time.

The final merging of the intervals takes linear time. This, overall, establishes the
polynomial-time complexity of the algorithm. ◀

9 If the unassigned interval Ũ , considered in Line 11, is of value less than δ
n for all agents i ∈ [n], then

after that update the number of unassigned intervals (i.e., |UP |) strictly decreases. Hence, after such an
update, the while-loop terminates.

ICALP 2023

	1 Introduction
	2 Notation and Preliminaries
	3 Approximation Algorithm for Envy-Free Cake Division
	3.1 Interval Growing and Cycle Elimination
	3.2 Approximation Guarantee

	4 An epsilon-EF Algorithm under Bounded Heterogeneity
	5 Conclusion and Future Work
	A Missing Proofs from Section 3
	A.1 Runtime Analysis of Algorithm 1

